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Résumé

Dans la récente théorie des grounds, Prawitz développe ses investigations sé-
mantiques dans la direction d’une analyse, à la fois philosophique et formelle,
de l’origine et de la nature du pouvoir que les inférences valides, ainsi que les
démonstrations où ces inférences figurent, exercent sur des agents engagés
dans l’activité déductive ; à savoir, le pouvoir d’obliger épistémiquement à
accepter les conclusions, si l’on en a accepté les prémisses ou les hypothèses.
Il s’agit de la plus ancienne des questions à laquelle s’intéresse la logique,
depuis sa naissance avec Aristote - on pourrait dire, presque de la raison
d’être de cette discipline.

La notion de base est celle de ground. Un ground, grosso modo, est ce dont
on est en possession lorsqu’on est justifié à affirmer un certain énoncé. Les
grounds peuvent être construits en accomplissant des opérations qui permet-
tent le passage d’un état de justification à un autre ; il s’agit, donc, d’objets
abstraits mais épistémiques, qui contiennent des opérations abstraites mais
calculables. Un acte d’inférence consiste à l’application d’une opération des
grounds pour les prémisses aux grounds pour la conclusion, acte qui sera
valide si l’opération accomplie produit effectivement des grounds pour la
conclusion quand appliquée aux grounds pour les prémisses. Finalement,
une démonstration est une concaténation d’inférences valides.

Relativement à son objectif de fond, la théorie des grounds présente des
avancements indubitables par rapport à la précédente approche de Prawitz,
la proof-theoretic semantics. En particulier, la théorie des grounds offre une
définition du concept d’inférence valide en vertu de laquelle il devient possi-
ble de faire dépendre la contrainte épistémique des démonstrations de celle
des inférences valides dont ces démonstrations se composent. Dans la proof-
theoretic semantics, la notion d’inférence valide dépend de celle de démon-
stration, alors que la caractérisation suggérée apparaît difficile - sinon impos-
sible.

Mais la théorie des grounds et la proof-theoretic semantics partagent
un problème ; dans l’une comme dans l’autre, inférences valides et démon-
strations pourraient être telles qu’il est impossible, pour des agents qui les
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utilisent, de reconnaître le fait qu’elles justifient leur conclusion. Si une
inférence valide ne peut pas être reconnue comme valide, et si une démon-
strations ne peut pas être reconnue comme une démonstration, aucun agent
qui les utilisent ne sera obligé à accepter la conclusion par le seul fait de les
avoir accomplies. Il doit aussi reconnaître que ce qu’il a fait sert à fonder
épistémiquement les résultats auxquels il vise.

Nous allons développer le cadre formel de la proposition de Prawitz en
introduisant, d’un côté, un « univers » de grounds et opérations sur grounds
et, de l’autre, des langages formels de grounding dont les termes dénotent
grounds ou opérations sur grounds. Tout langage de grounding doit être
indéfiniment ouvert à l’ajout des nouvelles ressources expressives. De plus,
en raison du théorème d’incomplétude de Gödel, il ne peut pas exister un
langage de grounding clôt capable de décrire tous les grounds ou toutes les
opérations sur grounds. Par conséquent, nous allons également introduire une
notion d’expansion de langage de grounding, ce qui nous permettra de créer
une hiérarchie de langages et de fonctions de dénotation. Ainsi, il deviendra
possible de décrire propriétés et résultats dont les langages de grounding
jouissent, à la fois singulièrement et par rapport à leurs expansions.

À côté des langages de grounding, nous proposerons aussi des systèmes de
grounding, à l’aide desquels démontrer des propriétés significatives des termes
des langages de grounding (par exemple le fait qu’un terme dénote un ground
ou une opération sur grounds, ou le fait que deux termes dénotent le même
ground ou la même opération sur grounds), ou des composantes syntaxiques
qui figurent dans ces termes (par exemple le fait qu’un certain symbol opéra-
tionnel est défini de façon qu’il dénote une opération sur grounds avec un
certain domaine et un certain co-domaine, ou qu’il est traduisible dans les
symboles opérationnels d’un sous-langage du langage auquel il appartient).

Finalement, nous allons aborder deux questions concernant langages et
systèmes. Tout d’abord, celle de la complétude de la logique intuitionniste
par rapport à la théorie des grounds ; en d’autres mots, nous discuterons
la conjecture de Prawitz dans le cadre formel que nous avons proposé. En
second lieu, nous poursuivrons une analyse du problème de reconnaissabilité
déjà évoqué, à la lumière des acquisitions formelles permises par langages et
systèmes de grounding.
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Riassunto

Nella recente teoria dei grounds, Prawitz sviluppa le sue indagini semantiche
nella direzione di un’analisi, al contempo filosofica e formale, dell’origine e
della natura di quella speciale forza che le inferenze valide, e le dimostrazioni
in cui tali inferenze sono coinvolte, esercitano su agenti impegnati nell’attività
deduttiva: la forza di costringere epistemicamente ad accettare le conclusioni
dell’inferenza o della dimostrazione, se se ne sono accettate le premesse o le
ipotesi. Si tratta della più antica delle questioni di cui la logica si interessa
fin dai tempi della sua nascita con Aristotele - diremmo quasi della raison
d’être di tale disciplina.

La nozione di fondo è quella di ground. Un ground è, grosso modo, ciò di
cui si è in possesso quando si è giustificati nell’asserire un certo enunciato.
I grounds possono essere costruiti compiendo operazioni che consentano il
passaggio da uno stato di giustificazione all’altro; si tratta, perciò, di oggetti
astratti ma epistemici, in cui sono coinvolte operazioni astratte ma com-
putabili. Un atto inferenziale consiste nell’applicazione di un’operazione dai
grounds per le premesse ai grounds per la conclusione, atto che risulterà
legittimo quando l’operazione compiuta è effettivamente tale da produrre
grounds per la conclusione quando applicata a grounds per le premesse. Una
dimostrazione, infine, è una concatenazione di inferenze valide.

Relativamente al suo obiettivo di fondo, la teoria dei grounds presenta
indubbi avanzamenti rispetto al precedente approccio di Prawitz, la proof-
theoretic semantics. In particolare, la teoria dei grounds offre una definizione
della nozione di inferenza valida in virtù della quale diventa possibile far
dipendere la costrizione epistemica esercitata delle dimostrazioni da quella
esercitata dalle inferenze valide di cui le dimostrazioni si compongono. Nella
proof-theoretic semantics, al contrario, la nozione di inferenza valida dipende
da quella di dimostrazione, sicché la caratterizzazione suggerita risulta diffi-
cile - se non impossibile.

Ma teoria dei grounds e proof-theoretic semantics condividono un prob-
lema; nell’una come nell’altra, inferenze valide e dimostrazioni potrebbero
essere tali da risultare impossibile, ad agenti che ne facciano uso nella conc-
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reta pratica deduttiva, un riconoscimento del fatto che esse giustificano la loro
conclusione. Se un’inferenza valida non può essere riconosciuta come valida,
e se una dimostrazione non può essere riconosciuta come dimostrazione, nes-
sun agente che ne faccia uso si sentirà costretto ad accettare la conclusione
per il solo fatto di averle compiute. Egli deve anche riconoscere che quanto
fatto serve a sostanziare epistemicamente i risultati cui egli mira.

Il quadro formale della proposta di Prawitz sarà da noi articolato intro-
ducendo un "universo" di grounds ed operazioni su grounds e, poi, linguaggi
formali di grounding i cui termini denotano grounds od operazioni su grounds.
Ogni linguaggio di grounding deve essere indefinitamente aperto all’aggiunta
di nuove risorse espressive né, a causa dell’incompletezza di Gödel, può es-
istere un linguaggio di grounding chiuso capace di descrivere tutti i possibili
grounds o tutte le possibili operazioni su grounds. Pertanto, introdurremo an-
che una nozione di espansione di linguaggio di grounding, il che ci consentirà
di creare una gerarchia di linguaggi e di funzioni di denotazione. Diventerà
così possibile descrivere proprietà e risultati di cui i linguaggi di grounding
godono, tanto singolarmente, quanto in relazione alle loro espansioni.

Accanto ai linguaggi di grounding, proporremo anche sistemi di ground-
ing, in cui dimostrare proprietà rilevanti dei termini dei linguaggi di ground-
ing (ad esempio, il fatto che un termine denoti un ground o un’operazione su
grounds, o che due termini denotino lo stesso ground o la stessa operazione
su grounds), o di alcune componenti sintattiche in essi coinvolte (ad esempio,
che un certo simbolo funzionale è definito in modo da denotare un’operazione
su grounds con un certo dominio ed un certo co-dominio, o in modo da es-
sere riscrivibile in termini di simboli operazionali di un sotto-linguaggio del
linguaggio cui esso appartiene).

Ci occuperemo infine di due questioni relative a linguaggi e sistemi. In-
nanzitutto, la questione della completezza della logica intuizionista rispetto
alla teoria dei grounds; in altre parole, discuteremo una riformulazione della
congettura di Prawitz nel quadro formale da noi proposto. In secondo luogo,
perseguiremo una disamina del succitato problema di riconoscibilità alla luce
delle acquisizioni formali consentite dai linguaggi e dai sistemi di grounding.
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Introduction

According to a rather widespread interpretation, logic is to be understood as
the science of correct reasoning. Far from being a definition, however, this
expression is of a mere indicative nature. It raises more questions than the
ones it answers. Even leaving out the problematic issue on what we can and
should consider as science, it is far from clear what a reasoning is, and even
more what a correct reasoning is.

From a general point of view, we can follow a long and well-established
tradition according to which a reasoning is a concatenation of passages from
certain premises to certain conclusions, called inferences. This position is for
example present and aware in Descartes who, in a well-known passage of his
Rules for the direction of the mind, equates reasoning to

a continuous and uninterrupted movement of thought in which
each individual proposition is clearly intuited. This is similar to
the way in which we know that the last link in a long chain is
connected to the first: even if we cannot take in at one glance all
the intermediate links on which the connection depends, we can
have knowledge of the connection provided we survey the links
one after the other, and keep in mind that each link from the first
to the last is attached to its neighbour. (Descartes 1985, 15)

It is also obvious, however, that this idea can be further declined in many
different alternative ways; a more specific determination will vary depending
on the point of view adopted on the nature of premises and conclusions, and
on the passage itself, as well as on the basis of which of these factors are
considered really relevant to the logical investigation.

Also in relation to the narrower notion of correct reasoning, fortunately
we have a basic intuition to which we can hold on, even if also such intuition
is, in the final analysis, partial and liable to many different ramifications.
It can be illustrated with the famous words that Aristotle binds to the key
notion of the system – the first in its kind – developed in the Organon:
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the syllogism is a discourse in which, certain things being laid
down, something follows of necessity from them. (Aristotle 1949,
287)

As a paradigm of correct reasoning, a syllogism therefore has a feature that
Aristotle emphasizes: necessity. On the other hand, if the question "what
did Aristotle mean by necessity?" concerns the history of logic or the history
of philosophy, instead, it is very meaningful for what concerns us the more
general question "what kind of necessity do we refer to when we talk about
correct reasoning?". We could think that logic, in the cloak of the name of
science, has a unanimously shared vision on the nature of necessity. But this
is by no means the case.

It would obviously be impossible, in the restricted framework of this in-
troduction, to review if only in general the multiple reflections which, over
the centuries, have concerned the notion of necessity. Nor would such review
be of any use with respect to the theme of our work: Dag Prawitz’s theory
of grounds. On the other hand, necessity plays in Prawitz, and it will play
for us, a decisive role to say the least. The theory of grounds, in fact, as-
sumes the shape of an attempt at the same time philosophical and formal to
respond, with sufficient and satisfactory articulation, to what is perhaps the
most original among the questions of logic: how and why do some inferences,
commonly called deductively correct, have the epistemic power to force us
to accept their conclusion, assuming we have epistemically accepted their
premises? If we adopt the aforementioned point of view, that an argument
is a chain of inferences, to answer this crucial question also means explaining
how and why deductively correct reasoning can exert that force that, since
very distant times, has made it the main source of conclusive knowledge, and
a source of irrefutable epistemic certainty for human beings.

In focusing on the power of epistemic binding of deductively correct infer-
ences and reasoning, Prawitz emphasizes a very particular kind of necessity.
In a paper that is in many ways a watershed between his previous research
and the theory of grounds, the Swedish logician uses the fitting expression
of necessity of thought, specifying that with it he means the circumstance in
which

one is committed to holding α true, having accepted the truth of
the sentences of Γ; one is compelled to hold α true, given that one
holds all the sentences of Γ true; on pain of irrationality, one must
accept the truth of α, having accepted the truth of the sentences
of Γ. (Prawitz 2005, 677)
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This kind of necessity is diametrically different from another, equally well
known and perhaps more practiced in logic, which is based on the notion of
possible world and according to which necessity means truth in all possible
worlds. The fact that something is true in all possible worlds is obviously
alien to issues relating to knowledge: it could be a circumstance of which we
are simply unaware or, even if we are aware of it, we might not see why it
occurs. In the latter case, it is an occurrence that we must accept not by
virtue of an epistemic binding but, so to speak, of a mere factual statement.

However problematic, the notion of possible world is often used to sub-
stantiate the idea that model-theory, the child of the pioneer works of Bolzano
and Tarski, as well as for many years the standard formal semantics of con-
temporary mathematical logic, actually captures that notion of necessity
that characterizes, giving them a decisive modal structure, the concepts of
validity and logical consequence. However, many criticisms have been raised
against the thesis that model-theory contains modal ingredients of any kind
and, given in such general terms, the question is still widely debated. What
we can say with certainty, is that the modality captured by model-theory,
although present, is undoubtedly not of the type Prawitz is interested in,
that is, not of an epistemic type.

It is therefore not a case if, starting from some important results in proof
theory, Prawitz has developed a formal semantics alternative to model-theory,
today known as proof-theoretic semantics. Proof-theoretic semantics offers
definitions of the concepts of validity and logical consequence that, in accor-
dance with necessity of thought, replaces the notion of truth, as a semantic
core, with those of proof or valid argument. The idea would seem obvious:
the epistemic binding that one experiences in necessity of thought can occur
only when we are in possession of a proof or a valid argument.

Proof-theoretic semantics is therefore based on mathematically rigorous
characterizations of the concepts of proof and valid argument, from which to
move forward to reach the more general semantic definitions. This happens,
it seems to us, by following essentially three lines of research: the BHK se-
mantics for first-order intuitionist logic, which originated with Heyting, some
observations by Gentzen on the relationship between introduction and elim-
ination rules for first-order logical constants in natural deduction systems,
and Dummett’s investigations in theory of meaning, with a particular focus
on a verificationist theory of meaning. These three sources are obviously
mutually linked, and in turn, each of them, or all three jointly, are bound to
reflections of another type, more or less explicitly recognized. By setting itself
at the crossroads of so many suggestions, and in a sense harmonizing them
all, proof-theoretic semantics is therefore of an interest more widely philo-
sophical, which goes beyond the formal results, albeit fundamental, that it
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allows to reach.
However, the proof-theoretic approach is not entirely free of problems, of

which the main one, related to the issues mentioned above, concerns precisely
the possibility of accounting for the epistemic power of deductively correct
inferences and reasoning. If we intend to explain how and why a correct
reasoning can force epistemically to accept its conclusions, thus providing
justification towards them, there seems to be no other choice but to make
this force depend on that, of analogous nature, enjoyed by the inferential
passages occurring in the reasoning itself. To make this explanation work,
however, the notion of correct inference must conceptually take priority over
that of correct reasoning, thus following the same explanatory order that
makes reasoning a chain of inferences. In proof-theoretic semantics, though,
the notion of correct inference is defined in terms of proofs or valid arguments,
by stating that an inference is correct when it preserves provability, or the
validity of the structure in which it occurs. It is in this sense not surprising
that, with the theory of grounds, Prawitz renounces a characterization of
this type, returning to the correct inferences their pivotal role.

This inversion of the natural relationship among the notions of correct
inference, proof and valid argument, refers to another point on which the
theory of the grounds offers, in our opinion, a doubtless progress. To be
forced to validate the correctness of judgments or assertions that convey or
express knowledge is something we experience when, for example, we follow
the steps made by someone who is proving something, or when we personally
perform a proof act. The epistemic binding is something we "feel", and of
which we are aware; in this "feeling", in this being aware, however, we are not
in a condition of passivity, but, on the contrary, in order to accomplish this
experience we must do something, carry out appropriate acts. In the words
of Cozzo (Cozzo 2015), necessity of thought has a phenomenal character, and
assumes for us the form of an active experience.

Strictly speaking, therefore, correct reasoning leads to a state of epistemic
justification, but it is not itself, as such, an epistemic justification; the proof
act is what by virtue of which the binding manifests itself, acting upon us,
but it is the result of this act, what the act leads to, that qualifies as the
condition of epistemic success. Subtle, but crucial in the reconstruction of
the epistemic force of correct inferences and reasoning, this distinction can
be summed up as a dichotomy between proof-objects, on the one hand, and
proof-acts, on the other (see mainly Sundholm 1998). In this regard, proof-
theoretic semantics seems ambiguous, since it deals with proofs and valid
arguments at the same time as objects and as acts, while much more precise
is the theory of grounds, in which Prawitz distinguishes between states of
justification – reifying, he actually speaks of objects, called precisely grounds,
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of which we are in possession when we are justified in judging or asserting –
and acts that enable us to enter a state of justification – namely, proofs that
produce grounds.

In the theory of grounds, as just mentioned, "ground" is the expression
used by Prawitz to indicate what we have when we are epistemically justified.
Gounds are objects that reify states of epistemic success, and are obtained
by performing inferential acts – single, or concatenated so as to form a proof.
The most original trait of the theory of grounds is perhaps the reconstruc-
tion that Prawitz offers of how an inferential act can produce grounds and,
therefore, of what an inferential act actually is. In the commonly accepted
meaning, which we have also referred to at the beginning of this introduction,
an inference is simply identified by certain premises and certain conclusions,
since it appears as a passage from the ones to the others. In the light of
convincing arguments, however, Prawitz believes that this reconstruction is
far too poor to allow an adequate explanation of the phenomenon of epis-
temic compulsion. He adds to it the crucial idea that to make an inference
means applying an operation that transforms constructively grounds for the
premises into grounds for the conclusion, and that therefore an inference,
in addition to premises and conclusions, must also involve an operation of
this kind. A deductively correct inference is therefore an inference the oper-
ation of which actually returns grounds for the conclusion, when applied to
grounds for the premises.

Joining the aforementioned distinction between proof-objects and proof-
acts, and merging into the notion of deductively correct inference, this in-
novative way to characterize inferential acts makes the theory of grounds
a solid apparatus for a rigorous explanation, not circular and philosophi-
cally meaningful, of the relationship between correct inferences and correct
reasoning, as well as of the epistemic power of both. Both proof-theoretic
semantics and the theory of grounds attribute a crucial role to the so-called
canonical cases, primitive in contrast to the non-canonical ones, that on the
contrary need justification. However, while in proof-theoretic semantics the
objects themselves, as not distinguished from the acts, can be canonical or
non-canonical, in the theory of grounds the distinction applies only to the
acts, whereas the grounds are specified solely by virtue of primitive opera-
tions, by simple induction on the complexity of the formulas for which they
are grounds. From this perspective, the fact that the deductive correctness
of the inferential acts is explained on the base of objects of this type, and not
in relation to the acts in which these inferences occur, allows to overcome
some problems of circularity, from which analogous attempts in the setup of
proof-theoretic semantics suffer.

Understanding the inferential acts as applications of operations on gro-
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unds has also, in our opinion, an important role in relation to a problem
that, this time, the theory of grounds shares in full with proof-theoretic se-
mantics. If a proof or valid argument must give justification, it seems we
cannot help but request that it be recognizable that they have this power. In
the same way, if the possession of a ground coincides with being in a state
of justification, we need to be able to recognize that the inference that gives
possession of that ground is deductively correct. Otherwise, the fact that
we have made correct deductions would correspond to the possession of ab-
stract objects, so that we could be totally unaware of their epistemic weight;
no justification, let alone any epistemic binding, seems to be possible under
such circumstances. Similar issues are often raised in relation to the clauses
for the implication and the universal quantification in BHK semantics. As
regards the possibility itself of arguing that certain constructs, ultimately
formal, are capable of respecting the wishes concerning epistemic justifica-
tion and binding, the point is obviously crucial also and above all in Prawitz.
Unfortunately, a precise delineation of how this recognizability can occur,
assuming that it actually can, remains decidedly elusive. A good starting
point could be to clarify what the recognition in question is, but already
here positions are disparate and discordant, going from "strong" readings,
in terms of decidability, to more "weak" readings, that involve pragmatic
elements.

In the two frameworks, proof-theoretic semantics and theory of grounds,
the problem of recognizability arises for the non-canonical cases; since they
are not primitive in the explanation of meaning, namely not primitive in
the determination of what counts as justification for judgments or assertions
about propositions or sentences of different logical form, they must be justi-
fied. And we need to be able to recognize that the justification given works,
fulfills the task requested. In this perspective, the ground-theoretic idea of
inferences as applications of operations on grounds allows a minimum, albeit
limited, progress. In certain specific circumstances – when the inference is
performed starting from premises for which we already have grounds – what
an agent is in possession of at the end of the inference is not something that
can be canonical or non-canonical, but an object defined only by primitive
operations. All this because to perform the inference means for the agent ap-
plying an operation, that is "to compute it" on the grounds of which he/she
is already in possession, so as to get a ground for the conclusion. The same
cannot be said of proofs or valid arguments in proof-theoretic semantics,
where to make an inference only means to ensure that a conclusion follows
certain premises, and where the structure resulting from the deductive activ-
ity is therefore susceptible to the canonical/non-canonical distinction; when
the structure is non-canonical, the fact that it is valid will be visible only
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after the subsequent application of justifications that show how to reduce it
to a canonical structure. Nor, due to structural reasons, can the application
of such justifications be understood as simultaneous to the completion of the
inferential passages, as instead happens in the theory of grounds.

However, the theory of grounds still suffers from a problem of recogniz-
ability of the good position of certain equations. Since inferences are intended
as applications of operations on grounds, non-canonical inferences are to be
understood as applications of non-primitive operations on grounds. The lat-
ter are in turn defined, not only by a domain and a codomain, but also by
an equation that shows how the operation behaves. The equation provides
a method of "computation", or "transformation", through which, when ex-
ecuted, it is constructively possible to pass from grounds for the premises
– arguments of the operations – to grounds for the conclusion – the value
of the operation on those arguments. The equations are a "functional" ver-
sion of the reduction or justification procedures of non-canonical inferences
in proof-theoretic semantics. In this sense, we could say that the theory of
grounds proposes a sort of "internalization" of such procedures to the process
of construction of the argument structure. In appropriate circumstances, to
prove means "computing" reductions of non-canonical structures.

Obviously, in his writings on the theory of grounds, Prawitz does not
limit himself to state the ideas that, in a very general line, we have been
listing so far. On the contrary, he indicates their formal articulation, which
in turn seems to go in two distinct directions, albeit connected. The first
consists of a more accurate characterization of grounds and operations on
grounds as objects typed on formulaa of a background language. The typing
establishes a link between the object and the judgment or assertion for which
that object constitutes justification. The second aims at the development of
a formal language, that includes terms denoting the aforementioned objects,
and formulas that indicate their main properties. The resulting picture seems
to come close to approaches of similar intuitionistic or, more generally, con-
structivist inspiration, such as the Kreisel-Goodman theory of constructions
(Kreisel 1962, 1965; Goodman 1968, 1970, 1973) or Martin-Löf intuition-
istic type theory (Martin-Löf 1984). It is not surprising, then, that both
the typing of objects, and the formal languages the terms of which denote
such objects, come near the analogues in the typed λ-calculus; the general
directives of the theory of grounds can therefore be taken into account also,
and perhaps mainly, in the perspective of the formulas-as-types conception,
a cornerstone of the Curry-Howard isomorphism (Howard 1982).

Despite these precious suggestions, however, the more formal side is, in
the writings that Prawitz has so far dedicated to the subject, in an only
embryonic state. On the other hand, the importance of the demand and
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of the basic objectives of the theory of grounds, the wide range of theories,
traditions and hints to which it is connected, both in the philosophical field
and with respect to contemporary mathematical logic, and last but not least,
the progress it allows in many respects, are, in our opinion, more than enough
reasons to reveal the need for an in-depth development of the "technical"
area of the theory. Of course, this in-depth analysis does not have only a
purpose of systematization, since it allows also to better understand some
of the basic assumptions of the theory itself, to enlighten some of its not
secondary philosophical aspects, to draw non-trivial consequences, and to
indicate further possible theorizations.

In this context, our proposal will move along two main directives. First,
the delineation of a class of formal languages of grounding, and the related
definition of a denotation function that allows to associate terms with gro-
unds and operations on grounds. Secondly, the development of a class of
formal systems of grounding, which allow to establish, deductively, relevant
properties, expressed by means of appropriate formulas, of the terms and
of some of the symbols of the languages of grounding. In either case, these
primary intentions will be accompanied by a certain refinement of the anal-
ysis, with the aim of perfecting general definitions, by introducing concepts
and proving results that allow a more specific application of the definitions
themselves. Far from claiming to be exhaustive, our contribution is to be
understood as the first draft of a fully "mathematized" theory of grounds, so
as to highlight fundamental characteristics which, in our opinion, should ap-
ply in a complete formalization. Starting from this core, it will also become
clearer how and where further advancements could differ, depending on the
different needs, in specific choices or alternative characterizations.

The work is divided into three parts. The first illustrates the theoretical
background, with its results and its open problems, on which the theory of
grounds is based, or to which, more or less directly, it is linked. The second
part, which corresponds entirely to the fourth chapter, aims at a reconstruc-
tion of the theory of grounds as it has so far been presented by Prawitz,
showing the progresses it allows, the problems shared with the background
illustrated in the first part, and the points liable to further refinement. These
points are finally taken into account in the third part, with a view to a first
attempt at formalization, as systematic and pregnant as possible.

The first part is in turn divided into three chapters. The first raises the
fundamental problem of the theory of grounds, namely the explanation of
the power of epistemic compulsion of deductively correct inferences and rea-
soning, providing a clarification of the fundamental concepts involved – i.e.
inference, proof, premises/conclusion, and so on. The second chapter, start-
ing from the consolidated bond that, in contemporary mathematical logic,
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usually exists between the concepts of (logically) valid inference and (logical)
consequence, explains the main reasons for the inadequacy of model-theory in
capturing a notion of necessity epistemically understood. After that, we will
introduce the alternative Prawitz’s proof-theoretic semantics, following the
different configurations it has taken over the years, and focus on some of its
weak points from which it seems to suffer compared to a satisfactory expla-
nation of the epistemic force of deduction. The third Chapter of the first part
offers a general description of two theories conceptually and formally similar
to the theory of grounds – Kreisel-Goodman theory of constructions (Kreisel
1962, 1965; Goodman 1968, 1970, 1973) and Martin-Löf’s intuitionistic type
theory (Martin-Löf 1984) - and discusses some of Prawitz’s observations on
these theories, concerning issues that then will be crucial in the theory of
grounds.

The third part is again divided into three chapters, going from the fifth
to the seventh. In the fifth Chapter we introduce, related to the notions of
first-order logical language and atomic base on such a language, a class of
languages of grounding that include only terms; the class is developed by ex-
pansions of a core language which contains operational symbols correspond-
ing to primitive operations on grounds, and the expansions are classified,
according to different properties, in relation to a denotation function that
associates grounds or operations on grounds to the terms of the language. In
the following chapter, languages of grounding are enriched with predicates
that allow us to construct formulas which in turn allow to express properties
of the terms and of some of the symbols of the alphabet. The provability
of these properties is reached then by means of a class of formal systems of
grounding, each equipped with a set of rules identified starting from the same
principles that had led to the characterization of the denotation functions.
Finally, in the seventh and final Chapter two questions are discussed: first,
the completeness of first-order intuitionist logic with respect to the apparatus
developed in the two previous chapters, and this in the form of a conjecture
- in a "weak" and "strong" version – which transposes the conjecture elabo-
rated by Prawitz (Prawitz 1973) for his proof-theoretic semantics; the second
discusses the aforementioned problem of recognizability, as it appears in the
theory of grounds, in relation to the theme of the general form of the equa-
tions that set the behaviour of non-primitive operations on grounds, so as to
define them.
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Part I

Theoretical Background
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Chapter 1

Inferences and proofs

1.1 Nature of inferences
Our mental activity is characterized by a series of processes and acts through
which, by elaborating information, knowledge, thoughts and beliefs, we pass
to other information, other knowledge, other thoughts and other beliefs.
These operations, as well as their purposes, can concern several levels of
awareness and voluntariness, varying degrees of complexity, a different use
of time, different memory resources, thus implying a greater or lesser force
in the results obtained. Frequently, an absolute unconsciousness is accom-
panied by unintentionality and automatism, and immediacy, rapidity and
relative simplicity produce/generate uncertain or fallible acquisitions. At
the opposite extreme, the completion of operations can be totally conscious
and voluntary, often complex, long and tiring, and lead to a state of which
the epistemic content seems conclusive and not refutable. Obviously, be-
tween these two poles there are many intermediate stages, in which various
elements are combined in a partial and heterogeneous way.

Linguistic practices, on the other hand, are largely, if not essentially,
aimed at the exchange of information and knowledge. The linguistic her-
itage, which a more or less extensive community uses for communication
purposes, is, it seems, closely linked to the mental activity of each speaker;
the two levels, only apparently distinct in public and private, intersect each
other in such a narrow way as to be, from certain points of view, hardly,
or at least not significantly, separable. When we are willing and able to do
it, we express what we think, sometimes remarking that what has been said
depends on something else, from previous elements in our possession, and
maybe that we have arrived there through a certain path. Our interlocutor
can share, take with him/her what we have made known, in turn commu-
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nicate to us; but also, he can criticize us, ask for further explanations, and
indicate errors we had not noticed. This urges us, or should urge us, as it
were, on retracing our steps, reviewing our line of thought, modifying it, by
expanding our intellectual baggage or rejecting its elements no longer sus-
tainable. Dialectics, then, can continue, in an overall activity of which it
is probably impossible (and in any case not required here) to give a precise
picture. In this context, a role of primary importance is played by those that,
using a widespread term of technical literature, we call inferences.

The notion of inference seems to rest on at least three indisputable points.
First, an inference involves a passage from certain data, generally called
premises, to another datum (or more), the conclusion (or the conclusions).
Secondly, inferences must be connected to reasoning. In fact, they can be
described as minimum units which can be reached by breaking a reasoning
down into progressively simpler parts; in turn, a reasoning can be understood
as a chain of inferences. Finally, inferences are important to logic. According
to a fairly widespread reading, in fact, the latter is to be understood as
the science of correct reasoning. It must therefore deal with inferences and
reasoning in general, providing tools by which to establish which inferences
are valid and which pieces of reasoning are correct, as well as a further
analysis of the notions of validity and correctness themselves, that is to say,
when and why an inference can be said valid, and a reasoning correct. The
choice of the theoretical armament, in this sense, will have to be adequate
with regard to informal desiderata.

From this point of view, their minimal character clearly does not exclude
that the inferential units can be further analyzed. However, this circumstance
could collide with the intention of finding a notion of inference that does not
change depending on the historical and scientific context. Similarly, if the
idea that a reasoning is a chain is not accompanied by the requirement that
its steps have a minimal complexity, an enormously complicated reasoning
can be reduced to an inference having as premises its hypothesis, and as
conclusion its conclusion. This, for its part, could not go together with the
epistemic desiderata of an analysis that looks at inferences as acts carried
out consciously and voluntarily by agents with limited time and resources.
In fact, some transitions could be too difficult, so that agents of the type
described may be never willing to carry them out.

In both cases, the description of the nature of inferences will influence
the description of the nature of reasoning and, if we are too generous in
our way of looking at inferences, the link could be affected. If we accept
that some inferences may be unconscious, involuntary and even automatic
steps, we should also be willing to accept that steps of this type do not
occur in reasoning, or be equally generous in reasoning, so as to authorize
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unconscious, involuntary and automatic components in it. More generally,
the interdependence between inferences and reasoning makes it impossible
to adopt the above description as a definition of the concepts involved: one
cannot, on pain of vicious circles, postulate that an inference is the minimum
unit of a reasoning, and at the same time that a reasoning is a chain of
inferences. The aforementioned intertwinement is therefore a result to aspire
to, and not a given from which to start. We will have the opportunity to
discuss more extensively these problems later.

Cesare Cozzo has argued that different conceptions about the nature of
inferences are not necessarily incompatible, since they can rather serve dif-
ferent purposes. In particular,

the question "what conception of inference ought we to adopt?"
thus leads to the question "what is the problem?". (Cozzo 2014,
165)

Given the three previous points, the answer to the question on the nature of
inferences, therefore, cannot and should not be univocal. How to articulate
it, then? Cozzo himself indicates, in a commendable way, seven relevant
factors.

The first one concerns the nature of premises and conclusion. If some au-
thors maintain that the description given above, according to which premises
and conclusion are mere data, is satisfying, others consider it too permissive.
Premises and conclusion are truth-bearers, that is, entities that are liable to
be true or false. And in turn, this can be understood in at least three man-
ners; truth-bearers can have an abstract nature, in which case one usually
speaks of propositions, or a linguistic nature, being therefore sentences, or,
finally, they can assume the form of mental states, or beliefs. However, the
range of possible answers does not end here. Following yet another approach,
we could in fact require that

premises and conclusions are not objects or states in which we
happen to find ourselves, but responsible acts or actions, which
we do. (Cozzo 2014, 162)

Such acts or actions can, once again, stand out on a mental level, as judg-
ments of various kinds, or on a linguistic level, as in the case of assertions
(but also, perhaps, of questions or commands). But, more precisely, what
are propositions, sentences, beliefs, judgments and assertions? Here too, the
answers are heterogeneous, and so we have numerous, further subramifica-
tions. The second factor is given by the inferential agent. As in the previous
case, we can reason in a more or less exclusive way:
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if you think that only a person can make an inference, you have
a narrow conception of the subject of inference. If you believe
that not only a person, but also a machine, or a non-personal
biological entity can infer, then you have a broad conception of
the subject. (Cozzo 2014, 162 - 163)

The third ingredient involves the relation between the agent and the set of
premises and conclusion, and depends, or it is expected to depend, on the
way in which the first and the second factor have been settled. Thus, we
could say that

the data X are stored in S; S is in the representational state X;
S is in the neural state X; S performs the act X, etc. (Cozzo
2014, 163)

Probably, the most important factor, no doubt central to the logical in-
quiry, is what Cozzo labels as the fourth, and concerns the relation between
premises and conclusion. Here, we move from an extremely inclusive re-
sponse, according to which an inference is simply a pair where the first ele-
ment is the set of premises and the second the conclusion, to answers instead
insisting on the fact that, in an inference, premises and conclusion cannot
be completely untied, for some sort of connection must occur among them.
What this connection is, however, is anything but unquestionable. Is it an
abstract relation, or maybe a causal relation dependent on a psychological,
possibly unaware, involuntary and automatic transition? Perhaps, none of
these two things, but in a more epistemic sense,

a conscious and deliberate act on the part of the subject. (Cozzo
2014, 163 - 164)

The fifth element is the stability of the premises-conclusion relation. This
relation in fact can be completely aleatory, or substantial but refutable ac-
cording to future circumstances. However, some inferences, commonly called
deductive, seem to be such that

the connection between premises and conclusion is stable and can
never be subverted by a new piece of information. (Cozzo 2014,
164)

At the sixth point, we find the more or less public character of inferences.
If inferences are conceived as subpersonal psychological transitions, it will
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be very difficult to think of them as something publicly communicable. Ac-
cording to many, however, this view must be rejected: inferences, and the
pieces of reasoning in which they are involved, must be able to materialize
in practices accessible to all members of the community. Finally, the seventh
factor concerns what Cozzo defines

the context in which premises and conclusion are placed. (Cozzo
2014, 165)

When we describe an inference, shall we limit ourselves to describing only
its premises, conclusion, agent, and their relations? Should we not, perhaps,
take into account also the broader context in which the inference is accom-
plished? Maybe other inferences, or pieces of reasoning, to which it is con-
nected? Or the whole information or knowledge in possession of the agent?
Or even the whole set of co-agents able to perform and accept inferences?

1.2 Valid inferences
The seven factors outlined by Cozzo offer a general, neutral grid in which to
frame different conceptions on the nature of inferences. However, as far as
we are concerned, if the adoption of a determinate conception depends on
the problem we intend to solve, what we have just affirmed must be reported
to the object of this investigation, namely, Dag Prawitz’s theory of grounds,
and to the fundamental question the latter aims to answer: in what sense
and why do some inferences - often called valid - seem endowed with a power
of epistemic compulsion?

1.2.1 Epistemic compulsion

Epistemic compulsion is something we often experience in everyday life. The
bill for a dinner at the restaurant amounts to 45 euros, we have given the
waiter a banknote of 50 and expect to receive 5 euros change, and so the
waiter will have to do. An inference has been made, the premises of which
concern the following circumstances: the bill is of 45 euros, we have given the
waiter a banknote of 50, and 5 is what we get by subtracting 45 from 50 (being
subtraction the relevant operation). Of course, we could feel magnanimous,
or have made a mistake, and ask for a lower change. In the same way,
the waiter might have been mixed up, or could refuse to give us his due,
perhaps claiming to follow a strange arithmetic in which 45 and 50 indicate
the same quantity. Except the details and the secondary aspects, however,
the inference compels us to accept its conclusion: we feel authorized to claim
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5 euros, and the waiter should feel obliged to give us exactly that sum. Again,
if we are reasonably convinced that A implies B, and we have ascertained A,
we have to conclude B. Without this having consequences of any kind, we
are obviously free to refuse the conclusion. There is though a clear sense in
which anyone would maintain that such a behaviour would be wrong, or even
irrational. Being free to do what one wants seems to fail if the correctness of
reasoning or the sustainability of its conclusions are at stake: we are forced
because we feel forced.

We are, in other words, in the presence of a very particular phenomenon,
which originates from and depends on

a special force, which is neither the threat of violence, nor the
charm of a seductive persuader: it is simply the sober force of
reasoning. (Cozzo 2014, 165)

Reasons and modalities of epistemic compulsion have often been at the cen-
ter of the reflection of philosophers and logicians. Precisely to this issue
Prawitz has mainly and explicitly dedicated some of his latest works. In
them, the Swedish logician proposes and develops the aforementioned the-
ory of grounds, an answer, at the same time philosophical and formal, that
passes through an innovative characterization of the nature of inferences and
of their validity, of proofs, and of the conceptual content of such, intercon-
nected, notions. From this perspective, the theory of grounds is, so to speak,
intrinsically worthy of interest. However, its importance derives also from
the solutions and advances that it is able to offer with respect to similar
approaches, including the one that Prawitz himself developed in the past.
After all, and as we shall see, the epistemic relevance of valid inferences and
proofs has always been one of the pivotal points of Prawitz’s semantic in-
vestigations; and the theory of grounds constitutes a significant change of
perspective with respect to these previous conceptions.

Focusing on the problem of epistemic compulsion seems to impose some
forced choices on the type of inferences to be considered, a quite binding se-
lection with respect to the general framework provided by the seven factors
identified by Cozzo. First, as regards the stability of the premises-conclusion
relation, we are only interested in deductive inferences. Of course, we could
also feel epistemically forced towards conclusions drawn on the base of in-
ferences, the strength of which might decrease, or even vanish, in view of
future occurrences. However, in this case, the inference accomplished does
not provide a truly conclusive support, and inferences of this type may be of
interest for logic only in relation to a notion of valid inference, as cases that
do not respect the conditions of the corresponding definition.
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As for the nature of premises and conclusions, it seems reasonable to
argue that their description in terms of data is decidedly unsatisfactory, or
at the very least too general. There are certainly data for which it makes
sense to speak of epistemic compulsion. It is a datum for those who accept
the rules of usual arithmetic that every multiple of 3 is divisible by 3, and
that 6 = 2 · 3, and it is therefore a datum to which one is epistemically
compelled that 6 is divisible by 3. However, there are also data for which
this discourse does not seem to be valid. Let us assume we are monitoring
the different configurations that the iris of an observer O takes according to
different colors projected on a screen; when the red color, the datum-premise,
appears on the screen, the iris of O will assume a certain configuration, the
datum-conclusion. From a certain point of view, O is forced, so to speak, to
draw a certain conclusion, but it would be strained to speak of an epistemic
compulsion. The constraint, in fact, is not generated by the sober force of
reasoning, nor is O free, if he/she wants, to oppose it. On the contrary,
the compulsion acts in an unconscious, involuntary and automatic way (the
awareness that the red color has been projected arrives at a later moment of
reflection). Premises and conclusion should therefore be, at the very least,
truth-bearers, that is to say, propositions, sentences or beliefs. Of course, it is
compatible with our purposes even the stronger circumstance that premises
and conclusion are judgments or assertions.

In the light of the above, it does not even seem promising to claim that
the agent of an epistemically compelling inference can be a generic biological
entity; propositions, sentences, beliefs, judgments and assertions are objects
or acts concerning an abstract sphere, conceptual or linguistic, which only
with an extreme forcing we could attribute, for example, to a jellyfish. A
human being is certainly more suitable, but what about the famous Chrysip-
pus’ dog? Following its master, which is far and not visible, it arrives at a
crossroads, sniffs one of the possible branches and, not smelling its master,
confident and without sniffing takes the other path. Similarly, can the agent
of an epistemically compelling inference be a machine? As Prawitz rightly
remarks, the central point is, here, that epistemic compulsion involves a re-
flective activity, lacking in animals and machines. In fact, it seems to go
with a reflection through which the performed activity can be appropriately
generalized, and understood as deductively reliable:

when we deliberate over an issue or are epistemically vigilant in
general, we are conscious about our assumptions and are careful
about the inference steps that we take, anxious to get good rea-
sons for the conclusions we draw. [...] taking for granted the truth
of a disjunction ‘A or B’, and getting evidence for the truth of not-
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A, we start to behave as if we held B true without noticing that
we have made an inference [...] the Babylonian mathematicians
were quite advanced, for instance knowing Pythagora’s theorem
in some way, but, as far as we know, they never tried to prove
theorems deductively. (Prawitz 2015, 67)

Essentially the same reasons that have guided the previous choices should
at this point induce to demand that, between the agent of an epistemically
compelling inference and the set of premises and conclusion of such an in-
ference, there is something more than having stored certain information, or
finding oneself in a neural state. The agent must be in a sense conscious of
the content of premises and conclusions, if we consider them as propositions
or sentences, or, in the case of a reading in terms of beliefs, find him/herself
towards them in an intentional state, or, finally, when premises and conclu-
sions are conceived as judgments or assertions, perform the acts to which
they correspond. This, one would say, also favors a reading of the premises-
conclusion relation in terms of a conscious and deliberate act on the part
of the agent. The conclusion is (or binds to) the prefixed goal, which the
agent shows to aim to achieve on the basis of some sort of support provided
by the premises. In any case, such an act could be accomplished at a later
stage, after the achieved awareness of a link between premises and conclusion.
Therefore, it is not possible to exclude a priori that the premises-conclusion
relation can be of an abstract type.

Finally, the question relating to epistemic compulsion is undoubtedly
compatible with a public view of inferences, and of the reasoning in which
they occur. In fact, the reflective character of the inferences in question
seems to imply that we can give of them, and of the reasoning in which they
are used, a testimony, and this without denying that the phenomenon can in-
volve - also, or mainly - mental dynamics. Certainly, there is a long tradition,
dating back to at least René Descartes (Descartes 1985), according to which
some acts, essentially intuitive and private, induce an epistemic compulsion.
A discussion on the plausibility of this thesis, or on the way it can be artic-
ulated, would obviously take us too far; therefore, we will restrict ourselves
here to emphasize that the compelling character of such acts must in any
case refer to certain propositions or sentences, and ultimately depend on the
meaning attributed to them. But then, the analytical character of such sup-
posed intuitive knowledge is something that can manifest itself in practices
that testify the acceptance and sharing of meanings. This observation leads
us to the final case of the context in which inferences are accomplished, or
located. In this case, however, the possible alternatives are different, and all
mutually compatible.
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1.2.2 Justification

That some inferences are commonly held to have a power of epistemic com-
pulsion is certainly a fact. On the other hand, the existence of valid inferences
can be a matter of doubt. The deductive ability to support conclusively
propositions, sentences, beliefs, judgments or assertions, might be nothing
but an illusion, and some forms of scepticism seem to be oriented exactly
towards this thesis. Prawitz himself observes, however, that

to justify deduction in order to dispel sceptical doubts about the
phenomenon is not likely to succeed, since such an attempt can
hardly avoid using deductive inference, the very thing that is to be
justified. This should not prevent us from trying to explain why
and how deductive inference is able to attain its aims. Deduction
should thus be explained rather than justified. (Prawitz 2015, 65
- 66)

If we successfully fulfill the task of explaining how and why some inferences
force epistemically, we are also in possession of a weapon against the sceptic.
On the other hand, in order to express more than a mere opinion, the sceptic
should show that no plausible conception on the nature of inferences, and
of their validity, is such as to attribute to valid inferences something that
can count as a power of epistemic compulsion. Even assuming that this does
not go through the use of inferences that the sceptic treats as epistemically
compelling, it should still result in something very similar to what Prawitz,
although with opposite objectives, suggests to do. Therefore, the basic ques-
tion of the theory of grounds is, it seems to us, important even for the sceptic.
Be that as it may, Prawitz does not give too much credit to possible sceptical
positions, arguing rather that

we take for granted that some inferences have such a power, and
there is no reason to doubt that they have. But what gives them
this power? This should be explained. (Prawitz 2015, 73)

Far more important, especially for the development of our reasoning, is
instead another consideration. The questions related to what we are here
calling epistemic compulsion, in fact, have often been formulated as questions
related to the ability that valid inferences have to justify who performs them
with respect to their conclusion. It is often said that valid inferences preserve,
or transmit, justification, in the sense that, if one is justified with regard to
the premises, the same will be true for the conclusion. What “to be justified
with regard to ..." means obviously depends on the adopted conception of
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inference, but it is clear that the justification we are talking about is of
the strongest possible type: a conclusive and non-refutable justification, a
definitive reason for the truth of propositions, sentences or beliefs, or for the
correctness of judgments or assertions. The idea seems to be implicit, or
at the very least relevant, even when valid inferences are conceived in the
most abstract sense of necessary truth-preservation: it cannot occur that the
premises are true, and the conclusion is false. The manner in which, from the
necessary preservation of truth one passes to the preservation or transmission
of justification becomes then, in general, a central problem in the frameworks,
philosophical as well as formal, which adopt such an approach.

As Cozzo further points out (Cozzo 2014), epistemic compulsion and
preservation or transmission of justification are in any case two sides of the
same coin. The general argument in favor of this position is based on a

plausible assumption concerning the relation between the notion
of justification and the notion of argumentative context with ra-
tional disputants, the idea that justification is something publicly
acknowledgeable by rational subjects: if a person is justified in
asserting a sentence, or an inference has the power to transmit
justification, then both facts must be acknowledged by the dis-
putants involved, if they are rational. (Cozzo 2014, 165)

From this assumption it derives the equivalence between the circumstance
that someone is forced or justified in accepting something, and the circum-
stance that each of his/her interlocutors is equally forced on pain of irra-
tionality, or justified to do the same. Therefore, given two interlocutors A
and B, let us suppose that A is justified in accepting the premises in a set
Γ of an inference I from Γ to the conclusion α that preserves or transmits
justification, and let us suppose furthermore that A performs I. According to
the public nature of justification, B recognizes that A is justified in accepting
the premises in Γ and, according to the public nature of the preservation or
transmission of justification, B also recognizes that A is justified in accepting
α. Therefore, on pain of irrationality, B is forced to accept α. Vice versa, let
us suppose that I is epistemically compelling and, again, that A is justified
in accepting the premises in Γ, and that he/she performs I. According to the
public nature of justification, B recognizes that A is justified in accepting the
premises in Γ, and therefore he/she is him/herself obliged to accept them;
but then, B will be forced, on pain of irrationality, to accept α. It follows
that, for the above equivalence, A will be justified in accepting α.

Although the capacity to force epistemically and the capability to preserve
or convey justification are equivalent concepts, we will have the opportunity
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to see how, in the specific framework of Prawitz’s theory of grounds, the
formulation in terms of epistemic compulsion is nevertheless significantly
informative of a precise, and in many respects innovative, way of looking at
inferences and analyzing their validity.

The acquisition of knowledge is the ultimate goal, as well as the main
result, of deductive activity. The means by which this end is achieved is, of
course, that particular form of reasoning called proof. But what is a proof?
And what is the connection between proofs and valid inferences?

1.2.3 Proofs

Inferences can be valid, but they can also fail. They can indeed force, in
the epistemic way described above, to accept a certain conclusion, and really
preserve or transmit justification towards it. But they can also only give
the illusion of doing it. This happens frequently, and becomes particularly
evident within the framework of disputes among subjects who aim to achieve
truth or knowledge. Some perform premises-conclusion steps of which they
are firmly convinced, and therefore feel epistemically forced, or justified, to
accept the conclusions they have reached. However, they have made some
mistakes, and if the other interlocutors are careful enough to realize it, they
will point out that something has gone wrong and that for this reason the
conclusions must be withdrawn. Therefore, those who, at first, had made
demands on the cogency of their results will be willing to admit they were
wrong.

The same argument applies to the reasoning to which the inferences are
linked; it can be wrong or, similarly to valid inferences, force epistemically,
and conclusively justify the acceptance of its conclusions. The term com-
monly used in the latter case is that of proof. A proof is a reasoning crowned
by epistemic success, and therefore it does not make sense to speak, for it,
of error. From a conceptual point of view, a wrong proof is a contradictio in
terminis.

Proofs play a major role in deductive activity that has been involving hu-
man beings since the dawn of exact sciences. They are the most secure source,
the most reliable instrument in the pursuit of truth and of the knowledge of
what one is intellectually committed to, or intends to find out. Therefore, as
early as its birth with Aristotle, logic has already been questioning the nature
and reasons of the mysterious force that proofs exert on us, and the condi-
tions that a reasoning must satisfy to be said correct. Over the centuries, the
dual objective of justifying and explaining this link has been understood in
very different ways. However, contemporary logic is the child of a tradition
dating back to the late nineteenth century, and to the first half of the twen-
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tieth, when the researches of Gottlob Frege, Bertrand Russell, David Hilbert
and Alfred Tarski, in particular, marked a point of no return compared to
previous authors.

Through a reflection on the rules and universal principles of deductive
practice, and an axiomatization of the same, the formalization process has
allowed a structural definition of proof as a derivation in a system. The ad-
equacy of purely syntactic configurations was then connected to, and made
to depend on, a rigorous delineation of semantic concepts. From this point
of view, the completeness theorem for predicative logic, and the incomplete-
ness theorem for Peano’s first-oder arithmetic, both proven by Kurt Gödel,
have been the watershed for all the subsequent work. They have especially
influenced a reflection on the notion of proof as such, which led to what we
now call proof-theory. The origins of this theory can be traced back to the
same Hilbert, who

hoped to establish the consistency of mathematics or, more gen-
erally, to obtain a reduction of mathematics to a certain construc-
tive part of it. Hence, the study of proofs was here only a tool
to obtain this reduction, and it could thus not use principles that
were more advanced than those contained in the constructive part
of mathematics to which all mathematics was to be reduced. We
may call such a study reductive proof theory. (Prawitz 1973, 225)

However, a disciple of Hilbert’s, Gerhard Gentzen, had already taken his first
steps towards a more comprehensive approach, with the so-called sequent
calculi, and the fundamental Cut-elimination theorem, and with the natural
deduction calculi. Gentzen’s legacy was largely collected, among others, by
Prawitz, who, first with the normalization theorems for the natural deduction
calculi, and then with his proof-theoretic semantics, laid the foundations for
what he himself defines as general proof-theory. Here,

we are - in contrast - interested in understanding the very proofs
in themselves, i.e., in understanding not only what deductive con-
nections hold but also how they are established, and we do not
impose any special restrictions on the means that may be used in
the study of these phenomena. (Prawitz 1973, 225)

Over the years, and in a constant comparison with suggestions such as
Michael Dummett’s researches in theory of meaning and with the intuition-
istic tradition coming from Luitzen Brouwer and Arend Heyting, Prawitz’s
theories have evolved. Thus, the importance of the underlying question of the
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current theory of grounds is mainly due to the link between valid inferences
and proofs: to explain how and why valid inferences can be epistemically
compelling means also to shed light on proofs, on their strength and reliabil-
ity. But how to connect valid inferences with proofs?

As we have already affirmed, some inferences are involved in reasoning.
We can look at the first as minimum units of the latter, or give the latter the
meaning of inferential chains. However, in both cases the relation between
the two notions becomes relevant for the type of inferences we must take
into account, if we intend to deal with epistemic compulsion. Deduction, in
particular, does not seem to be a generic data processing; it is a conscious
activity, in which one deliberately aims to highlight dependency relations
among propositions or sentences, to validate beliefs, to support judgments
or assertions. It is accomplished by intelligent agents, who reflect on what
they are doing, and can recognize the content of the information in their
possession, have access to intentional states, make moves in thinking and
in language, and communicate with one another within the framework of a
more or less broad context.

As a correct reasoning, a proof has a particular link with valid inferences.
From an informal point of view, the common idea seems to be quite precise
here: the notion of valid inference is prior compared to the notion of proof.
And this seems, for example, the concept Descartes illustrates in a famous
passage:

a continuous and uninterrupted movement of thought in which
each individual proposition is clearly intuited. This is similar to
the way in which we know that the last link in a long chain is
connected to the first: even if we cannot take in at one glance all
the intermediate links on which the connection depends, we can
have knowledge of the connection provided we survey the links
one after the other, and keep in mind that each link from the first
to the last is attached to its neighbour. (Descartes 1985, 15)

This line of reasoning contains two important intuitions: 1) all the premises-
conclusion steps of a proof are epistemically compelling, and, 2) proofs are
something we do consciously, acts carried out deliberately and voluntarily.
As we will see, not always more formal descriptions of the notion of proof
have followed these guidelines. On the contrary, the theory of grounds seems
to look at such a way of proceeding as the only promising strategy towards
an adequate description of the epistemic power of valid inferences, as well as
of the epistemic power of proofs.
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1.3 The fundamental task
How should the underlying question of the theory of grounds be more pre-
cisely formulated? Is it possible to identify a programmatic setting of a satis-
factory explanation of the strength of epistemic compulsion of which valid in-
ferences are endowed? In the articles Inference and knowledge (Prawitz 2009)
and The epistemic significance of valid inference (Prawitz 2012a), Prawitz
outlines a general framework that may perhaps serve that purpose. Given
the premises

a) I is a valid inference from the premises Γ to the conclusion α;

b) A is in possession of a ground for each of the premises in Γ,

which further condition c) must be added to a) and b) in order to get

d) A has a ground for α?

First of all, it should be noted that Prawitz, in this formulation, uses
the expression "ground". As it is easy to imagine, the notion of ground
will receive, in its resulting theory, a particular connotation as well as a
formal expression. However, the question is sufficiently clear, so that it can
be guessed without knowing the theory of grounds. "Ground" can for the
moment be understood in its ordinary sense, as the proof of the truth of
something, or the reason to believe in it, or the guarantee for the correctness
of a judgment or an assertion.

It is manifestly clear, however, that the identification of the further con-
dition c), and the derivation of d) from it and from a) and b), will require
an extension, a deepening and a more rigorous characterization of the notion
of ground. But even before doing this, two other goals must be achieved: to
provide an adequate definition of the notion of valid inference and, then, to
identify an appropriate relation between A and I. Instead, at the conclusion
of this section, it is perhaps appropriate to point out with Prawitz that

the problem posed is not how an agent is to show that she is
in possession of a ground [...]. Our problem is to account for
how, thanks to a valid deductive argument or inference, an agent
gets a ground [...], in other words to say under what conditions
she obtains a ground. When the conditions are satisfied and the
agent is thus in possession of a ground [...], she is thereby justified
[...] without having to show anything. But the philosopher who
claims to have given an account of how grounds are obtained has
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of course to verify that the stated conditions are sufficient, and
should therefore be able to derive from them that the agent has
in fact a ground. (Prawitz 2012a, 892 - 893)

In Explaining deductive inference (Prawitz 2015) (where the point is put in
less general terms, which is why we have preferred here the previous formu-
lations), Prawitz also points out how, in trying to derive d) from the further
condition c),

one may very well use a generic inference of the same kind as the
one that is shown to be legitimate in this way. The point is not
to convince a sceptic who doubts that the inference is legitimate,
but to explain why it is legitimate, and to this end there can be
no objection to use this very inference. (Prawitz 2015, 75)
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Chapter 2

From models to proofs

2.1 Inference and consequence
According to a rather widespread conception, the notion of valid inference
must be defined through the notion of consequence: an inference is valid if,
and only if, its conclusion is a consequence of its premises. The fact that the
notions of valid inference and consequence are closely related emerges clearly
both from a conceptual examination of what, informally, we mean by them,
and from the historical development of mathematical logic.

When we say that something is a consequence of something else, generally
we mean that what follows has, in what it follows from, foundation, reason,
guarantee, and this by virtue of a bond that, with absolute cogency, applies on
the basis of unquestionable and universal properties or laws. If the bond can
be captured by thought, so expressing in the form of reasoning the properties
or laws that determine it, what is obtained is, or it is expected to be, a proof of
what we get on the basis of the hypothesis from which we started. Sometimes,
the proof consists in a single, simple passage; in other cases, we need to
perform many, complex intermediate transitions. But whatever the length
and difficulty of the journey, we will have to deal with valid inferences, which
exert a power, from an epistemic point of view, by preserving or transmitting
justification. On the other hand, if we have achieved some conclusions by
proof starting from certain hypotheses, we are also led to believe that between
hypotheses and conclusion there is a special bond, and that the two poles are
therefore united with the same force of which the corresponding reasoning is
endowed.

Thus, valid inference and consequence refer to each other and, since the
famous Aristotelian definition of syllogisms, they have been approaching to
the point to become often indistinguishable. Since proofs highlight universal
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connections of consequentiality, in dealing with the former, logic will have to
question also (and perhaps mainly) on the latter. However, between the two
notions there is a substantial and often ignored difference, the relevance of
which is evident when the analysis of the notion of valid inference privileges
an epistemic point of view.

To deal with the power of epistemic compulsion of deductively valid infer-
ences requires looking at the latter as acts through which intelligent agents
pass, in a conscious and voluntary way, from certain premises to a certain
conclusion. Premises and conclusion can be truth-bearers, that is proposi-
tions, sentences or beliefs, or consist, in turn, of acts, namely judgments or
assertions; moreover, between premises and conclusions there must be a link,
which, however abstract, is in some way known to the agent. Consequence is,
on the contrary, a relation between truth-bearers, and specifically between
propositions or sentences; in mathematical logic we speak, more precisely, of
logical consequence, where, according to Prawitz (Prawitz 2005) and Cozzo
(Cozzo 2015), this last notion can be unanimously understood as a particular
instance of a more general relation of deductive consequence:

(CD) α is a deductive consequence of Γ if, and only if, necessarily, if all the
elements in Γ are true, α is true;

(CL) α is a logical consequence of Γ if, and only if, α is a deductive conse-
quence of Γ, and this holds only by virtue of the logical form of α and
of the logical form of the elements in Γ.

Deductive consequence is, as indicated by the expression "necessarily" oc-
curring in (CD), a modal relation; as a restriction of deductive consequence,
logical consequence inherits this modality, but (CL) informs us that it, in this
case, depends solely on the logical form of propositions or sentences under
consideration. What kind of modality is that? And what is the logical form?

The second question can be answered in a way that, though often criti-
cized and subjected to major or minor revisions, is nevertheless shared, or at
least assumed, by most of the scholars in this area. It is a line of thought dat-
ing back to Bernard Bolzano, corrected and expanded by Tarski, and finally
generalized by model-theory. The underlying idea is that, within a more
or less formalized language, one must distinguish between constant symbols
and variable symbols, whereas the former include, at least, those that are
usually called logical symbols, "not", "and", "or" (in the inclusive sense),
"if ... then", "all", "some" (which will come later formally indicated with
the respective symbols, ¬, ∧, ∨, →, ∀ and ∃). The fact that the logical
consequence relation depends solely on the logical form of α and on the log-
ical form of the elements in Γ, can at this point be understood in the most
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rigorous sense that it depends solely on logical symbols, taken as constants,
regardless of the specific content of the non-logical ones, considered instead
as variables.

With this in mind, Bolzano (Bolzano 1837) proposed a so-called substi-
tutional approach. Leaving aside secondary details, given a proposition or
sentence α, we call substitution for α a proposition or sentence αΣ obtained
from α by replacing the non-logical symbols with other non-logical symbols
(not necessarily different) of the reference language. Given a set of propo-
sitions or sentences Γ, we indicate with ΓΣ a set of substitutions for every
β ∈ Γ. Then

(Bol) α is a logical consequence of Γ if, and only if, for every αΣ and ΓΣ, if
all the elements in ΓΣ are true, αΣ is true.

However, Tarski noted how (Bol) constitutes a necessary but not sufficient
condition for a plausible characterization of the notion of logical consequence.
In particular, it violates what John Etchemendy (Etchemendy 1990) called
the persistence principle: if α is a logical consequence of Γ in a language L,
α must be a logical consequence of Γ in every expansion of L. In fact, if
the reference language L to which (Bol) refers does not contain a sufficiently
large number of non-logical symbols, it might be the case that, despite all
the possible substitutions with respect to L are such as to meet the condi-
tions required by (Bol), there is an expansion of L obtained by adding to the
latter non-logical symbols of the appropriate type and such that, by virtue
of the new substitutions available, the relation of logical consequence ceases
to be valid. (Bol) could therefore be validated simply by virtue of expressive
resources, essentially not logical, of the reference language. As we will see
in Section 2.3, Tarski, and the model-theory arising from his research, solve
the problem with a much more refined approach than the substitutional one.
Nevertheless, the overall intuition remains the same: the fact that the rela-
tion of logical consequence depends solely on logical symbols, regardless of
the content of the non-logical symbols, must be understood as invariance of
consequentiality under variation of this content. However, by far more diffi-
cult is the question related to modality. How to understand the expression
"necessarily" in (CD)?

A first, famous reading concerns the so-called possible worlds, and pos-
tulates that α is declared as a deductive consequence of Γ if, and only if, α
is true in every possible world where all the elements in Γ are true. This
setting, however, faces multiple difficulties: in fact it is not clear how the
notion of possible world can be articulated without giving rise to circular
explanations (Cozzo 2015) and, even if one appeals to model-theory, by say-
ing that a possible world is nothing more than one of the models described
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in this semantics, there is some doubt about the actual plausibility of the
equation between models and possible worlds (Etchemendy 1990, Prawitz
2005). Anyway, there are some authors who defend such approach. Stewart
Shapiro, for example, considers it functional to a combined vision of (CD)
and (CL), which leads to a limitation from the analytically possible worlds to
the sole logically possible worlds (Shapiro 2005). It is therefore a controver-
sial issue, and probably far from a definitive answer. What we can certainly
say, however, is that the interpretation in terms of possible worlds is averse
to the epistemic interests of the kind of analysis we intend to carry out.

On the contrary, the idea proposed by Prawitz in his Logical consequence
from a constructivist point of view (Prawitz 2005) is much more suitable.
Here, the fact that α is a deductive consequence of Γ is delineated through
what Prawitz himself calls necessity of thought :

(NT) α is deductive consequence of Γ if, and only if, the truth of α follows
by necessity of thought from the truth of all the elements in Γ,

where, with necessity of thought, one wants to say that

one is committed to holding α true, having accepted the truth of
the sentences of Γ; one is compelled to hold α true, given that one
holds all the sentences of Γ true; on pain of irrationality, one must
accept the truth of α, having accepted the truth of the sentences
of Γ. (Prawitz 2005, 677)

Anticipated in Remarks on some approach to the concept of logical con-
sequence (Prawitz 1985), Logical consequence from a constructivist point of
view marks, in a sense, a turning point in Prawitz’s semantic investigation;
the reference to the necessity of thought, in fact, means that the attention
focuses on primarily inferential aspects, so to have as its final consequence,
as we shall see, a reversal of the order of explanation of the notions of conse-
quence and valid inference: the first is to be explained in terms of the second,
rather than vice versa. In addition, the notion of necessity of thought antic-
ipates many of the aspects of what will be then, in the theory of grounds,
epistemic compulsion. It is no coincidence that Cozzo emphasizes how

the key feature of the relation between Γ and α is the compulsion
of the inference from Γ to α. One cannot be compelled if one
does not feel compelled. Inferential compulsion is a power that
acts upon us only in so far as we are aware of its force. Therefore,
the necessity of though is an epistemic necessity: by making the
inference a person recognizes a guarantee of the truth of α given
a recognition of the truth of the members of Γ. (Cozzo 2015, 104)
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An epistemic understanding of the modality involved in (CD) seems, there-
fore, a promising way to achieve our target. On the other hand, we certainly
cannot be content with the informal framework proposed by (NT). Then,
the question is how to give a precise content to Prawitz’s idea of necessity of
thought.

2.2 Syntactic approach
An attempt in all appearances correct may consist in describing the relation
of deductive consequence through that of derivability in an appropriate for-
mal system. As a matter of fact, that is a path followed by all those who, as
Tarski affirms,

believed that they had succeeded, by means of a relatively mea-
gre stock of concepts, in grasping almost exactly the content of
the common concept of consequence, or rather in defining a new
concept which coincided in extent with the common one. Such
a belief could easily arise amidst the new achievements of the
methodology of deductive science. Thanks to the progress of
mathematical logic we have learnt [...] how to present mathe-
matical disciplines in the shape of formalized deductive theories.
In these theories, as is well known, the proof of every theorem
reduces to single or repeated application of some simple rules of
inferences. (Tarski 1956a, 409 - 410)

By formal system we mean an ordered pair 〈L,<〉, where L is a formal
language and < a finite set of inference rules for formulas of L. In turn, a
formal language is determined by an explicitly and strictly declared alphabet,
with precise clauses specifying a (possible) set of terms and a set of formulas.
On the basis of <, we can then inductively define a set of derivations in
〈L,<〉, and, consequently, a derivability relation among the formulas of L: α
is derivable from Γ in 〈L,<〉 if, and only if, there exists a derivation in 〈L,<〉
of α from Γ. Therefore the idea is that, for an appropriate formal system
〈L∗,<∗〉, α is a deductive consequence of Γ if, and only if, α is derivable from
Γ in 〈L∗,<∗〉.

It soon became clear, however, that this approach was doomed to failure.
In fact, above all on the basis of Gödel’s incompleteness theorems, it emerged
that no sufficiently rich formal system was able to capture, in the form of
a derivability relation relative to it, a notion of deductive consequence suffi-
ciently extensive, and therefore relevant. The reference to Gödel’s results is
at the core of Tarski’s thesis, which begins by emphasizing the existence of a
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system S in which, for each natural number n and for a determined property
P , it is possible to derive

(An) n enjoys the property P

but not that

(A∀) every n enjoys the property P .

The situation is clearly unpleasant: from an intuitive point of view (A∀) is
in every respect a deductive consequence of the set of the various (An), on
the standard model of natural numbers. In order to solve the impasse, one
might think of expanding S by adding to it a rule that authorizes the passage
from the infinite premises (An) to the conclusion (A∀). However, such a rule
would result in inferences of a nature radically different from the rules of
S, where the number of premises is, on the contrary, always finite. Since
it is reasonable to require that the desired expansion have the same logical
structure as S, this line of thought does not seem feasible. Nor, for the same
reasons, can we accept an expansion of S obtained by means of a rule which
authorizes the passage from a premise B that fixes the derivability in S of all
the (An), to the conclusion (A∀); B, in fact, is not a formula of the language
which S is referred to, since it rather belongs to a meta-language that speaks
of properties related to S itself. The latter case, however, allows a further
move. Indeed, Tarski notes that now it is possible to

restrict consideration to those deductive theories in which the
arithmetic of natural numbers can be developed, and observe that
in every such theory all the concepts and sentences of the corre-
sponding metatheory can be interpreted. [...] We can replace in
the rule discussed the sentence B by the sentence B′, which is
the arithmetical interpretation of B. (Tarski 1956a, 412)

The expansion of S generates a new, more extensive relation of derivability.
We could therefore aim at repeating the expanding strategy by making sim-
ilar moves, until the notion of deductive consequence fits together with the
notion of derivability in an opportune, and sufficiently powerful, expansion
of S. The desired goal, however, will never be reached; in fact, Gödel’s in-
completeness applies exactly to the formal systems we are appealing to, and
establishes that, in them and in any expansion of theirs, there will always
be a set of formulas Γ and a formula α such that α is intuitively a deduc-
tive consequence of Γ, although there is no correspondent derivation in the
reference system. Therefore, Tarski’s conclusion is that
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in order to obtain the proper concept of consequence, which is
close in essentials to the common concept, we must resort to quite
different methods and apply quite different conceptual apparatus
in defining it. (Tarski 1956a, 413)

Anyway, there are so many reasons not related to Gödel’s theorems as to
believe that a merely syntactic approach is inadequate. If we just observe
(CD) and (NT), we can realize that they involve semantic notions totally
unrelated to derivability in a formal system. In saying that a formula α
derives from a set of formulas Γ, in fact, we make no reference to the truth of
α, or to the modal dependence of this truth from that of the elements in Γ.
In particular, the rules of a system could be fixed in a totally arbitrary way,
and without any justification of the choice accomplished. On the other hand,
this makes it difficult, if not impossible, to say when, or that, a given system
is appropriate, and any attempt to get round that difficulty ends up resulting
in the inevitable adoption of a semantic perspective. As rightly pointed out
by Etchemendy,

systems of deduction require external proofs of their extensional
adequacy (or inadequacy, as the case may be). To be sure, with
careful selection of our rules of proof, it is fairly easy to guarantee
that only valid arguments are provable in a given system. But
our assurance that all valid arguments are provable in the system
- if such an assurance is to be had - must come from somewhere
other than the deductive system itself. We need outside evidence
that our system is "complete". (Etchemendy 1990, 3)

2.3 Model-theory
In some articles of the first half of the twentieth century, Tarski laid the
foundations for the formal semantics, known today as model-theory. Gen-
eralizing or expanding the suggestions of the Polish logician, and often in-
corporating them with approaches and results from different backgrounds,
model-theory soon became the standard in the definition of semantic notions
suitable to go beyond, and, in a sense, to explain, the syntactic framework
of deductive theories. Even today, in fact, correctness and completeness are
generally evaluated with regard to model-theoretic procedures and, when
reached, considered as a guarantee of adequacy for the deductive apparatus
under examination. This demonstrates how model-theory is not considered
as a mere approach among many others, but, on the contrary, as the most
correct and meaningful one. The reasons for this situation are many, and
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probably too many to be reviewed. Undoubtedly, model-theory has had, and
has, much merit of a technical as well as conceptual nature, since it offers a
theoretical framework in which to demonstrate results of profound relevance,
and articulate in a clear and elegant way a conception of meaning based on
assumptions of considerable philosophical depth. However, the success of
the model-theoretic notion of consequence does not imply, obviously, that
it suits to the epistemic purposes we intend to pursue. Therefore it must
be considered through the necessity of thought, and through the subsequent
question concerning the power of compulsion exerted by valid inferences.

In the famous The concept of truth in formalized languages (Tarski 1956b),
Tarski aims at a materially adequate and formally correct definition of the
notion of truth in a language. Formal correctness demands a limitation of the
analysis to formal languages, and to a development of the discourse in formal
meta-languages in which to define a truth-predicate T applicable to names
pαq for formulas α of object languages. Besides offering evident advantages
in terms of clarity and precision, formal languages

possess no terms belonging to the theory of language, i.e. no ex-
pressions which denote signs and expressions of the same or an-
other language or which describe the structural connections be-
tween them; (Tarski 1956b, 167)

therefore, they are distinguished, in a radical way, from natural languages,
since they avoid that semantic closure that Tarski identifies as the main
responsible in the occurrence of antinomies. The condition of material ad-
equacy, instead, will be satisfied if the definition of T is such that it can
be derived as a theorem, for each formula α of the reference language, the
schema

T (pαq) if, and only if, p,

where p is a structural description of α. The techniques and the results of The
concept of truth in formalized languages will converge later in On the concept
of logical consequence (Tarski 1956a). Here, starting from the problem of an
appropriate characterization of the notion of consequence, Tarski enunciates
his well-known definition of logical consequence. Except for some negligible
differences, model-theory faithfully adopts the Tarskian line of thought.

As in the rest of the present survey, the model-theoretic notion of logical
consequence will be discussed here with reference to a first-order language
L. The alphabet of L will include individual variables x, y (if necessary
with indexes), individual symbols c (if necessary with indexes), functional
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symbols fh (if necessary with indexes), predicative symbols Pm (if neces-
sary with indexes) and logical symbols ¬, ∧, ∨, →, ∀, ∃. We will use the
meta-variables t, u, ... (if necessary with indexes) to indicate generic terms,
meta-variables α, β, ... (if necessary with indexes) to indicate generic formu-
las, and meta-variables Γ,∆, ... (if necessary with indexes) to indicate generic
sets of formulas. With expressions of the type t[u1, . . . , un/x1, . . . , xn] and
α[t1, . . . , tn/x1, . . . , xn], we will indicate, respectively, the result of a function
that replaces in t the variable xi with the term ui, and the result of a func-
tion that replaces in α the variable xi with the term ti. With the expression
Γ[t1, . . . , tn/x1, . . . , xn] we will indicate the set obtained from Γ by substi-
tuting, in every α ∈ Γ, the variable xi with the term ti (i ≤ n). Constants
and quantifiers determine a distinction between open and closed terms, and
between open formulas and closed formulas: in the open terms and in the
open formulas there will be variables that occur free, that is to say out of
the scope of ∀ and ∃, while in the closed terms and in the closed formulas
the variables, if any, occur bound, that is to say in the scope of ∀ or ∃. The
set of the free (bound) variables of t and α will be respectively indicated
with FV (t) and FV (α) (BV (t) and BV (α)). Obviously, FV (Γ) (BV (Γ))
indicates the union set of FV (α) (BV (α)) for α ∈ Γ.

Model-theory involves interpretations AD of some elements of the alphabet
of L on sets D (usually understood according to the Zermelo-Fraenkel set
theory with the axiom of choice, or ZFC): elements e ∈ D for individual
symbols c (it is usual to extend L by introducing a distinct individual symbol
for each distinct element of D); functions f : Dh → D for functional symbols
fh; relations Rm ⊆ Dm for predicative symbols Pm. On this basis, AD
interprets then closed terms on D, and closed formulas on the set {1, 0}
where 1 stands for "true" and 0 for "false". Finally, an open formula α will be
interpreted by AD on 1 or 0, depending on whether or not it is interpreted by
AD on 1 or 0 its universal closure CL(α), which is the formula obtained from α
by universally quantifying all the variables that occur free in α. With CL(Γ)
we indicate instead the set obtained from Γ by closing universally every
α ∈ Γ. So AD is called model of α if, and only if, AD interprets α on 1, that
is to say if α is true in D under AD. α is said to be logical consequence of Γ -
indicated with Γ |= α - if, and only if, assuming that FV (Γ∪α) = {x1, ..., xn},
for each AD, for each c1, . . . , cn, if AD is a model of Γ[c1, ..., cn/x1, ..., xn], AD
is a model of α[c1, ..., cn/x1, ..., xn]; for Γ = ∅, α is said to be logically valid
- indicated with |= α. As we can see, if FV (Γ ∪ α) = ∅, Γ |= α if, and only
if, every model of Γ is a model of α, that is to say if, and only if, for each
AD, α is true in D under AD if all the formulas of Γ are true in D under
AD. Likewise, if FV (α) = ∅, |= α if, and only if, each AD is a model of α,
that is to say, if, and only if, for each AD, α is true in D under AD. The
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fact that such a characterization concerns the notion of logical consequence
depends essentially on its taking into account a totality of interpretations over
a totality of sets and, above all, on the way in which such interpretations are
defined on such sets. In particular, the non-logical symbols are variable, in
so far as they are from time to time associated with elements, functions and
relations in or on the reference domain. On the contrary, when establishing
the truth conditions of the formulas, as we shall see in detail in the next
section, the role of logical symbols is intended to remain constant.

According to the informal framework offered by (CD) and (CL) in Section
2.1, logical consequence is a particular instance of a more general notion of
deductive consequence, and, since the latter is a modal relation, the same the
relation of logical consequence must also be. Can we can say this requirement
is respected by the model-theoretic definition? Even before concentrating, as
suggested, on an epistemic understanding of modality in terms of necessity
of thought, the answer seems to be no: in model-theoretic semantics it holds
what Etchemendy (Etchemendy 1990) called the reduction principle, that is
to say

(RP) if the second-order universal closure ∀v1, ..., vn α
∗ of a formula α∗ ob-

tained from a closed formula α by replacing the variable symbols with
variables of the appropriate type is true, every instance of ∀v1, ..., vn α

∗

is logically valid.

A while ago, we have introduced a first-oder notion of universal closure of
an open formula. The transition to the second order is achieved by enriching
a first-order language with functional variables φ and predicative variables
X, and with quantifiers that act on these variables. Given a closed for-
mula (for example, in an arithmetic language α could be ∀x∃y(2x < y)),
we replace the non-logical symbols of this formula with variables of an ap-
propriate type and take into account the universal closure ∀v1, ..., vn α

∗ of
the open formula α∗ thus obtained (in our example, α∗ is ∀x∃yX(φ(z, x), y)
and ∀v1, ..., vn α

∗ is ∀X∀φ∀z(∀x∃yX(φ(z, x), y))). The reduction principle
tells us then that the truth of ∀v1, ..., vn α

∗ implies the logical validity of
each α∗[ε1, ..., εn/v1, ..., vn], where ε1, ..., εn are constants of the appropriate
type (continuing with the example, the truth of ∀X∀φ∀z(∀x∃yX(φ(z, x), y)
implies the logical validity of (∀x∃yX(φ(z, x), y)[P 2/X, f/φ, a/z] for each
R2 ⊆ D2, f : D2 → D and a ∈ D, for an appropriate D). Since the converse
of (RP) is trivially valid, the truth of ∀v1, ..., vn α

∗ will be equivalent to the
logical validity of each of its instances. Therefore, if we maintain that the
model-theoretic notion of logical consequence has modal ingredients, on the
other hand we must admit that, in some specific circumstances, it is equiv-
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alent to the notion of truth, and this is problematic in so far as the latter
notion does not seem to involve any kind of modality.

Prawitz, in actual fact, had already pointed out the question in Remarks
on some approaches to the concept of logical consequence (Prawitz 1985).
Here, he makes a distinction between logical and factual sentences, the latter
containing non-logical constants in which the former are, on the contrary,
wanting. From this point of view, the reduction principle is valid in an even
stronger formulation: the logical validity of a logical sentence ∀v1, ..., vn α

∗

is equivalent to the truth of ∀v1, ..., vn α
∗ itself. So the problem is that

Tarski also has an analysis of truth, to be sure, and hence, of
what is meant by [the truth of ∀v1, ..., vn α

∗]. But the analysis
makes no distinction between logical sentences [...] and factual
sentences. The effect is that a logical sentences is understood as
logically true just in case it is true in the same sense as factual
sentences are true. (Prawitz 1985, 154 - 155)

The reduction principle seems to offer a serious argument against the
presence, in the model-theoretic notion of logical consequence, of modal in-
gredients whatever the type of modality one intends to capture. A detailed
treatment of this subject matter, in particular of the possible objections to
the reduction principle, is outside the scope of this work, whereas, instead,
much closer to our goal is the question related to the possibility of attributing
to the model-theoretic approach the epistemic type of modality involved in
the necessity of thought. In fact, as early as 1985, Prawitz emphasizes how
what one should ask oneself is

what is the ground for a universal truth like [∀v1, ..., vn α
∗], or

how can we come to know, even with certainty, that a logical
sentence is true in all domains. (Prawitz 1985, 155)

In order to approach the problem, it is worth reflecting on the fact that
logical consequence is a modal relation, since it is a particular instance of
a more general relation of deductive consequence. Modality, understood as
necessity of thought, must therefore be referred primarily to deductive conse-
quence. Now, in his On the concept of logical consequence, although starting
from general considerations on the notion of consequence as such, Tarski
actually deals exclusively with the logical case of this notion. But, what is
deductive consequence in Bolzano, Tarski and in model-theory?

Taken as a whole, (CD) and (CL) suggest, in a certain, plausible inter-
pretation, to look at logical consequence in terms of invariance of deductive
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consequentiality under variation of the content of the non-logical symbols.
This seems, in fact, the manner in which Bolzano, Tarski, and model-theory
conceive the idea of dependence on the sole logical form. When adopting a
substitutional perspective, this would mean that the presence of logical con-
sequence is nothing more than the presence of deductive consequence within
each substitution. In an interpretational approach, instead, the fact that α is
a logical consequence of Γ simply means that, for each AD, the interpretation
of α on D under AD is a deductive consequence of the interpretration of Γ on
D under AD. The question is, therefore, what the consequence is in a substi-
tution, or on a set under an interpretation. On closer inspection, however,
neither Bolzano, nor Tarski, nor model-theory really answer the question.
The only available information is that, if all the elements in Γ are true, also
α is true, but this is far too little to obtain modal links of an epistemic type.
Thus, Tarski’s thesis (Tarski 1956a), according to which, on the basis of his
definition, every consequence of true sentences must be true, may perhaps
be valid when understanding modality in terms of possible worlds, namely
with a reference to objective structures independent of our knowledge, but it
is certainly wrong if we are engaged in the characterization of the necessity
of thought. To put it with Prawitz,

if we stay within the framework of Bolzano and Tarski, [the
distinction between deductive and logical consequence] becomes
pointless, because the notion of [deductive] consequence will then
collapse into that of truth of the corresponding material implica-
tion. (Prawitz 2013, 185)

At this point, it becomes important to observe how, with the distinc-
tion between deductive consequence and logical consequence, it is possible to
match an analogous distinction between valid inferences and logically valid
inferences, the former being those in which the conclusion is a deductive
consequence of the premises, whereas in the latter this relation persists un-
der every variation of the content of the non-logical symbols, that is to say,
in the presence of logical consequentiality between premises and conclusion.
But then, the approach in question is also incapable of attributing to valid
inferences a power, justificatory or of epistemic compulsion. In fact, if, on
the one hand, we are not able to distinguish significantly between deductive
consequence and logical consequence, we will not even be able to distinguish
significantly between valid inferences and logically valid inferences, and this
is problematic insofar as the survey focuses on a notion of validity that is
independent, at least in the first instance, from the role that logical constants
play in the link between premises and conclusion. On the other hand, the
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fact that the deductive consequence collapses on the truth of correspondent
material implications has a clear generalization to the inferential case, so that

it would only remain to say that an inference is valid if either one
of the premises is false or the conclusion is true, but clearly no
one is interested in equating the validity of an inference with such
a relation between the truth-values of the involved sentences. [...]
Although [this] property is certainly relevant for the question
whether the inference has the power to justify a belief in the
conclusion (being a necessary condition for that), it is clearly not
sufficient for the inference to have this power. (Prawitz 2013, 185
- 186)

It must however be said that the formulation just discussed constitutes
only one of the possible ways of looking at deductive consequence in the
Bolzano-Tarski-model-theoretic framework. Perhaps, the notion of deductive
consequence should not be inferred from that of logical consequence, by leav-
ing out the reference to the totality of substitutions or structures on which the
content of non-logical symbols is intended to vary. On the contrary, it could
be argued that the reference to invariance by logical form is to be understood
as consequence with respect to the set of logical symbols {¬,∧,∨,→,∀,∃},
where deductive consequence instead should be described as a consequence
with respect to an appropriate set of symbols K ⊃ {¬,∧,∨,→,∀,∃}. In such
a perspective, deductive consequence would therefore be defined in terms of
substitutions for symbols not belonging to K or through interpretation func-
tions that make the symbols of K constant. Even this option, however, suffers
from many difficulties. First of all, and in a way analogous to that of Tarski
(Tarski 1956a), when the latter refers to the precise demarcation between
logical and non-logical symbols, we could ask ourselves what the elements of
the supposed set K should be. But other than that, it remains essentially
unexplained how, from the assertion of certain circumstances in certain ob-
jective structures, a bond of epistemic modality can be generated for those
who intend to establish that a given truth-bearer, possibly believed or judged
to be true, or asserted, is valid on the basis of a support provided by other
truth-bearers, or by possible beliefs, judgments or assertions related to them.
From this perspective, we can also add the shareable observation advanced
by Cozzo:

there are infinitely many pairs 〈Γ, α〉 such that all models of Γ
are models of α but we fully ignore that they are. If one is fully
unaware that this relation obtains, one will not (or in any case
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not legitimately) take any responsibility for a support that the
premises Γ provide for the conclusion α. (Cozzo 2015, 104)

The notion of consequence so far discussed does not therefore capture
the necessity of thought, and is therefore unsatisfactory with regard to the
problem of validity of inferences. Is there another, more appropriate, way of
articulating the idea that an inference is valid if, and only if, its conclusion
follows from its premises?

2.4 Meaning: from truth to evidence
As we have already said, the notions of epistemic compulsion and of necessity
of thought have many things in common. Both of them involve the idea of
a link that exerts its strength on agents engaged in the activity of deducing,
in a justified manner, conclusions from premises. Therefore, a link result-
ing from necessity of thought must be something which who performs the
corresponding inferential passage is aware of, something of which one can
experience. On the other hand, it is precisely by virtue of an accomplished
awareness that the passage must be, and in a sense is already carried out.
As Cozzo affirms, necessity of thought has

a phenomenal character [...]. We have an experience of necessity.
But this experience is at the same time the experience of per-
forming the act of making an inference. Therefore it is an active
experience. (Cozzo 2015, 108)

The central question then becomes how a bond that induces necessity of
thought can become known, manifesting itself in the deductive activity. And
the most natural answer seems just the one Prawitz gives, not surprisingly,
in Logical consequence from a constructivist point of view, namely, through
proofs or valid arguments.

In the 2005 article we are referring to, Prawitz hints that a valid argu-
ment for α from Γ is the linguistic expression of a reasoning which takes as
hypothesis the elements in Γ and as a conclusion α, whereas a proof of α from
Γ can instead be seen as what a valid argument for α from Γ expresses, that
is to say the reasoning itself. In both cases, however, we are in the presence
of something

such that, when we know of it, we are compelled to hold α true,
given that we hold the sentences of Γ true. (Prawitz 2015, 678)
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The idea then is to further develop (NT) in Section 2.1, by translating it as

(PT) α is a deductive consequence of Γ if, and only if, it exists a proof or a
valid argument for α from Γ.

Without a doubt, (PT) constitutes a remarkable refinement of the intuition
contained in (NT). However, the reference to valid proofs and arguments does
not seem satisfactory if we are not also able to say, more precisely, what valid
proofs and arguments are, and, moreover, if we are not able to show that,
on the basis of their description, proofs and valid arguments are such as to
make experience those who perform them the phenomenon of the necessity of
thought. However, even before turning to a formal definition of the notions
of proof and valid argument, a correct orientation of the analysis requires
clarifying on what basis proofs and valid arguments can have an epistemic
value. Again, the wisest path seems also the most obvious, since

it is difficult to think of any answer that does not bring in the
meaning of the sentences [occurring in proofs or valid arguments].
In the end it must be because of the meaning of the expressions
involved that we get committed to holding one sentence true,
given the truth of some other sentences. (Prawitz 2015, 678)

The meaning of propositions or sentences will depend, plausibly, on the mean-
ing of the simplest non-propositional or non-sentential components of which
they are made. But what is the latter meaning? How should it be deter-
mined, and on which notions is it based? Perhaps, as a preliminary simplifi-
cation, we could begin by focusing on the sole logical constant, and pass, at
a later time, from such logically relevant expressions to those having a more
particular nature.

As a matter of fact, the question of the meaning of the logical constants
has always been at the center of the attention of mathematical logic and of
philosophy of logic. A guiding intuition, in this sense generally accepted,
goes back to the Fregean context principle (Frege 1884), and can be under-
stood here in the terms of Dummett’s interpretation (Dummett 1973, 1978a,
1993b): the meaning of a non-propositional or non-sentential expression E
is given by the contribution of E to the determination of the meaning of the
propositions or of the sentences in which E occurs. Another influential thesis,
again due to Frege (Frege 1893) and to Ludwig Wittgenstein (Wittgenstein
1921), is the principle of truth-conditionality : the meaning of a proposition
or sentence is given by the necessary and sufficient conditions under which
it is true. Therefore, the two intuitions so combined correspond to the idea
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that the meaning of a constant logical C is given by the contribution of C to
the determination of the necessary and sufficient conditions for the truth of
the propositions or sentences in which C occurs as the main logical constant.
From this point of view, the Tarskian-model-theoretic definition of the truth
predicate fits perfectly with this setting, and permits to derive the following
clauses

(∧T ) α ∧ β is true if, and only if, α is true and β is true;

(∨T ) α ∨ β is true if, and only if, α is true or β is true;

(→T ) α→ β is true if, and only if, if α is true, β is true;

(∀T ) ∀xα(x) is true if, and only if, for every c, α(c) is true;

(∃T ) ∃xα(x) is true if, and only if, it exists c such that α(c) is true.

What we should at this point ask ourselves is if the mere ruling of (∧T ) -
(∃T ) is sufficient. As a reply, we could reasonably expect that a satisfactory
truth-conditional theory also clarifies which notion of truth is really at stake.
Already proposed by Dummett (Dummett 1973, 1978e), the assumption is
after all expressed by Prawitz himself:

questions about the meaning of the logical consequence thus seem
to have a straightforward answer in terms of [truth conditions].
However, the substance of this answer depends on what we take
truth to be. (Prawitz 2005, 679 - 680)

In a sense, it could be argued that Tarski’s formal semantics and the
resulting model-theory aim exactly, according to our wishes, at a delineation
of the notion of truth. This can be admitted, as long as we observe that
the definition of the truth predicate does not exhaust, but rather does imply,
the corresponding notion. As Gabriele Usberti (Usberti 2016) points out,
for example, Tarski (1956b) relates explicitly to the Aristotelian theory of
truth as correspondence, or even, and perhaps more significantly, proves that
every closed formula is true or false by resorting, in an essential way, to
a generalized bivalence principle, according to which each truth-bearer is
determinately either true or false. The central point, however, is that such
a description implies that the meaning of the logical constants is known.
Tarski (Tarski 1956b), not without reason, takes the latter for acquired, by
proving the material adequacy of his approach through examples based on the
possibility of matching names pαq of the meta-language with meta-linguistic
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translations of formulas α of the object language. If the meaning of α were
unknown, these examples would have no probative value.

Therefore, the abovementioned clauses identify the truth only on the
condition of a prior understanding of the meaning of the logical constants;
hence, they alone will not bel able to offer a notion on which to base the
complete clarification of this meaning. But even assuming that this is not
the case here, and even if the notion of truth were completely independent,
there are many reasons for doubting that the clauses are able to justify
simultaneously both truth and meaning. From a general point of view, in fact,
formalization is confined to circumscribe the extension of a meta-linguistic
predicate for names of formulas of a given object language. The fact that
the predicate at stake is actually a truth-predicate can be recognized only if
one has already some underlying, or primitive, idea of truth. Once again, in
line with Dummett (Dummett 1973, 1978e) Prawitz observes in this regard
that

if we have defined a set S of sentences by saying that it is the least
set of sentences containing certain atomic formulas and satisfying
certain equivalences, such as A ∧ B belongs to S if and only if
both A and B belong to S, then obviously we get no information
about the meaning of the logical constants by being told again
that these equivalences hold. [...] We must conclude that truth
conditions can serve as meaning explanations only if we already
have a grasp of truth. (Prawitz 2005, 680)

Therefore, the survey must go, so to speak, deeper than (∧T ) - (∃T ) permit
to do. In other words, it is necessary to question the most fundamental
notion of truth by which the mathematical apparatus itself is inspired. A
formal semantics, after all, is the rigorous report of the overall articulation
of a language, the structural counterpart of a larger theory of meaning based
on general, and often implicit, concepts.

From this point of view, the aforementioned principle of bivalence is
adopted, more or less tacitly, by the overwhelming majority of the propo-
nents of truth-conditionality. Is this a plausible option? The idea that every
truth-bearer is always determinately true or false is at the core of Dummett’s
criticism. In fact, he has dedicated celebrated arguments to this perspective,
which he described as realistic, aiming at showing its unsustainability (Dum-
mett 1978c, 1978e, 1993b). However, the discussion on these themes goes
beyond the aims of the present work. It will suffice to note how bivalence
implies that truth or falsity are given by virtue of facts totally unrelated to
our epistemic abilities. The semantic status of propositions or sentences will
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then be independent of the possibility to know the circumstances that make
them true or false, and the conditions of truth will transcend the conditions
of correctness for judgements or assertions (see Cozzo 1994b, 2008). Thus,
even regardless of the general reasons on the basis of which Dummett refused
such a setting, it is easy to see that it does not even seem, as a matter of prin-
ciple, to conform to the objective to pursue. If the meaning of propositions or
sentences is averse to what it means for us to use them appropriately in the
deductive practice, we are not able to see how, on account of this meaning,
they can endow with an epistemic strength the proofs or valid arguments in
which they are involved.

Therefore, in the view of these difficulties, Prawitz proposes to turn to
an epistemic conception in which

truth is instead determined in terms of what it is for us to ac-
quire knowledge, and sentences are true in virtue of the potential
existence of evidence for them. (Prawitz 2005, 681)

This move obviously makes the notion of evidence the core of the discussion,
to the detriment of the notion of truth, transforming the original truth-
conditional theory into a theory based on conditions of correct judicability or
assertability - it is only when in possession of an appropriate evidence, that
judgements and assertions can be said to be correct. The old principle of
Frege and Wittgenstein can still be reused, because now

we may go back to the idea that meaning is determined by truth
conditions. A more profound way of accounting for the meaning
of a sentence is now opened up, namely, in terms of what counts as
evidence for the sentence. Knowing what counts as evidence for
the sentence, one also knows the truth conditions of the sentence.
(Prawitz 2005, 681)

Through the previous reflections, we have brought into focus some important
topics. However, the term "evidence" is obviously too vague. How can we
make it more precise? Prawitz’s proof-theoretic semantics aims at answering
this question.

2.5 Prawitz’s proof-theoretic semantics
In order to better understand what we will say later, it is necessary to make a
brief digression. As anticipated, in fact, Prawitz’s proof-theoretic semantics
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has two main sources of inspiration: on the one hand, some pioneering re-
search by Gentzen; on the other, and with a specific reference to the formal
apparatus of such research, the fundamental results that Prawitz himself
has proven. Along with other ideas coming from the related intuitionistic
tradition, these two suggestions merge in almost all Prawitz’s semantic in-
vestigation, including the contemporary theory of grounds.

Therefore, the next Section is dedicated to the introduction of concepts
and results, the technical nature of which, although different from the type
of topic so far dealt with, is, in our opinion, an indispensable ingredient for
the correct understanding of the following exposition.

2.5.1 Gentzen’s systems and Prawitz’s normalization

In the well-known Untersuchungen über das logische Schließen (Gentzen 1934
- 1935), Gentzen outlines two types of formal systems for a first-order lan-
guage L: a calculus of sequents, and a calculus of natural deduction. The
latter, to which we will devote our exclusive attention, is based on the idea of
associating to every logical constant C a rule (of inference) of introduction,
in which C occurs as principal logical constant in the conclusion, and a rule
(of inference) of elimination, in which C occurs as principal logical constant
in one of the premises (called major premise, whereas the others, if any, are
called minor premises).

α β (∧I)α ∧ β
α1 ∧ α2 (∧E,i), i = 1, 2αi

αi (∨I), i = 1, 2α1 ∨ α2

α ∨ β

[α]

...
γ

[β]

...
γ (∨E)γ

[α]

...
β (→I)α→ β

α→ β α (→E)β

α(x)
(∀I)∀yα(y/x)

∀xα(x)
(∀E)

α(t/x)
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α(t/x)
(∃I)∃xα(x)

∃yα(y/x)

[α(x)]

...
β

(∃E)β

In the rules (∨E), (→I) and (∃E), the vertical dots between two formulas
indicate that the second one is understood as obtained in dependence of the
first; the square brackets instead indicate that the formula put into them
can be discharged, in the sense that the conclusion no longer depends on
this formula. In the rules for ∀ and ∃, α(y/x) and α(t/x) are notations of
convenience for α(x)[y/x] and α(x)[t/x]. In (∀I), x must not occur free in
any undischarged formula on which α(x) depends; in the same way, in (∃E)
x must not occur free either in β, or in any undischarged formula on which
β depends, other than α(x). In both cases, x is called the proper variable of
the inference and, if y 6= x, y must not occur free in α(x) and must be free
for x in α(x). In the rules (∀E) and (∃I), t must be free for x in α(x).

So, on the whole, we have introduced a formal system ML called minimal
logic. If we add a constant symbol ⊥ for absurdum to the so-called atomic
formulas of the language of reference - a subset of the set of formulas, the
elements of which consist of applications of relational constants to terms -
and put

¬α def
= α→ ⊥

by adding to ML the rule

⊥ (⊥)α

we obtain a formal system IL for intuitionistic logic. Finally, by adding to
IL one of the rules

EMα ∨ ¬α
¬¬α DNα

[¬α]

...
⊥ RAAα

PRC
((α→ β)→ α)→ α

we obtain a formal system CL for classical logic. The rules permit to define
a set of derivations, which are represented as tree structures whose nodes
are formulas; the initial nodes are the assumptions of the derivation, while
the final node is the conclusion. Here we will take into account only IL, on
a first-order reference language L with set of terms TERML and set formulas
FORML (ATOML for the atomic formulas).
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Definition 1. The set DERIL of the derivations of IL is the smallest set X
such that

• the single node α ∈ X for every α ∈ FORML

• ∆1

α
and ∆2

β
∈ X ⇒

∆1

α

∆2

β (∧I)α ∧ β ∈ X

• ∆
α1 ∧ α2

∈ X ⇒

∆
α1 ∧ α2 (∧E,i), i = 1, 2αi

∈ X

• ∆
αi
∈ X with i = 1, 2⇒

∆
αi (∨I), i = 1, 2α1 ∨ α2

∈ X

• ∆1

α ∨ β
,

α
∆2

γ
and

β

∆3

γ
∈ X ⇒

∆1

α ∨ β

[α]

∆2

γ

[β]

∆3

γ (∨E)γ ∈ X

•
α
∆
β
∈ X ⇒

[α]

∆
β (→I)α→ β ∈ X
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• ∆1

α→ β
and ∆2

α
∈ X ⇒

∆1

α→ β
∆2

α (→E)β ∈ X

• ∆
⊥ ∈ X ⇒

∆
⊥ (⊥)α ∈ X

• ∆
α(x)

∈ X in compliance with the restriction on (∀I) ⇒

∆
α(x)

(∀I)∀yα(y/x) ∈ X

• ∆
∀xα(x)

∈ X ⇒

∆
∀xα(x)

(∀E)
α(t/x) ∈ X

in compliance with the restriction on (∀E)

• ∆
α(t/x)

∈ X in compliance with the restriction on (∃I) ⇒

∆
α(t/x)

(∃I)∃xα(x) ∈ X

• ∆1

∃yα(y/x)
and

α(x)

∆2

β

∈ X in compliance with the restriction on (∃E)

⇒
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∆1

∃yα(y/x)

[α(x)]

∆2

β
(∃E)β ∈ X

α is derivable from Γ in IL, indicated Γ `IL α, if, and only if, there is
∆ ∈ DERIL with set of undischarged assumptions Γ and conclusion α.

Prawitz (Prawitz 1971, 2006), as we have already said, has obtained
a fundamental normalization theorem for IL, and hence, trivially, for its
subsystem ML (as well as for other systems, including CL itself). Just like
the Cut-elimination, proven by Gentzen himself (Gentzen 1934 - 1935) for
sequents calculi, this theorem permits to eliminate the detours inside the
derivations, and reduces the latter to structures having interesting proper-
ties and far-reaching consequences. Leaving aside inessential details, we will
limit ourselves here to introduce simple definitions and to enunciate only the
most relevant results.

Definition 2. A maximal formula of ∆ is an occurrence of a formula in ∆
which is consequence of an application of an introduction rule or of (⊥), and
major premise of an application of an elimination rule.

∆ is said to be in normal form if, and only if, it does not contain maximal
formulas.

For rules other than (⊥), maximal formulas can be eliminated through ap-
propriate reductions.

∆1

α1

∆2

α2 (∧I)α1 ∧ α2 (∧E,i), i = 1, 2αi

∧i-rid
∆i

αi

∆
αi (∨I), i = 1, 2α1 ∨ α2

[α1]

∆1

β

[α2]

∆2

β (∨E)β

∨-rid

∆
[αi]

∆i

β

[α]

∆1

β (→I)α → β
∆2

α (→E)β

→-rid

∆2

[α]

∆1

β
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∆(x)

α(x)
(∀I)∀yα(y/x)
(∀E)

α(t/x)
∀-rid

∆(t/x)

α(t/x)

∆
α(t/x)

(∃I)∃yα(y/x)

[α(x)]

∆1(x)

β
(∃E)β

∃-rid

∆
[α(t/x)]

∆1(t/x)

β

where ∆(t/x) indicates the substitution in ∆(x) with t of every free occur-
rence of x in occurrences of formulas in ∆(x). One could reasonably ex-
pect that the application of one among ∧i-rid, ∨-rid, →-rid, ∀-rid and ∃-rid
to ∆ with undischarged assumptions Γ and conclusion α generates a new
derivation with undischarged assumptions Γ∗ ⊆ Γ and conclusion α. We can
achieve this by adopting a simple convention that, by virtue of some theo-
rems of which it is not advisable to go into details (see, for example, Van
Dalen 1994), does not cause any loss of generality.

Convention 3. In each ∆ (1) free and bound variables are all distinct -
property (FB) - and (2) proper and non-proper variables are all distinct, and
each proper variable is used in at most only one application of (∀I) or (∃E)
- property (PN).

As regards (⊥), it will be sufficient to recall the result according to which,
if Γ `IL α, it exists ∆ with set of undischarged assumptions Γ and conclusion
α such that, for each occurrence of β in ∆, if the occurrence of β is the
conclusion of an application of (⊥), then β ∈ ATOML. So we can, in a sense,
leave aside the maximal formulas that are the consequences of the applica-
tions of (⊥), and focus only on those to which it is associated an appropriate
reduction.

Theorem 4. If Γ `IL α, it exists ∆ in normal form with undischarged
assumptions Γ∗ ⊆ Γ and conclusion α.

Since ML is a subsystem of IL, theorem 4 extends trivially to minimal logic.
In both cases, the basic strategy for the proof consists, as we can imagine,
in progressively eliminating all the maximal formulas of a derivation (and
any new maximal formulas resulting from the elimination itself) through
reiterated applications of ∧i-rid, ∨-rid,→-rid, ∀-rid and ∃-rid. The latter, as
we will see more extensively and more generally in Section 2.5.2.1, induce,
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for their part, a reducibility relation among derivations, by virtue of which
theorem 4 can be expressed more vigorously by saying that each derivation
of IL (and therefore of ML) reduces to a derivation in a normal form.

Beyond an intrinsic technical interest, the normalization result has a con-
siderable philosophical importance, and lends itself, in a natural way, to
semantic discussions. This is consistent with what Gentzen already seems to
suggest, in a passage by now become famous:

the introductions represent, as it were, the "definitions" of the
symbol concerned, and the eliminations are no more, in the final
analysis, than the consequences of these definitions. This fact
may be expressed as follows: in eliminating a symbol, we may
use the formula with whose terminal symbol we are dealing only
"in the sense afforded it by the introduction of that symbol".
[...] By making these ideas more precise it should be possible to
display the [elimination inferences] as unique functions of their
corresponding [introduction inferences]. (Gentzen 1934 - 1935,
192)

Gentzen’s words can be interpreted in two different, although closely linked
ways. If we are focused on the idea that elimination inferences are nothing
but univocal functions of the corresponding introduction inferences, with the
latter, on the contrary, "defining" the symbols occurring as principal in their
conclusions, we arrive at an inversion principle which, introduced for the
first time by Lorenzen (Lorenzen 1950, 1955), was formulated by Prawitz
with the following words:

let a be an application of an elimination rule that has β as con-
sequence. Then, deductions that satisfy the sufficient condition
[...] for deriving the major premise of a, when combined with de-
ductions of the minor premisses of a (if any), already "contain"
a deduction of β; the deduction of β is thus obtainable directly
from the given deductions without the addition of a. (Prawitz
2006, 33)

As can easily be seen, ∧i-rid, ∨-rid,→-rid, ∀-rid and ∃-rid instantiate the in-
version principle, in the formulation of Prawitz, on, respectively, (∧E,i), (∨E),
(→E), (∀E) and (∃E). Instead, if we are focused on the request that the elim-
ination of a symbol occurring in the major premise is consistent with the way
in which this symbol is "defined" in the introduction concerning it, Gentzen’s
thesis can be inserted in a semantic perspective. The introduction rules fix
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the meaning of the symbols that occur as principal in the conclusion, and the
elimination rules must be, so to speak, in harmony with this meaning. As we
will see later, in the theories of meaning based on the notion of evidence, and,
in particular, in proof-theoretic semantics, the concept of harmony receives
a well precise connotation. What we can already observe now, however, is
that, from a semantic point of view, ∧i-rid, ∨-rid, →-rid, ∀-rid and ∃-rid
can be seen as justifications of, respectively, (∧E,i), (∨E), (→E), (∀E) and
(∃E). In other words, since the introduction rules fix the meaning, it will be
considered "acceptable" any derivation that ends with the application of an
introduction rule to "acceptable" derivations. Reductions, then, by showing
how to transform derivations with detours into derivations without detours,
show also the "acceptability" of a derivation that ends with the application of
an elimination rule to "acceptable" derivations - where the derivation of the
major premise must obviously satisfy the meaning conditions of the logical
constant of reference. Therefore, the semantic reading is not at all incom-
patible with the setting that takes to the normalization theorems; on the
contrary, it is a faithful generalization of it, a generalization in which the
inversion principle becomes a requisite that every legitimate elimination rule
must fulfill. Not without reason, Peter Schroeder-Heister emphasized what
he calls the fundamental corollary of theorem 4: by repeatedly applying ∧i-
rid, ∨-rid, →-rid, ∀-rid or ∃-rid to ∆ with assumptions Γ = ∅, we arrive at a
derivation that ends with the application of an introduction rule. This result
is

philosophically interpreted by requiring that a valid closed deriva-
tion be reducible to one using an introduction inference in the last
step. (Schroeder-Heister 2006, 531)

To conclude, we feel we need to introduce the notion of first-order atomic
system. As we will see in the next section, proof-theoretic semantics rela-
tivizes its key notions to bases consisting of derivations in systems of this
type, and an analogous approach can be adopted for the theory of grounds
too - and indeed, we will adopt it explicitely in this latter case. More specifi-
cally, we will characterize the first-order atomic systems through the so-called
Post systems. Although just one of the many possibilities, this is the modus
operandi adopted by Prawitz himself.

Given a first-order language L with predicative, functional and individual
symbols, a Post system is then a pair 〈L,<〉, with < finite set of rules

α1 . . . αn
β
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relative to predicative, functional or individual symbols of L and such that:

• n ≥ 0 (when n = 0, the rule is an axiom);

• for every i ≤ n, αi ∈ ATOML and αi 6= ⊥;

• β ∈ ATOML and, if x occurs free in β and n > 0, it exists i ≤ n such
that x occurs free in αi.

As an example for what will follow, let N be the set of natural numbers, .=
the usual equality relation in N2, s the successor function N→ N, and + and
· the functions of, respectively, addition and multiplication N2 → N. Suppose
that the predicative, functional and individual symbols of L are identical to
the correspondent ones on N. Let us take into account the following rules:

( .=R)
t
.
= t

t
.
= u ( .=S)
u
.
= t

t
.
= u u

.
= z ( .=T )

t
.
= z

0
.
= s(t)

(s1)⊥
s(t)

.
= s(u)

(s2)
t
.
= u

(+1)
t+ 0

.
= t

(+2)
t+ s(u)

.
= s(t+ u)

(·1)
t · 0 .

= 0
(·2)

t · s(u)
.
= (t · u) + t

As can be seen, ( .=R), (
.
=S) and ( .=T ) express the usual properties of reflex-

ivity, symmetry and transitivity of the equality - we will indicate the set of
these rules with EQ; (s1), (s2), (+1), (+2), (·1) and (·2), together with the
first-order induction rule

α(0)

[α(x)]

...
α(s(x)/x)

IND
α(t/x)

express instead the so-called Peano axioms for first-order arithmetic - we will
indicate the set of these rules with SAM ∪ {IND}. Taking into account also
intuitionistic logic, the system EQ∪ SAM∪ {IND} ∪ IL is called Heyting first-
order arithmetic - we will indicate this system with HA. Obviously EQ ∪ SAM
is a Post system.
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2.5.2 Valid arguments and proofs

Since the 1970s, Prawitz has concentrated on semantic investigations. In par-
ticular, proof-theoretic semantics was for the first time systematized, along
different lines of thought, in the 1971 article Ideas and results in proof the-
ory, in the 1973 article Towards a foundation of a general proof theory and
in the 1977 article Meaning and proofs: on the conflict between classical and
intuitionistic logic.

From the beginning, Prawitz proves to be aware of the existence of at
least two possible approaches. In the 1973 article, for example, he affirms
that

one could try to give a direct characterization of different kinds
of proofs, where a proof is understood as the abstract process
by which a proposition is established, and then study how proofs
are represented syntactically by derivation. Or alternatively, one
could start on a more concrete level and study the verbal argu-
ments that are intended to convince us of some state of affairs
and then attempt to single out those arguments that are valid
and which thus represent proofs. (Prawitz 1973, 227)

In the context of a critical-widening discussion of Dummett’s theories, Mean-
ing and proof: on the conflict between classical and intuitionistic logic presents
general considerations on proofs. Ideas and results in proof theory and To-
wards a foundation of a general proof theory, on the other hand, introduce
and articulate the notion of valid argument. Although not always with equal
intensity (see, among others, Tranchini 2014a, where it is rightly said that the
setting in terms of valid argument is at the beginning predominant, and that
the situation is reversed precisely with the theory of grounds - and, we can
add, with the articles that anticipate it), both paths remain, over the years,
at the center of Prawitz’s attention, until they end up merging, as already
mentioned, in Logical consequence from a constructivist point of view.

