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Les progrès technologiques en séquençage haut débit et en manipulation cellulaire permettent d'analyser simultanément et indépendamment le contenu de nombreuses cellules (ARN, ADN,...). Cette révolution "omique" offre un nouveau cadre pour revisiter la "Théorie Cellulaire", essentiellement basée sur des caractéristiques morphologiques et fonctionnelles. Les nombreuses modalités cellulaires désormais accessibles au niveau de la cellule unique, telles que leur transcriptome, leur localisation spatiale, leurs trajectoires développementales, enrichissent considérablement cette définition, et établissent un contexte totalement renouvelé pour réévaluer la définition de "types" ou d'"états" cellulaires ainsi que leurs interactions. Mon travail de thèse a été de mettre en place des approches statistiques appropriées pour analyser ces données transcriptomiques sur cellule unique caracteriseées par une forte variance, la présence d'un pourcentage élevé de valeurs nulles et un grand volume de données. Mon travail s'est focalisé sur le modèle expérimental central de mon laboratoire d'accueil, l'épithélium des voies respiratoires humaines. Les voies respiratoires humaines sont bordées d'un épithélium pseudo-stratifié composé principalement de cellules basales, sécrétrices, à gobelet et multiciliées. Les voies respiratoires constituent en outre un véritable écosystème cellulaire, dans lequel la couche épithéliale interagit étroitement avec les cellules immunitaires et mésenchymateuses. Cette coordination entre les cellules assure une bonne défense du système respiratoire et sa correcte régénération en cas d'agressions extérieures. Une meilleure compréhension des situations cellulaires normales et pathologiques peut améliorer les approches pour lutter contre des pathologies telles que la maladie pulmonaire obstructive chronique, l'asthme ou la mucoviscidose. J'ai d'abord pu caractériser au niveau de la cellule unique la séquence précise et spécifique des événements conduisant à la régénération fonctionnelle de l'épithélium, en utilisant un modèle 3D de cellules humaines. J'ai identifié des hiérarchies de lignées cellulaires et j'ai pu reconstruire les différentes trajectoires possibles de différentiation cellulaire. J'ai confirmé des trajectoires cellulaires décrites précédemment, mais j'ai aussi découvert une nouvelle trajectoire reliant les cellules à gobelet aux cellules multiciliées, identifiant de nouvelles populations cellulaires et de nouvelles interactions moléculaires impliquées dans le processus de régénération de l'épithélium sain des voies aériennes humaines. J'ai ensuite construit un atlas des différents types cellulaires qui tapissent les voies respiratoires humaines saines, du nez jusqu'à la 12ième génération de bronches. Le profilage de 10 volontaires sains a généré un ensemble de données de 77 969 cellules, provenant de 35 emplacements distincts, qui comprend plus de 26 types cellulaires épithéliaux, immunitaires et mésenchymateuses. Cet atlas illustre l'hétérogénéité cellulaire présente dans les voies respiratoires. Son analyse révèle une difference d'expression des gènes entre le nez et les voies respiratoires pulmonaires que j'ai caractérisé dans les cellules suprabasales, sécrétrices et multiciliées. Mes travaux ont également permis d'améliorer la caractérisation de certaines populations de cellules rares, comme les cellules "hillock", déjà décrites chez la souris. En conclusion, mon travail contribue à une meilleure compréhension des dynamiques de différenciation et d'hétérogénéité cellulaire dans les voies respiratoires humaines saines. La ressource ainsi constituée sera extrêmement utile dans tout projet futur visant à analyser avec précision les conditions spécifiques des maladies respiratoires.
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I Introduction 1 

The single cell revolution

The first description of a cell (from Latin cella, meaning "small room") was done by Robert Hooke in 1665 in his book Micrographia (Hooke 1635(Hooke -1703, n.d.), n.d.). He described the 'cells' based on their morphology as he observed small pores in thin slices of cork through the microscope (Figure 1.1). From this initial description, and others work, emerged the first cell theory by Theodor Schwann and Mathias Jakob Schleiden in the 1830s. It stated that cells compose all living organisms being the most basic structural and functional unit of life. A third key tenet, added by Rudolf Virchow in 1855, described all cells as arising from pre-existing cells (in Latin Omnis cellula e cellula) and moved the belief away from the spontaneous generation of life. Following this unifying principle of biology, many publications described the cell diversity seen in living organisms. According to the currently available technology (microscopy), cells were characterised by their associated tissue, their morphology or their specific function. As technology and scientific knowledge improved, other features, such as proteins, lipids, or metabolites, were used to develop a molecular cell classification. For instance, the cluster of differentiation in immunology was proposed and established in 1982 for the classification of the many monoclonal antibodies against surface molecules [START_REF] Chan | A simple guide to the terminology and application of leucocyte monoclonal antibodies[END_REF]. Notably, many of the former classification methods were based on a small number of markers/descriptors for each cell, which possibly biased the corresponding cell type definitions. We now have the numerous tools (which are still continuously improving) to describe more comprehensively the complexity of each cell and reform the concept of 'cell type' [START_REF] Stuart | Integrative single-cell analysis[END_REF].

Multiple cellular modalities measurable at single-cell resolution

Transcriptomic profile of single cells

The cell transcriptome is defined as a snapshot in time of the total transcripts present in a cell. Its study, through instrumental techniques, makes possible the qualitative and quantitative assessment of gene specific expression in multiple species. It brought an improved understanding into the regulation of gene expression and the plethora of distinct behaviours/functions, physiological states and cell types arising from identical genomes. If the process of transcriptome analysis is well established, there are a lot of essential steps that can tremendously affect the final output. RNA sequencing includes RNA extraction, mRNA enrichment, cDNA biosynthesis, preparation of an adaptor-ligated sequencing library and library sequencing. The following computational analysis performs sequence alignment to a reference genome, sequence quantification to its corresponding genes, normalisation between samples and statistical analysis of significant changes in gene expression levels [START_REF] Stark | RNA sequencing: the teenage years[END_REF]. Transcriptomic analysis is increasingly impacting the molecular biology field. It provides a unique framework at the levels of bench-work and computational analysis for an unprecedented quantitative description of biological systems.

One of the earliest sequencing-based transcriptomic methods was the serial analysis of gene expression (SAGE) described in 1995 [START_REF] Velculescu | Serial analysis of gene expression (SAGE)[END_REF][START_REF] Velculescu | Characterization of the yeast transcriptome[END_REF]. It used the Sanger technique to sequence concatenated random transcript fragments. Its output can be increased up to the quantification of over 1000 transcripts with the use of an automated sequencer. Computationally, it led to the development of specific analysis software (SAGE Software group), based on the BLAST algorithm, to map transcript fragments to a reference transcript database (GenBank release 87) [START_REF] Altschup | Altschul-1990-Basic Local Alignmen[END_REF].

Transcriptomic technologies are evolving rapidly, and SAGE was quickly overtaken by high-throughput sequencing techniques. Microarrays [START_REF] Schena | Quantitative monitoring of gene expression patterns with a complementary DNA microarray[END_REF] and RNA-seq [START_REF] Nagalakshmi | The transcriptional landscape of the yeast genome defined by RNA sequencing[END_REF] technologies were developed respectively in the late 1990s and early 2000s. Microarrays measure the abundance of a defined set of transcripts through their specific hybridisation to an array of thousands of complementary probes. To do so, transcripts are reverse-transcribed into cDNA with a fluorescent dye and laser scanner quantify their abundance based on the colour intensity emitted following hybridisation to the complementary probes. Such data type required the development of specific analysis software to normalise dye intensities for two-colour arrays and allow corresponding differential expression analysis (M. Robinson et al., 2010;[START_REF] Ritchie | Limma powers differential expression analyses for RNA-sequencing and microarray studies[END_REF]. Major improvements in nucleic acid sequencing led to the advent of RNA-sequencing approaches. They measure the abundance of each transcript based on the count of transcripts-fragments (reads) aligned to a reference sequence. The amount of data produced (' 10-50 million reads per sample) required computationally efficient alignment tools, but also a completely new statistical framework to robustly compare thousands of gene expression values across samples (McCarthy et al., 2012;Love et al., 2014). The use of these methods became a standard in molecular biology to identify changes in gene expression between conditions (health vs disease, drug response) or during development and differentiation. A significant limitation of early transcriptomic approaches was the requirement of a large amount of mRNA. mRNA quantification was thus performed on a mixture of many different cells in diverse physiological states (cell cycle, migration, stress) and from numerous origins/types. It produced an average transcriptome measure of all cells in the sample which implies that cell-specific signal might be missed and/or that gene expression measurements might be correlated to the cell type proportions within the sample.

In 2009, technical limitations were once again pushed back by the first description of single-cell mRNA sequencing technique [START_REF] Tang | mRNA-Seq whole-transcriptome analysis of a single cell[END_REF]. It enabled the sequencing of the transcripts present in handpicked cells and constituted an improvement from already existing single-cell microarray techniques [START_REF] Kurimoto | An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis[END_REF]. This impressive innovation was named "Method of the Year" by the journal Nature Methods in 2013 and "Breakthrough of the Year" by the journal Science in 2018. In the following years, numerous protocols were developed to sequence up to hundreds or thousands of cells in one experiment (Figure 1.2). A recent review described the exponential scaling in size and number of single RNA-seq datasets and publications [START_REF] Svensson | Exponential scaling of singlecell RNA-seq in the past decade[END_REF]. They noticed that these improvements were made possible by innovative solutions to three key technical challenges:

• Untargeted amplification of whole transcriptomes from single cells improved by minimising reagent volumes.

• Automatic isolation of cells scaled up due to the use of microfuildics technologies and random capture methods.

• The ability to process many cells in parallel enhanced by the introduction of in situ barcoding. As my thesis is focused on the analysis of single-cell RNA-seq data (scRNA-seq), I will describe these fast-paced changes and improvements in scRNA-seq technologies as well as the numerous corresponding computational analysis tools in the following chapters. I will first, for the sake of completeness, briefly describe the other cell features which can be observed at single-cell resolution.

Epigenomic studies at single-cell resolution

The study of cell transcriptomes supports the idea that gene activity is a good proxy to track the establishment and maintenance of cellular identity. Yet, it does not include the many regulatory layers, such as epigenomic, that contribute to a given functional output. They cover a diverse and interconnected set of transcription factors (TFs), chromatin regulators (histones), chemical modifications of genomic DNA (DNA methylation). Comparably to transcriptome analysis, epigenomic was previously studied on bulk assays which gave averaged maps of regulatory elements over cell populations such as Encyclopedia of DNA Elements, Roadmap Epigenomics Project and International Human Epigenome Consortium [START_REF] Dunham | An integrated encyclopedia of DNA elements in the human genome[END_REF][START_REF] Yen | Integrative analysis of 111 reference human epigenomes[END_REF][START_REF] Stunnenberg | The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery[END_REF].

The improvements in scRNA-seq technologies and increased recognition of cell-tocell variations led to the development of numerous single-cell epigenomic technologies (Figure 1.3). It enabled the progressive answer to numerous questions that could not be addressed before acquiring single-cell resolution. For instance, can epigenetic elements properly describe cell types and cell states, how heterogeneous are cell epigenomes? And ultimately, how epigenomic heterogeneity relates to transcriptomic states? What is the time scale between transcriptomic and epigenomic regulation in the study of cell fate? [START_REF] Kelsey | Single-cell epigenomics: Recording the Past and Predicting the Future[END_REF][START_REF] Shema | Single-cell and single-molecule epigenomics to uncover genome regulation at unprecedented resolution[END_REF] The analysis of DNA modifications and more precisely DNA methylation can be done by single-cell bisulfite sequencing. It converts unmodified cytosine to thymine and preserves methylated cytosine which enables the identification of methylation sites at singlebase precision (H. [START_REF] Guo | Single-Cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing[END_REF]. DNA methylation has been shown to promote or inhibit TFs binding actively. Its analysis at single-cell level enabled the mapping of active demethylation at promoters of developmentally important genes in advance to changes in gene expression (C. [START_REF] Zhu | Single-Cell 5-Formylcytosine Landscapes of Mammalian Early Embryos and ESCs at Single-Base Resolution[END_REF].

Another approach to evaluate the epigenomic regulation layer is to assess chromatin accessibility. It provides information about nucleosome positioning on the genome. The approach, entitled Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq), probes DNA accessibility through the insertion of sequencing adapters by the prokaryotic Tn5 transposase. This modification is only possible in accessible regions of the genome, whereas inaccessible regions are left intact [START_REF] Buenrostro | Single-Cell chromatin accessibility[END_REF]. This technique revealed the evolution of regulators landscape during disease progression in acute myeloid leukaemia [START_REF] Ruscio | Lineage-specific and single cell chromatin accessibility charts human hematopoiesis and leukemia evolution[END_REF]. (Left) Overview of different molecular layers that can be assayed using single-cell protocols. (Right) A cell with different layers of multi-omics measurements, as defined on the left. Concordance or heterogeneity respectively may exist between the different layers, and this can be recorded by single-cell sequencing and computational evaluation. Figure extracted from [START_REF] Kelsey | Single-cell epigenomics: Recording the Past and Predicting the Future[END_REF] It is also possible to measure histone modifications and TFs binding sites at the singlecell level. The adaptation of bulk Chromatin Immuno-Precipitation sequencing (ChIPseq) to single cells (scChIP-seq) required the incorporation into chromatin of cell-specific information (cell barcode). A central issue to overcome came from the antibody characteristics that recognise specific factors in term of specificity and sensitivity. The assay is thus dependent on the antibody binding to specific histone/TF modifications to pull down the associated DNA and sequence it. The solution, similar to scATAC-seq, was to first isolate and barcode the cells using droplet-based isolation techniques. Then, to pool the cells before chromatin immune-precipitation. Lastly, data computational analysis and demultiplexing restored the single-cell resolution to the assay [START_REF] Rotem | Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state HHS Public Access Author manuscript[END_REF]. Recently, Grosselin et al. further improved the method by increasing the coverage up to 10,000 loci analysed per cell. It revealed previously uncharacterised rare chromatin states in tumours and identified key elements in the difference between resistant and compliant tumour cells [START_REF] Grosselin | High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer[END_REF].

This last example, from its introduction to its recent improvement, highlights a common flaw in single-cell 'omics' methods: the curse of sparse data. At best, the estimated proportion of information recovered from individual cells is estimated to 50% of its total content. Over recent years, each method was improved spectacularly to visualise biological processes at single-cell resolution better. Nevertheless, further progress is still necessary to reach the full potential of these methods. In addition, both bench and computational efforts are also needed to converge toward parallel epigenomic and transcriptomic data analysis and integration, ideally from the very same cells. CHAPTER 1. THE SINGLE CELL REVOLUTION

Spatially resolved 'omics' at single-cell level

As explained previously, cells were traditionally described by their location, morphology and/or by their function. Through 'omics' assays, either at bulk or single-cell resolution, cells are now described by their molecular composition, but the spatial and morphological information is lost. It leads, in both cases, to an incomplete description of the cells. The growing field of spatially resolved 'omic' technologies is now overcoming these limitations [START_REF] Crosetto | Spatially resolved transcriptomics and beyond[END_REF][START_REF] Moor | Spatial transcriptomics: paving the way for tissuelevel systems biology[END_REF].

Pioneer spatial technologies, such as DNA, RNA or protein in situ visualisation, immunohistology and immunocytology have favoured the integration of functional, molecular and spatial information in biological studies. For instance, Fluorescence In Situ Hybridisation (FISH) uses sequence-specific probes to hybridise RNA/DNA molecules which can be visualised through a chromogenic reaction. It was applied to demonstrate the chromosomal organisation inside the nucleus and to reveal gene expression gradient in embryogenesis [START_REF] Femino | Visualization of single RNA transcripts in situ[END_REF][START_REF] Boyle | Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis[END_REF]. The immunostaining methods are based on the antibody-antigen reaction to specific cell markers: antibodies are conjugated with an enzyme catalysing a colour-producing reaction or tagged with a fluorophore. They have been used for years to establish a structural and morphological classification of pathological and healthy tissues [START_REF] Langer-Safer | Immunological method for mapping genes on Drosophila polytene chromosomes (biotin-labeled DNA/antibiotin/fluorescence microscopy/immunoperoxidase localization)[END_REF][START_REF] Yuste | Fluorescence microscopy today[END_REF].

Following technical improvements, the resolution and signal amplification of these technologies was increased. It is now possible to specifically study cells and tissues at the scale of a single molecule. For instance, single-molecule FISH (smFISH), used DNA oligonucleotides complementary to the target RNA and labelled with fluorescent dyes. Individual transcripts are detected as diffraction-limited spots (Raj et al., 2008a). It was used to describe the subcellular location of mRNAs of interest such as splice variants or fusion transcripts [START_REF] Waks | Cell-to-cell variability of alternative RNA splicing[END_REF][START_REF] Semrau | FuseFISH: Robust detection of transcribed gene fusions in single cells[END_REF].

However, the major pitfall remained the restrictive number of simultaneously studied markers and molecule types. Many progress is being made toward an unbiased analysis of genomic, epigenomic or transcriptomic landscapes in spacially resolved single cells [START_REF] Crosetto | Spatially resolved transcriptomics and beyond[END_REF]. Former methods, such as laser capture microdissection (LCM) can be used to isolate cells from precise micro-anatomical locations. Following annotation, the original cell locations can be traced back, preserving their spatial information. DNA or RNA can be extracted from the captured cells and used for gene expression microarrays or RNA-seq [START_REF] Bagnell | Laser capture microdissection[END_REF]. Such a technique can reveal widespread anatomical variations in gene networks and highlight developmental processes and major cell type distribution [START_REF] Hawrylycz | An anatomically comprehensive atlas of the adult human brain transcriptome[END_REF]. Other previously described methods were improved to increase the number of studied genes (' hundred genes) in one experiment (cyclic smFISH or osmFISH, Chlo-FISH, seq-FISH) [START_REF] Codeluppi | Spatial organization of the somatosensory cortex revealed by osmFISH[END_REF][START_REF] Eng | Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+[END_REF].

The evolution of spatially resolved 'omics' created a further need for the development of appropriate computational tools. The integration of heterogeneous data coming from distinct 'omics' datasets would enable the creation of spatial expression maps that fully capture cellular heterogeneity and organisation in complex tissues (J.-E. [START_REF] Park | Fast Batch Alignment of Single Cell Transcriptomes Unifies Multiple Mouse Cell Atlases into an Integrated Landscape[END_REF][START_REF] Karaiskos | The Drosophila embryo at single-cell transcriptome resolution[END_REF].

Multiple applications of the single cell revolution

Development of single-cell techniques and their ability to measure numerous cell features have challenged the traditional definition of 'cell type'. Based on a restricted number of features, cells were classified in discrete cell types associated to specific function and with limited consideration regarding their physiological state and developmental origin. These critical questions -What is a cell type ? How to define it ? What is the distinction between cell type and cell state ? -have been progressively addressed through the multiple applications of single-cell transcriptomic analysis published in the last decade. The answers first appeared with developmental studies and were then enriched by organs/tissues detailed cell atlases. Lastly, studies comparing cell types and cell states between healthy and disease condition emerged to complete the 'cell type' definition.

New developments in developmental biology

Single-cell 'omics' techniques are particularly appropriate for studies in developmental biology. Embryogenesis and regeneration are indeed primarily based on individual cell-fate decisions. They generate a spectrum of different cellular states that eventually modulates specification, morphogenesis and/or cell differentiation in a spatial context [START_REF] Griffiths | Using single-cell genomics to understand developmental processes and cell fate decisions[END_REF]. As those processes are continuous, differentiating cells can be described by the gradual variations in their expression profile as they progress toward their differentiated state. It makes inappropriate a discrete classification of the different cell state. Consequently, trajectory inference methods have been developed to preserve and highlight the continuity of cell states in the data. They aim to order the cells according to an inferred pseudotime which relates an 'unseen' dimension/manifold describing the cell progress along its differentiation trajectory [START_REF] Trapnell | The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells[END_REF]. For instance, it may represent gene expression gradients between cell states involved in a differentiation process. Most of these methods are based on the hypothesis that developmental processes are barely synchronous. Thus a static snapshot of numerous single-cell transcriptomes will capture every different stage of differentiation. It will open the possibility to detect branching points in cell trajectories and reveal critical information in cell fate decision-making (Haghverdi et al., 2018). CHAPTER 1. THE SINGLE CELL REVOLUTION Single-cell RNA-seq techniques and corresponding data analysis have collectively provided many insights in developmental biology as reflected by the many studies published in recent years. To illustrate it, I will briefly describe two impressive studies, both in term of experimental design and corresponding statistical analysis.

The former was published by Briggs et al., who described the dynamics of gene expression in the first day of vertebrate embryogenesis (Figure 1.4) [START_REF] Briggs | The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution[END_REF]. They collected embryos of western claw-toed frog, Xenopus tropicalis, over their first day of life and generated a complex developmental dataset composed of 69 embryonic cell types. They noticed that known cell states were found much earlier than previously anticipated. They also compared these events with the differentiation of zebrafish embryos to reveal critical similarities and differences between distant species. The latter embryogenesis study is about mouse gastrulation and early organogenesis by Pijuan-Sala et al., 2019 (Figure 1.5). They measured embryo single-cell expression profiles at sequential time points between 6.5 to 8.5 days post-fertilisation and built a molecular map of pluripotent embryonic cells toward all major embryonic lineages. They compared the inferred reference trajectories with KO Tal1 chimeric embryos and produced a baseline understanding of the effects of gene mutation in developmental processes. 

Cell atlases and rare cells discovery

Despite that cell theory was developed more than one century ago, the exact number of cell types detectable in complex organisms remained surprisingly elusive. The advent of single-cell 'omics' technologies provides a unifying framework to answer this question. It launched a new era of cell type discovery, supporting their improved description and classification. An international effort has been organised toward the construction of extensive and comprehensive atlases of the many cells that make up a living organism. Its first aim was to perform a precise characterisation of the cell diversity and their heterogeneity in complex systems, organs and tissues (Azizi et al., 2018b). A second one was to produce a molecular description of rare cell populations and to discover and characterise new cell types (Montoro et al., 2018;[START_REF] Plasscheart | A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte[END_REF][START_REF] Grün | Single-cell messenger RNA sequencing reveals rare intestinal cell types[END_REF].

The Mouse cell Atlas [START_REF] Han | Mapping the Mouse Cell Atlas by Microwell-Seq[END_REF] and Tabula Muris [START_REF] Schaum | Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris[END_REF] were the two first extensive single-cell atlases of complex organisms. They were composed of 400k cells and 100k cells, respectively, collected from 51 and 20 organs and tissues from Mus musculus. These atlases demonstrated the emerging potential of single-cell transcriptomics technologies and its foreseeable impact in cell biology. They created a first reference describing the diversity and similarity in cell characteristics and composition across the various organs of a complete organism.

In 2016, the Human Cell Atlas (HCA) Consortium was created as an international and collaborative initiative to define all human cell types as thoroughly as possible (HCA-Consortium, 2017). The atlas is aimed at integrating all possible definition of a cell type. It includes epigenomic, transcriptomic and proteomic elements, but also descriptions of each cell type physiological states, developmental trajectories and physical locations in the human body. This highly ambitious project is divided into many diverse international sub-units which are specialised in a critical step for data acquisition and processing. Additionally, this massive effort is not only complex on a technical point of view (both in bench and computational work) but also at a scientific scale. The absence of a priori ground truth on the number of cell types and states, their relative proportions and rates of transitions requires extensive scientific collaborations and the set up of a large consortium to establish this new reference in scientific knowledge. Pilot projects have been funded to perform a first survey of the cells in a specimen (Figure 1.6). In that context, my team has been the only one in France to be selected. Our expertise and research results on tissue handling and processing will be described in the results part of this manuscript.

Many research teams have started their own collection of specific organ atlases such as pancreas [START_REF] Muraro | A Single-Cell Transcriptome Atlas of the Human Pancreas[END_REF], brain [START_REF] Zeisel | Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq[END_REF][START_REF] Darmanis | A survey of human brain transcriptome diversity at the single cell level[END_REF], kidney [START_REF] Sivakamasundari | Comprehensive Cell Type Specific Transcriptomics of the Human Kidney[END_REF], intestine [START_REF] Haber | A single-cell survey of the small intestinal epithelium[END_REF], etc ... 

Future applications in medicine

At the beginning of high throughput sequencing techniques, many gene expression comparisons were made between healthy and disease conditions. They aimed to understand the molecular processes involved in disease development. Yet, a significant limitation was the unknown proportion of the different cell types in 'bulk' samples. For instance, in the study of cancer cells, two samples with 5% or 50% of cancer cells will display different genes expression signatures. A better characterisation of disease states is now feasible at a single-cell resolution. It provides a comprehensive description of their molecular processes integrating the distinct contributions of different cell types, their functions and characteristics (regulatory pathways).

In cancer studies, many detailed descriptions of tumour composition and their micro-environments have been published (Azizi et al., 2018a;[START_REF] Ehman | Multiclonal invasion in breast tumors identified by topographic single cell sequencing[END_REF][START_REF] Guo | Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing[END_REF]. Tumour heterogeneity is well described in cancer, and its analysis at single-cell level gives access to transcriptional responses of individual cells and a better understanding of drug resistance [START_REF] Shalek | Single-cell analyses to tailor treatments[END_REF].

In the case of chronic or acute disease, such as asthma [START_REF] Vieira-Braga | A cellular census of human lungs identifies novel cell states in health and in asthma[END_REF] or influenza infection [START_REF] Russell | Extreme heterogeneity of influenza virus infection in single cells[END_REF], studies at single-cell resolution can give insights into which cell types are the most affected and how it might have consequences on the complex regulatory network across cells. CHAPTER 1. THE SINGLE CELL REVOLUTION Chapter 2

Bench-work challenges and solutions

in single-cell RNA sequencing and their impact on output data.

The past decade has seen the exponential progress of single-cell transcriptomic technologies, resulting in the development of numerous scRNA-seq protocols. Their basic steps can be summarized as follows : cell isolation, RNA capture, complementary DNA library synthesis, amplification, sequencing library preparation, and sequencing. To successfully quantify gene expression at a single-cell resolution, each protocol has been optimised regarding two main critical steps: (i) single-cell isolation and (ii) mRNA capture and amplification. Technical differences in their realisation can lead to significant variations regarding the number of detected genes, mean and variance in gene expression, etc... This, in turn, affects the power of each method to describe the observed cells at a molecular level. In a recent review, Ziegenhain et al. described the power of each scRNA-seq method as a combination of 4 measurable technical variables (Christoph [START_REF] Ziegenhain | Comparative Analysis of Single-Cell RNA Sequencing Methods[END_REF].

• Number of cells analysed per experiment;

• Sensitivity as the probability to capture and convert a molecule of transcript from a single-cell into a cDNA molecule from the cDNA library;

• Accuracy as a reliable measure between read quantification and the actual concentration of transcripts;

• Precision as the quantification robustness to limit technical variation between cells and samples.

Sincle-cell RNA-seq critical steps

Single-cell isolation

Tissue dissociation

Tissue dissociation is a key and challenging step that had to be precisely adapted to each project (except for circulating and non-adherent cells). Cells need to be freed from the extracellular matrix and cell-to-cell adhesion interactions to obtain a suspension from which they will be isolated. This can be achieved through enzymatic treatment or physical separation (microdissection, patch-clamping, Figure 2.1.A). There is a balance to define between two opposite points: the cell isolation needs to be sufficiently efficient to generate a sufficiently large collection of individual cells, but not too harsh, to avoid cell suffering that may alter the transcriptome. Each organ has its specificity, and optimal dissociation usually results from optimisation from cell culture communities. Efficiency and impact on the cells can be highly variable for various reasons :

• cell-to-cell interactions, such as tight junctions in the human adult kidney or lung epithelium, might prove highly resistant to enzymatic digestion;

• cellular morphology, as in adipocytes, may cause the freshly dissociated cells to become extremely fragile and easily lysed;

• cellular ultra-structure, such as cardiac and muscular tissues where cells may be fused together.

As a consequence, tissue dissociation critically needs to be optimised prior to scRNAseq. A useful control can be provided by a comparison of bulk gene expression profiles between dissociated and undissociated cells in order to estimate the possible impact of the dissociation. Measurement of the level of expression of genes such as FOS, JUN or EGR1 can give a first level of information about the initiation of a death program. Another useful measurement is the percentage of dead cells, which can give a picture of the overall state of the cells at the end of the extraction. Several optimisations have been able to limit RNA degradation. Faster procedures, or protease digestion run at cold temperature, can help controlling better the output.

A work around method for tissue dissociation, applicable for very fragile or complex starting material, is single-nuclei RNA sequencing (snRNA-seq). In this method, cell nuclei are isolated from fresh or frozen/fixed tissues in a one step preparation (dissociation in a mild solution of detergent, which breaks the plasma membrane without affecting the nuclear membrane). Nuclei total RNAs are then captured and sequenced differing from standard scRNA-seq by the relative abundance of intronic RNAs. Yet, a good correlation between nucleic and cytoplasmic quantification of mRNA has been reported despite the reversed abundance ratio between unprocessed and mature RNAs and the much shallower sequencing depth [START_REF] Grindberg | RNA-sequencing from single nuclei[END_REF][START_REF] Zhang | Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1[END_REF][START_REF] Ding | Systematic comparative analysis of single cell RNA-sequencing methods[END_REF]. 16 CHAPTER 2. BENCH-WORK CHALLENGES AND SOLUTIONS IN SINGLE-CELL RNA SEQUENCING AND THEIR IMPACT ON OUTPUT DATA.

Cell isolation

Once cell suspensions are obtained, several methods were developed to isolate individual cells (Figure 2.1.B). Through the past 10 years, several methods progressively increased the number of cells that can be efficiently isolated in one experiment and thus increase analysis statistical power [START_REF] Svensson | Exponential scaling of singlecell RNA-seq in the past decade[END_REF]. The earliest single-cell experiments analysed only a handful of cells obtained with manual or automated micro-pipetting [START_REF] Tang | mRNA-Seq whole-transcriptome analysis of a single cell[END_REF]. This method is time-consuming and low cell-throughput, but it is still relevant for samples with few/rare cells of interest.

To increase the scale of single-cell sequencing, fluorescence-activated cell sorting (FACS) was introduced for cell collection. It can specifically enrich the isolated cells based on cellular characteristics (cell size or granularity) or antibody staining against surface proteins. This approach is perfectly fitted to analyse immune cells, but it can be tedious in the case of fragile cells that might not survive the sorting pressure. Another issue is the 'not so rare' isolation of more than one cell (doublets) in the wells of capture plates.

Development of microfluidic devices increased the cell throughput, reduced reagent volumes, hence the experimental costs. The rationale is to use a passive random capture approach, based on Poisson statistics, to calculate the limiting dilution allowing the isolation of a sufficient number of single-cells, while avoiding doublets. A potential drawback is to lose cells during the isolation process, resulting in larger volumes and concentrations of cell suspensions, which are not always possible in the case of precious samples with limited availability. One of the first examples of microfluidic devices is the C1 system released by Fluidigm. It sequentially isolates 96 or 800 cells with precise and minimal volumes in tiny reaction chambers of complex integrated fluidic circuit (IFC) chips. The low pressures that are applied make this process much gentler for fragile cells, but each experiment is fitted for a limited range of cell size. This range can be sample-adapted with different IFC chip, which is not necessarily convenient. Additionally, despite an optimised flow of the cell suspension, the C1 device can generate a high doublet rate that needs to be controlled through careful (but time-consuming) imaging of individual wells.

Droplet-based methods, such as inDrop, Drop-seq and Chromium from 10X Genomics, improved the microfluidic approach. They isolate the cells into nanoliter droplet emulsions with unique cDNA barcoded beads. These methods merge two flows into a combined one: one flow contains reagents for cell lysis, reverse transcription and associated barcoded beads and the other one contains cells in buffer. This combined flow is then partitioned into droplets by the addition of oil at defined intervals. These droplet-based techniques greatly improved the cell throughput scale of scRNA-seq, going from hundreds to thousands of cells isolated in one experiment.

Lastly, an alternative technique was developed named Seq-Well. It uses arrays of subnanoliter wells loaded by gravity. This method reduces the need for peripheral equipment, decreases dead volumes and facilitates parallelisation. Wells are designed to encompass a unique barcoded bead and limit dual cell occupancy rate. Wells are covered by a semiporous-membrane to limit fluid exchange and cross-contamination between wells.

The exponential growth of simultaneously studied single-cells, greatly increase computational analysis statistical power in numerous ways:

• It increases the number of replicates/cells associated with a given cell type which allows a robust estimate of the cell types intra-and inter-variability/differences in gene expression;

• It increases the probability for a thorough capture of all transition states in a developmental study;

• It gives the possibility to capture and identify rare cells (low-frequency cells : 1 in 1000).

• It requires resource-efficient computational tools for the analysis of large datasets;

Number of processed cells in parallel

As briefly mentioned earlier, simultaneous processing of hundreds and thousands of cells (cell multiplexing) was permitted by the development of cell-specific in situ barcoding [START_REF] Islam | Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq[END_REF]. The addition of a cell-specific barcode (random oligonucleotides) to all cDNA generated from a single-cell made possible the signal deconvolution and association of each transcript to its cell of origin. It greatly reduced the technical biases between cells along with the amount of needed reagents as all cells content are pooled together.

In droplet-based methods, early multiplexing is critical as no more reagents can be added once the cells are isolated in nano-droplets. To that end, specifically designed beads are used and evenly mixed with cells (1 bead with 1 cell) before cell isolation into a droplet.

On their surface, the beads have thousands of RT primers (usually poly-T) that also contain the cell barcode and a molecular identifier (UMI, cf. below). Through mRNA capture and retrotranscription, these barcodes will thus be added to all cDNA fragments produced from the cell transcripts.

As the number of captured cells increases, a greater number of distinct cell-barcode is required to uniquely label each cell. It can easily be very costly in the case of specific synthesis of longer oligos. To solve this issue, two approaches were proposed. The first one, called 'mix and expand', combines multiple specifically-designed short barcodes into a longer one. For instance, combinatorial ligation of two sets of 384 barcodes creates 384 2 = 147; 456 unique barcodes [START_REF] Klein | Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[END_REF]. The second method uses random synthesis of very long barcodes through 12 rounds of split-pool single-base DNA synthesis. It can generate up to 4 12 = 16:7 million barcodes (Figure 2.2) (Macosko et al., 2015). 

Untargeted cell transcripts capture

Depending on cell type, the amount of RNA found in a single-cell ranges from 1 to 50 pg (with only 5% of mRNA). It represents a signal detection challenge as in standard bulk RNA-seq 0.1-1.0 µg of RNA are necessary to achieve successful signal detection. As a result, RNA needs to be reverse transcribed into cDNA and amplified, through PCR or IVT, to obtain enough material for sequencing library preparation (Figure 2 In the case of exponential PCR amplification, most protocols use oligodT priming to start the reverse transcription. It captures most of polyadenylated mRNAs and lncRNAs present in a cell and avoids capture of ribosomal RNA. After generation of the first strand of cDNA, the second adaptor can be incorporated through two different methods:

(i) A transferase adds a poly(A) tail to the 3' end of the first strand of cDNA. A poly(T) primer with another universal sequence adaptor can again be used to synthesise the second strand of cDNA. This method can reverse transcribe long RNA if the RT elongation time is long enough but still reduces the coverage of the transcript 5'end (Figure 2.3.A).

(ii) Transcriptases of the Moloney murine leukaemia virus add a small number of nucleotides (mostly cytosines) when the RT reaches the end of the first strand. These nucleotides serve as a template-switching oligo-anchoring site. Upon hybridisation of a template-switching oligo (TSO) with this poly-C stretch, the reverse transcriptase 'switches' template strand and initiates second-strand synthesis. This second process is called 'SMART' technology (Switching Mechanism At the 5' end of the RNA Transcript) (Y. Y. [START_REF] Zhu | Reverse Transcriptase Template Switching -BioTechniques[END_REF][START_REF] Ramskold | Full-Length mRNA-Seq from single cell levels of RNA and individual circulating tumor cells[END_REF]. It makes possible the efficient amplification of full-length transcripts in a sequence-independent manner (Figure 2.3.B).

Our team took advantage of this method to develop a cost and labour effective 5'end selective scRNA-seq approach [START_REF] Arguel | A cost effective 5, selective single cell transcriptome profiling approach with improved UMI design[END_REF]. Arguel et al. used specifically modified TSO containing cell barcode and UMI to enrich the sequencing library with transcript 5' ends. This protocol efficiently quantifies gene expression and precisely defines transcription starting sites at single cell resolution. Another amplification method uses linear in vitro transcription amplification (Figure 2.3. C). It also captures polyadenylated mRNAs and lncRNAs through oligodT priming, but these primers also contain a T7 promoter sequence which makes possible direct DNA second strand synthesis and transcription into multiple copies of antisense RNA. The amplified antisense RNAs are then fragmented and reverse transcribed into cDNA.

The use of either amplification technique enables efficient untargeted capture of polyadenylated mRNAs and determines the experiment sensitivity and accuracy to singlecell mRNA content (number of expressed genes, reliable quantification). It also defines an important part of scRNA-seq technical variations. For each cell, a substantial fraction of mRNAs is lost during reverse transcription, and only small amounts of cDNA get amplified. This heterogeneity in mRNA capture efficiency defines cell-to-cell variability, overall dropout percentage (missed mRNA capture) and amplification noise that need to be considered when comparing gene expression quantification. Lastly, this step in scRNA-seq protocols is critical as it determines the biological questions to be answered :

• Full-length transcripts are sequenced for allelic gene expression analysis and cellspecific isoform discovery;

• Transcripts 3' or 5' ends are sequenced for gene expression quantification.

Amplification / sequencing bias

An additional challenge resides in biases introduced during amplification steps of scRNAseq protocols. It impacts the accuracy and precision of gene expression quantification. The introduction of Unique Molecular Identifiers (UMI) before cDNA amplification served as a control for amplification bias [START_REF] Kivioja | Counting absolute numbers of molecules using unique molecular identifiers[END_REF][START_REF] Islam | Quantitative single-cell RNA-seq with unique molecular identifiers[END_REF]. Similarly to the cell barcodes, it uniquely labels all the captured transcripts in a cell. The addition of a random sequence at one end of the newly synthesised cDNA produces a unique annotation of multiple copies of the same molecule. Consequently, the use of UMIs gives a counting of the initial unamplified cDNA molecules produced from the transcripts of a single-cell (Figure 2.4). 

Single-cell RNA-seq protocols

Here, I present a quick overview of some well known scRNA-seq protocols that developed and used the techniques described above (Figure 2.5). 

Full length methods

Pioneer method : Tang-method

The first scRNA-seq method was published by [START_REF] Tang | mRNA-Seq whole-transcriptome analysis of a single cell[END_REF] Cells are manually isolated under microscope. Polyadenylated RNAs are captured and retro-transcribed using olidodT primer containing a specific anchor sequence (UP1). A poly-A tail and second anchor (UP2) are added at the 3'end of the transcript for second-strand synthesis. The newly synthesised cDNA is composed of primer sequences at both ends for PCR amplification. The amplified cDNAs are then fragmented and ligated with P1 and P2 primers to create a library for SOLID sequencing (Applied Biosystems). The use of the olidodT primer for reverse transcription and PCR amplification introduces a 3'end bias by enriching the reads towards transcript 3'ends. It reduces the coverage of the transcript 5' ends and limits the full-length sequencing capacity of this method.

Smart-seq and smart-seq2

SMART sequencing methods were developed to improve single-cell transcriptome coverage. They are based on the SMART reaction mentioned above [START_REF] Ramskold | Full-Length mRNA-Seq from single cell levels of RNA and individual circulating tumor cells[END_REF].

The second version of the protocol proposed an increase mRNA capture efficiency with improvements made for the RT reaction. It uses additives and modified TSO as well as a high fidelity polymerase for PCA amplification [START_REF] Picelli | Full-length RNA-seq from single cells using Smart-seq2[END_REF]. These improvements significantly increased the full-length coverage of scRNA-seq but the in-adaptability to pool the samples at an early step keep the whole process costly as the number of processed cells increases.

Tag-based methods

CEL-seq and CEL-seq2

Cell Expression by Linear amplification and sequencing (CEL-seq) is the first method to use both cell barcodes and IVT amplification instead of PCR amplification [START_REF] Hashimshony | CEL-Seq: Single-Cell RNA-Seq by Multiplexed Linear Amplification[END_REF]. The introduction of early cell barcoding for cell-multiplexing increased the number of cells at limited cost and reduced technical bias. It is also one of the first protocols to specifically enrich its sequencing library with 3'end cDNA fragments to improve the expression quantification accuracy (there is no further need for gene length normalisation). The second version of the method, CEL-seq2, improved once again the gene expression quantification with the introduction of UMIs in the RT primer [START_REF] Hashimshony | CEL-Seq2: Sensitive highly-multiplexed single-cell RNA-Seq[END_REF]. It also removed the ligation of sequencing primers after tagmentation by adding them in the RT primer sequence.

Mars-seq

Massively parallel RNA Single-cell sequencing (MARS-seq) was one of the first protocols to introduce a high degree of multiplexing in single-cell transcriptome analysis [START_REF] Jaitin | Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types[END_REF]. It introduced UMIs into oligo-dT primers in addition to cell and plate barcodes. This strategy launched the possibility to study transcriptomic profiles of dozens to hundreds of cells simultaneously and at high resolution.

Drop-seq

Droplet-based sequencing (Drop-seq) is the successful combination of two simultaneously developed protocols (Macosko et al., 2015). CytoSeq uses 'magnetic beads' to efficiently load RT primers and capture mRNA molecules [START_REF] Fan | Combinatorial labeling of single cells for gene expression cytometry[END_REF]. These beads are coupled with millions of oligonucleotides composed of 4 elements:

• an oligo-dT sequence;

• a UMI (different for all oligonucleotides on the same bead);

• a unique cell barcode (identical for all oligos on the same bead but unique for each bead);

• a universal PCR priming sequence. As the polyA-tail of mRNAs hybridise on the beads, it forms Single-cell Transcriptomes Attached to MicroParticles (STAMPS) that can be easily manipulated and pooled to complete the reverse transcription step at low cost.

InDrop sequencing (Indexing Droplet) uses emulsion droplets and hydrogel beads to isolate the cells, capture mRNAs and reverse-transcribe them before the droplets are broken [START_REF] Klein | Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[END_REF]. Unfortunately, it is highly limited by the low capture efficiency (less than 7% of mRNAs present in cells).

Drop-seq method isolates thousands of cells in nanoliter-scale droplets with a uniquely barcoded bead. Once STAMPS are formed, and the mRNAs are reverse-transcribed, the droplet emulsion is broken to perform PCR amplification and library preparation in a single tube. These methods significantly reduced the cost of transcriptome analysis per cell.

10X Genomics : Chromium device

Chromium device and its associated protocol(s) are droplet-based methods. It quantifies 3' RNAs of up to ten thousands of cells in a single experiment. It can process 8 samples simultaneously through the 8 independent channel present in a microfluidic chip. The formation of gel bead emulsion (GEM) isolates the cells so that each full droplet contains a single-cell, a barcoded gel bead, cell lysis and RT reagents. Due to the random capture approach, the cell capture efficiency is limited to 65 % of the loaded cells producing an important number of 'empty' droplets (compared to less than 5% for the inDrop and Drop-seq protocols). Cell lysis starts when the cells are encapsulated and the gel beads are later dissolved to release their oligonucleotides. The cDNAs produced in this way contain a UMI, a shared cell barcode and a TSO. Lastly, the emulsion is broken, cDNAs are pooled and amplified by PCR for sequencing library preparation.
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CHAPTER 2. BENCH-WORK CHALLENGES AND SOLUTIONS IN SINGLE-CELL RNA SEQUENCING AND THEIR IMPACT ON OUTPUT DATA.

Chapter 3

Single cell RNA-seq data analysis

Since the first scRNA-seq dataset available in 2009, scRNA-seq data analysis remained a highly dynamic field of research with new statistical and computational methods regularly published. The key tenet of the field is to understand the complex properties of scRNA-seq data and overcome their flaws through the development and use of appropriate statistical methods. To this aim, approximately 400 analysis tools have been developed to date (seandavi/awesome-single-cell). This abundance of methods, while advantageous for scientific discovery, complicates the standardisation of an analysis workflow. A recent review, from Fabian Theis's group, outlines current best practices in the analysis of scRNA-seq data [START_REF] Luecken | Current best practices in single-cell RNA-seq analysis: a tutorial[END_REF]. Most importantly it lays down a 'model' pipeline of scRNA-seq data analysis (Figure 3.1). It starts with the sequencer outputs and corresponding processing of the raw data. Once the count matrices are generated, they undergo a quality control step for later normalisation and data correction.

If multiple samples are analysed together, an additional data integration step might be necessary. Then, the most informative features (e.g. highly variable genes) are selected for downstream analysis. Following dimension reduction, the data can be visualised, clustered and the cell trajectories can be inferred. The rest is up to the analyst for interpretation.

In this chapter, I will describe the principle of each of these analysis steps with some detailed examples regarding the tools used during my thesis. Additionally, I will focus this description on the statistical analysis of scRNA-seq data generated using the 10X Chromium device, which is the main type of data generated by my host laboratory. Lastly, I will draw your attention to the many progress made regarding these analysis tools. During the three years of my thesis, the environment of scRNA-seq data analysis has been completely transformed by the development of completely integrated workflows, namely Seurat (Butler et al., 2018) and Scanpy (Wolf et al., 2018). At the beginning of my thesis, the challenge was of another scale as there was no statistical framework in which to perform the complete analysis, but rather a patchwork of analysis tools scattered across publications and programming languages (R and Python). Each of them with its own requirements on input data format, pre-processing steps and output format, making data analysis a more tedious work. 

From raw sequencing data to count matrices

Similarly to bulk RNA-seq data analysis, scRNA-seq data analysis starts with raw data obtained from the sequencer. A first step is thus to perform read alignment and UMI and cell-barcode demultiplexing. Computational pipelines for handling scRNA-seq raw data remains limited [START_REF] Zheng | Massively parallel digital transcriptional profiling of single cells[END_REF][START_REF] Parekh | zUMIs -A fast and flexible pipeline to process RNA sequencing data with UMIs[END_REF]Macosko et al., 2015). Goldstandard tools are still needed to fully explore the potential of UMIs and cell-barcode demultiplexing after read alignment. As raw data processing is not the main focus of this thesis, I will briefly discuss the main steps needed to go from raw sequencing data to count tables using the example of CellRanger Single-Cell Software Suite (Figure 3.2) [START_REF] Zheng | Massively parallel digital transcriptional profiling of single cells[END_REF]. Once raw sequencing data are obtained, reads quality is estimated and low-quality reads are filtered out using, for instance, fastQC (S. [START_REF] Andrews | FastQC[END_REF]. In the case of reads with UMIs and cell barcodes, they need to be extracted and analysed separately. Reads are thus trimmed off their UMIs and cell barcodes, then aligned to an appropriate reference genome with the same tools as for standard bulk RNA-seq : STAR or Burrows-Wheeler Aligner. To get to the gene-per-cell count matrix, cell-barcodes and UMIs need appropriate processing [START_REF] Hwang | Single-cell RNA sequencing technologies and bioinformatics pipelines[END_REF]. Cell-barcodes are first corrected for sequencing error whenever possible and then filtered whether they serve as barcode for actual cells or empty droplets. Lastly, UMIs are also corrected for sequencing error and counted to reduce the amplification bias in read quantification.

From raw sequencing data to count matrices

Cell-barcodes processing

For protocols with pre-defined cell-barcode sequences, such as 10X Chromium (737,000 cell-barcodes) and inDrop (147,456 cell-barcodes), a whitelist of all available barcodes is supplied during library preparation. This list is necessary for correction of cell-barcode sequencing errors. The aim is to correct cell-barcodes with only x nucleotides different from the barcodes present in the whitelist (i.e. x-Hamming-distance away). For instance, CellRanger software first estimates the observed frequency of all barcodes in the dataset and computes a posterior probability for barcodes that are 1-Hamming-distance away from whitelist-barcodes. This probability estimates if such barcodes might originate from the whitelist-barcode with a sequencing error of 1 base. If the posterior probability is above a given threshold, the barcode is replaced by the corresponding whitelist-barcode [START_REF] Zheng | Massively parallel digital transcriptional profiling of single cells[END_REF]. In scRNA-seq protocols with random cell-barcodes, such as Dropseq, barcode sequencing errors cannot be corrected due to the lack of reference barcodes.

The last step of cell barcode processing is to distinguish barcodes marking cell-filled droplets from empty droplets. To this aim, barcodes are ordered by their total number of transcripts, and all top barcodes within the same order of magnitude are considered cell-barcodes. Empirically, the cumulative fraction of all transcripts per barcode always displays a 'knee' that corresponds to the 'targeted' number of cells processed (Macosko et al., 2015;A. Lun et al., 2018). Reads are then grouped by cell barcode in a gene-per-cell matrix.

UMIs processing

As mentioned in the previous chapter, every scRNA-seq protocol has an amplification step to increase the quantity of cDNA to sequence. If this step solves the issue of the low amount of starting material in single-cells it creates a new one: the amplification bias in read quantification. Depending on their composition in nucleotides, some sequences are better amplified than others which may lead to an over-/under-estimation of molecular counts. UMIs are thus used to correct this bias from the gene-per-cell count matrices. To this aim, UMIs are collapsed, and the total number of distinct UMIs associated with a gene is reported as the count value for that gene. Similarly to cell-barcodes, UMIs sequencing errors need to be considered. CellRanger software corrects a UMI that is 1-Hamming-distance away from another as the UMI with more reads. Finally, reads are grouped by UMI in gene-per-cell matrix freed of amplification bias.

