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Résumé
Cette thèse est consacrée aux algèbres de Khovanov-Kuperberg Kε et à leurs catégories
de modules. Ce sont les analogues dans le cas sl3, des algèbres Hn utilisées par Khovanov
pour étendre l’homologie sl2 (ou homologie de Khovanov) aux enchevêtrements. Elles
apparaissent comme les images des 0-objets par une (0+1+1)-TQFT. Elles permettent de
définir une homologie sl3 aux enchevêtrements.

Ces algèbres ont des catégories de modules particulièrement intéressantes : du fait
même de leurs constructions, elles sont profondément liées à l’étude des bases de certaines
représentations du groupe quantique Uq(sl3). Il est alors naturel de vouloir classifier les
modules projectifs indécomposables sur ces algèbres.

Nous étudions les modules de toiles qui sont des Kε-modules projectifs. Il a été
conjecturé que ces modules formaient une famille complète de représentants des classes
d’isomorphismes de Kε-modules projectifs indécomposables, mais Khovanov et Kuperberg
ont exhibé un module de toile qui se décompose. Dans cette thèse nous donnons deux
conditions sur l’indécomposabilité des modules de toiles : une condition suffisante de nature
géométrique, et une condition nécessaire et suffisante de nature algébrique.

Les résultats sont prouvés d’une part grâce à une étude combinatoire des toiles, qui
sont des graphes trivalents bipartites plan et d’un polynôme de Laurent qui leur est associé,
le crochet de Kuperberg. Et d’autre part, grâce à l’étude des mousses qui jouent le rôle de
cobordismes pour les toiles.

Mots clés : Algèbres de Khovanov-Kuperberg, Homologie sl3, Crochet de Kuperberg,
Toiles, Mousses, TQFT, Coloriages, Enchevêtrements.

Abstract
This thesis is concerned with the Khovanov-Kuperberg algebras Kε and to their categories
of modules. They are analogous, in the sl3 context, to the Hn algebras used by Khovanov
to extend the sl22-homology (or Khovanov homology) to tangles. They appear as images
of the 0-objects by a (0+1+1)-TQFT. They allow to define a sl3-homology for tangles.

The categories of modules over these algebras are especially interesting: from their own
construction they are deeply connected to bases in some representations of the quantum
group Uq(sl3). It is hence natural to ask for a classification of the projective indecomposable
modules over these algebras.

We study web modules which are projective Kε-modules. It has been conjectured that
these modules constitute a complete family of indecomposable projective Kε-modules, but
Khovanov and Kuperberg have exhibited a web module which decomposes as a direct sum.
In this thesis we give two conditions on the indecomposability of web modules: a geometric
sufficient condition and an algebraic necessary and sufficient condition.

The results are proven on the one hand, through a combinatorial analysis of webs which
are plane bicubic graphs, and of a Laurent polynomial associated with each web called
the Kuperberg bracket. And on the other hand, thanks to foams which plays the role of
cobordisms for webs.

Keywords: Khovanov-Kuperberg algebras, sl3-homology, Kuperberg bracket, Webs,
Foams, TQFT, Colourings, Tangles.
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Introduction

Un peu d’Histoire2

Les nœuds ont une existence3 préhistorique [TvdG96]. Leur utilité première est bien sûr
mécanique et cette fonction est toujours d’actualité. L’administration inca les utilisait
comme moyen de stocker de l’information (via les quipus [Hya90]). Ils sont à la base de
toutes sortes d’ornements ou de décorations, notamment dans les civilisations chinoise,
arabe et celte. Dans une certaine mesure, ils servent de signes religieux (le nœud sans fin
ou srivatsa chez les boudhistes, les tsitsits chez les juifs). Notons aussi que Jacques Lacan
illustre la relation Réel – Imaginaire – Symbolique (RIS) avec les anneaux borroméens
[Lac11].

Malgré cette relative omniprésence des nœuds, leur apparition en mathématiques est
assez tardive. En effet ce n’est qu’à la fin du XVIIIème siècle que Gauß les étudie pour la
première fois (voir [Gau73a, Gau73b]). Dans les années 1870, James Clerk Maxwell, William
Thompson (Lord Kelvin) et Peter Tait formulent une théorie qui postule que la nature
d’un atome est déterminée par un nœud à l’intérieur de son noyau. Aussi s’attaquent-ils
sérieusement au problème de classification [Tai98].

Le développement de la topologie algébrique par Poincaré a permis, d’une part de
mieux poser le problème de classification, et d’autre part de profiter de tous les nouveaux
outils que cette théorie propose : groupes fondamentaux, homologies, revêtements, etc. . . Il
n’est pas raisonnable ici de donner un aperçu complet des travaux accomplis depuis lors.
Citons tout de même Max Dehn et John Alexander qui s’intéressèrent particulièrement
aux groupes fondamentaux des nœuds. Ce dernier donna son nom à un célèbre invariant
polynomial. En 1926, Kurt Reidemeister [Rei27] donne un outil combinatoire : il montre
que si deux diagrammes de nœuds représentent le même nœud alors on peut passer de l’un
à l’autre par une suite finie de mouvements simples appelés mouvements de Reidemeister.
Dans les années 50 et 60, Ralph Hartzler Fox a fait, entre autre, des liens importants entre
les approches combinatoire et géométrique. Dans les années 70, John Conway définit les
enchevêtrements, i.e. les nœuds à bords (voir figure 1) et le concept de relations d’écheveaux.
Parallèlement il donne une nouvelle façon de noter les nœuds ce qui lui permet de construire
de nouvelles méthodes pour le problème de classification.

Nous devons aussi mentionner que pendant toute cette période la théorie des tresses s’est
développée et a fait des progrès de son côté avec des méthodes beaucoup plus algébriques
(du fait de la structure de groupe). On peut par exemple citer la représentation de Burau.
Même si le lien entre nœuds et tresses a été pressenti dès 1936 par Andreï Andreïevitch
Markov, ce n’est qu’en 1974 que “son” théorème a été montré par Joan Birman [Bir74],
permettant ainsi d’étudier les nœuds via les tresses.

En 1984 émerge une nouvelle branche de la théorie des nœuds : Vaughan Jones [Jon85]

2Nous conseillons vivement la lecture de [TvdG96].
3Il semble que les nœuds ne soient pas l’apanage des humains, voir par exemple [Her12].
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Figure 1 – Un enchevêtrement.

découvre un invariant polynomial grâce à des techniques totalement nouvelles. S’en est suivie
une multitude de nouveaux invariants du même type que l’on a appelés invariants quantiques,
citons le polynôme HOMFLYPT [FYH+85, PT88] et les invariants sln [Tur88, MOY98].
Pour schématiser, l’idée est d’oublier la nature géométrique des nœuds, de se focaliser
sur les diagrammes, et d’interpréter ces diagrammes comme des morphismes de modules
sur une algèbre. Sous certaines conditions sur l’algèbre4, les morphismes ainsi définis sont
invariants par isotopie plane et par mouvements de Reidemeister. L’apparition de ces
nouveaux invariants est une petite révolution. Jusque là l’étude des nœuds dépendait
exclusivement (ou presque) des outils classiques de la topologie algébrique. Les invariants
quantiques donnent un autre angle d’attaque, mais leur contenu géométrique est alors mal
compris.

Les années 2000 donnent aux invariants quantiques une nouvelle dimension. Mikhail
Khovanov [Kho00] explicite une catégorification5 du polynôme de Jones. L’idée est de voir
cet invariant comme le reflet de quelque chose de plus profond, l’homologie de Khovanov (ou
homologie sl2) : à un nœud on associe une suite de Z-modules gradués dont la caractéristique
d’Euler graduée est le polynôme de Jones de ce nœud. Toute la beauté et la puissance
de cette construction réside dans le fait qu’elle est fonctorielle : un morphisme entre
deux nœuds (i.e. un cobordisme) est envoyé sur une application entre les suites de Z-
modules gradués correspondant aux deux nœuds. La fonctorialité permet alors d’extraire
des informations géométriques. Ainsi l’invariant de Rasmussen [Ras10], construit à partir
d’une variante de l’homologie de Khovanov, donne une borne inférieure au genre lisse d’un
nœud.

Après l’homologie de Khovanov, la question de la catégorification des autres invariants
quantiques s’est posée. Des progrès substantiels ont été faits : les invariants sln et le
polynôme HOMFLYPT ont été catégorifiés [KR08a, KR08b] (par les homologies sln et
l’homologie HOMFLYPT). Dans cette thèse, nous nous intéressons à l’homologie sl3,
définie par Khovanov [Kho04] en 2004. Alors que les invariants quantiques polynomiaux
ont des analogues pour les enchevêtrements, dans un premier temps leurs catégorifications
n’étaient définis que pour les nœuds (sans bord). En 2002, Khovanov [Kho02] donne une
version algébrique de l’homologie sl2 pour les enchevêtrements. Par la suite Dror Bar-Natan
[BN05] revisite l’homologie sl2, et obtient lui aussi une version (moins algébrique) pour les

4On peut par exemple supposer que c’est une algèbre de Hopf quasi-triangulaire en ruban.
5Ici, par “catégorification” nous n’entendons pas d’énoncé mathématique précis, mais plutôt une démarche

méta-mathématique. Pour une approche plus systématique de la catégorification, on pourra consulter le
cours de Volodymyr Mazorchuk [Maz12].
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enchevêtrements. En 2007, Scott Morrison et Ari Nieh [MN08] construisent une extension
“à la Bar-Natan” de l’homologie sl3 aux enchevêtrement.

Dans le chapitre 2 de cette thèse, nous donnons une version “à la Khovanov” de
l’homologie sl3 pour les enchevêtrements (voir aussi [MPT12] et [Rob12]). Les objets
centraux de cette construction sont une famille d’algèbres appelées algèbres de Khovanov-
Kuperberg que l’on note Kε.

Il apparaît que ces algèbres ont des catégories de modules particulièrement intéressantes :
du fait même de leur construction, elles sont profondément liées6 à l’étude des bases de
certaines représentations du groupe quantique Uq(sl3). Se pose alors le problème suivant :

Problème. Trouver une collection complète de modules projectifs indécomposables sur
l’algèbre Kε.

Le travail de cette thèse est sous-tendu par ce problème. Notons qu’un cap important a
été franchi avec le calcul du groupe de Grothendieck scindé de Kε par Mackaay, Pan et
Tubbenhauer [MPT12].

Les toiles et les mousses

L’homologie sl3 a une définition très géométrique qui ressemble beaucoup à l’homologie de
Khovanov. Étant donné un diagramme de nœud, on procède en 3 étapes :

1. Pour chaque croisement, on considère deux “résolutions” du croisement, et on définit un
cobordisme entre les deux, on obtient ainsi un hypercube de résolutions du diagramme.

2. On transforme cet hypercube de résolutions en un hypercube de Z-modules gradués en
utilisant une TQFT adaptée.

3. On aplatit l’hypercube pour en faire un complexe de chaînes, et après certains décalages
de degrés on prend l’homologie de ce complexe.

Pour l’homologie de Khovanov les résolutions de sont et , le cobordisme
est une selle. Pour l’homologie sl3, les résolutions et les cobordismes sont donnés par la
figure 2.

Comme le montre la figure 2, les résolutions de diagrammes ne sont plus des courbes
planes mais des graphes plans trivalents munis d’une orientation (ils sont en fait bipartites)
avec d’éventuels cercles orientés (de tels objets sont appelés toiles). Les cobordismes ne
sont plus de simples surfaces, mais des mousses qui sont des surfaces avec des cercles de
singularité.

La catégorie source de la TQFT (étape 2) pour l’homologie sl3 a pour objets les toiles
et pour morphismes les mousses. Comme dans l’homologie de Khovanov, la TQFT est
obtenue grâce à une construction universelle à la BHMV [BHMV95], en particulier ceci
permet de voir l’image d’une toile par la TQFT comme un espace de combinaisons linéaires
de mousses, modulo certaines relations. Pour l’homologie de Khovanov la TQFT était
intimement liée à l’algèbre de Temperley-Lieb, qui spécifiait la dimension attendue de
l’espace associé à une collection de cercles. Dans l’homologie sl3 ce rôle de prescription est
joué par un polynôme de Laurent associé à chaque toile appelé crochet de Kuperberg.

Ainsi l’étude des algèbres de Khovanov-Kuperberg peut prendre un tournant com-
binatoire (les toiles et le crochet de Kuperberg) ou géométrique (les mousses et leurs
relations).

6Ceci avait déjà été remarqué avant que les algèbres de Khovanov-Kuperberg ne soient formellement
définies : Khovanov et Kuperberg montrent que certaines bases ne sont pas duales canoniques [KK99].
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Figure 2 – Résolutions des croisements pour l’homologie sl3.

Aux toiles sont naturellement associés des Kε-modules projectifs appelés modules
de toiles. Certaines toiles dites non-elliptiques sont irréductibles du point de vue de la
combinatoire de Kuperberg. Il est alors naturel7 d’espérer que les modules de toiles associés
au toiles non-elliptiques donnent une solution au problème soulevé, mais avant même que la
question ne soit posée en ces termes, Mikhail Khovanov et Greg Kuperberg [KK99] montrent
que ce n’est pas le cas grâce à un contre-exemple (voir aussi [MN08] et la proposition 3.1.1)
que nous reproduisons figure 3.

Figure 3 – Le contre-exemple de Khovanov et Kuperberg. La face nichée
est jaune.

Il se trouve que la toile exhibée par Khovanov et Kuperberg est aussi l’exemple le plus
simple de toile non-elliptique contenant une face nichée. Dans le chapitre 3 de cette thèse,
nous montrons que ce n’est pas une coïncidence (voir le théorème 3.2.4) :

Théorème. Si w est une toile non-elliptique n’ayant aucune face nichée alors le module
de toile qui lui est associé est indécomposable.

7En effet, dans le cas sl2, les modules associés aux analogues des toiles non-elliptiques forment une
collection complète de modules projectifs indécomposables [Kho02].
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Ce résultat sur les modules de toiles est obtenu grâce à une analyse combinatoire fine
des toiles et du crochet de Kuperberg qui indique, pour une toile donnée, la dimension
graduée de l’espace des endomorphismes du module de toile associé. On utilise le fait que
si l’espace des endomorphismes de degré 0 d’un module est de dimension 1 alors ce module
est indécomposable. Dans le chapitre 4, nous montrons que s’agissant des modules de toiles
la réciproque est vraie (voir le théorème 4.3.3) :

Théorème. Si l’espace des endomorphismes de degré 0 d’un module de toile est de dimen-
sion strictement plus grande que 1, alors il est décomposable et contient un autre module
de toile comme facteur direct.

La preuve de ce résultat se fait en deux étapes : dans une première partie nous donnons
une construction géométrique explicite de mousses correspondant à des idempotents non-
triviaux. Dans une seconde, nous étudions la combinatoire des toiles pour déterminer sous
quelles conditions une toile borde une telle mousse.

La construction permet d’exhiber de nombreux Kε-modules projectifs indécomposables
qui ne sont pas des modules de toiles. De plus, de par son caractère explicite, elle permet
de formuler des réponses conjecturales au problème posé : dans tous les exemples que nous
avons observés, les idempotents construits suffisent à décrire la décomposition des modules
de toiles en sommes directe de modules projectifs indécomposables.

Le chapitre 5 est relativement indépendant : nous commençons par donner une des-
cription alternative du crochet de Kuperberg via des coloriages (cette construction est à
rapprocher de [MOY98]). Ensuite nous établissons que tous les coloriages d’une toile sont
proches dans un sens que nous définissons. Enfin nous appliquons ce résultat à l’étude de
traces partielles dans la TQFT décrite au chapitre 2.
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Introduction

A little history8

Knots exist9 from prehistorical times. Their first use was for mechanical purpose, and this
is still topical. The Inca administration used them as a mean to save data (with the talking
knots or quipus). They are involved in quantities of decorations and ornaments, especially
in Chinese, Arabic and Celtic civilisations. To some extent, knots are adopted as religious
symbols: the endless knot or srivasta for Buddhists, the tsitsits for Jews can be quoted.
Knots are not only pictural symbols but also illustrations of thought, for example, Jacques
Lacan illustrated the Real – Imaginary – Symbolic (RIS) relation with the Borromean
rings [Lac11].

Despite knots are nearly omnipresent, they appear quite late in mathematics. Indeed,
Gauß studied them for the first time at the end of the XVIIIth century (see [Gau73a,
Gau73b]). In the 1870’s, James Clerk Maxwell, William Thompson (Lord Kelvin) and
Peter Tait formulated a physical theory where the nature of an atom is determined by a
knot inside its kernel. Hence they started to tackle the classification problem (see [Tai98]).

Poincaré’s development of algebraic topology allowed, on the one hand, to clarify what
“classifying” means and on the other hand, to enjoy quantity of new tools proffered by this
theory: fundamental groups, homologies, coverings, etc. . . It is utterly impossible to give
here an exhaustive overview of all the accomplished work since then, however we would
like to mention some of the most important steps.

Max Dehn and John Alexander were especially interested in the fundamental group
of knots; a famous polynomial invariant was named after the latter. In 1926, Kurt
Reidemeister [Rei27] gave a combinatorial tool to knot theory: he showed that two knot
diagrams represent the same knot if and only if one can go from one to the other by a
finite sequence of elementary moves called Reidemeister moves. In the 50’s and the 60’s,
Ralph Hartzler Fox, among other things, pointed out some important links between the
geometrical and the combinatorial approaches. In the 70’s, John Conway defined the
tangles i.e. knots with boundaries (see figure 4) and the concept of skein relations. Beside
this, he gave a new way to encode knots. This permitted him to develop new methods for
the classification problem.

We should as well mention that during this period braids theory developed and has
carried off its own successes through more algebraic tools (this comes from the group
structure of braids). One may quote, for example, the Burau representation. Even if the
link between knots and braids has been foreseen already in 1936 by Andreï Andreïevitch
Markov, it is only in 1974, that “his” theorem has be proven by Joan Birman [Bir74]. This
allowed to study knots via braids.

In 1984, a new branch of knot theory sprang up: Vaughan Jones [Jon85], discover

8We warmly recommend [TvdG96].
9It seems that knots are not a humans’ prerogative: see [Her12] for an (impressive) example.

xvii
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Figure 4: A tangle.

a new polynomial invariant by means of to completely new techniques. Then, a raft of
invariants of the same kind followed and they were called quantum invariants, let us mention
the HOMFLYPT polynomial [FYH+85, PT88] and the sln-invariants [Tur88, MOY98].
Roughly speaking, the idea is to forget the geometric nature of knots, and to focus on
diagrams. Then one interprets these diagrams as morphisms of modules over a certain
algebra10. The defined morphisms are shown to invariant under plane isotopy and under
the Reidemeister moves. The emergence of these new invariants has been a small revolution.
Until then, (almost) only the classical tools of algebraic topology were at knot theorists’
disposal. The quantum invariant gave a new angle of attack but their geometrical meaning
was at the time not clearly understood.

The 2000’s gave to quantum invariants a new dimension. Mikhail Khovanov [Kho00],
constructed explicitly a categorification11 of the Jones polynomial. The idea is to see the
Jones polynomial coming from something deeper, the Khovanov homology (or sl2-homology):
with a knot is associated a sequence of graded Z-module whose Euler characteristic is
the Jones polynomial of this knot. The beauty and the strength of this invariant comes
from its functoriality: a morphism between two knots i.e. a cobordism, is associated
with an application between the sequences of graded Z-modules corresponding to the two
knots. The functoriality permits to extract some geometrical information. Thus, Jacob
Rasmussen[Ras10] constructed an invariant from a variant of the Khovanov homology
which gives a lower bound to the slice genus of a knot.

After the Khovanov homology, arose the problem to find categorifications for the other
quantum invariants. This quest has been rather successful: the sln invariants and the
HOMPLYPT polynomial have been categorified [KR08a, KR08b] (by the sln-homologies
and the HOMFLYPT homology).

In this thesis, we are interested in the sl3-homology, defined by Khovanov [Kho04] in
2004. Even though the polynomial quantum invariants extend immediately to tangles, their
categorifications were first defined only for knots (without boundary). In 2002, Khovanov
[Kho02] gave an algebraic version of the sl2-homology for tangles. A little later, Dror
Bar-Natan [BN05] revisited the sl2 homology and obtained as well a version (less algebraic
than Khovanov’s one) for tangles. In 2007, Scott Morrison et Ari Nieh [MN08] constructed
an extension “à la Bar-Natan” of the sl3-homology for tangles.

In the second chapter of this thesis, we give a version “à la Khovanov” of the sl3-
10One can, for example, work with a quasi-triangular ribbon Hopf algebra.
11By “categorification” we rather mean a meta-mathematical process than a precise mathematical

statement. For a more systematical approach, we refer to the lecture of Volodymyr Mazorchuk [Maz12].
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homology for tangles (see as well [MPT12] and [Rob12]). The central objetcs of this
construction are a family of algebras called Khovanov-Kuperberg algebras and denoted by
Kε.

It appears that the categories of modules over these algebras are especially interesting:
from their own construction, they are deeply connected12 to bases in some representations
of the quantum group Uq(sl3). Then the following question arises naturally:

Problem. Exhibit a complete collection of projective indecomposable modules over the
algebra Kε.

This problem underlies all the work of this thesis. Let us point out that significant
improvements has been made by Mackaay Pan and Tubbenhauer [MPT12], since they
managed to compute the split Grothendieck groups of the algebras Kε.

Webs and foams

The sl3-homology has a very geometrical definition and therefor looks a lot like the
Khovanov homology. Being given a knot diagram, one proceeds in three steps:

1. For each crossing, one consider two “smoothtings” of the crossing, and one defines a
cobordism between them. In the end, one obtains an hypercube of smoothings.

2. One turns this hypercube into an hypecube of graded Z-module by means of an
appropriate TQFT.

3. One flattens this hypercube, so that it becomes a chain complex, and after certain
degree shifts, one compute the homology of this complex.

For the Khovanov homology the smoothings of are and , the cobordism is a
saddle. For the sl3 homology, the smoothings and the cobordisms are given by figure 5.

Figure 5: Smoothings of the crossings sl3-homology.

As we can see on figure 5, the smoothings of the diagrams are no longer plane curves
but oriented trivalent graphs (they are actually bipartite) with possible oriented circles.

12This has already been noticed before the Khovanov-Kuperberg algebras were properly defined: Khovanov
and Kuperberg showed that some bases are not dual-canonical.
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These objects are called webs. The cobordisms are not any more classical surfaces but
foams i.e. surfaces with singularities along some circles.

The objects of the source category of the TQFT (step 2) for sl3-homology are webs and
its morphism are foams. Just as in Khovanov homology, the TQFT is obtained thanks to
a universal construction à la BHMV [BHMV95], in particular this implies that the image
of a web by the TQFT can be seen as space of linear combination of foams, modulo some
relations. The Khovanov homology is closely related to the Temperley-Lieb algebra which
specified the expected dimension of the space associated to a collection of circle. In the
sl3-homology this prescription role is played by a Laurent polynomial associated with every
web and called the Kuperberg bracket.

Hence, to study the Khovanov-Kuperberg algebras, we dispose of a combinatorial
approach (with the webs and the Kuperberg bracket) and a geometrical approach (with
the foams and their relations).

With each web is naturally associated a projective Kε-module named web module. Some
webs, called non-elliptic, are irreducible with the combinatorial point of view arising from
the Kuperberg bracket. Hence, it is natural13 to hope that web modules associated with
non-elliptic webs give a solution to the stated problem. However, even before the question
was asked in those words, Mikhail Khovanov and Greg Kuperberg [KK99] have shown that
this is not the case through a counter-example (see as well [MN08] and proposition 3.1.1).
We reproduce this counter-example on figure 6.

Figure 6: The counter-example of Khovanov and Kuperberg. The nested
face is yellow.

It appears that the web exhibited by Khovanov and Kuperberg is as well the simplest
example of a non-elliptic web with a nested face. In the third chapter of this thesis, we
show that this is not a coincidence (see theorem 3.2.4):

Theorem. If w is a non-elliptic web without any nested face, then the web module associated
with w is indecomposable.

This result on web modules is obtained by means of an accurate combinatorial analysis
of webs and of the Kuperberg bracket which indicate for a given web the graded dimension
of the space of endomorphisms of the associated web module. We use the fact that if
the space of degree 0 endomorphism of a module is of dimension 1, then this module
is indecomposable. In chapter 4, we prove that concerning web modules the reciprocal
statement is true (see 4.3.3).

13Indeed, in the sl2 case, the modules associated with the objects alike non-elliptic webs constitute a
complete collection of projective indecomposable modules, see [Kho02].
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Theorem. If the space of endomorphisms with degree 0 of a web module has dimension
strictly bigger than 1, then it is decomposable and it contains another web-module as a
direct factor.

The proof of this result is done in two steps: in a first part, we give an explicit
geometrical construction of foams corresponding to non-trivial idempotents. In a second
part, we study webs in a combinatorial way to detect the web-modules which admits such
foams as endomorphisms.

The construction allows to exhibit many projective indecomposable Kε-modules which
are not web modules. Furthermore, due to its explicit nature, it permits formulate
conjectural answers to the stated problem: in all the examples we computed, the constructed
idempotents are enough to describe the decomposition of web modules as direct sum of
projective indecomposable modules.

The chapter 5 is relatively independent from the rest: we begin by giving an alternative
definition of the Kuperberg bracket through edge-colourings (this is to be compared with
[MOY98]). Then we established that all the edge-colourings of webs are close in some sense.
Finally we apply this result to compute partial traces in the TQFT described in chapter 2.



xxii ENGLISH INTRODUCTION



Chapter 1

Preliminaries

1.1 The Kuperberg bracket from representation theory

1.1.1 The Hopf-algebra Uq(sl3)

The algebra Uq(sl3) is a deformation of the enveloping algebra of the Lie algebra sl3 of
null-trace 3× 3-matrices of complex numbers. We give here a presentation of Uq(sl3) by
generators and relations. It comes with a structure of Hopf-algebra.

Definition 1.1.1. The algebra Uq(sl3) is the associative C(q
1
2 )-algebra1 with unit generated

by Ei, Fi, Ki and K−1
i for i = 1, 2 and subjected to the relations for i and j in {1, 2} and

i 6= j:

KiK
−1
i = K−1

i Ki = 1, K1K2 = K2K1,

KiEi = q2EiKi, KiFi = q−2FiKi,

KiEj = −q−1EjKi, KiFj = qFjKi,

(q1 − q−1)(EiFi − FiEi) = Ki −K−1
i , EiFj = FjEi,

E2
i Ej − [2]EiEjEi + EjE

2
i = 0,

F 2
i Fj − [2]FiFjFi + FjF

2
i = 0,

where [n] stands for qn−q−n
q−q−1 . The co-unit η : Uq(sl3) → C(q

1
2 ) the co-multiplication

∆ : Uq(sl3) → Uq(sl3) ⊗ Uq(sl3) and the antipode S : Uq(sl3) → Uq(sl3) are given by the
following formulae for i = 1, 2:

∆(K±1
i ) = K±1

i ⊗K
±1
i , η(K±1

i ) = 1, S(K±1
i ) = K∓1

i ,

∆(Ei) = Ei ⊗ 1 +K−1
i ⊗ Ei, η(Ei) = 0, S(Ei) = −KiEi,

∆(Fi) = 1⊗ Fi + Fi ⊗Ki, η(Fi) = 0, S(Fi) = −FiK−1
i .

In the sequence we will consider two special Uq(sl3)-modules: V + and V −. Both are
3-dimensional and they are dual to each other. The module V + is the Uq(sl3)-counterpart
of the fundamental representation of sl3. We detail in the next formulae the Uq(sl3)-module
structures of V + =

〈
e+
−1, e

+
0 , e

+
1

〉
C(q

1
2 )

and V − =
〈
e−−1, e

−
0 , e

−
1

〉
C(q

1
2 )

on the generators (all

1The construction can be done on C(q) but q 1
2 allows to have more symmetry in the formulae.

1
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the missing combinations are meant to be zero):

K1 · e+
−1 = e+

−1 K1 · e+
0 = −q−1e+

0 K1 · e+
1 = −qe1

K2 · e+
−1 = −q−1e+

−1 K2 · e+
0 = −qe+

0 K2 · e+
1 = e1

E1 · e+
0 = e+

1 F1 · e+
1 = e+

0
E2 · e+

−1 = e+
0 F1 · e+

0 = e+
−1

K1 · e−−1 = −q−1e−−1 K1 · e−0 = −qe−0 K1 · e−1 = e−1

K2 · e−−1 = e−−1 K2 · e−0 = −q−1e−0 K2 · e−1 = −qe−1
E1 · e−−1 = e−0 F1 · e−0 = e−−1
E2 · e−0 = e−1 F1 · e−1 = e−0

If ε = (ε1, . . . , εl) is a finite sequence of signs, we denote by V ε the C(q
1
2 )-vector space⊗l

i=1 V
εi endowed with the structure of Uq(sl3)-module provided by the co-multiplication

and by the action of Uq(sl3) on V + and V −. If ε is the empty sequence, then by convention
V ε is C(q

1
2 ) with the structure of Uq(sl3)-module given by the co-unit. We now define

several maps between the V ε’s:

b+− : C(q
1
2 )→ V + ⊗ V − 1 7→ qe+

−1 ⊗ e
−
1 + e+

0 ⊗ e
−
0 + q−1e+

1 ⊗ e
−
−1,

b−+ : C(q
1
2 )→ V − ⊗ V + 1 7→ q−1e−−1 ⊗ e

+
1 + e−0 ⊗ e

+
0 + qe−1 ⊗ e

+
−1,

σ+− : V + ⊗ V − → C(q
1
2 ) e+

−1 ⊗ e
−
1 7→ q, e+

0 ⊗ e
−
0 7→ 1, e+

1 ⊗ e
−
−1 7→ q−1,

σ−+ : V − ⊗ V + → C(q
1
2 ) e+

−1 ⊗ e
−
1 7→ q−1, e+

0 ⊗ e
−
0 7→ 1, e+

1 ⊗ e
−
−1 7→ q,

t+++ : C(q
1
2 )→ V (+,+,+) 1 7→ q

−3
2 e+

1 ⊗ e
+
0 ⊗ e

+
−1 + q

−1
2 e+

0 ⊗ e
+
1 ⊗ e

+
−1

+ q
−1
2 e+

1 ⊗ e
+
−1 ⊗ e

+
0 + q

1
2 e+

0 ⊗ e
+
−1 ⊗ e

+
1

+ q
1
2 e+
−1 ⊗ e

+
1 ⊗ e

+
0 + q

3
2 e+
−1 ⊗ e

+
0 ⊗ e

+
1 ,

t−−− : C(q
1
2 )→ V (−,−,−) 1 7→ q

−3
2 e−1 ⊗ e

−
0 ⊗ e

−
−1 + q

−1
2 e−0 ⊗ e

−
1 ⊗ e

−
−1

+ q
−1
2 e−1 ⊗ e

−
−1 ⊗ e

−
0 + q

1
2 e−0 ⊗ e

−
−1 ⊗ e

−
1

+ q
1
2 e−−1 ⊗ e

−
1 ⊗ e

−
0 + q

3
2 e−−1 ⊗ e

−
0 ⊗ e

−
1 .