In the following paragraphs, valid arguments will be defined as in To-
wards a foundation of a general proof theory, which differs from Ideas and
results in proof theory essentially for the role attributed to Post systems.
We will discuss proofs starting from Meaning and proofs: on the conflict be-
tween classical and intuitionistic logic, by integrating the reflections therein
contained with others, innovative, coming precisely from Logical consequence
from a constructivist point of view.

In order to approach proof-theoretic semantics, it is worth resuming the
discussion at the end of Section 2.4. There, our initial problem had been
to explain by virtue of what valid arguments and proofs were such as to
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induce, on those in possession of it, the epistemic constraint of the neces-
sity of thought. Since any answer to such a question cannot ignore what
propositions or sentences mean, we have therefore examined the nature of
this meaning. After detecting the inadequacy of an explanation in terms of
bivalent truth-conditions, we have then appealed to Prawitz’s proposal to
focus on the notion of evidence. What we are going to do now is to define
the notion of evidence through rigorous definitions of the notions of valid
argument and proof. Could we not affirm, with good reason, that we have
fallen into a circular explanation? In considering this plausible objection,
Prawitz suggests also an escape route:

there seem to be two clashing intuitions at work here, which also
occur in more general discussion concerning the relation between
the meaning and the use of a term [...] what counts as a proof
of a sentence is one feature of the use of the sentence. (Prawitz
2005, 682)

In this sense, while it is true that proof-theoretic semantics originates from
Gentzen’s research, and from the normalization theory related to it, it is
equally true that this semantics fits perfectly with the thesis, dating back
to Wittgenstein (Wittgenstein 1953), according to which meaning is use; or
rather, more precisely, with a certain interpretation of this thesis.

Wittgenstein’s slogan has indeed received all kinds of interpretations.
However, among the most influential, and moreover essential for the iden-
tification of the desiderata that an adequate theory of meaning must sat-
isfy, there is no doubt Dummett’s well-known work. Against bivalent truth-
conditionality, and in favor of a verificationist framework, Dummett (Dum-
mett 1978c, 1993b) has in fact proposed, among others, arguments based on a
manifestability requirement, according to which knowledge, or understanding,
of meaning must be able to manifest itself through the use of propositions or
sentences within the assertive practice. And the way in which Prawitz con-
ceives the idea that meaning is use is affected by Dummett’s influence. This
is for example evident in the aforementioned Meaning and proofs: on the
conflict between classical and intuitionistic logic, where the point is discussed
in relation to, and framed within the theories of meaning of the English
philosopher:

use is to be taken in its broadest possible sense, i.e., as total use
in all its aspects. This is not to say that the meaning is causally
determined by the use, because, conversely, it is equally reason-
able to hold that use is determined by meaning; nor should it be
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concluded from this that meaning is identical with use. What
is claimed is only that if two expressions are used in the same
way, then they have the same meaning, or if two persons agree
completely about the use of an expression, then they should also
agree about its meaning. The principle could be expressed in an-
other way by saying that the meaning of a sentence must be fully
manifest in some way in its use. [...] The principle that meaning
is determined by use does not preclude the possibility that there
is some central feature of sentences other than their total use that
determines or constitutes their meaning; it only demands that a
feature that constitutes meaning is determined by use. (Prawitz
1977, 3 - 5)

In line with these observations, Prawitz therefore bypasses the difficulty pre-
viously highlighted by affirming that

if someone asks why 3 + 1 = 4, a natural answer is that this is
what "4" means, or that this is how "4" is defined and used. Sim-
ilarly, what can we answer someone who questions the drawing
of the conclusion α → β, given a proof of β from α, except that
this is how α → β is used, it is a part of what α → β means?
But a similar answer to the question why 2 + 2 = 4 or why we
infer α → β from ¬β → ¬α seems inadequate. That 2 + 2 = 4
or that we infer α → β from ¬β → ¬α is not reasonably looked
upon as a usage that can be equated with the meaning of the
expressions involved, but rather is something that is to be justi-
fied in terms of what the expressions mean. To answer all doubts
about a certain usage of language by saying that this is how the
terms are used, or that this is a part of their meaning, would be
a ludicrously conservative way of meeting demands for justifica-
tion. But for some such doubts the reference to common usage is
very reasonable and may be the only thing to resort to. (Prawitz
2005, 682)

What are, then, valid arguments and proofs? As was the case for the
notion of consequence, an at first sight satisfactory answer could be formu-
lated in purely syntactic terms: valid arguments and proofs are nothing but
derivations in an appropriate, sufficiently powerful, formal system. Also in
this case, however, Gödel’s incompleteness theorems reveal the inadequacy of
such a conception. However, over and above that, the key reason is the fact
that an arbitrary choice of axioms and rules would prevent from linking, as
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required, the notions of valid argument and proof to the meaning of proposi-
tions or sentences, and from justifying valid arguments and derivations based
on this meaning:

a deductive system is [...] an attempt to codify proofs within a
given language, but when setting up such a system, one does not
ordinarily try to analyze what makes something a proof. Nor does
proof theory ordinarily try to justify a deductive system except
for trying to prove its consistency. (Prawitz 2005, 683)

2.5.2.1 Valid arguments (in 1973)

As stated in Section 2.5.1, the derivations of IL are tree structures; the
nodes correspond to occurrences of formulas of a first-order language, and
the branches reflect the application of (∧I), (∧E,i), (∨I), (∨E), (→I), (→E),
(∀I), (∀E), (∃I), (∃E) or (⊥). However, the argumentative practice is not
obviously limited to any fixed set of rules. For this reason, when developing
his notion of valid argument, Prawitz places no restriction on the type of
inferences used in deduction.

The departure notion is thus a generic notion of argument. An argument
will still be a tree structure having as its nodes the occurrences of formulas
of a first-order language L; inferences, however, should be understood now
as whatever kind of figures of the type

∆1 . . . ∆n α1, ..., αm, x1, ..., xs
β

where ∆1, ...,∆n are in turn arguments, α1, ..., αm occurrences of assumptions
discharged by the inference, and x1, ..., xs occurrences of free variables bound
by it - as usual called proper variables. As a convention, we will admit that
an inference that binds variables is always such that its proper variables
do not occur free either in the conclusion of the inference, or in any of the
undischarged assumptions on which such a conclusion depends. By rule of
inference we mean simply a set of inferences, called applications of the rule;
two rules of inference are said to be disjoint if, and only if, they have empty
intersection.

The initial nodes of an argument are its assumptions, the final node be-
ing instead its conclusion; an argument will be called open when it contains
undischarged assumptions or occurrences of free variables not later bound,
closed otherwise. As a further request, we will take for granted that all ar-
guments enjoy the properties (FB) and (PN) according to convention 3. An
example of an open argument ∆ is an argument obtained from ∆ through a
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substitution σ of free, not later bound, variables with terms, and of undis-
charged assumptions with arguments for such assumptions. Given an argu-
ment ∆ ending in an inference of the kind shown above, we will say that
each ∆i (i ≤ n) is an immediate subargument of ∆; a subargument of ∆ is
an initial segment of ∆, namely an element of the reflexive and transitive
closure with respect to ∆ of the relation "∆1 is an immediate subargument
of ∆2".

The notion of valid argument is relativized by Prawitz to atomic bases
and justifications. An atomic base B is a pair 〈{K, F, R}, S〉 with: K set of
individual symbols, F set of functional symbols, and R set of predicative
symbols - all three such to contain the individual functional and predicative
symbols of L; S Post system with rules relative to the elements of K, F and
R - it should be noted that S determines also a corresponding set of atomic
derivations. With B-term and B-derivation we will indicate, respectively, a
term consisting of elements of K, F and R, and a derivation in S. Of course, if
K, F and R strictly contain the relative individual functional and predicative
symbols of L, the notion of valid argument will be developed with regard to
an expansion of L. However, hereafter we will assume that the individual
functional and predicative symbols are always all and solely those of L. A
base 〈{K, F, R}, S〉 is said to be consistent if, and only if, 0S ⊥.

As we have seen, in a semantic reading of Gentzen’s words quoted in Sec-
tion 2.5.1, the introduction rules for IL can be understood as determining,
or, in a weaker sense, as mirroring the meaning of the logical constants to
which they refer. In fact, in the next Section we will be able to realize that
such rules go hand in hand with a description of the meaning in terms of
provability conditions. In view of this, an argument ending with an applica-
tion of an introduction rule to valid arguments of an appropriate type, can
be said

valid by the very meaning of the logical constants when under-
stood constructively [...]. And conversely, it must be possible to
bring a valid argument for a compound formula into one of these
forms. (Prawitz 1973, 232)

What shall we say then of the (applications of) non-introductory rules, and of
arguments ending with them, or in which they occur? Again in Section 2.5.1,
it has been argued that reduction operations can be seen as justifications for
the elimination rules of IL. The idea behind the relativization of the notion
of valid argument to justifications is exactly that of considering the latter as
a sort of generalization of the reductions associated with (∧E,i), (∨E), (→E),
(∀E) and (∃E). More in particular, a justification J of a set of inference rules
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<, each one disjoint from every introduction rule, is a set of constructive
functions f , each of which associated with a single element R of < and such
that: (1) f is defined on some set of arguments ending with applications of
R; (2) if f is defined on ∆ with assumptions Γ and conclusion α, f(∆) is
an argument with assumptions Γ∗ ⊆ Γ and conclusion α; (3) if f is defined
on ∆, and σ(∆) is an example of ∆, f is defined on σ(∆) and is linear with
respect to σ, namely, f(σ(∆)) = σ(f(∆)). A consistent extension J+ of J is
a justification of a set of rules of inference <+, such that: (1) < ⊆ <+; (2)
(<+ −<) ∩ < = ∅.

We can assume as sufficiently clear a notion of substitution of a sub-
argument ∆1 of ∆ with an argument ∆2, in symbols ∆[∆2/∆1]. Given a
justification J of a set of inference rules <, ∆1 is said to immediately reduce
to ∆2 with respect to J if, and only if, it exists a subargument ∆ of ∆1 such
that, for some f ∈ J, f is defined on ∆ and ∆2 = ∆1[f(∆)/∆]. ∆1,∆2, ...
is said a reduction sequence with respect to J if, and only if, for every i ≤ n
where n is the length of the sequence if the latter ends, and for every i ∈ N
otherwise, ∆i reduces immediately to ∆i+1 with respect to J. ∆1 reduces to
∆2 with respect to J if, and only if, there is a reduction sequence with respect
to J starting with ∆1 and ending with ∆2. These definitions would actually
already be sufficient for our immediate purposes; however, it is perhaps ap-
propriate to introduce some others in order to have a better understanding
of what we will say later. Thus, ∆1 is said in normal form with respect to J
if, and only if, there is no ∆2 to which ∆1 immediately reduces with respect
to J. ∆1 is said to be normalizable with respect to J if, and only if, there
exists ∆2 in normal form with respect to J such that ∆1 reduces to ∆2 with
respect to J. Finally, ∆1 is said to be strongly normalizable with respect to J
if, and only if, every reduction sequence with respect to J beginning with ∆1

ends with a ∆2 in normal form with respect to J. At this stage, it is possible
to give the definition of a valid argument with respect to a justification J and
to an atomic base B.

Definition 5. ∆ is valid with respect to J and B - or, more simply, (∆, J) is
valid with respect to B - if, and only if,

• ∆ is a closed argument the conclusion of which is an atomic formula
⇒ ∆ reduces with respect to J to a B-derivation, or

• ∆ is a closed argument the conclusion of which is not an atomic for-
mula ⇒ ∆ reduces with respect to J to an argument ending with the
application of an introduction rule, and the immediate subarguments
of which are valid with respect to J and B, or
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• ∆ is an open argument ⇒ every (∆σ, J+) is valid with respect to B,
where J+ is a consistent extension of J, and ∆σ a closed example of ∆
obtained by first substituting all the occurrences of free variables not
later bound in ∆ with closed B-terms, so as to get an argument ∆1, and
then all the assumptions not discharged in ∆1 with closed arguments
for such assumptions, valid with respect to J+ and B.

(∆, J) is valid if, and only if, for every B, (∆, J) is valid with respect to B.1

As we can see, definition 5 proceeds by simultaneous recursion. The
notion of closed valid argument for non-atomic formulas of complexity k
presupposes the notion of open valid argument for formulas of complexity
h < k, the latter in turn obtained, at the same complexity, in the terms
of the notion of valid closed argument. Therefore, the recursive character
depends, in a substantial way, on the fact that in an (application of an)
introduction rule, the premises are immediate subformulas of the conclusion,
so to have a lower complexity than the latter. As a further observation,
Prawitz points out how

the definition of validity is not a reductive explanation of the logi-
cal constants. Rather, it defines a property of justified arguments
that must apply when the argument represents a proof. (Prawitz
1973, 236)

This does not mean, however, that it is not possible to use definition 5 to
derive clauses that show the meaning of logical constants. In particular, a
closed argument ∆ valid with respect to a justification J and to an atomic
base B will be such that, if its conclusion is atomic, it reduces to a B-
derivation, and

1In the 1971 article Ideas and results in proof theory, Prawitz takes into account ex-
tensions of atomic bases: given an open argument ∆, (∆, J) is valid with respect to B if
and only if each (∆σ, J+) is valid with respect to B+, where J+ is a consistent extension
of J , B+ an extension of B, and ∆σ a closed example of ∆ obtained by substituting first
all the occurrences of free variables not later bound in ∆ with closed B+-terms, so as to
get an argument ∆1, and then all the assumptions not discharged into ∆1 with closed
arguments for such assumptions valid with respect to J+ and B+. This kind of definition
has the advantage of producing a monotonic notion of validity with respect to extensions
of the atomic base (see, among the others, Schroeder-Heister 2006 and Tranchini 2014a).
However, to authorize a change of an atomic base obviously means to give up the idea
that the latter determines the meaning of terms and formulas of the reference language.
The contemporary works on proof-theoretic semantics refer alternately both to the 1971
definition, and to that of 1973. In any case, in later works Prawitz seems to have definitely
opted for the latter.
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(∧A) the conclusion of ∆ is α ∧ β ⇒ ∆ reduces with respect to J to a
closed argument ending with an application (∧I) and whose immediate
subarguments are closed arguments for α and β respectively, valid with
respect to J and B;

(∨A) the conclusion of ∆ is α1∨α2 ⇒ ∆ reduces with respect to J to a closed
argument ending with an application of (∨I) and whose immediate
subargument is a closed argument for αi (i = 1, 2), valid with respect
to J and B;

(→A) the conclusion of ∆ is α→ β ⇒ ∆ reduces with respect to J to a closed
argument ending with an application of (→I) and whose immediate
subargument is an open argument ∆1 with undischarged assumption α
and conclusion β such that, for every consistent extension J+ of J, for
every closed argument ∆2 for α valid with respect to J+ and B, the
closed argument ∆1[∆2/α] for β is valid with respect to J+ and B;

(∀A) the conclusion of ∆ is ∀yα(y/x) ⇒ ∆ reduces with respect to J to a
closed argument ending with an application of (∀I) and whose imme-
diate subargument is an open argument ∆(x) with x unbound in ∆(x)
and conclusion α(x) such that, for every closed B-term t, the closed
argument ∆(t) for α(t/x) is valid with respect to J and B;

(∃A) the conclusion of ∆ is ∃xα(x)⇒ ∆ reduces with respect to J to a closed
argument ending with an application of (∃I) and whose immediate
subargument is, for some closed B-term t, a closed argument α(t/x)
valid with respect to J and B.

Here it should also be noted that, if B is consistent, there cannot be a closed
argument for ⊥ valid with respect to some J and to B. In fact, if there were
such an argument, it should reduce with respect to J to a B-derivation of ⊥,
which contradicts the assumed consistency of B. Therefore, if we assume that
the atomic bases are always consistent, we can introduce a further clause that
fixes the meaning of the atomic constant ⊥: there is no closed valid argument
for ⊥ on whatever base.

As is evident from the way they are represented, arguments are chains
of inferences. The notion of argument, in other words, depends on that
of inference. But when examining the link between validity of arguments
and validity of inferences, Prawitz reverses the situation; the notion of valid
inference is defined in the terms of the notion of valid argument.

Definition 6. A set of inference rules < is valid with respect to J and B if,
and only if, for every consisten extension J+ di J, for every application ∆ of
the type
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∆1 . . . ∆n α1, ..., αm, x1, ..., xs
β

of an element of <, if, for every i ≤ n, ∆i is valid with respect to J+ and B,
∆ is valid with respect to J+ and B. A set of inference rules < is valid with
respect to J if, and only if, for every B, < is valid with respect to J and B.

In the light of definition 6, we can therefore say that an inference is valid
with respect to a justification J and to an atomic base B in the case that it
instantiates an inference rule belonging to a set of inference rules (possibly
corresponding to the singleton of this rule) valid with respect to J and B.
Similarly, the inference is valid with respect to J when it is valid with respect
to J and to every B. To use a figurative language, both the validity of the
inference rules and that of the inferences themselves are defined in a "global"
way: they depend on the validity of the entire arguments, which rules and
inferences, respectively, are applied to or occur in.

In connection with his notion of valid argument, Prawitz highlights two
problems that will play a central role in our following discussion. The first
one, which we can call the recognizability problem, is explained with the
following words:

given an argument ∆, we may of course not be able to see whether
there is a justification J such that (∆, J) is valid. But even when
we are given a valid justified argument (∆, J), we may not be able
to see that it is valid. (Prawitz 1973, 237)

Being in possession of a closed non-canonical valid argument (∆, J) - closed
canonical valid arguments are excluded from such a difficulty - means know-
ing how to obtain a closed valid argument (∆1, J), where ∆1 ends with the
application of an introduction rule and has immediate subarguments valid
with respect to J - the effectiveness of the available method is granted by the
constructiveness of the functions in J, therefore it is sufficient to apply these
functions in some order. However, possession is not the same as knowing that
(∆, J) is a closed valid argument. Such an understanding is in fact given by
the additional information obtained by carrying out the method that (∆, J)
provides. Likewise, being in possession of an open valid argument (∆, J)
means knowing how to obtain closed valid arguments: it is sufficient to re-
place first the occurrences of the free variables not bound in ∆ with closed
terms of the atomic base of reference, and then the undischarged assumptions
of the argument so obtained with closed arguments for such assumptions,
valid with respect to some consistent extension of J and to the atomic base
of reference. Again, this however is not the same as knowing that (∆, J) is an
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open valid argument; such an understanding could be achieved by carrying
out all the (usually infinite) required substitutions. This situation is clearly
uncomfortable: if valid arguments must really represent proofs, they must
justify the conclusion under the hypothesis that the assumptions are justi-
fied, and for this to be possible, obviously it is not enough to have a method
that permits to achieve the goal, since it is also required to recognize that
the method has this property. However, it cannot be taken for granted that
the recognition can always be obtained immediately, or at least easily. In
the case of closed valid arguments, there is no upper limit for the complexity
of the reduction procedures, so that agents with limited time and memory
resources may not be able to perform thoroughly the method in their posses-
sion. As a matter of principle, whenever the resources of time and memory
were infinite, its effective character in any case guarantees the possibility of
carrying out the method. In this ideal condition, the problem remains for the
open valid arguments, since the substitution process of occurrences of free
variables and assumptions might never end. Therefore, Prawitz concludes
that the valid arguments he defines are not necessarily conclusive, and that

by a conclusive argument, one may perhaps understand a justified
argument (∆, J) together with an argument showing that (∆, J)
is valid. This second argument must then again be conclusive,
and we would thus be led to an impredicative theory. (Prawitz
1973, 237)

As we will see, an alternative could be that of requiring that validity is decid-
able, rather than provable, or, in a less strong sense, recognizable. However,
even this solution, assuming it is a solution, proves to be problematic in
almost every respect from which it is considered.

Another problem, to which we can instead attribute the name of proofs-as-
chains problem, concerns the idea, intuitively correct, that a proof is nothing
more than a concatenation of valid inferences. The question is, then, whether
the notion of valid argument permits to derive a result of the type: (∆, J)
is a valid argument if, and only if, it is composed exclusively of inferences
which are applications of inference rules in sets of inference rules valid with
respect to J. Unfortunately, Prawitz points out how

a justified argument schema (∆, J) is clearly [...] valid [...] if the
inferences in ∆ that are not instances of introduction rules [...]
are instances of rules in a set < which is [...] valid with respect
to J [...]. The converse of this does not hold, however. (Prawitz
1973, 241)
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Therefore, not only the result cannot be derived, but it is even false. Suppose
we have a closed argument ∆1 for α valid with respect to a justification J
such that ∧1-rid ∈ J, and a closed argument ∆2 for β which contains an
application of an inference rule R such that R is not valid with respect to J:
the argument

∆1

α1

∆2

α2 (∧I)α1 ∧ α2 (∧E,1)α1

is valid with respect to J. In fact, by applying ∧1-rid, it reduces with respect
to J to the argument ∆1, valid with respect to J by assumption.

2.5.2.2 Proofs (in 1977 and 2005)

As we have already said, the article Meaning and proofs: on the conflict be-
tween classical and intuitionistic logic, deals with the notion of proof starting
from an analysis of the arguments that Dummett puts forward in support of
the thesis according to which

intuitionistic rather than classical logic describes the correct forms
of reasoning within mathematics. (Prawitz 1977, 2)

Although this is not the place for dealing, if only in a generic way, with Dum-
mett’s arguments (for which, see Cozzo 1994b, 2008), we have to remember,
however, that they are framed in general semantic considerations

according to which the meaning of a sentence must be under-
stood in terms of the use of the sentence. [...] the meaning of a
sentence cannot be treated in isolation from the question of how
the truth of the sentence may be established, and in the case of
mathematics especially, this means that meaning has somehow to
be understood in terms of proofs. (Prawitz 1977, 2 - 3).

As stated above, the connection between meaning and use does not preclude,
but rather suggests, the identification of a central aspect of propositions or
sentences on which the explanation can be based. More specifically, Dummett
makes a distinction between

two aspects of the use of an assertive sentence: (1) the conditions
under which it can be correctly asserted and (2) the commitments
made by asserting it. In the case of mathematics, aspect (1) is
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expressed in the rules for inferring the sentence, and aspect (2) in
the rules for drawing consequences from the sentence. (Prawitz
1977, 7)

On these bases, and dissatisfied with the semantics centered on the notion of
bivalent truth, Dummett (Dummett 1978c, 1978e, 1993b) develops a theory
that explains meaning in terms of conditions of correct assertability. That
recalls to mind what has already been said in Section 2.4: in order to capture
the necessity of thought involved in proofs and valid arguments, Prawitz
proposes to adopt an epistemic conception of truth, and this implies, as its
final result, the attribution of a central role to the notion of evidence. Now,
if in this framework we reason more specifically in terms of valid arguments,
we can appeal to the clauses (∧A) - (∃A). But how to behave in the case of
proofs?

An answer to this question is given by the intuitionistic tradition, and
in particular by the idea, inspired by Brouwer’s theories, and independently
developed by Heyting (Heyting 1956) and Andrej Nikolaevic Kolmogorov
(Kolmogorov 1932), to fix the meaning of the logical constants through a
specification of the notion of proof by induction on the complexity of the
formulas of a first-order logical language - the clauses so obtained are known
by the acronym BHK, corresponding to the names of their authors. We
will have again an atomic base B with individual, functional and relational
symbolsl, and a Post system relative to them. Therefore, a proof with respect
to B of an atomic formula is again a B-derivation and, under the usual
assumption that there is no proof of ⊥,

(∧P ) a proof with respect to B of α ∧ β is a proof π1 with respect to B of α
and a proof π2 with respect to B of β;

(∨P ) a proof with respect to B of α ∨ β is a proof π with respect to B of α
or of β, with an indication of which of the disjoints π proves;

(→P ) a proof with respect to B of α→ β is a constructive procedure f such
that, for every proof π with respect to B of α, f(π) is a proof with
respect to B of β;

(∀P ) a proof with respect to B of ∀xα(x) is a constructive procedure f such
that, for every closed B-term t, f(t) is a proof with respect to B of
α(t);

(∃P ) a proof with respect to B of ∃xα(x) is a proof π with respect to B of
α(t) for some B-term t.
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As noted by Prawitz himself, and even before by Rosza Peter (Peter 1959),
the notion of constructive procedure involved in the clauses (→P ) and (∀P )
must be assumed here as primitive, since it is not possible to

define it as a Turing machine that always yields a value when
applied to an argument; the quantifier prefix [...] in this definition
must then be understood intuitionistically, and this means that
to understand the definition we must already know what such a
constructive procedure is. (Prawitz 1977, 27)

The first problem with the BHK clauses, however, is that they do not
offer an exhaustive description of the conditions of correct assertability. In
other words, some structures prove formulas with main logical constant c,
although they do not have the form expected with (cP ):

it is not true even intuitionistically that the condition for assert-
ing a sentence is that we know a proof of it in [the sense of the
BHK clauses]. This can be seen even for atomic sentences such as
768 + 859 = 859 + 768, when the given proofs of atomic sentences
consist of proofs following the usual rules of computation. The
proof of the mentioned equality would then proceed via the calcu-
lation of the sums in question. But we are perfectly justified in as-
serting the equality without knowing these sums and hence with-
out knowing the proof in question; it is sufficient that we know,
for instance, a proof of ∀x∀y(x + y = y + x) and then infer the
equality by instantiation. [...] Similarly we may assert even intu-
itionistically that α(n)∨β(n) for some numeral n without knowing
a proof of α(n) or of β(n); it would be sufficient, e.g., if we know a
proof of α(0)∨β(0) and of ∀x(α(x)∨β(x)→ α(x+1)∨β(x+1)).
(Prawitz 1977, 21)

Hence, BHK semantics can be a good starting point, although it is not ade-
quate by itself for the desired objectives. In fact, it defines sufficient but not
necessary proof-conditions, and

this would be quite insufficient for a meaning theory as proposed
above, e.g., we would then never be in the position to say that a
sentence was incorrectly asserted on a given occasion. (Prawitz
1977, 22)

In order to unravel the difficulty, Prawitz follows Dummett in introducing
a distinction between direct and indirect - or, using a widespread terminol-
ogy, canonical and non-canonical - forms of proofs, perfectly symmetrical
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to the distinction between valid arguments ending with applications of in-
troduction rules, and valid arguments which, ending with applications of
non-introductory rules, must be reduced to valid arguments ending with ap-
plications of introduction rules:

the condition for asserting a sentence is that we either know a
proof of the sentence of the kind mentioned in [the BHK clauses]
or know a procedure for obtaining such a proof. This procedure
may also be called a proof [...] but it is a proof in a secondary
sense. (Prawitz 1977, 22)

In this way, we can reuse the BHK characterization by saying that it out-
lines the notion of canonical proof with respect to the chosen atomic base B,
and postulate that a non-canonical proof with respect to B is a constructive
procedure to obtain a canonical proof with respect to B - we must remember
here that, in this framework, the notion of constructive procedure is primi-
tive. (∧P ) - (∃P ) are now sufficient to explain the meaning of propositions or
sentences, and consequently of the logical constants, in terms of conditions
of canonical assertability. Non-canonical assertability, on the other hand, is
defined in terms of the canonical one, the latter being, therefore, the sole
central notion of our theory.

At this point, the proposed framework suggests a natural criterion of
acceptability of inferences with respect to B:

what we should demand is that we know a [...] procedure which,
applied to the way in which the conditions for asserting the pre-
misses are satisfied, brings about a situation in which the conclu-
sion can be asserted appropriately. (Prawitz 1977, 23)

As Prawitz himself points out, such a condition will be satisfied if, and only
if, we know a constructive procedure f such that, given that α1, ..., αn are the
premises and β the conclusion of the inference, for each canonical proof πi
with respect to B of αi, f(π1, ..., πn) produces a canonical proof with respect
to B of β. Necessity: if we know canonical proofs π1, ..., πn with respect
to B of α1, ..., αn, respectively, the conditions to assert correctly α1, ..., αn
are satisfied. If by hypothesis, we have a procedure that, when the proofs
to correctly assert α1, ..., αn are met, makes it possible to assert correctly
β, this means that, said f this procedure, f(π1, ..., πn) produces a canonical
proof with respect to B of β (it should be noted that a canonical proof
can be trivially understood as a procedure that produces a canonical proof
- the identity function). Sufficiency: suppose that the conditions to assert
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α1, ..., αn are satisfied by virtue of the knowledge of proofs (this time not
necessarily canonical) f1, ..., fn with respect to B of α1, ..., αn respectively;
each fi must be a constructive procedure for obtaining a canonical proof
with respect to B of α, so that we can define a constructive procedure ex of
execution of each fi, so that ex(fi) is a canonical proof with respect to B
of α (simply put, ex(fi) is the reduction procedure of fi to canonical form).
By hypothesis, f(ex(f1), ..., ex(fn)) produces a canonical proof with respect
to B of β, which justifies the assertion of β. We can finally say that an
inference (rule) is valid with respect to an atomic base B if, and only if, (for
each inference that is an application of this rule) there is a situation in which
the inference is acceptable with respect to B. An inference (rule) is valid if,
and only if, for each B, it is valid with respect to B. As in the case of the
valid arguments, the notions of acceptability of an inference and of validity
of an inference (rule) are globally defined, so that priority is given to proofs.

However, what we have called the recognizability problem and the proofs-
as-chains problem in the previous Section also hold in relation to the present
notion of proof. Actually, the first problem is explicitly raised by Prawitz,
who remarks that

in the case when α is atomic or is built up of atomic sentences
by ∧, ∨, and ∃, the knowledge of a canonical proof [...] can be
taken to consist of just the construction of the proof. [...] In the
cases when α is an implication or a universal sentence and in the
case when we know only a procedure for obtaining a canonical
proof, we must require not only a construction or description
of an appropriate procedure but also an understanding of this
procedure. (Prawitz 1977, 27)

In a completely similar manner to what has been said about the notion of
valid argument, the request that a constructive procedure generating proofs
of the expected type, or so operating on a class of proofs of a certain type,
is not only possessed but also understood as such, derives from the plau-
sible thesis according to which knowing a proof means not only having a
mathematical object, but mainly recognizing that the latter enjoys signifi-
cant epistemic properties. And it is obvious that the mere possession of a
proof as understood here is not, from this point of view, sufficient; to know
how to get a canonical proof does not mean also we know that, once car-
ried out, the method will produce the desired result. Likewise, to have a
constructive procedure such as the one provided by the clause (→P ) or by
the clause (∀P ) is equivalent to knowing how to have a certain output on a
given input, but not to knowing that this will happen whatever the possible
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values to be computed may be. Again, the absence of an upper limit on
the complexity of the computation of the constructive procedures, and the
infinity of the substitutions to be made, make it implausible to claim that
such procedures contain information sufficient to guarantee the recognition
required. In a different way to what Prawitz wrote in 1973, however, the
author now seems to reject the idea that recognition can come from

a description of the procedure together with a proof that the
procedure has the property required [...] this would lead to an
infinite regress and would defeat the whole project of a theory of
meaning as discussed here. (Prawitz 1977, 27)

The alternative to the idea of a meta-proof on the properties of the construc-
tive procedures, an alternative that we have already mentioned and that in
the 1977 article is taken into explicit account, consists of asking whether the
relation "being a proof of" can be said to be decidable:

the sentences α → β and ∀xα(x) can be asserted when we have
described and understood certain kinds of procedures, but it is
doubtful in what sense, if any, one could decide the question
whether this condition obtains in a certain situation. (Prawitz
1977, 29)

Decidability, one could argue, would solve our problem, by implying the exis-
tence of a uniform and general constructive procedure to establish if whatever
closed construction (without any occurrences of free variables for proofs or
for terms not subsequently bound) amounts to a proof for whatever formula
of the reference language or, in case the construction is open (with occur-
rences of free variables for proofs orfor terms not subsequently bound), to a
constructive procedure to transform proofs for whatever formulas of the ref-
erence language in proofs for whatever formula of the reference language. Be
that as it may, Prawitz is sceptical as concerns that possibility, and proposes
specific counter-examples in order to show that, in a given interpretation,
this path is untenable. We will return later on this matter, after pointing
out how, in addition to proof-theoretic semantics based on the notions of
valid argument and proof, the question reappears, albeit with a different
impact, also in the theory of grounds.

The proofs-as-chains problem, in turn, is more easily visible if we turn to
an analysis of the way in which the notion of proof is updated and expanded
in Logical consequence from a constructivist point of view. In 2005, Prawitz
proposes first of all a rewriting the BHK clauses, following an intuition al-
ready present, but not made explicit in 1977:
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we should not say simply that a canonical proof of, e.g., α ∧ β
consists of a canonical proof of α and a canonical proof of β. It
is not enough that we have just constructed these two canonical
proofs separately to be in the position to assert α∧β - they entitle
us only to assert α and to assert β. [...] we must also be aware
of the fact that these two proofs form a sufficient ground to go
one step further and assert α∧ β. Or, more precisely, one should
grant the existence of an operation which yields a canonical proof
of α∧β when performed on canonical proofs of α and β. (Prawitz
1977, 26)

the general form of a canonical proof for a compound sentence
α with the logical constant c as main sign can be written Oc(π),
where Oc is an operation that stands for the recognition that we
have obtained direct evidence for α because of π. (Prawitz 2005,
686)

The clauses, however, are now derivable from a broader framework, similar
to that of valid arguments. Let us start with a general notion of proof-
structure on a first-order language L, understood as a concatenation of con-
structive procedures, applied to appropriate arguments, which represent in-
ference rules, and inferences, on the formulas of L - the notion of constructive
procedure is to be assumed again as primitive. A proof-structure will have
some assumptions, given by the basic arguments of the composite procedure
resulting from the concatenation of procedures to which it corresponds, and
a conclusion, given by the range of the composite procedure resulting from
the concatenation of procedures to which the latter corresponds. Some pro-
cedures can discharge assumptions or bind occurrences of free variables, so
that a proof-structure will be open when it contains undischarged assump-
tions or occurrences of free variables not subsequently bound, or otherwise
closed. An immediate substructure of a proof-structure π is a proof-structure
that appears as an argument of the last procedure of π; a substructure of π is
an initial segment of π, i.e., an element of the reflexive and transitive closure
with respect to π of the relation "π1 is an immediate substructure of π2". A
proof-structure is canonical when it ends with the application of a procedure
corresponding to an introduction rule, non-canonical otherwise.

In compliance with the idea that the introduction rules fix or, more
weakly, reflect the meaning of the logical constant they refer, a canonical
proof-structure will be a canonical proof assuming that its immediate sub-
structures are such, while a non-canonical proof-structure will be a categor-
ical proof (equivalent to the non-canonical proofs of 1977) in the case that
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it amounts to a constructive procedure to obtain a canonical proof. The no-
tions of canonical proof and of categorical proof, however, must be defined by
simultaneous recursion, since, in general, the arguments of the last procedure
of a canonical proof could take a non-canonical form. This appears possible
because the premises of (an application) of an inference rule are immediate
subformulas of the conclusion, and therefore they have a lower complexity
than the latter. Though, we also need the additional definitions of hypothet-
ical proof and general proof. As usual, the whole of these definitions refers
to an atomic base B with individual relational and functional symbols, and
to a Post system relative to the latter (the derivations of which will be, by
assumption, canonical proofs), and with the usual request that there should
not be any canonical proof of ⊥.

Definition 7. A closed canonical proof-structure is a canonical proof on B
if, and only if, all its immediate substructures are categorical, hypothetical
or general proofs on B.

A closed non-canonical proof-structure is a categorical proof on B if, and
only if, it is a constructive procedure to obtain a canonical proof on B.

An open proof-structure with assumptions α1, ..., αn and conclusion β is
a hypothetical proof on B if, and only if, it is a constructive procedure f
such that, for each πi categorical proof on B of αi (i ≤ n), f(π1, ..., πn) is a
categorical proof on B of β.

An open proof-structure with occurrences of free variables not subse-
quently bound x1, ..., xn and conclusion α(x1, ..., xn) is a general proof on B
if, and only if, it is a constructive procedure f such that, for each closed
B-term ti (i ≤ n), f(t1, ..., tn) is a categorical proof on B of α(t1, ..., tn).

A proof-structure is a proof if, and only if, for every B, it is a proof on
B.

We can now easily obtain the clauses by introducing primitive procedures
O∧, O∨, O→, O∀ and O∃ for the rules (∧I), (∨I), (→I), (∀I) and (∃I) respec-
tively - with the implicit indication of appropriate discharge of assumptions,
binding of occurrences of free variables, and restrictions on proper variables.

(∧PP ) a canonical proof of α ∧ β is O∧(π1, π2) with π1 categorical proof of α
and π2 categorical proof of β;

(∨PP ) a canonical proof of α ∨ β is either O∨(π1) with π1 categorical proof of
α, or O∨(π2) with π2 categorical proof of β;

(→P
P ) a canonical proof of α→ β is O→(παβ ) with παβ hypothetical proof with

assumption α and conclusion β;
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(∀PP ) a canonical proof of ∀xα(x) is O∀(π(x)) with π(x) general proof with
occurrence of free variable not subsequently bound x and conclusion
α(x);

(∃PP ) a canonical proof of ∃xα(x) is O∃(t, π) with t term on the reference
base and π categorical proof of α(t).

Three observations. Firstly, as far as canonical proofs are concerned, the
adoption of primitive procedures makes it in a sense less urgent the recog-
nizability problem. In fact, it is required that canonical proofs in the critical
cases of→ and ∀ consist of applications of procedures which denote the recog-
nition of the related substructures as, respectively, hypothetical and general
proofs. Therefore, if we assume that such a recognition has taken place,
namely that O→ or O∀ have been applied, and since these operations settle
the meaning of, respectively, → and ∀, the obtained result will automati-
cally be recognized as a canonical proof for α→ β or for ∀xα(x). Secondly,
this same adoption also compels to distinguish the primitive procedures from
others which, on the contrary, are not primitive; of course, the non-primitive
procedures will represent inference rules in a non-introductory form, so that
their applications will correspond to inferences of the same type. Prawitz
explains the difference already in 1977 with the following words:

an (or the) essential element of an understanding of [a primitive]
operation consists in the ability to carry out the operation so that
the respective results are obtained. [...] a primitive operation [is]
one whose result has to be conceived in terms of the operation,
while the result of a defined operation can be understood inde-
pendently of the operation. (Prawitz 1977, 28)

In light of this, it then becomes evident how the recognizability problem -
which, as can be seen, in the non-canonical case is meaningfully valid - may
also be understood as the problem of the type of understanding required so
that we know whether a non-primitive procedure produces proofs of a certain
type when applied to proofs of a certain type. Finally,

also in the conditions for asserting conjunctions, disjunctions, and
existential statements, there is thus, strictly speaking, a question
of understanding certain primitive operations, but these cases are
much less complicated. In the case of implications and universal
statements, it is not clear that we can decide whether something
is a canonical proof or not. (Prawitz 1977, 28 - 29)
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In other words, even if primitive procedures are not in themselves problem-
atic, and, indeed, mitigate the problem of recognizability in the canonical
case, the fact that in the clauses (→P

P ) and (∀PP ) they are applied to proce-
dures for which this problem remains makes it difficult to establish what it
means to understand O→ and O∀. In fact, in order to make it clear what the
use of the latter consists of, we should make it clear what it means to recog-
nize that a procedure always generates determinate proofs when applied to
certain arguments. Therefore, even if the primitive procedures have the effect
of making recognizable the canonical proofs under the assumption that they
have been applied, namely, under the assumption that certain substructures
have been recognized as hypothetical or general proofs, we are not allowed
to assume that a canonical proof is always recognizable as such.

We can now return to what we have called the proofs-as-chains problem.
We must ask ourselves whether the theoretical framework of the years 1977-
2005 defines a notion of proof, such that a proof-structure π is a proof if, and
only if, all the constructive procedures of which π is composed represent valid
inferences (instantiating given inference rules). It is not difficult to realize
that, as in the case of valid arguments, the answer is no. Let us assume that:
d1 is a proof (canonical, but in case non-canonical or categorical) for α1;
d2 a proof-structure with conclusion α2 containing constructive procedures
that represent non-valid inferences (instantiating non-valid inference rules);
f a non-primitive constructive procedure defined on elements of the type
O∧(π1, π2) by the equation

f(O∧(π1, π2)) = π1.

As a consequence f(O∧(d1, d2)) is a non-canonical or categorical proof for α1.
By definition, f(O∧(d1, d2)) = d1; by assumption, d1 is a proof (canonical,
but in case non-canonical or categorical) of α1, or a constructive procedure to
get a canonical proof of α1 (we must remember that if d1 is a canonical proof
of α1, it is trivially a constructive procedure to obtain a canonical proof of α1

- the identity function). But then, also f(O∧(d1, d2)) is a constructive proce-
dure to obtain a canonical proof of α1 (in fact, f is nothing but a projection
on the first element of the pair to which O∧ is applied). Therefore, a proof-
structure π can be a proof even if some of the constructive procedures it is
composed of represent non-valid inferences (instantiating non-valid inference
rules).

2.5.3 Problems in proof-theoretic semantics

In Section 2.4 we have outlined two goals that an analysis of the notion
of (deductive or logical) consequence in terms of necessity of thought must
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achieve. First, to define rigorously the notions of valid argument or proof,
so as to translate with any precision the link of epistemic modality existing
between α and Γ by virtue of which, in case of justification for all the ele-
ments in Γ (on a specific or arbitrary base), one is justified in asserting α, or
compelled to consider correct its assertion (on a specific or arbitrary base).
In the light of what is shown in Section 2.5.2, namely, thanks to the formal
apparatus of proof-theoretic semantics in the formulations of 1973, 1977 and
2005, we can consider this point satisfied. In any case, underlying the idea
that necessity of thought can be understood in terms of valid arguments and
proofs, there is the plausible, already mentioned, thesis according to which
what we are asking for is the existence of something that obliges us to hold
true α, if we have accepted the truth of the elements of Γ. But then, a second
question arises, a question of adequacy : given the definitions 5 and 7, can we
say that the notions of valid argument and proof that they characterize are
such that, if we know a valid open argument or a hypothetical proof for α
from Γ, we are compelled to consider α true, in case we have accepted the
truth of all the elements in Γ? With this question, Prawitz concludes Logical
consequence from a constructivist point of view, noting first of all that

some inferences - namely, the inferences by introduction - become
valid by the very meaning of the conclusion of the inference. Be-
cause of this meaning, we are compelled to hold the conclusion
true when holding the premisses true. [...] An inference in general
is compelling when we know a hypothetical proof of its conclu-
sion α from its set of premisses Γ or, alternatively, an open valid
argument for α from Γ. [...] knowing such a proof is to be in pos-
session of an effective method which, applied to categorical proofs
of the sentences of Γ, yields a categorical proof of α. [...] knowing
a valid open argument ∆ for α from Γ, we get a valid argument
for α by replacing the open assumptions in ∆ with closed valid
argument for them. (Prawitz 2005, 693)

But, soon thereafter, Prawitz emphasizes significantly how, since the com-
pelling character of open valid arguments and hypothetical proofs is based on
their reduction to closed valid arguments and categorical proofs, we should
more generally expect that our analysis implies the fact that

by knowing a proof or valid argument, one gets committed in the
way discussed above. (Prawitz 2005, 693)

Now then, one could reasonably argue that valid arguments and proofs
induce necessity of thought on an agent who has knowledge of them because,
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by carrying them out, he/she makes a series of valid inferences. With the
transmission of the justification from premises to conclusions, these inferences
compel to accept the latter if one accepts the former. This is a dynamic
vision, in which the epistemic constriction comes from the carrying out of
certain acts ; and it is in agreement with a plausible intuitive point of view,
but also with the "phenomenal character" of "active experience" that Cozzo
(Cozzo 2015), as we have said, properly attributes to the necessity of thought.
However, to choose to follow this path - which seems, after all, the most
convincing -

puts the burden on the notion of valid inference. How is it to be
analyzed? If we do not simply say that an inference is valid when
its conclusion is a logical consequence of the premisses, which
would bring us back to the beginning of this investigation, we
have to try to develop some concept of "gapfree" inference. The
"gapfree" inferences must then be shown to have a compelling
force. (Prawitz 2005, 693)

At a first view, a correct strategy could consist in affirming that an inference is
valid if, and only if, it can be reduced to valid "gapfree" inferences. However,

to define validity in that way would of course have made the whole
analysis circular. (Prawitz 2005, 693)

Since the circularity depends on the attribution of validity - what we intend
to define - to "gapfree" inferences, an obvious alternative could consist in
starting from a definition of valid "gapfree" inference, and then require that
a non-"gapfree" inference is valid if, and only if, it can be reduced to valid
"gapfree" inferences. Since the introductory inferences are involved in the
explanation of the meaning of logical constants, they can be understood as
valid "gapfree" by default. Naturally, if they were the only valid "gapfree"
inferences, the fact that their premises always have a lower complexity than
the conclusion would allow an inductive, and for this reason satisfactory,
definition of the notion of valid inference. Obviously, the problem is that
we cannot assume every valid inference as reducible only to introduction
inferences: there will be valid "gapfree" inferences in a non-introductory
form - for example, Gentzen’s eliminations. How can we define the validity
of the latter? At the conclusion of Logical consequence from a constructivist
point of view, in examining these themes, Prawitz notes that

our basic intuition is that of canonical proof or argument [...] this
amounts to making inferences by introduction valid - valid by def-
inition, so to say [...] there are inferences other than introductions
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that are gapfree in the sense that they cannot be reasonably be
broken down into simpler inferences. An essential ingredient in
the analysis proposed here is a way of demonstrating the valid-
ity of such inferences [...] by applying reductions that are seen
to transform arguments into ones that are known to be valid.
(Prawitz 2005, 693 - 694)

In the passage just quoted, Prawitz preserves the explanatory primacy of
valid arguments and proofs. This, however, could pose a new problem. If
the goal is to show that valid arguments and proofs have a power of epis-
temic compulsion, since they are composed of epistemically compelling valid
inferences, how can we attribute an epistemic power to inferences the valid-
ity of which is explained by using the notions of valid argument and proofs?
This point already holds, in a significant way, in the case of inferences in an
introductory form. Suppose the epistemic force of a closed valid canonical
argument

∆1

α

∆2

β (∧I)α ∧ β
or of a canonical proof O∧(π1, π2) are explained in terms of their being com-
posed of sole epistemically compelling valid inferences. If we say now that the
last inference is epistemically compelling since it is valid - where valid means
that it produces a valid closed canonical argument when applied to ∆1 and
to ∆2, or a canonical proof when applied to π1 and to π2 - we could conclude
that this characterization is satisfactory only if we have already accepted as
epistemically compelling the starting argument and the starting proof.

To conclude, we would like to point out two things. First, and with
reference to the previous example of closed valid canonical argument and
of canonical proof, what we have said is clearly not intended to deny that
the respective applications of (∧I) and O∧ are epistemically compelling; they
produce something that the reference semantics treats as evidence - a closed
valid canonical argument or a canonical proof, in fact - while the problem is
rather to show that closed valid canonical arguments and canonical proofs
can quite rightly be understood as producing evidence by virtue of their
being made up of valid inferences. Secondly, the main result of the analysis
carried out so far is that, in order to achieve an adequate explanation of
the intended relation between the notions of valid argument or proof and
of valid inference, there seems to be no other possibility than to define the
latter on a basis independent from the former. And this, of course, requires
a local analysis of valid inferences, as opposed to the global character of that
available in proof-theoretic semantics.

86



2.5.3.1 Recognizability and chains

The transition from global to local is, as we will see, one of the basic insights of
the theory of grounds. However, in the framework under examination, it does
not seem, as said, sufficient. The most immediate difficulty already comes
from the proofs-as-chains problem: the epistemic power of valid arguments
and proofs can reasonably be considered as dependent on the force of the
valid inferences involved in them, only to the extent that valid arguments
and proofs are composed exclusively of valid inferences - and we have already
had the opportunity of saying that this statement is false. However, this
does not mean that it may be possible to ascribe an epistemic compulsion
to valid arguments and proofs that contain only valid inferences. In fact,
the discussion conducted in the previous Section is independent of the type
of inferences, whether valid or not, occurring in valid arguments and proofs.
There is, therefore, a theoretical difficulty concerning the relation between
the definitions of valid argument and proof, on the one hand, and of valid
inference, on the other. In the light of this difficulty, we need to define
inferential validity in terms of a notion that does not contain any reference to
valid arguments and proofs. Obviously, it will serve no purpose even a notion
that, similarly to those of valid argument and proof, will return something
that is expected to be, or that actually is a concatenation of valid "gapfree"
inferences. Moreover, this further circumstance depends, more profoundly, on
the indispensable distinction between inferences in an introductory form and
inferences in a non-introductory form, between canonical and non-canonical
cases.

It is certainly right to consider introduction inferences as valid "gapfree"
by default, and then to define as valid the "gapfree" ones non-divisible in valid
"gapfree" inferences. Since inferential validity must be defined independently
of the notions of valid argument and proof, we could then think of dealing
with the case of the "gapfree" inferences in a non-introductory form by saying
that they are valid if, and only if, whenever they are applied to chains of valid
"gapfree" inferences, the resulting inferential concatenation can be reduced
to one ending with an introduction inference applied to a chain of valid
"gapfree" inferences. If we adopt this strategy, however, our definition of
validity for inferences

[α]

∆
β (→I)α→ β

or represented by proof-structures O→(παβ ), must request that ∆ and παβ are
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chains of valid "gapfree" inferences; and since we are making a distinction be-
tween inferences in an introductory form and inferences in a non-introductory
form, between canonical cases and non-canonical cases, we cannot exclude
that ∆ and παβ contain valid "gapfree" inferences in a non-introductory form,
and, consequently, inferences of the same type, having an identical or even
greater complexity than that we are defining as valid. Our definition would
be once more circular.

What we are saying is emphasized by Usberti (Usberti 2015); after as-
serting that the recognizability problem for valid arguments dealt with in
the 1973 article has as a consequence that the relative notion of closed valid
canonical argument cannot establish a theory of meaning à la Dummett
(though this question, to which we will return later, is still debated - see,
for example, Cozzo 2008), Usberti puts forwards a further observation, ac-
cording to which this problem does not apply to the notion of BHK proof,
so that the latter could be suitable for playing the role of central notion in a
theory of meaning based on conditions of correct assertability. In particular,
the BHK clauses - set out in Section 2.5.2.2 - proceed obviously by induction
on the complexity of the formulas and, in the case of→ and ∀, they abstract
from the intrinsic complexity of the constructive procedures involved. In the
same section, however, it was also said that these clauses set sufficient but
not necessary conditions of provability. This means in turn that, although
potentially suitable for the explanation of the meaning,

Heyting’s proofs cannot be seen [...] as chains of valid inferential
acts. (Usberti 2015, 417)

However, the proposed solution - to distinguish between canonical and non-
canonical proofs, and to consider the BHK clauses as a description of the sole
notion of canonical proof - transforms the initial induction into a simultane-
ous recursion. Here, we can no longer abstract from the intrinsic complexity
of the constructive procedures, so that the immediate subproofs of proofs
for implications and universal quantifications are to be conceived, without
any restriction whatsoever, as chains of valid "gapfree" inferences. Then,
we could now define as valid introductions of → and ∀ in connection with
hypothetical or general proofs only consisting of valid "gapfree" inferences,
but, as we have already affirmed,

this is just what cannot be done, on pain of being exposed to an
objection of circularity. (Usberti 2015, 418)

Naturally, Usberti takes care to remember a passage from Gentzen’s Unter-
suchungen, in which this theme is perhaps for the first time focalized:
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in interpreting α → β in this way, I have presupposed that the
available proof of β from the assumption α contains merely infer-
ences already recognized as permissible. On the other hand, such
a proof may contain other →-inferences and then our interpreta-
tion breaks down. For it is circular to justify the →-inferences on
the basis of a →-interpretation which itself already involves the
presupposition of the admissibility of the same form of inference.
(Gentzen 1935 - 1936, 167; but see also Negri & von Plato 2015)

In relation to Usberti’s reconstruction, two additions seems to us neces-
sary. First, it should be remembered that, as shown in Section 2.5.2.2, also
the approach of the years 1977 and 2005 in terms of proofs suffers from a
problem of recognizability; therefore, if we share the idea that the notion
of closed valid canonical argument of 1973 cannot act as a basis for a con-
structivist explanation of meaning, the same is to be said for the notion of
canonical proof obtained from the BHK clauses by introducing the distinction
between canonical and non-canonical proofs. Secondly, as we have already
seen, the fact that the 1973 notion of valid argument is defined, such as that
of proof of the years 1977 and 2005, by simultaneous recursion implies that,
also in this case, we cannot pass, on pain of objections of circularity, from
this definition to a description of valid arguments as chains of valid "gapfree"
inferences. Therefore, the two approaches are basically homologue (in this
regard, see also Tranchini 2014a).

The fact that the BHK clauses manage to provide an inductive definition
insofar as they abstract from the intrinsic complexity of the constructive
procedures, seems to suggest that the only solution to our problem is the
following: the notion on which to base the characterization of inferential va-
lidity will have to either do without the distinction between canonical and
non-canonical cases or, more weakly, refer such a distinction to something
that is not to be intended as a chain of valid "gapfree" inferences. On the
other hand, we cannot give up the distinction between inferences in an intro-
ductory form and inferences in a non-introductory form, and since inferences
are to be understood as acts, we can legitimately expect that the notion on
which inferential validity will be based on will refer to objects produced by
such acts. From this perspective, it may be useful to reconsider the example
referred to at the end of the previous section. Given a closed valid canonical
argument and a canonical proof, we can say that the acts to which they cor-
respond confer a power of epistemic constraint, because the valid inferences
they are composed of are epistemically compelling acts, since they produce
objects that the reference semantics treats as evidence. In particular, the con-
clusive inferential applications are equipped with an epistemic force, because
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they allow the construction of the starting closed valid canonical argument or
of the starting canonical proof, which are however now to be looked at as the
objects that the reference semantics treats as evidence. Be that as it may, in
order to discuss also the case of closed valid non-canonical arguments (and
of non-canonical or categorical proofs), it is necessary to take one further
passage; we will return to this point in Section 2.5.3.3.

Thus, the explanation of the epistemic power of valid arguments, proofs
and valid inferences in proof-theoretic semantics is made problematic by the
interaction between the two roles that valid arguments and proofs play in
this framework: on the one hand, as mathematical objects aimed at a formal
description of the notion of evidence, they act as explicans of meaning; on
the other, as acts aimed at achieving justification, all their inferences are
expected to be valid. In fact, we will affirm later on, that the distinction be-
tween objects and acts plays a central role in achieving an adequate character-
ization, in particular in the theory of grounds. More specifically, through the
latter Prawitz seems to validate a distinction ascribable to Göran Sundholm
(Sundholm 1998, but see also Sundholm 1983, 1993), between proof-objects
and proof-acts.

2.5.3.2 Validity as independent from inferences

In the recent The fundamental problem of general proof theory, Prawitz high-
lights a further weak point of the notion of valid argument:

the validity of an argument relative to a base B and a set of re-
ductions J may depend essentially on the reductions in J and not
at all on the inferences that make up the argument. In contrast,
the justification of Gentzen’s elimination rules discussed in [sec-
tion 2.5.1] depends on reductions of a much more restricted kind.
When applying such a reduction to a deduction ∆, the result is
actually [...] "contained" in the deductions of the premisses of
the last inference of ∆. (Prawitz 2018a, 8)

In this context, the Swedish logician proposes a new notion of validity. With
the preliminary definitions of Section 2.5.2.1 unchanged, we will say that an
argument ∆1 is immediately extracted from a set of arguments Ω if, and only
if, (1) ∆1 ∈ Ω or ∆1 is the subargument of some ∆2 ∈ Ω, or (2) ∆1 results
from the substitution with a term t of each free occurrence of x in occurrences
of formulas in some ∆2 ∈ Ω, or (3) ∆1 is of the type

∆2

[α2] . . .

∆n

[αn]

∆n+1
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for ∆i ∈ Ω with conclusion αi (i ≤ n) and ∆n+1 ∈ Ω with undischarged
assumptions {α2, ..., αn}. An argument ∆ is contained in a set of arguments
Ω if, and only if, there is a sequence of arguments ∆1, ...,∆n such that ∆n = ∆
and for every i ≤ n, ∆i is immediately extracted from Ω∪{∆1, ...,∆i−1}. Let
us assume as usual that the atomic derivations in a base B are analytically
valid arguments, and that there is no analytically valid argument for ⊥.

Definition 8. ∆ is anayitically valid (with respect to B) if, and only if,

1. ∆ is closed ⇒ ∆ contains a closed analytically valid (with respect to
B) argument in canonical form;

2. ∆ is open ⇒ every ∆σ is analytically valid (with respect to B), where
∆σ is a closed example of ∆ obtained by first replacing all the occur-
rences of free variables not bound in ∆ with closed (B-)terms, so to
get an argument ∆1, and then all the undischarged assumptions in ∆1

with closed analitically valid (with respect to B) arguments for such
assumptions.

As in the case of the notion of valid argument in Section 2.5.2.1, definition 8
proceeds by simultaneous recursion. Similarly, we will have a global definition
of analytical validity for inferences and inference rules.

Definition 9. A set of inference rules < is analytically valid (with respect to
B) if, and only if, for every application ∆ of the type

∆1 . . . ∆n α1, ..., αm, x1, ..., xs
β

of an element of <, if, for every i ≤ n, ∆i is analytically valid (with respect
to B), ∆ is analytically valid with respect to B.

However, and this is the central point, unlike the notion of validity of
1973,

when we now for analytical validity demand that the non canon-
ical closed argument contain a closed, canonical, and analytically
valid argument [...], we get a condition whose satisfaction depends
on what the major premiss means. (Prawitz 2018a, 13)

Nevertheless, we must admit that the recognizability problem is still present.
To possess a closed analytically valid argument means knowing how to obtain
a closed analytically valid argument in canonical form: in this case, the effec-
tiveness of the method at our disposal depends on the constructive character
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of the operation of extraction, applied in the exact order on the starting ar-
gument. However, the possession is not the same as knowing that the closed
argument is analytically valid. For this purpose, in fact, it is necessary to
complete the extraction. Likewise, to possess an open analytically valid ar-
gument means knowing how to get closed analytically valid arguments, but
not also knowing that the open argument is analytically valid. Such an un-
derstanding could be achieved only by carrying out all the (generally infinite)
substitutions required. However, we cannot assume that an analytically valid
argument contains information necessary for the desired recognition; there
is no upper limit on the complexity of the extractions, and the domain of
analytically valid arguments on which to make the substitutions is infinite
and not regimented. Again, we could require a proof of the fact that the
argument is analytically valid, which would give rise to a regressive explana-
tion, or ask whether the relation "being an analytically valid argument for"
is decidable.

The reasoning is the same for the problem of proofs-as-chains; although
the analytical validity of an argument now depends on the type of inferences
occurring in it, an example similar to that of Section 2.5.2.1 shows, mutatis
mutandis, the existence of analytically valid arguments with inferences that
instantiate inference rules in sets of inference rules not analytically valid.
More generally, the distinction between arguments in a canonical form and
arguments in a non-canonical form, and the consequent necessity to define the
notion of analytical validity by simultaneous recursion, impedes the possibil-
ity of characterizing the analytically valid arguments as chains of analytically
valid inferences.

This flaw can also be referred to the proofs of 1977 and 2005: a proof-
structure π could be a proof simply by virtue of the way in which the non-
primitive procedures occurring in it are defined. Following definitions 8 and 9,
we could then solve this problem by introducing a notion of analytical proof,
and a related notion of analytically acceptable inference; in any case, we would
meet again with the recognizability and the proofs-as-chains problems.

2.5.3.3 Procedures from proofs to proofs

At the beginning of this chapter, we have pointed out that the notion of
valid inference is often defined in terms of consequence. According to the
intentions of this work, the question we have asked ourselves is if in this
way valid inferences are endowed with epistemic power. Model-theoretic
consequence, devoid of relevant modal connotations, is not suitable for this
purpose. On the other hand, the corresponding proof-theoretic proposal,
involving the concepts of valid argument and proof, seems to be on the right
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track. However, in order to affirm that this proposal is satisfactory, we have to
show that valid arguments and proofs are endowed with necessity of thought,
and this can be done, it seems, only if we are able to characterize them as
chains of valid inferences. In this sense, two problems prevent the attainment
of the objectives: 1) the recognizability problem, and 2) the proofs-as-chains
problem. There is also a third difficulty concerning the independence of the
validity from inferences; although it can be solved through analytical validity,
the resulting approach still suffers from the two previous problems.

Be that as it may, valid arguments and proofs are distinguished by one
essential feature. The justification procedures of valid arguments are, as
Prawitz observes in An approach to general proof theory and conjecture of a
kind of completeness of intuitionistic logic revisited,

defined on argument skeletons rather than on arguments, i.e.
skeletons together with justifications, and [their values] consist of
just argument skeletons instead of skeletons with justifications.
(Prawitz 2014, 275)

The (non-primitive) procedures in the proofs of the years 1977 and 2005, on
the contrary, are to be understood as operations from proofs to proofs. Al-
though the difference is highlighted by Prawitz in the context of a discussion
serving purposes other than those we are interested in, we believe it has a par-
ticular meaningfulness when connected to another point which, conversely,
is relevant for our subject: how should we understand, in the framework of
proof-theoretic semantics, the carrying out of a closed valid non-canonical
argument or the carrying out of a non-canonical or categorical proof ?

To carry out a closed valid non-canonical argument means building a
certain argument structure by means of a series of inferential steps from
premises to conclusion, to which possible justification procedures are asso-
ciated. Since, on the other hand, justification procedures are defined on
argument structures and go to argument structures, the process of reduction
to canonical form is to be understood as, so to speak, external to, or sep-
arated from, that of construction of the argument structure itself. In fact,
if it were not so, there should be some inference J that involves, besides
the passage from premises to conclusions, the application of the relative re-
duction to the argument obtained by carrying out the step. In this way, J
would be nothing more than (the application of) a constructive procedure
and the application of J to argument structures would give rise to something
that is no longer an argument structure. Then, no justification procedure
associated with some inference applied in arguments containing J can be de-
fined on such arguments, nor can any justification procedure return, on the
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values on which it is defined, arguments where J occurs. In other words, no
reduction will be available in these cases. In this regard, it is useful to point
out that, in the article from which the previous quotation comes, Prawitz
refers to proofs - or rather, to a variant of such proofs, but this does not
change the pith of the speech - as to interpreted proof-terms. It follows, it
seems, that argument structures are then to be understood as uninterpreted
proof-terms. Which is, after all, obvious, since the same inference rule can, in
the proof-theoretic semantics framework with valid arguments, be associated
with more than one justification procedure. That could never be the case if
valid arguments were interpreted proof-terms, in which each inferential step
corresponds to the application of a specific constructive procedure.

Of course, if by carrying out a non-canonical or categorical proof we mean,
as implied so far, the construction of the method to which it corresponds,
we will be in the same situation as for valid arguments. The process of
reduction to canonical form will be external to, or separated from, that of
construction of the proof itself. However, if for the valid arguments such a
circumstance cannot but occur, in accordance with the way in which the jus-
tification procedures are defined, the fact that the (non-primitive) procedures
are operations from proofs to proofs seems to suggest a way out. Namely,
we could consider the carrying out of a non-canonical or categorical proof as
the computation of the method to which it corresponds. Since such a method
generates a canonical proof, it is the carrying out as such of a non-canonical
or categorical proof - and not a further reduction of the latter - to give as
a result the correspondent canonical form. Before giving an account of the
consequences of this step, and for the sake of a greater precision, it is perhaps
useful to summarize everything with two examples.

Suppose that an agent P is in possession of a closed canonical valid ar-
gument

∆1

α1

∆2

α2 (∧I)α1 ∧ α2

for α1 ∧ α2, with ∆1 closed canonical valid argument for α1. Suppose now
that P applies (∧E,1) to such argument, obtaining

∆1

α1

∆2

α2 (∧I)α1 ∧ α2 (∧E,1)α1

In this situation, P is not yet in possession of a closed valid canonical ar-
gument for α1. Thus, the carrying out of the second argument, that is the
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application of (∧E,1) to the first, is not sufficient in this sense. P must still
reduce what carried out through a further application of ∧-rid. Suppose in-
stead that P is in possession of a canonical proof O∧(d1, d2) for α1∧α2, with
d1 canonical proof for α1. Suppose then that P applies a non-primitive pro-
cedure f (corresponding to an application of (∧E,1)) defined by the equation

f(O∧(π1, π2)) = π1.

Now, if by application of f , we simply mean that P builds the non-canonical
or categorical proof f(O∧(d1, d2)), we can follow a reasoning similar to the
previous one; P does not yet have a canonical proof for α1, since it has to
reduce what has been built by a further application of the defining equation of
f . If, instead, by application of f , we mean that P computes f on O∧(d1, d2),
namely, that he/she computes the value of f(O∧(d1, d2)), the carrying out of
the second proof, i.e. the application of f to the first one, will be enough
for P to possess a canonical proof for α1 - namely, according to the defining
equation of f , of d1. As we said, the idea that the performance of inferences
corresponds to the application of constructive procedures, in the sense of
computing the value of such procedures on certain inputs, is not feasible in
the setup with valid arguments - otherwise, alternatively, a modification of
this setup would return de facto nothing but the setup with proofs.

From this point of view, the implicational case, certainly more complex,
should be similarly understood in the following sense. Suppose that P is in
possession of a canonical proof O→(eαβ) for α → β and of a proof - possibly
non-canonical or categorical - h for α. Suppose now that P applies a non-
primitive procedure g (corresponding to an application of (→E)) defined by
the equation

g(O→(παβ ), π) = παβ (π).

If by application of g, we mean that P computes g on O→(eαβ), namely, P
computes the value of g(O→(eαβ)), the carrying out of the second proof, i.e.
the application of g to the first, will put P in possession of eαβ(h). Since there
is no guarantee that eαβ(h) is a canonical proof for β, we could deduce that the
carrying out of the proof could not give P a canonical proof for β. However,
that, in our opinion, and according to the interpretation we are proposing,
would be wrong; to say that the carrying out of the intended proof gives P
the possession of eαβ means to say that, through such carrying out, P applies
the constructive procedure eαβ to h, and since by application we here mean
the computation of a non-primitive procedure on certain values, the value of
the computation of eαβ on h is what the carrying out of the intended proof
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gives P the possession of. Since O→(eαβ) is a canonical proof for α → β, eαβ
will be a hypothetical proof for β from α, and since h is a proof - possibly
non-canonical or categorical - for α, eαβ(h) will be a constructive procedure
to obtain a canonical proof d for β. Hence, the carrying out of the intended
proof will give P the possession of such d.

In proposing the suggested reading, the first obvious consequence is that
we can no longer consider the carrying out of an inferential act as a simple
passage from premises to conclusion - mere construction of a procedure of
a certain range starting from certain arguments. We must more strongly
affirm that it consists in computing the value of the procedure. Then, as
the result of the carrying out of a non-canonical or categorical proof is no
longer the possession of a method, but the possession of the result of this
method, so the carrying out of an inference in a non-canonical or categorical
proofs does not give the possession of a procedure, but the result of this
procedure. Acceptable inferences can still be defined in terms of procedures
that transform canonical proofs of the premises into canonical proofs of the
conclusion. However, it is once again the inferential act as such - not a
subsequent reduction - to give as a result the canonical proof when carried
out on canonical proofs.

Moreover, in close connection with the previous point, it is above all
necessary to introduce a clear distinction between objects built of some pro-
cedures, or to which the procedures themselves amount, and acts consisting
of the application of these procedures. It is easy to realize that the expres-
sions corresponding to non-canonical or categorical proofs are, according to
the line of thought we are proposing here, nothing but descriptions of acts
carried out by inferential agents, whereas the canonical forms to which such
descriptions reduce are the objects that agents possess after carrying out
such acts. Even more significantly, this means the only objects we need are
the canonical proofs – and a primitive notion, that is, no further analyzable,
of constructive function. In other words, the objectual approach to non-
canonical or categorical proofs, emphasized in Section 2.5.3.1, is replaced by
an operational conception of the same.

The adoption of this strategy is of particular interest if we turn again to
the problems recognisability and of proofs-as-chains. Starting from the latter,
we reaffirm that they partly derived from the distinction, at the object level,
between canonical proofs and non-canonical or categorical proofs. Hence, it
becomes available a solution that follows and completes the reconsideration
of the example on the valid closed canonical argument, or on the canonical
proof referred to in Section 2.5.2.1 - though, according to what we have
illustrated earlier, referable now only to the case of proofs. Inferential validity
can be given in terms of objects that the theory considers to be evidence,
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so that the acts involving such inferences, or to which the same inferences
correspond, have an epistemic value exactly by virtue of their production of
objects of this type. In addition, since such objects are always canonical,
we can abstract, in defining them, and just as in the BHK clauses, from
the intrinsic complexity of any constructive procedures in them involved.
The problem of recognizability, instead, seems to have now less urgency -
albeit it is still present. Indeed, first of all it will no longer be a question of
understanding that the objects we possess enjoy certain properties, but rather
of realizing that the fulfilment of certain acts allows to possess objects that
enjoy specific properties. Since these objects are always in canonical form, as
already pointed out in the case of the canonical proofs referred to in Section
2.5.2.2, in order to achieve the required understanding it will be sufficient
to recognize that the immediate subproofs of (applications of constructive
procedures that represent) introduction inferences are categorical proofs of
the premises of the introduction inference. Later, we will able to realize how
this is exactly the road Prawitz takes with the theory of grounds.
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Chapter 3

Evidence in the BHK framework

3.1 Approaching evidence directly
The idea of proofs as chains of valid inferences, to which one is widely inclined,
has, as seen, a famous supporter in Descartes and, more deeply, seems to
indicate the best route to the justification of the epistemic power of deductive
activity. Consequently, the definition of the notion of inference in the global
terms of that of proof, peculiar to proof-theoretic semantics, is already an
unnatural inversion of the conceptual order. The purpose of giving an account
of the strength of proofs, and that of clarifying the link between the latter
with valid inferences, are, in any case, only derivatives with respect to the
theme to which the present work is dedicated. The question from which
we started, in fact, concerns primarily the capacity some inferences have to
justify the conclusions under the hypothesis that the premises are justified,
and to offer evidence for the second ones from the first ones. Therefore, it is
perhaps plausible to abandon a reductive strategy, and rather approach the
problem in a direct way, as a platform for, and not as the result of, further
theorizing. After all, as Cozzo affirms, Prawitz with the theory of grounds

developed a notion of valid inference that is immediately con-
nected with the necessity of thought. (Cozzo 2015, 105)

However immediate, the description of valid inferences cannot disregard the
basic question: "what is evidence?". Therefore, we now must turn to it.

In the scope of our study, evidence must obviously be understood in re-
lation to inferential acts; and since, as we shall see, according to Prawitz
inferences involve judgments or assertions, depending on whether we con-
sider them from a mental or a linguistic point of view, what we must ask
ourselves is, more specifically, "what constitutes evidence for a judgment or
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for an assertion?". Having evidence for a judgment or for an assertion means
to be justified in making that judgment or that assertion; the possession of
evidence is a guarantee of correctness in judging a proposition as true, or
in asserting a sentence. It is then obvious that such possession does not
correspond to the simple identification of an abstract object, however epis-
temically relevant; in addition there must be a recognition, the awareness
of the fact that the object at disposal is such as to justify and guarantee
correctness. This property, usually called epistemic transparency - to which
we will return in a specific Chapter of our discussion - is therefore something
that, as recently rightly emphasized by Usberti, an adequate explicans of the
notion of evidence should enjoy:

to be warranted in believing that β one must not only have evi-
dence e for β, but also base one’s belief on e; and to base one’s
belief on e, one must know that e is evidence for β; analogously,
to be warranted in believing that β follows from α one must not
only have evidence e for β from α, but also base one’s belief on
e; and to base one’s belief on e, one must know that e is evidence
for β from α. (Usberti 2017, 3)

This is an issue that, mutatis mutandis, we have already emphasized in con-
nection with the notion of proof - indeed, proofs are universally considered
as the most reliable type of evidence we can aspire to.

However, we should now point out that the proposal that could at this
stage rise spontaneously, and that would send us back to proof-theoretic
semantics - namely to consider as an explicans of the notion of evidence that
of valid argument of Section 2.5.2.1, or that of proof of Section 2.5.2.2 -
would be clearly erroneous. The problem of recognizability which holds both
with the valid arguments of 1973 and with the proofs of the years 1977-2005,
indicates exactly that the notions of valid argument and proofs, so conceived,
cannot reasonably be considered as epistemically transparent. Nevetheless,
we have had the opportunity to see how the recognizability problem is, in
a sense, less pressing in the case of the notion of canonical proof. Contrary
to what happens in the non-canonical or categorical case, in order to know
wheter one is in possession of a canonical proof, it will suffice to know that
the immediate substructures are proofs for the premises (in the range of
the constructive procedure involved) of the conclusive introduction inference.
Further on - in the Section on epistemic transparency - we will wonder about
the plausibility of the stronger idea that the notion of canonical proof is
actually epistemically transparent. However, whenever the investigation were
successful, not even the notion of canonical proof could, because of the proofs-
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as-chains problem, be understood as an adequate explicans of the notion of
evidence.

Be that as it may, at the end of the previous chapter, we affirmed that, on
the basis of a certain reading, the notion of proof could prove to be satisfac-
tory. The fact that, unlike the justifications for the rules in non-introductory
form in valid arguments, the procedures in the proofs are operations from
proofs to proofs, allows, on an objectual level, to limit the attention to canon-
ical proofs, and to consider non-canonical proofs from an operational point
of view, i.e., as computations of the method to which they amount. Thus, in
the BHK clauses – and in particular in Prawitz’s reformulation – there might
be something good, after all. They might be reconsidered as a basis for a
rigorous characterization of the notion of evidence. But before embarking on
this path, an observation is necessary.

The original BHK clauses do not set the concept of proof for judgments
or assertions; on the contrary, they inductively specify the notion of proof for
propositions or sentences. This also applies to the modification that Prawitz
anticipates in 1977, and makes explicit in 2005; in the latter case, however,
the introduction of primitive recognition procedures seems to indicate that
the real question concerns rather proofs for judgments or assertions or, at
the very least, the performance of proofs for propositions or sentences in
the deductive practice. A proof of a proposition or sentence α ∧ β can be
perfectly understood as a simple pair, without any recognition of the fact
that the formation of this pair authorizes to assert α∧ β, or to judge it true.
The subsequent request becomes relevant only when we pass from the level
of abstraction - in which certain mathematical objects are structurally re-
lated to certain propositions or sentences as their proofs - to the necessity
of identifying conditions of correct judgmentability or assertability. The ten-
sion between these two ways of looking at proofs is already found in Heyting
(Heyting 1931, 1934), as a distinction between constructions for propositions
or sentences and realizations of such construcions. This point was discussed
in detail by Göran Sundholm (Sundholm, 1993, 1998) and, as we will see in
Section 3.2.2, generalized by the latter in an important distinction between
proofs-as-objects and proofs-as-acts. More significantly for the current dis-
cussion, however, we find again this observation also in Prawitz. For example,
in a very recent article, the Swedish logician claims that

Heyting’s explanation of his epistemic notion of proof was closely
linked to his notion of proposition: a proposition expresses an
intention of (finding) a construction that satisfies certain condi-
tion, while "a proof of a proposition consists in the realization
of the construction required by the proposition". A proof in the
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epistemic sense is accordingly an act, and it clearly makes an
assertion warranted; "the assertion of a proposition signifies the
realization of the intention [expressed by the proposition]", ac-
cording to Heyting. [...] a proof in the intuitionistic tradition is
either a construction intended by a proposition, or a realization
of such a construction. (Prawitz 2018a, 16 - 18, ma si veda anche
Prawitz 2012b, 2015, 2017)

We will, obviously, deal again with the BHK proofs, as well as with Heyting’s
conception. This will happen in the context of our exposition of the theory
of grounds, when we will see how the latter, especially in the latest Prawitz’s
articles concerning it, develops within the framework of an essential compar-
ison with the BHK semantics. In the remainder of this chapter, instead, we
will deal with the exposition and analysis of two among the numerous for-
mal semantics inspired by the BHK approach, that come conceptually close,
though for different reasons, to the theory of grounds. The aim will be, so to
speak, to introduce ourselves to the theory of grounds, and to highlight its
answers to the difficulties experienced in similar frameworks.

3.2 Two BHK-inspired theories
In this section, we will briefly discuss the theory of constructions by Georg
Kreisel and Nicolas Goodman, and the intuitionistic type theory, formulated
instead by Martin-Löf.

Advanced for the first time by Kreisel in Foundations of intuitionistic
logic (Kreisel 1962), the theory of constructions is not properly a unitary
corpus; Kreisel himself, in fact, has proposed alternative versions (in ad-
dition to Kreisel 1962, see for example Kreisel 1965). On the other hand,
Goodman, further modifying Kreisel’s formulation, gave us approaches that,
however connected, differ from each other in details not at all irrelevant
(Goodman 1968, 1970, 1973). For the aims of our work, anyway, it will be
more than enough to turn to a recent article by Walter Dean and Hidenori
Kurokawa, Kreisel’s theory of constructions, the Kreisel-Goodman paradox,
and the second clause (Dean & Kurokawa 2016), where the theory of con-
structions is presented in a form, so to speak, generalized, perfectly sufficient
to the intention of

set down some of the common characteristics of these systems
with the [goal] of explaining how Kreisel and Goodman proposed
to use the language of the Theory of Constructions to formalize
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Kreisel’s reformulation of the BHK clauses. (Dean & Kurokawa
2016, 33 - 34)

There are also many examples of Martin-Löf’s intuitionistic type theory.
However, our discussion will be confined mainly to Intuitionistic type theory
(Martin-Löf 1984) - with the exception of references to subsequent works or
to a minor bibliography.

3.2.1 The Kreisel-Goodman theory of constructions

In Section 2.5.2.2 we have seen how the original BHK clauses have problems
related to the cases of → and ∀. The simple possession of a constructive
procedure that generates a certain result when applied to arguments in its
domain, in fact, may not be equivalent to the awareness that the procedure
enjoys this property. On the other hand, this awareness seems necessary so
that the procedure can rightfully be considered a proof. A possible way out,
then, consists in demanding that a proof of an implication or of a universal
quantification implies, in addition, a proof of the fact that the procedure has
the desired behavior. This is the strategy adopted by Kreisel, who proposes
the following reformulation of the clauses (→P ) and (∀P ) (with respect to a
base B):

(→K
P ) a proof with respect to B of α→ β is an ordered pair 〈f, π〉, where f is

a constructive procedure such that, for every π1 proof with respect to
B of α, f(π1) is a proof with respect to B of β, and π is a proof with
respect to B of the fact f behaves in this way;

(∀KP ) a proof with respect to B of ∀xα(x) is an ordered pair 〈f, π〉, where f
is a constructive procedure such that, for every individual k on B, f(k)
is a proof with respect to B of α(k), and π is a proof with respect to
B of the fact f behaves in this way.

Again in Section 2.5.2.2, we have affirmed that an alternative solution
could instead turn to the question of whether the relationship "being a proof
of" can be said to be decidable. However, it should be noted, as suggested
by Dean and Kurokawa (Dean & Kurokawa 2016, but see also Díez 2000 and
Sundholm 1983), that also Kreisel’s proposal is, at least to some degree, close
to the inquiry on decidability. The fundamental point, though, is that Kreisel
starts from the idea that the relation "being a proof of" is definitely decidable,
as witnessed by a well-known passage from Foundations of intuitionistic logic:
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the sense of a mathematical assertion denoted by a linguistic
object A is intuitionistically determined (or understood) if we
have laid down what constructions constitute a proof of A, i.e.,
if we have a construction rA such that, for any construction c,
rA(c) = > if c is a proof of A and rA(c) = ⊥ if c is not a proof
of A; the logical particles in this explanation are interpred truth
functionally, since we are adopting the basic intuitionistic ideal-
ization that we can recognize a proof when we see one, and so rA
is decidable. (Kreisel 1962, 201 - 202)

And from this perspective, the adoption of the clauses (→K
P ) and (∀KP ) rather

than the simple (→P ) and (∀P ), is justified by the necessity to respect this
assumption in light of the problematic interaction, in the BHK clauses, be-
tween what Dean and Kurokawa (Dean & Kurokawa 2016) call the problem
of impredicativity (de facto identical to the one referred to earlier when quot-
ing Gentzen 1935-1936 in Section 2.5.3), and, precisely, a derivative problem
of decidability.

The most explicit, and in our case relevant, formulation of the problem
of impredicativity is traced back to the article by Gödel An interpretation of
the intuitionistic propositional calculus :

Heyting’s axioms [...] violate the principle [...] that the word
"any" can be applied only to those totalities for which we have a
finite procedure for generating all their elements. [...] Totalities
whose elements cannot be generated by a well-defined procedure
are in some sense vague and indefinite as to their borders. And
this objection applies particularly to the totality of intuitionistic
proofs because of the vagueness of the notion of constructivity.
(Gödel 1933, 53)

According to Dean and Kurokawa, Gödel’s words identify three aspects that,
though being in the original intentions of the author aimed at discussing the
distinction between intuitionism and Hilbertian finitism (see Prawitz 1981,
Abrusci 1985 and Cellucci 2007), ended up influencing significantly the BHK
debate:

1) a crucial difference between finitism and intuitionism is that,
unlike finitists, intuitionists do not reject the meaningfulness of
unrestricted quantification over a potentially infinite domain; 2)
the class of constructive proofs form such a totality; but 3) it is
not possible to see this class as inductively generated in virtue of
the occurrence of the universal quantifier over proofs. (Dean &
Kurokawa 2016, 30)
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The exact connection between point 1) and points 2) and 3) emerges when
one questions on what condition the relation "being a proof of" must satisfy,
so that, as put forward by Gödel, intuitionism can claim on finitism the ad-
vantage of offering a unitary characterization of, according to the Hilbertian
terminology, "real" mathematics and "ideal" mathematics (see again Prawitz
1981, Abrusci 1985 and Cellucci 2007). By referring to The intended interpre-
tation of intuitionistic logic by Scott Weinstein (Weinstein 1983), Dean and
Kurokawa maintain that the aim is achieved only if the relation is decidable.
Quoting from Weinstein,

it is precisely by admitting as meaningful the notion of a decidable
property holding for arbitrary mathematical constructions that
intuitionists achieve an interpretation of those sentences which
are from Hilbert’s point of view devoid of intuitive content. And,
for intuitionists, to admit this notion as meaningful is to claim
that statements asserting that decidable properties of mathemat-
ical constructions hold universally have tolerably clear proof con-
ditions. [...] The intuitionists identify the truth of a mathemati-
cal statement, A, with our possession of a construction, c, which
is a proof of the statement A. This latter statement, that the
construction c is a proof of A, involves no logical operations and
is moreover the application [of] a decidable property to a given
mathematical construction. (Weinstein 1983, 268)

However, although acceptable, Weinstein’s position runs counter to the afore-
mentioned problem of decidability, which emerges even when one assumes,
like Kreisel does, that "being a proof of" is a decidable relation:

if we assume that the proof relation itself is decidable, then the
clauses [(→P ) and (∀P )] are all analogous in form to Π0

1 state-
ments in the language of arithmetic - i.e. they begin with an
unrestricted universal quantifier over proofs applied to a decid-
able matrix. As such statements are not in general decidable in
the technical sense of computability theory, it seems that there
is reason to worry that they do not satisfy Weinstein’s criteria
of having "tolerably clear proof conditions". (Dean & Kurokawa
2016, 31 - 32)

It is therefore the impredicative use of the universal quantifier in the clauses
(→P ) and (∀P ) that in the end makes the relation "being a proof of" non-
decidable in the BHK framework, and since, according to Kreisel, this relation
must on the contrary be decidable, he adds the second clause
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precisely to avoid such charges and thereby also to provide a
characterization of the proof relation which could plausibly be
regarded as decidable. (Dean & Kurokawa 2016, 32)

Therefore, the theory of constructions is conceived as a formal apparatus
in which to interpret the BHK clauses - in the modified version with (→K

P )
and (∀KP ) – in order to offer a rigorous foundation of it. In other words,
it aims to define a predicate Π(c, A) – to be read as "the construction c
proves the formula A" – in a way similar to what Tarski does with the truth
predicate. We will therefore have constructions (some of which translate
formulas of a reference language) and properties of constructions, both of
them mathematical entities governed by particular axioms. It is relevant,
in terms of what we will say later, to emphasize that, exactly in order to
translate (→K

P ) and (∀KP ), constructions are also allowed for formulas of the
type Π(c, A), with consequent infinite chains

Π(c1, A),Π(c2,Π(c1, A)), ...,Π(cn,Π(cn−1, ...,Π(c1, A)...)), ...

As pointed out by Sundholm, the general intent of the theory of constructions
is therefore more reductive than, as for the BHK clauses, explicative:

[Kreisel] wished to set up an abstract theory of proofs (construc-
tions) such that the logical constants could be defined and their
properties derived within the logic-free theory of constructions.
(Sundholm 1983, 154 - 155)

In the version of Dean and Kurokawa (Dean & Kurokawa 2016), the the-
ory of constructions appears as an equational calculus C for untyped terms,
which includes a symbol for the absurd ⊥ and one for the validity >, with the
usual rules of weakening and Cut from Gentzen’s sequent calculus (Gentzen
1934-1935), with a symbol of equality ≡ and, more specifically, with func-
tional symbols D, for pair formation, Di (i = 1, 2) for projection on a pair,
λ, for λ-abstraction - ruled by standard equations (see, for example, Hind-
ley, Lercher & Seldin 1975) – and τ , which is definitely the most important
operator. According to Kreisel and Goodman’s intention, τ t1t2 ≡ > should
be read as "t2 is a proof of the fact that, for every x, t1x ≡ >"; namely,
if t1 is intended as a representation of a formula of the reference language,
τ t1t2 ≡ > means that "t2 is a proof of the universal closure of the formula
of the reference language represented by t1". Obviously, if t1 is closed, such
should be the formula of the reference language that it represents, and the
universal closure will correspond to the formula itself. Therefore, τ t1t2 ≡ >
in this case simply amounts to " t2 is a proof of formula of the reference
language represented by t1". The rules for τ are:
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(Refl)
τ t1t2 ≡ > ` t1x ≡ >

Γ, τ t1t2 ≡ ⊥ ` t3 ≡ t4 Γ, τ t1t2 ≡ > ` t3 ≡ t4 (Dec)
Γ ` t3 ≡ t4

(Refl) is a (rather) natural principle of reflection, according to which given
a proof (of the universal closure) of a formula A of the reference language,
(the universal closure of) A is true. In line with the view of Kreisel according
to which we recognize a proof when we see one, and in order to guarantee the
desired decidability of the predicate Π(c, A), the rule (Dec) instead assures
the bivalence, and therefore the decidability, of τ :

a term R can be understood as expressing a binary relation just
in case for all pairs of terms s, t, if Rst is defined, then Rst ≡ >
or Rst ≡ ⊥ may be derived in the theory. The decidability of
such a relation R may then be expressed by stating that Rst is
defined for all pairs of terms s, t, - i.e. that R is bivalent. (Dean
& Kurokawa 2016, 36)

The rewriting of the clauses requires at this point only a simple final
readjustment. In order to maintain the reductive, or preferably foundative
character, of the theory of constructions with respect to the BHK, we need to
ensure that the formalization of the latter takes place in a logic-free context;
in other words, we must avoid reusing at the meta-linguistic level, as the BHK
clauses do, the same logical constants we intend to illustrate at the level of
language object. Kreisel and Goodman’s answer is based on the decidability
of τ , and on the consequent decidability of the predicate Π(c, A):

1) it is intuitionistically admissible to apply classical propositional
logic to decidable statements; 2) if the truth values > and ⊥ are
taken as abbreviating particular λ-term [in general, λxy.x for >
and λxy.y for ⊥], it is possible to define bivalent λ-terms ∩k, ∪k,
and ⊃k which mimic the classical truth functional connectives ∧,
∨, → applied to binary terms with k free variables [in the case of
→ in just one variable, we can put xz ⊃1 yz as λxyz.xzy(λw.>)z];
3) the application of these terms to terms of the form Π(c, A)
will always yield a term which is defined as long as it can be
assured that Π(c, A) is itself defined so that it is bivalent. (Dean
& Kurokawa 2016, 37 - 38)

For α and β with k free variables indicated by the expression ~x, we can then
set:
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(∧C) Π(c, A ∧B)
def
= λ~x.(Π(D1c, A) ∩k Π(D2c, B))

(∨C) Π(c, A ∨B)
def
= λ~x.(Π(D1c, A) ∪k Π(D2c, B))

(→C) Π(c, A → B)
def
= λ~x.τ〈λy.(Π(y, A) ⊃k Π((D1c)y,B)), D2c〉 [brackets

and commas are introduced in order to make it easier the comprehen-
sion]

(∀C) Π(c,∀zA(z))
def
= λ~x.τ〈λy.(Π((D1c)y, A[z/y])), D2c〉 [brackets and com-

mas are introduced in order to make it easier the comprehension]

(∃C) Π(c,∃yA(y))
def
= λ~x.Π(D2c, A[D1c/y])

where Π(c, A→ B) will be valid only if c is a pair D(t1, t2) such that t2 shows
that, for every construction y proving A, the construction t1y obtained by
applying t1 in y proves B. Likewise, Π(c,∀zA(z)) will be valid only when c
is a pair D(t1, t2) such that t2 proves that, for every term y, the construction
t1y resulting from the application of t1 in y proves A[z/y]. Therefore, (→K

P )
and (∀KP ) are faithfully formalized in C.

As already mentioned in Section 2.5.2.2, Prawitz explicitly refuses a solu-
tion à la Kreisel, stating that the adoption of the second clause is responsible
for the onset of regressive explanations. This is strictly linked to the possibil-
ity, above taken into account, of having in the theory of constructions infinite
chains for iterations of Π(c1, A) on formulas A which are in turn of the type
Π(c2, B). However, it must be said that the reasons that lead Prawitz to re-
quire that proofs of implications and universal quantifications are something
more than mere constructive procedure,s are in many respects different from
those which instead lead Kreisel to the adoption of the second clause; while
according to Prawitz, already in 1977, it is essential to capture the epistemic
power of a proof (since the simple possession of a constructive procedure is
not in this sense sufficient, if not accompanied by the additional awareness
of the fact that the procedure does have a relevant behavior), for Kreisel
instead the question is based on the foundation of the BHK clauses, in the
belief that the relation "being a proof of" is decidable, and in the light of the
already discussed problems of impredicativity and of the derivative problem
of decidability.

The situation therefore seems to be not easily resolvable. On the one
hand, Prawitz would appear to pose the following dilemma: a description
of implicational proofs as pairs 〈t1, t2〉 with t2 such that Π(t2,∀c(Π(c, A) ⊃k
Π(t1c, B))) would only move the question of the justificatory capacity of t1
- the constructive procedure that from a proof of A yields one of B - to
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that of t2 - where it should be noted that, if t2 is again a constructive
procedure, the simple possession of t2 is not sufficient to have a proof of
∀c(Π(c, A) ⊃k Π(t1c, B)), so that it is required a third proof t3 such that
Π(t3,∀c(Π(t2c, (Π(c, A) ⊃k Π(t1c, B))))), which must itself be a construc-
tive procedure, and so forth. Thus, after rejecting the idea of the second
clause, Prawitz wonders if it exists any plausible sense in which construc-
tive procedures can be considered as decidable, or, more weakly, recogniz-
able, relative to the property of producing proofs of a certain type when
applied to arguments of a certain type. On the other hand, Kreisel, when
founding the BHK, recovering from them a decidability that he considers
evident, regards the operator τ , on which the clauses (→C) and (∀C) are
based, as decidable by assumption, so that the quantifier ∀ occurring in
Π(t2,∀c(Π(c, A) ⊃k Π(t1c, B))) should be read in truth-functional terms; t2,
therefore, should not be understood as a new constructive procedure, so that
regression is blocked.

Maybe on account of this discrepancy, Dean and Kurokawa argue that
one could reasonably

wonder on this basis if grasping the second clause interpretation
of a formula ever requires that we grasp such an infinite sequence
of conditions. (Dean & Kurokawa 2016, 46)

In any case, in a note of Explaining deductive inference, Prawitz seems to
focus a more radical critique to Kreisel’s proposal, which is also valid even
when Dean and Kurokawa’s objection is accepted:

Kreisel proposes that a proof of A→ B or ∀xA(x) is a pair whose
second member is a proof of the fact that the first member is a
construction that [produces either a proof of B when applied to a
proof of A, or a proof of A(t) when applied to a term t]. Thus, he
presupposes that we already know what a proof is; it is thought
that the second proof establishes a decidable sentence and that a
reduction has therefore taken place. (Prawitz 2015, 87)

In other words, it seems to us that Prawitz, in the passage just cited, crit-
icizes - or, at least, critically emphasizes - two points; the decidability by
assumption of the operator τ , and the occurrence of the notion of proof in
clauses that should fix this notion itself. So, first of all, even assuming that
the relation "being a proof of" is decidable, or, in a weaker sense, recog-
nizable (and, as we saw in Section 2.5.2.2, Prawitz is skeptical about this
hypothesis, at least in a certain interpretation), this fact should be achieved
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- as a result, and not as a starting point - in a framework inspired by, and
which formalizes, the BHK clauses, if necessary by imposing conditions and
further restrictions on the definitions proposed. Secondly, Prawitz seems to
attribute to a formalization of the BHK the explanatory task (as was the
task of the BHK themselves) of defining the notion of proof. But in order
to do this, we obviously cannot adopt Kreisel’s foundationalist perspective,
and in particular we cannot assume that we already know what a proof is.

3.2.2 Martin-Löf’s intuitionistic type theory

Intuitionistic type theory, developed by Martin-Löf since the 1970s (see Sund-
holm 2012, Dybjer & Palmgren 2016), is one of the most studied and fruitful
research areas in the field of constructive logic and mathematics and, more
generally, one of the most innovative approaches in the investigation of the
foundations of mathematics. In fact, it is impossible here to give an exhaus-
tive picture of the vast theoretical, conceptual, formal and methodological
apparatus to which it amounts, of its manifold philosophical implications
and, not least, of its innumerable branches towards more or less related sys-
tematizations. Likewise, it would not be appropriate here, since it rather
requires a separate treatment, to review the various changes that Martin-Löf
has made over the years to his system - not to mention the ones proposed
by others - or to illustrate the different philosophical positions that, implied
in or inferred from this system, he has gradually articulated. We will there-
fore limit ourselves to an inevitably partial treatment - even more partial
than that reserved for the Kreisel-Goodman theory of constructions - recall-
ing, when useful for the purposes of this work, Prawitz’s observations on the
work of his Swedish colleague.

The starting point - or at least one of the possible starting points - is the
attribution of a central role to the already introduced distinction between
propositions on the one hand, and judgments on the other. The interplay
between the two concepts, while remaining central throughout the develop-
ment of Martin-Löf’s thought, takes across time on different characteristics,
analyzed in different directions, and not always mutually compatible. In any
case, in Intuitionistic type theory, the text we have decided to refer to, we
are told that

what we combine by means of the logical operations [...] and hold
to be true are propositions. When we hold a proposition to be
true, we make a judgement:
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A︸︷︷︸
proposition

is true︸ ︷︷ ︸
judgement

In particular, the premisses and conclusion of a logical inference
are judgements. (Martin-Löf 1984, 3)

From this point of view, the formulas of intuitionistic type theory are con-
ceived as representing judgments; in line with what has been said at the end
of the previous quotation, moreover, the (applications of) the rules of calcu-
lus involve only formulas for judgments, so it is formulas of this type they
intend to demonstrate. The fundamental forms of judgment are:

• α is a set (written α set)

• α and β are equal sets (written α = β)

• a is an element of the set α (written a ∈ α)

• a and b are equal elements of the set α (written a = b ∈ α)

Each of these forms receives, in addition, an explanation aimed at fixing the
nature of the defined object, the epistemic conditions for asserting of the
intended judgment or, finally, the meaning of the latter; for example, in the
case of the α set judgment, we will have:

what is a set? What is it that we must know in order to have the
right to judge something to be a set? What does a judgement of
the form "α is a set" mean? [...] At first sight, we could assume
that a set is defined by prescribing how its elements are formed.
This we do when we say that the set of natural numbers N is
defined by giving the rules:

0 ∈ N
a ∈ N
s(a) ∈ N

by which its elements are constructed. However, the weakness of
this definition is clear: 1010, for instance, though not obtainable
with the given rules, is clearly an element of N, since we know that
we can bring it to the form s(a) for some a ∈ N. We thus have
to distinguish the elements which have a form by which we can
directly see that they are the result of one of the rules, and call
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them canonical, from all other elements, which we will call non-
canonical. But then, to be able to define when two noncanonical
elements are equal, we must also prescribe how equal canonical
elements are formed. So a set α is defined by prescribing how a
canonical element of α is formed as well as how two equal canon-
ical elements of α are formed. [...] For example, to the rules for
N above, we must add

0 = 0 ∈ N and
a = b ∈ N

s(a) = s(b) ∈ N

(Martin-Löf 1984, 7 - 8)

Likewise, the meaning of a judgment of the form α = β is fixed by requiring
that it is valid only when, first, α and β are extensionably equal and, secondly,
the equality between the elements of one is preserved in the other. Finally,
there are the judgments on the elements of a set, and on the equality between
them. A judgment of the form a ∈ α means that a is a method that, when
performed, generates as a result a canonical element of α; thus, two elements
a and b of α are equal if, and only if, they generate the same canonical
element of α - and this explains the meaning of a = b ∈ α. The equality
between sets, and that between elements of the same set, are subject to
the usual properties of reflexivity, symmetry and transitivity, fixed through
appropriate inference rules. To these are added two more that, so to speak,
link the equality between sets and that between elements of the same set:
if a ∈ α (respectively, a = b ∈ α) and α = β, then a ∈ β (respectively,
a = b ∈ β).

One of the distinctive traits - if not the main distinguishing trait - of in-
tuitionistic type theory is the generalization of the above forms of judgment
to what Martin-Löf calls hypothetical judgments, that is to say, judgments
dependent on assumptions. Confining ourselves to the case of a single vari-
able, under the common and implicit assumption α set, and indicating with
[x ∈ α] the assumption (discharged) "for x ∈ α", we will then have that

• β(x) set [x ∈ α]

• β(x) = δ(x) [x ∈ α]

• b(x) ∈ β(x) [x ∈ α]

• b(x) = d(x) ∈ β(x) [x ∈ α]
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The first form of hypothetical judgment expresses β(x) as a set family over
α; thus, β(a) is a set for every a ∈ α and β(a) and β(x) are equal sets for
a = c ∈ α. The second one instead means that β(x) and δ(x) are equal
families of sets on α; therefore, β(a) = δ(a) for every a ∈ α. As regards
the elements, the third typology of hypothetical judgment means that b(x)
is a function from α to β(x) such that, for every a ∈ α, b(a) ∈ β(a); b(x) is
therefore a function the value of which depends on the choice of the argument
a ∈ α on which it is computed. Finally, the fourth case indicates the equality
between two functions from α to β(x); for each a ∈ α, b(a) = d(a) ∈ β(a).
This elucidation is accompanied by different substitution rules - discharging
the assumption [x ∈ α] – that make explicit the already discussed semantic
content of the forms of judgment to which they are referred from time to
time.

After presenting the meaning of judgments and hypothetical judgments,
Martin-Löf deals with the meaning of propositions and sentences, adhering
to the intuitionist idea according to which

a proposition is defined by laying down what counts as a proof of
the proposition. (Martin-Löf 1984, 11)

Therefore, he adopts the BHK clauses for propositions and sentences, ex-
posing them in the following form - as usual, with reference to a base B,
under the assumption that there are no proofs for ⊥, and with λ operator of
λ-abstraction:

(∧MP ) a proof over B of α∧β is (a, b) for a proof over B of α and b proof over
B of β

(∨MP ) a proof over B of α ∨ β is i(a) for a proof over B of α, or j(b) for b
proof over B of β

(→M
P ) a proof over B of α→ β is λx.b(x) where b(x) is such that, for every a

proof over B of α, b(a) is a proof over B of β

(∀MP ) a proof over B of ∀xα(x) is λx.b(x) where b(x) is such that, for every
B-term a, b(a) is a proof over B of α(a)

(∃MP ) a proof over B of ∃xα(x) is (a, b) for a B-term and b proof over B of
α(a)

Martin-Löf’s position on these clauses is similar to that adopted by Prawitz
in Meaning and proofs: on the conflict between classical and intuitionistic
logic (Prawitz1977) - and here described in Section 2.5.2.2: they define the
notion of canonical proof, but
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an arbitrary proof, in analogy with an arbitrary element of a set,
is a method of producing a proof of canonical form. (Martin-Löf
1984, 13)

And precisely in this regard, the analogy between proofs of propositions and
arbitrary elements of sets plays a central role in intuitionistic type theory.
The latter, in fact, is inspired by the so-called formulas-as-types conception
of the Curry-Howard isomorphism, which we will discuss more in detail in
the next chapter; without going into details, however, we can now see how

if we take seriously the idea that a proposition is defined by laying
down how its canonical proofs are formed [...] and accept that
a set is defined by prescribing how its canonical elements are
formed, then it is clear that it would only lead to an unnecessary
duplication to keep the notions of proposition and set (and the
associated notions of proof of a proposition and element of a set)
apart. Instead, we simply identify them, that is, treat them as
one and the same notion. (Martin-Löf 1984, 13)

Thus, in Martin-Löf’s system the formulas of a logical language (although,
as we shall see, it is not really possible to speak of a logical language of
"reference", since the system integrates syntactic rules for the generation of
such formulas) are a special case of a set and, more precisely, they are sets of
proofs with canonical elements fixed in such a way as to respect the inductive
definition of the BHK clauses. Thus, when α is a formula, a judgment for
example of the type a ∈ α tells us that a is a proof of α, that is to say
a method for obtaining a canonical proof of α; similarly, a judgment, for
example, of the type b(x) ∈ β(x)[x ∈ α] with β(x) open formula in the free
variable x and α as intended domain, tells us that b(x) is a function from α
to β(x), such that for every element a of α, b(a) is a proof of β(α), whereas
with β(x) = β not depending on x and α formula, indicates that b(x) is a
function from α to β such that for each proof a of α, b(a) is a proof of β. More
generally, if we say that the formulas are types of proofs, and we think of the
latter as elements typed on their own set, we can also easily conclude that
the introduction of hypothetical judgments is equivalent to the introduction
of dependent types and, correspondingly, of proofs as elements of dependent
type in families of sets.

What has been said so far clarifies the meaning of the fundamental forms
of judgement and hypothetical judgment, corresponding to the formulas of
intuitionistic type theory, and of the propositions corresponding to some of
the types occurring in such formulas. What we should now do is, at least,
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to exemplify some of the rules of the system, and to do so, it is first of all
worth remembering that there are basically four types of them: of formation,
of introduction, of elimination and, finally, of equality. According to Martin-
Löf, and with a significant reference to what we have explained in Section
2.5,

the formation rule says that we can form a certain set (propo-
sition) from certain other sets (propositions) or families of sets
(propositional functions). The introduction rules say what are
the canonical elements (and equal canonical elements) of the set,
thus giving its meaning. The elimination rule shows how we may
define functions on the set defined by the introduction rules. The
equality rules relate the introduction and elimination rules by
showing how a function defined by means of the elimination rule
operates on the canonical elements of the set which are gener-
ated by the introduction rules. In the interpretation of sets as
propositions, the formation rules are used to form proposition,
introduction and elimination rules are like those of Gentzen, and
the equality rules correspond to the reduction rules of Prawitz.
(Martin-Löf 1984, 24)

In any case, it would already be excessive compared to the purposes of this
work to expose even only all the rules for a first-order logical language; there-
fore, in what follows, we will be content to show exclusively those related
to the intuitionistically problematic connectives → and ∀. In them, the
λ-abstraction operator corresponds to an analogous operator Π for the for-
mation of sets of functions from and to sets/propositions/types, called by
Martin-Lööf cartesian products of families of sets. We will also follow Martin-
Löf in calling Ap the so-called application operation for (terms reducing to)
λ-terms - that is, if c = λx.b(x) for some b(x), Ap(c, a) = b(a) for every a of
an appropriate type. In this way, we can distinguish the application of Ap
to c and a from the application to a of the function b(x) in the rank of λ -
where c reduces to λx.b(x). Of the rules that follow, we will provide a quick
elucidation, providing more details only when strictly necessary (the further
details are obviously in Martin-Löf 1984, but see also, among others, Usberti
1995 and Dybjer & Palmgren 2016).

Π-formation

α set
[x ∈ α]

β(x) set
(Πx ∈ α)β(x) set

α = γ

[x ∈ α]

β(x) = δ(x)

(Πx ∈ α)β(x) = (Πx ∈ γ)δ(x)
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Π-introduction

[x ∈ α]

b(x) ∈ β(x)

λx.b(x) ∈ (Πx ∈ α)β(x)

[x ∈ α]

b(x) = d(x) ∈ β(x)

λx.b(x) = λx.d(x) ∈ (Πx ∈ α)β(x)

Π-elimination

c ∈ (Πx ∈ α)β(x) a ∈ α
Ap(c, a) ∈ β(a)

c = d ∈ (Πx ∈ α)β(x) a = g ∈ α
Ap(c, a) = Ap(c, g) ∈ β(a)

Π-equality

a ∈ α
[x ∈ α]

b(x) ∈ β(x)

Ap(λx.b(x), a) = b(a) ∈ β(a)

c ∈ (Πx ∈ α)β(x)

c = λx.Ap(c, x) ∈ (Πx ∈ α)β(x)

The rules of intuitionistic type theory can be used to obtain, as a special
case, those of a system of natural deduction à la Gentzen. This point of
view, which is of fundamental significance for the philosophical framework
suggested by Martin-Löf, and more specifically in the context of the issues
on which the present work is focused, is obtained by passing from a (possibly
hypothetical) judgment of the type a ∈ α to one of the (hypothetical) form
α true. If we think of α as a proposition, and if we understand propositions as
sets/types of proofs a, the underlying idea is at first obvious; α will be true in
the case where there is a proof a. Then, by defining ∀xβ(x) as (Πx ∈ α)β(x)
and α → β as (Πx ∈ α)β - where in the latter case x does not occur free
in β - and confining ourselves, when appropriate, to sets/types considered
specifically as propositions, we can rewrite the rules of Π-introduction and
Π-elimination respectively in the following ways:

[x ∈ α]

β(x) true
∀xβ(x) true

∀xβ(x) true a ∈ α
β(a) true

[α true]

β true
α→ β true

α→ β true α true
β true
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with the usual restriction on x in what, now, is the equivalent of (∀I) in
intuitionistic type theory.

The distinction between a ∈ α type judgments and α true judgments
makes it possible to illuminate two aspects of crucial importance, and closely
related to each other, in the framework under examination: the distinction
between two different, and differently relevant from an epistemic point of
view, notions of proof, and the status of the notion of truth. The related
discussion, which will conclude this section, will be carried out by referring to
Martin-Löf’s writings which followed Intuitionistic type theory, to the seminal
Sundholm’s article, Proofs as acts and proofs as object: some questions for
Dag Prawitz (Sundholm 1998), and finally to a fundamental and due - given
the aims of our investigation - reference to Prawitz’s interpretation in Truth
and proof in intuitionism (Prawitz 2012b).

Starting from the first of the aforementioned points, intuitionistic type
theory includes, on close inspection, proofs of two different genres: first, those
that occur in the BHK clauses and in judgments such as a ∈ α, a = b ∈ α,
b(x) ∈ β(x)[x ∈ α] or b(x) = d(x) ∈ β(x)[x ∈ α], similar to elements
of sets/types (possibly dependent) that are, more specifically, propositions
(possibly under assumptions); on the other hand, there are also proofs built
by exploiting the rules of the theory itself, aimed at establishing (possibly
depending on assumptions) judgments (possibly dependent) of one of the
four fundamental forms. Now, placing ourselves in an intuitive and very
general perspective, a proof should be something epistemic, endowed with a
significant impact on the whole of our knowledge; can we say that this also
applies to the framework we are examining? Furthermore, with reference to
the previous question, what is the difference between proofs of propositions
and proofs of judgments? If we espouse the reading proposed by Prawitz in
Truth and proof in intuitionism (Prawitz 2012b), we can certainly say that
the position of Martin-Löf on such an issue, and particularly on the character
of the proofs for propositions, has not always been univocal.

