Void-size effects on strength properties of nanoporous materials: A Molecular Dynamics approach
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nonché i significativi effetti di taglia.

Résumé

Dans les deux dernières décennies, grâce au développement de nouvelles nanotechnologies, les matériaux nano-structurés ont suscité l'intérêt de nombreux groupes de recherche académiques ou industriels, donnant lieu à la mise en place d'essais expérimentaux, à la formulation de modèles analytiques, et à des simulations numériques dédiées.

Parmi les différents types de matériaux nano-structurés, un rôle important est tenu par les matériaux nanoporeux, constitués d'une matrice solide contenant des pores dont la dimension caractéristique est de l'ordre de quelques nanomètres à quelques dizaines de nanomètres. En effet, en raison de leurs excellentes propriétés mécaniques et chimiques, les nanoporeux ont récemment fait l'objet de nombreuses applications novatrices dans différents domaines techniques, permettant ainsi la conception de dispositifs à ultra-haute performance et aux propriétés multi-fonctionnelles inhabituelles. vi mono-axiale ou sous pression uniforme), les résultats obtenus ont permis une identification du domaine multiaxial de résistance, en établissant clairement l'influence de trois invariants de contrainte ainsi que les effets de taille sur les surfaces de résistance du nanoporeux.

Dans le but de mettre à profit les indications fournies par les simulations numériques, le cas d'un matériau nanoporeux constitué d'une matrice ductile sensible aux trois invariants isotropes a été étudié. L'état limite d'une sphère creuse, avec une interface imparfaite cohérente à la surface du nanopore, a été identifié de façon exacte dans le cas d'un chargement isotrope, en établissant des expressions analytiques pour les champs locaux de vitesse de déformation et de contrainte, et pour la résistance hydrostatique du matériau nanoporeux. Finalement, à partir des résultats ainsi obtenus, une approche d'analyse limite cinématique a été mise en place pour le modèle d'une sphère creuse sous chargement axisymétrique et au comportement plastique sensible aux trois invariants isotropes de contrainte. Un critère de résistance du matériau rendant compte des effets de taille des nanopores et de l'influence des trois invariants de contrainte a été analytiquement dérivé, en résolvant un problème de minimisation sous contrainte non-linéaire d'inégalité.

Mots clés: Matériaux nanoporeux, propriétés de résistance, effets de taille des nanopores, Dynamique Moléculaire, analyse limite cinématique, homogénéisation non linéaire.

Sommario

Negli ultimi anni, lo sviluppo di nuove nanotecnologie ha portato ad un crescente interesse nei confronti dei materiali cosiddetti nano-strutturati, progettati al fine di garantire proprietà e prestazioni generalmente superiori o comunque non assimilabili a quelle esibite dai materiali convenzionali. Tra gli altri, grande interesse hanno suscitato i materiali nanoporosi, costituiti da una matrice solida contenente dei pori la cui dimensione caratteristica è dell'ordine di alcuni nanometri. Generalmente contraddistinti da un ridotto peso specifico, da elevate energie superficiali e da significative proprietà fisico-chimiche, i materiali nanoporosi sono impiegati nella progettazione di dispositivi ultra-efficienti per applicazioni innovative in differenti ambiti industriali, tra cui l'ingegneria meccanica e civile, il settore petrolchimico e geotecnico, la biomeccanica e la sensoristica.

Uno degli attuali aspetti di ricerca più affascinanti consiste nell'identificazione e nella descrizione delle proprietà meccaniche del materiale in funzione della taglia caratteristica dei pori, assegnato che sia un valore di porosità. Una tale dipendenza, non esibita dai materiali porosi convenzionali, è strettamente correlata alla dimensione nanometrica dei pori, consentendo di alterare deliberatamente la risposta meccanica del materiale al fine di prescrivere specifiche funzionalità di interesse progettuale.

A fronte di una risposta meccanica così complessa e rispetto alla letteratura esistente, l'obiettivo della presente tesi è consistito nella formulazione di approcci analitici e numerici per la caratterizzazione delle proprietà di resistenza dei materiali nanoporosi, identificandone la dipendenza dagli effetti di taglia.

In particolare, nel contesto degli approcci di omogeneizzazione non lineare e di analisi limite, dei criteri di resistenza sono stati analiticamente determinati, tenendo conto della dipendenza dalla taglia dei nanopori tramite l'introduzione di un modello d'interfaccia imperfetta coerente. Le stime di resistenza così ottenute hanno permesso di migliorare significativamente i più recenti modelli disponibili in letteratura, fornendo una descrizione consistente degli effetti associati sia alla porosità che alla taglia dei nanopori.

Inoltre, al fine di fornire delle evidenze numeriche utili alla calibrazione e/o alla validazione di formulazioni analitiche esistenti, oltre che per lo sviluppo di nuovi modelli teorici, delle simulazioni di Dinamica Molecolare sono state condotte considerando una varietà di condizioni al contorno multiassiali in velocità di deformazione. Rispetto agli approcci numerici disponibili in letteratura, riferiti generalmente a delle condizioni di carico estremamente esemplificative, la procedura computazionale proposta ha perme-

Introduction

In the last decades, the development of novel and challenging nano-technologies has led to unprecedented opportunities in materials design. As a matter of fact, instead of coming upon new materials with trial-and-error research processes, the core focus of current engineering design approaches consists in manipulating material microstructure at the atomic level in order to deliberately prescribe specific properties at the continuum scale.

As a result, a new generation of customer-oriented devices, based on the so-called nanostructured materials, has recently attracted a keen research interest in both industrial and academic domains, opening towards groundbreaking multifunctional applications in several technical fields.

An important class of nanostructured materials consists in nanoporous media, whose microstructure comprises an organic or inorganic solid matrix embedding long-range orderly-or disorderly-distributed pores (see Fig. 1). According to the International Union of Pure and Applied Chemistry nomenclature, and depending on pores characteristic length, nanoporous media can be divided into three subcategories: microporous (with pore size smaller than 2 nanometers), mesoporous (with pore size in the range of 2 to 50 nanometers), and macroporous (with pore size larger than 50 nanometers). Nevertheless, for the sake of clarity and in agreement with the most extensively adopted terminology in literature, in this thesis the term nanoporous is used to refer to materials presenting structural features in between those of atomic arrangements and bulk solids, with characteristic pore size ranging from 1 to 100 nanometers.

Generally characterised by high specific surfaces area, uniform pore size and rich surface energy, nanoporous materials present a wide variety of chemical compositions and physical features, which are often dramatically different from those of the same material at a larger lengthscale. Such an intriguing combination of electro-chemical-mechanical properties has represented the driving force behind the ever-growing research interest in nanoporous materials, opening towards cutting-edge technological uses [START_REF] Ding | Nanoporous Metals for Advanced Energy Technologies[END_REF]Jenkins, 2010;Lu and Zhao, 2004;[START_REF] Pinnavaia | Access in nanoporous materials[END_REF][START_REF] Valiev | Bulk nanostructured materials: fundamentals and applications[END_REF].

As a matter of fact, due to the presence of nanosized cavities, these materials possess a high capability to interact, absorb and cooperate with atoms, ions and molecules, thereby finding widespread application as catalysts or adsorbents in petroleum and chemical industries [START_REF] Roque-Malherbe | Adsorption and diffusion in nanoporous materials[END_REF]. Moreover, by combining advantages due to high surfaceto-volume ratio and uniform pore size, nanoporous-based devices have been conceived for size-selective adsorption purposes, allowing to sensibly improve the efficiency of several tions, as well as for designing lightweight devices in automotive, aeronautic and construction industries. Finally, in the fields of clean energy production and storage, nanoporous metals have been recognized as an alternative type of electrode materials, which exhibit some very unique structural properties not commonly expected from carbon-based electrodes [START_REF] Ding | Nanoporous Metals for Advanced Energy Technologies[END_REF][START_REF] Lang | Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors[END_REF].

To date, two basic and complementary methods have been developed for the synthesis of nanoporous materials, generally known as bottom-up and top-down approaches [START_REF] Gleiter | Nanostructured materials: basic concepts and microstructure[END_REF][START_REF] Zehetbauer | Modeling the ductile damage process in commercially pure titanium[END_REF]. In the first case, advanced microstructural nanotechnologies afford to fabricate nanoporous solid frameworks by assembling individual atomic structures or by consolidating nanosized molecular arrangements. Extensivelyused bottom-up techniques include inert gas condensation [START_REF] Gleiter | Nanostructured materials: basic concepts and microstructure[END_REF][START_REF] Zehetbauer | Modeling the ductile damage process in commercially pure titanium[END_REF], electro-deposition [START_REF] Erb | Synthesis, structure and properties of electroplated nanocrystalline materials[END_REF][START_REF] Shin | Nanoporous structures prepared by an electrochemical deposition process[END_REF], ball milling with subsequent consolidation [START_REF] Koch | Nanocrystals by high energy ball milling[END_REF][START_REF] Chen | Nanoporous carbon produced by ball milling[END_REF], and mechanical milling in a liquid nitrogen environment [START_REF] Luton | Cryomilling of nano-phase dispersion strengthened aluminum[END_REF][START_REF] Witkin | Synthesis and mechanical behavior of nanostructured materials via cryomilling[END_REF]. On the other hand, top-down approaches consists in obtaining nanoporous materials via the structural decomposition of originally-bulk solid samples. Among other top-down techniques, dealloying represents the most exploited method for fabricating nanoporous metals [START_REF] Sun | Fabrication of nanoporous nickel by electrochemical dealloying[END_REF][START_REF] Senior | Synthesis of tough nanoporous metals by controlled electrolytic dealloying[END_REF]Weissmüller et al., 2009), consisting in the selective corrosion of less-noble elements in alloy-based solid specimens.

Interest in conceiving and developing engineering devices based on nanoporous materials with respect to conventional porous ones (i.e., with relatively larger characteristic sizes) arose from the discovery that, by opportunely calibrating pore dimension at the nanoscale, it is possible to deliberately prescribe specific size-related effects at the macroscale. Accordingly, and with particular reference on mechanical features, one of the core research focus consists in identifying and describing the strength properties of nanoporous materials as dependent on the size of voids.

Experimental tests performed on nanoporous foams (e.g., Biener et al., 2005Biener et al., , 2006;;[START_REF] Cheng | Strength scale behavior of nanoporous Ag, Pd and Cu foams[END_REF]Fan and Fang, 2009;Hakamada and Mabuchi, 2007;Hodge et al., 2007) revealed that, for a fixed porosity level, a reduction in the void size induces a significant increase in the yield strength, which results higher than characteristic values observed for conventional porous metals. As an illustrative example, evidence-based data provided by Fan and Fang (2009) and obtained via nanoindentation tests on nanoporous gold foams are reported in Fig. 3a, highlighting the strengthening effect associated to the reduction of the ligament size (the latter being proportional to the characteristic void length). However, apart from these qualitative indications of the void-size influence on the material yield stress, available experimental literature does not furnish either an exhaustive description of the three-dimensional material strength domain (i.e., in the space of principal stresses) or a proper characterization of the impact of void-size effects under arbitrary loading conditions.

In this light, numerical simulations can be considered as effective methods to provide benchmarking evidence, allowing also to separately control a number of possible coupled effects. Nevertheless, computational approaches usually employed for modelling macro-
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(3) (4) and/or micro-mechanical response are not able to automatically provide helpful insights on dominant size-related effects, since they do not include an adequately rich description of the material structure at the nanoscale. For instance, this is the case of finite elementsbased calculations (e.g., Morin et al., 2015), in which the dependence of nanoporous material strength properties on the void size is enforced by a priori defining a specific yield criterion for surface elements at cavity boundaries. On the contrary, allowing to describe the material arrangement at the atomic level, Molecular-Dynamics computational approaches can be considered as a promising candidate to numerically investigate the mechanical response of nanoporous materials, automatically providing helpful insights on dominant size-induced effects. Specifically, available Molecular Dynamics calculations mainly addressed the identification and the characterization of atomistic mechanisms underlying failure processes related to void growth and coalescence (e.g., [START_REF] Farrissey | An atomistic study of void growth in single crystalline copper[END_REF]Lubarda et al., 2004;Lubarda, 2011;Marian et al., 2004Marian et al., , 2005;;Pogorelko and Mayer, 2016;Ruestes et al., 2013;Tang et al., 2010;Traiviratana et al., 2008). On the other hand and at the best of the author's knowledge, a limited number of studies has been devoted to the definition of engineering-oriented strength measures for nanoporous materials. For instance, mention can be made to results provided by Mi et al. (2011), Traiviratana et al. (2008) and Zhao et al. (2009), predicting a significant enhancement of the computed strength measure as the void size reduces (see Fig. 3b). Nonetheless, current Molecular Dynamics computations are generally limited to the analysis of particular strength states only, obtained under uniaxial [START_REF] Farrissey | An atomistic study of void growth in single crystalline copper[END_REF]Tang et al., 2010), volumetric or shear conditions (Marian et al., 2004(Marian et al., , 2005)), and therefore defining only few discrete points on the a-priori unknown material strength surface. In fact, no numerical analysis has been provided addressing more exhaustive multiaxial loading cases, thereby resulting in a lack of a comprehensive characterization of void-size effects on material strength domain.

(c)
As regards theoretical modelling, although size-related effects have been extensively investigated in the elastic regime (e.g., Brisard et al., 2010a,b;Duan et al., 2005a,b;Le Quang and He, 2007), limited attention has been paid so far to the dependence of effective strength properties on the void size, classical plasticity theories for porous materials being generally conceived to predict porosity effects only (e.g., Gurson, 1977;Ponte Castañeda, 1991). Referring to limit-analysis approaches, a macroscopic yield function accounting for void-size effects has been recently proposed by Dormieux and Kondo (2010), who extended the well-known criterion established by Gurson (1977) to nanoporous materials, by describing cavities boundary via a plastic generalization of stress-interface laws (Gurtin andMurdoch, 1975, 1978;Monchiet and Bonnet, 2010). An analogous modelling strategy has been adopted by Monchiet and Kondo (2013), who addressed the combined influence of void size and void shape on nanoporous materials plastic response. Void-size dependent strength criteria have also been established in the framework of non-linear homogenization approaches (Dormieux and Kondo, 2013;Goudarzi et al., 2010;[START_REF] Moshtaghin | Effects of surface residual stress and surface elasticity on the overall yield surfaces of nanoporous materials with cylindrical nanovoids[END_REF]Zhang and Wang, 2007;Zhang et al., 2008Zhang et al., , 2010)). However, as it will be shown in the following, the most recent non-linear homogenization strength criterion (Dormieux Ligament size [nm] [ Volkerta et al.(2006)] [Hodge et al.(2006)] Yield strength [GPa] (a) (Fan and Fang, 2009), obtained via nanoindentation tests on nanoporous foams, the ligament size being a measure of the characteristic length of voids. (b) Molecular-Dynamics results by Zhao et al. (2009) for an in-silico nanovoided single-crystal copper undegoing an uniaxial tension loading.

and Kondo, 2013) strongly overrates available numerical evidence (Trillat and Pastor, 2005;Morin et al., 2015), resulting inaccurate especially for high stress-traxiality levels.

Moreover, afore-mentioned strength models have been obtained by considering a plastic solid matrix obeying to a von Mises yield criterion, that is by assuming the local plastic response to be independent from both the hydrostatic stress and the stress Lode angle.

The effectiveness of this modelling choice needs to be assessed, eventually opening towards the possibility to consider different local plastic behaviours.

Motivated by above observations, the central purpose of the present thesis consists in investigating strength properties of nanoporous materials via both analytical and numerical approaches. The thesis is organized as follows, each chapter corresponding to a submitted or a published research work with a self-consistent notation:

• in Chapter 1, aiming to enhance the model recently provided by Dormieux and Kondo (2013), a non-linear homogenization approach is proposed, delivering a novel macroscopic strength criterion for ductile nanoporous materials. A 3-layered description is adopted, accounting for surface-stress effects at cavities boundary via an imperfect-coherent interface law. The effectiveness of the proposed strength criterion is assessed with respect to available numerical benchmarking data (Trillat and Pastor, 2005;Morin et al., 2015);

• in Chapter 2 [Mec Mater;101: 102-117 (2016)], strength properties of in-silico nanoporous samples are investigated via a Molecular-Dynamics computational approach. A parametric analysis with respect to the void radius and for different porosity levels is carried out, by considering different loading paths with a wide range of triaxiality scenarios. As a result, the influence of void-size effects on the computed strength properties is quantified, also highlighting the dependence of the predicted material strength domain on the three stress invariants;

• in Chapter 3 [Int J Plasticity;DOI: 10.1016DOI: 10. /j.ijplas.2016DOI: 10. .10.007 (2016))], the limitstate problem of a nanovoided hollow sphere is exactly solved, in the case of isotropic loading conditions. In agreement with Molecular-Dynamics indications concerning bulk nanosized samples in Chapter 2, the hollow sphere is assumed to be comprised of a rigid-ideal-plastic material obeying to a general isotropic yield criterion. The latter being defined as a simplified form of the yield function proposed by Bigoni and Piccolroaz (2004), a broad class of pressure-sensitive, frictional and ductile local plastic responses are taken into account, allowing also for an extremely flexible description of the stress-Lode-angle influence. Void-size effects are modelled by describing the cavity boundary as a coherent-imperfect homogeneous interface. The exact solution of the limit-state problem is fully determined, providing closed-form relationships for stress, strain-rate and velocity fields, as well as for the macroscopic hydrostatic strength;

• in Chapter 4, a macroscopic general strength criterion accounting for void-size effects is established, by referring to a nanovoided hollow-sphere model undergoing axialsymmetric strain-rate boundary loadings. The general yield function introduced in Chapter 3 is considered, allowing for an extreme flexibility in describing the stress-Lode-angle influence on the local plastic behaviour. In the framework of a kinematic limit-analysis approach, relationships provided in Chapter 3 are used to construct an effective trial velocity field. A parametric closed-form expression of the macroscopic strength criterion is obtained as the physically-consistent solution of a constrained minimization problem, this latter being faced via the Lagrangian method combined with Karush-Kuhn-Tucker conditions. Illustrative computations highlight the impact of the local plastic behaviour on the macroscopic one, as well as the strengthening effect induced on macroscopic yield surfaces by a reduction in the void size for a fixed porosity level.

• in Appendix A [Springer Series in Solid and Structural Mechanics;DOI: 10.1007DOI: 10. /978-3-319-48884-4 (2016))], as a complement of the model proposed in Chapter 1, an estimate for the deviatoric strength of nanoporous materials is proposed, by addressing the limit state of a nanovoided hollow sphere undergoing axialsymmetric deviatoric loading conditions. The hollow sphere is assumed to be comprised of a rigid-ideal-plastic matrix obeying to a von Mises strength criterion. A kinematic limit analysis is performed by referring to a suitable trial velocity field (Budiansky et al., 1982). The resulting closed-form expression for the macroscopic deviatoric strength enhances the corresponding estimate provided by Dormieux and Kondo (2010) via a kinematic limit-analysis procedure.

Finally, some conclusions are traced by summarizing main outcomes of proposed theoretical and numerical approaches, as well as by highlighting the contribution of the present thesis to the current literature on nanoporous materials. Possible future research directions are also traced, by furnishing preliminary studies and indications towards more advanced modelling strategies. 12 Chapter 1. A 3-layered non-linear homogenization with interface effects

Introduction

The development of materials characterised by a nanosized microstructure has recently given rise to a growing research interest, involving experimental tests, numerical simulations and theoretical models, aiming to investigate the influence of nano-inclusions or nanopores on the overall material response (Arico et al., 2005;Lu et al., 2004;Jenkins, 2010).

An important class of nanostructured materials consists in nanoporous media, characterised by reduced mass density, high surface-to-volume ratio, good levels of both stiffness and strength, and generally exhibiting a ductile behaviour. Furthermore, due to the nanosize of cavities, these challenging materials are chemically active, exhibiting a high capability to interact with ions and molecules. Through these attractive properties, nanoporous materials are of the most interest in several technical fields, including civil and environmental engineering, geophysics, petroleum industry, biomechanics and chemistry, opening towards groundbreaking multifunctional applications (Jenkins, 2010).

From a mechanical point of view, one of the most important aspect concerns the influence, for a fixed porosity value, of the size of voids on the macroscopic material properties. As a matter of fact, with reference to strength features, recent nano-indentation tests (Biener et al., 2005(Biener et al., , 2006;;Hakamada and Mabuchi, 2007) have proven a significant increase of the yield stress when the void size decreases. The same dependency has been shown in numerical studies based on Molecular Dynamics approaches (Brach et al., 2016a;Traiviratana et al., 2008;Mi et al., 2011;Zhao et al., 2009), where strength predictions decrease towards asymptotic values when the void size increases.

The physical origin of such a phenomenon has been addressed in literature by analysing the solid-void interphase regions at the atomic length-scale (Gibbs, 1906;Cammarata, 1994;Murr, 1975;Orowan, 1970;Shuttleworth, 1950). Indeed, it has been well recognized that, due to the nanovoid presence, a local perturbation in the atomic arrangement occurs close to the void surface, leading to self-equilibrated interactions which can be interpreted as surface stresses (Needs et al., 1991). Surface-induced effects, usually negligible for classical porous materials, become relevant for nanoporous ones (Duan et al., 2005b), resulting in the experimentally-or numerically-observed void-size dependency of effective mechanical properties.

In the framework of a continuum approach, surface-induced stress fields have been generally addressed by introducing interface models (e.g., Duan et al., 2005a;Gurtin andMurdoch, 1975, 1978;Wang et al., 2011), defined in the zero-thickness limit of the transition zone affected by the perturbation of the atomic arrangement. Reference is usually made to coherent and imperfect interface laws, resulting in the continuity (resp., discontinuity) of the displacement field (resp., stress vector) across the interface (Duan et al., 2005b;Gurtin andMurdoch, 1975, 1978;Povstenko and Yu, 1993).

Early works involving surface-stress effects have been focused on the effective elastic properties of nanoporous or nanocomposite materials (Brisard et al., 2010a,b;Duan et al., 2005a,b;Le Quang and He, 2007;[START_REF] Sharma | Effect of surfaces on the size-dependent elastic states of nano-inhomogeneities[END_REF]Sharma and Ganti, 2004).

In contrast, few attention has been paid so far to the influence of surface stresses (and Chapter 1. A 3-layered non-linear homogenization with interface effects 13 thereby of void-size effects) on the material plastic behaviour.

Referring to limit-analysis approaches (Salençon, 1983), the well-established yield function proposed by Gurson (1977) for ductile classical porous media has been extended to nanoporous ones by Dormieux and Kondo (2010), taking advantage of a plastic generalization of a two-dimensional stress-interface model (Monchiet and Bonnet, 2010). The same interface description has been used by Monchiet and Kondo (2013) for deriving a nanoporous strength criterion in the case of spheroidal cavities, incorporating then both void-shape and void-size effects.

An alternative to limit-analysis models consists in non-linear homogenization (NLH) methods based on the so-called modified secant-moduli approach (Suquet, 1995(Suquet, , 1997)), which have been proven to be equivalent to the variational procedure proposed by Ponte Castañeda (1991). Referring to the linear formulation by Herve and Zaoui (1993) and addressing a n-layered spherical composite assembly, semi-analytical strength criteria for classical porous materials have been derived by Bilger et al. (2002) and by Vincent et al. (2009), numerically-experiencing more accurate strength estimates higher the number n of layers. As regards nanoporous materials and by adopting imperfect-coherent interfaces approaches, some void-size dependent strength criteria have been recently proposed by Goudarzi et al. (2010), [START_REF] Moshtaghin | Effects of surface residual stress and surface elasticity on the overall yield surfaces of nanoporous materials with cylindrical nanovoids[END_REF], Zhang and Wang (2007), Zhang et al. (2008), and Zhang et al. (2010). Nevertheless, in these cases, the corresponding macroscopic yield functions are questionably expressed in terms of surface elastic properties, in contrast with the proper definition of limit-stress states. A consistent generalization to nanoporous materials of the porous strength criterion by Ponte Castañeda (1991) has been proposed by Dormieux and Kondo (2013), including surface-induced effects via an interface stress model. However, as it will be shown in the following, such a strength model (denoted as DK) strongly overrates available numerical evidence (Trillat and Pastor, 2005;Morin et al., 2015), especially for high stress-traxiality levels.

Such an occurrence is mainly due to a rough description of local strain-rate heterogeneity in the limit state, and it clearly highlights the need of a further research effort to enhance non-linear homogenization-based strength estimates for nanoporous materials.

In this light, present Chapter aims to establish a consistent and accurate strength model for nanoporous media, properly accounting for void-size effects and able to recover available benchmarking evidence. In detail, strength properties of ductile nanoporous materials are investigated via a non-linear homogenization procedure based on a 3-layered description and including surface-stress effects by means of an imperfect-coherent interface model. The Chapter is organized as follows. In Section 1.2 basic elements of the adopted theoretical framework are presented. Section 1.3 is devoted to the derivation of a novel analytical strength criterion for nanoporous materials, whose effectiveness and accuracy is discussed in Section 1.4. Finally, some conclusions are traced in Section 1.5. Chapter 1. A 3-layered non-linear homogenization with interface effects 1.2 Preliminary background

Problem statement

Aiming to investigate strength properties of a nanoporous material via a non-linear homogenization (NLH) approach, let Ω be a material representative volume element (RVE), whose exterior boundary is ∂Ω. Let the RVE be comprised of internal isotropicallydistributed spherical cavities of radius a and of a rigid-ideal-plastic solid matrix Ω s (Fig. 1.1). Therefore, material strength properties are straight identified by referring to the yield limit state.

It is observed that the rigid-ideal-plastic assumption on the local mechanical response is a fundamental requirement of the limit analysis theory. Such an hypothesis has been widely adopted in both classical and more recent literature focusing on porous and nanoporous materials (see for instance limit-analysis-based approaches by Gurson (1977), Guo et al. (2008), Dormieux and Kondo (2010), Monchiet and Kondo (2013), Anoukou et al. (2016), andBrach et al. (2016b), as well as variational non-linear homogenization techniques by Ponte Castañeda (1991), Zhang and Wang (2007), Zhang et al. (2008), Zhang et al. (2010) and Dormieux and Kondo (2013)), and it is recognized to be particularly effective for metallic solid matrices.

Denoting by |Ω| and |Ω v | the volume measures of the RVE and of the voided region 

Ω v = Ω \ Ω s ,

⌦

@⌦ ⌦ s 2a ⌦ v v = D • ẑ n v
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Moreover, let Ω-based and Ω s -based averages of a certain space-dependent field q(z) be defined as:

q = 1 |Ω| Ω q(z) dΩ, q s = 1 |Ω s | Ω s q(z) dΩ , (1.1) 
where vector z identifies the position of a point in Ω. Furthermore, let σ(z) and d(z) (resp., Σ and D) be the microscopic (resp., macroscopic) stress and strain-rate tensor measures.

The RVE is assumed to undergo homogeneous strain-rate boundary conditions, prescribed in terms of the second-order symmetric constant tensor D. Accordingly, the set of kinematically-admissible microscopic velocity fields v(z) is defined as

V(D) = v(z) | v = D • ẑ with ẑ ∈ ∂Ω . (1.2)
Considering an equilibrated stress field σ(z) in Ω, such that Σ = σ, and a compatible strain-rate field d = (∇v + t ∇v)/2 with v ∈ V(D), the Hill's lemma holds (e.g., Salençon, 1983):

|Ω|Σ : D = Ω σ : d dΩ (1.3)
stating the equivalence between the exterior and interior powers.

Let the convex set of the admissible stress states in a certain material point of the solid matrix be introduced as

G s (z) = σ f s (z, σ) ≤ 0 (1.4)
where f s (z, σ) identifies the matrix yield function, possibly accounting for local heterogeneous strength properties.

Since the exterior power associated to the prescribed strain-rate boundary conditions has to be lower or at the most equal to the maximum plastic dissipation that can be afforded in Ω, by combining Eqs. (1.3) and (1.4) the following inequality is obtained

|Ω|Σ : D ≤ Ω π s (z, d(z)) dΩ (1.5)
where π s identifies the local support function for G s and it represents the maximum plastic dissipation that can be locally achieved, thereby resulting in

π s (z, d(z)) = sup σ∈G s {σ(z) : d(z)} . (1.6)
Therefore, for a certain material point, π s (d) is the hyperplane tangent to the yield surface f s (σ) = 0 (i.e., such that σ = ∂π s /∂d) in the space of microscopic stresses.

Accordingly, the inequality (1.5) can be recast as

Σ : D ≤ Π hom (D) (1.7)
where Π hom is the macroscopic maximum plastic dissipation, defined as It is worth observing that, when Π hom is estimated by means of a particular microscopic velocity field v ∈ V(D), Eq. ( 1.9) furnishes an upper bound of the macroscopic limit stress.

Π hom (D) = inf v∈V(D) π with π = π s , in Ω s 0 , in Ω v (1.8)
The following boundary-value problem is introduced (e.g., Dormieux et al., 2006).

Problem 1 For a given D, find σ(z), d(z), v(z) s.t. div σ = 0 in Ω (1.10a) σ = ∂π(z, d(z)) ∂d in Ω (1.10b) d = 1 2 (∇v + t ∇v) in Ω (1.10c) σ • n v = 0 on ∂Ω v (1.10d) v = D • ẑ on ∂Ω (1.10e)
In the framework of non-linear homogenization (NLH) techniques, Problem 1 is faced by referring to the secant-moduli approach, proven by Suquet (Suquet, 1995) to be equivalent to the Ponte-Castañeda's non-linear variational procedure (Ponte Castañeda, 1991).

Non-linear homogenization: the secant-moduli approach

Equation (1.10b) can be thought as representative of a fictitious non-linear behaviour described by the following fictitious constitutive relationship

σ(z) = C z, d(z) : d(z) if z ∈ Ω s 0 if z ∈ Ω v (1.11)
where the fourth-order secant stiffness tensor C is well defined from the support function

π s (z, d(z)
), considered as the potential of the corresponding fictitious viscous material.

Let I σ 1 = tr σ (resp., I d 1 = tr d) be the first stress (resp., strain-rate) invariant, and

J σ 2 = σ dev : σ dev /2 (resp., J d 2 = d dev : d dev /2
) the second deviatoric stress (resp., strainrate) invariant, with σ dev = σ -I σ 1 1/3 (resp., d dev = d -I d 1 1/3) the stress (resp., strainrate) deviatoric part, 1 being the second-order identity tensor such that (1) ij = δ ij , with δ ij the Kronecker delta. By assuming the local strength function f s to be representative of an isotropic plastic response, and defined in terms of the first and the second-order deviatoric invariants I σ 1 and J σ 2 only, π s depends in turn on strain-rate invariants I d 1 and J d 2 only. Accordingly, C describes an isotropic non-linear behaviour for a fictitious heterogeneous material, characterised by

C z, d(z) = 3k z, d(z) J + 2µ z, d(z) K (1.12)
where J and K = I -J are spherical and deviatoric fourth-order isotropic projector tensors, respectively, component-wise defined by 3J ijk = δ ij δ k and 2I ijk = δ ik δ j + δ i δ jk . Moreover, volumetric (namely, k) and shear (µ) secant moduli read as:

k z, d(z) = 1 I d 1 ∂π s ∂I d 1 , µ z, d(z) = 1 2 ∂π s ∂J d 2 .
(1.13)

The case of a solid matrix obeying to a von Mises strength criterion is herein addressed.

Therefore, G s is defined in terms of f s (z, σ) = 3J σ 2 (σ) -σ2 (z)
, where σ(z) is the von Mises strength, and the local support function π s reads as

π s (z, I d 1 , J d 2 ) =      2σ(z) J d 2 3 if I d 1 = 0 + ∞ if I d 1 = 0 (1.14)
It is worth pointing out that π s provided in Eq. (1.14) is not differentiable due to the singularity for I d 1 = 0. Nevertheless, secant moduli in Eqs. (1.13) can be derived by using an asymptotic approach, resulting in (e.g., Dormieux et al., 2006):

k → +∞, µ(z, d(z)) = σ(z) 2 √ 3 1 J d 2 (d(z))
.

(1.15)

Accordingly, Problem 1 can be considered associated to a fictitious incompressible material, whose constitutive law (1.11) is representative of a non-linear (owing to the dependency of C on the strain rate d by means of J d 2 ) and heterogeneous response (due to the space dependency of σ and d, and formally equivalent to a pointwise homogeneous behaviour).

n-layered modelling

In order to obtain an analytical solution, a simplified version of the Problem 1 is introduced, by describing C as a piecewise-constant (in space) tensor. With reference to the n-layered model proposed by Herve and Zaoui (1993), a suitable partition of Ω is considered, as shown in Fig. 1.2a. In detail, in agreement with previous studies (Ponte Castañeda and Suquet, 1998;Dormieux and Kondo, 2013), Ω is decomposed as Ω = Ω c ∪Ω n+1 , where Ω c identifies the overall region occupied by the collection of N identical non-intersecting spheres Ω c i , each of them concentric to a void (namely,

Ω c = ∪ N i=1 Ω c i , with Ω c i ∩ Ω c j = ∅ when i = j),
and Ω n+1 is the complementary part. Each spherical subdomain Ω c i is in turn assumed to be identically partitioned via n confocal spherical layers, such that

Ω c i = ∪ n α=1 Ω i,α
, where Ω i,1 is the i-th void region. The normal vector at the separation surface ∂Ω i,α between layers Ω i,α and Ω i,α+1 , outward-oriented with respect to Ω i,α (see Fig. 1.2b), is denoted as n i,α , with n i,1 coincident to the unit vector n v normal to the void Chapter 1. A 3-layered non-linear homogenization with interface effects surface. The following partition rules apply: Ω = ∪ n+1 α=1 Ω α , where Ω α = ∪ N i=1 Ω i,α (with α = n + 1) is the overall volume region occupied by spherical layers of type α, having the boundary part ∂Ω α = ∪ N i=1 ∂Ω i,α with n α being the corresponding normal unit vector (such that n α = n i,α on ∂Ω i,α ). For what follows and for a certain spherical subdomain Ω c i , it is useful to introduce the spherical coordinate system (θ, ϕ, r), with the origin at the center of Ω c i and whose corresponding orthonormal basis is denoted as (e θ , e ϕ , e r ), such that e r ≡ n v .

⌦ c i ⌦ ⌦ c 1 ⌦ c 2 ⌦ c N n v ⌦ n+1 ⌦ n+1 ⌦ i,n ⌦ i,↵+1 ⌦ i,↵ ⌦ i,1 n i,↵ n i,n ⌦ i,n ⌦ i,↵ ⌦ i,1 (a) ⌦ c i ⌦ ⌦ c 1 ⌦ c 2 ⌦ c N n v ⌦ n+1 ⌦ n+1 ⌦ i,n ⌦ i,↵+1 ⌦ i,↵ ⌦ i,1 n i,↵ n i,n ⌦ i,n ⌦ i,↵ ⌦ i,1 (b)
In each subregion Ω α , both the von Mises parameter and the second-order strain-rate invariant are assumed to be constant in space, namely σ(z) = σα (with σ1 = 0), and

J d 2 (d(z)) = J d 2α .
Thereby, owing to Eqs. (1.11), (1.12) and (1.15), the fictitious material occupying the region Ω is described as a (n + 1)-phases composite medium (consisting in composite spheres Ω c i embedded in a homogeneous solid matrix Ω n+1 ) with constant (in space) secant moduli in each phase Ω α .

Accordingly, a piecewise homogeneous representation (i.e., corresponding to a finite number of phases) of the heterogeneous fictitious response in Eq. (1.11) (formally related to a pointwise homogeneous behaviour, that is corresponding to infinite phases) is obtained.

It is worth observing that the adopted partition, depending on the number of phases (n+1), allows to furnish a certain description of the local strain-rate heterogeneity, whose occurrence is widely documented (e.g., Marian et al., 2004Marian et al., , 2005;;Traiviratana et al., 2008;Zhao et al., 2009).

This partition strategy has been adopted in other NLH-based models. For instance, the analytical criterion by Dormieux and Kondo (2013), for nanoporous materials and accounting for void-size effects, is deduced by considering three phases (corresponding to a 2-layered model). Referring to a partition involving two phases, Suquet (1995) established a macroscopic criterion for porous materials (i.e., without any surface-stress effects) which coincides with the variational-based one provided by Ponte-Castañeda (Ponte Castañeda, 1991). Finally, again in the case of porous materials, semi-analytical results are provided by Bilger et al. (2002) and Vincent et al. (2009) for different values of n. Corresponding computational evidence showed that the predicted hydrostatic strength tends to its exact value (Gurson, 1977) by increasing the number of spherical layers in each composite sphere. For instance, considering p = 1%, the exact hydrostatic limit stress has been accurately estimated by assuming n = 21, (Bilger et al., 2002).

Due to previous assumptions, Problem 1 simplifies as follows.

Problem 2 For a given D and for an assigned integer number n, find

σ α (z), d α (z), v α (z) for any α ∈ {1, . . . , n + 1}, s.t. div σ α = 0 in Ω α (1.16a) σ α = C α : d α in Ω α for α = 1 0 in Ω 1 ≡ Ω v (1.16b) d α = 1 2 (∇v α + t ∇v α ) in Ω α (1.16c) (σ α -σ α+1 ) • n α = 0 on ∂Ω α for α = n + 1 (1.16d) v α = v α+1 on ∂Ω α for α = n + 1 (1.16e) v n+1 = D • ẑ on ∂Ω (1.16f)
where C α (when α = 1) is defined as in Eqs. (1.12) and (1.15),

with µ = µ α in Ω α , µ α being µ α = σα 2 √ 3 1 J d 2α
.

(1.17)

It is worth observing that the constitutive law expressed by Eq. (1.16b) (when α = 1) is non linear due to the dependency of J d 2α on the local strain-rate field d(z). As a matter of fact, assuming for a while that J d 2α is known for each phase, Problem 2 reduces to a standard linearly-viscous problem defined on a piecewise homogeneous medium, referred to as a linear comparison composite (LCC) (Suquet, 1997). In this case, an estimate of the macroscopic limit stress is Suquet (1998), Buryachenko (1993), Kreher (1990), andDormieux et al. (2006))

Σ = C hom (D) : D (1.18)
F : F α J d 2α = 1 4 Σ m k hom 2 ∂k hom ∂µ α + 1 12 Σ eq µ hom 2 ∂µ hom ∂µ α (1.19)
where

F α = |Ω α |/|Ω|
is the volume fraction of the phase α, and where hydrostatic and deviatoric macroscopic stress measures are introduced as Σ m = I Σ 1 /3 and Σ eq = 3J Σ 2 , respectively.

⌦ c i ⌦ i1 ⌦ i↵ ⌦ n+1 ⌦ c 2 ⌦ c n ⌦ in ⌦ c i a h t ⌦ c i n-layered ⌦ i,3 ⌦ i,2 ⌦ i,1
Figure 1.3 -Sketch of the adopted 3-layered model (n = 3). Notation.

A novel NLH-based strength criterion

With the aim to provide a novel analytical strength criterion for nanoporous materials, an approach based on a 3-layered model is employed to treat the non-linear homogenization underlying Problem 2. With reference to Fig. 1.3, the adopted domain partition consists in four phases (n = 3): pore regions (phase Ω 1 ), spherical layers Ω i,2 ≡ L i of thickness h (phase Ω 2 ), L i -to matrix transition zones Ω i,3 of thickness t (phase Ω 3 ), and solid matrix

(phase Ω 4 ≡ Ω n+1 ).
Each subregion L i allows to take into account surface-stress effects due to the possible nanosize of voids. To this end, the length-scale parameter χ = h/a is assumed such that χ = O( ) for any dimensionless > 0 however small. By integrating the equilibrium equation (1.16a) written for α = 2 over a ≤ r ≤ a(1 + χ), and by neglecting contributions scaling as χ, the following relationship holds (see Dormieux and Kondo, 2013)

(σ + 2 -σ - 2 ) • e r = 1 a (τ r e r + τ θ e θ + τ ϕ e ϕ ) (1.20) σ + 2 (resp., σ - 2 )
indicating σ 2 on ∂Ω 2 (resp., on ∂Ω 1 ), with τ r , τ θ and τ ϕ resulting in

τ r = σ L θθ + σ L ϕϕ τ θ = (σ L ϕϕ -σ L θθ ) cot θ - ∂σ L θθ ∂θ - 1 sin θ ∂σ L θϕ ∂ϕ τ ϕ = - ∂σ L θϕ ∂θ + 1 sin θ ∂σ L ϕϕ ∂ϕ + 2σ L θϕ cot θ (1.21)
where the unknown stress components σ L θθ , σ L ϕϕ and σ L θϕ have the meaning of surface stresses, namely σ L * (θ, ϕ) = a(1+χ) a σ * dr aχσ * | r=a . Accordingly, due to Eq. ( 1.20) and under the smallness assumption χ = O( ), each spherical layer L i plays the physical role of an interface, characterized by a discontinuous stress vector and, owing to Eq. (1.16e), by a continuous velocity field across L i . Thereby, the latter corresponds to an imperfectcoherent interface (e.g., Monchiet and Bonnet, 2010).