UMIs and cell barcodes demultiplexing has still a large potential, as illustrated by the recently developed Java tool developed by Rainer Waldmann and Kevin Lebrigand in my laboratory that allows UMI corrected single-cell long read quantification through the combination of standard 10X Chromium scRNA-seq and Oxford Nanopore sequencing (High throughput, error-corrected Nanopore single-cell transcriptome sequencing, by Kevin Lebrigand, Virginie Magnone, Pascal Barbry Rainer Waldmann, submitted).

Quality control

Before the analysis of the gene-per-cell matrix, a quality control step is performed to filter out unwanted effects that could lead to misinterpretation of downstream analysis results. It includes removal of low-quality cells and uninformative genes, then the filtering of supposed doublet cells and lastly the estimation and correction of gene expression background.

Cells filtering

Identification of low-quality cells

Low-quality cells can be identified through a consensus of three quality metrics [START_REF] Griffiths | Using single-cell genomics to understand developmental processes and cell fate decisions[END_REF]. It is thus necessary to consider these cells with care and potentially remove them from further analysis. A frequently used method study the distribution of these quality metrics and filter out outliers with appropriate threshold values (Figure 3.3). Nonetheless, other methods were developed to avoid the setting of arbitrary thresholds. An alternative consists of machine learning methods, such as Support Vector Machine (SVM) to classify high and low-quality cells [START_REF] Ilicic | Classification of low quality cells from single-cell RNA-seq data[END_REF]. The classifier of the SVM model was trained with a 'gold-standard' annotated dataset, in which cells were annotated as high or low-quality by cell imaging. To classify the cells, the SVM model takes into account many cell descriptors including the number of expressed genes, Gene Ontology terms average expression, percentage of reads mapping onto intronic or exonic regions, etc... In the original publication, the efficiency and reproducibility of the classifier has been tested and its robustness when applied to different datasets has been established, yet, its use has not been largely spread among single-cell data analysts. Indeed, it may be hard to generalise such model to a wide diversity of single-cell transcriptomic studies. Many confounding effects, such as cell drug-resistance or sensibility, cell type heterogeneity and corresponding specific mRNAs content cannot be thoroughly and simultaneously taken into account by a unique model. It might induce a lack of flexibility that is necessary at such an early step of the analysis so as not to miss/discard important information. It highlights one the main 'principle' of the analysis of single-cell RNA-seq data : scRNA-seq data analysis is an iterative process in which each step is performed multiple times with multiple settings to extract as much information as possible from the data. The quality control step and corresponding cell filtering will thus be done with more or less permissive thresholds to ensure that no important information is lost with the discarded cells.

Doublets prediction

A common flaw of high throughput cell isolation methods is the generation of technical artefacts named doublets, where a unique barcode labels two or more cells isolated in a single capture site (well/droplet). The Poisson statistics used in random isolation methods allow an estimation of the doublet rate in scRNA-seq experiments. The doublet rate is positively correlated with the final number of captured cells, as the number of captured cells increases the expected doublet rate also increases (Figure 3.4). Doublets are classically defined by the expression of chimeric single-cell transcriptomic profiles which might introduce bias in the analysis and spurious cell type annotation. Two types of doublets may be found in scRNA-seq data:

• Heterotypic doublets group cells from different cell types; • Homotypic doublets group cells from similar cell type. Doublet identification aims to filter out 'heterotypic' doublets preferentially as they influence the most the following statistical analysis.

Computational methods have been developed toward this aim and claim to identify heterotypic doublets in scRNA-seq data: Doublet Finder, Scrublet and DoubletDetection (non-exhaustive list) [START_REF] Mcginnis | DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors[END_REF][START_REF] Wolock | Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data[END_REF][START_REF] Schemberg | DoubletDetection". In: Achieving 'At-one-ment[END_REF]. Despite different methods to estimate the probability of a cell being a doublet, all these methods share a common workflow:

• Preliminary analysis of the original data with saving of the parameters (normalisation, dimension reduction, ...);

• Synthesis of artificial doublets by randomly picking pairs of cells (counts average or addition);

• Integration of artificial doublets into original data primary analysis;

• Clustering of the merged dataset (K-nearest neighbours);

• Probability estimation of a 'single' cell being a doublet, based on its cluster composition represented by the ratio of artificial doublets to real cells in cell-clusters (probability density function, hypergeometric test).

No comparative analysis of these methods has been published so far to estimate which method is the most efficient and robust to identify doublets. A brief review of the literature reveals that each mentioned methods are evenly used in publications, and usually followed by further manual doublet curation.

At the bench-work levels, technical improvements have also been found to identify doublets with demultiplexing strategies :

• Natural Genetic Variants mixes samples from individuals with distinct genotype [START_REF] Kang | Multiplexed droplet single-cell RNA-sequencing using natural genetic variation[END_REF]); • Cell Hashing uses sample-specific oligonucleotides tags in addition to cell-barcodes and UMIs [START_REF] Gehring | Highly Multiplexed Single-Cell RNA-seq for Defining Cell Population and Transcriptional Spaces[END_REF]).

Yet, these methods are limited to the identification of inter-sample doublets and cannot identify intra-sample doublets.

CHAPTER 3. SINGLE CELL RNA-SEQ DATA ANALYSIS

Genes filtering and correction

Low abundance genes filtering

Another part of the quality control step is at the gene level for uninformative genes removal. It usually relates to low abundance genes that are only expressed in a handful of cells and thus cannot be used to distinguish between cell types. This high abundance of zero in scRNA-seq data can arise in two ways (Hicks et al., 2017):

• Cells do not express any RNA molecule of a given gene at the time of the experiment;

• Cells do express some RNA molecules of a given gene, but they were lost either during the reverse transcription, the amplification or library preparation step of the protocol.

This missed transcript is referred as a dropout. The ambiguous balance between biological signal and technical flaw introduce a trade-off in the filtering of low abundance genes. They can be specifically expressed in low-frequency cells (rare cells) and thus it is essential to distinguish them from a technical artefact that would distort the statistical analysis. Consequently, genes expressed in less than x cells are removed from further analysis under the condition that the x number of cells is the smallest cell population of interest in the dataset. It means that at the very least a first complete analysis of the dataset, with permissive filtering, must be done to identify this rare population and set the appropriate threshold.

Background correction

Lastly, additional quality control can be done directly on the count data. A critical assumption in scRNA-seq experiments is that each barcode/cell contains RNAs from a single cell (doublets excluded). Unfortunately, droplet-based methods have highlighted the presence of ambient RNAs shared across all barcodes/cells, including 'empty' droplets. It represents cell-free RNAs, originated from lysed cells, that contaminated the cell suspension before cell isolation. This gene expression background is sample-specific and highly correlated with the sample-most-abundant-genes (e.g. highly expressed marker genes of the most abundant cell types). It can significantly impact marker genes identification and differential expression analysis, even more so, if multiple samples are analysed together. Still, only a preprint from Young et al., 2018 (SoupX) has directly tackled this issue, whereas other single-cell studies only mentioned that they took note of the potential bias in downstream analysis.

A generic method to identify genes involved in background contamination is to study the gene composition of 'empty' droplets (containing less than 10 UMIs). Genes found in these droplets are considered spurious and removed from downstream analysis. The alternative proposed by soupX, is to correct the background contamination in the count table, and thus avoid an unnecessary loss of information. To do so, it evaluates the contamination fraction present in each cell based on the estimation of the cell-free mRNA expression profile called 'soup'. Top genes found in the soup usually have a bimodal distribution where each mode represents either the 'average' expression of the gene in the soup compared to its expression in specifically expressing cells. They are essential for the estimation of the contamination fraction. Once, the background expression profile has been calculated from empty droplets, it can be corrected by 'subtraction' from the endogenous cell expression profile. It results in a background-free count matrix ready for downstream analysis (Figure 3.5). 

Normalisation and data correction

The (high quality) count matrix is the resulting measure of cells mRNA content efficient capture and reverse transcription, cDNA amplification and sequencing. Consequently, from the count table perspective, each cell is 'unique' both biologically and technically and need to be 'standardised' to be analysed together [START_REF] Vallejos | Normalizing single-cell RNA sequencing data: challenges and opportunities[END_REF]. This step is called normalisation and aims at adjusting for unwanted biological and technical variations between cells (Figure 3.6). On one hand, cellular mRNA content may vary based on cell type identity (size, function ...), physiological state (stress, cell cycle ...) and also stochastic gene expression (transcriptional bursting, [START_REF] Corrigan | A continuum model of transcriptional bursting[END_REF]. On the other hand, the many steps from mRNA capture to cDNA sequencing lead to a repetitive sampling of cellular mRNA molecules characterised by high variability between technical replicates and a high proportion of zero counts (dropouts). All these confounding factors can be modelled as a batch effect between cells (unwanted variation) and should be corrected by normalisation. Many of the available normalisation methods for scRNA-seq data are inspired by techniques already applied to bulk RNA-seq [START_REF] Dillies | A comprehensive evaluation of normalization methods for Illumina highthroughput RNA sequencing data analysis[END_REF]. Some have been adapted or developed for the specific source of variations found in single-cell gene expression data. For example, a recently published tool, named SCONE, assess the performance of normalisation methods to provide data-driven feedback on the best-fitted normalisation strategy [START_REF] Cole | Performance Assessment and Selection of Normalization Procedures for Single-Cell RNA-Seq[END_REF]. It addresses the lack of consensus normalisation methods as a consequence of the method-specific limitations to overcome the numerous experimental designs, protocols and corresponding data properties found in scRNA-seq studies. It distinguishes between global-scaling methods and non-linear (regression-based) normalisation methods to correct unwanted variation.

Global-scaling normalisation methods

Global-scaling methods are based on the estimation of a scaling factor that will handle the many sources of variations as an all-in-one parameter specific for each cell. It encompasses most of the methods used in scRNA-seq data normalisation. A routinely global-scaling method is count depth normalisation. It postulates that all cells initially have the same number of mRNA molecules and that observed differences in library size are due to experimental sampling. The resulting scaling factors, also named size factors, are thus proportional to the cell library size to scale them to a fixed value: the supposed initial number of mRNA molecules in cells (for instance, it can be the median of the sample library size) (Figure 3.6). Although this simple method is efficient to reduce the technical variation between cells, it does not solve the problem as its initial assumption of a homogeneous cell population with identical total molecules counts hardly hold in many scRNA-seq datasets. Typically composed of heterogeneous cell types, scRNA-seq datasets present numerous differentially expressed genes and varying total mRNA content that requires more elaborate normalisation methods. For instance, the scran method estimates the scaling factor based on pooled counts from multiple cells to reduce the impact of the not-differentially-expressed-genes assumption and zero count proportions, (Figure 3.7) (L. Lun et al., 2016),. Its key algorithmic steps as defined by Lun et al. are: • Defining a pool of cells. Cells are clustered based on their expression profile to limit the number of differentially expressed genes and thus improve the accuracy for the estimation of cluster-specific size factors in a heterogeneous dataset;

• Summing expression values across all cells in the pool. It reduces the proportion of zero counts and its incidence on size factor estimate;

• Normalising the cell pool against an average reference, using the summed expression values. It reduces overall sample unwanted technical and biological effects;

• Repeating this for many different pools of cells to construct a linear system. It takes into account heterogeneity in dataset composition;

• Deconvolving the pool-based size factors to their cell-based counterparts. It preserves the cell-specific correction needed in the normalisation process.

Scran provides a robust size factor estimation and is consistently considered as a top-performing normalisation method [START_REF] Büttner | A test metric for assessing single-cell RNA-seq batch correction[END_REF]. Nonetheless, and similarly to other global-scaling methods, it provides a single scaling factor per cell and thus limits the correction of complex batch effects. In addition, these normalisation strategies may correct for specific (and unwanted) biological effects, including the cell cycle [START_REF] Buettner | f-scLVM: Scalable and versatile factor analysis for single-cell RNA-seq[END_REF]. A previously annotated list of cell cycle genes is used to assign a cell cycle score to each cell (Macosko et al., 2015). This score is then used as a latent variable (additional nuisance parameter) in the regression framework and removed from the data (Wolf et al., 2018;Butler et al., 2018).

In conclusion, non-linear and regression-based normalisation strategies have their pros and cons. Supervised methods can remove a targeted nuisance off the count data but miss an unknown and yet unwanted variation. Whereas unsupervised methods need to be specifically tuned to the dataset to avoid nuisance underestimation. Consequently, such correction of technical and biological variations need to be considered with care depending on the intended downstream analysis.

Data denoising by gene expression recovery

Additional data correction strategy include expression recovery (i.e. denoising or imputation). It aims to reduce the high proportion of zero counts found in gene expression matrices by inferring which zeros are dropout events (false) or specific lack of expression (true). Data denoising aims at reconstructing the original noiseless data manifold by identifying and correcting measurement biases (low capture efficiency) (Figure 3.9). Several methods were published to tackle this challenge (Dijk et al., 2018b;[START_REF] Eraslan | Single-cell RNA-seq denoising using a deep count autoencoder[END_REF]. For instance, MAGIC uses the correlation structure of the gene expression matrix to build a nearest-neighbour graph. The additional use of a diffusion operator (Markov normalisation) uncovers the noiseless data manifold (geometric reconstruction of a more faithful neighbourhood of similar cells) and restores missing transcripts in the process (Dijk et al., 2018a).

Another method, DCA, increased the computational efficiency of denoising methods as it scales linearly to the number of cells to impute. It uses a deep count autoencoder framework (artificial neural network) with a specialised loss function and a negative binomial noise model accounting for data count distribution, over-dispersion and sparsity (zero-inflation) [START_REF] Eraslan | Single-cell RNA-seq denoising using a deep count autoencoder[END_REF].

In summary, these methods suggest promising improvements in the analysis of lowly expressed genes, yet, one should not forget the risk of over or under-correction of the noisy data (T. S. [START_REF] Andrews | Identifying cell populations with scRNASeq[END_REF]. Even more so with the previously mentioned biases: ambient mRNAs, doublets, library size variations and cell cycle effects that can not be all corrected at once. As such, these methods are, for now, limited to visualisation purposes in most cases.

Gene-level normalisation

The final normalisation steps are at the gene level to improve gene distribution properties and allow expression comparisons. Gene count scaling aims to weight the genes equally by computing z-scores (gene counts have zero mean and unit variance). It removes expression magnitude differences between genes. As there is no consensus on whether or not it improves data interpretation and downstream analysis, it is resumed as a study-dependant normalisation and on whether genes should be equally or differentially weighted based on their magnitude of expression (Figure 3 These three effects are of significant importance for downstream analysis such as differential analysis, identification of highly variable genes and dimension reduction / visualisation. Nonetheless, Lun et al. have reported a spurious effect of log-transformed counts on differential expression testing (A. [START_REF] Lun | Overcoming systematic errors caused by log-transformation of normalized single-cell RNA sequencing data[END_REF]. In the case of not differentially expressed genes, the mean of the log-counts is not generally the same as the log of the count mean, which results in false discrepancies in gene expression and potential misinterpretation of the data. This last normalisation step highlights once again the complex trade-off in scRNA-seq data analysis and how every single step has consequences on the overall data interpretation.

Data integration

In the previous section, I described the normalisation step as a batch-correction method for unwanted technical and biological variations between cells from a single experiment. In this section, I will describe the challenges and proposed solutions for data integration, which is defined as a batch-correction method between cells from distinct experiments (cells harvested at different time points, cells on separate chips, or sequencing lanes but also cells isolated and sequenced with different scRNA-seq protocols). Consequently, the technical and biological biases to correct are on different scales, with the additional challenge of compositional differences between datasets. It introduces either biological or technical variations between cell types/states that are not shared among datasets and needs to be corrected while preserving the biological variations of interest. As the number of published studies with multiple integrated datasets increases, several methods have been proposed, each of them based on a given similarity/matching metric between cells from different datasets. These methods range from linear regression models (ComBat, initially developed for bulk RNA-seq), to non-linear models (Canonical Correlation Analysis by Butler et al., 2018, scGen, LIGER) and projection of mutual nearest neighbours (MNN by Haghverdi et al., 2018, Scanorama by Hie et al., 2019, Harmony).

For instance, Mutual Nearest Neighbours (MNN) method identifies pairs of MNN between batches which are considered as the most similar cells across batches (Haghverdi et al., 2018). The gene expression differences between MNNs correspond to the batcheffect to correct. This batch-effect is robustly estimated by averaging across many MNN pairs and corrected by correction vector applied to the expression values. This approach avoids the assumption of equal composition between batches and thus significantly reduce over-correction as it only uses the overlapping subsets of cells to estimate the batch-effect.

Canonical Correlation Analysis (CCA) identifies shared genes correlation structure between batches as a matching metric between cells. It also identifies cells that are outliers to this shared correlation structure as non-overlapping cell types between batches. Lastly, it uses both linear and non-linear 'warping' shifts to normalise discrepancies in gene scale and robustly align batches independently of their cell type composition.

In conclusion, it is challenging to perform a thorough description and comparison of all the available batch-correction methods. Yet, the first one to consider is to avoid batcheffect altogether by setting the appropriate experimental design whenever feasible (Figure 3.12) (Hicks et al., 2017). Nevertheless, in the case of unavoidable of experimental batches, there is yet to identify a consensus method for data integration and later interpretation. Indeed, primary analysis of both individual samples and the aggregated dataset is needed to determine which technical and biological variations actually need correction and thus estimate the overall correction efficiency (with the general goal to avoid over-correction). 

Data dimension reduction

Single-cell RNA-seq datasets (human, pig or mouse) contain expression values for up to 25,000 genes. However, and even after gene QC filtering, many of these genes have a high number of zero counts and/or may not be informative (house-keeping genes). In addition, high dimension data also constitute a significant burden for downstream computational analysis. As a consequence, dimensionality reduction is required to :

• reduce downstream analysis computational cost;

• capture the underlying structure and biological variations of interest in the data;

• improve data visualisation;

• ease data interpretability.

Many methods can achieve these goals, each conserving a specific data property in the low-dimensional space (Figure 3.13). These techniques can all be explained as a two-step process: (i) first it computes a similarity metric on the data and (ii) then, minimised its deformation in the low-dimensional space. Yet in scRNA-seq data dimension reduction can be done in three different way, each with its own purpose :

• Selection of informative features captures the genes that best summarise the biological variations of interest;

• Data summarising through dimension reduction reveals the underlying manifold of the data with limited but meaningful dimensions;

• Data visualisation through dimension reduction improves its interpretability to human eyes. 

Feature selection

An essential step for data dimensionality reduction is the selection of the most informative features that will improve the signal to noise ratio in the data. In scRNA-seq data analysis, this step often consists in identifying highly variable genes (HVGs). Such genes express a higher variability than expected by technical discrepancies only. Consequently, the selection of HVGs selection is based on mean-variance relationship present in scRNAseq data. HVGs are the genes with the highest variance-to-mean ratio per bin of mean expression (Figure 3.14) ( Butler et al., 2018;Wolf et al., 2018;A. T. Lun et al., 2016).

The selected HVGs scale the data dimensionality down between 1,000 and 5,000 genes. Downstream dimension reduction, visualisation and analysis were reported robust to the exact number of HVGs selected, with a noteworthy sensibility to the identification of rare cell types and highly correlated cell sub-types [START_REF] Klein | Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[END_REF].

Figure 3.14: Selection of highly variable genes. .

Data summarising

Based on the most informative features, dimension reduction methods that aim at summarising the data will identify its most essential components by capturing its underlying manifold. Additionally, it will preserve the interpretability of the reduced dimensions, which will be helpful for downstream analysis.

Principal Component Analysis

PCA is the most popular method used in scRNA-seq analysis to summarise data [START_REF] Pearson | LIII. On lines and planes of closest fit to systems of points in space[END_REF]. It projects the observations (cells) into a low dimension space using linear combinations of the original variables (genes) which maximise the captured residual variance. Thus a dataset is summarised by PCA top N principal components, where N can be determined by "elbow" heuristics or the permutation-test-based Jackstraw method (Macosko et al., 2015). The use of a linear approach in the PCA preserves interpretability of the distances between observations (cells) in the low dimensional space, with minimal loss of information and high conservation of the variance-covariance relationship. Additionally, each component is a linear combination of genes which can easily be interpreted. Nonetheless, in the case of a strong batch-effects either between cells or between samples, a caveat of the PCA is that its first or second principal components might be related to highly variable and uncorrected technical biases, such as the number of detected genes per cell, library size, ... This overpowering of technical variations over biological ones emphasises once again the need and importance of each successful step in scRNA-seq experiment and analysis. In conclusion, PCA serves as a pre-processing step for either downstream analysis or additional dimension reduction using non-linear methods.

Diffusion map

The use of diffusion map as summarising technique has been initially spread in scRNAseq data analysis by Haghverdi et al. (Coifman et al., 2005;[START_REF] Haghverdi | Diffusion maps for high-dimensional single-cell analysis of differentiation data[END_REF].

It computes data embedding according to the geometric structure underlying the data. Using non-linear integration of local similarities at different scales, it creates a diffusion process which highlights transition in the data. Thus each diffusion component emphasises the heterogeneity of a given cell population. Similarly to PC space, Euclidean distances between cells in the diffusion map embedding tend to approximate the diffusion distances in the original feature space. This summarising technique is mainly used in the analysis of developmental/differentiation processes as diffusion distances can be approximated to the pseudo-time needed for one cell to 'differentiate' into another.

ZINB-WaVE

ZINB-WaVE is a summarising method developed by [START_REF] Risso | ZINB-WaVE: A general and flexible method for signal extraction from single-cell RNA-seq data[END_REF]. It uses a zeroinflated negative binomial model (ZINB) of the data to extract the stable low-dimensional signal from it (Wanted Variation Extraction, WaVE). It aims to normalise, correct and reduce the data dimensionality, all in one go to avoid multiplication of processing steps and their potential shortcomings that might influence downstream analysis. Even if ZINB-WaCE has not become a standard in scRNA-seq data analysis, it highlights once again a significant issue: the interconnectivity between each step of the analysis and its influence on the final data interpretation.

Visualisation

Unlike data summarising methods, visualisation methods attempt to optimally describe the dataset into a limited number of dimension, usually two or three. These techniques make possible data exploration on a human scale. The identification of gene expression pattern across cells is much more feasible for a human when represented in a 2D scatter plot rather than a count matrix with thousands of rows and columns. In addition, visual exploration of the data might lead to a 'supervised' analysis of the data and to the discovery of outlier patterns that would not have been identified without it. Non-linear dimension reduction methods have solved this challenge. The data reduced dimensions are thus used as coordinates on a scatter plot to obtain a visual representation of the data.

t-SNE

t-distributed stochastic neighbour embedding (t-SNE) is the dimension reduction technique the most used for visualisation purposes [START_REF] Maaten | Visualizing Data using t-SNE[END_REF] 

Force Atlas 2

Force Atlas 2 has also been proposed as a good approximation of the underlying topology of scRNA-seq data [START_REF] Weinreb | SPRING: A kinetic interface for visualizing high dimensional single-cell expression data[END_REF]. It belongs to force-based graph drawing algorithms, which represents cells as nodes and connection/similarity between cells as edges. These algorithms aim to position the graph nodes so that all their edges are of equal length with as few exceptions as possible. To do so, it assigns spring-like forces to the set of edges:

• Short edges tend to get longer and repel their endpoints in opposite directions;

• Long edges tend to get shorter and attract their endpoint nodes toward each other.

Nodes/cells are thus positioned so as to reach an equilibrium between all the applied forces. The visualisation output of such methods is thus highly dependent on the initial graph construction and its ability to avoid spurious edges between cells.

Clustering and cell annotation

Based on the previously described cell theory, cell types and cell states have been partly defined by their association to specific biological function. Consequently, one of the very first biological insights expected from any scRNA-seq analysis would be to relate singlecell transcriptomes to specific functional characteristics. Typically, clustering and careful annotation of the resulting cell-clusters constitutes the downstream analysis up to the task. Clustering aims to identify groups of cells based on the similarity of their transcriptome. This key similarity is usually estimated by distance measurements between cells in a reduced dimensional space, which emphasises dominant aspects in the data. Then cellclusters are re-analysed to identify their gene signature, allowing meaningful biological annotation. Besides, clustering and cluster-annotation can be done at multiple resolutions to identify sub-structures in the data and increase the level of details in the annotation.

The clustering of scRNA-seq data represents an unsupervised machine learning problem due to the lack of previous knowledge on the cell type composition. As such, multiple wellestablished clustering methods, in the machine learning literature, have been progressively adapted to scRNA-seq data analysis [START_REF] Duò | A systematic performance evaluation of clustering methods for single-cell RNA-seq data[END_REF]T. S. Andrews et al., 2018).

K-means based algorithms

Classical clustering algorithms assign elements to cluster by minimising intra-cluster distances or finding dense regions in the appropriate space (usually in low dimension). In the case of scRNA-seq data analysis, many clustering methods were initially based on the popular k-means algorithm with alternative the distance measurements between cells [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF]. Classically, k-means clustering iteratively assigns cells to the nearest of the k possible cluster-centres (or "centroids") based on their Euclidean distances and then recomputes the cluster centroids (Figure 3.15). A major caveat of this approach in scRNA-seq data analysis is the need for a predetermined number of clusters which is unknown in many scRNA-seq datasets. Additionally, the stochastic starting locations for each centroid requires multiple runs of the algorithm to evaluate the robustness of the clusters and thus their biological significance. Single-cell interpretation via multi-kernel learning (SIMLR) represents one of the improved k-means-based clustering method for scRNA-seq (Wang et al., 2017). It combines data dimension reduction, visualisation and clustering. It learns a distance metric that best fits the data structure by the use of multiple weighted Gaussian kernels and then constructs the corresponding cell-to-cell similarity matrix with special for the high proportion of zero-counts. Lastly, the similarity matrix is used for k-means clustering or visualisation. Wang et al. claimed improved scalability, visualisation and interpretation of single-cell sequencing data compared to pioneer scRNA-seq clustering methods.

Single-cell consensus clustering (SC3) uses a consensus approach to tackle the k-means clustering limited robustness [START_REF] Kiselev | SC3: consensus clustering of single-cell RNA-seq data[END_REF]. Similarly to SIMLR, it takes as input normalised data, then performs additional gene filtering based on their expression, and computes Euclidean, Pearson and Spearman cell-cell distance matrices. Using PCA, it performs multiple k-means on a fixed number of PC from each distance matrix. The key to SC3 is its last step using cluster-based similarity partitioning algorithm which creates a consensus binary-similarity matrix corresponding to the number of times when two cells have been assigned to the same cluster. This last similarity matrix is then clustered by hierarchical clustering to produce robust cell-clusters.

Yet, despite improvements to the original k-means algorithm in similarity measure and cluster robustness, k-means based methods still require a predetermined number of clusters which limits its use in an exploratory analysis. In addition, the distance to cluster centroids used by k-means-based clustering roughly assumes clusters of equal size and round shape, which is rarely the case in scRNA-seq dataset. These assumptions constitute major limitations to the continued use of k-means based clustering in scRNAseq data analysis.

Graph-based algorithms

An alternative with less stringent assumptions is based on community detection algorithms. They are special cases of density-based clustering which represent data as graphs. In scRNA-seq data analysis, this graph representation is the result of a K-Nearest Neighbour approach in which cells are nodes connected to their K most similar cells by edges. Once again, the similarity is usually estimated by the Euclidean distance between cells in a PC-reduced space. However, compared to k-means based algorithms, graphs can easily represent complex non-linear structures and thus identify clusters of different sizes, densities and shapes [START_REF] Fortunato | Community detection in graphs[END_REF].

The challenge lies in the identification of well-connected nodes (high-density regions) and their partitioning into clusters. As a solution, Blondel et al., published the Louvain algorithm inspired by the social network field [START_REF] Blondel | Fast unfolding of communities in large networks[END_REF]. To detect communities, it uses a metric called modularity which represents the relative number of edges connecting a set of cells compared to a null hypothesis, for instance, a fully random graph. Consequently, the performance of these algorithms is dependent on the graph-representation and its ability to avoid spurious edges between cells. The PhenoGraph method, published by Levine et al. proposes a robust graph construction in two iterations (Levine et al., 2015). First, it finds the k-nearest neighbours for each cell. Second, it computes a weighted graph based on the Jaccard similarity coefficient which estimates the number of shared neighbours between each cell-sets of k-neighbourhoods. Such graph-construction method exploits the local density at each data point (improve rare cells identification), removes spurious edges and strengthens well-supported ones (limit noise associated clusters). The Louvain algorithm is then used to partition the graph.

The development of graph-based methods and their data-driven cell-cluster identification made them a standard of clustering methods for scRNA-seq data. Similarly to the K-means-based algorithms, graph-based methods also require an optimisation parameter which relates to the k number of neighbours useful to construct the graph. Yet, this parameter is much less restrictive than for k-means-based algorithms, as it represents the size of the smallest meaningful cell-cluster (Figure 3.16). Even so, it represents significant progress in the exploratory analysis of scRNA-seq data, the remaining challenge is how many identified groups are of biological significance? Indeed, there is yet to found a clustering method that will enable identification of both large dominant cell types as well as rare outlier cells. Not mentioning the additional difficulty that it might exits a hierarchy of cell types and cell-states that might all be of interest but hardly distinguishable with an unsupervised method. Thus, it is the cluster annotation quality that will determine the level of detail and biological insights found in the data. 

Cluster biological significance and annotation

As mentioned repeatedly, the concepts of cell type and cell state have been enriched by the increasing number of measurable cell modalities [START_REF] Wagner | Revealing the vectors of cellular identity with single-cell genomics[END_REF]. At the level of the transcriptome, as measured by scRNA-seq, cell identities are defined by cell-clusters which group cells of similar transcriptomes. To match this new definition of cell type with the former one, the cell-clusters need to be annotated. This annotation process is based on further analysis of the cell-clusters at the gene level. Through differential expression testing (described below), marker genes are identified as a unique combination of genes, specifically expressed in a given cell-cluster. This specific gene signature is then used to annotate the cell-clusters with an insightful biological label and cell type identity. As explained earlier, there is no clustering that can identify both large and small-sized clusters, as a consequence, it is at the annotation level that small clusters might be regrouped under a unique cell type label based on the analyst expertise and potential complementary analysis.

As increasing efforts are being made to create top quality atlases (Mouse and Human), many reference databases are becoming available to improve the annotation sensibility and robustness. Automated tools have been developed toward this aim and provide automated cell type annotation or compare cell-cluster gene signatures across datasets.

For instance, MatchSCore compares a reference list of marker genes to the one identified from the dataset and estimates their overlap using the Jaccard index [START_REF] Mereu | matchSCore: Matching Single-Cell Phenotypes Across Tools and Experiments[END_REF]. It then gives each cell-cluster a cell type label which corresponds to the top overlap with a reference gene signature.

Recently developed Garnett tool uses a supervised classification method to classify and annotated cells from multiple scRNA-seq datasets using a reference list of cell type-specific genes as a classifier [START_REF] Pliner | Supervised classification enables rapid annotation of cell atlases[END_REF]. It provides an unbiased framework to annotate multiple datasets uniformly and define cell types and their features robustly. Differently, scmap projects cells from one scRNA-seq experiment onto another based on their similarity and thus projects the cell type annotation. It provides a useful comparison of the annotation robustness between a reference dataset and newly annotated one.

In conclusion, these tools improved the robustness of cell type annotations. Yet, their efficiency and robustness against the wide variety of single-cell studies remain to be evaluated (including cell states, disease-related variations and developmental trajectories). Consequently, the best cell-cluster annotation method, for now, is a combination of automated and manually curated annotation as well as additional external validation.

Trajectory analysis

The previously mentioned applications of single-cell transcriptomics to the study of developmental and differentiation processes shook once again the discrete cell type classification. Developmental processes are continuous and their analysis using a discrete classification of cells might not be well suited. Thus, new dynamical analysis methods, named trajectory inference, were developed to capture the gradual transitions between cells and the complexity of differentiation trajectories. These methods are based on the fact that many biological processes are asynchronous and a scRNA-seq experiment captures the cells at different stages of the differentiation process, like a snapshot of a continuous dynamic process. Thereby, trajectory inference algorithms aim to reconstruct the differentiation/developmental path by ordering cells so as to minimise the transcriptional changes between them. Such ordering is named pseudotime and refers to a numeric value measuring the cell progress along a dynamic process of interest. Cell trajectories might have more or less complex topologies: linear, bifurcating, tree-shaped or even cyclic (Figure 3.17) including meta-stable or transitioning cell states that complicate trajectory inference. One of the earliest review on trajectory inference method described trajectory inference tools as the association between dimension reduction and trajectory modelling (graph construction) methods [START_REF] Cannoodt | Computational methods for trajectory inference from single-cell transcriptomics[END_REF]. Indeed, they first need to represent the cells in the correct space to measure cell-to-cell progressive transcriptomic variations and infer the corresponding topology. Yet, a recent comparison study between 45 trajectory inference tools Saelens et al., 2019 demonstrates that such association makes each method unique in the type of trajectory topology they can detect. To illustrate this point, I will briefly describe some of the most used trajectory inference methods (Figure 3.18).

Monocle

Monocle is one of the first method developed for the identification of branched or tree-like trajectories. It was published in multiple version (1, 2 and 3) with improved robustness, scalability to large dataset, and complexity of the detected topologies. CHAPTER 3. SINGLE CELL RNA-SEQ DATA ANALYSIS The first version of Monocle [START_REF] Trapnell | Monocle: Cell counting, differential expression, and trajectory analysis for single-cell RNA-Seq experiments[END_REF]):

• used ICA on a pre-selected number of informative genes for dimension reduction;

• constructed a graph of the data where each node is a cell and each weighted edge is the measured cell-to-cell similarity; • identified the minimum spanning tree present in the graph. Using the number of branching event determined by the user, it identifies the subset of edges which optimises the cell-to-cell similarity; • revealed the longest path in the graph and assigned each cell to the nearest point in the inferred trajectory; • estimated the pseudotime as the distance to the root state.

The second version of Monocle changed the dimension reduction method and the MST approach to decrease the sensibility to noise of the inferred trajectory. Monocle 2 uses an iterative-reverse graph construction method, named DDRTree, as both dimensionality reduction and trajectory modelling method (Qiu et al., 2017). Cells are projected into a low-dimensionnal space, for instance PCA, and clustered to identified centroids that will serve as nodes in the graph. Nodes are then updated at each iteration based on the overlap between the principal graph and the cells in the reduced space. This technique detects branching event in a completely unsupervised manner but still lacks robustness regarding the selected informative genes and their tendency to create spurious edges during graph construction. This limitation produces very different trajectories depending on the selected genes. The latest version of Monocle changed both dimension reduction and trajectory modelling methods completely and significantly improved its scalability to large dataset ( 2 million cells) [START_REF] Cao | The single-cell transcriptional landscape of mammalian organogenesis[END_REF]. It uses UMAP and recently developed PAGA algorithm (described below) to infer cell trajectories.
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Trajectory analysis

Slingshot

Slingshot has also been designed to infer branching trajectories [START_REF] Street | Slingshot: Cell lineage and pseudotime inference for single-cell transcriptomics[END_REF]. Implemented as a flexible toolbox, it easily integrates data in any low dimensional space but recommends ZINB-WaVE as dimensionality reduction method. From this space, it constructs multiple MST on cell-clusters with the constraint of a unique shared starting cluster. Slingshot then reconstructs branching trajectories as the addition of several linear trajectories. Lastly, based on the global lineage structure, it fits smooth branching curves to these lineages and estimates the pseudotime variable using a new method named simultaneous principal curves. Saelens et al. reported that the absence of a feature selection step, as well as the use of cell-clusters for graph construction, provide high robustness in the inference of branching trajectories with Slingshot (Saelens et al., 2019).

Palantir

Palantir was developed as a trajectory inference tool that takes into account the probabilistic view of cell-fate choice in addition to the reconstruction of the differentiation lineages [START_REF] Setty | Palantir characterizes cell fate continuities in human hematopoiesis[END_REF]. It moves away from the traditional view of cell-fate decisions as a series of discrete bifurcations leading to terminal cell state and hypothesises that a continuous process drives differentiation. It uses diffusion maps for data dimensionality reduction, as inspired by Setty's previous work: Wishbone [START_REF] Setty | Wishbone identifies bifurcating developmental trajectories from single-cell data[END_REF], then constructs a K-nearest neighbour graph. Shortest paths from a user-defined early cell initiate pseudotime. Based on the neighbour graph and pseudotime estimation, Palantir constructs a Markov chain that models differentiation as a stochastic process, where a cell reaches one or more terminal states through a series of steps in the manifold. All cells can thus potentially lead to multiple terminal states, which improves the comparison of gene expression dynamics between lineages as it does not require to select subsets of cells from one lineage to compare with the other. This technique improved the study and characterisation of multiple branching trajectories more comprehensively as it avoids the selection of so-called branching points.

PAGA

Partition-based graph abstraction (PAGA) algorithm was developed to reconcile clustering and trajectory inference tools [START_REF] Wolf | Endothelial-D322_Biop_Nas1 Endothelial-D339_Biop_Nas1 Endothelial-D344_Biop_Nas1 Endothelial-D322_Biop_Pro1 Endothelial-D326_Biop_Pro1 Endothelial-D339_Biop_Pro1 Endothelial-D344_Biop_Pro1 Endothelial-D353_Biop_Pro1 Endothelial-D354_Biop_Pro1 Endothelial-D363_Biop_Pro1 Endothelial-D367_Biop_Pro1 Endothelial-D372_Biop_Pro1 Endothelial-D322_Biop_Int1 Endothelial-D326_Biop_Int1 Endothelial-D339_Biop_Int1 Endothelial-D344_Biop_Int1 Endothelial-D353_Biop_Int2 Endothelial-D354_Biop_Int2 Endothelial-D363_Biop_Int2 Endothelial-D367_Biop_Int1 Endothelial-D372_Biop_Int1 Endothelial-D372_Biop_Int2 Endothelial-D344_Brus_Dis1 Fibroblast-D322_Biop_Pro1 Fibroblast-D326_Biop_Pro1 Fibroblast-D363_Biop_Pro1 Fibroblast-D367_Biop_Pro1 Fibroblast-D372_Biop_Pro1 Fibroblast-D322_Biop_Int1 Fibroblast-D326_Biop_Int1 Fibroblast-D339_Biop_Int1 Fibroblast-D344_Biop_Int1 Fibroblast-D353_Biop_Int2 Fibroblast-D363_Biop_Int2 Fibroblast-D367_Biop_Int1 Fibroblast-D372_Biop_Int1 Fibroblast-D372_Biop_Int2 Pericyte-D322_Biop_Pro1 Pericyte-D363_Biop_Pro1 Pericyte-D372_Biop_Pro1 Pericyte-D322_Biop_Int1 Pericyte-D326_Biop_Int1 Pericyte-D339_Biop_Int1 Pericyte-D344_Biop_Int1 Pericyte-D353_Biop_Int2 Pericyte-D367_Biop_Int1 Pericyte-D372_Biop_Int1 Pericyte-D372_Biop_Int2 B cells-D353_Brus_Nas1 B cells-D337_Brus_Dis1 B cells-D339_Brus_Dis1 B cells-D344_Brus_Dis1 B cells-D353_Brus_Dis1 B cells-D354_Brus_Dis1 Plasma cells-D322_Biop_Pro1 Plasma cells-D326_Biop_Pro1 Plasma cells-D339_Biop_Pro1 Plasma cells-D372_Biop_Pro1 Plasma cells-D339_Biop_Int1 Plasma cells-D344_Biop_Int1 Plasma cells-D363_Biop_Int2 LT/NK-D353_Brus_Nas1[END_REF]. It supposes that in the study of complex cell differentiation processes, all cell states of interest might be incompletely sampled. As a consequence, data might not conform to a connected manifold and trajectory reconstruction as a continuous tree-like process might have little meaning. Therefore, PAGA preserves both continuous and disconnected structure in the data through a graph-like map of the arising data manifold. Similarly to previously described trajectory inference methods, it uses PCA as dimension reduction methods and constructs a KNN-graph based on Euclidean distance between cells. Then, it uses a specially developed statistical model to estimate the connectivity of group of cells and thus perform graph partitioning (similar to clustering using Louvain or Phenograph algorithm). It produces a simpler graph whose nodes correspond to cell groups/clusters and whose edge weights quantify the connectivity between groups. By averaging over multiple single-cell paths, PAGA reconstructs trajectories from a progenitor to multiple cell-fates in a robust way and limited effect of spurious edges. Pseudotime is estimated through a diffusion process and assigns an infinite distance to cells that reside in disconnected clusters and computes distances among cells within connected regions in the graph (Haghverdi et al., 2018). This method has been evaluated as one of the rare trajectory inference methods to perform well across all evaluation criterion, and is the only reviewed method able to cope with disconnected topologies and complex graphs containing cycles (Saelens et al., 2019).

RNA velocity

Lastly, as an off-the-chart trajectory inference method, La Manno et al. developed RNA Velocity as a time-resolved additional analysis of dynamic processes (La Manno et al., 2018). It aims to provide additional time-scale information and directionality to developmental and differentiation studies (Figure 3.19). It defines RNA velocity as the first derivative of the gene expression state, by distinguishing between unspliced and spliced mRNAs in scRNA-seq count data. The time-dependent relationship between the abundance of precursor and mature mRNAs is estimated by modelling the balance between the production of spliced mRNA from unspliced mRNA, and the mRNA degradation. For instance:

• an increase in the transcription rate results in a rapid increase in unspliced mRNA, followed by a subsequent increase in spliced mRNA.

• a drop in the rate of transcription first leads to a rapid drop in unspliced mRNA, followed by a reduction in spliced mRNAs.

This balance of unspliced and spliced mRNA abundance is, therefore, an indicator of the future state of mature mRNA abundance, and thus the future state of the cell. It makes possible the inference of directionality in the cell progress through a dynamic process. RNA velocity has been highly praised as it gives an estimated 'real' time-scale to dynamic processes, which ranges from one to two hours between a cell and its inferred state, as opposed to standard trajectory inference tools which use pseudotime as an arbitrary measure of the cells progress in the differentiation process. As a conclusion, similarly to clustering methods, each trajectory inference tool has its assumptions on the data and algorithm characteristics which ensure that a single method cannot fit all types of trajectory seen in dynamic biological processes (Saelens et al., 2019). It supposes that multiple trajectory inference methods are necessary to ensure that the resulting trajectories are robust to the initial statistical assumptions. Besides, external validation through dynamic gene expression and experimental lineage tracking (when feasible) are required to confirm the biological relevance of the captured dynamic process.

Gene level analysis

Once cells have been analysed as extensively as possible (classified in clusters, ordered in pseudotime), it provides support and 'supervised' information to investigate the gene expression pattern across cells.

Differential expression analysis

Marker genes identification

As mentioned previously, to annotate clusters, marker genes are identified using differential expression (DE) analysis. In this particular case, a 'one-versus-all' design is necessary to identify each cluster-specific marker genes. DE testing is done between 2 groups: the cells in the cluster of interest and all the other cells in the dataset. It identifies genes that are up-regulated in the cluster of interest compared to the rest of the cells. This design reveals strong DE effects between groups of cells which does not require an intricate statistical framework. The Wilcoxon's rank-sum test has become a standard in cluster marker genes identification (Wolf et al., 2018;[START_REF] Stuart | Integrative single-cell analysis[END_REF].

Nevertheless, Luecken et al. reported two important aspects when detecting marker genes:

• P-values obtained for marker genes must be considered with care as their identification by DE testing is done between groups obtained on the same gene expression data. As cell-groups were obtained by clustering, it violates the null hypothesis implicit in DE tests that genes have the same distribution of expression values between the two groups. A consequence is that P-values are often inflated, which might lead to an overestimation of the number of marker genes even as the ranking by P-values is unaffected. AS a solution, additional permutation test can be done to account for the confounding clustering effect in the DE testing design.

• As marker genes characterise a cluster compared to the rest of the dataset, they are dependent on the whole dataset composition and which genes are expressed or not expressed in the rest of the cells. Therefore, a gene might be considered as a marker in one dataset with low cellular heterogeneity, but several clusters might share its expression in a more complex dataset. Thus, it is the combination of the expression of multiple 'marker genes' that should be considered as the true cluster identity.

Group and condition comparison of gene expression

Similarly to bulk sequencing techniques, scRNA-seq aims to test for gene differential expression between conditions or specific groups of cells. In bulk DE testing methods, the challenge was to estimate gene expression variance from a limited number of samples. Whereas for scRNA-seq DE testing methods, the challenge is to account for the dataspecific statistical properties (high variance, high percentage of zeros, low signal-to-noise ratio). (Hicks et al., 2017;[START_REF] Vallejos | Normalizing single-cell RNA sequencing data: challenges and opportunities[END_REF][START_REF] Kharchenko | Bayesian approach to singlecell differential expression analysis[END_REF]. A recent comparison overview of 36 differential expression testing methods surprisingly showed that bulk and single-cell methods perform comparably [START_REF] Soneson | Bias, robustness and scalability in single-cell differential expression analysis[END_REF]. For instance, two of the top-performing methods are edgeR developed for bulk count data and MAST specifically designed for DE testing on scRNA-seq data (M. D. Robinson et al., 2009;[START_REF] Finak | MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data[END_REF].

• edgeR uses an overdispersed Poisson model and an empirical Bayes procedure associated with conditional maximum likelihood to moderate the degree of overdispersion across genes. It then effectively assesses differential expression using a test analogous to Fisher's test. Additionally, it can integrate covariates into the Poisson model to distinguish between technical and biological variations.

• Model-based Analysis of Single-cell Transcriptomics (MAST) models single-cell gene expression using a two-part generalised linear model. One component models the discrete expression rate of each gene across cells, while the other component models the conditional continuous expression level (conditional on the gene being expressed). This model can account simultaneously for stochastic dropouts and bimodal expression distributions in which expression is either strongly non-zero or non-detectable. A covariate named cellular detetion rate (fraction of genes expressed in each cell) can be modelled to take into account additional nuisance and treatments effects. Similarly to edgeR, an empirical Bayesian framework is used to fit the model parameters for lowly expressed genes. Lastly, the differential gene expression is determined using the likelihood-ratio test.

In conclusion, there are many methods available for DE testing whether or not they were initially developed for the analysis of scRNA-seq data. Yet, their use is limited by two criteria:

• The scalability to a large number of cells. Many methods were developed for the comparison of a small number of samples per group and their runtime when comparing the expression of thousand of cells might increase exponentially.

• The capacity to handle confounding batch-effects. Batch-effects are much more present scRNA-seq data (between cells from the same or distinct experiments) compared to bulk RNA-seq data. Consequently, data must be rigorously normalised before DE testing and the DE testing itself must be done with care to avoid spurious results.

Gene expression dynamics

Similarly to clustering and marker genes identification, trajectory inference methods are associated with the study of gene expression dynamics. The aim is to identify genes that vary smoothly across pseudotime and relate them to the underlying regulatory processes. Typically, each trajectory inference method has its own technique to identify its trajectoryrelated genes:

• Monocle 2 was developed with a branch expression analysis modelling method (BEAM) which detects branch-specific gene dynamics (Qiu et al., 2017). It performs a likelihood-ratio test to identify the best fit between two negative binomial regression models: one that assumes that the gene is not branch-specific and one that supposes it is.

• Slingshot proposes to use the limma R package by adding the pseudotime as a covariate in the smoothed regression model of gene expression [START_REF] Street | Slingshot: Cell lineage and pseudotime inference for single-cell transcriptomics[END_REF].

• Palantir computes gene expression dynamics using generalised additive models and weighs each cell's contribution based on branch probabilities [START_REF] Setty | Palantir characterizes cell fate continuities in human hematopoiesis[END_REF].

Gene set analysis

A fundamental fact in biology states that genes do not act independently in cells, but are rather involved in a complex interplay of regulatory processes which associates other genes and their products (RNAs and proteins). The multiple regulatory units composing this interplay have been extensively studied over the years and associated with a large number of biological functions. All these annotations have then been assembled in large gene sets databases such as Gene Ontology (Ashburner et al., 2000), KEGG (Kanehisa et al., 2017) and Reactome (Fabregat et al., 2018). The availability of these databases launched the development of gene set analyses to provide support for the interpretation of long lists of candidate genes, including marker genes, differentially-expressed genes and trajectory-related genes.

• Gene Set Enrichment Analysis (GSEA) was one of the first methods to test if a specific gene set was over-represented/enriched in a list of genes and deduce a potential effect on the corresponding biological function.

• Gene set scoring is an alternative developed for scRNA-seq data and estimate the level of co-expression/co-activity of a set of genes in each cell. Gene set scoring was introduced for inferring the cell cycle phase in single cells by Macosko et al., 2015. • Gene regulatory network analysis is inspired by the system biology field and identifies modules of co-expressing genes as a putative causal regulatory relationship between genes. It then hypothesises that the downstream biological processes depend on the state of this module. Several methods were developed for scRNA-seq data accounting for the high noise level and spurious correlations between genes (Aibar et al., 2017). Yet, a recent review highlighted their lack of consistency and advice to consider their output with care [START_REF] Chen | Constructing cell lineages from single-cell transcriptomes[END_REF].

• Ligand-Receptor interaction analysis was developed to infer the putative interaction between cell types, based on the specific expression of ligand-receptor pairs in distinct cell types [START_REF] Vento-Tormo | Single-cell reconstruction of the early maternal-fetal interface in humans[END_REF][START_REF] Efremova | Cell-PhoneDB v2.0: Inferring cell-cell communication from combined expression of multisubunit receptor-ligand complexes[END_REF]. This analysis is very popular for identifying disrupted cell type interactions between conditions. 56 CHAPTER 3. SINGLE CELL RNA-SEQ DATA ANALYSIS Chapter 4

Model of study: The human airway epithelium

The respiratory tract or airways consists of a set of tissues whose organisation promotes gas exchange between the blood and the external environment. The epithelium lining it constitutes an elaborated first line of defence against a large panel of inhaled substances.