In On the meanin of the logical constants and the justifications of the
logical laws (Martin-Löf 1985), Martin-Löf extensively discusses the notion
of judgment; although it is not possible here to go into the details of a
complex and profound treatment, it will still be sufficient to note how the
Swedish logician attributes an epistemic weight to the activity of judging, by
explicitly linking it to that of knowing. For example, he claims that

when understood as an act of judging, a judgement is nothing
but an act of knowing, and, when understood as that which is
judged, it is [...] an object of knowledge. [...] Thus, first of all,
we have an ambiguity of the term judgement between the act of
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judging and that which is judged. (Martin-Löf 1985, 20)

This ambiguity is resolved later through the distinction between judgment
and evident judgment :

if you let G be the proposition that every even number is the sum
of two prime numbers, and then look at

G is true,

is it a judgement, or is it not a judgement? Clearly, in one sense,
it is, and, in another sense, it is not. It is not a judgement in the
sense that it is not known, that is, that it has not been proved,
or grasped. But, in another sense, it is a judgement, namely, in
the sense that G is true makes perfectly good sense, because G is
a proposition which we all understand, and, presumably, we un-
derstand what it means for a proposition to be true. [...] it seems
better, when there is a need of making the distinction between
[...] a judgement before and after it has been proved, or become
known, to speak of a judgement and an evident judgement, re-
spectively. (Martin-Löf 1985, 22 - 23)

Thus, the act of judging - which, according to what we have just seen, is,
so to speak, an act of knowledge - allows, so to speak, to acquire the object
of the judgment - which, as we have just seen, is the object of knowledge -
and, in this way, to make it evident. Again, according to Martin-Löf’s words
(where, to stick to the previous quotation, we replace "is a proposition" with
"is true"),

I know A︸︷︷︸
expression

[is true]︸ ︷︷ ︸
form of judgement︸ ︷︷ ︸

judgement︸ ︷︷ ︸
evident judgement

Here is involved, first, an expression A, which should be a com-
plete expression. Second, we have the form ... [is true], which is
the form of judgement. Composing these two, we arrive at A [is
true], which is a judgement in the first sense. And then, third,
we have the act in which I grasp this judgement, and through
which it becomes evident. These two together, that is, the judge-
ment and my act of grasping it, become the evident judgement.
(Martin-Löf 1985, 27 - 28)
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But then, a proof for a judgment must be such as to allow exactly the ac-
complishment of an act of the type just described; and since this act will be,
more specifically, an act of knowledge, proofs for judgments are, almost by
definition, endowed with epistemic power. With regard to this circumstance,
Martin-Löf seems to have never changed his mind - except of course for some
terminological differences, and some variations in the declination of the rela-
tion between proofs for propositions or sentences and proofs for judgments,
topics that in any case it is not appropriate here to investigate further (see
also Martin-Löf 1985, and also Martin-Löf 1994, 1998, and Prawitz 2012b).
In the case of proofs for propositions, this do not seem to be the case; in
Intuitionistic type theory and On the meaning of the logical constants and
the justifications of the logical laws, as well as in a variety of other articles,

there is yet no idea about proofs of propositions lacking of epis-
temic significance. In the absence of any such indication, it must
be taken for granted that the notion of proof should be taken in its
usual epistemic sense, and thus [...] a proposition is determined
by how it is established as true. (Prawitz 2012b, 53)

On the contrary, starting from Truth and Knowability: on the principles C
and K of Michael Dummett (Martin-Löf 1998),

the two crucial new ideas are to separate concepts that are epis-
temic from those that are non-epistemic and to distinguish be-
tween two radically different senses of proofs, of which one is
epistemic and one is non-epistemic. [...] the epistemic notion
appears when we speak of proofs of judgements [...] while the
non-epistemic notion appears when we speak of proofs of propo-
sitions. (Prawitz 2012b, 58)

It is important at this point to emphasize that, in addressing the issues
under examination, Prawitz explicitly refers to a known distinction, intro-
duced and articulated by Sundholm in the famous Proofs as acts and proofs as
objects: some questions for Dag Prawitz (Sundholm 1998, see also Sundholm
1983, 1993). As stated above, judgments are linked to an activity consisting
in catching a certain object of knowledge; if this is true, proofs for judgments
will ultimately have to take the shape of acts - proofs-acts, in the established
terminology. On the other hand, proofs for propositions, especially when
understood as abstract mathematical entities, and devoid of a real epistemic
connotation, will be pure and simple objectual constructions - proof-objects,
in the established terminology. Proof-objects and proof-acts are, of course,
closely linked:
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the proofs occurring in the meaning explanations are construc-
tions [...], whereas what is required for an assertion that a certain
proposition is true is that a construction [...] has been carried
out. (Sundholm 1998, 187)

The proof-object is the construction-object, that is, the object of
the construction-act that forms part of the proof-act. (Sundholm
1998, 193)

This notwithstanding, even Sundholm, like Martin-Löf, insists that while a
proof-act is epistemically relevant,

a proof-object is a mathematical object like any other, say, a func-
tion in a Banach space, or a complex contour-integral, whence,
from an epistemological point of view, it is no more forcing than
such objects. (Sundholm 1998, 194)

Herein we will see how Prawitz is in a sense critical towards this strong
position on the non-epistemic character of proof-objects. However, for the
time being, we can use what has been illustrated so far to come back to the
notion of truth.

Shortly above, we have argued that, underlying the transition from judg-
ments of the type a ∈ α to judgments of the α true form, there is the idea
according to which, understood as a proposition, α will be true only when
a proof of it exists. However, this is only a first approximation, and it is
clear that the connection between truth and proofs can be further devel-
oped along very different paths. More specifically, according to Prawitz, in
the writings prior to Truth and Knowability: on the principles C and K of
Michael Dummett,

the truth of a proposition [...] is equated with the verifiability
of the proposition; in other words, a proposition α is true if and
only if α can be verified. (Prawitz 2012b, 56)

On the other hand, the change of paradigm concerning the essentially non-
epistemic status of proof-objects induces a corresponding modification of the
understanding of truth: the discourse in terms of verifiability is replaced by
a much more abstract perspective, so that

the truth of a proposition α is defined as the existence of a canon-
ical proof-object of α. [...] asked what the proof-objects are after
their epistemic connections have been severed, Martin-Löf and
Sundholm often answer that they are just truth-makers. (Prawitz
2012b, 59)
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In any event, there is something that both readings share, and that runs
through all the phases of Martin-Löf’s thinking. As will be noted, α true is
not one of the fundamental forms of judgment, and therefore is not a formula
of intuitionistic type theory; the suppression of the proof-object a in a ∈ α,
thus, causes α true to be

an incomplete judgment, or a shortened way of saying that a
certain object is a construction for α; therefore it should not be
understood as a judgment of a new species. [...] if we were to
say that α true has the same meaning as ∃x(x ∈ α) we would
assume that to the judgment the logical constants can be applied
to x ∈ α, which is [...] illegal. (Usberti 1995, 80)

In the article Analytic and synthetic judgments in type theory (Martin-Löf
1994), Martin-Löf elaborates on the question, calling analytical the judg-
ments of the form a ∈ α, and synthetic those of the form α true, the latter
translated into proof(α) exists:

if a judgement of [the first form] is evident at all, then it is evident
solely by virtue of the meanings of the terms that occur in it. [...]
The synthetic form of judgement is precisely the existential form
of judgement that I have just introduced. [...] we clearly have to
go beyond what is contained in the judgement itself, namely, to
the thing that exists, in order to make an existential judgement
evident. (Martin-Löf 1994, 93 - 94)

The distinction between analytical and synthetic judgments in intuition-
istic type theory has particular relevance with respect to some issues that we
will discuss later in this survey. In fact, Martin-Löf has linked with it sig-
nificant reflections on the phenomenon of incompleteness, on the one hand,
and, on the other, on the question of the decidability of the relation "being
a proof-object for (or of the type)":

if you have [an analytic judgement], then it can be checked, or
decided, whether or not that judgement is derivable by means of
the formal rules, and the algorithm for doing that is what the
computer scientists call the type checking algorithm [...] if you
have [an analytic judgement] which contains certain constants,
expressing concepts, then no other laws are needed to derive it
than the laws which concern precisely those concepts. (Martin-
Löf 1994, 97)
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In its analytical, and therefore totally explicit, form, intuitionistic type theory
- or better, any formal system structured according to the guidelines given in
this Section - is thus complete and decidable. Completeness has a number of
consequences, some of which, in particular, connected in Prawitz’s semantics
to the concepts of harmony and conservativity - though it is not appropriate
to dwell on them here (for details, see Sundholm 1998). Instead, decidabil-
ity refers to what we have said about the recognizability of non-canonical
arguments as valid - in Section 2.5.2.1 - and of effective procedures as non-
canonical proofs, or proofs for implications and universal quantifications - in
Section 2.5.2.2. We are therefore in the presence of a point of contact, but
also of a possible divergence, between our previous discussion on the way in
which this question is organized in Prawitz, and the framework suggested by
Martin-Löf. Therefore, in order to end our discussion on intuitionistic type
theory, and to engage in the discussion of the actual theory of grounds, it
seems important to report what Prawitz says on this point:

there are two views concerning whether we have the right to assert
that a proposition α is true when we have come into possession
of a proof-object of α. One view is that it remains to prove
that the object in question is a proof-object of α. [...] Another
view is that from the way in which a proof-object of α has been
constructed, it should be evident that it is a proof-object of α.
[...] It is enough to know the meaning of the terms involved
and to be aware of how the proof-object has been constructed to
know that the construction is a proof-object of the proposition in
question. [...] On this second view, a proof-object of a proposition
α amounts to what is commonly called a ground for asserting that
α is true, that is, what a speaker must be in possession of in order
to be correct or right in making the assertion. (Prawitz 2012b,
65 - 66)
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Part II

Prawitz’s theory of grounds
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Chapter 4

Inferences, grounds and validity

4.1 From inferences to proofs, via grounds
As anticipated in Chapter 1, and reiterated in Chapter 3, Prawitz’s theory
of grounds intends to answer the question: how and why have some infer-
ences the epistemic power to confer evidence to the conclusion starting from
justified premises? Previously, after noting the relative inadequacy of model-
theory and of proof-theoretic semantics, we have suggested the necessity of
an approach that formalized the notion of evidence independently from more
basic concepts such as truth, valid argument or proof. From this perspec-
tive, we have also said that a promising framework seems to be suggested by
the BHK clauses, then discussing two theories that are inspired by them in
various ways.

In the Kreisel-Goodman theory of constructions, the notion of evidence
descends from that of BHK proof, and is formally understood in terms of
constructions for formulas of a logical language; in the case of proofs for im-
plications and universal quantifications, a decidability assumption validates
Kreisel’s second clause, thus solving the problem of recognizability which,
as we have seen in Chapter 2, afflicts the proof-theoretic semantics. Also
in Martin-Löf’s intuitionistic type theory we have a sort of constructions
à la Kreisel-Goodman; alongside the demonstrations for judgments, to be
understood as proof-acts, there are the proofs (used to fix the meaning) of
propositions or sentences, which are proof-objects instead. In the interpre-
tation of Prawitz, the latest Martin-Löf and Sundholm agree in denying an
epistemic content to these entities, considering them as simple truth-makers.
Nevertheless, the fact that intuitionistic type theory is complete and, more
significantly, decidable, allows every time to determine whether a certain
proof-object is or is not a proof-object for a certain proposition or for a cer-
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tain sentence. If, on the one hand, Prawitz considers unsatisfactory Kreisel’s
second clause, he seems from the other to consider the peculiar recogniz-
ability of Martin-Löf’s proof-objects as a valid reason to look at the latter
as - and the use of the term is not casual – grounds for the correctness of
judgments or assertions.

In this chapter, we will start our discussion of the theory of grounds; in
practice, it will keep us busy until the end of this work. Before that, how-
ever, it seems to us necessary to indicate the articles to which Prawitz has
entrusted the development of his new approach, and that will therefore con-
stitute our sources. The theory of the grounds is announced for the first time
in an article of 2006 entitled Validity of inferences (now Prawitz 2013), fur-
ther developed in Inference and knowledge (Prawitz 2009) and The epistemic
significance of valid inference (Prawitz 2012a), and more systematized in the
long and dense Explaining deductive inference (Prawitz 2015). Many others
articles, although not primarily devoted to it, are nonetheless linked to it in
a substantial way: from the aforementioned Truth and proof in intuitionism
(Prawitz 2012b) to Truth as an epistemic notion (Prawitz 2012c), from An
approach to general proof-theory and a conjecture of a kind of completeness of
intuitionistic ogic revisited (Prawitz 2014) to On the relation between Heyt-
ing’s and Gentzen’s approaches to meaning (Prawitz 2016a), ending with
the latest The fundamental problem of general proof theory (Prawitz 2016b)
and The seeming interdependence between the concepts of valid inference and
proof (Prawitz 2017). Our guiding article will be Explaining deductive in-
ference. Obviously, however, we will occasionally refer to other writings, as
much to complete, as to integrate some points of our scrutiny.

4.1.1 Inferences in the theory of grounds

At the beginning of this survey, while introducing in Section 1.4 the "funda-
mental task" that the theory of grounds must fulfill, it has been said that a
rigorous discussion of the notion of ground presupposes, or at very least ac-
companies, a clarification of the notion of valid inference - and the additional
delineation of an adequate relationship between agents and inferences. The
search for a suitable definition of validity, however, has led us to an analysis
of the notion of evidence and, therefore, to a preliminary discussion on the
concept of ground. This should not be surprising; as we have said in Section
2.5.2, and as we will say again later, in the context we are moving the most
appropriate strategy is inspired by the Wittgensteinian idea (Wittgenstein
1953) of meaning as use - and, more precisely, by the related interpretation
of Dummett (Dummett 1978c, 1993b). Therefore, in order to approach the
description of valid inferences, it is fundamental to understand what is the
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evidence they confer; however, the reverse is also true, in the sense that the
nature of such an evidence will depend significantly on how it is obtained.
If the acquisition of evidence occurs by means of valid inferences, then, it is
also and above all necessary to ascertain what is meant by inference; in short,
the preliminary question on grounds is, in Prawitz’s theory, inseparable from
the equally fundamental question "what is an inference?".

In Section 1.1 it has been argued that the nature of inferences cannot, nor
it should, be uniquely described. Following Cozzo (Cozzo 2015), we have put
forward the argument that what inferences are depends on the context. In
particular, it is possible to identify seven factors (summarized in table 4.1).

Factors Examples of possible options

Nature of premises
and conclusion

Data
Truth-bearers
Acts

Agent of inference
Machine
Impersonal biological entity
Person

Relation between S
and premises and
conclusion (Γ, α)

Data (Γ, α) are stored in S
S is in the neural state (Γ, α)
S is in the representational state (Γ, α)
S performs the act (Γ, α)

Relation between
premises
and conclusion

Pair
Causal link
Abstract relation
Conscious and voluntary act of the agent

Stability
Aleatory
Refutable
Conclusive

Character
Private
Publicly manifestable

Context

Premises, conclusion, relations, agent
+ other inferences and reasonings
+ information and knowledge
+ co-agents and their activity

Table 4.1: The seven factors of (Cozzo 2015)

On the other hand, in Section 1.2 we observed that an analysis of the
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epistemic power of valid inferences requires, for each of the seven above-
mentioned factors, a rather stringent selection. Nevertheless, although in
some cases there seems to be one possible option, in others there remains a
sufficient choice; also in this perspective, therefore, the nature of inferences
remains undetermined. Thus, what we have to ask is what notion of in-
ference Prawitz refers to in approaching the basic question of his theory of
grounds. And it is indeed the same Swedish logician who provides us with
the relevant indications; in Explaining deductive inference, when introducing
his investigation, he points out that

philosophers and logicians distinguish among other things be-
tween inductive, abductive and deductive inferences. Philoso-
phers and psychologist make a quite different distinction between
what they call intuitive and reflective inference. (Prawitz 2015,
66)

The distinction between inductive, abductive or deductive inferences con-
cerns exclusively the factor related to the stability of the relationship be-
tween premises and conclusion. As anticipated in Section 1.1, the deductive
inferences are those of maximum force, establishing the conclusion in a not
refutable way – under the assumption that the premises are justified; this
does not happen, instead, with the inductive (see, for example, Hawthorne
2018) and abductive (see, for example, Douven 2017) inferences, in which
the conclusion, even assuming that the premises are correct, might be ques-
tioned by future occurrences. The distinction between intuitive and reflective
inferences, on the other hand, does not concern an individual factor, but a
multiplicity of factors, of which the most important seem to be those of the
relationship between agent and premises-conclusion, on the one hand, and
between premises and conclusion as such on the other:

to make a reflective inference is to be aware of passing to a con-
clusion from a number of premisses that are explicitly taken to
support the conclusion. Most inferences that we make are not
reflective but intuitive, that is, we are not aware of making them.
(Prawitz 2015, 66)

Therefore, according to Prawitz, in reflective inferences the relationship be-
tween agent S and premises and conclusion (Γ, α) consists at least – as we
shall see, it is only a first approximation – in the passage that S performs in
an aware and voluntary way from Γ to α. However, awareness and voluntari-
ness are here inextricably linked to an additional, fundamental circumstance:
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believing to have found in Γ a valid basis for α (where the expression "basis
for" is deliberately generic, since it can be specified only after having clarified
the nature of premises and conclusion), S performs the inferential act for the
evident purpose of substantiating, making known or using the link he/she
has identified. The relation between Γ and α, therefore, arises from the fact
that S, by inferring, explicitly assumes the responsibility of a support that
the elements of Γ have on α.

However, it is worth emphasizing that the description of reflective infer-
ences as conscious acts seems to be compatible also with other readings of
the relationship between agent and premises-conclusion, or between premises
and conclusion in themselves. It could indeed be required that the agent be
aware to possess certain data, or to be in some neural or representational
state; similarly, it could be that the agent makes the inference by virtue of
the awareness of causal links or abstract relationships between premises and
conclusion. If this is true, it should also be noted that a certain understand-
ing of the above relationships is compatible only with reflective inferences,
since, unlike the others, it seems to be meaningless when referred to the in-
tuitive ones. Both being in a representational state and performing an act
in which some premises are taken to support a conclusion imply a conscious
and voluntary participation; on the contrary, in order to possess certain data,
or to occupy a neural state, awareness and voluntariness are not necessarily
required, as they are not in acts triggered by unconscious or automatic causal
links. However, there are no doubt two elements that seem to unite all the
possible variations to which reflective inferences give rise: first,

reflective inferences are presumably confined to humans; (Prawitz
2015, 67)

secondly, the character of awareness has as a result that, although they can
be performed at a primarily mental level, reflective inferences are publicly –
for instance, linguistically – expressible and communicable in the context of
fulfillment.

It will not have escaped, at this point, that much of what has been said
with regard to reflective inferences is consistent with what, in Section 1.2, we
have argued in relation to those endowed with an epistemically compelling
force. In fact, the idea that an inference can definitely establish its own
conclusion – under the assumption that its premises are justified – does not
necessarily require that the act through which this occurs has a reflective
nature – think of the examples of Chrysippus’ dog or of the modus tollendo
ponens discussed in Section 1.2. However, if we concentrate on epistemically
compelling deductive inferences, it is safe to assume that they are also reflec-
tive – even though the opposite, obviously, may not be the case. It would
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certainly be interesting, but alien to the purposes of our survey, to research
the precise links that induction, abduction and deduction have with intu-
itiveness and reflectivity; here, we can only limit ourselves to emphasize that
Prawitz, with the theory of grounds, takes exclusively into account reflective
deductive inferences, with the following remark:

the logical relevance of the distinction between intuitive and re-
flective inferences may be doubted, but the distinction turns out
to be relevant also for logic. (Prawitz 2015, 67)

Finally, it remains to understand Prawitz’s outlook of the nature of premises
and conclusion and of the context of an inference. And the best way to do
it is, very simply, to recall a passage of our author – in which, among other
things, we find again clearly summarized what has been said so far about
reflective inferences to which the theory of grounds is addressed:

a reflective inference contains at least a number of assertions or
judgements made in the belief that one of them, the conclusion,
say β, is supported by the other ones, the premisses, say α1, ..., αn.
An inference in the course of an argument or a proof is not an
assertion or judgement to the effect that β follows from α1, ..., αn,
but is first of all a transition from some assertions (or judgements)
to another one. In other words, it is a compound act that contains
the n + 1 assertions α1, ..., αn and β, and in addition, the claim
that the latter is supported by the former, a claim commonly
indicated by words like "then", "hence", or "therefore". (Prawitz
2015, 67)

In the inferences which the theory of grounds deals with premises and con-
clusion should therefore be understood as judgments or assertions; Prawitz
is careful in specifying that an inference is not, in itself, the further judgment
or assertion according to which the conclusion follows, or is supported by,
the premises. On the contrary, it just takes the form of a mere act of pas-
sage – although, let us repeat, we are here at a level of first approximation
from the first to the second. But what are, more specifically, judgments and
assertions?

Following (a certain interpretation of) Frege (Frege 1879), a judgment
can be understood as the mental act by which it is claimed that a certain
proposition is true; and in the same way that a sentence can be considered
as the linguistic equivalent of a proposition, an assertion can be considered
as the linguistic equivalent of the judgment, i.e., the linguistic act through
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which it is claimed (mostly implicitly) that a certain sentence is true. Ob-
viously, depending on how premises and conclusion are intended, namely as
judgments or assertions,

the transition that takes place when we make an inference is either
a mental act or a linguistic act (a speech act). [...] I shall call
such an act an inferential transition. (Prawitz 2015, 68)

Regarding premises, conclusion, and the inference itself, however, Prawitz
does not seem to consider the distinction between the mental and the lin-
guistic plan to be really substantial – as we shall see, it will become important
in a more specific context of the theory of grounds; in this area, the two levels
are almost exactly parallel, so that

it does not matter for what I am interested in here whether
we speak of judgements or assertions in this context and hence
whether we take an inferential transition to be mental or linguis-
tic. (Prawitz 2015, 68)

From Frege (Frege 1879) Prawitz also draws the symbol of judgment or as-
sertion ` but extending its use so as to account for what he calls judgments
and assertions open or under assumptions - where the mental or linguistic
act of assumption is reduced to the particular case of judgment or assertion
below an assumption identical to the dependent proposition or sentence:

unlike Frege, I want to account for the fact that an inference may
occur in a context where assumptions have been made, and a
qualification of what has been said is therefore needed. It should
be understood that the assertions in an inferential transition need
not be categorical, but may be made under a number of assump-
tions. [...] I write α1, ..., αn ` β to indicate that the sentence β is
asserted under the assumptions α1, ..., αn. To make an assump-
tion is a speech act of its own, and one may allow an inference
to start with premisses that are assumptions, not assertions. It
is convenient however not to have to reckon with this additional
category of premisses, but to cover it by the case that arises when
α is asserted under itself as assumption, that is, an assertion of
the form α ` α. [...] Furthermore, we have to take into account
that a sentence that is asserted by a premiss or conclusion need
not be closed but may be open. For instance, to take a classical
example, we may assume that

√
2 equals a rational number n/m

and infer that then 2 equals n2/m2. (Prawitz 2015, 68)
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At the end of our reasoning on premises and conclusion, it should finally
be noted that, although the latter are here similar to those of intuitionistic
type theory, where they are understood as judgments or assertions as well,
however they differ in what is judged or asserted:

Like Frege, and unlike Martin-Löf, I do not take an expression of
the form "it is true that ...", where the dots stand for a declarative
sentence, to be the form of a judgement. To assert a sentence of
the form "... is true", where the dots stand for the name of a
sentence α, is to make a semantic ascent, as I see it, and is thus
not the same as to assert α. (Prawitz 2015, 68)

Martin-Löf type theory contains rules for how to prove [assertions
or judgements of the form a ∈ α]. There are also assertions of
propositions in the type theory, but they have the form [α true]
and are inferred from judgements of the form a ∈ α [...]. Thus,
the assertions in the type theory are, as I see it, on a meta-level
as compared to the object level to which the assertions that I am
discussing belong. (Prawitz 2015, 97)

Moving towards the context, it turns out to be appropriate to remem-
ber what previously has been repeated time and again: the description of
the inferential acts as transitions is, in Prawitz’s view, only approximate at
this stage of the analysis. Therefore the refinement will show how the ac-
tivity in question actually includes something more – something essential –
than premises, conclusions, relationships and agent. First of all, our author
observes that

when we characterize an inference as an act, we may do this
on different levels of abstractions. If we pay attention to the
agent who performs an inference and the occasion at which it is
performed, we are considering an individual inference act. By
abstracting from the agent and the occasion [...] we get a generic
inference act. We may further abstract from particular premisses
and conclusion of a generic inference and consider only how the
logical forms of the sentences involved are related [...]. I shall call
what we then get an inference form. (Prawitz 2015, 69 - 70)

A distinction analogous to the tripartition into individual inferences, generic
inferences and inferential forms may also relate to transitions; more in par-
ticular, a generic inferential transition may be indicated by an inferential
figure
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Γ1 ` α1 . . . Γn ` αn x1, ..., xs
∆ ` γ

with Γi (i ≤ n) and ∆ sets (possibly empty) of propositions or sentences (or
possibly open formulas) for ∆ ⊆

⋃
i≤n Γi, αi (i ≤ n) and γ propositions or

sentences (possibly open formula) for xh (h ≤ s) bound by the transition.
The transition contained in an inferential form can instead be indicated by
an inference scheme of the same type, where, however, the elements in Γi
(i ≤ n) and ∆, as well as αi (i ≤ n) and β, are, for example, meta-variable
parameters. Now, Prawitz emphasizes at this point how

we usually take for granted that everything logically relevant
about inference acts can be dealt with when an inference is iden-
tified with a set of premisses and a conclusion, in other words,
with what individuates a generic inferential transition or the form
of such a transition. We can then direct our attention solely to
inference figures or schemata and disregards the acts that they
represent. (Prawitz 2015, 70)

In the framework described so far, however, this move is not harmless, having
on the contrary at least two significant consequences; in fact, the exclusive
focus on inferential figures and schemes, leaving out transitions, and therefore
a fortiori the acts they describe, implies that

[1] we can see premisses and conclusions as sentences instead of
assertions; the Fregean assertion sign may be taken just as a punc-
tuation sign that separates a sentence in an argument from the
hypotheses on which it depends. [...] [2] the distinction between
intuitive and reflective inferences is of no interest, nor is there
any room for it. (Prawitz 2015, 70)

However, as we have already had occasion to mention, Prawitz believes that
the distinction between intuitive and reflective inferences is logically relevant.
In fact, questioning the power of epistemic compulsion of inferences makes
sense only when the latter are intended as reflective, and it can be assumed
that the required analysis passes through a deepening and a clarification of
the awareness and voluntariness involved in certain deductive activities. In
addition, the idea that certain inferences are capable of providing justifica-
tion seems to adapt only to an understanding of premises and conclusion
as judgments or assertions; the acts of this kind are those that can be said
correct or incorrect, and therefore authorized or not by reasoning. In other
words, limiting oneself to inferential figures and schemes means to endorse

131



the point of view according to which premises and conclusion are abstract
entities, between which an equally abstract tie occurs. In Chapter 2, we have
already seen how some proposals of this type – validity of inferences in terms
of (logical) consequence between premises and conclusion – do not account,
in a rather satisfactory way, for the presence of an epistemic bond. Soon, we
will see that this line of thought seems, according to a certain reading, totally
impracticable with regard to the basic question of the theory of grounds.

However, the risks of a reductionist reading on the nature of inferences
seem already entailed in a description of the same as mere transitions. If all
that is involved in an inferential act is the passage – however conscious and
voluntary – from premises to conclusion, what else can count but an abstract
relationship between the former and the latter? If all that we do by making an
inference is to move from judgments to judgments, and if the whole thing can
satisfactorily be exhausted in the linguistic practice of inserting a "therefore"
– or other equivalent expressions – between assertions and assertions, what
can we appeal to in order to explain the epistemic constraint if not to a link
between the content of judgments and assertions, and to the possibility that
it exerts in any, perhaps mysterious, way its force on us? In fact, Prawitz
wonders

does an inference contain something more than an inferential
transition, and if so, what? [...] On the one hand, when we
make inferences in the course of a proof, all that we announce is
normally a number of inferential transitions. On the other hand,
there seems to be something more that goes on at an inference,
some kind of mental operation that makes us believe, correctly
or incorrectly, that we have a good reason to make the assertion
that appears as conclusion. (Prawitz 2015, 68 - 69)

This is the focal point of the theory of grounds, namely, the idea of something
more than the simple transition, the idea of a mental operation on the basis of
which we feel authorized, more or less licitly, to judge as true the conclusion,
or to assert it. But before getting to the heart of the question, it is necessary
to clear the field of some positions related to what is really at stake when we
infer. In fact, through this further reflection on the nature of inferences, we
will be able to go back to the notion of evidence.

For the moment, at the end of this chapter, we briefly summarize the
ground-theoretic notion of inference by showing how the seven factors of
Cozzo (Cozzo 2015) are articulated in Prawitz’s framework. This is done in
table 4.2 below, by a direct and quick reference to all the results we have
obtained so far.
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Factors Typology
Nature of premises
and conclusion Acts (judgments or assertions)

Agent of inference Person
Relation between agent S
and premises and conclusion
(Γ, α)

S performs the transition (Γ, α)
in a conscious and voluntary way

Relation between premises
and conclusion

S assumes responsibility
for a support of Γ on α

Stability Conclusive
Character Publicly manifestable

Context
Premises, conclusion,
assumptions and bound variables,
relations, agent, mental operation

Table 4.2: Inferences in the theory of grounds

4.1.2 Evidence as the aim of reflective inferences

What has been said so far on the notion of evidence, as well as on the nature of
inferences to which the theory of grounds is dedicated, provides a sufficiently
clear framework for a renewed approach to valid inferences. This, both in
the sense of allowing us a critical evaluation, with an essentially negative
outcome, of a certain understanding of inferential validity, and with a specific
reference to a deeper and more reasoned articulation of the "fundamental
task" referred to in Section 1.4. On the other hand, in seeking an adequate
description of valid inferences we cannot simply take for granted approaches
that the logico-mathematical tradition has strengthened. As seen in Chapter
2, in fact, many proposals of respectable paternity and wide dissemination
prove to be unsatisfactory. It is thus plausible that a philosophically "honest"
treatment requires instead a comparison between certain formalizations and
pre-formal desiderata, in order to consider their appropriateness, with the
additional eventuality that, after ascertaining the inadequacy of the existing
options, there is need of a new formalization. The Kreisel-Goodman theory
of constructions and Martin-Löf’s intuitionistic type theory in Chapter 3 –
and of course, seen as a constructive semantics, Prawitz’s proof-theory in
Chapter 2 – are, in this regard, some of the possible examples, although
perhaps more related to the problem of the epistemic power of deductive
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activity as a whole than to that of the epistemic power of the inferences
which the deductive activity consists of, and that is also the object of our
investigation.

Therefore, it will not come as a surprise that, when understanding the
question of valid inferences or, equivalently, when undertaking the "funda-
mental task", Prawitz starts from what could be considered as a sort of
"phenomenological analysis", essentially non-formal, of inferential activity –
obviously, with a specific focus on correct inferential activity. A key role
in this perspective is played by the three points that, in the previous sec-
tion, we have seen being obscured by an understanding of inferences as
simple premises-conclusions pairs, reducible to the graphic representation of
generic transitions as inferential figures, and of inferential forms as inferential
schemes: namely, the idea that an inference is an act, that this act is intuitive
or reflective, and that premises and conclusion are for their part acts, that
is, judgments or assertions. It is only when an inference is understood as an
act, in fact, that the distinction between intuitive and reflective inferences
makes any sense; the acts can be unconscious, involuntary and automatic
or, on the contrary, conscious and deliberate. Whereupon, it is only because
of this distinction that acquires importance the observation that conscious
and voluntary acts, unlike the others, can be accomplished with a purpose;
and actually, this seems to be the case with reflective inferences, in which –
limiting ourselves to the first approximation of inferential transitions – the
transition from premises to conclusion is, as it were, oriented to the latter,
involving the "aiming" at a support that the former guarantee, or seem to
guarantee, for the latter. In the words of Prawitz,

we must say something about the point of inferences, why we are
interested in making and studying them, and now the inferences
must be seen as acts. [...] However, it is the point of reflective
inferences that I want to discuss especially, and in this context
we can speak of aims. The personal aims of subjects who make
inferences may of course differ, but we can speak of an aim that
should be present in order that an inference is to count as reflec-
tive. As already said, it is an ingredient in what it is to make such
an inference that the conclusion is held, correctly or incorrectly,
to be supported by the premisses. In view of this, reflective in-
ferences must be understood as aiming at getting support for the
conclusion. (Prawitz 2015, 71)

But what is more precisely this purpose? What is meant by the support
that the premises secure, or seem to secure, for the conclusion? Well, if
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an inference involves judgments or assertions, the support will have to be
of an epistemic type, in the specific sense that the purpose the agent aims
to when moving from premises to conclusion is to judge or assert correctly
the proposition or sentence involved in the latter by virtue of the (possibly
hypothetical) correctness of the judgments or assertions to which the former
amount. In other words, the support for a judgment or assertion cannot but
be a guarantee of correctness, and the purpose of the inferential transition is
exactly to achieve this guarantee (and, in the second instance, to demonstrate
or to communicate that it has been obtained). In particular, Prawitz points
out how this idea can be declined in different, and, one would say, equivalent
ways:

we may say that the function of inferences in general is to arrive
at new beliefs with a sufficient degree of veracity. [...] We may
say that the primary aim is to get a good reason for the assertion
that occurs as conclusion. Since the term reason also stands for
cause or motive, another and better way to express the same point
is to say that the aim is to get adequate grounds for assertions
or sufficient evidence for the truth of asserted sentences. Since
assertions are evaluated among other things with respect to the
grounds or evidence the speakers have for making them, we may
also say that the aim of reflective inferences is to make assertions
justified or warranted. (Prawitz 2015, 71)

At the beginning of Chapter 2 it has been said that validity of inferences is
usually explained by requiring that the conclusion be a (logical) consequence
of the premises; in turn, the explanatory standard of the relation of (logical)
consequence provides for recourse to a more or less specific notion of truth,
and this either by following the general and pre-formal intuition according to
which the truth of the premises necessarily implies the truth of the conclu-
sion, or, with reference to the more precise proposals of Bolzano, Tarski and
model-theory, by requiring the preservation of a formally understood notion
of truth under substitution and interpretation, respectively. However, it is
not difficult to guess how, in relation to an explanation à la Prawitz of the
purpose of inferences, this line of thought turns out to be unsatisfactory; to
determine the validity of a passage from judgments to judgments or from as-
sertions to assertions through an abstract relationship between propositions
or statements, in turn based on an equally abstract notion such as that of
truth, obscures the essentially epistemic nature of the purpose of the pas-
sage, and its result in case of legitimacy. In this regard, it is useful to note,
however, that what has just been said is independent of which kind of truth
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is chosen; also an epistemic explanation of the notion, which contrasts the
realistic one of Bolzano, Tarski and model-theory, does not seem befitting,
since, more in general,

the aim of a reflective inference cannot be described just in terms
of truth. The aim has not been attained when the sentences that
is asserted by the conclusion just happens to be true. (Prawitz
2015, 72)

At the end of the passage just mentioned, Prawitz highlights the obvious
observation that, in order to have reasons, grounds, evidence, justification
or guarantee for judgments or assertions, naturally it is not enough that the
propositions judged or the sentences asserted are de facto true. We could be
totally unaware of this circumstance, and in that case we would obviously not
be authorized (nor, probably, willing) to judge as true or to assert (possibly
under appropriate assumptions) the inferred propositions or sentences. Be-
sides that, in the first part of the same quotation, the Swedish logician asserts
in a stronger, and perhaps less obvious way that the explanation in terms
of simple truth already has the effect of blocking an adequate elucidation
of the purpose itself of reflective inferences; in fact, if we limited ourselves
to saying that by inferring we aim to pass from propositions or sentences
(possibly assumed as) true to true propositions or sentences (possibly under
assumptions), we would omit the essential trait of this activity, namely tak-
ing responsibility for the epistemic support that the truth of the premises
provides to the truth of the conclusion, of the fact that the conclusion is true
by virtue of the truth of the premises – here we can note that, when Prawitz
speaks in terms of truth, he always uses the word "evidence" for this truth.
It is exactly (the identification of) this dependence our reason, ground, evi-
dence, justification or guarantee for (possibly illicit) conclusive judgments or
assertions; in other words,

we expect an inference to afford us with knowledge in a Platonian
sense, which is again to say that it should give us not only a true
belief, but also a ground for the belief. (Prawitz 2015, 72)

In any case, the failure of an explanation of the purpose of inferences in
terms of simple truth does not necessarily imply the inadequacy of a descrip-
tion of inferential validity in terms of truth-preservation (under substitution
or interpretation) with respect to the "fundamental task" of the theory of
grounds – and indeed, the idea counts some supporters (among the most
recent, see Brîncuş 2015). As a matter of fact, we did not talk about this
last possibility, and Prawitz himself points out that
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although this does not seem likely in view of the fact that the
definition of validity refers to truth and not to any epistemic
notion concerned with how truths are established, this should
not be excluded off hand. (Prawitz 2015, 74)

However, according to what we have shown in Section 2.3, there is reason to
believe that the situation will not be so different from that observed about
the epistemic understanding of the modality involved in the relation of (log-
ical) consequence. In fact, what we have shown there is that the Bolzano,
Tarski and model-theoretic approaches do not capture the notion of neces-
sity of thought (Prawitz 2005), which, as observed by Cozzo (Cozzo 2015),
informs the relation of (logical) consequence of strong inferential traits; it
is therefore presumable that the evaluation of these proposals with respect
to the "fundamental task" is doomed to fail. Moreover, the same Cozzo
proposes a reformulation of the "task" which emphasizes in particular the
connection that we are highlighting:

from the fact that an inference J is valid it should be possible to
derive that J is endowed with necessity of thought. Let us say
that "the fundamental task" is to devise an analysis of deductive
validity which satisfies this condition. (Cozzo 2015, 106)

From the insufficiency of a characterization of the inferential purpose in terms
of simple truth, we have thus passed to the question: can we account for the
epistemic power of valid inferences by defining them as those in which the
conclusion is a (logical) consequence of the premises in the sense of Bolzano,
Tarski and model-theory? Obviously, the answer will be positive only if the
adoption of the proposed definition takes us on the right direction with re-
spect to the "fundamental task" – that is to say, it allows us to fulfill it
through the identification of an adequate relation between agents and infer-
ences, the last step that would remain to be made at that point. But then, we
need to turn to a second question: can we go beyond the simple observation
that this strategy seems to fail in light of its incapacity, observed in Section
2.3, to capture an epistemic reading of the relation of (logical) consequence?
Well, there seems to be no other possibility here than to confront directly
with the notion of valid inference, i.e. without passing through (logical) con-
sequence. And as significantly will be seen, this manner of proceeding also
involves as, so to speak, an indirect outcome, further and useful elucidations
on the most appropriate type of relation to be required between agents and
inferences.

For the purpose of a better understanding of this phase of the analysis (in
which we will essentially use Prawitz 2009, 2012a and 2013), it is appropriate
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at this stage to explicitly repeat that "fundamental task" which, from the
beginning of this chapter, we have so widely called into question – without,
unlike now, a real need for precision: given the two premises

a) I is a valid inference from the set of premises Γ to the conclusion α;

b) A is in possession of a ground for each of the premises in Γ,

which additional condition should be added to a) and b) for the purpose of
getting

c) A has a ground for α?

From this point of view, the first and most obvious observation concerns the
actual need to accompany a) and b) with an additional premise c); in fact,
in conjunction with the derivation of d), it is not sufficient that I is valid,
and that the agent is in possession of grounds for each of the premises in Γ.
Obviously, it applies here what has already been said regarding the insuffi-
ciency of the simple truth of the conclusion with respect to the possibility
that the corresponding inference achieves the purpose; on several occasions
Prawitz insists on this point, arguing for example that

given a valid argument or a valid inference from a judgement α
to a judgement β, it may be possible for an agent who is already
in possession of a ground for α to use this inference to get a
ground for β, too. But the agent is not ensured a ground for
β, just because of the inference from α to β being valid and
the agent being in possession of a ground for α. The agent may
simply be ignorant of the existence of this valid inference, in which
case its mere existence does not make her justified in making the
judgement β; (Prawitz 2009, 183)

it should be clear that the mere existence of a valid argument with
conclusion α and a set Γ of premisses that express already received
knowledge does not provide us with the knowledge expressed by
α: we may be unaware of the existence of this valid argument
and hence may be unable to use it to infer α from Γ. (Prawitz
2012a, 888)

In Validity of inferences, the situation is clarified by a reference to Andrew
Wiles; the latter, as is well known, proved in 1994 the so-called "Fermat’s
last theorem", but he previously had to withdraw a first, wrong, attempt to
prove it. Therefore,
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we may grant that Andrew Wiles was justified in holding true all
the facts from which he started when proving Fermat’s last the-
orem and that the one step inference from these starting points
to Fermat’s last theorem is valid. But these two assumptions
are clearly not enough to make Wiles or anybody else justified
in holding Fermat’s last theorem true; they were, we may as-
sume, satisfied long before Wiles gave his proof. [...] Wiles would
have been justified in asserting Fermat’s last theorem as soon
as he gave his first incomplete proof, contrarily to the fact that
in reality he soon afterwards had to withdraw it because of the
discovered gap. (Prawitz 2013, 186 - 187)

Of course, it is one thing to point out the need for a third premise, but
another to give one in an adequate form. It is plausible, however, to expect
that the choice will be influenced by what is meant by valid inference. Just
above, we have contemplated the idea of defining as valid those inferences the
conclusion of which is a (logical) consequence of the premises in the sense of
Bolzano, Tarki and model-theory. Therefore, the question is which, adopting
this framework, the desired condition c) might be. At first sight, we may
require that A is aware of the validity of I, i.e.

c1) A knows that Γ |= α

where, of course, Γ should be read as a set of formulas and no longer as a
set of judgments or assertions, and α as a formula and no longer as a judg-
ment or assertion – which implies obvious and consequential amendments,
that we shall leave out here, to the formulation of the remaining premises
of the "fundamental task". Whether this framework is satisfactory or not
is a question that Prawitz, again in Validity of inferences, takes explicitly
into account. However, at the same time he performs the additional – and
essential, for what we are concerned with – observation according to which
a), b) and c) – the latter in whatever declination, therefore a fortiori in the
form c1) – should be understood not only as merely sufficient, but also and
above all necessary conditions of d). More specifically, given the implication

1) if a person knows the inference J from a sentence α to a sen-
tence β to be valid, and is justified in holding α true, then she
is also justified in holding β true [...] we should ask whether
the antecedent of this implication describes a way to acquire new
knowledge; otherwise, the fact that the implication holds is of
little interest. [...] 1) was formulated as a possible response to
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the problem that arose when noting that the mere validity of an
inference whose premisses are known to be true does not justify
a person in asserting the conclusion, it then being suggested that
it is only when a person sees the validity of the inference that
she is so justified. Identifying "seeing the validity of an infer-
ence" with "knowing the inference to be valid", such knowledge
was suggested as a necessary condition for an inference to justify
a belief, which we may formulate as follows: 2) it is only when
a person knows an inference to be valid and its premisses to be
true that the inference justifies her in holding the conclusion true.
(Prawitz 2013, 187 - 188)

However, Prawitz points out that the joint action of 1) and 2) generates re-
gressive explanations similar to those already described by Bolzano (Bolzano
1837) and Lewis Carroll (Carroll 1895), thus making the overall approach
decidedly unsatisfactory. As a matter of fact, completing a "fundamental
task" of which the third hypothesis has the form c1), means to try to

establish the truth of the implication 1). Assume that a person,
call her A, knows a sentence α to be true and let J be an inference
from α to a sentence β. Assume further not only that J is valid
but that A knows this, as required in 1), if she is to use the
inference J to justify her in believing that β. Why should A now
be justified in holding β true? Suppose that we argue that, given
A’s knowledge of the validity of J , A knows that if α is true then
β is true [...] and that therefore A may just apply modus ponens
and conclude that β is true. But to be an argument showing that
A is justified in holding β true, it must also be assumed because of
2) that A knows modus ponens to be a valid inference, (Prawitz
2013, 190)

which, as is evident, requires the addition to the starting assumptions of the
further hypothesis that A knows that modus ponens is a valid inference, thus
resulting in a regress. Strictly speaking, be as it is, the regress does not
depend in this case on the fact in itself that the validity of the inferences is
understood in the terms of the notion of (logical) consequence à la Bolzano,
Tarski and model-theory; this is clearly emphasized by Prawitz, who writes
as follows:

the failure to support 1) does not depend on the assumed fact that
the Bolzano-Tarski notion of logical consequence lacks a genuine
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modal ingredient, because the same regress seems to arise if we
take the validity of the inference to mean that the conclusion is
a necessary consequence of the premisses [...]. What has been
shown so far is only that a regress arises when we combine the
Bolzano-Tarski notion of validity with the idea expresses in 2).
(Prawitz 2013, 191 - 192)

However, it is easy to understand how the fact that the approach of Bolzano,
Tarski and model-theory lacks whatsoever modal traits, plays a decisive role
in the discourse we are carrying out. In fact, even ascribing to c) a minimum
force with respect to that of the relation of explicit knowledge postulated by
c1), or in other words requiring generically and simply that

c2) A acknowledges that I is valid

is the right characterization of c), it seems inevitable to fall back into invali-
dating regressive forms:

when "valid" means that the implication "if α then β" is true for
all variations of the content of the non-logical terms of α and β,
then this is what the person recognizes, and what seems relevant
here is just that she recognizes the truth of this implication (with-
out any variation of the content). From this we want to conclude
that she is justified in holding β true. [...] we may assume that
she recognizes the validity of modus ponens [...]. But there we
are again with this kind of argument that leads to a regress of
the Bolzano-Carroll kind. (Prawitz 2013, 195)

Of course, the examples discussed so far do not exhaust the range of
subjects that a supporter of the definition of inferential validity as (logical)
consequence in the framework of Bolzano, Tarski and model-theory could
eventually devise; however, the approach in question seems unsatisfactory on
principle and this because of a problem that undermines its very foundations.
As argued in Section 2.1, the notion of logical consequence is a special case
of a more general notion of deductive consequence; the modal character of
the former is transmitted to the latter, since the difference between the two
concerns only the invariance of the relation by substitution or interpretation
of the non-logical terms. Furthermore, in Section 2.3 we have seen how an
analogous distinction seems also to concern the notion of inferential validity.
Here, and in the light of the clarifications so far acquired on the concept of
inference, we are able to explore this last point:
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(ID) an inference I with set of premises Γ and conclusion α is deductively
valid if, and only if, an agent A who is justified for all the premises
in Γ is, through I, epistemically compelled or justified to accept α –
where it should be noted that the expression "through I" is deliberately
inaccurate, being in fact the object of the current phase of investigation;

(IL) an inference I with set of premises Γ and conclusion α is logically valid
if, and only if, I is deductively valid solely on the basis of the logical
form of the elements in Γ and of α.

As usual, the idea expressed in (IL) can be translated - although not a lit-
tle problematically - either using Bolzano’s substitutional approach (Bolzano
1837) or, if we accept Tarski’s criticism with respect to what Etchemendy
(Etchemendy 1990) called persistence principle, introducing interpretations
from the language into (one or more) appropriate sets – thus providing for
the possible extension that model-theory inherits from Tarski’s original for-
mulation:

(IL∗) an inference I with set of premises Γ and conclusion α is logically valid
if, and only if, for every substitution Σ, the inference IΣ with a set
of premises ΓΣ and conclusion αΣ is deductively valid; an inference I
with set of premises Γ and conclusion α is logically valid if, and only if,
for every interpretation AD, the inference AD(I) with a set of premises
AD(Γ) and conclusion AD(α) is deductively valid.

However, (IL∗) is based on a prior notion of deductively valid inference, and
it is precisely this notion that Prawitz intends to define adequately. On the
other hand, as argued again in Section 2.3, both Bolzano and Tarski and
model-theory do not seem, with their characterizations, to go further, or
better, deeper than the relation of logical consequence, therefore not being
able to deal with the notion of deductively valid inference, to which (IL)
refers; and even when we wanted to search in them a description of deductive
validity, we have already seen that what results is a trivial collapse of the
relation of deductive consequence on the material implication, and of the
corresponding inference on the circumstance that either one of the premises
is false or the conclusion is true. Therefore, Prawitz significantly remarks
how

to say that the conclusion of an inference is a logical consequence
of its premisses in the sense of Bolzano-Tarski amounts just to
saying two things: 1) that the inference preserves truth (which
only means here that if the premisses are true then so is the
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conclusion) and 2) that all inferences of the same logical form do
the same. Now, although the first property is certainly relevant
for the question whether the inference has the power to justify
a belief in the conclusion (being a necessary condition for that),
it is obviously not sufficient for the inference to have this power.
The second property seems not even relevant to this question.
(Prawitz 2013, 185)

Once the feasibility of an approach based on the notion of (logical) con-
sequence has been discarded - being the latter understood as in Bolzano,
Tarski and model-theory - it remains the other option explored in Chapter 2:
to describe as valid those inferences for which there exists a valid argument
or a proof – in the sense of Prawitz’s proof-theoretic semantics – from the
premises to the conclusion, and to weigh the adequacy of this proposal in con-
nection with the "fundamental task". It would indeed seem promising that,
as observed in sections 2.5.2.1 and 2.5.2.2, the notions of valid argument and
proof allow as a matter of principle to distinguish between deductive validity
strictu sensu and, more generally, logical validity. In addition, they should be
understood as having epistemic connotations that make the respective infer-
ences capable of forcing, or justifying. However, we can from the beginning
point out that even in this case c) cannot consist in the requirement that the
agent has an explicit knowledge of inferential validity. In other words, when
added to a) and b), the condition

c3) A knows that there is a valid argument or proof from Γ to α

blocks any possibility of explanation, just like c1). In fact, it seems to be there
a wider problem already with the relation of explicit knowledge in itself, the
excessive force of which is by itself able to induce regresses:

there are other objections, not connected with any particular view
on the validity of inferences, against the requirement expressed in
2) that one has to know the validity of an inference if one is to be
justified by the inference in holding the conclusion true. Such a
requirement seems directly to give rise to a circle or a new regress,
perhaps a more straightforward one that the regress noted by
Bolzano ando Carroll. It appears as soon as we assume that the
knowledge of the validity of the inference has to be explicit and
ask how we know the validity. If the validity is not immediately
evident, it must come about by a demonstration, whose inferences
must again be known to be valid according to the requirement
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expressed in 2). These inferences must either be of the same kind
as the inferences whose validity we try to demonstrate or be of
another kind, and so we get either into a circle or regress. It
hardly seems reasonable to think that this circle or regress can
be avoided by saying that, for sufficiently many inferences, their
validity is immediately evident. (Prawitz 2013, 192)

Therefore, whatever the selected definition of inferential validity, we are
forced to abandon the idea that the knowledge of the validity of an infer-
ence may serve the purpose of obtaining epistemic constraint or justification
through the latter; in conclusion,

we need to find a relation R between a person P and an inference
J in terms of which we can state a condition that satisfies the
following demands. On one hand, it is to be substantial enough
so that [...] it implies that the person is justified in holding true
the conclusion of the inference [...] on the other hand, it is not
to be so strong that [...] it cannot be satisfied when taken as a
necessary condition for an inference to justify a belief. (Prawitz
2013, 197)

But what can this relationship be? In answering, it becomes essential to
remember what we have often written about inferences: against a frequent
reductive vision that looks at them as simple sets of premises and conclusion,
inferences are to be understood as oriented acts, namely, at their lowest, as
transitions between judgments or assertions serving the purpose of getting
reason, ground, evidence, justification or guarantee by virtue of a support
provided by knowledge (assumed as) acquired.

From an intuitive point of view, it is the inferential act as such, without, as
it were, further additions, to force or give justification. If it is true that correct
deductive practices exert an epistemic force on us, the correct inferential acts
of which they are ultimately composed must be the means through which
this force is carried on. By performing these acts, starting from a certain
(assumed as) acquired knowledge, we are eventually induced to accept or
take for granted the conclusion. Therefore, Prawitz’s natural and plausible
proposal is that the desired condition c) simply have the form

c4) A performs I.

However, we must be careful. What does it mean to perform an inference? In
Section 4.1.2 we already warned against the risks of a reductionist reading,
according to which performing an inference means only to pass from the
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judgments expressed by the premises to the judgments expressed by the
conclusion or, at a linguistic level, to perform a complex act consisting in
asserting the premises, in saying "therefore" or other equivalent expressions,
and finally in asserting the conclusion. On that occasion, it was said that
such a reconstruction seems to force us to abstract relations, such as that
of (logical) consequence, existing between premises and conclusion. To the
discussion so far conducted on the insufficiency of this framework, we can
now add Prawitz’s observations:

a person announces an inference in the way described, say as a
step in a proof, but is not able to defend the inference when it is
challenged. Such cases occur actually, and the person may then
have to withdraw the inference, although no counter example may
have been given. If it later turns out that the inference is in fact
valid, perhaps by a long and complicated argument, the person
will still not be considered to have had a ground for the conclusion
at the time when she asserted it; (Prawitz 2009, 186 - 187)

Fermat had of course some arguments in mind; his problem was
only that the margin where he announced his theorem was too
small. Suppose that we found these arguments in some other
notes by Fermat and that they could now be shown to be valid.
One would still suspect him to be unjustified, if the validity was
shown by advanced mathematics that Fermat had no access to:
that the argument were stated and happened to be valid do not
change the matter. (Prawitz 2012a, 891)

It is therefore necessary to make the inferential acts something more than
mere transitions. Actually, this seems to be independent of, and indeed to
be a necessary condition for, a definition of the notion of valid inference
that allows us to fulfill the "fundamental task". Just as with the notions of
evidence and inference, an indissoluble bond unites, in the theory of grounds,
the most appropriate description of what to perform an inference means and
the adequate definition of valid inference. The main suggestion regarding
this problem comes, not surprisingly, from the same Prawitz:

having arrived at a contradiction under an assumption α, we
conclude that the assumption is false, saying "hence, by reduction
not-α". [...] the assertion of the conclusion is accompanied by an
indication of some kind of operation that is taken to justify it.
This is consonant with an intuitive understanding of an inference

145



as consisting of something more than just a conclusion and some
premisses. Although the conclusion and the premisses may be
all that we make explicit, there is also some kind of operation
involved thanks to which we see that the conclusion is true given
that the premisses are. [...] My suggestion is that in analysing the
validity of inference, we should make this operation explicit, and
regard an inference as an act by which we acquire a justification
or ground for the conclusion by somehow operating on the already
available grounds for the premisses. (Prawitz 2013, 199)

At the conclusion of this section, it is perhaps appropriate to make a
final point. Suppose we define the validity of inferences as existence of valid
arguments or proofs from premises to conclusion, and attribute to the con-
dition c) the form c4), where "making an inference" is understood in merely
transitional terms - the only one description that, without prejudice to the
discussion in Section 2.5.3.3, seems appropriate to this framework. Then, the
impossibility of fulfilling in this way the "fundamental task" becomes even
more evident if we recall the three problems that, in Section 2.5.3, we have
seen afflicting proof-theoretic semantics – the recognizability problem, the
proofs-as-chains problem, and the problem of independence of validity from
inferences of which arguments and proofs are made up. Let I be a valid infer-
ence (represented by a constructive procedure f), and suppose that agent A
is in possession of evidence for (the types in the domain of f representatives
of) the premises of I; in the approach under examination, such an evidence
will amount to valid arguments or proofs in canonical form. Applying to
this evidence (the procedure f which represents) I, A obtains, respectively,
a valid argument ∆ or a proof π. Well:

Recognizability if ∆ is a non-canonical argument or π a categorical or
non-canonical proof (according to the terminology we prefer), on account of
the problem of recognizability we cannot assume that being in possession of
∆ or π, i.e. knowing how to get a valid argument or a canonical proof, means
also to know that ∆ or π reduce to such valid argument or canonical proof.
Thus we cannot say that A is in possession, albeit indirectly, of evidence for
the related conclusion1;

1As already mentioned in Section 2.5.3.3 in the case of proofs, the constructive proce-
dures representing inferences are defined on proofs and give proofs as output; this allows
to redefine the inferential act as a computation of a procedure of the intended type. When
the constructive procedure stands for a valid inference, it produces canonical proofs if
applied to canonical proofs; this instead means that what we actually need at the level
of objects is only the notion of canonical proof, and the problem of recognizability, less
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Proofs-as-chains on the other hand, if we really want to maintain that
the mere possession of ∆ or π is sufficient to compel or to justify, we need, as
analogously stated in Section 2.5.3, to be able to look at ∆ or π as a chains
of inferences that satisfy – what we aim to prove for (f representative of) I
– the property requested by the "fundamental task". But it is not clear how
this can happen, since, on account of the distinction between canonical and
non-canonical cases, ∆ or π might contain inferences of the same type as (f
representative of) I with an identical or greater complexity2;

urgent in the canonical case, can thus be referred in the full sense only to the acts per-
formed in the deductive process. The general setup is now, in a sense, less problematic –
while still remaining problematic – since, although the act accomplished might not recog-
nizably be such as to produce evidence, we are in possession of the result of this act. The
distinction between objects and acts makes it possible to distinguish between what the
agent has and what the agent does, and the agent him/herself would occupy mental states
reified by always canonical objects that the theory treats as evidence. A similar strategy
does not seem possible in the case of valid arguments; here, the fact that justifications
are defined on argument structures and give argument structures as output, implies that
the reduction - what de facto forces or justifies - is external to the construction of the ar-
gument, and therefore to the individual inferential steps which this construction amounts
to. Nonetheless, one might argue, when we are in possession of a valid non-canonical
argument, we are factually in possession of a method to obtain a valid canonical argument
– in other terms, a valid non-canonical argument denotes a valid canonical argument (see,
for example, Tranchini 2014b). Then, when he/she is in possession of a non-canonical
valid argument, the inferential agent occupies a mental state reified by an object that is
the result of the method which the valid non-canonical argument amounts to, namely its
denotation. However, this objection is problematic; an argument is a linguistic structure,
and as such it is already in itself an object. If making a valid non-introductory infer-
ence is reductionistically understood as the mere passing from premises to conclusion, by
applying the inference the agent comes to occupy a mental state which will be, as an
object, the correspondent valid non-canonical argument, and not the result of the method
which it amounts to, or its denotation. Otherwise, we need more strongly – and against
the hypotheses of the issue we are here carrying out - conceive the performing of a valid
inference in a non-introductory form as the application of the related justification. Even
assuming the plausibility of such a move – which is doubtful, since justifications are defined
on argument structures and give argument structures as output – however it is clear that
the resulting framework is de facto identical to that of proofs; to make an inference means
to apply a certain constructive procedure, and it also becomes necessary to distinguish
between objects always canonical that the theory treats as evidence – the valid canonical
arguments – and the acts that produce such objects – the valid non-canonical arguments.

2In a reductionist view of inferences as mere passages, the proofs-as-chains problem
seems to block the way even to an explanation that sets validity of inferences in terms of
existence of valid arguments or proofs from premises to conclusion and that attributes to c)
the form c2). In fact, the identification of the validity of (f representative of) I either can
take place by performing I (as a construction of the functional given by the constructive
procedure f which represents I applied to appropriate values), or can be external to
such performance. In the first case, we obtain a picture similar to that suggested for
proofs in Section 2.5.3.3 – and, in a purely hypothetical way, for the valid arguments

147



Validity as independent from inferences if ∆ is a non-canonical argu-
ment or π a categorical or non-canonical proof (depending on the preferred
terminology), this may not depend at all on (f representative of) I, but sim-
ply on the justification associated with I (or, in the other case, on the way f
is defined). However, ∆ and π can have an epistemic weight only by virtue
of the fact that they reduce to what the theory treats as evidence – a valid
canonical argument or a canonical proof, respectively. In this regard, it is
the process of reducing ∆ (that involves the reduction associated with I) or
the computation of π (which involves an application of the defining equation
of f) that proves that ∆ and π reduce in the manner described. Therefore,
strictly speaking, it is not the fulfillment as such of I (as a construction of the
functional given by the constructive procedure f which represents I applied
to appropriate values) to give the constraint or the justification required.

4.1.3 Prawitz’s notion of ground

At the beginning of the present investigation, and in the discussion so far con-
ducted, we have noted how the basic issue of the theory of grounds connects
to that on the nature and role of proofs. The latter are composed of de-
ductively valid inferences, with which they share the property of compelling
epistemically to accept the conclusion when the underlying assumptions are
accepted. In fact, being justified in judging a proposition as true, or in as-
serting a sentence, is usually led back to the possession of a proof for that
proposition or for that sentence.

of note 1 above: inferences cannot be simple transitions from premises to conclusion,
since they consist rather in the computation of constructive procedures of a certain type;
the objects of the theory are always canonical, and the distinction between canonical
and non-canonical cases concerns the acts by which these objects are obtained. In the
second case, what the agent sees by performing I (as construction of the function given
by the constructive procedure f which represents I applied to appropriate values) is that,
whenever there are valid closed arguments (possibly not canonical) or proofs (possibly
non-canonical or categorical, depending on the terminology we prefer) for the premises,
through (f representative of) I we get a valid (possibly non-canonical) argument or a proof
(possibly categorical or non-canonical, depending on the terminology we prefer) for the
conclusion; which means that the agent recognizes that ∆ or π reduce to a valid canonical
argument ∆∗ or to a canonical proof π∗ (possibly identical to the first one). In order that
this is sufficient for the agent to be forced or justified towards the conclusion, however, we
must be able to look at ∆ or π as a chain of inferences that satisfy – what we aim to prove
for (f representative of) I – the property required by the "fundamental task". However,
as soon as ∆∗ or π∗ end by introducing →, the corresponding immediate subargument
or substructure could, on account of the distinction between canonical and non-canonical
cases, contain inferences of the same type as (f representative of) I with an identical or
greater complexity.
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The "fundamental task" requires a definition of the notion of deductively
valid inference that depends on that of evidence. In this perspective, the fact
that proofs are intended as what we have when we are epistemically com-
pelled or justified in judging or in asserting, could lead to define evidence
in terms of valid arguments and proofs of proof-theoretic semantics. At the
end of Chapter 2, however, we have seen how this way is not practicable; the
problems met by proof-theoretic semantics reveal the need for a definition of
the notion of deductively valid inference, and therefore of evidence, indepen-
dent of the notions of valid argument and proof, in such a way that, rather,
the latter are definable in terms of the former. This is also consistent with
the usual way in which proof themselves are characterized; by defining deduc-
tively valid inferences in terms of valid arguments and proofs, proof-theoretic
semantics reverses the Cartesian idea of proofs as chains.

However, it is precisely the close link that proofs have both with evi-
dence, and with deductively valid inferences, to make the relation we are
talking about problematic. The levelling of the notion of evidence on that of
proof may not be after all wrong; what we have when we are epistemically
successful should perhaps be distinguished from the activity through which
this success is achieved. According to this line of thinking, there are two dif-
ferent notions of proof, or at least two different points of view, summarized
in the distinction, which, as we have already pointed out, was introduced
by Martin-Löf (Martin-Löf 1984) and developed by Sundholm (Sundholm
1998, but see also Sundholm 1983, 1993), between proof-objects and proof-
acts. The two perspectives are interwoven: through the deductively valid
inferences of which they consist, proof-acts allow to obtain proof-objects.
But then, although it has to be independent, the notion of evidence cannot
be totally detached from that of proof and therefore, again, from that of
deductively inference.

The two knots highlighted here – the independence of the notions of
deductively valid inference and of evidence from that of proof, and the shared
articulation of these three notions - offer as many, interconnected, points of
access to a characterization of the notion of ground.

4.1.3.1 Evidence states and primitive operations

Although the term "ground" often occurs in the writings of Prawitz dating
back to the period of proof-theoretic semantics, the notion associated with
it receives, in the theory of grounds, a radically different declination, as well
as a more specific scope:

in some previous works [...] I have identified a ground for a judge-
ment with a proof of the judgement, or I have spoken of grounds
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for sentences and have taken them to be valid arguments. I prefer
not to use that terminology now, because I want to take proofs
to be built up by inferences, and I do not want to say that an
inference constitutes a ground for its conclusion - the question is
instead how an inference can deliver a ground for the conclusion.
(Prawitz 2009, 191 - 192).

In this new meaning, the concept of ground appears for the first time in the
2006 article Validity of inferences – published in 2013:

To have a ground for a sentence α, as I use the term, will al-
ways mean to be justified in holding α true and to know that α.
(Prawitz 2013, 175)

I here use the term ground for a sentence to denote what a person
needs to be in possession of in order to be justified in holding the
sentence true. (Prawitz 2013, 193 - 194)

However clear, this characterization is rather lapidarian. It keeps at least
two fundamental questions open: what kind of objects are grounds, and
what does it mean to possess them? Well, a first investigation can be found
in the immediately following article, Inference and knowledge, where Prawitz
points out significantly how rational judgments and sincere assertions must
be understood

to be made on good grounds. It is not that an assertion is usually
accompanied by the statement of a ground for it; in other words,
the speaker often keep her ground for herself. But if the assertion
is challenged, the speaker is expected to be able to state a ground
for it. To have a ground is thus to be in a state of mind that can
manifest itself verbally. (Prawitz 2009, 190 - 191)

The content of the above quoted passage contains two very important pieces
of information. First, to possess grounds means occupying a mental state
in which the subject has justification for judgments or assertions; secondly,
of the available grounds there is often no trace in the linguistic practice,
with which the acquisition is associated - although possession could be made
explicit. Obviously, these are strictly connected circumstances; for the sake
of a greater clarity, however, we will deal with them separately. The reason
for the division is that, in our opinion, an analysis of the first aspect will
allow to point out suggestions related to the nature of grounds, and of their
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possession, as well as in this sense some problematic knots; the latter will
then be further clarified through the discussion of the second point.

The idea that the possession of grounds can be expressed in terms of
mental states of justification is again found in The epistemic significance of
valid inference, but it is in Explaining deductive inference that the setting
is offered and investigated in detail, so as to make it clear, and allow us to
set out its main implications. In fact - resuming anyway from the already
cited The epistemic significance of valid inference - Prawitz introduces here
the discussion of the concept of ground, and consequently the theory that he
articulates around it, with the following words:

one finds something to be evident by performing a mental act
[...]. After having made such an act, one is in an epistemic state,
a state of mind, where the truth of a certain sentence is evident,
or as I have usually put it, one is in possession of evidence for a
certain assertion. (Prawitz 2015, 88)

This last step highlights an aspect of fundamental importance. It introduces
a link between what, according to the perspective in question, one is in pos-
session when one is in a mental state of justification, and who is in this state:
the former can be obtained by the latter by performing some kind of opera-
tions. It then becomes possible to articulate the analysis, both in the sense
of investigating the nature of the grounds through those operations of which
they are the outcome and, in the other direction, to show more precisely in
what sense the notion of ground should be linked to the states in which we
have evidence for judgments or assertions:

rather than trying to analyse phenomenologically the states of
mind where we experience evidence - let us call them evidence
states - we have to say what evidence states are possible and what
operations are possible for transforming one evidence state to
another. [...] To state principles like this, it is convenient to think
of evidence states as states where the subject is in possession of
certain objects. I shall call these objects grounds [...]. I am so to
say reifying evidence and am replacing evidence states with states
where the subject is in possession of grounds. (Prawitz 2015, 88
- 89)

As one can easily guess, there is a parallelism between the operations the
fulfillment of which allows to have grounds and the inferences which Prawitz
intends to deal with: by virtue of the "fundamental task" frequently referred
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to, in fact, they too are, or at least they should in the end be such that,
by fulfilling them, one then finds oneself in a state of evidence. Moreover,
this similarity will be one of the key points of the theory of grounds; with-
out anticipating what we will say more broadly thereafter, the observation
nevertheless allows us to touch a critical point. In the same way to what
is illustrated in Section 2.5.2 with respect to the notions of valid argument
and proof, also in Explaining deductive inference - as indeed in almost all
the other articles on the theory of grounds - Prawitz draws attention to the
possible circularity resulting from the interplay of two circumstances:

for logically compound sentences there seems to be no alternative
to saying that evidence comes from inference. On the other hand,
since not any inference gives evidence, one cannot account for ev-
idence by referring to inferences without saying which inferences
one has in mind. (Prawitz 2015, 77)

Again as in Section 2.5.2, the solution to this impasse comes from the adop-
tion of an approach that recalls the Wittgensteinian motto (Wittgenstein
1953) of meaning as use in the anti-holistic articulation of Dummett’s inter-
pretation (Dummett 1978c, 1993b):

it is in the nature of the meaning of some types of sentences
that evidence for them can only be explained in terms of certain
kinds of inferences. The legitimacy of these inferences is then a
datum that has to be accepted as somehow constitutive for the
meaning of these sentences. [...] But not all cases of accepted
inferences can reasonably be seen as constitutive of the meaning
of the involved sentences [...]. For them, it remains to explain
why they are legitimate. (Prawitz 2015, 77 - 78)

Now, these words refer exclusively to inferences, although, by virtue of the
link with the operations involved in the concept of ground, we can expect
that the idea that meaning should be expressed in terms of certain types of
inferences is transformed, or can be transformed, into the idea according to
which meaning should be expressed in terms of certain types of operations
and, therefore, of grounds. In fact, the reference to the problem of meaning
is often explicit, and immediately involves the introduction of operations for
the production of grounds:

we may want to say that anyone who knows the meaning of the
sentence t = t has access to a state in which she has evidence
for asserting it. Similarly, we may want to say that anyone who
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knows the meaning of conjunction and is in a state in which she
has evidence for asserting a sentence α as well as for asserting a
sentence β, can put herself in a state in which she has evidence for
asserting α∧β. [...] We can make the latter even more articulate
by saying that there is an operation ∧I that applied to grounds
g1 and g2 for asserting α and β, respectively, produces a ground
∧I(g1, g2) for asserting α ∧ β. (Prawitz 2015, 88 - 89)

Aiming to explain the epistemic power of deductively valid inferences, and
indeed precisely for the purpose of doing so, the theory of grounds therefore
provides also a characterization of the meaning of propositions or sentences
in terms of what counts as ground for them, calling into question primitive
and, as such, meaning-constitutive operations. Although Prawitz often pro-
posed this idea, his clearest and most direct formulation can be found in The
epistemic significance of valid inference, where we are required a

meaning theory that explains the meaning of our sentences di-
rectly in terms of what constitutes grounds for the corresponding
assertions [...]. To have a name for how the grounds for asserting
α ∧ β is formed, let us call it conjunction grounding, for short
∧I, a primitive operation that we introduce in this connection.
[...] a ground for the assertion of a numerical identity would be
obtained by making a certain calculation, and outside of mathe-
matics, a ground for asserting an observation sentence would be
got by making an adequate observation. (Prawitz 2012a, 893)

This determination of meaning obviously has a broad combination of con-
sequences; as rightly pointed out by Cozzo, in fact, an operation as ∧I is
also

the core of a semantic and ontological explanation. It serves to
explain the content of the judgement. Its content is that a propo-
sition α∧β is true. So to explain the content of the judgement is
to explain what that proposition is. This is done by Prawitz in
terms of the operation of conjunction-grounding: it is "a propo-
sition such that a ground for judging it to be true is formed by
bringing together two grounds for affirming the two propositions
α and β". (Cozzo 2015, 110; la citazione interna è da Prawitz
2009, 194)

It must however be pointed out that, in relation to empirical, or more gen-
erally atomic, propositions or sentences, Prawitz does not go much beyond
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what we have already mentioned here - a ground for an empirical proposi-
tion or sentence is obtained by making an appropriate observation, while a
ground for a numerical identity is, for example, obtained by performing a
certain computation. This, one could argue, is testimony of the fact that the
interest of the Swedish logician is primarily aimed at a determination of the
notion of ground, and therefore, as we shall see, of inferential validity, for
first-order languages, so that the determination of the meaning of the logical
constants, after all one of the classic problems of contemporary mathematical
logic and philosophy of logic, becomes a priority. However, we cannot fail to
emphasize how the notion of ground on the empirical, and more generally
atomic, case seems fraught with conceptual difficulties. We will not enter
such a complex issue - the interested reader may refer to the bibliography
dedicated to it (see, for example, Brîncuş 2015 and Usberti 2015).

Since the first articles dedicated to the theory of grounds – Validity
of inferences (Prawitz 2013), Inference and knowledge (Prawitz 2009) and
The epistemic significance of valid inference (Prawitz 2012a) – the notion
of ground for propositions or sentences of different logical form is fixed by
inductive clauses in which the transition from grounds from propositions or
sentences of lower logical complexity to grounds for propositions or sentences
of greater logical complexity occurs by virtue of primitive operations, which
are thus constitutive of the meaning itself. However, in Explaining deductive
inference this setting is still present, although it is significantly enriched by
some important specifications:

the grounds will be seen as abstract entities. As such we get to
know them via descriptions. To form a ground for an assertion
is thus to form a term that denotes the ground, and it is in this
way that one comes in possession of the ground. Simultaneously
with saying what grounds and operations on grounds there are,
I shall therefore indicate a language in which the grounds can
be denoted. [...] the grounds that come out of this enterprise
will be like intuitionistic constructions and the language in which
they will be described will be like the extended lambda calculus
[che noi descriveremo più sotto]. The type structure will however
be made more fine-grained by using sentences as types following
Howard (1980), so that the question whether a term denotes a
ground for an assertion of a sentence α coincides with the question
of the type of the term. (Prawitz 2015, 89)

First of all, Prawitz takes up the basic idea of the formulas-as-types concep-
tion, referred to in Section 3.2.2: grounds are typed abstract objects or, in
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other words, a ground for ` α is an abstract object of type α. In addition,
Prawitz now suggests the idea - apparently absent in the initial articles - to
develop a formal language of grounds, of which the terms, also typed, de-
note grounds. The general lines along which such formal language is to be
developed is determined by assuming in the first place to dispose of

a first order language and with that individual terms and what
counts as grounds for asserting atomic sentences. (Prawitz 2015,
90)

This first-order language, which we will call background language, is what the
language of grounds, as it were, speaks of. Therefore, in the language of gro-
unds we will have, in addition, of course, to the individual variables x, y, ...,
ground-variables ξα, ξβ, ... intended to range over grounds for α, β, and prim-
itive operations related to each of the logical constants of the background
language, indicated respectively with ∧I, that we have already introduced
above, ∨I1, ∨I2, → I, ∀I, ∃I. Among the atomic formulas of the back-
ground language, Prawitz usually adds an atomic constant for the absurd ⊥,
and considers ¬α as an abbreviation of α→ ⊥.

If the typing of ground-variables is obvious - a ground-variable ξα obvi-
ously having type α - and, we would add, almost explicated by the notation,
Prawitz is keen to specify that also

the ground constants [...] are given with their types. The primi-
tive operations are also to be understood as coming with types,
although this may be left implicit. This is harmless, except for
∨I1, ∨I2 and ∃I (Prawitz 2015, 90)

in which case, as will be easily understood in a moment, it becomes essen-
tial to know what is the result produced by the operation when applied to
terms of the appropriate type. The typing of complex terms will therefore
be determined in the following way:

(∧τ ) if T has type α and U has type β, ∧I(T, U) has type α ∧ β

(∨τ ) if T has type αi, ∨Ii[αi B α1 ∨ α2](T ) has type α1 ∨ α2 (i = 1, 2)

(→τ ) if T has type β, → Iξα(T ) has type α→ β

(∀τ ) if T has type α, ∀Ix(T ) has type ∀xα

(∃τ ) if T has type α(t/x), ∃I[α(t/x)B ∃xα(x)](T ) has type ∃xα(x)
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where it should be noted that, if in (∨τ ) the type of ∨Ii were not specified,
we could not know the type of the term that ∨Ii produces, since we could
not know the second element of the corresponding disjunction; similarly, if
in (∃τ ) the type of ∃I were not specified, we could not know the type of
the term that ∃I produces, since we could not know either what term of
the starting formula is existentially quantified, or which individual variable
is actually used for the existential quantification. Moreover, it should be
noted that the primitive operation → I is applied by having it followed by
a ground-variable, which indicates that this operation binds that ground-
variable in the immediate subterm - and also allows the determination of
the resulting type; in the same way, the primitive operation ∀I is applied
by having it followed by an individual variable, which indicates that this
operation binds that individual variable in the immediate subterm - and also
allows the determination of the resulting type. In the latter case, we have
a binding similar to the one in force in the rule of introduction of universal
quantification in a Gentzen system; x must not occur free in δ for ξδ free in
the immediate subterm.

The determination of the typing provides a useful first indication of the
terms that, within the formal language under examination, will denote the
grounds. However, we can do more, namely

we may also say directly what grounds there are for different
sentence forms. (Prawitz 2015, 91)

The indication of the grounds for propositions or sentences of different logi-
cal form is entrusted, as mentioned above, to inductive clauses that involve
primitive operations ∧I, ∨I1, ∨I2,→ I, ∀I, ∃I. Established that the individ-
ual ground constants available in the language of grounds denote grounds for
the atomic formulas that constitute their type - which, as discussed below,
is equivalent to relativizing on atomic bases the notion of denotation, and
consequently, as we will see, the notion of inferential validity - and that there
are no grounds for ⊥, in the case of ∧, ∨ and ∃, given α, β, ∃xα(x) closed,
and t closed, the clauses will be

• if T denotes a ground for ` α and U denotes a ground for ` β, ∧I(T, U)
denotes a ground for ` α ∧ β

• if T denotes a ground for ` αi, ∨Ii[αi B α1 ∨ α2](T ) denotes a ground
for ` α1 ∨ α2 (i = 1, 2)

• if T denotes a ground for ` α(t/x), ∃I[α(t/x)B ∃xα(x)](T ) denotes a
ground for ` ∃xα(x)
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Prawitz introduces this first set of clauses separately from those for → and
∀, and this because, in the latter case, it is necessary to generalize the dis-
cussion on the operations on grounds, going beyond the primitive operations
introduced so far.

4.1.3.2 Operations on grounds and open languages

When, in Section 2.5.2.2, we presented the BHK semantics for the first-
order logical constants, we also observed how the clauses related to→ and ∀
require a primitive notion of constructive procedure; a BHK proof of α→ β
is a constructive procedure that transforms BHK proofs of α in BHK proofs
of β, while a BHK proof of ∀xα(x) is a constructive procedure that, for each
individual k, produces a BHK proof of α(k). In the theory of grounds the
discourse is very similar: a ground for ` α → β will involve a constructive
procedure that turns grounds for ` α into grounds for ` β, whereas a ground
for ` ∀xα(x) will involve a constructive procedure which, given an individual
k, produces a ground for ` α(k). However, how can we understand now the
constructive procedures which the theory of grounds refers to?

The only operations which we have dealt with so far are primitive op-
erations for the specification of meaning. When applied to grounds of the
appropriate type, primitive operations produce, by definition, grounds of an
appropriate type. In this regard, however, Prawitz observes that

this simple way of getting grounds [...] does not go very far, of
course, and in general, one has to define new operations to this
end. (Prawitz 2015, 92)

The content of the above quote can be illustrated with a simple example.
Given grounds g1 for ` α1 and g2 for ` α2, we can apply to them the primitive
operation ∧I obtaining, by virtue of the clause that fixes what counts as
ground for a conjunction, a ground ∧I(g1, g2) for ` α1 ∧ α2. Conversely,
given a ground ∧I(g1, g2) for ` α1 ∧ α2, with g1 ground for α1 and, more
specifically, g2 ground for ` α2, it seems reasonable to affirm that we can
apply to ∧I(g1, g2) a "projection" operation, which selects g2 and thereby
returns a ground for ` α2. This "projection" is undoubtedly constructive, but
it is equally clear that it cannot be any of the primitive operations; primitive
operations, in fact, only authorize passages from grounds for propositions or
sentences of lower logical complexity to grounds for propositions or sentences
of greater logical complexity.

However, given the possibility of contemplating non-primitive operations,
it is obvious that the production of grounds by means of them will have to
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agree with the way the notion of ground is determined. More in detail, a
non-primitive operation must be fixed by equations that establish its be-
havior with regard to the already acquired primitive operations - and there-
fore, not unlike it happened in proof-theoretic semantics, in compliance with
the principle of harmony inspired by the inversion principle (Prawitz 2006).
Therefore, with this aim in view, Prawitz states that

for any closed sentence α1∧α2 we can define two operations, which
I call ∧E,1 and ∧E,2, both of which are to have as domain grounds
for α1 ∧ α2. The intention is that the operation ∧E,i is always to
produce grounds for αi (i = 1, 2) when applied to grounds for
α1 ∧ α2 [...]. This is attained by letting the two operations be
defined by the equations

∧E,1(∧I(g1, g2)) = g1 and ∧E,2(∧I(g1, g2)) = g2.

The fact the the operation ∧E,i produces a ground for αi when
applied to a ground g for α1 ∧ α2 [...] depends on what ∧ means,
and has to be established by an argument. (Prawitz 2015, 92)

The argument to which Prawitz refers is rather easy - our reconstruction will
temporarily disregard certain identity conditions on the primitive operations:
given a ground g for ` α1 ∧ α2, by virtue of the clause fixing what counts as
ground for a conjunction, g must be of the form ∧I(g1, g2), with gi ground
for ` αi; by virtue of the equations that define ∧E,i i, we will then have
∧E,i(g) = ∧E,i(∧I(g1, g2)) = gi; therefore, for every g ground for ` α1 ∧ α2,
∧E,i(g) produces a ground for ` αi (i = 1, 2). Other examples of non-
primitive operations, provided by Prawitz himself, are: a binary operation
→ E for the elimination of implication that produces grounds for ` β when
applied to grounds for ` α→ β and for ` α, fixed by the equation

→ E(→ Iξα(T (ξα)), U) = T (U);

a binary operation Barb for the syllogism in Barbara, that produces grounds
for ` ∀x(P (x) → R(x)) when applied to grounds for ` ∀x(P (x) → Q(x))
and for ` ∀x(Q(x)→ R(x)), fixed by the equation

Barb(∀Ix(T ),∀Ix(U)) = ∀Ix(→ IξP (x)(→ E(U,→ E(T, ξP (x)))));

a binary operation Mtp for disjunctive syllogism, that produces grounds for
` β when applied to grounds for ` α∨β and for ` ¬α, fixed by the equation
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Mtp(∨I2(g1), g2) = g1.

Obviously, in order to give a precise definition of the notion of grounds for
implications or universal quantifications, it is necessary to pass from exam-
ples of specific operations (be they primitive or non-primitive) to a discussion
of a more general nature. In this perspective, a first significant observa-
tion concerns the distinction between grounds, understood as reifications of
mental states in which we are in possession of a conclusive justification for
categorical judgments or assertions, and operations on grounds; the latter,
producing grounds of the appropriate type when applied to grounds of ap-
propriate type or, as we will see below, to individuals, can be understood
as grounds for hypothetical-open judgments or assertions. It then becomes
important to ask oneself how an operation can be identified, and here we can
with Prawitz affirm that

an operation is given by stating the types of its domain and range
and, for each argument in the domain, the value it produces for
that argument. (Prawitz 2015, 92)

Thus, for example, the primitive operation ∧I has for domain grounds for
` α and grounds for ` β and as a codomain grounds for ` α ∧ β, which can
be also expressed by saying that ∧I has operational type

α, β B α ∧ β.

Given a ground g1 for ` α and a ground g2 for ` β, ∧I(g1, g2) is a ground for
` α ∧ β; of course, being a primitive operation, the production of grounds
takes place, as it were, automatically, so that there is no need – nor would
it be possible – to further specify the behavior of such operation. The non-
primitive operation ∧E,i will have operational type

α1 ∧ α2 B αi

(i = 1, 2). This is guaranteed by the defining equations for ∧E,i illustrated
above. Again by virtue of the corresponding defining equations, we can say
that the non-primitive operations → E, Barb and Mtp have, respectively,
operational types

α→ β, αB β

∀x(P (x)→ Q(x)),∀x(Q(x)→ R(x))B ∀x(P (x)→ R(x))

α ∨ β,¬αB β
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As we can easily see, the operational types associated with operations
on grounds and that specify their domain and codomain are the same ones
that, in the language of grounds, accompany - although generally left implicit
by Prawitz - the corresponding operational symbols. Thus, the (primitive)
operation ∨Ii will have operational type

αi B α1 ∨ α2

and such will be the type of the operational symbol ∨Ii (i = 1, 2); in the
same way, the (primitive) operation ∃I will have operational type

α(t/x)B ∃xα(x)

and such will be the type of the operational symbol ∃I. We will resume later
on in more detail the discussion on operational types; what we have so far
said is sufficient to understand the rest of this section.

The specification of operations on grounds of different nature is by Prawitz
conducted by degrees. First of all, the Swedish logician says that an operation
is of operational type

α1, ..., αn B β, where α1, ..., αn, β are closed sentences, if it is an
n-ary effective operation that is defined whenever its ith argu-
ment place is filled with a ground of type αi and then always
produces a ground of type β. Such an operation is a ground for
the hypothetical assertion α1, ..., αn ` β. (Prawitz 2015, 92)

The limitation to closed formulas in the passage above-mentioned is only a
workaround aimed at facilitating the understanding, so much so that shortly
afterwards Prawitz states that a ground for α(x1, ..., xm)

is an effective m-ary operation defined for individual terms that
always produces a ground for asserting α(t1/x1, ..., tm/xm) when
applied to t1, ..., tm. (Prawitz 2015, 92)

As an obvious generalization, we will have that, if an operational type

α1, ..., αn B β

involves both open and closed formulas, an operation of this operational type
will be

an n-ary effective operation from operations to operations [...]. It
is again a ground for α1, ..., αn ` β. (Prawitz 2015, 92)
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The last and most complex case discussed by Prawitz is that of an operation
of operational type

(Γ1 B α1, ...,Γn B αn)B (∆B β)

where Γi,∆ are sets of (open or closed) formulas, with ∆ ⊆
⋃
i≤n Γi, and

that will be

an n-ary effective operation from operations of the type indicated
before the main arrow to operations of the type indicated after
the main arrow. (Prawitz 2015, 93)

As a whole, therefore, the theory of grounds uses, like BHK semantics, a
primitive notion of constructive procedure; what Prawitz significantly adds,
however, is a specification of the different operational types to which these
procedures are traceable, so as to identify some of them, different, and of
different complexity. However, it is important to remember how, unlike what
happens in Explaining deductive inference (Prawitz 2015), in Inference and
knowledge (Prawitz 2009) and in The epistemic signifance of valid inference
(Prawitz 2012a) Prawitz does not refer to constructive procedures but, in a
more Fregean sense (Frege 1891, 2001, but see also Kenny 2003, Tranchini
2018), to unsaturated grounds - and, at the same time, saturated grounds -
for which it is intended a substitutional approach of ground-variables with
saturated grounds, and of individual variables with closed terms:

an unsaturated ground is like a function and is given with a num-
ber of open argument places that have to be filled in or saturated
by closed grounds so as to become a closed ground. Something is
a ground for an assertion β under the assumptions α1, ..., αn if and
only if it is an n-ary unsaturated ground that becomes a closed
ground for β when saturated by closed grounds for α1, ..., αn. [...]
We must [...] consider unsaturated grounds that are unsaturated
not only with respect to grounds but also with respect to indi-
viduals that can appear as arguments in propositional functions.
(Prawitz 2009, 193)

a ground for an assertion β under assumptions α1, ..., αn is to
be an unsaturated ground which when saturated by grounds for
the assertions α1, ..., αn becomes a ground for the assertion β.
For terms that stand for grounds there is a corresponding dis-
tinction between closed and open terms representing saturated
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and unsaturated grounds [...]. A ground for [...] an open as-
sertion, say α(x1, ..., xn), is again an unsaturated ground, say
f(x1, ..., xn), such that for individuals a1, ..., an in the domain in
question, f(a1, ..., an) is a ground for the assertion α(t1, ..., tn),
where ti denotes ai. (Prawitz 2012a, 893 - 894)

Once clarified the nature of the operations involved in the theory of gro-
unds, it becomes particularly easy to provide the clauses that fix what counts
as ground for formulas having → and ∀ as main logical constant. Given α, β
and ∀xα(x) closed,

• if T denotes an operation on grounds of operational type α B β, or
equivalently a ground for α ` β, → Iξα(T ) denotes a ground for `
α→ β

• if T denotes an operation on grounds of operational type α(x), or equiv-
alently a ground for ` α(x), ∀Ix(T ) denotes a ground for ` ∀xα(x)

As we can easily see, the clauses for→ and ∀ place no limitation to the oper-
ations that can be denoted by T in→ Iξα(T ) or ∀Ix(T ); such operations can
be primitive and non-primitive - or, more frequently, result from the com-
position of primitive and non-primitive operations - as well as responding
to operational types of whatever complexity. This leads, quite naturally, to
two questions. Why should not we limit ourselves only to primitive opera-
tions? And also, and regardless of how the previous question is answered, is
it possible that the class of operations which the theory of grounds refers to
is captured by a closed language of grounds? (Where by closed we mean a
language equipped with a finite, or finitely axiomatizable, number of opera-
tional symbols for operations from which all the others can be generated, or,
better, in terms of which all the others can be defined).

As regards the first question, the need to take into account, together with
the primitive operations, also the non-primitive operations is noticeable, we
could say, de facto and de iure. Anticipating what we will say very soon,
we understand the primitive operations as those that are applied in inferen-
tial passages in introductory form, and the non-primitive operations as those
that are applied in non-introductory inferential passages. Now, it is a com-
monly experienced fact that inferences in non-introductory form are often
performed in deductive practice. If we limited ourselves only to primitive
operations, therefore, we could not account for this aspect of deductive prac-
tice as it is. On the other hand, a theory that wants to be able to answer
the question about the power of epistemic compulsion of deductively valid
inferences, cannot omit to distinguish, in the words of Dummett, between
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the conditions for the utterance and the consequences of it; (Dum-
mett 1975, 11)

both these poles illuminate different, essential and yet complementary roles
that judgments and assertions play in every correct reasoning. However, the
primitive operations, when applied in inferential passages in introductory
form, capture only the conditions under which judgments and assertions can
be reasonably accomplished, whereas, instead, they are the non-primitive
ones, when applied in non-introductory inferential passages, to capture the
correct consequences of judgments and assertions. If we limited ourselves
only to primitive operations, therefore, we could not account for this aspect
of deductive practice as it has to be.

As for the second question, it is Prawitz himself who suggests a negative
answer, when he says that

the language of grounds is to be understood as open in the sense
that symbols for defined operations of a specific type can always
be added (Prawitz 2015, 92)

– however, it should be noted that, in the passage under examination, the
Swedish logician takes into account only the introduction of new non-primitive
operations, defined in the terms of the primitive ones; but nothing prevents,
and indeed, as we will soon understand, Prawitz himself seems to suggest
the possibility of adding new primitive operations related to new logical
constants. The fact that a formal language of grounds should be under-
stood as open in the specified sense, obviously depends on what we have just
said regarding the need to take into account operations both primitive and
non-primitive; as a matter of principle, the class of valid inferences in non-
introductory form - which, as we have said above, and anticipating what we
will say shortly, is to be understood as that where non-primitive operations
are applied - can be generated by no finitely axiomatizable formal system
(for logically valid inferences instead it is different, because, if we accept a
reformulation in the theory of grounds of Prawitz’s conjecture, which we will
discuss in Chapter 7, they may be derivable in first-order intuitionistic logic).
Next to this, however, there is another reason by virtue of which a formal
language of grounds cannot but be open - in this case, to the addition of
primitive operations; according to Gödel’s incompleteness theorems, in fact,
no closed language of grounds, at least as powerful as a formal system for
intuititionistic first-order arithmetic, can express, through its terms, all the
possible grounds on the background reference language. Although inserted in
a different context, which we will deal with below, this observation is carried
out by Prawitz:
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we know because of Gödel’s incompleteness result that already
for first order arithmetical assertions there is no closed language
of grounds in which all grounds for them can be defined; for
any such intuitively acceptable closed language of grounds, we
can find an assertion and a ground for it that we find intuitively
acceptable but that cannot be expressed within that language.
(Prawitz 2015, 98)

With these observations, we conclude our discussion of the notion of
ground as it appears in Prawitz’s writings. To them, we will add only a
discussion about what it means to be in possession of grounds, a point that
will be of crucial importance in some of the issues we will face later.

4.1.3.3 Possession of grounds

Grounds are abstract entities. Since they are what we have when we are in a
mental state of justification for judgments or assertions, it seems furthermore
reasonable to expect that they can have an epistemic character. Last but
not least, as a result of the fulfillment of certain acts, they can be constructed
by appropriate agents. Hence, on the basis on this information, the question
we now want to ask ourselves is: in what does the possession of a ground
consist?

Following an interpretative line outlined by Cozzo (Cozzo 2015), and in
part also suggested by Usberti (Usberti 2015), grounds are nothing more than
objects that the philosopher introduces to describe, reifying them, the mental
states of justification; expressing oneself in terms of being in possession of
grounds is only a formally convenient way of representing the occupation of
the mental states of justification. In particular, Cozzo draws our attention
to the need to distinguish

the three levels of the picture outlined by Prawitz: a mental level,
a linguistic level and a mathematical level. [...] to the mental level
belong acts of judgements and other mental epistemic acts like
observation, calculation, reasoning. [...] The genuine active ex-
perience of making an inference also belongs to this level: it is
the conscious act of moving mentally from judgements-premises
to a judgement-conclusion in such a way that the agent cannot
help but recognize that this movement leads the mind from cor-
rect premises to a correct conclusion. [...] to the linguistic level
belong acts of assertions, and linguistic practices of argumenta-
tion in support of assertions [...] to the mathematical level belong
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mathematical representations of the mental level in terms of gro-
unds and operations on grounds. This is the level of abstract
entities. The logician resorts to abstract entities in order to con-
struct a theory that makes the mental phenomenon of deduction
intelligible. (Cozzo 2015, 108)

This point of view has the very immediate effect of clarifying what we already
have pointed out in Section 4.1.3.1: of the possession of grounds, through
which the acquisition of evidence is manifested, there is generally no clari-
fication in the linguistic practice. The agent keeps, according to Prawitz’s
words, the ground for him/herself, since the objects that the theory intro-
duces are something of which he/she is not necessarily aware. An evidence
of this would be, in a sense, the fact that

when an assertion is justified by way of an inference, it is com-
mon to indicate this by simply stating the inference [...] and the
premisses of the inferences are then often called the ground for
the assertion. This way of speaking may be acceptable in an ev-
eryday context, but it conceals the problem that we are dealing
with, which is probably one reason why the problem has been so
neglected. (Prawitz 2009, 191)

As further support, and referring to what was said in Section 4.1.2, we recall
that the simple announcing an inferential transition prevents the fulfillment
of the "fundamental task". To this end, Prawitz warns, it would not do
to simply indicate either the premises, or the fact that they are (possibly)
true, or the grounds that (possibly) justify the corresponding judgment or
assertion. About the insufficiency of the simple reference to the truth we
have already argued again in Section 4.1.2; for the rest, the Swedish logician
argues significantly that

the premisses are judgements or assertions affirming propositions,
and the fact that one has judged or asserted them as true cannot
constitute a ground for the conclusion, nor can the truth of the
propositions affirmed constitute such a ground. [...] It is rather
the fact, if it is a fact, that the agent has grounds for the premisses
that is relevant for her having a ground for the assertion made
in the conclusion. But the grounds for the premisses are grounds
for them, not for the conclusion. (Prawitz 2009, 191)

In conclusion, it seems fair to say that, according to Prawitz’s intention, to
speak of grounds and of the possession of grounds is not a
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realistic description of the mental act, but is suggested as a the-
oretical reconstruction of what goes on when we pass from one
evidence state to another. (Prawitz 2015, 89)

On the other hand, the Swedish logician often expresses himself in terms of
having constructed, and of being mentally in possession of something on the
basis of which to have justification. It would be precisely for this circumstance
that the possession of grounds may be made explicit - and, in addition, that
the grounds may be "named". For example:

to be in possession of a ground [...] means basically to have made
a certain construction in the mind of which the agent is aware,
and which she can manifest by naming the construction. (Prawitz
2009, 199)

Put it like that, it becomes possible, and in our opinion fruitfully, to connect
the notion of grounds, and in particular the notion of possession of grounds,
to the BHK tradition. To do this, we cannot fail to take into account a very
recent article, entitled The seeming interdependence between the concepts of
valid inference and proof, in which Prawitz asserts that

in the case of having a ground for the assertion of an arithmetical
identity because of having made the relevant calculation, one may
have recorded the steps of the calculation, and one has then a
ground for the assertion also in the concrete sense of a protocol
of the justifying act open for inspection. The process by which
one finds a construction g for a proposition α can be recorded too.
The resulting protocol can be seen as a description of not only
the process but also of the obtained object g. (Prawitz 2018b, 5
- 6)

The idea of possession is accompanied, here, by another important sugges-
tion. The system of acts through which a ground is acquired - namely, ac-
cording to what said in the previous section, the set of operations performed
having such ground as outcome - can be recorded; the resulting protocol can
be seen, not only as an encoding of that process, but also as a description
of the ground itself. Now, these observations are inserted by Prawitz in the
context of a discussion and a dialogue with the intuitionistic tradition, and,
in particular, as it appears in Heyting’s writings. As already anticipated in
Section 3.1, Heyting’s notion of proof is linked to his way of understanding
propositions and assertions. The former express the intention to find a con-
struction, the latter the realization of the intention expressed by the asserted
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proposition. In this framework, a proof of a proposition would consist in the
process of realization of the construction. Also in Section 3.1, we have ar-
gued that the use made by Heyting of the term "proof" fluctuates essentially
between construction and realization of this construction; in the article we
took in account, Prawitz says that

the term "construction" occurs frequently in Heyting’s writing,
and [...] one should distinguish between different senses of that
word, among them "process of construction" and "object ob-
tained as the result of a process of construction". Heyting uses
the term in at least both these two senses, but I think that it is
usually clear which one is intended. When he explains what a
proof is it seems clear that he has in mind a construction in the
sense of a process: to realize the intention expressed by a propo-
sition α is to perform a construction act, which may proceed in
steps [...] and which results in the construction of a mathematical
object, namely the construction intended by α (Prawitz 2018b,
4; la citazione interna è da Sundholm 1983, 164)

Therefore, The seeming interdependence between the concepts of valid in-
ference and proof - as indeed some other works of recent years (see, for
example, Prawitz 2012b, 2018a) - looks with renewed interest at the BHK
semantics; it suggests, more specifically, that the notion of ground is, in a
sense, inspired by it, or, more weakly, that the two approaches look rather
and relevantly similar, and that they should be connected to each other
in some way - as indeed already suggested by Tranchini (Tranchini 2014a).
Prawitz concentrates more directly on the possible circularity in an attempt
to define valid inferences and proofs, so as to capture their epistemic power
– something that we have already anticipated in the introduction to this
section:

a definition of proof in terms of valid inference requires that the
latter concept be explained in terms of evidence or related no-
tions such as ground, justification, or knowledge; since a proof
is understood in terms of such epistemic concepts, a valid infer-
ence must also be related to these concepts if it is to serve in an
explanation of what a proof is. [...] However, if we first explain
the concept of proof saying that a proof is a chain of valid infer-
ences, and then explain the validity of an inference by referring
among other things to proofs [...] we are moving in a plain circle.
(Prawitz 2018b, 2)
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Beyond the difficulties inherent in a definition of valid inferences in terms
of proofs - about which we have spoken at length in Section 2.5.3 - Prawitz
seems to believe that such an approach is already misleading in itself, on
account of the inversion of the natural cartesian idea of proofs as chains of
valid inferences:

there may be in principle two ways of breaking up the apparent
interdependency between the concepts of proof and valid infer-
ence, thereby making explanatory progess with respect to the
two concepts: either explaining the validity of inferences without
referring to proofs or explaining the concept of proof without re-
ferring to the validity of inferences. The second alternative is in
my view to put the natural conceptual order upside down. So the
first alternative seems to me preferable. (Prawitz 2018b, 2)

From this point of view, Heyting’s proposal would be of such importance as
to induce the Swedish logician to argue that

neither Heyting nor his intuitionistic successors explain the con-
cept of proof that I am discussing here but that his notion of
construction may be developed so that it gives us what we are
looking for, namely a concept of justification or ground not based
on the concept of proof. (Prawitz 2018b, 4)

There is clearly a distance between Heyting and Prawitz. For Heyt-
ing, both the notion of construction, and that of proof as realization of the
intended construction, are essentially non-inferential, which is in clear dis-
agreement with the objective Prawitz aims at with his theory of grounds.
Yet, this distance itself is revealed, after all, as a winning feature. In the
light of the perceived need for a notion of deductively valid inference that,
on the one hand, is fixed in terms of evidence and, on the other, allows to
define the notion of proof, as well as by virtue of the obvious circularity that
would result from the understanding of evidence in terms of proofs, Heyting’s
constructions offer an apt way of access to the notion of evidence:

his view does not lead to a general account of the concept of proof,
but it offers an explanation of what it is to justify the assertion
of a proposition without using the concept of proof. (Prawitz
2018b, 5)

Obviously, the underlying assumption is that the possession of a construction
à la Heyting corresponds to the possession of evidence for α, namely, to be

168



in a state of justification to judge the proposition α as true, or, equivalently,
to assert the sentence α; however, Prawitz himself explicitly affirms that it
is not at all unquestionable that it is like this. The analysis of this point,
that we will conduct further in the course of our discussion, will involve a
formulation of the recognizability problem already raised, in Section 2.5, for
valid arguments and proofs in the framework of proof-theoretic semantics.

The constructions about which Heyting speaks, later converged into the
clauses of BHK semantics, have been understood in various ways; most of the
time, however, as terms of a typed λ-calculus or, with slight modifications,
of Kreisel-Goodman theory of constructions or of Martin-Löf’s intuitionis-
tic type theory. On the other hand, the Curry-Howard isomorphism seems
to substantiate what Prawitz says on the protocols of demonstrative acts
that, in addition, denote the result of such acts. It goes without saying,
however, that the idea that the possession of grounds is equivalent to the
actual possession of a construction does not necessarily imply that what one
is in possession of is the term of a typed λ-calculus, of Kreisel-Goodman the-
ory of constructions, or of Martin-Löf’s intuitionistic type theory. The vast
majority of agents engaged in proof activities, including "professional" math-
ematicians, is not acquainted with these theoretical setups. Nevertheless, a
ground for a proposition or sentence α is an object that results from the
reification of an act through which we enter a state of evidence to judge the
proposition α true, or to assert the sentence α, an act that is also constitu-
tive of the meaning of α. Proof agents know the meaning of the propositions
and of the sentences used, and are aware of the acts performed in deductive
practice; as a consequence of that, they can make explicit the grounds as we
have understood them above, in a certain form and, possibly, within a more
or less detailed theoretical framework. This is what Prawitz says about his
way of writing the operation underlying the acquisition of grounds through
mathematical induction - indicated with Ind:

an ordinary mathematician would of course not formulate a ground
for the conclusion of an induction inference explicitly in the form
of Ind. But if she reflects on the inference, she may very well think
that she can form a ground for the conclusion from the grounds
for the premisses, namely by taking the ground for the induction
base and successively applying the ground for the induction step
as many times as needed. Ind simply represents such a mental
operation. (Prawitz 2012a, 897)

Reflecting on what has been done, the agent can then realize that he/she has
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accomplished certain operations, and possibly describe them.3

4.1.4 Inference acts and validity

As repeatedly pointed out in the course of this investigation, the fulfilling
of the "fundamental task" - set out in Section 1.3, and repeated in Section
4.1.2 – presupposes two steps: identification of an adequate relation between
agents and inferences and, obviously, an appropriate definition of the notion
of valid inference. Again in Section 4.1.2, we then remarked how Prawitz,
after having detected the insufficiency of different options, maintains that
the most appropriate relationship between an agent A and an inference I
is "A performs I", where it remains to be determined what is meant by
"performing an inference".

To perform an inference cannot simply mean announcing it, i.e., to es-
tablish its premises, to say "therefore" or other equivalent expressions, and
to state their conclusion. This reductionist view, according to which infer-
ences are mere transitions from judgments or assertions to other judgments
or other assertions, exposes itself to a clear criticism even when the inferences
in question are really deductively valid:

an argument that happens to be valid but where, without fur-
ther arguments, the conclusion cannot be seen to follow from the
premisses is not considered to constitute a piece of correct rea-
soning; it is rather viewed as a gap in reasoning until it has been
supplemented. (Prawitz 2012a, 890)

Inspired by the inferences in which operations such as discharge of assump-
tions or binding of variables are performed, Prawitz then proposes to conceive
inferential acts as something that involves more than mere linguistic acts, or
transitions:

to infer a conclusion α form a set Γ of premisses may be ex-
perienced not just as making the assertion α giving a set Γ of

3We should probably anticipate that Ind is not, for Prawitz, a primitive operation;
apparently, this could contradict what we have argued about the grounds as a reification
of acts constitutive of the meaning. Indeed, a term constructed through Ind denotes a
ground to the extent that it can be transformed into, or rather reduced to, a term which
begins with a primitive operation, and which denotes a ground only by virtue of the
meaning of the proposition or sentence considered. Thus, grounds must be distinguished
from the terms that describe them; they are denoted directly by a certain class of terms,
which those that, instead, indirectly denote must reduce to. The description of a ground,
which will be more specifically the description of the act performed to obtain it, will
therefore be subject to the distinction between direct and indirect denotation.
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premisses as one’s reason but rather as seeing that the proposi-
tion asserted by α is true given that the propositions asserted by
the premisses of Γ are true. (Prawitz 2012a, 890)

Thus the idea is that of generalizing the completion of operations to all the
inferential acts, and this because

to characterize correct reasoning we may need to give substance
to this metaphorical use of seeing. (Prawitz 2012a, 890)

Seeing is often regarded as something passive; but in a passage already men-
tioned by us, Cozzo (Cozzo 2015) points out that to see that a certain con-
clusion follows from certain premises is an active experience of necessity of
thought, experienced simultaneously with the performance of the valid infer-
ential act. In making a valid inference, the agent does something; through
this act, he/she has the opportunity to consciously experience the epistemic
support that the premisses guarantee for the conclusion. The discussion we
have conducted in Section 4.1.3 now allows us to specify more precisely what
the agent does, and under what conditions the inferential act thus understood
can be said valid.

Since Validity of inferences, and then gradually in all the articles on the
theory of grounds, Prawitz has proposed a new conception of inferential
act, intended as an application of one of the above described operations on
grounds. In particular, in Explaining deductive inference he says that to
perform an inference means

in addition to making an inferential transition, to apply an op-
eration to the grounds that one considers oneself to have for the
premisses with the intention to get thereby a ground for the con-
clusion. (Prawitz 2015, 94)

This general characterization is accompanied by further specifications, since,
as mentioned in Section 4.1.1, an act of inference can be understood at dif-
ferent levels of abstraction:

I take an individual or generic inference to be individuated by
what individuates an individual or generic inferential transition
from premisses α1, ..., αn to a conclusion β, and, in addition, by
alleged grounds g1, ..., gn for the premisses and an operation φ.
Conforming to the usual terminology according to which an in-
ference may be unsuccessful, no requirement is put on the alleged
grounds and the operation; in other words, g1, ..., gn may be any
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kind of entities, and φ may be any kind of operation. [...] Simi-
larly, an inference form is individuated by the form of an inference
transition and an operation. (Prawitz 2015, 94)4

Individual inferential acts had been described by Prawitz at the outset, as
including specific premises and conclusions, plus an agent and a space-time
situation in which the agent makes the inference. The generic inferential acts
were instead an abstraction from the agent and from the occasion, whereas
inferential forms added a further abstraction from specific premisses and
conclusions, taking into account only parameters for the latter. It is therefore
natural to take into account a further level, of which we find trace in Validity
of inferences :

finally, we may also abstract from the operation left in an in-
ference form, and may then speak about an inference figure or
schema. (Prawitz 2013, 198)

The understanding of inferential acts, at the different levels of abstraction,
as applications of operations on the grounds that we believe to have for the

4The fact that the grounds in an individual or generic inferential act are only alleged,
and that there is no restriction on such alleged grounds or on the operation involved in
the act, is an important change that Prawitz makes in Explaining deductive inference,
compared to the framework proposed in the previous articles. It is essentially due to four
objections raised by Cozzo to the original setting, in which Prawitz required that an in-
ferential act involved grounds for the premises – hence, actual grounds – and left open
the possibility that the operations involved in these acts were always such as to produce
grounds from grounds: 1) only valid inferential acts are inferences, while "it seems reason-
able to say that our activity includes acts of inference that can be valid or invalid" (Cozzo
2015, 113); 2) inferential acts for which the agent has no grounds for the premises are
not inferential acts, while "it seems reasonable to say that our deductive activity includes
inferences (valid or invalid) with mistaken premises" (Cozzo 2015, 114); 3) the theory of
grounds would not be able to distinguish invalid inferential acts from valid inferential acts
with unjustified premisses, while "it seems reasonable to say that an inference can be valid
even if its premises are mistaken" (Cozzo 2015, 114); 4) Prawitz would not be able to
account for the power of epistemic compulsion experienced in valid inferential acts with
unjustified premises, while "it seems reasonable to say that the experience of necessity of
thought also characterizes the transition from mistaken premises" (Cozzo 2015, 114). In
light of the new definition, however, Prawitz argues that "an individual or generic inference
can err in two ways: the alleged grounds for the premisses may not be such grounds, or
the operation may not produce a ground for the conclusion" (Prawitz 2015, 95). However,
Usberti argues that Cozzo’s fourth objection remains to be settled, since "an assertion
based on an entity of any kind may be true or false, but it is difficult to see how he can be
rational at all" (Usberti 2017, 11). As a solution to the problems he has identified, Cozzo
introduces the interesting notion of ground-candidate, "a mathematical representation of
the results of epistemic acts underlying mistaken premises"; a ground-candidate "can be
a genuine ground or a pseudo-ground" (Cozzo 2015, 114).
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premises, suggests at this point a natural definition of the notion of valid
inference:

an individual or generic inference [...] is (deductively) valid, if
g1, ..., gn are grounds for α1, ..., αn and φ is an operation such that
φ(α1, ..., αn) is a ground for the conclusion β. [...] [An inference
form] is defined as valid if the operation when applied to grounds
for the premisses produces a ground for the conclusion. [...] for
each instance of the form, the operation is of a specific type and is
denoted by the corresponding instance of the term. An inference
schema is defined as valid when there is an operation such that the
inference schema together with that operation is a valid inference
form. (Prawitz 2015, 94 - 95)

Analogously, focusing on the graphic representations of figures and inferential
schemes, given a figure

Γ1 ` α1 . . . Γn ` αn
∆ ` β

the operation it involves – which, if we want, can be indicated in the figure
itself – must be, in order that the represented transition be valid,

an operation of type (Γ1 B α1, ...,Γn B αn) B (∆ B β). [...] the
ground for the assertion β under the assumptions ∆, produced
when the operation φ is applied to grounds for the premisses, can
then be denoted by a ground term. (Prawitz 2015, 94 - 95)

We have thus outlined the two remaining factors for the fulfillment of the
repeatedly mentioned "fundamental task". Given an individual or generic
inferential act I, the relation between an agent A and I will be "A performs
I". By virtue of the reconstruction that Prawitz offers of the notion of indi-
vidual or generic inferential act, I will involve the alleged grounds g1, ..., gn
for the premisses, and an operation φ applicable to g1, ..., gn. Therefore, the
fact that A performs I means for A to apply φ to g1, ..., gn, which can be
indicated by φ(g1, ..., gn). If we make the further hypothesis that I is a valid
individual or generic inferential act, according to the definition of validity
just given g1, ..., gn are grounds for the premisses of I, and φ is an operation
that, when applied to the grounds for the premisses of I, produces a ground
for the conclusion of I. Hence, performing I, that is computing, as it were,
φ(g1, ..., gn), A obtains the ground searched for. The "fundamental task"
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seems to be fulfilled, but at this point it becomes important to conduct an
observation.

