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ABSTRACT

Qualitative and Asymptotic Theory of Detonations

Luiz Maltez Faria

Shock waves in reactive media possess very rich dynamics: from formation of

cells in multiple dimensions to oscillating shock fronts in one-dimension. Because of

the extreme complexity of the equations of combustion theory, most of the current

understanding of unstable detonation waves relies on extensive numerical simulations

of the reactive compressible Euler/Navier-Stokes equations. Attempts at a simplified

theory have been made in the past, most of which are very successful in describing

steady detonation waves. In this work we focus on obtaining simplified theories

capable of capturing not only the steady, but also the unsteady behavior of detonation

waves.

The first part of this thesis is focused on qualitative theories of detonation, where

ad hoc models are proposed and analyzed. We show that equations as simple as a

forced Burgers equation can capture most of the complex phenomena observed in

detonations. In the second part of this thesis we focus on rational theories, and

derive a weakly nonlinear model of multi-dimensional detonations. We also show,

by analysis and numerical simulations, that the asymptotic equations provide good

quantitative predictions.
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Chapter 1

Introduction

The purpose of this thesis is to study shock waves in reactive media by introducing

and analyzing simple models which reproduce, at both the qualitative and quanti-

tative levels, the dynamical features of solutions of the reactive Euler/Navier-Stokes

equations. As we shall demonstrate, the mechanism responsible for complex dynamics

in detonation waves can be in fact rather simple.

We begin by reviewing in this Introduction some of the basic aspects of detona-

tion theory. We explain in Section 1.1 what is a detonation, and how to mathemati-

cally describe it. We then review in Section 1.2 the Chapman-Jouguet (CJ) and the

Zel’dovich-von Neumann-Döring (ZND) theories of detonation waves, which provide

a starting point for much of the analytical understanding of detonations. In Section

1.3 we explain the limitations of the ZND theory, and discuss the rich dynamical be-

havior observed in both experiments and numerical simulations of the reactive Euler

equations. We then conclude the introductory part by presenting in Section 1.4 and

Section 1.5 a survey of the existing simplified models in detonation theory. The goal

of this Introduction is to (1) set the common background needed, and (2) motivate

the work performed in the subsequent chapters, where it is shown that detonations

are amenable to theories much simpler than the complex equations of combustion
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theory.

The main body of this thesis is structured so that, to a large extent, each chapter

can be read independently. This requires some small repetition of content, but we

hope that the advantages in readability will outweigh the disadvantages. The chapters

have been further grouped into two main parts, depending on whether they take

a qualitative approach to modeling through toy models (Part I), or a quantitative

approach through rational asymptotic theories (Part II).

In the first part, we propose and analyze toy models capable of capturing the

complex dynamics observed in detonation waves. Since these are not derived from

first physical principles, they can only provide qualitative information. Their value,

however, lies in the contrast between their simplicity and the rich dynamics they pre-

dict. We start by showing in Chapter 2 that a very simple forced Burgers equations,

when constructed properly, contains all of the essential features of one-dimensional

detonations, including pulsating and chaotic solutions. We then explore some nat-

ural extensions of the 1D qualitative theory in order to incorporate more complex

e�ects. In Chapter 3, we focus on the e�ect of losses on the structure and stability

of detonations. We show that, much like in the reactive Euler equations, the inclu-

sion of algebraic losses complicates the analysis due to the presence of an embedded

sonic point. We then conclude the qualitative part by extending, in Chapter 4, the

one-dimensional theory to two dimensions. We show that both the linear stability

and the nonlinear dynamics of the two-dimensional extension are in good qualitative

agreement with the reactive Euler equations.

In the second part, we develop a multi-dimensional weakly nonlinear theory of

detonation waves, where a systematic and asymptotic reduction is performed starting

from the reactive compressible Navier-Stokes equations. In Chapter 5, we present

the asymptotic derivation, together with a detailed study of the asymptotic model
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proposed. We show that the reduced asymptotic equations, although much simpler

than the compressible reactive Navier-Stokes equations, contain the essential features

of one- and multi-dimensional detonation waves. Furthermore, since the asymptotic

theory is quantitative, we compare its predictions with solutions of the full system of

equations they are intended to approximate, and find a good quantitative agreement.

Finally, we derive in Chapter 6 other interesting asymptotic models which incorporate

more complex e�ects such as heat dissipation, viscous forces, and species di�usion.

The main contributions of this thesis can be summarized as follows:

• We propose and analyze in Chapter 2 the simplest partial di�erential equation

(PDE) capable of reproducing the complex dynamics of 1D detonation waves,

including chaotic solutions.

• By extending the analog to account for the e�ect of losses in Chapter 3, we

discover a new integration algorithm which is able to circumvent the usual

di�culty associated with the presence of a sonic singularity in the steady state

profile.

• In Chapter 4, we introduce the first two-dimensional analog of detonation waves.

Furthermore, we show that such a simple toy model contains complex multi-

dimensional structures.

• We derive in Chapter 5 a new weakly nonlinear model for detonation waves,

starting from the compressible reactive Navier-Stokes equations. We then show

that the asymptotic theory retains the essential ingredients required to model

unstable multi-dimensional detonations.

• In Chapter 6, we derive other asymptotic models which can be used to study,

rationally, the e�ect of algebraic loss terms in detonations, as well as the e�ect
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of heat/species di�usion. They provide a much simpler basis from which one

may try to understand the role played by di�erent dissipative processes.

We now begin with a short introduction to detonation theory. For a more in-depth

discussion, the reader is encouraged to look at the classic book of Fickett and Davis

[2].

1.1 Detonations and reactive Euler equations

The phenomenon of detonation was discovered in the late nineteenth century as a

supersonic combustion wave that propagates around a thousand times faster than

an ordinary flame. The precise nature of detonation was elucidated in the works of

Mikhelson [3], Chapman [4], and Jouguet [5] (CJ theory) at the turn of the twentieth

century and of Zel’dovich [6], von Neumann [7], and Döring [8] in the 1940’s (ZND

theory). It was established that a detonation is a shock wave that propagates in a

reactive medium where exothermic chemical reactions are ignited as a result of the

heating by the shock compression. The energy released in these reactions, in turn,

feeds back to the shock in the form of compression waves and thus sustains the shock

motion. The dynamics of such shock–reaction coupling is highly nonlinear due to the

sensitivity of the chemical reactions to temperature, making the problem significantly

more challenging than shock dynamics in inert media.

From a mathematical point of view, detonations are often modeled by the com-

pressible reactive Navier-Stokes/Euler equations [9], depending on whether or not

di�usive e�ects are taken into account. For simplicity of exposition, we present here

the modeling equations when no dissipative e�ects are considered (a more general

treatment will be considered later in Chapter 5). The governing equations, express-

ing the laws of conservation of mass, momentum, and energy, and the chemical heat
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release, are thus given by:

Dfl

Dt
+ flÒ · u = 0, (1.1)

fl
Du
Dt

= ≠Òp, (1.2)

fl
De

Dt
= ≠pÒ · u, (1.3)

D�i

Dt
= Wi, (1.4)

where D
Dt

(·) = ˆ
ˆt

(·) + u · Ò (·) is the material (Lagrangian) derivative, and Wi is the

reaction rate of the i ≠ th species. Here, fl is the density, v = 1/fl is the specific

volume, u is the velocity vector, p is the pressure, e is the total internal energy, and

�i is the available mass fraction of the i≠th product. In order to close the system, we

need to prescribe an equation of state, e = e(p, fl, �
1

, . . . , �m), some thermodynamic

relation, p = p(fl, T ), and the reaction rates, Wi(p, fl, �
1

, . . . , �m), for each reaction

variable, �i.

We note here that in most practical applications, only approximate expressions

for the equations of state and for the reaction rates are available, which brings added

complexity to the problem of modeling detonations. Although there is interest in

detailed chemistry and complex equations of state [10], this thesis will focus primarily

on simple equations of state and chemical kinetics. In fact, in order to keep the

theory tractable, we assume when needed that the system is an ideal mixture of

polytropic gases, all having the same heat capacity, and that the chemical kinetics

can be well approximated by a single irreversible Arrhenius-type reaction. Even with

these simplifying assumptions, we shall see that detonations still contain very complex

dynamics.

In the next section, we describe briefly the CJ and ZND theories, which form the

basis for much of our analytical understanding of detonation waves.



20

1.2 CJ and ZND theories

The first theoretical description of detonations goes back to the works of Mikhelson

[3], Chapman [4], and Jouguet [5]. It assumes that a detonation is a shock wave

moving into a reactive mixture, but with all of the chemical energy being released

instantaneously at the shock, so reactions happen over an infinitesimally thin region.

Detonations in the CJ theory are not classical gas dynamic shocks, in the sense

that the Rankine-Hugoniot conditions have to be modified to account for the fact

that energy actually increases across the shock due to chemical reactions. The CJ

description is illustrated schematically in Figure 1.1.

Products

Reaction zone

Fresh mixture
D

P

Figure 1.1: CJ description of a detonation wave. The wave moves from left to right
with speed D. The reaction zone is assumed infinitely thin, with all energy being
released inside the shock.

Although successful in predicting the detonation velocity, by assuming an infinitely

thin reaction zone, the CJ theory was incapable of describing the region of heat release.

Furthermore, the CJ theory relied on the crucial assumption that the velocity of the

burnt state is sonic relative to the detonation shock, but it did not provide any

justification as to why that should be the case. A better theoretical description of

detonations, and the one we shall explain in more detail, was developed forty years

later through the independent works of Zeldovich (1940), von Neumann (1942), and

Döring (1943).
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In the ZND theory, a detonation consists of a classical gas-dynamic shock, followed

closely by chemical reactions that the shock itself triggers. It allows for a finite-width

reaction zone to exist, although still treating the lead shock as a discontinuity. Notice

that this is consistent with typical sizes of both structures: while the lead shock in a

detonation tends to be on the order of a few mean free paths, reaction zones tend to

be on the order of a few hundreds or thousands [2]. A schematic description of the

ZND wave is shown in Figure 1.2. Contrasting the ZND description, Figure 1.2, with

the CJ description, Figure 1.1, we see that the main di�erence is the presence of a

finite-width reaction zone.

Products Reaction zone Fresh mixture
D

P

Figure 1.2: Schematics of the ZND description of a detonation wave. The whole
profile moves from left to right, without changing its shape, with constant speed D.

The mathematics of the ZND theory is straightforward. It consists of a search

for special types of traveling wave solutions to the reactive Euler equations given by

a shock wave moving into an unreacted and quiescent mixture. In the ZND theory,

thus, detonations are solutions of (1.1-1.4) which depend only on ÷ = x≠Dt, where D

is the detonation speed (this far, an unknown of the problem). Inserting this ansatz,

the reactive Euler equations, (1.1-1.4), reduce to the following system of ordinary



22

di�erential equations (ODEs):

(U ≠ D) fl÷ + fl (U)÷ = 0, (1.5)

fl(U ≠ D)u÷ + p÷ = 0, (1.6)

fl (U ≠ D) e÷ + pU÷ = 0, (1.7)

(U ≠ D) �i÷ = Wi(p, fl, �
1

, . . . , �m), (1.8)

where U denotes the x component of velocity. Letting Ū = U ≠ D, algebraic manip-

ulations of (1.5-1.8) yield:

(Ūfl)› = 0, (1.9)

(Ū2fl + p)› = 0, (1.10)

(e + p

fl
+ Ū2

2 )› = 0, (1.11)

Ū�i› = Wi. (1.12)

Equations (1.9-1.11) are valid everywhere in the flow except at the shock, where

the Rankine-Hugoniot (RH) conditions are required, and represent quantities which

are conserved in a frame moving with speed D. In order to proceed any further with

the calculation, we need to prescribe an equation of state, e = e(p, fl, �
1

, . . . , �m),

a thermodynamic relation, p(fl, T ), and the reaction rates, Wi(p, fl, �
1

, ..., �m). We

consider here the case of an ideal polytropic gas with a single step irreversible reaction,
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A æ B, and take

pv = RT, (1.13)

W =

Y
____]

____[

K(1 ≠ �) exp (≠E/RT ) for T Ø Ti,

0 for T < Ti,

(1.14)

e(p, v, ⁄) = pv/ (“ ≠ 1) ≠ Q�. (1.15)

Here R and “ have their usual meaning in the context of gas dynamics: “ = cp/cv is

the ratio of specific heats, and R is the universal gas constant divided by the molecular

weight. The other parameters, not present in inert flows, are: E (activation energy),

which measures how sensitive the chemical reactions are to temperature fluctuations;

Q (energy of heat release) describes how much chemical energy is contained in the mix-

ture; Ti (activation temperature) provides a threshold for temperature below which

no chemical reactions take place; K (pre-exponential factor) measures the average

collision frequency between molecules.

Denoting the values in the ambient state ahead of the wave by fl = fla, U = 0, p =

pa, and integrating (1.9-1.11) from a point ahead of the shock to an arbitrary point

behind it, we obtain

Ūfl = ≠Dfla, (1.16)

ū2fl + p = D2fla + pa, (1.17)

e + pv + Ū2

2 = ea + pava + D2

2 , (1.18)

�› = W (p, fl, �)
Ū

. (1.19)
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Substituting Ū = ≠Dfla/fl into (1.17) yields

p ≠ pa = ≠(flaD)2(v ≠ va). (1.20)

Further eliminating Ū and D from (1.18) gives

e(p, v, �) ≠ e(pa, va, 0) + 1
2 (p + pa) (v ≠ va) = 0. (1.21)

Equation (1.20) is known as the Rayleigh-Mikhelson line, and (1.21) is referred to as

the Hugoniot curve (which is parametrized by �). Clearly then, for any 0 Æ � Æ 1, the

conservation laws imply that the states p, v must lie at the intersection between (1.20)

and (1.21). In order to better understand what states belong to this intersection, it

is useful to plot the Rayleigh-Mikhelson line and the Hugoniot curve in the p ≠ v

plane. Equation (1.20) gives a straight line of slope proportional to D2. The exact

form of e(p, v; �) is more complicated, but its basic shape can be seen in Figure 1.3,

where we plot the Hugoniot curves for � = 0 and � = 1 (black), and the straight

lines represent two Rayleigh-Mikhelson lines for di�erent values of the wave speed D

(red and blue).

The problem of connecting the pre-shock state (state (1) in Figure 1.3) to a fully-

burnt post-reaction state, � = 1, can be split into three possibilities, depending on

the value of D:

1. For D greater than some critical number, DCJ , (red curve in Figure 1.3), there

are two possible values at the end of the reaction zone, represented by the

numbers (5) and (6) in Figure 1.3, where � = 1. These are known as strong

and weak detonations, respectively.

2. For D < DCJ , there is no way to connect the pre-shock state, � = 0, to the
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v

p

(1)

(2)

(3)

(4)

(5)

(6)

Figure 1.3: ZND wave diagram. The black curves represent the Hugoniot curves for
� = 0 and � = 1, and the colored straight lines are the Rayleigh-Mikhelson lines for
the Chapman-Jouguet and overdriven cases.

post-reaction state, � = 1. Thus there are no such solutions with D < DCJ .

3. For D = DCJ (blue curve in Figure 1.3), there is a unique way to connect pre-

shock state to the state at the end of the reaction zone by means of an inert

shock followed by a smooth curve. This unique velocity, DCJ , is known as the

Chapman-Jouguet velocity, and has a special place in detonation theory.

The ratio D/DCJ is typically referred to as the degree of overdrive. Notice that

D = DCJ is the smallest velocity at which we can have a traveling wave solution,

and it can be shown that for D = DCJ , the velocity of the burnt products becomes

sonic relative to the lead shock, explaining the original CJ hypothesis. This is the

velocity at which a self-sustained detonation wave propagates. For D > DCJ , one of

the two solutions (the weak detonation) can be easily dismissed (if the heat release is

monotonic) because in order to connect the post-shock state (number (4) in Figure

1.3) to the final point of the weak detonation (number (6) in Figure 1.3), an entropy-

violating shock is needed. Therefore, only strong detonations are Lax-admissible in
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the context of the inviscid theory.

Having chosen D Ø DCJ , we can compute the spatial dependence of the profile by

solving the ODE for � given by (1.19) (with D fixed, we can write u, p, fl as functions

of �, such that we obtain an ODE). This will give the full profile of a one-dimensional

traveling wave with a shock discontinuity moving into an unperturbed region. When

needed, we shall refer to this special type of solutions as a ZND wave. Although we

have assumed an equation of state given by (1.15) and a reaction rate given by (1.14),

the ZND theory applies to more general cases. In fact, the essential requirements for

the ZND theory to be applicable are:

1. The wave is one-dimensional and steady.

2. The lead shock is a jump discontinuity (inviscid description).

3. The detonation is moving into an ambient state where no chemical reactions

are taking place.

To illustrate the ZND theory with a concrete example, we choose (in appropriate

dimensionless units) E = 20, Q = 25, “ = 1.2, and plot in Figure 1.4 the profiles for

T, fl, and p for a CJ detonation, where we have solved

�› = W (p(�), fl(�), �)
U(�) ≠ D

subject to the boundary condition that �(0) = 0. As we can see, the computed

traveling wave profile agrees well with the schematic of Figure 1.2.

The calculation above demonstrates that, under suitable assumptions, the reactive

Euler equations admit a special type of traveling wave solutions (ZND wave), where

a shock moves into an unperturbed state. It says nothing regarding the stability of
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Figure 1.4: Steady-state ZND profiles for the Arrhenius rate.

such waves, or the possibility of other (multidimensional and/or non-steady) solutions.

These are important questions which we address in the next section.

1.3 Detonation dynamics

The ZND theory explains rather well a detonation wave as a traveling wave achieved

by a balance between the nonlinearity and the energy release in chemical reactions.

The applicability of the ZND theory, however, depends crucially on the stability of

a planar, steady detonation. If the traveling wave profile were unstable to trans-

verse modes, then the one-dimensionality assumption would break down. But even

if the wave remains one-dimensional, it is possible for longitudinal modes to become

unstable, violating the steadiness assumption.

The first experimental observations suggesting that detonation fronts might not

be stable were given as early as 1927 [11], well before the development of the ZND

theory, with the observation of the spin phenomenon. With better experimental

techniques it was later realized that, in fact, most gaseous detonations tend to be
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unstable in practice, with complex multi-dimensional patterns forming [12, 13]. Since

the ZND theory assumes a steady, one-dimensional traveling wave, the experimental

observation of instability (and its rather generic nature) immediately put into question

the usefulness of the ZND description of detonations. Interestingly, although multi-

dimensional and highly unsteady, detonations were observed to travel at speeds very

close to the CJ prediction. Some further theoretical understanding was needed.

Partial reconciliation between theory and experiments came 20 years later, in the

pioneering works of Erpenbeck [14, 15], by a linear stability analysis. Erpenbeck

showed that, for large enough values of the activation energy (E) and/or heat release

(Q), the ZND solutions are linearly unstable. The analysis of Erpenbeck therefore

explained why the ZND waves are rarely observed in experiments. From then on much

improved numerical calculations of linear stability have been performed [16, 17, 18, 19,

20], all demonstrating the rich linear spectrum present in the reactive Euler equations.

Linear stability analysis, however, has a limited power as it is a linear theory. It is

capable of predicting for which parameters the ZND wave is unstable to infinitesimal

perturbations, and even typical growth rates and spatial scales related to unstable

wave numbers, but it provides no description beyond the onset of instabilities, when

nonlinearities become important.

What happens after the onset of instabilities was first answered, in the context of

the reactive Euler equations, by the numerical simulations of Fickett and Wood [21].

It was shown that, when unstable, the solutions tend to a limit cycle which oscillates

around the ZND wave. Thus, even when unstable, ZND solutions provide some rough

approximation of the true nonlinear dynamics. With the improvement of computers

and numerical algorithms, detailed numerical studies of the reactive Euler equations

have further shown that, as the activation energy is increased, solutions appear to

go from stable to unstable through a supercritical Hopf bifurcation. From that point
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on, further increase in the activation energy yields a sequence of period-doubling

bifurcations leading to chaos [22, 23]. Recently, tools from dynamical systems have

also been applied to the one-dimensional detonation dynamics to characterize the

type of chaos observed [24].

Although linear stability provides some helpful insights into the complex dynam-

ics, and numerical simulations can illustrate what happens after the onset of insta-

bilities, understanding the underlying mechanisms responsible for the rich dynamics

requires simpler models. Here, we do not insist on asymptotic approaches, since much

can be learned even from qualitative theories, as long as they capture the essential

elements of detonations.

Since this thesis is concerned with simplified models of detonations, we present

in the next subsection a brief review of the literature on the subject. We focus first

on the qualitative theories (Section 1.4), and then discuss the asymptotic approaches

(Section 1.5), examining their main advantages and drawbacks.

1.4 Review of qualitative models

All of the models reviewed in this section belong to the category of toy models, also

called analogs. They are not derived, and therefore need no justification. Being

a qualitative approach, there is some controversy on whether or not such ad hoc

approach has any value. We of course believe that it does, but a discussion of analogs,

and where they may triumph over rational theories, seems appropriate.

Given Fickett’s great exposition on the “nature of analogs” in his 1979 paper

[25], we refrain from attempting to motivate it ourselves, and cite instead his original

words:

“An analog is a qualitative representation of the original. (There may
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of course be the added bonus that the original reduces to the analog in

some special or limiting case, but this is by no means necessary.) The

analog is constructed or designed, not derived. The design involves a

trade o�: one tries to maximize simplicity while minimizing the loss of

important properties of the original. Simplicity is the analog’s strong

point. Specifically: (i) exact solutions are easier to find and more likely

to exist, (ii) the tedium of routine mathematical manipulations is greatly

reduced, and (iii) the essential ideas are less likely to be obscured by

extraneous detail—in the full system one may fail to see the forest for the

trees.”

By taking a qualitative approach, one is free to experiment with the equations at will,

without the need to rationally justify the steps taken. The usefulness of the analog

will depend on how much of the original phenomena it can capture, versus how simple

it is.

The first simplified model of detonations was proposed by Fickett in 1979 [25].

His goal was to use a reduced system which would still capture the coupling between

the flow and the chemistry. Motivated by Burgers equation and in analogy with gas

dynamics, Fickett modified Burgers equation by introducing an extra variable capable

of changing the density. He then added an extra equation, corresponding to a reaction

rate, to close the system. In its simplest form, the analog can be written as

ut + (u2

2 + q⁄)x = 0, (1.22)

⁄t = Ê(u, ⁄), (1.23)

where Ê(⁄, u) is the reaction rate, and q is a constant. The original analog represents

an irreversible chemical reaction where the chemicals change as A æ B with ⁄ :
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0 æ 1, but other possibilities have been studied as well [26]. Similar to the ignition-

temperature kinetics, the reaction is assumed to be triggered by a shock front which

is moving into an unperturbed state.

Fickett’s model contains all of the ZND theory discussed in Section 1.2, and much

can be learned from studying it. In fact, Fickett himself went on later and wrote a

book on this analog [27], in which he explains most of the main features and challenges

of detonation problems through the simple model.

We have thus far deferred the discussion of the specific form of Ê(u, ⁄), without

which the analog is incomplete. As we shall see throughout this thesis, most of

the complexity of detonations lies precisely in this choice, which determines how the

chemical reactions are a�ected by the flow. Going back to Fickett’s original work, he

considered:

Ê = k (1 ≠ ⁄)1/2 ,

where k is a constant, for which all of the ZND theory becomes explicitly computable,

and therefore simpler. The main drawback, however, is that Fickett’s model as pre-

sented in [25] contains only stable traveling waves, and therefore cannot be used to

study the complex stability properties of detonations.1

Another analog closely related to Fickett’s was introduced independently by Majda

in 1981 [29]. Majda’s analog is given by

(u + q⁄)t + (u2

2 )x = —uxx, (1.24)

⁄t = (1 ≠ ⁄) „ (u) , (1.25)

1Fickett did some preliminary calculations regarding stability, and it appears he was aware of
instabilities in his model, provided a more complex form of the reaction rate is assumed [27]. He
did not demonstrate what happens after instability however. He also investigated the stability of a
square wave in the context of his analog, showing that pathological instabilies do occur in the limit
of infinitely fast reaction rate and finite induction zone [28].
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where —, q are constants representing a viscosity-like e�ect and the energy of heat

release, respectively. Majda analyzed his model in great detail, showing existence of

traveling wave solutions.

The most important contribution of Majda’s work is that, in a rigorous way, the

e�ect of viscosity is considered. He showed that, even in the presence of some viscosity,

a theory analogous to the ZND theory exists for viscous detonations, with strong,

weak, and CJ cases. The stability of these solutions, however, was not investigated

by Majda.

The main criticism of the Majda model is that it has never been shown, numer-

ically or analytically, that the combustion waves present in (1.24) and (1.25) can

become unstable. In fact, most of the current belief is towards stability, with many

works suggesting that Majda’s analog [17, 30] is always stable (for some forms of „(u)

in (1.25), of course).

The two previously mentioned analogs, Fickett’s and Majda’s, were thus lacking

one of the main features of real detonations: instabilities. It was believed, in fact,

that such a simple theory could not capture all of detonation dynamics. This was

proven wrong in the recent work of Radulescu and Tang [31], where it was shown

that a modification of (1.22) can reproduce all the instabilities and chaotic dynamics

observed in the reactive Euler equations. Their modification, which is motivated by

chain-branching kinetics, is given by

ut +
A

u2

2 + Q⁄r

B

x

= 0, (1.26)

(⁄i)t = ≠KiH(⁄i) exp [– (u/2DCJ) ≠ 1] , (1.27)

(⁄r)t = Kr (1 ≠ H (⁄i)) (1 ≠ ⁄r)‹ . (1.28)

The rationale behind the above equations is that the exothermic chemical reactions,
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measured by ⁄r, are preceded by an induction zone, controlled by ⁄i, where energy is

not released. The size of this induction zone depends exponentially on the main vari-

able, u. We avoid giving a detailed explanation of all other parameters, Ki, Kr, –, ‹,

which can be found in the original work [31].

The authors showed, by numerical simulations, that for certain choices of param-

eters, the detonation waves of (1.26-1.28) bifurcate from stable to unstable, and that

further destabilization leads to a period doubling cascade, and possibly chaos. This

was an interesting discovery, as it suggested that the underlying dynamics may be in

fact captured by Burgers-like systems.

The main weakness of the Radulescu-Tang analog, one could argue, is that some

simplicity has been lost. The equations are still amenable to analysis, but the number

of parameters and the need for more complicated chemistry deviates from the main

strength of an analog: simplicity. Also, since the reactive Euler equations admit

pulsating—and even chaotic— solutions with a single step Arrhenius kinetics, the

extra complexity in reaction rate seems unnecessary. We reiterate, however, that [31]

was the first time that the complex dynamics of detonations (including chaos) was

reduced to a much simpler system.

1.5 Review of asymptotic theories

While the previous section surveyed some existing analogs in detonation theory, we

focus in this section on asymptotic theories. Asymptotic theories are quantitative in

nature and, any predictions they make must also appear in the more general system

in the appropriate limit. The converse, however, is not generally true, and important

features of the general model may not be present in the asymptotic equations.

The art of asymptotic modeling consists of knowing which e�ects are important
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and which are negligible for a given phenomenon, and then finding the correct limit

in which only the important terms are retained. We present below a brief review of

five asymptotic models in detonation theory. Since our focus is on weakly nonlinear

theories, closer attention is payed to the weakly nonlinear theory of Rosales and

Majda [32].

Shortly after Majda introduced his simplified combustion model, Rosales, in a

joint work with Majda, showed that a weakly nonlinear asymptotic theory can yield

a very similar set of equations [32]. The Rosales-Majda model is derived in arbitrary

dimensions, but for simplicity we shall present here the one-dimensional formulation

of the model, with a wave moving into a constant unperturbed state. The equations

then take the form

ut +
A

u2

2 + q

2⁄

B

x

= —uxx, (1.29)

⁄x = ≠k (1 ≠ ⁄) exp (◊u) , (1.30)

where we have focused on the reaction rate obtained by a single-step Arrhenius ki-

netics. Here, — represents the e�ect of viscous terms, k is the pre-exponential factor,

q is the energy of heat release, and ◊ is the rescaled activation energy.

It is not very hard to see that the traveling wave solutions of (1.29-1.30) are

exactly analogous to the traveling wave solutions of the Majda analog, and therefore

the theory developed in [29] directly applies to the Rosales-Majda model. This means

(1.29-1.30) admit traveling wave solutions similar to ZND waves, and contain strong,

weak, and CJ detonations.

Since (1.29-1.30) is derived from the reactive Navier-Stokes equations, which admit

unstable detonations, one may expect the same to be present in the asymptotic theory.

It appears, however, that this is not the case (at least for simple Arrhenius kinetics),
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and that detonation waves (weak and strong) of (1.29-1.30) are always stable [33, 34].

In order to better understand how unstable waves, a feature present in the general

formulation using the reactive Navier-Stokes equations with Arrhenius kinetics, faded

from the asymptotic equations, it is helpful to look into the nature of instabilities

in detonations, the asymptotic behavior of the neutral stability boundary, and the

scaling assumed in the derivation of the Rosales-Majda theory.

Postponing the more technical details to Chapter 5, let us briefly mention here

the main assumptions of the Rosales-Majda model. First, it is a weakly-nonlinear

theory, and therefore waves must have small amplitude. This requires Q, the heat

release parameter, to be small (in an appropriate dimensionless formulation). Then,

for the chemistry to be a�ected by such a weak flow, one must choose E, the activation

energy, to be large. Letting ‘ be the small parameter in their derivation, related to the

amplitude of the wave, the Rosales-Majda theory assumes Q = O(‘2), E = O(1/‘).

That this scaling is expected to produce only stable waves can be understood by

looking at the neutral stability curve in the Q ≠ E plane.

In the limit of large E, the neutral stability curve appears to follow a scaling

Q ≥ 1/E, at least in some asymptotic approach [35], with detonations being unstable

if Q ? 1/E [36]. Then, since the Rosales-Majda theory assumes Q ≥ 1/E2 π 1/E, we

see that the asymptotic approximation is valid in a limit where the general equations

themselves possess only stable detonations. Modifying the assumptions of the asymp-

totic theory, however, is not as straightforward as one may hope. Simply changing

Q = O(‘) or E = O(1/‘2) in the original formulation of the Rosales-Majda theory pro-

duces equations which are either not weakly nonlinear (and therefore not amenable to

the simplifications of weakly nonlinear theories), or that have infinitely fast reaction

rates. Later in Chapter 5, we will explain how to overcome these di�culties.

Another interesting asymptotic simplification is given by the detonation shock
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dynamics (DSD) theory. Its main goal is to extend the ZND theory in order to

account for curvature e�ects and unsteadiness of the wave [37, 38]. It assumes small

shock curvature, Ÿ π 1, and slow time evolution, ˆt π 1. It also relies on the fact

that a sonic point exists some distance away from the shock, and therefore that the

shock evolution is completely determined by the flow between the shock and the sonic

locus.

Depending on the relative sizes of Ÿ and ˆt, di�erent results are obtained. In the

simplest form, if one assumes that ˆt π Ÿ, then curvature e�ects dominate, and the

final result of DSD theory is a relation of the form

F (D, Ÿ) = 0,

which determines how fast the shock moves (D) at a given curvature (Ÿ). If one

assumes, instead, that the unsteadiness of the wave has an e�ect comparable to

curvature, then the relation becomes

F (Ḋ, D, Ÿ) = 0,

where Ḋ denotes the shock acceleration.

Many extensions of DSD theory have been carried out [39, 40, 41], and by retaining

higher order terms one obtains relations which are more complex, e.g., F
1
D̈, Ḋ, D, Ÿ

2
=

0, but the basic ideas remain unchanged.

DSD theory is a very practical theory since it provides a shock evolution equation

that reduces the spatial dimension of the problem by 1, and does not assume that

the shock is weak. The main disadvantage of DSD theory is that the functional

relations between D and its derivatives, and curvature, tend to be very complicated.
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Nonetheless, if carried to high enough order, these theories have been demonstrated

to reproduce both unstable pulsating detonations and some form of cellular patterns

[39].

The third theory we shall mention is the Bourlioux-Majda-Roytburd model [42,

43], which is a modulation theory for the eigenfunction of weakly unstable detona-

tion waves. It is obtained by expanding the dependent variables, near the stability

boundary, in a series of the form

q = q
0

(x) + ‘A
1
‘2t

2
e (x) exp (i⁄ (‡) t) + c.c + O(‘2),

where q
0

is the steady-state (ZND) solution, and ‡, e are the eigenvalue and eigenvec-

tor corresponding to q
0

. It is assumed that the parameters (overdrive, heat release,

activation energy) are chosen so that the ZND wave is unstable, but close enough to

the neutral stability boundary. In this case, there is only one unstable eigenvalue, ‡,

with Ÿ (‡) ' 0. The main finding is that the amplitude function A, in one dimen-

sion, solves a Landau-Stuart equation. The original one-dimensional work has been

extended to multiple dimensions by the same authors [44], and it was shown that simi-

lar theories can be developed provided the instabilities are mainly triggered by a single

unstable mode. There is, however, no evidence that the asymptotic model reproduces

not only instabilities, but also period doubling, chaos, and multi-dimensional cellular

patterns similar to those in full reactive Euler equations.

The main di�culty with this asymptotic theory is that the eigenvalues and eigen-

functions of a detonation wave (i.e., the linearized spectrum) need to be known in

order to perform the asymptotic expansions, and finding these is generally quite chal-

lenging.

The fourth model we cover, derived by Clavin and He [45], exploits the fact that,



38

provided a strong overdrive is present, a quasi-isobaric approximation is appropriate

for detonation waves. Overdriven detonations are usually associated with piston-

driven detonations, where the detonation propagates at speeds which are higher than

the CJ velocity. When the degree of overdrive is high, the detonations resemble

more and more an inert shock, with chemical reactions playing only a secondary

role. If the limit is chosen appropriately, however, it is possible to have a highly

overdriven detonation which is still unstable. In the Clavin-He theory, a limit of high

overdrive and ratio of specific heats close to unity is considered. In order to avoid

singularities which arise in that model when employing simple Arrhenius kinetics, the

authors considered a more complex reaction rate. With their proposed reaction rate,

a parameter measuring the induction zone sensitivity to temperature fluctuations

is then assumed large, which allows for small perturbations to a�ect the strongly

overdriven flow.

