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Examinateurs : Pr. Michael Berthold Professeur, Universität Konstanz (Allemagne)
Pr. Angela Bonifati Professeur, Université Claude Bernard Lyon 1
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Introduction

Starting this manuscript by introducing Knowledge Discovery in Databases (KDD) is nowadays old-
fashioned and the reader may even find it boring if she/he used to work in the field for many years. It was
indeed a buzz-word twenty years ago, and a myriad of articles, PhD theses, and probably “Habilitations”
too, were massively introducing and then enhancing the KDD process. After KDD, the terms “big data”,
then “data science” got more attractive, to end up today with the general term of “Artificial Intelligence”,
covering of course many other problems and gathering governments, academics and companies.

However, KDD is what reflect the better what domain experts need when attempting to understand
a phenomena from collected data and highlight the concepts that take part in it or even the process
that generates the data itself. It is what drove the majority of my research activities, through projects
and collaborations with academics and industries. It is also an exciting field to teach, especially through
practical courses, where students get surprised in what they can discover in a dataset.

As a matter of fact, this manuscript will first give an overview of our main contributions over the last
ten years on theoretical, algorithmic and methodological aspects of KDD, but also our experience with
knowledge discovery in practice in different application domains. We will then dive in the manuscript on a
selection of contributions (generally on which others were built), before concluding with our perspectives
of research.

1 Introducing Knowledge Discovery in Databases

We are living in a world of data. Huge volumes of data –web documents, user information, sensor data–
are available, sometimes without any intended usage but for having legal archives. Large volumes of
biological data are available –genome, transcriptome, proteome, metabolome, etc.– from which biological
knowledge is expected to be discovered. Storing commercial data is also common practice for firms –
user preferences, visited webpages history, bought products history, etc.–. In this three (non exhaustive)
cases, data hide several useful information that can make life of users easier, genes responsible of a
disease discovered, or promising sale sectors of a firm highlighted. However, these useful information are
generally buried in a very large amount of data. Accordingly, a challenging question arose in the 90’s:
“Can we make (large) data speak?”. This question still needs today theoretical foundations, algorithms,
methodologies, and beyond all, a lot of practice, to be answered.

1.1 The KDD process

Knowledge discovery in databases (KDD) is the process of finding non-trivial, potentially useful, signif-
icant and reusable information in data [59, 58]. Starting from rough data, it consists in three major
steps: (i) rough data are prepared, (ii) data are mined and (iii) extracted units are interpreted and may
be finally considered as derived knowledge. The objective of this process may be unclear, inexact, or
not known a priori. KDD is accordingly an iterative and interactive process: to ensure usefulness and
accuracy of the results both domain experts and technical experts are generally needed to guide the KDD
process. More precisely, the KDD process can be divided in several steps [58, 59, 55].
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Selection. The data needed for the data-mining process may be obtained from many different and
heterogeneous data sources. A first step consists in collecting the data from various databases,
files, non electronic sources (interviews, books, experts,etc.). Nowadays, sensors producing data are
everywhere.

Preprocessing. The selected data may suffer from errors and missing values. Some data values may
contradict each other since possibly coming from different sources of data. Errors can be corrected,
while missing values can be predicted.

Transformation. Some data-mining algorithms operate on certain types of data only. Accordingly, data
should be sometimes transformed, e.g. from quantitative to qualitative data. Data reduction is a
kind of transformation that reduces the number of data values being considered, sometimes simply
for making the computation with a data-mining algorithm possible.

Data-mining. Data-mining is the use of algorithms to extract the information and patterns (regularities,
clusters or classes, etc.). It consists in pattern discovery or deriving/designing a model from the
data. Pattern-mining is actually the focus of most of our research and we detail it in the subsection.

Interpretation. Information units and/or models discovered with data-mining need to be validated by a
domain expert. The way they are presented to the expert is very important. Visualization tools and
graphical user interfaces (GUI) are considered at this step. This step is gaining a lot of attention
these last years, coined with the term “Interpretability”. Here, data-mining techniques can also be
used to give hypotheses on the reasons a black-box model gives its predictions.

1.2 Eliciting Hypotheses from Data

In our research, we were mainly interested in pattern discovery, or the task to discover interesting reg-
ularities in the data, which translate into hypotheses for the domain expert. These hypotheses, when
interpreted and validated by the expert, can (i) be actionable, that is, result in an immediate decision,
or (ii) be incorporated in a knowledge base, e.g., to be reused and guide other explorations of the data
through KDD. Our research on pattern discovery can be divided into three major axes.

Data and Pattern Formalization A pattern mining task consists in discovering small and interesting
parts of the data having nice properties, such as, for a simple example, the fact of being frequent
and discriminant for a particular part of the dataset. However, the type of patterns that can be
discovered in a dataset depends of its structure. One can discover frequent item sets in a binary
matrix, but frequent sub-graphs in a collection of graphs. As such, the first step is to formalize
the data set and the patterns to discover within. For that, we chose to anchor our work in order
theory, and especially Formal Concept Analysis. We focus in this axis of research on defining and
understanding the mathematical objects that pattern mining manipulates.

Mining Algorithms After properly formalizing that data set and the patterns we seek, the next ques-
tion is to solve the search problem with efficient algorithms, bringing the expert with few but new
and possibly useful hypotheses. Even dealing with the most simple type of patterns brings the
end-user with zillions of patterns, that is, useless patterns. Defining interestingness measures, and
handling them efficiently during the search to output a small, non redundant, yet diverse, set of
patterns, requires smart algorithmic strategies. Many efficient exhaustive enumeration techniques
have been proposed between 1990 and 2010, and can serve as a basis for designing new “non-
exhaustive” search strategies, with some guarantees. We started to investigate some exhaustive
search techniques, before focusing on anytime algorithms: the more the budget is given, the best is
the result, until, in theory, being the same than the one an exhaustive search would produce.

Methodologies for Applications Formalizing a pattern mining task and solving it with an algorithm
is one thing. Discovering actionable patterns from a dataset is another (long) story. Actually, our
need of anytime algorithms and particular pattern quality measures rose from applications. For

6
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example, we worked on eliciting links between molecules (described by thousands of categorical
and numerical attributes) and odors given by scent experts (multi-label settings). The dataset
dimensionality, the need of precise patterns (forbidding the use of numerical attribute discretization,
thus implying a huge search space), the skewed label distribution, the possible correlations between
these labels, etc. led us to rethink some search strategies and algorithmic paradigms. In the
end, what appeared to be a simple application problem in neuroscience brought us in a four year
collaboration before ending up with results published in a impactful application domain journal
(PLOS Computational Biology in this case).

The following thus sum up our works in three sections. Of course, any contribution mentioned in this
document is the product of exciting and fruitful collaborations with other researchers (both “seniors” and
“juniors”) and both industrial and academic partners and we make it precise hereafter.

2 Formal Concept Analysis

Concepts are necessary for expressing human knowledge, hence the KDD process should benefit from a
comprehensive formalization of concepts [166]. Formal Concept Analysis (FCA) [64] offers such formaliza-
tion of concepts by mathematizing concepts that are understood as units of thought constituted by their
extent (the instances of the concept) and intent (their common description). To mathematically define
concepts, FCA starts with a binary relation, called formal context, between some (formal) objects and
(formal) attributes. Concepts are accordingly defined as pairs constituted of an extent (a set of objects)
and an intent (a set of attributes shared by these objects). Concepts form a mathematical structure
called concept lattice that expresses a generalization/specialization relation of concepts. The concept
lattice is a support for conceptual knowledge discovery in databases, and revealed itself to be helpful for
applications in information and knowledge processing including visualization, knowledge management,
and, for our concerns, pattern mining.

Formal Concept Analysis emerged in the 1980’s from attempts to restructure lattice theory in order
to promote better communication between lattice theorists and potential users of lattice theory [165]. It
rapidly grows into a research field leading to a seminal book [64] and FCA dedicated conferences such
as the international conferences on concept lattices (ICFCA), on concept lattices and its applications
(CLA) and in some extent the international conference on conceptual structures (ICCS). Accordingly,
FCA revealed itself to be a simple and well formalized framework useful for several applications in
information and knowledge processing including visualization, data analysis (mining) and knowledge
management [166, 156, 100, 136, 135]. A website dedicated to FCA is maintenend by Uta Priss1.

From a more personal point of view, FCA represents my major research activity. I am part of the
steering committee of the International Conference on Formal Concept Analysis (ICFCA) since I co-
chaired the 2014’s edition [71].

Cynthia Vera Glodeanu, Mehdi Kaytoue, Christian Sacarea:
12th Int. Conf. on Formal Concept Analysis (ICFCA 2014).
Lecture Notes in Computer Science 8478, Springer.

Before illustrating my main contributions, let us briefly introduce FCA.

2.1 A Short Introduction to FCA

We now make precise a few general notions in FCA necessary for the understanding of this document.

Formal context and formal concepts In FCA, data are represented by a formal context (G,M, I)
where G denotes a set of objects, M a set of attributes, and I ⊆ G ×M a binary relation between G

1http://www.upriss.org.uk/fca/fca.html
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m1 m2 m3 m4 m5 m6
g1 × × ×
g2 × × × ×
g3 × × × × ×
g4 × × ×
g5 × ×
g6 × × ×
g7 × × × ×

Figure 1: An example of formal context K =
(G,M, I)

Figure 2: Concept lattice raised from Table 1

and M . The statement (g,m) ∈ I is interpreted as “the object g has attribute m”. A concept is a pair
(A,B) composed of a maximal set of objects A and a maximal set of attributes B such that objects in
A have all the attributes from B, and vice-versa. In (A,B), the set A is called the extent and the set B
the intent of the concept (A,B).

Example 1 A formal context is usually represented by a cross table, or binary table. Each line cor-
responds to an object, while each column to an attribute. A cross in row g and column m means that
the object g has the attribute m. A empty table entry means that object in line has not the attribute in
column. Consider the set of objects G = {g1, ..., g7} where each letter denotes an animal, respectively,
“ostrich”, “canary”, “duck”, “shark”, “salmon”, “frog”, and “crocodile”. Consider the set of attributes
M = {m1, ..,m6} that are properties that animals may have or not, i.e. “borned from an egg”, “has
feather”, “has tooth”, “fly”, “swim”, “lives in air” . Table 1 gives an example of formal context (G,M, I)
where I is defined by observing the given animals.

Concept forming operators For a set of objects A ⊆ G we define the set of attributes that all objects
in A have in common as follows: A′ = {m ∈ M | gIm ∀g ∈ A}. In a dual way, for a set of attributes
B ⊆ M , we define the set of objects that have all attributes from B as: B′ = {g ∈ G | gIm ∀m ∈ B}.
It can be shown that operator (.)′′, applied either to a set of objects or a set of attributes, is a closure
operator. Hence we have two closure systems on G and on M . It follows that the pair {(.)′, (.)′} is a
Galois connection between the power set of objects and the power set of attributes. These mappings put
in 1-1-correspondence closed sets of objects and closed sets of attributes, i.e. concept extents and concept
intents. In our example, {g1, g2} is not a closed set of objects, since {g1, g2}′′ ={g1, g2, g3}. Accordingly,
{g1, g2, g3} is a closed set of objects hence a concept extent.

Example 2 We have {g1, g2}′ = {m1,m2,m6} and {m1,m2,m6}′ = {g1, g2, g3}. It directly follows
that the pair ({g1, g2, g3}, {m1,m2,m6}) is a formal concept. Intuitively, a concept corresponds to a
maximal rectangle of crosses in its corresponding tabular representation with possible row and column
permutations. An example of ≤-relation between two concepts is given by: ({g1, g2, g3}, {m1,m2,m6}) ≤
({g1, g2, g3, g6, g7}, {m1,m6}).

Concept lattice. Once all concepts are extracted, they are ordered by inclusion of their extent: a
concept is greater than another if it contains more objects in its extent (dually less attributes in its
intent). With respect to this partial order, the set of all formal concepts forms a complete lattice called the
concept lattice of the formal context (G,M, I). The concept lattice provides an interesting classification

8
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of objects in a domain. It entails both notions of maximality and generalization/specialization: a concept
corresponds to a maximal set of objects (extent) sharing a common maximal set of attributes (intent) ;
the generalization/specialization is given by the partial ordering of concepts. Furthermore, implications
between attributes can be read from the concept lattice.

Example 3 Figure 2 2 shows the concept lattice associated with Table 1. On this line diagram, each node
denotes a concept while a line denotes an order relation between two concepts. Due to reduced labeling, the
extent of a concept has to be considered as composed of all objects lying in the extents of its sub-concepts.
Dually, the intent of a concept is composed of all attributes in the intents of its super-concepts. The top
(resp. bottom) concept is the highest (resp. lowest) w.r.t. ≤.

Implication. An implication of a formal context (G,M, I) is denoted by X → Y , X,Y ⊆M and means
that all objects from G having the attributes inX also have the attributes in Y , i.e. X ′ ⊆ Y ′. Implications
obey the Amstrong rules (reflexivity, augmentation, transitivity). A minimal subset of implications (in
sense of its cardinality) from which all implications can be deduced with Amstrong rules is called the
Duquenne-Guigues basis [74].

Example 4 m2 → m1 is an implication as m′2 ⊆ m′1, that is G ⊆ {g1, g2, g3}. Implications can be easily
read on the diagram representation when using reduced labeling thanks to inheritance: m2 → m6 but also
m3 → m5.

Pattern structure To handle non binary data directly, the latter can be formalized as a pattern
structure given some conditions. Let G be a set (interpreted as a set of objects), let (D,u) be a meet-
semilattice (of potential object descriptions) and let δ : G −→ D be a mapping. Then (G,D, δ) with
D = (D,u) is called a pattern structure. Elements ofD are called patterns and are ordered by subsumption
relation v: given c, d ∈ D one has c v d⇐⇒ cud = c. u is called a similarity operation, since, given two
descriptions, it gives a description representing their similarity. This is natural with set intersection, e.g.
{a, b} ∩ {b, c} = {b}. A pattern structure (G,D, δ) gives rise to the following derivation operators (·)�:

A� =
l
g∈A

δ(g) for A ⊆ G,

d� = {g ∈ G|d ∈ δ(g)} for d ⊆ D.

These operators form a Galois connection between the powerset of G and (D,v). Pattern concepts of
(G,D, δ) are pairs of the form (A, d), A ⊆ G, d ∈ D, such that A� = d and A = d�. For a pattern
concept (A, d) the component d is called a pattern intent and is a description of all objects in A, called
pattern extent. Intuitively, (A, d) is a pattern concept if adding any element to A changes d through
(·)� operator and equivalently taking e ⊃ d changes A. Like in case of formal contexts, for a pattern
structure (G,D, δ) a pattern d ∈ D is called closed if d�� = d and a set of objects A ⊆ G is called closed
if A�� = A. Obviously, pattern extents and intents are closed. As for formal contexts, implications can
be defined. For c, d ∈ D, the pattern implication c→ d holds if c� ⊆ d�, i.e. the pattern d occurs in an
object description if the pattern c does. Similarly, for A,B ⊆ G, the object implication A → B holds if
A� v B�, meaning that all patterns that occur in all objects from the set A also occur in all objects in
the set B [62].

Concept enumeration algorithms There exists several algorithms to compute concepts (sometimes
just their extents or their intents), with or without their covering relation [99]. In data-mining, we are
mainly interested in the set of intents with the cardinality of their extent, that corresponds to the frequent
closed itemsets in the pattern mining domain. One algorithm that we used intensively is CloseByOne.
Its power lies in two facts (i) it is conceptually the same algorithm than LCMv2 (the most popular and
efficient algorithm for mining closed itemsets), and (ii) it can be used for processing pattern structures
with slight modifications (computing the intersection).

2Drawn with ConExphttp://conexp.sourceforge.net/
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Introduction

Contributions to Formal Concept Analysis During my PhD (2007-2011), I investigated how FCA
could help in processing numerical data for knowledge discovery and pattern mining purposes. For that,
I collaborated with Pr. Sergei O. Kuznsetov, unburrowing an old work of his: Pattern Structures and
its ability to consider data where objects are not described by itemsets (that is, binary data), but with
complex descriptions [62]. Pattern structures, although not democratized, are simple and bring a comfort
in formalizing a dataset and the patterns we are looking for: itemsets, hyper-rectangles, functional
dependencies (and their generalizations), biclusters, among others, and to some extent sequential and
graph data.

Consequently, this section is dedicated to our works on FCA during the last ten years, for its formal-
ization and representation capabilities.

• We formalized strong links between numerical biclustering and n-set pattern mining (during my
post doctoral research).

• We formally defined in a unifying framework several types of data dependencies (through a long
term collaboration with Amedeo Napoli, Víctor Codocedo and Jaume Baixeries)

• We proposed a new numerical pattern domain: convex polygons (Aimene Belfodil’s PhD).

• We proposed to extend the pattern structure models to pattern multi-structures and understand
what kind of pattern languages fit into pattern structures, pattern multi-structures and pattern
setups (Aimene Belfodil’s PhD and collaboration with Sergei O. Kuznetsov). A pattern setup is
the less restrictive data representation in which patterns can be found.

2.2 Patterns in Numerical Data

Pattern mining is an important task in AI for eliciting hypotheses from the
data. When it comes to spatial data, the geo-coordinates are often considered
independently as two different attributes. Consequently, rectangular shapes
are searched for. Such an arbitrary form is not able to capture interesting
regions in general. The problem with rectangular shapes can be observed on
the right hand side figure. Each object gives a POI (Point Of Interest) of a
given type (Hotel, Restaurant, University, ...) and position. An interesting
pattern is understood as a geographical area for which there is a sufficient
number of points, high density, and a high proportion of objects of the same
type. The candidate areas could have any shape. Rectangles, as being the products of intervals, have
edges parallel to the plane axes: they may enclose both dense and sparse regions. Arbitrary polygons
stick too much to the data and are hard to interpret. We consider convex polygons, a good trade-off for
capturing high density areas. Our contribution is threefold: (i) We formally introduce such patterns in
Formal Concept Analysis, (ii) we give all the basic bricks for mining convex polygons with exhaustive
search and pattern sampling, and (iii) we design several algorithms, which we compare experimentally.
To the best of our knowledge, it is the first attempt to formally define this new type of pattern with
FCA: the conjunction of hyper-plans defined over multiple numerical attributes.

This work actually extends our first proposition to consider numerical pattern as hyper-rectangles
with FCA [91, 90]:

Aimene Belfodil, Sergei O. Kuznetsov, Céline Robardet, Mehdi Kaytoue:
Mining Convex Polygon Patterns with Formal Concept Analysis.
International Joint Conference on Artificial Intelligence (IJCAI 2017)
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Figure 3: Non-closed (left), closed (middle) interval pattern and convex polygon (right) .

2.3 Mining Closed Sets Using Implications

FCA provides a mathematical tool to analyze and discover concepts in Boolean datasets (i.e. Formal
contexts). It does also provide a tool to analyze complex attributes by transforming them to Boolean
ones (i.e. items) thanks to conceptual scaling. For instance, a numerical attribute whose values are
{1, 2, 3} can be transformed to the set of items {≤ 1,≤ 2,≤ 3,≥ 3,≥ 2,≥ 1} thanks to interordinal
scaling. Such transformations allow us to use standard algorithms like CloseByOne to look for concepts
in complex datasets by leveraging a closure operator. However, these standard algorithms do not use
the relationships between attributes to enumerate the concepts as for example the fact that ≤ 1 implies
≤ 2 and so on. For such, they can perform additional closure computations which substantially degrade
their performance. We propose in this work a generic algorithm CbOi (CloseByOne using implications)
to enumerate concepts in a formal context using the inherent implications between items provided as an
input. We show that using the implications between items can reduce significantly the number of closure
computations and hence the time effort spent to enumerate the whole set of concepts.

Aimene Belfodil, Adnene Belfodil, Mehdi Kaytoue:
Mining Formal Concepts Using Implications Between Items.
International Conference on Formal Concept Analysis (ICFCA 2019)

2.4 Biclustering

Biclustering numerical data became a popular data mining task at the beginning of 2000’s, especially for
gene expression data analysis and personal recommendations. A bicluster reflects a strong association
between a subset of objects and a subset of attributes in a numerical object/attribute data-table. So called
biclusters of similar values can be thought as maximal sub-tables with close values. Only few methods
address a complete, correct and non-redundant enumeration of such patterns, a well-known intractable
problem, while no formal framework exists. We introduce important links between biclustering and
Formal Concept Analysis. FCA is known to be, among others, a methodology for biclustering binary
data. Handling numerical data is not direct, and we argue that Triadic Concept Analysis (TCA), the
extension of FCA to ternary relations, provides a powerful mathematical and algorithmic framework for
biclustering numerical data. We discuss hence both theoretical and computational aspects on biclustering
numerical data with triadic concept analysis. These results also scale to n-dimensional numerical datasets.

We present our major result, which concerns the formalization and efficient mining of biclusters of
similar values [88].

Mehdi Kaytoue, Sergei O. Kuznetsov, Juraj Macko, Amedeo Napoli:
Biclustering meets triadic concept analysis.
Annals of Mathematics and Artificial Intelligence 70(1-2) - 2014

We have also considered biclusters of maximal values on rows or colums [87] and how to formalize
and mine them with (i) scaling, (ii) partition pattern structures, and (iii) Triadic Concept Analysis (the
results are however not reported in this manuscript):
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Mehdi Kaytoue, Víctor Codocedo, Jaume Baixeries, Amedeo Napoli:
Three Interrelated FCA Methods for Mining Biclusters of Similar Values on Columns.
International Conference on Concept Lattices and their Applications (CLA 2014)

2.5 Functional Dependencies

Computing functional dependencies from a relation is an important database topic, with many applica-
tions in database management, reverse engineering and query optimization. Whereas it has been deeply
investigated in those fields, strong links exist with the mathematical framework of Formal Concept Anal-
ysis. Considering the discovery of functional dependencies, it is indeed known that a relation can be
expressed as the binary relation of a formal context, whose implications are equivalent to those depen-
dencies. However, this leads to a new data representation that is quadratic in the number of objects
w.r.t. the original data. Here, we present an alternative avoiding such a data representation and using
pattern structures.

Most importantly, this work allows to consider the discovery of data dependencies as the discovery
of pattern implications of a well defined pattern structure. Interestingly, most of the data dependencies
presented in a recent survey in the TKDE journal [41], can be expressed in this way. We present our
basics, namely partition pattern structures and tolerance pattern structures and how they formally allow
to characterize functional and degenerated multivalued dependencies [20].

Jaume Baixeries, Mehdi Kaytoue, Amedeo Napoli:
Characterizing functional dependencies in FCA with pattern structures.
Annals of Mathematics and Artificial Intelligence 72(1-2) - 2014

The work has then been extended to other kinds of dependencies, namely, approximate matching
dependencies [19],

Jaume Baixeries, Mehdi Kaytoue, Amedeo Napoli:
Computing Similarity Dependencies with Pattern Structures.
International Conference on Concept Lattices and their Applications (CLA 2013)

extended to [18],

Jaume Baixeries, Víctor Codocedo, Mehdi Kaytoue, Amedeo Napoli:
Characterizing approximate-matching dependencies in FCA with pattern structures.
Discrete Applied Mathematics 249 - 2018

and order dependencies [46].

Víctor Codocedo, Jaume Baixeries, Mehdi Kaytoue, Amedeo Napoli:
Characterization of Order-like Dependencies with Formal Concept Analysis.
International Conference on Concept Lattices and their Applications (CLA 2016)

2.6 Beyond Pattern Structures

Pattern mining consists in discovering interesting patterns in data. For that, algorithms rely on smart
techniques for enumerating the pattern search space and, generally, focus on compressed collections of
patterns (e.g. closed patterns), to avoid redundancy. Formal Concept Analysis (FCA) offers a generic
framework, called pattern structures, to formalize many types of patterns, such as itemsets, intervals,
graph and sequence sets. Additionally, it provides generic algorithms to enumerate all closed patterns
and only them. The only condition is that the pattern space is a meet-semilattice, which, unfortunately
does not always hold (e.g., for sequential and graph patterns). In this work, we discuss pattern setups,
a tool that models pattern search spaces relying only on posets. Next, we show that such a framework
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Table 1: Toy dataset

ID a b c class(.)
1 150 21 11 l1
2 128 29 9 l2
3 136 24 10 l2
4 152 23 11 l3
5 151 27 12 l2
6 142 27 10 l1

can have some issues since it is too permissive and we propose the new model of pattern multistructures;
i.e. a model lying between pattern setups and pattern structures that rely on multilattices. Subsequently,
we revisit some techniques transforming pattern setups to a pattern structure using set of patterns,
namely completions, and we state a necessary and sufficient condition for a pattern setup completion
using antichains to be a pattern structure.

Aimene Belfodil, Sergei O. Kuznetsov, Mehdi Kaytoue:
Pattern Setups and Their Completions.
International Conference on Concept Lattices and their Applications (CLA 2018)

Aimene Belfodil, Sergei O. Kuznetsov, Mehdi Kaytoue:
On Pattern Setups and Pattern Multistructures.
Currently in minor revision to the International Journal of General Systems.
Arxiv: 1906.02963

3 Subgroup Discovery and Algorithms

Our main investigation in Formal Concept Analysis had one main goal: properly formalizing data, pat-
tern languages in order theory and showing that many problems (biclustering, pattern mining, subgroup
discovery, database dependency discovery) can be actually formalized in a unified framework rooted in
Order Theory. We had little concerns on algorithms efficiency and pattern selection (based on, e.g., qual-
ity measures). When attempting to make sense of data (see hereafter when applications are presented)
through pattern discovery, we got irremediably interested in discriminant pattern discovery. More es-
pecially, we considered Subgroup Discovery, a leading data mining technique that allows one to elicit
descriptions (covering objects called subgroups) that unexpectedly occur, for example, with a class tar-
get. Generally, subgroups can be concept extents in FCA, as soon as the unexpectedness can be computed
solely given the extent and class frequencies, which represents a vast majority of the existing approaches.
Before presenting our contributions, we briefly introduce the problem of subgroup discovery and pattern
set discovery.

3.1 A Short Introduction to Subgroup Discovery

For sake of simplicity, we consider here tabular data composed by symbolic and numeric attributes.

Dataset D(O,A, C, class) Let O, A and C be respectively a set of objects, a set of attributes, and a
set of class labels. The domain of an attribute a ∈ A is Dom(a) where a is either nominal or numerical.
The mapping class : O 7→ C associates each object to a unique class label.

Subgroup A subgroup can be represented either by a description or by the set of objects it covers. The
description of a subgroup, also called pattern, is given by d = 〈f1, . . . , f|A|〉 where each fi is a restriction
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on the value domain of the attribute ai ∈ A. A restriction for a nominal attribute ai is a symbol ai = v
with v ∈ Dom(ai). A restriction for a numerical attribute ai is an interval [l, r] with l, r ∈ Dom(ai). The
description d covers a set of objects called the extent of the subgroup, denoted ext(d) ⊆ O. The support
of a subgroup is the cardinality of its extent: supp(d) = |ext(d)|.

Subgroup search space The set of all subgroups forms a lattice, denoted as the poset (S,�). The
top is the most general pattern, without restriction. Given any s1, s2 ∈ S, we note s1 ≺ s2 to denote that
s1 is strictly more specific, i.e. it contains more stringent restrictions. If follows that ext(s1) ⊆ ext(s2)
when s1 � s2.

The ability of a subgroup to discriminate a class label is evaluated by means of a quality measure.
The weighted relative accuracy (WRAcc), intoduced by [102], is among the most popular measures for
rule learning and subgroup discovery. Basically, WRAcc considers the precision of the subgroup w.r.t. to
a class label relatively to the appearance probability of the label in the whole dataset. This difference is
weighted with the support of the subgroup to avoid to consider small ones as interesting.

WRAcc Given a dataset D(O,A, C, class), the WRAcc of a subgroup d for a label l ∈ Dom(C) is given
by:

WRAcc(d, l) = supp(d)
|O|

×
(
pld − pl

)
where pld = |{o∈ext(d)|class(o)=l}|

supp(d) and pl = |{o∈O|class(o)=l}|
|O| .

WRAcc returns values in [−0.25, 0, 25], the higher and positive, the better the pattern discriminates
the class label. Many quality measures other than WRAcc have been introduced in the literature of rule
learning and subgroup discovery (Gini index, entropy, F score, Jaccard coefficient, etc. [3]). Exceptional
model mining (EMM) considers multiple labels (label distribution difference in [159], Bayesian model
difference in [54], etc.). The choice of a pattern quality measure, denoted ϕ in what follows, is generally
application dependent as explained by [60].

Example 5 Consider the dataset in Table 1 with objects in O = {1, ..., 6} and attributes in A = {a, b, c}.
Each object is labeled with a class label from C = {l1, l2, l3}. Consider an arbitrary subgroup with descrip-
tion d = 〈[128 ≤ a ≤ 151], [23 ≤ b ≤ 29]〉. Note that, for readability, we omit restrictions satisfied by
all objects, e.g., [9 ≤ c ≤ 12], and thus we denote that ext(〈〉) = O. The extent of d is composed of the
objects in ext(d) = {2, 3, 5, 6} and we have WRAcc(d, l2) = 4

6 ( 3
4 −

1
2 ) = 1

6 . The upper part of the search
space (most general subgroups) is given in Figure 4. The direct specializations of a subgroup are given,
for each attribute, by adding a restriction: Either by shrinking the interval of values to the left (take the
right next value in its domain) or to the right (take the left next value). In this way, the finite set of all
intervals taking borders in the attributes domain will be explored (see [90]).

Subgroup discovery It consists in searching for a set of patterns R ⊆ S of high quality on the quality
measure ϕ and whose patterns are not redundant. As similar patterns generally have similar values on ϕ,
we design the pattern set discovery problem as the identification of the local optima w.r.t. ϕ: Redundant
patterns of lower quality on ϕ are pruned and the extracted local optima are diverse and potentially
interesting patterns.

Contributions to Subgroup Discovery

• Facing an application providing multi-labeled data, we proposed a pattern quality measure and
enumeration techniques enabling one to discover subgroups that possibly discriminate not only one,
but several labels (Guillaume Bosc’s PhD).

• Still motivated by an application in neuroscience, we were interested in mining numerical patterns
without exhaustive enumeration techniques. Actually, numerical patterns in large dataset (more
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128.24 ≤ a ≤ 152.16
21 ≤ b ≤ 29
  9 ≤  c  ≤ 12

136.16 ≤ a ≤ 152.16
21 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128.24 ≤ a ≤ 151.28
21 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128.24 ≤ a ≤ 152.16
23 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128.24 ≤ a ≤ 152.16
21 ≤ b ≤ 27
  9 ≤  c  ≤ 12

128.24 ≤ a ≤ 152.16
21 ≤ b ≤ 29
10 ≤  c  ≤ 12

128.24 ≤ a ≤ 152.16
21 ≤ b ≤ 29
  9 ≤  c  ≤ 11

136.16 ≤ a ≤ 152.16
23 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128.24 ≤ a ≤ 151.28
23 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128.24 ≤ a ≤ 152.16
24 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128.24 ≤ a ≤ 152.16
23 ≤ b ≤ 27
  9 ≤  c  ≤ 12

128.24 ≤ a ≤ 152.16
23 ≤ b ≤ 29
10 ≤  c  ≤ 12

128.24 ≤ a ≤ 152.16
23 ≤ b ≤ 29
  9 ≤  c  ≤ 11

Figure 4: The upper part of the search space for Table 1.

exactly, large search spaces) can be mined with Subgroup Discovery techniques only either with
a greedy selection of intervals or an apriori discretization of the data. To mine exact intervals
as defined in terms of FCA, we stared to investigate how Monte Carlo Tree Search (MCTS), and
its inherent exploration/exploitation trade-off could discover a diverse set of patterns (Guillaume
Bosc’s PhD).

• MCTS provided excellent results. However, MCTS is an anytime algorithm. It means that we do
not expect it to finish (although we prove that it mandatory finishes and visit the whole pattern
search space), but we interrupt it at some point. Upon interruption, the user has no idea on the
quality of the current result w.r.t to what could be actually expected. We thus proposed a new
algorithm paradigm, dedicated to numerical data at present that mines pattern iteratively in finer
and finer discretization of the data with several guarantees (Aimene Belfodil’s PhD, in collaboration
with his brother Adnene).

• Until that moment, our search strategies were aiming at finding good patterns, that is with a high
quality measure, and applying post processing to reduce it so that it can be processed by a human
expert. MCTS goal is to enhance diversity, that is, sample different part of the search space.
However, another approach is to mine pattern sets directly, and optimize the quality of the pattern
set directly. We propose such first approach (Aimene Belfodil’s PhD, in collaboration with Adnene
Belfodil and Anes Bendimerad).

• Our adventure in subgroup discovery was mainly considering categorical and numerical datasets.
We started to investigate how MCTS can help subgroup discovery in sequential data (Romain
Mathonat’s PhD).

3.2 Subgroup Discovery from Multi Labeled Data

In presence of multi-label data, there are many applications for which one is interested in subgroups
that differ from the whole dataset only on subsets of labels, and the interesting subsets of labels are not
known beforehand: Typically, descriptive rules that conclude on small label sets. SD, and its extension
for more complicated target concepts, Exceptional Model Mining (EMM), fail to produce such rules:
They consider either the whole set of labels, each label independently, or a unique and fixed label subset
chosen a priori. We propose to enhance EMM for considering all target subspaces (label subsets): It
requires to revisit its formalization, the subgroup search space, and to propose new quality measures
expressing how exceptional is a subgroup. Our quality measures consider label distributions dynamically
during the pattern exploration that outputs a diversified set of high quality subgroups, whose redundancy
is controlled not only on the covered objects, but also on the considered label sets. This is shown through
an extensive set of experiments. Finally, we discuss an application in neurosciences which argue the
actionability of the discovered subgroups.
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Guillaume Bosc, Jérôme Golebiowski, Moustafa Bensafi,
Céline Robardet, Marc Plantevit, Jean-François Boulicaut, Mehdi Kaytoue:
Local Subgroup Discovery for Eliciting and Understanding
New Structure-Odor Relationships.
Discovery Science (DS 2016)

3.3 Mining Large Search Spaces with Best-first Search

The discovery of patterns that accurately discriminate one class label from another remains a challenging
data mining task. Subgroup discovery (SD) is one of the frameworks that enables to elicit such interesting
patterns from labeled data. A question remains fairly open: How to select an accurate heuristic search
technique when exhaustive enumeration of the pattern space is not feasible? Existing approaches make
use of beam-search, sampling, and genetic algorithms for discovering a pattern set that is non-redundant
and of high quality w.r.t. a pattern quality measure. We argue that such approaches produce pattern
sets that lack of diversity: Only few patterns of high quality, and different enough, are discovered.
Our main contribution is then to formally define pattern mining as a game and to solve it with Monte
Carlo Tree Search (MCTS). It can be seen as an exhaustive search guided by random simulations which
can be stopped early (limited budget) by virtue of its best-first search property. We show through a
comprehensive set of experiments how MCTS enables the anytime discovery of a diverse pattern set of
high quality. It outperforms other approaches when dealing with a large pattern search space and for
different quality measures. Thanks to its genericity, our MCTS approach can be used for SD but also for
many other pattern mining tasks.

Guillaume Bosc, Jean-François Boulicaut, Chedy Raïssi, Mehdi Kaytoue:
Anytime discovery of a diverse set of patterns with Monte Carlo tree search.
Data Min. Knowl. Discov. 32(3): 604-650 - 2018

3.4 Anytime Subgroup Discovery in Numerical Domains with Guarantees

MCTS offers many advantages over other algorithmic paradigms, but sadly does not provide guarantees
bounding the error of the best pattern quality nor the exploration progression (“How far are we of an
exhaustive search”). We design here an algorithm for mining numerical data with three key properties
w.r.t. the state of the art: (i) It yields progressively interval patterns whose quality improves over time;
(ii) It can be interrupted anytime and always gives a guarantee bounding the error on the top pattern
quality and (iii) It always bounds a distance to the exhaustive exploration.

Aimene Belfodil, Adnene Belfodil, Mehdi Kaytoue:
Anytime Subgroup Discovery in Numerical Domains with Guarantees.
European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECML/PKDD 2018)
(Best student paper in data mining award).

3.5 Pattern Set Mining

Standard approaches of the literature are based on local pattern discovery, which is known to provide
an overwhelmingly large number of redundant patterns. To solve this issue, pattern set mining has been
proposed: instead of evaluating the quality of patterns separately, one should consider the quality of a
pattern set as a whole. The goal is to provide a small pattern set that is diverse and well-discriminant
to the target class. However, most, if not all, pattern set discovery algorithm aim at optimizing the average
quality of each pattern making it. We introduce a novel formulation of the task of diverse subgroup set
discovery where both discriminant power and diversity of the subgroup set are incorporated in the same
quality measure. We propose an efficient and parameter-free algorithm based on a greedy scheme. FSSD
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uses several optimization strategies that enable to efficiently provide a high quality pattern set in a short
amount of time.

Adnene Belfodil, Aimene Belfodil, Anes Bendimerad, Philippe Lamarre,
Céline Robardet, Mehdi Kaytoue and Marc Plantevit.
A Fast and Efficient Algorithm for Subgroup Set Discovery
Data Science and Advanced Analytics (DSAA 2019)

3.6 Mining Large Sequences of Itemsets

Though many subgroup discovery algorithms have been proposed for transactional data, discovering
subgroups within labeled sequential data and thus searching for descriptions as sequential patterns has
been much less studied. In that context, exhaustive exploration strategies can not be used for real-life
applications and we have to look for heuristic approaches. We propose the algorithm SeqScout to discover
interesting subgroups (w.r.t. a chosen quality measure) from labeled sequences of itemsets. This is a new
sampling algorithm that mines discriminant sequential patterns using a multi-armed bandit model. It is
an anytime algorithm that, for a given budget, finds a collection of local optima in the search space of
descriptions and thus subgroups. It requires a light configuration and it is independent from the quality
measure used for pattern scoring. Furthermore, it is fairly simple to implement. We provide qualitative
and quantitative experiments on several datasets to illustrate its added-value.

Romain Mathonat, Diana Nurbakova, Jean-Francois Boulicaut, Mehdi Kaytoue
SeqScout: Using a Bandit Model to Discover Interesting Subgroups in Labeled Sequences.
Data Science and Advanced Analytics (DSAA 2019)

4 Knowledge Discovery in Practice

In many applications domains, one uses KDD to try to understand the underlying phenomena and
concepts generating some data. I worked mainly on three application domains over the last ten years
through long term projects.

Neuroscience Through a long-term collaboration, we proposed a KDD approach with a view to advance
the state of the art in understanding the mechanisms of olfaction. We created an interdisciplinary
synergy between neuroscientists, chemists and data miners to the emergence of new hypotheses on
the links between the structure and the odor of a molecule. Indeed, data-mining methods can be
used to answer this discovery problem through descriptive rules discovery in pattern mining [107].
Interestingly, this application problem encountered several data mining challenges that current
state-of-the-art-methods were not able to handle (mentioned in the preceding sections).

Social Network Analysis I participated in a three years European project and spent 8 months in
an Irish company for that matter. The goal was to apply data mining techniques for real time
event detection from social media. I also studied the social network Twitch.tv in 2011 through a
characterization social data [93] as I was amazed to see that people like to watch other to play on
the Web. This is surprisingly one of my most impactful articles, which can be explained by the fact
that Twitch.tv was a few years later bought by Amazon for more than one billion US dollars. It
opened also the doors for a one month invited stay followed by a collaboration with the MIT Media
Lab [32] and a novel application, video game analytics.

Video Game Analytics I choose to invest some time in this new application domain for several rea-
sons. Games have always been a test bed for AI in general and nowadays massively generate
realistic spatiotemporal data which are easily available on the Web. For several industrial projects,
data accessibility is a real problem, and video games data can be useful to test our algorithm-
s/methodologies with real goals, needless to add that for assessing a new data mining methodology
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or algorithm, one has to apply it on different applications. Finally, attracting students to work in
data mining with video game data was also of a non negligible interest.

