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Résumé

Dans les deux dernières décennies, grâce au développement de nouvelles nanotechnologies,

les matériaux nano-structurés ont suscité l’intérêt de nombreux groupes de recherche

académiques ou industriels, donnant lieu à la mise en place d’essais expérimentaux, à la

formulation de modèles analytiques, et à des simulations numériques dédiées.

Parmi les différents types de matériaux nano-structurés, un rôle important est tenu

par les matériaux nanoporeux, constitués d’une matrice solide contenant des pores dont

la dimension caractéristique est de l’ordre de quelques nanomètres à quelques dizaines de

nanomètres. En effet, en raison de leurs excellentes propriétés mécaniques et chimiques,

les nanoporeux ont récemment fait l’objet de nombreuses applications novatrices dans

différents domaines techniques, permettant ainsi la conception de dispositifs à ultra-haute

performance et aux propriétés multi-fonctionnelles inhabituelles.

Afin de répondre à ces exaltantes perspectives, une des voies de recherche les plus

prometteuses réside dans la compréhension, la caractérisation et la prédiction des effets

de taille des nanopores sur les propriétés mécaniques du matériau. Malgré cela, la plus

parte des études actuellement disponibles dans la littérature, concernant les effets de

taille sur la réponse mécanique des nanoporeux, ont essentiellement porté sur l’estimation

des propriétés élastiques effectives. Au contraire, très peu d’attention a été accordée à

l’influence de la taille des nanopores dans le régime plastique.

L’objectif principal de cette thèse a donc été d’étudier les propriétés de résistance des

matériaux nanoporeux ductiles à l’aide d’approches théoriques et numériques. En par-

ticulier, dans le contexte des méthodes d’homogénéisation, visant à construire un milieu

homogène aux propriétés effectives équivalentes, des critères de résistance macroscopiques

ont été établis par des approches analytiques (homogénéisation non-linéaire et analyse lim-

ite). Dans ce cadre, les surfaces des nanopores ont été modélisées comme des interfaces

imparfaites cohérentes. Les critères de résistance ainsi obtenus ont permis de tenir en

compte les effets de taille, tout en améliorant les formulations déjà existantes.

En outre, dans le but de comprendre les mécanismes de déformation à l’œuvre dans les

matériaux nanoporeux et de constituer une base de référence pour la calibration et/ou la

validation des modèles analytiques disponibles, ainsi que pour le développement de nou-

velles approches de modélisation, des simulations numériques basées sur la Dynamique

Moléculaire ont été conduites, sous des conditions de chargements multiaxiaux en vitesse

de déformation. Par rapport aux simulations actuellement disponibles dans la littérature,

considérant généralement des conditions de chargement particulières (essais de traction

v



“tesi” — 2016/12/22 — 9:44 — page vi — #6

vi

mono-axiale ou sous pression uniforme), les résultats obtenus ont permis une identifica-

tion du domaine multiaxial de résistance, en établissant clairement l’influence de trois

invariants de contrainte ainsi que les effets de taille sur les surfaces de résistance du

nanoporeux.

Dans le but de mettre à profit les indications fournies par les simulations numériques,

le cas d’un matériau nanoporeux constitué d’une matrice ductile sensible aux trois invari-

ants isotropes a été étudié. L’état limite d’une sphère creuse, avec une interface impar-

faite cohérente à la surface du nanopore, a été identifié de façon exacte dans le cas d’un

chargement isotrope, en établissant des expressions analytiques pour les champs locaux de

vitesse de déformation et de contrainte, et pour la résistance hydrostatique du matériau

nanoporeux. Finalement, à partir des résultats ainsi obtenus, une approche d’analyse

limite cinématique a été mise en place pour le modèle d’une sphère creuse sous charge-

ment axisymétrique et au comportement plastique sensible aux trois invariants isotropes

de contrainte. Un critère de résistance du matériau rendant compte des effets de taille des

nanopores et de l’influence des trois invariants de contrainte a été analytiquement dérivé,

en résolvant un problème de minimisation sous contrainte non-linéaire d’inégalité.

Mots clés: Matériaux nanoporeux, propriétés de résistance, effets de taille des nanopores,

Dynamique Moléculaire, analyse limite cinématique, homogénéisation non linéaire.
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Sommario

Negli ultimi anni, lo sviluppo di nuove nanotecnologie ha portato ad un crescente inter-

esse nei confronti dei materiali cosiddetti nano-strutturati, progettati al fine di garantire

proprietà e prestazioni generalmente superiori o comunque non assimilabili a quelle esib-

ite dai materiali convenzionali. Tra gli altri, grande interesse hanno suscitato i materiali

nanoporosi, costituiti da una matrice solida contenente dei pori la cui dimensione carat-

teristica è dell’ordine di alcuni nanometri. Generalmente contraddistinti da un ridotto

peso specifico, da elevate energie superficiali e da significative proprietà fisico-chimiche, i

materiali nanoporosi sono impiegati nella progettazione di dispositivi ultra-efficienti per

applicazioni innovative in differenti ambiti industriali, tra cui l’ingegneria meccanica e

civile, il settore petrolchimico e geotecnico, la biomeccanica e la sensoristica.

Uno degli attuali aspetti di ricerca più affascinanti consiste nell’identificazione e nella

descrizione delle proprietà meccaniche del materiale in funzione della taglia caratteristica

dei pori, assegnato che sia un valore di porosità. Una tale dipendenza, non esibita dai

materiali porosi convenzionali, è strettamente correlata alla dimensione nanometrica dei

pori, consentendo di alterare deliberatamente la risposta meccanica del materiale al fine

di prescrivere specifiche funzionalità di interesse progettuale.

A fronte di una risposta meccanica cos̀ı complessa e rispetto alla letteratura esistente,

l’obiettivo della presente tesi è consistito nella formulazione di approcci analitici e numerici

per la caratterizzazione delle proprietà di resistenza dei materiali nanoporosi, identifican-

done la dipendenza dagli effetti di taglia.

In particolare, nel contesto degli approcci di omogeneizzazione non lineare e di analisi

limite, dei criteri di resistenza sono stati analiticamente determinati, tenendo conto della

dipendenza dalla taglia dei nanopori tramite l’introduzione di un modello d’interfaccia

imperfetta coerente. Le stime di resistenza cos̀ı ottenute hanno permesso di migliorare

significativamente i più recenti modelli disponibili in letteratura, fornendo una descrizione

consistente degli effetti associati sia alla porosità che alla taglia dei nanopori.

Inoltre, al fine di fornire delle evidenze numeriche utili alla calibrazione e/o alla val-

idazione di formulazioni analitiche esistenti, oltre che per lo sviluppo di nuovi modelli

teorici, delle simulazioni di Dinamica Molecolare sono state condotte considerando una

varietà di condizioni al contorno multiassiali in velocità di deformazione. Rispetto agli

approcci numerici disponibili in letteratura, riferiti generalmente a delle condizioni di

carico estremamente esemplificative, la procedura computazionale proposta ha perme-

sso un’identificazione tridimensionale del dominio di resistenza del materiale nanoporoso,

vii



“tesi” — 2016/12/22 — 9:44 — page viii — #8

viii

mettendone in evidenza la dipendenza dagli invarianti isotropi nonché i significativi effetti

di taglia.

Sulla base delle indicazioni fisiche fornite dalle simulazioni di Dinamica Molecolare,

lo stato limite di un materiale nanoporoso con una matrice plastica dipendente dai tre

invarianti isotropi è stato risolto in modo esatto. I campi locali di tensione e di velocità di

deformazione, nonché la resistenza idrostatica effettiva, sono stati determinati in forma

esplicita e validati rispetto alla letteratura esistente.

Infine, a partire dai risultati analitici cos̀ı ottenuti, un approccio cinematico all’analisi

limite è stato proposto, considerando come dominio di riferimento una sfera cava soggetta

a delle condizioni al contorno assial-simmetriche in velocità di deformazione. La superficie

del nanoporo è stata descritta tramite un modello d’interfaccia coerente imperfetta, al fine

di tenere conto delle tensioni superficiali auto-equilibrate dovute alla nanoscala del poro.

Un criterio di resistenza per il materiale nanoporoso espresso in termini dei tre invarianti

isotropi è stato esplicitamente determinato, risolvendo un problema di minimizzazione

non-lineare vincolata.

Parole chiave: Materiali nanoporosi, proprietà di resistenza, effetti di taglia, Dinamica

Molecolare, analisi limite cinematica, omogeneizzazione non lineare.
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Abstract

Since the recent arising of advanced nano-technologies, as well as of innovative engi-

neering design approaches, nanoporous materials have been extensively studied in the

last two decades, leading to a considerable worldwide research interest in both industrial

and academic domains. Generally characterised by high specific surface area, uniform

pore size and rich surface chemistry, nanoporous materials have allowed for the devel-

opment of challenging ultra-high performance devices with tailorable properties, finding

widespread application in several technical fields, including civil and environmental engi-

neering, petroleum and chemical industries, aeronautics and biomechanics.

In order to fulfil to these promising applications, one of the most fundamental research

aspect consists in characterising and predicting the strength properties of these materials,

as dependent on the size of voids. Since the current lack of an exhaustive benchmarking

evidence, as well as of a comprehensive theoretical modelling, the central purpose of the

present thesis consisted in:

• investigating strength properties of in-silico nanoporous samples via Molecular Dy-

namics computations. In detail, a parametric analysis with respect to the void

radius and for different porosity levels has been carried out, by considering different

loading paths with a wide range of triaxiality scenarios. As a result, the influence

of void-size effects on the computed strength properties has been clearly quantified,

also highlighting the dependence of the predicted material strength domain on the

three stress invariants;

• establishing engineering-oriented theoretical models able to predict macroscopic

strength properties of nanoporous materials, by properly accounting for void-size

effects. To this end, theoretical approaches based on both non-linear homogeniza-

tion techniques and kinematic limit-analysis strategies have been proposed. As a

result, closed-form macroscopic strength criteria have been derived, allowing for

a consistent description of void-size effects and taking into account different local

plastic behaviours.

Keywords: Nanoporous materials, strength properties, void-size effects, Molecular Dy-

namics, kinematic limit analysis, non-linear homogenization.

1
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Introduction

In the last decades, the development of novel and challenging nano-technologies has led

to unprecedented opportunities in materials design. As a matter of fact, instead of com-

ing upon new materials with trial-and-error research processes, the core focus of current

engineering design approaches consists in manipulating material microstructure at the

atomic level in order to deliberately prescribe specific properties at the continuum scale.

As a result, a new generation of customer-oriented devices, based on the so-called nanos-

tructured materials, has recently attracted a keen research interest in both industrial

and academic domains, opening towards groundbreaking multifunctional applications in

several technical fields.

An important class of nanostructured materials consists in nanoporous media, whose

microstructure comprises an organic or inorganic solid matrix embedding long-range

orderly- or disorderly-distributed pores (see Fig. 1). According to the International Union

of Pure and Applied Chemistry nomenclature, and depending on pores characteristic

length, nanoporous media can be divided into three subcategories: microporous (with

pore size smaller than 2 nanometers), mesoporous (with pore size in the range of 2 to 50

nanometers), and macroporous (with pore size larger than 50 nanometers). Nevertheless,

for the sake of clarity and in agreement with the most extensively adopted terminology

in literature, in this thesis the term nanoporous is used to refer to materials present-

ing structural features in between those of atomic arrangements and bulk solids, with

characteristic pore size ranging from 1 to 100 nanometers.

Generally characterised by high specific surfaces area, uniform pore size and rich sur-

face energy, nanoporous materials present a wide variety of chemical compositions and

physical features, which are often dramatically different from those of the same material

at a larger lengthscale. Such an intriguing combination of electro-chemical-mechanical

properties has represented the driving force behind the ever-growing research interest in

nanoporous materials, opening towards cutting-edge technological uses (Ding and Zhang,

2016; Jenkins, 2010; Lu and Zhao, 2004; Pinnavaia and Thorpe, 2006; Valiev et al., 2013).

As a matter of fact, due to the presence of nanosized cavities, these materials possess a

high capability to interact, absorb and cooperate with atoms, ions and molecules, thereby

finding widespread application as catalysts or adsorbents in petroleum and chemical indus-

tries (Roque-Malherbe, 2007). Moreover, by combining advantages due to high surface-

to-volume ratio and uniform pore size, nanoporous-based devices have been conceived for

size-selective adsorption purposes, allowing to sensibly improve the efficiency of several

3
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(a) (b)

(c) (d)

(e) (f)

Figure 1 – Scanning Electron Microscopy images of a near-perfect ordered nanoporous alumina
(Kustandi et al., 2010): (a)-(d) Top views. (e)-(f) Cross-sectional views.

catalytic processes (Kärger et al., 2012). Since the ever-more stringent regulatory limits

on environmental emissions, innovative nanoporous filters with sizeable pore space and

high surface energy have been recently developed, aiming to remove contaminants and

pollutants from waste gas and water streams (Kumeria et al., 2014; Lu and Zhao, 2004).

Due to their high sensitivity to detect slight changes in the surrounding environment,

mainly associated to temperature, humidity and light, nanoporous materials have been

extensively used as sensors and actuators in several practical applications, such as for

detecting combustible gases, ethanol, oxygen, and hydrocarbons (Lee, 2009; Ozdemir and

Gole, 2007). By opportunely conceiving material morphology and pores spatial distribu-

tion, biocompatible nanoporous devices have been engineered to mimic natural filtration

processes, for uses in smart implantable drug-delivery systems and bioartificial organs,

as well as to allow for biosensoring and molecular sieving (Adiga et al., 2009; Dai and

Ju, 2012; Sotiropoulou et al., 2005). In detail, some examples of nanoporous implants for

therapeutic purposes are reported in Fig. 2. Ductile plastic behaviour and high strength

properties make nanoporous metallic foams excellent choices for many structural applica-
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tions, as well as for designing lightweight devices in automotive, aeronautic and construc-

tion industries. Finally, in the fields of clean energy production and storage, nanoporous

metals have been recognized as an alternative type of electrode materials, which exhibit

some very unique structural properties not commonly expected from carbon-based elec-

trodes (Ding and Zhang, 2016; Lang et al., 2011).

To date, two basic and complementary methods have been developed for the synthesis

of nanoporous materials, generally known as bottom-up and top-down approaches (Gleiter,

2000; Zehetbauer and Zhu, 2009). In the first case, advanced microstructural nano-

technologies afford to fabricate nanoporous solid frameworks by assembling individual

atomic structures or by consolidating nanosized molecular arrangements. Extensively-

used bottom-up techniques include inert gas condensation (Gleiter, 2000; Zehetbauer

and Zhu, 2009), electro-deposition (Erb et al., 1993; Shin et al., 2003), ball milling with

subsequent consolidation (Koch and Cho, 1992; Chen et al., 1999), and mechanical milling

in a liquid nitrogen environment (Luton et al., 1988; Witkin and Lavernia, 2006). On

the other hand, top-down approaches consists in obtaining nanoporous materials via

the structural decomposition of originally-bulk solid samples. Among other top-down

techniques, dealloying represents the most exploited method for fabricating nanoporous

metals (Sun et al., 2004; Senior and Newman, 2006; Weissmüller et al., 2009), consisting

in the selective corrosion of less-noble elements in alloy-based solid specimens.

Interest in conceiving and developing engineering devices based on nanoporous ma-

terials with respect to conventional porous ones (i.e., with relatively larger characteris-

tic sizes) arose from the discovery that, by opportunely calibrating pore dimension at

the nanoscale, it is possible to deliberately prescribe specific size-related effects at the

macroscale. Accordingly, and with particular reference on mechanical features, one of

the core research focus consists in identifying and describing the strength properties of

nanoporous materials as dependent on the size of voids.

Experimental tests performed on nanoporous foams (e.g., Biener et al., 2005, 2006;

Cheng and Hodge, 2013; Fan and Fang, 2009; Hakamada and Mabuchi, 2007; Hodge et

al., 2007) revealed that, for a fixed porosity level, a reduction in the void size induces a

significant increase in the yield strength, which results higher than characteristic values

observed for conventional porous metals. As an illustrative example, evidence-based data

provided by Fan and Fang (2009) and obtained via nanoindentation tests on nanoporous

gold foams are reported in Fig.3a, highlighting the strengthening effect associated to

the reduction of the ligament size (the latter being proportional to the characteristic

void length). However, apart from these qualitative indications of the void-size influence

on the material yield stress, available experimental literature does not furnish either an

exhaustive description of the three-dimensional material strength domain (i.e., in the

space of principal stresses) or a proper characterization of the impact of void-size effects

under arbitrary loading conditions.

In this light, numerical simulations can be considered as effective methods to provide

benchmarking evidence, allowing also to separately control a number of possible coupled

effects. Nevertheless, computational approaches usually employed for modelling macro-
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Figure 2 – Scanning Electron Microscopy images of nanoporous-based devices for therapeutic
purposes. (a) Anodic surfaces with cylindrical nanopores, able to reduce microbial attachment
and biofilm development (Feng et al., 2014): a-1) nanopores induce a perturbation of both
the electrical charge and the surface energy of a metal, exerting a repulsive force on bacterial
cells; a-2) cross-sectional view of the nanoporous surface alumina. (b) Stent with a nanoporous
alumina layer filled with anti-inflammatory drugs (Jenkins, 2010): b-1) stainless-steel active
stent, coated with a nanoporous alumina oxide; b-2) cross section of the nanoporous alumina
layer. (c) Nanoporous alumina-aluminium wire implants for localized therapy (Rahman et al.,
2015): c-1) low-resolution image of a portion of the nanoporous wire depicted in the inset figure
(total length 10 mm); c-2) cross-sectional view of the nanoporous layer; c-3) top-surface view of
the nanoporous layer, showing nanopores to be filled with therapeutic drugs; c-4) bottom-surface
view of the nanoporous layer, showing closed ends of nanopores.



“tesi” — 2016/12/22 — 9:44 — page 7 — #19

Introduction 7

and/or micro-mechanical response are not able to automatically provide helpful insights

on dominant size-related effects, since they do not include an adequately rich description

of the material structure at the nanoscale. For instance, this is the case of finite elements-

based calculations (e.g., Morin et al., 2015), in which the dependence of nanoporous

material strength properties on the void size is enforced by a priori defining a specific

yield criterion for surface elements at cavity boundaries. On the contrary, allowing to de-

scribe the material arrangement at the atomic level, Molecular-Dynamics computational

approaches can be considered as a promising candidate to numerically investigate the

mechanical response of nanoporous materials, automatically providing helpful insights

on dominant size-induced effects. Specifically, available Molecular Dynamics calculations

mainly addressed the identification and the characterization of atomistic mechanisms un-

derlying failure processes related to void growth and coalescence (e.g., Farrissey et al.,

2000; Lubarda et al., 2004; Lubarda, 2011; Marian et al., 2004, 2005; Pogorelko and

Mayer, 2016; Ruestes et al., 2013; Tang et al., 2010; Traiviratana et al., 2008). On the

other hand and at the best of the author’s knowledge, a limited number of studies has

been devoted to the definition of engineering-oriented strength measures for nanoporous

materials. For instance, mention can be made to results provided by Mi et al. (2011),

Traiviratana et al. (2008) and Zhao et al. (2009), predicting a significant enhancement of

the computed strength measure as the void size reduces (see Fig. 3b). Nonetheless, cur-

rent Molecular Dynamics computations are generally limited to the analysis of particular

strength states only, obtained under uniaxial (Farrissey et al., 2000; Tang et al., 2010),

volumetric or shear conditions (Marian et al., 2004, 2005), and therefore defining only few

discrete points on the a-priori unknown material strength surface. In fact, no numerical

analysis has been provided addressing more exhaustive multiaxial loading cases, thereby

resulting in a lack of a comprehensive characterization of void-size effects on material

strength domain.

As regards theoretical modelling, although size-related effects have been extensively

investigated in the elastic regime (e.g., Brisard et al., 2010a,b; Duan et al., 2005a,b; Le

Quang and He, 2007), limited attention has been paid so far to the dependence of effective

strength properties on the void size, classical plasticity theories for porous materials being

generally conceived to predict porosity effects only (e.g., Gurson, 1977; Ponte Castañeda,

1991). Referring to limit-analysis approaches, a macroscopic yield function accounting

for void-size effects has been recently proposed by Dormieux and Kondo (2010), who

extended the well-known criterion established by Gurson (1977) to nanoporous materials,

by describing cavities boundary via a plastic generalization of stress-interface laws (Gurtin

and Murdoch, 1975, 1978; Monchiet and Bonnet, 2010). An analogous modelling strategy

has been adopted by Monchiet and Kondo (2013), who addressed the combined influence

of void size and void shape on nanoporous materials plastic response. Void-size dependent

strength criteria have also been established in the framework of non-linear homogenization

approaches (Dormieux and Kondo, 2013; Goudarzi et al., 2010; Moshtaghin et al., 2012;

Zhang and Wang, 2007; Zhang et al., 2008, 2010). However, as it will be shown in

the following, the most recent non-linear homogenization strength criterion (Dormieux
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Figure 3 – Void-size effects on strength properties of nanoporous materials. (a) Experimental
evidence provided by (Fan and Fang, 2009), obtained via nanoindentation tests on nanoporous
foams, the ligament size being a measure of the characteristic length of voids. (b) Molecular-
Dynamics results by Zhao et al. (2009) for an in-silico nanovoided single-crystal copper undegoing
an uniaxial tension loading.

and Kondo, 2013) strongly overrates available numerical evidence (Trillat and Pastor,

2005; Morin et al., 2015), resulting inaccurate especially for high stress-traxiality levels.

Moreover, afore-mentioned strength models have been obtained by considering a plastic

solid matrix obeying to a von Mises yield criterion, that is by assuming the local plastic

response to be independent from both the hydrostatic stress and the stress Lode angle.

The effectiveness of this modelling choice needs to be assessed, eventually opening towards

the possibility to consider different local plastic behaviours.

Motivated by above observations, the central purpose of the present thesis consists

in investigating strength properties of nanoporous materials via both analytical and nu-

merical approaches. The thesis is organized as follows, each chapter corresponding to a

submitted or a published research work with a self-consistent notation:

• in Chapter 1, aiming to enhance the model recently provided by Dormieux and

Kondo (2013), a non-linear homogenization approach is proposed, delivering a novel

macroscopic strength criterion for ductile nanoporous materials. A 3-layered de-

scription is adopted, accounting for surface-stress effects at cavities boundary via

an imperfect-coherent interface law. The effectiveness of the proposed strength cri-

terion is assessed with respect to available numerical benchmarking data (Trillat

and Pastor, 2005; Morin et al., 2015);

• in Chapter 2 [Mec Mater; 101: 102-117 (2016)], strength properties of in-silico

nanoporous samples are investigated via a Molecular-Dynamics computational ap-

proach. A parametric analysis with respect to the void radius and for different

porosity levels is carried out, by considering different loading paths with a wide

range of triaxiality scenarios. As a result, the influence of void-size effects on the

computed strength properties is quantified, also highlighting the dependence of the

predicted material strength domain on the three stress invariants;
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• in Chapter 3 [Int J Plasticity; DOI: 10.1016/j.ijplas.2016.10.007 (2016)], the limit-

state problem of a nanovoided hollow sphere is exactly solved, in the case of isotropic

loading conditions. In agreement with Molecular-Dynamics indications concerning

bulk nanosized samples in Chapter 2, the hollow sphere is assumed to be comprised

of a rigid-ideal-plastic material obeying to a general isotropic yield criterion. The

latter being defined as a simplified form of the yield function proposed by Bigoni

and Piccolroaz (2004), a broad class of pressure-sensitive, frictional and ductile local

plastic responses are taken into account, allowing also for an extremely flexible

description of the stress-Lode-angle influence. Void-size effects are modelled by

describing the cavity boundary as a coherent-imperfect homogeneous interface. The

exact solution of the limit-state problem is fully determined, providing closed-form

relationships for stress, strain-rate and velocity fields, as well as for the macroscopic

hydrostatic strength;

• in Chapter 4, a macroscopic general strength criterion accounting for void-size ef-

fects is established, by referring to a nanovoided hollow-sphere model undergoing

axialsymmetric strain-rate boundary loadings. The general yield function intro-

duced in Chapter 3 is considered, allowing for an extreme flexibility in describing

the stress-Lode-angle influence on the local plastic behaviour. In the framework of

a kinematic limit-analysis approach, relationships provided in Chapter 3 are used

to construct an effective trial velocity field. A parametric closed-form expression of

the macroscopic strength criterion is obtained as the physically-consistent solution

of a constrained minimization problem, this latter being faced via the Lagrangian

method combined with Karush-Kuhn-Tucker conditions. Illustrative computations

highlight the impact of the local plastic behaviour on the macroscopic one, as well

as the strengthening effect induced on macroscopic yield surfaces by a reduction in

the void size for a fixed porosity level.

• in Appendix A [Springer Series in Solid and Structural Mechanics; DOI: 10.1007/978-

3-319-48884-4 (2016)], as a complement of the model proposed in Chapter 1, an

estimate for the deviatoric strength of nanoporous materials is proposed, by ad-

dressing the limit state of a nanovoided hollow sphere undergoing axialsymmetric

deviatoric loading conditions. The hollow sphere is assumed to be comprised of a

rigid-ideal-plastic matrix obeying to a von Mises strength criterion. A kinematic

limit analysis is performed by referring to a suitable trial velocity field (Budiansky

et al., 1982). The resulting closed-form expression for the macroscopic deviatoric

strength enhances the corresponding estimate provided by Dormieux and Kondo

(2010) via a kinematic limit-analysis procedure.

Finally, some conclusions are traced by summarizing main outcomes of proposed the-

oretical and numerical approaches, as well as by highlighting the contribution of the

present thesis to the current literature on nanoporous materials. Possible future research

directions are also traced, by furnishing preliminary studies and indications towards more

advanced modelling strategies.
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CHAPTER 1

A 3-layered based non-linear homogenization approach

with interface effects

Abstract

In this Chapter, the strength properties of a ductile nanoporous material are investigated

by means of a non-linear homogenization approach based on the modified secant method.

The material is described as a rigid ideal-plastic solid matrix, obeying to a von Mises

strength criterion, and containing isotropically-distributed spherical nanovoids. Aiming

to properly account for local strain-rate heterogeneities, a 3-layered model is adopted. A

novel closed-form macroscopic strength criterion is established, and successfully compared

with available numerical data. Proposed approach results in an effective enhancement of

the non-linear homogenization-based model recently proposed by Dormieux and Kondo

[Int J Eng Sci 2013; 71: 102-110].

Present Chapter corresponds to the submitted research paper (Brach et al., 2016a).

A self-consistent notation is adopted.

Keywords: Nanoporous materials, void-size effects, non-linear homogenization, n-layered

based approach, modified secant method.

11
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1.1 Introduction

The development of materials characterised by a nanosized microstructure has recently

given rise to a growing research interest, involving experimental tests, numerical simu-

lations and theoretical models, aiming to investigate the influence of nano-inclusions or

nanopores on the overall material response (Arico et al., 2005; Lu et al., 2004; Jenkins,

2010).

An important class of nanostructured materials consists in nanoporous media, char-

acterised by reduced mass density, high surface-to-volume ratio, good levels of both stiff-

ness and strength, and generally exhibiting a ductile behaviour. Furthermore, due to

the nanosize of cavities, these challenging materials are chemically active, exhibiting a

high capability to interact with ions and molecules. Through these attractive properties,

nanoporous materials are of the most interest in several technical fields, including civil and

environmental engineering, geophysics, petroleum industry, biomechanics and chemistry,

opening towards groundbreaking multifunctional applications (Jenkins, 2010).

From a mechanical point of view, one of the most important aspect concerns the

influence, for a fixed porosity value, of the size of voids on the macroscopic material prop-

erties. As a matter of fact, with reference to strength features, recent nano-indentation

tests (Biener et al., 2005, 2006; Hakamada and Mabuchi, 2007) have proven a significant

increase of the yield stress when the void size decreases. The same dependency has been

shown in numerical studies based on Molecular Dynamics approaches (Brach et al., 2016a;

Traiviratana et al., 2008; Mi et al., 2011; Zhao et al., 2009), where strength predictions

decrease towards asymptotic values when the void size increases.

The physical origin of such a phenomenon has been addressed in literature by analysing

the solid-void interphase regions at the atomic length-scale (Gibbs, 1906; Cammarata,

1994; Murr, 1975; Orowan, 1970; Shuttleworth, 1950). Indeed, it has been well recognized

that, due to the nanovoid presence, a local perturbation in the atomic arrangement occurs

close to the void surface, leading to self-equilibrated interactions which can be interpreted

as surface stresses (Needs et al., 1991). Surface-induced effects, usually negligible for

classical porous materials, become relevant for nanoporous ones (Duan et al., 2005b),

resulting in the experimentally- or numerically-observed void-size dependency of effective

mechanical properties.

In the framework of a continuum approach, surface-induced stress fields have been

generally addressed by introducing interface models (e.g., Duan et al., 2005a; Gurtin

and Murdoch, 1975, 1978; Wang et al., 2011), defined in the zero-thickness limit of the

transition zone affected by the perturbation of the atomic arrangement. Reference is

usually made to coherent and imperfect interface laws, resulting in the continuity (resp.,

discontinuity) of the displacement field (resp., stress vector) across the interface (Duan

et al., 2005b; Gurtin and Murdoch, 1975, 1978; Povstenko and Yu, 1993).

Early works involving surface-stress effects have been focused on the effective elastic

properties of nanoporous or nanocomposite materials (Brisard et al., 2010a,b; Duan et

al., 2005a,b; Le Quang and He, 2007; Sharma et al., 2003; Sharma and Ganti, 2004).

In contrast, few attention has been paid so far to the influence of surface stresses (and
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thereby of void-size effects) on the material plastic behaviour.

Referring to limit-analysis approaches (Salençon, 1983), the well-established yield

function proposed by Gurson (1977) for ductile classical porous media has been extended

to nanoporous ones by Dormieux and Kondo (2010), taking advantage of a plastic gener-

alization of a two-dimensional stress-interface model (Monchiet and Bonnet, 2010). The

same interface description has been used by Monchiet and Kondo (2013) for deriving a

nanoporous strength criterion in the case of spheroidal cavities, incorporating then both

void-shape and void-size effects.

An alternative to limit-analysis models consists in non-linear homogenization (NLH)

methods based on the so-called modified secant-moduli approach (Suquet, 1995, 1997),

which have been proven to be equivalent to the variational procedure proposed by Ponte

Castañeda (1991). Referring to the linear formulation by Herve and Zaoui (1993) and

addressing a n-layered spherical composite assembly, semi-analytical strength criteria for

classical porous materials have been derived by Bilger et al. (2002) and by Vincent et al.

(2009), numerically-experiencing more accurate strength estimates higher the number n

of layers. As regards nanoporous materials and by adopting imperfect-coherent interfaces

approaches, some void-size dependent strength criteria have been recently proposed by

Goudarzi et al. (2010), Moshtaghin et al. (2012), Zhang and Wang (2007), Zhang et al.

(2008), and Zhang et al. (2010). Nevertheless, in these cases, the corresponding macro-

scopic yield functions are questionably expressed in terms of surface elastic properties,

in contrast with the proper definition of limit-stress states. A consistent generalization

to nanoporous materials of the porous strength criterion by Ponte Castañeda (1991) has

been proposed by Dormieux and Kondo (2013), including surface-induced effects via an

interface stress model. However, as it will be shown in the following, such a strength

model (denoted as DK) strongly overrates available numerical evidence (Trillat and Pas-

tor, 2005; Morin et al., 2015), especially for high stress-traxiality levels.

Such an occurrence is mainly due to a rough description of local strain-rate hetero-

geneity in the limit state, and it clearly highlights the need of a further research effort to

enhance non-linear homogenization-based strength estimates for nanoporous materials.

In this light, present Chapter aims to establish a consistent and accurate strength

model for nanoporous media, properly accounting for void-size effects and able to recover

available benchmarking evidence. In detail, strength properties of ductile nanoporous

materials are investigated via a non-linear homogenization procedure based on a 3-layered

description and including surface-stress effects by means of an imperfect-coherent interface

model. The Chapter is organized as follows. In Section 1.2 basic elements of the adopted

theoretical framework are presented. Section 1.3 is devoted to the derivation of a novel

analytical strength criterion for nanoporous materials, whose effectiveness and accuracy

is discussed in Section 1.4. Finally, some conclusions are traced in Section 1.5.
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1.2 Preliminary background

1.2.1 Problem statement

Aiming to investigate strength properties of a nanoporous material via a non-linear ho-

mogenization (NLH) approach, let Ω be a material representative volume element (RVE),

whose exterior boundary is ∂Ω. Let the RVE be comprised of internal isotropically-

distributed spherical cavities of radius a and of a rigid-ideal-plastic solid matrix Ωs

(Fig. 1.1). Therefore, material strength properties are straight identified by referring

to the yield limit state.

It is observed that the rigid-ideal-plastic assumption on the local mechanical re-

sponse is a fundamental requirement of the limit analysis theory. Such an hypothesis

has been widely adopted in both classical and more recent literature focusing on porous

and nanoporous materials (see for instance limit-analysis-based approaches by Gurson

(1977), Guo et al. (2008), Dormieux and Kondo (2010), Monchiet and Kondo (2013),

Anoukou et al. (2016), and Brach et al. (2016b), as well as variational non-linear homog-

enization techniques by Ponte Castañeda (1991), Zhang and Wang (2007), Zhang et al.

(2008), Zhang et al. (2010) and Dormieux and Kondo (2013)), and it is recognized to be

particularly effective for metallic solid matrices.

Denoting by |Ω| and |Ωv| the volume measures of the RVE and of the voided region

Ωv = Ω \Ωs, respectively, the porosity p results in p = |Ωv|/|Ω|. Moreover, let ∂Ωv be the

overall cavities boundary, nv being the corresponding normal unit vector (see Fig. 1.1).

⌦

@⌦

⌦s2a

⌦v

v = D · ẑ

nv

Figure 1.1 – Representative volume element. Notation. Solid matrix and the overall region
occupied by voids are respectively denoted as Ωs and Ωv, such that Ω = Ωs ∪ Ωv. Vector ẑ
identifies a position at the RVE exterior boundary ∂Ω.

As a notation rule, vectors (e.g., z) and tensors (e.g., second-order σ and d, and fourth-

order C) are denoted by bold letters; ∇ is the nabla operator, t∇ indicating its trans-

pose; symbols · and : respectively denote dot and double contraction product operators,

component-wise defined in an orthonormal frame as (d·z)i =
∑
j dijzj , σ : d =

∑
i,j σijdij

and (C : d)ij =
∑
k,` Cijk`dk`.

Moreover, let Ω-based and Ωs-based averages of a certain space-dependent field q(z)

be defined as:

q =
1

|Ω|

∫

Ω

q(z) dΩ, qs =
1

|Ωs|

∫

Ωs

q(z) dΩ , (1.1)
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where vector z identifies the position of a point in Ω. Furthermore, let σ(z) and d(z)

(resp., Σ and D) be the microscopic (resp., macroscopic) stress and strain-rate tensor

measures.

The RVE is assumed to undergo homogeneous strain-rate boundary conditions, pre-

scribed in terms of the second-order symmetric constant tensor D. Accordingly, the set

of kinematically-admissible microscopic velocity fields v(z) is defined as

V(D) =
{
v(z) |v = D · ẑ with ẑ ∈ ∂Ω

}
. (1.2)

Considering an equilibrated stress field σ(z) in Ω, such that Σ = σ, and a compatible

strain-rate field d = (∇v+ t∇v)/2 with v ∈ V(D), the Hill’s lemma holds (e.g., Salençon,

1983):

|Ω|Σ : D =

∫

Ω

σ : d dΩ (1.3)

stating the equivalence between the exterior and interior powers.

Let the convex set of the admissible stress states in a certain material point of the

solid matrix be introduced as

Gs(z) =
{
σ
∣∣ f s(z,σ) ≤ 0

}
(1.4)

where f s(z,σ) identifies the matrix yield function, possibly accounting for local hetero-

geneous strength properties.

Since the exterior power associated to the prescribed strain-rate boundary conditions

has to be lower or at the most equal to the maximum plastic dissipation that can be

afforded in Ω, by combining Eqs. (1.3) and (1.4) the following inequality is obtained

|Ω|Σ : D ≤
∫

Ω

πs(z,d(z)) dΩ (1.5)

where πs identifies the local support function for Gs and it represents the maximum plastic

dissipation that can be locally achieved, thereby resulting in

πs(z,d(z)) = sup
σ∈Gs

{σ(z) : d(z)} . (1.6)

Therefore, for a certain material point, πs(d) is the hyperplane tangent to the yield

surface f s(σ) = 0 (i.e., such that σ = ∂πs/∂d) in the space of microscopic stresses.

Accordingly, the inequality (1.5) can be recast as

Σ : D ≤ Πhom(D) (1.7)

where Πhom is the macroscopic maximum plastic dissipation, defined as

Πhom(D) = inf
v∈V(D)

{
π
}

with π =

{
πs , in Ωs

0 , in Ωv
(1.8)
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πs being a function of the velocity field v via the above-introduced compatibility condition

d = (∇v + t∇v)/2. It can be shown (e.g., de Buhan, 1986) that the stress state

Σ =
∂Πhom

∂D
(1.9)

belongs to the boundary ∂Ghom of the macroscopic strength domain, at the stress point

where D is normal to ∂Ghom, thereby Πhom identifying the support function for the convex

set Ghom of the admissible macroscopic stress states.

It is worth observing that, when Πhom is estimated by means of a particular micro-

scopic velocity field v ∈ V(D), Eq. (1.9) furnishes an upper bound of the macroscopic

limit stress.

The following boundary-value problem is introduced (e.g., Dormieux et al., 2006).

Problem 1 For a given D, find
{
σ(z),d(z),v(z)

}
s.t.

divσ = 0 in Ω (1.10a)

σ =
∂π(z,d(z))

∂d
in Ω (1.10b)

d =
1

2
(∇v + t∇v) in Ω (1.10c)

σ · nv = 0 on ∂Ωv (1.10d)

v = D · ẑ on ∂Ω (1.10e)

In the framework of non-linear homogenization (NLH) techniques, Problem 1 is faced

by referring to the secant-moduli approach, proven by Suquet (Suquet, 1995) to be equiv-

alent to the Ponte-Castañeda’s non-linear variational procedure (Ponte Castañeda, 1991).

1.2.2 Non-linear homogenization: the secant-moduli approach

Equation (1.10b) can be thought as representative of a fictitious non-linear behaviour

described by the following fictitious constitutive relationship

σ(z) =

{
C
(
z,d(z)

)
: d(z) if z ∈ Ωs

0 if z ∈ Ωv
(1.11)

where the fourth-order secant stiffness tensor C is well defined from the support function

πs(z,d(z)), considered as the potential of the corresponding fictitious viscous material.

Let Iσ1 = trσ (resp., Id
1 = tr d) be the first stress (resp., strain-rate) invariant, and

Jσ2 = σdev : σdev/2 (resp., Jd
2 = ddev : ddev/2) the second deviatoric stress (resp., strain-

rate) invariant, with σdev = σ− Iσ1 1/3 (resp., ddev = d− Id
1 1/3) the stress (resp., strain-

rate) deviatoric part, 1 being the second-order identity tensor such that (1)ij = δij , with

δij the Kronecker delta. By assuming the local strength function f s to be representative

of an isotropic plastic response, and defined in terms of the first and the second-order

deviatoric invariants Iσ1 and Jσ2 only, πs depends in turn on strain-rate invariants Id
1

and Jd
2 only. Accordingly, C describes an isotropic non-linear behaviour for a fictitious
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heterogeneous material, characterised by

C
(
z,d(z)

)
= 3k

(
z,d(z)

)
J + 2µ

(
z,d(z)

)
K (1.12)

where J and K = I − J are spherical and deviatoric fourth-order isotropic projector

tensors, respectively, component-wise defined by 3Jijk` = δijδk` and 2Iijk` = δikδj` +

δi`δjk. Moreover, volumetric (namely, k) and shear (µ) secant moduli read as:

k
(
z,d(z)

)
=

1

Id
1

∂πs

∂Id
1

, µ
(
z,d(z)

)
=

1

2

∂πs

∂Jd
2

. (1.13)

The case of a solid matrix obeying to a von Mises strength criterion is herein addressed.

Therefore, Gs is defined in terms of f s(z,σ) = 3Jσ2 (σ) − σ̂2(z), where σ̂(z) is the von

Mises strength, and the local support function πs reads as

πs(z, Id
1 , J

d
2 ) =





2σ̂(z)

√
Jd

2

3
if Id

1 = 0

+∞ if Id
1 6= 0

(1.14)

It is worth pointing out that πs provided in Eq. (1.14) is not differentiable due to the

singularity for Id
1 6= 0. Nevertheless, secant moduli in Eqs. (1.13) can be derived by using

an asymptotic approach, resulting in (e.g., Dormieux et al., 2006):

k → +∞, µ(z,d(z)) =
σ̂(z)

2
√

3

1√
Jd

2 (d(z))
. (1.15)

Accordingly, Problem 1 can be considered associated to a fictitious incompressible

material, whose constitutive law (1.11) is representative of a non-linear (owing to the

dependency of C on the strain rate d by means of Jd
2 ) and heterogeneous response (due

to the space dependency of σ̂ and d, and formally equivalent to a pointwise homogeneous

behaviour).

1.2.3 n-layered modelling

In order to obtain an analytical solution, a simplified version of the Problem 1 is intro-

duced, by describing C as a piecewise-constant (in space) tensor. With reference to the

n-layered model proposed by Herve and Zaoui (1993), a suitable partition of Ω is consid-

ered, as shown in Fig. 1.2a. In detail, in agreement with previous studies (Ponte Castañeda

and Suquet, 1998; Dormieux and Kondo, 2013), Ω is decomposed as Ω = Ωc∪Ωn+1, where

Ωc identifies the overall region occupied by the collection of N identical non-intersecting

spheres Ωc
i , each of them concentric to a void (namely, Ωc = ∪Ni=1Ωc

i , with Ωc
i ∩ Ωc

j = ∅
when i 6= j), and Ωn+1 is the complementary part. Each spherical subdomain Ωc

i is

in turn assumed to be identically partitioned via n confocal spherical layers, such that

Ωc
i = ∪nα=1Ωi,α, where Ωi,1 is the i-th void region. The normal vector at the separation

surface ∂Ωi,α between layers Ωi,α and Ωi,α+1, outward-oriented with respect to Ωi,α (see

Fig. 1.2b), is denoted as ni,α, with ni,1 coincident to the unit vector nv normal to the void
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Figure 1.2 – (a) n-layered sub-partition adopted in Problem 2 for treating the fictitious constitu-
tive response described by Eqs. (1.12) and (1.15). (b) Normal unit vectors on separation surfaces
∂Ωi,α.

surface. The following partition rules apply: Ω = ∪n+1
α=1Ωα, where Ωα = ∪Ni=1Ωi,α (with

α 6= n + 1) is the overall volume region occupied by spherical layers of type α, having

the boundary part ∂Ωα = ∪Ni=1∂Ωi,α with nα being the corresponding normal unit vector

(such that nα = ni,α on ∂Ωi,α). For what follows and for a certain spherical subdomain

Ωc
i , it is useful to introduce the spherical coordinate system (θ, ϕ, r), with the origin at

the center of Ωc
i and whose corresponding orthonormal basis is denoted as (eθ, eϕ, er),

such that er ≡ nv.

In each subregion Ωα, both the von Mises parameter and the second-order strain-rate

invariant are assumed to be constant in space, namely σ̂(z) = σ̂α (with σ̂1 = 0), and

Jd
2 (d(z)) = Jd

2α. Thereby, owing to Eqs. (1.11), (1.12) and (1.15), the fictitious material

occupying the region Ω is described as a (n+ 1)-phases composite medium (consisting in

composite spheres Ωc
i embedded in a homogeneous solid matrix Ωn+1) with constant (in

space) secant moduli in each phase Ωα.

Accordingly, a piecewise homogeneous representation (i.e., corresponding to a finite

number of phases) of the heterogeneous fictitious response in Eq. (1.11) (formally related

to a pointwise homogeneous behaviour, that is corresponding to infinite phases) is ob-

tained.



“tesi” — 2016/12/22 — 9:44 — page 19 — #31

Chapter 1. A 3-layered non-linear homogenization with interface effects 19

It is worth observing that the adopted partition, depending on the number of phases

(n+1), allows to furnish a certain description of the local strain-rate heterogeneity, whose

occurrence is widely documented (e.g., Marian et al., 2004, 2005; Traiviratana et al., 2008;

Zhao et al., 2009).

This partition strategy has been adopted in other NLH-based models. For instance,

the analytical criterion by Dormieux and Kondo (2013), for nanoporous materials and

accounting for void-size effects, is deduced by considering three phases (corresponding to a

2-layered model). Referring to a partition involving two phases, Suquet (1995) established

a macroscopic criterion for porous materials (i.e., without any surface-stress effects) which

coincides with the variational-based one provided by Ponte-Castañeda (Ponte Castañeda,

1991). Finally, again in the case of porous materials, semi-analytical results are provided

by Bilger et al. (2002) and Vincent et al. (2009) for different values of n. Corresponding

computational evidence showed that the predicted hydrostatic strength tends to its exact

value (Gurson, 1977) by increasing the number of spherical layers in each composite

sphere. For instance, considering p = 1%, the exact hydrostatic limit stress has been

accurately estimated by assuming n = 21, (Bilger et al., 2002).