The final result of the model is an integral equation which relates the shock tem-

perature, Ts, to its history,

1 + bTs(t) =
ˆ Œ

0

W (Ts(t ≠ ·), ·) d·,

where b is a constant and W is a known function. The authors showed that, provided

the temperature sensitivity is high enough (in their new reaction rate function), the

solutions of their model contain unstable waves. In subsequent work, the authors

showed what appears to be cellular structures in a multidimensional form of their

model [46]. It remains unclear, however, how quantitatively close their predictions

are to the full reactive Euler equations regarding the nonlinear dynamics.

The last theory we review, developed by Clavin and Williams [47] is based on a

weakly nonlinear approximation of a detonation wave in the limit of small overdrive,
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small heat release, large activation energy, and “ æ 1. By looking at perturbation

of the ZND profile, the authors derive a forced Burgers equation, together with an

equation for the reaction rate function. Although the final result is similar to that

of Rosales and Majda, the derivation of Clavin-Williams appears to be di�erent. In

particular, they assume an inviscid and one-dimensional wave, and look at the non-

linear evolution of perturbations to the ZND profile. Rosales and Majda, on the other

hand, derive their theory in multi-dimensions with dissipative e�ects retained. The

main novelty of the Clavin-Williams theory is that by applying the extra assumption

that “ ≠1 is small, the asymptotic form of the reaction rate is modified. Finally, they

show that in some limits their reduced system contains instabilities.

As we shall see later, our multi-dimensional weakly nonlinear theory, when re-

stricted to the one-dimensional inviscid case, contains the Clavin-Williams model,

and therefore we postpone further details to Chapter 5.

Both the asymptotic models and the analogs that we covered in the last two

sections have much increased our understanding of detonations. Some have shed

light on the steady state structures, others on nonlinear dynamics; some emphasized

the physical mechanisms, others the complex mathematics. Despite their di�erences,

all models discussed share the same goal: to obtain a simpler description of detonation

waves.



40

Part I

Qualitative theory of unsteady

detonations
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Chapter 2

Reactive Burgers equation

Here, we analyze properties of an equation that we propose to model the dynamics

of unstable one-dimensional detonation waves. The equation is

ut + 1
2

1
u2 ≠ uu (0≠, t)

2

x
= f (x, u (0≠, t)) , x Æ 0, t > 0.

It describes a detonation shock at x = 0 with the reaction zone in x < 0. We investi-

gate the nature of the steady-state solutions of this nonlocal hyperbolic balance law,

the linear stability of these solutions, and the nonlinear dynamics. We establish the

existence of instability followed by a cascade of period-doubling bifurcations leading

to chaos.

2.1 Introduction

We begin this thesis by studying possibly the simplest manifestation of instabilities

in detonation waves: pulsating detonations. As we discussed in Section 1.3, a steady

planar detonation wave is rarely observed in experiments. Complex time-dependent

and multi-dimensional structures tend to develop [48, 2]. Numerical simulations of

the equations of reactive gas dynamics are able to reproduce at a qualitative level
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the complex structures observed in experiments (see, e.g., [49, 44, 50]). Obtaining

physical insights into the basic mechanisms of the instability is greatly facilitated by

simplified modeling and remains challenging.

In one dimension, the instabilities of the reactive shock wave manifest themselves

in the form of a “galloping detonation” [2], wherein the shock speed oscillates around

its steady value. It has been shown through extensive numerical experiments that as

the activation energy, E, a parameter in the equations measuring the temperature

sensitivity of the chemical reactions, is varied, the shock speed transitions from a

constant to an oscillatory function. Further increase of E leads to a period-doubling

bifurcation cascade, which ultimately results in the shock moving at a chaotic speed

[22, 23]. The precise mechanism for such instabilities is still not completely under-

stood.

In this chapter, we show that a very simple model, which consists of a single non-

local partial di�erential equation (PDE), is capable of reproducing the complexity

observed in one-dimensional simulations of reactive Euler equations. The model pos-

sesses traveling wave solutions precisely analogous to those of the ZND theory (i.e.

Section 1.2 ), with both the Chapman-Jouguet (i.e., self-sustained) and the over-

driven solutions present. Furthermore, stability analysis and unsteady simulations of

the model demonstrate the complexity seen in galloping detonations, in particular,

their chaotic dynamics. These findings suggest that a theory much simpler than the

full reactive Euler equations may be capable of describing the rich shock dynamics

observed in detonation waves.

Simplified models have been used in the past to study detonations. Both rational

asymptotic theories and ad hoc models have been introduced previously to gain insight

into the dynamics of detonation. The reader can find extensive references in the recent

review articles and books [51, 48, 52], or in Section 1.4 and Section 1.5. The most
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relevant to this chapter is the theory of weakly nonlinear detonations [32], which

we shall use in order to motivate the toy model introduced. Before [32], Fickett

[25] and Majda [29] independently introduced ad hoc analog models, which were

based on the idea of extending Burgers equation by an additional equation modeling

chemical reactions. The e�ect of chemical reactions in these analogs appears as a

modification of the flux function to include the chemical energy term. The analog

models received much attention in the past [25, 28, 27, 31, 53] and continue to attract

interest from a mathematical point of view [17]. These simplified models possess

a theory analogous to ZND theory, with its Chapman-Jouguet, strong, and weak

detonation solutions. The weakly nonlinear model [32] is a result of an asymptotic

reduction of the reactive Navier-Stokes equations. It applies in any number of spatial

dimensions, reducing in one dimension to equations very similar to those of the analogs

and therefore also containing the theory of ZND waves. The analog models have

previously been thought to perform poorly in describing galloping one-dimensional

instabilities and the transition to chaos. However, the recent work of Radulescu and

Tang [31] demonstrates that a modified version of Fickett’s analog, to include a two-

stage chemical reaction with an inert induction zone and a following reaction zone,

reproduces much of the complexity of detonations in reactive Euler equations. We

suggest that even a much simpler scalar equation can capture many of the known

phenomena of pulsating detonation waves.

The remainder of this chapter is structured as follows. In Section 2.2, we introduce

the model and discuss its connection with the weakly nonlinear model. Next, we

develop a general theory for the proposed equation and compute the possible ZND

solutions. In Section 2.3, we derive a dispersion relation for the linear stability, and

prove certain important properties about the distribution of the eigenvalues. Finally,

in Section 2.4, we focus on a specific example, for which we perform an extensive
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numerical study. With the example, we calculate the linear stability spectrum, the

onset of instabilities, and the long-time nonlinear dynamics of solutions. Using tools

from dynamical system theory, we show that the solution goes through a sequence of

period doubling bifurcations to chaos, much like in the reactive Euler equations.

2.2 The model

Our model construction is based on two basic ideas: weakly nonlinear approximation

[32] and non-locality of the chemical energy release rate [25]. The precise nature of

this non-locality is explained below. The weakly nonlinear theory of detonation in

one dimension, in the inviscid limit, results in the following simplified system[32]:

ut +
A

u2

2 + q

2⁄

B

÷

= 0, (2.1)

⁄÷ = Ê (⁄, u) , (2.2)

where t and ÷ are time and space variables, respectively; ⁄ is the mass fraction of

reaction products, going from 0 ahead of the shock to 1 in the fully burnt mixture; u

can be thought of as, for example, temperature; Ê(⁄, u) is the asymptotic reduction of

the original reaction rate; and q is a constant representing the chemical heat release.

Note that (2.2) propagates waves instantaneously since the time derivative is missing

in the equation. Nevertheless, (2.1–2.2) constitutes a hyperbolic system.

In [32], (2.1–2.2) are derived under the assumption of weak heat release and high

activation energy. This is consistent with a weakly nonlinear theory in which (in

appropriate dimensionless units), the waves have amplitude O(‘) and the heat release

has size O(‘2), while the activation energy is O(1/‘), where 0 < ‘ π 1.

Consider a shock moving into an unreacted (⁄ = 0), unperturbed (u = 0) region.
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At the shock, we apply the Rankine-Hugoniot conditions to (2.1) to obtain

≠ D [u] + 1
2

Ë
u2

È
+ q

2 [⁄] = 0, (2.3)

where D is the shock speed and the brackets denote the jump across the shock in the

enclosed variables. Using [⁄] = 0 and that u = 0 ahead of the shock, it follows from

(2.3) that D = ÷̇s = us/2, where ÷s(t) is the shock position and us = u (÷≠
s , t) denotes

the post-shock value of u. A change of variables to the shock-attached frame, given

by x = ÷ ≠ ÷s(t), yields

ut +
A

u2

2 + q

2⁄ ≠ Du

B

x

= 0, (2.4)

⁄x = Ê (⁄, u) , (2.5)

for x Æ 0 and u = 0, ⁄ = 0 for x > 0.

Now we make the important assumption that Ê(⁄, u) = Ê(⁄, us). This simplifying

assumption is the reason why we call the model nonlocal, because the change of ⁄ at

any given point x at time t is determined not by u (x, t) at that point, but by u at the

shock, x = 0. This means that any change of us (t) propagates instantaneously over

the whole domain, x < 0. Note that such assumption is sometimes used in modeling

detonation in condensed explosives. The idea behind it is that the energy release is

primarily controlled by how hard the explosive is hit by the shock [27].1

As a consequence of the assumed form of Ê, equation (2.5) can now be formally

integrated over x to yield ⁄ = F (x, us). Upon di�erentiation of the latter with respect

to x and substitution into (2.4) (letting qFx/2 = f), we obtain one non-local equation
1Much later in Chapter 5, after a new weakly nonlinear theory of detonations is derived, we will

be able to motivate this assumption through asymptotic ideas. Recall, however, that toy models
require no such justifications, and therefore the work performed in this chapter remains valuable
even in the absence of an asymptotic justification.
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on the half-line, x Æ 0, given by

ut + 1
2

1
u2 ≠ uus

2

x
= f (x, us) . (2.6)

Conversely, it can be shown that for any positive function, f , a function Ê(⁄, us) can

be found such that (2.6) is equivalent to the system given by (2.4-2.5).

The shock, which is now located at x = 0 at any t, must satisfy the Lax conditions,

that is, c(0≠, t) > 0 > c(0+, t), where c = u ≠ us/2 denotes the characteristic speed

in (2.6). It follows that D (t) = us/2 = c (0≠, t) > 0.

Initial data for (2.6) are given as u (x, 0) = g (x) for x < 0, where g (x) is a suitable

function and u (x, 0) = 0 for x > 0 is assumed implicitly. An important feature of (2.6)

is that the boundary value of the unknown, us, is contained within the equation. This

is one of the key reasons for the observed complexity of the shock dynamics. While

the boundary information from the shock at x = 0 is propagated instantaneously

throughout the solution domain at x < 0, there is a finite-speed influence propagating

from the reaction zone toward the shock along the characteristics of (2.6).

In characteristic form, (2.6) can be written as

du

d·
= f (x, us) , (2.7)

dx

d·
= u ≠ us

2 , (2.8)

where the characteristic speed is c = u ≠ us/2. Therefore, (2.6) incorporates, within

a single scalar equation, the nonlinear interaction of two waves. One is the usual

Burgers wave propagating toward the shock at a finite speed, c. The other is of an

unusual type, as it represents an instantaneous e�ect by the state us at the shock,

x = 0, on the whole solution region x < 0. Physically, this second wave corresponds
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to the particle paths carrying the reaction variable. In the weakly nonlinear limit,

these paths have, e�ectively, an infinite velocity.

2.3 Steady solutions and their stability

In this section, we explore some general properties of the proposed model. Keeping in

mind the connection with detonation theory, we restrict our attention to f(x, us) such

that
´

0

≠Œ f(x, us) dx = q/2 = const. This condition means that the amount of energy

released by reactions is finite and fixed. We consider only exothermic reactions; hence,

f(x, us) Ø 0. Although these assumptions facilitate some of the computations, they

are not required for most of the results presented here, and more general forms of the

forcing can be considered without adding much more complexity to the analysis.

2.3.1 Rankine-Hugoniot and Lax Entropy Conditions

At the shock, located originally at › = 0, we apply the Rankine-Hugoniot conditions,

≠ ṡ [u] + 1
2

Ë
u2

È
≠ 1

2u≠ [u] = 0, (2.9)

where [z] = z+ ≠ z≠ denotes the jump in z across the shock and ṡ is the shock speed.

From 2.9, we immediately find that ṡ = 0, that is the shock is stationary at any

t > 0. This is of course a simple consequence of moving to the shock-attached frame,

which led to the modified flux of the particular form. In the laboratory frame, the

shock moves with the speed equal to D = u (0, t) /2. So in reality, we are solving a

free-boundary problem, albeit posed in an unusual form.

Finally, we require the shock to be a Lax shock, meaning that c(0≠) > 0 > c(0+),

where c denotes the speed of the characteristic in (2.6). This implies u(0, t) > 0 for
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all t, and thus in the laboratory frame of reference the shock never changes direction.

Given initial data g(x) > 0 and forcing function f > 0 we are guaranteed to have a

Lax shock for all time. Thus the shock is always located at zero, and it is always a

Lax admissible shock.

2.3.2 Steady-state solutions

Let u
0

(x) denote a steady-state smooth solution of (2.6). It is a solution of

3
u

0

≠ u
0s

2

4
uÕ

0

= f (x, u
0s) , (2.10)

where “ Õ ” denotes the derivative with respect to x and u
0s = u

0

(0) is the steady-

state value of u at x = 0, which is to be found together with u
0

(x). Integration of

(2.10) from 0 to x yields a quadratic equation for u
0

,

u2

0

≠ u
0

u
0s = 2

ˆ x

0

f (y, u
0s) dy,

where the integration constant vanishes in view of the boundary condition at x = 0.

The solution profile is thus given by

u
0

(x) = u
0s

2 +
ı̂ıÙu2

0s

4 + 2
ˆ x

0

f (y, u
0s) dy. (2.11)

The plus sign is chosen here to satisfy the boundary condition at x = 0. We note that

for u
0

(x) in (2.11) to be real, f must be constrained so that at any x, the expression

under the square root is non-negative. E�ectively, this is the requirement of overall

exothermicity of the source term.

The choice of u
0s depends on the behavior of the solution at x æ ≠Œ. For the
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square root in equation (2.11) to be real at x = ≠Œ, we require that

u
0s = ’

Q

a2
ı̂ıÙ2
ˆ

0

≠Œ
f (y, u

0s) dy

R

b (2.12)

with some ’ Ø 1. The e�ect of ’, which is the analog of the overdrive factor in

detonation theory, on the shape and the stability of the traveling wave can be readily

appreciated in the non-dimensional formulation given in Section 2.4. The case with

’ = 1 whereby

u
0s = 2

ı̂ıÙ2
ˆ

0

≠Œ
f (y, u

0s) dy, (2.13)

is an important special case commonly referred to as the Chapman-Jouguet solution,

because the characteristic speed at x = ≠Œ is c
0

(≠Œ) = u
0

(≠Œ) ≠ u
0s/2 = 0.

Therefore, the characteristics point toward the shock everywhere at x < 0 becoming

vertical at x = ≠Œ. Cases where ’ > 1 are related to piston-driven detonations

wherein the state at x = ≠Œ remains subsonic, i.e., c > 0. In the context of the

Euler detonations, they are known to be more stable than Chapman-Jouguet waves

[16, 20].

2.3.3 Spectral stability of the steady-state solution

Consider the linear stability of the steady-state solution obtained in the previous

subsection. For simplicity, we limit the analysis to the CJ case, but the overdriven

solution can be similarly analyzed, as is done later in Chapter 4. Let u (x, t) =

u
0

(x) + ‘u
1

(x, t) + O (‘2) with ‘ æ 0 and linearize (2.6). We find that

u
1t +

3
u

0

≠ u
0s

2

4
u

1x + uÕ
0

u
1

=
A

ˆf

ˆus

(x, u
0s) + uÕ

0

2

B

u
1

(0, t) . (2.14)
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The steady-state characteristic speed is

c
0

= u
0

≠ u
0s

2 =
ı̂ıÙ2
ˆ x

≠Œ
f (y, u

0s) dy, (2.15)

and the coe�cient on the right-hand side of the linearized equation above is

b
0

© ˆf

ˆus

(x, u
0s) + uÕ

0

2 = ˆf

ˆus

(x, u
0s) + f (x, u

0s)
2c

0

(x) = ˆf

ˆus

(x, u
0s) + 1

2c
0

(x)Õ. (2.16)

Both c
0

and b
0

are functions of x.

Thus, the linear stability problem requires that the following linear non-local PDE

with variable coe�cients,

u
1t + c

0

u
1x + cÕ

0

u
1

= b
0

u
1

(0, t) , (2.17)

be solved subject to appropriate initial data, u
1

(x, 0). If spatially bounded (in some

norm, to be defined below) solutions of (2.17) grow in time, then instability is ob-

tained. At this point, we can proceed with either the Laplace transform in time (as

in [14]) or normal modes (as in [16]). We choose the latter and substitute the normal

modes,

u
1

= exp (‡t) v (x) , (2.18)

into (2.17), to obtain

c
0

vÕ + cÕ
0

v + ‡v = b
0

(x) v (0) .

This equation can be integrated directly to yield

exp
A

‡

ˆ x

0

dy

c
0

(y)

B

c
0

(x) v (x) ≠ c
0

(0) v (0) = v (0)
ˆ x

0

b
0

(›) exp
A

‡

ˆ ›

0

dy

c
0

(y)

B

d›.
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Denoting p =
´

0

x
dy/c

0

(y) Ø 0, we obtain the final solution for the amplitude of the

normal mode

v (x) = v (0) pÕ (x) e‡p(x)

Cˆ
0

x

b
0

(›) e≠‡p(›)d› ≠ c
0

(0)
D

. (2.19)

The existence of an unstable eigenvalue with Ÿ(‡) > 0 and bounded v(x) is equivalent

to normal-mode instability. On physical grounds, we require that f be integrable in

x at any given t (i.e., the L1 norm of f is bounded). This requirement follows from

the implicit assumption that f is in fact the x≠derivative of some reaction progress

variable, ⁄, varying between 0 and 1. We impose the same constraint on u, hence

v œ L1 (R≠).

Note that |e‡p(x)/c
0

(x)| æ Œ as x æ ≠Œ for Ÿ (‡) > 0, therefore, the factor in

front of the brackets in (2.19) tends to infinity as x æ ≠Œ. To prevent this growth,

the term in the brackets must vanish as x æ ≠Œ. In fact, this condition is also

su�cient for instability.

Theorem 1. Provided that Îb
0

(›)ÎL1 < Œ, the existence of a ‡ with Ÿ(‡) > 0 such

that ˆ
0

≠Œ
b

0

(z) e≠‡p(z)dz ≠ c
0

(0) = 0, (2.20)

is both necessary and su�cient for the existence of unstable normal modes.

Proof. If condition (2.20) is not satisfied, then |v(x)| 9 0 as x æ ≠Œ. Now, suppose

that (2.20) is satisfied. Then, v(x) takes the form

v (x) = v (0)
c

0

(x)e‡p(x)

Cˆ
0

x

b
0

(›) e≠‡p(›)d› ≠
ˆ

0

≠Œ
b

0

(›) e≠‡p(›)d›

D

. (2.21)

= v (0)
c

0

(x)

ˆ x

≠Œ
b

0

(›) e≠‡(p(›)≠p(x))d›. (2.22)
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We now show that Îv (x) ÎL1 < Œ. From (2.22), it follows by changing the integration

limits that

ÎvÎL1 =
ˆ

0

≠Œ

---
v (0)
c

0

(x)

ˆ x

≠Œ
b

0

(›) e≠‡(p(›)≠p(x))d›
--- dx,

Æ |v (0)|
ˆ

0

≠Œ

ˆ x

≠Œ

1
|c

0

(x)|
---b

0

(›) e≠‡(p(›)≠p(x))d›
--- dx,

Æ |v (0)|
ˆ

0

≠Œ

ˆ x

≠Œ

1
|c

0

(x)|
---b

0

(›) e≠‡(p(›)≠p(x))

--- d› dx,

Æ |v (0)|
ˆ

0

≠Œ

ˆ
0

›

1
|c

0

(x)| |b
0

(›)| e≠Ÿ(‡)(p(›)≠p(x))dx d›.

We change the integration variable in the inner integral from x to z = p (›) ≠ p (x),

so that dx = ≠dz/pÕ (x) = c
0

(x) dz. Then,

ÎvÎL1 Æ |v (0)|
ˆ

0

≠Œ

ˆ p(›)≠p(0)

0

|b
0

(›)| e≠Ÿ(‡)zdz d›, (2.23)

Æ |v (0)| 1
Ÿ (‡)

ˆ
0

≠Œ
|b

0

(›)|
1
1 ≠ e≠Ÿ(‡)(p(›)≠p(0))

2
d›, (2.24)

Æ |v (0)|
Ÿ (‡) Îb

0

ÎL1 , (2.25)

which proves that the unstable perturbations are bounded in the L1 norm provided

that b
0

œ L1 (R≠). Thus, (2.20) is necessary and su�cient for the existence of unstable

normal modes.

It is interesting that the dispersion relation (2.20) closely resembles that of [54, 55],

where the detonation dynamics is analyzed in the asymptotic limit of strong overdrive.

In this limit, the entire flow downstream of the lead shock has a small Mach number

relative to the shock, hence the post-shock pressure remains nearly constant. For

this reason, such approximation is called quasi-isobaric. However, the underlying

assumptions in the present model and those in the quasi-isobaric theory are quite



53

di�erent. For example, in [54, 55], the authors assume that the detonation overdrive

(i.e., the detonation speed normalized by the Chapman-Jouguet speed) is large and

that the ratio of specific heats is close to unity. The weak nonlinearity in [32], on the

other hand, comes from the small heat release assumption.

Another important result is that, under appropriate assumptions on f , the unsta-

ble modes have a bounded growth rate. This result shows that the so-called “patholog-

ical” instability, inherent to square-wave models of detonation in the Euler equations

[56, 57], does not occur in our model for smooth steady-state solutions. However, in

Subsection 2.4.2.2 we show that this pathological instability occurs in the square-wave

limit of our model, when f is replaced by a delta function.

Theorem 2. Given that Îb
0

c
0

ÎLŒ = M < Œ, there exist no eigenvalues with ‡r >

M/c
0

(0).

Proof. Notice that

-----

ˆ
0

≠Œ
b

0

(x)e≠‡p(x)dx

----- Æ
ˆ

0

≠Œ

---b
0

(x)e≠‡p(x)

--- dx =
ˆ

0

≠Œ

---b
0

(x)e≠‡
r

p(x)

--- dx.

Let z = p(x) and note that this function is invertible since p is monotonic. Substitu-

tion into the previous integral yields

ˆ
0

≠Œ
|b

0

(x)e≠‡
r

p(x)|dx =
ˆ Œ

0

|b
0

(p≠1(z))c
0

(p≠1(z))|e≠‡
r

zdx

Æ max
≠ŒÆxÆ0

|b
0

c
0

|
ˆ Œ

0

e≠‡
r

zdx = 1
‡r

max
≠ŒÆxÆ0

|b
0

c
0

|,

and thus for ‡r > (maxŒÆxÆ0

|b
0

c
0

|) /c
0

(0), we obtain

-----

ˆ
0

≠Œ
b

0

(x)e≠‡p(x)dx

----- Æ 1
‡r

max
ŒÆxÆ0

|b
0

c
0

| < c
0

(0).
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This contradicts the dispersion relation stated in Theorem 1, where we required

ˆ
0

≠Œ
b

0

(x)e≠‡p(x)dx = c
0

(0),

and therefore there can be no eigenvalue with ‡r > (maxŒÆxÆ0

|b
0

c
0

|) /c
0

(0).

If f(x, u
0s) is integrable and bounded and ˆf

ˆu
s

(x, u
0s) is bounded, then it can be

shown that b
0

c
0

œ LŒ. These constraints are su�cient to eliminate the pathological

instabilities in which arbitrarily large growth rates are present.

Theorem 3. If Îb
0

c
0

ÎLŒ = M < Œ, there exists a bounded interval I large enough

that all eigenvalues with ‡r > 0 have imaginary part |‡i| < I.

Proof. By application of the Riemann-Lebesgue lemma, we find after changing the

integration variable to z = p(x),

ˆ
0

≠Œ
b

0

(x)e≠‡p(x)dx =
ˆ Œ

0

b
0

(x)c
0

(x)e≠‡zdz

=
ˆ Œ

0

1
b

0

(x)c
0

(x)e≠‡
r

z
2

ei‡
i

zdz æ 0 as ‡i æ Œ

provided that b
0

(p≠1(z))c
0

(p≠1(z))e≠‡
r

z œ L1. If ‡r > 0 and b
0

c
0

is bounded, then

it follows that indeed b
0

(p≠1(z))c
0

(p≠1(z))e≠‡
r

z œ L1. Therefore, the integral above

vanishes as ‡i æ Œ, which cannot happen because the integral should equal to

c
0

(0) = u
0s/2 > 0. Notice that, unlike Theorem 2, the bound on the imaginary part

of the root is not quantitative. Better estimates of the integral above are needed to

obtain a computable bound.

Theorem 4. ‡ = 0 is never an eigenvalue.

Proof. Notice that the condition
´

0

≠Œ b
0

(›) e≠‡p(›)d› ≠ c
0

(0) = 0 is still necessary

for the eigenfunctions to remain bounded, even when ‡ = 0, since in that case the
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eigenfunctions are given by

v (x) = v (0) pÕ (x)
Cˆ

0

x

b
0

(›) d› ≠ c
0

(0)
D

,

and therefore
´

0

≠Œ b
0

(›) d› ≠ c
0

(0) = 0 is still required in order for v(x) æ 0 as

x æ ≠Œ. Substituting for b
0

, we have

ˆ
0

≠Œ

C
ˆf

ˆus

(›, u
0s) + 1

2c
0

(›)Õ
D

d› ≠ c
0

(0) = 0,

ˆ
0

≠Œ

ˆf

ˆus

(›, u
0s) d› = c

0

(0)/2.

Since we assume that f integrates to a constant (independent of u
0s), then

ˆ
0

≠Œ

ˆf

ˆus

(›, u
0s) d› = d

dus

ˆ
0

≠Œ
f (›, u

0s) d› = 0.

But c
0

(0) = u
0s/2 > 0, and therefore no such eigenvalue can exist. Thus, at the onset

of instability, the eigenvalues must have non-zero frequency.

Because ‡ = 0 is never an eigenvalue, when the behavior of the system as a func-

tion of parameters is explored, the transition from a stable steady state to instability

usually involves a Hopf bifurcation. In our numerical calculations we find that this

bifurcation is a supercritical Hopf bifurcation, similar to what happens in detonations

[58], so that a stable time periodic solution takes over from the steady state.

2.4 An example

In the previous section, we presented necessary and su�cient conditions for the

normal-mode instability of a traveling wave profile. We now focus on a specific choice
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of f(x, us) and illustrate with it the general results on the linear instability. We also

examine, by means of numerical simulations, what happens once the traveling-wave

solution becomes unstable as a bifurcation parameter is varied. The example mim-

ics, on a qualitative level, a situation wherein the chemical reaction has an induction

zone that delays the beginning of an energetic exothermic reaction. The idea is to

have a function that peaks at some distance away from the shock, with this distance

depending on the shock strength. A simple choice for such a function is

f = q

2
1Ô
4fi—

exp
C

≠(x ≠ xi (us))2

4—

D

. (2.26)

Here, xi is the point where f peaks and that point depends on the current state at

the shock, us = u (0, t). The parameter — determines the width of the reaction zone.

As — æ 0, f tends to q
2

” (x ≠ xi) where ” is the Dirac delta function; this limit yields

what is called a square-wave profile, wherein f kicks in only at x = xi. We choose xi

as

xi (t) = ≠k

A
u

0s

us (t)

B–

, (2.27)

which depends on the shock strength, us, the steady-state shock strength, u
0s, and

the parameters k > 0 and – Ø 0. Remembering the connection with the weakly

nonlinear model, where f = q⁄x/2, we require that

ˆ
0

≠Œ
f(x, us) dx = q

2 , (2.28)

and thus renormalize f as follows:

f æ q

2
f´

0

≠Œ fdx
= q

Q

a1 + Erf
S

U
k

1
u

s

u0s

2≠–

2

Ô
—

T

V

R

b Ô
4fi—

exp

S

WU≠
1
x + k

1
u0s

u
s

2–2
2

4—

T

XV .
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Next, the variables are rescaled as follows: u = u
0sũ, x = kx̃, t = kt̃/u

0s, and

— = k2—̃. Using u
0s = 2’

Ô
q, that follows from (2.12) and (2.28), equation (2.6) takes

the following dimensionless form

ũ
˜t +

Q

a ũ2

2 ≠ ũũ
1
0, t̃

2

2

R

b

x̃

= f̃(x̃, ũs), (2.29)

where

f̃(x̃, ũs) = 1

4’2

3
1 + Erf

5
ũ(0,˜t)≠–

2

Ô
˜—

64
1

Ò
4fi—̃

exp

S

WWWU≠

3
x̃ +

1
ũ

1
0, t̃

22≠–
4

2

4—̃

T

XXXV . (2.30)

This equation contains only three parameters, –, which is a measure of the shock-

state sensitivity of the source function (analogous to the activation energy in Euler

detonations), —̃ = —/k2, which is the width of f̃ (analogous to the ratio of the reaction-

zone length,
Ô

—, and the induction-zone length, k), and ’, which is the overdrive

factor. The role of the latter is now easily appreciated: it scales the forcing term by

’≠2 such that the overdrive reduces the magnitude of the forcing and hence has a

stabilizing e�ect.

Our focus below is on the Chapman-Jouguet case, ’ = 1, which leaves only –

and — as the parameters of the model. We shall examine overdriven cases in Chapter

4. Although the expression for the forcing is a little bit cumbersome, its shape is

simply that of a Gaussian shifted to the left of x = 0 by ũ(0, t̃)≠– and renormalized

to integrate to a constant on (≠Œ, 0). A few examples of f̃ are shown in Figure 2.1

for di�erent values of us and fixed –, —. The main qualitative feature of f̃ is that

it has a maximum at some distance from x = 0 and that the maximum is close to

the shock when us is large and far from the shock when us is small. These features

mimic the behavior of the reaction rate in the Euler equations as a function of the
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lead-shock speed.

−10 −8 −6 −4 −2 0
0

0.05

0.1

0.15

x

f

us = 0.7
us = 0.8
us = 1.1
us = 1.3

Figure 2.1: The forcing function, f , at various us.

From now on, we drop the tilde notation, but it should be understood that all the

variables below are dimensionless.

2.4.1 Steady-state solutions

The steady state Chapman-Jouguet solutions can be computed as shown in Subsection

2.3.2. Figure 2.2 shows how — a�ects the traveling wave profile. The picture suggests

a square wave in the limit — æ 0.

−4 −3 −2 −1 0
0

0.5

1

x

u

β = 0.1

β = 0.01

β = 0.001

−4 −3 −2 −1 0
0

0.5

1

x

f

β = 0.1

β = 0.01

β = 0.001

Figure 2.2: Steady-state solution profiles and the forcing function as — is varied.
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It is important to remember that – plays no role in the steady state profiles since

u
0s = 1 in dimensionless form. In some sense, – represents the sensitivity to changes

in the steady profile. Next, we study the linear stability of these traveling wave

profiles in the – ≠ — parameter space.

2.4.2 Linear stability analysis

2.4.2.1 The dispersion relation

By Theorem 1, spectral instability is equivalent to (2.20) provided Îb
0

ÎL1 < Œ. A

straightforward computation shows that

Îb
0

ÎL1 =
ˆ

0

≠Œ

-----
ˆf

ˆus

(x, u
0s) + f(x, u

0s)
2c

0

(x)

----- dx < Œ,

and therefore spectral stability of (2.29) is equivalent to

ˆ
0

≠Œ
b

0

(›) e≠‡p(›)d› = c
0

(0),

where b
0

, c
0

, and p are defined as in Subsection 2.3.3. Although we have reduced the

spectral stability of our problem to finding complex roots of a single equation, the

equation is (although analytic in ‡) numerically di�cult. For a given – and —, an

equation with three levels of nested integration must be solved,

ˆ
0

≠Œ

Q

aˆf (›, u

0s)
ˆus

+ ˆ

ˆ›

ı̂ıÙ1
2

ˆ ›

≠Œ
f (y, u

0s) dy

R

b exp

S

U≠‡

ˆ
0

›

dx

Ò
2
´ x

≠Œ f (y, u

0s) dy

T

V
d› = u

0s

2 ,

(2.31)
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where ‡ = ‡r + i‡i and f is given by (2.30). Interestingly, the original formulation

of the linear stability problem by Erpenbeck [14] requires the same three levels of

numerical integration (the steady-state solution, then the solution of the adjoint ho-

mogeneous problem, and then the evaluation of the dispersion relation). Due to the

highly oscillatory nature of the exponential term in (2.31), in general, these integrals

require nearly machine-precision evaluation of the functions in the integrands in order

to obtain the eigenvalues with only a few significant digits of accuracy. Except for the

limiting case of — = 0, we find the roots numerically using Matlab’s fsolve function,

which uses a version of Newton’s method, and then we use Cauchy’s argument prin-

ciple to verify that we have found all the roots in a given region of the complex plane.

When — = 0, we compute the roots analytically, and they serve as initial guesses in

the numerical continuation root-finding procedure when — is small.

2.4.2.2 The square-wave limit

When — æ 0, we obtain the square-wave solution. In this limit, it can be shown that

ˆ

ˆus

f(x, u
0s) = ≠–

ˆ

ˆx
f(x, u

0s) + O

A
1Ô
—

e≠ 1
4—

B

f(x, u
0s).

Even though f (x, u
0s) tends to a delta function when — æ 0, this function is in-

tegrated in the dispersion relation and, therefore, the contribution of the second

term above to the dispersion relation is exponentially small in the limit due to the
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O
3

1Ô
—
e≠ 1

4—

4
factor. In the limit, the dispersion relation (2.20) becomes

ˆ
0

≠Œ
b

0

(x) e≠‡p(x)dx =
ˆ

0

≠Œ

A
ˆf

ˆus

(x, u
0s) + 1

2
ˆ

ˆx
(c

0

(x))
B

e≠‡p(x) dx

=
ˆ

0

≠Œ

A

≠–
ˆf

ˆx
(x, u

0s)
B

e≠‡p(x)dx

+
ˆ

0

≠Œ

A
1
2

ˆ

ˆx
(c

0

(x))
B

e≠‡p(x) dx + O

A
1Ô
—

e≠ 1
4—

B

.