As stated in Chapter 1 of this work, the "fundamental task" is introduced
by Prawitz in order to offer a clear conceptual grid in which to articulate in a
rigorous and precise manner the underlying issue that the theory of grounds
intends to address and resolve: to explain how deductively valid inferences
are able to force epistemically to accept the conclusion, given an epistemic
acceptance of the premises, namely how such inferences can justify the con-
clusion provided that the premises are justified. The "fundamental task", on
the other hand, is formulated in terms of (possession of) grounds, and thus
presupposes that to possess grounds means to have an epistemic compulsion,
to be in a state of justification. The notion of ground is then further specified
according to the lines indicated in Section 4.1.3; grounds are abstract objects
expressed in terms of primitive operations, essential to the determination of
meaning, and are obtained either performing such operations, or performing
non-primitive operations defined through equations by virtue of which gro-
unds for the elements in the codomain are generated from grounds for the
elements in the domain. We can now ask ourselves: is it fair to say that, in
the terms of this notion of (possession of) grounds, the "fundamental task"
is such that its fulfillment actually satisfies the basic question of the theory
of grounds? If a ground is to be intended as a description or a reification of a
mental state of justification, can we say that the grounds so as described by
Prawitz adequately respect this basic intuition? Does having a ground, con-
ceived by Prawitz as having applied one of the operations described above,
actually means to be in possession of evidence for any judgment or any as-
sertion? In connection with these questions, it is important to point out
how, in Explaining deductive inference, the "fundamental task" is explained
by Prawitz not in the terms of the notion of ground, but in the terms of the
notion of evidence:

the task to show that a condition c on generic inferences is suffi-
cient for legitimacy can be spelled out as the task of establishing
for any generic inference I and subject A that from the three
facts (1) the inference I satisfies the condition c, (2) the subject
A has evidence for the premisses of I, (3) A performs I, it can be
derived that (4) A gets evidence for the conclusion of I. (Prawitz
2015, 74)

We will return to this question already in Section 4.1.5.2, and then later in
the course of our investigation; for the moment, wishing to conclude, it is
relevant the observation according to which
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an inference that is valid is so in virtue of the meaning of the
sentences involved in the inference. (Prawitz 2015, 95)

The fact that the inferences of the theory of grounds are valid by virtue
of their meaning is immediate, for example, in the case of Gentzen’s intro-
ductions; in the case of other inferences, like Gentzen’s eliminations, the
guarantee will come from the fact that the equations that define the non-
primitive operations applied, produce grounds from grounds - and the notion
of ground is fixed in terms of primitive operations constitutive of meaning.
The limitation to grounds and operations for first-order logical constants is
not necessary, but it becomes essential when we intend to pass from a notion
of deductive validity to a notion of logical validity:

the notion of validity defined above may be called deductive va-
lidity to differentiate it from [...] a narrower notion of logical
validity, which is now easily defined by using the same strategy
as used by Bolzano and Tarski; inferences on various level of
abstractions are logically valid if they are deductively valid and
remain deductively valid for all variations of the meaning of the
non-logical vocabulary. (Prawitz 2015, 95)

4.1.5 Advancements and open issues

In sections 4.1.1, 4.1.2, 4.1.3 and 4.1.4 we have provided an account of the the-
ory of grounds as it appears in Prawitz’s articles up to Explaining deductive
inference (Prawitz 2015) - with the integration of The seeming interdepen-
dence between the concepts of valid inference and proof (Prawitz 2018b). In
this section, we intend to deal with the relation between the theory of grounds
and the problems that, in Section 2.5.3, we have seen concern proof-theoretic
semantics: the proofs-as-chains problem, the recognizability problem and,
although much more concisely, the problem of validity as independent from
inferences. As we will see, the theory of grounds allows some philosophical
and substantial advancements compared to Prawitz’s old semantics but, on
admission of the Swedish logician himself, it still has certain shortcomings.

4.1.5.1 Proofs-as-chains

If proofs are intended as chains of valid inferences, to explain the power of
epistemic compulsion of valid inferences also means to explain the power of
epistemic compulsion of proofs. On the other hand, as seen in Section 4.1.3.3,
Prawitz warns against the possible circularity in which such an explanation
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is at risk of becoming bogged, essentially on account of the interdependence
between the notions of valid inference and proof. Proof-theoretic semantics,
for example, suffered exactly of this defect; the notion of valid inference was
defined in it in the terms of the notions of valid argument and proof, so that
it proved impossible to appeal to the idea that valid arguments and proofs
were chains of valid inferences. In the theory of grounds, however, the notion
of valid inference is defined in terms of the notion of ground, and the notion
of ground does not in turn presuppose the notion of proof. It is therefore
significant that Explaining deductive inference ends with a definition of the
notion of proof:

an (individual or generic) proof may be now defined as a chain of
valid (individual or generic) inferences. [...] a proof of an assertion
does not constitute a ground for the assertion, but produces such
a ground. (Prawitz 2015, 93)

The theory of grounds therefore offers two substantial advancements. The
first, that descends immediately from what we have just said, is that it offers
a notion of valid inference independent of the notions of valid argument and
proof, in such a way that on the contrary the former serves as a basis for the
characterization of the latter. The second, instead, emerges as soon as we
turn to the final part of the previous quote. Here, Prawitz specifies that a
proof is not a ground, but produces a ground; it is not what the justification
of a judgment or an assertion is based on, but through what the evidence for
a judgment or an assertion is obtained. In a terminology already introduced,
the proof-objects of the theory of the grounds are the grounds themselves;
proofs, on the other hand, are not proof-objects, but proof-acts. This is
relevant to what we called in Section 2.5.3 the proofs-as-chains problem.

The first advancement we have pointed out refers to an observation con-
ducted again in Section 2.5.3. If the power of epistemic compulsion of valid
arguments and proofs must be explained by saying that they are made of only
valid inferences, and if the latter are explained in terms of valid arguments
and proofs, we have an impasse already with, for example, a valid closed
canonical argument

∆1

α

∆2

β (∧I)α ∧ β

or a canonical proof O∧(π1, π2); it would obviously be circular to say that
this latter inference is epistemically compelling since, as valid, it produces
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the same valid closed canonical argument or the same canonical proof of
which we want to explain the ability to compel epistemically. Obviously,
we could argue that this is a badly-posed example, and that the impasse is
only apparent; the valid closed canonical argument or the canonical proof are
epistemically compelling when understood as acts, and this because the last
inference is precisely an act that produces the canonical closed valid argument
or the canonical proof which, understood this time as objects, constitute evi-
dence for the conclusion. But this obviously requires that the theory clearly
distinguishes between proof-objects and proof-acts.

In proof-theoretic semantics valid arguments and proofs actually play a
double-role: objects that, as formalization of the notion of evidence, serve
to determine the meaning, and acts that, as they are aimed at achieving
evidence, are required to be made of only valid inferences. However, again in
Section 2.5.3.1, we have said that the inability of proof-theoretic semantics to
offer an adequate conception of proofs as chains was ultimately attributable
precisely to this twofold status. Moreover, even if the notion of valid inference
is not based on those of valid arguments or proof, but still on a notion
that singles out structures then required to be chains of valid inferences,
the distinction between inferences in introductory form and inferences in
non-introductory form could induce to circular explanations; we cannot, for
example, characterize as valid an implication introduction by requiring that
its immediate subchain is a chain of valid inferences since, on account of the
distinction between canonical and non-canonical cases, we cannot exclude
that the immediate subchain contains inferences of the same type as that we
are defining as valid (see again Gentzen 1934 - 1935, Negri & von Plato 2015,
Usberti 2015).

In this regard, and following an interpretative line outlined by Usberti
(Usberti 2015), it was suggested a way out inspired by the BHK clauses.
Leaving aside for the moment the epistemic transparency that could be as-
cribed - as Usberti does - to the proofs identified by such clauses, it had
been pointed out how the fact that they proceeded by induction allowed
to abstract from the intrinsic complexity of the functions involved in the
problematic clauses for → and ∀ and, therefore, from the distinction be-
tween inferences in introductory form and inferences in non-introductory
form, between canonical and non-canonical cases. This had indicated that
the proofs-as-chains problem could be worked around by one of the follow-
ing two strategies. Either the notion of valid inference is defined relative to
always canonical objects, fixed by simple induction and by abstracting from
the distinction between introductory/canonical and non-introductory/non-
canonical cases, a distinction which can then be referred exclusively to the
acts in which inferences occur, to be characterized instead as chains of valid
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inferences. Or, alternatively, the distinction between introductory/canonical
and non-introductory/non-canonical cases can be preserved relative to the
notion used in the definition of valid inferences, but in such a way that this
notion define objects distinct from the acts in which the inferences occur,
acts that can then be characterized, once again, as chains of valid inferences.
In our opinion, with the theory of grounds Prawitz pursues the first option.5

Valid inferences are defined in terms of a notion of ground which, exactly
as for the BHK proofs, proceeds by simple induction on the logical form.
In the case of the constants → and ∀, a notion of constructive procedure
is assumed as primitive, so as to disregard the complexity inherent in the
procedures themselves. The clauses that establish what counts as ground
use only meaning-constitutive operations, and the resulting grounds are, as

5In The concepts of proof and ground (Prawitz 2019), Prawitz seems instead to be
pursuing the second of the above strategies. The notion of valid inference is not defined
there in terms of the notion of ground, but through a notion of grounding tree, for which the
Swedish logician validates a distinction between inferences in introductory form and non-
introductory form, between canonical and non-canonical cases - through a definition by
simultaneous recursion, very similar to that of analytical validity for arguments (Prawitz
2018a) examined in Section 2.5.3.2. Valid arguments and proofs should be understood,
one would say, as chains of valid inferences. Significantly, Prawitz argues that "a proof is
built up by inference linked to each other, which they supply successively conclusions with
grounds, finally resulting in the proof delivering a ground to its final conclusion. [...] the
proof has to be taken as an act" (Prawitz 2019, 2) and that "identifying possible grounds for
a proposition with grounding trees for, we can understand the performance of an inference
and has as immediate the grounds that the agent takes herself to have for the premisses.
I shall say that this tree results from the inference or that the inference gives rise to this
tree" (Prawitz 2019, 22). Grounding trees, though not devoid of an obvious epistemic
relevance, are however characterized in "ontological" terms; for example, "a grounding
tree for proposition explains why the proposition is true. A canonical grounding tree for a
compound proposition exhibits the immediate reason why is true by it having immediate
subtrees for constituents of which by being true make true. Admittedly, these subtrees may
be non-canonical, and if so, they do not on their turn exhibit the immediate ontological
grounds why their last propositions are true" (Prawitz 2019, 19 - 20). It is important to
note that Prawitz’s notion of grounding tree recalls the ontological grounding trees that
Sundholm, in A garden of grounding trees (Sundholm 2011), proposes as distinct from
the notion of epistemic grounding tree; Sundholm’s ontological grounding trees are defined
starting from the BHK proofs, while epistemic grounding trees are closer to the derivations
of judgments in Martin-Löf’s intuitionistic type theory (Martin-Löf 1984). The difference
between Prawitz’s grounding trees and Sundholm’s ontological grounding trees concerns
the way to treat open grounding trees. According to Prawitz, an open grounding tree for
α from β should be characterized substitutionally, requiring it to give a closed grounding
tree for α from each closed grounding tree for β; the construction of the overall grounding
tree, therefore, stops, so to speak, on β. According to Sundholm, the construction of the
overall grounding tree continues, starting from nodes that instantiate the open ontological
grounding tree on each of the possible closed ontological grounding trees for β, which could
obviously return structures of infinite width, but finite in "height", i.e., well founded.
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it were, always canonical. Referring back to Usberti’s words,

we can see the reasons why Prawitz makes now reference to two
different notions, assigning them different roles: to the notion of
ground the role of the key notion of the theory of meaning, to
the notion of deduction the role of (linguistic presentation of)
proof [...]. The crucial difference between the two notions is that
grounds for α are defined by recursion on the complexity of α,
while a deduction of α is defined by induction on the number of
its steps. So, in the case of grounds for α → β, it is legitimate
to abstract from the intrinsic complexity of the function that
transforms each ground for α into a ground for β. (Usberti 2015,
418)

If the objects of the theory of grounds are always canonical, the acts in which
(valid) inferences occur are not; valid arguments and proofs, in fact, may in-
volve inferences of any kind, introductory or not, i.e. possibly corresponding
to the application of operations that are not meaning-constitutive. The terms
of the languages of grounds that, in Explaining deductive inference, Prawitz
suggests to develop, must denote grounds; but, as the Swedish logician claims
in The seeming interdependence between the concepts of valid inference and
proof, they can be understood also as protocols - we could say encodings - of
the process by which the denoted ground can be obtained. Not surprisingly,
therefore, Prawitz distinguishes between canonical and non-canonical terms,
saying that

a closed ground term whose first symbol is one of the primitive
operations is said to be in canonical form - the form used to spec-
ify the grounds there are for different assertions (Prawitz 2015,
93)

- it goes without saying that if a closed term has as its outermost symbol a
non-primitive operation, it is to be considered in non-canonical form. How-
ever, this distinction has no parallel at the level of the objects of the theory,
namely at the level of grounds.

The relation between grounds and proofs in Prawitz’s theory of grounds
is analogous to that between constructions/proofs and realizations of such
constructions/proofs in Heyting’s approach. However, it retraces also what in
Martin-Löf’s intuitionistic type theory exists between proofs for propositions,
on the one hand, and proofs for judgments on the other. The notion of ground
for judgments or assertions, in the terms of which the meaning of propositions
or sentences is explained, corresponds to the notion of proof for propositions
in Martin-Löf, to the point that Prawitz points out as
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the grounds will thereby be among the objects that one comes
across within intuitionistic type theory developed by Martin-Löf.
(Prawitz 2015, 89)

As we have said in Section 3.2.2, the fact that in Martin-Löf’s type theory
the relation "to be a proof-object for (or of type)" was decidable, induced
Prawitz to look at Martin-Löf’s proof-objects as at good candidates for the
notion of ground for a judgment or an assertion; this naturally is linked to the
recognizability problem, with which we dealt in relation to proof-theoretic
semantics and which, with reference to the theory of grounds, we anticipated
at the end of the previous Section and will face more broadly in the next one.
In this respect, however, a proof-object cannot be considered as an abstract
truth-maker, what Prawitz (Prawitz 2012b) criticizes in the last Martin-Löf
and in Sundholm; on the contrary, it must have an epistemic import, which
is relevant for the justification of judgments or assertions. According to
Prawitz, indeed,

what is of interest here is whether what is defined as a ground for
the assertion of a sentence α is not only a truth-maker of α but
is really a ground the possession of which makes one justified in
asserting α. (Prawitz 2015, 89)

The proofs of the theory of grounds would correspond instead to the proofs
of judgments in Martin-Löf - with the reserve, already highlighted in Section
4.1.1, that for Prawitz the form of a judgment is not to be understood as
"a is a proof-object for α" or, if we pass from the analytic to the synthetic
form, as "α is true", since expressions of this type should be placed on a
meta-level.

However, without taking account of the similarities, among Prawitz’s,
Heyting’s and Martin-Löf’s frameworks there are also profound differences.
The most immediate one concerns undoubtedly the treatment of the distinc-
tion between canonical and non-canonical cases, that we have seen to be
attributed by Prawitz not to the objects of the theory of grounds, but to the
acts through which these objects are produced, and to the terms that codify
such acts - proofs, terms for grounds; while in Heyting’s writings there seems
to be no trace of this theme, it is clearly present in Martin-Löf, where one
oscillates from an exclusive attribution of the distinction between canonical
cases and not to proofs of propositions, namely to objects - and not there-
fore to proofs for judgments, which we have instead seen to be acts (Martin
-Löf 1984) - and an introduction of the distinction also at the level of proofs
for judgments, with a simultaneous explanation of this distinction in terms
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of that analogous at the level of proofs for propositions (Martin-Löf 1985,
Prawitz 2012b).

But the most original trait that the theory of grounds presents with re-
spect to similar approaches is, we think, the explicit and programmatical in-
troduction of a deep connection between objects and acts, between grounds
on the one hand, and terms/proofs on the other. A proof, i.e., a process that
allows us to be in possession of a ground, can be described by a term of an
appropriate formal language, which in turn will denote the ground obtained;
the term, which encodes in the formal language the corresponding proof, is
a name of the denoted ground, i.e. of the ground which could be obtained
whenever the proof were carried out. The name provides, if we may say so, a
set of computation instructions ; computing the term means performing the
proof, thereby getting the ground to which it leads. A very strong bond is
therefore established between the objectual aspect and the operational as-
pect of the theory, a bond that on the other hand is more implicit in the
respective proposals of Heyting and Martin-Löf. In Heyting, the individual
steps performed in the realization process of the proof/construction show,
as it were, what the construction realized is, in correspondence with the op-
erations of which it is composed (Heyting 1931, 1932, Prawitz 2012b); in
Martin-Löf, likewise, the proof of a judgment consists of passages that cor-
respond to the operations involved in the proof of the proposition and in
the logical constants of the proposition itself - the latter intended as a type
- to the point to allow a type-checking that makes judgments of the type
"a ∈ α" decidable (Martin-Löf 1984, 1994, Prawitz 2012b, Sundholm 1983,
1998, 2011). However, it lacks any idea that a proof-act can be described
by a term denoting the proof-object of which it is name, and which can be
computed in order to obtain actually such a proof-object.

Just above, we have said that this idea is on the contrary introduced by
Prawitz in an explicit and programmatical way; explicit because it is openly
suggested, as an essential feature of the development, both philosophical and
formal, of the theory of grounds, and programmatical because, above all
in the latest writings, Prawitz seems to conceive the theory of grounds as
including a language of terms for which we can define as much as possible
a rigorous and precise notion of denotation with respect to a "universe" of
grounds and operations on grounds. This has, in our opinion, the immediate
consequence of substantiating the criticism that Prawitz makes to the idea of
the latest Martin-Löf and Sundholm according to which proof-objects would
be lacking epistemic import (Martin-Löf 1998, Sundholm 1998):

even if proofs are primarily acts, there are objects that relate in
various ways to these acts and are also called proofs or, at least,
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are considered to have epistemic import. Furthermore, proof acts
can be noted down, and what we then have are linguistic objects
that can be seen as records of the acts. [...] Such a record of
an act [...] can be seen as an instruction for how to perform a
proof act. It has clearly epistemic import, and we may call it a
representation of a proof (act) when there is need to distinguish
it form the act itself. (Prawitz 2012b, 63 - 64)

However, it seems appropriate to point out that the above passage is inserted
in the context of a discussion of the positions of Martin-Löf, as inscribed in
the intuitionistic tradition of BHK semantics; in this view, we cannot ignore
the fact that, with respect to his objection, Prawitz notes in a limiting way
how

we cannot argue that proofs of the BHK-interpretation or proof-
objects in general correspond to proofs generated by a fixed set-up
of inference rules. (Prawitz 2012b, 64)

4.1.5.2 A recognizability problem

The solution that the theory of grounds offers of the "fundamental task"
presupposes, as stated in Section 4.1.4, a question of adequacy of the notion of
ground with respect to a pre-formal notion of evidence - and hence, the notion
of possession of grounds with respect to a pre-formal notion of possession of
evidence. In the concluding remarks of Explaining deductive inference, the
question is explicitly raised by Prawitz himself:

does a ground as now defined really amount to evidence? When
the assertion is a categorical one, the ground is a truth-maker
of the asserted sentence; since the meanings of the sentences are
given by laying down what counts as grounds for asserting them,
the truth of a sentence does not amount to anything more than
the existence of such a ground. Nevertheless one may have doubts
about whether to be in possession of a truth-maker of a sentence
as understood here really amounts to being justified in asserting
the sentence. (Prawitz 2015, 96)

It is important to note that the Swedish logician does not refer here to a no-
tion of (possession of) ground understood as, so to speak, synonym of (posses-
sion of) evidence; the questions concern rather the grounds "as now defined"
and "as understood here". What one wonders is whether the grounds as de-
scribed in the theory of grounds appropriately capture the pre-formal notion
of ground which the theory itself should comply with.
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What could be problematic here? The answer to the question is: the
fact that inferential acts are intended as applications of primitive or non-
primitive operations, hence as corresponding to terms which, however always
denoting canonical objects, can be in canonical or non-canonical form. More
specifically, Prawitz argues that

when a subject performs a valid inference and applies an oper-
ation φ to what she holds to be grounds for the premisses, she
forms a term T that in fact denotes a ground for the drawn con-
clusion α, but it is not guaranteed in general that she knows that
T denotes a ground for α. (Prawitz 2015, 96)

As you may remember, in proof-theoretic semantics there was a problem
of recognizability related to valid closed non-canonical arguments, and non-
canonical or categorical proofs - depending on the preferred terminology, that
of 1977 or that of 2005: to have a valid closed non-canonical argument or a
non-canonical or categorical proof means knowing how to get a valid closed
canonical argument or a canonical proof for the same conclusion, but not also
knowing that the non-canonical argument or the non-canonical or categorical
proof are indeed such as to produce the expected result. A similar difficulty
arises in connection with valid open arguments, and hypothetical or general
proofs, for which infinite substitutions from non-regimentable domains are
required. Well, in the theory of grounds we have something similar; the
difference is that, as the non-canonical cases employ non-primitive operations
fixed by equations of a certain type, the problem can be reformulated in
terms of recognizing that the equations offer a good definition with respect
to the operational type understood, so that the operation actually produces
grounds of the type indicated in the codomain starting from grounds of the
type indicated in the domain. In the words of Prawitz,

since the meanings of closed atomic sentences are given by what
counts as grounds for asserting them, [the agent] should thus
know that T denotes a ground for asserting an atomic sentence
α when this is how the meaning of α is given. Such knowledge is
preserved by introduction inferences, given again that the mean-
ings of the involved sentences are known: the term T obtained by
an introduction is in normal form, that is, it has the form φ(U) of
φ(U, V ), where φ is a primitive operation and the term U or the
terms U and V denote grounds for the premisses - knowing that
these terms do so, the agent also knows that T denotes a ground
for the conclusion [...]. However, when φ is a defined operation,
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the subject needs to reason from how φ is defined in order to see
that T denotes a ground for the conclusion. If T is a closed term,
she can in fact carry out the operations that T is built up of and
bring T to normal form in this way, but she may not know this
fact. Furthermore, when T is an open term, it denotes a ground
for an open assertion or an assertion under assumption, and it
is first after appropriate substitutions for the free variables that
one of the previous two cases arises. (Prawitz 2015, 97)

Despite having made a valid inference, therefore, the agent may not recognize
it. And in the light of the way in which the notion of valid inferential act
is reconstructed by Prawitz, the agent might therefore not recognize that
he/she made use of an operation that produces grounds for the conclusion
when applied to grounds for the premisses; if he/she actually has grounds for
the premisses, the agent could thus not recognize that he/she has a ground
for the conclusion. Compared to the "fundamental task" that the theory of
grounds had aimed to accomplish, this could be problematic to the extent
that

one may ask if to make a valid inference really gives the evidence
that one should expect. (Prawitz 2015, 97)

Before turning to the way in which Prawitz deals with the problem of
recognizability in the framework of the theory of grounds, and to the answers
that he contextually puts forward, it is perhaps appropriate to explain in
more detail why this problem exists. A first suggestion obviously comes from
what has already been said with reference to valid arguments and proofs
in the context of proof-theoretic semantics: the computation of a closed
term to its canonical form could be de facto impossible for an agent with
limited resources of time and memory and, in the case of an open term,
the process of substitution of individual variables and ground-variables with,
respectively, individuals and grounds from non-regimentable expansions of
a given language of grounds could result impossible even if no limitation is
put on agent’s time and memory. In Explaining deductive inference Prawitz
advances another argument, in the light of which the recognition of a term
as denoting a ground would be said hardly plausible - an argument already
anticipated in part for the proofs of proof-theoretic semantics (Prawitz 1977).
This is an observation which refers back to Gödel’s incompleteness theorems,
already mentioned in Section 4.1.3.2 to endorse the character of openness of
a language of grounds.
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As we will understand when we will talk about the Curry-Howard isomor-
phism, a closed language of grounds could be understood as a "translation"
of a formal system and, in this regard, Prawitz notes that

it is of course an essential feature of a formal system that it is de-
cidable whether something is a proof in that system. For a closed
language of grounds where the term formation is restricted by
specifying what operations may be used, it may similarly be de-
cidable whether an expression in the language denotes a ground.
(Prawitz 2015, 98)

On the other hand, as we have said, the phenomenon of incompleteness im-
plies that the languages of grounds must enjoy a character of openness to the
introduction of new operations. Already at the level of first-order arithmetic,
a closed language of grounding Λ would be extensionally inadequate, since
it does not manage to express all the possible grounds for judgments or as-
sertions that involve the formulas of the background language; it is therefore
necessary to take into account a (infinite) class of expansions Λ+ of Λ and,
although the terms of Λ can be recognizable as denoting grounds, we do not
have any guarantee that this assumption of recognition is preserved in all the
Λ+.

However, it is worth noting that while we are talking in terms of recog-
nizability, in Explaining deductive inference Prawitz expresses hinself first in
terms of luminosity of having evidence for a certain judgment or for a certain
assertion and, then, in terms of decidability:

it may be argued that the condition for having evidence for an
assertion is luminous [...]. The crucial question is therefore if it
is decidable for an arbitrary definition of an operation, which we
may contemplate to add to a given closed language of grounds,
whether it always produces a ground of a particular type when
applied to grounds in its domain. This is what must hold if we
are to say that the property of being a ground is decidable, and
it seems to me that we must be sceptical of such an idea, and
therefore also of the idea that the condition for something to be
a proof or to constitute evidence is luminous. (Prawitz 2015, 97
- 98)

Referring to a precise concept of contemporary mathematical logic, the notion
of decidability is certainly more precise, and therefore more stringent than
those of luminosity or recognizability. Therefore, in what sense does Prawitz
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believe that undecidability implies non-luminosity? And why does he pass
from a discourse of recognizability (as in Prawitz 1973 or in Prawitz 1977) to
one of decidability? That the issue under consideration is to be formulated in
the strict terms of the notion of decidability is a thesis put forward by some
authors (see, for example, Pagin 1998); nevertheless, one could ask whether
there can be any plausible way of understanding the expressions "luminous"
or "recognizable", by virtue of which, although not strictly decidable, the
fact that an arbitrary term denotes a ground be, more weakly, and perhaps
more vaguely, luminous or recognizable. To this gap between decidability and
luminosity or recognizability, is addressed for example the following criticism
by Usberti:

suppose that the correct answer to the crucial question is neg-
ative, namely that there is an operation O on grounds repre-
sented in the formal theory of grounds T by a term K such that
if t1, ..., tn are terms denoting grounds for α1, ..., αn respectively,
then K(t1, ..., tn) denotes a ground for β, but neither the sentence
of T translating "K(t1, ..., tn) is a ground for β", nor the sentence
translating "K(t1, ..., tn) is not a ground for β", is a theorem of T .
There is no reason to conclude that it is not intuitively evident
thatK(t1, ..., tn) is a ground for β, and therefore that intuitive ev-
idence is not epistemically transparent. [...] Concededly, formal
provability is intended to catch intuitive evidence, but sometimes
it does not succeed, as just Gödel’s theorem shows; when this
happens, we don’t infer that intuitive evidence is different from
what it appears to be (for instance, that Gödel’s sentence is not
intuitively true/evident), but that formal provability is incom-
plete. (Usberti 2017, 4)

As can be seen, Usberti refers to notions of epistemic transparency and of
intuitive evidence that somehow resemble, respectively, the notions of lumi-
nosity or recognizability which we are dealing with, on the one hand, and
the notion of evidence in the pre-formal sense we have used this far, on the
other.6

6As mentioned several times, Gödel’s theorems are used by Prawitz in support of the
character of openness of the languages of grounds, and of the impossibility of ensuring that
the recognizability/decidability of the fact that a term denotes a ground, which may also
be plausibly assumed for the terms of a closed language, is preserved in the expansions of
the given language. In our opinion, however, incompleteness is also central for replying to
a possible objection to Prawitz’s argument: recognizability/decidability is ensured by the
fact that, for each of the closed languages, constituting expansions of the given language
of grounds, we can, for each of its terms, recognize/decide that such term denotes a

186



For the recognizability problem related to proof-theoretic semantics, we
saw that a possible solution, similar to that adopted by Kreisel (Kreisel 1962)
for the BHK clauses, consisted in requiring that a valid argument or a proof
for α, were not only a valid argument ∆ or a proof π according to Prawitz’s
definitions, but also an additional valid argument ∆∗ or proof π∗ for "∆ is
a valid argument for α or "π is a proof for α". Similarly, in the case of
the recognizability problem of the theory of grounds, the idea would be to
require that a valid inference is not only describable by a term T that actually
denotes a ground for ` α, but also by a further term T ∗ denoting a ground
for "T denotes a ground for ` α". However, Prawitz does not consider this
way viable, and in particular argues that to perform an inference

is not to assert that the inference is valid. Nor is it to make an
assertion about the grounds that one has found for the conclusion
of the inference. One may of course reflect over the inference that
one has made, and, if successful, one may be able to demonstrate
that a ground for the conclusion has been obtained and that the
inference is valid. But a requirement to the effect that one must
have performed such a successful reflection in order that one’s
conclusion is to be held to be justified would be vulnerable to [...]
vicious regresses. (Prawitz 2015, 97)

Prawitz therefore reaffirms his reconstruction of the inferential act, with ob-
vious additional implications concerning the acquired definition of validity
for such an act: when we infer, all we do is to make judgments/assertions-
premisses, for which we believe to be in possession of grounds, and to pass
to a judgment/assertion-conclusion applying an operation that, when the
grounds we thought we had for the judgments/assertions-premises are actu-
ally such, and when the inferential act is valid, actually produces a ground
for the judgment/assertion-conclusion. This activity, however complex, does

ground. In order that this objection achieves its objective, it is necessary to assume that
the expansions of a given language of grounds are effectively generable: the algorithm
suggested could in this case use a sort of diagonal procedure to cover the terms of all the
possible expansions, setting at each step that the term met denotes a ground. But if the
starting language of grounds is a language of grounds for first-order arithmetic, the effective
generability of all its expansions would be equivalent to the recursive enumerability of all
the "truths" of first-order arithmetic - it is sufficient to enumerate the types of the terms in
each of these languages; that, by virtue of Gödel’s incompleteness theorems, is impossible.
An argument similar to that just proposed is also found in (Usberti 1995, 2015). It should
also be noted that the feared objection has also another weak point: it makes sense only
given for granted that each ground can be expressed by some term in some language of
grounds, which is by no means obvious.
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not involve and should not be intended to involve a further judgment or as-
sertion which establishes that the performed passage actually produces the
expected result. If we adopted this point of view, in fact, a valid inference
should be able to produce, as it were, not one, but two grounds; one for the
judgment/assertion-conclusion, and the other for the judgment or assertion
"the inference is valid", i.e. "the term which this inference corresponds to
denotes a ground for the conclusion". Indeed, this second judgment-assertion
is not, according to Prawitz, equivalent to the judgment/assertion-conclusion
of the inference. And this could in turn, in a quite obvious way, generate
regressive explanations, since the second judgment or assertion involves a
proposition or sentence that

is on a meta-level as compared to the former one [...]. To be jus-
tified in asserting it, it is of course not sufficient only to produce
a truth-maker of α. One must also have a ground for the asser-
tion that what is produced is a truth-maker of α, which has to
be delivered by a proof on the meta-level of an assertion of the
form ".... is a ground for asserting ...". This proof will in turn
depend on its inferences giving evidence for their conclusions. To
avoid an infinite regress it seems again to be essential that there
are inferences that give evidence for their conclusions without it
necessarily being known that they give such evidence. (Prawitz
2015, 97)

Prawitz’s reasoning is obviously based on a particular conception of judg-
ments or assertions; to judge that α is true does not also mean to judge that
it is true that α is true and, analogously, to assert α does not also mean
to assert that α is true - remember what Prawitz says about Martin-Löf’s
reconstruction of judgments and assertions. With specific reference to asser-
tions, the centrality of this point is in our opinion specified at best in The
seeming interdependence of the concepts of valid inference and proof :

to assert that α is true is from a constructive point of view to
assert that there is a construction for α, which of course requires
that one can specify a construction a for α. To assert a propo-
sition α, I take to be the same as uttering in assertive mood a
sentence that expresses α. It certainly requires the speaker to
have a construction for α since, as always, she needs a ground for
the assertion. But it does not require, one may argue, a proof
that so and so is a construction for α, because that there is a
construction of α is not what she asserts; it is not a part of the
content of the proposition α. (Prawitz 2018b, 9 - 10)
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Finally, we consider it appropriate to point out that, although the theory
of grounds still suffers from a recognizability problem, this seems to have now
less urgency. We can appeal to some of Prawitz’s statements, according to
which it could already be satisfying to fulfill the "fundamental task" in the
manner indicated above, making it

a conceptual truth that a person who performs a valid inference
is aware of making an operation that produces what she takes to
be a ground for the conclusion. (Prawitz 2015, 98)

The recognizability problem does not concern the grounds as such, as abstract
objects liable to some formalization; the problem concerns the grounds as
a clarification of the notion of evidence and, therefore and above all, our
being in possession of grounds as being in possession of evidence. To have
a ground means having constructed a term that denotes that ground, or
better, to have performed acts that can be described as terms that denote
the ground to which these acts lead. Now, two key points come into play
here in the theory of grounds; first of all, the idea that an inferential act is
the application of an operation on the grounds that we think we have for the
premises in order to obtain a ground for the conclusion; and, secondly, the
clear distinction between always canonical objects, that the theory treats as
evidence, and acts that allow to come into possession of these objects. What
an agent possesses after having made a valid inference is a ground, an always
canonical object of evidence, not a term; the term, which certainly denotes the
ground obtained, has however only the role of describing the act performed,
and can be canonical or not depending on whether the last inference made by
the agent is in an introductory form or not. When the inferential act is valid,
the agent has grounds for the premisses and, by applying to these grounds
the operation associated with the inference, he/she gets - as, as it were, result
of a computation - a ground for the conclusion; this activity can be codified
by a term, which hypostatizes the agent’s activity - and which provides, so
to speak, the instructions for the computation. Therefore, a valid inference
objectively gives the agent the possession of something that the theory treats
as evidence.

As we have often said in the course of our discussion, such a solution
does not seem possible in the case of the notion of valid argument of proof-
theoretic semantics. In Section 2.5.3.3 we have suggested that this impossi-
bility comes from the fact that the justification procedures associated with
valid arguments go from argument structures to argument structures, and
not from valid arguments to valid arguments. Again in Section 2.5.3.3, we
have also suggested that, as regards the notion of proof of proof-theoretic
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semantics, a solution analogous to that adopted in the theory of grounds,
seemed instead possible, but only provided that the fulfillment of an infer-
ence is understood as the computation of a procedure, and the canonical
objects of evidence are always distinguished from the acts for the produc-
tion of such objects; and this because the actual procedures involved in the
proofs go from proofs to proofs. In passing, let us note that also the opera-
tions on grounds, denoted by the operational symbols in terms of languages
of grounds, are to be understood as operations from grounds to grounds.

4.1.5.3 Independent validity

Alongside the proofs-as-chains and recognizability problems, in Section 2.5.3.2
we had drown attention to another difficulty which, with reference to the
notion of valid argument, the proof-theoretic semantics takes into account:
namely, the fact that a valid argument is valid might not depend at all on the
inferences involved, but only on the justification procedures associated with
those in non-introductory form. Again in that section, we then saw how, with
The fundamental problem of general proof theory (Prawitz 2018a), Prawitz
proposes a solution in terms of a relation of containment among argument
structures, and a definition of analytic validity for arguments. The question
can also refer to proofs: the fact that a certain proof-structure is actually a
proof may not derive from the inferences of which the structure is composed,
but only from the equations that define the procedures associated with in-
ferences in non-introductory form. Here too, we can define a containment
relation among proof-structures, and introduce an idea of analyticity. In this
Section we therefore propose a quick examination of the articulation of the
problem of validity as independent from inferences in the theory of grounds.

In order to deal with this issue, it is again necessary to refer to one of
the most important and innovative basic ideas of the theory of grounds -
already mentioned in the previous section: the reconstruction of the notion
of inferential act, i.e. the proposition according to which to make an inference
means to apply an operation to the grounds that we believe to have for the
premises, in order to obtain a ground for the conclusion. This explanatory
strategy, in our opinion, permits to answer in a twofold way, positively in
one sense, negatively in the other, the question whether it is fair to say, in
the theory of grounds, that the fact that an argument structure is valid, or
that a proof-structure is a proof, may result independent from the inferences
involved, and instead depend only on the way non-introductory inferences
are justified.

Let us take into account the following example. Let c2 be a computation
of 2 + 2 = 4, and let f be an operation of operational type
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1 + 1 = 2B 2 + 2 = 4

fixed by an equation that makes it a sort of "pointer" on c2, for example, for
every g ground for ` 1 + 1 = 2,

f(g) = c2

and let c1 finally be a computation of 1 + 1 = 2. The argument structure
(which in the following we will indicate with ∆)

c1

1 + 1 = 2
R2 + 2 = 4

in which R is associated with the operation on grounds f , or the proof-
structure (which in the following will be indicated with π) f(c1), are respec-
tively a valid argument (closed and non-canonical) and a proof (closed and
non-canonical or categorical); the inference from the premise 1 + 1 = 2 to
the conclusion 2 + 2 = 4 is indeed valid - which is immediate in the case of
the proof-structure, and it becomes so when the inference R in the argument
structure is understood as associated with f - and we can assume that the
inferences of which the computation c1 is made of are equally valid, so that
we are dealing with concatenations of valid inferences. Well, in a sense, the
validity of ∆, or the fact that π is a proof, do not depend properly on R or f ,
or on the other inferences involved in c1, but only on the circumstance that
f , directly involved in π, and associated with R in ∆, is fixed by an equation
such that

f(c1) = c2

and thus produces a ground c2 for the conclusion when applied to the ground
c1 for the premise. Although c1 is undoubtedly a ground for the premise, the
computation c2 may be not at all contained, in the sense to which Prawitz
aims in The fundamental problem of general proof theory (Prawitz 2018a),
in the computation c1. What really matters is, on closer inspection, the
existence of c2, and the fact that it occurs in a certain way in the definition
of f ; not, therefore, the relation between premise and its ground, and the
conclusion in the inference to which f corresponds. The situation is even
clearer when, dropping the reference to c1, we take into account the argument
structure (which we will indicate in the following with ∆∗)

1 + 1 = 2
R2 + 2 = 4
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in which again R is associated with f , or the proof-structure (which we
will indicate in the following with π∗) f(ξ1+1=2). ∆∗ and π∗ are, again and
respectively, a valid argument (open) and a proof (hypothetical), but this
depends simply on the fact that, whenever we have a ground for ` 1 + 1 = 2,
and whatever this ground is, calculated on it f produces the ground c2 for
the conclusion.

To remedy this situation, an obvious solution could go in the same direc-
tion as the notion of analytical validity for arguments adopted by Prawitz
in The fundamental problem of general proof theory (Prawitz 2018a) - and
to the analogue that can be defined for proofs; we could place restrictions
on the operations that can be included in the theory of grounds, in order
to exclude operations like f , and therefore validate inferences to which op-
erations of this type and argument and proof-structures involving them can
be associated. A central step was the definition of a containment relation
among argument structures - and possibly proof-structures - on the basis of
which to say that an argument is analytically valid if an analytically valid
one in canonical form can be extracted from it; the extraction is limited to
the argument structure - and possibly to the proof-structure - on which it is
from time to time defined, and therefore it cannot produce as output any-
thing that is not already contained in this structure. Thus, the limitation
on operations on grounds could be such as to make the operations available
exclusively extraction operations in the sense just indicated; in other words,
we could request that for every instance

f(g1, ..., gn) = g

of every defining equation for an n-ary operation f admissible in the theory
of grounds, g is contained in g1, ..., gn, in some precise sense of containment.
The suggestion, it seems to us, is equivalent to requiring that the operations
authorized in the theory of grounds are always and only compositions of a
well delimited set of primitive operations of the type of those introduced by
Prawitz in Constructive semantics (Prawitz 1971a) - an article that we will
discuss instead in Section 4.1.6.2.

Therefore, if on the one hand the problem of validity as independent
from inferences seems also to apply to the theory of grounds, on the other
hand, as said before, the reconstruction that Prawitz offers of the inferential
act gives us reason to maintain that this problem can now be considered
less urgent. The absence of link among the inferences of which argument
or proof-structures are composed, and the fact that these structures corre-
spond, respectively, to valid arguments or proofs, has in fact a particularly
unfortunate consequence: in the case of non-introductory inferences, it is
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not the inferential act as such to produce evidence for the conclusion, but
a reduction procedure through which the inference itself is justified, or an
equation which sets the behaviour of the associated operation.

In the theory of grounds, however, we have the idea that, by performing
the inference, the agent applies the associated operation. Obviously, as in the
example above, the inference may be valid not by virtue of an actual relation
between premisses and their grounds, and conclusion, but solely because the
operation produces a ground for the conclusion without, as it were, actually
acting on the grounds to which it is applied. Nevertheless, the fact that the
performance of an inferential act is now understood to be the application of
the corresponding operation, authorizes us to say that it is the inferential act
as such that produces evidence for the conclusion, providing the ground that,
although disconnected from the available grounds, justifies epistemically in
judging as true the conclusion, or makes its assertion correct. In other words,
completing the last inference in the argument structure

c1

1 + 1 = 2
R2 + 2 = 4

or of the proof-structure f(c1), the agent applies the operation f to c1, and
since f is defined in such a way that, for every ground g for ` 1 + 1 = 2,

f(g) = c2

it is thanks to this inference, and not thanks to a reduction procedure of
the argument structure, or to a computation of the proof-structure, that the
agent takes possession of c2. It is as if we were saying that passing from the
premise 1 + 1 = 2 to the conclusion 2 + 2 = 4 means for the agent finding
the computation c2, and using it to justify the passage. The operation f , i.e.
the accomplished inference, consists exactly in this.

In conclusion, it seems that making inferences the application of oper-
ations on grounds, counterbalances the undesirable effects of an excessive
liberality in the definitions of the admissible operations in the theory of gro-
unds. We emphasize in passing that, as stated in Section 2.5.3.3, such a
solution seems impossible in the case of proof-theoretic semantics focused
on the notion of valid argument, appearing instead available when the basic
notion is that of proof. This, again as at the end of the previous section, be-
cause the justification procedures are, in the approach with valid arguments,
defined from argument structures to argument structures, and not from valid
arguments to valid arguments; in the case of proofs, on the contrary, effective
procedures go from proofs to proofs, just like the operations on grounds go
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from grounds to grounds. For what has just been said, and for what we have
seen so far as a whole, Tranchini would therefore be right when he maintains
that

the conception developed in the 1977 article anticipates Prawitz’s
latest works [...] where the approach to the study of proofs start-
ing from the notion of validity of an argument is abandoned, in
favour of a more direct approach in terms of the notion of ground.
(Tranchini 2014a, 507)

4.2 Building on Prawitz’s ideas
This Section has a dual purpose. First, after recapitulating the results at
which Prawitz’s ground-theoretical proposal allows to arrive, and the prob-
lems from which it still suffers, we will lay the foundations for the investiga-
tion to carry out in the third part of this work; we will indicate the points
that, in our opinion, can be further developed, as well as the reasons and
advantages that such a proposition offers for a better understanding of the
critical knots. In the second part, we will focus on a quick examination of
some formal tools, we owe to Prawitz himself or to other authors, which will
facilitate and will make clearer our proposal for formalization in Chapters 5,
6 and 7.

4.2.1 Summing up

The theory of grounds undoubtedly has an intrinsic interest; it offers a philo-
sophical and formal framework in which to develop, in an innovative way, an
analysis of the notion of deductive validity and, more particularly, to define
the notions of valid inference and proof in order to explain their epistemic
power - or at the very least to put us on the way of a satisfactory expla-
nation - and their mutual conceptual link. Prawitz has addressed some of
the oldest problems of logic since the birth of this discipline, and only that
would suffice to justify why this proposal should be taken into account and,
possibly, expanded. In addition, the entire theoretical apparatus is based
on a notion of ground - and operation on grounds - that refers to some of
the most important traditions in contemporary mathematical logic, offering
original contributions and original points of view: from intuitionism to con-
structivism, from Kreisel-Goodman theory of construction to Martin-Löf’s
intuitionistic type theory, ending with Dummett’s criticisms of a realistic
approach to the explanation of meaning, and to the corresponding idea of a
verificationist semantics.
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Of course, we could say that the attention to the problem of epistemic
power of valid inferences and proofs, and the way in which the former bind
conceptually to the latter, is from the very beginning the focus of Prawitz’s
semantic investigations; and the Swedish logician could not help dialoguing
all along with intuitionism, constructivism and verificationism. But this very
circumstance makes the theory of grounds important for a second reason.
Proof-theoretic semantics has structural and philosophical limitations against
which the new theory allows - in a definitive way in some cases and in a partial
one in others - a doubtless progress.

The proofs-as-chains problem, for example, can, in our opinion, be con-
sidered solved. A central role is played here by a twofold circumstance: first
of all, the clear distinction between objects of evidence and acts for the pro-
duction of such objects – proof-objects and proof-acts – and, secondly, the
fact that objects are in a form always canonical, and specified through simple
induction on the complexity of the formulas, whereas the distinction between
canonical and non-canonical cases is referred to the acts - and to the terms
that describe them. There still remain the problems of recognizability and of
validity as independent from inferences. In the first case, the phenomenon can
be traced back just to that distinction between canonical and non-canonical
forms which, although limited to (descriptions of) acts for the production of
objects of evidence, could precisely for this reason invalidate the possibility
of recognizing that an inference is valid - and the problem arises to the extent
that such recognition is required as a necessary condition for the possession
of evidence. That the validity of deductive structures can be independent
from the inferences involved, and solely dependent on the way the operations
applied are defined, derives instead from the fact that, by its current state of
development, the theory of grounds does not impose any restriction on the
complexity of the operations on grounds and of their definitions - apart of
course that of being, or returning, total constructive operations. However,
we have also been able to argue that the last two problems are now in a
sense less urgent; thanks to the way the notion of inferential act is recon-
structed, they are the valid inferences as such that justify the conclusion, and
not the subsequent reduction procedures or computation on the structures in
which the inferences occur. Which is immediate with regards to the problem
of validity as independent of inferences, and is accompanied, in the case of
the recognizability problem, by the further and already mentioned feature
that what inferences produce starting from evidence for the premisses are
always canonical objects of evidence for the conclusion. Essential for both
these solutions, finally, it is the circumstance that - unlike the justification
procedures for the inferences in non-introductory form in proof-theoretic se-
mantics based on the notion of valid argument - the operations on grounds

195



are defined from grounds to grounds.

4.2.2 For a development of the theory of grounds

In addressing the recognizability problem, Prawitz discarded as a bearer of
regressions, the idea that an inference should produce not only a ground for
its conclusion, but also a ground for its same validity. The only way out,
the Swedish logician suggested, would be that to authorize only inferences
that produce evidence for the conclusion, without it being necessary to rec-
ognize this circumstance. But a solution of this type is equivalent to placing
restrictions on the inferences that the theory of grounds validates and, for
the way in which the notion of inferential act is conceived, on the opera-
tions on grounds associated with such acts; since the critical operations are
the non-primitive ones, moreover, the proposal is equivalent to set a limit
on the possible equations for the definition of operations on grounds. This
idea, which in Explaining deductive inference is only feared, and which, as we
have seen, also concerns the problem of validity as independent from infer-
ences in terms of limitation of operations on grounds to extraction operations
(Prawitz 2018a, 2019), is more substantiated in The seeming interdependence
between the concepts of valid inference and proof :

consider the case when φ is [...] defined as a unary operation
from constructions for a proposition α by saying that φ(g) is the
construction denoted by the term exhibited by a certain Turing
machine when it stops after having been started with a term that
denotes g, and assume that the output of the Turing machine is
always a term denoting a construction for the proposition β when
the input is a term denoting a construction for α. Then, in fact,
φ satisfies the conditions imposed on operations, but since [...] it
may not be obvious from its definition that it does so, nobody
would regard φ(T ), where T is known to be a term denoting a
ground for asserting α, as a ground for asserting β before it was
proved that the Turing machine always behaves as assumed. A
restriction on the defined operations used in forming construc-
tions for propositions is consequently required if the finding of a
construction for a proposition is to be considered a ground for
the assertion of the propositions. (Prawitz 2018b, 10)

The passage is interesting for at least two reasons. First of all, Prawitz takes
into account a specific way of understanding operations on grounds. An
operation on grounds of operational type
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αB β

is defined in terms of Turing machines: for each term T that denotes a ground
g, φ(g) is the construction denoted by the output of a Turing machine on
input T , so that, if g is a ground for ` α, φ(g) is a ground for ` β. On account
of the halting problem (Turing 1936), an approach of this type is obviously
unsatisfactory, and indeed reveals the need for restrictions on definitions and
on the defined operations. However, there is another remarkable point, of
a more general and, as it were, methodological relevance. By proposing
a specific way to characterize definitions and defined operations, proving
then their inadequacy and finally suggesting the identification of appropriate
restrictions, Prawitz seems to indicate the main road along which to develop
further his theory of grounds: a general, formally rigorous theory of the total
constructive operations which, starting from the grounds for the elements in
the domain of the intended operational type, produce grounds for the element
in the codomain of the intended operational type. As proof of this, Prawitz
reaffirms that

the concept of proof should be defined in such a way that it
becomes decidable whether something is a proof, but how this
is to be achieved is seldom indicated, except of course in the
case of formal proofs. The terms that denote constructions are
supposed to be typed, and whether an expression has a type
is decidable, but the rules for typing already assume that the
demands put on the defined operations are fulfilled. What is
needed in order to make it decidable whether something is a proof
within the conceptual framework discussed here is a method to
decide whether a proposed definition of an operation fulfills the
demand that it is put on operations on constructions, (Prawitz
2018b, 10)

and concludes by emphasizing the need - which manifests itself at this point
as priority for a possible, appropriate solution to the recognizability problem
- of

a general criterion for when a proposed definition of an opera-
tion on grounds guarantees that what is defined is really a total
operation of the kind demanded here. (Prawitz 2018, 10)

A precise indication of the restrictions that make the theory of grounds
able to respect the epistemic presuppositions on which it is based, cannot fail
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to go through a general theory of operations on grounds, and of the equa-
tions that fix their behaviour. It would then become possible to indicate
rigorously which operations and defining equations can be in principle taken
into account, and therefore to have a clearer idea of the problems of recog-
nizability and validity as independent from inferences. To outline punctually
the class of operations and equations involved would allow in other words to
give a more precise content to questions such as: what are the operations
we are to recognize as capable of producing a ground of a certain type start-
ing from grounds of a certain type, and what are the equations we are to
be able to recognize as defining operations with a certain operational type?
What operations, when associated with appropriate inferences, make them
valid not by virtue of a bond between premises and conclusion, but only
by virtue of the defining equations? On such a general framework we could
then, as a further refinement of the analysis, introduce appropriate restric-
tions; namely, to identify, within a wider class of operations on grounds and
of the related defining equations, a subclass that respects certain criteria or
parameters, and that employs basic formal resources more satisfying, more
restricted and, therefore, more easily manageable - for example, by requir-
ing that the operations on grounds should be defined by means of equations
in which only the elements of a well delimited set of default operations oc-
cur, not differently from the way it occurs, for example, with the recursive
functions in Gödel’s approach (Van Dalen 1994).

In the next part of this work - chapters 5, 6 and 7 - we put forward a
first development proposal along the lines just indicated. Our goal will be a
formalization of the theory of grounds that serves as a general scheme for a
possible, complete systematization of the theory itself; though not penetrat-
ing specifically into the possible restrictions to be adopted, we will provide
a general context in which such restrictions can then be inserted, as well as
definitions and related results in order to frame and dealing appropriately
with operations on grounds and equations. On the latter we will not impose
any limit, except that of, respectively, being or returning total constructive
operations, but we will indicate the way in which these objects, even in
the unconstraint way with which we introduce them, must, in our opinion
interact with some notions on which, given Prawitz’s indications, we have
considered appropriate to focus our attention.

The first, obvious passage to complete is to provide a general definition of
the notion of operational type; furthermore, we will identify some classes of
operational types and describe precisely the behaviour of arbitrary operations
on grounds associable with the types of one or the other class. Each of these
operations will be understood as defined by an appropriate group of equations
that set their behaviour; the equations are by assumption such as to identify
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total constructive operations from (operations on) grounds to (operations
on) grounds. This seems in allegiance with what Prawitz himself maintains;
as we have already shown, the Swedish logician points out how an operation
on grounds is set by establishing the type of domain and codomain, and
an equation that, according to the operational type thus obtained, shows
constructively what values the operation produces in the codomain when
computed on the values in the domain. But that is not all.

In Explaining deductive inference, Prawitz suggests in fact to develop lan-
guages of grounds consisting of terms that denote grounds and operations on
grounds; he also indicates quite accurately and with clear examples, how
the alphabet of a language of grounds should be made - ground-variables,
individual constants, operational symbols for primitive and non-primitive
operations - and how, starting from this language, the various terms can be
constructed. All the elements of the alphabet, and the terms themselves, are
to be understood as typed starting from formulas of a background language,
and as related to a certain set of derivations in an atomic system of reference.
In light of this, it will therefore prove necessary first to define rigorously the
notion of base for a language of grounds - the bases provide, so to speak,
the necessary material for typing and for the elementary deductive appara-
tus. Once this is done, we can introduce a general notion of language of
grounds; each of the languages identified by our definition will consist of a
typed alphabet of the kind indicated by Prawitz, and of a set of typed terms
constructed from the elements of this alphabet. A guiding intuition in this
phase of the analysis will be the following: in order to be able to be defined
as such, a language of grounds will necessarily have to contain, among the
elements of its alphabet, at least all the individual constants corresponding
to all the closed atomic derivations in the atomic system of reference, and at
least all the operational symbols corresponding to the primitive operations
associated with the different logical constants, as well as, obviously, all the
ground variables. Although arbitrary, the choice is motivated by two main
reasons.

The first, of a philosophical nature, is that a language of grounds must
speak, precisely, of grounds, and since the latter are defined in terms of
primitive operations, it would be strange - although possible - that a language
which speaks of grounds does not contain operational symbols corresponding
to the operations required to define the grounds themselves. As for the second
reason, it is instead more technical, and is linked to the formal systems which,
in relation to each of the languages of grounds we define, we will develop in
Chapter 6. In such systems it must be possible to express the idea that a term
of which the outermost operational symbol corresponds to a non-primitive
operation is "equal" to a term, of the same type as the starting one, of
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which the outermost operational symbol corresponds instead to a primitive
operation - and, in the case of closed terms, equality is to be actually provable.
Now, if the language on which the system acts lacked the operational symbols
corresponding to the primitive operations, it would be impossible to capture
the idea of equality - and, obviously, make proofs available on the closed
terms.

Since the terms of a language of grounds must denote grounds and oper-
ations on grounds, among our objectives there will also be that of defining
rigorously the notion of denotation, understood - drawing inspiration from
the interpretative functions used in model-theory - as a function which ap-
propriately associates the terms of the language of grounding with grounds
or operations on grounds. However, for its part, the concept of denotation
must be articulated with respect to another essential feature which, as we
have observed, Prawitz refers to languages of grounds: a language of grounds
must be open to the introduction of new operational symbols. But how to
capture this character of openness?

Our proposal will move here in the direction of a definition of the notion
of expansion of a language of grounds; the general idea is that, given a lan-
guage of grounds with a certain set of individual constants and operational
symbols, its expansion is obtained by adding to it either new individual con-
stants, which denote new derivations in a larger atomic system (possibly in
a broader background language), or new operational symbols, which denote
new operations on grounds. To the general concept of expansion of a lan-
guage of grounds we will apply then some distinctions that identify features
that we consider relevant; the expansion may be primitive or non-primitive,
depending on whether there is or not the addition of new individual con-
stants (i.e., an actual change of the atomic system of reference - possibly,
of the background language - and consequently of the base) or new primi-
tive operational symbols, or conservative or non-conservative, depending on
whether the new linguistic resources of the expansion allow or not to express
grounds that were not expressible in the starting language (i.e., depending
on whether some of the terms of the expansion denote or not grounds that
were not denoted by any of the terms of the starting language).

Languages of grounds, denotation and expansions - with all the notions
and the related results - will be the subject of Chapter 5. The formal lan-
guages considered here, however, will have a fundamental limitation: they
contain only terms whereas, when generally speaking of a formal language, it
comes natural to think of formulas that express properties which the terms
can enjoy or not. Nevertheless, what are, in the case we are interested in here,
these properties? Already at the end of Chapter 5, and then more widely in
Chapter 6, we will identify two of them: the fact that a term denotes or not
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a ground, and the fact that two terms are equal to each other or not. Now, if
in a sense it can be clear from now, albeit only in an approximate way, what
means the fact that a term denotes a ground, this idea of denotation must
be developed if we want to get a clearer idea of what we mean when we say
that two terms may or may not be the same, namely, of what we mean, in
the framework that we will be proposing, by equality among the terms of a
language of grounds.

A term will denote a ground to the extent that the operational symbols of
which this term consists are combined in such a way that the operations on
grounds to which they correspond allow a computation, the result of which is
a ground - it goes without saying that since grounds are defined starting from
primitive operations applied to objects that denote grounds for judgments or
assertions of the appropriate type, the computation must have as output an
object constructed by applying a primitive operation to objects that denote
grounds for judgments or assertions of an appropriate type. To say that two
terms are equal, then, means saying that two terms denote the same ground
- i.e., that the computation resulting from both produces as a result the same
object constructed by applying a primitive operation to objects that denote
grounds for judgments or assertions of the appropriate type. The enrichment
of the grounding language via binary predicates "T denotes a ground for ` α"
and "T and U are equal" - together with the addition of appropriate first-
order logical constants - will allow us to have a language in which to express
(circumstances relating to) the important properties identified above.

Obviously, it is one thing to have a language in which certain (circum-
stances relating to the) properties in question are expressed, another is to
have a formal tool that allows to establish whether these properties hold or
not. Some of the formulas of the enriched language of grounds will hold and
others will not. But how to distinguish the ones from the others? A way to
answer to this question is obviously to go back to the notion of denotation
and, extending this notion from the terms to the formulas, to focus on the
truth of the latter; a formula that expresses that a certain term denotes a
ground is true if, and only if, the denotation of the term is actually a ground,
while a formula expressing that two terms are equal is true if, and only if,
the denotation of the two terms is actually the same - and so on for the
other constants, depending on whether we want to use a classical semantics
or a constructive semantics. The road we will follow in Chapter 6, however,
will rather consist in providing a formal system in which some formulas are
derivable from an adequate set of inference rules - possibly under a certain
number of assumptions.

The introduction of formal systems of grounding, namely the possibility to
prove certain properties of denotation or equality of terms for grounds, in our
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opinion, has a double interest. First of all, that of making explicit, rigorous
and mechanically provable the implications of the background assumptions
of the theory of grounds. Once it is established that the latter is to be for-
malized by resorting to formal languages of which the terms denote grounds,
in the sense of being combinations of operational symbols, such that a com-
putation of operations on grounds to which these symbols correspond gives
as output a canonical object denoting a ground according to certain clauses,
it might be interesting to prove precisely and not ambiguously which compu-
tation is required to actually verify whether a term denotes a ground, which
terms have the same denotation, and which general laws apply to (classes of)
terms having a certain form, or operational symbols fixed by certain defining
equations. Moreover, since a formal system must be specified starting from
a well-defined set of rules, the development of formal systems for the various
languages of grounds will allow to identify clearly which deductive principles
are underlying the design of the theory of grounds. We will realize, for ex-
ample, how the philosophical interests that enliven Prawitz’s discourse - and,
above all, the importance that the Swedish logician attributes to the recog-
nizability problem - seem to make use of indispensable rules corresponding to
Dummett’s so-called fundamental assumption (Dummett 1991); in addition,
it will be possible to indicate clearly which parts two systems of grounding
for two different languages of grounds share, and where instead they differ.

From a general point of view, however, the introduction of formal systems
of grounding has a relevance similar to that of the definition of formal lan-
guages of grounds with associated denotation functions: to have a different,
and possibly fruitful, point of view on the problems of recognizability and
of validity as independent of inferences. But there is something else; both
languages of grounds, and systems of grounding will allow a deeper under-
standing of issues more closely related to the general semantic properties of
the theory of grounds, first of all the question of completeness which, as is
well known, is the subject of a famous conjecture elaborated by Prawitz in
Towards a foundation of a general proof theory (Prawitz 1973) - although
with a reference to proof-theoretic semantics focused on the notion of valid
argument - and proposed by him, in a different form, in An approach to gen-
eral proof theory and a conjecture of a kind of completeness revisited (Prawitz
2014). We will deal with the whole of these issues in Chapter 7.

According to what we have said so far, it seems to us that a formalization
of the theory of grounds has also an intrinsic interest. To better understand
the problems that this theorys poses, we believe we need to know what it
is, or how it can be further refined; but to understand in detail what the
theory of grounds is, and how it can be formally systematized, is also in and
of itself important, if only for the originality and progress that, in reference
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to certain essential problems of logic, and as we hope to have already amply
proved, Prawitz is able to obtain with this new approach.

4.3 Towards a formal approach to grounds
A full understanding of the formal apparatus which, starting from the next
section, we will attribute to the theory of grounds, requires in our opinion
the introduction of some technical tools, as well as a quick exposition of the
formalizations that Prawitz has developed over the years, and that result
similar or conceptually linked to the ground-theoretic approach. As for the
first point, we will refer to the so-called Curry-Howard isomorphism - for the
exposure of which we will use, in addition to The notion formula-as-types
of construction by William Alvin Howard (Howard 1980), Proofs and types
by Jean-Yves Girard, Paul Taylor and Yves Lafont (Girard, Taylor & Lafont
1993) and, for some details, Lectures on the Curry-Howard isomorphism, by
Morten Heine Sørensen and Pawel Urzyczy (Sørensen & Urzyczyn 2006);
Prawitz’s aforementioned proposals are instead contained in Constructive
semantics (Prawitz 1970) and On the relationship between the Heyting and
Gentzen approaches meaning (Prawitz 2016).

4.3.1 The Curry-Howard isomorphism

Described for the first time in The formula-as-type notion of construction
(Howard 1980) with reference to the only constants ∧, → and ∀, and sub-
sequently also extended to the constants ∨, ∃ and ⊥, the Curry-Howard
isomorphism - named after its creators, Haskell Curry and Howard - iden-
tifies a deep connection between Gentzen’s system of natural deduction for
first-order intuitionistic logic IL - referred to in Section 2.5.1 - and what we
will call typed first-order λ-calculus. The interest of the relation is substan-
tially twofold: first, the isomorphism defines a bi-univocal correspondence
between derivations of IL and terms of the typed λ-calculus, offering an op-
erational interpretation of derivations; to such a bijection, which alone of
course is not naturally sufficient to guarantee isomorphism, an invariance of
normalization, moudulo the bijection, is added, together with the derived
properties - which, again in Section 2.5.1, we have seen proven by Prawitz
(Prawitz 2006) for IL.

In Section 3.2.2 we have said that, among the theories influenced by the
Curry-Howard isomorphism, there is Martin-Löf’ intuitionistic type theory.
In that section, we have also argued that one of the basic moves consists in
the adoption of the formulas-as-types conception. Therefore, referring here
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the same inspiration to the specific of the derivations in IL,

the rules of natural deduction then appear as a special way of con-
structing functions: a deduction of β on the hypotheses α1, ..., αn
can be seen as a function t[x1, ..., xn] which associates to elements
ai ∈ αi a result t[a1, ..., an] ∈ β. (Girard, Taylor & Lafont 1993,
11)

In order to substantiate the idea of translating IL derivations into func-
tional expressions, it is necessary to provide a formal language in the which
functional expressions can be expressed rigorously. This language will be
referred to a first-order logic language L, and its types will be the elements
of the set FORML ∪ {0} with 0 constant type for terms of L. The language
will have individual typed variables, and functional symbols D, for pair-
formation, Di (i = 1, 2), for pair-projections, injβi (i = 1, 2), for formation
of a term of type α ∨ β (i = 1) or β ∨ α (i = 2) from a term of type
α, case [α, β] t1 of t2, for proof by cases on a term of type α ∨ β, λ, for
λ abstraction on (possibly typed) individual variables, application of a λ-
abstraction, and let [yj, α(yj)] t1 in t2, for proof on a specific t1 on a term
t2 of type ∃xα(x).

The analogous of the maximal formulas in the derivations of IL is, in the
typed λ-calculus, the concept of redex. A redex is a term of such calculus of
one of the following forms:

• Di(D(t1, t2)) (i = 1, 2)

• case [α, β] injβi (t1) of t2 or t3 (i = 1, 2)

• (λξα.t1)t2

• (λx.t)k

• let [x, α(x)] D(k, t1) in t2

t is said in normal form if, and only if, it does not contain redexes. Some
equations fix the computation of terms in non-normal form:

Di(D(t1, t2)) = ti (i = 1, 2)

case [α, β] injβ1 (t1) of t2 or t3 = t2[t1/ξ
α]

case [α, β] injβ2 (t1) of t2 or t3 = t3[t1/ξ
α]

(λξα.t1)t2 = t1[t2/ξ
α]
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(λx.t)k = t[k/x]

let [x, α(x)] D(k, t1) in t2 = t2[t1/ξ
α(x)]

As can be seen, these equations reflect in the typed λ-calculus Prawitz’s
reductions for IL. And similarly to what happened there, it is possible to
ensure that the result of the computation of a redex of type α with a set
of free typed variables Γ is still a term of type α with a set of free typed
variables Γ∗ ⊆ Γ; it is sufficient to adopt an analogue of Convention 3, of
Section 2.5.1, after having introduced a distinction between free and bound
variables, and having established that x in λx.t and let [x, α(x)] t1 in t2 is
the proper variable of, respectively, λ-abstraction and let/in.

Convention 10. In every t (1) free and bound variables are all distinct -
property (FB) - and (2) proper and non-proper variables are all distinct, and
each proper variable is used in at most one application of λ-abstraction or
let/in - property (PN).

Strictly speaking, the typed calculus we have outlined is a functional
equivalent of ML; in order to be able to complete it to IL, we must find the
way to express (⊥). Therefore we add ⊥α (α ∈ FORML) to the operational
symbols, in such a way that, for each t of type ⊥, ⊥α(t) has type α. With
this modification, we could also have redexes of the type

• Di(⊥α1∧α2(t)) (i = 1, 2)

• case [α, β] ⊥α∨β(t1) of t2 or t3

• ⊥α→β(t1)t2

• ⊥∀xα(x)(t)k

• let [x, α(x)] ⊥∃xα(x)(t1) in t2

about which, however, we avoid worrying by resorting to an analogue of the
theorem quoted, regarding the corresponding case of the derivations of IL,
again in Section 2.5.1: for every t1 of type α with set of free typed variables
Γ, there is t2 of type α with set of free typed variables Γ∗ ⊆ Γ such that, for
every application of ⊥β in t2, β ∈ ATOML. At this point, we can enunciate a
theorem of normal form.

Theorem 11. For every t1 of type α with set of free typed variables Γ, there
is t2 in normal form of type α with set of free typed variables Γ∗ ⊆ Γ.
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More precisely, and similarly to what was done in Section 2.5.2.1 for
the arguments in the more general framework of Prawitz’s proof-theoretic
semantics, we can talk about normalizability. t1 immediately reduces to t2
if, and only if, t2 can be obtained by eliminating a redex from t1 through the
above mentioned equations. t1, ..., tn is said a reduction sequence if, and only
if, for every i ≤ n, ti immediately reduces to ti+1. t1 reduces to t2 if, and
only if, there is a reduction sequence that begins with t1 and ends with t2.
t1 is called normalizable if, and only if, there is t2 in normal form such that
t1 reduces to t2. Hence, Theorem 11 can be reformulated saying that each t
is normalizable.

The frequent analogies so far referred to between IL derivations and terms
of the typed λ-calculus are not random: the Curry-Howard isomorphism, in
fact, allows to obtain the abovementioned properties of the terms - includ-
ing normalization - as derived properties of a bijection with corresponding
derivations of IL, and vice versa. The bijection can be defined by induction
on the complexity of ∆ ∈ IL:

α
ι

=⇒ ξα

∆1

α

∆2

β (∧I)α ∧ β
ι

=⇒ D(ι(∆1), ι(∆2))

∆
α1 ∧ α2 (∧E,i), i = 1, 2αi

ι
=⇒ Di(ι(∆)), i = 1, 2

∆
αi (∨I), i = 1, 2α1 ∨ α2

ι
=⇒ injαji (ι(∆)), i, j = 1, 2, i 6= j

∆1

α ∨ β

[α]

∆2

γ

[β]

∆3

γ (∨E)γ

ι
=⇒ case [α, β] ι(∆1) of ι(∆2) or ι(∆3)

[α]

∆
β (→I)α→ β

ι
=⇒ λξα.ι(∆)
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∆1

α→ β
∆2

α (→E)β

ι
=⇒ ι(∆1)ι(∆2)

∆(x)

α(x)
(∀I)∀yα(y/x)

ι
=⇒ λy.ι(∆(y/x))

∆
∀xα(x)

(∀E)
α(k)

ι
=⇒ ι(∆)k

∆
α(k/x)

(∃I)∃xα(x)

ι
=⇒ D(k, ι(∆))

∆1

∃yα(y/x)

[α(x)]

∆2(x)

β
(∃E)β

ι
=⇒ let [x, α(x)] ι(∆1) in ι(∆2(x))

∆
⊥ (⊥)α

ι
=⇒ ⊥α(ι(∆))

The untyped variables in terms of the typed λ-calculus should be understood
as indexed, and doing the same thing (as is usual, after all) for the assumption
in the derivations of IL, it is easy to prove that ι is injective and surjective
and, therefore, that it is a bijection. Isomorphism is guaranteed by the fact
that ∆1 immediately reduces to ∆2 if, and only if, ι(∆1) reduces immediately
to ι(∆2) – though it has to be said that, beyond normalization, isomorphism
also relates to other properties, which we will omit here. So,

the process of reducing a derivation of IL to its normal form can
be seen as the process of computing a term. (Usberti 1995, 52)

The basic idea of the Curry-Howard isomorphism is, as you can easily notice,
essential for the theory of grounds. In a sense, we can say that the latter
illuminates an issue that may arise at this point spontaneously. Isomorphism
holds between a formal system and a closed λ-calculus; on the other hand, we
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have seen that the theory of grounds - as already proof-theoretic semantics
- sets no limit on the type of usable inferences in the argument structures,
thus returning a sort of formal system open to the addition of ever new rules.
The constructive character of each of these open languages, thus provides a
valid semantic basis with respect to the epistemic interests to which Prawitz
is oriented.

4.3.2 Constructions and translations

The article Constructive semantics, in which Prawitz anticipates – in a some-
what surprising way – the argument that he will then resume with the theory
of the grounds only many years later, dates back to 1970.

Constructive semantics revolves around two notions. The first, that of
typed construction object, determines a set having among its elements both
the formulas of a first-order logical language L – on a base B defined as in
Section 2.5.1, with relative Post system S and a set DERS of atomic derivations
- and those called by Prawitz constructions for these formulas, in the terms
of which to fix the meaning of the logical constants. The construction terms,
instead, belong to a formal language in itself, and denote the above con-
structions under a specific interpretation of the symbols occurring in them.
However, the initial definition is that of type: the types will be 0 for terms
and formulas of L, and derivations of DERS, and 〈τ1, τ2〉 or τ1(τ2), with types
already acquired τ1 and τ2, for, respectively, pairs and functions from objects
of type τ1 to objects of type τ2. Terms, formulas, atomic derivations, pairs
and constructive procedures determine a set of typed construction objects;
the latter is first of all useful for establishing a typing of the formulas of L
- with the aim of establishing a correspondence between each formula of L
and each construction (term) for this formula.

• α : 0 for α ∈ ATOML

• α1 : τ1, α2 : τ2 ⇒ α1 ∧ α2 : 〈τ1, τ2〉

• α1 : τ1, α2 : τ2 ⇒ α1 ∨ α2 : 〈〈τ1, τ2〉, 0〉

• α1 : τ1, α2 : τ2 ⇒ α1 → α2 : τ1(τ2)

• α : τ ⇒ ∃xα(x) : 〈0, τ〉

• α : τ ⇒ ∀xα(x) : 0(τ)

Moreover, it becomes possible to establish inductively the notion ω is a con-
struction for α on B, indicated with C(ω, α,B):
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• α ∈ ATOML ⇒ ω ∈ DERS

• α is of the form α1 ∧ α2 ⇒ ω is of the form 〈ω1, ω2〉 with C(ω1, α1, B)
and C(ω2, α2, B)

• α is of the form α1∨α2 ⇒ ω is of the form 〈〈ω1, ω2〉, αi〉 with i, j = 1, 2,
i 6= j, C(ωi, αi, B), and ωj arbitrary object of type αj

• α is of the form α1 → α2 ⇒ ω is an object of type of α such that,
for every ω1 such that C(ω1, α1, B), C(ω(ω1), α2, B) [Prawitz takes into
account here also extensions B+ of B, but we will leave out this detail to
comply with the subsequent developments of proof-theoretic semantics
(Prawitz 1973)]

• α is of the form ∃xα(x)⇒ ω is of the form 〈t, ω1〉 with t ∈ TERML and
C(ω1, α(t), B)

• α is of the form ∀xα(x) ⇒ ω is an object of type of α such that, for
every t ∈ TERML, C(ω(t), α(t), B)

Given the previous definitions, it is easy to verify that C(ω, α,B) if,
and only if, ω and α are objects of the same type. We will say then that
α closed is constructively true on B if, and only if, it exists ω such that
C(ω, α,B); the same will apply for α open if, and only if, it exists ω such
that C(ω,CL(α), B). Therefore, generally speaking, α is constructively valid
if, and only if, α is constructively true on every B. We will say that α is
intuitionistically true on B if, and only if, α is constructively true on B
for B consistent; then α will be intuitionistically valid if, and only if, α is
intuitionistically true on each consistent B.

The construction terms are in this framework introduced by Prawitz in
order to prove that ML and IL - as in Definition 7 - are correct in terms of
construtive and intuitionistic validity. To do this, we need a formal language
with typed individual variables and functional symbols D, for pair formation,
Di (i = 1, 2), for projection on pair, λ, for λ-abstraction on typed individual
variables, application of a λ-abstraction, c, for a sort of "choice function" such
that c(t1, t2, t3, t4) = t1 if t3 = t4 and c(t1, t2, t3, t4) = t2 if t3 6= t4, S, for a sub-
stitution function such that S(t1, ..., tn, u1, ..., un, z) = z[u1, ..., un/t1, ..., tn].
With value of a term t we intend the term t∗ such that t = t∗; it is easy
to prove that, for each t, there exists a unique t∗, and furthermore that t
and t∗ always have the same type. Therefore, given α1, ..., αn, β formulas
of L with FV (α1) ∪ ... ∪ FV (αn) ∪ FV (β) = {y1, ..., ym}, we will say that
a term t is (intuitionistically) appropriate for α1, ..., αn ` β if, and only if,
(1) the free variables of t are a subset of {x0

1, ..., x
0
m, x

τ1 , ..., xτn}, with αi : τi
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(i ≤ n) and moreover (2) for every (consistent) base B on L, for every
t1, ..., tn, u1, ..., um objects on B, called z the term obtained from t by re-
placing xτi with ti and x0

i with ui, C(ti, S(y1, ..., ym, u1, ..., um, αi), B) (i ≤ n)
implies C(z, S(y1, ..., ym, u1, ..., um, β), B). Thus, if n = 0, t is intuitionis-
tically appropriate for α1, ..., αn ` β if, and only if, for every (consistent)
base B, C(t, CL(β), B). We can now prove that, if α1, ..., αn `ML[IL] β, there
is a term of the just described formal language which is (intuitionistically)
appropriate for α1, ..., αn ` β. As an easy corollary, if `ML[IL] α, then α is,
respectively, constructively or intuitionisticall valid: it is indeed ensured of
a term t appropriate for ` α - and hence such that C(t, CL(α), B) for ev-
ery (consistent) B. In conclusion, it seems to us important to make two
observations.

The first concerns the relation between the program elaborated by Prawitz
in Constructive semantics and that we find in the articles on proof-theoretic
semantics. Undoubtedly, the above terms of the formal language can be ex-
tended either, generalizing the Curry-Howards isomorphism, to encodings of
a certain class of valid arguments - in particular, valid arguments the valid in-
ferences (and inference rules) of which in non-introductory form are justified
by resorting exclusively to selection or composition of, and to substitution
in, subarguments - or to particular rewritings of a certain class of proofs -
obtained with limitations similar to the previous ones; it is also true that
constructions can be viewed as encodings of valid arguments, or rewriting of
proofs, in canonical form - despite the above restrictions. However, in Con-
structive semantics Prawitz clearly distinguishes the two notions: a construc-
tion is a typed object, as it were, always in canonical form, whereas a term is
a typed expression of a specific formal language that can be in canonical or
non-canonical form. There is nothing like that in proof-theoretic semantics
and, from this point of view, Constructive semantics is particularly interest-
ing with respect to the proofs-as-chains and recognizability problems, and
with respect to their possible solution. However, it should also be noted that
in Constructive semantics it is missing, or at least it is not explicitly formu-
lated, any mention of the problem of (valid) inferences; it becomes therefore
significant to emphasize how the theory of grounds resumes, with particular
reference to this problem, many of the ideas of Constructive semantics.

The last point concerns the formal language that we have defined. It
is designed for the definition of terms suitable to denote constructions, and
this in view of a proof of correctness of ML and IL in terms of validity, re-
spectively, constructive or intuitionistic. To do this, a closed language, in a
certain sense equivalent to the typed λ-calculus from the previous section, is
sufficient. What we have already observed on that occasion is therefore valid;
the general character of the theory of grounds requires to take into account
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open languages. With respect to this issue, of particular significance is an
article in which Prawitz elaborates a translation of valid arguments in BHK
proofs, and vice versa.

As we have seen, Prawitz’s proof-theoretic semantics referred to in Section
2.5 has, among others, two important sources of inspiration: on the one
hand, BHK semantics and, on the other hand, Gentzen’s suggestion that
the introduction rules establish, or more weakly mirror, the meaning of logic
constants - whereas the elimination ones are univocal functions, and as such
justifiable, of the corresponding introductions. This dual matrix corresponds
to the parallel plans on which, in Prawitz’s framework, the notion of proof
can be investigated: as an abstract object by virtue of which propositions or
sentences are correctly judged as true or asserted, or as a linguistic structure,
essentially inferential, dedicated to establishing the correctness of judgments
or assertions.

We have also said that Prawitz, in a sense, enriches the picture of the
BHK clauses, introducing the same distinction for proofs between canonical
and non-canonical cases which, in a natural way, applies in the case of valid
arguments; this, for its part, could give hope that the two approaches are not
only parallel, but even equi-extensional. More in detail, a non-canonical proof
could be made correspond to a valid non-canonical argument, understanding
the constructive functions that occur in the former as translations of the rules
that occur in the latter; therefore, to the inferences - or inference rules - in
a non-introductory form there will correspond applications of constructive
procedures - or constructive procedures - the behavior of which is fixed by
equations that translate into operational terms the reductions of the starting
rules.

This issue is dealt with in the articleOn the relation between Heyting’s and
Gentzen’s approaches to meaning (Prawitz 2016), in which Prawitz observes
significantly how

Gentzen was concerned with what justifies inferences and thereby
with what makes something a valid form of reasoning. These
concerns were absent from Heyting’s explanations of mathemat-
ical propositions and assertions. The constructions that Heyting
refers to in his meaning explanations [...] are mathematical ob-
jects [...]. They are not proofs built up from inferences. (Prawitz
2016, 5 - 6)

This conceptual difference, however, may not be so profound as to prevent
the translation of one approach into the other, and vice versa. According to
Prawitz himself, moreover, the differences
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do not rule out the possibility that the existence of such proofs
nevertheless comes materially to the same. For instance, a BHK-
proof of an implication α → β is defined as an operation that
takes a BHK-proof of α into one of β, and a closed Gentzen proof
of α → β affords similarly a construction that takes a Gentzen
proof of α into one of β [...]. Such similarities may make one
expect that one can construct a BHK-proof given a Gentzen proof
and vice versa. (Prawitz 2016, 6)

Prawitz then proposes to define a mapping from closed valid arguments
to BHK proofs and, vice versa, a mapping from BHK proofs to closed valid
arguments. The intention is that this mapping is, more strongly, a construc-
tive bijection: given a BHK proof, it is possible to construct a closed valid
argument that corresponds to it and, vice versa, from a closed valid argu-
ment we can extract an appropriate BHK proof. It should be pointed out,
however, that Prawitz’s translations here are referred to a notion of a closed
valid argument that is significantly different from that illustrated in Section
2.5.2.1; in addition, they also concern a notion of "constructive validity",
obtained by understanding intuitionistically the existential involved in the
definition of a closed valid argument, and a notion of "strong validity" that
we have omitted in this work, but that Prawitz had already introduced, al-
though in a different form, in the repeatedly mentioned Towards a foundation
of a general proof theory (Prawitz 1973). Without going into detail, we limit
ourselves here to summarize the results achieved by the Swedish logician:
(1) the translation from closed valid arguments to BHK proofs only works
when "valid" means "strongly valid" or "valid in a constructive sense"; (2)
the translation from BHK proofs to closed valid arguments only works when
"valid" does not mean "strongly valid". In conclusion, Prawitz is unable to
achieve a full equi-extensionality, showing on the contrary how the latter de-
pends in an essential way on the type of validity attributed to the argumental
structures.
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Part III

A formal theory of grounding
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Chapter 5

Languages of grounding

5.1 General overview
In this Chapter we identify a class of languages of grounding, namely for-
mal languages the terms of which express grounds or operations on grounds.
The link between terms, on the one hand, and grounds or operations on
grounds that they express, on the other, is specified through a notion of
denotation, defined as a function from languages of grounding to grounds
or operations on grounds. Since some limitative results show that, for each
language of grounding at least as powerful as Heyting first-order arithmetic,
there are grounds or operations on grounds denoted by no term, no language
of grounding, with the relative denotation function, can be called "definitive".
It is therefore necessary to introduce a notion of expansion of language of
grounding.

The project of this part of the analysis seems to be in line with the sug-
gestions of Prawitz; in his articles on the theory of grounds, and chiefly in
Explaining deductive inference (Prawitz 2015), it seems that the Swedish lo-
gician moves on the double level of a "universe" of grounds and operations
on grounds, and of terms that describe the elements of this "universe". The
overall focus of these writings is however specifically and mainly philosophi-
cal, so that the more strictly "mathematical" aspects, by acting, so to speak,
in the background, remain in an embryonic state. Undoubtedly Prawitz pro-
vides some clear and paradigmatic examples, but this seems to happen more
in the perspective of a substantiation of the general framework in which the
reflection is articulated, than with the purpose of a systematic development
of the formal context as such. Add to this the fact that the indications avail-
able in this sense leave open many and different options on how to continue
the discussion, and on how eventually to expand it. The definitions that we
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will gradually propose will be guided by some background intuitions, and
often accompanied by further definitions and related results that specify –
in our opinion significantly – the global framework. However, before going
into the formal discussion, and in order to provide the reader a better under-
standing of the reasons and goals that have informed our choices, we consider
it appropriate to provide an overview in which to summarize and anticipate
the subsequent reasoning.

5.1.1 From grounds to terms, through denotation

When we talk about grounds, we should keep in mind two basic ideas -
reasserted by Prawitz several times during his investigation. The first illumi-
nates and substantiates the understanding of the grounds as abstract objects.
A ground is what we must be in possession of when we judge or assert cor-
rectly; it is the reification of a mental state of justification for judgments or
assertions. The second concerns the understanding of the grounds as epis-
temic objects. A ground is obtained by performing certain operations; when
we deal with grounds, in order to say what they are and which they are, we
cannot exempt us from talking about the operations by which we pass from a
mental state of justification to another. This suggests that, strictly speaking,
the grounds are not the only objects of the correspondent theory; other, and
equally important objects are the operations on grounds. But grounds and
operations on grounds are notions inseparably related to each other.

5.1.1.1 Grounds, operations, judgements/assertions

A ground justifies a certain judgment or a certain assertion; it is the reifica-
tion of a mental state related to a well-determined judgment, or to a well-
determined assertion. In the same way, an operation on grounds allows us
to pass from grounds that justify certain judgments or certain assertions to
a certain judgment or to a certain assertion; the passage takes place from
a mental state of justification for a well-determined group of judgments or
assertions, to a well-determined judgment or to a well-determined assertion.
It therefore makes sense to talk about grounds for a specific judgment or a
specific assertion, and about an operation on grounds for a specific judgment
or a specific assertion on the base of other specific judgments or other specific
assertions. The link that is so established between grounds and operations on
grounds, on the one hand, and judgments or assertions on the other, allows
us to set more precisely the different types of grounds and operations on gro-
unds, and to clarify the link between the former and the latter. Obviously,
in order to make the investigation precise, well-founded and not circular, we
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need a starting point from which it can start.
From the perspective of what Schroeder-Heister (Schroeder-Heister 2008,

2012), and with him Kosta Došen (Došen 2015), have called dogma of the
primacy of the categorical over the hypothetical, the initial notion is that of
ground for a categorical judgment or assertion. Categorical judgments and
assertions involve propositions or sentences, which we will understand here
as expressed by closed formulas. In this case, the grounds will be fixed by
the clauses we have illustrated in Section 4.1.3.2 – and which will be resumed
below; in particular, on par with the proposition or sentence involved in the
judgment or assertion for which the ground is a ground, it will be a closed
object – the primitive operation for the main logical constant of the propo-
sition or sentence of reference is applied to objects, of which the linguistic
expression is devoid of individual variables or free ground variables, or binds
all the individual variables or ground variables free within the arguments
to which it is applied. Obviously, the fact that to the closed character of
a categorical judgment or assertion corresponds the closed character of its
ground depends on the fact that the justification of a categorical judgment
or assertion cannot be based on the reference to arbitrary individuals or on
assumptions ; if the ground must act as a justification, it will not have to
require individual variables or free ground-variables.

After having acquired the notion of ground for a categorical judgment or
assertion, we can introduce a first, elementary class of operation on grounds,
which we will call of first level. While the grounds for categorical judgments
or assertions are closed, a first level operation on grounds is an object that,
more generally, can apply to individuals in an appropriate domain, or to
grounds. In describing first-level operations, we will proceed gradually. We
will start from those that only apply to individuals, then we will pass to those
that only apply to grounds, and finally, as a combination of these first two
cases, we will discuss those that apply both to individuals and to grounds.
On the other hand, the values produced by these operations will always be
grounds.

In what follows, we will understand general judgements and assertions
as involving open formulas, and hence as having the form ` α(x1, ..., xn). A
ground for ` α(x1, ..., xn) is to be understood as a function f that associates
individuals from a reference domain D to grounds for ` α(k1, ..., kn), with
ki ∈ D (i ≤ n). If we indicate with Grα(k1,...,kn) the class of the grounds for
` α(k1, ..., kn), we will thus have

f : Dn →
⋃
k1,...,kn∈D Grα(k1,...,kn)

and
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f(k1, ..., kn) = g ⇔ g ∈ Grα(k1,...,kn)

The function will therefore have a linguistic expression with individual vari-
ables

f(x1, ..., xn)

such that, for every ki ∈ D (i ≤ n),

f(k1, ..., kn) ∈ Grα(k1,...,kn)

i.e., is a ground for ` α(k1, ..., kn). In this case, we will speak of an operation
of operational type

α(x1, ..., xn).

For general judgments or assertions, we have correctness if what has been
judged or affirmed is valid, depending on no assumption, for arbitrary individ-
uals corresponding to the free individual variables involved in the propositions
or sentences of reference; the grounds for general judgments or assertions can
be understood as functions of which the linguistic expressions involve exclu-
sively these individual free variables and which, when applied to individuals
in the reference domain, produce grounds for the categorical judgments or
assertions obtained by performing the same replacement in the propositions
or sentences of reference. Obviously, the fact that to the openness of a general
judgment or assertion, in the terms of the occurrence of only individual free
variables, corresponds the openness of its ground in terms of the occurrence
of only individual free variables, depends on the fact that the justification of
a general judgment or assertion is based on the reference to only arbitrary
individuals. Therefore, if the ground must act as a justification, its linguistic
expression will have to involve only free individual variables.

Then, we have hypothetical judgments or assertions, involving a proposi-
tion or sentence depending on other propositions or sentences, and hence hav-
ing the form α1, ..., αn ` β, for α1, ..., αn, β closed. A ground for α1, ..., αn ` β
is to be understood as a function f that associates grounds for ` αi (i ≤ n)
to grounds for ` β. If we indicate with Grαi , Grβ the class of the grounds for
` αi (i ≤ n) and ` β, respectively, we will thus have

f : Grα1 × · · · × Grαn → Grβ.

The function will therefore have a linguistic expression with typed variables
- that we have called, and will call in the sequel, ground-variables -
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f(ξα1 , ..., ξαn)

such that, for every gi ∈ Grαi (i ≤ n),

f(g1, ..., gn) ∈ Grβ

i.e., is a ground for ` β. In this case, we will speak of an operation on grounds
of operational type

α1, ...αn B β.

We have here correctness if what has been judged or affirmed is valid,
without the reference to arbitrary individuals, depending on a certain num-
ber of closed assumptions; the grounds for hypothetical judgments or as-
sertions can be understood as functions of which the linguistic expressions
involve exclusively free ground-variables, each of an appropriate closed type,
and which, when appropriately applied to grounds, produce grounds for the
dependent categorical judgment or assertion. Obviously the fact that to the
openness of a hypothetical judgment or assertion, in the terms of the depen-
dence of a certain proposition or sentence on other propositions or sentences,
corresponds the openness of their grounds in terms of the occurrence of only
free ground variables, each of the appropriate closed type, depends on the
fact that the justification of a hypothetical judgment or assertion refers to
closed assumptions. Therefore, if the ground must act as a justification, it
will have to involve only free ground-variables, each of the appropriate closed
type.

By combining hypothetical judgments or assertions with general judg-
ments or assertions, we obtain open-hypothetical judgments or assertions.
They involve a possibly open formula depending on other possibly open for-
mulas, and thus have the form α1, ..., αm ` β, for α1, ..., αm, β possibly open.
A ground for α1, ..., αm ` β is to be understood as a function f that operates
in the following way. Let D be our reference domain, and let {x1, ..., xn} be
the set of the individual variables occurring free in α1, ..., αm, β. Given a n-
tuple 〈k1, ..., kn〉 of elements of D, and given a m-tuple 〈g1, ..., gm〉 of grounds
such that gi is a ground for ` αi[k1, ..., kn/x1, ..., xn] (i ≤ m), f associates
to the pair 〈〈k1, ..., kn〉, 〈g1, ..., gm〉〉 a ground for ` β[k1, ..., kn/x1, ..., xn].
So, let us indicate with Grαi[k1,...,kn/x1,...,xn] the class of the grounds for `
αi[k1, ..., kn/x1, ..., xn] (i ≤ m), and given

Dn ×
⋃
k1,...,kn∈D(Grα1[k1,...,kn/x1,...,xn] × · · · × Grαm[k1,...,kn/x1,...,xn])

let us consider its subclass
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B = {〈〈k1, ..., kn〉, 〈g1, ..., gm〉〉 | gi ∈ Grαi[k1,...,kn/x1,...,xn], i ≤ m}.

We will therefore have

f : B →
⋃
k1,...,kn∈D Grβ[k1,...,kn/x1,...,xn]

and

f(〈〈k1, ..., kn〉, 〈g1, ..., gm〉〉) = g ⇔ g ∈ Grβ[k1,...,kn/x1,...,xn].

Observe that this case would have been sufficient to describe all the first-level
operations. Starting from it, indeed, we can obtain the other two by putting

{x1, ..., xn} = ∅ or {ξα1 , ..., ξαm} = ∅.

The function will therefore have a linguistic expression with individual and
ground-variables

f(x1, ..., xn, ξ
α1 , ..., ξαm)

such that, for every ki ∈ D (i ≤ m),

f(k1, ..., kn, ξ
α1[k1,...,kn/x1,...,xn], ..., ξαm[k1,...,kn/x1,...,xn])

is an operation of operational type

α1[k1, ..., kn/x1, ..., xn], ..., αm[k1, ..., kn/x1, ..., xn]B β[k1, ..., kn/x1, ..., xn]

that is, for every gj ground for ` αj[k1, ..., kn/x1, ..., xn] (j ≤ m),

f(k1, ..., kn, g1, ..., gm)

is a ground for ` β[k1, ..., kn/x1, ..., xn]. In this case, we will speak of an
operation of operational type

α1, ..., αm B β.

We have here correctness if what has been judged or affirmed is valid for
arbitrary individuals, corresponding to the free individual variables in the
propositions or sentences of reference, and dependent on a certain number
of possibly open assumptions. The grounds for hypothetical-general judg-
ments or assertions can be understood as functions of which the linguistic
expressions involve the free individual variables of the propositions or sen-
tences of reference, and free ground-variables of the appropriate type, and
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which, when appropriately applied to grounds (possibly on formulas in which
the free individual variables have been replaced with names of individuals of
the reference domain), produce a ground for the dependent (categorical or
general) judgment or assertion (with possible replacements of free individ-
ual variables with individuals from the reference domain). Obviously the
fact that to the openness of a hypothetical-general judgment or assertion, in
terms of the dependence on a certain formula possibly open on other formu-
las possibly open, corresponds the openness of their grounds in terms of the
occurrence of individual variables and free ground-variables of the appropri-
ate type, depends on the fact that the justification of a hypothetical-general
judgment or assertion is based on the reference to arbitrary individuals, and
involves possibly open assumptions. If the ground must act as a justification,
it will have to involve individual variables and free ground-variables of the
appropriate type.

Starting from the notion of operation on grounds of the first level, we can
outline a more complex class of operations on grounds, which we will call of
second level. In addition to individuals and grounds, these objects can also
apply to first-level operations on grounds.

Here, we have to take into account hypothetical, or general-hypothetical
judgments or assertions, where at least one of the assumptions, and pos-
sibly also the depending judgment or assertion, is again a hypothetical, or
general-hypothetical judgment or assertion. The general form will hence be
τ1, ..., τm ` τm+1, where τi (i ≤ m + 1) is either a formula, or a hypothet-
ical, or general-hypothetical judgment or assertion (we have the restriction
that, if τm+1 is a hypothetical, or general-hypothetical judgment or asser-
tion, the set of its assumptions is contained in the union set of the assump-
tions of all the τi, for i ≤ m). A ground for τ1, ..., τm ` τm+1 is to be
understood as a function f that operates in the following way. Let D be
our reference domain, and let {x1, ..., xn} be the set of the individual vari-
ables occurring free in the codomains of the τ1, ..., τm, τm+1. Given a n-tuple
〈k1, ..., kn〉 of elements of D, and given a m-tuple 〈g1, ..., gm〉 of grounds or
operations on grounds such that gi is a ground or an operation on grounds
of operational type ` τi[k1, ..., kn/x1, ..., xn] (i ≤ m), f associates to the pair
〈〈k1, ..., kn〉, 〈g1, ..., gm〉〉 a ground or operation on grounds of operational type
τm+1[k1, ..., kn/x1, ..., xn]. Thus, if we indicate with Grτi the class of the gro-
unds or of the operations on grounds of operational type τi (i ≤ m), we
proceed in the same way as above, by singling out a corresponding subclass
B of

Dn ×
⋃
k1,...,kn∈D(Grτ1[k1,...,kn/x1,...,xn] × · · · × Grτm[k1,...,kn/x1,...,xn]).

The fact that only the individual variables in the codomains are mentioned
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depends on the fact that, in operations of this kind, the arguments may be
operations on grounds with any domain whatsoever - hence, the variables
of the domains may not be actually there. In conclusion, we will have a
linguistic expression

f(x1, ..., xn, ξ
τ1 , ..., ξτm)

and we will speak of an operation of type

τ1, ..., τm B τm+1.

It applies what we have said about the operations on grounds of first level
related to individual variables and ground-variables, although we have to bear
in mind that, in this case, some assumptions could in turn be hypothetical-
general judgements or assertions.

Some operations on grounds may bind individual variables, in which case
the linguistic expression of the operation will not involve the individual vari-
ables that it binds involved in the judgment or assertion of which it is ground,
and the dependent judgment or assertion will not contain any of the bound
individual variables, or it will contain them as individual variables universally
quantified. An operation on grounds that binds individual variables will be
subject to a restriction similar to that on the introduction rule for ∀ or of the
elimination rulw for ∃ in Gentzen’s natural deduction systems. More gener-
ally, operations on grounds are subject to restrictions that follow those on
the rules for the quantifiers in Gentzen’s natural deduction systems, related
to the proper variables (introduction of ∀ and elimination of ∃) and to the
being free of a term for a variable in a formula (introduction of ∃ and elim-
ination of ∀). Some operations on grounds may also bind ground-variables,
in which case the judgment or dependent assertion will involve a judgment
or assertion that is no longer dependent on the assumptions corresponding
to the type of the bound ground-variables.

In our description of the various kinds of operations, we have so far only
mentioned their domain and codomain. However, the operations that we will
deal with, are not to be understood as functions in a standard set-theoretic
sense, i.e., as laws that associate, without further specifications, elements
of the domain to elements of the codomain. A ground-theoretic operation
is also determined by another parameter, namely, by equations that defines
it, by showing how the arguments in the domain are "computed" by the
function, and hence how the value of the function on those arguments can be
obtained, and which this value is. In addition, the "computation" instruction
exhibited by the equation must be such that the function it defines is con-
structive. Through the equation, it must therefore be possible to effectively
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"compute" the function on every argument of the domain, to get thereby the
corresponding argument in the codomain.

The notion of second-level operation on grounds requires that of first-level
operation on grounds, and the latter in turn requires the notion of ground
for categorical judgments or assertions. Therefore, we might think that, in
giving the clauses that fix the notion of ground for categorical judgments or
assertions, there is no need to resort, when proceeding inductively, to notions
other than that we intend to fix. However, as we have seen in Section 4.1.3.2,
this is not the case, since the definition of ground for categorical judgments
or assertions of the form α → β or ∀xα(x) requires the notion of first-level
operation on ground as ground for, respectively, hypothetical judgments or
assertions of the form α ` β, and general judgments or assertions of the
form α(x). Now, if it is really true that the notion of first-level operation on
grounds is conceptually posterior to that of ground for categorical judgments
or assertion, it is also true that the second cannot be defined without resorting
to the first. However, the overall definition is not circular, and this is because
the clauses proceed via simultaneous recursion - taking advantage of the fact
that primitive operations concern the passage from judgments or assertions
which involve formulas of lower logical complexity to judgments or assertions
that involve formulas of greater logical complexity. Therefore, in order to
know what a ground is for α → β we need to know what a ground is for
α ` β, and to know this we need to know what is a ground for ` α and what
is a ground ` β; in the same way, in order to know what a ground is for
∀xα(x), we need to know what a ground is for α(x), and to know this we
need to know what a ground is for ` α(k), for k individual in the reference
domain.

5.1.1.2 Denotation of terms

The languages of grounding that we will be developing will consist of terms
to be understood as "names" of some of the "inhabitant" of our "universe".
The terms are typed on a first-order logical language, related to a base, and
starting from a similar typing of the elements of the alphabet. When defining
the denotation, we will follow the following general scheme: a closed term of
type α denotes a ground for the categorical judgment or assertion ` α; an
open term with only free individual variables x1, ..., xn of type α(x1, ..., xn)
denotes a ground for the general judgment or assertion α(x1, ..., xn), namely
an operation

f(x1, ..., xn)

of operational type
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α(x1, ..., xn);

an open term with only ground-variables ξα1 , ..., ξαn of type β denotes a
ground for the hypothetical judgment or assertion α1, ..., αn ` β, namely an
operation on grounds

f(ξα1 , ..., ξαn)

of operational type

α1, ..., αn B β;

an open term with free individual variables x1, ..., xn and free ground-variables
ξα1 , ..., ξαm of type β denotes a ground for the general-hypothetical judgment
or assertion α1, ..., αm ` β, namely an operation on grounds

f(x1, ..., xn, ξ
α1 , ..., ξαm)

of operational type

α1, ..., αm B β.

The second-level operation on grounds are denoted by no term, since the
languages of grounding do not include variables typed on first-level operations
on grounds (see Prawitz 2015).

5.1.1.3 A summary scheme

To sum up and clarify what we have been saying so far, we propose a summary
scheme, showing how the objects of our "universe" are associated, on the
one hand, to the judgments or assertions for which they are grounds, and on
the other, to the terms of the languages of grounding. The schema will be
accompanied by some additional remarks, that will serve to introduce us to
the following sections.

Act Object Term
Categorical ` α Closed ground g Closed of type α

General
` α(x1, ..., xn)

Operation on grounds
f(x1, ..., xn)
of operational type
α(x1, ..., xn)

Open of type
α(x1, ..., xn)
with free variables
x1, ..., xn
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Hypothetical
α1, ..., αn ` β

Operation on grounds
f(ξα1 , ..., ξαn)
of operational type
α1, ..., αn B β

Open of type β
with free variables
ξα1 , ..., ξαn

General-hypothetical
α1, ..., αm ` β

Operation on grounds
f(x1, ..., xn, ξ

α1 , ..., ξαm)
of operational type
α1, ..., αm B β

Open of type β
with free variables
x1, ..., xn
and ξα1 , ..., ξαm

General hypothetical
τ1, ..., τm ` τm+1

for some τi
general-hypothetical
(i ≤ m, possibly
also i = m+ 1)

Operation on grounds
f(x1, ..., xn, ξ

τ1 , ..., ξτm)
of operational type
τ1, ..., τm B τm+1

None

Table 5.1: Acts, objects and denoting terms

It is now worthwhile making three observations. First of all, we anticipate
that the impossibility to express second-level operations will be overcome by
attributing denotation to the operational symbols for the construction of
terms. Indeed, denotation of terms is defined inductively, on the basis of
a denotation function for the elements of the alphabet of the language of
grounding. In the alphabet, in turn, we will have operational symbols typed
on operational types for first-level operations, depending on the operations
that such symbols are meant to express. If the symbol binds ground-variables
on the index i, the denotation function for the alphabet will assign to it a
second-level operation. The i-th assumption of the operational type of this
operation is a hypothetical or general-hypothetical judgment or assertion
with as assumption the assumption typing the bound ground-variable, and
with as depending judgment or assertion the formula with index i in the op-
erational type of the symbol. In other words, if the type of the operational
symbol has β as i-th assumption, and if the symbol binds the variable ξα
on the index i, the denotation of this symbol will be a second-level opera-
tion on grounds, the operational type of which has as i-th assumption the
hypothetical or general-hypothetical judgment or assertion α ` β. Alterna-
tively, we could have let the languages of grounding contain variables typed
on first-level operations on grounds. We shall actually pursue this strategy,
but only starting from Chapter 6, with reference to the formal systems that
we will develop therein. For the moment, we prefer to leave it aside, in order
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to avoid an excessive degree of complexity in languages of grounding and in
the definition of denotation.

The second observation concerns the general framework that we are in
process of outlining. Our "universe" is "inhabited" by: saturated grounds,
for categorical judgments or assertions; unsaturated grounds, that is, func-
tions defined on individual or grounds, for general, hypothetical, or general-
hypothetical judgements or assertions of first level, and functions defined
on individual, grounds and first-level operations on grounds for general, or
general-hypothetical judgements or assertions of second level. To this di-
chotomy there corresponds, at the linguistic level, the one between closed
terms, with no free individual or ground-variables, and open terms, where
we instead have free occurrences of individual or ground-variables. The rel-
evant notions for the unsaturated cases are defined by essentially resorting
to the saturated cases. That a first-level operation has a certain operational
type is explained by requiring that the operation gives the right saturated
value when applied to saturated arguments, and that a second-level operation
has a certain operational type is explained by requiring that the operation
gives the right unsaturated value of lower level when applied to unsaturated
arguments of lower level. As we will see when defining the denotation of the
elements of the alphabet and of the terms of the languages of grounding, this
line of thought applies also to the linguistic level. Given an open term, its
denotation will be established by referring to the saturated denotata of its
closed instances.

Thus, our point of view is strongly fregean (see in particular 1884, 1891,
2001). Frege’s objects are here our saturated grounds, whereas Frege’s func-
tions/concepts are our unsaturated grounds, that is, our operations from in-
dividuals, grounds and operations, to grounds and operations. On the other
hand, it seems to us that this standpoint is in line with the one that Prawitz
himself adopts, above all in his first ground-theoretic papers (Prawitz 2009,
2012a, 2013). As we said in Chapter 4, the expressions "saturated" and
"unsaturated", as well as the idea of grounds and their expressions being
closed/complete or open/incomplete, is present also in the earliest ground-
theoretic writings of the Swedish logician (the same conclusion seems to be
upheld by Tranchini 2014a, 2018).

This remark has, it seems to us, an important and deep consequence, con-
cerning the issue about the identity of the "inhabitants" of our universe, and
of the terms of the languages of grounding that denote these "inhabitants",
as well as the issue about the structure and the behavior of the equations
that define the operations on grounds. The saturated grounds can be said to
be identical when it is possible to show compositionally that their subparts
are such. Instead, the operations can be said to be identical when they have
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the same domain, and they produce the same saturated values when applied
to the same saturated arguments or, at the second level, when this property
holds for the unsaturated values generated out of equal unsaturated values.
Similarly, two closed terms are identical when they reduce or expand one
to another, whereas two open terms are identical when this property is pre-
served for all their closed instances. If we now focus on defining equations,
the latter will not in general fix an operation by showing to which operation,
or combination of operations, the first is equal. Rather, the equations show
which values the operations produce when they are applied to saturated val-
ues. Or better, an equation of the first kind will be admissible only under
previous recognition of the fact that definiendum and definiens produce the
same saturated values on the same saturated arguments or, at the second
level, the same unsaturated values of lower level on the same unsaturated
arguments of lower level. Hence, the approach we will adopt relatively to the
identity of the operations and of the terms that denote them, will be, not in-
tensional, but extensional - to put it with Frege, our approach will not single
out a link between the properties of the operations and of their computation
instructions, but it will require to pass through their courses-of-values.

The circumstance that identity between operations, as well as identity
between terms denoting such operations, cannot be estabilished, or used in
definitions, without passing through the saturated/closed case, reminds of a
distinction between open derivations and open valid arguments, in the respec-
tive frameworks of normalization theory and proof-theoretic semantics - the
former being a theory of the structural properties of the derivations of a for-
mal system, obtained by means of reduction procedures, whereas the latter is
an investigation about the semantic properties of given argument structures,
obtained by means of appropriate justifications for non-introductory rules.
The normalizability of an open derivation is a property of the derivation as
such, and it can be obtained by applying syntactic operations to the deriva-
tion itself, without referring to its closed instances. Instead, the validity of
an open argument structure requires to look at the closed instances of the
structure, and to perform on them adequate operations, that respect semantic
desiderata concerning the whole class of valid arguments. Thanks to what
Schroeder-Heister (Schroeder-Heister 2006) calls the fundamental corollary
of normalization theory, the two notions are of course linked, and we could
even say that the second is a kind of "semantization" of the first. Though,
they are also conceptually distinct, and refers to two levels philosophically
as well as formally different. Both in this chapter, and in the next one, we
will face again with questions concerning identity. The similarity between
how this notion is framed within the theory of grounds, and the distinction
between open derivations and open valid arguments, will then be sharper - in
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particular, when discussing identity axioms occurring in the formal systems
developed in Chapter 6.

We conclude with the third observation, which also brings us back to
valid arguments in proof-theoretic semantics. Throughout the investigation,
for the purpose of giving a more concrete idea of what the ground-theoretic
operations are, and of how they behave according to their operational type,
we will appeal, although in a purely illustrative way, to proof-theoretic valid
arguments. In particular, we will adopt the following schema - see Section
2.5.2.1: a closed valid argument can be understood as representing (a term
that denotes) a saturated ground; an open valid argument or a valid inference
rule can be understood as representing (in the case of first-level operations,
a term that denotes) an unsaturated ground, that is, a first- or second-level
operation on grounds. It is however important to keep in mind that, while
the idea that valid arguments can be looked at as grounds or operations on
grounds is more or less unproblematic, it may not hold that every ground or
operation on grounds corresponds to a valid argument (see Prawitz 2016 for
limitative results going in this direction).

5.1.1.4 Proper and improper grounds

With reference to the last observation of the previous section, let us consider
the following argument structure:

1
[α(x)]

(→I), 1
α(x)→ α(x)

(→I)
(β(y)→ β(y))→ (α(x)→ α(x))

2
[β(y)]

(→I), 2
β(y)→ β(y)

(→E)
α(x)→ α(x)

It is an open valid argument for α(x)→ α(x), that involves the free individual
variables x, y. According to the schema above, we could therefore make it
correspond to an operation on grounds

f(x, y)

of operational type

α(x)→ α(x)

thereby having more individual variables than those actually occurring in
the operational type. The operation will then be denoted by a term with
free individual variables x, y, and hence with more free individual variables
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than those occurring in the operational type of the operation denoted by
the term. Of course, the observation applies equally well also to operations
defined on grounds or on operations on grounds, that is, operations whose
linguistic expression involves ground-variables or variables for operations -
as well as to terms with free ground-variables denoting first-level operations
defined on grounds.