In agreement with the domain partition depicted in Fig. 1.3, phase volume fractions introduced in Eq. (1.19) are expressed in terms of the porosity p, as

F 1 = p, F 2 = p 1 f -1 , F 3 = ϕ - p f , F 4 = 1 -ϕ (1.22)
where the following volume ratios are introduced

f = |Ω 1 | |Ω 1 | + |Ω 2 | = 1 -3χ + o( ) ϕ = |Ω 1 | + |Ω 2 | + |Ω 3 | |Ω| = |Ω c | |Ω| (1.23)
with ϕ a dimensionless parameter representing the volume fraction of composite inclusions in Ω.

It is worth pointing out that the transition phase Ω 3 has been introduced in order to refine the local strain-rate description with respect to the approach provided by Dormieux and Kondo (2013). Furthermore, since numerical evidence on nanoporous materials (e.g., Brach et al., 2016a;Marian et al., 2004Marian et al., , 2005;;Traiviratana et al., 2008;Zhao et al., 2009) shows that high strain-rate inhomogeneities occur in thin regions surrounding nanovoids, a satisfactory description of the local strain-rate distribution is expected to be provided by considering small values of the thickness t. Hence, the dimensionless ratio ξ = t/a is assumed to satisfy the smallness condition ξ = O( ) and, since ϕ can be expressed as

ϕ = p(1 + χ 3 + ξ 3 ), the volume fraction of the solid part of composite inclusions ψ = ϕ -p (with ψ ≥ 0) results in ψ = O( ).
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The von Mises phase strength σα , introduced in Eq. (1.17), is defined as 1.24) where σ L has the physical dimension of a surface stress. Accordingly, the fictitious shear moduli in Eq. ( 1.17) result in

σα =      0 in Ω 1 σ L /(aχ) in Ω 2 σ 0 in Ω α with α ∈ {3, 4} ( 
µ 1 = 0, µ 2 = σ 0 κ 2χ 3J d 22 , µ 3 = σ 0 2 3J d 23 , µ 4 = σ 0 2 3J d 24 (1.25)
where the dimensionless parameter κ is introduced as

κ = σ L aσ 0 (1.26)
allowing to describe the influence of surface-induced effects, as strictly related to the void size. As a matter of fact, an increase in κ corresponds, for a fixed value of the strength parameter σ 0 , to an increase in the ratio σ L /a, and it results from a reduction in the void size. Consequently, the case of porous materials (associated to negligible interface effects as a result of suitably large values of a) can be recovered by setting κ → 0 + .

Finally, in agreement with the modified secant-moduli approach proposed by Suquet (1995), the kinematical descriptors J d 2α occurring in Eqs. (1.25) are defined as the average of the local strain-rate invariant J d 2 (d(z)) on Ω α :

J d 2α = 1 |Ω α | Ωα J d 2 (d(z)) dΩ .
(1.27)

LCC effective moduli

The effective moduli µ hom and k hom involved in Eqs. (1.18) and (1.19), and associated to the above-introduced four-phases linear comparison composite (LCC), are obtained by means of a generalized Mori-Tanaka homogenization scheme. To this aim, the following auxiliary Eshelby-type problem is defined.

Let Ω E ≡ Ω c i be a three-phases composite hollow sphere, embedded in an isotropic linearly-elastic solid medium Ω ∞ , whose stiffness tensor is assumed equal to C 4 (see Eq. (1.16b)).

Isotropic and shear homogeneous strain-rate boundary conditions are singularly prescribed, by assigning constant strain-rate tensors D iso ∞ and D shr ∞ at infinity, these latter being characterized by null deviatoric and hydrostatic parts, respectively (that is, K : D iso ∞ = 0, and allowing to straight determine k hom ; J : D shr ∞ = 0, and allowing to straight determine µ hom ). Reference is herein made to infinity strain-rate tensors (D iso ∞ and D shr ∞ ) and to the corresponding exact velocity fields (v iso α and v shr α , for the α-subdomain in Ω E ) provided by Love (1944) and by Herve and Zaoui (1993).

In agreement with the approach proposed by Herve and Zaoui (1993), the velocity field v w α (which solves the equilibrium problem when D w ∞ is considered, with w = iso or w = shr) is adopted to compute the corresponding compatible strain-rate field d w α and the equilibrated stress field σ w α in each α-subdomain within Ω E (see Eqs. (1.16)). Thereby, stress and strain-rate average measures on Ω E result in (with w = iso or w = shr)

σ w E = 1 |Ω E | Ω E σ w α dΩ = A w : D w ∞ d w E = 1 |Ω E | Ω E d w α dΩ = B w : D w ∞ (1.28)
A w and B w being fourth-order localization tensors, herein not detailed for the sake of compactness and straight recoverable by referring to results provided by Herve and Zaoui (1993).

In the framework of Problem 2 formulated for n = 3, and as an extension of the Mori-Tanaka scheme, the homogeneous strain-rate tensor D w ∞ is assumed to describe the strain-rate state for the region Ω 4 . Accordingly, the macroscopic stress and strain rate are obtained as

Σ w = σ w = ϕA w + (1 -ϕ)C 4 : D w ∞ D w = d w = ϕB w + (1 -ϕ)I : D w ∞ (1.29)
resulting, from Eq. (1.18), in

ϕA w + (1 -ϕ)C 4 : ϕB w + (1 -ϕ)I -1 = 3k hom J , if w = iso 2µ hom K , if w = shr (1.30)
Thereby, the effective moduli describing the homogenized fictitious constitutive tensor C hom are expressed by

k hom = 4 3 1 -f p µ 2 + p -ϕf ϕp µ 3 + ϕ -1 ϕ µ 4 (1.31a) µ hom = -3 µ 4 Θ 1 µ 4 2 + Θ 2 µ 3 µ 4 + Θ 3 µ 3 2 Θ 4 µ 2 4 + Θ 5 µ 3 µ 4 + Θ 6 µ 2 3 (1.31b) where Θ i = Θ i (µ 2 , µ 3 , p, ϕ, f ), with i ∈ {1, . . . , 6}, are Θ 1 = η 1 µ 3 2 + η 2 µ 2 µ 3 + η 3 µ 2 2 Θ 2 = η 4 µ 3 2 + η 5 µ 2 µ 3 + η 6 µ 2 2 (1.32a) Θ 3 = η 7 µ 3 2 + η 8 µ 2 µ 3 + η 9 µ 2 2 Θ 4 = 1 µ 3 2 + 2 µ 2 µ 3 + 3 µ 2 2 (1.32b) Θ 5 = 4 µ 3 2 + 5 µ 2 µ 3 + 6 µ 2 2 Θ 6 = 7 µ 3 2 + 8 µ 2 µ 3 + 9 µ 2 2
(1.32c) coefficients η j = η j (p, ϕ, f ) and j = j (p, ϕ, f ) (with j ∈ {1, . . . , 9}) being detailed in 

k hom = 4 3p µ 4 (1 -p) + 3(µ 2 -µ 3 )χ + µ 3 -µ 4 p (ϕ -p) + o( ) (1.33a) µ hom = 3 2p + 3 µ 4 (1 -p) + 15p(µ 2 -µ 3 ) 2p + 3 χ + 5(µ 3 -µ 4 ) 2p + 3 (ϕ -p) + o( ) (1.33b)

A perturbative approach

A closed-form macroscopic strength criterion for nanoporous materials is herein deduced by considering Eq. (1.19) written for α ∈ {2, 3, 4}, and in the unknowns µ 2 , µ 3 and µ 4 , the case α = 1 resulting trivial.

In detail, Eq. ( 1.19) for α = 4 (namely, F| α=4 ) reads as

F 4 = 3 Σ m σ 0 µ 4 k hom 2 ∂k hom ∂µ 4 + Σ eq σ 0 µ 4 µ hom 2 ∂µ hom ∂µ 4 (1.34)
and, by employing Eqs. (1.25), the ratios F| α=2 /F| α=3 and F| α=3 /F| α=4 can be introduced:

G(µ 2 , µ 3 , µ 4 ) = F 2 F 3 κ χ µ 3 µ 2 2 - 3T 2 µ hom k hom 2 ∂k hom ∂µ 2 + ∂µ hom ∂µ 2 3T 2 µ hom k hom 2 ∂k hom ∂µ 3 + ∂µ hom ∂µ 3 = 0 H(µ 2 , µ 3 , µ 4 ) = F 3 F 4 µ 4 µ 3 2 - 3T 2 µ hom k hom 2 ∂k hom ∂µ 3 + ∂µ hom ∂µ 3 3T 2 µ hom k hom 2 ∂k hom ∂µ 4 + ∂µ hom ∂µ 4 = 0 (1.35)
T = Σ m /Σ eq being the stress-triaxiality parameter.

The non-null shear moduli in Eqs. (1.25) can be recast as

µ 2 = κ χ ρ 23 ρ 34 µ 4 , µ 3 = ρ 34 µ 4 (1.36)
where

ρ 23 = J d 23 J d 22 , ρ 34 = J d 24 J d 23
.

(1.37)

Therefore, for a given p, the effective moduli result in µ hom = µ hom (P, ρ 23 , ρ 34 , µ 4 )

and k hom = k hom (P, ρ 23 , ρ 34 , µ 4 ), where P is the set of variables defined as P = {χ, ψ, κ}.

It is worth observing that, by enforcing positions (1.36) The solution of the porous problem (that is, Problem 4 for κ = 0) can be straight determined as 

ρ 0 23 = 1 , ρ 0 34 = 27pT 2 + 8p + 12 20 + 27T 2 (1.42) resulting in ρ 0 • = O(1
20Σ 2 eq + 27Σ 2 m 12(1 -p) 3 (1 -p)(ρ 0 34 ) 2 + (1 -2ρ 0 34 )ψ -(6pρ 0 34 )κ = σ 2 0 (1.45)
where, since Eq. ( 1.42), ρ 0 34 = ρ 0 34 (Σ m , Σ eq ). In the stress plane (Σ m , Σ eq ), Eq. ( 1.45) results in a symmetric (with respect to both Σ m and Σ eq axes) and convex strength profile, expressed in terms of the porosity p, the volume fraction ϕ = ψ + p of composite inclusions, and the parameter κ accounting for interface effects.

Optimization on ϕ

The volume fraction ϕ of composite inclusions represents a free model parameter, in the framework of the consistency conditions ψ ≥ 0 and ψ = O( ). Since choosing a value for ϕ corresponds to identify a class of kinematical descriptors J d 2α via Eq. ( 1.27), ϕ is herein employed to furnish a certain minimization, in the sense of Eq. (1.8), for estimating Π hom .

It is worth observing that a rough description of Π hom generally leads to a significant overestimate of material strength, especially for high levels of stress triaxiality (for instance, this is the case of the DK strength criterion). As shown in Fig. 1.4 for fixed values of p and κ, model parameter ϕ mainly affects limit-stress states characterised by a significant hydrostatic condition, resulting in a reduction of the predicted material strength when ϕ increases. Accordingly, aiming to furnish an accurate strength prediction, ϕ is herein chosen by prescribing, as an optimality condition, the equality between the hydrostatic strength predicted via Eq. (1.45) (corresponding to Σ eq = 0) and the expected value Σ (ex) m /σ 0 = -(2/3) ln p + 2κ, furnished by Dormieux and Kondo (2010) as a generalization of the Gurson's result (Gurson, 1977).

Thereby, in the framework of a first-order approach in κ, the optimal value for ϕ results in

ϕ opt = φ 0 + φ 1 κ (1.46) with φ 0 = p p -2 √ p 1 -2 √ p + 4 9 (1 -p) 3 1 -2 √ p (ln p) 4/3 , φ 1 = 6 p 3/2 1 -2 √ p - 16 9 (1 -p) 3 (ln p) 2 1 -2 √ p .
(1.47)

It is simple to prove that, owing to the definition of ϕ (see Eq. (1.23)), the consistency condition ψ = ϕ optp ≥ 0 is surely verified for any value of κ when p < 25%, fully in agreement with porosity values generally characterising nanoporous materials. Furthermore, in the framework of small values of p, and assuming p η = O( ) for any η < 1, consistency condition ψ = O( ) is straight verified. Therefore, by combining Eqs. (1.45) and (1.46), the optimized version (denoted in the following as BDKV) of the proposed strength criterion results in

20Σ 2 eq + 27Σ 2 m 12(1 -p) 3 (1 -p)(ρ 0 34 ) 2 + (1 -2ρ 0 34 )(φ 0 -p) -6pρ 0 34 -φ 1 (1 -2ρ 0 34 ) κ = σ 2 0 (1.48)
where ρ 0 34 depends on the macroscopic stress state (Σ m , Σ eq ) via Eq. (1.42).

Criterion assessment

Model sensitivity to parameters p and κ is addressed in Figs. 1.5. Proposed results show that, in the framework of small values for p and κ, slight effects occur for small stresstriaxiality levels. Results shown in Fig. 1.5a highlight also that the macroscopic strength properties reduce when p increases, mainly for high hydrostatic stress components. As regards the parameter κ, introduced in Eq. (1.26), the results in Fig. 1.5b indicate that such a parameter allows to effectively account for void-size effects. As a matter of fact, when strength values for interfaces (namely, σ L ) and for solid phases (σ 0 ) are fixed, a reduction in the void size a corresponds to an increase κ. As depicted in Fig. 1.5b, such an occurrence leads to an improvement of strength features, qualitatively in agreement with aforementioned experimental and numerical evidence (Biener et al., 2005(Biener et al., , 2006;;Hakamada and Mabuchi, 2007;Zhao et al., 2009;Brach et al., 2016a).

A description of strength properties for porous materials comprising cavities with large values of a is furnished by enforcing κ = 0 in Eq. (1.48), namely by assuming as negligible the surface-induced effects.

The effectiveness of the proposed BDKV strength criterion is assessed in Fig. 1.6. In detail, comparisons with both theoretical and numerical benchmarks are provided for different values of the interface parameter κ. By addressing the case p = 1%, reference is made to the theoretical predictions obtained via the DK model (Dormieux and Kondo, 2013) and to finite-element-based limit analysis calculations provided by Morin et al. (2015) when κ = 0.25 and by Trillat and Pastor (2005) when κ = 0. It can be noted that the DK criterion significantly overestimates strength properties predicted by numerical simulations. In particular, addressing a pure hydrostatic case, the DK model predicts a strength limit greater of about 100% (respectively, 110%) than the numerical one for κ = 0.25 (resp., for κ = 0). On the contrary, BDKV-based results are proven in very good agreement with benchmarking calculations (with relative errors always lower than 10%), resulting in a significant improvement with respect to the DK case.

As a matter of fact, proposed strength criterion for nanoporous materials allows also to recover the well-known model proposed by Ponte Castañeda (1991), simply considering the case ψ = κ = 0 in Eq. (1.45). Moreover, the nanoporous criterion DK is recovered by setting ψ = 0 (with κ ≥ 0), corresponding to a domain partition based on three phases: pore regions, interfaces L, and solid matrix. In particular, by comparing Eq. (1.45) for ψ = 0 and Eq. (1.48), corrective terms (1 -2ρ 0 34 )(φ 0p) and φ 1 (1 -2ρ 0 34 )κ allow to enhance the DK-based strength predictions both accounting or not for interface effects.

Such additional terms straight results from the proposed optimization approach on ϕ, entirely absent in the developments already provided by Dormieux and Kondo (2013), and strictly related to the herein adopted 3-layered (that is, four phases) modelling strategy.

Concluding remarks

In this Chapter, strength properties of nanoporous materials are investigated by means of a 3-layered model formulated in the framework of a non-linear homogenization (NLH) approach. To this end, a representative volume element which comprises a rigid idealplastic solid matrix, obeying to a von Mises strength criterion and containing isotropicallydistributed spherical voids, has been considered.

At the local level, and by regarding the microscopic support function as the potential for a viscous material, a fictitious non-linear isotropic constitutive equation has been introduced. Following the modified secant method (Suquet, 1995) and by referring to the multiphase modelling technique proposed by Herve and Zaoui (1993), a linear comparison composite material has been considered.

The present approach has been developed by referring to the theoretical background recently provided by Dormieux and Kondo (2013), based on a 2-layered modelling strategy. The latter has been proven in Section 1.4 to strongly overestimate available numerical benchmarking strength evidence for both porous and nanoporous media. Aiming to develop a more accurate NLH technique, a refined description of the local strain-rate heterogeneity at the limit state has been herein proposed, by introducing a four phases Chapter 1. A 3-layered non-linear homogenization with interface effects 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6. Morin et al. (2015) (denoted as MLK), kinematic (TP-K) and static (TP-S) numerical bounds proposed by Trillat and Pastor (2005).

comparison composite material. In detail, a sub-domain partition consisting in 3-layered composite spheres, confocal to nanovoids and embedded into the solid matrix, has been employed. Each composite sphere comprises the void region, an imperfect-coherent interface and an interface-to-matrix transition phase. The microscopic strain-rate fields entering the proposed procedure have been accounted for by introducing piecewise descriptors in agreement with Buryachenko (1993), Kreher (1990), Ponte Castañeda and Suquet (1998), andDormieux et al. (2006). Thereby, the non-linear problem underlying the determination of strength properties for nanoporous materials has been reduced to a non-linear viscous one defined on a fictitious piecewise homogenenous medium. By solving via a perturbative procedure the constitutive fictitious moduli, a novel analytical closed-form strength criterion (BDKV) has been derived. A suitable value for the volume fraction of the composite spheres has been determined, aiming to optimize the criterion performance at pure hydrostatic stress states. In agreement with well-posed strategies (e.g., Duan et al., 2005a,b;Dormieux andKondo, 2010, 2013), the void-solid interface has been successfully introduced in order to take into account for surface-stress effects.

It is worth observing that the additional layer introduced with respect to the approach by Dormieux and Kondo (2013) (namely, the transition phase) allowed on one hand for a finer estimate of the fictitious constitutive description, and on the other hand to recast the NLH problem in terms of an optimization procedure (not possible in the framework of the developments provided by Dormieux and Kondo (2013)), solved via an original perturbation approach, and resulting in a novel effective engineering-oriented strength criterion.

As a consistency indication and as special cases, present criterion recovers previously-Chapter 1. A 3-layered non-linear homogenization with interface effects 31 established NLH-based analytical strength estimates both accounting (Dormieux and Kondo, 2013) or not (Ponte Castañeda, 1991) for surface-stress effects.

Results obtained via BDKV highlight that a suitable description of void-size effects can be experienced, resulting in an increase of the predicted strength features as the void length decreases, especially for high triaxiality levels. Furthermore, comparisons with respect to both theoretical predictions (Dormieux and Kondo, 2013) and finite-elementbased calculations (Trillat and Pastor, 2005;Morin et al., 2015) have shown consistency and accuracy of the proposed formulation, resulting in a significant improvement of the benchmarking NLH-based model by Dormieux and Kondo (2013).

It is worth pointing out that, in the framework of a n-layered approach and in the case of classical porous materials (namely, neglecting surface-induced effects), suitable estimates have been provided by Bilger et al. (2002) and by Vincent et al. (2009), by adopting semi-analytical strategies with different values of n up to n = 21. Nevertheless, although the proposed formulation (based on n = 3) results in a less accurate description of local kinematics, it allows for deriving an accurate analytical closed-form strength criterion, useful for engineering purposes and able to properly describe limit stress-states both accounting or not for surface-induced effects.

Chapter 1. A 3-layered non-linear homogenization with interface effects 1.A LCC effective moduli: coefficients in Eqs. (1.31) Coefficients introduced in Eqs. (1.31) are computed from localization tensors A w and B w (see Eqs. (1.28), with w = iso or w = shr) as For instance, they are used to conceive multifunctional devices for aerospace/automotive applications, energy storage, ion-exchange, molecular biosensing and bioseparation, drug delivery, catalysis, filtration, sensoring (Jenkins, 2010).
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From a mechanical point of view, one of the most fundamental aspect consists in identifying and describing the constitutive response and the strength properties of these materials, as dependent on the size of voids (which is in the order of some nanometres), as well as on their shape and arrangement (Dormieux andKondo, 2010, 2013;Huang et al., 2005;Li and Huang, 2005;Monchiet et al., 2008;Monchiet and Kondo, 2013). As regards void-size effects, well-established experiments (usually based on nano-indentation tests)

have shown that a reduction in the length-scale of nanovoids induces an improvement of the material strength (Biener et al., 2005(Biener et al., , 2006;;Hakamada and Mabuchi, 2007). Such an effect cannot be theoretically described by classical approaches for porous materials (e.g., Gurson, 1977;[START_REF] Castaneda | The effective mechanical properties of nonlinear isotropic composites[END_REF], that are generally conceived to predict porosity effects only, and thereby resulting in void-size-independent strength criteria.

The influence of void size on the mechanical behaviour of nanoporous materials are related to the presence, at the cavity boundaries, of self-equilibrated surface stresses (Needs et al., 1991). These latter can be modelled via interface laws (Gurtin and Murdoch, 1975) and they reveal fundamental in describing the mechanical response of nanoscale structures (Amelang and Kochmann, 2015) and nano-structured materials (e.g., Duan et al., 2005a,b), as well as for modelling strength properties of nanoporous media (e.g., Dormieux andKondo, 2010, 2013;Goudarzi et al., 2010;Monchiet and Kondo, 2013;[START_REF] Moshtaghin | Effects of surface residual stress and surface elasticity on the overall yield surfaces of nanoporous materials with cylindrical nanovoids[END_REF]. As an example, by applying a limit-analysis approach on a hollow spherical domain, Dormieux and Kondo (2010) extended the well-known strength criterion proposed by Gurson (1977) for ductile porous media to the case of nanoporous materials, aiming to predict void-size effects. The void-size-dependent strength criterion by Dormieux and Kondo (2010), as well as the porous model by Gologanu et al. (1993Gologanu et al. ( , 1994)), have been successively extended by Monchiet and Kondo (2013) to the case of nanoscale spheroidal cavities, thereby incorporating both void-shape and void-size effects. Other analytical formulations have been proposed by Dormieux and Kondo (2013), Goudarzi et al. (2010), Zhang and Wang (2007) and Zhang et al. (2010), by combining non-linear homogenization techniques and variational arguments, and resulting in a generalization of the Ponte-Castaneda's strength criterion [START_REF] Castaneda | The effective mechanical properties of nonlinear isotropic composites[END_REF] to nanoporous materials.

It is worth observing that available strength models for nanoporous materials are based on a number of a priori assumptions. In fact, they generally include a very simple limit behaviour of the bulk matrix, as well as a simplified representation of the physics underlying nanoscale effects (usually faced by introducing fictitious plastic interfaces).

Nevertheless, available experimental results are not sufficient to support these assumptions, so that current theoretical models can be neither properly validated nor suitably calibrated. As a matter of fact, apart from some qualitative indications of the void-size influence on the material strength level, no further information can be deduced from the experimental literature either on the three-dimensional material strength domain or on the influence of the void size as a function of the loading state. In this context, numerical methods may be considered as an effective alternative to provide comparative benchmarks, allowing also to successfully control a number of possible coupled effects, and thereby resulting in useful indications towards advanced modelling strategies.

Computational methods usually employed for modelling macro-and/or micro-mechanical response are not able to automatically provide helpful insights on nanoscale effects, since they do not include a satisfactory description of the material structure at that lengthscale. On the contrary, and as confirmed by recent investigations (e.g., Bringa et al., 2010;Borg et al., 2008;Mi et al., 2011;Tang et al., 2010;Traiviratana et al., 2008;Zhao et al., 2009), numerical methods based on Molecular Dynamics (MD) approaches allow to describe the material arrangement at the atomistic level, and thereby they can be considered as promising tools for investigating the elasto-plastic behaviour of nanoporous materials.

As a matter of fact, available studies based on MD approaches mainly address the identification and the characterization of atomistic mechanisms underlying failure processes related to void growth and coalescence (e.g., [START_REF] Farrissey | An atomistic study of void growth in single crystalline copper[END_REF]Lubarda et al., 2004;Lubarda, 2011;Marian et al., 2004Marian et al., , 2005;;Pogorelko and Mayer, 2016;Ruestes et al., 2013;Tang et al., 2010;Traiviratana et al., 2008). On the other hand and at the best of the authors' knowledge, very few attempts have been provided in order to employ these numerical strategies to furnish indications towards the definition of engineering strength measures for nanoporous materials. For instance, an attempt to put in relationship strength properties at the macroscale with MD-based evidence has been provided by Mi et al. (2011) andTraiviratana et al. (2008), referring to the void-sizeindependent Gurson model. Nevertheless, current MD studies are generally limited to the analysis of particular admissible stress states only, computed under uniaxial [START_REF] Farrissey | An atomistic study of void growth in single crystalline copper[END_REF]Tang et al., 2010), volumetric or shear conditions (Marian et al., 2004(Marian et al., , 2005)), and therefore defining only few discrete points on the a-priori unknown material strength surface, without considering more complete multiaxial scenarios. In fact, a comprehensive three-dimensional characterization of material strength properties requires Chapter 2. A Molecular Dynamics approach a proper investigation of failure mechanisms under multiaxial loading conditions. Furthermore, no numerical evidence has been yet provided concerning the influence of void size on material strength domains. Accordingly, with respect to the previously-discussed state-of-the-art, a parametric multiaxial loading strategy is expected to pave the way for a number of original contributions, such as: (i) complete identification of failure surfaces and of the influence of stress invariants on material strength properties; (ii) analysis of void-size effects on strength domains; (iii) assessment of novel and effective comparative benchmarks for validating and calibrating available theoretical formulations, as well as for drawing advanced modelling strategies.

It must be pointed out that porous and nanoporous materials may be generally characterised by irregular patterns and randomly-distributed voids. Nevertheless, as it is customary in classical elasto-plastic theoretical approaches for micro/nano-structured materials, simple geometrical descriptions are often considered. This is the case of singlevoided domains and of hollow sphere models (Gurson, 1977), widely adopted in porous metal plasticity and limit analysis approaches (Dormieux and Kondo, 2010;Monchiet and Kondo, 2013;Tvergaard and Needleman, 1984). Corresponding results are strictly valid for the particular, but realistic, considered microstructure (in the case of hollow sphere models, the microstructure is the so-called Hashin Composite Sphere Assemblage, (Hashin, 1962;Leblond et al., 1994;Michel and Suquet, 1992)), but they generally furnish also helpful indications on statistically-equivalent arrangements. In this framework, domains embedding a single spherical nanovoid have been adopted in many recent MD-based computational studies (e.g. [START_REF] Farrissey | An atomistic study of void growth in single crystalline copper[END_REF]Marian et al., 2004Marian et al., , 2005;;Traiviratana et al., 2008), addressing plastic mechanisms in nanoporous materials.

In this Chapter, strength properties of an aluminium single crystal containing a spherical nanovoid are addressed via a Molecular Dynamics approach. A parametric analysis with respect to the void radius and for different porosity levels is carried out, by considering different strain paths (shear, triaxial expansion and triaxial compression) and a wide range of triaxiality scenarios (from pure deviatoric conditions to pure hydrostatic ones). The computational model is defined in Section 2.2, drawing also basic elements of the adopted numerical procedure. With the aim to present simulation results in the framework of a customary notation in plasticity, and by referring to average stress and strain measures, the Haigh-Westergaard (HW) coordinates are introduced. Section 2.3 is devoted to analyse some preliminary results, in terms of both stress-strain relationships and dominant atomistic mechanisms, in order to identify suitable strength measures for estimating limit stress conditions for the in-silico samples. Analyses of numericallyexperienced strength properties are provided in Section 2.4, wherein meridian and deviatoric representations of computed strength domains are proposed, highlighting and discussing the influence of void-size effects. Finally, main concluding remarks are traced in Section 2.5.

Problem statement and computational methods

Let a material neighbourhood of a nanoporous medium be considered (Fig. 2.1), characterized by a periodic nanostructure along the global Cartesian directions X, Y and Z, and whose representative cell consists in a nano-single crystal embedding a single spherical void. In the following, reference is made to a single crystal of aluminium, whose ideal crystallographic arrangement is based on a face-centred cubic lattice (FCC). Let the local Cartesian frame (x, y, z) be introduced, with axes parallel to the global ones and with {e x , e y , e z } the corresponding orthonormal basis. Moreover, referring to the Miller's notation (Hull and Bacon, 2001), let the orientation of FCC lattices be assumed such that crystallographic directions [100], [010] and [001] line up with axes x, y and z, respectively.

A numerical approach based on a MD strategy and implemented in LAMMPS (Largescale Atomic/Molecular Massively Parallel Simulator) (Plimpton, 1995) is adopted, by considering a cubic simulation box (Fig. 2.1) undergoing periodic boundary conditions.

The simulation domain is defined by: the edge length L; a centred spherical void of radius R; the atomic arrangement C 0 , resulting from the bulk FCC-based cubic box by suppressing all atoms belonging to the centred spherical region. Different values of the box length L are herein considered, such that:

L B = 10 1 + n (2.1)
n being an integer number ranging from 1 to 10, B = a 0 /2 being the length-scale of the Burgers vector b = B < 110 > associated to perfect dislocations along slip directions of type < 110 >, and a 0 being the lattice constant (equal to 4.04 Å for aluminium at room temperature [START_REF] Mishin | Interatomic potentials for monoatomic metals from experimental data and ab initio calculations[END_REF]). Accordingly, for a fixed material porosity p, defined as p = 4πR 3 /3L 3 , varying the box length L corresponds to proportionally vary the void radius R. For instance, referring to the case p = 1%, R varies from 0.541 nm to 2.977 nm when L/B varies from 20 (n = 1) to 110 (n = 10). It is worth observing that, since the cut-off distance r c for the aluminium is equal to 0.628 nm [START_REF] Mishin | Interatomic potentials for monoatomic metals from experimental data and ab initio calculations[END_REF], assumption in Eq. (2.1) allows to satisfy the minimum image convention (Allen and Tildesley, 1991), resulting in the consistency requirement L > 2r c for any n ≥ 1.

Vector velocities v i (i = 1 . . . N ) of the N atoms in C 0 are initialized as non-physical random vectors. In order to obtain a physically-consistent simulation domain at the temperature T * = 300 K and with zero pressure at the domain boundaries, a preliminary equilibration step is performed by simulating 30 picoseconds via a Nose-Hoover time-integration scheme (e.g., Plimpton, 1995). As a result, the statistically-equilibrated configuration C * is obtained, consisting in a cubic simulation domain with the edge length equal to L * . For the sake of compactness, values of L * obtained from this preliminary equilibration step are omitted, consisting however in percentage differences with respect to L always less then 0.3%.

Afterwards, considering C * as the reference configuration at the time t = 0, an incremental strain-driven deformation process is simulated, considering a fixed time-step ∆t. Denoting with t the actual value of the time variable, a measure of the actual strain tensor for the overall simulation domain is assumed to be expressed by:

D t = χt D x e x ⊗ e x + D y e y ⊗ e y + D z e z ⊗ e z (2.2)
where χ is a positive strain-rate constant parameter, and D x , D y and D z are assigned dimensionless quantities. Accordingly, the prescribed increments of the box lengths at each time-step result in ∆L q = L * D q χ ∆t, with q = x, y, z.

As a notation rule, the following three strain invariants are introduced:

I D 1 = tr D, J D 2 = D d : D d /2 and J D 3 = det D d , where D d = D -(I D 1 /
3)1 is the deviatoric strain tensor and 1 is the second-order unit tensor (1 ij = δ ij , with δ ij the Kronecker symbol). Moreover, referring to a strain-based Haigh-Westergaard notation (see for instance Menetrey and Willam, 1995), the strain Lode angle θ D ∈ [0, π/3] is defined such that:

cos 3θ D = 3 √ 3J D 3 /[2(J D 2 ) 3/2 ].
When necessary, reference is also made to the following invariant strain measures: D m = I D 1 /3 and D eq = J D 2 . In order to analyse the sample response under a broad range of triaxial strain-based conditions, three deformation paths are simulated, corresponding to θ D = 0 (triaxial strain expansion, denoted as TXE D ), θ D = π/3 (triaxial strain compression, denoted as TXC D ), and θ D = π/6 (shear strain conditions, denoted as SHR D ). Furthermore, the following choices of the dimensionless quantities D x , D y and D z are considered:

TXE D : D x = D y = λ, D z = 1 TXC D : D y = D z = 1, D x = η SHR D : D x = 1, D y = (1 + µ)/2, D z = µ (2.3)
For any choice in Eq. ( 2.3), and referring to the case of a non-negative first invariant

I D
1 , different scenarios are simulated. In detail, several strain-based triaxiality levels, ranging from a pure deviatoric condition (D m = 0) to a pure hydrostatic one (D eq = 0), are accounted for by varying the dimensionless coefficients λ, η and µ, as summarised in Table 2.1.

Table 2.1 -Values adopted for parameters λ, η and µ introduced in Eq. ( 2.3) to describe different triaxiality levels, ranging from a pure deviatoric condition (Dm = 0) to a pure hydrostatic one (Deq = 0).

Dm = 0 Deq = 0 λ (TXE D ) -0.5 -0.4 -0.3 -0.2 -0.1 0 0.25 0.5 1 η (TXC D ) -2 -1.8 -1.6 -1.4 -1.2 -1 -0.5 0 1 µ (SHR D )
-1 -0.86 -0.73 -0.6 -0.46 -0.3 0 0.3 1

In order to achieve effective results with a reasonable computational time, numerical simulations are performed by considering χ = 5 • 10 9 s -1 . Such a strain-rate value is consistent with those usually adopted in the recent MD-based literature, ranging from 10 7 to 10 12 s -1 (Bringa et al., 2010;Horstemeyer et al., 2001;Mi et al., 2011;Pogorelko and Mayer, 2016;Ruestes et al., 2013;Seppala et al., 2004;Shabib and Miller, 2009;Tang et al., 2010;Traiviratana et al., 2008;Zhao et al., 2009), and it can be experimentally obtained via laser-shock techniques (Lubarda et al., 2004). As a further consistency indication for such a choice, Horstemeyer et al. (2001) numerically proved that the yield strength for FCC metals becomes practically insensitive to the strain rate for values lower than 10 10 s -1 .

Adopting a time-step equal to ∆t = 1 femtosecond, trajectories of atoms are determined by integrating the Newton's second law via the Verlet algorithm (Verlet, 1967). As a result, the actual average stress tensor is computed as the superposition of atomistic kinetic contributions and pairwise interactions, and it is described via the following virial formula (e.g., Subramaniyan and Sun, 2008):

Σ(t) = - 1 V at N i=1 m i v i ⊗ v i + N j =i,j=1 f ij r ij ⊗ r ij r ij (2.4)
where V at is the total atomic volume, m i is the mass of the atom i, and

f ij = ∂E/∂r ij
is the modulus of the interaction force between atoms i and j. The total energy E of the system is defined in agreement with the Embedded Atom Method (Daw and Baskes, 1984) as:

E = N i=1 F i ρ i + 1 2 N i=1 N j=1 =i Φ ij (r ij ), with ρ i = N j=1 =i ρ j (r ij ) (2.5)
where r ij is the modulus of the separation vector r ij = r jr i , with r i identifying the position of the atom i. Accordingly, E is defined as the superposition of two terms. The first is the sum of cohesive embedding energies F i (required to include the atom i into the electron cloud), expressed in terms of the electron-cloud density ρ i (defined as the linear superposition of the neighbouring atomic electron densities ρ j ). The second contribution is associated to the repulsive pairwise potential function Φ ij between the atom i and its neighbours j.
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In this study, the Haigh-Westergaard (HW) representation is adopted for giving a three-dimensional description of the computed strength states. Accordingly, denoting with θ Σ ∈ [0, π/3] the stress Lode angle, a given stress state Σ is uniquely determined by referring to the following stress-invariant quantities (e.g., Khan and Huang, 1995;Lubliner, 2008):

ζ = I Σ 1 √ 3 , r = 2J Σ 2 , cos 3θ Σ = 3 √ 3J Σ 3 2J Σ 2 3/2 (2.6)
where

I Σ 1 = tr Σ, J Σ 2 = Σ d : Σ d /2
and J Σ 3 = det Σ d are the isotropic stress invariants, and where

Σ d = Σ -(I Σ 1 /3)1
is the deviatoric part of the stress measure introduced in Eq. (2.4).

For what follows, notation TXE Σ , TXD Σ and SHR Σ is introduced to indicate triaxial stress expansion (i.e., θ Σ = 0), triaxial stress compression (i.e., θ Σ = π/3) and shear (i.e., θ Σ = π/6) stress states. Furthermore, when necessary, reference is made to the following invariant stress measures: Σ m = I Σ 1 /3 and Σ eq = J Σ 2 . The HW representation defines a cylindrical coordinate system (ζ, r, θ Σ ) within the space of the principal stresses (Σ 1 , Σ 2 , Σ 3 ), with ζ and r being the magnitudes of the orthogonal projections of the stress tensor Σ on the hydrostatic axis (i.e., Σ 1 = Σ 2 = Σ 3 , r = 0) and on the deviatoric plane (or π-plane, that is ζ = const), respectively. It is worth to remark that, for a given stress state (ζ, r, θ Σ ) it is always possible to recover the corresponding stress tensor Σ, allowing for possible alternative representations (based for instance on anisotropic stress invariants, (Hill, 1948;Monchiet et al., 2008)). Nevertheless, aiming to furnish possible indications towards the characterization of material strength properties in the framework of a continuum description, and since actual strength models for nanoporous media are generally expressed in terms of isotropic stress invariants, the HW representation is herein considered as useful for such purposes.

Strength measure and atomistic mechanisms

Strength properties of the herein-considered aluminium nanovoided single crystal are identified by defining, for each deformation scenario, a limit stress state. With reference to stress and strain measures previously introduced, typical stress-strain responses computed via the present approach are shown in Figs. 2.2 and 2.3. They refer to the case p = 1 % and L/B = 50 (corresponding to R = 1.353 nm) and address the deformation path TXE D . Aiming to furnish some indications on temperature effects related to elasto-plastic mechanisms, two different cases are simulated: an isothermal process (denoted as IP), and a non-isothermal one (NIP, no temperature control is used during the loading process). As main features of the resulting stress-strain responses, stress peaks are clearly identified, indicating a critical condition for the sample, followed by a stress-relaxation phase.

Stress-strain relationships presented in

Stress-strain relationships obtained by considering all the other deformation paths and different triaxiality levels (see Eqs.( 2.3) and Table 2.1), as well as in the case of a bulk sample (i.e., p = 0), exhibit the same characteristics and they are herein omitted for the sake of compactness. With reference to the IP case and mainly resulting from the temperature influence on the atomic mobility, Fig. 2.3a shows that if the temperature increases then the stress peak reduces, and the latter is attained at a lower strain level. Furthermore, for high strains, material response is proven to become smoother as temperature is higher, sequences of rises and falls tending to disappear. On the other hand, addressing the NIP deformation process, Fig. 2.3b reveals that the occurrence of the stress peak corresponds to a significant change in the slope of the monotonically-increasing temperature evolution. Nevertheless, as it is highlighted by comparing IP-and NIP-based results (Fig. 2.2), such a heating does not significantly affect either the values of the stress peaks or the strain levels at which they occur. On the contrary, some heating-induced effects appear for higher strains values.

As previously stated, very few experimental tests have been performed so far in order to characterise the mechanical response of nanoporous materials, and the corresponding evidence is thereby not sufficient to provide a proper validation benchmarking for MDbased results. Nevertheless, present numerically-experienced stress-strain features are fully in agreement with those obtained by other well-established MD studies (e.g., Mi et al., 2011;Ruestes et al., 2013;Traiviratana et al., 2008;Zhao et al., 2009).

The occurrence of the stress peak is assumed to identify the limit stress state of the sample (as also assumed, for instance, by Mi et al., 2011;Ruestes et al., 2013;Traiviratana et al., 2008;Zhao et al., 2009), and the corresponding values of stress invariants I Σ 1 , J Σ 2 and J Σ 3 allow to define a strength point (ζ, r, θ Σ ) in the HW coordinate system. In the following, strength features are computed by referring to IP-based simulations.

It is worth pointing out that, when the deviatoric strain level is significant, the limit stress state of the sample is straight identified by referring to stress-strain curves expressed in terms of Σ eq versus D eq . On the other hand, when a pure hydrostatic deformation scenario is considered, numerical computations reveal that the stress measure Σ eq is practically equal to zero, and thereby reference is made to the stress-strain response in terms of Σ m versus D m (Fig. 2.

2).

Aiming to furnish indications for relating the numerically-experienced stress-strain behaviour with some basic atomistic mechanisms, MD-based results relevant to the deformation path TXE D with λ = -0.5 (for L/B = 50, p = 1 % and considering a NIP case) are post-processed in the OVITO environment (Stukowski, 2010), by carrying out two different analyses. The first one allows to estimate the centro-symmetry deviation parameter CS. This latter is defined in agreement with Kelchner et al. (1998), Stukowski (2010), and Plimpton (1995), resulting in CS = 0 for ideal FCC lattices (i.e., neglecting any disturbance effects induced by thermal fluctuations, (Stukowski, 2012)) and CS > 0 when defects, crystallographic disorder, or different lattice structures appear. The second atomistic investigation is based on the Common Neighbour Analysis (CNA) (Honeycutt and Andemen, 1987) that allows to detect the lattice nature of each atom, distinguishing among face-centered cubic (FCC), hexagonal close-packed (HCP), body-centered cubic (BCC) lattices, icosahedral (ICO) and cubic diamond (DIA) arrangements, or other assemblies with an unknown coordination structure (thereby exhibiting an amorphous nature, and denoted as "Others").