Integrating by parts and ignoring the small O
3

1Ô
—
e≠ 1

4—

4
term, we find that

≠–

ˆ
0

≠Œ

ˆf

ˆx
(x, u

0s) e≠‡p(x)dx + 1
2

ˆ
0

≠Œ

ˆ

ˆx
(c

0

(x)) e≠‡p(x)dx = c
0

(0),

≠–

C

f(0, u
0s) ≠ ‡

ˆ
0

≠Œ

f (x, u
0s)

c
0

(x) e≠‡p(x)dx

D

+ 1
2

ˆ
0

≠Œ

ˆ

ˆx
(c

0

(x)) e≠‡p(x)dx = c
0

(0),

≠–f(0, u
0s) +

3
–‡ + 1

2

4 ˆ
0

≠Œ

ˆ

ˆx
(c

0

(x)) e≠‡p(x)dx = c
0

(0),

≠–f(0, u
0s) +

3
–‡ + 1

2

4 C

c
0

(0) ≠ ‡

ˆ
0

≠Œ
e≠‡p(x)dx

D

= c
0

(0),

≠–f(0, u
0s) + –‡c

0

(0) ≠
3

–‡2 + ‡

2

4ˆ
0

≠Œ
e≠‡p(x)dx = c

0

(0)
2 ,

≠–f(0, u
0s) + –‡c

0

(0) ≠
3

–‡2 + ‡

2

4ˆ Œ

0

c
0

(x)e≠‡zdz = c
0

(0)
2 .

Noticing that in the limit — æ 0,

c
0

(x) æ

Y
____]

____[

1

2

x Ø ≠1

0 x < ≠1
, p(x) =

ˆ
0

x

dy

c
0

(y) æ

Y
____]

____[

Œ x < ≠1

≠2x x Ø ≠1
,
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we obtain

lim
—æ0

C

≠–f(0, u
0s) + –‡c

0

(0) ≠
3

–‡2 + ‡

2

4ˆ Œ

0

c
0

1
p≠1(z)

2
e≠‡zdz ≠ c

0

(0)
2 + o(1)

D

=

–‡

2 ≠
A

–‡2

2 + ‡

4

Bˆ
2

0

e≠‡xdx ≠ 1
4 =

3
–‡

2 + 1
4

4
e≠2‡ ≠ 1

2 = 0.

Therefore, the dispersion relation in the square-wave limit takes a very simple form

of a transcendental equation,

e2‡ = –‡ + 1
2 . (2.32)

This dispersion relation has exactly the same form as that of Fickett’s analog [28],

which in his case, arose from his di�erential-di�erence equation for shock pertur-

bation. Therefore, it predicts the same pathological instability as in the classical

square-wave detonations. Pathological instability implies that the linear stability

problem for the square wave is ill-posed in the sense of Hadamard. For complete-

ness, we exhibit below the solutions to this equation, since they are used as initial

guesses in our algorithm to compute the solutions when — is small, but not zero. Let

‡ = ‡r + i‡i and separate the real and imaginary parts of (2.32),

e2‡
r cos (2‡i) = –‡r + 1

2 , e2‡
r sin (2‡i) = –‡i.

If ‡r is to be large, the first equation requires cos (2‡i) to be small, i.e., ‡i should be

close to fi/4 + nfi/2, n = 0, 1, 2, .... We let

‡i = fi

4 + nfi

2 + Á, (2.33)
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where Á is a small correction. From the second equation above, we find sin (2‡i) ¥ 1

and therefore ‡r ¥ 1

2

ln (–‡i). For this ‡r to be large, we need n to be large, in which

case

‡r ¥ 1
2 ln (n) . (2.34)

Thus, the square-wave dispersion relation admits arbitrarily large growth rates that

occur at simultaneously large frequencies. It is interesting that the growth rate in-

creases with frequency logarithmically. Similar growth happens in the square-wave

model of detonations in the reactive Euler equations (see, e.g., [56, 57]). However,

in the latter, the dispersion relation involves several exponential functions due to the

presence of multiple time scales associated with di�erent families of waves propagat-

ing from the shock into the reaction zone. Waves of di�erent families of characteristics

propagate at di�erent speeds resulting in several di�erent time intervals for the signals

to propagate from the shock to the “fire” and back. Since in the limit of large frequen-

cies one of the exponentials dominates, the dispersion relation becomes essentially the

same as in our model. In the numerical calculations of detonation instability in the

Euler equations with finite-rate chemistry, but high activation energies [18], a simi-

larly slow growth can be seen. However, we do not know if the growth is logarithmic

in frequency.

Remark 5. Theorem 2 is not contradicted here since Îb
0

c
0

Î /œ LŒ in the limit, because

now f /œ LŒ.

2.4.2.3 The unstable spectrum for — > 0

The pathological instability of the model as — æ 0 was shown to be caused by an

infinite number of unstable eigenvalues, with the real part arbitrarily large. From

Theorem 2, we know that if Îb
0

c
0

ÎLŒ = M < Œ, then there can be no unstable



64

eigenvalues with ‡r > M/c
0

(0). A quick computation shows that if – < Œ and

— > 0, then the real part of the unstable spectrum of (2.29) is bounded from above.

Next, we fix – = 4.05 and numerically investigate the e�ect of — on the eigenvalues.

Using as initial guess the eigenvalues found from the square-wave dispersion relation,

(2.32), we use Matlab’s numerical root finder, fsolve, to locate the eigenvalues for

successively larger values of — 2. Figure 2.3a shows the results, rea�rming that for

any value of — > 0, there is only a finite number of unstable eigenvalues. Furthermore,

it suggests that the magnitude of — is closely related to the frequencies of the unstable

eigenvalues. This can be understood as follows: as the shock is perturbed, it creates

waves that propagate into the reaction zone. If — is large enough, the reaction zone is

smooth and there is little resonance between the shock and the peak of the reaction

in the reaction zone. However, as — is decreased, the sharp peak in the reaction zone

reflects waves back to the shock and this resonance causes the instability. If — is small

but positive, then high enough frequencies do not “see” the sharp peak in the reaction

rate and are not reflected back to the shock. A similar mechanism is at work in Euler

detonations as well. For example, in [59], as the length of the main heat-release layer

is decreased relative to that of the induction zone, the detonation is found to become

more unstable.

We also look at the e�ect of – on the distribution of the eigenvalues. In Fig. 2.3b,

we show the spectrum for fixed — = 0.001 and varying –. This figure suggests that the

eigenvalues are merely shifted when – is decreased. Interestingly, the imaginary part

of the dominant eigenvalue, i.e. the one with the largest real part, is always the same

as we change – and keep — fixed. This observation was tested for di�erent values of
2The roots of the dispersion relation when — = 0 are close to the roots when — ' 0 for eigenvalues

which are not very oscillatory (‡i not too large). However, the highly oscillatory roots are stable
when — ' 0, but unstable when — = 0, and therefore we expect the initial guesses coming from the
— = 0 case to be far o� in those cases.
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(b) The spectrum for — = 0.001 with – varied.

Figure 2.3: The linear spectrum.

—. As — decreases, the frequency of the most unstable mode is seen to increase.

To ensure that no roots of the dispersion relation have been lost in the numerical

computations, we apply the argument principle to (2.20). Since

F (‡) =
ˆ

0

≠Œ
b

0

(›) e≠‡p(›)d› ≠ c
0

(0)

has no poles in the region ‡r Ø 0 (which follows from Îb
0

ÎL1 < Œ), the argument

principle guarantees that the number of zeros, N , of F (‡) in a closed contour C

(counting multiplicity) is given by

N = 1
2fii

ˆ
C

F Õ(z)
F (z) dz. (2.35)

This can be related to the winding number of a curve by the substitution w = F (z),

which yields N = 1

2fii

´
F (C)

dw/w. We show in Figure 2.4 two Nyquist plots of the

dispersion relation, corresponding to parameters with 2 and 20 unstable eigenvalues.

The predictions agree with the number of roots found using the root solver.
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(a) – = 4.05, — = 0.05. Weakly unstable case with
two eigenvalues, one shown in Fig. 2.3 and the
other its complex conjugate.
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(b) – = 4.05, — = 0.005. Highly unstable case with
twenty eigenvalues, ten shown in Fig. 2.3 and their
complex conjugates.

Figure 2.4: Values of w = F (z) along a large semi-circle in the right-half plane of
the z-plane (radius 10 for 2.4a and 100 for 2.4b), plotted in the F -plane. The total
number of loops around the origin in the F -plane gives the winding number, which
is equal to the number of unstable eigenvalues.

2.4.2.4 The neutral curves

We follow the first five unstable eigenvalues (ordered according to their imaginary

part) and show their neutral curves in Figure 2.5. We see that for large values of

—, the lowest frequency eigenvalue is the one that first becomes unstable, but for

very small values of —, the stability of the traveling wave is controlled by the higher

frequency perturbations. Moreover, the smaller the —, the higher the frequency of the

most unstable mode, consistent with our earlier calculation of the square-wave-limit

pathology. The whole unstable region is given by the union of the unstable regions

for each eigenvalue and is generally located at large-enough – for any given — or

small-enough — for any given –.

2.4.3 Numerical simulations

The previous subsection was concerned with the linear stability of traveling wave

solutions of (2.29). We were able to compute the spectrum of unstable modes and
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Figure 2.5: The neutral curves for the first five eigenvalues. The numbers next to each
curve correspond to the index of the eigenvalue. Below the envelope of the curves we
have spectral stability.

obtain the neutral curves in the – ≠ — parameter space. In this subsection, we

investigate the behavior of solutions in the nonlinear regime by numerically solving

the PDE using the algorithm described in Appendix A. All the simulations start

with a steady-state solution, and instabilities (when present) are triggered by the

numerical discretization error alone. The goal of this section is to demonstrate that,

as in detonation waves in the reactive Euler equations, the shock-dynamics goes

through a Hopf bifurcation followed by a period doubling cascade, when the sensitivity

parameter, –, is varied, suggesting a possible chaotic regime for large-enough –.

2.4.3.1 Linear growth and comparison with stability analysis

We first compare the results obtained from the linear stability analysis with the

numerical results from the simulation. We perform a least-squares fit on the deviation

from the steady-state value of the form qn
k=1

cke‡
r

k

t cos(‡i
k

t + ”k), where n is the

number of unstable eigenvalues found in the linear stability analysis. For instance,
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when — = 0.1 and – = 4.05, we expect from Fig. 2.3 one unstable mode to appear,

and thus, at least for a small time interval, we expect the solution to behave like e‡
k

t,

up to translation and scaling. The results obtained from the comparison are presented

in Table 2.1. We restrict ourselves to fitting up to two eigenvalues (8 parameters), and

fit up to a time when the perturbation is of the order 10≠7. The original perturbation

is of the order 10≠15.

— ‡ from theory ‡ from numerics
0.10 0.00309 + 0.38144i 0.00311 + 0.38152i

0.01 0.20092 + 0.30431i
0.61295 + 3.78512i

0.20581 + 0.29964i
0.61298 + 3.78507i

Table 2.1: Comparison of eigenvalues from stability analysis and from numerics at
– = 4.05.

The first case of — = 0.1 in Table 2.1 is near the neutral curve, and both the growth

and frequency of the perturbation are well captured by the linear stability predictions.

Simulations show that for this “slightly unstable” regime, the predicted frequency is

valid well into the nonlinear regime, an observation often made in detonation simula-

tions as well. In the second case, when — = 0.01, we see a larger discrepancy between

the linear theory and the numerical simulations, especially when capturing the e�ect

of the least unstable mode. This is to be expected, since the e�ects of all unstable

modes except for the most unstable one quickly become negligible as the dominant

mode starts to grow. This second case is far from the neutral curve and much more

unstable, with the growth rate two orders of magnitude larger than in the first case.

Very fast growth of the perturbations is likely to result in nonlinear e�ects starting

to play an important role early.
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2.4.3.2 Limit cycles and period-doubling bifurcations

We now study the long-time asymptotic behavior of solutions that start from a small

perturbation (given by the discretization error) of the initial steady-state solution.

The shock value of the solution, us(t), is analyzed. For all the simulations that

follow, we fix — = 0.1 and vary –. When – slightly exceeds the critical value –c ¥ 4.02,

predicted by the linear analysis as the neutral boundary, the numerical solutions show

that the steady-state solution is unstable with the long-time evolution leading to a

limit cycle.

For a range of – between –c and –
1

¥ 4.72, the long time dynamics is that of a

simple limit cycle (Figure 2.6a). Subsequent increase of – leads to a period doubling

bifurcation. When – is between –
1

and –
2

¥ 4.91, we observe the limit cycle shown

in Figure 2.6c. This period doubling process continues until eventually, at – = –Œ ¥
4.97, the solution (apparently) becomes chaotic. Figure 2.6e illustrates the behavior

of us (t) for very large values of t (around 20, 000), when all the transients are likely to

have vanished. The respective power spectra, computed using a large time window,

10, 000 < t < 22, 000, are also shown. In the periodic case, the power spectrum is

clearly marked by peaks in the natural frequency and its harmonics, as seen in Figure

2.6b and Figure 2.6d. In Figure 2.6f, although there is a dominant frequency in the

signal, many other frequencies are present, indicating possible aperiodicity or chaos.

Further analysis of the computational results is required to establish whether the

solution is indeed chaotic, which is done in the subsequent sections.

Although we focus on us(t), the behavior presented in Figure 2.6 is not unique

to the shock value. That said, we must pick an “interesting” point, meaning a point

close enough to the shock, if we want to capture the rich dynamics. After the Hopf

bifurcation occurs, u (x, t) is periodic in time and as the bifurcation parameter (–
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Figure 2.6: Left column – us (t) for —=0.1 and di�erent values of –. Right column –
corresponding power spectra.

in this case) is increased further, u (x, t) appears to become chaotic. This is illus-

trated in Figure 2.7, where the color represents u (x, t) and the white lines are the

characteristics.
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Figure 2.7: Characteristic fields (white curves) at various –, at periods 1, 2, and
chaotic. The color shows the magnitude of u.

The bifurcation process is best illustrated by means of a bifurcation diagram,

where the local maxima of the shock value, us(t), are plotted at di�erent values of

the bifurcation parameter – (Figure 2.8).

The bifurcation points, presented in Table 2.2, are used to compute the Feigen-

baum number, which appears to approach the well-known constant ” ¥ 4.669.

n 1 2 3 4 5
–n 4.02 4.7202 4.9100 4.95565 4.96553
Fn · · · · · · 3.69 4.16 4.62

Table 2.2: Bifurcation points.

The bifurcation diagram in Figure 2.8 and the power spectra in Figure 2.6 all sug-
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gest (although they do not prove) that the chaos in the system is real. In Subsection

2.4.4, we analyze the apparently chaotic series of us (t) at very large t, i.e., on the

attractor.

An interesting feature of the example presented above is that, as in the reactive

Euler equations (e.g., [60]), inner shocks can form inside the smooth region, x < 0.

These shocks subsequently overtake the leading shock, rendering its dynamics non-

smooth. The inner-shock formation is simply due to the wave breaking and it depends

on the initial data as well as the parameters in f . For example, as the parameter –,

which controls the shock-state sensitivity, is increased, the characteristics are seen to

converge toward each other at large t, until, at a critical value of –, the characteristics

collide into an inner shock. This shock then overtakes the leading shock at x = 0 as

shown in Figure 2.9. A point to emphasize is that the characterization of chaos when



73

such non-smooth dynamics is present is not easy, in particular due to di�culties of

computing the solution with high accuracy. Our analysis of chaos is therefore limited

to moderate values of –, when we know that the internal shock does not form, yet a

chaotic signal is observed.
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Figure 2.9: Formation of an internal shock wave. The vertical axis is t and the
horizontal axis is x. The color shows the magnitude of u. White curves are the
forward characteristics.

2.4.4 Time series analysis

In this section, we use tools of dynamical systems to understand the shock signal. The

shock signal represents a one-dimensional measurement of the infinite dimensional

phase space where the solutions live. Relying on Takens theorem [61], we embed the

signal in higher dimensions by choosing a delay, · , and an embedding dimension, m.

We then use this embedded m-dimensional signal to compute quantities of interest,
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such as the correlation dimension and the largest Lyapunov exponent. The numerical

calculations are performed using the open source software OPENTSTOOL [62].

2.4.4.1 Delay reconstruction of the attractor

We embed the signal un
s = us(tn) in m-dimensions by creating the points

p
1

= (u1

s, u1+·
s , · · · , u1+(m≠1)·

s ),

p
2

= (u2

s, u2+·
s , · · · , u2+(m≠1)·

s ),
... ... ...

pN = (uN
s , uN+·

s , · · · , uN+(m≠1)·
s ),

where N is limited by the number of available values of us. The m-dimensional

points (p
1

, · · · , pN) then live in an attractor of dimension at most m. It was shown

by Takens that provided m > 2d + 1, where d is the dimension of the attractor

where us lives, there exists a di�eomorphism between the reconstructed attractor and

the “actual” attractor (in the limit of the infinite amount of noise-free data). This

immediately allows us to use the reconstructed attractor to compute quantities such

as the correlation dimension and the Lyapunov spectrum.

Notice that although in theory any choice of · will allow such reconstruction,

in practice the situation is quite delicate. The finite amount of noise-polluted data

makes the choice of · a non-trivial issue, still subject of much current research. Since

no fail-proof method appears to exist, we choose · as the first minimum of the mutual

information function of us. The reasons for such a choice can be found in [63]. In the

next subsection, we explore how the reconstructed attractor, its dimension, and the

largest Lyapunov exponent change as we vary the sensitivity parameter, –. We choose

– = 4.7, 4.85, 4.96, 4.97, 5, 5.1 and see how these quantities change as the dynamic goes
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from periodic to chaotic.

2.4.4.2 Largest Lyapunov exponent (LLE)

A chaotic system is characterized by at least one positive Lyapunov exponent. This

means that information must be lost in the system as time progresses. Predictability

is thus highly limited. Because the largest Lyapunov exponent (LLE) determines the

dominant rate at which information is lost, we are primarily interested in the LLE.

The magnitude of the LLE gives an indication of how quickly nearby trajectories in

the phase space diverge as time progresses. The inverse of the LLE is an estimate of

the relevant time scale for this divergence. Thus, the larger the LLE, the more chaotic

the dynamics are. In particular, Table 2.3 shows how sensitive this exponent is to

small changes in the parameter – near the onset of chaos, where – is the “activation

energy” parameter, measuring the sensitivity of the reaction to the shock strength.

Several methods are available to compute the LLE, and we choose to use the one

presented in [64]. The algorithm used here is discussed in Appendix B.

The sequence of period doubling bifurcations observed in Figure 2.8 and Table 2.2

suggests that the sequence first saturates at –c ¥ 4.97. After this critical value, the

solution seems to become aperiodic, as indicated by its power spectrum. We compute

the LLE for values of – slightly below and slightly above –c in order to illustrate

the drastic change in the magnitude of LLE. The values of LLE are presented in

Table 2.3, where the error estimates are merely educated guesses of a confidence

interval obtained from running the algorithm for di�erent embedding dimensions

(from dimension 3 to 10). It is particularly di�cult to obtain quantitative error

estimates because the sources of error are unknown and the algorithm requires some

subjective choice of a “range” (see Appendix B).

A study of the dependence of the LLE on the embedding dimension is presented



76

– 4.85 4.96 4.97 5 5.1
LLE 0 0 0.004 ± 2 · 10≠4 0.018 ± 3 · 10≠5 0.032 ± 8 · 10≠4

DC 1 ± 3 · 10≠4 1 ± 2 · 10≠2 1.67 ± 7 · 10≠2 1.87 ± 3 · 10≠2 1.91 ± 2 · 10≠2

Table 2.3: The largest Lyapunov exponent and correlation dimension for di�erent
values of –, the bifurcation parameter.

in the Chapter B. Although precise error estimates are not available, there is still

some value in the predictions made; namely, a clear di�erence is observed between

– = 4.96 and – = 4.97, which corresponds to the apparent saturation point of the

bifurcation diagram presented in Figure 2.8.

2.4.4.3 Correlation dimension estimate

While the Lyapunov exponent measures the rate at which information is lost in a

dynamical system, the correlation dimension gives an upper bound on the number of

degrees of freedom a system has. This is an important concept to distinguish deter-

ministic chaos from stochastic chaos. For simple attractors, the correlation dimension

is an integer, but for strange or chaotic attractors the dimension is fractal. We com-

pute the correlation dimension of our time series using the algorithm presented in [65]

(see Appendix C for details of the algorithm). The results for di�erent values of –

are shown in Table 2.3. The magnitude of DC is seen to be about 1.9 in the chaotic

regime. The implication is that the dynamics of the system is nearly two-dimensional,

i.e., a two-dimensional phase space is, in principle, su�cient to describe the observed

dynamics (locally). Of course, this gives no hint at what that description should

be, but the importance of DC is in providing an estimate of the degrees of freedom

involved.
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2.5 Conclusions

A simple model equation consisting of an inviscid Burgers equation forced with a

term that depends on the current shock speed was analyzed by calculating its steady-

state solutions, the linear stability properties of these solutions, and the nonlinear,

time-dependent evolution that starts with the steady state as an initial condition. It

was found that the theory and numerical results for the model equation parallel those

of the reactive Euler equations of one-dimensional gas dynamics, which have been

extensively used to describe detonation waves.

The steady-state theory of the model is analogous to that of the ZND theory

of detonation, describing both self-sustained and overdriven solutions. The normal-

mode linear stability theory of the model is qualitatively similar to the detonation

stability theory, reproducing comparably complex spectral behavior. The nonlinear

dynamics, computed with a high-accuracy numerical solver, exhibit the Hopf bifur-

cation from a stable solution to a limit cycle, together with a subsequent cascade of

period-doubling bifurcations, resulting eventually in what is, very likely, chaos. All of

these features have their counterparts in the solutions of the reactive Euler equations.

The qualitative agreement between the two systems, so drastically di�erent in their

complexity, hints at the possibility that a theory for the observed complex dynamics

of one-dimensional detonations may in fact be rather simple.
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Chapter 3

Detonations with losses: a toy

model approach

We consider in this chapter a simplified model for the dynamics of one-dimensional

detonations with generic losses, extending the work presented in Chapter 2. It con-

sists of a single partial di�erential equation that reproduces, at a qualitative level,

the essential properties of unsteady detonation waves with losses. In particular, we

investigate the e�ects of shock curvature and friction on the detonation dynamics.

To calculate steady-state solutions, a novel approach to solving the detonation eigen-

value problem is introduced that avoids the well-known numerical di�culties asso-

ciated with the presence of a sonic point. By using unsteady numerical simulations

of the simplified model, we also explore the nonlinear stability of steady-state or

quasi-steady solutions.

3.1 Introduction

A gaseous detonation is a phenomenon exhibiting rich dynamical features. One-

dimensional planar detonations propagate with a velocity that can be steady, periodic,

or chaotic [23]. In multiple dimensions, the detonation front includes complex struc-
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tures resulting in cellular patterns formed by triple-point trajectories [2, 48]. Quasi-

steady curved detonations, characteristic of condensed explosives, possess multiple-

valued solutions at a given curvature [51]. The same multiplicity of solutions exists in

one-dimensional detonations in the presence of heat and momentum losses [66, 67, 68].

This range of complex dynamical properties of detonations poses a challenge in terms

of theoretical understanding of conditions in which they arise and of features they ex-

hibit. The linear stability theory for idealized systems, asymptotic theories of weakly

curved detonation, and other asymptotic models have significantly advanced our un-

derstanding of the detonation phenomenon (see recent reviews in [51]). However,

many problems still require further theoretical study, including the mechanism of

detonation cell formation, the nature of critical conditions of detonation propagation

in systems with losses, the linear and nonlinear instability in systems described by

complex reactions and equations of state, and others.

Elucidation of key physical mechanisms of the complex phenomena of detonation

dynamics is greatly facilitated by simplified models, including those of ad hoc nature

[25]. Such models can highlight in the clearest possible way the processes responsible

for a particular qualitative trait in the observed dynamics. A wide range of dynamical

properties of one-dimensional detonations, including chaotic solutions, is reproduced

in [31] with a simple extension of Fickett’s analog [25] to model the chemical reaction

with a well-defined induction zone followed by a heat-release zone. In Chapter 2, it

was shown that a model consisting of just a single scalar equation is also capable of

qualitatively capturing the dynamics of one-dimensional detonations in the reactive

Euler equations, including instability and chaos. The most important implication of

these simplified models is that the true nature of the complex dynamics of detonations

appears to be governed by a simple mechanism, thus providing a strong indication

that a rational reduction of the reactive Euler equations that retains the same essential
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physical ingredients as the simple models may be feasible.

3.2 A model with generic losses

We recall the model studied in Chapter 2, given by the following equation:

ˆu

ˆt
+ ˆ

ˆx

A
u2

2 ≠ uus

2

B

= f (x, us) , (3.1)

where x Æ 0 is the reaction zone behind the shock propagating from left to right.

Equation (3.1) is written in a shock-attached frame; the shock location is hence at

x = 0 at all times, t. The unknown, u (x, t), plays the role of, e.g., pressure, while us

is the solution u evaluated at the shock, and it is related to the shock speed through

shock conditions. The forcing function, f , is chosen to mimic the behavior of the

reaction rate in the reactive Euler equations. In particular, it is taken to have a

maximum at some distance away from the shock, xf = xf (us), with function xf

chosen to depend sensitively on the shock state, us. The following choice,

f = aÔ
4fi—

exp
C

≠(x + u≠–
s )2

4—

D

, (3.2)

where a =
Ë
4

1
1 + erf

1
u≠–

s /2
Ô

—
22È≠1

, is used in numerical calculations below. In

this form, the model is dimensionless with u scaled so that us = 1 in the steady state

(see Section 2.4). Parameters – and — are analogous to the activation energy in the

reactive Euler equations with Arrhenius kinetics and to the ratio of the reaction-zone

length to the induction-zone length, respectively. Note that the total chemical energy

released corresponds to
´

0

≠Œ f(x, us(t))dx, which is constant for the forcing term (3.2)

regardless of the value of us(t). This follows from f ≥ ⁄x, as discussed in Section 2.2.

Thus, the total energy released is always the same even in the presence of instabilities.
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Our focus in this section is to explore the e�ect of generic losses on the solutions

of (3.1). For this purpose, we modify the forcing to add a damping term,

ˆu

ˆt
+ ˆ

ˆx

31
2u2 ≠ Du

4
= f (x, D) ≠ g(x, u, Ï). (3.3)

Here, D = us/2 is the detonation speed, which is obtained using the Rankine-

Hugoniot conditions with the state upstream of the shock taken to be u = 0, Ï is a

parameter of the problem, which may be time dependent, and g is a function that rep-

resents the loss[69]. Friction losses are modeled by taking g = cfu|u|, with the friction

coe�cient cf , while the e�ects of curvature are modeled by taking g = Ÿu2/ (1 + Ÿx),

where Ÿ is the shock curvature, generally dependent on time.

3.2.1 Steady and quasi-steady solutions

If Ï is a constant, then we can search for steady-state solutions of (3.3). If Ï is

time-dependent, but slowly varying in time, then we search for quasi-steady solutions

of (3.3). In both cases, the problem requires solving the following ODE:

(u ≠ D) uÕ = f (x, D) ≠ g(x, u, Ï) (3.4)

on x œ [a, 0] with u(0) = 2D as the shock condition. Here and below, primes denote

the x derivative, d/dx. The left end of the integration region depends on the context.

The main problem is to determine the detonation speed, D, such that the correspond-

ing solution, u (x, t), of (3.4) is a smooth function of x. This is a nonlinear eigenvalue

problem for D because such smooth solutions do not necessarily exist for every D at

a given Ï. For physically interesting choices of f and g, there usually exists a sonic

point where u = D, which is a singular point of (3.4). For smoothness of u, it is
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necessary that the right-hand side of (3.4) vanishes at the sonic point. These con-

ditions constitute the generalized Chapman-Jouguet conditions of detonation theory

and serve to determine the eigenvalue relation, H(D, Ï) = 0, that yields D for a given

Ï. Typically, D (Ï) is a multiple-valued function having a turning-point shape.

The nonlinear ODE (3.4) cannot, in general, be solved analytically. Therefore, a

numerical integration method is required. In one such method, for a trial value of D,

(3.4) is integrated from x = 0 toward x = a. The correct value of D has to correspond

to u≠D = 0 and f ≠g = 0 at x = xú. These conditions are not satisfied in most cases,

and, therefore, equation (3.4) is very sti� as u æ D, making the numerical integration

prohibitively expensive and/or inaccurate. As an alternative to this method, the sonic

locus, xú(D, Ï), is found first for a trial value of D. Then, the solution of (3.4) is

found analytically in the neighborhood of xú in order to get out of the sonic point

by a small step to xú + �x, with a subsequent numerical integration from xú + �x

toward the shock. For the correct value of D, the Rankine-Hugoniot conditions at

x = 0 must be satisfied. This algorithm is more robust numerically. However, its

drawback is that it requires the knowledge of the sonic state and the ability to solve

the equation (or the system of equations, in general) in the neighborhood of the sonic

locus analytically. Even though, in our case, it is straightforward to do so, in more

complicated problems, this approach is not feasible (see [66] for example). Below

we propose a di�erent algorithm that is much simpler, more robust, and easier to

generalize.

3.2.2 Transonic integration algorithm

Here, we describe an algorithm for numerical integration of the system of ODE for

the transonic structure of traveling-wave solutions of reactive Euler equations in one
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spatial dimension. Because the algorithm works for a general one-dimensional system

of hyperbolic balance laws, we begin with such a system. Then, we illustrate the

method through both the toy model, (3.4), and the reactive Euler equations.

Consider a system of hyperbolic balance laws,

qt + F(q)x = s (q) , (3.5)

where q is the vector of unknowns, F is the flux vector, and s is a source term. We

look for traveling wave solutions q = q(x≠Dt) = q(÷), consisting of a shock followed

by a smooth flow downstream. The state upstream of the shock, ÷ > 0, is assumed

to be uniform and steady, q = qa = constant. Then, q solves

(F(q) ≠ Dq)÷ = s (3.6)

in smooth parts of the flow, where ÷ = 0 is the shock position and ÷ < 0 is the

downstream region. At ÷ = 0, the following shock conditions are satisfied:

≠ D [q] + [F] = 0, (3.7)

with [Z] = Z+ ≠ Z≠ denoting the jump in the quantity Z across the shock. Given

a state ahead and the shock speed, the solution of (3.7) can be written as q(0≠) =

qRH(D, qa). The shock speed, D, is an unknown of the problem and must be found

together with the profiles of q at ÷ < 0.

A well-known di�culty in solving (3.6) arises when one of the eigenvalues of the

matrix ˆF/ˆq ≠ DI vanishes at some point ÷ú < 0 (a sonic point), thus producing

a singular system of ODE, (ˆF/ˆq ≠ DI) u÷ = s [70]. This feature is an essential

ingredient of any self-sustained shock wave and is thus relevant in many applications
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where such traveling shock-wave solutions arise (e.g., tra�c flow problems [71], hy-

draulic jumps [72]). Should there be a vanishing eigenvalue, a regularity condition is

called upon where, for boundedness of q÷, it is required that

lú · sú = 0 when ⁄ú = 0, (3.8)

where ⁄ú is the special eigenvalue of ˆF/ˆq ≠ DI that vanishes at ÷ú and lú is the

corresponding left eigenvector. Condition (3.8) serves as a closure condition that

identifies admissible shock speeds, D.

Because analytic integration of (3.6) is rarely possible, a numerical procedure is

required. When a vanishing eigenvalue exists somewhere in the flow, we need a numer-

ical algorithm to determine the values of D for which (3.8) is satisfied. Importantly,

the location of the critical point is unknown a priori. A simple approach to solving

this problem is to make a guess for D and integrate from ÷ = 0 up to the singular

point, and then check whether or not lú · sú = 0 is satisfied. This is a numerically ill-

conditioned procedure since the system becomes sti�er as one approaches the singular

point, the latter generally having a saddle-point nature.

Our integration procedure avoids the numerical problems associated with the pres-

ence of a sonic point. The key idea is based on the use of a new dependent variable

given by

z = G(q; D) = F (q) ≠ Dq. (3.9)

The governing system of ODEs written in terms of z becomes

z÷ = s(q), (3.10)

and it needs to be solved subject to the shock conditions, z(0) = F (q
0

) ≠ Dq
0

, with
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q
0

denoting the post-shock state. In order for this change of variables to be successful,

it must be invertible so that q = G≠1(z, D). The inversion is guaranteed to be well

defined as long as the Jacobian, ˆG/ˆq = ˆF/ˆq ≠ DI, is not singular, which is the

case away from sonic points. It is important to note that, in general, the inversion

results in multiple solution branches. In order to choose the correct branch, we need

to ensure that G≠1 (z(0)) = q
0

.

The main advantage of the new variable is that (3.10) is not sti� even as one ap-

proaches the singular point and thus the problem of finding the values of D such that

(3.8) is satisfied becomes regular. The analytical inversion of G may not in general be

possible as it depends on the specific form of the equation of state. Nevertheless, the

general procedure remains valid and, once the sonic points are found, the inversion

can be done numerically. The method outlined here is applicable to a wide range of

problems, as we illustrate below (see also [66] for a recent application of the method).

In the specific case of the toy model considered in this chapter, where we are

interested in solving (3.4), we introduce z = (u ≠ D)2 as a new variable instead of u.

Then, (3.4) becomes

zÕ = 2 (f (x, D) ≠ g(x, u, Ï)) , (3.11)

which has a regular right-hand side. Notice that the inverse of the transformation

from u to z is double-valued, u = D ± Ô
z. At the shock, u(0) = 2D > D, and,

therefore, between the shock and the sonic point, we have u = D +
Ô

z. Hence

zÕ = 2
1
f (x, D) ≠ g(x, D +

Ô
z, Ï)

2
. (3.12)

Downstream of the sonic point, the square root changes its branch. Therefore, u =

D ≠ Ô
z. The sonic condition in the new variable is very simple: zÕ = 0 at z = 0.

These conditions are clearly independent of the specific form of the right-hand side



86

of (3.4). The equations are no longer sti� as one approaches the sonic point. If the

solution beyond the sonic point is required, then zÕ = 2 (f (x, D) ≠ g(x, D ≠ Ô
z, Ï))

must be solved at x < xú.