4.1 Neuroscience & Olfaction

An important goal for understanding the sense of olfaction is to link the perception of smells to the
chemistry of odorants. In other words, why do some odorants smell like fruits and others like flowers?
While the so-called stimulus-percept issue was resolved in the field of color vision some time ago, the
relationship between the chemistry and psycho-biology of odors remains unclear up to the present day.
Although a series of investigations have demonstrated that this relationship exists, the descriptive and
explicative aspects of the proposed models that are currently in use require greater sophistication. One
reason for this is that the algorithms of current models do not consistently consider the possibility that
multiple chemical rules can describe a single quality despite the fact that this is the case in reality, whereby
two very different molecules can evoke a similar odor. Moreover, the available datasets are often large
and heterogeneous, thus rendering the generation of multiple rules without any use of a computational
approach overly complex. We considered these two issues. First, we built a new database containing
1689 odorants characterized by physicochemical properties and olfactory qualities. Second, we developed
a computational method based on a subgroup discovery algorithm that discriminated perceptual qualities
of smells on the basis of physicochemical properties. Third, we ran a series of experiments on 74 distinct
olfactory qualities and showed that the generation and validation of rules linking chemistry to odor
perception was possible. Taken together, our findings provide significant new insights into the relationship
between stimulus and percept in olfaction. In addition, by automatically extracting new knowledge linking
chemistry of odorants and psychology of smells, our results provide a new computational framework of
analysis enabling scientists in the field to test original hypotheses using descriptive or predictive modeling.

Carmen C. Licon, Guillaume Bosc, Mohammed Sabri, Marylou Mantel,
Arnaud Fournel, Caroline Bushdid, Jerome Golebiowski, Celine Robardet,
Marc Plantevit, Mehdi Kaytoue, Moustafa Bensafi
Chemical features mining provides new descriptive structure-odor relationships.
PLoS Computational Biology 15(4) - 2019

4.2 Video Game Analytics

“Electronic-sport” (E-Sport) is now established as a new entertainment genre. More and more players
enjoy streaming their games, which attract even more viewers. In fact, social studies report that casual
players were found to prefer watching professional gamers rather than playing the game themselves. In
this context, advertising provides a significant source of revenue to the professional players, the casters
(displaying other people’s games) and the game streaming platforms. For this paper, we crawled, during
more than 100 days, the most popular among such specialized platforms: Twitch.tv. Thanks to these
gigabytes of data, we propose a first characterization of a new Web community, and we show, among other
results, that the number of viewers of a streaming session evolves in a predictable way, that audience
peaks of a game are explainable and that a Condorcet method can be used to sensibly rank the streamers
by popularity. Last but not least, we hope that this paper will bring to light the study of E-Sport and
its growing community. They indeed deserve the attention of industrial partners (for the large amount
of money involved) and researchers (for interesting problems in social network dynamics, personalized
recommendation, sentiment analysis, etc.).

Mehdi Kaytoue, Arlei Silva, Loïc Cerf, Chedy Raïssi, Wagner Meira Jr.:
Watch me playing, i am a professional: a first study on video game live streaming.
Int. Conf. World Wide Web (Companion Volume: Workshops 2012)

Noticing and trying to understand this phenomena at its early stage led us to the following thoughts
that the video game industry has to deal with. To be successful (that is, generate revenue), a game has
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to consider the very delicate trade-off between difficulty and entertainment. Indeed, from a player point
of view, a game is attractive for the pro-players if it is difficult enough, and not too easy for the casual
player. The rules have to be simple and easy to understand. From a spectator point of view, the game
should allow the professional players to be able to show their skills, that is, highlight strategies and game
plays that the casual player is not able to perform. In the end, the game has to be designed to satisfy both
casual and pro players: the casual player needs to feel to learn and improve, the pro can show capacities
the amaze the others. Social media such as Twitch.tv, and their audience, allow to measure precisely
the interest of the casual players, advertise... This clearly explains why it was bought by Amazon: a new,
simple and precise tool to help recommend and sell on Amazon video game related products.

We decided to investigate several key points involved in the above mentioned trade-off. One of the
main reason was that several industrial projects we had were actually (and surprisingly!) lacking of data.
Game data became at the moment more and more freely available on the Web and traducing spatio-
temporal data with a lot of meta-data, most of them created by different online gamer communities.
Luckily, the different problems we had for these projects could translate in video game settings.

The different aspects we got interested in are the three following. Notice that the first one was mainly
dealt with during my stay at the MIT Media Lab and as a playground in the early and pre stages of the
PhD thesis of Guillaume Bosc (before that he focused on olfactory issues, as detailed previously). The
second was achieved in collaboration during the PhD of Olivier Cavandenti as an application. The third
part was achieved during the PhD of Olivier Cavadenti and the post doctoral studies of Víctor Codocedo.

Characterizing player strategies Starting from large game logs of data, containing only the actions
made by the players, we show how sequential pattern mining can extract interesting strategies from
real time strategy games (RTS) such as StarCraft II. Such patterns can be used to (i) study if the
rules of the game are balanced and adapt them otherwise, (ii) study the strategies of a players (e.g.,
before confronting him in a tournament), and (iii) study its own strategies to learn and improve.
We believe that our approach can become a basic tool for balance designers when analyzing a subset
of historical data of a game in beta phase, or even after its release, through an exploratory process
(KDD and interactive mining); but also for electronic sports coaches for analyzing and modeling
opponents. Finally, whereas Google Deep Mind very recently proposed an automated agent (Alpha
Star) that was in some ways able to win against a Human professional player of StarCraft II
[13], discovering patterns that the AI would play (e.g. after generating thousands of AI vs. AI
games), could lead to the discovery of interesting unknown strategies.

Guillaume Bosc, Mehdi Kaytoue, Chedy Raïssi,
Jean-François Boulicaut, Philip Tan:
Mining Balanced Sequential Patterns in RTS Games.
European Conference on Artificial Intelligence (ECAI 2014)

extended as a journal version as

Guillaume Bosc, Philip Tan, Jean-François Boulicaut, Chedy Raïssi, Mehdi Kaytoue:
A Pattern Mining Approach to Study Strategy Balance in RTS Games.
IEEE Trans. Comput. Intellig. and AI in Games 9(2) - 2017

Actually, our first attempt to extract knowledge from StarCraft II game data was the following

Cécile Low-Kam, Chedy Raïssi, Mehdi Kaytoue, Jian Pei:
Mining Statistically Significant Sequential Patterns.
International Conference on Data Mining (ICDM 2013)

Helping casual players to improve The success of electronic sports (eSports), where professional
gamers participate in competitive leagues and tournaments, brings new challenges for the video
game industry. Other than fun, games must be difficult and challenging for eSports professionals
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but still easy and enjoyable for amateurs. In this work, we consider Multi-player Online Battle
Arena games (MOBA) and particularly, “Defense of the Ancients 2", commonly known simply as
DOTA2. In this context, a challenge is to propose data analysis methods and metrics that help
players to improve their skills. We design a data mining-based method that discovers strategic
patterns from historical behavioral traces: Given a model encoding an expected way of playing (the
norm), we are interested in patterns deviating from the norm that may explain a game outcome
from which player can learn more efficient ways of playing. The method is formally introduced and
shown to be adaptable to different scenarios. Finally, we provide an experimental evaluation over
a dataset of 10, 000 behavioral game traces.

Olivier Cavadenti, Víctor Codocedo, Jean-François Boulicaut, Mehdi Kaytoue:
What Did I Do Wrong in My MOBA Game?
Mining Patterns Discriminating Deviant Behaviours.
IEEE Int. Conf. on Data Science and Advanced Analytics (DSAA) - 2016

Identifying anonymous players on the Web In e-sports, cyberathletes conceal their online training
using different aliases or avatars (virtual identities), which allow them not being recognized by
the opponents they may face in future competitions (with cash prices challenging already most of
the traditional sports). We show that behavioral data generated by the games allows predicting
the avatar associated to a game play with high accuracy. However, when a player uses several
avatars, accuracy drastically drops as prediction models cannot easily differentiate the player’s
different avatar aliases. Since mappings between players and avatars do not exist, we introduce the
avatar aliases identification problem and propose an original approach for alias resolution based on
supervised classification and Formal Concept Analysis. We thoroughly evaluate our method with
the video game StarCraft II which has a very wide and active community with players from
diverse cultures and nations. We show that under some circumstances, the avatars of a given player
can easily be recognized as such. These results are valuable for e-sport structures (to help preparing
tournaments), and game editors (detecting cheaters or usurpers).

Olivier Cavadenti, Víctor Codocedo, Jean-François Boulicaut, Mehdi Kaytoue:
When cyberathletes conceal their game:
Clustering confusion matrices to identify avatar aliases.
IEEE Int. Conf on Data Science and Advanced Analytics (DSAA) - 2015

4.3 Social Networks

Social networks (such as Twitter, Instagram, ...) are rich sources of information that can be used to
build a huge number of applications and services for end-users (b2c), for companies, e.g. with analytics
platforms (b2b), but also to help governments and charitable organizations. Through several public
APIs, one can access streams of messages, often provided with text (including hashtags, user mentions
and URIs), media (images or video) and geo-tags indicating the position of the user emitting the message
(called post in the sequel).

One way of exploiting such data is to discover global trends and detecting events in the streams of
posts. The motivations are manifold: disaster detection, epidemic surveillance, identification of news-
worthy events that traditional media are slow to pick up, identification of trends, monitoring of brand
perception, etc. The question of how to identify events in streams of text data has been a research
topic for more than a decade now, starting from e-mail, via blog posts, to location-based social networks
data [150]. The general idea underlying most of that work is identifying “bursty” topics (mentioned
significantly more often during a time period than in the period preceding it).

Whereas most of the existing systems identify global trends, only a few take into account the geo-
localization of the posts for detecting local events [168]. This is actually the goal of Gazouille: harvest-
ing data from urban areas, the system is able to detect spatially circumscribed events in real-time and
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to intelligibly characterize them (with their periodicity, users, key-words, and via a media gallery, e.g. in
Figure 5).

Pierre Houdyer, Albrecht Zimmermann, Mehdi Kaytoue,
Marc Plantevit, Joseph Mitchell, Céline Robardet:
Gazouille: Detecting and Illustrating Local Events from Geolocalized
Social Media Streams.
European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML/PKDD 2015) - Demo paper

The Gazouille plateform is actually one of the results of a three years European project3. I spent
8 months in an Irish company for that matter. This project, which main goal was live event detection
and characterization, was the occasion to collaborate within the research group I had just joined in the
LIRIS laboratory, on themes that were new for me, such as graph mining. We can note two main results
from this collaboration.

Triggering patterns of topology changes in dynamic graphs To describe the dynamics taking place
in networks that structurally change over time, we propose an approach to search for vertex at-
tributes whose value changes impact the topology of the graph. In several applications, it appears
that the variations of a group of attributes are often followed by some structural changes in the
graph that one may assume they generate. We formalize the triggering pattern discovery problem
as a method jointly rooted in sequence mining and graph analysis. We apply our approach on three
real-world dynamic graphs of different natures – a co-authoring network, an airline network, and a
social bookmarking system – assessing the relevancy of the triggering pattern mining approach.

Mehdi Kaytoue, Yoann Pitarch, Marc Plantevit, Céline Robardet:
Triggering patterns of topology changes in dynamic graphs.
Int. Conf. on Advances in Social Network Analysis and Mining (ASONAM 2014)

extended to a journal version

Mehdi Kaytoue, Yoann Pitarch, Marc Plantevit, Céline Robardet:
What effects topological changes in dynamic graphs?
Elucidating relationships between vertex attributes and the graph structure.
Social Netw. Analys. Mining 5(1) - 2015

Exceptional Subgraph Mining Many relational data result from the aggregation of several individual
behaviors described by some characteristics. For instance, a bike-sharing system may be modeled
as a graph where vertices stand for bike-share stations and connections represent bike trips made by
users from one station to another. Stations and trips are described by additional information such as
the description of the geographical environment of the stations (business vs. residential area, close-
ness to POI, elevation, urbanization density, etc.), or properties of the bike trips (timestamp, user
profile, weather, events and other special conditions about the trip). Identifying highly connected
components (such as communities or quasi-cliques) in this graph provides interesting insights into
global usages but does not capture mobility profiles that characterize a subpopulation. To tackle
this problem we proposed an approach rooted in exceptional model mining to find exceptional
contextual subgraphs, i.e., subgraphs generated from a context or a description of the individual
behaviors that is exceptional (behaves in a different way) compared to the whole augmented graph.
We experimented this approach with different kinds of datasets, such as social network data and
video game log data.

Mehdi Kaytoue, Marc Plantevit, Albrecht Zimmermann, Ahmed Anes Bendimerad,
Céline Robardet: Exceptional contextual subgraph mining.
Machine Learning 106(8) - 2017

3GRAISearch: https://cordis.europa.eu/project/rcn/192400/factsheet
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Figure 5: Detecting events in New-York: the NYC 2014 marathon (top), a protest (bottom)
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5. Outline

5 Outline

The manuscript does not cover all the contributions mentioned beforehand. Instead, it is structured into
three main parts covering each one of my main axis of research and each part is based on a selection of
two to three articles. Each chapter has been thus adapted and shortened from the original publication,
so that the reader can have a self contained view of each of these works, and understand the challenges
at the time of the realization of the work: we cover here a period spanning from 2011 to 2019.

Data and Pattern Formalization with FCA The first part presents three examples of pattern char-
acterization with FCA, namely biclusters, database dependencies and numerical patterns. The mes-
sage reflected by the selection is the following: FCA can formally model many types of patterns and
there is still room for research.

Pattern Mining Algorithms We focus in this part on anytime subgroup discovery algorithms, that is,
algorithms that can be interrupted at any moment to produce a result to the expert. Moreover,
the more the budget/time allowed, the better the result. The choice of the two articles concern our
different attempts to define or adapt algorithmic paradigms for pattern mining (subgroup discovery
in particular). First, we explain how Monte Carlo Tree Search can be used to successfully discover a
diverse set of patterns. Second, we consider numerical data in particular and propose an algorithm
that exploits the fact that interval patterns can be found more and more precisely in finer and finer
discretization of the data.

KDD Methodologies and Applications Finally, we focus on one application only: Video Game Ana-
lytics. We present two use cases where KDD and pattern mining help to discover valuable knowledge
from game data. Firstly, we explain how sequential patterns from action game data reveal player
strategies and game misconception. Then, after showing that a player can be predicted from his
keyboard usage (as for typing free and fixed texts with keystrokes analytics), we detail how FCA
can discover the fact that a player uses different names (that is, two labels in predictive settings
actually correspond to the same individual).
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Formal Concept Analysis
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Chapter 1

Biclustering

In this chapter, we introduce first the task of Biclustering (Section 1.1), before focusing on one type of
biclusters: biclusters of similar values (Section 1.2). Given a numerical data table and a similarity param-
eter, such biclusters are defined as maximal rectangles of pairwise similar values (modulo rows/columns
permutations). We formalize these patterns within Formal Concept Analysis (Section 1.4) and present
how to compute them efficiently (Section 1.5) before concluding with perspectives (Section 1.6). Note
that our experimental results are not be discussed here but are available [88].

1.1 Introduction

Taking roots in the work of Hartigan [76] in 1972 and extended by Mirkin in 1996 [117], numerical
data biclustering then strongly attracted attention from the beginning of 2000’s as a first answer to new
challenges raised by gene expression data analysis [44] and recommender systems design [4]. Starting from
an object/attribute numerical data-table, the goal is to group together some objects with some attributes
according to the values taken by these attributes for these objects. The main idea of biclustering is to
overcome the limitation of standard clustering techniques producing partitions of objects where distance
functions that use all the attributes may be ineffective and hard to interpret [7]. For example, in gene
expression data, it is known that genes (objects) may share a common behavior for a subset of biological
situations (attributes) only: one should accordingly produce local patterns to characterize biological
processes, the latter should possibly overlap, since a gene may be involved in several processes. The same
remark applies for recommender systems, where the taste of users for some items is realized by a so-called
utility matrix (usually very sparse): one is interested in local patterns characterizing groups of users that
strongly share almost the same tastes for a subset of items [4].

Accordingly, a bicluster is formally defined as a pair composed of a set of objects and a set of attributes.
Such a pair can be represented as a rectangle in a numerical table, modulo rows and columns permutations.
Table 1.1 is a numerical dataset with objects in rows and attributes in columns, while each table entry
corresponds to the value taken by the attribute in column for the object in row. Table 1.2 illustrates
bicluster ({g1, g2, g3}, {m1,m2,m3}) as a grey rectangle that can be understood as a sub-table of the
original one. There are several types of biclusters in the literature, depending on the relation between
the values taken by their attributes for their objects (as surveyed by Madeira and Oliveira [111]). The
most simple case can be understood as rectangles of equal values: a bicluster corresponds to a set of
objects whose attributes take exactly the same value, e.g. ({g1, g2, g3}, {m5}). Constant biclusters only
appear in idyllic situations. Accordingly, a straightforward generalization of such biclusters lies in so-
called biclusters of similar values: they are represented by rectangles with almost identical, say similar,
values (see [111, 25, 89] and to a similar extent [39]). Table 1.2 illustrates a bicluster of similar values
({g1, g2, g3}, {m1,m2,m3}) where two values are said similar if their difference is lower than 1. Moreover,
this bicluster is maximal: neither an object nor an attribute can be added without violating the similarity
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Table 1.1: A numerical dataset

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

Table 1.2: A bicluster of similar values

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

condition. The problem of biclustering that we investigate in this paper consists in extracting all pairs
(A,B), such that A and B are maximal sets with respect to a similarity constraint between values.

To better understand our investigation, we recall a definition of bicluster of Prelic et al. in binary
data or relation, i.e. an object has or not an attribute [137]: inclusion-maximal biclusters are defined as
maximal sets of objects related to a maximal set of attributes. As shown in [94], this definition exactly
meets the one of formal concepts in the Formal Concept Analysis theory (FCA, [64]). Hence, our general
intuition is that FCA can be used to answer the problem of biclustering numerical data, which is not
straightforward, FCA basically applying to binary data.

Formal Concept Analysis is a branch of applied lattice theory that appeared in the 1980’s [165, 64]
and proved to be very useful in data analysis. It aims at representing data as a formal concept hierarchy,
the later being useful for many tasks of, among others, knowledge management and data-mining [166,
156, 138, 11]. Starting from a binary relation between a set of objects and their attributes, so-called
formal concepts are built as maximal sets of objects in relation with a maximal set of attributes. If we
represent the binary relation as a binary table (with objects as rows, attributes as columns and 0/1 as
values if an object has/has not an attribute), a formal concept is represented as a maximal rectangle of 1
values. The ordering of concepts among a complete lattice makes overlapping of such local and maximal
patterns natural. Then a complete enumeration of patterns respecting some constraints like closure and
minimal frequency is possible [27, 99]. Indeed, the subsets of patterns satisfying these constraints is an
order ideal of the lattice of patterns.

It is now natural to argue that FCA can be considered as a kind of biclustering method for binary
data. As such, it has been applied to numerical data, and especially to gene expression data after an
adequate transformation, see e.g. [134, 137, 27, 125]. The process that turns numerical data into binary
data (discretization), usually called conceptual scaling in FCA, generally comes with a loss of information,
and thus the obtained formal concepts are not exactly and formally related with biclusters (although they
are good representatives). This being stated, biclustering binary data is still attracting a lot of attention,
to cope with several issues such as the number of produced patterns and enabling a fault tolerance to
leverage the strict notion of maximality of formal concepts, see e.g. [118, 24, 43, 119, 82]. Biclustering
directly numerical data, without a priori binarization, has also been widely studied, and several ad hoc
algorithms have been proposed to extract specific kind of biclusters with different algorithmic strategies
(such as divide-and-conquer, greedy iterative search, exhaustive enumeration as deeply surveyed in [111]).
Indeed enumerating all biclusters of a given type is an intractable problem and complete approaches
generally fail. Our main contribution states that such approach is possible when considering the problem
of extracting maximal bicluster of similar values in formal concept analysis settings, outperforming the
other existing algorithms for this task [25, 89]. Other concerns of biclustering are to be able to consider
multi-dimensional data (e.g. when the expression of a gene is monitored in several situations across
time [173, 153]) and parallelization of the algorithms [34] which both are important issues we address in
this paper. This leads us to our main contributions.

Problem. We consider here maximal biclusters of similar values, denoted by (A,B) where A and B
are respectively maximal sets of objects and attributes, such that the values taken by these attributes
for these objects are pairwise similar. Given a similarity parameter θ, the similarity relation is defined as
a 'θ b ⇐⇒ |b− a| ≤ θ, for any numbers a and b. The problem is to design an approach that allows an
exact, correct and complete extraction of maximal biclusters of similar values.

Contribution 1. Triadic Concept Analysis (TCA) [104] is an extension of FCA to handle ternary
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relations: an object has an attribute under a given condition. This leads to triadic contexts, i.e. data are
represented as a ”box”, where so-called triadic concepts can be seen as maximal sets of objects in relation
with a maximal set of attributes under a maximal set of conditions, i.e. a maximal "sub-box" of × in
the context (still with rows, columns and layers permutations). We show then, that after turning the
original numerical data in a triadic context without loss of information (with interordinal scaling [64]),
the resulting triadic concepts are in 1-1-correspondence with the maximal biclusters of similar values for
any similarity parameter θ (stating if two values are similar or not). Then, such concepts can be organized
in a trilattice whose diagram gives a visualization of biclusters in the numerical dataset. Finally, we show
that this result naturally holds when considering n-dimensional numerical datasets.

Contribution 2. Maximal biclusters of similar values for a user-defined similarity parameter have
been studied with complete approaches in [25, 89]. In [25], an algorithm for extracting such biclusters is
presented, while [89] shows how such biclusters can be characterized by post-processing a concept lattice
built from the numerical data directly. We show that our first contribution can be easily adapted to answer
this problem, with a new generic algorithm TriMax that shows better results than its competitors and
can be naturally parallelized.

In other words, firsly, theoretical new links are emphasized between biclustering and FCA in general,
and TCA in particular, for a better understanding of numerical pattern mining with closure operators.
Secondly, a computational aspect is investigated using these links: it allows one to bring back a problem of
biclustering into well known-settings (i.e. FCA and pattern-mining) and comes with better computational
properties and several perspectives of research.

1.2 Problem Settings

A numerical dataset is formalized by a many-valued context [64] and we define accordingly (maximal)
biclusters of similar values.

Definition 1 (Many-valued context) (G,M,W, I) is called many-valued context, or simply numerical
dataset in this paper, with G being a set of objects, M a set of attributes, W the set of attribute values
and I a ternary relation defined on G×M ×W . The fact (g,m,w) ∈ I, also written m(g) = w, means
that “Attribute m takes the value w for the object g”.

Example 6 Table 1.1 is a numerical dataset, or many-valued context, with objects G = {g1, g2, g3, g4},
attributes M = {m1,m2,m3,m4,m5}, attribute values W = {0, 1, 2, 6, 7, 8, 9} and m5(g2) = 6.

Definition 2 (Bicluster) Given (G,M,W, I), a bicluster is a tuple (A,B) with A ⊆ G and B ⊆M .

Definition 3 (Similarity relation and bicluster of similar values) Let w1, w2 ∈W be two attribute
values and θ ∈ R be a user-defined parameter, called similarity parameter or threshold. w1 and w2 are
said to be similar iff |w1 −w2| ≤ θ, which we denote by w1 'θ w2. (A,B) is bicluster of similar values if
m(g) 'θ n(h) for all g, h ∈ A and for all m,n ∈ B.

Definition 4 (Maximal bicluster of similar values) A bicluster of similar values (A,B) is maximal
if adding either an object in A or an attribute in B does not result in a bicluster of similar values.

Example 7 (From Table 1.1) ({g1, g4}, {m2,m4}) is a bicluster. ({g1, g2}, {m2}) is a bicluster of
similar values with θ ≥ 1. However, it is not maximal. With 1 ≤ θ < 5, ({g1, g2, g3}, {m1,m2,m3}) is
maximal. Finally, with θ = 7 the bicluster ({g1, g2, g3}, {m1,m2,m3,m4,m5}) is maximal. Note that a
constant (maximal) bicluster is a (maximal) bicluster of similar values with θ = 0.

Thus the problem that we address in this article is the extraction of all maximal biclusters of similar
values from a numerical dataset. We desire the extraction to be complete, correct and non-redundant
compared to most of existing methods of the literature based on heuristics [111]. We will show that FCA
is a good candidate as a formal framework for such a task.
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Table 1.3: A triadic context (G,M,B, Y ) with the triadic concept ({g3, g4}, {m2,m3}, {b1, b2, b3})

b1 b2 b3
m1 m2 m3

g1 ×
g2 × ×
g3 × ×
g4 × ×

m1 m2 m3

g1 × × ×
g2 × ×
g3 × × ×
g4 × ×

m1 m2 m3

g1 × ×
g2 ×
g3 × × ×
g4 × ×

1.3 Triadic Concept Analysis

Lehmann and Wille introduced Triadic Concept Analysis (TCA [104]) to handle ternary relations between
some objects, attributes and conditions. Data are formalized by a triadic context from which triadic
concepts are extracted and organized as a trilattice.

Definition 5 (Triadic context) Data are represented by a triadic context K = (G,M,B, Y ), where G,
M , and B are respectively called sets of objects, attributes and conditions, and Y ⊆ G ×M × B. The
fact (g,m, b) ∈ Y is interpreted as the statement “Object g has attribute m under condition b”.

Example. An example of such triadic context lies in Table 1.3 where the very first cross (to the left)
denotes the fact "Object g2 has attribute m1 under the condition b1, i.e. (g2,m1, b1) ∈ Y . In this tabular
representation, each table corresponds to the projection of the triadic context for one condition. Another
choice could have been made.

Definition 6 (Triadic concept) A triadic concept of (G,M,B, Y ) is a triple (A1, A2, A3) with A1 ⊆ G,
A2 ⊆M and A3 ⊆ B satisfying the two following statements: (i) A1 ×A2 ×A3 ⊆ Y , X1 ×X2 ×X3 ⊆ Y
and (ii) A1 ⊆ X1, A2 ⊆ X2 and A3 ⊆ X3 implies A1 = X1, A2 = X2 and A3 = X3. If (G,M,B, Y ) is
represented by a three dimensional table, (i) means that a concept stands for a 3-dimensional rectangle
full of crosses while (ii) characterizes component-wise maximality of concepts. For a triadic concept
(A1, A2, A3), A1 is called the extent, A2 the intent and A3 the modus.

Example. ({g3, g4}, {m2,m3}, {b1, b2, b3}) is a triadic concept in the triadic context represented by Ta-
ble 1.3. Representing the triadic context as a cube, where each condition is a slice, one can observe that
this triadic concept denotes a maximal cube of crosses (modulo lines, columns and slices permutations).

Definition 7 (Outer derivation operators) To describe the derivation operators, it is convenient to
represent a triadic context as (K1,K2,K3, Y ). Then, for {i, j, k} = {1, 2, 3}, j < k, X ⊆ Ki and
Z ⊆ Kj ×Kk, (i)-derivation operators are defined by:

Φ : X → X(i) with for all ai ∈ X, Φ(ai) = {(aj , ak) ∈ Ki ×Kj | (ai, aj , ak) ∈ Y }
Φ′ : Z → Z(i) with for all (aj , ak) ∈ Z, Φ′(aj , ak) = {ai ∈ Ki | (ai, aj , ak) ∈ Y }

This definition leads to dyadic contexts

K(1) = 〈K1,K2 ×K3, Y
(1)〉

K(2) = 〈K2,K1 ×K3, Y
(2)〉

K(3) = 〈K3,K1 ×K2, Y
(3)〉

where
gY 1(m, b) ⇐⇒ mY 2(g, b) ⇐⇒ bY 3(g,m)

Example. Consider i = 1, j = 2 and k = 3, i.e. K1 = G, K2 = M and K3 = B. Given an arbitratry set
of objects X = {g4}, we have:

Φ(X) = {(m2, b1), (m3, b1), (m2, b2), (m3, b2), (m2, b3), (m3, b3)}
Φ′Φ(X) = {g3, g4}
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Definition 8 (Inner derivation operators) Further derivation operators are defined as follows: for
{i, j, k} = {1, 2, 3}, Xi ⊆ Ki, Xj ⊆ Kj and Ak ⊆ Kk, the (i, j, Ak)-derivation operators are defined by:

Ψ : Xi → X
(i,j,Ak)
i with for all (ai, ak) ∈ Xi ×Ak, Ψ(ai, ak) = {aj ∈ Kj | (ai, aj , ak) ∈ Y }

Ψ′ : Xj → X
(i,j,Ak)
j with for all (aj , ak) ∈ Xj ×Ak, Ψ′(aj , ak) = {ai ∈ Ki | (ai, aj , ak) ∈ Y }

This definition yields the derivation operators of dyadic contexts defined by

KijAk
= 〈Ki,Kj , Y

ij
Ak
〉

where (ai, aj) ∈ Y ijAk
⇐⇒ ai, aj , ak are related by Y for all ak ∈ Ak

Example. Consider i = 1, j = 2 and k = 3, i.e. K1 = G, K2 = M and K3 = B, A3 = {b1, b2} and
X = {g3}:

Ψ(X) = {m2,m3} Ψ′Ψ(X) = {g3, g4}

Operators Φ and Φ′ will be called outer operators, pair of both operators outer closure and dyadic
operators Ψ and Ψ′ inner operators or inner closure when pair of both is used.

Definition 9 (Triadic concept formation) A concept having X1 in its extent can be constructed as
follows.

(X(1,2,A3)(1,2,A3)
1 , X

(1,2,A3)
1 , (X(1,2,A3)

1 ×X(1,2,A3)
1 )(3)))

Example. In the previous example, we have ({g3, g4}, {m2,m3}, {b1, b2, b3}).

From a computational point of view, [83] developed the algorithm Trias for extracting frequent triadic
concepts, i.e. whose extent, intent and modus cardinalities are higher than user-defined thresholds (see
also [84]). Cerf et al. presented a more efficient algorithm called Data-peeler able to handle n-ary
relations [43] while formal definitions lie in so-called Polyadic Concept Analysis [162].

1.4 Biclusters of Similar Values in Triadic Concept Analysis

This first contribution considers the problem of generating maximal biclusters for any θ with TCA after
a scaling procedure. We then show how to represent the resulting set of concepts with line diagrams, and
extend the methodology to n-dimensional numerical datasets.

1.4.1 Scaling numerical data into a triadic context

Starting from a numerical dataset (G,M,W, I), the basic idea lies in building a triadic context (G,M, T, Y )
where the two first dimensions remain formal objects and formal attributes, whileW is scaled into a third
dimension denoted by T . This new dimension T is called the scale dimension: intuitively, it gives different
“spaces of values” that each object-attribute pair (g,m) ∈ G ×M can take. Once the scale is given, a
triadic context is derived and it gives rise to triadic concepts.

We use the interordinal scaling [64] to build the scale dimension. It allows one to encode in 2T all
possible intervals of values inW . This scale allows one to derive a triadic context from which any bicluster
of similar values can be characterized as a triadic concept. We make these statements more precise and
illustrate the whole procedure with examples.

Definition 10 (Interordinal Scaling) A scale is a binary relation J ⊆ W × T associating original
elements from the set of values W to their derived elements in T . In the case of interordinal scaling,
T = {[min(W ), w],∀w ∈W} ∪ {[w,max(W )],∀w ∈W}. Then (w, t) ∈ J iff w ∈ t.
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t 1
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t 1
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=
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]

0 × × × × × × ×
1 × × × × × × ×
2 × × × × × × ×
6 × × × × × × ×
7 × × × × × × ×
8 × × × × × × ×
9 × × × × × × ×

Table 1.4: Interordinal scale of the set of attribute values W .

Example 8 Table 1.4 gives the tabular representation of the interordinal scale for Table 1.1. Each row
describes a single value, while dyadic concepts represent all possible intervals over W . An example of
dyadic concept in this table is given by ({6, 7, 8}, {t6, t7, t8, t9, t10}), rewritten as ({6, 7, 8}, {[6, 8]}) since
{t6, t7, t8, t9, t10} represents the interval [0, 8] ∩ [0, 9] ∩ [1, 9] ∩ [2, 9] ∩ [6, 9] = [6, 8].

Definition 11 (Triadic scaled context) Let Y be a ternary relation Y ⊆ G×M×T . Then (g,m, t) ∈
Y iff (m(g), t) ∈ J , or simply m(g) ∈ t. We call the tuple (G,M, T, Y ) the triadic scaled context of the
numerical dataset (G,M,W, I).

Example 9 The object-attribute pair (g1,m1) taking value m1(g1) = 1 is scaled into triples (g1,m1, t) ∈
Y , where t takes any interval in {[0, 1], [0, 2], [0, 6], [0, 7], [0, 8], [0, 9], [1, 9]}. The intersection of intervals
in this set is the original value itself, i.e. m1(g1) = 1, a basic property of interordinal scaling. As a
result, Table 1.5 illustrates the whole scaled triadic context derived from the numerical dataset given in
Table 1.1 using interordinal scaling. The very first cross (×) in this table (upper left) represents the tuple
(g2,m4, t1), meaning that m4(g2) ∈ [0, 0].

We present now our first main result: there is a one-to-one correspondence between (i) the set of
maximal biclusters of similar values in a given numerical dataset for any similarity parameter θ and (ii)
the set of all triadic concepts in the triadic context derived with interordinal scaling. Consider first the
following definition and notations.

Definition 12 (Standard order of interordinal scale attributes) The values of the interordinal scale
are intervals. Define the standard order on 2k − 1 attributes of the interordinal scale based on k first
natural numbers as follows: [1, 1], [1, 2], . . . , [1, k], [2, k], . . . , [k, k]. Having the standard order on the at-
tributes of the interordinal scale one can think of attributes having numbers from 1 to 2k + 1. Note the
obvious main property of the standard order on attributes of the interordinal scale: if an object has two
scale attributes with numbers r and s, r < s, then it has all scale attributes with numbers in [r, s].

For a many-valued context (G,M,W, I), let the set W (|W | = q) be the set of numerical values
enumerated in the ascending order from 1 to q, and let g(m) be a map taking attribute m to its value
w ∈ W for object g. Let the numerical values from W be interordinally scaled with the standard
order on the scale attributes, so we can denote the scale attributes by m1, . . . ,mq, . . . ,m2q−1. Let
B = {m1, . . . ,mq, . . .m2q−1} and (G,M,B, Y ) be the triadic context such that (g,m, b) ∈ Y iff g(m) lies
in the interval given by the interordinal attribute b.

Proposition 1 (A,D) is a maximal bicluster of similar values (A ⊆ G, D ⊆ M) with the values lying
in the interval [t, t + θ] for t ∈ N, θ ≥ 0 iff (A,D,U) is a triadic concept of the context (G,M,B, Y ) ,
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where U = {t+ θ, . . . q, . . . , q+ t− 1}. Moreover, every triadic concept of the interordinally scaled triadic
context (G,M,B, Y ) is of the form (A,D,U), where A ⊆ G,D ⊆M , and U = {t+ θ, . . . q, . . . , q+ t− 1}
for some t ∈ N and θ ≥ 0.

Proof 1 Let (A,D) be a maximal bicluster of similar values (A ⊆ G, D ⊆ M), then the values of
attributes of the bicluster are lying in the interval [t, t + θ] for some t ∈ N, θ ≥ 0, i.e. g(m) ∈ [t, t + θ]
for every g ∈ A, m ∈ D. Due to the standard order on interordinal attributes, this implies that in the
triadic context (G,M,B, Y ) one has (g,m, b) ∈ Y for all g ∈ A,m ∈ D and b ∈ {t+ θ, . . . q, . . . , q+ t−1}
and there is a rectangular parallelepiped (A,D, {t + θ, . . . q, . . . , q + t − 1}) filled with crosses in the
triadic cross-table of Y , i.e. (A,D, {t + θ, . . . q, . . . , q + t − 1} ⊆ Y . This parallelepiped is inclusion-
maximal, since otherwise this would mean that one can add either another object, or another attribute,
or another scale value to its respective component. The possibility of adding another object or attribute
would contradict the fact that (A,D) is a maximal bicluster, the possibility of adding another scale value
would contradict the fact that the attribute values of the bicluster lie strictly in the interval [t, t + θ] .
Thus, (A,D, {t+ θ, . . . q, . . . , q + t− 1}) is a triadic concept.

In the opposite direction, consider a triadic concept (A,D, V ) in the interordinally scaled three-
dimensional context, the attributes of V being ordered in the standard way. By the main property of
the standard order on attributes of the interordinal scale, this would mean that for any two values r and
s of V , the set V also contains all values in the interval [r, s]. Hence there are some t and q such that
the values of V lie in the interval [t, t + θ] for all object-attribute pairs from A × D. This means that
(A,D) is a bicluster of similar values, which is maximal, since otherwise (A,D, V ) would not have been
a triadic concept.

Example 10 ({g1, g2, g3}, {m1,m2,m3}, {t3, t4, t5, t6, t7, t8}) is a triadic concept corresponding to the
maximal bicluster ({g1, g2, g3}, {m1,m2,m3}) with θ = 1 since {t3, t4, t5, t6, t7, t8} is a modus character-
izing interval [1, 2] of length 1.
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Figure 1.1: Trilattice from multi-valued context (Table 1.1) interordinally scaled to Table 1.5. Note, that only
biclusters maximal for θ = 1 are depicted. Consider the purple point that is the meet of the three purple lines: it
represents the concept ({g1, g2, g3}, {m1,m2,m3}, {[t3, t8]}), i.e. with values in [1, 2].
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Chapter 1. Biclustering

G ⊇ A - extent M ⊇ B - intent T ⊇ C - modus Interval over W
A = {g1} B = {m1,m2,m3,m4} C = [t3, t8] [1, 2]
A = {g1, g2} B = {m4} C = [t2, t7] [0, 1]
A = {g1, g2, g3} B = {m1,m2,m3} C = [t3, t8] [1, 2]
A = {g1, g2, g3, g4} B = {m3} C = [t3, t8] [1, 2]
A = {g1, g2, g3, g4} B = {m5} C = [t5, t10] [6, 7]
A = {g2} B = {m2,m3,m4} C = [t2, t7] [0, 1]
A = {g3, g4} B = {m4,m5} C = [t5, t10] [6, 7]
A = {g4} B = {m1,m2} C = [t7, t12] [8, 9]
A = {g4} B = {m1,m5} C = [t6, t11] [7, 8]

Table 1.6: Triadic concepts with θ = 1.

1.4.2 Trilattice diagram

In their seminal paper on TCA, Lehman and Wille proposed a way to visualize the ordered structure of
triadic concepts [104]. This visualization possibility has not attracted a lot of attention since, hence we
propose to illustrate it with derived triadic contexts from numerical data. Let us firstly recall notations
of TCA: a triadic context is denoted by K = (K1,K2,K3, Y ), the set of all its triadic concepts by I(K)
and its corresponding triadic diagram by I(K).

Definition 13 (Quasi-order .i and equivalence relation ∼i on I(K)) Given two triadic concepts
(A1, A2, A3) and (B1, B2, B3), three quasi-order and three equivalence are defined as follows, for i = 1, 2, 3

(A1, A2, A3) .i (B1, B2, B3) ⇐⇒ Ai ⊆ Bi, (1.1)
(A1, A2, A3) ∼i (B1, B2, B3) ⇐⇒ Ai = Bi. (1.2)

Definition 14 (Anti-ordinal dependencies) A triadic concept is uniquely determined by two of its
components since the three quasi-orders satisfy the anti-ordinal dependencies: For {i, j, k} = {1, 2, 3},
(A1, A2, A3) .i (B1, B2, B3) and (A1, A2, A3) .j (B1, B2, B3) imply (A1, A2, A3) &k (B1, B2, B3) for any
two concepts (A1, A2, A3) and (B1, B2, B3).

Definition 15 (Equivalence and factor sets) For i = 1, 2, 3, the equivalence class of the relation ∼i
which contains the concept (A1, A2, A3) is denoted by [(A1, A2, A3)]i. .i induces an order ≤i on the
factor set I(K)/ ∼i: [(A1, A2, A3)]i ≤i [(B1, B2, B3)]i ⇐⇒ Ai ⊆ Bi. (I(K)/ ∼i,≤i) is the ordered set
of all extents (i = 1), or intents (i = 2) and modi (i = 3) of K.

Definition 16 (Triadic diagram) This relational structure I(K) can be understood as two types of
structures:

• The geometric structure: (I(K),∼1,∼2,∼3): It is represented as a partial 3-net, i.e. a triangular
pattern. The three equivalence relations are here represented by 3 systems of parallel lines. For
example, consider the equivalence relation on concepts with i = 1: concepts of an equivalence class
have same extent and are depicted on the same line. As such, the classes of equivalence meet at
most in one element for a given concept.