As shown in Fig. 2.4, due to the void presence and as a result of the preliminary equilibration step, the CS instantaneous measure in the reference configuration C * is significantly different from 0 at the void surface, and it is characterised by values ranging from 0 to 5 elsewhere (due to thermal fluctuations).

At each simulation step, the CNA post-processing phase is performed in order to investigate the evolution of the atomistic arrangement induced by the simulated deformation path, possibly associated to plastic mechanisms. Nevertheless, aiming to focus on Chapter 2. A Molecular Dynamics approach dominant atomistic processes, the centro-symmetry parameter CS is used to filter regions where atomic patterns significantly differ from the FCC lattices. In detail, in agreement with previous observations, CNA post-processing is applied to atoms characterised by CS > 5.

The atomistic-based results obtained from the post-processing phase and depicted in the bottom part of Fig. 2.5, highlight that a number of dislocation mechanisms, theoretically expected for FCC-based nanovoided single crystals (as briefly summarised in 2.A), are properly caught by the proposed simulations in the case of a pure deviatoric deformation scenario. Observed evidence is in agreement with other well-established numerical studies (e.g., Bringa et al., 2010;Marian et al., 2004Marian et al., , 2005;;Tang et al., 2010;Traiviratana et al., 2008;Zhao et al., 2009). For instance, Marian and co-workers have obtained similar results studying the void growth of an aluminium nanovoided specimen, in terms of both volume expansion (Marian et al., 2004) and applied shear angle (Marian et al., 2005). Moreover, the herein observed dislocation nucleation and propagation mechanisms are comparable with results proposed by Traiviratana et al. (2008) and relevant to the case of an uniaxial expansion of monocrystalline and bicrystalline copper.

As a matter of fact, the analysis of Fig. 2.5 reveals that for small values of the equivalent strain measure D eq , the sample is almost totally composed by FCC lattices and the temperature is practically constant, resulting in the elastic behaviour observed in the zone z1. At the end of this phase, for greater values of D eq , proposed results show that Shockley partial dislocations are nucleated, leading to the occurrence of HCP atoms (see 2.A). Correspondingly, a plastic regime is activated (zone z2) and the temperature slope significantly changes, in agreement with (Ruestes et al., 2013). Once nucleated at the end of the zone z1, leading Shockley partials glide away from the surface of the void until they intersect along a crystallographic direction belonging to < 110 > (see Fig. 2.5a), resulting in a Lomer-Cottrell dislocation. The latter is sessile and it acts as a barrier with respect to trailing partials (the so-called Lomer-Cottrell lock (Hull and Bacon, 2001)). Contemporaneously, secondary slipping systems are activated in other regions of the void surface.

At the end of the zone z2 a stress peak is observed when the sessile arrangement breaks up (Fig. 2.5e), realising potential hotbeds for further dislocations slipping (Fig. 2.5f) and leading to complex dislocations interactions. In the zone z3, the stress-strain relationship experiences a relaxation phase, characterized by a steep dropping off of the stress, followed by further rises and falls associated to the formation, interaction and subsequent unlocking of other sessile assemblies, out of the current concern. Correspondingly, a significant irreversible heating appears, as both experimental (e.g., Rittel et al., 2006) and computational (e.g., Higginbotham et al., 2011) evidence widely confirms.

It is worth pointing out that plastic deformation can be accompanied at the nanoscale by a number of other complex atomistic interacting processes, related to void growth and collapse mechanisms, dislocations emission, and shear loops (Bringa et al., 2010;Marian et al., 2004Marian et al., , 2005;;Traiviratana et al., 2008). Nevertheless, aiming to support the choice of a suitable strength measure via a basic description of atomistic mechanisms only, the detailed analysis of such phenomena does not fall in the purposes of the present study. Chapter 2. A Molecular Dynamics approach

Strength analyses

Strength points computed in agreement with considerations traced in Section 2.3 are used to furnish meridian (i.e., in the plane (ζ, r), with θ Σ = const) and deviatoric (i.e., in the plane (r, θ Σ ), with ζ = const) representations of the strength domain. To this aim, a non-linear least-squares fitting based on the algorithm proposed by Levenberg (1944) and Marquardt (1963) is employed.

With reference to the simulation cell introduced in Fig. 2.1, the presence of the nanovoid is expected to induce a perturbation on the mechanical behaviour with respect to the bulk sample (namely, corresponding to p = 0). Accordingly, as an useful comparative benchmark, strength properties of the in-silico bulk specimen are preliminarily investigated.

Furthermore, the influence of the nanovoid on both strength-domain shape and strength values is analysed, highlighting and discussing void-size effects, when different porosity levels are accounted for. As a matter of fact, the long-range nature of dislocation fields results in the interaction of dislocations through the cell boundaries, leading to possibly non-negligible periodic image effects. These latter are expected to be more significant when the box length is small. Such an occurrence is clearly highlighted by results proposed in Fig. 2.6, where significant differences in the material mechanical response occur within the full plastic regime (namely, in the zone z3 introduced in Fig. 2.5). In detail, and as a result of periodic image effects, small values of L/B induce marked sequences of rises and falls, characterised by average stress levels which are higher than those obtained for large L/B.

Nevertheless, periodic image effects are proven to negligibly affect the adopted strength measure, irrespective of the considered triaxiality levels. In detail, Fig. Accordingly, proposed results clearly show the significant influence of all the three stress invariants I Σ 1 , J Σ 2 and J Σ 3 . Furthermore, the analysis of Fig. 2.7a indicates that strength states computed under pure strain-based deviatoric conditions (λ = -0.5, η = -2, µ = -1, see Table 2.1) exhibit non-negligible hydrostatic stress components. shear stress state SHR Σ (namely, corresponding to θ Σ = π/6). This occurrence has been also observed by Lemarchand et al. (2015), as associated to the dependency of strength properties on all the three stress invariants.

ζ [GPa] r [GPa] L/B = 10 L/B = 20 L/B = 30 L/B = 40 L/B = 50 SHRΣ (θΣ = π/6) SHRD (θD = π/6) TXCD (θD = π/3) TXED (θD = 0) λ = -0.5 µ = -1 η = -2 λ = µ = η = 1 λ = -0.2 µ = -0.6 η = -1.4 (a) r = 2 GPa r = 4 GPa r = 6 GPa r = 8 GPa r = 10 GPa ζ=0 ζ=2 GPa ζ=4 GPa ζ=6 GPa TXE ⌃ TXC ⌃ SHR ⌃ SHR ⌃ TXE ⌃ SHR ⌃ TXC ⌃ SHR ⌃ TXE ⌃ SHR ⌃ TXC ⌃ SHR ⌃ ✓ D = ⇡ 6 ✓ D = ⇡ 3 ✓ D = 0 ✓ ⌃ = 0 ✓⌃ = ⇡/3 ✓ ⌃ = ⇡/6 r=2 
Accordingly, addressing Fig. 2.7a, estimated curves for strength states relevant to the TXE D and TXC D cases straight correspond to the intersections of the strength domain with meridian planes θ Σ = 0 and θ Σ = π/3, respectively. On the contrary, an estimate of the strength profile in the meridian plane θ Σ = π/6 (dashed curves) is obtained by interpolating numerical results computed by varying θ D .

Nanovoided sample

Figures 2.8 to 2.12 summarize numerical results relevant to strength analyses on nanovoided samples, for a fixed value of porosity (p = 1%) and for different values of the ratio L/B (this corresponds to proportionally vary the void radius). The case of the bulk sample is also reported for comparison, when necessary.

As in the case of the bulk sample, MD-based analyses have revealed that axisymmetric deformation paths practically result in axisymmetric stress states, leading to θ Σ ≈ θ D , (see for instance Figs. 2.9 and 2.10). On the other hand, a significant discrepancy between stress-and strain-based Lode angles is observed for the deformation path SHR D , as depending on: the Haigh-Westergaard coordinate ζ (that is, on the hydrostatic stress level), the triaxiality parameter ζ/r, and the ratio L/B (Fig. 2.8). Such an evidence on a nanovoided sample is in agreement with theoretical findings proposed by Lemarchand et al. (2015), obtained for a solid phase that obeys to a strength criterion depending on all Chapter 2. A Molecular Dynamics approach 53 Table 2.2 -Bulk sample. Values of the stress Lode angle θΣ (normalised with respect to the corresponding values of θD for deformation paths SHRD and TXCD) for different hydrostatic stress levels. the three stress invariants.

TXE D SHR D TXC D ζ [GPa] θ Σ [rad] θ Σ /θ D θ Σ /θ D 0 
Referring to Fig. 2.8, two main effects can be highlighted. Firstly, the presence of a nanovoid tends to reduce the difference between θ Σ and θ D with respect to the bulk case, mainly for high values of hydrostatic stress and triaxiality levels. Secondly, for a fixed value of ζ, a reduction in the void size induces an increment of the discrepancy between θ Σ and θ D , especially for high hydrostatic stress amounts. Such an influence of the void Chapter 2. A Molecular Dynamics approach

zeta=2 F3 r = 2 GPa r = 4 GPa r = 6 GPa L/B=20 L/B=40 L/B=60 L/B=70 SHR ⌃ SHR ⌃ SHR ⌃ SHR ⌃ SHR ⌃ SHR ⌃ TXC ⌃ TXC ⌃ TXC ⌃ TXE ⌃ TXE ⌃ TXE ⌃ ✓ D = ⇡ 6 ✓ D = ⇡ 3 ✓ D = 0 ✓ ⌃ = ⇡/3 ✓ ⌃ = ⇡/6 ✓ ⌃ = 0
void size zeta=2 GPa 

L/B = 70 (a) zeta=6 F3 trafficata r = 2 GPa r = 4 GPa r = 6 GPa L/B=20 L/B=40 L/B=60 L/B=70 SHR ⌃ SHR ⌃ SHR ⌃ SHR ⌃ SHR ⌃ SHR ⌃ TXC ⌃ TXC ⌃ TXC ⌃ TXE ⌃ TXE ⌃ TXE ⌃ ✓ D = ⇡ 6 ✓ D = ⇡ 3 ✓ D = 0 ✓ ⌃ = ⇡/3 ✓ ⌃ = ⇡/6 ✓ ⌃ = 0
void size zeta=6 GPa radius tends to disappear for values of L/B greater than 50 (that is, for R > 1.353 nm).

TXC ⌃ SHR ⌃ TXE ⌃ SHR ⌃ TXE ⌃ SHR ⌃ SHR ⌃ SHR ⌃ SHR ⌃ TXE ⌃ TXC ⌃ TXC ⌃ ✓ D = ⇡ 3 ✓ D = ⇡ 6 ✓ D = 0 ✓ ⌃ = 0 ✓ ⌃ = ⇡/6 ✓ ⌃ = ⇡/3 r=2 
⇣ = 0 ⇣ = 2 GPa ⇣ = 4 GPa ⇣ = 6 GPa (a) r = 2 GPa r = 4 GPa r = 6 GPa ζ=0 ζ=2 GPa ζ=4 GPa ζ=6 GPa SHR ⌃ TXE ⌃ TXE ⌃ TXE ⌃ TXC ⌃ TXC ⌃ SHR ⌃ SHR ⌃ SHR ⌃ SHR ⌃ SHR ⌃ ✓ D = ⇡ 6 ✓ D = ⇡ 3 ✓ D = 0 ✓ ⌃ = ⇡/6 ✓ ⌃ = 0 ✓ ⌃ = ⇡/3 TXC ⌃ r=2 
As a general remark, the measured stress state does not systematically correspond to the applied strain one. Such an occurrence is also evident in meridian planes (Figs. 2.11 and 2.12), where non-negligible hydrostatic stress components can be observed when pure strain-based deviatoric conditions are considered.

The analysis of Figs.2.9 to 2.12 suggests a clear dependence of the numericallyestimated strength properties on all the three stress invariants previously introduced.

As a matter of fact, the influence on I Σ 1 and J Σ 2 can be mainly observed by referring to meridian representations in Figs. 2.11 and 2.12, as well as the dependency on J Σ 3 is highlighted by addressing the non circular profiles in π-planes of Figs. 2.9 and 2.10.

With respect to the actual state-of-the-art, this evidence confirms that a proper characterization of strength properties for nanoporous materials can be still considered as an open and challenging issue. In fact, the influence of the stress invariants is not accurately taken into account in current available theoretical models (e.g., Dormieux andKondo, 2010, 2013;Goudarzi et al., 2010;Zhang and Wang, 2007;Zhang et al., 2010), resulting in an unsatisfactory description of the material strength domain. For instance, non-linear homogenization-based criteria by Zhang and Wang (2007) and Zhang et al. (2010) describe the meridian strength profile as elliptic, and any dependency on the third stress invariant is not accounted for (thereby resulting in a circular deviatoric strength profile). This is clearly in contrast with obtained results, confirming that MD simulations open towards novel insights for developing and validating more effective theoretical approaches.

Proposed meridian and deviatoric strength profiles are shown to be significantly affected by void-size effects, mainly resulting in the improvement of the strength properties ). The bulk case is also reported. As for the bulk sample, curves for SHRΣ case are obtained by interpolating numerical results computed by varying θD.

Chapter 2. A Molecular Dynamics approach when the void radius reduces. Occurrence and amount of such a strengthening effect strongly depend on the value assumed by the stress Lode angle, as it clearly appears in Figs.2.9, 2.11 and 2.12. In detail, referring to Fig. 2.9 and for a fixed hydrostatic stress level ζ, the highest influence is observed in the case of a triaxial expansion. Moreover, a shape transition is observed in the deviatoric profiles, these latter passing from a multisided polygonal shape to a triangular-like one when the void size reduces. Equivalently, an increase of the ratio L/B tends to mitigate the influence of the third stress invariant. This shape-transition is observed for any hydrostatic coordinate ζ, and it is associated to void-size effects only. In fact, when the void radius is fixed, the shape of π-plane strength profiles is proven to be constant with respect to ζ (Fig. 2.10).

Referring to meridian strength profiles depicted in Fig. 2.11, it is also observed that, in the TXE Σ case, the lower the ratio L/B the higher the values of the profiles mean curvature are. Such a shape-transition effect practically does not occur in TXC Σ and SHR Σ meridian planes.

As a quantitative indication, when the void radius is reduced from 2.977 nm (L/B = 110) to 0.812 nm (L/B = 30), the strength measure Σ eq at ζ = 4 GPa (resp., ζ = 8 GPa) increases of about: 40 % (resp., 105 %) for TXE Σ (see Fig. 2.11); 5 % (resp., 20 %) for TXC Σ (see Fig. 2.12a); 11 % (resp., 18 %) for SHR Σ (see Fig. 2.12b). Nevertheless, computed results for p = 1 % prove that strength properties turn out to be almost independent from the void radius for values greater than 2.7 nm (i.e., for L/B greater than about 100) in the case TXE Σ , and for values greater than 1.35 nm (i.e., L/B greater than about 50, Fig. 2.12) in the cases SHR Σ and TXC Σ .

The influence of the porosity p on meridian and deviatoric strength profiles is shown in Figs. 2.13 to 2.15, relevant to further two porosity values p = 0.1% and p = 0.5%. As expected, when p is reduced strength properties tend to increase towards the bulk ones. As in the case of p = 1%, Figs. 2.13 and 2.14 reveal that axisymmetric strain-rate conditions TXE D and TXC D practically correspond to triaxial expansion and compression stress states, respectively, leading to θ D ≈ θ Σ . In contrast, in the case of SHR D , the computed values of θ Σ are significantly different from θ D . Comparisons among results obtained for different porosity levels suggest that discrepancies between θ Σ and θ D tend to reduce when porosity increases. Moreover, the occurrence of a strengthening void-size effect, previously-described for p = 1%, is confirmed by results in Figs. 2.13 (p = 0.5 %) and 2.14 (p = 0.1 %), where material strength properties are proven to increase when the void radius is reduced. As already observed in Figs. 2.9 and 2.10, the increase of the void radius (i.e., of L/B) leads to a shape transition of deviatoric strength profiles, almost irrespective of porosity level. Since the highest amount of the strengthening void-size effect occurs for TXE Σ stress states, only the corresponding meridian planes are reported in Fig. 2.15, for the sake of compactness. As a quantitative indication and referring to the TXE Σ case, for p = 0.5% (resp., p = 0.1%) a reduction in the void radius from 1.49 nm (resp., 0.87 nm, L/B = 70) to 0.64 nm (resp., 0.37 nm, L/B = 30) induces an increase in the strength measure Σ eq of about 16 % (resp., 13 %) for ζ = 4 GPa and of about 43 % (resp., 39 %) for ζ = 8 GPa. zeta=6 GPa, p=0.5% zeta=2 GPa, p=0.1% zeta=6 GPa, p=0.1% 

zeta=2 F2 r = 2 GPa r = 4 GPa r = 6 GPa L/B=40 L/B=60 L/B=70 zeta=2 GPa, p=0.5% SHR ⌃ SHR ⌃ SHR ⌃ SHR ⌃ SHR ⌃ SHR ⌃ TXC ⌃ TXC ⌃ TXC ⌃ TXE ⌃ TXE ⌃ TXE ⌃ ✓ D = ⇡ 6 ✓ D = ⇡ 3 ✓ D = 0 ✓ ⌃ = ⇡/3 ✓ ⌃ = ⇡/6 ✓ ⌃ =
SHR ⌃ SHR ⌃ SHR ⌃ SHR ⌃ SHR ⌃ SHR ⌃ TXC ⌃ TXC ⌃ TXC ⌃ TXE ⌃ TXE ⌃ TXE ⌃ ✓ D = ⇡ 6 ✓ D = ⇡ 3 ✓ D = 0 ✓ ⌃ = ⇡/3 ✓ ⌃ = ⇡/6 ✓ ⌃ = 0
SHR ⌃ SHR ⌃ SHR ⌃ SHR ⌃ SHR ⌃ SHR ⌃ TXC ⌃ TXC ⌃ TXC ⌃ TXE ⌃ TXE ⌃ TXE ⌃ ✓ D = ⇡ 6 ✓ D = ⇡ 3 ✓ D = 0 ✓ ⌃ = ⇡/3 ✓ ⌃ = ⇡/6 ✓ ⌃ =
SHR ⌃ SHR ⌃ SHR ⌃ SHR ⌃ SHR ⌃ SHR ⌃ TXC ⌃ TXC ⌃ TXC ⌃ TXE ⌃ TXE ⌃ TXE ⌃ ✓ D = ⇡ 6 ✓ D = ⇡ 3 ✓ D = 0 ✓ ⌃ = ⇡/3 ✓ ⌃ = ⇡/6 ✓ ⌃ =

Conclusions

In this Chapter, the influence of void-size effects on strength properties of nanoporous materials are focused by numerically-experiencing, via a Molecular Dynamics approach, the mechanical response of a spherically-nanovoided aluminium single crystal. The case of a bulk sample (namely, with a null porosity) is also preliminarily investigated aiming to furnish a comparative benchmark.

Although many MD-based analyses on nanoporous in-silico samples have been recently established, they are usually limited to the study of specific loading cases (uniaxial, volumetric or simple shear tests), mainly focusing on the identification of void-growth mechanisms and dislocation interactions, without providing an effective quantification of void-size effects. In detail, available results are sufficient neither to furnish a threedimensional description of the corresponding strength domains (since they identify only particular stress limit conditions), nor to establish the influence of void size as depending on the loading state, thereby not allowing for a straight correlation towards the definition of engineering strength measures for nanoporous materials.

Similarly, current experimental evidence, mainly related to simple testing scenarios, does not provide suitable indications on failure mechanisms under multiaxial loading conditions. Therefore, available findings can not be considered useful tools for properly assessing the effectiveness of theoretical descriptions of strength features for nanoporous materials.

With the aim to give novel contributions in this context, more complex scenarios have been herein addressed, involving triaxial strain-based expansion and compression, as well as shear strain conditions. For each case, different triaxiality levels have been considered, describing deformation paths ranging from pure deviatoric states to pure hydrostatic ones. For different porosity levels, strength properties of nanoporous samples have been investigated as a function of the void radius, in order to explore the influence of the void size.

Although available experimental data are not sufficient to provide an effective comparative benchmark, present numerical results have been proven to be fully consistent with findings obtained via other MD-based approaches (Bringa et al., 2010;Marian et al., 2004Marian et al., , 2005;;Mi et al., 2011;Ruestes et al., 2013;Tang et al., 2010;Traiviratana et al., 2008;Zhao et al., 2009), in terms of stress-strain relationships, as well as of dominant atomistic mechanisms and irreversible heating occurring in the plastic regime.

For the cases under investigation, estimates of strength domains have been proposed.

The classical Haigh-Westergaard representation, expressed by the three isotropic stress invariants, has been employed.

As main aspects, the analysis of meridian and deviatoric strength profiles computed for different porosity values has shown:

• a clear influence of all the three stress invariants;

• a complex relationship between the applied strain states and the obtained strength ones;

• significant void-size effects.

In detail, numerical results have proven that an axisymmetric stress state is obtained when axisymmetric strain conditions are applied to the sample, corresponding to practically-coinciding stress-and strain-based Lode angles. This is not the case when shear numerical tests are performed, resulting in significant differences between appliedstrain and computed-stress Lode angles. Such a constitutive response at limit states is in agreement with recent theoretical findings (Lemarchand et al., 2015).

Similar effects have been also observed for the strength profiles in the meridian planes, where non-negligible hydrostatic stress components are obtained when pure deviatoric deformation paths are considered.

Furthermore, numerical results confirmed that a reduction in the void size induces an enhancement of the strength properties. This is qualitatively in agreement with available experimental (Biener et al., 2005(Biener et al., , 2006;;Hakamada and Mabuchi, 2007) and numerical (e.g., Mi et al., 2011;Traiviratana et al., 2008;Zhao et al., 2009) evidence, although these latter have been obtained by considering different testing conditions, geometries and materials.

Both occurrence and amount of void-size effects have been proven as strongly dependent on the Lode angle, resulting in the highest strengthening for a triaxial expansion, and leading to a shape-transition of deviatoric strength profiles when the void radius is varied.

It is worth pointing out that, in the framework of an ideal periodic nanostructure, the single-crystal and single-voided reference domain herein adopted could be considered as not properly representative of realistic experimental samples. Nevertheless, within the limitations of the present approach, the herein-adopted computational domain enables to limit as much as possible any coupling effect (such as effects associated to: shape of voids, porosity level, polycrystalline domains), allowing to focus on dominant influence of void-size effects only.

As a matter of fact, in a number of nanoporous strength models (e.g., Dormieux andKondo, 2010, 2013;Goudarzi et al., 2010;Monchiet and Kondo, 2012;Zhang et al., 2010), the influence of the third stress invariant is not accounted for, and solid phase is generally assumed to obey to a von Mises strength criterion (namely, independent also from the first stress invariant). Moreover, as regards the analytical description of voidsize effects, it usually requires some model parameters that have to be properly calibrated and physically interpreted. In this context, proposed numerical results, both for bulk and nanoporous cases, clearly indicate a significant dependence of strength states from all the three stress invariants, suggesting the need of improving previously-cited theoretical descriptions. Furthermore, quantitative indications provided by the present approach allow to highlight some mechanical meanings of theoretical model parameters, enabling also to establish their physically-consistent ranges of variation.

Accordingly, present numerical study can be considered as an useful and novel contribution to provide comparative benchmarks for validating and calibrating available theoretical formulations, as well as for drawing novel analytical models towards a compre-hensive and consistent description of nanoporous materials strength properties. As an example, in order to pave the way to more effective theoretical modelling strategies, able to reproduce available evidence, a richer description of the bulk strength behaviour with respect to the von Mises one (namely, accounting for the influence of all the stress invariants) should be addressed. In this way, an effective description of the influence of the third stress invariant combined with void-size effects would be accounted for in the context of a general plastic behaviour.

2.A Crystallographic background

Notation based on Miller indexes (Hull and Bacon, 2001) is used. As indicated by Marian et al. (2005) and Traiviratana et al. (2008), in the case of a spherical voided FCC-based sample the maximum of the resolved shear stress is reached in planes {111} embedding the void and angled by ±45 • with respect to the sample local axes. Besides, since the energy stored in a dislocation is proportional to the modulus of its Burgers vector, the glide of perfect dislocations characterized by b = B < 110 > is energetically disfavoured (Hull and Bacon, 2001).

Referring for instance to closed packed planes ( 111) and ( 111 As regards the evolution of plastic deformation, it is strictly related to Shockley partials interactions. As a matter of fact, leading partials b 3 and b 3 interact each other at the intersection of slip planes ( 111) and ( 111), yielding to a Lomer-Cottrell (LC) dislocation

B 3 [110] = B 3 [211] + B 3 [121]
(2.9) that does not belong to a slip plane. As a result, such a LC dislocation is sessile and it acts as a barrier (the so-called Lomer-Cottrell lock (Hull and Bacon, 2001)) for any additional slipping process in planes ( 111) and ( 111), repulsing the remaining two trailing Shockley partials b 2 and b 2 . Accordingly, material behaviour in plastic regime strictly depends on the evolution of such a locking mechanism.
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Chapter 3. Exact limit state under isotropic loadings

Introduction

In the last two decades nanoporous materials have been characterised by a fast-growing development, attracting a world-wide interest in both industrial and academic domains (e.g., Arico et al., 2005;Jenkins, 2010;Lu et al., 2004). As a matter of fact, owing to their good properties in terms of stiffness and strength, combined with particular and special electrochemical features, nanoporous materials open towards groundbreaking applications in several technical fields, involving ultra-high performance devices and challenging multifunctional uses. In order to fulfil these promising applications, one of the most fundamental aspects consists in describing, into an effective engineering design framework, strength properties of these materials as dependent on the size of voids.

Recent nano-mechanical experiments (e.g., Biener et al., 2005Biener et al., , 2006;;Hakamada and Mabuchi, 2007) have shown that, for a fixed porosity value, a reduction in the length-scale of nanovoids induces an increase in the material yield strength. Similarly, Molecular-Dynamics simulations carried out on in-silico nanoporous samples (Brach et al., 2016a;Mi et al., 2011;Traiviratana et al., 2008;Zhao et al., 2009) have proven that the predicted strength decreases towards asymptotic values when the size of voids increases. The physical origin of such a phenomenon has been related by Needs et al. (1991) to the presence of self-equilibrated surface stresses at the cavity boundaries, induced by a local perturbation in the material atomic arrangement close to the nanovoids and usually negligible for porous materials. Accordingly, in the framework of a continuum approach, void-size effects have been generally addressed by introducing coherent-imperfect interface laws at the cavity boundaries (e.g., Duan et al., 2005a,b;Gurtin andMurdoch, 1975, 1978;Povstenko and Yu, 1993;Wang et al., 2011), that is accounting for surface stresses by prescribing the discontinuity of the stress vector across the interface.

Although the effective elastic properties of nanoporous/nanocomposite materials have been extensively investigated in literature (e.g., Duan et al., 2005a,b;Le Quang and He, 2007), few attention has been paid so far to the influence of void-size effects on the material response in the ductile regime. As a matter of fact, available strength models for porous materials (e.g., Gurson, 1977;Ponte Castañeda, 1991) are able to account for porosity effects only (although recent advanced formulations and applications include also effects related to matrix anisotropy, void shape, voids distribution and interaction (e.g., Fritzen et al., 2012;[START_REF] Shen | A micro-macro model for clayey rocks with a plastic compressible porous matrix[END_REF][START_REF] Zhai | Modeling the ductile damage process in commercially pure titanium[END_REF]), thereby resulting in void-size independent plastic behaviours.

Taking advantage of a plastic generalization of interface stress models (Monchiet and Bonnet, 2010), and as a result of a limit-analysis approach (Salençon, 1983) on a rigidideal-plastic hollow sphere with a nanosized void, Dormieux and Kondo (2010) extended to nanoporous materials the well-established criterion proposed by Gurson (1977). Furthermore, void-size dependent yield criteria have been recently proposed by Goudarzi et al. (2010), [START_REF] Moshtaghin | Effects of surface residual stress and surface elasticity on the overall yield surfaces of nanoporous materials with cylindrical nanovoids[END_REF], Zhang and Wang (2007), Zhang et al. (2008) and Zhang et al. (2010), in the framework of non-linear homogenization methods including also interface effects.

As regards limit-analysis approaches, the capability of furnishing an effective estimate of the macroscopic yield domain for porous and nanoporous materials requires a suitable choice of static or kinematic trial fields. As a matter of fact, following the technique adopted by Gurson (1977), and referring to a rigid-ideal-plastic matrix, strength estimates have been obtained in the framework of a kinematic approach (e.g., Anoukou et al., 2016;Cazacu et al., 2014;Dormieux and Kondo, 2010) by building up the trial field via the superposition of suitable terms to the exact velocity field associated to the limit problem of a hollow sphere under a radial constant velocity at the external boundary (i.e., under isotropic boundary conditions, corresponding to a macroscopic hydrostatic state). Accordingly, the identification of the exact local fields at the limit state (namely, velocity, strain-rate and stress fields) for a hollow sphere undergoing isotropic loadings is recognized to be of the utmost importance for establishing effective strength estimates for porous and nanoporous materials under general triaxial states.

It is worth observing that most of the afore-mentioned strength models have been derived by assuming that the solid matrix obeys to a von Mises yield criterion, thereby not accounting either for hydrostatic-stress dependence or for stress-Lode-angle effects (the latter being related to the third deviatoric stress invariant). Nevertheless, the solid matrix of engineering-relevant nanoporous materials may exhibit a more complex plastic behaviour. For instance, the ductile regime of bulk metals (namely, without nanovoids) may be characterised (as for geomaterials or cohesive-frictional media) by a pressuresensitive plastic response, also significantly affected by the second and the third deviatoric stress invariants. This evidence has been confirmed by recent Molecular-Dynamics simulations (Brach et al., 2016a), which also showed that the dependence of the bulk-material strength domain on all the three isotropic stress invariants can not be generally accounted for by simply calibrating available classical yield criteria (e.g., Mohr-Coulomb), and that, in turn, this induces a complex plastic response of nanovoided samples.

An attempt to include the influence of all the three isotropic stress invariants for describing strength properties of porous media (i.e., without interface effects) has been recently provided by Anoukou et al. (2016), in the special case of a Mohr-Coulomb plastic matrix.

To this end, Anoukou et al. ( 2016) have adopted a limit-analysis procedure by considering a trial velocity field defined on the basis of the exact solution proposed by Thoré et al. (2009) for a Mohr-Coulomb hollow-sphere model without interface effects and undergoing isotropic loading conditions. Nevertheless, aiming to reproduce available evidence, a richer description of the local yield behaviour that accounts for the influence of all the stress invariants has to be addressed. In this light, the general and flexible yield criterion proposed by Bigoni and Piccolroaz (2004) can be considered as a promising candidate to comply with benchmarking indications on local strength properties, allowing to effectively describe the limit behaviour of a broad class of pressure-sensitive, frictional, ductile and cohesive bulk materials.

Therefore, in order to pave the way to more comprehensive limit-analysis modelling strategies for nanoporous materials, the starting point is represented by the identification of the exact local fields under a macroscopic hydrostatic state, accounting for void-size Chapter 3. Exact limit state under isotropic loadings effects and in the case of a general local plastic behaviour. The latter, in the framework of kinematic approaches, has to be formulated via the local support function, that is via the maximum material plastic dissipation.

This Chapter aims to contribute to these aspects by proposing the exact solution of the mechanical local fields at the limit state for a hollow sphere with a nanosized void, treated via a coherent-imperfect interface, and in the case of isotropic boundary loading conditions. Accordingly, a closed-form description of the macroscopic hydrostatic limit stress for nanoporous materials is also provided. The solid matrix is assumed to be comprised of a rigid-ideal-plastic material, obeying to a simplified form of the criterion proposed by Bigoni and Piccolroaz (2004), expressed in terms of the three isotropic stress invariants. In detail, the adopted yield function is described as linear in meridian planes, and as proposed by Bigoni and Piccolroaz (2004) in the deviatoric ones.

The Chapter is organised as follows. In Section 3.2, the problem under stake is formulated by accounting for interface effects. Section 3.3 is devoted to the introduction of the Bigoni-like yield function, carefully focusing on the possible occurrence of sharp vertices in the deviatoric plane. In order to allow for kinematic limit analyses based on such a general criterion, the corresponding support function is consistently derived in Section 3.4. The limit state of a hollow sphere with or without interface effects and undergoing isotropic boundary conditions is exactly determined in Section 3.5. By choosing suitable values of criterion parameters, exact analytical descriptions are also obtained in the particular case of local plastic behaviours described via classical yield functions (von Mises, Tresca, Drucker-Prager, Mohr-Coulomb). The usefulness of obtained results to build up trial fields for novel limit analysis approaches, addressing both porous and nanoporous materials, is highlighted in Section 3.6. Finally, some conclusions are traced in Section 3.7.

Problem statement

Let the hollow sphere in Fig. 3.1 be considered, whose internal and external radii are denoted as R i and R e , respectively. Moreover, let ∂Ω i and ∂Ω e be the corresponding internal and external surfaces, the total boundary of the system resulting in ∂Ω = ∂Ω i ∪ ∂Ω e . Denoting as |Ω s | and |Ω v | the volume measures of the solid region (namely, Ω s ) and of the spherical void (Ω v ), respectively, the total volume of the system (namely,

Ω = Ω s ∪ Ω v ) is |Ω| = |Ω s | + |Ω v |, and the porosity f is equal to f = |Ω v |/|Ω|. The solid
matrix Ω s is assumed to be homogeneous and comprised of a rigid-ideal-plastic isotropic material. Therefore, material strength properties can be straight identified by referring to the yield limit state.

In agreement with continuum-based descriptions (Duan et al., 2005a;Gurtin andMurdoch, 1975, 1978;Wang et al., 2011) and available strength models for nanoporous materials (e.g., Dormieux and Kondo, 2010), the influence of non-negligible surface stresses induced by the possibly-nanosized void is herein addressed by introducing a coherent and imperfect homogeneous interface I at the void boundary ∂Ω i (Fig. 3.1). In particular, the velocity field (resp., the stress vector) is prescribed to be continuous (resp., discontinuous) through ∂Ω i . In the framework of a plastic generalization (Monchiet and Bonnet, 2010) of the stress-interface model by Gurtin and Murdoch (1975), the material comprising the interface is assumed to be isotropic and rigid-ideal-plastic.

Let the Cartesian reference system (e x , e y , e z ) be introduced, with the origin O at the sphere center. For what follows, and referring to the notation in Fig. 3.1, it is useful to consider the spherical coordinate system (θ, ϕ, r), and the corresponding local orthonormal basis (e θ , e ϕ , e r ), r being the radial coordinate, θ ∈ [0, π] and ϕ ∈ [0, 2π] the zenith and the azimuth angular coordinates, respectively. Accordingly, the position with respect to O of a point in Ω (resp., at the interface I) is identified by r = r e r (θ, ϕ) (resp., by

r i = R i e r (θ, ϕ)).
As a notation rule, vectors and second-order tensors are denoted by bold letters; symbols •, :, and ⊗ indicate inner, double-dot, and tensor product operators, respectively; ∇ (resp., ∇ I ) is the nabla operator in Ω s (resp., along the interface), ∇ identifying the symmetric part of the corresponding gradient operator.

Let the fourth-order projector tensor T = P⊗P be introduced, where P = (1-e r ⊗e r ) with 1 the second-order identity tensor, and where the operator ⊗ is component-wise defined by T ijkl = (P ik P jl + P il P jk )/2. Accordingly, A T = T : A is the projection on planes orthogonal to e r of the second-order tensor A. In the following, A is referred to as a planar tensor if A = A T .

The hollow sphere is assumed to undergo isotropic loading conditions at the exterior boundary, corresponding to a macroscopic hydrostatic stress state. Therefore, the set

BC σ = σ(r) s.t. σ -• e r = 0 on ∂Ω i and σ • e r = Σ c m e r on ∂Ω e (3.1)
is introduced, where Σ c m is the unknown macroscopic hydrostatic strength, σ -(resp., σ + ) is the second-order stress tensor σ for r → R - i (resp., r → R + i ), so that (σ +σ -) allows to describe the stress jump across the interface.

The sets of statically-admissible (S σ ) and plastically-admissible (P σ ) stress fields are Chapter 3. Exact limit state under isotropic loadings respectively introduced as

S σ =        (σ, τ ) s.t. ∇ • σ = 0 in Ω s , (σ + -σ -) • e r + (τ : K)e r = ∇ I • τ on ∂Ω i , with σ ∈ BC σ        (3.2a) P σ = (σ, τ ) s.t. G s (σ) = 0 in Ω s , G I (τ ) = 0 on ∂Ω i (3.2b)
where τ is the surface stress tensor at I, K is the interface curvature tensor, G s (resp., G I )

indicates the yield function of the solid matrix (resp., of the interface). It is worth pointing out that the set S σ is defined in the absence of body forces and that the equilibrium at I (see Eq. (3.2a)) is expressed by a generalized form of the Young-Laplace equation (Gurtin and Murdoch, 1975;Duan et al., 2005b). Moreover, prescribing that (σ, τ ) ∈ P σ is equivalent to prescribe that the material is everywhere yielding in Ω.

The sets of kinematically-admissible (K d ) and plastically-admissible (P d ) strain-rate fields are introduced as: 

K d = (d, d I ) s.t. d = ∇v in Ω s , d I = d r=ri on ∂Ω i (3.3a) P d = (d, d I ) s.t. d = λ s ∂G s (σ) ∂σ in Ω s , d I = λ I ∂G I (τ ) ∂τ on ∂Ω i (3.
Q = { Q s.t. Q = Q r e r ⊗ e r + Q θ (e θ ⊗ e θ + e ϕ ⊗ e ϕ ) } (3.4)
Accordingly, the exact solution of the limit-state problem for the hollow sphere with interface is completely identified by statically-admissible stress (σ, τ )

∈ (S σ ∩ (Q, Q)) and kinematically-admissible strain-rate (d, d I ) ∈ (K d ∩ (Q, Q))
fields that simultaneously verify plastic admissibility conditions introduced in sets P σ and P d , respectively.

Local yield function

Since the isotropy assumption on strength properties, the yield surface ∂Y s = {σ s.t. G s (σ) = 0} of the material comprising the hollow sphere can be completely described by referring to the Lode coordinate system (p, q, θ σ ). As a matter of fact, denoting with θ σ ∈ [0, π/3] the stress Lode angle, a local limit stress state σ ∈ ∂Y s is uniquely determined by the following isotropic stress invariants

p = I σ 1 3 , q = 3J σ 2 , cos 3θ σ = 3 √ 3 2 J σ 3 J σ 2 3/2 (3.5)
where I σ 1 = tr σ, J σ 2 = tr σ 2 d /2 and J σ 3 = tr σ 3 d /3 are the hydrostatic, the second-order deviatoric and the third-order deviatoric stress invariants, respectively, with σ d = σ -p1 being the deviatoric stress tensor. The Lode coordinate system (p, q, θ σ ) represents a cylindrical system in the space of the principal stresses (σ 1 , σ 2 , σ 3 ), p and q being respectively proportional to the magnitudes of the orthogonal projections of the stress tensor σ on the hydrostatic axis q = 0 (namely, I σ 1 / √ 3) and on the deviatoric plane (or π-plane) p = const (namely, 2J σ 2 ). Therefore, the three-dimensional shape of the yield surface G s = 0 can be represented by means of its cross sections (that is, the intersections between ∂Y s and the deviatoric planes) and its meridian profiles (that is, the intersections between ∂Y s and planes at θ σ = const containing the hydrostatic axis, namely the meridian planes).

In the present Chapter, the yield function G s is assumed of the form

G s (σ) = m(p) + q g(θ σ ) (3.6)
where m and g define the shape of the limit surface in meridian and deviatoric planes, respectively. With the aim to allow for an extremely flexible description of strength properties in π-planes, the deviatoric dimensionless function g is chosen as proposed by Bigoni and Piccolroaz (2004), that is:

g(θ σ ) = 1 cos β π 6 -1 3 arccos(γ cos 3θ σ ) (3.7)
where β and γ are dimensionless parameters that, in order to assure convexity of deviatoric profiles, have to satisfy the consistency requirements 0 ≤ β ≤ 2 and 0 ≤ γ ≤ 1. As specified by Bigoni (2012), the deviatoric function g(θ σ ) in Eq. (3.7) was firstly introduced by Podgórski (1985a,b) and, since θ σ ∈ [0, π/3] and 0 ≤ γ ≤ 1, it is strictly positive.