Due to previous assumptions, Problem 1 simplifies as follows.

Problem 2 For a given D and for an assigned integer number n, find{
σα(z),dα(z),vα(z)

}
for any α ∈ {1, . . . , n+ 1}, s.t.

divσα = 0 in Ωα (1.16a)

σα =

{
Cα : dα in Ωα for α 6= 1

0 in Ω1 ≡ Ωv
(1.16b)

dα =
1

2
(∇vα + t∇vα) in Ωα (1.16c)

(σα − σα+1) · nα = 0 on ∂Ωα for α 6= n+ 1 (1.16d)

vα = vα+1 on ∂Ωα for α 6= n + 1 (1.16e)

vn+1 = D · ẑ on ∂Ω (1.16f)

where Cα (when α 6= 1) is defined as in Eqs. (1.12) and (1.15), with µ = µα in Ωα, µα

being

µα =
σ̂α

2
√

3

1√
Jd

2α

. (1.17)

It is worth observing that the constitutive law expressed by Eq. (1.16b) (when α 6= 1)

is non linear due to the dependency of Jd
2α on the local strain-rate field d(z).

As a matter of fact, assuming for a while that Jd
2α is known for each phase, Problem

2 reduces to a standard linearly-viscous problem defined on a piecewise homogeneous

medium, referred to as a linear comparison composite (LCC) (Suquet, 1997). In this

case, an estimate of the macroscopic limit stress is

Σ = Chom(D) : D (1.18)
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where Chom is the homogenized fictitious constitutive tensor, which can be computed

starting from Cα, by means of a suitable linear homogenization scheme. It is pointed out

that, since the composite spherical inclusions in Ω are isotropically-distributed and each

phase α is isotropic, Chom is in turn isotropic and characterised by effective moduli µhom

and khom.

The non linearity involved in Eqs. (1.16b) and (1.18), associated to the determination

of Jd
2α (equivalently, µα), is faced by referring to the first variation with respect to µα

of the Hill’s equality (1.3), when σ and Σ are expressed by Eqs. (1.16b) and (1.18),

respectively. In detail, the following equalities are provided (see Ponte Castañeda and

Suquet (1998), Buryachenko (1993), Kreher (1990), and Dormieux et al. (2006))

F : FαJ
d
2α =

1

4

(
Σm

khom

)2
∂khom

∂µα
+

1

12

(
Σeq

µhom

)2
∂µhom

∂µα
(1.19)

where Fα = |Ωα|/|Ω| is the volume fraction of the phase α, and where hydrostatic and

deviatoric macroscopic stress measures are introduced as Σm = IΣ
1 /3 and Σeq =

√
3JΣ

2 ,

respectively.
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Figure 1.3 – Sketch of the adopted 3-layered model (n = 3). Notation.

1.3 A novel NLH-based strength criterion

With the aim to provide a novel analytical strength criterion for nanoporous materials, an

approach based on a 3-layered model is employed to treat the non-linear homogenization

underlying Problem 2. With reference to Fig. 1.3, the adopted domain partition consists

in four phases (n = 3): pore regions (phase Ω1), spherical layers Ωi,2 ≡ Li of thickness h

(phase Ω2), Li-to matrix transition zones Ωi,3 of thickness t (phase Ω3), and solid matrix

(phase Ω4 ≡ Ωn+1).

Each subregion Li allows to take into account surface-stress effects due to the possible

nanosize of voids. To this end, the length-scale parameter χ = h/a is assumed such that

χ = O(ε) for any dimensionless ε > 0 however small. By integrating the equilibrium

equation (1.16a) written for α = 2 over a ≤ r ≤ a(1 +χ), and by neglecting contributions
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scaling as χ, the following relationship holds (see Dormieux and Kondo, 2013)

(σ+
2 − σ−2 ) · er =

1

a
(τrer + τθeθ + τϕeϕ) (1.20)

σ+
2 (resp., σ−2 ) indicating σ2 on ∂Ω2 (resp., on ∂Ω1), with τr, τθ and τϕ resulting in

τr = σLθθ + σLϕϕ

τθ = (σLϕϕ − σLθθ) cot θ − ∂σLθθ
∂θ
− 1

sin θ

∂σLθϕ
∂ϕ

τϕ = −
(
∂σLθϕ
∂θ

+
1

sin θ

∂σLϕϕ
∂ϕ

+ 2σLθϕ cot θ

) (1.21)

where the unknown stress components σLθθ, σ
L
ϕϕ and σLθϕ have the meaning of surface

stresses, namely σL∗ (θ, ϕ) =
∫ a(1+χ)

a
σ∗dr ' aχσ∗|r=a. Accordingly, due to Eq. (1.20) and

under the smallness assumption χ = O(ε), each spherical layer Li plays the physical role

of an interface, characterized by a discontinuous stress vector and, owing to Eq. (1.16e),

by a continuous velocity field across Li. Thereby, the latter corresponds to an imperfect-

coherent interface (e.g., Monchiet and Bonnet, 2010).

In agreement with the domain partition depicted in Fig. 1.3, phase volume fractions

introduced in Eq. (1.19) are expressed in terms of the porosity p, as

F1 = p, F2 = p

(
1

f
− 1

)
, F3 = ϕ− p

f
, F4 = 1− ϕ (1.22)

where the following volume ratios are introduced

f =
|Ω1|

|Ω1|+ |Ω2|
= 1− 3χ+ o(ε)

ϕ =
|Ω1|+ |Ω2|+ |Ω3|

|Ω| =
|Ωc|
|Ω|

(1.23)

with ϕ a dimensionless parameter representing the volume fraction of composite inclusions

in Ω.

It is worth pointing out that the transition phase Ω3 has been introduced in order to

refine the local strain-rate description with respect to the approach provided by Dormieux

and Kondo (2013). Furthermore, since numerical evidence on nanoporous materials (e.g.,

Brach et al., 2016a; Marian et al., 2004, 2005; Traiviratana et al., 2008; Zhao et al., 2009)

shows that high strain-rate inhomogeneities occur in thin regions surrounding nanovoids,

a satisfactory description of the local strain-rate distribution is expected to be provided

by considering small values of the thickness t. Hence, the dimensionless ratio ξ = t/a

is assumed to satisfy the smallness condition ξ = O(ε) and, since ϕ can be expressed as

ϕ = p(1+χ3 +ξ3), the volume fraction of the solid part of composite inclusions ψ = ϕ−p
(with ψ ≥ 0) results in ψ = O(ε).
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The von Mises phase strength σ̂α, introduced in Eq. (1.17), is defined as

σ̂α =





0 in Ω1

σL/(aχ) in Ω2

σ0 in Ωα with α ∈ {3, 4}
(1.24)

where σL has the physical dimension of a surface stress. Accordingly, the fictitious shear

moduli in Eq. (1.17) result in

µ1 = 0, µ2 =
σ0κ

2χ
√

3Jd
22

, µ3 =
σ0

2
√

3Jd
23

, µ4 =
σ0

2
√

3Jd
24

(1.25)

where the dimensionless parameter κ is introduced as

κ =
σL
aσ0

(1.26)

allowing to describe the influence of surface-induced effects, as strictly related to the void

size. As a matter of fact, an increase in κ corresponds, for a fixed value of the strength

parameter σ0, to an increase in the ratio σL/a, and it results from a reduction in the void

size. Consequently, the case of porous materials (associated to negligible interface effects

as a result of suitably large values of a) can be recovered by setting κ→ 0+.

Finally, in agreement with the modified secant-moduli approach proposed by Suquet

(1995), the kinematical descriptors Jd
2α occurring in Eqs. (1.25) are defined as the average

of the local strain-rate invariant Jd
2 (d(z)) on Ωα:

Jd
2α =

1

|Ωα|

∫

Ωα

Jd
2 (d(z)) dΩ . (1.27)

1.3.1 LCC effective moduli

The effective moduli µhom and khom involved in Eqs. (1.18) and (1.19), and associated to

the above-introduced four-phases linear comparison composite (LCC), are obtained by

means of a generalized Mori-Tanaka homogenization scheme. To this aim, the following

auxiliary Eshelby-type problem is defined.

Let ΩE ≡ Ωc
i be a three-phases composite hollow sphere, embedded in an isotropic

linearly-elastic solid medium Ω∞, whose stiffness tensor is assumed equal to C4 (see

Eq. (1.16b)).

Isotropic and shear homogeneous strain-rate boundary conditions are singularly pre-

scribed, by assigning constant strain-rate tensors Diso
∞ and Dshr

∞ at infinity, these lat-

ter being characterized by null deviatoric and hydrostatic parts, respectively (that is,

K : Diso
∞ = 0, and allowing to straight determine khom; J : Dshr

∞ = 0, and allowing

to straight determine µhom). Reference is herein made to infinity strain-rate tensors

(Diso
∞ and Dshr

∞ ) and to the corresponding exact velocity fields (viso
α and vshr

α , for the

α-subdomain in ΩE) provided by Love (1944) and by Herve and Zaoui (1993).

In agreement with the approach proposed by Herve and Zaoui (1993), the velocity
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field vwα (which solves the equilibrium problem when Dw
∞ is considered, with w = iso or

w = shr) is adopted to compute the corresponding compatible strain-rate field dwα and the

equilibrated stress field σwα in each α-subdomain within ΩE (see Eqs. (1.16)). Thereby,

stress and strain-rate average measures on ΩE result in (with w = iso or w = shr)

σw
E =

1

|ΩE |

∫

ΩE
σwα dΩ = Aw : Dw

∞

dw
E

=
1

|ΩE |

∫

ΩE
dwα dΩ = Bw : Dw

∞

(1.28)

Aw and Bw being fourth-order localization tensors, herein not detailed for the sake of

compactness and straight recoverable by referring to results provided by Herve and Zaoui

(1993).

In the framework of Problem 2 formulated for n = 3, and as an extension of the

Mori-Tanaka scheme, the homogeneous strain-rate tensor Dw
∞ is assumed to describe the

strain-rate state for the region Ω4. Accordingly, the macroscopic stress and strain rate

are obtained as
Σw = σw =

[
ϕAw + (1− ϕ)C4

]
: Dw
∞

Dw = dw =
[
ϕBw + (1− ϕ)I

]
: Dw
∞

(1.29)

resulting, from Eq. (1.18), in

[
ϕAw + (1− ϕ)C4

]
:
[
ϕBw + (1− ϕ)I

]−1
=

{
3khomJ , if w = iso

2µhomK , if w = shr
(1.30)

Thereby, the effective moduli describing the homogenized fictitious constitutive tensor

Chom are expressed by

khom =
4

3

(
1− f
p

µ2 +
p− ϕf
ϕp

µ3 +
ϕ− 1

ϕ
µ4

)
(1.31a)

µhom = −3
µ4

(
Θ1µ4

2 + Θ2µ3µ4 + Θ3µ3
2
)

Θ4µ2
4 + Θ5µ3µ4 + Θ6µ2

3

(1.31b)

where Θi = Θi(µ2, µ3, p, ϕ, f), with i ∈ {1, . . . , 6}, are

Θ1 = η1 µ3
2 + η2 µ2 µ3 + η3 µ2

2 Θ2 = η4 µ3
2 + η5 µ2 µ3 + η6 µ2

2 (1.32a)

Θ3 = η7 µ3
2 + η8 µ2 µ3 + η9 µ2

2 Θ4 = %1 µ3
2 + %2 µ2 µ3 + %3 µ2

2 (1.32b)

Θ5 = %4 µ3
2 + %5 µ2 µ3 + %6 µ2

2 Θ6 = %7 µ3
2 + %8 µ2 µ3 + %9 µ2

2 (1.32c)

coefficients ηj = ηj(p, ϕ, f) and %j = %j(p, ϕ, f) (with j ∈ {1, . . . , 9}) being detailed in

1.A.

Due to Eqs. (1.49) and (1.50) (see 1.A), by enforcing the dimensionless ratio χ to

comply with χ = O(ε), as well as by prescribing the further smallness condition ψ =

(ϕ−p) = O(ε), effective moduli in Eqs. (1.31) can be expressed in the following linearized
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form

khom =
4

3p

[
µ4(1− p) + 3(µ2 − µ3)χ+

µ3 − µ4

p
(ϕ− p)

]
+ o(ε) (1.33a)

µhom =
3

2p+ 3

[
µ4(1− p) +

15p(µ2 − µ3)

2p+ 3
χ+

5(µ3 − µ4)

2p+ 3
(ϕ− p)

]
+ o(ε) (1.33b)

1.3.2 A perturbative approach

A closed-form macroscopic strength criterion for nanoporous materials is herein deduced

by considering Eq. (1.19) written for α ∈ {2, 3, 4}, and in the unknowns µ2, µ3 and µ4,

the case α = 1 resulting trivial.

In detail, Eq. (1.19) for α = 4 (namely, F|α=4) reads as

F4 = 3

(
Σm

σ0

µ4

khom

)2
∂khom

∂µ4
+

(
Σeq

σ0

µ4

µhom

)2
∂µhom

∂µ4
(1.34)

and, by employing Eqs. (1.25), the ratios F|α=2/F|α=3 and F|α=3/F|α=4 can be intro-

duced:

G(µ2, µ3, µ4) =
F2

F3

(
κ

χ

µ3

µ2

)2

−
3T 2

(
µhom

khom

)2
∂khom

∂µ2
+
∂µhom

∂µ2

3T 2

(
µhom

khom

)2
∂khom

∂µ3
+
∂µhom

∂µ3

= 0

H(µ2, µ3, µ4) =
F3

F4

(
µ4

µ3

)2

−
3T 2

(
µhom

khom

)2
∂khom

∂µ3
+
∂µhom

∂µ3

3T 2

(
µhom

khom

)2
∂khom

∂µ4
+
∂µhom

∂µ4

= 0

(1.35)

T = Σm/Σeq being the stress-triaxiality parameter.

The non-null shear moduli in Eqs. (1.25) can be recast as

µ2 =
κ

χ
ρ23 ρ34 µ4 , µ3 = ρ34 µ4 (1.36)

where

ρ23 =

√
Jd

23

Jd
22

, ρ34 =

√
Jd

24

Jd
23

. (1.37)

Therefore, for a given p, the effective moduli result in µhom = µhom(P, ρ23, ρ34, µ4)

and khom = khom(P, ρ23, ρ34, µ4), where P is the set of variables defined as P = {χ, ψ, κ}.
It is worth observing that, by enforcing positions (1.36) and (1.37), khom and µhom in

Eqs. (1.31) linearly depend on µ4. Correspondingly, Eqs. (1.34) and (1.35) do not depend

on µ4, that is G = G(P, ρ23, ρ34) and H = H(P, ρ23, ρ34). Hence, once solved parameters

ρ23 and ρ34 from Eqs. (1.35), the relationship (1.34) allows to identify macroscopic limit

stress states (Σm,Σeq).

In order to compute ρ23 and ρ34, let the following problem be introduced.
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Problem 3 Find {ρ23, ρ34} s.t.

G
(
P, ρ23, ρ34

)
= 0

H
(
P, ρ23, ρ34

)
= 0

(1.38)

Since Eqs. (1.38) are non linear in ρ23 and ρ34, the exact solution of Problem 3 can

not be simply obtained. An estimate for {ρ23, ρ34} is deduced by adopting a perturbative

approach with respect to κ. In detail, by enforcing κ = O(ε), the interface effects are

assumed to produce a perturbation with respect to the case of porous materials (namely,

corresponding to κ = 0). Accordingly, due also to the previously-introduced smallness

assumptions, Eqs. (1.38) can be linearised with respect to χ, ψ and κ. Thereby, neglecting

higher-order terms, the following simplified problem can be stated.

Problem 4 Find {ρ23, ρ34} s.t.

Ĝ(P, ρ23, ρ34) = G(P0, ρ23, ρ34) +
∂G
∂χ

∣∣∣∣
P=P0

χ+
∂G
∂ψ

∣∣∣∣
P=P0

ψ +
∂G
∂κ

∣∣∣∣
P=P0

κ = 0

Ĥ(P, ρ23, ρ34) = H(P0, ρ23, ρ34) +
∂H
∂χ

∣∣∣∣
P=P0

χ+
∂H
∂ψ

∣∣∣∣
P=P0

ψ +
∂H
∂κ

∣∣∣∣
P=P0

κ = 0

(1.39)

where P0 = P|χ=ψ=κ=0.

Solution {ρ23, ρ34} can be expressed in the form

ρ23 = ρ0
23 + ∆ρ23

ρ34 = ρ0
34 + ∆ρ34

(1.40)

where {ρ0
23, ρ

0
34} is the solution of Problem 4 when κ = 0, and {∆ρ23,∆ρ34} identifies the

perturbation induced by nanoscale effects, under the condition ∆ρ·/ρ0
· = O(ε). In detail,

the following perturbative correction problem is introduced.

Problem 5 Find {∆ρ23,∆ρ34} s.t.

Ĝ
(
P, ρ0

23 + ∆ρ23, ρ
0
34 + ∆ρ34

)
= 0

Ĥ
(
P, ρ0

23 + ∆ρ23, ρ
0
34 + ∆ρ34

)
= 0

(1.41)

The solution of the porous problem (that is, Problem 4 for κ = 0) can be straight

determined as

ρ0
23 = 1 , ρ0

34 =

√
27pT 2 + 8p+ 12

20 + 27T 2
(1.42)

resulting in ρ0
· = O(1). A first-order solution of Problem 5 is obtained by linearising

Eqs. (1.41) with respect to ∆ρ·, delivering the following perturbative corrections

∆ρ23 = T ψ

p
= O(ε), ∆ρ34 = S κ+

S
3

(
1− 1

2ρ0
34

)
ψ

p
= O(ε) (1.43)
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with

S =
4

3

135pT 2 + 729T 2 + 40p+ 600

(20 + 27T 2)2
, T = − 1

18

243T 2 + 200

(20 + 27T 2)
. (1.44)

Finally, by recasting effective moduli in Eqs. (1.31) via the solution {ρ23, ρ34} ex-

pressed by Eqs. (1.42) and (1.43), and by enforcing resulting expressions into Eq. (1.34),

the following closed-form macroscopic strength criterion is obtained

20Σ2
eq + 27Σ2

m

12(1− p)3

[
(1− p)(ρ0

34)2 + (1− 2ρ0
34)ψ − (6pρ0

34)κ

]
= σ2

0 (1.45)

where, since Eq. (1.42), ρ0
34 = ρ0

34(Σm,Σeq).

In the stress plane (Σm,Σeq), Eq. (1.45) results in a symmetric (with respect to both

Σm and Σeq axes) and convex strength profile, expressed in terms of the porosity p, the

volume fraction ϕ = ψ + p of composite inclusions, and the parameter κ accounting for

interface effects.

1.3.3 Optimization on ϕ

The volume fraction ϕ of composite inclusions represents a free model parameter, in the

framework of the consistency conditions ψ ≥ 0 and ψ = O(ε). Since choosing a value for

ϕ corresponds to identify a class of kinematical descriptors Jd
2α via Eq. (1.27), ϕ is herein

employed to furnish a certain minimization, in the sense of Eq. (1.8), for estimating Πhom.

It is worth observing that a rough description of Πhom generally leads to a significant

overestimate of material strength, especially for high levels of stress triaxiality (for in-

stance, this is the case of the DK strength criterion). As shown in Fig. 1.4 for fixed values

of p and κ, model parameter ϕ mainly affects limit-stress states characterised by a sig-

nificant hydrostatic condition, resulting in a reduction of the predicted material strength

when ϕ increases. Accordingly, aiming to furnish an accurate strength prediction, ϕ is

herein chosen by prescribing, as an optimality condition, the equality between the hydro-

static strength predicted via Eq. (1.45) (corresponding to Σeq = 0) and the expected value

Σ
(ex)
m /σ0 = −(2/3) ln p+2κ, furnished by Dormieux and Kondo (2010) as a generalization

of the Gurson’s result (Gurson, 1977).

Thereby, in the framework of a first-order approach in κ, the optimal value for ϕ

results in

ϕopt = φ0 + φ1 κ (1.46)

with

φ0 =
p
(
p− 2

√
p
)

1− 2
√
p

+
4

9

(1− p)3

(
1− 2

√
p
)

(ln p)4/3
,

φ1 = 6
p3/2

1− 2
√
p
− 16

9

(1− p)3

(ln p)
2 (

1− 2
√
p
) .

(1.47)

It is simple to prove that, owing to the definition of ϕ (see Eq. (1.23)), the consistency

condition ψ = ϕopt − p ≥ 0 is surely verified for any value of κ when p < 25%, fully in
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Figure 1.4 – Strength profiles obtained via Eq. (1.45) for different values of the model parameter
ϕ (κ = 0.1 and p = 0.1%).

agreement with porosity values generally characterising nanoporous materials. Further-

more, in the framework of small values of p, and assuming pη = O(ε) for any η < 1,

consistency condition ψ = O(ε) is straight verified.

Therefore, by combining Eqs. (1.45) and (1.46), the optimized version (denoted in the

following as BDKV) of the proposed strength criterion results in

20Σ2
eq + 27Σ2

m

12(1− p)3

{
(1−p)(ρ0

34)2 +(1−2ρ0
34)(φ0−p)−

[
6pρ0

34−φ1(1−2ρ0
34)
]
κ

}
= σ2

0 (1.48)

where ρ0
34 depends on the macroscopic stress state (Σm,Σeq) via Eq. (1.42).

1.4 Criterion assessment

Model sensitivity to parameters p and κ is addressed in Figs. 1.5. Proposed results show

that, in the framework of small values for p and κ, slight effects occur for small stress-

triaxiality levels. Results shown in Fig. 1.5a highlight also that the macroscopic strength

properties reduce when p increases, mainly for high hydrostatic stress components. As

regards the parameter κ, introduced in Eq. (1.26), the results in Fig. 1.5b indicate that

such a parameter allows to effectively account for void-size effects. As a matter of fact,

when strength values for interfaces (namely, σL) and for solid phases (σ0) are fixed, a

reduction in the void size a corresponds to an increase κ. As depicted in Fig. 1.5b, such

an occurrence leads to an improvement of strength features, qualitatively in agreement

with aforementioned experimental and numerical evidence (Biener et al., 2005, 2006;

Hakamada and Mabuchi, 2007; Zhao et al., 2009; Brach et al., 2016a).

A description of strength properties for porous materials comprising cavities with large
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Figure 1.5 – Strength profiles obtained via the proposed BDKV criterion in Eq. (1.48) for different
values of: (a) porosity p (with κ = 0.1); (b) interface parameter κ (with p = 1%).
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values of a is furnished by enforcing κ = 0 in Eq. (1.48), namely by assuming as negligible

the surface-induced effects.

The effectiveness of the proposed BDKV strength criterion is assessed in Fig. 1.6. In

detail, comparisons with both theoretical and numerical benchmarks are provided for

different values of the interface parameter κ. By addressing the case p = 1%, reference is

made to the theoretical predictions obtained via the DK model (Dormieux and Kondo,

2013) and to finite-element-based limit analysis calculations provided by Morin et al.

(2015) when κ = 0.25 and by Trillat and Pastor (2005) when κ = 0. It can be noted that

the DK criterion significantly overestimates strength properties predicted by numerical

simulations. In particular, addressing a pure hydrostatic case, the DK model predicts

a strength limit greater of about 100% (respectively, 110%) than the numerical one for

κ = 0.25 (resp., for κ = 0). On the contrary, BDKV-based results are proven in very

good agreement with benchmarking calculations (with relative errors always lower than

10%), resulting in a significant improvement with respect to the DK case.

As a matter of fact, proposed strength criterion for nanoporous materials allows also

to recover the well-known model proposed by Ponte Castañeda (1991), simply considering

the case ψ = κ = 0 in Eq. (1.45). Moreover, the nanoporous criterion DK is recovered by

setting ψ = 0 (with κ ≥ 0), corresponding to a domain partition based on three phases:

pore regions, interfaces L, and solid matrix. In particular, by comparing Eq. (1.45) for

ψ = 0 and Eq. (1.48), corrective terms (1 − 2ρ0
34)(φ0 − p) and φ1(1 − 2ρ0

34)κ allow to

enhance the DK-based strength predictions both accounting or not for interface effects.

Such additional terms straight results from the proposed optimization approach on ϕ,

entirely absent in the developments already provided by Dormieux and Kondo (2013), and

strictly related to the herein adopted 3-layered (that is, four phases) modelling strategy.

1.5 Concluding remarks

In this Chapter, strength properties of nanoporous materials are investigated by means

of a 3-layered model formulated in the framework of a non-linear homogenization (NLH)

approach. To this end, a representative volume element which comprises a rigid ideal-

plastic solid matrix, obeying to a von Mises strength criterion and containing isotropically-

distributed spherical voids, has been considered.

At the local level, and by regarding the microscopic support function as the potential

for a viscous material, a fictitious non-linear isotropic constitutive equation has been

introduced. Following the modified secant method (Suquet, 1995) and by referring to the

multiphase modelling technique proposed by Herve and Zaoui (1993), a linear comparison

composite material has been considered.

The present approach has been developed by referring to the theoretical background

recently provided by Dormieux and Kondo (2013), based on a 2-layered modelling strat-

egy. The latter has been proven in Section 1.4 to strongly overestimate available nu-

merical benchmarking strength evidence for both porous and nanoporous media. Aiming

to develop a more accurate NLH technique, a refined description of the local strain-rate

heterogeneity at the limit state has been herein proposed, by introducing a four phases
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Figure 1.6 – Strength profiles for different values of κ and for p = 1%. Comparisons among: pro-
posed model (BDKV), theoretical predictions by Dormieux and Kondo (2013) (DK), numerical
data provided by Morin et al. (2015) (denoted as MLK), kinematic (TP-K) and static (TP-S)
numerical bounds proposed by Trillat and Pastor (2005).

comparison composite material. In detail, a sub-domain partition consisting in 3-layered

composite spheres, confocal to nanovoids and embedded into the solid matrix, has been

employed. Each composite sphere comprises the void region, an imperfect-coherent in-

terface and an interface-to-matrix transition phase. The microscopic strain-rate fields

entering the proposed procedure have been accounted for by introducing piecewise de-

scriptors in agreement with Buryachenko (1993), Kreher (1990), Ponte Castañeda and

Suquet (1998), and Dormieux et al. (2006). Thereby, the non-linear problem underlying

the determination of strength properties for nanoporous materials has been reduced to

a non-linear viscous one defined on a fictitious piecewise homogenenous medium. By

solving via a perturbative procedure the constitutive fictitious moduli, a novel analytical

closed-form strength criterion (BDKV) has been derived. A suitable value for the volume

fraction of the composite spheres has been determined, aiming to optimize the criterion

performance at pure hydrostatic stress states. In agreement with well-posed strategies

(e.g., Duan et al., 2005a,b; Dormieux and Kondo, 2010, 2013), the void-solid interface has

been successfully introduced in order to take into account for surface-stress effects.

It is worth observing that the additional layer introduced with respect to the approach

by Dormieux and Kondo (2013) (namely, the transition phase) allowed on one hand for

a finer estimate of the fictitious constitutive description, and on the other hand to recast

the NLH problem in terms of an optimization procedure (not possible in the framework

of the developments provided by Dormieux and Kondo (2013)), solved via an original

perturbation approach, and resulting in a novel effective engineering-oriented strength

criterion.

As a consistency indication and as special cases, present criterion recovers previously-
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established NLH-based analytical strength estimates both accounting (Dormieux and

Kondo, 2013) or not (Ponte Castañeda, 1991) for surface-stress effects.

Results obtained via BDKV highlight that a suitable description of void-size effects

can be experienced, resulting in an increase of the predicted strength features as the void

length decreases, especially for high triaxiality levels. Furthermore, comparisons with

respect to both theoretical predictions (Dormieux and Kondo, 2013) and finite-element-

based calculations (Trillat and Pastor, 2005; Morin et al., 2015) have shown consistency

and accuracy of the proposed formulation, resulting in a significant improvement of the

benchmarking NLH-based model by Dormieux and Kondo (2013).

It is worth pointing out that, in the framework of a n-layered approach and in the

case of classical porous materials (namely, neglecting surface-induced effects), suitable

estimates have been provided by Bilger et al. (2002) and by Vincent et al. (2009), by

adopting semi-analytical strategies with different values of n up to n = 21. Nevertheless,

although the proposed formulation (based on n = 3) results in a less accurate description

of local kinematics, it allows for deriving an accurate analytical closed-form strength

criterion, useful for engineering purposes and able to properly describe limit stress-states

both accounting or not for surface-induced effects.
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1.A LCC effective moduli: coefficients in Eqs. (1.31)

Coefficients introduced in Eqs. (1.31) are computed from localization tensors Aw and Bw
(see Eqs.(1.28), with w = iso or w = shr) as

η1 + η2 + η3 = (1− ϕ)λ1 %1 + %2 + %3 = − (3 + 2ϕ)λ1

η1 = (1− ϕ)λ2λ3 %1 = − (3 + 2ϕ)λ2λ3

η3 = (1− ϕ)λ4λ5 %3 = − (3 + 2ϕ)λ4λ5

η4 + η5 + η6 = λ6ϕ+ λ7 %4 + %5 + %6 = 2λ6ϕ− 3λ7

η4 = [λ8ϕ+ λ9]λ3 %4 = [2λ8ϕ− 3λ9]λ3

η6 = [λ10ϕ+ λ11]λ5 %6 = [2λ10ϕ− 3λ11]λ5

η7 + η8 + η9 = (2 + 3ϕ)λ12 %7 + %8 + %9 = 6λ12(ϕ− 1)

η7 = (2 + 3ϕ)λ13λ3 %7 = 6(ϕ− 1)λ3λ13

η9 = (2 + 3ϕ)λ14λ5 %9 = 6(ϕ− 1)λ5λ14

(1.49)

with

λ1 = 175
(

38ω11/3f10/3 + 225ω8/3f7/3 − 336ω2f5/3 + 200ω4/3f + 48ω1/3
)

λ2 = 38ω11/3 + 225ω8/3 − 336ω2 + 200ω4/3 + 48ω1/3

λ3 = 38 f10/3 + 225 f7/3 − 336 f5/3 + 200 f + 48

λ4 = 24
(

4ω11/3 − 25ω8/3 + 42ω2 − 25ω4/3 + 4ω1/3
)

λ5 = 19 f10/3 − 75 f7/3 + 112 f5/3 − 75 f + 19

λ6 = 1575

(
−19

9
ω11/3f10/3 + 50ω8/3f7/3 − 224

3
ω2f5/3 +

250

9
ω4/3f − ω1/3

)

λ7 = 8750

(
−38

25
ω11/3f10/3 − 3/2ω8/3f7/3 +

56

25
ω2f5/3 − ω4/3f +

89

50
ω1/3

)

λ8 = −19ω11/3 + 450ω8/3 − 672ω2 + 250ω4/3 − 9ω1/3

λ9 = −76ω11/3 − 75ω8/3 + 112ω2 − 50ω4/3 + 89ω1/3

λ10 = −48ω11/3 − 1200ω8/3 + 2016ω2 − 750ω4/3 − 18ω1/3

λ11 = −192ω11/3 + 200ω8/3 − 336ω2 + 150ω4/3 + 178ω1/3

λ12 = 3325

(
ω11/3f10/3 − 75

19
ω8/3f7/3 +

112

19
ω2f5/3 − 75

19
ω4/3f + ω1/3

)

λ13 = 19ω11/3 − 75ω8/3 + 112ω2 − 75ω4/3 + 19ω1/3

λ14 = 48ω11/3 + 200ω8/3 − 336ω2 + 225ω4/3 + 38ω1/3

(1.50)

where ω = p/(ϕf).
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CHAPTER 2

Void-size effects on strength properties of nanoporous

materials: A Molecular Dynamics approach

Abstract

In this Chapter, strength properties of nanoporous materials are addressed aiming to

establish novel insights into the influence of void-size effects. To this end, a virtual

spherically-nanovoided sample of an aluminium single crystal is investigated by adopt-

ing a Molecular-Dynamics computational approach. Elasto-plastic mechanical response,

under triaxial strain-based conditions and including axisymmetric and shear states, are

numerically experienced, identifying the corresponding limit stresses. Computed strength

measures are used to furnish estimates of strength domains, described in terms of merid-

ian and deviatoric profiles. The influence of void-size effects on the computed strength

properties is clearly quantified for different porosity levels, numerical results confirm-

ing a strengthening of the sample when the void radius reduces. Moreover, it is shown

that the occurrence and the amount of void-size effects are strongly dependent on the

Lode angle, resulting in a shape transition of both meridian and deviatoric strength pro-

files when the void radius is varied. Finally, present results suggest porosity-dependent

threshold values for the void radius above which void-size effects tend to disappear. With

respect to the actual state-of-the-art, useful benchmarks for assessing the effectiveness of

available theoretical models are provided, resulting in a novel incremental contribution

towards the definition of advanced modelling strategies for describing strength properties

of nanoporous materials.

Present Chapter corresponds to the published research paper (Brach et al., 2016b) [Mec

Mater; 101: 102-117 (2016)].

A self-consistent notation is adopted.

Keywords: Nanoporous materials, strength properties, void-size effects, Lode angle in-

fluence, Molecular Dynamics.
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2.1 Introduction

In the last decades, since the development of novel and challenging nano-technologies,

nanostructured materials have yielded a growing research interest, involving experimental

tests, theoretical formulations and numerical models (Arico et al., 2005; Lu et al., 2004;

Jenkins, 2010). An important class of nanostructured materials consists in nanoporous

media, characterized by very fascinating properties or combination of properties in terms

of mechanical, chemical and electromagnetic features. In particular, due to the presence

of nanoscale cavities, these materials exhibit a high capability to interact, absorb and

cooperate with atoms, ions and molecules. Moreover, they are characterised by reduced

mass density, high surface-to-volume ratio, good levels of both stiffness and strength,

and they generally exhibit a ductile behaviour. Accordingly, nanoporous materials open

towards groundbreaking functional applications in several technical fields, including civil

and environmental engineering, geophysics, petroleum industry, biomechanics, chemistry.

For instance, they are used to conceive multifunctional devices for aerospace/automotive

applications, energy storage, ion-exchange, molecular biosensing and bioseparation, drug

delivery, catalysis, filtration, sensoring (Jenkins, 2010).

From a mechanical point of view, one of the most fundamental aspect consists in

identifying and describing the constitutive response and the strength properties of these

materials, as dependent on the size of voids (which is in the order of some nanometres), as

well as on their shape and arrangement (Dormieux and Kondo, 2010, 2013; Huang et al.,

2005; Li and Huang, 2005; Monchiet et al., 2008; Monchiet and Kondo, 2013). As regards

void-size effects, well-established experiments (usually based on nano-indentation tests)

have shown that a reduction in the length-scale of nanovoids induces an improvement of

the material strength (Biener et al., 2005, 2006; Hakamada and Mabuchi, 2007). Such an

effect cannot be theoretically described by classical approaches for porous materials (e.g.,

Gurson, 1977; Ponte Castaneda, 1991), that are generally conceived to predict porosity

effects only, and thereby resulting in void-size-independent strength criteria.

The influence of void size on the mechanical behaviour of nanoporous materials are re-

lated to the presence, at the cavity boundaries, of self-equilibrated surface stresses (Needs

et al., 1991). These latter can be modelled via interface laws (Gurtin and Murdoch,

1975) and they reveal fundamental in describing the mechanical response of nanoscale

structures (Amelang and Kochmann, 2015) and nano-structured materials (e.g., Duan

et al., 2005a,b), as well as for modelling strength properties of nanoporous media (e.g.,

Dormieux and Kondo, 2010, 2013; Goudarzi et al., 2010; Monchiet and Kondo, 2013;

Moshtaghin et al., 2012). As an example, by applying a limit-analysis approach on a

hollow spherical domain, Dormieux and Kondo (2010) extended the well-known strength

criterion proposed by Gurson (1977) for ductile porous media to the case of nanoporous

materials, aiming to predict void-size effects. The void-size-dependent strength criterion

by Dormieux and Kondo (2010), as well as the porous model by Gologanu et al. (1993,

1994), have been successively extended by Monchiet and Kondo (2013) to the case of

nanoscale spheroidal cavities, thereby incorporating both void-shape and void-size ef-

fects. Other analytical formulations have been proposed by Dormieux and Kondo (2013),
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Goudarzi et al. (2010), Zhang and Wang (2007) and Zhang et al. (2010), by combin-

ing non-linear homogenization techniques and variational arguments, and resulting in a

generalization of the Ponte-Castaneda’s strength criterion (Ponte Castaneda, 1991) to

nanoporous materials.

It is worth observing that available strength models for nanoporous materials are

based on a number of a priori assumptions. In fact, they generally include a very simple

limit behaviour of the bulk matrix, as well as a simplified representation of the physics

underlying nanoscale effects (usually faced by introducing fictitious plastic interfaces).

Nevertheless, available experimental results are not sufficient to support these assump-

tions, so that current theoretical models can be neither properly validated nor suitably

calibrated. As a matter of fact, apart from some qualitative indications of the void-size

influence on the material strength level, no further information can be deduced from the

experimental literature either on the three-dimensional material strength domain or on

the influence of the void size as a function of the loading state. In this context, nu-

merical methods may be considered as an effective alternative to provide comparative

benchmarks, allowing also to successfully control a number of possible coupled effects,

and thereby resulting in useful indications towards advanced modelling strategies.

Computational methods usually employed for modelling macro- and/or micro-mechanical

response are not able to automatically provide helpful insights on nanoscale effects, since

they do not include a satisfactory description of the material structure at that length-

scale. On the contrary, and as confirmed by recent investigations (e.g., Bringa et al.,

2010; Borg et al., 2008; Mi et al., 2011; Tang et al., 2010; Traiviratana et al., 2008; Zhao

et al., 2009), numerical methods based on Molecular Dynamics (MD) approaches allow

to describe the material arrangement at the atomistic level, and thereby they can be

considered as promising tools for investigating the elasto-plastic behaviour of nanoporous

materials.

As a matter of fact, available studies based on MD approaches mainly address the

identification and the characterization of atomistic mechanisms underlying failure pro-

cesses related to void growth and coalescence (e.g., Farrissey et al., 2000; Lubarda et

al., 2004; Lubarda, 2011; Marian et al., 2004, 2005; Pogorelko and Mayer, 2016; Ruestes

et al., 2013; Tang et al., 2010; Traiviratana et al., 2008). On the other hand and at

the best of the authors’ knowledge, very few attempts have been provided in order to

employ these numerical strategies to furnish indications towards the definition of engi-

neering strength measures for nanoporous materials. For instance, an attempt to put

in relationship strength properties at the macroscale with MD-based evidence has been

provided by Mi et al. (2011) and Traiviratana et al. (2008), referring to the void-size-

independent Gurson model. Nevertheless, current MD studies are generally limited to

the analysis of particular admissible stress states only, computed under uniaxial (Farris-

sey et al., 2000; Tang et al., 2010), volumetric or shear conditions (Marian et al., 2004,

2005), and therefore defining only few discrete points on the a-priori unknown mate-

rial strength surface, without considering more complete multiaxial scenarios. In fact, a

comprehensive three-dimensional characterization of material strength properties requires
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a proper investigation of failure mechanisms under multiaxial loading conditions. Fur-

thermore, no numerical evidence has been yet provided concerning the influence of void

size on material strength domains. Accordingly, with respect to the previously-discussed

state-of-the-art, a parametric multiaxial loading strategy is expected to pave the way for

a number of original contributions, such as: (i) complete identification of failure surfaces

and of the influence of stress invariants on material strength properties; (ii) analysis of

void-size effects on strength domains; (iii) assessment of novel and effective comparative

benchmarks for validating and calibrating available theoretical formulations, as well as

for drawing advanced modelling strategies.

It must be pointed out that porous and nanoporous materials may be generally char-

acterised by irregular patterns and randomly-distributed voids. Nevertheless, as it is

customary in classical elasto-plastic theoretical approaches for micro/nano-structured ma-

terials, simple geometrical descriptions are often considered. This is the case of single-

voided domains and of hollow sphere models (Gurson, 1977), widely adopted in porous

metal plasticity and limit analysis approaches (Dormieux and Kondo, 2010; Monchiet

and Kondo, 2013; Tvergaard and Needleman, 1984). Corresponding results are strictly

valid for the particular, but realistic, considered microstructure (in the case of hollow

sphere models, the microstructure is the so-called Hashin Composite Sphere Assemblage,

(Hashin, 1962; Leblond et al., 1994; Michel and Suquet, 1992)), but they generally furnish

also helpful indications on statistically-equivalent arrangements. In this framework, do-

mains embedding a single spherical nanovoid have been adopted in many recent MD-based

computational studies (e.g. Farrissey et al., 2000; Marian et al., 2004, 2005; Traiviratana

et al., 2008), addressing plastic mechanisms in nanoporous materials.

In this Chapter, strength properties of an aluminium single crystal containing a spher-

ical nanovoid are addressed via a Molecular Dynamics approach. A parametric analysis

with respect to the void radius and for different porosity levels is carried out, by con-

sidering different strain paths (shear, triaxial expansion and triaxial compression) and a

wide range of triaxiality scenarios (from pure deviatoric conditions to pure hydrostatic

ones). The computational model is defined in Section 2.2, drawing also basic elements

of the adopted numerical procedure. With the aim to present simulation results in the

framework of a customary notation in plasticity, and by referring to average stress and

strain measures, the Haigh-Westergaard (HW) coordinates are introduced. Section 2.3

is devoted to analyse some preliminary results, in terms of both stress-strain relation-

ships and dominant atomistic mechanisms, in order to identify suitable strength measures

for estimating limit stress conditions for the in-silico samples. Analyses of numerically-

experienced strength properties are provided in Section 2.4, wherein meridian and de-

viatoric representations of computed strength domains are proposed, highlighting and

discussing the influence of void-size effects. Finally, main concluding remarks are traced

in Section 2.5.
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2.2 Problem statement and computational methods

Let a material neighbourhood of a nanoporous medium be considered (Fig. 2.1), charac-

terized by a periodic nanostructure along the global Cartesian directions X, Y and Z, and

whose representative cell consists in a nano-single crystal embedding a single spherical

void. In the following, reference is made to a single crystal of aluminium, whose ideal

crystallographic arrangement is based on a face-centred cubic lattice (FCC). Let the local

Cartesian frame (x, y, z) be introduced, with axes parallel to the global ones and with

{ex, ey, ez} the corresponding orthonormal basis. Moreover, referring to the Miller’s no-

tation (Hull and Bacon, 2001), let the orientation of FCC lattices be assumed such that

crystallographic directions [100], [010] and [001] line up with axes x, y and z, respectively.

A numerical approach based on a MD strategy and implemented in LAMMPS (Large-

scale Atomic/Molecular Massively Parallel Simulator) (Plimpton, 1995) is adopted, by

considering a cubic simulation box (Fig.2.1) undergoing periodic boundary conditions.

The simulation domain is defined by: the edge length L; a centred spherical void of

radius R; the atomic arrangement C0, resulting from the bulk FCC-based cubic box by

suppressing all atoms belonging to the centred spherical region. Different values of the

box length L are herein considered, such that:

L

B
= 10

(
1 + n

)
(2.1)

n being an integer number ranging from 1 to 10, B = a0/2 being the length-scale of the

Burgers vector b = B < 110 > associated to perfect dislocations along slip directions

of type < 110 >, and a0 being the lattice constant (equal to 4.04 Å for aluminium at

room temperature (Mishin et al., 1999)). Accordingly, for a fixed material porosity p,

defined as p = 4πR3/3L3, varying the box length L corresponds to proportionally vary

the void radius R. For instance, referring to the case p = 1%, R varies from 0.541 nm

to 2.977 nm when L/B varies from 20 (n = 1) to 110 (n = 10). It is worth observing

that, since the cut-off distance rc for the aluminium is equal to 0.628 nm (Mishin et al.,

1999), assumption in Eq. (2.1) allows to satisfy the minimum image convention (Allen

and Tildesley, 1991), resulting in the consistency requirement L > 2rc for any n ≥ 1.

Vector velocities vi (i = 1 . . . N) of the N atoms in C0 are initialized as non-physical

random vectors. In order to obtain a physically-consistent simulation domain at the

temperature T ∗ = 300 K and with zero pressure at the domain boundaries, a prelim-

inary equilibration step is performed by simulating 30 picoseconds via a Nose-Hoover

time-integration scheme (e.g., Plimpton, 1995). As a result, the statistically-equilibrated

configuration C∗ is obtained, consisting in a cubic simulation domain with the edge length

equal to L∗. For the sake of compactness, values of L∗ obtained from this preliminary

equilibration step are omitted, consisting however in percentage differences with respect

to L always less then 0.3%.

Afterwards, considering C∗ as the reference configuration at the time t = 0, an in-

cremental strain-driven deformation process is simulated, considering a fixed time-step

∆t. Denoting with t the actual value of the time variable, a measure of the actual strain
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Figure 2.1 – Computational model herein adopted for describing an aluminium nanovoided single
crystal. Notation.

tensor for the overall simulation domain is assumed to be expressed by:

D
(
t
)

= χt
(
Dxex ⊗ ex +Dyey ⊗ ey +Dzez ⊗ ez

)
(2.2)

where χ is a positive strain-rate constant parameter, and Dx, Dy and Dz are assigned

dimensionless quantities. Accordingly, the prescribed increments of the box lengths at

each time-step result in ∆Lq = L∗Dq χ∆t, with q = x, y, z.