The point at issue, thus, is that the schema above was too "simplified", as
it implies symmetries that do not necessarily hold between operational types
and arities of the respective operations. In general, an operation on grounds
may be such that its linguistic expression has to involve more free individual
variables than those occurring in its operational type; a term denoting this
operation may contain more free individual variables than those occurring
in the corresponding operational type. In spite of this difficulty, however,
throughout our investigation we will ensure that an operational type for a
first-level operation on grounds involves a set of free individual variables
that is contained in the set of the free individual variables occurring in the
expression of an operation on grounds having that operational type - apart
from bindings. In other words, if x occurs free in an operational type τ , then
the expression of any operation on grounds φ having type τ involves x, and
x occurs free in all terms (if any) denoting φ - apart from bindings. If the
set of the individual variables occurring free in τ coincides with those of the
expression of φ, we will say that φ is a proper ground for the judgment or
assertion corresponding to τ .

The setup we have adopted can be justified as follows: the open valid
argument for α(x) → α(x) exemplified above is not in normal form and,
through Prawitz’s reduction for → described in Section 2.5.1, it can be re-
duced to

1
[α(x)]

(→I), 1
α(x)→ α(x)

which can in turn be understood as an operation on grounds

f(x)

of operational type

α(x)→ α(x)

the expression of which involves all and only the individual variables occur-
ring free in its type. Likewise, the term denoting the operation that can be
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associated to the open valid argument can be reduced to a term denoting the
operation that can be associated to the reduced open valid argument, and
that contains only x as free individual variable. If we generalize this obser-
vation, it seems plausible to assume that operations on grounds relative to
more individual variables than those occurring in their operational type, and
corresponding terms (if any), contain some "detours", and can be reduced
to operations on grounds and terms that require all and only the individual
variables occurring free in the corresponding operational type. Therefore,
the operations

f(x, y) and f(x)

above, have both operational type

α(x)→ α(x)

and hence both constitute a ground for the general judgment or assertion
` α(x) → α(x); but while the second, according to our terminology, is a
proper ground, the first one will be called improper ground.

5.1.1.5 Total constructive functions

We have said that operations on grounds are functions. However, here we
have to reiterate more specifically what many times anticipated throughout
Chapter 4; the functions we are going to take into account are, more precisely,
total constructive. But what do we mean by this expression? In particular,
is it possible to refer our explanation to a more basic definition of the notion
of total constructive function?

To say that an operation on grounds is a total function, means that the
operation is a function that converges on all the values in the definition
domain. Let us give just two examples: an operation on grounds

f(x1, ..., xn)

of operational type

α(x1, ..., xm)

(m ≤ n) is a total function such that, for every sequence k1, ..., kn of indi-
viduals in the reference domain,

f(k1, ..., kn)
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is a ground for ` α(k1, ..., km): likewise, an operation on grounds

f(ξα1 , ..., ξαn)

of operational type

ξα1 , ..., ξαn B β

is a total function such that, for every gi ground for ` αi (i ≤ n),

f(g1, ..., gn)

is a ground for ` β. The reasoning proceeds analogous for first-level opera-
tions on grounds of other kinds, as well as, of course, for second-level oper-
ations on grounds. The case of totality is therefore quite easily manageable.
How are things, on the other hand, with the expression "constructive"?

From a general point of view, it would appear that, in the approach
adopted by Prawitz, constructiveness is to be understood as a sort of effec-
tive computability. An operation on grounds is a constructive function in
the sense that, whenever applied to specific values in the definition domain,
it is actually possible to compute it so as to obtain the output to which
those specific values correspond. After all, it is no coincidence if, both in
Prawitz, and in frameworks philosophically akin to the theory of grounds,
to the expression "constructive function" is often preferred that of "effective
procedure" - and in the present work, we do have often used these expressions
as synonyms; an effective procedure is a set of computation instructions such
that, by using those instructions, the computation can actually be carried
out.

Contemporary mathematical logic offers a series of devices that translate,
in formally rigorous terms, the concept of effectively computable function,
although often exclusively in the context of an investigation into the founda-
tions of mathematics: recursive functions developed by Gödel (Gödel 1931),
Peter (Peter 1931) and Stephen Cole Kleene (Kleene 1936) and, within the
framework of foundational investigations, Turing machines (Turing 1936 -
1937) and, finally, λ-calculus, which we have already dealt with, and intro-
duced by Alonzo Church (Church 1932). The three theories just mentioned
are provably equivalent, in the sense that they declare as effectively com-
putable the same functions; on this base, the so-called Church-Turing thesis
(Copeland 2017) affirms that a function is effectively computable if, and only
if, it is recursive, or equivalently if it is implementable in a Turing machine,
or equivalently if it can be translated into a λ-term. When linking a pre-
formal or intuitive concept, such as that of effectively computable function,
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to mathematically precise notions, such as those of recursive function, Turing
machine or λ-term, it is often said that the Church-Turing thesis is not sub-
ject to a proof or final confutation. However, we might be tempted to exploit
it here, in order to define more precisely the functions related to operations
on grounds.

We have said that the idea that an operation on grounds is a constructive
function can be equated with the idea that an operation on grounds is an
effectively computable function. Therefore, we could be led to understand
operations on grounds as, more specifically, recursive functions, or Turing
machines, or λ-terms; even if the latter are mainly related to a study of the
foundations of mathematics, the ideas underlying their definitions could be
adapted to the theory of grounds, so to have a well-defined notion of operation
on grounds, a well-describable class of operations on grounds. However, this
strategy appears problematic, on account of a circularity pointed out by Peter
in Rekursivitat und Konstruktivitat (Peter 1959).

Although Peter primarily refers to the BHK semantics, from one hand,
and to recursive functions, on the other, the central point of her argument is
that the definition of recursive function, and therefore definitions of equiva-
lent notions, such as those of a Turing machine or λ-term, cannot be employed
in a constructive determination of the meaning of the logical constants with-
out falling into vicious circles. The definitions, in fact, involve an existential
quantifier - in the case of recursive functions, as a condition of existence for
a scheme of equations that produces expected values, and as the existence
condition for the zeros of the µ-operator. Now, this existential quantifier can-
not obviously be read in non-constructive terms, since the characterization
of the meaning of the logical constants would result in that case inadequate;
but if the existential must be read in necessarily constructive terms, the
characterization would clearly be circular.

As part of the exposition of BHK semantics in Meaning and proofs: on
the conflict between classical and intuitionistic logic (Prawitz 1977), Prawitz
refers explicitly to Peter’s argument (quoting Peter 1959); the Swedish logi-
cian concludes that the notion of constructive function employed in the BHK
clauses for → and ∀ must be assumed to be primitive and not further ana-
lyzable. But also the clauses that fix what counts as ground for categorical
judgments or assertions are intended as a constructive determination of the
meaning of logical constants, and therefore also for them it applies the ar-
gument according to which it would be circular to specify the operations on
grounds, involved in the clauses related to→ and ∀ and intended as construc-
tive functions, in terms of recursive functions, Turing machines and λ-terms.
In light of this, in the course of our investigation we will assume therefore as
primitive the notion of constructive function. We will limit ourselves just to
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say that an operation on grounds must be constructive in the sense of being
actually computable, on the basis of the consideration made above.

Be that as it may, the character of computability of operations on grounds
will be guaranteed by conceiving the latter not as set-theoretic objects -
associations from (operations on) grounds that constitute their domain to
(operations on) grounds that constitute their codomain - but, in addition,
as defined by groups of equations that render them transformation methods ;
the equations have to be such as to actually provide a way to transform the
grounds or the operations on grounds in the definition domain into grounds
or operations on grounds into the codomain. In this sense, the operations
on grounds can be conceived as a generalization of the reduction procedures
used by Prawitz in the proof of the normalization theorems (Prawitz 2006) -
illustrated in Section 2.5.1 - or of the equations for the elimination of redexes
in typed λ-calculus - illustrated in Section 4.3.1.

5.1.2 Languages and expansions

The discourse conducted so far, concerning grounds and operations on gro-
unds, and the way in which the terms of our languages of grounding denote
such objects, constitutes the main road along which we intend the develop-
ment of the languages of grounding as such. We will proceed following the
points corresponding to the three sections below.

5.1.2.1 Atomic bases

Grounds and operations on grounds concern well-defined judgments or well-
defined assertions, and therefore specific formulas. A ground or an operation
on grounds will always be for a certain judgment or assertion, which can be
expressed also by saying that grounds and operations on grounds have type
certain (combinations of) formulas. Consequently, also the terms that denote
grounds and operations on grounds will be typed, and this starting from a
more elementary typing of the elements of the alphabet of the language of
grounding to which the terms belong. We call the language to which types
belong a background language. Here, a background language will always be
a first-order logical language.

As is well-known, a first-order logical language comprises first of all a
well-specified alphabet, starting from which we define recursively a set of
terms and a set of formulas. Beyond the usual logical constants of first-order
∧, ∨, →, ∀ and ∃, and an atomic constant ⊥ for the absurd, the alphabets
are characterized by a certain set of individual constants, a certain set of
relational symbols and a certain set of functional symbols – of which the
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first and the third can be empty. For such sets it is possible to define a
formal atomic system, which we will understand later as a Post-system of
the type of that for first-order arithmetic described in Section 2.5.1. The set
of individual constants, the set of relational symbols, the set of functional
symbols, and, finally the Post-system related to them, constitute altogether
an atomic base for a language of grounding on the first-order logical language
in question. The atomic bases play a twofold role.

The first is to provide, through the atomic system, a set of individual
constants for the language of grounding; to each derivation ∆ in the atomic
system, it will correspond, in the language of grounding, one and only one
individual constant δ , "canonical name" of ∆. The individual constants
are some of the terms with minimal complexity – therefore act as a base for
the construction of more complex terms – and, in case they do not contain
individual or free ground-variable variables, are the only ones that denote
grounds for the formulas - obviously atomic - on which they are typed. Fur-
thermore, as a matter of principle, through the atomic bases, it should be
possible to determine the intended meaning of individual constants, rela-
tional symbols and functional symbols, and consequently, of the terms and
formulas of the background language. Obviously this is essential when we
want to know what the grounds or the operations on grounds denoted by
the elements of the alphabet and by the terms of the language of grounding
are grounds or operations on grounds for. But, more precisely, how does this
determination of meaning happen?

Once again, the atomic system is central. In fact, by providing rules
that involve individual constants, relational symbols and functional sym-
bols, it sets the behavior of these symbols and, depending on the role they
consequently play in the atomic derivations, permits to consider them as
well-defined objects. An example will help to understand better this point.
Let us take into account the following rules of a Post-system for first-order
arithmetic:

0
.
= s(t)

(s1)⊥
(+1)

t+ 0
.
= t

(·1)
t · 0 .

= 0

Assuming we know the meaning of the functional symbols s – successor
function - + - addition - and · - multiplication - they tell us that the individual
constant 0 of a first-order arithmetic language behaves in such a way that:
0 is the successor of no term, the result of the addition of a term to 0 is the
term itself, and finally the result of the product of each term for 0 is 0. The
rules allow us to consider the individual constant 0 as the zero of natural
numbers.
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It is however clear that a determination of the meaning of this type re-
quires that the rules of the atomic system enjoy some structural properties.
The meaning of a symbol will be fixed by a certain set of rules, and each
of these rules must plausibly concern this symbol. This remark, apparently
simple, actually raises numerous and difficult questions. What is meant by
"concern"? Under what conditions and in what way a group of rules con-
cerning a symbol determine its meaning? Is it possible to say that some
rules concern a symbol in a more direct way than others, so as to contribute
more significantly to the determination of the meaning of the symbol? Will
a rule concerning a certain symbol be able to concern others, and if so – as
seems to be the case, observing that the rules for 0 set out above also concern
the symbols s, + and · - which must be the relationships between the rules
concerning the symbol and those that concern the other symbols involved?
An answer even if only partially exhaustive to questions like these would
need a discussion to itself, and in fact there is a whole theory in literature
designed to clarify, resolve and articulate on such issues; it is the theory of
meaning based on the notion of an immediate argumental role developed by
Cozzo first in Teoria del significato and filosofia della logica (Cozzo 1994b)
and then, with significant differences, in Meaning and argument. A theory of
meaning centered on immediate argumental role (Cozzo 1994a). Therefore,
for reasons of space, in the sequel of our discussion we will pass over the
problems just outlined, assuming as primitive the thorny notion of rule for
a symbol; it will be tacitly understood as proposed by Cozzo (especially in
Cozzo 1994a).

5.1.2.2 Expanding a core language

A language of grounding involves terms built on an alphabet containing -
in addition to ground-variables and individual constants - a limited group
of operational symbols designed to denote operations on grounds, of which
the operational type has a well-defined structure. On the other hand, by
explicit indication of Prawitz (Prawitz 2015), a language of grounding must
be conceived as open, where "open" means that new operational symbols,
for new operations on grounds, can be indefinitely added to it. As we have
already argued, this request has a double motivation.

The first derives from the fact that the operations on grounds are associ-
ated with inferential acts. Obviously, inferential activity is not limited to a
set of finitely axiomatizable rules; if one of the aspects of deductive practice
- the conditions for judging or asserting correctly - can be fully described
in terms of a well specifiable number of introduction rules, the other pole
- the correct consequences of judgments or assertions - concerns rules in a

234



non-introductory form, and is on the contrary totally open. Therefore, there
will be no finitely axiomatizable set operations on grounds - and operational
symbols expressing them - able to capture the deductive practice as a whole.
An obvious objection could be: a finitely axiomatizable set of operations on
grounds - and of symbols expressing them - could be complete, in the sense
of allowing the definition of all the possible operations on grounds on a given
domain. In that case, we could satisfy us with a closed language of grounding.
Well, even if it is true that some languages of grounding could be complete
with respect to certain domains, from Gödel’s incompleteness theorems we
know that this can never hold for any domain. Therefore, once again, if the
target of the theory of grounds must be the explanation of the deduction in
its entirety, no closed language of grounding can be said satisfactory.

To account for the character of openness, we will adopt the following
strategy: first we will define a general notion of language of grounding, and
then a notion of expansion of a language of grounding, so as to identify a
class of languages of grounding. Although each element of the class is a
closed language of grounding, the whole class can in a sense be intended as
an open language of grounding. In doing so, we will keep to two basic ideas.

First of all, the general notion of language of grounding will be based on
a special type of language of grounding, which we will call core language.
Given an atomic base on a background language, the alphabet of a core
language on this base will contain only three groups of elements: (1) typed
ground-variables, (2) individual constants and (3) operational symbols which
correspond to all and only the primitive operations on grounds, namely to
all and only the operations on grounds involved in the clauses that fix what
counts as ground for categorical judgments or assertions. From this alphabet,
we can then recursively specify the set of terms of the core language; having
done that, our definition of language of grounding will be such that each
language of grounding on a certain atomic base is nothing but an expansion
of a core language on the same base. Having obtained the general notion
of grounding language, we will finally define the notion of expansion of a
grounding language in general. Ultimately, therefore, the conceptual scheme
is

core language ⇒ expansion of core language
= language of grounding in general ⇒

expansion of a language of grounding in general.

Obviously, the prefigured explicative order is not inevitable. In other words,
from a purely formal point of view, it is not at all necessary that each lan-
guage of grounding contains a core language as its sublanguage; it is in
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principle possible to provide definitions such that the operational symbols of
a language of grounding do not correspond to any of the primitive operations
on grounds. But what would be the point of a language of grounding of this
sort? Which semantic and philosophical importance could it claim within
the general project of Prawitz’s theory of grounds?

A language of grounding must be a formal apparatus so as to speak, in a
precise and rigorous way, of grounds and of the ways by which they can be
obtained; the terms of a language of grounding, in particular, must denote
or name grounds through a structure that describes or codifies an epistemic
procedure by which the denoted ground can be obtained. Using a metaphor
related to Computer Science, the terms of a language of grounding form a
set of programs, the execution of which on certain inputs produces as output
an object to which is semantically ascribed a central epistemic role. Hence, a
language of groudning that does not contain even a single operational symbol
corresponding to the primitive operations on grounds, would be a language
devoid of (part of) the expressive resources required for the determination of
the central semantic objects. Naturally, this gap could be filled by the de-
notation function; being an association of terms of a language of grounding
to grounds and operations on grounds, it ensures in any case an epistemic
content to the language of grounding. However, if the denoted objects al-
ways depend on a limited number of primitive operations, why could we not
require that each language of grounding possesses names for all these oper-
ations? Therefore, in conclusion, although the request that every language
of grounding contains a core language is not formally unavoidable, we will
adopt it because it is formally convenient and philosophically plausible - or
at least more plausible than an approach in which it is not adopted.

The second guiding idea for the discussion of languages of grounding and
their expansions concerns the conditions that are required to be respected so
that a certain formal apparatus counts as a language of grounding - possible
expansion of a smaller language of grounding. In this case, our principle will
be simply the following: in a language of grounding, each operational symbol
F must be associated with an operational type

α1, ..., αn B β

and bind individual and ground- variables such that, called Γi the set of the
ground-variables bound by F on index i, there is an operation on grounds f
of operational type

(Γ1 B α1, ...,Γn B αn)B β
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such that x is bound by F on index j if, and only if, x is bound by f on
index j, and where Γi B αi is simply αi if Γi = ∅ (i, j ≤ n).

The obvious consequence of this request is that it becomes possible to
prove that all terms of a language of grounding denote a ground or an op-
eration on grounds; it will be enough that each operational symbol of the
language of grounding denote one of the corresponding operations on gro-
unds that we had required as existing at the time of the introduction of the
symbol. But what is the plausibility of this circumstance?

A possible answer is simply to say that a language of grounding is, in fact,
a language of grounding, and it would no longer be such if some of its terms
did not denote. As mentioned above, the interest of a language of grounding,
in the general framework proposed by the theory of grounds, is to have a
formal tool for denoting grounds and for the description of the ways in which
they can be obtained.

On the other hand, not without theoretical insight would be languages of
grounding in which some operational symbols cannot denote any operation
on grounds - think of a symbol with operational type

α→ αB⊥

or of the operational types

αi B α1 ∧ α2 and α1 ∨ α2 B αi (i = 1, 2)

or finally an operational symbol associated with the operational type

α(x)B ∀xα(x)

and that does not bind the individual variable x - and where, as a conse-
quence, there are terms that do not denote either grounds or operations on
grounds. In languages like these, once properly defined a denotation func-
tion, it would become possible to study under what conditions a term does
not denote, and under what conditions it denotes even though involving non-
denoting subterms. Indeed, the very definition of the notion of denotation
would take a significant specific weight: it must in fact take into account the
general intuition according to which, in the framework to which the theory
of grounds is inspired, a term does not denote when its operational symbols
are so combined that the computation of the operations to which these sym-
bols correspond does not end in a canonical form, namely, it does not yield
an object constructed by applying primitive operations to denoting objects.
But if the type of an operational symbol is not inhabited by any operation
on grounds, the operation to which the symbol corresponds must be set by
a "defective" equation; consequently, if the computation of the combination
does not end in a canonical form, it diverges into an infinite chain
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f1(x) = f2(y) = ... = fn(z) = ...

or, more specifically, into a loop

f1(x) = f2(y) = ... = fn(z) = f1(x) = f2(y) = ...

This opens the way to many, in our opinion interesting, questions. To
mention just a few: which operational types admit "non-defective" equa-
tions for the respective operations on grounds? According to what criteria
and how can we determine if an equation for the definition of an operation on
grounds is "defective" or not? Is it possible that an equation is "defective",
if it uses in its definiens only operations of which the equations, on the con-
trary, are not? If an operational type is not inhabited by any operation, is it
always possible to associate a contextual equation to it, however "defective",
in which definiendum and definiens have the same type, and the definien-
dum does not involve more variables than the definiens, or cannot we not to
resort to explicit definitions, which involve other operations the equations of
which are possibly "defective"? More in general, what does it mean that an
equation is "defective"? And how should it be made a reference "universe"
of a language of grounding that contains non-denoting operational symbols
and terms? In addition, an approach that authorizes the introduction of
non-denoting expressions might be fruitfully linked to some more or less re-
cent research sectors in the contemporary mathematical logic. Think, as a
mere partial example, of Dana Scott’s computation theory which, as deno-
tational semantics for programming languages, considers interpretations on
partially ordered domains, so as to account for divergent programs, or whose
denotation is only approximate (Scott 1970, Cardone 2017); or of the line of
investigation that Neil Tennant inaugurated with the proof-theoretical treat-
ment of paradoxes, by putting the focus on the links between derivations
and paradoxical rules, on the one hand, and normalization procedures on
the other, and by attributing a pivotal role to looping reductions (Tennant
1982, 1995, 2016, although the suggestion can be already found in Prawitz
2006; Tennant’s approach and conclusions have been expanded or developed
by several scholars - among them, for example, Tranchini 2014b, 2018 - and
often criticized or denounced as partial by many others - see, for example,
Petrolo & Pistone 2018). However, in the course of our work, we will not
deal, as announced, with such an approach.

Before moving on to the next section, we would like to make a final re-
mark. So far we have only talked about terms of a language of grounding
but, if a language of grounding must be actually configured as a language, it
seems natural to require that it involves also formulas, and therefore pred-
icates for the formation of atomic formulas and logical constants. In this
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chapter, we will consider only the terms of a language of grouding; the com-
plete version of these languages, with an explanation of the properties their
formulas express, will be discussed in Chapter 6.

5.1.2.3 Primitiveness and conservativity

In light of the definitions we will provide, there will essentially be two ways
to expand a language of grounding on a base B1:

• by adding new individual constants for atomic derivations in a proper
expansion B2 of B1, or

• by adding new operational symbols for non-primitive operations on
ground.

Obviously, the two ways can be combined, in the sense that an expansion of
a grounding language may contain both new individual constants and new
operational symbols.

As regards the first expansion mode, we note first of all that it consists,
de facto, in an expansion of the atomic base. Since an atomic base is nothing
more than a quadruple relative to a first-order language, a proper expansion
of an atomic base will be an atomic base in which one of the elements is a
superset of the corresponding element of the unexpanded base. And since
an expansion of the first type of a grounding language on a base B1 con-
tains new individual constants for atomic derivations in a proper expansion
B2 of B1, this means at a minimum that the Post-system of the base B2

contains the Post-system of the base B1 as its own subsystem. If the other
elements of B2 are unchanged compared to the corresponding elements of
B1, the Post-system of B2 does nothing but add new rules for the elements
of the same alphabet on which already the Post-system of B1 acted; then,
the language of grounding and its expansion will have the same background
language. However, it is not obviously necessary that this is the case. B2, in
fact, could contain new individual constants, new relational symbols or new
functional symbols compared to those available in B1, and its Post-system
could provide rules for the new symbols - in addition to the already con-
templated case of new rules for old symbols; in this case, the background
language of the expansion will be an expansion of the background language
of the unexpanded grounding language.

As we have said, an atomic base is intended to fix the meaning of some
of the elements of the background language alphabet. A change of base
therefore implies a change of meaning - and its extension in the case of new
linguistic or deductive resources. Hence, when we expand a language of

239



grounding according to the first of the above mentioned modes, we add new
primitive elements with respect to the denotation of grounds and operation
on grounds; an individual constant without free individual or ground-variable
variables, in fact, will denote by definition a ground for the (atomic) formula
on which it is typed. Accordingly, we will call primitive an expansion thus
obtained.

We are induced at this point to think, in a completely correct way, that
another type of primitive expansion could consist in adding to a language of
grounding operational symbols for primitive operations on grounds different
from those related to ∧, ∨, →, ∀ and ∃, namely, operational symbols for
operations involved in the definition of the concept of ground for categorical
judgments or assertions of formulas the main logical constant of which is
not any of the constants ∧, ∨, →, ∀ and ∃. It is not difficult to realize,
however, that contemplating such a type of expansion requires changing the
set of logical constants of the background language. In this work, though,
apart from a quick example, we will not deal with expansions of this kind;
in other words, our analysis will be limited to first-order logic, whence the
aforementioned restriction that a background language is always only a first-
order logical language. At the base of our choice, there are essentially two
reasons.

First of all, it does not seem to hold any real interest the addition to ∧,
∨, →, ∀ and ∃ of non-modal logical constants that do not involve a pas-
sage to orders higher than the first - think of the constant ↔, or of Sheffer’s
constant (Sheffer 1913) | and of its dual ↓; Prawitz himself, in fact, proved
that the first-order logical constants are functionally complete (Prawitz 1979;
see also Schroeder-Heister 1984). On the other hand, we know that the ad-
dition of second-order quantifiers leads to many difficulties in the semantic
frameworks of constructivist, or more generically verificationist, inspiration;
the breach of the Fregean principle of compositionality goes together with
reliable phenomena of unpredicativity that require treatments ad hoc, or sub-
stantial changes that avoid the emergence of paradoxes (see, among others,
Pistone 2015). The problem already concerns a formulation of the clauses
for determining what counts as ground for categorical judgments or asser-
tions of formulas quantified at the second order, and therefore the primitive
operations on grounds for second-order quantifiers; actually, it is reasonable
to expect that we find here the same phenomenon we have with the rules of
introduction of these quantifiers. We can borrow here Cozzo’s words, who
notes how

the introduction rule for the second-order existential quantifier
has the form:
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α(T )

∃Xα(X)

where T is a predicative (second-order) term that may contain
the formula ∃Xα(X) as a part [...] the premise α(T ) could be
much more complex than the conclusion ∃Xα(X) and the rule
violates the molecularity requirement. (Cozzo 1994b, 113)

Likewise, the clause fixing what counts as ground for ∃Xα(X) should appeal
to a primitive operation, that we can indicate with ∃2I, saying that ∃2I(g)
is a ground for ` ∃Xα(X) if, and only if, g is a ground for α(T ); but T
could contain ∃Xα(X) as its subformula, and this could make the expected
inductive nature of the clauses problematic.1

If an expansion obtained by adding individual constants is primitive, an
expansion obtained by adding operational symbols for non-primitive oper-
ations on grounds can obviously be called non-primitive. A non-primitive
operation on grounds, in fact, will have to be fixed by one or more equa-
tions by virtue of which, whenever applied to grounds for the types of its
domain, the operation returns a ground for the type of its codomain; but the
notion of ground is fixed in terms of primitive operations, so a non-primitive
operation is "harmonic" with respect to the determination of the meaning
that these primitive operations provide. In the same way, the terms of an
expansion obtained by adding operational symbols for non-primitive opera-
tions on grounds will not contain new primitive concepts compared to the
unexpanded language of grounding, but they will denote on the basis of a
notion of ground - and therefore of a determination of the meaning - already
available before the expansion. When expanding a language of grounding
in a non-primitive way, we just have to comply with the request mentioned
in Section 5.1.2.2: the added operational symbol must be of an operational
type, and a binding of individual variables and ground-variables, such that
there is a corresponding operation on grounds, of the appropriate operational
type.

Together with the distinction between primitive and non-primitive ex-
pansions, we would introduce also another classification: conservative and

1The restriction to the first order does not disregard the great interest of an approach
that includes expansions of languages of grounding with operational symbols for primitive
operations related to logical constants of higher order than the first. This is a point that
we will leave out for mere reasons of space, and that could be fruitfully developed later.
In a sense, our discussion will be equivalent to a formal framework for the analysis of
first-order inferential validity ; hence, to authorize expansions with operational symbols
for primitive operations on grounds would be equivalent to a formal framework for the
analysis of inferential validity of n-th order, namely of inferential validity as such.
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non-conservative expansions. The basic idea is the following. Let Λ1 be a
grounding language on a base B on L, and let

GrΛ1
B = {g | g is a ground over B denoted by some term of Λ1}

- i.e. grounds on B denoted by some term of Λ1. Let Λ2 be now an expansion
of Λ1, and let

GrΛ2
L = {g | g is a ground with type in L denoted by some term of Λ2}

- i.e. grounds of type in L denoted by some term of Λ2. Since Λ2 is an
expansion of Λ1, we will have that GrΛ1

B ⊆ GrΛ2
L . If the inclusion is strict,

that is in the case of GrΛ1
B ⊂ GrΛ2

L , we will say that Λ2 is a non-conservative
expansion of Λ1; when the two sets are equal, namely in the case of GrΛ1

B =
GrΛ2

L , we will say that Λ2 is a conservative expansion of Λ1.
In other words, an expansion is non-conservative if, and only if, it contains

terms that denote grounds based on the unexpanded language of grounding
that were not denoted by any term in the unexpanded language of grounding;
an expansion is non-conservative if, and only if, it allows us to express new
grounds on the same base as the language of grounding that it enhances. The
expansion, on the contrary, is conservative if, and only if, all the grounds
that it allows to express on the old base were already expressible in the
unexpanded language of grounding; if all the objects that its terms "name",
were already "nameable" in the old language of grounding. Obviously, the
notion is relativized to a fixed denotation function.

It should be noted that the kind of conservativeness, which we are dealing
with here, is significantly different from the usually used notion of conserva-
tivity of formal systems. Given a formal system Σ on a language L, and given
an expansion Σ+ of Σ, we say that Σ+ is conservative on Σ if, and only if, for
each finite set Γ of formulas of L, for each formula α of L, if Γ `Σ+ α, then
Γ `Σ α. In terms of languages of grounding, this would amount to requiring
that, given a language of grounding Λ1 on a base B, and given an expansion
Λ2 of Λ1, Λ2 is conservative on Λ1 if, and only if, for each α1, ..., αn ` β on
B, if there exists a term of Λ2 denoting a ground g1 on B for α1, ..., αn ` β,
then there exists a term of Λ1 denoting a ground g2 on B for α1, ..., αn ` β.
This type of conservativity, however, does not clearly imply that g1 = g2; the
kind of conservativity we outlined, however, requires exactly that the class of
grounds on B denoted by the terms of Λ2 is identical to the class of grounds
on B denoted by the terms of Λ1. The second type of conservativeness clearly
implies the first, but the opposite does not always apply.

In other words, it is not a conservativity of provability, but a conservativ-
ity, so to speak, of denotation. If, as a mere way of example, we undertsand
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a term as a proof, and a ground as the canonical form to which this proof
reduces - if the term is closed - or as the method that this proof denotes
- if the term is open - the conservativity proposed here corresponds to the
idea that a conservative expansion of a language of grounding adds names
for proof-methods that were already available in the unexpanded language,
but does not involve a substantial increase in the deductive power of the
language itself. On the contrary, in a non-conservative expansion, we dis-
pose of new proof-methods, for judgments or assertions not provable in the
unexpanded language of grounding, and possibly for judgments or assertions
already provable in the unexpanded language of grounding.

Finally, in the course of our discussion we will show how the distinction
between primitive and non-primitive expansions does not coincide at all with
the distinction between conservative and non-conservative expansions. We
will provide in practice examples of expansions: (1) primitive and conserva-
tive; (2) primitive and non-conservative; (3) non-primitive and conservative;
(4) non-primitive and non-conservative. Point 1 will be proved through an
expansion of a language of grounding corresponding to a Gentzen’s natural
deduction system for first-order intuitionist logic obtained by adding an op-
erational symbol for a primitive operation on grounds for the logical constant
↔. Point 2 will be proved through an expansion of a language of grounding
on a base for first-order arithmetic with corresponding Post-system, obtained
by adding to the base a reflection principle - and 1 and 2 will be the only
examples in which we will take into account expansions of bases by adding
new logical constants. Point 3 will be proved through an expansion of a lan-
guage of grounding corresponding to a Gentzen’s natural deduction system
for first-order intuitionist logic obtained by adding an operational symbol for
a non-primitive operation on grounds for disjunctive syllogism. Finally, Point
4 will be proved through an expansion of a language of grounding correspond-
ing to a Gentzen’s natural deduction system for first-order intuitionistic logic
with only introduction rules, towards a Gentzen’s natural deduction system
for first-order intuitionistic logic with also elimination rules.

5.2 A class of languages
Let us now begin the delineation of our class of grounding language. We
will proceed in the following order: first, we will define a background lan-
guage and a notion of base on a background language; then we will discuss
the notion of operational type, different notions of operations on grounds of
different operational types, and finally we will provide the clauses which fix
the notion of ground for categorical judgments or assertions for formulas of
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different logical kinds; we will then go to the definitions of core language of
grounding, of language of grounding in general and of expansion of a language
of grounding; the next step will be the definition of the notion of denotation,
and the proof of some related results; we will conclude with the distinction
between primitive and non-primitive, conservative and non-conservative ex-
pansions. Throughout our discussion, we shall of course provide examples
that make operational the definitions at the same time offered.

5.2.1 Background language and bases

The background languages we are going to take into account are always first-
order logical languages of the kind already used in previous points of our
investigation. The setting is similar to that of Logic and structure by Dirk
Van Dalen (Van Dalen 1994), although it leaves out the reference to the
notion of similarity type.

Definition 12. A first-order logical language L is characterised by an alpha-
bet, and by sets of terms and formulas defined recursively starting from that
alphabet. The alphabet ALL consists of:

• individual variables xi (i ∈ N)

• relational symbols P n
j (n, j ∈ N)

• functional symbols φmh (m,h ∈ N)

• individual contants ‖ci‖ (i ∈ N)

• logical constants ∧, ∨, →, ∀, ∃, ⊥

• brackets and commas as auxiliary symbols

The set TERML of the terms of L is the smallest set X such that

• xi ∈ X (i ∈ N)

• ‖ci‖ ∈ X (i ∈ I)

• t1, ..., tm ∈ X ⇒ φmh (t1, ..., tm) ∈ X

The set FORML of the formulas of L is the smallest set X such that

• ⊥ ∈ X

• t1, ..., tn ∈ TERML ⇒ P n
j (t1, ..., tn) ∈ X
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[These first two clauses define the set of the atomic formulas of L, indicated
with ATOML]

• α, β ∈ X ⇒ α ? β ∈ X (where ? is one of the symbols ∧,∨,→, which
we will indicate more briefly with ? = ∧,∨,→)

• α ∈ X ⇒ ? xi α ∈ X (? = ∀,∃, i ∈ N)

As regards negation, it is defined by putting

¬α def
= α→ ⊥

so it is not a primitive symbol of the language.
When this does not generate ambiguity, we will omit indices and subscripts
to lighten up the notation.

On first-order logical languages, we can introduce technical, although very
important, definitions. We will provide them without further explanation,
as they are quite standard notions.

Definition 13. The set FV (t) of the free variables of t is defined inductively
as follows:

• FV (x) = {x}

• FV (‖c‖) = ∅

• FV (φ(t1, ..., tn)) = FV (t1) ∪ ... ∪ FV (tn)

The set BV (t) of the bound variables of t is ∅. t is closed if, and only if,
FV (t) = ∅.

Definition 14. The set FV (α) of the free variables of α is defined inductively
as follows:

• FV (⊥) = ∅

• FV (P (t1, ..., tn)) = FV (t1) ∪ ... ∪ FV (tn)

• FV (α ? β) = FV (α) ∪ FV (β) (? = ∧,∨,→)

• FV (? x α) = FV (α)− {x} (? = ∀,∃)

The set BV (α) of the bound variables of α is defined inductively as follows:
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• BV (⊥) = BV (P (t1, ..., tn)) = ∅

• BV (α ? β) = BV (α) ∪BV (β) (? = ∧,∨,→)

• BV (? x α) = BV (α) ∪ {x} (? = ∀,∃)

α is closed if, and only if, FV (α) = ∅.

With FV (Γ) we indicate the set

{FV (γ) | γ ∈ Γ}

and in what follows we will always assume that FV (α) ∩BV (α) = ∅.

Definition 15. A substitution of x with t in s is a function TERML → TERML
defined inductively as follows:

• y[t/x] =

{
y if y 6= x

t if y = x

• ‖c‖[t/x] = ‖c‖

• φ(t1, ..., tn)[t/x] = φ(t1[t/x], ..., tn[t/x])

Definition 16. A substitution of x with t in α is a function FORML → FORML
defined inductively as follows:

• ⊥[t/x] = ⊥

• P (t1, ..., tn)[t/x] = P (t1[t/x], ..., tn[t/x])

• (α ? β)[t/x] = α[t/x] ? β[t/x] (? = ∧,∨,→)

• (? y α)[t/x] =

{
? y α[t/x] if y 6= x

? y α if y = x
(? = ∀,∃)

Definition 17. A substitution of β with γ in α, for β ∈ ATOML, is a function
FORML → FORML defined inductively as follows:

• α ∈ ATOML ⇒ α[γ/β] =

{
α if α 6= β

γ if α = β

• (α ? δ)[γ/β] = α[γ/β] ? δ[γ/β] (? = ∧,∨,→)

• (? x α)[γ/β] = ? x α[γ/β] (? = ∀,∃)
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All the functions described above can be generalized to simultaneous sub-
stitutions for an arbitrary number of variables or atomic formulas. In this
regard, the notation:

(...((�[∗1/◦1])[∗2/◦2])...[∗n/◦n])
def
= �[∗1, ..., ∗n/◦1, ..., ◦n]

will indicate a simultaneous substitution of n variables or atomic formulas
– � is a term or formula, ◦ a variable or an atomic formula, ∗ a term or a
formula, respectively.

Definition 18. t is free for x in α if, and only if,

• α ∈ ATOML

• α = β ? γ and t is free for x in β and γ (? = ∧,∨,→)

• α = ? y β, y = x or y 6= x, y /∈ FV (t) and t is free for x in β

Definition 19. γ is free for β in α, for β ∈ ATOML if, and only if,

• α ∈ ATOML

• α = δ ? ε and γ is free for β in δ and ε (? = ∧,∨,→)

• α = ? y δ, y /∈ FV (γ) and γ is free for β in δ (? = ∀,∃)

The definitions of free term for variable in formula, and of free formula for
formula in formula, are intended to isolate the substitutions that have the
following properties: (1) given a term t and a formula α, no variable of
t becomes bound in α[t/x] and (2) given two formulas α and γ, no free
variable of γ becomes bound in α[γ/β]. As it is with substitutions, also the
two previous definitions can be generalized to the case of an arbitrary number
of variables or formulas. Hereafter, we will assume that all the substitutions
satisfy the aforementioned properties (1) and (2).

Definition 20. Given a first-order logical language L1, an expansion of L1

is a first-order logical language L2 such that ALL1 ⊆ ALL2 .

Turning now to the notion of base, it requires a preliminary notion of
atomic system, and a preliminary clarification of the relationship between an
atomic system and the language on which it acts. The atomic systems that
we will take into account are always Post-systems, namely pairs 〈L,<〉, with
L first-order logical language and < finitely axiomatizable set of rules

247



α1 . . . αn
β

relating to individual constants, relational symbols or functional symbols of
L and such that:

• n ≥ 0 (if n = 0 the rules is an axiom);

• for every i ≤ n, αi ∈ ATOML and αi 6= ⊥;

• β ∈ ATOML and, if x ∈ FV (β), there is i ≤ n such that x ∈ FV (αi).

Contrary to what has been done previously, we will leave here open the
possibility that the rules of a Post-system bind variables or assumptions.
Well, the basic idea, which we have already mentioned, is that the meaning
of the elements of the alphabet of a background language is fixed by the
rules of a Post-system. By way of example, the Post-system for first-order
arithmetic, set out in Section 2.5.1, consists of rules by virtue of which:
the constant 0 can be interpreted as the zero of the natural numbers; the
symbol s can be interpreted as the successor function on natural numbers;
the symbol + can be interpreted as addition on natural numbers; the symbol
· can be interpreted as multiplication on natural numbers; the symbol .

=
can be interpreted as the relation of equality on natural numbers. In this
perspective, we have to understand the following definition.

Definition 21. An atomic system S = 〈L1,<〉 is an atomic system for L2

if, and only if, L2 is an expansion of L1. S totally interprets L2 if, and only
if, L1 = L2. Otherwise, S partially interprets L2.

If S is a language for L – whether it provides a total interpretation or the
interpretation is only partial - its rules are intended to determine the meaning
of the elements of the alphabet of L; we can also say that they are rules for
such symbols. As already mentioned, we will imply the notion of "rule for
a symbol", wanting with it to refer to the circumstance that a rule contains
a symbol so as to allow its interpretation. A detailed development of the
notion of "rules for a symbol" is found in Cozzo’s theory of the meaning
(Cozzo 1994a, 1994b). As a limit case, we have the system 〈∅, ∅〉, to which
we can give the name of empty system. Whatever L, from definition 21 it
follows that the empty system is a system for L; on it, though, L remains
totally uninterpreted.

Definition 22. Given an atomic system S1 = 〈L1,<1〉, an expansion of S1

is an atomic system S2 = 〈L2,<2〉 with L2 expansion of L1.
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Definition 23. Given a first-order logical language L, we indicate: with
R the set of the relational symbols of L; with F the set of the functional
symbols of L; with C the set of the individual constants of L. Let finally S
be an atomic system for L. We will say that the quadruple

〈R, F, C, S〉

is an atomic base on L. We will cal L background language of the base.

For the sake of greater simplicity, we will exclude bases of which the atomic
systems interpret partially the background language; in other words, the
latter must be either not interpreted, or totally interpreted - in the first case,
we will sometimes talk about logical base.

Convention 24. Given a base B on L, if the atomic system S of B is not
empty, that is, if B is not a logical base, S totally interprets L.

Definition 25. Let B be a base on L1 with atomic system S1. We will say
that a base on L2, for L2 expansion of L1, with atomic system S2 expansion
of S1, is an expansion of B.

By convention 24, in the case of a real expansion of R, F, or C, and if the
atomic system S of B is not empty, also S is actually expanded.

5.2.2 Operational types, operations and clauses

In this section, we introduce the notion of operation on grounds and, subse-
quently, the definition of the notion of ground for categorical judgments or
assertions. To make this possible, we need a preliminary notion of operational
type.

5.2.2.1 Operational types

An operation on grounds, as already mentioned, is a total constructive func-
tion with a certain domain and a certain codomain; domain and codomain
are nothing but classes of individuals or (operations on) grounds for certain
judgments or for certain assertions on a certain background language. When
applied to an element of the domain, then, the operation on grounds pro-
duces a ground for the judgment or assertion that constitutes the codomain.
An operation on grounds will therefore be identified by two parameters; do-
main/codomain, and an equation indicating how the operation transforms
each element of the domain into an element of the codomain. As for the first
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parameter, we can therefore talk of an operational type, since it fixes the type
of inputs and outputs of the operation.

The notion of operational type will mainly have the purpose of classifying
the possible operations on grounds according to the lines just indicated, but
it will be used by us also for another purpose. When we introduce the
languages of grounding, in fact, all the elements of the alphabet, and all
the terms built starting from them will have to have a certain type. Now,
for the ground-variables the individual constants and all terms, a type is
nothing but a formula of the background language; but the alphabet of a
language of grounding also includes operational symbols, the type of which
will be instead, more specifically, an operational type. The reason for this is
simple: an operational symbol allows the creation of a term of a certain type
starting from terms of another type, and the operational type assigned to it
has exactly the purpose of making this circumstance explicit.

Obviously, a close link exists between the operations on grounds and the
operational symbols of a language of grounding: the latter must be under-
stood as denoting the former. A denotation function will therefore ensure
that, if an operational symbol has a certain operational type, its denotatum
is an operation on grounds having the same operational type. Therefore, ex-
pressing ourselves in a concise but effective way, the "syntactic" typing and
the "semantic" typing coincide. It must be said, however, that not always an
operational symbol having a certain operational type denotes an operation
on grounds having the same operational type: if an operational symbol F
binds the assumption α on an index i, and if the i-th entry on the domain
of the operational type of F is β, F must denote an operation on grounds
the operational type of which has as i-th entry of the domain operations on
grounds from α to β. The difference between the operational types of the
operational symbols, and those of the operations on grounds, depends on
the fact that the languages of grounding have no variables for operations on
grounds; in any case, this difference can be remedied through an appropriate
definition of the denotation function.

The operational types will therefore be understood by us as strings of
formulas on a background language. Each string will be divided into two by
a main sign B: what is on the left of the main sign B will constitute the
domain of an operation on grounds having that operational type, while what
is on the right of this B will be understood as the codomain of the operation
on grounds having that operational type.

Definition 26. Let L be a first-order logical language. An operational type
on L is α ∈ FORML, or an expression

τ1, ..., τn B τn+1
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such that:

• n ≥ 1 and

• τi (i ≤ n) is

– Γi B αi with Γi ⊂ FORML, Γi 6= ∅ and αi ∈ FORML or

– αi with αi ∈ FORML

and τn+1 is

– ∆B β con ∆ ⊆
⋃
i≤n Γi, ∆ 6= ∅ and β ∈ FORML or

– β con β ∈ FORML

We will say that τ1, ..., τn is the domain of the operational type, and that τi
(i ≤ n) is an entry of the domain. We will say that τn+1 is the codomain.

In other words: if the operational type has a non-empty domain, the i-th
entry of the domain is

Γi B αi

when Γi is not empty, otherwise it is simply αi, and instead the codomain
will have the form

∆B β

for ∆ non-empty subset of the union of all the Γi, otherwise simply β; if
instead the operational type has an empty domain, it is simply a formula.
As generic examples, the following are all operational types:

• α(x1, ..., xn)

• (α1(x1, ..., xn)B β1(y1, ..., ym), α2 B β2)B δ(z1, ..., zp)

• (α1(x1, ..., xn)B β1(y1, ..., ym), α2 B β2)B (α2 B δ(z1, ..., zp))

or again, with reference to a language for first-order arithmetic, the following
are all operational types:

• ∀x(0 ≥ x)

• ∀x(x ≤ y ∧ y ≤ z), 94 = s(s(0))B ∀w(w = s(s(s(
√

64)))

• (∃x(x ≤ y), 0 ≥ 25, 0 = s(s(0))B 0 = 1)B (0 = s(s(x))B ∀y(y 6= 7!))
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5.2.2.2 First- and second-order operations

We can now proceed to the notion of operation on grounds of operational type
τ . In order to characterize it, we must bear in in mind two important points.
First of all, operations on grounds are always operations on a base, namely,
operations related to a certain background language, and to a certain atomic
system for this language. In light of what said in Section 5.2.1, this does not
cause problems; we already possess the necessary theoretical concepts.

Secondly, in order that the class of operations on grounds to be well
founded, we need its definition to be based on a default notion, starting
from which to proceed recursively. Well, this notion is that of ground for a
categorical judgment or assertion. A ground for a categorical judgment or as-
sertion is a closed object, whereas an operation on grounds is an open object,
applicable to individuals and grounds, and which produces closed objects of
the appropriate type when applied to closed objects of the appropriate type.
However, although this is the explanatory order, we will reverse it; and this
because, although the notion of ground for a categorical judgment or asser-
tion conceptually comes before that of operation on grounds, it requires it.
This circumstance, for its part, does not imply circularity, since the notion
of ground for categorical judgments or assertions is fixed by simultaneous
recursion, so that the notion of operation on grounds is assumed on a level
of lower complexity. Therefore, in conclusion, when in the following we meet
the notion of ground for categorical judgments or assertions, we shall need
to refer to the clauses of Section 5.2.2.4.

As we have already anticipated, it is convenient to distinguish between
first-level operations, the domain of which has no entries of the type

ΓB α

and second-level operations, the domain of which has at least one entry of
that type. In order to define the second-level operations it is necessary to
have defined those of first-level, from which it is therefore appropriate to
begin. In characterizing first-level operations, however, we will proceed by
steps, providing examples of increasingly complex operations, and passing
only at a later stage to the general description.

The simplest of first-level operations on grounds are those with an empty
domain. Given a base B on L, a B-operation on grounds of operational type

α(x1, ..., xn)

with n ≥ 0, is a total constructive function

f(x1, ..., xn+m)
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with m ≥ 1 if n = 0, and m ≥ 0 otherwise, such that, for every sequence
k1, ..., kn+m of individual in domain of B,

f(k1, ..., kn+m)

is a ground on B for ` α(k1, ..., kn). Let us take an example. Let B be a
base on a language for first-order arithmetic with Post-system as indicated
in Section 2.5.1, and let us consider the following reasoning:

1. let 0 < x

2. let x < s(y) + z

3. by transitivity, 0 < s(y) + z

therefore, discharging assumptions 1 and 2,

4. se 0 < x and x < s(y) + z, 0 < s(y) + z.

It is easy to realize that, if we replace x, y, z with the positive integers what-
soever n,m, p, we have something that justifies the categorical judgment or
assertion "if 0 < n and n < s(m) + p, then 0 < s(m) + p". The proposed
reasoning can hence be understood as the expression on three individual
variables of a total constructive function that, given as input three positive
integers, returns a ground related to an open formula the free individual
variables of which are replaced by the chosen numbers.

Before continuing, we will introduce a wording that will conveniently
facilitate many of our subsequent definitions. A B-operation on grounds of
operational type

α(x1, ..., xn)

will also be called ground on B for ` α(x1, ..., xn). It should be noted that
this way of speaking is in a sense ambiguous, because the expression of the
operation could involve more individual variables than the free ones occurring
in its operational type; for example, if α is closed it is expected that a ground
for ` α is an equally closed object. To resolve that, we can then say that a
ground for ` α is a proper ground if, and only if, it is an object the expression
of which involves all and only the elements of FV (α), and that, otherwise,
it is an improper ground.

A second very simple type of first-level operation is that in which the
domain is non-empty, but all the formulas involved in the operational type
are closed. Given a base B, a B-operation on grounds of operational type
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α1, ..., αn B β

with α1, ..., αn, β closed and n ≥ 1, is a total constructive function

f(ξα1 , ..., ξαn)

such that, for every gi ground on B for ` αi (i ≤ n)

f(g1, ..., gn)

is a ground on B for ` β. Let us take an example. Let B be again a base on a
language for first-order arithmetic, with Post-system as indicated in Section
2.5.1, and let us consider the following reasoning:

1. let us make the hypothesis s(s(0)) = s(0) + s(0)

2. let us make the hypothesis s(0) = s(0) · s(0)

hence

3. s(s(0)) = s(0) + s(0) and s(0) = s(0) · s(0).

It is easy to realize that, if we put before the hypotheses 1 and 2 some com-
putations that justify these hypotheses, we obtain something that justifies
the categorical judgment or assertion "s(s(0)) = s(0) + s(0) and s(0) =
s(0) · s(0)". The proposed reasoning can therefore be understood as the ex-
pression on two ground-variables of a total constructive function that, given
as input two computations, returns a ground related to a closed formula
depending, in the reasoning, on the conclusions of the computation.

We have presented the cases of first-level operations on grounds, the do-
main of which is empty, or the domain of which is non-empty but all the
formulas involved in the operational type are closed. Let us move on to the
more general case, namely the one in which the domain of the operations on
grounds is non-empty, and some of the formulas involved in the operational
type are open. Unlike with what we have done so far, let us start from the
examples here, and provide at a later stage the general characterization.

As a first example, let us take into account the following instance of (∧I)
- all the free individual variables are explicitly indicated -

α(x) β(y)
(∧I)

α(x) ∧ β(y)

and, first of all, replace the individual variables x, y with closed terms t1, t2,
so as to obtain the instance
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α(t1/x) β(t2/y)
(∧I)

α(t1/x) ∧ β(t2/y)

and then, finally, let us put before the assumptions α(t1/x) and β(t2/y) two
closed valid arguments ∆1,∆2, for each of them respectively - we assume
that there are -

∆1

α(t1/x)

∆2

β(t2/y)
(∧I)

α(t1/x) ∧ β(t2/y)

so as to obtain a closed valid argument for α(t1/x)∧β(t2/y). If we accept to
take, in a purely illustrative way, a closed valid argument having a certain
conclusion as a ground for that conclusion, we can say that the instance of
(∧I) from which we started expresses a total constructive function which,
taken as input two closed terms, and then two grounds for the assumptions
obtained by replacing with the closed terms the individual free variables in
the original assumptions, returns a ground for the conclusion obtained by
replacing with the closed terms the individual free variables in the origi-
nal conclusion. In other words, we can look at the instance of (∧I) as the
expression of an operation on ground of operational type

α(x), β(y)B α(x) ∧ β(y).

The operations on grounds that we are taking into account here can bind
variables. The paradigmatic case is that of the rule (∀I), of which we take
into account first the form - all the free individual variables are explicitly
indicated -

α(x)
(∀I)∀xα(x)

where, if the rule is correctly applied, x is the proper variable bound by the
rule itself. As we know, a correct application

∆(x)

α(x)
(∀I)∀xα(x)

of the rule, requires that x does not occur free in any of the non-discharged
assumptions of ∆(x), which will happen in particular if ∆(x) is an argument
without non-discharged assumptions; therefore, if we accept to understand a
valid argument for α(x) without non-discharged assumptions as the expres-
sion of an operation on ground of operational type
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α(x)

and a valid closed argument for ∀xα(x) as a ground for ` ∀xα(x), we can say
that the rule from which we started expresses a total constructive function
that, taken as input an operation on grounds of operational type

α(x)

returns a ground for ` ∀xα(x), binding x. Same thing is when the rule
(∀I) is considered in the form - all the free individual variables are explicitly
indicated -

α(x, y)
(∀I)∀xα(x, y)

where, if the rule is correctly applied, x is the proper variable bound by the
rule itself. Here, too, a correct application of the rule

∆(x, y)

α(x, y)
(∀I)∀xα(x, y)

requires that x does not occur free in any of the non-discharged assumptions
of ∆(x, y), which will happen, for example, when ∆(x, y) is an argument
without non-discharged assumptions; therefore, if we replace y - which oc-
curs free - with whatever closed term t, and if we accept to take a valid
argument for α(x, t) without non-discharged assumptions as the expression
of an operation on grounds of operational type

α(x, t)

as well as a closed valid argument for ∀xα(x, t) as a ground for ` ∀xα(x, t),
we can say that the rule from which we started expresses a total constructive
function which, taken as input a closed term t replacing the free individual
variable y, and taken as input an operation on grounds of operational type

α(x, t)

returns a ground for ` ∀xα(x, t), binding x. In other words, the two last
examples allow us to talk about operations on grounds with respective oper-
ational types

α(x)B ∀xα(x) and α(x, y)B ∀xα(x, y)
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which, by binding the individual variable x, do not involve x - namely x is
not to occur free in their linguistic expression.

At this point, we consider it appropriate to make an observation. As we
have noticed, while in the example

α(x) β(y)
(∧I)

α(x) ∧ β(y)

we had been able to say that the instance of (∀I) can be understood as an
operation on grounds of operational type

α(x), β(y)B α(x) ∧ β(y)

in the case of examples

α(x)
(∀I)∀xα(x)

α(x, y)
(∀I)∀xα(x, y)

we cannot say that the instances of (∀I) can be understood as operations on
grounds of operational type

α(x)B ∀xα(x) and α(x, y)B ∀xα(x, y),

and this is simply because the argument structures considered are not in-
stances of (∀I), since they violate the restriction on this rule; what we have
said, in fact, is only that those particular formulations of (∀I) can be seen
as operations of the intended type. Well, among the correct applications of
(∀I) , obviously there are not only those mentioned, relating to arguments
for ∀xα(x) and ∀xα(x, y) without non-discharged assumptions; there are
also those in which (∀I) is applied to arguments for ∀xα(x) and ∀xα(x, y),
of which the non-discharged assumptions Γ1 and Γ2 do not contain x free.
Should we not have taken into account also the latter case? Certainly we
should, but the problem is that valid arguments of the form

Γ1

...
α(x)

Γ2

...
α(x, y)

should be understood as operations on grounds of the operational type

Γ1 B α(x) and Γ2 B α(x, y)
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therefore, they could be operations on grounds of the exact kind of those we
are defining. The definition would thus be circular. Thus, we limit ourselves
to define the first-level operations on grounds, with a non-empty domain
and of an operational type containing open formulas, based on operations
on grounds with an empty domain; we will deal with the most general case
when we discuss the composition of operations on grounds.

Before moving on to a general characterization, however, we need a few
notations. We indicate with xi and y sequences of distinct individual vari-
ables. The variables of the first sequence, namely xi, have an index in corre-
spondence with an operational type where xi is intended to occur; an element
of xi will therefore have the form xi, where i is the index of the entry of the
operational type where xi occurs. Given sequences x1, ..., xn+1x, we will say
that x is a subsequence of x1, ..., xn+1 when each element of x has the form xi,
for some xi element of xi (i ≤ n+1). The expression x1 . . . xn+1−x indicates
the (possibly empty) sequence obtained from x1 . . . xn+1 by deleting all the
elements of x. With (x1 . . . xn+1 − x) y we indicate the sequence obtained
by letting the elements of y follow those of (x1 . . . xn+1 − x). We indicate
with s a sequence of individuals in a reference domain. With L we indicate
the length of a sequence. Given a sequence v, and given L v ≤ L s, with s/v
we indicate the result of replacing, in the sequence v, the j-th element of v
with the j-th element of s (j ≤ L v).

This laid down, let B be as usual a base on L. A B-operation on grounds
of operational type

α1(x1), ..., αn(xn)B β(xn+1)

the binds the elements of a subsequence x of x1 ... xn, is a total constructive
function

f((x1 . . . xn+1 − x) y, ξα1(x1), ..., ξαn(xn))

where y (possibly empty) contains new variables, and to it it applies a re-
striction that we will see very soon. But first, let us conclude the general
characterization. The function is total constructive in the sense that, for
every s in the domain of B with L s = L [(x1 . . . xn+1 − x) y], for every gi
ground on B (proper or improper) for ` αi(s/xi) (i ≤ n),

f(s/[(x1 . . . xn+1 − x) y], g1, ..., gn)

is a ground on B (proper or improper) for ` β(s/xn+1). When the operation
binds xi, we say that the binding occurs on the i-th entry; the same variable
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can also occur in the sequence on an entry of index j 6= i, without binding
on j.2

The linguistic expression of the operation therefore involves variables that
are not bound by it; in particular, what interests us, an operation on grounds
of operational type

α(x)B β

with β closed and that binds x, must be a total constructive function

f(ξα(x))

such that, for every (proper or improper) ground h(x, z1, ..., zm) (m ≥ 0) for
` α(x),

f(h(x, z1, ..., zm))

is a (proper or improper) ground for ` β.
We now come to the restriction on y. It can be non-empty only in the

case when there are entries of the operational type such that the operation
on grounds at issue does not bind individual variables on the index of such
entries; in other words, y is empty if the function bounds variables on every
i ≤ n.

Why do we require not to have fresh variables if there are no indexes
where there is no binding? Although this actually depends on restriction (2)
introduced in the next section, we can explain the point already here. In
order to do this, we resort again, in a purely illustrative way, and as we have
done so far, to valid arguments. The expression of an operation on grounds
of operational type

α(x)B β

with β closed and that does not bind variables can, according to our defini-
tion, involve individual variables other than x. It can be understood as an
open valid argument of the form

2Recall that the elements of x1 . . . xn+1−x are indexed; obviously, if the same variable
occurs with more indexes, it counts as a single variable when involved in the operation.
Moreover, we could have considered the case of "vacuous" quantification, that is, when the
operation binds also variables other than those occurring indexed in x. This would have
required the binding, not of a subsequence x of x1 . . . xn+1, but of any sequence z with
variables whose indexes range from 1 to n+ 1. In this case, we do not need anymore the
restriction on y told about below. Finally, it is of course understood that the replacement
of the elements of s takes place on the unbound variables.
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α(x)

∆(x, y)

β

where the fact that y is different from x means that ∆(x, y) involves formulas
in the free variable y which do not appear either among the undischarged
assumptions, or in the conclusion. However, the restriction on y excludes
this possibility in the case of an operation of the same operational type,
which however binds x. The point is that such an operation cannot be seen
as an argument in the assumption α(x), since there must be the restriction
according to which the bound variables do not occur free in the undischarged
assumptions. Rather, the operation should be considered here as a rule

α(x)

β

which binds x and is subject to the aforementioned restriction. Therefore, we
assume that the only variables that can occur there are those of the entry of
the operational type, and of the corresponding codomain. It should be noted
that the restriction on the variables bound in the undischarged assumptions
has not been explicitly introduced by us yet - we will do it in the next section,
when we will talk about the composition of the operations on grounds; what
we are here limited ourselves to requiring is that the operation produces a
ground for β when applied to grounds for α(x), and a ground for α(x) can be
understood as an open argument for ∆(x) without undischarged assumptions.

As previously done, let us emphasize finally that a B-operation on gro-
unds of operational type

α1(x1), ..., αn(xn)B β(xn+1)

will also be called a ground on B for α1(x1), ..., αn(xn) ` β(xn+1); to avoid
ambiguity, it is a proper ground if, and only if, the additional sequence y is
empty, or, otherwise, an improper ground.

We now move on to the second-level operations on grounds, namely those
of which the operational type has entries

ΓB α.

Here, too, we will start with some examples, providing only later the general
characterization. We will use again as an example a representation in terms
of argument structures. Given first a structure of the type
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Γ1

...
α1

Γ2

...
α2 (∧I)α ∧ α2

it is clear that, if we replace the dots with two open valid arguments

Γi
∆i

αi

with i = 1, 2, we obtain the open valid argument

Γ1

∆1

α1

Γ2

∆2

α2 (∧I)α1 ∧ α2

and it is therefore clear that the starting argument structure corresponds
to a total constructive function which, taken as input grounds for Γi ` αi
(i = 1, 2), gives a ground for Γ1,Γ2 ` α1 ∧ α2. The operational type is

(Γ1 B α1,Γ2 B α2)B (Γ1,Γ2 B α1 ∧ α2).

Second-level operations on grounds can bind ground-variables, thus recalling
the rules that bind assumptions. The paradigmatic case is

[α]

...
β (→I)α→ β

understandable as a total constructional function which, taken as input a
ground for α ` β, returns a ground for ` α→ β, binding the ground-variable
which corresponds to the assumption α. The operational type is therefore

(αB β)B α→ β.

Obviously, the binding of the ground-variables can be accompanied by that
of individual variables. The example is, in this case, the rule

∃xα(x)

[α(x)]

...
β

(∃E)β
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understandable, given the restrictions on x, to a total construction function
which, taken as input grounds for ` ∃xα(x) and for α(x)Bβ, returns a ground
for ` β, binding the ground-variable corresponding to the assumption α(x)
and, on the index of α(x), the variable x. The operational type is

∃xα(x), (α(x)B β)B β.

We consider it appropriate to make an observation at this point. When
equated with an operation on grounds, the rule (→I) could be defined on
grounds for ∆ ` β whatever ∆ and return grounds on these values for ∆ −
{α} ` α→ β. It will still be sufficient to define the operation only relative to
grounds for α ` β, and then recover the more general case when we discuss
the composition of operations on grounds. However, in intuitive terms, let
us assume that an operation

f(ξαBβ)

has operational type

(αB β)B α→ β

and let

h(ξγ1 , ..., ξγn , ξα)

be a ground for γ1, ..., γn, α ` β. For every gi ground for ` γi (i ≤ n),

h(g1, ..., gn, ξ
α)

is then a ground for α ` β, so that

f(h(g1, ..., gn, ξ
α))

is a ground for ` α→ β. Hence, the composition

f(h(ξγ1 , ..., ξγn , ξα))

is a ground for γ1, ..., γn ` α→ β. As limiting case, we will assume that, for
every g ground for ` β,

f(g)

is a ground for ` α→ β, so that, given a ground

262



h(ξγ1 , ..., ξγn)

for γ1, ..., γn ` β, for every gi ground per γi (i ≤ n),

f(h(g1, ..., gn))

is a ground for ` α→ β, and hence the composition

f(h(ξγ1 , ..., ξγn))

is again a ground for γ1, ..., γn ` α→ β. This corresponds to an application

γ1 . . . γn
∆
β (→I)α→ β

where the assumption α is "vacuously" discharged. A similar discourse can
be conducted for (∃E). Therefore, the limitation does not depend on circu-
larity problems - as for (∀I) before - but on specific purposes of exposition
convenience.

Before the general characterization, we need some notation. We indicate
with ξ a sequence of distinct ground-variables. The ground-variables in ξ
have an index, in correspondence with an operational type where the types
of the ground-variables of ξ are intended to occur; an element of ξ will hence
have the form ξαi , where i is the index of the entry of the operational type
where α occurs. As regards the sequences of individuals and of individual
variables, to the previous notations the following must be added. Given an
operational type

τ1, ..., τn B τn+1

we indicate with x↑i the sequence of the individual varibales occurring al-
together in the domain of τi, and with x↓i the sequence of the individual
variables occurring in the codomain of τi. Obviously, if τi has empty domain,
x↑i is the empty sequence (i ≤ n + 1). Therefore, the indexing is of type x↑i
or x↓i . With this established, given a base B on L, a B-operation on grounds
of operational type

τ1, ..., τn B τn+1

that binds the elements of a subsequence x of x↑1 x
↓
1 ... x

↑
n+1 x

↓
n+1, and of

a sequence ξ such that ξαi is in ξ if (but not only if, that is, we may have
vacuous binding) α is in the domain of some τi but not in that of τn+1, is a
total constructive function
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f((x↓1 ... x
↓
n+1 − x) y, ξτ1 , ..., ξτn)

such that, for every s with L s = L [(x↓1 ... x
↓
n+1 − x) y], for every gi ground

on B (proper or improper) for τi[s/(x↓1 ... x
↓
n+1 − x)] (i ≤ n)

f((x↓1 ... x
↓
n+1 − x) y, g1, ..., gn)

is a ground on B (proper or improper) for τn+1[s/(x↓1 ... x
↓
n+1 − x)] (or `

τn+1[s/(x↓1 ... x
↓
n+1 − x)]).3 If the operation binds ξαi , we will say that the

binding occurs on the i-th entry; the same ground-variable may occur in
the sequence on an entry of index j 6= i, without being bound on j. Then,
called αi the codomain of τi, for τi with non-empty domain, and called β
the codomain of τn+1, or simply the codomain of the entire operational type
if τn+1 has empty domain, we admit, finally, the limiting case that allows
the "vacuous" discharge: for every gi (proper or improper) ground on B for
` αi[s/(x↓1 ... x

↓
n+1 − x)] (i ≤ n),

f(s/(x↓1 ... x
↓
n+1 − x) y, g1, ..., gn)

is a (proper or improper) ground on B for ` β[s/(x↓1 ... x
↓
n+1−x)]. There are

clearly also "mixed cases", where some gi are (proper or improper) grounds
on B for τi, and other are (proper or improper) grounds on B only for the
codomain of τi (i ≤ n); therefore, in the codomain of τn+1 will appear only
those domains taken into account in the application.

The linguistic expression of the operation involves individual variables
that are not bound by it; it should also be noted that it also involves ground-
variables that could be typed on an operational type for a first-level opera-
tion. Obviously, on the additional sequence y we make the same request as
on first-level operations, adding the same restriction on the indexes where
the ground-variables occur in the operations. Finally, it should be noted
that the operation acts only on the individual variables that occur in the
codomains of the various τi, and which are not bound (i ≤ n + 1). And all
this is because the function, once applied to specific values, might not be
defined on the domain variables, simply because these specific values, as we
will see when we deal with the composition of the operations on grounds,
may have an operational type with any domain.

We conclude this Section by pointing out that a B-operation on grounds
of operational type

τ1, ..., τn B τn+1

3See note 2 in the present chapter.
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will be also called a ground on B for τ1, ..., τn ` τn+1. It will be a proper
ground when the additional sequence y is empty, otherwise, an improper
ground.

5.2.2.3 Plugging operations and restrictions

We now introduce the notion of composition of operations on grounds. The
term "composition" is used here by analogy with that used in standard set-
theory: given

f : B → C and h : A→ B

we can consider the composite function of f and h

f ◦ h : A→ C

by putting

f ◦ h(x) = f(h(x)).

Exactly in the same way, given n operations on grounds

h1(x1, ξ
τ1
1 , ..., ξτ

1
m1 ), ..., hn(xn, ξ

τn1 , ..., ξτ
n
mn )

each of operational type

τ i1, ..., τ
i
mi
B τ imi+1

(i ≤ n) where τ imi+1 is αi if τ imi+1 has empty domain, and it has codomain αi
otherwise, and given an operation on grounds

f(x, ξτ1 , ..., ξτn)

of operational type

τ1, ..., τn B τn+1

where τi is αi if τi has empty domain, and has codomain αi otherwise (i ≤ n),
we take as defined the composite of f and h1 . . . hn

f ◦ (h1 . . . hn)

of operational type
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σ1, ..., σn B σn+1

by putting

f ◦ (h1 . . . hn) = f(x, h1(x1, ξ
τ1
1 , ..., ξτ

1
m1 ), ..., hn(xn, ξ

τn1 , ..., ξτ
n
mn )).

As regards the operational type of the composite, it is determined as follows:

• each σi (i ≤ n) is the set of all the τ imj (j ≤ mi), minus the assumptions
corresponding to the type of the ground-variables bound by f on index
i;

• as for σn+1, its codomain is the union of all the domains of the various
τ ij with non-empty domain minus the assumptions corresponding to the
type of the ground-variables bound by hi on index j, and minus the
assumptions corresponding to the type of the ground-variables bound
by f on index i (i ≤ n, j ≤ mi), while the codomain of σn+1 will be
that of τn+1, or simply τn+1 if the latter has empty domain.

In order to better understand the functioning of the composition, we will
give four practical examples. We will rely again on a representation in terms
of valid arguments; moreover, we will disregard the involvement of free indi-
vidual variables. As a first case, let us suppose we have two valid arguments

α
∆1

β

γ

∆2

α

to be understood as operations on grounds

f(ξα) and h(ξγ)

of respective operational types

αB β and γ B α;

then, the composite of f and h can be understood as the open valid argument

γ

∆2

α
∆1

β
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obtained by "composing" ∆1 and ∆2, and therefore understandable as an
operation on grounds

f(h(ξγ))

of operational type

γ B β.

Let us now suppose that we have a valid argument

α
∆
γ

to be understood again as an operation on grounds

f(ξα)

of operational type

αB β

and let us suppose we have a rule

γ1 [γ2]

...
γ3

α

to be understood as an operation on grounds

h(ξγ1,γ2Bγ3)

of operational type

(γ1, γ2 B γ3)B (γ1 B α);

binding the ground-variable of type γ2; then, the composite of f and h can
be understood as the structure

γ1 [γ2]

...
γ3

α
∆
β
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obtained by "composing" ∆ with the rule we had supposed to have, and
therefore understandable as an operation on grounds

f(h(ξγ1,γ2Bγ3))

of operational type

(γ1, γ2 B γ3)B (γ1 B β).

Moving on to the third example, let us consider the usual rule

[α]

...
β (→I)α→ β

to be understood as an operation on grounds

f(ξαBβ)

of operational type

(αB β)B α→ β

that binds the ground-variable of type α, and let us suppose we have a valid
argument

γ α

∆
β

to be understood as an operation on grounds

h(ξγ, ξα)

of operational type

γ,αB β;

then, the composite of f and h can be understood as the valid argument

γ [α]

∆
β (→I)α→ β
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understandable as an operation on grounds

f(h(ξγ, ξα))

of operational type

γ B α→ β.

Finally, let us suppose to have a rule

γ1 [γ2]

...
α
β

to be understood as an operation on grounds

f(ξγ1,γ2Bα)

of operational type

(γ1, γ2 B α)B (γ1 B β)

that binds the ground-variable of type γ2, and let us suppose to have the rule

δ1 [δ2] γ2

...
δ3
α

to be understood as an operation on grounds

h(ξδ1,δ2,γ2Bδ3)

of operational type

(δ1, δ2, γ2 B δ3)B (δ1, γ2 B α)

that binds the ground-variable of type δ2; the composite will be the structure

δ1 [δ2] [γ2]

...
δ3 δ2α γ2
β
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understandable as an operation on grounds

f(h(ξδ1,δ2,γ2Bδ3))

of operational type

(δ1, δ2, γ2 B δ3)B (δ1 B β).

With regard to the examples discussed so far, we would like to make two
observations. First of all, we observe that the examples cover respectively
the following four cases:

• a first-level operation f is applied to a first-level operation h, where the
codomain of h corresponds to one of the entries of the domain of f ;

• a first-level operation f is applied to a second-level operation h, where
the (codomain of the) codomain of h corresponds to one of the entries
of the domain of f ;

• a second-level operation f is applied to a first-level operation h, where
the codomain of h corresponds to the (codomain of) one of the entries
of the domain of f ;

• a second-level operation f is applied to a second-level operation h,
where the (codomain of the) codomain of h corresponds to the (co-
domain of) one of the entries of the domain of f .

In all cases, the operational type of the composite corresponds to the oper-
ational type of an operation on grounds of level ≤ 2; these will be the only
types of composition that we will take into account in the following.

The second observation related to the examples concerns the individual
variables. Although, in order not to complicate our discussion, we have done
without mention them, their treatment will be subject to two important
restrictions, which we will indicate below as restrictions (1) and (2).

After this preliminary discussion, we can turn to a general characteriza-
tion, on the basis of which to state a result. Let B be a base on L, and
let

f(x, ξτ1 , ..., ξτn)

be a B-operation on grounds of operational type

τ1, ..., τn B τn+1
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where τi is αi if τi has empty domain, and it has αi as codomain otherwise.
Then, for every i ≤ n, for every

hi(xi, ξ
τ i1 , ..., ξτ

i
mi )

(proper or improper) ground on B for τ i1, ..., τ imi ` τ imi+1 (mi ≥ 0) where
τ imi+1 is αi if τ imi+1 has empty domain, and it has αi as codomain otherwise,
and which moreover respects the restrictions (1) and (2) below, we call

f(x, . . . hi(xi, ξ
τ i1 , ..., ξτ

i
mi ) . . . )

a composite operation of f and . . . hi . . . - where the dots refers to the
indexes from 1 to n on which the composition takes place. We will also say
that

hi(xi, ξ
τ i1 , ..., ξτ

i
mi )

is plugged into f on index i.4

4Observe that the individual variables involved in hi - in compliance with the restric-
tions told about below - are here to be understood as all having an index i, corresponding
to the index on which hi is plugged. We left out these details here so as not to burden
the notation. Additionally, it should be observed that the composite of f and hi is to be
understood as involving, relatively to index i, all the variables involved in f on i, and all
those involved in hi; nonetheless, if f binds x on index i, and hi involves x, then the com-
posite is not to be understood as involving x. By illustratively resorting to λ-abstraction,
when we compose f with hi, we will have

. . . λxi . . . (. . . hi(. . . xi . . . ) . . . ).

Finally, we take the opportunity to observe that also the ground-variables involved in f ,
and that f binds, should have indexes - the same way as indexes are attributed to the
assumptions in a derivation in natural deduction; we can adopt the convention that the
index of a ξα involved in f is the index of the entry of the operational type where α
occurs, and that the index of a bound ground-variable is the index where it is bound.
When we plug hi, then, we have to require that the ground-variables ξα involved in hi are
re-indexed, to avoid conflicts with indexes of ground-variables ξα involved in f ; this can
be done by requiring that the ground-variables of hi have the additional index i. In this
way, given

hi(. . . ξ
α
j . . . ),

after the plugging we will have

. . . λξαi . . . (. . . ξ
α
j , hi(. . . ξ

α
j,i . . . ) . . . );

f is meant to bind all the ξαj,i involved in hi.
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Proposition 27. Let B be a base on L, and let

f(x, ξτ1 , ..., ξτn)

be a B-operation on grounds of operational type

τ1, ..., τn B τn+1

and, for i ≤ n, let

hi(xi, ξ
τ i1 , ..., ξτ

i
mi )

be a (proper or improper) ground on B for τ i1, ..., τ imi ` τ
i
mi+1 plugged into f

on index i. Then, the composite of f and . . . hi . . . is a (proper or improper)
ground on B for

. . . {τ i1, ..., τ imi} − νi . . . ` (. . . (({σis, ..., σit} − {νis, ..., νit})− νi) . . . B β)

where

• νi is the set of the type of the ground-variables bound by f on index i;

• {νis, ..., νit} is the set of the ground-variables bound by hi on indexes
s, ..., t (s, ..., t ≤ mi);

• {σis, ..., σit} is the set of the domains of the entries of the operational
type of hi with non-empty domain;

• β is τn+1 if τn+1 has empty domain, and it is the codomain of τn+1

otherwise.

Moreover, given a sequence s of individuals on B which respects the restric-
tions (1) and (2) below,

f(s/x, . . . hi(s/xi, ξ
τ i1[s/xi], ..., ξτ

i
mi

[s/xi]) . . . )

- where the substitution holds for some or all of the free variables in the
operational type - is a (proper or improper) ground on B for the judgment
or assertion above, where the free variables are replaced by s.

As regards the proof of the proposition, we refer to the examples given in
the preliminary discussion. Instead, we turn now to the restrictions on the
individual variables, mentioned when defining the notion of composition of
two (or more) operations on grounds, and in the statement of the proposition.
The restrictions are to be understood as a generalization of those on the rules
of introduction and elimination of the quantifiers in a Gentzen’s natural
deduction system for first-order logic. The first generalizes that on
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∀xα(x)
(∀E)

α(t/x)

α(t/x)
(∃I)∃xα(x)

where t is required to be free for x in α(x).

Restriction (1): given an operation on grounds of operational type

τ1, ..., τn B τn+1

if, for some i ≤ n, τi has empty domain and is of the form

. . . ∀x . . . αi(x, t/y)

or it has non-empty domain and its codomain has such form, and if τn+1 has
empty domain and is of the form

. . . ∃y . . . β(u/x, y)

or it has non-empty domain and its codomain has such form, then

• t is free for y in β(u/x, y) and

• u is free for x in α(x, t/y).

As regards the second restriction, it is a generalization of that on

α(x)
(∀I)∀yα(y/x)

∃xα(y/x)

[α(x)]

...
β

(∃E)β

where, as we know, for x it must hold that it does not occur free neither (on
the branch where it is bound) in non-discharged assumptions on which the
premise (on that branch) depends and which are different from assumptions
bound by the rule, nor in the conclusion of the rule.

Restriction (2): given an operation on grounds f of operational type

τ1, ..., τn B τn+1

that binds x on index i, a (proper or improper) ground h for τ i1, ..., τ imi ` τ
i
mi+1

plugged into f on index i must be such that, for every j ≤ mi

• if τ ij has non-empty domain Γ, then, for every β ∈ Γ, x occurs free in
β if, and only if, h binds a ground-variable of type β on index j or f
binds a ground-variable of type β on index i.

Moreover, x does not occur free in τn+1 if τn+1 has empty domain, or in the
codomain of τn+1 if τn+1 has non-empty domain.
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5.2.2.4 Ground-clauses and identity of operations

Once the discussion on operations on grounds has been completed, we can
now introduce the clauses that establish the notion of ground for categorical
judgments or assertions. Since judgments and assertions must be categorical,
the mentioned formulas and terms will always be closed, or will be open on
condition that the individual variables involved in them are bound in the
formula having the logical form which the clause deals with. Therefore,
given a base B on L, and given canonical names δ for the derivations in the
atomic system of B, we will have as follows.

(AtG) for every δ closed with conclusion α, δ is a ground on B for ` α

(∧G) g1 is a ground on B for ` α and g2 is a ground on B for ` β ⇔ ∧I(g1, g2)
is a ground on B for ` α ∧ β

(∨G) g is a ground on B for ` αi ⇔ ∨I〈αi B α1 ∨ α2〉(g) is a ground on B
for ` α1 ∨ α2 (i = 1, 2)

(→G) f(ξα) is a ground on B for α ` β ⇔ → Iξα(f(ξα)) is a ground on B
for ` α→ β

(∀G) f(x) is a ground on B for ` α(x) ⇔ ∀Ix(f(x)) is a ground on B for
` ∀xα(x)

(∃G) g is a ground on B for ` α(t) ⇔ ∃I〈α(t) B ∃xα(x)〉(g) is a ground on
B for ` ∃xα(x)

(⊥G) there is no ground on B for ` ⊥

∧I, ∨I, → I, ∀I and ∃I are to be understood as (the only) primitive oper-
ations. Primitivenes depends on the fact that these operations are meaning-
constitutive; in other words, to know the meaning of a formula α with k
as main logical constant, we need to know that there is an operation kI
that yields a ground for ` α when applied to the grounds for the immedi-
ate subformulas of α.The primitive operation will hence have by default the
following respective operational types:

(∧) α, β B α ∧ β

(∨) αi B α1 ∨ α2 (i = 1, 2)

(→) (αB β)B α→ β

(∀) α(x)B ∀xα(x)
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(∃) α(t)B ∃xα(x)

Furthermore, it should be noted that → I binds a ground-variable of type
α, while ∀I binds the individual variable x. Finally, by virtue of the clause
(⊥G), we can take as defined on every base an operation

⊥α(ξ⊥)

with operational type

⊥B α;

indeed, if there is no ground on any base for ` ⊥, the antecedent of the
definition of operation on grounds having that operational type is vacuously
satisfied, so that the conditions required by the definition are vacuously sat-
isfied too. In other words, introducing the clause (⊥G) is tantamount to
require that the atomic bases are always consistent.

Finally, we emphasize that the primitive operations undergo some identity
conditions. These conditions have to be explicitly stated since the operations,
because of their primitiveness, cannot be further analyzed.

• gi = hi (i = 1, 2) ⇔ ∧I(g1, g2) = ∧I(h1, h2)

• g = h⇔ ∨I(g) = ∨I(h)

• f1(ξα) = f2(ξα)⇔ → Iξα(f1(ξα)) = → Iξα(f2(ξα))

• f1(x) = f2(x)⇔ ∀Ix(f1(x)) = ∀Ix(f2(x))

• g = h⇔ ∃I(g) = ∃I(h)

• g = h⇔ ⊥α(g) = ⊥α(h)

The identity conditions for categorical judgments or assertions of implica-
tions and universal quantifications show that it is also necessary to introduce
identity conditions for operations on grounds. From this point of view, here
and in the sequel, we will adopt an extensional approach, according to which,
given to operations on grounds f1 and f2, f1 = f2 if, and only if, (1) f1 and f2

have the same domain and (2) f1 and f2 produce the same saturated values
when applied to the same saturated arguments. This definition can be taken
to proceed by simultaneous recursion, based on the identity conditions for
grounds for categorical judgments or assertions. With regard to this point,
we would like to make two observations.
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The first is that another possible way of dealing with identity of operations
on grounds - and hence, of grounds for categorical judgments or assertions
- would be that of understanding this notion intensionally. As we will see
in detail in Section 5.2.4.5, operations on grounds are determined, not only
by their operational type, but also by an equation that define them, in the
sense of indicating how they produce values in the codomain when applied
to arguments in the domain, and which these values are. Two operations on
grounds can be therefore said to be intensionally identical when they are, so
to say, defined by the same equation and, if they are composite, when they are
composed of the same operations, applied in the same order. It follows that
the identity we have defined in an extensional way is weaker than intensional
identity, so that it would perhaps be more correct to speak of equivalence,
and to deserve the expression "identity" to the intensional standpoint - and,
if we adopt this terminology, it will hold that identity implies equivalence,
but not viceversa.

Moreover, even if we will not deal with the intensional version, and limit
ourselves only to the quick mention of the previous observation, and to an-
other reference in Section 5.2.4.4, there is a point of our investigation where
we will pursue a more intensional line of thought. This will happen during
our discussion of the notions of universal grounds and operations on grounds,
in Section 5.2.4.6.5

5.2.3 Core languages and expansions

Grounds and operations on grounds are some of the objects denoted by the
terms of the languages of grounding that we will be defining; these are the
"inhabitans" of our "universe", and the terms of the languages of grounding,
by referring to this "semantics universe", will denote some of them.

5The choice of the extensional approach has also other consequences. The first is that
the requirement that two identical operations have identical domains blocks the possibility
of declaring as identical two operations that, if we understand them as open valid argu-
ments or valid rules, reduce one to another - because in reduction the domain of one of
them may be only contained in the domain of the other. The second is that we could have
identical operations, that would however correspond to open valid arguments or valid rules
in normal form, and that hence do not reduce one to another. If these circumstances are
unpleasant, besides the notions of extensional identity and intensional identity, we may
introduce a third, that we may call reductive identity - or reductive equivalence if we have
called equivalence the extensional identity - and indicate with ≡. Then, f1 ≡ f2 if, and
only if, the domain of f1 is contained in that of f2 or viceversa, and the operations produce
the same saturated values when applied to the same saturated values corresponding to the
intersection of the domains. The extensional identity/equivalence implies the reductive
one, but not viceversa.
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5.2.3.1 Core language over an atomic base

The notion from which we will start is that of core language.

Definition 28. Let B be a base on a first-order logical language L. A core
language G on B is determined by an alphabet and by a set of terms. The
alphabet is the following - we indicate with DERS the set of the derivations of
the atomic system S of B -

• individual constants δi [δi is (a name for) the i-th element of DERS]

• ground-variables ξαi (α ∈ FORML, i ∈ N)

• operational symbols F of operational type 〈‡〉:

– ∧I〈α, β B α ∧ β〉 (α, β ∈ FORML)

– ∨I〈αi B α1 ∨ α2〉 (i = 1, 2, α1, α2 ∈ FORML)

– →I 〈β B α→ β) (α, β ∈ FORML)

– ∀I〈α(xi)B ∀yjα(yj/xi)〉 (i, j ∈ N, α ∈ FORML)

– ∃I〈α(t/xi)B ∃xiα(xi)〉 (t ∈ TERML, α ∈ FORML, i ∈ N)
– ⊥α〈⊥B α〉 (α ∈ FORML)

• Parentheses and comma as auxiliary symbols

In order not to excessively burden the notation, and whenever this does not
give rise to ambiguity, we will omit the explicit mention of the typing of
the operational symbols, as well as indexes and subscripts. The notation
T : α ∈ X indicates that T is an element of X of type α. The set TERMG of
the terms of G is the least set X such that

• δ : α ∈ X (α conclusion of δ)

• ξα : α ∈ X

• T : α, U : β ∈ X ⇒ ∧I(T, U) : α ∧ β ∈ X

• T : αi ⇒ ∨I〈αi B α1 ∨ α2〉 : α1 ∨ α2 ∈ X (i = 1, 2)

• T : β ∈ X ⇒ → Iξα(T ) : α→ β ∈ X (α ∈ FORML)

• T : α(x) ∈ X ⇒ ∀Iy(T ) : ∀yα(y/x) ∈ X

• T : α(t/x) ∈ X ⇒ ∃I〈α(t/x)B ∃xα(x)〉(T ) : ∃xα(x) ∈ X

277



• T : ⊥ ⇒ ⊥α(T ) : α ∈ X

In ∀Iy(T ), it must not happen that y ∈ FV (α) where ξα occurs free in T ;
y is called the proper variable of the term. In ∃I(T ), t must be free for x in
α(x).

Definition 28 must be accompanied by a series of technical, but important
definitions. We provide them without further explanations, only by pointing
out that the notions they identify must be introduced, in a similar way, in
all the languages of grounding.

Definition 29. The set S(T ) of the subterms of T is inductively defined as
follows:

• S(δ) = {δ}

• S(ξα) = {ξα}

• S(∧I(T, U)) = S(T ) ∪ S(U) ∪ {∧I(T, U)}

• S(∨I(T )) = S(T ) ∪ {∨I(T )}

• S(→ Iξα(T )) = S(T ) ∪ {→ Iξα(T )}

• S(∀Ix(T ))) = S(T ) ∪ {∀Ix(T )}

• S(∃I(T )) = S(T ) ∪ {∃I(T )}

• S(⊥α(T )) = S(T ) ∪ {⊥α(T )}

Definition 30. The set FV I(T ) of the free individual variables of T is de-
fined inductively as follows:

• FV I(δ) = {x1, ..., xn}, for x1, ..., xn occurring free in δ

• FV I(ξα) = FV (α)

• FV I(∧I(T, U)) = FV I(T ) ∪ FV I(U)

• FV I(∨I〈αi B α1 ∨ α2〉(T )) = FV I(T ) ∪ FV (αj) (i, j = 1, 2, i 6= j)

• FV I(→ Iξα(T )) = FV I(T ) ∪ FV (α)

• FV I(∀Ix(T )) = FV I(T )− {x}

• FV I(∃I(T )) = FV I(T )
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• FV I(⊥α(T )) = FV I(T )

The set BV I(T ) of the bound individual variables of T is defined inductively
as follows:

• BV I(δ) = {x1, ..., xn}, for x1, ..., xn occurring bound in δ

• BV I(ξα) = BV (α)

• BV I(∧I(T, U)) = BV I(T ) ∪BV I(U)

• BV I(∨I〈αi B α1 ∨ α2〉(T )) = BV I(T ) ∪BV (αj) (i, j = 1, 2, i 6= j)

• BV I(→ Iξα(T )) = BV I(T )

• BV I(∀Ix(T )) = BV I(T ) ∪ {x}

• BV I(∃I(T )) = BV I(T )

• BV I(⊥α(T )) = BV I(T )

Definition 31. The set FV T (U) of the free ground-variables of U is defined
inductively as follows:

• FV T (δ) = {ξα1 , ..., ξαn} (α1, ..., αn undischarged assumptions of δ)

• FV T (ξα) = {ξα}

• FV T (∧I(U,Z)) = FV T (U) ∪ FV T (Z)

• FV T (∨I(U)) = FV T (U)

• FV T (→ Iξα(U)) = FV T (U)− {ξα}

• FV T (∀Ix(U)) = FV T (U)

• FV T (∃I(U)) = FV T (U)

• FV T (⊥α(U)) = FV T (U)

The set BV T (U) of the bound ground-variables of U is defined inductively as
follows:

• BV T (δ) = {ξα1 , ..., ξαn} (α1, ..., αn discharged assumptions of δ)

• BV T (ξα) = ∅
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• BV T (∧I(U,Z)) = BV T (U) ∪BV T (Z)

• BV T (∨I(U)) = BV T (U)

• BV T (→ Iξα(U)) = BV T (U) ∪ {ξα}

• BV T (∀Ix(U)) = BV T (U)

• BV T (∃I(U)) = BV T (U)

• BV T (⊥α(U)) = BV T (U)

U is closed if, and only if, FV I(U) = FV T (U) = ∅.

For the sake of greater simplicity, we finally adopt a rather standard con-
vention concerning free and bound variables, and proper variables; a similar
convention has already been mentioned with regard to the derivations in the
Gentzen’s natural deduction, as well as to typed λ-calculus. As in the no-
tions of the previous definitions, also this convention is intended to apply to
all languages of grounding.

Convention 32. In every T (1) FV I(T ) ∩ BV I(T ) = ∅ - property (FB) -
and (2) proper and non-proper variables are all distinct from each other, and
each proper variables occurs in at most one ∀Ix(U) - property (PN).

5.2.3.2 Languages of grounding and expansions

The notion of core language serves as a basis for defining the notion of lan-
guage of grounding in general, and for the expansion of a language of ground-
ing in general. As pointed out several times, we will ensure that every lan-
guage of grounding on a given base contains a core language on that base as
its proper or improper sublanguage; in other words, the expression "language
of grounding on a base B" has the same meaning as "(proper or improper)
expansion of a core language on B". It is worth repeating that this strategy
is not formally unavoidable, but we will pursue it as philosophically plausible
in the general framework of the theory of grounds – as well as having the
effect of facilitating the demonstration of some results.

Before moving on to the actual definitions, however, we must make some
preliminary remarks. To begin with, a core language on B can be expanded
in two ways - possibly combined:

1. by adding new individual constants that name derivations in an expan-
sion of the atomic system of B, or
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2. by adding new operational symbols.

However, point 2 requires a more in-depth discussion. Firstly, we specify
that, as was already in the case of the core language of definition 28, an
operational symbol F will be, in the alphabet of a language of grounding,
accompanied by an operational type 〈‡〉 on L; the construction of the terms
of the language of grounding, therefore, will proceed by adding to a certain
number of appropriate terms, not simply F , but more particularly F 〈‡〉 -
although, except for ambiguities, the operational type will be left implicit.
Thus, when we add operational symbols, the latter are to be understood as
typed; on the other hand it is clear that an operational type, associated to
an operational symbol F , can be any string of formulas of L - in spite of the
existence of an appropriate operation on grounds having that operational
type. The latter fact, for its part, could mean that, if the quantity of the
operational symbols added is countable but not finite, and if the operational
types associated with the new operational symbols constitute a non-decidable
set, the grounding language itself ends up being not "axiomatizable". And
we clearly want to exclude such possibility.

For this reason, in the definitions that follow we will use the expression
"operational type instance of a decidable scheme of operational types". This,
in practice, means that point 2 above, is divided into the following subpoints:

21 the operational symbols added are finite in number, or

22 the operational symbols added are of a countable but non-finite quan-
tity, and classifiable in a finite number of groups since the operational
type of each falls into a finite number of structural descriptions of oper-
ational types – for example, the type matches the structural description
α1 ∧ α2 B αi (i = 1, 2).

Therefore, in conclusion, using in our opinion a fitting metaphor, the lan-
guages of grounding that we will be defining can be equated with finitely
axiomatizable or, more weakly, axiomatizable systems. In other words, the
notion of scheme of operational types scheme is analogous to that of scheme
of axioms.

As a further premise, we want to point out that the addition of opera-
tional symbols will be subject to the following restrictions. First of all, the
operational type associated with the operational symbol must be such that
there is a corresponding operation on grounds of the appropriate operational
type. The expression "appropriate" must be specified in the following sense.
Each operational symbol will have an operational type for a first-level opera-
tion on grounds; if, however, the symbol is intended to bind ground-variables,
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the required appropriate operation will be of the second level. In particular,
if the symbol has β as the i-th entry of the type, and binds a ground-variable
of type on α index i, the i-th entry of the type of the operation will have a
non-empty domain, containing α, and codomain β - that is, it will be of the
form

ΓB β

for α ∈ Γ. We can now move on to the actual definitions.

Definition 33. Let G1 be a core language on a base B1 on a language L1.
We will say that a language of grounding is a core language G2 on a base B2

on a language L2, with B2 expansion of B1, or a language Λ specified by

• an alphabet Al such that, called AlG2 the alphabet of a G2 as above,

AlG2 ⊆ Al and Al− AlG2 = {F1, ..., Fn}

where, for every i ≤ n, Fi can bind a sequence of individual variables x
or a sequence of ground-variables ξ, and to it we attribute operational
types

α1(x1), ..., αn(xm)B β(xm+1)

instances of a decidable schemes of operational types on L2 such that
there is a B2-operation on grounds of which the expression f has the
following properties:

1. f involves all and only the individual variables of the sequence
x1, ..., xm, xm+1 − x

2. the operational type of f has a codomain β(xm+1) and, for every
j ≤ m, the entry of index j has a non-empty domain and codomain
αj(xj) if Fi binds ground-variables on j, and the domain of the
entry of index j is the set of the types of the ground-variables that
Fi binds on j, otherwise the j-th entry is αj(xj);

3. Fi binds x and ξα on j and k respectively if, and only if, f binds
x and ξα on j and k respectively (i, j ≤ m);

• a set of terms TERMΛ specified, for every F ∈ Al − AlG2 , by a clause
that, in compliance with the operational types 〈‡〉 associated to F , has
the form
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Ui : αi(xi) ∈ X (i ≤ m) ⇒ F 〈‡〉 x ξ (U1, ..., Um) : β(xm+1) ∈ X;

and that also respects an analogue of the restrictions (1) and (2) on
terms free for individual variables in formulas and on proper variables.

Given a language of grounding Λ, we agree to call primitive the operational
symbols ∧I, ∨I,→ I, ∀I and ∃I, non-primitive all the others. We then have
the following definition.

Definition 34. Let Λ1 be a language of grounding on a base B1 with set of
non-primitive operational symbols F1. An expansion Λ2 of Λ1 is a language
of grounding on a base B2, with B2 expansion of B1, and of which the set F2

of the non-primitive operational symbols is such that F1 ⊆ F2.

Before concluding the section, we will conduct some observations, which
descend immediately from the definitions just introduced, or integrate them
in a way fruitful for the continuation of our investigation.

First of all, note that each language of grounding is trivially an expansion
of itself; furthermore, if Λ2 is an expansion of Λ1, and Λ3 is an expansion of Λ2,
Λ3 is an expansion of Λ1. The expansion relation on languages of grounding
is therefore reflexive and transitive. Each language of grounding on B is also
trivially an expansion of a core language on B and, if the atomic system of B
is non-empty, it is also trivially an expansion of a core language on a logical
base involving the same individual constants, and the same relational and
functional symbols of B. Obviously, there may be cases of non-trivial core
sublanguages; for example, a grounding language on first-order arithmetic –
having as atomic system the Post-system {EQ} ∪ {SAM} of Section 2.5.1 - is
also an expansion: of the core language on the base

〈{ .=}, ∅, ∅, {EQ}〉;

of the core language on the base

〈{ .=}, {s}, {0}, {EQ ∪ {(s1), (s2)}}〉;

of the core language on the base

〈{ .=}, {s,+}, {0}, {EQ ∪ {(s1), (s2), (+1), (+2)}}〉.

On the other hand, other combinations based on first-order arithmetic are
not possible, because they violate either definition 21, by providing an atomic
system with rules on a language that cannot be constructed starting from
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the other elements of the base itself, or convention 24, according to which
the atomic system of a base must totally interpret the background language.

Another important observation concerns individual variables and free
ground variables in terms of a language of grounding. As anticipated in
the discussion of the core languages, we will assume as specified on each Λ
the following notions - and, on their basis, we will assume that on each Λ
applies the convention 32:

• set of the subterms of a term;

• set of the free and bound individual variables of a term;

• set of the free and bound ground-variables of a term.

Well, these notions have to be specified inductively, as in definitions 29, 30,
31, in such a way that, for every F x ξ (. . . U . . . ) : α ∈ TERMΛ, the two
following circumstances hold - it is easy to verify that they hold for a core
language:

(a) FV I(F x ξ (. . . Ui . . . )) is equal to the union of (1) FV (α) and (2)
of the free individual variables of Ui other than those in x bound on
index i;

(b) FV T (F x ξ (. . . Ui . . . )) is equal to the union of the free ground-
variables of Ui other than those in ξ bound on index i.

Obviously, i ≤ n, where n is the ariety of F . Therefore, each term T of
the type α in Λ contains: among its free individual variables, all and only
those of α, plus those of its immediate subterms not bound by the outermost
operational symbol of T on those subterms; among its free ground variables,
all and only those of its immediate subterms not bound by the outermost
operational symbol of T on those subterms.

5.2.3.3 Gentzen-language and Heyting arithmetics

To complete our discussion on languages of grounding and their expansion, we
give two examples. The first language we present will be called "Gentzen-
language"; as we will show by exhibiting a sort of Curry-Howard isomor-
phism, it constitutes a functional translation of first-order intuitionistic logic
in a Gentzen’s natural deduction system. The second language, on the other
hand, will be called "language of grounding for first-order Heyting arith-
metic"; it can still be understood as the functional translation of its equiva-
lent in Gentzen’s natural deduction.
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Gentzen-language
Let L be a first-oder logical language, B a base on L with atomic system S,
and G a core language on B. Let us consider an expansion Gen of G.

Definition 35. The language of Gen is specified starting from an alphabet
which contains that of G plus

• operational symbols F of operational type 〈‡〉:

– ∧E,i〈α1 ∧ α2 B αi〉 (αi ∈ FORML, i = 1, 2)

– ∨E〈α ∨ β, δ, δ B δ〉 (α, β, δ ∈ FORML)

– → E〈α→ β, αB β〉 (α, β ∈ FORML)

– ∀E〈∀xiα(xi)B α(t/xi)〉 (α ∈ FORML, t ∈ TERML, i ∈ N)
– ∃E〈∃xiα(xi), β B β〉 (α, β ∈ FORML, i ∈ N)

In order not to excessively burden the notation, and whenever this does
not create ambiguity, we will omit the explicit mention of the typing of
the operational symbols, as well as indexes and subscripts. The notation
T : α ∈ X indicates that T is an element of X of type α. The set TERMGen of
the terms of Gen is the smallest set X such that

• TERMG ⊂ X

• T : α1 ∧ α2 ∈ X ⇒ ∧E,i(T ) : αi ∈ X

• T : α ∨ β, U1 : δ, U2 : δ ∈ X ⇒ ∨E ξα ξβ(T, U1, U2) : δ ∈ X

• T : α→ β, U : α ∈ X ⇒ → E(T, U) : β ∈ X

• T : ∀xα(x) ∈ X ⇒ ∀E〈∀xα(x)B α(t/x)〉(T ) : α(t) ∈ X

• T : ∃xα(x), U : β ∈ X ⇒ ∃E x ξα(x)(T, U) : β ∈ X

In ∀E(T ), t must be free for x in α(x). In ∃E x ξα(x)(T, U), it must hold
that x /∈ FV (δ), for ξδ ∈ FV T (U) with δ 6= α(x), and x /∈ FV (β); x is called
proper variable of the term.

By way of example, we explicitly define for Gen the notions we have said
are to be defined for each grounding language.

Definition 36. The set S(T ) of the subterms of T is like in definition 30 if
T ∈ G and, in the other cases,
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• S(∧E,i(T )) = S(T ) ∪ {∧E,i(T )}

• S(∨E ξα ξβ(T, U1, U2)) = S(T )∪S(U1)∪S(U2)∪{∨E ξα ξβ(T, U1, U2)}

• S(→ E(T, U)) = S(T ) ∪ S(U) ∪ {→ E(T, U)}

• S(∀E(T )) = S(T ) ∪ {∀E(T )}

• S(∃E x ξα(x)(T, U)) = S(T ) ∪ S(U) ∪ {∃E x ξα(x)(T, U)}

Definition 37. The set FV I(T ) of the free individual variables of T is like
in definition 31 and, in the other cases,

• FV I(∧E,i(T )) = FV I(T )

• FV I(∨E ξα ξβ(T, U1, U2)) = FV I(T ) ∪ FV I(U1) ∪ FV I(U2)

• FV I(→ E(T, U)) = FV I(T ) ∪ FV I(U)

• FV I(∀E〈∀xα(x)B α(t/x)〉(T )) = FV I(T ) ∪ FV (α(t/x))

• FV I(∃E x ξα(x)(T, U)) = FV I(T ) ∪ (FV I(U)− {x})

The set BV I(T ) of the bound individual variables of T is like in definition 31
and, in the other cases,

• BV I(∧E,i(T )) = BV I(T )

• BV I(∨E ξα ξβ(T, U1, U2)) = BV I(T ) ∪BV I(U1) ∪BV I(U2)

• BV I(→ E(T, U)) = BV I(T ) ∪BV I(U)

• BV I(∀E(T )) = BV I(T )

• BV I(∃E x ξα(x)(T, U)) = BV I(T ) ∪ (BV I(U) ∪ {x})

Definition 38. The set FV T (U) of the free ground-variables of U is like in
definition 32 if U ∈ G and, in the other cases,

• FV T (∧E,i(U)) = FV T (U)

• FV T (∨E ξα ξβ(U,Z1, Z2)) =

= FV T (U) ∪ (FV T (Z1)− {ξα}) ∪ (FV T (Z2)− {ξβ})

• FV T (→ E(U,Z)) = FV T (U) ∪ FV T (Z)
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• FV T (∀E(U)) = FV T (U)

• FV T (∃E x ξα(x)(U,Z)) = FV T (U) ∪ (FV T (Z)− {ξα(x)})

The set BV T (U) of the bound ground-variables of U is like in definition 32 if
U ∈ G and, in the other cases,

• BV T (∧E,i(U)) = BV T (U)

• BV T (∨E ξα ξβ(U,Z1, Z2)) =

= BV T (U) ∪ (BV T (Z1) ∪ {ξα}) ∪ (BV T (Z2) ∪ {ξβ})

• BV T (→ E(U,Z)) = BV T (U) ∪BV T (Z)

• BV T (∀E(U)) = BV T (U)

• BV T (∃E x ξα(x)(U,Z)) = BV T (U) ∪ (BV T (Z) ∪ {ξα(x)})

Furthermore we assume that convention 32 applies. Let us establish an
isomorphism similar to the Curry-Howard one, by giving first the following
function:

i-th derivation S ι
=⇒ δi

α
ι

=⇒ ξα

∆1

α

∆2

β (∧I)α ∧ β
ι

=⇒ ∧I(ι(∆1), ι(∆2))

∆
α1 ∧ α2 (∧E,i), i = 1, 2αi

ι
=⇒ ∧E,i(ι(∆)), i = 1, 2

∆
αi (∨I), i = 1, 2α1 ∨ α2

ι
=⇒ ∨I〈αi B α1 ∨ α2〉(ι(∆))

∆1

α ∨ β

[α]

∆2

γ

[β]

∆3

γ (∨E)γ

ι
=⇒ ∨E ξα ξβ(ι(∆1), ι(∆2), ι(∆3))
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[α]

∆
β (→I)α→ β

ι
=⇒ → Iξα(ι(∆))

∆1

α→ β
∆2

α (→E)β

ι
=⇒ → E(ι(∆1), ι(∆2))

∆(x)

α(x)
(∀I)∀yα(y/x)

ι
=⇒ ∀Ix(ι(∆(x)))

∆
∀xα(x)

(∀E)
α(t)

ι
=⇒ ∀E(ι(∆))

∆
α(t/x)

(∃I)∃xα(x)

ι
=⇒ ∃I(ι(∆))

∆1

∃yα(y/x)

[α(x)]

∆2(x)

β
(∃E)β

ι
=⇒ ∃E x ξα(x)(ι(∆1), ι(∆2(x))

∆
⊥ (⊥)α

ι
=⇒ ⊥α(ι(∆))

It can be proved that ι is a bijective function, so the following holds:

Proposition 39. For every derivation in IL of the kind

α1 . . . αn
∆(x1, ..., xm)

β

there is U : β ∈ TERMGen with FV I(U) = {x1, ..., xm} and FV T (U) =
{ξα1 , ..., ξαn}, and viceversa.
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Moreover, as we will see more in detail in the next Section and in the next
chapter, it is possible to associate to the non-primitive operational symbols of
Gen some equations that establish the behavior of (the operations on grounds
denoted by) such symbols, in all similar to the equations for the elimination
of the redexes in the typed λ-calculus. This allows us to introduce, for the
terms of Gen, a notion of reduction that the bijection ι preserves isomorphi-
cally, with respect to the corresponding reduction relation for the derivations
of IL. Therefore, ι is an isomorphism with respect to this reducibility rela-
tion, and therefore with respect to the relation of reduction to normal form.

Heyting arithmetic
Let L be a first-order logical language with individual constant 0, relational
constant .=, and functional constants s, +, ·. Let then B be a base on L with
atomic system the Post-system S for first-order arithmetic of Section 2.5.1,
and let Gen be a Gentzen-language on B. Let us consider an expansion GHA
of Gen.

Definition 40. The language of GHA is specified starting from an alphabet
that contains that of Gen plus

• operational symbols F of operational type 〈‡〉:

– Ind〈α(0), α(s(x))B α(t)〉 (t ∈ TERML)

The notation T : α ∈ X indicates that T is an element of X of type α. The
set TERMGHA of the terms of GHA is the smallest set X such that:

• TERMGen ⊂ X

• T : α(0), U : α(s(x)) ∈ X ⇒ Ind x ξα(x)(T, U) : α(t) ∈ X

In Ind x ξα(x)(T, U), it must non be x ∈ FV (β), for ξβ ∈ FV (U) with
β 6= α(x), and it must not be x ∈ FV (α(t)).

Here too we have an isomorphism, by adding to the previous bijection ι the
clause

∆1

α(0)

[α(x)]

∆2(x)

α(s(x)/x)
IND

α(t)

ι
=⇒ Ind x ξα(x)(ι(∆1), ι(∆2(x))).

Proposition 41. For every derivation in HA of the kind
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α1 . . . αn
∆(x1, ..., xm)

β

there is U : β ∈ TERMGHA with FV I(U) = {x1, ..., xm} and FV T (U) =
{ξα1 , ..., ξαn}, and viceversa.

Speaking of GHA, there is also another important observation to make.
According to Gödel’s first incompleteness theorem, we know that there is a
closed formula G ∈ FORML such that 0HA G and 0HA ¬G. On the basis of the
bijection ι, the following proposition will therefore apply:

Proposition 42. There is G ∈ FORML closed such that there is neither T :
G ∈ TERMGHA, nor T : ¬G ∈ TERMGHA, for T closed.

On the other hand, it is often said that, however undecidable in HA, G is
a true formula on the intended model N. Thus, if by truth of G we mean the
existence of a ground for ` G, and if we assume that the terms of a language
of grounding denote ground for judgments or assertions involving formulas
of the background language, this will also mean that there is a ground for
` G inexpressible in GHA. This observation therefore provides us a decisive
reason to consider a language of grounding as open to the introduction of
new linguistic resources: in order to express grounds on languages at least
as rich as those of first-order arithmetic, we should be able to expand any
language of grounding on these languages - namely, there is no language that
allows us to express all the grounds. As we will see more in detail later,
an expansion that allows to express grounds previously inexpressible, will be
considered as a non-conservative expansion of the source language.

5.2.4 Denotation

We now provide a precise definition of denotation. As a preliminary re-
mark before the entire discussion, it should be recalled that the underlying
intuition is that a base with a non-empty atomic system B authorizes one
single interpretation intB of the elements of the alphabet, and therefore of
the terms, of the background language. For example, on the Post-system in
Section 2.5.1,

intB(0) = 0 ∈ N

intB(
.
=) = {(n,m) | n = m,n,m ∈ N} ⊆ N2

intB(s) = s : N→ N (successor function)
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intB(+) = +: N2 → N (addition)

intB(·) = · : N2 → N (multiplication)

If B is logical, instead, namely, if its atomic system is empty, the idea is
that the background language remains uninterpreted. In that case, we can
understand intB as the identity function on TERML, i.e.

intB(t) = t, for every t ∈ TERML.

5.2.4.1 Denotation for alphabet and terms

As in the case of model-theory, the definition of the notion of denotation
proceeds in two steps: fixed the denotation of the elements of the alphabet,
on its base we establish the denotation of the terms of the language by
induction on the complexity.

Definition 43. Let Λ be a language of grounding on a base B with atomic
system S. The denotation of the alphabet of Λ is determined by a function
den∗ defined as follows:

• den∗(δi) = i-th derivation of S

• den∗(ξα(x1,...,xn)
i ) = Id(ξ

α(x1,...,xn)
i ) (n ≥ 0), where Id is the identity

function on the operational type

α(x1, ..., xn)B α(x1, ..., xn)

• den∗(F ) = F , if F a primitive operational symbol

• if instead F is a non-primitive operational symbol of operational type

α1(x1), ..., αm(xn)B β(xn+1)

then den∗(F ) is one of the B-operations on grounds assumed as existing
relatively to the operational type of F as indicated in definition 33.