As already shown by Bigoni and Piccolroaz (2004), the trascendental function g(θ σ )

allows for an extreme shape distortion of deviatoric sections, simultaneously guaranteeing both the possibility to account for stress-Lode-angle effects and a great flexibility for reproducing several strength-domain shapes. This occurrence is highlighted in Fig. 3.2, where g(θ σ ) is represented for different values of model parameters β and γ. In detail, parameter γ induces a smoothing effect on corners, resulting in a shape transition of deviatoric profiles, that pass from a multi-sided polygonal shape to a circular one when γ is varied from 1 to 0. Moreover, Fig. 3.2 clearly shows that sharp vertices appear in the deviatoric planes for γ = 1, corresponding to tangency discontinuities for θ σ = 0 and/or θ σ = π/3, depending on the value of β. In particular, for 0 < β < 2, the shape of g(θ σ ) is characterised by six corners (at θ σ = 0 and θ σ = π/3), whereas for β = 0 and β = 2, three corners appear (at θ σ = π/3 or θ σ = 0, respectively).
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As a matter of fact, the parameter β allows to range from the lower (for β = 0 and γ = 1) to the upper (for β = 2 and γ = 1) convexity bounds addressed by Haythornthwaite (1985). In particular, for non-zero values of γ, Fig. 3.2 highlights that a distortion of the deviatoric profiles occurs, the highest strength resulting for: triaxial compression (TXC, θ σ = π/3) when 0 ≤ β < 1; both triaxial expansion (TXE, θ σ = 0) and compression (TXC) when β = 1; triaxial expansion (TXE) when 1 < β ≤ 2.

In agreement with isotropic strength criteria generally adopted in engineering practice (such as, for instance, Drucker-Prager and Mohr-Coulomb), the material pressuresensitivity is assumed to be represented by a linear meridian profile. Accordingly, and as a special case of the meridian function introduced by Bigoni and Piccolroaz (2004), m in Eq. (3.6) is chosen of the form

m(p) = -3 h - p ξ (3.8)
where ξ and h are shape parameters which do not have to comply with any specific convexity requirement. Nevertheless, since limit stress state for p = 0 corresponds to q = 3hg, the consistency condition h ≥ 0 has to be verified, h being a strength parameter that has the dimension of a stress. Furthermore, ξ is assumed to be a strictly-positive dimensionless quantity, thereby resulting in a finite tensile strength at q = 0 when ξ < +∞. The case ξ → +∞ allows to describe a pressure-independent limit behaviour (such as in von Mises or Tresca criteria).

As summarized in Table 3.1, the Bigoni-like strength model defined by Eqs. vM

G s (σ) = G s (σ) = q -σ 0 = 0 π s (d) = π s (d) =    2 √ 3 3 σ 0 J d 2 if I d 1 = 0 + ∞ if I d 1 = 0 h = σ 0 3 , ξ → +∞, γ = 0, β = 1 Tr G s (σ) = G s (σ) = max i =j { |σ i -σ j | } -σ 0 = q sin θ σ + π 3 - σ 0 √ 3 2 = 0 π s (d) = π s (d) =    σ 0 2 (|d 1 | + |d 2 | + |d 3 |) if I d 1 = 0 + ∞ if I d 1 = 0 h = σ 0 √ 3 6 , ξ → +∞, γ = 1, β = 1 DP G s (σ) = G s (σ) = p -c cot φ + q 3 + sin 2 φ 3 sin φ = 0 π s (d) = π s (d) =          c cot φ I d 1 if I d 1 J d 2 ≥ 2 √ 3 sin φ 3 + sin 2 φ + ∞ if I d 1 J d 2 < 2 √ 3 sin φ 3 + sin 2 φ h = c cot φ 3 , ξ = 3, γ = 0, β = -2 + 6 π arcsin 3 + sin 2 φ 3 sin φ MC G s (σ) = G s (σ) = max i =j { |σ i -σ j | + (σ i + σ j ) sin φ } -2c cos φ = = p -c cot φ + q 1 √ 3 sin φ sin θ σ + π 3 + 1 3 cos θ σ + π 3 = 0 π s (d) = π s (d) = c cot φ I d 1 if I d 1 ≥ (|d 1 | + |d 2 | + |d 3 |) sin φ + ∞ if I d 1 < (|d 1 | + |d 2 | + |d 3 |) sin φ h = c cos φ 3 + sin 2 φ , ξ = 3 + sin 2 φ sin φ γ = 1, β = 6 π arctan √ 3(1 -sin φ)
second-order derivatives with respect to σ at sharp vertices.

In agreement with approaches proposed for classical criteria presenting singularities (as Tresca or Mohr-Coulomb, see Salençon (1983)), it is convenient to express Eq. (3.9) in terms of principal stresses. These latter are denoted as σ i , σ j , and σ k , where different indexes i, j, k belong to {1, 2, 3}, leading to six different index permutations that result in six different ordered sequences of principal stresses. For each index permutation, let σ max = max{σ i , σ j , σ k }, σ min = min{σ i , σ j , σ k } and σ mid = I σ 1 -(σ max + σ min ) be introduced. By combining the following relationships

σ max = p + 2 3 q cos θ σ σ mid = p - 2 3 q cos θ σ + π 3 σ min = p - 2 3 q cos θ σ - π 3 (3.10)
transcendental functions in Eq. (3.9) can be expressed as

cos θ σ = 3 2 σ max -p q sin θ σ = √ 3 2 σ mid -σ min q (3.11)
allowing to recast G s in the form of a piece-wise linear yield function, consisting in six different yield planes G s = 0 (where ∈ {1, . . . , 6}), one for each possible ordered sequence of principal stresses, and defined by

G s (σ) = σ max - σ mid + σ min 2 c β + (σ mid -σ min ) √ 3 2 s β -3h ξ+ + σ max + σ mid + σ min (3.12)
The case of a pressure-independent sharp yield function is obtained by enforcing γ = 1 and ξ → +∞ in Eqs. (3.6) to (3.8) (or equivalently in Eqs.(3.9) and (3.12)), resulting in

G s (σ) = (c β cos θ σ + s β sin θ σ ) q -3h (3.13) G s (σ) = σ max - σ mid + σ min 2 c β + (σ mid -σ min ) √ 3 2 s β -3h (3.14)
The same considerations straight apply to the sharp form of the yield function at the interface, namely for G I (τ ).
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Support function

As previously observed, kinematic limit-analysis approaches require as a starting point the definition of material strength properties via the local support function. By distinguishing between solid matrix and interface, the corresponding support functions are respectively defined as (e.g., Salençon, 1983) Although explicit expressions for support functions associated to classical criteria are already available in literature, at the best of the authors' knowledge, the case of a general isotropic yield function has not been exhaustively addressed yet.

π s (d) = sup
In agreement with the previously-introduced notation, in the following π s and π s (resp., π I and π I ) indicate support functions associated to yield surfaces with smooth or sharp deviatoric profiles, respectively.

Support functions for smooth yield surfaces

Aiming to determine π s and π I , as well as the corresponding admissibility conditions, reference is made to the theoretical framework established by Lemarchand et al. (2015), which is straight applicable to the case of unbounded yield functions with smooth deviatoric profiles. Such an approach is herein employed by addressing Bigoni-like yield functions G s and G I , defined by Eqs. (3.6) to (3.8) for 0 ≤ γ < 1. For the sake of compactness, analytical details, support functions and specific comments related to the identification of admissibility requirements, are summarised in 3.A. Salençon, 1983).

As shown in

Support functions for sharp yield surfaces

Due to the presence of sharp vertices in the deviatoric plane for γ = 1, support functions π s and π I differ from those deduced in 3.A for: plastic admissibility conditions when a pressure-dependent yield function is addressed (namely, for ξ < +∞); maximum plastic dissipation when pressure-independence is enforced (namely, for ξ → +∞).

For the sake of compactness, in the following reference is explicitly made to the case of the solid matrix only, the interface case requiring analogous analytical details starting from Eq. (3.16).

Aiming to determine the support function in Eq. (3.15), the supremum of the local plastic dissipation σ : d has to be computed over all local stress states complying with the strength criterion G s (σ) ≤ 0. By referring to the notation introduced in Section 3.3 and since Eq. (3.12), the following inequality holds

σ : d ≤ d 1 - I d 1 3 (1 + c β ξ) σ max + d 2 - I d 1 3 1 + 1 2 -c β + √ 3s β ξ σ mid + d 3 - I d 1 3 1 - 1 2 c β + √ 3s β ξ σ min + hξI d 1 (3.17)
Therefore, following analogous arguments as in 3.A (see Eq. (3.98)), the finite value of the maximum plastic dissipation results in hξI d 1 .

Admissibility conditions can be explicitly obtained by prescribing that strain-rate field belongs to P d , thereby enforcing the normality law in Eq. (3.3b) for the yield function G s described via the piece-wise form in Eq. (3.12) (for ξ < +∞) or in Eq. (3.14) (for

ξ → +∞).
With reference to the case ξ < +∞ and depending on the values assumed by the principal stresses in Eq. (3.12), the following three plastic regimes can be attained at the limit state, that is for σ ∈ ∂ Y s .

• Face regime. It corresponds to the case σ i = σ j = σ k . Thereby, for a any possible choice of i, j and k, only one of the six yield functions in Eq. (3.12) is equal to zero, and the plastically-admissible strain-rate states are identified by

d = λ s ∂ G s (σ) ∂σ (3.18)
where λ s is the strictly-positive plastic multiplier associated to the yield plane G s = 0. Therefore, depending on the values of β (via c β and s β ) and ξ, and identifying principal strain-rate components d 1 , d 2 and d 3 via Eq. (3.18), the following relationships hold for any possible choice of different indexes i , j , k ∈ {1, 2, 3}

(namely, for any yield plane G s = 0):

♦ case 0 ≤ β < 1 |d 1 | + |d 2 | + |d 3 | =              I d 1 if ξ ≤ ξ * I d 1 3 1 + c β + √ 3 s β ξ if ξ * ≤ ξ ≤ ξ * * I d 1 3 (2c β ξ -1) if ξ ≥ ξ * * (3.19)
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♦ case 1 ≤ β ≤ 2 |d 1 | + |d 2 | + |d 3 | =      I d 1 if ξ ≤ ξ * I d 1 3 1 + c β + √ 3 s β ξ if ξ ≥ ξ * (3.20)
with I d 1 = tr d, and where

ξ * = 2 c β + √ 3s β , ξ * * = 2 c β - √ 3s β (3.21)
• Edge regime. It corresponds to the case σ i = σ j = σ k . Thereby, two of the six yield functions in Eq. (3.12), say G s + and G s -(with + , -∈ {1, . . . , 6} and such that + = -), are simultaneously equal to zero, and the plastically-admissible strain-rate states are identified by the convex cone

d = λ s + ∂ G s + (σ) ∂σ + λ s - ∂ G s -(σ) ∂σ (3.22)
Therefore, due to the triangle inequality, the following relationships hold for any possible choice of different indexes i , j , k ∈ {1, 2, 3} (namely, for each edge of the sharp yield surface ∂ Y s ):

♦ case 0 ≤ β < 1 |d 1 | + |d 2 | + |d 3 | ≤              I d 1 if ξ ≤ ξ * I d 1 3 1 + c β + √ 3 s β ξ if ξ * ≤ ξ ≤ ξ * * I d 1 3 (2c β ξ -1) if ξ ≥ ξ * * (3.23) ♦ case 1 ≤ β ≤ 2 |d 1 | + |d 2 | + |d 3 | ≤      I d 1 if ξ ≤ ξ * I d 1 3 1 + c β + √ 3 s β ξ if ξ ≥ ξ * (3.24)
• Apex regime. It corresponds to the case σ i = σ j = σ k . Thereby, all yield functions in Eq. (3.12) are simultaneously equal to zero, and the normality law reads as and -due to Eq. (3.17)-the support function π s for the solid matrix Ω s reads as:

d = 6 =1 λ s ∂ G s (σ) ∂σ ( 
♦ case 0 ≤ β < 1 π s (d) =                      hξI d 1 if I d 1 ≥                |d 1 | + |d 2 | + |d 3 | if ξ ≤ ξ * 3 (|d 1 | + |d 2 | + |d 3 |) 1 + c β + √ 3 s β ξ if ξ * ≤ ξ ≤ ξ * * 3 (|d 1 | + |d 2 | + |d 3 |) 2c β ξ -1 if ξ ≥ ξ * * + ∞ otherwise (3.26) ♦ case 1 ≤ β ≤ 2 π s (d) =            hξI d 1 if I d 1 ≥      |d 1 | + |d 2 | + |d 3 | if ξ ≤ ξ * 3 (|d 1 | + |d 2 | + |d 3 |) 1 + c β + √ 3 s β ξ if ξ ≥ ξ * + ∞ otherwise (3.27)
It is noted that the support function for a pressure-independent sharp criterion (that is, for ξ → +∞) can be obtained as a particular case of Eqs. 

I d 1 =          3 (|d 1 | + |d 2 | + |d 3 |) 2c β ξ -1 if 0 ≤ β < 1 3 (|d 1 | + |d 2 | + |d 3 |) 1 + c β + √ 3 s β ξ if 1 ≤ β ≤ 2 (3.28)
Accordingly, by adopting Eq. (3.28) to recast the finite branch of π s in Eqs. (3.26) and

(3.27), the support function for ξ → +∞ results in

♦ case 0 ≤ β < 1 π s (d) =      3h 2c β (|d 1 | + |d 2 | + |d 3 |) if I d 1 = 0 + ∞ otherwise (3.29) ♦ case 1 ≤ β ≤ 2 π s (d) =      3h c β + √ 3s β (|d 1 | + |d 2 | + |d 3 |) if I d 1 = 0 + ∞ otherwise (3.30)
As shown in Table 3. 

Consistency assessment

Support functions in Eqs. (3.26) to (3.30) and associated to a sharp yield surfaces, as well as relationships (3.99) and (3.102) provided in 3.A for the smooth case, comply with the following consistency properties (Salençon, 1983).

• Property P1: π s (d) is non negative and π s (0) = 0 .

As regards pressure-dependent yield function G s in Eq. (3.12) (resp., G s defined by Finally, it is immediate to verify that both π s and π s are equal to zero for vanishing strain-rate states.

• Property P2: π s is positively homogeneous of degree 1.

In the case of both sharp and smooth yield criteria, it is simple to prove that, for any plastically-admissible strain-rate d, the corresponding support functions comply with condition

π s (α d) = α π s (d) , ∀ α ≥ 0 (3.31)
Accordingly, owing to property P1, relationship (3.31) proves that support function π s is positively homogeneous of degree 1.

• Property P3: π s is convex.

Both support functions π s and π s are expressed as linear combinations of strain-rate components, thereby providing the convexity requirement to be straight satisfied.

Exact limit state under isotropic loadings

In what follows, the local fields (stress, strain-rate and velocity) satisfying the hollowsphere limit problem introduced in Section 3.2, as well as the corresponding macroscopic limit stress state, are exactly determined.

It is worth observing that, the identification of statically-and plastically-admissible can be expressed as

p = 2σ θ + σ r 3 , q = ι(σ r -σ θ ), θ σ = 1 3 arccos(ι) , in Ω s (3.32) p = 2τ θ 3 , q = -ι I τ θ , θ σ = 1 3 arccos(ι I ) , on ∂Ω i (3.33)
where

• ι = sgn(σ r -σ θ )
, that is ι = +1 (resp., ι = -1) for a local triaxial-expansion (θ σ = 0) stress state (resp., triaxial-compression, θ σ = π/3) in Ω s ;

• ι I =sgn(τ θ ), corresponding to a surface-stress state on ∂Ω i , characterised by θ σ = 0 and θ σ = π/3, when ι I = +1 and ι I = -1, respectively.

Therefore, yield functions for solid matrix and interface are respectively expressed by 

σ θ = 3hξ -σ r (1 + Λξ) 2 -Λξ (3.38) τ θ = 3ξ 2 -Λ I ξ h I (3.39)
Furthermore, statically-admissible stresses (σ, τ ) ∈ S σ ∩ (Q, Q) have to satisfy the Chapter 3. Exact limit state under isotropic loadings following equilibrium equations

dσ r dr + 2 σ r -σ θ r = 0 for r ∈ (R i , R e ] (3.40a) σ r = 2τ θ R i at r → R + i (3.40b) σ r = Σ c m at r = R e (3.40c)
where Σ c m is the unknown macroscopic hydrostatic stress and Eq. (3.40b) results from the Young-Laplace equilibrium condition at the interface I (see Eq. (3.2a)).

The first-order differential equation that results by combining Eqs. (3.38) and (3.40a) is integrated by enforcing the boundary condition (3.40b), expressed in terms of plasticallyadmissible surface stresses in Eq. (3.39). The following fully-admissible stress components are obtained

τ θ = 3ξh 2 -Λ I ξ R i κ , r = R i (3.41a) σ r (r) = hξ   1 - R e f 1 3 r 6 2-Λξ 1 - 6κ 2 -Λ I ξ    , r ∈ (R i , R e ] (3.41b) σ θ (r) = hξ   1 + 1 + Λξ 2 -Λξ R e f 1 3 r 6 2-Λξ 1 - 6κ 2 -Λ I ξ    , r ∈ (R i , R e ] (3.41c)
where the dimensionless parameter

κ = h I R i h (3.42)
accounts for the influence of void-size effects.

It is worth observing that Eqs. (3.41) allow to prove that ι is independent from r, as well as that ι = ι I , and thereby that

Λ I (ι I ) = Λ(ι) (3.43)
Denoting with a the Ω-based average of a certain space-dependent field a(r) (namely,

a = |Ω| -1
Ω a dΩ), the macroscopic stress tensor Σ c associated to the fully-admissible stress fields described by Eqs. (3.41), is then obtained as

Σ c = σ = R e |Ω| ∂Ωe (σ • e r ) ⊗ e r dA = 3σ r r=Re (e r ⊗ e r ) (3.44)
that results, since the equilibrium at the exterior boundary (see Eq. (3.40c)), in the following closed-form relationship for the macroscopic hydrostatic strength

Σ c m = tr Σ c 3 = hξ 1 -f 2 2-Λξ 1 -κ 6 2 -Λξ (3.45)
corresponding to the macroscopic stress Lode angle θ Σ = arccos(sgn(Σ c m ))/3 (that is, θ Σ = 0 or θ Σ = π/3). It is noticed that, by combining Eqs. (3.41) and (3.45), it is possible to prove that ι =sgn(Σ c m ). Accordingly, the value Σ c m computed for Λ| ι=+1 (resp., Λ| ι=-1 ) is associated to a macroscopic hydrostatic compression (resp., expansion).

In the particular case of a pressure-independent plastic behaviour of the solid matrix (that is, for ξ → +∞), previous solution reduces to

σ r (r) = 6h Λ ln R e r f 1/3 -κ (3.46a) σ θ (r) = 3h Λ 2 ln R e r f 1/3 -κ -1 (3.46b) τ θ = -3 R i h Λ κ (3.46c) Σ c m = 6h Λ ln(f 1/3 ) -κ (3.46d)
Remark 1 For a matrix plastic behaviour complying with the condition ξ > 2/|Λ|, Eqs. (3.41) allows to prove that limit states corresponding to finite values of the macroscopic strength may be attained for both local triaxial expansion (ι = +1) and triaxial compression (ι = -1). On the other hand, when ξ < 2/|Λ|, the limit state can correspond to a local triaxial compression stress state (ι = -1), only. Finally, for ξ = 2/|Λ|, the limit state can not be attained, resulting in unbounded fully-admissible stresses in Eqs. (3.41).

Remark 2

The case of negligible surface stresses τ θ (that is, the case of porous materials) can be straight obtained by setting κ → 0 + in Eqs. (3.41), (3.45) and (3.46). This occurrence corresponds to the limit problem defined in Section 3.2 when interface I is not accounted for.

Local velocity and strain-rate fields

Kinematically-admissible strain-rate fields (d, d

I ) ∈ K d ∩ (Q, Q) (see Eq. (3.3a)) have to
comply with the strain-rate compatibility conditions

d r (r) = dv r dr , d θ (r) = v r (r) r (3.47) d I r = d r | r=Ri , d I θ = d θ | r=Ri (3.48)
The case of smooth yield surfaces

Let the yield function in Eqs. (3.6) to (3.8) with 0 ≤ γ < 1 be expressed for the solid matrix (resp., for the interface) in terms of principal stress components σ r , σ θ and σ ϕ (resp., τ r , τ θ and τ ϕ ). The normality law in Eq. (3.3b) computed for σ θ = σ ϕ (resp., for τ r = 0 and τ θ = τ ϕ ) allows to determine plastically-admissible strain-rate fields (d, d I ) ∈ P d ∩(Q, Q), Chapter 3. Exact limit state under isotropic loadings whose components are 

d r (r) = λ s (r) ξ 1 + Λξ , d θ (r) = d ϕ (r) = λ s (r) 2ξ 2 -Λξ (3.49) d I r = λ I ξ 1 + Λ I ξ , d I θ = d I ϕ = λ I 2ξ 2 -Λ I ξ (3.
λ I = λ s | r=Ri = C R 3Λξ 2-Λξ i (3.52)
leading to the following fully-admissible kinematics, expressed in terms of fully-admissible stress fields

d r (r) = 1 + Λξ ξ C r 3Λξ 2-Λξ , d θ (r) = 2 -Λξ 2ξ C r 3Λξ 2-Λξ (3.53) v r (r) = C 2 -Λξ 2ξ r 2(1+Λξ) 2-Λξ (3.54)
C being an arbitrary positive constant, in order to ensure the positiveness of λ s as a consistency condition on plastic multiplier.

In the case of a pressure-independent local plastic behaviour (namely, for ξ → +∞), previous solution reduces to

d r (r) = C Λ r 3 , d θ (r) = -C Λ 2r 3 (3.55) v r (r) = -C Λ 2r 2 (3.56)
The corresponding interface strain-rate state d I straight results from kinematic admissibility conditions in Eqs. (3.48).

The case of sharp yield surfaces

Since the spherical symmetry of the problem under stake, σ ∈ Q (see Eq. (3.4)) and principal stresses result in σ θ = σ ϕ = σ r . Therefore, owing to Eqs. (3.12) and (3.14), the corresponding limit stress state in the space of Lode coordinates (p, q, θ σ ) always belongs to an edge of the polyhedral yield surface ∂ Y s , locally achieving a triaxial expansion (σ r > σ θ = σ ϕ , that is ι = 1 and θ σ = 0) or a triaxial compression (σ θ = σ ϕ > σ r , that is ι = -1 and θ σ = π/3). Contiguous planar yield surfaces identifying an edge at θ σ = 0

Chapter 3. Exact limit state under isotropic loadings 93 (resp., at θ σ = π/3) are denoted as G s E -= 0 and G s E + = 0 (resp., G s C -= 0 and G s C + = 0), with

G s E -= σ r - σ θ + σ ϕ 2 c β + (σ θ -σ ϕ ) √ 3 2 s β -3h ξ + σ r + σ θ + σ ϕ (3.57) G s E + = σ r - σ θ + σ ϕ 2 c β + (σ ϕ -σ θ ) √ 3 2 s β -3h ξ + σ r + σ θ + σ ϕ (3.58) G s C -= σ θ - σ r + σ ϕ 2 c β + (σ ϕ -σ r ) √ 3 2 s β -3h ξ + σ r + σ θ + σ ϕ (3.59) G s C + = σ ϕ - σ r + σ θ 2 c β + (σ θ -σ r ) √ 3 2 s β -3h ξ + σ r + σ θ + σ ϕ (3.60)
where reference is made to the case of a pressure-dependent plastic behaviour (ξ < +∞).

Accordingly, the edge normality law in Eq. (3.22) allows to determine the corresponding plastically-admissible strain-rate fields as

d E = λ s E - ∂ G s E - ∂σ + λ s E + ∂ G s E + ∂σ (3.61) d C = λ s C - ∂ G s C - ∂σ + λ s C + ∂ G s C + ∂σ (3.62)
λ s E ± and λ s C ± being positive plastic multipliers. In particular, the following plasticallyadmissible strain-rate components result

d E r = (c β ξ + 1)(λ s E -+ λ s E + ) (3.63) d E θ = λ s E --c β - √ 3s β ξ 2 + 1 + λ s E + -c β + √ 3s β ξ 2 + 1 (3.64) d E ϕ = λ s E --c β + √ 3s β ξ 2 + 1 + λ s E + -c β - √ 3s β ξ 2 + 1 (3.65) d C r = -c β + √ 3s β ξ 2 + 1 λ s C -+ λ s C + (3.66) d C θ = λ s C -(c β ξ + 1) + λ s C + -c β - √ 3s β ξ 2 + 1 (3.67) d C ϕ = λ s C + (c β ξ + 1) + λ s C --c β - √ 3s β ξ 2 + 1 (3.68)
Owing to spherical symmetry, it must be verified that

d E θ = d E ϕ and d C θ = d C ϕ , leading to λ s E -= λ s E + ≡ λ s E and λ s C -= λ s C + ≡ λ s C
, respectively. Therefore, Eqs. (3.63) to (3.68) reduce to 

d E r = 2λ s E (c β ξ + 1) , d E θ = -λ s E (c β ξ -2) (3.69) d C r = -λ s C c β + √ 3s β ξ -2 , d C θ = λ s C 2 c β + √ 3s β ξ + 4 (3.
λ s E (r) = C r - 3c β ξ c β ξ-2 , λ s C (r) = C r - 3(c β + √ 3s β )ξ (c β + √ 3s β )ξ+4 (3.71)
where C is an arbitrary positive constant, in order to ensure the positiveness of plastic multipliers.

Therefore, the local fully-admissible strain-rate kinematics, expressed in terms of fullyadmissible stress fields in Eqs. (3.41), results in

d r (r) = 2 1 + Λξ C r 3 Λξ 2-Λξ , d θ (r) = 2 -Λξ C r 3 Λξ 2-Λξ (3.72) v r (r) = 2 -Λξ C r 2(1+ Λξ) 2-Λξ (3.73)
where Λ = Λ| γ=1 (see Eq. (3.36)).

When the pressure-independent plastic yield function in Eq. (3.14) is addressed (i.e., for ξ → +∞), similar analytical arguments allow to obtain

d r (r) = C 2 Λ r 3 , d θ (r) = -C Λ r 3 (3.74) v r (r) = -C Λ r 2 (3.75)
The corresponding interface strain-rate state d I straight results from kinematic admissibility conditions in Eqs. (3.48).

It is worth pointing out that, with respect to the local strain-rate and velocity fields in Eqs. (3.50) to (3.56) for a smooth yield surface, relationships (3.72) to (3.75) differ only for a constant term, the dependence on r being exactly the same. Nevertheless, as it will be shown in Section 3.6, the two kinematics completely coincide when arbitrary constants C and C are computed via strain-rate based boundary conditions.

Remark 3 Fully-admissible stresses (that is, equilibrated stresses at the limit state) and fully-admissible kinematics (that is, verifying both kinematic compatibility conditions and Accordingly, stress and strain-rate states provided in Sections 3.5.1 and 3.5.2, respectively, are simultaneously fully-admissible, and thereby they express the exact limit state for the hollow-sphere model with interface and undergoing isotropic boundary loadings.

Remark 4 Since ι = sgn(σ r (r)σ θ (r)) is constant with respect to r, stress components in Eqs. (3.41) and velocity fields for both smooth (Eq. (3.54)) and sharp (Eq. (3.73)) yield surfaces comply with the following condition

r 2 v r (r) [σ θ (r) -σ r (r)] = const =          3 2 C h 1 - 6κ 2 -Λξ (R e f 1/3 ) 6 2-Λξ 3 C ξh 1 - 6κ 2 -Λξ (R e f 1/3 ) 6 2-Λξ (3.76)
which generalises, to the case of a general isotropic plastic matrix with interface effects, the result obtained by Perrin (1992) for even local yield functions (i.e., quadratic in stress components), as well as the observations provided by Monchiet and Kondo (2012) for a von Mises-Schleicher criterion.

In the case of a pressure-independent yield function, by referring to velocity fields in Eqs. (3.56) and (3.75), the following condition is obtained

r 2 v r (r) [σ θ (r) -σ r (r)] = const =    3 2 C h 3 C h (3.77)
the dependence on κ disappearing.

Illustrative computations

As a consistency assessment and with the aim to generalise available exact results, previously-provided general solution is firstly applied to the particular case of classical plastic behaviours summarised in Table 3.1.

In detail, as shown in Table 3.2, present results exactly recover for κ → 0 + available relationships provided in the case of porous materials (namely, without interface effects)

by Thoré et al. (2009) for Drucker-Prager and Mohr-Coulomb criteria, and by Gurson (1977) and Cazacu et al. (2014) for von Mises and Tresca local plastic behaviours, respectively. Moreover, when interface effects are taken into account (namely, for κ > 0), available relationships for local stresses and macroscopic limit strength are generalised to the case of nanoporous media, thereby accounting for void-size effects, and also recovering the void-size-dependent solution proposed by Dormieux and Kondo (2010) for a von Mises plastic matrix.

By referring to criteria in Table 3.1, the influence of porosity f and of void-size effects on the macroscopic strength is depicted in Figs. 3.3a, 3.4a and 3.5a, wherein the dimensionless quantity Σ c m /h is represented versus f and for different values of the dimensionless parameter κ introduced in Eq. (3.42). As expected, the magnitude of |Σ c m | decreases with f . Moreover, when κ increases a significant improvement of the macroscopic strength features with respect to the case of porous materials (that is, for κ → 0 + ) is observed, for both triaxial expansion and triaxial compression, fully in agreement with available experimental and numerical evidence on void-size effects. As a matter of fact, an increase in κ corresponds, for a fixed value of the matrix strength parameter h, to an increase in the ratio h I /R i , and it results from a reduction in the void size. This effect is also highlighted in Fig. 3.6, wherein, for a fixed porosity value, it is shown that decreasing Chapter 3. Exact limit state under isotropic loadings Table 3.2 -Hollow sphere with interface effects (i.e., nanoporous materials with non vanishing values of κ = h I /(Rih)) under isotropic loadings. Exact local solution (stress, strain-rate and velocity fields) and exact macroscopic hydrostatic limit stress for strength criteria in Table 3.1. The case of negligible interface effects (i.e., porous materials) straight results for κ → 0 + . Notation: C (for a smooth yield surface) and C (for a sharp yield surface) are arbitrary constants; ι = +1 (resp., ι = -1) corresponds to a macroscopic triaxial compression (resp., expansion).

Criterion Statics

Kinematics vM, Tr

σ r = 2σ 0 ι ln R e f 1/3 r -κ σ θ = 2σ 0 ι - 1 2 + ln R e f 1/3 r -κ Σ c m = 2σ 0 ι ln f 1/3 -κ d vM r = ι C r 3 , d Tr r = ι √ 3 C r 3 d vM θ = - ι 2 C r 3 , d Tr θ = - ι 2 √ 3 C r 3 v vM r = - ι 2 C r 2 , v Tr r = - ι 2 √ 3 C r 2 DP σ r = c cot φ 1 -(1 -aκ) R e f 1/3 r a σ θ = c cot φ 1 + sin φ + ι 3 + sin 2 φ 2 sin φ -ι 3 + sin 2 φ (1 -aκ) R e f 1/3 r a Σ c m = c cot φ 1 -(1 -aκ) f a 3 with a = 6 sin φ 2 sin φ -ι 3 + sin 2 φ d r = sin φ + ι 3 + sin 2 φ 3 sin φ Cr b d θ = 2 sin φ -ι 3 + sin 2 φ 6 sin φ Cr b v r = 2 sin φ -ι 3 + sin 2 φ 6 sin φ Cr 1+b with b = 3ι 3 + sin 2 φ 2 sin φ -ι 3 + sin 2 φ MC σ r = c cot φ 1 -(1 -aκ) R e f 1/3 r a σ θ = c cot φ 1 + sin φ + ι sin φ -ι (1 -aκ) R e f 1/3 r a Σ c m = c cot φ 1 -(1 -aκ) f a 3 with a = 4 sin φ sin φ -ι d r = 3 sin φ + ι sin φ Cr b d θ = 3 2 sin φ -ι sin φ Cr b v r = 3 2 sin φ -ι sin φ Cr 1+b with b = sin φ + 3ι sin φ -ι
Chapter 3. Exact limit state under isotropic loadings 97 κ (namely, increasing the void-size) leads to an asymptotic behaviour of the hydrostatic strength towards the porous case.

Furthermore, for von Mises and Tresca local plastic responses, a symmetric hydrostatic strength appears, the absolute value of the limit stress Σ c m being the same under both macroscopic triaxial expansion (ι = -1) and compression (ι = 1), for any choice of f and κ. On the other hand, for a fixed value of f and in the case of Drucker-Prager and Mohr-Coulomb local yield functions, the compressive macroscopic limit stress (ι = 1) is higher than the tensile one (ι = -1), such a difference being reduced when the friction angle φ reduces. Moreover, proposed results highlight that an increase in φ tends to amplify the influence of the interface parameter κ (namely, of void-size effects).

For the sake of completeness, the velocity field at the limit state is addressed in Figs. 3.3b,3.4b and 3.5b. In detail, the dimensionless velocity v * r = v r /(CR w e ) is represented versus the normalized radial coordinate r * = r/R e (for r * ≥ f 1/3 ), where C is equal to C or C, depending on the smoothness level of the local criterion, and where w = -2 (resp., w = 1 + b, parameter b being introduced in Table 3.2) for von Mises and Tresca criteria (resp., for Drucker-Prager and Mohr-Coulomb). Illustrative computations show that the local velocity decreases when the distance from the void increases, with a decay rate strongly dependent on the matrix plastic response. As for Σ c m , the velocity field experiences a symmetric behaviour in expansion and compression for von Mises and Tresca criteria, whereas dimensionless velocity values are higher in compression than in expansion for Drucker-Prager and Mohr-Coulomb plastic matrices, the reduction of the friction angle tending to reduce such an asymmetry.

Since the high flexibility of the adopted Bigoni-like yield function, proposed results allow to provide the exact local limit state under isotropic boundary loadings, as well as the corresponding macroscopic hydrostatic strength, also for a broad class of plastic behaviours of the solid matrix, not properly described via classical yield criteria. In this case, model parameters should be preliminarily calibrated on the basis of available evidence. Just as an illustrative example, Fig. 3.7 shows the results of a model-calibration procedure based on a constrained optimization fitting with respect to the numerical indications provided by Brach et al. (2016a) for a nanoscaled aluminium bulk sample. In detail, a sound description of the influence of the three isotropic stress invariants on local strength properties is provided, for a certain choice of model parameters complying with consistency requirements introduced in Section 3.3.

Finally, the influence of local criterion parameters on the proposed closed-form results is addressed in Figs. 3.8 and 3.9, wherein the normalized macroscopic hydrostatic strength Σ c m /h is represented for different values of β, γ, and ξ, for both triaxial expansion (ι = -1) and compression (ι = 1), and addressing the cases of both negligible (Fig. 3.8) and nonnegligible (Fig. 3.9) interface effects. Proposed results confirm that present solution allows to consistently account for void-size effects. Moreover, the variability of the macroscopic strength with β is shown to improve when γ increases and, for ι = -1 (resp., ι = +1), when ξ increases (resp., decreases), the case of a local pressure-independent plastic matrix (i.e., ξ → ∞) resulting in upper (resp., lower) bounds for Σ c m /h. 
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Towards novel limit analysis approaches for nanoporous materials

As highlighted in Section 3.1, the modelling strategy introduced by Gurson (1977) in the framework of a kinematic limit analysis approach (recently adopted for pressuredependent -or independent-plastic matrices accounting -or not-for stress Lode angle effects) is recognized to be consistent and effective in order to establish accurate strength estimates for porous and nanoporous materials under arbitrary loadings. To this aim, the starting point is represented by the definition of a suitable trial kinematics based on the exact velocity field at the limit state for an isotropically-loaded hollow sphere without or with interface effects.

Aiming to formulate the corresponding limit-analysis problem, let the hollow sphere in Fig. 3.1 be subjected, at the external boundary, to the velocity field v e (θ, ϕ), and let the set Σ and D being the macroscopic stress and strain-rate tensors, respectively. Nevertheless, Chapter 3. Exact limit state under isotropic loadings the exterior power has to be lower or at the most equal to the maximum plastic dissipation W that can be afforded in Ω

BC v = {v(r) s.t. v = v e
|Ω| Σ : D ≤ W , with W(d) = Ω s π s (d) dΩ + ∂Ωi π I (d I ) dA (3.80)
where the equality sign in Eq. (3.80) holds at the limit state, that is by simultaneously considering statically and plastically-admissible stress, and kinematically and plasticallyadmissible strain-rate fields.

Accordingly, the macroscopic limit stress tensor Σ c results from

Σ c = ∂Π(D) ∂D (3.81)
where Π is the macroscopic support function, defined in the case of nanoporous materials as (see Dormieux and Kondo, 2010):

Π(D) = inf (d, d I ) ∈ K d v ∈ BCv π s (d) + 1 |Ω| ∂Ωi π I (d I ) dA (3.82)
Aiming to furnish an estimate Π est of the macroscopic support function and an upper bound of the macroscopic limit stress, instead of seeking the infimum in Eq. 

C = 2ξD m R - 3Λξ 2-Λξ e 2 -Λξ , C = D m R - 3 Λξ 2-Λξ e 2 -Λξ (3.83)
in order to comply with the boundary condition at r = R e , that is to comply with kinematic admissibility. Since this strain-rate state has been proven to be plasticallyadmissible for the hollow-sphere model under isotropic loadings, plastic admissibility requirement is surely satisfied. Therefore, in the case of a kinematic isotropic boundary condition, a possible trial kinematics for the smooth or sharp yield function, is respec- (3.84)

As a result, an estimate for the macroscopic support function in Eq. (3.82) reads as

Π est = 1 |Ω| Ωs π s (d trial ) dΩ + ∂Ωi π I (d I trial ) dA = 3D m hξ 1 -f 2 2-Λξ 1 -κ 6 2 -Λξ (3.85) Π est = 3D m hξ 1 -f 2 2-Λξ 1 -κ 6 2 -Λξ (3.86)
where the yield function with smooth (i.e., π s and π I ) or sharp (i.e., π s and π I ) deviatoric profiles is respectively considered. where local yield functions G s and G s are respectively addressed.

∂Π est ∂D m = hξ 1 -f 2 2-Λξ 1 -κ 6 2 -Λξ (3.87) Σ c m, est = 1 3 ∂ Π est ∂D m = hξ 1 -f 2 2-Λξ 1 -κ 6 2 -Λξ (3.
Fully in agreement with Remark 1, for a matrix behaviour complying with ξ > 2/|Λ|, consistency conditions in Eqs. (3.83) and (3.89) are verified for any choice of D m , the hollow sphere thereby achieving the limit state in both macroscopic expansion and compression states. This is the case of classical strength criteria in Table 3. 1,as shown in Figs. 3.3a,3.4a and 3.5a. On the other hand, when ξ < 2/|Λ|, only a macroscopic Chapter 3. Exact limit state under isotropic loadings triaxial-expansion limit state (ι = -1) can be reached, whereas for ξ = 2/|Λ| the hollow sphere does not experience any limit state under isotropic loadings, thereby resulting in a pressure-independent macroscopic plastic response.

As a matter of fact, in the general case of triaxial loadings and following the modelling strategy proposed by Gurson (1977), effective macroscopic strength estimates for porous and nanoporous materials can be derived via Eqs. (3.81) and (3.82) by considering a trial velocity field defined as

v trial (r) = E • r + v r (r) r r (3.90)
where E is a homogeneous strain-rate tensor and where v r is a local heterogeneous part corresponding to the exact velocity field at the limit state under isotropic loadings, such that the kinematic admissibility condition v trial ∈ BC v is satisfied (see Eq. (3.84)). Such a modelling technique has been already adopted by Anoukou et al. (2016) and by Dormieux and Kondo (2010) in the case of Mohr-Coulomb and von Mises matrix plastic behaviours, respectively.

In this framework and since all previous considerations, it clearly appears that the 

Concluding remarks

In this Chapter, the microscopic limit state of a hollow sphere, representative of a particular microstructure for porous and nanoporous materials, is exactly determined in the case of isotropic loading conditions. Void-size effects associated to the possible nanosize of voids (Biener et al., 2005(Biener et al., , 2006;;Hakamada and Mabuchi, 2007) have been accounted

for via a coherent and imperfect homogeneous interface at the cavity boundary. The hollow sphere has been assumed to be comprised of a rigid-ideal-plastic material, obeying to a general isotropic strength criterion. Aiming to take into account a broad class of pressure-sensitive limit responses (typical of many ductile, frictional and cohesive media), as well as to allow for a certain flexibility in reproducing evidence-based data, the local plastic behaviour has been represented via a general isotropic yield function. In detail, the latter has been defined by considering linear meridian strength profiles and the deviatoric function proposed by Bigoni and Piccolroaz (2004). The case of yield surfaces presenting sharp vertices in the deviatoric planes has been carefully addressed. As a first step towards more comprehensive studies based on kinematic limit-analysis approaches, the corresponding support function and its admissibility conditions have been explicitly determined, distinguishing between cases of smooth and sharp deviatoric profiles.