These maps are slightly different from the one defined in [KK99], but they are more
symmetric in q and q−1. They all respect the structures of Uq(sl3)-modules.

Remark 1.1.2. The maps σ+− and σ−+ fix an isomorphism between the dual of V +

(resp. the dual of V −) and V − (resp. V +). Under this isomorphisms the basis (e+
−1, e

+
0 , e

+
1 )

and (q−1e−1 , e
−
0 , qe

−
−1) are dual to each other and the basis (e−−1, e

−
0 , e

−
1 ) and (qe+

1 , e
+
0 , q

−1e−−1)
are dual to each other.

Following Reshetikhin-Turaev [RT90], we use a diagrammatic presentation of these
maps (see figure 1.1, they should be read from bottom to top): a vertical strand represents
the identity, stacking diagrams one onto another corresponds to composition, and drawing
two diagrams side by side corresponds to taking the tensor product of two maps. The b’s,
σ’s and t’s allow us to define some other maps (e.g. t++

−
def= (idV (+,+)⊗σ+−)◦ (t+++⊗ idV −)

coherent with the diagrammatic presentation (see figure 1.2).
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idV + idV − b+− b−+ σ−+ σ+− t+++ t−−−

Figure 1.1: Diagrammatic description of b+−, b−+, σ−+, σ+−, t+++ and
t−−−.

t++
− t−−+ t+−− t−++ t−−− t+++

Figure 1.2: The maps t++
− , t−−+ , t+−−, t−++, t−−− and t+++.

Remark 1.1.3. It is a straightforward computation to check that the b’s, the σ’s and the
t′s can be composed so that the diagrammatic representation makes sense. We mean that
two isotopic diagrams represent the same map. One only need to check that the wave
moves hold:

(idV + ⊗ σ−+) ◦ (b+− ⊗ idV +) = idV + ,

and similar equalities with signs and orders changed. It can be computed by hands.

1.1.2 Webs, web tangles and the Kuperberg bracket

In this subsection we develop the diagrammatic point of view and use the representation
theory to define the Kuperberg bracket.

Definition 1.1.4 (Kuperberg, [Kup96]). A closed web is a cubic oriented graph (with
possibly some vertexless loops) smoothly embedded in R2 such that every vertex is either
a sink either a source.

Figure 1.3: Example of a closed web.

Remark 1.1.5. By graph we don’t mean simple graph, so that a web may have multi-edges.
The orientation condition is equivalent to say that the graph is bipartite (by sinks and
sources). The vertexless loops may be a strange notion from the graph theoretic point of
view, to prevent this we could have introduced some meaningless 2-valent vertices2.

Proposition 1.1.6. Every closed web contains at least, a circle, a digon or a square.

Proof. Let w be a closed web. One can suppose that the web w is connected for otherwise
we consider could an innermost connected component. Suppose that it is not a circle. Then
we use that the Euler characteristic of a connected plane graph is equal to 2:

χ(w) = #F (w)−#E(w) + #V (w) = 2,
2In this case the orientation condition is: around each vertex the flow module 3 is preserved.



4 CHAPTER 1. PRELIMINARIES

where F (w), E(w) and V (w) are the sets of faces, edges and vertices of w. Each vertex
is the end of 3 edges, and each edge has 2 ends, so that #V (w) = 2

3#E(w). Now
#F (w) =

∑
i∈N Fi(w) where Fi(w) denotes the number of faces of w with i sides. A web

being bipartite, Fi(w) is equal to 0 if i is odd. Each edges belongs to exactly two faces so
that

∑
iFi(w) = 2#E(w). This gives:

∑
i

Fi(w)− i

6Fi(w) = 2.

And this shows that at F2 or F4 must be positive.

Remark 1.1.7. Actually, we could have been more precise: if w is a connected closed web
which is not a circle, then there are at least three3 faces which have strictly less than 6
sides, furthermore, if w contains no digon, at least six4 of its faces are squares.

Definition 1.1.8. Let ε = ε1, ε2, . . . be a finite sequence of signs, i.e. of +1 and −1 The
length of ε is denoted l(ε). The sequence is said to be admissible if

∑l(ε)
i=1 ε

i ≡ 0 mod 3.

Definition 1.1.9. A (ε0, ε1)-web tangle w is an intersection of a closed web w′ with
R× [0, 1] such that:

• there exists η0 ∈]0, 1] such that w ∩ R× [0, η0] = {1, 2, . . . , l(ε0)} × [0, η0],

• there exists η1 ∈ [0, 1[ such that w ∩ R× [η1, 1] = {1, 2, . . . , l(ε1)} × [η1, 1],

• the orientations of the edges of w, match −ε0 and ε1 (see figure 1.4 to have the
conventions).

An ε-web is a (ε, ∅)-web tangle. If w is an ε-web, we define ∂w def= ε. And we say that ε is
the boundary of w. Note the flow modulo 3 is preserved everywhere on a web so that if ε is
not admissible, then there exists no ε-web.

+ + +

+ + − −

+ + +

+ + − −

Figure 1.4: Examples of (ε0, ε1)-web tangles with ε0 = (+,+,+) and
ε1 = (+,+,−,−).

If w is a (ε0, ε1)-web tangle and w′ is a (ε1, ε2)-web tangle we define the composition
ww′ to be the (ε0, ε2)-web tangle obtained by gluing w and w′ along ε1 and resizing.

Remark 1.1.10. The composition is not associative, this is associative only up to isotopy.

Notation 1.1.11. According to remark 1.1.3, one can associate a map of Uq(sl3)-modules
from V ε0 to V ε1 to any (ε0, ε1)-web tangle w. We denote by 〈w〉 this maps. We extend 〈·〉
linearly to C(q

1
2 )-linear combination of (ε0, ε1)-web tangles.

3Or two if one forbids the unbounded face.
4Or five if one forbids the unbounded face.
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Proposition 1.1.12 (Kuperberg, [Kup96]). We have the following equalities between maps
of Uq(sl3)-modules: 〈 〉

=
〈 〉

+
〈 〉

,〈 〉
= [2] ·

〈〉
,〈 〉

=
〈 〉

= [3]

The proof is a computation using the using the definitions of the maps σ’s b’s and t’s
given previously.

Definition 1.1.13. If w is a closed web, the 〈w〉 is can be seen as an element of C(q 1
2). It

can be checked (thanks to the relations of proposition 1.1.12) that this is actually always a
symmetric Laurent polynomial in q. This is called the Kuperberg bracket of w.

As a consequence of 1.1.6 and 1.1.12, the Kuperberg bracket of a closed web can be
computed completely via combinatorics (One can use [Lew11] to compute it on examples).
The web depicted on figure 1.3 has its Kuperberg bracket equal to 2 · [2]5 · [3]2.

Remark 1.1.14. The Kuperberg bracket of w evaluated in q = 1 gives the number of
edge-3-colourings of w. One can actually define a degree for 3-edge-colourings in order to
see the Kuperberg bracket as the graded number of 3-edge-colourings of w, see chapter 5
for details.

Definition 1.1.15. If w is a (ε0, ε1)-web tangle, we say that w is the conjugate of w if it is
the (ε1, ε0)-web tangle obtained from w by taking the symmetric of w with respect to the
line R× {1

2} and then change all the orientations (see figure 1.5). It’s clear that w = w.

+ + +

+ + − − + + +

+ + − −

Figure 1.5: These two web tangles are conjugate one to the other.

Notation 1.1.16. If ε is a sequence of signs we denote Bε = {bi}i∈Iε the base of V ε given
by the family (

ei1 ⊗ ei2 ⊗ · · · ⊗ eil(ε)

)
{i1,...,il(ε)}⊂{−1,0,1}

.

If b = ei1 ⊗ · · · ⊗ eil(ε) is an element of Bε, we denote bτ the element of Bε equal to
e−i1 ⊗ · · · ⊗ e−il(ε) We denote B?ε = {b?i }i∈Iε the dual base of Bε (this is a base of V −ε).

Proposition 1.1.17. Let w be an (ε0, ε1)-web tangle then if:

〈w〉 =
∑

b?0∈B
?
ε0

b1∈Bε1

λb1,b?0
b1 ⊗ b?0 and 〈w〉 =

∑
b?1∈B

?
ε1

b0∈Bε0

µb0,b?1
b0 ⊗ b?1,
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the λ’s and µ’s are Laurent polynomial in q
1
2 with integral non-negative coefficients which

satisfy:

λ bτ 0,( bτ 1)?(q) = λb0,b?1
(q−1), µ bτ 1,( bτ 0)?(q) = µb1,b?0

(q−1), and λb0,b?1
= µb1,b?0

.

Proof. These properties are stable by composition of webs and by performing tensor
products of w with some vertical strands. Hence we just have to show it for the elementary
webs depicted in figure 1.1. This is obviously true for the b’s and the σ’s. It remains to
show it for t+++ and t−−−. The point is then to compare t+++ (resp. t−−−) and t+++
(resp. t−−−). By definition we have:

t+++ = (idV (+,+,+) ⊗ t−−−) ◦ (idV (+,+) ⊗ σ+− ⊗ idV (−,−)) ◦ (idV + ⊗ σ+− ⊗ idV −) ◦ σ+−.

It is enough to compute t+++ on the element of B(+,+,+) and we have:

t+++(e+
1 ⊗ e

+
0 ⊗ e

+
−1) = q−3/2, t+++(e+

0 ⊗ e
+
−1 ⊗ e

+
1 ) = q−1/2,

t+++(e+
1 ⊗ e

+
−1 ⊗ e

+
0 ) = q−1/2, t+++(e+

0 ⊗ e
+
−1 ⊗ e

+
1 ) = q1/2,

t+++(e+
−1 ⊗ e

+
1 ⊗ e0) = q1/2, t+++(e+

−1 ⊗ e
+
0 ⊗ e

+
1 ) = q3/2,

and the evaluations of t+++ on all other elements of B(+,+,+) are equal to zero. So that we
have:

t+++ = q−3/2(e+
1 ⊗ e

+
0 ⊗ e

+
−1)? + q−1/2(e+

0 ⊗ e
+
−1 ⊗ e

+
1 )?

+ q−1/2(e+
1 ⊗ e

+
−1 ⊗ e

+
0 )? + q1/2(e+

0 ⊗ e
+
−1 ⊗ e

+
1 )?

+ q1/2(e+
−1 ⊗ e

+
1 ⊗ e

+
0 )? + q3/2(e+

−1 ⊗ e
+
0 ⊗ e

+
1 )?.

Comparing this formula to the definition of t+++ given page 2, gives the result for t+++.
It remains to check the result for t−−− for which the computations are similar.

Suppose that w is an ε-web, then we can write 〈w〉 =
∑
b∈Bε λbb

?, but with these
notations we have 〈w〉 =

∑
b∈Bε λbb, so that we have:

〈ww〉 =
∑
b∈Bε

λ2
b .

Notation 1.1.18. We denote by Z[q, q−1]s (resp. N[q, q−1]s) the space of symmetric
Laurent polynomial (resp. , the space of symmetric Laurent polynomial with non-negative
coefficient). The degree deg(P ) of a symmetric Laurent polynomial is defined to be the
degree of its polynomial part.

Proposition 1.1.19. Let (wi)i∈I a finite collection of ε-web and (Pi)i∈I a collection of
non-zero Laurent polynomials in N[q, q−1]s. Let W =

∑
i∈I Piwi and W =

∑
i∈I Piwi. Then〈

WW
〉
belongs to N[q, q−1]s, its evaluation on any non-zero real number is non-negative,

and if it has degree n then there exists i0 ∈ I such that P 2
i0 〈wi0wi0〉 = 〈Pi0wi0Pi0wi0〉 has

degree n.

Proof. The fact that
〈
WW

〉
=
∑
PiPj 〈wiwj〉 is a symmetric Laurent polynomial with

non-negative coefficients follows from the fact that for any closed web w, 〈w〉 is a symmetric
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Laurent polynomial with non-negative coefficients. For each web wi we set: 〈wi〉 =∑
b∈Bε λb,ib

?, we then have: 〈
WW

〉
=

∑
b∈Bεi,j∈I

Piλb,iPjλb,j .

Let i0 be an element of I and b0 and element of B such that the degree of Pi0λb0,i0 is
maximal (this Laurent polynomial need not to be symmetric, we consider the degree of the
polynomial part of it), as every coefficient is positive, we have:

deg
〈
WW

〉
= deg(Pi0λb0,i0)2 = degP 2

i0 〈wi0wi0〉 .

Definition 1.1.20. Let ε be an admissible sequence of signs. We denote Sε the Z[q, q−1]-
module generated by ε-webs modulo isotopy and quotiented by the relations of 1.1.12.

Definition 1.1.21. An (ε0, ε1)-web tangle or an ε-web is said to be non-elliptic if it
contains no vertex-less loop, no digon and no square.

Theorem 1.1.22 (Kuperberg,[Kup96]). Let ε be an admissible sequences of signs, then the
set (〈w〉)w∈NE(ε) is a base of homUq(sl3)(V ε,C(q

1
2 )) where NE(ε) is a set of representatives

of isotopy classes of non-elliptic ε-webs.

This theorem implies that for a fixed ε they are finitely many isotopy classes of
non-elliptic ε-webs and that the following proposition holds:

Proposition 1.1.23. The Z[q, q−1]-module Sε is free and the non-elliptic ε-webs form a
basis called the Kuperberg basis. Furthermore if an ε-web w =

∑
Piwi with wi non-elliptic

webs, then the Pi’s are unique have only non-negative coefficient and are symmetric in q
and q−1.

1.2 The sl3-TQFT

We fix R to be a commutative ring with unit, the orignal construction is done over Z and
in chapter 4 we will need to work over Q (actually over any a field of characteristic 0).

In this section we recall a construction of [Kho04] (see [MV07] or [MN08] for alternative
descriptions). We first describe the category Foam, which is a generalisation of the category
Cob1+1 of cobordisms where instead of 1-manifolds we have webs. Then we will explain
the constuction of the TQFT-functor of Khovanov [Kho04] from Foam to the category of
graded R-module.

Definition 1.2.1. A pre-foam is a smooth oriented compact surface Σ (its connected
components are called facets) together with the following data:

• A partition of the connected components of the boundary into cyclically ordered
3-sets and for each 3-set (C1, C2, C3), three orientation preserving diffeomorphisms
φ1 : C2 → C3, φ2 : C3 → C1 and φ3 : C1 → C2 such that φ3 ◦ φ2 ◦ φ1 = idC2 .

• A function from the set of facets to the set of non-negative integers (this gives the
number of dots on each facet).
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The CW-complex associated with a pre-foam is the 2-dimensional CW-complex Σ quotiented
by the diffeomorphisms so that the three circles of one 3-set are identified and become one
circle called a singular circle. The degree of a pre-foam f is equal to −2χ(Σ′) where χ is
the Euler characteristic, Σ′ is the CW-complex associated with f with the dots punctured
out (i.e. a dot increases the degree by 2).

Figure 1.6: Example of a prefoam: the dotless theta pre-foam.

Remark 1.2.2. The CW-complex has two local models depending on whether we are on
a singular circle or not. If a point x is not on a singular circle, then it has a neighborhood
diffeomorphic to a 2-dimensional disk, else it has a neighborhood diffeomorphic to a Y
shape times an interval (see figure 1.7).

Figure 1.7: Singularities of a pre-foam.

Definition 1.2.3. A closed foam is the image of an embedding of the CW-complex
associated with a pre-foam such that the cyclic orders of the pre-foam are compatible
with the left-hand rule in R3 with respect to the orientations of the singular circles5 (see
figure 1.8). The degree of a closed foam is the degree of the underlying pre-foam.

Figure 1.8: Orientation condition of closed foams. This figure represents
a cutted view around a singular circle. The singular circle is locally
oriented from bottom to top (orientation represented by �), while the
thin arrows indicate how the 3 facets are cyclically ordered.

Definition 1.2.4. If wb and wt are closed web, a (wb, wt)-foam f is the intersection of a
foam f ′ with R× [0, 1]× [0, 1] such that

• there exists ηb ∈ ]0, 1] such that f ∩ R× [0, 1]× [0, ηb] = wb × [0, ηb],
5We mean here that if, next to a singular circle, with the forefinger of the left hand we go from face 1 to

face 2 to face 3 the thumb points to indicate the orientation of the singular circle (induced by orientations
of facets). This is not quite canonical, physicists use in general the right-hand rule, however this is the
convention used in [Kho04].
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• there exists ηt ∈ [0, 1[ such that f ∩ R× [0, 1]× [ηt, 1] = wt × [ηt, 1],

with compatibility of orientations of the facets of f with the orientation of wt and the
reversed orientation of wb. The degree of a (wb, wt)-foam f is equal to χ(wb)+χ(wt)−2χ(Σ)
where Σ is the underlying CW-complex associated with f with the dots punctured out.

Definition 1.2.5. The category Foam is the category whose objects are closed webs and
whose morphisms between wb and wt are finite R[q−1, q]-linear combinations of isotopy
classes of (wb, wt)-foam

The construction of the TQFT relies on a strategy developed in [BHMV95] called
universal construction. The idea is to construct a numerical invariant for closed cobordisms
(here closed foams) and thanks to this numerical6 invariant to define a TQFT. The
functoriality of the construction will be straightforward while the finite dimensional property
will be the important point to check.

Collection of circles and surfaces are special cases of webs and foams, so that the TQFT
arising from the construction will be in particular a “classical” TQFT. We begin by settling
this up.

Definition 1.2.6. We denote by A the Frobenius algebra R[X]/(X3) with trace τ given
by:

τ(X2) = −1, τ(X) = 0, τ(1) = 0.

We equip A with a graduation by setting deg(1) = −2, deg(X) = 0 and deg(X2) = 2.
With these settings, the multiplication has degree 2 and the trace has degree -2. The
co-multiplication is determined by the multiplication and the trace and we have:

∆(1) = −1⊗X2 −X ⊗X −X2 ⊗ 1
∆(X) = −X ⊗X2 −X2 ⊗X
∆(X2) = −X2 ⊗X2

This Frobenius algebra gives us a (1+1)-TQFT (this is well-known, see [Koc04] or
[Kad99] for details), we denote it by F : the circle is sent to A, a cup to the unity, a cap
to the trace, and a pair of pants either to multiplication or co-multiplication. A dot on
a surface represents multiplication by X so that F extends to the category of oriented
dotted (1+1)-cobordisms. We then have a surgery formula given by figure 1.9. In particular

= − − −

Figure 1.9: The surgery formula for the TQFT F .

this TQFT gives rise to a numerical invariant for closed surfaces (still denoted by F).
To compute this invariant one just need the surgery relation and the fact that a sphere
evaluates to 0 unless is carries 2 dots and in this circumstance its evaluation is equal to -1.

6By numerical we will always mean R-valued, where R is the commutative ring choose at the beginning
of this section.
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For example the value affected to a dotless torus is equal to 3:

= − − −

= −3 = 3

Proposition 1.2.7. There exists a unique extension (still denoted by F) of the numerical
invariant F to pre-foams satisfying the following conditions:

• F is multiplicative with respect to the disjoint union of pre-foams.

• F satisfies the surgery formula for pre-foams, meaning that if f , f1, f2 and f3 are the
same pre-foams except in a small ball where they looks like the terms in the formula
of the figure 1.9, then we have F(f) = −F(f1)−F(f2)−F(f3).

• The values of F of dotted theta pre-foams is given by figure 1.10.

F7→ 1 F7→ −1

Figure 1.10: The evaluations of dotted theta pre-foams, the cyclic order
on facets being top < middle < bottom (this fits the convention of
figure 1.8). Theta pre-foams with other dots configurations are sent to 0.

Proof. It’s clear that for any pre-foam the relations given are enough to compute the value:
with the surgery formula, one can separate the pre-foam into a collection of theta pre-foams
and of closed surfaces, and for such pre-foam the relation gives directly the invariant, this
proves the uniqueness of such an invariant.

To prove the existence, one should check that these relations are consistent. The
consistency on dotted surfaces comes from the fact that F is a functor. The only way
to evaluate F on pre-foams with this rules, is to separate this foams into (dotted) theta
pre-foams and surfaces, one only has to check that the evaluation does not change when
one first performs a surgery on a theta pre-foam and then evaluates, or just evaluate the
theta pre-foam. This is can be checked by an easy computation.

Remark 1.2.8. Note that the surgery is a homogeneous relation and that all non-trivial
evaluation of F on dotted theta pre-foam concerns degree 0 pre-foams. This is true as well
for the evaluation on dotted surfaces, so that if f is a pre-foam such that F(f) 6= 0, then f
has degree 0.

Definition 1.2.9 (Universal construction à la BHMV). Let w be a web, we consider
the graded R-module G(w) freely generated by any (∅, w)-foams (grading comes from the
grading of foams). This is endowed with a bi-linear form < ·, · >: if (f, g) is a pair of
(∅, w)-foams, then we define < f, g > to be F(gf) where F is the numerical invariant and
gf is the foam obtained by gluing f and the mirror image of g along w. We defined F(w)
to be G(w)/Ker < ·, · >.
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Note that G(w) is still graded because of remark 1.2.8. Note as well that this construction
gives the value of the functor F on (w1, w2)-foams: a (w1, w2)-foam f can be naturally seen
as a linear map from G(w1) to G(w1) with degree deg f , and this map respects the quotient
by Ker < ·, · >.

Theorem 1.2.10 (Khovanov, [Kho04]). Let w be a web, then F(w) is a free graded
R-module of graded dimension equal to 〈w〉.

The statement is actually more precise: Khovanov gives explicit isomorphism corre-
sponding to the relation of proposition 1.1.12: he shows that the following 3 pairs of
morphisms are mutually inverse isomorphisms (the brackets stand for degree shifts):

−




−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−( ) {−2} ⊕ ⊕ {2}


−


−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−( ) {−1} ⊕ {1}




−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−

−




⊕

To show this he first proves that some locale relation holds. We give some of them on
figure 1.11 (see page 13).
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These three isomorphisms together with proposition 1.1.6 gives a way to compute an
homogeneous base of the space F(w) for any closed web w (note that one has to make
choices so that the computed base is not unique).

These three isomorphisms together with proposition 1.1.6 and the fact that the surgery,
the evaluations of dotted sphere and the dotted theta foams are enough to compute the
value of any closed foams shows the following proposition:
Proposition 1.2.11. We consider the set FR of local relations which consists of:
• the surgery relation,

• the evaluations of the dotted spheres and of the dotted theta-foams,

• the square relations and the digon relations (see figure 1.11).
We call them the foam relations or relations FR, then for any closed web w F(w) is
isomorphic to G(w) modded out by FR.

1.3 The sl3-homology for links
Using this TQFT functor, Khovanov [Kho04] constructs an homological invariant for
oriented links which categorifies the sl3-polynomial: we explain here the construction. We
do not repeat the proof of invariance under Reidemeister moves.

1.3.1 Smoothings

Definition 1.3.1. Let D be an oriented link diagram. A smoothing function for D is
a function φ from the set of crossings of D to {0, 1}. Let c be a crossing of D and φ a
smoothing function for D such that φ(c) = 0, we denote by φc the smoothing function
equal to φ everywhere but on c where we have φc(c) = 1. The size of φ is the number of
times it takes the value 1. We denote it by |φ|.
Definition 1.3.2. Let D be an oriented link diagram and φ a smoothing function for D.
Then we define the φ-smoothing of D to be the closed web obtain from D by replacing
each crossing c by its φ(c)-smoothing (see figure 1.12 for definitions of 0-smoothing and
1-smoothing). We denote it by Dφ.

1.3.2 The chain complex

Definition 1.3.3. Let I be a finite set and C an additive category, then a naive I-hypercube
in C is a family (Xφ)φ∈{0,1}I of object of C together with a family of maps diφ : Xφ → Xφi

where φ is in {0, 1}I i is in I such that φ(i) = 0, and φi is the same application except that
φi(i) = 1, and the compositions of any two pairs of maps are compatible, we mean, than
whenever it makes sense:

dkφi ◦ d
i
φ = diφk ◦ d

k
φ. (1.1)

As before, we denote
∑
i∈I φ(i) by |φ|.

Definition 1.3.4. Given I a finite set, H = (X∗, d∗) a naive I-hypercube in an additive
category and ≺ a total order on I one can form the complex C∗(H,≺) by setting for all n
in [0,#I]:

Cn =
⊕

φ such that |φ|=n
Xφ
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= − =

= = = 0

= − =

= −

= −

= −

= − −

+ + = 0

+ + = 0

+ + = 0

Figure 1.11: The first 3 lines are called bubbles relations, the 2 next are
called bamboo relations, the one after digon relation, then we have the
square relation and the 3 last ones are the dots migration relations.
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0-smoothing

1-smoothing

1-smoothing

0-smoothing

Figure 1.12: Definition of the 0-smoothing and the 1-smoothing.

Remark 1.3.5. This definition is designed to change the commutation formula for I-
hypercubes to an anti-commutation relation so that it’s straightforward that C(H,≺) is a
complex. For ≺1 and ≺2 to give order, there exits a canonical isomorphism from C(H,≺1)
to C(H,≺2). For I a finite set, one can choose any order ≺ and construct C(H,≺), this is
why, in the sequel, we will forget to mention the order and just write C(H), considering
one of all possible order on I. For further discussion on signs convention we refer to
Deligne[MASD73, Exposé 17]. Strictly speaking this is a co-chain complex, therefor one
should speak about sl3-cohomology, however we follow the vocabulary from the community.

Figure 1.13: Singular Saddles (called as well zip and unzip). These
are the non-trivial parts of the foams inducing the differentials in the
complex for positive crossings on the left, and for the negative crossings
on the right (the cobordisms are read from bottom to top).

Definition 1.3.6. Let D be link diagram. Let I be the set of crossings of D. We define
H(D), the hypercube of smoothings of T , to be the I-hypercube where Hφ is the image by
the functor F of the smoothing φ of D with a degree shift equal to minus the length of
φ (note that with this degree shift the differential are homogeneous). For φ a smoothing
function and c a crossing such that φ(c) = 0, the differential dcφ is the images by F of the
foam which is everywhere identity but next to the crossing c where it is given by figure 1.13.

It’s clear that the differential satisfy the compatibility relation because the foams
representing differentials have their non-trivial pieces on different places, so that the
compositions in any order are homotopic, and hence the induced maps are equal. The
complex C(D) of smoothing of D is the complex C(H(D)){3n− − 2n+}[−n−] where [·]
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denotes an homological degree shift, {·} the degree shift and n+ (resp. n−) the number of
positive (resp. negative) crossings of the diagram D.

Theorem 1.3.7 (Khovanov [Kho04]). If two link diagrams represent the same link, then,
their complexes of smoothing are homotopic.

To prove this theorem, Khovanov exhibits some homotopy equivalences between com-
plexes of smoothings of diagrams related by Reidemeister moves.
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Chapter 2

The sl3-homology for tangles

The aim of this chapter is to define the sl3-homology for tangles. This is a functor-valued
invariant which extend to tangles the sl3-homology for links defined in [Kho04]. In this
purpose, we mimic the strategy of [Kho02] and define a (0+1+1)-TQFT. The central
objects of this construction are the algebroids Kε (or the algebras Kε). They both come
from some algebroids big K̃ε. Even if for simplicity we will just work with the algebra
versions of these objects, we recall some facts on algebroids because they are the natural
framework to work with. Then we detail the construction of the (0+1+1)-TQFT and of
the sl3-homology for tangles. A short version of this chapter can be found in the first part
of [Rob12]. We emphasise that the algebras Kε were defined independently by Mackaay,
Pan and Tubbenhauer in [MPT12].

2.1 Reminder on algebroids
The structure of algebroid is a generalisation of the structure of algebra. If one sees an
algebra as the set of endomorphisms of an object in an appropriate category (the product
being transposed to the composition), it is natural to consider the whole category instead
of just one object. This leads to the notions of algebroids. We give two different approaches
to algebroids the first one is the classical one, the second is less elegant but somewhat
easier to manipulate. In this section k will be a commutative ring.

2.1.1 The genuine algebroids from category theory

All the material here comes from [Mit85]. For the set theoretical issues we refer to [KS06],
[ML98] and [GV72, Exposé 1, section 0].

Definition 2.1.1. A category C is small if Ob(C) and hom(C) are sets. A locally small
category D is a category such that for every pair of objects (a, b) of D, hom(a, b) is a set.
A category which is not small is large.

Definition 2.1.2. A k-category is a locally small category such that each of its homset is
given a k-module structure and such that the composition of morphisms is a k-bilinear
map. A k-functor between two k-categories C1 and C2 is a functor F from C1 to C2 such
that for any objects a and b the map induced by F from homC1(a, b) to homC2(Fa, Fb) is
k-linear.