• The ordered structures: (I(K)/ ∼i,≤i): Each of them is represented by a Hasse diagram.

Figure 1.1 presents the trilattice obtained from our running example (i.e. Table 1.5). For sake of read-
ability, we highlight there only the biclusters that are maximal for θ = 1. Taking the concept ({g4}, {m1,
m5}, [6, 11]) from the Table 1.6, the three (pairwise non parallel) lines, corresponding respectively to the
equivalence class of the extent {g4}, the intent {m1,m5} and the modus [6, 11], only meet in one point of
the triangular pattern which represents this concept. The three quasi-order structures of extents, intents
and modi, i.e. Hasse diagrams of all (I(K)/ ∼i,≤i), lie around the trilattice.
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1.4.3 Handling n-ary numerical dataset

A straightforward generalization of the presented approach lies in its potential extension to n-ary nu-
merical datasets. The basic idea is as follows. Consider a numerical dataset with n dimensions, e.g.
genes × biological situations × timestamps when n = 3. Then, one can extract n-clusters of similar
values by scaling the numerical data into a n + 1-dimensional binary dataset. So-called polyadic con-
cepts [162] in the binary dataset are here again in 1-to-1-correspondence with maximal n-clusters of
similar values of the numerical dataset. We present here theoretical aspects while computing aspects can
be regarded with the existing algorithms Data-Peeler [43].

Recall that the standard order on 2k−1 attributes of the interordinal scale is as follows: [v1, v1], [v1, v2],
. . . , [v1, vk], [v2, vk] . . . , [vk, vk]. Having the standard order on the attributes of the interordinal scale one
can enumerate them from 1 to 2k+ 1. Let (G1, . . . , Gn,W, I) be an n-dimensional many-valued context,
i.e., an n + 1-dimensional relation I ⊆ G1 × . . . × Gn ×W and W (|W | = q) be the set of numerical
values enumerated in the ascending order from 1 to q, and let v(g1, . . . , gn) be a map taking the tuple
g1, . . . , gn to the value w ∈ W . Let the numerical values from W be interordinally scaled with the
standard order on the scale attributes, so we can denote the scale attributes by m1, . . . ,mq, . . . ,m2q−1.
Let B = {m1, . . . ,mq, . . .m2q−1} and Y ⊆ G1 × . . . × Gn × B be an n + 1-ary relation such that
(g1, . . . , gn,m) ∈ Y iff the value w of the n-tuple g1, . . . , gn lies in the interval given by the interordinal
attribute m.

Proposition 2 (A1, . . . , An) is a maximal n-way cluster of similar values (Ai ⊆ Gi) with the values lying
in the interval [t, t+θ] for t ∈ N, θ ≥ 0 iff (A1, . . . , An, U) is an n+1-adic concept of the n+1-dimensional
context (G1, . . . , Gn, U, Y ), where U = {t+θ, . . . q, . . . , q+t−1}. Moreover, every n+1-dimensional concept
of the interordinally scaled n+ 1-dimensional context (G1, . . . , Gn,W, Y ) is of the form (A1, . . . , An, U),
where Ai ⊆ Gi, and U = {t+ θ, . . . q, . . . , q + t− 1} for some t ∈ N and θ ≥ 0.

The proof is similar as in the triadic case and hence is omitted.

1.4.4 Remarks

We showed that extracting biclusters of similar values for any θ in a numerical dataset can be achieved by
(i) scaling the attribute value dimension and (ii) extracting the triadic concepts in the resulting derived
triadic context. The same applies when considering n-ary numerical datasets.

On the one hand, triadic concepts (A,B,U) with the largest sets A,B or C represent large biclusters of
similar values. Indeed, the larger |A| and |B| the larger the data covering of the corresponding bicluster.
Furthermore, the larger |U |, the more similar values for bicluster (A,B). Indeed, by the properties of
interordinal scaling, the more intervals in U , the smaller their interval intersection. Mining so-called top-k
frequent triadic concepts can accordingly be achieved with the existing algorithm Data-Peeler [43].

On the other hand, extracting maximal biclusters for all θ may be neither efficient nor effective with
large numerical data: their number tends to be very large and not all biclusters are relevant for a given
analysis. Furthermore, both size and density of contexts derived with interordinal scaling are known to
be problematic w.r.t algorithmic scalability, see e.g. [91]. In existing methods of the literature, θ is set a
priori. We show now how to handle this case with slight modifications, this is our second main result.

1.5 Extracting Biclusters of Similar Values For a Given θ

In this section, we present our second contribution. We consider the problem of extracting maximal bi-
clusters of similar values in TCA for a given θ only. It comes with slight modifications of the methodology
presented in the previous section, but requires more algorithmic considerations: although all triadic con-
cepts correspond to biclusters of similar values with a new transformation procedure, it is not sure that
such concepts correspond to maximal biclusters. In this way, it is not possible to use concepts extraction
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algorithms directly (or it would require post-processing which is always a solution to avoid). Accordingly,
a modified scaling procedure will lead us to the design of the algorithm TriMax for a complete and
correct extraction of maximal biclusters for a given θ. Finally, we experiment with this new algorithm.

1.5.1 Scaling numerical data in a triadic context

Consider the previous scaling applied to a numerical dataset (G,M,W, I). It scales W into a dimension
T and all subsets of T characterize all intervals of values over W . To get maximal biclusters for a given
θ only, we should not consider all possible intervals in W , but rather all intervals (i) having a range size
that is less or equal than θ to avoid biclusters with non similar values, and (ii) having a range size the
closest as possible to θ to avoid non-maximal biclusters. For example, if we set θ = 2, it is probably not
interesting to consider interval [0, 8] in the scale dimension since 8 − 0 > θ. Similarly, considering the
interval [6, 6] may not be interesting as well, since a bicluster with all its values equal to 6 may not be
maximal. As introduced in [86], the maximal intervals of similar values used for the scale are called blocks
of tolerance over the set of numbers W with respect to the tolerance relation 'θ. We now recall basics
on tolerance relations over a set of numbers. This allows us to define a simpler scaling procedure. The
resulting triadic context is then mined with a new TCA algorithm called TriMax to extract maximal
biclusters of similar values for a given θ. Blocks of tolerance over W are as maximal sets of pairwise
similar values:

Definition 17 (Tolerance relation and blocks) A binary relation ' is a tolerance if it is reflexive,
symmetric but not necessarily transitive. Given a set W , a subset V ⊆ W , and a tolerance relation '
over W , V is a block of tolerance if:

(i) ∀w1, w2 ∈ V, w1 ' w2 (pairwise similarity)
(ii) ∀w1 6∈ V,∃w2 ∈ V, w1 6' w2 (maximality).

It follows that 'θ is a tolerance relation. From Table 1.1 we have W = {0, 1, 2, 6, 7, 8, 9}. With
θ = 2, one has 0 '2 2 but 2 6'2 6. Accordingly, one obtains 3 blocks of tolerance, namely the sets
{0, 1, 2}, {6, 7, 8} and {7, 8, 9}. These three sets can be renamed as the convex hull of their elements on
N: respectively, [0, 2], [6, 8] and [7, 9]: any number lying between the minimal and the maximal elements
(w.r.t. natural number ordering) of a block of tolerance is naturally similar to any other element of the
block. Then, to derive a triadic context from a numerical dataset, we simply use tolerance blocks over
W to define the scale dimension.

Definition 18 (TriMax scale relation) The scale relation is a binary relation J ⊆ W × C, where C
is the set of blocks of tolerance over W renamed as their convex hulls. Then, (w, c) ∈ J iff w ∈ c.

Example 11 From Table 1.1 we have: C = {[0, 1], [1, 2], [6, 7], [7, 8], [8, 9]} with θ = 1, and C =
{[0, 2], [6, 8], [7, 9]} with θ = 2.

In this way, we can apply the same context derivation as in the previous section: scaling is still based
on intervals, but this time it uses tolerance blocks.

Definition 19 (TriMax triadic scaled context) Let Y ⊆ G ×M × C be a ternary relation. Then
(g,m, c) ∈ Y iff (m(g), c) ∈ J , or simply m(g) ∈ c, where J is the scale relation. (G,M,C, Y ) is called
the TriMax triadic scaled context.

Example 12 Table 1.7 is the TriMax triadic scaled context derived from the numerical dataset lying
in Table 1.1 with θ = 1.

Definition 20 (Dyadic context associated with a block of tolerance) Consider a block of toler-
ance c ∈ C. The dyadic context associated with this block is given by (G,M,Z) where Z denotes the set
of all (g,m) ∈ G×M such that m(g) ∈ c.
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[0, 1] [1, 2] [6, 7] [7, 8] [8, 9]
m1 m2 m3 m4 m1 m2 m3 m4 m4 m5 m1 m4 m5 m1 m2

g1 × × × × × × ×
g2 × × × × × × ×
g3 × × × × × × ×
g4 × × × × × × ×

Table 1.7: Triadic scaled context using tolerance blocks over W and θ = 1 (empty columns are not displayed).
The bicluster ({g1, g2, g3}, {m1,m2,m3}) with values in [1, 2] and maximal for θ = 1 corresponds to a dyadic
concept in the dyadic context labeled [1, 2].

Example 13 In Table 1.7, each dyadic context is labeled by its corresponding block of tolerance for θ = 1.

Now, note that blocks of tolerance over W are totally ordered: let [v1, v2] and [w1, w2] be two blocks
of tolerance, one has [v1, v2] < [w1, w2] iff v1 < w1. Hence, associated dyadic contexts are also totally
ordered and we can use an indexing set to label them (as done in the algorithm pseudo-code later).

We now present our next results: the scaled triadic context supports the extraction of maximal
biclusters of similar values for a given θ. In this case however, existing algorithms of TCA cannot be
applied directly. For example, in Table 1.7, the triadic concept ({g3}, {m4}, {[6, 7], [7, 8]}) corresponds to
a bicluster of similar values which is not maximal. Hence we present hereafter a new TCA algorithm for
this task, called TriMax.

The basic idea of TriMax relies on the following facts. Firstly, since each dyadic context corresponds
to a block of tolerance, we do not need to compute intersections of contexts, such as classically done in
TCA. Hence each dyadic context is processed separately. Secondly, a dyadic concept of a dyadic context
necessarily represents a bicluster of similar values, but we cannot be sure it is maximal (see previous
example). Hence, we need to check if a concept is still a concept in other dyadic contexts, corresponding
to other classes of tolerance. This is made precise with the following proposition.

Proposition 3 Let (A,B,U) be a triadic concept from TriMax triadic scaled context (G,M,C, Y ), such
that U is the outer closure of a singleton {c} ⊆ C. If |U | = 1, (A,B) is a maximal bicluster of similar
values. Otherwise, (A,B) is a maximal bicluster of similar values iff there is no ∈ [min(U);max(U)],
y < c such that (A,B) 6= Ψ′y(Ψy((A,B))), where Ψ′y(·) and Ψy(·) correspond to inner derivation operators
associated with yth dyadic context.

Proof 2 When |U | = 1, (A,B) is a dyadic concept only in one dyadic context corresponding to a block
of tolerance. By properties of tolerance blocks, (A,B) is a maximal bicluster. If |U | 6= 1, (A,B) is a
dyadic concept in |U | dyadic contexts. Since the tolerance block set is totally ordered, it directly implies
that modus U is the interval [min(U);max(U)]. Hence, if there is y ∈ [min(U);max(U)] such that
(A,B) = Ψ′y(Ψy((A,B))), then (A,B) is not a maximal bicluster of similar values.

1.5.2 The TriMax algorithm

The TriMax algorithm starts with scaling initial numerical data into several dyadic contexts, each one
standing for a block of tolerance over W with given θ. The set of all dyadic contexts forms accordingly a
triadic context. Then, each dyadic context is mined with any FCA algorithm (or closed itemset mining
algorithm), and all formal concepts are extracted. For a given concept (A,B), we compute outer derivation
Φ′((A,B)), i.e. to obtain the set of dyadic contexts labels in which the current dyadic concept holds. If
this set is a singleton, this means that (A,B) is a concept for the current block of tolerance only, i.e. it
is a maximal bicluster of similar values, and it has been, or will never be, generated twice. Otherwise,
(A,B) is a concept in other contexts, and can be generated accordingly several times (as much as the
number of contexts in which it holds). Then, we only consider (A,B) if we are sure it is the last time it is
computed. Finally, we need to check if current concept represents a maximal bicluster, i.e. there should
not exist a context labeled by an element of the modus where (A,B) is not a dyadic concept.
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Algorithm 1 TriMax
1: Given: Numerical dataset (G,M,W, I), tolerance parameter θ
2: Output: Maximal biclusters of similar values
3: Let C = {[ai, bi]} be the totally ordered set of all blocks over W for given θ. Indices i form an

indexing set.
4: for [ai, bi] ∈ C do Build context (G,M,Zi) such that (g,m) ∈ Zi ⇔ m(g) ∈ [ai, bi]
5: end for
6: for (G,M,Zi) do
7: Use any FCA algorithm to extract all its concepts (A,B)
8: for dyadic concepts (A,B) in the current context (G,M,Zi) do
9: if |Φ′((A,B))| = 1 then

10: print (A,B)
11: else
12: if max(Φ′((A,B)) = i then
13: x← min(Φ′((A,B))
14: if @y ∈ [x, i[ s.t. (A,B) 6= Ψ′y(Ψy((A,B))) then
15: print (A,B)
16: end if
17: end if
18: end if
19: end for
20: end for

Proposition 4 TriMax outputs a (i) complete, (ii) correct and (iii) non redundant collection of all
maximal biclusters of similar values for a given numerical dataset and similarity parameter θ.

Proof 3 (i) and (ii) follow directly from Proposition 3. Statement (iii) is ensured by the second if con-
dition of the algorithm: a dyadic concept (or equivalently bicluster) is considered iff it has been extracted
in the last dyadic context in which it holds.

We do not report experiments in this document but they can be found in [88]. We also successfully
compared with the two methods we found in the literature that also consider the problem of extracting
all maximal biclusters of similar values from a numerical dataset. The first method is called Numerical
Biset Miner (NBS-Miner [25]). The second method is one we designed with pattern structures during
my PhD (IPS [89]).

1.6 Conclusion

We addressed the problem of biclustering numerical data with Formal Concept Analysis. (Maximal)
biclusters of similar values can be characterized and extracted with Triadic Concept Analysis, which turns
out to be a novel mathematical framework for this task. We have defined a scaling procedure turning
original numerical data into triadic contexts from which biclusters can be extracted as triadic concepts
with existing algorithms. This approach allows a correct, complete and non-redundant extraction of all
maximal biclusters, for any similarity parameter θ and can be extended to n-ary numerical datasets while
their computation can be directly distributed. The interpretation of triadic concepts is powerful: both
extent and intent allow one to characterize a bicluster (i.e. the rectangle), while the modus gives the range
of values of the biclusters, and for which θ is the bicluster maximal. Moreover, the larger the modus, the
more similar the values within a current bicluster. This fact gives a particular semantics to the notion of
support as defined in itemset-mining [8]. We also adapted the TCA machinery with algorithm TriMax to
extract maximal biclusters for a user-defined threshold θ. It appears that TriMax is a fully customizable
algorithm: any concept extraction algorithm (or pattern mining algorithm) can be used as a core module
(along with several constraints on produced dyadic concepts), while its distributed computation is direct.
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Chapter 2

Database Dependency Discovery

This chapter highlights links between the discovery of data dependencies in the Database field and the
discovery of implications of a well defined formal context on one hand, and of a pattern structure on
the other, in the field of FCA. We consider in this chapter only functional and degenerated multivalued
dependencies [20], although we conclude that other types of dependencies can be generically formalized.
As a sequel indeed, we presented how Approximate-Matching Dependencies and Ordered Dependencies,
can also be considered with slight changes [18, 46].

The chapter is organized as follows. Basics on functional dependencies are presented in Section 2.2.
Then, how FCA can be used to characterize functional dependencies after a costly data transformation
is described in Section 2.3. It is followed by our main contribution which consists in characterizing
functional dependencies with pattern structures (Section 2.4). Section 2.5 handles the case of degenerated
multivalued dependencies.

2.1 Introduction

The discovery of functional dependencies is an important topic in the database field since they represent
the fact that the value of one or several attributes is uniquely (functionally) determined by the values of
other attributes. As such, they are valuable in order to explain the normalization of a database schema
in the Relational Database Model. Consider the relation AddressBook(id, name, street, ZIP,City): it
entails the functional dependencies stating that any two tuples of this relation that have the same value of
ZIP code, also have the same value for the attribute City. Formally, given a relation schema U , i.e. a set
of attributes to describe some objects or tuples, a functional dependency is denoted by X → Y , X,Y ⊆ U
and means that the objects that take the same values for the attributes in X take also the same values for
the attributes in Y . Table 2.1 in Section 2.2 is a tabular representation of a relation. Rows denote objects
(or tuples) and columns denote attributes of the schema. There, the functional dependency a→ d holds:
when t1 and t3 take the same value for the attribute a, they also take a same value for the attribute d. In
the relational database model there are different types of dependencies (conditional [56], impurity [146],
DMVDs [143], etc., see [85] for a more detailed survey), although functional dependencies are among the
most popular, and have been widely studied [1, 147, 112, 139, 155].

Besides, functional dependencies, and dependencies in general, are closely linked to attribute impli-
cations in Formal Concept Analysis [64]. FCA is an important mathematical framework rooted in lattice
theory that is also used for data-analysis purposes (deeply described in [64]). Among other, it aims at
discovering implicit relations between objects and their attributes. It starts with a triple (G,M, I), called
a formal context, where G is a set of objects, M a set of attributes and I a binary relation such as
I ⊆ G×M . So called implications are expressions of the form X → Y , X,Y ⊆M stating that when an
object has attributes in X, then it has also attributes in Y .

As such, functional dependencies (FDs) and attribute implications are expressions of the same form,
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i.e. X → Y , defined over a set of attributes. However, in the first case, FDs are defined on numerical or
categorical attributes, while implications are defined on binary attributes. Thus, to show an equivalence
(or just links) between FDs and implications, the original data in which FDs hold have to be transformed
into a formal context, whose implications can then be compared to FDs. This was actually presented in
the book of FCA (see [64], page 92) and as well in [108]. It was shown how to build a formal context
from the original data and that the implications in this formal context are syntactically equivalent to the
FDs of the original data. The second table in Figure 2.1 shows the formal context obtained from the
original data in Table 2.1: whereas the procedure is explained later, one should notice that indeed the
implication a → d holds, which is also a FD in the original data. Unfortunately, the number of objects
of the resulting context is quadratic w.r.t. the original, which does not allow this method to be applied
on large datasets.

The previous remark is actually the motivation of the present work leading to the following question:
Can we characterize with FCA functional dependencies as implications, avoiding a significantly larger
data representation? We positively answer this question by introducing a method based on Pattern
Structures [62]. A pattern structure can be understood as a generalization of standard FCA to handle
complex data (say, non binary): instead of a binary relation between some objects and their attributes,
it applies on a relation between objects and their descriptions that form a particular partially ordered
set. Our approach consists in considering that the attributes from the original relation schema U can be
described by a partition over the set of tuples, and that the set of partitions forms a lattice. As such,
so-called partition pattern structures are introduced in this paper, and we show that the implications
they hold are equivalent to the functional dependencies, as well as the attribute implications holding in
the formal context introduced in the previous section.

Consequently, our contribution is three-fold:

• Firstly, we present a new conceptual structure, called partition pattern structure.

• Secondly, we show how such a structure can be built from a numerical dataset to characterize
functional dependencies: The interest is to prove that pattern structures are a flexible mechanism
within FCA to encode the semantics of the dependencies without a heavy data representation.

• Finally, we show that this method allows one, with a minor variation, to characterize another kind
of dependencies called degenerated multi-valued dependencies (DMVDs, introduced later). We also
propose experiments showing that our conceptual structure has better computational properties
than the classical FCA approach.

2.2 Functional and Degenerated Multivalued Dependencies

We first introduce functional dependencies (FDs). Let U be a set of attributes, and let Dom be a set of
values (a domain). For sake of simplicity, we assume that Dom is a numerical set. A tuple t is a function
t : U 7→ Dom, and a table T is a set of tuples. Usually tables are presented as a matrix, as in Table 2.1,
where the set of tuples (or objects) is T = { t1, t2, t3, t4 } and U = { a, b, c, d } is the set of attributes. We
use table, dataset, set of tuples as equivalent terms. We overload the functional notation of a tuple in
such a way that, given a tuple t ∈ T , we say that t(X) (for all X ⊆ U) is a tuple with the values of t in
the attributes xi ∈ X:

t(X) = 〈t(x1), t(x2), . . . , t(xn)〉

For example, we have that t2({ a, c }) = 〈t2(a), t2(c)〉 = 〈4, 4〉. In the paper, the set notation is
dropped: instead of { a, b } we use ab.

Definition 21 ([155]) Let T be a set of tuples, and X,Y ⊆ U . A functional dependency (FD)
X → Y holds in T if:

∀t, t′ ∈ T : t(X) = t′(X) =⇒ t(Y ) = t′(Y )
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id a b c d
t1 1 3 4 1
t2 4 3 4 3
t3 1 8 4 1
t4 4 3 7 3

Table 2.1: An example of a table T , i.e. a set of tuples

For instance, the functional dependencies a → d and d → a hold in T , whereas the functional
dependency a→ c does not hold since t2(a) = t4(a) but t2(c) 6= t4(c).

We now present a generalization of functional dependencies: degenerated multivalued dependencies.

Definition 22 ([143]) Let X,Y, Z ⊆ U of a table T , such that X ∩ Y = X ∩ Z = Y ∩ Z = ∅ and
X ∪ Y ∪ Z = U . We say that a degenerated multivalued dependency (DMVD) X → Y holds in T
if and only if:

∀t, t′ ∈ T : t(X) = t′(X) =⇒ t(Y ) = t′(Y ) or t(U \X \ Y ) = t′(U \X \ Y )

For instance, we have that a→ b holds in the example table T , since t1(a) = t3(a) and t1(cd) = t3(cd),
and t2(a) = t4(a) and t2(b) = t4(b). We remark that the functional dependency a → b does not hold
in T , because of the pair of tuples t1, t3. Degenerated multivalued dependencies are a generalization of
functional dependencies: if we drop the clause t(U \ X \ Y ) = t′(U \ X \ Y ), we have the definition of
functional dependencies. Therefore, if the functional dependency X → Y holds, then, the degenerated
multivalued dependencies X → Y and X → U \X \Y hold as well, whereas the opposite is not necessarily
true, as the previous example shows.

Dependencies have a set of axioms stating which dependencies hold given an arbitrary set of depen-
dencies of the same kind. The set of dependencies Σ closed under their own set of axioms is denoted by
Σ+. A minimal set of dependencies from which all other dependencies can be deduced by means of those
axioms is called a minimal generating set.

Let U be the set of attributes of a relational table. The axioms for functional dependencies follow
Armstrong rules [155] for all X,Y, Z ⊆ U :

Y ⊆ X
X → Y

X → Y

X ∪ Z → Y

X → Y, Y → Z

X → Z

These axioms are respectively called reflexivity, augmentation and transitivity. Implications also share
the same axioms [64]. On the other hand, the axioms for degenerated multivalued dependencies (DMVDs)
are reflexivity, complementation or symmetry, augmentation and transitivity, i.e. for all X,Y, Z, V,W ⊆
U :

Y ⊆ X
X → Y

X → Y

X → U \ Y \X
X → Y, V ⊆W
W ∪X → V ∪ Y

X → Y, Y → Z

X → Z \ Y

These axioms are also shared by multivalued dependencies, a well-known kind of dependencies in the
relational database model [143].

In this paper, we will use pattern structures to characterize a set of functional dependencies (and
DMVDs) that hold in data table. In fact, it is not an arbitrary Σ, but precisely Σ+. Firstly, we recall
how such characterization is classically done in the FCA literature.

43



Chapter 2. Database Dependency Discovery

2.3 Characterizing Functional Dependencies with FCA

2.3.1 Functional Dependencies as Implications

We now recall with an example how functional dependencies can be characterized using FCA (see [17]
and [64], page 92). The main idea behind this method consists in transforming a man-valued context
into a formal context, whose concept lattice characterizes functional dependencies.

Starting from a tuple table T with attributes U taking values in Dom, we build the formal context
K = (B2(G),M, I), where G = T and M = U to respect the FCA notations from [64]. B2(G) = { (ti, tj) |
i < j and ti, tj ∈ T } is the set of pairs of tuples from G. Then, the relation I is defined as

(ti, tj) I m⇔ ti(m) = tj(m), for m ∈M

This binary relation between pairs of tuples and attributes is reflexive, symmetric and transitive,
and, therefore, it is an equivalence relation. The objects of K correspond to the set of all pairs of tuples
from T (excluding symmetry and reflexivity to avoid redundancy), while attributes remain the same.
((ti, tj),m) ∈ I means that the tuples ti and tj agree on the value taken by the attribute m ∈ M .
Figure 2.1 illustrates the transformation of the initial data to build a formal context and its concept
lattice. It should be noticed that the number of objects of the formal context is in the range of O(|T 2|)
(where |T | is the number of tuples), so it can be significantly larger than the original set of tuples T .

id a b c d
t1 1 3 4 1
t2 4 3 4 3
t3 1 8 4 1
t4 4 3 7 3

K a b c d
(t1, t2) × ×
(t1, t3) × × ×
(t1, t4) ×
(t2, t3) ×
(t2, t4) × × ×
(t3, t4)

Figure 2.1: Characterizing FDs with FCA: from a set of tuples to a formal context and its concept lattice.

We now explain how this concept lattice characterizes the set of all functional dependencies that hold
in the table T with the following proposition:

Proposition 5 ([64, 17]) A functional dependency X → Y holds in a table T if and only if {X}′′ =
{X,Y }′′ in the formal context K = (B2(G),M, I).

This proposition states how to test that a FD holds using the concept lattice that has been computed.
For instance, let us suppose that we want to test whether a functional dependency a → b holds in the
formal context of Figure 2.1. We should test in the corresponding concept lattice if {a}′′ = {a, b}′′. In this
particular case, we have that {a}′′ = {a, d} and {a, b}′′ = {a, b, d}, which means that this dependency
does not hold in T . On the other hand, the dependency ac → d holds, since {a, c}′′ = {a, c, d} and
{a, c, d}′′ = {a, c, d}.

An interesting consequence is that the set of implications that hold in the formal context K =
(B2(G),M, I) is syntactically equivalent to the set of functional dependencies that hold in a table
T [64, 17]. By syntactically we mean that whenever an implication X → Y holds in K, then the functional
dependency X → Y holds in T (though not left-reduced). Equivalently, the minimal generating set of
functional dependencies that hold in T is the same as the Duquenne-Guigues basis of the implications
that hold in K. Going back to our example, the concept lattice given in Figure 2.1 characterizes the
implications a→ d and d→ a, which form the Duquenne-Guigues basis.
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2.3.2 Conceptual Scaling and FDs

Before introducing our method based on pattern structures to characterize functional dependencies, we
investigate another aspect of the original data transformation into a formal context. In FCA, a way
to turn a numerical table into a formal context is to use a conceptual scale (see Chapter 1.3 of [64]).
Conceptual scaling consists in turning the many-valued attributes into binary attributes following rules
given by the scale. For example, the ordinal scale states that, for a numerical attribute m, a pair object-
attribute (g,m) taking value x ∈ N should be derived into binary attributes “≤ y”, for any y ≥ x of
the attribute domain, i.e. (g, “ ≤ y”) ∈ I. This means that the original dataset is turned into a formal
context having the same set of objects and a larger set of binary attributes.

In the previous subsection, the data transformation we presented is not a conceptual scaling: the set
of attributes remains the same after the transformation, whereas the set of objects is changed and its size
is increased. Indeed, we replace objects by pairs of objects, and, given n objects, there are n(n − 1)/2
potential pairs of objects. By contrast, we investigate in this section whether, given a data table T , it is
possible to define a conceptual scaling applied to attributes and allowing to derive a formal context KT
with the same set of objects and such that the set of FDs holding in T is syntactically equivalent to the
set of attribute implications holding in KT .

We show in the following example that this is not possible by constructing a simple and suitable
counter-example. Let us consider the n × m numerical data table given in Figure 2.2 (left), based on
n = 4 rows (objects) and m = 4 columns (attributes). Here the fact that n = m here does not affect
generality. The binarization, i.e. the transformation applied to objects (that could be termed as “vertical
scaling”), yields n(n−1)/2 = 6 rows. The singularity of this example is that for any attribute, all objects
share the same value except one (no empty row in the binary table), and this particular object is different
for each attribute.

Actually, the context in Figure 2.2 (middle) is “clarified” and “reduced”. Recall that a formal context
(G,M, I) is clarified if ∀g, h ∈ G, g′ = h′ implies g = h (and similarly for the attributes). Moreover, an
element x in a lattice L is ∨-irreducible (resp. ∧-irreducible) if x 6= ⊥ (resp. x 6= >) and x = a∨ b (resp.
x = a∧ b) implies x = a or x = b for all a, b ∈ L [47]. Then in terms of FCA, a clarified context (G,M, I)
is reduced when it is row-reduced (i.e. every object-concept is ∨-irreducible) and column-reduced (i.e.
every attribute-concept is ∧-irreducible) [64]. In addition, the number jir of ∨-irreducible concepts in a
concept lattice is less than or equal to the number of objects |G|, and the number mir of ∧-irreducible
concepts is less than or equal to the number of attributes. There is equality when the formal context
is clarified and reduced. For example, for the context given in Figure 2.2 (middle) and the associated
concept lattice given in Figure 2.2 (right), we can observe that mir = 4 and jir = 6.

id a b c d
t1 1 2 3 1
t2 1 2 1 4
t3 1 1 3 4
t4 2 2 3 4

id a b c d
(t1, t2) x x
(t1, t3) x x
(t1, t4) x x
(t2, t3) x x
(t2, t4) x x
(t3, t4) x x

Figure 2.2: A data table T (left) with its associated formal context (B2(G),M, I) (middle). In the concept
lattice diagram, nodes labeled with attributes (upper level) are ∧-irreducible concepts while nodes labeled with
objects (lower level) are ∨-irreducible concepts (right).

Now, scaling the data table T in Figure 2.2 (left) keeping unchanged the set of objects G = T returns
a formal context, say (G, M̂, Î), where |M̂ | ≥ |M |, i.e. the number of scaled attributes is greater than or
equal to the initial number of attributes. Then, the number of ∧-irreducible elements mir in the concept
lattice B(G, M̂, Î) should verify mir ≥ 4, as scaling separates attributes rather than merging them. In

45



Chapter 2. Database Dependency Discovery

the same way, the number of ∨-irreducible elements jir in B(G, M̂, Î) should verify jir ≤ 4. By contrast,
mir = 4 and jir = 6 for the lattice B(B2(G),M, I). Then, it is not possible to find any scaling yielding
a concept lattice B(G, M̂, Î) isomorphic to B(B2(G),M, I) –and thus with the same implication basis–
as ∨-irreducible and ∧-irreducible elements are preserved by the isomorphism. Thus, binarization should
be necessarily applied to objects and not to attributes.

2.4 Characterizing FDs with Pattern Structures

In the previous section, we showed how to turn a set of tuples T into a formal context K = (B2(G),M, I),
whose concept lattice allows to characterize functional dependencies. However, the number of objects
|B2(G)| in the resulting context is quadratic with respect to the number of tuples. As shown later in
the experiments, this is not viable for real datasets. Thus, we propose to use the formalism of pattern
structures to obtain an equivalent concept lattice, avoiding a transformation leading to a quadratic
number of objects. Pattern structures can be understood as a generalization of FCA able to directly deal
with complex data i.e. objects taking descriptions in a partially ordered set.

2.4.1 The Partition Lattice as a Space of Descriptions

In order to construct the meet-semi-lattice of potential object descriptions of a pattern structure, we
recall well-known definitions of the partitions of a set and the so-called partition lattice. In the examples
that follow, we consider a set E = {1, 2, 3, 4}.

Partition of a set. A partition over a given set E is a set P ⊆ ℘(E) s.t.:

•
⋃
pi∈P

pi = E

• pi ∩ pj = ∅, for any pi, pj ∈ P with i 6= j.

• For any p ∈ P , p 6= ∅

In other words, a partition covers E and is composed of disjoint subsets of E.

Equivalence relation. There is a bijection between the sets of partitions and the set of equivalence
relations of a set. This 1-1-correspondence between P and RP is given by (e, e′) ∈ RP iff e and e′ belongs
to the same equivalence class of P [42, 72]. For example, given P = {{1, 2, 3}, {4}}, one has the relation
RP = {(1, 2), (1, 3), (2, 3), (1, 1), (2, 2), (3, 3), (4, 4)} (omitting symmetry for the sake of readability).

The set of equivalence relations on any set T can be ordered by inclusion, if we consider a relation as
a set of pairs of T , or also as the natural order on partitions, if we take the partition notation for the
relations.

Ordering relation. A partition P1 is finer than a partition P2 (P2 is coarser than P1), written P1 v P2
if any subset of P1 is a subset of a subset in P2. For example,

{{1, 3}, {2}, {4}} v {{1, 2, 3}, {4}}

In fact, the sets of equivalence relations of a set T , or the set of partitions of T , is a lattice. The
unit element (top) of this lattice denotes the fact that all objects are equivalent, i.e. all the attributes
are in one class, while in the zero element (bottom) there are no two equivalent elements, i.e. each single
element forms an equivalence class (|T | classes of equivalence). Seen as sets of pairs T × T , the top
element contains precisely T × T , whereas the zero element contains the sets { (x, x) | ∀x ∈ T }.

We can define the meet of two equivalence relations, or two partitions, as follows:
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Meet of two partitions. It is defined as the coarsest common refinement of two partitions. In other
words, it is the intersection of the respective equivalence relations (omitting reflexivity for the sake of
readability):

{{1, 3}, {2, 4}} u {{1, 2, 3}, {4}} = {{1, 3}, {2}, {4}}
or {(1, 3), (2, 4)} ∩ {(1, 2), (1, 3), (2, 3)}

The meet of two partitions is identical to the intersection of two equivalence relations seen as sets of
pairs of tuples. Likewise, we can also define the join of two equivalence relations or partitions, which,
again, can be seen as the union of two sets of pairs:

Join of two partitions. It is defined as the finest common coarsening of two partitions. In other words,
it is the transitive closure of the union of the respective equivalence relations.

{{1, 3}, {2}, {4}} t {{1, 2}, {3}, {4}} = {{1, 2, 3}, {4}}
or transitive_closure({(1, 3)} ∪ {(1, 2)}) = {(1, 2), (1, 3), (2, 3)}

Finally, one should notice that the property P1 u P2 = P1 ⇔ P1 v P2 naturally holds (and the dual
for join). Since the set of all partitions over a set forms a lattice (D,u,t), it can be used as a description
space of a pattern structure.

2.4.2 Partition Pattern Structure

Consider a tuple table T as a many-valued context (G,M,W, J) where G = T corresponds to the set of
objects (“rows”), M = U to the set of attributes (“columns”), W = Dom the data domain (“all distinct
values of the table”) and J ⊆ G×M ×W a relation such that (g,m,w) ∈ J also written m(g) = w means
that attribute m takes the value w for the object g [64]. In Table 2.3 (left), we have d(t4) = 3.

We show how a partition pattern structure can be defined from a many-valued context (G,M,W, J)
and show that its concept lattice is equivalent to the concept lattice of K = (B2(G),M, I) introduced
above. Intuitively, formal objects of the pattern structure are the attributes of the many-valued context
(G,M,W, J). Then, given an attribute m ∈ M , its description δ(m) is given by a partition over G such
that any two elements g, h of the same class take the same values for the attribute m, i.e. m(g) = m(h).
The result is given in Figure 2.3 (middle). As such, descriptions obey the ordering of a partition lattice
as described above. It follows that (G,M,W, J) can be represented as a pattern structure (M, (D,u), δ)
where M is the set of original attributes, and (D,u) is the set of partitions over G provided with the
partition intersection operation u. An example of concept formation is given as follows, starting from set
{a, d} ⊆M :

{a, d}� = δ(a) u δ(d)
= {{t1, t3}, {t2, t4}} u {{t1, t3}, {t2, t4}}
= {{t1, t3}, {t2, t4}}

{{t1, t3}, {t2, t4}}� = {m ∈M |{{t1, t3}, {t2, t4} v δ(m)}
= {a, d}

Hence, ({a, d}, {{t1, t3}, {t2, t4}}) is a pattern concept. The resulting pattern concept lattice is given
in Figure 2.3 (right).

In the previous section, a many-valued context (G,M,W, J) was derived as the formal context
(B2(G),M, I) where B2(G) represents any pair of objects, and ((g, h),m) ∈ I means that m(g) = m(h).
The resulting concept lattice is used to characterize the set of FDs [64]. A new result is that both
structures (B2(G),M, I) and (M, (D,u), δ) are equivalent, i.e. both collections of concepts are in 1-1-
correspondence.
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id a b c d
t1 1 3 4 1
t2 4 3 4 3
t3 1 8 4 1
t4 4 3 7 3

m δ(m) ∈ (D,u)
a {{t1, t3}, {t2, t4}}
b {{t1, t2, t4}, {t3}}
c {{t1, t2, t3}, {t4}}
d {{t1, t3}, {t2, t4}}

Figure 2.3: The original data (left), the resulting pattern structure (middle) and its pattern concept lattice
(right)

Proposition 6 (B,A) is a pattern concept of the partition pattern structure (M, (D,u), δ) if and only
if (A,B) is a formal concept of the formal context (B2(G),M, I) for all B ⊆M,A ⊆ B2(G) (equivalently
A is a partition on G).

Proof 4 We first notice that a pattern A ∈ D is a partition of the set of tuples, whereas elements of
B2(G) are sets of pairs of tuples. Yet, as we have seen in Subsection 2.3.1, objects in B2(G) form an
equivalence relation, and, therefore, partitions, which means that they correspond to patterns in D.

Consider now that the concept lattices of the contexts (B2(G),M, I) and (M,B2(G), I) are equivalent,
as they are built with “symmetric concepts”: if (A,B) belongs to the first, (B,A) belongs to the second.
With the context (M,B2(G), I) and the pattern structure (M, (D,u), δ), the proposition holds since B′ =
B� for all B ⊆M :

B� =
l
m∈B

δ(m)

=
⋂
m∈B
{ (t, t′) | t(m) = t′(m) } ∀t, t′ ∈ T

= { (t, t′) | t(B) = t′(B) } ∀t, t′ ∈ T
= B′

And symmetrically, A′ = A� for all A ∈ D, A ⊆ B2(G):

A� = {m ∈M | A v δ(m)}
= {m ∈M | ∀(t, t′) ∈ A : (t, t′) ∈ δ(m)} ∀t, t′ ∈ T
= {m ∈M | ∀(t, t′) ∈ A : t(m) = t′(m)} ∀t, t′ ∈ T
= A′

Example. The pattern concept ({b}, {{1, 2, 4}, {3}}) is equivalent to the formal concept ({(1, 2), (1, 4), (2, 4)}, {b}).
One should remark that pattern structures offer more concise intent representation when the set of tuples
becomes very large, i.e. storing a partition instead of all pairs of objects that are together in a same class
of the partition.

Moreover, there is an isomorphism between the concept lattice of (G,M, I) and the pattern concept
lattice of (G, (D,u), δ). Then, the following proposition states that FDs can be characterized within the
pattern concept lattice.

Proposition 7 A functional dependency X → Y holds in a table T if and only if: {X}� = {XY }� in
the partition pattern structure (M, (D,u), δ).

Proof 5 First of all, we notice that (t, t′) ∈ X� if and only if t(X) = t′(X), i.e. ∀x ∈ X : t(x) = t′(x).
We also notice that {X,Y }� ⊆ {X}�, as {X} ⊆ {X,Y }.
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(⇒) We prove that if X → Y holds in T , then, {X}� = {X,Y }�, i.e. {X}� ⊆ {X,Y }�. We take an
arbitrary pair (t, t′) ∈ {X}�, i.e. t(X) = t′(X). Since X → Y holds, it implies that t(XY ) = t′(XY ),
and this implies that (t, t′) ∈ {X,Y }�.
(⇐) We take an arbitrary pair t, t′ ∈ T such that t(X) = t′(X). Therefore, we have that (t, t′) ∈ X�,
and by hypothesis, (t, t′) ∈ XY �, i.e. t(XY ) = t′(XY ). Since this is true for all pairs t, t′ ∈ T such that
t(X) = t′(X), it comes that X → Y holds in T .