The microscopic limit state and the macroscopic limit stress have been derived in the case of both negligible (i.e., for materials with large values of the void radius, namely for porous materials) and significant void-size effects (i.e., for nanoporous materials). As a result, closed-form relationships for local strain-rate, velocity and stress fields have been obtained, identifying the exact limit state for the hollow-sphere model under isotopic boundary loadings.

As a consistency assessment, established results fully recover available analytical expressions (Cazacu et al., 2014;Gurson, 1977;Thoré et al., 2009) deduced in the case of negligible void-size effects, and associated to classical local plastic behaviours. Furthermore, the relationship between stress and velocity components provided by Perrin (1992) for even isotropic strength criteria, and generalised to the case of a von Mises-Schleicher plastic matrix by Monchiet and Kondo (2012), has been proven to hold also in the case of a general non-even isotropic local plastic behaviour, presenting -or not-sharp vertices in the deviatoric plane and accounting -or not-for interface effects. The proposed general expression of the macroscopic hydrostatic strength has been also proven to straight recover, in the case of a von Mises plastic matrix, the results proposed by Gurson (1977) for porous materials and by Dormieux and Kondo (2010) for nanoporous ones.

On the other hand, since the high flexibility of the adopted local strength criterion, proposed results allow to provide the exact local limit state under isotropic boundary loadings, as well as the corresponding macroscopic hydrostatic strength, also for a wide range of local plastic behaviours, possibly-affected by all the three isotropic stress invariants and that may not be properly described via classical yield models.

Proposed illustrative computations confirm that an effective description of void-size effects can be provided, resulting in an increase of the predicted macroscopic hydrostatic strength as the void radius decreases.

Finally, in the framework of a limit analysis approach, proposed general exact solutions could be used for building up effective trial fields useful to provide accurate strength estimates for porous and nanoporous materials, addressing arbitrary loading states and accounting for general local plastic behaviours. Accordingly, simply by setting bulk-material strength properties in agreement with experimental and/or numerical benchmarking evidence, proposed results open towards the consistent deduction of novel macroscopic strength criteria for porous and nanoporous materials, locally not obeying to classical strength criteria. 

3.A Support function for smooth yield surfaces

Reference is made to the theoretical framework established by Lemarchand et al. (2015). Accordingly, the yield function G s , defined via Eqs. (3.6) to (3.8) for 0 ≤ γ < 1, can be expressed as 

G s (σ) = J σ 2 -F(I σ 1 , θ σ ), with F(I σ 1 , θ σ ) = √ 3g h - p ξ (3.
d m = -λ s ∂F ∂I σ 1 , d d = λ s σ d 2 J σ 2 - ∂F ∂θ σ ∂θ σ ∂σ (3.92)
where

∂θ σ ∂σ = √ 3 2 J σ 2 sin(3θ σ ) 2 3 1 + 3 2 J σ 3 (J σ 2 ) 2 σ d - (σ d ) 2 J σ 2 .
(3.93)

Since the following equalities hold

1 : ∂θ σ ∂σ = 0, σ d : ∂θ σ ∂σ = 0, (σ d ) 2 : ∂θ σ ∂σ = - J σ 2 3 sin(3θ σ ) (3.94)
the first (I d 1 = tr d) and the second-order deviatoric (J d 2 = tr d 2 d /2) strain-rate invariants can be expressed as

I d 1 = -3λ s ∂F ∂I σ 1 (3.95a) J d 2 = (λ s ) 2 4 1 + F 2 , with F (θ σ ) = 1 F ∂F ∂θ σ = 1 g dg dθ σ (3.95b)
Accordingly, by using Eqs. (3.94), and by solving the plastic multiplier λ s from Eq. (3.95b), the local plastic dissipation results in

σ : d = I σ 1 d m + 2 √ 1 + F 2 J σ 2 J d 2 (3.96)
In agreement with Eq. (3.15), the supremum of Eq. (3.96) has to be computed over all the local stress states complying with the strength criterion G s (σ) ≤ 0. The latter, due to Eqs. (3.5) and (3.91), can be recast as

I σ 1 ≤ 3hξ - ξ g 3J σ 2 (3.97)
which, combined with Eq. (3.96), yields to

σ : d ≤ - √ 3 3 ξ g I d 1 + 2 √ 1 + F 2 J d 2 A J σ 2 + hξI d 1 (3.98) 110 
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Since there not exists a positive real number M such that J σ 2 ≤ M for every stress tensor σ, the supremum of the plastic dissipation (σ : d) is infinity if A > 0. Accordingly, the local support function π s results in

π s (d) =      hξI d 1 if I d 1 J d 2 ≥ 1 ξ Γ(θ σ ) (i.e., if A ≤ 0) +∞ otherwise (3.99)
where the admissibility condition on the strain-rate triaxiality ratio I d 1 / J d 2 is expressed in terms of the strictly-positive function (due to the strict positiveness of g(θ σ ))

Γ(θ σ ) = 2 √ 3 g(θ σ ) 1 + F 2 (θ σ ) (3.100)
depicted in Fig. 3.10 with respect to the stress Lode angle θ σ and for different values of model parameters. In detail, results in Fig. 3.10 show that for γ = 0 function Γ(θ σ ) is constant, whereas for 0 < γ < 1 the highest value of Γ(θ σ ) occurs for: triaxial compression (TXC) when 0 ≤ β < 1; both triaxial expansion (TXE) and compression (TXC) when β = 1; triaxial expansion (TXE) when 1 < β ≤ 2. It must be noticed that the requirement 0 ≤ γ < 1 allows to guarantee the continuity of Γ(θ σ ) for any values of θ σ and β. On the other hand, when γ = 1 the function Γ(θ σ ) is not defined at sharp vertices of deviatoric yield profiles (i.e., for θ σ = 0 and/or for θ σ = π/3).

The dependence of Γ on the stress Lode angle θ σ implicitly contains the dependence on the strain-rate Lode angle θ d defined by cos 3θ d = 3

√ 3J d 3 /(2J d 2 3/2
), where J d 3 = tr d 3 d /3 is the third deviatoric strain-rate invariant. In detail, the following relationship was provided by Lemarchand et al. (2015) cos

(3θ d ) = cos(3θ σ )(1 -3F 2 ) + sin(3θ σ )F (3 -F 2 ) (1 + F 2 ) 3/2 (3.101)
It is worth observing that Eq. (3.99) allows to recover also the case of pressureindependent yield response for ξ → +∞. In this case, the admissibility condition reduces to A = 0, since the case A < 0 leads the quantity hξI d 1 to be infinite. Accordingly, for ξ → +∞, the support function π s in Eq. (3.99) becomes

π s (d) =    h J d 2 Γ(θ σ (θ d )) if I d 1 = 0 + ∞ if I d 1 = 0 (3.102)
As shown in Table 3. 1, relationships (3.99) and (3.102) recover, by a suitable choice of model parameters, the corresponding available expressions for von Mises and Drucker-Prager strength criteria (Salençon, 1983).

Similarly, interface strength properties can be described by introducing the local support function π I (see Eq. (3.16)). The latter, and the corresponding admissibility conditions, formally read as in Eqs. (3.99) and (3.102), and they are expressed in terms of the Chapter 3. Exact limit state under isotropic loadings 111 local strain-rate tensor d I as:

π I (d I ) =          h I ξI d 1 r=ri if I d 1 J d 2 ≥ 1 ξ Γ(θ σ (θ d )) on ∂Ω i + ∞ if I d 1 J d 2 < 1 ξ Γ(θ σ (θ d )) on ∂Ω i (3.103)
Chapter 3. Exact limit state under isotropic loadings One of the current strategic goal in nanotechnology lies in the design and the manufacturing of nanoporous materials with sizeable interior surfaces and void space, in order to ensure specific mechanical features at the macroscale. In detail, the enhancement of strength properties of light-weight metallic foams for structural applications has been a core focus in the recent nanoscience, resulting in the synthesis of nanoporous specimens with an exceptionally-high yield stress. Thereby, a fundamental research aspect consists in establishing engineering-oriented theoretical models able to predict macroscopic strength properties of nanoporous materials, by properly accounting for dominant nanoscale mechanisms. These latter have been addressed in several recent research works, consisting in both empirical and numerical investigations.
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Specifically, experimental tests performed on nanoporous foams (Biener et al., 2005(Biener et al., , 2006;;Fan and Fang, 2009;Hakamada and Mabuchi, 2007;Hodge et al., 2007) revealed that, for a fixed porosity level, a reduction in the void size induces a significant increase in the yield strength, which results higher than characteristic values observed for conventional porous metals. Analogously, Molecular Dynamics computations carried out on in-silico nanoporous specimens (Brach et al., 2016a;Mi et al., 2011;Traiviratana et al., 2008;Zhao et al., 2009) showed a significant enhancement of the predicted strength measure as the void size reduces.

The physical origin of such a phenomenon may be attributed to the presence of selfequilibrated stresses at the cavity boundary (Fan and Fang, 2009;Needs et al., 1991;Povstenko and Yu, 1993;Weissmüller et al., 2009) caused by the excess of energy characterising surface atoms with respect to the neighbouring ones, usually negligible in conventional porous materials with smaller specific surface area. In this light, continuum theoretical descriptions of size-related effects have been proposed by Duan et al. (2005a), Duan et al. (2005b), Le Quang and He (2007), Le Quang and He (2008), Sharma and Ganti (2004) and Wang et al. (2011), by introducing coherent-imperfect interfaces across which the stress vector (resp., the velocity field) is discontinuous (resp., continuous).

Void-size effects are not accounted for in classical plasticity theories addressing porous materials, constitutive models being generally conceived to predict only the influence of the porosity level. This is the case of the yield criterion proposed by Gurson (1977), based on a kinematic limit-analysis approach. Generalizations of this model have been provided

by Tvergaard (1982) and Tvergaard and Needleman (1984), accounting for certain experimental and numerical evidence on porosity thresholds, and providing an enhanced description of material strength during void growth and coalescence. The identification of parameters of the resulting Gurson-Tvergaard constitutive model has been numerically

provided by Corigliano et al. (2000), via finite-element-based calculations. The influence of voids shape on strength properties of porous materials has been also investigated by Mariani and Corigliano (2001), highlighting anisotropy effects associated to aspect ratio and orientation of cavities.

A first attempt to describe strength properties as dependent on the void size has been provided by Dormieux and Kondo (2010), who extended the yield criterion proposed by Gurson (1977) to nanoporous materials. An analogous limit-analysis based strategy has been adopted by Monchiet and Kondo (2013), in order to investigate the combined effects of void size and void shape on macroscopic strength properties. Void-size dependent strength criteria have also been established in the framework of non-linear homogenization approaches (Dormieux and Kondo, 2013;Goudarzi et al., 2010;[START_REF] Moshtaghin | Effects of surface residual stress and surface elasticity on the overall yield surfaces of nanoporous materials with cylindrical nanovoids[END_REF]Zhang and Wang, 2007;Zhang et al., 2008Zhang et al., , 2010)), based on the so-called modified secant method (Suquet, 1995).

All the afore-mentioned strength models have been formulated by considering a von Mises local yield function, thereby not accounting either for hydrostatic-stress dependence nor for stress-Lode-angle effects. However, the solid matrix of many engineering-relevant nanoporous materials may exhibit a more complex local plastic behaviour. As a matter of fact, Molecular Dynamics evidence provided by Brach et al. (2016a) proved that the strength domain of a nanoscaled bulk material may be strongly affected by all the three isotropic stress invariants, and that such an influence can not be effectively described by simply calibrating classical yield criteria (e.g., Mohr-Coulomb), mainly due to the occurrence of significant stress-Lode-angle effects.

Motivated by the above observations, the present Chapter aims to establish a general macroscopic strength criterion for nanoporous materials accounting for void-size effects.

A simplified form of the general yield function proposed by Bigoni and Piccolroaz (2004) is considered, allowing for an extreme flexibility in describing the stress-Lode-angle influence on the local plastic behaviour. The parametric form of this criterion permits to properly recover a broad class of pressure-sensitive, frictional and ductile plastic responses, exhibiting a great flexibility to comply with evidence-based benchmarking indications.

For instance, a suitable calibration of model parameters allows to consistently describe available Molecular-Dynamics strength estimates for a nanoscaled aluminium bulk sample (Brach et al., 2016a,b). In order to perform a kinematic limit-analysis homogenization, closed-form relationships recently provided by Brach et al. (2016b) for the limit-state problem of a hollow sphere under isotropic loadings are herein considered to build up a suitable trial velocity field.

The Chapter is organized as follows. In Section 4.2, the problem under stake is formulated, and basic elements of the adopted theoretical background are presented. In Section Finally, some conclusions are traced in Section 4.8.

Problem statement and theoretical background

Let a nanoporous material be considered, containing randomly-distributed spherical nanovoids and whose representative cell consists in the hollow-sphere region depicted in Fig. 4.1.

This corresponds to a particular but realistic microstructure, namely the Hashin Composite-Sphere-Assemblage (Hashin, 1962), defined as a collection of graduated-in-size hollow spheres embedded into a homogeneous solid matrix (e.g., Leblond et al., 1994;Michel and Suquet, 1992).

Let R i and R e respectively be the internal and the external radius of the hollow sphere, and ∂Ω i and ∂Ω e be the corresponding internal and external surfaces, the total boundary of the region resulting in ∂Ω = ∂Ω i ∪ ∂Ω e . Moreover, let the porosity f be defined as (namely, Ω s ) and of the spherical void (Ω v ), respectively. The solid matrix is assumed to be homogeneous and comprised of a rigid-ideal-plastic isotropic material. Such a modelling assumption, strictly required in limit analysis approaches, allows to straight identify material strength properties by referring to the yield limit state.

f = |Ω v |/|Ω|, where |Ω| = |Ω s | + |Ω v |
In the framework of a plastic generalization (Monchiet and Bonnet, 2010) of the Gurtin-Murdoch stress-interface model (Gurtin and Murdoch, 1975), the influence of nonnegligible surface stresses at the void boundary is addressed by introducing a coherent and imperfect homogeneous interface I at ∂Ω i , through which the velocity field (resp., the stress vector) is prescribed to be continuous (resp., discontinuous). The material comprising the interface is itself assumed to be isotropic and rigid-ideal-plastic.

The following notation is adopted throughout the Chapter: boldface letters denote vectors and second-order tensors; blackboard letters indicate fourth-order tensors; symbols •, :, and ⊗ denote dot, double-dot, and tensor product operators, respectively; ∇ (resp., ∇ I ) is the nabla operator in Ω s (resp., along the interface), ∇ identifying the symmetric part of the corresponding gradient operator. Referring to the notation in Fig. 4.1, the Cartesian reference system (e x , e y , e z ) is introduced, with the origin O at the sphere center. Furthermore, for following analytical developments, let the cylindrical coordinate system (z, ϕ, ρ) be defined, as well as the corresponding local orthonormal basis (e z , e ϕ , e ρ ), ρ and z being the longitudinal and altitude coordinates such that ρ/z = tan θ, and ϕ ∈ [0, 2π] and θ ∈ [0, π] being the azimuth and zenith angles respectively. Therefore, the position of a point in Ω (resp., at the interface I) with respect to the sphere center Chapter 4. Limit analysis and homogenization under axisymmetric loadings
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O is identified by r = r(ρ, z) e r (ϕ) (resp., by

r i = R i e r ), where r = ρ 2 + z 2 ∈ [R i , R e ]
is the radial coordinate and e r (ϕ) = e ρ (ϕ) + e z is the radial direction. Symbols a and a I indicate Ω-and ∂Ω i -based averages of a certain space-dependent field a(r), that is a = (1/|Ω|) Ω a dΩ and a I = (1/4πR 2 i ) ∂Ωi a(r i ) dA, respectively. Moreover, let the projector tensor T be component-wise defined as T ijkl = (P ik P jl + P il P jk )/2, where P = (1e r ⊗ e r ) with 1 the second-order identity tensor, and such that A T = T : A is the projection on planes orthogonal to e r of a given second-order tensor A. Aiming to determine a closed-form expression of the macroscopic strength criterion via a kinematic limit-analysis approach, the hollow sphere is assumed to undergo axisymmetric strain-rate based boundary conditions at its exterior boundary ∂Ω e , expressed in terms of the homogeneous second-order strain-rate tensor D. The latter, in the cylindrical reference system, is chosen as

@⌦ i @⌦ e
D = D ρ (e ρ ⊗ e ρ + e ϕ ⊗ e ϕ ) + D z e z ⊗ e z (4.1)
where strain-rate parameters D ρ and D z are assumed to be such that D is non-deviatoric (i.e., tr D = 0).

The set of kinematically-admissible velocity fields is introduced as

BC v = {v(r) s.t. v = D • r on ∂Ω e } (4.2) 
Chapter 4. Limit analysis and homogenization under axisymmetric loadings allowing to define kinematically-admissible strain-rate fields as belonging to the set

K d =        (d, d I ) s.t. d = ∇v in Ω s , d I = d r=ri on ∂Ω i , with v ∈ BC v        (4.3)
v being the velocity field, and where d and d I denote the microscopic second-order strain-rate tensors in Ω s and on ∂Ω i , respectively. Moreover, by denoting with σ (resp., with τ ) the Cauchy second-order local stress tensor (resp., surface tensor) in Ω s (resp., at I), the set of statically-admissible stress fields is introduced as

S σ = (σ, τ ) s.t. ∇ • σ = 0 in Ω s , (σ + -σ -) • e r + (τ : K)e r = ∇ I • τ on ∂Ω i (4.4)
where the equilibrium at I is expressed by the generalized Young-Laplace equation (Gurtin and Murdoch, 1975;Duan et al., 2005b), with σ ± = lim r→R ± i σ(r) and K the interface curvature tensor.

When statically-admissible stress (i.e., (σ, τ ) ∈ S σ ) and kinematically-admissible strain-rate (i.e., (d, d I ) ∈ K d ) local fields are considered, the Hill's lemma holds

|Ω| Σ : D = Ωs σ : d dΩ + ∂Ωi τ : d I T dA (4.5) 
with d I T = T : d I , and where Σ = σ is the macroscopic second-order stress tensor. Since the exterior power has to be lower or at the most equal to the maximum plastic dissipation Π that can be overall afforded in Ω, Eq. ( 4.5) can be recast as (e.g., Salençon, 1983)

Σ : D ≤ Π(D) (4.6) with Π(D) = inf (d,d I )∈K d π s (d) + 1 |Ω| ∂Ωi π I (d I ) dA (4.7) 
where π s and π I are the maximum plastic dissipations that can be locally achieved in the solid matrix and on the interface, respectively

π s (d) = sup σ∈Y s (σ : d), with Y s = {σ s.t. G s (σ) ≤ 0} (4.8) π I (d I ) = sup τ ∈Y I (τ : d I T ), with Y I = τ s.t. G I (τ ) ≤ 0 (4.9)
G s (resp., G I ) indicating the yield function of the solid matrix (resp., of the interface).

Relationship in Eq. (4.8) (resp., in Eq. (4.9)) also identifies the support function for the solid matrix (resp., for the interface), that is the hyperplane tangent to the yield surface Instead of seeking the infimum in Eq. ( 4.7) over all the kinematically-admissible velocity fields v ∈ BC v that lead to strain-rate states (d, d I ) ∈ K d , an upper-bound Π of the macroscopic support function can be determined as

∂Y s = {σ s.t. G s (σ) = 0} (resp., ∂Y I = {τ s.t. G I (τ ) = 0})
Σ : D ≤ Π(D) ≤ Π(D) = π s ( d) + 1 |Ω| ∂Ωi π I ( d I ) dA (4.10)
where ( d, d I ) is a strain-rate state obtained from a particular trial velocity field v ∈ BC v .

Accordingly, owing to Eqs. (4.6) and ( 4.10), an estimate Σ c of the macroscopic strength Σ c can be computed as

Σ c = ∂ Π(D) ∂D (4.11)
thereby identifying, in the space of macroscopic stresses, the surface

∂ Y = { Σ c s.t. G( Σ c ) = 0}.
It is worth observing that Π(D) can be regarded as the hyperplane tangent to the surface ∂ Y, in the stress point Σ c where D is orthogonal to ∂ Y.

Finally, it is noted that trial velocity fields generally considered to compute the upper bound in Eq. ( 4.10) are uniquely determined by imposing the kinematic admissibility requirement v ∈ BC v (see for instance Gurson, 1977). On the contrary, an enhanced estimate of the macroscopic maximum plastic dissipation may be obtained by considering a class of kinematically-admissible trial velocity fields, that is by defining v as a function 

Local yield criterion

Since the material comprising the hollow sphere is assumed to be isotropic, a limit stress state belonging to the yield surface ∂Y s can be uniquely identified, within the space of principal stress components (σ 1 , σ 2 , σ 3 ), by referring to the cylindrical system of Lode coordinates (p, q, θ σ ) with

p = I σ 1 3 , q = 3J σ 2 , cos 3θ σ = 3 √ 3 2 J σ 3 J σ 2 3/2 (4.13) θ σ ∈ [0, π/3]
being the stress Lode angle, and where I σ 1 = tr σ, J σ 2 = tr σ 2 d /2 and J σ 3 = tr σ 3 d /3 are the hydrostatic, the second-order deviatoric and the third-order deviatoric stress invariants, respectively, with σ d = σ -p1 the deviatoric part of the stress tensor.

Therefore, the yield surface ∂Y s results completely defined in terms of its meridian profiles Chapter 4. Limit analysis and homogenization under axisymmetric loadings (i.e., the intersections between ∂Y s and the meridian planes, these latter being at θ σ = const and containing the hydrostatic axis σ 1 = σ 2 = σ 3 ) and of its deviatoric sections (i.e., the intersections between ∂Y s and the deviatoric planes, or π-planes, at p = const).

The yield function of the solid matrix G s is assumed equal to

G s (σ) = m(p) + q g(θ σ ) , (4.14) 
where, in agreement with the theoretical framework proposed by Brach et al. (2016b) and as a simplified form of the strength criterion proposed by Bigoni and Piccolroaz (2004); Bigoni (2012), functions m and g are defined as

m(p) = -3 h - p ξ (4.15) g(θ σ ) = 1 cos βπ 6 cos θ σ + sin βπ 6 sin θ σ (4.16)
ξ and β being dimensionless parameters which comply with the physical consistency conditions ξ > 0 (the case ξ → +∞ allowing to describe a pressure-independent yield function) and with the convexity requirement 0 ≤ β ≤ 2, whereas h ≥ 0 is a strength coefficient having the dimension of a stress.

Relationships (4.14) to (4.16) describe a polyhedral yield surface ∂Y s in the space of the Lode coordinates, with linear and multi-sided yield profiles in meridian and in deviatoric planes, respectively. In detail, as shown in Fig. 4.2, function g(θ) in Eq. ( 4.16) allows for an extreme shape distortion of deviatoric yield profiles when β is varied, resulting in the occurrence of sharp vertices in the π-plane at triaxial-compression (TXC σ , θ σ = π/3), at triaxial-expansion (TXE σ , θ σ = 0), and at both TXC σ and TXE σ stress states, for β = 0, β = 2, and 0 < β < 2, respectively.

Moreover, introducing the notation

ξ * = 2 c β + √ 3s β , ξ * * = 2 c β - √ 3s β (4.17)
with c β = cos(βπ/6) and s β = sin(βπ/6), and depending on the value assumed by model parameters β and ξ, the support function π s of a pressure-dependent solid matrix and the corresponding plastic admissibility condition result in (Brach et al., 2016b)

• case 0 ≤ β < 1 π s (d) =                        hξI d 1 if d m ≥                  |d 1 | + |d 2 | + |d 3 | 3 if ξ ≤ ξ * |d 1 | + |d 2 | + |d 3 | 1 + c β + √ 3 s β ξ if ξ * ≤ ξ ≤ ξ * * |d 1 | + |d 2 | + |d 3 | 2c β ξ -1 if ξ ≥ ξ * * + ∞ otherwise (4.18)
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• case 1 ≤ β ≤ 2 π s (d) =              hξI d 1 if d m ≥        |d 1 | + |d 2 | + |d 3 | 3 if ξ ≤ ξ * |d 1 | + |d 2 | + |d 3 | 1 + c β + √ 3 s β ξ if ξ ≥ ξ * + ∞ otherwise (4.19)
where d i (with i ∈ {1, 2, 3}) denotes a principal strain-rate component, I d 1 = tr d, and

d m = I d 1 /
3 is the hydrostatic strain rate. On the other hand, when the case of a pressureindependent local plastic behaviour is addressed (that is, for ξ → +∞), Eqs. (4.18) and (4.19) reduce to (see Brach et al., 2016b)

• case 0 ≤ β < 1 π s (d) =      3h 2c β (|d 1 | + |d 2 | + |d 3 |) if I d 1 = 0 + ∞ otherwise (4.20) • case 1 ≤ β ≤ 2 π s (d) =      3h c β + √ 3s β (|d 1 | + |d 2 | + |d 3 |) if I d 1 = 0 + ∞ otherwise (4.21)
It is worth observing that the general isotropic strength criterion defined by Eqs. Tr

G s (σ) = q sin θ σ + π 3 - σ 0 √ 3 2 = max i =j ( |σ i -σ j | ) -σ 0 = 0 π s (d) =    σ 0 2 (|d 1 | + |d 2 | + |d 3 |) if I d 1 = 0 + ∞ if I d 1 = 0 h = σ 0 √ 3 6 , ξ → +∞, γ = 1, β = 1 MC G s (σ) = p -c cot φ + q 1 √ 3 sin φ sin θ σ + π 3 + 1 3 cos θ σ + π 3 = = max i =j [ |σ i -σ j | + (σ i + σ j ) sin φ ] -2c cos φ = 0 π s (d) = c cot φ I d 1 if I d 1 ≥ (|d 1 | + |d 2 | + |d 3 |) sin φ + ∞ if I d 1 < (|d 1 | + |d 2 | + |d 3 |) sin φ h = c cos φ 3 + sin 2 φ , ξ = 3 + sin 2 φ sin φ γ = 1, β = 6 π arctan √ 3(1 -sin φ) 3 + sin φ

Local kinematics

In the framework of the kinematic limit-analysis approach introduced in Section 4.2, and with the aim to determine an effective estimate for the macroscopic support function as in Eq. ( 4.10), strain-rate states ( d, d I ) ∈ K v have to be introduced by considering suitable kinematically-admissible trial velocity fields v ∈ BC v . Furthermore, plastic admissibility conditions in Eqs. (4.18) to (4.21) have to be correspondingly formulated. Since the support function of a pressure-independent yield criterion can be straight obtained as a particular case of Eqs. (4.18) and (4.19), in the following reference is made to pressuredependent local plastic behaviours only.

Trial velocity field

Following the approach proposed by Gurson (1977) and recently adopted in several limitanalysis models (e.g., Anoukou et al., 2016;Dormieux and Kondo, 2010;Guo et al., 2008), the trial velocity field v is herein chosen of the form

v = v hom + v het , with v hom = C • r (4.22)
where C is a homogeneous second-order symmetric strain-rate tensor, and where v het = w(r)r a heterogeneous velocity term. This latter corresponds to the exact solution of the limit-state problem for the hollow sphere in Fig. 4.1, when isotropic strain-rate loading to (4.16), the heterogeneous part of the trial velocity field is defined, in agreement with results recently provided by Brach et al. (2016b), as

w(r) = C 0 R e r 3α , with α = ξ ξ -Ξ (4.23)
where C 0 is an arbitrary constant, and function Ξ is equal to

Ξ( ) = - 2 cos π 6 (2 -β) -1 3 arccos ( ) , with = sgn C 0 (4.24)
In the following, reference is made to local strength criteria complying with condition ξ > |Ξ| (also verified by classical yield functions in Table 4.1). As a consequence, the exponent α of the heterogeneous velocity field (4.23) is strictly positive. Specifically, 0 < α ≤ 1 (resp., α ≥ 1) when = 1 (resp., = -1), the case α = 1 being related to a pressure-independent local plastic behaviour (i.e., for ξ → +∞). In agreement with results proposed by Brach et al. (2016b), the condition ξ > |Ξ| yields to finite values of both tensile and compressive macroscopic hydrostatic strengths.

The homogeneous strain-rate tensor C in Eq. ( 4.22) is usually chosen for allowing to satisfy plastic admissibility condition on support function. In particular, in the case of pressure-independent local yield functions (as for the Tresca strength criterion), C is generally defined as a deviatoric strain-rate tensor (e.g., Gurson, 1977), thereby resulting in a trial strain-rate field d which automatically complies with the plastic admissibility condition I d 1 = 0 in Eqs. (4.20) and (4.21). On the other hand, when the case of a pressuredependent plastic behaviour is addressed, a different form for C has to be introduced, for allowing to verify the plastic dilatancy requirement expressed in Eqs. (4.18) and (4.19).

Due to the considered strain-rate boundary conditions (see Eqs. (4.1) and (4.2)), and in agreement with the modelling strategy adopted by Guo et al. (2008) 

v = v ρ e ρ + v z e z = C 0 R e r 3α (ρ e ρ + z e z ) + C 1 ρ e ρ + C 2 z e z (4.25) with r = ρ 2 + z 2 .

Local strain-rate field

Owing to kinematic admissibility conditions detailed in Eq. ( 4.3), the trial velocity field in Eq. ( 4.25) allows to compute the following expressions for non-null strain-rate components Chapter 4. Limit analysis and homogenization under axisymmetric loadings

129 of d d : (e ρ ⊗ e ρ ) = C 0 (1 -3α sin 2 θ) R e r 3α + C 1 (4.26a) d : (e ϕ ⊗ e ϕ ) = C 0 R e r 3α + C 1 (4.26b) d : (e z ⊗ e z ) = C 0 (1 -3α cos 2 θ) R e r 3α + C 2 (4.26c) d : (e ρ ⊗ e z ) = -3αC 0 R e r 3α sin θ cos θ (4.26d)
where, since v ∈ BC v , constants C 0 , C 1 and C 2 have to comply with (see Eq. ( 4.1)) (4.22). Furthermore, owing to Eq. (4.28c), δ = 1 and δ = -1 correspond to macroscopic triaxial-expansion (that is, TXE D with θ D = 0) and triaxial-compression (that is, TXC D with θ D = π/3) strain-rate states, respectively.

C 0 + C 1 = D ρ , C 0 + C 2 = D z (4.
In the following, with a little abuse of notation and unless otherwise specified, local strain-rate components and invariants will be denoted without the hat superscript, although they refers to the trial strain-rate field ( d, d I ).

Strain-rate components in Eqs. being introduced, where ω ≥ 0 is a measure of the macroscopic strain-rate triaxiality ratio, and x ≥ 0. Moreover, principal strain-rate components of tensor d are equal to and

d 1 = d m + D eq 2 ( x -δ) d 2 = d m - 1 2 d d1 + √ ∆ d 3 = d m - 1 2 d d1 - √ ∆ (4.
η 1 (ξ, β) =        1 (c β + √ 3s β )ξ if (ξ, β) ∈ (M ⊕ O) 1 2(c β ξ -1) if (ξ, β) ∈ N (4.38)
sets M, N and O being introduced as

M = {(ξ, β) s.t. (ξ * ≤ ξ ≤ ξ * * , 0 ≤ β < 1)} (4.39a) N = {(ξ, β) s.t. (ξ ≥ ξ * * , 0 ≤ β < 1)} (4.39b) O = {(ξ, β) s.t. (ξ ≥ ξ * , 1 ≤ β ≤ 2)} (4.39c)
Case B TXE D with C 0 > 0 (that is, = +1 and δ = +1).

The principal deviatoric strain-rate component d d1 is equal to

d d1 = D eq 2 (x -1) (4.40)
and quantity (d m + d d1 ) in Eq. ( 4.34) may assume positive or negative values:

d m + d d1 > 0 if α(1 -ω) < x < 1 or x > 1 d m + d d1 < 0 if 0 < x < α(1 -ω) (4.41)
It is worth observing that it is difficult to provide a precise delimitation on the variable x satisfying relationships (4.41), since quantity ω depends on strain-rate boundary conditions as well as on local-strength-criterion parameters. Nevertheless, due to the positiveness of x, quantity ω has to be lower than 1, resulting in α(1ω) < α. By adopting the same approximation introduced by Anoukou et al. (2016), proven to be effective in the case of porous materials with a Mohr-Coulomb local plastic behaviour, inequalities α(1ω) < x < 1 and x < α(1ω) are respectively replaced by α < x < 1 and x < α.

Accordingly, plastic admissibility conditions in Eqs. (4.18) and ( 4.19) reduce to 

d m ≥        η 2 (-d d1 + √ ∆) if 0 < x < α η 1 (d d1 + √ ∆) if α < x < 1 η 1 (d d1 + √ ∆) if x > 1 (4.
η 2 =        1 2 + (c β + √ 3s β )ξ if (ξ, β) ∈ (M ⊕ O) 1 2c β ξ if (ξ, β) ∈ N (4.44)
Case C TXE D with C 0 < 0 (that is, = -1 and δ = +1).

The principal deviatoric strain-rate component d d1 is strictly negative and it is equal to

d d1 = - D eq 2 (1 + x) (4.45)
Accordingly, using the same approximation strategy involving parameter ω and enforced in Case B, quantity (d m + d d1 ) assumes negative values everywhere in the hollow sphere, thereby resulting in the following plastic admissibility condition

d m ≥ η 2 (-d d1 + √ ∆) (4.46) with ∆ = 9 4 D 2 eq 1 + x 2 + 2x cos 2θ (4.47)
and where η 2 reads as in Eq. ( 4.44).

Case D TXC D with C 0 < 0 (that is, = -1 and δ = -1).

The principal deviatoric strain-rate component d d1 is equal to 

d d1 = D eq 2 (1 -x) (4.
d m ≥        η 1 (d d1 + √ ∆) if 0 < x < 1 η 1 (d d1 + √ ∆) if 1 < x < α η 2 (-d d1 + √ ∆) if x > α

Macroscopic yield criterion

The trial velocity field in Eq. ( 4.25) and the corresponding strain-rate state ( d, d 

C 1 = D m -C 0 - D eq 2δ , C 2 = D m -C 0 + D eq δ (4.51)
Consequently, the estimate Π in Eq. ( 4 

V = span { v 0 } + { v 1 } (4.52)
where

v 0 = R e r 3α -1 (ρe ρ + ze z ) v 1 = D m - D eq 2δ ρe ρ + D m + D eq δ ze z (4.53)
Accordingly and since Remark 6, denoting as Σ c the sought macroscopic strength estimate related to the estimate Π in Eq. ( 4.12), the following inequality-constrained minimization problem P is introduced

P :      min v∈V Π -(3 Σ c m D m + Σ c eq D eq ) in Ω s ∪ ∂Ω i d m ≥ η ± ± d d1 + √ ∆ in Ω s ∪ ∂Ω i (4.54)
with Σ c m = tr Σ c /3 and Σ eq = 3 J Σ 2 ( J Σ 2 = tr Σ 2 d /2 being the macroscopic second-order deviatoric stress invariant, with Σ d = Σ-Σ c m 1) and where the sign plus (with η + = η 1 ) or minus (with η -= η 2 ) applies depending on the value assumed by strain-rate parameters δ and , that is depending on cases A, B, C and D introduced in Section 4.4.2.

Rigorously, the plastic admissibility condition in Eq. ( 4.54) should be point-wise verified by strain-rate states ( d, d I ) ∈ K d computed via v ∈ V, in order to ensure the boundedness of local maximum plastic dissipations at each material point. However, the spatial dependence of plastic requirements in Eqs. (4.36), (4.42), (4.46) and (4.49) introduces a major difficulty in the resolution of problem P, preventing the explicit determination of closed-form relationships for strength estimates Σ c m and Σ c eq . Therefore, in agreement with modelling approaches proposed by Guo et al. (2008) and Anoukou et al. (2016) for porous materials with Drucker-Prager and Mohr-Coulomb plastic matrices, local plastic admissibility conditions are herein reformulated in an average sense, resulting Chapter 4. Limit analysis and homogenization under axisymmetric loadings in the following auxiliary problem

P * :    min v∈V Π -(3 Σ c m D m + Σ c eq D eq ) in Ω s ∪ ∂Ω i d m ≥ H in Ω s ∪ ∂Ω i (4.55) with H = η ± ± d d1 + √ ∆ (4.56)
The latter can be solved via the Lagrangian method for inequality-constrained optimizations, that is via Karush-Kuhn-Tucker (KKT) conditions. Since Eq. ( 4.28a), the Lagrangian function L associated to problem P * can be introduced as the dimensionless parameter κ being defined as

L = -Π + 3 Σ c m (C 0 + D hom m ) + Σ c eq D eq + λ ( d m -H) (4.
κ = h I R i h (4.59)
accounting for the influence of void-size effects (Dormieux and Kondo, 2010;Brach et al., 2016b). As a matter of fact, an increase in κ corresponds, for a fixed value of the matrix strength parameter h, to an increase in the ratio h I /R i , that is to a reduction in the void size R i . Moreover, the case of negligible interface effects (namely, for porous materials characterized by large values of R i ) can be addressed by considering κ → 0 + .

The following problem is thereby introduced.

Problem 6 Find {C 0 , D hom m , D eq , λ} such that In detail, owing to dual feasibility, two study cases have to be addressed: 

• Stationarity conditions: ∂L ∂C 0 = 0 , ∂L ∂D hom m = 0 , ∂L ∂D eq = 0 (4.60a) • Primal feasibility: ∂L ∂λ ≥ 0 ⇔ d m ≥ H (4.
d m = (1 -f ) D hom m + C 0 1 -f 1-α 1 -f (4.62) d I m I = D hom m + C 0 1 -α f α (4.63)
By computing derivatives of the Lagrangian function (4.61) with respect to macroscopic strain-rate parameters, stationarity conditions (4.60a) lead to Σ c eq = 0 and to two different values for Σ c m for any strain-rate boundary condition D, thereby identifying a physicallyinconsistent macroscopic stress state.

Accordingly, the case λ = 0 not allowing for any acceptable solution, the Lagrange- 

d m = H (4.64c)
where the Lagrangian function is equal to

L = -3hξ d m + 3f κH I + 3 Σ c m (C 0 + D hom m ) + Σ c eq D eq + λ ( d m -H) (4.65)
and where 

H I = η ± ± d I d1 + ∆|
∂L ∂C 0 = 3 Σ c m + (λ -3hξ) 1 -f 1-α -9hξf κ Ψ I m -λ Ψ m = 0 (4.67) ∂L ∂D hom m = 3 Σ c m + (λ -3hξ) (1 -f ) = 0 (4.68)
∂L ∂D eq = Σ c eq -9hξf κ Ψ I eqλ Ψ eq = 0 (4.69) where solid matrix (Ψ m and Ψ eq ), and interface (Ψ I m and Ψ I eq ) model functions are defined as 

Ψ m = ∂H ∂C 0 , Ψ I m = ∂H I ∂C 0 (4.
λ = 3hξ f 1-α -f -3f κ Ψ I m f 1-α -f + Ψ m (4.72)
Moreover, by replacing Eq. ( 4.72) into stationarity conditions (4.68) and ( 4.69), the estimate for the macroscopic yield function is obtained as 

G ( Σ c ) :          Σ c m h = ξ (1 -f ) Ψ m + 3f κΨ I m f 1-α -f + Ψ m Σ c eq h = ξ 3f κΨ I eq + f 1-α -f -3f κ Ψ I m f 1-α -f + Ψ m Ψ eq
D = λ ∂ G ( Σ c ) ∂ Σ c (4.74)
In agreement with results provided by Rice (1971), the normality law governing the local plastic behaviour is proven to upscale at the macroscopic level.

It is worth noticing that, owing to Eqs. (4.32), solid matrix (Ψ m and Ψ eq ) and interface

(Ψ I m and Ψ I eq ) model functions introduced in Eqs. (4.70) and ( 4.71) depend on macroscopic strain-rate parameters , ω, and δ. The macroscopic yield function in Eq. ( 4.73) thereby results in parametric expressions for Σ c m and Σ c eq , which implicitly account for the dependency on the macroscopic stress Lode angle θ Σ (see Benallal et al., 2014), the latter defined as cos 3

θ Σ = 3 √ 3 J Σ 2 /[2( J Σ 2 ) 3/2
] with J Σ 3 = tr Σ 3 d /3 the third-order deviatoric stress invariant.

Solid matrix and interface model functions

In order to compute the plastic multiplier and the macroscopic yield criterion in Eqs. (4.72) and (4.73), solid matrix (Ψ m and Ψ eq ) and interface (Ψ I m and Ψ I eq ) model functions have to be explicitly determined. Owing to Eqs. 

∂H ∂C 0 = ω 1/α-1 2 1 α (J + m ) + ωJ (4.78a) ∂H ∂D eq = ω 1/α 4α α -1 α (J + eq ) -ωJ (4.78b) ∂H I ∂C 0 = α 2 J I + I m (4.78c) ∂H I ∂D eq = 1 4 J I -ωJ I + I eq (4.78d)
where constant parameters m , eq , I m and I eq have been introduced (as detailed in Chapter 4. Limit analysis and homogenization under axisymmetric loadings 4.A) in order to ensure the continuity of the macroscopic yield function in Eq. ( 4.73) for any value of the strain-rate triaxiality measure ω. It is worth pointing out that, since admissibility conditions are piece-wise defined with respect to x (namely, with respect to ω), the continuity of the macroscopic yield function G could be not straight satisfied.