The composition of two k-functors is a k-functor and the identity functor is a k-functor
so that there is a natural notion of (large) category of k-categories. One can also define a

17
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k-linear category to be a category enriched over the category of k-modules, in this context
a k-functor is an enriched functor.

Example 2.1.3. A Z-category is an additive category, and a Z-functor is an additive
functor. If A and A′ are two k-categories then the tensor product of A and A′ is the
k-category A⊗A′ defined by:

Ob(A⊗A′) = Ob(A)×Ob(A′),
homA⊗A′

(
(a, a′), (b, b′)

)
= homA (a, b)⊗ homA′

(
a′, b′

)
,

where the tensor product is over k (all unadorned tensor products mean tensor products
over k).

Definition 2.1.4. A k-algebroid is a small k-category. A k-algebra is a k-algebroid with
one object.

Example 2.1.5. Let n be a positive integer, the algebroid kn is defined as follows: the
objects are 1, . . . , n, and hom(n1, n2) = k for all n1 and n2 in [1, n]. The composition is
given by the multiplication of k. As we shall seeMn(k) is the regularized algebra of kn.
The ring k is considered as a k-algebroid (actually as an algebra) via k1. Note that if A is
a k-algebroid, the opposite category Aop is as well a k-algebroid.

The notion of k-algebra is equivalent to the classical notion of k-algebra. A k-algebroid
is a k-algebra “with several objects”.

Definition 2.1.6. Let A and B be two k-algebroids, a left A-module (or simply A-module)
is a functor from A to k-mod, the category of k-modules, a right A-module (or simply
module-A) is a functor from Aop to k-mod. A (A,B)-bimodules (or simply a A-module-B)
is a functor from A⊗ Bop to k-mod.

Notation 2.1.7. Let A be an algebroid, and M be a A-module. If a and b are two objects
of A, we denote by Aa b the hom-set homA(b, a). An element of A is an element of one of
the Aa b for a and b two objects of A. If x ∈ Aa b and y ∈ Ab c, we denote by x · y or xy
the composition x ◦ y (this is then an element of Aa c). If a is an object of A, we denote
Ma the k-module M(a). If m is an element of Mb , and x and an element of Aa b, then we
denote by x ·m the image of m by the k-module map M(x), this is an element of Ma . We
have similar notations for right modules and bimodules.

With these notations we recover the classical intuition that a A-module is a set endowed
with an action of A.

Example 2.1.8. Let A be a k-algebroid, then A can be seen as a A-module: an object
a of A is sent on

⊕
b∈A Aa b, an element x of Aa b acts by composition on the left (i.e. by

multiplication). For the same reasons, A can be seen as a module-A and as a A-module-A.

Definition 2.1.9. Given a A-module M we say that N is a sub-A-module of M if N is a
A-module and if for every object a of A, Na ⊂ Ma and for every element x of Aa b, the
map N(x) is the restriction of M(x) to the set Nb . We have an analogous definition for
sub-module-A and for sub-bimodule.

Definition 2.1.10. Let A1, A2 and A3 be three k-algebroids, M a A1-module-A2 and N
a A2-module-A3. Then we define the A1-module-A3 M ⊗A2 N , the tensor product of M
and N :

(M ⊗A2 N)a1 a3 =

 ⊕
a2∈Ob(A2)

Ma1 a2 ⊗ Na2 a3

/ Ia1 a3 ,
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where Ia1 a3 is the k-module generated by{
mx⊗ n−m⊗ xn |x ∈ A2, m ∈ Ma1 , n ∈ Na3

}
.

The action of A1 and Aop
3 on M ⊗A2 N is induced by the action of A1 (resp. Aop

3 ) on M
(resp. N).

Definition 2.1.11. Let A be a k-algebroid and M and N be two A-modules, a morphism
φ = (φa)a∈Ob(A) between M and N is a natural transformation between M and N i.e. a
collection of maps (φa : Ma → Na )a∈Ob(A) such that for every pair of objects a and b of A
and every x in Aa b the following diagram commutes:

Ma

Na

Mb

Nb

M(x)

φa φb

N(x)

With our notations the natural transformation condition for φ is written:

φa(x ·m) = x · φb(·m) for x ∈ Aa b and m ∈ Mb .

We will often omit the index of φ, so that this last condition looks exactly like a linearity
condition. When considering right modules or bimodules the notations are adapted to be
natural. We can therefor form the category A-mod of A-modules. This is a k-category so
in particular this is an abelian category.

Remark 2.1.12. When one has a classical k-algebra A, one can always consider the
forgetful functor which goes from A-mod to k-mod. One may wonder what this functor
becomes in our context. Let A be a k-algebroid, we will denote the forgetful functor from
A-mod to k-mod (by convention k = k1 and has just one object called 1, see example 2.1.5)
by For. It is defined as follows:

M ∈ A-mod 7−→ For(M) :
{

1 7−→
⊕

a∈Ob(A) Ma
x ∈ k 7−→

∑
a∈Ob(A) x · id Ma

(φ : M → N) 7−→ For(φ) =
∑
a∈Ob(A) φa

In a similar way, one can define a functor from the category A-mod-B to A-mod (or mod-B)
which forget the structures of modules-B (or of A-modules).

Definition 2.1.13. Let A and B be two k-algebroids, we say that A and B are Morita
equivalent if their categories of modules are equivalent i.e. if there exist two functors F
and G such that F ◦G ' idA-mod and G ◦ F ' idB-mod.

Remark 2.1.14. The Morita equivalence is, as usual, an equivalence relation.

Definition 2.1.15. Let A be a k-algebroid with finitely many objects indexed by a set X.
We call regularized algebra of A and denote C(A), the k-algebroid with only one object and
with hom-space given by

⊕
(x,y)∈X2 homA(x, y). Where the direct sum is seen in k-mod

and where the composition of two un-composable morphisms in A is defined to be 0.
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With this definition, it’s easy to check that C(A) is a k-algebroid and has only one
object, so that it can be seen as a k-algebra. This construction works as well when A has
infinitely many objects but the resulting k-algebra has no unity.

Proposition 2.1.16 ([Mit85]). If A is a k-algebroid with finitely many objects then, A
and C(A) are Morita equivalent.

Definition 2.1.17. Let A be a k-algebroid, (ai)i∈I a collection of objects of A, and
e = (ei)i∈I a collection of idempotents (e. g. the identity morphisms of the ai) such that
for every i, ei belongs to Aai ai . Then we defined the k-algebroid Ae as follows: the objects
of Ae are elements of I, and the hom-sets are given for every i and j in I by:

(Ae)i j = ei Aai ajej .

We call this k-algebroid the sub-algebroid of A modelled on e.

If A is a k-algebroid, and e like in 2.1.17 one can defined two natural bimodules:
E is the Ae-module-A defined by Ei a = ei Aai a and F is the A-module-Ae defined by
Fa i = Aa ai for every i ∈ Ob(Ae) and a ∈ Ob(A).

Theorem 2.1.18 ([BHMV95]). Let A be a k-algebroid, e like in definition 2.1.17 and E
and F as before. Suppose that the collection e of idempotents generates A as a A-module-A,
then the Ae-module-Ae E ⊗A F is isomorphic to Ae and the A-module-A F ⊗Ae E is
isomorphic to A. Consequently A and Ae are Morita equivalent.

2.1.2 Algebroids revisited

In this subsection we give a very elementary approach to algebroids. We redefined the
terms algebroids, modules, etc. This is not quite standard but this is a down-to-earth
presentation of these notions. We will restate and prove the results given in 2.1.1. In this
section all algebras are associative, and by non-unital, we mean “possibly non-unital”.

Definition 2.1.19. Let I be a set, and let (A, ·A) be a non-unital k-algebra. We say that
A is k-algebroid (with objects in I) if there exists a decomposition of A as a direct sum:

A =
⊕
i,j∈I

Ai j

such that:

(i) for every i, j, p and q in I, Ai j · Ap q = {0} if j 6= p;

(ii) for every i, j and p in I, Ai j · Aj p ⊆ Ai p;

(iii) for every i in I, there exists an element 1i ∈ Ai i such that:

∀j ∈ I, ∀x ∈ Ai j , 1i · x = x and ∀j ∈ I, ∀x ∈ Aj i, x · 1i = x.

In the following we denote I by Ob(A), and for i ∈ Ob(A) we write Ai for
⊕

j∈I Ai j and
Ai for

⊕
j∈I Aj i.

Note that the previous definition implies that the elements 1i (for i in Ob(A)) are
unique.
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Example 2.1.20. Unital k-algebras can be seen as k-algebroids with one object. If I is a
set and (Ai)i∈I is a collection of k-algebras, then the direct sum of the Ai is a k-algebroids
with object in I by setting Ai i = Ai and Ai j = {0} for i 6= j. Note that if A is a k-algebroid,
Aop, the opposite (non-unital) k-algebra can be given a structure of k-algebroid with the
same set of objects by setting (Aop)i j = Aj i for all i and j in Ob(A) = Ob(Aop).

Definition 2.1.21. Let A be a k-algebroid, and M be a module over the underlying
(non-unital) algebra A. We say that M is a left module over the k-algebroid A (or simply
a A-module) if we have the following decomposition of M as a k-module:

M =
⊕

i∈Ob(A)
1iM. (2.1)

We denote the 1iM by Mi . Note that if i 6= j, Ai · Mj = {0}, and that Aj i · Mi ⊆ Mj .
Similarly we define a right module and a bimodule.

Remark 2.1.22. Note that the fact that the sum is direct follows from the k-algebroid
structure of A, hence the only non-trivial requirement for M is that M ⊆

∑
i∈Ob(A) Mi .

Example 2.1.23. A k-algebroid A can be seen as a left module, a right module or
bi-module on itself. If M and N are two A-modules, then M ⊕N is a A-module.

Definition 2.1.24. Let A be an k-algebroid, M and N be two A-modules, and ϕ be
a A-linear map from M to N (here A is seen as non-unital algebra). The map ϕ is a
A-module map if for all i in Ob(A), ϕ( Mi ) ⊆ Ni . A A-module map ϕ a sum of maps
(ϕi)i∈Ob(A) with ϕi : Mi → Ni for all i in Ob(A). Given a k-algebroid A one can consider
the category of A-modules, whose objects are A-modules and morphisms are A-module
maps.

In the definition of A-modules maps, the last condition is always satisfied, since it
comes from the A-linearity of the map ϕ. This gives us the following lemma:

Lemma 2.1.25. Let A be a k-algebroid , the category A-mod of A-modules is a full
sub-category of the category of module over the underlying non-unital algebra A.

Definition 2.1.26. The tensor product over A is the tensor product over A as a non-unital
algebra. With this tensor product the category A-mod becomes a monoidal category. Two
k-algebroids are Morita equivalent when their categories of modules are equivalent.

Remark 2.1.27. (a) For A a non-unital algebra and M a A-module, there is no reason
that A⊗AM 'M as a A-module, however, this holds for algebroids.

(b) The algebroid homA-mod(A,A) needs not to be isomorphic to A, one explanation for
this is that while the k-algebra of endomorphisms is unital (via idA), the k-algebra A
may not be unital.

(c) The Morita equivalence is an equivalence relation.

Definition 2.1.28. Let A be a k-algebroid such that Ob(A) is finite, then the underlying
non-unital algebra is actually unital, and we denote this algebra by C(A) and call it the
regularised algebra of A.

Proposition 2.1.29. If A is a k-algebroid with finitely many objects, then A and C(A)
are Morita equivalent.



22 CHAPTER 2. THE sl3-HOMOLOGY FOR TANGLES

Proof. This is actually obvious because A-mod is by definition the full subcategory of
C(A)-mod with object satisfying relation (2.1). But every C(A)-mod satisfies this relation.
So that A-mod and C(A)-mod are the same category.

The end of this section is devoted to prove theorem 2.1.18 in our new context. Let A
be a k-algebroid and I a subset of Ob(A). For all i ∈ I, let us choose ei an idempotent
element of Ai i. Let us consider B the k-algebroid (with objects in I) given by:

Bi j = ei · Ai j · ej .

Suppose now that A, as a A-module-A, is generated by the family (ei)i∈I . We want to
show that in this situation, the k-algebroids A and B are Morita equivalent. We consider
E the sub-B-module-A of A and F the sub A-module-B of A, given by:

Ei a = ei · Ai a and Fa i = Aa i · ei.

We claim that E ⊗A F ' B as a B-module-B and F ⊗B E ' A as a A-module-A. The
isomorphisms are given by:

ϕ : E ⊗A F −→ B
eix⊗ yej 7−→ eixyej ,

and ψ : F ⊗B E −→ A,
xei ⊗ eiy 7−→ xeiy.

The fact that ϕ is an isomorphism is clear, for ψ, this is a little less obvious. We know
that A is generated by the family (ei)i∈I as a A-module-A, hence for every object a of A ,
we can express 1a as a finite sum:

1a =
∑
i

x
(a)
i eiy

(a)
i ,

where x(a)
i belongs to Aa i and y

(a)
i belongs to Ai a. Now let us define ξ:

ξ : A −→ F ⊗B E,
Aa b 3 z 7−→

∑
i x

(a)
i ei ⊗ eiy(a)

i z =
∑
j zx

(b)
j ej ⊗ ejy(b)

j

The maps ξ and ψ are mutually inverse, so that ψ is an isomorphism. And this proves that
the functors E ⊗A _ and F ⊗B _ gives an equivalence of categories between A-mod and
B-mod. For this last step, it is important that A and B are algebroids (see remark 2.1.27).

Definition 2.1.30. The 2-category k-Aloid is given by the following data:

• 0-objects: k-algebroids,

• 1-morphisms from A1 to A0: A0-module-A1,

• 2-morphisms between two A0-modules-A1 M and N : maps of A0-module-A1 between
M and N .

The composition of 1-morphisms is given by the tensor product over the appropriate
algebroid and the identity morphism of a k-algebroid A is A seen as a A-module-A (see
remark 2.1.27).
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2.2 A sl3-TQFT with corners

The aim of this part is to extend the (webs,foams)-TQFT F defined in 1.2 to web tangles
and “foams with corners”. We want to recover the functor F when a web tangle is a closed
web, and when a foam has no corner. Furthermore we want to have a gluing formula,
i.e. if w0 and w1 are two composable web tangles we want that F(w0w1) to be obtained
by “gluing” F (w0) and F (w1) (see lemma 2.2.16). This last requirement will be satisfied if
our extension is a 2-functor. To do this, we follow the strategy of [Kho02]. In the sequel R
will be a commutative ring (the same as in chapter 1).

2.2.1 The 2-category sl3-2-Foam

A 2-functor goes from a 2-category to another 2-category. We give details here of the
source 2-category of “foams with corners”.

Definition 2.2.1. Let ε0 and ε1 be two sequences of signs. If wb and wt are (ε0, ε1)-web
tangles, a (wb, wt)-foam f is the intersection of a foam f ′ with R× [0, 1]× [0, 1] such that:

• there exists η0 ∈]0, 1] such that f ∩R× [0, η0]× [0, 1] = {1, 2, . . . , l(ε0)}× [0, η0]× [0, 1],

• there exists η1 ∈ [0, 1[ such that f∩R× [η1, 1]× [0, 1] = {1, 2, . . . , l(ε1)}× [η1, 1]× [0, 1],

• there exists ηb ∈]0, 1] such that f ∩ R× [0, 1]× [0, ηb] = wb × [0, ηb],

• there exists ηt ∈ [0, 1[ such that f ∩ R× [0, 1]× [ηt, 1] = wt × [ηt, 1].

We require as well the compatibility of the orientations of the facets of f with the reversed
orientations of wb and with the orientations of wt (see figure 2.1). If fb is a (wb, wm)-foam

I × ε0 I × ε1

f

wt

wb

Figure 2.1: A (wb, wt)-foam, the small parts located between the bound-
ary and the dotted lines are cartesian products of the boundary times a
small interval.

and ft is a (wm, wt)-foam we define ft ◦ fb the composition of fb and ft to be the (wb, wt)-
foam obtained by gluing fb and ft along wm and resizing (see figure 2.2). We define deg f ,

I × ε0 I × ε1

ft

wt

wm

I × ε0 I × ε1

fb

wm

wb

I × ε0 I × ε1

ft ◦ fb

wt

wm

wb

Figure 2.2: The composition of fb and ft.
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the degree of a (wb, wt)-foam f by the following formula:

deg(f) = −2χ(f̃) + χ(wb) + χ(wt),

where f̃ is the foam f with the dots on its facets punctured out.

Definition 2.2.2. The 2-category sl3-2-Foam is the (non-strict) 2-category with:

• 0-objects: admissible sequences of signs;

• 1-morphisms between ε0 and ε1: pairs (w, n) with w a (ε0, ε1)-web tangle, and n an
integer;

• 2-morphisms between (wb, nb) and (wt, nt): R-linear combinations of (wb, wt)-foams
up to ambient isotopy relative to the boundary.

The 1-morphisms (w, 0) will often be denoted by w. The 2-morphisms spaces are graded:
if α is a 2-morphism between (wb, nb) and (wt, nt) represented by a (wb, wt)-foam f , then:

degα = deg f − nt + nb,

where deg f is the degree of f as a (wb, wt)-foam.

Remark 2.2.3. The term “non-strict” means that the composition of 1-morphisms is not
associative but associative up to a unique 2-isomorphism. The restriction to admissible
sequences of signs will become clear in the following.

Proposition 2.2.4. Let ε be an admissible sequence of signs, and wb and wt two ε-webs.
Let us denote by Ṽ the free graded R-module generated by isotopy classes of (wt, wt)-foams,
and by V the graded R-module Ṽ modded out by the foam relations FR. Then V is a free
R-module and its graded dimension is equal to 〈wbwt〉 · ql(ε).

Proof. This is actually a corollary from the theorem 1.2.10. Indeed, the graded module
V is isomorphic to F(wbwt) up to a grading shift (the way to define the degree differs a
little): both modules are spanned by foams with certain boundary conditions and mod
out by the foam relations FR, the only difference is that for V the boundary condition
is expressed in a different way. The figure 2.3 gives an illustration of the correspondence
between F(w) and V .

wb

wt

ε× I

↔
wb wt

ε

Figure 2.3: Isomorphism between V (on the left) and F(wbwt) (on the
right) at the level of foams.

What remains to check is the degree shift. It’s enough to compare χ(wb) + χ(wt) and
χ(wbwt). We have:

χ(wbwt) = χ(wb) + χ(wt)− l(ε),
because to “connect” wb and wt (in order to obtain wbwt) one just need to add l(ε) edges
between the univalent vertices of wb and the univalent vertices of wt. Hence we have
dimq V = 〈wbwt〉 · ql(ε).
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sl3-2-Foam R-Aloid ref.
0-objects admissible sequences of signs R-algebroids 2.2.7
1-morphisms web tangles bimodules 2.2.11
2-morphisms (·, ·)-foams bimodules maps 2.2.13
composition of 1-morphisms gluing web tangles tensor products 2.2.16
composition of 2-morphisms stacking (·, ·)-foams compositions of maps 2.2.15

Table 2.1: The 2-functor dictionary.

What we will construct in the rest of this chapter is the a 2-functor from the 2-category
sl3-2-Foam into the 2-category of R-Aloid. The following table sum up the expectations:

In order to define easily the 2-functor we need other definitions. This is still about
foams but we need other boundary conditions for these foams.

Definition 2.2.5. Let ε0 and ε1 be two admissible sequences of signs, and let wi be an
εi-web and wm be a (ε0, ε1)-web tangle. A (w0, wm, w1)-vfoam f is the intersection of a
foam f ′ with R× [0, 1]× [0, 1] such that:

• there exists η0 ∈]0, 1] such that f ∩ R× [0, η0]× [0, 1] = “w0 × [0, η0]” = {(x, y, z) ∈
R× [0, η0]× [0, 1]|(x, z) ∈ w0},

• there exists η1 ∈ [0, 1[ such that f ∩ R× [η1, 1]× [0, 1] = “w1 × [η1, 1]” = {(x, y, z) ∈
R× [η1, 1]× [0, 1]|(x, z) ∈ w1},

• there exists ηb ∈]0, 1] such that f ∩ R× [0, 1]× [0, ηb] = ∅,

• there exists ηt ∈ [0, 1[ such that f ∩ R× [0, 1]× [ηt, 1] = wm × [ηt, 1].

The condition are sum up on figure 2.4). Furthermore, we ask that the orientations of the
facets of f to be compatible with the reversed orientations of w0 and the orientations of
wm and w1. If ε0 = ε1 and wm = ε0 × [0, 1] then we will speak of (w0, ε0, w1)-vfoam. One

w0 w1

f

wm

Figure 2.4: A (w0, wm, w1)-vfoam, the small part located between the
boundary and the dotted lines are cartesian products.

can glue a (w0, wm, w1)-vfoam f with a (w1, wt, w2)-vfoam g along w1 and after resizing
we obtain fg a (w0, wmwt, w2)-vfoam (see figure2.5). We call this operation multiplication.
Note that when one composes a (w0, ε, w1)-vfoam and a (w1, ε, w2)-vfoam, one obtain a
(w0, ε, w2)-vfoam.

2.2.2 The algebroid Kε

The main ingredients of the construction of the TQFT with corners are the algebras
(or algebroids) associated with 0-objects, here admissible sequences of signs. During the
construction we should focus on the idea that we want a gluing formula at the end. Hence
the algebroids associated to ε should “contain” all the ways to complete ε on both sides to
obtain a closed web. The remark lead us naturally to defined the algebroids K̃ε as follows:
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w0 w1

f

wm

w1 w2

g

wt

w0 w1 w2

fg

wmwt

Figure 2.5: Multiplication of a (w0, wm, w1)-vfoam f with a (w1, wt, w2)-
vfoam g.

Definition 2.2.6. Let ε be an admissible sequence of signs, we define the algebroid K̃ε

to be the R-category with objects ε-webs and with morphisms from w0 to w1 given by
R-linear combination of (w0, ε, w1)-vfoams up to isotopy and up to the foam relations FR
(see proposition 1.2.11). If we want to take the point of view of section 2.1.2 we would
say that K̃ε is the free R-module spanned by all the (w0, w1)-vfoams with w0 and w1
two ε-webs subjected to the foam relations FR and with product given by composition
whenever this is possible and by 0 otherwise. The objects of Kε are ε-webs.

The algebroids K̃ε seem to be the right structures to consider, but they have the
disadvantage to be highly infinite dimensional. This is why we consider the R-algebroids
Kε which are much smaller algebroids. These algebroids will be Morita equivalent to the
previous ones thanks to theorem 2.1.18. Note that the admissibility condition on ε ensures
that the algebroid K̃ε has a non empty set of objects.

Definition 2.2.7. Let ε be an admissible sequence of signs. For each isotopy class of
non-elliptic ε-web we choose one base point and we consider W ε the (finite) set of all these
base points. We are now ready to define Kε: this is the full sub-category of K̃ε where we
require the objects to belong to W ε. With the other point of view, we define Kε to be
the R-vector space spanned by all the (w0, ε, w1)-vfoams with w0 and w1 two elements of
W ε subjected to the foam relations FR and with product given by composition whenever
this is possible and by 0 otherwise. We denote by Kε the algebra C(Kε) the regularized
algebra of Kε.

w0 w1

f
ε× I

⊗

w1 w2

g
ε× I
7→

w0 w2

f g
ε× I

Figure 2.6: The product in Kε when the compatibiltiy holds (else the
product is defined to be 0).

From proposition 1.1.23 and theorem 1.2.10 we can see that for all ε, Kε is a finite
dimensional algebra.

Proposition 2.2.8. For all admissible sequences of signs, the algebroids K̃ε and Kε are
Morita equivalent. Consequently K̃ε and Kε are Morita equivalent.

Proof. In view of the theorem 2.1.18 it is enough to show that the collection (idw)w∈W ε

generate K̃ε as a K̃ε-module-K̃ε. It is clear the collection (idv)v where v runs trough all
ε-webs generate K̃ε as a K̃ε-module-K̃ε. So we just need to show that for every ε-web v,
idv can be written as a finite sum of terms of K̃ε, each of these terms admitting one element
of (idw)w∈W ε as a factor. If v is non-elliptic it is isotopic to a web w of W ε and then the
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statement is obvious, if it is not then we can apply the square relation, the digon relations
(see figure 1.11) and the surgery formula (see figure 1.9) so that idv factors through a finite
sum of idw with w in W ε.

Remark 2.2.9. The second part of the statement is a direct application of proposi-
tion 2.1.29. In fact Kε is equal to Kε where we have forgotten the “oid”-structure of the
algebroid. For this reason all the construction done in this section and in the following
section could have been done over Kε instead of Kε, the results and the proofs remain true.
In [MPT12], they deal with the algebra Kε.

2.2.3 Bimodules and bimodules maps.

Now that we have defined the algebroids Kε, we should define the bimodules associated
with web tangles.

Definition 2.2.10. Let ε0 and ε1 be two admissible sequences of signs, wi and w′i be
elements of W εi for i = 0, 1, and w be a (ε0, ε1)-web tangle. We consider f a (w0, w, w1)-
vfoam, a a (w′0, ε0, w0)-vfoam and b a (w1, ε1, w

′
1)-vfoam. We define the (w′0, w, w1)-vfoam

af . Let η0 ∈]0, 1] such that

f ∩ R× [0, η0]× [0, 1] = ”w0 × [0, η0]” = {(x, y, z) ∈ R× [0, η0]× [0, 1]|(x, z) ∈ w0},

then we set

af =
{

(x, y, z) ∈ R× [0, η0]× [0, 1]
∣∣∣∣(x, yη0

, z

)
∈ a

}
∪ (R× [η0, 1]× [0, 1] ∩ f) .

with orientations and dots on facets induced by a and f . This is not completely well
defined because, we make the choice of η0, however the isotopy class (relatively to the
boundary) of af is well-defined and is invariant under isotopy of a and of f . The (isotopy
class of) (w0, w, w

′
1)-vfoam fb and the (isotopy class of) (w′0, w, w′1)-vfoam afb are defined

in the same way. The definition of afb is illustrated on figure 2.7.

w′0 w0

a

ε0 × I

w0 × [0, η0] w1 × [η1, 1]

f

wm

w1 w′1

b

ε1 × I

w′0 w′1

afb

wm

Figure 2.7: Illustration of the construction of afb. The dashed line are
meant to be the lines along which one should cut f along.

With the same notations, we have (af)b = a(fb) = afb, furthermore, for a′ and b′

compatible vfoams, we have (a′a)f = a′(af) and f(bb′) = (fb)b′ (up to isotopy relative to
the boundary).
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Definition 2.2.11. Let ε0 and ε1 be two admissible sequences of signs and w a (ε0, ε1)-web
tangle, we define F((w, 0)) to be the Kε0-module-Kε1 described by the following data: if wi
is inW εi for i = 0, 1, F(w)w0 w1 is the graded R-vector space spanned by (w0, w, w1)-vfoam
up to isotopy and up to the foam relations FR. The Kε0-module-Kε1 structure is given by
the construction of definition 2.2.10. The Kε0-module-Kε1 F((w, n)) is equal to F((w, 0))
with degree shifted by n.

Now that we have defined the bimodules associated with web tangles the next step is to
define bimodule maps associated with (wb, wt)-foams. We will check that all our definitions
give together a 2-functor afterwards.

Definition 2.2.12. Let ε0 and ε1 be two admissible sequences of signs, wi be elements of
W εi for i = 0, 1, and wb and wt be two (ε0, ε1)-web tangles. Let f be a (w0, wb, w1)-vfoam
and u be (wb, wt)-foam. Let ηt in ]0, 1] such that:

f ∩ R× [0, 1]× [ηt, 1] = wb × [ηt, 1].

Then we set

fu =
{

(x, y, z) ∈ R× [0, 1]× [ηt, 1]
∣∣∣∣(x, y, z − ηt1− ηt

)
∈ u

}
∪ (R× [0, 1]× [0, ηt] ∩ f) ,

with orientations and dots on facets induced by u and f . As before, this is well-defined
only up to isotopy relatively to the boundary. This is illustrated on figure 2.8.

I × ε0 I × ε1

u

wt

wb

w0 w1

uf

wt wb

w0 w1

f
wb × [ηt, 1]

Figure 2.8: Definition of the vfoam fu .

Note that for f a vfoam and u and v compatible foams, we have f(u◦v) =u( fv ) (up to
isopoty relatively to the boundary).

Definition 2.2.13. Let ε0 and ε1 be two admissible sequences of signs, wb and wt two
(ε0, ε1)-web tangles and u a (wb, wt)-foam. The linear map F(u) : F(wb) → F(wt), is
determined by the following collection of maps:

F(u)w0 w1 : F(wt)w0 w1 −→ F(wt)w0 w1 ,

for wi in W εi for i = 0, 1. If f is an element of F(wb)w0 w1 represented by a (w0, wb, w1)-
vfoam f we define that F(u)w0 w1(f) is the element of F(wt)w0 w1 represented by fu .

Proposition 2.2.14. Let ε0 and ε1 be two admissible sequences of signs, wb and wt be
two (ε0, ε1)-web tangles and u be a (wb, wt)-foam. Then the map F(u) : F(wb)→ F(wt)
is a Kε0-module-Kε1 map.

Proof. We only need to check that the action of Kε0 and Kε1 commutes with the application
of F(u). This is due to the fact that the modifications of the vfoams corresponding to the
map F(u) and to the actions of the algebroids take place on (almost) disjoint locations, this
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w′0 w′1

w′0 w′1

wt
wb

a(uf)b

w′0 w′1

w′0 w′1

wt
wb

u(afb)

Figure 2.9: The map F(u) is a bimodule map, in fact, a (w0, wt, w1)-
vfoam representing F(u)w0 w1(afb) is isotopic to a (w0, wt, w1)-vfoam
representing a( F(u)w0 w1(f))b.

is illustrated on figure 2.9: A priori, the only difference between the two pictures occurs at
the two hashed corners. But looking back to the definitions of afb and fu , it appears that
in these corners in both case the vfoam is equal to ε0 or ε1 times a small square, hence the
two pictures are actually the same, and this proves that F(u) is a bimodule map.