Another simple example arises in the analysis of the radially symmetric reactive

Euler equations. The problem of finding a quasi-steady solution of a curved expanding

detonation leads to the following ODE for the flow velocity (e.g., [38]):

du

d⁄
= �

u2 ≠ c2

u

Ê
, (3.13)

where Ê = k (1 ≠ ⁄) exp(≠“Ë/c2) is the reaction rate, Ë is the activation energy,

� = (“ ≠ 1) qÊ ≠ Ÿc2 (u + D) is the thermicity, Ÿ is the shock curvature, q is the

heat release, and c2 = “p
0

+ (“ ≠ 1) [(D2 ≠ u2) /2 + q⁄] is the sound speed squared.

The integration domain is 0 Æ ⁄ Æ 1 with u(0) = us(D) given by the Rankine-

Hugoniot condition. The sonic singularity occurs here at u = c and hence we introduce

z = (u ≠ c)2 to obtain

dz

d⁄
= 2 (u ≠ c)

A

1 ≠ ˆc

ˆu

B
du

d⁄
= 2

A

1 ≠ ˆc

ˆu

B
�u

Ê
, (3.14)

which is regular at the sonic point. After the correct branch of the inversion is

identified, the generalized Chapman-Jouguet condition at the sonic point in terms of

the new variables is that dz/d⁄ = 0 at the sonic point, ⁄ = ⁄ú, where z(⁄ú) = 0. This

provides a much simpler and faster way of solving the generalized Chapman-Jouguet

condition and allows for integration from the shock toward the sonic point without

any di�culty.

Finally, we mention that since linear stability analysis consist of analyzing per-

turbations to the steady-state, an e�cient and robust way of numerically calculating



87

the steady profiles is crucial to a successful linear stability algorithm.

3.2.3 On linear stability analysis of detonations with losses

Once the steady or quasi-steady solutions are obtained, the question of their linear

stability arises. The problem without losses was analyzed extensively in Chapter 2,

where it was shown that the analysis parallels that of the reactive Euler equations.

We begin with the stability of steady-state solutions. Let u
0

(x) be the solution of

d

dx

31
2u2

0

≠ D
0

u
0

4
= f (x, D

0

) ≠ g(x, u
0

, Ï), (3.15)

where Ï is a constant and D
0

is such that the generalized Chapman-Jouguet condition

is satisfied. Consider then a perturbation of this solution of the form D = D
0

+

‘‡ exp(‡t) and u = u
0

(x) + ‘u
1

(x) exp(‡t), where ‡ is the growth rate to be found.

Inserting these expansions into (3.3) yields

‡u
1

+ (u
0

u
1

≠ D
0

u
1

≠ ‡u
0

)Õ = ‡
ˆf

ˆD
(x, D

0

) ≠ u
1

ˆg

ˆu
(x, u

0

, Ï), (3.16)

which can be solved exactly to give the eigenfunction,

u
1

(x) = ‡

c
0

(x)ep(x,‡)

Cˆ x

0

A
ˆf

ˆD
(x, D

0

) + uÕ
0

B

e≠p(›,‡)d› + 2D
0

D

,

where c
0

= u
0

≠ D
0

and

p(x, ‡) =
ˆ

0

x

C

‡ + ˆg

ˆu
(›, u

0

(›), Ï)
D

d›

c
0

(›)

are functions of f and g, which are known in terms the steady-state solution, u
0

(x).

Noticing that c
0

æ 0 at the sonic point, xú, boundedness of the eigenfunctions requires
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the following dispersion relation to hold:

ˆ
0

xú

A
ˆf

ˆD
(›, D

0

) + uÕ
0

B

e≠p(›,‡)d› ≠ 2D
0

= 0, (3.17)

This is of the same form as in the ideal case with the only change due to g appearing

in the expression for p. Hence, the stability analysis of the equation with losses is

similar to the ideal case analyzed earlier in (2).

For quasi-steady problems, the stability analysis is a bit subtler. Consider

ˆu

ˆt
+ ˆ

ˆx

31
2u2 ≠ Du

4
= f (x, D) ≠ g(x, u, Ï), (3.18)

where Ï is a slowly varying function of time. Then, the steady-state solution for u

does not exist in general. We then consider solutions that are slowly evolving in time

by using a slow time variable, · = ”t, 0 < ” π 1, such that Ï = Ï (·). Then,

”
ˆu

ˆ·
+ ˆ

ˆx

31
2u2 ≠ Du

4
= f (x, D) ≠ g(x, u, Ï(·)). (3.19)

Let u”(x, ·) be the exact solution of (3.19) with D = D”(·) as the speed. Then, the

spectral stability of this solution requires looking at the evolution of D = D”(·) +

‘‡ exp(‡t) and u = u”(x, ·) + ‘u”1

(x, ·) exp(‡t). It is important to observe that these

expansions express O (1) time-scale variations around the slow, O (1/”), time-scale

leading solution. Putting these expressions into (3.19), we obtain, to first order,

”
ˆu”1

ˆ·
+ ‡u”1

+ ˆ

ˆx
(u”u”1

≠ D”u”1

≠ ‡u”) = (3.20)

‡
ˆf

ˆD
(x, D”) ≠ u”1

ˆg

ˆu
(x, u”, Ï). (3.21)

Next, we perform an asymptotic expansion in ”: u” = u
0

+ O(”), u”1

= u
1

+ O(”),
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D” = D
0

+ O(”). Then, to leading order, the quasi-steady solution satisfies

d

dx

31
2u2

0

≠ D
0

u
0

4
= f (x, D

0

) ≠ g(x, u
0

, Ï), (3.22)

which, together with the shock and sonic conditions, gives the eigenvalue problem for

D
0

. The linear stability equation is, to leading order in ”, given by the same equation

as (3.16) and hence the dispersion relation is also given by (3.17). Notice here that

the implicit assumption ˆu
0

/ˆ· = O(1) is required for the validity of the asymptotic

expansion in ”. This is seen to break down at a turning point of the D
0

≠ Ï curve if

such a point exists.

3.3 Numerical results

In this section, we investigate numerically two types of losses, frictional and those

due to shock curvature. For detonation with frictional losses, we consider

ˆu

ˆt
+ ˆ

ˆx

31
2u2 ≠ Du

4
= f (x, D) ≠ cfu|u|, (3.23)

where x œ (≠Œ, 0] and cf is a constant friction coe�cient1. The goal of the follow-

ing calculations is to determine the role of cf in the existence and structure of the

steady-state solutions of (3.23). Using the algorithm described in Subsection 3.2.2,

we compute the dependence of the wave velocity on the friction coe�cient. Figure

3.1 shows us = 2D as a function of cf , where we can see the characteristic turning-

point behavior with two solutions coexisting at cf < cfc for some critical cfc, and

steady-state solutions no longer existing if cf > cfc.
1In the last chapter of this thesis, Chapter 6, we show that the choice g = cf u|u| can be motivated

by an asymptotic analysis of the reactive Euler equations with friction losses.
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Figure 3.1: The us ≠ cf relation for the steady-state solution of (3.23) for detonation
with friction.

Of particular interest is the question of stability of these steady-state solutions. It

is generally believed, using physical arguments, that the lower branch of the steady-

state us-cf curve is always unstable while the top branch can be stable or unstable,

although to our knowledge no stability analysis of detonations with losses has ever

been performed. In order to explore the nature of these instabilities, we solve (3.23)

numerically using a second-order finite volume method with a min-mod limiter [73].

We begin with a perturbation around the steady-state solutions at di�erent locations

of the us-cf curve, both on the top and bottom branches. We choose – and — such

that the corresponding ideal solution (i.e. cf = 0) is stable.

We find that as we increase cf along the top branch, there is a critical value above

which the detonation becomes unstable, indicating that the losses have a destabilizing

e�ect. The black curve in Figure 3.2a shows the computed solutions at cf = 0.1,

corresponding to a stable state on the upper branch, and the black curve in Figure

3.2b shows the computed solution at cf = 0.125, corresponding to an unstable state

on the upper branch. Note that the instability of the steady-state solutions on the top

branch is associated with a transition to a limit cycle, likely arising through a Hopf
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bifurcation when cf exceeds a critical value. These oscillations take place around the

steady-state solution.

As we solve the problem starting on the bottom branch, we find that the steady-

state solution on the branch is indeed unstable, but, unlike the solutions on the top

branch, there is no oscillation around the bottom branch. The solution tends in fact

toward the top branch with time, indicating that the bottom branch is generally a

repelling equilibrium while the top branch is attracting. The dynamics of this insta-

bility is quite di�erent from that on the top branch. It involves a generation of internal

shock waves in the reaction zone that overtake the lead shock and, eventually, after

multiple such overtaking, the solution settles on the top branch. The discontinuous

behavior of the red curves in Figure 3.2 occurs precisely when an internal shock wave

catches up with the lead shock. At that moment, there is a rapid increase of us. The

general trend of the solution appears to be physically reasonable, reflecting the strong

instability of the lower branch of the D-cf curve and the attracting character of the

upper branch. Very likely, the bottom branch contains a linear spectrum which is

dominated by non-oscillatory eigenvalues. It is interesting that very similar behavior

was observed in experiments on initiation of spherical detonation in hydrocarbon-air

mixtures [74].

Next, we look at spherically expanding detonation solutions. The shock-frame

version of (3.1) for a diverging detonation is given by

ˆu

ˆt
+ 1

2
ˆ

ˆx

1
u2 ≠ uus

2
= f (x, us) ≠ u2

x + rs

, (3.24)

where rs (t) denotes the shock radius such that drs/dt = D = us/2. When ˆu/ˆt is
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(a) At cf = 0.1, the top branch is stable. The integration is carried out starting both from the top
branch (black curve) and the bottom branch (red curve).
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(b) At cf = 0.125, the top branch is unstable. The integration is carried out starting both from the
top branch (black curve) and the bottom branch (red curve). The pulsating instability is due purely
to the presence of friction.

Figure 3.2: Time evolution of solutions for detonation with friction starting with the
middle curve of Fig. 3.1 at – = 1 and two di�erent values of cf .

dropped (quasi-steady solution), (3.24) can be written as

du
0

dx
= f (x, us) ≠ Ÿu2

0

/ (1 + Ÿx)
u

0

≠ us/2 , (3.25)

where Ÿ = 1/rs is the mean curvature of the shock. This equation must be solved

subject to u
0

(0) = us and to some appropriate condition at x = ≠rs, i.e., at r = 0.

Equation (3.25) is solved using the algorithm described earlier. In Figure 3.3a,

we show the computed dependence of us on Ÿ for various values of – at — = 0.1.

The usual turning-point behavior is seen with the critical curvature decreasing as
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– increases. This is similar to that in the Euler detonations wherein the activation

energy leads to the same e�ects [37, 40]. One important di�erence is that, in Figure

3.3a, there are only two branches, the lower branch tending to us = 0 and Ÿ = 0,

while in the Euler equations, there are in general three branches, the lower branch

tending to D = ca, the ambient sound speed, and Ÿ æ Œ. In Figure 3.3b, we also

show the solution profiles that correspond to the us ≠ Ÿ curves in Figure 3.3a at a

particular value of Ÿ = 0.1, but at two di�erent values of us, one on the upper branch

and one on the lower. A notable feature of these profiles is the existence of an internal

maximum of u, which does not exist in the planar solution at the same parameters.

0 0.1 0.2 0.3

0.2

0.4

0.6
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(a) Quasi-steady us ≠ Ÿ curves at — = 0.1
fixed and variable –.
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(b) The quasi-steady solution profiles
u0 (x) on the top and the bottom branches
of the us ≠ Ÿ curve in (a) at – = 1 and
Ÿ = 0.1.

Figure 3.3: Quasi-steady solutions.

In order to understand better the role of the curvature term in (3.24), we solve

the equation simulating the direct initiation of gaseous detonation. In the laboratory
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frame of reference, (3.24) takes the form

ˆu

ˆt
+ ˆ

ˆr

A
u2

2

B

= ≠u2

r
+

Y
____]

____[

f (r ≠ rs, u (rs, t)) , r < rs,

0, r > rs.

(3.26)

We solve this equation using a fifth-order WENO algorithm discussed in Appendix A,

and the initial conditions corresponding to a localized source of the type u (r, 0) = ui

at 0 < r < ri and u (r, 0) = 0 at r > ri. Here, ri is the radius of the initial hot spot

and ui is its “temperature”. The point-blast initiation is simulated keeping ri fixed at

some small value and varying ui, a measure of the source energy per unit volume.
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(a) Stable solutions at – = 3.9
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(b) Unstable solutions at – = 4.5

Figure 3.4: Initiation and failure for stable and unstable solutions. In both figures,
— = 0.1, the length of the computational domain is L = 103, and the number of grid
points used is N = 104.

Our findings are displayed in Figure 3.4. We select two sets of parameters for

– and — such that one corresponds to a stable planar solution and the other to an

unstable planar solution. For each case, we vary ui to see if the detonation initiates or

fails. Exactly as in the Euler detonations [75], we observe that above a certain critical

value, uic, there is an initiation; below, there is failure. Moreover, the curvature in our
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model also plays a destabilizing role. As one can see in Figure 3.4a, the detonation

that is stable in the planar case oscillates in the presence of significant curvature.

The oscillations are large in magnitude and irregular at first, around rs = 100 to

about rs = 150, before settling down to regular decaying oscillations. A similar trend

is seen in the unstable case, shown in Figure 3.4b, where the range of the irregular

oscillations extends from about rs = 120 to rs = 400 before settling down to regular

periodic oscillations. When the curvature is significantly diminished (i.e. rs ∫ 1), the

detonation dynamics is essentially that of a planar wave. Hence, all the phenomena

observed in [76, 77] carry over to the present study. However, the destabilizing e�ect

of curvature, clearly seen in Figure 3.4, requires further analysis in order to reveal the

underlying mechanisms. An additional factor that contributes to the instability of

the solutions is —. For planar solutions, we have shown in [76] that smaller — lead to

more unstable solutions, and we expect the same e�ect to be preserved in the curved

detonations as well.

3.4 Conclusions

A reactive Burgers equation with nonlocal forcing and appropriate damping is shown

to capture, at a qualitative level, the dynamics of detonations with friction and of

radially diverging detonations. Using a new integration algorithm, we have found that

for curved detonations and for non-ideal detonations, steady/quasi-steady solutions

exist, which have a characteristic turning-point shape in the plane of the shock speed

versus curvature or a friction coe�cient. Unsteady numerical simulations of our

model equation reproduce the dynamics of the point-blast initiation, capturing the

initiation/failure phenomenon. The curvature or the presence of friction are found

to play a destabilizing role in the dynamics of non-ideal detonation. The present
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calculations together with our earlier study of the planar model demonstrate that

the reactive Burgers equation is capable of reproducing, qualitatively, most of the

dynamical properties of one-dimensional detonations, whether ideal or with losses.
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Chapter 4

Qualitative theory in two

dimensions

In this chapter, we propose and analyze a two-dimensional analog for unstable det-

onation waves. The simplified model extends the scalar forced Burgers equation,

presented in Chapter 2, and is shown to capture some of the multi-dimensional na-

ture of detonations waves. The linear stability spectrum is analyzed by means of

Laplace transform, and it is observed that nonzero transverse wave numbers typically

posses the maximum growth rate, therefore dominating the stability criterion. By

numerical simulations, we also show that solutions of the model tend, in the long

time limit, to form multi-dimensional patterns.

4.1 Introduction

The fact that very simple mathematical models, such as the logistic map, can produce

extremely rich solutions was a surprising and counterintuitive discovery in mathemat-

ics [78]. It suggested that complex behavior need not always be described by compli-

cated equations. The hope with such simple models is that they can shed some light

into the fundamental mechanism responsible for complexity, while neglecting details
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which only obscure the relevant underlying dynamics. In this chapter, we introduce

a simple system of partial di�erential equations capable of reproducing some of the

dynamics of two-dimensional detonations.

Detonations are a type of combustion process in which strong pressure waves ig-

nite, and are sustained by, chemical reactions. Unlike ordinary flames, detonations

tend to propagate at extremely high velocities (several thousand meters per second),

and convert energy at a very fast rate. Even in the simplest, idealized case, the equa-

tions of combustion theory pose a formidable challenge from a theoretical point of

view, since they couple a compressible flow description (Euler/Navier-Stokes equa-

tions) to chemical kinetics. In fact, the main di�culty of reactive flows lies precisely

in this two-way coupling: the wave initiates chemical reactions, and the reactions sus-

tain the wave, with either ceasing to exist without the other. To make matters even

more complicated, detonations tend to be multi-dimensional and unsteady. It is not

surprising thus that theories simpler than the reactive Euler/Navier-Stokes equations

are highly desirable.

The first attempt at a reduced qualitative description of detonations goes back

to the works of Fickett [25, 27], who introduced a toy model as a vehicle to better

understand (and explain) the intricacies of detonation theory. Others have similarly

taken a qualitative approach. Majda, for example, focused on the e�ect of viscosity on

the combustion waves, and showed through a simplified model that a theory analogous

to the ZND theory exists for viscous detonations [29]. Radulescu and Tang have

recently demonstrated that simplified models can capture not only the steady states,

but also much of the unsteady dynamics of one-dimensional detonations [31]. Along

the same lines, we have shown that even a scalar forced Burgers equations contains all

the ingredients necessary to reproduce the complexity of one-dimensional detonations,

including a rich linear spectrum and chaotic solutions. All of these works, however, are
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limited to a one-dimensional description, and therefore cannot capture the important

e�ects played by transverse waves. In this chapter, we present a multi-dimensional

analog of detonations, and show through stability analysis and numerical simulations

that even multi-dimensional e�ects are amenable to much simpler treatments than

in the full system of reactive Euler equations. Our model appears to be the first to

treat multi-dimensional e�ects in detonations by means of analogs.

This chapter is organized as follows. In Section 4.2, we propose the two-dimensional

toy model, and provide some motivation based on the theory of weakly curved hy-

perbolic waves. We then present in Section 4.3 the traveling wave solutions, together

with a formulation of the linear stability problem by means of the Laplace transform.

Finally, we illustrate in Section 4.4 the linear stability theory and nonlinear dynam-

ics by studying a concrete example. We demonstrate that: (1) transverse waves are

typically more unstable than purely longitudinal perturbations, and (2) when unsta-

ble, the traveling wave solutions tend to form multi-dimensional patterns of variable

complexity, depending on the distance from the neutral stability boundary.

4.2 The two-dimensional analog

We take as a starting point the one-dimensional toy model introduced in Chapter 2,

i.e.,

ut + 1
2

1
u2

2

x
= f (x ≠ xs, us) , (4.1)

where xs denotes the x position and us denotes the state immediately after the det-

onation shock. In order to extend (4.1) to two dimensions we need, as a minimum,

another variable (v) describing the transverse velocity, and a relation between u and

v. Since this is a qualitative theory, we are free to extend it as we like, but some ways

make more physical sense than others. Here, we consider an extension motivated by
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the asymptotic form of weakly curved hyperbolic waves, where the dependence on

the transverse direction is typically linear, and reinforces the fact that weakly non-

linear quasi-planar waves generate no vorticity to leading order. We thus propose the

following two-dimensional toy model as an extension of (4.1):

ut + 1
2

1
u2

2

x
+ vy = f(x ≠ xs, us), (4.2)

vx ≠ uy = 0. (4.3)

Notice that, since (4.2-4.3) is not derived by a rational approximation of a physical

system, the main justification for the form of the proposed model comes a posteriori by

investigating its properties. We shall show later in Chapter 5 (see also [79]), however,

that (4.2-4.3) are related to a weakly nonlinear multi-dimensional asymptotic theory,

which although harder to analyze, can be obtained by a systematic reduction of the

reactive Euler equations.

For the purpose of the calculations that follow, it is convenient to rewrite (4.2-4.3)

in a shock-attached frame. In general the shock surface is represented by the zero of

a level-set function, say Â(x, y, t). We let Â = x ≠ s(y, t), where s(y, t) is assumed to

be a single valued function giving the x position of the shock, and therefore the shock

location is given by x = s(y, t). This parametrization contains the assumption that

the shock does not curve too much. Then, introducing a shock-attached variable,

› = x ≠ s(y, t), (4.2-4.3) becomes

ut + (u ≠ st)u› + vy ≠ syv› = f(›, us), (4.4)

uy ≠ syu› ≠ v› = 0. (4.5)

The quantities st and sy are related to the state at the shock by the jump conditions,
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which are given by

st [u] ≠ 1
2

Ë
u2

È
+ sy [v] = 0, (4.6)

sy [u] + [v] = 0, (4.7)

where [·] represents, as before, the jump of a given quantity across the shock. Equa-

tions (4.2-4.3), together with the jump conditions (4.6-4.7), are the main focus of this

chapter.

4.3 Traveling wave solutions and stability analysis

We investigate the one-dimensional traveling wave solutions of (4.2-4.3), together

with their stability properties. Notice that, since in the one-dimensional case, the

proposed system reduces to (4.1), which was studied in Chapter 2, the traveling wave

solutions are identical. For completeness, we repeat the discussion here with minimal

details. The reader is encouraged to review Section 2.3 for details.

4.3.1 Traveling wave solutions

Since we are interested in the stability properties of ZND waves, we start by computing

the one-dimensional traveling wave solutions of (4.2-4.3). Assuming that the state

ahead of the shock is given by u = 0, v = 0, we obtain from (4.2-4.3) that

u
0

(›) = u
0s

2 +
ı̂ıÙu2

0s

4 ≠ 2
ˆ

0

x

f (z, u
0s) dz, (4.8)

v
0

(›) = 0, (4.9)
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where u
0s/2 = D represents, by the jump conditions, the steady shock velocity. For

the proposed solution to remain real, we require

u
0s = ’

Q

a2
ı̂ıÙ2
ˆ

0

≠Œ
f (y, u

0s) dy

R

b , (4.10)

with ’ Ø 1. If ’ = 1 (CJ case), then it can be shown that the characteristics at the

end of the reaction zone (when f = 0) are sonic relative to the lead shock. When

’ > 1, detonations move faster than the CJ wave. These latter cases are usually

interpreted as overdriven detonations, where a piston at the end of the reaction zone

accelerates the flow so that no sonic point exists. Overdriven detonations are not

self-sustained, and characteristics from ≠Œ can catch up with the lead shock and

a�ect its dynamics. In fact the larger the overdrive, the closer a detonation shock

looks to an inert piston-induced shock, and therefore in the limit of large overdrive

detonations are expected to be stable.

4.3.2 Linear stability

We consider in this subsection the multi-dimensional linear stability of solutions given

by (4.8-4.9). We begin by expanding u = u
0

(›)+ ‘u
1

(›, y, t)+O(‘2), v = ‘v
1

(›, y, t)+

O(‘2), s = Dt + ‘s
1

(y, t) + O(‘2), where u
0

, v
0

are the steady profiles, and D = u
0s/2

is the steady shock speed. Inserting these expressions into (4.4-4.5) and letting ‘ æ 0,

we obtain

u
1t +

3
u

0

≠ u
0s

2

4
u

1› + uÕ
0

u
1

+ v
1y =

A
ˆf

ˆus

(x, u
0s) + uÕ

0

2

B

u
1

(0, t) , (4.11)

u
1y ≠ u

0›s1y ≠ v
1› = 0. (4.12)
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Similarly, the linearized shock conditions are given by

s
1t = u

1s

2 , (4.13)

s
1y = ≠ v

1s

u
0s

. (4.14)

As done in Subsection 2.3.3, it is convenient to introduce

c
0

= u
0

≠ u
0s/2, b

0

= ˆf

ˆus

(x, u
0s) + uÕ

0

2 ,

so that we can write (4.11-4.12) as

u
1t + c

0

u
1› + uÕ

0

u
1

+ v
1y = b

0

u
1s, (4.15)

u
1y ≠ v

1› = ≠u
0›v1s/u

0s, (4.16)

where c
0

, b
0

, u
0s are functions of the steady-state profile (assumed to be known), and

u
1s = u

1

(› = 0≠, y, t), v
1s = v

1

(› = 0≠, y, t) denote the perturbed quantities evaluated

immediately after the shock. Whether or not solutions of (4.15-4.16), that grow in

time, exist is precisely the linear stability question we answer below.

We diverge somewhat from the analysis performed in Subsection 2.3.3, and solve

the linearized system by means of the Laplace transform. This will prove helpful in

connecting the shooting method of Lee and Stewart, employed in [16], to the Laplace

transform method of Erpenbeck. Below we follow closely [14].

Because (4.15-4.16) has constant coe�cients in y, it is first convenient to Fourier
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transform in the transverse direction:

ût + c
0

û› + uÕ
0

û + i¸v̂ = b
0

ûs, (4.17)

i¸û ≠ v̂› = ≠uÕ
0

v̂s

u
0s

, (4.18)

where

û(›, ¸, t) =
ˆ Œ

≠Œ
e≠i¸yu

1

(›, y, t)dy, ûs(¸, t) = û(0, ¸, t), (4.19)

v̂(›, ¸, t) =
ˆ Œ

≠Œ
e≠i¸yv

1

(›, y, t)dy, v̂s(¸, t) = v̂(0, ¸, t). (4.20)

The parameter ¸ represents the transverse wave number. Then, after Laplace trans-

forming (4.17-4.18) in t, we obtain

‡U ≠ û(›, k, 0) + c
0

U Õ + uÕ
0

U + i¸V = b
0

Us, (4.21)

ikU ≠ V Õ = ≠uÕ
0

Vs

u
0s

, (4.22)

where

U(›, ¸, ‡) =
ˆ Œ

0

e≠‡tû(›, ¸, t)dt, Us(¸, ‡) =
ˆ Œ

0

e≠‡tûs(¸, t)dt, (4.23)

V (›, ¸, ‡) =
ˆ Œ

0

e≠‡tv̂(›, ¸, t)dt, Vs(¸, ‡) =
ˆ Œ

0

e≠‡tv̂s(¸, t)dt. (4.24)

Rewriting (4.21-4.22) in matrix form, we have

A · d

d›
W = B · W + F̃(›; ‡, k), (4.25)
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with

W =

S

WWU
U

V

T

XXV , A =

S

WWU
c

0

0

0 1

T

XXV , B =

S

WWU
≠‡ ≠ uÕ

0

≠i¸

i¸ 0

T

XXV , F̃ =

S

WWU
û(›, ¸, 0) + b

0

Us

uÕ
0

Vs/u
0s

T

XXV .

Two cases arise now, which are very di�erent in terms of the analytic complexity.

The first is the overdriven case, where ’ > 1 in (4.10). The assumption ’ > 1 implies

that c
0

> 0 ’ x, and therefore, no sonic point exists in the steady state. Thus, A is

invertible everywhere, and we can recast the Laplace-transformed ODE as

d

d›
W = C · W + F(›; ‡, k), (4.26)

where

C = A≠1B =

S

WWU
(≠‡ ≠ uÕ

0

) /c
0

≠i¸/c
0

i¸ 0

T

XXV , F =

S

WWU
(û(›, ¸, 0) + b

0

Us) /c
0

uÕ
0

Vs/u
0s

T

XXV .

Notice that due to the overdrive assumption, C is a bounded matrix. The second

case, which is considerably harder, is the Chapman-Jouguet case, wherein c
0

(›) æ 0

as › æ ≠Œ. Then, A is no longer invertible at the sonic point, and a necessary

condition for d
d›

W to remain bounded as › æ ≠Œ is that the right hand side of

(4.25) be orthogonal to the left eigenvector corresponding to the vanishing eigenvalue

of A, i.e.,

lim
›æ≠Œ

li · A d

d›
W = lim

›æ≠Œ
⁄ili · d

d›
W

= lim
›æ≠Œ

li ·
1
B · W + F̃(›; ‡, k)

2

= 0,
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where ⁄i is the vanishing eigenvalue and li the corresponding eigenvector. It is easy

to check that, given the form of A, B, and F, this implies

(‡ + uÕ
0

(›)) U + i¸V æ 0 as › æ ≠Œ. (4.27)

Equation (4.27) is called the radiation, or boundedness condition. For the remainder

of this chapter, we focus on overdriven detonations, and therefore avoid the main

di�culties related to the vanishing of c
0

.

It is well known that we can write the general solution of (4.26) in terms of the

the boundary data at › = 0 and the fundamental matrix of the homogeneous problem

[80]:

W(›; ‡, ¸) = H(x; ‡, ¸) ·
C

H≠1(0; ‡, ¸) · W(0; ‡, ¸) +
ˆ x

0

H≠1(z; ‡, ¸) · F(z; ‡, ¸)dz

D

,

(4.28)

where

H =

S

WWU
h

1

h
2

¿ ¿

T

XXV , (4.29)

and h
1

, h
2

solve the homogeneous problem

d

d›
G = C · G. (4.30)

Denote ” = lim›æ≠Œ c
0

(›) > 0, by the overdrive assumption. Notice that

C≠Œ = lim
›æ≠Œ

C(›) =

S

WWU
≠‡/” ≠i¸/”

i¸ 0

T

XXV (4.31)

is a constant matrix, and
´

0

≠Œ |C(x) ≠ C≠Œ|dx < Œ. Therefore, in the limit as
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› æ ≠Œ, the general solution of the homogeneous problem is asymptotic to the

solution of the constant coe�cient problem [80],

d

d›
G = C≠Œ · G. (4.32)

This means

h
1

≥ e⁄1›q
1

, h
2

≥ e⁄2›q
2

,

where

⁄
1

= ≠‡ ≠ Ô
4”¸2 + ‡2

2”
, ⁄

2

= ≠‡ +
Ô

4”¸2 + ‡2

2”
,

and q
1

, q
2

are the respective eigenvalues/eigenvectors of C≠Œ. When Ÿ(‡) > 0, we

have Ÿ(⁄
1

) < 0, and thus h
1

grows exponentially towards › = ≠Œ.

If we represent the inverse of H as

H≠1 =

S

WWU
◊

1

æ
◊

2

æ

T

XXV , (4.33)

then it can be shown that ◊i(›) ≥ e≠⁄
ifii, where fii are constant vectors. With this

notation, we can represent the general solutions of (4.26) by

W(›) =
A

◊
1

(0) · W(0) +
ˆ ›

0

◊
1

(z) · F(s)ds

B

h
1

+
A

◊
2

(0) · W(0) +
ˆ ›

0

◊
2

(z) · F(s)ds

B

h
2

.

(4.34)

Notice now that since h
1

≥ e⁄1›q
1

, and Ÿ(⁄
1

) < 0, boundedness of W(›) as › æ ≠Œ
requires a very particular choice of ◊

1

(0)·W(0) to eliminate the exponentially growing

part of the solution. This choice is precisely

◊
1

(0) · W(0) = lim
xæ≠Œ

ˆ
0

x

◊
1

(z) · F(z)dz. (4.35)
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That this choice is also su�cient to guarantee bounded solutions is less obvious, but

a proof can be found in [14]. Inserting back the definition for F, we get

◊
1

(0) · W(0) =
ˆ

0

≠Œ
◊

1

·

S

WWU
(û(›, ¸, 0) + b

0

Us) /c
0

uÕ
0

Vs/u
0s

T

XXV dz. (4.36)

Finally, using the linearized jump condition (4.13-4.14), we can relate Us to Vs by

‡Vs = ≠i¸u
0s (Us/2 + ŝ(¸, 0)) . (4.37)

Inserting (4.37) into (4.36), and solving for Us, we obtain

U(0) =

◊
1

(0) ·

S

WWU
0

i¸u
0sŝ(k, 0)

T

XXV + ‡
´

0

≠Œ ◊
1

·

S

WWU
û(›, k, 0)/c

0

i¸uÕ
0

ŝ(k, 0)

T

XXV

◊
1

(0) ·

S

WWU
‡

≠ i¸u0s

2

T

XXV ≠ ´ 0

≠Œ ◊
1

·

S

WWU
‡b

0

/c
0

i¸
2

uÕ
0

T

XXV dz

. (4.38)

Since the numerator depends only on the initial perturbation and on the steady state

solution, and since ◊
1

exponentially decays as › æ ≠Œ, it is easy to see that the

numerator is regular. The poles therefore correspond to the roots of the denominator,

i.e.,

◊
1

(0) ·

S

WWU
‡

≠ i¸
2

T

XXV =
ˆ

0

≠Œ
◊

1

·

S

WWU
‡b

0

/c
0

i¸
2

uÕ
0

T

XXV dz. (4.39)
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The function ◊
1

can be computed by solving the adjoint homogeneous problem

d

d›
◊ = ≠A(›; ‡, ¸)T · ◊, (4.40)

=

S

WWU
(‡ + uÕ

0

) /c
0

≠i¸

i¸/c
0

0

T

XXV ◊,

subject to the boundedness condition that ◊ be bounded at ≠Œ, which means it is

parallel to the eigenvector associated with the positive eigenvalue.

In the case where ¸ = 0, the adjoint homogeneous problem (4.40) simplifies to the

scalar equation

d

d›
◊ = (‡ + uÕ

0

) /c
0

◊, (4.41)

which has solutions

◊ = ◊ (0) exp(≠‡p(x))c
0

(x)
c

0

(0) . (4.42)

Inserting (4.42) back in (4.39) yields

c
0

(0) =
ˆ

0

≠Œ
b

0

(z)e≠‡p(z)dz, (4.43)

which is the same dispersion relation obtained in Subsection 2.3.3 by means of normal

modes. Therefore we can see that, in the context of the simple toy model presented

here, both Laplace transform and normal modes yield the same stability criterion.

In general, however, (4.40) cannot be solved analytically, and an approximate

numerical scheme is needed to obtain the eigenvalues. The eigenvalues are thus given
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by the roots of

R(‡, k) = ◊
1

(0) ·

S

WWU
‡

≠ i¸
2

T

XXV ≠
ˆ

0

≠Œ
◊

1

·

S

WWU
‡b

0

/c
0

i¸u0s

2

uÕ
0

T

XXV dz, (4.44)

where ◊
1

solves (4.40) and is parallel to the decaying solution at › = ≠Œ,

◊
1

(≠Œ) = a

S

WWU

‡+

Ô
4¸2”+‡2

2

i¸

T

XXV , (4.45)

for some constant a.

4.4 An example

In this section, we study the properties of (4.2-4.3) for our (by now favorite) choice

of f ,

f = q
Q

a1 + Erf
S

U
k

1
u

s

u0s

2≠–

2

Ô
—

T

V

R

b Ô
4fi—

exp

S

WU≠
1
x + k

1
u0s

u
s

2–2
2

4—

T

XV .