With the aim to furnish explicit relationships for functions J and J I in derivatives (4.78), study cases introduced in Section 4.4.2 have to be separately addressed, depending on the sign of the principal deviatoric strain-rate component d d1 (that is, on the value assumed for strain-rate parameters and δ). For the sake of compactness, corresponding analytical details and resulting expressions for J and J I are reported in 4.A.

Relationships among macroscopic strain-rate and stress invariants

Closed-form relationships provided for J (ω) and J I (ω) allow to compute in a piecewise fashion derivatives of functions H and H I in Eqs. (4.78), by separately addressing strain-rate loading conditions described via parameters = sgn C 0 and δ = sgn J D 3 . Therefore, owing to Eqs. (4.70) and ( 4.71), piece-wise defined model functions Ψ m (ω), Ψ eq (ω), Ψ I m (ω) and Ψ I eq (ω) straight deliver parametric expressions for Σ c m and Σ c eq in Eq. ( 4.73), formulated in terms of the macroscopic strain-rate triaxiality measure ω only. Such an occurrence is due to the introduction of Cases A, B, C and D in Section 4.4.2, allowing to explicitly address the parametric dependence of the predicted strength state ( Σ c m , Σ c eq ) on both the macroscopic strain-rate Lode angle (i.e., θ D = 0 or θ D = π/3) and the sign of the heterogeneous mean deformation rate C 0 . Accordingly, in order to clearly formulate relationships between the strain-rate loading condition ( , δ, ω) and the resulting macroscopic strength state ( Σ c m , Σ c eq ), the parametric form of the proposed macroscopic yield function has to be carefully analysed.

Since the local plastic behaviour is isotropic and due to the spherical symmetry of the reference cell in Fig. 4.1, the estimate Π of the macroscopic support function depends only on isotropic strain-rate invariants D m , D eq and θ D introduced in Eqs. (4.28). Thereby, the estimate Σ c of the limit stress Σ c reads as

Σ c = ∂ Π ∂D = 1 3 ∂ Π ∂D m 1 + 2 3D eq ∂ Π ∂D eq D d + ∂ Π ∂θ D ∂θ D ∂D d (4.79)
where, for symmetry reasons (e.g., Lemarchand et al., 2015), function Π has to comply with ∂ Π/∂θ D = 0 at θ D = 0 (i.e., for δ = 1) and at θ D = π/3 (i.e., for δ = -1).

Moreover, since the strain-rate boundary conditions expressed in Eq. ( 4.1), the isotropy of the macroscopic constitutive law in Eq. ( 4.79) yields

Σ c = Σ ρ (e ρ ⊗ e ρ + e ϕ ⊗ e ϕ ) + Σ z e z ⊗ e z (4.80) resulting in Σ c eq = δ Σ Σ z -Σ ρ , θ Σ = 1 3 arccos δ Σ (4.81)
with δ Σ = sgn( Σ z -Σ ρ ). Therefore, by introducing the macroscopic generalised plain strain-rate D gps = -D eq /δ and plane stress Σ c gps = -Σ c eq /δ Σ invariants (e.g., [START_REF] Pastor | Ductile failure of cylindrically porous materials. Part II: other cases of symmetry[END_REF]Thoré et al., 2011), Eq. ( 4.79) provides the following constitutive relationship

Σ c gps = ∂ Π ∂D eq
∂D eq ∂D gps = -δ Σ c eq (4.82) which straight results in δ Σ = δ, that is (see also Benallal et al., 2014)

θ Σ = θ D (4.83)
Consequently, macroscopic triaxial-expansion TXE D and compression TXC D strain-rate loading conditions respectively correspond to macroscopic triaxial-expansion TXE Σ (i.e., θ Σ = 0) and compression TXC Σ (i.e., θ Σ = π/3) yield stress states.

Furthermore, by computing derivatives in Eqs. 

(1 -f )D m + C 0 f -f 1-α = D eq 4α ω 1/α J (ω) (4.85)
that is, owing to Eqs. (4.28) and (4.31),

(1 -f )D m + D eq ω 4α 2 f -f 1-α -ω 1/α-1 J (ω) = 0 (4.86)
which is continuous in ω for any choice of strain-rate parameters and δ, since function J (ω) is continuous. Equation ( 4.86) proves that the strain-rate triaxiality measure ω allows to range from pure deviatoric (i.e., D s.t. D m = 0) to pure hydrostatic (i.e., D s.t. D eq = 0) macroscopic strain-rate boundary conditions, when ω is varied from zero to infinity.

Accordingly, owing to Eqs. Since solid matrix and interface model functions Ψ m and Ψ I m are continuous and positive-defined for any value of ω ∈ (0, +∞), following study cases have to be addressed depending on the strain-rate parameter .

Cases A-B TXC D and TXE D with C 0 > 0 (that is, = +1 and δ = ∓1).

By computing Eq. ( 4.72) for = +1, the macroscopic plastic multiplier reads as

λ| =+1 = 3hξ f 1-α -f -3f κΨ I m | =+1 f 1-α -f + Ψ m | =+1 (4.87)
where the exponent α of the heterogeneous velocity field is such that 0 < α < 1, and where f 1-αf > 0 for any value of α.

When interface effects are considered as negligible (that is, for κ → 0 + ), the plastic multiplier in Eq. ( 4.87) results to be strictly positive-defined on the interval ω ∈ (0, +∞), without any further consistency condition being required. This is the case of the Mohr-Coulomb hollow-sphere model proposed by Anoukou et al. (2016) for classical porous materials.

On the other hand, when interface effects are taken into account (that is, for κ > 0), since the interface model function Ψ I m assumes its maximum value for ω → +∞ (see 4.A), the consistency requirement λ > 0 for any value of ω leads to

κ < f 1-α -f 3f Ψ I m ≤ f 1-α -f 3f lim ω→+∞ =1 δ=±1 Ψ I m = f 1-α -f 12α η 1 f 1-α = κ (4.88)
thereby straight resulting in an upper limit for the void-size parameter κ, that is κ ∈ [0, κ). By computing Eq. ( 4.72) for = -1, the macroscopic plastic multiplier reads as

λ| =-1 = 3hξ f 1-α -f + 3f κΨ I m | =-1 f 1-α -f -Ψ m | =-1 (4.89)
where α > 1 and f 1-αf > 0.

Since the solid matrix model function Ψ m assumes its maximum value for ω → +∞, the consistency requirement on the strictly positiveness of the macroscopic plastic multiplier in Eq. ( 4.89) results in

f 1-α -f -lim ω→+∞ =-1 δ=±1 Ψ m > 0 , with lim ω→+∞ =-1 δ=±1 Ψ m = 4α η 2 1 -α 1 -f 1-α (4.90)
Therefore, by replacing η 2 in Eq. ( 4.44) into Eq. ( 4.90), the plastic multiplier in Eq. (4.89) results to be strictly positive

• for any local plastic behaviour such that (ξ, β) ∈ M (see Eq. (4.39a)), provided that • for any local plastic behaviour such that (ξ, β) ∈ N (see Eq. ( 4.39b)). This is the case of the Mohr-Coulomb hollow-sphere model proposed by Anoukou et al. (2016) for porous materials, which is recovered as a special case of the general yield function in Eqs. (4.14) to (4.16) by setting parameters ξ and β as in Table 4.1;

following relationship is verified 2 Ξ -- f ξ * - f Ξ - Ξ --ξ ξ * * + f Ξ - Ξ --ξ -f ξ > 0 (4.91) with Ξ -= Ξ| =-1 and f Ξ - Ξ --ξ -f > 0,
• for any local plastic behaviour such that (ξ, β) ∈ O (see Eq. 

f ξ * + f Ξ - Ξ --ξ |ξ * * | + f Ξ - Ξ --ξ -f ξ > 0 (4.
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Macroscopic hydrostatic and deviatoric strength stresses

As a particular case of strength estimates provided by the parametric yield function in Eq. ( 4.73), macroscopic deviatoric (that is, Σ c s.t. Σ c m = 0) and hydrostatic (that is, Σ c s.t. Σ c eq = 0) stress states are explicitly determined in the following by computing model functions in Eqs. (4.70) and (4.71) in the limits ω → 0 + and ω → +∞, respectively.

Deviatoric triaxial-espansion or compression strength stress states

The hollow-sphere reference domain is assumed to undergo pure deviatoric TXE D (that is, δ = +1, in Cases B and C) or TXC D (that is, δ = -1, in Cases A and D) strain-rate boundary conditions. Owing to relationships provided for J (ω) and J I (ω) in 4.A, model functions result (

at ω → 0 + in lim ω→0 + =±1 δ=1 Ψ m = lim ω→0 + =±1 δ=1 Ψ I m = 0 , lim ω→0 + =±1 δ=-1 Ψ m = lim ω→0 + =±1 δ=-1 Ψ I m = 0 (4.93) lim ω→0 + =±1 δ=1 Ψ eq = 2(1 -f )η 2 , lim ω→0 + =±1 δ=-1 Ψ eq = 2(1 -f )η 1 (4.94) lim ω→0 + =±1 δ=1 Ψ I eq = 2η 2 , lim ω→0 + =±1 δ=-1 Ψ I eq = 2η 1 ( 4 
ξ, β) ∈ (M ⊕ O) (ξ, β) ∈ N δ = 1 TXE D lim ω→0 + =±1 Ψ eq = 1 -f 1 + ξ sin βπ 6 + π 6 , lim ω→0 + =±1 Ψ I eq = 1 1 + ξ sin βπ 6 + π 6 , lim ω→0 + =±1 Σ c eq h = 3ξ(1 -f + 3f κ) 1 + ξ sin βπ 6 + π 6 , lim ω→0 + =±1 Ψ eq = 1 -f ξ cos βπ 6 lim ω→0 + =±1 Ψ I eq = 1 ξ cos βπ 6 lim ω→0 + =±1 Σ c eq h = 3 (1 -f + 3f κ) cos βπ 6 δ = -1 TXC D lim ω→0 + =±1 Ψ eq = 1 -f ξ sin βπ 6 + π 6 , lim ω→0 + =±1 Ψ I eq = 1 ξ sin βπ 6 + π 6 , lim ω→0 + =±1 Σ c eq h = 3(1 -f + 3f κ) sin βπ 6 + π 6 , lim ω→0 + =±1 Ψ eq = 1 -f ξ cos βπ 6 -1 lim ω→0 + =±1 Ψ I eq = 1 ξ cos βπ 6 -1 lim ω→0 + =±1 Σ c eq h = 3ξ (1 -f + 3f κ) ξ cos βπ 6 -1
macroscopic deviatoric strength Σ c eq . In detail, it is observed that, for pressure-independent local yield functions (that is, for ξ → +∞, as in the case of a Tresca criterion), the deviatoric strength Σ c eq does not depend on the stress Lode angle θ Σ = θ D , resulting in the same value for TXE Σ and TXC Σ stress states. On the contrary, when pressure-sensitive yield criteria are considered (that is, for ξ < +∞, as in Mohr-Coulomb), different macroscopic strength estimates are obtained for TXE Σ and TXC Σ stress states, as a result of the combined influence of the first I σ 1 and of the third-order deviatoric J σ 3 stress invariants on the local plastic behaviour. 

Ψ m = 4α η 1 1 -α 1 -f 1-α , lim ω→+∞ =-1 δ=±1 = 4α η 2 1 -α 1 -f 1-α (4.96) lim ω→+∞ =1 δ=±1 Ψ I m = 4α η 1 f α , lim ω→+∞ =-1 δ=±1 Ψ I m = 4α η 2 f α (4.97) lim ω→+∞ =1 δ=±1 Ψ eq = lim ω→+∞ =1 δ=±1 Ψ I eq = 0 , lim ω→+∞ =-1 δ=±1 Ψ eq = lim ω→+∞ =-1 δ=±1 Ψ I eq = 0 (4.98)
where, since 0 < α < 1 (resp., α > 1) for = +1 (resp., = -1), both Ψ m and Ψ I m assume positive values. Relationships in Eq. ( 4.98) straight provide Σ c eq = 0. Moreover, by replacing η 1 in Eq. ( 4.38) and η 2 in Eq. ( 4.44) into Eqs. (4.96) and (4.97), expressions summarised in Tables 4.3 and4 On the other hand, in the case of a general local plastic behaviour (that is, for any choice of ξ and β complying with consistency conditions in Sections 4.3 and 4.5.3), results in Tables 4.3 and 4.4 do not retrieve, for both = -1 and = +1, the exact macroscopic hydrostatic yield stress provided by Brach et al. (2016b), that is

Σ c m h = ξ 1 -f Ξ Ξ-ξ 1 - 3Ξκ Ξ -ξ (4.101)
where function Ξ is defined as in Eq. (4.24). In detail, depending on local-yield-function parameters ξ and β, the proposed strength estimate Σ c m coincides with the exact value Σ c m in Eq. ( 4.101) only when

• = +1 and (ξ, β) ∈ (M ⊕ O) (see Table 4.3); • = -1 and (ξ, β) ∈ N (see Table 4.4).
Therefore, although the heterogeneous trial velocity in Eq. ( 4.23) is the exact velocity field at the limit state for the hollow-sphere model under isotropic loadings (see Brach et al., 2016b), the proposed approach allows to recover only one between tensile and compressive hydrostatic stresses in Eq. (4.101), thereby leading only to an estimate for the corresponding exact value of the other one. Such an occurrence has to be related to the adopted macroscopic plastic admissibility condition d m = H, resulting from KKT primal feasibility in the inequality-constrained minimization problem P * (see Eq. ( 4.55)).

As a matter of fact, with respect to standard kinematic limit analyses for porous materials with pressure-independent plastic matrices (e.g., Cazacu et al., 2014;Gurson, Accordingly, in order to elucidate the importance of plastic admissibility in the present approach, as well as its influence on proposed results, local plastic requirements in Eqs. (4.18) to (4.21) are carefully addressed in the following, by highlighting whether they are verified in their equality or inequality form.

Ψ m = 2α 1 -f 1-α (1 -α) ξ sin π 6 + βπ 6 , lim ω→+∞ δ=±1 Ψ I m = 2αf -α ξ sin π 6 + βπ 6 lim ω→+∞ δ=±1 Σ c m h = ξ   1 -f 2 2+ξ sin( π 6 + βπ 6 )   1 - 6κ 2 + ξ sin π 6 + βπ 6     = Σ c m h lim ω→+∞ δ=±1 Ψ eq = lim ω→+∞ δ=±1 Ψ I eq = lim ω→+∞ δ=±1 Σ c eq h = 0 = -1 lim ω→+∞ δ=±1 Ψ m = 2α 1 -f 1-α (1 -α) 1 + ξ sin π 6 + βπ 6 , lim ω→+∞ δ=±1 Ψ I m = 2αf -α 1 + ξ sin π 6 + βπ 6 lim ω→+∞ δ=±1 Σ c m h = (f - 
Ψ m = 2α 1 -f 1-α (1 -α) ξ cos βπ 6 -1 , lim ω→+∞ δ=±1 Ψ I m = 2αf -α ξ cos βπ 6 -1 lim ω→+∞ δ=±1 Σ c m h = (f -1)ξ sin π 6 + βπ 6 f ξ cos βπ 6 -1 -ξ sin π 6 + βπ 6 + f 2 2+ξ sin( π 6 + βπ 6 ) 1 -ξ sin π 6 -βπ 6 Σ c m h lim ω→+∞ δ=±1 Ψ eq = lim ω→+∞ δ=±1 Ψ I eq = lim ω→+∞ δ=±1 Σ c eq h = 0 = -1 lim ω→+∞ δ=±1 Ψ m = 2α 1 -f 1-α (1 -α) ξ cos βπ 6 , lim ω→+∞ δ=±1 Ψ I m = 2αf -α ξ cos βπ 6 lim ω→+∞ δ=±1 Σ c m h = ξ 1 -f 2 
To this end, and with reference to the case of isotropic strain-rate boundary loadings, let the strain-rate field d = d r e r ⊗ e r + d θ (e θ ⊗ e θ + e ϕ ⊗ e ϕ ), solution of the limit-state problem for a Bigoni-like hollow sphere, be introduced as 

d r (r) = 2 1 + 2ξ Ξ C 0 r 3ξ Ξ-ξ (4.102) d θ (r) = 2 1 - ξ Ξ C 0 r 3ξ Ξ-ξ ( 

19).

Cases A-B TXC D and TXE D with C 0 > 0 (that is, = +1 and δ = ∓1)

Owing to the definition of function Ξ( ) in Eq. ( 4.24), strain-rate components in Eqs. (4.102) and ( 4.103) can be expressed as 4.105) resulting in the mean deformation rate The sum of moduli of principal strain-rate components is thereby equal to

d r (r) = 2 -c β + √ 3s β ξ C 0 r - 3(c β + √ 3s β )ξ 4+(c β + √ 3s β )ξ (4.104) d θ (r) = 1 2 4 + c β + √ 3s β ξ C 0 r - 3(c β + √ 3s β )ξ 4+(c β + √ 3s β )ξ ( 
d m (r) = 2 C 0 r - 3(c β + √ 3s β )ξ 4+(c β + √ 3s β )ξ
|d 1 | + |d 2 | + |d 3 | = 2 1 + c β + √ 3s β ξ C 0 r - 3(c β + √ 3s β )ξ 4+(c β + √ 3s β )ξ (4.107)
Accordingly, depending on the value assumed by local-yield-function parameters ξ and β, different expressions for plastic admissibility conditions have to be considered:

• 0 ≤ β < 1 -if ξ * < ξ < ξ * *
, plastic admissibility condition in Eq. ( 4.18) reads as

d m ≥ |d 1 | + |d 2 | + |d 3 | 1 + (c β + √ 3s β )ξ (4.108)
which, by combining Eqs. (4.106) and ( 4.107), results to be verified in its equality form.

-if ξ ≥ ξ * * , plastic admissibility condition in Eq. ( 4.18) reads as Cases C-D TXE D and TXC D with C 0 < 0 (that is, = -1 and δ = ±1).

d m ≥ |d 1 | + |d 2 | + |d 3 | 2c β ξ -1 ( 4 
Owing to the definition of function Ξ( ) in Eq. ( 4.24), strain-rate components (4.102) and (4.103) read as The sum of moduli of principal strain-rate components is thereby equal to 4.114) and the following cases have to addressed: In detail, with reference to the case (ξ, β) ∈ N and for = +1, by assuming ξ as a multiple of ξ * * = ξ * * (β), Fig. 4.5a (resp.,Fig. 4.5b) shows that the ratio between the predicted Σ c m and the exact Σ respect to the case of classical porous materials (i.e., in the limit κ → 0 + ) is observed when κ increases (namely, when void size R i reduces), for both TXE Σ and TXC Σ strength profiles. Such a strengthening effect does not influence the previously-described asymmetries in the macroscopic plastic response. In particular, triaxial-compression and hydrostaticcompressive strength states assume higher values than triaxial-expansion and hydrostatictensile ones, irrespective of the void-size parameter κ (see also Fig. 4.10). Nevertheless, void-size effects are proven to affect mainly macroscopic strength states characterized by a negative hydrostatic component, thereby resulting in a significant expansion of TXE Σ and TXC Σ strength profiles along the negative hydrostatic axis when κ increases. As shown in Fig. 4.8, this occurrence is clearly evident in the case of a local plastic behaviour with (ξ, β) ∈ N . In this case, the macroscopic hydrostatic tensile strength is affected by the void size less than the compressive one. On the contrary, Fig. 4.9 shows that, when a local yield function with (ξ, β) ∈ O is considered, a variation in κ induces significant variations of both the predicted hydrostatic tensile and compressive strengths. Furthermore, by comparing strength profiles in Figs. 4.8a and 4.8b (resp.,in Figs. 4.9a and 4.9b), voidsize effects on macroscopic strength features are proven to be not significantly affected by values assumed for the yield function parameter β.

d r (r) = 2 (1 + c β ξ) C 0 r 3c β ξ 2-c β ξ (4.111) d θ (r) = (2 -c β ξ) C 0 r 3c β ξ 2-c β ξ (4.112) resulting in d m (r) = 2 C 0 r 3c β ξ 2-c β ξ ( 
|d 1 | + |d 2 | + |d 3 | = (4 c β ξ -2) C 0 r 3c β ξ 2-c β ξ ( 
• 0 ≤ β < 1 -if ξ * < ξ < ξ
e ⌃ c m /⌃ c m CASO N ⇠ = ⇠ ⇤⇤ ⇠ = 2 ⇠ ⇤⇤ ⇠ = 4 ⇠ ⇤⇤ ⇠ = 6 ⇠ ⇤⇤ ⇠ = 8 ⇠ ⇤⇤ ⇠ = 10 ⇠ ⇤⇤ 1 1
A B xi_star2 xi_2star2 xi_4star2 xi_6star2 xi_8star2 xi_10star2 ⇠ = ⇠ ⇤⇤ ⇠ = 2 ⇠ ⇤⇤ ⇠ = 4 ⇠ ⇤⇤ ⇠ = 6 ⇠ ⇤⇤ ⇠ = 8 ⇠ ⇤⇤ ⇠ = 10 ⇠ ⇤⇤ ↵ CASO N (b)
⇠ = 2 ⌅ ⇠ = 4 ⌅ ⇠ = 6 ⌅ ⇠ = 8 ⌅ ⇠ = 10 ⌅ ⇠ = 12 ⌅ ⇠ / ⌅
Finally, the influence of parameter ξ on the macroscopic plastic behaviour under axisymmetric loadings is depicted in Fig. 4.11a (resp.,in Fig. 4.11b) for a local yield function with (ξ, β) ∈ N (resp., (ξ, β) ∈ O) and such that β = 0.5 (resp., β = 1.5). Proposed re-Chapter 4. Limit analysis and homogenization under axisymmetric loadings sults highlight that, irrespective of the considered local plastic response, the macroscopic strength domain enclosed by TXE Σ and TXC Σ yield profiles tend to overall reduce when ξ increases. Moreover, previously-observed asymmetries between pure deviatoric triaxialcompression and triaxial-expansion stresses, as well as between hydrostatic tensile and compressive strength states are shown to progressively vanish when ξ increases, completely disappearing when a pressure-independent local plastic behaviour is considered (that is, in the limit ξ → +∞).

Conclusions

In this Chapter, a general macroscopic yield function for nanoporous materials is analytically derived, by considering a hollow-sphere model with a general isotropic local plastic behaviour and in the case of axisymmetric strain-rate boundary conditions. Void-size effects on the predicted strength properties have been accounted for via a coherent-imperfect interface model, by prescribing the discontinuity (resp., the continuity) of the stress vector (resp., of the velocity field) across the cavity boundary.

In agreement with physical indications arising from recent Molecular-Dynamics computations on nanosized bulk specimens (Brach et al., 2016a), the material comprising the hollow sphere has been assumed to obey to a pressure-dependent strength criterion, accounting for the influence of stress-Lode-angle effects. More specifically, in the framework of the theoretical approach proposed by Brach et al. (2016b), the local yield function has been defined via a simplified form of the strength criterion provided by Bigoni and Piccolroaz (2004), thereby resulting in a polyhedral yield surface in the space of the Lode coordinates, with linear meridian and multi-sided deviatoric profiles. Therefore, a broad class of local pressure-dependent plastic behaviours, typical of many engineering-relevant porous and nanoporous materials, has been taken into account, allowing for an extreme flexibility in reproducing the stress-Lode-angle effects on solid matrix strength properties.

In the framework of a kinematic limit analysis approach (Gurson, 1977), the velocity field proposed by Brach et al. (2016b), corresponding to the limit state of a Bigonilike hollow sphere under isotropic boundary conditions, has been adopted to define the heterogeneous part of a suitable trial kinematics. A parametric closed-form estimate for the macroscopic yield function has been obtained as the solution of a KKT inequalityconstrained minimization problem, the latter accounting for local plastic admissibility conditions.

Proposed results have shown that, for both pressure-sensitive and pressure-insensitive local yield functions, the macroscopic strength criterion depends on the hydrostatic stress.

Moreover, as a result of combined effects of the first and the third-order deviatoric stress invariants on the local plastic behaviour, estimated strength properties have been proven to be hugely affected by the macroscopic stress Lode angle. Chapter 4. Limit analysis and homogenization under axisymmetric loadings has been furnished, resulting in an overall expansion of the predicted strength domain when the void radius reduces for a fixed porosity level, qualitatively in agreement with available experimental and numerical indications (Biener et al., 2005(Biener et al., , 2006;;Brach et al., 2016a;Hakamada and Mabuchi, 2007;Zhao et al., 2009).

As a special case and as a consistency assessment, by properly choosing model param- Depending on the value assumed by macroscopic strain-rate parameters = sgn C 0 and δ = sgn J D 3 , the following cases have to be addressed in order to explicitly determine functions J and J I introduced in Section 4.5.1.

Case A TXC D with C 0 > 0 (that is, = +1 and δ = -1). where, since the positiveness of the principal deviatoric strain-rate component d d1 in

Owing to

Eq. ( 4.35) for any positive value of x, coefficient η ± in Eq. ( 4.76) reduces to η 1 , irrespective of the macroscopic strain-rate triaxiality measure ω.

In agreement with results obtained by Anoukou et al. (2016), function J (ω) reads as

J (ω) = η 1 Q ω f α -Q (ω) (4.120)
Q being the antiderivative with respect to x of function

Q(x) = Υ(x)
x 1+1/α (4.121) that is, since Eq. ( 4.118), The hypergeometric function 2 F 1 1, -1 α ; α-1 α ; x in Eq. (4.122) is not defined for |x| ≥ 1, thereby leading to a limitation on the range of variation of the strain-rate triaxiality measure ω. However, since the macroscopic yield function in Eq. ( 4.73) has to be defined for any ω > 0, the analytic continuation formula (e.g., Pearson, 2009) is used to compute the antiderivative Q(x) in Eq. ( 4.122) for any value of x. Consequently, function J (ω) reads as

Q = 2α x 1/α 17α -10 (α -2)(3α -2) + (9α -5)x (α -1)(3α -2) - 12α 3 2 F 1 1, -1 α ; α-1 α ; x (α -2)(α + 2)(3α -2) + + 3 2 √ x x 2 3α -2 - 2x α -2 - 1 α + 2 arctanh 2 √ x 1 + x
J (ω) = 2α η 1 ω 1/α (10 -17α)(1 -f ) (α -2)(3α -2) + (9α -5)(1 -f 1-α )ω (1 -α)(3α -2) + 3f 1-α 2 √ ωf α ω 2 3α -2 - 2ωf α α -2 - f 2α α + 2 arctanh 2 √ ωf α ω + f α - 3 2 √ ω ω 2 3α -2 - 2ω α -2 - 1 α + 2 arctanh 2 √ ω ω + 1 + 12α 3 A(ω) (α -2)(α + 2)(3α -2) (4.126)
where A(ω) is piece-wise defined as x -1 + 3 1 + x 2 -2x cos 2θ if α < x < 1

A(ω) =                                2 F 1 1, -1 α ; α-1 α ; ω -f 2 F 1 1, -1 α ; α-1 α ; ω f α if 0 < ω < f α 2 F 1 1, - 1 
α ; α -1 α ; ω - πω 1/α α cot π α + f 1+α (α + 1)ω 2 F 1 1, 1 + α α ; 2α + 1 α ; f α ω if f α < ω < 1 - 1 (α + 1)ω 2 F 1 1, 1 + α α ; 2α + 1 α ; 1 ω - f 1+α 2 F 1 1, 1 + α α ; 2α + 1 α ; f α ω if ω > 1
x -1 + 3 1 + x 2 -2x cos 2θ if x > 1 (4.129) yielding the following relationships for Υ(ω)

Υ(x) =                  5(1 -x) + 3(1 + x) 2 2 √ x arctan 2 √ x 1 -x if 0 < x < α 1 -x + 3(1 + x) 2 2 √ x arctan 2 √ x 1 -x if α < x < 1 5(x -1) + 3(1 + x) 2 2 √ x arcsin 2 √ x 1 + x if x > 1 (4.130)
the latter resulting in 2016)

J I (ω) =          η 2 Υ(x) x=ω/f α if 0 < ω < αf α η 1 Υ(x) x=ω/f α if αf α < ω < f α η 1 Υ(x) x=ω/f α if ω > f α
J (ω) =                                                                    if 0 < ω ≤ αf α : η 2 Q1 ω f α -Q1 (ω) if αf α ≤ ω < f α : η 2 Q1 (α) -Q1 (ω) + η 1 Q2 ω f α -Q2 (α) if f α < ω ≤ α : η 2 Q1 (α) -Q1 (ω) + η 1 2B + Q3 ω f α -Q2 (α)
if α ≤ ω < 1 :

η 1 2B + Q3 ω f α -Q2 (ω)
if ω > 1 :

η 1 Q3 ω f α -Q3 (ω) (4.132)
where, by introducing the polygamma function of order zero ψ (0) = Γ (z)/Γ(z), B is defined as

B = 6α 4 (α -2)(α -1)(3α -2) + ψ (0) α -1 2α -ψ (0) - 1 2α (α -2)(α + 2)(3α -2) (4.133)
and where Q 1 , Q 2 and Q 3 are the antiderivatives of functions Q 1 , Q 2 and Q 3 obtained by replacing Eqs. (4.130) into Eq. ( 4.121), that is

Q 1 = 2α x 1/α 17α -10 (α -2)(3α -2) - (9α -5)x (α -1)(3α -2) - 12α 3 2 F 1 1, -1 α ; α-1 α ; -x (α -2)(α + 2)(3α -2) + + 3 2 √ x x 2 3α -2 + 2x α -2 - 1 α + 2 arctan 2 √ x 1 -x (4.134) Q 2 = 2α x 1/α (2α -1)(3α + 2) (α -2)(3α -2) - (3α -1)x (α -1)(3α -2) - 12α 3 2 F 1 1, -1 α ; α-1 α ; -x (α -2)(α + 2)(3α -2) + + 3 2 √ x x 2 3α -2 + 2x α -2 - 1 α + 2 arctan 2 √ x 1 -x (4.135) Q 3 = 2α x 1/α 10 -17α (α -2)(3α -2) + (9α -5)x (α -1)(3α -2) + 12α 3 2 F 1 1, -1 α ; α-1 α ; -x (α -2)(α + 2)(3α -2) + + 3 2 √ x x 2 3α -2 + 2x α -2 - 1 α + 2 arcsin 2 √ x 1 + x (4.136)
It is worth observing that no analytic continuation is needed in Eqs. (4.134), (4.135) and (4.136), since antiderivatives are expressed in terms of the hypergeometric function 2 F 1 1, -1 α ; α-1 α ; -x , which is defined for any x > 0.

In order to ensure the continuity of the macroscopic yield function in Eq. ( 4.73) for any positive value of the strain-rate triaxiality measure ω, functions H I (ω) and H(ω)

have to be piece-wise continuously differentiable with respect to C 0 and D eq on intervals defined in Eqs. (4.131) and (4.132), respectively. Accordingly, denoting as ω an endpoint of one of these subdomains, parameters m , eq , I m and I eq in Eqs. (4.78) are computed by enforcing the continuity of one-sided limits for ω → ω -and for ω → ω + , that is by prescribing lim In detail, by computing (4.138) on endpoints ω = αf α and ω = f α of subdomains in Eqs. (4.131), interface parameters I m and I eq result equal to zero for any ω belonging to intervals 0 < ω < αf α , αf α < ω < f α , and ω > f α . On the other hand, continuity requirements (4.137) on endpoints ω = αf α , ω = α, ω = f α and ω = 1 of subdomains 

J (ω) = η 2 Q ω f α -Q (ω) (4.143)
where the antiderivative Q reads as in Eq. (4.122). Since this latter is not defined for |x| ≥ 1, the analytic continuation formula in Eq. ( 4.125) is enforced, thereby yielding

J (ω) = 2α η 2 ω 1/α (10 -17α)(1 -f ) (α -2)(3α -2) + (9α -5)(1 -f 1-α )ω (1 -α)(3α -2) + 3f 1-α 2 √ ωf α ω 2 3α -2 - 2ωf α α -2 - f 2α α + 2 arctanh 2 √ ωf α ω + f α - 3 2 √ ω ω 2 3α -2 - 2ω α -2 - 1 α + 2 arctanh 2 √ ω ω + 1 + 12α 3 A(ω) (α -2)(α + 2)(3α -2) (4.144)
where function A(ω) is piece-wise defined as in Eq. (4.127).

Both J I and J in Eqs. (4.142) and (4.144) are continuous and continuously differentiable in ω > 0, thereby resulting in null values of parameters m , eq , I m , and I eq .

Conclusions and future perspectives

Concluding remarks

In this thesis, strength properties of nanoporous materials have been investigated via theoretical approaches and Molecular Dynamics computations, establishing engineeringoriented analytical models and numerical benchmarking evidence.

As a first modelling strategy and motived by recent numerical findings by Morin et al. (2015), a non-linear homogenization approach based on a 3-layered description has been proposed in Chapter 1, yielding a closed-form macroscopic strength criterion for nanoporous materials. Referring to available benchmarking evidence (Morin et al., 2015) and with the aim to enhance the non-linear homogenization model latterly provided by (Dormieux and Kondo, 2013), a representative volume element containing isotropicallydistributed spherical voids and comprising a von Mises plastic matrix has been considered.

In agreement with the modified secant method (Suquet, 1995) and with the multiphase modelling technique proposed by Herve and Zaoui (1993), the non-linear homogenization problem has been solved by considering a four-phases linear comparison composite material, the latter consisting in 3-layered composite spheres confocal to nanovoids and embedded into a homogeneous solid matrix. Nanovoids-induced surface stresses at the cavities boundary (e.g., Needs et al., 1991) have been modelled by introducing an imperfectcoherent interface. As a result, a macroscopic strength criterion accounting for void-size effects has been analytically derived, recovering, as a consistency assessment and for a proper choice of model parameters, previously-established non-linear variational homogenization estimates for both porous (Ponte Castañeda, 1991) and nanoporous (Dormieux and Kondo, 2013) materials. Qualitatively in agreement with experimental evidence, a physically-consistent description of void-size effects has been provided, predicting a significant strengthening effect as the void radius reduces. Comparative illustrations have proven the accuracy of the proposed yield surface with respect to available numerical benchmarking data (Morin et al., 2015;Trillat and Pastor, 2005), resulting in a substantial enhancement of previously-established strength criteria (Dormieux and Kondo, 2013;Ponte Castañeda, 1991), especially at high stress-triaxiality regimes.

However, despite their practical interest, available finite-elements based results on strength properties of nanoporous materials can not be properly considered as an exhaustive reference. As a matter of fact, since size-related effects on macroscopic features arise at the nanoscale, a sufficiently rich description of both atomic-level phenomena and

Conclusions and future perspectives material characteristic length-scales has to be ensured. Therefore, among various simulation techniques addressing sub-micron scales, Molecular Dynamics can be considered as one of the most promising numerical approaches for providing strongly physics-based insights into nanoporous materials. Nevertheless, although atomistic failure mechanisms underlying void-growth and coalescence have been extensively analysed in literature (e.g., [START_REF] Farrissey | An atomistic study of void growth in single crystalline copper[END_REF]Lubarda et al., 2004;Lubarda, 2011;Marian et al., 2004Marian et al., , 2005;;Pogorelko and Mayer, 2016;Ruestes et al., 2013;Tang et al., 2010;Traiviratana et al., 2008), a proper characterization of the three-dimensional strength domain of nanoporous materials has not been proposed yet, available strength estimates being computed under specific loading conditions only (see for instance Mi et al., 2011;Traiviratana et al., 2008;Zhao et al., 2009).

Accordingly, as compared with previously-established studies and aiming to give novel contributions in this context, a Molecular-Dynamics computational model addressing more comprehensive loading cases has been proposed in Chapter 2. In detail, numerical calculations have been carried out on in-silico nanoporous aluminium samples undergoing triaxial-expansion, triaxial-compression and shear strain-rate boundary conditions. For each deformation scenario, a wide range of triaxiality regimes has been considered, describing deformation paths ranging from pure deviatoric to pure hydrostatic strain states.

Although more complex geometries could be considered in order to properly represent realistic experimental samples, the herein-adopted periodic microstructure, based on a representative single-crystal cell embedding a single spherical void, enables to limit as much as possible any coupling phenomenon (such as those associated to voids shape and interactions), focusing on dominant mechanisms related to the nanosize of voids.

Effective strength properties of both bulk and nanoporous specimens have been computed, resulting in meridian and deviatoric strength profiles hugely dependent on the three Haigh-Westergaard stress invariants. The size-related strengthening effect observed in experimental tests for a fixed porosity level (Biener et al., 2005(Biener et al., , 2006;;Hakamada and Mabuchi, 2007;Fan and Fang, 2009) has been consistently recovered, resulting in an overall expansion of computed strength domains when the void radius reduces. Moreover, both the occurrence and the amount of void-size effects have been proven to strongly depend on the Lode angle, leading to a shape-transition of deviatoric strength profiles when the void radius is varied.

Physical indications arising from Molecular-Dynamics computations clearly suggest the need of improving available strength models for nanoporous materials by considering a richer description of the matrix plastic behaviour. To this aim, and opening towards a limit analysis approach, the starting point has consisted in exactly solving the limit-state problem in the case of isotropic loading conditions, as detailed in Chapter 3. A hollowsphere model with an imperfect-coherent interface at the cavity boundary, representative of a particular microstructure for nanoporous materials, has been considered. Aiming to account for a broad class of pressure-sensitive limit responses, as well as to allow for an extreme flexibility in reproducing stress-Lode-angle effects, both the solid matrix and the interface have been assumed to obey to a general isotropic yield function, defined as a simplified form of the criterion proposed by Bigoni and Piccolroaz (2004). Closedform relationships for local strain-rate, velocity and stress fields have been determined, identifying the exact limit state for the hollow-sphere model in the case of both negligible (i.e., for porous materials) and significant (i.e., for nanoporous materials) interface effects.

Since the high flexibility and the general form of the adopted strength criterion, the present approach has allowed to identify the exact limit state for a wide range of local plastic behaviours, possibly-affected by all the three isotropic stress invariants, and that may not be properly described via classical yield models. As special cases and as a consistency assessment, obtained relationships have been proven to exactly recover, for a suitable choice of model parameters, available analytical expressions (Cazacu et al., 2014;Gurson, 1977;Thoré et al., 2009) deduced in the case of negligible interface effects, and associated to classical local strength criteria.

Finally, a general macroscopic strength criterion accounting for void-size effects has been analytically derived in Chapter 4, by referring to a hollow-sphere model with an imperfect-coherent interface at the void surface, and in the case of axisymmetric strainrate boundary conditions. Both the solid matrix and the interface have been assumed to obey to a particular form of the local yield function introduced in Chapter 3, describing a polyhedral yield surface in the space of the Lode coordinates with linear meridian and multi-sided deviatoric yield profiles. The corresponding local support function and plastic admissibility condition provided in Chapter 3 have been considered. In the framework of a kinematic limit-analysis approach, and following the modelling strategy proposed by Gurson (1977) and successively adopted in a number of theoretical models (e.g., Anoukou et al., 2016;Cazacu et al., 2014;Dormieux and Kondo, 2010;Guo et al., 2008), a trial velocity field has been defined as the superposition of a suitable homogeneous term and of the velocity determined in Chapter 3. Taking advantage of the theoretical procedure established by Anoukou et al. (2016), a parametric closed-form relationship for the macroscopic yield function has been obtained as the solution of a Karush-Kuhn-Tucker inequality-constrained minimization problem, this latter accounting for local plastic admissibility conditions. Predicted macroscopic strength properties have been proven to be hugely affected by all the three isotropic stress invariants, resulting in pressure-sensitive strength profiles exhibiting significant stress-Lode-angle effects. Comparative illustrations have clearly shown the influence of the local plastic behaviour on the macroscopic one, thereby highlighting a great flexibility in describing a wide class of porous and nanoporous materials, generally not properly represented via classical yield models. An effective description of void-size effects on macroscopic yield stress states has been furnished, resulting in an overall expansion of the predicted strength domain when the void radius reduces.

As a particular case and as a consistency assessment, proposed macroscopic yield function has been proven to recover the relationship provided by (Anoukou et al., 2016) for a Mohr-Coulomb local plastic behaviour. Moreover, expressions obtained by Thoré et al. (2009) and Cazacu et al. (2014) for the exact hydrostatic strength of Mohr-Coulomb and Tresca plastic porous materials have been fully retrieved, via a suitable calibration of local-yield-function parameters and in the case of negligible interface effects.

Future research directions

The present thesis leaves a number of challenging open issues, which it would be interesting to address in future studies. Specifically, as regards both theoretical and numerical modelling approaches, the following research directions are traced.

Combined effects of void size and void shape Since the wide range of structural geometries characterising nanoporous materials in current engineering applications, an important research aspect consists in investigating combined effects of void size and void shape on effective strength properties.