Example. We consider a FD that holds in Table 2.1: a→ d. It is characterized from (B2(G),M, I) as an
attribute implication. It holds as well in (M,B2(G), I) and (M, (D,u), δ) as an object implication.

Therefore, a naive algorithm that computes {X → XY | {X}� = {XY }� } for all X,Y ⊆ U would
compute the Functional Dependencies that hold in a table. I can be noticed that we proposed a generic
algorithm based on PreviousClosure [63] (currently under review).

2.5 Characterizing DMVDs with Pattern Structures

In order to show the flexibility of pattern structures to characterize dependencies, we now introduce
how to handle a more general type of dependencies: degenerated multivalued dependencies (DMVDs).
We have seen that the computation of functional dependencies is based on the equivalence relations
(partitions) that are induced by an attribute. In order to compute DMVDs we consider now a tolerance
relation. This relation is different from an equivalence relation in that it is symmetric and reflexive but
not necessarily transitive. We define a tolerance relation on the set of tuples of a relation induced by an
attribute:

Definition 23 Let a ∈ U and let a = U \ { a }. The tolerance relation RT in a table T induced by a is:

RT(a) = {(ti, tj) ∈ T × T | i < j and ti(a) = tj(a) or ti(a) = tj(a)}

With the restriction i < j we prevent pairs such as (ti, ti), or two symmetric pairs (ti, tj) and (tj , ti)
from appearing in the representation of a relation, because, since symmetry and reflexivity hold, their
presence is redundant. Note that the difference w.r.t. the definition of functional dependencies is the
addition of the conjunctive clause ti(a) = tj(a).

id a b c d
t1 1 1 1 1
t2 1 2 2 2
t3 3 2 2 2

Example: Consider the example of the table on the right. We see that
RT(a) = {(t1, t2), (t2, t3)}, (reflexivity and symmetry are omitted) but
(t1, t3) /∈ RT(a), which would hold because of transitivity.

Since tolerance relations are sets of pairs of tuples, if we define the meet and join between two tolerance
relations as their set intersection and union, and order them by set inclusion, we have that the set of all
possible tolerance relations is a complete lattice.

Given a tolerance relation, so called blocks of tolerance are defined as maximal sets of pairwise elements
in correspondence (see [98] in FCA settings):

Definition 24 Given a set G, a subset K ⊆ G, and a tolerance relation I on G, K is a block of tolerance
if:

(i) ∀x, y ∈ K xIy (pairwise in correspondence)
(ii) ∀z 6∈ K,∃u ∈ K ¬(zIu) (maximality)

For instance, the tolerance block { t1, t2, t4 } represents the set of pairs { (t1, t2), (t1, t4), (t2, t4) }. An
attribute m ∈ M is no longer described by a partition over the set of objects as in the previous section,
but rather by a set of tolerance blocks. The pattern structure that we obtain, denoted by (M, (D,u), δ),
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is such that δ(m) maps an attribute m ∈ M to the set of tolerance blocks of the relation RT(m). The
description space (D,u) admits the same meet u and the same ordering relation v as the partition lattice.
Then, an example of concept formation is given as follows, starting from the set {a, b} ⊆M :

{a, b}� = δ(a) u δ(b)
= {{t1, t3}, {t2, t4}} u {{t1, t2, t4}, {t1, t3}}
= {{t1, t3}, {t2, t4}}

{{t1, t3}, {t2, t4}}� = {m ∈M | {{t1, t3}, {t2, t4}} v δ(m)}
= {a, b, c, d}

The resulting pattern structure along with its pattern concept lattice is given in Figure 2.4.
It can be noticed that, as for functional dependencies, a formal context can be built to characterize

DMVDs, whose concept lattice is equivalent. The formal context can be written as (M,B2(G), R) where
(m, (ti, tj)) ∈ R ⇐⇒ (ti, tj) ∈ RT(m). The resulting formal context of our example and its concept
lattice are given in Figure 2.5. Here again, pattern structures offer more concise object descriptions with
sets of blocks of tolerance instead of sets of pairs of tuples.

Now we can state how a DMVD X → Y holds in T according to the pattern structure (M, (D,u), δ).

Theorem 1 Let Z = U \X \ Y . A DMVD X → Y holds in T if and only if

{X}� = {XY }� ∪ {XZ}�

Proof 6 We assume that (t, t′) ∈ X� and X ′ ⊆ X implies that (t, t′) ∈ X ′�. We also have that
Z = U \X \ Y .
(⇒) We take two different tuples t, t′ ∈ X�. We have two different options:

1. t(X) 6= t′(X). This implies, necessarily, that there is a subset of attributes W ⊆ X such that
t(W ) 6= t′(W ), which implies that t(W ) = t′(W ). In this case, since Y Z ⊆ X we have that for all
x ∈ Y Z : (t, t′) ∈ δ(x), and, therefore, (t, t′) ∈ XY Z�, i.e. (t, t′) ∈ {XY }� ∪ {XZ}�.

2. t(X) = t′(X). Since X → Y holds in T , we have that t(Y ) = t′(Y ) or t(Z) = t′(Z). In the
first case, we have that, for all y ∈ Y : t(y) = t′(y), and then, (t, t′) ∈ δ(y). This yields that
(t, t′) ∈ XY �. The case t(Z) = t′(Z) is symmetric.

In both cases we have that (t, t′) ∈ {XY }� ∪ {XZ}�.

m ∈M δ(m) ∈ (D,u)
a {{t1, t3}, {t2, t4}}
b {{t1, t2, t4}, {t1, t3}}
c {{t1, t2, t3}, {t2, t4}}
d {{t1, t3}, {t2, t4})}

Figure 2.4: Characterizing DMVDs with a pattern concept lattice: The pattern structure (on the left) obtained
by transforming Table 2.1 and its pattern concept lattice (on the right)
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(⇐) We take two different tuples (t, t′) such that t(X) = t′(X). This implies that (t, t′) ∈ X�, and,
therefore, by hypothesis, that (t, t′) ∈ XY � or (t, t′) ∈ XZ�. Both cases are symmetric, and we take the
former one: (t, t′) ∈ XY �, and in this case we have two different cases:

1. There is a subset of attributesW ∈ Y such that t(W ) 6= t′(W ). In this case, we have that necessarily
t(W ) = t′(W ). Since Z ⊆ Y , then, t(Z) = t′(Z) and the DMVD X → Y holds in T (by symmetry).

2. We have that t(Y ) = t′(Y ), in which case the DMVD X → Y holds in T .

We find here a method to check whether a DMVD holds in a table, similar to that described in
Section 2.3. For instance, if we want to check if a → b we check if a� = ab� ∪ acd�, which is true
since a� = {(t1, t3), (t2, t4)}, ab� = {(t1, t3), (t2, t4)} and acd� = {(t1, t3), (t2, t4)}. If we want to test
whether c → a, we see that c� = {(t1, t2), (t1, t3), (t2, t3), (t2, t4)} whereas ac� = {(t1, t3), (t2, t4)} and
bcd� = {(t1, t3), (t2, t4)} which implies that c� 6= ac� ∪ bcd�, and by Theorem 1 means that c→ a does
not hold in T .

As we did in the previous section, we do not discuss how to enumerate all the DMVDs that hold
in a table, although Theorem 1 states that a naive algorithm that computes {X → XY | {X}� =
{XY }� ∪ {XZ}� } for all X,Y ⊆ U would be enough.

2.6 Conclusion

On one hand, the discovery of functional dependencies is an important topic in the field of databases. On
the other, the discovery of implications is an attracting topic in formal concept analysis. We started our
investigation from a known result that links both fields: functional dependencies can be characterized with
formal concept analysis after a data transformation leading to a heavy data representation. Accordingly,
we tackled the problem of avoiding such transformation by introducing partition pattern structures, a new
conceptual structure that allows an equivalent characterization, but coming with better computational
properties. Indeed, the empirical results show that, although the classical FCA approach performs well for
small datasets, it is not scalable compared to partition pattern structures [20]. Since real-world datasets
become larger and larger, this scalability is a more important feature than the speed concern for small
datasets.

We continued our investigation with other kinds of dependencies, namely approximate matching de-
pendencies and order dependencies and showed that it exists also a pattern structure where implications
are in 1-1-correspondence [46, 18]. We have also proposed a generic algorithm and are currently experi-
menting it and comparing it with state of the art ad hoc algorithms. The results are encouraging for the
moment.

K (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)
a × ×
b × × × ×
c × × × ×
d × ×

Figure 2.5: Characterizing DMVDs with FCA.
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Chapter 3

Numerical Pattern Mining

This chapter introduces a novel type of numerical patterns, namely convex polygon patterns. Biclustering
numerical is a particular way a defining numerical patterns in data, mainly used for applications in biology
and recommender systems. In FCA and pattern mining, the kinds of patterns that are extracted are
intervals: hyper-rectangles with sides parallel to the Euclidean plan axes, and the attributes are considered
as independent. To allow more expressiveness, we investigate another type of patterns: polytopes.

After recalling intervals patterns in Section 3.2, we formally introduce such patterns in Formal Concept
Analysis (FCA) in Section 3.3. Then, we give all the basic bricks for mining convex polygons with
exhaustive search and pattern sampling, and finally design several algorithms in Section 3.4 before to
conclude. The experimental evaluation of the algorithms is not reported in this document but in the
original article [22].

3.1 Introduction

Highly focused on over the past 20 years, pattern mining, the task of discovering interesting generalizations
of object descriptions (subsets, subsequences, subgraphs, etc) has become a mature subfield in AI for
knowledge discovery purposes [69]. When objects are given with a class label, discriminant patterns
enable to elicit hypotheses from the data and to build intelligible classifiers [175].

Dealing with numerical data, and especially spatio-temporal data is still challenging. Algorithms
supporting the correct, complete and non-redundant enumeration of particular shapes, say geometrical,
have surprisingly not attracted much research interest [6]. Generally, numerical attributes (even spatial)
are discretized, either in a pre-processing or on-the-fly during the execution (run) of a pattern enumeration
algorithm (e.g. [73]), which has the consequence of considering geo-coordinates attributes independently
and thus rectangular shape patterns occur. Still, such patterns were successfully used for mining numerical
data (e.g. with most of the subgroup discovery approaches [53]), and spatial data (such as urban and
mobility data see e.g. [23] and [92]).

The problem with rectangular shapes can be observed on the right hand
side figure. Each object gives a POI (Point Of Interest) of a given type (Hotel,
Restaurant, University, ...) and position. An interesting pattern is understood
as a geographical area for which there is a sufficient number of points, high
density, and a high proportion of objects of the same type. The candidate
areas could have any shape. Rectangles, as being the products of intervals, have
edges parallel to the plane axes: they may enclose both dense and sparse regions.
Arbitrary polygons stick too much to the data and are hard to interpret. We
consider convex polygons, a good trade-off for capturing high density areas.

Our contribution introduces a new type of patterns, convex polygons, with FCA tools [64], going
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beyond the formalization of hyper-rectangles given by [98] in the early 1990s and introduced in pattern
mining by [90]. We thus make precise the well-known notion of Galois connection as well as several
polygon enumeration techniques and associated algorithms, using several concepts from computational
geometry. We introduce several polygon constraints and experiment with our algorithms. We show that
polygons give a better trade-off between area, density and homogeneity for mining spatial data. These
findings give the basic bricks for any pattern mining algorithm dealing with, among others, a spatial
attribute. The major problem with polygons is their worst-case exponential number (in number of input
points). This is probably why they were not used in pattern mining until now: Exhaustive enumerations
fail at considering large datasets even with 100 objects. We finally show that embedding our enumeration
techniques in a recent pattern sampling technique (Monte Carlo Tree Search) enables us to discover high
quality patterns very quickly in large datasets.

3.2 Interval Patterns

We recall first the formalization of interval patterns, or hyper-rectangles, in terms of FCA, for under-
standing next our formalization of convex polygon patterns.

Numerical dataset. A numerical dataset is given by a set of objects G, a set of numerical attributes
M = {mi}1≤i≤|M |, where the range of mi ∈M is a finite set denoted by Wmi

, mi(g) = w means that w
is the value of attribute mi for object g ∈ G. Figure 3.1 plots 5 objects with 2 attributes on the Euclidean
plane.

Interval pattern. An interval pattern is a box (hyper-rectangle) with sides parallel to coordinate axes
formally defined as the Cartesian product of intervals d = 〈[ai, bi]〉1≤i≤|M |. An object g is in the image
of an interval pattern d when mi(g) ∈ [ai, bi] ∀i ∈ J1, |M |K. The support of d, denoted by sup(d), is the
set of objects in the image of d.

Interval pattern search space. The search space of interval patterns is the finite set D of all in-
terval vectors 〈[ai, bi]〉1≤i≤|M | with ai, bi ∈ Wmi . The size of the search space is given by: |D| =∏
i∈J1,|M |K(|Wmi

| × (|Wmi
|+ 1)/2).

Many patterns in D have exactly the same support: different hyper-rectangles contain the same ob-
jects. To avoid this redundancy, a closure operator can be defined, and only closed patterns which are
unique for a given support are retained. This is achieved thanks to the formalism of pattern struc-
tures introduced by [62]. An interval pattern structure is given by (G, (D,u), δ) where G is the set of
objects, (D,u) the semi-lattice of object descriptions (boxes) and δ : G → D a mapping that asso-
ciates to each object g ∈ G, a vector of numerical intervals in the form of one-point interval δ(g) =
〈[mi(g),mi(g)]〉i∈J1,|M |K. Elements of D are called patterns and are ordered as follows: cud = c⇔ c v d.
The infimum u is defined as follows. Let c = 〈[ai, bi]〉i∈J1,|M |K and d = 〈[ei, fi]〉i∈J1,|M |K we have
c u d = 〈[min(ai, ei),max(bi, fi)]〉i∈J1,|M |K which is the minimal bounding box of the two boxes c and d.
The two following operators (.)�, with A ⊆ G and d ∈ (D,u)

d� = {g ∈ G | d v δ(g)} A� =
d
g∈A δ(g)

form a Galois connection between (2G,⊆) and (D,v). (.)�� is a closure operator, i.e., monotone,
extensive, idempotent. Closed patterns, i.e., such that d = d�� are smallest patterns/rectangles for a
given support. We note that, for any description (box) d ∈ D, d�� represents the minimal bounding box
of the support of d (d�, objects enclosed by d). Figure 3.1 shows an example where G = {g1, ..., g5}, we
have d = 〈[1, 2], [1, 4]〉 (left figure) which support is d� = {g1, g2, g3}. However d is not closed. Indeed,
d�� = {g1, g2, g3}� = 〈[1, 2], [1, 3]〉 (right figure) which represents its closure (the minimal bounding box
of {g1, g2, g3}).

Interval patterns enumeration. Consider first data with a single attribute. To enumerate all interval
patterns in (D,u), [90] started from the top pattern, which is the minimal bounding box of all objects
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Figure 3.1: Non-closed (left) and closed (right) interval pattern.

in G (G�). Then, as shown in Figure 3.2, at every step of the algorithm two minimal changes are
applied (minimal left change (minLeftChange) and minimal right change (minRightChange)). To ensure
a non-redundant generation, minLeftChange are not allowed after minRightChange. For |M | numerical
attributes, the algorithm is the same with two differences: (1) It considers a total order on the set of
attributes M ; (2) When a minimal change is applied to the attribute mi, only attributes mj >= mi can
be refined in further steps from the generated pattern.
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Figure 3.2: Depth-first traversal of (Dm1 ,u).

Closed interval patterns enumeration. To enumerate only closed patterns in (D,u) (minimal bound-
ing boxes), [90] adapted CloseByOne of [97]. Consider a pattern d generated by a change at attribute
mj ∈M . Its closure is given by d��. If d�� differs from d for some attributes mi ∈M such as mi < mj ,
then d�� has already been generated: the algorithm backtracks. Otherwise, it continues the enumeration
from the closed pattern d��.

3.3 Convex Polygon Patterns

The choice of convex polygons instead of arbitrary ones is motivated by the fact that (i) it generalizes
intervals (convex) and (ii) it is a natural way to avoid non-convex polygons which would over-fit the data.

3.3.1 Preleminaries

Convex polygon. A convex polygon P , represented as a sequence of points [p1, ..., ph] in R2, is a
simple polygon (not self-intersecting) where all interior angles are strictly less than π. The ordered point
sequence [p1, ..., ph] is denoted by P and is given in counterclockwise order (ccw). Points pi are called
extreme points and oriented line segments pipi+1 following this order are called edges of the polygon P
(where i+ 1 = 1 if i = h and i− 1 = h if i = 1).

Note that an oriented line segment AB subdivides R2 in 4 regions: (i) AB+ (resp. (ii) AB−) the
open upper (resp. lower) half-plane of AB (i.e. Q ∈ AB+ implies that ABQ is a triangle in ccw (resp.
cw) order), (iii) AB0 the set of points on the segment AB and (iv) the points that are collinear with A
and B but outside AB.
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Let q ∈ R2. An edge pipi+1 is said to be visible from q (or q sees pipi+1) iff q ∈ pip
−
i+1. A point

q is in the enclosed area of the polygon P iff q does not see any edge of P (q ∈ pip+
i+1∀i ∈ {1, ..., h}).

Conventionally, ∅, points and segments are considered as convex polygons.

Convex hull. Given a finite set E ⊆ R2, the convex hull of E denoted by ch(E) is the smallest convex
set that contains E, which is a convex polygon. Note that ch(E) ⊆ E. In other words, extreme points of
the convex hull of E are in E. Application ch : R2 → R2 is monotone, extensive, and idempotent, i.e., a
closure operator.

Example. Figure 3.3 shows a polygon P where extreme points set P = [p1, p2, p3, p4, p5, p6]. The point
I is in the area enclosed by the polygon P . The point C1 (resp. C2) sees only the edge p3p4 (resp. p4p5).
Generally spoken, the green triangle (resp. yellow triangle) represents all possible points that are only
visible by the edge p3p4 (resp. p4p5). The point O sees the two edges p3p4 and p4p5.
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Figure 3.3: Convex polygon and edges visibilities.

3.3.2 Convex Polygon Pattern Structure

Spatial attribute. A spatial attribute m takes values in R2. Given a set of objects G, m(g) = p
means that p ∈ R2 is the value of attribute m for object g ∈ G. Analogically, for a subset A ⊆ G,
m(A) = {m(g) | g ∈ A} ⊂ R2. For the sake of simplicity, we will consider now a dataset G having only
one spatial attribute m. For ease of notations, g and m(g) (G and m(G)) will be used interchangeably in
what follows.

Convex polygon pattern. A convex polygon pattern d is a convex polygon [pi]1≤i≤h given in ccw order.
An object g is in the image of a convex polygon pattern d when m(g) is in the enclosed area formed by
the polygon d. The support of d, denoted by sup(d), is the set of objects g ∈ G in the image of d. In
Figure 3.3, d = [p1, p2, ..., p6] is a convex polygon pattern which support is sup(d) = {p1, p2, ..., p6, I}.

Convex polygon pattern structure. It is defined as follows: (G, (D,u), δ) where G is the set of
objects described by one spatial attribute m, (D,u) is the semi-lattice of object descriptions (convex
polygons) where D = {ch(m(A))|A ⊆ G}. The mapping δ : G → D takes each object g ∈ G to
δ(g) = [m(g)] (a degenerate polygon with a singleton point). The infimum u is defined as follows. Let
c and d be two descriptions in D, we have c u d = ch(c ∪ d). Elements of (D,u) are ordered as follows:
c v d⇔ c u d = c⇔ d ⊆ ch(c). Thus, the Galois operators (.)� are defined as follows, with A ⊆ G and
d ∈ (D,u): d� = {g ∈ G | m(g) ∈ ch(d)} and A� = ch(m(A)). A pair (A, d) s.t. A� = d and d� = A is
a concept. Both A and d are closed under (.)��. The set A contains all objects, while d contains only
extreme points in ccw order.

Mining convex polygons with constraints. There are 2n convex polygons in the worst case (n
points on a circle). Not all of them are interesting, we thus define several constraints a pattern shall
respect. The problem is then, given a set of points in R2, to find all polygon pattern concepts (A, d)
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respecting one or more of the following constraints, such as shape complexity (|d| ≤ δcompl), minimal
support (|A| ≥ δsupp), minimal/maximal perimeter (perim(d) ≥ or ≤ δperim), and minimal/maximal
area (area(d) ≥ or ≤ δarea). We also wish patterns that maximize a class homogeneity (e.g. low Gini)
and density (|A|/area(d)).

By using minimal support we avoid considering polygons with too few points. The density has to be
understood as a relative support (support normalized by area). The number of extreme points character-
izes the complexity of the polygon in terms of interpretation (point, segment, triangle, quadrilateral, ...).
The simpler the form the better by principle of parsimony: Minimizing the shape complexity may also
avoid over-fitting the data when searching for discriminant patterns. Controlling perimeter and area is
also important: It allows one to express different types of patterns (e.g. avoiding or forcing thin polygons,
with a large perimeter and small surface).

3.4 Algorithms

Let G be a finite subset of R2. We propose three algorithms for mining convex polygon patterns. The first
one enumerates object subsets in a bottom-up way (from ∅ to G) with closures. The next one considers
a top-down enumeration and does not compute costly closures. The last one considers a bottom-up
enumeration of polygons by shape complexity (points, then segments, then triangles...) and performs the
best.

3.4.1 Enumerating Point Sets

As the operators ((.)�, (.)�) form a Galois connection, the set of all pattern concepts is given by
C = {(A��, A�),∀A ⊆ G}. The A� are precisely the polygon patterns and can thus be obtained
by enumerating closed object subsets with the generic algorithm CloseByOne (CbO) of [97] and its mod-
ern efficient software realization [12]. The principle is the following. The lattice (2G,⊆) is explored with
a DFS starting from ∅. A total order on G is provided, e.g. g1 < g2 < ... < gn. A new object set A is
generated from a previous one by adding next object g w.r.t. < and (A��, A�) is the resulting pattern
concept. The concept is discarded (DFS backtrack) if an object smaller than g w.r.t. < is added. It is
proven that this algorithm outputs the correct, complete and non-redundant collection of closed patterns.
Namely, ExtCbO (Algorithm 2) is the version of CbO where concepts are computed w.r.t. increasing
generality order, i.e., by adding one object at a time. Algorithm ExtCbO will serve as a baseline.

Algorithm 2 ExtCbO
1: Let (G, ≤) be a totally-ordered finite subset of R2

2: procedure ExtCbO( )
3: traverse(∅,∅,1)
4: end procedure
5: procedure traverse(c,d,pos) . c is the extent, d the intent
6: Print(c,d) . visit pattern concept (c, d)
7: for i ∈ pos, ..., |G| and gi 6∈ c do
8: cnew ← c ∪ {gi}
9: dnew ← c�new . Compute convex hull
10: cnew ← d�new
11: if ∀j ∈ J1, iK : gj 6∈ c→ gj 6∈ cnew then
12: traverse(cnew,dnew,i+1)
13: end if
14: end for
15: end procedure
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Figure 3.4: DelaunayEnum extreme point deletion.

3.4.2 Updating a Delaunay Triangulation

The enumeration starts from the most general pattern G�. Minimal changes are applied to obtain the
next pattern to ensure the correctness and completeness of the enumeration: all convex polygons and
only them are visited. Let us consider the convex polygon pattern d = [p1, ..., pi, ..., p|d|]. A minimal
change to d consists in removing an extreme point (as done with interval patterns). There are |d| of such
minimal changes for a polygon d for obtaining next smaller polygons e = d\{d[i]} s.t. d @ e, i ∈ J1, |d|K.
When a new pattern e is generated, we need to compute its convex hull to discover its extreme points
dnew = e�� and continue the enumeration.

This algorithm is again an instance of CloseByOne, but follows a top-down enumeration. Sadly, it
still forces to compute the convex hull e� at each step. Fortunately, it can be avoided with a Delaunay
triangulation.

Delaunay triangulation. The Delaunay triangulation of a set of points P denoted by DT (P ) is a
partition of the convex hull ch(P ) into O(n) triangles such that: (i) Triangles vertices are in P , (ii) No
point in P is inside the circumcircle of any triangle in DT (P ) besides the vertices of the triangle. The
complexity of computing DT (P ) is O(|P | · log(|P |)) [172].

Algorithm DelaunayEnum. The key idea is the following. Efficiently computing e� = (d\{d[i]})�,
that is the next closed pattern obtained from removing the extreme point i of d, is equivalent to computing
DT (d \ {d[i]}) from DT (d). During this computation, one can easily update the sequence of extreme
points. [51] answered this problem with an efficient algorithm (O(k · log(k)) complexity), where k is the
number of points sharing an edge with p (neighbor points).

Our algorithm DelaunayEnum (Algorithm 3) enumerates Delaunay triangulations dt and maintains
at each step the sequence of extreme points d. It starts from pattern G� = ch(G) (line 4). Consider a
step in the enumeration where d is the current pattern, dt the current triangulation and c the current
image of d. We remove successively extreme points p ∈ d and we update the Delaunay triangulation
dtnew based on dt (line 11), the new description dnew (sequence of extreme points) (line 12) and the new
support cnew by removing objects with value p from c (line 13). To avoid redundancy (avoid visiting the
same pattern twice), removal of extreme points before the last removed extreme point p are not allowed
(argument pos in Algorithm 3) in further steps. In order to do that simply, when the extreme point
sequence d is updated upon extreme point i removal, we only insert the new extreme points (extreme
points not in d) at the position i while keeping the same order (counterclockwise). Figure 3.4 (from left
to right) shows an example of how the algorithm updates the description d = [A,B,C] upon removal
of the extreme point C (position 3) and produces the description dnew = [A,B,D,E] where D and E
denote the new extreme points that replaced C. The enumeration continues by removing D.
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Algorithm 3 DelaunayEnum
1: Let G be a finite subset of R2

2: procedure DelaunayEnum( )
3: dt ← Delaunay(G)
4: d ← dt . dt = G� = ch(G)
5: traverse(G,d,dt,1)
6: end procedure
7: procedure traverse(c,d,dt,pos)
8: Print(c,d) . visit pattern concept (c, d)
9: for i ∈ pos, ..., |d| do
10: p ← d[i]
11: dtnew ← Delaunay_remove(dt,p)
12: dnew ← dtnew . dnew[1] = d[1] or dnew[|dnew|] = d[|d|]
13: cnew ← c\[p]� . [p]� = {g ∈ G | m(g) = p}
14: traverse(cnew,dnew, dtnew,i)
15: end for
16: end procedure

3.4.3 Enumerating Simpler Shapes First

Until now, elements of (D,v) were enumerated w.r.t. polygon inclusion order. Now we consider the
poset (D, v̄), where polygons are ordered w.r.t. extreme points inclusion: c v̄ d ⇔ c ⊇ d. Intuitively,
the ith level of (D, v̄) contains all polygons with i extreme points (i = 3 are the triangles, i = 4 the
convex quadrilaterals, ...). Enumerating simpler shapes first is interesting as they are easier to interpret
and less stick to the data points (prevent overfitting). Note that the new order v̄ will change only the
enumeration order.

In order to enumerate all the polygons w.r.t. the new order v̄ in a bottom-up fashion as simpler shapes
are preferred, one can simply adapt ExtCbO. Indeed, polygons are represented as extreme points sets
which can be enumerated starting from ∅. However, it requires to compute at each step the convex hull of
the set of points (closure) which is extremely slow. To avoid this, we propose an enumeration technique
relying on basic geometry: points used to extend a pattern produce a new closed pattern for sure. That
is to say: (i) there is no need to compute the convex hull and (ii) there is no need to discard a pattern
as done in ExtCbO since every generated pattern is new. This can be done thanks to pattern candidate
maintenance as explained below.

In what follows, without loss of generality and for the sake of simplicity, elements of G are pairwise
distinct. Moreover, for any oriented line segment AB: AB+, AB− and AB0 will denote finite sets where
only points of G are considered (rather than R2).

Pattern candidate points array. Consider a convex pattern d = [p1, ..., ph] where ∀i ∈ J1, hK : pi ∈ G.
We define a same-size array nd called candidate points array where nd[i] gives the set of points that are
visible from and only from the edge pipi+1. Formally, if h ≥ 2:

nd[i] = pip
−
i+1 ∩ (

⋂
j 6=i

pjp
+
j+1)

In case of h = 1, we have nd[1] = G\{p1}. The proposition below gives a simpler formula for n[i] when
h ≥ 2:

Proposition 8 If h ≥ 2, ∀i ∈ J1, hK we have:

nd[i] = pip
−
i+1 ∩ pi−1p

+
i ∩ pi+1p

+
i+2

Extending a pattern and candidate maintenance. We have the following proposition:
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Proposition 9 ∀i ∈ J1, hK, ∀q ∈ nd[i], we have:

d u [q] = [p1, pi, q, pi+1..., ph]

In other words, extending a pattern d by adding a candidate point q creates a new pattern e = du [q] s.t.
e v d.

Proposition 10 gives a method to compute the support and the candidate points of the new pattern e:

Proposition 10 If h ≥ 2, ∀i ∈ J1, hK, ∀q ∈ nd[i], if e = d u [q] and ne its candidate points array, we
have:

e� = d� ∪ [pi, q, pi+1]�

ne[i] = nd[i] ∩ piq− ∩ qp+
i+1

ne[i+ 1] = nd[i] ∩ qp−i+1 ∩ piq
+

ne[i− 1] = nd[i− 1] ∩ piq+

ne[i+ 2] = nd[i+ 1] ∩ qp+
i+1

ne[i+ k] = nd[i+ k − 1] if 3 ≤ k ≤ h− i+ 1
ne[i− k] = nd[i− k] if 2 ≤ k < i

Note that [pi, q, pi+1]� is the subset of objects enclosed in the area formed by the triangle [pi, q, pi+1].
Formally: [pi, q, pi+1]� = piq

0 ∪ qp0
i+1 ∪ pip0

i+1 ∪ (pip−i+1 ∩ piq+ ∩ qp+
i+1).

Propositions 8 and 9 are direct results from planar geometry [129], while Proposition 10 is a direct
reformulation of Proposition 8.

Figure 3.3 shows a description d = [p1, p2, p3, p4, p5, p6] with candidate points nd = [∅, ∅, {C1}, {C2}, ∅, ∅].
More generally, every point that falls in the green (resp. yellow) zone is a candidate point for the edge
p3p4 (resp. p4p5). However, the point O is not a candidate point for any edge. Indeed, O sees two edges
p3p4 and p4p5.

Algorithm ExtremePointsEnum. The algorithm ExtremePointsEnum (Algorithm 4) follows al-
most the same enumeration principle as that of ExtCbO. The difference lies in maintaining the list of
object candidates that can be added to a pattern d to generate patten e @ d. The other difference is that
the two first levels are enumerated in BFS manner. This allows one to build the segment index S that
for each distinct object pair gigj of G stores the support gig0

j (objects in segment gigj) and its candidates
gig
−
j and gig

+
j . Note that the segment index S can be seen as a strictly upper triangular matrix. The

algorithm continues in a DFS-fashion to enumerate higher levels (k ≥ 2). To prevent redundancy, an
arbitrary total order on G is provided, e.g. g1 < g2 < ... < gn. When extending a pattern d = [p1, ..., ph],
which candidate points array is nd, with a point q ∈ nd[i], only points q s.t. pj < q ∀j ∈ J1, hK are
considered.

Detailed example. Figure 3.5 gives a detailed step-by-step partial enumeration of convex patterns
related to G w.r.t. v partial order. In each subfigure, red points are extreme points, yellow points are
part of the support of the pattern but not extreme points, green points are candidate points and black
points are not candidates (points located in the red zones).

3.5 Conclusion

In pattern mining, hyper-rectangles cannot always properly capture interesting areas although they are
widely used. We formally defined convex polygon patterns by means of Formal Concept Analysis (FCA)
and proposed three enumeration techniques. We do not report experimental results of our algorithms in
this document. It turns out that they do now allow to consider large dataset. This is not the weakness
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Algorithm 4 ExtremePointsEnum
1: Let (G, ≤) be a totally-ordered set of pairwise distinct points
2: Let S be the segment index
3: procedure traverse(c, d, n, pos)
4: Print(c,d) . visit pattern concept (c, d)
5: for i ∈ 1, ..., |d| do
6: for j ∈ n[i] and j >= pos do . j ≥ pos for non redundancy
7: s1 ← S[d[i]][j] . first new segment d[i]→ j
8: s2 ← S[j][d[i+ 1]] . second new segment j → d[i+ 1]
9: dnew ← [d[1], ..., d[i], j, d[i+ 1], ..., d[|d|]]
10: cnew ← c ∪ s10 ∪ s20 ∪ (n[i] ∩ s1+ ∩ s2+)
11: nnew ← [n[1], ..., n[i], n[i], n[i+ 1], ..., n[|d|]]
12: nnew[i] ← n[i] ∩ s1− ∩ s2+

13: nnew[i+ 1] ← n[i] ∩ s2− ∩ s1+

14: nnew[i− 1] ← n[i− 1] ∩ s1+

15: nnew[i+ 2] ← n[i+ 1] ∩ s2+

16: traverse(cnew,dnew, nnew,j + 1)
17: end for
18: end for
19: end procedure
20: procedure ExtremePointsEnum( )
21: Print(∅,∅) . visit the empty pattern concept (∅, ∅)
22: Enumerate in BFS-fashion all distinct points G
23: Compute segment index S
24: for i ∈ 1, ..., |P | − 1 do
25: for j ∈ i+ 1, .., |P | do
26: s ← S[i, j]
27: traverse(s�,[i, j], [s−, s+],j+1)
28: end for
29: end for
30: end procedure

61



Chapter 3. Numerical Pattern Mining

A(0)
C

B

I

H

DE

F

G

d = [A], d� = {A}
nd = [{B,C,D,E, F,G,H, I}]

(1)

x

y

0 1 2 3 4 5 6
0

1

2

3

4

5

6

A(0) B(1)

I

C

D

H

E

F

G

d = [A,B], d� = {A,B, I}
nd = [{C,H}, {E,F,D,G}]

(2)

x

y

0 1 2 3 4 5 6
0

1

2

3

4

5

6

A(1)
C(2)

B(3)
I

H

DE

F

G

d = [A,C,B], d� = {A,B,C, I}
nd = [∅, ∅, {E,F,D,G}]

(3)

x

y

0 1 2 3 4 5 6
0

1

2

3

4

5

6

A(1) B(3)

I

C(2)

D(4)

H

E

F

G

d = [A,C,B,D]
d� = {A,C,B,D, I}
nd = [∅, ∅, {G}, {E}]

(4)

x

y

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Figure 3.5: ExtremePointsEnum algorithm step-by-step enumeration.

of the algorithm, but the size of the search space. However, these enumeration techniques can be used
in sampling algorithm, e.g. during a random walk. We successfully experimented the Monte Carlo Tree
Search of convex polygons using the enumeration of simpler shapes first: We mined social network points
of interest with the aim to discover regions that discriminate a class label (types of points of interest).
Such approach is actually detailed in the next part for pattern mining in general, and interval patterns
and itemsets in particular.
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Chapter 4

Pattern Discovery with Monte Carlo
Tree Search

This chapter introduces Subgroup Discovery: the task of finding patterns that describe well a class label
and not others (Section 4.1). Section 4.2 then formalizes the issues we address: (i) scalability and (ii)
diversity/redundancy: it is impossible in many cases to perform an exhaustive search of the pattern
space, while heuristic methods have difficulties to sample this search space (diversity) and can return
many variations of the same pattern (redundancy). Section 4.3 then smoothly presents MCTS, a recent
exploration technique, while Section 4.4 deeply details its adaptation for pattern mining. We omit here
our experimental evaluation which can be found in the original article [30] but discuss the advantages
and disadvantages over other existing methods and our perspectives (Section 4.5).

4.1 Introduction

The discovery of patterns, or descriptions, which discriminate a group of objects given a target (class label)
has been widely studied as overviewed by [127]. Discovering such descriptive rules can be formalized as the
so-called subgroup discovery task (SD introduced by [167]). Given a set of objects, each being associated
to a description and a class label, a subgroup is a description generalization whose discriminating ability
is evaluated by a quality measure (F1-score, accuracy, etc). In the last two decades, different aspects
of SD have been studied: The description and target languages (quantitative, qualitative, etc.), the
algorithms that enable the discovery of the best subgroups, and the definition of measures that express
pattern interestingness. These directions of work are closely related and many of the pioneer approaches
were ad hoc solutions lacking from easy implementable generalizations (see for examples the surveys of
[127] and [53]). SD still faces two important challenges: First, how to characterize the interest of a
pattern? Secondly, how to design an accurate heuristic search technique when exhaustive enumeration
of the pattern space is unfeasible?

[105] introduced a more general framework than SD called exceptional model mining (EMM). It
tackles the first issue. EMM aims to find patterns that cover tuples that locally induce a model that
substantially differs from the model of the whole dataset, this difference being measured with a quality
measure. This rich framework extends the classical SD settings to multi-labeled data and it leads to
a large class of models, quality measures, and applications [159, 53, 92]. In a similar fashion to other
pattern mining approaches, SD and EMM have to perform a heuristic search when exhaustive search fails.
The most widely used techniques are beam search [159, 116], genetic algorithms [48, 110], and pattern
sampling [122, 23].

The main goal of these heuristics is to drive the search towards the most interesting parts, i.e., the
regions of the search space where patterns maximize a given quality measure. However, it often happens
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that the best patterns are redundant: They tend to represent the same description, almost the same set
of objects, and consequently slightly differ on their pattern quality measures. Several solutions have been
proposed to filter out redundant subgroups, e.g. as did [35, 159, 116, 31]. Basically, a neighboring function
enables to keep only local optima. However, one may end up with a pattern set of small cardinality: This
is the problem of diversity, that is, many local optima have been missed.

Let us illustrate this problem on Figure 4.1. The search space of patterns, a lattice, hides several local
optima (patterns maximizing a pattern quality measure in a neighborhood). Figure 4.1(a) presents such
optima with red dots, surrounded with redundant patterns in their neighborhood. Given the minimal
number of objects a pattern must cover, exhaustive search algorithms, such as SD-Map [15, 14], are able
to traverse this search space efficiently: The monotonocity of the minimum support and upper bounds on
some quality measures such as the weighted relative accuracy (WRAcc) enable efficient and safe pruning
of the search space. However, when the search space of patterns becomes tremendously large, either the
number of patterns explodes or the search is intractable. Figure 4.1(b) presents beam-search, probably
the most popular technique within the SD and EMM recent literature. It operates a top-down level-
wise greedy exploration of the patterns with a controlled level width that penalizes diversity (although
several enhancements to favor diversity have been devised [159, 160, 116]). Genetic algorithms have been
proposed as well [140, 130, 40]. They give however no guarantees that all local optima will be found
and they have been designed for specific pattern languages and quality measures [110]. Finally, pattern
sampling is attractive as it enables direct interactions with the user for using his/her preferences to drive
the search [28, 122]. Besides, with sampling methods, a result is available anytime. However, traditional
sampling methods used for pattern mining need a given probability distribution over the pattern space
which depends on both the data and the measure and may be costly to compute [28, 122]. Each iteration
is independent and draws a pattern given this probability distribution (Figure 4.1(c)).

We propose to support subgroup discovery with a novel search method, Monte Carlo tree search
(MCTS). It has been mainly used in AI for domains such as games and planning problems, that can
be represented as trees of sequential decisions [36]. It has been popularized as definitively successful for
the game of Go in [145]. MCTS explores a search space by building a game tree in an incremental and
asymmetric manner: The tree construction is driven by random simulations and an exploration/exploita-
tion trade-off provided by the so called upper confidence bounds (UCB) [95]. The construction can be
stopped anytime, e.g., when a maximal budget is reached. As illustrated on Figure 4.1(d), our intuition
for pattern mining is that MCTS searches for some local optima, and once found, the search can be
redirected towards other local optima. This principle enables per se a diversity of the result set: Several
high quality patterns covering different parts of the data set can be extracted. More importantly, the
power of random search leads to anytime mining: A solution is always available, it improves with time
and it converges to the optimal one if given enough time and memory budget. This is a best-first search.
Given a reasonable time and memory budget, MCTS quickly drives the search towards a diverse pattern
set of high quality. Interestingly, it can consider, in theory, any pattern quality measure and pattern
language (in contrast to current sampling techniques as developped by [28, 122]).