It is convenient to rescale the variables as: u = u
0sũ, v = u3/2

0s ṽ, x = kx̃, y =

kỹ/
Ô

u
0s, t = kt̃/u

0s, so as to obtain

ũ
˜t + 1

2
1
ũ2

2

x̃
+ ṽỹ = f̃(x̃ ≠ x̃s, ũs), (4.46)

ṽx̃ ≠ ũỹ = 0. (4.47)
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where f̃ is defined as,

f̃(x̃ ≠ x̃s, ũs) = 1

4’2

3
1 + Erf

5
ũ(0,˜t)≠–

2

Ô
˜—

64
1

Ò
4fi—̃

exp

S

WWWU≠

3
x̃ ≠ x̃s +

1
ũ

1
0, t̃

22≠–
4

2

4—̃

T

XXXV .

(4.48)

The same three parameters, –, —̃ and ’, as found in Chapter 2 are again obtained.

They represent, respectively, the sensitivity of the reaction rate to variations on the

shock, the ratio of the lengths of the reaction zone to the induction zone, and the

degree of overdrive.

The role of the ’ now becomes clear: it scales the amplitude of the source term,

with the e�ect of chemical reactions going to zero as ’ æ Œ. We show in Figure 4.1

the e�ect of the overdrive factor on the steady detonation profile. For large enough

overdrive, the wave is almost constant, being sustained primarily by the imposed left

boundary condition. From here on we drop the tilde notation, and all variables are

assumed to be dimensionless.

−15 −10 −5 0
0

0.2

0.4

0.6

0.8
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ζ = 1.1

ζ = 1.2

ζ = 1.5

Figure 4.1: Steady-state solution profiles for (4.2-4.3) as the overdrive is varied while
keeping all other parameters fixed.

We focus next on the role played by multi-dimensional e�ects on (1) the linear

stability properties and (2) the full nonlinear dynamics. Our goal is to show that

multi-dimensional instabilities typically dominate one-dimensional instabilities, and
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that complex multi-dimensional structures tend to form when solving (4.46-4.47)

numerically. We start with the linear stability analysis.

4.4.1 Multidimensional linear stability analysis

We obtain the linear spectrum of (4.46-4.47) by means of Laplace transform. As shown

in Subsection 4.3.2, the poles of the Laplace transform (corresponding to instabilities

should they lie on the right-half of the complex plane) are given by the zeros of

R(‡, ¸) = ◊
1

(0) ·

S

WWU
‡

i¸
2

T

XXV ≠
ˆ

0

≠Œ
◊

1

·

S

WWU
‡b

0

/c
0

i¸u0s

2

uÕ
0

T

XXV dz. (4.49)

The main di�culty with numerically solving the dispersion relation is that, in gen-

eral, the bounded solutions of the adjoint homogeneous problem (◊
1

in the current

notation) cannot be found analytically. Therefore, each single evaluation of R(‡, ¸)

requires solving a system of linear ODEs (4.40) in order to obtain ◊
1

, evaluating the

integral
´

0

≠Œ ◊
1

·

S

WWU
‡b

0

/c
0

i¸u0s

2

uÕ
0

T

XXV dz, and then computing the di�erence ◊
1

(0) ·

S

WWU
‡

i¸
2

T

XXV≠´ 0

≠Œ ◊
1

·
S

WWU
‡b

0

/c
0

i¸u0s

2

uÕ
0

T

XXV dz. This can be quite costly, especially when performing a parametric study

for varying – and —.

We investigate first the e�ect of the overdrive on the stability of the wave. As

discussed before, based on the simple physical argument that overdriven detonations

are “closer” to inert shocks, we expect the overdrive to have a stabilizing e�ect.

This is confirmed in Figure 4.2, where we plot the growth rate, ‡r, as a function

of the transverse wave number, ¸, for — = 0.1, – = 4.05, and increasing overdrive

’ = 1.05, 1.1, 1.2. We see that the overdrive factor indeed has a stabilizing e�ect. We

also observe that certain transverse waves are more unstable than purely longitudinal
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disturbances (¸ = 0), and therefore we expect multi-dimensional e�ects to play a role

even when the traveling wave is stable to one-dimensional perturbations.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.02
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ζ = 1.1

ζ = 1.2

Figure 4.2: Dispersion relation for — = 0.1, – = 4.05, and varying degree of overdrive.

We also study the e�ect of – on the stability of the traveling waves. Since –

measures the sensitivity of the forcing to changes in the steady traveling wave speed,

we expect larger values of – to correspond to more unstable waves. In particular, we

expect the growth rate of the perturbations, ‡r, to increase with –. This is precisely

what is observed in Figure 4.3, where we plot the e�ect of – on the multi-dimensional

stability of the wave. We notice that – seems to have very little e�ect on the most

unstable transverse mode, and for the parameters plotted in Figure 4.3, we can observe

that the most unstable wave is given by ¸ ¥ 0.6, regardless of the value of –. This

is consistent with the one-dimensional picture, where we observed that – had very

little e�ect on the imaginary part of the eigenvalues (see Figure 2.3b in Chapter 2).

The linear stability results presented in this section suggest that two-dimensional

e�ects play an important role in the ZND waves. In the next section we investigate,

by means of numerical simulations, what happens after the onset of instabilities.
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Figure 4.3: Dispersion relation for — = 0.1, f = 1.05, and varying – .

4.4.2 Numerical simulations

In this section, we investigate, by means of numerical simulations what happens in the

large-time limit to ZND solutions which are unstable. The numerical simulation of

(4.2-4.3) pose an interesting problem. On the one hand, this is a nonlinear hyperbolic

system, and shocks can form from smooth initial data. On the other hand, it has

characteristic surfaces which are orthogonal to time. This means that evolution in

the given time coordinate is a nonlocal operation. It is expected that problems could

arise if we attempt some explicit numerical scheme since it is impossible to satisfy a

typical CFL condition. Even if f © 0, in which case the equations reduce to

ut +
1
u2

2

x
+ vy = 0, (4.50)

vx ≠ uy = 0, (4.51)

the numerical algorithm is not straightforward (see [81, 82] or Subsection 5.5.2.1).

The algorithm employed to solve (4.2-4.3), which uses a semi-implicit time dis-
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cretization, is discussed in Chapter 5, where a detailed numerical study of asymptotic

equations much similar to (4.2-4.3) is performed. We show in this section that the

two-dimensional toy model exhibits many of the interesting features of real multi-

dimensional detonations.

All numerical simulations are initialized with the traveling ZND solution found in

Subsection 4.3.1. The equations are solved in an inertial frame of reference moving

with constant speed D = 1/2, which is (after the non-dimensionalization performed in

Section 4.4) the speed of the ZND wave. The top and bottom boundary conditions are

that of a wall. We employ an inflow boundary condition on the right, and an outflow

on the left. Using a shock-fitting algorithm, as was done in the one-dimensional case,

is not easy, and therefore we adopt the more standard shock capturing approach. In

fact, solving for multi-dimensional detonation waves in a shock-attached frame is still

subject of current research.

First, we check that when linear stability results predict a stable traveling wave,

as is the case for – small enough, the numerical solver is able to correctly capture

the ZND structure and the wave speed, even when a small amplitude perturbation is

imposed on the exact ZND profile. In Figure 4.4, we show the evolution of the ZND

wave subjected to small perturbation.

The parameters are chosen so that the stability analysis predicts a linearly stable

wave. The imposed perturbation is given by ” = q
20

n=1

10≠4 sin (nfiy/Ly), where Ly is

the y length of the domain. In Figure 4.4a and Figure 4.4b we show the profiles for

u and v at t = 0, and in Figure 4.4c and Figure 4.4d we plot them again at t = 2000.

We see that the amplitude of the perturbation in v has decayed from 10≠3 to 10≠9

over a time interval of 2000 units. We can also see that in the inertial frame moving

with speed D = 1/2, the lead shock remains at x = 0, which means the correct speed

is captured by the numerical algorithm.
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(a) u at t = 0 (b) v at t = 0

(c) u at t = 2000 (d) v at t = 2000

Figure 4.4: Stable ZND wave for ’ = 1.05, – = 2, — = 0.1.

It is more interesting to see what happens when the parameters are chosen so

that eigenvalues with positive real part are present. If the ZND wave is only weakly

unstable (meaning the parameters are close to the neutral stability boundary), very

regular multi-dimensional patterns are observed (see Figure 4.5), which at a quali-

tative level match rather well with cellular patterns observed in gaseous detonations

in dilute mixtures [48, 2, 9]. We see the appearance of certain regions where the

induction zone, measured by the distance between the shock and the peak of f , is

significantly reduced, and in these regions the energy is released shortly after the lead

shock (Figure 4.5b). The transverse waves, however, appear to be smooth.

We investigate next the e�ect of the overdrive parameter, ’, on the nonlinear
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(a) u at time t = 1000

(b) f at time t = 1000

Figure 4.5: Large time dynamics for — = 0.1, – = 4.05, ’ = 1.1. This corresponds
to a weakly unstable regime, with regular structures forming, and small transverse
velocities.

dynamics of the wave. In Figure 4.6, we show the large time dynamics for varying

degree of overdrive. We notice first that waves which are near the Chapman-Jouguet

case are more unstable, with stronger transverse variations. Furthermore, it appears

that for smaller overdrive the cellular patterns become larger. Both of these findings

are consistent with the linear stability prediction, shown in Figure 4.2, where it can

be seen that (1) smaller ’ corresponds to larger growth rates, and (2) the wavelength

of the most unstable eigenvalue increases with decreasing degree of overdrive.

Finally, in Figure 4.7 we experiment with the e�ect of – on the stability and

structure of the detonation wave. We see that, as in the one-dimensional case, larger
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(a) u at t = 1000 for ’ = 1.2 (b) f at t = 1000 for ’ = 1.2

(c) u at t = 1000 for ’ = 1.1 (d) Ê at t = 1000 for ’ = 1.1

(e) u at t = 1000 for ’ = 1.05 (f) Ê at t = 1000 for ’ = 1.05

Figure 4.6: The parameters are – = 4.05, — = 0.1.

values of – (recall that – measures the shock state sensitivity of the reaction rate)

can be associated with more complex dynamics. In particular, we observe that by

increasing – to a large-enough value, the patterns which form become more complex,

up to the point where no regular cellular patterns can be identified (Figure 4.7e).
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(a) – = 4.05 (b) – = 4.05

(c) – = 4.3 (d) – = 4.3

(e) – = 4.5 (f) – = 4.5

Figure 4.7: Large time behavior. The parameters are f = 1.05, — = 0.1.

Unlike the one dimensional case studied in Chapter 2, quantitatively characterizing

two-dimensional dynamics is far more challenging. It does seem, however, that the

solutions go through some sort of bifurcation, where the transverse waves go from

having one maximum (Figure 4.7a), to two maxima (Figure 4.7c), to apparently
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many (Figure 4.7e). Further study of this model will be presented elsewhere [83].

4.5 Conclusions

We have presented a two-dimensional extension of the model proposed in Chapter 2.

The extension is shown to capture the multi-dimensional characteristics of detona-

tions, where transverse waves play an important role.

The multi-dimensional linear stability properties of the traveling wave solutions

were analyzed by means of Laplace transform. It was shown that the dispersion

relation consists of an integral equation, much like the explicit formula derived in

Chapter 2. Evaluation of the dispersion relation is a computationally intensive pro-

cedure, where solutions of the homogeneous adjoint problem have to be found for

each evaluation of the dispersion relation.

It was shown that, akin to detonations in the reactive Euler equations, the over-

drive factor has a stabilizing e�ect on the traveling wave, with highly overdriven

detonations being more stable than their CJ counterparts.

Finally, we show by numerical simulations that solutions of (4.2-4.3) contain multi-

dimensional structures of varying complexity. In particular, we observed that very

regular cells tend to form when the parameters are near the stability boundary, and

that the further we get from the stability boundary, the more irregular the patterns

become.

The fact that the simple system studied in this chapter can capture the main

features of detonation waves provides some hope that a multi-dimensional asymptotic

theory of comparable simplicity exists. The development of asymptotic theories is the

focus of the remainder of this thesis. But even in the presence of asymptotic theories,

toy models retain their interest due to their elegance and richness.
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Part II

Asymptotic theory of detonations
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Chapter 5

Theory of weakly nonlinear

self-sustained detonations

We propose in this chapter a theory of weakly nonlinear multi-dimensional self-

sustained detonations based on asymptotic analysis of the reactive compressible Navier-

Stokes equations. We show that these equations can be reduced to a model consisting

of a forced, unsteady, small disturbance, transonic equation and a rate equation for

the heat release. In one spatial dimension, the model simplifies to a forced Burgers

equation. Through analysis, numerical calculations and comparison with the reactive

Euler equations, the model is demonstrated to capture such essential dynamical char-

acteristics of detonations as the steady-state structure, the linear stability spectrum,

the period-doubling sequence of bifurcations and chaos in one-dimensional detona-

tions, and cellular structures in multi-dimensional detonations.

5.1 Introduction

While the previous chapters aimed at a qualitative understanding of detonation

through simplified analogs, this chapter is concerned with developing a rational

asymptotic theory. As we shall see, the toy models studied in Chapter 2-4 are very
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close in nature to weakly nonlinear theories of hyperbolic waves. In fact, the main dif-

ficulty is in how to account for the chemical reactions in a way that is both tractable

and nontrivial. Even at the qualitative level, weakly nonlinear reactive and non-

reactive shocks behave in a very di�erent way.

In ZND theory, a detonation is assumed to be one-dimensional and in a steady-

state in a Galilean frame moving with the wave. The theory is successful in explain-

ing the fundamental nature of a detonation as a coupled shock-reaction zone system.

However, in experiments with gaseous detonations, it was observed as early as 1926

that detonations tend to be unsteady and multi-dimensional with rather complex

structures and dynamics [84, 48, 2]. To explain these dynamics, theoretical e�orts

focused on analysis of the stability of ZND solutions began in the 1960’s in the works

of Zaidel, Pukhnachev, Schelkin and, most comprehensively, Erpenbeck (see [2] for

an early literature review). The theory of linear stability of gaseous detonations was

found to be rather involved especially with regard to specific numerical computations

for real gaseous mixtures. Much later, Lee and Stewart [16] revisited the stability

problem and solved it for an idealized system by employing a relatively straightfor-

ward normal-mode approach. Solving the linear stability problem for real complex

gaseous mixtures or for systems with losses remains an open problem.

Linear stability theory is successful in predicting, for idealized systems, why and

how ZND detonations are unstable to linear perturbations. It is able to predict the

neutral stability boundary and the most unstable modes and thus the characteristic

length scales of various multi-dimensional structures seen in experiments. However,

the predictive power of linear stability theory is limited by its very nature as a linear

theory. Gaseous detonations are known to be highly nonlinear and unsteady. The

lead shock of such a detonation wave propagates with strong oscillations in its ve-

locity and with a highly non-uniform flow behind the shock that involves additional
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shocks propagating transversely to the lead shock with triple points forming at their

intersection. The triple points in complex detonation waves propagating in tubes

with walls covered with soot leave fish-scale traces called detonation cells [84, 48, 2],

and these detonations are termed cellular.

Theoretical prediction of the origin and structure of cellular detonations remains

an outstanding and challenging open problem. However, some progress has been

achieved with use of the tools of asymptotic analysis that allow for insight into the

nature of the problem under various limiting conditions (see Section 1.5). For exam-

ple, large activation energy [18], small heat-release [85, 47, 52], slow time evolution

and small shock curvature [39, 38], weak nonlinearity [79, 32], strong overdrive [52]

and other limiting assumptions lead to relatively simple asymptotic models. These

asymptotic theories in general describe idealized systems and are thus also limited

in their predictive power. Nevertheless, they provide important information about

the mechanisms involved in the existence of particular qualitative traits in the real

phenomenon.

Two fundamental structural and dynamical properties of gaseous detonations are

first that they propagate in a galloping regime in narrow tubes, as characterized by

large amplitude pulsations in an essentially one-dimensional wave, and second that

the structure of detonation fronts in large channels/tubes or open environments is cel-

lular. From a theoretical point of view, the basic problem is to describe and explain,

at least at a qualitative level, the origin and dynamics of these galloping and cellular

detonations. Importantly, such detonations have been reproduced and extensively

studied in numerical simulations of the reactive Navier-Stokes/Euler equations with

simplified descriptions of the chemical reactions and equations of state [9]. Thus, from

a modeling standpoint, the use of these equations is frequently appropriate. Some

features of pulsating and cellular detonations have been reproduced theoretically in
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[86, 52]. However, the following questions remain: (1) Can an asymptotic theory pre-

dict the observed period-doubling sequence of bifurcations in one-dimensional deto-

nations and the self-sustained cellular structures in two-dimensional detonations? (2)

How quantitatively close are the asymptotic predictions to the numerical results from

the reactive Navier-Stokes/Euler equations?

Our aim here is to develop a theory that captures the linear and nonlinear dynam-

ics of self-sustained detonations, especially with regard to the bifurcation sequence

seen in numerical simulations of one-dimensional detonations and the cellular struc-

tures found in two-dimensional detonations. Our theory is asymptotic and relies on

a number of approximations, namely small heat release, large activation energy, slow

time evolution, weak curvature and the Newtonian limit (0 < “ ≠ 1 π 1, where “ is

the ratio of specific heats). We build on the theory developed in [79, 32] by employ-

ing, as an additional approximation, the Newtonian limit (also used in [47] in one

spatial dimension for Euler equations) for two-dimensional detonations with retained

dissipative e�ects. The resulting system is a coupled set of three nonlinear partial

di�erential equations. When the dissipative terms are neglected, it is a hyperbolic

system for which we compute the traveling wave solutions analogous to ZND waves,

their multi-dimensional linear stability properties and full nonlinear dynamics. We

provide a quantitative comparison with the results from the reactive Euler equations

for all three asymptotic predictions: the steady-state solutions, the linear stability

spectrum and the cellular structure. The analysis of the reduced system with re-

tained viscous dissipation is a very interesting problem, but it is postponed for future

work.

As we show in Section 5.3, the two-dimensional reactive Navier-Stokes equations

reduce to a forced version of the unsteady, small disturbance, transonic (UTSD)
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equations given by

u· + uux + vy = ≠1
2⁄x + µuxx, (5.1)

vx = uy, (5.2)

⁄x = ≠k(1 ≠ ⁄) exp (◊ (Ôqu + q⁄)) , (5.3)

where u, v and ⁄ represent leading-order corrections to the x velocity, y velocity and

reaction progress variable. The right-hand side of (5.3) is the leading-order contri-

bution of the reaction rate assumed for simplicity to follow a single step Arrhenius

kinetics. The parameters µ, k, ◊ and q are the rescaled viscosity, pre-exponential

factor, activation energy and heat release, respectively. We find that this reduced

asymptotic model captures, at both the qualitative and quantitative levels, not only

the ZND structure, but also the linear stability spectrum, the pulsating nonlinear dy-

namics of one-dimensional detonations and the cellular dynamics of two-dimensional

detonations.

We also mention the attempts at understanding the nonlinear dynamics of deto-

nations via the use of qualitative models (see Section 1.4) such as those introduced

by Fickett [25] and Majda [29]. The idea behind these models is to produce simplified

systems that, although not derived from first principles, are capable of reproducing

the observed complexity of the solutions of reactive Euler equations while considerably

simplifying the analysis. The qualitative models of Fickett and Majda are closely re-

lated to the weakly nonlinear theory of detonations developed in [32]. Although these

models and the asymptotic theory of Rosales and Majda have enjoyed some success

in explaining certain features of di�erent types of traveling wave solutions of reactive

Euler/Navier-Stokes equations (i.e., weak and strong detonations), they were shown

to lack the necessary complexity needed to reproduce the dynamical properties of



127

real detonations with the rate functions used in prior work [17]. However, simple

ad hoc modifications of these models can reproduce much of the complexity of one-

dimensional detonations as we have shown in Chapter 2-4 (see also [31, 77, 69, 76]).

In the present chapter, we show how to produce an asymptotic theory that overcomes

the limitations mentioned above.

The remainder of this chapter is organized as follows. In Section 5.2, we state

the main governing equations together with the modeling assumptions regarding the

medium and the chemical reactions. In Section 5.3, we develop an asymptotic approx-

imation of the governing equations and obtain the weakly nonlinear reduced system.

We then investigate in Section 5.4 the possible traveling wave solutions of the asymp-

totic equations and their linear stability properties. Both the traveling wave solutions

and stability spectrum of the asymptotic model are compared with their correspond-

ing results in the reactive Euler system. For the case with no dissipative e�ects,

predictions of the asymptotic model are calculated numerically in Section 5.5, and a

quantitative comparison with the predictions of the reactive Euler equations is pre-

sented as well. Finally, in Section 5.6, we discuss the results as well as point out some

remaining open problems.

5.2 The main governing equations of reactive flow

We assume that the medium is described by the following system of equations ex-

pressing, respectively, the laws of conservation of mass, momentum and energy, and
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the chemical heat release:

Dfl

Dt
+ flÒ · u = 0, (5.4)

fl
Du
Dt

= div (T) , (5.5)

fl
De

Dt
= T : D ≠ div (qe) , (5.6)

fl
D�
Dt

= flW̃ ≠ div(q
�

). (5.7)

Here, D/Dt = ˆ/ˆt + u · Ò is the material derivative, v = 1/fl is the specific volume,

fl is the density, u is the velocity, T is the Cauchy stress tensor, D =
1
Òu + ÒuT

2
/2

is the deformation tensor, T : D = q
i,j TijDij denotes double contraction of tensors,

e = ei ≠ Q̃� is the total internal energy per unit mass, Q̃ is the heat release per unit

mass, qe and q
�

represent the flux of energy and species, respectively, W̃ (�, T ) is the

rate of reaction and � is the reaction-progress variable that changes from � = 0 in

the fresh mixture to � = 1 in the fully burnt products.

We make the following standard modeling assumptions (e.g., [87]):

1. The fluid is Newtonian, with the Stokes assumption on the bulk viscosity, so

that T = ≠
1
p + 2

3

µdiv (u)
2

I + 2µ̃D, where µ̃ is the dynamic viscosity, p is the

pressure and I is the identity tensor.

2. The species flux is given by Fick’s law, q
�

= -fld̃Ò�, with d̃ denoting the

di�usion coe�cient.

3. The energy flux has contributions from both the heat conduction (given by

Fourier’s law) and the species di�usion, so that qe = ≠Ÿ̃ÒT + Q̃fld̃Ò�, where

Ÿ̃ is the heat di�usion coe�cient.

4. The medium is a perfect gas described by the ideal-gas equation of state, p =

flRT , with the internal energy given by ei = pv/ (“ ≠ 1), where R is the universal
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gas constant divided by the molecular weight and “ is the ratio of specific

heats, assumed to be constant. These are simplifying modeling assumptions by

which the molecular weight and the ratio of specific heats are assumed constant

throughout the reaction. In real multicomponent mixtures, these change during

the reaction (for details, see [87]).

5. For simplicity, we take the rate of reaction to be W̃ = k̃(1 ≠ �) exp(≠Ẽ/RT ),

with the added ignition temperature assumption that W̃ = 0 for T < Ti for

some temperature, Ti. Here, k̃ is the rate constant and Ẽ is the activation

energy. More general rate functions can be considered, in principle, as long as

appropriate sensitivity to temperature is preserved.

With these assumptions, we can then rewrite (5.4-5.7) as

Dfl

Dt
+ flÒ · u = 0, (5.8)

fl
Du
Dt

= Ò ·
3

≠
3

p + 2
3 µ̃div (u)

4
I + 2µ̃D

4
, (5.9)

fl
De

Dt
= ≠pÒ · u ≠ 2

3 µ̃ (Ò · u)2 + µ̃ (Òu : Òu) + µ̃
1
Òu : ÒuT

2

+ Ò ·
1
Ÿ̃ÒT ≠ Q̃fld̃Ò�

2
, (5.10)

fl
D�
Dt

= flW̃ + Ò · (fld̃Ò�). (5.11)

For the analysis that follows, it is convenient to use e = ei ≠ Q̃⁄ = RT/(“ ≠ 1) ≠ Q̃�

to express the energy equation as

fl
DT

Dt
≠ “ ≠ 1

R“

Dp

Dt
= “ ≠ 1

R“

A

Q̃flW̃ ≠ 2
3 µ̃ (Ò · u)2 + µ̃ (Òu : Òu) (5.12)

+ µ̃
1
Òu : ÒuT

2
+ Ò · (dÒT )

B

. (5.13)

We shall focus on the two-dimensional case for simplicity. Consider a localized
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wave moving into an equilibrium, quiescent state and let fla, pa, Ta and ua =
Ò

pa/fla

denote, respectively, the density, pressure, temperature and Newtonian sound speed

in the fresh mixture ahead of the wave. We rescale the dependent variables with

respect to this reference state. The independent variables are rescaled as follows:

x = X ≠ D
0

t

x
0

, y = Y

y
0

, · = t

t
0

, (5.14)

where X and Y are the original spatial variables and D
0

is a typical wave speed, which

is to be determined in the process of deriving the asymptotic model by requiring non-

triviality of the leading-order corrections. The length scales, x
0

, y
0

and the time

scale, t
0

, are chosen to reflect the appropriate physics of weakly nonlinear waves. We

assume that ‘ = x
0

/ (uat
0

) is small, which means that the spatial scale of interest in

the x-direction, which is related to the size of the reaction zone, is small compared

with the typical distance covered by acoustic waves in time t
0

. For the transverse

dimension, we assume the scaling y
0

= x
0

/
Ô

‘ . This follows from the fact that, along

a weakly curved front, a distance ‘ in the normal direction corresponds to a distance

O(
Ô

‘) in the transverse direction.

Several dimensionless groups appear upon rescaling of the governing equations.

We define the Reynolds, Prandtl and Lewis numbers, respectively, as follows:

Re = flauax
0

µ̃
, Pr = cpµ

Ÿ̃
, Le = Ÿ̃

flacpd̃
, (5.15)

where cp = “R/ (“ ≠ 1). Writing u = (U, V )T , it is convenient to introduce the

di�erential operator:

L = ˆ· + 1
‘
(U ≠ D

0

)ˆx + 1Ô
‘
V ˆy. (5.16)
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Introducing the dimensionless parameters,

Q = Q̃

RTa

, E = Ẽ

RTa

, K = t
0

k̃ exp (≠E) , (5.17)

the non-dimensional governing equations become (see Appendix D for details):

L[fl] + fl

A
1
‘
Ux + 1Ô

‘
Vy

B

= 0, (5.18)

flL[U ] + 1
‘
px = 1

3‘Re
1
Uxx +

Ô
‘Vxy

2
+ 1

‘Re (Uxx + ‘Uyy) , (5.19)

flL[V ] + 1Ô
‘
py = 1

3‘Re
1Ô

‘Uxy + ‘Vyy

2
+ 1

‘Re (Vxx + ‘Vyy) , (5.20)

flL[T ] ≠ (“ ≠ 1)
“

L[p] = “ ≠ 1
“

A

QflW ≠ 2
3‘Re

1
Ux +

Ô
‘Vy

2
2

+ 1
‘Re

1
U2

x + ‘U2

y + V 2

x + ‘V 2

y

2 B

+ “ ≠ 1
“

1
‘Re

1
U2

x +
Ô

‘UyVx +
Ô

‘VxUy + ‘V 2

y

2

+ 1
‘RePr (Txx + ‘Tyy) , (5.21)

flL[�] = flW + 1
‘RePrLe

1
(fl�x)x + ‘ (fl�y)y

2
, (5.22)

where W is defined as

W = K(1 ≠ �) exp
5
E

3
1 ≠ 1

T

46
. (5.23)

5.3 Weakly nonlinear approximation of detonations

We develop an asymptotic simplification of the above general formulation by consid-

ering a weakly nonlinear detonation wave, for which we assume that the heat release
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is small, the activation energy is large and the Newtonian limit, 0 < “ ≠1 π 1, holds.

To be precise, we start from (5.18-5.22) and make the following assumptions:

1. K = k/‘, k = O(1). This assumption is chosen to ensure that the reaction

rate a�ects the leading order expansion of �. Since K = t
0

k̃, this assumption

implies that the characteristic time scale, t
0

, of weakly nonlinear detonations is

large compared to the collision time, 1/k̃, i.e., ‘t
0

≥ (1/k̃).

2. (“ ≠ 1) Q/“ = ‘2q, q = O (1). This assumption implies that the heat release

does not play a role at the linear level. It does not mean that the chemistry

is unimportant, but that the heat release must have the appropriate size to

balance the nonlinear e�ects. The extra factor of (“ ≠ 1) /“ in front of Q arises

naturally in the governing equations (see (5.21)) and is retained in the definition

of q. With the further assumption below of small “ ≠ 1, this implies that Q is

O (‘).

3. E = ◊/‘2, ◊ = O (1). This ensures that small temperature deviations – which

are O (‘2) for weak shocks in the Newtonian limit – have an O (1) influence on

the reaction rate.

4. “ ≠ 1 = “
1

‘, “
1

= O (1). This assumption is needed to balance the temperature

fluctuations with both the acoustics and chemistry at the same order. Without

this assumption, the leading order corrections for density, velocity and temper-

ature all behave the same way, as in a weakly nonlinear inert shock [88, 89]. As

we show later, having a temperature profile that is di�erent from density/ve-

locity profiles is crucial, as it allows the model derived here to incorporate the

dynamical instabilities of detonation waves.

5. Le and Pr are O (1), while Re is O(1/‘). Other scalings that highlight di�erent
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transport e�ects are of course possible, but they are not considered in this

chapter.

To understand some of the intuition behind the asymptotic ordering above, recall the

following well-known fact for weak shocks [90]. If the shock strength is measured by

the relative jump in pressure across the shock, �p = (ps ≠ pa) /pa (subscripts s and

a denoting post- and pre-shock states, respectively), then the shock Mach number

is M = 1 + [(“ + 1) /(4“)] �p + O
1
(�p)2

2
and the shock temperature is Ts/Ta =

1 + [(“ ≠ 1) /“] �p + O
1
(�p)2

2
. Therefore, for weak shocks, with M ≠ 1 = O (‘),

in the Newtonian limit, “ ≠ 1 = O (‘), the leading-order temperature correction is

O (‘2). That is, all variables have an O (‘) jump across the shock, but the temperature

jump is smaller, only O (‘2). In the chosen asymptotic approximation, we therefore

expect similar temperature behavior in the reaction zone as well, at least with inviscid

detonations.

Now, we assume the following expansions in the reaction zone:

fl = 1 + fl
1

‘ + fl
2

‘3/2 + fl
3

‘2 + o(‘2), (5.24)

T = 1 + T
1

‘ + T
2

‘3/2 + T
3

‘2 + o(‘2), (5.25)

p = 1 + p
1

‘ + p
2

‘3/2 + p
3

‘2 + o(‘2), (5.26)

u = u
1

‘ + u
2

‘3/2 + u
3

‘2 + o(‘2), (5.27)

� = ⁄ + o(‘). (5.28)

The fractional powers appear here because we aim at capturing weak curvature e�ects

in the detonation front. These e�ects induce a flow velocity transverse to the front,

which is O(
Ô

‘) smaller than the longitudinal velocity. Expansions of this type are

standard for waves incorporating the weak-curvature e�ect (e.g., [91]).
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Expanding p = flT , we find that p
1

= fl
1

+T
1

, p
2

= fl
2

+T
2

and p
3

= fl
3

+T
3

+fl
1

T
1

.

Using these relations to eliminate pressure perturbations, inserting (5.24-5.28) into

(5.18-5.22) yields (see Appendix E for details)

(≠D
0

fl
1x + U

1x) +
Ô

‘ (≠D
0

fl
2x + U

2x + V
1y) +

‘ (fl
1· ≠ D

0

fl
3x + U

1

fl
1x + U

3x + fl
1

U
1x + V

2y) = o(‘), (5.29)

(≠D
0

U
1x + T

1x + fl
1x) +

Ô
‘ (≠D

0

U
2x + T

2x + fl
2x) +

‘ (U
1· ≠ D

0

U
3x + U

1

U
1x + T

1

fl
1x + T

3x + fl
3x ≠ fl

1

fl
1x) = 4

3
1

Re (U
1

)xx + o(‘), (5.30)

(≠D
0

V
1x) +

Ô
‘ (≠D

0

V
2x + T

1y + fl
1y) +

‘ (V
1· ≠ D

0

V
3x + U

1

V
1x + T

2y + fl
2y) = 1

Re (V
1

)xx + o(‘), (5.31)

(≠D
0

T
1x) +

Ô
‘ (≠D

0

T
2x) +

‘

A

T
1· ≠ D

0

T
3x + U

1

T
1x + “

1

“
D

0

(fl
1x + T

1x)
B

= ‘qÊ + o(‘), (5.32)

≠D
0

⁄x = Ê + o(1). (5.33)

Because of the weak heat release assumption, we need to expand only the reaction

progress variable and the reaction rate to the leading order. As we shall see later,

the leading-order corrections to temperature are of order ‘2, i.e., T
1

= T
2

= 0, and

therefore the leading-order reaction rate is given by

Ê = k(1 ≠ ⁄) exp (◊T
3

) . (5.34)
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Balancing O(1) terms, we find that

S

WWWWWWWWWWWU

≠D
0

1 0 0

1 ≠D
0

0 1

0 0 ≠1 0

0 0 0 ≠1

T

XXXXXXXXXXXV

S

WWWWWWWWWWWU

fl

U

V

T

T

XXXXXXXXXXXV

1x

=

S

WWWWWWWWWWWU

0

0

0

0

T

XXXXXXXXXXXV

. (5.35)

This homogeneous system has non-trivial solutions if and only if the coe�cient matrix

(denoted by A from now on) is singular. Therefore, we must have D
0

= ±1. We

focus on a right-going wave for which D
0

= 1.