As a notation rule, the following three strain invariants are introduced: ID
1 = tr D,

JD
2 = Dd : Dd/2 and JD

3 = det Dd, where Dd = D − (ID
1 /3)1 is the deviatoric strain

tensor and 1 is the second-order unit tensor (1ij = δij, with δij the Kronecker sym-

bol). Moreover, referring to a strain-based Haigh-Westergaard notation (see for instance

Menetrey and Willam, 1995), the strain Lode angle θD ∈ [0, π/3] is defined such that:

cos 3θD = 3
√

3JD
3 /[2(JD

2 )3/2]. When necessary, reference is also made to the following

invariant strain measures: Dm = ID1 /3 and Deq =
√
JD2 .

In order to analyse the sample response under a broad range of triaxial strain-based

conditions, three deformation paths are simulated, corresponding to θD = 0 (triaxial

strain expansion, denoted as TXED), θD = π/3 (triaxial strain compression, denoted as

TXCD), and θD = π/6 (shear strain conditions, denoted as SHRD). Furthermore, the

following choices of the dimensionless quantities Dx, Dy and Dz are considered:

TXED : Dx = Dy = λ, Dz = 1

TXCD : Dy = Dz = 1, Dx = η

SHRD : Dx = 1, Dy = (1 + µ)/2, Dz = µ

(2.3)

For any choice in Eq. (2.3), and referring to the case of a non-negative first invariant

ID
1 , different scenarios are simulated. In detail, several strain-based triaxiality levels,

ranging from a pure deviatoric condition (Dm = 0) to a pure hydrostatic one (Deq = 0),

are accounted for by varying the dimensionless coefficients λ, η and µ, as summarised in

Table 2.1.
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Table 2.1 – Values adopted for parameters λ, η and µ introduced in Eq. (2.3) to describe different
triaxiality levels, ranging from a pure deviatoric condition (Dm = 0) to a pure hydrostatic one
(Deq = 0).

Dm = 0 Deq = 0

λ (TXED) −0.5 −0.4 −0.3 −0.2 −0.1 0 0.25 0.5 1
η (TXCD) −2 −1.8 −1.6 −1.4 −1.2 −1 −0.5 0 1
µ (SHRD) −1 −0.86 −0.73 −0.6 −0.46 −0.3 0 0.3 1

In order to achieve effective results with a reasonable computational time, numerical

simulations are performed by considering χ = 5 · 109 s−1. Such a strain-rate value is

consistent with those usually adopted in the recent MD-based literature, ranging from

107 to 1012 s−1 (Bringa et al., 2010; Horstemeyer et al., 2001; Mi et al., 2011; Pogorelko

and Mayer, 2016; Ruestes et al., 2013; Seppala et al., 2004; Shabib and Miller, 2009; Tang

et al., 2010; Traiviratana et al., 2008; Zhao et al., 2009), and it can be experimentally

obtained via laser-shock techniques (Lubarda et al., 2004). As a further consistency

indication for such a choice, Horstemeyer et al. (2001) numerically proved that the yield

strength for FCC metals becomes practically insensitive to the strain rate for values lower

than 1010 s−1.

Adopting a time-step equal to ∆t = 1 femtosecond, trajectories of atoms are deter-

mined by integrating the Newton’s second law via the Verlet algorithm (Verlet, 1967). As

a result, the actual average stress tensor is computed as the superposition of atomistic

kinetic contributions and pairwise interactions, and it is described via the following virial

formula (e.g., Subramaniyan and Sun, 2008):

Σ(t) = − 1

Vat

N∑

i=1

(
mivi ⊗ vi +

N∑

j 6=i,j=1

fij
rij ⊗ rij
rij

)
(2.4)

where Vat is the total atomic volume, mi is the mass of the atom i, and fij = ∂E/∂rij
is the modulus of the interaction force between atoms i and j. The total energy E of

the system is defined in agreement with the Embedded Atom Method (Daw and Baskes,

1984) as:

E =

N∑

i=1

Fi
(
ρi
)

+
1

2

N∑

i=1

N∑

j=16=i

Φij(rij), with ρi =

N∑

j=16=i

ρj(rij) (2.5)

where rij is the modulus of the separation vector rij = rj − ri, with ri identifying the

position of the atom i. Accordingly, E is defined as the superposition of two terms. The

first is the sum of cohesive embedding energies Fi (required to include the atom i into the

electron cloud), expressed in terms of the electron-cloud density ρi (defined as the linear

superposition of the neighbouring atomic electron densities ρj). The second contribution

is associated to the repulsive pairwise potential function Φij between the atom i and its

neighbours j.
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In this study, the Haigh-Westergaard (HW) representation is adopted for giving a

three-dimensional description of the computed strength states. Accordingly, denoting

with θΣ ∈ [0, π/3] the stress Lode angle, a given stress state Σ is uniquely determined

by referring to the following stress-invariant quantities (e.g., Khan and Huang, 1995;

Lubliner, 2008):

ζ =
IΣ
1√
3
, r =

√
2JΣ

2 , cos 3θΣ =
3
√

3JΣ
3

2JΣ
2

3/2
(2.6)

where IΣ
1 = tr Σ, JΣ

2 = Σd : Σd/2 and JΣ
3 = det Σd are the isotropic stress invariants,

and where Σd = Σ − (IΣ
1 /3)1 is the deviatoric part of the stress measure introduced in

Eq.(2.4).

For what follows, notation TXEΣ, TXDΣ and SHRΣ is introduced to indicate triaxial

stress expansion (i.e., θΣ = 0), triaxial stress compression (i.e., θΣ = π/3) and shear (i.e.,

θΣ = π/6) stress states. Furthermore, when necessary, reference is made to the following

invariant stress measures: Σm = IΣ
1 /3 and Σeq =

√
JΣ

2 .

The HW representation defines a cylindrical coordinate system (ζ, r, θΣ) within the

space of the principal stresses (Σ1,Σ2,Σ3), with ζ and r being the magnitudes of the

orthogonal projections of the stress tensor Σ on the hydrostatic axis (i.e., Σ1 = Σ2 = Σ3,

r = 0) and on the deviatoric plane (or π-plane, that is ζ = const), respectively. It is

worth to remark that, for a given stress state (ζ, r, θΣ) it is always possible to recover the

corresponding stress tensor Σ, allowing for possible alternative representations (based for

instance on anisotropic stress invariants, (Hill, 1948; Monchiet et al., 2008)). Nevertheless,

aiming to furnish possible indications towards the characterization of material strength

properties in the framework of a continuum description, and since actual strength models

for nanoporous media are generally expressed in terms of isotropic stress invariants, the

HW representation is herein considered as useful for such purposes.

2.3 Strength measure and atomistic mechanisms

Strength properties of the herein-considered aluminium nanovoided single crystal are

identified by defining, for each deformation scenario, a limit stress state. With reference to

stress and strain measures previously introduced, typical stress-strain responses computed

via the present approach are shown in Figs. 2.2 and 2.3. They refer to the case p = 1 %

and L/B = 50 (corresponding to R = 1.353 nm) and address the deformation path

TXED. Aiming to furnish some indications on temperature effects related to elasto-plastic

mechanisms, two different cases are simulated: an isothermal process (denoted as IP), and

a non-isothermal one (NIP, no temperature control is used during the loading process).

Stress-strain relationships presented in Fig. 2.2 are obtained for three different deformation

scenarios (λ = −0.5, pure deviatoric condition; λ = 0, traction test corresponding to a

mixed hydrostatic/deviatoric condition; λ = 1, pure hydrostatic condition). Moreover,

addressing the case λ = −0.5, Fig. 2.3a depicts stress-strain responses computed in the

IP case for different temperature values (Fig. 2.3a), and Fig. 2.3b shows the temperature

evolution numerically-experienced in the NIP-based simulation.
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Figure 2.2 – Stress-strain relationships computed for the deformation path TXED with: λ = −0.5
(pure deviatoric state), λ = 0 (traction test) and λ = 1 (pure hydrostatic state). L/B = 50,
R = 1.353 nm, p = 1%. IP: isothermal process (at 300 K). NIP: non-isothermal process.

As main features of the resulting stress-strain responses, stress peaks are clearly iden-

tified, indicating a critical condition for the sample, followed by a stress-relaxation phase.

Stress-strain relationships obtained by considering all the other deformation paths and

different triaxiality levels (see Eqs.(2.3) and Table 2.1), as well as in the case of a bulk

sample (i.e., p = 0), exhibit the same characteristics and they are herein omitted for the

sake of compactness. With reference to the IP case and mainly resulting from the temper-

ature influence on the atomic mobility, Fig. 2.3a shows that if the temperature increases

then the stress peak reduces, and the latter is attained at a lower strain level. Further-

more, for high strains, material response is proven to become smoother as temperature

is higher, sequences of rises and falls tending to disappear. On the other hand, address-

ing the NIP deformation process, Fig. 2.3b reveals that the occurrence of the stress peak

corresponds to a significant change in the slope of the monotonically-increasing tempera-

ture evolution. Nevertheless, as it is highlighted by comparing IP- and NIP-based results

(Fig. 2.2), such a heating does not significantly affect either the values of the stress peaks

or the strain levels at which they occur. On the contrary, some heating-induced effects

appear for higher strains values.

As previously stated, very few experimental tests have been performed so far in order

to characterise the mechanical response of nanoporous materials, and the corresponding

evidence is thereby not sufficient to provide a proper validation benchmarking for MD-

based results. Nevertheless, present numerically-experienced stress-strain features are

fully in agreement with those obtained by other well-established MD studies (e.g., Mi et

al., 2011; Ruestes et al., 2013; Traiviratana et al., 2008; Zhao et al., 2009).

The occurrence of the stress peak is assumed to identify the limit stress state of the

sample (as also assumed, for instance, by Mi et al., 2011; Ruestes et al., 2013; Traiviratana

et al., 2008; Zhao et al., 2009), and the corresponding values of stress invariants IΣ
1 , JΣ

2

and JΣ
3 allow to define a strength point (ζ, r, θΣ) in the HW coordinate system. In the

following, strength features are computed by referring to IP-based simulations.

It is worth pointing out that, when the deviatoric strain level is significant, the limit

stress state of the sample is straight identified by referring to stress-strain curves expressed
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Figure 2.3 – Deformation path TXED with λ = −0.5 in the case L/B = 50 and for p = 1 %.
(a) Stress-strain responses computed considering an isothermal process (IP) and for different
temperature values. (b) Stress and temperature vs. strain in the case of a non-isothermal
process (NIP).
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Figure 2.4 – Centro-symmetry distribution (CS), represented as one-data point per atom, rele-
vant to the reference configuration C∗. L/B = 50, R = 1.353 nm, p = 1%.

in terms of Σeq versus Deq. On the other hand, when a pure hydrostatic deformation

scenario is considered, numerical computations reveal that the stress measure Σeq is prac-

tically equal to zero, and thereby reference is made to the stress-strain response in terms

of Σm versus Dm (Fig. 2.2).

Aiming to furnish indications for relating the numerically-experienced stress-strain

behaviour with some basic atomistic mechanisms, MD-based results relevant to the de-

formation path TXED with λ = −0.5 (for L/B = 50, p = 1 % and considering a NIP

case) are post-processed in the OVITO environment (Stukowski, 2010), by carrying out

two different analyses. The first one allows to estimate the centro-symmetry deviation

parameter CS. This latter is defined in agreement with Kelchner et al. (1998), Stukowski

(2010), and Plimpton (1995), resulting in CS = 0 for ideal FCC lattices (i.e., neglecting

any disturbance effects induced by thermal fluctuations, (Stukowski, 2012)) and CS > 0

when defects, crystallographic disorder, or different lattice structures appear. The second

atomistic investigation is based on the Common Neighbour Analysis (CNA) (Honeycutt

and Andemen, 1987) that allows to detect the lattice nature of each atom, distinguish-

ing among face-centered cubic (FCC), hexagonal close-packed (HCP), body-centered cu-

bic (BCC) lattices, icosahedral (ICO) and cubic diamond (DIA) arrangements, or other

assemblies with an unknown coordination structure (thereby exhibiting an amorphous

nature, and denoted as “Others”).

As shown in Fig. 2.4, due to the void presence and as a result of the preliminary

equilibration step, the CS instantaneous measure in the reference configuration C∗ is

significantly different from 0 at the void surface, and it is characterised by values ranging

from 0 to 5 elsewhere (due to thermal fluctuations).

At each simulation step, the CNA post-processing phase is performed in order to

investigate the evolution of the atomistic arrangement induced by the simulated defor-

mation path, possibly associated to plastic mechanisms. Nevertheless, aiming to focus on
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dominant atomistic processes, the centro-symmetry parameter CS is used to filter regions

where atomic patterns significantly differ from the FCC lattices. In detail, in agreement

with previous observations, CNA post-processing is applied to atoms characterised by

CS > 5.

The atomistic-based results obtained from the post-processing phase and depicted in

the bottom part of Fig. 2.5, highlight that a number of dislocation mechanisms, theoreti-

cally expected for FCC-based nanovoided single crystals (as briefly summarised in 2.A),

are properly caught by the proposed simulations in the case of a pure deviatoric deforma-

tion scenario. Observed evidence is in agreement with other well-established numerical

studies (e.g., Bringa et al., 2010; Marian et al., 2004, 2005; Tang et al., 2010; Traiviratana

et al., 2008; Zhao et al., 2009). For instance, Marian and co-workers have obtained similar

results studying the void growth of an aluminium nanovoided specimen, in terms of both

volume expansion (Marian et al., 2004) and applied shear angle (Marian et al., 2005).

Moreover, the herein observed dislocation nucleation and propagation mechanisms are

comparable with results proposed by Traiviratana et al. (2008) and relevant to the case

of an uniaxial expansion of monocrystalline and bicrystalline copper.

As a matter of fact, the analysis of Fig. 2.5 reveals that for small values of the equiv-

alent strain measure Deq, the sample is almost totally composed by FCC lattices and

the temperature is practically constant, resulting in the elastic behaviour observed in the

zone z1. At the end of this phase, for greater values of Deq, proposed results show that

Shockley partial dislocations are nucleated, leading to the occurrence of HCP atoms (see

2.A). Correspondingly, a plastic regime is activated (zone z2) and the temperature slope

significantly changes, in agreement with (Ruestes et al., 2013). Once nucleated at the end

of the zone z1, leading Shockley partials glide away from the surface of the void until they

intersect along a crystallographic direction belonging to < 110 > (see Fig.2.5a), resulting

in a Lomer-Cottrell dislocation. The latter is sessile and it acts as a barrier with respect

to trailing partials (the so-called Lomer-Cottrell lock (Hull and Bacon, 2001)). Contem-

poraneously, secondary slipping systems are activated in other regions of the void surface.

At the end of the zone z2 a stress peak is observed when the sessile arrangement breaks

up (Fig.2.5e), realising potential hotbeds for further dislocations slipping (Fig.2.5f) and

leading to complex dislocations interactions. In the zone z3, the stress-strain relationship

experiences a relaxation phase, characterized by a steep dropping off of the stress, fol-

lowed by further rises and falls associated to the formation, interaction and subsequent

unlocking of other sessile assemblies, out of the current concern. Correspondingly, a sig-

nificant irreversible heating appears, as both experimental (e.g., Rittel et al., 2006) and

computational (e.g., Higginbotham et al., 2011) evidence widely confirms.

It is worth pointing out that plastic deformation can be accompanied at the nanoscale

by a number of other complex atomistic interacting processes, related to void growth and

collapse mechanisms, dislocations emission, and shear loops (Bringa et al., 2010; Marian

et al., 2004, 2005; Traiviratana et al., 2008). Nevertheless, aiming to support the choice

of a suitable strength measure via a basic description of atomistic mechanisms only, the

detailed analysis of such phenomena does not fall in the purposes of the present study.
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Figure 2.5 – (Top) Stress-strain relationship, temperature-strain relationship, and CNA results
computed under a pure strain-based deviatoric condition corresponding to a non-isothermal
deformation path TXED (λ = −0.5, L/B = 50, R = 1.353 nm, p = 1%). z1: elastic zone;
z2: activation of plastic mechanisms; z3: stress-relaxation zone. (Bottom) Atomic patterns and
CNA results corresponding to different states within zones z2 and z3. Percentages of icosahedral
(ICO) and cubic diamond (DIA) atomic arrangements are equal to zero.
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2.4 Strength analyses

Strength points computed in agreement with considerations traced in Section 2.3 are used

to furnish meridian (i.e., in the plane (ζ, r), with θΣ = const) and deviatoric (i.e., in the

plane (r, θΣ), with ζ = const) representations of the strength domain. To this aim, a

non-linear least-squares fitting based on the algorithm proposed by Levenberg (1944) and

Marquardt (1963) is employed.

With reference to the simulation cell introduced in Fig. 2.1, the presence of the nanovoid

is expected to induce a perturbation on the mechanical behaviour with respect to the bulk

sample (namely, corresponding to p = 0). Accordingly, as an useful comparative bench-

mark, strength properties of the in-silico bulk specimen are preliminarily investigated.

Furthermore, the influence of the nanovoid on both strength-domain shape and strength

values is analysed, highlighting and discussing void-size effects, when different porosity

levels are accounted for.
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Figure 2.6 – Bulk sample. Influence of the simulation box length L/B on the stress-strain
response for the deformation path TXED.

2.4.1 Bulk sample

Stress-strain curves obtained in the case of a bulk domain and for different values of

the simulation box length L/B are depicted in Fig. 2.6, addressing the deformation path

TXED and different triaxiality levels.

As a matter of fact, the long-range nature of dislocation fields results in the interaction

of dislocations through the cell boundaries, leading to possibly non-negligible periodic

image effects. These latter are expected to be more significant when the box length is

small. Such an occurrence is clearly highlighted by results proposed in Fig. 2.6, where

significant differences in the material mechanical response occur within the full plastic

regime (namely, in the zone z3 introduced in Fig. 2.5). In detail, and as a result of

periodic image effects, small values of L/B induce marked sequences of rises and falls,

characterised by average stress levels which are higher than those obtained for large L/B.

Nevertheless, periodic image effects are proven to negligibly affect the adopted strength

measure, irrespective of the considered triaxiality levels. In detail, Fig. 2.7a confirms that
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Figure 2.7 – Bulk sample. Strength states computed under TXED, TXCD and SHRD deformation
paths. (a) Meridian strength profiles. (b) Deviatoric strength profiles. Symbols denote computed
strength states, curves indicate estimated strength profiles.
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in the case TXED, computed strength states are almost coincident when the box length is

varied, resulting in negligible discrepancies. Thereby, in the following the average results

obtained for different L/B will be considered as representative of strength states for the

bulk sample. Similar observations can be provided for TXCD and SHRD deformation

paths, whose results are herein not reported for the sake of compactness.

Figure 2.7b depicts strength results in the deviatoric plane (π-plane), highlighting

that cross sections of the strength domain at different ζ coordinates are characterised by

a triangular shape.

Accordingly, proposed results clearly show the significant influence of all the three

stress invariants IΣ
1 , JΣ

2 and JΣ
3 . Furthermore, the analysis of Fig. 2.7a indicates that

strength states computed under pure strain-based deviatoric conditions (λ = −0.5, η =

−2, µ = −1, see Table 2.1) exhibit non-negligible hydrostatic stress components.

Table 2.2 summarizes computed values of the stress Lode angle θΣ for different defor-

mation paths and for several values of ζ. As also shown in Fig. 2.7b, the axisymmetric

strain conditions TXED (θD = 0) and TXCD (θD = π/3) generate stress states which

are in turn almost axisymmetric and characterised by θΣ ≈ θD. Thereby, triaxial strain

expansion TXED (respectively, compression TXCD) practically corresponds to triaxial

stress expansion TXEΣ (respectively, compression TXCΣ), irrespective of the value as-

sumed for ζ. In contrast, in the case of SHRD (θD = π/6), the computed values of θΣ are

significantly different from θD. As a result, SHRD strain condition does not induce a pure

shear stress state SHRΣ (namely, corresponding to θΣ = π/6). This occurrence has been

also observed by Lemarchand et al. (2015), as associated to the dependency of strength

properties on all the three stress invariants.

Accordingly, addressing Fig. 2.7a, estimated curves for strength states relevant to the

TXED and TXCD cases straight correspond to the intersections of the strength domain

with meridian planes θΣ = 0 and θΣ = π/3, respectively. On the contrary, an estimate

of the strength profile in the meridian plane θΣ = π/6 (dashed curves) is obtained by

interpolating numerical results computed by varying θD.

2.4.2 Nanovoided sample

Figures 2.8 to 2.12 summarize numerical results relevant to strength analyses on nanovoided

samples, for a fixed value of porosity (p = 1%) and for different values of the ratio L/B

(this corresponds to proportionally vary the void radius). The case of the bulk sample is

also reported for comparison, when necessary.

As in the case of the bulk sample, MD-based analyses have revealed that axisymmetric

deformation paths practically result in axisymmetric stress states, leading to θΣ ≈ θD,

(see for instance Figs. 2.9 and 2.10). On the other hand, a significant discrepancy be-

tween stress- and strain-based Lode angles is observed for the deformation path SHRD,

as depending on: the Haigh-Westergaard coordinate ζ (that is, on the hydrostatic stress

level), the triaxiality parameter ζ/r, and the ratio L/B (Fig. 2.8). Such an evidence on a

nanovoided sample is in agreement with theoretical findings proposed by Lemarchand et

al. (2015), obtained for a solid phase that obeys to a strength criterion depending on all
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Table 2.2 – Bulk sample. Values of the stress Lode angle θΣ (normalised with respect to the
corresponding values of θD for deformation paths SHRD and TXCD) for different hydrostatic
stress levels.

TXED SHRD TXCD

ζ [GPa] θΣ [rad] θΣ/θD θΣ/θD

0 0.0018 0.7122 0.9969
1 0.0014 0.6961 0.9966
2 0.0012 0.6746 0.9963
3 0.0011 0.6512 0.9961
4 0.0011 0.6290 0.9961
5 0.0014 0.6087 0.9963
6 0.0019 0.5898 0.9967
7 0.0024 0.5722 0.9972
8 0.0028 0.5586 0.9979
9 0.0027 0.5531 0.9984
10 0.0025 0.5584 0.9987

−1 0 1 2 3 4 5 6 7 8 9 10 11
0.5

0.6

0.7

0.8

0.9

ζ [GPa]

θΣ
/θ

D

L/B = 60
L/B = 70
Bulk

−1 0 1 2 3 4 5 6 7 8 9 10
0.5

0.6

0.7

0.8

0.9

ζ/r

θΣ
/θ

D

L/B = 30
L/B = 40
L/B = 50

Figure 2.8 – Values of the stress Lode angle θΣ (normalised with respect to the corresponding
value of θD) versus ζ (top) and ζ/r (bottom), computed for a nanovoided sample (p = 1%)
undergoing the SHRD deformation path, and for different ratios L/B. The case of the bulk
specimen is also reported.

the three stress invariants.

Referring to Fig. 2.8, two main effects can be highlighted. Firstly, the presence of a

nanovoid tends to reduce the difference between θΣ and θD with respect to the bulk case,

mainly for high values of hydrostatic stress and triaxiality levels. Secondly, for a fixed

value of ζ, a reduction in the void size induces an increment of the discrepancy between

θΣ and θD, especially for high hydrostatic stress amounts. Such an influence of the void
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Figure 2.9 – Nanovoided sample (p = 1%). Numerical results (symbols) and estimated strength
profiles in the π-plane. (a) ζ = 2 GPa. (b) ζ = 6 GPa.



“tesi” — 2016/12/22 — 9:44 — page 55 — #67

Chapter 2. A Molecular Dynamics approach 55

  r = 2 GPa

  r = 4 GPa

  r = 6 GPa

  r = 8 GPa

 

 ζ=0
ζ=2 GPa
ζ=4 GPa
ζ=6 GPa

TXC⌃

SHR⌃

TXE⌃

SHR⌃

TXE⌃

SHR⌃

SHR⌃

SHR⌃

SHR⌃

TXE⌃

TXC⌃

TXC⌃

✓D =
⇡

3

✓D =
⇡

6

✓D = 0

✓⌃ = 0

✓⌃ = ⇡/6

✓⌃ = ⇡/3

  r=2 GPa

  r=4 GPa

  r=6 GPa

  r=8 GPa

  r=10 GPa

30

210

60

240

90

270

120

300

150

330

180 0

 

 ζ=0
ζ=2 GPa
ζ=4 GPa
ζ=6 GPa

⇣ = 0

⇣ = 2GPa

⇣ = 4GPa

⇣ = 6GPa

(a)

  r = 2 GPa

  r = 4 GPa

  r = 6 GPa

 

 ζ=0
ζ=2 GPa
ζ=4 GPa
ζ=6 GPa

SHR⌃

TXE⌃

TXE⌃

TXE⌃

TXC⌃

TXC⌃

SHR⌃

SHR⌃

SHR⌃

SHR⌃

SHR⌃

✓D =
⇡

6

✓D =
⇡

3

✓D = 0

✓⌃ = ⇡/6

✓⌃ = 0

✓⌃ = ⇡/3

TXC⌃

  r=2 GPa

  r=4 GPa

  r=6 GPa

  r=8 GPa

  r=10 GPa

30

210

60

240

90

270

120

300

150

330

180 0

 

 ζ=0
ζ=2 GPa
ζ=4 GPa
ζ=6 GPa

⇣ = 0

⇣ = 2GPa

⇣ = 4GPa

⇣ = 6GPa

(b)

Figure 2.10 – Nanovoided sample (p = 1%). Numerical results (symbols) and estimated deviatoric
strength profiles for different hydrostatic stress levels. (a) L/B = 30 (R = 0.812 nm). (b)
L/B = 50 (R = 1.353 nm).
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Figure 2.11 – Nanovoided sample (p = 1%). Numerical results (symbols) and estimated meridian
strength profiles for different values of L/B and for a TXEΣ state (θΣ = 0). The bulk case is
also reported.

radius tends to disappear for values of L/B greater than 50 (that is, for R > 1.353 nm).

As a general remark, the measured stress state does not systematically correspond to

the applied strain one. Such an occurrence is also evident in meridian planes (Figs. 2.11

and 2.12), where non-negligible hydrostatic stress components can be observed when pure

strain-based deviatoric conditions are considered.

The analysis of Figs.2.9 to 2.12 suggests a clear dependence of the numerically-

estimated strength properties on all the three stress invariants previously introduced.

As a matter of fact, the influence on IΣ
1 and JΣ

2 can be mainly observed by referring

to meridian representations in Figs. 2.11 and 2.12, as well as the dependency on JΣ
3 is

highlighted by addressing the non circular profiles in π-planes of Figs. 2.9 and 2.10.

With respect to the actual state-of-the-art, this evidence confirms that a proper char-

acterization of strength properties for nanoporous materials can be still considered as an

open and challenging issue. In fact, the influence of the stress invariants is not accurately

taken into account in current available theoretical models (e.g., Dormieux and Kondo,

2010, 2013; Goudarzi et al., 2010; Zhang and Wang, 2007; Zhang et al., 2010), resulting

in an unsatisfactory description of the material strength domain. For instance, non-linear

homogenization-based criteria by Zhang and Wang (2007) and Zhang et al. (2010) de-

scribe the meridian strength profile as elliptic, and any dependency on the third stress

invariant is not accounted for (thereby resulting in a circular deviatoric strength profile).

This is clearly in contrast with obtained results, confirming that MD simulations open

towards novel insights for developing and validating more effective theoretical approaches.

Proposed meridian and deviatoric strength profiles are shown to be significantly af-

fected by void-size effects, mainly resulting in the improvement of the strength properties



“tesi” — 2016/12/22 — 9:44 — page 57 — #69

Chapter 2. A Molecular Dynamics approach 57

−4 −2 0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

ζ  [GPa]

r 
 [G

P
a]

Bulk
L/B = 30
L/B = 50
L/B = 60
L/B = 70

(a)

−4 −2 0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

ζ  [GPa]

r 
 [G

P
a]

Bulk
L/B = 30
L/B = 50, L/B = 60, L/B = 70

(b)

Figure 2.12 – Nanovoided sample (p = 1%). Numerical results (symbols) and estimated meridian
strength profiles for different values of L/B. (a) TXCΣ (θΣ = π/3). (b) SHRΣ (θΣ = π/6). The
bulk case is also reported. As for the bulk sample, curves for SHRΣ case are obtained by
interpolating numerical results computed by varying θD.
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when the void radius reduces. Occurrence and amount of such a strengthening effect

strongly depend on the value assumed by the stress Lode angle, as it clearly appears in

Figs.2.9, 2.11 and 2.12. In detail, referring to Fig. 2.9 and for a fixed hydrostatic stress

level ζ, the highest influence is observed in the case of a triaxial expansion. Moreover, a

shape transition is observed in the deviatoric profiles, these latter passing from a multi-

sided polygonal shape to a triangular-like one when the void size reduces. Equivalently,

an increase of the ratio L/B tends to mitigate the influence of the third stress invariant.

This shape-transition is observed for any hydrostatic coordinate ζ, and it is associated to

void-size effects only. In fact, when the void radius is fixed, the shape of π-plane strength

profiles is proven to be constant with respect to ζ (Fig. 2.10).

Referring to meridian strength profiles depicted in Fig. 2.11, it is also observed that,

in the TXEΣ case, the lower the ratio L/B the higher the values of the profiles mean

curvature are. Such a shape-transition effect practically does not occur in TXCΣ and

SHRΣ meridian planes.

As a quantitative indication, when the void radius is reduced from 2.977 nm (L/B =

110) to 0.812 nm (L/B = 30), the strength measure Σeq at ζ = 4 GPa (resp., ζ = 8 GPa)

increases of about: 40 % (resp., 105 %) for TXEΣ (see Fig. 2.11); 5 % (resp., 20 %) for

TXCΣ (see Fig. 2.12a); 11 % (resp., 18 %) for SHRΣ (see Fig. 2.12b). Nevertheless, com-

puted results for p = 1 % prove that strength properties turn out to be almost independent

from the void radius for values greater than 2.7 nm (i.e., for L/B greater than about 100)

in the case TXEΣ, and for values greater than 1.35 nm (i.e., L/B greater than about 50,

Fig.2.12) in the cases SHRΣ and TXCΣ.

The influence of the porosity p on meridian and deviatoric strength profiles is shown

in Figs. 2.13 to 2.15, relevant to further two porosity values p = 0.1% and p = 0.5%. As

expected, when p is reduced strength properties tend to increase towards the bulk ones. As

in the case of p = 1%, Figs. 2.13 and 2.14 reveal that axisymmetric strain-rate conditions

TXED and TXCD practically correspond to triaxial expansion and compression stress

states, respectively, leading to θD ≈ θΣ. In contrast, in the case of SHRD, the computed

values of θΣ are significantly different from θD. Comparisons among results obtained

for different porosity levels suggest that discrepancies between θΣ and θD tend to reduce

when porosity increases. Moreover, the occurrence of a strengthening void-size effect,

previously-described for p = 1%, is confirmed by results in Figs. 2.13 (p = 0.5 %) and

2.14 (p = 0.1 %), where material strength properties are proven to increase when the

void radius is reduced. As already observed in Figs. 2.9 and 2.10, the increase of the void

radius (i.e., of L/B) leads to a shape transition of deviatoric strength profiles, almost

irrespective of porosity level. Since the highest amount of the strengthening void-size

effect occurs for TXEΣ stress states, only the corresponding meridian planes are reported

in Fig. 2.15, for the sake of compactness. As a quantitative indication and referring to the

TXEΣ case, for p = 0.5% (resp., p = 0.1%) a reduction in the void radius from 1.49 nm

(resp., 0.87 nm, L/B = 70) to 0.64 nm (resp., 0.37 nm, L/B = 30) induces an increase in

the strength measure Σeq of about 16 % (resp., 13 %) for ζ = 4 GPa and of about 43 %

(resp., 39 %) for ζ = 8 GPa.
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Figure 2.13 – Nanovoided sample (p = 0.5%). Numerical results (symbols) and estimated devia-
toric strength profiles in the π-planes for different values of L/B. (a) ζ = 2 GPa. (b) ζ = 6 GPa.
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Figure 2.14 – Nanovoided sample (p = 0.1%). Numerical results (symbols) and estimated devia-
toric strength profiles in the π-planes for different values of L/B. (a) ζ = 2 GPa. (b) ζ = 6 GPa.
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Figure 2.15 – Nanovoided sample. Numerical results (symbols) and estimated meridian strength
profiles for different values of L/B and for a TXEΣ state (θΣ = 0). (a) p = 0.5%. (b) p = 0.1%.
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2.5 Conclusions

In this Chapter, the influence of void-size effects on strength properties of nanoporous

materials are focused by numerically-experiencing, via a Molecular Dynamics approach,

the mechanical response of a spherically-nanovoided aluminium single crystal. The case

of a bulk sample (namely, with a null porosity) is also preliminarily investigated aiming

to furnish a comparative benchmark.

Although many MD-based analyses on nanoporous in-silico samples have been re-

cently established, they are usually limited to the study of specific loading cases (uniax-

ial, volumetric or simple shear tests), mainly focusing on the identification of void-growth

mechanisms and dislocation interactions, without providing an effective quantification

of void-size effects. In detail, available results are sufficient neither to furnish a three-

dimensional description of the corresponding strength domains (since they identify only

particular stress limit conditions), nor to establish the influence of void size as depending

on the loading state, thereby not allowing for a straight correlation towards the definition

of engineering strength measures for nanoporous materials.

Similarly, current experimental evidence, mainly related to simple testing scenarios,

does not provide suitable indications on failure mechanisms under multiaxial loading

conditions. Therefore, available findings can not be considered useful tools for properly

assessing the effectiveness of theoretical descriptions of strength features for nanoporous

materials.

With the aim to give novel contributions in this context, more complex scenarios have

been herein addressed, involving triaxial strain-based expansion and compression, as well

as shear strain conditions. For each case, different triaxiality levels have been considered,

describing deformation paths ranging from pure deviatoric states to pure hydrostatic

ones. For different porosity levels, strength properties of nanoporous samples have been

investigated as a function of the void radius, in order to explore the influence of the void

size.

Although available experimental data are not sufficient to provide an effective com-

parative benchmark, present numerical results have been proven to be fully consistent

with findings obtained via other MD-based approaches (Bringa et al., 2010; Marian et

al., 2004, 2005; Mi et al., 2011; Ruestes et al., 2013; Tang et al., 2010; Traiviratana et

al., 2008; Zhao et al., 2009), in terms of stress-strain relationships, as well as of dominant

atomistic mechanisms and irreversible heating occurring in the plastic regime.

For the cases under investigation, estimates of strength domains have been proposed.

The classical Haigh-Westergaard representation, expressed by the three isotropic stress

invariants, has been employed.

As main aspects, the analysis of meridian and deviatoric strength profiles computed

for different porosity values has shown:

• a clear influence of all the three stress invariants;

• a complex relationship between the applied strain states and the obtained strength

ones;
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• significant void-size effects.

In detail, numerical results have proven that an axisymmetric stress state is ob-

tained when axisymmetric strain conditions are applied to the sample, corresponding

to practically-coinciding stress- and strain-based Lode angles. This is not the case when

shear numerical tests are performed, resulting in significant differences between applied-

strain and computed-stress Lode angles. Such a constitutive response at limit states is in

agreement with recent theoretical findings (Lemarchand et al., 2015).

Similar effects have been also observed for the strength profiles in the meridian planes,

where non-negligible hydrostatic stress components are obtained when pure deviatoric

deformation paths are considered.

Furthermore, numerical results confirmed that a reduction in the void size induces an

enhancement of the strength properties. This is qualitatively in agreement with available

experimental (Biener et al., 2005, 2006; Hakamada and Mabuchi, 2007) and numerical

(e.g., Mi et al., 2011; Traiviratana et al., 2008; Zhao et al., 2009) evidence, although

these latter have been obtained by considering different testing conditions, geometries

and materials.

Both occurrence and amount of void-size effects have been proven as strongly depen-

dent on the Lode angle, resulting in the highest strengthening for a triaxial expansion,

and leading to a shape-transition of deviatoric strength profiles when the void radius is

varied.

It is worth pointing out that, in the framework of an ideal periodic nanostructure,

the single-crystal and single-voided reference domain herein adopted could be considered

as not properly representative of realistic experimental samples. Nevertheless, within the

limitations of the present approach, the herein-adopted computational domain enables

to limit as much as possible any coupling effect (such as effects associated to: shape of

voids, porosity level, polycrystalline domains), allowing to focus on dominant influence of

void-size effects only.

As a matter of fact, in a number of nanoporous strength models (e.g., Dormieux

and Kondo, 2010, 2013; Goudarzi et al., 2010; Monchiet and Kondo, 2012; Zhang et al.,

2010), the influence of the third stress invariant is not accounted for, and solid phase is

generally assumed to obey to a von Mises strength criterion (namely, independent also

from the first stress invariant). Moreover, as regards the analytical description of void-

size effects, it usually requires some model parameters that have to be properly calibrated

and physically interpreted. In this context, proposed numerical results, both for bulk and

nanoporous cases, clearly indicate a significant dependence of strength states from all

the three stress invariants, suggesting the need of improving previously-cited theoretical

descriptions. Furthermore, quantitative indications provided by the present approach

allow to highlight some mechanical meanings of theoretical model parameters, enabling

also to establish their physically-consistent ranges of variation.

Accordingly, present numerical study can be considered as an useful and novel contri-

bution to provide comparative benchmarks for validating and calibrating available the-

oretical formulations, as well as for drawing novel analytical models towards a compre-
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hensive and consistent description of nanoporous materials strength properties. As an

example, in order to pave the way to more effective theoretical modelling strategies, able

to reproduce available evidence, a richer description of the bulk strength behaviour with

respect to the von Mises one (namely, accounting for the influence of all the stress in-

variants) should be addressed. In this way, an effective description of the influence of

the third stress invariant combined with void-size effects would be accounted for in the

context of a general plastic behaviour.
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2.A Crystallographic background

Notation based on Miller indexes (Hull and Bacon, 2001) is used. As indicated by Marian

et al. (2005) and Traiviratana et al. (2008), in the case of a spherical voided FCC-based

sample the maximum of the resolved shear stress is reached in planes {111} embedding

the void and angled by ±45◦ with respect to the sample local axes. Besides, since the

energy stored in a dislocation is proportional to the modulus of its Burgers vector, the

glide of perfect dislocations characterized by b = B < 110 > is energetically disfavoured

(Hull and Bacon, 2001).

Referring for instance to closed packed planes (111) and (111) in Fig.2.16a, let two per-

fect dislocations b1 = B[101] and b′1 = B[011] be considered, belonging to the Thompson

tetrahedrons HKJY and H’K’JY, respectively. In agreement with energetic arguments

discussed by Hull and Bacon (2001), atom in Y, instead of moving directly in K through

b1, moves firstly in the nearby site γ (via b2) and next in K (via b3), γ being such that

Y γ = γK. As a result, the perfect dislocation b1 = B[101] dissociates into two Shockley

partials in the plane (111), according to the following decomposition:

b1 =
B

3
[112] +

B

3
[211] = b2 + b3 (2.7)

Likewise, the perfect dislocation b′1 = B[011] dissociates into Shockley partials b′2 and

b′3, both belonging to the plane (111):

b′1 =
B

3
[112] +

B

3
[121] = b′2 + b′3 (2.8)

Furthermore, leading partials b3 and b′3 modify the local stacking sequence of closed

packed planes {111} from FCC to HCP. On the contrary, trailing partials b2 and b′2
remove the fault, restoring the original FCC lattice. Thereby, Shockley partial dislocations

as in Eqs. (2.7) and (2.8) always enclose a stacking fault region, characterized by the

presence of HCP sub-arrangements (Hull and Bacon, 2001) (see Fig. 2.16b). Accordingly,

the initiation of the plastic deformation can be associated to the HCP occurrence.

As regards the evolution of plastic deformation, it is strictly related to Shockley par-

tials interactions. As a matter of fact, leading partials b3 and b′3 interact each other at the

intersection of slip planes (111) and (111), yielding to a Lomer-Cottrell (LC) dislocation

B

3
[110] =

B

3
[211] +

B

3
[121] (2.9)

that does not belong to a slip plane. As a result, such a LC dislocation is sessile and

it acts as a barrier (the so-called Lomer-Cottrell lock (Hull and Bacon, 2001)) for any

additional slipping process in planes (111) and (111), repulsing the remaining two trailing

Shockley partials b2 and b′2. Accordingly, material behaviour in plastic regime strictly

depends on the evolution of such a locking mechanism.
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Figure 2.16 – (a) An example of Shockley-partials nucleation. Perfect dislocations b1 and b′1
dissociate into partials, namely leading partials b3 and b′3, and trailing partials b2 and b′2. (b)
Leading partials b3 and b′3 modify the local stacking sequence of closed packed planes {111}
from FCC (sequence ABC-ABC) into HCP (sequence AB-AB). On the contrary, trailing partials
b2 and b′2 remove the fault, restoring the original FCC lattice. L.C.: Lomer-Cottrell lock.
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CHAPTER 3

Nanoporous materials with a general isotropic plastic

matrix: Exact limit state under isotropic loadings

Abstract

In this Chapter, hydrostatic strength properties of nanoporous materials are investigated

by addressing the limit state of a hollow sphere undergoing isotropic loading conditions.

Void-size effects are modelled by treating the cavity boundary as a coherent-imperfect

homogeneous interface. The hollow sphere is assumed to be comprised of a rigid-ideal-

plastic material obeying to a general isotropic yield criterion. The latter is defined by

considering a simplified form of the yield function proposed by Bigoni and Piccolroaz

in [Int J Solids Struct; 41: 2855–2878], resulting able to account for a broad class of

pressure-sensitive materials whose plastic response is also affected by the stress Lode

angle. The corresponding support function is consistently derived and discussed. The

exact solution of the limit-state problem is fully determined, providing a closed-form

description of stress, strain-rate and velocity fields, as well as the macroscopic hydro-

static strength of nanoporous media. Proposed approach allows to consistently generalise

available analytical solutions for porous and nanoporous materials, by accounting for a

general plastic response of the solid matrix and for void-size effects. Finally, present ex-

act solution, as well as the identification of the support function for the adopted general

strength criterion, open towards novel kinematic limit-analysis approaches for describing

macroscale strength properties of nanoporous materials under arbitrary triaxial loadings.

Present Chapter corresponds to the published research paper (Brach et al., 2016c) [Int

J Plasticity; DOI: 10.1016/j.ijplas.2016.10.007 (2016)].

A self-consistent notation is adopted.

Keywords: Nanoporous materials, strength properties, hollow-sphere model, general

isotropic plastic matrix, support function, void-size effects.
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3.1 Introduction

In the last two decades nanoporous materials have been characterised by a fast-growing

development, attracting a world-wide interest in both industrial and academic domains

(e.g., Arico et al., 2005; Jenkins, 2010; Lu et al., 2004). As a matter of fact, owing

to their good properties in terms of stiffness and strength, combined with particular

and special electrochemical features, nanoporous materials open towards groundbreak-

ing applications in several technical fields, involving ultra-high performance devices and

challenging multifunctional uses. In order to fulfil these promising applications, one of

the most fundamental aspects consists in describing, into an effective engineering design

framework, strength properties of these materials as dependent on the size of voids.

Recent nano-mechanical experiments (e.g., Biener et al., 2005, 2006; Hakamada and

Mabuchi, 2007) have shown that, for a fixed porosity value, a reduction in the length-scale

of nanovoids induces an increase in the material yield strength. Similarly, Molecular-

Dynamics simulations carried out on in-silico nanoporous samples (Brach et al., 2016a;

Mi et al., 2011; Traiviratana et al., 2008; Zhao et al., 2009) have proven that the predicted

strength decreases towards asymptotic values when the size of voids increases. The phys-

ical origin of such a phenomenon has been related by Needs et al. (1991) to the presence

of self-equilibrated surface stresses at the cavity boundaries, induced by a local pertur-

bation in the material atomic arrangement close to the nanovoids and usually negligible

for porous materials. Accordingly, in the framework of a continuum approach, void-size

effects have been generally addressed by introducing coherent-imperfect interface laws

at the cavity boundaries (e.g., Duan et al., 2005a,b; Gurtin and Murdoch, 1975, 1978;

Povstenko and Yu, 1993; Wang et al., 2011), that is accounting for surface stresses by

prescribing the discontinuity of the stress vector across the interface.

Although the effective elastic properties of nanoporous/nanocomposite materials have

been extensively investigated in literature (e.g., Duan et al., 2005a,b; Le Quang and He,

2007), few attention has been paid so far to the influence of void-size effects on the

material response in the ductile regime. As a matter of fact, available strength models

for porous materials (e.g., Gurson, 1977; Ponte Castañeda, 1991) are able to account for

porosity effects only (although recent advanced formulations and applications include also

effects related to matrix anisotropy, void shape, voids distribution and interaction (e.g.,

Fritzen et al., 2012; Shen et al., 2012; Zhai et al., 2016)), thereby resulting in void-size

independent plastic behaviours.

Taking advantage of a plastic generalization of interface stress models (Monchiet and

Bonnet, 2010), and as a result of a limit-analysis approach (Salençon, 1983) on a rigid-

ideal-plastic hollow sphere with a nanosized void, Dormieux and Kondo (2010) extended

to nanoporous materials the well-established criterion proposed by Gurson (1977). Fur-

thermore, void-size dependent yield criteria have been recently proposed by Goudarzi et

al. (2010), Moshtaghin et al. (2012), Zhang and Wang (2007), Zhang et al. (2008) and

Zhang et al. (2010), in the framework of non-linear homogenization methods including

also interface effects.