In this chapter, I will first briefly introduce the anatomy of the human respiratory tract.

Then, I will describe in more details the airway epithelium cell composition, structure and functions. Lastly, I will present its developmental origins and the cell lineages, which give to the airway epithelium its impressive capacity to self-renew.

Airway anatomy

The respiratory tract is divided into two modules forming a functional unit essential for respiration and gas exchange needed by our organism (Figure 4.1). These two compartments are:

• the upper respiratory tract (extra-thoracic) is composed of the nose and nasal cavities, paranasal sinuses of the pharynx and larynx;

• the lower respiratory tract (intra-thoracic), constitutes the respiratory tree, forming a conduction zone composed of the trachea, bronchi and bronchioles and a exchange zone characterised by pulmonary alveoli. This specific structure will allow the transformation of the inhaled air by sterilisation, heating and humidification. This air will then be transported to the cells of alveoli where the gaseous exchanges with the blood compartment are taking place.

Upper airways

Nose and nasal cavities

The nose is the first compartment in contact with the outside air. The hairs, located in the nostrils, filter the largest particles of the inhaled air such as dust, fibres and macromolecules (e.g. pollen). Just behind the nose are the two nasal fossae separated vertically by a bone wall called the nasal septum. These fossae are the continuation of the two nostrils and blend, via the choanae (funnel-shaped), into the nasopharynx.

The side walls of the nasal cavities form three horizontal outgrowths called nasal conchae (singular "concha") or turbinates. They correspond to thin bone blades rolled up on themselves that disrupt the airflow toward the olfactory epithelium. They are covered with a nasal mucosa and are highly vascularised. They contribute to the conditioning of so as to purify the inhaled air before it enters in the lower respiratory tract ( • The respiratory mucosa is a pseudostratified epithelium lining the nasal turbinates described above. It is mainly composed of multiciliated cells, basal cells, mucoussecreting cells and some neuroendocrine cells. This epithelium rests on a chorion, a highly vascularised and innervated connective tissue associated with lymphoid structures and many glands secreting mucins (the main component of the mucous).

• The olfactory mucosa, which is located on the upper part of the two nasal cavities and is mainly lined by a neurosensory epithelium responsible for olfaction.

• The squamous mucosa is a stratified squamous epithelium, resistant to the physical aggressions imposed by its situation at the entrance to the respiratory tract.

Paranasal sinuses

The paranasal sinuses form a group of four symmetrically paired cavities. They are named, maxillary, ethmoidal, frontal and sphenoidal, for the facial bones in which they are located. The functions of these sinuses are still unclear but it would seem that their roles are multiple. They would reduce the mass of the skull, resonate for the voice or warm and humidify the inhaled air thanks to the very slow airflow in this region. Lastly, they participate in the mucous drainage that purifies the inhaled air. In the case of allergic inflammation, or after swelling of the nasal lining that occurs during a cold, normal drainage of mucous through the sinuses can be altered, and sinusitis may occur.

Pharynx

The pharynx delimits the separation between the nasal cavities and the larynx. It is divided into three parts (Figures 4.1 and 4.2):

• The nasopharynx or rhinopharynx extends from the base of the skull to the upper surface of the soft palate. The ceiling of its wall shows the pharyngeal tonsils (or tonsils, also called adenoids) which are lymphoid tissues. The auditory tube opens in the side walls of the nasopharynx and allow the balance of the air pressure in the ear with the outside air.

• The oropharynx is located at the back of the oral cavity. It receives air from both the nasal cavities and the mouth. Because it is a crossroad between both food and air, a flap of connective tissue called the epiglottis closes over the glottis when food is swallowed to prevent aspiration. The oropharynx is also lined by non-keratinised squamous stratified epithelium to resist physical constraints. Similarly to the nasopharynx, the oropharynx has tonsils as a kind of immune control zone against pathogens passing through this aerodigestive crossroads. The oropharynx is lined by non-keratinised squamous stratified epithelium.

• The laryngopharynx, which is the most distal sub-division of the pharynx, extends to the larynx. It is in this area that the respiratory and digestive tracts diverge. The mucous membrane of the pharynx evolves by descending the respiratory tract as the physical constraints are reduced.

Larynx

The larynx is a tube communicating with the laryngopharynx in its proximal part and the trachea in its distal part. It is surrounded by nine different cartilages, the largest of which forms two blades better known as Adam's apple. The larynx conducts the air to the trachea but also prevents food aspiration through cartilage movements. It is lined by a mucous membrane of respiratory type with the exception of the epiglottis and vocal cords where a squamous epithelium is observed. These areas undergo significant physical forces for which a simple respiratory epithelium would not be strong enough. During mucociliary clearance from the lower airway tract (trachea and bronchi), the mucous goes up to the level of the larynx where it is either swallowed or spat out. The larynx, also called voice box, has the role of phonation since it shelters the vocal cords.

Lower respiratory tract

Trachea

The trachea is a cartilaginous tube, 10 to 12 cm long with a lumen diameter of about 2.5 cm, connecting the larynx and bronchi. It is surrounded by 16 to 20 incomplete rings of hyaline cartilage in the shape of a "C". These cartilages make the trachea rigid to avoid large amplitudes of its diameter during breathing. Throughout its internal surface, the trachea is covered with a respiratory mucosa characterised by the pseudostratified epithelium composed of a large number of multiciliated cells essential for the propulsion of mucous secreted by the surface secretory cells as well as by submucosal glands.

Bronchi and bronchioles

The distal end of the trachea divides at the carina into the two primary bronchi (right and left). Each of them penetrates a lung where they are subdivided into lobar or secondary bronchi corresponding to the different lobes, 3 in the right lung and 2 in the left lung. These lobar bronchi further divide into narrower segmental or tertiary bronchi, which in turn subdivide into larger and smaller-sized segmental or subsegmental bronchi. When the bronchi are too narrow (1 mm diameter) to be supported by cartilage they are known as bronchioles. There are up to 23 orders of bronchi and bronchioles in the human airways, which explains the use of the term respiratory tree. In its most distal parts, the bronchioles, called respiratory bronchioles, penetrate the pulmonary lobules.

The bronchial tree, including its epithelium, develops specific characteristics going from trachea to distal bronchiole (Figure 4.3). Increasingly scattered cartilage patches are gradually replacing hyaline cartilage rings. As the diameter of the bronchi decreases, the proportion of smooth muscle around the bronchi increases to cover the bronchioles with smooth muscle fibers completely. The thickness of the surface epithelium decreases, and there is a progressive decrease in the number of multiciliated cells and basal cells compared to an increase of neuroendocrine cells and club/clara cells [START_REF] Rao Tata | Plasticity in the lung: Making and breaking cell identity[END_REF]. 

Alveoli

At the distal end of the respiratory tract, the last order of bronchioles marks the beginning of pulmonary acini, also named terminal respiratory units. They include the respiratory bronchioles, the alveolar ducts, alveolar sacs, and alveoli. The respiratory bronchioles give rise to alveolar ducts that lead to alveolar sacs, which contain two or more alveoli. These alveoli are the sites where gas exchange occurs. Alveoli are composed of several pulmonary cells. A dense network of capillaries envelops the cells and forms an alveolarcapillary membrane with the alveolar wall, allowing the simple diffusion of gases between the respiratory tract and the blood. The alveolar epithelium consists of a single cellular layer mainly composed of type I and type II pneumocytes ( • Type II pneumocytes (Alveolar Type 2 cells) are responsible for pulmonary surfactant production. Surfactant is mainly composed of lipids (up to 90%), but also contains several surfactant proteins which are specific markers of AT2 cells. The important secretion of an amphiphilic surfactant covering the whole surface of the alveoli creates high surface tension inside the alveoli, which limits its collapse.

Cell composition of the airway epithelium

As mentioned previously, the cellular composition and thickness of airway epithelium varies along the respiratory tree. As it constitutes the main focus of my study, I will now describe the main cellular types found from the nasal cavities to the distal part of the bronchi (Figure 4.5). Respiratory epithelium in human consists of many distinct cell types: goblet cells secrete mucous to entrap inhaled particulates; multiciliated cells expel the mucous together with the entrapped particulates; club cells are secretory cells that produce various factors with protective and immunomodulatory functions and also serve in detoxification of harmful substances; basal cells are progenitor cells for the airway epithelia; pulmonary neuroendocrine cells (PNECs) probe the microenvironment to influence smooth muscle tone as well as regulate immune responses. There are also rare epithelial cell types, including brush (tuft) cells, which may serve an important role in regulating allergen driven type 2 immune responses, and the recently identified ionocytes, which appear to be a main source of cystic fibrosis transmembrane conductance regulator (CFTR) activity , thereby regulating mucous production (with a potential role in cystic fibrosis). Deuterosomal, Immature and Mucous-Multiciliated cells will be described in the Results section of this manuscript. Stromal cells such as airway smooth muscle (ASM), fibroblasts provide ligands and extracellular matrix that modulate airway epithelial cell turnover and restrict airway tube diameter. The tracheal region and large airways in the human respiratory tract harbour cartilaginous rings and submucosal glands. The latter contain mucous cells and serous cells and are responsible for the production of luminal mucous together with goblet cells. Key markers expressed in each cell type are indicated. .

Basal cells

Basal cells are found in all stratified and pseudo-stratified epithelium. From a morphological point of view, they can be distinguished by a small size and a very high nucleus/cytoplasm ratio. They are located in the lowest part of the surface respiratory epithelium in contact with the basal lamina. They are more numerous at the proximal level of the respiratory tree where they represent about 30% of the epithelial population and cover 90% of the basal blade [START_REF] Mercer | Cell number and distribution in human and rat airways[END_REF]. They become less numerous at the distal level [START_REF] Baldwin | Basal cells in human bronchial epithelium[END_REF] where they represent only 2 to 10% of the population in bronchiolar segments less than 0.5 mm (Boers et al., 1998a). Their number is strongly correlated to the height of the surface epithelium [START_REF] Evans | Cellular and molecular characteristics of basal cells in airway epithelium[END_REF].

Basal cells express intracellular markers that are specific and are widely used in studies to distinguish them from luminal cells of cylindrical shape. These markers may be cytokeratins, such as KRT5 and KRT7 (cytokeratin-5, -7), transcription factors, such as TP63 (Tumor Protein P63) or pathway-related ligands/receptors, like DLK2 (Delta Like Non-Canonical Notch Ligand 2) a Notch pathway inhibitor (Boers et al., 1998a). A transcriptomic analysis of isolated basal cells confirmed and improved this list of marker genes [START_REF] Hackett | The human airway epithelial basal cell transcriptome[END_REF]. According to several studies, it is likely that the basal cells population is probably more heterogeneous with, for instance, only a fraction of KRT5 positive cells that also express KRT14 which has also been reported as a marker gene of basal epithelial cells [START_REF] Rao Tata | Plasticity in the lung: Making and breaking cell identity[END_REF].

Basal cells have two essential roles within the epithelium.

• A structural role where basal cells provide a solid anchoring of the epithelium to the basal lamina, through hemi-desmosome junctions. Their name come from this contact with the basal lamina. These cells also form bonds with neighbouring (cylindrical/luminal) cells using desmosomes junctions. Basal cells therefore maintain the epithelium on the basal lamina (Shebani et al., 2005;[START_REF] Evans | Cellular and molecular characteristics of basal cells in airway epithelium[END_REF].

• A role as stem cells or progenitor cells to reform a functional epithelium. Basal cells are capable of proliferating and differentiating in other epithelial cell types during homeostasis and following injury. Their ability to differentiate into other epithelial cell types has been demonstrated using transgenic mice expressing a reporter gene under the control of a basal cell specific promoter (KRT14 ). A study by Hong et al., has demonstrated that after epithelial lesion in vivo, both the newly differentiated multiciliated and secretory cells derived from basal cells [START_REF] Hong | Basal Cells Are a Multipotent Progenitor Capable of Renewing the Bronchial Epithelium[END_REF]).

In addition, two studies showed that, in vitro, isolated basal cells can re-form a mucociliated epithelium [START_REF] Hajj | Basal Cells of the Human Adult Airway Surface Epithelium Retain Transit-Amplifying Cell Properties[END_REF][START_REF] Rock | Basal cells as stem cells of the mouse trachea and human airway epithelium[END_REF]. Lastly, a recent study proposed that basal cells are in fact the grouping of two morphologically identical subpopulations, a multipotent strain population and a population of precursors committed to differentiation (Watson et al., 2015).

Suprabasal / Parabasal cells

So-called parabasal (suprabasal or intermediate) cells have been described to be located between basal and cylindrical/luminal cells (Figure 4.5) (Boers et al., 1998a). Microscopic studies show that these cells do not appear to share common morphological characteristics with either multiciliated cells, mucous or neuroendocrine secretory cells [START_REF] Breeze | The cells of the pulmonary airways[END_REF]. Yet, they bear similar morphological features with basal cells as they are fusiform and do not reach the surface of the epithelium. Even though their function is still hypothetical, their abundance up to 25% of basal cells and their similarities could suggest that they are basal cells engaged in a differentiation program into multiciliated or secretory cells (Mori et al., 2015).

Secretory cells

The non-ciliated secretory cells found in the respiratory epithelium can are divided into distinct types of secretory cells depending on the nature of the molecules they secrete and their localisation.

Club cells

Some of these secretory cells were first described in 1937 by Max Clara, who distinctly identified their cytoplasmic granules, indicative of a secretory function. These cells were initially named Clara as a posthumous honour to the one who discovered them, but due to his close links with Nazi party during World War II, they have been renamed Club cells [START_REF] Winkelmann | PAGA : graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells[END_REF] Club cells are differentiated luminal cells, with a columnar/cylindrical shape and microvilli on their apical surface. Club cells display a large heterogeneity of shape and properties across the different species [START_REF] Crystal | Airway Epithelial Cells: Current Concepts and Challenges[END_REF]. They are mainly present in the distal part of the conducting airways (Boers et al., 1998b), they have an important role in the protection of the airways through diverse mechanisms:

• An anti-inflammatory and immuno-modulatory function via the secretion of uteroglobin (or CC10 for "Club Cell protein 10kDa"), but also of many antimicrobial peptides, such as lipocalin (LCN2 ) [START_REF] Hung | Regulation of TH2 responses by the pulmonary Clara cell secretory 10-kd protein[END_REF][START_REF] Lin | Comparison of normalization and differential expression analyses using RNA-Seq data from 726 individual Drosophila melanogaster[END_REF].

• A detoxifying function through their contribution to xenobiotic metabolism by a high level of expression of metabolosing enzymes including cytochrome P450 [START_REF] Stripp | Maintenance and repair of the bronchiolar epithelium[END_REF].

In addition, studies have demonstrated that club cells can differentiate into multiciliated cells and mucous-secreting cells (Evans et al. 2004). They have also been described as multipotent progenitor in mice following injury and complete basal cell depletion [START_REF] Hong | Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvi-Bibliography ronment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion[END_REF]. CHAPTER 4. MODEL OF STUDY: THE HUMAN AIRWAY EPITHELIUM

Goblet cells

Goblet cells are mucous-secreting cells also named caliciform because of their cylindrical shape. Their entire apical part is full of secretion vesicles, mainly composed of glycoproteins such as mucins, rich in sialic acid and major component of mucous. Even though there are 21 different MUC genes, not all of them encode for secreted mucins. The nomenclature of these genes groups mucins and mucin-like proteins, which ability to generate the three-dimensional network of the mucous gel are different. There are only 4 secreted gel-forming mucins coded by the genes MUC5AC, MUC5B, MUC2 and MUC6, of which only MUC5AC and MUC5B are secreted in the airways and are considered as respective marker genes of surface epithelial and submucosal glands goblet cells [START_REF] Porchet | Les gènes MUC Mucin or not mucin ?[END_REF]. The secretion of mucins is mostly carried out in a merocrine manner (i.e. by exocytosis vesicles) but sometimes by an apocrine process (in which the entire apical pole of the cell is fragmented) [START_REF] Rogers | Airway goblet cells: responsive and adaptable front-line defenders[END_REF]. Goblet cells are also capable of producing molecules endowed of anti-bacterial activity such as secretory IgA, lactoferrin, lysozyme defensins, etc... In the surface epithelium of the airways, goblet cells are disseminated among multiciliated cells and represent 15% of the cylindrical/luminal cells of the epithelium. In submucosal gland epithelium, similar cells (MUC5AC-/MUC5B+) can be found and their number is 40 times more important. As a result, 90% of the mucous is secreted via the tubulo-acinous glands of the mucosa. Although mucous-secreting cells are largely in the minority within the epithelium, their proportion can increase drastically under stressful or pathological conditions. This is the case when a Th2 response develops, which leads to an increased level of IL-13 (K.-s. [START_REF] Park | Goblet cell hyperplasia and mucous hypersecretion contribute to the pathogenesis of chronic pulmonary diseases including cystic fibrosis , asthma , and chronic obstructive pulmonary disease . In the present work , mouse SAM pointed domain-containing ETS t[END_REF][START_REF] Park | Chronic intermittent mechanical stress increases MUC5AC protein expression[END_REF]. In such a situation, the multiciliated/mucous cell balance no longer allows optimal mucociliary clearance and can lead to obstructions, phenomena found in chronic respiratory diseases.

Sub-mucosal glands structure and epithelia

Submucosal glands are a specialised structure of multiple cells (mainly secretory cells) localised within the cartilaginous/ large conducting airways. Their contribution to the protective function of the surface epithelium happens via the secretion of ions, water, mucous and other proteins that are found in the airway surface liquid (ASL), which corresponds to the liquid that bathes the luminal surface of the airway epithelium. These glands can be divided into four regions, from the more distal to the more proximal/luminal, each with a distinct physiological function and cell composition (Figure 4.6) [START_REF] Tata | Myoepithelial Cells of Submucosal Glands Can Function as Reserve Stem Cells to Regenerate Airways after Injury[END_REF][START_REF] Fischer | Differential Gene Expression in Human Conducting Airway Surface Epithelia and Submucosal Glands[END_REF]. • Serous acini and tubules are composed of serous cells which secrete ions, electrolytes and antimicrobials molecules. They are surrounded by myoepithelial cells, which are required for the excretion of the glandular fluids into the airway by providing a contractile force that squeezes the acini;

• Mucous tubules are composed of submucosal goblet cells which enrich in high molecular weight mucin molecules (MUC5B ) the previously secreted fluids;

• Collecting duct, which according to its name, collects fluid and mucous in tubules.

They are lined by tall, columnar cells and some multiciliated epithelial cell;

• Ciliated duct is an extension of the airway epithelium and contains multiciliated cells that propel the fluid and mucous out of the gland and into the airway lumen.

Multiciliated cells

Multiciliated cells are cylindrical or pyramidal cells with on their apical part about 250 motile cilia interspersed by microvilli, whose number is roughly estimated at half that of the cilia (Watson et al., 1964). These cells are the most abundant in the airway epithelium, with an estimated ratio of about 5 multiciliated cells for 1 mucous cell (Rhodin et al., 1966). They represent 56% of the cellular population in the trachea while they only reach 15% of epithelial cells in the distal bronchi [START_REF] Rao Tata | Plasticity in the lung: Making and breaking cell identity[END_REF]. Multiciliated cells are not directly attached to the basal lamina by hemidesmosomes, but rather through desmosomes that bind them to adjacent cells (basal cells) (Shebani et al., 2005).

Observation of the mouse respiratory tract by electron microscopy shows that the cilia of the MCCs shorten when considered from the trachea to the bronchial tree. Indeed, Greenwood and Holland estimated that these motile cilia go from 7 µm in the upper tract to 3 or 4 µm in the bronchi (Greenwood Holland, 1972). The cilia structure remains the same throughout the airways, regardless of their length. Nonethless, their synchronised beating frequency is faster in the proximal bronchi than in the distal bronchi, with an average frequency of 10 to 20 Hz (Zahm et al., 1990). Their nucleus is located at the basal level of the cell while the mitochondria are found very enriched at the apical pole of the cell to provide the energy necessary for ciliary beating (Hansell Moretti,. 1969). It is the synchronisation of the ciliary beating that allows the mucociliary clearance of the airways and the efficient elimination of the mucous in the pharynx. Multiciliated cells are considered as one of the terminally differentiated cell fate of basal cells as they are unable to divide and proliferate. (Kauffman et al., 1980;McDowell et al., 1983). However, this is currently challenged with the observation of transdifferentiation mechanisms of multiciliated cells into mucous-secreting cells (J. A. [START_REF] Park | Chronic intermittent mechanical stress increases MUC5AC protein expression[END_REF]. Their differentiation of basal cells to multiciliated cells results of numerous key regulatory processes:

• Basal cells cell cycle arrest [START_REF] Deblandre | A two-step mechanism generates the spacing pattern of the ciliated cells in the skin of Xenopus embryos[END_REF];

• Notch signalling inhibition (Tsao et al., 2009);

• Actin apical cytosqueleton remodelling by RhoA and ERM complex (Ezrine, Radixine and Moesine) [START_REF] Pan | Myb Permits Multilineage Airway Epithelial Cell Differentiation[END_REF];

• Massive centriol multiplication after activation of MYB signalling;

• Basal bodies maturation and cilia elongation mediated by transcription factor FOXJ1 and RFX3 [START_REF] Baas | A deficiency in RFX3 causes hydrocephalus associated with abnormal differentiation of ependymal cells[END_REF].

Rare cells

In addition to the main cell types described previously, the airway epithelium is also composed of so-called 'rare cells'. Their low frequency made them particularly hard to identify and limited the characterisation of their function in the airway epithelium.

Ionocytes

Ionocytes also named mitochondrion-rich cells or chloride cells, are specialised in ionic transport. They were first described in fish gills, where they actively transport salt from the fish media into its body through the gills, to balance the chloride concentration [START_REF] Esaki | Mechanism of development of ionocytes rich in vacuolar-type H+-ATPase in the skin of zebrafish larvae[END_REF][START_REF] Jänicke | Foxi3 transcription factors and Notch signaling control the formation of skin ionocytes from epidermal precursors of the zebrafish embryo[END_REF]. They were later described in mammals kidney, epididymis and endolymphatic duct of the inner ear. They were additionally named proton-secreting cells as they drive transepithelial movements of ions required for pH osmoregulation using the H+ ATPase. Finally, recent experiments of single-cell transcriptomics of mice airway epithelium identified a cluster of cells with marker genes associated to the osmoregulation function of the ionocytes, such as Foxi1, Ascl3, subunits of the H+ATPase and several subunits of Cl-transport systems. Interestingly, those ionocytes also display an enrichment in Cftr, which encodes for a chloride channel that is mutated in cystic fibrosis (Montoro et al., 2018;[START_REF] Plasscheart | A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte[END_REF]. Based on this observation, these authors have suggested that these cells may play a determinant role in this disease.

Tuft cells

Tuft cells, also named brush cells, are characterised by the presence of a tuft squat microvilli (120-140/cell) on their apical surface. They are distinctively pear-shaped, with a wide base and a narrow microvillous apex. Brush cells are scarcely located within the epithelial layer of the gastrointestinal and respiratory tracts. They have been associated with chemosensory function that use the canonical taste transduction cascade (allowing bitter and umami tastes) to detect irritants and modulate the immune response, similarly to their function in the intestine [START_REF] Reid | Summary The Mysterious Pulmonary Brush Cell A Cell in Search of a Function[END_REF][START_REF] Gerbe | Intestinal tuft cells: Epithelial sentinels linking luminal cues to the immune system[END_REF][START_REF] Von Moltke | Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit[END_REF].

Pulmonary neuro-endocrine cells

Pulmonary neuroendocrine cells (PNEC), also named Kulchitsky cells, are specialised airway epithelial cells that are scattered as solitary cells or as clusters called neuroepithelial bodies (only reported in mice) all along the airways. These cells are bottle-like shaped, and reach from the basal lamina to the lumen. They were reported to have an important role in fetal lung development, including branching morphogenesis by the secretion of peptides and amines which exhibit many properties similar to those of growth factors (neurotransmitters such as calcitonin-gene-related peptide and -aminobutyric acid).

However, in the adult lung their role is still not fully understood, with the hypothesis of a localised regulation of epithelial cell growth and regeneration through a paracrine mechanism [START_REF] Rao Tata | Plasticity in the lung: Making and breaking cell identity[END_REF]. Other studies suggest critical role in the modulation of the immune response to allergens and an influence in goblet cell hyperplasia [START_REF] Sui | Pulmonary neuroendocrine cells amplify allergic asthma responses[END_REF].

The muco-ciliary epithelium: a protective functional unit for the respiratory tract

As mentioned previously, the airway epithelium covers most of the respiratory tract. In constant contact with the external environment and continuously exposed to live and inert particles, its main function is to protect the respiratory tree from external aggressions. Thus, the airway epithelium constitutes a physical and physiological defence barrier which will allow the conduction of purified air to the alveoli. In this section, I will describe the complementary mechanisms put in place by the epithelial cells to ensure the homeostatic maintenance and integrity of this protective tissue.

Mucous : first line of defense

Every day, a human being inhales about 10,000L of air, the equivalent of about 5x10 10 inhaled particles. Against them, the airway surface liquid represents the body's first line of defence. It constitutes a continuous layer along the airway epithelium trapping airborne particles like flypaper [START_REF] Coraux | Réparation et régénération de l ' épithélium respiratoire[END_REF]. This surface liquid is divided into two distinct phases.

• The periciliarly layer (PCL) which bathes the cilia and acts as a lubricant for efficient ciliary beating;

• The overlying mucous layer which traps inhaled particles and pathogens for later removal through the mucociliary clearance [START_REF] Webster | Slippery When Wet: Airway Surface Liquid Homeostasis and Mucus Hydration[END_REF].

Periciliarly layer

The periciliarly liquid, located under the gel phase, corresponds to the layer in which the cilia can move. Initially described as an aqueous layer devoid of mucins, it has been demonstrated that mucins are also present and essential to the function of the periciliarly liquid. These mucins are organised like brushes at the surface of the cilia (MUC-4 and MUC-20 ) and microvilli (MUC-1 ) forming a real network excluding particles larger than 25 nm in diameter (Figure 4.7) [START_REF] Kesimer | Molecular organization of the mucins and glycocalyx underlying mucus transport over mucosal surfaces of the airways[END_REF]. The repulsion forces between these negatively charged mucins contribute to an optimal beat of the cilia, without friction [START_REF] Hattrup | Structure and Function of the Cell Surface (Tethered) Mucins[END_REF]. In addition, mucin charges create an osmotic pressure which influences the distribution of water between the gel phase and periciliarly fluid [START_REF] Button | A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia[END_REF]. In pathological situations, hypersecretion of mucous interferes with this osmotic pressure, resulting in a crushing of the periciliary fluid and therefore a defective cilia beat. Left. The mobile gel layer, mainly composed of mucins, only moves above a stationary periciliary layer thanks to the propulsion operated by the multiciliated cells. Center. mucous cells secrete polymeric mucins that compose directly the mobile gel phase. However, some mucins isoforms are also attached to the cilia and microvilli membranes in the periciliary liquid. Right. Mucins are made up of a chain rich in sugars. The charged mucins will thus generate repulsion forces essential to the optimal beat of the cilia. 

Mucous-gel layer

The gel phase is mainly composed of water (more than 95%) but also of a network of glycoproteins called mucins. The entanglement of mucin polymers form a dense network giving the gel phase its viscosity and elasticity. Mucin-5AC (MUC5AC ) (produced by epithelial secretory cells) and Mucin-5B (MUC5B ) (produced by glandular secretory cells) are the predominant mucins involved in the formation of this mucous "gel" (Widdicombe et al., 2015). The heterogeneity of the sugar chains present on the surface of these glycoproteins represents a range of receptors to which bacteria will bind, thus trapping the microorganisms in this gel layer. In addition to its role as a protective film, the mucous-gel layer has antimicrobial and antioxidant properties thanks to the numerous antimicrobial products secreted by epithelial cells [START_REF] Lamblin | Human respiratory mucins[END_REF].

• Lysozyme is an enzyme secreted in very high amounts by glandular cells and secretory cells of the surface epithelium but also by alveolar macrophages and neutrophils. This enzyme hydrolyses peptidoglycan bonds in the bacterial membrane [START_REF] Konstan | A Comparative Study of Lysozyme and Its Secretion by Tracheal Epithelium[END_REF].

• Lactoferrin, or lactotransferrin, is a globular glycoprotein of the transferrin family that binds ferric ions. Secreted by glandular mucous cells and neutrophils, it has an antibacterial activity through interaction with lipopolysaccharides from the bacteria membrane affecting its permeability [START_REF] Farnaud | Lactoferrin -A multifunctional protein with antimicrobial properties[END_REF].

• Defensins are small cationic peptides with antimicrobial activity against bacteria, parasites and viruses. They are produced by surface epithelial cells, glandular cells and macrophages (Martin et al. 1995).

• Secretory Leukocyte Protein Inhibitor (SLPI) is a protein with antimicrobial activity.

It is secreted by macrophages, neutrophils and serous cells [START_REF] Gauthier | Kinetics of the inhibition of leukocyte elastase by the bronchial inhibitor[END_REF].

• Cathelicidin is an antimicrobial protein which belongs to the family of cathelicidins and acts in synergy with lactoferrin and lysosyme. Secreted by neutrophils, lymphocytes and surface epithelial cells, it has a chemo-attractive action to immune cells at the site of inflammation or infection [START_REF] Agerberth | The human antimicrobial and chemotactic peptides LL-37 and -defensins are expressed by specific lymphocyte and monocyte populations[END_REF]. This protein also triggers apoptosis of epithelial cells infected with a pathogen [START_REF] Barlow | The human cathelicidin LL-37 preferentially promotes apoptosis of infected airway epithelium[END_REF].

• Lactoperoxidase is an enzyme with an antimicrobial activity, particularly on Pseudomonas aeruginosa and Haemophilus influenzae [START_REF] Gerson | The lactoperoxidase system functions in bacterial clearance of airways[END_REF]. Its inhibition has been reported to decrease bacterial clearance in the respiratory tract [START_REF] Wijkstrom-Frei | Lactoperoxidase and human airway host defense[END_REF].

• In addition to molecules acting directly on inhaled pathogens, the epithelium is also capable of secreting molecules that will generate a local immune response: cytokines and chemokines [START_REF] Gandhi | Airway epithelium interactions with aeroallergens: Role of secreted cytokines and chemokines in innate immunity[END_REF].

Mucociliary clearance

The optimal protection of the airways does not only consist in trapping particles in the airway surface liquid but also to evacuate them. The coordinated beating of multiciliated cells gradually drains the mucous along the respiratory tract and up to the larynx where it is spat out or swallowed in the digestive system. The frequency of the ciliary beating is between 10 and 20 Hz, causing mucous displacement of about 5 mm/min (Widdicombe et al., 2015).

Epithelial hydro-electric transport

As previously mentioned, an optimal osmolarity of the periciliarly fluid is necessary for the ciliary beat. Its degree of hydration needs, therefore, to be tightly controlled. The volume and composition of the airway surface liquid are regulated by a hydro-electrolytic transport involving ionic transporters, such as ion channels and aquaporins, located on the apical membrane of the epithelial cells. The combination of cation (especially Na+), anion (mainly Cl-, but also HCO3-) and water transport regulate the hydration of the surface liquid. In pathological conditions such as cystic fibrosis, the dysfunction of the Cl-CFTR channel disrupts the water balance, thus modifying the physicochemical properties of the surface liquid [START_REF] Boucher | Cystic fibrosis: a disease of vulnerability to airway surface dehydration[END_REF].

Planar cell polarity

To achieve an efficient mucociliary clearance, motile epithelial cilia (hundreds of cilia per single multiciliated cell) must undergo a precise and coordinated orientation. This orientation is controlled by a regulatory cascade called 'planar cell polarity' which determines at the scale of the cell and tissue the vectorial orientation of all cilia in the plane of the epithelium. It is the coordinated contribution of actin and microtubules that operates the correct positioning and orientation of the cilia basal bodies, in connection with its neighbours.

Cilia beating cycle

Finally, the evacuation of mucous is made possible by a very specific cycle of cilia beating. Sanderson and Sleigh observed the different phases of cilia beating in 1981 by electron microscopy on the cilia of a rabbit trachea. This movement is divided in two phases (Figure 4.8) (Brooks et al., 2014).

• An effector phase during which the cilia is perpendicular to the plane of the epitheliumand its end is anchored in the mucous layer. The cilia moves in a plane, in the direction of mucous evacuation forming a trajectory of about 110°.

• A recovery phase during which the cilia curve and make a clockwise arc of a circle to return to its initial position. Although cilia are said to beat synchronously on the surface of multiciliated cells, their movement is slightly shifted over time, causing a wave on the surface of the epithelium. This slight shift in cilia is believed to be due to hydrodynamic interactions between cilia [START_REF] Gueron | Cilia internal mechanism and metachronal coordination as the result of hydrodynamical coupling[END_REF]. Simulations demonstrated that cilia asynchronous beat produces a mucous propulsion efficiency 10 times higher and 3 times faster than synchronous beat (Elgeti et al., 2013). CHAPTER 4. MODEL OF STUDY: THE HUMAN AIRWAY EPITHELIUM

Epithelial permeability

The airway epithelium forms a physical barrier between the external environment and the body. The integrity of this barrier requires strong cohesion of all the cells that compose it, making the organism impermeable to air contaminants and inhaled pathogens. As seen previously, the airway epithelium is itself protected on its luminal surface by the periciliary fluid, and a layer of mucous. However, although the movement of the gel phase within the airways can be simplistically assimilated to a continuous moving walkway, the most realistic concept advocates a discontinuity of this mucous layer [START_REF] Sears | Mucociliary interactions and mucus dynamics in ciliated human bronchial epithelial cell cultures[END_REF]. Therefore, the surface epithelium is likely to be exposed, at least partially, to airborne particles. This is why, within the epithelium itself, several junction complexes ensure the physical cohesion and integrity of this barrier but also defines the apicobasal polarity of the epithelium (Figure 4.9). • Tight junctions (from Latin zonula occludens) are located at the boundary between the apical and lateral domains of cylindrical/luminal epithelial cells. These are the most apical and narrowest junctions between adjacent cells (hence their name 'tight junctions'). They constitute a physiological barrier between the exterior and interior of the body by limiting the passage of molecules (small molecules only) into the paracellular space (Gumbiner et al., 1993).

• Intermediate junctions (from Latin zonula adherens) strengthen the cohesion and intercellular adhesion of the airway epithelium. They form a junction belt around the epithelial cells and below the tight junctions. Each intermediate junction is connected to the actin cytoskeleton and microtubule network. Their role is to strengthen the integrity of the epithelium during shape modifications generated by conformational changes in actin filaments [START_REF] Perez-Moreno | Sticky business: Orchestrating cellular signals at adherens junctions[END_REF].

• Gap junctions provide intercellular communication by forming large-diameter pores for the passive diffusion of small molecules (<1 kDa). These pores, assimilated to channels, are very important for electrical conduction, intercellular communication and nutrition. The opening and closing of these channels are dynamically regulated [START_REF] Goodenough | CONNEXINS, CONNEXONS, AND INTERCELLULAR COMMUNICATION[END_REF].

• Desmosomes (from Latin macula adherens)are distributed over the entire basolateral surface below the belt of the adherent junctions. These anchor junctions are characterised by the presence of dense protein plaques in which the intermediate cytokeratin filaments of adjacent cells are inserted, thus ensuring cohesion and intercellular interaction (Baum et al., 2011).

• Hemidesmosomes, unlike the previous junctions presented, mediate the interaction of a cell with the extracellular matrix. These protein complexes are located at the basal pole of basal epithelial cells. These junctions maintain the cohesion of the epithelium by connecting the extracellular matrix to the filaments of intracellular keratins (Shebani et al., 2005).

Interaction with the immune system

In addition to the multi-layered innate defence system provided by epithelial cells, they are also able to recognise microbial pathogens and their products and initiate signalling to recruit and 'instruct' cells of the immune system [START_REF] Whitsett | Airway Epithelial Differentiation and Mucociliary Clearance[END_REF][START_REF] Iwasaki | Early local immune defenses in the respiratory tract[END_REF]. This step-wise mechanism ensures that the minimum necessary response to a pathogen is engaged (Figure 4.10). It is a three-phased sequential process initiated by the detection of pathogens through the wide expression pattern-recognition receptors (PRRs) on the surfaces of epithelial cells:

• Epithelial cell-intrinsic defence responses efficiently contain and clear pathogen;

• Epithelial cells secrete chemoattractants, as first-order cytokines, which recruit rapid responder cells (neutrophils, alert lung-resident lymphocytes such as innate-like lymphocytes, natural killer and tissue-resident memory T cells) to clear pathogens;

• These lymphocytes next transform first order cytokine signals into second-order cytokines that recruit and enhance the activation of effector cells and can eliminate or expel pathogens and foreign particles. In some cases, first order cytokines directly recruit effector cells that clear pathogens; for example, CXCL8 mediate recruitment of neutrophils to clear bacteria (direct effector recruitment and/or activation, second arrow from the top). In addition, a two-tiered response can be engaged, in which sensor cells secrete first order cytokines that act on tissue-resident lymphoid cell populations, which integrate these signals and release appropriate second order cytokines. These cytokines in turn recruit and activate effector cells and effector functions specific to the pathogen type, which serve to promote pathogen clearance and tissue repair. At each stage of the process, feedback mechanisms are used to control the infection and limit the inflammatory damage.

Development, homeostasis and regeneration

The respiratory system requires a complex interplay between numerous cell types to support its protective function and the exchange of respiratory gases. The understanding of how the airway epithelium develops and maintains its homeostasis through flexible response to injury requires a simplified exploration of the cellular crosstalk that coordinates these complex processes [START_REF] Zepp | Cellular crosstalk in the development and regeneration of the respiratory system[END_REF]Hogan et al., 2014).

Lung development

During its development, the lung interacts actively with other tissues to form its complex and ramified structure. It starts at the embryonic stage of life, with the specification of the endoderm into a lung bud, then goes through airway branching morphogenesis in interaction with the mesenchyme and concludes with the simultaneous postnatal differentiation of alveolar and mesenchymal cells [START_REF] Herriges | Lung development: Orchestrating the generation and regeneration of a complex organ[END_REF]. As the unravelling of the lung developmental processes was extensively done by lineage tracing on mice, I will specify the timeline of these processes based on mice embryonic development, and add the human equivalent whenever feasible.

Embryonic development of the tree-like architecture of the airways

The lung bud is specified from the ventral anterior foregut endoderm at embryonic day 9.0 (E9.0) by the expression of NKX2 (transcription factor). The respiratory primordium begins to elongate and divide into the future tracheal tube and main bronchi through the additional expression of SOX2 (proximal), SOX9 (distal) and WNT signalling (Goss et al., 2009). A first interconnected signalling between the pulmonary mesenchyme (derived from the mesoderm) and the bronchi buds promotes their outgrowth and differentiation through the expression of the growth factor FGF10 by mesenchymal tissue in the regions adjacent to the distal tip endoderm. The support of key morphogen sonic hedgehog (SHH ) expressed in the respiratory endoderm, rapidly induce the process of branching morphogenesis creating the extensive tree-like network of the airways. Progression of branching morphogenesis terminates with the formation of distal alveoli at E16.5. Alveolar epithelial lineages differentiate from the SOX9+ID2+ distal tip endoderm, early before birth in mice, approximately between E17.5 and E18.5 (Figure 4.11) [START_REF] Herriges | Lung development: Orchestrating the generation and regeneration of a complex organ[END_REF].

Airway surface and glandular epithelial cell differentiation starts almost synchronously to the branching morphogenesis, at E9.5 and continues until E16.5. Even as the different cells lineages cannot be easily tracked by morphology, their appearance is detected by the expression of their specific marker genes. Starting with KRT5+ TP63+ basal cells, which are multipotent cells capable of differentiating in both conducting and alveolar epithelial cells. The presence of secretory cells is then detected by the expression of secretoglobins (SCGB1A1, SCGB3A2 ) followed by multiciliated cells which express transcription factor FOXJ1 [START_REF] Nikolić | Human embryonic lung epithelial tips are multipotent progenitors that can be expanded in vitro as long-term self-renewing organoids[END_REF]. Submucosal glands are formed following basal cell proliferation and organisation into a solid protusion or bud (Tos et al.,1966). The bud then expand into a cylinder which extends into the submucosa. After accumulation of mucin secretion in the centre of the cylinder, the cells rearrange themselves creating a lumen. The lumen is later enlarged by continued secretion of mucins and the growing extremity of the cylinder undergoes repeated dichotomous branching forming the acini [START_REF] Tos | Development of the mucous glands in the human main bronchus[END_REF]. 

Development of the lung mesenchyme

The morphogenesis and differentiation of the lung epithelium occur synchronously with the specification of mesenchymal lineages. As soon as the early lung bud emerges from the ventral anterior foregut, it becomes surrounded by mesoderm tissue, which will differentiate into mesenchymal cardiopulmonary progenitors. These progenitors can generate both pulmonary and cardiovascular mesenchymal lineages and contribute to the differentiation of the conducting airways, large blood vessels or alveolar interstitium as development progresses. The mesenchyme expresses signalling factors, such as FGFs (e.g. FGF10), WNTs, bone morphogenetic proteins (BMPs), retinoic acid and transforming growth factor-(TGF), that participate to branching morphogenesis, epithelial and endothelial differentiation and postnatal alveologenesis. At E11.5, FGF10 -expressing cells can generate several mesenchymal cell types, including airway smooth muscle (ASM), vascular smooth muscle (VSM) and interstitial fibroblasts. Yet, by E15.5 they become committed the generation of distal alveolar interstitial fibroblasts. As another example of interconnected signalling, the further differentiation of ASM and VSM to surround the proximal airways and major blood vessels is promoted by the coordinated endodermal expression of SHH and WNT signalling [START_REF] Peng | Coordination of heart and lung co-development by a multipotent cardiopulmonary progenitor[END_REF][START_REF] Shannon | Mesenchyme specifies epithelial differentiation in reciprocal recombinants of embryonic lung and trachea[END_REF].

Cellular maturation during lung alveologenesis

The last period of lung development, named alveologenesis, starts at postnatal days 7-10 with a full resolution into a mature organ by postnatal days 30-42 (in human it begins at late gestation, 36 weeks of pregnancy, and persists through at least the first decade of life). Alveologenesis consists of an extensive cellular and tissue remodelling to create a large externalised gas exchange surface area (Figure 4.12). It is characterised by a final burst of AT2 cell proliferation, an increase in pulmonary surfactant secretion, an extensive AT1 cell flattening and considerable mesenchymal differentiation. For instance, the beginning of alveologenesis triggers the appearance of mesenchymal cells, named secondary crest myofibroblasts, expressing elastin and -smooth muscle actin (ACTA2 ). They help to divide the individual alveoli, by lining the primary septae (tissue bridges between mesenchymal and endothelial cells) and their activity then promotes the formation of secondary septae, which divide the alveoli further and increase the overall surface area. This differentiation is supposed to be induced by platelet-derived growth factor (PDGF ) ligands expressed by the alveolar epithelium [START_REF] Herring | Growth of alveoli during postnatal development in humans based on stereological estimation[END_REF][START_REF] Boström | PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis[END_REF]. Figure 4.12: Alveologenesis. Alveologenesis starts with the formation of primitive alveoli, which are circular and bulb-like (saccular stage). These primitive alveoli form at the termini of the bronchial tree and harbour flattened AT1 cells as well as AT2 cells, which remain cuboidal. During the alveolar stage the formation of secondary septae occurs. This remodelling process increases the total surface area of the lung alveolus and is thought to be driven by mesenchymal cells, such as the secondary crest myofibroblasts (SCMFs). SCMFs are stimulated by epithelium-derived PDGFA and SHH. It is postulated that the contractile activity of the SCMFs physically shapes the alveolus. Additionally , WNT -responsive AT2 cells proliferate during this time (receiving WNT ligands from mesenchymal cells) and increase production of pulmonary surfactant, which is critical for the transition to air breathing. Furthermore, the capillary plexus becomes more closely aligned with AT1 cells during alveologenesis.. 

Embryonic development of the upper airway.

The embryonic development of the upper respiratory tract (nasal cavity, mouth and pharynx) occurs in a separate developmental environment from that of the lower respiratory tract. Indeed the face is mostly composed of embryonic ectoderm (neural crest) and mesoderm tissue. It starts with the formation of the nasal sac caused by invagination of the nasal placodes at 28 days of human embryogenesis which is triggered by retinoic acid, fibroblast growth factors, and bone morphogenetic proteins from the adjacent frontonasal mesenchyme and olfactory ectoderm (Rawson et al.,2006). As the nasal sacs increase in volume, they reach a breaking point up to the rupture of the oronasal membrane, at 5 weeks of human embryogenesis, which is followed by the development of the primitive choana, at 7 weeks. As the nasal cavities continue to grow, the frontonasal mesenchyme starts to differentiate into cartilage to form the three conchae and initiates the differentiation of the three mucosae (respiratory, olfactory and squamous) at week 15 (Figure 4.13) [START_REF] Jankowski | Embryology of the nose: The evo-devo concept[END_REF].

Homeostasis and Regeneration

At homeostasis, airway epithelial cells are characterised by a low cellular turnover and proliferation rate (approximately 100 days). Yet, upon tissue damage, several epithelial cells exhibit stem and/or progenitors attributes as they display the capacity to self-renew and differentiate into multiple cell lineages. Our understanding of these lineages and their regulators have been permitted by different injury model and lineage tracing methods done in mice which might thus slightly differ compared to Human. Similarly to lung development, there is growing evidence of the implication of mesenchymal and immune cells in the support and maintenance of the epithelial niche (Figure 4.14).

The airway epithelium niche and its response to injury.

Basal cells were the first cells identified as stem cells and progenitors to all airway epithelial cells, and they conserve this property in homeostatic and injured airway epithelium. Their homeostatic turnover is regulated through steady-state signalling which involves both inhibition of fibroblast growth factor receptor 2 (FGFR2 ) and activation of BMP pathway. It respectively limits cell proliferation and inhibits cell differentiation to maintain basal cells in the quiescent state [START_REF] Rao Tata | Plasticity in the lung: Making and breaking cell identity[END_REF][START_REF] Peng | Hedgehog actively maintains adult lung quiescence and regulates repair and regeneration[END_REF].

Basal cells differentiation commitment toward other cell lineages has been associated with Notch signalling in opposite ways. As a reminder, Notch signalling involves a signalling cascade between two neighbouring cells, one expressing Notch receptors (NOTCH 1-4 ) and the other Notch ligands (JAG1-2 and DLL1,3,4 ).

• Notch activation is required to initiate basal cells differentiation toward other cell lineages. They first differentiate into TP63-/KRT5+/KRT8+ early progenitors, named parabasal or suprabasal cells, which can then commit to secretory or ciliated cell fate depending on local signals including the intracellular level of Notch signalling [START_REF] Rock | Basal cells as stem cells of the mouse trachea and human airway epithelium[END_REF].

• Notch sustained activation lead to secretory cell-fate commitment (club and goblet cells);

• Notch delayed inhibition lead to ciliated cell-fate commitment. My group participated in deciphering the mechanism involved in the inhibition of the Notch pathway [START_REF] Marcet | Extracellular nucleotides induce COX-2 up-regulation and prostaglandin E2 production in human A549 alveolar type II epithelial cells[END_REF]. They highlighted the key role of the miR-34/449 family in the complex differentiation of multiciliated cells by their targeted inhibition of NOTCH1 and DLL1.

In mice, another potential niche of stem cells, the secretory cells, has been identified in basal cells depleted injury model. Yet, their ability to self-renew and differentiate in human is still unknown.

The mesenchymal niche surrounding the airways also participate in homeostasis maintenance and regeneration of the respiratory epithelium. The SSH signalling from airway epithelial cells maintains adjacent mesenchymal quiescence. Loss of the SSH signalling has been reported to disrupt mesenchymal homeostasis, in particular for fibroblasts. A corresponding increase in epithelial cell proliferation is indicative of a feedback mechanism from the mesenchyme to the epithelium, notably with the expression of FGF10 [START_REF] Volckaert | Fgf10-Hippo Epithelial-Mesenchymal Crosstalk Maintains and Recruits Lung Basal Stem Cells[END_REF]. 

Pathological tissue remodelling

Despite a robust maintenance program, the airway epithelium can be remodelled due to a dysplastic cellular response to injury or disease, such as chronic injury or unchecked inflammation. Such abnormal tissue regeneration might then be the main driver of (chronic) lung diseases.

One noteworthy example of pathological tissue remodelling occurring in the injured lung is tissue fibrosis. Fibrosis is characterised by the accumulation of myofibroblasts which will induce an substantial remodelling of the extra-cellular matrix and collagen deposition. Unchecked fibrosis can then cause tissue scarring, thereby impairing lung function (Rock et al., 2011).

Another example might be an accrued expansion of basal cells in regions severely damaged by influenza injury. Such accumulation will then form clusters leading to tissue keratinisation, known as squamous metaplasia, which will impair the tissue architecture and functions [START_REF] Taylor | A Conserved Distal Lung Regenerative Pathway in Acute Lung Injury[END_REF].

A last example is goblet cell hyperplasia induced, for instance, after inflammation by Th2 type cytokines, interleukins, IL-4 and IL-13 and activation of SPDEF transcription factor (Bonser et al., 2017). This large increase in the number of goblet cells will change the functional balance between goblet cells and multiciliated cells, impairing the mucociliary clearance of the airways (K.-s. [START_REF] Park | Goblet cell hyperplasia and mucous hypersecretion contribute to the pathogenesis of chronic pulmonary diseases including cystic fibrosis , asthma , and chronic obstructive pulmonary disease . In the present work , mouse SAM pointed domain-containing ETS t[END_REF].