Our main contribution is to introduce MCTS for subgroup discovery and pattern mining in general.
Revisiting MCTS in such a setting is not simple and it requires to define smart new policies. We show
through an extensive set of experiments that MCTS is a viable solution for a pattern mining task and
that it outperforms the state-of-the-art approaches (exhaustive search, beam search, genetic algorithm,
pattern sampling) when dealing with large search space of numerical and nominal attributes and for
different quality measures.

4.2 Pattern Set Discovery

There exists several formal pattern mining frameworks and we choose here subgroup discovery to illustrate
our purpose. We provide some basic definitions and then formally define pattern set discovery.

Definition 25 (Dataset D(O,A, C, class)) Let O, A and C be respectively a set of objects, a set of
attributes, and a set of class labels. The domain of an attribute a ∈ A is Dom(a) where a is either
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Figure 4.1: Illustration of different SD search algorithms.

nominal or numerical. The mapping class : O 7→ C associates each object to a unique class label.

A subgroup can be represented either by a description (the pattern) or by its coverage, also called its
extent.

Definition 26 (Subgroup) The description of a subgroup (a pattern), is given by d = 〈f1, . . . , f|A|〉
where each fi is a restriction on the value domain of the attribute ai ∈ A. A restriction for a nominal
attribute ai is a symbol ai = v with v ∈ Dom(ai). A restriction for a numerical4 attribute ai is an interval
[l, r] with l, r ∈ Dom(ai). The description d covers a set of objects called the extent of the subgroup,
denoted ext(d) ⊆ O. The support of a subgroup is the cardinality of its extent: supp(d) = |ext(d)|.

4We consider the finite set of all intervals from the data, without greedy discretization. As shown later, better patterns
can be found in that case, when using only MCTS on large datasets.
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Table 4.1: Toy dataset

ID a b c class(.)
1 150 21 11 l1
2 128 29 9 l2
3 136 24 10 l2
4 152 23 11 l3
5 151 27 12 l2
6 142 27 10 l1

The subgroup search space is structured as a lattice.

Definition 27 (Subgroup search space) The set of all subgroups forms a lattice, denoted as the poset
(S,�). The top is the most general pattern, without restriction. Given any s1, s2 ∈ S, we note s1 ≺ s2
to denote that s1 is strictly more specific, i.e. it contains more stringent restrictions.

If follows that ext(s1) ⊆ ext(s2) when s1 � s2.
The ability of a subgroup to discriminate a class label is evaluated by means of a quality measure.

The weighted relative accuracy (WRAcc), intoduced by [102], is among the most popular measures for
rule learning and subgroup discovery. Basically, WRAcc considers the precision of the subgroup w.r.t. to
a class label relatively to the appearance probability of the label in the whole dataset. This difference is
weighted with the support of the subgroup to avoid to consider small ones as interesting.

Definition 28 (WRAcc) Given a dataset D(O,A, C, class), the WRAcc of a subgroup d for a label
l ∈ Dom(C) is given by:

WRAcc(d, l) = supp(d)
|O|

×
(
pld − pl

)
where pld = |{o∈ext(d)|class(o)=l}|

supp(d) and pl = |{o∈O|class(o)=l}|
|O| .

WRAcc returns values in [−0.25, 0, 25], the higher and positive, the better the pattern discriminates
the class label. Many quality measures other than WRAcc have been introduced in the literature of rule
learning and subgroup discovery (Gini index, entropy, F score, Jaccard coefficient, etc. [[3]]). Exceptional
model mining (EMM) considers multiple labels (label distribution difference in [159], Bayesian model
difference in [54], etc.). The choice of a pattern quality measure, denoted ϕ in what follows, is generally
application dependant as explained by [60].

Example 14 Consider the dataset in Table 4.1 with objects in O = {1, ..., 6} and attributes in A =
{a, b, c}. Each object is labeled with a class label from C = {l1, l2, l3}. Consider an arbitrary subgroup
with description d = 〈[128 ≤ a ≤ 151], [23 ≤ b ≤ 29]〉. Note that, for readability, we omit restrictions
satisfied by all objects, e.g., [9 ≤ c ≤ 12], and thus we denote that ext(〈〉) = O. The extent of d is
composed of the objects in ext(d) = {2, 3, 5, 6} and we have WRAcc(d, l2) = 4

6 ( 3
4 −

1
2 ) = 1

6 . The upper
part of the search space (most general subgroups) is given in Figure 4.2. The direct specializations of a
subgroup are given, for each attribute, by adding a restriction: Either by shrinking the interval of values
to the left (take the right next value in its domain) or to the right (take the left next value). In this way,
the finite set of all intervals taking borders in the attributes domain will be explored (see [90]).

Pattern set discovery consists in searching for a set of patterns R ⊆ S of high quality on the quality
measure ϕ and whose patterns are not redundant. As similar patterns generally have similar values on
ϕ, we design the pattern set discovery problem as the identification of the local optima w.r.t. ϕ. As
explained below, this has two main advantages: Redundant patterns of lower quality on ϕ are pruned
and the extracted local optima are diverse and potentially interesting patterns.
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128.24 ≤ a ≤ 152.16
21 ≤ b ≤ 29
  9 ≤  c  ≤ 12

136.16 ≤ a ≤ 152.16
21 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128.24 ≤ a ≤ 151.28
21 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128.24 ≤ a ≤ 152.16
23 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128.24 ≤ a ≤ 152.16
21 ≤ b ≤ 27
  9 ≤  c  ≤ 12

128.24 ≤ a ≤ 152.16
21 ≤ b ≤ 29
10 ≤  c  ≤ 12

128.24 ≤ a ≤ 152.16
21 ≤ b ≤ 29
  9 ≤  c  ≤ 11

136.16 ≤ a ≤ 152.16
23 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128.24 ≤ a ≤ 151.28
23 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128.24 ≤ a ≤ 152.16
24 ≤ b ≤ 29
  9 ≤  c  ≤ 12

128.24 ≤ a ≤ 152.16
23 ≤ b ≤ 27
  9 ≤  c  ≤ 12

128.24 ≤ a ≤ 152.16
23 ≤ b ≤ 29
10 ≤  c  ≤ 12

128.24 ≤ a ≤ 152.16
23 ≤ b ≤ 29
  9 ≤  c  ≤ 11

Figure 4.2: The upper part of the search space for Table 4.1.

Definition 29 (Local optimum as a non redundant pattern) Let sim : S × S → [0, 1] be a simi-
larity measure on S that, given a real value Θ > 0, defines neighborhoods on R ⊆ S : NR(x) = {s ∈ R |
sim(x, s) ≥ Θ}. r? is a local optimum of R on ϕ iff ∀r ∈ NR(r?), ϕ(r?) ≥ ϕ(r). We denote by filter(R)
the set of local optima of R and by redundancy(R) = 1− |filter(R)|

|R| the measure of redundancy of R.

In this paper, the similarity measure on S will be the Jaccard measure defined by sim(r, r′) = ext(r)∩ext(r′)
ext(r)∪ext(r′) .

We propose to evaluate the diversity of a pattern set R ⊆ S by the sum of the quality of its patterns.
Indeed, the objective is to obtain the largest set of high quality patterns:

Definition 30 (Pattern set diversity) The diversity of a pattern set R is evaluated by: diversity(R) =∑
r∈filter(R) ϕ(r).

The function filter() is generally defined in a greedy or heuristic way in the literature. [159] called
it pattern set selection and we use their implementation in this article. First all extracted patterns are
sorted according to the quality measure and the best one is kept. The next patterns in the order are
discarded if they are too similar with the best pattern (a similarity function, here, a Jaccard between
the pattern support is used). Once a non similar pattern is found, it is kept for the final result and the
process is reiterated: Following patterns will be compared to it.

Problem 1 (Pattern set discovery) Compute a set of patterns R∗ ⊆ S such that ∀r ∈ R∗, r is a
local optimum on ϕ and

R∗ = argmaxR⊆Sdiversity(R).

By construction, R∗ maximizes diversity and it minimizes redundancy. Naturally, R∗ is not unique.
Existing approaches sometimes search for a pattern set of size k [110], with a minimum support threshold
minSupp [15].

4.3 Monte Carlo Tree Search

MCTS is a search method used in several domains to find an optimal decision (see the survey by [36]).
It merges theoretical results from decision theory [142], game theory, Monte Carlo [2] and bandit-based
methods [16]. MCTS is a powerful method because it enables the use of random simulations for char-
acterizing a trade-off between the exploration of the search tree and the exploitation of an interesting
solution, based on past observations. Considering a two-players game (e.g., Go): The goal of MCTS is
to find the best action to play given a current game state. MCTS proceeds in several (limited) iterations
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that build a partial game tree (called the search tree) depending on the results of previous iterations. The
nodes represent game states. The root node is the current game state. The children of a node are the
game states accessible from this node by playing an available action. The leaves are the terminal game
states (game win/loss/tie). Each iteration, consisting of 4 steps (see Figure 4.3), leads to the generation
of a new node in the search tree (depending on the exploration/exploitation trade-off due to the past
iterations) followed by a simulation (sequence of actions up to a terminal node). Any node s in the search
tree is provided with two values: The number N(s) of times it has been visited, and a value Q(s) that
corresponds to the aggregation of rewards of all simulations walked through s so far (e.g., the proportion
of wins obtained for all simulations walked through s). The aggregated reward of each node is updated
through the iterations such that it becomes more and more accurate. Once the computation budget is
reached, MCTS returns the best move that leads to the child of the root node with the best aggregated
reward Q(.).

In the following, we detail the 4 steps of a MCTS iteration applied to a game. Algorithm 5 gives the
pseudo code of the most popular algorithm in the MCTS family, namely UCT (upper confidence bound
for trees), as given in [95].

The Select policy. Starting from the root node, the Select method recursively selects an action
(an edge) until the selected node is either a terminal game state or is not fully expanded (there remain
children of this node that are not yet expanded in the search tree). The selection of a child of a node s
is based on the exploration/exploitation trade-off. For that, upper confidence bounds (UCB) are used.
They bound the regret of choosing a non-optimal child. The original UCBs used in MCTS are the UCB1
from [16] and the UCT from [95]:

UCT (s, s′) = Q(s′) + 2Cp

√
2 lnN(s)
N(s′)

where s′ is a child of a node s and Cp > 0 is a constant (generally, Cp = 1√
2 ). This step selects the most

urgent node to be expanded, called ssel in the following, considering both the exploitation of interesting
actions (given by the first term in UCT) and the exploration of lightly explored areas of the search space
(given by the second term in UCT) based on the result of past iterations. The constant Cp can be
adjusted to lower or increase the exploration weight in the exploration/exploitation trade-off . Note that
when Cp = 1

2 , the UCT is called UCB1.

The Expand policy. A new child, denoted sexp, of the selected node ssel is added to the tree according
to the available actions. The child sexp is randomly picked among all available children of ssel not yet
expanded in the search tree.

The RollOut policy. From this expanded node sexp, a simulation is played based on a specific policy.
This simulation consists of exploring the search tree (playing a sequence of actions) from sexp until a
terminal state is reached. It returns the reward ∆ of this terminal state: ∆ = 1 if the terminal state is a
win, ∆ = 0 otherwise.

Select Expand Roll-out Update

Figure 4.3: One MCTS iteration (taken from [36]).

70



4.3. Monte Carlo Tree Search

Algorithm 5 UCT: The popular MCTS algorithm.
1: function Mcts(budget)
2: create root node s0 for current state
3: while within computational budget budget do
4: ssel ← Select(s0)
5: sexp ← Expand(ssel)
6: ∆← RollOut(sexp)
7: Update(sexp,∆)
8: end while
9: return the action that reaches the child s of s0 with the highest Q(s)
10: end function

11: function Select(s)
12: while s is non-terminal do
13: if s is not fully expanded then return s
14: else s← BestChild(s)
15: end if
16: end while
17: return s
18: end function

19: function Expand(ssel)
20: randomly choose sexp from non expanded children of ssel
21: add new child sexp to ssel
22: return sexp
23: end function

24: function RollOut(s)
25: ∆← 0
26: while s is non-terminal do
27: choose randomly a child s′ of s
28: s← s′

29: end while
30: return the reward of the terminal state s
31: end function

32: function Update(s,∆)
33: while s is not null do
34: Q(s)← N(s)×Q(s)+∆

N(s)+1
35: N(s)← N(s) + 1
36: s← parent of s
37: end while
38: end function

39: function BestChild(s)
40: return arg max

s′∈ children of s
UCB(s, s′)

41: end function
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a b c

ab

∅

a b c

ab ac

∅

a b c

ab ac

∅

a b c

ab ac

∅

Select Expand RollOut Update

Select ssel, the most urgent node
according to the chosen UCB,

e.g. the UCT

Randomly choose one of the direct
specializations of ssel, noted sexp

(here a superset of {a} of cardinality 2)

Create a path p(ssel, sn) of refinements,
keep the best pattern(s) and its

quality measure Δ (or an aggregation)

Update the parents of ssel in 
the tree, N(.) is incremented by 1

and Q(.) is updated with Δ

ssel

sexp

p(ssel, sn)

Δ

Δ

ssel

Figure 4.4: A simple instanciation of MCTS for pattern mining.

The Update policy. The reward ∆ is back-propagated to the root, updating for each parent the number
of visits N(.) (incremented by 1) and the aggregation reward Q(.) (the new proportion of wins).

Example 15 Figure 4.3 depicts a MCTS iteration. Each node has no more than 2 children. In this
scenario, the search tree is already expanded: We consider the 9th iteration since 8 nodes of the tree have
been already added. The first step consists in running the Select method starting from the root node.
Based on a UCB, the selection policy chooses the left child of the root. As this node is fully expanded, the
algorithm selects a new node among the children of this node: Its right child. This selected node ssel is
not fully expanded since its left hand side child is not in the search tree yet. From this not fully expanded
node ssel, the Expand method adds the left hand side child sexp of the selected node ssel to expand the
search tree. From this added node sexp, a simulation is rolled out until reaching a terminal state. The
reward ∆ of the terminal node is back-propagated with Update.

4.4 Pattern Set Discovery with MCTS

Designing a MCTS approach for a pattern mining problem is different than for a combinatorial game:
The goal is not to decide, at each turn, what is the best action to play, but to explore the search space:
This can be considered as a single-turn single-player game. Most importantly, MCTS offers a natural
way to explore the search space of patterns with the benefit of the exploitation/exploration trade-off to
improve diversity while limiting redundancy. For example, an exhaustive search will maximize diversity,
but it will return a very large and redundant collection (if it runs). In contrast, a beam search can
extract a limited number of patterns but it will certainly lack diversity (we give empirical evidences in
our experimental results).

Before going into the formalization, let us illustrate how MCTS is applied to the pattern set discovery
problem with Figure 4.4. We consider here itemset patterns for the sake of simplicity, that is, subgroups
whose descriptions are sets of items. We present an iteration of a MCTS for a transaction database with
items I = {a, b, c}. The pattern search space is given by the lattice S = (2I ,⊆). The MCTS tree is built
in a top-down fashion on this theoretical search space: The initial pattern, or root of the tree, is the
empty set ∅. Assume that pattern ssel = {a} has been chosen by the select policy. During the expand, one
of its direct specializations in {{a, b}, {a, c}} is randomly chosen and added to the tree,e.g., sexp = {a, c}.
During the roll out, a simulation is run from this node: it generates a chain of specializations of sexp
called a path p(ssel, sn) (a chain is a set of comparable patterns w.r.t. ⊆, or � in the general case). The
quality measure ϕ is computed for each pattern of the path, and an aggregated value (max, mean, etc.)
is returned and called ∆. Finally, all parents of sexp are updated: Their visit count N(.) is incremented
by one, while their quality estimation Q(.) is recomputed with ∆ (back propagation). The new values of
N(.) and Q(.) will directly impact the selection of the next iteration when computing the chosen UCB,
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Select
Choose one of the following UCB:

UCB1 or UCB1-Tuned or SP-MCTS or UCT
Expand

direct-expand: Randomly choose the next direct expansion
gen-expand: Randomly choose the next direct expansion until it changes the extent

label-expand: Randomly choose the next direct expansion until it changes the true positives
Activate LO: Generate each pattern only once (lectic enumeration)

Activate PU: Patterns with the same support/true positive set point to the same node
RollOut

naive-roll-out: Generate a random path of direct specializations of random length.
direct-freq-roll-out: Generate a random path of frequent direct specializations.

large-freq-roll-out: Generate a random paths of undirect specializations (random jumps).
Memory

no-memory: No pattern found during the simulation is kept for the final result.
top-k-memory: Top-k patterns of a simulation are considered in memory.

all-memory: All patterns generated during the simulation are kept.
Update

max-update: Only the maximum ϕ found in a simulation is back propagated
mean-update: The average of all ϕ is back-propagated

top-k-mean-update: The average of the best k ϕ is back-propagated

Table 4.2: The different policies

and thus the desired exploration/exploitation trade off. When the budget is exceeded (or if the tree is
fully expanded), all patterns are filtered with a chosen pattern set selection strategy (filter(.)).

The expected shape of the MCTS tree after a high number of iterations is illustrated in Figure 4.1d. It
suggests a high diversity of the final pattern set if given enough budget (i.e., enough iterations). However,
how to properly define each policy (select, expand, roll out and update), is not obvious. Table 4.2 sums
up the different policies that we use or develop specifically for a pattern mining problem.

4.4.1 The Select method

The Select method has to select the most promising node ssel in terms of the exploration vs. exploitation
trade-off. For that, the well-known bounds like UCT or UCB1 can be used. However, more sophisticated
bounds have been designed for single player games. The single-player MCTS (SP-MCTS), introduced by
[144], adds a third term to the UCB to take into account the variance σ2 of the rewards obtained by the
child so far. SP-MCTS of a child s′ of a node s is:

SP-MCTS(s, s′) = Q(s′) + C

√
2 lnN(s)
N(s′) +

√
σ2(s′) + D

N(s′)

where the constant C is used to weight the exploration term (it is fixed to 0.5 in its original definition)
and the term D

N(s′) inflates the standard deviation for infrequently visited children (D is also a constant).
In this way, the reward of a node rarely visited is considered as less certain: It is still required to explore
it to get a more precise estimate of its variance. If the variance is still high, it means that the subspace
from this node is not homogeneous w.r.t. the quality measure and further exploration is needed.

Also, [16] designed UCB1-Tuned to reduce the impact of the exploration term of the original UCB1
by weighting it with either an approximation of the variance of the rewards obtained so far or the factor
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1/4. UCB1-Tuned of a child s′ of s is:

UCB1-Tuned(s, s′) = Q(s′) +

√√√√ lnN(s)
N(s′) min (1

4 , σ
2(s′) +

√
2 lnN(s)
N(s′) )

The only requirement the pattern quality measure ϕ must satisfy is, in case of UCT only, to take
values in [0, 1]: ϕ can be normalized in this case.

4.4.2 The Expand method

The Expand step consists in adding a pattern specialization as a new node in the search tree. In the
following, we present different refinement operators, and how to avoid duplicate nodes in the search tree.

4.4.2.1 The refinement operators

A simple way to expand the selected node ssel is to choose uniformly an available attribute w.r.t. ssel,
that is to specialize ssel into sexp such that sexp ≺ ssel: sexp is a refinement of ssel. It follows that
ext(sexp) ⊆ ext(ssel), and obviously supp(sexp) ≤ supp(ssel), known as the monotonocity property of the
support.

Definition 31 (Refinement operator) A refinement operator is a function ref : S → 2S that derives
from a pattern s a set of more specific patterns ref (s) such that:

(i) ∀s′ ∈ ref (s), s′ ≺ s

(ii)∀s′i, s′j ∈ ref (s), i 6= j, s′i � s′j , s
′
j � s′i

In other words, a refinement operator gives to any pattern s a set of its specializations, that are
pairwise incomparable (an anti-chain). The refine operation can be implemented in various ways given
the kind of patterns we are dealing with. Most importantly, it can return all the direct specializations only
to ensure that the exploration will, if given enough budget, explore the whole search space of patterns.
Furthermore, it is unnecessary to generate infrequent patterns.

Definition 32 (Direct-refinement operator) A direct refinement operator is a refinement operator
directRef : S → 2S that derives from a pattern s the set of direct more specific patterns s′ such that:

(i) ∀s′ ∈ directRef (s), s′ ≺ s

(ii) 6 ∃s′′ ∈ S s.t. s′ ≺ s′′ ≺ s

(iii) For any s′ ∈ directRef (s), s′ is frequent, that is supp(s′) ≥ minSupp

The notion of direct refinement is well known in pattern mining. For instance, the only way to refine a
nominal (resp. Boolean) attribute is to assign it a value of its domain (resp. the true value). Refining an
itemset consists in adding a item, while refining a numerical attribute can be done in two ways: Applying
the minimal left change (resp. right change), that is, increasing the lower bound of the interval to the
next higher value in its domain (resp. decreasing the upper bound to the next lower) as explained by
[90]. We still use the term restriction to denote the operations that create a direct refinement of pattern.

Definition 33 (The direct-expand strategy) We define the direct-expand strategy as follows: From
the selected node ssel, we randomly pick a – not yet expanded – node sexp from directRef(ssel) and add
it in the search tree.
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As most quality measures ϕ used in SD and EMM are solely based on the extent of the patterns,
considering only one pattern among all those having the same extent is enough. However, with the
direct-refinement operator, a large number of tree nodes may have the same extent as their parent. This
redundancy may bias the exploration and more iterations will be required. For that, we propose to use
the notion of closed patterns and their generators.

Definition 34 (Closed descriptions and their generators) The equivalence class of a pattern s is
given by [s] = {s′ ∈ S | ext(s) = ext(s′)}. Each equivalence class has a unique smallest element w.r.t. ≺
that is called the closed pattern: s is said to be closed iff 6 ∃s′ such that s′ ≺ s and ext(s) = ext(s′). The
non-closed patterns are called generators.

Definition 35 (Generator-refinement operator) A generator refinement operator is a refinement
operator genRef : S → 2S that derives from a pattern s the set of more specific patterns s′ such that,
∀s′ ∈ genRef (s):

(i) s′ 6∈ [s] (different support)

(ii) 6 ∃s′′ ∈ S\genRef (s) s.t. s′′ 6∈ [s], s′′ 6∈ [s′], s′ ≺ s′′ ≺ s (direct next equivalence class)

(iii) s′ is frequent, that is supp(s′) ≥ minSupp (frequent)

Definition 36 (The gen-expand strategy) To avoid the exploration of patterns with the same extent
in a branch of the tree, we define the min-gen-expand strategy as follows: From the selected node ssel, we
randomly pick a – not yet expanded – refined pattern from genRef (ssel), called sexp, and add it to the
search tree.

Finally, when facing a SD problem whose aim is to characterize a label l ∈ C we can adapt the
previous refinement operator based on generators on the extents of both the subgroup and the label. As
many other measures, the WRAcc seeks to optimize the (weighted relative) precision or accuracy of the
subgroup. The accuracy is the ratio of true positives in the extent. We propose thus, for this kind of
measures only, the label-expand strategy: Basically, the pattern is refined until the set of true positives
in the extent changes. This minor improvement performs very well in practice as pointed our in our
experimental evaluation.

4.4.2.2 Avoiding duplicates in the search tree

We defined several refinement operators to avoid the redundancy within a branch of the tree, i.e., do
not expand ssel with a pattern whose extent is the same because the quality measure ϕ will be equal.
However, another redundancy issue remains at the tree scale. Indeed, since the pattern search space is
a lattice, a pattern can be generated in nodes from different branches of the Monte Carlo tree, that is,
with different sequences of refinements, or simply permutations of refinements. As such, it will happen
that a part of the search space is sampled several times in different branches of the tree. However, the
visit count N(s) of a node s will not count visits of other nodes that denote exactly the same pattern:
The UCB is clearly biased. To tackle this aspect, we implement two methods: (i) Using a lectic order
or (ii) detecting and unifying the duplicates within the tree. These two solutions can be used for any
refinement operator. Note that enabling both these solutions at the same tame is useless since each of
them ensures to avoid duplicates within the tree.

Avoiding duplicates in the tree using a lectic order (LO).
Pattern enumeration without duplicates is at the core of constraint-based pattern-mining [[33]]. Avoid-

ing to generate patterns with the same extent is usually based on a total order on the set of attribute
restrictions. This poset is written by (R,l).
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Example 16 For instance, considering itemset patterns, R = I and a lectic order, usually the lexico-
graphic order, is chosen on I: al bl cl d for I = {a, b, c, d} and bcl ad. Consider that a node s has
been generated with a restriction ri: we can expand the node only with restrictions rj such that ri l rj.
This total order also holds for numerical attributes by considering the minimal changes (see the work of
[90] for further details).

We can use this technique to enumerate the lattice with a depth-first search (DFS), which ensures that
each element of the search space is visited exactly once. An example is given in Figure 4.5. However, it
induces a strong bias: An MCTS algorithm would sample this tree instead of sampling the pattern search
space. In other words, a small restriction w.r.t. l has much less chances to be picked than a largest one.
Going back to the example in Figure 4.5 (middle), the item a can be drawn only once through a complete
DFS; b twice; while c four times (in bold). It follows that patterns on the left hand side of the tree
have less chances to be generated, e.g., prob({a, b}) = 1/6 while prob({b, c}) = 1/3. These two itemsets
should however have the same chance to be picked as they have the same size. This disequilibrium can be
corrected by weighting the visit counts in the UCT with the normalized exploration rate (see Figure 4.5
(right)).

Definition 37 (Normalized exploration rate) Let S be the set of all possible patterns. The normal-
ized exploration rate of a pattern s is,

ρnorm(s) = Vtotal(s)
Vlectic(s)

= |{s′|s′ � s,∀s′ ∈ S}|
|{s′|(sl s′ ∧ s′ ≺ s) ∨ s = s′,∀s′ ∈ S}|

Given this normalized exploration rate, we can adapt the UCBs when enabling the lectic order. For
example, we can define the DFS-UCT of a child s′ of a pattern s derived from the UCT as follows:

DFS-UCT(s, s′) = Q(s′) + 2Cp

√
2 ln (N(s) · ρnorm(s))
N(s′) · ρnorm(s′)

Proposition 11 (Normalized exploration rate for itemsets) For itemsets, let si be the child of s
obtained by playing action ri and i is the rank of ri in (R,l): ρnorm(si) = 2(|I|−|si|)

2(|I|−i−1) .

Proof 7 Let Vlectic(si) be the size of the search space sampled under si using a lectic enumeration, and
Vtotal(si) be the size of the search space without using a lectic enumeration. Noting Vtotal(si) = 2(|I|−|si|)

and Vlectic(si) = 2(|I|−i−1) for itemsets, we have ρnorm(si) = Vtotal(si)
Vlectic(si) = 2(|I|−|si|)

2(|I|−i−1) .

Proposition 12 (Normalized exploration rate for a numerical attribute) For a single numeri-
cal attribute a, ρnorm(.) is defined as follows :

• Let s′ = 〈αi ≤ a ≤ αj〉 obtained after a left change: ρnorm(s′) = 1.

• Let s′ = 〈αi ≤ a ≤ αj〉 obtained after a right change. Let n be the number of values from Dom(a)
in [αi, αj ]: ρnorm(s′) = n+1

2 .

Proof 8 As explained in the proof of (Proposition 11), ρnorm(s) = Vtotal(s)
Vlectic(s) . For a numerical attribute,

Vtotal(s) = n(n + 1)/2, i.e. the number of all sub intervals. If s was obtained after a left change,
Vlectic(s) = n(n + 1)/2 as both left and right changes can be applied. If s was obtained after a right
change, Vlectic(s) = n, as only n right changes can be applied. It follows that ρnorm(s) = n(n+1)/2

n(n+1)/2 = 1 if
s was obtained from a left change and ρnorm(s) = n(n+1)/2

n = n+1
2 otherwise.
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Figure 4.5: Search space as a lattice (left), DFS of the search space (middle), and the principles of the normalized
exploration rate.

Avoiding duplicates in the tree using permutation unification (PU).
The permutation unification is a solution that enables to keep a unique node for all duplicates of a

pattern that can be expanded within several branches of the tree. This is inspired from Permutation
AMAF of [78], a method used in traditional MCTS algorithms to update all the nodes that can be
concerned by a play-out. A unified node no longer has a single parent but a list of all duplicates’ parent.
This list will be used when back-propagating a reward.

This is detailed in Algorithm 6. Consider that the node sexp has been chosen as an expansion of the
selected node ssel. The tree generated so far is explored for finding sexp elsewhere in the tree: If sexp is
not found, we proceed as usual; otherwise sexp becomes a pointer to the duplicate node in the tree. In
our MCTS implementation, we will simply use a hash map to store each pattern and the node in which
is has been firstly encountered.

Algorithm 6 The permutation unification principle.
1: H ← new Hashmap()
2: function Expand(ssel)
3: randomly choose sexp from non expanded children of ssel
4: if (node← H.get(sexp)) 6= null then
5: node.parents.add(ssel)
6: sexp ← node
7: else
8: sexp.parents← new List()
9: sexp.parents.add(ssel)
10: H.put(sexp, sexp) . A pointer on the unique occurrence of sexp
11: end if
12: add new child sexp to ssel in the tree . Expand ssel with sexp
13: return sexp
14:end function

4.4.3 The RollOut method

From the expanded node sexp a simulation is run (RollOut). With standard MCTS, a simulation is
a random sequence of actions that leads to a terminal node: A game state from which a reward can be
computed (win/loss). In our settings, it is not only the leaves that can be evaluated, but any pattern
s encountered during the simulation. Thus, we propose to define the notion of path (the simulation)
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and reward computation (which nodes are evaluated and how these different rewards are aggregated)
separately.

Definition 38 (Path policy) Let s1 the node from which a simulation has to be run (i.e., s1 = sexp).
Let n ≥ 1 ∈ N, we define a path p(s1, sn) = {s1, . . . , sn} as a chain in the lattice (S,≺), i.e., an ordered
list of patterns starting from s1 and ending with sn such that ∀i ∈ {1, . . . , n−1}, si+1 is a (not necessarily
direct) refined pattern of si.

• naive-roll-out: a path of direct refinements is randomly created with length pathLength ∈ N+ a
user-defined parameter.

• direct-freq-roll-out: The path is extended with a randomly chosen restriction until it meets an in-
frequent pattern sn+1 using the direct refinement operator. Pattern sn is a leaf of the tree in our
settings.

• large-freq-roll-out overrides the direct-freq-roll-out policy by using specializations that are not nec-
essarily direct. Several actions are added instead of one to create a new element of the path. The
number of added actions is randomly picked in (1, ..., jumpLength) where jumpLength is given by
the user (jumpLength = 1 gives the previous policy). This techniques allows to visit deep parts of
the search space with shorter paths.

Definition 39 (Reward aggregation policy) Let s1 be the node from which a simulation has been
run and p(s1, sn) the associated random path. Let E ⊆ p(s1, sn) be the subset of nodes to be evaluated.
The aggregated reward of the simulation is given by: ∆ = aggr({ϕ(s)∀s ∈ E}) ∈ [0; 1] where aggr is an
aggregation function. We define several reward aggregation policies:

• terminal-reward: E = {sn} and aggr is the identity function.

• random-reward: E = {si} with a random 1 ≤ i ≤ n and aggr is the identity function.

• max-reward: E = p(s1, sn) and aggr is the max(.) function

• mean-reward: E = p(s1, sn) and aggr is the mean(.) function.

• top-k-mean-reward: E = top-k(p(s1, sn)), aggr is the mean(.) function and top-k(.) returns the k
elements with the highest ϕ.

A basic MCTS forgets any state encountered during a simulation. This is not optimal for single player
games as relate [26]: A pattern with a high ϕ should not be forgotten as we might not expand the tree
enough to reach it. We propose to consider several memory strategies.

Definition 40 (Roll-out memory policy) A roll-out memory policy specifies which of the nodes of
the path p = (s1, sn) shall be kept in an auxiliary data structure M .

• no-memory: Any pattern in E is forgotten.

• all-memory: All evaluated patterns in E are kept.

• top-k-memory: A list M stores the best k patterns in E w.r.t. ϕ(.).

This structure M will be used to produce the final pattern set.
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4.4.4 The Update method

The backpropagation method updates the tree according to a simulation. Let ssel be the selected node
and sexp its expansion from which the simulation is run: This step aims at updating the estimation Q(.)
and the number of visits N(.) of each parent of sexp recursively. Note that sexp may have several parents
when we enable permutation unification (PU). The number of visits is always incremented by one. We
consider three ways of updating Q(.):

• mean-update: Q(.) is the average of the rewards ∆ back-propagated through the node so far (basic
MCTS).

• max-update: Q(.) is the maximum reward ∆ back-propagated through the node so far. This strategy
enables to identify a local optimum within a part of the search space that contains mostly of
uninteresting patterns. Thus, it gives more chance for this area to be exploited in the next iterations.

• top-k-mean-update: Q(.) average of the k best rewards ∆ back-propagated through the node so far.
It gives a stronger impact for the parts of the search space containing several local optima.

mean-update is a standard in MCTS techniques. We introduce the max-update and top-k-mean-update
policies as it may often happen that high-quality patterns are rare and scattered in the search space.
The mean value of rewards from simulations would converge towards 0 (there are too many low quality
subgroups), whereas the maximum value (and top-k average) of rewards enables to identify the promising
parts of the search space.

4.4.5 Search end and result output

There are two ways a MCTS ends: Either the computational budget is reached (number of iterations) or
the tree is fully expanded (an exhaustive search has been possible, basically when the size of the search
space is smaller than the number of iterations). Indeed, the number of tree nodes equals the number of
iterations that have been performed. It remains now to explore this tree and the data structure M built
by the memory policy to output the list of diverse and non-redundant patterns.

Let P = T ∪M be a pool of patterns, where T is the set of patterns stored in the nodes of the tree. The
set P is totally sorted w.r.t. ϕ in a list Λ. Thus, we have to pick the k-best diverse and non-redundant
subgroups within this large pool of nodes Λ to return the result set of subgroups R ⊆ P. For that, we
choose to implement filter(.) in a greedy manner as done by[159, 31]. R = filter(P) as follows: A
post-processing that filters out redundant subgroups from the diverse pool of patterns Λ based on the
similarity measure sim and the maximum similarity threshold Θ. Recursively, we poll (and remove) the
best subgroup s∗ from Λ, and we add s∗ to R if it is not redundant with any subgroup in R. It can be
shown easily that redundancy(R) = 0.

Applying filter(.) at the end of the search requires however that the pool of patterns P has a
reasonable cardinality which may be problematic with MCTS in term of memory. The allowed budget
always enables such post-processing in our experiments (up to one million iterations).

4.5 Conclusion

Our MCTS implementation for pattern mining, called mcts4dm is publicly available5. We end this
chapter by a summary of a deep empirical study reported [30]

First, we experimented with the several strategies we defined for our algorithm mcts4dm. Our
recommendations are the following:

5https://github.com/guillaume-bosc/MCTS4DM
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• Select: Concerning the choice of the upper confidence bound, it seems more suitable to use the
SP-MCTS for SD problems, although it has a limited impact. Activating LO leads to worse results,
but with PU we are able to get more interesting patterns. This is a quite interesting fact as LO is
a widely used technique in pattern mining (enumerate each pattern only once with a lectic order).

• Expand: We advise to use the label-gen strategy that enables to reach more quickly the best
patterns, but it can require more computational time.

• RollOut: For nominal attributes, the direct-freq-roll-out is an efficient strategy. However, when
facing numerical attributes, we recommend to employ the large-freq-roll-out since it may require a
lot of time to reach the maximal frequent patterns.

• Memory: Using a memory strategy is essential since it enables to store the patterns encountered
during the RollOut step. The top-1-memory is enough to avoid to miss interesting patterns that
are located deeper in the search space.

• Update: When there are potentially many local optima in the search space, we recommend to
set the mean-update strategy for the Update step. Indeed it enables to exploit the areas that
are deemed to be interesting in average. However, when there are few local optima among lots
of uninteresting patterns, using mean-update is not optimal since the mean of the rewards would
converge to 0. In place, the max-update should be used to ensure that an area containing a local
optima is well identified.

Our second batch of experiments compared mcts4dm with the main existing approaches for SD. For
that, we experimented with one of the most efficient exhaustive search in SD, namely SD-Map*, a beam
search, the recent evolutionary algorithm SSDP and a sampling method implemented in the algorithm
Misere. The results suggest that mcts4dm leads, in general, to a more diverse result set when an
exhaustive search is not tractable. The greedy property of the beam search leads to a low diversity in the
result set, and the lack of memory in sampling methods avoid to exploit interesting patterns to find the
local optima (a pattern may be drawn several times). There is no guarantee that evolutionary algorithms
and sampling approaches converge to the optimal pattern set even with an infinite computational budget.

MCTS comes with several advantages but has some limits:

+ It produces a good pattern set anytime and it converges to an exhaustive search if given enough
time and memory (a best-first search).

+ It is agnostic of the pattern language and the quality measures: It handles numerical patterns
without discretization in a pre-processing step and it still provides a high diversity using several
quality measures.

+ mcts4dm is aheuristic: No hypotheses are required to run the algorithm whereas with some sam-
pling methods, a probability distribution (based on the quality measure and the pattern space) has
to be given as a parameter.

- mcts4dm may require a lot of memory. This memory usage becomes more and more important
with the increase of the number of iterations.

- Despite the use of UCB, it is now well known that MCTS algorithms explore too much the search
space. As MCTS basically requires to expand all the children of a node before exploiting one of
them, this problem is even stronger when dealing with very high branching factor (number of direct
specializations of a pattern). This problem has been in part tackled by the progressive widening
approach that enables to exploit a child of a node before all of the other children of the node have
been expanded [67, 36].

Heuristic search of supervised patterns becomes mandatory with large datasets. However, classical
heuristics lead to a weak diversity in pattern sets: Only few local optima are found. We advocate for
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the use of MCTS for pattern mining: An exploration strategy leading to “any-time" pattern mining that
can be adapted with different measures and policies. The experiments show that MCTS provides a much
better diversity in the result set than existing heuristic approaches. For instance, interesting subgroups
are found by means of a reasonable amount of iterations and the quality of the result iteratively improves.

MCTS is a powerful exploration strategy that can be applied to several, if not all, pattern mining
problems that need to optimize a quality measure given a subset of objects. For example, in a previous
chapter, we have already tuned MCTS4DM for mining convex polygon patterns in numerical data [22].

In general, the main difficulties are to be able to deal with large branching factors, and jointly deal
with several quality measures. This opens new research perspectives for mining more complex patterns
such as sequences and graphs.

We obtain a first result with sequential pattern mining. In that case, the pattern search space is such
that we cannot even afford to sample it directly. Instead, we chose to sample the space of object sets:
the method becomes (almost) language agnostic and support-based pattern quality measures are easier
to compute. A preliminary result can be found in [115] where a (very) simple bandit technique is used
to sample sequential subgroups with promising results.
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Chapter 5

Anytime Subgroup Discovery in
Numerical Domains with Guarantees

One of the main motivation of investigating MCTS for pattern discovery (presented in the previous
chapter) was actually the difficulty, but attractiveness of considering the set of all interval patterns. It
is attractive, as it guarantees us to find the best patterns. It is difficult because most of the existing
approaches are based either on a greedy selection of the intervals, either on an exhaustive search that
is not applicable on large dataset. MCTS offers us the guarantee to be exhaustive if enough budget is
given, but one cannot expect a budget that is sufficient enough and has to interrupt the search at some
point. At interruption, we do have no idea on how far we are from the optimal solution. Moreover, the
interval pattern generation (shrinking direct left and right values) makes that we need to sample very
deeply the search space so that interesting intervals can be found (“not degenerated, but not too large”).
It results that the search tree can be extremely large at some point. We thus concentrated our effort (i)
a better exploration strategy for numerical patterns, (ii) the search for guarantees that tell us, e.g., “how
far are we from the end of the (exhaustive) search”.

In this chapter, we present a first step. We design an algorithm for mining numerical data with
three key properties w.r.t. the state of the art: (i) It yields progressively interval patterns whose quality
improves over time; (ii) It can be interrupted anytime and always gives a guarantee bounding the error on
the top pattern quality and (iii) It always bounds a distance to the exhaustive exploration. After reporting
experimentations showing the effectiveness of our method, we discuss its generalization to other kinds of
patterns.