As regards limit-analysis approaches, the capability of furnishing an effective estimate
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of the macroscopic yield domain for porous and nanoporous materials requires a suitable

choice of static or kinematic trial fields. As a matter of fact, following the technique

adopted by Gurson (1977), and referring to a rigid-ideal-plastic matrix, strength estimates

have been obtained in the framework of a kinematic approach (e.g., Anoukou et al.,

2016; Cazacu et al., 2014; Dormieux and Kondo, 2010) by building up the trial field

via the superposition of suitable terms to the exact velocity field associated to the limit

problem of a hollow sphere under a radial constant velocity at the external boundary

(i.e., under isotropic boundary conditions, corresponding to a macroscopic hydrostatic

state). Accordingly, the identification of the exact local fields at the limit state (namely,

velocity, strain-rate and stress fields) for a hollow sphere undergoing isotropic loadings

is recognized to be of the utmost importance for establishing effective strength estimates

for porous and nanoporous materials under general triaxial states.

It is worth observing that most of the afore-mentioned strength models have been

derived by assuming that the solid matrix obeys to a von Mises yield criterion, thereby

not accounting either for hydrostatic-stress dependence or for stress-Lode-angle effects

(the latter being related to the third deviatoric stress invariant). Nevertheless, the solid

matrix of engineering-relevant nanoporous materials may exhibit a more complex plastic

behaviour. For instance, the ductile regime of bulk metals (namely, without nanovoids)

may be characterised (as for geomaterials or cohesive-frictional media) by a pressure-

sensitive plastic response, also significantly affected by the second and the third deviatoric

stress invariants. This evidence has been confirmed by recent Molecular-Dynamics simu-

lations (Brach et al., 2016a), which also showed that the dependence of the bulk-material

strength domain on all the three isotropic stress invariants can not be generally accounted

for by simply calibrating available classical yield criteria (e.g., Mohr-Coulomb), and that,

in turn, this induces a complex plastic response of nanovoided samples.

An attempt to include the influence of all the three isotropic stress invariants for

describing strength properties of porous media (i.e., without interface effects) has been

recently provided by Anoukou et al. (2016), in the special case of a Mohr-Coulomb plastic

matrix.

To this end, Anoukou et al. (2016) have adopted a limit-analysis procedure by consid-

ering a trial velocity field defined on the basis of the exact solution proposed by Thoré et

al. (2009) for a Mohr-Coulomb hollow-sphere model without interface effects and under-

going isotropic loading conditions. Nevertheless, aiming to reproduce available evidence,

a richer description of the local yield behaviour that accounts for the influence of all the

stress invariants has to be addressed. In this light, the general and flexible yield criterion

proposed by Bigoni and Piccolroaz (2004) can be considered as a promising candidate to

comply with benchmarking indications on local strength properties, allowing to effectively

describe the limit behaviour of a broad class of pressure-sensitive, frictional, ductile and

cohesive bulk materials.

Therefore, in order to pave the way to more comprehensive limit-analysis modelling

strategies for nanoporous materials, the starting point is represented by the identification

of the exact local fields under a macroscopic hydrostatic state, accounting for void-size
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effects and in the case of a general local plastic behaviour. The latter, in the framework

of kinematic approaches, has to be formulated via the local support function, that is via

the maximum material plastic dissipation.

This Chapter aims to contribute to these aspects by proposing the exact solution of

the mechanical local fields at the limit state for a hollow sphere with a nanosized void,

treated via a coherent-imperfect interface, and in the case of isotropic boundary loading

conditions. Accordingly, a closed-form description of the macroscopic hydrostatic limit

stress for nanoporous materials is also provided. The solid matrix is assumed to be

comprised of a rigid-ideal-plastic material, obeying to a simplified form of the criterion

proposed by Bigoni and Piccolroaz (2004), expressed in terms of the three isotropic stress

invariants. In detail, the adopted yield function is described as linear in meridian planes,

and as proposed by Bigoni and Piccolroaz (2004) in the deviatoric ones.

The Chapter is organised as follows. In Section 3.2, the problem under stake is formu-

lated by accounting for interface effects. Section 3.3 is devoted to the introduction of the

Bigoni-like yield function, carefully focusing on the possible occurrence of sharp vertices

in the deviatoric plane. In order to allow for kinematic limit analyses based on such a

general criterion, the corresponding support function is consistently derived in Section

3.4. The limit state of a hollow sphere with or without interface effects and undergoing

isotropic boundary conditions is exactly determined in Section 3.5. By choosing suitable

values of criterion parameters, exact analytical descriptions are also obtained in the par-

ticular case of local plastic behaviours described via classical yield functions (von Mises,

Tresca, Drucker-Prager, Mohr-Coulomb). The usefulness of obtained results to build up

trial fields for novel limit analysis approaches, addressing both porous and nanoporous

materials, is highlighted in Section 3.6. Finally, some conclusions are traced in Section

3.7.

3.2 Problem statement

Let the hollow sphere in Fig. 3.1 be considered, whose internal and external radii are

denoted as Ri and Re, respectively. Moreover, let ∂Ωi and ∂Ωe be the corresponding

internal and external surfaces, the total boundary of the system resulting in ∂Ω = ∂Ωi ∪
∂Ωe. Denoting as |Ωs| and |Ωv| the volume measures of the solid region (namely, Ωs)

and of the spherical void (Ωv), respectively, the total volume of the system (namely,

Ω = Ωs ∪ Ωv) is |Ω| = |Ωs|+ |Ωv|, and the porosity f is equal to f = |Ωv|/|Ω|. The solid

matrix Ωs is assumed to be homogeneous and comprised of a rigid-ideal-plastic isotropic

material. Therefore, material strength properties can be straight identified by referring

to the yield limit state.

In agreement with continuum-based descriptions (Duan et al., 2005a; Gurtin and Mur-

doch, 1975, 1978; Wang et al., 2011) and available strength models for nanoporous ma-

terials (e.g., Dormieux and Kondo, 2010), the influence of non-negligible surface stresses

induced by the possibly-nanosized void is herein addressed by introducing a coherent and

imperfect homogeneous interface I at the void boundary ∂Ωi (Fig. 3.1). In particular, the

velocity field (resp., the stress vector) is prescribed to be continuous (resp., discontinuous)
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Figure 3.1 – Problem statement. Notation.

through ∂Ωi. In the framework of a plastic generalization (Monchiet and Bonnet, 2010)

of the stress-interface model by Gurtin and Murdoch (1975), the material comprising the

interface is assumed to be isotropic and rigid-ideal-plastic.

Let the Cartesian reference system (ex, ey, ez) be introduced, with the origin O at the

sphere center. For what follows, and referring to the notation in Fig. 3.1, it is useful to

consider the spherical coordinate system (θ, ϕ, r), and the corresponding local orthonor-

mal basis (eθ, eϕ, er), r being the radial coordinate, θ ∈ [0, π] and ϕ ∈ [0, 2π] the zenith

and the azimuth angular coordinates, respectively. Accordingly, the position with respect

to O of a point in Ω (resp., at the interface I) is identified by r = r er(θ, ϕ) (resp., by

ri = Ri er(θ, ϕ)).

As a notation rule, vectors and second-order tensors are denoted by bold letters;

symbols ·, :, and ⊗ indicate inner, double-dot, and tensor product operators, respectively;

∇ (resp., ∇I) is the nabla operator in Ωs (resp., along the interface), ∇̃ identifying the

symmetric part of the corresponding gradient operator.

Let the fourth-order projector tensor T = P⊗P be introduced, where P = (1−er⊗er)

with 1 the second-order identity tensor, and where the operator ⊗ is component-wise

defined by Tijkl = (PikPjl + PilPjk)/2. Accordingly, AT = T : A is the projection on

planes orthogonal to er of the second-order tensor A. In the following, A is referred to

as a planar tensor if A = AT.

The hollow sphere is assumed to undergo isotropic loading conditions at the exterior

boundary, corresponding to a macroscopic hydrostatic stress state. Therefore, the set

BCσ =
{
σ(r) s.t. σ− · er = 0 on ∂Ωi and σ · er = Σc

mer on ∂Ωe

}
(3.1)

is introduced, where Σc
m is the unknown macroscopic hydrostatic strength, σ− (resp.,

σ+) is the second-order stress tensor σ for r → R−i (resp., r → R+
i ), so that (σ+ − σ−)

allows to describe the stress jump across the interface.

The sets of statically-admissible (Sσ) and plastically-admissible (Pσ) stress fields are
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respectively introduced as

Sσ =





(σ, τ ) s.t.

∇ · σ = 0 in Ωs ,

(σ+ − σ−) · er + (τ : K)er = ∇I · τ on ∂Ωi ,

with σ ∈ BCσ





(3.2a)

Pσ =
{

(σ, τ ) s.t. Gs(σ) = 0 in Ωs , GI(τ ) = 0 on ∂Ωi

}
(3.2b)

where τ is the surface stress tensor at I, K is the interface curvature tensor, Gs (resp., GI)

indicates the yield function of the solid matrix (resp., of the interface). It is worth pointing

out that the set Sσ is defined in the absence of body forces and that the equilibrium at I
(see Eq. (3.2a)) is expressed by a generalized form of the Young-Laplace equation (Gurtin

and Murdoch, 1975; Duan et al., 2005b). Moreover, prescribing that (σ, τ ) ∈ Pσ is

equivalent to prescribe that the material is everywhere yielding in Ω.

The sets of kinematically-admissible (Kd) and plastically-admissible (Pd) strain-rate

fields are introduced as:

Kd =
{

(d,dI) s.t. d = ∇̃v in Ωs , dI = d
∣∣
r=ri

on ∂Ωi

}
(3.3a)

Pd =

{
(d,dI) s.t. d = λs ∂Gs(σ)

∂σ
in Ωs , dI = λI

∂GI(τ )

∂τ
on ∂Ωi

}
(3.3b)

with d (resp., dI) denoting the microscopic second-order strain-rate tensor in Ωs (resp.,

on ∂Ωi), and where λs and λI are the positive plastic multipliers. It is worth observing

that prescribing (d,dI) ∈ Pd is equivalent to prescribe that the associated normality rule

is everywhere satisfied in Ω.

Owing to the spherical symmetry of both boundary conditions and geometry, the

mechanical behaviour governed by Eqs. (3.2) and (3.3) does not depend on the angular

coordinates θ and ϕ. Thereby, the local velocity reads as v(r) = vr(r)er, and the local

stress (σ(r), τ ) and strain-rate (d(r),dI) fields have to belong to (Q,Q), where Q is the

space of axisymmetric second-order tensors defined as

Q = {Q s.t. Q = Qrer ⊗ er +Qθ(eθ ⊗ eθ + eϕ ⊗ eϕ) } (3.4)

Accordingly, the exact solution of the limit-state problem for the hollow sphere with

interface is completely identified by statically-admissible stress (σ, τ ) ∈ (Sσ∩(Q,Q)) and

kinematically-admissible strain-rate (d,dI) ∈ (Kd ∩ (Q,Q)) fields that simultaneously

verify plastic admissibility conditions introduced in sets Pσ and Pd, respectively.

3.3 Local yield function

Since the isotropy assumption on strength properties, the yield surface ∂Ys = {σ s.t. Gs(σ) =

0} of the material comprising the hollow sphere can be completely described by referring

to the Lode coordinate system (p, q, θσ). As a matter of fact, denoting with θσ ∈ [0, π/3]

the stress Lode angle, a local limit stress state σ ∈ ∂Ys is uniquely determined by the
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following isotropic stress invariants

p =
Iσ1
3
, q =

√
3Jσ2 , cos 3θσ =

3
√

3

2

Jσ3

Jσ2
3/2

(3.5)

where Iσ1 = trσ, Jσ2 = trσ2
d/2 and Jσ3 = trσ3

d/3 are the hydrostatic, the second-order

deviatoric and the third-order deviatoric stress invariants, respectively, with σd = σ −
p1 being the deviatoric stress tensor. The Lode coordinate system (p, q, θσ) represents

a cylindrical system in the space of the principal stresses (σ1, σ2, σ3), p and q being

respectively proportional to the magnitudes of the orthogonal projections of the stress

tensor σ on the hydrostatic axis q = 0 (namely, Iσ1 /
√

3) and on the deviatoric plane

(or π-plane) p = const (namely,
√

2Jσ2 ). Therefore, the three-dimensional shape of the

yield surface Gs = 0 can be represented by means of its cross sections (that is, the

intersections between ∂Ys and the deviatoric planes) and its meridian profiles (that is,

the intersections between ∂Ys and planes at θσ = const containing the hydrostatic axis,

namely the meridian planes).

In the present Chapter, the yield function Gs is assumed of the form

Gs(σ) = m(p) +
q

g(θσ)
(3.6)

where m and g define the shape of the limit surface in meridian and deviatoric planes,

respectively. With the aim to allow for an extremely flexible description of strength

properties in π-planes, the deviatoric dimensionless function g is chosen as proposed by

Bigoni and Piccolroaz (2004), that is:

g(θσ) =
1

cos
[
β π6 − 1

3 arccos(γ cos 3θσ)
] (3.7)

where β and γ are dimensionless parameters that, in order to assure convexity of deviatoric

profiles, have to satisfy the consistency requirements 0 ≤ β ≤ 2 and 0 ≤ γ ≤ 1. As

specified by Bigoni (2012), the deviatoric function g(θσ) in Eq. (3.7) was firstly introduced

by Podgórski (1985a,b) and, since θσ ∈ [0, π/3] and 0 ≤ γ ≤ 1, it is strictly positive.

As already shown by Bigoni and Piccolroaz (2004), the trascendental function g(θσ)

allows for an extreme shape distortion of deviatoric sections, simultaneously guaranteeing

both the possibility to account for stress-Lode-angle effects and a great flexibility for

reproducing several strength-domain shapes. This occurrence is highlighted in Fig. 3.2,

where g(θσ) is represented for different values of model parameters β and γ. In detail,

parameter γ induces a smoothing effect on corners, resulting in a shape transition of

deviatoric profiles, that pass from a multi-sided polygonal shape to a circular one when

γ is varied from 1 to 0. Moreover, Fig. 3.2 clearly shows that sharp vertices appear in the

deviatoric planes for γ = 1, corresponding to tangency discontinuities for θσ = 0 and/or

θσ = π/3, depending on the value of β. In particular, for 0 < β < 2, the shape of g(θσ)

is characterised by six corners (at θσ = 0 and θσ = π/3), whereas for β = 0 and β = 2,

three corners appear (at θσ = π/3 or θσ = 0, respectively).
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As a matter of fact, the parameter β allows to range from the lower (for β = 0 and

γ = 1) to the upper (for β = 2 and γ = 1) convexity bounds addressed by Haythornthwaite

(1985). In particular, for non-zero values of γ, Fig. 3.2 highlights that a distortion of the

deviatoric profiles occurs, the highest strength resulting for: triaxial compression (TXC,

θσ = π/3) when 0 ≤ β < 1; both triaxial expansion (TXE, θσ = 0) and compression

(TXC) when β = 1; triaxial expansion (TXE) when 1 < β ≤ 2.

In agreement with isotropic strength criteria generally adopted in engineering prac-

tice (such as, for instance, Drucker-Prager and Mohr-Coulomb), the material pressure-

sensitivity is assumed to be represented by a linear meridian profile. Accordingly, and as

a special case of the meridian function introduced by Bigoni and Piccolroaz (2004), m in

Eq. (3.6) is chosen of the form

m(p) = −3

(
h− p

ξ

)
(3.8)

where ξ and h are shape parameters which do not have to comply with any specific

convexity requirement. Nevertheless, since limit stress state for p = 0 corresponds to

q = 3hg, the consistency condition h ≥ 0 has to be verified, h being a strength parameter

that has the dimension of a stress. Furthermore, ξ is assumed to be a strictly-positive

dimensionless quantity, thereby resulting in a finite tensile strength at q = 0 when ξ <

+∞. The case ξ → +∞ allows to describe a pressure-independent limit behaviour (such

as in von Mises or Tresca criteria).

As summarized in Table 3.1, the Bigoni-like strength model defined by Eqs. (3.6)

to (3.8) allows to recover classical yield functions by a proper choice of values for model

parameters. For instance, by suitably calibrating β, ξ and h, von Mises (vM) and Drucker-

Prager (DP) criteria can be recovered for γ = 0, as well as Tresca (Tr) and Mohr-Coulomb

(MC) yield functions straight result for γ = 1.

The yield function GI(τ ) for the interface I is assumed of the same form as in Eqs. (3.6)

to (3.8), and it is expressed in terms of the planar surface stress tensor τ and of model

parameters {ξ, hI , β, γ}, where hI has the dimension of a membrane stress (namely, a

force per unit length).

In the following, aiming to properly implement plastic admissibility conditions in-

troduced in Eq. (3.3b), the cases of local yield functions Gs and GI presenting smooth or

sharp vertices in deviatoric planes are separately addressed. Accordingly, and as a specific

notation, symbols Gs
and Ĝs (resp., GI and ĜI) are adopted to refer to the Bigoni-like

yield functions for the solid matrix (resp., for the interface) with smooth (namely, for

0 ≤ γ < 1) and sharp (for γ = 1) deviatoric profiles, respectively. The corresponding

yield surfaces are denoted as ∂Ys
and ∂Ŷs (resp., as ∂YI and ∂ŶI for I).

It is worth observing that, by considering γ = 1, the Bigoni-like yield function reduces

to the following sharp form

Ĝs(σ) = [(cβ cos θσ + sβ sin θσ) q − 3h] ξ + 3p (3.9)

where cβ = cos(βπ/6) and sβ = sin(βπ/6), characterised by discontinuous first- and
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Figure 3.2 – Function g(θσ) in Eq. (3.7) for different values of model parameters β and γ. TXE:
triaxial expansion. TXC: triaxial compression. SHR: shear.



“tesi” — 2016/12/22 — 9:44 — page 82 — #94

82 Chapter 3. Exact limit state under isotropic loadings

Table 3.1 – Values of model parameters for the adopted Bigoni-like strength criterion, allowing
to recover yield (i.e., Gs(σ)) and support (i.e., πs(d)) functions for: von Mises (vM), Tresca
(Tr), Drucker-Prager (DP), and Mohr-Coulomb (MC) criteria. Notation: σ0 is the deviatoric
strength; c is the cohesion; φ is the friction angle; Id

1 and Jd
2 indicate the first (Id

1 = trd) and
the second-order deviatoric (Jd

2 = trd2
d/2) strain-rate invariants, respectively; di and σi (with

i ∈ {1, 2, 3}) denote principal strain-rate and principal stress components, respectively.

vM

Gs(σ) = Gs
(σ) = q − σ0 = 0

πs(d) = πs(d) =





2
√

3

3
σ0

√
Jd

2 if Id
1 = 0

+∞ if Id
1 6= 0

h =
σ0

3
, ξ → +∞, γ = 0, β = 1

Tr

Gs(σ) = Ĝs(σ) = max
i6=j
{ |σi − σj | } − σ0 = q sin

(
θσ +

π

3

)
− σ0

√
3

2
= 0

πs(d) = π̂s(d) =





σ0

2
(|d1|+ |d2|+ |d3|) if Id

1 = 0

+∞ if Id
1 6= 0

h =
σ0

√
3

6
, ξ → +∞, γ = 1, β = 1

DP

Gs(σ) = Gs
(σ) = p− c cotφ+ q

√
3 + sin2 φ

3 sinφ
= 0

πs(d) = πs(d) =





c cotφ Id
1 if

Id
1√
Jd

2

≥ 2
√

3 sinφ√
3 + sin2 φ

+∞ if
Id
1√
Jd

2

<
2
√

3 sinφ√
3 + sin2 φ

h =
c cotφ

3
, ξ = 3, γ = 0, β = −2 +

6

π
arcsin

(√
3 + sin2 φ

3 sinφ

)

MC

Gs(σ) = Ĝs(σ) = max
i6=j
{ |σi − σj |+ (σi + σj) sinφ } − 2c cosφ =

= p− c cotφ+ q

[
1√

3 sinφ
sin
(
θσ +

π

3

)
+

1

3
cos
(
θσ +

π

3

)]
= 0

πs(d) = π̂s(d) =

{
c cotφ Id

1 if Id
1 ≥ (|d1|+ |d2|+ |d3|) sinφ

+∞ if Id
1 < (|d1|+ |d2|+ |d3|) sinφ

h =
c cosφ√
3 + sin2 φ

, ξ =

√
3 + sin2 φ

sinφ

γ = 1, β =
6

π
arctan

(√
3(1− sinφ)

3 + sinφ

)
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second-order derivatives with respect to σ at sharp vertices.

In agreement with approaches proposed for classical criteria presenting singularities

(as Tresca or Mohr-Coulomb, see Salençon (1983)), it is convenient to express Eq. (3.9)

in terms of principal stresses. These latter are denoted as σi, σj , and σk, where differ-

ent indexes i, j, k belong to {1, 2, 3}, leading to six different index permutations that

result in six different ordered sequences of principal stresses. For each index permutation,

let σmax = max{σi, σj , σk}, σmin = min{σi, σj , σk} and σmid = Iσ1 − (σmax + σmin) be

introduced. By combining the following relationships

σmax = p+
2

3
q cos θσ

σmid = p− 2

3
q cos

(
θσ +

π

3

)

σmin = p− 2

3
q cos

(
θσ −

π

3

)
(3.10)

transcendental functions in Eq. (3.9) can be expressed as

cos θσ =
3

2

(
σmax − p

q

)

sin θσ =

√
3

2

(
σmid − σmin

q

) (3.11)

allowing to recast Ĝs in the form of a piece-wise linear yield function, consisting in six

different yield planes Ĝs
` = 0 (where ` ∈ {1, . . . , 6}), one for each possible ordered sequence

of principal stresses, and defined by

Ĝs
`(σ) =

[(
σmax −

σmid + σmin

2

)
cβ + (σmid − σmin)

√
3

2
sβ − 3h

]
ξ+

+ σmax + σmid + σmin

(3.12)

The case of a pressure-independent sharp yield function is obtained by enforcing γ = 1

and ξ → +∞ in Eqs. (3.6) to (3.8) (or equivalently in Eqs.(3.9) and (3.12)), resulting in

Ĝs(σ) = (cβ cos θσ + sβ sin θσ) q − 3h (3.13)

Ĝs
`(σ) =

(
σmax −

σmid + σmin

2

)
cβ + (σmid − σmin)

√
3

2
sβ − 3h (3.14)

The same considerations straight apply to the sharp form of the yield function at the

interface, namely for ĜI(τ ).
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3.4 Support function

As previously observed, kinematic limit-analysis approaches require as a starting point the

definition of material strength properties via the local support function. By distinguishing

between solid matrix and interface, the corresponding support functions are respectively

defined as (e.g., Salençon, 1983)

πs(d) = sup
σ∈Ys

(σ : d), with Ys = {σ s.t. Gs(σ) ≤ 0} (3.15)

πI(dI) = sup
τ∈YI

(τ : dIT), with YI =
{
τ s.t. GI(τ ) ≤ 0

}
(3.16)

with dIT = T : dI and where πs (resp., πI) has the meaning of the maximum volume

(resp., surface) plastic dissipation that can be locally achieved by the material in Ωs

(resp., on ∂Ωi), when the kinematically-admissible local strain-rate field d (resp., dI) is

considered. In order to ensure the boundedness of the maximum plastic dissipation in

Eqs. (3.15) and (3.16), the strain-rate state (d,dI) has to belong to Pd (see Eq. (3.3b)),

resulting in plastic admissibility conditions on (d,dI).

Although explicit expressions for support functions associated to classical criteria are

already available in literature, at the best of the authors’ knowledge, the case of a general

isotropic yield function has not been exhaustively addressed yet.

In agreement with the previously-introduced notation, in the following πs and π̂s

(resp., πI and π̂I) indicate support functions associated to yield surfaces with smooth or

sharp deviatoric profiles, respectively.

3.4.1 Support functions for smooth yield surfaces

Aiming to determine πs and πI , as well as the corresponding admissibility conditions,

reference is made to the theoretical framework established by Lemarchand et al. (2015),

which is straight applicable to the case of unbounded yield functions with smooth de-

viatoric profiles. Such an approach is herein employed by addressing Bigoni-like yield

functions Gs
and GI , defined by Eqs. (3.6) to (3.8) for 0 ≤ γ < 1. For the sake of

compactness, analytical details, support functions and specific comments related to the

identification of admissibility requirements, are summarised in 3.A.

As shown in Table 3.1, obtained support functions (see Eqs. (3.99) and (3.102)) fully

recover, by a suitable choice of values for model parameters, the corresponding available

expressions for von Mises and Drucker-Prager criteria (e.g., Salençon, 1983).

3.4.2 Support functions for sharp yield surfaces

Due to the presence of sharp vertices in the deviatoric plane for γ = 1, support functions

π̂s and π̂I differ from those deduced in 3.A for: plastic admissibility conditions when a

pressure-dependent yield function is addressed (namely, for ξ < +∞); maximum plastic

dissipation when pressure-independence is enforced (namely, for ξ → +∞).

For the sake of compactness, in the following reference is explicitly made to the case
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of the solid matrix only, the interface case requiring analogous analytical details starting

from Eq. (3.16).

Aiming to determine the support function in Eq. (3.15), the supremum of the local

plastic dissipation σ : d has to be computed over all local stress states complying with

the strength criterion Ĝs(σ) ≤ 0. By referring to the notation introduced in Section 3.3

and since Eq. (3.12), the following inequality holds

σ : d ≤
[
d1 −

Id
1

3
(1 + cβξ)

]
σmax +

[
d2 −

Id
1

3

(
1 +

1

2

(
−cβ +

√
3sβ

)
ξ

)]
σmid

+

[
d3 −

Id
1

3

(
1− 1

2

(
cβ +

√
3sβ

)
ξ

)]
σmin + hξId

1

(3.17)

Therefore, following analogous arguments as in 3.A (see Eq. (3.98)), the finite value of the

maximum plastic dissipation results in hξId
1 .

Admissibility conditions can be explicitly obtained by prescribing that strain-rate field

belongs to Pd, thereby enforcing the normality law in Eq. (3.3b) for the yield function

Gs described via the piece-wise form in Eq. (3.12) (for ξ < +∞) or in Eq. (3.14) (for

ξ → +∞).

With reference to the case ξ < +∞ and depending on the values assumed by the

principal stresses in Eq. (3.12), the following three plastic regimes can be attained at the

limit state, that is for σ ∈ ∂Ŷs.

• Face regime. It corresponds to the case σi 6= σj 6= σk. Thereby, for a any possible

choice of i, j and k, only one of the six yield functions in Eq. (3.12) is equal to zero,

and the plastically-admissible strain-rate states are identified by

d = λs
`

∂Ĝs
`(σ)

∂σ
(3.18)

where λs
` is the strictly-positive plastic multiplier associated to the yield plane

Ĝs
` = 0. Therefore, depending on the values of β (via cβ and sβ) and ξ, and

identifying principal strain-rate components d1, d2 and d3 via Eq. (3.18), the follow-

ing relationships hold for any possible choice of different indexes i , j , k ∈ {1, 2, 3}
(namely, for any yield plane Ĝs

` = 0):

♦ case 0 ≤ β < 1

|d1|+ |d2|+ |d3| =





Id
1 if ξ ≤ ξ∗

Id
1

3

[
1 +

(
cβ +

√
3 sβ

)
ξ
]

if ξ∗ ≤ ξ ≤ ξ∗∗

Id
1

3
(2cβξ − 1) if ξ ≥ ξ∗∗

(3.19)
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♦ case 1 ≤ β ≤ 2

|d1|+ |d2|+ |d3| =





Id
1 if ξ ≤ ξ∗

Id
1

3

[
1 +

(
cβ +

√
3 sβ

)
ξ
]

if ξ ≥ ξ∗
(3.20)

with Id
1 = tr d, and where

ξ∗ =
2

cβ +
√

3sβ
, ξ∗∗ =

2

cβ −
√

3sβ
(3.21)

• Edge regime. It corresponds to the case σi = σj 6= σk. Thereby, two of the

six yield functions in Eq. (3.12), say Ĝs
`+ and Ĝs

`− (with `+, `− ∈ {1, . . . , 6} and

such that `+ 6= `−), are simultaneously equal to zero, and the plastically-admissible

strain-rate states are identified by the convex cone

d = λs
`+
∂Ĝs

`+(σ)

∂σ
+ λs

`−
∂Ĝs

`−(σ)

∂σ
(3.22)

Therefore, due to the triangle inequality, the following relationships hold for any

possible choice of different indexes i , j , k ∈ {1, 2, 3} (namely, for each edge of the

sharp yield surface ∂Ŷs):

♦ case 0 ≤ β < 1

|d1|+ |d2|+ |d3| ≤





Id
1 if ξ ≤ ξ∗

Id
1

3

[
1 +

(
cβ +

√
3 sβ

)
ξ
]

if ξ∗ ≤ ξ ≤ ξ∗∗

Id
1

3
(2cβξ − 1) if ξ ≥ ξ∗∗

(3.23)

♦ case 1 ≤ β ≤ 2

|d1|+ |d2|+ |d3| ≤





Id
1 if ξ ≤ ξ∗

Id
1

3

[
1 +

(
cβ +

√
3 sβ

)
ξ
]

if ξ ≥ ξ∗
(3.24)

• Apex regime. It corresponds to the case σi = σj = σk. Thereby, all yield functions

in Eq. (3.12) are simultaneously equal to zero, and the normality law reads as

d =

6∑

`=1

λs
`

∂Ĝs
`(σ)

∂σ
(3.25)

straight resulting in inequalities (3.23) and (3.24).

Thereby, plastically-admissible strain-rate fields have to simultaneously satisfy Eqs. (3.19)

and (3.23) when 0 ≤ β < 1, and Eqs. (3.20) and (3.24) when 1 ≤ β ≤ 2. Accordingly, de-

pending on values of β, admissiblity requirements are expressed by Eqs. (3.23) and (3.24),
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and -due to Eq. (3.17)- the support function π̂s for the solid matrix Ωs reads as:

♦ case 0 ≤ β < 1

π̂s(d) =





hξId
1 if Id

1 ≥





|d1|+ |d2|+ |d3| if ξ ≤ ξ∗

3 (|d1|+ |d2|+ |d3|)
1 +

(
cβ +

√
3 sβ

)
ξ

if ξ∗ ≤ ξ ≤ ξ∗∗

3 (|d1|+ |d2|+ |d3|)
2cβξ − 1

if ξ ≥ ξ∗∗

+∞ otherwise

(3.26)

♦ case 1 ≤ β ≤ 2

π̂s(d) =





hξId
1 if Id

1 ≥





|d1|+ |d2|+ |d3| if ξ ≤ ξ∗

3 (|d1|+ |d2|+ |d3|)
1 +

(
cβ +

√
3 sβ

)
ξ

if ξ ≥ ξ∗

+∞ otherwise

(3.27)

It is noted that the support function for a pressure-independent sharp criterion (that

is, for ξ → +∞) can be obtained as a particular case of Eqs. (3.26) and (3.27). As a

matter of fact, for ξ → +∞ (thereby for ξ > ξ∗∗ when 0 ≤ β < 1, and for ξ > ξ∗ when

1 ≤ β ≤ 2) admissibility conditions in Eqs. (3.23) and (3.24) are non trivial only if Id
1 = 0.

These latter, in the limit of ξ → +∞ and Id
1 → 0+, lead to

Id
1 =





3 (|d1|+ |d2|+ |d3|)
2cβξ − 1

if 0 ≤ β < 1

3 (|d1|+ |d2|+ |d3|)
1 +

(
cβ +

√
3 sβ

)
ξ

if 1 ≤ β ≤ 2

(3.28)

Accordingly, by adopting Eq. (3.28) to recast the finite branch of π̂s in Eqs. (3.26) and

(3.27), the support function for ξ → +∞ results in

♦ case 0 ≤ β < 1

π̂s(d) =





3h

2cβ
(|d1|+ |d2|+ |d3|) if Id

1 = 0

+∞ otherwise

(3.29)

♦ case 1 ≤ β ≤ 2

π̂s(d) =





3h

cβ +
√

3sβ
(|d1|+ |d2|+ |d3|) if Id

1 = 0

+∞ otherwise

(3.30)

As shown in Table 3.1, support functions and plastic admissibility conditions for

Mohr-Coulomb and Tresca criteria can be readily recovered via Eqs. (3.26) and (3.30),

respectively, by a proper choice of values for model parameters.

Similarly, the interface local support function π̂I in Eq. (3.16), as well as the cor-
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responding admissibility conditions, formally read as in Eqs. (3.26) and (3.27) (or in

Eqs. (3.29) and (3.30) for ξ → +∞) and are expressed in terms of the local strain-rate

tensor dI .

3.4.3 Consistency assessment

Support functions in Eqs. (3.26) to (3.30) and associated to a sharp yield surfaces, as well

as relationships (3.99) and (3.102) provided in 3.A for the smooth case, comply with the

following consistency properties (Salençon, 1983).

• Property P1: πs(d) is non negative and πs(0) = 0 .

As regards pressure-dependent yield function Ĝs in Eq. (3.12) (resp., Gs
defined by

Eqs. (3.6) to (3.8) for 0 ≤ γ < 1), since h > 0 and ξ > 0, support function π̂s (resp.,

πs) is positive when the local strain-rate field d satisfies admissibility requirements

in Eqs. (3.26) and (3.27) (resp., in Eq. (3.99)), these latter providing Id
1 ≥ 0. This

occurrence straight results from conditions cβ > 0 and sβ ≥ 0 (for π̂s), and from

the strict positiveness of function g (for πs).

Analogously, addressing a pressure-independent yield function, the same arguments

allow to prove that support function π̂s in Eqs. (3.29) and (3.30) (resp., πs in

Eq. (3.102)) is positive.

Finally, it is immediate to verify that both π̂s and πs are equal to zero for vanishing

strain-rate states.

• Property P2: πs is positively homogeneous of degree 1.

In the case of both sharp and smooth yield criteria, it is simple to prove that, for

any plastically-admissible strain-rate d, the corresponding support functions comply

with condition

πs(αd) = απs(d) , ∀α ≥ 0 (3.31)

Accordingly, owing to property P1, relationship (3.31) proves that support function

πs is positively homogeneous of degree 1.

• Property P3: πs is convex.

Both support functions π̂s and πs are expressed as linear combinations of strain-rate

components, thereby providing the convexity requirement to be straight satisfied.

3.5 Exact limit state under isotropic loadings

In what follows, the local fields (stress, strain-rate and velocity) satisfying the hollow-

sphere limit problem introduced in Section 3.2, as well as the corresponding macroscopic

limit stress state, are exactly determined.

It is worth observing that, the identification of statically- and plastically-admissible

stresses via Eqs. (3.2a) and (3.2b) is not affected by the possible occurrence of sharp

vertices in π-planes for both Gs and GI . Accordingly, Eqs. (3.2a) and (3.2b) are faced

by considering the general form of yield functions for solid matrix and interface, defined
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by Eqs. (3.6) to (3.8). On the contrary, due to the normality law in Eq. (3.3b), the

identification of plastically-admissible strain-rate and velocity fields requires to distinguish

between plastic matrices obeying to yield criteria with smooth or sharp deviatoric profiles.

3.5.1 Local stress field and macroscopic limit stress

By considering (σ, τ ) ∈ (Q,Q) (see Eq. (3.4)), where the surface-stress tensor τ is planar

and it has the form τ = τθ(eθ⊗eθ+eϕ⊗eϕ), the Lode coordinates introduced in Eqs. (3.5)

can be expressed as

p =
2σθ + σr

3
, q = ι(σr − σθ), θσ =

1

3
arccos(ι) , in Ωs (3.32)

p =
2τθ
3
, q = −ιIτθ, θσ =

1

3
arccos(ιI) , on ∂Ωi (3.33)

where

• ι = sgn(σr−σθ), that is ι = +1 (resp., ι = −1) for a local triaxial-expansion (θσ = 0)

stress state (resp., triaxial-compression, θσ = π/3) in Ωs;

• ιI = − sgn(τθ), corresponding to a surface-stress state on ∂Ωi, characterised by

θσ = 0 and θσ = π/3, when ιI = +1 and ιI = −1, respectively.

Therefore, yield functions for solid matrix and interface are respectively expressed by

(see Eqs. (3.6) to (3.8))

Gs(σ) = −3h+
1

ξ
(2σθ + σr) + (σr − σθ)Λ (3.34)

GI(τ ) = −3hI +
2τθ
ξ
− ΛIτθ (3.35)

where functions

Λ(ι) = ι cos

(
β
π

6
− 1

3
arccos (γι)

)
(3.36)

ΛI
(
ιI
)

= ιI cos

(
β
π

6
− 1

3
arccos

(
γιI
))

(3.37)

account for the influence of the local stress Lode angle (θσ = 0 or θσ = π/3), and they

are such that sgn(Λ) = ι and sgn(ΛI) = ιI .

Plastically-admissible stresses (σ, τ ) ∈ Pσ ∩ (Q,Q) have to comply with the yielding

conditions Gs(σ) = 0 and GI(τ ) = 0 (see Eq. (3.2b)), resulting in

σθ =
3hξ − σr (1 + Λξ)

2− Λξ
(3.38)

τθ =
3ξ

2− ΛIξ
hI (3.39)

Furthermore, statically-admissible stresses (σ, τ ) ∈ Sσ ∩ (Q,Q) have to satisfy the
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following equilibrium equations

dσr

dr
+ 2

σr − σθ
r

= 0 for r ∈ (Ri, Re] (3.40a)

σr =
2τθ
Ri

at r → R+
i (3.40b)

σr = Σc
m at r = Re (3.40c)

where Σc
m is the unknown macroscopic hydrostatic stress and Eq. (3.40b) results from the

Young-Laplace equilibrium condition at the interface I (see Eq. (3.2a)).

The first-order differential equation that results by combining Eqs. (3.38) and (3.40a) is

integrated by enforcing the boundary condition (3.40b), expressed in terms of plastically-

admissible surface stresses in Eq. (3.39). The following fully-admissible stress components

are obtained

τθ =
3ξh

2− ΛIξ
Riκ , r = Ri (3.41a)

σr(r) = hξ


1−

(
Ref

1
3

r

) 6
2−Λξ (

1− 6κ

2− ΛIξ

)

 , r ∈ (Ri, Re] (3.41b)

σθ(r) = hξ


1 +

1 + Λξ

2− Λξ

(
Ref

1
3

r

) 6
2−Λξ (

1− 6κ

2− ΛIξ

)

 , r ∈ (Ri, Re] (3.41c)

where the dimensionless parameter

κ =
hI

Rih
(3.42)

accounts for the influence of void-size effects.

It is worth observing that Eqs. (3.41) allow to prove that ι is independent from r, as

well as that ι = ιI , and thereby that

ΛI(ιI) = Λ(ι) (3.43)

Denoting with 〈a〉 the Ω-based average of a certain space-dependent field a(r) (namely,

〈a〉 = |Ω|−1 ∫
Ω

a dΩ), the macroscopic stress tensor Σc associated to the fully-admissible

stress fields described by Eqs. (3.41), is then obtained as

Σc = 〈σ〉 =
Re

|Ω|

∫

∂Ωe

(σ · er)⊗ er dA = 3σr

∣∣
r=Re

(er ⊗ er) (3.44)

that results, since the equilibrium at the exterior boundary (see Eq. (3.40c)), in the fol-

lowing closed-form relationship for the macroscopic hydrostatic strength

Σc
m =

tr Σc

3
= hξ

[
1− f

2
2−Λξ

(
1− κ 6

2− Λξ

)]
(3.45)

corresponding to the macroscopic stress Lode angle θΣ = arccos(sgn(Σc
m))/3 (that is,
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θΣ = 0 or θΣ = π/3). It is noticed that, by combining Eqs. (3.41) and (3.45), it is possible

to prove that ι = − sgn(Σc
m). Accordingly, the value Σc

m computed for Λ|ι=+1 (resp.,

Λ|ι=−1) is associated to a macroscopic hydrostatic compression (resp., expansion).

In the particular case of a pressure-independent plastic behaviour of the solid matrix

(that is, for ξ → +∞), previous solution reduces to

σr(r) =
6h

Λ

[
ln

(
Re

r
f1/3

)
− κ
]

(3.46a)

σθ(r) =
3h

Λ

{
2

[
ln

(
Re

r
f1/3

)
− κ
]
− 1

}
(3.46b)

τθ = −3
Rih

Λ
κ (3.46c)

Σc
m =

6h

Λ

[
ln(f1/3)− κ

]
(3.46d)

Remark 1 For a matrix plastic behaviour complying with the condition ξ > 2/|Λ|,
Eqs. (3.41) allows to prove that limit states corresponding to finite values of the macro-

scopic strength may be attained for both local triaxial expansion (ι = +1) and triaxial

compression (ι = −1). On the other hand, when ξ < 2/|Λ|, the limit state can correspond

to a local triaxial compression stress state (ι = −1), only. Finally, for ξ = 2/|Λ|, the limit

state can not be attained, resulting in unbounded fully-admissible stresses in Eqs. (3.41).

Remark 2 The case of negligible surface stresses τθ (that is, the case of porous materi-

als) can be straight obtained by setting κ → 0+ in Eqs. (3.41), (3.45) and (3.46). This

occurrence corresponds to the limit problem defined in Section 3.2 when interface I is not

accounted for.

3.5.2 Local velocity and strain-rate fields

Kinematically-admissible strain-rate fields (d,dI) ∈ Kd ∩ (Q,Q) (see Eq. (3.3a)) have to

comply with the strain-rate compatibility conditions

dr(r) =
dvr

dr
, dθ(r) =

vr(r)

r
(3.47)

dIr = dr|r=Ri
, dIθ = dθ|r=Ri

(3.48)

The case of smooth yield surfaces

Let the yield function in Eqs. (3.6) to (3.8) with 0 ≤ γ < 1 be expressed for the solid matrix

(resp., for the interface) in terms of principal stress components σr, σθ and σϕ (resp., τr,

τθ and τϕ). The normality law in Eq. (3.3b) computed for σθ = σϕ (resp., for τr = 0 and

τθ = τϕ) allows to determine plastically-admissible strain-rate fields (d,dI) ∈ Pd∩(Q,Q),
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whose components are

dr(r) =
λs(r)

ξ

(
1 + Λξ

)
, dθ(r) = dϕ(r) =

λs(r)

2ξ

(
2− Λξ

)
(3.49)

dIr =
λI

ξ

(
1 + Λ

I
ξ
)
, dIθ = dIϕ =

λI

2ξ

(
2− Λ

I
ξ
)

(3.50)

where Λ and Λ
I

indicate functions Λ and ΛI defined in Eqs. (3.36) and (3.37) for 0 ≤ γ <
1, and they depend on the local plastically-admissible stress state (σ, τ ) ∈ Pσ ∩ (Q,Q).

Statically- and plastically-admissible stress fields in Eqs. (3.41) are enforced, leading

Λ independent from r and Λ
I

= Λ.

Accordingly, by combining Eqs. (3.47) to (3.50), plastic multipliers result in

λs(r) = C r
3Λξ

2−Λξ (3.51)

λI = λs|r=Ri
= CR

3Λξ

2−Λξ
i (3.52)

leading to the following fully-admissible kinematics, expressed in terms of fully-admissible

stress fields

dr(r) =

(
1 + Λξ

)

ξ
C r

3Λξ

2−Λξ , dθ(r) =

(
2− Λξ

)

2ξ
C r

3Λξ

2−Λξ (3.53)

vr(r) = C 2− Λξ

2ξ
r

2(1+Λξ)
2−Λξ (3.54)

C being an arbitrary positive constant, in order to ensure the positiveness of λs as a

consistency condition on plastic multiplier.

In the case of a pressure-independent local plastic behaviour (namely, for ξ → +∞),

previous solution reduces to

dr(r) = C Λ

r3
, dθ(r) = −C Λ

2r3
(3.55)

vr(r) = −C Λ

2r2
(3.56)

The corresponding interface strain-rate state dI straight results from kinematic ad-

missibility conditions in Eqs. (3.48).

The case of sharp yield surfaces

Since the spherical symmetry of the problem under stake, σ ∈ Q (see Eq. (3.4)) and

principal stresses result in σθ = σϕ 6= σr. Therefore, owing to Eqs. (3.12) and (3.14), the

corresponding limit stress state in the space of Lode coordinates (p, q, θσ) always belongs

to an edge of the polyhedral yield surface ∂Ŷs, locally achieving a triaxial expansion

(σr > σθ = σϕ, that is ι = 1 and θσ = 0) or a triaxial compression (σθ = σϕ > σr, that

is ι = −1 and θσ = π/3). Contiguous planar yield surfaces identifying an edge at θσ = 0
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(resp., at θσ = π/3) are denoted as Ĝs
E− = 0 and Ĝs

E+ = 0 (resp., Ĝs
C− = 0 and Ĝs

C+ = 0),

with

Ĝs
E− =

[(
σr −

σθ + σϕ
2

)
cβ + (σθ − σϕ)

√
3

2
sβ − 3h

]
ξ + σr + σθ + σϕ (3.57)

Ĝs
E+ =

[(
σr −

σθ + σϕ
2

)
cβ + (σϕ − σθ)

√
3

2
sβ − 3h

]
ξ + σr + σθ + σϕ (3.58)

Ĝs
C− =

[(
σθ −

σr + σϕ
2

)
cβ + (σϕ − σr)

√
3

2
sβ − 3h

]
ξ + σr + σθ + σϕ (3.59)

Ĝs
C+ =

[(
σϕ −

σr + σθ
2

)
cβ + (σθ − σr)

√
3

2
sβ − 3h

]
ξ + σr + σθ + σϕ (3.60)

where reference is made to the case of a pressure-dependent plastic behaviour (ξ < +∞).