After substituting D
0

= 1, we integrate the first equation in (5.35) to obtain

U
1

= u(x, y, ·)+ Ū(y, ·), fl
1

= u(x, y, ·)+ fl̄ (y, ·) for some, so far arbitrary, functions

Ū (y, t) and fl̄ (y, t). In order for our asymptotic expansions to hold as we approach

the upstream state, which is assumed to be quiescent and uniform at all times, we

require fl
1

= U
1

© 0 as x æ Œ (upstream of the wave). As a consequence, it follows

that Ū(y, t) = fl̄ (y, t) © 0. Had we considered the case where the wave moves into a

non-uniform background, the functions fl̄ and Ū would provide the freedom needed

to match the asymptotic expansion in the wave zone to the flow ahead (see, e.g.,

[32]). A similar reasoning can be used to deduce from the third and fourth equation

in (5.35) that T
1

= V
1

© 0.

At O(‘1/2), we obtain

S

WWWWWWWWWWWU

≠1 1 0 0

1 ≠1 0 1

0 0 ≠1 0

0 0 0 ≠1

T

XXXXXXXXXXXV

S

WWWWWWWWWWWU

fl

U

V

T

T

XXXXXXXXXXXV

2x

=

S

WWWWWWWWWWWU

0

0

≠uy

0

T

XXXXXXXXXXXV

, (5.36)
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with the same matrix of coe�cients, A, as before. Since A is singular, this system

has solutions if and only if the right-hand side is orthogonal to l
0

= [1 1 0 1], which

spans the left null-space of A. Clearly, this condition is always satisfied here. Note

that from the third and fourth equation in 5.36, we obtain that V
2x = uy and T

2

= 0,

i.e., letting

v = V
2

(5.37)

such that

vx = uy. (5.38)

Finally, at O (‘), we obtain

S

WWWWWWWWWWWU

≠1 1 0 0

1 ≠1 0 1

0 0 ≠1 0

0 0 0 ≠1

T

XXXXXXXXXXXV

S

WWWWWWWWWWWU

fl

U

V

T

T

XXXXXXXXXXXV

3x

=

S

WWWWWWWWWWWU

≠u· ≠ 2uux ≠ vy

≠u· + 4

3

1

‘Re

uxx

≠fl
2y

qÊ ≠ “1
“

ux

T

XXXXXXXXXXXV

. (5.39)

Notice that since Re = O(1/‘), all terms in (5.39) are O (1). The solvability condition

for this system is that the right-hand side be orthogonal to l
0

= [1 1 0 1], which yields:

2u· + 2uux + vy = qÊ ≠ “
1

“
ux + 4

3
1

‘Reuxx. (5.40)

This equation together with

vx = uy, (5.41)

⁄x = ≠Ê, (5.42)
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forms a closed system of equations. The temperature dependence in the leading order

rate function, (5.34), can be eliminated by integrating the last equation in (5.39),

T
3

= “
1

“
u + q⁄, (5.43)

giving

Ê = k(1 ≠ ⁄) exp
A

◊

A
“

1

“
u + q⁄

BB

. (5.44)

Therefore, we obtain

2u· + 2uux + “
1

“
ux + vy = ≠q⁄x + 4

3
1

‘Reuxx, (5.45)

vx = uy, (5.46)

⁄x = ≠k(1 ≠ ⁄) exp
A

◊

A
“

1

“
u + q⁄

BB

. (5.47)

As can be seen from (5.39), species and heat di�usion play no role in the asymp-

totic equations up to O (‘). Had we considered di�erent asymptotic orderings for

the Lewis and Prandtl numbers, these e�ects would introduce di�usive terms in the

energy and the reaction-rate equations. This complicates the analysis, and therefore

we consider no such e�ects in this chapter, and hence the only e�ective di�usion in

the asymptotic model comes from the viscous dissipation. The e�ect of heat di�usion

is explored later in Chapter 6.

It is convenient to further rescale the variables as:

x ‘æ x ≠ “
1

/ (2“) ·, y ‘æ 2≠1/2q≠1/4y, · ‘æ q≠1/2·, u ‘æ q1/2u, v ‘æ 21/2q3/4v, (5.48)

where the scale for u is chosen so that the traveling wave solution found later in

Section 5.4.1 has speed 1. We also choose ‘ = (“ ≠ 1) /“, which means that “
1

= “.
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Other choices of ‘ are possible as long as ‘ and “ ≠ 1 are of the same asymptotic

order when ‘ æ 0. These choices, although equivalent in the limit ‘ æ 0, will have

some e�ect on the quantitative numerical predictions for finite ‘. With this rescaling

and the choice of ‘, we obtain our final asymptotic system of equations of weakly

nonlinear detonation:

u· + uux + vy = ≠1
2⁄x + µuxx, (5.49)

vx = uy, (5.50)

⁄x = ≠k(1 ≠ ⁄) exp [◊ (Ôqu + q⁄)] , (5.51)

where µ = 2/
1
3Ô

q‘Re
2

is the dimensionless viscosity coe�cient.

In the inviscid case, (5.49-5.51) must be supplemented by the appropriate jump

conditions across shocks. If the shock locus is defined by „(x, y, ·) = x ≠ s(y, ·) = 0

and [z] denotes the jump of z across the shock, the Rankine-Hugoniot conditions are:

s· [u] ≠ 1
2

Ë
u2

È
+ sy [v] = 0, (5.52)

sy [u] + [v] = 0, (5.53)

[⁄] = 0. (5.54)

These equations follow from the conservation form of (5.49-5.51).

Implicit in the definition (5.23) of the rate of reaction, W , lies the ignition temper-

ature assumption, such that W © 0 for T < Ti/Ta. Thus, the leading order reaction

rate, Ê, given by (5.34) also satisfies Ê © 0 for T
3

< (Ti/Ta ≠ 1) /‘2 or, equivalently,

for u + q⁄ < (Ti/Ta ≠ 1) /‘2. In order to prevent reactions from occurring in the

ambient state, a reasonable constraint on the ignition temperature is that it be larger

than the ambient temperature, Ta. Furthermore, for the ZND solution to exist, it is
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necessary that the ignition temperature, Ti, be smaller than the temperature at the

von Neumann state of the ZND solution. In the weakly nonlinear regime considered

in this paper, we must therefore have 0 < Ti ≠ Ta = O (‘2). This should be viewed as

a modeling assumption about the chemical kinetics. Notice that in the inviscid case,

the ignition temperature, if taken to be Ti ' Ta, has no e�ect on the ZND profiles

and their stability properties. Simply, it states that the reactions occur only after

the shock and therefore, Ê = 0 ahead of the wave. When considering viscous e�ects,

however, the traveling wave profiles and their dynamical evolution will depend on

the ignition temperature and Ti should therefore be considered as another parameter

that a�ects the properties of the solutions.

For the convenience of the reader, in Table 5.1, we collect the relations between

various dimensionless and dimensional quantities.

Dimensional Dimensionless Physical meaning
Q̃ Q = Q̃/RTa = ‘q Heat release
Ẽ E = Ẽ/RTa = ◊/‘2 Activation energy
k̃ K = t

0

k̃ exp(≠E) = k/‘ Reaction pre-factor
t · = t/t

0

= ‘tua/x
0

Time
X x = (X ≠ D

0

t) /x
0

≠ · Longitudinal direction
Y y =

1Ô
2‘q1/4/x

0

2
Y Transverse direction

µ̃ µ = 2/
1
3Ô

q‘Re
2

Viscous dissipation

Table 5.1: Summary of scaling relationships.

The relationships between the asymptotic variables u, v and ⁄ and the physical

(dimensionless, rescaled with the upstream state) quantities, fl, U, V, T and � are
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given by

fl = 1 + ‘
Ô

qu + O(‘3/2), (5.55)

U = ‘
Ô

qu + O(‘3/2), (5.56)

V = ‘3/2

Ô
2q3/4v + O(‘2), (5.57)

T = 1 + ‘2 (Ôqu + q⁄) + O(‘5/2), (5.58)

� = ⁄ + O(‘). (5.59)

For the remainder of the paper, we focus exclusively on the inviscid case such that

the asymptotic equations take the form

u· + uux + vy = ≠1
2⁄x, (5.60)

vx = uy, (5.61)

⁄x = ≠k(1 ≠ ⁄) exp [◊ (Ôqu + q⁄)] . (5.62)

An important connection is now made with the qualitative work performed in

Part I, where it was assumed that the reaction rate depends on the shock state only,

i.e., Ê (⁄, u) ¥ Ê (⁄, us) . The discussion that follows is rather informal, and intended

only to motivate the non locality assumption so frequently employed in Part I. The

important observation is that, for q ∫ 1, ◊q = O(1), the main contribution of u

in (5.62) will come from region where ⁄ π 1. In particular, given the rescaling we

performed in (5.48), the ZND solutions are always O(1), even for large q (see Section

5.4). Therefore for u to contribute to the reaction rate we need q⁄ ¥ Ô
qu, which

happens for ⁄ = O(1/
Ô

q). This means the reaction rate is a�ected by u only when

⁄ ¥ 0, and since ⁄ = 0 ahead of the shock, we know that ⁄ is near zero only close

to the shock, where u is well approximated by us (assuming ux is bounded). Thus, a
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reasonable ansatz for a uniformly valid (for ⁄ œ [0, 1]) asymptotic approximation for

the reaction rate, in the limit of large q and small ◊, is given by

Ê = k (1 ≠ ⁄) exp (◊ (Ôqu + q⁄))

¥ k (1 ≠ ⁄) exp (◊ (Ôqus + q⁄))

It is important to note that u ”¥ us everywhere, and thus a simple Taylor series does

not justify the approximation. The key factor is that u always appears through the

combination T
3

= Ô
qu + q⁄, and therefore when u ”¥ us the q⁄ terms dominates.

We note here that without the chemical reaction, (5.60-5.62) reduce to

u· +
A

u2

2

B

x

+ vy = 0, (5.63)

vx = uy, (5.64)

which are canonical equations appearing in the analysis of various physical phenomena

modeled by weakly-nonlinear quasi-planar hyperbolic waves. In terms of the velocity

potential, „, such that Ò„ = (u, v), these equations can be rewritten as

„x· +
A

„x

2

B
2

x

+ „yy = 0, (5.65)

which is the well-known UTSD equation [92]. In nonlinear acoustics, this equation is

also known as the Zabolotskaya-Khokhlov equation [93].

In the following sections, we investigate the steady-state solutions of (5.60-5.62),

their spectral stability and nonlinear dynamics, and demonstrate that the asymptotic

theory contains the essential features of not only the steady-state one-dimensional,

but also the unsteady and multi-dimensional traveling waves of the reactive Euler



142

equations.

5.4 Traveling wave solutions and their linear sta-

bility

In this section, we analyze the traveling wave solutions of the asymptotic equations

and their spectral stability, showing that the asymptotic solutions are analogous to

their ZND counterparts. We start by presenting the one-dimensional traveling wave

solutions in Section 5.4.1, which are the basis for the one- and multi-dimensional

stability analyses presented in Section 5.4.2.

5.4.1 Traveling wave solutions of the asymptotic model

Seeking the one-dimensional traveling wave solutions of the inviscid asymptotic model

(5.60-5.62) of the form ū = ū(x ≠ D̄·), we obtain

ū = D̄ +
Ò

D̄2 ≠ ⁄̄, (5.66)

where D̄ is the speed of the wave and the bar denotes the steady state. It is easily

seen that, for the solution to remain real at the end of the reaction zone, we must

choose D̄ Ø 1. The precise choice of the value is related to the degree of overdrive of

the wave. Even though the overdriven detonations can be included in the analysis,

we focus on the important case of a self sustained detonation in which the steady

state has a sonic point at the end of the reaction zone. Then, D̄ = 1 and

ū = 1 +
Ò

1 ≠ ⁄̄, (5.67)
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where ⁄̄ solves

⁄̄› = ≠k
1
1 ≠ ⁄̄

2
exp

1
◊

1Ô
qū + q⁄̄

22
(5.68)

with › = x≠· and boundary condition ⁄̄(0) = 0 (this is analogous to the ZND theory,

see [2]). This solution is used in the analysis that follows.

The steady-state structure of the asymptotic model contains substantial informa-

tion about the underlying modeling assumptions. A crucial qualitative feature of the

structure is that, because of the behavior of the leading order correction to temper-

ature, T
3

= u + q⁄, it is possible to have a maximum of the reaction-rate function,

(5.68), inside the reaction zone, as we show in Fig. 5.1. The presence of the internal

−10 −8 −6 −4 −2 0
0

0.5

1

1.5

2

x

y

u

λ

ω

Figure 5.1: Steady-state profiles and the rate function of the asymptotic solution for
q = 1.7 and ◊ = 1.7.

maximum in the reaction rate appears to be an important factor responsible for the

observed unsteady dynamics of real detonations, consistent with our previous work

on a closely related model equation [77, 76]. In fact, we have verified that even the

qualitative models of Fickett,

ut +
A

u2

2 + q⁄

B

x

= 0, ⁄t = Ê(⁄, u), (5.69)
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and Majda (in the inviscid limit),

(u + q⁄)t +
A

u2

2

B

x

= 0, ⁄t = Ê(⁄, u), (5.70)

are capable of capturing the one-dimensional instabilities of detonation waves if the

reaction rate is taken as (5.44). We recall that, in these models, the reaction rate

usually takes the form

Ê = (1 ≠ ⁄) Ï (u) , (5.71)

where the ignition function, Ï (u), is

Ï =

Y
____]

____[

Ï
0

(u) , u > ui

0, u < ui

, (5.72)

and ui is the “ignition-temperature” parameter (see, e.g., [17, 29]). The new rate

function, given by (5.44), reflects the crucially important feature of the heat-release

in unstable detonations, which exhibits a maximum inside the reaction zone. Thus,

both Fickett’s and Majda’s models possess the necessary complexity needed to capture

the qualitative dynamics of one-dimensional unstable detonations provided that the

reaction-rate function is chosen appropriately.

The steady-state solution also provides a first quantitative test of the accuracy

of the asymptotic approximation. In Figure 5.2, we show a comparison between the

ZND solutions of the reactive Euler equations and their asymptotic counterparts as

predicted by the present theory. We see that the asymptotic approximation performs

rather well when the heat release is small and the activation energy is large, i.e., when

Q ≥ ‘ and E ≥ 1/‘2. For example, for the realistic value of “ = 1.2 (‘ = 1/6), the

relative error is only a small percentage (Figure 5.2c). As expected, for the smaller
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value of “ = 1.1 (‘ = 1/11), the agreement is seen to improve (Figure 5.2b and Figure

5.2d), with the maximum relative error approximately two percent of the flow velocity.

As expected, the approximation worsens as the values of “ ≠ 1 and Q increase or the

value of E decreases.
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(a) Profiles for “ = 1.2, Q = 0.4, E = 50; ‘ = 1/6.
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(b) Profiles for “ = 1.1, Q = 0.4, E = 50; ‘ =
1/11.
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(c) Error for “ = 1.2, Q = 0.4, E = 50; ‘ = 1/6.
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(d) Error for “ = 1.1, Q = 0.4, E = 50; ‘ = 1/11.

Figure 5.2: Comparison between the exact and asymptotic steady-state ZND profiles.
The asymptotic solutions are calculated using (5.55-5.59).

5.4.2 Linear stability theory for the asymptotic model

With the steady-state solutions in reasonable agreement with the reactive Euler equa-

tions, we next investigate their stability properties. It is well known that the reactive

Euler equations for the ideal-gas equation of state and simple-depletion Arrhenius
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kinetics predict that the steady-state detonations are unstable when the activation

energy is large enough at a fixed heat release [15, 20, 16]. In this section, we analyze

the linear stability of the traveling wave solutions obtained in the previous section to

see if the asymptotic theory agrees with the Euler equations in this regard as well. We

show that, indeed, the steady-state detonation waves become unstable if either the

heat release or the activation energy crosses a certain threshold. We also demonstrate

that multi-dimensional e�ects play a nontrivial role in the onset of instabilities.

To proceed with the analysis, let ū and ⁄̄ be the steady-state solution obtained

in Section 5.4.1. Rewriting (5.60-5.62) in a shock-attached frame, ‰ = x ≠ s(y, ·),

where s(y, ·) is the shock position, we obtain

u· + (u ≠ s· ) u‰ + 1
2⁄‰ + vy ≠ syv‰ = 0, (5.73)

uy ≠ syu‰ ≠ v‰ = 0, (5.74)

⁄‰ = ≠k (1 ≠ ⁄) exp (◊ (Ôqu + q⁄)) . (5.75)

Next, we expand the solution in normal modes,

u = ū(‰) + ”u
1

(‰) exp (‡· + ily) + O
1
”2

2
, (5.76)

v = ”v
1

(‰) exp(‡· + ily) + O(”2), (5.77)

⁄ = ⁄̄(‰) + ”⁄
1

(‰) exp (‡· + ily) + O
1
”2

2
, (5.78)

s = D̄· + ” exp (‡· + ily) , (5.79)
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and let ” æ 0. The linearized equations are then

1
ū ≠ D̄

2
uÕ

1

= ≠(‡ + ūÕ)u
1

+ ‡ūÕ ≠ ilv
1

≠ 1
2 (g(‰)u

1

+ h(‰)⁄
1

) , (5.80)

vÕ
1

= ilu
1

≠ ilūÕ, (5.81)

⁄Õ
1

= g(‰)u
1

+ h(‰)⁄
1

, (5.82)

where the prime denotes a di�erentiation with respect to ‰ and

g(‰) = ≠ˆÊ

ˆu

1
ū, ⁄̄

2
= ≠k◊

Ô
q

1
1 ≠ ⁄̄

2
exp

Ë
◊

1Ô
qū + q⁄̄

2È
, (5.83)

h(‰) = ≠ˆÊ

ˆ⁄

1
ū, ⁄̄

2
= ≠k

Ë
◊q

1
1 ≠ ⁄̄

2
≠ 1

È
exp

Ë
◊

1Ô
qū + q⁄̄

2È
. (5.84)

The boundary conditions for (5.80-5.82) are obtained from linearizing (5.52-5.54):

u
1

(0) = 2‡; v
1

(0) = ≠2il; ⁄
1

(0) = 0. (5.85)

Noticing that for self sustained detonation, ū ≠ D̄ æ 0 as ‰ æ ≠Œ, we require that

the right-hand side of (5.80) vanish in the limit as well, i.e.,

H(‡, l) = ≠(‡ + ūÕ)u
1

+ ‡ūÕ ≠ ilv
1

≠ 1
2 (g(‰)u

1

+ h(‰)⁄
1

) æ 0 as ‰ æ ≠Œ.

Because ūÕ æ 0, g(‰) æ 0 as ‰ æ ≠Œ, this solvability condition (alternatively called

the “boundedness” or the “radiation” condition [16]) simplifies to

≠ ‡u
1

≠ ilv
1

≠ 1
2h (≠Œ) ⁄

1

æ 0 as ‰ æ ≠Œ. (5.86)

To eliminate the numerical inconvenience of ‡ = 0, l = 0 always being an eigenvalue

– a consequence of the translation invariance of the traveling wave – we rescale u
1
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and ⁄
1

by ‡ and v
1

by il. The stability problem is then posed as follows:

Solve

1
ū ≠ D̄

2
uÕ

1

= ≠(‡ + ūÕ)u
1

+ ūÕ + l2

‡
v

1

≠ 1
2 (g(‰)u

1

+ h(‰)⁄
1

) , (5.87)

vÕ
1

= ‡u
1

≠ ūÕ, (5.88)

⁄Õ
1

= g(‰)u
1

+ h(‰)⁄
1

, (5.89)

subject to u
1

(0) = 2, v
1

(0) = ≠1 and ⁄
1

(0) = 0 at the shock and the boundedness

condition (5.86) at negative infinity.

The preceding eigenvalue problem is solved numerically using the shooting method

of [16]. We solve the problem for di�erent values of ◊, q and l, which are the only

remaining parameters. Consistent with the behavior of the stability spectrum of

detonation waves in reactive Euler equations [16], we find that unstable modes do

exist either for large enough q or for large enough ◊. We also find that the transverse

modes, where l ”= 0, tend to be more unstable than purely longitudinal disturbances

[20].

First, we consider the purely one-dimensional problem, i.e., with l = 0. In Fig.

5.3, we show the contour plot of the absolute value of the stability function,

|H (‡, 0) | =
----≠(‡ + ūÕ)u

1

+ ‡ūÕ ≠ 1
2 (g(‰)u

1

+ h(‰)⁄
1

)
---- , (5.90)

as a function of real and imaginary parts of ‡. The valleys in the plot of |H(‡, 0)|,
which correspond to the darker regions in Figure 5.3, provide an initial guess for the

location of eigenvalues. A root solver is then used wherein the complex function,

H(‡, 0), is set to zero in order to accurately locate the eigenvalues. An increasing

number of unstable eigenvalues is seen as the neutral boundary is crossed by increasing
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the heat release, q, for a given value of the activation energy, ◊. The qualitative

behavior of the spectrum is in agreement with that known for the Euler detonations

[16]. Furthermore, Figure 5.3a and Figure 5.3d show the migration of the oscillatory

complex conjugates, with ‡i ”= 0, into non-oscillatory unstable modes that are also

observed in the Euler equations [18]. Finally, in Figure 5.3e and Figure 5.3f, we see

that far into the unstable regime, many eigenvalues are found, indicating a complexity

of the linear spectrum.

We also obtain the neutral stability curves for the first two unstable eigenvalues

in the asymptotic model, as shown in Figure 5.4a. It is seen that the lowest frequency

mode 1 is more unstable than mode 2 for a wide range of q and ◊. Substantially away

from the neutral boundary, the non-oscillatory root may become dominant, as is seen

in the example shown in Figure 5.3c and Figure 5.3d.

In Figure 5.4b, we plot the neutral curve for the lowest frequency eigenvalue,

indicated by the solid line in Figure 5.4a, in the plane of the heat release, Q, and the

activation energy, E. The result is compared with the neutral curve computed directly

from the reactive Euler equations [16] and a reasonably close agreement between the

two is seen. We observe that, as expected, the agreement improves with smaller Q

and larger E. Finally, since the asymptotic model allows for easy calculations of

the high activation energy/small heat release limit, we extend the prediction of the

neutral boundary to rather high values of E ¥ 250 and note that the asymptotic

curve follows the scaling Q ≥ 1/E very well.

If l ”= 0, then there is the possibility that transverse waves will trigger the insta-

bilities. This occurs in the Euler equations, where it is found that multi-dimensional

instability prevails over purely longitudinal instability. Again, using the shooting

method, we solve (5.87-5.89) numerically for various values of l. Solving for the roots
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Figure 5.3: Contour plots of the spectral function (5.90) for ◊ = 1.8 and increasing
q. Note that the real part of the non-oscillatory root increases with q. The red dots
in the figures represent the eigenvalues. In (e) and (c), the dominant non-oscillatory
root is not shown.

of the radiation function,

H(‡, l) = ≠(‡ + ūÕ)u
1

+ ‡ūÕ ≠ ilv
1

≠ 1
2 (g(‰)u

1

+ h(‰)⁄
1

) , (5.91)

at ‰ = ≠Œ, we obtain the two-dimensional stability spectrum. We first fix q = 1.7

and vary ◊ = 1.65, 1.60, 1.55. In Figure 5.5, we show the real and imaginary parts

of the unstable modes for relatively small values of l. It is seen that the model

predicts purely two-dimensional instabilities for a certain range of the transverse wave

numbers, and that increasing the activation-energy parameter, ◊, has a destabilizing
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Figure 5.4: Neutral stability curves.

e�ect on the steady-state solutions.
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Figure 5.5: Growth rate and frequency for the most unstable mode versus the wave-
number, l, for several values of the activation energy, ◊.

We also perform a quantitative comparison between the two-dimensional stability

of the asymptotic model and the known stability diagram for the Euler equations.

We choose the values of “ = 1.2, Q = 0.4 and E = 50. Then, after performing

the appropriate conversion between dimensionless variables, we compare the asymp-

totic results with those obtained in [1] (see Figure 5.6). We observe a fair agreement.

There are, however, some di�erences. We see that for the parameters chosen in Figure

5.6, the asymptotic model predicts one-dimensional instabilities, while the reactive
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Euler equations do not. Also, we observe that the disagreement between the imagi-

nary parts of the eigenvalues increases with increasing wavenumber. This should be

expected because short transverse wavelengths cannot be represented accurately in

the weak curvature limit assumed for this model. In the next section, we investigate

the long-time nonlinear dynamics of the asymptotic solutions in regimes correspond-

ing to linearly unstable steady-state one-dimensional solutions. The calculations are

performed in both one and two spatial dimensions.

0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

l

σ
r

Asymptotic
Reactive Euler

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

l

σ
i

Asymptotic
Reactive Euler

Figure 5.6: Comparisons of the growth rate and frequency for the most unstable mode
versus the wave number, for Q = 0.4 and E = 50. The dashed curve corresponds to
the model in this paper. The solid line corresponds to the reactive Euler equations
as computed in [1].

5.5 Nonlinear dynamics of the asymptotic model

In the previous section, we showed that the asymptotic model exhibits the same linear

stability behavior as the reactive Euler equations. The question of what happens after

the onset of instabilities can be investigated through numerical simulations of the

model equations. We show below that the traveling wave solutions of the asymptotic

model reproduce, in both one and two spatial dimensions, the complexity observed

in solutions of the reactive Euler equations.
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5.5.1 Galloping detonations

We focus here on the ability of the asymptotic model to predict the complex nonlinear

dynamics of pulsating (galloping) detonations. We perform a detailed numerical

investigation of the large time asymptotic behavior of oscillatory solutions of the

model. In the one-dimensional inviscid case, the system given by (5.49-5.51) reduces

to

u· + uux = ≠1
2⁄x, (5.92)

⁄x = ≠k(1 ≠ ⁄) exp(◊(Ôqu + q⁄)). (5.93)

This system resembles the one derived in [32] with one crucial di�erence – as a con-

sequence of the “ ≠ 1 = O(‘) assumption, the reaction rate function in (5.93) has a

more complicated ⁄-dependence, which is in fact at the heart of the complexity of

the solutions obtained here. System (5.92-5.93) is also the same as in [47], where the

“ ≠ 1 = O(‘) assumption is used.

We solve (5.92-5.93) numerically in a shock-attached frame [60], using a second-

order finite volume scheme with a second-order Total Variation Diminishing (TVD)

Runge-Kutta temporal discretization [73]. Because no di�erentiation across the shock

is performed, true second-order convergence is obtained for the cases tested, which

include the convergence to various stable steady-state ZND solutions. We further

verified the numerical algorithm by performing a cross-validation between the linear

stability solver and the numerical solver. That is, we made sure that for several values

of q, the linear stability prediction of the neutral boundary agrees with the neutral

stability boundary of the numerical scheme for the nonlinear model. For example,

when q = 1.7, the linear stability curve in Figure 5.4a indicates that ◊c = 1.710 is

the neutral value of the activation energy, i.e., the ZND wave is unstable for ◊ > ◊c
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and stable for ◊ < ◊c. Numerical simulations of (5.92-5.93) with ◊ slightly above and

slightly below ◊c confirm this prediction, as shown in Figure 5.7, where the shock

state, us, is plotted as a function of time.
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(a) Stability of the ZND solution at ◊ = 1.705 < ◊c, q = 1.7.
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(b) Instability of the ZND solution and the limit-cycle attractor at ◊ = 1.715 > ◊c, q = 1.7.
Notice that the amplitude of the limit cycle scales roughly as the square root of the distance to the
bifurcation point, as in a super-critical Hopf bifurcation.

Figure 5.7: Nonlinear dynamics of (5.92-5.93) near the neutral boundary, ◊c = 1.710,
as predicted by the linear stability theory for q = 1.7.

We also compute solutions of (5.92-5.93) further away from the neutral boundary

in order to check if the model captures a sequence of bifurcations leading to chaos

as occurs in the reactive Euler equations [22, 23]. Such a sequence of bifurcations is

indeed present in the model. Long time simulations show that the solutions tend to

either a fixed point, a limit cycle or (what appears to be) a chaotic attractor. We run

the simulations at q = 5 and plot the post-shock state, us (by the Rankine-Hugoniot
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conditions, us = 2D, where D is the shock speed), as a function of time for several

di�erent types of solution, as shown in Figure 5.8. Beyond the stability boundary, the

shock velocity becomes oscillatory. Near the neutral boundary, the oscillations have

a small amplitude and are periodic (Figure 5.8a), but the structure of each period

becomes more complex as we move away from the neutral boundary by increasing the

activation energy (Figure 5.8b and Figure 5.8c). Eventually, a value of ◊ is reached

at which no obvious period is evident as seen in Figure 5.8d.
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Figure 5.8: The shock state as a function of time for increasing values of ◊ and fixed
q = 5 showing pulsations of di�erent complexity.

The behavior described in the previous paragraph can be understood in terms

of a period doubling sequence of bifurcations where the period becomes longer and

more complex with each bifurcation. In order to construct a bifurcation diagram
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illustrating this process, we proceed as follows: for each value of ◊, we follow the

evolution of the solution until it settles on the attractor. Then, we extract the set

of local minima for us(·) – a finite set for any periodic solution. The values of these

minima are then plotted versus the bifurcation parameter, ◊. The result is shown in

Figure 5.10, which is reminiscent of the standard Feigenbaum period doubling cascade

leading to chaos [94].

It is important to note that the further we move into the unstable region, the

harder it is to numerically capture the wave dynamics with good accuracy. That is,

in the highly unstable regime (◊ ' 0.85 in Figure 5.10), the quantitative details of the

bifurcation diagram are sensitively dependent on the grid resolution. In a truly chaotic

regime, such sensitivity is intrinsic and reflects the nature of the system. However,

another reason, which is at play even before the apparently chaotic regime sets on,

is that the wave dynamics can involve spatial scales that undergo large changes (by

orders of magnitude) during the wave evolution. This is a direct consequence of

the Arrhenius exponential dependence of the reaction rate, which can trigger large

variations in the reaction rate from moderate changes in the temperature when the

activation energy is large. This issue of sti�ness associated with high-activation energy

detonations in unstable regimes is discussed next in more detail.

In theoretical and numerical studies of detonation, a widely used spatial scale is

taken to be the half-reaction length, x
1/2

, defined as the distance from the shock

where half of the energy is released in the ZND solution. The space is then non-

dimensionalized, as done in this work, so that the half-reaction happens over a unit

length. The numerical resolution is thus measured as a number of points per this unit

of length. Although appropriate for stable or weakly unstable detonations, the ZND

half-reaction length and therefore the resolution measured on this scale become less

meaningful when considering unstable detonations at high activation energies. The
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reason is that the energy release can become extremely localized during the dynamical

evolution of pulsating waves and therefore the actual number of grid points used to

capture the heat release region can significantly decrease.
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Figure 5.9: The width of the reaction zone as a function of time. The simulations
were performed in a domain of length L = 30 and with N = 30, 000 grid points
(dx = 10≠3).

In order to provide a more quantitative measure of the variations of relevant spatial

scales during the time evolution of a pulsating detonation, we introduce the width

of the reaction zone as the smallest value, wm, such that there exists an interval,

I, of length wm, where m percent of the energy is released. For nice enough rate

functions, w
1/2

of the ZND solution is roughly equivalent to the half-reaction length,

x
1/2

. Notice, however, that for chemical reactions with large induction zones and/or
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localized heat release, the values of w
1/2

and x
1/2

are significantly di�erent, with w
1/2

becoming a more relevant spatial scale. In the calculations below, we use m = 0.95

such that w
0.95

represents, at a given time, the smallest width containing 95% of the

heat release.

In Figure 5.9, we show w
0.95

as a function of time during the detonation evolution.

We fix the numerical resolution at 1000 points per half-reaction length (dx = 0.001),

which may be considered an overkill for a steady ZND wave. We then compute w
0.95

as a function of time at di�erent activation energies. As can be seen in Figure 5.9a,

in the weakly unstable regime, the width of the heat-release zone changes by a factor

of about two during the time evolution of the wave; the heat release region is still

well resolved. Further into the unstable regime (Figure 5.9b and Figure 5.9c), we

see that the relevant size of the reaction zone can shrink by more than an order of

magnitude and, thus, even with 1000 points per half-reaction length, there are times

when only about 30 points are used to resolve the heat-release region. If we increase

the activation energy even further, stepping into the apparently chaotic regime, we

observe very short windows of time when only about 10 points are being used per

heat-release zone.

Because of the di�culties outlined above, without resorting to adaptive mesh

refinement, 500 ≠ 1000 points per half-reaction length are needed to obtain a bifur-

cation diagram with features that are essentially grid independent away from the

chaotic regimes (see Figure 5.10). While recognizing that such sensitivity to initial

conditions or discretization errors is natural for chaotic dynamics, caution is clearly

required when interpreting the results of numerical simulations of unstable detona-

tions with high activation energies.
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Figure 5.10: The bifurcation diagram at q = 5 showing the local minima of the
attractor solution’s shock value, us(·) = u (0, ·), as a function of the dimensionless
activation energy, ◊. The simulations were carried out at two di�erent resolutions:
N = 15, 000 (red) and N = 30, 000 (black) grid points on the computational domain
of length L = 30. We see that away from the chaotic regimes, the predictions are
nearly identical.

5.5.2 Cellular detonation

Multi-dimensional instability is very important in gaseous detonations and results

in cellular structures involving triple-point interactions on the detonation lead shock

[9, 48, 2]. It is therefore crucial to check if the asymptotic model, (5.49-5.51), can

reproduce the dynamics of not only one-dimensional, but also multi-dimensional det-

onations. As we have seen in Subsection 5.4.2, multi-dimensional instabilities can be

dominant in the asymptotic model, with the dispersion relation showing a maximum

growth rate for some nonzero transverse wave number l (see Figure 5.5). In this sec-

tion, we calculate the long-term dynamics of detonation waves when two-dimensional
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e�ects are present. In particular, we show that the asymptotic model retains the es-

sential complexity required to reproduce multi-dimensional cellular patterns. Solving

(5.60-5.62) numerically turns out to be a non-trivial task and requires special care.

In the following subsection, we present a discussion of the algorithm employed in this

work.

5.5.2.1 Numerical algorithm for the two-dimensional asymptotic system

In order to appreciate the subtlety associated with (5.60-5.62), we note that the

equations comprise a nonlinear hyperbolic system with one of its characteristic planes

orthogonal to time. This means that:

• The initial data are given on a characteristic surface, the x ≠ y plane. The

absence of a time derivative in (5.50-5.51) requires the initial conditions to

satisfy vx = uy, ⁄x = Ê (⁄, u).

• Evolving in · is a nonlocal procedure and, in the presence of a shock, care has

to be taken to avoid spurious numerical oscillations.