Definition 44. Let Λ be a language of grounding on a base B with atomic
system S, and let den∗ be a denotation of the elements of the alphabet of Λ.
The denotation of the terms of Λ associated with den∗ is determined by the
function den defined as follows:
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• den(δ) = den∗(δ) and den(ξα) = den∗(ξα)

• den(F x ξ (T1, ..., Tn)) = den∗(F )(den(T1), ..., den(Tn)) (n ≥ 0)

With regard to the last clause of the definition just given, it should be noted
that it can be considered well posed if, and only if

den(F x ξ (T1, ..., Tn))

is always well-defined. Now, since

den(F x ξ (T1, ..., Tn)) = den∗(F )(den(T1), ..., den(Tn))

and since, by virtue of definition 43, den∗(F ) is a B-operation on grounds
of a certain operational type, what must be actually ensured is that den(Ti)
(i ≤ n) is a (proper or improper) ground on B for an appropriate judgment
or assertion, which meets the conditions required for the B-operation on
grounds den∗(F ). A way to do it is to prove, by induction on the complexity
of the terms of Λ, that all terms denote (proper or improper) grounds on B for
appropriate judgments or assertions. And this is the content of a denotation
theorem set forth in the following section.

5.2.4.2 Denotation theorem

We should state beforehand that, although conducted only on some of the
many possible subcases, the proof of the theorem is very long. Indeed, for an
understanding of what follows it is sufficient to know only the claim of the
theorem, and that it is based essentially on the fact that each operational
symbol of any language of grounding must, as according definition 33, be as-
sociated with operational types such that there is a corresponding operation
on grounds of the appropriate operational type.

Theorem 45. Let Λ be a language of grounding on a base B, let den∗ be
a denotation function of the elements of the alphabet of Λ, and let den be
the denotation function of the terms of Λ associated with den∗. Let then
U : β ∈ TERMΛ with

FV I(U) = {x1, ..., xn} and FV T (U) = {ξα1 , ...ξαm} (n,m ≥ 0).

Then, den(U) is a (proper or improper) ground on B for α1, ..., αm ` β, in
all and only the individual variables x1, ..., xn.

Proof. We prove the theorem by induction on the complexity of U : β ∈
TERMΛ.
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• for U constant or ground-variable, the result holds trivially in virtue of
definition 44;

• let us assume the result is proved for every term less complex than U .
For clarification purposes, we distinguish two cases:

(Case 1) U is closed. By virtue of observation (a) in Section 5.2.3.2, it
must hold that

FV (β) ⊆ FV I(U),

and hence, since we have assumed

FV I(U) = ∅,

it must hold

FV (β) = ∅.

We have therefore to prove that U is a proper ground on B for ` β,
with β closed. For the sake of simplicity, and without loss of generality,
we assume that U has the form

F x ξγ(Z)

with Z : α ∈ TERMΛ. Let us observe first of all that F must have
operational type

αB β.

Moreover, by virtue of observation (a) in Section 5.2.3.2, it must hold
that

FV (α) ⊆ FV I(Z)

and that

FV I(Z) ⊆ {x}.
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Hence, den∗(F ) must be a B-operation on gorunds

f(ξγBα)

of operational type

(γ B α)B β

binding x and ξγ, for closed or open α. As for Z, after what already
established with regard to FV I(Z), we observe that, in accordance with
observation (b) again in Section 5.2.3.2, it must apply that

FV T (Z) ⊆ {ξγ}

and, again by observations (a) and (b) in Section 5.2.3.2, it will hold
that

FV T (Z) 6= ∅ ⇒ for every y 6= x ∈ FV (γ), y ∈ BV I(Z).

To lighten the matter, this last circumstance will be reduced to the
assumption according to which

FV (γ) ⊆ FV I(Z)

although it should be kept in mind that this is only an imprecise, al-
though useful, simplification. We therefore have a series of subcases
to take into account. The first is that in which Z is itself closed; by
induction hypothesis, den(Z) is a ground g on B for ` α, with α closed.
But then,

den(F x ξγ(Z)) = den∗(F )(den(Z)) = f(g)

is a ground on B of the required type. The other subcase is that where
Z is open, which in turn has the three subcases of the disjunction

FV I(Z) = {x} or FV T (Z) = {ξγ}.

Let us consider only two of them. Let us first of all suppose that
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FV I(Z) = {x} and FV T (Z) = ∅.

By induction hypothesis, den(Z) is a B-operation on grounds

h(x)

of operational type

α

and is hence a ground on B for ` α, proper if α is open, improper
otherwise. But then,

den(F x ξγ(Z)) = den∗(F )(den(Z)) = f(h(x))

is a ground on B of the required kind. Let us finally consider the case

FV I(Z) = {x} and FV T (Z) = {ξγ}.

By induction hypothesis, den(Z) is a B-operation on grounds

h(x, ξγ)

of operational type

γ B α

and is hence a ground on B for γ ` α, proper if γ or α are open,
improper otherwise. But then,

den(F x ξγ(Z)) = den∗(F )(den(Z)) = f(h(x, ξγ))

is a ground on B of the required kind;

(Case 2) U is open with

FV I(U) = {x1, ..., xn} and FV T (U) = {ξα1 , ..., ξαm} (n > 0 or m > 0).

295



By observations (a) and (b) of Section 5.2.3.2, it must hold that

⋃
i≤m FV (αi) ∪ FV (β) ⊆ FV I(U).

We must therefore prove that den(U) is a B-operation on grounds

f(x1, ..., xn, ξ
α1 , ..., ξαm)

of operational type

α1, ..., αm B β

which will be a ground on B for α1, ..., αm ` β, proper if⋃
i≤m FV (αi) ∪ FV (β) = FV I(U)

and improper if

⋃
i≤m FV (αi) ∪ FV (β) ⊂ FV I(U).

For the sake of simplicity, and without loss of generality, let us assume
that U has the form

F x1 ξ
γ1(Z)

with Z : α ∈ TERMΛ and

FV I(F x1 ξ
γ1(Z)) = {x2} and FV T (F x1 ξ

γ1(Z)) = {ξγ2}.

Let us observe first of all that F must have operational type

αB β.

Moreover, by virtue of observation (a) in Section 5.2.3.2, and of restric-
tion (2), it must hold that

FV (β) ⊆ {x2}
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and furthermore, again by virtue of observation (a) in Section 5.2.3.2,
it must hold that

FV (α) ⊆ FV I(Z)

and that

FV I(Z) ⊆ {x1, x2}.

Hence, den∗(F ) can be: either a B-operation on grounds

f(ξγ1Bα)

of operational type

(γ1 B α)B β

if

FV (α) ∪ FV (β) ⊆ {x1};

or a B-operation on grounds

f(x2, ξ
γ1Bα)

of operational type

(γ1 B α)B β

if

x2 ∈ FV (α) ∪ FV (β).

In all cases, den∗(F ) binds x1 and ξγ1 . As for Z, after what already es-
tablished about FV I(Z), we observe that, by observation (b) in Section
2.5.3.2, it must hold that

FV T (Z) ⊆ {ξγ1 , ξγ2}.
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Hence, again by observations (a) and (b) in Section 2.5.3.2, we will
have

FV T (Z) 6= ∅ ⇒ for every y 6= xj ∈ FV (γi) (i, j = 1, 2), y ∈ BV I(Z).

To lighten the matter, this latter circumstance will be reduced to the
assumption according to which

FV (γi) (i = 1, 2) ⊆ FV I(Z)

although it should be kept in mind that this is only an imprecise, al-
though useful, simplification. Observe anyway that, by observation (b)
in Section 2.5.3.2, it cannot be

FV T (Z) = ∅

since

ξγ2 ∈ FV T (F x ξ(Z));

hence

ξγ2 ∈ FV T (Z)

and

FV (γ2) ⊆ FV I(Z).

We thus have a series of cases to take into account. First of all, the
one in which FV I(Z) = ∅. Here, we have to take into account the two
subcases of the disjunction

FV T (Z) = {ξγ2} or FV T (Z) = {ξγ1 , ξγ2}.

Consider only the second, and suppose that

FV T (Z) = {ξγ1 , ξγ2}.
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By induction hypothesis, den(Z) is a B-operation on grounds

h(ξγ1 , ξγ2)

of operational type

γ1, γ2 B α

with γ1, γ2 and α closed, and is hence a proper ground on B for γ1, γ2 `
α. Since

x2 ∈ FV I(F x ξ(Z)),

it must hold that

FV (β) = {x2},

and hence den∗(F ) will be a B-operation on grounds

f(x2, ξ
γ1Bα)

of operational type

(γ1 B α)B β.

But then

den(F x ξ(Z)) = den∗(F )(den(Z)) = f(x2, h(ξγ1,γ2))

is a ground on B of the required kind. Let us move on to the case in
which FV I(Z) 6= ∅. We have the three subcases of the disjunction

FV I(Z) = {x1} or FV I(Z) = {x2} or FV I(Z) = {x1, x2}.

each of which must be articulated with respect to the two subcases of
the disjunction

FV T (Z) = {ξγ2} or FV T (Z) = {ξγ1 , ξγ2}.
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We consider only some of them. Let us suppose first of all that

FV I(Z) = {x1} and FV T (Z) = {ξγ2}.

Here, by restriction (2), we must have

x1 /∈ FV (γ2).

Since

x2 ∈ FV I(F x ξγ1(Z)),

we have only two possibilities. The first one is

FV (γ2) = ∅, FV (α) = ∅ and FV (β) = {x2},

in which case, by induction hypothesis, den(Z) is a B-operation on
grounds

h(x1, ξ
γ2)

of operational type

γ2 B α,

namely, an improper ground on B for γ2 ` α, and den∗(F ) is a B-
operation on grounds

f(x2, ξ
γ1Bα)

of operational type

(γ1 B α)B β;

but then,

den(F x ξ(Z)) = den∗F (den(Z)) = f(x2, h(x1, ξ
γ2))
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is a ground on B of the required kind. The second possibility is

FV (ξγ2) = ∅, FV (α) = {x1} and FV (β) = {x2},

in which case, by induction hypothesis, den(Z) is a B-operation on
grounds

h(x1, ξ
γ2)

of operational type

γ2 B α,

namely, a proper ground on B for γ2 ` α, and den∗(F ) is a B-operation
on grounds

f(x2, ξ
γ1Bα)

of operational type

(γ1 B α)B β;

but then,

den(F x ξ(Z)) = den∗F (den(Z)) = f(x2, h(x1, ξ
γ2))

is a ground on B of the required kind. Let us now consider the case

FV I(Z) = {x2} and FV T (Z) = {ξγ1 , ξγ2}.

Here we have four groups of possibilities. A first group of possibilities
is summarized in

FV (γ1) ∪ FV (γ2) ∪ FV (α) = {x2} and FV (β) = ∅,

in which case, by induction hypothesis, den(Z) is a B-operation on
grounds
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h(x2, ξ
γ1 , ξγ2)

of operational type

γ1, γ2 B α,

namely, a proper ground on B for γ1, γ2 ` α, and den∗(F ) is a B-
operation on grounds

f(ξγ1Bβ)

of operational type

(γ1 B α)B β;

but then,

den(F x ξ(Z)) = den∗(F )(den(Z)) = f(h(x2, ξ
γ1 , ξγ2))

is a ground on B of the required kind. A second group of possibilities
is instead summarized in

FV (γ1) ∪ FV (γ2) ∪ FV (α) = {x2} and FV (β) = {x2},

in which case, by induction hypothesis, den(Z) is B-operation on gro-
unds

h(x2, ξ
γ1 , ξγ2)

of operational type

γ1, γ2 B α,

namely, a proper ground on B for γ1, γ2 ` α, and den∗(F ) is a B-
operation on grounds

f(x2, ξ
γ1Bβ)
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of operational type

(γ1 B α)B β;

but then,

den(F x ξ(Z)) = den∗(F )(den(Z)) = f(x2, h(x2, ξ
γ1 , ξγ2))

is a ground on B of the required kind. The third possibility is expressed
by the conjunction

FV (γ1) ∪ FV (γ2) ∪ FV (α) = ∅ and FV (β) = ∅,

in which case, by induction hypothesis, den(Z) is a B-operation on
grounds

h(x2, ξ
γ1 , ξγ2)

of operational type

γ1, γ2 B α,

namely, an improper ground on B for γ1, γ2 ` α, and den∗(F ) is a
B-operation on grounds

f(ξγ1Bβ)

of operational type

(γ1 B α)B β;

but then,

den(F x ξ(Z)) = den∗(F )(den(Z)) = f(h(x2, ξ
γ1 , ξγ2))

is a ground on B of the required kind. A fourth possibility is expressed
by the conjunction
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FV (γ1) ∪ FV (γ2) ∪ FV (α) = ∅ and FV (β) = {x2},

in which case, by induction hypothesis, den(Z) is a B-operation on
grounds

h(x2, ξ
γ1 , ξγ2)

of operational type

γ1, γ2 B α,

namely, an improper ground on B for γ1, γ2 ` α, and den∗(F ) is a
B-operation on grounds

f(x2, ξ
γ1Bβ)

of operational type

(γ1 B α)B β;

but then,

den(F x ξ(Z)) = den∗(F )(den(Z)) = f(x2, h(x2, ξ
γ1 , ξγ2))

is a ground on B of the required kind. Let us finally consider the case

FV I(Z) = {x1, x2} and FV T (Z) = {ξγ1 , ξγ2}.

Again by restriction (2), we will have that

x1 /∈ FV (γ2).

We have again four groups of possibilities. The first one is summarized
in

FV (γ1) ∪ FV (γ2) ∪ FV (α) ⊆ {xi} (i = 1, 2) and FV (β) = ∅,
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in which case, by induction hypothesis, den(Z) is a B-operation on
grounds

h(x1, x2, ξ
γ1 , ξγ2)

of operational type

γ1, γ2 B α,

namely, an improper ground on B for γ1, γ2 ` α, and den∗(F ) is a
B-operation on grounds

f(ξγ1Bβ)

of operational type

(γ1 B α)B β;

but then,

den(F x ξ(Z)) = den∗(F )(den(Z)) = f(h(x1, x2, ξ
γ1 , ξγ2))

is a ground on B of the required kind. A second group of possibilities
is summarized in

FV (γ1) ∪ FV (γ2) ∪ FV (α) ⊆ {xi} (i = 1, 2) and FV (β) = {x2},

in which case, by induction hypothesis, den(Z) is a B-operation on
grounds

h(x1, x2, ξ
γ1 , ξγ2)

of operational type

γ1, γ2 B α,

namely, an improper ground on B for γ1, γ2 ` α, and den∗(F ) is a
B-operation on grounds
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f(x2, ξ
γ1Bβ)

of operational type

(γ1 B α)B β;

but then,

den(F x ξ(Z)) = den∗(F )(den(Z)) = f(x2, h(x1, x2, ξ
γ1 , ξγ2))

is a ground on B of the required kind. A third possibility is expressed
by the conjunction

FV (γ1) ∪ FV (γ2) ∪ FV (α) = {x1, x2} and FV (β) = ∅,

in which case, by induction hypothesis, den(Z) is a B-operation on
grounds

h(x1, x2, ξ
γ1 , ξγ2)

of operational type

γ1, γ2 B α,

namely, a proper ground on B for γ1, γ2 ` α, and den∗(F ) is a B-
operation on grounds

f(ξγ1Bβ)

of operational type

(γ1 B α)B β;

but then,

den(F x ξ(Z)) = den∗(F )(den(Z)) = f(h(x1, x2, ξ
γ1 , ξγ2))
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is a ground on B of the required kind. A fourth possibility is expressed
by the conjunction

FV (γ1) ∪ FV (γ2) ∪ FV (α) = {x1, x2} and FV (β) = {x2},

in which case, by induction hypothesis, den(Z) is a B-operation on
grounds

h(x1, x2, ξ
γ1 , ξγ2)

of operational type

γ2 B α,

namely, a proper ground on B for γ1, γ2 ` α, and den∗(F ) is a B-
operation on grounds

f(x2, ξ
γ1Bβ)

of operational type

(γ1 B α)B β;

but then,

den(F x ξ(Z)) = den∗(F )(den(Z)) = f(x2, h(x1, x2, ξ
γ1 , ξγ2))

is a ground on B of the required kind.

On more complex terms the reasoning is analogous.
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5.2.4.3 Closure under canonical form

The denotation theorem guarantees a sort of "correctness" for language of
grounding, with respect to the grounds set on a reference base by the clauses
(AtG) - (⊥G), as well as with respect to the operations on grounds on this
base. Indeed, it shows that each term of each language of grounding denotes
either a ground for a categorical judgment or assertion, or a first-level oper-
ation on grounds. The propitious circumstance depends on the fact that, in
languages of grounding, we have authorized only operational symbols with
operational types and bindings such that there are corresponding operations
on grounds on the reference base.

In this section, we want to conduct an observation that is linked to the
denotation theorem, and that will allow us to identify a first property on the
basis of which languages of grounding can be classified. Before we begin,
however, we need a definition.

Definition 46. Let Λ be a language of grounding, and let T be a term of
Λ. We will say that T is in canonical form if, and only if, it is an individual
constant of Λ, or a ground-variable, or the outermost operational symbol of
T is ∧I or ∨I or → I or ∀I or ∃I.

Well, given a grounding language Λ, and given T : α ∈ TERMΛ closed, ac-
cording to the denotation theorem we know that, for each denotation function
den∗ of the elements of the alphabet of Λ, and called den the denotation func-
tion of the terms of Λ associated with den∗, den(T ) is a proper ground for
` α with α closed, namely a ground as required by the clause (kG), where k
is the main logical constant of α. Now, we know that grounds of this kind
are formed by applying primitive operations to appropriate objects, and we
know also that these primitive operations correspond to operational symbols
present in every grounding language. All these observations, then, could
lead us to conclude that it must exist U : α ∈ TERMΛ closed and in canonical
form such that den(T ) = den(U). In other words, we could be led to believe
that every proper ground for a categorical judgment or assertion denoted by
some term of Λ has, in the same Λ, a canonical name. If it is easy to realize
that this applies when α is atomic, an example will show however, that this
circumstance does not apply in general.

Given an atomic base B on a language L, let us take into account two
classes of operations

hi(ξ
α1∧α2) (i = 1, 2)

of respective operational types
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α1 ∧ α2 B αi (i = 1, 2),

with α1, α2 ∈ FORML closed, fixed by the following, respective equations: for
every ∧I(g1, g2) proper ground on B for ` α1 ∧ α2,

hi(∧I(g1, g2)) = gi.

These operations are, in particular, B-operations on grounds; indeed, since
∧I(g1, g2) is a proper ground on B for ` α1 ∧ α2, gi is a proper ground on B
for ` αi (i = 1, 2). Whence the conclusion that

→ Iξα1∧α2(hi(ξ
α1∧α2))

is a proper ground on B for ` α1 ∧ α2 → αi. Let us then take into account
a class of operations

f(ξαi→α1∨α2) (i = 1, 2)

of operational type

αi → α1 ∨ α2 B α1 ∧ α2 → αi

with α1, α2 ∈ FORML closed, fixed by the following equations: for every g
proper ground on B for ` αi → α1 ∨ α2,

f(g) = → Iξα1∧α2(hi(ξ
α1∧α2)).

These operations are, for what has been just stated about the term on the
right in the last equation, B-operations on grounds.

Given now a core language on B, let us expand it to a language of ground-
ing Λ by adding to it a class of operational symbols

F 〈αi → α1 ∨ α2 B α1 ∧ α2 → αi〉 (i = 1, 2)

with α1, α2 ∈ FORML closed, and let us put

den∗(F 〈αi → α1 ∨ α2 B α1 ∧ α2 → αi〉) = f(ξαi→α1∨α2).

Now, in Λ we surely have a closed term that denotes a proper ground g on
B for ` αi → α1 ∨ α2, that is

→ Iξαi(∨I〈αi B α1 ∨ α2〉(ξαi)).

Consequently, the term of Λ
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F (→ Iξαi(∨I〈αi B α1 ∨ α2〉(ξαi)))

denotes a proper ground on B for` α1 ∧ α2 → αi, as shown by the following
computation:

den(F (→ Iξαi(∨I〈αi B α1 ∨ α2〉(ξαi)))) =
den∗(F )(den(→ Iξαi(∨I〈αi B α1 ∨ α2〉(ξαi))) =

f(g) = → Iξα1∧α2(hi(ξ
α1∧α2)).

The question is now if it exists a term U : α1 ∧ α2 → αi ∈ TERMΛ closed and
in canonical form, such that

den(F (→ Iξαi(∨I〈αi B α1 ∨ α2〉(ξαi)))) = den(U)

that is, such that

den(U) = → Iξα1∧α2(hi(ξ
α1∧α2)).

Now, if such a term existed, since it should have the form

→ Iξα1∧α2(Z)

with Z : αi ∈ TERMΛ, we would have that

den(U) = den(→ Iξα1∧α2(Z)) = den∗(→ I)(den(Z)) =
→ Iξα1∧α2(den(Z)) = → Iξα1∧α2(hi(ξ

α1∧α2))

and hence we should have that

den(Z) = hi(ξ
α1∧α2).

And this, by the denotation theorem, will occur when

FV T (Z) = {ξα1∧α2}.

Well, note that Λ can be equated to a natural deduction system à la Gentzen,
say Σ, which consists of only introduction rules, plus the pair of rules

αi → α1 ∨ α2
Fα1 ∧ α2 → αi

with respect to which we can define a translation ι similar to that for the
Curry-Howard isomorphism. On introduction rules, ι acts as that defined for
Gen in Section 5.2.4.5, while on F it behaves as follows:
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∆
αi → α1 ∨ α2

Fα1 ∧ α2 → αi
ι

=⇒ F 〈αi → α1 ∨ α2 B α1 ∧ α2 → αi〉(ι(∆))

Therefore, a Z of the required kind can exists if, and only if, α1 ∧ α2 `Σ αi,
which, as can be easily seen, is not possible. Since the property in question
is not trivial, we highlight it with a definition.

Definition 47. Let Λ be a language of grounding, let den∗ be a denotation
function for the elements of the alphabet of Λ, and let den be the denotation
function for the terms of Λ associated with den∗. Λ is closed under canonical
form with respect to den if, and only if, for every T : α ∈ TERMΛ closed, there
is U : α ∈ TERMΛ closed and in canonical form such that den(T ) = den(U).6

5.2.4.4 Variant and invariant denotation

At this point, we are able to illustrate an aspect - in our opinion interesting
- concerning the interaction between the languages of grounding and our
"universe" of grounds and operations on grounds. We will prove, in fact, that
every language of grounding on an atomic base can be expanded to a language
of grounding on the same base, closed under canonical form with respect to
an expansion of a denotation function defined on the original language. The
proof includes several subcases, one of which requires a strategy that we could
define as duplication of operational symbols. After the proof, however, we
will conduct a brief discussion on this strategy, to see whether and how much
it is plausible, and to show how it suggests the possibility of a denotational
approach different from the one presented here. Finally, we will show how
the alternative denotational approach allows for an easier proof of the same
result as above.

Be as it is, however, we note that the proof, in each of the two forms
we will present here, is based on a convention, also in two forms, depending
on the denotational approach chosen. We said that the denotation theorem
guarantees a sort of "correctness" of the languages of grounding; well, the
convention consists in taking on also the "completeness". We will not dwell
here in the analysis of the major or minor plausibility of this assumption, we
will limit ourselves to fix it, firstly, in the following form.

6A good example of language of grounding closed under canonical form is the Gentzen-
language of Section 5.2.3.3, when the denotation function is meant to associate to the non-
primitive operational symbols an analogue of Prawitz’s reduction for Gentzen’s elimination
rules. A pivotal role is played by what Schroeder-Heister (Schroeder-Heister) calls the
fundamental corollary of Prawitz’s normalization theory, according to which, if `IL α,
there is in IL a closed derivation of α ending with an introduction rule; something similar,
via Curry-Howard, applies in the case of typed λ-calculus.
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Convention 48. Let B be an atomic base. For every (proper or improper)
ground g on B for α1, ..., αn ` β, there is a language of grounding Λ on B
such that, for some denotation function den∗ for the elements of the alphabet
of Λ, and called den the denotation function for the terms of Λ associated
with den∗, there is U ∈ TERMΛ such that den(U) = g.

Now we will prove the theorem, in its first form.

Theorem 49. Let be B be an atomic base, let Λ be a language of grounding
on B, let den∗0 be a denotation function for the elements of the alphabet
of Λ, and let den0 be the denotation function for the terms of Λ associated
with den∗0. Then, for every T : α ∈ TERMΛ closed, there is an expansion
Λ+ on B of Λ such that, for some denotation function for the elements of
the alphabet of Λ+, and called den the denotation function for the terms of
Λ+ associated with den∗, there is U ∈ TERMΛ+ in canonical form such that
den0(T ) = den(T ) = den(U).

Proof. We reason by cases on the logical form of α. As regards the logically
complex cases, we take into account only the one with ∧.

Let α be atomic. In this case, den0(T ) is a closed derivation ∆ for α in the
atomic system of B. In Λ we will have a name δ of ∆. We can hence put
Λ+ = Λ, den∗ = den∗0 and, therefore, den = den0. Indeed

den0(T ) = ∆ = den∗0(δ) = den0(δ).

Let α be of the form α1 ∧ α2. In this case, denΛ(T ) is ∧I(g1, g2), with gi
proper ground onB for ` αi (i = 1, 2). By convention 48, there exist

• a language of grounding Λ1 on B such that, for some denotation func-
tion den∗1 for the elements of the alphabet of Λ1, and called den1 the
denotation function for the terms of Λ1 associated to den∗1, there is
U1 ∈ TERMΛ1 such that den1(U1) = g1;

• a language of grounding Λ2 on B such that, for some denotation func-
tion den∗2 for the elements of the alphabet of Λ2, and called den2 the
denotation function for the terms of Λ2 associated with den∗2, there is
U2 ∈ TERMΛ2 such that den2(U2) = g2.

Now, called AlΛ, AlΛ1 and AlΛ2 the respective alphabets of Λ, Λ1 and Λ2, if
we have

AlΛ ∩ AlΛ1 ∩ AlΛ2 = ∅,
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let us consider the language of grounding Λ+ of which the alphabet is

AlΛ ∪ AlΛ1 ∪ AlΛ2

and let us define the denotation function den∗ for the elements of the alphabet
of Λ+ such that 

den∗(x) = den∗0(x) for x ∈ AlΛ

den∗(x) = den∗1(x) for x ∈ AlΛ1

den∗(x) = den∗2(x) for x ∈ AlΛ2

which will be associated to a denotation function den of the terms of Λ+ such
that

den(T ) = den0(T ) and den(U1) = den1(U1) and den(U2) = den2(U2).

But then, from the following computation

den(T ) = den0(T ) = ∧I(g1, g2) =
∧I(den1(U1), den2(U2)) =

∧I(den(U1), den(U2)) = den(∧I(U1, U2)).

we conclude that

den0(T ) = den(T ) = den(∧I(U1, U2)).

Let us suppose then that it holds

AlΛ ∩ AlΛ1 ∩ AlΛ2 6= ∅

and, called FT , FU1 and FU2 the sets of the non-primitive operational symbols
respectively occurring in T , U1 and U2, let us suppose that it holds

FT ∩ FU1 ∩ FU2 = ∅.

Also in this case, let us consider the language of grounding Λ+ of which the
alphabet is

AlΛ ∪ AlΛ1 ∪ AlΛ2

and let us define a denotation function den∗ for the elements of the alphabet
of Λ+ such that 

den∗�FT (x) = den∗0(x)

den∗�FU1
(x) = den∗1(x)

den∗�FU2
(x) = den∗2(x)
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which will be again associated with a denotation function den of the terms
of Λ+ such that, again,

den(T ) = den0(T ) and den(U1) = den1(U1) and den(U2) = den2(U2).

But then, again from the computation above, we conclude that

den0(T ) = den(T ) = den(∧I(U1, U2)).

Let us finally suppose that it holds

FT ∩ FU1 ∩ FU2 6= ∅.

If den∗0, den∗1 and den∗2 are such that

den0(T ) = deni(T ) and deni(Ui) = denj(Ui) (i = 1, 2, j = 0, 1, 2, i 6= j)

let us consider again the language of grounding Λ+ with alphabet

AlΛ ∪ AlΛ1 ∪ AlΛ2

and let us define a denotation function for the elements of the alphabet of
Λ+

den∗ = deni

where is i is indifferently 0, 1 or 2. The denotation function den associated
with den∗ will be such that

den(T ) = den0(T ) and den(U1) = den1(U1) and den(U2) = den2(U2).

But then, from the computation above, we conclude that

den0(T ) = den(T ) = den(∧I(U1, U2)).

If instead we have

den0(T ) 6= deni(T ) or deni(Ui) 6= denj(Ui) (i = 1, 2, j = 0, 1, 2, i 6= j)

let us consider the language of grounding Λ+ with alphabet

AlΛ ∪ AlΛ1 ∪ AlΛ2

and moreover, for every operational symbol

F 〈‡〉 ∈ FT ∩ FU1 ∩ FU2 ,

two fresh operational symbols F ∗〈‡〉, F ∗∗〈‡〉 (duplication). Then we put
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F∗ = {F ∗〈‡〉 | F 〈‡〉 ∈ FT ∩ FU1 ∩ FU2}
F∗∗ = {F ∗∗〈‡〉 | F 〈‡〉 ∈ FT ∩ FU1 ∩ FU2}

and we define den∗ in such a way that{
den∗�F∗(x) = den∗1(x)

den∗�F∗∗(x) = den∗2(x)

Let now:

• U∗1 be the term of Λ+ obtained from U1 by replacing every

F 〈‡〉 ∈ FT ∩ FU1 ∩ FU2

with F ∗〈‡〉;

• U∗∗2 be the term of Λ+ obtained from U2 by replacing every

F 〈‡〉 ∈ FT ∩ FU1 ∩ FU2

with F ∗∗〈‡〉.

The denotation function den of the terms of Λ+ associated with den∗ will be
hence such that

den(T ) = den0(T ) and den(U∗1 ) = den1(U1) and den(U∗∗2 ) = den2(U2).

But then, the following computation

den(T ) = den0(T ) = ∧I(g1, g2) =
∧I(den1(U1), den2(U2)) =

∧I(den(U∗1 ), den(U∗∗2 )) = den(∧I(U∗1 , U
∗∗
2 ))

shows that

den0(T ) = den(T ) = den(∧I(U∗1 , U
∗∗
2 )).

The result is hence proven.

The crucial step of the proof is what we have called of duplication. It
consists of adding, for each operational symbol which is part of at least two of
the terms T , U1 and U2, an operational symbol that has the same operational
type, but is indicated with a different "label", and not attributed to any of
the operational symbols already present. The passage proves to be necessary
insofar as, unlike the other cases, if at least two among T , U1 and U2 share
some operational symbol, it may not be possible to define on Λ+ a den such
that it holds
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den(T ) = den0(T ) and den(U1) = den1(U1) and den(U2) = den2(U2)

and this because it could hold

den0(T ) 6= deni(T ) or deni(Ui) 6= denj(Ui) (i = 1, 2, j = 0, 1, 2, i 6= j).

One might obviously ask if duplication is a plausible, and therefore viable
strategy. And doubts arise due to the fact that a language of grounding can
be understood as a formal system, as exemplified from the bijective transla-
tions of the Gentzen-language and the language of grounding for Heyting’s
first-order arithmetic. If this is true, in fact, a language of grounding in which
there are duplicate symbols, would be like a formal system with rules where
premises, conclusions, discharge of assumptions and binding of variables are
equal, and where what changes is only the name of the rule. For example,
by leaving out the discharge of assumptions and the binding of variables, we
could have

α1 . . . αn
F

β
α1 . . . αn

F ∗
β

Now, if we adopt the point of view that an inference rule is nothing but the
set of its instances, we easily conclude that F and F ∗ are the same rule.
From this point of view, therefore, we would say that the duplication is a
senseless strategy.

However, this objection could perhaps be answered as follows. Obviously,
a language of grounding can be understood as a formal system; on the other
hand, though, a language of grounding is really such only when on it a deno-
tation has been defined, namely a function that allows us to understand the
purely syntactic symbols of which it consists of as actual operations on gro-
unds. A language of grounding is such when the terms it contains are names
of grounds; and the terms will be names of grounds not when understood
as mere proof-terms but, more strongly, when a specific denotation function
has made them interpreted proof-terms (see Prawitz 2014). Thus, if a lan-
guage of grounding is comparable to a formal system, a language of grounding
on which it has been defined a denotation is comparable to a formal system
where each rule is identified, not only through premises, conclusion, discharge
of assumptions and binding of variables, but also by a reduction procedure
associated to it. Then, despite having the same set of instances, the rules F
and F ∗ are different if associated with different reduction procedures.

Operations on grounds are to be intended as identified by a double param-
eter. The first, which we have already discussed extensively, concerns their
operational type; the operational type states, so to speak, the domain and
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the codomain of the operation, or rather the nature of the inputs on which
the operation can be computed, and the nature of the output that the oper-
ation produces when applied to appropriate inputs. The second parameter
is given instead by a defining equation that, associated with the operation,
specifies it indicating how the operation acts on its inputs, and what output
it generates on each of these inputs; it is precisely this defining equation that,
once we have established inputs and outputs, really identifies the operation,
providing us with the computation instructions of which it consists.

Two operations can be distinguished extensionally, when they produce
different values on the same arguments, or intensionally, when they are de-
fined by different equations. Obviously, if two operations are extensionally
different, they will also be intensionally different; however, as we will see
more widely later, the vice-versa does not apply. Be as it is, and although
investigations related to identity issues similar to those we have mentioned
here are at the center of intense research in some areas of contemporary
mathematical logic (especially in the field of Martin-Löf’s intuitionist type
theory, see Martin-Löf 1975a, 1975b; for a recent worh, see Klev 2018), we
want here to confine ourselves to remarking how, to the same operational
type, they can match several operations on grounds. A very simple example
is the following. Let us take into account the following two classes of grounds
for ` α→ (α→ α), with α closed:

g1 = → Iξα2 (→ Iξα1 (Id(ξα1)) and g2 = → Iξα1 (→ Iξα2 (Id(ξα1)).

Well, for any closed β, to the scheme of operational types

β B α→ (α→ α)

we can associate two distinct classes of operations on grounds

fi(ξ
β) (i = 1, 2)

defined by respective equations

fi(ξ
β) = gi.

f1 and f2 produce different values on the same arguments, and this is evi-
denced by the fact that they are fixed by different equations.

Now, when we have defined the languages of grounding, we have au-
thorized only operational symbols F , of which the operational types and
bindings were such that there were corresponding operations on grounds f
with adequate operational types and bindings. And when we have defined
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the denotation den∗ of the elements of the alphabet of a language of ground-
ing, we have required that den∗(F ) were one of the appropriate operations
on grounds that it was supposed to exist. Since to the same operational
type there could be associated several operations on grounds, on the same
language of grounding it could therefore be possible to define several den∗s.
Such an approach could be defined as a variant denotation, since it considers
a language of grounding as a non-interpreted syntactic apparatus, therefore
subject to different interpretations.

The variant denotation approach is very similar to the one adopted in
model-theory, where the same logical language is interpreted on multiple set
structures, and where therefore the same theory can have different models.
The idea that a formal language should be understood as non-interpreted,
however, has not always been dominant in logic, and it was not, for example,
in Frege or in Russell & Whitehead (Frege 1879, 1884, 1893-1903; Russell
& Whitehead 1962; for a recent reconstruction of this point, see Sundholm
2018). Therefore, it might make sense here to take into account an alternative
approach, which could be defined as invariant denotation.

In an invariant denotation approach, an operational symbol F added to
a language of grounding Λ it is not a syntactic symbol that can be later
interpreted on one of the possible operations on grounds that are supposed
to exist; on the contrary, it is a name for a specific operation f , belonging
to the class of operations on grounds with the operational type and the
bindings attributed to F . To conform with this basic idea, therefore, when
we define a denotation function den∗ for the elements of the alphabet of Λ,
we no longer have to require that den∗(F ) is one of the possible operations
on grounds befitting to the operational type and to the bindings of F , but
to establish more strongly den∗(F ) = f . Then it is obvious that den∗ is the
only denotation function that can be defined for the elements of the alphabet
of Λ, and therefore equally unique will be the denotation function den of the
terms of Λ associated with den∗; in other words, we can no longer speak of
a denotation function for Λ, but of the denotation function of Λ or, if you
prefer, of the denotation function associated with Λ. We can indicate this
by writing den∗Λ for the denotation function of the elements of the alphabet
associated with Λ, and denΛ for the denotation function of the terms of Λ
associated with den∗Λ.

Now, in our opinion it is interesting to note how the adoption of an invari-
ant denotation approach gives us a much easier proof of a result analogous
to that established by theorem 49. The first thing to do is to reformulate
convention 48 on the invariant denotation, which will be done as follows.

Convention 50. Let B be an atomic base. Then, for every (proper or
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improper) ground g on B for α1, ..., αn ` β, there is a language of grounding
Λ on B such that, for some U ∈ TERMΛ, denΛ(U) = g.

Theorem 51. Let B be an atomic base, and let Λ be a language of grounding
on B. Then, for every T : α ∈ TERMΛ closed, there is an expansion Λ+

on B of Λ such that there is U ∈ TERMΛ+ in canonical form, such that
denΛ+(T ) = denΛ+(U).

Proof. We reason by cases on the logical form of α. As regards the logically
complex cases, also in this case we limit ourselves to the one with ∧. Since we
are adopting the invariant denotation approach, for every language of ground-
ing G on B such that T ∈ TERMG, it must hold that denΛ(T ) = denG(T ).

Let α be atomic. In this case, denΛ(T ) is a closed derivation ∆ for α in the
atomic system of B. In Λ we will have a name δ of ∆, and we can hence put
Λ+ = Λ. Indeed

denΛ(T ) = ∆ = den∗Λ(δ) = denΛ(δ).

Let α be of the form α1 ∧ α2. In this case, denΛ(T ) is ∧I(g1, g2), with gi
proper ground on B for ` αi (i = 1, 2). By convention 50, there are

• a language of grounding Λ1 on B such that, for some U1 ∈ TERMΛ1 ,
denΛ1(U) = g1;

• a language of grounding Λ2 on B such that, for some U2 ∈ TERMΛ2 ,
denΛ2(U2) = g2.

Called AlΛ, AlΛ1 and AlΛ2 the respective alphabets of Λ, Λ1 and Λ2, let us
consider the language of grounding Λ+ of which the alphabet is

AlΛ ∪ AlΛ1 ∪ AlΛ2 .

For T we have already noted that the adoption of the invariant denotation
approach implies that denΛ(T ) = denΛ+(T ); this will also hold for Ui, that
is, denΛi(Ui) = denΛ+(Ui) (i = 1, 2). Therefore, we have

denΛ+(T ) = denΛ(T ) = ∧I(g1, g2) =
∧I(denΛ1(U1), denΛ2(U2)) =

∧I(denΛ+(U1), denΛ+(U2)) = denΛ+(∧I(U1, U2))

and the result is thus proven.

319



5.2.4.5 Defining equations and empty functions

In the previous section, we made a first mention of the second parameter
which identifies an operation on grounds: a defining equation that shows
how, by acting on the arguments in its definition domain, the operation
produces values in its codomain, and which the produced values are. But
what do these equations look like, more precisely?

In order to answer the question in detail, we need a theory of the defining
equations of the operations on grounds. Well, whatever the lines along which
we intend to develop this theory, it is plausible to expect that there will not
be a single one. A request that must surely be respected by all is that
the equations give back total constructive functions: functions converging
on each element in the definition domain, namely that on each value of the
indicated domain, produce a value in the indicated codomain, and that, based
on the instructions from the equations, are also computable in an effective
sense. But, this set out, many and different are the possible options. We
can require that the equations respect those only two criteria, which would
mean having a very large class of operations, but hardly describable. Or,
if we want to have a more manageable class of operations, we can add new
bounds, for example by requesting that the operations do not produce values
that are not already contained, in some sense, in the values to which they
are applied.

The aim of this work is not a general theory of defining equations for
operations on grounds. Although we will go a little further in the problem in
Chapter 7, we want to give here only some examples ; in this section, therefore,
we will show which equations can be given for operations on grounds that
correspond to the elimination rules in a system of natural deduction for
first-order intuitionist logic, and the induction rule in Heyting’s first-order
arithmetic. These operations are associated, through denotation, to the non-
primitive operational symbols of the Gentzen-language and of the language of
grounding for Heyting’s first-order arithmetic, both defined in Section 5.2.3.3.
Before starting, we need to make the obvious observation that operations on
grounds denoted by the operational symbols ∧I, ∨I, → I, ∀I, ∃I do not
need, as primitive, any further specification.

First of all, let us discuss operational types with only closed formulas. As
regards the operational symbol ∧E,i〈α1 ∧ α2 B αi〉, we can request that

den∗(∧E,i〈α1 ∧ α2 B αi〉)

(i = 1, 2) is the operation

f(ξα1∧α2)
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of operational type

α1 ∧ α2 B αi

such that, for every ∧I(g1, g2) proper ground for ` α1 ∧ α2,

f(∧I(g1, g2)) = gi.

As regards the operational symbol ∨E〈α1 ∨ α2, β, β〉, we can request that

den∗(∨E〈α1 ∨ α2, β, β〉)

is the operation

f(ξα1∨α2 , ξα1Bβ, ξα2Bβ)

of operational type

α1 ∨ α2, (α1 B β), (α2 B β)B β

that binds the ground-variable ξα1 on the second entry, and the ground-
variable ξα2 on the third, such that, for every ∨I〈αi B α1 ∨ α2〉(g) proper
ground for ` α1 ∨ α2, for every hi(ξαi) proper ground for αi ` β (i = 1, 2)

f(∨I〈αi B α1 ∨ α2〉(g), h1(ξα1), h2(ξα2)) = hi(∨I(g)).

As regards the operational symbol → E〈α→ β, αB β〉, we can request that

den∗(→ E〈α→ β, αB β〉)

is the operation

f(ξα→β, ξα)

of operational type

α→ β, αB β

such that, for every → Iξα(h(ξα)) proper ground for ` α → β, for every g
proper ground for ` α,

f(→ Iξα(h(ξα)), g) = h(g).

As regards the operational symbol ∃E〈∃xα(x), β B β〉, we can request that
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den∗(∃E〈∃xα(x), β B β〉)

is the operation

f(ξ∃xα(x), ξα(x)Bβ)

of operational type

∃xα(x), (α(x)B β)B β

that binds the individual variable x and the ground variable ξα(x) on the
second entry, such that, for every ∃I(g) proper ground for ` ∃xα(x), with g
proper ground for ` α(t), for every h(x, ξα(x)) proper ground for α(x) ` β,

f(∃I(g), h(x, ξα(x))) = h(t, g).

Finally, as regards the operational symbol ∀E〈∀xα(x) B α(t/x)〉, we can
require that

den∗(∀E〈∀xα(x)B α(t)〉)

is the operation

f(ξ∀xα(x))

of operational type

∀xα(x)B α(t)

such that, for every ∀Ix(h(x)) proper ground for ` ∀xα(x),

f(∀Ix(h(x))) = h(t).

Of all the operations thus defined, we can show that they are, more in
particular, and given any atomic base B, B-operations on grounds of the
indicated operational type. We will show only the cases related to ∨E and
a ∃E. Starting with ∨E, let us call f∨ the operation associated with it,
defined by the equation indicated above. Let us then suppose that G is a
proper ground on B for ` α1 ∨ α2. By virtue of the clause (∨G), G must be
of the form

∨I〈αi B α1 ∨ α2〉(Gi)
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with Gi proper ground on B for ` αi (i = 1, 2). By virtue of the restrictions
on identity relative to primitive operations, Gi is also unique. Let us suppose
now that hi(ξαi) is a proper ground on B for αi ` β (i = 1, 2). Then, for
every gi proper ground on B for ` αi, hi(gi) is a proper ground on B for ` β.
But then, hi(Gi) is a proper ground on B for ` β, and since it holds

f∨(∨I〈αi B α1 ∨ α2〉(Gi), h1(ξα1), h2(ξα2)) = hi(Gi)

the result is proven. Turning now to ∃E, let us call f∃ the operation associ-
ated with it, defined by the equation indicated above. Let us suppose then
that G is a proper ground on B for ` ∃xα(x). By virtue of the clause (∃G),
G must be of the form

∃I(G1)

with G1 proper ground on B for ` α(t), for some term t on the background
language of B. By virtue of the restrictions on identity relative to primitive
operations, G1 is also unique. Let us suppose now that h(x, ξα(x)) is a proper
ground on B for α(x) ` β. Then, for every term u on the background
language of B, for every g proper ground on B for ` α(u), h(u, g) is a proper
ground on B for ` β. But then, h(t, G1) is a proper ground on B for ` β,
and since it holds

f∃(∃E(G1), h(x, ξα(x))) = h(t, G1)

the result is proven. The remaining cases are similar.
The language of grounding for Heyting’s first-order arithmetic contains

all the operational symbols of the Gentzen-language, plus the operational
symbol Ind〈α(0), α(s(x))B α(t)〉. In this case, we can request that

den∗(Ind〈α(0), α(s(x))B α(t)〉)

is the operation

f(ξα(0), ξα(x)Bα(s(x)))

of operational type

α(0), (α(x)B α(s(x)))B α(t)

that binds the individual variable x and the ground-variable ξα(x) on the
second entry, such that, for every proper ground g for ` α(0), for every
h(x, ξα(x)) proper ground for α(x) ` α(s(x)),
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f(g, h(x, ξα(x))) ={
g if t = 0

h(den∗(Ind〈α(0), α(s(x))B α(t− 1)〉)(g, h(x, ξα(x)))) if t > 0

Let us prove that the operation defined in this way is actually a B-operation
on grounds of the indicated operational type, where B is a base for a logical
language for first-order arithmetic with atomic system the Post-system re-
ferred to in Section 2.5.1. Let us call fInd the operation associated with Ind,
defined by the equation indicated above. Let us suppose that G is a proper
ground on B for ` α(0), and that h(x, ξα(x)) is a proper ground on B for
α(x) ` α(s(x)). The latter circumstance implies that, for every term u on
the background language of B, for every proper ground g on B for ` α(u),
h(u, g) is a proper ground on B for ` α(s(u)). Let us distinguish two cases:
if t = 0,

fInd(G, h(x, ξα(x))) = G

and we are done; if t > 0, by (meta)inductive hypothesis, we know that

den∗(Ind〈α(0), α(s(x))B α(t− 1)〉)(G, h(x, ξα(x)))

is a proper ground G1 on B for ` α(t − 1), so that h(t − 1, G1) will be a
proper ground on B for ` α(t).

As for the operational types with open formulas, the discourse is sub-
stantially similar. The corresponding B-operations on grounds are defined
by equations that imply substitutions with closed terms of the individual
variables involved in the expression of the operation, and of grounds for the
entries of the operational type domain obtained after an analogous substi-
tution in the starting operational type.7 Thus, for example, as regards the
operational symbol

7The passage through the closed case is stricly necessary when, in defining the oper-
ation, we cannot help but specify that one of the argument to which the operation acts
is constructed by applying a primitive operation on grounds for formulas of a lower com-
plexity. The fact that a ground has such shape, in fact, is guaranteed only in the case
of grounds for judgments or assertions that involve closed formuale. In this sense, opera-
tions on operational types with open formulas are defined in terms of an analogue of those
which Schroeder-Heister (Schroeder-Heister 1984) calls variants of derivations with free
variables; we could say that the operation is defined by its closed variants. In some cases,
however, the passage is superfluous. This happens, for example, when the operation is
defined by resorting, in the definiens, to other operations for which equations on the closed
variants are already known - in such circumstances, indeed, the reference to a specific form
of the arguments of the domain is not required even in the closed case. Another case where
the substitutions of the free variables is redundant is that of an operation of which the
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∃E〈∃xα(x, y), β(z)B β(z)〉

it will be understood as the operation

f(y, z, ξ∃xα(x,y), ξα(x,y)Bβ(z))

of operational type

∃xα(x, z), (α(x, y)B β(z))B β(z)

such that, for sequence of closed terms t, with L t ≥ L y + L z, for every
∃I(g) proper ground for ` ∃xα(x, t/y), with g proper ground for ` α(u, t/y),
for every h(x, ξα(x,t/y)) proper ground for α(x, t/y) ` β(t/z),

f(∃I(g), h(x, ξα(x,t/y))) = h(u, g).

It remains to be discussed the case of the operational symbol ⊥α. Clearly,
we need to ensure that den∗(⊥α)〈⊥ B α〉 corresponds to an operation on
grounds ⊥α of operational type

⊥B α.

But what will be, more precisely, the behavior of this operation? The answer
comes from the clause (⊥G), which states that, whatever the atomic base B,
there are no grounds on B for ` ⊥. The B-operation on grounds ⊥α can then
be set as the empty function - the function having an empty domain. By
virtue of the clause (⊥G), this total effective function does exist - and indeed
it is the only one on the intended operational type - since the condition for a
total effective function to be a B-operation on grounds is vacuously satisfied.
Note that, in a sense, the clause (⊥G) states the meaning of the constant ⊥,
so that to the B-operation ⊥α we should not associate any definition; but
even when such definition were required, it will be the empty definition –
the definition with 0 equations; the role of a definition must in fact be that
of fixing the behavior of ⊥α on the grounds for ` ⊥, and this condition is,
again, vacuously satisfied by the empty definition.

What has been said about ⊥α provides a very important observation.
Given an atomic base B, and given an operational type on the language of
B

operational type has only non-empty domain entries of the type Γ(x)Bα(y); whether the
individual variables are replaced or not by closed terms, a ground for Γ(x) ` α(y) or for
Γ(t/x) ` α(t/y) may not at all be constructed by applying a primitive operation. As for
the latter case, however, we could require that the equation is given relatively to the value
of the operation of type Γ(t/x)B α(t/y) applied to grounds for the elements of Γ(t/x), in
such a way to reason on grounds for ` α(t/x).

325



τ1, ..., τn B τn+1,

if there exists τi (i ≤ n) such that there are no grounds for τi on B, a B-
operation on grounds of this operational type exists trivially and is unique;
it is the empty function. Then, a non-primitive operational symbol that cor-
responds to an operation on grounds of the operational type just indicated,
is automatically authorized in a language of grounding on B; such as in the
case of ⊥α, the denotation of the operational symbol in question will be the
empty function associated with the intended operational type, and the def-
inition of the B-operation on grounds denoted will be the empty definition
again. It is interesting to note that, in case there is no change of base, the
denotation can remain stable throughout the expansions. In the case of a
change of base, from B to B+, instead, it might be necessary to associate to
the operational symbol a B+-operation that is no longer the empty function,
and of which the definition is therefore no longer the empty definition. And
what is more, it could also happen that an operational type of which the only
B-operation on grounds is the empty function, ceases to have B+-operations
on grounds; then, an operational symbol automatically authorized in a lan-
guage of grounding on B, would no longer be authorized in a language of
grounding on B+, so that none of these languages on B+ can be an expan-
sion of the language of B. Some examples will help to better understand
these points.

Let B be a logical base on a language L for first-order arithmetic and, for
every α ∈ ATOML closed, let us consider the operational type

αB ¬∃x(0
.
= s(x)).

Clearly, there is no ground on B neither for ` α, whatever is α, nor for
` ¬∃x(0

.
= s(x)). Hence, B-operations on grounds having such operational

types exist, and they are unique: they are the empty functions - let us say
fα∅ . We can therefore build a language of grounding Λ on B that has a
non-primitive operational symbol F of operational type

αB ¬∃x(0
.
= s(x))

for every α ∈ ATOML closed, and require that

den∗(F 〈αB ¬∃x(0
.
= s(x))〉) = fα∅ .

Let us now consider an expansion B+ of B that has as atomic system a Post-
system S for first-order arithmatic as in Section 2.5.1. The first thing that
can be detected is that, now, there is a ground on B+ for ` ¬∃x(0

.
= s(x)),

namely
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→ Iξ∃x(0
.
=s(x))(∃E x ξ0

.
=s(x)(ξ∃x(0

.
=s(x)), δ))

where δ is the derivation in S

0
.
= s(x)

(s1)⊥

Analogously, there will be grounds on B+ for some ` α, precisely if, and only
if, `S α. Let now Λ+ be a language of grounding on B+, expanding Λ. For
the α such that 0S α, we can continue to associate the operational symbols
F of Λ of operational type

αB ¬∃x(0
.
= s(x))

with the empty function fα∅ ; however, it is clear that, as soon as `S α, there
will no longer be any empty function fα∅ of the intended operational type, so
that the suggested denotation can no longer work. In such cases, then, we
can ensure that

den∗(F 〈αB ¬∃x(0
.
= s(x))〉)

is the operation

f(ξα)

such that, for every g ground on B+ for ` α,

f(g) = → Iξ∃x(0
.
=s(x))(∃E x ξ0

.
=s(x)(ξ∃x(0

.
=s(x)), δ)).

As can be seen, hence, we can actually pass from Λ to Λ+, but a denotation
function defined on Λ cannot remain invariant on Λ+.

Let again B be a logical base on a language L for first-order arithmetic
as in Section 2.5.1 and, for every α ∈ ATOML closed, let us consider the
operational type

αB 0
.
= s(0).

Clearly, there is no ground on B neither for ` α, whatever is α, nor for
` 0

.
= s(0). Hence, B-operations on grounds having such operational types

exist, and they are also unique: they are the empty functions - say fα∅ . We
can therefore build a language of grounding Λ1 on B, having a non-primitive
operational symbol F of operational type

αB 0
.
= s(0)
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for every α ∈ ATOML closed, and require that

den∗(F 〈αB 0
.
= s(0)〉) = fα∅ .

Let us consider an expansion B+ of B that has as atomic system a Post-
system S for first-order arithmetic as in Section 2.5.1. Obviously, there is
still no ground on B+ for ` 0

.
= s(0), since 0S 0

.
= s(0). There will instead

be grounds on B+ for some ` α, precisely if, and only if, `S α. Let now Λ2 be
a language of grounding on B+. For the α such that 0S α, we can continue
to associate the operational symbols F of Λ1 of operational type

αB 0
.
= s(0)

with the empty function fα∅ . Though, when `S α, not only there will be no
empty function fα∅ of the intended operational type, so that the suggested
denotation can no longer work, but in addition, and because of the lack of
grounds on B+ for ` 0

.
= s(0), there can be no B+-operation on grounds of

the intended operational type, and hence, some of the operational symbols
F considered above are not admissible. In this case, we cannot expand Λ1

toward Λ2.

5.2.4.6 Universal grounds, operations and terms

So far, the notions of ground and operation on grounds have been understood
as relating to atomic bases; in fact, we have always spoken of grounds and
operations on specific atomic bases. Something similar can be told regarding
the notions of language of grounding and denotation; languages of ground-
ing are always constructed with reference to given atomic bases (possibly
empty), so that the denotation of the elements of the alphabet of a language
of grounding and, consequently, that of the terms, will be related to grounds
and operations on grounds on that base. It is natural at this point to ask
whether it is possible to generalize the notions mentioned for all the pos-
sible bases; if a base determines an interpretation of individual, relational
and functional constants of the background language an invariance on all the
possible bases will also be an invariance on every possible interpretation of
the non-logical terms.

In the previous Section we have provided an example of interpretation
of non-primitive operational symbols of a Gentzen-language. As you prob-
ably noticed, in developing the discourse we have not made any reference
to the atomic base on which the Gentzen-language under examination was
intended to act; likewise, when showing the adequacy of the definitions of
the operations associated, we have taken into account arbitrary atomic bases.
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This means that, what was said then, applies whatever the atomic base of
reference, namely that the procedure can be generalized, exactly in the same
terms and with the same formal choices, for all the possible atomic bases.
This is not the case, instead, of the language of grounding for first-order
arithmetic; here, in fact, it has proved necessary to make explicit that the ref-
erence atomic base contains a language for first-order arithmetic and, above
all, a Post-system for this theory. And this because the proof of the ade-
quacy of the definition of the operation associated to the operational symbol
Ind cannot disregard the meaning of the symbol of successor, and, conse-
quently, the fact that we are operating on a structure on which a principle of
(meta)induction applies. So, while the definitions chosen for the denotation
of the non-primitive operational symbols of the Gentzen-language work on
any atomic base, the definition chosen for the denotation of Ind could fail,
with respect to the intended operational type, on some atomic bases. In light
of this illustrative observation, we now introduce the following characteriza-
tion.

Given a base B1 on L and a ground g on B1, we will say that g is a
universal ground if, and only if, for every L+ expansion of L, for every base
B2 on L+, g is a ground on B2. In the case of terms of language of grounding,
the notion of universality is fixed in an analogous way.

Definition 52. Let Λ be a language of grounding, and let den∗ be a de-
notation function for the elements of the alphabet of Λ. We will say that
T ∈ TERMΛ is universal with respect to den∗ if, and only if, for every element
x of the alphabet of Λ in T , den∗(x) is a universal ground.

It is easy to realize that definition 52 implies that, if T is universal with
respect to den∗, then for every L+ expansion of the background language of
T , for every B on L+, it is always possible to define a language of grounding
on B of which the set of terms contains T .

The universality of a term of a language of grounding is hence relative to
a denotation function for the elements of the alphabet of the language. One
may prefer a relativization to a denotation function for terms, by requiring
that the values of such function on universal terms are universal grounds.
However, if we assume a plausible convention, definition 52 is sufficient for
such a result to obtain.

Convention 53. Let B be a base on L, and let

f(x, ξτ1 , ..., ξτn)

be a B-operation on grounds that is more in particular a universal ground.
For every sequence s of individuals on the domain of B, for every composite
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operation obtained by plugging a ground gi on B for τi[s/x] on index i, if gi
is a universal ground, then

f(s/x, . . . gi . . . )

is a universal ground.

Let us then prove the announced result.

Proposition 54. Let Λ be a language of grounding, den∗ be a denotation
function for the elements of the alphabet of Λ, den be the denotation function
for the terms of Λ associated with den∗ and T ∈ TERMΛ be universal with
respect to den∗. Then, den(T ) is a universal ground.

Proof. By induction on the complexity of T . The case of ground-variables is
obvious, since the identity function for the given operational type is cleary a
universal ground. If T is a constant, then it cannot be universal with respect
to den∗, since for example a constant will not count as a ground on a logical
base. If T is

F x ξ (U1, ..., Un)

then, by corollary 57 below, every Ui is universal with respect to den∗ and
hence, by induction hypothesis, den(Ui) is a universal ground. By hypothesis
on the universality of T with respect to den∗, moreover, by definition 52 we
know that den∗(F ) is a universal ground. Therefore, since

den(F x ξ (U1, ..., Un)) = den∗(F )(den(U1), ..., den(Un)),

the result follows immediately from convention 53.

Observe that we also have an analogue of proposition 54 if, instead of requir-
ing that T is universal with respect to den∗, we require that every element
of the alphabet occurring in T is a ground on a base B on an expansion of
the background language of T . In this case, convention 53 is to be restricted
to admissibility over bases and, by applying it, we obtain that den(T ) is a
ground on B.

It may be interesting to note that the inverse of proposition 54 does not
apply. Let us show this with two counter-examples. First of all, given a
non-logical base B1, and an appropriate language of grounding Λ on B1,

∧E,1(∧I(→ Iξα(ξα), δ))

with δ individual constant in the atomic system of B1, is such that, with
respect to the den∗ where den∗(∧E,1) is as indicated in Section 5.2.4.5,
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den(∧E,1(∧I(→ Iξα(ξα), δ))

is a universal ground - where den is the denotation function for terms of Λ
associated with den∗. Indeed,

den(∧E,1(∧I(→ Iξα(ξα), δ))) = → Iξα(Id(ξα)).

But the term is not universal with respect to den∗. The constant δ involved
in it will not denote a ground on a logical base B2.

Given a logical base B1 on a language for first-order arithmetic as in
Section 2.5.1, and an appropriate language of grounding Λ1 on B1 that has
in its alphabet a non-primitive operational symbol F of operational type τ

s(s(0))
.
= s(0) + s(0)B ¬∃x(0

.
= s(x))

the term

∧E,1(∧I(→ Iξα(ξα),→ Iξτ (F (ξτ )))

is such that, with respect to the den∗1 where den∗1(∧E,1) is as indicated in Sec-
tion 5.2.4.5, and den∗1(F ) is the empty function on the intended operational
type,

den1(∧E,1(∧I(→ Iξα(ξα),→ Iξτ (F (ξτ ))))

is a universal ground - where den1 is the denotation function for terms of Λ1

associated with den∗1. Indeed, we have here exactly the same situation as in
the previous example,

den1(∧E,1(∧I(→ Iξα(ξα),→ Iξτ (F (ξτ )))) = → Iξα(Id(ξα)).

But the term is not universal with respect to den∗1. Given a base B2 on the
same background language, with Post-system S for first-order arithmetic as
in Section 2.5.1, the empty function on the intended operational type is not
admissible on B2, since `S s(s(0))

.
= s(0) + s(0).

Since the fact of denoting grounds or operations on grounds is a necessary,
but not sufficient condition for a term to be universal, one may wonder if
there is a necessary and sufficient condition that, in terms of denotation,
expresses the universality of a term. The following theorem is meant to
answer this question.
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Theorem 55. Let B1 be a base on L with atomic system S, Λ be a language
of grounding on B1, and den∗ be a denotation function for the elements of
the alphabet of Λ. T ∈ TERMΛ is universal with respect to den∗ if, and only
if,

a) S(T ) ∩ DERS = ∅ - namely, T does not involve individual constants -
and

b) for every non-primitive operational symbol F of Λ occurring in T ,
den∗(F ) is a universal ground.

Proof. (=⇒) Let T be universal with respect to den∗. Let us prove a).
Definition 52 implies that, given a logical base B2 on L, every element x
of the alphabet of Λ occurring in T denotes a ground on B2. But if it
was S(T ) ∩ DERS 6= ∅, this could not happen since, being B2 logical, an
individual constant occurring in T could not denote a ground on B2. Hence,
S(T ) ∩ DERS = ∅. The other point, b), is trivial. Again by definition 52,
indeed, we know that for every element x of the alphabet of Λ, den∗(x) is a
universal ground. But then, for every non-primitive operational symbol F of
T , den∗(F ) is a universal ground, and the result is therefore proven.
(⇐=) Let now S(T ) ∩ DERS = ∅ and, for every non-primitive operational
symbol F of Λ1 occurring in T , let den∗(F ) be a universal ground. This
means that T only contains ground-variables, primitive operational symbols,
and non-primitive operational symbols. And it is clear that the images of
ground-variables and primitive operational symbols through den∗ are univer-
sal grounds. The result is therefore proven.

Corollary 56. Let Λ be a language of grounding on a base B, and den∗ be a
denotation function for elements of the alphabet of Λ. T ∈ TERMΛ is universal
with respect to den∗ if, and only if, for every U ∈ S(T ), U is universal with
respect to den∗.

Proof. Immediate from theorem 55.

To conclude this section, let us make a remark. To say that a ground on
a base is universal means that, for all the operations on grounds involved in
it, the equations that define these operations on that base, define operations
on grounds of the same operational type on whatever base. It is, in a way, a
kind of intensional approach; the operations on ground are equal on all bases
in the sense of being defined always by the same equations. An analogous
extensional approach does not seem to make sense; an operation on grounds
may in fact have different domains and codomains on different bases, even
if defined by the same equations - think of an operation on grounds for the
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elimination of conjunction from p1 ∧ p2 to pi (i = 1, 2) defined in a standard
way, on a logical base, and then on a base having pi as axiom in the atomic
system. The notion of universality is the only point of our investigation
where we adopt an intensional standpoint since, as said, we will understand
in general equality of functions in an extensional way.

5.2.5 Primitiveness and conservativity

In introducing and discussing languages of grounding, we have so far proposed
a single classification parameter; a grounding language can be or cannot be
closed under canonical form - with respect to a denotation function of the
elements of the alphabet. This feature is not very stringent because, as we
have proven, any language of grounding can be extended to one that is closed
in a canonical form with respect to an expansion of a given denotation. In
this last section, we propose on the contrary to discuss and exemplify two
deeper classification criteria of languages of grounding; a language can be the
expansion of another, in a primitive/non-primitive, and conservative/non-
conservative sense. Starting with primitiveness, it is fixed by the following,
simple definition.

Definition 57. Let Λ1 be a language of grounding on an atomic base B1,
and let Λ2 be an expansion of Λ1 on an atomic base B2. We will then say that
Λ2 is a primitive expansion of Λ1 if, and only if, B2 is a proper expansion of
B1.

Thus, a language of grounding expands another one primitively, when it is
relative to an atomic base that is a proper expansion of the original one.
Instead, the expansion will be non-primitive when the only new linguistic
resources are non-primitive operational symbols. In this regard, it seems
appropriate to make two observations.

First of all, why do we call "primitive" an expansion that acts on an
atomic base that contains strictly the starting one? In order to answer this
question, we must bear in mind convention 24, according to which the system
of an atomic base must totally interpret the background language. According
to the way we have set up our discussion, it follows that, if an atomic base of
an incoming language is the proper expansion of the atomic base of a starting
language, the incoming Post-system is the proper expansion of the starting
Post-system. In fact, given a base B1

〈R, F, C, S〉,
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suppose that a proper expansion B2 of its does not expand properly S; if
B2 is a proper expansion, and if S remains unchanged, B2 will have to in-
volve proper super-sets of at least one of the components of the background
language of B1, namely, it will have to be of the type

〈R+, F+, C+, S〉,

with R ⊂ R+ or F ⊂ F+ or C ⊂ C+. But then, the background language of
B2 is a proper expansion of the background language of B1. And since S is
an atomic system for the background language of B1, from definition 21 it
follows that the background language of B2 is the proper expansion of the
language of S. But S is also the atomic system of B2, so the background
language of B2 is only partially interpreted by S. Therefore, a language of
grounding on B2 would violate convention 24.

That being said, it is easier to understand in what sense a primitive ex-
pansion of a language of grounding is, actually, primitive. The expansion
is relative to an atomic base that, besides acting on a background language
possibly enriched, it involves a more powerful atomic system; hence, there
will be new atomic derivations, and therefore, in the expansion, new indi-
vidual constants which, by definition, constitute grounds for judgments or
assertions involving atomic formulas. These constants are primitive elements
in so far as they can be neither reduced to elements of the starting language
of grounding, nor defined in such terms; they are, so to speak, new axioms,
which cannot be further justified, and which instead contribute to the deter-
mination of meaning. This is not the case with the non-primitive operational
symbols, which, as stated, must be defined in terms of equations which fix
their behavior in a harmonious way with respect to the determination of
meaning established by the clauses (AtG) - (∃G).

At this point, in a correct and natural way, it could be argued that our
definition of primitive expansion is too restricted. Indeed, if the primitiveness
depends on the addition of elements non-reducible, not further justifiable,
undefinable, which contribute to the determination of meaning, why do we
not take into account also expansions, the primitiveness of which depends
on the addition of new primitive operational symbols, related to new logical
constants? This would require taking into account, in addition to the set
of relational and functional symbols, and of the individual constants that
constitute the atomic base, also the set = of the logical constants of the
background language, i.e.

〈R, F, C, S〉 and =.
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Therefore, a proper expansion of a language of grounding on such a base
would be a language of grounding on an atomic base and, in addition, on a
new set of logical constants

〈R+, F+, C+, S+〉 and =+.

with S ⊂ S+, and R ⊂ R+ or F ⊂ F+ or C ⊂ C+ or = ⊂ =+. Now, such
a strategy is undoubtedly feasible, correct, and probably full of interesting
consequences; however, we will not deal with it below - except for an example
at the end of this section. The reasons why we leave it out, in addition to
those obvious of space and time, are essentially two. If the new primitive
operational symbols are related to logical non-modal constants that do not
determine the passage to orders higher than the first, the primitive expan-
sions are certainly possible, but not particularly significant. Indeed, it has
been shown (Prawitz 1979, Schroeder-Heister 1984) that the usual intuition-
istic first-order logical constants of first order - those of which we have dealt
with so far - are functionally complete with respect to all the possible first-
order intuitionistic logical constants, and therefore sufficient to express them.
On the other hand, if the new primitive operational symbols are relative to
logical constants of orders higher than the first - for example, second-order
quantifiers - an approach such as that of the theory of grounds, inserted
in the verificationist tradition, could encounter problems related to Dum-
mett’s molecularity requirement (see Cozzo 1994b), or to phenomena of loss
of compositionality or paradoxicality (see Pistone 2015).

Now to the notion of conservativeness. As seen, Gödel’s incompleteness
implies that not all the grounds for judgments or assertions on a language
for first-order arithmetic can be expressed in a language of grounding for
Heyting’s first-order arithmetic. Expansions in which these grounds on the
contrary can be constructed, can then be considered as non-conservative
expansions. The next definition is nothing more than a generalization of this
idea.

Definition 58. Let Λ1 be a language of grounding on a background language
L, let Λ2 be an expansion of Λ1 on an atomic base B on an expansion L+

of L, let den∗ be a denotation function for the elements of the alphabet of
Λ2, and let den be the denotation function for the terms of Λ2 associated
with den∗. Λ2 is conservative with respect to den∗ on Λ1 if, and only if,
for every T : α ∈ TERMΛ2 with α ∈ FORML, there is U ∈ TERMΛ1 such that
den(T ) = den(U).

An expansion is therefore conservative if all the objects related to formulas or
operational types of the starting background language, denoted by some of
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its terms, were already denoted by some term in the not expanded language.
We now want to make three observations.

First of all, the notion of conservativeness introduced here is different
from that used for theories - given a logical language L, a formal system Σ
on L, and an expansion Σ+ of Σ, we say that Σ+ is conservative on Σ if,
and only if, for each finite Γ ⊂ FORML, for every α ∈ FORML, if Γ `Σ+ α,
then Γ `Σ α. Indeed, it is not simply required that all that is provable in the
expansion, related to formulas of the original language, is provable also in the
unexpanded language; in other words, it is not required that, for each term
T : α ∈ TERMΛ2 with an empty set of ground-variables, and for α ∈ FORML,
there is U : α ∈ TERMΛ1 with an empty set of ground-variables. This is
not conservativeness of provability, but conservativeness of denotation; all
the deductive means - grounds and operations on grounds - relative to a
fixed atomic base, and denoted in a conservative expansion - conceivable, via
Curry-Howard’s isomorphism, as a formal system - are already available in
the unexpanded grounding language – also conceivable, via Curry-Howard
isomorphism, as a formal system. It is easy to prove that the first type of
conservativeness, the standard one, is implied by the second; the opposite,
however, might not apply.

As a second point, note that, as in the case of universality, if we adopt
also here an invariant denotation approach, we do not need to relativize the
notion of conservativeness to a specific denotation function for the elements
of the alphabet.

Finally, given Λ2 conservative with respect to a certain den∗ - to which it is
associated a certain den - on Λ1, and said B1 and B2 the bases of, respectively,
Λ1 and Λ2, it applies what follows. Each ground on B2 for judgments or
assertions relative to formulas of the background language of Λ2, denoted
by some term of Λ2 via den, must be, more specifically, a ground on B1; in
the same way, each B2-operation on grounds of which the operational type
involves only formulas of the background language of Λ1, denoted by some
term of Λ2 via den, must, more specifically, be equal to a B1-operation on
grounds. If B1 = B2, the observation is trivial. If vice versa B2 is a proper
expansion of B1, the conservativeness of Λ2 on Λ2 implies that: B2 does not
"add" any new ground, nor operations on grounds extensionally different,
compared to grounds and operations on grounds already available in B1 for
the language which B1 refers to or; there are grounds on B2 or B2-operations
on grounds which do not correspond to any term of Λ2.

To conclude our discussion, we implement our definitions, by providing
examples that show how the concepts of primitiveness and conservativeness
are not extensionally equivalent.
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Example 1 (Non-primitive non-conservative expansion)
The expansion Gen of a core language G on whatever atomic base B for a first-
order language - namely, a Gentzen language as displayed in Section 5.2.3.3
- is obviously non-primitive; however, it is non-conservative with respect to
the denotation function den∗ of Section 5.2.4.5. For example, the term

→ Iξα(→ Iξα→β(→ E(ξα→β, ξα))

is clearly a ground on B for ` α→ ((α→ β)→ β) not denoted by any term
of G. More in particular, the term

→ E(ξα→β, ξα)

denotes a B-operation on grounds not denoted by any term of G; in fact, β
is not derivable from α → β and α in a formal system that contains only
Gentzen’s introduction rules.

Examples 2 (Non-primitive conservative expansion)
Given Gen on whatever atomic base B, let us take into account the following
expansion Gen+.

Definition 59. The language Gen+ is specified by an alphabet which contains
that of Gen plus

• operational symbols F of operational type 〈‡〉:

– F 〈α ∨ β,¬αB β〉

The set TERMGen+ of the terms of Gen+ is the smallest set X such that

• TERMGen ⊂ X

• T : α ∨ β, U : ¬α ∈ X ⇒ F (T, U) : β ∈ X.

Then, with regard to the atomic base B, let us consider a denotation func-
tion den∗ for the elements of the alphabet of Gen+ which, on non-primitive
operational symbols of Gen, behaves as indicated in Section 5.2.4.5, and that,
for α and β closed, is such that

den∗(F 〈α ∨ β,¬αB β〉)

is the operation

f(ξα∨β, ξ¬α)
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such that, for every proper ground ∨I(g) on B for ` α ∨ β, for every proper
ground u on B for ` ¬α,

f(∨I(g), u) = g.

The latter is a total constructive function which, from every proper ground
on B for ` α∨β, from every proper ground on B for ` ¬α, produces a proper
ground on B for ` β, and is hence a B-operation on grounds of operational
type

α ∨ β,¬αB β;

to prove it: given ∨I(G1) proper ground on B for ` α ∨ β, by virtue of the
clauses and of the identity conditions on ∨I, G1 is a proper ground on B for
` α or a proper ground on B for ` β. Likewise, given a proper ground G2

on B for ` ¬α, G2 is of the form → Iξα(h(ξα)) and, by virtue of the clauses
and of the identity conditions on → I, h(ξα) is a proper ground on B for
α ` ⊥. If now G1 was a proper ground on B for ` α, h(G1) would be a
proper ground on B for ` ⊥, and this is impossible by virtue of the clause on
⊥; it follows that G1 must be a proper ground on B for ` β. The result now
follows immediately from an application of the defining equation, namely

f(∨I(G1), G2) = G1.

Gen+ is clearly a non-primitive expansion of Gen; additionally, it is con-
servative with respect to den∗ on Gen. To make this clear, let us show that
the non-primitive operational symbol F 〈α ∨ β,¬α B β〉 can be "rewritten"
in the language Gen by leaving unchanged the denotation function den for
the terms of Gen+ associated with den∗; more in particular, let us exhibit an
open term T ∈ TERMGen such that

den∗(F 〈α ∨ β,¬αB β〉) = den(F (ξα∨β, ξ¬α)) = den(T )

- observe that the first identity holds in general, since F does not bind ground-
variables. However, we want beforehand to observe that this strategy, strictly
speaking, does not consist in showing that all the grounds on B and all the B-
operations on grounds expressible in Gen+ via den can already be expressed
in Gen via den; the suggested procedure is actually more reminiscent of the
one by which it is shown that an inference rule in a certain formal system is
derivable in a subsystem of the latter. In light of a result that we will soon
demonstrate, however, what is achieved actually implies the conservativeness
of Gen+ with respect to den∗ on Gen. Well, let us take into account the
following term of Gen:
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∨E ξα ξβ(ξα∨β,⊥β(→ E(ξα, ξ¬α)), ξβ)

that by the denotation theorem - but also in the light of a simple computation
- denotes via den a B-operation on grounds

f2(ξα∨β, ξ¬α)

of operational type

α ∨ β,¬αB β.

Let us now show the extensional identity

f1(ξα∨β, ξ¬α) = f2(ξα∨β, ξ¬α)

that is, knowing that, for α and β closed, for every ∨I(g) proper ground on
B for ` α ∨ β, where g is a proper ground on B for ` β, for every u proper
ground on B for ` ¬α, we have

den(F (ξα∨β, ξ¬α))(∨I(g), u) = den∗(F 〈α ∨ β,¬αB β〉)(∨I(g), u) =
f1(∨I(g), u) = g

we also have

den(∨E ξα ξβ(ξα∨β,⊥β(→ E(ξα, ξ¬α)), ξβ))(∨I(g), u) = g.

Taking into account the definition of the denotation for terms, the behavior
of the operations on grounds, and finally the equations that define the oper-
ations associated by den∗ with ∨E, ⊥β and → E shown in Section 5.2.4.5,
we will have the following computation - where we leave out some obvious
passages:

den(∨E ξα ξβ(ξα∨β,⊥β(→ E(ξα, ξ¬α)), ξβ))(∨I(g), u) =
den∗(∨E)(den∗(ξα∨β), den∗(⊥β)(den∗(→ E)(ξα, u))), den∗(ξβ))(∨I(g), u) =

den∗(∨E)(∨I(g), den∗(⊥β)(den∗(→ E)(ξα, u))), den∗(ξβ)) =
den∗(∨E)(∨I(g), den∗(⊥β)(den∗(→ E)(ξα, u))), Id(ξβ)) = Id(g) = g.

As a more general result, we prove the following theorem.

Theorem 60. Let Λ1 be a language of grounding on an atomic base B, Λ2 be
a non-primitive expansion of Λ1, den∗ be a denotation function for elements
of the alphabet of Λ2, den the denotation function for terms of Λ2 associated
with den∗. Let us moreover suppose that, for every non-primitive operational
symbol F of Λ2, there is a composition
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h = f1 ◦ · · · ◦ fn

(for some i ∈ N) of B-operations on grounds such that

• for every i ≤ n, there is an operational symbol Fi of Λ1 such that
fi = den∗(Fi)

• den∗(F ) = h.

Then, Λ2 is conservative with respect to den∗ on Λ1.

Proof. By induction on the complexity of T ∈ TERMΛ2 :

• the atomic case is trivial by non-primitivity of Λ2 with respect to Λ1;

• without loss of generality, let us consider the term

F ξα x (U).

By denotation theorem, den(U) is a ground on B for some appropriate
judgment or assertion. By induction hypothesis, moreover, there is
Z ∈ TERMΛ1 of the same type as U (not necessarily distinct from U)
such that den(U) = den(Z). If F is an operational symbol of Λ1, the
required term will be

F ξα x (Z)

which, as easily seen, has the same type as the starting term. Indeed
- possibly under substitution (∗/?) of free individual variables with
individuals, and of free ground-variables with grounds on B for the
closed formulas thereby obtained - we will have the computation

den(F ξα x (U))(∗/?) = den∗(F )(den(U)(∗/?)) =
den∗(F )(den(Z)(∗/?)) = den(F ξα x (Z))(∗/?)

whence, for the arbitrariness of the eventual substitution (∗/?), we
conclude that

den(F ξα x (U)) = den(F ξα x (Z)).
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If instead F is a primitive operational symbol, or if it is not a non-
primitive operational symbol of Λ1, by the hypotheses of the theorem
we know that there exists aB-operation on grounds h resulting from the
composition of B-operations on grounds f1, ..., fn (for some n ∈ N) for
which it holds that, for every i ≤ n, fi = den∗(Fi), with Fi operational
symbol of Λ1, and moreover den∗(F ) = h. Let us apply - which is
permitted - the composite h to den(Z); by replacing each fi with the
corresponding Fi, we will have a term Λ1 with Z as a subterm, which
we indicate with

F1, ..., Fn(Z).

Well - possibly under substitution (∗/?) of free individual variables with
individuals, and of free ground-variables with grounds on B for the
closed formulas thereby obtained, and under appropriate substitutions
of den(U) and den(Z) for variables in the composition of f1, ..., fn - we
have the computation

den(F ξα x (U))(∗/?) = den∗(F )(den(U)(∗/?)) = h(den(U)(∗/?)) =
f1 ◦ · · · ◦ fn(den(U)(∗/?)) = f1 ◦ · · · ◦ fn(den(Z)(∗/?)) =

den∗(F1), ..., den∗(Fn)(den(Z)(∗/?)) = den(F1, ..., Fn(Z))(∗/?)

whence, for the arbitrariness of the eventual substitution (∗/?), we
again conclude that

den(F ξα x (U)) = den(F1, ..., Fn(Z)).

The result is hence proven.8

8Theorem 60 authorizes an observation in our opinion interesting. Suppose that, to
each language of grounding Λ on an atomic base B on a background language L, it is
always possible to associate, via Curry-Howard isomorphism, a formal system ΣΛ on L
which includes the atomic system of B. We then indicate the standard conservativeness
among theories, though extending it to the case of admissibility of rules under substitution,
as conservativeness on provability, and indicate the conservativeness we set in definition
58 as a conservativeness on denotation. The following result applies. Given a language
of grounding Λ1 on an atomic base B, and given a non-primitive expansion Λ2 of Λ2,
there exists a denotation function den∗ of the elements of the alphabet of Λ2 such that
Λ2 is a conservative expansion on the denotation of Λ1 with respect to den∗ if, and only
if, ΣΛ2

is a conservative expansion on the provability of ΣΛ1
. The left-right direction of

the equivalence is a rather immediate consequence of theorem 60; it is sufficient to choose
as den∗ the function that associates to each non-primitive operational symbol F of Λ2
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Note that if a non-primitive operational symbol F of Λ2 does not bind either
individual or ground-variables, we can, as in the case of disjunctive syllogism
in Gen+, simply require that Λ1 contains an open term, of which the free
individual variables are all and only those that occur in the operational type
of F , and of which the free ground-variables are all and only those the type
of which occur in the operational type of F . However, as soon as F binds
at least on individual or ground-variable, this strategy can no longer work,
as operations on grounds include operations on grounds in the domain of
their operational type that are not denoted by any term, since languages of
grounding do not have ground-variables of type Γ B α (see Prawitz 2015,
93). Note also that variables of type Γ B α have been used by us at the
level of B-operations on grounds, and not at the level of terms. Incidentally,
therefore, an obvious way to remedy these difficulties, which we will not deal
with here, and which we will only deal partially in the next chapter, would
be to enrich languages of grounding with ground-variables ξΓBα, meant to
range over operations on grounds of appropriate operational type.

We conclude with two quick examples of primitive non-conservative and
of primitive conservative expansion, respectively. Abandoning for a while
the limitation to the first-order background languages adopted so far, let us
consider the possibility, mentioned above, of taking into account not just the
bases, but

〈R, F, C, S〉 and =

where = is the set of the logical constants of the background language.

Example 3 (Primitive non-conservative expansion)
Given an atomic base B on a language L with a set of logical constants = for
first-order arithmetic with Post-system as in the Section 2.5.1, it is known
that there exists an expansion B+ of B on an expansion L+ of L in which,
for an appropriate =+ we can express a reflection principle allowing to prove
Gödel’s formula G.

a coding of the derivation of the operational type of F in ΣΛ1
. The left-right direction

is obvious in the case of closed terms, and in the case of open terms that correspond to
the denotation of primitive operational symbols that do not bind individual or ground-
variables. In the case instead of non-primitive operational symbols that bind individual
or ground-variables, we know that each of their applications, namely that each instance of
the corresponding rule on specific terms or specific derivations, corresponds to a derivation
in ΣΛ1

, which guarantees the admissibility of the rule under substitutions in ΣΛ1
. A true

derivability of rules of this type of ΣΛ2 in ΣΛ1 might not be generally available.
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Given the language of grounding GHA on B for Heyting’s first-order arith-
metic, let us build a primitive expansion GHA+ on B+ with terms representing
the reflection principle; for an appropriate denotation function den∗ for the
elements of the alphabet of GHA+, and an appropriate denotation function den
for the terms of GHA+ associated with den∗, GHA+ is non-conservative, since
there is a closed term T : G, such that den(T ) is a ground on B+ for ` G -
and such a term was, by virtue of Gödel’s incompleteness term, absent in GHA.

Example 4 (Primitive conservative expansion)
Let Gen be a Gentzen-language as in Section 5.2.3.3 on whatever atomic base
B on a first-order logical language L with set of individual constants

= = {∧,∨,→, ∀,∃}.

Let us consider a primitive expansion on an atomic base B+ on an expansion
L+ of L which is identical to L except for the set of the logical constants,
the latter being

=+ = = ∪ {↔}.

Definition 61. The languagr Gen+ is specified by an alphabet which contains
that of Gen plus

• operational symbols F of operational type 〈‡〉:

– ↔ I〈α1, α2 B α1 ↔ α2〉
– ↔ E〈α1 ↔ α2, αi B αj〉 (i, j = 1, 2, i 6= j)

The set TERMGen+ of the terms of Gen+ is the smallest set X such that

• TERMGen ⊂ X

• T : α1, U : α2 ∈ X ⇒ ↔ I ξα1 ξα2 (T, U) : α1 ↔ α2 ∈ X

• T : α1 ↔ α2, U : αi ∈ X ⇒ ↔ E(T, U) : αj ∈ X.

The primitive operational symbol ↔ I is used in a clause that fixes what
counts as a ground on whatever atomic base B for categorical judgment or
assertions ` α1 ↔ α2, that is

(↔G) f1(ξα1) is a ground on B for α1 ` α2 and f2(ξα2) is a ground on B
for α2 ` α1 ⇔ ↔ I ξα1 ξα2 (f1(ξα1), h(ξα2)) is a ground on B for
` α1 ↔ α2.
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to which we must add the identity condition

fi(ξ
αi) = hi(ξ

αi) (i = 1, 2)
⇔ ↔ I ξα1 ξα2 (f1(ξα1), f2(ξα2)) = ↔ I ξα1 ξα2 (h1(ξα1), h2(ξα2)).

Thus, the primitive operational symbol ↔ I can be matched by default
a B-operation on grounds of operational type

(α1 B α2), (α2 B α1)B α1 ↔ α2.

Let us now consider a denotation function for the elements of the alphabet
of Gen+ which, on the non-primitive operational symbols of Gen behaves as
indicated in Section 5.2.3.3, and such that, instead, for α1, α2 closed,

den∗(↔ E〈α1 ↔ α2, αi B αj〉)

is the operation

f(ξα1↔α2 , ξαi)

of operational type

α1 ↔ α2, αi B αj

such that, for every ↔ I ξα1 ξα2 (f1(ξα1), f2(ξα2)) proper ground for ` α1 ↔
α2, for every g proper ground for ` αi,

f(↔ I ξα1 ξα2 (f1(ξα1), f2(ξα2)), g) = fi(g)

The operation is an operation on grounds of the indicated operational type.
Indeed, let us suppose that G1 is a proper ground on B for ` α1 ↔ α2. By
virtue of the clause (↔G), G1 is unique and is of the form

↔ I ξα1 ξα2 (f1(ξα1), f2(ξα2))

with fi(ξαi) proper ground on B for αi ` αj. Then, for every proper ground
g on B for αi ` αj, fi(g) is a proper ground on B for ` αj. If we now suppose
that G2 is a proper ground on B for ` αi, fi(G2) is a proper ground on B
for ` αj, so that the computation

f(↔ I ξα1 ξα2 (f1(ξα1), f2(ξα2), G2) = fi(G2)
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shows what we required.
Now, Gen+ can be understood as a Gentzen’s natural deduction system

IL+ for first-order intuitionistic logic, to which we have added the introduc-
tion rule

[α1]

...
α2

[α2]

...
α1 (↔I)α1 ↔ α2

and the elimination rules

α1 ↔ α2 αi (↔E), i, j = 1, 2, i 6= jαj

The bijection to be taken into account works, on the rules of first-order
intuitionistic logic, as indicated in Section 5.2.3.3, and on the additional
rules it works as follows:

[α1]

∆1

α2

[α2]

∆2

α1 (↔I)α1 ↔ α2
ι

=⇒ ↔ I ξα1 ξα2 (ι(∆1), ι(∆2))

∆1

α1 ↔ α2

∆2

αi (↔E)αj
ι

=⇒ ↔ E(ι(∆1), ι(∆2))

The denotation function den∗ for the elements of the alphabet of Gen+ we
choose, instead, associates Prawitz’s standard reductions to the standard
elimination rules, and to the rules (↔E) it associates the reduction

[α1]

∆1

α2

[α2]

∆2

α1 (↔I)α1 ↔ α2

∆3

αi (↔E)αj

↔j-rid

∆3

[αi]

∆i

αj

In the light of the reductions thus defined, it becomes possible to prove on
IL+ a normalization theorem, with a subformula principle by virtue of which
every derivation in DERIL+ such that

α1, ..., αn `IL+ β
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with α1, ..., αn, β ∈ FORML can be transformed - by means of reductions
and/or expansion - into a derivation in DERIL such that

α1, ..., αn `IL β.

Through the bijection we mentioned above, and by defining appropriate re-
duction or expansion relations among terms of Gen+, we will hence have that
every T : β ∈ TERMGen+ with

FV I(T ) = {x1, ..., xn} and FV T (T ) = {ξα1 , ..., ξαm}

can be transformed into a term U : β ∈ TERMGen with

FV I(U) = {x1, ..., xn} and FV T (U) = {ξα1 , ..., ξαm}

and since appropriate reductions and expansions permit to preserve denota-
tion, we will have that den(T ) = den(U). Observe that den(T ) is a ground on
B+ which, in the light of what has been shown, is more in particular a ground
on B. Therefore, although primitive, Gen+ is a conservative expansion of Gen.

The concepts of primitiveness and conservativeness, therefore, even if
overlapping, are not equivalent, nor is any of the two contained in the other.
Primitiveness concerns the presence or absence of new linguistic resources
that modify or expand the meaning of the starting background language,
while conservativeness concerns the possibility of describing new deductive
means that were inexpressible in the starting language of grounding. If the
addition of new linguistic resources leaves the relative deductive means un-
changed from the meaning of the starting background language, we will not
have an increase in the deductive power of the starting grounding language;
similarly, if the increase in the deductive power of the starting language of
grounding does not affect the meaning of the starting background language,
the meaning remains unchanged.
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Chapter 6

Systems of grounding

6.1 General overview
This Chapter is given up to the proposal and development of a class of formal
systems of grounding ; each of the elements of the class is intended as related
to one of the languages of grounding identified in the previous chapter. The
aim of the systems of grounding is to provide rules that allow us to deduce
relevant properties of the terms of languages of grounding. The properties
will be essentially two: the fact that a term denotes a ground for a certain
judgment or a certain assertion, and the fact that two terms denote the same
ground, namely the same object closed when both of them are closed, or
extensionally equal operations when they are open.

Since the class of languages to which the systems refer is infinite, also
the class of the systems of grounding is infinite. However, each system has
a standard structure, i.e. the same kinds of rules involved. Firstly, there
are rules for the predicate which indicates that a certain term is a ground
for a certain judgment or a certain assertion; then, rules for an identity
predicate; and finally rules for the usual constants of first-order intuitionist
logic. The systems differ by only a restricted subgroup of some, but not all,
of the aforementioned groups of rules - exactly how the various grounding
languages differ only by the set of individual constants, or of non-primitive
operational symbols that they involve.

When introducing the class of the systems of grounding, we will start
from a specific example. In other words, we will develop a detailed system of
grounding for a Gentzen-language as indicated in Section 5.2.3.3, although
enriched with new expressive resources, and will show how it enjoys some
important properties. Based on this example, we will then generalize our
argument, and will therefore substantiate the request that the properties
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enjoyed by the Gentzen-language apply in each of the elements of the class.
As we did in the previous chapter, however, we want to conduct first some

preliminary observations, aimed at facilitating the reading and understanding
of what we will say later, as well as at indicating our aims, and the reasons
which have motivated our formal choices.

6.1.1 Denotation and identity

As you may have noticed, the languages of grounding we have been presenting
in the previous sections consist, strictly speaking, only of terms. It is natural
to wonder, then, whether it is possible to enrich them with formulas and,
if so, what such formulas should express. Obviously, the formulas will have
to indicate, by means of suitable predicates, properties of the terms, so that
the previous question is reduced to which the most relevant properties of the
terms in question are.

A first property is indicated by the denotation theorem: all the terms
of a language of grounding denote grounds. The general scheme provided is
that, if the term is closed, it denotes a ground for a categorical judgment or
assertion, as fixed by the clauses (AtG) - (∃G), while, if the term is open, it
denotes a ground for a general, hypothetical, or general-hypothetical judg-
ment or assertion, namely an operation on grounds that produces grounds for
categorical judgments or assertions, when applied to appropriate arguments -
grounds for categorical judgements or assertions, possibly after substitution
of individual variables. In the case of closed terms, this property will be
indicated with

Gr(T, β)

for closed T and β. in other words, in developing a system of grounding,
we will enrich the language of grounding to which it refers with a binary
predicate Gr(...,−−−).

Given this enrichment of the expressive power of a language of grounding,
and turning from the closed case to the open one, we suppose first of all that
T contains a sequence x of free individual variables, and does not contain
free ground-variables. Then

Gr(T (x), β)

indicates that T (x) is an operation on grounds of operational type

β
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for FV (β) ⊆ FV I(T (x)), that is, for every appropriate sequence t of closed
terms, the closed term T (t/x) is a ground for ` β(t), that is

Gr(T (t/x), β(t)).

If instead T contains free ground-variables ξα1 , ..., ξαn , and it does not contain
free individual variables,

Gr(T (ξα1 , ..., ξαn), β)

for closed α1, ..., αn, β, indicates that T (ξα1 , ..., ξαn) is an operation on gro-
unds of operational type

α1, ..., αn B β,

that, for every closed term Ui : αi (i ≤ n) in expansions of the language of
grounding to which T belongs, the closed term T (U1, ..., Un) is a ground for
` β, that is

Gr(T (U1, ..., Un), β).

Finally, if T contains a sequence of free individual variables x1, ..., xn, and of
free ground-variables ξα1 , ..., ξαm ,

Gr(T (x1, ..., xn, ξ
α1 , ..., ξαm), β)

indicates as before that T is an operation on grounds of operational type

α1, ..., αm B β

for

FV (α1) ∪ ... ∪ FV (αm) ∪ FV (β) ⊆ {x1, ..., xn},

that is, for every appropriate sequence of closed terms t1, ..., tn, for every
closed term Ui : αi(t1, ..., tn) (i ≤ m) in expansions of the language of ground-
ing to which T belongs, the closed term T (t1, ..., tn/x1, ..., xn, U1, ..., Um) is a
ground for ` β(t1, ..., tn), that is

Gr(T (t1, ..., tn/x1, ..., xn, U1, ..., Um), β(t1, ..., tn)).

With regard to what has been said so far, we would like to make at this
point two clarifications. The first is the following: in the case of a term
T (x, ξα1 , ..., ξαn) denoting an operation on grounds of operational type
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α1, ..., αn B β,

which, as said, is expressed by the formula

Gr(T (x, ξα1 , ..., ξαn), β),

we have noted that this means requesting that, after appropriate substi-
tutions of ground-variables, in turn possibly following the substitution of
individual variables, the term in question denotes a ground for a categorical
judgment or assertion, which is expressed by the formula

Gr(T (t/x, U1, ..., Un), β).

Of course, the legitimacy of this statement depends on the fact that the
terms used to replace the ground-variables - possibily after substitution of the
individual variables - are such as to denote grounds for categorical judgments
or assertions involving the type of the ground-variable substituted - possibly
after replacing individual variables. If the type is αi(t), and if the term
denoting a ground for ` αi(t) is Ui (i ≤ n), then, the fact that the starting
term denotes a ground after the indicated substitutions depends on

Gr(Ui, αi(t)),

a dependence that can be expressed with

. . . Gr(Ui, αi(t)) . . .

...
Gr(T (t/x, . . . Ui . . . ), β)

However, since this must apply to every possible Ui that enjoys this property,
we can say that the fact that the starting term denotes an operation on
grounds of a given operational type, depends on the assumption

Gr(ξαi , αi)

where ξαi is the ground-variable occurring in the starting term, a dependence
that can be expressed with

. . . Gr(ξαi , αi) . . .

...
Gr(T (x, . . . ξαi . . . ), β)
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In developing the systems of grounding, we will follow the intuition contained
in this observation. More precisely; since a term T without ground-variables
must denote a ground for a categorical or general judgment or assertion, that
is an operation on grounds of which the domain is empty, we will ensure that
the fact that this term denotes that ground is provable as theorem of the
system, that is

` Gr(T (x), α);

since instead a term T in which free ground-variables occur ξα1 , ..., ξαn de-
notes a ground for a hypothetical, or general-hypothetical judgement or as-
sertion, that is an operation on grounds with a non-empty domain and co-
domain β, we will ensure that the fact that this term denotes that ground is
provable in dependence on assumptions which require that each of the free
ground-variables denotes a ground for a judgment or assertion involving the
type of the ground-variable, i.e.

Gr(ξα1 , α1), ..., Gr(ξαn , αn) ` Gr(T (x, ξα1 , ..., ξαn), β).

As a second clarification, we premise that in enriching the languages
of grounding with the binary predicate Gr(...,− − −), we will impose the
following restriction: called Λ the language of grounding to which T belongs,
Gr(T, α) is a formula of the enriched grounding language if, and only if,
T : α ∈ TERMΛ - namely, T is a term of type α in Λ. This restriction
has a rather "practical" reason, and responds also to a criterion of formal
convenience. In the light of the close connection between the syntactic typing
of the terms of a language of grounding and the formulas involved in the
judgment or assertion, which that term denotes a ground for, it would make
no sense to authorize, for example, a formula such as Gr(T, β) if T has
type α instead. Indeed, from the denotation theorem we know that T must
be a ground for α, or an operation on grounds having as codomain α. If,
on the contrary, we wanted to be liberal, we would have some unnecessary
complications. First of all, we should authorize formulas in which, in fact,
there is no connection between the syntactic typing and the semantic value
of a term, formulas that, being consequently "wrong" from the beginning,
should not play any role in the theory of grounds. As a result, since a
system of grounding, while having to comply with certain basic semantic
assumptions, is configured as a mere deductive apparatus, it would become
possible to demonstrate results like

Γ1 ` Gr(T, β).
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These theorems determine a "deductive over-generation"; the system proves
what we expect to show, that is

Γ2 ` Gr(T, α),

and in addition other results that, in semantic terms, are incorrect. The
whole system would be incorrect with respect to the reference semantics,
but in a very peculiar sense - that is why we talked about "deductive over-
generation", and not about incorrectness strictu sensu. For each of the
derivations that lead to incorrect results, in fact, it is possible to find a substi-
tution of formulas of the background language that returns the derivation of
a correct result; and this substitution of formulas is exactly what is obtained
by introducing the aforementioned restriction, i.e. by ensuring that in each
formula of the derivation constructed with the predicate Gr(...,−−−), the
term shown on the left has type the formula shown on the right.

We come now to the second property of the terms of a language of ground-
ing, which we intend to deal with. It is indicated by the theorems which prove
that each language of grounding can be expanded to a closed one in canon-
ical form - with respect to a certain denotation function. If a closed term
T denotes a ground, it will denote the same ground of a canonical closed
term U . As already seen, T and U do not necessarily belong to the same
language; but this is guaranteed, for an appropriate choice of the denotation
function, if the language is closed in canonical form. Within these languages,
therefore, we can pass from an identity of the denotation of T and U , to an
identity between T and U expressible in the enriched grounding language,
namely

T ≈ U .

To this end, we will therefore introduce into languages of grounding a binary
predicate ... ≈ −−−, that, being intended as an identity predicate, will enjoy
the usual properties of reflexivity, symmetry, transitivity, and substitution
of identicals. For this reason, although neither T nor U are canonical, the
identity between them will apply if both of them reduce to the same canonical
closed term Z.

If this is what holds for the identity between closed terms, what will
happen in the case of open terms? We will adopt in this case, as already
done in the previous chapter, a criterion of extensional identity. If T and U
contain free individual or ground-variables, each of them denotes a ground for
a general, or general-hypothetical judgment or assertion, namely an operation
on grounds having a certain operational type. They are identical if, and only
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if, they denote the same ground, which in this case means to say that they
denote the same operation on grounds; and the latter circumstance will apply
if, and only if, the operations they denote return the same values on the
same arguments. In other words, assumed that the free individual variables
constitute a sequence x, and the ground-variables a sequence ξ, we will have
that

T (x, ξ) ≈ U(x, ξ)

if, and only if, for all the appropriate sequences of closed individual terms t,
and of terms for closed grounds Z,

T (t/x, Z/ξ) ≈ U(t/x, Z/ξ).

Also in relation to the discussion on the identity predicate so far con-
ducted, we consider it appropriate to make two clarifications. The first con-
cerns a point which we will discuss in more detail in the next section, and
which we anticipate here only briefly. As we know, operations on grounds
denoted by non-primitive operational symbols of a language of grounding
are to be intended as defined by certain equations; when developing sys-
tems of grounding, we will take up this idea, even if internalizing, so to
speak, the defining equations in the system itself. In other words, instead
of mapping the non-primitive operational symbols on operations defined by
certain equations, through denotation functions that connect the language
of grounding to our "universe" of grounds and operations on grounds, we
will provide identity axioms that directly concern non-primitive operational
symbols, namely equations that can be used in the derivations of the sys-
tem to eliminate the non-primitive operational symbols, transforming some
terms constructed with such symbols in others that the system considers as
identical to them. Now, even if the axioms faithfully reflect the equations
that, in the denotational approach, define the operation denoted by the non-
primitive operational symbol in question, the two ways of proceeding differ
for an essential point: while an operation on grounds is defined by an equa-
tion that shows how the operation behaves on closed objects, the axiom that,
in the system, fixes the behavior of a non-primitive operational symbol, pro-
vides a syntactic method of transformation, connected only with the type of
its arguments, regardless of the presence or absence of free variables in these
arguments. By way of example, let us take into account the non-primitive op-
erational symbol ∧E,i〈α1∧α2Bαi〉; according to the standard interpretation,
that symbol is associated to an operation on grounds

f(ξα1∧α2)
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of operational type

α1 ∧ α2 B αi

fixed by requiring that, for every ∧I(g1, g2) ground for ` α1 ∧ α2, with gi
ground for ` αi,

f(∧I(g1, g2)) = gi.

The equivalent in a system of grounding will be an axiom for the predicate
... ≈ −−− of the type

R∧∧E,i(∧I(T1, T2)) ≈ Ti

where Ti is whatever term of type αi. Now let α2 be a closed atomic formula,
and let δ be (the name of) a closed derivation of α2 in an atomic system
that occurs in the base B of a Gentzen-language on which we have defined a
system of grounding. From a denotational point of view, the term

∧E,2(∧I(ξα1 , δ))

denotes a B-operation on grounds

f(ξα1)

of operational type

α1 B α2;

indeed

den(∧E,2(∧I(ξα1 , δ)) = den∗(∧E,2)(∧I(den∗(ξα1), den∗(δ)) = f(∧I(Id, δ))

and, for every g ground on B for ` α1,

f(∧I(Id, δ))(g) = f(∧I(Id(g), δ)) = f(∧I(g, δ)) = δ.

Obviously, the operation will give δ on whatever ground g for α1, but in the
approach in question, we cannot conclude that the operation is equal to δ,
namely, that the denotation of the starting term is the same as for δ. An
operation on grounds, being open, is an object different from a ground for
a categorical judgment or assertion, which is instead a closed object. In the
system, on the other hand, it will be possible to prove that the starting term
and δ are identical, and therefore that this term is a ground for α2; in fact,
assuming it plausible to have an axiom
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C
Gr(δ, α2)

we will have, via an equally plausible principle of preservation of the deno-
tation ≈P ,

R∧∧E,2(∧I(ξα1 , δ)) ≈ δ
C

Gr(δ, α2) ≈P
Gr(∧E,2(∧I(ξα1 , δ)), α2)

The central point is, therefore, that the identity fixed by the predicate
... ≈ − − − is an equivalence relation among terms that reduce or ex-
pand from/to each other via syntactic transformations that generalize the
reduction or expansion procedures in Prawitz’s theory of normalization, or
the β–reduction or η-expansion in the theory of λ-conversion. Despite this
asymmetry, however, in a grounding system it will be possible to demon-
strate identities that faithfully reflect identity in the denotational approach;
in other words, it will apply as a result that if den(T ) = den(U), then, once
internalized with appropriate axioms the equations relative to den in a sys-
tem of grounding for the language to which T and U belong, we will have
that

` T ≈ U .

The second clarification is similar to the second clarification already car-
ried out for the predicate Gr(...,− − −). Namely, related to the predicate
... ≈ − − −, we will adopt the following restriction: called Λ the language
of grounding to which T and U belong, T ≈ U is a formula of the enriched
language of grounding if, and only if, T, U : α ∈ TERMΛ - namely, T and U
have identical type α in Λ. Here too, the restriction is aimed at avoiding the
incorrectness of a grounding system which is, in the peculiar sense indicated
above, a "deductive super-generation".

Finally, at the conclusion of the discussion conducted in this section,
concerning the predicates Gr(...,− − −) and ... ≈ − − −, and in order to
connect with what we will say in the next section, we point out the following.
As we have said, the fact that a term T in which ground-variables ξα1 , ..., ξαn

occur, denotes an operation on grounds of operational type

α1, ..., αn B β

can be represented as

Gr(ξαi , αi)

...
Gr(T (x, . . . ξαi . . . ), β)

355



giving as result in a system of grounding

Gr(ξα1 , α1), ..., Gr(ξαn , αn) ` Gr(T (x, ξα1 , ..., ξαn), β).

By introducing an appropriate universal quantifier – indicated with ∀G so as
to distinguish it from the quantifier ∀ in action in the background language,
and indicating with ∧G and→G conjunction and implication of the system of
grounding so as to distinguish them from those in action in the background
language - the circumstance can therefore also be expressed as

` ∀Gx ∀Gξα1 ...∀Gξαn(
∧G
i≤nGr(ξ

αi , αi)→G Gr(T (x, ξα1 , ..., ξαn), β)).

Analogously, the identity

T (x, ξ) ≈ U(x, ξ)

can be expressed, without explicit reference to substitutions, with

∀Gx ∀Gξ(T (x, ξ) ≈ U(x, ξ)).

Such a use of quantifiers will, as we shall see, be central to the proof of two
important types of results: the well-definition of a non-primitive operational
symbol with respect to an operational type intended, and the rewritability,
salva denotatione, of a non-primitive operational symbol of an expansion of
a language of grounding into the original grounding language.

6.1.2 Aims and outcomes of a deductive approach

What is the point of introducing formal systems on languages of ground-
ing enriched with the predicates Gr(...,− − −) and ... ≈ − − −? With
languages of grounding of this type it will be possible to express properties
which, as mentioned in the previous section, concern the denotation and the
denotational identity of terms. Formal systems, then, go beyond the simple
expressiveness, enabling us to prove such properties.

The theoretical apparatus presented in the previous chapter, in the terms
of denotation functions from languages of grounding to a "universe" of gro-
unds and operations on grounds, actually allows, in itself, to prove that a
term denotes a ground, which this ground is, and if and when two terms share
the same denotation. The advantage that an approach in terms of formal
system offers is to allow the achievement of these results through a clear and
well-defined set of rules, and this in turn has a triple, useful implication.

Obviously, the first is to make the provability of the intended properties
precise and, so to speak, mechanical ; once given the rules of the system,
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assuming that they are accepted as adequate, there is no need to reflect on
the type of denotation chosen for the language of grounding under examina-
tion, and of transforming the terms in the objects they denote, being on the
contrary sufficient, remaining in the language itself, to apply those rules in
the right order so as to achieve the desired result. If this is a merit that the
approach in deductive terms has in common with any investigation based
on formal systems, the second, more important, consequence, in part already
anticipated, is proper to the discourse that is being conducted here: the proof
of the properties can be obtained within the language of grounding, of which
the terms we want to prove those properties belong. Apart from the asym-
metry identified in the previous section, concerning the denotational identity
and the provability of this identity in a system, an immediate effect of this
point is to make the analysis easier and clearer; for example, the computa-
tion of one or more closed terms to the canonical form, aimed at a possible
proof of their identity, no longer requires the application of the denotation
function, since it occurs directly within the system, as direct computation of
the terms themselves.

In order to illustrate the third point, which is also the central one, we must
instead conduct a preliminary discussion, and illustrate how the systems of
grounding, we are dealing with in this chapter, are made. All the systems
share the following groups of rules:

• rules for the predicate Gr(...,−−−);

• rules for the predicate ... ≈ −−−;

• introduction and elimination rules of a Gentzen natural deduction sys-
tem for first-order intuitionistic logic.

As for the rules for the predicate Gr(...,−−−), they are further divided into
two subgroups:

• rules of type introduction;

• rules of type elimination.

Now, the rules of type introduction are nothing more than a translation, in
deductive terms, of the clauses (AtG) - (∃G). For example, for each closed
individual constant δ of the language of grounding to which the system refers,
and that "names" a closed derivation of an atomic formula α in the atomic
base of reference, we will have an axiom

C
Gr(δ, α)
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while, in the case of for example ∧, we will have the rule

Gr(T, α) Gr(U, β)
∧I

Gr(∧I(T, U), α ∧ β)

The rules of type introduction can also be seen as introduction rules of the
appropriate primitive operational symbol.