From the definition, it is clear that if u and v are two isotopic (wm, wt)-foams relatively
to the boundary, then the bimodule maps F(u) and F(v) are equal.

Lemma 2.2.15. Let wm and wn be two (ε0, ε1) web tangles with εi admissible sequences
of signs for i = 0, 1.

1) If wm and wn are isotopic (relatively to the boundary), then F(wm) and F(wn) are
isomorphic.

2) The identity (wm, wm)-foam (i.e. [0, 1]× wm) is sent by F on idF(wm).

3) If u and v are compatible foams, the bimodules maps F(u ◦ v) and F(u) ◦ F(v) are
equal.

Proof. We prove 1). As the isotopy between wm and wn is relative to the boundary, it
provides u a (wm, wn)-foam when read in one direction and v a (wn, wm)-foam when read in
the other direction. As u ◦ v is isotopic to [0, 1]×wm and u ◦ v is isotopic to [0, 1]×wn, this
shows that F(u) and F(v) are isomorphisms between F(wm) and F(wn). The statements
2 and 3 follows from the definitions.

Lemma 2.2.16. Let εi for i = 0, 1, 2 be admissible sequences of signs, and let wm1 and
wm2 be respectively a (ε0, ε1)-web tangle and a (ε1, ε2)-web tangle, then F(wm1wm2) '
F(wm1)⊗Kε1 F(wm2) as Kε0-modules-Kε2.

Proof. One can first define the morphism

ϕ̃ : F(wm1)⊗R F(wm2) −→ F(wm1wm2)

f ⊗ g 7−→
{
fg if f and g are compatible,
0 else,

where fg is defined for compatible vfoams at the end of the definition 2.2.5. The fact
that ϕ is a bimodule maps comes from the same geometric argument used in the proof of
proposition 2.2.14 (see figure 2.9). If a is a compatible (w0, ε1, w1)-vfoam (with wi ∈W εi for
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i = 0, 1), then f(ag) and (fa)g are isotopic. This observation shows that ϕ̃ factorise through
F(wm1)⊗Kε1 F(wm2). We denote by ϕ the induced morphism from F(wm1)⊗Kε1 F(wm2)
to F(wm1wm2). We claim that ϕ is an isomorphism. We first use the algebroid structures
of Kε0 and Kε2 to cut ϕ into small parts:

ϕ =
∑

w0∈W ε0
w2∈W ε2

ϕw0 w2 with ϕw0 w2 : F(wm1)⊗Kε1 F(wm2)w0 w2 −→ F(wm1wm2)w0 w2 .

It’s enough to prove that ϕw0 w2 is an isomorphism for every (w0, w2) in W ε0 ×W ε2 . We
show that these maps are both injective and surjective. For the rest of the proof we set
(w0, w2) to be an element of W ε0 ×W ε2 .

Surjectivity: The map ϕw0 w2 being R-linear it’s enough to show that if an element
f of F(wm1wm2)w0 w2 is represented by a (w0, wm1wm2 , w2)-vfoam f , then f belongs to
Im ϕw0 w2 . First notice that we can choose another representative f ′ of f , such that f ′
appears naturally as a composition of g a (w0, wm1 , w1)-vfoam and h a (w1, wm2 , w2)-vfoam
i.e. a small vertical slice of f ′ where wm1 and wm2 meet is equal to w1 times a small interval,
with w1 an ε1-web. Note that w1 may not be in W ε1 and actually it may be elliptic, so
that we are not done. However, because of the construction of Kε1 and of theorem 2.1.29,
we know that in K̃ε, we can decompose idw1 as a finite sum:

idw1 =
∑
i∈I

aibi

where I is finite and, for every i in I, ai is a (w1, ε1, wi)-vfoam and bi is a (wi, ε1, w1)-vfoam
and wi is an element of W ε1 . Therefore,

f = f ′ =
∑
i∈I

gaibih = ϕw0 w2

(∑
i∈I

gai ⊗ bih
)
,

and hence f is in Im ϕw0 w2 . This shows that ϕw0 w2 is surjective.
Injectivity: Let x =

∑
i∈I fi ⊗ gi be an element of Ker ϕw0 w2 , where the fi’s and the

gi’s are respectively (w0, wm1 , wi)-vfoams and (wi, wm2 , w2)-vfoams for wi in W εi . The
idea is to push the non trivial part of fi on the right hand side of the tensor product in
order to see it as a part of an element of Kε2 acting on a another vfoam h.

Note that fi (or a (w0, wm1 , wi)-vfoam isotopic to fi) appears naturally as a composition
of h a (w0, wm1 , wm1w0)-vfoam isotopic (not relatively to the boundary, see figure 2.10) to

w0 × [0, η0] wi

fi

[ηt, 1]× wm1
 ε0 × I

w0 wi

h f ′i

wm1

w0

wm1

Figure 2.10: Each fi decomposes as a composition of the
(w0, wm1 , wm1w0)-vfoam h and a (w0wm1 , ε1, wi)-vfoam.

w0wm1 × [0, 1], and f ′i a (w0wm1 , ε1, wi)-vfoam. Theorem 2.1.18 and proposition 2.2.8 tell
us that the class h of (w0, wm1 , wm1w0)-vfoam h can be expressed as a finite sum:

h =
∑
j∈J

hjaj ,
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where for every j in J , hj is a (w0, wm1 , w
′
j)-vfoam and aj belongs to (Kε1)w′j wm1w0

and w′j
is in W ε1 for all j. Note that the foam h, the set J , the hj ’s and the aj ’s are independent
from i. For all (i, j) in I × J , ajf ′i belongs to (K)wj wi so that in F(wm1)⊗Kε1 F(wm2)w0 w2
we have:

fi ⊗ gi =
∑
j∈J

hjajf ′i ⊗ gi =
∑
j∈J

hj ⊗ ajf ′igi,

so that we can write:

∑
i∈I

f ′i ⊗ gi =
∑
i∈I

∑
j∈J

hj ⊗ ajf ′igi =
∑
j∈J

hj ⊗ aj

(∑
i∈I

f ′igi

)
.

Let us show that
∑
i∈I f

′
igi is equal to zero. In fact, for all i ∈ I, as a w0wm1wm2w2-foam

f ′igi (forgetting the way we decomposed the border) is isotopic to figi, but we supposed
that

∑
i∈I figi is equal to 0. This proves that

∑
i∈I f

′
igi is equal to 0 and hence that ϕw0 w2

is injective.
We conclude that ϕ is an isomorphism.

All the results and constructions of this section can be sum up in the following theorem:

Theorem 2.2.17 (Algebroid version). The functor F of theorem 1.2.10 extends into a
2-functor from the 2-category sl3-2-Foam to the 2-category of finitely generated graded
R-algebroids. The algebroid associated with a sequence of signs ε is Kε.

The whole construction can be done using the algebras Kε instead of the algebroids
Kε (see remark 2.2.9).

Theorem 2.2.17 (Algebra version). The functor F of theorem 1.2.10 extends into a
2-functor from the 2-category sl3-2-Foam to the 2-category of finitemy generated graded
R-algebras. The algebra associated with a sequence of signs ε is Kε.

2.2.4 The space of modules maps

In chapters 3 and 4, we will study the category of Kε-modules. For this purpose we will
have a special look at the graded space of morphisms between Kε-modules. As we will see
here, a lot of information is given by the Kuperberg bracket.

Notation 2.2.18. Let w be an ε-web, then we denote by Pw the Kε-module F(w), we
call such a Kε-module a web-module.

Proposition 2.2.19. As a Kε-module, Kε is isomorphic to
⊕

w∈W ε Pw, where W ε is a
set of representative of isotopy classes of non-elliptic ε-webs (see definition 2.2.7).

Proof. Using its structure of module-Kε, we can write that Kε as a direct sum of Kε-
modules:

Kε =
⊕

w′∈W ε

(Kε)w′ .

We claim that Pw and (Kε)w are isomorphic as Kε-modules. The isomorphism is given on
figure 2.11 at the level of foams (and vfoams). Note that as they both are Kε-modules,
the, isomorphism splits as a direct sum of isomorphism between (Pw)w0

and ((Kε)w)w0
for w0 running through W ε.

Proposition 2.2.20. If w is an ε-web, then the Kε-module Pw is a projective module.
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w0

w

ε

↔

w0 w

ε× I

Figure 2.11: Isomorphism between (Pw)w0
(on the right) and ((Kε)w)w0

(on the left) explicited at the level of foams (and vfoams).

Proof. If w is non-elliptic, it’s clear from proposition 2.2.19 that Pw is a direct factor of Kε

and hence is projective. If w is not non-elliptic, then Pw is isomorphic to a finite direct sum
of (maybe degree shifted) Pwi with wi in W ε, therefor, it is as well a projective module.

Proposition 2.2.21. Let w1 and w2 be two ε-webs, then the graded R-module homKε(Pw1 , Pw2)
is free and has dimension equal to 〈(w1w2)〉 · ql(ε).

Proof. An element of homKε(Pw1 , Pw2) is completely determined by the image of 1w1 . The
image belongs to (Pw2)w1 . This shows that the Kε-module maps between Pw1 and Pw2 are
all represented by (w1, w2)-foams. On the other hand, proposition 2.2.4 gives that the free
R-module spanned by (w1, w2)-foams modded out by isotopy and by the foam relation FR
is free and has graded dimension equal to 〈(w1w2)〉 · ql(ε). We can conclude that:

dimq(homKε(Pw1 , Pw2)) = 〈(w1w2)〉 · ql(ε).

In the following chapters, we will study the decomposability of web-modules. To show
that a module is indecomposable, it is enough to show that its ring of endomorphisms
contains no non-trivial idempotents. It appears that an idempotent must have degree zero,
so we have the following lemma :

Lemma 2.2.22. If w is a ε-web such that 〈ww〉 is monic of degree l(ε), then the graded
Kε-module Pw is indecomposable.

Proof. It follows from the previous discussion: if homKε(Pw, Pw) contained a non-trivial
idempotent, there would be at least two linearly independent elements of degree 0, but
dim((homKε(Pw, Pw)0) = a−l(ε) where 〈ww〉 =

∑
i∈Z aiq

i. As 〈ww〉 is symmetric (in q and
q−1) of degree l(ε) and monic, a−l(ε) is equal to 1 and this is a contradiction.

We have a similar lemma to prove that two modules are not isomorphic.

Lemma 2.2.23. If w1 and w2 are two ε-webs such that 〈w1w2〉 has degree strictly smaller
than l(ε), then the graded Kε-modules Pw1 and Pw2 are not isomorphic.

Proof. If they were isomorphic, there would exist two non-trivial morphisms f and g such
that f ◦ g = 1Pw1

and therefore f ◦ g would have degree zero. The hypothesis made implies
that f and g (because 〈w1w2〉 = 〈w2w1〉) have positive degree so that the degree of their
composition is as well positive.
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2.3 The sl3-homology for tangles
The (0+1+1)-TQFT defined above allows us to construct a sl3-homology for tangles. In
this section we describe this homology. The construction is similar to the one of section
1.3 but in the tangle context.

We will consider oriented tangles with borders separated in two parts i.e. one part on
the top and one part on the bottom, this fit into a category, objects are sequences of signs
and morphisms from ε0 to ε1 are oriented tangles with border −ε0 on the bottom and ε1
on the top (we call these tangles oriented (ε0, ε1)-tangles). The way to compose morphisms
is the usual way to compose tangles. We restrict to the case of admissible sequences of
signs.

Definition 2.3.1. Let T be an oriented (ε0, ε1)-tangle diagram. A smoothing function for
T is a function φ from the set of crossings of T to {0, 1}. Let c be a crossing of T and φ is
a smoothing function for T such that φ(c) = 0, we denote by φc the smoothing function
equal to φ everywhere but on c and with φc(c) = 1. The size of φ is the number of times it
takes the value 1. It is denoted by |φ|.

Definition 2.3.2. Let T be a (ε0, ε1)-tangle diagram, and φ a smoothing function for T .
Then we define the φ-smoothing of T to be the (ε0, ε1)-web obtain from T by replacing
each crossing c by its φ(c)-smoothing (see figure 1.12 for definitions of 0-smoothing and
1-smoothing) and with a degree shift of |φ|. We denote it by Tφ.

Definition 2.3.3. Let ε0 and ε1 be two admissible sequences of signs, T be a (ε1, ε2)-
tangle diagram. Let I be the set of crossings of T . We define H(T ), the hypercube of
smoothings of T , to be the I-hypercube where Hφ is the image of Tφ by the functor F ,
and for φ a smoothing function and c a crossing such that φ(c) = 0, the differential dcφ
is the image by F of the foam which is everywhere identity but next to the crossing c
and there it’s given by figure 1.13. The complex C(T ) of smoothings of T is the complex
C(H(T )){3n−−2n+}[−n−]. Note that, in this context the functor F gives us Kε0-modules-
Kε1 and maps of Kε0-modules-Kε1 so that in the end the complex C(H(T )) is a complex
of Kε0-modules-Kε1 .

Theorem 2.3.4. If T1 is a (ε0, ε1)-tangle diagram and T2 is a (ε1, ε2)-tangle diagram then
we have an isomorphism of complexes of Kε0-module-Kε2:

C(T1T2) ' C(T1)⊗Kε1 C(T2).

Proof. This is a direct application of 2.2.16.

Theorem 2.3.5 (adapted from Khovanov [Kho04]). If two (ε0, ε1)-tangle diagrams rep-
resent the same (ε0, ε1)-tangle, then, their complexes of smoothings are homotopic as
complexes of Kε0-module-Kε1.
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Chapter 3

Superficial webs

The categories of modules over the algebras Kε are more complicated than their analogues
in the sl2 case (see the definitions of the algebras Hn in [Kho02])). The reason of this fact
is that the non-elliptic webs, which from a skein-module point of view, are irreducible can
lead via the categorification to decomposable modules. In this chapter we first point out
an example of this phenomenon, and then we give a rather large family of non-elliptic webs
which behave well i.e. whose associated modules are indecomposable. This chapter is based
on [Rob12]. We mention that modules over Kε are studied independently in [MPT12]
where they compute the split Grothendieck group of Kε. All along this chapter the functor
F we use is the one defined in chapter 2 with the ground ring R equal to Q (in particular,
the algebras Kε are Q-algebras).

3.1 A decomposable module

As we discussed before, to prove that a module is decomposable, it’s enough to show that
its ring of endomorphisms contains a non-trivial idempotent. In this subsection we show
that a certain module Pw is decomposable. This is actually already known (see for example
[MN08]), but we give here details of the calculus.

In what follows, we set ε to be the sequence (+,−,−,+,+,−,−,+,+,−,−,+) (so that
l(ε) = 12). The ε-webs w and w0 are given on figure 3.1. We will as well need some specific

Figure 3.1: The ε-webs w (on the left) and w0 (on the right), to fit in
formal context of the 2-category one should stretch the outside edges
to horizontal line below the whole picture, we draw it this way to enjoy
more symmetry. To simplify we didn’t draw the arrows.

35
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foams. We describe them via movies on figure 3.2 (the elementary movies are birth, death
and saddle as for classical surfaces and we add zip and unzip given on figure 1.13, see
[Kho04] for details).

Figure 3.2: The (w0, w)-foam f (it should be seen as an element of
homKε(Pw, Pw0)) is described by the movie from left to right and the
(w,w0)-foam g is described by the movie from right to left (we have
g = f). We specify for f : at the first step we perform 6 births and then,
at the second step we zip 12 times, this leads to morphisms of degree 0.

Proposition 3.1.1. The Kε-module Pw is decomposable.

First we should quote that this web was the counter-example pointed out by Kuperberg
and Khovanov [KK99] to show that the web basis is not dual canonical. To show this
proposition we just have to find a non-trivial idempotent.

Proof. We claim that e def= 1
2f ◦ g is a (w,w)-foam whose associated endomorphism is an

idempotent different from 0 and from 1Pw . To prove this we first show that g ◦ f = 2 · 1w0 .
First notice that g ◦f is a (w0, w0)-foam of degree 0 and belongs to homKε(Pw0 , Pw0). This
space has a graded dimension given by q12 · 〈w0w0〉 = q12 · [3]6, and this shows that the
space of degree 0 endomorphism of Pw0 is 1-dimensional and hence g ◦ f is a multiple of
1w0 .

Seen as a foam and forgetting the decomposition of its boundary we can consider g ◦ f
as (∅, w0w0)-foam and in this context f ◦ g is a multiple of h, the (∅, w0w0)-foam given by 6
cups. To evaluate the scalar multiple between them, we complete these (∅, w0w0)-foams to
obtain closed foams by gluing j, the (w0w0, ∅)-foam which consists of 6 caps with two dots
on each cap. The foam h ◦ j is a closed foam which consists of 6 spheres with 2 dots on
each, hence it’s evaluation F(h ◦ j) is equal to (−1)6 = 1. Now let us evaluate F(g ◦ f ◦ j).
Using the bubble relations next to the cups of j, we have F(g ◦ f ◦ j) = (−1)3F(t), where
t is a torus with 6 disks inside and one dot per section of the torus (see figure 3.3).

To evaluate F(t) one can perform surgeries on all portions, this gives us a priori 36

terms with plus signs, all are disjoint union of 6 dotted theta foams just 2 of this terms
are non-zero: and for the two of them 3 theta foams evaluate on −1 and 3 theta foams
evaluate on +1, so that F(g ◦ f ◦ j) = −F(t) = 2.

This gives us that g ◦ f = 2 · 1w0 . It is then very easy to check that e is an idempotent:
e ◦ e = 1

4g ◦ f ◦ g ◦ f = 1
2g ◦ 1w0 ◦ f = e, and it is as well straightforward to check that

e is not equal to zero: f ◦ e ◦ g = 2 · 1w0 6= 0. We now need to show that e is not equal
to 1w. If it were so, f and 1

2g would be mutually inverse isomorphisms between Pw and
Pw0 . But the spaces of endomorphisms of these two modules do not have the same graded
dimensions1 so they cannot be isomorphic. This shows that Pw is decomposable and that

1In fact we have 〈ww〉 = 2q−12 + 80q−10 + 902q−8 + 4604q−6 + 13158q−4 + 23684q−2 + 28612 + 23684q2 +
13158q4 + 4604q6 + 902q8 + 80q10 + 2q12 and 〈w0w0〉 = q−12 + 6q−10 + 21q−8 + 50q−6 + 90q−4 + 126q−2 +
141 + 126q2 + 90q4 + 50q6 + 21q8 + 6q10 + q12. We used Lukas Lewark’s program [Lew11] to compute 〈ww〉.
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Figure 3.3: The closed foam t.

Pw0 is a direct factor of Pw.

3.2 Superficial webs leads to indecomposable modules
The aim of this section is to give a rather large family of ε-webs whose associated Kε-
modules are indecomposable, and pairwise non-isomorphic.

3.2.1 Superficial webs, semi-non elliptic webs

Definition 3.2.1. If ε is an admissible sequence of signs, we denote by Sε the Q[q, q−1]-
module generated by isotopy classes of ε-webs and subjected to the Kuperberg relations
(see proposition 1.1.12).

Proposition 3.2.2 (Kuperberg). The Q[q, q−1]-module Sε is free and freely generated by
the non-elliplitic ε-webs.

Let us consider a ε-web, there are finitely many connected components of R2 \ w (we
call them faces even if some may not be homeomorphic to a disk). As w is compact, there
is just one of these faces which is unbounded. We call it the unbounded face. Note that
because of the geometric requirements on ε-webs, all the points of ε are in the adherence
of the unbounded face. We say that two faces are adjacent if an edge of w is included in
the intersection of their adherences.

Definition 3.2.3. A face of an ε-web is said to be nested if it is not adjacent to the
unbounded face. An ε-web with no nested face is called superficial.

N

Figure 3.4: On the left, an (elliptic) ε-web with a nested face (marked
by a N), on the right, a superficial (and elliptic) ε-web with two blocks.

The aim of this section is to prove the next theorem:

Theorem 3.2.4. Let ε be an admissible sequence of signs and w be a superficial and non-
elliptic ε-web, then the Kε-module Pw, is indecomposable. Furthermore, if w′ is another
superficial and non-elliptic ε-web different2 from w, then Pw and Pw′ are not isomorphic
as Kε-modules.

2We mean non-isotopic.
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We begin by a few technical definitions. In an ε-web, let us consider all the faces but
the unbounded one. They come in adjacency classes. We call such an adjacency a block.
In other words, blocks are connected components of the graph obtained from the dual
graph by removing the vertex corresponding to the unbounded component and all the
edges involving this vertex.

Definition 3.2.5. An ε-web is semi-non-elliptic if it contains no circle, no digon, and at
most one square per block.

Lemma 3.2.6. If an ε-web w is superficial and semi-non-elliptic then in the skein module
Sε it is equal to a sum of superficial and non-elliptic ε-webs with less vertices.

Here, by “sum” here we mean linear combination with only positive integer coefficients.

Proof. We prove this by induction on the number of trivalent vertices. If w is already
non-elliptic then there is nothing to prove. Else there is at least a square somewhere in w.
Then if

w = ,

we have

w = + .

Let w1 and w2 be these two webs. As w is superficial, one of the 4 faces around the square
should be the unbounded face U , we can suppose it’s the one on the top. We’ll now inspect
the faces of w1 and w2, see figure 3.5 for names of faces.

C

S

U

A B A′ U B′

C ′′

A′′

U

Figure 3.5: The webs w, w1 and w2.

The faces A′ and B′ of w1 may be two squares but as w is superficial, A′ and B′ are
on different blocks, else there would exist a path of faces in w from A to B disjoint of
C and S and C would be nested. As the square S is the only square of its block in w,
the block of A′ and the block of B′ have at most one square, hence w1 is superficial and
semi-non-elliptic. For w2 now, the only possibly new square is the face C and if it is a
square, it’s the only one in its block, hence w2 is superficial and semi-non-elliptic. To
conclude, just notice that w1 and w2 have less vertices than w.

Definition 3.2.7. An ε-web w is called 1-elliptic if it contains no circle, no digon and if
there are at most one square in each block except in one where it can contains at most two.

Lemma 3.2.8. If w is a superficial 1-elliptic ε-web then there exist some non-elliptic
ε-webs wi and some symmetric polynomials in N[q, q−1] with degree at most 1 such that in
Sε we have w =

∑
Piwi.

Proof. We prove this result by recursion on the number of vertices. If there are no vertices
the web is non-elliptic and this is done. If w is semi-non-elliptic then the result comes
from lemma 3.2.6. So it remains to understand the case where there is one block with two
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squares. If the two squares are far from each other (we mean that they don’t share any
edge) then we can proceed as in the proof of lemma 3.2.6 and prove that w is a sum (with
positive integer coefficient) of 1-elliptic webs and then we conclude by recursion. Now we
study the case where the two squares touch each other. As w is superficial the two squares
S1 and S2 (see figure 3.6 for the notations) should touch the unbounded face. Furthermore
w is equal to [2]w1 +w2 (see figure 3.7). Now let us consider the different cases. There are

C

S1 S2

A

D B

Figure 3.6: Situation where two squares touch each other.

two different situations, either A or C is unbounded (the two situations are symmetric) or
both B and D are unbounded. If A is unbounded, then D′ and B′ may be squares but on
different blocks, otherwise, C would be nested, and hence w1 is superficial semi-non-elliptic.
On the other hand B′′ and D′′ have at least 6 vertices, and C ′′ may be a square but in
every case the ε-web w2 is superficial semi-non-elliptic. It remains the case where B and
D are unbounded. The face A′ has at least 6 vertices so that w1 is semi-non-elliptic. On
the other hand A′′ and C ′′ may be squares but there are clearly on different blocks so that
w2 is semi-non-elliptic. Hence using lemma 3.2.6 we conclude.

D′ A′ B′

C ′′

B′′D′′

A′′

Figure 3.7: The webs w1 and w2.

Definition 3.2.9. An ε-web is said to be semi-superficial if it contains no circle, no digon
and only one square and only one nested face and the nested face is an hexagon and the
square and the nested hexagon share a side.

U

S

H

C

A E

B D

Figure 3.8: Semi-superficial web. The faces A, B, C, D, E, H and S are
bounded. The label U shows the undounded face.

Lemma 3.2.10. If w is a semi-superficial ε-web then there exist some non-elliptic ε-webs
wi and some symmetric polynomials in N[q, q−1] with degree at most 1 such that in Sε we
have w =

∑
Piwi.
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Proof. We take the notations of figure 3.8. We perform the square reduction on S and
then on H in the configuration where it’s possible so that in the skein module Sε we have:
w = w1 + w2 + w3. See figure 3.9 for a description of the wi.

U

C1

A1 E1

B1 D1

U

A2

B2 D2

U

A3

B3

C3

Figure 3.9: From left to right w1, w2 and w3.

1. The web w1 is superficial and 1-elliptic. The superficiality is clear, the only two faces
which may be squares are A1 and E1.

2. The web w2 is superficial and 1-elliptic. The face A2 has at least 6 sides because it
has the sides of A minus three of them and the sides of E minus three of them then
it leads to at least 6 sides. The superficiality is clear, the only two faces which may
be squares are B2 and D2.

3. The web w3 is superficial and semi-non-elliptic. The superficiality is clear. The only
face which can be a square is C3.

From (1), (2) and (3), and the lemmas 3.2.8 and 3.2.6 we conclude easily.

Thanks to lemma 2.2.22 and 2.2.23, to prove the theorem 3.2.4, it’s enough to prove
the following lemma:

Key lemma. Let ε be a sequence of signs of length n. Let w1 and w2 be ε-webs, suppose
w1 and w2 are superficial and non-elliptic. If w1 = w2 then 〈w1w2〉 is monic and has
degree n, else deg〈w1w2〉 < n.

3.2.2 Proof of the key lemma

Definition 3.2.11. We consider the set W of (isotopy class) of pairs of superficial and
non-elliptic webs with the same boundary. On this set we define a partial order: (w1, w2) <
(w′1, w′2) if and only if either l(∂w1) < l(∂w′1) or l(∂w1) = (∂w′1) and #V (w1) + #V (w2) <
#V (w′1) + #V (w′2). An element w = (w1, w2) of W is symmetric if w1 = w2.

This order is meant to encode the complexity of a web. We could have sharpened it
but this won’t be necessary for our purposes. For n ∈ N, we denote Wn the subset of W in
which the webs in the pairs have a boundary of length n. For example W0 = {(∅, ∅)} and
W1 = ∅. As every Wn is finite, W is a well quasi-ordered set with one minimal element:
(∅, ∅).

Definition 3.2.12. Let w = (w1, w2) be an element of Wn, we say that w is nice if

• the element w is symmetric, 〈w1w2〉 is monic and has degree n,

• or if w is not symmetric and the degree of 〈w1w2〉 is strictly smaller than n.
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The lemma is rephrased in this vocabulary by the following proposition:

Proposition 3.2.13. Every element of W is nice.

Notation 3.2.14. If w = (w1, w2) is an element of W , then w1w2 is a closed web, in what
follows it will be practical to consider the isotopy class of w1w2 but to keep in mind that
this closed web has two different parts: the w1 part and the w2 part. In order to remember
this, while performing an isotopy of w1w2 we keep track of the real line where ε was lying
(this is where w1 and w2 are glued together). This curve is the border between w1 and w2.
This will be depicted by a dashed line.

When performing a reduction of w1w2 (removing a circle or a reduction of a square or
of a digon), we should keep the border in mind so that the reduction leads to a new closed
web w′ which can be understood as w′1w′2, where w′i is the same as wi except in the place
where we perform the reduction. Note that when the reduction takes place next to the
border we have to specify how the border behaves with respect to the reduction so that
w′1 and w′2 are well defined. We may as well perform moves of the border, this is to be
understood as that we change the pair (w1, w2) in the way given by the changed border
(this may change the boundary).

Lemma 3.2.15. If w = (w1, w2) is an element of W such that w1w2 contains a circle C
then there exists w′ = (w′1, w′2) with w′ < w such that w′ nice implies w nice.

Proof. As w1 and w2 are non-elliptic, the circle must intersect the border. We shall consider
two cases: the border cuts C in two points or in at least four points3.

First consider the case where the border cuts C in two points. Then it separates the
C into two half-circles Ci ⊂ wi for i ∈ {1, 2}. We denote w′i the ε′-web wi \ Ci. The
sequence ε′ is equal to ε with a ’+’ and a ’−’ removed hence l(ε′) = l(ε) − 2. We have
〈w1w2〉 = [3]

〈
w′1w

′
2

〉
and w′ is symmetric if and only if w is. It’s clear that if w′ = (w′1, w′2)

belongs to W and w′ < w and that if w′ is nice then w is nice.
The second case: C meets the border in a least four points. Then w1 6= w2. Consider

once more the pair of ε′-webs w′ = (w′1, w′2) obtained from w by removing the circle C.
The length of ε′ is at most l(ε)− 4. Then if w′ is nice then deg

〈
w′1w

′
2

〉
6 l(ε)− 4, and

then:
deg 〈w1w2〉 = deg

(
[3]
〈
w′1w

′
2

〉)
= 2 + deg

〈
w′1w

′
2

〉
6 l(ε)− 2.

This is clear that w′ is in W and that w′ < w. And so we are done.

Lemma 3.2.16. If w = (w1, w2) is an element of W such that w1w2 is not connected
then there exist w′ and w′′ with w′ < w and w′′ < w such that if w′ and w′′ are nice then
w is nice.