5.1 Introduction

We address the problem of discovering patterns that accurately discriminate one class label from the others
in a numerical dataset. Subgroup discovery (SD) [167] is a well established pattern mining framework
which strives to find out data regions uncovering such interesting patterns. When it comes to numerical
attributes, a pattern is generally a conjunction of restrictions over the attributes, e.g., pattern 50 ≤
age < 70∧ smoke_per_day ≥ 3 fosters lung cancer incidence. To look for such patterns (namely interval
patterns), various approaches are usually implemented. Common techniques perform a discretization
transforming the numerical attributes to categorical ones in a pre-processing phase before using the wide
spectrum of existing mining techniques [15, 159, 110, 28]. This leads, however, to a loss of information
even if an exhaustive enumeration is performed on the transformed data [15]. Other approaches explore
the whole search space of all restrictions either exhaustively [90, 73, 37] or heuristically [113, 30]. While an
exhaustive enumeration is generally unfeasible in large data, the various state-of-the-art algorithms that
heuristically explore the search space provide no provable guarantee on how they approximate the top
quality patterns and on how far they are from an exhaustive search. Recent techniques set up a third and
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elegant paradigm, that is direct sampling approaches [28, 29, 70]. Algorithms falling under this category
are non-enumerative methods which directly sample solutions from the pattern space. They simulate a
distribution which rewards high quality patterns with respect to some interestingness measure. While
[28, 29] propose a direct two-step sampling procedure dedicated for categorical/boolean datasets, authors
in [70] devise an interesting framework which add a third step to handle the specificity of numerical data.
The proposed algorithm addresses the discovery of dense neighborhood patterns by defining a new density
metric. Nevertheless, it does not consider the discovery of discriminant numerical patterns in labeled
numerical datasets. Direct sampling approaches abandon the completeness property and generate only
approximate results. In contrast, anytime pattern mining algorithms [30, 80] are enumerative methods
which exhibits the anytime feature [174], a solution is always available whose quality improves gradually
over time and which converges to an exhaustive search if given enough time, hence ensuring completeness.
However, to the best of our knowledge, no existing anytime algorithm in SD framework, makes it possible
to ensure guarantees on the patterns discriminative power and the remaining distance to an exhaustive
search while taking into account the nature of numerical data.

To achieve this goal, we propose a novel anytime algorithm, RefineAndMine, tailored for discrim-
inant interval patterns discovery in numerical data. It starts by mining interval patterns in a coarse
discretization, followed by successive refinements yielding increasingly finer discretizations highlighting
potentially new interesting patterns. Eventually, it performs an exhaustive search, if given enough time.
Additionally, our method gives two provable guarantees at each refinement. The first evaluates how close
is the best found pattern so far to the optimal one in the whole search space. The second measures how
already found patterns are diverse and cover well all the interesting regions in the dataset.

The outline is as follows. We recall in Sec. 5.2 basic definitions. Next, we define formally the problem in
Sec. 5.3. Subsequently We introduce in Sec. 5.4 our mining algorithm before formulating the guarantees it
provides in Sec. 5.5. An empirical evaluation can be found in the original article. We discuss its potential
improvements in Sec. 5.6. Additional materials are available in our companion page6. For more details,
please refer to the supplementary material7.

5.2 Preliminaries

Input. A labeled numerical dataset (G,M) is given by a finite set (of objects) G partitioned into two
subsets G+ and G− enclosing respectively positive (target) and negative instances; and a sequence of
numerical attributes M = (mi)1≤i≤p of size p = |M|. Each attribute mi is an application mi : G → R
that associates to each object g ∈ G a value mi(g) ∈ R. We can also see M as a mapping M : G →
Rp, g 7→ (mi(g))1≤i≤p. We denote mi[G] = {mi(g) | g ∈ G} (More generally, for a function f : E → F and
a subset A ⊆ E, f [A] = {f(e) | e ∈ A}). Fig. 5.1 (left table) presents a 2-dimensional labeled numerical
dataset and its representation in the Cartesian plane (filled dots represent positive instances).

Interval patterns and their extents. When dealing with numerical domains in SD, we generally
consider for intelligibility interval patterns [90]. An Interval pattern is a conjunction of restrictions over
the numerical attributes; i.e. a set of conditions attribute ≷ v with ≷∈ {=,≤, <,≥, >}. Geometrically,
interval patterns are axis-parallel hyper-rectangles. Fig. 5.1 (center-left) depicts pattern (non-hatched
rectangle) c2 = (1 ≤ m1 ≤ 4) ∧ (0 ≤ m2 ≤ 3) , [1, 4]× [0, 3].

Interval patterns are naturally partially ordered thanks to “hyper-rectangle inclusion”. We denote
the infinite partially ordered set (poset) of all interval patterns by (D,v) where v (same order used in
[90]) denotes the dual order ⊇ of hyper-rectangle inclusion. That is pattern d1 v d2 iff d1 encloses d2
(d1 ⊇ d2). It is worth mentioning that (D,v) forms a complete lattice [141]. For a subset S ⊆ D, the
join

⊔
S (i.e. smallest upper bound) is given by the rectangle intersection. Dually, the meet

d
S (i.e the

largest lower bound) is given by the smallest hyper-rectangle enclosing all patterns in S. Note that the
top (resp. bottom) pattern in (D,v) is given by > = ∅ (resp. ⊥ = Rp). Fig. 5.1 (right) depicts two

6https://github.com/Adnene93/RefineAndMine
7https://goo.gl/NWtXfp
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patterns (hatched) e1 = [1, 5]×(1, 4] and e2 = [0, 4)×[2, 6], their meet (non hatched) e1ue2 = [0, 5]×(1, 6]
and their join (black) e1 t e2 = [1, 4)× [2, 4].

A pattern d ∈ D is said to cover an object g ∈ G iff M(g) ∈ d. To use the same order v to
define such a relationship, we associate to each g ∈ G its corresponding pattern δ(g) ∈ D which is the
degenerated hyper-rectangle δ(g) = {M(g)} = ×p

i=1[mi(g),mi(g)]. The cover relationship becomes
d v δ(g). The extent of a pattern is the set of objects supporting it. Formally, there is a function
ext : D → ℘(G), d 7→ {g ∈ G | d v δ(g)} = {g ∈ G | M(g) ∈ d} (where ℘(G) denotes the set of all subsets
of G). Note that if d1 v d2 then ext(d2) ⊆ ext(d1). We define also the positive (resp. negative) extent
as follows: ext+(d) = ext(d) ∩ G+ (resp. ext−(d) = ext(d) ∩ G−). With the mapping δ : G → D and the
complete lattice (D,v), we call the triple P = (G, (D,v), δ) the interval pattern structure [90, 62].

Measuring the discriminative power of a pattern. In SD, a quality measure φ : D → R is usually
defined to evaluate at what extent a pattern well-discriminates the positive instances in G+ from those
in G−. Two atomic measures are generally employed to quantify the quality of a pattern d: the true
positive rate tpr : d → |ext+(d)|/|G+| and the false positive rate fpr : d → |ext−(d)|/|G−|. Several
measures exist in the literature [68, 106]. A measure is said to be objective or probability based [68] if
it depends solely on the number of co-occurrences and non co-occurrences of the pattern and the target
label. In other words, those measures can be defined using only tpr, fpr and potentially other constants
(e.g. |G|). Formally, ∃φ∗ : [0, 1]2 → R s.t. φ(d) = φ∗(tpr(d), fpr(d)). Objective measures depends only
on the pattern extent. Hence, we use interchangeably φ(ext(d)) and φ(d). An objective quality measure
φ is said to be discriminant if its associated measure φ∗ is increasing with tpr (fpr being fixed) and
decreasing with fpr (tpr being fixed). For instance, with α+ = |G+|/|G| and α− = |G−|/|G| denoting
labels prevalence, wracc∗(tpr, fpr) = α+ · α− · (tpr− fpr) and informedness∗(tpr, fpr) = tpr− fpr are
discriminant measures.

Compressing the set of interesting patterns using closure. Since discriminant quality measures
depend only on the extent, closed patterns can be leveraged to reduce the number of resulting patterns
[62]. A pattern d ∈ D is said to be closed (w.r.t. pattern structure P) if and only if it is the most restrictive
pattern (i.e. the smallest hyper-rectangle) enclosing its extent. Formally, d = int(ext(d)) where int map-
ping (called intent) is given by: int : ℘(G) → D, A 7→

d
g∈A δ(g) =×p

i=1[ming∈Ami(g),maxg∈Ami(g)].
Fig. 5.1 (center-left) depicts the closed interval pattern (hatched rectangle) c1 = [1, 2] × [1, 3] which is
the closure of c2 = [1, 4]× [0, 3] (non hatched rectangle). Note that since G is finite, the set of all closed
patterns is finite and is given by int[℘(G)].

A more concise set of patterns using Relevance theory. Fig. 5.1 (center-right) depicts two
interval patterns, the hatched pattern d1 = [1, 2] × [1, 3] and the non-hatched one d2 = [1, 4] × [1, 4].
While both patterns are closed, d1 has better discriminative power than d2 since they both cover exactly
the same positive instances {g1, g2, g3}; yet, d2 covers more negative instances than d1. Relevance theory
[66] formalizes this observation and helps us to remove some clearly uninteresting closed patterns. In a
nutshell, a closed pattern d1 ∈ D is said to be more relevant than a closed pattern d2 ∈ D iff ext+(d2) ⊆
ext+(d1) and ext−(d1) ⊆ ext−(d2). For φ discriminant, if d1 is more relevant than d2 then φ(d1) ≥ φ(d2).
A closed pattern d is said to be relevant iff there is no other closed pattern c that is more relevant than d.

m1 m2 label
g1 1 2 +
g2 1 3 +
g3 2 1 +
g4 3 5 +
g5 2 4 −
g6 2 5 −
g7 3 4 −
g8 4 4 −
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Figure 5.1: (left to right) (1) a labeled numerical dataset. (2) closed c1 vs non-closed c2 interval patterns.
(3) cotp d1 vs non cotp d2. (4) meet and join of two patterns.
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It follows that if a closed pattern is relevant then it is closed on the positive (cotp for short). An interval
pattern is said to be cotp if any smaller interval pattern will at least drop one positive instance (i.e.
d = int(ext+(d))). interestingly, int◦ext+ is a closure operator on (D,v). Fig. 5.1 (center-right) depicts
a non cotp pattern d2 = [1, 4] × [1, 4] and its closure on the positive d1 = int(ext+(d2)) = [1, 2] × [1, 3]
which is relevant. Note that not all cotp are relevant. The set of cotp patterns is given by int[℘(G+)].
We call relevant (resp. cotp) extent, any set A ⊆ G s.t. A = ext(d) with d is a relevant (resp. cotp)
pattern. The set of relevant extents is denoted by R.

5.3 Problem Statement

Correct enumeration of relevant extents. First, consider the (simpler) problem of enumerating all
relevant extents in R. For a (relevant extents) enumeration algorithm, three properties need generally to
hold. An algorithm which output is the set of solutions S is said to be (1) complete if S ⊇ R, (2) sound
if S ⊆ R and (3) non redundant if each solution in S is outputted only once. It is said to be correct if
the three properties hold. Guyet et al. [75] proposed a correct algorithm that enumerate relevant extents
induced by the interval pattern structure in two steps: (1) Start by a DFS complete and non redundant
enumeration of all cotp patterns (extents) using MinIntChange algorithm [90]; (2) Post-process the found
cotp patterns by removing non relevant ones using [66] characterization (this step adds the soundness
property to the algorithm).

Problem Statement. Given a discriminant objective quality measure φ, we want to design an anytime
enumeration algorithm such that: (1) given enough time, outputs all relevant extents in R, (2) when
interrupted, provides a guarantee bounding the difference of quality between the top-quality found extent
and the top possible quality w.r.t. φ; and (3) outputs a second guarantee ensuring that the resulting
patterns are diverse.

Formally, let Si be the set of outputted solutions by the anytime algorithm at some step (or instant)
i (at i + 1 we have Si ⊆ Si+1). We want that (1) when i is big enough, Si ⊇ R (only completeness is
required). For (2) and (3), we define two metrics8 to compare the results in Si with the ones in R. The
first metric, called accuracy (eq. 5.1), evaluates the difference between top pattern quality φ in Si and
R while the second metric, called specificity (eq. 5.2), evaluates how diverse and complete are patterns
in Si.

accuracyφ(Si,R) = sup
A∈R

φ(A)− sup
B∈Si

φ(B) (5.1)

specificity(Si,R) = sup
A∈R

inf
B∈Si

(|A∆B|/|G|) (5.2)

The idea behind specificity is that each extent A inR is “approximated" by the most similar extent in
Si; that is the set B ∈ Si minimizing the metric distance A,B 7→ |A∆B|/|G| in ℘(G). The specificity9

is then the highest possible distance (pessimistic). Note that specificity(Si,R) = 0 is equivalent to
Si ⊇ R. Clearly, the lower these two metrics are, the closer we get to the desired output R. While
accuracyφ and specificity can be evaluated when a complete exploration of R is possible, our aim is to
bound the two aforementioned measures independently from R providing a guarantee. In other words,
the anytime algorithm need to output additionally to Si, the two following measures: (2) accuracyφ(Si)
and (3) specificity(Si) s.t. accuracyφ(Si,R) ≤ accuracyφ(Si) and specificity(Si,R) ≤ specificity(Si).
These two bounds need to decrease overtime providing better information on R through Si.

5.4 Anytime Interval Pattern Mining

Discretizations and pattern space. Our algorithm relies on the enumeration of a chain of dis-
cretization from the coarsest to the finest. A discretization of R is any partition of R using intervals. In

8The metrics names fall under the taxonomy of [174] for anytime algorithms.
9The specificity is actually a directed Hausdorff distance [81] from R to Si.
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Figure 5.2: (left) Discretization dr((C1, C2)) in R2 with C1 = {2, 3} and
C2 = {4, 5} and (right) discretization dr((C2)) in R. Adding a cut point
in any Ck will create finer discretization.

particular, let C = {ci}1≤i≤|C| ⊆ R be a finite set with ci < ci+1 for i ∈ {1, ..., |C| − 1}. Element of C
are called cut points or cuts. We associate to C a finite discretization denoted by dr(C) and given by
dr(C) = {(−∞, c1)} ∪ {[ci, ci+1) | i ∈ {1, ..., |C| − 1]}} ∪

{
[c|C|,+∞)

}
.

Generally speaking, let p ∈ N∗ and let C = (Ck)1≤k≤p ∈ ℘(R)p representing sets of cut points
associated to each dimension k (i.e. Ck ⊆ R finite ∀k ∈ {1, ..., p}). The partition dr(C) of Rp is
given by: dr(C) =

∏p
k=1 dr(Ck). Fig. 5.2 depicts two discretizations. Discretizations are ordered

using the natural order between partitions10. Moreover, cut-points sets are ordered by ≤ as follows:
C1 ≤ C2 ≡ (∀k ∈ {1, ..., p}) C1

k ⊆ C2
k with Ci = (Cik)1≤k≤p. Clearly, if C1 ≤ C2 then discretization

dr(C1) is coarser than dr(C2).
Let C = (Ck)1≤k≤p be the cut-points. Using the elementary hyper-rectangles (i.e. cells) in the

discretization dr(C), one can build a (finite) subset of descriptions DC ⊆ D which is the set of all possible
descriptions (hyper-rectangles) that can be built using these cells. Formally: DC = {

d
S | S ⊆ dr(C)}.

Note that > = ∅ ∈ DC since
d
∅ =

⊔
D = > by definition. Proposition 13 states that (DC ,v) is a

complete sub-lattice of (D,v).

Proposition 13 (DC ,v) is a finite (complete) sub-lattice of (D,v) that is: ∀d1, d2 ∈ DC : d1 t d2 ∈
DC and d1 u d2 ∈ DC . Moreover, if C1 ≤ C2 are two cut-points sets, then (DC1 ,v) is a (complete)
sub-lattice of (DC2 ,v).

Finest discretization for a complete enumeration of relevant extents. There exist cut points
C ⊆ ℘(R)p such that the space (DC ,v) holds all relevant extents (i.e. ext[DC ] ⊇ R). For instance, if we
consider C = (mk[G])1≤k≤p, the description space (DC ,v) holds all relevant extents. However, is there
coarser discretization that holds all the relevant extents? The answer is affirmative. One can show that
the only interesting cuts are those separating between positive and negative instances (called boundary
cut-points by [57]). We call such cuts, relevant cuts. They are denoted by Crel = (Crelk )1≤k≤p and we have
ext[DCrel ] ⊇ R. Formally, for each dimension k, a value c ∈ mk[G] is a relevant cut in Crelk for attribute
mk iff: (c ∈ mk[G+] and prev(c,mk[G]) ∈ mk[G−]) or (c ∈ mk[G−] and prev(c,mk[G]) ∈ mk[G+]) where
next(c, A) = inf{a ∈ A | c < a} (resp. prev(c, A) = sup{a ∈ A | a < c}) is the following (resp. preceding)
element of c in A. Finding relevant cuts Crelk is of the same complexity of sorting mk[G] [57]. In the
dataset depicted in Fig. 5.1, relevant cuts are given by Crel = ({2, 3, 4, 5}, {4, 5}). Discretization dr(Crel2 )
is depicted in Fig. 5.2 (center).

10Let E be a set, a partition P2 of E is finer than a partition P1 (or P1 is coarser than P2) and we denote P1 ≤ P2 if
any subset in P1 is a subset of a subset in P2.
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Anytime enumeration of relevant extents. We design an anytime and interruptible algorithm
dubbed RefineAndMine. This method, presented in Algorithm 7, relies on the enumeration of a chain
of discretizations on the data space, from the coarsest to the finest. It begins by searching relevant cuts
in pre-processing phase (line 2). Then, it builds a coarse discretization (line 3) containing a small set of
relevant cut-points. Once the initial discretization built, cotp patterns are mined thanks to MinIntChange
Algorithm (line 4) [90]. Then as long as the algorithm is not interrupted (or within the computational
budget), we add new cut-points (line 6) building finer discretizations. For each added cut-point (line 8),
only new interval patterns are searched for (mined descriptions d are new but their extents ext(d) are
not necessarily new) . That is cotp patterns which left or right bound is cut on the considered attribute
attr (i.e. d.Iattr ∈ {[cut, a), [cut,+∞), [a, cut), (−∞, cut) | a ∈ Ccurattr} with d.Iattr is the attrth interval
of d). This can be done by a slight modification of MinIntChange method. RefineAndMine terminates
when the set of relevant cuts is exhausted (i.e. Ccur = Crel) ensuring a complete enumeration of relevant
extents R.

The initial discretization (Line 3) can be done by various strategies (see [171]). A simple, yet efficient,
choice is the equal frequency discretization with a fixed number of cuts. Other strategies can be used,
e.g. [57]. Adding new cut-points (Line 6) can also be done in various ways. One strategy is to add
a random relevant cut on a random attribute to build the next discretization. Section 5.5.3 proposes
another more elaborated strategy that heuristically guide RefineAndMine to rapidly find good quality
patterns (observed experimentally).

Algorithm 7 RefineAndMine
1: Input: (G,M) a numerical datasets with {G+,G−} partition of G
2: Compute relevant cuts Crel
3: Build an initial set of cut-points Ccur ≤ Crel
4: Mine cotp patterns in DCcur (and their extents) using MinIntChange
5: while Ccur 6= Crel and within computational budget do
6: Choose the next relevant cut (attr, cut) with cut ∈ Crelattr\Ccurattr

7: Add the relevant cut cut to Ccur
8: Mine new cotp patterns (and their extents) in DCcur

9: end while

5.5 Anytime Interval Pattern Mining with Guarantees

Algorithm RefineAndMine starts by mining patterns in a coarse discretization. It continues by mining
more patterns in increasingly finer discretizations until the search space is totally explored (final complete
lattice being (DCrel ,v)). According to Proposition 13, the description spaces built on discretizations
are complete sub-lattices of the total description space. A similar idea involves performing successive
enumeration of growing pattern languages (projections) [37]. In our case, it is a successive enumeration
of growing complete sub-lattices. For the sake of generality, in the following of this section (D,v)
denotes a complete lattice, and for all i ∈ N∗, (Di,v) denotes complete sub-lattices of (D,v) such that
Di ⊆ Di+1 ⊆ D. For instance, in RefineAndMine, the total complete lattice is (DCrel ,v) while the (Di,v)
are (DCcur ,v) at each step. Following Sec. 5.3 notation, the outputted set Si at a step i contains the
set of all cotp extents associated to Di. Before giving the formulas of accuracyφ(Si) and specificity(Si),
we give some necessary definitions and underlying properties. At the end of this section, we show how
RefineAndMine can be adapted to efficiently compute these two bounds for the case of interval patterns.

Similarly to the interval pattern structure [90], we define in the general case a pattern structure
P = (G, (D,v), δ) on the complete lattice (D,v) where G is a non empty finite set (partitioned into
{G+,G−}) and δ : G → D is a mapping associating to each object its description (recall that in interval
pattern structure, δ is the degenerated hyper-rectangle representing a single point). The extent ext
and intent int operators are then respectively given by ext : D → ℘(G), d 7→ {g ∈ G | d v δ(g)} and
int : ℘(G)→ ℘(G), A 7→

d
g∈A δ(g) with

d
represents the meet operator in (D,v) [62].
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Figure 5.3: Description d = [3, 7] × [2, 5.5] in D (hatched) and C =
({1, 4, 6, 8}, {1, 3, 5, 6}). Upper approximation of d in DC is ψC(d) =
[1, 8)× [1, 6) (gray rectangle) while lower approximation of d is ψC(d) =
[4, 6)× [3, 5) (black rectangle).

5.5.1 Approximating descriptions in a complete sub-lattice

Upper and lower approximations of a pattern. We start by approximating each pattern in D
using two patterns in Di. Consider for instance Fig. 5.3 where D is the space of interval patterns in
R2 while DC is the space containing only rectangles that can be built over discretization dr(C) with
C = ({1, 4, 6, 8}, {1, 3, 5, 6}). Since the hatched rectangle d = [3, 7] × [2, 5.5] ∈ D does not belong to
DC , two descriptions in DC can be used to encapsulate it. The first one, depicted by a gray rectangle,
is called the upper approximation of d. It is given by the smallest rectangle in DC enclosing d. Dually,
the second approximation represented as a black rectangle and coined lower approximation of d, is given
by the greatest rectangle in DC enclosed by d. This two denominations comes from Rough Set Theory
[131] where lower and upper approximations form together a rough set and try to capture the undefined
rectangle d ∈ D\DC . Definition 41 formalizes these two approximations in the general case.

Definition 41 The upper approximation mapping ψi and lower approximation mapping ψi are the map-
pings defined as follows:

ψi : D → Di, d 7→
⊔{

c ∈ Di | c v d
}

ψi : D → Di, d 7→
l{

c ∈ Di | d v c
}

The existence of these two mappings is ensured by the fact that (Di,v) is a complete sublattice of
(D,v). Theorem 4.1 in [49] provides more properties for the two aforementioned mappings. Proposition
14 restates an important property.

Proposition 14 ∀d ∈ D : ψi(d) v d v ψi(d). The term lower and upper-approximation here are reversed
to fit the fact that in term of extent we have ∀d ∈ D: ext(ψi(d)) ⊆ ext(d) ⊆ ext(ψi(d)).

A projected pattern structure. Now that we have the upper-approximation mapping ψi, one can
associate a new pattern structure Pi = (G, (Di,v), ψi ◦ δ)11 to the pattern space (Di,v). It is worth
mentioning, that while extent exti mapping associated to Pi is equal to ext, the intent inti of Pi is given
by inti : ℘(G) → Di, A 7→ ψi(int(A)). Note that, the set of cotp patterns associated to Pi are given by
inti[℘(G+)] = ψi[int[℘(G+)]]. That is, the upper approximation of a cotp pattern in P is a cotp pattern
in Pi.

Encapsulating patterns using their upper-approximations. We want to encapsulate any descrip-
tion by knowing only its upper-approximation. Formally, we want some function f : Di → Di such that
(∀d ∈ D)ψi(d) v d v f(ψi(d)). Proposition 15 define such a function f (called core) and states that the
core is the tightest (w.r.t. v) possible function f .

Proposition 15 The function corei defined by:

corei : Di → Di, c 7→ core(c) = ψi

(⊔{
d ∈ D | ψi(d) = c

})
verifies the following property: ∀d ∈ D : ψi(d) v d v ψi(d) v corei(ψi(d)). Moreover, for f : Di → Di,
(∀d ∈ D) d v f(ψi(d)) ⇔ (∀c ∈ Di) corei(c) v f(c).

11Pi is said to be a projected pattern structure of P by the projection ψi [38].
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Note that, while the core operator definition depends clearly on the complete lattice (D,v), its
computation should be done independently from (D,v).

We show here how to compute the core in RefineAndMine. In each step and for cut-points C = (Ck) ⊆
℘(R)p, the finite lattice (DC ,v) is a sub-lattice of the finest finite lattice (DCrel ,v) (since C ≤ Crel).
Thereby, the core is computed according to this latter as follows: Let d ∈ DC with d.Ik = [ak, bk) for
all k ∈ {1, ..., p}. The left (resp. right) bound of coreC(d).Ik for any k is equal to next(ak, Ck) (resp.
prev(bk, Ck)) if next(ak, Crelk ) 6∈ Ck (resp. prev(bk, Crelk ) 6∈ Ck). Otherwise, it is equal to ak (resp. bk).
Consider the step C = ({2, 3}, {4, 5}) in RefineAndMine (its associated discretization is depicted in Fig.
5.2 (left)) and recall that the relevant cuts set is Crel = ({2, 3, 4, 5}, {4, 5}). The core of the bottom
pattern ⊥ = R2 at this step is coreCcur (⊥) = (−∞, 3) × R. Indeed, there is three descriptions in DCrel

which upper approximation is ⊥, namely ⊥, c1 = (−∞, 4) × R and c2 = (−∞, 5) × R. Their lower
approximations are respectively ⊥, (−∞, 3)× R and (−∞, 3)× R. The join (intersection) of these three
descriptions is then coreCcur (⊥) = (−∞, 3) × (−∞,+∞). Note that particularly for interval patterns,
the core has monotonicity, that is (∀c, d ∈ DC) c v d⇒ coreC(c) v coreC(d).

5.5.2 Bounding accuracy and specificity metrics

At the ith step, the outputted extents Si contains the set of cotp extents in Pi. Formally, inti[Si] ⊇
inti[℘(G+)]. Theorem 2 and Theorem 3 gives respectively the bounds accuracyφ and specificity.

Theorem 2 Let φ : D → R be a discriminant objective quality measure. The accuracy metric is bounded
by:

accuracyφ(Si) = sup
c∈inti[Si]

[
φ∗
(
tpr
(
c
)
, fpr

(
corei(c)

))
− φ∗ (tpr(c), fpr(c))

]
Moreover accuracyφ(Si+1) ≤ accuracyφ(Si).

Theorem 3 The specificity metric is bounded by:

specificity(Si) = sup
c∈inti[Si]

((
|ext(c)| − |ext(core+

i (c))|)/(2 · |G|)
))

where core+
i (c) = inti(ext+(corei(c))), that is core+

i (c) is the closure on the positive of corei(c) in Pi.
Moreover specificity(Si+1) ≤ specificity(Si).

5.5.3 Computing and updating bounds in RefineAndMine

We show below how the different steps of the method RefineAndMine (see Algorithm 7) should be updated
in order to compute the two bounds accuracy and specificity. For the sake of brevity, we explain here
a naive approach to provide an overview of the algorithm. Note that here, core (resp. core+) refers to
coreCcur (resp. core+

Ccur ).

Compute the initial bounds (line 4). As MinIntChange enumerates all cotp patterns d ∈ DCcur ,
RefineAndMine stores in a key-value structure (i.e. map) called BoundPerPosExt the following entries:

ext+(d) :
(
φ(d), φ∗

(
tpr
(
d
)
, fpr

(
core(d)

))
, (|ext(d)| − |ext(core+(d))|)/(2 · |G|)

)
The error-bounds accuracyφ and specificity are then computed at the end by a single pass on the entries
of BoundPerPosExt using Theorems 2 and 3.
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Update the bounds after adding a new cut-point (line 8). In order to compute the new error-
bounds accuracyφ and specificity which decrease according to theorems 2 and 3, one need to add/update
some entries in the structure BoundPerPosExt. For that, only two types of patterns should be looked for:

1. The new cotp patterns mined by RefineAndMine, that is those which left or right bound on
attribute attr is the added value cut. Visiting these patterns will add potentially new entries in
BoundPerPosExt or update ancient ones.

2. The old cotp which core changes (i.e. becomes less restrictive) in the new discretization. One
can show that these patterns are those which left bound is prev(cut, Ccurattr) or right bound is
next(cut, Ccurattr) on attribute attr. Visiting these patterns will only update ancient entries of
BoundPerPosExt by potentially decreasing both second and third value.

Adding a new cut-point (line 7). We have implemented for now a strategy which aims to decrease
the accuracyφ. For that, we search in BoundPerPosExt for the description d having the maximal value
φ∗
(
tpr
(
d
)
, fpr

(
core(d)

))
. In order to decrease accuracyφ, we increase the size of core(d) (to potentially

increase fpr
(
core(d)

)
). This is equivalent to choose a cut-point in the border region Crelattr\Ccurattr for some

attribute attr such that cut ∈ d.Iattr\core(d).Iattr. Consider that we are in the step where the current
discretization Ccur is the one depicted in Fig. 5.2. Imagine that the bottom pattern ⊥ = R2 is the
one associated to the maximal value φ∗

(
tpr
(
⊥
)
, fpr

(
core(⊥)

))
. The new cut-point should be chosen in

{4, 5} for attr = 1 (recall that core(⊥) = (−∞, 3)× (−∞,+∞)). Note that if for such description there
is no remaining relevant cut in its border regions for all attr ∈ {1, ..., p} then core(d) = d ensuring that d
is the top pattern.

5.6 Conclusion

We introduced a novel anytime pattern mining technique for uncovering discriminant patterns in numer-
ical data. We took a close look to discriminant interestingness measures to focus on hyper-rectangles in
the dataset fostering the presence of some class. By leveraging the properties of the quality measures,
we defined a guarantee on the accuracy of RefineAndMine in approximating the optimal solution which
improves over time. We also presented a guarantee on the specificity of RefineAndMine –which is agnostic
of the quality measure– ensuring its diversity and completeness. An empirical evaluation (not reported
in this manuscript but in the original article) gives evidence of the effectiveness both in terms of finding
the optimal solution (w.r.t. the quality measure φ) and revealing local optimas located in different parts
of the data.

This work paves the way for many improvements. RefineAndMine can be initialized with more
sophisticated discretization techniques [96, 57]. We have to investigate additional cut-points selection
strategies. While we considered here discriminant pattern mining, the enumeration process (i.e. successive
refinement of discretizations) can be tailored to various other quality measures in subgroup discovery.
For example, the accuracy bound guarantee definition can be extended to handle several other traditional
measures such as Mutual Information, χ2 and Gini split by exploiting their (quasi)-convexity properties
w.r.t. tpr and fpr variables [124, 3]. Other improvements include the adaptation of RefineAndMine for
high-dimensional datasets and its generalization for handling additional types of attributes (categorical,
itemsets, etc.). The latter is facilitated by the generic notions from Section 5.5 and the recent works of
Buzmakov et al. [37].
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Video Game Analytics
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Chapter 6

Discovering Opening Strategies in
RTS Games

6.1 Introduction

The recent and fast development of the video game industry has been catalyzed by technological inno-
vations, a democratized access to connected electronic devices, new economic models (free games where
users may pay for extra contents), and recently with competitive gaming (esports) and video game live
streaming platforms [152]. People not only enjoy playing, but also enjoy learning from watching others
performing, as a daily leisure activity [45, 93], as we remarked an early adoption of Twitch.tv in 2011
which today in 2018 followed in greater numbers.

Producing a video game is an expensive process, thus, keys to a massive, immediate and durable
success are sought. Pragmatically however, one attempts to extend the game lifetime after the release,
by correcting bugs, introducing new features and considering user feedbacks. Whereas it could be easily
argued that bugs are not acceptable after a release, it is hard to predict the results of human creativity
in presence of rich environments that are video games.

Hopefully, companies realized in the current big data atmosphere that the tremendous amounts of
game behavioral data they store are valuable to face many new challenges such as: detecting unexpected
situations and bugs [161] cheaters [10], designing artificial agents [128], improving match making systems
and adjusting game difficulty [120]. Analyzing these massive sets of historical data by means of visualiza-
tion, machine learning and data mining techniques is at the heart of video game analytics for enhancing
user experience and extending game lifetime [161].

This context roots the motivation of our work: behavioral data can help to study the balance of a
game, that is, to adjust the rules over time while still enabling novel rules to counter boredom. This
is especially important for games played as an electronic sport, and also for game lifetime extension in
general. We will focus on the concept of balance which is a core concept in competitive game design: it
consists of defining and tuning the basic rules that prevent extreme situations, thus balancing fairness
and competitive aspects.

In this article, we define and mine patterns in game historical data for a better understanding of
balance issues in RTS games. The intuition of the balanced sequential pattern discovery problem is the
following. Consider a set of games, each of them represented by a sequence of actions of two players (thus
entailing the player strategy). The problem is to find patterns as sequence generalizations that frequently
occur in the historical data and whose balance is given by proportions of their wins and losses. Our goal
is twofold: (i) we give the basic algorithmic tools that enable an efficient pattern mining, (ii) we show
that the extracted patterns reveal interesting knowledge:

• (i) We revisit the problem of strategy elicitation from two player RTS games by differentiating two
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cases: when both players have access to (a) different game actions and (b) the same game actions.
In the first case, we show how existing pattern mining methods enable with slight modifications to
discover frequent strategies and compute a balance measure. In the second case, the most general,
existing approaches fail: we propose an original algorithm, BalanceSpan.

• (ii) We show through experiments that BalanceSpan is scalable and able to discover patterns of
interest in a large StarCraft II dataset that can help detecting balance issues. For that matter, we
anchor our algorithm in a Knowledge Discovery in Databases process [59]. Pattern mining is one
of the many steps of this interactive and iterative process guided by an expert of the data domain
who selects and interprets the patterns [5, 69].

The chapter is organized as follows. Section 6.2 recalls the basics of sequential pattern mining before
the introduction of our mining problem in Section 6.3. Our method is developed in sections 6.4 and
6.5. Algorithms are designed (Section 6.6) and experimented with E-Sport data (Section 6.7) before
over-viewing related work and concluding.

6.2 Preliminaries

We recall the basic definitions of frequent sequential patterns [133] and emerging patterns [52] useful in
the sequel. Let I be a finite set of items. Any non-empty subset X ⊆ I is called an itemset. A sequence
s = 〈X1, ..., Xl〉 is an ordered list of l > 0 itemsets. l is the length of the sequence, whereas

∑l
i=1 |Xi|

is its size. Considering I as a set of events (or actions), an itemset denotes simultaneous events while
the order between two itemsets indicates a strict preceding relation. A sequence database D is a set of
|D| sequences over I. Sequences may have different lengths and sizes and are uniquely identified, see
Table 6.1 (omitting the third column).

Definition (subsequence). A sequence s = 〈X1, ..., Xls〉 is a subsequence of a sequence s′ = 〈X ′1, ..., X ′l′s〉,
denoted s v s′, if there exists 1 ≤ j1 < j2 < ... < jls ≤ l′s such that X1 ⊆ X ′j1

, X2 ⊆ X ′j2
, ..., Xls ⊆ X ′jls

.

Definition (Support and frequency) The support of a sequence s in a database D is sup(s,D) =
{s′ ∈ D | s v s′}. Its frequency is freq(s,D) = |sup(s,D)|/|D|.

Problem (Frequent sequential pattern mining). Given a minimal frequency threshold 0 < σ ≤ 1,
the problem is to find all sequences s such as freq(s,D) ≥ σ.

In some cases, each sequence of D is associated to a class label. Let class : D → {+,−} a mapping that
associates to each sequence a positive or negative label (hence two classes). D is accordingly partitioned
into two databases, with the positive (resp. negative) sequences D+ (resp. D−) and D = D+ ∪ D−,
D+ ∩D− = ∅. The growth-rate characterizes the discriminating power of a pattern for one class[52, 126].

Definition (Growth-rate). Given a sequence database D = D+ ∪ D−, the growth-rate of a sequential
pattern from Dx to Dy (x 6= y and x, y ∈ {+,−}), is given by

growth_rate(s,Dx,Dy) = |sup(s,D
x)|

|Dx|
× |Dy|
|sup(s,Dy)|

Example. Let D = {s1, s2, s3, s4} with I = {a, b, c, d, e, f, g} be the sequence database given in
Table 6.1. For brevity, we drop commas and braces for singletons. For a given sequence s = 〈abc〉,
we have s v s1, s v s4, s 6v s2, s 6v s3. With σ = 3

4 , 〈acc〉 is frequent, 〈a{bc}a〉 is not. We have
growth_rate(〈cb〉,D−,D+) = 2

2 ×
2
1 = 2, i.e., 〈cb〉 is twice more present in class − than in class +.
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id s ∈ D class(s)

s1 〈a{abc}{ac}d{cf}〉 +
s2 〈{ad}c{bc}{ae}〉 +
s3 〈{ef}{ab}{df}cb〉 −
s4 〈eg{af}cbc〉 −

Table 6.1: A sequence database D.

6.3 The Problem of Strategy Elicitation

A zero-sum game, or competitive interaction, can be modeled as a sequence of actions performed by two
players where exactly one player wins (no ties). Such a sequential game can be represented as a sequence
of sets of actions, each action performed by one of the two players. When both players play in real-time,
one can describe these interactions as sequences of itemsets. An itemset is then a set of simultaneous
actions, or within an insignificant interval of time.
Definition (Interaction (sequence) database). Given a set of players Players and a set of actions
Actions, a sequence database R is called an interaction database. Each sequence denotes one single game,
i.e., an interaction between two players, and is defined over the set of items I = Actions × Players. A
mapping class : R → Players gives the winner of each interaction.
Example. In Table 6.2, s1 can be interpreted as: “Player p1 did action a, then he did b and c while player
p2 did c, and finally p1 did d while p2 did a. At the end, the player p1 wins”.

Given an interaction database, the problem is to find sequences of actions of both interacting players
(supposing that those actions are mutually dependent) as generalizations that appear frequently and to
be able to characterize their discriminating ability for a win or loss through a so-called balance measure.
In the current sequential pattern mining settings, the goal is to find frequent sub-sequences of actions
(i.e., strategies) and their balance (a growth-rate like measure). However, the notion of class has to
be revisited to be able to handle winner and loser class labels, instead of the winning player. Indeed,
intuitively, mining emerging patterns from an interaction database with the winning players as classes
(as given in Table 6.2) does not fulfill our objectives: we wish to discriminate victories and not victorious
players themselves. As such, existing emerging sequential pattern mining methods and algorithms cannot
be used to answer our problem.

We propose to differentiate two cases of interaction databases: (i) non-mirror interaction databases
where both players have different (non-intersecting) sets of available actions; (ii) mirror interaction
databases where both players can perform the same actions. We show that in the first case, emerging
patterns as introduced in the literature (Section II) are able to answer the problem by slightly modifying
the interaction database representation. In the second case, the most general one, we need new settings,
and we propose to embed the class (positive or negative) in the definition of the items of a sequence,
see Table 6.4. This is formalized in the two next sections, and it enables the design of efficient pattern
mining algorithms in Section 6.6.

id Interaction sequence Winner

s1 〈(p1, a){(p1, b)(p1, c)(p2, c)}{(p2, a)(p1, d)}〉 p1
s2 〈(p3, a){(p3, b)(p3, c)(p3, d)}{(p1, b)(p1, c)}〉 p3

Table 6.2: An interaction sequence database R.
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Table 6.3: A non mirror interaction database.

id Interaction sequence Winner

s1 〈{ab}{c}〉 I1
s2 〈{ab}{a}{c}〉 I1
s3 〈{abc}{c}〉 I2
s4 〈{ac}{a}{c}〉 I1
s5 〈{c}{b}{ac}〉 I2

6.4 Balanced Patterns in Non-mirror Databases

In this section, we consider an interaction database, called a non-mirror database, where the set of actions
is different for each of the players in a single interaction. It means that we only have two types of players
in each sequence and in the whole database (e.g., Protoss and Zerg factions in the RTS game StarCraft
II), and these types are determined by the actions they can do. As such, the type can also be used
as a winning class label. To characterize balanced patterns in such databases, we consider a simple
transformation of the original interaction database R by dropping the player associated to each action,
and labeling each sequence by the type of the winner. This enables to express a balance measure as a
growth-rate measure in this new data representation. The transformed database is then formally defined
as follows.