Chapter 5

A combined effort to improve our understanding of the airway epithelium using single-cell technologies

The advent of single-cell technologies provides a valuable tool in the study and detailed characterisation of biological systems. By providing cell-specific details, It has greatly improved our understanding of complex organs, tissues and biological processes. As such, single-cell transcriptomics has been progressively used in the description of the human and mouse airway epithelium (Figure 5.1). In this chapter, I will briefly review the novel findings in the field that were made possible by the use of single-cell transcriptomic technologies. The experimental and analysis design of each study are summarised in Table 5.1. Similarly to the multiple applications of scRNA-seq in other tissues and organs, it was first used to describe the complex series of events involved in the development and regeneration of the airway epithelium. Due to the increasing number of processed cells at each experimental point, both the search for so-called 'rare' cells and the building of lung atlases became a trend in the field. Lastly, scRNA-seq has been applied in the characterisation of cell-specific molecular changes found in chronic respiratory diseases. Small pictograms inform if the study was done on mice of human data.

Development and Regeneration

Rare cells

and Atlases Airway diseases Table 5.1: Summary table of the experimental design and analysis workflow in single cell studies on the airway epithelium

Development and Regeneration

Pioneer study on the development of distal airways

Treutlein et al. published the first study of the airway epithelium at single-cell resolution (Treutlein et al., 2014). They described one of the latest developmental stages of the distal airways in mice, named sacculation. This stage corresponds to the expansion of the distal airway tips into a sac-like configuration. During this process, a morphologically uniform population of columnar progenitors differentiates into either AT1 or AT2 cells (Figure 5.2).

This study :

• confirmed the basic outlines of epithelial cell type differentiation in the distal lung without the use of lineage inference algorithms. The authors deduced the differentiation trajectories by exploiting gradients of gene expression between cells within a given lineage.

• described the molecular processes involved in the differentiation from alveolar bipotential progenitor (BP) to AT1 or AT2 cells.

• discovered novel cell type markers such as transcriptional regulators like Hopx and Vegfa.

• hypothesised from the limited de novo expression of lineage-specific transcription factors in intermediate and late developmental cell states that lineage commitment mainly involves the down-regulation of factors which are active in progenitor state.

CHAPTER 5. A COMBINED EFFORT TO IMPROVE OUR UNDERSTANDING OF THE AIRWAY EPITHELIUM USING SINGLE-CELL TECHNOLOGIES Cohen et al. performed a large scale scRNA-seq study of the developing lung in mice. They investigated the complex cellular crosstalk between differentiating epithelial, stromal and immune cells from early morphogenesis (E12.5) to 7 days postnatal [START_REF] Cohen | Lung Single-Cell Signaling Interaction Map Reveals Basophil Role in Macrophage Imprinting[END_REF]. They focus their description on the critical role of lung basophils in the development of innate lung immunity. They built a cellular map of the developing lung composed of 50,770 cells, including 22 cell types and states (Figure 5.3).

This study :

• confirmed the cell types described by Treutlein et al., and brought new insights on the highly connected signalling network occurring during lung development.

• focused on the differentiation and establishment of the innate lung immunity. It particularly shed light on the major role of resident basophils in lung development and alveolar macrophages differentiation. [START_REF] Guo | Single cell RNA analysis identifies cellular heterogeneity and adaptive responses of the lung at birth[END_REF].

This study :

• provided a detailed description of the epithelial, endothelial, mesenchymal and immune compartment of the air-breathing adaptating lung;

• revealed the activation in epithelial cells (mostly AT1 and AT2) of the unfolded protein response pathway at birth. They describe it as an adaptive response to the transition from a hypoxic intrauterine environment to the hyperoxic extrauterine environment;

• demonstrated the central role of distal airway epithelium and the combined increase in surfactant production supported by the mesenchymal compartment. They studied the ability of cells from these glands to proliferate and repopulate both the surface epithelium and submucosal glands after injury [START_REF] Tata | Myoepithelial Cells of Submucosal Glands Can Function as Reserve Stem Cells to Regenerate Airways after Injury[END_REF].

The authors:

• identified surface epithelial cells that express markers of submucosal glands cells. For instance, luminal and basal cells were respectively Krt8+/Sox9+ and Krt5+/Sox9+, with Sox9 being a marker of developing submucosal gland cells.

• described the ability of submucosal gland cells and myoepithelial cells to migrate long-distance and regenerate surface epithelial cells following severe injury. They validated this cell plasticity on different type of injuries and on porcine model. [START_REF] Strunz | Longitudinal single cell transcriptomics reveals Krt8 + alveolar epithelial progenitors in lung regeneration[END_REF]. They divided their study in two parts. (i) First a survey of whole-lung regeneration at six time points following injury, (ii) then a 'sky dive' approach with a high temporal resolution (18 time-points) for sorted epithelial cells.

This study :

• provided an extensive description of the lung cell composition following bleomycininduced injury.

• described the active recruitment of immune cells, such as macrophages and monocytes, in the first days following injury.

• identified a new Krt8+ cell state involved in alveolar regeneration. The detailed analysis of their high-resolution epithelial dataset revealed a transcriptional convergence of club and AT2 cells toward Krt8+ cells following injury. Trajectory inference described these Krt8+ cells as progenitors to AT1 cells and highlighted their potential communication with mesenchymal cells in the regeneration process. 

Rare cell type discovery and atlas building

Single-cell RNA-seq has also allowed the establishment of molecular cell atlas and cell throughput increase has led to the discovery of rare cell types.

Rare cells discovery and description

Montoro et al. studied the cellular heterogeneity in mouse tracheal epithelium by combining extensive scRNA-seq and in vivo lineage tracing. They aimed to refine the description of epithelial cells, their lineage relationships and influence on major respiratory diseases (Figure 5.7) (Montoro et al., 2018).

The authors divided their study in two parts. (i) An initial survey of epithelial cells from mice whole-trachea , (ii) then combined lineage-tracing and single-cell experiment to investigate the epithelial homeostatic turnover in mice. For this last part, they developed a pulse-seq method to monitor the generation of differentiated cell types. They used Krt5 inducible-labeling transgenic mice to follow basal cells and their progeny through scRNA-seq of 66,265 cells obtained at 0, 30 and 60 days of homeostatic turnover in adult mice.

From this complex experimental design and the corresponding extensive data analysis, Montoro et al. draw 4 main conclusions :

• Identification of a rare cell type, the ionocyte which had not been previously described in airway epithelia. They found the ionocytes to be the major Cftrexpressing cells. Using Foxi1 -KO mice (major ionocyte transcription factor), they evaluated the impact of deficient ionocytes (reduced expression of marker genes) and revealed a similar phenotype to that of cystic fibrosis disease;

• All epithelial cells emerge om basal cells at homeostasis in the trachea;

• Identification of new subclasses of disease-relevant tuft and goblet cells, respectively related to asthma and mucosal immunity; In a similar study, Plasscheart et al. also investigated the differentiation trajectories in (i) mouse trachea in non-injured, (ii) injured conditions and (iii) in vitro primary human bronchial epithelial cells (Figure 5.8) [START_REF] Plasscheart | A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte[END_REF].

From this study:

• Similarly to Montoro et al., the authors described a continuum of expression and differentiation from basal to luminal cells. They identified a group of Krt4/Krt13 positive cells in the mouse dataset as a potential intermediate cell state.

• They revealed a cell cluster enriched in early multiciliogenesis markers (Foxn4 ) as putative precursor cells to multiciliated in the human model.

• They described a cluster of ionocytes expressing similar markers as the ones identified by Montoro et al. (Foxi1,Ascl3,Tfcp211 ) in both mouse and human.

Complementary to the work of Montoro et al. they showed in human cells that overexpression of FOXI1 induced a larger number of ionocytes whereas inhibition of Notch signaling induces a reduced number of both multiciliated cells and ionocytes.

• In their post-injury model, they detected a population of basal cells expressing multiples keratins which have never been described as co-expressed in homeostatic tissue (Krt5, Krt14 which are canonical basal cell keratins and Krt8, which is a luminal keratin).

• They also described an injury-specific population of basal cells directly differentiating into multiciliated cells and by-passing the secretory progenitor state. 
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Lung cell atlases

Vieira Braga et al. were first to publish an atlas of the human lung in both healthy (n=6) and asthmatic (n=6) conditions (Vieira- [START_REF] Braga | A cellular census of healthy lung and asthmatic airway wall identifies novel cell states in health and disease[END_REF]. Their study aimed to investigate the differences in proportion and transcriptional phenotype of structural and inflammatory cells between upper and lower airways and lung parenchyma (Figure 5.9).

The study:

• described a total of 36,931 cells obtained in healthy donor and corresponding to 21 coarse-grained cell types. They detected multiple basal, club, goblet and multiciliated cell states with varying abundance between upper and lower airways.

• revealed a macrophages enrichment in the immune compartment of the atlas with substantial patient-patient variations.

• described the molecular features of goblet cell hyperplasia in asthmatic condition, with an increase in the number of goblet cells and the identification of a population of mucous-ciliated cells expressing both goblet and multiciliated marker genes. They hypothesised that this particular cell state is the dedifferentiation from multiciliated cell to goblet cell induced by IL13-IL4 signalling in inflammatory condition.

• described the remodelling of the stromal and immune compartment in asthmatic condition as well as an enhanced signalling network between all cell types to stimulate pathogenic effector Th2 cells. (Travaglini et al., 2019). They did an extensive profiling of 70,000 cells from both human lung and blood obtained from the healthy part of the lung of 3 patients with carcinoma. They aimed to improve the 'completeness' of molecular cell atlases by providing detailed description of 28 cell identities and locations. They focused their study on a large number of cells from epithelial, mesenchymal and immune compartment to better describe cell identities rather than the overall tissue composition. They also added an evolutionary analysis by comparing with the lung compartment of the mouse cell atlas (Figure5.10).

From this large dataset, the authors:

• identified nearly all 45 previously known human lung cell types that compose the epithelial, stromal, endothelial and immune compartments of the lung [START_REF] Franks | Resident Cellular Components of the Human Lung: Current Knowledge and Goals for Research on Cell Phenotyping and Function[END_REF]. They estimated to 200 the number of genes needed to virtually distinguish all lung cell types.

• described the immune compartments as the most heterogeneous. They hypothesise that this heterogeneity is dependent on the numerous inhaled toxins and pathogens.

• discriminated immune lung resident cells (alveolar macrophages, natural killer T cells and intermediate monocytes) from circulating ones (dendritic cells) using combined profiling of immune cells in both blood and lung samples. They provided a first unambiguous description of the resident immune compartment in the lung. They predicted numerous potential interactions with all other lung cell types as well as a particular sensibility to hormones.

• described a proximo-distal transcriptomic gradient in epithelial cells and hypothesised that the many clusters found in the epithelial compartments might be individual states of known and well described cell types. Yet, some of these lung cell types are donor-specific which call into question the robustness of their hypothesis (It will be discussed further in the discussion). 

An atlas of the aging lung

Angelidis et al. followed the trend of lung cell atlas building but in mice using a different point of view. They investigating the effects of ageing the on lung cell transcriptomes and the potential decline of lung functions. They performed an integrative study associating scRNA-seq, bulk RNA-seq and bulk proteomic measurements (mass spectrometry) to analyse the effects of ageing as a multi-factorial process (Figure 5.11) [START_REF] Angelidis | An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics[END_REF].

In this study, Angelidis et al.:

• identified 30 cell types, including most known epithelial, mesenchymal, and leukocyte lineages.

• demonstrated an increase in transcriptional instability in aged cells.

• described an altered cell type specific phenotype in ageing mice. They characterised them by the up-regulation of inflammatory related genes and increased variability of secretory-related genes.

• They concluded that these variations might influence the mucociliary clearance of the airways in ageing. 

Single-cell studies of lung respiratory diseases

This last section is a non-exhaustive description of some significant studies focused on lung diseases.

Study of the airway epithelium remodelling induced by chronic inflammatory diseases.

Ordovas-Montanes et al. investigated the impact of chronic inflammatory respiratory diseases on the overall tissue ecosystem. They studied the variation in cell compositions and cell states induced by these diseases. They used the case of patients with chronic rhinosinusitis, which ranges in severity from rhinitis to severe nasal polyps (Figure 5.12) (Ordovas- Montanes et al., 2018).

From this comparative study, the authors:

• described an increased frequency of basal cells in polyps compared to healthy as well as an increased expression of chemokines and lipid mediators in epithelial cells and more specifically in basal cells. They hypothesised a link between increased basal cell numbers in disease and enhanced activation of effector cells of type 2 immunity response.

• revealed a defect in the differentiation potential of basal cells from polyp tissues. It relates to some of their previous work describing basal cells hyperplasia in chronic inflammatory tissue and upon long exposure to IL4/IL13.

• identified, in the disease state, subgroups of secretory cells with varying antimicrobial expression. They hypothesised that it is an unbalanced frequency of these cells which partly impair the innate host defense. • demonstrated that ciliated cells express a specific set of detoxification related genes in response to smoke exposure.

• quantified a depletion in club cells compared to never smoker bronchi and described the smoking-induced goblet cell hyperplasia as a regional phenomenon interspersed amongst morphologically normal tissue areas.

• identified so-called peri-goblet cells, a KRT8 positive undifferentiated epithelial subpopulation, that they hypothesise as similar to suprabasal cells. They suggested that the abundance of pro-goblet precursor cells in current smoker bronchi serves for the onset and maintenance of goblet cells hyperplasia. (Goldfarbmuren et al., n.d.).

This study :

• confirmed the previous description of smoke-induced shared and unique gene expression responses of epithelial cells (secretory, multiciliated).

• identified mucous-ciliated cells, similarly to the work of Viera-Braga et al. They hypothesised a stress-related differentiation trajectory from which this particular cell type would emerge.

• described an enhanced differentiation program of secretory cells toward MUC5AC+ goblet cells. They further enriched their description by demonstrating a shift of MUC5B submucosal secretory cells toward MUC5AC surface epithelial goblet cells upon heavy smoke exposure.

• hypothesised an unprecedented description of lineage relationships between rare epithelial cells. 

Pulmonary fibrosis at single cell resolution

Xu et al. studied the differentiation states and gene expression patterns of epithelial cells from normal and idiopathic pulmonary fibrosis human lung (IPF) [START_REF] Xu | Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis[END_REF]. They improved the description of the molecular regulations induced by IPF, which causes airway remodeling, inflammation, alveolar destruction, and fibrosis.

In this study, the authors :

• noted an unbalanced distribution of cell types between healthy and IPF lungs. Cells from the healthy lungs almost all belonged to the AT2 cell type, whereas they only represent 9 cells in IPF lung cells.

• identified 3 other cell types in IPF lungs, basal and secretory cells and a cluster expressing mixed markers from other cell populations. They hypothesised that this 'mixed' cluster represents potential progenitor cells, and corresponds to a hallmark of the tissue remodelling process seen in IPF lungs. Differential expression analysis revealed a global decrease in cell marker gene expression, notably ion channels.

• highlighted the implication of key signalling pathways, TGF-and PI3K/AKT, in IPF lung. They concluded their description of the IPF lung by a global loss of identity in epithelial cells and the presence of novel disease-related intermediate cell states.

Similarly to cigarette smoke studies, Reyfman et al. improved the description of idiopathic pulmonary fibrosis, systemic sclerosis, polymyositis and chronic hypersensitivity pneumonitis using high cell throughput single cell RNA-seq technologies [START_REF] Reyfman | Single-Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology of Pulmonary Fibrosis[END_REF]. They generated an atlas of pulmonary fibrosis including immune and epithelial cells from the human lung.

From this study, the authors:

• localised the expression of pro-fibrotic genes to specific cell population and identified differing states of alveolar macrophages by comparing cells from healthy and IPF lungs.

• evealed a cell type specific and distinct expression pattern of Wnt ligands and targets.

• improved accordingly the description of the multicellular and spatially restricted nature of Wnt-signalling niches in the normal and fibrotic lung. They validated their results using in situ fluorescence hybridisation and a complementary scRNAseq dataset obtained from mice lungs. 

Context of the study

As mentioned in the introduction, my thesis started simultaneously with the bursting of single-cell RNA-seq technologies. Consequently, the methods to analyse this new type of data were being published at an exponential rate with limited standardisation and benchmarking between them. The absence of a standard analysis 'workflow' was an indicator of the complexity of the scRNA-seq data and of how challenging it was to analyse them. It also demonstrated the need for a controlled environment in which to test the performance of these analysis methods and deeply understand the properties of scRNA-data and their impact on the analysis outputs. It is in this aim that I developed SCsim. To properly simulate single-cell RNA-seq data, I had, first, to identify and understand their many specific properties and then implement them in a structured environment. As a starting point, I used some of the simulation frameworks already available in published analysis methods.

Yet, these simulations were usually oriented to test for the specific parameters tackled by their corresponding analysis method, such as batch effect (size factors) or differentially expressed genes and thus lacked usefulness when applied in another context. In the rest of this section, I will thus describe, from a modelling point of view, the main properties of scRNA-seq data that I used for the simulation framework.

Genes transcriptional bursting

One of the significant drivers of spontaneous heterogeneity in gene expression arises from the discontinuous transcription of genes. Gene expression occurs in irregular burst or pulse of activity, interspersed by irregular intervals of inactivity, hence the name of transcriptional bursting (Figure 6.1) [START_REF] Corrigan | A continuum model of transcriptional bursting[END_REF]. The lack of a dynamic dimension in scRNA-seq data does not allow a precise measure of this process. Yet its effects mark the properties of scRNA-seq data by a high variance and are partly responsible for the proportion of zero values in count data. • The one-state model predicts gene transcription with a constant probability and independently of the last transcription event. It can be well represented by the Poisson distribution, which models the number of times an event occurs in an interval of time or space. Yet, this model does not generate enough variability between cells compared to measured RNA abundance using smFISH data (Figure 6.1).

• The two-state model or Telegraph model considers genes with an active and an inactive state, respectively one where transcription occurs with a constant probability and another with no production of mRNA. The switch between these two states is stochastic. The extra state and switch between the two increase the potential variability in mRNA count between cells similarly to the measured data. This model, therefore, requires two parameters: (i) the burst size representing the number of transcripts produced in a burst and (ii) the burst frequency corresponding the switch between on and off states. These parameters can be modelled by continuous probability distribution using two-parameters such as the Gamma or the Negative binomial distributions. 

Capture efficiency of the cells mRNAs

Single-cell RNA-seq data are characterised by the large number of genes reporting a zero count value. These zero counts can arise in two ways:

• The genes were not expressed at the time the cell was experimentally isolated and processed, it refers to structural zeros;

• The genes were expressed in the cell at the time of isolation, but not at a sufficient level to be detected/captured in the experimental procedure, it refers to dropouts.

While analysing the properties of scRNA-seq data, I focused primarily on dropouts rather than structural zeros. As technical artefacts, dropouts may distort gene expression distributions and affect the statistical assumptions of the analysis methods [START_REF] Hicks | Missing data and technical variability in single-cell RNA-sequencing experiments[END_REF]. To date, this specific property of scRNA-seq data has been modelled by a zeroinflated negative binomial (ZINB) or by the additional setting of zero counts based on the mean gene expression (L. Lun et al., 2016).

Cell-to-cell batch effects

Cell-to-cell batch effects represent unwanted technical and biological variations that are corrected through the normalisation step of the analysis workflow. In the simplest normalisation design, these variations are modelled by size factors. In global-scaling normalisation methods, these size factors follow a normal distribution.

Gene differential expression

The initial goal of sequencing technologies was to characterise the differences in gene expression between biological conditions. The advent of scRNA-seq techniques significantly increased the resolution of these comparisons. Consequently, for scRNA-seq data, the rough assumption to identify differentially expressed genes is that within each cell population, each gene is expressed at a given level which can be modelled as a normal (unimodal) distribution. This normal distribution is defined by a mean, the average level of expression of a given gene in the studied cell population, and a standard deviation representing small biological and technical variations between cells. The gene expression differences, therefore, constitutes a shift in the normal distribution mean across cell populations (Figure 6. 3). Yet, in some cases, scRNA-seq data revealed more complex gene expression patterns, such as bimodal gene expression distribution within a single cell population (Figure 6.3). Consequently, gene expression cannot be modelled as a unimodal distribution and must account for multi-modal distributions detectable at single cell level as proposed by [START_REF] Korthauer | scDD: A statistical approach for identifying differential distributions in single-cell RNA-seq experiments[END_REF]. 

Cell trajectories

The recent benchmarking study on single-cell trajectory inference methods by Saelens et al. describes the multiple topologies that can be found in scRNA-seq datasets (Saelens et al., 2019). Therefore, there are multiple ways to model differentiation trajectories in the count data according to each topology. Recent single-cell trajectory simulation tools, such as Dyngen [START_REF] Saelens | A comparison of singlecell trajectory inference methods: towards more accurate and robust tools[END_REF] and ProssTT Papadopoulos model them by simulating respectively gene regulatory networks and probabilistic tree-like topologies through linear variations of gene expression.

Doublets

Doublets 'cells' characterise scRNA-seq datasets obtained by tag-based isolation methods. They correspond to multiple cells (2 or more) isolated in a unique capture site and thus tagged with the same cell barcode. As such, they have a chimeric transcriptome composed of transcripts from multiple cells. These technical artefacts have been modelled in doublet detection methods as the sum or the average of randomly picked cells [START_REF] Wolock | Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data[END_REF][START_REF] Mcginnis | DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors[END_REF]. CHAPTER 6. SCSIM: SINGLE CELL RNA-SEQ DATA SIMULATION

Results

SCsim implementation

I developed SCsim in the R programming language and implemented a structured package with its dedicated objects and functions. The main object structure in SCsim, SCsimSet is inspired by the SCEset object in the scater package [START_REF] Mccarthy | scater: preprocessing, quality control, normalisation and visualisation of single-cell RNA-seq data in R[END_REF]. It stores all the information used for data simulation and the simulated data output. In this section, I will describe the structure of the SCsimSet object in association with the simulation strategy (Figure 6.4). SCsim simulates 'raw' count data as positive integers in a large matrix with cells in columns and genes in rows. The user, first, defines the dataset to simulate with a list of general parameters (Figure 6.4), then he describes the specific characteristics to be added to the data:

• Batch effect to aggregate distinct scRNA-seq experiments;

• Library size to model cell-cell variations in sequencing efficiency between cells; • Differentially expressed genes to simulate variations in gene expression between cell populations using uni-modal and multi-modal gene expression distributions; • Cells trajectories to simulate linear of branched lineages between cells; • Doublets to produce technical artefacts specific of tag-based cell isolation methods; • Dropouts to model the variations in transcripts capture efficiency.

From these parameters, SCsim simulates data in four main steps (Figure 6.4). The detailed formulas and illustrations for each step of the simulation are in the poster at the end of the chapter.

(

1) Basal gene mean

The first simulation step creates a numeric vector corresponding to the initial mean expression of genes across all cells. It is common to all cells in the simulated dataset and determines the initial proportion of highly and lowly expressed genes. I used a Gamma or by a Negative binomial distribution to generate the mean expression values of the genes.

(

2) Effective gene mean per cell clusters

The second simulation step produces a numeric matrix with the adjusted mean expression of genes, specific to each cell cluster. It takes into account batch effect, library size, differentially expressed genes, cell trajectories and doublets.

The batch effect between samples is generated as a shift in the mean expression of genes. I used a Normal distribution to assign a 'batch effect' shift to each cell from a specific batch. If multiple batches are generated, multiple Normal distributions are used, each with a different mean.

Cell-cell library size differences between cells are produced by a Normal distribution (one batch) which will induce slight variations in the mean expression of genes between all cells.

Differentially expressed genes are first annotated as one of the four possible types of differentially expressed genes simulated by SCsim (Figure 6.3).

• Traditional differentially expressed genes (DE) are characterized by a unimodal distribution within each cell type;

• Genes with different modes in expression (DM) have a unimodal distribution within a given cell type and a bimodal distribution in another (with one mode overlapping the unimodal distribution). It implies that in the same cell type, there is a heterogeneity in the gene expression that might lead to spurious clustering of cell subtypes.

• Genes with different modes in expression and different proportion of cells expressing them (DP) correspond to genes with bi-or multimodal expression in each cell type. These genes are a more complex version of DM genes.

• Dynamically expressed genes are labelled as 'common' (DC) because they display a linear up-or down-regulation of expression across all the cell types involved in the modelled trajectory.

Results

Once the type of differentially expressed genes is set, the cells associated with the different expression modes are randomly picked in the corresponding cell types. The fold-change sign is fixed by the genes label as up-or down-regulated compared to the basal mean. The percentage of up-regulated genes is fixed by the user. I used a Negative Binomial distribution to generate fold-changes and assigned them to each differentially expressed gene. The Negative Binomial distribution generates fold-changes so that a small number of genes will have high fold-changes, whereas the majority will have relatively low fold-changes.

Lastly, doublets are generated as the sum of the gene counts from two randomly picked cells.

(

3) Basal gene counts

The third step of the simulation generates the basal gene counts for each cell in the dataset. I used a Negative Binomial distribution, with the mean equal to the effective-gene-mean, to generate the basal gene count values. The Negative binomial distribution produces a high variance in the simulated counts, it is a reminder of the telegraph model for the transcriptional bursting.

(4) Effective gene counts

The fourth and last step of the simulation adjusts the final count table by introducing dropouts. I used a probabilistic process to generates dropout events in the count table .  A logistic regression on the percentage of zero per mean expression of genes determines the probability of a given count to be set to zero. It sets a higher probability of dropout event to lowly expressed genes than for highly expressed genes.

SCsim applications

Once I had completed the development of the SCsim package, I had to reduce the scope of the exploratory analysis on synthetic data that I intended initially. By that time, my team had produced multiple 'real' scRNA-seq datasets to study the regeneration of the airway epithelium, and the analysis of these datasets became the main focus of my thesis work. Nonetheless, I generated a few synthetic datasets to test the effects of some scRNAseq properties on downstream analysis. I performed the downstream analysis using the newly published Seurat R package (version 1), one of the first integrated framework for scRNA-seq data analysis (Butler et al., 2018).

As presented in the poster, I tested the Seurat framework and Monocle tool on five steps of the analysis.

• I tested the global-scaling normalisation method against different levels of technical (batch effect and library size) and biological (low or high gene expression in a specific cell type) effects. Seurat performs a median normalisation and sets the library size of each cell to its median across the whole dataset. I concluded on an efficient correction of the batch effects but without any discrimination between technical and biological biases. It thus introduced spurious corrected-count values that would later influence the differential expression analysis outputs and lead to an under or over-estimation of the differences in gene expression between groups of cells.

• I estimated the relevance of the highly variable genes identified by measuring the proportion of differentially expressed genes in the selection. Seurat identifies highly variable genes by setting minimum thresholds on the gene mean expression and overall dispersion. I concluded that this technique identifies a mixed proportion of differentially and stably expressed genes. Yet, this selection significantly increases the ratio between informative and uninformative genes of the overall count data an thus improve the signal to noise ratio for the downstream analysis.

• I also tried to estimate the respective impact of doublets and dropouts on the clustering step of the analysis. Seurat uses the Louvain clustering algorithm based on the cells in the PC space. My initial results regarding the effects of doublets suggested that until they reach a certain proportion of cells in the dataset (' 5%), they are not isolated as in a single cell-cluster but spread among them. Yet, a more precise analysis of their effects on the identification of marker genes is necessary to estimate their capacity to distort an analysis and its interpretation. Regarding the proportion of zero count values in the data, their effect is highly correlated with the proportion and fold-change level of differentially expressed genes. As such, I was still able to distinguish the cell-clusters even at a high level of dropouts (> 90%). Yet, the next question is how well would I be able to characterise them (marker genes, cell trajectories) with so few genes to work with? 6.2. Results

• I measured the proportion of the different type of differentially expressed genes identified as markers by Wilcoxon's rank test and made a similar assessment as Korthauer and al.. The standard test for the identification of marker genes mainly identifies traditional differentially expressed genes and a limited proportion of (DM) and (DP) genes which have the highest fold change differences. I concluded that this method works well for the identification of the top marker genes of each cluster. Yet, the analyst should consider with care the complete list of differentially expressed genes and that further analysis is required to test the implication of each gene with its associated cell-cluster.

• Lastly, I tested Monocle (version 2) trajectory inference tool and its ability to reconstruct linear trajectories. For instance, I simulated a dataset composed of four cell populations and three of them belonged to a linear cell trajectory. As I used all the cells of the dataset when I tested Monocle, I found that Monocle will find a trajectory (branched or linear) between all the cells in any case. Thus, the analyst should consider with care the input of Monocle analysis as well as the output to avoid any misinterpretation of the resulting trajectories.

In conclusion, these tests are still in their preliminary stages and a more complex and thorough evaluation framework is needed to truly evaluate the potential of each step of the analysis as well as their limitations against the characteristics of scRNA-seq data.

In another project, I collaborated with Cyprien Gilet (fellow PhD student), Michel Barlaud and Jean-Baptiste Caillau to develop a new clustering method for single-cell RNA-seq data. My participation in this work was to provide and pre-process four publicly available scRNA-seq datasets and to generate synthetic datasets on which to develop and test the clustering method. Cyprien Gilet developed, implemented and tested the clustering method on these datasets. Michel Barlaud and Jean-Baptiste Caillau provided feedback on the theoretical part of the clustering method and wrote the paper. This project aimed to develop a clustering method that would simultenously provide the top marker genes of each cell-clusters and avoid the multiplication of analysis steps. The clustering method and benchmarking results are detailed in the publication: K-sparse: clustering with feature selection using alternating minimisation and projection-gradient available in ArXiv and the appendix of this manuscript.

Conclusions and discussions

The development of the SCsim R package as well as the following analyses of synthetic data gave me the opportunity to apprehend the specific properties of scRNA-seq data and the complex patchwork of analysis tools available directly. It helped me to quickly make the transition from my previous experience in the analysis of bulk RNA-seq data to the analysis of scRNA-seq data. The development of SCsim as an R package required a structured programming framework easily reusable and capable of simulating the many heterogeneous cases seen in published scRNA-seq datasets. SCsim successfully simulates scRNA-seq raw count data based on the theoretical properties of real datasets. It also helped me to identify key challenges in the analysis of single-cell RNA-seq data:

• The impact of data normalisation on the downstream analysis (visualisation, clustering, differential analysis and trajectory inference);

• The clustering sensibility to technical and biological artefacts;

• The differential expression testing sensibility to lowly expressed genes;

• The spurious inferred trajectories in heterogeneous scRNA-seq datasets.

Nevertheless, this work is still in its infancy compared to its initial scope and to similar studies published during my thesis. One study, in particular, drew my attention as I was finishing the wrapping of the SCsim package, it is the simulation tool Splatter published by Zappia et al. as a preprint in May 2017 and in Genome Biology Journal in August 2017 [START_REF] Zappia | Splatter : simulation of single-cell RNA sequencing data[END_REF]. Splatter is a Bioconductor package, including 5 previously published simulation methods, some that I used as inspiration, and the Splat method itself developed by the authors. It provides an easy-to-use interface for the simulation of scRNA-seq datasets and returns the matrix of counts in SCEset object as defined by the scater package. The publication of Splatter highlighted the main flaw of the SCsim package : the lack of direct comparison between synthetic and real datasets. Splatter defines a robust comparison framework to evaluate the quality of the implemented simulation methods. It mainly compares quality control and count distribution metrics and revealed the accuracy of the Splat simulation method compared to the previously published ones. Yet, the similarities between the SCsim simulation framework and the Splat one suggests a work done in the right direction.

Another aspect of this project has been apprehended by recently published benchmarking studies of scRNA-seq data analysis methods [START_REF] Soneson | Bias, robustness and scalability in single-cell differential expression analysis[END_REF]Saelens et al., 2019). Indeed, the initial goal of the SCsim project was to compare the efficiency of the many analysis methods available in a controlled environment in which the 'ground-truth' is known. The published benchmarking studies made me realise that it would take a full thesis to achieve such an ambitious project. Indeed, they revealed a complex evaluation CHAPTER 6. SCSIM: SINGLE CELL RNA-SEQ DATA SIMULATION framework based on structured and well-defined evaluation criteria and included many real datasets and synthetic ones. In retrospective, it makes my attempts at testing the Seurat framework look like a toy example of what was to come next in the scRNA-seq data analysis field.

In conclusion, this work, despite its flaws was a necessary step in my thesis. It gave me the experience needed to pursue my thesis project on the study of the airway epithelium through the analysis of scRNA-seq data. From this initial project, I learned enough on the scRNA-seq data properties to consider, at their fair value, their impact on the following downstream analyses and to avoid misinterpretation of their outputs. Lastly, it was also a first attempt to transpose the initial definition of 'cell type' into a scRNA-seq data matrix shape. As mentioned in the introduction, the advent of single-cell technologies challenged the definition of 'cell type' by the addition of many heterogeneous features, and in this SCsim project, I faced for the first time these critical questions: What is the definition of a 'cell type' ? How do I represent it with simulated count data? The answers or hypotheses to these questions will be further discussed in the discussion chapter of this manuscript. 

Chapter 7

Single-cell RNA sequencing reveals novel cell differentiation dynamics during human airway epithelium regeneration

Context of the study

As described in the introduction, the airway epithelium acts as a protecting barrier for the respiratory system. Its correct function mainly relies on the mucociliary clearance process, which itself is ensured by the balance between epithelial cells and their interactions.

Following aggressions, such as inhaled noxious elements or infections, the epithelium can be damaged and its defensive function impaired. To be restored to its homeostatic state, the epithelium needs to go through a regeneration process and recover its initial cell type composition. Yet, in chronic lung diseases (e.g. COPD, asthma or cystic fibrosis), the epithelium is subjected to chronic injuries and inflammation leading to a remodelling of the epithelium (e.g. goblet cell hyperplasia and/or loss of multiciliated cells) and producing worsen pathological conditions. By providing a detailed characterisation and improved understanding of the molecular and cellular events leading both the functional regeneration and pathological remodelling of the airway epithelium it is possible to anticipate the development of better approaches to treat these diseases.

Several studies have already deciphered parts of these processes. However, they have mainly been done on mouse models which allow the use of in vivo cell-lineage tracking and induced-injury models. These studies have successfully established a rather complete scheme of cell trajectories and regulatory processes involved in airway epithelium regeneration and remodelling (see Fig 1A from paper,Chapter 4.4). Yet, they include some inherent limitations. (i) Genetic cell-lineage techniques require an a priori selection of a cell type marker which constraints and orients the study to cells expressing this given gene. (ii) Differences in airway epithelium cell type composition and structure between the human and mouse species imply carefully curated transposition of the findings obtained in one species to the other. The advent of single-cell technologies (scRNA-seq) circumvent these limitations and allow the unbiased study of heterogeneous systems, complex cell trajectories and the regulatory pathways that drive them (see Chapter 5).

Consequently, this project aimed to provide a detailed description of the regeneration/differentiation process of the upper human airway epithelium. To achieve this goal, we used single-cell transcriptomics to identify the distinct cell populations emerging during the differentiation, infer their lineage relationships and determine the corresponding molecular regulatory mechanisms.

As starting material, we used cultures of human epithelial cells obtained from resected nasal turbinates. The culture system consists of dissociating basal cells from the turbinates and seeding them on culture inserts (Transwells) soaked in a defined medium. Basal cells are let to proliferate until they reach confluency. Then the culture media on the apical side of the cells is removed to put them in direct contact with air. It allows for the cells to be in an air-liquid interface mimicking the in vivo airway epithelium environment. After about 20-21 days, a functional airway epithelium has been regenerated (see Fig 1B from paper).

From this technique, we designed a scRNA-seq time-course experiment to provide a characterisation at a single-cell level representative of the known steps of airway regeneration: proliferation, polarisation and specification. Based on our group previous work, we performed this experiment in two different media known to induce variations in the cell composition of the epithelium. I analysed the resulting datasets and developed an evaluation metric of the cluster robustness, detailed in the following Materials and Methods section. We completed our study using a variety of samples, from distinct origins and organisms: cells dissociated from human nasal brushings, nasal turbinates or bronchial biopsies (fresh tissue), pig trachea (fresh tissue), as well as differentiating Mouse Tracheal Epithelial Cells (MTECs, in vitro). All results are detailed in the following publication: 

Results

In the following section, I will briefly describe the main results obtained by the complementary work undergone by Sandra Ruiz Garcia (co-first author) and myself. Sandra performed all the bench-work part of this study, she generated all the scRNA-seq datasets and then carried out the experimental validations by immuno-stainings. Following sequencing data preprocessing done by Kevin Lebrigand, I analysed all the datasets present in this study from the raw count table to the final figures present in the publication. Agnès Paquet and Marin Truchi helped to design the appropriate analysis workflow for theses datasets.

Reconstruction of cell-lineages in regenerating airway epithelium by single-cell RNA-seq

The first step in our study was to ensure the relevance and quality of our in vitro 3D differentiation model of human airway epithelial cells (HAECs). To this aim, I analysed single-cell transcriptomes obtained from both differentiated in vitro HAECs and native airway tissues. I annotated cell types based on the specific expression of canonical markers known from the literature: KRT5 for basal cells, SCGB1A1 for club cells, MUC5AC for goblet cells, and FOXJ1 for multiciliated cells. The comparison demonstrated that fully differentiated HAECs accurately recapitulate the cell type composition and gene expression profile of nasal brushing samples and nasal turbinates. Then, we compared the regeneration process of HAECs using two different media:

• Pneumacult which enables the production of both multiciliated and goblet cells;

• BEGM which favours the production of multiciliated cells.

In each media, we respectively measured the cell transcriptomes at three (Pneumacult, ALI 7,12 and 28) and six (BEGM, ALI 2,4,7,12,17 and 21) time-points. In a first approach, I analysed each time-point independently using a self-optimised robust clustering method (see Materials and Methods below).

Cell composition and trajectories in Pneumacult media

From these analyses, I identified six major cell types in Pneumacult media : (1) cycling and ( 2 or multiciliated cells as differentiation endpoints. A closer examination of the pseudotime ordering revealed cells expressing both MUC5AC and FOXJ1 in the multiciliated branch, suggesting that goblet cells might act as precursors to multiciliated cells.

Cell composition and trajectories in BEGM media

Comparably in the BEGM media, I identified seven cell populations. Club and goblet cells were not detected but in their stead was a cell population that we termed 'club-like' cells due to their transcriptional similarity with club cells, except for secretoglobin genes (SCGB1A1, SCGB3A1 ). Two additional cell populations were detected and named 'undefined intermediates' 1 and 2 due to their ambiguous gene expression profile (KRT5-, KRT13+, KRT4+). Using Monocle 2, I reconstructed a linear cell trajectory from cycling basal cells as a starting point to multiciliated cells as a differentiated endpoint.

It revealed a cell type ordering similar to the one obtained with cells differentiating in Pneumacult media and confirmed the role of club and club-like cells as precursors to multiciliated cells.

Goblet cells can be differentiation intermediates for multiciliated cells

We further investigated the hypothesis that some goblet cells might act as a precursor to multiciliated cells. An initial approach was to compare the gene expression signatures of club and goblet cells. Their high similarity in gene expression profiles, with the high discriminative expression of MUC5AC in goblet cells, suggested that goblet cells might be a 'hyperactive' state to club cells and might retain some multiciliated precursor potential.

Another approach aimed to investigate the co-expression of the marker genes of both goblet and multiciliated cells in single cells. The identification of an unambiguous proportion of co-expressing cells (FOXJ1+MUC5AC+) both in mRNA and protein in HAECs, fresh human bronchial biopsy and pig trachea also supported this hypothesis.

Lastly, I performed a complementary trajectory inference analysis using RNA velocity and Palantir. RNA velocity estimates a ratio between spliced and unspliced transcripts as a proxy to RNA dynamics and potential cell trajectories. The measure of a high ratio of unspliced mRNAs related to multiciliogenesis in goblet cells supports the precursor hypothesis. Additionally, Palantir computes the differentiation potential of each cell toward the identified trajectory endpoints. It revealed a non-null differentiation potential of goblet cells toward the multiciliated cell-fate. As a conclusion, these data demonstrate that goblet cells can act as precursors for multiciliated cells in normal in vitro and in homeostatic in vivo airway epithelium regeneration.

Refining cell clustering identifies six additional clusters, including a discrete population of pre-MCC 'deuterosomal' cells

To better investigate the epithelial cell heterogeneity on both regenerating and homeostatic epithelium, I used a second, more permissive, clustering approach and identified six additional clusters. The non-cycling basal cells were split into two clusters termed basal 1 and basal 2 cells and could be differentiated by a potentially increased migratory function. The club cells were divided into three populations with one of them expressing genes suggesting enriched interactions with the immune system. Lastly, the multiciliated cells were split into two cell clusters: one characterised by the expression of mature multiciliated genes and one expressing specific genes involved in the biosynthesis of hundreds of basal bodies required for motile cilia elongation. We termed this population 'deuterosomal' cells due to the specific expression of DEUP1, a hallmark of massive centriole amplification in structures called deuterosomes. We validated this cell population in a homeostatic human fresh biopsy, pig trachea and differentiating MTECs. Through differential expression testing, I identified a unique deuterosomal gene expression signature compared to multiciliated and cycling basal cells. I identified notably the specific expression of CDC20B, the miR-449 host gene that our group have recently shown to be a key regulator of centriole amplification by deuterosomes (publication in the appendix). This signature perfectly delineates the regulatory events occurring at this stage of multiciliogenesis and provides an extensive repertoire of specific cell-cycle related genes that are re-expressed at the deuterosomal stage.

Establishing a keratin switch pattern during airway regeneration

We also established a repertoire of keratins in the different epithelial cell types based on their epithelial locations and their stage of differentiation. We thus studied the specific expression of keratin genes (mRNA and protein) in cells based on pseudotime ordering and position in the epithelium. Our results showed that the keratin repertoire could be sufficient to reconstruct cell trajectories during airway epithelium regeneration. We also compared our keratins (KRT5/KRT13/KRT4 ) co-expression profiles from in vitro HAECs and fresh tissue with those previously described in mouse and did not find the same co-expression pattern. It demonstrated that there are some critical differences between the mouse and human airway epithelium that require careful transposition of the findings obtained in one model compared to the other. 

Establishing a combinatorial repertoire of signaling pathways during airway regeneration

Lastly, we sought to investigate the cell type-specific expression of elements from key regulatory pathways involved in the maintenance and regeneration of the airway epithelium.

We thus classified the Notch, BMP/TGF and WNT pathways components into ligands, receptors and targets and identified their specific-expressing cell types. This repertoire is a first step toward building a complete regulatory interactions map between epithelial cells in homeostasis.

Additional results : CDC20B is required for deuterosomemediated centriole production in multiciliated cells

Simultaneously to this project, my team was finishing a collaborative study on the last stage of multiciliogenesis and identified CDC20B as a key regulator of the deuterosomemediated centriole amplification which is necessary for cilia elongation in multiciliated cells [START_REF] Revinski | CDC20B is required for deuterosome-mediated centriole production in multiciliated cells[END_REF]. Sandra and I participated in this study by the addition of a single-cell RNA-seq experiment that she generated at ALI14 from HAECs cultured in BEGM media and that I analysed. I used Monocle 2 to infer the cell trajectories and studied the specific expression of cell-cycle genes along the pseudotime. I thus inferred a score of each cell-cycle phase by re-implementing the method described by Macosko et al., 2015. This study was a preliminary description of the deuterosomal cell type that we fully characterised in the regeneration study. 

Materials and methods

Cluster robustness

At the beginning of this study, unsupervised clustering methods for scRNA-seq data analysis were only emerging, and the standard was k-means based clustering methods.

Yet, there was no way of knowing a priori the number of clusters to be found. As such, I developed a robust consensus clustering method that could provide this information. I developed this method based on the SIMLR clustering method for scRNA-seq data in the R programming language. SIMLR is a k-means based clustering method which requires the setting of a parameter k for the number of clusters to be found in the data.

This method is divided into two major steps:

• First, subsets of the dataset are clustered multiple times to identify robust cellclusters, this step is repeated with different k parameters (i.e. the number of clusters) (Figure 7.1);

• Then, quality metrics are computed on the clustering results. The clustering results with the best metrics are selected, and the final number of cell-clusters/cell types is identified (Figure 7.2).

Cells are subsetted in 10 smaller datasets, each subset being composed of 90% of the cells. The 10% of discarded cells are different for each subset in order to remove the cells from the analysis only once in the whole process. Then, the cells are clustered using SIMLR. As mentioned in the introduction, SIMLR is a k-means based clustering method and require the setting of two parameters: k, number of clusters to be found, and a random parameter, named seed, to initialise the position of k initial centroids. This clustering step is run 10 times per subset with a different seed. Each clustering results are then stored in an 'affinity' matrix of dimension n cells X n cells. The stability matrix contains a 1 or 0 value for each pair of cells whether the cells are clustered together (1) or not (0). They are then summed into a consensus affinity matrix ranging from 0 to 100 representing respectively cells that are never or always clustered together. To finally separate the cells, hierarchical clustering is performed on the consensus affinity matrix and partitions it into the initial number of clusters k. Cells with an affinity lower than 70 with the other cells of their cluster are labelled as Unassigned because of their instability. • Intra-cluster stability, measure the affinity between cells from the same cluster.

• Inter-cluster stability, measure the affinity between cells from distinct clusters.

• Percentage of stable cells, measure the percentage of Assigned cells.

Following visual inspection of these metrics, I select the optimal number of cluster and annotate the corresponding clusters (Figure 7. 

Conclusions

The development of this method and its use enabled me to robustly identify the core cell types involved in the regeneration of the airway epithelium. Yet, this method is computationally costly (e.g. 8h for the example dataset in Figure 8.8), mostly because of its many iterations and of the already costly SIMLR method. It also presents a major limitation in the identification of rare cell types. Despite the improvements that I made, it is still a k-means-based clustering method, and if I provided a way to ensure the robustness of the identified cluster, I prevented the identification of a small-sized cell-cluster which has significant transcriptional similarity with a bigger one (e.g. deuterosomal cells and multiciliated cells). Finally, this method despite its flaws matched perfectly the state of the art of scRNA-seq clustering methods as the SC3 method was published simultaneously presenting key similarities with the consensus clustering idea behind this development [START_REF] Kiselev | SC3: consensus clustering of single-cell RNA-seq data[END_REF]. This method also partly solved one of the main issues that I had in this study: how to define the boundaries between cell types involved in a differentiation process? Indeed, a first observation that I made while analysing these datasets is that there is a linear gradient of expression of the marker genes of each cell types along the inferred trajectory. As such, any clustering method that I tested lacked robustness to identify the boundaries between these clusters, and also lacked of precision to determine the exact number of clusters to be found. In conclusion, this method allowed me to identify the core cells of each cell types and to discard the cells that were in transition between the two, yet it did not fully answer my question about the definition of 'cell type' in a differentiation process. This question will be mentioned further in the discussion part of this manuscript. 134 CHAPTER 7. SINGLE-CELL RNA SEQUENCING REVEALS NOVEL CELL DIFFERENTIATION DYNAMICS DURING HUMAN AIRWAY EPITHELIUM REGENERATION

INTRODUCTION

The airway epithelium makes an efficient line of defense against inhaled substances. It is mainly composed of multiciliated cells (MCCs), goblet cells (GCs), club cells (CCs) and basal cells (BCs) [START_REF] Gras | Bronchial epithelium as a target for innovative treatments in asthma[END_REF][START_REF] Kotton | Lung regeneration: mechanisms, applications and emerging stem cell populations[END_REF]. Decreased numbers of MCCs and increased number of GCs hallmark many chronic respiratory diseases, during which frequent injuries, repair defects, tissue remodeling and altered mucociliary clearance occur [START_REF] Cohn | Mucus in chronic airway diseases: Sorting out the sticky details[END_REF][START_REF] Curran | Advances in mucous cell metaplasia: a plug for mucus as a therapeutic focus in chronic airway disease[END_REF][START_REF] Merigo | The ultrastructure of nasal mucosa in children with asthma[END_REF]. Characteristics contributing to efficient airway regeneration after injuries have been extensively investigated in mouse, establishing mouse BCs as the main airway stem cells, with self-renewal capacities and the ability to differentiate into MCCs, CCs and GCs [START_REF] Cole | Tracheal basal cells: a facultative progenitor cell pool[END_REF][START_REF] Kotton | Lung regeneration: mechanisms, applications and emerging stem cell populations[END_REF][START_REF] Rock | Basal cells as stem cells of the mouse trachea and human airway epithelium[END_REF]. BCs are abundant in upper mouse airways but absent from lower airways (Hogan et al., 2014). Human BCs populate the whole airways, and their abundance also decreases in smaller airways (Boers et al., 1998) [START_REF] Boers | Number and proliferation of Clara cells in normal human airway epithelium[END_REF]. CCs are luminally located, show a characteristic columnar shape and contribute to xenobiotic metabolism through the production of anti-microbial and antiinflammatory peptides [START_REF] Wang | Clara cell secretory protein modulates lung inflammatory and immune responses to respiratory syncytial virus infection[END_REF][START_REF] Jones | Xenobiotic metabolism in Clara cells and alveolar type II cells isolated from lungs of rats treated with beta-naphthoflavone[END_REF], such as the secretoglobin SCGB1A1. CCs can give rise to MCCs, as detected by the expression of transcription factor FOXJ1 [START_REF] Rawlins | The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium[END_REF]Watson et al., 2015) and to GCs, as detected by the expression of mucin MUC5AC [START_REF] Chen | SPDEF is required for mouse pulmonary goblet cell differentiation and regulates a network of genes associated with mucus production[END_REF][START_REF] Kotton | Lung regeneration: mechanisms, applications and emerging stem cell populations[END_REF]. Distinct molecular mechanisms regulate cell fate decisions in airway epithelium lineages. Notch signaling plays a pivotal role during commitment of BCs: activation leads to CC/GC lineages, while inhibition leads to MCC lineages [START_REF] Morimoto | Canonical Notch signaling in the developing lung is required for determination of arterial smooth muscle cells and selection of Clara versus ciliated cell fate[END_REF]Pardo-Saganta et al., 2015b;Rock et al., 2011;Tsao et al., 2009). We have shown that Notch pathway inhibition by the miR-34/449 families of microRNAs is required for MCC differentiation (Marcet et al., 2011a,b;[START_REF] Mercey | Characterizing isomiR variants within the microRNA-34/449 family[END_REF]. In vivo lineagetracing studies have some limitations: observations in animal models do not necessarily transfer to human; use of drastic forms of injuries may not completely reveal physiological tissue turnover; and strategies of specific genetic cell labeling (usually Krt5 for BCs and Scgb1a1 for CCs) are not necessarily comprehensive and do not necessarily provide a full picture of the airway epithelial cell hierarchies. In human, in which lineage tracing is impossible, cell lineage hierarchies in homeostatic bronchi have been indirectly inferred by assessing somatic mitochondrial mutations [START_REF] Teixeira | Stochastic homeostasis in human airway epithelium is achieved by neutral competition of basal cell progenitors[END_REF]; however, in vitro approaches are still necessary to study cell lineage during epithelial regeneration.