Proof. Consider one connected component of w1w2 and denote it by u and denote v the
complement of u in w1w2. Denote w′1 and (resp. w′2) the sub-web of w1 (resp. of w2) such
that w′1w′2 = u and let w′′1 (resp. w′′2) be the complementary web of w′1 in w1. (resp. of w′2
in w2). Denote ε′ the boundary of w′1 and ε′′ the boundary of w′′1 . Let w′ be (w′1, w′2) and
w′′ be (w′′1 , w′′2), it’s clear that w and w′′ belong to W . We have l(ε′) + l(ε) = l(ε), so that
w′ and w′′ are smaller than w. It’s clear that w is symmetric if and only if w′ and w′′ are.
We have

〈w1w2〉 =
〈
w′1w

′
2

〉
·
〈
w′′1w

′′
2

〉
,

so that if w′ and w′′ are nice, then w is nice.
3A circle and the border must intersect in an even number of points for orientation reasons.
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Lemma 3.2.17. Let w = (w1, w2) be an element of W such that w1w2 is connected and
contains a digon B which intersects the border of w in exactly one point per side of the
digon. Then there exists w′ = (w′1, w′2) with w′ < w such that w′ nice implies w nice.

Figure 3.10: Case of the digon with one vertex by side: on the left w1w2,
on the right w′1w′2.

Proof. The situation is illustrated on figure 3.10. We perform the digon reduction by
deleting one edge of the digon, reversing the orientation of the other one and forgot the two
2-valent vertices. We obtain a new pair of ε′-webs w′ = (w′1, w′2). This is an element of W ,
in fact this is clear that the two webs are superficial ; to see that they are non-elliptic, one
can notice that from wi to w′i we removed just one vertex and this vertex is not adjacent
to any face but the unbounded one, and consequently the non-ellipticity is preserved. It’s
clear that w is symmetric if and only if w′ is, the length of ε′ is equal to l(ε)− 1 so w′ < w
and we have 〈w1w2〉 = [2]

〈
w′1w

′
2

〉
, so if w′ is nice then w is nice.

Lemma 3.2.18. Let w = (w1, w2) be an element of W such that w1w2 contains a digon
B which intersects the border of w in exactly two points which are on the same side. Then
there exists a finite collection

(
w(i)

)
with w(i) < w for all i, such that w(i) nice for all i

implies w nice.

Figure 3.11: Case of the digon with the two vertices on the same side:
on the left w1w2, on the right w′1w′2.

Proof. The situation is illustrated by figure 3.11. In this case w cannot be symmetric.
Without loss of generality4 we can suppose that the two vertices of B are in w1. We
reduce the digon B as follows: delete the side meeting the border, reverse the orientation
of the other edge, and forget the two 2-valent vertices denote w′ the new pair of ε′-webs
corresponding to the situation. The length of ε′ is equal to l(ε) − 2. The ε′-web w′1 is
clearly superficial and semi-non-elliptic so we can apply lemma 3.2.6 and we have a finite
collection w(i)

1 of superfical non-elliptic ε′-webs such that in the skein module Sε′ we have
w′1 =

∑
i λw

(i)
i for some positive integer λi. On the other hand w′2 is clearly superfical and

non-elliptic. Denote w(i) = (w(i)
i , w

′
2). Suppose that all the w(i) are nice. We have:

deg 〈w1w2〉 = deg
(
[2]
〈
w′1w

′
2

〉)
= 1 + max

i
deg

〈
w

(i)
1 w′2

〉
6 1 + l(ε′) = l(ε)− 1

And this shows that w is nice.
4The two vertices are on the same side since one of the edges joining them does not meet the border.
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Proposition 3.2.19. Let w = (w1, w2) be an element of W such that w1w2 is connected
and contains a digon B. Then there exists a finite collection

(
w(i)

)
with w(i) < w for all

i, such that w(i) nice for all i implies w nice.

Proof. If we are in the situation of 3.2.17 and 3.2.18 this is already done, so suppose that
the border meets the digon B at least 3 times. The situation is illustrated on figure 3.12.
In this case w cannot be symmetric. We denote D the disk delimited by the digon. As
the web w1w2 is connected we can suppose that the interior of D is disjoint from the web.
Consider now the restriction of the border to D. It’s the reunion of different arcs. Push
one outer arc a outside D. This leads to a new pair of ε′-webs w′ = (w′1, w′2). The length
of ε′ is equal to l(ε)− 1 (when the two extremities of a lie on two different sides of B) or
to l(ε)− 2 (when the two extremities of B lie on the same side of B). The web w′ is in W :
The operation that we described does not disturb the non-ellipticity condition neither the
superficiality condition. Furthermore w′ < w, and if w′ is nice deg 〈w1w2〉 6 l(ε)− 1 so
that w is nice.

→ →

Figure 3.12: Remaining cases for the digon: we move the boundary. On
the left the outer arc meets the two edges, on the right it meets two
times the same edge. In both cases only the outer arc of the boundary is
drawn, but the boundary meets the digon elsewhere as well.

Lemma 3.2.20. Let w = (w1, w2) be an element of W such that w1w2 is connected and
contains a square S such that S intersects the border of w in two points on opposite sides.
Then there exists a finite collection

(
w(k)

)
with w(k) < w for all k, such that if all the

w(k) are nice then w is nice.

Figure 3.13: The border meets two opposite sides of the square: from left
to right: w1w2, w′1w′2 and w′′1w′′2 . It’s clear that w′1 and w′2 are superficial
and non-elliptic, and that w′′1 and w′′2 are superfical semi-non-ellipitic.
Furthermore, w1 = w2 if and only if w′1 = w′2.

Proof. The situation is illustrated by figure 3.13. The connectedness hypothesis tells us
that we can suppose the interior of the disk D delineated by S to be disjoint from the
web. In D, the border is just a simple arc joining two opposite sides. We perform the two
reductions of the square by deleting two opposite sides, reversing the orientations on the
two lasting sides and forgetting the four 2-valent vertices. We obtain one pair of ε-webs
w′ = (w′1, w′2) (when keeping the sides which meet the border) and one pair of ε′′-webs
w′′ = (w′′1 , w′′2) with l(ε′′) = l(ε)− 2 (when deleting the sides which meet the border). The
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ε-webs w′1 and w′2 are superficial and non-elliptic so that w′ ∈W . Because of the number
of vertices we have w′ < w. The ε′′-webs w′′1 and w′′2 are superficial and semi-non-elliptic.
Then there exists a finite collection

(
w

(i)
1

)
(resp.

(
w

(j)
2

)
) of superficial and non-elliptic

ε′′-webs and some positive integers λi (resp. µj) such that in the skein module Sε′′ we have
w′′1 =

∑
i λiw

(i)
1 and w′′2 =

∑
j µjw

(j)
2 . We have then:

〈w1w2〉 =
〈
w′1w

′
2

〉
+
∑
i,j

λiµj

〈
w

(i)
1 w

(j)
2

〉
.

We denote w(i,j) = (w(i)
1 , w

(j)
2 ). Suppose that w′ is nice and that all the w(i,j) are nice.

It’s straightforward that w is symmetric if and only if w′ is, so that it’s clear that, w is
nice.

Lemma 3.2.21. Let w = (w1, w2) be an element of W such that w1w2 is connected and
contains a square S such that S intersects the border of w in two points on adjacent sides.
Then there exists a finite collection

(
w(k)

)
with w(k) < w for all k, such that if all the

w(k) are nice then w is nice.

Figure 3.14: The boundary meets the square at two adjacent sides: on
the left w1w2, on the right w′1w′2. It’s clear that w′2 is superficial and
non-elliptic, and that w′2 is superficial semi-non-ellipitic.

Proof. The situation is illustrated by figure 3.14. First notice that in this situation w
cannot be symmetric. As before, the connectedness hypothesis allows us to suppose that
the interior of the disk D delineated by S is disjoint from the web. The restriction of the
border to D is just a simple arc connecting two adjacent sides. We move a little this arc:
we push it outside the square through the common vertex of the two adjacent sides and we
obtain a new pair of ε′-webs w′ = (w′1, w′2) with l(ε′) = l(ε)− 1. Now the square S doesn’t
meet the border anymore. With no loss of generality we can assume that it lies in w′1. The
ε′-web w′2 is superficial and non-elliptic. The ε′-web w′1 is superficial (the only faces which
could be nested in w′1 are the one next to the square, but they are obviously not) and
semi-non-elliptic. So it exists a finite collection

(
w

(k)
1

)
of non-elliptic superficial ε′-webs

and some positive integers λk such that in the skein module Sε′ , w1 =
∑
k λkw

(k)
1 . Let

w(k) = (w(k)
1 , w′2). It’s clear that w(k) < w for all k. Suppose that all the w(k) are nice.

deg 〈w1w2〉 = deg
(∑

k

〈
w

(k)
1 w2

〉)
6 l(ε′) = l(ε)− 1.

This proves that w is nice.

We will now inspect the case where the border meets just one side of the square. This
is the most technical part, so we need to separate it in different sub-cases. For this we will
need to consider the face adjacent to the square and to the side opposite to the one that
meets the border. We call this face the opposed face.
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Lemma 3.2.22. Let w = (w1, w2) be an element of W such that w1w2 is connected and
contains a square S. Suppose S intersects the border of w in exactly two points on the
same side and the opposed face F or one of its neighbors different from the square meets
the boundary. Then there exists a finite collection

(
w(k)

)
with w(k) < w for all k, such

that if w(k) is nice for all k then w is nice.

Figure 3.15: Illustration of lemma 3.2.22: on the left w1w2, on the right
w′1w

′
2. It’s clear that w′2 is superficial and non-elliptic, and that w′2 is

superfical semi-non-ellipitic.

Proof. First notice that in this case w cannot be symmetric. The four vertices of S lie
on the same side of the border, we can suppose that this is on the w1 side. As usual, we
can suppose that the interior of the disk D delineated by the square is disjoint from the
web. The restriction of the border is just a simple arc in D joining one side to itself. We
move the border locally by pushing it away from S in w2. We obtain a new pair of ε′-webs
w′ = (w′1, w′2), with l(ε′) = l(ε)− 2. It’s clear that w′1 is superficial and semi-non-elliptic.
So it exists a finite collection

(
w

(k)
1

)
of non-elliptic superficial ε′-webs and some positive

integers λk such that in the skein module Sε′ , w1 =
∑
k λkw

(k)
1 . Set w(k) = (w(k)

1 , w′2).
Suppose that all the w(k) are nice. Then deg 〈w1w2〉 6 l(ε′) − 2 < l(ε) and hence w is
nice.

Lemma 3.2.23. Let w = (w1, w2) be an element of W such that w1w2 is connected,
contains no digon and contains a square S. Suppose S intersects the border of w in exactly
two points on the same side and the opposed F face has at least 8 sides. Then there exists
a finite collection

(
w(k)

)
with w(k) < w for all k, such that w(k) nice for all k implies w

nice.

Figure 3.16: Illustration of lemma 3.2.23: from left to right: w1w2, w′1w′2
and w′′1w′′2 .

Proof. The situation is illustrated on figure 3.16 First notice that in this case w cannot be
symmetric. The four vertices of S lie on the same side of the border, we can suppose that
this is on the w1 side. As usual, we can suppose that the interior of the disk D delineated
by the square is disjoint from the web. The restriction of the border is just a simple arc
in D joining one side to itself. We perform the two reductions of the square by deleting
two opposite sides, reversing the orientations on the two lasting sides and forgetting the
four 2-valent vertices. We obtain one pair of ε′-webs w′ = (w′1, w′2) with l(ε′) = l(ε)− 2
(when deleting the sides which meet the border) and one pair of ε-webs w′′ = (w′′1 , w′′2)
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(when keeping the sides which meet the border). The ε′-webs w′1 and w′2 are superficial
and 1-elliptic. Thanks to lemma 3.2.8 there exist a finite collection

(
w

(i)
1

)
of non-elliptic

and superficial ε′-webs and a finite collection (Pi) of symmetric Laurent polynomial in
N[q, q−1] with degree at most 1 such that in the skein module Sε′ , w′1 =

∑
i Piw

(i)
1 . On the

other hand, w′2 is superficial and non-elliptic. Denote w(i) = (w(i)
1 , w′2). Let us inspect w′′

now, it’s clear that the ε-web w′′1 is superficial and the hypothesis made on F implies that
it is non-elliptic. The ε-web w′′2 is clearly non-elliptic and superficial. The hypothesis on
the absence of digon implies that w′′ is not symmetric. Suppose that w′′ and all the w(k)

are nice. Then we have:

deg 〈w1w2〉 = deg
(〈
w′1w

′
2

〉
+
〈
w′′1w

′′
2

〉)
= deg

(∑
Pi

〈
w

(i)
1 w′2

〉
+
〈
w′′1w

′′
2

〉)
6 max(1 + l(ε′), l(ε)− 1) = l(ε)− 1.

This proves that w is nice.

Lemma 3.2.24. Let w = (w1, w2) be an element of W such that w1w2 is connected,
contains no digon and contains a square S. Suppose S intersects the border of w in exactly
two points on the same side and the opposed face F is an hexagon and does not meet the
border. Then there exists a finite collection

(
w(k)

)
with w(k) < w for all k, such that w(k)

nice for all k implies w nice.

Proof. First notice that in this case w cannot be symmetric. The four vertices of S lie
on the same side of the border, we can suppose that this is on the w1 side. As usual, we
can suppose that the interior of the disk D1 delineated by the S and interior of the disk
D2 delineate by the hexagon are disjoint from the web. The restriction of the border is
just a simple arc in D1 joining one side to itself. We move the border by pushing the arc
out of D1 (this is the same move as in figure 3.15). We denote w′ = (w′1, w′2) the new
pair of ε′-webs with l(ε′) = l(ε) − 2. The ε′-web w′1 is clearly semi-superficial and the
ε′-web w′2 is superficial and non-elliptic. The lemma 3.2.10 tells us that there exists a finite
collection

(
w

(i)
1

)
of non-elliptic superficial ε′-webs and a finite collection (Pi) of symmetric

Laurent polynomial in N[q, q−1] with degree at most 1 such that in the skein module Sε′ ,
w′1 =

∑
i Piw

(i)
1 . Denote w(i) = (w(i)

1 , w′2), and suppose that all the w(i) are nice. Then

deg 〈w1w2〉 = deg
(∑

Pi

〈
w

(i)
1 w′2

〉)
6 1 + l(ε′) = l(ε)− 1

This proves that w is nice.

Proposition 3.2.25. Let w = (w1, w2) be an element of W such that w1w2 is connected,
contains no digon and contains a square S. Then there exists a finite collection

(
w(k)

)
with w(k) < w for all k, such that w(k) nice for all k implies w nice.

Proof. The border must cut the square S. prove do this by induction on the number
of intersection points of the border with S. If the border meets S two times then the
lemmas 3.2.20, 3.2.21, 3.2.22, 3.2.23 and 3.2.24 give the result. If it has more that two
intersections points, then w is not symmetric. We move apart of the border (an outer arc)
outside S without increasing the length of ε (in case the arc meets adjacent sides we do
like in 3.2.21, in case it meets the same side two times we do the move described on figure
3.16, in case all the outer arcs meet two opposite sides we perform the move depicted on
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figure 3.17). The only thing to realize is that when one move an arc joining to opposite
side of S out of S this cannot result to a symmetric w because of the no-digon hypothesis.
These moves decrease the number of intersecting points of S with the border and we can
use the recursion hypothesis.

Figure 3.17: When all the outer arc meet the two sides, we move one of
this arc out of the square.

Proof of theorem 3.2.4. As we said, this is enough to prove 3.2.13. We do this by induction
with respect to the order on W . It’s clear that the result is true for (∅, ∅). Suppose we
have an element w = (w1, w2) of W such that for all w′ of W with w′ < w then w′ is
nice. Then depending on how w1w2 looks like we can apply lemma 3.2.16, lemma 3.2.16,
proposition 3.2.19 or proposition 3.2.25, and this shows that w is nice.
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Chapter 4

A characterisation of
indecomposable web-modules

The chapter 3 gives a sufficient condition for a web-module to be indecomposable. All the
argumentation relies on the computation of the dimension of the space of the degree 0
endomorphisms of web-modules: in fact, when for a web w, this space has dimension 1,
then the web-module Pw is indecomposable. Translated in terms of Kuperberg bracket, it
says (see as well lemma 2.2.22):

If w is an ε-web such that 〈ww〉 is monic of degree l(ε), then the Kε-module
Pw is indecomposable.

The aim of this chapter is to prove the converse. This will give the following characterisation
of indecomposable web-modules:

Theorem. Let w be an ε-web. The Kε-module Pw is indecomposable if and only if 〈ww〉
is monic of degree l(ε). Furthermore if the Kε-module Pw is decomposable it contains
another web-module as a direct factor.

The proof relies on some combinatorial tools called red graphs. In a first part we give
an explicit construction (in terms of foams) of a non-trivial idempotent associated to a red
graph. In a second part we show that when an ε-web w is such that 〈ww〉 is not monic of
degree l(ε), then it contains a red graph.

4.1 Red graphs

4.1.1 Definitions

The red graphs are sub-graphs of the dual graphs webs, we recall here the definition of a
dual graph. For an introduction to graph theory we refer to [Har69] and [BM08].

Definition 4.1.1. Let G be a plane graph (with possibly some vertex-less loops), we
define the dual graph D(G) of G to be the abstract graph given as follows:

• The set of vertices V (D(G)) of D(G) is in one-one correspondence with the set of
connected components of R2 \G (including the unbounded connected component).
Such connected component are called faces.

49
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• The set of edges of D(G) is in one-one correspondence with the set of edges of G
(in this construction, vertex-less loops are not seen as edges). If an edge e of G is
adjacent to the faces f and g (note that f may be equal to g if e is a bridge), then
the corresponding edge e′ in D(G) joins f ′ and g′, the vertices of D(G) corresponding
to f and g.

Note that in general the faces need not to be diffeomorphic to disks. It is easy to see
that the dual graph of a plane graph is planar: we place one vertex inside each face, and we
draw an edge e′ corresponding to e so that it crosses e exactly once and it crosses no other
edges of G. Such an embedding of D(G) is a plane dual of the graph G (see figure 4.1).

Figure 4.1: In black an ε-web w and in blue the dual graph of w. The
dotted edges are all meant to belong to D(w) and to reach the vertex u
corresponding to the unbounded component of R2 \ w.

Definition 4.1.2. Let w be an ε-web, a red graph for w is a non-empty subgraph G of
D(w) such that:

(i) All faces belonging to V (G) are diffeomorphic to disks. In particular, the unbounded
face is not in V (G).

(ii) If f1, f2 and f3 are three faces of w which share together a vertex, then at least one
of the three does not belong to V (G).

(iii) If f1 and f2 belongs to V (G) then every edge of D(w) between f1 and f2 belongs to
E(G), i.e. G is an induced subgraph of D(w).

If f is a vertex of G we define ed(f), the external degree of f , by the formula:

ed(f) = degD(w)(f)− 2 degG(f).

Figure 4.2: Example of a red graph.
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Remark 4.1.3. Note that the external degree of a face f is always an even number because
w being bipartite, all cycles are of even length and hence degD(w) is even.

Let G be a red graph for w, then if on the web we colour the faces which belongs to
V (G), then the external degree of a face f in V (G) is the number of half-edges of w which
touch the face f and lie in the uncoloured region. These half-edges are called the grey
half-edges of f in G or of G when we consider the set of all grey half-edges of all vertices
of G. See figure 4.3.

f
 f

Figure 4.3: Interpetation of the external degree in terms of grey half-
edges. On the left, a portion of a web w with a red graph; on the
right, the same portion of w with the vertices of G orange-coloured. The
external degree of f is the number of half edges touching f which are
not orange. In our case ed(f) = 2.

An oriented red graph is a red graph together with an orientation, a priori there is no
restriction on the orientations, but as we shall see just a few of them will be relevant to
consider.

Definition 4.1.4. Let w be an ε-web, G be a red graph for w and o an orientation for G,
we define the level io(f) (or i(f) when this is not ambiguous) of a vertex f of G by the
formula:

io(f) def= 2− 1
2ed(f)−#{edges of G pointing to f}

= 2−
degD(w)

2 + #{edges of G pointing away from f}

and the level I(G) of G is the sum of levels of all vertices of G.

Remark 4.1.5. The level is an integer because of remark 4.1.3. Note that the level of G
does not depend on the orientation of G and we have the formula:

I(G) = 2#V (G)−#E(G)− 1
2
∑

f∈v(G)
ed(f).

Definition 4.1.6. A red graph is admissible if one can choose an orientation such that
for each vertex f of G we have: i(f) > 0. Such an orientation is called a fitting orientation.
An admissible red graph G for w is exact if I(G) = 0.

Definition 4.1.7. Let w be an ε-web and G be a red graph for w. A pairing of G is a
partition of the grey half-edges of G into subsets of 2 elements such that for any subset
the two half-edges touch the same face f , and one points to f and the other one points
away from f . A red graph together with a pairing is called a paired red graph.
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Definition 4.1.8. A red graph G in an ε-web w is fair (resp. nice) if for every vertex f
of G we have ed(f) 6 4 (resp. ed(f) 6 2).

Lemma 4.1.9. If G is an admissible red graph in an ε-web w, then G is fair.

Proof. It follows directly from the definition of the level.

Corollary 4.1.10. Let w be a non-elliptic ε web, then if G is an admissible red graph for
w then it has at least two edges.

Proof. If G would contain just one vertex f , this would have external degree greater or
equal to 6, contradicting lemma 4.1.9. We can actually show that such a red graph contains
at least 6 vertices (see corollary 4.1.20 and proposition 4.1.23).

Remark 4.1.11. If a red graph G is nice, there is only one possible pairing. If it is fair
the number of pairing is 2n where n denote the number of vertices with external degree
equal to 4.

If on a picture one draws together a web w and a red graph G for w, one can encode a
pairing of G on the picture by joining1 with dashed line the paired half-edges. Note that if
G is fair it’s always possible to draw disjoint dashed lines (see figure 4.4 for an example).

Figure 4.4: A web w, a red graph G and the two possible pairings for G.

The rest of the chapter (respectively in section 4.2 and 4.3) will be devoted to show
the following two theorems:

Theorem 4.1.12. To every exact paired red graph of w we can associate a non trivial idem-
potent of HomKε(Pw, Pw). Further more the direct factor associated with the idempotent
is a web-module.

Theorem 4.1.13. Let w be a non-elliptic ε-web, then if 〈ww〉 is non-monic or have degree
bigger than l(ε), then there exists an exact red graph for w, therefore the Kε-module Pw is
decomposable.

4.1.2 Combinatorics on red graphs

On the one hand, the admissibility of a red graph relies on the local non-negativity of the
level for some orientation, on the other hand the global level I does not depend on the
orientation. However, it turns out that the existence of admissible red graph G for an
ε-web w can be understood thanks to I in some sense:

Proposition 4.1.14. Let w be an ε-web, suppose that there exists G a red graph for w such
that I(G) > 0, then there exists an admissible red graph G̃ for w such that I(G̃) > I(G).

1We impose that w intersect the dashed lines only at their ends.
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Proof. If G is already admissible, there is nothing to show, hence we suppose that G is not
admissible. Among all the orientations for G, we choose one such that

∑
f∈V (G) |i(f)| is

minimal, we denote is by o. From now on G is endowed with this orientation. As G is not
admissible there exists some vertices with negative level and some with positive level.

We first show that there is no oriented path from a vertex fp with io(fp) > 0 to a vertex
fn with io(fn) < 0. Suppose there exists γ such a path. Let us inspect o′ the orientation
which is the same as o expect along the path γ where it is reversed. For all vertices f of G
but fp and fn, we have io(f) = io′(f) (for all the vertices inside the path, the position of
the edges pointing to them is changed, but not their number), and we have:

io′(fp) = io(fp)− 1 io′(fn) = io(fn) + 1.

But then
∑
f∈V (G) |io′(f)| would be strictly smaller than

∑
f∈V (G) |io(f)| and this contra-

dicts that o is minimal.
We consider (G̃, õ) the induced oriented sub-graph of (G, o) with set of vertices V (G̃)

equal to the vertices of G which can be reach from a vertex with positive level by an
oriented path. This set is not empty since it contains the vertices with positive degree. It
contains no vertex with negative degree. For all vertices of G̃, we have:

iõ(f) = 2−
degD(w)(f)

2 + #{edges of G pointing away from f in G̃}

= 2−
degD(w)(f)

2 + #{edges of G pointing away from f in G}

= io(f).

The second equality holds because if f is in V (G̃) all the edges in E(G) \ E(G′). G
which are not in G̃ point to f by definition of G̃. This shows that G̃ is admissible and
I(G̃) > I(G).

Lemma 4.1.15. Let w be a non-elliptic web, suppose that it contains a red graph of level
k, then it contains an admissible nice red graph of level at least k.

Proof. We consider G a red graph of w of level k. Thanks to lemma 4.1.14 we can suppose
that it is admissible. We can take a minimal red graph G for the property of being of level
at least k and admissible. The graph G is endowed with a fitting orientation. Now suppose
that it is not nice, it means that there exists a vertex v of G which have exterior degree
equal to 4. But G being admissible all the edges of G adjacent to v point out of v, so that
we can remove v i.e. we can consider then induced sub-graph G′ with all the vertex of G
but v with the induced orientation. Then it is admissible, with the same level, hence G is
not minimal, contradiction.

For a non-elliptic ε-web, the existence of an exact red graph may appear as an exceptional
situation between the case where there is no admissible red graph and the case where all
admissible red graphs are non-exact. The aim of the rest of this section is to show the
proposition 4.1.16 which indicates that this is not the case. On the way we state some
small results which are not directly useful for the proof but may alight what red-graphs
look like.

Proposition 4.1.16. Let w be a non-elliptic ε-web. If there exists an admissible red graph
for w then there exists an exact red graph for w.
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Definition 4.1.17. Let w be an ε-web, and G and G′ two admissible red graphs for w.
We say that G′ is a red sub-graph of G if V (G′) ⊂ V (G′). We denote by G(G) the set of all
admissible red sub-graphs. It is endowed with the order given by the inclusion of sets of
vertices. We say that G is minimal if G(G) = {G}.

Note that a red sub-graph is an induced sub-graph and that a minimal red-graph is
connected.

Lemma 4.1.18. Let w be an ε-web and G a minimal admissible red graph endowed with
a fitting orientation. There is no non-trivial partition of V (G) into two sets V1 and V2
such that for each vertex v1 in V1 and each vertex v2 in V2 every edge between v1 and v2 is
oriented from v1 to v2.

Proof. If there were a such a partition, we could consider the red sub-graph G′ with
V (G′) = V2. For every vertex in V2 the level is the same in G and in G′ and hence, G′
would be admissible and G would not be minimal.

Corollary 4.1.19. Let w be a ε-web and G a minimal admissible red graph for w, then
the graph G has no leaf2. Therefore if it has 2 or more vertices, then it is not a tree.

Proof. Indeed, if v were a leaf of G, the vertex v would be either a sink or a source, hence
V (G) \ {v} and {v} would partitioned V (G) in a way forbidden by lemma 4.1.18.

Corollary 4.1.20. If G is an admissible red graph for a non-elliptic ε-web w, then G is
not a tree.

Proof. Consider a minimal red sub-graph of G. Thanks to corollaries 4.1.10 and 4.1.19, it
is not a tree, hence G is not a tree.

Lemma 4.1.21. Let w be an ε-web and G a minimal red graph for w. If G has more than
2 vertices, then it is nice.

Proof. Suppose that we have a vertex v of G with external degree equal to 4. Consider a
fitting orientation for G. All edges of G adjacent to v must point out, otherwise the degree
of v would be negative. So v would be a sink and, thanks to lemma 4.1.18, this is not
possible.

Lemma 4.1.22. Let w be a non-elliptic ε-web and G a minimal admissible red graph. If
the red graph G is endowed with a fitting orientation, then it is strongly connected.

The terms weakly connected and strongly connected are classical in graph theory the
first means that the underlying unoriented graph is connected in the usual sense. The
second that for any pair of vertices v1 and v2, there exists an oriented path from v1 to v2
and an oriented path from v2 to v1.

Proof. Let v be a vertex of G, consider the subset Vv of V (G) which contains the vertices
of G reachable from v by an oriented path. The sets Vv and V (G) \ Vv form a partition of
V (G) which must be trivial because of lemma 4.1.18, but v is in Vv therefore Vv = V (G),
this is true for any vertex v, and this shows that G is strongly connected.

Proposition 4.1.23. If G is a red graph for a non-elliptic ε-web w, then any (not-oriented)
simple cycle has at least 6 vertices.

2We mean vertex of degree 1.
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Proof. Take C a non-trivial simple cycle in G. We consider the collection of faces of w
nested by C (this is non empty thanks to condition (iii) of the definition of red graphs).
This defines a plane graph H. We define H ′ to be the graph H with the bivalent vertices
smoothed (we mean here that if locally H looks like , then H ′ looks like ). An
example of this construction is depicted on figure 4.5.

Figure 4.5: On the left the ε-web w and the red graph G, in the middle
the graph H, and on the right, the graph H ′.

The ε-web w being non-elliptic, each face of H has at least 6 sides. We compute the
Euler characteristic of H ′:

χ(H ′) = #F (H ′)−#E(H ′) + #V (H ′) = 2.

As in proposition 1.1.6, this gives us
∑
i∈N Fi(H ′)(1− i

6) = 2 where Fi(H) is the number
of faces of H ′ with i sides. Restricting the sum to i 6 5 and considering F ′i the number of
bounded faces, we have:

5∑
i=0

F ′i (H ′)(6− i) > 6.

But the bounded faces of H ′ with less that 6 sides come from bounded faces of H which
have at least 6 sides. The number n of bivalent vertices in H is therefore greater than or
equal to

∑5
i=0 F

′
i (H ′)(6− i) i.e. greater than or equal to 6. But n is as well the length of

the cycle C.

Note that a cycle in a red graph can have an odd length (as in the example of figure 4.5).

Lemma 4.1.24. Let G be a minimal admissible red graph for a non-elliptic ε-web w. Then
G has at least one vertex with degree 2.

Proof. Suppose that all vertices of G have degree greater or equal to 3, then the graph G
would contain a face with less than 5 sides (this is the same argument than in proposi-
tion 1.1.6 which tells that a closed web contains a circle, a digon or a square). But this
contradicts lemma 4.1.23.