Many existing numerical methods for solving (5.63-5.64) are based on a formal rewrit-

ing of the system as a single equation,

uxt +
A

u2

2

B

xx

+ uyy = 0, (5.94)

by cross-di�erentiation and substitution. Two concerns arise with this approach.

First, the validity of such a transformation is not obvious when u and v are discon-

tinuous functions. Second, in the presence of chemical reactions, di�erentiation of

(5.60) with respect to x produces a delta forcing at the ignition-temperature locus

due to the discontinuous nature of the reaction rate. Thus, the techniques based on
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solving (5.94) are inadequate for our purposes.

Another common technique is to solve for the potential, „, that satisfies

„x· +
A

„x

2

B
2

x

+ „yy = 0. (5.95)

Again, when chemical reactions are present, complications arise because the reaction

rate now becomes an exponential function of „x and the discretization errors in „x

therefore exponentially amplify, requiring very high-order methods for good accuracy.

The method we employ here is based on a direct semi-implicit discretization of

(5.49-5.50) following some of the ideas found in [81]. In this method, all terms

except for vy are treated explicitly. By choosing second-order spatial and temporal

discretization, we obtain an algorithm that is formally second order in time and space

(see Appendix G for a self-convergence test). The general procedure is outlined here

to explain our reasoning for the choice of the algorithm.

Assuming that the solution at time · = ·n is known, we evolve it to · = ·n+1 as

follows:

1. First, we employ a semi-implicit time discretization, where the vy term is treated

implicitly. The motivation for this comes from the fact that some waves prop-

agate infinitely fast in the x ≠ y plane. In the simple case of a forward Euler

time discretization, we obtain

un+1 ≠ un

�·
+ (F n(u))x + vn+1

y = ⁄n
x, (5.96)

vn+1

x = un+1

y , (5.97)

⁄n+1

x = Ê
1
⁄n+1, un+1

2
, (5.98)

where F (u) = u2/2. A more quantitative reason for treating vy implicitly
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can be seen from the von Neumann stability analysis of the linearized system

without chemical reactions, wherein a fully explicit scheme can be unstable (see

Appendix F for details).

2. We approximate the explicit terms ⁄n
x and F n

x using a shock-capturing scheme,

e.g., finite volume method [73].

3. Using (5.97), we write a forward di�erence representation of vn+1

i,j in terms of

un+1

i,j and un+1

iÕ,j for iÕ > i. For instance, a first-order forward di�erence scheme

can be used, i.e.,

vn+1

i,j = vn+1

i+1,j ≠ �x
1
un+1

i,j

2

y
, (5.99)

where the y derivative approximation is postponed until the next step. The use

of the forward di�erence here is a consequence of up-winding the infinitely fast

waves propagating from right to left.

4. Approximate the y derivatives, e.g., by centered di�erences, to obtain the fully

discrete scheme:

un+1

i,j = un
i,j + �·

C

≠ 1
2 (⁄x)n

i,j ≠ (Fx)n
i,j

≠ 1
2�y

1
vn+1

i,j+1

≠ 2vn+1

i,j + vn+1

i,j≠1

2 D

, (5.100)

vn+1

i,j = vn+1

i+1

≠ �x

2�y

1
un+1

i,j+1

≠ un+1

i,j + un+1

i,j≠1

2
. (5.101)

5. In order to solve (5.100-5.101), sweep from right to left, assuming the right

boundary values of u and v are known at all times, in the following way:

(a) For some fixed i, insert (5.101) into (5.100) and solve the linear system for

the vector un+1

i,j .
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(b) With un+1

i,j find vn+1

i,j using (5.101).

(c) Repeat (a),(b) with i = i ≠ 1 until the left boundary is reached.

6. Finally, compute ⁄n+1 by solving (5.98) with a boundary condition on the right

of the domain, which is given by

⁄n+1

x (xright, y) = 0. (5.102)

Notice that (5.98) is actually an initial value problem for ⁄n+1 for fixed y wherein

≠x is a time-like direction. It can be solved with any initial value solver (e.g.,

a Runge-Kutta method) if desired.

It may seem counterintuitive at first that the simplified model requires a semi-implicit

method while the reactive Euler equations can be solved explicitly. The reason is

that the asymptotic approximation is performed in a limit where the reactive Euler

equations themselves would have to be treated implicitly. In order to understand

this, we look at the three waves present in the Euler equations. Since the weak heat

release approximation implies that the detonation velocity is nearly acoustic, and an

acoustic wave induces no flow behind it, we see that the speed of the forward acoustic

characteristic, given by u+c≠D in a frame moving with the wave, is actually an O (‘)

quantity (D ¥ c and u ¥ ‘). The entropy and backward acoustic characteristics, on

the other hand, have O (1) speeds. In the asymptotic model, a slow time, · , is chosen

so that the dynamics happen on O (1) time scales and therefore some characteristics

have speeds of O (1/‘) in the slow time variable. When an explicit method is used

to solve the Euler equations in this limit, a typical CFL condition would require a

time step, �· ≥ ‘�x, and as ‘ æ 0, it becomes clear that the time step restriction

becomes unattainable and an implicit method is needed.
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The infinite characteristic velocity arises because the x, y plane is a characteristic

surface for the equations. A simple rotation in space-time “resolves”, to some extent,

this issue such that in the “rotated” space-time the system behaves as a standard

system of conservation laws. The trade-o� for recovering a classical hyperbolic system

with finite wave speeds is that one must now consider a grid with moving boundaries.

This idea can be exploited to produce fully explicit schemes as shown in [82] for the

case without reactions.

5.5.2.2 Two-dimensional cellular detonations

Using the algorithm described in the previous section, we solve (5.60-5.62) in a frame

moving with constant speed, D
0

= 1. All simulations are initialized with the one-

dimensional ZND solutions obtained in Subsection 5.4.1. We then investigate, in

the context of the asymptotic equations: (1) the e�ect of the width of the channel

on nonlinear stability properties of the traveling wave solutions; (2) the e�ect of the

periodic boundary conditions; and (3) the e�ect of increasing heat release on the wave

dynamics.

In Figure 5.11, we show the profile of u at · ¥ 500 for varying widths of the

domain, Ly, in the y direction. The y boundaries are modeled as rigid walls, appro-

priate for a detonation in a two-dimensional channel (i.e., a channel with negligible

depth). The parameters are fixed at q = 1.7 and ◊ = 1.65, for which the linear

stability calculation shows that the ZND wave is unstable only to two-dimensional

perturbations. In a channel of width Ly = 2, the ZND wave remains stable, as seen

in Figure 5.11a, as the spacing is too narrow for the two-dimensional instability to

develop. Increasing the width of the channel, however, allows for a number of trans-

verse modes to be excited1, leading to the formation of a multi-dimensional cellular
1Recall that for a channel with finite width, Ly, the allowed transverse wave numbers, l, are given
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pattern as shown in Figure 5.11c and Figure 5.11d. The cell size appears to remain

around 10 in all Figure 5.11(b-d).

(a) Ly = 2 (b) Ly = 10

(c) Ly = 50 (d) Ly = 100

Figure 5.11: Dynamics of the asymptotic model in channels of di�erent widths. The
plots show the asymptotic variable u. The parameters are q = 1.7, ◊ = 1.65, as in
Fig. 5.5. The white region corresponds to the ambient state ahead of the wave, with
u = 0.

When we replace the solid wall boundary conditions with periodic conditions, we

observe a two-dimensional version of a spinning detonation. There is only one family

of transverse shock waves that all propagate in the same direction. Such a wave can

be imagined to form in a narrow gap between two concentric cylindrical tubes, as in

a rotating detonation engine [84]. A snapshot of the solution field, u, is shown in

by l = fin/Ly, where n œ Z. Therefore, only a discrete set of modes can be excited, and larger Ly

typically allows for more unstable modes to appear.
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Figure 5.12, where relatively strong transversely propagating shocks can be seen.

Figure 5.12: Detonation in a channel of width L = 100 with periodic boundary
conditions. Parameters are q = 1.7 and ◊ = 1.65.

In Figure 5.13, we show the e�ect of the heat release on the solution structure. We

fix ◊ = 1.7 and increase the value of q from 1.7 to 2.5. Consistent with the behavior of

detonations in the reactive Euler equations, regular cells are observed at small q, as in

Figure 5.13a and Figure 5.13b, but with increasing q, the structure of the detonation

front becomes more complex with the formation of irregular cells as in Figure 5.13d.

All of the previous results show that, at least at a qualitative level, the asymp-

totic model captures many important characteristics of multi-dimensional detona-

tions. Next, we investigate how quantitatively close the predictions are to the so-

lutions of the reactive Euler equations. The numerical simulations of the reactive

Euler equations were carried out using PyCLAW [95], which provides, among other

things, a Python wrapper for the classic routines in CLAWPACK. The software re-

quires the user to provide a Riemann solver. We use a Roe-linearized Riemann solver

with a Harten-Hyman entropy fix [73]. The classic package of PyCLAW employs

a second-order finite volume algorithm with a fractional step method for the time

evolution [73]. For the numerical simulations, the reactive Euler equations were non-

dimensionalized in the conventional form by the ambient state with velocities scaled

by ua =
Ò

pa/fla, spatial variables scaled by the half-reaction length, x
1/2

, and time
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(a) q = 1.7 (b) q = 1.8

(c) q = 1.9 (d) q = 2.5

Figure 5.13: Dynamics of the asymptotic model for varying heat release at a fixed
width L = 100 and activation energy ◊ = 1.65.

by ua/x
1/2

.

In Figure 5.14, we show a comparison between the asymptotic solutions and the

solutions of the reactive Euler equations. The parameters chosen are the same as in

Figure 5.6b, i.e., “ = 1.2, Q = 0.4 and E = 50, which in the asymptotic variables are

given by q = 2.4 and ◊ = 50/36 ¥ 1.389. We start both simulations with the ZND

solution and solve for a time interval large enough such that instabilities have already

fully developed. Notice that since the asymptotic model uses the slow time variable, · ,

we only need to solve it for a relatively short time interval, · ¥ 100. The reactive Euler

system, on the other hand, was non-dimensionalized in the conventional way using

the regular time variable, t, and thus we must solve the system up to t ¥ ·/‘ = 600.



168

We perform all necessary scaling conversions between the variables so that the lengths

and amplitudes shown in Fig. 5.14 are consistent. The length of the y domain is fixed

in the asymptotic model to be 20, which corresponds to a length 27.83 in the regular

dimensionless y, while the x domain is of length 40.

(a) Density field, fl = 1 + ‘

Ô
qu, as predicted by the asymptotic model.

(b) Density field computed from the reactive Euler equations.

Figure 5.14: Comparison between asymptotic and full solutions of the reactive Euler
equations for a cellular detonation in a channel.

We see from Figure 5.14 that the asymptotic model captures the salient features of

multi-dimensional detonations with good quantitative agreement. The characteristic

scales of the detonation cells are seen to be close. A small di�erence in the transverse

propagation velocity of the triple points is apparent, in the asymptotic case the speed

being higher. The transverse shocks in the asymptotic solutions far from the lead

shock are seen to be smoother than in the full solutions, which is due to a larger
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numerical di�usion in the algorithm for the asymptotic model.

Finally, we remark that weakly nonlinear detonations operate in the same fluid

dynamic regime as weak shock wave focusing or weak shock reflection at near graz-

ing incidence. As pointed out by von Neumann [96], in this limit the “classical”

Mach triple point shock structure is impossible. Yet, both experiments and numeri-

cal calculations [97] consistently exhibit triple shock structures in this regime. This

apparent contradiction is known as the “von Neumann paradox”. Although the struc-

tures behind the lead shock in our calculations resemble the triple-points observed in

detonations (Figure 5.15), a simple algebraic argument can show that the asymptotic

equations do not admit “classical” triple points, where three shocks separated by

smooth flows meet [82, 81]. Thus, much like in the problem of weak shock reflection,

the observed cells in the weak heat release detonations considered in this work present

yet another instance of the “von Neumann paradox”. Here, we make no attempt to

address this problem and simply note that triple-point-like structures appear in our

numerical simulations behind the lead shock; whether they are true discontinuities,

sharp waves or some singularities remains an open problem.

5.6 Discussion and conclusions

In this chapter, we developed an asymptotic theory of multi-dimensional detonations

within the framework of the compressible Navier-Stokes equations for a perfect gas

reacting with a one-step heat-release law. The main outcome is a reduced model

that consists, in two spatial dimensions, of a forced Burgers-like equation coupled

with a heat release equation and an equation that enforces zero vorticity. After

specializing the model to the case without dissipative e�ects, we have analyzed it in

detail and have shown that it captures many of the dynamical features of detonations
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Figure 5.15: Triple-point-like structures in the asymptotic solution of the weakly
nonlinear detonation as shown by the magnitude of the density gradient.

in reactive Euler equations. These include: (1) existence of steady-state traveling

waves (i.e., ZND solutions), (2) linear instability of the ZND solutions, (3) existence

of a period-doubling bifurcation road to chaos in the one-dimensional case, and (4)

onset of cellular detonations in the two-dimensional case. Our theory considers weakly

nonlinear detonations in the distinguished limit of small heat release, large activation

energy and small “ ≠ 1. In this limit, the dynamics occur on time scales that are

long compared with the scale of a characteristic chemical reaction time. Our reduced

evolution system builds on the weakly nonlinear theory in [79, 32] by adding the

Newtonian approximation to it. In the one-dimensional and non-dissipative special

case, our theory contains the model in [47].

As a consequence of the “ ≠ 1 = O(‘) assumption, the temperature expansion in

our analysis starts with an O (‘2) correction to the leading-order term, as opposed to

O (‘) correction in [79, 32]. This is precisely what allows us to escape the fact that in

[79, 32] there must be leading-order corrections to temperature, velocity and density

that behave exactly the same way. The present scaling highlights an important dif-



171

ference between a reactive and a non-reactive shock, namely, that the temperature in

a reactive shock can increase at some distance from the shock front because of heat

release. This increase in the post-shock temperature means that the energy release

can possess a maximum inside the reaction zone. As we previously elucidated with

a reactive Burgers model [77, 76], the presence of such an internal maximum ap-

pears to be a key factor for the mechanism that generates resonances and subsequent

amplification of the waves in the reaction zone.

Note that all one-dimensional weakly nonlinear asymptotic models as well as the

ad hoc models devised to capture detonation dynamics [31, 29, 77, 25] are extensions

of the Burgers equation modified by adding a reaction forcing term, with an extra

equation for the reaction progress variable. The reason is that the dynamics of any

one-dimensional genuinely nonlinear hyperbolic system reduces to that of an inviscid

Burgers equation in the weakly nonlinear limit [89].

While the reduced weakly nonlinear asymptotic theory has clear predictive power,

as demonstrated in this work, recognizing its limitations is important and helps high-

light open problems that require further investigation. For example, at parameter

values (especially of the heat release) corresponding to strong cellular and pulsating

detonations typical in experiments and numerical simulations, the asymptotic pre-

dictions are not su�ciently accurate when compared to the reactive Euler equations.

While it is not clear how to extend the present approach directly to strongly nonlinear

detonations, the ability of the reduced system obtained in this work to capture essen-

tial dynamical characteristics of unsteady and multi-dimensional detonations serves

as a strong indication that a theory of comparable simplicity may be possible for

strongly nonlinear detonations.

Recent work [98] on the role of dissipation in the compressible reactive Navier-

Stokes system in one spatial dimension indicates that dissipation can have non-trivial
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e�ects on the stability of detonation waves. Elucidation of the role played by the

transport e�ects in the asymptotic model is therefore of interest and we believe that

the model retaining these e�ects, as in (5.49-5.51), should be investigated further.

A problem that merits exploration, in our opinion, is that of the evolution of a

small-amplitude, localized initial perturbation to a detonation wave, considered in the

same weakly nonlinear asymptotic regime as in the present work. All of the underlying

assumptions in the theory remain valid for this di�erent initial-value problem, which

is relevant to the problem of detonation initiation.

From a mathematical point of view, the reduced system obtained in this work and

its connection with the issue of the non-existence of triple-point shock structures for

the Zabolotskaya-Khokhlov equation pose some puzzling and challenging problems.

Finally, recall that the qualitative models introduced by Fickett and Majda do

not contain instabilities with the rate functions used in prior work with these models

(e.g., see [17]). However, using the rate function derived in this paper (and, for that

matter, the two-step rate function used in [31]) can be shown to lead to the same

complexity of the solutions as occurs in the reactive Euler equations. A modified

Fickett’s analog can be written as

ut + uux = ≠ 1
2⁄x, (5.103)

⁄t =k (1 ≠ ⁄) exp (–u + —⁄) , (5.104)

with the “activation energy” and “heat release” parameters, – and —, respectively.

Clearly, one can treat more general right-hand sides for the rate function in (5.104),

such as Ê = Â (⁄) „ (u), as long as Â and „ retain the same qualitative properties as

their corresponding expressions in (5.104). This modification, even though simple,

reflects the physics of the phenomenon responsible for the dynamics of pulsating
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detonations by allowing a local maximum in the reaction rate to exist behind the

precursor shock in the detonation wave. Mathematical study of the modified analog

model is of interest from the point of view of the theory of hyperbolic balance laws

and the dynamics of their solutions.
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Chapter 6

Some extensions of weakly

nonlinear theory

In this chapter, we consider two extensions of the weakly nonlinear detonation model

developed in Chapter 5: (1) detonations with algebraic losses, and (2) the e�ect of

heat or species di�usion on detonation waves. In the case of algebraic losses, we shall

see that an asymptotic approach yields a system very similar in nature to the toy

model studied in Chapter 3, therefore justifying to some extent the ad hoc treatment

there. When accounting for heat and species di�usion, however, the asymptotic

equations change significantly, especially regarding the behavior of the temperature

distribution. This opens up the possibility that the new model may contain traveling

wave solutions not present in the inviscid counterpart.

6.1 Introduction

As we have seen throughout this thesis, the ZND theory comprises the basis for most

of our analytical understanding of detonations, describing them as supersonic com-

bustion waves sustained by chemical reactions that the wave itself triggers. As we

have also seen in numerous occasions, some assumptions of the ZND theory (one-



175

dimensionality and steadiness of the wave) are usually violated in practice; detona-

tions tend to be neither stable nor one-dimensional. This far, our main focus has been

on developing a simple, yet non-trivial theory of detonations which predicts the com-

plex behavior observed when the assumptions of the ZND theory fail. To this end, we

have been somehow successful, with both the qualitative theory of Part I [76, 69, 83]

and the asymptotic study of Chapter 5 [99] reproducing the main dynamical fea-

tures of inviscid detonations. This chapter aims at rationally incorporating another

element, which is absent in the ZND theory: the e�ect of dissipative processes.

While detonations tend to be very fast, and often dissipative e�ects can be safely

ignored, there are circumstances in which this is not the case. For detonations prop-

agating in porous media, for instance, it has been observed that the speed of prop-

agation can be as low as half the Chapman-Jouguet prediction. For detonations

propagating in narrow tubes, the e�ect of heat/momentum losses to the walls is not

negligible. In these cases (and many others), the theory of ideal detonations, using

the reactive Euler equations as a modeling basis, must be modified to better reflect

reality.

A possible modification is to consider the reactive Navier-Stokes equations instead,

together with the appropriate boundary conditions at the obstacles/walls. In complex

geometries, however, this approach becomes quite challenging due to the presence of

boundary layers which must be resolved. An easier approach, which aims at an

approximate description of dissipative e�ects, is to account for the e�ective losses

caused by dissipation using empirical laws, which enter the governing equations in

the form of algebraic terms. Although motivated by first principles, these terms are

typically added to the reactive Euler equations in an ad hoc fashion. In this chapter,

we develop asymptotic theories for both extensions of inviscid detonations: inclusion

of algebraic losses and the Navier-Stokes equations in a limit where heat/species



176

di�usion are important.

In Section 6.2, we consider first the ad hoc modifications of the reactive Euler

equations. Section 6.2 is, in some sense, the asymptotic justification of the qualitative

work performed in Chapter 3, where a toy model for detonation with losses was

studied. In particular, we show that a reasonable empirical law for friction forces in

turbulent flows, when taken to the asymptotic limit, produces a loss term identical

to the one considered in (3.23).

Then, in Section 6.3 we consider the e�ect of dissipative processes by retaining in

the reactive Navier-Stokes equations the terms responsible for viscous/heat/species

di�usion. We note here that dissipative detonations tend to be harder to analyze,

both from a theoretical and a computational point of view, than their hyperbolic

counterpart. It is thus of great interest to have a model, easier than the compressible

reactive Navier-Stokes equations, which correctly captures the role played by these

di�erent e�ects. In order to develop an asymptotic theory, we revisit the computations

of Chapter 5, but scale the Lewis and Prandtl numbers di�erently so the desired e�ects

enter the final equations. As we shall see, accounting for heat di�usion increases the

complexity of the asymptotic equations. Because of that, further simplification is

performed by exploiting the form of the temperature distribution in the limit of

small, but not negligible, heat di�usion.

Being the last chapter of this thesis, it di�ers from the others in that it opens

several questions, while only answering a few. In many ways, we present here what

we believe to be some promising future directions in detonation theory.
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6.2 Detonation with losses: an asymptotic approach

As mentioned in the introduction, very often the only computationally feasible way of

accounting for the e�ect of losses induced by dissipation is through empirical laws. We

derive in this subsection an asymptotic model for detonations with algebraic losses.

We focus on losses induced by friction and heat dissipation, although other e�ects

can be considered as well.

6.2.1 Governing equations

We take as a starting point the one-dimensional reactive Euler equations in conser-

vation form, i.e.,

flt + (flU)X = 0, (6.1)

(flU)t +
1
p + flU2

2

X
= 0, (6.2)

A

fl

A

e + U2

2

BB

t

+
A

flU

A

e + U2

2 + p

fl

BB

X

= 0, (6.3)

(fl�)t + (flU�)X = flW̃ , (6.4)

where for simplicity we consider

W̃ = k̃(1 ≠ �) exp(≠Ẽ/RT ), p = flRT, e = pv

“ ≠ 1 ≠ Q̃�.

The system of equations given by (6.1-6.4) describes an ideal detonation, where “ideal”

here stands for the fact that no dissipative e�ects are considered. The e�ects of energy

loss due to dissipative e�ect can sometimes be treated, in an empirical way, by adding

to the right hand side of (6.1-6.4) algebraic terms representing sinks of momentum

or energy. To incorporate these e�ects, the reactive Euler equations are modified as
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follows:

flt + (flU)X = 0, (6.5)

(flU)t +
1
p + flU2

2

X
= ≠f̃ , (6.6)

A

fl

A

e + U2

2

BB

t

+
A

flU

A

e + U2

2 + pv

BB

X

= ≠h̃, (6.7)

(fl�)t + (flU�)X = flW̃ , (6.8)

where f̃ and h̃ represent momentum and energy losses, respectively. These could be

caused by friction and heat dissipation, for example.

We have started with the equations in conservation form so as to make transparent

the meaning of f̃ , h̃ as sinks of momentum and energy. In order to simplify some

of the steps in the asymptotic expansion, however, it is convenient to recast the

governing equations in a form more similar to (5.8-5.12), where the laws of motion

are expressed in terms of the Lagrangian derivatives. We therefore rewrite (6.5-6.8)

as

flt + Uflx + flUx = 0, (6.9)

fl (Ut + UUX) = ≠px ≠ f̃ , (6.10)

fl (et + Uex) + pUx = Q̃flW̃ + Uf̃ ≠ h̃, (6.11)

�t + U�x = W̃ . (6.12)

Letting D/Dt = ˆt+Uˆx denote the Lagrangian derivative, and using e = RT/ (“ ≠ 1)≠
Q̃⁄, we rewrite the energy balance as

fl
DT

Dt
≠ “ ≠ 1

R“

Dp

Dt
= “ ≠ 1

R“

1
Q̃flW̃ + Uf̃ ≠ h̃

2
. (6.13)
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For the discussion that follows, we take

f̃ = C̃fflu|u|; h̃ = C̃hU (T ≠ Ta) .

where C̃f is the friction coe�cient and C̃h is the coe�cient of heat dissipation, and Ta

is the ambient temperature ahead of the detonation wave. Such loss functions have

been considered before in [6, 100, 66].

As done in Chapter 5, we follow a localized wave moving into an equilibrium,

quiescent state and let fla, pa, Ta and ua =
Ò

pa/fla denote, respectively, the density,

pressure, temperature and Newtonian sound speed in the fresh mixture ahead of the

wave. The independent variables are rescaled as

x = X ≠ D
0

t

x
0

, · = t

t
0

,

where D
0

is a typical wave speed, which is to be determined later. We assume that

‘ = x
0

/uat
0

, and thus the time scale of interest is small compared to the time it

takes for acoustic waves to travel the reaction zone. The governing equations in

dimensionless form are thus given by

L[fl] + flux = 0,

flL[U ] = ≠1
‘
px ≠ f,

flL[T ] ≠ “ ≠ 1
“

L[p] = “ ≠ 1
“

(QW + uf ≠ h) ,

L[⁄] = W,
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where

f = Cfflu|u|, Cf = x
0

C̃f

‘
, (6.14)

h = ChU (T ≠ 1) , Ch = x
0

‘Rfla

C̃h, (6.15)

L[·] = ˆ· [·] + 1
‘

(U ≠ D
0

) ˆx[·], (6.16)

W = k(1 ≠ �) exp
5
E

3
1 ≠ 1

T

46
, (6.17)

and

Q = Q̃

RTa

, E = Ẽ

RTa

, K = t
0

k̃ exp (≠E) . (6.18)

Obtaining a weakly nonlinear asymptotic approximation now is straightforward,

with the only technical detail required being that f , h have the appropriate size so

that: (1) they do not show at the linear level of the expansion and (2) they appear

when the solvability condition is called upon.

6.2.2 Asymptotic approximation of detonation with losses

The following asymptotic ordering assumptions are made (see Section 5.3 for discus-

sion of bullets 1-4):

1. K = k/‘, k = O(1).

2. (“ ≠ 1) Q/“ = ‘2q, q = O (1).

3. E = ◊/‘2, ◊ = O (1).

4. “≠1

“
= ‘.

5. Cf = cf/‘, cf = O(1).

6. “≠1

“
Ch = ch/‘2, ch = O(1).
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Assumptions 5 and 6 ensure that both heat and friction losses will show up in the

asymptotic approximation. Since we are not considering multi-dimensional e�ects,

the fractional powers of ‘, which were required in Chapter 5, are not needed, and

therefore we can expand the variables in integer power of ‘, i.e.,

fl = 1 + fl
1

‘ + fl
2

‘2 + o(‘2), (6.19)

T = 1 + T
1

‘ + T
2

‘2 + o(‘2), (6.20)

p = 1 + p
1

‘ + p
2

‘2 + o(‘2), (6.21)

U = U
1

‘ + U
2

‘2 + o(‘2), (6.22)

� = ⁄ + o(‘). (6.23)

Inserting (6.19-6.23) into governing equations, and collecting powers of ‘, we obtain

(≠D
0

fl
1x + U

1x) +

‘ (≠D
0

fl
2x + U

2x + fl
1· + U

1

fl
1x + fl

1

U
1x) = o(‘2), (6.24)

(≠D
0

U
1x + T

1x + fl
1x) +

‘(≠D
0

U
2x + fl

2x + T
2x) +

‘(≠D
0

fl
1

U
1x + U

1· + U
1

U
1x) = ≠‘cfu

1

|u
1

| + o(‘2), (6.25)

(≠D
0

T
1x) + ‘ (≠D

0

T
2x + p

1x) = ‘ (qÊ ≠ ch|u
1

|(T
2

)) + o(‘2), (6.26)

≠D
0

⁄x = Ê + o(1), (6.27)
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where Ê is the leading order of the reaction rate. Then, at the leading order, we have

S

WWWWWWU

≠D
0

1 0

1 ≠D
0

1

0 0 ≠1

T

XXXXXXV

S

WWWWWWU

fl

U

T

T

XXXXXXV

1x

=

S

WWWWWWU

0

0

0

T

XXXXXXV
. (6.28)

Using the same arguments of Section 5.3, we conclude that for nontrivial solutions

to exists we need D
0

= ±1. We also conclude, by integrating each equations in (6.28),

that U
1

(x, t) = u (x, t) + Ū (t) , fl
1

(x, t) = u(x, t) + fl̄ (t) , T
1

= T̄
1

(t). By assuming

that the wave is moving into a constant state, in order for the expansion to remain

valid we must have fl̄ = Ū = T̄ © 0, and therefore U
1

= fl
1

= u, T
1

= 0. At the next

order, we have in the expansion that

S

WWWWWWU

≠1 1 0

1 ≠1 1

0 0 ≠1

T

XXXXXXV

S

WWWWWWU

fl

U

T

T

XXXXXXV

2x

=

S

WWWWWWU

≠u· ≠ 2uux

≠u· ≠ cfu|u|
qÊ ≠ ux ≠ ch|u|(T

2

)

T

XXXXXXV
. (6.29)

The matrix on the left hand side of (6.29) being singular, we have as a solvability

condition that the right hand side must be orthogonal to l
0

= [1 1 1], yielding

u· + uux = q

2Ê ≠ 1
2ux ≠ cf

2 u|u| ≠ ch

2 |u|T
2

, (6.30)

which together with

⁄x = ≠Ê = ≠k (1 ≠ ⁄) exp (◊T
2

) , (6.31)

T
2x = ux + q⁄x + ch|u|(T

2

), (6.32)
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form a closed system for u, ⁄, T
2

. We notice here that, unlike the case without heat

losses, we no longer have the simple relation T
2

= u+q⁄. Something similar, however,

can be obtained by integrating (6.32) to yield

T
2

= u + q⁄ ≠ Hl,

where

Hl = cf

ˆ Œ

x

|u| (u + q⁄) exp
A

≠cf

Aˆ z

x

|u|dy

BB

dz

denotes the e�ect of the heat loss on the temperature profile. Assuming that we have

a shock located at x = xs, and that ahead of the shock we have u = T
2

= ⁄ © 0, we

see that

Hl =

Y
____]

____[

0 for x Ø xs,

cf

´ x
s

x
|u| (u + q⁄) exp

1
≠cf

´ z

x
|u|dy

2
dz for x < xs.

Redefining x æ x≠·/2 so as to eliminate the linear advective term from (6.30), we

get the following system governing the propagation of weakly nonlinear detonations

in the presence of heat and momentum losses:

u· + uux = ≠q

2⁄x ≠ cf

2 u|u| ≠ ch

2 |u|T
2

, (6.33)

⁄x = ≠k (1 ≠ ⁄) exp (◊T
2

) , (6.34)

T
2

= u + q⁄ ≠ Hl. (6.35)
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In the simpler case where we consider only momentum dissipation, the system

reduces to

u· + uux = ≠q

2⁄x ≠ cf

2 u|u|, (6.36)

⁄x = ≠k(1 ≠ ⁄) exp (◊ (u + q⁄)) , (6.37)

which can be seen to be closely related to the toy model given by (3.23), which was

studied in detail in Chapter 3.

Although we do not study the traveling wave solutions of (6.33-6.35) here, we

notice that even in the simpler case when ch = 0, the eigenvalue problem for the

ZND waves presents a multiplicity of solutions. In order to find the traveling wave

solutions of (6.36-6.37), we must solve

(u ≠ D) u÷ = ≠q

2⁄x ≠ cfu|u|,

⁄÷ = ≠k (1 ≠ ⁄) exp (◊ (u + q⁄)) ,

where ÷ = x ≠ Dt. Since ⁄ æ 1 as ÷ æ ≠Œ, for bounded solutions to exist there

must be a point where u = D (note, u ≠ D must be negative as ÷ æ ≠Œ, otherwise

solutions blow up). Thus, the presence of a sonic point is required for bounded

solutions. Furthermore, the generalized Chapman-Jouguet condition requires

≠q

2⁄x ≠ cfu|u| = 0 when u = D.

This condition determines a relation H (D, cf ) = 0, which as we have seen in Chapter

3 gives a multiple-valued function D(cf ). It would be interesting to see if the inclusion

of heat di�usion would produce set-valued solutions for the eigenvalue problem, as
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was recently observed in [66].

6.3 Weakly nonlinear asymptotic model with dif-

fusive e�ects

In this section, we expand the asymptotic analysis of Chapter 5 in order to retain

heat and species di�usion e�ects. This requires a di�erent assumption on the sizes

of Lewis and Prandtl numbers so that their e�ects become comparable to the size of

nonlinearities.

6.3.1 Asymptotic approximation of di�usive detonations

We take the same formulation as in Chapter 6, and assume an ideal polytropic gas,

with a single step Arrhenius kinetics. The dimensionless governing equations are then

given by (see Section 5.2 for further details):

L[fl] + fl

A
1
‘
Ux + 1Ô

‘
Vy

B

= 0, (6.38)

flL[U ] + 1
‘
px = 1

3‘Re
1
Uxx +

Ô
‘Vxy

2
+ 1

‘Re (Uxx + ‘Uyy) , (6.39)

flL[V ] + 1Ô
‘
py = 1

3‘Re
1Ô

‘Uxy + ‘Vyy

2
+ 1

‘Re (Vxx + ‘Vyy) , (6.40)

flL[T ] ≠ (“ ≠ 1)
“

L[p] = “ ≠ 1
“

A

QflW ≠ 2
3‘Re

1
Ux +

Ô
‘Vy

2
2

+ 1
‘Re

1
U2

x + ‘U2

y + V 2

x + ‘V 2

y

2 B

+ “ ≠ 1
“

1
‘Re

1
U2

x +
Ô

‘UyVx +
Ô

‘VxUy + ‘V 2

y

2

+ 1
‘RePr (Txx + ‘Tyy) , (6.41)

flL[�] = flW + 1
‘RePrLe

1
(fl�x)x + ‘ (fl�y)y

2
, (6.42)
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where W is defined as

W = K(1 ≠ �) exp
5
E

3
1 ≠ 1

T

46
. (6.43)

In order to make the heat di�usion important, we can see from (6.41) that we must

take Pr = O(‘). Notice that we can still ignore species di�usion in (6.43) if we choose

Le = O(1/‘), but we take Le = O(1), so that now species di�usion will also enter

the final model. Thus, we shall make the following assumptions regarding the size of

di�erent dimensionless terms:

1. K = k/‘, k = O(1).

2. (“ ≠ 1) Q/“ = ‘2q, q = O (1).

3. E = ◊/‘2, ◊ = O (1).

4. “ ≠ 1 = ‘.