Accordingly, the edge normality law in Eq. (3.22) allows to determine the correspond-

ing plastically-admissible strain-rate fields as

dE = λs
E−
∂Ĝs

E−

∂σ
+ λs

E+

∂Ĝs
E+

∂σ
(3.61)

dC = λs
C−

∂Ĝs
C−

∂σ
+ λs

C+

∂Ĝs
C+

∂σ
(3.62)

λs
E±

and λs
C±

being positive plastic multipliers. In particular, the following plastically-

admissible strain-rate components result

dE
r = (cβξ + 1)(λs

E− + λs
E+) (3.63)

dE
θ = λs

E−

[
−
(
cβ −

√
3sβ

) ξ
2

+ 1

]
+ λs

E+

[
−
(
cβ +

√
3sβ

) ξ
2

+ 1

]
(3.64)

dE
ϕ = λs

E−

[
−
(
cβ +

√
3sβ

) ξ
2

+ 1

]
+ λs

E+

[
−
(
cβ −

√
3sβ

) ξ
2

+ 1

]
(3.65)

dC
r =

[
−
(
cβ +

√
3sβ

) ξ
2

+ 1

] (
λs

C− + λs
C+

)
(3.66)

dC
θ = λs

C− (cβξ + 1) + λs
C+

[
−
(
cβ −

√
3sβ

) ξ
2

+ 1

]
(3.67)

dC
ϕ = λs

C+ (cβξ + 1) + λs
C−

[
−
(
cβ −

√
3sβ

) ξ
2

+ 1

]
(3.68)

Owing to spherical symmetry, it must be verified that dE
θ = dE

ϕ and dC
θ = dC

ϕ , leading to

λs
E−

= λs
E+ ≡ λs

E and λs
C−

= λs
C+ ≡ λs

C, respectively. Therefore, Eqs. (3.63) to (3.68)

reduce to

dE
r = 2λs

E(cβξ + 1) , dE
θ = −λs

E(cβξ − 2) (3.69)

dC
r = −λs

C

[(
cβ +

√
3sβ

)
ξ − 2

]
, dC

θ =
λs

C

2

[(
cβ +

√
3sβ

)
ξ + 4

]
(3.70)

Statically- and plastically-admissible stress fields in Eqs. (3.41) are enforced, leading
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ι = sgn(σr(r) − σθ(r)) independent from r. Accordingly, for ι = +1 (resp., ι = −1), it

results d = dE (resp., d = dC) for any r ∈ [Ri, Re].

By combining Eqs. (3.69) and (3.70) with Eq. (3.47), plastic multipliers are obtained

in the form

λs
E(r) = Ĉ r−

3cβξ
cβξ−2 , λs

C(r) = Ĉ r−
3(cβ+

√
3sβ)ξ

(cβ+
√

3sβ)ξ+4 (3.71)

where Ĉ is an arbitrary positive constant, in order to ensure the positiveness of plastic

multipliers.

Therefore, the local fully-admissible strain-rate kinematics, expressed in terms of fully-

admissible stress fields in Eqs. (3.41), results in

dr(r) = 2
(

1 + Λ̂ξ
)
Ĉ r

3Λ̂ξ

2−Λ̂ξ , dθ(r) =
(

2− Λ̂ξ
)
Ĉ r

3Λ̂ξ

2−Λ̂ξ (3.72)

vr(r) =
(

2− Λ̂ξ
)
Ĉ r

2(1+Λ̂ξ)
2−Λ̂ξ (3.73)

where Λ̂ = Λ|γ=1 (see Eq. (3.36)).

When the pressure-independent plastic yield function in Eq. (3.14) is addressed (i.e.,

for ξ → +∞), similar analytical arguments allow to obtain

dr(r) = Ĉ 2Λ̂

r3
, dθ(r) = −Ĉ Λ̂

r3
(3.74)

vr(r) = −Ĉ Λ̂

r2
(3.75)

The corresponding interface strain-rate state dI straight results from kinematic ad-

missibility conditions in Eqs. (3.48).

It is worth pointing out that, with respect to the local strain-rate and velocity fields

in Eqs. (3.50) to (3.56) for a smooth yield surface, relationships (3.72) to (3.75) differ only

for a constant term, the dependence on r being exactly the same. Nevertheless, as it will

be shown in Section 3.6, the two kinematics completely coincide when arbitrary constants

C and Ĉ are computed via strain-rate based boundary conditions.

Remark 3 Fully-admissible stresses (that is, equilibrated stresses at the limit state) and

fully-admissible kinematics (that is, verifying both kinematic compatibility conditions and

normality law) have been related each other via Eqs. (3.49) and (3.50) (for a smooth yield

surface), or via Eqs. (3.61) and (3.62) (for a sharp yield surface), these latter thereby

taking on the meaning of plastic constitutive laws.

Accordingly, stress and strain-rate states provided in Sections 3.5.1 and 3.5.2, respec-

tively, are simultaneously fully-admissible, and thereby they express the exact limit state

for the hollow-sphere model with interface and undergoing isotropic boundary loadings.

Remark 4 Since ι = sgn(σr(r)− σθ(r)) is constant with respect to r, stress components

in Eqs. (3.41) and velocity fields for both smooth (Eq. (3.54)) and sharp (Eq. (3.73)) yield
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surfaces comply with the following condition

r2vr(r) [σθ(r)− σr(r)] = const =





3

2
C h
(

1− 6κ

2− Λξ

)
(Ref

1/3)
6

2−Λξ

3 Ĉ ξh
(

1− 6κ

2− Λ̂ξ

)
(Ref

1/3)
6

2−Λ̂ξ

(3.76)

which generalises, to the case of a general isotropic plastic matrix with interface effects,

the result obtained by Perrin (1992) for even local yield functions (i.e., quadratic in stress

components), as well as the observations provided by Monchiet and Kondo (2012) for a

von Mises-Schleicher criterion.

In the case of a pressure-independent yield function, by referring to velocity fields in

Eqs. (3.56) and (3.75), the following condition is obtained

r2vr(r) [σθ(r)− σr(r)] = const =





3

2
C h

3 Ĉ h
(3.77)

the dependence on κ disappearing.

3.5.3 Illustrative computations

As a consistency assessment and with the aim to generalise available exact results,

previously-provided general solution is firstly applied to the particular case of classical

plastic behaviours summarised in Table 3.1.

In detail, as shown in Table 3.2, present results exactly recover for κ → 0+ available

relationships provided in the case of porous materials (namely, without interface effects)

by Thoré et al. (2009) for Drucker-Prager and Mohr-Coulomb criteria, and by Gurson

(1977) and Cazacu et al. (2014) for von Mises and Tresca local plastic behaviours, re-

spectively. Moreover, when interface effects are taken into account (namely, for κ > 0),

available relationships for local stresses and macroscopic limit strength are generalised to

the case of nanoporous media, thereby accounting for void-size effects, and also recover-

ing the void-size-dependent solution proposed by Dormieux and Kondo (2010) for a von

Mises plastic matrix.

By referring to criteria in Table 3.1, the influence of porosity f and of void-size ef-

fects on the macroscopic strength is depicted in Figs. 3.3a, 3.4a and 3.5a, wherein the

dimensionless quantity Σc
m/h is represented versus f and for different values of the di-

mensionless parameter κ introduced in Eq. (3.42). As expected, the magnitude of |Σc
m|

decreases with f . Moreover, when κ increases a significant improvement of the macro-

scopic strength features with respect to the case of porous materials (that is, for κ→ 0+)

is observed, for both triaxial expansion and triaxial compression, fully in agreement with

available experimental and numerical evidence on void-size effects. As a matter of fact,

an increase in κ corresponds, for a fixed value of the matrix strength parameter h, to an

increase in the ratio hI/Ri, and it results from a reduction in the void size. This effect is

also highlighted in Fig. 3.6, wherein, for a fixed porosity value, it is shown that decreasing
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Ĉ

r3

d
v
M
θ

=
−
ι 2

C r3
,

d
T

r
θ

=
−
ι 2

√
3
Ĉ
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κ (namely, increasing the void-size) leads to an asymptotic behaviour of the hydrostatic

strength towards the porous case.

Furthermore, for von Mises and Tresca local plastic responses, a symmetric hydrostatic

strength appears, the absolute value of the limit stress Σc
m being the same under both

macroscopic triaxial expansion (ι = −1) and compression (ι = 1), for any choice of f and

κ. On the other hand, for a fixed value of f and in the case of Drucker-Prager and Mohr-

Coulomb local yield functions, the compressive macroscopic limit stress (ι = 1) is higher

than the tensile one (ι = −1), such a difference being reduced when the friction angle φ

reduces. Moreover, proposed results highlight that an increase in φ tends to amplify the

influence of the interface parameter κ (namely, of void-size effects).

For the sake of completeness, the velocity field at the limit state is addressed in

Figs. 3.3b, 3.4b and 3.5b. In detail, the dimensionless velocity v∗r = vr/(CRwe ) is rep-

resented versus the normalized radial coordinate r∗ = r/Re (for r∗ ≥ f1/3), where C
is equal to C or Ĉ, depending on the smoothness level of the local criterion, and where

w = −2 (resp., w = 1 + b, parameter b being introduced in Table 3.2) for von Mises and

Tresca criteria (resp., for Drucker-Prager and Mohr-Coulomb). Illustrative computations

show that the local velocity decreases when the distance from the void increases, with a

decay rate strongly dependent on the matrix plastic response. As for Σc
m, the velocity

field experiences a symmetric behaviour in expansion and compression for von Mises and

Tresca criteria, whereas dimensionless velocity values are higher in compression than in

expansion for Drucker-Prager and Mohr-Coulomb plastic matrices, the reduction of the

friction angle tending to reduce such an asymmetry.

Since the high flexibility of the adopted Bigoni-like yield function, proposed results

allow to provide the exact local limit state under isotropic boundary loadings, as well

as the corresponding macroscopic hydrostatic strength, also for a broad class of plastic

behaviours of the solid matrix, not properly described via classical yield criteria. In this

case, model parameters should be preliminarily calibrated on the basis of available evi-

dence. Just as an illustrative example, Fig. 3.7 shows the results of a model-calibration

procedure based on a constrained optimization fitting with respect to the numerical in-

dications provided by Brach et al. (2016a) for a nanoscaled aluminium bulk sample. In

detail, a sound description of the influence of the three isotropic stress invariants on local

strength properties is provided, for a certain choice of model parameters complying with

consistency requirements introduced in Section 3.3.

Finally, the influence of local criterion parameters on the proposed closed-form results

is addressed in Figs. 3.8 and 3.9, wherein the normalized macroscopic hydrostatic strength

Σc
m/h is represented for different values of β, γ, and ξ, for both triaxial expansion (ι = −1)

and compression (ι = 1), and addressing the cases of both negligible (Fig. 3.8) and non-

negligible (Fig. 3.9) interface effects. Proposed results confirm that present solution allows

to consistently account for void-size effects. Moreover, the variability of the macroscopic

strength with β is shown to improve when γ increases and, for ι = −1 (resp., ι = +1),

when ξ increases (resp., decreases), the case of a local pressure-independent plastic matrix

(i.e., ξ →∞) resulting in upper (resp., lower) bounds for Σc
m/h.
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Figure 3.3 – Hollow sphere with (i.e., nanoporous materials, κ 6= 0) and without (i.e., porous
materials, κ→ 0+) interface effects: the case of von Mises (vM) and Tresca (Tr) local yield func-
tions. (a) Normalized macroscopic hydrostatic limit stress Σc

m/h vs. porosity f . (b) Normalized
velocity field v∗r = (vr R

2
e)/C vs. the normalized radius r∗ = r/Re (where C = C for vM and

C = Ĉ for Tr), curves being defined for r∗ ≥ f1/3.
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Figure 3.4 – Hollow sphere with (i.e., nanoporous materials, κ 6= 0) and without (i.e., porous
materials, κ → 0+) interface effects: the case of Drucker-Prager (DP) local yield function for
different values of the friction angle φ. (a) Normalized macroscopic hydrostatic limit stress
Σc

m/h vs. porosity f . (b) Normalized velocity field v∗r = vr/(CR1+b
e ) vs. the normalized radius

r∗ = r/Re (parameter b is introduced in Table 3.2), curves being defined for r∗ ≥ f1/3.
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Figure 3.5 – Hollow sphere with (i.e., nanoporous materials, κ 6= 0) and without (i.e., porous
materials, κ → 0+) interface effects: the case of Mohr-Coulomb (MC) local yield function for
different values of the friction angle φ. (a) Normalized macroscopic hydrostatic limit stress

Σc
m/h vs. porosity f . (b) Normalized velocity field v∗r = vr/(ĈR1+b

e ) vs. the normalized radius
r∗ = r/Re (parameter b is introduced in Table 3.2), curves being defined for r∗ ≥ f1/3.
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Figure 3.6 – Macroscopic hydrostatic limit stress normalized with respect to the corresponding
value for κ = 0 (Σc

m/Σ
c
m|κ=0) vs. 1/κ (the latter quantity being proportional to the void size Ri)

and for f = 1%. Model parameters are set referring to local yield criteria in Table 3.1.

3.6 Towards novel limit analysis approaches for nanoporous ma-

terials

As highlighted in Section 3.1, the modelling strategy introduced by Gurson (1977) in

the framework of a kinematic limit analysis approach (recently adopted for pressure-

dependent -or independent- plastic matrices accounting -or not- for stress Lode angle

effects) is recognized to be consistent and effective in order to establish accurate strength

estimates for porous and nanoporous materials under arbitrary loadings. To this aim, the

starting point is represented by the definition of a suitable trial kinematics based on the

exact velocity field at the limit state for an isotropically-loaded hollow sphere without or

with interface effects.

Aiming to formulate the corresponding limit-analysis problem, let the hollow sphere

in Fig. 3.1 be subjected, at the external boundary, to the velocity field ve(θ, ϕ), and let

the set

BCv = {v(r) s.t. v = ve on ∂Ωe} (3.78)

be introduced. Moreover, let statically-admissible stress fields in Sσ (see Eq. (3.2a)) be

defined not accounting for stress-based boundary conditions BCσ.

By considering statically-admissible stress (i.e., (σ, τ ) ∈ Sσ) and kinematically-admissible

strain-rate (i.e., (d,dI) ∈ Kd with v ∈ BCv) local fields, the Hill’s lemma holds

|Ω|Σ : D =

∫

Ωs

σ : d dΩ +

∫

∂Ωi

τ : dIT dA (3.79)

Σ and D being the macroscopic stress and strain-rate tensors, respectively. Nevertheless,
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the exterior power has to be lower or at the most equal to the maximum plastic dissipation

W that can be afforded in Ω

|Ω|Σ : D ≤ W , with W(d) =

∫

Ωs

πs(d) dΩ +

∫

∂Ωi

πI(dI) dA (3.80)

where the equality sign in Eq. (3.80) holds at the limit state, that is by simultaneously

considering statically and plastically-admissible stress, and kinematically and plastically-

admissible strain-rate fields.

Accordingly, the macroscopic limit stress tensor Σc results from

Σc =
∂Π(D)

∂D
(3.81)

where Π is the macroscopic support function, defined in the case of nanoporous materials

as (see Dormieux and Kondo, 2010):

Π(D) = inf
(d,dI) ∈ Kd

v ∈ BCv

(
〈πs(d)〉+

1

|Ω|

∫

∂Ωi

πI(dI) dA

)
(3.82)

Aiming to furnish an estimate Πest of the macroscopic support function and an upper

bound of the macroscopic limit stress, instead of seeking the infimum in Eq. (3.82) over

all the kinematically-admissible strain-rate states (d,dI), a particular microscopic trial

velocity field vtrial ∈ BCv yielding to the local trial strain-rate fields (dtrial,d
I
trial) ∈ Kd

may be chosen. It is worth noticing that an estimate for Π is significant only if the trial

strain-rate state (dtrial,d
I
trial) complies also with admissibility conditions in Eq. (3.99) or

in Eqs. (3.26) and (3.27), that is if it is plastically-admissible.

In the particular case of isotropic boundary conditions, the set in Eq. (3.78) is defined

by considering the uniform radial velocity ve = DmReer, where Dm is a constant strain-

rate parameter. Accordingly, kinematically-admissible strain-rate fields and local velocity

have to satisfy (d,dI) ∈ (Q,Q) and v = vr(r)er, respectively.

In this light, and depending on the local yield function, the strain-rate field expressed

by Eqs. (3.53) and (3.54), or by Eqs.(3.72) and (3.73), may be considered as a trial kine-

matics, provided that its plastic admissibility is verified and that the arbitrary constants

C and Ĉ are equal to

C =
2ξDmR

− 3Λξ

2−Λξ
e

2− Λξ
, Ĉ =

DmR
− 3Λ̂ξ

2−Λ̂ξ
e

2− Λ̂ξ
(3.83)

in order to comply with the boundary condition at r = Re, that is to comply with

kinematic admissibility. Since this strain-rate state has been proven to be plastically-

admissible for the hollow-sphere model under isotropic loadings, plastic admissibility re-

quirement is surely satisfied. Therefore, in the case of a kinematic isotropic boundary

condition, a possible trial kinematics for the smooth or sharp yield function, is respec-
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tively expressed by

vr, trial(r) = Dm

(
Re

r

) 3Λξ

Λξ−2
, v̂r, trial(r) = Dm

(
Re

r

) 3Λ̂ξ

Λ̂ξ−2
(3.84)

As a result, an estimate for the macroscopic support function in Eq. (3.82) reads as

Πest =
1

|Ω|

[∫

Ωs

πs(dtrial) dΩ +

∫

∂Ωi

πI(dItrial) dA

]

= 3Dm hξ

[
1− f

2
2−Λξ

(
1− κ 6

2− Λξ

)] (3.85)

Π̂est = 3Dm hξ

[
1− f

2

2−Λ̂ξ

(
1− κ 6

2− Λ̂ξ

)]
(3.86)

where the yield function with smooth (i.e., πs and πI) or sharp (i.e., π̂s and π̂I) deviatoric

profiles is respectively considered.

By using Eq. (3.81), the following estimates for the macroscopic hydrostatic strength

are obtained

Σ
c

m, est =
1

3

∂Πest

∂Dm
= hξ

[
1− f

2
2−Λξ

(
1− κ 6

2− Λξ

)]
(3.87)

Σ̂c
m, est =

1

3

∂Π̂est

∂Dm
= hξ

[
1− f

2

2−Λ̂ξ

(
1− κ 6

2− Λ̂ξ

)]
(3.88)

resulting equal to the exact solution expressed in Eq. (3.45), and recovering the case

corresponding to a yield function with smooth and sharp deviatoric profiles for Λ = Λ and

Λ = Λ̂, respectively. Therefore, Eq. (3.84) provides the exact kinematics and Eqs. (3.85)

and (3.86) provide the exact macroscopic support function under isotropic loads, that is

Π = Πest (for 0 ≤ γ < 1) and Π = Π̂est (for γ = 1).

Remark 5 Owing to Eqs. (3.81) and (3.85) (or (3.86)), sgn(Dm) = sgn(Σc
m) = −ι,

resulting in a macroscopic triaxial expansion (resp., compression) for Dm > 0 (resp.,

Dm < 0). Moreover, since the positiveness of C and Ĉ in Eq. (3.83) resulting from

the positiveness of plastic multiplier in the normality law (see Eqs. (3.51) and (3.71)),

plastically-admissible strain-rate states can be attained only if the macroscopic strain-rate

parameter Dm satisfies the following conditions

sgn(Dm) = sgn

(
ξ

2− Λξ

)
, sgn(Dm) = sgn

(
1

2− Λ̂ξ

)
(3.89)

where local yield functions Gs and Ĝs are respectively addressed.

Fully in agreement with Remark 1, for a matrix behaviour complying with ξ > 2/|Λ|,
consistency conditions in Eqs. (3.83) and (3.89) are verified for any choice of Dm, the

hollow sphere thereby achieving the limit state in both macroscopic expansion and com-

pression states. This is the case of classical strength criteria in Table 3.1, as shown

in Figs. 3.3a, 3.4a and 3.5a. On the other hand, when ξ < 2/|Λ|, only a macroscopic
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triaxial-expansion limit state (ι = −1) can be reached, whereas for ξ = 2/|Λ| the hollow

sphere does not experience any limit state under isotropic loadings, thereby resulting in a

pressure-independent macroscopic plastic response.

As a matter of fact, in the general case of triaxial loadings and following the modelling

strategy proposed by Gurson (1977), effective macroscopic strength estimates for porous

and nanoporous materials can be derived via Eqs. (3.81) and (3.82) by considering a trial

velocity field defined as

vtrial(r) = E · r +
vr(r)

r
r (3.90)

where E is a homogeneous strain-rate tensor and where vr is a local heterogeneous part

corresponding to the exact velocity field at the limit state under isotropic loadings, such

that the kinematic admissibility condition vtrial ∈ BCv is satisfied (see Eq. (3.84)). Such a

modelling technique has been already adopted by Anoukou et al. (2016) and by Dormieux

and Kondo (2010) in the case of Mohr-Coulomb and von Mises matrix plastic behaviours,

respectively.

In this framework and since all previous considerations, it clearly appears that the

use of the exact solution proposed in Eq. (3.54) or (3.73), or equivalently in Eqs. (3.84),

for representing the local heterogeneous part vr(r) of a general trial kinematics as in

Eq. (3.90) paves the way towards novel and accurate macroscopic strength criteria for

porous and nanoporous materials, locally not obeying to classical strength criteria and

accounting for general triaxiality levels.

3.7 Concluding remarks

In this Chapter, the microscopic limit state of a hollow sphere, representative of a par-

ticular microstructure for porous and nanoporous materials, is exactly determined in the

case of isotropic loading conditions. Void-size effects associated to the possible nanosize

of voids (Biener et al., 2005, 2006; Hakamada and Mabuchi, 2007) have been accounted

for via a coherent and imperfect homogeneous interface at the cavity boundary. The

hollow sphere has been assumed to be comprised of a rigid-ideal-plastic material, obeying

to a general isotropic strength criterion. Aiming to take into account a broad class of

pressure-sensitive limit responses (typical of many ductile, frictional and cohesive media),

as well as to allow for a certain flexibility in reproducing evidence-based data, the local

plastic behaviour has been represented via a general isotropic yield function. In detail,

the latter has been defined by considering linear meridian strength profiles and the de-

viatoric function proposed by Bigoni and Piccolroaz (2004). The case of yield surfaces

presenting sharp vertices in the deviatoric planes has been carefully addressed. As a first

step towards more comprehensive studies based on kinematic limit-analysis approaches,

the corresponding support function and its admissibility conditions have been explicitly

determined, distinguishing between cases of smooth and sharp deviatoric profiles.

The microscopic limit state and the macroscopic limit stress have been derived in the

case of both negligible (i.e., for materials with large values of the void radius, namely for
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porous materials) and significant void-size effects (i.e., for nanoporous materials). As a

result, closed-form relationships for local strain-rate, velocity and stress fields have been

obtained, identifying the exact limit state for the hollow-sphere model under isotopic

boundary loadings.

As a consistency assessment, established results fully recover available analytical ex-

pressions (Cazacu et al., 2014; Gurson, 1977; Thoré et al., 2009) deduced in the case of

negligible void-size effects, and associated to classical local plastic behaviours. Further-

more, the relationship between stress and velocity components provided by Perrin (1992)

for even isotropic strength criteria, and generalised to the case of a von Mises-Schleicher

plastic matrix by Monchiet and Kondo (2012), has been proven to hold also in the case

of a general non-even isotropic local plastic behaviour, presenting -or not- sharp vertices

in the deviatoric plane and accounting -or not- for interface effects. The proposed gen-

eral expression of the macroscopic hydrostatic strength has been also proven to straight

recover, in the case of a von Mises plastic matrix, the results proposed by Gurson (1977)

for porous materials and by Dormieux and Kondo (2010) for nanoporous ones.

On the other hand, since the high flexibility of the adopted local strength criterion,

proposed results allow to provide the exact local limit state under isotropic boundary load-

ings, as well as the corresponding macroscopic hydrostatic strength, also for a wide range

of local plastic behaviours, possibly-affected by all the three isotropic stress invariants

and that may not be properly described via classical yield models.

Proposed illustrative computations confirm that an effective description of void-size

effects can be provided, resulting in an increase of the predicted macroscopic hydrostatic

strength as the void radius decreases.

Finally, in the framework of a limit analysis approach, proposed general exact so-

lutions could be used for building up effective trial fields useful to provide accurate

strength estimates for porous and nanoporous materials, addressing arbitrary loading

states and accounting for general local plastic behaviours. Accordingly, simply by set-

ting bulk-material strength properties in agreement with experimental and/or numerical

benchmarking evidence, proposed results open towards the consistent deduction of novel

macroscopic strength criteria for porous and nanoporous materials, locally not obeying

to classical strength criteria.
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Figure 3.7 – Calibration of the adopted yield function Gs(σ) with respect to Molecular Dynamics-
based data (denoted as MD) proposed by Brach et al. (2016a). (a) Meridian strength profiles
for θσ = 0 (TXE), θσ = π/6 (SHR) and θσ = π/3 (TXC). (b) Deviatoric strength profiles
for different values of p. Values of model parameters resulting from a constrained optimization
fitting: γ = 0.99, ξ = 5.48, h = 1.82 GPa and β = 2.
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Figure 3.8 – Hollow sphere without interface effects (i.e., porous materials, κ → 0+) and in the
case f = 1%. Normalized macroscopic hydrostatic limit stress Σc

m/h for different values of model
parameters β, ξ and γ. (a) Macroscopic triaxial compression (ι = +1). (b) Macroscopic triaxial
expansion (ι = −1).
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Figure 3.9 – Hollow sphere with interface effects (i.e., nanoporous materials, for κ = 1) and in
the case f = 1%. Normalized macroscopic hydrostatic limit stress Σc

m/h for different values of
model parameters β, ξ and γ. (a) Macroscopic triaxial compression (ι = +1). (b) Macroscopic
triaxial expansion (ι = −1).
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3.A Support function for smooth yield surfaces

Reference is made to the theoretical framework established by Lemarchand et al. (2015).

Accordingly, the yield function Gs
, defined via Eqs. (3.6) to (3.8) for 0 ≤ γ < 1, can be

expressed as

Gs
(σ) =

√
Jσ2 −F(Iσ1 , θσ), with F(Iσ1 , θσ) =

√
3g

(
h− p

ξ

)
(3.91)

Therefore, by applying the normality law in Eq. (3.3b), the hydrostatic strain-rate

(dm = tr d/3) and the deviatoric part (dd = d− dm1) of the strain-rate tensor d result,

respectively, in

dm = −λs ∂F
∂Iσ1

, dd = λs

(
σd

2
√
Jσ2
− ∂F
∂θσ

∂θσ
∂σ

)
(3.92)

where
∂θσ
∂σ

=

√
3

2
√
Jσ2 sin(3θσ)

[
2

3
1 +

3

2

Jσ3
(Jσ2 )2

σd −
(σd)2

Jσ2

]
. (3.93)

Since the following equalities hold

1 :
∂θσ
∂σ

= 0, σd :
∂θσ
∂σ

= 0, (σd)2 :
∂θσ
∂σ

= −
√
Jσ2
3

sin(3θσ) (3.94)

the first (Id
1 = tr d) and the second-order deviatoric (Jd

2 = tr d2
d/2) strain-rate invariants

can be expressed as

Id
1 = −3λs ∂F

∂Iσ1
(3.95a)

Jd
2 =

(λs)
2

4

(
1 + F 2

)
, with F (θσ) =

1

F
∂F
∂θσ

=
1

g

dg

dθσ
(3.95b)

Accordingly, by using Eqs. (3.94), and by solving the plastic multiplier λs from Eq. (3.95b),

the local plastic dissipation results in

σ : d = Iσ1 dm +
2√

1 + F 2

√
Jσ2 J

d
2 (3.96)

In agreement with Eq. (3.15), the supremum of Eq. (3.96) has to be computed over all

the local stress states complying with the strength criterion Gs(σ) ≤ 0. The latter, due

to Eqs. (3.5) and (3.91), can be recast as

Iσ1 ≤ 3hξ − ξ

g

√
3Jσ2 (3.97)

which, combined with Eq. (3.96), yields to

σ : d ≤
(
−
√

3

3

ξ

g
Id
1 +

2√
1 + F 2

√
Jd

2

)

︸ ︷︷ ︸
A

√
Jσ2 + hξId

1 (3.98)
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Since there not exists a positive real number M such that
√
Jσ2 ≤ M for every stress

tensor σ, the supremum of the plastic dissipation (σ : d) is infinity if A > 0. Accordingly,

the local support function πs results in

πs(d) =





hξId
1 if

Id
1√
Jd

2

≥ 1

ξ
Γ(θσ) (i.e., if A ≤ 0)

+∞ otherwise

(3.99)

where the admissibility condition on the strain-rate triaxiality ratio Id
1 /
√
Jd

2 is expressed

in terms of the strictly-positive function (due to the strict positiveness of g(θσ))

Γ(θσ) = 2
√

3
g(θσ)√

1 + F 2(θσ)
(3.100)

depicted in Fig. 3.10 with respect to the stress Lode angle θσ and for different values of

model parameters. In detail, results in Fig. 3.10 show that for γ = 0 function Γ(θσ) is

constant, whereas for 0 < γ < 1 the highest value of Γ(θσ) occurs for: triaxial compression

(TXC) when 0 ≤ β < 1; both triaxial expansion (TXE) and compression (TXC) when

β = 1; triaxial expansion (TXE) when 1 < β ≤ 2. It must be noticed that the requirement

0 ≤ γ < 1 allows to guarantee the continuity of Γ(θσ) for any values of θσ and β. On the

other hand, when γ = 1 the function Γ(θσ) is not defined at sharp vertices of deviatoric

yield profiles (i.e., for θσ = 0 and/or for θσ = π/3).

The dependence of Γ on the stress Lode angle θσ implicitly contains the dependence on

the strain-rate Lode angle θd defined by cos 3θd = 3
√

3Jd
3 /(2J

d
2

3/2
), where Jd

3 = tr d3
d/3

is the third deviatoric strain-rate invariant. In detail, the following relationship was

provided by Lemarchand et al. (2015)

cos(3θd) =
cos(3θσ)(1− 3F 2) + sin(3θσ)F (3− F 2)

(1 + F 2)3/2
(3.101)

It is worth observing that Eq. (3.99) allows to recover also the case of pressure-

independent yield response for ξ → +∞. In this case, the admissibility condition reduces

to A = 0, since the case A < 0 leads the quantity hξId
1 to be infinite. Accordingly, for

ξ → +∞, the support function πs in Eq. (3.99) becomes

πs(d) =




h
√
Jd

2 Γ(θσ(θd)) if Id
1 = 0

+∞ if Id
1 6= 0

(3.102)

As shown in Table 3.1, relationships (3.99) and (3.102) recover, by a suitable choice

of model parameters, the corresponding available expressions for von Mises and Drucker-

Prager strength criteria (Salençon, 1983).

Similarly, interface strength properties can be described by introducing the local sup-

port function πI (see Eq. (3.16)). The latter, and the corresponding admissibility condi-

tions, formally read as in Eqs. (3.99) and (3.102), and they are expressed in terms of the
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local strain-rate tensor dI as:

πI(dI) =





hIξId
1

∣∣
r=ri

if
Id
1√
Jd

2

≥ 1

ξ
Γ(θσ(θd)) on ∂Ωi

+∞ if
Id
1√
Jd

2

<
1

ξ
Γ(θσ(θd)) on ∂Ωi

(3.103)
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Figure 3.10 – Function Γ(θσ) introduced in Eq. (3.100) for different values of model parameters
β and γ. TXE: triaxial expansion. TXC: triaxial compression. SHR: shear.
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CHAPTER 4

Nanoporous materials with a general isotropic plastic

matrix: Limit analysis and homogenization under

axisymmetric loadings

Abstract

In this Chapter, a macroscopic general strength criterion for nanoporous materials ac-

counting for void-size effects is analytically established. A homogenization procedure

based on a kinematic limit-analysis is performed addressing a hollow-sphere model com-

prising a rigid-ideal-plastic solid matrix and undergoing axisymmetric strain-rate bound-

ary conditions. Void-size effects are accounted for by introducing an imperfect-coherent

interface at the cavity boundary. Both the interface and the solid matrix are assumed

to obey to a simplified form of the general yield function proposed by Bigoni and Pic-

colroaz [Int J Solids Struct; 41: 2855-2878], thereby allowing for an extreme flexibility

in describing triaxiality and Lode-angle effects. A parametric closed-form relationship

for the macroscopic strength criterion is obtained as the unique physically-consistent so-

lution of an inequality-constrained minimization problem, the latter being faced via the

Lagrangian method combined with Karush-Kuhn-Tucker conditions. Any possible choice

of local-yield-function parameters is carefully addressed, by clearly highlighting the effects

of a specific local plastic behaviour on the material macroscopic response. Finally, sev-

eral comparative illustrations are provided, showing the influence of model parameters on

the proposed yield function, as well as the model capability to describe the macroscopic

strengthening, typical of nanoporous materials, induced by a void-size reduction for a

fixed porosity level.

Present Chapter corresponds to the submitted research paper (Brach et al., 2016d).

A self-consistent notation is adopted.

Keywords: Nanoporous materials, general strength criterion, limit analysis, isotropic

plastic matrix, void-size effects.

117



“tesi” — 2016/12/22 — 9:44 — page 118 — #130

118 Chapter 4. Limit analysis and homogenization under axisymmetric loadings

4.1 Introduction

Nanostructured materials have recently been the object of a ever-growing multidisci-

plinary research effort, focusing enormous technological developments and attracting a

keen interest in both industrial and academic domains (e.g., Jenkins, 2010). An impor-

tant class of nanostructured materials consists in nanoporous media, presenting long-range

ordered or disordered microstructures with voids dimension of a few to tens of nanome-

ters. Due to high specific surface area, possible uniformly-distributed void size and rich

surface chemistry, nanoporous materials have allowed for a novel generation of engineering

devices with tailorable properties, thereby opening towards challenging multifunctional

applications in several technical fields, such as biomechanics, sensoring, energy storage

and molecular sieving.

One of the current strategic goal in nanotechnology lies in the design and the manu-

facturing of nanoporous materials with sizeable interior surfaces and void space, in order

to ensure specific mechanical features at the macroscale. In detail, the enhancement of

strength properties of light-weight metallic foams for structural applications has been a

core focus in the recent nanoscience, resulting in the synthesis of nanoporous specimens

with an exceptionally-high yield stress. Thereby, a fundamental research aspect consists in

establishing engineering-oriented theoretical models able to predict macroscopic strength

properties of nanoporous materials, by properly accounting for dominant nanoscale mech-

anisms. These latter have been addressed in several recent research works, consisting in

both empirical and numerical investigations.

Specifically, experimental tests performed on nanoporous foams (Biener et al., 2005,

2006; Fan and Fang, 2009; Hakamada and Mabuchi, 2007; Hodge et al., 2007) revealed

that, for a fixed porosity level, a reduction in the void size induces a significant increase

in the yield strength, which results higher than characteristic values observed for con-

ventional porous metals. Analogously, Molecular Dynamics computations carried out

on in-silico nanoporous specimens (Brach et al., 2016a; Mi et al., 2011; Traiviratana et

al., 2008; Zhao et al., 2009) showed a significant enhancement of the predicted strength

measure as the void size reduces.

The physical origin of such a phenomenon may be attributed to the presence of self-

equilibrated stresses at the cavity boundary (Fan and Fang, 2009; Needs et al., 1991;

Povstenko and Yu, 1993; Weissmüller et al., 2009) caused by the excess of energy char-

acterising surface atoms with respect to the neighbouring ones, usually negligible in con-

ventional porous materials with smaller specific surface area. In this light, continuum

theoretical descriptions of size-related effects have been proposed by Duan et al. (2005a),

Duan et al. (2005b), Le Quang and He (2007), Le Quang and He (2008), Sharma and

Ganti (2004) and Wang et al. (2011), by introducing coherent-imperfect interfaces across

which the stress vector (resp., the velocity field) is discontinuous (resp., continuous).

Void-size effects are not accounted for in classical plasticity theories addressing porous

materials, constitutive models being generally conceived to predict only the influence of

the porosity level. This is the case of the yield criterion proposed by Gurson (1977), based

on a kinematic limit-analysis approach. Generalizations of this model have been provided
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by Tvergaard (1982) and Tvergaard and Needleman (1984), accounting for certain ex-

perimental and numerical evidence on porosity thresholds, and providing an enhanced

description of material strength during void growth and coalescence. The identification

of parameters of the resulting Gurson-Tvergaard constitutive model has been numerically

provided by Corigliano et al. (2000), via finite-element-based calculations. The influence

of voids shape on strength properties of porous materials has been also investigated by

Mariani and Corigliano (2001), highlighting anisotropy effects associated to aspect ratio

and orientation of cavities.

A first attempt to describe strength properties as dependent on the void size has been

provided by Dormieux and Kondo (2010), who extended the yield criterion proposed by

Gurson (1977) to nanoporous materials. An analogous limit-analysis based strategy has

been adopted by Monchiet and Kondo (2013), in order to investigate the combined effects

of void size and void shape on macroscopic strength properties. Void-size dependent

strength criteria have also been established in the framework of non-linear homogenization

approaches (Dormieux and Kondo, 2013; Goudarzi et al., 2010; Moshtaghin et al., 2012;

Zhang and Wang, 2007; Zhang et al., 2008, 2010), based on the so-called modified secant

method (Suquet, 1995).

All the afore-mentioned strength models have been formulated by considering a von

Mises local yield function, thereby not accounting either for hydrostatic-stress dependence

nor for stress-Lode-angle effects. However, the solid matrix of many engineering-relevant

nanoporous materials may exhibit a more complex local plastic behaviour. As a matter

of fact, Molecular Dynamics evidence provided by Brach et al. (2016a) proved that the

strength domain of a nanoscaled bulk material may be strongly affected by all the three

isotropic stress invariants, and that such an influence can not be effectively described

by simply calibrating classical yield criteria (e.g., Mohr-Coulomb), mainly due to the

occurrence of significant stress-Lode-angle effects.

Motivated by the above observations, the present Chapter aims to establish a general

macroscopic strength criterion for nanoporous materials accounting for void-size effects.

A simplified form of the general yield function proposed by Bigoni and Piccolroaz (2004) is

considered, allowing for an extreme flexibility in describing the stress-Lode-angle influence

on the local plastic behaviour. The parametric form of this criterion permits to prop-

erly recover a broad class of pressure-sensitive, frictional and ductile plastic responses,

exhibiting a great flexibility to comply with evidence-based benchmarking indications.

For instance, a suitable calibration of model parameters allows to consistently describe

available Molecular-Dynamics strength estimates for a nanoscaled aluminium bulk sample

(Brach et al., 2016a,b). In order to perform a kinematic limit-analysis homogenization,

closed-form relationships recently provided by Brach et al. (2016b) for the limit-state

problem of a hollow sphere under isotropic loadings are herein considered to build up a

suitable trial velocity field.

The Chapter is organized as follows. In Section 4.2, the problem under stake is formu-

lated, and basic elements of the adopted theoretical background are presented. In Section

4.3 the local Bigoni-like yield criterion, as well as the corresponding support function and
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plastic admissibility conditions, are introduced. In Section 4.4, the trial velocity field is

presented, focusing on kinematic and plastic consistency requirements. By summarizing,

for the sake of compactness, some analytical details in 4.A, the macroscopic strength

criterion for nanoporous materials under axisymmetric loadings is analytically derived in

Section 4.5, hydrostatic and deviatoric strengths being explicitly formulated in Section

4.6. Illustrative comparisons are presented and discussed in Section 4.7, highlighting the

effects of both local-yield-function parameters and void size on the macroscopic criterion.

Finally, some conclusions are traced in Section 4.8.

4.2 Problem statement and theoretical background

Let a nanoporous material be considered, containing randomly-distributed spherical nano-

voids and whose representative cell consists in the hollow-sphere region depicted in Fig. 4.1.

This corresponds to a particular but realistic microstructure, namely the Hashin Composite-

Sphere-Assemblage (Hashin, 1962), defined as a collection of graduated-in-size hollow

spheres embedded into a homogeneous solid matrix (e.g., Leblond et al., 1994; Michel

and Suquet, 1992).

Let Ri and Re respectively be the internal and the external radius of the hollow

sphere, and ∂Ωi and ∂Ωe be the corresponding internal and external surfaces, the total

boundary of the region resulting in ∂Ω = ∂Ωi ∪ ∂Ωe. Moreover, let the porosity f be

defined as f = |Ωv|/|Ω|, where |Ω| = |Ωs|+ |Ωv| is the total volume of the hollow-sphere

region Ω = Ωs ∪ Ωv, with |Ωs| and |Ωv| being the volume measures of the solid region

(namely, Ωs) and of the spherical void (Ωv), respectively. The solid matrix is assumed

to be homogeneous and comprised of a rigid-ideal-plastic isotropic material. Such a

modelling assumption, strictly required in limit analysis approaches, allows to straight

identify material strength properties by referring to the yield limit state.

In the framework of a plastic generalization (Monchiet and Bonnet, 2010) of the

Gurtin-Murdoch stress-interface model (Gurtin and Murdoch, 1975), the influence of non-

negligible surface stresses at the void boundary is addressed by introducing a coherent

and imperfect homogeneous interface I at ∂Ωi, through which the velocity field (resp.,

the stress vector) is prescribed to be continuous (resp., discontinuous). The material

comprising the interface is itself assumed to be isotropic and rigid-ideal-plastic.

The following notation is adopted throughout the Chapter: boldface letters denote

vectors and second-order tensors; blackboard letters indicate fourth-order tensors; sym-

bols ·, :, and ⊗ denote dot, double-dot, and tensor product operators, respectively; ∇
(resp., ∇I) is the nabla operator in Ωs (resp., along the interface), ∇̃ identifying the

symmetric part of the corresponding gradient operator. Referring to the notation in

Fig. 4.1, the Cartesian reference system (ex, ey, ez) is introduced, with the origin O at the

sphere center. Furthermore, for following analytical developments, let the cylindrical co-

ordinate system (z, ϕ, ρ) be defined, as well as the corresponding local orthonormal basis

(ez, eϕ, eρ), ρ and z being the longitudinal and altitude coordinates such that ρ/z = tan θ,

and ϕ ∈ [0, 2π] and θ ∈ [0, π] being the azimuth and zenith angles respectively. Therefore,

the position of a point in Ω (resp., at the interface I) with respect to the sphere center
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O is identified by r = r(ρ, z) er(ϕ) (resp., by ri = Ri er), where r =
√
ρ2 + z2 ∈ [Ri, Re]

is the radial coordinate and er(ϕ) = eρ(ϕ) + ez is the radial direction. Symbols 〈a〉 and

〈a〉I indicate Ω- and ∂Ωi-based averages of a certain space-dependent field a(r), that

is 〈a〉 = (1/|Ω|)
∫

Ω
a dΩ and 〈a〉I = (1/4πR2

i )
∫
∂Ωi

a(ri) dA, respectively. Moreover, let

the projector tensor T be component-wise defined as Tijkl = (PikPjl + PilPjk)/2, where

P = (1 − er ⊗ er) with 1 the second-order identity tensor, and such that AT = T : A is

the projection on planes orthogonal to er of a given second-order tensor A.

@⌦i

@⌦e

⌦ O

I

⇢
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ez
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Figure 4.1 – Hashin Composite-Sphere-Assemblage (Hashin, 1962) and the corresponding repre-
sentative hollow sphere Ω. Notation.

Aiming to determine a closed-form expression of the macroscopic strength criterion

via a kinematic limit-analysis approach, the hollow sphere is assumed to undergo axisym-

metric strain-rate based boundary conditions at its exterior boundary ∂Ωe, expressed in

terms of the homogeneous second-order strain-rate tensor D. The latter, in the cylindrical

reference system, is chosen as

D = Dρ(eρ ⊗ eρ + eϕ ⊗ eϕ) +Dzez ⊗ ez (4.1)

where strain-rate parameters Dρ and Dz are assumed to be such that D is non-deviatoric

(i.e., tr D 6= 0).

The set of kinematically-admissible velocity fields is introduced as

BCv = {v(r) s.t. v = D · r on ∂Ωe} (4.2)
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allowing to define kinematically-admissible strain-rate fields as belonging to the set

Kd =





(d,dI) s.t.

d = ∇̃v in Ωs ,

dI = d
∣∣
r=ri

on ∂Ωi ,

with v ∈ BCv





(4.3)

v being the velocity field, and where d and dI denote the microscopic second-order

strain-rate tensors in Ωs and on ∂Ωi, respectively.

Moreover, by denoting with σ (resp., with τ ) the Cauchy second-order local stress

tensor (resp., surface tensor) in Ωs (resp., at I), the set of statically-admissible stress

fields is introduced as

Sσ =

{
(σ, τ ) s.t.