The proposition 4.1.16 is a direct consequence of the following lemma:

Lemma 4.1.25. Let w be a non-elliptic ε-web and G a minimal admissible red graph for
w. Then G is exact.
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Proof. We endow G with o a fitting orientation. Suppose G is not exact, then we can find
a vertex f with io(f) > 0.

We first consider the case where deg(f) = 2. The ε-web w being non-elliptic, ed(f) > 2.
This shows that the two edges adjacent to f point away from f , hence, f is a sink and this
contradicts lemma 4.1.18.

Now, let us consider the general case. Let f ′ be a vertex with degree 2. The lemma
4.1.22 implies that there exists γ an oriented path from f to f ′. Let us reverse the
orientations of the edges of γ. We denote by o′ this new orientation. Then we have
io′(f) = io(f)− 1 > 0 and io′(f ′) = iG(f ′) + 1 > 1. The levels of all other edges are not
changed, hence o′ is a fitting orientation, and we are back in the first situation (where f ′
plays the role of f).

4.2 Idempotents from red graphs

Definition 4.2.1. Let w be an ε-web and G a paired red graph for w. We define the
G-reduction of w to be the ε-web denoted by wG and constructed as follows (see figure 4.6
for an example):

1. for every face of w which belongs (as a vertex) to G, remove all edges adjacent to
this face.

2. or every face of w connect the grey half-edges of G according to the pairing.

Note that if w is non-elliptic, wG needs not to be non-elliptic.

Figure 4.6: Example of a G-reduction of an ε-web w. The dotted lines
represent the pairing.

Definition 4.2.2. Let w be an ε-web, and G a fair paired red graph for w. We define the
projection associated with G to be the (w,wG)-foam denoted by pG and constructed as
follows (from bottom to top):

1. For every edge e′ of G, perform an unzip (see figure 4.7) on the edge e corresponding
to e in w. Note that the condition (ii) in the definition of red graph implies that
all these unzip moves are all far from each other, therefore we can perform all the
unzips simultaneously. Let us denote by w′ the ε-web at the top of the foam after
this step. Each vertex of G corresponds canonically to some a face of w′, this faces
are circles, digon or square (with an extra information given by the pairing) because
G being fair, every vertex of G have an external degree smaller or equal to 4.

2. • For each square of w′ which corresponds to a vertex of G, perform a square
move on it, following the pairing information, (see figure 4.8).
• For each digon of w′ which corresponds to a vertex of G, perform a digon move
on it (see figure 4.8).
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e

Figure 4.7: Unzip on the edge e.

• For each circle of w′ which corresponds to a vertex of G, glue a cap on it (see
figure 4.8).

We define as well iG, the injection associated with G to be the (wG, w)-foam which the mirror
image of pG with respect to the horizontal plane R2 × {1

2}and ẽG to be the (w,w)-foam
equal to iG ◦ pG. An example can be seen figure 4.9.

Figure 4.8: A square move, a bigon move and a cap.

Figure 4.9: On the top a web together with a fair (actually nice) paired
red graph G. On the bottom a movie representing eG.

Remark 4.2.3. It’s worthwhile to note that a digon move can be seen as a unzip followed
by a cap, and that a square move can be seen as two unzips followed by a cap. With this
point of view, we see in that in iG (and in pG), every edge of G and every pair of grey
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half-edges corresponds a zip (or an unzip) and every vertex of G corresponds a cup (or a
cup).

The theorem 4.1.12 is an easy consequence of the following proposition:

Proposition 4.2.4. If w is a non-elliptic web and G is an exact paired red graph for w
then the (wG, wG)-foam pG ◦ iG is equivalent under the relations FR(see proposition 1.2.11)
to a non-zero multiple of the identity (wG, wG)-foam wG × [0, 1].

To prove this proposition we need to develop a framework to make some calculus with
the explicit foams we gave in definition 4.2.2.

4.2.1 Foam diagrams

Definition 4.2.5. Let w be an ε-web, a foam diagram κ for w consists of the following
data:

• the ε-web w,

• a fair paired red graph G,

• a function δ (called a dot function for w) from E(w) the set of edges of w to N the
set of non-negative integers. This function will be represented by the appropriate
number of dots on each edge of w.

With a foam diagram κ we associate f(κ) the (wG, wG)-foam given by pG ◦sw(δ)◦ iG, where
sw(δ) is idw = w× [0, 1] the identity foam of w with on every facet e× [0, 1] (with e ∈ E(w))
exactly δ(e) dots. The (wG, wG)-foam f(κ) is equal to pG ◦ iG, with dots encoded by δ. A
foam diagram will be represented by the ε-web drawn together with the red graph, and
with some dots added on the edges of the ε-web in order to encode δ.

We will often assimilate κ = (w,G, δ) with f(κ) and it will be seen as an element of
homKε(PwG , PwG). We can rewrite some of the relations depicted on figure 1.11 in terms
of foam diagrams:

Proposition 4.2.6. The following relations on foams associated with foam diagrams hold:

• The 3-dots relation:

= 0

• The sphere relations:

= = 0 = −1
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• The digon relations:

= = 0

= − =

• The square relations:

= −

• The E-relation:

= −

The dashed lines indicate the pairing, and when the orientation of the ε-web is not depicted
the relation holds for any orientation.

Proof. This is equivalent to some of the relations depicted on figure 1.11.

Lemma 4.2.7. Let w be an ε-web and κ = (w,G, δ) a foam diagram, with G a fair paired
red graph. Then f(κ) is equivalent to a Z-linear combination of swG(δi) = f((wG, ∅, δi))
for δi some dots functions for wG.

Proof. Thanks to the E-relation of proposition 4.2.6, one can express f(κ) as a Z-linear
combination of f((wj , Gj , δj)) where the Gj ’s are red graphs without any edge. Tanks
to the sphere, the digon and square relations of proposition 4.2.6, each f((wj , Gj , δj)) is
equivalent either to 0 or to ±f(wG, ∅, δ′j). This proves the lemma.

Lemma 4.2.8. Let w be an ε-web and κ = (w,G, δ) a foam diagram, with G exact, then
f(κ) is equivalent to a multiple of wG × [0, 1].

Proof. From the previous lemma we know that f(κ) is equivalent to a Z-linear combination
of wG × [0, 1] with some dots on it. We will see that the foam f(κ) has the same degree as
the foam wG × [0, 1]. This will prove the lemma because adding a dot on a foam increases
its degree by 2.

To compute the degree of f(κ) we see it as a composition of elementary foams thanks
to its definition:

deg f(κ) = deg(w × [0, 1]) + 2 ·
(

2 ·#V (G)−
(

#E(G) + #{grey half-edges of G}
2

))
=|∂w|+ 2 · 0
= degwG × [0, 1].
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The first equality is due to the decomposition pointed out in remark 4.2.3 and because an
unzip (or a zip) has degree -1 and a cap (or a cup) has degree +2. The factor 2 is due to
the fact f(κ) is the composition of iG and pG. The second one follows from the exactness
of G.

To prove the proposition 4.2.4, we just need to show that in the situation of the last
lemma, the multiple is not equal to zero. In order to evaluate this multiple, we extend
foam diagrams to (partially) oriented paired red graphs by the local relation indicated on
figure 4.10.

def=

Figure 4.10: Extension of foam diagrams to oriented red graphs.

By “partially oriented” we mean that some edges may be oriented some may not. If
G is partially oriented, and κ is a foam diagram with red graph G, we say that κ′ is the
classical foam diagram associated with κ if it obtained from κ by applying the relation of
figure 4.10 on every oriented edges. Note that κ and κ′ represent the same foam.

Definition 4.2.9. If w is an ε-web, G a red graph for w and o a partial orientation of G
we define γ(o) to be equal to #{negative edges of G}. A negative (or positive) edge is an
oriented edge of the red graph, and it’s negativity (or positivity) is given by figure 4.11.

Figure 4.11: On the left, a positive edge. On the right, a negative edge.

Lemma 4.2.10. Let w be an ε-web and G a partially oriented red graph with e a non-
oriented edge of G, then we have the following equality of foams:

e = e − e

If G is an un-oriented red graph for w and δ a dots function for w, then:

f(w,G, δ) =
∑
o

(−1)γ(o)f(w,Go, δ),

where Go stands for G endowed with the orientation o, and o runs through all the 2#E(G)

complete orientations of G.

Proof. The first equality is the translation of the E-relation (see proposition 4.2.6) in terms
of foam diagrams of partially oriented red graphs. The second formula is the expansion of
the first one to all edges of G.
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Lemma 4.2.11. If w is an ε-web, G an exact paired red graph for w, o a non-fitting
orientation for G and δ the null dot function on w, then the (wg, wG)-foam f(w,Go, δ) is
equivalent to 0.

Proof. The orientation o is a non-fitting orientation. Hence, there is at least one vertex v
of G so that io(v) > 0. There are two different situations, either io(v) = 1 or io(v) = 2.
Using the definition of a foam diagrams for oriented red graphs (figure 4.10), we deduce
that κ′ the classical foam diagram associated with f(w,Go, δ) looks around v like one of
the three following situations:

The sphere relations and the digon relations provided by proposition 4.2.6 we see that the
foam f(w,Go, δ) is equivalent 0.

Lemma 4.2.12. If w is an ε-web, G an exact paired red graph for w, o a fitting orientation
for G and δ the null dots function on w, then the (wG, wG)-foam f(w,Go, δ) is equivalent to
(−1)µ(o)wG×I, where µ(o) = #V (G)+#{positive digons of Go} (see definition figure 4.12).

Proof. Let κ′ = (w′, G′, δ′) be the classical foam diagram associated with (w,Go, δ). The
red graph G′ has no edge. Locally, the foam diagram κ′ corresponds to one of the 5
situation depicted on figure 4.12.

Figure 4.12: The 5 different local situations of a foam diagram κ′ next
to a vertex of G′. On the second line, the digon on the left is positive
and the digon on the right is negative.

But now using some relations of proposition 4.2.6 we can remove all the vertices of G′,
we see that f(w,Go, δ) is equivalent to (−1)#V (G′)−#{positive digons} because the positive
digon is the only one with no minus sign in the relations of prop 4.2.6. This proves the
result because V (G) = V (G′).

Lemma 4.2.13. If w is an ε-web, G an exact paired red graph for w and o1 and o2 two
fitting orientations for G, then µ(o1) + γ(o1) = µ(o2) + γ(o2).

Proof. We consider κ′1 = (w′, G′, δ1) and κ′2(w′, G′, δ2) the two classical foam diagrams
corresponding to (w,Go1 , δ) and (w,Go2 , δ), with δ the null dots function for w.

The red graph G′ has no edge, and the local situation are depicted on figure 4.12.
Consider v a vertex of G′, then a side of the face of w corresponding to v is either clockwise
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or counterclockwise oriented (with respect to this face). From the definition of γ we obtain
that for i = 1, 2, γ(oi) is equal to the number of dots in κ′i on clockwise oriented edges in
w′. The dots functions δ1 and δ2 differs only next to the digons, so that γ(o1)− γ(o2) is
equal to the number of negative digons in κ′1 minus the number of negative digons in κ′2.
So that we have:

γ(o1)− γ(o2) = µ(o2)− µ(o1)
γ(o1) + µ(o1) = γ(o2) + µ(o2).

Proof of proposition 4.2.4. The foam pG ◦ iG is equal to f(w,G, δ) with δ the null dot
function on w. From the lemmas 4.2.10, 4.2.11 and 4.2.12 we have that:

f(w,G, δ) =
∑

o fitting orientation of G
(−1)γ(o)f(w,Go, δ)

=
∑

o fitting orientation of G
(−1)γ(o)+µ(o)wG × [0, 1]

=±#{fitting orientations of G}wG × [0, 1].

The red graph G is supposed to be exact. This means in particular that the set of fitting
orientation is not empty. So that pG ◦ iG is a non-trivial multiple of idwG = wG× [0, 1].

Proof of theorem 4.1.12. From the proposition 4.2.4, we know that there exists a non zero
integer λG such that pG ◦ iG = λGwG. Hence, 1

λG
iG ◦ pG is an idempotent. It’s clear that

it’s non-zero. It is quite intuitive that it is not equivalent to the identity foam, for a proper
proof, see proposition 4.2.15.

4.2.2 On the identity foam

Definition 4.2.14. Let w be an ε-web, and f a (w,w)-foam, we say that f is reduced if
every facet of f is diffeomorphic to a disk and if f contains no singular circle (i.e. only
singular arcs). In particular this implies that every facet of f meets w × {0} or w × {1}.

The aim of this section is to prove the following proposition:

Proposition 4.2.15. Let w be a non-elliptic ε-web. If f is a reduced (w,w)-foam which
is equivalent (under the foam relations FR) to a non-zero multiple of w × [0, 1], then the
underlying pre-foam is diffeomorphic to w × [0, 1] and contains no dot.

For this purpose we begin with a few technical lemmas:

Lemma 4.2.16. Let w be a closed web and e an edge of w. Then there exists f a (∅, w)-
foam which is not equivalent to 0 such that the facet of f touching the edge e contains at
least one dot.

Proof. We prove the lemma by induction on the number of edges of the web w. It is
enough to consider the case w connected because the functor F is monoidal. If the web w
is a circle this is clear, since a cap with one dot on it is not equivalent to 0. If w is the
theta web, then this is clear as well, since the half theta foam with one dot on the facet
meeting e is not equivalent to 0.

Else, there exists a square or digon in w somewhere far from e. Let us denote w′ the
web similar to w but with the digon replaced by a single strand or the square smoothed
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in one way or the other. By induction we can find an (∅, w′)-foam f ′ non-equivalent to 0
with one dot on the facet touching e.

Next to the strand or the smoothed square, we consider a digon move or a square move
(move upside down the pictures of figure 4.8). Seen as a (w′, w)-foam it induces an injective
map. Therefore, the composition of f ′ with this (w′, w)-foam is not equivalent to 0 and
has one dot on the facet touching e.

Notation 4.2.17. Let w be an ε-web, and e be an edge of w. We denote by f(w, e) the
(∅, ww)-foam which is diffeomorphic to w × [0, 1] with one dot on the facet e× [0, 1]. We
denote by f(w, ∅) the (∅, ww)-foam which is diffeomorphic to w × [0, 1] with no dot on it.

Corollary 4.2.18. Let w be an ε-web, and e an edge of w, then f(w, e) is non-equivalent
to 0.

Proof. From lemma 4.2.16 we know that for any w, there exists a (w,w)-foam which is
non equivalent to 0 and is the product of f(w, e) with another (w,w)-foam. This proves
that the (w,w)-foam f(w, e) is not equivalent to 0.

Definition 4.2.19. If w is an ε-web. We say that it contains a λ (resp. a ∩, resp. a H) if
next to the border w looks like one of the pictures of figure 4.13.

εi εi+1 εi εi+1 εi εi+1

Figure 4.13: From left to right: a λ, a ∩ and a H.

Lemma 4.2.20. Every non-elliptic ε-web contains at least a λ, a ∩ or an H.

Proof. The closed web ww contains a circle a digon or a square, and this happens only if
w contains a ∩ a λ or a H.

Remark 4.2.21. In fact, one can “build” every non-elliptic web with this three elementary
webs. This is done via the “growth algorithm” (see [KK99]).

Lemma 4.2.22. Let w be a non-elliptic ε-web. Then the elements of (f(w, e))e∈E(w) are
pairwise non-equivalent (but they may be linearly dependant).

Sketch of the proof. We proceed by induction on the number of edges of w. The initiation
is straightforward since if w has only one edge there is nothing to prove. We can distinguish
several case thanks to lemma 4.2.20:

If w contains a ∩, we denote by e the edge of this ∩, and by w′ the ε′-web similar to w
but with the cap removed. Suppose that e1 = e, then e2 6= e and, then the (∅, ww)-foams
f(w, e1) and f(w, e2) are different because if we cap the cup (we mean e× I) by a cap with
one dot on it, on the one hand we obtain a (∅, w′w′)-foam equivalent to 0 and on the other
hand a (∅, w′w′)-foam equivalent to f(w′, ∅). Thanks to lemma 4.2.16, we know that this
last (∅, w′w′)-foam is not equivalent to 0. If e1 and e2 are different from e, it is clear as
well, because f(w, e1) and f(w, e2) can be seen as compositions of f(w′, e1) and f(w′, e2)
with a birth (seen as a (w′w′, ww)-foam) which is known to correspond to injective map.

This is the same kind of argument for the two other cases. The digon relations and the
square relations instead of the sphere relations.
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Lemma 4.2.23. Let w be an ε-web and f a reduced (w,w)-foam f . Suppose that every
facet touches w×{0} on at most one edge, and touches w×{1} on at most one edge, then
it is isotopic to w × [0, 1].

Proof. The proof is inductive on the number of vertices of w. If w is a collection of arcs,
the foam f has no singular arc. As f is supposed to be reduced, it has no singular circle.
Therefore it is a collection of disks which corresponds to the arcs of w, and this proves the
result in this case.

We suppose now that w has at least one vertex. Let us pick a vertex v which is a
neighbour (via an edge that we call e) of the boundary ε of w. We claim that the singular
arc α starting at v × {0} must end at v × {1}.

Indeed, the arc α cannot end on w × {0}, for otherwise, the facet f touching e would
touch another edge of w. Therefore the arc α ends on w × {1}. For exactly the same
reasons, it has to end on v×{1}, so that the facet which touches e×{0} is isotopic to e× I,
now we can remove a neighbourhood of this facet and we are back in the same situation
with a ε′-web with less vertices, and this concludes.

Proof of proposition 4.2.15. We consider w a non-elliptic ε-web. Let f be a reduced (w,w)-
foam such that f is equivalent to w× I up to a non-trivial scalar. Because of lemma 4.2.22,
the foam f satisfies the hypotheses of lemma 4.2.23, so that f is isotopic to w × [0, 1].

We conjecture that the proposition 4.2.15 still holds without the non-ellipticity hypoth-
esis. However the proof has to be changed since lemma 4.2.22 cannot be extend to elliptic
webs (consider the facets around a digon).

Corollary 4.2.24. If w is a non-elliptic ε-web and w′ is an ε-web with strictly less vertices
than w, then if f is a (w,w′)-foam and g is a (w′, w)-foam, then the (w,w)-foam fg cannot
be equal to a scalar times the identity.

4.3 Characterisation of indecomposable web-modules

4.3.1 General View

The lemma 2.2.22 states that the indecomposability of a web-modules Pw can be deduced
from the Laurent polynomial 〈ww〉. In this section we will show a reciprocal statement.
We first need a definition:

Definition 4.3.1. Let ε be an admissible sequence of signs of length n, an ε-web w is said
to be virtually indecomposable if 〈ww〉 is a monic symmetric Laurent polynomial of degree
n. An ε-web which is not virtually indecomposable is virtually decomposable. If w is a
virtually decomposable ε-web, we define the level of w to be the integer 1

2(deg 〈ww〉 − n).

Despite of its fractional definition, the level is an integer. With this definition,
lemma 2.2.22 can be rewritten:

Lemma 4.3.2. If w is a virtually indecomposable ε-web, then M(w) is an indecomposable
Kε-module.

The purpose in this section is to prove a reciprocal statement in order to have:

Theorem 4.3.3. Let ε be an admissible sequence of signs of length n, and w an ε-web.
Then the Kε-module Pw is indecomposable if and only if w is virtually indecomposable.
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Remark 4.3.4. Note that we do not suppose that w is non-elliptic, but as a matter of fact,
if w is elliptic then 〈ww〉 is not monic of degree n and the module Pw is decomposable.

To prove the unknown direction of theorem 4.3.3 we use red graphs developed in the
previous section and will show a more precise version of the theorem:

Theorem 4.3.5. If w is a non-elliptic virtually decomposable ε-web of level k, then
w contains an admissible red graph of level k, hence EndKε(Pw) contains a non-trivial
idempotent and Pw is decomposable.

Proof of theorem 4.3.3 assuming theorem 4.3.5. Let w be a virtually decomposable ε-web
and let us denote by k its level. From theorem 4.3.5 we know that there exists a red
graph G′′ of level k. But then, thanks to proposition 4.1.14, there exists G′ a sub red
graph of G′′ which is admissible. And finally, the proposition 4.1.16 shows the existence of
an exact red graph G in w. We can apply theorem 4.1.12 to G and this tells that Pw is
decomposable.

The proof of theorem 4.3.5 is a recursion on the number of edges of the web w. But for
the recursion to work, we need to handle elliptic webs as well. We will actually show the
following:

Proposition 4.3.6. 1. If w is a ∂-connected ε-web which is virtually decomposable of
level k > 1 then there exists S a stack of nice red graphs for w of level greater or
equal to k such that wS is ∂-connected.

2. If w is a ∂-connected ε-web which is virtually decomposable of level k > 1, contains no
digon and contains exactly one square which is supposed to be adjacent the unbounded
face then there exists a nice red graph G in w of level greater or equal to k such that
wG is ∂-connected.

3. If w is a non-elliptic ε-web which is virtually decomposable of level k > 0 then
there exists a nice red graph G in w of level greater of equal to k such that wG is
∂-connected.

Before proving the proposition we need to introduce stacks of red graphs (see below), and
the notion of ∂-connectedness (see section 4.3.2). Then we will prove the proposition 4.3.6
thanks to a technical lemma (lemma 4.3.16) which will be proven in section 4.3.5 after an
alternative glance on red graphs (section 4.3.4).

Remark 4.3.7. It is easy to see that a non-elliptic superficial ε-web contains no red graphs
of non-negative level, hence this result is strictly stronger than the theorem 3.2.4.

Definition 4.3.8. Let w be an ε-web, a stack of red graphs S = (G1, G2, . . . , Gl) for w
is a finite sequence of paired red graphs such that G1 is a red graph of w1

def= w, G2 is a
red graph of w2

def= wG1 , G3 is a red graph of w3
def= (wG1)G2 = (w2)G2 etc. We denote

(· · · ((wG1)G2) · · · )Gl by wS and we denote l by l(S) and we say that it is the length of S.
We define the level of a stack to be the sum of the levels of the red graphs of the stack.

Definition 4.3.9. A stack of red graphs is nice if all its red graphs are nice. Note that in
this case the pairing condition on red graphs is empty.
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Figure 4.15: A stack of red graphs of length 2.

4.3.2 The ∂-connectedness

Definition 4.3.10. An ε-web is ∂-connected if every connected component of w touches
the border.

A direct consequence is that a ∂-connected ε-web contains no circle.

Lemma 4.3.11. A non-elliptic ε-web is ∂-connected.

Proof. An ε-web which is not ∂-connected has a closed connected component, this connected
component contains at least a circle, a digon or a square and hence is elliptic.

Lemma 4.3.12. Let w be a ∂-connected ε-web with a digon, the web ε-web w′ equal to
w except that the digon reduced (see figure 4.16) is still ∂-connected. In other words
∂-connectedness is preserved by digon-reduction.

Figure 4.16: On the left w, on the right w′.

Proof. This is clear because every path in w can be projected onto a path in w′.

Note that ∂-connectedness is not preserved by square reduction, see for example
figure 4.17. However we have the following lemma:

Figure 4.17: The ∂-connectedness is not preserved by square reduction.

Lemma 4.3.13. If w is a ∂-connected ε-web which contains a square S then one of the
two ε-webs obtained from w by a reduction of S (see figure 4.18) is ∂-connected.
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S

Figure 4.18: On the right the ε-web w with the square S, on the middle
and on the right, the two reductions of the square S.

Proof. Consider the oriented graph w̃ obtained from w by removing the square S and the
4 half-edges adjacent to it (see figure 4.19). We obtain a graph with 4 less cubic vertices

S

Figure 4.19: On the left w, on the right w̃.

than w and 4 more vertices of degree 1 than w. We call ES the cyclically ordered set of the
4 vertices of w̃ of degree 1 next to the removed square S. The orientations of the vertices
in ES are (+,−,+,−). Note that in w̃, the flow modulo 3 is preserved everywhere, so that
the sum of orientation of vertices of degree 1 of any connected component must be equal
to 0 modulo 3. Suppose now that there is a connected component t of w̃ which has all
its vertices of degree 1 in ES , the flow condition implies that either all vertices of ES are
vertices of t or exactly two consecutive vertices of ES are vertices of t, or that t has no
vertex of degree 1. The first situation cannot happen because by adding the square to t we
would construct a free connected component of w which is supposed to be ∂-connected, the
last situation neither for the same reason. So the only thing that can happen is the second
situation. If there were two different connected components t1 and t2 of w̃ such that t1
and t2 have all their vertices of degree 1 in ES , then adding the square to t1 ∪ t2 would
lead to a free connected component of w, so their is at most one connected component of
w̃ with all this vertex of degree 1 in ES call this vertices e+ and e−, and call e′+ and e′−
the two other vertices of ES (the indices gives the orientation). If we choose w′ to be the
ε-web corresponding to the smoothing which connects e+ with e′− and e− with e′+, then w′
is ∂-connected.

Definition 4.3.14. Let w be a ∂-connected ε-web and S a square in w. The square S is
a ∂-square if the two ε-webs w= and w|| obtained from w by the two reductions by the
square S are ∂-connected.

Lemma 4.3.15. If w is a ∂-connected web, then either it is non-elliptic, or it contains
either a digon or a ∂-square.

Proof. Suppose that w is not non-elliptic. As w is ∂-connected it contains no circle. If
must contains at least a digon or a square, if it contains a digon we are done, so suppose
w contains no digon. We should show that at least one square is a ∂-square. Suppose
that there is no ∂-square, it means that for every square S, there is a reduction such that
the ε-web resulting ws(S) obtained by replacing w by the reduction has a free connected
component tS . Let us consider a square S0 such that tS0 is as small as possible (in terms
of number of vertices for example). The web tS0 is closed and connected, so that either it
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is a circle, or it contains a digon or at least two square. If tS0 is a circle then w contains a
digon just next to the square S0, and we excluded this case (see figure 4.20). If it contains

Figure 4.20: on the left wS0 , on the right w. If tS0 is a circle, then w
contains a digon.

a digon, the digon must be next to where S0 was smoothed else the digon would already be
in w. It appears hence that the digon comes from a square S1 in w (S1 is adjacent to S0),
and tS1 has two vertices less than TS0 which is excluded (see figure 4.21). The closed web

Figure 4.21: On the left wS0 , on the right w. If tS0 contains a digon then
w contains a square adjacent to S0.

tS0 contains at least two squares so that we can pick up one, we denote it by S′, which is
far from S0 and hence comes from a square in w. Now at least one of the two smoothings
of the square S′ must disconnect ts0 else the square S′ would be a ∂-square in w. But as it
disconnects tS0 , tS′ is a strict sub graph of tS0 , and this contradict the minimality of S0.
And this concludes that w must contain a ∂-square.

4.3.3 Proof of proposition 4.3.6

In this section we prove the proposition 4.3.6 admitting the following technical lemma:

Lemma 4.3.16. Let w be a ∂-connected ε-web which contains, no digon and one square
which touches the unbounded face. Let G be a nice red graphs of w and G′ a nice red graph
of wG such that wG and wG′ are ∂-connected, then there exists G′′ a red graph of w such
that (wG)G′ = wG′′ and the level of G′′ is bigger or equal to the level of G plus the level of
G′.

This lemma says that under certain condition one can “flatten” two red graphs.

Proof of proposition 4.3.6. As we announced this will be done by recursion on the number
of edges of w. We supposed than 1, 2 and 3 hold for all ε-webs with strictly less than n
edges, and we consider an ε-web with n edges. Note that whenever w is non-elliptic the
statement 3 is stronger than the statement 1, so that we won’t prove 1 in this case. We
first prove 1:

If w contains a digon, then we apply the result on w′ the ε-web similar to w but with
the digon reduced (i.e. replaced by a single strand). The red graph G which consist of only
one edge (the digon) and no edge is nice and has level equal to 1 (see figure 4.22).
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Figure 4.22: On the left w′, on the right w with the red graph G.

If w′ is not virtually decomposable or virtually decomposable of level 0, then w is
virtually decomposable of level 1. In this case, the stack with only one red graph equal to
G is convenient and we are done. Else we know that w′ is of level k − 1 and that there
exists a nice stack of red graphs S′ of level k− 1 in w′ and we consider the stack S equal to
the concatenation of G with S′, it is a nice stack of red graphs of level k and we are done.

Suppose now that the ε-web w contains no digon, but a square, then it contains a
∂-square (see lemma 4.3.15). Suppose that the level of w is k > 1 (else there is nothing
to show), then at least one of the two reductions is virtually decomposable of level k
(see 1.1.19). Then we consider w′ the ε-web obtained by a reduction of the square so that
it is of level k. From the induction hypothesis we know that there exists a stack of red
graphs S′ in w′ of level k. If all the red graphs of S′ are far from the location of the square,
then we can transform the stack S′ into a stack of w with the same level. Else, we consider
G′ the first red graph of S′ which is close from the square location and according to the
situation we define G by the moves given on figure 4.23.

 

 

 

 

 

Figure 4.23: Transformations of G′ to obtain G.

Replacing G′ by G we can transform, the stack S′ into a stack for the ε-web w.
We now prove 2.
From what we just did, we know that w contains a nice stack of red graphs of level k.

Among all the nice stacks of red graphs of w with level greater or equal to k, we choose one
with a minimal length, we call it S. If its length were greater or equal to 2, then lemma
4.3.16 would tell us that we could take the first two red graphs and replace them by just
one red graph with a level bigger or equal to the sum of their two levels, so that S would
not be minimal, this prove that S has length 1, therefore, w contains a nice red graph of
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level at least k.
We now prove 3.
The border of w contains at least a ∩, a λ, or an H (see figure 4.13). In the two first

cases, we can consider w′ the ε-web with the ∩ removed or the λ replaced by a single
strand, then w′ is non-elliptic and virtually decomposable of level k and there exists a nice
red graph in w′ of level at least k, this red graph can be seen as a red graph of w, and we
are done. If the border of w contains no λ and no ∩, then it must contains an H. There
are two ways to reduce the H (see figure 4.24). At least one of the two following situation
happens: w|| is virtually decomposable of level k or w_ is virtually decomposable of level
k+ 1. In the first situation, one can do the same reasoning as before: w|| being non-elliptic,

Figure 4.24: The H of w (on the left) and its two reductions: w|| (on the
middle) and w= (on the right).

the induction hypothesis gives that we can find a nice red graph of level at least k in w||,
this red graph can be seen as a red graph of w and we are done. In the second situation,
we consider w_, we can apply the induction hypothesis to w_ (we are either in case 2 or
in case 3), so we can find a nice red graph of level at least k + 1, coming back to H this
gives us a red graph of level at least k (but maybe not nice), and we can conclude via the
lemma 4.1.15.