Single-cell RNA-sequencing has emerged as a powerful approach to measure cell lineage hierarchies [START_REF] Fletcher | Deconstructing olfactory stem cell trajectories at single-cell resolution[END_REF][START_REF] Karamitros | Single-cell 15[END_REF][START_REF] Pal | Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling[END_REF], by capturing cells at different levels of differentiation [START_REF] Plass | Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics[END_REF]. After a first study that delineated lineage hierarchies of mouse alveolar cells (Treutlein et al., 2014), several atlases of the airways have recently been released in mouse (Montoro et al., 2018) and human (Ordovas-Montanes et al., 2018;Plasschaert et al., 2018;Vieira Braga et al., 2019), providing a first panorama of human airway cell diversity and lineages that we are extending here, after analyzing single-cell RNA-seq data in fresh human airway epithelial tissues and throughout an experiment in 3D in vitro regeneration of human airway epithelium. The resulting cell trajectory roadmap of human airways identifies novel cell populations and offers new insights into molecular mechanisms taking place during the mucociliary epithelium regeneration.

RESULTS

Reconstruction of cell lineage in regenerating airway epithelium by single-cell RNA-seq

We have analyzed single-cell transcriptomes at successive stages during in vitro 3D differentiation of human airway epithelial cells (HAECs) (Fig. 1A,B). This in vitro model faithfully recapitulated cell population compositions found in native airway tissues, as shown by a comparison between single-cell (sc) RNA-seq of epithelial cells dissociated from nasal brushing samples or from fresh nasal turbinates and scRNA-seq of HAECs at a late time point of in vitro air-liquid interface differentiation (3D cells) (Fig. S1). Most of our results were obtained with HAECs that were differentiated in Pneumacult media (StemCell Technologies), which allows the production of multiciliated cells and goblet cells. Additional experiments were also performed with HAECs differentiated in BEGM (Lonza), which rather favors the production of multiciliated cells. Cell identity was inferred from the expression of specific marker genes, such as KRT5 and TP63 for basal cells (BCs), SCGB1A1 for club cells (CCs), MUC5AC for goblet cells (GCs), and FOXJ1 for multiciliated cells (MCCs). These cell types were robustly found in all samples at various proportions (Fig. S1A-C). We also confirmed that cell type proportions inferred from scRNA-seq were correlated with cell type proportions inferred from protein measurements by performing immunostaining of selected population markers (Fig. S1D,E). Cell dissociation did not produce a major impact on gene expression with the exception of FOS and FOSB (Fig. S2). Molecular function enrichment with Ingenuity Pathway Analysis (Qiagen) showed that 'cell death and survival' and 'cellular growth and proliferation' were the only molecular functions that were regulated with P<0.001 (Fig. S2C).

Single-cell transcriptomes of HAECs differentiated in Pneumacult medium were analyzed at three time points [after transition to an air-liquid interface (ALI) 7, ALI 12 and ALI 28] (Fig. 1B), which are representative of the proliferation, polarization and specification steps of regeneration [START_REF] Chevalier | miR-34/449 control apical actin network formation during multiciliogenesis through small GTPase pathways[END_REF]. This experiment was complemented by six additional time points of HAECs differentiated in BEGM medium (ALI 2, ALI 4, ALI 7, ALI 12,ALI 17 and ALI 22). In the first approach, each time point was analyzed independently. We carried out 10 random selections of cells, corresponding to subgroups containing 90% of the initial number of cells. The resulting gene expression submatrices were then iteratively clustered (10 times with varying parameters), and a census was applied to define the most robust cell types. We then studied the variations of these populations during the entire time course. Cells clustered in six main populations in Pneumacult: (1) cycling (MKI67+) BCs; (2) non-cycling (MKI67-) BCs (KRT5+/ TP63+); (3) supraBCs (KRT5+/TP63-/KRT13+/KRT4+); ( 4) CCs (SCGB1A1+); ( 5) GCs (MUC5AC+); and ( 6) MCCs (FOXJ1+) (Fig. 1C; Table S1). Cell population proportions evolved during the time course, with a global reduction in BCs and CCs, an initial detection of supraBCs at ALI 7, followed by an increase of the proportion of this cell population at ALI 28, and an initial detection of GCs and MCCs at ALI 28 (Fig. 1D). In BEGM, cells clustered in seven cell populations (Fig. S3A,B and Table S2). We did not detect CCs and GCs using this culture condition, but found instead a cell population that we termed 'Club-like cells', given their high gene expression similarity with CCs, except for SCGB1A1, which was not detected (Fig. S4). Additional cell types were found in these samples: KRT5-supraBCs (TP63-/KRT13+/KRT4+) and two cell populations that we termed as 'undefined intermediates 1' and 'undefined intermediates 2' because their gene expression profiles did not allow unambiguous classification. Inter-donor variability was assessed by analyzing ALI cultures from independent donors in both BEGM and Pneumacult media. Very similar cell population distributions were found across donors and differences between the two cell culture media were maintained in all samples (Fig. S5). An aggregated t-SNE graph for all cells at all time points for each medium condition was plotted (Pneumacult, Fig. 1E; BEGM, Fig. S3C). Cell trajectories and transitions from one cell population to another were deduced from a trajectory inference analysis using Monocle 2, followed by differential expression analysis between consecutive cell states in pseudotime using Seurat. Fig. S6 shows the position of all cells within pseudotime and trajectories colorcoded according to their experimental time point of origin. In BEGM, a unique cell trajectory was found (Fig. S3D), starting with cycling and non-cycling BCs at its beginning, followed by KRT5+ and then KRT5-supraBCs cells, with MCCs at its end. Despite the absence of SCGB1A1 expression in secretory-like cells (SCGB1A1-/BPIFA1+/KRT8+), these cells were ordered in the pseudotime before MCCs, as expected for canonical CCs (Fig. S3D-F). A more complex trajectory was observed with Pneumacult, in which Monocle 2 detected a bifurcation into two distinct branches after the SC stage: a larger branch leading to FOXJ1+ MCCs, and a smaller one leading to MUC5AC+ GCs (Fig. 1F,G). A closer examination of pseudotime ordering and differential gene expression (Fig. 1H) revealed that some MUC5AC+ cells were found on the MCC branch, after the GC bifurcation and that some FOXJ1+ cells retained expression of MUC5AC. Altogether, our findings confirm CCs as precursors of both MCCs and GCs. They also suggest that GCs can also act as MCC precursors in airway epithelial regeneration.

Goblet cells can be differentiation intermediates for multiciliated cells

We further tested the hypothesis that some GCs correspond to MCC precursors. In clustering analyses, either from fresh tissues or from in vitro samples, GC and CC populations displayed very similar gene expression profiles, being discriminated by higher MUC5AC and MUC5B expression levels in GCs (Table S1). In Pneumacult, 24 of the 54 top genes for GCs were also associated with CCs (Fig. 2A), including SCGB1A1. Expression of MUC5AC and MUC5B was stronger in GCs (Fig. 2B). A direct assessment of differential gene expression between cells located at the two ends of the GC branch confirmed the high similarity of gene expression existing between CCs and GCs (Fig. 2C; Table S3A,B). GCs differed from CCs by higher levels of mucins (MUC1, MUC4, MUC5B and MUC5AC), secretoglobins (SCGB1B1 and SCGB3A1), PLUNC antimicrobial factors (BPIFA1 and BPIFB1) and SLPI, the secretory leukocyte protease inhibitor (Fig. 2C). These properties led us to consider GCs as 'hyperactive' CCs and led to the prediction that these cells could also function as MCC precursors. This point was tested by quantifying the expression of MUC5AC and FOXJ1, and by measuring the percentage of doublelabeled cells. Detecting cells simultaneously expressing MUC5AC and FOXJ1 would suggest the existence of a transitory state between GCs and MCCs. Fig. 2D,G,J indeed shows that 8.9% of GCs and MCCs simultaneously express MUC5AC and FOXJ1. It also shows the existence of CCs/MCCs expressing both SCGB1A1 and FOXJ1, which correspond to a more conventional type of precursor for MCCs (Fig. 2M). The presence of MUC5AC+/FOXJ1+ and SCBG1A1+/FOXJ1+ cells was not restricted to a cell culture differentiation model, and these transitionary cells were also detected in fresh biopsies from human homeostatic bronchi (Fig. 2E,H,K,N) and newborn pig trachea (Fig. 2F,I,L,O).

Hybrid cells were also detected by qRT-PCR in a fully independent HAEC culture, after isolation of the cells using C1 technology (Fluidigm) and quantification of gene expression with a Biomark (Fluidigm). Cells isolated with the C1 were visually inspected, and these experimental settings ensured the absence of cell doublets. Four cells out of 74 expressed GC-specific genes (namely MUC5AC, MUC5B and TFF3), together with MCC-specific genes (FOXJ1), and more specifically, immature MCC genes (PLK4, MYB and CDC20B) (Revinski et al., 2018) (Fig. S7A,B). This result was confirmed after re-analyzing a recently published dataset (Plasschaert et al., 2018) (Fig. S7C,D). A further confirmation came from the detection at the protein level of cells that were simultaneously labeled for MUC5AC and acetylated tubulin, a specific protein marker of the cilia (Fig. 2P). A final point came after a survey of our data with two additional algorithms: 'RNA velocity' (La Manno et al., 2018) and Palantir [START_REF] Setty | Characterization of cell fate probabilities in single-cell data with Palantir[END_REF]. RNA velocity can predict the fate of individual cells over a timescale of hours by distinguishing the expression of spliced and unspliced forms of transcripts. We analyzed with RNA velocity the behavior of CEP41, SCGB1A1 and MUC5B, in which CEP41 is an early marker of multiciliated cells differentiation. RNA velocity calculates a residual value of each gene, which indicates expected upregulation when it is positive and expected downregulation when it is negative. Positive residuals were found for transcripts of CEP41 in the GC population, predicting an upregulation of CEP41 over the following hours. A different picture was observed for the transcripts of SCGB1A1 and MUC5B, in which negative residuals were found in the GC and CC populations, indicating an expected downregulation of the corresponding transcripts over the following hours (Fig. 2Q). We then explored the same dataset with Palantir, another algorithm that models cell trajectory, with which we confirmed the presence of GCs on the MCC branch (Fig. S7E). The score for differentiation potential was highest for cycling basal cells. A high score was also found in the MCC branch in a region containing both CCs and GCs, before the gap separating them from MCCs (Fig. S7F), further suggesting a high probability to differentiate into at least two distinct trajectories. Estimation of gene expression trends showed an upregulation and then a downregulation of both MUC5AC and MUC5B along the pseudotime in cells committed to the MCC lineage (Fig. S7G). Finally, computing branch probabilities of randomly selected GCs on the MCC branch showed that some of them have between 24.7% and 49.7% chance of following the MCC trajectory (Fig. S7H). Altogether, these data indicate that GCs can act as precursors for MCCs in normal in vitro and in homeostatic in vivo airway regeneration.

Refining cell clustering identifies six additional clusters, including a discrete population of pre-MCC 'deuterosomal' cells

To gain further insight into the diversity of cell populations composing the airway epithelium and the transitionary cell populations occurring during the regeneration, we considered additional clusters that could be derived from our sub-clustering analysis, by accepting less discriminations between them than between the six previously identified clusters. This deeper analysis led to the identification of 12 clusters, instead of six (Fig. 3A; Fig. S8A and Table S4). The non-cycling BC population was split into two clusters that we termed BC1 and BC2. The major difference between these two clusters was the higher level of expression of genes associated with cell migration: FN1, VIM, SPARC and TAGLN in the BC2 cluster. Analysis of enriched canonical pathways with Ingenuity Pathway Analysis showed enrichment for integrin, actin cytoskeleton and Rho GTPase signaling, as well as the pathway 'regulation of actin-based motility' in BC2 compared with BC1, suggesting an increased migratory activity in BC2 (Fig. S9). The supraBC and CC populations could also be further split into three new populations of supraBC and three new populations of CCs (Fig. 3A; Fig. S8A). Each of them displayed its own distinct gene set enrichment (Fig. S9). The CC2 subpopulation displayed a strong enrichment score for the feature 'immune cell migration, invasion and chemotaxis', and a strong positive enrichment for canonical pathways such as 'neuroinflammation signaling' and 'dendritic cell maturation'. This was explained by an increased gene expression of targets for pro-inflammatory molecules such as TNF, IFNG, NFkB, IL1A/B, IL2 or IL6, as well as decreased gene expression for targets for the anti-inflammatory PPARG pathway (Fig. S9). This may confer to this subpopulation of CCs a unique relationship with the immune response. This subpopulation was confirmed in nasal and bronchial epithelia in a subset of healthy subjects from a Human Cell Atlas cohort (data not shown).

The MCC group of FOXJ1+ cells was further split in two discrete clusters: (1) the largest one is positive for mature MCC genes such as DNAH5, and corresponds to terminally differentiated MCCs; (2) the second one specifically expresses several molecules that are important for the biosynthesis of hundreds of basal bodies from which motile cilia elongate. Among them is DEUP1, a hallmark of massive centriole amplification at deuterosomes (Fig. 3B). We named these cells 'deuterosomal' cells. This subpopulation is clearly distinct from mature MCCs (Fig. 3B) and expresses highly specific markers such as PLK4, CCNO and CEP78 (Fig. S10A and Table S5A-C). Existence of deuterosomal cells was confirmed in mouse tracheal epithelial cells (MTECs) dissociated at ALI 3, in newborn pig trachea and in human bronchial biopsy tissue (Fig. 3C; Fig. S10B,C). All samples, even under homeostatic conditions, displayed deuterosomal cells that clustered independently of mature MCCs. In adult mouse trachea, we detected Deup1+ cells by immunohistochemistry that were clearly distinct from mature MCCs (multiple centrioles but no cilia). MCCs were devoid of Deup1 protein (Fig. S10D). Deuterosomal cells expressed unique gene markers, but also genes found in MCCs and cycling BCs (Fig. 3D). Our analysis found 149 specific genes, and 33 and 244 genes shared with cycling BCs and mature MCCs, respectively (Fig. 3E; Table S5). Among the 33 genes in common with cycling BCs, we noticed the re-expression of several cell cycle-related genes, which are required for the massive amplification of centrioles that takes place (Al Jord et al., 2017;Revinski et al., 2018). The most specific genes are displayed in Fig. 3E. This analysis not only confirms the known expression of CDK1 in deuterosomal cells (Al Jord et al., 2017), it also highlights the expression in deuterosomal cells of genes coding for centromere proteins (CENPF, CENPU and CENPW), securin (PTTG1), a core subunit of the condensing complex (SMC4) and cyclin-dependent kinase regulatory subunits (CKS1B and CKS2). We confirmed the deuterosomal-specific expression of CDC20B, the miR-449 host gene that we have recently shown to be a key regulator of centriole amplification by deuterosomes (Revinski et al., 2018). Incidentally, a splice variant of this gene was detected, including a novel exon near the location of the miR-449 family (Fig. 3B; Fig. S11A). This short CDC20B isoform was also detectable in mouse RNA-seq data (Fig. S11B). Comparison of transcript abundance in several samples, including the Pneumacult ALI 28 and the human bronchial biopsy tissue, showed higher levels for short CDC20B (Fig. S11C,D), which likely corresponds to the major source of miR-449 in deuterosomal cells. A list of novel markers of deuterosomal cells that are specifically expressed in this cell population is provided in Table S5. Some of these genes have never been described before in the context of centriole amplification, such as the yippee-like factor YPEL1 or the Notch pathway-related hairy-enhancer-of-split family of transcription factors HES6 (Fig. S10A-C). Gene set enrichment of the deuterosomal population-specific genes (Fig. 3F) showed enrichments for 'cilium assembly' and 'centrosome maturation', but also cell-cycle mechanism-related terms such as 'resolution of sister chromatid cohesion', 'regulation of AURKA', 'PLK1 activity' and 'CDH1 autodegradation'. 'Mitochondrial membrane part' was also among the enriched terms, suggesting an increase in mitochondria numbers at this stage. This signature perfectly delineates the events occurring at this MCC differentiation stage and provides an extensive repertoire of specific cell-cycle related genes that are re-expressed at the deuterosomal stage. The pool of deuterosomal cells was consistently larger than recently described rare cell populations such as ionocytes (Montoro et al., 2018;Plasschaert et al., 2018), which we also identified (Fig. S8C).

Establishing a keratin switch pattern during airway regeneration

A rich repertoire of keratins is expressed in different epithelial cells, depending of cell type, period of embryonic development, stage of histological differentiation, cellular growth environment, disease state, etc. We screened our scRNA-seq data for expression of different keratins, besides KRT5 and KRT14, which are bona fide BC markers in the airways and lung, but also in bladder (Colopy et al., 2014), prostate [START_REF] Hudson | Epithelial cell differentiation pathways in the human prostate: identification of intermediate phenotypes by keratin expression[END_REF] and mammary gland [START_REF] Jumppanen | Basallike phenotype is not associated with patient survival in estrogen-receptornegative breast cancers[END_REF], or for KRT8, which is clearly associated with luminal cell types [START_REF] Rock | Basal cells as stem cells of the mouse trachea and human airway epithelium[END_REF]. A recent study performed on mouse and human models of in vitro regeneration identified KRT4 and KRT13 in a subpopulation reminiscent of our supraBCs, as it emerges between BCs and CCs (Plasschaert et al., 2018). Our repertoire of KRT expression during airway regeneration was based on pseudotime ordering in our Pneumacult ALI 28 dataset. Our analysis confirmed the presence of KRT5 and KRT14 in BCs, of KRT4 and KRT13 in supraBCs, and the expression of KRT8 in luminal cell types (CCs, GCs and MCCs) (Fig. 4A,E). Unlike recent data obtained by Plasschaert et al. under similar conditions (Plasschaert et al., 2018), who showed parallel RNA expression of KRT13 and KRT4, we consistently noticed that expression profiles of KRT13 and KRT4 were slightly de-correlated, with KRT13 detected at earlier pseudotimes than KRT4. This was confirmed at the protein level by a quantification of immunostainings of the proportion of KRT5+/KRT13+ and KRT5+/KRT4+ double-positive cells (Fig. 4B). Fig. 4C shows that there were more KRT5+/KRT13+ (7.4%) than KRT5+/KRT4+ (4.9%) double-positive cells, consistent with an earlier expression of KRT13 compared with KRT4. A similar observation was made in the newborn pig trachea, in which we also found a very clear shift, with 16.8% and 11.2% of KRT5+/KRT13+ and KRT5+/KRT4+ double-positive cells, respectively (Fig. 4D). Our results show that KRT4 and KRT13 are not strictly expressed at the same time during airway regeneration and their expression delineates subtle differences in cell subpopulations. In homeostatic nasal epithelium, we noticed an even greater uncoupling of KRT4 and KRT13 expression at RNA and protein levels. In scRNA-seq, KRT13 was highest in cycling BCs, then in BCs and supraBCs. KRT4 was highest in CCs, then in supraBCs and cycling BCs (Fig. S12A). Immunostaining on nasal turbinate epithelium confirmed that KRT13 was predominantly found at a basal position, and KRT4 at a luminal position (Fig. S12C). Hence, KRT4 and KRT13 cell-type specificity might differ according to the homeostatic or regenerative status. Additional keratins, such as KRT16 and KRT23 displayed a specific supraBC expression (Fig. 4E). We also identified additional keratins that were more specifically associated with differentiated cell types: KRT7 and KRT19 were strongly enriched in CCs, but their expression completely dropped in MCCs, while KRT8 was still expressed (Fig. 4E). Expression patterns for these cell type-specific keratins were confirmed by immunohistochemistry on sections of ALI culture and nasal epithelium (Fig. 4F; Fig. S12B,D). Altogether, our data indicate that the keratin repertoire can be sufficiently specific to reconstruct cell trajectories during airway regeneration.

Establishing a combinatorial repertoire of signaling pathways during airway regeneration

We have finally analyzed the cell specificity of expression of important signaling pathways in order to determine mutual influences between distinct cells that could play a role in airway regeneration. Our investigation was focused on the Notch, BMP/ TGFβ and Wnt pathways. For each different component, we classified them as ligands, receptors, or targets. The expression profiles are shown as heatmaps, with cells being sorted by their subgroups.

Notch pathway

BCs express the ligands DLL1, JAG1 and JAG2, as well as the receptor NOTCH1, as expected (Plasschaert et al., 2018;[START_REF] Rock | Basal cells as stem cells of the mouse trachea and human airway epithelium[END_REF]. In this population, no target gene expression was detected, suggesting an inactive pathway. BCs also express LFNG, which is known to inhibit JAG1 signaling via NOTCH1 [START_REF] Yang | Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1[END_REF]. SupraBCs cells express NOTCH1, JAG1 and JAG2, and show clear activation of the Notch pathway by expression of the target genes HEY1, HES2 and HES4. NOTCH3 expression is turned on and is specific to this population. In CCs/GCs, NOTCH2 is the major receptor to be detected and signal activation remains, as evidenced by the expression of HEY1 and HES4. CCs/GCs also express the non-canonical Notch ligand NTN1. In deuterosomal cells/MCCs, a clear shift is observed. Expression of NOTCH2, NOTCH3, HEY1 and HES4 is reduced, and NOTCH4 is specifically expressed. As previously described, JAG2 (Plasschaert et al., 2018), which is present in BCs then absent in supraBCs and CCs/BCs, is re-expressed in the MCC compartment. We have found the same behavior for DLL1 and the non-canonical ligand DNER. Thus, MCC express some Notch ligands. Strikingly, a major inhibitory signature dominates in MCCs, with the expression of CIR1 and SAP30, two transcriptional corepressors, and of DYRK1A, an inhibitor of the NICD. HES6, the expression of which is not regulated by Notch signaling but has been identified as a Notch pathway inhibitor [START_REF] Bae | The bHLH gene Hes6, an inhibitor of Hes1, promotes neuronal differentiation[END_REF], is highly enriched in deuterosomal cells (Figs 5A and3E). We have confirmed at the protein level an enrichment of SAP30 in MCCs (Fig. S13A).

Wnt pathway

The Wnt target genes SNAI2 and TCF4, which are indicators of an active pathway, are mainly enriched in the BC population, especially in BC2 for SNAI2. We have confirmed enrichment of SNAI2 in BCs at the protein level (Fig. S13B). In the BC population, WNT10A and LRP1 are strongly enriched, and several SOX family members (SOX2 and SOX21) are underrepresented, especially in the cycling BCs, suggesting an activation of the pathway in this compartment. In the MCC population, the situation is more complex. Despite the slight expression of TCF4 together with positive regulators of the pathway, such as WNT9A, FZD6, APPL2, CSNK1G1 (a casein kinase component that can act as an activator or inhibitor of the pathway; [START_REF] Cruciat | Casein kinase 1 and Wnt/β-catenin signaling[END_REF], no SNAI2 expression is detected, and known repressors of the Wnt pathway are also overrepresented. Indeed, MCCs express significant levels of the transcriptional repressors SOX2 and SOX21, and display strong enrichment for the reptin components RUVBL1 and RUVBL2 (Fig. 5B).

BMP/TGFβ

BMP ligands, such as BMP2 and BMP7, are enriched in the BC population, while BMP3 and BMP4 are both enriched in the CC/GC populations. We did not find any specific cell population expression for BMP receptors. Specific expression of FST (follistatin) and FKBP1A (also known as FKBP12), two BMP inhibitors, was found in BCs, which was confirmed for FST in BCs at the protein level (Fig. S13C,D). Regarding the TGFβ pathway, a clear signal of activation is detected in the deuterosomal/MCC population, with specific expression of the target genes SERPINE1 (PAI-1), CTGF, ATF3, TGFBR3 and IRF7, consistent with the previous finding that TFGβ pathway regulates motile cilia length by affecting the transition zone of the cilium (Tözser et al., 2015). We did not detect TGFβ ligands in the MCC population but rather found them expressed in BCs (TGFB1) and supraBCs (TGFB3).

We have confirmed the main distribution of the three pathway components in samples differentiated with the BEGM medium (Fig. S14) and in two fresh tissue samples (human bronchial biopsy and nasal turbinate) for which a selection of genes is shown in Fig. 5D. Collectively, our data provide for the first time a detailed account of Notch, Wnt and BMP signaling pathways at work during airway regeneration, with receptors and ligands specifically expressed at each cell stage. 

DISCUSSION

We have established here a comprehensive single-cell atlas throughout the entire time course of human nasal airway differentiation in vitro. We quantified the proportion and identity of each cell population at carefully chosen time points after the establishment of the air liquid interface. We provide the first comparison between the most widely used culture media in the 3D culture of airway epithelial cells, BEGM (with which the majority of studies have been performed), and a more recently available commercial medium, Pneumacult. In the BEGM medium, we have performed analyses at earlier time points, i.e. ALI 2 and ALI 4. These time points allowed us to measure the extent of cell proliferation during in vitro regeneration. Cycling BCs accounted for ∼40% of total cells at ALI 2 and ALI 4, and this number dropped to 5% at ALI 7. These early time points also showed that supraBCs appeared early under these conditions, being already detected at ALI 4. With BEGM, we never detected any GCs (MUC5AC+) or 'canonical' CCs (SCGB1A1+), even after long periods of time and using several dozens of cultures from distinct donors (Figs S1, S3, S4; data not shown). However, we found a cell population that we have termed 'club-like'. These 'club-like' cells express a gene pattern very similar to that of canonical CCs, and they can differentiate into MCCs. Interestingly, GCs were detected in BEGM medium after IL13 treatment [START_REF] Laoukili | IL-13 alters mucociliary differentiation and ciliary beating of human respiratory epithelial cells[END_REF]data not shown). Future work should investigate whether club-like cells first evolve into canonical CCs and then GCs upon IL13 treatment.

In Pneumacult, but also in freshly dissociated human bronchial biopsy tissue and newborn pig trachea, we have detected hybrid cells expressing both MUC5AC and FOXJ1. This finding is consistent with our lineage inference, as RNA velocity and Palantir analyses consistently defined GCs as possible precursors of multiciliated cells. Other groups have previously detected cells expressing both markers, in a context of GC hyper/metaplasia induced by Sendai virus infection or after IL13 treatment and in asthma [START_REF] Gomperts | IL-13 regulates cilia loss and foxj1 expression in human airway epithelium[END_REF][START_REF] Turner | Goblet cells are derived from a FOXJ1-expressing progenitor in a human airway epithelium[END_REF][START_REF] Tyner | Blocking airway mucous cell metaplasia by inhibiting EGFR antiapoptosis and IL-13 transdifferentiation signals[END_REF]Vieira Braga et al., 2019). These findings led some of them to hypothesize a transdifferentiation of MCCs into GCs. However, no convincing data support this conclusion and none of these data show a difference in the number of these hybrid cells between control and treated conditions. For example, Turner and colleagues [START_REF] Turner | Goblet cells are derived from a FOXJ1-expressing progenitor in a human airway epithelium[END_REF]) postulated this after performing in vitro lentiviral transduction of HAECs with a vector containing a Cre recombinase under the control of the FOXJ1 promoter. However, no control demonstrated the absence of leakage of the FOXJ1 promoter and these findings were not confirmed by Rajagopal's group who showed no GCs arising from MCCs in a context of OVA-induced mucous metaplasia in mouse airways, using in vivo lineage tracing with Foxj1-cre mice [START_REF] Pardo-Saganta | Ciliated cells of pseudostratified airway epithelium do not become mucous cells after ovalbumin challenge[END_REF]. Our contribution to resolve this conundrum is by showing that these hybrid cells do exist in the absence of I-13 stimulation and in healthy subjects. We therefore suggest that their expression profiles place them more straightforwardly as alternative precursors of MCCs than as transdifferentiated MCCs.

As our work was performed on either cultured or fresh cells from nasal or lung airways derived from three distinct animal species, the generalization of some of our conclusions to mouse, human and pig airways is probably justified. This is probably the case for the general mechanisms of MCC and GC differentiations. At the same time, we are also aware of the important gradients of gene expression that exist between different compartments, as already documented between nose and bronchi (Giovannini-Chami et al., 2018). Future work will have to address the origins of these spatial idiosyncrasies. Our study was also not intended to characterize rare cell types such as pulmonary neuroendocrine, brush cells or ionocytes, which have recently been described elsewhere. We confirm the detection of cells displaying high levels of expression of CFTR, ASCL3 and FOXI1, corresponding to pulmonary ionocytes (Montoro et al., 2018;Plasschaert et al., 2018). Our investigation was more focused on the main cell types that compose the epithelium, and their underlying mechanisms of differentiation. Three subtypes of BCs were identified, including a group of cycling BCs, and a group of BCs expressing higher levels of genes involved in extracellular matrix connection and actin-based motility. This latter group is reminiscent of that described by Coraux et al. who showed that airway BCs undergo changes in the cytoskeleton organization and acquire mesenchymal cell-associated vimentin as well as various matrix metalloproteinases necessary for migration above the denuded basement membrane in response to injury [START_REF] Coraux | Epithelial cellextracellular matrix interactions and stem cells in airway epithelial regeneration[END_REF]. This BC subtype is probably specific to regeneration and should not be detected in homeostatic samples. Accordingly, few such cells were found in nasal and bronchial epithelial samples from 12 healthy subjects of the Human Cell Atlas (data not shown).

The specificity of the secretory compartment comes from one club cell subpopulation that displayed an immune-related gene signature. So far, diversity within the club cell compartment is thought to be established after expression of different members of the secretoblogin family [START_REF] Reynolds | Secretoglobins SCGB3A1 and SCGB3A2 define secretory cell subsets in mouse and human airways[END_REF] or via an appropriate activation level of the Notch pathway [START_REF] Guha | Analysis of notch signaling-dependent gene expression in developing airways reveals diversity of Clara cells[END_REF]. We propose that diversity within this cell compartment should also include specialized functions related to the interaction between the epithelium and immune cells. Additional experiments, including protein labeling on fresh tissue sections from several levels of the airways, have now to be performed in order to confirm this diversity and identify the spatial distribution of these subpopulations.

Our study has also provided a first extensive gene signature of the deuterosomal population, which plays a key role during MCC differentiation. This population comprises three to four times fewer cells than the MCC population, suggesting that each cell transits quickly through this stage. In line with what has been shown recently by our group and others (Al Jord et al., 2017;Revinski et al., 2018;[START_REF] Vladar | Cyclin-dependent kinase control of motile ciliogenesis[END_REF], cell cycle-related genes become reexpressed in this population of non-cycling cells. We have confirmed the very specific expression of CDC20B, a key player of centriole amplification (Revinski et al., 2018), and have identified, both in human and mouse, a novel isoform of this transcript that displays higher expression than the annotated long isoform. As the pre-mRNA corresponding to this short isoform comprises the miR-449-encoding intron, we suggest that this isoform should indeed be the major source of miR-449 in deuterosomal cells. The alternative splicing that is responsible for this alternative isoform might represent an optimization of gene expression regulation to efficiently increase miR-449 levels.

We also characterized the distribution of important signaling pathways. We started with the Notch pathway as it is a major regulator of the mucociliary differentiation. We have confirmed the distribution of ligands and receptors described by others (Mori et al., 2015;Pardo-Saganta et al., 2015b;Plasschaert et al., 2018;Rock et al., 2011). Absence of HES4 expression, the most representative target gene in our model, confirmed the absence of Notch activation in BCs and MCCs. BCs rather express NOTCH1 and NOTCH ligands. However, no clear Notch pathway activation can be detected within this cell population even in a patchy manner as might be expected from Notch lateral inhibition. This absence of activation might result from the weak NOTCH1 expression or the expression of Notch inhibitors such as the ligand LFNG or casein kinase II subunit beta (CSNK2B) [START_REF] Cheng | Effects of Notch signaling on regulation of myeloid cell differentiation in cancer[END_REF][START_REF] Wang | Protein kinase CK2 both promotes robust proliferation and inhibits the proliferative fate in the C. elegans germ line[END_REF]. Inhibition of the Notch pathway in MCCs at the end of multiciliogenesis has been widely documented. Here, the specific expression of several Notch transcriptional inhibitors at the deuterosomal stage suggest a novel mechanism for this inactivation. This is the case for HES6, an inhibitory HES acting through HES1 binding [START_REF] Bae | The bHLH gene Hes6, an inhibitor of Hes1, promotes neuronal differentiation[END_REF][START_REF] Nam | Hairy and Enhancer of Split 6 (Hes6) deficiency in mouse impairs neuroblast differentiation in dentate gyrus without affecting cell proliferation and integration into mature neurons[END_REF], DYRK1A, an inhibitor of Notch intracellular domain transcriptional activity [START_REF] Fernandez-Martinez | Attenuation of Notch signalling by the Downsyndrome-associated kinase DYRK1A[END_REF], as well as CIR1 and SAP30, which are transcriptional repressors of the Notch/CSL transcriptional complex [START_REF] Hsieh | CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex[END_REF]. On the other hand, CCs must undergo clear Notch activation to maintain cell identity and differentiate into GCs (Pardo-Saganta et al., 2015b;Rock et al., 2011;Tsao et al., 2009). However, the onset of activation of this signal has not been widely studied. Mori and colleagues have described NOTCH3 expression in TP63-negative cells in a parabasal position of the epithelium, which likely correspond to the cells that we and others have termed supraBCs (Mori et al., 2015). We have confirmed that the NOTCH3 transcript is absent from BCs and becomes upregulated in supraBCs. We went further by showing that HES4 becomes expressed at this cell stage, confirming that Notch pathway activation starts at the supraBC stage. We emphasize here the importance of this intermediate cell population for establishing Notch activation and subsequent differentiation, even though it has not been well characterized so far. The Wnt/β-catenin pathway has been less extensively studied in the context of airway epithelium differentiation [START_REF] Brechbuhl | Β-catenin dosage is a critical determinant of tracheal basal cell fate determination[END_REF][START_REF] Malleske | Regulation of human airway epithelial tissue stem cell differentiation by β-catenin, P300, and CBP[END_REF][START_REF] Schmid | Modulation of Wnt signaling is essential for the differentiation of ciliated epithelial cells in human airways[END_REF][START_REF] Smith | Direct and indirect roles for βcatenin in facultative basal progenitor cell differentiation[END_REF][START_REF] Zemke | tissues and air liquid cultures identifies novel cell populations and offers new insights into the molecular mechanisms occurring during mucociliary epithelium regeneration[END_REF]. Crosstalk with Notch has been suggested in non-airway studies: in hair follicle precortex, β-catenin stimulates Notch signaling by inducing Jag1 transcription [START_REF] Estrach | Jagged 1 is a β-catenin target gene required for ectopic hair follicle formation in adult epidermis[END_REF]. In the airway epithelium, β-catenin signaling is required at 'specification', i.e. early stages of GC and MCC differentiation, but was detrimental at later stages [START_REF] Malleske | Regulation of human airway epithelial tissue stem cell differentiation by β-catenin, P300, and CBP[END_REF]. Ordovas-Montanes et al. have recently shown that Wnt is also related to inflammatory-induced epithelial remodeling. In nasal polyps, an imbalance between Wnt and Notch signaling favors Wnt signaling and GCs at the expense of MCCs (Ordovas-Montanes et al., 2018). In airway smooth muscle cells, WNT5A is associated with remodeling in a context of airway hyperresponsiveness [START_REF] Koopmans | Regulation of actin dynamics by WNT-5A: implications for human airway smooth muscle contraction[END_REF]. In HAECs from individuals with chronic obstructive pulmonary disease, WNT4 upregulation increases IL8 and CXCL8 gene expression [START_REF] Durham | Regulation of Wnt4 in chronic obstructive pulmonary disease[END_REF]. Interestingly, WNT5A and WNT4 were specifically expressed by the subpopulation of CCs related to immune response. This finding further reinforces the hypothesis of a role for this CC population in the inflammation-induced airway remodeling.

Based on expression of the target genes TCF4 and SNAI2, activation of the Wnt pathway is confined to the BC population. SNAI2 enrichment in the basal cell compartment had already been noticed by Rock and colleagues upon sorting of basal cells from mouse trachea [START_REF] Rock | Basal cells as stem cells of the mouse trachea and human airway epithelium[END_REF]. This population also strongly and specifically expresses the ligand WNT10A, suggesting an autocrine regulatory loop. WNT10A is also BC specific in other epithelia, such as the mammary epithelium [START_REF] Ji | Proteomic profiling of secretome and adherent plasma membranes from distinct mammary epithelial cell subpopulations[END_REF]. In fallopian organoids, Wnt has been shown to be essential for stemness [START_REF] Kessler | The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids[END_REF] and for self-renewal, but not for proliferation, in basal-like breast cancer cells [START_REF] Dimeo | A Novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelialmesenchymal transition in basal-like breast cancer[END_REF]. Thus, autocrine WNT10A signaling may also regulate self-renewal in the BC compartment of the airway epithelium. In contrast, we have observed in MCCs a specific expression of the two ATP-dependent DNA helicases from the Reptin family that act as Wnt signaling repressors [START_REF] Bauer | Pontin52 and Reptin52 function as antagonistic regulators of beta-catenin signalling activity[END_REF][START_REF] Weiske | The histidine triad protein Hint1 interacts with Pontin and Reptin and inhibits TCF-β-catenin-mediated transcription[END_REF]. Additional investigations should certainly be carried out to characterize more precisely the role of Wnt/β-catenin during airway epithelial regeneration.

Regarding the TGFβ/BMP pathway, our data strongly suggest inhibition of this pathway in the BC compartment. As this signaling is considered to be a brake for proliferation, our findings are consistent with a previous report showing maintenance of a proliferative potential of this progenitor population by dual SMAD inhibition [START_REF] Mou | Dual SMAD signaling inhibition enables long-term expansion of diverse epithelial basal cells[END_REF].

Conclusions

We provide several novel insights in the dynamics of airway differentiation by positioning goblet cells as possible precursors of multiciliated cells: this illustrates how cells carrying specialized function, i.e. club and goblet cells, can still constitute differentiation intermediates for other specialized cells, i.e. multiciliated cells. We also identify subpopulations of basal, suprabasal, club and multiciliated cells. Our dataset also provides extensive characterization of the deuterosomal cell population, an intermediate state before the formation of multiciliated cells. After establishing a comprehensive repertoire of keratin expression, we show that monitoring 'keratin switch' during differentiation could be self-sufficient to establish the different cell identities. Our improved characterization of the different signaling pathway components detects putative Notch repressors that probably contribute to Notch signal shutdown at the deuterosomal stage, and details Wnt pathway activity within the basal cell compartment.

MATERIALS AND METHODS

Human airway epithelial cell culture

Human airway epithelial cell (HAEC) cultures were derived from nasal mucosa of inferior turbinates. After excision, nasal inferior turbinates were immediately immersed in Ca 2+ /Mg 2+ -free HBSS supplemented with 25 mM HEPES, 200 U/ml penicillin, 200 μg/ml streptomycin, 50 μg/ml gentamicin sulfate and 2.5 μg/ml amphotericin B (all reagents from Gibco). After repeated washes with ice-cold supplemented HBSS, tissues were digested with 0.1% Protease XIV from Streptomyces griseus (Sigma-Aldrich) overnight at 4°C. After incubation, fetal calf serum (FCS) was added to a final concentration of 10%, and nasal epithelial cells were detached from the stroma by gentle agitation. Cell suspensions were further dissociated by trituration through a 21 G needle and then centrifuged at 150 g for 5 min. The pellet was resuspended in supplemented HBSS containing 10% FCS and centrifuged again. The second cell pellet was then suspended in Dulbecco's Modified Eagle's Medium (DMEM, Gibco) containing 10% FCS and cells were plated (20,000 cells per cm 2 ) on 75 cm 2 flasks coated with rat-tail collagen I (Sigma-Aldrich). Cells were incubated in a humidified atmosphere of 5% CO 2 at 37°C. Culture medium was replaced with bronchial epithelium basal medium (BEBM, Lonza) supplemented with BEGM SingleQuot Kit Supplements (Lonza) on the following day and was then changed every other day. After 4 to 5 days of culture, after reaching about 70% confluence, cells were detached with trypsin-EDTA 0.05% (Gibco) for 5 min and seeded on Transwell permeable supports (6.5 mm diameter; 0.4 μm pore size; Corning) in BEGM medium at a density of 30,000 cells per Transwell. Once the cells have reached confluence (typically after 5 days), they were induced to differentiate at the air-liquid interface by removing medium at the apical side of the Transwell, and by replacing medium at the basal side with either DMEM:BEBM (1:1) supplemented with BEGM SingleQuot Kit Supplements or with Pneumacult-ALI (StemCell Technologies), as indicated in the figure legends. Culture medium was changed every other day.

Mouse tracheal epithelial cell culture

Mouse tracheal epithelial cell (MTEC) cultures were established from the tracheas of 12-week-old C57BL/6 mice. After dissection, tracheas were placed in ice-cold DMEM:F-12 medium (1:1) supplemented with 15 mM HEPES, 100 U/ml penicillin, 100 μg/ml streptomycin, 50 μg/ml gentamicin sulfate and 2.5 μg/ml amphotericin B. Each trachea was processed under a binocular microscope to remove as much conjunctive tissue as possible with small forceps and was opened longitudinally with small dissecting scissors. Tracheas were then placed in supplemented DMEM:F-12 containing 0.15% protease XIV from S. griseus. After overnight incubation at 4°C, FCS was added to a final concentration of 10%, and tracheal epithelial cells were detached by gentle agitation. Cells were centrifuged at 400 g for 10 min and resuspended in supplemented DMEM:F-12 containing 10% FCS. Cells were plated on regular cell culture plates and maintained in a humidified atmosphere of 5% CO 2 at 37°C for 4 h to allow attachment of putative contaminating fibroblast. Medium-containing cells in suspension were further centrifuged at 400 g for 5 min and cells were resuspended in supplemented DMEM:F-12 containing BEGM Singlequot kit supplements and 5% FCS. Cells were plated on rat tail collagen I-coated Transwell. Typically, five tracheas resulted in 12 Transwells. Medium was changed every other day. Airliquid interface culture was conducted once transepithelial electrical resistance had reached a minimum of 1000 Ω/cm 2 (measured with EVOM2, World Precision Instruments). Air-liquid interface culture was obtained by removing medium at the apical side of the Transwell and by replacing medium at the basal side with Pneumacult-ALI medium (StemCell Technologies).

HAEC and MTEC dissociation for single-cell RNA-seq

Single-cell analysis was performed at the indicated days of culture at the airliquid interface. To obtain a single-cell suspension, cells were incubated with 0.1% protease type XIV from S. griseus (Sigma-Aldrich) in supplemented HBSS for 4 h at 4°C. Cells were gently detached from Transwells by pipetting and then transferred to a microtube. Fifty units of DNase I (EN0523 Thermo Fisher Scientific) per 250 μl were directly added and cells were further incubated at room temperature for 10 min. Cells were centrifuged (150 g for 5 min) and resuspended in 500 μl supplemented HBSS containing 10% FCS, centrifuged again (150 g for 5 min) and resuspended in 500 μl HBSS before being mechanically dissociated through a 26 G syringe (four times). Finally, cell suspensions were filtered through a 40 μm porosity Flowmi Cell Strainer (Bel-Art), centrifuged (150 g for 5 min) and resuspended in 500 μl of ice-cold HBSS. Cell concentration measurements were performed with a Scepter 2.0 Cell Counter (Millipore) and Countess automated cell counter (Thermo Fisher Scientific). Cell viability was checked with a Countess automated cell counter (Thermo Fisher Scientific). All steps except the DNAse I incubation were performed on ice. For cell capture using the 10× genomics device, the cell concentration was adjusted to 300 cells/μl in HBSS, aiming to capture 1500 cells for HAECs and 5000 cells for MTECs.

Turbinate epithelial cell dissociation

To obtain a single-cell suspension directly from turbinates, the whole turbinate from a 30-year-old female donor was incubated with 0.1% protease type XIV from S. griseus (Sigma-Aldrich) in supplemented HBSS at 4°C overnight. Epithelial cells were gently detached from the turbinate by washing with HBSS by pipetting up and down, and then transferred to a 50 ml Falcon tube. Cells were centrifuged (150 g for 5 min at 4°C) and after removing the supernatant the cells were resuspended in 1 ml of HBSS. Fifty units of DNase I (EN0523 Thermo Fisher Scientific) per 250 μl were directly added and cells were further incubated at room temperature for 10 min. Cells were centrifuged (150 g for 5 min at 4°C) and resuspended in 1 ml supplemented HBSS containing 10% FCS, centrifuged again (150 g for 5 min at 4°C) and resuspended in 500 μl HBSS before being mechanically dissociated through a 26 G syringe (four times). Finally, cell suspensions were filtered through a 40 μm porosity Flowmi Cell Strainer (Bel-Art), centrifuged (150 g for 5 min) and resuspended in 500 μl of ice-cold HBSS. Cell concentration measurements were performed using a Scepter 2.0 Cell Counter (Millipore) and Countess automated cell counter (Thermo Fisher Scientific). Cell viability was checked with a Countess automated cell counter (Thermo Fisher Scientific). All steps, except the DNAse I incubation, were performed on ice. For the cell capture using the 10× genomics device, the cell concentration was adjusted to 500 cells/μl in HBSS aiming to capture 5000 cells.

Anesthetic procedure

Intranasal anesthesia is performed with topical application (gauze) of 5% lidocaine (anesthetic) plus naphazoline (vasoconstrictor) solution (0.2 mg/ml). Laryngeal and endobronchial anesthesia is performed with topical application of 2% lidocaine through the working channel of a 4.9 mm outer diameter bronchoscope.

Nasal brushing

Brushing was performed with a 2 mm cytology brush (Medi-Globe) in the inferior turbinate zone of a 56-year-old healthy male donor.

Bronchial biopsy

Bronchial biopsy was performed at the spur between the left upper lobe and the left lower lobe with a 1.8 mm-diameter Flexibite biopsy forceps (Medi-Globe) passed through the working channel of the bronchoscope (WCB) on a 59-year-old male donor.

Dissociation of nasal brushing

The brush was soaked in a 5 ml Eppendorf containing 1 ml of dissociation buffer, which was composed of HypoThermosol (BioLife Solutions), 10 mg/ml protease from Bacillus Licheniformis (Sigma-Aldrich, P5380) and 0.5 mM EDTA [START_REF] Adam | Psychrophilic proteases dramatically reduce single-cell RNA-seq artifacts: a molecular atlas of kidney development[END_REF]. The tube was shaken vigorously and centrifuged for 2 min at 150 g. The brush was removed, cells pipetted up and down five times and then incubated cells on ice for 30 min, with gentle trituration with 21 G needles five times every 5 min. Protease was inactivated by adding 200 μl of HBSS/2% BSA. Cells were centrifuged (400 g for 5 min at 4°C). Supernatant was discarded leaving 10 μl of residual liquid on the pellet. Cells were resuspended in 500 μl of wash buffer (HBSS/0.05% BSA) and 2.25 ml of ammonium chloride 0.8% was added to perform red blood cell lysis. After a 10 min incubation, 2 ml of wash buffer was added and cells were centrifuged (400 g for 5 min at 4°C). Supernatant was discarded leaving 10 μl of residual liquid on the pellet, cells were resuspended in 1 ml of wash buffer and centrifuged (400 g for 5 min at 4°C). Supernatant was discarded leaving 10 μl of residual liquid on the pellet, cells were resuspended in 1 ml of wash buffer and passed through a 40 μm porosity Flowmi™ Cell Strainer (Bel-Art) then centrifuged (400 g for 5 min at 4°C). Supernatant was discarded, leaving 10 μl of residual liquid on the pellet. Cells were resuspended in 100 μl of wash buffer. Cell counts and viability were performed with a Countess automated cell counter (Thermo Fisher Scientific). For cell capture using the 10× genomics device, the cell concentration was adjusted to 500 cells/μl in HBSS, aiming to capture 5000 cells. All steps were performed on ice.

Dissociation of bronchial biopsy

The biopsy tissue was soaked in 1 ml dissociation buffer, which was composed of DPBS, 10 mg/ml protease from Bacillus licheniformis (Sigma-Aldrich, P5380) and 0.5 mM EDTA. After 1 h, the biopsy was finely minced with a scalpel and returned to the dissociation buffer. From this point, the dissociation procedure is the same as the one described in the 'dissociation of nasal brushing' section, with an incubation time increased to 1 h, and omitting the red blood cell lysis procedure. For cell capture using the 10× genomics device, the cell concentration was adjusted to 300 cells/μl in HBSS, aiming to capture 5000 cells. All steps were performed on ice.