∇ · σ = 0 in Ωs ,

(σ+ − σ−) · er + (τ : K)er = ∇I · τ on ∂Ωi

}
(4.4)

where the equilibrium at I is expressed by the generalized Young-Laplace equation

(Gurtin and Murdoch, 1975; Duan et al., 2005b), with σ± = limr→R±i
σ(r) and K the

interface curvature tensor.

When statically-admissible stress (i.e., (σ, τ ) ∈ Sσ) and kinematically-admissible

strain-rate (i.e., (d,dI) ∈ Kd) local fields are considered, the Hill’s lemma holds

|Ω|Σ : D =

∫

Ωs

σ : d dΩ +

∫

∂Ωi

τ : dIT dA (4.5)

with dIT = T : dI , and where Σ = 〈σ〉 is the macroscopic second-order stress tensor.

Since the exterior power has to be lower or at the most equal to the maximum plastic

dissipation Π that can be overall afforded in Ω, Eq. (4.5) can be recast as (e.g., Salençon,

1983)

Σ : D ≤ Π(D) (4.6)

with

Π(D) = inf
(d,dI)∈Kd

(
〈πs(d)〉+

1

|Ω|

∫

∂Ωi

πI(dI) dA

)
(4.7)

where πs and πI are the maximum plastic dissipations that can be locally achieved in the

solid matrix and on the interface, respectively

πs(d) = sup
σ∈Ys

(σ : d), with Ys = {σ s.t. Gs(σ) ≤ 0} (4.8)

πI(dI) = sup
τ∈YI

(τ : dIT), with YI =
{
τ s.t. GI(τ ) ≤ 0

}
(4.9)

Gs (resp., GI) indicating the yield function of the solid matrix (resp., of the interface).

Relationship in Eq. (4.8) (resp., in Eq. (4.9)) also identifies the support function for the

solid matrix (resp., for the interface), that is the hyperplane tangent to the yield surface

∂Ys = {σ s.t. Gs(σ) = 0} (resp., ∂YI = {τ s.t. GI(τ ) = 0}) in the space of volume

(resp., surface) stresses. Similarly, Eq. (4.7) defines the support function associated to
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the macroscopic yield function G.

Instead of seeking the infimum in Eq. (4.7) over all the kinematically-admissible ve-

locity fields v ∈ BCv that lead to strain-rate states (d,dI) ∈ Kd, an upper-bound Π̂ of

the macroscopic support function can be determined as

Σ : D ≤ Π(D) ≤ Π̂(D) =
〈
πs(d̂)

〉
+

1

|Ω|

∫

∂Ωi

πI(d̂I) dA (4.10)

where (d̂, d̂I) is a strain-rate state obtained from a particular trial velocity field v̂ ∈ BCv.

Accordingly, owing to Eqs. (4.6) and (4.10), an estimate Σ̂c of the macroscopic strength

Σc can be computed as

Σ̂c =
∂Π̂(D)

∂D
(4.11)

thereby identifying, in the space of macroscopic stresses, the surface ∂Ŷ = {Σ̂c s.t. Ĝ(Σ̂c) =

0}. It is worth observing that Π̂(D) can be regarded as the hyperplane tangent to the

surface ∂Ŷ, in the stress point Σ̂c where D is orthogonal to ∂Ŷ.

Finally, it is noted that trial velocity fields generally considered to compute the upper

bound in Eq. (4.10) are uniquely determined by imposing the kinematic admissibility

requirement v̂ ∈ BCv (see for instance Gurson, 1977). On the contrary, an enhanced

estimate of the macroscopic maximum plastic dissipation may be obtained by considering

a class of kinematically-admissible trial velocity fields, that is by defining v̂ as a function

of a suitable number of parameters non-uniquely identified by the requirement v̂ ∈ BCv,

namely by referring to v̂ ∈ V ⊆ BCv. Specifically, the lowest upper bound Π̃ for Π when

v̂ ∈ V results from the following minimization problem

min
v̂∈V

[
Π̂(D)−Σ : D

]
= min

v̂∈V

[
Π̂(D)− Σ̃c : D

]
(4.12)

where estimates Σ̃c = ∂Π̃/∂D allow to identify the estimate G̃ of the macroscopic yield

function G.

4.3 Local yield criterion

Since the material comprising the hollow sphere is assumed to be isotropic, a limit stress

state belonging to the yield surface ∂Ys can be uniquely identified, within the space of

principal stress components (σ1, σ2, σ3), by referring to the cylindrical system of Lode

coordinates (p, q, θσ) with

p =
Iσ1
3
, q =

√
3Jσ2 , cos 3θσ =

3
√

3

2

Jσ3

Jσ2
3/2

(4.13)

θσ ∈ [0, π/3] being the stress Lode angle, and where Iσ1 = trσ, Jσ2 = trσ2
d/2 and Jσ3 =

trσ3
d/3 are the hydrostatic, the second-order deviatoric and the third-order deviatoric

stress invariants, respectively, with σd = σ − p1 the deviatoric part of the stress tensor.

Therefore, the yield surface ∂Ys results completely defined in terms of its meridian profiles



“tesi” — 2016/12/22 — 9:44 — page 124 — #136

124 Chapter 4. Limit analysis and homogenization under axisymmetric loadings

(i.e., the intersections between ∂Ys and the meridian planes, these latter being at θσ =

const and containing the hydrostatic axis σ1 = σ2 = σ3) and of its deviatoric sections

(i.e., the intersections between ∂Ys and the deviatoric planes, or π-planes, at p = const).

The yield function of the solid matrix Gs is assumed equal to

Gs(σ) = m(p) +
q

g(θσ)
, (4.14)

where, in agreement with the theoretical framework proposed by Brach et al. (2016b) and

as a simplified form of the strength criterion proposed by Bigoni and Piccolroaz (2004);

Bigoni (2012), functions m and g are defined as

m(p) = −3

(
h− p

ξ

)
(4.15)

g(θσ) =
1

cos βπ6 cos θσ + sin βπ
6 sin θσ

(4.16)

ξ and β being dimensionless parameters which comply with the physical consistency

conditions ξ > 0 (the case ξ → +∞ allowing to describe a pressure-independent yield

function) and with the convexity requirement 0 ≤ β ≤ 2, whereas h ≥ 0 is a strength

coefficient having the dimension of a stress.

Relationships (4.14) to (4.16) describe a polyhedral yield surface ∂Ys in the space of the

Lode coordinates, with linear and multi-sided yield profiles in meridian and in deviatoric

planes, respectively. In detail, as shown in Fig. 4.2, function g(θ) in Eq. (4.16) allows for

an extreme shape distortion of deviatoric yield profiles when β is varied, resulting in the

occurrence of sharp vertices in the π-plane at triaxial-compression (TXCσ, θσ = π/3), at

triaxial-expansion (TXEσ, θσ = 0), and at both TXCσ and TXEσ stress states, for β = 0,

β = 2, and 0 < β < 2, respectively.

Moreover, introducing the notation

ξ∗ =
2

cβ +
√

3sβ
, ξ∗∗ =

2

cβ −
√

3sβ
(4.17)

with cβ = cos(βπ/6) and sβ = sin(βπ/6), and depending on the value assumed by model

parameters β and ξ, the support function πs of a pressure-dependent solid matrix and

the corresponding plastic admissibility condition result in (Brach et al., 2016b)

◦ case 0 ≤ β < 1

πs(d) =





hξId
1 if dm ≥





|d1|+ |d2|+ |d3|
3

if ξ ≤ ξ∗

|d1|+ |d2|+ |d3|
1 +

(
cβ +

√
3 sβ

)
ξ

if ξ∗ ≤ ξ ≤ ξ∗∗

|d1|+ |d2|+ |d3|
2cβξ − 1

if ξ ≥ ξ∗∗

+∞ otherwise

(4.18)
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◦ case 1 ≤ β ≤ 2

πs(d) =





hξId
1 if dm ≥





|d1|+ |d2|+ |d3|
3

if ξ ≤ ξ∗

|d1|+ |d2|+ |d3|
1 +

(
cβ +

√
3 sβ

)
ξ

if ξ ≥ ξ∗

+∞ otherwise

(4.19)

where di (with i ∈ {1, 2, 3}) denotes a principal strain-rate component, Id
1 = tr d, and

dm = Id
1 /3 is the hydrostatic strain rate. On the other hand, when the case of a pressure-

independent local plastic behaviour is addressed (that is, for ξ → +∞), Eqs. (4.18) and

(4.19) reduce to (see Brach et al., 2016b)

◦ case 0 ≤ β < 1

πs(d) =





3h

2cβ
(|d1|+ |d2|+ |d3|) if Id

1 = 0

+∞ otherwise

(4.20)

◦ case 1 ≤ β ≤ 2

πs(d) =





3h

cβ +
√

3sβ
(|d1|+ |d2|+ |d3|) if Id

1 = 0

+∞ otherwise

(4.21)

It is worth observing that the general isotropic strength criterion defined by Eqs. (4.14)

to (4.16) and the support function in Eqs. (4.18) to (4.21) allow to describe the plastic

behaviour of a broad class of pressure-dependent or independent materials, accounting for

the influence of stress-Lode-angle effects. As special cases, classical yield functions with

sharp deviatoric profiles, as well as the corresponding expressions for support functions

and admissibility conditions, can be straight recovered via a proper choice of values for

model parameters β, ξ and h, as it is summarized in Table 4.1 for Tresca (Tr) and Mohr-

Coulomb (MC) criteria.

The yield function GI(τ ) for the interface I is assumed of the same form as in

Eqs. (4.14) to (4.16), and it is expressed in terms of model parameters {ξ, hI , β}, where

hI has the dimension of a membrane stress (namely, a force per unit length). Simi-

larly, the interface support function πI and its admissibility condition formally read as in

Eqs. (4.18) to (4.21), these latter being expressed in terms of the strain rate dI and the

interface strength hI .

Remark 6 Since the strength parameter hI affects only the value of the maximum plastic

dissipation at the interface, plastic admissibility conditions in Eqs. (4.18) to (4.21) for πs

exactly recover plastic admissibility for the support function πI at the interface when d is

replaced by d = dr=ri .
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Table 4.1 – Values of model parameters for the adopted Bigoni-like strength criterion, allowing to
recover yield (i.e., Gs(σ)) and support (i.e., πs(d)) functions for Tresca (Tr) and Mohr-Coulomb
(MC) criteria. σ0: deviatoric strength; c: cohesion; φ: friction angle. Symbols σi and di with
i ∈ {1, 2, 3} denote principal stress and strain-rate components, respectively.

Tr

Gs(σ) = q sin
(
θσ +

π

3

)
− σ0

√
3

2
= max

i 6=j
( |σi − σj | )− σ0 = 0

πs(d) =





σ0

2
(|d1|+ |d2|+ |d3|) if Id

1 = 0

+∞ if Id
1 6= 0

h =
σ0

√
3

6
, ξ → +∞, γ = 1, β = 1

MC

Gs(σ) = p− c cotφ+ q

[
1√

3 sinφ
sin
(
θσ +

π

3

)
+

1

3
cos
(
θσ +

π

3

)]
=

= max
i 6=j

[ |σi − σj |+ (σi + σj) sinφ ]− 2c cosφ = 0

πs(d) =

{
c cotφ Id

1 if Id
1 ≥ (|d1|+ |d2|+ |d3|) sinφ

+∞ if Id
1 < (|d1|+ |d2|+ |d3|) sinφ

h =
c cosφ√
3 + sin2 φ

, ξ =

√
3 + sin2 φ

sinφ

γ = 1, β =
6

π
arctan

(√
3(1− sinφ)

3 + sinφ

)

4.4 Local kinematics

In the framework of the kinematic limit-analysis approach introduced in Section 4.2, and

with the aim to determine an effective estimate for the macroscopic support function as in

Eq. (4.10), strain-rate states (d̂, d̂I) ∈ Kv have to be introduced by considering suitable

kinematically-admissible trial velocity fields v̂ ∈ BCv. Furthermore, plastic admissibility

conditions in Eqs. (4.18) to (4.21) have to be correspondingly formulated. Since the

support function of a pressure-independent yield criterion can be straight obtained as a

particular case of Eqs. (4.18) and (4.19), in the following reference is made to pressure-

dependent local plastic behaviours only.

4.4.1 Trial velocity field

Following the approach proposed by Gurson (1977) and recently adopted in several limit-

analysis models (e.g., Anoukou et al., 2016; Dormieux and Kondo, 2010; Guo et al., 2008),

the trial velocity field v̂ is herein chosen of the form

v̂ = vhom + vhet , with vhom = C · r (4.22)

where C is a homogeneous second-order symmetric strain-rate tensor, and where vhet =

w(r)r a heterogeneous velocity term. This latter corresponds to the exact solution of the

limit-state problem for the hollow sphere in Fig. 4.1, when isotropic strain-rate loading
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Figure 4.2 – Local yield criterion. Function g(θσ) in Eq. (4.16) for different values of model
parameter β. TXEσ: local triaxial expansion. TXCσ: local triaxial compression. SHRσ: local
shear state.
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conditions are considered. In detail, for the Bigoni-like yield function defined in Eqs. (4.14)

to (4.16), the heterogeneous part of the trial velocity field is defined, in agreement with

results recently provided by Brach et al. (2016b), as

w(r) = C0

(
Re

r

)3α

, with α =
ξ

ξ − Ξ
(4.23)

where C0 is an arbitrary constant, and function Ξ is equal to

Ξ(ε) = − 2ε

cos
(
π
6 (2− β)− 1

3 arccos (ε)
) , with ε = sgnC0 (4.24)

In the following, reference is made to local strength criteria complying with condition

ξ > |Ξ| (also verified by classical yield functions in Table 4.1). As a consequence, the

exponent α of the heterogeneous velocity field (4.23) is strictly positive. Specifically,

0 < α ≤ 1 (resp., α ≥ 1) when ε = 1 (resp., ε = −1), the case α = 1 being related to

a pressure-independent local plastic behaviour (i.e., for ξ → +∞). In agreement with

results proposed by Brach et al. (2016b), the condition ξ > |Ξ| yields to finite values of

both tensile and compressive macroscopic hydrostatic strengths.

The homogeneous strain-rate tensor C in Eq. (4.22) is usually chosen for allowing

to satisfy plastic admissibility condition on support function. In particular, in the case

of pressure-independent local yield functions (as for the Tresca strength criterion), C is

generally defined as a deviatoric strain-rate tensor (e.g., Gurson, 1977), thereby resulting

in a trial strain-rate field d̂ which automatically complies with the plastic admissibility

condition Id
1 = 0 in Eqs. (4.20) and (4.21). On the other hand, when the case of a pressure-

dependent plastic behaviour is addressed, a different form for C has to be introduced, for

allowing to verify the plastic dilatancy requirement expressed in Eqs. (4.18) and (4.19).

Due to the considered strain-rate boundary conditions (see Eqs. (4.1) and (4.2)), and

in agreement with the modelling strategy adopted by Guo et al. (2008) and Anoukou

et al. (2016) for Drucker-Prager and Mohr-Coulomb plastic matrices, tensor C is herein

assumed characterised by an axisymmetric form C = C1(eρ ⊗ eρ + eϕ ⊗ eϕ) +C2ez ⊗ ez,

C1 and C2 being constant parameters. Thereby, Eqs. (4.22) and (4.23) yield

v̂ = vρeρ + vzez = C0

(
Re

r

)3α

(ρ eρ + z ez) + C1 ρ eρ + C2 z ez (4.25)

with r =
√
ρ2 + z2.

4.4.2 Local strain-rate field

Owing to kinematic admissibility conditions detailed in Eq. (4.3), the trial velocity field in

Eq. (4.25) allows to compute the following expressions for non-null strain-rate components
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of d̂

d̂ : (eρ ⊗ eρ) = C0(1− 3α sin2 θ)

(
Re

r

)3α

+ C1 (4.26a)

d̂ : (eϕ ⊗ eϕ) = C0

(
Re

r

)3α

+ C1 (4.26b)

d̂ : (ez ⊗ ez) = C0(1− 3α cos2 θ)

(
Re

r

)3α

+ C2 (4.26c)

d̂ : (eρ ⊗ ez) = −3αC0

(
Re

r

)3α

sin θ cos θ (4.26d)

where, since v̂ ∈ BCv, constants C0, C1 and C2 have to comply with (see Eq. (4.1))

C0 + C1 = Dρ , C0 + C2 = Dz (4.27)

Accordingly, by introducing the hydrostatic ID
1 = tr D, the second-order deviatoric

JD
2 = tr D2

d/2 and the third-order deviatoric JD
3 = tr D3

d/3 macroscopic strain-rate in-

variants (with Dd = D − ID
1 1/3), the following relationships are obtained by combining

Eqs. (4.1) and (4.27)

Dm = C0 +Dhom
m with Dhom

m =
2C1 + C2

3
(4.28a)

Deq =
2

3
(C2 − C1)δ with δ = sgn(C2 − C1) = sgnJD

3 (4.28b)

θD =
1

3
arccos (δ) (4.28c)

where Dm = ID
1 /3, Deq = 2

√
JD

2 /3 and cos 3θD = 3
√

3JD
3 /[2(JD

2 )3/2], with θD ∈ [0, π/3]

being the macroscopic strain-rate Lode angle. Therefore, the mean deformation rate

Dm is equal to the sum of two contributions, Dhom
m and C0, respectively associated to

the homogeneous (vhom) and the heterogeneous (vhet) part of the local velocity field

in Eq. (4.22). Furthermore, owing to Eq. (4.28c), δ = 1 and δ = −1 correspond to

macroscopic triaxial-expansion (that is, TXED with θD = 0) and triaxial-compression

(that is, TXCD with θD = π/3) strain-rate states, respectively.

In the following, with a little abuse of notation and unless otherwise specified, lo-

cal strain-rate components and invariants will be denoted without the hat superscript,

although they refers to the trial strain-rate field (d̂, d̂I).

Strain-rate components in Eqs. (4.26) and (4.27) result in the local mean deformation

rate

dm =
tr d̂

3
= Dhom

m − C0

(
Re

r

)3α

(α− 1) (4.29)

which can be recast in terms of macroscopic strain-rate parameters ε and δ as

dm =
Deq

2

(
1− α
α

ε x + ω̃

)
(4.30)
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notation

x = ω

(
Re

r

)3α

, with ω = 2α
|C0|
Deq

and ω̃ =
2Dhom

m

Deq
(4.31)

being introduced, where ω ≥ 0 is a measure of the macroscopic strain-rate triaxiality

ratio, and x ≥ 0. Moreover, principal strain-rate components of tensor d̂ are equal to

d1 = dm +
Deq

2
(ε x− δ)

d2 = dm −
1

2

(
dd1 +

√
∆
)

d3 = dm −
1

2

(
dd1 −

√
∆
)

(4.32)

with

∆ =
9

4
D2

eq

(
1 + x2 − 2δεx cos 2θ

)
(4.33)

and where symbols dd1, dd2 and dd3 denote principal deviatoric strain-rates components

(that is, ddi = di − dm with i ∈ {1, 2, 3}).

In order to ensure positive finite values of the local maximum plastic dissipation πs,

the kinematically-admissible strain-rate field d̂ defined by Eqs. (4.26) and (4.27) has to

comply with plastic admissibility conditions introduced in Eqs. (4.18) and (4.19). Owing

to Remark 6, this also ensures boundedness and positiveness of the interface support

function πI , computed via the local trial strain-rate field d̂I = d̂|r=ri . Since requirements

in Eqs. (4.18) and (4.19) are expressed in terms of the absolute values of principal strain-

rates components in Eqs. (4.32), the sign of di (with i ∈ {1, 2, 3}) has to be discussed. To

this aim, reference is made to results provided by Anoukou et al. (2016) and, in particular,

to the following relationship

|d1|+ |d2|+ |d3| = |dm + dd1|+
√

∆ (4.34)

where the local mean deformation rate dm has to be strictly positive, due to admissibility

requirements in Eqs. (4.18) and (4.19). Therefore, depending on the value assumed by

macroscopic strain-rate coefficients ε and δ in Eqs. (4.32) (namely, on the strain-rate

boundary conditions), as well as on parameters ξ and β (namely, on the local strength

criterion), the following cases have to be addressed in order to explicitly formulate plastic

admissibility conditions in Eqs. (4.18) and (4.19).

Case A TXCD with C0 > 0 (that is, ε = +1 and δ = −1).

Owing to Eqs. (4.32), the principal deviatoric strain-rate component dd1 = d1 − dm is

strictly positive and equal to

dd1 =
Deq

2
(1 + x) (4.35)

resulting in strictly positive values of quantity (dm + dd1) in Eq. (4.34).

Thereby, by replacing Eqs. (4.30) and (4.35) into Eq. (4.34), plastic admissibility con-



“tesi” — 2016/12/22 — 9:44 — page 131 — #143

Chapter 4. Limit analysis and homogenization under axisymmetric loadings 131

ditions in Eqs. (4.18) and (4.19) read as

dm ≥ η1 (dd1 +
√

∆) (4.36)

with

∆ =
9

4
D2

eq

(
1 + x2 + 2x cos 2θ

)
(4.37)

and

η1(ξ, β) =





1

(cβ +
√

3sβ)ξ
if (ξ, β) ∈ (M⊕O)

1

2(cβξ − 1)
if (ξ, β) ∈ N

(4.38)

sets M, N and O being introduced as

M = {(ξ, β) s.t. (ξ∗ ≤ ξ ≤ ξ∗∗ , 0 ≤ β < 1)} (4.39a)

N = {(ξ, β) s.t. (ξ ≥ ξ∗∗ , 0 ≤ β < 1)} (4.39b)

O = {(ξ, β) s.t. (ξ ≥ ξ∗ , 1 ≤ β ≤ 2)} (4.39c)

Case B TXED with C0 > 0 (that is, ε = +1 and δ = +1).

The principal deviatoric strain-rate component dd1 is equal to

dd1 =
Deq

2
(x− 1) (4.40)

and quantity (dm + dd1) in Eq. (4.34) may assume positive or negative values:

{
dm + dd1 > 0 if α(1− ω̃) < x < 1 or x > 1

dm + dd1 < 0 if 0 < x < α(1− ω̃)
(4.41)

It is worth observing that it is difficult to provide a precise delimitation on the vari-

able x satisfying relationships (4.41), since quantity ω̃ depends on strain-rate boundary

conditions as well as on local-strength-criterion parameters. Nevertheless, due to the pos-

itiveness of x, quantity ω̃ has to be lower than 1, resulting in α(1− ω̃) < α. By adopting

the same approximation introduced by Anoukou et al. (2016), proven to be effective in

the case of porous materials with a Mohr-Coulomb local plastic behaviour, inequalities

α(1 − ω̃) < x < 1 and x < α(1 − ω̃) are respectively replaced by α < x < 1 and x < α.

Accordingly, plastic admissibility conditions in Eqs. (4.18) and (4.19) reduce to

dm ≥





η2 (−dd1 +
√

∆) if 0 < x < α

η1 (dd1 +
√

∆) if α < x < 1

η1 (dd1 +
√

∆) if x > 1

(4.42)

with

∆ =
9

4
D2

eq

(
1 + x2 − 2x cos 2θ

)
(4.43)
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and where η1 reads as in Eq. (4.38), and η2 is equal to

η2 =





1

2 + (cβ +
√

3sβ)ξ
if (ξ, β) ∈ (M⊕O)

1

2cβξ
if (ξ, β) ∈ N

(4.44)

Case C TXED with C0 < 0 (that is, ε = −1 and δ = +1).

The principal deviatoric strain-rate component dd1 is strictly negative and it is equal to

dd1 = −Deq

2
(1 + x) (4.45)

Accordingly, using the same approximation strategy involving parameter ω̃ and enforced

in Case B, quantity (dm + dd1) assumes negative values everywhere in the hollow sphere,

thereby resulting in the following plastic admissibility condition

dm ≥ η2 (−dd1 +
√

∆) (4.46)

with

∆ =
9

4
D2

eq

(
1 + x2 + 2x cos 2θ

)
(4.47)

and where η2 reads as in Eq. (4.44).

Case D TXCD with C0 < 0 (that is, ε = −1 and δ = −1).

The principal deviatoric strain-rate component dd1 is equal to

dd1 =
Deq

2
(1− x) (4.48)

and quantity (dm + dd1) in Eq. (4.34) may assume positive or negative values, as in the

Case B. However, by adopting the same approximation strategy involving ω̃, Eqs. (4.18)

and (4.19) lead to

dm ≥





η1 (dd1 +
√

∆) if 0 < x < 1

η1 (dd1 +
√

∆) if 1 < x < α

η2 (−dd1 +
√

∆) if x > α

(4.49)

with

∆ =
9

4
D2

eq

(
1 + x2 − 2x cos 2θ

)
(4.50)

η1 and η2 being expressed as in Eqs. (4.38) and (4.44), respectively.

Remark 7 Conditions x = α and x = 1 have not been addressed in previous Cases B

and D. They will be detailed in Section 4.5.1 and in 4.A.

4.5 Macroscopic yield criterion

The trial velocity field in Eq. (4.25) and the corresponding strain-rate state (d̂, d̂I) ∈ Kd

are expressed in terms of constant parameters C0, C1, and C2, which have to comply
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with kinematic admissibility requirements in Eqs. (4.27). By combining these latter with

macroscopic strain-rate invariants in Eqs. (4.28a) and (4.28b), constants C1 and C2 are

recast as

C1 = Dm − C0 −
Deq

2δ
, C2 = Dm − C0 +

Deq

δ
(4.51)

Consequently, the estimate Π̂ in Eq. (4.10) of the macroscopic support function, com-

puted via (d̂, d̂I) ∈ Kd and under plastic admissibility conditions in Eqs. (4.36), (4.42),

(4.46) and (4.49), depends on C0. Since this latter has not to comply with any specific

requirement, it can be considered as a free parameter, thereby allowing for a certain op-

timization in the determination of the macroscopic strength criterion. As a consequence,

due to Eqs. (4.25) and (4.51), a class V ⊆ BCv of kinematically-admissible velocity fields

is defined as

V = span {v̂0}+ {v̂1} (4.52)

where

v̂0 =

[(
Re

r

)3α

− 1

]
(ρeρ + zez)

v̂1 =

(
Dm −

Deq

2δ

)
ρeρ +

(
Dm +

Deq

δ

)
zez

(4.53)

Accordingly and since Remark 6, denoting as Σ̃c the sought macroscopic strength

estimate related to the estimate Π̃ in Eq. (4.12), the following inequality-constrained min-

imization problem P is introduced

P :





min
v̂∈V

[
Π̂− (3Σ̃c

mDm + Σ̃c
eqDeq)

]
in Ωs ∪ ∂Ωi

dm ≥ η±
(
± dd1 +

√
∆
)

in Ωs ∪ ∂Ωi

(4.54)

with Σ̃c
m = tr Σ̃c/3 and Σ̃eq =

√
3J̃Σ

2 (J̃Σ
2 = tr Σ̃2

d/2 being the macroscopic second-order

deviatoric stress invariant, with Σ̃d = Σ̃−Σ̃c
m1) and where the sign plus (with η+ = η1) or

minus (with η− = η2) applies depending on the value assumed by strain-rate parameters

δ and ε, that is depending on cases A, B, C and D introduced in Section 4.4.2.

Rigorously, the plastic admissibility condition in Eq. (4.54) should be point-wise ver-

ified by strain-rate states (d̂, d̂I) ∈ Kd computed via v̂ ∈ V, in order to ensure the

boundedness of local maximum plastic dissipations at each material point. However,

the spatial dependence of plastic requirements in Eqs. (4.36), (4.42), (4.46) and (4.49)

introduces a major difficulty in the resolution of problem P, preventing the explicit de-

termination of closed-form relationships for strength estimates Σ̃c
m and Σ̃c

eq. Therefore,

in agreement with modelling approaches proposed by Guo et al. (2008) and Anoukou et

al. (2016) for porous materials with Drucker-Prager and Mohr-Coulomb plastic matrices,

local plastic admissibility conditions are herein reformulated in an average sense, resulting
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in the following auxiliary problem

P∗ :





min
v̂∈V

[
Π̂− (3Σ̃c

mDm + Σ̃c
eqDeq)

]
in Ωs ∪ ∂Ωi

〈dm〉 ≥ H in Ωs ∪ ∂Ωi

(4.55)

with

H = η±
〈
± dd1 +

√
∆
〉

(4.56)

The latter can be solved via the Lagrangian method for inequality-constrained op-

timizations, that is via Karush-Kuhn-Tucker (KKT) conditions. Since Eq. (4.28a), the

Lagrangian function L associated to problem P∗ can be introduced as

L = −Π̂ + 3Σ̃c
m(C0 +Dhom

m ) + Σ̃c
eqDeq + λ (〈dm〉 − H) (4.57)

where λ is the Lagrange-KKT multiplier associated to the average plastic admissibility

condition 〈dm〉 ≥ H, and where, owing to Eqs. (4.10), (4.18) and (4.19), the estimate Π̂

is equal to

Π̂ = 3hξ
[
〈dm〉+ 3fκ

〈
dIm
〉
I
]

(4.58)

the dimensionless parameter κ being defined as

κ =
hI

Rih
(4.59)

accounting for the influence of void-size effects (Dormieux and Kondo, 2010; Brach et al.,

2016b). As a matter of fact, an increase in κ corresponds, for a fixed value of the matrix

strength parameter h, to an increase in the ratio hI/Ri, that is to a reduction in the void

size Ri. Moreover, the case of negligible interface effects (namely, for porous materials

characterized by large values of Ri) can be addressed by considering κ→ 0+.

The following problem is thereby introduced.

Problem 6 Find {C0, D
hom
m , Deq, λ} such that

◦ Stationarity conditions:
∂L
∂C0

= 0 ,
∂L

∂Dhom
m

= 0 ,
∂L
∂Deq

= 0 (4.60a)

◦ Primal feasibility:
∂L
∂λ
≥ 0 ⇔ 〈dm〉 ≥ H (4.60b)

◦ Dual feasibility: λ ≥ 0 (4.60c)

◦ Complementary slackness: λ (〈dm〉 − H) = 0 (4.60d)

Nevertheless, aiming to determine the macroscopic yield function G̃ (Σ̃c), the full

resolution of Problem 6 in terms of the macroscopic strain-rate parameters C0, Dhom
m

and Deq, and of the Lagrange-KKT multiplier λ is not mandatory. As a matter of fact,

KKT conditions in Eqs. (4.60) can be directly used to compute (Σ̃c
m, Σ̃

c
eq, λ), by enforcing

function G̃ (Σ̃c) to describe physically-consistent macroscopic strength states.

In detail, owing to dual feasibility, two study cases have to be addressed:
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1) λ = 0⇒ 〈dm〉 ≥ H;

2) λ > 0⇒ 〈dm〉 = H;

where primal feasibility condition results from the complementary slackness one. As

regards the first case (that is, λ = 0), by combining Eqs. (4.57) and (4.58), the following

expression is obtained for the Lagrangian function

L = −3hξ
[
〈dm〉+ 3fκ

〈
dIm
〉
I
]

+ 3Σ̃c
m(C0 +Dhom

m ) + Σ̃c
eqDeq (4.61)

where, due to Eq. (4.29), averages of dm and dIm are equal to

〈dm〉 = (1− f)

[
Dhom

m + C0
1− f1−α

1− f

]
(4.62)

〈
dIm
〉
I = Dhom

m + C0
1− α
fα

(4.63)

By computing derivatives of the Lagrangian function (4.61) with respect to macroscopic

strain-rate parameters, stationarity conditions (4.60a) lead to Σ̃c
eq = 0 and to two different

values for Σ̃c
m for any strain-rate boundary condition D, thereby identifying a physically-

inconsistent macroscopic stress state.

Accordingly, the case λ = 0 not allowing for any acceptable solution, the Lagrange-

KKT multiplier λ has to assume strictly positive values in order to comply with the

dual feasibility condition. Therefore, by recasting primal feasibility and complementary

slackness in the form 〈dm〉 = H, the KKT Problem 6 is reformulated as

Problem 7 Find
{

Σ̃c
m, Σ̃

c
eq, λ

}
such that

∂L
∂C0

= 0 ,
∂L

∂Dhom
m

= 0 ,
∂L
∂Deq

= 0 (4.64a)

λ > 0 (4.64b)

〈dm〉 = H (4.64c)

where the Lagrangian function is equal to

L = −3hξ
[
〈dm〉+ 3fκHI

]
+ 3Σ̃c

m(C0 +Dhom
m ) + Σ̃c

eqDeq + λ (〈dm〉 − H) (4.65)

and where

HI = η±
〈
± dId1 +

√
∆|x=xI

〉
I

with xI = x|r=Ri (4.66)

the average plastic admissibility condition on the interface being straight satisfied in its

equality form
〈
dIm
〉
I = HI , since λ > 0.

By replacing Eq. (4.62) into the Lagrangian function in Eq. (4.65), the following expres-
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sions for stationarity conditions in Eq. (4.64a) are obtained

∂L
∂C0

= 3Σ̃c
m + (λ− 3hξ)

(
1− f1−α)− 9hξfκεΨIm − λεΨm = 0 (4.67)

∂L
∂Dhom

m

= 3Σ̃c
m + (λ− 3hξ) (1− f) = 0 (4.68)

∂L
∂Deq

= Σ̃c
eq − 9hξfκΨIeq − λΨeq = 0 (4.69)

where solid matrix (Ψm and Ψeq), and interface (ΨIm and ΨIeq) model functions are defined

as

Ψm = ε
∂H
∂C0

, ΨIm = ε
∂HI
∂C0

(4.70)

Ψeq =
∂H
∂Deq

, ΨIeq =
∂HI
∂Deq

(4.71)

H and HI in Eqs. (4.56) and (4.66) depending on C0 and Deq only (see Eqs. (4.32)).

The Lagrange-KKT multiplier λ is determined by subtracting Eqs. (4.68) to (4.67),

resulting in

λ = 3hξ
f1−α − f − 3fκεΨIm
f1−α − f + εΨm

(4.72)

Moreover, by replacing Eq. (4.72) into stationarity conditions (4.68) and (4.69), the esti-

mate for the macroscopic yield function is obtained as

G̃ (Σ̃c) :





Σ̃c
m

h
= ξε(1− f)

Ψm + 3fκΨIm
f1−α − f + εΨm

Σ̃c
eq

h
= ξ

[
3fκΨIeq +

f1−α − f − 3fκεΨIm
f1−α − f + εΨm

Ψeq

] (4.73)

Accordingly, Eqs. (4.72) and (4.73) identify the unique physically-consistent solution of

the KKT problem in Eqs. (4.64), provided that the dual feasibility condition λ > 0 is

verified or, equivalently, the local strain-rate field complies with primal feasibility and

slackness condition 〈dm〉 = H.

Remark 8 Denoting as Π̃ = Σ̃c : D the macroscopic support function of G̃ in Eq. (4.73),

primal feasibility relationship 〈dm〉 = H corresponds to the macroscopic plastic admissi-

bility condition on Π̃, that is it represents the requirement to be verified for ensuring finite

positive values of macroscopic maximum plastic dissipation.

Remark 9 The strictly-positive Lagrange-KKT multiplier in Eq. (4.72), introduced in

problem (4.55) in order to enforce the average plastic admissibility condition (4.64c),

assumes the physical meaning of strictly-positive plastic multiplier in the macroscopic

normality law

D = λ
∂G̃ (Σ̃c)

∂Σ̃c
(4.74)

In agreement with results provided by Rice (1971), the normality law governing the local
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plastic behaviour is proven to upscale at the macroscopic level.

It is worth noticing that, owing to Eqs. (4.32), solid matrix (Ψm and Ψeq) and interface

(ΨIm and ΨIeq) model functions introduced in Eqs. (4.70) and (4.71) depend on macroscopic

strain-rate parameters ε, ω, and δ. The macroscopic yield function in Eq. (4.73) thereby

results in parametric expressions for Σ̃c
m and Σ̃c

eq, which implicitly account for the de-

pendency on the macroscopic stress Lode angle θ̃Σ (see Benallal et al., 2014), the latter

defined as cos 3θ̃Σ = 3
√

3J̃Σ
2 /[2(J̃Σ

2 )3/2] with J̃Σ
3 = tr Σ̃3

d/3 the third-order deviatoric

stress invariant.

4.5.1 Solid matrix and interface model functions

In order to compute the plastic multiplier and the macroscopic yield criterion in Eqs. (4.72)

and (4.73), solid matrix (Ψm and Ψeq) and interface (ΨIm and ΨIeq) model functions have

to be explicitly determined. Owing to Eqs. (4.70) and (4.71), this corresponds to compute

derivatives of functions H and HI with respect to macroscopic strain-rate parameters C0

and Deq.

The change of variable r = Re ωx
−3α (see Eq. (4.31)) is adopted to recast Ω- and ∂Ωi-

based averages in Eqs. (4.56) and (4.66) in terms of the macroscopic strain-rate triaxiality

measure ω, the latter depending on parameters C0 and Deq. Functions H and HI thereby

result in

H =
Deq

4α
ω1/αJ (ω) , HI =

Deq

4
J I(ω) (4.75)

where the closed-form expression for J (ω) coincides with the piece-wise relationship ana-

lytically provided by Anoukou et al. (2016) (see 4.A), and where function J I(ω) is equal

to

J I(ω) = η± Υ(ω)|x=xI (4.76)

Υ(ω) being defined as

Υ(ω) =

∫ π

0

ι(θ) sin θ dθ , with ι =
2

Deq

(
± dd1 +

√
∆
)

(4.77)

Therefore, by denoting as J ′ (resp., J I′) the first-order derivative of function J (resp.,

J I) with respect to ω, solid matrix and interface model functions can be obtained, via

Eqs. (4.70) and (4.71), from the following relationships

∂H
∂C0

=
ω1/α−1

2ε

[
1

α
(J + `m) + ωJ ′

]
(4.78a)

∂H
∂Deq

=
ω1/α

4α

[
α− 1

α
(J + `eq)− ωJ ′

]
(4.78b)

∂HI
∂C0

=
α

2ε
J I′ + `Im (4.78c)

∂HI
∂Deq

=
1

4

(
J I − ωJ I′

)
+ `Ieq (4.78d)

where constant parameters `m, `eq, `Im and `Ieq have been introduced (as detailed in
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4.A) in order to ensure the continuity of the macroscopic yield function in Eq. (4.73) for

any value of the strain-rate triaxiality measure ω. It is worth pointing out that, since

admissibility conditions are piece-wise defined with respect to x (namely, with respect to

ω), the continuity of the macroscopic yield function G̃ could be not straight satisfied.

With the aim to furnish explicit relationships for functions J and J I in derivatives

(4.78), study cases introduced in Section 4.4.2 have to be separately addressed, depending

on the sign of the principal deviatoric strain-rate component dd1 (that is, on the value

assumed for strain-rate parameters ε and δ). For the sake of compactness, corresponding

analytical details and resulting expressions for J and J I are reported in 4.A.

4.5.2 Relationships among macroscopic strain-rate and stress invariants

Closed-form relationships provided for J (ω) and J I(ω) allow to compute in a piece-

wise fashion derivatives of functions H and HI in Eqs. (4.78), by separately addressing

strain-rate loading conditions described via parameters ε = sgnC0 and δ = sgn JD
3 . There-

fore, owing to Eqs. (4.70) and (4.71), piece-wise defined model functions Ψm(ω), Ψeq(ω),

ΨIm(ω) and ΨIeq(ω) straight deliver parametric expressions for Σ̃c
m and Σ̃c

eq in Eq. (4.73),

formulated in terms of the macroscopic strain-rate triaxiality measure ω only. Such an

occurrence is due to the introduction of Cases A, B, C and D in Section 4.4.2, allowing

to explicitly address the parametric dependence of the predicted strength state (Σ̃c
m, Σ̃

c
eq)

on both the macroscopic strain-rate Lode angle (i.e., θD = 0 or θD = π/3) and the sign

of the heterogeneous mean deformation rate C0.

Accordingly, in order to clearly formulate relationships between the strain-rate loading

condition (ε, δ, ω) and the resulting macroscopic strength state (Σ̃c
m, Σ̃

c
eq), the parametric

form of the proposed macroscopic yield function has to be carefully analysed.

Since the local plastic behaviour is isotropic and due to the spherical symmetry of the

reference cell in Fig. 4.1, the estimate Π̃ of the macroscopic support function depends only

on isotropic strain-rate invariants Dm, Deq and θD introduced in Eqs. (4.28). Thereby,

the estimate Σ̃c of the limit stress Σc reads as

Σ̃c =
∂Π̃

∂D
=

1

3

∂Π̃

∂Dm
1 +

2

3Deq

∂Π̃

∂Deq
Dd +

∂Π̃

∂θD

∂θD

∂Dd
(4.79)

where, for symmetry reasons (e.g., Lemarchand et al., 2015), function Π̃ has to comply

with ∂Π̃/∂θD = 0 at θD = 0 (i.e., for δ = 1) and at θD = π/3 (i.e., for δ = −1).

Moreover, since the strain-rate boundary conditions expressed in Eq. (4.1), the isotropy

of the macroscopic constitutive law in Eq. (4.79) yields

Σ̃c = Σ̃ρ(eρ ⊗ eρ + eϕ ⊗ eϕ) + Σ̃zez ⊗ ez (4.80)

resulting in

Σ̃c
eq = δΣ̃

(
Σ̃z − Σ̃ρ

)
, θ̃Σ =

1

3
arccos

(
δΣ̃
)

(4.81)

with δΣ̃ = sgn(Σ̃z − Σ̃ρ). Therefore, by introducing the macroscopic generalised plain
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strain-rate Dgps = −Deq/δ and plane stress Σ̃c
gps = −Σ̃c

eq/δΣ̃ invariants (e.g., Pastor et

al., 2004; Thoré et al., 2011), Eq. (4.79) provides the following constitutive relationship

Σ̃c
gps =

∂Π̃

∂Deq

∂Deq

∂Dgps
= −δ Σ̃c

eq (4.82)

which straight results in δΣ̃ = δ, that is (see also Benallal et al., 2014)

θ̃Σ = θD (4.83)

Consequently, macroscopic triaxial-expansion TXED and compression TXCD strain-rate

loading conditions respectively correspond to macroscopic triaxial-expansion TXEΣ̃ (i.e.,

θ̃Σ = 0) and compression TXCΣ̃ (i.e., θ̃Σ = π/3) yield stress states.

Furthermore, by computing derivatives in Eqs. (4.78) via relationships provided in

4.A for J (ω) and J I(ω), solid matrix and interface model functions in Eqs. (4.70) and

(4.71) result to be positive-defined for any value of ω. Accordingly, due to the strictly

positiveness of the plastic multiplier in Eq. (4.72), the parametric expression of Σ̃c
m in

Eq. (4.73) yields

sgn Σ̃c
m = ε (4.84)

Macroscopic strain-rate states in Eq. (4.1) with positive (resp., negative) heterogeneous

mean deformation rates Dm−Dhom
m = C0 (see Eq. (4.28a)) thereby correspond to macro-

scopic yield stress states in Eq. (4.73) with tensile (resp., compressive) hydrostatic parts.

Finally, by replacing Eqs. (4.29) and (4.75) into the macroscopic plastic admissibility

condition 〈dm〉 = H, the following relationship is obtained

(1− f)Dm + C0

(
f − f1−α) =

Deq

4α
ω1/αJ (ω) (4.85)

that is, owing to Eqs. (4.28) and (4.31),

(1− f)Dm +
Deqω

4α

[
2

ε

(
f − f1−α)− ω1/α−1J (ω)

]
= 0 (4.86)

which is continuous in ω for any choice of strain-rate parameters ε and δ, since function

J (ω) is continuous. Equation (4.86) proves that the strain-rate triaxiality measure ω

allows to range from pure deviatoric (i.e., D s.t. Dm = 0) to pure hydrostatic (i.e., D

s.t. Deq = 0) macroscopic strain-rate boundary conditions, when ω is varied from zero to

infinity.

Accordingly, owing to Eqs. (4.83) and (4.84), model functions obtained in 4.A, by

separately addressing TXED and TXCD strain rates with ε = ±1, allow to determine

macroscopic triaxial-expansion (Cases B and C) and triaxial-compression (Cases A and

D) strength states (Σ̃c
m, Σ̃

c
eq), with a tensile (Cases A and B) or compressive (Cases C

and D) hydrostatic part Σ̃c
m.
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4.5.3 On the positiveness of the macroscopic plastic multiplier

As previously stated, the plastic multiplier λ and the macroscopic yield function G̃(Σ̃c) in

Eqs. (4.72) and (4.73) identify the unique physically-consistent solution of the constrained

minimization problem in Eqs. (4.64), under the requirement λ > 0.

Since solid matrix and interface model functions Ψm and ΨIm are continuous and

positive-defined for any value of ω ∈ (0,+∞), following study cases have to be addressed

depending on the strain-rate parameter ε.

Cases A–B TXCD and TXED with C0 > 0 (that is, ε = +1 and δ = ∓1).

By computing Eq. (4.72) for ε = +1, the macroscopic plastic multiplier reads as

λ|ε=+1 = 3hξ
f1−α − f − 3fκΨIm|ε=+1

f1−α − f + Ψm|ε=+1
(4.87)

where the exponent α of the heterogeneous velocity field is such that 0 < α < 1, and

where f1−α − f > 0 for any value of α.