Definition (Transformed interaction database). A sequence database T defined over the set of
items (actions) I1 ∪ I2 such as I1 ∩ I2 = ∅ and class : T → {I1, I2} is called a transformed interaction
database.

Consider an interaction s ∈ T where the winner is characterized by the actions I1: we have class(s) =
I1 that gives the winner of the interaction. This brings back the problem of finding frequent balanced
interaction patterns to well-known the emerging patterns settings. Indeed, consider an arbitrary pattern
s over I1 ∪ I2: its support in the whole database sup(s,T ) tells us its frequency, while sup(s,T I1) and
sup(s,T I2) enable to define a balance measure as a growth-rate.

Problem (Mining balanced patterns from non-mirrors interactions). Let T be a transformed
database obtained from a non-mirror interaction databaseR. T is defined over I1∪I2 where Ik represents
the type k of player (k ∈ {1, 2}) and class : T → {I1, I2} assigns to any sequence its winner type. σ is a
minimum frequency threshold. The problem is to extract the set of so-called frequent balanced patterns
Ft such as for any s ∈ Ft, freq(s,T I1) ≥ σ and freq(s,T I2) ≥ σ (implying freq(s,T ) ≥ σ) and the
balance measure is computed and given by:

balance(s, T k) = |sup(s, T k)|
|sup(s, T 1)|+ |sup(s, T 2)|

Remark. The balance measure is a normalized version of the growth rate given in previous section such
that balance(.) ∈ ]0, 1] and balance(s, T 1) + balance(s, T 2) = 1 which entails a zero-sum game property.

Example. Table 6.3 gives a transformed interaction database T , obtained from a non-mirror interaction
database R, with I1 = {a, b} and I2 = {c} being the sets of actions of each player type. With σ = 0.2,
s = 〈{ab}{c}〉 is a frequent balanced pattern since freq(s, T I1) = 2

3 and freq(s, T I2) = 1
2 . Moreover,

balance(s, T I1) = 2
3 and balance(s, T I2) = 1

3 . It means that s wins two times more for the type 1 of
player than for the type 2.
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id s ∈ S

s1 〈a+{b+c−}〉
s2 〈a+{b+c−}c+〉
s3 〈d+{b+c+}d−〉
s4 〈a−{b+c+}〉

Table 6.4: A signed interaction database.

6.5 Balanced Patterns in Mirror Databases

In this section, we consider interaction sequence databases where the players have access to the same set
of actions. Consequently, the latter cannot be partitioned in two sets and the previous approach can not
apply. We propose a new interaction database representation, signed interaction databases. It enables to
define frequent balanced patterns from an arbitrary interaction database (either mirror or non-mirror).

Definition (Signed interaction database). Recall that Actions is a finite set of actions shared by
both players. We introduce Is = Actions × {+,−} denoting actions associated either to a positive or
negative class. A signed database S is built from an interaction database R as follows: Each action of an
interaction sequence is signed + if it is performed by the winner and signed − if performed by the loser
(both players and class labels are dropped).

Definition (Dual of an item, itemset and sequence). Let Is = Actions × {+,−} be the set of
signed items, or actions. For any (a, c) ∈ Is, also written ac, we define its dual as

dual(a, c) = dual(ac) = (a, {+,−}\c) = a{+,−}\c

Informally, it means that the dual of a signed action is the same action where the class c has changed.
This definition is simply propagated for itemsets and sequences of itemsets, for any X ⊆ Is and any
s = 〈X1, X2, ...〉 a sequence over Is :

dual(X) = {dual(x),∀x ∈ X}
dual(s) = 〈dual(X1), dual(X2), ...〉

Example. In Table 6.4, we have Is = {a, b, c, d}×{+,−}, dual(a+) = a− and dual(s1) = 〈a−{b−c+}〉.

These definitions enable now to naturally introduce a balance measure that would, for a sequential
pattern s give the proportion of its support among the support of both itself and its dual.

Definition (Balance measure). Let s be a frequent sequential pattern in a database S. The balance
measure of s is

balance(s) = |sup(s,S)|
|sup(s,S)|+ |sup(dual(s),S)| (6.1)

This intuitive definition however does not hold. Since actions are shared by the two players, both
a sub-sequence and its dual may occur in a single sequence s ∈ S. Consider the following example:
S = {〈{a+b−}{a−b+}〉, 〈{a−b+}〉} with σ = 1

2 . The sequence s = 〈{a+b−}〉 is a frequent sequential
pattern, and |sup(s,S)| = 1. We have also |sup(dual(s),S)| = |sup(dual(〈{a−b+}〉),S)| = 2. Hence,
balance(s) = 1

1+2 = 1
3 . However, since s and dual(s) both appear in the first sequence, it should not be

counted two times. This leads us to the definition of the balance measure in the general case in which
we ignore sequences where both a pattern and its dual appear.
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Definition (Generalized balance measure). For a sequential pattern s, the generalized balance
measure is given by

balancegen(s) = |sup(s,S)\sup(dual(s),S)|
|sup(s,S) t sup(dual(s),S)| (6.2)

where t denotes the exclusive union AtB = (A∪B)\(A∩B). In the following, balance will always refer
to the general version. We have that balance(s) ∈ [0, 1] and balance(s) + balance(dual(s)) = 1 which
expresses a zero-sum game property.

Problem (Mining balanced patterns from signed interactions). Let S be a signed interaction
database defined over Is generated from an interaction databaseR, and σ a minimum frequency threshold.
The problem is to extract the set of so-called frequent balanced patterns Fs such as for s ∈ Fs, freq(s,S) ≥
σ, freq(dual(s),S) ≥ σ and the balance measure is computed and given by (2). Furthermore, the fact
that both s and dual(s) have to be frequent leads to redundant information: it is enough to keep s along
with its support, balance measure and intersection of support common(s) = |sup(s,S)∩ sup(dual(s,S))|
to know the measures of its dual. As such, the problem is also to compute a non redundant collection of
patterns Fs where, if s ∈ Fs then dual(s) 6∈ Fs.

Example. Table 6.4 gives a signed interaction database S obtained from an arbitrary R. With σ = 1
4 ,

s = 〈a+c−〉 appears two times, its dual appears only once, hence balance(s) = 2
3 .

Remark. Any interaction database, mirror or non-mirror, can be represented as a signed interaction
database. For the non-mirror case, one can easily prove that for any balanced pattern s, we have
common(s) = ∅ and thus Formula (1) holds.

6.6 Algorithms

We presented several algorithms whose description can be found in the original article [32]. All are
based on the well-known framework for mining frequent sequential patterns, called Pattern-growth
and its associated algorithm PrefixSPAN [133]. The most efficient algorithm we introduced, called
BalanceSpan, introduces the notion of “double database projection” during the exploration: the first
on the positive class, the other on the negative class. This allows a very efficient computation of the
balance measure. We give in this manuscript the pseudo-code in Algorithm8 that we illustrate now.
Example. BalanceSpan operates on a signed interaction database. It proceeds to a double projection at
a time. Let us still consider the dataset of Table 6.4 with σ = 1/4. Starting with the empty sequence and
the entire dataset, the first step consists of finding frequent items: e.g., a+ is frequent. BalanceSpan
directly generates the dual of 〈a+〉 to proceed to the double projection. Thus, it checks if a− is frequent
and then projects on both 〈a+〉 and 〈a−〉 at a time: i.e., it creates a new node in the pattern tree that is
related to the couple (〈a+〉, 〈a−〉). The next step calls BalanceSpan on this new node. So it searches for
frequent items in the projected database S|〈a+〉: e.g., c−. Thus it checks if dual(c−) is frequent in S|〈a−〉:
the node containing the couple (〈a+c−〉, 〈a−c+〉) is created and explored in the next step.

6.7 Experiments

We study one of the most competitive real-time strategy games (RTS), StarCraft II (Blizzard Enter-
tainment, 2010), successor of StarCraft: Brood War, test bed for many research in AI [128]. A game
involves two players each choosing a faction among Zerg (Z), Protoss (P) and Terran (T): there are 6
different possible match-ups with different strategies of game. During a game, two players are battling on
a map (aerial view), controlling buildings and units to gather supply, build an army with the final goal
of winning by destroying the opponent’s forces. Such actions (training, building, moving, attacking) are
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Algorithm 8 BalanceSpan
Require: A sequence s, its dual sequence s′ = dual(s), the s-projected signed DB S|s, the s′-projected

signed DB S|s′ , and a minimum threshold σ
Ensure: The frequent balanced pattern set F
1: Compute balance(s)
2: F ←− {(s, s′)};
3: scan S|s once, find every frequent item a such that
4: (a) s can be extended to (s ◦i a), or (b) s can be extended to (s ◦s a)
5: scan S|s′ once, find every frequent item b such that
6: (a) s′ can be extended to (s′ ◦i b), or s′ can be extended to (s′ ◦s b)
7: if no valid a or b available then
8: return F ;
9: end if
10: for valid a and b such that a = dual(b) do
11: (a) F ←− F ∪BalanceSpan(s ◦i a, s′ ◦i b,S|s◦ia,S|s′◦ib, σ)
12: (b) F ←− F ∪BalanceSpan(s ◦s a, s′ ◦s b,S|s◦sa,S|s′◦sb, σ)
13: end for
14: return F ;

done in real-time. Each faction (Z, P, T) allows different units and buildings with distinctive weaknesses
and strengths following a rock-paper-scissors principle. As such, there are mirror match-ups (TvsT, PvsP,
ZvsZ) and non-mirror match-ups (TvsP, TvsZ, PvsZ). A strategy is hidden in large sequences of actions
generated by players and called replays.

Played as an electronic sport, StarCraft II is regularly patched: basic rules of the games are adjusted
(properties of units, building times, ...), new rules are introduced through expansion sets (heart of the
swarm and legacy of the void). The balance design team of StarCraft II, often needs to study historical
data, care about player feedback on Web forums, and finally to justify their choices. After quantitative
experiments of our algorithms, we will discuss the usefulness of our approach to help studying balance
issues in RTS games.

6.7.1 Datasets

StarCraft II replays are files that store any action performed by all players during a game, and are easily
accessible on the Web. We retained 91, 503 games with a total of 3.19 years of game time. The average
length of a game is about 20 minutes. A game is selected if it involves a high level players (in the
highest leagues and playing at least 200 actions per minute), since casual (by opposition to professional)
players are not able to follow specific strategies. We divided the 91, 503 replays into six different sequence
datasets, one for every match up. Buildings are one of the key elements of a strategy, since they enable
different kinds of units production: from each replay, we derive a sequence where the items represent the
buildings the players chose to produce in real time, and itemsets denote time windows of 30 seconds. We
consider only the 10 first minutes of each game (the strategical impact of a building is less important
after 10 minutes). Table 6.5 summarizes all characteristics of the datasets.

6.7.2 Exploration of the extracted patterns

It is interesting to visualize the distribution of both the support and the balance of the patterns. Figure 6.1
gives such distribution for dataset ZvZ that enables very fast computations with low σ (less than 5 seconds
for σ = 0.001). There, both a pattern and its dual are presented, which allows interestingly to observe
that the equation y = 0.5 (where y is the vertical axis) gives almost a symmetry axis. Indeed, both a
pattern and its dual do not necessarily have the same support. One can notice that empirically, there are
high chances for a pattern with high frequency to have a fair balance around 0.5. This behavior applies
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Dataset |D| |I| smax savg imax iavg

S - PvP 6,823 26 42 21.7 6 1.8
S - PvT 19,270 62 42 25.9 8 1.8
S - PvZ 23,491 52 41 23.1 7 1.7
S - TvT 7,598 36 38 23.8 7 1.8
S - TvZ 24,459 62 37 21.2 8 1.6
S - ZvZ 9,922 26 28 10.4 7 1.4
T - PvT 19,270 34 43 26.9 8 1.8
T - PvZ 23,491 29 42 24.1 7 1.7
T - TvZ 24,459 34 38 22.2 8 1.6

Table 6.5: Datasets: sequence and item counts; max. and avg. sequence sizes; max. and avg. itemsets sizes.

for the other dataset and is what we could expect given the definition of the balance measure.
It is possible to query the set of extracted patterns in various ways. Indeed, the pattern mining task

is related to the Knowledge Discovery in Databases (KDD) process that aims at extracting knowledge
from data [59]. Data mining approaches and more precisely pattern mining approaches are a step of the
KDD process that results in patterns from transformed data [5]. Our work is a pattern mining approach
to study strategy balance that is applied to RTS games. Thus, one gets a set of patterns that are a
generalization of the local strategies within the data. BalanceSpan still requires an analysis once the
patterns are outputted.

Exploring a large collection of patterns can be done in many ways. First, as illustrated hereafter,
the expert can filter the collection with specific constraints such as a minimum number of itemsets, or
specific items using regular expressions, etc. Second, the expert can introduce preferences as measures
on the patterns (size, length, support, balance, etc.) that he wishes to minimize or maximize given his
goals (the so-called skypatterns [148]). Indeed, one expert may favor highly balanced patterns with high
support (probably the standard strategies), while another could be interested in maximizing the support
while favoring patterns whose balance is closest to 0.5 (giving hints to possible game design problems).
Finally, the discovery can be done interactively, through an interactive algorithm (not only the full KDD
process [158]). The basic assumption is that the expert does not really know what he is looking for in
the data, and guides the pattern discovery at each step of the algorithm (such as sequence expansion in
our case). In all cases, the pattern language must be clearly defined and efficient algorithms proposed to
compute the measure of interest, our main contribution.

We now provide a basic example of exploration by querying the pattern set. Out of the 43, 610
patterns for ZvZ with σ = 0.001, we can keep the patterns involving two players (containing both + and
−), which returns 40, 674 patterns. Then we restricted the set of patterns to those involving two specific
items (RoachWarren and Spire) to get only 290 patterns. 〈SpawPool+, SpawnPool−, SpiCrawler+,
RoachWarren+, Spire−〉 denotes for example games where one of the players go to air units and the
second to ground units, two known openings, with balance 0.47 and support 68.

The pattern mining task can be adapted in various ways, depending on which and how the basic
actions are encoded in the sequence. Let us now sketch different scenarios.

6.7.2.1 Discovering strategy openings

Openings are the most well-known strategies and executed during the first five to ten minutes of a
StarCraft II game. It is expected that openings are balanced to make the game enjoyable for the casual
player, competitive for the professional, but also interesting to watch for the spectators [45]. We build our
sequence databases with a set of items composed of tuples (building, sign, ithwindow), with fixed windows
of 30 seconds by default, i.e., the ith window contains the items performed between the ((i− 1)× 30)th
second and the ((i× 30)− 1)th second. We expect that openings are found as the more frequent patterns
and being also balanced: Figure 6.2 shows the complete set of patterns for the ZvZ dataset which differs
with Figure 6.1 by its skewness. We explored the resulting patterns with a game expert. When considering
another dataset (PvZ), we obtain only 591 patterns with σ = 0.05. Top frequent patterns represent all
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Figure 6.1: Patterns support and balance for the
dataset ZvZ.

Figure 6.2: Game openings support and balance
for the dataset ZvZ.

well-known strategies: s = 〈{(Nexus,+, 5 )} {(Gateway,+, 6 ) (Photon Cannon,+ 6 )}〉 represents a popular
Protoss strategy, no matter the strategy of the opponent is. It is balanced (balance(s) = 0.52).

6.7.2.2 Discovering possible balance issues (hypotheses elicitation)

The rules of the game are set by the editors and developers. However, such rules are not always fair and
balanced, and such weaknesses can only be discovered after weeks. We asked an expert to highlight a well
known imbalanced strategy. The so called bunker rush was used a lot by Terran players against their Zerg
opponents. It consists of building in the early stage of the game a bunker near the opponent’s base to put
his economy and development in difficulty. After several complaints from the StarCraft II community, the
rules changed on 10th May 2012: a Zerg counter unit (the queen) has been slightly improved. Since then,
this strategy stopped to be used for some time. Our approach should be able to reflect/discover that fact:
we proceed as follows. We split dataset TvZ into two parts: the first one, called Sbefore, contains replays
that happened strictly before 10th May 2012 (17, 171 replays), and the second one, called Safter, contains
the replays that happened strictly after this change (6, 698 replays). The mining of the dataset Sbefore
(respectively Safter) with a low σ = 0.05 returns 8, 138 patterns (resp. 7, 735). According to the experts,
the bunker should be built during the sixth window of time (between 2’30” and 3’ of the game). There are
20 (resp. 12) patterns that involve the item (Bunker, c, 6) with c ∈ {+,−}. With Sbefore (resp. Safter),
the average value of the balance is 0.58 (resp. 0.51) with a standard deviation equals to 0.5 (resp. 1.6).
This is clear that since the patch was released, this strategy has become balanced. Moreover, we can
remark that this strategy is no longer used by players: in fact the number of extracted patterns related
to this strategy decreases by 40% whereas the number of extracted patterns only decreases by 5% from
Sbefore to Safter. Thus, BalanceSpan enables to see the impact of the release of patch, by analyzing
the period before and after this key date.

6.7.2.3 On the diversity in mirror match-ups

It delicate to speak about balance when both players belong to the same faction (mirror match-ups): both
players have access to the same strategies (same building, hence a symmetrical game). Let us observe for
example the dataset PvP with a new vocabulary: items are tuples (building, sign, ithwindow, jbuilding)
where the last element records how many of this building were already made at the moment of the action
(cumulative). With a minimal support σ = 0.05, we obtain 3418 patterns. We can find here the so-called
4 Gates strategy through the pattern s = 〈{(Gateway,+, 3, 1) (Assimilator,+, 3, 1)} {(Cyb.Core,+, 4, 1)}
{(Gateway,+, 7, 2) (Gateway,+, 7, 3) (Gateway,+, 7, 4)}〉 with balance(s) = 0.59. Such a high value may
be surprising, but it reflects the effectiveness of this strategy, and consequently the poor diversity of the
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strategies used in the PvP match-up. It is an easy and non-risky strategy to apply: according to the
expert, a player has better chances to win with this strategy against riskier strategies. After recurrent
complaints, a major update of the game introduced new units and buildings: Since then strategies used
in PvP are more diversified and the 4 gates strategy is rarely used.

6.8 Related Work

Discovering patterns that highly distinguish a dataset from others (e.g., win labeled objects versus lose
labeled objects) is an important task in machine learning and data mining [127]. One of the main reason
is that such patterns enable the building of comprehensible classifiers [65]. In the general settings, we
are given a set of objects of different classes that take descriptions, generally from a partially ordered set
(itemsets, graphs, intervals, etc.) [98]. The goal is to find good description generalizations that mostly
appear in one class of objects and not in the others. In different fields of AI and applied mathematics,
such descriptions have different names [127] like version spaces [121], contrast sets [21] and subgroups dis-
covery [79] in machine learning, emerging patterns [52] in data-mining; or no counter-example hypothesis
in formal concept analysis [98]. Our contribution in this field is to consider and compute efficiently a
balance measure that existing methods can partially or non efficiently compute.

StarCraft II and other real time strategy games (RTS) in general, face several research challenges in
artificial intelligence as deeply discussed in a recent survey [128]. Our work is related to the challenge
that the authors of the survey qualify as prior learning, that is, techniques that can “exploit available
data such as existing replays [...] for learning appropriate strategies beforehand”. Strategies in RTS game
are complex and divided in several tasks, each bringing difficult problems. Several case-based reasoning
approaches have been proposed, mainly to retrieve and adapt strategies (especially build orders) to
be used then by an automated agent [9, 163]. Other kinds of approaches are also used for several
prediction tasks. Predicting the opponent’s production was studied with answer set programming [149],
while learning transition probabilities within build orders was achieved with hidden Markov models [50].
Weber et al. described any past game by a vector of building and upgrade timings: such features allow
an accurate strategy prediction [164]. This comes with a limit: game logs are a priori labeled with a
strategy using rules based on “manual” expert analysis. The same applies for opening prediction [151].

To discover strategies in large volumes of replays, avoiding to manually label game logs, knowledge
discovery in database (KDD) methods are required, and especially pattern mining techniques. This was
highlighted in the open problems category Domain knowledge of the recent survey mentioned before [128]:
“Is it possible to devise techniques that can automatically mine existing collections [...] and incorporate
it into the bot?”. We did not study the second step (incorporation), but presented a way to extract
efficiently such patterns and focused onbalance issues for helping game designers. A long road remains
to be able to select the right patterns to be used by artificial agents as discussed recently in [103, 128].

6.9 Conclusion

We tackled the problem of mining frequent sequential patterns in real time strategy games whose balance
measures provide meaningful insights on the strategies played and their ability of being in equilibrium
or not. For that matter, we revisited the well known notions of discriminant pattern mining to provide
efficient algorithms for the elicitation of balance hypotheses from the data. From that, we presented
several algorithms that enable dealing with interaction databases, and we showed that only BalanceSpan
enables to deal with all datasets efficiently. We empirically validated that the balance measure is able to
distinguish balanced and imbalanced strategies. We believe that our approach can become a basic tool
for balance designers when analyzing a subset of historical data of a game in beta phase, or even after
its release, through an exploratory process (KDD and interactive mining). A major difficulty remains to
select and construct features of interest from the game logs; it is part of the general KDD task.
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Chapter 7

Revealing the Identity of
Anonymous Players

Video game is a very lucrative industry, unleashed by the ubiquity of gaming devices, multi-player
networks and live broadcasting platforms. Games generate large amounts of behavioural data which are
valuable to face the new challenges of video game analytics such as detecting balance issues, bugs and
cheaters. In electronic sports (e-sports), cyberathletes conceal their online training using different aliases
or avatars (virtual identities), which allow them not being recognized by the opponents they may face in
future competitions (with cash prices challenging already most of the traditional sports). It was recently
suggested that behavioural data generated by the games allows predicting the avatar associated to a
game play with high accuracy. However, when a player uses several avatars, accuracy drastically drops as
prediction models cannot easily differentiate the player’s different avatar aliases. Since mappings between
players and avatars do not exist, we introduce the avatar aliases identification problem and propose an
original approach for alias resolution based on supervised classification and Formal Concept Analysis.
We thoroughly evaluate our method with the video game Starcraft 2 which has a very wide and active
community with players from diverse cultures and nations. We show that under some circumstances, the
avatars of a given player can easily be recognized as such. These results are valuable for e-sport structures
(to help preparing tournaments), and game editors (detecting cheaters or usurpers).

7.1 Introduction

Currently, video games are a popular and lucrative industry generating more revenue than both Cinema
and Music. This recent and fast development has been catalysed by several factors. First, an increasing
part of the population has access to connected electronic devices (computers, smart-phones, etc.), and to
the Web including a myriad of single and/or multi-player games. Video games are now a popular leisure
activity. Furthermore, the recent development of competitive gaming and live video game streaming
platforms [93] makes electronic sports (e-sports) a reality [152]. Professional players on contract with
teams and sponsors are taking part in competitions with cash prices challenging already most of the
traditional sports. Cyberathletes are widely followed in so-called off-line events and daily supported on
the Web through their own live broadcasts [93] generating the fourth largest stream of data in 2015 for
the platform, Twitch.tv. People not only enjoy playing, but also enjoy watching the others for a variety
reasons [45, 93]. Games generate tremendous amounts of behavioural data, valuable to face the many
new industrial challenges such as detecting balance issues [32], bugs and cheaters [161], but also valuable
for several academic fields such as artificial intelligence [128], computer human interactions [170] and
cognitive sciences [154].

In this paper, we introduce a new problem: the avatar aliases identification problem. In most of
online competitive games, players need an “avatar” (i.e., an online identity) to log in the game network.
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Nothing forbids a player to have several avatars and actually, it is a very common practice for professional
players, or cyberathletes, of several video game franchises (e.g. League of Legends, Starcraft 2, Dota 2,
Counter Strike). Players generally have one official avatar for official tournaments, and several others to
conceal their tactics while playing without being recognized by other players they may meet online: global
rankings and leagues are public just as in chess and tennis, while game logs (called replays) are available
and prone to analysis by means of visualization12, machine learning and data mining techniques [109, 151]
just as in standard sport analytics. Accordingly, we are facing a set of players, generating behavioural
data (game logs or traces), in a one-to-many relationship with avatars (the many-to-many relationship
will be discussed later). Our goal is not to discover this mapping, since players privacy is protected.
Instead, the avatar aliases identification problem aims at discovering groups of avatars belonging to the
same player. Solving this problem is motivated by the growing need of e-sport structures to study the
games and strategies of the opponents (tournament preparation), and the security challenges of game
editors (detecting usurpers).

Recently, it was suggested that behavioural data hide individual identifying patterns [154, 170], (tested
on the real time strategy game Starcraft 2 (©Blizzard)). After choosing features related to keyboard
usage, Yan et al. showed that a classifier can be trained to predict with high accuracy the avatars
involved in a game play [170]. Nevertheless, they purposely considered datasets without players having
several avatars (what we call avatar aliases). Indeed, in presence of such avatar aliases, the prediction
accuracy drastically degrades, since prediction models fail at differentiating two avatars of the same
player. We build on this work by proposing an approach called Débrouille for answering the avatar
aliases identification problem: it relies on mining confusion matrices yielded by a supervised classifier
using Formal Concept Analysis [64], and exploits the confusion a classifier has in presence of avatar
aliases when they belong to the same player. Experimental evaluation shows very good results under
certain restrictions imposed to the set of players involved in a dataset.

The remainder of this chapter is organized as follows. Section 7.2 introduces the problem settings, our
claims and goals. We formally present an original methodology in Section 7.3 for discovering avatar aliases
and the evaluation strategy in Section 7.4. Our results are assessed through an extensive evaluation in
Section 7.5. Related work is discussed in Section 7.6 before we conclude.

7.2 Problem Settings

7.2.1 Starcraft 2 in competitive gaming

We study the real-time strategy game (RTS) Starcraft 2, a franchise released in 2010 which met success
in competitive gaming and e-sports [152]. A standard game involves two players and each chooses a
faction (Zerg, Protoss or Terran) with different weaknesses and strengths (following a rock/paper/scissors
principle). Players control buildings and units through an aerial view of the battleground map, collect
resources to build an army and achieve victory by destroying the opponent’s forces. A player needs
an avatar to enter the dedicated multi-player system called Battle.net. In the context of e-sport, our
careful attention is given to the avatar aliases identification problem that affects the game13. Nothing
forbids a user from having multiple avatars, which is actually a common practice among professional
players for a variety of reasons. For example, as they compete in international tournaments, they may
need an avatar in each different Battle.net server (USA, Europe, Korea, etc.). Another important reason
is that professional users may need to hide their tactics while training before competitions. For this
reason, cyberathletes may create different avatars with names such as lIlIllIlIlll called bar code
avatars (as in Table 7.3) for practising on public servers without being recognized. Practise on public
networks corresponds to a major time of their activity [152]. Currently, among the best 50 avatars in
the global Starcraft 2 ranking system, 46 avatars are bar code14. As argued in the introduction, multi-
aliases prompt several problems. Our goal is to formalize and solve the avatar aliases identification

12For example, https://sites.google.com/site/sc2gears/ for Starcraft 2
13Multi-aliases are known as “smurfs” players within the gamer community.
14http://www.sc2ranks.com visited on 2015, May 28th
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problem which consists in finding avatars belonging to the same player without any information about
the individual but his game behaviour.

7.2.2 Behavioural data

During a game, a player performs a series of actions which generates a trace. Basic actions rely on mouse
usage, provided with semantics: “selection of a unit”, “attack with selected unit”, “collect resources with
selected unit”, etc. Many (if not all) of these actions can be performed with the mouse by selecting a
series of menus on the screen. However, to improve the amount of actions a user can perform per minute
(a critical issue in this kind of video games), expert players prefer to bind these actions directly to the
keyboard through the use of customized hotkeys, also called control groups [170]. As such, any action,
done through mouse or keyboard, is stored in replay files that are available on the Web and usable for
observing and studying other players strategies. Replays constitute extremely rich behavioural data, and
we use them for answering our problem. Table 7.1 shows two traces associated to a single game: Player
TAiLS starts by selecting with the mouse a building called Base, assigns it to hotkey 1 (a), selects some
units with the mouse (s), select units attached to hotkey 2 (s), etc.

Avatar Game trace Outcome
RorO s,s,hotkey4a,s,hotkey3a,s,hotkey3s, ... Lose
TAiLS Base,hotkey1a,s,hotkey1s,s,hotkey1s, ... Win

Table 7.1: Traces of a match for two players

7.2.3 Predicting avatars from behavioural traces

Let us consider the following scenario. Given a trace, is it possible to find its associated avatar? In
Table 7.1, given the trace in the first row, is it possible to say that the avatar associated to it is RorO?
We can approach this question from a classification point of view. Given a training set of traces labelled
with their associated avatars, we would like to classify new “instances” (new traces) in the space of
classes represented by the set of avatars. As such, we can apply any supervised classification technique
in this direction. Recently, Yan et al. [170] suggested that behavioural data, as presented in the previous
subsection, offer predictions with high accuracy, when there are no aliases in the dataset. In presence of
aliases however, the accuracy drastically drops, as trained models are not able to differentiate properly
different avatars of a same individual.

The reason why game traces allow good avatar predictions, when there are no aliases, is related to the
cognitive process involved in the activity of playing [154]. A game of Starcraft 2 is short (between 15 and
20 minutes in average), in real time, and several tasks and strategies are repeated thousands of time to
be achieved instinctively: mastering the game requires an intense multi-tasking activity (not sequential)
and daily practise. Novice’s traces will seem messy during the learning process, but will converge with
practise towards distinctive patterns, or individual signatures.

7.2.4 Towards confusion clustering to identify avatars aliases

In general, players use several avatars that generate traces. This is modelled in Figure 7.1. The mapping
owns : Player → Avatar is however not known (or very partially by the game editor that keeps it
private). The only information available is the mapping generates : Avatar → Trace. Notice that we
make the assumption that an avatar belongs to a single player (individual). This may not hold: nothing
forbids two persons from sharing an avatar. However, as an avatar is ranked according to all its games
(wins and loses) in a world ranking system, it is fairly safe to assume in general that professional players
(our focus) do not share their avatars to protect their reputations but also privacy when playing in secrecy.

The general intuition of our approach to tackle the avatar aliases identification problem is now intro-
duced. Our model can be split in two sub-tasks, namely “finding Trace patterns associated to Avatars”
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and “finding Avatar clusters associated to Players”. For the first task, a classifier is built as explained in
the previous subsection, for predicting the avatar involved in a game. In presence of avatar aliases, its
accuracy drastically drops. However, it is a fair hypothesis that the classifier confusion shall be spread
locally among avatar aliases. As such, the second step involves a particular clustering of the confusion
matrix, that outputs avatar aliases candidates. We formalize this step with FCA: a fuzzy set operator on
class memberships enables the finding of candidate patterns.

Player Avatar Traceowns generates

Figure 7.1: A simple model of game traces generations

7.3 Mining a Confusion Matrix with FCA

Let A be a set of avatars and T be a set of traces such that for a given avatar a ∈ A, the set Ta ⊆ T
is the set of all traces generated by a. Consider a classifier ρ where labels are the avatars to predict.
Our method consists in using the confusion matrix generated by a classifier ρ and analyse how confusion
between labels is spread to extract candidates of avatar aliases. This process has two steps: firstly, specific
patterns are extracted from the confusion matrix, secondly, they are scored, ranked and post processed.
The corresponding pseudo-code of our approach, called Débrouille for unscramble in French, is given
in Algorithm 9 and is detailed hereafter.

7.3.1 Classifying Traces

A classifier is a function ρ : T → A that assigns the avatar ρ(t) ∈ A to a given trace t ∈ T . Let n = |A|
be the number of avatars in A, from any classifier ρ, one can derive a confusion matrix

Cρn×n = (ci,j)

where
ci,j = |{t ∈ Tai

s.t. ρ(t) = aj}|
Each row and column of Cρ correspond to an avatar, while the value cij is the number of traces of avatar
ai that are classified by ρ as of avatar aj . The normalized confusion matrix is given by

C̃ρ = [ci,j/|Tai
|]

Algorithm 9 Débrouille pseudo code
Require: C̃ρ: normalized confusion matrix, λ cluster score threshold, s score threshold.
Ensure: P list of pairs of avatar ranked by cluster score.
1: P ← ∅
2: C ←MineFuzzyConcepts(C̃ρ, s)
3: C ← rank C according to s
4: for all c ∈ C do
5: pairs← pairs from the pattern concept extent of c
6: for all p ∈ pairs do
7: if p 6∈ P and cluster_score(p) > λ then
8: P ← P ∪ {p}
9: end if
10: end for
11: end for
12: P ← rank P according to the cluster score
13: return P
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where C̃ρi,i = 1 for any i ∈ [1, |A|] means all the traces of avatar ai are correctly classified by ρ.
Table 7.2 gives an example of normalized confusion matrix between five avatars. It is worth mentioning

that we have generalized the classifier to a given function ρ and thus, we will treat it as a “black box”
with an input (in the form of a set of traces T and avatars A) and an output which corresponds to the
confusion matrix. Internally, features built from traces can be chosen independently, and the classifier
can split the set of traces into train and test sets using different strategies.

7.3.2 Clustering Avatars

Our goal is to discover groups of avatars that belong to the same player. Our intuition is that a classifier
will hardly differentiate these avatar aliases, hence the confusion matrix values should be high and con-
centrated around them. This is exemplified in Table 7.2: avatars {a1, a2} are candidates to belong to the
same player, {a4, a5} shall belong to another user, while a3 stays as singleton with a diagonal high value.
Hence, a reasonable clustering of avatars would be given by the partition {{a1, a2}, {a3}, {a4, a5}}.

Table 7.2: Confusion Matrix example

a1 a2 a3 a4 a5
a1 0.6 0.4 0 0 0
a2 0.4 0.55 0.05 0 0
a3 0 0 0.8 0.15 0.05
a4 0 0.05 0 0.7 0.25
a5 0 0 0 0.5 0.5

More formally, given a normalized confusion matrix C̃ρ, we would like to find pairs of avatars ai, aj ∈ U
such that C̃ρij ' C̃

ρ
ji ' C̃

ρ
ii ' C̃

ρ
jj and C̃

ρ
ij + C̃ρji+ C̃ρii+ C̃ρjj ' 2. These conditions come from the fact that,

if ai, aj correspond to the same player, traces in Tai have the same probability of being classified as ai or
aj (the same for traces in Taj

). Furthermore, for a trace of avatar ai, it is required that the probability
of classification is spread between ai and aj only, meaning that C̃ρij + C̃ρii ' 1 (similarly for aj).

Using this rationale, in what follows we propose (i) to extract patterns from the confusion matrix, and
(ii) to post process them to provide groups of candidate avatar pairs. The first step is achieved thanks
to Formal Concept analysis (FCA [64, 62]), while we define scoring functions and ranking for the second
step.

7.3.2.1 Fuzzy pattern structure

Let us define the fuzzy set of membership degrees LA where L = [0, 1], such as the mapping function
δ : A → LA assigns membership values for the avatar ai in the fuzzy set LA based on the normalized
confusion matrix. Simply, this is a mapping that assigns to ai its corresponding row in C̃ρ which we
denote C̃ρi .

We model accordingly a confusion matrix C̃ρ as a pattern structure (A, (LA,u), δ). The operator u
is a meet operator in a semi-lattice (idempotent, commutative and associative), and is defined as follows,
given two avatars ai, aj ∈ A:

δ(ai) u δ(aj) = 〈min(C̃ρik, C̃
ρ
jk)〉, k ∈ [1, |A|]

δ(ai) v δ(aj) ⇐⇒ δ(ai) u δ(aj) = δ(ai)

Actually, u corresponds to the fuzzy set intersection and (LA,v) is a partial order over the elements
of LA which can be represented as a semi-lattice.
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The pattern structure (A, (LA,u), δ) is provided with two derivation operators, forming a Galois
connection [62]. Formally, we have, for a subset of avatars A ⊆ A and a fuzzy set d ∈ LA such as:

A� =
l
a∈A

δ(a) d� = {a ∈ A | d v δ(a)}

A pair (A, d) is a pattern concept iff A� = d and d� = A. Pattern concepts are ordered by extent inclusion
such that for (A1, d1) and (A2, d2) we have:

(A1, d1) ≤ (A2, d2) ⇐⇒ A1 ⊆ A2 (or d1 w d2)

Intuitively, a pattern concept (A, d) contains a fuzzy set d which can be represented as a vector d = 〈dj〉
with length |A| where each value dj is the minimum for all rows i in column j of matrix C̃ρ such that
ai ∈ A.
Example. The Table 7.2 illustrates a confusion matrix involving five avatars. It has been obtained from
a classifier ρ. We illustrate first how pattern concepts are generated:

δ(a1) = {a0.6
1 , a0.4

2 , a0
3, a

0
4, a

0
5}

δ(a2) = {a0.4
1 , a0.55

2 , a0.05
3 , a0

4, a
0
5}

δ(a1) u δ(a2) = {a0.4
1 , a0.4

2 , a0
3, a

0
4, a

0
5}

7.3.2.2 Scoring concepts and extracting aliases

The scoring function s : LA → [0, 1] is given as follows: for a pattern d,

s(d) =
|A|∑
j=1

dj

It is clear that function s is decreasing w.r.t. the order of pattern concepts, i.e. (A1, d1) ≤ (A2, d2) =⇒
s(d1) ≤ s(d2). Thus, pattern concepts can be mined up to a given score threshold analogously as formal
concepts can be mined up to a given minimal support, as it is done in pattern mining [69]. We can
appreciate that the higher the score of a given pattern, the more confused is the classification of traces of
avatars a ∈ A by ρ in C̃ρ and thus, they become candidates for merging. This property directly follows
from the choice of our similarity operator u as a fuzzy set intersection, which behave as a pessimistic
operator (returning minimum values).

The pattern mining step is executed as follows and corresponding to the MineFuzzyConcepts step
(Line 2) in Algorithm 9. From the confusion matrix we compute all possible pattern concepts using
the addIntent algorithm [157]. Pattern concepts are then ranked according to their score (Line 3) and
converted into a list of pairs (Line 5). For example, if a pattern concept extent contains three avatars
a1, a2 and a3, we convert this concept into pairs (a1, a2), (a1, a3) and (a2, a3). The order among pairs of
the same pattern is disregarded.

The addIntent algorithm is known to have a linear complexity w.r.t. the number of possible pattern
concepts [157] which can grow exponentially w.r.t. the number of avatars in A. In our case, experimental
evidences suggest that the number of pattern concepts in this setting is much lower than A2, given
the empty intersection between most pairs of avatars in A. Finally, given that the scoring function is
monotonous w.r.t. the order v, it can be used as a filter to stop the calculation of meaningless patterns.
Example. Continuing the previous example, we have:

s({a1, a2}�) = 0.8 (7.1)
s({a4, a5}�) = 0.75 (7.2)

s({a1, a2, a4}�) = 0.05 (7.3)
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7.3.2.3 Post-processing candidates

Consider the clustering condition previously formalized as C̃ρij ' C̃ρji ' C̃ρii ' C̃ρjj and C̃ρii + C̃ρij + C̃ρji +
C̃ρjj ' 2. Consider that the pair of avatars (ai, aj) respects these conditions. It is easy to see that (ai, aj)
will necessarily be a candidate pair highly ranked from the previous step.