Pig tracheal epithelial cell dissociation

To obtain a single-cell suspension from newborn pig trachea, whole clean tracheas were incubated with 0.1% protease type XIV from S. griseus (Sigma-Aldrich) in supplemented HBSS at 4°C overnight. Epithelial cells were gently detached from the turbinate by washing with HBSS and pipetting up and down, then transferring to a 50 ml Falcon tube. Cells were centrifuged (150 g for 5 min at 4°C) and after removing the supernatant the cells were resuspended in 1 ml of HBSS and 50 units of DNase I (EN0523, Thermo Fisher Scientific) per 250 μl were directly added. The cells were then further incubated at room temperature for 10 min. Cells were centrifuged (150 g for 5 min at 4°C) and resuspended in 1 ml supplemented HBSS containing 10% FCS, centrifuged again (150 g for 5 min at 4°C) and resuspended in 500 μl HBSS before being mechanically dissociated through a 26 G syringe (four times). Finally, cell suspensions were filtered through a 40 μm porosity Flowmi Cell Strainer (Bel-Art), centrifuged (150 g for 5 min) and resuspended in 500 μl of ice-cold HBSS. Cell concentration measurements were performed using a Scepter 2.0 Cell Counter (Millipore) and a Countess automated cell counter (Thermo Fisher Scientific). Cell viability was checked with a Countess automated cell counter (Thermo Fisher Scientific). All steps except the DNAse I incubation were performed on ice. For cell capture using the 10× genomics device, the cell concentration was adjusted to 500 cells/μl in HBSS, aiming to capture 5000 cells.

Single-cell RNA-seq

We followed the manufacturer's protocol (Chromium Single Cell 3′ Reagent Kit, v2 Chemistry) to obtain single cell 3′ libraries for Illumina sequencing. Libraries were sequenced with a NextSeq 500/550 High Output v2 kit (75 cycles) that allows up to 91 cycles of paired-end sequencing: read 1 had a length of 26 bases that included the cell barcode and the UMI; read 2 had a length of 57 bases that contained the cDNA insert; index reads for sample index of eight bases. Cell Ranger Single-Cell Software Suite v1.3 was used to perform sample demultiplexing, barcode processing and single-cell 3′ gene counting using standard default parameters and human build hg19, pig build sus scrofa 11.1 and mouse build mm10. All single-cell datasets that we generated, and the corresponding quality metrics are displayed in Table S6 and were deposited on the Gene Expression Omnibus portal under the series number GSE121600.

Single-cell quantitative PCR

HAECs were dissociated as described above, then single cells were separated using a C1 Single-cell AutoPrep system (Fluidigm), followed by quantitative PCR on the Biomark system (Fluidigm) using SsoFast evaGreen Supermix (Biorad) and the primers described in Table S7.

RNA-seq on dissociated and non-dissociated HAECs

Two Transwells from fully differentiated HAECs from two distinct donors were each dissociated as described above. After the final resuspension, cells were centrifuged and resuspended in 800 μl Qiazol (Qiagen). Nondissociated cells from two Transwells were also lyzed in 800 μl Qiazol. RNAs were extracted with the miRNeasy mini kit (Qiagen) according to the manufacturer's instructions. Two micrograms from each RNA was used in RNA-seq library construction with the Truseq stranded total RNA kit (Illumina). Sequencing was performed with a NextSeq 500/550 High Output v2 kit (75 cycles). Reads were aligned against hg19 human build using STAR aligner. Low expressed genes were filtered out, then paired differential analysis was performed with DESeq2, comparing dissociated versus nondissociated samples from cultures generated from two different donors. Pvalues were adjusted for multiple testing using the false discovery rate (FDR). Top differentially expressed genes were selected using the following cutoffs: FDR<0.001 and an absolute log2FC>1.5.

Cytospins

Fully differentiated HAECs were dissociated by incubation with 0.1% protease type XIV from Streptomyces griseus (Sigma-Aldrich) in HBSS (Hanks' balanced salts) overnight at 4°C. Cells were gently detached from the Transwells by pipetting and then transferred to a microtube. Cells were then cytocentrifuged at 72 g for 10 min onto SuperFrost Plus slides using a Shandon Cytospin 4 cytocentrifuge. Cytospin slides were fixed for 10 min in 4% paraformaldehyde at room temperature or with methanol for 10 min at -20°C for further immunostaining.

Tissue processing for embedding

Nasal turbinates were fixed in paraformaldehyde 4% at 4°C or with methanol at -20°C (for the following antibodies: KRT7, KRT19, DEUP1, centrin 2, HES6) overnight then extensively rinsed with phosphate-buffered saline (PBS). Fixed tissues where then prepared for paraffin embedding or cryo-embedding for cryostat sectioning. For cryoprotection, tissues were soaked in a 15% sucrose solution until saturation of the tissue followed by saturation in a 30% sucrose solution. Tissue was embedded in optimal cutting temperature (OCT) medium (Thermo Fisher Scientific) at room temperature and then submerged in isopentane previously tempered at -80°C. Fully differentiated air-liquid cell cultures were embedded in paraffin using a similar protocol with a shorter time for paraformaldehyde 4% fixation (15 min at room temperature). Each Transwell was cut with a razor blade before embedding. Cutting of frozen tissues was performed with a cryostat Leica CM3050 S. Cutting of paraffin-embedded sections was performed using a rotary microtome MICROM HM 340E (Thermo Fisher Scientific).

Immunostaining

Samples were permeabilized with 0.5% Triton X-100 in PBS for 10 min. Cells were blocked with 3% BSA in PBS for 30 min. The incubation with primary antibodies was carried out at 4°C overnight. Cells were blocked with 3% BSA in PBS for 30 min. The incubation with primary antibodies was carried out at 4°C overnight. Primary antibodies were as follows: mouse monoclonal anti-KRT4 (1:50, Santa Cruz Biotechnology, sc-52321 for Fig. 4 or 1:250 Proteintech 16572-1-AP for Fig. S11A), rabbit polyclonal anti-KRT5 (1:2000, Biolegend, BLE905501), mouse monoclonal anti-KRT7 (1:100, Dako, M7018), mouse monoclonal anti-KRT8 (1:50, Santa Cruz Biotechnology, sc-58737), mouse monoclonal anti-KRT13 (1:200, Sigma-Aldrich clone KS-1A3), rabbit polyclonal anti-KRT19 (1:250, Proteintech, 10712-1-AP), rabbit polyclonal anti-DEUP1 (1:500, Proteintech, 24579-1-AP), rabbit polyclonal anti-CC10 (SCGB1A1) (1:500, Millipore, 07-623), mouse monoclonal anti-acetylated tubulin (1:500, Sigma-Aldrich clone 6-11B-1), mouse monoclonal anti-MUC5AC (1:250, Abnova clone 45M1), mouse monoclonal anti-SNAI2 (1:50, Santa Cruz Biotechnology, sc-166476), rabbit polyclonal anti-SAP30 (1:200, Proteintech, 27679-AP), goat polyclonal anti-FST (1:200, R&D Systems, AF-669) mouse monoclonal anti-centrin 2 (1/250e, clone 20H5, Sigma-Aldrich, 04-1624) and mouse monoclonal anti-FOXJ1 (1:200,eBiosciences,.

Secondary antibodies used were: Alexa Fluor 488 goat anti-rabbit (1:500; Thermo Fisher Scientific, A-11008), Alexa Fluor 647 goat anti-mouse (1:500; Thermo Fisher Scientific, A-21235), Alexa Fluor 488 goat anti-mouse IgG1 (1:500, Fisher Scientific, A-21121), Alexa Fluor 594 goat anti-mouse IgG2a (1:500, Fisher Scientific, A-21135), Alexa Fluor 647 goat anti-mouse IgG2b (1:500, Fisher Scientific, A-21242) and Alexa Fluor 488 donkey anti-goat (1:500; Thermo Fisher Scientific, A-11055). Incubation with secondary antibodies was carried out for 1 h at room temperature. Nuclei were stained with 4,6-diamidino-2-phenylindole (DAPI).

When necessary, acetylated tubulin, Muc5AC and KRT5 antibodies were directly coupled to CF 594, 488 and 488 respectively, using the Mix-n-Stain kit (Sigma-Aldrich) according to the manufacturer's instructions. Coupled primary antibodies were applied for 2 h at room temperature after secondary antibodies had been extensively washed and after a 30 min blocking stage in 3% normal rabbit or mouse serum in PBS. MTEC immunostaining was directly performed on Transwell membranes using a similar protocol. For mounting on slides, Transwell membranes were cut with a razor blade and mounted with ProLong Gold medium (Thermo Fisher Scientific). Images were acquired using the Olympus Fv10i or Leica sp5 confocal imaging systems.

Time course sample analysis Preprocessing

For each sample, cells with levels in the top 5% or bottom 5% of distribution for the following quality metrics: number of expressed features, dropout percentage and library size (total UMI count) were filtered out. Additionally, cells with a percentage of mitochondrial genes >top 5% were also removed. Quality metrics were computed using the scatter package (2.3.0) [START_REF] Mccarthy | Scater: preprocessing, quality control, normalization and visualization of single-cell RNA-seq data in R[END_REF]. Only genes detected (1 UMI) in at least five cells were kept for analysis.

Normalization

The scran package (Lun et al., 2016 preprint) was used to calculate cellbased scale factors and normalize cells for differences in count distribution. Each sample was normalized separately twice, first in an unsupervised manner, then after grouping cells of similar gene expression based on our robust clustering results.

13

TECHNIQUES AND RESOURCES

Development (2019) 146, dev177428. doi:10.1242/dev.177428 Clustering robustness

In order to best determine the key steps in the differentiation process, a customized method was implemented to analyze clustering robustness to dataset perturbation. For all possible numbers of clusters (from 2 to 9), multiple subsets of the studied datasets were created (10 subsets with 10% of the cells randomly removed each time) and clustering was performed multiple times on each subset with changing settings of the seed parameter.

The result of those clusterings were stored in a (n cells)² stability matrix, containing for each pair of cells 1 or 0 depending on whether the cells are clustered together (1) or not (0). This stability matrix was then transformed in a Euclidean distance matrix between cells and then divided into the used k number of clusters k using hierarchical clustering (hclust with 'average' method). To identify the optimal number of clusters, a visual inspection of the elbow plot of the average intra-stability (mean stability within each cluster) and the average inter-stability (mean stability between each cluster) was carried out. Cells with a stability metric less than 70% were labeled as 'unassigned', owing to the high clustering variability between each round of clustering, then removed from further analysis of the time course data. Cell clustering was performed using SIMLR ( package version 1.4.1) (Wang et al., 2017). Heatmaps for the clustering of each dataset are shown in Table S8.

Differential analysis

To further analyze the robustness of each step of the differentiation process, we tested the robustness of the cell type marker gene identification through differential gene expression analysis. Differential expression analysis was performed using edgeR (package version 3.22) (Robinson et al., 2010). In a one versus all differential analysis, a pool of 100 cells from one cluster were analyzed against an equal mixture of cells from all other clusters. In a one versus one differential analysis, pools of cells of the same size were compared. Those differential analysis were performed multiple times (10 times) on different pool of cells and the DEG identified were compared between each pool of cells using the rank-rank hypergeometric overlap algorithm [START_REF] Plaisier | Rank-rank hypergeometric overlap: identification of statistically significant overlap between gene-expression signatures[END_REF]. This approach was too stringent and only identified highly expressed marker genes that are less sensitive to dropout events. Thus, the Seurat FindAllMarkers function based on a non-parametric Wilcoxon rank sum test was used to identify cell type marker genes.

Time points aggregation

10× datasets generated during the time course were aggregated using MNN correction (Haghverdi et al., 2018) from the scran package.

Trajectory inference

Trajectory inference was performed using monocle 2 ( package version 2.8) (Qiu et al., 2017). Cell ordering was based on highly variable genes (∼200-500 genes) selected by their expression dispersion. Monocle analysis on the aggregated time points was carried out on raw counts after library size correction (downsampling). Branch building was performed using BEAM analysis from Monocle, and corresponding differential analysis was carried out after a cross comparison of a group of cells along the pseudotime (before branching, after branching and at the branch end) using Seurat 1 versus 1 differential analysis.

Cell type projection

To compare cell types identified in distinct samples, cells were projected from one dataset onto the other using scmap R package version 1.1, scmapCluster function [START_REF] Kiselev | scmap: projection of single-cell RNAseq data across data sets[END_REF].

Data visualization

All graphs were generated using R (ggplot2). Heatmaps were obtained using pheatmap (no clustering used, genes ordered by their expression in pseudotime or in cluster, cells ordered by pseudotime or cluster). Heatmaps show smoothed gene expression values: for each gene, normalized gene expression values were first transformed into z-scores, then averaged across 10 neighboring cells in the chosen ordering ( pseudotime only or pseudotime in clusters). Single gene representation: for the sake of clarity, only cells with expression levels above the top 50 percentiles for that gene are represented.

Individual sample analysis

Each sample of our study was reanalyzed with less stringent parameters to identify rare or transitory cell types or gene expression events

Preprocessing, normalization and clustering

Individual dataset analysis was performed using Seurat standard analysis pipeline. Briefly, cells were first filtered based on number of expressed features, dropout percentage, library size and mitochondrial gene percentage. Thresholds were selected by visually inspecting violin plots in order to remove the most extreme outliers. Genes expressing fewer than five UMI across all cells were removed from further analysis. Cell-level normalization was performed using the median UMI counts as a scaling factor. Highly variable genes were selected for following analyses based on their expression level and variance. PCA analysis was performed on those genes, the number of PCs to use was chosen upon visual inspection of the PC variance elbowplot (∼10 to 20 PCs depending on the dataset).

Clustering was first performed with default parameters and then by increasing the resolution parameter above 0.5 to identify small clusters (but with the knowledgeable risk of splitting big clusters due to high gene expression variability). Differential analysis was again performed using Seurat FindAllMarkers and FindMarkers functions based on non-parametric Wilcoxon rank sum test. Gene Set Enrichment analysis was performed using fgsea R package with the following gene sets reactome.db (R package) and GO cellular component (Broad Institute GSEA MSigDB) genesets. Molecular function enrichment analysis was performed using Ingenuity Pathway Analysis (Qiagen).

Cell type annotation

Based on the time course experiment analysis and associated top ∼15 marker genes identified, a score was computed to associate cell types to each cluster. The scoring method is based on Macosko et al. cell cycle phase assignment (Macosko et al., 2015). For each cell it measures the mean expression of the top marker genes for each possible cell type, which results in a matrix c cell types per n cells. Then it calculates a z-score of the mean expression for each cell; the top resulting score gives the matching cell type.

Velocity

RNA velocity was calculate using latest release of velocyto pipeline (velocyto.org/) using standard parameters: GTF file used for Cell Ranger analysis and the possorted_genome_bam.bam, Cell Ranger output alignment file. From the loom file that contains a count table of spliced and unspliced transcripts, the gene.relative.velocity.estimates function was used on cell type marker genes. The resulting expression pattern of unspliced-spliced phase portraits shows the induction or repression of those marker genes from one cell type to the next. We used velocyto package version 0.5 (La Manno et al., 2018).

Trajectory inference using Palantir algorithm

Palantir analysis was used as an integrated function of the Scanpy workflow (Wolf et al., 2018). The filtered raw count matrix was loaded into Scanpy, along with the cell type annotation (Scanpy v1.4, Python 3.7); each cell was normalized to the total count over all genes (without log transform) before running Palantir [START_REF] Setty | Characterization of cell fate probabilities in single-cell data with Palantir[END_REF]. The first 14 principal components were used to compute the diffusion map. The corresponding t-SNE embedding was obtained using the first two diffusion components. A start cell was randomly selected among the cycling basal cell cluster to infer trajectories and the associated terminal states. In the process, each cell of the dataset was associated with a probability to differentiate into each of the terminal states identified. Associated with the identified trajectory, Palantir allowed the associated gene trends to be studied using MAGIC [START_REF] Van Dijk | Recovering gene 16[END_REF] correction of the count matrix.

Plasscheart et al. dataset

Plasscheart et al.'s data (Plasschaert et al., 2018) were downloaded as processed data along with visualization coordinates and were used without further manipulation. (kleintools.hms.harvard.edu/tools/springViewer_1_6_ dev.html?datasets/reference_HBECs/reference_HBECs). Cellular mapping of the human airway epithelium using single-cell RNA-seq

Gene

Context of the study

As mentioned before, the defence function of the airway epithelium relies on its structure, cell type composition and interactions. This complex ecosystem is thus composed of epithelial, mesenchymal and immune cells which distributions and interactions may vary depending on the mechanical and biological constraints applied to the epithelium. The anatomy of the airways from the nose, pharynx, trachea to the ramified structure of the lung serves, therefore, as sequential air filters against inhaled particles. They constitute a protective physiological continuum along the respiratory tract. Yet, some differences have been noted between the upper and lower airway epithelium:

• In their developmental origin, the upper airways mainly differentiated from the neural crest, whereas the lower airways originated from the specification of the endoderm into the lung bud (see Chapter 4).

• In allergic respiratory diseases, where the defence response in the nasal epithelium is either reduced or amplified compared to the lower airways (Giovannini-chami et al., 2018).

• In the epithelium defence response to pathogens, such as bacteria or viruses, and sensibility to inflammation (Roberts et al., 2018;[START_REF] Imkamp | Nasal epithelium as a proxy for bronchial epithelium for smoking-induced gene expression and expression Quantitative Trait Loci[END_REF]McDougall et al., 2008;[START_REF] Riaz | Differential Response of Human Nasal and Bronchial Epithelial Cells upon Exposure to Size-fractionated Dairy Dust Brie[END_REF].

These statements raise the need for a detailed characterisation of this continuum to improve our understanding of this complex tissue in its entirety in both healthy and disease conditions.

Previous studies worked toward this goal but were limited by their use of bulk RNAseq methods. The average transcriptome of thousands of cells blurs the interpretation of differential gene expression analysis between actual differences and heterogeneous cell type composition. The advent of single-cell RNA-seq techniques counteracts this limited resolution and led to the creation of large atlas-building initiatives, such as the Human Cell Atlas. It is in this framework that we designed our study. It aimed to build a comprehensive reference map of the airway epithelium along the respiratory tract.

To achieve it, we chose an approach similar to clinicians with non-invasive sampling techniques from the nose to the 12th generation of bronchi. This technique would allow us to build an atlas of the accessible part of the airway epithelium and a powerful resource against which clinicians can relate in the diagnosis and understanding of respiratory diseases.

As starting material, we sampled 10 healthy living volunteers using forceps and brushing biopsies at precise positions in the nose, trachea and bronchi (4-6th and 9-12th generation of bronchi, respectively intermediate and distal samples). Our sampling design aimed to cover, as best as possible, the entirety of the respiratory tract, including the ramified structure of the lung (upper, middle and lower lobes, right and left lungs). It ensued a large dataset composed of 77,969 cells divided into 35 samples. I analysed this extensive dataset by integrating numerous tools in a specially designed analysis workflow. This atlas was further completed by in situ immuno-stainings and hybridisation (RNA scope). All results are detailed in the following publication: Cellular mapping along the human airway epithelium using single-cell RNA-sequencing in healthy volunteers, soon to be submitted (see the end of the chapter).
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Results

This atlas of the airway epithelium is the result of extensive collaborative work between:

• clinicians, Charles-Hugo Marquette and Sylvie Leroy, who collected the samples;

• wet-lab biologists, Laure-Emmanuelle Zaragosi, Marie-Jeanne Arguel and Sandra Ruiz Garcia, who processed the samples and provided in situ validations;

• and computational biologists, Kevin Lebrigand, Agnès Paquet, Marin Truchi and myself, who analysed the resulting datasets.

Kevin Lebrigand, first, pre-processed the raw sequencing data. Then, as it took months to complete the collection of all samples, Marin and I performed a primary analysis of each sample so as to get a first idea of their cell composition and the analysis workflow needed to integrate them all. Lastly, I performed the integrative analysis of the complete dataset with the help of Marin and Agnes valuable advice.

Building a molecular atlas of the airways in healthy volunteers

Following the aforementioned experimental design, we obtained a large and complex dataset describing the airway epithelium along the respiratory tract. From the extensive analysis of this dataset on both individual samples and integrated dataset, we robustly identified 14 epithelial, 7 immune and 4 mesenchymal cell types spread across the 35 samples composing the atlas. We annotated the clusters based on the specific expression of well-established markers and our previous experience in the analysis of scRNA-seq datasets of the airway epithelium. The epithelial compartment of the atlas represents 89% of the total cells and include surface epithelial cell types, submucosal glands and rare cells. The immune and mesenchymal compartments, much smaller, represent respectively 6% and 5% of the total cells.

Differences in cell composition and gene expression along the proximo-distal axis of the respiratory tree

Once the cell types were identified, we studied their distribution along the respiratory tract and demonstrated that the mode of sampling influences the cell distribution within samples. Brushing samples mostly captured luminal cells, whereas biopsies were enriched in cells close to the basal lamina of the epithelium ( Immune cells were mostly found in distal samples (brushings) with exceptions for plasma and dendritic cells more present in tracheal and intermediate samples (biopsies). These distributions arose the question of whether these cell types are resident of the lung or circulating cells. Conversely, mesenchymal cells were exclusively found in proximal and intermediate biopsy samples, confirming their role in the 'structural maintenance' of the epithelium. As non-epithelial cells represent a limited percentage of the cells present in our dataset, we did not describe them further.

Consequently to the sampling method, basal and suprabasal cells were mostly identified in biopsy samples (50%) whereas secretory, deuterosomal and multiciliated cells were found in brushings (70%). The cell types composing submucosal glands were present in nasal and proximal biopsies with decreasing frequency, suggesting a variation in their density along the proximo-distal axis of the airways. Correlation analysis of the gene expression signature of each cell types divided by their positions of origin in the airways revealed major differences between upper and lower airway epithelium. We distinguished nasal and tracheobronchial-specific sub-clusters for suprabasal, secretory and multiciliated cells. These differences appeared restricted to surface epithelial cells as they were limited in basal cells and absent in submucosal cell types. We thus studied the specific nasal and tracheobronchial gene signatures and identified a shared signature of 22 genes expressed in nasal-specific cell types, including SIX3, PAX7 and FOXG1 which are reported as involved in embryonic neural crest development. We completed the characterisation of the differences between nasal and tracheobronchial epithelium by gene set enrichment analysis and inference of regulatory units activity. It revealed an increased turnover of the nasal-epithelium with enhanced proliferation and differentiation of its cells, compared to the tracheobronchial epithelium. We hypothesised that the nasal-epithelium is more frequently damaged by external aggressions and developed an adaptative transcriptomic response shared by multiple epithelial cells. In contrast, the tracheobronchial epithelium displays a more quiescent phenotype with, nevertheless, an important innate immune response, which suggests that the epithelium has a more focused function on the response to pathogens.
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Identification of rare epithelial cells along the human airways

This large dataset also revealed the presence of rare epithelial cell types such as ionocytes, brush/tuft cells and pulmonary neuro-endocrine cells. We also identified a fourth rare cell type, named immature cells, expressing several marker-genes associated with other rare cell types. A correlation analysis between all surface epithelial cells suggested that these immature cells may differentiate from basal or suprabasal cells and then acts as progenitor to other rare cell types (Figure 8.2.A).

Based on our previous work on the regeneration of the airway epithelium, we also searched for a rare group of hybrid cells expressing both goblet and multiciliated markergenes (e.g. FOXJ1-MUC5AC ). We identified unambiguously 52 cells with such transcriptome. Some of these 'mucous-multiciliated' cells also express deuterosomal genes supporting the hypothesis from our previous study and suggesting that goblet cells can 'transdifferentiate' into multiciliated cells even in the healthy homeostatic epithelium (Figure 8.2.B). 

Cell proliferation within homeostatic airways

Lastly, we identified a cluster of cycling cells, representing 1% of the total cells in the dataset. Their low abundance is in accordance with the slow turnover property of the epithelium. By studying the expression of cell-cycle related genes, we were able to delineate each phase of the cell cycle. We also noticed the similarity in gene expression signature between these cycling cells and suprabasal cells and hypothesised that in healthy homeostatic tissue, a subgroup of suprabasal cells might participate in the epithelium turnover. By studying the distribution of these cycling cells across all 35 samples, we identified two samples with a much higher proportion of cycling cells (20%). A closer look at these samples revealed specific expression of KRT13 genes in their suprabasal cells. This cooccurrence suggests a link with previously described 'hillock' structures found in mouse airway epithelium and characterised as high turnover zones. We further validated the presence of these structures in human by immnuno-stainings. CHAPTER 8. CELLULAR MAPPING OF THE HUMAN AIRWAY EPITHELIUM USING SINGLE-CELL RNA-SEQ

Materials and methods

Quality control

As mentioned in the introduction, single-cell RNA-seq data analysis starts with a quality control step. For the analysis of our 'Human Cell Atlas' dataset, I divided this quality control step in 4 to best determine the required downstream analysis:

• Screening of the quality metrics from each sample and low-quality cells filtering;

• Preliminary analysis of each sample individually;

• Doublets detection and removal;

• Correction of ambient mRNA background.

Quality metrics

Based on the complex experimental design used to generate our dataset, variations in each sample quality metrics were expected. These metrics include sequencing quality metrics, obtained after CellRanger read-alignment, as well as standard quality metrics such as the number of genes or UMIs per cell. To efficiently screen and compare these metrics between samples, I used a radar plot representation (Figure 8.3). This graph represents each quality metric of interest as a percentage. If a quality metric is not a percentage, it will be represented as a percentage between the minimum and maximum value available across all 35 samples of our dataset. For instance, the number of cells varies between from 500 to 6,000 cells across all samples, a dataset composed of 1,500 cells will display a value of 25% in the radar plot. I chose to study seven quality metrics as a proxy of the sample content and the success of the experimental processing.

• The number of cells is a rough indicator of the cell diversity (presence of rare cells, number of distinct cell types...)

• The mean reads per cell, median genes per cell and median UMI per cell are information about the mRNA content of cells.

• Sequencing saturation is a function of library complexity and sequencing depth.

It represents the percentage of transcripts diversity retrieved during sequencing. A high value means that re-sequencing the sample would only provide limited information on new transcripts, whereas a low value indicates a shallow-sequencing of the sample, and potentially missed information.

• Fraction of reads in cell measures the percentage of reads mapped to an actual cell-barcode compared to reads with empty-droplet barcodes. It is an indicator of the background intensity in the sample.
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• Reads mapped to transcriptome is the fraction of reads mapped confidently to the genome. It can be interpreted as the mature RNA content in the sample and its quality.

I generated a radar plot for each sampled position in the dataset (Figure 8.3). This representation allows visual inspection of the quality metrics homogeneity across all samples. Yet, some metrics are interdependent and must be considered accordingly. For instance, as the sequencer can generate a limited number of reads (500 million with Illumina NextSeq), if the number of cells increases, the number of reads per cell will decrease. From this analysis, I observed an overall homogeneity of quality metrics across samples, with few exceptions found in nasal samples. In combination with Supplementary Figure S2 (paper), this analysis gave me the necessary information needed for cells and gene filtering. 

Per sample preliminary analysis

Samples composing the atlas were collected over a time period of six months. To better apprehend the atlas cell content and needed downstream analysis Marin and I performed a preliminary analysis of each dataset as they were generated. We used the Seurat v3 analysis framework, which includes data dimension reduction by PCA, Louvain graph-based clustering and Wilcoxson's rank expression testing. We annotated the clusters based on their specific marker genes and ensured the homogeneity of our annotation by measuring the overlap between the gene expression signatures obtained for each dataset. This last analysis allowed us to create a list composed of approximately 20 robust marker genes per cell types. We also confirmed this list accuracy by comparing with other published datasets.

Doublets removal

We designed our experiment so that for each sample, we would isolate between 2,000 to 4,000 cells to keep the expected doublet rate as low as possible. Yet, on the total of 77, 969 cells composing the dataset, the expected number of doublet cells remain significant (between 1 and 2% of the total cells) and must be taken into account. To best identify these technical artefacts, I compared two different doublet detection tools: Scrublet and DoubletDetection. I used them both with the default parameters (Figure 8.4). I compared their efficiency to identify doublets by studying the correlation between the doublet-rate and sample size. As a cross-validation between the two methods, I checked the overlap between the identified doublets and chose the more stringent one: DoubletDetection. I also noticed the presence of a cluster with a high percentage of predicted doublet cells and removed it from further analysis. 

Background correction

As I began to analyse the complete dataset, it became evident that the mRNA background between samples would become a problem in differential expression testing. I thus studied the ambient mRNA gene composition across each samples (Figure 8.5). It revealed that the background gene composition is highly correlated to the sample cell type composition. This result ensured a complex differential expression testing framework when comparing cells from samples with different cell type composition. This ambient mRNAs would induce the identification of background related genes rather than true differences in expression. As a solution, I ran soupX method on each sample and obtained a background free expression matrix, that I used in parallel with the raw count matrix. I also adapted the design of the differential expression analysis in the downstream analysis (detailed below). 

Integrated or not to be integrated ?

Once we obtained and processed each sample, I started the analysis of the complete atlas. I first reported the annotation obtained on each dataset individually to have a coarse-grained cell type annotation on which I could venture some hypothesis for the downstream analysis.

Principal Component Analysis

I selected approximately 4,000 highly variable genes using the method available in Scanpy. I ran PCA on this filtered dataset and identified the principal sources of variation present in this atlas (Figure 8.6):

• First component distinguished the multiciliated cells from the rest of the dataset;

• Second component revealed the difference between nasal and tracheobronchial cells;

• Third and fourth components divided the dataset into its epithelial, immune and mesenchymal compartments.

• The remaining components combined enabled the distinction between the remaining epithelial cell types. This analysis revealed the similarity between cells from each sample and delineated more precisely the cell types of interest present in this atlas. To improve the visual representation of the atlas, I used fastMNN as a data integration method. It gave a new 'batch' corrected PC space on which I could re-run the analysis. I then performed the clustering using two different values of k to identify both the principal cell types and some of the rare ones (Figure 8.8). I then combined the cell type annotations obtained with batch corrected and uncorrected data. This approach helped me to identify the cell type composing this atlas robustly. Yet, a sub-clustering was needed for the analysis of the rare, immune and mesenchymal cell types. I also performed a sub-clustering analysis of the main epithelial cell types, but it didn't reveal any form of robust heterogeneity that could be interpreted as different cell-states. As an anecdote, Marin and I tried different integration strategies for the complete analysis of our atlas, and we first tried to integrate the samples according to their samplingposition using the CCA from Seurat version 3. Yet, we obtained ambiguous results, as the CCA was not able to distinguish between similar cell types and integrated all 'secretory' cell types in one, including the submucosal gland cells, surface secretory cells and some of the suprabasal cells. It gave similarly ambiguous results with immune cells and shifted the clustering boundaries between basal, suprabasal and secretory cells continuously as we compared with our previous annotation done on each sample individually. This test in our analysis workflow was a striking example of the over-correction and potential spurious interpretations that can happen if an inappropriate analysis method is used on the data. It made us even more conscious of the need to developed a well-curated analysis workflow for the correct study of our atlas.
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Differential expression testing

The last step of the analysis aimed to characterised pairwise gene expression differences between cell types sampled at different positions along the respiratory tract. Yet, such differential expression testing cannot be done with a standard design. As mentioned earlier, the cell type composition varies significantly between each sampled-positions and influences the ambient mRNA composition. As a consequence, I developed a specific design for pairwise differential expression testing to increase the signal to noise ratio found in our dataset. Due to the varying level of background found in each sample, the level of 'true' gene expression may be of similar intensity as the one from the ambient mRNAs. A standard differential expression testing would thus detect both differences equally. To counteract this limitation, I adapted the design of the differential expression testing (Figure 8.9). I created small 'bulk' datasets of each cell type to test. To create these 'bulk' datasets, I added the gene counts of a given number of cells from different samples. In this way, I mixed the ambient mRNAs signal from distinct samples within each bulk, increased the count values and decreased the proportion of zeros. I then checked the library size of each 'bulk' dataset, their correlations and performed the differential expression testing using edgeR. The different 'bulk' datasets from each cell type serve as replicate for each condition and ensure a correct statistical framework. 

Conclusions

The extensive analysis of this dataset enabled us to create a powerful and reliable resource describing the airway epithelium cell composition along the respiratory tract. We described multiple cells-types from the epithelial, mesenchymal and immune compartments, their distribution, and we studied their transcriptional signatures along the proximo-distal axis of the airways. We also improved the description of rare epithelial cell types and provided a first description of the 'hillock' structure in healthy human airway epithelium.

The creation and analysis of this large dataset required careful planning for both sample collection and processing and their corresponding analysis. Thanks to Marin's help, we were able to provide a robust annotation of the complete dataset and hopefully participated in the production of a consensus lung atlas. Indeed, simultaneously to our work, two other atlases were published: Viera Braga et al. with a preprint version in february 2019 and a Nature medicine publication in june 2019 and Travaglini et al. also with a preprint version in august 2019. Our different experimental designs provide, for the most part, complementary information and some cross-validation of our findings that brings us a step forward the creation of a detailed human lung atlas. Yet, some results highlight a conflicting definition of cell types and cell-states between our respective studies that should be further discussed in the lung community so as to reach a consensus definition of the cell types found in the lung and their impact on the healthy and disease condition of the lung. This last point will be further discussed in the Discussion part of this manuscript.
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Introduction

Prevalence of chronic respiratory diseases is thought to be enhanced in the future by raising exposure to diverse atmospheric contaminants (pollution, allergens, pathogens). The respiratory tract constitutes an elaborated line of defence based on a unique cellular ecosystem. Thus, secretory and multiciliated cells form a self-clearing mechanism that efficiently removes inhaled particles from upper airways, impeding their transfer to deeper lung zones. Several mechanical filters (nose, pharynx, plus the ramified structure of the lung airways) further limit the flux of pathogens inside the lung. While nose and bronchus are sharing many cellular properties, which has even led to the definition of a pathophysiological continuum in allergic respiratory diseases (1,2), they are also known to differ by their developmental origin, and by features such as host defence against viruses, oxidative stress

(3), or anti-bacterial mechanisms ( 4). Bulk RNA sequencing has indeed identified differences in gene expression between nose and bronchi (5). The recent advent of single-cell RNA sequencing offers an excellent opportunity to carefully analyze and compare cellular composition and gene expression from nasal to the successive generations of the lung airways.

In the framework of the Human Cell Atlas (HCA) consortium, we have now established a precise airway epithelium cell atlas in a population of 10 healthy living volunteers. Minimally invasive methods were set up to collect forceps biopsies and/or brushings using bronchoscopy. A high-quality dataset of 77,969 single cells comprising a large panel of epithelial cell subtypes was generated from 35 distinct samples taken at precise positions in the nose, trachea and bronchi. Data integration and analysis provide a unique view of the cell type proportions and gene signatures from the first to the 12 th division of the airways. The resulting picture defines a relatively stable cellular composition and gene expression across the first 12 successive generations of the tracheobronchial tree. The largest differences were found between nasal and bronchial samples. Our work better defines the conditions under which the nose can be considered as a relevant bronchial surrogate for studying human lung pathologies, and underlines the relative stability of gene expression in the upper tracheobronchial compartment of the airways.

Methods

The atlas of the airway epithelium (nose to 12 th division of bronchi) was obtained from forceps and brush biopsies from 10 healthy non-smoker volunteers. Single-cell capture was carried out using 10X Genomics Chromium device (3' V2). Large integrative analysis of the 35 samples composing the atlas was done using the fastMNN R package ( 6) and the following analysis was done using the Scanpy framework (Python) (7) to provide robust cell type annotation.

Additional differential gene expression analysis was done using the edgeR R package ( 8) to investigate both the cell distributions and gene expression heterogeneity along the airways.

GSEA, trajectory inference (PAGA) (7) and gene network inference (GRNBoost2) (7) were also performed to characterize further the identified cell populations. Results were validated using RNAscope and immunostainings. Additional details on the methods are provided in an online data supplement.

Results

Building a molecular cell atlas of the airways in healthy volunteers

Data collection

Cells were analyzed by droplet-based single-cell RNA sequencing (scRNA-seq), after isolation from 4 distinct locations using 2 sampling methods: (i) nasal biopsies (3 samples) and (ii) nasal brushings (4 samples), (iii) tracheal biopsies (carina, 1 st division, 9 samples), (iv) intermediate biopsies (5-6 th divisions, 10 samples), (v) distal brushings (9-12 th divisions, 9 samples) in 10 healthy volunteers (Figure 1A, 1B, Figure E1A, Table E1). Optimized handling and dissociation protocols allowed the profiling of 77,969 single cells which were collected at 35 distinct positions of the airways, resulting in the detection of an average of 1,892 expressed genes per cell with 7,070 UMI per cell (Figure E2A).

Following batch correction and graph-based clustering, cell types were assigned to each cluster using well-established sets of marker genes (Figure 1C, Figure E3). We identified 17 epithelial cell types, including 15 for the surface epithelium and 2 for the submucosal glands, which collectively represented 89.1% of total cells (Figure 1C-1E, Table E2; See also our interactive web tool http://caire.ipmc.cnrs.fr/cellbrowser/HCA/?ds=HCA_airway_epithelium). Stromal and immune cells represented respectively 4.7% and 6.2% of all cells (Figure 1E).

Annotation of epithelial cells

Basal cells (KRT5, TP63 and DLK2-high) accounted for one-third of all cells (Figure 1D and1E).

We also identified suprabasal cells, characterized by low TP63 expression, decreasing gradients of KRT5 expression and increasing gradients of KRT19 and NOTCH3 expression (9-12) (Figure 1D). We grouped club and goblet cells as "secretory cells" since these two populations could not be clustered separately and essentially differed by the level of expression of MUC5AC and MUC5B (Supplementary Figure S4) (12). We detected clusters of multiciliated cells (expressing high levels of FOXJ1, TPPP3, and SNTN) and deuterosomal cells, which correspond to precursors of multiciliated cells and express several specific markers:

CCDC67/DEUP1, FOXN4 and CDC20B (Figure 1C and 1D) (12,13). The suprabasal, secretory and multiciliated clusters each comprised a subcluster of cells that were only detected in nasal samples. These clusters were labelled "Suprabasal N", "Secretory N" and "Multiciliated N" and will be described later in this manuscript. Two cell types were associated with submucosal glands: serous cells (expressing high levels of LTF, LYZ and PIP) and mucous cells (expressing high levels of MUC5B but no MUC5AC) (Figure 1C and1D). Finally, we identified 222 cells belonging to clusters of rare epithelial cells (0.3% of the cells) (Figure 1C and1D). Incidentally, we detected the presence of some alveolar cells: 10 type I (AT1) and 11 type II (AT2) pneumocytes, which were all derived from a unique distal brushing. AT1 expressed HOPX, AGER, SPOCK2; AT2 expressed SFTPA, SFTPB, SFTPC and SFTPD (Figure 3B, Table E2, Figure E5).

Immune cells: annotation and distribution along the respiratory tree

We clustered the 4891 immune cells in 7 distinct cell types (Figure 1C-1E, Figure E6A). Four clusters of myeloid cells were found: (i) macrophages and (ii) monocytes, mostly detected in distal brushings; (iii) mast cells, mostly detected in distal brushings as well and at a lesser extent in tracheal and intermediate biopsies; (iv) dendritic cells, found everywhere. We also identified 3 clusters of lymphoid cells: T cells were found in all samples; plasma cells were exclusively found in biopsies, in line with an interstitial localization and B cells were mostly detected in distal airway brushings (Figure 1F, Figure E1B-D). Further characterization with GRNboost2 ( 14) inferred regulatory unit activity: NLRC4 appeared as one of the most prominent in macrophages, while NR4A3 and NFKB1 were more enriched in monocytes (Figure E6B). In mast cells, we detected strong and specific regulatory signatures for GATA1-2, NTRK1 and TAL1. In dendritic cells, we detected a signature for ADORA3 and CX3CR1 regulatory units. In the lymphoid lineage, we were able to discriminate B cells (expressing high levels of MS4A1 and LTB, and high PAX5 inferred activity) from plasma cells (expressing high levels of IGJ and MZBI, and high IRF4 inferred activity) (Figure 1D, Figure E6A,B). T cells and related subtypes that our analysis did not separate well were characterized by a high and specific transcriptional activity of the XCL1 and CD3D regulatory units (Figure E6B, E6C and E6E).

Stromal cells: annotation and distribution along the respiratory tree

Stromal cells were found only in forceps biopsies, especially in intermediate samples (Figure 1F, Figures E1B andE7B). We annotated 4 stromal cell types (Figure 1C-1E) including endothelial cells, expressing high levels of DARC, fibroblasts, expressing high levels of FBLN1, as well as smooth muscle cells, characterized by high levels of desmin (DES) and high activity of the HOXA4 regulatory unit (Figure 1D, Figure E7C). Based on a specific expression of markers such as RERGL, MCAM and PDGFRB, we also identified pericytes, a population of periendothelial mesenchymal cells with contractile properties that are located on the vascular basement membrane of capillaries (15,16). Pericytes also share with smooth muscle cells markers such as ACTA2 and MYL9 (Figure 1D, Figure E7D).

Large variations in the composition of epithelial cells distinguish nasal and tracheobronchial airways

We then compared the epithelial cellular composition between each of the 5 types of samples.

We noticed a large effect produced by the sampling mode on the distribution of cells: brushing collected more luminal cell types, such as multiciliated or secretory cells, while forceps biopsies collected cells located deeper in the tissue such as basal, stromal cells, and submucosal gland cells (Figure 1F, Figure E1B, Table E2). All following comparisons were then performed on samples obtained with similar sampling methods.

Tracheal and intermediate airway biopsies shared very similar cell type distributions, with few differences between biopsies taken from upper, middle and lower lobes (Figure 1F, Figure E1B). The most significant variation was for submucosal glands cells (serous and mucous cells).

Their detection in 3 out of 3 nasal biopsies, 3 out of 9 tracheal biopsies and 0 out of 9 intermediate biopsies (Supplementary Figure S1B) suggests a larger density of submucosal glands in the nose, and a progressive decline as the airway diameter decreases. This decline is consistent with previous findings (17)(18)(19)(20). Comparison between nasal and distal brushing samples also showed a clear enrichment of secretory cells in nasal samples, and an enrichment of multiciliated cells in distal samples (Figure 1F, Figure E1B). In order to characterize qualitative differences between nasal and tracheobronchial compartments, we assessed the correlations in average gene expression between each epithelial cell type. We found stronger correlations (>0.9) between cells belonging to the same cell type, in a donor-independent manner, than between cells belonging to distinct cell types (Figure 2A), confirming that cell type identity was well conserved across samples (Figure E8). This survey also revealed nasalspecific and tracheobronchial-specific sub-clusters for suprabasal, secretory and multiciliated cells (Figures 1C, 1D, 2A, Figure E8). When looking for genes differentially expressed between these locations, we identified a higher number of overlapping genes between suprabasal, secretory and multiciliated cell types derived from the nasal epithelium than between the same cell types derived from the tracheobronchial epithelium (Figure 2B and2C). Among the top 22 genes shared by all 3 cell types in nasal samples were found SIX3, PAX7 and FOXG1 (Figure E9), which have well-reported roles in the eye, neural and/or neural crest-derived development (21)(22)(23).

We then compared gene expression between secretory cells from nasal or tracheobronchial origins (Figure 2D). A total of 220 genes were found up-regulated in the nose with a FC>3, logCPM>2 and p-value < 0.05, whereas 167 genes were found up-regulated in the trachea/bronchi with identical thresholds (Table E3). We noticed an enrichment of SCGB1A1, SCGB3A1, KLK11 and SERPINF1 expression in the bronchi, and of LYNX1, S100A4, CEACAM5, LYPD2, PI3 and MUC4 in the nose (Figure 2D, Figure E9). Immunostainings confirmed the nasal expression of PI3 and MUC4 on independent brushing and biopsies (Figure 2F). First insights about distinctive functional properties were obtained after a gene set enrichment analysis. In bronchi, functional terms related to defence and innate immune response to aggression were found. In nasal epithelium, enrichment of terms related to differentiation and motility supports the existence of a higher cellular turnover (Figure 2E, Table E4). Several regulatory units were associated with secretory cells of the nasal epithelium, such as MESP1, reported as a regulator of somitic mesoderm epithelialization (24). AHR, the aryl hydrocarbon receptor, which contributes to adaptive and innate responses by inducing the expression of several xenobiotic-metabolizing enzymes, and STAT1, a transcription factor that acts downstream to the interferon pathway were both enriched in the nasal tissue. FOXA3 regulatory unit, which promotes goblet metaplasia in mouse and induces MUC5AC and SPDEF expression (25,26), was enriched in tracheobronchial samples.

Intriguingly, dissociated nasal cells appeared larger. There was a proximo-distal gradient of cell size, with the largest average size in the nose (12.56 µm ± 0.71) and the smallest size in the distal airways (8.77 µm ± 0.71) (Figure E2C and E2D). This difference was correlated with the number of detected genes (Figure E2A andE2B).

Identification of rare epithelial cells along the human airways

We identified 13 brush/tuft cells according to their high expression of LRPM, DCLK1, RGS13 (12,27,28) (Figure 3A-3C). We also inferred the transcription factors that might be linked to development and maintenance of brush/tuft cells, such as HOXC5, HMX2, and ANXA4 (Figure E10A).

A cluster of 29 pulmonary neuroendocrine cells (PNECs) (Figure 3A) was found, mostly in tracheal and intermediate biopsies (Figure 3B). PNECs expressed the neurotransmitterassociated genes PCSK1N, SCGN and NEB (Figure 3C) and inference of regulatory activity identified HOXB1, ASCL1, and FOXA2 as PNEC-specific transcription factors (Figure E10A).

We also identified 117 ionocytes (Figure 3A), mostly obtained from nasal and distal brushings (Figure 3B), indicative of a luminal position of these cells. Ionocytes were characterized by markers such as ASCL3, CFTR (28) (Figure 3C), and we also pointed out the specific regulatory unit inferred activity of FOXI1 and SFR (Figure E10A).

A cluster of 63 cells, labelled as "undefined rare" cells, was sampled evenly across all macroanatomical locations (Figure 3A and 3B). Relative to the other rare populations, they expressed more specifically NREP, STMN1 and MDK (Figure 3C) but shared the expression of HEPACAM2, HES6, AZGP1, CRYM and LRMP with ionocytes, brush cells and PNEC. When we searched for a correlation with the other epithelial cell types, we found a high correlation with ionocytes (>0.85), PNECs and brush cells (>0.80), and also with basal and suprabasal populations (>0.85) (Figure E10B). This expression profile suggests a precursor role for these cells.

A last group of rare cells, already described in Ruiz Garcia et al (12) and named gobletmulticiliated cells, corresponded to cells expressing both goblet and multiciliated cell markers.

Others have detected higher proportions of these "hybrid" cells in the epithelium of asthmatic and smoker patients (29,30). In our dataset, around 60 cells were found positive for both FOXJ1 and MUC5AC. They were equally distributed between the secretory and the multiciliated cell clusters. We have used SoupX to remove gene counts that may emerge from cell-free mRNA contamination, thus avoiding interference with the quantification of hybrid cells (Figure 3E). We confirmed the presence of these cells in nasal epithelium sections using RNAscope in situ RNA hybridization (Figure 3F). When these cells were superimposed in a PAGA representation of tracheobronchial cell lineages, we noticed that they were located close to multiciliated cells, while in a similar representation of nasal cell lineages, they were located between secretory and deuterosomal cells, nearer to these latter (Figure E10B). This result supports our previous description of goblet cells as precursors of multiciliated cells in homeostatic and healthy epithelium and additionally suggests that transition through this stage may have similar dynamics between nasal and tracheobronchial epithelia (12).

Cell proliferation within homeostatic airways

Before batch correction, we identified a cluster of cycling cells, defined by the expression of MKI67, TOP2A, CDC20 (Figure 4A). After batch correction, these cells spread between the basal and suprabasal clusters (Figure 4B). A cell cycle analysis of all cell types identified 2 clusters with positive cell cycle scores. One corresponds to cycling cells (MKI67-positive) and the other, to deuterosomal cells (MKI67-negative) (Figure 4C), in agreement with Ruiz Garcia et al (12). Figure 4D shows UMAP graphs for the subgroup of cells that belonged to the bonafide cycling cluster with a superimposition of the cell cycle scores for G1, S and G2/M phases, which delineates each phase of the cell cycle inside the circular embedding (Figure 4D). We noticed that the marker genes of this cycling population largely overlap with those of suprabasal cells (Figure 4E), suggesting that in homeostatic and healthy tissue, suprabasal cells may be the main proliferating population in the nasal epithelium. Labelling of bronchial epithelium sections with MKI67 antibody confirmed this finding, with MKI67+ cells being in a KRT5+ fraction that was located in a para/suprabasal position (Figure 4F). Cycling cells were distributed all across the 35 samples, although with a highly variable distribution which is reminiscent of the one we have observed for the expression of KRT13 in suprabasal cells (Figure 4G and 4H, Figure E11A). Interestingly, KRT13-high samples also displayed the highest cycling cell proportion (more than 20% of cycling cells, Figure 4G). In situ RNA hybridization in nasal epithelium sections confirmed an association of MKI67 RNA with cells expressing KRT13

(Figure E11B). This correlation between KRT13 expression and proliferation, together with the variability of detection of these cells, is highly reminiscent of the previous description of hillocks in mouse airway epithelium (28). We could confirm the presence of KRT13+ cell clusters in nasal epithelium, with patterns very similar to those previously found in mouse (Figure 4I).

Discussion

We have established a reference single-cell atlas of normal human airways after analyzing 35 fresh tissue samples collected by bronchoscopy in 10 healthy volunteers, resulting in a largescale gene expression profiling that also integrated spatial information of each sample. This approach was well adapted to collect samples from the nasopharynx to the 12th division of the airways but excluded the bronchiolar compartment and the parenchyma, for which alternative experimental approaches have already been proposed (31)(32)(33). Thus, to establish a comprehensive atlas, it is necessary to combine our atlas with these additional datasets.