When interface effects are considered as negligible (that is, for κ → 0+), the plastic

multiplier in Eq. (4.87) results to be strictly positive-defined on the interval ω ∈ (0,+∞),

without any further consistency condition being required. This is the case of the Mohr-

Coulomb hollow-sphere model proposed by Anoukou et al. (2016) for classical porous

materials.

On the other hand, when interface effects are taken into account (that is, for κ > 0),

since the interface model function ΨIm assumes its maximum value for ω → +∞ (see 4.A),

the consistency requirement λ > 0 for any value of ω leads to

κ <
f1−α − f

3fΨIm
≤ f1−α − f

3f lim
ω→+∞
ε=1
δ=±1

ΨIm
=

f1−α − f
12αη1f1−α = κ̂ (4.88)

thereby straight resulting in an upper limit for the void-size parameter κ, that is κ ∈ [0, κ̂).

Such a result is analysed in Figs. 4.3a and 4.3b, wherein κ̂ is computed as a function of

model parameters ξ and β, and for different values of porosity f , when local plastic

behaviours with (ξ, β) ∈ N and (ξ, β) ∈ O are respectively addressed (see Eqs. (4.39b)

and (4.39c)). In detail, for a given choice of parameters ξ and β, the upper-limit value

κ̂ is shown to increase when porosity f reduces. Moreover, when ξ and f are considered

as fixed, an increase in β corresponds to an increase of κ̂, such an occurrence being

emphasized in the case of a local yield function with (ξ, β) ∈ N . Finally, for given values

of β and f , decreasing ξ results in a reduction of the upper-limit value κ̂.

Cases C–D TXED and TXCD with C0 < 0 (that is, ε = −1 and δ = ±1).

By computing Eq. (4.72) for ε = −1, the macroscopic plastic multiplier reads as

λ|ε=−1 = 3hξ
f1−α − f + 3fκΨIm|ε=−1

f1−α − f −Ψm|ε=−1
(4.89)
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where α > 1 and f1−α − f > 0.

Since the solid matrix model function Ψm assumes its maximum value for ω → +∞,

the consistency requirement on the strictly positiveness of the macroscopic plastic multi-

plier in Eq. (4.89) results in

f1−α − f − lim
ω→+∞
ε=−1
δ=±1

Ψm > 0 , with lim
ω→+∞
ε=−1
δ=±1

Ψm =
4αη2

1− α
(
1− f1−α) (4.90)

Therefore, by replacing η2 in Eq. (4.44) into Eq. (4.90), the plastic multiplier in Eq. (4.89)

results to be strictly positive

• for any local plastic behaviour such that (ξ, β) ∈M (see Eq. (4.39a)), provided that

following relationship is verified

2

Ξ−
− f

ξ∗
− f

Ξ−

Ξ−−ξ

ξ∗∗
+
f

Ξ−

Ξ−−ξ − f
ξ

> 0 (4.91)

with Ξ− = Ξ|ε=−1 and f
Ξ−

Ξ−−ξ − f > 0, and where, as shown in Fig. 4.4, parameters

Ξ−, ξ∗ and ξ∗∗ assume strictly positive values over the interval β ∈ [0, 1);

• for any local plastic behaviour such that (ξ, β) ∈ N (see Eq. (4.39b)). This is the

case of the Mohr-Coulomb hollow-sphere model proposed by Anoukou et al. (2016)

for porous materials, which is recovered as a special case of the general yield function

in Eqs. (4.14) to (4.16) by setting parameters ξ and β as in Table 4.1;

• for any local plastic behaviour such that (ξ, β) ∈ O (see Eq. (4.39c)). As a matter

of fact, since ξ∗∗ assumes negative values for β ∈ (1, 2] and ξ∗∗ → −∞ for β → 1+

(Fig. 4.4), relationship (4.91) reads as

2

Ξ−
− f

ξ∗
+
f

Ξ−

Ξ−−ξ

|ξ∗∗| +
f

Ξ−

Ξ−−ξ − f
ξ

> 0 (4.92)

which results to be verified for any value of (ξ, β) ∈ O and f , since 2/Ξ− > f/ξ∗.

Accordingly, within the domain of definition of the void-size parameter κ ∈ [0, κ̂) and

taking into account the consistency condition in Eq. (4.91) for local yield functions with

(ξ, β) ∈ M, the macroscopic plastic multiplier λ in Eq. (4.72) results to be strictly posi-

tive. This straight corresponds to verify dual feasibility in Eq. (4.64b), as well as primal

feasibility and slackness requirements in Eq. (4.64c). Thereby, the macroscopic plastic

admissibility condition 〈dm〉 = H being satisfied (see Remark 8), the macroscopic yield

function G̃(Σ̃c) in Eq. (4.73) identifies the unique acceptable solution of the inequality-

constrained minimization problem P∗.
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Figure 4.3 – Hollow sphere with interface effects. Upper-limit void-size parameter κ̂ as a function
of β, and for different values of ξ and f . (a) (ξ, β) ∈ N (see Eq. (4.39b)). (b) (ξ, β) ∈ O (see
Eq. (4.39c)).
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Figure 4.4 – Model parameters Ξ− = Ξ|ε=−1, Ξ+ = Ξ|ε=+1, ξ∗ and ξ∗∗ defined in Section 4.3
versus β.

4.6 Macroscopic hydrostatic and deviatoric strength stresses

As a particular case of strength estimates provided by the parametric yield function in

Eq. (4.73), macroscopic deviatoric (that is, Σ̃c s.t. Σ̃c
m = 0) and hydrostatic (that is, Σ̃c

s.t. Σ̃c
eq = 0) stress states are explicitly determined in the following by computing model

functions in Eqs. (4.70) and (4.71) in the limits ω → 0+ and ω → +∞, respectively.

4.6.1 Deviatoric triaxial-espansion or compression strength stress states

The hollow-sphere reference domain is assumed to undergo pure deviatoric TXED (that

is, δ = +1, in Cases B and C) or TXCD (that is, δ = −1, in Cases A and D) strain-rate

boundary conditions.

Owing to relationships provided for J (ω) and J I(ω) in 4.A, model functions result

at ω → 0+ in

lim
ω→0+

ε=±1
δ=1

Ψm = lim
ω→0+

ε=±1
δ=1

ΨIm = 0 , lim
ω→0+

ε=±1
δ=−1

Ψm = lim
ω→0+

ε=±1
δ=−1

ΨIm = 0 (4.93)

lim
ω→0+

ε=±1
δ=1

Ψeq = 2(1− f)η2 , lim
ω→0+

ε=±1
δ=−1

Ψeq = 2(1− f)η1 (4.94)

lim
ω→0+

ε=±1
δ=1

ΨIeq = 2η2 , lim
ω→0+

ε=±1
δ=−1

ΨIeq = 2η1 (4.95)

where Eqs. (4.93) yield Σ̃c
m = 0 for δ = ±1. Moreover, by replacing η1 in Eq. (4.38)

and η2 in Eq. (4.44) into Eqs. (4.94) and (4.95), relationships summarised in Table 4.2

are obtained for corresponding values of model functions Ψeq and ΨIeq, as well as for the



“tesi” — 2016/12/22 — 9:44 — page 144 — #156

144 Chapter 4. Limit analysis and homogenization under axisymmetric loadings

Table 4.2 – Hollow-sphere model with interface effects, under pure deviatoric strain-rate boundary
conditions (ω → 0+) with δ = ±1. Corresponding values of solid matrix and interface model
functions Ψm, ΨIm, Ψeq and ΨIeq in Eqs. (4.70) and (4.71), as well as of the macroscopic deviatoric

stress Σ̃c
eq in Eq. (4.73), depending on the local plastic behaviour (see Eqs. (4.39)).

(ξ, β) ∈ (M⊕O) (ξ, β) ∈ N

δ = 1

TXED

lim
ω→0+

ε=±1

Ψeq =
1− f

1 + ξ sin
(
βπ
6 + π

6

) ,

lim
ω→0+

ε=±1

ΨIeq =
1

1 + ξ sin
(
βπ
6 + π

6

) ,

lim
ω→0+

ε=±1

Σ̃c
eq

h
=

3ξ(1− f + 3fκ)

1 + ξ sin
(
βπ
6 + π

6

) ,

lim
ω→0+

ε=±1

Ψeq =
1− f
ξ cos βπ6

lim
ω→0+

ε=±1

ΨIeq =
1

ξ cos βπ6

lim
ω→0+

ε=±1

Σ̃c
eq

h
=

3 (1− f + 3fκ)

cos βπ6

δ = −1

TXCD

lim
ω→0+

ε=±1

Ψeq =
1− f

ξ sin
(
βπ
6 + π

6

) ,

lim
ω→0+

ε=±1

ΨIeq =
1

ξ sin
(
βπ
6 + π

6

) ,

lim
ω→0+

ε=±1

Σ̃c
eq

h
=

3(1− f + 3fκ)

sin
(
βπ
6 + π

6

) ,

lim
ω→0+

ε=±1

Ψeq =
1− f

ξ cos βπ6 − 1

lim
ω→0+

ε=±1

ΨIeq =
1

ξ cos βπ6 − 1

lim
ω→0+

ε=±1

Σ̃c
eq

h
=

3ξ (1− f + 3fκ)

ξ cos βπ6 − 1

macroscopic deviatoric strength Σ̃c
eq.

In detail, it is observed that, for pressure-independent local yield functions (that is, for

ξ → +∞, as in the case of a Tresca criterion), the deviatoric strength Σ̃c
eq does not depend

on the stress Lode angle θ̃Σ = θD, resulting in the same value for TXEΣ̃ and TXCΣ̃ stress

states. On the contrary, when pressure-sensitive yield criteria are considered (that is, for

ξ < +∞, as in Mohr-Coulomb), different macroscopic strength estimates are obtained for

TXEΣ̃ and TXCΣ̃ stress states, as a result of the combined influence of the first Iσ1 and

of the third-order deviatoric Jσ3 stress invariants on the local plastic behaviour.

4.6.2 Hydrostatic tensile or compressive strength stress states

Pure hydrostatic strain-rate boundary conditions with ε = +1 (that is, Cases A and B)

or with ε = −1 (that is, Cases C and D) are considered. Owing to results provided in

4.A, model functions in Eqs. (4.70) and (4.71), and computed for ω → +∞, read as

lim
ω→+∞
ε=1
δ=±1

Ψm =
4αη1

1− α
(
1− f1−α) , lim

ω→+∞
ε=−1
δ=±1

=
4αη2

1− α
(
1− f1−α) (4.96)

lim
ω→+∞
ε=1
δ=±1

ΨIm =
4αη1

fα
, lim

ω→+∞
ε=−1
δ=±1

ΨIm =
4αη2

fα
(4.97)

lim
ω→+∞
ε=1
δ=±1

Ψeq = lim
ω→+∞
ε=1
δ=±1

ΨIeq = 0 , lim
ω→+∞
ε=−1
δ=±1

Ψeq = lim
ω→+∞
ε=−1
δ=±1

ΨIeq = 0 (4.98)
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where, since 0 < α < 1 (resp., α > 1) for ε = +1 (resp., ε = −1), both Ψm and ΨIm
assume positive values. Relationships in Eq. (4.98) straight provide Σ̃c

eq = 0. Moreover,

by replacing η1 in Eq. (4.38) and η2 in Eq. (4.44) into Eqs. (4.96) and (4.97), expressions

summarised in Tables 4.3 and 4.4 are obtained for model functions Ψm and ΨIm at ω →
+∞, as well as for the macroscopic hydrostatic tensile (for ε = +1) and compressive (for

ε = −1) strength Σ̃c
m.

As particular cases, proposed results recover the exact macroscopic limit stress pro-

vided by Brach et al. (2016b) for nanoporous materials with a Mohr-Coulomb (MC)

or a Tresca (Tr) local plastic behaviour. As a matter of fact, simply by setting model

parameters ξ and β as shown in Table 4.1, following relationships are obtained for the

macroscopic hydrostatic strength

Σc, MC
m = c cotφ

[
1−

(
1− 4κ sinφ

sinφ+ ε

)
f

4 sinφ
3(sinφ+ε)

]
(4.99)

Σc, Tr
m = 2σ0ε

(
κ− ln f

1
3

)
(4.100)

where φ, c and σ0 denote the friction angle, the cohesion parameter and the deviatoric

strength, respectively. Moreover, when interface effects are disregarded (that is, for κ→
0+), Eqs. (4.99) and (4.100) recover expressions obtained by Thoré et al. (2009) and

Cazacu et al. (2014) for Mohr-Coulomb and Tresca classical porous materials, respectively.

On the other hand, in the case of a general local plastic behaviour (that is, for any

choice of ξ and β complying with consistency conditions in Sections 4.3 and 4.5.3), results

in Tables 4.3 and 4.4 do not retrieve, for both ε = −1 and ε = +1, the exact macroscopic

hydrostatic yield stress provided by Brach et al. (2016b), that is

Σc
m

h
= ξ

[
1− f

Ξ
Ξ−ξ

(
1− 3Ξκ

Ξ− ξ

)]
(4.101)

where function Ξ is defined as in Eq. (4.24). In detail, depending on local-yield-function

parameters ξ and β, the proposed strength estimate Σ̃c
m coincides with the exact value

Σc
m in Eq. (4.101) only when

• ε = +1 and (ξ, β) ∈ (M⊕O) (see Table 4.3);

• ε = −1 and (ξ, β) ∈ N (see Table 4.4).

Therefore, although the heterogeneous trial velocity in Eq. (4.23) is the exact velocity

field at the limit state for the hollow-sphere model under isotropic loadings (see Brach

et al., 2016b), the proposed approach allows to recover only one between tensile and

compressive hydrostatic stresses in Eq. (4.101), thereby leading only to an estimate for

the corresponding exact value of the other one. Such an occurrence has to be related to

the adopted macroscopic plastic admissibility condition 〈dm〉 = H, resulting from KKT

primal feasibility in the inequality-constrained minimization problem P∗ (see Eq. (4.55)).

As a matter of fact, with respect to standard kinematic limit analyses for porous

materials with pressure-independent plastic matrices (e.g., Cazacu et al., 2014; Gurson,
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1977), the herein-assumed trial velocity field in Eq. (4.22) does not verify a priori plastic

admissibility conditions, which consequently have to be explicitly addressed in the ana-

lytical derivation of the macroscopic yield criterion. In agreement with results provided

by Guo et al. (2008) and Anoukou et al. (2016) for pressure-dependent yield functions, lo-

cal admissibility conditions, expressed in terms of point-wise inequalities in Eqs. (4.18) to

(4.21), have been reformulated in an average sense, thereby resulting in the macroscopic

plastic requirement 〈dm〉 ≥ H. Moreover, by enforcing the solution of the KKT problem

P∗ to be physically-consistent, the macroscopic plastic admissibility condition 〈dm〉 = H
has been obtained. Therefore, by replacing point-wise inequalities in Eqs. (4.18) to (4.21)

with the average equality 〈dm〉 = H, a limited selection of plastic admissible strain-rate

states has been introduced, excluding some of those obtained from the heterogeneous

trial velocity field in Eq. (4.23), and thereby leading to macroscopic hydrostatic strength

estimates which may not correspond to the exact value in Eq. (4.101).

Accordingly, in order to elucidate the importance of plastic admissibility in the present

approach, as well as its influence on proposed results, local plastic requirements in Eqs. (4.18)

to (4.21) are carefully addressed in the following, by highlighting whether they are verified

in their equality or inequality form.

To this end, and with reference to the case of isotropic strain-rate boundary loadings,

let the strain-rate field d̂ = drer ⊗ er + dθ(eθ ⊗ eθ + eϕ ⊗ eϕ), solution of the limit-state

problem for a Bigoni-like hollow sphere, be introduced as

dr(r) = 2

(
1 +

2ξ

Ξ

)
C0 r

3ξ
Ξ−ξ (4.102)

dθ(r) = 2

(
1− ξ

Ξ

)
C0 r

3ξ
Ξ−ξ (4.103)

which has been established by Brach et al. (2016b) from the heterogeneous velocity field

in Eq. (4.23). Depending on the sign assumed by strain-rate components in Eqs. (4.102)

and (4.103), following cases have to be addressed in order to determine absolute values

in Eqs. (4.18) and (4.19).

Cases A–B TXCD and TXED with C0 > 0 (that is, ε = +1 and δ = ∓1)

Owing to the definition of function Ξ(ε) in Eq. (4.24), strain-rate components in Eqs. (4.102)

and (4.103) can be expressed as

dr(r) =
[
2−

(
cβ +

√
3sβ

)
ξ
]
C0 r

− 3(cβ+
√

3sβ)ξ

4+(cβ+
√

3sβ)ξ (4.104)

dθ(r) =
1

2

[
4 +

(
cβ +

√
3sβ

)
ξ
]
C0 r

− 3(cβ+
√

3sβ)ξ

4+(cβ+
√

3sβ)ξ (4.105)

resulting in the mean deformation rate

dm(r) = 2C0 r
− 3(cβ+

√
3sβ)ξ

4+(cβ+
√

3sβ)ξ (4.106)
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Since cβ > 0 and sβ ≥ 0, the strain-rate component dθ in Eq. (4.105) is strictly positive.

Moreover, under the previously-introduced assumption ξ > |Ξ+| (see Section 4.4, with

Ξ+ = Ξ|ε=+1), it results from Fig. 4.4 that ξ > ξ∗ (with ξ∗ defined as in Eq. (4.17)), and

that the radial strain-rate component in Eq. (4.104) assumes strictly negative values.

The sum of moduli of principal strain-rate components is thereby equal to

|d1|+ |d2|+ |d3| = 2
[
1 +

(
cβ +

√
3sβ

)
ξ
]
C0 r

− 3(cβ+
√

3sβ)ξ

4+(cβ+
√

3sβ)ξ (4.107)

Accordingly, depending on the value assumed by local-yield-function parameters ξ and

β, different expressions for plastic admissibility conditions have to be considered:

• 0 ≤ β < 1

– if ξ∗ < ξ < ξ∗∗, plastic admissibility condition in Eq. (4.18) reads as

dm ≥
|d1|+ |d2|+ |d3|
1 + (cβ +

√
3sβ)ξ

(4.108)

which, by combining Eqs. (4.106) and (4.107), results to be verified in its equal-

ity form.

– if ξ ≥ ξ∗∗, plastic admissibility condition in Eq. (4.18) reads as

dm ≥
|d1|+ |d2|+ |d3|

2cβξ − 1
(4.109)

yielding, due to Eqs. (4.106) and (4.107),

ξ ≥ ξ∗∗ (4.110)

which may be verified in both equality and inequality forms.

• 1 ≤ β ≤ 2

plastic admissibility condition in Eq. (4.19) reads as in Eq. (4.108), which results to

be satisfied in its equality form, by combining Eqs. (4.106) and (4.107).

Cases C–D TXED and TXCD with C0 < 0 (that is, ε = −1 and δ = ±1).

Owing to the definition of function Ξ(ε) in Eq. (4.24), strain-rate components (4.102) and

(4.103) read as

dr(r) = 2 (1 + cβξ) C0 r
3cβξ

2−cβξ (4.111)

dθ(r) = (2− cβξ) C0 r
3cβξ

2−cβξ (4.112)

resulting in

dm(r) = 2C0 r
3cβξ

2−cβξ (4.113)
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The radial deformation rate in Eq. (4.111) is strictly positive, since cβ > 0. Moreover,

under the previously-introduced assumption ξ > |Ξ−| = Ξ− (see Section 4.4, with Ξ− =

Ξ|ε=−1), the strain-rate component dθ in Eq. (4.112) assumes strictly negative values.

The sum of moduli of principal strain-rate components is thereby equal to

|d1|+ |d2|+ |d3| = (4 cβξ − 2) C0 r
3cβξ

2−cβξ (4.114)

and the following cases have to addressed:

• 0 ≤ β < 1

– if ξ∗ < ξ < ξ∗∗, plastic admissibility condition in Eq. (4.18) reads as in

Eq. (4.108). The latter yields, by combining Eqs. (4.113) and (4.114),

ξ ≤ ξ∗∗ (4.115)

that is verified in its strictly inequality form, since Ξ− < ξ < ξ∗∗.

– if ξ ≥ ξ∗∗, plastic admissibility condition in Eq. (4.18) reads as in Eq. (4.109).

The latter, by combining Eqs. (4.113) and (4.114), is verified in its equality

form.

• 1 ≤ β ≤ 2

plastic admissibility condition in Eq. (4.19) reads as in Eq. (4.108), resulting in

ξ ≥ ξ∗∗ (4.116)

which is satisfied in its strictly inequality form ξ > Ξ−, since ξ∗∗ assumes negatives

values over the considered interval of β (see 4.4).

Accordingly, previous considerations prove that the proposed macroscopic yield func-

tion (4.73) is able to recover the exact value of tensile and compressive hydrostatic strength

in Eq. (4.101) only if the local plastic admissibility condition is verified in its equality form,

that is when (ξ, β) ∈ N for ε = −1 and when (ξ, β) ∈ (M⊕O) for ε = +1. Moreover,

it is noted that, in the particular case of a Mohr-Coulomb or of a Tresca local strength

criterion, model parameters are such that ξ = ξ∗∗ and β ∈ [0, 1). This allows to verify

local plastic admissibility condition in its equality form for ε = ±1, thereby resulting

in exact values for both tensile and compressive hydrostatic stresses in Eqs. (4.99) and

(4.100).

As shown in Figs. 4.5 and 4.6 for local plastic behaviours with (ξ, β) ∈ N and (ξ, β) ∈
O, respectively, the discrepancy between the exact and the estimated hydrostatic strengths,

as well as on the exponent α of the heterogeneous velocity field in Eq. (4.23), strongly

depend on yield-function parameters ξ and β.

In detail, with reference to the case (ξ, β) ∈ N and for ε = +1, by assuming ξ as

a multiple of ξ∗∗ = ξ∗∗(β), Fig. 4.5a (resp., Fig. 4.5b) shows that the ratio between the

predicted Σ̃c
m and the exact Σc

m tensile strength (resp., the exponent α) decreases when ξ
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increases (resp., decreases), for any value of β ∈ [0, 1). On the other hand, when a local

plastic behaviour (ξ, β) ∈ O is considered, results in Fig. 4.6 for ε = −1 show that, by

assuming ξ as a multiple of Ξ− = Ξ−(β), the ratio between the compressive strengths

Σ̃c
m/Σ

c
m reduces when ξ decreases, for any value of β ∈ [1, 2]. Therefore, for a given choice

of (ξ, β) ∈ N (resp., (ξ, β) ∈ O), the proposed macroscopic yield function underestimates

tensile (resp., compressive) hydrostatic strength, with discrepancy reducing when the

exponent α reduces.

4.7 Comparative illustrations

With the aim to highlight the influence of local plastic behaviour, porosity and void-size

effects on the estimated strength properties, the macroscopic yield function in Eq. (4.73)

is represented in Figs. 4.7 to 4.11, for different values of model parameters ξ, β, f and κ.

For illustrative purposes, in the following reference is made to local yield functions with

(ξ, β) ∈ N and (ξ, β) ∈ O, sets N and O being defined as in Eqs. (4.39). Moreover, aiming

to ensure the strictly positiveness of the macroscopic plastic multiplier in Eq. (4.87), the

void-size coefficient κ is varied within the admissible interval κ ∈ [0, κ̂).

Model parameter ξ is firstly considered as fixed and equal to ξ = 2 ξ∗∗ (resp., ξ = 6 Ξ−)

for local yield functions complying with (ξ, β) ∈ N (resp., with (ξ, β) ∈ O). It is worth

observing that, in agreement with plastic admissibility conditions in Eqs. (4.18) and (4.19),

and since both ξ∗∗ and Ξ− depend on β, such a choice for ξ allows to vary β in the interval

[0, 1) for (ξ, β) ∈ N and in [1, 2] for (ξ, β) ∈ O (see Fig. 4.4).

The case of classical porous materials is considered in Fig. 4.7, by evaluating the

macroscopic yield function in Eq. (4.73) in the limit κ → 0+, that is by neglecting

interface effects. Strength profiles for macroscopic triaxial expansion (i.e., TXEΣ̃ at θ̃Σ =

0) and triaxial compression (i.e., TXCΣ̃ at θ̃Σ = π/3) are represented for different values

of β and f . As expected, results show that macroscopic strength properties tend to reduce

when porosity increases, irrespective of the assumed local plastic behaviour, and for both

TXEΣ̃ and TXCΣ̃ stress states. Furthermore, as a consequence of combined effects of the

first Iσ1 and the third Jσ3 stress invariants on local plastic response, predicted macroscopic

strength properties hugely depend on the macroscopic stress Lode angle θ̃Σ, resulting

higher in TXCΣ̃ than in TXEΣ̃, for any choice of β and f (see also Fig. 4.10). Moreover,

strength profiles are proven to be strongly asymmetric with respect to the deviatoric axis

Σ̃m = 0, leading to higher values of hydrostatic compressive strength than of hydrostatic

tensile ones, such an occurrence being emphasized when porosity f decreases. Results

in Fig. 4.7a (resp., Fig. 4.7b) also highlight that, in the case of a local plastic behaviour

with (ξ, β) ∈ N (resp., with (ξ, β) ∈ O), model parameter β has a strengthening (resp.,

weakening) effect on macroscopic strength properties, resulting in an overall expansion

(resp., contraction) of strength profiles when β increases.

Void-size effects on macroscopic strength properties are depicted in Figs. 4.8 and 4.9,

by considering the porosity f as fixed and for different values of the dimensionless param-

eter κ introduced in Eq. (4.59). Proposed results show that, irrespective of the assumed

local plastic behaviour, a significant improvement of macroscopic strength properties with
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Figure 4.5 – (a) Ratio between the estimated Σ̃c
m and the exact Σc

m macroscopic hydrostatic
tensile strength detailed in Table 4.3 for ε = +1 vs β. (b) Exponent α of the heterogeneous
velocity field in Eq. (4.23) vs β. Curves obtained for different local-yield-function parameters
complying with (ξ, β) ∈ N (i.e., ξ ≥ ξ∗∗ and 0 ≤ β < 1) and for f = 1%.
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Figure 4.6 – Ratio between the estimated Σ̃c
m and the exact Σc

m macroscopic hydrostatic com-
pressive strength detailed in Table 4.3 for ε = −1 vs β (top). Exponent α of the heterogeneous
velocity field in Eq. (4.23) vs ξ/Ξ− (bottom). Curves obtained for different local-yield-function
parameters complying with (ξ, β) ∈ O (i.e., ξ ≥ ξ∗ and 1 ≤ β ≤ 2, thereby resulting in Ξ− > ξ∗)
and for f = 1%.

respect to the case of classical porous materials (i.e., in the limit κ→ 0+) is observed when

κ increases (namely, when void size Ri reduces), for both TXEΣ̃ and TXCΣ̃ strength pro-

files. Such a strengthening effect does not influence the previously-described asymmetries

in the macroscopic plastic response. In particular, triaxial-compression and hydrostatic-

compressive strength states assume higher values than triaxial-expansion and hydrostatic-

tensile ones, irrespective of the void-size parameter κ (see also Fig. 4.10). Nevertheless,

void-size effects are proven to affect mainly macroscopic strength states characterized by

a negative hydrostatic component, thereby resulting in a significant expansion of TXEΣ̃

and TXCΣ̃ strength profiles along the negative hydrostatic axis when κ increases. As

shown in Fig. 4.8, this occurrence is clearly evident in the case of a local plastic behaviour

with (ξ, β) ∈ N . In this case, the macroscopic hydrostatic tensile strength is affected by

the void size less than the compressive one. On the contrary, Fig. 4.9 shows that, when a

local yield function with (ξ, β) ∈ O is considered, a variation in κ induces significant vari-

ations of both the predicted hydrostatic tensile and compressive strengths. Furthermore,

by comparing strength profiles in Figs. 4.8a and 4.8b (resp., in Figs. 4.9a and 4.9b), void-

size effects on macroscopic strength features are proven to be not significantly affected by

values assumed for the yield function parameter β.

Finally, the influence of parameter ξ on the macroscopic plastic behaviour under ax-

isymmetric loadings is depicted in Fig. 4.11a (resp., in Fig. 4.11b) for a local yield function

with (ξ, β) ∈ N (resp., (ξ, β) ∈ O) and such that β = 0.5 (resp., β = 1.5). Proposed re-
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sults highlight that, irrespective of the considered local plastic response, the macroscopic

strength domain enclosed by TXEΣ̃ and TXCΣ̃ yield profiles tend to overall reduce when

ξ increases. Moreover, previously-observed asymmetries between pure deviatoric triaxial-

compression and triaxial-expansion stresses, as well as between hydrostatic tensile and

compressive strength states are shown to progressively vanish when ξ increases, com-

pletely disappearing when a pressure-independent local plastic behaviour is considered

(that is, in the limit ξ → +∞).

4.8 Conclusions

In this Chapter, a general macroscopic yield function for nanoporous materials is analyt-

ically derived, by considering a hollow-sphere model with a general isotropic local plastic

behaviour and in the case of axisymmetric strain-rate boundary conditions.

Void-size effects on the predicted strength properties have been accounted for via a

coherent-imperfect interface model, by prescribing the discontinuity (resp., the continuity)

of the stress vector (resp., of the velocity field) across the cavity boundary.

In agreement with physical indications arising from recent Molecular-Dynamics com-

putations on nanosized bulk specimens (Brach et al., 2016a), the material comprising the

hollow sphere has been assumed to obey to a pressure-dependent strength criterion, ac-

counting for the influence of stress-Lode-angle effects. More specifically, in the framework

of the theoretical approach proposed by Brach et al. (2016b), the local yield function

has been defined via a simplified form of the strength criterion provided by Bigoni and

Piccolroaz (2004), thereby resulting in a polyhedral yield surface in the space of the Lode

coordinates, with linear meridian and multi-sided deviatoric profiles. Therefore, a broad

class of local pressure-dependent plastic behaviours, typical of many engineering-relevant

porous and nanoporous materials, has been taken into account, allowing for an extreme

flexibility in reproducing the stress-Lode-angle effects on solid matrix strength properties.

In the framework of a kinematic limit analysis approach (Gurson, 1977), the velocity

field proposed by Brach et al. (2016b), corresponding to the limit state of a Bigoni-

like hollow sphere under isotropic boundary conditions, has been adopted to define the

heterogeneous part of a suitable trial kinematics. A parametric closed-form estimate for

the macroscopic yield function has been obtained as the solution of a KKT inequality-

constrained minimization problem, the latter accounting for local plastic admissibility

conditions.

Proposed results have shown that, for both pressure-sensitive and pressure-insensitive

local yield functions, the macroscopic strength criterion depends on the hydrostatic stress.

Moreover, as a result of combined effects of the first and the third-order deviatoric stress

invariants on the local plastic behaviour, estimated strength properties have been proven

to be hugely affected by the macroscopic stress Lode angle.

Comparative illustrations have been provided in order to highlight the influence of

model parameters on the macroscopic strength domain. In detail, the effect induced by

local-yield-function coefficients on proposed strength profiles has been clearly established.

Furthermore, a consistent description of void-size effects on macroscopic strength states
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Figure 4.7 – Hollow-sphere model without interface effects (that is, for κ → 0+). Triaxial-
expansion (TXE

Σ̃
) and triaxial-compression (TXC

Σ̃
) strength profiles for different values of pa-

rameter β and porosity f . Local plastic behaviours complying with: (a) (ξ, β) ∈ N for ξ = 2 ξ∗∗;
(b) (ξ, β) ∈ O for ξ = 6 Ξ−.
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Figure 4.8 – Hollow-sphere model with interface effects. Triaxial-expansion (TXE
Σ̃

) and triaxial-
compression (TXC

Σ̃
) strength profiles for different values of the void-size parameter κ, porosity

being set equal to f = 1%. Local plastic behaviours complying with: (a) (ξ, β) ∈ N for β → 0
and ξ = 2 ξ∗∗; (b) (ξ, β) ∈ N for β = 0.5 and ξ = 2 ξ∗∗.
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Figure 4.9 – Hollow-sphere model with interface effects. Triaxial-expansion (TXE
Σ̃

) and triaxial-
compression (TXC

Σ̃
) strength profiles for different values of the void-size parameter κ, porosity

being set equal to f = 1%. Local plastic behaviours complying with: (a) (ξ, β) ∈ O for β = 1.5
and ξ = 6 Ξ−; (b) (ξ, β) ∈ O for β = 2 and ξ = 6 Ξ−.
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Figure 4.10 – Hollow-sphere model with interface effects. Asymmetry between triaxial-expansion
(TXE

Σ̃
) and triaxial-compression (TXC

Σ̃
) strength profiles for different values of the void-size

parameter κ, porosity being set equal to f = 1%. Local plastic behaviours complying with: (a)
(ξ, β) ∈ N for β = 0.5 and ξ = 2 ξ∗∗; (b) (ξ, β) ∈ O for β = 1.5 and ξ = 6 Ξ−.
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Figure 4.11 – Hollow-sphere model without interface effects (that is, for κ → 0+). Triaxial-
expansion (TXE

Σ̃
) and triaxial-compression (TXC

Σ̃
) strength profiles for different values of pa-

rameter ξ, porosity being set equal to f = 1%. Local plastic behaviours complying with: (a)
(ξ, β) ∈ N for β = 0.5; (b) (ξ, β) ∈ O for β = 1.5.
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has been furnished, resulting in an overall expansion of the predicted strength domain

when the void radius reduces for a fixed porosity level, qualitatively in agreement with

available experimental and numerical indications (Biener et al., 2005, 2006; Brach et al.,

2016a; Hakamada and Mabuchi, 2007; Zhao et al., 2009).

As a special case and as a consistency assessment, by properly choosing model param-

eters and by disregarding interface effects, proposed macroscopic yield function straight

recovers relationship provided by Anoukou et al. (2016) in the particular case of a porous

material with a Mohr-Coulomb plastic matrix. Moreover, established results fully re-

trieve analytical expressions of macroscopic hydrostatic strength obtained by Cazacu et

al. (2014) and Thoré et al. (2009), by addressing a hollow-sphere model with a Tresca

and Mohr-Coulomb local plastic behaviour, respectively.

Finally, for any suitable choice of model parameters complying with model consistency

conditions, the proposed approach allows for the straight identification of macroscopic

strength properties under axisymmetric loadings for a wide class of porous and nanoporous

materials, whose local plastic behaviour can not be properly accounted for by classical

yield models.
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4.A Closed-form relationships of functions J and J I

Depending on the value assumed by macroscopic strain-rate parameters ε = sgnC0 and

δ = sgn JD
3 , the following cases have to be addressed in order to explicitly determine

functions J and J I introduced in Section 4.5.1.

Case A TXCD with C0 > 0 (that is, ε = +1 and δ = −1).

Owing to Eqs. (4.35) and (4.37), function ι in Eq. (4.77) reads as

ι = 1 + x + 3
√

1 + x2 + 2x cos 2θ (4.117)

yielding the following expression for Υ(ω)

Υ(x) = 5(x + 1) +
3(1− x)2

2
√
x

arctanh

(
2
√
x

1 + x

)
(4.118)

the latter resulting in

J I(ω) = η1Υ(x)
∣∣
x=ω/fα

, ∀ω > 0 (4.119)

where, since the positiveness of the principal deviatoric strain-rate component dd1 in

Eq. (4.35) for any positive value of x, coefficient η± in Eq. (4.76) reduces to η1, irrespective

of the macroscopic strain-rate triaxiality measure ω.

In agreement with results obtained by Anoukou et al. (2016), function J (ω) reads as

J (ω) = η1

[
Q̃
(
ω

fα

)
− Q̃ (ω)

]
(4.120)

Q̃ being the antiderivative with respect to x of function

Q(x) =
Υ(x)

x1+1/α
(4.121)

that is, since Eq. (4.118),

Q̃ =
2α

x1/α

[
17α− 10

(α− 2)(3α− 2)
+

(9α− 5)x

(α− 1)(3α− 2)
− 12α3

2F1

(
1,− 1

α ; α−1
α ; x

)

(α− 2)(α+ 2)(3α− 2)
+

+
3

2
√
x

(
x2

3α− 2
− 2x

α− 2
− 1

α+ 2

)
arctanh

(
2
√
x

1 + x

)] (4.122)

Notation 2F1(a, b; c; z) is introduced in Eq. (4.122) to indicate the Gauss hypergeo-

metric series

2F1(a, b; c; z) =

∞∑

n=0

(a)n(b)n
(c)n

zn

n!
(4.123)

defined for |z| < 1, with c /∈ {0} ∪ Z− and n ∈ {0} ∪ Z+, Z− and Z+ being the sets

of non-null negative and positive integer numbers, respectively, and where (•)n is the
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Pochhammer symbol denoting the rising factorial (•)n = Γ(•+ n)/Γ(•), with

Γ(z) =

∫ ∞

0

tz−1e−t dt (4.124)

The hypergeometric function 2F1

(
1,− 1

α ; α−1
α ; x

)
in Eq. (4.122) is not defined for |x| ≥

1, thereby leading to a limitation on the range of variation of the strain-rate triaxiality

measure ω. However, since the macroscopic yield function in Eq. (4.73) has to be defined

for any ω > 0, the analytic continuation formula (e.g., Pearson, 2009)

2F1(a, b; c; z) = (−z)−a Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
2F1

(
a, a− c+ 1; a− b+ 1;

1

z

)
+

(−z)−b Γ(c)Γ(a− b)
Γ(a)Γ(c− b) 2F1

(
b− c+ 1, b; b− a+ 1;

1

z

) (4.125)

is used to compute the antiderivative Q̃(x) in Eq. (4.122) for any value of x. Consequently,

function J (ω) reads as

J (ω) =
2αη1

ω1/α

[
(10− 17α)(1− f)

(α− 2)(3α− 2)
+

(9α− 5)(1− f1−α)ω

(1− α)(3α− 2)
+

3f1−α

2
√
ωfα

(
ω2

3α− 2
− 2ωfα

α− 2
− f2α

α+ 2

)
arctanh

(
2
√
ωfα

ω + fα

)
−

3

2
√
ω

(
ω2

3α− 2
− 2ω

α− 2
− 1

α+ 2

)
arctanh

(
2
√
ω

ω + 1

)
+

12α3A(ω)

(α− 2)(α+ 2)(3α− 2)

]

(4.126)

where A(ω) is piece-wise defined as

A(ω) =





2F1

(
1,− 1

α ; α−1
α ;ω

)
− f 2F1

(
1,− 1

α ; α−1
α ; ω

fα

)
if 0 < ω < fα

2F1

(
1,− 1

α
;
α− 1

α
;ω

)
− πω1/α

α
cot
(π
α

)
+

f1+α

(α+ 1)ω
2F1

(
1,

1 + α

α
;

2α+ 1

α
;
fα

ω

) if fα < ω < 1

− 1

(α+ 1)ω

[
2F1

(
1,

1 + α

α
;

2α+ 1

α
;

1

ω

)
−

f1+α
2F1

(
1,

1 + α

α
;

2α+ 1

α
;
fα

ω

)] if ω > 1

(4.127)

Since both functions J I(ω) in Eq. (4.119) and J (ω) in Eq. (4.126) are continuous and

continuously differentiable on ω ∈ (0,+∞), solid matrix and interface model functions

Ψm, Ψeq, ΨIm and ΨIeq are continuous for any value of ω, thereby yielding

`m = `eq = `Im = `Ieq = 0 , ∀ω > 0 (4.128)



“tesi” — 2016/12/22 — 9:44 — page 163 — #175

Chapter 4. Limit analysis and homogenization under axisymmetric loadings 163

Case B TXED with C0 > 0 (that is, ε = +1 and δ = +1).

Owing to Eqs. (4.40) and (4.43), function ι in Eq. (4.77) reads as

ι =





1− x + 3
√

1 + x2 − 2x cos 2θ if 0 < x < α

x− 1 + 3
√

1 + x2 − 2x cos 2θ if α < x < 1

x− 1 + 3
√

1 + x2 − 2x cos 2θ if x > 1

(4.129)

yielding the following relationships for Υ(ω)

Υ(x) =





5(1− x) +
3(1 + x)2

2
√
x

arctan

(
2
√
x

1− x

)
if 0 < x < α

1− x +
3(1 + x)2

2
√
x

arctan

(
2
√
x

1− x

)
if α < x < 1

5(x− 1) +
3(1 + x)2

2
√
x

arcsin

(
2
√
x

1 + x

)
if x > 1

(4.130)

the latter resulting in

J I(ω) =





η2Υ(x)
∣∣
x=ω/fα

if 0 < ω < αfα

η1Υ(x)
∣∣
x=ω/fα

if αfα < ω < fα

η1Υ(x)
∣∣
x=ω/fα

if ω > fα

(4.131)

where, depending on the sign of the principal deviatoric strain-rate component dd1 in

Eq. (4.40), coefficient η± in Eq. (4.76) reduces to η1 or to η2. On the other hand, as

regards function J (ω), the following expressions are provided by Anoukou et al. (2016)

J (ω) =





if 0 < ω ≤ αfα :

η2

[
Q̃1

(
ω

fα

)
− Q̃1(ω)

]

if αfα ≤ ω < fα :

η2

[
Q̃1(α)− Q̃1(ω)

]
+ η1

[
Q̃2

(
ω

fα

)
− Q̃2(α)

]

if fα < ω ≤ α :

η2

[
Q̃1(α)− Q̃1(ω)

]
+ η1

[
2B + Q̃3

(
ω

fα

)
− Q̃2(α)

]

if α ≤ ω < 1 :

η1

[
2B + Q̃3

(
ω

fα

)
− Q̃2(ω)

]

if ω > 1 :

η1

[
Q̃3

(
ω

fα

)
− Q̃3(ω)

]

(4.132)
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where, by introducing the polygamma function of order zero ψ(0) = Γ′(z)/Γ(z), B is

defined as

B =
6α4

(α− 2)(α− 1)(3α− 2)
+

ψ(0)

(
α− 1

2α

)
− ψ(0)

(
− 1

2α

)

(α− 2)(α+ 2)(3α− 2)
(4.133)

and where Q̃1, Q̃2 and Q̃3 are the antiderivatives of functions Q1, Q2 and Q3 obtained

by replacing Eqs. (4.130) into Eq. (4.121), that is

Q̃1 =
2α

x1/α

[
17α− 10

(α− 2)(3α− 2)
− (9α− 5)x

(α− 1)(3α− 2)
− 12α3

2F1

(
1,− 1

α ; α−1
α ;−x

)

(α− 2)(α+ 2)(3α− 2)
+

+
3

2
√
x

(
x2

3α− 2
+

2x

α− 2
− 1

α+ 2

)
arctan

(
2
√
x

1− x

)] (4.134)

Q̃2 =
2α

x1/α

[
(2α− 1)(3α+ 2)

(α− 2)(3α− 2)
− (3α− 1)x

(α− 1)(3α− 2)
− 12α3

2F1

(
1,− 1

α ; α−1
α ;−x

)

(α− 2)(α+ 2)(3α− 2)
+

+
3

2
√
x

(
x2

3α− 2
+

2x

α− 2
− 1

α+ 2

)
arctan

(
2
√
x

1− x

)]

(4.135)

Q̃3 =
2α

x1/α

[
10− 17α

(α− 2)(3α− 2)
+

(9α− 5)x

(α− 1)(3α− 2)
+

12α3
2F1

(
1,− 1

α ; α−1
α ;−x

)

(α− 2)(α+ 2)(3α− 2)
+

+
3

2
√
x

(
x2

3α− 2
+

2x

α− 2
− 1

α+ 2

)
arcsin

(
2
√
x

1 + x

)] (4.136)

It is worth observing that no analytic continuation is needed in Eqs. (4.134), (4.135)

and (4.136), since antiderivatives are expressed in terms of the hypergeometric function

2F1

(
1,− 1

α ; α−1
α ;−x

)
, which is defined for any x > 0.

In order to ensure the continuity of the macroscopic yield function in Eq. (4.73) for

any positive value of the strain-rate triaxiality measure ω, functions HI(ω) and H(ω)

have to be piece-wise continuously differentiable with respect to C0 and Deq on intervals

defined in Eqs. (4.131) and (4.132), respectively. Accordingly, denoting as ω? an endpoint

of one of these subdomains, parameters `m, `eq, `Im and `Ieq in Eqs. (4.78) are computed

by enforcing the continuity of one-sided limits for ω → ω?− and for ω → ω?+, that is by

prescribing

lim
ω→ω?−

∂H
∂C0

= lim
ω→ω?+

∂H
∂C0

, lim
ω→ω?−

∂H
∂Deq

= lim
ω→ω?+

∂H
∂Deq

(4.137)

lim
ω→ω?−

∂HI
∂C0

= lim
ω→ω?+

∂HI
∂C0

, lim
ω→ω?−

∂HI
∂Deq

= lim
ω→ω?+

∂HI
∂Deq

(4.138)

In detail, by computing (4.138) on endpoints ω? = αfα and ω? = fα of subdomains

in Eqs. (4.131), interface parameters `Im and `Ieq result equal to zero for any ω belonging

to intervals 0 < ω < αfα, αfα < ω < fα, and ω > fα. On the other hand, continuity

requirements (4.137) on endpoints ω? = αfα, ω? = α, ω? = fα and ω? = 1 of subdomains
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in Eqs. (4.132) yield

`m =





if 0 < ω ≤ αfα or α ≤ ω < 1 or ω > 1 :

0

if αfα ≤ ω < fα or fα < ω ≤ α :

α− 1

α
1
α−1

(η1 − 5η2) +
3(1 + α)2

2α
1
α− 1

2

(η1 − η2) arctan

(
2
√
α

α− 1

)
(4.139)

`eq =





if 0 < ω ≤ αfα or α ≤ ω < 1 or ω > 1 :

0

if αfα ≤ ω < fα or fα < ω ≤ α :

`m
1− α

(4.140)

Case C TXED with C0 < 0 (that is, ε = −1 and δ = +1).