C̃ρij ' C̃
ρ
jj ' min(C̃ρij , C̃

ρ
jj)

C̃ρii ' C̃
ρ
ji ' min(C̃ρii, C̃

ρ
ji)

=⇒ min(C̃ρij , C̃
ρ
jj) +min(C̃ρii, C̃

ρ
ji) ' 1

Thus, the set of avatar clusters we are looking for are contained within the set of candidate pairs and
moreover, they are highly ranked. In order to filter the list of candidates from pairs that do not hold the
avatar cluster definition, we propose a cosine similarity measure between a couple of vectors calculated
for each avatar as follows. Let (ai, aj) be a candidate pair, the cluster score is defined as:

cluster_score(ai, aj) = cosine(〈C̃ρii, C̃
ρ
ij〉, 〈C̃

ρ
jj , C̃

ρ
ji〉)

The cluster score establishes a measure of how close is a candidate pair from being an avatar cluster. The
logic of this follows from the following scenario. Consider that the traces of avatar ai were all correctly
classified meaning that C̃ρii = 1 and that the traces of avatar aj were all incorrectly classified as ai,
meaning that C̃ρji = 1, thus we have the following section of the normalized confusion matrix:

ai aj
ai 1 0
aj 1 0

We can observe that the pair (ai, aj) will be contained in the set of candidate pairs and will be highly
ranked, even though it is not an avatar cluster since it violates the first condition. The cluster score for
this particular case can be calculated as:

cluster_score(ai, aj) = cosine(〈1, 0〉, 〈0, 1〉) = 0
meaning that this candidate pair is not an avatar cluster. Notice that for the pair of avatars such that
aii = 1 and ajj = 1, the cluster score is 1 (cosine between parallel vectors) while the pair is not an avatar
cluster. Indeed, this is true, however this pair would have a score s equal to 0 and would be at the bottom
of the ranked candidate pairs. A third kind of pair occurs when the traces of ai and aj are all incorrectly
classified as a third avatar ak. In such a case, the cluster score is 0.

The post processing step is executed as follows as depicted in Algorithm 9. Given a ranked list of
candidate pairs yielded from the previous step (Line 2 and 3), each pair is evaluated using the cluster
score. Given an arbitrary threshold λ, if the cluster score of the candidate pair is below this threshold,
then it is rejected (Line 7 and 8). Candidate pairs are re-ranked into a final list of avatar clusters (Line
9).

7.4 Evaluation

In this section, we provide a detailed evaluation procedure used in the experiments for assessing the
ability of our approach at finding avatar aliases.

7.4.1 Avatars matching

As we do not have information about the users behind the avatars, it is not possible to actually evaluate
the candidate pairs for merging using a “ground truth”. Instead, we perform an indirect evaluation
of our approach using three different strategies one being specific to the game Starcraft 2. Indeed, as
illustrated in Figure 7.2, the avatar system of Starcraft 2 is more elaborated than our general model given
in Figure 7.1. The Table 7.3 exemplifies this model.
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User Descriptor
Account: (eu,2452136)
Avatar URL
MinChul http://eu.battle.net/sc2/en/profile/2452136/1/MinChul/
SKMC http://eu.battle.net/sc2/en/profile/2452136/1/SKMC/

Account: (eu,4233584)
Avatar URL
INnoVation http://eu.battle.net/sc2/en/profile/4233584/1/INnoVation/
lIlIllIlIlll http://eu.battle.net/sc2/en/profile/4233584/1/lIlIllIlIlll/

Account: (us,288081)
Avatar URL
Minigun http://us.battle.net/sc2/en/profile/288081/1/Minigun/
ROOTMinigun http://us.battle.net/sc2/en/profile/288081/1/ROOTMinigun/

Account: (us,2929052)
Avatar URL
ROOTheognis http://us.battle.net/sc2/en/profile/2929052/1/ROOTheognis/
Account: (us,3023756)
Avatar URL
MinChul http://us.battle.net/sc2/en/profile/3023756/1/MinChul/

Table 7.3: An example of five Battle.net accounts and their respective avatars

User Account Avatar Traceowns contains generates

Figure 7.2: The trace generation model in Starcraft 2

Nicknames Each avatar is associated with a non-unique (nick-)name. Names are chosen by users and
can be changed at any time. To change the name, users have to pay a fee to the videogame company.
This means that, even when changing the name is possible, users do not change their name often.

We can identify three situations for the change of name. Firstly, users want anonymity and thus, they
change their name to avoid being recognized by other users. We can consider this as a “cheap” way to
achieve anonymity, since it is actually cheaper than creating a new account, and the user does not have
to re-classify her new account into a top-league (actually, quite expensive in terms of play-hours). Since
changing the name does not require a change in the account, even with a new name users are actually
easily recognizable. We will discuss this in the following section. Secondly, users may join a team. Teams
are groups of avatars that frequently play together collaboratively against other teams. Teams also have
associated names which users usually add to their names as a suffix. Thirdly, users may change their
name by any other reason.

It is clear that, when finding two candidate avatars for merging, we cannot rely simply in comparing
their names. On the one hand, very popular names such as “Batman” or “Superman” may be used by
several users. On the other hand, even if a user has different accounts, and we successfully identify them
for merging, nothing forbids the user to use different avatar names for those accounts. Thus, names will
be used as weak indicators for avatar merging.

URL In Starcraft 2 , as described in Table 7.3, an avatar is associated with a unique account. This
account can be identified by the URL associated to the avatar which contains information about the
location of the avatar (European Union, USA, Korea, etc.), the ID number and the avatar’s name. As
we have discussed, users are free to change the name of their avatars by paying a fee. When this is done,
the URL changes by removing the old name and including the new one. However, since it is the same
account, the location and the ID_number remain the same.

The URL is a strong indicator for avatar merging since it is quite obvious that, given two avatars
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with the same associated account, they correspond to the same user. Usually, we would integrate the
traces of these avatars into a single one before the trace classification step (and actually, we do this for
the first of our experiments). Instead, we will leave them as they are since they provide us with a sort of
“ground truth”. That is, if our system is able to merge avatars of different accounts, it should be able to
merge avatars of the same account.

Surrogate Avatars Given the set of traces T and the set of avatars A, we generate a partition of A
in two different subsets Aγ and Aθ (a partition means that A = Aγ ∪ Aθ and Aγ ∩ Aθ = ∅). For each
a ∈ Aθ, we generate a partition in Ta with components Ta1 and Ta2 where a1, a2 are called the surrogate
avatars of a. Let Ãγ be the set of all surrogate avatars, we build the set Ã = Ãγ ∪Aθ.

Intuitively, surrogate avatars are known to belong to the same user. Thus, they provide a “ground
truth” to evaluate our approach.

In Figure 7.4 the chart at left shows the long-tail distribution of the number of games played by
avatar. We assume that professional players (those we are looking to disambiguate) are those that belong
to the head of the curve, i.e. those that play the most. We consider this assumption fair since, in order
to become professionals, players have to practice and perform in several competitions yielding a high
number of games played. Thus, the set Aγ is built from a fraction γ of the avatars with the highest
number of games played.

Similarly, we consider a minimal number of games (traces) to actually include the avatar a in Aθ.
We assume that a user that has played a few games with an Avatar has no reasons to create a different
one. We are well aware that this may not be the case for users that already have a different avatar
and are just starting with their second. However, as we will discuss next, this induces an “imbalance”
issue that may affect the classifiers’ ability to group avatars of the same user. For an avatar with a few
traces, the classifier will fail to provide a good prediction and the confusion matrix will present values
which are explained by randomness rather than by the fact that two avatars belong to the same user.
For example, consider an avatar a such as |Ta| = 2. Its row in C̃ρ will contain two non-zero values 0.5
in two different columns. It is easy to see that this avatar would likely conform a pattern concept with
the avatars corresponding to those columns. In order to avoid this, we use a threshold θ such as for all
a ∈ Tθ we have |Ta| ≥ θ.

The problem of balance refers to the fact that we are not certain about the distribution of time spent
by a user among her different avatars. Put more simply, given that a user has two avatars, the question
is if she prefers one over the other (meaning that one of her avatars has more traces associated than the
other) or if she plays equally with one or the other (meaning that both of her traces have a similar number
of traces associated). This is an important issue since it affects directly the efficacy of our approach. If
in general, users play many more games with one of their avatars than the others, the classifier applied
to the traces will be less effective and will tend to classify the traces of the avatars with fewer games on
the avatar with more games. To study this issue in a deeper way, we introduce the parameter β as a
balance between the traces distributed over the surrogate avatars. Consider that for an avatar a we have
that |Ta| = 100, this is the avatar has 100 associated traces. When creating the surrogate users a1 and
a2 a β = 0.5 yields that both surrogate users will have 50 associated traces, i.e. |Ta1 | = |Ta2 | = 50. With
β = 0.7 we will have |Ta1 | = 70 and |Ta2 | = 30 and so on.

7.4.2 Evaluation Metrics

To evaluate our approach we will measure the precision, recall and f-measure of the first 100 ranked
avatar clusters. Given the ranking r (after cluster score filtering using λ), we have:

precision(r) = TP

TP + FP
recall(r) = TP

TP + FN
F -measure(r) = 2 · precision(r) · recall(r)

precision(r) + recall(r)

Where TP, FP and FN stand for true positives, false positives and false negative, respectively. We
will consider true positives as combinations of avatar names (NAMES), URL and surrogate avatars
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Figure 7.3: Candidate pairs ranking with λ = 0 (left) and with λ = 0.9 (right)

(SUG). False positives will be any candidate pair which does not belong to the true positive set in a
given ranking. It is worth noticing that a pair considered as a false positive under this definition may not
actually be one. We consider them false positives since we do not have enough information to consider
them as true positives, meaning that their avatar names do not match, their URL is different and they
are not part of our own set of surrogate avatars. They are in fact the kind of pairs we are looking for.
False negatives are those candidate pairs that should have been considered as true positives, but that do
not appear in the ranking.

The figure at left in Figure 7.3 shows the initial candidate pairs extracted from a confusion matrix
generated by a Sequential Minimization Optimization (SMO) classification algorithm implemented in
Weka. The classifier parameters were left as default, while the parameters of our approach for this
particular figure are γ = 0.05 (top 5% of users were converted into surrogates) and θ = 5 (users with less
than 5 games were extracted from the dataset). Within the figure, a point represents a pair of avatars.
If the avatars are surrogates, the point is represented with a red circle. If they have the same account,
the point is represented with a green triangle and, in the case they have the same name, the point is a
yellow star. In any other case (false positive), the point is a blue cross. False positives are annotated
with the nick-names of the avatars. Figure 7.3 shows the top 20 without cluster score filtering (λ = 0)
and presents very bad results. Only 8 out 20 points are not false positives (40% of precision). The figure
at right in Figure 7.3 shows the top 20 after cluster score filtering (λ = 0.9) with very good results.
Actually, only 1 out of 20 points is a false positive and it represents a couple of avatars that belong to the
player known as aLive15. It is clear that in this particular case, our system is able to provide a precision
of 100%, even though we just report 95% (19/20).

We also report on other three measures, namely P@10 (precision in the first 10 elements of the
ranking), mean average precision (MAP), the receiver operating characteristic (ROC) (and the ROC
area under the curve - AUC). For the sake of brevity, we do not provide a description of them. For
further information on these metrics we refer the reader to [114].

15http://wiki.teamliquid.net/starcraft2/ALive
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Figure 7.4: Distribution of the number of games by avatar, proportion of executed actions for first ten (resp.
thousand) seconds

7.5 Experiments

This section reports a thorough evaluation of our approach, for answering the avatar aliases identification
problem. We begin by introducing our datasets and by highlighting the prediction ability of game traces
when there are no aliases in the dataset.

7.5.1 Rough replay collections

Any game of Starcraft 2 is recorded into a file called replay which contains all data necessary for the
game engine to replay the game. Replays are shared on dedicated websites16. Along with replays, a set
of parsing tools which allows extracting information from the replays are openly available17. Using these
tools we have created two collections for our study.

Collection 1 – Replays without avatar aliases This collection has been chosen for studying the
efficacy of classifiers to recognize avatars of traces. Thus, we have purposely selected a collection of game
replays which cannot contain avatar aliases. This is the case for the 2014 World Championship Series
(second season18) in which users are forced to register their real names. The collection contains a total
of 955 one-versus-one high level games and 171 unique players.

Collection 2 – Replays with possible avatar aliases We gathered all the replays available on
the website Spawning Tool19 on the month of July 2014, for a total 10,108 one-versus-one games and
3,805 players. This collection corresponds to a real world situation, and is used for evaluating our avatar
alias resolution approach according to Section 7.4. Figure 7.4 shows the distribution of the number of
games by avatar for both replay collections. The distribution for Collection 2 corresponds to a long tail
where 10% of players participate in more than 67% of the games. The distribution for Collection 1 is
explained by the elimination process of the WCS qualifiers, meaning that the distribution of game played
by user gradually increments as they go up the classification ladder. Respectively, in average each player
participates in 5 and 9 games in Collections 1 and 2. Charts at center and right in Figure 7.4 illustrate the
proportion of each type of action used as feature for avatar classification in our approach. Particularly,
these figures show the actions for the first ten and thousand seconds of the game, respectively. The object
selection is the most prominent event in the first seconds of the game (the warm up phase), totalling
80% of the actions, after which the use of hotkeys becomes the most important action. This is the main
reason why we will use object selection frequencies as features (in previous work, only hotkeys were used
as features [170]). The chart at right in Figure 7.4 can be explained as follows. In the first minutes of the
game there are not many options for the player to execute leading to a high proportion of clicking and
selection events. After the 2 or 3 minutes, the user has built up a wider variety of options to execute which

16http://wiki.teamliquid.net/starcraft2/Replay_Websites
17http://sc2reader.readthedocs.org/
18http://wcs.battle.net/sc2/en/articles/wcs-2014-season-2-replays
19http://spawningtool.com/
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leads to hotkey bindings. The major part of bindings are made only once in the game, thus the highest
proportion of hotkey events around 200 seconds. In the rest of the game, these proportions stabilize.

7.5.2 Experimental set up

Two main experiments were conducted. In Collection 1, we apply a set of classifiers to test the efficacy
of predicting the avatar of a trace. In Collection 2, we apply classification and clustering to perform
avatar alias resolution. Both experiments share the steps of parameter selection, dataset creation and
classification. The second experiment also considers a fourth step clustering, scoring and post processing.

Parameter selection Throughout this document we have described a range of parameters which
compensate for the fact that we know very little of the users we are looking for. For example, the
parameter γ compensates for the fact that we do not know which is the proportion of avatars in a dataset
that correspond to aliases of the same user. The parameter β compensates for the fact that we do not
know in which proportion aliases are used. For example, β = 0.5 represents the fact that users may
use their aliases in an equal proportion, while β = 0.8 represents the fact that users may use one alias
much more than the other. The parameters in our approach are a manner of discovering under which
conditions the notions of avatar alias resolution holds. For this reason, we have selected a wide spectrum
of parameter combinations for our experiments. The following list present the names and meaning of
each parameter.

τ : a time threshold for traces. Only the actions of the first τ seconds are considered in the
dataset for classification. We also use a threshold for the number of actions, thus only the first
τ actions can be considered

γ: proportion of users converted into surrogates aliases
θ: minimum number of games played by an avatar to be retained in the dataset
β: surrogates’ balance is the proportion of games attributed to one

of the two surrogates derived from an avatar
λ: cluster score threshold (see Section 7.3)

Dataset creation Having defined a set of parameter value, we generate datasets for classification from
Collections 1 and 2. Each dataset contains traces as instances and avatars as class labels. Features of
traces are a vector of numerical attributes and a couple of categorical attributes. Vector dimensions are
associated with a canonical order over the repertory of events in the game. The value of each dimension
for a given trace is the number of times the event was executed in the trace. A final dimension considers
the average actions per minute (APM) associated with that trace. Categorical attributes correspond to
the race used by the player (possible values: Protoss, Terran or Zerg) and the final status of the game
(possible values: Win or Lose). Datasets are stored in the attribute-relation file format (ARFF) for the
Weka system.

A single dataset is built for each different provided selection of attributes. For collection 1 we created
92 datasets, while for collection 2 we created 64 datasets.

Classification Each dataset is classified using the Weka machine learning software and evaluated using
10-fold cross validation from which we obtain a confusion matrix. To represent the generality of our ap-
proach, we chose four different classifiers, namely K Nearest Neighbours (KNN), Naive Bayes (NBAYES),
J48 decision tree (J48) and Sequential Minimization Optimization (SMO). Parameters for each of the
classifiers were left as default.
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Figure 7.5: Classification results for Collection 1: precision and ROC area under the curve (AUC) distribution
on 23 points of τ for four θ values. τ points were varied exponentially (10-90, 100-900, 1000-5000).

Clustering, scoring and post processing Each confusion matrix was processed by the Sephirot
addIntent implementation20 to obtain a set of pattern concepts. Scoring and post processing were imple-
mented in ad-hoc python scripts.

7.5.3 Experimental results

Classifying avatars Figure 7.5 shows the precision and the ROC area obtained for 92 datasets created
for Collection 1. The parameter τ ranged over 23 values in an exponential scale, initially from 10 to 90
seconds then from 100 to 900 and finally from 1000 to 5000 seconds (the longest game in this collection
has around 5300 seconds) and thus, the x axis of each figure is in logarithmic scale. For each measure,
four figures corresponding to four different settings of θ are presented. Each line corresponds to a different
classifier. The figures present an empirical evaluation that the initial assumption, that avatars are very
easily recognizable based in the signatures left in the traces they generate while playing, is true. For
each different setting, ROC area is always around 100% showing the robustness of the approach under
different parametrizations. Precision is always maintained over 60%, achieving it minimal value for the
SMO classifier with θ = 5 and τ > 1000. Actually, this also confirms two of our previous assumptions.
Firstly, it is hard to recognize users that have played a few games, meaning that the larger the value of
the θ threshold, more discriminative power has the classifier. Secondly, users are recognizable in the first
few minutes of the game. The precision curves show a slight concave behaviour hinting a maximum of
the precision w.r.t. the time cut used for traces. Indeed, this agrees with the hotkey use description given
for Figure 7.4 in the chart at right. Users can be efficiently discovered by their hotkeys binding settings.
As the game progress, traces may differ given that the number of options in the game greatly increase

20https://code.google.com/p/sephirot/
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and vary in execution regarding different opponents.

Identifying multiple aliases The goal of experiment 2 is evaluating our approach for finding avatar
aliases. We have generated 48 datasets considering different parametrizations. As already discussed in
the previous experiment, the efficacy of the classifiers achieves its best in the first few minutes of the
game. Thus, we have selected three different τ values, namely 30, 60 and 90 seconds. We have picked the
same values for θ as in the previous experiments. Surrogates were generated for the first 5, 10, 15 and
20 percent of the most active users in the dataset (γ). For this particular experiment, we have set the
balance β = 0.5. All 48 datasets were processed using the four classifiers previously mentioned yielding
a total of 192 confusion matrices. The top part of the Table 7.4 shows a summary for the evaluation
results using the top 100 pairs of avatar clusters found with parameters τ = 90, θ = 20 (248 avatars
including surrogates), γ = 0.2 (41 surrogates) and λ = 0.9. The top, medium and bottom parts of the
table contain the evaluations when looking for surrogates only, surragates and URLs, surrogates, URLs
and names, respectively.

Results indicate that our approach is very efficient at identifying surrogate avatars with these param-
eters. This is particularly true for KNN and the J48 classifiers achieving very high recall values. In the
upper table, while precision is low it is worth noticing that in the top 100, there are only 41 surrogates
meaning that the maximum achievable precision is 0.41. The classifier KNN is particularly good in this
measure achieving an almost perfect value (0.4 of 0.41). All four classifiers achieve a very high precision in
the first 10 results (P@10) while two of them get a perfect score. Indeed, one of the main characteristics
of our approach is the good ranking it generates over the avatar pairs. This fact is confirmed by the good
MAP and ROC area under the curve (AUC) values achieved by all four classifiers. Both these measures
slightly degrade when including in the set of true positives URLs and names. In the case of the latter,
this can be understood since not all avatars with the same name necessarily belong to the same user (as
we have previously stated, same nick-names is a weak indicator). Thus, pairs of avatars with the same
name will be more evenly distributed over the ranking or can even be found at the bottom indicating
that they do not belong to the same user. This fact is reflected in the gap between the high grow of
precision and low degradation of recall, i.e. avatars with the same name are evenly distribute between
the pairs retrieved and those that were not.

A special mention deserve the URL true positives. As we have discussed, avatars with the same URL
necessarily belong to the same user. Hence, we would have expected that in the first 10 pairs retrieved
we could find an even distribution of surrogates and URLs. Instead, for all classifiers, P@10 is more than
80% surrogates (while the rest is always URLs - P@10 in the medium part of the table). The reason
behind this is that we have purposely selected a balance of 0.5 for the surrogate distribution of traces,
while we do not have control over this value for the URL pairs. The lower part of Table 7.4 shows
a summary of results when looking for just surrogates while varying the balance in the distribution of
traces between them. We can clearly observe that the performance of the approach quickly degrades as
more imbalanced gets the distribution (the higher the β value). Actually, for some classifiers it is not
possible to obtain a single good result, even when we have lowered the λ threshold to 0.8. As URLs are
not necessarily balanced, classifiers tend to predict the label of a trace belonging to an avatar with less
traces to one with more traces. Issues related to learning from imbalanced datasets are reviewed in [77]
and need to be considered when selecting a proper classifier for our particular application.

7.6 Related Work

Recently, Yan et. al [170] suggested that behavioural patterns discriminating skills, but also player
themselves, can be discovered in the way they use their keyboard when playing Starcraft 2 . They
gathered 3,316 replays and took as features the frequencies of each control group key were used (30
features) for the whole game. They showed that these features allow predicting with high accuracy the
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Parameters:: γ = 0.2, θ = 20, λ = 0.9, τ = 90
Surrogates
Classifier F1 MAP Recall AUC Precision P@10
j48 0.468 0.824 0.805 0.904 0.33 1.0
naivebayes 0.226 0.740 0.390 0.915 0.16 0.8
smo 0.312 0.971 0.536 0.993 0.22 1.0
knn 0.567 0.822 0.976 0.882 0.4 0.9
Surrogates & URLS
Classifier F1 MAP Recall AUC Precision P@10
j48 0.588 0.907 0.606 0.866 0.57 1.0
naivebayes 0.443 0.857 0.457 0.864 0.43 1.0
smo 0.257 0.912 0.266 0.945 0.25 1.0
knn 0.670 0.937 0.691 0.874 0.65 1.0
Surrogates & URLS & Names
Classifier F1 MAP Recall AUC Precision P@10
j48 0.689 0.983 0.606 0.935 0.8 1.0
naivebayes 0.560 0.943 0.492 0.906 0.65 1.0
smo 0.258 0.949 0.227 0.960 0.3 1.0
knn 0.758 0.967 0.667 0.792 0.88 1.0

Parameters:: γ = 0.2, θ = 20, λ = 0.8, τ = 90
J48
Balance F1 MAP Recall AUC Precision P@10
β = 0.5 0.925 0.996 0.929 0.955 0.920 1.0
β = 0.6 0.545 0.927 0.632 0.921 0.480 1.0
β = 0.7 0.053 0.695 0.077 0.977 0.040 0.3
β = 0.8 - - - - - -
Naive Bayes
Balance F1 MAP Recall AUC Precision P@10
β = 0.5 0.472 0.902 0.475 0.953 0.470 0.9
β = 0.6 0.273 0.923 0.316 0.973 0.240 1.0
β = 0.7 0.197 0.9 0.288 0.978 0.150 0.9
β = 0.8 0.048 0.533 0.120 0.983 0.030 0.3
SMO
Balance F1 MAP Recall AUC Precision P@10
β = 0.5 0.392 0.983 0.394 0.992 0.390 1.0
KNN
Balance F1 MAP Recall AUC Precision P@10
β = 0.5 0.905 0.964 0.909 0.732 0.9 1.0
β = 0.6 0.750 0.957 0.868 0.929 0.660 1.0
β = 0.7 0.184 0.706 0.269 0.949 0.140 0.7

Table 7.4: Summary of evaluation measures over the resulting avatar cluster list yielded by the alias resolution
approach (at top), and avatar clustering when varying the balance (β) (at bottom). Each entry represents a
confidence matrix yielded by the respective classifier

league in which an avatar is playing21. A second result tells that a basic SVM classifier can predict the
avatars involved in a game with high accuracy (≥ 0.95 accuracy with a leave-one-out validation), even
when the avatar has few numbers of samples (between 2 and 20). Yan et. al showed that hotkeys (control
groups) yield unique behavioural patterns of a user, but they did not present a way to discover avatar
aliases: they even removed avatars with high probability of being aliases (e.g., bar code names).

Using control groups as features is actually inspired by several works in software and security appli-
cations. Indeed, typing patterns allow identifying users by their typing characteristics [132]. The tedious
task is to determine the appropriate behavioural metrics and features [169]. For example, keystroke

21Leagues regroup players by level, following an ELO-like ranking system, from bronze, silver, gold, platinum, diamond,
master, to grand master, the later involving the best 200 players of each continent.
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dynamics and typing rhythm are crucial for authenticating a user based on habitual patterns [123]. Re-
cently, an investigation around Starcraft 2 [154] highlighted that the predictive importance of features
is not constant across levels of expertise, while Yan et al. [170] ensured that complex features, even
spatio-temporal, are not important: only the frequency of hotkeys is enough to output highly accurate
classifiers; we emphasized this fact by showing that only the first few minutes of game play are enough
to recognize the player.

Starcraft 2 and other real time strategy games (RTS) in general, face several research challenges in
artificial intelligence [128] including opponent modelling and learning. Game traces/logs from replay files
tend to be more and more used to tackle these problems since this information is easy and free to gather.
We can notice several works focusing especially on tactical and strategic aspects, such as predicting army
locations and opponents actions [164, 151] and automatically discovering build orders [109, 32]. All these
works focus on effective actions made by players (build orders, micro/macro management) while we use
here only the very first few actions of the warm up phase that one could consider as noise.

7.7 Conclusion

Video game analytics is a growing field of data science, crucial, if not vital, for the biggest game producers
and editors. It comes with many challenges, the holy grail being to find all the ingredients that could
assure an indisputable success of a game directly at its release. Pragmatically however, behavioral big
data is gathered and analyzed to answer several problems, including the design of better artificial agents,
game balancing, bugs and cheaters and usurpers detection, etc. Games are then patched, cheaters
are banned, and this cycle restarts. Behavioral data is also a gold mine in the context of electronic
sports and competitive gaming, for reaching the same goals as in standard sport analytics (see e.g.
http://www.sloansportsconference.com).

We introduced the problem of avatar aliases identification, when there exists no mapping between
individuals and their avatars. This is an important problem for game editors, but also for e-sport
structures. Our method relies on the fact that behavioral data hide individual characteristic patterns,
which allows making predictive approaches very accurate. Nevertheless, this good performance quickly
degrades when data hides avatar aliases, which is why we based our analysis on confusion matrices.

Going further, we proposed an original method that considers the lattice of binary classifiers, where
each element is a model learned from positive and negative examples that are respectively the instances of
a subset of labels B and their complementary instances. This constitutes the search space of our problem
and each binary classifier forms a potential group of avatar duplicates. We propose an efficient way to
traverse the lattice of binary classifier to output the set of duplicate label sets [101].
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Conclusion

There are many ways to write a manuscript for an “Habilitation”. I chose to give, as an introduction, an
overview of the research problems that attracted me over the last ten years before developing on the most
representative contributions covering the different axes. It is important to notice that I did not always
chose beforehand the problems to investigate, but the applications from collaborative project opportuni-
ties did it for us. This is probably the most interesting aspect of research in KDD: the actual data and
the experimental results can whisper real challenges. Going back to theory helps formalizing the problem,
connecting it with other problems, and sharing with other researchers in different communities. The most
representative case was the problem of neuroscience where the objective was to extract descriptive rules
between molecular descriptors and odors. Subgroup discovery was already a widely studied task in data
mining, but the state of the art at that moment was presenting several challenging points according to
the dataset we had in hands.

PhD and post-doctoral researchers supervision also strongly supports the realization of the research.
Their propositions inevitably impacts the research line, as well as their wishes to focus on particular
problems. I shall name and specially thank them again. Guillaume Bosc (2014-2017) was attracted
in algorithms for subgroup discovery and making sense of data. Olivier Cavadenti (2013-2016) was
more attracted by methodological aspects of KDD by (non-trivially) bringing existing pieces together to
answer a company need through a collaboration. Aimene Belfodil (2016-2019) literally fell in love with
Formal Concept Analysis and focused on studying its limits and open challenges for manipulating non
standard patterns. Finally, Romain Mathonat (2017-), got interested in sequential pattern mining with
non exhaustive techniques for mining video game data logs. Víctor Codocedo, during his post-doctoral
research (2015-2016), worked on video game analytics for the application side and also on sequential
patterns characterization with FCA and mining. Allowing researchers under supervision to work on what
they enjoy, still ensuring that their scope fits an open question within a coherent and long term research
line was actually a role I had to endorse, and is, in my honest opinion, the most important requirement
for an “Habilitation”. The other collaborations, within the team, or with other research laboratories, are
also mandatory, in order to stay aware, to confront ideas and opinions in a gentle atmosphere and build
on the different singularities of each other.

Collaborations with industries and other researchers –but not computer scientists– has also influenced
my research (and career, as I am currently in a long term sabbatical of my associate professor position).
Being involved in long term national or European projects, with an important financial support for the
different partners forces to concentrate not only on the theory and methods, but on the actionability of the
produced results: What will stay once the project is over? Such projects are not “pure research” supports
but integrate a “knowledge and method transfer” component which was at the beginning disturbing for
me. Indeed, it took us several years between the very first discussion with neuroscientists (especially Dr.
Moustafa Bensafi) and the publication of actionable results in a specialized journal. It will take some
time before that our tools for eliciting hypotheses from olfactory data will be used as a routine in other
laboratories (and it may never happen without a serious follow up).

Such remark can be made also for the video game analytics application. In that particular case, I
mostly played the role of domain expert for StarCraft II, but here again, producing interesting patterns
took us quite some time between the first ideas, my stay at the MIT Media Lab (with my colleague and
friend Chedy Raïssy) and the final publication. Interestingly, manipulating and understanding those data
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(along with social media data and a few others) helped me to propose practical sessions for students in
our school (INSA Lyon) for which I knew precisely what to discover within (knowledge, models, errors,
artifacts, etc.). It consequently helped me to prepare these data mining and machine learning classes,
attract students and communicate them the main messages. Actually, the transfer is at its preliminary
stage at the university: engineers who will leave the school have experimented KDD with real problems
(yet simplified for the purpose of the class) and may remember that pattern discovery can be useful at
some point in their career.

Going back to my research project, I described in this manuscript three major axes: (i) Theoretical
aspects of pattern discovery with Formal Concept Analysis as a bridge to Order Theory; (ii) Subgroup
Discovery: interestingness and algorithms, and finally (iii) applications for practical and tangible valida-
tion and transfer. My perspectives of research still fit in these three axes, with slight amendments.

(i) Data and Pattern Formalization This axis of research started during my PhD. The original prob-
lem was to consider an exact numerical pattern enumeration and FCA played a key role. It was
possible to very elegantly define and mine such patterns, simply by defining what an intersection
is. This is the beauty of pattern structures but also its weakness. The beauty lies in the fact that
it allowed us to considered many pattern types very simply (biclusters, functional dependencies,
intervals, polygons, etc.) and heterogeneous data on those types. The weakness is that there is
not always a “unique intersection” for some very interesting types of patterns (sequences, graphs,
circles, ...). For many years, this is what reduced the visibility of pattern structures. This is why
we developed on pattern setups and pattern multi-structures. We are only at the beginning of
manipulating and understanding such structures.

(ii) Subgroup Discovery and Algorithms Although we mainly defined Subgroup Discovery as the
task of finding patterns that discriminate a class, the original definition of Wrobel is more impre-
cise and actually covers exceptional model mining. Nevertheless, we were attracted by subgroup
discovery as soon as basic constraints of constrained pattern mining were insufficient (or simply
hazardous or impossible to set, as choosing the right combination of constraints becomes a pat-
tern mining problem itself!). Our perspectives in this axis concern algorithms and interestingess.
Concerning the algorithms, we are investigating how to generically sample (minimal generators of)
extents (object sets), that is, proposing bandit based methods for any pattern domain (provided
or not with a memory as it is the case for MCTS). We hope to add guarantees systematically for
anytime algorithms that tell how fare we are from an exhaustive search, if the best pattern has been
found or not, etc. Following the idea of mining finer and finer discretizations, our goal is to formal-
ize a partial order of pattern domains (pattern structure projections) and start the exploration in
the most general representations. Then, when a subspace is promising, finer data representations
can be considered. That was actually the initial subject of Guillaume Bosc’s PhD thesis in 2014,
and we are making progress slowly but surely. The other aspects that we will start to investigate
is the inclusion of the domain expert during the search, by learning its preferences and guiding
the search. Considering anytime approaches with an exploration/exploitation trade-off, we can
imagine the expert to give feedback on some result snapshots, which can be then handled by the
exploration/exploitation strategy.

(iii) KDD in practice To stay close of real problems, contact with the real world shall be kept. I
decided to make a big move in that direction, by taking a long term sabbatical in a company.
There, the main problems are linked to its important and constant growth over the past decades
(from a few to 250 employees). It comes with many issues which can be gathered under the term
of “Digitization” or “Numeric transformation”, many of which than can be approached thanks to
the following tasks.

Static Code and Software Analytics To understand and optimize processes and information re-
trieval, many sources of data can be valorized, but should be first available, and before that,
modeled. For that matter, I got attracted by Software Analytics through the construction of
the Abstract Syntax Tree (AST) of a 19 millions lines code, in which many entities and links
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between those entities are hidden and required for having a precise information system on the
company activities and processes. Pattern mining techniques are adapted for many tasks.

Predictive Maintenance Another field that I discovered through this experience is predictive/pre-
ventive maintenance. Our software runs on industrial environments and we can gather many
types of monitoring time series and events from the software environment (Java Virtual Ma-
chine, the machine itself and the database system). We observed that several problems could
have been easily anticipated while others can be discovered with pattern mining.

Knowledge Spaces Over the last years, public institutions and private companies are increasingly
in the need of understanding the knowledge state of their group to answer different challenges
such as efficiently training/learning for the employee side, and identifying critical skills for
the employer side. These challenges naturally arise in the academic system: universities have
to define skills students can learn (and dependencies between skills), and to regularly assess
the knowledge state of a student and a class with exams, and most importantly, use the
knowledge state to personalize the evaluations and learning trajectories. For this matter,
a theory has been successfully developed several years ago and is now successfully used by
millions of students, under an implementation known as Aleks (https://www.aleks.com/
about_aleks/knowledge_space_theory). This theory is actually strongly rooted in FCA [61].
We propose to go beyond the current state of research of knowledge spaces. Indeed, the theory
is centered on a single user, while we need to understand the knowledge state of a group. We
are currently building a knowledge space under elaboration, and ways to automatically assess
skills through user traces at a frequency rate that will allow realistic experimentation.

Behavioral Data Analytics Finally, we will attach a particular interest in analyzing user and system
traces for several purposes (other than for assessing the knowledge state of a user) such as
detecting anomalies in the usage of our software and detecting security issues. The variety of
data sources and the volume of data makes there real challenges from which I am convinced
to discover research problems.
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Abstract

The process of collecting and analyzing data to answer predictive, explanatory, and decision-making
issues has come to be known as “data science” for more than thirty years. Firstly used only by scientists,
mainly by statisticians, the term is now widely used in the academics and industrial world. This can be
explained in two ways: (i) data is ubiquitous, large, and varied, and (ii) there has been an awareness of
the omniscient potential of data. The latter can be economic, societal, scientific, or related to health-care,
and is based not only on the data that an entity has, but also on data that it can get (sensors, social
networks, open data, etc., freely or not) making the data a black oil that still needs algorithms, methods
and methodologies, to be properly refined.

One component of data science, Knowledge Discovery in databases (KDD), deals in particular with
the Data-Information-Knowledge process with the aim of explaining relationships or discovering hidden
properties. Opposed to a purely statistical approach, a family of methods has met an important success
over the last twenty years: data-mining and especially pattern-mining. Their goal is to describe, sum-
marize, raise hypotheses from data. In particular, pattern mining makes it possible to efficiently find
regularities of various types (such as frequent patterns in a set of transactions, molecular sub-graphs
characteristic of toxicity, locally co-expressed gene groups, etc.). In fact, where conventional approaches
aim to validate or invalidate an hypothesis given a priori, the search of patterns is seen as an enumeration
technique of all the possible hypotheses (a set of exponential size w.r.t the input data) verifying some
given constraints or maximizing a certain interest for the expert. Once discovered, the best hypotheses
can then be tested, validated or invalidated and ultimately validated as knowledge unit.

My scientific adventure began with the study of a binary relationship, very often illustrated by super-
maket transaction data, linking customers and products they buy. How to make this relationship speak?
What knowledge, behavioral habits, recommendations, etc. can we characterize?

This initial question allowed me to travel through different application fields (biology, neuroscience,
social networks and video games analytics), seeking to implement or adapt data mining methods to try
to understand some phenomena while properly formalizing data and patterns in the most rigorous way.
This is the story of this manuscript, according to three main research axes: the formalism framing the
methods (Formal Concept Analysis), the methodological and algorithmic aspects related in Data mining,
and finally the Knowledge Discovery “in practice” through several concrete applications encountered
during collaborations with other scientists or industrial partners.

Keywords: Knowledge Discovery in Databases, Pattern Mining, Formal Concept Analysis, Applications.



Résumé

Le processus qui permet de collecter des volumes de données puis de les analyser pour répondre à des
questions à buts prédictifs, explicatifs et décisionnels, est apparu sous le vocable “science des données”
(data science) il y a déjà plus de trente années. Accaparé d’abord par les scientifiques (notamment les
statisticiens et largement pratiqué par les physiciens), ce terme connaît aujourd’hui un usage répandu dans
le monde industriel et les collectivités. Cela s’explique de deux manières : (i) les données sont aujourd’hui
omniprésentes, en grandes quantités, et variées, et (ii) il y a eu une prise de conscience du potentiel
omniscient de ces données. Ce dernier peut être économique, sociétal, sanitaire ou encore scientifique,
et se base non plus seulement sur des données qu’une entité possède, mais également sur des données
qu’elle peut se procurer (capteurs, réseaux sociaux, données ouvertes open data, etc., gratuitement ou
non) faisant de la donnée un or noir toujours trop peu raffiné.

Une composante de la science de données, la “découverte de connaissances” (DC ou Knowledge dis-
covery in databases, KDD), traite en particulier de la chaîne Données–Informations–Connaissances avec
le souci d’expliciter des relations ou propriétés enfouies. Se différenciant d’une approche purement statis-
tique une famille de méthodes a connu un succès vaste ces vingt dernières années : la fouille de données
sous-contraintes. Elles visent à décrire, résumer, soulever des hypothèses à partir de données. Notam-
ment, la fouille de motifs permet de trouver de manière efficace des régularités de divers types (comme des
motifs fréquents dans un ensemble de transactions, des sous-graphes moléculaires caractéristiques d’une
toxicité, des groupes gènes localement co-exprimés, etc.). En fait, là où les approches classiques visent
à valider ou invalider une hypothèse donnée a priori, la fouille de motifs se voit au contraire comme une
technique d’énumération de toutes les hypothèses possibles vérifiant certaines contraintes ou encore max-
imisant un certain intérêt pour l’expert parmi un ensemble de taille exponentiel. Une fois découvertes,
les meilleures hypothèses peuvent être alors testées, validées ou invalidées. On fait donc véritablement
face à un processus de découverte d’hypothèses ayant le plus de chances d’être validées ensuite comme
connaissances.

Mon initiation scientifique a commencé par l’étude d’une relation binaire, très souvent illustrée par
le panier de la ménagère, liant clients et produits qu’ils achètent. Comment faire parler cette relation
données ? Quelles connaissances, habitudes comportementales, recommandations, etc. peut-on extraire ?

Cette question initiale m’a alors permis de voyager à travers différents domaines applicatifs (biologie,
neurosciences, réseaux sociaux et jeux-vidéo), cherchant à mettre en application ou adaptant des méthodes
de fouille de données pour tenter comprendre des phénomènes tout en formalisant le plus rigoureusement
possible le cadre dans lequel ces méthodes s’inscrivent. C’est donc cette histoire que je vais raconter
dans ce manuscrit, selon trois axes principaux : le formalisme cadrant les méthodes avec l’Analyse de
Concepts Formels, l’aspect méthodologique et algorithmique à travers la Fouille de données, et enfin la
Découverte de Connaissances à travers plusieurs applications concrètes rencontrées lors de collaborations
avec d’autres scientifiques ou industriels

Mots-clés: Découverte de connaissances, fouille de motifs, analyse de concepts formels, applications
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