However, unlike studies reaching for bronchiolar and parenchymal regions, our approach provides unique access to single-cell gene expression in well-characterized healthy volunteers a rarely accessible resource for large scale studies. The use of bronchoscopy, a wellstandardized clinical practice, creates a real opportunity to transfer rapidly novel information generated in the context of the Human Cell Atlas project to new clinical practices.

In our workflow, a critical analytical step led to a robust cell type annotation of the 35 singlecell RNA-sequencing experiments. Integration was performed sequentially, after quantification of individual samples, their merging and batch correction. The quality of our sampling and analysis resulted in insignificant donor-related effects, which has not been systematically obtained in other lung atlas reports. As a result, our conclusions were all based on observations which were made on several donors and independently confirmed. For instance, our description of rare epithelial cell types was based on information collected from all 10 donors.

Profiling of identical cell types across many sites of the airway tree has allowed us to quantify the frequencies of epithelial, submucosal-gland, immune and stromal cells, and has revealed an influence of the mode of sampling. However, this did not prevent us from defining stable core cell type signatures for each epithelial, stromal and immune cell types, irrespective of their anatomical location. In contrast, important variations of gene expression were found when comparing the same populations of suprabasal, secretory and multiciliated cells from the surface epithelium between nasal and tracheobronchial compartments. Similar variations, although non statistically significant, were found in basal cells. These results fit well with previous works reporting dozens of transcripts that discriminated nasal from bronchial brushings (34,35). Future functional analysis will be important to assess the impact of these transcriptomic variations on the biology of each cell type. Our gene set enrichment and inferred regulatory unit analysis suggest that nasal cells undergo higher epithelial regeneration, and have function in xenobiotic metabolism as well as in interferon signalling.

Interestingly, SIX3, PAX6-7, and OTX1/2, which we found to be specific of the nasal epithelium, are all associated with gene ontology terms such as "pattern specification process", and "axis specification" and have well-described functions during embryonic patterning of the head (22,(36)(37)(38). Moreover, Six3 is expressed in murine ependymocytes, which are radial glia-derived multiciliated cells and has been shown to be necessary for the maturation of these cells during postnatal stages of brain development (36). Hence, nasal-specific expression of developmental patterning genes might be the consequence of head vs trunk differential developmental origins and may not necessarily confer specific functions to nasal epithelial cells. Noteworthy, our focus on secretory cells has demonstrated that this population contains few SCGB1A1 + -and SCGB3A1 + -cells in the nasal epithelium. Despite this low secretoglobin content, nasal secretory cells display the core gene signature of secretory cells, suggesting that secretoglobins are not sufficient marker genes to identify secretory/club cells and that previous quantifications relying solely on these genes may be inaccurate. Collectively, all the differences we have identified between nasal and tracheobronchial epithelium should be taken into account when using non-invasive nasal sampling as proxy methods for bronchial diagnostic testing.

Our atlas also provides a comprehensive description of novel cell types, such as the multiciliated-goblet cells and the undefined rare cells, which, given their gene expression profile, may be precursors for all other rare cells. Further work is now required to investigate this challenging hypothesis. We also identified KRT13 + -cells with a detection frequency and organization that are highly reminiscent of mouse airway hillocks (28). To our knowledge, this is the first identification of hillock structures in human airways, and further work is required to investigate their functions.

Altogether, this atlas improves the cellular stratification of gene expression profiles in healthy human airway epithelium. It now makes possible an extensive exploration of the various situations involved in homeostasis and regeneration of normal and pathological airways. 
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Online Materials and Methods

Ethics statement

The study was approved by our local clinical research ethics committee and informed written consent was obtained from all participants involved. All experiments were performed during 8 months, in accordance with relevant guidelines and French and European regulations. No deviations were made from our approved protocol named 3Asc (An Atlas of Airways at a single cell level -NCT03437122).

Human samples

Human samples were collected from healthy adult volunteers during bronchoscopy under local anaesthesia. All procedures were administered by the same pulmonologist at Nice university hospital, France. The process, the location and type of specimens (brushing or biopsy) were compatible with future use in daily clinical practice. Samples were taken at distinct levels of the respiratory tract : nose (lower turbinate), trachea (carina), intermediate bronchi (5th-6 th divisions) and distal (9th to 12th divisions). Intermediate and distal samples were taken to obtain, with all subjects included, the broadest mapping in terms of upper, middle and lower pulmonary segments. The description of each sample can be found in Table E1.

Sample dissociation

All sample dissociation protocols are available on protocols.io : brushings (protocol qubdwsn), biopsies (protocol x3efqje).

Dissociation of brushings (protocols.io qubdwsn)

The brush was soaked in a 5 mL Eppendorf containing 1 mL of dissociation buffer which was composed of HypoThermosol® (BioLife Solutions) 10 mg/mL protease from Bacillus Licheniformis (Sigma-Aldrich, reference P5380) and 0.5 mM EDTA. The tube was shaken vigorously and centrifuged for 2 min at 150 g. The brush was removed, cells pipetted up and down 5 times and then incubated cells on ice for 30 min, with gentle trituration with 21G needles 5 times every 5 min. Protease was inactivated by adding 200 μL of inactivation buffer (HBSS/2% BSA). Cells were centrifuged (400g for 5 min at 4°C). Supernatant was discarded leaving 10 μL of residual liquid on the pellet. All subsequent centrifugation and supernatant removal steps have been performed following the same procedure. Cells were resuspended in 200 µL of wash buffer (HBSS + 1% BSA). Cells were observed under an inverted microscope and red blood cells (RBC) content was evaluated with a Countess FL II automated cell counter (Thermo Fisher Scientific), after addition of Hoechst 33342 to an aliquot of the cell suspension to discriminate nucleated cells from non-nucleated cells. RBC lysis was performed if RBC content was higher than 50%. Prior to RBC lysis, cells were centrifuged and resuspended in 100 µL PBS. 900 µL (9 volumes) of Ammonium Chloride 0.8% (StemCells technologies,07800)

were added to 100 µL of cell suspension. Following a 5 min incubation on ice, 400 µL of inactivation were added and cells were centrifuged. Cells were resuspended in 1000 μL of wash buffer and passed centrifuged again. If no RBC lysis was performed, this was the final wash. If RBC lysis was performed, one additional wash step was performed. Before last centrifugation, cells were passed through 40 µm porosity Flowmi™ Cell Strainer (Bel-Art). Cells were resuspended in 30 μL of wash buffer. Cell counts and viability were performed with Countess™ automated cell counter (Thermo Fisher Scientific). For the cell capture by the 10X genomics device, the cell concentration was adjusted to 500 cells/µl in HBSS aiming to capture 5000 cells. All steps were performed on ice.

Dissociation of bronchial biopsy (protocols.io x3efqje)

The biopsy was soaked in 1 mL dissociation buffer which was composed of DPBS, 10 mg/mL protease from Bacillus Licheniformis (Sigma-Aldrich, reference P5380) and 0.5 mM EDTA.

After 1 h, the biopsy was finely minced with a scalpel, and returned to dissociation buffer.

From this point, the dissociation procedure is the same as the one described in the "dissociation of brushings" section, with an incubation time increased to 1h. For the cell capture by the 10X genomics device, the cell concentration was adjusted to 500 cells/µl in HBSS aiming to capture 5000 cells. All steps were performed on ice.

Cytospins from brushings

Cells dissociated from brushings were cytocentrifuged at 72 g for 10 min onto SuperFrostTM Plus slides using a Shandon CytospinTM 4 cytocentrifuge. CytospinTM slides were fixed for 10 min in 4% paraformaldehyde at room temperature for further immunostaining.

Tissue handling for immunostaining and in situ RNA hybridization

Processing of nasal turbinates

Inferior turbinates were resected from patients who underwent surgical intervention for nasal obstruction or septoplasty (kindly provided by Professor Castillo, Pasteur Hospital, Nice, France). The use of human tissues was authorized by the bioethical law 94-654 of the French Public Health Code after written consent from the patients. After surgery, nasal inferior turbinates were immediately immersed in Ca2+/Mg2+-free HBSS supplemented with 25 mM HEPES, 200 U/ml penicillin, 200 μg/ml streptomycin, 50 μg/ml gentamicin sulfate and 2.5 μg/ml amphotericin B (all reagents from Gibco). After repeated washes with ice-cold supplemented HBSS, tissues were processed depending on the assay.

Whole mounts of nasal turbinate epithelium

The outer layer (approximatively 1.5-mm thick) of nasal turbinates was resected with the help of a scalpel blade allowing the recovery of the epithelium that covers the turbinates. Nasal epithelium was fixed in PFA 4% for 1 hour at room temperature then overnight at 4°. After two washes in PBS, the epithelium was permeabilized with 0.5% Triton X-100 in PBS, blocked in 0.3% BSA for 30 min. Primary antibodies were incubated for 24 hours at room temperature, washed in 0.3% Triton X-100 in PBS, incubated with appropriate secondary antibodies diluted in blocking buffer for 4 hours at room temperature, washed in 0.3% Triton X-100 in PBS, all the steps were performed in a shaker. The epithelium was then mounted between a slide and cover-slip using imaging spacers. Imaging of the samples was performed in a Confocal LSM780

Zeiss.

Cryostat section of nasal turbinate epithelium

Nasal turbinates were fixed in paraformaldehyde 4% at 4°C overnight then extensively rinsed with phosphate-buffered saline (PBS). Fixed tissues where then prepared for cryo-embedding for cryostat sectioning. Tissue was embedded in optimal cutting temperature (OCT) medium (Thermo Fisher Scientific) at room temperature and then frozen by contact with liquid nitrogen. 10 µm-thick frozen tissue sections were obtained with a cryostat Leica CM3050S on Superfrost Plus® Gold slide (Thermo Scientific). Sections were kept at -80°C with desiccant for few weeks until use for RNAscope protocol.

Cytospins from nasal turbinates

After excision, turbinates were digested with 0.1% Protease XIV from Streptomyces griseus (Sigma-Aldrich) overnight at 4°C. Dissociated cells were collected and treated for RBC lysis as was described for the brushings and biopsies. Cells were washed and resuspended in PBS for counting. Cytospins were performed as for the cell dissociated from brushings and directly dehydrated with EtOH serial bath as described in ACD technical note MK-50 010 to be kept at -20°C until use for RNAscope protocol.

RNA in situ hybridization with RNAscope

Pretreatment Protocol

For cryostat tissue sections, the manufacturer's protocol for fixed frozen tissues described in user manual RNAscope® Multiplex Fluorescent Reagent Kit v2 Assay (Cat. No. 323100, Advanced Cell Diagnostics, lnc., USA) was followed. To avoid tissue section detachment from slides, the target retrieval step was replaced by an increased protease III incubation time to 45 min. For cytospin samples, the cell pretreatment described in ACD technical note MK-50 010 was followed. As red blood cell lysis has been performed during cell dissociation, hydrogen peroxide treatment step was skipped in further pretreatment. Protease III was incubated 30 min without dilution as cytospin cells are fixed with paraformaldehyde to follow the same pretreatment condition described by ACD for fixed frozen tissue (Cat. No. 323100, Advanced Cell Diagnostics, lnc., USA).

RNAscope Assay

After pretreatment, for both sections and cytospin samples, we followed manufacturer's instructions for RNAscope® 4-plex Ancillary Kit for Multiplex Fluorescent Reagent kit v2.

Briefly, 20 double Z probe pairs specifically targeting the region coding for each targeted The images were captured by a Zeiss LSM780 confocal microscope.

Immunostaining of paraffin sections

Sections were deparaffinized, an antigen retrieval treatment was performed using citrate buffer at pH6. Sections and cytospins were permeabilized with 0.5% Triton X-100 in PBS for 10 min, a following blocking treatment was performed with 3% BSA in PBS for 30 min. The incubation with primary antibodies was carried out at 4°C overnight. Incubation with secondary antibodies was carried out during 1h at room temperature. Nuclei were stained with 4,6-diamidino-2-phenylindole (DAPI). Primary and secondary antibodies information represented in supplementary table E6. When necessary, KRT5 antibody was directly coupled to CF488 with the Mix-n-Stain kit (Sigma-Aldrich) according to the manufacturer's instruction.

Coupled primary antibody was applied for 2 hours at room temperature after secondary antibodies had been extensively washed and after a 30 min blocking stage in 3% normal rabbit serum in PBS. Imaging of the samples was performed using a Confocal FV-10 from Olympus. 

Primary antibody

Chromium 10X Genomics library and sequencing

We followed the manufacturer's protocol (Chromium™ Single Cell 3' Reagent Kit, v2

Chemistry) to obtain single cell 3' libraries for Illumina sequencing. Libraries were sequenced with a NextSeq 500/550 High Output v2 kit (75 cycles) that allows up to 91 cycles of pairedend sequencing: Read 1 had a length of 26 bases that included the cell barcode and the UMI;

Read 2 had a length of 57 bases that contained the cDNA insert; Index reads for sample index of 8 bases. Cell Ranger Single-Cell Software Suite v2.3.0 was used to perform sample demultiplexing, barcode processing and single-cell 3ʹ gene counting using standards default parameters and human build hg19. All single-cell datasets that we generated, and the corresponding quality metrics are displayed in Table E1.

Primary data analysis

Initially, each dataset was roughly analysed using Seurat (v3) [1] to determine the best analysis workflow needed for the merged dataset. Permissive filtering was done on low-quality cells followed by median normalization, identification of highly variable genes and Louvain clustering. Marker genes of cell-clusters were identified using Wilcoxon's rank test and shared top genes across datasets resulted in a common and robust cell type annotation. This initial annotation was later used to create a reference for the precise annotation of the merged dataset (Figure E8).

Data quality control done on individual datasets

Cell and gene filtering

Each sample processing being slightly different from others (sample size, presence of blood, dissociation times), sample-specific quality metrics vary slightly between samples. To take into account this variability, each sample was pre-processed individually. Cells were excluded based on three criteria: high number of Unique Molecular Identifier (UMIs) per cell (max +3

Median Absolute Deviation, MAD), low number of detected genes per cell (min 500 genes) and high percentage of mitochondrial genes (max +3 MAD). Mitochondrial and ribosomal genes (gene symbols starting with RPS/RPL) were excluded from the count matrices.

Doublet removal

We used DoubletDetection for unbiased identification of doublets (technical error) in our datasets (https://github.com/JonathanShor/DoubletDetection). We kept the default parameters values and removed the predicted doublets. Further doublet removal was done on the merged dataset (without data integration), to remove clusters with a high proportion of predicted doublet (over 50 %).

Ambient mRNA correction

Dissociation of complex tissue, such as brushing and biopsies, results in a certain proportion of cell lysis. It results in the presence of ambient mRNA that spreads across all droplets of a single experiment. This gene expression background is highly dependent of the cell-type composition which might lead to misleading analysis. We used soupX (https://github.com/constantAmateur/SoupX) for background correction and compared analysis results between corrected and uncorrected dataset (corrected dataset being very sparse). Background corrected data were mainly used for visualization purposes.

Data integration

Normalization

Size factors were calculated for the complete (merged) dataset using 'ComputeSumFactor' from the scran R package [2] . Cells were pre-clustered with the 'quickCluster' function, method 'igraph' and minimum and maximum cluster size of 100 and 3,000, respectively. Raw counts were then normalized and log-transformed with cell-specific size factors. A count of 1 was added to each value prior to log transformation.

Selection of highly variable genes

Highly variable genes (HVGs) were identified/calculated using the getHVGs function from the scran package, with default parameter values.

Batch Correction and Data Integration

Batch effects were removed using the 'fastMNN' function in the scran R package on 50 principal components computed from the HVGs only [3] . Correction was performed incrementally from the most homogeneous samples to the most heterogeneous (in QC and cell composition). Datasets were first corrected between sampling position and method (nasal biopsies, nasal brushings, tracheal biopsies, intermediate biopsies and distal brushings), merging sequentially from the sample containing the most cells to the samples containing the least. Positions were merged as follow: intermediate, tracheal, distal, nasal.

The resulting batch-corrected principal component analysis was then used for further analysis steps. The compared analysis was performed between batch-corrected and uncorrected datasets.

Dimensionality reduction and visualization

UMAPs were calculated using scanpy [4] . For the complete dataset, the first 12 components of the batch-corrected PCA were used and considering the 100 nearest neighbours of each cell. For each data subset (immune, rare cells, stromal, and cycling) UMAPs were computed on uncorrected PCA based on subset specific HVGs.

Data clustering and sub-clustering

We clustered cells using phenograph [5] (available in scanpy) with two parameter settings (i:

12 PCs and 100 nearest neighbours) to tackle the imbalance in cell proportion (e.g. basal cells vs rare cells). The number of PCs used was estimated empirically on the PCA elbow plot, and by manual examination of top genes correlated with PCs. After a first annotation step, described below, a sub-clustering step was performed for each annotated cell type, to clean the boundaries between the distinct cell types (basal and suprabasal), but also in order to better identify small clusters such as rare cells or stromal cells. The number of PCs used for these sub-clustering steps varies from 3 to 8 with 20 nearest neighbours per cell.

Markers identification and data annotation

Marker genes were identify using rank_genes_group function from scanpy using the Wilcoxon's rank test. The robustness of those markers was assessed by reviewing the literature, and by the high correlation of phenograph clusters sharing similar markers genes.

These clusters were then grouped and annotated as a unique cluster.

Gene expression differential analysis

Differential analysis between specific clusters (secretory vs. secretory N for instance) was designed differently from the rank_gene_group function from scanpy to overcome the sample-specific gene expression background still present even after correction and to amplify the statistical power of the differential analysis. Pseudo-bulk samples were created from each cell-clusters by summing the raw counts of each gene in multiple single cells. Each bulk was designed to be composed of an equal number of cells (to get similar library size between bulks), and to contain randomly picked cells from a homogeneous mix of all the donor samples (to have a similar gene expression background between all bulks from the same cell type).

Differential analysis was performed using glmFit function from the R package edgeR [6] .

GSEA analysis

Gene set enrichment analysis was performed using the fgsea R package with the GO Biological Process gene sets (Broad Institute GSEA MSigDB).

Cycling cell identification and cell cycle analysis

Cycling cells were identified in the batch-uncorrected analysis of the dataset as a single cluster, and this specific cell type annotation was reported in the batch-corrected dataset.

Cell cycle scoring (S phase and G2M phase) was performed using the function score_genes_cell_cycle from scanpy tools and the associated cell cycle genes [1] . The G1 phase score was estimated as the opposite of both the S and G2M phase.

Trajectory inference using PAGA

To compare the cell trajectories between nasal and tracheobronchial samples, two subsets of randomly picked cells from each nasal or tracheobronchial surface epithelial cell types (n = 500 cells per cell type) were used to infer their trajectories using the PAGA algorithm [7] available in scanpy. The included epithelial cell types were cycling, basal, suprabasal, suprabasal N, secretory, secretory N, deuterosomal, multiciliated and multiciliated N cells.

Cells were then projected on the corresponding force atlas embedding and multiciliatedgoblet cells were highlighted on the resulting trajectory.

Inference of transcriptional regulatory units

We inferred transcriptional regulatory units using the GRNboost2 algorithm implemented in the arboreto package (https://arboreto.readthedocs.io/en/latest/). Expression correlations between transcription factors and potential target genes were computed from a raw count data matrix where we set a maximum threshold of 5000 cells by cell types. We obtained 1222 modules composed of the 50 first top correlated genes with a confirmed transcription factor.

We scored the activity of those modules in each cell of the complete dataset using the score_genes function from scanpy tools. Cell type-specific activity of each module was determined with a Wilcoxon's rank test. 
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Discussion and Perspectives

Since 2009 and the first single-cell RNA-seq publication by Tang et al., single-cell technologies (transcriptomics, spatially-resolved and epigenomics) have become a powerful tool in the investigation of complex biological processes. Over the past decade, the number of 'single-cell' publications has increased exponentially and provided a detailed description of many biological systems. It is in this context, this effervescence that I realised my thesis. This research work gave me the opportunity to provide a better characterisation of the differentiation processes involved in the airway epithelium regeneration -a study which, at the time, was unprecedented in its design and investigation tools. Then, my thesis work allowed me to participate in a worldwide collaborative initiative, the Human Cell Atlas, and to create, with my team, an atlas of the healthy human airway epithelium. I thus described, through the analysis of scRNA-seq data, the many cell types composing the airway epithelium and revisited, at my scale, the centuries-old definition of 'Cell type'. This definition describes the cells based on their morphology, precise position in a tissue or organ and their function. Through scRNA-seq data, two out of these three defining criteria are lost by tissue dissociation and cell lysis (with some exceptions depending on the protocol), and the last one, the cell function, can only be inferred based on the specificexpression of marker genes. Consequently, a direct transposition of this definition into a large count matrix seems compromised, and the emergence of an 'improved' definition is necessary. In the course of my thesis work, I thus identified some parts of the answer toward this improved definition of 'Cell type'. Starting with the development of the SCsim package and the, slightly naive, simulation of multiple cell populations through their marker genes. Then, through the growing dilemma (and uncertainty) of the cell identities defined by clustering and trajectory inference algorithms. Lastly, by including all the slight variations between each of these descriptions (cell state, developmental origin, cell fate, cell position, disease...). In this last chapter, I will thus describe, the multiple cell type definitions that I envisioned during my thesis and the corresponding perspectives to keep improving it, with the particular example of the airway epithelium cells.

Simulation of scRNA-seq data

My initial transposition of the cell type concept was when I developed the SCsim package and modelled multiple cell populations by the expression of their marker genes. This simulation was almost a direct transposition of the cell-function criteria into a large count matrix. I modelled each cell population by giving them a defined number of marker genes (differentially expressed genes) as a proxy of their supposed function (cf chapter 6). The levels of expression of these genes were defined arbitrarily by the transcriptional bursting and technical effects characteristic of the scRNA-seq data. Any differentiation trajectory was defined by an additional set of genes which expression varied linearly between the concerned cell types. The number of each set of marker genes could be modified to blur the boundaries between cell types, but the core description of each cell identity remained. In conclusion, this first project in my thesis did not improve the definition of cell type since it provided an almost binary one. Yet, it served as an easy comparison example for the more elaborate descriptions of cell types that I would encounter in my other thesis projects.

Clustering of scRNA-seq data

The following definition of a cell type that I faced was through the clustering of scRNA-seq data. Cell identities are defined as groups of cells with similar transcriptomic signatures. These groups are then annotated based on their specific expression of known and unknown markers genes which provide a molecular description of each cell type. Yet, faced with a complex biological system, such as the airway epithelium, the clustering of scRNA-seq data may provide a more tedious and elaborate definition of cell type.

Direct transposition of biological functions to groups of cells

A first example was to identify the main epithelial cell types, with well-known marker genes and functions, among the many cell-clusters present in our scRNA-seq datasets, namely: basal cells (KRT5+), club cells (SCGB1A1+), goblet cells (MUC5AC+) and multiciliated cells (FOXJ1+). For some of these cell types, this annotation step was not trivial.

The transcriptomic distinction between club and goblet cells

The literature described club and goblet cells as two separate cell types with a similar secreting property but distinct secreted products and thus distinct functions in the airway epithelium. Yet, as described by scRNA-seq data, these cell types have highly similar transcriptomic signatures with very few discriminating genes between them (MUC5AC, MUC5B ), making the boundaries between them blurred to clustering analysis (cf. chapter 8, paper Figure S4). As a consequence, how should we now consider these cells in light of their molecular description by scRNA-seq data? During my thesis, I considered these cells as two separates or a unique cell type(s) depending on the context of the study. If the clustering results overlayed the gradient of expression of secretory genes, I identified a cell-cluster as goblet cells based on its percentage of MUC5AC+ cells (cf. chapter 7). If not, I annotated club and goblet cells jointly as 'secretory' cells (cf.chapter 8). Yet, this annotation process is a temporary solution, and further investigations are required to provide a detailed molecular description of both club and goblet cells and estimate the impact of the cell function in an enriched cell type definition.

The transcriptomic identification of suprabasal cells

Scarcely described in the literature, suprabasal cells are mainly presented as non-basal and non-secretory cells due to their para-luminal localisation in the epithelium and lack of secretory vesicles in their cytoplasm. Similarly, scRNA-seq data described them by the reduced expression of basal and secretory cells marker genes and the expression of few suprabasal-specific genes (SERPINB4, NOTCH3, S100A2, LY6D). Besides, their main descriptive criteria, from both the literature and scRNA-seq data, relies on their role as intermediate cells between basal and club cells in the differentiation of airway epithelial cells (cf. chapter 7). As a consequence, how should we describe suprabasal in light of their lack of known independent function in the airway epithelium? Should these cells be considered as a cell type (despite the cell function criteria) or as a cell state? Their number in our datasets first suggested a meta-stable cell state between basal and secretory cells (as opposed to cell type, which suggests an independent function). Yet, their identification as 'variant' basal cells in several single-cell publications and their potential role as stemcell niche of the airway epithelium (cf. chapter 8) suggest that suprabasal cell can be considered as a cell type similarly to basal cells [START_REF] Vieira-Braga | A cellular census of human lungs identifies novel cell states in health and in asthma[END_REF]Travaglini et al., 2019;Goldfarbmuren et al., n.d.).

Clustering artefacts or unknown cell type / cell state?

Lastly, how should we describe a cell-cluster which marker genes do not correspond to any previously described cell types? In our study of the regeneration of the airway epithelium, we identified a cell-cluster in one of the time-course datasets cultured in BEGM media that we named 'undefined intermediate' (cf. chapter 7, paper Figure S3). This cellcluster did not express any marker genes related to an unambiguous epithelial cell type nor to precise biological function, and we chose not to describe it further as it was not the topic of our study. Yet, how should we consider it: as an experimental artefact or as an unexpected result that could suggest a more complex cell type or cell state in the differentiation of the epithelium? An easy answer would be to consider the lack of robust identification of this undefined intermediate population in other datasets and conclude to an experimental artefact. Yet, their particular position in the inferred trajectory of epithelial cell differentiation leaves the question open.

Robust annotation of the cell-clusters

As explained by the above examples, the transposition of the traditional definition of cell type to scRNA-seq data is not as straightforward as I had anticipated while developing the SCsim package. As a consequence, I developed a robust clustering method to best identify the core of each cell-cluster and highlight their gene expression differences (cf. chapter 7, Materials and Methods). Even though this method only partially solved the dilemmas described above, it provided the appropriate cell type annotation to establish a clean list of gene marker associated with the airway epithelium cells. This approach made possible the joined definition of the epithelial cell types by their previously known cell morphology, position in tissue and function and by their recently improved molecular description. It thus allowed a progressive renewal of the cell type definition.

In addition, Marin and I used this database of known marker genes for airway epithelial cells to robustly annotate each of the 35 samples composing our airway epithelium cell atlas. We also updated it by re-running the identification of marker genes in datasets with a more heterogeneous cell composition and thus identified more specific marker genes. We thus created, at our scale, a consensus annotation database of airway epithelial cell types (cf. chapter 8, paper Figure S8). A necessary perspective to this work and the simultaneous creation of other lung cell atlases is the establishment, by the lung community, of a consensus annotation and description of the lung cell types (Vieira- [START_REF] Braga | A cellular census of healthy lung and asthmatic airway wall identifies novel cell states in health and disease[END_REF]Travaglini et al., 2019). This ambitious perspective could then provide the starting material for automatic annotations of new scRNA-seq datasets, using either MatchScore or Garnett, and the continued improvement of the lung description [START_REF] Pliner | Supervised classification enables rapid annotation of cell atlases[END_REF][START_REF] Mereu | matchSCore: Matching Single-Cell Phenotypes Across Tools and Experiments[END_REF].

Clustering balance between abundant and rare cell-clusters

Another complex interpretation of the scRNA-seq data clustering is the balance for the identification of rare cell types as opposed to abundant ones. As explained in the introduction, clustering algorithms cannot robustly identify both small and large cell-clusters. For instance, graph-based algorithms identify cell-clusters with a size of a slightly larger scale as the number of nearest-neighbours used to build the graph. Consequently, if the number of nearest-neighbours is low, the algorithm will have a tendency to split large cell-clusters into smaller ones. This bias in the clustering results may lead to spurious cell annotations and describe a cell-cluster, identified by a technical bias, as novel cellsubtype. Yet, it can also lead to the identification of rare cell types, so how should we determine the limit between biologically-relevant cell types and spurious cell subtypes in the clustering analysis? I faced this dilemma multiple times during my thesis and have yet to identify a complete answer.

• The identification of deuterosomal cells required a permissive clustering approach to distinguish them from multiciliated cells. As precursors to multiciliated cells, deuterosomal cells share a similar transcriptome only distinguished by a small number of specific marker genes and are in much lower abundance as multiciliated cells. Consequently, to identify them, I needed to use a small number of nearest neighbours during the graph construction step of the clustering. It took into account their small number and forced the clustering output to split the multiciliated cluster into two cell-clusters (deuterosomal and multiciliated cells). However, it also split the suprabasal cell-cluster into potential spurious cell sub-types (cf. chapter 7, paper Figure 1,3).

• A different approach was required for the identification of the rare cell types in the HCA dataset. Their potential common cell lineage and transcriptome similarity grouped them in an initial clustering step done on the complete dataset. Yet, rare cells could not be distinguished until I re-ran a sub-clustering analysis specifically on the rare cell-cluster, including a new selection of highly variable genes specifically oriented on the variations between rare cell types. I used the same technique to differentiate the mesenchymal and immune cell types (cf. chapter 8, paper Figure 3, S6,S7). I also used it on the main epithelial cell types to investigate a potential heterogeneity in their transcriptome, but the clustering results only split them by their sample of origin, merging both technical and biological biases in the ensuing interpretation. Nevertheless, this clustering/sub-clustering technique demonstrated another interesting limit of the clustering algorithms. When faced toward a highly heterogeneous dataset (as our HCA dataset with its many distinct cell types), the clustering will focus on the main axis of variation present in the data (cf. chapter 8, Materials and Methods) and lack of precision for the identification of more subtle variations.

In conclusion, I tested different clustering techniques to balance the identification of abundant and low-frequency cell types through clustering of scRNA-seq data and didn't find a consensus approach. It supposed that further investigations are needed in this area which is, for now, mainly subjected to the analyst's interpretation of the clustering results. It highlights once again the need to establish a consensus definition of cell types in regard to the clustering of scRNA-seq data.

Distinction between cell type and cell state

As a final question on the definition of cell type done by the clustering of scRNA-seq data: how should we distinguish a cell type from a cell state based on the clustering results? Considering the definition of cell type by a specific (and independent) cell function, if the inferred cell function change so does the cell type annotation but if the cell function does not change or is impaired/improved how should we define the corresponding cells? During my thesis, I avoided this complex distinction and labelled each annotated cell-cluster as a cell type. Yet, further reflection on the matter may be useful for a better description of the respiratory epithelium.

• The identification of cycling cells in the airway epithelium. In our datasets, cycling cells are defined by a large number of marker genes associated with the cell cycle, and a shared transcriptomic signature with basal and suprabasal cells.

According to the function criteria of the cell type definition, these cells represent a particular state of basal and suprabasal cells which function as stem-cell niche of the airway epithelium is ongoing. This description of cycling cells as a cell state is further supported in the analysis of our atlas, in which cycling cells are lost among basal and suprabasal cells in the batch-corrected embedding (cf, chapter 8, paper Figure 4, S3, S10).

• Cycling, basal and suprabasal cells in 'hillock' structures. A similar consideration can be done for the KRT13+ cells identified in our atlas. Our description of these cells suggests a more complex cell structure in the airway epithelium with an enhanced stem-cell niche function. Yet, these cells were only identified by the outlier proportion of cycling cells in the corresponding sample, the specific expression of KRT13 and were, therefore, not isolated by clustering analysis suggesting another particular cell state of basal and suprabasal cells. Further investigations are still required to validate the hypothesis of enhanced turnover structures, understand how they differentiate, which regulatory signals drive it and better describe their frequency and specific position along the airway epithelium (cf, chapter 8, paper Figure 4).

• Suprabasal, Secretory and Multiciliated cells differences along the proximodistal axis of the airway. The identification of distinct cell-clusters of suprabasal, secretory and multiciliated cells depending on their position along the airways relates to the position criteria of the cell type definition. Yet, until further functional characterisation, these cells, despite their transcriptomic differences, conserve a similar cell function in the airway epithelium (cf, chapter 8, paper Figure 2). As a consequence, how should they be considered regarding the conflicting definitions between the clustering results and the function and position criteria?

Cell trajectories in scRNA-seq data

Over the course of my thesis I also faced the definition of cell types through the differentiation trajectories to which they belong. It revealed a conflicted continuous representation of the differentiating cell types as opposed to the discrete classification usually used to describe biological systems. In addition, it provided a 'dynamic' definition of cell type according to their plasticity and differentiation potential which significantly enriched but also complicated it.

Boundaries between cell types in a differentiation trajectory

In the study of the regeneration of the airway epithelium, I was directly faced with this conflicting discrete versus continuous description of cell types. The differentiation trajectory between epithelial cells is characterised by a linear gradient of expression of the marker genes of each cell type along the mentioned trajectory (cf. chapter 8, paper Fig- ure 1 andS3). It resulted in a lack of robustness in the clustering results, and thus enticed me to develop a solution to identify the core cell types and their marker genes. As mentioned above, the results of my robust clustering method helped me later on in the analysis of our atlas. Yet, it did not solve the complex interpretation of the cell-clusters found along the epithelial differentiation trajectory. A promising solution, inspired by automatic annotation tools, would be to provide multiple labels to each cell-clusters involved in a differentiation trajectory. For instance, based on the overlap between the cell-clusters top marker genes and a reference database, cell-clusters could be labelled as 90% basal cells and 10% suprabasal cells. Such annotation, could provide information on the differentiation potential and progress of each cell-clusters and avoid restrictive and ill-adapted discrete classifications. Yet, to be truly functional, this method would require a well-defined annotation database and thus a consensus in cell type annotation among the lung community.

Cell type compared to cell fate

In the course of my thesis, as well as in other developmental single-cell publications, an improved definition of cell type has been repeatedly mentioned regarding their differentiation potential. They raised the question of whether a cell-cluster can be considered as a cell type if its actual state is not the most differentiated one? This question is highly pertinent in the case of the epithelial cell types and their differentiation trajectory.

Cell type or meta-stable cell state

As mentioned above, the differentiation of epithelial cells results in a gradient of expression in which each cell type marker genes melt into the next (cf. chapter 7, paper Figure 1,SS3). This description of the epithelial cells types suggests a continuous process in which every cell are committed to the differentiation process without any stable state in the trajectory. However, to regenerate a fully functional epithelium, only certain cells will differentiate into the most differentiated cell types: goblet or multiciliated cells.

In this context, how can we differentiate, for each epithelial cell type, the cells in a meta-stable state (which will maintain their actual phenotype) and the cells in a potential differentiation state (which will differentiate)? Our study on the regeneration of the airway epithelium provided some insights on the main regulatory processes that can drive the switch between these cell states and ensure the balance in the cell type distribution in the epithelium. Yet, it didn't provide at the scale of the cell transcriptomes sufficient information to truly distinguish between these stable and unstable cell states and further work is needed to describe the complex regulatory processes that induce the cells toward their differentiation trajectory.

A more striking example of this cell-state-switch concerns the commitment of club cells to multiciliated cell fate. A surprising result in the study of the epithelial cell trajectories was that they could all be described by a linear variation of gene expression along the trajectory except for the multiciliated branch. The commitment of club cells to multiciliated cell fate corresponds to an abrupt change in their transcriptome profiles without any intermediate state. The deuterosomal cells being described, by their transcriptome signature, as an almost differentiated state with high similarity to multiciliated cells. This particular feature in the differentiation trajectory of multiciliated cells reached the limits of trajectory inference algorithms. Indeed, this abrupt change in the cells transcriptional profile suggest an incomplete sampling of all the transitionary states between club cells and deuterosomal cells which is against the hypothesis of many trajectory inference tools and produced particular results:

• Monocle 2 produced a multiciliated-branch much more stretched than the goblet one (cf. chapter 7, paper Figure 1). It also produced an abrupt increase in pseudotime at the branching point toward multiciliated cells compared to goblet cells which agree with the pseudotime interpretation as defined by Monocle [START_REF] Trapnell | Monocle: Cell counting, differential expression, and trajectory analysis for single-cell RNA-Seq experiments[END_REF].

The pseudotime reflects an arbitrary measurement of the cell progress in a dynamic process, and as Monocle did not detect any intermediate cells between club and deuterosomal cells, it considered it as a sudden jump in the differentiation progress.

• Velocity produced a promising trajectory inference from basal to club cells but did not manage to model the entire branching trajectory. I hypothesize that the genes used to infer the cell velocities did not capture the branching process. Velocity uses a ratio between the count of spliced and unspliced genes to infer the cells velocities, but it first filters these genes based on their count values and correlations which significantly reduce the number of selected genes and potentially excluded some informative genes. This incomplete result also limited the description of the branching process in a 'real' time scale based on the time resolution provided by the mRNA splicing process.

• Palantir provided a multi-labelled annotation of the cells based on their differentiation potential toward the most differentiated cell fates (cf. chapter 7, paper Figure S7). It also highlighted the cleavage in the differentiation process toward multiciliated cells in which the cells mostly have a low differentiation potential toward multiciliated cells until they are committed to this fate and the probability increases abruptly. It demonstrates once again the lack of intermediate state between club and deuterosomal cells.

In conclusion, these results gave little insights into the commitment process of club cells toward multiciliated cells. The lack of intermediate cells and the abrupt shift in gene expression suggest that this particular differentiation process might be at another time-scale that was not captured in our single-cell experiments. A time-resolved study of this branching process is thus required to understand the differentiation dynamics leading to the multiciliated cell fate.

Intermediate cells as cell type or cell state

Another ambiguous cell type description, from a differentiation point of view, concerns the deuterosomal cells. As explained repeatedly, these cells have a transcriptomic profile highly similar to multiciliated, are described as precursors to multiciliated cells, and their marker genes do not suggest a particular function (independent to multiciliated cells) in the airway epithelium. Consequently, these cells do not meet the criteria of the traditional cell type definition even if they were robustly identified by clustering in many scRNA-seq datasets. Deuterosomal cells should thus be considered as a pre-multiciliated cell state rather than an independent cell type, similarly to cycling cells. This statement is even more relevant in the case of mucous-multiciliated cells. These cells, similarly to deuterosomal cells, have a transcriptomic profile highly similar to both multiciliated and goblet cells and have been described as intermediate between goblet and multiciliated cells. Contrary to deuterosomal cells, mucous-multiciliated cells have not been identified by clustering but by specifically searching their chimeric transcriptomic profile (after doublets and mRNA background removal, cf. chapter 7 paper Figure 2 and chapter 8 paper Figure 3). They were also validated by immunostainings (cf. chapter 7 paper Figure 2), and identified in other single-cell publications (Vieira- [START_REF] Braga | A cellular census of healthy lung and asthmatic airway wall identifies novel cell states in health and disease[END_REF]Goldfarbmuren et al., n.d.). Yet, a question remains open on whether these cells are goblet cells trans-differentiating into multiciliated cells (our hypothesis) or if it is the other way around. Another question asks if this trans-differentiation is a rare but homeostatic process or if it is a disease/stress-induced event. As we identified mucousmulticiliated cells in both of our studies on the healthy human airway epithelium and that some of these cells are expressing deuterosomal marker genes, we hypothesise that goblet cells may differentiate into multiciliated cells in a rare but homeostatic process. We thus defined them as another pre-multiciliated cell state. However, to validate our hypothesis and determine the direction of this particular differentiation trajectory, further work is required on these specific cells. A hypothetical experiment, and a way to improve developmental and differentiation studies would be to associate both lineage tracing and scRNA-seq experiments. Such design would provide a direction in the differentiation process without the limitation of a limited number of simultaneously studied genes. An only limitation would remain: the non-applicability of this design in human and thus the use of either mouse or in vitro models of study and their potential bias when compared to true in vivo data.

A cell atlas definition of cell type

The increase in cell-throughput of single-cell technologies induced a worldwide atlas building trend using multiple cellular features measurable at single-cell resolution.

A system biology definition of cell type

A part of the description of biological systems that was only briefly addressed in my thesis is the cell-cell interactions. In the study of the regeneration of the airway epithelium, we studied the cell-specific expression of key elements of Notch, BMP-TGF and Wnt pathways and inferred the corresponding cell-cell interactions between epithelial cell types along the differentiation process. In our atlas of the airway epithelium, we did not report this analysis despite the increased number of cell types and the current trend in the field. Indeed, the cell type distribution in our HCA dataset did not allow a robust inference of the cell interactions if we consider their position of sampling. However, it is now evident that biological systems should be described with regard to their environment and their interactions with multiple cells compartments (epithelial, mesenchymal, immune...). As mentioned previously, it is most plainly that the interactions between each epithelial cells determine their cell identity as cell type or cell state, and even more that these cell identities can be further influenced by the interaction with immune or mesenchymal cell types. This last statement provides a broad perspective in the system biology field for the improved definition of cell type but most evidently for the continued characterisation of the airway epithelium in a homeostatic state, regeneration process or disease condition.

Multi-dimensional definition of cell type

In the HCA context, the creation of a reference atlas implies a description of the cells in the most exhaustive way and requires the integration of many data types. The characterisation of the cell types composing the human being will, therefore, be multi-dimensional and will include the traditional cell type definition as well as the improved one. It will consist of the cell position, morphology, function, molecular composition, embryonic origin, differentiation trajectory, possible interactions with their environments and corresponding reactions. Nevertheless, before reaching this definition, it will be necessary to reach a consensus definition on the already acquired data to update the cell type dogma simultaneously to the technologies that can describe it.

An example of this consensus definition has been extensively discussed above and should be continued on a larger scale in the lung community. A promising perspective would be to analyse all the already published lung atlases to highlight the robust cell annotations, identify the complementary features of each experimental design, and provide a precious resource on which the next phase of the Human Cell Atlas can be envisioned.

Conclusions

In conclusion, during my thesis, I discovered a new type of data and learned its properties and how to analyse it accordingly. I studied the complex regeneration process of the airway epithelium, provided a detailed description of the epithelial cell types and identified new cell trajectories and intermediate cell states. Then, I built an atlas of the airway epithelium along the respiratory tract and detailed its composing cell types, cell states and their distribution along the respiratory tract. Finally, this research pushed me toward a profound reflection on the definition of 'Cell type' through the understanding and analysis of single-cell RNA-seq data on the airway epithelium. This feedback on my research can be summarised in the open-ended questions listed below:

• Does a group of cells with a similar transcriptomic signature constitute a cell type?

• How to establish a balance between a 'traditional' and renewed description of a biological system?

• Can we define cells as a mixture of multiple cell types?

• What are the features defining the distinct cell types and states composing a trajectory?

• Does a cell type change its type or state in a disease condition?

• How to merge a static and dynamic definition of cell type?

• Does the addition of multiple cell features make the cell definition clearer or on the contrary more ambiguous?

All these questions need to be answered collectively to offer a detailed description of these elementary functional units of life and provide a continuously improved description of the complexity of life.

Part IV Appendices

Introduction

This paper deals with unsupervised clustering and feature selection in high dimensional space. Early work on feature selection were based on support vector machine (see [START_REF] Guyon | Gene selection for cancer classification using support vector machines[END_REF]) or logistic regression [START_REF] Shevade | A simple and efficient algorithm for gene selection using sparse logistic regression[END_REF]). We advocate the use of sparsity promoting methods as they allow not only to perform feature selection (a crucial task in biological applications, e.g. where features are genes), but also to use efficient state-of-the-art algorithms from convex optimization. Clustering in high dimension using classical algorithms such as k-means [START_REF] Mcqueen | Some methods for classification and analysis of multivariate observations[END_REF]; [START_REF] Arthur | k-means++: The advantages of careful seeding[END_REF]) suffers from the curse of dimensionality. As dimensions increase, vectors become indiscernible and the predictive power of the aforementioned methods is drastically reduced [START_REF]On k-anonymity and the curse of dimensionality[END_REF]; [START_REF] Radovanovic | Hubs in space : Popular nearest neighbors in high-dimensional data[END_REF]). In order to overcome this issue, a popular approach for high-dimensional data is to perform Principal Component Analysis (PCA) prior to clustering. This approach is however difficult to justify in general [START_REF] Wei-Chien | On using principal components before separating a mixture of two multivariate normal distributions[END_REF]). An alternative approach proposed in (de la [START_REF] De La Torre | Discriminative cluster analysis[END_REF]; [START_REF] Ding | Adaptive dimension reduction using discriminant analysis and k-means clustering[END_REF]) is to combine clustering and dimension ©2018 Cyprien Gilet, Michel Barlaud, Jean-Baptiste Caillau and Marie Deprez.

reduction by means of Linear Discriminant Analysis (LDA). The heuristic used in [START_REF] Ding | Adaptive dimension reduction using discriminant analysis and k-means clustering[END_REF]) is based on alternating minimization, which consists in iteratively computing a projection subspace by LDA, using the labels y at the current iteration and then running k-means on the projection of the data onto the subspace. Departing from this work, Bach and Harchaoui (2008) propose a convex relaxation in terms of a suitable semi-definite program (SDP). Another efficient approach is spectral clustering where the main tools are graph Laplacian matrices [START_REF] Ng | On spectral clustering: Analysis and an algorithm[END_REF]; Von [START_REF] Luxburg | A tutorial on spectral clustering[END_REF]). However, methods such as PCA, LDA or, more recently SIMLR, do not provide sparsity. A popular approach for selecting sparse features in supervised classification or regression is the Least Absolute Shrinkage and Selection Operator (LASSO) formulation [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF]). The LASSO formulation uses the 1 norm instead of 0 [START_REF] Candès | The restricted isometry property and its implications for compressed sensing[END_REF]; [START_REF] Candès | Enhancing sparsity by reweighted 1 minimization[END_REF]; [START_REF] Donoho | Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization[END_REF]; [START_REF] Donoho | Signal recovery and the large sieve[END_REF]) as an added penalty term [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF]; [START_REF] Hastie | The entire regularization path for the support vector machine[END_REF]; [START_REF] Ng | Feature selection, 1 vs. 2 regularization, and rotational invariance[END_REF]; [START_REF] Friedman | Regularization path for generalized linear models via coordinate descent[END_REF]; [START_REF] Hastie | Statistcal learning with sparsity: The lasso and generalizations[END_REF]; [START_REF] Wei | Penalized model-based clustering with application to variable selection[END_REF]; [START_REF] Li | Feature selection: A data perspective[END_REF]. A hyperparameter, which unfortunately does not have any simple interpretation, is then used to tune sparsity. [START_REF] Witten | A framework for feature selection in clustering[END_REF] use a lasso-type penalty to select the features and propose a sparse k-means method. A main issue is that optimizing the values of the Lagrangian parameter λ [START_REF] Hastie | The entire regularization path for the support vector machine[END_REF]; [START_REF] Witten | A framework for feature selection in clustering[END_REF]) is computationally expensive. All these methods (Bach and Harchaoui (2008); de la Torre and [START_REF] De La Torre | Discriminative cluster analysis[END_REF]; [START_REF] Ding | Adaptive dimension reduction using discriminant analysis and k-means clustering[END_REF]; [START_REF] Witten | A framework for feature selection in clustering[END_REF]) require a k-means heuristic to retrieve the labels. The alternating scheme we propose combines such a k-means step with dimension reduction, as well as feature selection using an 1 sparsity constraint (see [START_REF] Barlaud | Classification and regression using an outer approximation projection-gradient method[END_REF]).

Constrained unsupervised classification

General Framework

Let X be the (nonzero) m × d matrix made of m line samples x 1 , . . . , x m belonging to the d-dimensional space of features. Let Y ∈ {0, 1} m×k be the matrix of labels where k 2 is the number of clusters. Note that we assume that this number is known; It is indeed the case for the applications we present in Section 3, while estimating k is in general a delicate matter out of the scope of this paper. Each line of Y has exactly one nonzero element equal to one, y ij = 1 indicating that the sample x i belongs to the j-th cluster. Let W ∈ R d× d be the projection matrix, where the dimension in the projected space, d, is understood to be much smaller than d. Let then µ be the k × d matrix of centroids of the projected data, XW :

µ(j, :) := 1 m i=1 y ij i s.t. y ij =1
(XW )(i, :).

The j-th centroid is the model for all samples x i belonging to the j-th cluster (y ij = 1). The clustering criterion can be cast as the Within-Cluster Sum of Squares (WCSS, [START_REF] Selim | K-means-type algorithms: A generalized convergence theorem and characterization of local optimality[END_REF]; [START_REF] Witten | A framework for feature selection in clustering[END_REF]) in the projected space

1 2 Y µ -XW 2 F → min (1)
where . F is the Frobenius norm induced by the Euclidean structure on m × d matrices,

(A|B) F := tr(A T B) = tr(AB T ), A F := (A|A) F .

Exact gradient-projection splitting method

To solve Problem 1, we use a gradient-projection method. It belongs to the class of splitting methods [START_REF] Boyd | Convex Optimization[END_REF]; [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF]; [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF]; [START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF]; [START_REF] Mosci | Solving structured sparsity regularization with proximal methods[END_REF]; [START_REF] Sra | Optimization for Machine Learning[END_REF]; [START_REF] Parikh | Proximal Algorithms[END_REF]). It is designed to solve minimization problems of the form

ϕ(W ) → min, W ∈ C, (6) 
using separately the convexity properties of the function ϕ on one hand, and of the convex set C on the other. We use the following forward-backward scheme to generate a sequence of iterates:

V n := W n -γ n ∇ϕ(W n ), (7) 
W n+1 := P C (V n ) + ε n , (8) 
where P C denotes the projection on the convex set C (a subset of some Euclidean space).

Under standard assumptions on the sequence of gradient steps (γ n ) n , and on the sequence of projection errors (ε n ) n , convergence holds (see, e.g., [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]).