A first attempt in this direction has been recently provided by Monchiet and Kondo (2013), in the framework of a kinematic limit-analysis approach and by considering the trial velocity field previously-introduced by Gologanu et al. (1993), Gologanu et al. (1994), and[START_REF] Gologanu | Recent extensions of Gurson's model for porous ductile metals[END_REF]. Specifically, in order to derive a macroscopic strength criterion accounting for both void-size and void-shape effects, a hollow-spheroid model with a confocal spheroidal cavity has been considered, by introducing an imperfect-coherent interface at the void boundary. The material comprising the solid matrix being assumed to obey to a von Mises yield function, a richer description of the local plastic behaviour could be addressed, for instance via the general criterion introduced in Chapter 3.

On the other hand, a limited number of computational studies has been devoted to the numerical investigation of combined effects of void size and void shape on the constitutive plastic response of nanoporous materials. Therefore, aiming to furnish novel contributions in this context, a possible modelling strategy could be represented by the Molecular Dynamics procedure established in Chapter 2. In particular, by considering the reference geometry adopted in the afore-mentioned theoretical model, numerical simulations may be carried out on computational domains embedding prolate or oblate spheroidal nanocavities, thereby allowing for a parametric analysis of the computed strength domains as dependent on both the size and the shape of voids.

Physics-based modelling of void-size effects In all the theoretical models proposed in this thesis, the dependence of strength properties on the size of voids, for a nanoporous material with a fixed value of porosity, has been addressed by describing cavities boundary via an imperfect-coherent interface stress model. Specifically, in agreement with a number of previously-established approaches (e.g., Fan and Fang, 2009;Needs et al., 1991;Povstenko and Yu, 1993;Weissmüller et al., 2009) the stress vector has been prescribed to undergo a discontinuity across the interface, in order to account for self-equilibrated surface stresses induced by the nanosize of voids. However, although such a modelling description has been extensively adopted in the available literature for both elastic (Brisard et al., 2010a,b;Duan et al., 2005a,b;Le Quang and He, 2007;[START_REF] Sharma | Effect of surfaces on the size-dependent elastic states of nano-inhomogeneities[END_REF]Sharma and Ganti, 2004) and plastic (Dormieux andKondo, 2010, 2013;Monchiet and Kondo, 2013;Goudarzi et al., 2010;[START_REF] Moshtaghin | Effects of surface residual stress and surface elasticity on the overall yield surfaces of nanoporous materials with cylindrical nanovoids[END_REF]Zhang and Wang, 2007;Zhang et al., 2008Zhang et al., , 2010) ) regimes, its physical basis still needs to be more documented.

Accordingly, a possible research direction could consist in analysing the local perturbation induced by the presence of a nanovoid into an otherwise perfect atomic arrangement.

As shown in Fig. 2.4, this directly impacts on the number of neighbouring atoms, thereby resulting in significantly different values of total energy as compared to the case of a bulk sample. Moreover, and as a preliminary observation, the high strain-rate gradient related to the dislocations accumulation depicted in Fig. 2.5 may result in a strengthening of the material comprising the cavity surface. The Molecular Dynamics procedure proposed in Chapter 2 may allow for a more comprehensive understanding of nanoscale mechanisms underlying the occurrence of size-related effects, thereby opening towards both the assessment of interface stress models and the definition of novel physics-based theoretical descriptions. Alternatively, following the approach proposed by [START_REF] Yvonnet | Characterization of surface and nonlinear elasticity in wurtzite ZnO nanowires[END_REF] for investigating surface elasticity, ab-initio calculations may be performed in order to furnish insightful indications on nano-cavities physics.

Combined effects of void size and crystallographic anisotropy Anisotropic effects in nanoporous materials, with particular reference to those related to the crystalline texture of the solid matrix, have not been addressed in the present thesis. Nevertheless, the combined influence of void size and crystallographic anisotropy on the effective material mechanical response still represents a promising research topic. As a matter of fact, existing theoretical and numerical models mainly refer to crystals containing macro-sized cavities. Mention is made to approaches recently proposed by [START_REF] Han | A yield function for single crystals containing voids[END_REF][START_REF] Mbiakop | An analytical model for porous single crystals with ellipsoidal voids[END_REF] and [START_REF] Paux | An approximate yield criterion for porous single crystals[END_REF], highlighting the great interest in considering anisotropy effects for estimating effective strength properties of porous single-crystals.

In this context, possible novel modelling strategies could consist in:

• characterizing combined effects of void size and crystallographic anisotropy on the material plastic response via Molecular Dynamics computations. To this end, results provided in Chapter 2 for a FCC nanoporous single-crystal could be enhanced by considering crystallographic arrangements for which anisotropy effects are expected to be particularly evident (such as BCC and HCP atomic structures). Consequently, comparative analyses may be furnished to depict the occurrence and the amount of both void-size (for a given crystallographic texture and porosity level) and anisotropy (for fixed values of void size and porosity) effects on predicted strength domains.

• extending the macroscopic general strength criterion derived in Chapter 4 to the case of nanoporous materials with an anisotropic plastic solid matrix. To this aim, representation theorems (e.g., [START_REF] Boehler | Applications of tensor functions in solid mechanics[END_REF] based on the introduction of a suitable structural anisotropy tensor, may be used to extend the herein adopted Bigoni-like isotropic yield function to local structural plastic anisotropy.

Numerical implementation of the proposed general strength criterion The numerical implementation in engineering-oriented numerical codes of the macroscopic general yield function for nanoporous materials derived in Chapter 4 may represent a challeng-
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 1 Figure 1 -Scanning Electron Microscopy images of a near-perfect ordered nanoporous alumina (Kustandi et al., 2010): (a)-(d) Top views. (e)-(f) Cross-sectional views.

Figure 2 -

 2 Figure 2 -Scanning Electron Microscopy images of nanoporous-based devices for therapeutic purposes. (a) Anodic surfaces with cylindrical nanopores, able to reduce microbial attachment and biofilm development (Feng et al., 2014): a-1) nanopores induce a perturbation of both the electrical charge and the surface energy of a metal, exerting a repulsive force on bacterial cells; a-2) cross-sectional view of the nanoporous surface alumina. (b) Stent with a nanoporous alumina layer filled with anti-inflammatory drugs (Jenkins, 2010): b-1) stainless-steel active stent, coated with a nanoporous alumina oxide; b-2) cross section of the nanoporous alumina layer. (c) Nanoporous alumina-aluminium wire implants for localized therapy (Rahman et al., 2015): c-1) low-resolution image of a portion of the nanoporous wire depicted in the inset figure (total length 10 mm); c-2) cross-sectional view of the nanoporous layer; c-3) top-surface view of the nanoporous layer, showing nanopores to be filled with therapeutic drugs; c-4) bottom-surface view of the nanoporous layer, showing closed ends of nanopores.
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 3 Figure 3 -Void-size effects on strength properties of nanoporous materials. (a) Experimental evidence provided by(Fan and Fang, 2009), obtained via nanoindentation tests on nanoporous foams, the ligament size being a measure of the characteristic length of voids. (b) Molecular-Dynamics results byZhao et al. (2009) for an in-silico nanovoided single-crystal copper undegoing an uniaxial tension loading.

  respectively, the porosity p results in p = |Ω v |/|Ω|. Moreover, let ∂Ω v be the overall cavities boundary, n v being the corresponding normal unit vector (see Fig. 1.1).
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 11 Figure 1.1 -Representative volume element. Notation. Solid matrix and the overall region occupied by voids are respectively denoted as Ω s and Ω v , such that Ω = Ω s ∪ Ω v . Vector ẑ identifies a position at the RVE exterior boundary ∂Ω.
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 12 Figure 1.2 -(a) n-layered sub-partition adopted in Problem 2 for treating the fictitious constitutive response described by Eqs. (1.12) and (1.15). (b) Normal unit vectors on separation surfaces ∂Ωi,α.

Chapter 1 .

 1 A 3-layered non-linear homogenization with interface effects where C hom is the homogenized fictitious constitutive tensor, which can be computed starting from C α , by means of a suitable linear homogenization scheme. It is pointed out that, since the composite spherical inclusions in Ω are isotropically-distributed and each phase α is isotropic, C hom is in turn isotropic and characterised by effective moduli µ hom and k hom . The non linearity involved in Eqs. (1.16b) and (1.18), associated to the determination of J d 2α (equivalently, µ α ), is faced by referring to the first variation with respect to µ α of the Hill's equality (1.3), when σ and Σ are expressed by Eqs. (1.16b) and (1.18), respectively. In detail, the following equalities are provided (see Ponte Castañeda and

  to Eqs. (1.49) and (1.50) (see 1.A), by enforcing the dimensionless ratio χ to comply with χ = O( ), as well as by prescribing the further smallness condition ψ = (ϕp) = O( ), effective moduli in Eqs. (1.31) can be expressed in the following linearized Chapter 1. A 3-layered non-linear homogenization with interface effects form

Figure 1 . 4 -

 14 Figure 1.4 -Strength profiles obtained via Eq. (1.45) for different values of the model parameter ϕ (κ = 0.1 and p = 0.1%).
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 115 Figure 1.5 -Strength profiles obtained via the proposed BDKV criterion in Eq. (1.48) for different values of: (a) porosity p (with κ = 0.1); (b) interface parameter κ (with p = 1%).

Figure 1

 1 Figure 1.6 -Strength profiles for different values of κ and for p = 1%. Comparisons among: proposed model (BDKV), theoretical predictions by Dormieux and Kondo (2013) (DK), numerical data provided by Morin et al. (2015) (denoted as MLK), kinematic (TP-K) and static (TP-S) numerical bounds proposed byTrillat and Pastor (2005).
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 21 Figure 2.1 -Computational model herein adopted for describing an aluminium nanovoided single crystal. Notation.

Fig. 2 .

 2 2 are obtained for three different deformation scenarios (λ = -0.5, pure deviatoric condition; λ = 0, traction test corresponding to a mixed hydrostatic/deviatoric condition; λ = 1, pure hydrostatic condition). Moreover, addressing the case λ = -0.5, Fig. 2.3a depicts stress-strain responses computed in the IP case for different temperature values (Fig. 2.3a), and Fig. 2.3b shows the temperature evolution numerically-experienced in the NIP-based simulation.
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 22 Figure 2.2 -Stress-strain relationships computed for the deformation path TXED with: λ = -0.5 (pure deviatoric state), λ = 0 (traction test) and λ = 1 (pure hydrostatic state). L/B = 50, R = 1.353 nm, p = 1%. IP: isothermal process (at 300 K). NIP: non-isothermal process.
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 23 Figure 2.3 -Deformation path TXED with λ = -0.5 in the case L/B = 50 and for p = 1 %. (a) Stress-strain responses computed considering an isothermal process (IP) and for different temperature values. (b) Stress and temperature vs. strain in the case of a non-isothermal process (NIP).
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 24 Figure 2.4 -Centro-symmetry distribution (CS), represented as one-data point per atom, relevant to the reference configuration C * . L/B = 50, R = 1.353 nm, p = 1%.

Figure 2

 2 Figure 2.5 -(Top) Stress-strain relationship, temperature-strain relationship, and CNA results computed under a pure strain-based deviatoric condition corresponding to a non-isothermal deformation path TXED (λ = -0.5, L/B = 50, R = 1.353 nm, p = 1%). z1: elastic zone; z2: activation of plastic mechanisms; z3: stress-relaxation zone. (Bottom) Atomic patterns and CNA results corresponding to different states within zones z2 and z3. Percentages of icosahedral (ICO) and cubic diamond (DIA) atomic arrangements are equal to zero.
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 26 Figure 2.6 -Bulk sample. Influence of the simulation box length L/B on the stress-strain response for the deformation path TXED.
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 27 Figure 2.7 -Bulk sample. Strength states computed under TXED, TXCD and SHRD deformation paths. (a) Meridian strength profiles. (b) Deviatoric strength profiles. Symbols denote computed strength states, curves indicate estimated strength profiles.

Figure 2 .

 2 Figure 2.7b depicts strength results in the deviatoric plane (π-plane), highlighting that cross sections of the strength domain at different ζ coordinates are characterised by a triangular shape.

Table 2 .

 2 2 summarizes computed values of the stress Lode angle θ Σ for different deformation paths and for several values of ζ. As also shown in Fig. 2.7b, the axisymmetric strain conditions TXE D (θ D = 0) and TXC D (θ D = π/3) generate stress states which are in turn almost axisymmetric and characterised by θ Σ ≈ θ D . Thereby, triaxial strain expansion TXE D (respectively, compression TXC D ) practically corresponds to triaxial stress expansion TXE Σ (respectively, compression TXC Σ ), irrespective of the value assumed for ζ. In contrast, in the case of SHR D (θ D = π/6), the computed values of θ Σ are significantly different from θ D . As a result, SHR D strain condition does not induce a pure

Figure 2 . 8 -

 28 Figure 2.8 -Values of the stress Lode angle θΣ (normalised with respect to the corresponding value of θD) versus ζ (top) and ζ/r (bottom), computed for a nanovoided sample (p = 1%) undergoing the SHRD deformation path, and for different ratios L/B. The case of the bulk specimen is also reported.
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 29 Figure 2.9 -Nanovoided sample (p = 1%). Numerical results (symbols) and estimated strength profiles in the π-plane. (a) ζ = 2 GPa. (b) ζ = 6 GPa.

Figure 2 .

 2 Figure 2.10 -Nanovoided sample (p = 1%). Numerical results (symbols) and estimated deviatoric strength profiles for different hydrostatic stress levels. (a) L/B = 30 (R = 0.812 nm). (b) L/B = 50 (R = 1.353 nm).

Figure 2 .

 2 . Numerical results (symbols) and estimated meridian strength profiles for different values of L/B and for a TXEΣ state (θΣ = 0). The bulk case is also reported.

  = 30 L/B = 50, L/B = 60, L/B = 70 (b)

Figure 2 .

 2 Figure 2.12 -Nanovoided sample (p = 1%). Numerical results (symbols) and estimated meridian strength profiles for different values of L/B. (a) TXCΣ (θΣ = π/3). (b) SHRΣ (θΣ = π/6). The bulk case is also reported. As for the bulk sample, curves for SHRΣ case are obtained by interpolating numerical results computed by varying θD.

Figure 2 .

 2 Figure 2.13 -Nanovoided sample (p = 0.5%). Numerical results (symbols) and estimated deviatoric strength profiles in the π-planes for different values of L/B. (a) ζ = 2 GPa. (b) ζ = 6 GPa.

Figure 2 .

 2 Figure 2.14 -Nanovoided sample (p = 0.1%). Numerical results (symbols) and estimated deviatoric strength profiles in the π-planes for different values of L/B. (a) ζ = 2 GPa. (b) ζ = 6 GPa.

Figure 2 .

 2 Figure 2.15 -Nanovoided sample. Numerical results (symbols) and estimated meridian strength profiles for different values of L/B and for a TXEΣ state (θΣ = 0). (a) p = 0.5%. (b) p = 0.1%.

  ) in Fig.2.16a, let two perfect dislocations b 1 = B[101] and b 1 = B[011] be considered, belonging to the Thompson tetrahedrons HKJY and H'K'JY, respectively. In agreement with energetic arguments discussed by Hull and Bacon (2001), atom in Y, instead of moving directly in K through b 1 , moves firstly in the nearby site γ (via b 2 ) and next in K (via b 3 ), γ being such that Y γ = γK. As a result, the perfect dislocation b 1 = B[101] dissociates into two Shockley partials in the plane (111), according to the following decomposition: perfect dislocation b 1 = B[011] dissociates into Shockley partials b 2 and b 3 , both belonging to the plane (111): = b 2 + b 3 (2.8) Furthermore, leading partials b 3 and b 3 modify the local stacking sequence of closed packed planes {111} from FCC to HCP. On the contrary, trailing partials b 2 and b 2 remove the fault, restoring the original FCC lattice. Thereby, Shockley partial dislocations as in Eqs. (2.7) and (2.8) always enclose a stacking fault region, characterized by the presence of HCP sub-arrangements (Hull and Bacon, 2001) (see Fig. 2.16b). Accordingly, the initiation of the plastic deformation can be associated to the HCP occurrence.

Figure 2 .

 2 Figure 2.16 -(a) An example of Shockley-partials nucleation. Perfect dislocations b1 and b 1 dissociate into partials, namely leading partials b3 and b 3 , and trailing partials b2 and b 2 . (b) Leading partials b3 and b 3 modify the local stacking sequence of closed packed planes {111} from FCC (sequence ABC-ABC) into HCP (sequence AB-AB). On the contrary, trailing partials b2 and b 2 remove the fault, restoring the original FCC lattice. L.C.: Lomer-Cottrell lock.
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 31 Figure 3.1 -Problem statement. Notation.

  3b) with d (resp., d I ) denoting the microscopic second-order strain-rate tensor in Ω s (resp., on ∂Ω i ), and where λ s and λ I are the positive plastic multipliers. It is worth observing that prescribing (d, d I ) ∈ P d is equivalent to prescribe that the associated normality rule is everywhere satisfied in Ω.Owing to the spherical symmetry of both boundary conditions and geometry, the mechanical behaviour governed by Eqs. (3.2) and (3.3) does not depend on the angular coordinates θ and ϕ. Thereby, the local velocity reads as v(r) = v r (r)e r , and the local stress (σ(r), τ ) and strain-rate (d(r), d I ) fields have to belong to (Q, Q), where Q is the space of axisymmetric second-order tensors defined as

Figure 3 . 2 -

 32 Figure 3.2 -Function g(θσ) in Eq. (3.7) for different values of model parameters β and γ. TXE: triaxial expansion. TXC: triaxial compression. SHR: shear.

  d), with Y s = {σ s.t. G s (σ) ≤ 0} (3.15) π I (d I ) = sup τ ∈Y I (τ : d I T ), with Y I = τ s.t. G I (τ ) ≤ 0 (3.16) with d I T = T : d I and where π s (resp., π I ) has the meaning of the maximum volume (resp., surface) plastic dissipation that can be locally achieved by the material in Ω s (resp., on ∂Ω i ), when the kinematically-admissible local strain-rate field d (resp., d I ) is considered. In order to ensure the boundedness of the maximum plastic dissipation in Eqs. (3.15) and (3.16), the strain-rate state (d, d I ) has to belong to P d (see Eq. (3.3b)), resulting in plastic admissibility conditions on (d, d I ).

  3.25) straight resulting in inequalities (3.23) and (3.24). Thereby, plastically-admissible strain-rate fields have to simultaneously satisfy Eqs. (3.19) and (3.23) when 0 ≤ β < 1, and Eqs. (3.20) and (3.24) when 1 ≤ β ≤ 2. Accordingly, depending on values of β, admissiblity requirements are expressed by Eqs. (3.23) and (3.24), Chapter 3. Exact limit state under isotropic loadings

  87

  (3.26) and (3.27). As a matter of fact, for ξ → +∞ (thereby for ξ > ξ * * when 0 ≤ β < 1, and for ξ > ξ * when 1 ≤ β ≤ 2) admissibility conditions in Eqs. (3.23) and (3.24) are non trivial only if I d 1 = 0. These latter, in the limit of ξ → +∞ and I d 1 → 0 + , lead to

  1, support functions and plastic admissibility conditions for Mohr-Coulomb and Tresca criteria can be readily recovered via Eqs. (3.26) and (3.30), respectively, by a proper choice of values for model parameters. Similarly, the interface local support function π I in Eq. (3.16), as well as the cor-Chapter 3. Exact limit state under isotropic loadings responding admissibility conditions, formally read as in Eqs. (3.26) and (3.27) (or in Eqs. (3.29) and (3.30) for ξ → +∞) and are expressed in terms of the local strain-rate tensor d I .

  Eqs. (3.6) to (3.8) for 0 ≤ γ < 1), since h > 0 and ξ > 0, support function π s (resp., π s ) is positive when the local strain-rate field d satisfies admissibility requirements in Eqs. (3.26) and (3.27) (resp., in Eq. (3.99)), these latter providing I d 1 ≥ 0. This occurrence straight results from conditions c β > 0 and s β ≥ 0 (for π s ), and from the strict positiveness of function g (for π s ).Analogously, addressing a pressure-independent yield function, the same arguments allow to prove that support function π s in Eqs. (3.29) and (3.30) (resp., π s in Eq. (3.102)) is positive.

  stresses via Eqs. (3.2a) and (3.2b) is not affected by the possible occurrence of sharp vertices in π-planes for both G s and G I . Accordingly, Eqs. (3.2a) and (3.2b) are faced by considering the general form of yield functions for solid matrix and interface, defined by Eqs. (3.6) to (3.8). On the contrary, due to the normality law in Eq. (3.3b), the identification of plastically-admissible strain-rate and velocity fields requires to distinguish between plastic matrices obeying to yield criteria with smooth or sharp deviatoric profiles.3.5.1 Local stress field and macroscopic limit stressBy considering (σ, τ ) ∈ (Q, Q) (see Eq. (3.4)), where the surface-stress tensor τ is planar and it has the form τ = τ θ (e θ ⊗e θ +e ϕ ⊗e ϕ ), the Lode coordinates introduced in Eqs.(3.5) 

(

  influence of the local stress Lode angle (θ σ = 0 or θ σ = π/3), and they are such that sgn(Λ) = ι and sgn(Λ I ) = ι I . Plastically-admissible stresses (σ, τ ) ∈ P σ ∩ (Q, Q) have to comply with the yielding conditions G s (σ) = 0 and G I (τ ) = 0 (see Eq. (3.2b)), resulting in

  50) where Λ and Λ I indicate functions Λ and Λ I defined in Eqs. (3.36) and (3.37) for 0 ≤ γ < 1, and they depend on the local plastically-admissible stress state (σ, τ ) ∈ P σ ∩ (Q, Q). Statically-and plastically-admissible stress fields in Eqs. (3.41) are enforced, leading Λ independent from r and Λ I = Λ. Accordingly, by combining Eqs. (3.47) to (3.50), plastic multipliers result in λ s (r) = C r

  70) Statically-and plastically-admissible stress fields in Eqs. (3.41) are enforced, leading Chapter 3. Exact limit state under isotropic loadings ι = sgn(σ r (r)σ θ (r)) independent from r. Accordingly, for ι = +1 (resp., ι = -1), it results d = d E (resp., d = d C ) for any r ∈ [R i , R e ]. By combining Eqs. (3.69) and (3.70) with Eq. (3.47), plastic multipliers are obtained in the form

  normality law) have been related each other via Eqs. (3.49) and (3.50) (for a smooth yield surface), or via Eqs. (3.61) and (3.62) (for a sharp yield surface), these latter thereby taking on the meaning of plastic constitutive laws.
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 334 Figure 3.3 -Hollow sphere with (i.e., nanoporous materials, κ = 0) and without (i.e., porous materials, κ → 0 + ) interface effects: the case of von Mises (vM) and Tresca (Tr) local yield functions. (a) Normalized macroscopic hydrostatic limit stress Σ c m /h vs. porosity f . (b) Normalized velocity field v * r = (vr R 2 e )/C vs. the normalized radius r * = r/Re (where C = C for vM and C = C for Tr), curves being defined for r * ≥ f 1/3 .
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 353 Figure 3.5 -Hollow sphere with (i.e., nanoporous materials, κ = 0) and without (i.e., porous materials, κ → 0 + ) interface effects: the case of Mohr-Coulomb (MC) local yield function for different values of the friction angle φ. (a) Normalized macroscopic hydrostatic limit stress Σ c m /h vs. porosity f . (b) Normalized velocity field v * r = vr/( CR 1+b e ) vs. the normalized radius r * = r/Re (parameter b is introduced in Table3.2), curves being defined for r * ≥ f 1/3 .

  on ∂Ω e } (3.78) be introduced. Moreover, let statically-admissible stress fields in S σ (see Eq. (3.2a)) be defined not accounting for stress-based boundary conditions BC σ . By considering statically-admissible stress (i.e., (σ, τ ) ∈ S σ ) and kinematically-admissible strain-rate (i.e., (d, d I ) ∈ K d with v ∈ BC v ) local fields, the Hill's lemma holds |Ω| Σ : D = Ω s σ : d dΩ + ∂Ωi τ : d I T dA (3.79)

  (3.82) over all the kinematically-admissible strain-rate states (d, d I ), a particular microscopic trial velocity field v trial ∈ BC v yielding to the local trial strain-rate fields (d trial , d I trial ) ∈ K d may be chosen. It is worth noticing that an estimate for Π is significant only if the trial strain-rate state (d trial , d I trial ) complies also with admissibility conditions in Eq. (3.99) or in Eqs. (3.26) and (3.27), that is if it is plastically-admissible. In the particular case of isotropic boundary conditions, the set in Eq. (3.78) is defined by considering the uniform radial velocity v e = D m R e e r , where D m is a constant strainrate parameter. Accordingly, kinematically-admissible strain-rate fields and local velocity have to satisfy (d, d I ) ∈ (Q, Q) and v = v r (r)e r , respectively. In this light, and depending on the local yield function, the strain-rate field expressed by Eqs. (3.53) and (3.54), or by Eqs.(3.72) and (3.73), may be considered as a trial kinematics, provided that its plastic admissibility is verified and that the arbitrary constants C and C are equal to

  By using Eq. (3.81), the following estimates for the macroscopic hydrostatic

2

 2 88) resulting equal to the exact solution expressed in Eq. (3.45), and recovering the case corresponding to a yield function with smooth and sharp deviatoric profiles for Λ = Λ and Λ = Λ, respectively. Therefore, Eq. (3.84) provides the exact kinematics and Eqs. (3.85) and (3.86) provide the exact macroscopic support function under isotropic loads, that is Π = Π est (for 0 ≤ γ < 1) and Π = Π est (for γ = 1). Remark 5 Owing to Eqs. (3.81) and (3.85) (or (3.86)), sgn(D m ) = sgn(Σ c m ) = -ι, resulting in a macroscopic triaxial expansion (resp., compression) for D m > 0 (resp., D m < 0). Moreover, since the positiveness of C and C in Eq. (3.83) resulting from the positiveness of plastic multiplier in the normality law (see Eqs. (3.51) and (3.71)), plastically-admissible strain-rate states can be attained only if the macroscopic strain-rate parameter D m satisfies the following conditions sgn(D m ) = sgn ξ

  use of the exact solution proposed in Eq. (3.54) or (3.73), or equivalently in Eqs. (3.84), for representing the local heterogeneous part v r (r) of a general trial kinematics as in Eq. (3.90) paves the way towards novel and accurate macroscopic strength criteria for porous and nanoporous materials, locally not obeying to classical strength criteria and accounting for general triaxiality levels.
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 337 Figure 3.7 -Calibration of the adopted yield function G s (σ) with respect to Molecular Dynamicsbased data (denoted as MD) proposed by Brach et al. (2016a). (a) Meridian strength profiles for θσ = 0 (TXE), θσ = π/6 (SHR) and θσ = π/3 (TXC). (b) Deviatoric strength profiles for different values of p. Values of model parameters resulting from a constrained optimization fitting: γ = 0.99, ξ = 5.48, h = 1.82 GPa and β = 2.
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 38 Figure 3.8 -Hollow sphere without interface effects (i.e., porous materials, κ → 0 + ) and in the case f = 1%. Normalized macroscopic hydrostatic limit stress Σ c m /h for different values of model parameters β, ξ and γ. (a) Macroscopic triaxial compression (ι = +1). (b) Macroscopic triaxial expansion (ι = -1).
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 39 Figure 3.9 -Hollow sphere with interface effects (i.e., nanoporous materials, for κ = 1) and in the case f = 1%. Normalized macroscopic hydrostatic limit stress Σ c m /h for different values of model parameters β, ξ and γ. (a) Macroscopic triaxial compression (ι = +1). (b) Macroscopic triaxial expansion (ι = -1).

  91) Therefore, by applying the normality law in Eq. (3.3b), the hydrostatic strain-rate (d m = tr d/3) and the deviatoric part (d d = dd m 1) of the strain-rate tensor d result, respectively, in

Figure 3 Chapter 4 .

 34 Figure 3.10 -Function Γ(θσ) introduced in Eq. (3.100) for different values of model parameters β and γ. TXE: triaxial expansion. TXC: triaxial compression. SHR: shear.

4. 3 4 .

 34 the local Bigoni-like yield criterion, as well as the corresponding support function and Chapter Limit analysis and homogenization under axisymmetric loadings plastic admissibility conditions, are introduced. In Section 4.4, the trial velocity field is presented, focusing on kinematic and plastic consistency requirements. By summarizing, for the sake of compactness, some analytical details in 4.A, the macroscopic strength criterion for nanoporous materials under axisymmetric loadings is analytically derived in Section 4.5, hydrostatic and deviatoric strengths being explicitly formulated in Section 4.6. Illustrative comparisons are presented and discussed in Section 4.7, highlighting the effects of both local-yield-function parameters and void size on the macroscopic criterion.

  is the total volume of the hollow-sphere region Ω = Ω s ∪ Ω v , with |Ω s | and |Ω v | being the volume measures of the solid region

Figure 4 . 1 -

 41 Figure 4.1 -Hashin Composite-Sphere-Assemblage(Hashin, 1962) and the corresponding representative hollow sphere Ω. Notation.

4 .

 4 in the space of volume (resp., surface) stresses. Similarly, Eq. (4.7) defines the support function associated to Chapter Limit analysis and homogenization under axisymmetric loadings 123 the macroscopic yield function G.

  of a suitable number of parameters non-uniquely identified by the requirement v ∈ BC v , namely by referring to v ∈ V ⊆ BC v . Specifically, the lowest upper bound Π for Π when v ∈ V results from the following minimization problem min v∈V Π(D) -Σ : D = min v∈V Π(D) -Σ c : D (4.12) where estimates Σ c = ∂ Π/∂D allow to identify the estimate G of the macroscopic yield function G.

  (4.14) to(4.16) and the support function in Eqs.(4.18) to(4.21) allow to describe the plastic behaviour of a broad class of pressure-dependent or independent materials, accounting for the influence of stress-Lode-angle effects. As special cases, classical yield functions with sharp deviatoric profiles, as well as the corresponding expressions for support functions and admissibility conditions, can be straight recovered via a proper choice of values for model parameters β, ξ and h, as it is summarized in Table4.1 for Tresca (Tr) and Mohr-Coulomb (MC) criteria. The yield function G I (τ ) for the interface I is assumed of the same form as in Eqs. (4.14) to (4.16), and it is expressed in terms of model parameters {ξ, h I , β}, where h I has the dimension of a membrane stress (namely, a force per unit length). Similarly, the interface support function π I and its admissibility condition formally read as in Eqs. (4.18) to (4.21), these latter being expressed in terms of the strain rate d I and the interface strength h I . Remark 6 Since the strength parameter h I affects only the value of the maximum plastic dissipation at the interface, plastic admissibility conditions in Eqs. (4.18) to (4.21) for π s exactly recover plastic admissibility for the support function π I at the interface when d is replaced by d = d r=ri .
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 424 Figure 4.2 -Local yield criterion. Function g(θσ) in Eq. (4.16) for different values of model parameter β. TXEσ: local triaxial expansion. TXCσ: local triaxial compression. SHRσ: local shear state.

  and Anoukou et al. (2016) for Drucker-Prager and Mohr-Coulomb plastic matrices, tensor C is herein assumed characterised by an axisymmetric form C = C 1 (e ρ ⊗ e ρ + e ϕ ⊗ e ϕ ) + C 2 e z ⊗ e z , C 1 and C 2 being constant parameters. Thereby, Eqs. (4.22) and (4.23) yield

  27) Accordingly, by introducing the hydrostatic I D 1 = tr D, the second-order deviatoric J D 2 = tr D 2 d /2 and the third-order deviatoric J D 3 = tr D 3 d /3 macroscopic strain-rate invariants (with D d = D -I D 1 1/3), the following relationships are obtained by combining Eqs. (4.1) and (4.27) D m = C 0 + D hom m 2 ], with θ D ∈ [0, π/3] being the macroscopic strain-rate Lode angle. Therefore, the mean deformation rate D m is equal to the sum of two contributions, D hom m and C 0 , respectively associated to the homogeneous (v hom ) and the heterogeneous (v het ) part of the local velocity field in Eq.

η 1

 1 and η 2 being expressed as in Eqs. (4.38) and (4.44), respectively. Remark 7 Conditions x = α and x = 1 have not been addressed in previous Cases B and D. They will be detailed in Section 4.5.1 and in 4.A.

  to determine the macroscopic yield function G ( Σ c ), the full resolution of Problem 6 in terms of the macroscopic strain-rate parameters C 0 , D hom m and D eq , and of the Lagrange-KKT multiplier λ is not mandatory. As a matter of fact, KKT conditions in Eqs.(4.60) can be directly used to compute ( Σ c m , Σ c eq , λ), by enforcing function G ( Σ c ) to describe physically-consistent macroscopic strength states.

Chapter 4 .

 4 Limit analysis and homogenization under axisymmetric loadings135 1) λ = 0 ⇒ d m ≥ H; 2) λ > 0 ⇒ d m = H;where primal feasibility condition results from the complementary slackness one. As regards the first case (that is, λ = 0), by combining Eqs. (4.57) and (4.58), the following expression is obtained for the Lagrangian functionL = -3hξ d m + 3f κ d I m I + 3 Σ c m (C 0 + D hom m ) + Σ c eq D eq (4.61)where, due to Eq. (4.29), averages of d m and d I m are equal to

  KKT multiplier λ has to assume strictly positive values in order to comply with the dual feasibility condition. Therefore, by recasting primal feasibility and complementary slackness in the form d m = H, the KKT Problem 6 is reformulated as Problem 7 Find Σ c m ,

Chapter 4 .

 4 admissibility condition on the interface being straight satisfied in its equality form d I m I = H I , since λ > 0. By replacing Eq. (4.62) into the Lagrangian function in Eq. (4.65), the following expres-136 Limit analysis and homogenization under axisymmetric loadings sions for stationarity conditions in Eq. (4.64a) are obtained

  . (4.72) and (4.73) identify the unique physically-consistent solution of the KKT problem in Eqs. (4.64), provided that the dual feasibility condition λ > 0 is verified or, equivalently, the local strain-rate field complies with primal feasibility and slackness condition d m = H. Remark 8 Denoting as Π = Σ c : D the macroscopic support function of G in Eq. (4.73), primal feasibility relationship d m = H corresponds to the macroscopic plastic admissibility condition on Π, that is it represents the requirement to be verified for ensuring finite positive values of macroscopic maximum plastic dissipation. Remark 9 The strictly-positive Lagrange-KKT multiplier in Eq. (4.72), introduced in problem (4.55) in order to enforce the average plastic admissibility condition (4.64c), assumes the physical meaning of strictly-positive plastic multiplier in the macroscopic normality law

  (4.70) and(4.71), this corresponds to compute derivatives of functions H and H I with respect to macroscopic strain-rate parameters C 0 and D eq . The change of variable r = R e ωx -3α (see Eq. (4.31)) is adopted to recast Ω-and ∂Ω ibased averages in Eqs. (4.56) and (4.66) in terms of the macroscopic strain-rate triaxiality measure ω, the latter depending on parameters C 0 and D eq . Functions H and H I -form expression for J (ω) coincides with the piece-wise relationship analytically provided byAnoukou et al. (2016) (see 4.A), and where function J I (ω) is equal to J I (ω) = η ± Υ(ω)| x=x I (denoting as J (resp., J I ) the first-order derivative of function J (resp., J I ) with respect to ω, solid matrix and interface model functions can be obtained, via Eqs. (4.70) and (4.71), from the following relationships

  (4.78) via relationships provided in 4.A for J (ω) and J I (ω), solid matrix and interface model functions in Eqs. (4.70) and (4.71) result to be positive-defined for any value of ω. Accordingly, due to the strictly positiveness of the plastic multiplier in Eq. (4.72), the parametric expression of Σ c m rate states in Eq. (4.1) with positive (resp., negative) heterogeneous mean deformation rates D m -D hom m = C 0 (see Eq. (4.28a)) thereby correspond to macroscopic yield stress states in Eq. (4.73) with tensile (resp., compressive) hydrostatic parts. Finally, by replacing Eqs. (4.29) and (4.75) into the macroscopic plastic admissibility condition d m = H, the following relationship is obtained

Chapter 4 .

 4 (4.83) and (4.84), model functions obtained in 4.A, by separately addressing TXE D and TXC D strain rates with = ±1, allow to determine macroscopic triaxial-expansion (Cases B and C) and triaxial-compression (Cases A and D) strength states ( Σ c m , Σ c eq ), with a tensile (Cases A and B) or compressive (Cases C and D) hydrostatic part Σ c m . Limit analysis and homogenization under axisymmetric loadings 4.5.3 On the positiveness of the macroscopic plastic multiplier As previously stated, the plastic multiplier λ and the macroscopic yield function G( Σ c ) in Eqs. (4.72) and (4.73) identify the unique physically-consistent solution of the constrained minimization problem in Eqs. (4.64), under the requirement λ > 0.

  Such a result is analysed in Figs.4.3a and 4.3b, wherein κ is computed as a function of model parameters ξ and β, and for different values of porosity f , when local plastic behaviours with (ξ, β) ∈ N and (ξ, β) ∈ O are respectively addressed (see Eqs.(4.39b) and (4.39c)). In detail, for a given choice of parameters ξ and β, the upper-limit value κ is shown to increase when porosity f reduces. Moreover, when ξ and f are considered as fixed, an increase in β corresponds to an increase of κ, such an occurrence being emphasized in the case of a local yield function with (ξ, β) ∈ N . Finally, for given values of β and f , decreasing ξ results in a reduction of the upper-limit value κ.Cases C-D TXE D and TXC D with C 0 < 0 (that is, = -1 and δ = ±1).

  and where, as shown in Fig. 4.4, parameters Ξ -, ξ * and ξ * * assume strictly positive values over the interval β ∈ [0, 1);

  (4.39c)). As a matter of fact, since ξ * * assumes negative values for β ∈ (1, 2] and ξ * * → -∞ for β → 1+ (Fig.4.4), relationship (4.91) reads as 2 Ξ --

  92)which results to be verified for any value of (ξ, β) ∈ O and f , since 2/Ξ -> f /ξ * . Accordingly, within the domain of definition of the void-size parameter κ ∈ [0, κ) and taking into account the consistency condition in Eq. (4.91) for local yield functions with (ξ, β) ∈ M, the macroscopic plastic multiplier λ in Eq. (4.72) results to be strictly positive. This straight corresponds to verify dual feasibility in Eq. (4.64b), as well as primal feasibility and slackness requirements in Eq.(4.64c

Figure 4 .

 4 Figure 4.3 -Hollow sphere with interface effects. Upper-limit void-size parameter κ as a function of β, and for different values of ξ and f . (a) (ξ, β) ∈ N (see Eq. (4.39b)). (b) (ξ, β) ∈ O (see Eq. (4.39c)).
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 44 Figure 4.4 -Model parameters Ξ -= Ξ| =-1, Ξ + = Ξ| =+1, ξ * and ξ * * defined in Section 4.3 versus β.

  .4 are obtained for model functions Ψ m and Ψ I m at ω → +∞, as well as for the macroscopic hydrostatic tensile (for = +1) and compressive (for = -1) strength Σ c m . As particular cases, proposed results recover the exact macroscopic limit stress provided by Brach et al. (2016b) for nanoporous materials with a Mohr-Coulomb (MC) or a Tresca (Tr) local plastic behaviour. As a matter of fact, simply by setting model parameters ξ and β as shown in Table 4.1, following relationships are obtained for the macroscopic hydrostatic strength Σ c, MC m = c cot φ 1 -1 -4κ sin φ sin φ + f where φ, c and σ 0 denote the friction angle, the cohesion parameter and the deviatoric strength, respectively. Moreover, when interface effects are disregarded (that is, for κ → 0 + ), Eqs. (4.99) and (4.100) recover expressions obtained by Thoré et al. (2009) and Cazacu et al. (2014) for Mohr-Coulomb and Tresca classical porous materials, respectively.

Table 4 . 4 -

 44 Hollow-sphere model undergoing pure hydrostatic strain-rate boundary conditions (ω → +∞) with = ±1: the case of a local yield function with (ξ, β) ∈ N . Values of model functions Ψm, Ψ I m , Ψeq and Ψ I eq in Eqs. (4.70) and (4.71), and of macroscopic hydrostatic stress Σ c m in Eqs. (4.73). Notation Σ c m indicates the exact strength (Brach et al., 2016b) in Eq. (4.101).
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 4 Limit analysis and homogenization under axisymmetric loadings 1977), the herein-assumed trial velocity field in Eq.(4.22) does not verify a priori plastic admissibility conditions, which consequently have to be explicitly addressed in the analytical derivation of the macroscopic yield criterion. In agreement with results provided byGuo et al. (2008) andAnoukou et al. (2016) for pressure-dependent yield functions, local admissibility conditions, expressed in terms of point-wise inequalities in Eqs. (4.18) to (4.21), have been reformulated in an average sense, thereby resulting in the macroscopic plastic requirement d m ≥ H. Moreover, by enforcing the solution of the KKT problem P * to be physically-consistent, the macroscopic plastic admissibility condition d m = H has been obtained. Therefore, by replacing point-wise inequalities in Eqs. (4.18) to (4.21) with the average equality d m = H, a limited selection of plastic admissible strain-rate states has been introduced, excluding some of those obtained from the heterogeneous trial velocity field in Eq. (4.23), and thereby leading to macroscopic hydrostatic strength estimates which may not correspond to the exact value in Eq. (4.101).