On the other hand, the rules of type elimination express, relative to the
main logical constant of the type, Dummett’s fundamental assumption (Dum-
mett 1991): if T denotes a ground for a formula with main logical constant
k, then it must be possible to reduce T to a canonical term which starts
with kI that denots a ground for the same formula. These rules will take
the form of generalized elimination rules, to which the usual discharges and
restrictions apply: for example, in the case of ∧, we will have

Gr(T, α ∧ β)

[T ≈ ∧I(ξα, ξβ)] [Gr(ξα, α)] [Gr(ξβ, β)]

...
A

D∧A

The rule discharges the assumptions T ≈ ∧I(ξα, ξβ), Gr(ξα, α), andGr(ξβ, β),
and it can be applied if, in the derivation of A as a minor premise, ξα does
not occur free in A, nor in assumptions on which A depends other than
T ≈ ∧I(ξα, ξβ) and Gr(ξα, α), and ξβ does not occur free in A, nor in as-
sumptions on which A depends other than T ≈ ∧I(ξα, ξβ) and Gr(ξβ, β) -
we can additionally require that ξα and ξβ are fresh variables, not previously
used in the derivation of Gr(T, α ∧ β). Observe that this rule is equiva-
lent - via usual rules for first-order intutionistic logic, and using as before a
conjunction ∧G, and an existential quantifier, that we indicate with ∃G to
distinguish it from that acting in the background language - to that, perhaps
more perspicuous in form,

Gr(T, α ∧ β)

∃Gξα∃Gξβ(T ≈ ∧I(ξα, ξβ) ∧G (Gr(ξα, α) ∧G Gr(ξβ, β)))

In the margins of what has been said about the rules of introduction and
elimination of type, it may be useful to specify that the enriched languages
of grounding, other than containing the predicates Gr(...,− − −) and ... ≈
−−−, will also have two new linguistic resources, resulting from "technical"
reasons. In the alphabet of the enriched language of grounding, we will first
have a variable for terms of type α(x) defined on individual variables x,
intended to represent operations on grounds of operational type
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α(x)

or operations on grounds with codomain α(x) for x not free in any of the
entries of the domain. These variables will be represented with the notation
hα(x)(x), where x can be substituted by any term t in the background lan-
guage. The reason for the introduction of these variables is related to the
possibility to express, in a system of grounding, the rule of type elimination
for terms T of type ∀xα(x); in one of the assumptions on which the minor
premise of the rule depends, in fact, we will find the dischargeable formula

T ≈ ∀Ix(hα(x)(x))

which, in this specific case, indicates that T is reducible to a term in canonical
form of the same type, and which is a ground for the formula of which it is
type - in fact, the other dischargeable assumption will be

∀Gx(Gr(hα(x)(x), α(x)))

- that is to say that T is identical to a term in canonical form the immediate
subterm of which is an operation on grounds of operational type

α(x)

or an operation on grounds with codomain α(x) for x not free in any of the
entries of the domain.

We will also have a variable for terms of type β defined on ground-
variables of arbitrary type α, intended to represent operations on grounds
with codomain β with α arbitrary in the domain. These variables will be
represented with the notation fβ(ξα), for whatever α in the set of formulas
of the background language, where ξα can be substituted by any term of
type α in the language of grounding. As for the requirements that deter-
mine this second addition, we limit ourselves only to point out that, without
it, the system would demonstrate a series of incorrect results, above all in
connection with operational symbols that bind ground-variables. In order to
understand this point, it is perhaps sufficient to reflect on the formulation
of the clause that sets what counts as ground for formulas with → as main
logical constant, which, with the variables for operations on grounds with
domain β, can be written - and, as we will see, proven in the system - in the
form

Gr(→ Iξα(fβ(ξα)), α→ β)⇔ ∀Gξα(Gr(ξα, α)→G Gr(fβ(ξα), β))

359



while, without these variables, it seems that we can only ask for a problematic
empty quantification

Gr(→ Iξα(ξβ), α→ β)⇔ ∀Gξα(Gr(ξα, α)→G Gr(ξβ, β)).

However, on the variables for operations on grounds with codomain β we
will not define any quantification - which we will do instead for the standard
ground-variables; not because this cannot be done, even with interesting con-
sequences and developments, but simply because such a move is not strictly
necessary with respect to the purposes we set ourselves here.

Now we come to the rules for the predicate ... ≈ −−−. They are further
divided into four subgroups:

• rules that determine an equivalence relation that preserves the denota-
tion;

• substitution rules with primitive operational symbols;

• equations for non-primitive operational symbols;

• substitution rules with non-primitive operational symbols;

The first of the four subgroups includes the usual rules of reflexivity,
symmetry and transitivity. To these we add a rule that states the preservation
of the denotation among identical terms, which we have already anticipated,
of which the form is

T ≈ U Gr(U, α) ≈P
Gr(T, α)

The substitution rules with primitive operational symbols express the
substitution principle of identicals in relation to the primitive operational
symbols of a language of grounding. These rules are bidirectional, allowing
to pass from identity between terms of minor complexity to identity between
terms of greater complexity, and vice versa. In the case of ∧, for example,
we will have

T1 ≈ U1 T2 ≈ U2 ≈∧1∧I(T1, T2) ≈ ∧I(U1, U2)

∧I(T1, T2) ≈ ∧I(U1, U2) ≈∧2iTi ≈ Ui

Analogously, the substitution rules with non-primitive operational symbols
express the substitution principle of identicals on non-primitive operational
symbols of a language of grounding. In this case, however, the rules are
unidirectional, that is they go only from the identity of less complex terms
to that of more complex terms; for example, again in the case of ∧, we will
have
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T ≈ U ≈∧3i∧E,i(T ) ≈ ∧E,i(U)

– obviously for T and U of appropriate type. The reason for the unidirec-
tionality is obvious. Some non-primitive operational symbols, such as ∧E,i,
are defined in such a way that, when applied to certain terms, they reduce
these terms to others, "deleting" some subterms in the application argu-
ments; while identity can be guaranteed in the case of terms which result at
the end of the reduction, it may not apply to those "deleted", and therefore
on the arguments of application themselves.

Finally, as regards the equations for non-primitive operational symbols,
we have already talked about them to some extent in the previous section.
They are a sort of "internalization" of the defining equations of the operations
on grounds which, in the denotational approach, non-primitives operational
symbols are meant to denote. While a denotation function on a language of
grounding connects the syntactic components of a language of grounding to a
"universe" of grounds and operations on grounds, within a formal system we
will have a series of axioms that regulate the deductive behavior of the syntax;
the defining equations which, via denotation, determine which function is
represented by that non-primitive operational symbol, become, in the formal
system, equations that tell us how, in well-defined contexts, the non-primitive
operational symbols can be eliminated, and how the terms in which they
occur are transformed into others provably identical. Using again ∧ as a case
study, for the non-primitive operational symbol ∧E,i, we will have, as already
said, the axiom

R∧∧E,i(∧I(T1, T2)) ≈ Ti

for T1 and T2 whatever terms of the language of grounding. Obviously, so
as the same operational symbol can be interpreted on several operations on
grounds – unless an invariant denotation approach is adopted – in the same
way there could be different types of equations that regulate the deductive
behaviour of that symbol in a system. We have said that operations on gro-
unds, as, in fact, operations on grounds, are to be understood as functions
defined on closed objects; on the other hand, the equations of a formal sys-
tem are rather configured as methods of syntactic transformation, and as
such they concern only the type of the term to which the symbol in question
applies, regardless of the fact that this term is closed or open. Now this
has consequences on the functioning of the identity predicate, discussed in
the previous section, and also on the type of restrictions we must explicitly
request to an equation, so as it can be included among the axioms of the cal-
culus. More specifically, since the operations on grounds are to be intended
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as functions, we can assume that the equations that define them are such
to respect by default conditions such as identity of domain and codomain
between definiendum and definiens, and linearity of the operation with re-
spect to substitution – namely, that (f(g))[∗/?] = f(g[∗/?]); on the other
hand, since the equations of a system fix the deductive behavior of syntac-
tic symbols, we must request explicitly that definiendum and definiens have
the same type, that the definiens is not defined on more variables than they
occur in the definiendum, and that all the instances of the equation make it
possible to move from the substitution on the whole term to the substitution
on its arguments.

The last set of rules for a system of grounding includes the usual rules of
a Gentzen’s natural deduction system for standard constants in first-order
intuitionistic logic. The language of these rules is obviously different from the
background language on which the language of grounding is intended to act;
to the enriched language of grounding it will in fact be added first-order log-
ical constants k, which, in order to distinguish them from the corresponding
constants of the background language, will be indicated, as mentioned above,
with kG – therefore, in addition to the already mentioned constants ∧G,→G,
∀G and ∃G, we will have also ∨G and ⊥G. The propositional constants link
formulas in the usual way, while the quantifiers act on two different types
of variables; individual variables and ground-variables - where it has to be
noted that, while the ground-variables explicitly occur in a term, the indi-
vidual variables occur in the term when they occur in the type of its ground
variables.

With regard to the logical part of systems of grounding, we wish to empha-
size just one point. If thanks to the predicates Gr(...,−−−) and ... ≈ −−−
we can demonstrate denotation properties of individual terms, or identities
between/among two or more terms, the fact that with logical constants it is
possible to pass from atomic formulas to logically complex formulas allows
instead to prove general properties of entire classes of terms, or general prop-
erties of components of the alphabet of the enriched language of grounding.
In particular, it becomes possible to prove general relations of denotation and
identity, which in turn allows us to derive, mainly, theorems that represent
the conditions for denoting grounds with a certain structure – namely, an
analogue of the clauses (AtG) - (∃G) – and theorems that guarantee a valid
definition of non-primitive operational symbols. This observation refers di-
rectly to what we have just left open, namely the third advantage of the
deductive approach we are proposing here.

The identification of groups of rules that are adequate with respect to
the underlying aims of the theory of grounds, and satisfactory with respect
to the proof of fundamental properties that in this theory are expected to
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hold, has, in our opinion, above all the advantage of clearly explicitating what
the deductive means are to which the approach proposed by Prawitz must
appeal. Once found a minimum set of principles, the approach itself can be
extended, in a precise and schematic way, and according to the objectives we
aim at. A paradigmatic example of what we mean to say here are, we think,
the rules of type elimination.

In the theory of grounds it is essential to exploit, as an ingredient in
the proof of the general properties, the principle according to which closed
non-canonical terms, as denoting grounds, have the same denotation of, or
more generally can be reduced to, closed canonical terms. Let us take into
account, for example, the following words of Prawitz:

the fact that the operation ∧E,i always produces a ground for α1

when applied to a ground g for α1∧α2 is not an expression of what
∧ means [...]. Instead it depends on what ∧ means, and has to be
established by an argument: Firstly, in view of [the] clause [...]
specifying the grounds for α1 ∧ α2 exhaustively, g must have the
form ∧I(g1, g2) [...]. Secondly, because of the identity condition,
g1 and g2 are unique. Hence, according to the equations that
define the operations, ∧E,i(∧I(g1, g2)) = gi, where gi is a ground
for asserting αi. (Prawitz 2015, 92)

Prawitz intends to prove that the non-primitive operation (denoted by the
non-primitive operational symbol) ∧E,i is well defined; to do it, in addition
to the structural properties of primitive operations such as the identity con-
ditions to which they are subject, the Swedish logician make use unavoidably
of the principle according to which a ground for ` α1 ∧α2 has a certain form
– and therefore, in the way in which we have set the discourse here, that a
term that denotes such ground has the same denotation of, or more generally
is reducible to a canonical term.

On the other hand, to prove that non-primitive operations (and, as a
cosenquence, that non-primitive operational symbols that denote them) are
well-defined is one of the key points of the theory of grounds, so that Prawitz,
as we have seen, comes to see as crucial the recognizability/decidability prob-
lem that we have widely discussed above. The circumstance depends, in our
opinion and primarily, on the aforementioned "fundamental task" that the
theory of the grounds intends to fulfill, namely to explain how and why de-
ductively valid inferences can force us epistemically; in doing so, certainly
we cannot avoid making sure that the operations on grounds the theory as-
sociates to the inferential passages are, in the concrete examples, well-posed,
and guaranteeing that this circumstance is actually ascertainable - other-
wise, no inferential agent would be willing to use that inference or, even if
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it used it, it could never become aware of the correctness of its deductive
acts, which seems contrary to the idea that the agent could be epistemically
forced by such acts. As mentioned above, this is a point which profoundly
distinguishes Prawitz’s theory of grounds from similar theories, such as the
Kreisel-Goodman theory of constructions and Martin-Löf’s intuitionistic type
theory, both illustrated in Chapter 3; to borrow from Prawitz – with words
already quoted above -

it is often said that the concept of proof should be defined in such
a way that it becomes decidable whether something is a proof, but
how this is to be achieved is seldom indicated, except of course in
the case of formal proofs. The terms that denote constructions
are supposed to be typed, and whether an expression has a type
is decidable, but the rules for typing already assume that the
demands put on the defined operations are fulfilled. (Prawitz
2018b, 10)

As a result, it seemed necessary to explicitly adopt Dummett’s fundamental
assumption (Dummett 1991) among the rules of the class of formal systems
for the theory of grounds. As maybe you will notice, and in a not surprising
way, our systems share many aspects with Martin-Löf’s intuitionistic type
theory; while a difference is precisely the absence, in the latter, of rules for
the fundamental assumption, although it should be noted that Martin-Löf
uses it, outside the system, to make it evident the validity of some of its rules
(Martin-Löf 1984).

6.1.3 Three kinds of theorems

In proposing systems of grounding, we will focus mainly on three types of
results that these systems allow to obtain. The three typologies can in turn
be grouped into two groups: theorems of the system, and meta-theorems,
that is, theorems about the system.

Among the theorems of the system, there first appear the analogues of
the clauses (AtG) - (∃G). In other words, we will show how the translations
of these clauses in enriched languages of grounding are derivable in systems
of grounding on these languages. The clause for ∧ will become, for example
the formula

Gr(ξα, α) ∧G Gr(ξβ, β)⇔ Gr(∧I(ξα, ξβ), α ∧ β)

derivable from the empty set of assumptions – and therefore universally quan-
tifiable.
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Along with these results, we will have next the derivability of the well-
definition of non-primitive operational symbols, with respect to the opera-
tional type of the operation on grounds they are intended to represent. Again
in the case of ∧, the formula

∀Gξα1∧α2(Gr(ξα1∧α2 , α1 ∧ α2)→G Gr(∧E,i(ξα1∧α2), αi))

is a theorem of a system for an enriched Gentzen-language of grounding.
It says that, for each ground for ` α1 ∧ α2, the application of ∧E,i to such
ground produces a ground for ` αi. The derivation, which makes an essential
appeal both to the defining equation of ∧E,i and to Dummett’s fundamental
assumption, follows through and through that of Prawitz, mentioned in the
previous section.

These two types of theorems are essential to obtain the result of the
other typology, the theorem about systems. The meta-theorem is a deductive
analogue of the denotation theorem and, as already anticipated, consists in
ensuring that, given

FV I(U) = {x1, ..., xn} and FV T (U) = {ξα1 , ..., ξαm}

with U : β, we have

Gr(ξα1 , α1), ..., Gr(ξαm , αm) ` Gr(U(x1, ..., xn, ξ
α1 , ..., ξαm), β).

In other words, in systems of grounding it is possible to prove that all terms
denote, in dependence on the assumption that the free ground-variables de-
note grounds for the respective types. This also means, put another way, that
a term denotes a ground for a categorical or general judgment or assertion,
if it does not contain free occurrences of ground-variables, and a ground for
a hypothetical or general-hypothetical judgment or assertion, if it contains
them. The meta-theorem just mentioned is therefore a sort of correctness
result for systems of grounding, compared to the denotational approach de-
veloped in the previous Chapter - let us remember that we had interpreted
the denotation theorem itself as a kind of correctness result of the languages
of grounding with respect to our "universe" of grounds and operations on
grounds.

Finally, a last type of theorems internal to the systems concerns the
rewritability of non-primitive operational symbols of a given language of
grounding in terms of operational symbols of its sublanguage of grounding.
In this case, we will provide as an example the rewriting of the disjunctive
syllogism in the Gentzen-language of Section 5.2.3.3 – appropriately enriched
- according to the lines indicated in example 2 of Section 5.2.5.

365



Obviously, since the class of languages of grounding identified in the pre-
vious Chapter is infinite, also the class of systems of grounding on such
languages will be infinite. Which is why we cannot actually show for each of
the systems in our class that they prove the three types of results mentioned
above. The actual illustration will be carried out inside of the only system
of grounding that we will exemplify, which acts on a Gentzen-language of
grounding - as defined in Section 5.2.3.3, and appropriately enriched. Oth-
erwise, we will limit ourselves just to indicate how and where systems of
grounding differ from each other. In this regard, it is well to remember that
languages of grounding may differ with respect to the bases on which they
operate, and in this case they involve different individual constants, or with
respect to the non-primitive operational symbols they are endowed with – or
both. It follows that systems of grounding can distinguish from each other for
the axioms concerning different individual constants and also, and mainly,
for the rules concerning identity in connection with non-primitives opera-
tional symbols – namely the equations for such symbols and the contextual
substitution of identical.

Now, it turns out that the proof of the analogue of the clauses (AtG) - (∃G)
involves neither defining equations for non-primitive symbols, nor substitu-
tion of identicals with these symbols. In other words, the derivations we will
provide in the Gentzen-language system, can be transposed without any vari-
ation in whatever system of grounding. As for the meta-theorem, instead, the
following applies: if the system derives the well-definitions of non-primitive
operational symbols, then the denotation of each term is derivable in the sys-
tem - along the lines indicated above. The whole thing is reduced therefore
to the derivation of the well-definition of non-primitive operational symbols,
and the possibility of the derivation will obviously depend on the equations
associated with these symbols. As we have said, the equations must re-
spect some specific parameters, but there is obviously the general parameter
according to which the equation must allow to consider the symbol as an op-
eration on grounds of an appropriate operational type; if this is guaranteed,
the derivation of the well-definition can be assumed in a non-problematic
way to all the systems of the class.1

1There would be another point to discuss, but an in-depth discussion of it would lead
too far. This is the possibility of deriving, in systems of grounding, formulas of which
the main logical sign is the negation, namely formulas of the type A →G ⊥G. Since, as
mentioned, in introducing the predicate Gr(...,−−−), we require that it be applicable to
a term T and to a formula α of the background language if, and only if, T actually has
type α in the language of grounding of the system, and since of each term it is possible
to prove – depending or not on assumptions – that it denotes a ground for that formula,
or an operation on grounds having that formula as codomain, then no formula of the
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6.2 Deduction over the Gentzen-language
As previously said, we focus first on a system of grounding for a Gentzen-
language as presented in Section 5.2.3.3, enriched with the expressive re-
sources we discussed in the introductory overview.

6.2.1 An enriched Gentzen-language

We refer from now on to the Gentzen-language Gen of Section 5.2.3.3. We
provide first of all some definitions that complete those already introduced,
again in Section 5.2.3.3, of a subterm of a term, of free and bound individual
variable in a term, of free and bound ground-variable in a term. However, first
of all and in order to simplify the discussion, regardless of the definability
of notions related to atomic bases (notions that can in any case be easily
specified), we adopt the following, important convention.

Convention 62. In the following, we will assume that the set of individ-

type Gr(T, α) →G ⊥G will be derivable in the system. Actually, the derivability of such
formulas would be possible only in one of the two following circumstances: (1) T does
not have type α or (2) T has type α, but does not denote. Now, as for (1), as we have
seen, the violation of syntactic typing has unpleasant consequences; in any case, even if
we wanted to renounce the restriction, the derivation should be based on axioms that tell
us that a term cannot denote a ground or an operation on grounds if it does not have type
the formula for which it denotes a ground, or which appears in its codomain. As for (2),
instead, it should be somehow possible to derive in the system that there is no succession of
equations that "reduce" the term to a canonical form U for each immediate subargument
Z of which it holds that Gr(Z, β), for some appropriate β; if, on the contrary, the term
is open, we should prove that there is a substitution that returns an instance of the term
for which the previous circumstance holds. Such a derivation should be based on rules
that reason on "reductions", rather than on terms; we should verify wheter these rules
stand out necessarily on a higher order than that of the systems of grounding we are here
considering, or it is somehow possible to "internalize" them, placing them on the same
level of rules for denotation and identity. In any case, to follow this road would require
the introduction of non-denoting terms, and therefore the authorization of languages of
grounding of the type discussed in Section 5.1.2.2. Regarding the predicate ... ≈ −−−, it
applies more or less what has already been said for the predicate Gr(...,−−−): if T and
U have a different type, the derivation of T ≈ U →G ⊥G requires what shown at point
(1) above, while if T and U have the same type, but denote different grounds, or different
operations on grounds, or one of the two does not denote, it could be indispensable to
reason about the "reductions" of T and U , as in (2) above, showing that there is none that
goes from one to the other. In any case, some negative formulas are actually derivable,
what we will achieve by discussing the derivability of the clause (⊥G); in general, however,
the derivation depends essentially on the use of the logical part, so that the formulas will
always be logically complex. Note that what we have said here is similar to a discourse
already carried out, in the introduction to the Chapter 5, on the possibility of having
non-denoting terms in languages of grounding.
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ual constants of Gen is limited to individual constants without free ground-
variables.

Definition 63. A substitution of x with t in T is a function TERMGen →
TERMGen inductively defined as follows

• δα[t/x] is (the name for) the derivation in the atomic system of the
reference base obtained by replacing t with x in δα

• ξα[t/x] = ξα[t/x]

• ∧I(T, U)[t/x] = ∧I(T [t/x], U [t/x])

• ∧E,i(T )[t/x] = ∧E,i(T [t/x])

• ∨I(T )[t/x] = ∨I(T [t/x])

• ∨E ξα ξβ (T, U1, U2)[t/x] = ∨E ξα[t/x] ξβ[t/x] (T [t/x], U1[t/x], U2[t/x])

• →I ξ
α(T )[t/x] = → Iξα[t/x](T [t/x])

• → E(T, U)[t/x] = → E(T [t/x], U [t/x])

• ∀Iy(T )[t/x] =



∀Iy(T )

if y = x

∀y(T [t/x])

if y 6= x and y /∈ FV (t)

∀Iz((T [z/y])[t/x])

if y 6= x and y ∈ FV (t), z /∈ FV (t), FV I(T )

• ∀E(T )[t/x] =



∀E(T )

if T : ∀yα(y),∀E(T ) : α(s/y), x ∈ FV (s) and
t not free for y in α(y)

∀E(T [t/x])

otherwise

• ∃I(T )[t/x] =



∃I(T )

if T : α(s/y),∃I(T ) : ∃yα(y), x ∈ FV (s) and
t not free for y in α(y)

∃I(T [t/x])

otherwise
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• ∃E y ξα(y)(T, U)[t/x] =



∃E y ξα(y)(T [t/x], U)

if y = x

∃ y ξα(y)[t/x](T [t/x], U [t/x])

if y 6= x and y /∈ FV (t)

∃E z ξα(z/y)(T [t/x], (U [z/y])(t/x]))

if y 6= x and y ∈ FV (t), z /∈ FV (t), FV I(T )

Recall that, for the substitution of x with t in α, defined on the notion of
first-order logical language, we have assumed to consider only substitutions
such that t is free for x in α, in the way that this notion was defined on that
occasion.

Definition 64. A substitution of ξα with T : α in U is a function TERMGen →
TERMGen inductively defined as follows

• δα[T/ξα] = δα - recall the convention on individual constants

• ξβ[T/ξα] =

{
T if α = β

ξβ if α 6= β

• ∧I(U,Z)[T/ξα] = ∧I(U [T/ξα], Z[T/ξα])

• ∧E,i(U)[T/ξα] = ∧E,i(U [T/ξα])

• ∨I(U)[T/ξα] = ∨I(U [T/ξα])

• ∨E ξβ ξγ(U,Z1, Z2)[T/ξα] =



∨E ξβ ξγ(U [T/ξα], Z1, Z2)

if α = β = γ

∨E ξβ ξγ(U [T/ξα], Z1[T/ξα], Z2)

if α 6= β, α = γ

∨E ξβ ξγ(U [T/ξα], Z1, Z2[T/ξα])

if α = β, α 6= γ

∨E ξβ ξγ(U [T/ξα], Z1[T/ξα], Z2[T/ξα])

if α 6= β 6= γ

• → Iξβ(U)[T/ξα] =

{
→ Iξβ(U) if α = β

→ Iξβ(U [T/ξα]) if α 6= β

• → E(U,Z)[T/ξα] = → E(U [T/ξα], Z[T/ξα])
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• ∀Ix(U)[T/ξα] = ∀Ix(U [T/ξα])

• ∀E(U)[T/ξα] = ∀E(U [T/ξα])

• ∃I(U)[T/ξα] = ∃I(U [T/ξα])

• ∃E x ξβ(x)(U,Z)[T/ξα] =


∃E x ξβ(x)(U [T/ξα], Z)

if α = β(x)

∃E x ξβ(x)(U [T/ξα], Z[T/ξα])

if α 6= β(x)

Observe that, in some cases, when replacing ξα with T : α in terms of type
∨E ξβ ξγ(U,Z1, Z2), → Iξβ(T ) or ∃E x ξβ(x)(U,Z), it could happen that,
respectively, ξβ or ξγ, ξβ and ξβ(x) are free in T . This is not problematic:
the variables in the terms of Gen+ should be understood as indexed, and the
binding of such variables as referred to specific indexes. Thus, the typed
variables occurring free in T remain such after the substitution.

Definition 65. The language Gen+ on an atomic base B on a background
language L is specified starting from an alphabet containing that of Gen of
B - restricted to individual constants without free ground-variables - plus

• functional variables hα(x)
i , fαj (α(x), α ∈ FORML, i, j ∈ N)

• binary relational symbols : and ≈

• logical constants ∧G, ∨G, →G, ∀G, ∃G and ⊥G

In order not to excessively burden the notation, and whenever this does not
create ambiguity, we will omit indices and subscripts. The set TERMGen+ of
the terms of Gen+ is the smallest set X such that

• TERMGen ⊂ X

• hα(x)(t) ∈ X (t ∈ TERML)

• T : α ∈ TERMGen ⇒ fβ(T ) : β ∈ X

plus recursive clauses for forming complex terms starting from the operational
symbols of Gen in all analogous to those of definitions 28 and 35. The set
FORMGen+ of the formulas of Gen+ is the smallest set X such that

• T : α ∈ TERMGen+ ⇒ Gr(T, α) ∈ X
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• T, U : α ∈ TERMGen+ ⇒ T ≈ U ∈ X

• ⊥G ∈ X

• A,B ∈ X ⇒ A ? B ∈ X (? = ∧G,∨G,→G, ¬A def
= A→G ⊥G)

• A ∈ X ⇒ ? ε A ∈ X (? = ∀G,∃G, ε = xi, ξ
α for i ∈ N and α ∈ FORML)

On the language Gen+ just specified, it is now necessary re-define all the
notions we have already defined for Gen.

Definition 66. The set S(T ) of the subterms of T is like in definition 36 if
T ∈ TERMGen and, in the other cases,

S(hα(x)(t)) = {hα(x)(t)} and S(fα(T )) = S(T ) ∪ {fα(T )}

Definition 67. The set FV I(T ) of the free individual variables of T is like
in definition 37 if T ∈ TERMGen and, in the other cases,

FV I(hα(x)(t)) = FV (t) and FV I(fα(T )) = FV I(T )

The set BV I(T ) of the bound individual variables of T is like in definition 37
if T ∈ TERMGen and, in the other cases,

BV I(hα(x)(t)) = BV (t) and BV I(fα(T )) = BV I(T )

Definition 68. The set FV T (U) of the free-ground variables of U is like in
definition 38 if U ∈ TERMGen and, in the other cases,

FV T (hα(x)(t)) = ∅ and FV T (fα(U)) = FV T (U)

The set BV T (U) of the bound ground-variables of U is like in definition 38 if
U ∈ TERMGen and, in the other cases,

BV T (hα(x)(t)) = ∅ and BV T (fα(U)) = BV T (U)

It should be noted that, in terms of the types hα(x) and fβ(ξα(x)), there
would be reason to claim that there are actually two and three free variables,
respectively; the first - according to definition 66 - is in both of them the
individual variable x, the second of the second term - according to definition
67 - is the ground variable ξα(x), while the second of the first term and the
third of the second one - not identified by any of our previous definitions -
are the functional variables, respectively, hα(x) or fβ. The latter are a sort
of second order variables, similar to the variable φ(x̂) of Bertrand Russell
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and Alfred North Whitehead’s Principia Mathematica (Russell & Whitehead
1962). However, for the aims of this investigation, we do not consider it
necessary to introduce functional variables into the scope of the free variables
of a term – neither substitution nor, as anticipated, universal or existential
quantification on such variables.

Definition 69. A substitution of x with u in T is a function TERMGen+ →
TERMGen+ like in definition 63 if T ∈ TERMGen and, in the other cases,

hα(x)(t)[u/x] = hα(x)[u/x](t[u/x]) and fα(T )[u/x] = fα(T [u/x])

Definition 70. A substitution of ξα with T : α ∈ TERMGen in U is a function
TERMGen+ → TERMGen+ like in definition 64 if U ∈ TERMGen and, in the other
cases,

hα(x)(t)[T/ξα] = hα(x)(t) and fα(U)[T/ξα] = fα(U [T/ξα])

It should be noted that definition 70 binds the substitution of ground-variables
to terms of Gen. In particular, hence, it prevents substitution of the type
[fα(ξα)/ξα], which would give rise to expressions

fα(ξα)[fα(ξα)/ξα] = fα(ξα[fα(ξα)/ξα]) = fα(fα(ξα))

not belonging, according to definition 64, to TERMGen+ . Finally, we conclude
this Section with some technical definitions for the formulas of Gen+.

Definition 71. The set FV I(A) of the free individual variables of A is de-
fined inductively as follows -

• FV I(Gr(T, α)) = FV I(T ) - recall that FV (α) ⊆ FV I(T )

• FV I(T ≈ U) = FV I(T ) ∪ FV I(U)

• FV I(⊥G) = ∅

• FV I(A ? B) = FV I(A) ∪ FV I(B) (? = ∧G,∨G,→G)

• FV I(? ε A) = FV I(A)− {ε} (? = ∀G,∃G)

The set BV I(A) of the bound individual variables of A is defined inductively
as follows

• BV I(Gr(T, α)) = BV I(T ) - observe that BV (α) ⊆ BV I(T )

• BV I(T ≈ U) = BV I(T ) ∪BV I(U)
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• BV I(⊥G) = ∅

• BV I(A ? B) = BV I(A) ∪BV I(B) (? = ∧G,∨G,→G)

• BV I(? ε A) =

{
BV I(A) ∪ {ε} if ε is of type x
BV I(A) otherwise

(? = ∀G, ∃G)

Definition 72. The set FV T (A) of the free ground-variables of A is defined
inductively as follows

• FV T (Gr(U, α)) = FV T (U)

• FV T (U ≈ Z) = FV T (U) ∪ FV T (Z)

• FV T (⊥G) = ∅

• FV T (A ? B) = FV T (A) ? FV T (B) (? = ∧G,∨G,→G)

• FV T (? ε A) = FV T (A)− {ε} (? = ∀G,∃G)

The set BV T (A) of the bound ground-variables of A is defined inductively as
follows

• BV T (Gr(U, α)) = BV T (U)

• BV T (U ≈ Z) = BV T (U) ∪BV T (Z)

• BV T (⊥G) = ∅

• BV T (A ? B) = BV T (A) ∪BV T (B) (? = ∧G,∨G,→G)

• BV T (? ε A) =

{
BV T (A) ∪ {ε} if ε is of type ξα

BV T (A) otherwise

A is closed if, and only if, FV I(A) = FV T (A) = ∅.

Definition 73. A substitution of x with t in A is a function FORMGen+ →
FORMGen+ inductively defined as follows

• (Gr(T, α))[t/x] = Gr(T [t/x], α[t/x])

• (T ≈ U)[t/x] = (T [t/x] ≈ U [t/x])

• ⊥G[t/x] = ⊥G
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• (A ? B)[t/x] = (A[t/x] ? B[t/x]) (? = ∧G,∨G,→G)

• (? ε A)[t/x] =


? ξα[t/x] A[t/x]

? y A[t/x] if y 6= x

? y A if y = x

(? = ∀G,∃G)

Definition 74. A substitution of ξα with T : α in A is a function FORMGen+ →
FORMGen+ defined inductively as follows

• (Gr(U, β))[T/ξα] = Gr(U [T/ξα], β)

• (U ≈ Z)[T/ξα] = (U [T/ξα] ≈ Z[T/ξα])

• ⊥G[T/ξα] = ⊥G

• (A ? B)[T/ξα] = (A[T/ξα] ? B[T/ξα]) (? = ∧G,∨G,→G)

• (? ε A)[T/ξα] =

{
? ε A[T/ξα] if ε 6= ξα

? ε A if ε = ξα
(? = ∀G,∃G)

As in the case of the substitution functions defined relative to a first-order
logical language, also the substitution functions for terms and formulas of
Gen+ can be generalized to the case of n > 1 concurrent substitutions. In the
following two further definitions, ATOMGen+ is the set of the atomic formulas
of FORMGen+ , obtained starting from definition 65.

Definition 75. t is free for x in A if, and only if,

• A ∈ ATOMGen+

• A = B ? C and t is free for x in B and C (? = ∧G,∨G,→G)

• A = ? ε B, ε = x or ε 6= x, ε /∈ FV (t) and t is free for x in B
(? = ∀G,∃G)

Definition 76. U : α is free for ξα in A if, and only if,

• A ∈ ATOMGen+

• A = B ? C and U is free for ξα in B and C (? = ∧G,∨G,→G)

• A = ? ε B, ε = ξα or ε 6= ξα, ε /∈ FV I(U), ε /∈ FV T (U) and U is free
for ξα in B (? = ∀G,∃G)

At the end of this section, we introduce the following notational conven-
tion. Instead of writing Gr(T, α), in order to lighten the notation and the
layout of the rules we simply write T : α. Therefore, from now on, and except
when the context implies something different, T : α stands for "T is a ground
for ` α".
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6.2.2 A system for the enriched Gentzen-language

We now introduce a formal system on the Gentzen-extended language of
definition 65. As anticipated, we will essentially have rules for the atomic
and logical formulas. Among the first, the typing rules will in turn be divided
into type introduction and type elimination rules, the identity rules into
identity rules as an equivalence relation that preserves the denotation, rules
for the replacement of identicals with primitive and non-primitive operational
symbols, and equations for non-primitive operational symbols.

6.2.2.1 Typing rules I - typing introductions

The first rules of the system concern the individual constants of Gen+, ax-
iomatically intended as grounds for the atomic formulas of the background
language that constitute their type. Thus, forevery δ : α ∈ TERMGen+ , bearing
in mind the convention we adopted at the beginning of our discussion, namely,
to take into account only individual constants without ground-variables, we
will have that

C
δ : α

The next set of rules authorizes the introduction of primitive operational
symbols of Gen+, corresponding to the left-right direction of the clauses (∧G)
- (∃G).

T : α U : β
∧I∧I(T, U) : α ∧ β

T : αi ∨I (i = 1, 2)
∨I[αi B α1 ∨ α2](T ) : α1 ∨ α2

[ξα : α]

...
T (ξα) : β

→ I→ Iξα(T (ξα)) : α→ β

T (x) : α(x)
∀I∀IyT (y/x) : ∀yα(y/x)

T : α(t/x)
∃I∃I[α(t/x)B ∃xα(x)](T ) : ∃xα(x)

We have two restrictions. In → I, the ground variable ξα must not occur
free in any undischarged assumption on which the premise T (ξα) : β depends,
other than ξα : α. In ∀I, the individual variable x must not occur free in
any undischarged assumption on which the premise U(x) : α(x) depends, nor
in β for ξβ ∈ FV T (U(x)). We will say that ξα and x are, respectively, the
proper variables of→ I and ∀I. As for the primitive operational symbol ⊥α,
the rule
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T : ⊥
⊥α(T ) : α

is derivable in the system we are building, starting – it could be expected
– from a rule that expresses the idea that the existence of grounds for ⊥
generates inconsistency.

6.2.2.2 Typing rules II - Dummett’s assumption

We now turn to a second set of rules, corresponding to the direction right-
left of the clauses (∧G) - (∃G). These rules will take the form of generalized
elimination rules, and will express the idea of the so-called Dummett’s fun-
damental assumption (Dummett 1991): if T denotes a ground for a formula
with main logical constant k, then it must be possible to reduce T to a
canonical term that begins with kI denoting a ground for the same formula.
Starting with ∧, we have

T : α ∧ β

[T ≈ ∧I(ξα, ξβ)] [ξα : α] [ξβ : β]

...
A

D∧A

For the constant ∨, we distinguish two cases, depending on whether the
form of the major premise involves term beginning with a primitive symbol
- labelled Dc

∨ - or not - labelled Dnc
∨ .

∨I(U) : α1 ∨ α2

[∨I(U) ≈ ∨I(ξαi)] [ξαi : αi]

...
A

Dc
∨A

T : α1 ∨ α2

[T ≈ ∨I(ξα1)] [ξα1 : α1]

...
A

[T ≈ ∨I(ξα2)] [ξα2 : α2]

...
A

Dnc
∨A

The double formulation is somehow justified by the fact that, when a term
of the type α1 ∨ α2 is in canonical form, in it occurs a subterm of which,
thanks to the typing of ∨I , we explicitly know the type - which, on the other
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hand, is not guaranteed when the term of the type α1∨α2 is in non-canonical
form, as in the case of the ground-variable ξα1∨α2 . Thus, in the case of the
canonical form, we have a formulation, as it were, obliged on the assumption
of the minor premise of the elimination rule of the type; in the case of the
non-canonical form we can choose between two options. But the distinction
depends also on the need to respect the syntactic typing of the terms, and
therefore on the restriction of the predicate Gr(...,− − −); when we derive
an analogue of the clause (∨G), if T is ∨I[αi B α1 ∨ α2](ξαi) with i = 1, 2,
we cannot assume ξαi : αj with j = 1, 2 and j 6= i, since this would not be a
formula of the language.

Now we conclude with the elimination rules of type for the remaining
constants.

T : α→ β

[T ≈ → Iξα(fβ(ξα))] [∀Gξα(ξα : α→G fβ(ξα) : β)]

...
A

D→A

T : ∀xα(x)

[T ≈ ∀Ix(hα(x)(x))] [∀Gx(hα(x)(x) : α(x))]

...
A

D∀A

T : ∃xα(x)

[T ≈ ∃I(ξα(x))] [ξα(x) : α(x)]

...
A

D∃A

Some restrictions. In D∧, ξα and ξβ must not occur free in any undischarged
assumption on which A depends, other than T ≈ ∧I(ξα, ξβ), ξα : α or
ξβ : β. In Dc

∨, ξαi must not occur free in any undischarged assumption
on which A depends, other than ∨I(U) ≈ ∨I(ξαi) or ξαi : αi. In Dnc

∨ ,
ξα1 and ξα2 must not occur free in any undischarged assumption on which
A respectively depends on its two occurrences, and respectively other than
T ≈ ∨I(ξα1) or ξα1 : α1 and T ≈ ∨I(ξα2) or ξα2 : α2. In D→, fβ must
not occur free in any undischarged assumption on which A depends, other
than T ≈ → Iξα(fβ(ξα)) or ∀Gξα(ξα : α →G fβ(ξα) : β). In D∀, hα(t), for
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every t ∈ TERML, must not occur free in any undischarged assumption on
which A depends and which, for t = x, is different from T ≈ ∀Ix(hα(x)(x)) or
∀Gx(hα(x)(x) : α(x)). Finally, in D∃, x and ξα(x) must not occur free in any
undischarged assumption on which A depends, other than T ≈ ∃I(ξα(x)) or
ξα(x) : α(x). The variables on which the restrictions apply are called proper
variables of the respective rules. Each proper variable - ξα and ξβ for D∧;
ξαi for Dc

∨; ξα1 and ξα2 for Dnc
∨ ; fβ for D→; hα(x) for D∀; x and ξα(x) for D∃

- must not occur free in the conclusion of the corresponding rule.
The last rule of the group we are analyzing concerns the clause (⊥G), and

captures the idea that there are no grounds for ` ⊥.

T : ⊥ ⊥⊥G

6.2.2.3 Identity rules

We now deal with the binary predicate ... ≈ − − −. The first set of rules
concerns the obvious properties of reflexivity, symmetry and transitivity.

≈R
T ≈ T

T ≈ U ≈S
U ≈ T

U ≈ Z Z ≈ V ≈T
U ≈ V

To these we add a rule that establishes the preservation of the denotation
respect to identity.

T ≈ U U : α ≈P
T : α

We then need rules that attribute to primitive operational symbols a func-
tional behaviour.

T1 ≈ U1 T2 ≈ U2 ≈∧1∧I(T1, T2) ≈ ∧I(U1, U2)

∧I(T1, T2) ≈ ∧I(U1, U2) ≈∧2i, i = 1, 2
Ti ≈ Ui

T ≈ U ≈∨1∨I(T ) ≈ ∨I(U)

∨I(T ) ≈ ∨I(U) ≈∨2 , T and U have the same type
T ≈ U

T ≈ U ≈→1→ Iξα(T ) ≈ → Iξα(U)

→ Iξα(T ) ≈ → Iξα(U) ≈→2T ≈ U

T ≈ U ≈∀1∀Ix(T ) ≈ ∀Ix(U)

∀Ix(T ) ≈ ∀Ix(U)
≈∀2T ≈ U
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T ≈ U ≈∃1∃I(T ) ≈ ∃I(U)

∃I(T ) ≈ ∃I(U)
≈∃2T ≈ U

T ≈ U ≈⊥1⊥α(T ) ≈ ⊥α(U)

⊥α(T ) ≈ ⊥α(U)
≈⊥2T ≈ U

We have rules for the identity constituted by (schemes of) equations that set
the behaviour of non-primitive operational symbols.

R∧, i = 1, 2
∧E,i(∧I(T1, T2)) ≈ Ti

R∨, i = 1, 2
∨E ξα1 ξα2(∨I(Ti), U1(ξα1), U2(ξα2)) ≈ Ui(Ti)

R→→ E(→ Iξα(T (ξα)), U) ≈ T (U)

R∀∀E[∀xα(x)B α(t/x)](∀Ix(T (x)) ≈ T (t)

R∃∃E x ξα(x)(∃I[α(t/x)B ∃xα(x)](T ), U(x, ξα(x))) ≈ U(t, T )

Finally, the substitution of identicals with non-primitive operational symbols.

T ≈ U ≈∧3i, i = 1, 2
∧E,i(T ) ≈ ∧E,i(U)

T ≈ U Z1(ξα) ≈ Z2(ξα) V1(ξβ) ≈ V2(ξβ) ≈∨3∨Eξαξβ(T, Z1(ξα), V1(ξβ)) ≈ ∨Eξαξβ(U,Z2(ξα), V2(ξβ))

T1 ≈ T2 U1 ≈ U2 ≈→3→ E(T1, U1) ≈ → E(T2, U2)

T ≈ U ≈∀3∀E(T ) ≈ ∀E(U)

T ≈ U Z(ξα(x)) ≈ V (ξα(x))
≈∃3∃E x ξα(x)(T, Z(ξα(x))) ≈ ∃E x ξα(x)(U, V (ξα(x)))

However, it is not plausible to introduce also the inverses of each of these
last rules. Let us take into account, for example, a rule of the type
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∧E,1(T ) ≈ ∧E,1(U)

T ≈ U

Let now T be the term ∧I(ξα, ξβ) and let U be the term ∧I(ξα, ξγ); via the
appropriate instances of R∧

R∧∧E,1(∧I(ξα, ξβ)) ≈ ξα
R∧∧E,1(∧I(ξα, ξγ)) ≈ ξα

we can easily derive the conclusion ∧E,1(∧I(ξα, ξβ)) ≈ ∧E,1(∧I(ξα, ξγ)). How-
ever, although surely ξα ≈ ξα, if β 6= γ, ∧I(ξα, ξβ) ≈ ∧I(ξα, ξγ) is not
well-formed.

6.2.2.4 Logic

Finally, we add the logic. At variance with Gentzen’s IL, universal and exis-
tential quantification rules operate on both individual and ground-variables.

A B (∧GI )A ∧G B
A1 ∧G A2 (∧GE,i), i = 1, 2

Ai

Ai (∨GI ), i = 1, 2
A1 ∨G A2

A ∨G B

[A]

...
C

[B]

...
C (∨GE)C

[A]

...
B (→G

I )A→G B
A→G B A (→G

E)B

A(ε)
(∀GI )∀GθA(θ/ε)

∀GεA(ε)
(∀GE)A(T/ε)

A(T/ε)
(∃GI )∃GεA(ε)

∃GθA(θ/ε)

[A(ε)]

...
B

(∃GE)B
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⊥G (⊥G)
A

We have the usual restrictions about the rules on quantificators. Moreover,
since quantifiers can act on variables of two different types, we have the
following restrictions: in (∀GE) and (∃GI ), if ε is of type ξα, T must be of type
α. We will call our system GG - that is, Gentzen-grounding.

6.2.2.5 Derivations

We can now define the set of the derivations of our system. Since the defini-
tion proceeds by trivial induction, we will provide only few examples.

Definition 77. The set DERGG of the derivations of GG is the smallest set X
defined by standard induction, as in the following examples

• the single node A ∈ X for every A ∈ FORMGen+

• C
δα : α and ≈R

T ≈ T ∈ X, for every δ, T ∈ TERMGen+

• every instance of R∧,i, R∨, R→, R∀ and R∃ ∈ X

• ∆
T (x) : α(x)

∈ X in compliance with the restriction on ∀I ⇒

∆
T (x) : α(x)

∀I∀IyT (y/x) : ∀yα(y/x) ∈ X

• ∆1

T : α ∨ β
and

T ≈ ∨I(ξα) ξα : α

∆2

A

and
T ≈ ∨I(ξβ) ξβ : β

∆3

A
∈ X,

in compliance with the restriction on Dnc
∨ ⇒

∆1

T : α ∨ β

[T ≈ ∨I(ξα)] [ξα : α]

∆2

A

[T ≈ ∨I(ξβ)] [ξβ : β]

∆3

A
Dnc
∨A

∈ X
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• ∆1

T : α→ β
and

T ≈ → Iξα(fβ(ξα)) ∀Gξα(ξα : α→G fβ(ξα) : β)

∆2

A
∈ X, in compliance with the restriction on D→ ⇒

∆1

T : α→ β

[T ≈ → Iξα(fβ(ξα))] [∀Gξα(ξα : α→G fβ(ξα) : β)]

∆2

A
D→A

∈ X

• ∆1

T : ∀xα(x)
and

T ≈ ∀Ix(ξα(x)) ξα(x) : α(x)

∆2

A

∈ X, in compliance

with the

restriction on D∀ ⇒

∆1

T : ∀xα(x)

[T ≈ ∀Ix(ξα(x))] [ξα(x) : α(x)]

∆2

A
D∀A

∈ X

• ∆
T ≈ U

∈ X ⇒

∆1

T ≈ U ≈S
U ≈ T ∈ X

• ∆1

T ≈ U
e ∆2

U : α
∈ X ⇒

∆1

T ≈ U
∆2

U : α ≈P
T : α ∈ X
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• ∆
T ≈ U

∈ X ⇒

∆
T ≈ U ≈→1→ Iξα(T ) ≈ → Iξα(U) ∈ X

• ∆
→ Iξα(T ) ≈ → Iξα(U)

∈ X ⇒

∆
→ Iξα(T ) ≈ → Iξα(U) ≈→2T ≈ U ∈ X

• ∆1

T ≈ U
and ∆2

Z1(ξα) ≈ Z2(ξα)
and ∆3

V1(ξβ) ≈ V2(ξβ)
∈ X ⇒

∆1

T ≈ U

∆2

Z1(ξα) ≈ Z2(ξα)

∆3

V1(ξβ) ≈ V2(ξβ) ≈∨3∨Eξαξβ(T, Z1(ξα), V1(ξβ)) ≈ ∨Eξαξβ(U,Z2(ξα), V2(ξβ)) ∈ X

The other cases are analogous - on the logic the definition mirrors the one
for IL. A is derivable from G in GG, indicated with G `GG A, if, and only if,
there is ∆ ∈ DERGG with set of undischarged assumptions G and conclusion
A.

6.2.3 Some Results

We now show how GG permits to prove some theorems, i.e. theorems in the
system, and one meta-theorem, i.e. a theorem about the system. The results
are, as announced, the following:

• analogue of the clauses (AtG) - (⊥G);

• well-definition of non-primitive operational symbos;

• meta-theorem establishing that every term is provably denoting, pos-
sibly under assumptions;

• rewritability of non-primitive operational symbols.
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6.2.3.1 Clauses

GG allows us to derive clauses (AtG) - (⊥G) as theorems. It should be noted
how, in light of the type introduction rules this is, from a certain point of
view, a foregone result.

The clause (AtG) is respected by the fact that, for every closed derivation
in the atomic system of the reference base for a closed atomic formula α of
the reference language, to which it corresponds an individual constant δ,

C
δ : α

and, therefore, `GG δ : α. In proving the theorems for the other clauses, we
will refer to open formulas that, being demonstrated starting from the empty
set of assumptions, can be universally generalized. Starting from clause (∧G),
it corresponds to the pair of theorems

1∧ `GG (ξα : α ∧G ξβ : β)→G ∧I(ξα, ξβ) : α ∧ β

2∧ `GG ∧I(ξα, ξβ) : α ∧ β →G (ξα : α ∧G ξβ : β)

The derivation of 1∧ is the following

1
[ξα : α ∧G ξβ : β]

(∧GE,1)ξα : α

1
[ξα : α ∧G ξβ : β]

(∧GE,2)
ξβ : β

∧I∧I(ξα, ξβ) : α ∧ β
(→G

I ), 1
(ξα : α ∧G ξβ : β)→G ∧I(ξα, ξβ) : α ∧ β

As regards the derivation of 2∧, let ∆ be the following derivation

2

[∧I(ξα, ξβ) ≈ ∧I(ξα1 , ξ
β
1 )]

≈∧21ξα ≈ ξα1
3

[ξα1 : α]
≈P

ξα : α

2

[∧I(ξα, ξβ) ≈ ∧I(ξα1 , ξ
β
1 )]

≈∧22
ξβ ≈ ξβ1

4

[ξβ1 : β]
≈P

ξβ : β
(∧GI )

ξα : α ∧G ξβ : β

then, the derivation of 2∧ is the following

1
∧I(ξα, ξβ) : α ∧ β ∆

D∧, 2, 3, 4
ξα : α ∧G ξβ : β

(→G
I ), 1

∧I(ξα, ξβ) : α ∧ β →G (ξα : α ∧G ξβ : β)
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As for the clause (∨G), it corresponds to the pair of theorems

1∨ `GG (ξα1 : α1 →G ∨I(ξα1) : α1 ∨ α2) ∧G (ξα2 : α2 →G ∨I(ξα2) : α1 ∨ α2)

2∨ `GG (∨I(ξα1) : α1 ∨ α2 →G ξα1 : α1) ∧G (∨I(ξα2) : α1 ∨ α2 →G ξα2 : α2)

The derivations of each of the conjuncts 1∨ and 2∨ are, respectively, the
following (i = 1, 2)

1
[ξαi : αi] ∨I∨I(ξαi) : α1 ∨ α2 (→G

I ), 1
ξαi : αi →G ∨I(ξαi) : α1 ∨ α2

1
[∨I(ξαi) : α1 ∨ α2]

2
[∨I(ξαi) ≈ ∨I(ξαi1 )] ≈∨2ξαi ≈ ξαi1

3
[ξαi1 : αi] ≈P

ξαi : αi
Dc
∨, 2, 3

ξαi : αi (→G
I ), 1

∨I(ξαi) : α1 ∨ α2 →G ξαi : αi

and it is then sufficient to apply a passage of (∧GI ) to complete the derivation.
The clause (→G) corresponds to the pair of theorems

1→ `GG ∀Gξα(ξα : α→G fβ(ξα) : β)→G → Iξα(fβ(ξα)) : α→ β

2→ `GG→ Iξα(fβ(ξα)) : α→ β →G ∀Gξα(ξα : α→G fβ(ξα) : β)

The derivation of 1→ is the following

1
[∀Gξα(ξα : α→G fβ(ξα) : β)]

(∀GE)ξα : α→G fβ(ξα) : β
2

[ξα : α]
(→G

E)fβ(ξα) : β → I, 2
→ Iξα(fβ(ξα)) : α→ β

(→G
I ), 1

∀Gξα(ξα : α→G ξβ : β)→G → Iξα(fβ(ξα)) : α→ β

As for the derivation of 2→, let ∆ be the following derivation
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2

[→ Iξα(fβ(ξα)) ≈ → Iξα(fβ1 (ξα))]
≈→2

fβ(ξα) ≈ fβ1 (ξα)

3

[∀Gξα(ξα : α→G fβ1 (ξα) : β)]
(∀GE)

ξα : α→G fβ1 (ξα) : β

4

[ξα : α]
(→G

E)
fβ1 (ξα) : β

≈P
fβ(ξα) : β

(→G
I ), 4

ξα : α→G fβ(ξα) : β
(∀GI )

∀Gξα(ξα : α→G fβ(ξα) : β)

then, the derivation of 2→ is the following

1
→ Iξα(fβ(ξα)) : α→ β ∆

D→, 2, 3
∀Gξα(ξα : α→G fβ(ξα) : β)

(→G
I ), 1

→ Iξα(fβ(ξα)) : α→ β →G ∀Gξα(ξα : α→G fβ(ξα) : β)

With regard to the theorems corresponding to the clause (→G), it is perhaps
appropriate at this point an observation; in GG we did not authorize the
quantification on functional variables – which would have acted as a kind of
second-order quantification. If we had done so, both the derivation of 1→
and that of 2→ could have continued binding universally fβ, so as to obtain
the pair of theorems

1∗→ `GG ∀Gfβ(∀Gξα(ξα : α→G fβ(ξα) : β)→G → Iξα(fβ(ξα)) : α→ β)

2∗→ `GG ∀Gfβ(→ Iξα(fβ(ξα)) : α→ β →G ∀Gξα(ξα : α→G fβ(ξα) : β))

The clause (∀G) will correspond to the pair of theorems

1∀ `GG ∀Gx(hα(x)(x) : α(x))→G ∀Ix(hα(x)(x)) : ∀xα(x)

2∀ `GG ∀Ix(hα(x)(x)) : ∀xα(x)→G ∀Gx(hα(x)(x) : α(x))

The derivation of 1∀ is the following

1

[∀Gx(hα(x)(x) : α(x))]
(∀GE)hα(x)(x) : α(x)
∀I

∀Ix(hα(x)(x)) : ∀xα(x)
(→G

I ), 1
∀Gx(hα(x)(x) : α(x))→G ∀Ix(hα(x)(x)) : ∀xα(x)

As for the derivation of 2∀, it is the following
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1

[∀Ix(hα(x)(x)) : ∀xα(x)]

2

[∀Ix(hα(x)(x)) ≈ ∀Ix(hα(x)
1 (x))]

≈∀2
hα(x)(x) ≈ hα(x)

1 (x)

3

[hα(x)
1 (x) : α(x)] ≈P

hα(x)(x) : α(x)
D∀, 2, 3

hα(x)(x) : α(x)
(∀GI )∀Gx(hα(x)(x) : α(x))

(→G
I ), 1

∀Ix(hα(x)(x)) : ∀xα(x)→G ∀Gx(hα(x)(x) : α(x))

What we said concerning the quantification over functional variables in the
case of →, also applies here. By authorizing it, we will have been able to
obtain the pair of theorems

1∗∀ `GG ∀Ghα(x)(∀Gx(hα(x)(x) : α(x))→G ∀Ix(hα(x)(x)) : ∀xα(x))

2∗∀ `GG ∀Ghα(x)(∀Ix(hα(x)(x)) : ∀xα(x)→G ∀Gx(hα(x)(x) : α(x)))

The clause (∃G) corresponds to the pair of theorem

1∃ `GG ∃Gx(ξα(x) : α(x))→G ∃Gx(∃I(ξα(x)) : ∃xα(x))

2∃ `GG ∃Gx(∃I(ξα(x)) : ∃xα(x))→G ∃Gx(ξα(x) : α(x))

The derivation of 1∃ is the following

1

[∃Gx(ξα(x) : α(x))]

2

[ξα(x) : α(x)]
(∃I)

∃I(ξα(x)) : ∃xα(x)
(∃GI )∃Gx(∃I(ξα(x)) : ∃xα(x))
(∃GE), 2

∃Gx(∃I(ξα(x)) : ∃xα(x))
(→G

I ), 1
∃Gx(ξα(x) : α(x))→G ∃Gx(∃I(ξα(x)) : ∃xα(x))

As for the derivation of 2∃, it is the following

1

[∃Gx(∃I(ξα(x)) : ∃xα(x))]

2

[∃I(ξα(x)) : ∃xα(x)]

3

[∃I(ξα(x)) ≈ ∃I(ξα(x)
1 )]

≈∃
2

ξα(x) ≈ ξα(x)
1

4

[ξ
α(x)
1 : α(x)]

≈P
ξα(x) : α(x)

(∃GI )
∃Gx(ξα(x) : α(x))

D∃, 3, 4
∃Gx(ξα(x) : α(x))

(∃GE), 2
∃Gx(ξα(x) : α(x))

(→GI ), 1
∃Gx(∃I(ξα(x)) : ∃xα(x))→G ∃Gx(ξα(x) : α(x))
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Finally, it remains the clause (⊥G), which will be expressed by the theorem

`GG ¬ ∃Gξ⊥(ξ⊥ : ⊥)

the derivation of which is the following

1
[∃Gξ⊥(ξ⊥ : ⊥)]

2
[ξ⊥ : ⊥]

⊥⊥G
(∃GE), 2

⊥G (→G
I ), 1

¬ ∃Gξ⊥(ξ⊥ : ⊥)

6.2.3.2 Definitions checking

A second group of theorems of GG on which we focus shows how the definitions
of the non-primitive operational symbols, established through the axioms R∧
- R∃, are in place with respect to the intended operational types. So, the
fact that ∧E,i is fixed in such a way as to behave as an operation on grounds
of operational type

α1 ∧ α2 B αi

will be expressed by the theorem

`GG ∀Gξα1∧α2(ξα1∧α2 : α1 ∧ α2 →G ∧E,i(ξα1∧α2) : αi)

for which, called ∆ the following derivation

2

[ξα1∧α2 ≈ ∧I(ξα1 , ξα2)]
≈∧3∧E,i(ξα1∧α2) ≈ ∧E,i(∧I(ξα1 , ξα2)))

R∧∧E,i(∧I(ξα1 , ξα2)) ≈ ξαi ≈T∧E,i(ξα1∧α2) ≈ ξαi
3

[ξαi : αi]

∧E,i(ξα1∧α2) : αi

we have the following derivation

1
[ξα1∧α2 : α1 ∧ α2] ∆

D∧, 2, 3
∧E,i(ξα1∧α2) : αi (→G

I ), 1
ξα1∧α2 : α1 ∧ α2 →G ∧E,i(ξα1∧α2) : αi (∀GI )∀Gξα1∧α2(ξα1∧α2 : α1 ∧ α2 →G ∧E,i(ξα1∧α2) : αi)
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The fact that ∨E is fixed so as to behave as an operation on grounds of
operational type

α1 ∨ α2, (α1 B β), (α2 B β)B β

will be expressed by the theorem - indicated with ∀Gξα1∨α2 Th∨ -

`GG ∀Gξα1∨α2(((ξα1∨α2 : α1 ∨ α2 ∧G ∀Gξα1(ξα1 : α1 →G fβ1 (ξα1) : β))∧G

∀Gξα2(ξα2 : α2 →G fβ2 (ξα2) : β))→G ∨Eξα1ξα2(ξα1∨α2 , fβ1 (ξα1), fβ2 (ξα2)) : β)

for which, called ∆0
1 the derivation

1

[(ξα1∨α2 : α1 ∨ α2 ∧G ∀Gξα1 (ξα1 : α1 →G fβ1 (ξα1 ) : β1)) ∧G ∀Gξα2 (ξα2 : α2 →G fβ2 (ξα2 ) : β2)]
(∧GE,1)

ξα1∨α2 : α1 ∨ α2 ∧G ∀Gξα1 (ξα1 : α1 →G fβ1 (ξα1 ) : β)
(∧GE,1)

ξα1∨α2 : α1 ∨ α2

and called ∆0
2 the derivation

1

[(ξα1∨α2 : α1 ∨ α2 ∧G ∀Gξα1 (ξα1 : α1 →G fβ1 (ξα1 ) : β1)) ∧G ∀Gξα2 (ξα2 : α2 →G fβ2 (ξα2 ) : β2)]
(∧GE,1)

ξα1∨α2 : α1 ∨ α2 ∧G ∀Gξα1 (ξα1 : α1 →G fβ1 (ξα1 ) : β)
(∧GE,2)

∀Gξα1 (ξα1 : α1 →G fβ1 (ξα1 ) : β)

and called ∆0
3 the derivation

1

[(ξα1∨α2 : α1 ∨ α2 ∧G ∀Gξα1 (ξα1 : α1 →G fβ1 (ξα1 ) : β)) ∧G ∀Gξα2 (ξα2 : α2 →G fβ1 (ξα1 ) : β)]
(∧GE,2)

∀Gξα2 (ξα2 : α2 →G fβ1 (ξα1 ) : β)

and called ∆1,1
1 the derivation

2

[ξα1∨α2 ≈ ∨I(ξα1 )]
≈R

fβ1 (ξα1 ) ≈ fβ1 (ξα1 )
≈R

fβ2 (ξα2 ) ≈ fβ2 (ξα2 )
≈∨3

∨Eξα1ξα2 (ξα1∨α2 , fβ1 (ξα1 ), fβ2 (ξα2 )) ≈ ∨Eξα1ξα2 (∨I(ξα1 ), fβ1 (ξα1 ), fβ2 (ξα2 ))

and called ∆1,2
1 the derivation

∆1,1
1

R∨
∨Eξα1ξα2(∨I(ξα1), ξβ1 , ξ

β
2 ) ≈ fβ1 (ξα1) ≈T

∨Eξα1ξα2(ξα1∨α2 , fβ1 (ξα1), fβ1 (ξα1)) ≈ fβ1 (ξα1)
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and called ∆2
1 the derivation

∆0
2

∀ξα1(ξα1 : α1 →G fβ1 (ξα1) : β)
(∀GE)

ξα1 : α1 →G fβ1 (ξα1) : β
3

[ξα1 : α1]
(→G

E)fβ1 (ξα1) : β

and called ∆2,1
1 the derivation

4

[ξα1∨α2 ≈ ∨I(ξα2 )]
≈R

fβ1 (ξα1 ) ≈ fβ1 (ξα1 )
≈R

fβ2 (ξα1 ) ≈ fβ1 (ξα2 )
≈∨3

∨Eξα1ξα2 (ξα1∨α2 , fβ1 (ξα1 ), fβ2 (ξα2 )) ≈ ∨Eξα1ξα2 (∨I(ξα2 ), fβ2 (ξα2 ), fβ2 (ξα2 ))

and called ∆2,2
1 the derivation

∆2,1
2

R∨
∨Eξα1ξα2(∨I(ξα2), fβ1 (ξα1), fβ2 (ξα2)) ≈ fβ1 (ξα1) ≈T

∨Eξα1ξα2(ξα1∨α2 , fβ1 (ξα1), fβ2 (ξα2)) ≈ fβ2 (ξα2)

and called ∆2
2 the derivation

∆0
3

∀ξα2(ξα2 : α2 →G fβ2 (ξα2) : β)
(∀GE)

ξα2 : α2 →G fβ2 (ξα2) : β
5

[ξα2 : α2]
(→G

E)fβ2 (ξα2) : β

the derivation of ∀Gξα1∨α2Th∨ will be - again, note that authorizing the
quantification on the functional variables, it is possible, at the end of the
following derivation, to quantify universally on fβ1 and fβ2 -

∆0
1

∆
1,2
1 ∆2

1 ≈P
∨Eξα1ξα2 (ξα1∨α2 , fβ1 (ξα1 ), fβ2 (ξα2 )) : β

∆
2,2
1 ∆2

2 ≈P
∨Eξα1ξα2 (ξα1∨α2 , fβ1 (ξα1 ), fβ1 (ξα1 )) : β

Dnc∨ , 2/5
∨Eξα1ξα2 (ξα1∨α2 , fβ1 (ξα1 ), fβ2 (ξα2 )) : β

(→GI ), 1
Th∨

(∀GI )
∀Gξα1∨α2 Th∨

The fact that → E corresponds to an operation on grounds of operational
type

α→ β, αB β
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will be expressed by the theorem

`GG ∀Gξα→β∀Gξα(ξα→β : α→ β ∧G ξα : α→G → E(ξα→β, ξα) : β)

for which, called ∆1 the following derivation

2

[ξα→β ≈ → Iξα(fβ(ξα))]
≈R

ξα ≈ ξα ≈→3→ E(ξα→β , ξα) ≈ → E(→ Iξα(fβ(ξα)), ξα)
R→→ E(→ Iξα(fβ(ξα)), ξα) ≈ fβ(ξα)

→ E(ξα→β , ξα) ≈ fβ(ξα)

and called ∆2 the following derivation

3
[∀Gξα(ξα : α→G fβ(ξα) : β)]

(∀GE)ξα : α→G fβ(ξα) : β

1
[ξα→β : α→ β ∧G ξα : α]

(∧GE,2)ξα : α
(→G

E)fβ(ξα) : β

we will have the following derivation

1
[ξα→β : α→ β ∧G ξα : α]

(∧GE,1)
ξα→β : α→ β

∆1 ∆2 ≈P
→ E(ξα→β, ξα) : β

D→, 2, 3
→ E(ξα→β, ξα) : β

(→G
I ), 1

ξα→β : α→ β ∧G ξα : α→G → E(ξα→β, ξα) : β
(∀GI )∀Gξα(ξα→β : α→ β ∧G ξα : α→G → E(ξα→β, ξα) : β)

(∀GI )∀Gξα→β∀Gξα(ξα→β : α→ β ∧G ξα : α→G → E(ξα→β, ξα) : β)

We want ∀E to be an operation on grounds of operational type

∀xα(x)B α(t)

- where, clearly, the term t will be appropriately the one occurring in the type
of the operational symbol on which we are operating - and we have indeed
the theorem

`GG ∀Gξ∀xα(x)(ξ∀xα(x) : ∀xα(x)→G ∀E(ξ∀xα(x)) : α(t))

for which, called ∆ the following derivation
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2

[ξ∀xα(x) ≈ ∀Ix(hα(x)(x))]
≈∀

3
∀E(ξ∀xα(x)) ≈ ∀E(∀Ix(hα(x)(x)))

R∀
∀E(∀Ix(hα(x)(x))) ≈ hα(t)(t)

≈T
∀E(ξ∀xα(x)) ≈ hα(t)(t)

3

[∀Gx(hα(x)(x) : α(x))]
(∀GE)

hα(t)(t) : α(t)
≈P

∀E(ξ∀xα(x)) : α(t)

we will have the following derivation

1

[ξ∀xα(x) : ∀xα(x)] ∆
D∀, 2, 3

∀E(ξ∀xα(x)) : α(t)
(→G

I ), 1
ξ∀xα(x) : ∀xα(x)→G ∀E(ξ∀xα(x)) : α(t)

(∀GI )∀Gξ∀xα(x)(ξ∀xα(x) : ∀xα(x)→G ∀E(ξ∀xα(x)) : α(t))

Finally, the last property we have to show on the non-primitive operational
symbols of Gen is that ∃E is defined so as to coincide with an operation on
grounds of operational type

∃xα(x), (α(x)B β)B β

we have the theorem - indicated with ∀Gξ∃xα(x) Th∃ -

`GG ∀Gξ∃xα(x)(ξ∃xα(x) : ∃xα(x) ∧G ∀Gx∀Gξα(x)(ξα(x) : α(x)→G fβ(ξα(x)) : β)

→G ∃E x ξα(x)(ξ∃xα(x), fβ(ξα(x))) : β)

for which, called ∆0 the derivation

1

[ξ∃xα(x) : ∃xα(x) ∧G ∀Gx∀Gξα(x)(ξα(x) : α(x)→G fβ(ξα(x)) : β)]
(∧GE,1)

ξ∃xα(x) : ∃xα(x)

and called ∆1
1 the derivation

2

[ξ∃xα(x) ≈ ∃I(ξα(x))]
≈R

fβ(ξα(x)) ≈ fβ(ξα(x))
≈∃3∃E x ξα(x)(ξ∃xα(x), fβ(ξα(x))) ≈ ∃E x ξα(x)(∃I(ξα(x)), fβ(ξα(x)))

and called ∆2
1 the derivation

∆1
1

R∃∃E x ξα(x)(∃I(ξα(x)), fβ(ξα(x)))) ≈ fβ(ξα(x))

∃E x ξα(x)(ξ∃xα(x), ξβ) ≈ fβ(ξα(x))
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and called ∆2 the derivation

1

[ξ∃xα(x) : ∃xα(x) ∧G ∀Gx∀Gξα(x)(ξα(x) : α(x)→G fβ(ξα(x)) : β)]
(∧GE,2)

∀Gx∀Gξα(x)(ξα(x) : α(x)→G fβ(ξα(x)) : β)
(∀GE)

∀Gξα(x)(ξα(x) : α(x)→G fβ(ξα(x)) : β)
(∀GE)

ξα(x) : α(x)→G fβ(ξα(x)) : β

3

[ξα(x) : α(x)]
(→G

E)
fβ(ξα(x)) : β

we will have the derivation - again, note that, by authorizing the quantifica-
tion on the functional variables, we can, at the end of the following derivation,
universally quantify on fβ -

∆0

∆2
1 ∆2 ≈P

∃E x ξα(x)(ξ∃xα(x), fβ(ξα(x))) : β
D∃, 2, 3

∃E x ξα(x)(ξ∃xα(x), fβ(ξα(x))) : β
(→G

I ), 1
Th∃ (∀GI )∀Gξ∃xα(x) Th∃

6.2.3.3 Provability of denotation

We now prove the announced analogue of the denotation theorem.

Theorem 78. Let be U : β ∈ TERMGen with FV T (U) = {ξα1 , ..., ξαn}. Then
ξα1 : α1, ..., ξ

αn : αn `GG U : β.

Proof. By induction on the complexity of U

• for individual constants and ground-variables the result is trivial

• ∧I(Z1, Z2) : β1 ∧ β2 with Z1 : α1, Z2 : α2 and FV T (∧I(Z1, Z2)) =
FV T (Z1) ∪ FV T (Z2) ⇒ by induction hypothesis, there are ∆1,∆2 ∈
DERGG that satisfy the required properties, so that

∆1

Z1 : β1

∆2

Z2 : β2 ∧I∧I(Z1, Z2) : β1 ∧ β2

satisfies the required properties

• ∧E,i(Z) : βi (i = 1, 2) with Z : β1∧β2 and FV T (∧E,i(Z)) = FV T (Z)⇒
by induction hypothesis, there is ∆ ∈ DERGG that satisfies the required
properties, so that - exploiting a theorem of the previous Section -
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∆
Z : β1 ∧ β2

∀Gξβ1∧β2(ξβ1∧β2 : β1 ∧ β2 →G ∧E,i(ξβ1∧β2) : βi) (∀GE)Z : β1 ∧ β2 →G ∧E,i(Z) : βi (→G
E)∧E,i(Z) : βi

satisfies the required properties

• ∨I(Z) : α1 ∨ α2 with Z : αi (i = 1, 2) and FV T (∨I(Z)) = FV T (Z)⇒
by induction hypothesis, there is ∆ ∈ DERGG that satisfies the required
properties, so that

∆
Z : αi ∨I∨I(Z) : α1 ∨ α2

satisfies the required properties

• ∨Eξβ1ξβ2(Z1, Z2, Z3) : β3 with Z1 : β1 ∨ β2, Z2 : β3, Z3 : β3 and

FV T (∨Eξβ1ξβ2(Z1, Z2, Z3)) =
FV T (Z1) ∪ (FV T (Z2)− {ξβ1}) ∪ (FV T (Z3)− {ξβ2})

⇒ by induction hypothesis, there are ∆1,∆2,∆3 ∈ DERGG that satisfy
the required properties, so that, called ∆ the following derivation

∆1

Z1 : β1 ∨ β2

[ξβ1 : β1]

∆2

Z2 : β3 (→G
I )

ξβ1 : β1 →G Z2 : β3 (∀GI )
∀Gξβ1 (ξβ1 : β1 →G Z2 : β3)

(∧GI )
Z : β1 ∨ β2 ∧G ∀Gξβ1 (ξβ1 : β1 →G Z2 : β3)

[ξβ2 : β2]

∆3

Z : β3 (→G
I )

ξβ2 : β2 →G Z3 : β3 (∀GI )
∀Gξβ2 (ξβ2 : β2 →G Z3 : β3)

(∧GI )
(Z : β1 ∨ β2 ∧G ∀Gξβ1 (ξβ1 : β1 →G Z2 : β3)) ∧G ∀Gξβ2 (ξβ2 : β2 →G Z3 : β3)

we will have that - exploiting a theorem of the previous Section -

∆

∀Gξβ1∨β2∀Gξβ3

1 ∀Gξ
β3

2 Th∨ (∀GE)
∀Gξβ3

1 ∀Gξ
β3

2 Th∨[Z1/ξ
β1∨β2 ]

(∀GE)
∀Gξβ3

2 (Th∨[Z1/ξ
β1∨β2 ])[Z2/ξ

β3

1 ]
(∀GE)

((Th∨[Z1/ξ
β1∨β2 ])[Z2/ξ

β
1 ])[Z3/ξ

β3

2 ]
(→G

E)∨Eξβ1ξβ2(Z1, Z2, Z3) : β3
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satisfies the required properties

• → Iξβ1(Z) : β1 → β2 with Z : β2 and FV T (→ Iξβ1(Z)) = FV T (Z) −
{ξβ1} ⇒ by induction hypothesis, there is ∆ ∈ DERGG that satisfies the
required properties, so that

[ξβ1 : β1]

∆
Z : β2 → I→ Iξβ1(Z) : β1 → β2

that satisfies the required properties

• → E(Z1, Z2) : β2 con Z1 : β1 → β2, Z2 : β1 and FV T (→ E(Z1, Z2)) =
FV T (Z1) ∪ FV T (Z2) ⇒ by induction hypothesis, there are ∆1,∆2 ∈
DERGG that satisfies the required properties, so that, called ∆ the fol-
lowing derivation

∆1

Z1 : β1 → β2

∆2

Z2 : β1 (∧GI )Z1 : β1 → β2 ∧G Z2 : β1

we will have that - exploiting a theorem of the previous Section -

∆

∀Gξβ1→β2∀Gξβ1 (ξβ1→β2 : β1 → β2 ∧G ξβ1 : β1 →G → E(ξβ1→β2 , ξβ1 ) : β2)
(∀GE)

∀Gξβ1 (Z1 : β1 → β2 ∧G ξβ1 →G → E(Z1, ξβ1 ) : β2)
(∀GE)

Z1 : β1 → β2 ∧G Z2 : β1 →G → E(Z1, Z2) : β2
(→G

E)
→ E(Z1, Z2) : β2

satisfies the required properties

• ∀Ix(Z) : ∀xβ(x) with Z : β(x) and FV T (∀Ix(Z)) = FV T (Z)⇒ by in-
duction hypothesis, there is ∆ ∈ DERGG that satisfies the required prop-
erties (recall that, for the hypotheses of the theorem, ∀Ix(Z) ∈ TERMGen,
therefore x cannot occur free in γ for ξγ ∈ FV T (Z) and hence, again
by induction hypothesis, x does not occur free in any undischarged
assumption of ∆), so that

∆
Z : β(x)

∀I∀xI(Z) : ∀xβ(x)
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satisfies the required properties

• ∀E(Z) : β(t) with Z : ∀xβ(x) and FV T (∀E(Z)) = FV T (Z) ⇒ by
induction hypothesis, there is ∆ ∈ DERGG that satisfies the required
properties, so that - exploiting a theorem of the previous Section -

∆
Z : ∀xβ(x)

∀Gξ∀xβ(x)(ξ∀xβ(x) : ∀xβ(x)→G ∀E(ξ∀xβ(x)) : β(t))
(∀GE)Z : ∀xβ(x)→G ∀E(Z) : β(t)

(→G
E)∀E(Z) : β(t)

satisfies the required properties

• ∃I(Z) : ∃xβ(x) with Z : β(t) and FV T (∃I(Z)) = FV T (Z) ⇒ by
induction hypothesis, there is ∆ ∈ DERGG that satisfies the required
properties, so that

∆
Z : β(t)

∃I∃I(Z) : ∃xβ(x)

satisfies the required properties

• ∃E x ξβ1(x)(Z1, Z2) : β2 with Z1 : ∃xβ1(x), Z2 : β2 and

FV T (∃E x ξβ1(x)(Z1, Z2)) = FV T (Z1) ∪ (FV T (Z2)− {ξβ1(x)})

⇒ by induction hypothesis, there are ∆1,∆2 ∈ DERGG that satisfy the
required properties, so that, called ∆ the following derivation

∆1

Z1 : ∃xβ1(x)

[ξβ1(x) : β1(x)]

∆2

Z2 : β2 (→G
I )

ξβ1(x) : β1(x)→G Z2 : β2 (∀GI )∀Gξβ1(x)(ξβ1(x) : β1(x)→G Z2 : β2)
(∀GI )∀Gx∀Gξβ1(x)(ξβ1(x) : β1(x)→G Z2 : β2)
(∧GI )

Z1 : ∃xβ1(x) ∧G ∀Gx∀Gξβ1(x)(ξβ1(x) : β1(x)→G Z2 : β2)
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we will have that - exploiting a theorem of the previous Section -

∆

∀Gξ∃xβ1(x)∀Gξβ2 Th∃ (∀GE)∀Gξβ2 Th∃[Z1/ξ
∃xβ1(x)]

(∀GE)
(Th∃[Z1/ξ

∃xβ1(x)])[Z2/ξ
β2 ]

(→G
E)∃E x ξβ1(x)(Z1, Z2) : β2

satisfies the required properties

The theorem is hence proven.

6.2.3.4 Rewriting operational symbols

By way of example, we show a case of rewritability of an operational symbol
of an expansion of Gen+ obtained by adding an operational symbol

F 〈α ∨ β,¬αB β〉

as in definition 59 of example 2 in Section 5.2.5. We expand contextually GG
by adding to it the following rules for the substitution of identicals on F and
for the defining equation that sets the behavior of F :

T1 ≈ T2 U1 ≈ U2 ≈F
F (T1, U1) ≈ F (T2, U2)

RF
F (∨I〈β B α ∨ β〉(T ), U) ≈ T

In the expansion of GG thus obtained, it becomes possible to prove the fol-
lowing theorem – which we indicate with ∀Gξα∨β ∀Gξ¬α ThF -

∀Gξα∨β ∀Gξ¬α (ξα∨β : α ∨ β ∧G ξ¬α : ¬α→G F (ξα∨β, ξ¬α) ≈
∨Eξαξβ(ξα∨β,⊥β(→ E(ξα, ξ¬α)), ξβ)).

In the derivation, we take for granted some of the previous theorems on the
valid definition of non-primitive operational symbols. Let first ∆0

1 be the
following derivation

2
[ξα∨β : α ∨ β ∧G ξ¬α : α]

(∧GE,2)ξ¬α : ¬α
3

[ξα : α]
(∧GI )ξ¬α : ¬α ∧G ξα : α

and let ∆1 be the following derivation
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∆0
1

∀Gξ¬α∀Gξα(ξ¬α : ¬α ∧G ξα : α→G → E(ξ¬α, ξα) : ⊥)
(∀GE)∀Gξα(ξ¬α : ¬α ∧G ξα : α→G → E(ξ¬α, ξα) : ⊥)

(∀GE)ξ¬α : ¬α ∧G ξα : α→G → E(ξ¬α, ξα) : ⊥
(→G

E)→ E(ξ¬α, ξα) : ⊥
⊥⊥G (⊥G)

F (ξα∨β, ξ¬α) ≈ ∨Eξαξβ(ξα∨β,⊥β(→ E(ξα, ξ¬α)), ξβ)

and let ∆0
2 be the following derivation

4
[ξα∨β ≈ ∨I(ξβ)]

≈R
ξ¬α ≈ ξ¬α

≈F
F (ξα∨β, ξ¬α) ≈ F (∨I(ξβ), ξ¬α)

RF
F (∨I(ξβ), ξ¬α) ≈ ξβ ≈T

F (ξα∨β, ξ¬α) ≈ ξβ

and let ∆1,1
2 be the following derivation

5

[ξα∨β ≈ ∨I(ξβ)]
≈R⊥β(→ E(ξ¬α, ξα)) ≈ ⊥β(→ E(ξ¬α, ξα))

≈R
ξβ ≈ ξβ

≈∨3∨Eξαξβ(ξα∨β ,⊥β(→ E(ξ¬α, ξα)), ξβ) ≈ ∨Eξαξβ(∨I(ξβ),⊥β(→ E(ξ¬α, ξα)), ξβ)

and let ∆1
2 be the following derivation

∆1,1
2

∨R∨Eξαξβ(∨I(ξβ),⊥β(→ E(ξ¬α, ξα)), ξβ) ≈ ξβ ≈T
∨Eξαξβ(ξα∨β,⊥β(→ E(ξ¬α, ξα)), ξβ) ≈ ξβ ≈S
ξβ ≈ ∨Eξαξβ(ξα∨β,⊥β(→ E(ξ¬α, ξα)), ξβ)

and let ∆2 be the following derivation

∆0
2 ∆1

2 ≈T
F (ξα∨β, ξ¬α) ≈ ∨Eξαξβ(ξα∨β,⊥β(→ E(ξ¬α, ξα)), ξβ)

then the derivation of the theorem is the following

1
[ξα∨β : α ∨ β ∧G ξ¬α : ¬α]

(∧GE,1)
ξα∨β : α ∨ β ∆1 ∆2 D∨, 3, 4, 5

F (ξα∨β, ξ¬α) ≈ ∨Eξαξβ(ξα∨β,⊥β(→ E(ξ¬α, ξα)), ξβ)
(→G

I ), 1, 2
ThF (∀GI)

∀Gξ¬α ThF (∀GI )∀Gξα∨β ∀Gξ¬α ThF
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6.2.3.5 A problem

In this Section we emphasize a difficulty inherent in the system of grounding
for the enriched Gentzen-language. As we have already anticipated, the
inverse of theorem 78 does not apply. In other words, there are terms U :
β ∈ TERMGen such that ξα1 : α1, ..., ξ

αn : αn `GG U : β, but {ξα1 , ..., ξαn} ⊂
FV T (U); more specifically, this means that there are terms with occurrences
of free ground-variables (which therefore should correspond not to grounds,
but to operations on grounds) that the system proves, depending on an empty
set of assumptions, to denote grounds for a formula. A very simple example
is the following; given (the name for) an atomic derivation δ for an atomic
formula α, we will have

R∧∧E,1(∧I(δ, ξβ)) ≈ δ
C

δ : α ≈P
∧E,1(∧I(δ, ξβ)) : α

so that `GG ∧E,1(∧I(δ, ξβ)) : α for FV T (∧E,1(∧I(δ, ξβ))) = {ξβ} 6= ∅. In
general, we can say that the phenomenon depends on a difference between
the definition of the denotation and the axioms for the elimination of non-
primitive symbols of which GG is endowed. In the first case, we have defined
the denotation of open terms by referring to closed instances of the latter,
so that they corresponded to operations defined on grounds ; in the second,
instead, we have introduced identity rules that authorize "syntactic transfor-
mations" defined, without restrictions, on both open terms and closed terms -
and which, in this sense, correspond to the normalization operations through
which Prawitz (Prawitz 2006) proves his correspondent theorems.

6.3 A class of systems
What has been said so far is a good exemplification to get an idea of the
elements of the class of systems that can be associated with the various
languages of grounding of the previous Chapter - appropriately enriched.
And this is not for the structure alone that GG presents, but also and above
all for some of the properties it enjoys, which are, or are expected to be, valid
in any system of grounding that can be considered appropriate.

6.3.1 Invariant and characteristic rules

GG contains two main groups of rules: the first is assigned the task to deter-
mine the behaviour of atomic formulas, while the second concerns the logic
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of the system. The rules for the atomic case are in turn of two types: some
concern constructs involving the binary predicate ... : −−− – namely, given
the notational simplification we have adopted, Gr(...,−−−) – whereas others
concern constructs involving the binary predicate ... ≈ −−−. The discourse
does not stop there, since, as it is easy to notice, there are further subdis-
tinctions. As for ... : −− −, we have two classes: introduction of type, and
elimination of type based on Dummett’s fundamental assumption (Dummett
1991). As for ... ≈ − − −, we have four classes instead: determination of
an equivalence relation that preserves the denotation, substitution of identi-
cals on primitive operational symbols (in the two directions), equations that
define non-primitive operational symbols, and substitution of identicals on
non-primitive operational symbols (in only one direction). To recap:

• Atomic formulas

– Rules for ... : −−− (namely Gr(...,−−−))
∗ Type introduction
∗ Type elimination

– Rules for ... ≈ −−−
∗ Equivalence relation that preserves denotation
∗ Substitution for primitive operational symbols
∗ Definition of non-primitive operational symbols
∗ Substitution for non-primitive operational symbols

• Logic

Well, if from GG we now want to generalize to systems of grounding ΛG on
arbitrary - and appropriately enriched - languages of grounding Λ, some of
the rules for GG will also be rules of ΛG – and we will use for them the
expression "invariant rules" – while other rules will be specific to ΛG – and
for them we will use the expression "characteristic rules". The different
systems of grounding will differ with respect to the characteristic rules, and
the intersection of all these systems (on the same base) will be consisting
of the invariant rules; in the same way, a system ΛG2 can be considered
as an expansion of a system ΛG1 if the set of rules characteristic of ΛG1 is
contained in the set of the rules characteristic of ΛG2 (on the same base).
More specifically, taking up the previous scheme, below we indicate bold the
rules to be considered characteristic of a system of grounding, being all the
others to be considered invariants.

• Atomic formulas
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– Rules for ... : −−− (namely Gr(...,−−−))

∗ Type introduction
∗ Type elimination

– Rules for ... ≈ −−−
∗ Equivalence relation that preserves denotation
∗ Substitution for primitive operational symbols
∗ Definition of non-primitive operational symbols
∗ Substitution for non-primitive operational symbols

• Logic

We immediately notice that the distinction between invariant and character-
istic rules faithfully follows the distinction between core language of ground-
ing and language of grounding in general: beyond the logic and the deter-
mination of an identity relation between terms, the invariant rules concern
the primitive operational symbols (core languages of grounding), whereas the
characteristics rules vary depending on the non-primitive operational symbols
of the language of grounding of reference (arbitrary languages of grounding).

6.3.2 General form of characteristic rules

Given a generic - and appropriately enriched - language of grounding Λ, it
is at this point rather easy to suggest the general form of a substitution rule
on non-primitive operational symbols in an appropriate system of grounding
on Λ; if F is a non-primitive operational symbol of Λ with operational type

α1, ..., αn B β

that binds a sequence of ground-variables ξ and a sequence of individual
variables x, we will have that, for every Ti, Ui : αi (i ≤ n),

T1 ≈ U1 . . . Tn ≈ Un ≈F
F ξ x (T1, ..., Tn) ≈ F ξ x (U1, ..., Un)

However, it is less obvious what the general form of a scheme of equations
should be for the definition of F . The idea is, of course, that the schema
fixes F so that the latter can be considered as a total constructive function,
of which the operational type has, in correspondence of the operational type
and the binding of individual variables and ground-variables intended, the
lines indicated by the definition of the notion of denotation in the previous
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chapter. In this sense, the schemes of equations for the definition of F must
plausibly undergo some restrictions, by virtue of which the just mentioned
desideratum can be considered satisfied; among these restrictions, we can
obviously request an analogue of those placed on the reduction procedures for
the argument structures, which Prawitz introduces in Towards a foundation
of a general proof theory (Prawitz 1973), and that we have expounded in
Section 2.5.2.1. Thus, called RF the scheme of equations that defines F , we
must have that: (1) each instance of RF is of the form

RF
F ξ x (U1, ..., Un) ≈ Z

for some U1, ..., Un ∈ TERMΛ; (2) for every instance of RF of the type indicated
above, FV T (F ξ x (U1, ..., Un)) ⊆ FV T (Z) - observe how, unlike what was
done for the reduction procedures on the argumentative structures discussed
in Section 2.5.2.1, there is no need here to request that F ξ x (U1, ..., Un) and
Z have the same type, since otherwise the conclusion of RF would not be a
formula of Λ; (3) for every instance of RF of the type indicated above, for
every substitution (∗/◦) of ground-variables with terms, there is an instance
of RF of the form

RF
(F ξ x (U1, ..., Un))(∗/◦) ≈ V

and, called ΛG the system where RF occurs, it holds that

`ΛG V ≈ Z(∗/◦)

- that is, if we consider an application of RF as an application of the function
to which F is inteded to correspond, we require linearity on substitution;
with a slight but intuitive abuse of notation, RF (F ξ x (U1, ..., Un))(∗/◦) =
Z(∗/◦) ≈ V = RF (F ξ x (U1, ..., Un)(∗/◦)).

As we can easily see, the derivations for the analogue of the clauses (∧G) -
(⊥G) exposed with respect to GG do not employ any of the characteristic rules
of GG; it follows that, in any arbitrary system of grounding ΛG for an arbitrary
– and appropriately enriched – language of grounding Λ, these derivations are
still available. This does not apply, of course, to the derivations that show
the adequacy of the definitions for the non-primitive operational symbols of
GG; in this case, it is essential the use of schemes equations characteristic
of GG, so that an arbitrary system of grounding ΛG on an arbitrary – and
opportunely enriched – language of grounding Λ will be able to prove such
results only if Λ is an expansion of Gen+, and consequently ΛG an expansion
of GG. However, it seems plausible to assume that any system of grounding,
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with schemes of equations appropriate to the definition of the non-primitive
operational symbols of the language of grounding of reference, is able to prove
the adequacy of these schemes; as a particular example, given a language of
grounding – appropriately enriched – Λ with an operational symbol F which
is associated with an operational type

α1, α2, α3 B β

and that binds an individual variable x on index 2, an individual variable y
on index 3, and an assumption δ on index 3, and given a scheme of equations
RF for the definition of F , it is expected that a system of grounding ΛG for
Λ proves

F x y ξδ (ξα1 , ξα2 , fα3(ξδ)) : β

from the assumption

ξα1 : α1 ∧G ∀x(ξα2 : α2) ∧G ∀y ∀ξδ(ξδ : δ →G fα3(ξδ) : α3)

in such a way that it is then possible to universally quantify over ξα1 , ξα2 ,
and possibly fα3 - exactly as done for the non-primitive operational symbols
of Gen+. Finally, it seems plausible to assume that for a system of grounding
that respects the properties just indicated it is also possible to prove an
analogue of theorem 78.

6.3.3 Reductions and permutations

So as for GG, each system of grounding ΛG contains the rules of first-order
intuitionistic logic; therefore, the derivations of this system could present
detours, with corresponding maximal formulas defined as in Section 2.5.1.
In order to eliminate redundancies of this type, we can use the reductions
∧-rid, ∨-rid, →-rid, ∀-rid and ∃-rid that Prawitz (Prawitz 2006) utilizes for
the proof of its normalization theorems, and that we have already presented
again in Section 2.5.1 – which is why we will assume them here as acquired.

6.3.3.1 Reductions of maximal points

At variance with a simple intuitionistic first-order logic on a standard first-
order logical language, however, ΛG could also contain also detours of another
type, in which the maximal points are conclusions of type introduction rules,
and major premises of type elimination rules. Modifying the terminology
so far adopted for reasons that will appear clear below, we will use in this

403



case the term cut-type, reserving the expression cut-formula to the standard
redundancies on the rules of intuitionistic first-order logic.

So as with the cut-formulas, also with the cut-types it is possible to
associate some reductions. We show them below, starting with the easiest
cases of ∧, ∨ and ∃. As for ∧,

∆1

T : α

∆2

U : β
∧I∧I(T, U) : α ∧ β

[∧I(T, U) ≈ ∧I(ξα, ξβ)] [ξα : α] [ξβ : β]

∆3(ξα, ξβ)

A
D∧A

it converts through T∧-rid in

≈R∧I(T, U) ≈ ∧I(T, U)
∆1

T : α

∆2

U : β

∆3(T/ξα, U/ξβ)

A

As for ∨,

∆1

T : αi ∨I∨I[αi B α1 ∨ α2](T ) : α1 ∨ α2

[∨I(T ) ≈ ∨I(ξαi)] [ξαi : αi]

∆2(ξαi)

A
Dc
∨A

it converts through T∨-rid in

≈R∨I(T ) ≈ ∨I(T )
∆1

T : αi

∆2(T/ξαi)

A

As for ∃,

∆1

T : α(t/x)
∃I∃I[α(t/x) B ∃xα(x)](T ) : ∃xα(x)

[∃I(T ) ≈ ∃I(ξα(x))] [ξα(x) : α(x)]

∆2(x, ξα(x))

A
D∃A
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it converts through T∃-rid in

≈R∃I(T ) ≈ ∃I(T )

∆1

T : α(t/x)

∆2(t/x, T/ξα(x))

A

We hence conclude with the more comples cases of → and ∀, requiring an
"additional" derivation after conversion - that is, not a mere composition of
previously given derivations. As for →,

[ξα : α]

∆1(ξα)

T (ξα) : β
→ I

→ Iξα(T (ξα)) : α → β

[→ Iξα(T (ξα)) ≈ → Iξα(fβ(ξα))] [∀Gξα(ξα : α→G fβ(ξα) : β)]

∆2(fβ)

A
D→

A

it converts through T→-rid in

≈R→ Iξα(T (ξα)) ≈ → Iξα(T (ξα))

[ξα : α]

∆1(ξα)

T (ξα) : β
(→G

I )ξα : α→G T (ξα) : β
(∀GI )∀Gξα(ξα : α→G T (ξα) : β)

∆2(T/fβ)

A

As for ∀,

∆1(x)

T (x) : α(x)
∀I∀Ix(T (x)) : ∀xα(x)

[∀Ix(T (x)) ≈ ∀Ix(hα(x)(x))] [∀Gx(hα(x)(x) : α(x))]

∆2(hα(x))

A
D∀A

it converts through T∀-rid in

≈R∀Ix(T (x)) ≈ ∀Ix(T (x))

∆1(x)

T (x) : α(x)
(∀GE)∀Gx(T (x) : α(x))

∆2(T/hα(x))

A
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6.3.3.2 Cut-segments and permutations

When proving his normalization theorems, Prawitz not only uses the reduc-
tions we have shown in Section 2.5.1, but also the so-called permutations.
Although we have not needed any of these operations so far, which is why
we have been able to avoid mentioning them, they are required also in the
systems of grounding we have been developing, so that we have to deal with
them here in more detail.

The necessity for permutations depends, in first-order intuitionistic logic,
on the presence of the rules (∨E) and (∃E). It could indeed happen that,
during a derivation, there is a concatenation of applications of such rules in
which one or both the minor premises of the first application are obtained
by introduction, and the conclusion of the latter is a major premise of an
elimination - given that, obviously, other minor premises of the intermediate
applications could be obtained by introduction. This also applies to our
systems of grounding, and also with reference to type elimination rules. In
other words, from a very general point of view, we may find ourselves in the
following situation:

∆n

An

∆2

A2

∆1

A1

∆a

... intro
S

∆b

...
?1

S

∆c

...
?2

S
...
S

∆d

...
?n

S

∆e

...

∆f

... elim
B

where: ∆b, ∆c and ∆d could in turn end with an introduction; ∆b, ∆c, ∆d,
∆e and ∆f could be "empty", that is, the rules to which they correspond
could have a number of premises lower than that indicated in our general
representation; ?i (i ≤ n) is (∨GE), or (∃GE), or a type elimination rule. It would
make sense, in the presence of such cases, to consider S a maximal point of
the derivation, even if its occurrence as a conclusion of an introduction could
be very far from its occurrence as a major premise of elimination. In order
"to shorten" this distance, and apply the required reduction, we can use a
series of permutations, which consist in "taking up" the last elimination rule
within the derivations of the minor premises of the various ?i (i ≤ n). The
procedure is to be applied, in our general representation, n times, and within
it the first step would then be
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∆n

An

∆2

A2

∆1

A1

∆a

... intro
S

∆b

...
?1

S

∆c

...
?2

S
...
S

∆e

...

∆f

... elim
B

∆d∗

...
?n

B

where ∆d∗ is obtained applying

S

∆e

...

∆f

... elim
B

to the conclusion of ∆d. After n− 1 passages of this kind, we get to

∆n

An

∆2

A2

∆1

A1

∆a

... intro
S

∆b

...
?1

S

∆e

...

∆f

... elim
B

∆c∗

...
?2

B
...
B

∆d∗

...
?n

B

where ∆c∗ is obtained from ∆c as indicated for ∆d∗ . The last passage finally
returns

∆n

An

∆2

A2

∆1

A1

∆a

... intro
S

∆e

...

∆f

... elim
B

∆b∗

...
?1

B

∆c∗

...
?2

B
...
B

∆d∗

...
?n

B
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where for ∆b∗ applies the reasoning made for ∆d∗ and ∆c∗ . In the derivation
obtained, as we can see, the occurrence of S as conclusion of an introduction
is the same as that in which S occurs as major premise of elimination. We
now provide concrete examples of permutations. Suppose first of all we are
in the following situation:

∆1

T : α ∧ β

[T ≈ ∧I(ξα, ξβ)] [ξα : α] [ξβ : β]

∆2

A
D∧A ∆3 ∆4

B
∆5

then the permutation returns

∆1

T : α ∧ β

[T ≈ ∧I(ξα, ξβ)] [ξα : α] [ξβ : β]

∆2

A ∆3 ∆4

B
D∧B

∆5

Suppose instead we are in the situation

∆1

T : α1 ∨ α2

[T ≈ ∨I(ξα1 )] [ξα1 : α1]

∆2

A

[T ≈ ∨I(ξα2 )] [ξα2 : α2]

∆3

A
Dnc∨A ∆4 ∆5

B

∆6

then the permutation returns

∆1

T : α1 ∨ α2 ∆7 ∆8 Dnc
∨B

∆6

where ∆j (j = 7, 8) is

[T ≈ ∨I(ξαi)] [ξαi : αi]

∆i+1

A ∆4 ∆5

B
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for i = 1, 2. Finally, suppose we are in the situation

∆1

A ∨G B

[A]

∆2

C

[B]

∆3

C (∨GE)C ∆4 ∆5

D
∆6

then the permutation returns

∆1

A ∨G B

[A]

∆2

C ∆4 ∆5

D

[B]

∆3

C ∆4 ∆5

D (∨GE)D
∆6

In conclusion, let us say that the reductions and permutations so far
described work on condition that a series of conventions is adopted on in-
dividual variables and proper ground-variables, which we will discuss in the
next section. Finally, we give a precise definition of what has been proven so
far as a general principle.

Definition 79. Let ΛG be a system of grounding for a language of grounding
Λ, and let be ∆ ∈ DERΛG. We will call cut-segment in ∆ a sequence σ of n
occurrences of a formula S in ∆ such that:

• the first occurrene of S is the conclusion of an application of a (type)
introduction rule;

• for every i < n, the (i + 1)-th occurrence of S is the conclusion of an
application of (∨GE), or of (∃GE), or of a type elimination rule, where the
i-th occurrence of S appears as minor premise;

• the n-th occurrence of S is tha major premise of a (type) elimination
rule.

Given a cut-segment σ = A1, ..., An, we will say that σ has length n. More-
over, we will find it convenient to use the following expressions: A is the
formula of σ; Ai is an occurrence of σ (i ≤ n) - clearly, if σ is a cut-segment
in a derivation ∆, the occurrences of the formula of σ are occurrences of the
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formula of σ in ∆. Finally, given two cut-segments σ1, σ2, we will say that
σ1 is disjoint from σ2 if, and only if, none of the occurrences of σ1 is also an
occurrence of σ2 - that is, when the intersection of the occurrences is empty.

Note that the notion of cut-type is a special case of definition 79, for
i = 1 and σ conclusion of a type introduction rule and major premise of
a type elimination rule; similarly, the notion of cut-formula is obtained for
i = 1 and σ conclusion of an introduction rule and major premise of an
elimination rule.

6.3.3.3 Conventions on (⊥G) and proper variables

As announced, we introduce two useful conventions on the systems of ground-
ing we are dealing with. They will also allow us an easier proof of normal-
ization, the result we will turn to in the next section.

The first convention concerns the applications of the rule (⊥G), with
which we could have "redundant" passages on the elimination rules. For
example

∆
⊥G (⊥G)

A1 ∧G A2 (∧GE,i), i = 1, 2
Ai

Here, it is clear that we could avoid applying (∧GE,i), namely that this passage,
in each derivation it occurs in, can be without problems transformed into

∆
⊥G (⊥G)
Ai

An analogous argument applies to all other "logical" elimination rules, so
that, as already done for (⊥) in the natural deduction systems in Section
2.5.1, and for the operator ⊥α in the typed λ-calculus referred to in Section
4.3.1, we adopt the following convention.

Convention 80. Given a formal system of grounding ΛG on a language of
grounding Λ, for every ∆ ∈ DERΛG, for every application of (⊥G) in ∆, the
conclusion of (⊥G) is an atomic formula of Λ.

The second convention also has an analogue in conventions already adopted
for the natural deduction in Section 2.5.1, and for the type λ-calculus in Sec-
tion 4.3.1. It is aimed at preventing conflicts between proper variables as a
result of the application of the reductions.
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Convention 81. Given a formal system of grounding ΛG on a language
of grounding Λ, for every ∆ ∈ DERΛG (1) free and bound individual and
ground-variables are all distinct from one another - property (FB) - and (2)
proper and non-proper individual and ground-variables are all distinct from
one another, and each proper individual or ground-variable is used at most
in one application of a type elimination rule, or of (∀GE) or of (∃GE) - property
(PN).

As for the natural deduction and for the typed λ-calculus, convention 81 is
based on the possibility of "renaming", without loss of generality, free and
bound, proper and non-proper, individual and ground-variables, in deriva-
tions that violate the convention itself.

6.3.4 Normalization

Starting from the reductions and permutations discussed in the previous
section, it becomes possible to request a normalization result for arbitrary
systems of grounding ΛG on arbitrary – and appropriately enriched – lan-
guages of grounding Λ having an arbitrary first-order logical language L as
background language. In order to understand what we mean here by nor-
malization, and on the basis of what tools the goal can be achieved, we need
some preliminary definitions.

6.3.4.1 Measure and degree

As in Prawitz’s normalization theorems for Gentzen’s natural deduction sys-
tems, normalization in systems of grounding is based on the idea of eliminat-
ing all the cut-segments possibly occurring in the derivations. And, as in the
case of Prawitz’s proof, here too the proof of the result will be carried out by
proving that a derivation containing cut-segments can be transformed into
another that contains cut-segments of lower complexity, so that, repeating
this procedure in a finite number of steps, the complexity of cut-segments
tends to 0, namely, all the cut-segments at last disappear. The fundamental
core is therefore constituted by the notion of complexity of a cut-segment,
a precise determination of which requires a method of numerical "measure-
ment" of the formula that occurs in the cut-segment.

However, unlike cuts in natural deduction, which are only of logical type,
in systems of grounding we also have cuts related to rules of type introduction
and type elimination. This means that our cuts will have to be equipped
with a "double measure". The first of such "measures", referring to possible
cut-types, will be nothing more than the measure of the most complex of the
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formulas of the background language that appears as a type in the formula of
the language of grounding; the second, instead, will be a standard "measure"
of the complexity of the formula of the language of grounding.

In the definitions that follow, we adopt the following notational con-
ventions. With L we denote the background language of the language of
grounding Λ; consequently, with FORML and ATOML we indicate respectively
the set of the formulas and the set of the atomic formulas of L, while with
FORMΛ and ATOMΛ we indicate respectively the set of the formulas and the set
of the atomic formulas of Λ. Let us assume as defined in a standard way the
order relations ≤ and < on N2 – that is the "less than/equal to" and "less
than" relations on natural numbers. We will also use the standard function

max : N2 → N

such that

max(n,m) =

{
n if m < n

m if n ≤ m

Finally, called ℘(N) the power set of N, we put

F = {S | S ∈ ℘(N) and S finite}

and we define the function

MAX : F→ N

such that

MAX(S) =

{
0 if S = ∅
n ∈ S such that, for every m ∈ S,m ≤ n

Definition 82. The measure of α ∈ FORML is a function k1 : FORML → N
inductively defined as follows:

• α ∈ ATOML ⇒ k1(α) = 0

• α = β ? γ ⇒ k1(α) = max(k1(β), k1(γ)) + 1 (? = ∧,∨,→)

• α = ? x β ⇒ k1(α) = k1(β) + 1 (? = ∀,∃)

Given A ∈ FORMΛ, we put
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TA = {k1(α) | U : α subformula A}

Definition 83. The type-measure of A ∈ FORMΛ is a function τ : FORMΛ → N
such that

τ(A) = MAX(TA).

Definition 84. The logical measure of A ∈ FORMΛ is a function k2 : FORMΛ →
N inductively defined as follows:

• A ∈ ATOMΛ ⇒ k2(A) = 0

• A = B ? C → k2(A) = max(k2(B), k2(C)) + 1 (? = ∧G,∨G,→G)

• A = ? ε B ⇒ k2(A) = k2(B) + 1 (? = ∀G,∃G, ε = x, ξα)

Definition 85. The measure of A ∈ FORMΛ is a function µ : FORMΛ → N2

such that

µ(A) = (τ(A), k2(A)).

Once the measure has been set, on the formulas of Λ it is possible to define
a strict order relation. Since the measure is double, the order will be of an
"alphabetic" kind, that is, for every A,B ∈ FORMΛ,

µ(A) < µ(B)⇔

{
τ(A) < τ(B) or
k2(A) < k2(B) for τ(A) = τ(B)

It might not be clear why, for the measurement of A ∈ FORMΛ, we use
also τ(A), and not only, as usually happens, k2(A). The reason for this
procedure is twofold. First of all, the presence of τ(A) serves to measure
cut-types. Suppose we are in the following situation:

[ξα : α]

∆1

T (ξα) : β
→ I

→ Iξα(T (ξα)) : α→ β

[→ Iξα(T (ξα)) ≈ → Iξα(fβ(ξα))] [∀Gξα(ξα : α→G fβ(ξα) : β)]

∆2

A
D→

A

∆3

Here, we have the cut-type

→ Iξα(T (ξα)) : α→ β.
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In order to prove normalization, we must be able to attribute it a measure,
so as to show that a derivation containing cuts can be transformed into
another one that contains less complex cuts, or, simply, fewer cuts of the
same complexity. Well, since

(τ(→ Iξα(T (ξα)) : α→ β), k2(→ Iξα(T (ξα)) : α→ β) = (k1(α→ β), 0)

we will have that

µ(→ Iξα(T (ξα)) : α→ β) = (k1(α→ β), 0).

However, there is also a second reason. When we apply the reductions, we
could have as result derivations containing cut-types or cut-formulas which
were not in the starting derivation. Now, since as we have said we want to
be able to prove that a derivation containing cuts can be transformed into
another one with less complex cuts, or with fewer cuts of the same complexity,
we must ensure, in the case of cut-types, that even if new cut-formulas arise
following the reduction of the latter, such cut-formulas have a lower measure
than the eliminated cut-types – that the measure is lower in the case of
the production of new cut-types depends on the fact that the new cut-types
will have as type formulas which were subformulas of the starting cut-types.
Suppose we are in the following situation:

[ξα : α]

∆1

T (ξα) : β
→ I

→ Iξα(T (ξα)) : α→ β

[→ Iξα(T (ξα)) ≈ → Iξα(fβ(ξα))]

[∀Gξα(ξα : α→G fβ(ξα) : β)]
(∀GE)

U : α→G fβ(U) : β

∆2(fβ)

A
D→

A

∆3

By applying T→-rid, we obtain

→ Iξα(T (ξα)) ≈ → Iξα(T (ξα))

[ξα : α]

∆1

T (ξα) : β
(→G

I )ξα : α→G T (ξα) : β
(∀GI )∀Gξα(ξα : α→G T (ξα) : β)
(∀GE)U : α→G T (U) : β

∆2(T/fβ)

A
∆3

where we have a new cut-formula, i.e.
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∀Gξα(ξα : α→G T (ξα) : β).

Let us compare the measure of the eliminated cut-type with the measure of
the new cut-formula. As we have seen,

µ(→ Iξα(T (ξα)) : α→ β) = (k1(α→ β), 0).

On the other hand,

µ(∀Gξα(ξα : α→G T (ξα) : β)) = (max(k1(α), k1(β)), 2).

Now, since from definition 82

k1(α→ β) = max(k1(α), k1(β)) + 1,

we will have that

max(k1(α), k1(β)) < k1(α→ β)

and hence, by the alphabetic order defined above,

µ(∀Gξα(ξα : α→G T (ξα) : β)) < µ(→ Iξα(T (ξα)) : α→ β).

As happens in Prawitz’s standard normalization theory, also the reductions
associated with logical rules could produce new cut-types or new cut-formulas.
In these cases, however, the following applies. Let A be a cut-formula, and
let B be a new cut-type or cut-formula produced by the reduction on A; since
B is a subformula of A, we will have that

τ(B) ≤ τ(A)

and

k2(B) < k2(A).

Therefore,

µ(B) < µ(A).

Definition 86. Given ∆, let σ be a cut-segment in ∆ the formula of which
is A. The measure of σ - indicated with µ(σ) - is µ(A).

To every ∆ ∈ DERΛG we associate the set
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M∆ = {µ(σ) | σ cut-segment of ∆}.

Definition 87. The degree of ∆ is a function δ : DERΛG → N2 such that

δ(∆) = (MAX(M∆), n)

where n is the sum of the lengths of the cut-segments σ of ∆ such that
µ(σ) = MAX(M∆).

Also on the derivations of ΛG it is possible to define a strict order relation.
It is again of an "alphabetic" kind, that is, for every ∆1,∆2 ∈ DERΛG such
that δ(∆i) = (MAX(M∆i

), ni) (i = 1, 2),

δ(∆1) < δ(∆2)⇔

{
MAX(M∆1) < MAX(M∆2) or
n1 < n2 for MAX(M∆1) = MAX(M∆2)

Note that MAX(M∆i
) is again a pair, for which the alphabetical order defined

above applies. So MAX(M∆1) < MAX(M∆2) if, and only if, in the most complex
cut-segments of ∆1, the most complex formulas α that appear in formulas
T : α have a lower complexity than the most complex formulas β that, in the
most complex cut-segments of ∆2, appear in formulas U : β, or, in the case
of equal complexities of formulas α and β just taken into account, if the most
complex cut-segments of ∆1 consist of formulas A having a lower complexity
than the formulas B which constitute the most complex cut-segments of ∆2.
In this regard, it should be emphasized that both the order on the formulas of
Λ, and that on the derivations of ΛG, are in a sense arbitrary, and the choice
is justified in light of the demonstrative strategy which, with reference to the
reductions set out in Section 6.3.3.1, we will adopt to prove normalization.
As we have seen, the idea is that since cut-types are atomic formulas of Λ,
what counts for their complexity is not the logical complexity, but that of
the formula that types the term; so that, when and if new cuts arise after the
elimination of a cut-type, we must ensure that it decreases the complexity
of the formulas that type the terms in the new cuts, and not the logical
complexity of the cuts as such – it is obvious the impossibility that logical
complexity decreases, since a cut-type is an atomic formula. We conclude
with the following definition.