4.3.4 A new approach to red graphs.

In this section we give an alternative approach to red graphs: instead of starting with
a web and simplifying it with a red graph we construct a red graph from a web and a
simplification of this web. For this we need a property of webs that we did not use so far.

Proposition 4.3.17. Let w be a closed web, then it admits a (canonical) face-3-colouring
with the unbounded face coloured c ∈ Z/3Z. We call this colouring the face-colouring of
base c of w. When c is not mentioned it is meant to be 0.

Proof. We will colour connected components of R2 \ w with elements of Z/3Z. We can
consider the only unbounded component U of R2 \ w. We colour it by c, then for each
other connected component f , we consider p an oriented path from a point inside U to
a point inside f , which crosses the w transversely, we then define the colour of f to be
the sum (modulo 3) of the signs of the intersection of the path p with w (see figure 4.25
for signs convention). This does not depend on the path because in w the flow is always
preserved modulo 3. And, by definition, two adjacent faces are separated by an edge, so
that they do not have the same colour.

p p

Figure 4.25: On the left a positive crossing, on the right a negative one.
The path is dashed and the web is solid.
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Corollary 4.3.18. Let w be an ε-web, then the connected component of R×R+ \w admits
a (canonical) 3-colouring with the unbounded connected component coloured by c. We call
this colouring the face-colouring of base c of w.

Proof. We complete w with w and we use the previous proposition to obtain a colouring
of the faces. This gives us a canonical colouring for R× R+ \ w.

Note that in this corollary it is important to consider the connected component of
R × R+ \ w instead of the connected component of R2 \ w. Let us formalise this in a
definition.

Definition 4.3.19. If w is an ε-web, the regions of w are the connected components of
R× R+ \ w. The faces of w are the regions which do not intersect R× {0}.

Definition 4.3.20. Let w be an ε-web, an ε-web w′ is a simplification of w if

• the set of vertices of w′ is included in the set of vertices of w,

• every edge e of w′ is divide into an odd number of intervals ([ai, ai+1])i∈[0,2k] such
that for every i in [0, k], [a2i, a2i+1] is an edge of w (with matching orientations) and
for every i in [0, k− 1], [a2i+1, a2i+2] lies in the faces of w opposite to [a2i, a2i+1] with
respect to a2i+1 (see figure 4.26).

ak

Figure 4.26: Local picture around ak. The edge of w′ is orange and large,
while the ε-web w is black and thin.

Figure 4.27: The ε-web w (on black) and w0 (in orange) of proposi-
tion 3.1.1 seen in terms of simplification.

Lemma 4.3.21. Let w be a ε-web and w′ a ∂-connected simplification of w If e is an edge
of w which is as well a (part of an) edge of w′, then in the face-colourings of base c of w
and w′, the the regions adjacent to e in w and in w′ are coloured in the same way.



4.3. CHARACTERISATION OF INDECOMPOSABLE WEB-MODULES 73

Proof. This is an easy recursion on how e is far from the border.

Note that in this definition the embedding of w′ with respect to w is very important.

Definition 4.3.22. Let w be an ε-web and w′ a simplification of w. We consider the
face-colourings of w and w′. A face f of w lies in one or several regions of w′. This face f
is essential with respect to w′ if all regions of w′ it intersects do not have the same colour
as f .

Remark 4.3.23. We could have write this definition with region of w instead of faces,
but it is easy to see that a region of which is not a face w is never essential.

Lemma 4.3.24. Let w be a ∂-connected ε-web and w′ a ∂-connected simplification of w.
If a face f of w is not essential with respect to w′ then it intersects only one region of w′.

Proof. Consider a face f of w which intersects more than one region of w′. We will prove
that it is essential with respect to w′. Consider an edge e′ of w′ which intersects f (there
is at least one by hypothesis), when we look next to the border of f next to e′ we find a
vertex v of w (see figure 4.28).

f ′

v

e′

Figure 4.28: A part of the face f ′ next to an edge e′ of w′. Above v the
colours of w and w′ are coherent thanks to lemma 4.3.21.

We want to prove that none of the faces of w′ which are adjacent to e′ has the same
colour as the face f . This follows from the lemma 4.3.21, and from the fact that the part
of e′ above v is an edge of w (see figure 4.28).

Corollary 4.3.25. Let w be a ∂-connected ε-web and w′ a ∂-connected simplification of
w. If a face f of w intersects a region of w′ which has the same colour, it is not essential.

Proposition 4.3.26. Let w be a ∂-connected ε-web (this implies that every face of w is
diffeomorphic to a disk) and w′ a ∂-connected simplification of w. Then there exists a
(canonical) paired red graph G such that w′ is equal to wG. We denote it by Gw→w′.

Proof. We consider the canonical colourings of the faces of w and w′. The red graph G is
the induced sub-graph of w? (the dual graph of w) whose vertices are essential faces of w
with respect to w′. The pairing is given by the edges of w′. We need to prove first that
this is indeed a red graph, and in a second step that wG = w′. We consider a vertex v
of w and the 3 regions next to it. We want to prove that at least one of the 3 regions is
not essential with respect to w′. If the vertex v is a vertex of w′ then lemma 4.3.21 and
corollary 4.3.25 give that none of the three regions is essential. Else, v either lies inside an
edge of w′ or it lies in a face of w′ (see figure 4.29).

Consider the first situation: one of the 3 regions intersects two different regions of w′
hence it is essential thanks to lemma 4.3.24, the two others are not thanks to corollary 4.3.25.

In the last situation, the 3 regions have different colours so that one of them has the
same colour than the colour of the region of w′ where v lies in, this region is therefore not
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v v v

Figure 4.29: The three configurations for the vertex v of w: it is a vertex
of w′ (on the left), it lies inside an edge of w′ (on the middle), it lies
inside a region of w′ (on the right).

essential (corollary 4.3.25). This shows that G is a red graph (we said nothing about the
admissibility).

Let us now show that w′ = wG. We consider a collection (Nf )f∈V (G) of regular
neighbourhoods of essential faces of w with respect to w′. Let us first show that for every
essential face f of w, if Nf is a regular neighbourhood of f , the restriction of wG and w′
matchs. As f is essential it is a vertex of G. Then the restriction of wG to Nf is just a
collection of strands joining the border to the border, just as w′.

In R× R+ \
(⋃

f∈V (G)Nf

)
the ε-webs w′ and wG are both equal to w. This complete

the proof.

Note that Gw→w′ depends on how w′ is embedded to see it as a simplification of w.

Definition 4.3.27. Let w a ε-web and w′ a simplification of w, then the simplification is
nice, if for every region r of w, r ∩ w′ is either the empty set or connected.

We have the natural lemma:

Lemma 4.3.28. Let w be a ∂-connected ε-web and w′ a ∂-connected simplification of w.
The simplification is nice if and only if the red graph Gw→w′ is nice

Proof. Thanks to lemma 4.3.24, only essential faces of w with respect to w′ can have non
trivial intersection with w′, and for an essential face f , twice the number of connected
component of f ∩ w′ is equal to the exterior degree of the vertex of Gw→w′ corresponding
to f .

Lemma 4.3.29. If w is a ∂-connected ε-web, and w′ is a ∂-connected simplification of w.
Then the level of Gw→w′ is given by the following formula:

i(Gw→w′) = 2#{essential faces of w wrt. w′} − #V (w)−#V (w′)
2 .

This shows that the embedding of w′ influences the level of Gw→w′ only on the number
of essential faces of w with respect to w′

Proof. The level of a red graph G is given by:

i(G) = 2#V (G)−#E(G)−
∑

f∈V (G)

ed(f)
2 .

By definition of Gw→w′ , we have:

{essential faces of w wrt. w′} = V (Gw→w′).
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The only thing to realise is that we have:

2

#E(G)w→w′ +
∑

f∈V (Gw→w′ )

ed(f)
2

 = #V (w)−#V (w′),

and this follows from the definition of wGw→w′ = w′.

Definition 4.3.30. If f is a face of w, w′ a simplification of w and r a region of w′, we
say that f avoids r if f ∩ r = ∅ or if the boundary of r in each connected component of
f ∩ r joins two consecutive vertices of f (see figure 4.30). In the first case we say that f
avoid r trivially. If f is an essential face of w with respect to w′ and r is a region of w′, we

f

r

Figure 4.30: The local picture of a face f (in white) of w (in black)
non-trivially avoiding a region r (in yellow) of w′ (in orange).

say that f fills r, if f does not avoid r. If F ′ is a set of region of w′ we say that f fills
(resp. avoids) F ′ if it fills at least one region of F ′ (resp. avoids all the regions of F ′). We
define:

n(f, F ′) def= #{r ∈ F ′ such that f fills r}.

If G′ is a red graph of w′, we write n(f,G′) for n(f, V (G′)).

With the same notations, and with F a set of face of w, we have the following equality:

#F = #{faces f of F avoiding F ′}+
∑
f ′∈F ′

∑
f∈F

f fills f ′

1
n(f, F ′) . (4.1)

Lemma 4.3.31. Let w be a ∂-connected ε-web and w′ a nice ∂-connected simplification of
w. Let F ′ be a collection of faces of w′, then for every face f of w, we have: n(f, F ′) 6 2.

Proof. This is clear since f ∩w′ consists of at most one strand, so that it intersects at most
2 faces of F ′.

Remark 4.3.32. Let w be a ε-web, w′ a nice ∂-connected simplification of w and f an
essential face of w with respect to w′. Suppose that f has at least 6 sides of w. Suppose
furthermore that it intersects two regions r1 and r2 of w′, then either it (non-trivially)
avoids one of them, either it fills both of them. If f avoids r2 then at least two neighbours
(in Gw→w′) of f fill r1 (see picture 4.31). If on the contrary f has just one neighbour which
fills r1, then f fills r2. Under this condition, for any collection F ′ of regions of w′ with
{r1, r2} ⊆ F ′ we have: n(f, F ′) = 2.

Definition 4.3.33. We set σ(f ′, F → F ′) def=
∑
f∈F

f fills f ′

1
n(f, F ′) . If G is a red graph for w

and G′ a red graph for w′ we write σ(f ′, G→ G′) for σ(f ′, V (G)→ V (G′)).
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r2r1

f

r2r1

f

Figure 4.31: On the left f avoids r2, on the right it fills r1 and r2.

4.3.5 Proof of lemma 4.3.16

In this section we use the point of view developed in section 4.3.4 to prove the lemma 4.3.16.
We restate it with this new vocabulary:

Lemma 4.3.34. Let w be an a ∂-connected ε-web which contains no digon and exactly
one square. We suppose furthermore that this square touches the unbounded face. Let G
be a nice red graphs of w and G′ a nice red graph of w′ = wG, then there exists w̃ a nice
simplification of w such that:

A) the ε-webs (wG)G′ and w̃ are isotopic,

B) the following equality holds:

#V (G̃) > #V (G) + #V (G′),

where G̃ denote the red graph Gw→w̃.

Proof. Because of the condition A, we already know the isotopy class of the web w̃. To
describe it completely, we only need to specify how w̃ is embedded. For each face f ′ of w′
which is a vertex of G′, let us denote Nf ′ a regular neighbourhood of f ′. We consider U
the complementary of

⋃
f ′ Nf ′ . Provided this is done in a coherent fashion, it’s enough to

specify how w̃ looks like in U and in Nf ′ for each face f ′ of w′.
If f ′ is a face of w′ which is in G′, we consider two different cases:

1. the face f ′ corresponds to a vertex of G′ with exterior degree equal to 0,

2. the face f ′ corresponds to a vertex of G′ with exterior degree equal to 2.

These are the only cases to consider since G′ is nice.
Let us denote by w′′ the ε-web (w′)G′ . We want w̃ and w′′ to be isotopic. So let us

look at w′′ ∩ U and at w′′ ∩Nf ′ in the two cases.
Around U , the ε-web w′ does not “see” the red graph G′, so that U ∩ w′′ = U ∩ w′G′ =

U ∩ w′.
If the face f ′ has exterior degree equal to 0 (case 1), then we have: Nf ′∩w′′ = U∩w′G′ =

∅.
If the face f ′ has exterior degree equal to 2 (case 2), then we have: Nf ′ ∩w′′ = U ∩w′G′

is a single strands cutting Nf ′ into two parts.
We embed w̃ such that U ∩ w̃ and U ∩w′′ are equal and for each face f ′ corresponding

to a vertex of G′, Nf ′ ∩ w̃ and Nf ′ ∩ w′′ are isotopic (relatively to the boundary).
We claim that if f ′ is a vertex with external degree equal to 0 then:{

σ(f ′, G̃→ G′) > σ(f ′, G→ G′) + 1
2 if S ⊆ Nf ′ ,

σ(f ′, G̃→ G′) > σ(f ′, G→ G′) + 1 if S * Nf ′ ,
(4.2)
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where S is the square of w.
The restriction3 Gf ′ of G′ to f ′ is a graph which satisfies the following conditions:
• it is bi-coloured (because the vertices of G are essential faces of w with respect to
w′),

• it is naturally embedded in a disk because Nf ′ is diffeomorphic to a disk,

• the degree of the vertices inside the disks have degree at least three (because the only
possible square of w touches the border) and the vertices on the border (these are
the one which intersect an other region of w′) have degree at least 1.

The regions of Gf ′ and the vertices of one of the two colours of Gf ′ become vertices of
G̃ (see example depicted on figure 4.32). To proves the inequality (4.2), one should carefully
count regions of Gf ′ . There are two different cases in (4.2) because the remark 4.3.32 do
not apply to the square. Hence we can apply the lemma 4.3.36 which proves (4.2).

Figure 4.32: Example of the procedure to define G̃ when the exterior
degree of f ′ is equal to 0.

The only thing remaining to specify is how w̃ looks in Nf ′ where f ′ is a vertex of G′ of
exterior degree equal to 2. Note that we need to embed w̃ so that it is a nice simplification
of w. We claim that it is always possible to find such an embedding so that the inequality
(4.2) is satisfied. In this case the graph Gf ′ is in the same situation as before, but is
important to notice that the faces of Gf ′ have at least 6 sides (this is a consequence of
proposition 4.1.23).

The vertices of G̃ are the regions of Gf ′ and the vertices of Gf ′ of one of the two colours
on one side of the strand and the vertices of Gf ′ of the other colour on the other side of
the strand (see figure 4.32 for an example). Hence in order to show that the inequality
(4.2) holds, one should carefully count the regions and the vertices of Gf ′ , this is done by
lemma 4.3.6.

So now we have a simplification w̃ of w, such that the graph G̃ = Gw→w̃ satisfies
(4.1.23) for each region f ′ of G′. The square S of w is in at most one Nf ′ so that if we
sum (4.1.23) for all the vertices of f ′, we obtain:∑

f ′∈F ′
σ(f ′, G̃→ G′) >

∑
f ′∈F ′

σ(f ′, G→ G′) + #V (G′)− 1
2 ,

3We only consider the vertices of G which fill f ′.
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Figure 4.33: Example of the procedure to define G̃ when the exterior
degree of f ′ is equal to 2.

and using (4.1), we have:

#V (G̃) > #V (G′) + #V (G)− 1
2 ,

but #V (G̃) being an integer we have V (G̃) > #V (G′) + #V (G)

4.3.6 Proof of combinatorial lemmas

This proof is dedicated to the two technical lemmas used in the last section. We first
introduce the ad-hoc objects and then state and prove the lemmas.

Definition 4.3.35. A D-graph is a graph G embedded in the disk D2. The set of vertices
V (G) is partitioned in two sets: V ∂(G) contains the vertices lying on ∂D2, while V in

contains the others. The set F (G) of connected components of D2 \G is partitioned into
two sets F in contains the connected component included in D̊2, while F ∂ contains the
others.

A D-graph is said to be non-elliptic if:

• every vertex v of V in has degree greater or equal to 3,

• every vertex v of V ∂ has degree greater or equal than 1,

• the faces of F in are of size at least 6.

A coloured D-graph is a D-graph G together with:

• a vertex-2-colouring (by green and blue) of the vertices of G (this implies that G is
bipartite),

• a subdivision of D2 into two intervals (we allow one interval to be the empty set and
the other one to be the full circle, in this case we say that G is circled-coloured): a
green one and a blue one (denoted by Iblue and Igreen) when they are real intervals
we defines x and y to be the two intersection points of Igreen and Iblue with the
convention that when one scans ∂D2 clockwise, one see x, then Igreen, then y and
finally Iblue.
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The vertices of V ∂ are supposed neither on x nor on y. The colour of a vertex is not
supposed to fit the colour of the interval it lies on. We set Vgreen (resp. Vblue) the set of
green, (resp. blue) vertices, and V ∂

green, V in
green, V ∂

blue and V in
blue in the obvious way.

If G is a coloured D-graph, and v is a vertex of V ∂ of we set:

n(v) =
{

2 if v has degree 1 and the colour of v fits the colour of the interval,
1 else.

If v is a vertex of V in, we set n(v) = 1. Note that this definition of n is a translation of
the n of the previous section (see remark 4.3.32).

Case with exterior degree equal to 0

Lemma 4.3.36. Let G be a non-elliptic circled-coloured D-graph (with the circle coloured
by a colour c), then:

#F > 1 +
∑
v∈Vc

1
n(v) .

Proof. By symmetry, we may suppose that c = green. To show this we consider the graph
H obtain by gluing to copies of G along the boundary of D2 this is naturally embedded in
the sphere. We write the Euler characteristic:

#F (H)−#E(H) + #V (H) = 1 + #C(H), (4.3)

where C(H) is the set of connected components of H. We have the following equalities:

#F (H) = 2#F in(G) + #F ∂(G),
#F ∂(G) = #V ∂(G) + 1−#C(H),
#E(H) = 2#E(G) =

∑
v∈V (G)

deg(v) = 2
∑

v∈Vgreen(G)
deg(v),

#V (H) = 2#V in(G) + #V ∂(G)

So that we can rewrite (4.3):

2#F in(G) + 2#F ∂(G) + 2#V in(G) = 2 + 2#E(G). (4.4)

Now we use the what we know about degrees of the vertices:

#E(G) > 3
2#V in(G) + 1

2#V ∂,1(G) + 1#V ∂,>1(G),

#E(G) > 3#V in
green(G) + #V ∂,1

green(G) + 2#V ∂,>1
green(G).

Where V ∂,1 (resp. V ∂,>1) denotes the subset of V ∂ with degree equal to 1 (resp. with
degree strictly bigger than 1). If we sum 2

3 of the first inequality and 1
3 of the second one,
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and inject this in (4.4) we obtain:

#F (G) + #V in(G) > 1 + #E(G)

#F (G) + #V in(G) > V in(G) + 1
3#V ∂,1(G) + 2

3#V ∂,>1(G)

+ #V in
green(G) + 1

3#V ∂,1
green(G) + 2

3#V ∂,>1
green(G)

#F (G) > #V in
green(G) + 2

3#V ∂,1
green(G) + 4

3#V ∂,>1
green(G)

+ 1
3#V ∂,1

blue(G) + 2
3#V ∂,>1

blue (G)

> #V in
green(G) + 1

2#V ∂,1
green(G) + #V ∂,>1

green(G)

>
∑

v∈Vgreen

1
n(v) .

Case with exterior degree equal to 2

Lemma 4.3.37. If G is a non-elliptic D-graph, then all the faces of F are diffeomorphic
to disks, and if it is non-empty, then at least one of the following situations happens:

(1) the set V ∂,>1 is non empty,

(2) there exists, two ∩’s (see figure 4.34) (if G consists of only one edge, the two ∩’s are
actually the same one counted two times because it can be seen as a ∩ on its two sides),

(3) there exists three λ’s or H’s (see figure 4.34).

Figure 4.34: From left to right: a ∩, a λ and an H. The circle ∂D2 is
thick and grey, the D-graph is thin and black. Note that the vertices
inside D2 may have degree bigger than 3.

Proof. This is the same Euler characteristic-argument that we used in lemma 4.2.20.

Definition 4.3.38. A cut in a (not circled-) coloured D-graph is a simple oriented path
γ : [0, 1]→ D such that:

• we have γ(0) = x and γ(1) = y, therefore Igreen is on the left and Iblue is on the
right4. (see figure 4.35),

• for every face f of G, f ∩ γ is connected,

• the path γ crosses G either transversely at edges joining a green vertex on left and
a blue vertex on the right, or at vertices of V ∂ whose colours do not fit with the
intervals they lie on.
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y

x

Igreen Iblueγ

Figure 4.35: A cut in a coloured D-graph (note that G is elliptic).

If γ is a cut we denote by Vl(γ) (G) and Vr(γ) (G) the vertices located on the left (resp. on
the right) of γ. (The vertices located on γ are meant to be both on the left and on the
right).

Lemma 4.3.39. Let G be is a non-elliptic (not circled-) coloured D-graph, then there
exists a cut γ such that:

#F (G) > 1 +
∑

v∈ V
l(γ)

green

1
n(v) +

∑
v∈ V

r(γ)
blue

1
n(v) .

Proof. The proof is done by induction on s(G) def= 3#E(G) + 4#V ∂,>1(G). If this quantity
is equal to zero then the D-graph is empty, then we choose γ to be any simple arc joining
x to y, and the lemma says 1 > 1 which is true. We set:

C(G, γ) def=
∑

v∈ V
l(γ)

green

1
n(v) +

∑
v∈ V

r(γ)
blue

1
n(v) .

It is enough to check the situations (1), (2) and (3) described in lemma 4.3.37.

Situation (1) Let us denote by v a vertex of V ∂,>1. There are two cases: the colour of
v fits with the colours of the intervals it lies on or not.

If the colours fit, say both are green, we consider G′ the same coloured D-graph
as G but with v split into v1, v2 . . . vdeg(v) all in V ∂,1(G′) (see figure 4.36). We have
s(G′) = S(G) − 4 < s(G) and G′ non-elliptic, therefore we can apply the induction
hypothesis. We can find a cut γ′ with #F (G′) > 1 +C(G′, γ′). Note that γ′ does not cross
any v′, so that we can lift γ′ in the D-graph G. This gives us γ. We have:

C(G, γ) = C(G′, γ′) + 1
n(v) −

deg(v)∑
k=1

1
n(vk)

= C(G′, γ′) + 1− deg(v)
2

> C(G′, γ′).

On the other hand #F (G) = #F (G′) so that we have #F (G) > 1 + C(G, γ).
4We use the convention that the left and right side are determined when one scans γ from x to y.
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v v1 v2 vdeg(v)

Figure 4.36: Local picture of G (on the left) and G′ (on the right) around,
when v is green and lies on Igreen.

If the colours do not fit (say v is blue), we construct G′ a coloured D-graph which is
similar to G every where but next to v. The vertex v is pushed in D2 (we denote it by
v′) and we add a new vertex v′′ on ∂D2 and an edge e joining v′ and v′′. The coloured
D-graph G′ is non-elliptic and s(G′) = s(G) − 4 + 3 < s(G) so that we can apply the
induction hypothesis and find a cut γ′ with #F (G′) > 1 + C(G′, γ′).

v v′′

v′
e

Figure 4.37: Local picture of G (on the left) and G′ (on the right) around
v, when v is blue and lies on Igreen.

If γ′ does not cross e we can lift γ′ in G (this gives us γ). We have

C(G, γ) = C(G′, γ′) + 1
n(v) −

1
n(v′) = C(G′, γ′) + 1− 1 = C(G′, γ′).

On the other hand, we have F (G) = F (G′), so that #F (G) > 1 + C(G, γ).
Consider now the case where γ′ crosses e. Then we consider the cut γ of G which is

the same as γ far from v, and which around v crosses G in v (see figure 4.38). We have:

C(G, γ) = C(G′, γ′) + 1
n(v) −

1
n(v′) −

1
n(v′′)

C(G, γ) = C(G′, γ′) + 1− 1− 1
2

C(G, γ) > C(G′, γ′).

But #F (G) = #F (G′), so that we have #F (G) > 1 + C(G, γ).

v

γ 

v′′

v′γ′

Figure 4.38: How to transform γ′ into γ.

Situation (2) We now suppose that G contains two ∩’s. Let us denote by vg (resp. vb)
the green (resp. blue) vertex of the ∩ and by e the edge of the cap. There are different
possible configurations depending where x and y lies. As there are at least two caps, we
may suppose y is far from the ∩.

There are 3 different configurations (see figure 4.39):
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• the point x is far from the ∩,

• the point x is in the ∩ and vg ∈ Igreen and vb ∈ Iblue,

• the point x is in the ∩ and vg ∈ Iblue and vb ∈ Igreen,

vg vb vg vbx vg vbx

Figure 4.39: The three possible configurations.

We consider G′ the coloured D-graph similar to G except that the ∩ is removed. The
coloured D-graph G′ is non-elliptic and s(G′) = s(G)− 3 < s(G) so that we can apply the
induction hypothesis and find a cut γ′ with #F (G′) > 1 + C(G′, γ′).

Let us suppose first that x is far from the ∩, then vb and vg both lie either on Igreen or
on Iblue. By symmetry we may consider that they both lie on Igreen. We can lift γ′ in G
(this gives γ) so that it does not meet the ∩. We have:

C(G, γ) = C(G′, γ′) + 1
n(vg)

= C(G′, γ′) + 1
2 .

But #F (G) = #F (G′) + 1, hence #F (G) > 1 + C(G, γ).
Suppose now that the point x is in the ∩ and vg ∈ Igreen and vb ∈ Iblue. We can lift γ′

in G so that it crosses e (see figure 4.40). We have:

x

γ′

 

vg vbx

γ

Figure 4.40: How to transform γ′ into γ.

C(G, γ) = C(G′, γ′) + 1
n(vg)

+ 1
n(vb)

= C(G′, γ′) + 1
2 + 1

2
= C(G′, γ′) + 1.

But #F (G) = #F (G′) + 1, hence #F (G) > 1 + C(G, γ).
Suppose now that the point x is in the ∩ and vg ∈ Iblue and vb ∈ Igreen. We can lift γ′

in G so that it crosses5 vg (see figure 4.41). We have:

C(G, γ) = C(G′, γ′) + 1
n(vg)

= C(G′, γ′) + 1.

But #F (G) = #F (G′) + 1, hence #F (G) > 1 + C(G, γ).
5We could have chosen to cross vb.
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x

γ′

 

vg vbx

γ

Figure 4.41: How to transform γ′ into γ.

Situation (3) We suppose now that there are three λ’s or H’s. One can suppose that a
λ or an H is far from x and from y.

Consider first that there is a λ far from x and y. Let us denote by v1 and v2 the two
vertices of the λ which belongs to V ∂(G), by v the vertex of the λ which is in V in(G) and
by e1 (resp. e2) the edge joining v to v1 (resp. v2). We consider G′ the D-graph where the λ
is replaced by a single strand: the edges e1 and e2 and the vertices v1 and v2 are suppressed.
The vertex v is moved to ∂D2 (and renamed v′). This is depicted on figure 4.42. The
coloured D-graph G′ is non-elliptic and s(G′) < s(G) so that we can apply the induction
hypothesis and find a cut γ′ with #F (G′) > 1 + C(G′, γ′).

The vertices v1 and v2 have the same colour, by symmetry we may suppose that they
are both green. It implies that v and v′ are both blue.

There are two different configurations:

• the vertices v1 and v2 lie on Igreen,

• the vertices v1 and v2 lie on Iblue.

v1 v2

v
e1 e2

v1 v2

v
e1 e2

v′ v′

Figure 4.42: On the center, the two possible configurations for a λ, on
the sides, the D-graphs G′ obtained from G.

Let us first suppose that the vertices v1 and v2 lie on Igreen. If the cut γ′ does not cross
v′ then we can canonically lift it in G. This gives us γ. We have:

C(G, γ) = C(G′, γ′) + 1
n(v1) + 1

n(v2)

= C(G′, γ′) + 1
2 + 1

2 .

But #F (G) = #F (G′) + 1, hence #F (G) > 1 + C(G, γ).
If the cut γ′ crosses v′, we lift γ′ in G so that it crosses e1 and e2 (see figure 4.41). In

γ γ′

Figure 4.43: How to transform γ′ into γ.
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this case we have:

C(G, γ) = C(G′, γ′) + + 1
n(v) −

1
n(v′) + 1

n(v1) + 1
n(v2)

= C(G′, γ′) + 1− 1 + 1
2 + 1

2 .

Hence, #F (G) > 1 + C(G, γ).
Now suppose that the vertices v1 and v2 lie on Iblue, this implies that γ′ does not meet

v′, so that we can lift γ′ canonically in G, this gives us γ, we have:

C(G, γ) = C(G′, γ′) + 1
n(v) −

1
n(v′)

= C(G′, γ′) + 1− 1.

Hence #F (G) > 1 + C(G, γ).
We finally consider a H far from x and y. We take notation of the figure 4.44 to denote

vertices and edges of the H, we consider G′ the D-graph where the the H is simplified
(see figure 4.44 for details and notation). The coloured D-graph G′ is non-elliptic and
s(G′) = s(G)− 3× 3 + 2× 4 < s(G) so that we can apply the induction hypothesis and
find a cut γ′ with #F (G′) > 1 + C(G′, γ′).

v′3 v′4v1 v2

v3 v4
e e2e1

Figure 4.44: How to transform G into G′.