Owing to Eqs. (4.45) and (4.47), function ι in Eq. (4.77) reads as

ι = 1 + x + 3
√

1 + x2 + 2x cos 2θ (4.141)

thereby resulting in the same expression of Υ(x) than that provided in Case A, that is

Eq. (4.118). By replacing this latter into Eq. (4.76), function J I(ω) results in

J I(ω) = η2Υ(x)
∣∣
x=ω/fα

, ∀ω > 0 (4.142)

where, since the negativeness of the principal deviatoric strain-rate component dd1 in

Eq. (4.45) for any positive value of x, coefficient η± in Eq. (4.76) reduces to η2 irrespective

of the value assumed for ω. As regards function J (ω), it has been provided by Anoukou

et al. (2016) in the form

J (ω) = η2

[
Q̃
(
ω

fα

)
− Q̃ (ω)

]
(4.143)

where the antiderivative Q̃ reads as in Eq. (4.122). Since this latter is not defined for

|x| ≥ 1, the analytic continuation formula in Eq. (4.125) is enforced, thereby yielding

J (ω) =
2αη2

ω1/α

[
(10− 17α)(1− f)

(α− 2)(3α− 2)
+

(9α− 5)(1− f1−α)ω

(1− α)(3α− 2)
+

3f1−α

2
√
ωfα

(
ω2

3α− 2
− 2ωfα

α− 2
− f2α

α+ 2

)
arctanh

(
2
√
ωfα

ω + fα

)
−

3

2
√
ω

(
ω2

3α− 2
− 2ω

α− 2
− 1

α+ 2

)
arctanh

(
2
√
ω

ω + 1

)
+

12α3A(ω)

(α− 2)(α+ 2)(3α− 2)

]

(4.144)

where function A(ω) is piece-wise defined as in Eq. (4.127).

Both J I and J in Eqs. (4.142) and (4.144) are continuous and continuously differen-

tiable in ω > 0, thereby resulting in null values of parameters `m, `eq, `Im, and `Ieq.
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Case D TXCD with C0 < 0 (that is, ε = −1 and δ = −1).

Owing to Eqs. (4.48) and (4.50), function ι in Eq. (4.77) reads as

ι =





1− x + 3
√

1 + x2 − 2x cos 2θ if 0 < x < 1

1− x + 3
√

1 + x2 − 2x cos 2θ if 1 < x < α

x− 1 + 3
√

1 + x2 − 2x cos 2θ if x > α

(4.145)

yielding the following expressions for Υ(ω)

Υ(x) =





5(1− x) +
3(1 + x)2

2
√
x

arctan

(
2
√
x

1− x

)
if 0 < x < 1

x− 1 +
3(1 + x)2

2
√
x

arcsin

(
2
√
x

1 + x

)
if 1 < x < α

5(x− 1) +
3(1 + x)2

2
√
x

arcsin

(
2
√
x

1 + x

)
if x > α

(4.146)

the latter resulting in

J I(ω) =





η1Υ(x)
∣∣
x=ω/fα

, if 0 < ω < fα

η1Υ(x)
∣∣
x=ω/fα

, if fα < ω < αfα

η2Υ(x)
∣∣
x=ω/fα

, if ω > αfα

(4.147)

where, depending on the sign of the principal deviatoric strain-rate component dd1 in

Eq. (4.48), coefficient η± in Eq. (4.76) reduces to η1 or to η2. Moreover, in agreement

with results provided by Anoukou et al. (2016), function J (ω) is assumed equal to

J (ω) =





if 0 < ω < fα :

η1

[
Q̃1

(
ω

fα

)
− Q̃1(ω)

]

if fα < ω ≤ αfα :

η1

[
2B + Q̃2

(
ω

fα

)
− Q̃1(ω)

]

if αfα ≤ ω < 1 :

η2

[
Q̃3

(
ω

fα

)
− Q̃3(α)

]
+ η1

[
2B + Q̃2(α)− Q̃1(ω)

]

if 1 < ω ≤ α :

η1

[
Q̃2(α)− Q̃2(ω)

]
+ η2

[
Q̃3

(
ω

fα

)
− Q̃3(α)

]

if ω ≥ α :

η2

[
Q̃3

(
ω

fα

)
− Q̃3(ω)

]

(4.148)
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where B is defined as in Eq. (4.133), and where Q̃1, Q̃2 and Q̃3 are the antiderivatives of

functions Q1, Q2 and Q3, obtained by replacing Eqs. (4.146) into Eq. (4.121). In detail,

Q̃1 and Q̃3 are expressed as in Eqs. (4.134) and (4.136), respectively, whereas Q̃2 is

Q̃2 =
2α

x1/α

[
− (2α− 1)(3α+ 2)

(α− 2)(3α− 2)
+

(3α− 1)x

(α− 1)(3α− 2)
+

12α3
2F1

(
1,− 1

α ; α−1
α ;−x

)

(α− 2)(α+ 2)(3α− 2)
+

+
3

2
√
x

(
x2

3α− 2
+

2x

α− 2
− 1

α+ 2

)
arcsin

(
2
√
x

1 + x

)]

(4.149)

for which no analytic continuation is needed, since the Gauss hypergeometric function

2F1

(
1,− 1

α ; α−1
α ;−x

)
is defined for any x > 0.

By computing (4.138) at endpoints ω? = fα and on ω? = αfα of subdomains in

Eqs. (4.147), interface parameters `Im and `Ieq result equal to zero for any values of ω

belonging to intervals 0 < ω < fα, fα < ω < αfα and ω > αfα. On the other hand,

by enforcing conditions (4.137) at endpoints ω? = fα, ω? = αfα, ω? = 1 and ω? = α of

subdomains in Eqs. (4.148), the following expressions result for `m and `eq

`m =





if 0 < ω < fα or fα < ω ≤ αfα or ω ≥ α :

0

if αfα ≤ ω < 1 or 1 < ω ≤ α :

α− 1

α
1
α−1

(η1 − 5η2) +
3(1 + α)2

2α
1
α− 1

2

(η1 − η2) arcsin

(
2
√
α

1 + α

)
(4.150)

`eq =





if 0 < ω < fα or fα < ω ≤ αfα or ω ≥ α :

0

if αfα ≤ ω < 1 or 1 < ω ≤ α :

`m
1− α

(4.151)
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theory and its link with Ponte Castañeda’s non linear variational procedure. Comptes

Rendus Académie de Science de Paris, II B, 320, 11, 563-571.
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Concluding remarks

In this thesis, strength properties of nanoporous materials have been investigated via

theoretical approaches and Molecular Dynamics computations, establishing engineering-

oriented analytical models and numerical benchmarking evidence.

As a first modelling strategy and motived by recent numerical findings by Morin et

al. (2015), a non-linear homogenization approach based on a 3-layered description has

been proposed in Chapter 1, yielding a closed-form macroscopic strength criterion for

nanoporous materials. Referring to available benchmarking evidence (Morin et al., 2015)

and with the aim to enhance the non-linear homogenization model latterly provided by

(Dormieux and Kondo, 2013), a representative volume element containing isotropically-

distributed spherical voids and comprising a von Mises plastic matrix has been considered.

In agreement with the modified secant method (Suquet, 1995) and with the multiphase

modelling technique proposed by Herve and Zaoui (1993), the non-linear homogenization

problem has been solved by considering a four-phases linear comparison composite mate-

rial, the latter consisting in 3-layered composite spheres confocal to nanovoids and embed-

ded into a homogeneous solid matrix. Nanovoids-induced surface stresses at the cavities

boundary (e.g., Needs et al., 1991) have been modelled by introducing an imperfect-

coherent interface. As a result, a macroscopic strength criterion accounting for void-size

effects has been analytically derived, recovering, as a consistency assessment and for a

proper choice of model parameters, previously-established non-linear variational homog-

enization estimates for both porous (Ponte Castañeda, 1991) and nanoporous (Dormieux

and Kondo, 2013) materials. Qualitatively in agreement with experimental evidence, a

physically-consistent description of void-size effects has been provided, predicting a sig-

nificant strengthening effect as the void radius reduces. Comparative illustrations have

proven the accuracy of the proposed yield surface with respect to available numerical

benchmarking data (Morin et al., 2015; Trillat and Pastor, 2005), resulting in a substan-

tial enhancement of previously-established strength criteria (Dormieux and Kondo, 2013;

Ponte Castañeda, 1991), especially at high stress-triaxiality regimes.

However, despite their practical interest, available finite-elements based results on

strength properties of nanoporous materials can not be properly considered as an ex-

haustive reference. As a matter of fact, since size-related effects on macroscopic features

arise at the nanoscale, a sufficiently rich description of both atomic-level phenomena and
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material characteristic length-scales has to be ensured. Therefore, among various sim-

ulation techniques addressing sub-micron scales, Molecular Dynamics can be considered

as one of the most promising numerical approaches for providing strongly physics-based

insights into nanoporous materials. Nevertheless, although atomistic failure mechanisms

underlying void-growth and coalescence have been extensively analysed in literature (e.g.,

Farrissey et al., 2000; Lubarda et al., 2004; Lubarda, 2011; Marian et al., 2004, 2005;

Pogorelko and Mayer, 2016; Ruestes et al., 2013; Tang et al., 2010; Traiviratana et al.,

2008), a proper characterization of the three-dimensional strength domain of nanoporous

materials has not been proposed yet, available strength estimates being computed under

specific loading conditions only (see for instance Mi et al., 2011; Traiviratana et al., 2008;

Zhao et al., 2009).

Accordingly, as compared with previously-established studies and aiming to give novel

contributions in this context, a Molecular-Dynamics computational model addressing

more comprehensive loading cases has been proposed in Chapter 2. In detail, numerical

calculations have been carried out on in-silico nanoporous aluminium samples undergoing

triaxial-expansion, triaxial-compression and shear strain-rate boundary conditions. For

each deformation scenario, a wide range of triaxiality regimes has been considered, de-

scribing deformation paths ranging from pure deviatoric to pure hydrostatic strain states.

Although more complex geometries could be considered in order to properly represent

realistic experimental samples, the herein-adopted periodic microstructure, based on a

representative single-crystal cell embedding a single spherical void, enables to limit as

much as possible any coupling phenomenon (such as those associated to voids shape

and interactions), focusing on dominant mechanisms related to the nanosize of voids.

Effective strength properties of both bulk and nanoporous specimens have been com-

puted, resulting in meridian and deviatoric strength profiles hugely dependent on the

three Haigh-Westergaard stress invariants. The size-related strengthening effect observed

in experimental tests for a fixed porosity level (Biener et al., 2005, 2006; Hakamada and

Mabuchi, 2007; Fan and Fang, 2009) has been consistently recovered, resulting in an over-

all expansion of computed strength domains when the void radius reduces. Moreover, both

the occurrence and the amount of void-size effects have been proven to strongly depend

on the Lode angle, leading to a shape-transition of deviatoric strength profiles when the

void radius is varied.

Physical indications arising from Molecular-Dynamics computations clearly suggest

the need of improving available strength models for nanoporous materials by considering

a richer description of the matrix plastic behaviour. To this aim, and opening towards a

limit analysis approach, the starting point has consisted in exactly solving the limit-state

problem in the case of isotropic loading conditions, as detailed in Chapter 3. A hollow-

sphere model with an imperfect-coherent interface at the cavity boundary, representative

of a particular microstructure for nanoporous materials, has been considered. Aiming

to account for a broad class of pressure-sensitive limit responses, as well as to allow for

an extreme flexibility in reproducing stress-Lode-angle effects, both the solid matrix and

the interface have been assumed to obey to a general isotropic yield function, defined
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as a simplified form of the criterion proposed by Bigoni and Piccolroaz (2004). Closed-

form relationships for local strain-rate, velocity and stress fields have been determined,

identifying the exact limit state for the hollow-sphere model in the case of both negligible

(i.e., for porous materials) and significant (i.e., for nanoporous materials) interface effects.

Since the high flexibility and the general form of the adopted strength criterion, the

present approach has allowed to identify the exact limit state for a wide range of local

plastic behaviours, possibly-affected by all the three isotropic stress invariants, and that

may not be properly described via classical yield models. As special cases and as a

consistency assessment, obtained relationships have been proven to exactly recover, for a

suitable choice of model parameters, available analytical expressions (Cazacu et al., 2014;

Gurson, 1977; Thoré et al., 2009) deduced in the case of negligible interface effects, and

associated to classical local strength criteria.

Finally, a general macroscopic strength criterion accounting for void-size effects has

been analytically derived in Chapter 4, by referring to a hollow-sphere model with an

imperfect-coherent interface at the void surface, and in the case of axisymmetric strain-

rate boundary conditions. Both the solid matrix and the interface have been assumed to

obey to a particular form of the local yield function introduced in Chapter 3, describing

a polyhedral yield surface in the space of the Lode coordinates with linear meridian and

multi-sided deviatoric yield profiles. The corresponding local support function and plastic

admissibility condition provided in Chapter 3 have been considered. In the framework

of a kinematic limit-analysis approach, and following the modelling strategy proposed by

Gurson (1977) and successively adopted in a number of theoretical models (e.g., Anoukou

et al., 2016; Cazacu et al., 2014; Dormieux and Kondo, 2010; Guo et al., 2008), a trial

velocity field has been defined as the superposition of a suitable homogeneous term and

of the velocity determined in Chapter 3. Taking advantage of the theoretical proce-

dure established by Anoukou et al. (2016), a parametric closed-form relationship for the

macroscopic yield function has been obtained as the solution of a Karush-Kuhn-Tucker

inequality-constrained minimization problem, this latter accounting for local plastic ad-

missibility conditions. Predicted macroscopic strength properties have been proven to be

hugely affected by all the three isotropic stress invariants, resulting in pressure-sensitive

strength profiles exhibiting significant stress-Lode-angle effects. Comparative illustrations

have clearly shown the influence of the local plastic behaviour on the macroscopic one,

thereby highlighting a great flexibility in describing a wide class of porous and nanoporous

materials, generally not properly represented via classical yield models. An effective de-

scription of void-size effects on macroscopic yield stress states has been furnished, resulting

in an overall expansion of the predicted strength domain when the void radius reduces.

As a particular case and as a consistency assessment, proposed macroscopic yield func-

tion has been proven to recover the relationship provided by (Anoukou et al., 2016) for

a Mohr-Coulomb local plastic behaviour. Moreover, expressions obtained by Thoré et

al. (2009) and Cazacu et al. (2014) for the exact hydrostatic strength of Mohr-Coulomb

and Tresca plastic porous materials have been fully retrieved, via a suitable calibration

of local-yield-function parameters and in the case of negligible interface effects.
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Future research directions

The present thesis leaves a number of challenging open issues, which it would be interest-

ing to address in future studies. Specifically, as regards both theoretical and numerical

modelling approaches, the following research directions are traced.

Combined effects of void size and void shape Since the wide range of structural

geometries characterising nanoporous materials in current engineering applications, an

important research aspect consists in investigating combined effects of void size and void

shape on effective strength properties.

A first attempt in this direction has been recently provided by Monchiet and Kondo

(2013), in the framework of a kinematic limit-analysis approach and by considering the

trial velocity field previously-introduced by Gologanu et al. (1993), Gologanu et al. (1994),

and Gologanu et al. (1997). Specifically, in order to derive a macroscopic strength criterion

accounting for both void-size and void-shape effects, a hollow-spheroid model with a

confocal spheroidal cavity has been considered, by introducing an imperfect-coherent

interface at the void boundary. The material comprising the solid matrix being assumed

to obey to a von Mises yield function, a richer description of the local plastic behaviour

could be addressed, for instance via the general criterion introduced in Chapter 3.

On the other hand, a limited number of computational studies has been devoted to the

numerical investigation of combined effects of void size and void shape on the constitutive

plastic response of nanoporous materials. Therefore, aiming to furnish novel contribu-

tions in this context, a possible modelling strategy could be represented by the Molecular

Dynamics procedure established in Chapter 2. In particular, by considering the reference

geometry adopted in the afore-mentioned theoretical model, numerical simulations may be

carried out on computational domains embedding prolate or oblate spheroidal nanocav-

ities, thereby allowing for a parametric analysis of the computed strength domains as

dependent on both the size and the shape of voids.

Physics-based modelling of void-size effects In all the theoretical models proposed

in this thesis, the dependence of strength properties on the size of voids, for a nanoporous

material with a fixed value of porosity, has been addressed by describing cavities bound-

ary via an imperfect-coherent interface stress model. Specifically, in agreement with a

number of previously-established approaches (e.g., Fan and Fang, 2009; Needs et al., 1991;

Povstenko and Yu, 1993; Weissmüller et al., 2009) the stress vector has been prescribed

to undergo a discontinuity across the interface, in order to account for self-equilibrated

surface stresses induced by the nanosize of voids. However, although such a modelling de-

scription has been extensively adopted in the available literature for both elastic (Brisard

et al., 2010a,b; Duan et al., 2005a,b; Le Quang and He, 2007; Sharma et al., 2003; Sharma

and Ganti, 2004) and plastic (Dormieux and Kondo, 2010, 2013; Monchiet and Kondo,

2013; Goudarzi et al., 2010; Moshtaghin et al., 2012; Zhang and Wang, 2007; Zhang et

al., 2008, 2010) regimes, its physical basis still needs to be more documented.
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Accordingly, a possible research direction could consist in analysing the local perturba-

tion induced by the presence of a nanovoid into an otherwise perfect atomic arrangement.

As shown in Fig. 2.4, this directly impacts on the number of neighbouring atoms, thereby

resulting in significantly different values of total energy as compared to the case of a bulk

sample. Moreover, and as a preliminary observation, the high strain-rate gradient related

to the dislocations accumulation depicted in Fig. 2.5 may result in a strengthening of the

material comprising the cavity surface. The Molecular Dynamics procedure proposed in

Chapter 2 may allow for a more comprehensive understanding of nanoscale mechanisms

underlying the occurrence of size-related effects, thereby opening towards both the as-

sessment of interface stress models and the definition of novel physics-based theoretical

descriptions. Alternatively, following the approach proposed by Yvonnet et al. (2012) for

investigating surface elasticity, ab-initio calculations may be performed in order to furnish

insightful indications on nano-cavities physics.

Combined effects of void size and crystallographic anisotropy Anisotropic ef-

fects in nanoporous materials, with particular reference to those related to the crystalline

texture of the solid matrix, have not been addressed in the present thesis. Nevertheless,

the combined influence of void size and crystallographic anisotropy on the effective mate-

rial mechanical response still represents a promising research topic. As a matter of fact,

existing theoretical and numerical models mainly refer to crystals containing macro-sized

cavities. Mention is made to approaches recently proposed by Han et al. (2013), Mbi-

akop et al. (2015) and Paux et al. (2015), highlighting the great interest in considering

anisotropy effects for estimating effective strength properties of porous single-crystals.

In this context, possible novel modelling strategies could consist in:

• characterizing combined effects of void size and crystallographic anisotropy on the

material plastic response via Molecular Dynamics computations. To this end, re-

sults provided in Chapter 2 for a FCC nanoporous single-crystal could be enhanced

by considering crystallographic arrangements for which anisotropy effects are ex-

pected to be particularly evident (such as BCC and HCP atomic structures). Con-

sequently, comparative analyses may be furnished to depict the occurrence and the

amount of both void-size (for a given crystallographic texture and porosity level) and

anisotropy (for fixed values of void size and porosity) effects on predicted strength

domains.

• extending the macroscopic general strength criterion derived in Chapter 4 to the

case of nanoporous materials with an anisotropic plastic solid matrix. To this aim,

representation theorems (e.g., Boehler, 1987) based on the introduction of a suitable

structural anisotropy tensor, may be used to extend the herein adopted Bigoni-like

isotropic yield function to local structural plastic anisotropy.

Numerical implementation of the proposed general strength criterion The nu-

merical implementation in engineering-oriented numerical codes of the macroscopic gen-

eral yield function for nanoporous materials derived in Chapter 4 may represent a challeng-
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ing research task, opening towards the definition of powerful homogenization toolboxes

for structural applications. Nevertheless, as a supplement of the general macroscopic

strength criterion, two theoretical issues should be preliminary addressed, consisting in

the explicit determination of:

• the macroscopic flow rule, that is the constitutive relationship between the predicted

strength estimate and the macroscopic strain-rate state. Owing to a classical result

established by Rice (1971), the normality property of the local flow rule is expected

to be preserved in the homogenization procedure, thereby resulting in a plastic

normality law at the macroscopic level.

• evolution laws providing the actual value of both porosity and void size at each

stage of the deformation process. To this aim, a careful attention should be paid

to the pressure-sensitivity of the considered local plastic behaviour, resulting in a

plastic compressibility of the material comprising the solid matrix.
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APPENDIX A

Deviatoric strength of nanoporous materials: A limit

analysis approach

Abstract

In this Appendix, deviatoric strength properties of nanoporous materials are investigated

by addressing the limit state of a hollow sphere undergoing axisymmetric deviatoric strain-

rate based loading conditions. The hollow sphere is assumed to be comprised of a rigid

ideal-plastic matrix obeying to a von Mises strength criterion. Void-size effects are consis-

tently described by introducing a coherent-imperfect homogeneous interface at the cavity

boundary. In the framework of a kinematic approach, the limit-analysis problem on the

hollow sphere is solved by referring to a particular trial velocity field, expressed in terms of

some free model parameters, chosen as a result of an optimization strategy. A closed-form

expression for estimating the macroscopic deviatoric strength is obtained and successfully

compared with available benchmarking data.

Present Appendix corresponds to the published research paper (Brach et al., 2016e) [Springer

Series in Solid and Structural Mechanics; DOI: 10.1007/978-3-319-48884-4 (2016)].

A self-consistent notation is adopted.

Keywords: Nanoporous materials, void-size effects, deviatoric strength, kinematic limit

analysis, trial velocity field.
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A.1 Introduction

Nanoporous materials have been characterised by a fast-growing development in the last

two decades, attracting a world-wide interest in both industrial and academic domains

Arico et al. (2005); Jenkins (2010); Lu et al. (2004). As a matter of fact, owing to their

good properties in terms of stiffness and strength, nanoporous materials open towards

groundbreaking applications in several technical fields, involving ultra-high performance

devices and challenging multifunctional uses. In order to fulfil to these promising ap-

plications, one of the most fundamental aspects consists in describing, into an effective

engineering design framework, strength properties of these materials as dependent on the

size of voids. Recent nano-mechanical experiments (e.g., Biener et al., 2005, 2006; Haka-

mada and Mabuchi, 2007) have shown that, for a fixed porosity value, a reduction in the

length-scale of nanovoids induces an increase in the material yield strength. Similarly,

Molecular-Dynamics simulations carried out on in-silico nanoporous samples Brach et

al. (2016a); Mi et al. (2011); Traiviratana et al. (2008); Zhao et al. (2009) have proven

that the predicted strength decreases towards asymptotic values when the size of voids

increases. The physical origin of such a phenomenon has been related by Needs et al.

(1991) to the presence of self-equilibrated surface stresses at the cavity surface, induced

by a local perturbation in the atomic arrangement close to the nanovoids and usually

negligible for classical porous materials. In the framework of a continuum approach,

void-size effects have been generally addressed by introducing coherent-imperfect inter-

face laws at the cavity boundaries (e.g., Duan et al., 2005a,b; Gurtin and Murdoch, 1975,

1978; Povstenko and Yu, 1993), that is accounting for surface stresses by prescribing the

discontinuity of the stress vector across the interface.

Strength models for classical porous materials Gurson (1977); Ponte Castañeda (1991)

are able to account for porosity effects only, thereby resulting in void-size independent

yield functions. Void-size dependent strength criteria have been recently proposed in

Brach et al. (2016b); Dormieux and Kondo (2013); Goudarzi et al. (2010); Moshtaghin et

al. (2012); Zhang and Wang (2007); Zhang et al. (2008, 2010), by referring to non-linear

homogenization techniques. As regards limit analysis approaches, the well-established

criterion proposed by Gurson (1977) for porous media has been extended to nanoporous

materials in Dormieux and Kondo (2010), via a plastic generalization of interface stress

models Monchiet and Bonnet (2010). However, as it will be also shown in the following,

the novel strength criterion proposed in Dormieux and Kondo (2010) overrates available

numerical evidence Trillat and Pastor (2005). In this light, and with reference to deviatoric

axisymmetric states only, present Appendix aims to furnish a more effective estimate for

the macroscopic deviatoric strength of nanoporous materials, properly accounting for

void-size effects. In detail, the limit analysis problem on a hollow sphere domain is solved

by referring to the parametric trial velocity field introduced in Budiansky et al. (1982)

(see also Zhu and Zbib, 1993), allowing for an optimization procedure.

The Appendix is organized as follows. In Section A.2 basic elements of the limit-

analysis theoretical framework are presented. In Section A.3 the adopted trial velocity

field is introduced. The estimate of the macroscopic strength of a hollow sphere with
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interface effects and undergoing an axisymmetric deviatoric loading is determined in Sec-

tion A.4, discussing effectiveness and accuracy of the proposed model. Finally, some

conclusions are traced in Section A.5.

A.2 Problem statement

Let the hollow sphere in Fig. A.1 be considered, whose internal and external radii are

denoted as Ri and Re, respectively. Moreover, let ∂Ωi and ∂Ωe be the corresponding

internal and external surfaces, the total boundary of the system resulting in ∂Ω = ∂Ωi ∪
∂Ωe. Denoting as |Ωs| and |Ωv| the volume measures of the solid region (namely, Ωs)

and of the spherical void (Ωv), respectively, the total volume of the system (namely,

Ω = Ωs ∪ Ωv) is |Ω| = |Ωs|+ |Ωv|, and the porosity p is equal to p = |Ωv|/|Ω|. The solid

matrix Ωs is assumed to be homogeneous and comprised of an isotropic material with a

rigid ideal-plastic behaviour.

In agreement with continuum-based descriptions Duan et al. (2005a); Gurtin and

Murdoch (1975, 1978); Wang et al. (2011) and strength models for nanoporous mate-

rials Dormieux and Kondo (2010, 2013), the influence of non-negligible surface stresses

induced by the presence of a possibly-nanosized void is herein addressed by introducing a

coherent and imperfect homogeneous interface I at the void boundary ∂Ωi (Fig. A.1). In

particular, the velocity field (resp., the stress vector) is prescribed to be continuous (resp.,

discontinuous) through ∂Ωi. In the framework of a plastic generalization of the Gurtin-

Murdoch stress-interface model Gurtin and Murdoch (1975), the material comprising the

homogeneous interface is assumed to be itself isotropic and rigid ideal-plastic.

Let the Cartesian reference system (ex, ey, ez) be introduced, with the origin O at

the sphere center. For what follows, and referring to the notation in Fig. A.1, it is use-

ful to consider the spherical coordinate system (r, θ, ϕ) and the local orthonormal basis

(er, eθ, eϕ), r being the radial coordinate, θ ∈ [0, π] and ϕ ∈ [0, 2π] the zenith and the az-

imuth angular coordinates, respectively. Accordingly, the position of a point in Ω (resp.,

at the interface I and at the exterior boundary ∂Ωe) with respect to O is identified by

r = r er(θ, ϕ) (resp., ri = Ri er(θ, ϕ) and re = Re er(θ, ϕ)).

As a notation rule, vector and second-order tensor quantities are denoted by bold

letters; symbols ·, :, and ⊗ indicate inner, double-dot, and tensor product operators,

respectively; ∇ and ∇I are the nabla operators in Ωs and along the interface, ∇̃ and ∇̃I
identifying the symmetric parts of the corresponding gradient operators. Notation B(r∗)

is also introduced to indicate the spherical surface identified by the radial coordinate

r = r∗.

Let the fourth-order projector tensor T = P⊗P be introduced, where the operator ⊗ is

component-wise defined by Tijkl = (PikPjl+PilPjk)/2, and where the second-order tensor

P is defined as P = (1 − er ⊗ er) with 1 the identity tensor. Accordingly, AT = T : A

identifies the projection on planes orthogonal to er of a second-order tensor A. In the

following, A is referred to as a planar tensor if A = AT.

Neglecting the influence of body forces, sets of statically-admissible (Sσ) and plastically-

admissible (Pσ) stress fields are introduced as
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Figure A.1 – Problem statement. Notation.

Sσ =

{
(σ, τ ) s.t.

∇ · σ = 0 in Ωs ,

(σ+ − σ−) · er + (τ : K)er = ∇I · τ on ∂Ωi

}
(A.1a)

Pσ =
{

(σ, τ ) s.t. f s(σ) = 0 in Ωs and fI(τ ) = 0 on ∂Ωi

}
(A.1b)

where σ (resp., τ ) denotes the microscopic second-order stress tensor (resp., the planar

surface stress tensor at I), f s (resp., fI) indicates the yield function of the solid matrix

(resp., of the interface), K is the curvature tensor, and σ± = σ(r → R±i ). It is worth

pointing out that the equilibrium equation at I in Eq. (A.1a) is expressed via a generalized

form of the Young-Laplace equation Gurtin and Murdoch (1975); Duan et al. (2005b),

and set Pσ prescribes that the material is everywhere yielding.

The exterior boundary ∂Ωe of the system is assumed to undergo to strain rate-based

conditions, expressed in terms of the following second-order axisymmetric deviatoric ten-

sor:

D = D̃

[
1

2
(ex ⊗ ex + ey ⊗ ey)− ez ⊗ ez

]
(A.2)

D̃ being a constant strain-rate parameter, and whose second-order deviatoric and third-

order deviatoric stress invariants are denoted as Jd
2 = tr(D2)/2 and Jd

3 = tr(D3)/3,

respectively. The strain-rate deviatoric measure Deq, as well as the strain-rate Lode

angle θD are also introduced

Deq = 2

√
Jd

2

3
, θD =

1

3
arccos

3
√

3Jd
3

2(Jd
2 )3/2

(A.3)

The set of kinematically-admissible (Kd) strain-rate fields is defined as:
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Kd =





(d,dI) s.t.

d = ∇̃v in Ωs ,

dI = d(ri) on ∂Ωi ,

with v = D · r on ∂Ωe





(A.4)

with d (resp., dI) denoting the microscopic second-order strain-rate tensor in Ωs (resp.,

on ∂Ωi), and where v is the local velocity field.

When statically-admissible stress (i.e., (σ, τ ) ∈ Sσ) and kinematically-admissible

strain-rate (i.e., (d,dI) ∈ Kd) local fields are considered, the Hill’s theorem holds (e.g.,

Salençon, 1983)

|Ω|Σ : D =

∫

Ωs

σ : d dΩ +

∫

∂Ωi

τ : dIT dA (A.5)

the macroscopic stress tensor Σ and the macroscopic strain-rate tensor D having to

comply with relationships Σ = σ and D = d, respectively, where a identifies the Ω-based

average of a certain space-dependent field a(r) (i.e., a = |Ω|−1 ∫
Ω

a dΩ). The exterior

power has to be lower or at the most equal to the maximum plastic dissipation Prm that

can be afforded in Ω

|Ω|Σ : D ≤ Prm , with Prm(d) =

∫

Ωs

πs(d) dΩ +

∫

∂Ωi

πI(dI) dA , (A.6)

where

πs(d) = sup
σ∈Gs

(σ : d), with Gs = {σ s.t. f s(σ) ≤ 0} (A.7)

πI(dI) = sup
τ∈GI

(τ : dIT), with GI =
{
τ s.t. fI(τ ) ≤ 0

}
(A.8)

with dIT = T : dI , and where the equality sign in Eq. (A.6) holds at the limit state.

Function πs (resp., πI) is the support function for the local strength domain Gs (resp.,

GI). It has the meaning of the maximum volume (resp., surface) density of the resisting

power that can be locally achieved by the material, when the local strain-rate field d

(resp., dI) is considered.

Accordingly, the macroscopic limit stress Σ` results from

Σ` =
∂Πhom(D)

∂D
(A.9)

where Πhom(D) is the macroscopic support function, defined as Dormieux and Kondo

(2010)

Πhom(D) = inf
(d,dI)∈Kd

{
Πs

hom(d) + ΠIhom(dI)
}

(A.10)

with

Πs
hom = πs(d) , ΠIhom =

1

|Ω|

∫

∂Ωi

πI(dI) dA (A.11)

In the case of an isotropic local plastic behaviour and since for the case under inves-
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tigation tr(D) = 0, the macroscopic support function Πhom in Eq. (A.10) is expressed in

terms of the isotropic strain-rate invariants Deq and θD only, resulting in the macroscopic

limit deviatoric stress tensor

Σ` =
2

3Deq

∂Πhom

∂Deq
D +

∂Πhom

∂θD

∂θD

∂D
(A.12)

Correspondingly, the deviatoric strength measure Σ`eq =
√

3Jσ2 is introduced, with Jσ2 =

tr (Σ`)
2
/2.

In the following, instead of seeking the infimum in Eq. (A.10) over all the kinema-

tically-admissible strain-rate states, a particular microscopic velocity field v̂, such that

v̂ = D · r on ∂Ωe and yielding to the local strain-rate fields (d̂, d̂I) ∈ Kd, is chosen

furnishing an estimate of the macroscopic support function and thereby an upper bound

of the macroscopic limit stress.

A.3 Trial velocity field

In agreement with the strategy originally derived in Budiansky et al. (1982) and also

adopted in Zhu and Zbib (1993), the local kinematics at the collapse state is estimated

by assuming a trial velocity field v̂ = v̂r er + v̂θ eθ + v̂ϕ eϕ in the form

v̂r = − 1

r2 sin θ

∂

∂θ

[
ζ(r, θ) sin θ

]

v̂θ =
1

r

∂

∂r

[
ζ(r, θ)

]

v̂ϕ = 0

(A.13)

where function ζ(r, θ) is defined by

ζ(r, θ) = Deq

[
r3

4
+ χ(r)

]
sin(2θ) (A.14)

χ(r) being a regular function such that

χ(Re) = χI(Re) = 0 (A.15)

where Roman numerals are used to indicate derivatives with respect to r. Relationships

(A.15) allow the velocity field in Eq. (A.13) to comply with the strain-rate boundary condi-

tion expressed in Eq. (A.4), and thereby resulting in a kinematically-admissible strain-rate

field (d̂, d̂I) ∈ Kd. In detail, it is simple to prove that the adopted trial velocity field

under the constrain (A.15) satisfies the boundary requirement v̂ = D · r on ∂Ωe, that is

v̂r(re) = −Deq
Re

4
[1 + 3 cos(2θ)]

v̂θ(re) = Deq
3

4
Re sin(2θ)

v̂ϕ(re) = 0

(A.16)
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It is worth observing that condition χ(r) = 0 straight yields the velocity field classically

adopted in kinematic limit-analysis approaches Dormieux and Kondo (2010); Gurson

(1977). Furthermore, assumptions (A.13) and (A.14) correspond to a local strain-rate

field verifying the incompressibility condition

tr d̂ =
∂

∂r

(
r2v̂r sin θ

)
+

∂

∂θ

(
rv̂θ sin θ

)
= 0 (A.17)

everywhere in the hollow sphere, irrespective of the particular form assumed for χ(r).

A.4 Strength estimate

The solid matrix Ωs and the interface I are assumed to obey to a von Mises strength

criterion, whose yield (f s and fI) and support (πs and πI) functions are respectively

expressed as Salençon (1983)

f s(σ) =
3

2
σd : σd − σ2

0 (A.18a)

fI(τ ) =
3

2
τd : τd − k2

I (A.18b)

πs(d) =




σ0

√
2
3d : d if tr d = 0

+∞ if tr d 6= 0
(A.18c)

πI(dI) =




kI
√

2
3dI : dI if tr dI = 0

+∞ if tr dI 6= 0
(A.18d)

where σd = σ − (trσ/3)1 is the deviatoric part of the stress tensor σ in Ωs, τd =

τ − (tr τ/3)1 is the deviatoric part of the planar stress tensor τ at I, with 1 the second-

order identity tensor, and where σ0 and kI are the deviatoric strength parameters of

the solid matrix and the interface, respectively, the latter having the dimensions of a

membrane stress (namely, a force per unit length).

Kinematically-admissible strain-rate fields (d̂, d̂I) ∈ Kd, computed via the velocity

field v̂ introduced in Section A.3, allows to determine, through Eqs. (A.18c) and (A.18d),

the following estimate for the macroscopic support function introduced in Eq. (A.11)

Π̂hom(Deq, θD) =

√
2

3

σ0

|Ω|

[∫

Ωs

√
d̂ : d̂ dΩ + κRi

∫

∂Ωi

√
d̂I : d̂I dA

]
(A.19)

where the dimensionless parameter

κ =
kI
Riσ0

(A.20)

is introduced aiming to account for the influence of void-size effects. As a matter of fact,

when strength values for the interface (namely, kI) and for the solid matrix (σ0) are

considered as fixed, a reduction in the void size Ri corresponds to increase κ. The case of

porous materials comprising cavities with large values of Ri is thereby recovered simply
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by considering κ = 0, namely by assuming as negligible surface-induced effects.

In order to obtain an explicit analytical estimate of Πhom, the Cauchy-Schwartz in-

equality leads: ∫

B(r)

√
d̂ : d̂ dA ≤

√
4πr2

√∫

B(r)

d̂ : d̂ dA (A.21)

and therefore, it results in

Π̂hom(Deq, θD) ≤ Π

̂
hom(Deq) (A.22)

with

Π

̂
hom(Deq) =

√
2

3

σ0

|Ω|

[∫ Re

Ri

(
√

4πr2

√∫

B(r)

d̂ : d̂ dA

)
dr + 3κp|Ω|

√
λI

]
(A.23)

where

λI =
1

4πR2
i

∫

∂Ωi

d̂I : d̂I dA (A.24)

A further use of the Cauchy-Schwartz inequality for the radial-coordinate integral in

Eq. (A.22) produces

Π

̂
hom(Deq) ≤ Π̃hom(Deq) (A.25)

with

Π̃hom(Deq) =

√
2

3
σ0

[
(1− p)

√
λs + 3κp

√
λI
]

(A.26)

and where

λs =
1

|Ωs|

∫

Ωs

d̂ : d̂ dΩ (A.27)

It is worth observing that both λs and λI depend on the choice of function χ(r).

Moreover, as proven in Gurson (1977), Π

̂
hom and thereby Π̃hom do not depend on the

strain-rate Lode angle θD. Accordingly, the corresponding macroscopic stress estimate

results in (see Eq. (A.12))

Σ̃` =
2

3

1

Deq

∂Π̃hom

∂Deq
D =

2

3

1

Deq
Σ̃`eq D (A.28)

where Σ̃`eq is an upper-bound deviatoric macroscopic strength measure.

Aiming to furnish a consistent and effective estimate for the macroscopic support

function in Eq. (A.10), function χ(r) has to minimise λs(χ) and λI(χ), as well as it has to

comply with kinematic admissibility conditions (A.15). The first requirement results in a

standard problem of variational calculus and leads to the following differential equation

χIV (r)− 12

r2
χII(r) +

24

r3
χI(r) = 0 (A.29)

whose solution is:

χ(r) = C1 + C2
R2

e

r2
+ C3

r3

R3
e

+ C4
r5

R5
e

(A.30)
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where C1, C2, C3 and C4 are some integration constants. These latter, due to the kine-

matic admissibility in Eq. (A.15), have to satisfy

C1 = −1

2
(5C3 + 7C4), C2 =

1

2
(3C3 + 5C4) (A.31)

Therefore, C3 and C4 can be considered as free model parameters to employ for

seeking the best possible estimate for the infimum in Eq. (A.10). In detail, by replacing

Eqs. (A.30) and (A.31) into Eq. (A.26), function Π̃hom = Π̃hom(C3, C4) can be minimized

with respect to C3 and C4.

It is worth remarking that such an optimization strategy can not be performed with

classical trial velocity fields, which result to be completely defined via strain-rate boundary

conditions only, such the one proposed by Gurson (1977) and used in Dormieux and Kondo

(2010) (namely, Eq. (A.13) with χ(r) = 0).

Accordingly, the optimal values Copt
3 and Copt

4 are obtained as

Copt
3 = −R3

i

100− 84p2/3 + 19p7/3

2∆

Copt
4 = 30R3

i

1− p2/3

∆

(A.32)

where ∆ = 48 + 225p2/3 − 336p5/3 + 200p+ 38p10/3.

By replacing Eqs. (A.32) into Eq. (A.28) and in the framework of small values of p,

the following closed-form upper bound of the macroscopic deviatoric strength measure

(denoted as BDKV) is obtained

Σ̃`eq

σ0
= 1−

(
4

3
− κ
√

15

)
p+

(
41

12
− 25

6
κ
√

15

)
p2+

−
(

35

6
− 28

3
κ
√

15

)
p8/3 + O(p3)

(A.33)

With reference to the proposed result, the following observations can be stated:

• By enforcing χ = 0 in the estimate Π

̂
hom of Eq. (A.22), the upper-bound strength

measure proposed by Dormieux and Kondo (2010) (denoted in the following as DK)

is recovered, resulting in

ΣDK
eq

σ0
= 1−

(
1− 3

√
15

5
κ

)
p (A.34)

that, in the case of negligible interface effects (namely, κ = 0) corresponds to the

Gurson’s description Gurson (1977);

• Equation (A.33), truncated at the first order in p and for κ = 0, recovers the strength

estimate obtained via a variational procedure by Ponte Castañeda (1991).

Model sensitivity to porosity p and void-size effect parameter κ is addressed in Figs. A.2

and A.3. As expected, results shown in Fig. A.2 highlight that the macroscopic deviatoric
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Figure A.2 – Normalised deviatoric strength estimate Σ̃`eq/σ0 as a function of the porosity p for
different values of κ. (a) Assessment with respect to (κ = 0): static and kinematic numerical
bounds (TP Trillat and Pastor (2005)); DK model Dormieux and Kondo (2010); Gurson (1977).
(b) Void-size effects and comparison with respect to the DK model.
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Figure A.3 – Normalised deviatoric strength estimate Σ̃`eq/σ0 as a function of the void-size
parameter κ (1/κ resulting proportional to the void radius Ri) for p = 0.1. Comparison with
respect to the DK model Dormieux and Kondo (2010); Gurson (1977).

strength estimate reduces when p increases. The influence of void-size effects is addressed

in Figs. A.2b and A.3, resulting in an improvement of the material strength when the

size of void reduces (that is, for large values of κ). Such an occurrence is qualitatively in

agreement with well-established experimental Biener et al. (2005, 2006); Hakamada and

Mabuchi (2007) and numerical (e.g., Brach et al., 2016a; Zhao et al., 2009) evidence.

Aiming to assess the effectiveness of the proposed strength estimate, comparisons

with both theoretical and numerical benchmarks are also provided for different values of

parameters p and κ. In detail, reference is made to the theoretical predictions obtained via

Eq. (A.34) Dormieux and Kondo (2010); Gurson (1977) and to finite-element-based static

and kinematic limit-analysis computations provided in Trillat and Pastor (2005) (these

latter, available only in the case of κ = 0 and denoted as TP data). It is observed that,

although the proposed deviatoric strength is an upper bound of the exact one, BDKV-

based results improve the DK estimate, resulting in lower values and thereby in a more

accurate estimate of deviatoric strength properties for porous (κ = 0) and nanoporous

(κ > 0) materials.

A.5 Concluding remarks

In this Appendix, an upper-bound estimate of the macroscopic deviatoric strength of a

hollow sphere, representative of a particular microstructure for porous and nanoporous

materials, has been determined in the case of an axisymmetric deviatoric strain-rate con-

dition and via a kinematic limit analysis approach. The hollow sphere has been assumed

to be comprised of a rigid ideal-plastic material, obeying to a von Mises strength crite-

rion. Void-size effects associated to the possible void nanoscale Biener et al. (2005, 2006);
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Hakamada and Mabuchi (2007) have been accounted for via a coherent and imperfect ho-

mogeneous interface at the cavity boundary. The local kinematics at the limit state has

been estimated by introducing a suitable trial velocity field, in agreement with findings

in Budiansky et al. (1982) (see also Zhu and Zbib, 1993) and allowing for an optimization

procedure.

With respect to the current state-of-the-art, proposed results furnish the following

novel and original contributions:

• an effective description of void-size effects, resulting in an increase of the predicted

macroscopic deviatoric strength as the void radius decreases, qualitatively in agree-

ment with available experimental Biener et al. (2005, 2006); Hakamada and Mabuchi

(2007) and numerical Brach et al. (2016a); Zhao et al. (2009) evidence;

• an improvement of limit-analysis based estimates Dormieux and Kondo (2010);

Gurson (1977), resulting in a more effective description of the macroscopic deviatoric

strength for porous and nanoporous materials.
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métaux. Thèse de doctorat, Ecole Polytechnique.

Pinnavaia, T. J., & Thorpe, M. F. (2006). Access in nanoporous materials. Springer

Science & Business Media.

Plimpton, S.J. (1995). Fast parallel algorithms for short-range molecular dynamics. Jour-

nal of Computational Physics, 117, 1-19.
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Comptes Rendus Mécanique, 337(5), 260-267.
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