Definition 88. ∆ is said in normal form if, and only if,

δ(∆) = ((0, 0), 0).

Otherwise ∆ is said in non-normal form.
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6.3.4.2 Normalization theorem

Thanks to the reductions and permutations described in sections 6.3.3.1 and
6.3.3.2, we can introduce a reducibility relation between derivations.

Definition 89. ∆a immediately reduces to ∆b – indicated with ∆a � ∆b –
if, and only if, ∆a = ∆b, or ∆b can be obtained from ∆a by applying one
of the reductions for cut-types, or one of the reductions for cut-formulas, or
a permutation. Moreover, ∆a reduces to ∆b – indicated with ∆a � ∆b – if,
and only if, there exists a sequence ∆1, ...,∆n with ∆1 = ∆a, ∆n = ∆b, and
∆i � ∆i+1 for every i ≤ n.

It is, as we can easily see, an order relation on derivations, that is, a reflexive,
asymmetrical and transitive relation. We can transform it into an equiva-
lence relation, either by requiring that two derivations are in relation if one
can be reduced to the other or vice versa (see for example Hindley, Lercher
& Seldin 1975, with reference to a typed or untyped λ-calculus), or equiva-
lently by placing side by side the reduction and permutation operations with
appropriate expansion operations (see for example Francez 2015).

The proof of the normalization theorem is accomplished in three steps.
In the first, given a non-normal derivation ∆, we prove that it contains a
subderivation ∆∗ the conclusion of which is the last occurrence of a cut-
segment of maximal measure in ∆, and such that all the cut-segments of
∆∗ (if any) have a smaller size than the first element of the degree of ∆.
In the second step, we prove that such a ∆∗ exists, which enjoys also the
property either of not being "side-connected" to any subderivation of ∆, the
conclusion of which is an occurrence of a cut-segment of maximum size in
∆, or of not containing cut-segments of maximal measure in ∆. These first
two steps allow the identification of a good "starting point" for the normal-
ization procedure. It will indeed be convenient to choose a subderivation of
a non-normal derivation ∆ that has the characteristics described in the first
two steps, in such a way that, by applying reductions or permutations, the
degree of ∆ can be progressively taken to the minimum size. The strategy is
basically the same as that used by Prawitz (Prawitz 2006) for his own nor-
malization theorems. The only difference between our systems of grounding
and a Gentzen’s natural deduction system for first-order intuitionistic logic
consists after all in the fact that, here, we have also type introduction and
type elimination rules, and corresponding cut-types. Therefore, we have to
make sure simply that if new cut-types or new cut-formulas B arise after the
application of an appropriate reduction to a cut-type or to a cut-formula A,
then µ(B) < µ(A). However, we can easily ensure this – the examples in
Section 6.3.4.1 are the least obvious cases, and are intended to prove exactly
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that. In the following we will use the concepts of length of a derivation, and
of subderivation of a derivation, defined in a standard way.

Proposition 90. If ∆ is a non-normal derivation, there is a cut-segment σ
in ∆ such that µ(σ) = MAX(M∆), and such that, for every cut-segment σ∗ of
the subderivation ∆∗ of ∆ the conclusion of which is the first occurrence of
σ, µ(σ∗) < MAX(M∆).

Proof. By induction on the length of ∆.

If ∆ is an assumption, or the application of an axiom, the antecedent of the
theorem is false, so that the theorem is trivially true.

Let then ∆ be of length L, and suppose the theorem proven for every deriva-
tion of length L∗ < L. We must distinguish a series of subcases:

• if ∆ is normal the antecedent of the theorem is false, so that the theorem
is trivially true;

• if ∆ is non-normal, we distinguish two cases:

– ∆ ends with the application J of a (type) elimination rule, and
the major premise of J is the last occurrence of a cut-segment σ1

of ∆, and µ(σ1) = MAX(M∆), and finally, for every cut-segment
σ∗ of the subderivation of ∆ the conclusion of which is the first
occurrence of σ1, µ(σ∗) < MAX(M∆). Then we put σ = σ1;

– ∆ does not end with the application of a (type) elimination rule,
or ends with the application J of a (type) elimination rule but the
major premise A of which is not last occurrence of cut-segments
of ∆, or A is last occurrence of cut-segments σ1 of ∆ but it does
not hold that µ(σ1) = MAX(M∆), or µ(σ1) = MAX(M∆) but for
each σ1 there are cut-segments σ2 in the subderivation of ∆ the
conclusion of which is the first occurrence of σ1 such that µ(σ2) =
MAX(M∆). But then, there is a non-normal subderivation ∆∗ of
∆ of length L∗ < L, and such that MAX(M∆∗) = MAX(M∆). By
induction hypothesis, there is a cut-segment σ∗ in ∆∗ such that
µ(σ∗) = MAX(M∆∗), and such that, called ∆∗∗ the subderivation
of ∆∗ the conclusion of which is the first occurrence of σ∗, for
every cut-segment σ∗∗ of ∆∗∗, µ(σ∗∗) < MAX(M∆∗). Now, since
MAX(M∆∗) = MAX(M∆), we will have that µ(σ∗) = MAX(M∆) and,
for every cut-segment σ∗∗ in ∆∗∗, µ(σ∗∗) < MAX(M∆). We then
put σ = σ∗.
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This completes all possible cases, and the proposition is thus proven.

In what follows, we will call local maximum point of ∆ a cut-segment of ∆
having the properties indicated by proposition 90.

Proposition 91. Given a non-normal derivation ∆, and given a local max-
imum point σ1 of ∆ the last occurrence of which is major premise of the
application J of a (type) elimination rule, let us suppose there is a sub-
derivation ∆∗ of ∆ with the following properties:

(i) the conclusion of ∆∗ is one of the minor premises of J ;

(ii) there is a cut-segment σ∗ in ∆ such that µ(σ∗) = MAX(M∆), and such
that some of its occurrences are in ∆∗.

Then, there is a local maximum point σ2 of ∆ disjoint from σ1. In addition,
let σ1, σ2, σ3, ..., σn be a sequence of cut-segments in ∆ such that σ1 and σ2

are as above and, for every 2 < i ≤ n, σi is a local maximum point of ∆
for which the circumstances (i) and (ii) hold, and σi stands with σi−1 in the
same relation as the one occurring between σ2 and σ1. Then, there is a local
maximum point σn+1 of ∆ such that, for every σi (i ≤ n), σn+1 is disjoint
from σi.

Proof. Let ∆, σ1, ∆∗ and σ∗ be as in the hypotheses. We distinguish two
cases:

1. the formula of σ∗ does not occur as conclusion of ∆∗. But then, all
the occurrences of σ∗ are occurrences of ∆∗. Hence, ∆∗ is non-normal.
Moreover, since µ(σ∗) = MAX(M∆), we will have that MAX(M∆∗) =
MAX(M∆). By proposition 90, ∆∗ has a local maximum point σ2 that,
since µ(σ2) = MAX(M∆∗) = MAX(M∆), is also a local maximum point of
∆. Moreover, it cleary holds that σ2 is disjoint from σ1;

2. the formula of σ∗ does not occur as conclusion of ∆∗. Again two cases:

• σ∗ is a local maximum point of ∆, and in this case we can put
σ2 = σ∗, since clearly σ∗ is disjoint from σ1;

• σ∗ is not a local maximum point of ∆. Then, called ∆∗∗ the
subderivation of ∆ the conclusion of which is the first occurrence of
σ∗, there is a cut-segment σ∗∗ in ∆∗∗ such that µ(σ∗∗) = MAX(M∆).
But then ∆∗∗ is non-normal, and since µ(σ∗∗) = MAX(M∆), we will
have that MAX(M∆∗∗) = MAX(M∆). Here we can repeat point 1.
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Let then σ1, σ2, σ3, ..., σn be the required sequence of cut-segments in ∆.
Since for σn (i) and (ii) hold, by applying to σn the procedure just concluded
for σ1, we can find a local maximum point σn+1 of ∆ disjoint from σn. Then,
observe that, for every 2 ≤ i ≤ n+1, either among the occurrences of σi there
is one of the minor premises of the application of the (type) elimination rule
where the last occurrence of σi−1 is major premise, or σi is in a subderivation
of ∆ having this minor premise as a conclusion. Then, if there is σi (i ≤ n−1)
not disjoint from σn+1, there is a subderivation ∆a of ∆ ending with the
application Ja of a (type) elimination rule the major premise of which is the
last occurrence of σn, and such that, for some subderivation ∆b of ∆ (possibly
identical to ∆a), ∆b ends with the application J b of a (type) elimination rule
the major premise of which is the conclusion of a subderivation of ∆ having
∆a as subderivation, and one of the minor premises of which is an occurrence
of σn, or the conclusion of a subderivation of ∆ having ∆a as subderivation.
But none of these cases is clearly possible. Therefore, there cannot be σi
(i ≤ n− 1) not disjoint from σn+1.

Proposition 92. If ∆ is a non-normal derivation, then there is a local max-
imum point σ of ∆ of which the last occurrence is the major premise of
the application J of a (type) elimination rule and, for every subderivation
∆∗ of ∆ of which the conclusion is one of the minor premises of J , for ev-
ery cut-segment σ∗ of ∆ in ∆∗, or that has the conclusion of ∆∗ among its
occurrences, µ(σ∗) < MAX(M∆).

Proof. If there were not a σ as required by the proposition, by proposition
91 ∆ would contain an infinite number of local maximum points, which is
clearly impossible.

Theorem 93. Let ∆ be a non-normal derivation. Then, there is a derivation
∆∗ such that ∆ � ∆∗ and δ(∆∗) < δ(∆).

Proof. Let ∆ be non-normal, and let be δ(∆) = (MAX(M∆), n). Let us choose
a local maximum point σ of ∆ that enjoys the property indicated by proposi-
tion 92. If σ has length greater than 1, by applying a permutation on the last
occurrence of σ, we obtain a derivation ∆∗ with δ(∆∗) = (MAX(M∆∗), n

∗) for
MAX(M∆∗) = MAX(M∆) and n∗ < n, whence δ(∆∗) < δ(∆). If instead σ has
length 1, namely σ is a cut-type or a cut-formula, by applying to it a reduc-
tion, we obtain a derivation ∆∗ for which one of the following circumstances
applies:

• ∆∗ does not contain cut-segments not already occurring in ∆. In this
case: either all the cut-segments of ∆∗ have lower measure than the
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cut-segments of ∆ of maximal measure, so that MAX(M∆∗) < MAX(M∆),
and hence δ(∆∗) < δ(∆); or ∆∗ contains cut-segments of the same
measure of the cut-segments of ∆ of maximal measure, so that δ(∆∗) =
(MAX(M∆∗), n

∗) for MAX(M∆∗) = MAX(M∆) and n∗ < n, whence δ(∆∗) <
δ(∆);

• ∆∗ contains cut-segments which were not already in ∆. In this case,
it is easily seen - also thanks to the examples in Section 6.3.4.1 -
that the following circumstance holds: if B is the formula of a cut-
segmenta produced by the reduction of a cut-type or a cut-formula
A, then µ(B) < µ(A). Hence, either MAX(M∆∗) < MAX(M∆), whence
δ(∆∗) < δ(∆), or δ(∆∗) = (MAX(M∆∗), n

∗) for MAX(M∆∗) = MAX(M∆)
and n∗ < n, whence again δ(∆∗) < δ(∆).

This completes all possible cases, and at this point it is enough to observe
that ∆ � ∆∗.

Corollary 94. For every derivation ∆ ∈ DERΛG, there is a normal derivation
∆∗ such that ∆ � ∆∗.

Proof. If ∆ is normal, we put ∆∗ = ∆, since clearly ∆ � ∆. Otherwise,
by virtue of theorem 93, there is a derivation ∆1 such that ∆ � ∆1 and
δ(∆1) < δ(∆). If ∆1 is normal, by putting ∆∗ = ∆1 we are done. Otherwise,
by virtue of theorem 93, there is a derivation ∆2 such that ∆1 � ∆2 and
δ(∆2) < δ(∆1). Again, if ∆2 is normal, by putting ∆∗ = ∆2 we are done,
since ∆ � ∆1 and ∆1 � ∆2 imply that ∆ � ∆2. Otherwise, we start again
and, after a finite number n of steps, we will find a normal derivation ∆n

such that ∆ � ∆1 � ∆2 � ... � ∆n−1 � ∆n, whence ∆ � ∆n. By putting
∆∗ = ∆n, the result is hence proven.

At the end of this chapter, we conduct only two quick observations. The
first is that corollary 94, which is the result of normalization, is independent
of the characteristic rules of the system of grounding to which it refers. Thus,
any derivation of whatever system of grounding can be reduced to a normal
form. The second observation is the following: generally, a normalization
result is accompanied by a series of results implied by it – concerning for
example the form of normal derivations, or the subformula property, or the
Craig’s interpolation theorem (see Prawitz 2006) – so that we might wonder
if and to what extent they apply also in our case. Here, however, we will
not deal with these issues, both because they are not strictly related to the
objectives we have set ourselves, and for mere reasons of space.
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Chapter 7

Completeness and recognizability

7.1 About completeness
In the second part of this work, we described the theory of grounds as it
has been articulated so far by Prawitz. Among the issues presented there,
in this Chapter we will concentrate on two of them. We will deal with the
first one in this section, taking as a starting point the notions of validity of
inferences and of inference rules, on an atomic base or in a more universally
logical sense.

7.1.1 From validity to universal validity

In Chapter 4 we saw that an inference is to be understood as valid on B
if, and only if, there is a B-operation on grounds associated with it, that is,
a B-operation that has as domain the premises, and as (codomain of the)
codomain the conclusion of the inference, as well as appropriate discharges of
assumptions and bindings of variables; on the other hand, an inference rule
is valid on B if, and only if, there is a "structural" B-operation on grounds
associable to it, where the notion of structurality is to be understood in the
sense indicated by following words of Prawitz:

this operation has no specific type, but is specified by a term with
ambiguous types; for each instance of the form, the operation is
of a specific type and is denoted by the corresponding instance of
that term. (Prawitz 2015, 95)

A proof on B is a finite chain of inferences valid on B. In the following, we
indicate with

Γ |=B α
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the fact that there is a proof on B having Γ as set of assumptions, α as
conclusion, and a set of free individual variables equal to that of the individual
variables occurring free in Γ and α. We will also say that α is a B-consequence
of Γ.

Abstracting from the notion of validity on a base, it is possible to obtain
a universal notion of validity. Namely, we could say that an inference and
an inference rule are valid if, and only if, for every base B, they are valid
on B. Actually, this characterization is slightly different from the one we
used in Chapter 4 when, quoting the words of Prawitz, we had understood
logical validity as persistence of validity under variation of the content of the
non-logical symbols. However, the two formulations are equivalent if we take
into account what we said in Chapter 5 about the atomic bases, namely, that
they determine the meaning of the individual constants, and of the functional
and relational symbols of the background language; then, the persistence of
validity on all atomic bases coincides with the persistence of validity under
variation of the content of the non-logical symbols.

On the other hand, there is perhaps a more important observation to
make. The fact that validity means validity on every atomic base B can be
understood essentially in two ways:

(|=1) for every atomic base B, the inference can be associated to a B-
operation on grounds, and the inference rule can be associated to a
"structural" B-operation on grounds;

(|=2) the inference can be associated to a universal operation on grounds,
and the inference rule can be associated to a "structural" universal
operation on grounds.

– the notion of universal operation on grounds is here to be understood as
defined in Section 5.2.4.6. Obviously, (|=2) implies (|=1). Having to choose
between the two suggested formulations, we adopt (|=2).1 An inference is

1In Section 7.1.4, when adapting to our framework a proof by Piecha and Schroeder-
Heister (Piecha & Schroeder-Heister 2018), we will instead use (|=1). However, observe
that there could be reasons to maintain that also (|=1) implies (|=2), and hence that the
two formulations above are equivalent. Indeed, suppose that, for every atomic base B,
there is a B-operation on grounds fB - which, for the sake of simplicity, we suppose to be
not defined on individuals - of an appropriate operational type

τ1, ..., τn B τn+1

- which, by the assumption on fB , will have no free individual variables - by virtue of
which an inference J can be said to be valid on B. Let us now define an operation f of
the same operational type as fB by requiring that, for every B, for every gi ground on B
for τi (i ≤ n),
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valid if, and only if, there is a universal operation on grounds associated to
it, having as domain the premises, and as (codomain of the) codomain the
conclusion of the inference, as well as appropriate discharges of assumptions
and bindings of variables; an inference rule is valid if, and only if, there is a
universal "structural" operation on grounds associated to it. The notion of
universal "structural" operation on grounds is also to be understood here in
the sense indicated by the words of Prawitz quoted above. A proof is a finite
chain of valid inferences. We denote finally with

Γ |=2 α

f(g1, ..., gn) = fB(g1, ..., gn).

Thanks to this definition, the operation f could be understood as a universal operation on
grounds of the indicated operational type. However, we have to bear in mind that in the
definition of f it is essential to quantify over all bases; on the other hand, an operation
like the one denoted by ∧E,i in Section 5.2.4.5 is to be understood as universal in the sense
that there is one equal on all bases - i.e., the operation can be defined in the same way on
all bases. Here, we can maybe reason as follows. Given an atomic base B on a first-order
logical language L, for every α ∈ FORML let us consider the set

GrαB = {g | g is a ground on B for ` α}.

Then, called B the set of all the atomic bases on L, let us consider the class

Grα =
⋃
B∈B GrαB

Let us suppose that, for every B, there is a constructive function

fB : GrαB → GrβB .

Now, an operation on grounds which is universal in the sense we have indicated in Section
5.2.4.5 will be a constructive function

f∗ : Grα → Grβ

such that, for every g ∈ Grα, the value f∗(g) can be specified by the same defining equation
whatever the class GrαB to which g belongs is. Instead, an operation on grounds which is
universal in the sense required to pass from (|=1) to (|=2), will be a function

f∗∗ : Grα → Grβ

such that, for every g ∈ Grα, f∗∗(g) = fB(g), for g ∈ GrαB . It seems that, in order to pass
from f∗∗ to f∗, we need a sort of axiom of choice, which however is known to be valid
(and even provable) in certain constructivist setups. A similar argument obviously applies
if, from the specific inferences, we turn to inference rules.
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the fact that there is a proof having Γ as set of assumptions, α as a conclusion,
and a set of free individual variables equal to that of the individual variables
occurring free in Γ and α. We will also say that α is a consequence of Γ. We
conclude this Section with an observation.

Observation 95. Γ |=B α if, and only if, there is a proper ground on B for
Γ ` α, that is, a B-operation on grounds of operational type

ΓB α

relative to all and only the individual variables occurring free in Γ and α.
Likewise, Γ |=2 α if, and only if, there is a proper universal ground for Γ ` α,
that is, a universal operation on grounds of operational type

ΓB α

relative to all and only the individual variables occurring free in Γ and α.

The correctness of the observation can be seen in the following way. Ac-
cording to the definition of Γ |=B α, first of all, there is a proof π on B
with set of assumptions Γ, conclusion α, and of which the free individual
variables are all and only the individual variables occurring overall free in Γ
and α. A proof on B is a chain of inferences valid on B. Let J1, ..., Jn be the
inferences valid on B involved in π. For each i ≤ n, Ji can be associated to
a B-operation on grounds fi. But then, π can be conceived as a composite
B-operation on grounds f1 ◦ · · · ◦fn, and, more in particular, for the assump-
tion on free individual variables of π, as a proper ground on B for Γ ` α.
The latter will, by definition, be a B-operation on grounds as indicated in
Observation 95. By definition of Γ |=2 α, instead, there is a proof π with set
of assumptions Γ, conclusion α, and of which the free individual variables
are all and only the individual variables occurring overall free in Γ and α.
A proof is a chain of valid inference. Let J1, ..., Jn be the valid inferences
involved in π. For each i ≤ n, Ji can be associated to a universal operation
on grounds fi. But then, π can be conceived as a composite universal oper-
ation on grounds f1 ◦ · · · ◦ fn, and, more in particular, for the assumption on
free individual variables of π, as a proper universal ground for Γ ` α. The
latter will, by definition, be a universal operation on grounds as indicated in
Observation 95.

7.1.2 Correctness of first-order intuitionistic logic

On the base of the definitions offered in the previous section, it is easy to es-
tablish that all the inference rules of Gentzen’s intuitionistic first-order logic,
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constituting the system IL of Section 2.5.1, are valid in the intended sense.
For the introduction rules, there exist clearly universal operations on grounds
- the primitive ones involved in the clauses (AtG) - (⊥G) – that, appropriately
associated with each instance of the rules, make these instances easily valid;
the operations we defined in Section 5.2.4.5, associated to the non-primitive
operational symbols of a Gentzen-language, are instead universal operations
on grounds which, when appropriately associated to instances of the elimi-
nation rules, make them similarly valid. We have then, almost immediately,
a result of correctness of IL with respect to the notion of logical consequence
above defined.

Theorem 96. Γ `IL α⇒ Γ |=2 α.

Proof. Let ∆ be a derivation of α from Γ in DERIL. Since all the inference
rules of IL are valid, all the instances of such rules occurring in ∆ will be
valid as well. So, ∆ is a finite chain of valid inferences in the intended sense,
and hence it is a proof of α from the set of assumptions Γ.

7.1.3 Accounts of ground-theoretic completeness

In a rather natural way, the question arises at this point whether, in addi-
tion to being correct with respect to the ground-theoretical notion of logical
consequence, Gentzen’s natural deduction for first-order intuitionist logic is
also in this sense complete:

Γ |=2 α⇒ Γ `IL α.

With reference to his proof-theoretic semantics based on the notion of valid
argument, illustrated by us in Section 2.5.2.1, Prawitz raises the issue about
completeness in terms of a famous conjecture. The formulation we will men-
tion here is from the 1973 Towards a foundation of a general proof-theory
(Prawitz 1973), although we limit ourselves to the notion of "simple" valid-
ity, leaving out strong validity, and we refer to intuitionistic first-order logic,
rather than to minimal first-order logic. The notion of derivability of a rule
in IL is the standard one (see, for example, von Plato 2014), while the notion
of inference rule valid according to proof-theoretic semantics is the one we
provided in definition 6.

Conjecture 97 (Prawitz’s conjecture). If an inference rule R is valid, then
R is derivable in IL.

Since we also have a result of correctness of IL for the proof-theoretic
semantics, if conjecture 97 were correct we would have that the set of valid
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inference rules according to proof-theoretic semantics is identical to the set
of rules derivable in IL (for an overview of the surveys related to Prawitz’s
conjecture, see Piecha 2016; the refutation relative to the proof-theoretic
semantics is found in Piecha & Schroeder-Heister 2018).

In the theory of grounds, as we understand it, an inference rule is valid if,
and only if, there is a universal "structural" operation on grounds associated
to it – where "structural", we reassert it, is to be understood in the sense
indicated by the above mentioned words of Prawitz. In the light of this
definition, the conjecture can be reformulated as follows.

Conjecture 98 (Ground-theoretic completeness conjecture). Given a decid-
able scheme of operational types

τ1, ..., τn B τn+1,

if there is a universal "structural" operation on grounds, each instance of
which has operational type an instance of

τ1, ..., τn B τn+1,

and that binds a sequence of individual variables x and a sequence of ground-
variables ξ, then the inference rule

σ1 . . . σn x,A
β

is derivable in IL, where

• for every i ≤ n, σi is τi, if τi has empty domain, and

Γi
...
αi

if τi has non-empty domain Γi and codomain αi;

• A is a set of assumptions discharged by the rule such that, if the uni-
versal "structural" operation on grounds binds ξγ on index i, then the
rule discharges γ on index i (i ≤ n);

• β is the codomain of τn+1.

Proposition 99. If conjecture 98 is correct, Γ |=2 α⇒ Γ `IL α.
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Proof. Let us suppose that Γ |=2 α, namely that there is a proof π with set of
assumptions Γ, conclusion α, and of which the individual variables are all and
only those occurring free Γ and α. π is a chain of valid inferences J1, ..., Jn
and, from observation 95, it can be understood as a composite universal
operation on grounds f1 ◦ · · · ◦ fn, where each fi is associable to an inference
Ji (i ≤ n). We can now proceed in two alternative ways.
(1) Given

Γ = {β1, ..., βn}

and taken any atomic base B, we can define an operation

h(ξβ1 , ..., ξβn)

by requiring that, for every gi ground on B for ` βi (i ≤ n),

h(g1, ..., gn) = f1 ◦ · · · ◦ fn(g1, ..., gn)

Since f1 ◦ · · · ◦ fn is a composite universal operation on grounds, f1 ◦ · · · ◦ fn
is more in particular a universal operation on grounds, and hence also a
B-operation on grounds. Therefore

h(ξβ1 , ..., ξβn)

is a B-operation on grounds. On the other hand, due to the arbitrariness
of B, it is more in general a universal operation on grounds. According to
conjecture 98, then, the rule

β1 . . . βn
α

is derivable in IL. By definition of derivability, we conclude that Γ `IL α.
(2) Conjecture 98 implies that each fi corresponds to a rule, say Ri, derivable
in IL. By replacing in π each Ji with the derivation of Ri, we obtain a
derivation of α from Γ in IL, i.e. Γ `IL α.

Conjecture 98 limits itself to saying the following: if a decidable scheme
of operational types S is "inhabited" by some universal "structural" opera-
tion on grounds f , then we can derive in IL a rule which has as premise the
domain of the decidable schema of operational types, as conclusion the (co-
domain of the) codomain of this scheme, and which binds individual variables
and discharges assumptions in accordance with the bindings of the universal
"structural" operation on grounds supposed existing. On the other hand, in
the light of the isomorphism, described in Section 5.2.3.3, between IL and the
Gentzen-language Gen, conjecture 98 implies that there exists a denotation
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function den∗ for the elements of the alphabet of Gen such that there is a
composite universal "structural" operation on grounds h that "inhabits" S,
of which the instances are of the form

den∗(F1) ◦ · · · ◦ den∗(Fn)

where, for every i ≤ n, Fi is an operational symbol of Gen. However, it is
not in general guaranteed that f = h; in other words, it is not certain that,
while "inhabiting" the same scheme of operational types, f and h are the
same operation. To require this means requiring something stronger, that we
could call full-completeness.

Conjecture 100 (Full-completeness ground-theoretic conjecture). Let Gen+

be a non-primitive expansion of Gen, obtained by adding to Gen a non-
primitive operational symbol F , and let den∗1 be a denotation function for the
elements of the alphabet of Gen+ such that den∗1(F ) is a universal ground.
Then, there is a denotation function den∗2 for the elements of the alphabet of
Gen such that

den∗1(F ) = den∗2(F1) ◦ · · · ◦ den∗2(Fn)

where, for every i ≤ n, Fi is an operational symbol of Gen.

If conjecture 100 is correct, each non-primitive expansion of a Gentzen-
language, obtained by adding an operational symbol that has as operational
type an instance of a decidable scheme of operational types inhabited by
some universal "structural" operation on grounds, is conservative on the
Gentzen-language with respect to appropriate denotation functions.

Proposition 101. Let Gen+ be a non-primitive expansion of Gen, obtained
by adding to Gen a non-primitive operational symbol F , and let den∗1 be
a denotation function for the elements of the alphabet of Gen+ such that
den∗1(F ) is a universal operation on grounds. Then, if conjecture 100 is
correct, there is a denotation function den∗2 for the elements of the alphabet
of Gen+ such that Gen+ is conservative with respect to den∗2 on Gen.

Proof. Let Gen+ and den∗1 be as in the hypotheses. Since we are supposing
that conjecture 100 is correct, there will be a denotation function den∗3 for
the elements of the alphabet of Gen such that

den∗1(F ) = den∗3(F1) ◦ · · · ◦ den∗3(Fn)

where, for every i ≤ n, Fi is an operational symbol of Gen. Hence, let us
define the denotation function den∗2 for the elements of the alphabet of Gen+

such that, for every operational symbol x of Gen+,
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den∗2(x) =

{
den∗1(x) if x ∈ AlGen+ − AlGen
den∗3(x) if x ∈ AlGen

On account of the way in which den∗2 has been defined, we will have that

den∗2(F ) = den∗2(F1) ◦ · · · ◦ den∗2(Fn)

where, for every i ≤ n, Fi is an operational symbol of Gen. The situation
in which we find ourselves satisfies, relatively to den∗2 and to an arbitrary
atomic base B, the hypotheses of theorem 60 (rewritability of operational
symbols implies conservativity). Hence, Gen+ is conservative with respect to
den∗2 over Gen.2

Another consequence of conjecture 100 on which we wish to draw atten-
tion, concerns the systems of grounding outlined in Chapter 6. First of all, it
is worth repeating that the scheme of equations that, in a system of ground-
ing, fix the deductive behavior of non-primitive operational symbols of the
language of grounding of the system, can be understood as "internalizations"
of the schemes of equations that set the behaviour of the operations which,
via denotation functions, these symbols are intended to represent. Therefore,
given an expansion Gen+ of Gen, obtained by adding a non-primitive oper-
ational symbol F , let den∗1 be a denotation function for the elements of the
alphabet of Gen+ such that den∗1(F ) is a universal operation on grounds f .
The latter, wil be defined by m equations (m ≥ 1), possibly involving other
operations on grounds f ij (i ∈ N, j ≤ m) in the following way

2Proposition 101 shows that, given the hypotheses, conjecture 100 implies the existence
of a denotation function for the elements of the alphabet of Gen+ with respect to which
Gen+ is conservative over Gen. Again under the same hypotheses, it would be possible to
obtain also the inverse implication by enriching the languages of grounding as indicated in
Chapter 6, i.e., by introducing variables of the type hα(x) and fβ . With this approach, first
of all, also the inverse of theorem 60 would hold. Let Λ+ be a non-primitive expansion of a
language of grounding Λ, and let F be a non-primitive operational symbol properly in Λ+.
Let us suppose that F binds an individual variable x on index i, where the i-th entry of the
operational type of F is αi(x), and a ground-variable ξγ on index j, where the j-th entry of
the operational type of F is αj . Let finally den∗ be a denotation function for the elements
of the alphabet of Λ+, suitably defined also on hα(x) and fα, and let den be the denotation
function for the terms of Λ associated with den∗. Well, den∗(F ) = den∗(F1)◦· · ·◦den∗(Fn)
- where, for every i ≤ n, Fi is an operational symbol of Λ - if, and only if, there is T ∈ TERMΛ

such that den(F x ξ(. . . , hαi(x), fαj (ξγ), . . . )) = den(T ). In other words, in the enriched
languages of grounding, it becomes possible to build terms the denotation of which is
identical to that of operational symbols binding individual and ground-variables, just as
it happens in the non-enriched ones for the operational symbols that do not bind any
individual or ground-variables - for example den∗(∧E,i) = den(∧E,i(ξα∧β)). Hence, the
existence of a denotation function den∗ with respect to which Gen+ is conservative over
Gen, implies the rewritability via den∗ of the operational symbols of Gen+ in Gen.
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f = f 1

1 ◦ · · · ◦ f
n1
1 se ...

...
...

f = f 1
m ◦ · · · ◦ fnmm se ...

In general, it is not guaranteed that, for every f ij (i ≤ nj, j ≤ m) in the
defining equation of an operational symbol x1 of Gen+, there is an operational
symbol x2 of Gen+ such that den∗1(x2) = f ij . However, let us suppose that
there is an expansion Gen++ of Gen+ with non-primitive operational symbols
such that it is possible to define a denotation function den∗2 for the elements
of the alphabet of Gen++ that complies with the condition above. We will
say that Gen++ is self-contained with respect to den∗2 - clearly, den∗1(F ) =
den∗2(F ) = f .3

We now enrich Gen++ appropriately, and call this enrichment Gen++
1 , in

such a way that it is possible to define on Gen++
1 an appropriate system of

grounding Σ which "internalizes" the schemes of equations that fix den∗2(x),
for every non-primitive operational symbol x of Gen++. We will say that Σ
totally interprets Gen++

1 with respect to den∗2. If Σ complies with appropriate
provability conditions, it becomes possible to obtain the following proposi-
tion.

Proposition 102. Let Gen+ be a non-primitive expansion of Gen, obtained
by adding to Gen a non-primitive operational symbol F , and let den∗1 be a de-
notation function for the elements of the alphabet of Gen+ such that den∗1(F )
is a universal operation on grounds. Then, conjecture 100 is equivalent to
the following condition. Let

• Gen++ be an expansion of Gen+, and den∗2 a denotation function for the
elements of the alphabet of Gen++ such that Gen++ is self-contained
with respect to den∗2, and

• Σ be a system of grounding on an appropriate enrichment Gen++
1 of

Gen++ which totally interprets Gen++
1 with respect to den∗2.

Then, there is a denotation function den∗3 for the elements of the alphabet
of Gen with respect to which Gen is self-contained, and such that, given an
appropriate enrichment Gen∗ of Gen, and a system of grounding Σ∗ which
totally interprets Gen∗ with respect to den∗3, for every T ∈ TERMGen++

1
, there

is U ∈ TERMGen∗ such that
3Observe that a self-contained expansion may not be available. For example, the defin-

ing equations that can be associated to the various operational symbols may involve an
infinite chain: f1 requires f2 requires . . . requires fn requires fn+1 requires . . . . Here, we
have no hope to find a finite appropriate language of grounding, which takes into account
all the fi (i ∈ N).
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`Σ∪Σ∗ T ≈ U .

Proof. We limit ourselves to general indications. A language of grounding
self-contained with respect to a denotation function of the elements of its
alphabet, is a language of grounding of which the non-primitive operational
symbols denote operations whose definitions involve, if they involve them,
only operations that are in their turn denoted, through the same denotation
function, by some other non-primitive operational symbol of the same lan-
guage. On the other hand, a system of grounding that totally interprets this
language of grounding with respect to this denotation function, "internal-
izes" all the definitions of all the operations required in order to "know the
meaning" of each non-primitive operational symbol.
(=⇒) From conjecture 100 we know that den∗2(F ) will be the same operation
as an appropriate combination of operations denoted, via an appropriate
denotation function, which we may icall den∗3, by operational symbols of the
Gentzen-language. On the other hand, den∗2 is "internalized" in Σ, whereas
den∗3 is "internalized" in Σ∗, so that Σ ∪ Σ∗ totally interprets both Gen++

1

and Gen∗. It is sufficient at this point to ensure that Σ ∪Σ∗ allows to derive
the rewritability of F in terms of operational symbols of Gen, in compliance
with the identity between the operation denoted by F via den∗2 and the
combination of operations denoted by operational symbols of Gen via den∗3
- for an example, see Section 6.2.3.4; if this obtains, we can replace each
occurrence of F with its rewriting in Gen salva identitate. But provability of
rewriting is something that, if Σ and Σ∗ are appropriate systems of grounding,
we can guarantee.
(⇐=) This direction is even more straightforward, thanks to the hypotheses
made on the systems of grounding. If the systems of grounding "internalize"
the defining equations denoted by the operational symbols via den∗2 and den∗3,
we do obtain the rewritability of the operation denoted by F via den∗1 -
recall that den∗1(F ) = den∗2(F ) - in terms of an appropriate combination of
operations denoted by the operational symbols of Gen via den∗3. For example,
if F binds ξγ on index i, and x and ξδ on index j, we will have that there is
U ∈ TERMGen∗ such that

`Σ∪Σ∗ F . . . x ξ
γ ξδ . . . (. . . fαi(ξγ), fαj(ξδ) . . . ) ≈ U

a result starting from which we can then quantify universally.

7.1.4 Incompleteness of intuitionistic logic

Conjecture 97, in a certain particular articulation, has recently been proved
false by Thomas Piecha and Schroeder-Heister in Incompleteness of intu-
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itionistic propositional logic with respect to proof-theoretic semantic (Piecha
& Schroeder-Heister 2018). Here, we aim to show how the proof by Piecha
and Schroeder-Heister can also be applied to the framework of the theory of
grounds. First of all, given a first-order logical language L, given Γ ⊂ FORML
finite, and given an atomic base B on L, with

|=B Γ

we indicate the circumstance that |=B β for every β ∈ Γ. We then have the
following propositions.

Proposition 103. For every atomic base B, Γ |=B α⇔ (|=B Γ⇒ |=B α).

Proof. (=⇒) For arbitrary B, let us suppose that Γ |=B α, namely that there
is a proof π on B with set of assumptions Γ, conclusion α, and the individual
variables of which are all and only those occurring free in Γ and α. As a
chain of inferences valid on B, say J1, ..., Jn, from observation 95 π can be
understood as a composite B-operation on grounds f1 ◦ · · · ◦ fn, where each
fi can be associated with an inference Ji (i ≤ n) and, more in particular,
for the restriction on free individual variables, as a proper ground on B for
Γ ` α. Let us suppose then |=B Γ and, put

Γ = {β1, ..., βn},

let πi be a proof on B of βi the individual variables of which are all and
only those occurring free in βi (i ≤ n). As a chain of inferences valid on
B, say J i1, ..., J imi , from observation 95 πi can be understood as a composite
B-operation on grounds f i1 ◦ · · · ◦ f imi , where each f ij can be associated with
an inference J ij (j ≤ mi) and, more in particular, for the restriction on free
individual variables, as a proper ground on B for ` βi. But then

f1 ◦ · · · ◦ fn((f 1
1 ◦ · · · ◦ f 1

m1
) . . . (fn1 ◦ · · · ◦ fnmn))

returns a proper ground on B for ` α. Each of the B-operations on grounds
involved in such ground, can be associated to an inference, which will hence
turn out to be valid on B; moreover, according to way in which the B-
operations are combined, the inferences valid on B can be combined so as to
obtain a proof on B of α. Hence, |=B α.
(⇐=) Put again

Γ = {β1, ..., βn},

since, according to observation 95, each proof on B for βi or α can be un-
derstood as a proper ground on B, say gi for ` βi or g for ` α (i ≤ n), it is
sufficient to define an operation
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h(x, ξβ1 , ..., ξβn)

such that, for every gi proper ground on B for ` βi as indicated above, points
on a specific g as indicated above, namely

h(x, g1, ..., gn) = g.

We then have a B-operation on grounds of operational type

ΓB α

which, when associated to the inference

β1 . . . βn
α

makes it valid on B, so that Γ |=B α - observe that the required operation
can be understood simply as the empty function if it is not the case that, for
every i ≤ n, there is a proof on B for βi.

Proposition 104. For every atomic base B:

(→) |=B α→ β if, and only if, α |=B β

(∨) |=B α ∨ β if, and only if, |=B α or |=B β

Proof. The proof is trivial, in the light of observation 95, and of the clauses
(→G) and (∨G).

In order to reconstruct the reasoning of Piecha and Schroeder-Heister,
it will be enough to limit ourselves to propositional logic and, as Piecha
and Schroeder-Heister do, to rely on some preliminary results, which will be
stated, without proof, in the following proposition.

Proposition 105. In IL the following circumstances hold:

1. Harrop’s rule

¬α→ (β1 ∨ β2)

(¬α→ β1) ∨ (¬α→ β2)

is not derivable (Harrop 1960);

2. disjunctions can be eliminated from negated formulas, so as to obtain
formulas without ∨ and inter-derivable, by applying the following re-
sults
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¬(α ∨ β) `IL ¬α ∧ ¬β and ¬α ∧ ¬β `IL ¬(α ∨ β)

¬(α ∧ β) `IL ¬(¬¬α ∧ ¬¬β) and ¬(¬¬α ∧ ¬¬β) `IL ¬(α ∧ β)

¬(α→ β) `IL ¬¬α ∧ ¬β and ¬¬α ∧ ¬β `IL ¬(α→ β)

At this point, we adapt to the relation |=B a generalized disjunction prop-
erty - which in the following we will indicate with (GDP|=B):

∨ does not occur in Γ⇒ (Γ |=B α ∨ β ⇒ Γ |=B α or Γ |=B β).

For the last step, and unlike what has been done so far, we do not mean any
longer validity in the sense of (|=2), and adopt instead (|=1) – both of them
as in Section 7.1.1. So an inference is valid if, and only if, for every atomic
base B, there is a B-operation on grounds associated with it, i.e. having as
domain the premises, and as (codomain of the codomain) the conclusion of
the inference, as well as appropriate discarghes of assumptions and bindings
of variables; an inference rule is valid if, and only if, for every atomic base
B, there is a "structural" B-operation on grounds associated with it. The
notion of "structural" operation on grounds, must be understood, as usual,
in the sense indicated by the words of Prawitz quoted again in Section 7.1.1.
We indicate with

Γ |=1 α

the fact that, for every atomic base B, there is a proof on B having Γ as set
of assumptions, α as conclusion, and a set of individual free variables equal
to that of the individual variables occurring free in Γ and α. We have the
following two results.

Proposition 106. Γ |=2 α⇒ Γ |=1 α

Proof. Suppose Γ |=2 α, namely, that a proof π exists having Γ as set of
assumptions, α as a conclusion, and a set of free individual variables equal
to that of the individual variables occurring free in Γ and α. Then, for
every atomic base B, π is a proof on B having Γ as set of assumptions, α
as a conclusion, and a set of free individual variables equal to that of the
individual variables occurring free in Γ and α. Hence, for every atomic base
B, there is a proof on B having Γ as set of assumptions, α as a conclusion,
and a set of free individual variables equal to that of the individual variables
occurring free in Γ and α. Therefore, Γ |=1 α.

Proposition 107. Γ `IL α⇒ Γ |=1 α
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Proof. It follows immediately from the correcteness theorem and from the
previous proposition.

We shall now proceed to the results of Piecha and Schroeder-Heister.

Theorem 108 (Piecha & Schroeder-Heister). If, for every atomic base B,
(GDP|=B) holds, then Harrop’s rule is valid.

Proof. Since we are adopting (|=1), what we must prove is that, starting
from the hypotheses of the theorem, for every atomic base B, there is a
B-operation on grounds of operational type

¬α→ (β1 ∨ β2)B (¬α→ β1) ∨ (¬α→ β2).

By virtue of observation 95, this can be done by showing that, starting from
the hypotheses of the theorem, for every atomic base B

¬α→ (β1 ∨ β2) |=B (¬α→ β1) ∨ (¬α→ β2).

Let B be an arbitrary base, and let us suppose that

|=B ¬α→ (β1 ∨ β2).

By proposition 104 we will have that

¬α |=B β1 ∨ β2.

By proposition 105, there is a formula α∗ without ∨ such that

¬α `IL α∗ and α∗ `IL ¬α.

By proposition 107, we have in particular that

α∗ |=1 ¬α

and hence, for our specific base B,

α∗ |=B ¬α.

Again by virtue of observation 95, and of proposition 27 in Section 5.2.2.3
about the composition of B-operations on grounds, we will therefore have
that

α∗ |=B β1 ∨ β2.

Since we are assuming (GDP|=B), we will have

α∗ |=B βi (i = 1, 2).
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Again by proposition 107, we have that

¬α |=B α
∗

and hence, again by virtue of observation 95, and of proposition 27 in Section
5.2.2.3 about the composition of B-operations on grounds,

¬α |=B βi.

By proposition 104, hence,

|=B ¬α→ βi

and, again by proposition 104,

|=B (¬α→ β1) ∨ (¬α→ β2).

In conclusion, we have proven what follows:

|=B ¬α→ (β1 ∨ β2)⇒ |=B (¬α→ β1) ∨ (¬α→ β2).

By proposition 103, we can thus conclude that

¬α→ (β1 ∨ β2) |=B (¬α→ β1) ∨ (¬α→ β2).

The result now ensues immediately from the arbitrariness of B.

Theorem 109 (Piecha & Schroeder-Heister). (GDP|=B) holds for every atomic
base B.

Proof. Let B be an arbitrary base, and let us suppose that Γ |=B α ∨ β.
Then, by proposition 103, we have that

|=B Γ⇒ |=B α ∨ β

and, by proposition 104,

|=B Γ⇒ (|=B α or |=B β).

By adopting classical logic in the meta-language, we have

(|=B Γ⇒ |=B α) or (|=B Γ⇒ |=B β)

and, by proposition 103,

Γ |=B α or Γ |=B β.

The result now ensues immediately from the arbitrariness of B.

Corollary 110 (Piecha & Schroeder-Heister). Harrop’s rule is valid.
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Proof. It ensues immediately from theorems 108 and 109, bearing in mind
that we are adopting (|=1).

Corollary 111 (Piecha & Schroeder-Heister). For some Γ and α, Γ |=1 α
and Γ 0IL α.

Proof. Putting

Γ = ¬α→ (β1 ∨ β2) and α = (¬α→ β1) ∨ (¬α→ β2)

and again bearing in mind that we are adopting (|=1), from corollary 110 we
know that Harrop’s rule is valid, and hence that Γ |=1 α. On the other hand,
from proposition 105, we know that Harrop’s rule is not derivable in IL, and
hence that Γ 0IL α.

In conclusion, if we decline the notion of validity along the lines indicated
by (|=1), the proof of Piecha and Schroeder-Heister shows that IL is incom-
plete with respect to the theory of grounds. Note that it is not difficult to
outline an analogue of conjecture 98 which implies the completeness of IL
also with respect to (|=1) – just like conjecture 98, as shown by proposition
99, implies the completeness of IL with respect to (|=2). The result of Piecha
and Schroeder-Heister would therefore imply also the falsity of this possible
conjecture. At the conclusion of their work, Piecha and Schroeder-Heister
observe significantly that

the incompleteness of intuitionistic logic with respect to such a
semantics therefore raises the question of whether there is an
intermediate logic between intuitionistic and classical logic which
is complete with respect to it. (Piecha & Schroeder-Heister 2018,
13)

However, the proof of the fundamental theorem 109 resorts in an essential
way to the adoption of classical logic in meta-language. However, in this
regard, Piecha and Schroeder-Heister point out that, despite the adoption of
classical logic in meta-language, their result

as a negative result, is as devastating for the completeness conjec-
ture as a constructive proof. (Piecha & Schroeder-Heister 2018,
12).

Secondly, it should be noted that the proof of Piecha and Schroeder-Heister
applies to (|=1), but it is not clear if it also applies to (|=2). Although
(|=2) certainly implies (|=1), the reverse could not hold – but see note 1 in
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this chapter. In addition, proposition 103 would be said to be false when
formulated on (|=2); in particular, it seems there is reason to claim that
there are Γ and α such that |=2 Γ⇒ |=2 α, but it does not hold that Γ |=2 α.
Take Γ = {p} and α = q; obviously, neither|=2 p, nor |=2 q, but we can
construct an atomic base that has p as unique axiom, and on which therefore
no operation on grounds can exist of operational type

pB q.4

Be that as it may, we can adapt the aforementioned observation of Piecha
and Schroeder-Heister to our case. If intuitionist logic is not complete with
respect to the theory of grounds, then there could be some intermediate logic
for which completeness applies. With regard to this logic, it would remain
to verify if it, besides being complete in the sense indicated by conjecture
98, is also full-complete in the sense indicated by conjecture 100. If this
were the case, after drawing up a language of grounding that, on a par of
Gen for intuitionistic logic, constitutes a functional isomorphic translation of
this intermediate logic, we will have the results – in our opinion interesting
– suggested by propositions 101 and 102.

7.2 Recognizability and equations
In the second part of this chapter, we intend to deal more extensively with the
recognizability problem inherited, as seen above, by the theory of grounds,
albeit in a new articulation, from proof-theoretic semantics, and that the
theory of grounds more generally shares with the clauses for → and ∀ in
BHK semantics. This will be done by following a dual directive.

4Piecha and Schroeder-Heister build their proof of incompleteness on the basis of some
general semantic principles. Among these there is also the following: Γ |= α ⇔ for every
atomic base B, (|=B Γ ⇒ |=B α). As said, in our frameworks it holds on the other hand
that: for every atomic base B, Γ |=B α ⇔ (|=B Γ ⇒ |=B α). Therefore, if Piecha and
Schroeder-Heister’s semantic principle held also in our framework, we would have that:
Γ |= α⇔ for every atomic base B, Γ |=B α. Now, this is exactly how the relation (|=1) is
characterised, i.e., Γ |=1 α if, and only if, for every atomic base B, there is an operation f
such that f is a B-operation on grounds of operational type Γ B α. But the equivalence
seems not to work in the case of (|=2), where we have instead an inversion of the quantifiers:
Γ |=2 α if, and only if, there is an operation f such that, for every atomic base B, f is a
B-operation on grounds of operational type ΓBα. It should be noted that the latter seems
to be the way in which Prawitz also characterizes his notion of valid inference in Towards
a foundation of a general proof theory (Prawitz 1973) and in An approach to general proof
theory and to conjecture of a kind of completeness of intuitionistic logic revisited (Prawitz
2014).
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First, we will show how the assumption of recognizability is subject to a
double reading, a weak one and a strong one. If you accept some background
theses - in particular, the adoption of classical logic in the meta-language -
the weak reading, unlike the strong one, would seem plausible. On the other
hand, if the basic theses are rejected - in particular, if intuitionistic logic is
used also in meta-language – we question the plausibility also of the weak
reading.

Secondly, we will see how the recognizability problem involves, when set
in the conceptual framework of the theory of grounds, the issue of a general
theory of defining equations for non-primitive operations on grounds. We
will provide general guidelines for a first classification of these equations,
investigating which of these validate, and which, on the contrary, lose the
desired recognizability.

7.2.1 Local and global recognizability

In Chapter 2, we have extensively discussed a recognizability problem that
Prawitz’s proof-theoretic semantics inherits, so to speak, from the BHK
clauses. As for the latter, epistemic needs could lead to request that a proof
of α → β is not simply a constructive function which, when applied to any
BHK proof of α, turns it into a BHK proof of β, and that a proof of ∀xα(x)
is not simply a constructive function which, when applied to whatever indi-
vidual k in a reference domain, produces a BHK proof of α(k). Since proofs
have for us an epistemic relevance only when we are able to recognize that
they prove what we intend to prove, we might be right to postulate that
the above functions must be accompanied by the recognition of the fact that
they have an appropriate behaviour. Likewise, we might require, for the
valid arguments and for the proofs of Prawitz’s proof-theoretic semantics,
that it is recognizable that a valid closed non-canonical argument or a non-
canonical/categorical proof reduce, respectively, to a valid closed canonical
argument and to a canonical proof, and that a valid open argument or a
hypothetical-general proof are such that all their closed instances are valid
arguments and proofs.

In the theory of grounds, the problem becomes that of recognizing that a
term of an appropriate language of grounding denotes a ground for a certain
judgment or a certain assertion. If the term is closed, it must be possible to
recognize that it reduces to a canonical form which denotes a ground accord-
ing to the clauses (∧G) - (∃G) and, if the term is instead open, it must be
possible to recognize that it denotes an operation on grounds of the appro-
priate operational type, namely that each time the free individuals variables
are replaced with closed individual terms, and the ground-variables (in the
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type of which the individual variables have been replaced with individual
terms) are replaced with closed terms that denote grounds, the term ob-
tained denotes a ground. The crucial case here is that of the non-primitive
operational symbols, since the primitive ones denote operations on grounds
involved in the explanation of meaning, and therefore produce grounds from
grounds. From the recognizability problem of the denotation of a term we
can then pass to that of the recognizability of the fact that an operation on
grounds has a certain operational type, and since the operations on grounds
are defined by equations aimed at ensuring that the function is constructively
convergent on all the values in the intended domain, so as to produce for each
of these values a ground in the intended codomain, the problem is reduced
to that of the recognizability of the good position of the defining equations.
In conclusion, therefore, and very generally, given an arbitrary operation on
grounds f of operational type τ defined by an equation ε, what we have to
ask ourselves is whether it is possible to recognize that ε fixes f so that f
actually has the operational type τ . As we have seen in Chapter 5, it is
in many cases possible to prove that specific equations define appropriately
specific operations on grounds – it is the case of the equations that fix the
denotation of the operational symbols ∧E,i, ∨E, → E, ∀E, ∃E and Ind. To
raise the recognizability issue means asking oneself whether the recognition
guaranteed by proofs of that type is possible for arbitrary operations, fixed
by equally arbitrary equations.

Thus formulated, the recognizability problem can in our opinion be un-
derstood along two different, equally suitable, degrees of generality. In the
weaker degree, that we could call local recognition, we can ask ourselves
whether it is possible to recognize, for every equation ε that defines an oper-
ation on grounds f of operational type τ , that ε defines f so that the latter
has actually an operational type τ , but without requiring additionally that
the recognition is achieved through a method that works also in the case of
other equations for other operations. In the stronger degree, that we could
call global recognizability, we can instead ask ourselves if it is possible to
recognize, for every equation ε that defines an operation on grounds f of
operational type τ , that ε defines f so that the latter has actually an op-
erational type τ , and this through a universal method that allows to reach
homogeneously the same type of recognition for all possible equations for
all possible operations. In the context of local recognition, therefore, recog-
nition is always achieved, only through a "case by case" method. Within
the framework of global recognizability, on the other hand, the method that
guarantees recognizability is unique, and uniformly applicable to all cases.
We therefore have two different theses of recognizability, which differ from
one another for a different order of the universal and existential quantifiers:
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(L) for every equation ε that defines an operation on grounds f of opera-
tional type τ , there is a procedure ℘ such that ℘ allows to recognize
that ε defines an operation on grounds f of operational type τ ;

(G) there is a procedure ℘ such that, for every equation ε that defines an
operation on grounds f of operational type τ , ℘ allows to recognize
that ε defines an operation on grounds f of operational type τ .

Therefore, in asking whether the problem of recognizability can be solved or
not, we can ask ourselves, for each of the theses (L) and (G), whether they
are plausible or not. Obviously, both (L) and (G) guarantee a recognition
that really matches the epistemic needs of the theory of grounds.

At first glance, one would say that (L) and (G) are completely different
theses; in particular, (L), unlike (G), would seem plausible. An operation on
grounds, in fact, is an epistemic object and, as such, it should always be in
principle possible to recognize its properties, included that of having a certain
operational type. The equation that defines an operation of this type, there-
fore, must be such as to attribute it, in a recognizable way, the corresponding
operational type. In addition, if we accept classical logic, the negation of (L)
would correspond to the existence of an equation ε that defines an operation
on grounds f of operational type τ , such that, whatever the procedure ℘
is, ℘ does not permit to recognize that ε defines an operation on grounds
f of operational type τ ; namely, we would have an epistemic object with
absolutely unknowable properties, a sort of contradictio in terminis. On the
other hand, (G) requires the existence of a universal procedure, homogeneous
and uniform, which works on all equations. If by "recognizability" we mean
"decidability", the existence of such a procedure is clearly impossible. But,
also in a less restricted reading, (G) would seem to put forward an excessive
claim. Even if we abandoned the idea that of the notion of recognizability
we could give an accurate reading in terms of the notion of decidability, and
therefore even if we renounced to consider recognition procedures as decision
algorithms, it would not make much sense to invoke the existence of a uni-
versal, homogeneous and uniform recognition method, unless we are able to
give at the very least a generic description of the instructions it contains. On
the other hand, it is far from obvious how - and indeed very unlikely that -
such a description can ever be found.

In substantiating the plausibility of (L), we referred to the use of classical
logic. However, if the logic we intend to use in dealing with the sustainability
of (L) is not the classical one, but the intuitionistic one, or more generically
the constructivist one, then also the plausibility of (L) is called into question.
The problem is that, in this case, it would seem possible to argue that (L)
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implies (G), and therefore that, if we accept (L), we are consequently forced
to accept also (G). The way to this conclusion is reminiscent of that with
which the intuitionists justify the validity of the axiom of choice. According
to Martin-Löf – whose intuitionistic type theory actually proves the axiom
of choice:

the usual argument in intuitionistic mathematics, based on the
intuitionistic interpretation of the logical constants, is roughly as
follows: to prove ∀x∃yC(x, y)→ ∃f∀xC(x, f(x)), assume that we
have a proof of the antecedent. This means that we have a method
which, applied to an arbitrary x, yields a proof of ∃yC(x, y), that
is, a pair consisting of an element y and a proof of C(x, y). Let f
be the method which, to an arbitrarily given x, assigns the first
component of this pair. Then C(x, f(x)) holds for an arbitrary
x, and hence so does the consequent. (Martin-Löf 1984, 50)

By adapting this reasoning to our case, we can therefore take into account
the implication

∀ε ∃℘ε R(ε, ℘ε)→ ∃℘ ∀ε R(ε, ℘(ε))

where R is the binary predicate "the procedure . . . allows the recognition on
the equation − − −". If we suppose to have a proof of the antecedent, we
will have a constructive function F1 such that, for every equation ε,

F1(ε) = (℘ε, πε)

where ℘ε is a recognition procedure, and πε is a proof of R(ε, ℘ε). We can
now define two operations, F2 and F3, such that, for every equation ε,

F2(ε) = d1(F1(ε)) and F3(ε) = d2(F1(ε))

where d1 and d2 are, respectively, left and right projection. By using λ-
abstraction, we will then have

F2 = λε.d1(F1(ε)) and F3 = λε.d2(F1(ε))

and therefore the sought proof of the implication will be

λF1.(F2, F3).

As regards the implication, it is perhaps appropriate to observe that both ℘ε
and ℘ are functions of ε, but in a significantly different way. ℘ε is a procedure
which, when applied to ε, allows us to recognize, as it were, in a direct way
that it defines an operation on grounds having a certain operational type;
℘ when applied to ε, it guarantees the same recognition, but through the
choice of an appropriate ℘ε.
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7.2.2 Parameters and structure of equations

If, in the framework proposed so far, the recognizability problem is declined
so as to understand "recognizable" as a synonym of "decidable", its solu-
tion has, as mentioned, certainly a negative nature. The reason for this is
simple: since we have no limitation on the class of eligible operations in the
theory, nor therefore any restriction on that of the correspondent defining
equations, there is reason to expect such classes to be so large to meet all
the "algorithmic limitations" imposed by Gödel’s theorems.

However, if this is true, it is also true that exactly the absence of more
precise indications on the operations and on the structure of their defining
equations makes it difficult to understand the recognizability problem as
a problem of decidability. Decidability is a precise mathematical notion,
and to raise a question of decidability seems to make sense only within a
context formally well specified; on the other hand, the class of operations
of the theory of grounds, as well as the class of equations that define them,
as they have been understood so far, have rather blurred, or at least very
liberal boundaries. This does not mean, of course, that a weaker reading of
the expression "recognizability" puts us on the way to a positive solution.
Beyond the difficulties highlighted in the previous section, if "recognizable"
does not mean "decidable", then it is not at all clear what the term may
indicate, or what is the most appropriate understanding with respect to the
purposes desired.

Regardless of how the recognizability problem is intended, a possibility
to have more precise answers – even if not necessarily univocal – can there-
fore come from a restriction of the classes of operations and of their defining
equations. In other words, we could indicate a certain number of basic prop-
erties that operations must comply with, and a certain number of parameters
that the equations that define them must satisfy. Once that is done, having
a more rigorous idea of the type of accepted operations and equations, we
could expect an equally rigorous formulation of the recognizability problem,
and of its possible solution – solution that, obviously, could be positive in
some cases, negative in others.

In our opinion, a fruitful proposal in this sense – that, however, we will
limit ourselves to suggest in the very great lines - could be inspired, on the
one hand, by the reflections that lead Prawitz (Prawitz 2018a) to the notion
of analytically valid argument, discussed in Section 2.5.3.2, and on the other
hand to Constructive semantics, the article of the Swedish logician (Prawitz
1971a) the content of which was illustrated in Section 4.3.2. The notion of
analytically valid argument is, as you may remember, based on a notion of
containment such that a closed non-canonical argument can be said to be
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analytically valid if it contains an analytically valid closed canonical one. In
order to determine whether containment holds or not, Prawitz authorizes
two operations:

1. extraction of a subargument from a given argument;

2. substitution of free individual variables with terms, and of assumptions
with closed analytically valid arguments for such assumptions, in a
given argument.

In Constructive semantics, however, Prawitz aims at a notion of construction,
and to a class of terms that denote constructions; this, in order to have a
framework with respect to which to prove the correctness of minimal and
intuitionistic logic. The terms are constructed using operational symbols
with intended interpretation as follows:

a) pair formation;

b) left and right projection on pair;

c) λ-abstraction;

d) application for a λ-abstraction;

e) 4-ary choice function, that selects the first or second element of its
arguments depending on where the third and the fourth are or not
equal

- there would also be a function replacing individual and typed variables, but
here we can leave it aside. The operations of points a) and c) are primitive: λ-
abstraction allows the construction of canonical objects for α→ β or ∀xα(x),
when applied, respectively, to an operation that transforms constructions of
α into constructions of β binding ξα, or to an operation that transforms
individuals k from a reference domain into constructions of α(k) binding
x; pair formation obviously allows the construction of canonical objects for
α ∧ β – when applied to constructions of α and β – but, if we want, also
for α1 ∨ α2 – pair with first element a construction g of αi (i = 1, 2) and
with second element an indication of what disjunct g is a construction –
and for ∃xα(x) – pair with first element a construction of α(t) and second
element the term t. The operations at points b), d) and e) are instead non-
primitive, and correspond quite well to the operations referred to at points 1
and 2; application for the λ-abstraction recalls the operation of point 2, the
latter understood as the application of an argument with individual variables
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and assumptions on specific terms and closed analytically valid arguments;
projection on pair is, obviously, an example of extraction from an argument
that contains at least two immediate subarguments, while the choice function
could allow us to choose which of these two subarguments should be picked
up.

With his notion of analytically valid argument, Prawitz seems to suggest
that the reduction or justification procedure associated with a rule in non-
introductory form, should be such that the argument it provides as output is
obtained from the argument in input by applying only the operations 1 and
2; on the other hand, in Constructive semantics, Prawitz shows the adequacy
of Gentzen’s elimination rules by offering a functional interpretation of the
latter that contains only the operations a) - e). According to what we have
just seen, we can generalize what Prawitz does in Constructive semantics
and, relying on the similarities highlighted between Constructive semantics
and the notion of analytically valid argument, request that non-canonical
cases are justified by resorting to a well-defined inventory of operations; more
specifically, we could request that the defining equation of whatever operation
on ground F is such as to express F as a combination of some or all the
operations of formation of pair, projection on pair, λ-abstraction, application
of λ-abstraction, and function of choice, and of no other operation.5

5Let us indicate pair formation with D, projection on a pair with Di (i = 1, 2), and
application of λ-abstraction with App, and let us suppose that a ground for ` α1 ∨α2 is of
the form (g, i), with g ground for ` αi (i = 1, 2) - o, if you prefer, ((g, i), αj) (j = 1, 2), if
you also want to indicate the other disjunct - and that a ground for ∃xα(x) is of the form
(g, t), with g ground for ` α(t). We can define the operational symbols ∧E,i, ∨E, → E,
∀E and ∃E as follows:

∧E,i(ξα1∧α2) = Di(ξα1∧α2)

∨E ξα1 ξα2(ξα1∨α2 , h1(ξα1), h2(ξα2)) =
App(λξαD2(ξα1∨α2 ) .hD2(ξα1∨α2 )(ξ

αD2(ξα1∨α2 )), D1(ξα1∨α2))

→ E(ξα→β , ξα) = App(ξα→β , ξα)

∀E(ξ∀xα(x), y) = App(ξ∀xα(x), y)

∃E x ξα(x)(ξ∃xα(x), h(x, ξα(x))) =
App(App(λxλξα(x).(h(x, ξα(x)), D2(ξ∃xα(x))), D1(ξ∃xα(x)))

Note that, strictly speaking, we did not make use of the function of choice; the latter serves
only in the case of the elimination of the disjunction, and we have preferred a binding of
the index of the argument to be chosen to the projection on the second element of the
possible ground for ` α1 ∨ α2 - we should have written D2(D1(ξα1∨α2)) if the ground for
` α1 ∨ α2 is of the form ((g, i), αj).
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To go into the technical details of this proposal, or of other similar, would
lead us far beyond the scope of this work; therefore, we will be satisfied with
the suggestion made, turning now to a last, conclusive observation.

The question we want to ask ourselves is the following: are there general
properties of the defining equations that are relevant to occurring or not
of recognizability? The raised point is independent of the "width" of the
classes of the operations and of the admissible equations, and therefore of
the restrictions placed on them, and it depends solely on the fact that, as
definitions, the equations can be of many different types, present more or less
complex structures, enjoy the most diversified characteristics; which of these
types, which of these structures, and which of these characteristics could
allow recognizability, and which, on the contrary, make it lose? Obviously, it
could be argued that the different typologies, structures and features depend
on restrictions placed on the eligible operations and equations; but perhaps
we can face the problem from a more general point of view.

The reflection on the relationship between the general form of a defining
equation for an operation on grounds, and the problem of recognition, could
in fact allow to link the theory of grounds to a sort of theory of definitions.
The survey on the different typologies of definitions, and on the criteria of
their acceptability, is ancient and very general, but it has often received a
specific and more in-depth attention (among the various works that can be
mentioned in this regard, consider for example Padoa 1901, Carnap 1928, and
Suppes 1999; in what they call revision theory of truth, and with particular
reference to the paradoxes and to truth, also Belnap 1993 and Gupta &
Belnap 1993 deal with the theory of definitions, and in this regard we can
take into account also Kramer 2016). Here, we intend to propose a first
classification of the possible defining equations for operations on grounds
into three macro-groups. However, as a preliminary step, we first highlight
some points.

We have so far said that an operation on grounds f is fixed by an equation
ε, but this is actually inaccurate. Since f is to be understood as defined on a
whole class of arguments, which share a certain structure or a certain typing,
it would have been more correct to say that f is determined by a scheme
of equations Σ, so that each instance of the schema sets the behaviour of
f on specific arguments, indicating specific values. But this is not enough
either. In general, in fact, to define f it could be necessary to resort not to
a single equation scheme, but to a system of equational schemes Σ1, ...,Σm;
in a system, we will have also conditional clauses c1, ..., cm such that, in the
presence of the configuration ci, the scheme to apply to compute f will be
Σi (i ≤ m) – it goes without saying that the set of conditional clauses is
intended to cover all the possible cases of application of f , relative to the
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intended domain. The general form of the equational definition of an n-ary
operation can therefore be represented graphically as follows:

f(a1, ..., an) =


Σ1 if c1

...
...

Σm if cm

Each Σi (i ≤ m) could in turn resort to other operations f i1, ..., f ip, that we
will indicate writing Σi as

f i1 ◦ · · · ◦ f ipi(a1, ..., an).

In the following, we will find it convenient to call

f(a1, ..., an)

the definiendum, the system of equational schemes the definiens, and a1, ..., an
the equational context. Obviously, we take into account the case of m = 1,
and also that of m = 0 – the latter covers the empty function, for whichsee
Section 5.2.4.5.

So let f be an operation on grounds, and let S be the system that defines
it. We will say that f is recursively defined if, and only if, there exists a
scheme of equations Σ of S in which f appears. An operation on grounds is
defined recursively when the definiendum appears in the definiens, and the
graphical representation can be understood as having the form

f(a1, ..., an) =



Σ1 if c1

...
...

fp1 ◦ · · · ◦ f ◦ · · · ◦ fpqp(a1, ..., an) if cp
...

...
Σm if cm

Obviously, we are assuming that the definition is well posed, which in partic-
ular means that it is not circular, namely it does not create, in specific cases
of computation of the value of f , either infinite chains, or loops. A definition
for recursion will then proceed, in general, by setting the value of f on ar-
guments of a certain complexity, in terms of the value of f on arguments of
lower complexity. In fact, we have already come across in the course of our
discussion an operation on grounds recursively defined; it is the operation
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Ind, referred to in Section 5.2.4.5, accounting for the induction principle in
Heyting’s first-order arithmetic.

As for recursive definitions, it seems very difficult to imagine a positive
solution to the problem of recognition, and this also beyond the limitative
results that, in contemporary mathematical logic, apply to cases of analogous
definitions in arithmetic – just think alone of Turing’s halting problem (Tur-
ing 1936 - 1937). The fact that the definiendum appears in the definiens,
makes the definitions for recursion extremely complex, so that the task of
establishing that this circumstance does not cause circularity will be com-
plex, if not more. In addition, having to reason about the degrees of the
arguments the operation applies on, also requires to reason about the form
of such arguments – form on which the complexity will depend, according to
the domain of reference – and about the reciprocal relation between argu-
ments of different complexity. Finally, since the behaviour of the operation
on arguments of a certain complexity is fixed in terms of the behaviour of
the operation on arguments of lower complexity, it becomes essential also to
reason about the nature of the domain intended, in order to guarantee that
the ordering of the operational behaviour with the varying complexity of the
arguments is harmonic with respect to the structure of the domain to which
the arguments belong – the definition could be well posed with respect to
certain domains, but fail on others.

As an example, let us take into account Ind. In order to verify whether
the system of equational schemes that defines it – illustrated by us in Section
5.2.4.5 - is well posed, we have to complete a series of passages that are not
at all trivial. First of all, to establish that the value of the operation is well
defined with respect to a case of minimal complexity. Then, to note that the
reduction from a case of complexity δ to the case of complexity δ − 1 works
by virtue of the reducibility of the case of complexity δ − 1 to gradually less
complex cases, up to the minimum degree, and that this applies whatever the
degree. These first steps may to be taken, and play the role that is required
from them, only already knowing that relevant application arguments – nat-
ural numbers – can be canonically represented in the atomic system as 0,
or s(s(...(s(0))...), for a certain quantity of s, on the understanding that the
latter represents the successor function; this must serve to establish that the
reduction from the application case of complexity δ to the application case
of complexity δ − 1, whatever δ, defines the function on all possible relevant
arguments – again, the natural numbers; and, moreover, this also means that
it is required some understanding of the fact that the intended domain N is
of a nature such to guarantee that the whole of these steps is sufficient to
establish that the operation is well defined – namely, that N has, as it were,
an inductive structure, so much so that we, when showing the adequacy of
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Ind, had to resort to a meta-induction principle (which is something Prawitz
does, 2012a).

Definitions by recursion represent a first macro-group, and a second one is
obtained simply by denying that the system that sets up an operation is such
as to define the latter recursively – namely, f is defined in a non-recursive
way if, and only if, in its defining system S there is no Σ in which f appears.
Non-recursively defined operations can in turn be divided into two classes.

Let f be an operation on grounds, and let S be the system that defines
it. We will say that f is defined contextually if, and only if, there is a
scheme of equations of S such that each component of the expression of Σ
already occurs in the equational context. Contextual definitions are those
for the operations on grounds associated with the operational symbols ∧E,i
(i = 1, 2), ∨E, → E, ∀E and ∃E, which we discussed again in Section
5.2.4.5, and the definition of the operation f corresponding to the disjunctive
syllogism, therefore of operational type

α ∨ β,¬αB β,

when it is written as

f(∨I(g1), g2) = g1.

Although proving that an operation defined contextually is well posed
can be much easier than obtaining an analogous result for a recursively de-
fined operation, even in the case of contextual definitions recognizability is
problematic - especially when there are no restrictions on the classes of el-
igible operations and equations. The problem is that, here too, recognition
can only be obtained by reasoning on the equational context, and generally
a contextual definition will have to point out that the arguments to which
the operation is applied have some specific structure, a structure from which,
being at least one of the schemes of equations dependent on the context, de-
scends the good position of the same definition. For example, in the case of
the definitions of the operations associated to the operational symbols ∧E,i
(i = 1, 2), ∨E, → E, ∀E and ∃E, the recognition of their good position will
depend essentially on the form of the grounds for judgments or assertions
on propositions or sentences of different logical form. In addition, for a lot
of cases it often becomes necessary to reflect on the general structure of the
expected operational type, and on the consequences that from this structure
we can draw as regards the arguments to which the defined operation is ap-
plied - for example, in the case of the operation for the disjunctive syllogism
defined above, it should be noted that if g2 is a ground for ` ¬α, then g1
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must necessarily be a ground for ` β, because if it were a ground for ` α
we could, by combining it with g2, get a ground for ` ⊥. Such reflections
usually take place at a meta-level and, as already in the case of the systems
of equation schemes, there seems to be no upper bound to their potential
complexity.

Before describing the last class of operations and their definitions, we need
to make an observation. The recognition of the well position of the operations
defined recursively, or in a non-recursive but contextual way, could require, as
stated, to reason both on the form of the arguments to which the operations
apply, and on the domain to which these arguments belong. This means
that the recognition procedure will depend, in a rather specific sense, on
the context of application of the operation. In concrete terms, we can take
into account the derivations of systems of grounding of Chapter 6, Section
6.2.3.2, which prove the adequacy of the non-primitive operational symbols.
In them, it is necessary to make use of the rule that captures Dummett’s
fundamental assumption for the logical constant to which the symbol refers,
as well as of the defining equation of the symbol itself; the structure of the
derivation will vary as the logical constant considered varies. Now, we could
try to identify general properties, independent of the context, shared by all
the recognition procedures of this type – and by all the derivations of this
type - in order to define a recognition procedure to apply uniformly in all
cases. This would mean to substantiate the thesis (G) of Section 7.2.1; on
the other hand, though, although the task could in principle be possible
for formal closed frameworks, as a system of grounding, the fact that the
recognition procedure has to depend in essential points on the context seems
a insurmountable obstacle to the attainment of what we have called a global
recognition.

Now we come to the last type of operations defined in a non-recursive way.
Let f be an operation on grounds, and let S be the system that defines it.
We will say that f is reductively defined if, and only if: (1) in no component
of the expression of the equational context occur other operations on grounds
and (2) each scheme of the equations Σ of S is a composition of a non-null
number of operations on grounds (obviously different from f , since we are
assuming that the definition is non-recursive). The definition may therefore
be represented graphically as

f(a1, ..., an) =


f 1

1 ◦ · · · ◦ f 1
p1

(a1, ..., an) if c1

...
...

fm1 ◦ · · · ◦ fmpm(a1, ..., an) if cm

with pi ≥ 1 (i ≤ m), and where no aj (j ≤ n) mentions operations on
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grounds of any sort – in other words, aj can be understood as a meta-variable
for grounds or operations on grounds. The expression "reductive" can be
explained by the fact that S does nothing but "reduce" the behavior of f
to the behaviour (of the combination) of other operations; therefore, we do
not take into account in the strict sense the application context of f , but
only the application context of other operations in the terms of which f can
be defined. An example of reductive definition is that of the operation f
corresponding to the disjunctive syllogism, therefore of the operational type

α ∨ β,¬αB β,

whenever it is defined by the equation scheme – for convenience, we indi-
cate the operations involved in the definiens with the operational symbols
corresponding to them in the usual interpretation of these symbols –

f(g1, g2) = ∨E ξα ξβ(g1,⊥β(→ E(ξα, g2)), ξβ)

where, as noted, there is no further specification on the structure of g1 and
g2 – it is only necessary to suppose that they are grounds for, respectively,
` α ∨ β and ` ¬α – and where the definiens is a composition of a non-null
number of operations on grounds other than f .

Reductive definitions are a kind of "rewriting" of the operation to define
through a finite number of other operations – reasoning by analogy, we could
say that they correspond to the derivation of a non-primitive rule in a for-
mal system, the rules of which have already been justified with appropriate
reduction procedures. Hence, in this case we can indicate a criterion that,
when respected, guarantees recognizability: if, of all the operations involved
in the definition of f , we know that they are well posed, we can conclude that
also f is well posed – or better, we just have to verify that the combination
of operations in the defining system defining of f respects the typing, but
this can be done through a simple type-checking algorithm. Obviously, we
may not know that the operations used in the definition of f they are well
posed. However, we have to bear in mind that when we handle operations
on grounds, we can do it within a language or a system of grounding so as
described in chapters 5 and 6; and since these languages and systems are
obtained through expansions of less rich languages and systems, we could
guarantee – inductively, so to speak – the recognizability on languages and
systems in which the definitions (of the denotation) of non-primitive symbols
are reductively given, by appealing only (to the operations denoted by) the
operational symbols of the languages and systems prior to expansion.
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Conclusion

The theory of grounds undoubtedly shows strong comparisons with the whole
corpus of Prawitz’s semantic investigations. The questions he aims to answer
are, after all, the same that had already inspired proof-theoretic semantics:
what are correct inferences and reasoning, and why are they able to convey
knowledge, justification, and epistemic constraint? However, radically dif-
ferent, we could say almost diametrically opposite, is the perspective from
which these questions are understood and addressed.

The notions of deductively correct inference and reasoning are closely
related, and the treatment of one cannot but lead to the characterization
of the other. That is all the more true in the context of an explanation
of the epistemic power they both enjoy; the reasoning works thanks to the
"goodness" of the inferences that compose it, and the latter are acceptable
if they can be satisfactorily used to construct a convincing reasoning. But
then, where can we start the analysis? Shall we start from reasoning, or from
inferences?

Proof-theoretic semantics prefers the notions of valid argument and proof,
and reconstructs the notion of inferential validity in the global terms of the
structures in which these inferences occur. The theory of grounds, instead,
reverses the order and, by adopting a local point of view, uses valid inferences
as its bases, defining then valid arguments and proofs as concatenations. To
use a slogan, we pass from validity as transmission of justification, to validity
as production of justification. The change of direction, apparently simple,
requires a series of measures, and is fraught with interesting consequences.

If we have decided not to describe the validity of inferences in terms
of the structures in which they occur, on what basis then do we define it?
Prawitz’s answer, it seems to us, cannot avoid traveling along two paths,
at this point quite natural. First of all, to distinguish among the acts in
which the inferences appear, and this by virtue of what these acts have an
epistemic relevance for; the act leads to a state of justification reified by
Prawitz in terms of the notion of ground, and therefore considered as an
object. On the other hand, in order the bind to work, we must make sure
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that the act is per se able to generate the object. Therefore, the inference
will no longer be described like a mere transition to a certain conclusion
from certain premises; otherwise, what it produces would no longer be dis-
tinguishable from (a description of) the act constructed by performing it,
and furthermore, in non-canonical cases, it would be necessary to go through
a further justification, a reduction "external" to the inferential process. Here
is the theoretical location of the idea of understanding inferences as appli-
cations of operations on grounds, and the grounds as objects specifiable by
simple induction, obtained by applying only primitive, meaning-constitutive
operations. In addition, operations range from grounds to grounds and not,
as for the reductions of valid arguments in proof-theoretic semantics, from
non-interpreted structures to non-interpreted structures.

The characterization of inferential validity on the basis of objects defined
inductively starting from primitive operations, and the consequent shift of the
distinction between canonical/non-canonical at the level only (of description)
of the acts, leads to a first, fundamental result: a non-circular and satisfactory
explanation of the reciprocal link between inferences and correct reasoning.
In order to clarify the epistemic force, the theory of grounds seems to be far
more convincing than any path offered by proof-theoretic semantics; not like
in the latter the set of definitions is not formally correct, but it is obvious
that formal correctness is a condition only necessary, not sufficient, to answer
a question in the last analysis philosophical.

The last obstacle to overcome towards a successful explanation of deduc-
tive compulsion is then that problem of recognizability, shared by the theory
of grounds with proof-theoretic semantics. The fact that the inferential oper-
ations go from grounds to grounds, and the fact that the latter result from the
application of primitive operations, suggests a minimum progress, although
a progress limited to cases of inferences from premises devoid of free individ-
ual variables, not dependent on assumptions, and for which we already have
grounds. In all the other cases the problem remains, both at the semantic
level, as recognition of the good position of equations that define operations
on grounds, and at the syntactic level, as recognition of the valid denotation
of operational symbols or terms of languages of grounding, and the adequacy
of the identity axioms that regulate their behaviour in systems of grounding.

There are various ways to deal with, or at least investigate, the issue. The
most immediate one perhaps originates from a reflection on the notion of rec-
ognizability. What kind of recognition should we request? Is it decidability,
or any pragmatically describable operation? Is it to be independent of the
context, so as to be performed individually by the inferential agent, or it has
to go through a co-operation with other co-agents, in a shared and maybe
dialogic epistemic context? Does it have a conclusive character, or does it
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lead to a temporary acceptance, in principle revisable, of the inference we
have recognized as valid?

Given the magnitude of the theoretical breadth taken on by Prawitz, if
we want to pursue the "hard line", for example by requiring recognizabil-
ity to be in all respects decidability, there is no hope of succeeding. Some
cracks could be opened, also for a more precise formulation of the question as
such, through strong restrictions on the class of operations and defining equa-
tions admitted, aimed at making its boundaries less extensive and blurred.
The adoption of the "soft line" seems instead to leave more possibilities for
maneuver, although it exposes itself to the risk of making the concept of
recognizability inaccurate. In this case, however, many interesting develop-
ments are looming, as well as connections with more or less recent lines of
research. A contextual approach, such as that suggested by Cozzo (Cozzo
2015, 2017), could enlarge towards dialectical and dialogical perspectives, as
an integral part of the contemporary argumentation theory (see for example
Cantù & Testa 2006). A further alternative is Usberti’s internalist perspec-
tive (Usberti 2015, 2017 and, for a systematic and independent discussion,
2019); here, the recognizability problem is linked to the delicate question
of the grounding of empirical judgments or assertionss, as well as to the
characterization in terms of cognitive states, equipped by default of check-
ing algorithms that guarantee the recognition and accessibility of relevant
epistemic properties.

From a more formal point of view, the question of recognizability leads
to a general theory of admissible defining equations in the theory of grounds.
Structure, typology and general form of these equations, and consequently
properties of the operations they define, could constitute stand-alone subjects
of studies, regardless of the restrictions that can be made for a more precisely
defined framework. However, the approach taken in chapters 5 and 6 also
suggests a link with another line of research.

Languages and systems of grounding we presented constitute, as can be
easily seen, a hierarchy. Climbing this hierarchy means adding to the given
languages of grounding new individual constants, which represent new deriva-
tions in a new atomic base, and new non-primitive operational symbols, or
adding to the given systems of grounding new axioms for new individual con-
stants, and new axioms of identity for new non-primitive operational symbols.
Each language of grounding can be intended as a translation, through an
appropriate extension of the Curry-Howard isomorphism, of a (finitely) ax-
iomatizable (first-order) system, so that for each of these languages we could
assume of having decision algorithms that verify the denotation of the terms,
and for each of the formal systems of grounding related to these languages
we could assume the recursive enumerability of derivations. From this point

455



of view, it would certainly have importance, on account of the recognizability
problem, the following question: is it possible to find a method to recursively
generate all the possible expansions of a given language of grounding, with all
the possible defining equations for the operations denoted by the operational
symbols of these languages? And if so, to what extent?

Certainly, it applies for this question what has already been said about
the declination of the recognizability problem in the most stringent terms of
the notion of decidability; unless the class of equations and operations they
define is specified according to stricter parameters, it makes little sense to
wonder about the existence of a recursive method of generation. Moreover
we must bear in mind the limitative results that come into play as soon as
Prawitz’s project is intended with the generality to which it aspires; among
the bases of the languages of grounding we have also to take into account
those having an expressive power greater than or equal to the expressive
power of a base for Heyting’s first-order arithmetic, so that Gödel’s theo-
rems imply the impossibility of recursive generation, and the contemporary
internal decidability of each of the languages generated - pain the recursive
enumerability of the truths of first-oder arithmetic.

Once these considerations have been made, however, the study of specific
classes of expansions, of their properties, and of their obtainability starting
from elements already known, may have a certain interest, and give interest-
ing results. We limit ourselves to two examples: the class of the non-primitive
expansions of a Gentzen-language (on a certain base), which would corre-
spond to the class of the expansions of first-order intuitionistic logic (on a
certain base) obtained by adding constructively valid non-introductory rules;
the class of the primitive expansions of a language of grounding for Heyting’s
first-order arithmetic, obtained by adding ground-theoretical equivalents of
the reflection principle.

As for the first example, it seems to limit the range to the extensions
really relevant for the survey about completeness. After proving the fal-
sity of Prawitz’s conjecture (Piecha & Schroeder-Heister 2018), Piecha and
Schroeder-Heister envisage that completeness with respect to proof-theoretic
semantics - and therefore to the theory of grounds - could apply for some in-
termediate logic. On the other hand, we should verify whether proof-theoretic
semantics - and therefore the theory of grounds – can be understood as se-
mantics of rules, not derivable, but admissible in intuitionistic first-order logic
(for the notion of admissibility, see for example von Plato 2014). However, it
should be borne in mind that, at least in a non-substitutional articulation of
the notion of admissibility, there are rules admissible in IL, but not valid ei-
ther in proof-theoretic semantics, or in the theory of the grounds – whatever
the order of the quantifiers in the definition of validity. If we limit ourselves

456



to propositional intuitionist logic, for example, the rule

p
α

with p propositional variable and α whatsoever, results admissible but not
valid. Found a complete system, and verified that – given possible restrictions
on the notion of admissibility – Prawitz’s semantics captures the intuitionis-
tically admissible rules, we could study the issue of the recursive generability
of the expansions under examination in connection with that of the recursive
enumerability of the derivations of rules, or of the proofs of admissibility in
such systems.

As for the second example, a study of the expansions contemplated in it
could perhaps be fruitfully linked to Solomon Feferman’s research (see for
example Feferman 1958, 1988, 1991, 2013, 2016) on the generation of formal
arithmetic systems through transfinite iteration of the reflection principle or
the truth-operator.

Finally, beyond what has been said so far, and from a much more general
point of view, it could have some interest to make reference to the overall
picture of the theory of grounds, to the way in which it is linked to the ba-
sic ideas of the previous proof-theoretic semantics, to the formalization of
its main notions, and to the recognizability problem that, in various facets,
arises, assumptions, positions and tools in the research field of absolute prov-
ability. Taken into account the vastness of the sector, and the amount of
literature produced in it, at this point we can only limit ourselves to a quick
indication of those cues we believe to be more conceptually related to the
type of our argumentation.

In a recent article entitled Informal and absolute provability: some re-
marks from a gödelian perspective (Crocco 2018), Gabriella Crocco compares
the notion of informal rigour, as everybody knows defined by Kreisel (Kreisel
1960, 1967, 1987), with that of absolute proof, in the sense defined by John
Myhill (Myhill 1960), on the one hand, and by Gödel (see mainly Gödel 1946,
1972; see also Wang 1996) on the other. It turns out that, despite the termi-
nological differences, and barring the indubitable conceptual differences, the
positions of Kreisel and Myhill are similar, whereas that of Gödel seems at
the very least broader, if not opposite. Kreisel’s proposal proceeds initially
ex negativo, by contrast to the analysis of formal rigour specified by Turing
(Turing 1936 - 1937):

formal rigour does not apply to the discovery or choice of for-
mal rules nor of notions; neither of basic notions such as set in
so-called classical mathematics, nor of technical notions such as
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group or tensor product [...]. The "old fashioned" idea is that one
obtains rules and definitions by analysing intuitive notions and
putting down their properties. [...] What the old fashioned idea
assumes is quite simply that the intuitive notions are significant,
be it in the external world or in thought. (Kreisel 1967, 138)

Kreisel then resumes, albeit in a different perspective, a strategy adopted
years before, aimed at characterizing the informal concept of proof by means
of iterated extensions of finitary fragments of arithmetic (Kreisel 1960) –
reminiscent of what Turing did (Turing 1939), and later developed by Fe-
ferman (Feferman 1958, 1988, 1991). The applications reviewed – such as
higher-order axiomatizations and independence results in set theory, logi-
cal consequence and relative notion of completeness, non-standard models –
make it clear that

informal rigour precedes formalisation, since it concerns the dis-
covery and understanding of intuitive notions, and succeeds it,
since it tries to adjust the analysis of the intuitive notions to the
formal properties and relations expressed in the formal system
representing them, in the dialectical process of discovery of con-
cepts, definitions and rules [...] the notion of informal rigour, or
provability, that Kreisel analyses, has to do with the traditional
question of whether an axiomatic characterisation of an informal
concept is correct, and how to decide an undecided question, go-
ing beyond the formalisation with the help of informal principles.
(Crocco 2018, 3)

Myhill’s notion of absolute proof is inspired by Gödel’s incompleteness theo-
rems, pointing out how they show, for each formal system sufficiently power-
ful, the existence of correct inferences not accessible to that system – where
"correct" cannot be understood either as a syntactic, namely relative to a
formal system, or as a semantic notion, which Myhill interprets in the sense
of preservation of truth:

Gödel’s argument establishes that there exists for any correct for-
mal system containing the arithmetic of natural numbers, correct
inferences which cannot be carried out in that system - where
"correct inferences" is a notion neither of syntax nor of seman-
tics. (Myhill 1960, 463)

On this basis, Myhill professes an ideal of adherence to effective mathematical
practice, which in turn recalls an ideal of proof with respect to which the var-
ious historically produced formalisms would take the form of approximations
from time to time more refined. In any case, even here, this corresponds
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to the search for axioms, definitions and rules for axiomatic (for-
mal or not formal) theories. (Crocco 2018, 4)

What seems common to both Kreisel and Myhill is that the respective
notions of informal rigour and absolute proof are relative to more or less
generic axiomatizations, with respect to notions that, in a sense, inspire,
guide and lead to such formal approaches. Between the formal and informal
level a sort of dialectical relationship is established informally, so that

neither Kreisel’s notion of informal rigour nor Myhill’s notion of
absolute provability are conceived in opposition to the search for
axiomatic systems. Both consider this search as essential for the
analysis of logical dependencies among mathematical propositions
and among the concepts they contain [...] both Kreisel and Myhill
address the question of the possibility for us to have access to
the limit of such approximations, and more specifically of the
possibility of a uniform and general method to reach this limit,
i.e. to achieve a sort of general and informal method of discovery
and analysis. (Crocco 2018, 5)

However, the very fact of asking this question seems to envisage the possi-
bility of a further generalization:

in this respect the important question would be: is there a general
notion of provability [...] independent of the subject matter of
arithmetic, analysis or set theory? (Crocco 2018, 5)

If Kreisel and Myhill – the latter with reservations – answer negatively, the
question leads almost immediately to Gödel’s perspective, who first distin-
guishes two meanings of the expression "formal" and, accordingly, "infor-
mal".

The first, to be found in On an hitherto unutilized extension of the finitary
standpoint (Gödel 1958), is linked to a discussion of the concept of abstract
notion, so as used by Paul Bernays in Sur le platonisme dans les mathéma-
tiques (Bernays 1953). Paraphrasing Bernays, Gödel recalls that, since the
consistency proof for a first-order system for arithmetic cannot be based on
proof-means weaker than the system itself, it is necessary to go beyond the
finitary point of view - à la Hilbert (Hilbert 1985) – and hence beyond its
relying on principles the acceptability of which is linked to mere combina-
torial properties and is therefore intuitive in nature. We need to turn to
abstract notions based on – in the words of Gödel – mental constructs, and
insights of such constructs, that capture properties of the signs involved, not
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combinatorial, but linked to meaning. Hence, when referring to Gentzen’s
consistency proof (Gentzen 1936) based on the ω-rule, Gödel argues that

we cannot acquire such knowledge intuitively by passing stepwise
from smaller to large ordinals; we can only gain knowledge ab-
stractly by means of notions of higher type. This is achieved by
means of the abstract notion of "accessibility", which is defined
by our being able to give an informally understood proof that a
certain kind of inference is valid (Gödel 1958, 243)

In passing, as for the translation of "informally" from the German "in-
haltlich", and its correspondents in Gentzen, the reader can refer to Došen &
Adžić’s Gödel on deduction (Došen & Adžić 2017b). This kind of informality
comes close Kreisel, since

what is formal [...] is symbolic, concrete and intuitive (in the
Hilbertian sense), for it concerns signs and combinations of signs.
On the contrary, what is informal [...] is abstract, non spatio tem-
poral, i.e. it cannot be apprehended by our five senses, but only
through insights concerning the meaning of the signs. (Crocco
2018, 7)

In any case, to this use of the expression "formal", which Crocco indicates
with formal1, Gödel prefers another one, of which there is trace in the frag-
ment 8.6.1 of Wang’s text, A logical journey. From Gödel to philosophy :

the general concepts of logic occur in every subject. A formal
science applies to every concept and every object. (Wang 1996,
274)

Therefore, unlike formal1, what Crocco indicates with formal2

explicitly means "universal applicability", in the largest possible
sense, i.e. not merely "universal applicability to objects" (that is,
applicability to objects irrespective of what has been called the
semantic domain of a concept, i.e. the specific domain of objects
relative to which it is significant), but also "universal applicabil-
ity to concepts", without any restriction of type. [...] the general
concepts of logic ([...] conjunction, negation, existence, general-
ity, but also the concept of object, the concept of concept and
the relation of application of a concept to its arguments) occur in
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every domain, and that is the reason why logic is a formal2 disci-
pline. Logical concepts are genuine concepts, i.e. concepts with
their own meaning, and certainly not syncategorematic notions
of formal1 theories. (Crocco 2018, 7 - 8)

Another dyad corresponds to the dyad formal1/formal2, concerning, this
time strictly speaking, the Gödelian notion of absolute proof. Crocco distin-
guishes between a weak type, and a strict type, and emphasizes how

"absolute" means "non-relative to any particular formal system
or formalized language", but there is also more than that. [...]
Gödel considered Turing’s definition "a miracle" (Gödel 1946,
150). It is a miracle because, being independent of any language
and formal systems, it cannot be subject to any diagonalisation.
It is also a miracle because it is strictly independent of any do-
main of things, contrary to the equivalent notions of recursive
function, defined on natural numbers, and of Church’s calcula-
bility, defined on lambda terms. Since such an analysis of me-
chanical computability is possible, it may also exist for absolute
provability. (Crocco 2018, 9)

Both these readings occur in Remarks before the Princeton bicentennial con-
ference on problems in mathematics (but see also Gödel 1972), first with a
reference to the possibility of generating a hierarchy of formal systems by
transfinite reiteration of certain operations on a given formal system, and
then with abstraction from formal contexts of sorts:

there cannot exist any formalism which could embrace all these
steps; but this does not exclude that all the steps (or at least all
of them which give something new in the domain of propositions
in which you are interested) could be described and collected
together in some non constructive way [...] the concepts arrived
at or envisaged were not absolute in the strictest sense, but only
with respect to a certain system of things, namely the sets as
conceived in axiomatic set-theory; i.e. although there exist proofs
and definitions not falling under these concepts, these definitions
and proofs give, or are to give, nothing new within the domain
of sets and of propositions expressible in term of "sets", "∈" and
the logical constants. (Gödel 1946, 151 - 153)

Thus, we have a certain parallelism: the notion of in-formal1 corresponds to
weak absoluteness, but Gödel extends the conception of Kreisel and of Myhill,
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contemplating a notion of strict absoluteness, which corresponds instead to
that of formal2. In the first case, we have independence from formal languages
and systems, in the second also independence from specific domains or typing
of concepts. To borrow again from Crocco,

the weak sense includes Kreisel’s notion of informal proofs [...]
and Myhill’s notion of absolute provability. They both presup-
pose a sort of reflection principle, and a kind of completion of
the sequences of iterated steps. The strict sense [...] presupposes
independence of any domain of applicability and is therefore fully
formal2. [...] The use of absolute concepts (in the weak sense)
provides a sort of epistemological fixed-point, which implies the
stability and the completability of knowledge in the domain. Nev-
ertheless [...] if mechanical computability is strictly absolute, the
possibility of strictly absolute [...] provability seems conceivable.
(Crocco 2018, 10 - 11)

On the basis of the theoretical framework just offered, we may wonder
whether Prawitz’s provability can be linked to the aforementioned research
on absolute provability and, if so, whether this connection goes in the direc-
tion of informal rigour in Kreisel and of absolute provability in Myhill, or
rather towards Gödel’s formal2 or strict absolute provability. The notions of
valid argument, proof and ground, which in various ways occur in Prawitz’s
more or less recent investigations, are intended to capture a semantic idea
of provability, that is, a general concept that does not coincide with that of
derivation in a formal system – although inspired by results in normalization
theory for specific formal systems. Obviously, a detailed and exhaustive an-
swer would require a separate work; we will limit ourselves therefore only to
indicate some points, as possible perspectives for any future research.

Kreisel’s and Myhill’s informal/absolute provability has with the formal
one a dialectical relationship, going beyond it and, at the same time, pre-
serving its results and its structural properties. The identification of new
rules and of new definitions, which allows the transition to more and more
powerful formal systems, is carried out through a process that, from time
to time, depends on acquired results, limitative and non-limitative. Conse-
quently, the process is rigorous but informal, in the sense that it goes beyond
what can be achieved in a given system starting from the conformation of the
system itself. It is therefore a sort of generalization, with respect to which
Kreisel and Myhill suggest an ideal method of approximation.

Also the semantic approach to provability proposed by Prawitz qualifies
as general, in the sense of not being reducible to some specific formal system,
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and this to the extent that factual circumstances or limitative results testify
to the existence of deductive methods acceptable but inaccessible to closed
groups of rules and axioms. The deductive practice ordinarily considered
acceptable does not seem to be limited to any system, fixed or a priori
determinable; nor, if we turn to systems powerful at least as much as first-
order arithmetic, the existence of such a system is possible, as proven by the
undecidable sentences of Gödel’s theorems. This, in the first place, influences
the nature of the notions of valid argument, proof and ground as such, a point
for which we can report the following quote from Prawitz:

the presence of→ and ∀ have the effect that in general the condi-
tions for asserting a sentence cannot be exhausted by any formal
system; or better: although the general form of the condition for
something to be a canonical proof of a sentence α→ β is formally
stated [in the BHK clauses] in which only the subsentences α and
β are mentioned, there is no formal system generating all the pro-
cedures that transform canonical proofs of α to canonical proofs
of β [...]. Consequently, while the operations of forming canonical
proofs run parallel to the introduction rules of Gentzen’s system
of natural deduction, it is clear that the rules for asserting a
sentence do not amount to inference rules of any formal system.
(Prawitz 1977, 29)

However, the implications also concern the formal framework in which valid
arguments, proofs and grounds should be considered. In the case of the
theory of grounds, in particular, a language of grounding cannot be closed,
requiring on the contrary, indefinite additions of ever new operational sym-
bols for ever new operations on grounds. And here again, Prawitz refers to
incompleteness:

we know because of Gödel’s incompleteness result that already
for first order arithmetical assertions there is no closed language
of grounds in which all grounds for them can be defined; for
any such intuitively acceptable closed language of grounds, we
can find an assertion and a ground for it that we find intuitively
acceptable but that cannot be expressed within that language.
(Prawitz 2015, 98)

The intuitive acceptability of a ground, not expressible in a closed language of
grounding requires to expand this language – where it would be interesting to
investigate, also reconnecting to the points risen just above, if the expansion
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process of languages of grounding can be understood in the sense of Kreisel’s
informal rigour. The perspectives of Kreisel, Myhill and Prawitz therefore
seem to have some points in common.

Does the same applies to a comparison with Gödel’s strict absoluteness,
the formal2? It is not easy to answer this question, if only because, as Crocco
points out,

there is no way to characterize this strict notion of absolute prov-
ability except through a "negative" analogy with Turing’s notion
of mechanical computability. As the latter is strictly absolute,
we cannot exclude that the former is also able to be defined in a
strict absolute way. (Crocco 2018, 12)

On the other hand, Prawitz focuses on structural aspects and semantically
relevant properties of proofs, on an increasingly general theory completely
distinct from its Hilbertian reductive analogue (Prawitz 1973, Abrusci 1985,
Cellucci 1978, 2007) – which, moreover, seems to occur also in similar ap-
proaches, such as in Martin-Löf’s intuitionistic type theory (1984), or Gi-
rard’s work in Linear Logic, Geometry of Interaction and Ludics (Girard
1987, 1989, 1990, 2001; see also Girard, Taylor & Lafont 1993). In this
regard, if Crocco notes that

proof theory is certainly not part of the formalist paradigm, ex-
actly because in the tradition of Gentzen’s work it tends toward
a natural analysis of first-order logic with intensional tools. The
steps in which a proof can be analysed, the search for its "geomet-
rical" structure through cut elimination, are all tools for explain-
ing why a proof is epistemically compelling and how inferences
have the epistemic power of justifying mathematical propositions
and judgments, (Crocco 2018, 14)

Gödel also often went in the direction of a general proof-theory, as evidenced
by some of his notes (for which see Došen & Adžić 2016, 2017a, 2017b).

In any case, a first problem encountered when linking Prawitz’s inves-
tigations to Gödel’s absolute provability in the strict sense arises from the
different perspective that one and the other adopt about the relation between
inferences and reasoning. This is very evident in the case of the theory of
grounds, where the validity of inferences is defined locally, and has a priority
over the notion of proof; for Gödel, on the other hand, an inference is

something that, attached to a proof, gives as a result a proof,
where a proof [...] is not “a sequence of expressions satisfying
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certain formal conditions, but a sequence of thoughts convincing
a sound mind”. (Crocco & Piccolomini d’Aragona 2018, 4; la
citazione interna è da Gödel 1995, 341)

The reasons that lead Gödel to this approach, however, also explain the dif-
ferences from proof-theoretic semantics. Certainly, in the latter, inferential
validity is defined globally, in terms of the notion of proof, but the analysis is
based on intended compositional properties, focusing on an aspect – canon-
icity – which is after all local to the extent that it attributes a privileged
role to inference rules or inferences of a specific type – introduction of log-
ical constants. Gödel’s point of view appears instead much broader, global
almost in the sense of holistic, or at least not strictly compositional. The
aforementioned analogy with Turing goes in fact far beyond the results of an
analysis of computability in terms of Turing machines:

Gödel thinks that if we could attain for the concept of (human)
provability, an analysis similar to Turing’s (and therefore strictly
absolute), we should be able to analyse what "provability in every
domain" means. Therefore, we should be able to give a universal
uniform method for solving every problem in all possible domains.
[...] There are two general characteristics of a Turing machine
in its calculating process: determinism [...] and finiteness [...].
However, systematic methods for actualising the development of
our understanding of the abstract terms implied in a proof can,
for humans, (contrary to computers), converge towards an infinity
of distinguishable states of mind. (Crocco 2018, 10)

Therefore, it would appear that the question of the systematic method for the
understanding of abstract terms leads Gödel, among other things, to identify
in non-locality the essential character of strict absolute provability:

non-locality seems to be the core of Gödel’s argument. It im-
plies that the acquisition of evidence for human subjects cannot
be reduced to elementary steps given once and for all. An infer-
ence can become evident when we take into account the global -
i.e. non-local - features of what has been proved on the basis of
previous evidence. (Crocco & Piccolomini d’Aragona 2018, 4)

A thorough analysis of the distinction between Gödel’s non-locality and Tur-
ing’s determinism can be found in Webb’s (Webb 1990) introduction to Some
remarks on the undecidability results (Gödel 1972a). According to Webb -
as well as to Feferman, as Webb himself reports - Turing’s determinism is
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connected with Gödel’s acceptance of Turing machines as adequate for defin-
ing the notion of mechanical procedure - together with some diagonalization
issues. On the other hand, Webb also remarks that Turing’s finiteness con-
dition on mental states concerns memory, and that therefore Gödel’s idea
might be that the convergence to infinity of the number and precision of
abstract terms implies that the number of distinguishable states of mind also
converges to infinity. This sheds light upon Gödel’s own view, as distinct
from Turing’s one, on abstract terms and states. Abstract terms, no matter
how complex, can be understood more and more precisely, so that we can
enter more and more complex states of mind. For Turing, the lack of states of
unlimited complexity can be compensated - as in the case of Turing Universal
Machine - by enriching the list of symbols writable on the tape.

The fact that strict absoluteness is independent of language and of the
typing of concepts is another feature that, we believe, puts a distance be-
tween Prawitz and Gödel. The notions of valid argument and proof in proof-
theoretic semantics, or of ground in the related theory, are always defined on,
or obtained by abstraction from, bases that fix the meaning of individual con-
stants, functional symbols and relational symbols of a background language;
and even when the base is empty, purely logical, as it were, the fact remains –
maximally evident in the theory of grounds – that semantic objects are typed
on terms and formulas of the background language. On the contrary, Gödel’s
proposal seems to go rather in the direction of a purely structural treatment
of proofs, an identification of principles and global properties in deductive
methods on whatever domain and whatever language. Given Gödel’s interest
in Turing’s work on mechanical computability, this could materialize in the
delineation of the "movements" which, in as a general manner as possible,
can be performed during a demonstrative act.

In this regard, as well as at the end of our work, we remark that in re-
cent times Girard (Girard 2001) has introduced Ludics, a sort of logic of the
dynamics of the proofs. The key notion here is that of interaction between
a proponent and an opponent, and deductive activity is explained through
that, more basilar, of "proof-game" or "proof-search"; from a technical point
of view, the interaction corresponds to cut-elimination on para-proofs with
(linearly) orthogonal conclusions, of which the normal form is intended to
correspond to a locally "winning" proof – which will be a proof if "win-
ning" in all possible interactions. Significantly, Ludics is totally untyped,
and the types – namely the formulas of the logical language - are recon-
structed internally, on the basis of some properties attributable to certain
sets of para-proofs. It is not a case, after all, that Girard uses for his theory
the slogan "from the rules of logic, to the logic of rules".

It is not possible here to go into the details of Ludics, but the question
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concerning the relation between Prawitz and Gödel could, in the light of the
connections just highlighted, lead to that, in our opinion equally interest-
ing, of an embedding of the theory of grounds, and of its basic ideas, into
Girard’s framework (for a first, purely indicative suggestion in this direc-
tion, see Catta & Piccolomini d’Aragona 2019). The differences concerning
the typing – and further questions, such as, for example, the fact that Lu-
dics is designed primarily for a second-order linear logic system, and the
fact that it comes closer to bidirectionalism rather than to verificationism
- could be bypassed by bearing in mind some recent works. To name only
a few: Marie-Renée Fleury and Myriam Quatrini deal, among other things,
with definability of first-order quantifiers in Ludics (Fleury & Quatrini 2004,
Quatrini 2014), Eugenia Sironi (Sironi 2014) investigates the translatability
into Ludics of Martin-Löf’s (dependent) types, at the atomic level, or at the
first order, some articles of Schroeder-Heister offer good hints to insert Ludics
bidirectionalism in the field of investigation of generalized elimination rules
(Schroeder-Heister 2009, 2012).

Therefore, the research perspectives are plentiful, even in concluding the
discourse so far carried out, taking into account the approaches that can be
drawn for further developments and insights.
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Résumé

Dans la récente théorie des grounds, Prawitz développe ses investigations sémantiques dans la direction d’une analyse
de  l’origine  et  de la  nature du pouvoir  que les  inférences valides  exercent  sur  des  agents  engagés  dans l’activité
déductive ; à savoir, le pouvoir d’obliger épistémiquement à accepter les conclusions, si l’on en a accepté les prémisses.
Un ground,  grosso modo,  est  ce dont on est  en possession lorsqu’on est justifié à affirmer un certain énoncé. Les
grounds peuvent être construits en accomplissant des opérations qui permettent le passage d’un état de justification à un
autre. Un acte d’inférence consiste à l’application d’une opération des grounds pour les prémisses aux grounds pour la
conclusion. La théorie des grounds présente des avancements indubitables par rapport  à la précédente approche de
Prawitz, la proof-theoretic semantics. En particulier, la théorie des grounds offre une définition du concept d’inférence
valide en vertu de laquelle il devient possible de faire dépendre la contrainte épistémique des démonstrations de celle
des inférences valides dont ces démonstrations se composent. Mais théorie des grounds et  proof-theoretic semantics
partagent un problème ; dans l’une comme dans l’autre, inférences valides et démonstrations pourraient être telles qu’il
est impossible, pour des agents qui les utilisent, de reconnaître le fait qu’elles justifient leur conclusion.  Dans ce travail,
nous allons développer le cadre formel de la proposition de Prawitz en introduisant un « univers » de grounds et
opérations sur grounds, ainsi que des langages formels de grounding dont les termes dénotent grounds ou opérations sur
grounds. Nous proposerons aussi des systèmes de grounding, à l’aide desquels démontrer des propriétés significatives
des termes des langages de grounding. Finalement, nous nous occuperons de deux questions concernant langages et
systèmes. Tout d’abord, celle de la complétude de la logique intuitionniste par rapport à la théorie des grounds ; en
second lieu, nous poursuivrons une analyse du problème de reconnaissabilité déjà évoqué.

Riassunto

Nella recente teoria dei grounds, Prawitz sviluppa le sue indagini semantiche nella direzione di un’analisi dell’origine e
della natura di quella speciale forza che le inferenze valide esercitano su agenti impegnati nell’attività deduttiva: la
forza di costringere epistemicamente ad accettare le conclusioni, se se ne sono accettate le premesse o le ipotesi.  Un
ground è,  grosso modo, ciò di cui si è in possesso quando si è giustificati nell’asserire un certo enunciato. I grounds
possono essere costruiti compiendo operazioni che consentano il passaggio da uno stato di giustificazione all’altro. Un
atto inferenziale consiste nell’applicazione di un’operazione dai grounds per le premesse ai grounds per la conclusione.
La teoria  dei  grounds presenta indubbi avanzamenti  rispetto al  precedente approccio di  Prawitz,  la  proof-theoretic
semantics. In particolare, la teoria dei grounds offre una definizione della nozione di inferenza valida in virtù della
quale diventa possibile far dipendere la costrizione epistemica esercitata delle dimostrazioni da quella esercitata dalle
inferenze valide di cui le dimostrazioni si compongono. Ma teoria dei grounds e proof-theoretic semantics condividono
un problema; nell’una come nell’altra, inferenze valide e dimostrazioni potrebbero essere tali da risultare impossibile,
ad agenti che ne facciano uso nella concreta pratica deduttiva, un riconoscimento del fatto che esse giustificano la loro
conclusione.  In  questo  lavoro,  il  quadro  formale  della  proposta  di  Prawitz  sarà  da  noi  articolato introducendo un
"universo" di grounds ed operazioni su grounds e, poi, linguaggi formali di grounding i cui termini denotano grounds od
operazioni su grounds. Accanto ai linguaggi di grounding, proporremo anche sistemi di grounding, in cui dimostrare
proprietà rilevanti dei termini dei linguaggi di grounding. Ci occuperemo infine di due questioni relative a linguaggi e
sistemi.  Innanzitutto,  la  questione  della  completezza  della  logica  intuizionista  rispetto  alla  teoria  dei  grounds;  in
secondo luogo, perseguiremo una disamina del succitato problema di riconoscibilità.