Up to symmetry there is only one configuration, therefore we may suppose that v1 is
green and lies on Igreen. This implies that v2 and v3 are blue and that v4 is green. Because
of the colour condition, the cut γ′ does not cross v′4 and may cross v′3. If it does not cross
v′3, one can canonically lift γ′ in G′ and we have:

C(G, γ) = C(G′, γ′) + 1
n(v1) + 1

n(v4) −
1

n(v′4)

> C(G′, γ′) + 1
2 + 1− 1.

> C(G′, γ′) + 1
2 .

But #F (G) = #F (G′) + 1, hence #F (G) > 1 + C(G, γ).
If the cut γ′ crosses v′3, on lift it in G so that it crosses e1 and e2 (see figure 4.45). So

γ′

 

γ

Figure 4.45: How to transform γ′ into γ.
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that we have:

C(G, γ) = C(G′, γ′) + 1
n(v1) + 1

n(v3) −
1

n(v′3) + 1
n(v4) −

1
n(v′4)

> C(G′, γ′) + 1
2 + 1− 1 + 1− 1

2 .

> C(G′, γ′) + 1.

But #F (G) = #F (G′) + 1, hence #F (G) > 1 + C(G, γ).

Conclusion For all situations, using the induction hypothesis we can construct a cut γ
such that: #F (G) > 1 + C(G, γ). This proves the lemma.



Chapter 5

Colouring webs

5.1 Kuperberg bracket via 3-colourings
For the all chapter we fix S to be the set of colours {red, green,blue}. It is endowed with
a total order1 on S: red < green < blue. For every element u of S, we denote by Su the
set Su \ {u}, it is endowed with he order induced by the order of S.

Definition 5.1.1. Let u be a colour of S, a Su-coloured cycle C is either an oriented circle
embedded in the plane and coloured with one of the two colours of Su, or a connected
plane oriented 2-valent Su-edge-coloured graph, such that the vertices are either sinks or
sources. By Su-edge-coloured we mean that there is an application φC from E(C) the
set of edges of C to S such that two adjacent edges are coloured in a different way. The
application φC is called the colouring.

Definition 5.1.2. If C is a Su-coloured cycle we say that it is positively oriented if, when
reversing the orientations of the edges which are coloured with the greatest element of Su,
the result is a counterclockwise oriented cycle. When a Su-coloured cycle is not positively
oriented it is negatively oriented.

Definition 5.1.3. Let u be an element of S, a Su-coloured configuration D is a finite
disjoint union of Su-coloured cycles (Ci)i∈I .

Definition 5.1.4. The degree d(D) of an Su-coloured configuration D is the algebraic
number of oriented cycles, i.e. the number of positively oriented cycles minus the number
of the negatively oriented cycles.

Lemma 5.1.5. If u is a colour of S, denote by v the smallest colour of Su. Suppose that
D1 and D2 are two Su-coloured configurations which are the same except in a small ball
where:

D1 =
v

v
and D2 = v v .

Then we have d(D2)− d(D1) = 1.

Proof. To show this lemma, it’s enough to consider only the connected components of
D1 and D2 which meet the ball where D1 and D2 are different. We can as well suppose
that these connected components are coloured with only one colour (which is v, the lowest
colour of Su). Then there are different situations to check, it’s enough to inspect the case

1This is the frequency order.

87
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D1 D1D2 D2

Figure 5.1: There are two different situtations. The dotted circles
represent the border of the ball where D1 and D2 are different. It’s clear
that d(D2)− d(D1) = 1 for both cases.

where D1 has just one connected component (for otherwise D2 has only one, and reversing
the orientations we are back in the situation where D1 has only one connected component).
There are essentially two possibilities and they are depicted in figure 5.1.

Definition 5.1.6. If w is a web and c is an S-edge-colouring of w (we mean a function
from the set of edges (and circles) of w to S such that if two edges are adjacent, they have
different colours), we denote by wc the web together with this colouring. If u is a colour of
S, we define the Su-configuration of wc denoted by Du(wc), the Su-coloured configuration
obtained from wc by deleting all the edges (and circles) with colour u. We denote by col(w)
the set of all S-edge-colourings of w.

Definition 5.1.7. If wc is a S-coloured web, we define dt(wc) the total degree of wc to be
the sum of the Du(wc) when u runs over the colours of S. We define 〈w〉c the coloured
Kuperberg bracket of w to be the Laurent polynomial defined by the following formula:

〈w〉c =
∑

c∈col(w)

∏
u∈S

qd(Du(wc)) =
∑

c∈col(w)
qdt(wc).

Theorem 5.1.8. If w is a web then 〈w〉 = 〈w〉c, where 〈·〉 denote the Kuperberg bracket(see
definition 1.1.13).

This result is the quantum counterpart of the fact that the evaluation at 1 of the
Kuperberg bracket gives the number of colourings of a web (see remark 1.1.14). It’s enough
to show that 〈·〉c satisfies the relations that define 〈·〉. We separate the proof in three
different lemmas corresponding to the three relations which are known to be enough to
completely define the Kuperberg bracket.

Lemma 5.1.9. The coloured Kuperberg bracket is multiplicative for connected components
and we have: 〈 〉

c
=
〈 〉

c
= [3].

Proof. The first point is obvious from the definitions. The second point is just a computation.
Suppose that the web w is the circle counterclockwise oriented, then there are three
different S-edge-colourings for w: the circle is either red, green or blue. The details of the
computation is given in the table 5.1. And it’s clear from this computations that 〈w〉c = [3].
The computation is similar for a clockwise oriented circle.

Lemma 5.1.10. The coloured Kuperberg bracket satisfies the following formula:〈 〉
c

= [2]
〈〉

c

.
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wred wgreen wblue

Dred(·) 0 -1 -1
Dgreen(·) 1 0 -1
Dblue(·) 1 1 0
dt(·) 2 0 -2

Table 5.1: Degrees of the colourings of the counterclockwisely oriented
circle.

Proof. We denote by w the web with the digon and w′ the web with this digon replaced by
a single strand. The only thing to do is to exhibit two functions φ+ and φ− from col(w′)
to col(w) which are injective, whose images constitute a partition of col(w) and such that
φ+ increases the total degree of colourings by one and φ− decreases the total degree of
colourings by one. The functions φ+ and φ− are explicitly described in table 5.2. The

w′c red green blue

wφ+(c)

red

red

green blue

green

green

red blue

blue

blue

red green

∆+
red +1 0 0

∆+
green 0 +1 0

∆+
blue 0 0 +1

wφ−(c)

red

red

blue green

green

green

blue red

blue

blue

green red

∆−red −1 0 0
∆−green 0 −1 0
∆−blue 0 0 −1

Table 5.2: The functions φ+ and φ−. The drawn part is the only non-
trivial part, where ∆+

∗ stands for d(D∗(wφ+(c)))− d(D∗(w′c)) and ∆−∗ for
d(D∗(wφ−(c)))− d(D∗(w′c)).

injectivity of the maps φ+ and φ− is obvious from their definitions, the fact that their
images form a partition of col(w) as well. The only thing to check is the degree conditions.
It’s an easy computation, the details are given in table 5.2.

Lemma 5.1.11. The coloured Kuperberg bracket satisfies the following formula:〈 〉
c

=
〈 〉

c

+
〈 〉

c

.

Proof. We denote by w the web with a square figure, w′ the web where the square is
replaced by two horizontal strands and w′′ the web where the square is replaced by two
vertical strands. It’s enough to describe two injective maps φ′ and φ′′ from respectively
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col(w′) and col(w′′) to col(w) which preserve the total degree of the colourings and such
that their images form a partition of col(w). We describe them in the tables 5.3, 5.4, 5.5
and 5.6 depending on if the two strands have the same colour or not. In tables 5.5 and 5.6,
the missing cases are obtained by a 180 degree rotation.

w′c red

red
green

green

blue

blue

wφ′(c)

red red

red red

green

green

blue blue

green green

green green

red

red

blue blue

blue blue

blue blue

green

green

red red

∆′red −1 +1 0
∆′green +1 −1 −1
∆′blue 0 0 +1

Table 5.3: Description of the map φ′ for the colourings which give the
same colour to the two horizontal strands of the web w′, where ∆′∗ stands
for d(D∗(wφ′(c)))− d(D∗(w′c)). To compute the underlined values we use
lemma 5.1.5

w′′c red red green green blue blue

wφ′′(c)

red red

red red

blue

blue

green green

green green

green green

blue

blue

red red

blue blue

blue blue

red

red

green green

∆′′red +1 −1 0
∆′′green −1 +1 +1
∆′′blue 0 0 −1

Table 5.4: Description of the map φ′′ for the colourings which give the
same colour to the two vertical strands of the web w′′, where ∆′′∗ stands
for d(D∗(wφ′′(c))) − d(D∗(w′′c )). To compute the underlined values we
use lemma 5.1.5

The injectivity of the maps φ′ and φ′′ is clear. The fact that their images form a
partition of col(w) is as well straightforward. For every colouring the sum of the three
values of ∆′ or ∆′′ is equal to zero, and this gives the homogeneity of φ′ and φ′′.

Remark 5.1.12. One could try to use this new approach of the Kuperberg bracket to have
a new approach to the sl3-homology for links: one can associate to a web the graded vector
space with basis the colouring. However, the way to define the differential corresponding
to the crossing is not clear. The main obstruction comes from the fact that the degree of a
morphism can not be understood locally. A better understanding on how the orientations
and the colours interact on the degrees may help. One can define a cheap version of the
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w′c red

green

green
blue

red

blue

wφ′(c)

red red

green green

green

red

blue blue

green green

blue blue

blue

green

red red

red red

blue blue

blue

red

green green

∆′′red 0 0 0
∆′′green 0 0 0
∆′′blue 0 0 0

Table 5.5: Description of the map φ′ for the colourings which give different
colours to the two horizontal strands of the web w′, where ∆′∗ stands for
d(D∗(wφ′(c)))− d(D∗(w′c)).

w′′c red green green blue red blue

wφ′′(c)

red green

red green

blue

blue

green red

green blue

green blue

red

red

blue green

red blue

red blue

green

green

blue red

∆′′red 0 0 0
∆′′green 0 0 0
∆′′blue 0 0 0

Table 5.6: Description of the map φ′′ for the colourings which give
different colours to the two horizontal strands of the web w′′, where ∆′′∗
stands for d(D∗(wφ′′(c)))− d(D∗(w′′c )).

sl3-homology which is not quantified and hence categorify only the number of colour of a
web. It turns out that this invariant does not give any information on the links.

5.2 Combinatorics of colourings
Given a web w, one can ask how to go from one colouring to another one. One can of
course let S3 act on the colourings via interchanging the colours, and for example when
exchanging red and blue, we find a colouring with opposite degree. However this doesn’t
change the structure of the colouring. In this section we propose a semi-local move on
colourings and we show that this move is enough to connect any two colourings of w (see
theorem 5.2.13).

Definition 5.2.1. Let u be a colour of S. Let wc be a closed coloured web, we say that
a simple cycle2 C of edges of wc is Su-bi-coloured, if the edges of C have colours in Su.
When we don’t want to focus on the colours we say that it’s bi-coloured. A Su-bi-coloured
cycle is positively or negatively oriented if its image in Du(wc) is respectively positively or

2The term “cycle” includes vertex-less loops.
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negatively oriented. If C is a Su-bi-coloured cycle, then we define the colouring c′ = τC(c)
to be the colouring of w which is the same as c on all edges which doesn’t belong to C
and which exchanges the colours of Su on the edges in C. It’s immediate that the cycle C
remains Su-coloured in wτC(c) that we have c = τC(τC(c)).

Proposition 5.2.2. Let wc be a closed coloured web, u a colour of S different from green
and C a Su-bi-coloured cycle in wc. Then we have

dt(wτC(c)) =
{
dt(wc)− 2 if C is positively oriented,
dt(wc) + 2 if C is positively oriented.

Before proving this result we need to introduce a few notions:

Definition 5.2.3. Let u be a colour of S, a Su-coloured arc C is a connected oriented
Su-edge-coloured graph embedded in R× [0, 1] which satisfies the following conditions:

• exactly two vertices of C have valence 1, all the other have valence 2,

• the 1-valent vertices are located in R× {0, 1}, and they are the only intersection of
C with R× {0, 1},

• the vertices are either sources or sinks,

• two adjacent edges have different colours.

As before the colouring of C is the function from E(C) to Su.

Definition 5.2.4. Let u be a colour of S and C a Su-coloured arc. We say that C is
0-oriented if one of its 1-valent vertices is on R× {0} and the other one on R× {1}. Now
let us reverse the orientations of the edges coloured by the highest colour of Su, the arc C
is now coherently oriented and it has a tail and a head which have coordinates (xt, yt) and
(xh, yh). It is positively oriented if we are in one of the following situations:

• the ordinates are equal to 0 and the abscissae satisfy xh < xt,

• the ordinates are equal to 1 and the abscissae satisfy xt < xh.

A Su-coloured arc which is neither 0-oriented nor positively oriented is negatively oriented.

Definition 5.2.5. A Su-path configuration is a disjoint union of some Su-coloured arcs
and Su-coloured cycles which all lie in R× [0, 1].

Two Su-path configurations can be composed by glued whenever they are compatible,
by stacking them and resizing.

Definition 5.2.6. The degree d(D) of a Su-path configuration D is the number given by
the formula:

d(D) = pc − nc + 1
2(pa − na),

where pc (resp. nc) stands for the number of positively (resp. negatively) oriented Su-
coloured cycles and pa (resp. na) the number of positively (resp. negatively) oriented
Su-coloured arcs.

Lemma 5.2.7. If Db and Dt are two Su-path configurations, so that the composition D =
Db ◦Dt (we mean here that Db is under Dt) is defined then we have d(D) = d(Dt) + d(Db).
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Proof. It comes from the fact that the degree we defined is actually a normalised version
of the total curvature of an oriented curve, which is equal to the integral of the signed
curvature along the curve. And the Chasles relation gives the result.

Lemma 5.2.8. The lemma 5.1.5 holds as well for Su-path configurations.

Proof. This is clear from the previous lemma.

Proof of proposition 5.2.2. If C is a vertex-less loop the statement is obvious so we consider
the other cases. The colouring τC(c) is denoted by c′. As the two situations are symmetric we
may assume that u = blue. The Su-coloured configurationsDblue(wc) andDblue(wc′) are the
same except for the cycle corresponding to C which is coloured in the opposite manner and
hence oriented in the opposite manner and we then have: d(Dblue(wc)) = d(Dblue(wc′))± 2
(depending on how C is oriented). We now look at D∗ = D∗(wc) and D′∗ = D∗(wc′) for
∗ = green and red. We can perform an isotopy so that the cycle C has all but one of its
edges horizontal, and the non-horizontal one, is over the horizontal ones (see figure 5.2).
We now see w as a composition of three web tangles: w = w3 ◦w2 ◦w1, where w2 contains

w2

w1

w3

Figure 5.2: We decompose w into three web tangles: w1, w2 and w3

only the horizontal edges of C, two parts of the non-horizontal edge of C, the half edges
of w which are touching C (they all have colour blue in wc), and vertical arcs far from C.
It’s clear from our hypotheses that w1

c = w1
c′ and w3

c and w3
c′ differ just by one arc which

is red in one and green in the other one, but as blue is bigger than this two colours, we
have d(Dgreen(w3

c )) = d(Dgreen(w3
c′))± 1 and d(Dred(w3

c′)) = d(Dred(w3
c ))± 1, where the ±

signs is the same in both cases. On the other hand we have: d(Dred(w2
c )) = d(Dgreen(w2

c′))
and d(Dgreen(w2

c )) = d(Dred(w2
c′)). And summing all this equalities together and using the

lemma 5.2.7 we conclude that:

d(Dred(wc)) + d(Dgreen(wc)) = d(Dred(wc′)) + d(Dgreen(wc′)).

This is enough to conclude that dt(wc) = dt(wc′)± 2, depending on how C is oriented.

We now define two equivalence relations on col(w) and the rest of this section will
be devoted two show that for a given web w all the colourings are equivalent (see theo-
rem 5.2.13).

Definition 5.2.9. Let w be a closed web, two colourings c and c′ are said to be weakly
τ -close if one can find a bi-coloured cycle C in wc so that c′ = τC(c). They are said to
be strongly τ -close if one can find a Sblue- or a Sred-bi-coloured cycle C in wc so that
c′ = τC(c). The weak (resp. strong) τ -equivalence relation is generated by the pairs (c, c′)
for c and c′ (resp. strongly) τ -close from each other.

Remark 5.2.10. It’s clear from the definition that if c and c′ are weakly τ -equivalent,
then they are strongly τ -equivalent. The notion of strongly τ -closeness, makes sense in
view of proposition 5.2.2. Before proving theorem 5.2.13, we show that the two different
notions of τ -equivalence are the same (see lemma 5.2.12).
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Lemma 5.2.11. Consider a coloured web w and two edges e1 and e2 as in figure 5.3, then
if e1 and e2 are coloured differently, then they do not belong to the same bi-coloured cycle.

e2e1

Figure 5.3: The edges e1 and e2 with their orientations.

Proof. If the two edges have different colours, their orientation are not compatible to fit in
the same bi-coloured cycle.

Lemma 5.2.12. If w is a closed web, and c and c′ are weakly τ -equivalent colourings of
w, then c and c′ are strongly τ -equivalent.

Proof. It’s enough to show that if two colourings c and c′ are weakly τ -close then they are
strongly τ -equivalent. As the other cases are straightforward let us suppose that c′ = τC(c)
with C a Sgreen-bi-coloured cycle. Consider (C ′i) the collection of all the Sblue-bi-coloured
cycles in wc which intersect C (it should be at some red edges). The C ′i’s are all disjoint
so that we can define c1 = τ(C′i)(c) the colouring similar to c except that on all C ′i’s, the
colours red and green are exchanged. It’s clear that c and c1 are strongly τ -equivalent. In
wc1 , C is now Sred-bi-coloured, so that we can define c2 = τC(c1). Now we consider (C ′′i )
the collection of all the Sblue-bi-coloured cycles in wc2 which intersect C (it should be at
some green edges). We define c3 = τ(C′′i )(c2) as we defined c1. It’s clear that c3 is strongly
τ -equivalent to c2 and hence to c1. It’s easy to check that c3 = c′ because the collection of
edges of the C ′i’s disjoint from C and the the collection of edges of the C ′′i ’s disjoint from
C are equal.

Because of lemma 5.2.12 we speak of τ -equivalence instead of strong or weak τ -
equivalences.

Theorem 5.2.13. Let w be a closed web then all colourings of w are τ -equivalent.

Proof. We show this by induction on the number of vertices, using the fact that any closed
web contains a circle, a digon or a square. Let w be a web and c0 and c1 be two colourings
of w.

If w contains a circle C, then we consider w′ the web w with this circle removed. c0 and
c1 induce colourings c′0 and c′1 on w′. By induction we know that c′0 and c′1 are τ -equivalent.
All the cycles of w′ needed to go via τ -moves from c′0 to c′1 can be lifted in w. Hence we
obtained a colouring c̃1, which is τ -equivalent to c0 and equal to c1 everywhere but maybe
on the circle, so if necessary we perform τC on c̃1 where C is seen as a bi-coloured circle
and we obtain c1 and this show that c0 and c1 are τ -equivalent.

Suppose now that w contains a digon. We do the same thing, we consider the web
w′ where the digon figure is replaced by a single strand, and we can play the same game
because for any colouring the two strands of the digon form a bicoloured cycle.

Now if w contain a square, thanks to lemma 5.2.11, we may suppose (up to a single
τ -move) that c0 has the same colour on all the four strands touching the square. We
consider the web w′ corresponding to one smoothing of the square which is so that c0 and
c1 induces naturally colourings on w′. We denote them by c′0 and c′1. Let c be a colouring
of w′. If the two strands of w′ which replace the square are coloured in different manners,
there is a canonical way to construct a colouring of w and any bi-coloured cycle of w′
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can be lifted up in w. If the two strands have the same colour, there are two different
colourings of w which can induce c′ on w′, but these two are obviously τ -close. And if C is
a bi-coloured cycle in w′c′ then it can be lifted up in w to a bi-coloured cycle endowed with
one of this two colouring. So we can play the same game as before: thanks to a path of
two by two τ -close colouring from c′0 to c′1, we can construct a (maybe longer) path of two
by two τ -close colourings from c0 to c1. And this concludes.

One can extend the τ -equivalence to colouring of ε-webs, by allowing bi-coloured arcs
in definition 5.2.9 where arcs are supposed to begin and to end with a 1-vertex, we have
then following easy corollary:

Corollary 5.2.14. Let (ε, cε) be a coloured sequence of signs. Let w be an ε-web and c1
and c2 be two colourings of w. Then they are τ -equivalent.

Proof. We consider the closed web u = ww, the colouring c1 and c2 induced some colourings
c′1 and c′2 on u by taking their mirror images on w. Theorem 5.2.13 tells us that c′1 and
c′2 are τ -equivalent, now following a path of two by two τ -close colourings we see that
the restriction of this colouring are either τ -close either τ equivalent via a sequence of
bi-coloured arcs. This show that c1 and c2 are τ -equivalent.

One may ask if the theorem 5.2.13 remains true when we consider trivalent S-edge-
colourable graphs which are not webs. We show in the following that when one removes
the planarity condition or the bipartite condition, the result fails.

Example 5.2.15. The dodecahedral graph G does not satisfy the theorem 5.2.13.

Proof. Consider the colouring c given by figure 5.4. We claim (see figure 5.5) that for every
colour u in S, it contains only one Su bi-coloured cycle Cu, so that τCu(c) is the same
colouring as c but with the two colours of Su exchanged, to that the structure of c is not
essentially changed.

Figure 5.4: The colouring c of the dodecahedral graph

On the other hand, there exist some colourings of G which are essentially different, for
example one can perform a 2π

5 rotation of the colouring c to obtain a colouring c′, therefor
c′ and c are not τ -equivalent.

Example 5.2.16. The utility graph (also called K3,3) does not satisfied the theorem 5.2.13.

One can apply the same proof as before, figure 5.6. illustrates it.
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Figure 5.5: The three bi-coloured cycle in Gc.

Figure 5.6: A colouring of the graph K3,3, and the three bi-coloured
cycles for this colouring.

5.2.1 Application to the computation of partial traces

We use the notations of chapter 2. Let us consider a w an ε-web and f a (w,w)-foam.
One can “half-close” this foam on itself by gluing the top of this foam to the bottom along
the ε-web w. The boundary of the resulting foam f̂ is diffeomorphic to a collection of l(ε)
disjoint circles. If we apply the functor F to f̂ we obtain an element of F(l(ε) circles) =
R[X1, . . . , Xl(ε)]/(X3

i = 0) def= Al(ε).
The all procedure gives us a graded R-linear map from homKε(F(w),F(w)) to the

R-module Al(ε). It looks like braid closure or like mapping cones and we will therefore
denote it by Tr(·) and call it trace. As it is natural for traces we have the commutative
property:

Lemma 5.2.17. Let w be an ε-web and f and g be two (w,w)-foams, then we have
Tr(fg) = Tr(gf), more precisely the foams f̂g and ĝf are homotopic.

Proof. This is the same proof as for every topological trace, g can travel around f along
the circle, the homotopy is depicted on figure 5.7.

Using the colourings, one can actually compute the trace of 1Pw i.e. of the (w,w)-foam
w × I. The rest of the section is devoted to exhibit this computation.

Definition 5.2.18. Let w be a coloured ε-web, and let us consider a vertex v of w. We
say that v is a positive or negative vertex according to how the colourings of its adjacent
edges look like (see figure 5.8).

Definition 5.2.19. Let ε = (εi)i∈[1,n] be a sequence of signs, a colouring of ε is a function
from [1, n] to S. The set of colourings of ε is denoted by col(ε). A coloured sequence of
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f

g

w × I

fg

g

f

w × I

Figure 5.7: On the left f̂g, on the right ĝf .

red

green blue

red

green blue

blue

green red

blue

green red

Figure 5.8: On the left the two local pictures of a positive vertex, on
the right, the two local pictures of a negative vertex. Note that positive
vertices are mirror images from negative ones and vice-versa.

signs is a sequence of signs together with a colouring. If w is an ε-web, we say that a
colouring cε of ε and a colouring cw of w match, if for every i ∈ {1, l(ε)} the colour of the
strand ending at εi given by cw is equal to cε(i). For a colouring c of w we defined the
colouring of ε induced by c to be the only colouring of ε which matches c, we denoted by
c|ε.

Lemma 5.2.20. Let (ε, cε) a coloured sequence of signs, and let w an ε-web and c1 and
c2 two colourings of w which match cε, then the numbers of negative vertices of wc1 and
wc2 have the same parity.

Proof. We will first show the result holds for a closed web. In this case the matching
condition is empty. Thanks to theorem 5.2.13 one only need to show that the parity of
negative vertices is preserved by τ -equivalence. This is enough to show it for two τ -close
colourings. But if c is a colouring and C is a bi-coloured cycle in C then the vertices of
wc and wtauC(c) look the same except along C where every positive vertex is changed to
a negative one and vice-versa. But as a web is a bipartite graph, the cycle has an even
number of vertices, so that in the end the numbers of negative vertices of c and τC(c)
have the same parity. Now consider the closed web w′ = ww, and two colourings of w′:
c′1 is given by c1 on w and by the mirror of c1 on w, and c′2 is given by c2 on w and the
mirror image of c1 on w. Note that it is essential that c1 and c2 both match cε for this
construction. For any colouring c of w the numbers of positive and negative vertices of wc
and of (w, c) are exchanged (see of figure 5.8). For c a colouring of a web v denote by nv−(c)
(resp. nv+(c)) the number of negative (resp. positive) vertexes of vc. All this information
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together gives:

nw
′
− (c′1) = nw−(c1) + nw+(c1),
nw
′
− (c′2) = nw−(c1) + nw+(c1),
nw
′
− (c′1) ≡ nw′− (c′2) (mod 2),

nw−(c1) + nw+(c1) ≡ nw−(c2) + nw+(c1) (mod 2),
nw−(c1) ≡ nw−(c2) (mod 2).

For a given ε-web w and a colouring cε of ε such that their exists a colouring of w which
match cε, the previous lemma allows us to define (−1)nw−(cε) to be equal to (−1)nw−(cw) for
any colourings of w which matches cε.

Notation 5.2.21. Let t be the function from S to {−1, 0, 1} defined by t(red) = −1,
t(green) = 0 and t(blue) = 1. If (ε, c) is a coloured sequence of signs we denote by P (ε, c)
the monomial of Al(ε) given by the formula:

P (ε, c) =
l(ε)∏
i=1

X
1+εit(c(i))
i .

Theorem 5.2.22. Let w be an ε, then:

Tr(idw) = (−1)e(w) ∑
c∈colw

(−1)nw−(c)P (ε, c|ε)

= (−1)e(w) ∑
cε∈col(ε)

(−1)n−(c)P (ε, c) ·#{c ∈ col(w) such that c matches cε},

where idw is the (w,w)-foam I × w and e(w) stands for the number of edges of w.

Remark 5.2.23. The case ε = ∅ gives back3 that the (non-graded) dimension of Pw is
equal to the Kuperberg bracket evaluated in 1. In fact, what is computed is the foam-
evaluation of w × S1, which is known to be the trace, in the classical sense, of the identity
of F(w) i.e. the dimension of F(w).

Definition 5.2.24. If w is an ε-web, a pseudo-colouring of w is an application from the
set of edges of w to the set S with no restriction. They are 3e(w) different pseudo-colourings
of w.

Proof of theorem 5.2.22. The global idea is to perform surgeries on every facet, this will
lead to a big formal sum of foams and each of these foams will be geometrically a disjoint
union of thetas-foam and of l(ε) cups. Then we relate the colourings with the distributions
of dots on these thetas and these cups.

Let us consider îdw as S1 × w, and ∆ the revolution axis of this foam. All the facets
of îdw are diffeomorphic to a cylinder I × S1. So we may perform surgeries on each of
them. The surgery relation is not an embedded relation, so we could, considering îdw as
a “non-closed pre-foam”, apply this relation abstractly and get a big sum. However, we
can perform everything in an embedded way. Furthermore, this is helpful for the sequel to

3A priori this is up to a sign but this is actually quite easy to check that if w is a closed web, the
colourings of w have an even numbers of negative vertices if and only if w has an even number of edges.
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∆ ∆

∆

Figure 5.9: Cutted view of S1×w. We show here how to perform surgeries
on all the facets of S1 × w, the dotted two-side arrows indicates where
the surgery takes place. It’s clear that at the end we have only cups
(represented here as open arcs) and theta foam represented here as theta
graphs.

keep everything embedded. To do this, the only thing to do is to start with facets as close
as possible from ∆ and then go on inductively (see figure 5.9).

By “perform a surgery on a cylinder” we mean that we replace one foam which contains
a cylinder by the linear combination given of figure 1.9. What we get in the end is a sum
with 3e(w) terms (each surgery multiply by three the number of terms) with an overall sign
(each surgery relation contribute by −1). Each terms is a disjoint union of thetas foams
(one for each cubic vertex of w) and of cups, one for each mono-valent vertex of w We
call these terms resolutions of S1 × w. One should now evaluate the thetas to understand
which element of Al(ε) we get.

All facets of S1 ×w corresponds to edges of w, so we may encode the different terms of
our sum directly on the web w. We consider φ the application between pseudo-colourings of
w and resolutions of S1 ×w. The colour of each vertex indicate which terms in the surgery
relation we consider (see figure 5.10 for details). It’s clear that all the pseudo colourings

7→ 7→ 7→

Figure 5.10: Description of the map φ.
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which are not colourings are sent to resolutions which are zero because they contains some
theta foams which doesn’t have a good repartition of dots. It remains to understand the
image by φ of a real colouring. A positive vertex of a colouring leads to “positive theta”
i.e. theta-foam which evaluates on 1, while a negative vertex leads to a theta-foam which
evaluates on -1. The application t is the right one to understand the distribution of dots
on the cups. So for each colouring c of w the evaluation of the thetas of the corresponding
resolution gives a (−1)nw−(c) factor, while the dots on the cups corresponds to a P (ε, c|ε).
This gives us the expected formula.
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