5. Re = O(1/‘).

6. Pr = O(1/‘).

7. Le = O(1).

Next, we expand the dependent variables as

fl = 1 + fl
1

‘ + fl
2

‘3/2 + fl
3

‘2 + o(‘2), (6.44)

T = 1 + T
1

‘ + T
2

‘3/2 + T
3

‘2 + o(‘2), (6.45)

p = 1 + p
1

‘ + p
2

‘3/2 + p
3

‘2 + o(‘2), (6.46)

u = u
1

‘ + u
2

‘3/2 + u
3

‘2 + o(‘2), (6.47)

� = ⁄ + o(‘). (6.48)
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Inserting these expansions in (6.38-6.41), and collecting powers of ‘, we obtain

(≠D
0

fl
1x + U

1x) +
Ô

‘ (≠D
0

fl
2x + U

2x + V
1y) +

‘ (fl
1· ≠ D

0

fl
3x + U

1

fl
1x + U

3x + fl
1

U
1x + V

2y) = o(‘), (6.49)

(≠D
0

U
1x + T

1x + fl
1x) +

Ô
‘ (≠D

0

U
2x + T

2x + fl
2x) +

‘ (U
1· ≠ D

0

U
3x + U

1

U
1x + T

1

fl
1x + T

3x + fl
3x ≠ fl

1

fl
1x) = 4

3
1

Re (U
1

)xx + o(‘), (6.50)

(≠D
0

V
1x) +

Ô
‘ (≠D

0

V
2x + T

1y + fl
1y) +

‘ (V
1· ≠ D

0

V
3x + U

1

V
1x + T

2y + fl
2y) = 1

Re (V
1

)xx + o(‘), (6.51)

(≠D
0

T
1x) +

Ô
‘ (≠D

0

T
2x) +

‘
1
T

1· ≠ D
0

T
3x + U

1

T
1x + “

1

“
D

0

(fl
1x + T

1x) ≠ qÊ
2

= (T
3

)xx

‘RePr + o(‘), (6.52)

≠D
0

⁄x ≠ Ê = ⁄xx

‘2RePrLe + o(1). (6.53)

First, looking at the O(1) terms, we have

S

WWWWWWWWWWWU

≠D
0

1 0 0

1 ≠D
0

0 1

0 0 ≠1 0

0 0 0 ≠1

T

XXXXXXXXXXXV

S

WWWWWWWWWWWU

fl

U

V

T

T

XXXXXXXXXXXV

1x

=

S

WWWWWWWWWWWU

0

0

0

0

T

XXXXXXXXXXXV

. (6.54)

For nontrivial solutions to exist, we therefore require D
0

= ±1. Here, we choose

D
0

= 1 and focus on right going waves. This implies U
1

= u(x, y, ·) + Ū(y, ·), fl
1

=

u(x, y, ·)+ fl̄ (y, ·). If we consider a wave moving into a constant state, then Ū = fl̄ ©
0, and V

1

= T
1

© 0.
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At O(‘1/2), we obtain

S

WWWWWWWWWWWU

≠1 1 0 0

1 ≠1 0 1

0 0 ≠1 0

0 0 0 ≠1

T

XXXXXXXXXXXV

S

WWWWWWWWWWWU

fl

U

V

T

T

XXXXXXXXXXXV

2x

=

S

WWWWWWWWWWWU

0

0

≠uy

0

T

XXXXXXXXXXXV

, (6.55)

for which the solvability condition is trivially satisfied. Letting for convenience of

notation V
2

= v, we get

vx = uy.

Finally, at O(‘), the equations read

S

WWWWWWWWWWWU

≠1 1 0 0

1 ≠1 0 1

0 0 ≠1 0

0 0 0 ≠1

T

XXXXXXXXXXXV

S

WWWWWWWWWWWU

fl

U

V

T

T

XXXXXXXXXXXV

3x

=

S

WWWWWWWWWWWU

≠u· ≠ 2uux ≠ vy

≠u· + 4

3

1

‘Re

uxx

≠fl
2y

qÊ ≠ ux + 1

‘2
RePr

(T
3

)xx

T

XXXXXXXXXXXV

. (6.56)

for which the solvability condition requires

2u· + 2uux + vy = ≠T
3x + 4

3
1

‘Reuxx, (6.57)

T
3x = ≠qÊ + ux ≠ 1

‘2RePr (T
3

)xx . (6.58)

This far, we have ignored the reaction rate equation, but from (6.53) it can be seen

that ⁄ is governed by

⁄x = ≠Ê ≠ 1
‘2RePrLe⁄xx.
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Putting everything together, the final model is given by

u· + uux + vy = ≠T
3x

2 + µuxx, (6.59)

vx = uy, (6.60)

⁄x = ≠k(1 ≠ ⁄) exp (◊T
3

) ≠ d⁄xx, (6.61)

ŸT
3xx + T

3x = ux + q⁄x + qd⁄xx, (6.62)

where

µ = 4
3

1
‘Re , d = 1

‘2RePrLe , Ÿ = 1
‘2RePr .

We can simplify the system by integrating (6.62) once with respect to x, assuming

all variables and their derivatives vanish in the limit x æ Œ, in order to obtain

ŸT
3x + T

3

= (u + q⁄ + qd⁄x) . (6.63)

It is convenient to further integrate equation (6.63) to yield

T
3

= e
≠x

Ÿ

ˆ x

≠Œ

1
Ÿ

e
z

Ÿ (u + q⁄ + qd⁄z) dz.

Without any further assumptions, we are left with the following system:

u· + uux + vy = ≠T
3x

2 + µuxx, (6.64)

vx = uy, (6.65)

⁄x = ≠k(1 ≠ ⁄) exp (◊T
3

) ≠ d⁄xx, (6.66)

T
3

= e
≠x

Ÿ

ˆ x

≠Œ

1
Ÿ

e
z

Ÿ (u + q⁄ + qd⁄x) dz. (6.67)
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Equations (6.64-6.67) include the e�ects of viscosity, heat di�usion, and species dif-

fusion in the parameters µ, Ÿ, and d, respectively.

It is interesting to try to recover the inviscid results from the more general deriva-

tion. Formally, we can set µ = 0 and d = 0 in (6.64-6.67), but Ÿ = 0 does not make

immediate sense. This is, of course, because we have used the implicit assumption

Ÿ > 0 when integrating equation (6.63). If we assume that Ÿ is small, then the inte-

gral formulation of T is amenable to the method of steepest descent. This becomes

more transparent after we rewrite (6.67) as:

T
3

=
ˆ x

≠Œ

1
Ÿ

e≠ 1
Ÿ

(x≠z) (u + q⁄ + qd⁄z) dz

= 1
Ÿ

ˆ Œ

0

e≠ 1
Ÿ

r (u (x ≠ r) + q⁄ (x ≠ r) + qÂ⁄x (x ≠ r)) dr. (6.68)

We then see that, when Ÿ π 1, the main contribution to the integral in (6.68) comes

from the neighborhood of r = x ≠ z = 0. The asymptotic expansion of (6.68), after

applying Watson’s lemma, yields

T
3

= u + q⁄ + qd⁄x ≠ Ÿ (ux + q⁄x + qd⁄xx) + o (Ÿ) .

Interestingly, the e�ect of dissipation on the heat distribution, in the small Ÿ limit,

is modeled by including spatial derivatives which modify the inviscid relation, T =

u+q⁄. As expected, these e�ects would only be important in places of high gradients.

The e�ects of viscosity (µ) and species di�usion (d) have been studied in the past,

in the context of the Majda or Rosales-Majda model ([29, 17, 32]). But since these

theories lump pressure, velocity and temperature together, heat di�usion is included

in the viscous parameter µ. The theory developed here, on the other hand, allows for

temperature to behave di�erently than other primitive variables, which is key for a
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correct description of reactive shocks. Because of that, the e�ect of heat dissipation

is no longer lumped into µ, but has a special place in the theory.

We believe it would be interesting, as a starting point, to study the one-dimensional

traveling wave solutions when d = 0 and in the limit of small Ÿ, in which case the

system reduces to

u· + uux = ≠T
3x

2 + µuxx, (6.69)

⁄x = ≠k(1 ≠ ⁄) exp (◊T
3

) , (6.70)

T
3

= u + q⁄ ≠ Ÿ (ux + q⁄x) . (6.71)

If Ÿ = 0, then the theory of viscous detonations developed in [29, 32] applies directly.

For Ÿ ”= 0, however, the possible traveling wave solutions of (6.69-6.71) is a com-

pletely open question which requires further exploration. We hope to pursue these

investigations in the near future.

6.4 Discussion and conclusions

In this chapter, we developed an asymptotic theory for detonations with dissipative

e�ects retained. Two di�erent cases were considered: empirical losses modeled by

the inclusion of algebraic terms in the reactive Euler equations, and the reactive

Navier-Stokes equations scaled so that all dissipative e�ects remain important.

In the case of algebraic losses, we have seen that an asymptotic approach yields

equations similar to those considered in Chapter 3. Because friction losses are mod-

eled by the exact same term as employed in Chapter 3, we expect the same interesting

dynamics to be present, at least when ignoring heat losses. In particular, the turn-

ing point behavior of the D vs cf curve, with its multiplicity of solutions, and the
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lack of traveling wave for large cf . The e�ect of heat di�usion appears to be more

complex, consistent with recent studies of Semenko et al [66]. Whether or not set-

valued solutions, like those observed in the reactive Euler equations, are present in

the asymptotic model remains an open question.

When considering dissipative e�ects by retaining the higher order derivative terms

in the modeling equations, the asymptotic system obtained was quite di�erent than

that of the standard weakly-nonlinear theories. Because the asymptotic equations

were still too complex, a further asymptotic approximation was performed in order

to obtain a more tractable model. The e�ect of dissipation is likely to bring some

interesting e�ects which require further exploration. Even the theory for the traveling

wave solutions of (6.69-6.71) appears to be nontrivial.
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Chapter 7

Concluding Remarks

The main focus of this thesis was on developing qualitative and asymptotic theories

capable of capturing the complex features of detonation waves. We started by study-

ing the simplest possible case of a one-dimensional ideal detonation, and showed that

all of the rich features (including galloping detonation and chaotic dynamics) can be

faithfully represented by a single forced Burgers equation. The qualitative theory of

Chapter 2 highlighted the important e�ects which caused instabilities in detonation

waves. In particular, it was elucidated that in order for instabilities to exist, the

chemical reactions (represented in Part I by a source in Burgers equation) and the

fluid flow had to be coupled in a sensitive manner. Also, the reaction zone should act

as a resonator, trapping waves which travel between the shock and the reaction zone,

and amplifying them. For our study, having an internal maximum in reaction rate

inside the reaction zone proved to be crucial for such resonance mechanism to exist.

The qualitative theory of pulsating detonations was then extended to account

for energy losses. Through the simplified model we understood that the essential

di�culties related to numerically finding the traveling wave solutions of the reactive

Euler equations in the presence of losses could be remedied by an appropriate change

of variables. The change of variables exploits the fact that the ODEs which must be
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solved when searching for traveling wave solutions come from a system of conservation

laws. Motivated by the change of variables, we proposed a new algorithm to solve the

eigenvalue problem for the detonation velocity which removes the sti�ness associated

with the sonic singularity. With the new algorithm, we demonstrated that akin to

the reactive Euler equations, the detonation velocity as a function of the loss factor

is a multiple-valued function with a turning point. Furthermore, we investigated the

e�ect of losses on the stability of the detonation waves. It was found that losses tend

to destabilize detonations, and that the bottom branch of the D ≠ cf or D ≠ Ÿ curves

are always unstable, with solutions tending to be near the fixed point associated with

the top branch of these curves.

The first analog for two-dimensional detonations was proposed and analyzed in

Chapter 4. We showed that even a simple extension of the forced Burgers equation

was rich enough to reproduce the multidimensional patterns observed in detonations.

The stability of such multi-dimensional waves was analyzed by means of Laplace

transform, and the qualitative behavior was found to be exactly analogous to deto-

nations.

The success of the qualitative theory of Part I, and the simplicity of the equations

studied, motivated the search for a rational asymptotic theory. Having understood

the importance of the right coupling between reaction rate and fluid flow, a new

weakly nonlinear theory of detonations was derived and analyzed. We considered the

case of a single-step irreversible Arrhenius kinetics, and demonstrated that a rational

reduction can be performed in way so as to retain all of the essential features present

in detonation waves, including the steady states, the rich linear spectrum, and the

complex multi-dimensional dynamics. In Chapter 5, we focused almost exclusively

on an inviscid description, showing that the predictions of the proposed asymptotic

model are in close agreement with the reactive Euler equations. The asymptotic
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theory also allowed us to understand the fundamental drawback of Majda’s original

analog, and thus the reason why it was incapable of reproducing the unsteady dynam-

ics. A new reaction rate, which highlights the important role played by temperature,

was proposed with which both Fickett’s and Majda’s analogs contain unsteady waves.

In the last chapter of the thesis, we extended the asymptotic reduction of Chapter

5 to account for dissipative e�ects. It was shown that these e�ect are likely to make

the analysis significantly harder than the inviscid theory. The complete study of

dissipative detonations, however, is left for future work. We hope that both the

qualitative and asymptotic models proposed in this thesis can serve as a basis for

building a mathematical theory of unsteady multi-dimensional detonations.
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APPENDICES

Appendix A

WENO5 with TVD-RK3 algorithm

Here we describe the algorithm used to solve the hyperbolic equations proposed in

Chapter 2. For the spatial discretization, we used a 5-point weighted essentially non-

oscillatory (WENO) method based on [101]. As usually done in WENO methods, we

introduce a small parameter ‘ to guarantee that the denominators do not become 0

when we are computing WENO weights. For the problems investigated here, we ex-

perimented with ‘ between 10≠5 and 10≠10, and the solutions seemed to be una�ected

by this choice. The chosen ‘ for all computation was ‘ = 10≠6.

In order to avoid spurious oscillations we have chosen a total variation dimishing

(TVD) time stepping algorithm. The choice made here is a third order TVD Runge-

Kutta method as presented in [102]. The value of us, which is present in the flux

and the source term (see (2.6)), was taken to be the right boundary value of u at the

current time step.

On the left of the domain we used a first order extrapolation, where the values
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of the leftmost grid cell was copied into the left ghost cells required by the WENO

algorithm. Since the equations were solved in a shock attached frame, the right

boundary corresponds to the shock, and therefore the right boundary required a

more careful treatment. Unlike [22], where the WENO algorithm is modified so that

it becomes biased to the left near the shock, avoiding the need to use ghost points,

we chose instead to extrapolate the solution to the right of the shock, using the

extrapolated values in the ghost points. We noticed that, unlike the left boundary,

the order of the extrapolation of the right boundary crucially a�ected the overall

convergence of the algorithm. We used a fifth order extrapolation for the right ghost

points.

Convergence tests were performed by comparing the numerical wave speed, given

by D(t) = 2us(t), to the exact value it should attain when the wave is stable, D = 2.

We observed fifth order convergence, as seen in Figure A.1a, where the error was

measured in the LŒ-norm.
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(a) Fifth order convergence with high or-
der extrapolation of right boundary
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Figure A.1: Convergence of WENO algorithm

We mention here that when a lower order extrapolation was used on the right

boundary, the order of the algorithm degraded to the order of the extrapolation pro-

cedure, as can be seen on Figure A.1b. This may be because the shock value critically
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a�ects the whole solution through the source term f(x, us), which is nonlocal.
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Appendix B

Largest Lyapunov Exponent

The algorithm for the LLE consists of the following steps:

1. Given a time series un
s , embed it in an m-dimensional space with delay · , as

outlined in Section 2.4.4.1.

2. For a given point pi, find the closest point pj
i

such that |i≠ji| > the mean period,

where the mean period is estimated by the inverse of the dominant frequency

of the power spectrum.

3. Define dm
i (n) = Îpi+n ≠ pj+nÎ. Then, di(n) represents the divergence between

trajectories starting at pi and pj
i

.

4. Choose N points randomly on the attractor and compute an average divergence

of trajectories by dm(n) = 1

N

qN
l=1

dm
l (n). The number N is limited either by

the amount of available data or by computational restrictions.

5. Plot log(dm(n)) versus n�t.

6. Repeat steps 1-5 for di�erent values of embedding dimension, m, and find a

region tmin < t < tmax such that the plot of log(dm(n)) vs. n�t is nearly a

straight line for the values of m used.
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7. Do a least squares fit in the region t
min

< t < t
max

to extract ⁄m
1

for each

embedding dimension m.

8. If the values of ⁄m
1

do not vary much for a wide range of embedding dimensions,

m, let ⁄
1

be the average over all embedding dimensions computed.

The algorithm suggested above, which is presented in [64], has some parameters that

are not objectively chosen. The value of ⁄
1

depends, among other things, on the

choices of · , the range of m considered, the choices of t
min

and t
max

, and on N . Of

course, it also depends on the quality of the data set and the amount of noise present

in it. In [64], a numerical study of this parameter dependence is performed, and

it is claimed that the algorithm is rather robust. In our study, we use the range

3 Æ m Æ 20, fix · = 150, choose N = 20, 000, and choose t
min

and t
max

by looking at

the plot of log(d) vs t. A typical plot is show in Figure B.1a, where – = 5, t
min

= 100,

and t
max

= 200.
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Figure B.1: Dependence of the largest Lyapunov exponent and correlation dimension
on the choice of the embedding dimension.

In Table B.1, we present the values of LLE calculated for each given dimension

from Figure B.1c.

m 3 4 5 8 10 15 20
LLE 0.0185 0.0182 0.0184 0.0180 0.0181 0.0180 0.0183
DC 1.8306 1.8507 1.8500 1.8904 1.9147 1.9317 1.9432

Table B.1: The LLE and the correlation dimension for
di�erent embedding dimensions.

For other values of –, the same methodology is applied. The values shown in

Table 2.3 are obtained by averaging the LLE over multiple dimensions. The error

estimates are the maximum di�erences between the averages and the entries.
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Appendix C

Correlation Dimension

The algorithm for computing the correlation dimension follows that of [65]. It consists

of the following steps:

1. Given a time series un
s , embed it in an m dimensional space with delay · , as

outlined in Section 2.4.4.1.

2. Construct a grid r̄ = (r
1

, · · · , rL) where r
1

> mini,j(Îui
s ≠ uj

sÎ) and rL <

maxi,j(Îui
s ≠ uj

sÎ).

3. For each ri define the correlation sum, at a given dimension m, to be Cm(rk) =
1

N2
qN

i,j=1

◊(rk ≠ Îui
s ≠ uj

sÎ), where ◊ is the Heaviside function.

4. Plot log(Cm(rk)) versus log(rk).

5. Repeat steps 1-4 for di�erent values of the embedding dimension m, and find a

region rmin < r < rmax such that the plot of log(Cm(r)) vs. log(r) is nearly a

straight line for the values of m used.

6. Do a least squares fit over the region r
min

< r < r
max

to extract Dm
C for each

embedding dimension m.
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7. If the values of Dm
C do not vary much for a wide range of embedding dimensions

m, let DC be the average over all embedding dimensions.

Similar to the LLE calculation, the computed value of DC depends on many param-

eters that cannot be objectively chosen. The choices of ·, m, r
min

, r
max

in partic-

ular have an appreciable e�ect on the value of DC . In our study, we use the range

3 Æ m Æ 20, fix · = 150, choose N = 5000, and choose r
min

and r
max

by looking

at the plot of log(Cm(r)) vs log(r). A typical plot is shown in Figure B.1b, where

– = 5, log(r
min

) = ≠8, and log (r
max

) = ≠4.

In Table B.1, we show the computed values of the correlation dimension for the

data presented in Figure B.1b. Notice that the variability here is much higher than

in the computation for the largest Lyapunov exponent.
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Appendix D

Dimensionless reactive

compressible Navier-Stokes

equations

In this appendix we include the details of nondimensionalization of the governing

equations presented in Chapter 5. We focus on the two dimensional case, so that

(5.8,5.9,5.11,5.12) reduce to

Dfl

Dt
+ fl (UX + VY ) = 0, (D.1)

fl
DU

Dt
+ pX = 1

3 µ̃ (UXX + VXY ) + µ̃ (UXX + UY Y ) , (D.2)

fl
DV

Dt
+ pY = 1

3 µ̃ (UXY + VY Y ) + µ̃ (VXX + VY Y ) , (D.3)

fl
DT

Dt
≠ “ ≠ 1

R“

Dp

Dt
= “ ≠ 1

R“

A

Q̃flW̃ ≠ 2
3 µ̃ (Ò · u)2 + µ̃ (Òu)2

+ µ̃
1
Òu : ÒuT

2
≠ Ò · (Ÿ̃ÒT )

B

(D.4)

fl
D�
Dt

= flW̃ ≠ Ò · (d̃flÒ�). (D.5)
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where u = (U, V )T . Rescale density, pressure, temperature and velocities by fla, pa,

Ta and ua =
Ò

pa/fla respectively. The independent variables rescaled as

x = X ≠ D
0

t

x
0

, y = Y

y
0

, · = t

t
0

, (D.6)

Let ‘ = x
0

/uat
0

, y
0

= x
0

/
Ô

‘. Define

Re = flauax
0

µ̃
, Pr = cpµ̃

Ÿ̃
, Le = Ÿ̃

flacpd̃
, (D.7)

From now on all variables are dimensionless, but the same notation is used. Thus

fl, U, V, T, � below denote dimensionless quantities. Furthermore, let

Q = Q̃

RTa

, E = Ẽ

RTa

, K = t
0

k̃ exp (≠E) .

The conservation of mass equation, i.e. (D.1), is written in dimensionless variables as

fl· + 1
‘
(U ≠ D

0

)flx + 1Ô
‘
V fly + fl

A
1
‘
Ux + 1Ô

‘
Vy

B

= 0.

The x momentum equation, i.e. (D.2), becomes

fl

A

U· + 1
‘

(U ≠ D
0

) Ux + 1Ô
‘
V Ux

B

+ 1
‘
px = 1

3
µ̃

flauax
0

uat
0

x
0

1
Uxx +

Ô
‘Vxy

2

+ µ̃

flauax
0

uat
0

x
0

(Uxx + ‘Uyy)

= 1
3

1
‘Re

1
Uxx +

Ô
‘Vxy

2

+ 1
‘Re

(Uxx + ‘Uyy) .
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The y momentum equation, (D.3),

fl

A

V· + 1
‘
(U ≠ D

0

)Vx + 1Ô
‘
V Vy

B

+ 1Ô
‘
py = 1

3
µ̃

flauax
0

uat
0

x
0

1Ô
‘Uxy + ‘Vyy

2

+ µ̃

flauax
0

uat
0

x
0

(Vxx + ‘Vyy)

= 1
3

1
‘Re

1Ô
‘Uxy + ‘Vyy

2

+ 1
‘Re

(Vxx + ‘Vyy) .

The energy equation, i.e. (D.4), is given in dimensionless form by

fl

A

T· + 1
‘
(U ≠ D

0

)Tx + 1Ô
‘
V Ty

B

≠
(“ ≠ 1)

“

A

p· + 1
‘
(U ≠ D

0

)px + 1Ô
‘
V py

B

= “ ≠ 1
R“

t
0

flaTa

A

flaQ̃flW̃ ≠ 2
3µ

u2

a

x2

0

1
Ux +

Ô
‘Vy

2
2

+ µ
u2

a

x2

0

1
U2

x + ‘U2

y + V 2

x + ‘V 2

y

2

+ µ
u2

a

x2

0

1
U2

x +
Ô

‘UyVx +
Ô

‘VxUy + ‘V 2

y

2

≠ Ta
d

1

x2

r

(Txx + ‘Tyy)
B

= “ ≠ 1
“

A

QflW ≠ 2
3

1
Re

1
Ux +

Ô
‘Vy

2
2

+ 1
‘Re

1
U2

x + ‘U2

y + V 2

x + ‘V 2

y

2

+ 1
‘Re

1
U2

x +
Ô

‘UyVx +
Ô

‘VxUy + ‘V 2

y

2 B

≠ 1
‘RePr

(Txx + ‘Tyy) ,

where

W = K(1 ≠ �) exp
5
E

3
1 ≠ 1

T

46
.
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Finally, the reaction rate, (D.5), becomes

fl

A

�· + 1
‘
(U ≠ D

0

)�x + 1Ô
‘
V �y

B

= t
0

flW̃ ≠ d̃t
0

x2

r

1
(fl�x)x + ‘ (fl�y)y

2

= t
0

flW̃ ≠ d̃

ua‘x
0

1
(fl�x)x + ‘ (fl�y)y

2

= flW ≠ 1
‘RePrLe

1
(fl�x)x + ‘ (fl�y)y

2
.

Defining

L = ˆ· + 1
‘
(U ≠ D

0

)ˆx + 1Ô
‘
V ˆy,

we obtain the following dimensionless formulation:

L[fl] + fl

A
1
‘
Ux + 1Ô

‘
Vy

B

= 0,

flL[U ] + 1
‘
px = 1

3‘Re
1
Uxx +

Ô
‘Vxy

2
+ 1

‘Re (Uxx + ‘Uyy) ,

flL[V ] + 1Ô
‘
py = 1

3‘Re
1Ô

‘Uxy + ‘Vyy

2
+ 1

‘Re (Vxx + ‘Vyy) ,

flL[T ] ≠ (“ ≠ 1)
“

L[p] = “ ≠ 1
“

A

QflW ≠ 2
3‘Re

1
Ux +

Ô
‘Vy

2
2

+ 1
‘Re

1
U2

x + ‘U2

y + V 2

x + ‘V 2

y

2 B

+ “ ≠ 1
“

1
‘Re

1
U2

x +
Ô

‘UyVx +
Ô

‘VxUy + ‘V 2

y

2

+ 1
‘RePr (Txx + ‘Tyy) ,

flL[�] = flW + 1
‘RePrLe

1
(fl�x)x + ‘ (fl�y)y

2
.
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Appendix E

Details of weakly nonlinear

asymptotic expansion

Here we present the algebraic calculations involved expanding the dimensionless equa-

tions in the considered asymptotic sequence. We start from

L[fl] + fl

A
1
‘
Ux + 1Ô

‘
Vy

B

= 0,

flL[U ] + 1
‘
px = 1

3‘Re
1
Uxx +

Ô
‘Vxy

2
+ 1

‘Re (Uxx + ‘Uyy) ,

flL[V ] + 1Ô
‘
py = 1

3‘Re
1Ô

‘Uxy + ‘Vyy

2
+ 1

‘Re (Vxx + ‘Vyy) ,

flL[T ] ≠ (“ ≠ 1)
“

L[p] = “ ≠ 1
“

A

QflW ≠ 2
3‘Re

1
Ux +

Ô
‘Vy

2
2

+ 1
‘Re

1
U2

x + ‘U2

y + V 2

x + ‘V 2

y

2 B

+ “ ≠ 1
“

1
‘Re

1
U2

x +
Ô

‘UyVx +
Ô

‘VxUy + ‘V 2

y

2

+ 1
‘RePr (Txx + ‘Tyy) ,

flL[�] = flW + 1
‘RePrLe

1
(fl�x)x + ‘ (fl�y)y

2
,



221

where W is defined as

W = K(1 ≠ �) exp
5
E

3
1 ≠ 1

T

46
. (E.1)

and expand the variables in the following asymptotic series:

fl = 1 + fl
1

‘ + fl
2

‘3/2 + fl
3

‘2 + o(‘2), (E.2)

T = 1 + T
1

‘ + T
2

‘3/2 + T
3

‘2 + o(‘2), (E.3)

p = 1 + p
1

‘ + p
2

‘3/2 + p
3

‘2 + o(‘2), (E.4)

u = u
1

‘ + u
2

‘3/2 + u
3

‘2 + o(‘2), (E.5)

� = ⁄ + o(‘). (E.6)

The mass conservation equation

fl· + 1
‘
(U ≠ D

0

)flx + 1Ô
‘
V fly + fl

A
1
‘
Ux + 1Ô

‘
Vy

B

= 0

yields

(≠D
0

fl
1x + U

1x) +
Ô

‘ (≠D
0

fl
2x + U

2x + V
1y) +

‘ (fl
1· ≠ D

0

fl
3x + U

1

fl
1x + U

3x + fl
1

U
1x + V

2y) = O(‘3/2).

The x-momentum equation

U· + 1
‘
(U ≠ D

0

)Ux + 1Ô
‘
V Uy + 1

fl

31
‘
px

4
= 1

3
1

‘Re

1
Uxx +

Ô
‘Vxy

2
+ 1

‘Re
(Uxx + ‘Uyy) ,
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gives

(≠D
0

U
1x + T

1x + fl
1x) +

Ô
‘ (≠D

0

U
2x + T

2x + fl
2x) +

‘ (U
1· ≠ D

0

U
3x + U

1

U
1x + T

1

fl
1x + T

3x + fl
3x ≠ fl

1

fl
1x) = 4

3
1

Re
(U

1

)xx + o(‘).

The y-momentum equation

V· + 1
‘
(U ≠D

0

)Vx + 1Ô
‘
V Vy + 1

fl

A
1Ô
‘
py

B

= 1
3

1
‘Re

1Ô
‘Uxy + ‘Vyy

2
+ 1

‘Re
(Vxx + ‘Vyy) ,

gives

(≠D
0

V
1x) +

Ô
‘ (≠D

0

V
2x + T

1y + fl
1y) +

‘ (V
1· ≠ D

0

V
3x + U

1

V
1x + T

2y + fl
2y) = 1

Re
(V

1

)xx + o(‘).

The energy equation

fl

A

T· + 1
‘
(U ≠ D

0

)Tx + 1Ô
‘
V Ty

B

≠

‘
“

1

“

A

p· + 1
‘
(U ≠ D

0

)px + 1Ô
‘
V py

B

= “ ≠ 1
“

A

QflW ≠ 2
3

1
‘Re

1
Ux +

Ô
‘Vy

2
2

+ 1
‘Re

1
U2

x + ‘U2

y + V 2

x + ‘V 2

y

2 B

+ “ ≠ 1
“

1
‘Re

1
U2

x +
Ô

‘UyVx +
Ô

‘VxUy + ‘V 2

y

2

≠ 1
‘RePr

(Txx + ‘Tyy)
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gives

(≠D
0

T
1x) +

Ô
‘ (≠D

0

T
2x) +

‘

A

T
1· ≠ D

0

T
3x + U

1

T
1x + “

1

“
D

0

(fl
1x + T

1x)
B

= ‘qÊ + o(‘),

where Ê = k(1 ≠ ⁄) exp (◊T
3

) is the leading order expansion of the reaction rate W .

Finally the reaction rate equation

�· + 1
‘
(U ≠ D

0

)�x + 1Ô
‘
V �y = flW ≠ 1

‘RePrLe

1
(fl�x)x + ‘ (fl�y)y

2

gives

≠D
0

�x = Ê + o(1).
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Appendix F

von Neumann stability analysis of

a simple explicit scheme

In order to motivate the use of a semi-implicit scheme to solve (5.49-5.51), here we

perform a von-Neumann stability analysis of a “natural/reasonable” explicit scheme

and show that it leads to instabilities. Since such an analysis requires a constant

coe�cient linear system, we consider here the linearized, UTSD equations

ut + ux + vy = 0, (F.1)

vx = uy. (F.2)

We discretized these equations using forward finite di�erences in t and x, and centered

finite di�erences in y. This leads to the scheme

Un+1

i,j = Un
i,j ≠ �t

A
Un

i,j ≠ Un
i≠1,j

�x
+

V n
i,j+1

≠ V n
i,j≠1

2�y

B

, (F.3)

V n
i,j = V n

i+1

≠ �x

A
Un

i,j+1

≠ Un
i,j≠1

2�y

B

. (F.4)
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Then we compute the (periodic) discrete eigenfunctions for the scheme using the

ansatz

Un
p,q = AGnei(kx

p

+ly
q

), (F.5)

V n
p,q = BGnei(kx

p

+ly
q

), (F.6)

where k and l are the discrete wave numbers, G is the growth factor, A and B are

constants, xp = p�x, yq = q�y, and

Un
p,q = U(xq, yp, tn), (F.7)

V n
p,q = V (xq, yp, tn). (F.8)

In the standard fashion of the von Neumann stability analysis, this leads to an

eigenvalue problem for the vector with components A and B, with eigenvalue G.

Solving this problem yields

G = 1 ≠ �t

�x

1 ≠ e≠ik�x

�x
≠ �t�x

�y2

sin2(l�y)
(1 ≠ eik�x) . (F.9)

Note that, in (F.9), the term

�t�x

�y2

sin2(l�y)
(1 ≠ eik�x) (F.10)

can be traced back to the explicit treatment of vy. This term causes instability,

since it can become arbitrarily large for k�x small and sin2 (l�y) away from zero,

independently of the size of �t. Hence, the scheme is unstable. Instabilities like this

one are inevitable in explicit finite di�erence schemes, regardless of the choice. The

reason is that the wave speeds in the y-direction are unbounded. No explicit scheme
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can hence satisfy the CFL (Courant-Friedrichs-Lewy) condition.
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Appendix G

Self-convergence of algorithm for

two-dimensional asymptotic system

As discussed in Subsection 5.5.2.1, the asymptotic equations obtained in Chapter 5

have to be solved in a semi-implicit way. Since we use a second order approximation

to all terms in the governing equations, we obtain a formally second order algorithm.

The convergence rate is tested using a smooth solution. In particular, we run the

solver with initial condition

u(x, y, 0) = exp
1
≠

1
x2 + y2

22
,

up to a time t = 0.5, for varying grid resolution. The solutions are then compared to

the finest grid, and the error is measured in L2 norm. The domain is [≠5, 5]◊ [≠5, 5],

and the resolution goes from 100 ◊ 100 on the coarsest grid to 6400 ◊ 6400 on the

finest. As we can see in Figure G.1, second order self-convergence is obtained.

Note that the actual detonation problem we must solve contains not only shocks,

but also a discontinuous source term (which was shut o� in the convergence study

mentioned above). Thus, what we have really tested is convergence of our algorithm in

approximating the UTSD equations for smooth solutions. The other tests performed
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Figure G.1: Self-convergence of 2d algorithm.

in Figure G.1 , namely that the algorithm captures the correct ZND solutions, wave

speeds, and stability boundaries, further validated the method used. Without resort-

ing to shock fitting, however, only first order convergence should be expected for the

problem of interest due to the presence of shocks and the discontinuous source term.
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