  4.103) which has been established byBrach et al. (2016b) from the heterogeneous velocity field in Eq.(4.23). Depending on the sign assumed by strain-rate components in Eqs.(4.102) and(4.103), following cases have to be addressed in order to determine absolute values in Eqs.(4.18) and (4.
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 4 Limit analysis and homogenization under axisymmetric loadings 149 Since c β > 0 and s β ≥ 0, the strain-rate component d θ in Eq. (4.105) is strictly positive. Moreover, under the previously-introduced assumption ξ > |Ξ + | (see Section 4.4, with Ξ + = Ξ| =+1 ), it results from Fig. 4.4 that ξ > ξ * (with ξ * defined as in Eq. (4.17)), and that the radial strain-rate component in Eq. (4.104) assumes strictly negative values.
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 4 4.113) Limit analysis and homogenization under axisymmetric loadingsThe radial deformation rate in Eq. (4.111) is strictly positive, since c β > 0. Moreover, under the previously-introduced assumption ξ > |Ξ -| = Ξ -(see Section 4.4, with Ξ -= Ξ| =-1 ), the strain-rate component d θ in Eq. (4.112) assumes strictly negative values.

  4). Accordingly, previous considerations prove that the proposed macroscopic yield function (4.73) is able to recover the exact value of tensile and compressive hydrostatic strength in Eq. (4.101) only if the local plastic admissibility condition is verified in its equality form, that is when (ξ, β) ∈ N for = -1 and when (ξ, β) ∈ (M ⊕ O) for = +1. Moreover, it is noted that, in the particular case of a Mohr-Coulomb or of a Tresca local strength criterion, model parameters are such that ξ = ξ * * and β ∈ [0, 1). This allows to verify local plastic admissibility condition in its equality form for = ±1, thereby resulting in exact values for both tensile and compressive hydrostatic stresses in Eqs. (4.99) and (4.100). As shown in Figs. 4.5 and 4.6 for local plastic behaviours with (ξ, β) ∈ N and (ξ, β) ∈ O, respectively, the discrepancy between the exact and the estimated hydrostatic strengths, as well as on the exponent α of the heterogeneous velocity field in Eq. (4.23), strongly depend on yield-function parameters ξ and β.

Figure 4 .

 4 Figure 4.5 -(a) Ratio between the estimated Σ c m and the exact Σ c m macroscopic hydrostatic tensile strength detailed in Table 4.3 for = +1 vs β. (b) Exponent α of the heterogeneous velocity field in Eq. (4.23) vs β. Curves obtained for different local-yield-function parameters complying with (ξ, β) ∈ N (i.e., ξ ≥ ξ * * and 0 ≤ β < 1) and for f = 1%.

Figure 4 . 6 -

 46 Figure 4.6 -Ratio between the estimated Σ c m and the exact Σ c m macroscopic hydrostatic compressive strength detailed in Table 4.3 for = -1 vs β (top). Exponent α of the heterogeneous velocity field in Eq. (4.23) vs ξ/Ξ -(bottom). Curves obtained for different local-yield-function parameters complying with (ξ, β) ∈ O (i.e., ξ ≥ ξ * and 1 ≤ β ≤ 2, thereby resulting in Ξ -> ξ * ) and for f = 1%.

  Comparative illustrations have been provided in order to highlight the influence of model parameters on the macroscopic strength domain. In detail, the effect induced by local-yield-function coefficients on proposed strength profiles has been clearly established. Furthermore, a consistent description of void-size effects on macroscopic strength states

Figure 4 .

 4 Figure 4.7 -Hollow-sphere model without interface effects (that is, for κ → 0 + ). Triaxialexpansion (TXE Σ ) and triaxial-compression (TXC Σ ) strength profiles for different values of parameter β and porosity f . Local plastic behaviours complying with: (a) (ξ, β) ∈ N for ξ = 2 ξ * * ; (b) (ξ, β) ∈ O for ξ = 6 Ξ -.

Figure 4 .

 4 Figure 4.8 -Hollow-sphere model with interface effects. Triaxial-expansion (TXE Σ ) and triaxialcompression (TXC Σ ) strength profiles for different values of the void-size parameter κ, porosity being set equal to f = 1%. Local plastic behaviours complying with: (a) (ξ, β) ∈ N for β → 0 and ξ = 2 ξ * * ; (b) (ξ, β) ∈ N for β = 0.5 and ξ = 2 ξ * * .

Figure 4 .

 4 Figure 4.9 -Hollow-sphere model with interface effects. Triaxial-expansion (TXE Σ ) and triaxialcompression (TXC Σ ) strength profiles for different values of the void-size parameter κ, porosity being set equal to f = 1%. Local plastic behaviours complying with: (a) (ξ, β) ∈ O for β = 1.5 and ξ = 6 Ξ -; (b) (ξ, β) ∈ O for β = 2 and ξ = 6 Ξ -.

Figure 4 .

 4 Figure 4.10 -Hollow-sphere model with interface effects. Asymmetry between triaxial-expansion (TXE Σ ) and triaxial-compression (TXC Σ ) strength profiles for different values of the void-size parameter κ, porosity being set equal to f = 1%. Local plastic behaviours complying with: (a) (ξ, β) ∈ N for β = 0.5 and ξ = 2 ξ * * ; (b) (ξ, β) ∈ O for β = 1.5 and ξ = 6 Ξ -.

Figure 4 .

 4 Figure 4.11 -Hollow-sphere model without interface effects (that is, for κ → 0 + ). Triaxialexpansion (TXE Σ ) and triaxial-compression (TXC Σ ) strength profiles for different values of parameter ξ, porosity being set equal to f = 1%. Local plastic behaviours complying with: (a) (ξ, β) ∈ N for β = 0.5; (b) (ξ, β) ∈ O for β = 1.5.
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 4 eters and by disregarding interface effects, proposed macroscopic yield function straight recovers relationship provided byAnoukou et al. (2016) in the particular case of a porous material with a Mohr-Coulomb plastic matrix. Moreover, established results fully retrieve analytical expressions of macroscopic hydrostatic strength obtained by Cazacu et al. (2014) and Thoré et al. (2009), by addressing a hollow-sphere model with a Tresca and Mohr-Coulomb local plastic behaviour, respectively.Finally, for any suitable choice of model parameters complying with model consistency conditions, the proposed approach allows for the straight identification of macroscopic strength properties under axisymmetric loadings for a wide class of porous and nanoporous materials, whose local plastic behaviour can not be properly accounted for by classical yield models. Limit analysis and homogenization under axisymmetric loadings 161 4.A Closed-form relationships of functions J and J I

  Eqs.(4.35) and (4.37), function ι in Eq. (4.77) reads asι = 1 + x + 3 1 + x 2 + 2x cos 2θ (

2 F 1 4 .

 214 (a, b; c; z) is introduced in Eq. (4.122) to indicate the Gauss hypergeofor |z| < 1, with c / ∈ {0} ∪ Z -and n ∈ {0} ∪ Z + , Z -and Z + being the sets of non-null negative and positive integer numbers, respectively, and where (•) n is the Chapter Limit analysis and homogenization under axisymmetric loadings Pochhammer symbol denoting the rising factorial (•) n = Γ(• + n)/Γ(•

2 F 1

 21 (a, b; c; z) = (-z) -a Γ(c)Γ(ba) Γ(b)Γ(ca) 2 F 1 a, ac + 1; ab + 1; 1 z + (-z) -b Γ(c)Γ(ab) Γ(a)Γ(cb) 2 F 1 bc + 1, b; ba + 1

1 -

 1 J I (ω) in Eq.(4.119) and J (ω) in Eq.(4.126) are continuous and continuously differentiable on ω ∈ (0, +∞), solid matrix and interface model functions Ψ m , Ψ eq , Ψ I m and Ψ I eq are continuous for any value of ω, thereby yieldingm = eq = I m = I eq = 0 , ∀ ω > 0 (4.128)Case B TXE D with C 0 > 0 (that is, = +1 and δ = +1).Owing to Eqs. (4.40) and (4.43), function ι in Eq. (4x + 3 1 + x 2 -2x cos 2θ if 0 < x < α

  on the sign of the principal deviatoric strain-rate component d d1 in Eq. (4.40), coefficient η ± in Eq. (4.76) reduces to η 1 or to η 2 . On the other hand, as regards function J (ω), the following expressions are provided byAnoukou et al. (
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 4 Limit analysis and homogenization under axisymmetric loadings ω ≤ αf α or α ≤ ω < 1 or ω > 1 :0 if αf α ≤ ω < f α or f α < ω ≤ α : ω ≤ αf α or α ≤ ω < 1 or ω > 1 : 0 if αf α ≤ ω < f α or f α < ω ≤ α : Case C TXE D with C 0 < 0 (that is, = -1 and δ = +1).Owing to Eqs. (4.45) and (4.47), function ι in Eq. (4.77) reads asι = 1 + x + 3 1 + x 2 + 2x cos 2θ (4.141)thereby resulting in the same expression of Υ(x) than that provided in Case A, that is Eq.(4.118). By replacing this latter into Eq. (4.76), function J I (ω) results inJ I (ω) = η 2 Υ(x) x=ω/f α , ∀ ω > 0 (4.142)where, since the negativeness of the principal deviatoric strain-rate component d d1 inEq. (4.45) for any positive value of x, coefficient η ± in Eq. (4.76) reduces to η 2 irrespective of the value assumed for ω. As regards function J (ω), it has been provided byAnoukou et al. (2016) in the form

  Chapter 1. A 3-layered non-linear homogenization with interface effects π s being a function of the velocity field v via the above-introduced compatibility condition d = (∇v + t ∇v)/2. It can be shown (e.g., deBuhan, 1986) that the stress state ∂G hom of the macroscopic strength domain, at the stress point where D is normal to ∂G hom , thereby Π hom identifying the support function for the convex set G hom of the admissible macroscopic stress states.

	Σ =	∂Π hom ∂D	(1.9)
	belongs to the boundary		

  Find {ρ 23 , ρ 34 } s.t.Since Eqs.(1.38) are non linear in ρ 23 and ρ 34 , the exact solution of Problem 3 can not be simply obtained. An estimate for {ρ 23 , ρ 34 } is deduced by adopting a perturbative approach with respect to κ. In detail, by enforcing κ = O( ), the interface effects are assumed to produce a perturbation with respect to the case of porous materials (namely, corresponding to κ = 0). Accordingly, due also to the previously-introduced smallness assumptions, Eqs.(1.38) can be linearised with respect to χ, ψ and κ. Thereby, neglecting higher-order terms, the following simplified problem can be stated. Find {∆ρ 23 , ∆ρ 34 } s.t.

	G P, ρ 23 , ρ 34 = 0 H P, ρ 23 , ρ 34 = 0			(1.38)
	∂G ∂χ P=P0	χ +	∂G ∂ψ P=P0	ψ +	∂G ∂κ P=P0	κ = 0	(1.39)
	∂H ∂χ P=P0	χ +	∂H ∂ψ P=P0	ψ +	∂H ∂κ P=P0	κ = 0
	ρ 23 = ρ 0 23 + ∆ρ 23 ρ 34 = ρ 0 34 + ∆ρ 34			(1.40)
	where {ρ 0 23 , ρ 0						
	Ĝ P, ρ 0 23 + ∆ρ 23 , ρ 0 34 + ∆ρ 34 = 0 Ĥ P, ρ 0 23 + ∆ρ 23 , ρ 0 34 + ∆ρ 34 = 0	(1.41)

and (1.37)

, k hom and µ hom in Eqs.

(1.31) 

linearly depend on µ 4 . Correspondingly, Eqs.

(1.34) 

and

(1.35) 

do not depend on µ 4 , that is G = G(P, ρ 23 , ρ 34 ) and H = H(P, ρ 23 , ρ 34 ). Hence, once solved parameters ρ 23 and ρ 34 from Eqs.

(1.35)

, the relationship (1.34) allows to identify macroscopic limit stress states (Σ m , Σ eq ).

In order to compute ρ 23 and ρ 34 , let the following problem be introduced. Problem 3 Problem 4 Find {ρ 23 , ρ 34 } s.t. Ĝ(P, ρ 23 , ρ 34 ) = G(P 0 , ρ 23 , ρ 34 ) + Ĥ(P, ρ 23 , ρ 34 ) = H(P 0 , ρ 23 , ρ 34 ) + where P 0 = P| χ=ψ=κ=0 . Solution {ρ 23 , ρ 34 } can be expressed in the form 34 } is the solution of Problem 4 when κ = 0, and {∆ρ 23 , ∆ρ 34 } identifies the perturbation induced by nanoscale effects, under the condition ∆ρ • /ρ 0 • = O( ). In detail, the following perturbative correction problem is introduced. Problem 5

Table 3 .

 3 1 -Values of model parameters for the adopted Bigoni-like strength criterion, allowing to recover yield (i.e., G s (σ)) and support (i.e., π s (d)) functions for: von Mises (vM), Tresca (Tr), Drucker-Prager (DP), and Mohr-Coulomb (MC) criteria. Notation: σ0 is the deviatoric strength; c is the cohesion; φ is the friction angle; I d 1 and J d 2 indicate the first (I d 1 = tr d) and the second-order deviatoric (J d 2 = tr d 2 d /2) strain-rate invariants, respectively; di and σi (with i ∈ {1, 2, 3}) denote principal strain-rate and principal stress components, respectively.

  Table 3.1, obtained support functions (see Eqs. (3.99) and (3.102)) fully recover, by a suitable choice of values for model parameters, the corresponding available expressions for von Mises and Drucker-Prager criteria (e.g.,

Table 4 .

 4 1 -Values of model parameters for the adopted Bigoni-like strength criterion, allowing to recover yield (i.e., G s (σ)) and support (i.e., π s (d)) functions for Tresca (Tr) and Mohr-Coulomb (MC) criteria. σ0: deviatoric strength; c: cohesion; φ: friction angle. Symbols σi and di with i ∈ {1, 2, 3} denote principal stress and strain-rate components, respectively.

  d1 , d d2 and d d3 denote principal deviatoric strain-rates components (that is,d di = d id m with i ∈ {1, 2, 3}).In order to ensure positive finite values of the local maximum plastic dissipation π s , the kinematically-admissible strain-rate field d defined by Eqs. (4.26) and (4.27) has to comply with plastic admissibility conditions introduced in Eqs. (4.18) and (4.19). Owing to Remark 6, this also ensures boundedness and positiveness of the interface support function π I , computed via the local trial strain-rate field d I = d| r=ri . Since requirements in Eqs. (4.18) and (4.19) are expressed in terms of the absolute values of principal strain-

	ditions in Eqs. (4.18) and (4.19) read as
					d m ≥ η 1 (d d1 +	√	∆)	(4.36)
	with	∆ =	9 4	D 2 eq 1 + x 2 + 2x cos 2θ	(4.37)
						32)
	with	∆ =	9 4	D 2 eq 1 + x 2 -2δ x cos 2θ	(4.33)
	and where symbols d rates components in Eqs. (4.32), the sign of d i (with i ∈ {1, 2, 3}) has to be discussed. To this aim, reference is made to results provided by Anoukou et al. (2016) and, in particular,
	to the following relationship			
		|d 1 | + |d 2 | + |d 3 | = |d m + d d1 | +	√	∆	(4.34)
	where the local mean deformation rate d m has to be strictly positive, due to admissibility
	requirements in Eqs. (4.18) and (4.19). Therefore, depending on the value assumed by
	macroscopic strain-rate coefficients and δ in Eqs. (4.32) (namely, on the strain-rate
	boundary conditions), as well as on parameters ξ and β (namely, on the local strength
	criterion), the following cases have to be addressed in order to explicitly formulate plastic
	admissibility conditions in Eqs. (4.18) and (4.19).
	Case A TXC D with C 0 > 0 (that is, = +1 and δ = -1). Owing to Eqs. (4.32), the principal deviatoric strain-rate component d d1 = d 1 -d m is strictly positive and equal to d d1 = D eq 2 (1 + x) (4.35)
	resulting in strictly positive values of quantity (d m + d d1 ) in Eq. (4.34).
	Thereby, by replacing Eqs. (4.30) and (4.35) into Eq. (4.34), plastic admissibility con-

  Chapter 4. Limit analysis and homogenization under axisymmetric loadings and where η 1 reads as in Eq. (4.38), and η 2 is equal to

					42)
	with	∆ =	9 4	D 2 eq 1 + x 2 -2x cos 2θ	(4.43)

  I ) ∈ K d are expressed in terms of constant parameters C 0 , C 1 , and C 2 , which have to comply Chapter 4. Limit analysis and homogenization under axisymmetric loadings 133 with kinematic admissibility requirements in Eqs. (4.27). By combining these latter with macroscopic strain-rate invariants in Eqs. (4.28a) and (4.28b), constants C 1 and C 2 are recast as

  H and H I in Eqs.(4.56) and (4.66) depending on C 0 and D eq only (see Eqs.(4.32)).

						70)
	Ψ eq =	∂H ∂D eq	,	Ψ I eq =	∂H I ∂D eq	(4.71)
	The Lagrange-KKT multiplier λ is determined by subtracting Eqs. (4.68) to (4.67),
	resulting in					

  ). Thereby, the macroscopic plastic admissibility condition d m = H being satisfied (see Remark 8), the macroscopic yield function G( Σ c ) in Eq. (4.73) identifies the unique acceptable solution of the inequalityconstrained minimization problem P * .
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									A A					

  Moreover, by replacing η 1 in Eq. (4.38) and η 2 in Eq. (4.44) into Eqs. (4.94) and (4.95), relationships summarised in Table 4.2 are obtained for corresponding values of model functions Ψ eq and Ψ I eq , as well as for the

.95) where Eqs. (4.93) yield Σ c m = 0 for δ = ±1.

Table 4 .

 4 2 -Hollow-sphere model with interface effects, under pure deviatoric strain-rate boundary conditions (ω → 0 + ) with δ = ±1. Corresponding values of solid matrix and interface model functions Ψm, Ψ I m , Ψeq and Ψ I eq in Eqs. (4.70) and (4.71), as well as of the macroscopic deviatoric stress Σ c eq in Eq. (4.73), depending on the local plastic behaviour (see Eqs. (4.39)).

Table 4 .

 4 3 -Hollow-sphere model undergoing pure hydrostatic strain-rate boundary conditions (ω → +∞) with = ±1: the case of a local yield function with (ξ, β) ∈ (M ⊕ O). Values of model functions Ψm, Ψ I

	m , Ψeq and Ψ I m in Eqs. (4.73). Notation eq in Eqs. (4.70) and (4.71), and of macroscopic hydrostatic stress Σ c	Σ c m indicates the exact strength (Brach et al., 2016b) in Eq. (4.101).	lim ω→+∞ δ=±1	= +1

  * * , plastic admissibility condition in Eq. (4.18) reads as in

	Eq. (4.108). The latter yields, by combining Eqs. (4.113) and (4.114),	
	ξ ≤ ξ * *	(4.115)

that is verified in its strictly inequality form, since Ξ -< ξ < ξ * * .

-if ξ ≥ ξ * * , plastic admissibility condition in Eq. (

4

.18) reads as in Eq. (

4

.109).

The latter, by combining Eqs.

(4.113) 

and

(4.114)

, is verified in its equality form.

• 1 ≤ β ≤ 2 plastic admissibility condition in Eq. (

4

.19) reads as in Eq. (

4

.108), resulting in

ξ ≥ ξ * * (4.116)

which is satisfied in its strictly inequality form ξ > Ξ -, since ξ * * assumes negatives values over the considered interval of β (see 4.
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c m tensile strength (resp., the exponent α) decreases when ξ

Afin de répondre à ces exaltantes perspectives, une des voies de recherche les plus prometteuses réside dans la compréhension, la caractérisation et la prédiction des effets de taille des nanopores sur les propriétés mécaniques du matériau. Malgré cela, la plus parte des études actuellement disponibles dans la littérature, concernant les effets de taille sur la réponse mécanique des nanoporeux, ont essentiellement porté sur l'estimation des propriétés élastiques effectives. Au contraire, très peu d'attention a été accordée à l'influence de la taille des nanopores dans le régime plastique. L'objectif principal de cette thèse a donc été d'étudier les propriétés de résistance des matériaux nanoporeux ductiles à l'aide d'approches théoriques et numériques. En particulier, dans le contexte des méthodes d'homogénéisation, visant à construire un milieu homogène aux propriétés effectives équivalentes, des critères de résistance macroscopiques ont été établis par des approches analytiques (homogénéisation non-linéaire et analyse limite). Dans ce cadre, les surfaces des nanopores ont été modélisées comme des interfaces imparfaites cohérentes. Les critères de résistance ainsi obtenus ont permis de tenir en compte les effets de taille, tout en améliorant les formulations déjà existantes. En outre, dans le but de comprendre les mécanismes de déformation à l'oeuvre dans les matériaux nanoporeux et de constituer une base de référence pour la calibration et/ou la validation des modèles analytiques disponibles, ainsi que pour le développement de nouvelles approches de modélisation, des simulations numériques basées sur la Dynamique Moléculaire ont été conduites, sous des conditions de chargements multiaxiaux en vitesse de déformation. Par rapport aux simulations actuellement disponibles dans la littérature, considérant généralement des conditions de chargement particulières (essais de traction v

CHAPTER 4

Nanoporous materials with a general isotropic plastic matrix: Limit analysis and homogenization under axisymmetric loadings

Abstract

In this Chapter, a macroscopic general strength criterion for nanoporous materials accounting for void-size effects is analytically established. A homogenization procedure based on a kinematic limit-analysis is performed addressing a hollow-sphere model comprising a rigid-ideal-plastic solid matrix and undergoing axisymmetric strain-rate boundary conditions. Void-size effects are accounted for by introducing an imperfect-coherent interface at the cavity boundary. Both the interface and the solid matrix are assumed to obey to a simplified form of the general yield function proposed by Bigoni and Piccolroaz [Int J Solids Struct;41: 2855-2878], thereby allowing for an extreme flexibility in describing triaxiality and Lode-angle effects. A parametric closed-form relationship for the macroscopic strength criterion is obtained as the unique physically-consistent solution of an inequality-constrained minimization problem, the latter being faced via the Lagrangian method combined with Karush-Kuhn-Tucker conditions. Any possible choice of local-yield-function parameters is carefully addressed, by clearly highlighting the effects of a specific local plastic behaviour on the material macroscopic response. Finally, several comparative illustrations are provided, showing the influence of model parameters on the proposed yield function, as well as the model capability to describe the macroscopic strengthening, typical of nanoporous materials, induced by a void-size reduction for a fixed porosity level.

Present Chapter corresponds to the submitted research paper (Brach et al., 2016d).

A self-consistent notation is adopted.

Keywords: Nanoporous materials, general strength criterion, limit analysis, isotropic plastic matrix, void-size effects. increases (resp., decreases), for any value of β ∈ [0, 1). On the other hand, when a local plastic behaviour (ξ, β) ∈ O is considered, results in Fig. 4.6 for = -1 show that, by assuming ξ as a multiple of Ξ -= Ξ -(β), the ratio between the compressive strengths Σ c m /Σ c m reduces when ξ decreases, for any value of β ∈ [1,2]. Therefore, for a given choice of (ξ, β) ∈ N (resp., (ξ, β) ∈ O), the proposed macroscopic yield function underestimates tensile (resp., compressive) hydrostatic strength, with discrepancy reducing when the exponent α reduces.

Comparative illustrations

With the aim to highlight the influence of local plastic behaviour, porosity and void-size effects on the estimated strength properties, the macroscopic yield function in Eq. (4.73) is represented in Figs. 4.7 to 4.11, for different values of model parameters ξ, β, f and κ.

For illustrative purposes, in the following reference is made to local yield functions with (ξ, β) ∈ N and (ξ, β) ∈ O, sets N and O being defined as in Eqs. (4.39). Moreover, aiming to ensure the strictly positiveness of the macroscopic plastic multiplier in Eq. ( 4.87), the void-size coefficient κ is varied within the admissible interval κ ∈ [0, κ).

Model parameter ξ is firstly considered as fixed and equal to ξ = 2 ξ * * (resp., ξ = 6 Ξ -) for local yield functions complying with (ξ, β) ∈ N (resp., with (ξ, β) ∈ O). It is worth observing that, in agreement with plastic admissibility conditions in Eqs. (4.18) and (4.19), and since both ξ * * and Ξ -depend on β, such a choice for ξ allows to vary β in the interval [0, 1) for (ξ, β) ∈ N and in [1,2] for (ξ, β) ∈ O (see Fig. 4.4).

The case of classical porous materials is considered in Fig. 4.7, by evaluating the macroscopic yield function in Eq. (4.73) in the limit κ → 0 + , that is by neglecting interface effects. Strength profiles for macroscopic triaxial expansion (i.e., TXE Σ at θ Σ = 0) and triaxial compression (i.e., TXC Σ at θ Σ = π/3) are represented for different values of β and f . As expected, results show that macroscopic strength properties tend to reduce when porosity increases, irrespective of the assumed local plastic behaviour, and for both TXE Σ and TXC Σ stress states. Furthermore, as a consequence of combined effects of the first I σ 1 and the third J σ 3 stress invariants on local plastic response, predicted macroscopic strength properties hugely depend on the macroscopic stress Lode angle θ Σ , resulting higher in TXC Σ than in TXE Σ , for any choice of β and f (see also Fig. 4.10). Moreover, strength profiles are proven to be strongly asymmetric with respect to the deviatoric axis Σ m = 0, leading to higher values of hydrostatic compressive strength than of hydrostatic tensile ones, such an occurrence being emphasized when porosity f decreases. Results in Fig. 4.7a (resp.,Fig. 4.7b) also highlight that, in the case of a local plastic behaviour with (ξ, β) ∈ N (resp., with (ξ, β) ∈ O), model parameter β has a strengthening (resp., weakening) effect on macroscopic strength properties, resulting in an overall expansion (resp., contraction) of strength profiles when β increases.

Void-size effects on macroscopic strength properties are depicted in Figs. 4.8 and 4.9, by considering the porosity f as fixed and for different values of the dimensionless parameter κ introduced in Eq. (4.59). Proposed results show that, irrespective of the assumed local plastic behaviour, a significant improvement of macroscopic strength properties with Chapter 4. Limit analysis and homogenization under axisymmetric loadings Case D TXC D with C 0 < 0 (that is, = -1 and δ = -1).

Owing to Eqs. (4.48) and (4.50), function ι in Eq. ( 4.77) reads as

yielding the following expressions for Υ(ω)

the latter resulting in

where, depending on the sign of the principal deviatoric strain-rate component d d1 in

Eq. (4.48), coefficient η ± in Eq. (4.76) reduces to η 1 or to η 2 . Moreover, in agreement with results provided by Anoukou et al. (2016), function J (ω) is assumed equal to

if ω ≥ α : 

for which no analytic continuation is needed, since the Gauss hypergeometric function

α ; α-1 α ; -x is defined for any x > 0. By computing (4.138) at endpoints ω = f α and on ω = αf α of subdomains in Eqs. (4.147), interface parameters I m and I eq result equal to zero for any values of ω belonging to intervals 0 < ω < f α , f α < ω < αf α and ω > αf α . On the other hand, by enforcing conditions (4.137) at endpoints ω = f α , ω = αf α , ω = 1 and ω = α of subdomains in Eqs. (4.148), the following expressions result for m and eq m =

Conclusions and future perspectives ing research task, opening towards the definition of powerful homogenization toolboxes for structural applications. Nevertheless, as a supplement of the general macroscopic strength criterion, two theoretical issues should be preliminary addressed, consisting in the explicit determination of:

• the macroscopic flow rule, that is the constitutive relationship between the predicted strength estimate and the macroscopic strain-rate state. Owing to a classical result established by Rice (1971), the normality property of the local flow rule is expected to be preserved in the homogenization procedure, thereby resulting in a plastic normality law at the macroscopic level.

• evolution laws providing the actual value of both porosity and void size at each stage of the deformation process. To this aim, a careful attention should be paid to the pressure-sensitivity of the considered local plastic behaviour, resulting in a plastic compressibility of the material comprising the solid matrix.

APPENDIX A

Deviatoric strength of nanoporous materials: A limit analysis approach

Abstract

In this Appendix, deviatoric strength properties of nanoporous materials are investigated by addressing the limit state of a hollow sphere undergoing axisymmetric deviatoric strainrate based loading conditions. The hollow sphere is assumed to be comprised of a rigid ideal-plastic matrix obeying to a von Mises strength criterion. Void-size effects are consistently described by introducing a coherent-imperfect homogeneous interface at the cavity boundary. In the framework of a kinematic approach, the limit-analysis problem on the hollow sphere is solved by referring to a particular trial velocity field, expressed in terms of some free model parameters, chosen as a result of an optimization strategy. A closed-form expression for estimating the macroscopic deviatoric strength is obtained and successfully compared with available benchmarking data.

Present Appendix corresponds to the published research paper (Brach et al., 2016e) [Springer Series in Solid and Structural Mechanics;DOI: 10.1007DOI: 10. /978-3-319-48884-4 (2016))].

A self-consistent notation is adopted.

Keywords: Nanoporous materials, void-size effects, deviatoric strength, kinematic limit analysis, trial velocity field. (1991) to the presence of self-equilibrated surface stresses at the cavity surface, induced by a local perturbation in the atomic arrangement close to the nanovoids and usually negligible for classical porous materials. In the framework of a continuum approach, void-size effects have been generally addressed by introducing coherent-imperfect interface laws at the cavity boundaries (e.g., Duan et al., 2005a,b;Gurtin andMurdoch, 1975, 1978;Povstenko and Yu, 1993), that is accounting for surface stresses by prescribing the discontinuity of the stress vector across the interface.

Strength models for classical porous materials Gurson (1977); Ponte Castañeda (1991) are able to account for porosity effects only, thereby resulting in void-size independent yield functions. Void-size dependent strength criteria have been recently proposed in Brach et al. (2016b); Dormieux and Kondo (2013); Goudarzi et al. (2010); [START_REF] Moshtaghin | Effects of surface residual stress and surface elasticity on the overall yield surfaces of nanoporous materials with cylindrical nanovoids[END_REF]; Zhang and Wang (2007); Zhang et al. (2008Zhang et al. ( , 2010)), by referring to non-linear homogenization techniques. As regards limit analysis approaches, the well-established criterion proposed by Gurson (1977) for porous media has been extended to nanoporous materials in Dormieux and Kondo (2010), via a plastic generalization of interface stress models Monchiet and Bonnet (2010). However, as it will be also shown in the following, the novel strength criterion proposed in Dormieux and Kondo (2010) overrates available numerical evidence Trillat and Pastor (2005). In this light, and with reference to deviatoric axisymmetric states only, present Appendix aims to furnish a more effective estimate for the macroscopic deviatoric strength of nanoporous materials, properly accounting for void-size effects. In detail, the limit analysis problem on a hollow sphere domain is solved by referring to the parametric trial velocity field introduced in Budiansky et al. (1982) (see also [START_REF] Zhu | A continuum model for flow strength of metal-matrix composites[END_REF], allowing for an optimization procedure.

The Appendix is organized as follows. In Section A.2 basic elements of the limitanalysis theoretical framework are presented. In Section A.3 the adopted trial velocity field is introduced. The estimate of the macroscopic strength of a hollow sphere with interface effects and undergoing an axisymmetric deviatoric loading is determined in Section A.4, discussing effectiveness and accuracy of the proposed model. Finally, some conclusions are traced in Section A.5.

A.2 Problem statement

Let the hollow sphere in and of the spherical void (Ω v ), respectively, the total volume of the system (namely, matrix Ω s is assumed to be homogeneous and comprised of an isotropic material with a rigid ideal-plastic behaviour.

In agreement with continuum-based descriptions Duan et al. (2005a); Gurtin andMurdoch (1975, 1978); Wang et al. (2011) and strength models for nanoporous materials Dormieux andKondo (2010, 2013), the influence of non-negligible surface stresses induced by the presence of a possibly-nanosized void is herein addressed by introducing a coherent and imperfect homogeneous interface I at the void boundary ∂Ω i (Fig. A.1). In particular, the velocity field (resp., the stress vector) is prescribed to be continuous (resp., discontinuous) through ∂Ω i . In the framework of a plastic generalization of the Gurtin-Murdoch stress-interface model Gurtin and Murdoch (1975), the material comprising the homogeneous interface is assumed to be itself isotropic and rigid ideal-plastic.

Let the Cartesian reference system (e x , e y , e z ) be introduced, with the origin O at Let the fourth-order projector tensor T = P⊗P be introduced, where the operator ⊗ is component-wise defined by T ijkl = (P ik P jl +P il P jk )/2, and where the second-order tensor P is defined as P = (1e r ⊗ e r ) with 1 the identity tensor. Accordingly, A T = T : A identifies the projection on planes orthogonal to e r of a second-order tensor A. In the following, A is referred to as a planar tensor if A = A T .

Neglecting the influence of body forces, sets of statically-admissible (S σ ) and plasticallyadmissible (P σ ) stress fields are introduced as 

where σ (resp., τ ) denotes the microscopic second-order stress tensor (resp., the planar surface stress tensor at I), f s (resp., f I ) indicates the yield function of the solid matrix (resp., of the interface), K is the curvature tensor, and σ ± = σ(r → R ± i ). It is worth pointing out that the equilibrium equation at I in Eq. (A.1a) is expressed via a generalized form of the Young-Laplace equation Gurtin and Murdoch (1975); Duan et al. (2005b), and set P σ prescribes that the material is everywhere yielding.

The exterior boundary ∂Ω e of the system is assumed to undergo to strain rate-based conditions, expressed in terms of the following second-order axisymmetric deviatoric tensor:

D being a constant strain-rate parameter, and whose second-order deviatoric and thirdorder deviatoric stress invariants are denoted as J d 2 = tr(D 2 )/2 and J d 3 = tr(D 3 )/3, respectively. The strain-rate deviatoric measure D eq , as well as the strain-rate Lode angle θ D are also introduced

The set of kinematically-admissible (K d ) strain-rate fields is defined as:
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In the case of an isotropic local plastic behaviour and since for the case under inves-Appendix A. Deviatoric strength: A limit analysis approach tigation tr(D) = 0, the macroscopic support function Π hom in Eq. (A.10) is expressed in terms of the isotropic strain-rate invariants D eq and θ D only, resulting in the macroscopic limit deviatoric stress tensor

Correspondingly, the deviatoric strength measure Σ eq = 3J σ 2 is introduced, with J σ 2 = tr (Σ )

2 /2.

In the following, instead of seeking the infimum in Eq. (A.10) over all the kinematically-admissible strain-rate states, a particular microscopic velocity field v, such that v = D • r on ∂Ω e and yielding to the local strain-rate fields ( d, d I ) ∈ K d , is chosen furnishing an estimate of the macroscopic support function and thereby an upper bound of the macroscopic limit stress.

A.3 Trial velocity field

In agreement with the strategy originally derived in Budiansky et al. (1982) and also adopted in [START_REF] Zhu | A continuum model for flow strength of metal-matrix composites[END_REF], the local kinematics at the collapse state is estimated by assuming a trial velocity field v = v r e r + v θ e θ + v ϕ e ϕ in the form

where function ζ(r, θ) is defined by

where Roman numerals are used to indicate derivatives with respect to r. Relationships (A.15) allow the velocity field in Eq. (A.13) to comply with the strain-rate boundary condition expressed in Eq. (A.4), and thereby resulting in a kinematically-admissible strain-rate field ( d, d I ) ∈ K d . In detail, it is simple to prove that the adopted trial velocity field under the constrain (A.15) satisfies the boundary requirement

It is worth observing that condition χ(r) = 0 straight yields the velocity field classically adopted in kinematic limit-analysis approaches Dormieux and Kondo (2010);Gurson (1977). Furthermore, assumptions (A.13) and (A.14) correspond to a local strain-rate field verifying the incompressibility condition

everywhere in the hollow sphere, irrespective of the particular form assumed for χ(r).

A.4 Strength estimate

The solid matrix Ω s and the interface I are assumed to obey to a von Mises strength criterion, whose yield (f s and f I ) and support (π s and π I ) functions are respectively expressed as Salençon (1983)

where σ d = σ -(tr σ/3)1 is the deviatoric part of the stress tensor σ in Ω s , τ d = τ -(tr τ /3)1 is the deviatoric part of the planar stress tensor τ at I, with 1 the secondorder identity tensor, and where σ 0 and k I are the deviatoric strength parameters of the solid matrix and the interface, respectively, the latter having the dimensions of a membrane stress (namely, a force per unit length).

Kinematically-admissible strain-rate fields ( d, d I ) ∈ K d , computed via the velocity field v introduced in Section A.3, allows to determine, through Eqs. (A.18c) and (A.18d), the following estimate for the macroscopic support function introduced in Eq. (A.11)

where the dimensionless parameter

is introduced aiming to account for the influence of void-size effects. As a matter of fact, when strength values for the interface (namely, k I ) and for the solid matrix (σ 0 ) are considered as fixed, a reduction in the void size R i corresponds to increase κ. The case of porous materials comprising cavities with large values of R i is thereby recovered simply Appendix A. Deviatoric strength: A limit analysis approach by considering κ = 0, namely by assuming as negligible surface-induced effects.

In order to obtain an explicit analytical estimate of Π hom , the Cauchy-Schwartz inequality leads: Moreover, as proven in Gurson (1977), Π hom and thereby Π hom do not depend on the strain-rate Lode angle θ D . Accordingly, the corresponding macroscopic stress estimate results in (see Eq. (A.12))

where Σ eq is an upper-bound deviatoric macroscopic strength measure.

Aiming to furnish a consistent and effective estimate for the macroscopic support whose solution is: .30) where C 1 , C 2 , C 3 and C 4 are some integration constants. These latter, due to the kinematic admissibility in Eq. (A.15), have to satisfy It is worth remarking that such an optimization strategy can not be performed with classical trial velocity fields, which result to be completely defined via strain-rate boundary conditions only, such the one proposed by Gurson (1977) and used in Dormieux and Kondo (2010) (namely, Eq. (A.13) with χ(r) = 0).

Accordingly, the optimal values C opt 3 and C opt 4 are obtained as .32) where ∆ = 48 + 225p With reference to the proposed result, the following observations can be stated:

• Gurson (1977).

strength estimate reduces when p increases. The influence of void-size effects is addressed in Figs. A.2b and A.3, resulting in an improvement of the material strength when the size of void reduces (that is, for large values of κ). Such an occurrence is qualitatively in agreement with well-established experimental Biener et al. (2005Biener et al. ( , 2006)); Hakamada and Mabuchi (2007) and numerical (e.g., Brach et al., 2016a;Zhao et al., 2009) evidence.

Aiming to assess the effectiveness of the proposed strength estimate, comparisons with both theoretical and numerical benchmarks are also provided for different values of parameters p and κ. In detail, reference is made to the theoretical predictions obtained via Eq. (A.34) Dormieux and Kondo (2010); Gurson (1977) and to finite-element-based static and kinematic limit-analysis computations provided in Trillat and Pastor (2005) (these latter, available only in the case of κ = 0 and denoted as TP data). It is observed that, although the proposed deviatoric strength is an upper bound of the exact one, BDKVbased results improve the DK estimate, resulting in lower values and thereby in a more accurate estimate of deviatoric strength properties for porous (κ = 0) and nanoporous (κ > 0) materials.

A.5 Concluding remarks

In this Appendix, an upper-bound estimate of the macroscopic deviatoric strength of a hollow sphere, representative of a particular microstructure for porous and nanoporous materials, has been determined in the case of an axisymmetric deviatoric strain-rate condition and via a kinematic limit analysis approach. The hollow sphere has been assumed to be comprised of a rigid ideal-plastic material, obeying to a von Mises strength criterion. Void-size effects associated to the possible void nanoscale Biener et al. (2005Biener et al. ( , 2006)); Appendix A. Deviatoric strength: A limit analysis approach Hakamada and Mabuchi (2007) have been accounted for via a coherent and imperfect homogeneous interface at the cavity boundary. The local kinematics at the limit state has been estimated by introducing a suitable trial velocity field, in agreement with findings in Budiansky et al. (1982) (see also [START_REF] Zhu | A continuum model for flow strength of metal-matrix composites[END_REF] and allowing for an optimization procedure.

With respect to the current state-of-the-art, proposed results furnish the following novel and original contributions:

• an effective description of void-size effects, resulting in an increase of the predicted macroscopic deviatoric strength as the void radius decreases, qualitatively in agreement with available experimental Biener et al. (2005Biener et al. ( , 2006)); Hakamada and Mabuchi (2007) and numerical Brach et al. (2016a); Zhao et al. (2009) evidence;

• an improvement of limit-analysis based estimates Dormieux and Kondo (2010); Gurson (1977), resulting in a more effective description of the macroscopic deviatoric strength for porous and nanoporous materials.
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