Theorem 2 Assume that ( 6) has a solution. Assume that ϕ is convex, differentiable, and that ∇ϕ is β-Lipschitz, β > 0. Assume finally that C is convex and that

n |ε n | < ∞, inf n γ n > 0, sup n γ n < 2/β.
Then the sequence of iterates of the forward-backward scheme (7)(8) converges, whatever the initialization. If moreover (ε n ) n = 0 (exact projections), there exists a rank N and a positive constant K such that, for n N ,

ϕ(W n ) -inf C ϕ K/n. (9) 
In our case, ∇ϕ is Lipschitz since it is affine,

∇ϕ(W ) = X T (XW -Y µ), (10) 
and we recall the estimation of its best Lipschitz constant.

Lemma 3 Let A be a d × d real matrix, acting linearly on the set of d × k real matrices by left multiplication, W → AW . Then, its norm as a linear operator on this set endowed with the Frobenius norm is equal to its largest singular value, σ max (A).

Proof. The Frobenius norm is equal to the 2 norm of the vectorized matrix,

W F =    W 1 . . . W h    2 , AW F =    AW 1 . . . AW h    2 , (11) 
where W 1 , . . . , W h denote the h column vectors of the d × h matrix W . Accordingly, the operator norm is equal to the largest singular value of the kd × kd block-diagonal matrix whose diagonal is made of k matrix A blocks. Such a matrix readily has the same largest singular value as A.

As a byproduct of Theorem 2, we get Corollary 4 For any fixed step γ ∈ (0, 2/σ 2 max (X)), the forward-backward scheme applied to the Problem 1 with an exact projection on 1 balls converges with a linear rate towards a solution, and the estimate ( 9) holds.

Proof. The 1 ball being compact, existence holds. So does convergence, provided the condition of the step lengths is fulfilled. Now, according to the previous lemma, the best Lipschitz constant of the gradient of ϕ is σ max (X T X) = σ 2 max (X), hence the result.

Algorithm 1 Exact gradient-projection algorithm Input: X, Y, µ, η, W 0 , N, γ W ← W 0 for n = 1, . . . , N do V ← W -γX T (XW -Y µ) W ← P 1 η (V ) end for Output: W Exact projection.
In Algorithm 1, we denote by P 1 η (W ) the (reshaped as a d × d matrix) projection of the vectorized matrix W (:). An important asset of the method is that it takes advantage of the availability of efficient methods [START_REF] Condat | Fast projection onto the simplex and the l1 ball[END_REF]; [START_REF] Duchi | Efficient projections onto the l 1-ball for learning in high dimensions[END_REF]) to compute the 1 projection. For η > 0, denote B 1 (0, η) the closed 1 ball of radius η in the space R d× d centered at the origin, and

∆ η the simplex {w ∈ R d× d | w 1 + • • • + w d d = 1, w 1 0, . . . , w d d 0}. Let w ∈ R d× d,
and let v denote the projection on ∆ η of (|w 1 |, . . . , |w d d|). It is well known that the projection of w on B 1 (0, η) is

(ε 1 (v 1 ), . . . , ε kd (v d d)), ε j := sign(w j ), j = 1, . . . , d d, (12) 
and the fast method described in [START_REF] Condat | Fast projection onto the simplex and the l1 ball[END_REF]) is used to compute v with complexity O(d × d).

Fista implementation. A constant step of suitable size γ is used in accordance with Corollary 4. In our setting, a useful normalization of the design matrix X is obtained replacing X by X/σ max (X). This sets the Lipschitz constant in Theorem 2 to one. The O(1/n) convergence rate of the algorithm can be speeded up to O(1/n 2 ) using a FISTA step [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF]). In practice we use a modified version [START_REF] Chambolle | On the convergence of the iterates of "fista[END_REF]) which ensures convergence of the iterates, see Algorithm 2. Note that for any fixed step γ ∈ (0, 1/σ 2 max (X)), the FISTA algorithm applied to Problem 1 with an exact projection on 1 balls converges with a quadratic rate towards a solution, and the estimate (9) holds.

Algorithm 2 Exact gradient-projection algorithm with FISTA

Input: X, Y, µ, η, W 0 , N, γ > 0, a > 2

W ← W 0 V ← W 0 t ← 1 for n = 1, . . . , N do W new ← V -γX T (XV -Y µ) t new ← (n + a)/a λ ← 1 + (t -1)/t new V ← λW new + (1 -λ)W W ← W new t ← t new end for Output: W 2.

K-sparse clustering algorithm

The resulting alternating minimization is described by Algorithm 3. (One can readily replace the gradient-projection step by the FISTA version described in Algorithm 2.) Labels Y are for instance initialized by spectral clustering on X, while the k-means computation relies on standard methods such as k-means++ [START_REF] Arthur | k-means++: The advantages of careful seeding[END_REF]).

Algorithm 3 Alternating minimization clustering.

Input:

X, Y 0 , µ 0 , W 0 , L, N, k, γ, η Y ← Y 0 µ ← µ 0 W ← W 0 for l = 0, . . . , L do for n = 1, . . . , N do V ← W -γX T (XW -Y µ) W ← P 1 η (V ) end for Y ← kmeans(XW, k) µ ← centroids(Y, XW ) end for Output: Y, W
Convergence of the algorithm. Similarly to the approaches advocated in (Bach and Harchaoui (2008); de la [START_REF] De La Torre | Discriminative cluster analysis[END_REF]; [START_REF] Ding | Adaptive dimension reduction using discriminant analysis and k-means clustering[END_REF]; [START_REF] Witten | A framework for feature selection in clustering[END_REF]), our method involves non-convex k-means optimization for which convergence towards local minimizers only can be proved [START_REF] Bottou | Convergence properties of the k-means algorithms[END_REF]; [START_REF] Selim | K-means-type algorithms: A generalized convergence theorem and characterization of local optimality[END_REF]). In practice, we use k-means++ with several replicates to improve each clustering step. We assume that the initial guess for labels Y and matrix of weights W is such that the associated k centroids are all different. We note for further research that there have been recent attempts to convexify k-means (see, e.g., [START_REF] Bunea | PECOK: A convex optimization approach to variable clustering[END_REF]; [START_REF] Condat | A convex approach to k-means clustering and image segmentation[END_REF]; [START_REF] Mixon | Clustering subgaussian mixtures with k-means[END_REF]; [START_REF] Peng | Approximating k-means-type clustering via semidefinite programming[END_REF]). As each step of the alternating minimization scheme decreases the norm in (1), which is nonnegative, the following readily holds.

Proposition 5

The Frobenius norm Y µ -XW F converges as the number of iterates L in Algorithm 3 goes to infinity.

This property is illustrated in the next section on biological data. Further analysis of the convergence may build on recent results on proximal regularizations of the Gauss-Seidel alternating scheme for non convex problems [START_REF] Attouch | Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the kurdyka-lojasiewicz inequality[END_REF]; [START_REF] Bolte | Proximal alternating linearized minimization for nonconvex and nonsmooth problems[END_REF]). We also note that the extension to multi-label classification is straightforward as it suffices to allow several unit values on each line of the matrix Y by relaxing constraint (3).

Features selection. Feature selection is based on the sparsity inducing 1 constraint ( 5). The projection P 1 η (W ) aims at sparsifying the W matrix so that the features j will be selected if W (j, :) > 0. Hence, the number of the selected features is directly linked to the choice of the parameter η. To illustrate this fact, some examples are given in the next section, see Figure 1, right, and Figure 5, right. Moreover, let us note that the clustering result is computed by using only the selected features. In this sense, we can say that the combination of selected features is relevant for discriminating each cluster. However, our method does not guarantee that all the selected features are discriminant in each cluster.

Choice of the sparsity constraint. As previously mentioned, the constraint η is an important parameter in our algorithm since it aims at sparsifying the W matrix and selecting the most relevant features to compute the clustering. In practice, an interesting approach is to choose the parameter η such that it allows to both obtain a high silhouette coefficient [START_REF] Peter | Silhouettes: A graphical aid to the interpretation and validation of cluster analysis[END_REF]) and also to discard a large number of noisy features. In this sense, the silhouette coefficient guarantees a discriminant and relevant classification, while keeping in mind that the number of selected features for discriminating each cluster is reasonably lower, and noisy features are discarded. To illustrate this process, some examples are given in the next section, see Figure 2 and Figure 5.

Experimental evaluation on single cell RNA-seq clustering

In this section we evaluate K-sparse clustering algorithm on single cell RNA-seq databases. The next subsection is devoted to the experimental settings. Then we perform our algorithm on synthetic datasets. Finally, in subsection 3.3, we perform our algorithm on real single cell RNA-seq databases.

Experimental settings

We normalize the features and use the FISTA implementation with constant step γ = 1 in accordance with Corollary 4, and we set d = k + 4. Methods based on k-means provide different labels depending on the initial conditions, thus we select the best result over 40 replicates of k-means++ [START_REF] Arthur | k-means++: The advantages of careful seeding[END_REF]). The problem of estimating the number of clusters is out of the range of this study, and we refer to the popular GAP method [START_REF] Tibshirani | Estimating the number of clusters in a data set via the gap statistic[END_REF]). For evaluating our clustering results, we compute the silhouette coefficient [START_REF] Peter | Silhouettes: A graphical aid to the interpretation and validation of cluster analysis[END_REF]). Since the true labels are available for these experiments, we moreover compare the labels obtained from our method with the true labels by computing the clustering accuracy. We also report the popular Adjusted Rank Index (ARI) [START_REF] Hubert | Comparing partitions[END_REF]) and Normalized Mutual Information (NMI) criteria. Processing times are obtained on a computer using an i7 processor (2.5 Ghz). We compare our method with PCA k-means, spectral clustering (Von Luxburg ( 2007)), and SIMLR (Single-cell Interpretation via Multikernel Learning) (Wang et al. (2017); [START_REF] Bach | Multiple kernel learning, conic duality, and the smo algorithm[END_REF]). The first two methods (PCA k-means and spectral clustering) are standard and easily tested, and we refer for SIMLR to the codes available online: See https://github.com/BatzoglouLabSU/SIMLR/tree/SIMLR/MATLAB.

Application to computational biology: Synthetic datasets

For this experiment, we generated two single cell RNA-seq synthetics databases. The first one contains k = 4 clusters, m = 600 cells, and d = 10, 000 genes. The second one contains k = 4 clusters, m = 600 cells, and d = 15, 000 genes. To this aim, we used the simulation software was downloaded from https://github.com/DeprezM/SCsim, with default parameters. Concerning our K-sparse clustering method, the decay of the Frobenius norm ( 1) with respect to the number of alternating minimization iterations l = 1, . . . , L is portrayed on Figure 1, left, and illustrates the good properties of our method in terms of convergence. The evolution of the number of selected genes versus the sparsity constraint η is shown in Figure 1, right. The evolution of the silhouette coefficient as a function of η is shown in Figure 2, up. As previously explained, we chose the parameter η using both Figure 1, right, and Figure 2, up, and such that it allows to both obtain a high silhouette coefficient and also to discard a large number of noisy features. For each database, the results of our algorithm compared to other methods are given in Table 1 andTable 2. We can observe that k-sparse clustering behaves better than any of the four other methods in term of silhouette coefficient. This shows that the clusters found by k-sparse were better discriminated than for the other methods. Note that for these experiments, SIMLR algorithm got very interesting results too. Finally, we also provide tsne (Van der [START_REF] Maaten | Visualizing Data using t-SNE[END_REF]) for a 2D visual evaluation of each method (see Figure 3). The results, quite comparable for SIMLR and k-sparse, provide a clear confirmation of those in Tables 1 and2 .

Application to real single cell RNA-seq datasets

Our algorithm can be readily extended to multiclass clustering of high dimensional databases in computational biology (single cell clustering, mass-spectrometric data...), pattern recognition, combinatorial chemistry, social networks clustering, decision making, etc. We provide an experimental evaluation on Single-cell sequencing dataset. The new Single-cell technology has been elected "method of the year" in 2013 by Nature Methods [START_REF] Evanko | Method of the year 2013: Methods to sequence the dna and rna of single cells are poised to transform many areas of biology and medicine[END_REF]). The widespread use of such methods has enabled the publication of many datasets with ground truth cell type annotations [START_REF]Sc3: consensus clustering of single-cell rna-seq data[END_REF]). Thus we compare algorithms on three of those public single-cell RNA-seq datasets: Klein dataset (Klein (2015)), Zeisel dataset [START_REF] Zeisel | Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq[END_REF]) and Usoskin [START_REF] Usoskin | Unbiased classification of sensory neuron types by large-scale single-cell rna sequencing[END_REF]) dataset. Klein scRNA-seq dataset. [START_REF]Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[END_REF] characterized the transcriptome of 2,717 cells (Mouse Embryonic Stem Cells, mESCs), across four culture conditions (control and with 2, 4 or 7 days after leukemia inhibitory factor, LIF, withdrawal) using InDrop sequencing. Gene expression was quantified with Unique Molecular Identifier (UMI) counts (essentially tags that identify individual molecules allowing removal of amplification bias). The raw UMI counts and cells label were downloaded from hemberg-lab.github.io/scRNA.seq.datasets. After filtering out lowly expressed genes (10,322 genes remaining after removing genes that have less than 2 counts in 130 cells) and Count Per Million normalization (CPM) to reduce Table 1: Simulation 1 (4 clusters, 600 cells, 10,000 genes): Comparison between methods and with real labels. According to Figure 2, we can chose η = 5000 which allows us to have both an excellent silhouette coefficient and also to discard a large number of noisy features. With η = 5000, k-sparse selected 3, 976 genes and outperforms others methods in terms of silhouette coefficient, accuracy, ARI and NMI. cell-to-cell variation in sequencing, we report clustering into four cell sub-populations, corresponding to the four culture conditions.

Zeisel scRNA-seq dataset. Zeisel et al. (Kiselev (2017); [START_REF] Zeisel | Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq[END_REF]) collected 3,005 mouse cells from the primary somatosensory cortex (S1) and the hippocampal CA1 region, using the Fluidigm C1 microfluidics cell capture platform followed. Gene expression was quantified with UMI counts. The raw UMI counts and metadata (batch, sex, labels) were downloaded from linnarssonlab.org/cortex. We applied low expressed gene filtering (7,364 remaining genes after removing genes that have less than 2 counts in 30 cells) and CPM normalization. We report clustering into the nine major classes identified in the study.

Usoskin scRNA-seq dataset. Uzoskin et al. [START_REF] Usoskin | Unbiased classification of sensory neuron types by large-scale single-cell rna sequencing[END_REF]) collected 622 cells from the mouse dorsal root ganglion, using a robotic cell-picking setup and sequenced with a 5' single-cell tagged reverse transcription (STRT) method. Filtered (9,195 genes) and normalized data (expressed as Reads Per Million) were downloaded with full sample annotations from linnarssonlab.org/drg. We report clustering into four neuronal cell types. 2017)), and our method k-sparse. As in the previous section on synthetic data, we provide an evaluation of k-sparse on each of three bases (Klein, Usoskin and Zeisel) in terms of convergence, feature selection (see Figure 4) and silhouette coefficient (see Figure 5). As detailed in Table 3, Table 4, andTable 5, our method significantly improves the results of SIMLR in terms of silhouette coefficient, accuracy, ARI, and NMI. For each of the three databases, k-sparse obtains the best results when compared to the four other methods. We note however that k-sparse, though faster than SIMLR in two cases out of three, has larger execution times than much less precise methods such as PCA k-means (for which very efficient codes exist). We provide again tsne (Van der [START_REF] Maaten | Visualizing Data using t-SNE[END_REF]) for visual evaluation and comparison of the five methods (Figure 6). 9,195 genes): Comparison between methods and with real labels. According to Figure 5, we can chose η = 5000 which allows us to have both an excellent silhouette coefficient and also to discard a large number of noisy features. With η = 5000, k-sparse selected 3, 095 genes and outperforms others methods in terms of accuracy by 15%. Right: The evolution of the number of selected genes versus the constraint is a smooth monotonous function. In our constrained approach, parameter η is directly connected to the number of genes. (2013)). The computational cost is improved (see Table 7) while the performance (ARI) drop significantly (see Table 6) when using low rank kernel matrix approximation in Large SIMLR (https://github.com/BatzoglouLabSU/SIMLR/tree/SIMLR/MATLAB). 

Conclusion and discussion

We need to fix the number of clusters for unsupervised feature selection algorithms. In real world applications, we usually have limited knowledge about the clustering structure of the data. Choosing different number of clusters may lead to merging totally different small clusters into one big cluster or splitting one big cluster into smaller ones. In this paper, we use the approach [START_REF] Tibshirani | Estimating the number of clusters in a data set via the gap statistic[END_REF], a principled way to estimate the number of suitable clusters in a dataset. However, this clustering should be validate by biologist end-users. Regarding feature selection, most algorithms (in particular feature weighting methods) require that the number of selected features is specified while the optimal number of such features is in general not known. We do not have the prior knowledge about the label of each data instance and moreover data are very noisy and which will affect the stability of the algorithm (dropouts in single cell dataset). In this paper our heuristic method based on silhouette to specify the number of features is relevant while only 40% of selected genes are relevant due to noise.

To summarize, we focus in this paper on unsupervised classification. We provide a new efficient algorithm, k-sparse clustering, based on alternating minimization that achieves feature selection by introducing an 1 constraint in the gradient-projection step. This step, of splitting type, uses an exact projection on the 1 ball to promote sparsity, and is alternated with k-means. Convergence of the projection-gradient method is established, and each iterative step of our algorithm necessarily lowers the cost. Experiments on single-cell RNA-seq dataset in Section 3 illustrate that our method is very promising compared to other algorithms in the field. Ongoing developments deal with the application of k-sparse to very large datasets.

ARTICLE

CDC20B is required for deuterosome-mediated centriole production in multiciliated cells Diego R. Revinski Multiciliated cells (MCCs) harbor dozens to hundreds of motile cilia, which generate hydrodynamic forces important in animal physiology. In vertebrates, MCC differentiation involves massive centriole production by poorly characterized structures called deuterosomes. Here, single-cell RNA sequencing reveals that human deuterosome stage MCCs are characterized by the expression of many cell cycle-related genes. We further investigated the uncharacterized vertebrate-specific cell division cycle 20B (CDC20B) gene, which hosts microRNA-449abc. We show that CDC20B protein associates to deuterosomes and is required for centriole release and subsequent cilia production in mouse and Xenopus MCCs. CDC20B interacts with PLK1, a kinase known to coordinate centriole disengagement with the protease Separase in mitotic cells. Strikingly, over-expression of Separase rescues centriole disengagement and cilia production in CDC20B-deficient MCCs. This work reveals the shaping of deuterosome-mediated centriole production in vertebrate MCCs, by adaptation of canonical and recently evolved cell cycle-related molecules. M ulticiliated cells (MCCs) are present throughout metazoan evolution and serve functions ranging from locomotion of marine larvae and flatworms, to brain homeostasis, mucociliary clearance of pathogens and transportation of oocytes in vertebrates 1-3 . The formation of MCCs requires the production of numerous motile cilia through a complex process called multiciliogenesis 2,3 . The transcriptional control of multiciliogenesis has been decrypted to a large extent, through studies in Xenopus and mouse 2 . Seating at the top of the cascade, the Geminin-related factors GemC1 4-7 and Multicilin 8,9 (MCIDAS in mammals) are both necessary and sufficient to initiate MCC differentiation. GemC1 and Multicilin in complex with E2F transcription factors have been reported to activate the expression of Myb, FoxJ1, Rfx2, and Rfx3, which collectively regulate the expression of a large body of effectors required for the formation of multiple motile cilia 4,5,8-11 . Recently, defective multiciliogenesis caused by mutations in MCIDAS and Cyclin O (CCNO) has been associated with congenital respiratory and fertility syndromes in human 12,13 .

Each cilium sits atop a modified centriole, called a basal body (BB). After they exit from the cell cycle, maturing MCCs face the challenge of producing dozens to hundreds of centrioles in a limited time window. In vertebrate MCCs, bulk centriole biogenesis is mostly achieved through an acentriolar structure named the deuterosome, although canonical amplification from parental centrioles also occurs 1-3 . The deuterosome was first described in early electron microscopy studies of various multiciliated tissues including the mammalian lung 14 and oviduct 15,16 , the avian trachea 17 , and the Xenopus tadpole epidermis and trachea 18 . In mammalian MCCs, the deuterosome was described as a spherical mass of fibers organized into an inner dense region and an outer, more delicate, corona 16 . In Xenopus, deuterosomes were initially named procentriole organizers and were reported as dense amorphous masses 18 . Recent studies have revealed that deuterosome-mediated centriole synthesis mobilizes key components of the centriole-dependent duplication pathway of the cell cycle, including CEP152, PLK4, and SAS6 19-21 . However, the deuterosome itself differs from the centriole and may contain specific components. The identification of one such component, called DEUP1 for Deuterosome assembly protein 1, opened the possibility to investigate the deuterosome at the molecular level 21 . In mouse tracheal ependymal cells, DEUP1 was detected in the core of the deuterosome 21 . DEUP1, also known as CCDC67, is a conserved vertebrate paralogue of CEP63, itself known for its importance in initiation of centriole duplication during the cell cycle 21,22 . Consistently, DEUP1 was shown to be essential for centriole multiplication in mouse and Xenopus MCCs 21 . Both CEP63 and DEUP1 interact with CEP152, an essential event for centriole duplication and multiplication in cycling cells and MCCs, respectively 21,22 . Once centriole multiplication is over, neosynthesized centrioles must disengage from deuterosomes and parental centrioles, convert into BBs and migrate apically to dock at the plasma membrane to initiate cilium elongation.

In this study, we aimed at better understanding deuterosome biology. We found that the gene CDC20B was specifically expressed in maturing MCCs during the phase of centriole multiplication. We established the corresponding CDC20B protein as an essential regulator of centriole-deuterosome disengagement. This work illustrates well the strong functional relationships that exist between centriole release from deuterosomes and centriole disengagement in mitotic cells. It also posits CDC20B as a component of a "multiciliary locus" that contains several gene products, either proteins, such as MCIDAS, CCNO or CDC20B itself, or microRNAs, such as miR-449abc, which are all actively involved into vertebrate multiciliogenesis.

Results

MCC single-cell transcriptome at deuterosome stage. To identify regulators of centriole multiplication, we analyzed the transcriptome of human airway epithelial cells (HAECs) at the differentiation stage corresponding to active centriole multiplication 23 at the single-cell level (Fig. 1a). Gene expression data from 1663 cells were projected on a 2D space by t-distributed Stochastic Neighbor Embedding (tSNE) (Fig. 1b). We identified a small group of 37 cells corresponding to maturing MCCs engaged in deuterosome-mediated centriole amplification, as revealed by the specific expression of MCIDAS 8 , MYB 24 , and DEUP1 21 (Fig. 1c, d and Supplementary Figure 1). This subpopulation was characterized by the expression of known effectors of centriole synthesis, such as PLK4, STIL, CEP152, SASS6, but also of cell cycle regulators, such as CDK1, CCNB1, CDC20, SGOL2, and NEK2 (Fig. 1d, Supplementary Figure 1 and Supplementary Table 1). We reasoned that uncharacterized cell cycle-related genes that are specific to this subpopulation could encode components of the deuterosome-dependent centriole amplification pathway. A particularly interesting candidate in this category was CDC20B (Fig. 1d), which is related to the cell cycle regulators CDC20 and FZR1 25 (Supplementary Figure 2a). First, the CDC20B gene is present in the vertebrate genomic locus that also contains the key MCC regulators MCIDAS 8 and CCNO 13 . Coexpression of CDC20B, MCIDAS, and CCNO throughout HAEC differentiation was indeed observed in an independent RNA sequencing study, performed on a bulk population of HAECs (Supplementary Figure 2b). These results fit well with the observation that the promoter of human CDC20B was strongly activated by the MCIDAS partners E2F1 and E2F4 (Supplementary Figure 2c), as also shown in Xenopus by others 9 (Supplementary Figure 2d). Second, the CDC20B gene bears in its second intron the miR-449 microRNAs, which were shown to contribute to MCC differentiation 23,26-30 . Finally, in Xenopus epidermal MCCs, cdc20b transcripts were specifically detected during the phase of centriole amplification (Supplementary Figure 2e-m). This first set of data pointed out the specific and conserved expression pattern of CDC20B in immature MCCs. In the rest of this study, we analyzed the putative role of CDC20B in deuterosome-mediated centriole multiplication.

Composition and organization of vertebrate deuterosomes. We first conducted a series of immunofluorescence analyses to gain a better understanding of deuterosome organization in mouse ependymal and Xenopus epidermal MCCs as models. In wholemounts of mouse ependymal walls, mature deuterosomes revealed by DEUP1 staining appeared as circular structures around a lumen (Fig. 2a). We noticed that DEUP1 also stained fibers emanating from the core into the corona. Nascent centrioles revealed by the marker FOP were organized around the DEUP1-positive core ring. STED super-resolution microscopy helped to better appreciate the regular organization of individual FOP-positive procentrioles (Fig. 2b). Proximity labeling assays have revealed that when ectopically expressed in centrosomes CCDC67/DEUP1 is found close to Pericentrin (PCNT) and γtubulin, two main components of the pericentriolar material (PCM) 31 . Interestingly, we found that PCNT was present in the deuterosome corona (Fig. 2a), and STED microscopy further revealed that PCNT formed fibers around growing procentrioles (Fig. 2b). γ-tubulin staining was detected in the DEUP1-positive deuterosome core, as well as in the corona (Fig. 2a). STED microscopy indicated that PCNT and γ-tubulin stained distinct interwoven fibers in the deuterosome corona. Next, we stained immature Xenopus epidermal MCCs with γ-Tubulin and Centrin to reveal centriole amplification platforms. These platforms displayed irregular shapes and sizes (Fig. 2c), in agreement with early electron microscopy studies 18 . Expression of low amounts of GFP-Deup1 in MCCs induced by Multicilin confirmed that active deuterosomes are embedded in γ-Tubulin-positive masses (Fig. 2d). Overall, this analysis is consistent with early ultrastructural studies, as the deuterosome core and corona can be distinguished by the presence of DEUP1 and PCNT, respectively. Moreover, γ-tubulin is a conserved marker of centriole amplification platforms in vertebrate MCCs. By analogy to the organization of the centrosome, we propose to coin the term perideuterosomal material (PDM) to describe the corona, as this region may prove important for deuterosome function. Note that CDC20B exhibits the most specific expression among deuterosome marker genes CDC20B associates to vertebrate deuterosomes. We then analyzed the subcellular localization of CDC20B protein in deuterosome stage mouse and Xenopus MCCs. In immature mouse tracheal MCCs, double immunofluorescence revealed the association of CDC20B to DEUP1-positive deuterosomes (Fig. 3a).

We noticed that CDC20B tended to associate primarily to large DEUP1 foci. As deuterosomes grow as they mature 21 , this suggests that CDC20B may penetrate into the deuterosomal environment at a late stage of the centriole multiplication process. The same observation was made when comparing CDC20B staining in the region of immature and mature deuterosomes of mouse ependymal MCCs (Fig. 3b). As double DEUP1/CDC20B staining could not be performed on these cells, we analyzed CDC20B distribution relative to FOP-positive procentrioles. In early deuterosome stage MCCs, CDC20B was expressed at low levels and FOP staining was mostly concentrated in a large amorphous cloud (Fig. 3b). In such cells, no CDC20B staining was detected in association to FOP-positive procentrioles growing around deuterosomes. In contrast, in mature deuterosome stage MCCs, CDC20B was enriched in the innermost part of the PDM, probably very close to the deuterosome core (Fig. 3b). Further evidence was provided with a custom-made polyclonal antibody (Supplementary Figure 3b,c) used to analyze Cdc20b protein distribution in Xenopus epidermal MCCs. Here also, Cdc20b was found associated to Deup1-positive deuterosomes actively engaged in centriole synthesis (Fig. 3c). We finally analyzed the distribution of CDC20B in mature MCCs. As previously reported, the CDC20B protein was detected near BBs 23 , but also in cilia of fully differentiated human airway MCCs (Supplementary Figure 4a-c). This was confirmed by proximity ligation assays that revealed a tight association of CDC20B with Centrin2 and acetylated α-Tubulin, in BBs and cilia, respectively (Supplementary Figure 4d-f). Fluorescent immunostaining also revealed the presence of Cdc20b in the vicinity of BBs in Xenopus epidermal MCCs (Supplementary Figure 4g-i). In contrast, no cilia staining was observed in these cells. Altogether, our analyses revealed that in three distinct types of MCCs in two distant vertebrate species, CDC20B is tightly associated to mature deuterosomes. We next investigated whether it may control their function.

CDC20B is required for multiciliogenesis in vertebrates. For that purpose, Cdc20b was knocked down in mouse ependymal MCCs, through post-natal brain electroporation of three distinct shRNAs. One of them, sh274, which targets the junction between exons 3 and 4, and can therefore only interact with mature mRNA, was useful to rule out possible interference with the production of miR-449 molecules from the Cdc20b pre-mRNA (Supplementary Figure 5a). Five days after electroporation, all three shRNAs significantly reduced the expression of CDC20B in deuterosome stage MCCs (Fig. 4c), but did not alter MCC identity as revealed by FOXJ1 expression (Fig. 4a,b,d). Centriole production by deuterosomes was analyzed by FOP/DEUP1 double staining 9 days after electroporation. At this stage, control MCCs had nearly all released their centrioles and disassembled their deuterosomes (Fig. 4e,g). In sharp contrast, Cdc20b shRNAs caused a significant increase in the number of defective MCCs that displayed centrioles still engaged on deuterosomes (Fig. 4f,g). Fifteen days after electroporation, a majority of CDC20Bdeficient MCCs still showed a severely reduced number of released centrioles, and consequently lacked cilia (Fig. 4h-k).

Cdc20b was also knocked down in Xenopus epidermal MCCs, through injection of two independent morpholino antisense oligonucleotides targeting either the ATG (Mo ATG), or the exon 1/intron 1 junction (Mo Spl) (Supplementary Figure 5b). The efficiency of Mo ATG was verified through fluorescence extinction of co-injected Cdc20b-Venus (Supplementary Figure 5c). RT-PCR confirmed that Mo Spl caused intron 1 retention (Supplementary Figure 5d), which was expected to introduce a premature stop codon, and to produce a Cdc20b protein lacking 96% of its amino acids, likely to undergo unfolded protein response-mediated degradation. Thus, both morpholinos were expected to generate severe loss of Cdc20b function. Consistent with this interpretation, both morpholinos strongly reduced Cdc20b immunostaining in deuterosome stage MCCs (Supplementary Figure 5e). We verified that neither morpholinos caused p53 transcript up-regulation (Supplementary Figure 5f), a nonspecific response to morpholinos that is sometimes detected in zebrafish embryos 32 . Importantly, whole-mount in situ hybridization indicated that miR-449 expression was not perturbed in the presence of either morpholino (Supplementary Figure 5g). We found that cdc20b knockdown did not interfere with acquisition of the MCC fate (Supplementary Figure 6a-e), but severely impaired multiciliogenesis, as revealed by immunofluorescence and electron microscopy (Fig. 5a-i). This defect stemmed from a marked reduction in the number of centrioles, and poor docking at the plasma membrane (Fig. 5g-o and Supplementary Figure 6f-k). Importantly, centrioles and cilia were rescued in Mo Spl MCCs by co-injection of cdc20b, venus-cdc20b or cdc20bvenus mRNAs (Fig. 5j-o and Supplementary Figure 6f-k). In normal condition, Xenopus epidermal MCCs arise in the inner mesenchymal layer and intercalate into the outer epithelial layer, while the process of centriole amplification is underway 33 . To rule out secondary defects due to poor radial intercalation, we assessed the consequences of cdc20b knockdown in MCCs induced in the outer layer by Multicilin overexpression 8 . Like in natural MCCs, Cdc20b proved to be essential for the production of centrioles and cilia in response to Multicilin activity (Supplementary Figure 7a-g). We also noted that the apical actin network that normally surrounds BBs was disrupted in absence of Cdc20b, although this defect could be secondary to the absence of centrioles (Supplementary Figure 7d-g). Centrioles in Cdc20b morphant cells often formed clusters, suggesting that disengagement from deuterosomes could have failed (Fig. 5l,m). To better assess this process, we injected GFP-Deup1 in Multicilin-induced MCCs and stained centrioles with Centrin. In mature control MCCs, deuterosomes were disassembled, centrioles were converted into BBs, had docked and initiated cilium growth (Fig. 5p,s). In contrast, both morpholinos caused a marked increase in the number of defective MCCs, which were devoid of cilia and displayed centrioles still engaged on deuterosomes (Fig. 5q-u).

Altogether our functional assays in mouse and Xenopus indicate that CDC20B is required for centriole disengagement from deuterosomes and subsequent ciliogenesis in MCCs. We next investigated the molecular mechanism of action of CDC20B underlying its role in centriole release.

Partners and effectors of CDC20B reveal its mechanism of action. In mitotic cells, centriole disengagement is necessary to license centriole duplication in the following cell cycle 34 . This process is known to depend on the coordinated activities of the mitotic kinase PLK1 and the protease Separase 35 . One proposed mechanism involves the phosphorylation of PCNT by PLK1, which induces its cleavage by Separase, thereby allowing centriole disengagement through disassembly of the PCM 36,37 . Separase is known to be activated by the degradation of its inhibitor Securin, which is triggered by the Anaphase Promoting Complex (APC/C) upon binding to CDC20 25 . PLK1, Separase (ESPL1), Securin (PTTG1), CDC20, and PCNT were all found to be expressed in human deuterosome stage MCCs (Fig. 1d and Supplementary Figure 1). We have shown above that PCNT is present in the PDM and a recent study revealed the presence of CDC20 and the APC/C component APC3 in mouse ependymal MCCs at the stage of centriole disengagement 38 . Based on this large body of information, we hypothesized that centriole-deuterosome disengagement involves the coordinated activities of PLK1 and Separase, and that CDC20B would be involved in this scenario. CDC20B encodes a protein of about 519 amino acids largely distributed across the vertebrate phylum 23 . In its C-terminal half, CDC20B contains seven well conserved WD40 repeats, predicted to form a β-propeller, showing 49 and 37% identity to CDC20 and FZR1 repeats, respectively (Supplementary Figure 2a). However, CDC20B lacks canonical APC/C binding domains (Supplementary Figure 2a). Using mass spectrometry on immunoprecipitated protein complexes from transfected HEK cells, we could identify multiple APC/C components interacting with CDC20 but not with CDC20B (Supplementary Table 2). We conclude that CDC20B is probably incapable of activating APC/ C. Interestingly, an unbiased interactome study reported association of CDC20B with PLK1 39 . Using reciprocal coimmunoprecipitation assays in HEK transfected cells, we confirmed that CDC20B and PLK1 could be found in the same complex (Fig. 6a and Supplementary Figure 8). This suggested that CDC20B could cooperate with PLK1 to trigger centriole disengagement. Consistent with this hypothesis, we found that PLK1 was enriched in the PDM of mature deuterosomes in mouse ependymal MCCs (Fig. 6b), in agreement with a recent report 38 . Another interesting partner of CDC20B identified in a second unbiased interactome study 40 was SPAG5 (Astrin), which was reported to control timely activation of Separase during the cell cycle 41,42 . Using the same strategy as above, we could detect CDC20B and SPAG5 in the same complex (Fig. 6c and Supplementary Figure 8). As SPAG5 was found associated to DEUP1 in a proximity labeling assay 31 , we assessed its localization in deuterosomes. Strikingly, SPAG5 was detectable in mature deuterosomes of mouse ependymal MCCs, with a clear enrichment in the deuterosome core (Fig. 6d). Finally, reciprocal coimmunoprecipitations revealed that CDC20B and DEUP1 were detected in the same complex when co-expressed in HEK cells (Fig. 6e and Supplementary Figure 8). Consistent with this result, we observed that RFP-Cdc20b was recruited around spherical Deup1-GFP structures positive for γ-Tubulin and Centrin in Xenopus epidermal MCCs (Supplementary Figure 7h-m). This series of experiments suggested that CDC20B could participate in the assembly of a protein complex in mature deuterosomes, required to coordinate the activities of PLK1 and Separase for centriole disengagement. As Separase is the last effector in this scenario, we tested whether over-expressing human Separase in Xenopus cdc20b morphant MCCs could rescue centriole disengagement. In support to our hypothesis, over-expression of wildtype, but not protease-dead Separase, efficiently rescued centriole disengagement and cilia formation in cdc20b morphant MCCs (Fig. 7a-g and Supplementary Figure 7n-s). Separase could also rescue multiciliogenesis in Multicilin-induced MCCs injected with cdc20b Mos (Supplementary Figure 7t-z). We conclude that CDC20B is involved in Separase-mediated release of mature centrioles from deuterosomes in vertebrate MCCs (Fig. 7h).

Discussion

In this study, we report the essential and conserved role of CDC20B in vertebrate multiciliogenesis. Our data suggest that the presence of CDC20B in the perideuterosomal region is necessary to allow centriole disengagement. We note, however, that our data, which are based on partial knockdowns, remain compatible with an earlier function of CDC20B in promoting deuterosome assembly and/or activity. A total genetic knockout of Cdc20b should help to assess this possibility in mouse tracheal and ependymal MCCs. By analogy to mitosis, we propose that CDC20B is involved in Separase-dependent proteolysis at deuterosomes, allowing the release of mature centrioles and subsequent ciliogenesis. This view is consistent with a recent report showing that centriole disengagement in murine ependymal MCCs involves the activities of PLK1, a partner of CDC20B, and APC/C, the activator of Separase 38 . The central question arising from our work then becomes: how are CDC20B and Separase activities integrated? The simple scenario of a CDC20-like function of CDC20B is very unlikely as it does not appear to bind APC/C (Supplementary Table 2). CDC20 was detected in cultured murine ependymal MCCs during the phase of centriole disengagement 38 , and FZR1 genetic ablation was reported to cause reduced production of centrioles and cilia in the same cells 43 . APC/C is therefore likely activated in maturing MCCs by its classical activators, CDC20 and/or FZR1, leading to Separase activation through degradation of its inhibitor Securin. In that context, we propose that additional factors linked directly or indirectly to CDC20B may contribute to activation of Separase. It was shown that SPAG5 inhibits or activates Separase depending on its status of phosphorylation 41,42 . As the phosphorylation status of SPAG5 was shown to be controlled by PLK1 44 , our data suggest that the CDC20B/PLK1/SPAG5 complex could control the timing of Separase activation locally in deuterosomes. It is therefore possible that multiple modes of activation of Separase may act in parallel to trigger the release of neo-synthesized centrioles in maturing MCCs. Alternatively, different pathways may be used in distinct species, or in distinct types of MCCs. An important question for future studies regards the identity of PLK1 and Separase substrates involved in centriole disengagement. Work on mitotic cells 36,37 candidate could be DEUP1 itself as it is clear that deuterosomes are disassembled after the release of centrioles. In that respect, it is interesting to note the presence of multiple PLK1 consensus phosphorylation sites in human, mouse, and Xenopus DEUP1.

In this study, we have introduced the notion of perideuterosomal material, in analogy to the pericentriolar material. It is striking that the two main components of the PCM, PCNT, and γ-Tubulin, are also present in the PDM, which begs the question whether additional PCM proteins may be present in the PDM. The PDM may constitute a platform to sustain procentriole growth, through the concentration and delivery of elementary parts. It could also have a mechanical role to hold in place the growing procentrioles. Future work should evaluate deuterosomemediated centriole synthesis in absence of major PDM components.

We found that beyond its association to deuterosomes during the phase of centriole amplification, CDC20B was also associated to BBs and cilia in fully differentiated mammalian MCCs. This dual localization is consistent with failed ciliogenesis upon CDC20B knockdown in mouse ependymal MCCs. However, while we could detect Cdc20b near BBs of mature MCCs in Xenopus, we found no evidence of its presence in cilia. Furthermore, cilia were rescued by Separase overexpression in Cdc20b morphant MCCs. This suggests that Cdc20b is not required for ciliogenesis in this species, although it could potentially contribute to cilium structure and/or function. Thus, refined temporal and spatial control of CDC20B inhibition will be needed to study its function beyond centriole synthesis.

This and previous studies 23,26-28 establish that the miR-449 cluster and its host gene CDC20B are commonly involved in multiciliogenesis. Consistent with its early expression, it was suggested that miR-449 controls cell cycle exit and entry into differentiation of MCCs 23,27,30 . This study reveals that CDC20B itself is involved in the production of centrioles, the first key step Previous works have established the involvement of the centriole duplication machinery active in S-phase of the cell cycle, during centriole multiplication of vertebrate post-mitotic MCCs 19-21 . Our study further reveals a striking analogy between centriole disengagement from deuterosomes in MCCs, and centriole disengagement that occurs during the M/G1 transition of the cell cycle (Fig. 7g). Thus, it appears that centriole production in MCCs recapitulates the key steps of the centriole duplication cycle 34 . However, the cell cycle machinery must adapt to the acentriolar deuterosome to massively produce centrioles. Such adaptation appears to involve physical and functional interactions between canonical cell cycle molecules, such as CEP152 and PLK1, and recently evolved cell cycle-related deuterosomal molecules, such as DEUP1 21 and CDC20B. It remains to examine whether additional deuterosomal cell cycle-related molecules have emerged in the vertebrate phylum to sustain massive centriole production.

In conclusion, this work illustrates how coordination between ancestral and recently evolved cell cycle-related molecules can give rise to a novel differentiation mechanism in vertebrates.

Methods

Subjects/human samples. Inferior turbinates were from patients who underwent surgical intervention for nasal obstruction or septoplasty (provided by L. Castillo, Nice University Hospital, France). Experiments involving human tissues were performed according to the guidelines of the Declaration of Helsinki, after approval by the institutional review board "Comité de Protection des Personnes Sud Méditerranée V" (06/16/2015). All patients gave their written informed consent.

Single-cell RNA sequencing of human airway epithelial cells (HAECs). HAECs cultures were derived from nasal mucosa of inferior turbinates. After excision, nasal inferior turbinates were immediately immersed in Ca 2+ /Mg 2+ -free HBSS supplemented with 25 mM HEPES, 200 U/mL penicillin, 200 µg/mL streptomycin, 50 µg/mL gentamicin sulfate, and 2.5 µg/mL amphotericin B (all reagents from Gibco). After repeated washes with cold supplemented HBSS, tissues were digested with 0.1% Protease XIV from Streptomyces griseus (Sigma) overnight at 4 °C. After incubation, fetal calf serum (FCS) was added to a final concentration of 10%, and nasal epithelial cells were detached from the stroma by gentle agitation. Cell suspensions were further dissociated by trituration through a 21 G-needle and then centrifuged at 150×g for 5 min. The pellet was resuspended in supplemented HBSS containing 10% FCS and centrifuged again. The second cell pellet was then suspended in Dulbecco's Modified Eagle's Medium (DMEM, Gibco) containing 10% FCS and cells were plated (20 000 cells per cm 2 ) on 75 cm 2 -flasks coated with rat tail collagen I (Sigma-Aldrich). Cells were incubated in a humidified atmosphere of 5% CO 2 at 37 °C. Culture medium was replaced with Bronchial Epithelium Basal Medium (BEBM, Lonza) supplemented with BEGM SingleQuot Kit Supplements (Lonza) on the day after and was then changed every other day. After 4 to 5 days of culture, after reaching about 70% confluence, cells were detached with trypsin-EDTA 0.05% (Gibco) for 5 min and seeded on Transwell® permeable supports (6.5 mm diameter; 0.4 µm pore size; Corning), in BEGM medium, with a density of 30,000 cells per Transwell®. Once the cells have reached confluence (typically after 5 days), they were induced to differentiate at the air-liquid interface by removing medium at the apical side of the Transwell®, and by replacing medium at the basal side with DMEM:BEBM (1:1) supplemented with BEGM SingleQuot Kit Supplements. Culture medium was changed every other day. Single-cell analysis was performed after 14 days of culture at the air-liquid interface, which corresponds to the maximum centriole multiplication stage. To obtain a single-cell suspension, cells were incubated with 0.1% protease type XIV from S. griseus in supplemented HBSS for 4 h at 4 °C. Cells were gently detached from Transwells® by pipetting and then transferred to a microtube. 50 units of DNase I (EN0523 ThermoFisher Scientific) per 250 µL were directly added and cells were further incubated at room temperature for 10 min. Cells were centrifuged (150×g for 5 min) and resuspended in 500 µL supplemented HBSS containing 10% FCS, centrifuged again (150×g for 5 min) and resuspended in 500 µL HBSS before being mechanically dissociated through a 26 G syringe (4 times). Finally, cell suspensions were filtered through a Scienceware® Flowmi™ Cell Strainer (40 µm porosity), centrifuged (150×g for 5 min) and resuspended in 500 µL of cold HBSS. Cell concentration measurements were performed with Scepter™ 2.0 Cell Counter (Millipore) and Countess™ automated cell counter (ThermoFisher Scientific). Cell viability was checked with Countess™ automated cell counter (ThermoFisher Scientific). All steps except the DNAse I incubation were performed on ice. For the cell capture by the 10× genomics device, the cell concentration was adjusted to 300 cells/µL in HBSS aiming to capture 1500 cells. We then followed the manufacturer's protocol (Chromium™ Single Cell 3′ Reagent Kit, v2 Chemistry) to obtain single cell 3′ libraries for Illumina sequencing. Libraries were sequenced with a NextSeq 500/550 High Output v2 kit (75 cycles) that allows up to 91 cycles of paired-end sequencing: the forward read had a length of 26 bases that included the cell barcode and the UMI; the reverse read had a length of 57 bases that contained the cDNA insert. CellRanger Single-Cell Software Suite v1.3 was used to perform sample demultiplexing, barcode processing and single-cell 3′ gene counting using default parameters and human build hg19. Additional analyses were performed using R. Pseudotemporal ordering of single cells was performed with the last release of the Monocle package 45 . Cell cycle scores were calculated by summing the normalized intensities of genes belonging to phase-specific gene sets then centered and scaled by phase. Gene sets for each phase were curated from previously described sets of genes 46 (Table S2). Data was submitted to the GEO portal under series reference GSE103518. Data shown in Fig. 1 is representative of four independent experiments performed on distinct primary cultures.

RNA sequencing of HAECs. For Supplementary Fig. 2B, three independent HAEC cultures (HAEC1, HAEC2, HAEC3) were triggered to differentiate in air-liquid interface (ALI) cultures for 2 days (ALI day 2, undifferentiated), ALI day 14 (first cilia), or ALI day 28 (well ciliated). RNA was extracted with the miRNeasy mini kit (Qiagen) following manufacturer's instructions. mRNA-seq was performed from 2 µg of RNA that was first subjected to mRNA selection with Dynabeads® mRNA Purification Kit (Invitrogen). mRNA was fragmented 10 min at 95 °C in RNAseIII buffer (Invitrogen) then adapter-ligated, reverse transcribed and amplified (6 cycles) with the reagents from the NEBNext Small RNA Library Prep Set for SOLiD. Small RNA-seq was performed from 500 ng RNA with the NEBNext Small RNA Library Prep Set for SOLiD (12 PCR cycles) according to manufacturer's instructions. Both types of amplified libraries were purified on Purelink PCR micro kit (Invitrogen), then subjected to additional PCR rounds (8 cycles for RNA-seq and 4 cycles for small RNA-seq) with primers from the 5500 W Conversion Primers Kit (Life Technologies). After Agencourt® AMPure® XP beads purification (Beckman Coulter), libraries were size-selected from 150 nt to 250 nt (for RNAseq) and 105 nt to 130 nt (for small RNA-seq) with the LabChip XT DNA 300 Assay Kit (Caliper Lifesciences), and finally quantified with the Bioanalyzer High Sensitivity DNA Kit (Agilent). Libraries were sequenced on SOLiD 5500XL (Life Technologies) with single-end 50b reads. SOLiD data were analyzed with lifescope v2.5.1, using the small RNA pipeline for miRNA libraries and whole transcriptome pipeline for RNA-seq libraries with default parameters. Annotation files used for production of raw count tables correspond to Refseq Gene model v20130707 for mRNAs and miRBase v18 for small RNAs. Data generated from RNA sequencing were then analyzed with Bioconductor (http://www.bioconductor.org) package DESeq and size-factor normalization was applied to the count tables. Heatmaps were generated with GenePattern using the "Hierarchical Clustering" Module, applying median row centering and Euclidian distance.

Re-analysis of Xenopus E2F4 Chip-seq and RNA-seq. RNA-seq (samples GSM1434783 to GSM1434788) and ChIP-seq (samples GSM1434789 to GSM1434792) data were downloaded from GSE59309. Reads from RNA-seq were aligned to the Xenopus laevis genome release 7.1 using TopHat2 47 with default parameters. Quantification of genes was then performed using HTSeq-count 48 release 0.6.1 with "-m intersection-nonempty" option. Normalization and statistical analysis were performed using Bioconductor package DESeq2 49 . Differential expression analysis was done between Multicilin-hGR alone versus Multicilin-hGR in the presence of E2f4ΔCT. Reads from ChIP-seq were mapped to the X. laevis genome release 7.1 using Bowtie2 50 . Peaks were called and annotated according to their positions on known exons with HOMER 51 . Peak enrichments of E2F4 binding site in the promoters of centriole genes and cell cycle genes 9 were estimated in presence or absence of Multicilin and a ratio of E2F4 binding (Multicilin vs no Multicilin) was calculated.

Promoter reporter studies. The human CDC20B promoter was cloned into the pGL3 Firefly Luciferase reporter vector (Promega) with SacI and NheI cloning sites. The promoter sequenced ranged from -1073 to +104 relative to the transcription start site. 37.5 ng of pGL3 plasmid were applied per well. pCMV6-Neg, pCMV6-E2F1 (NM_005225) and pCMV6-E2F4 (NM_001950) constructs were from Origene. 37.5 ng of each plasmid was applied per well. 25 ng per well of pRL-CMV (Promega) was applied in the transfection mix for transfection normalization (Renilla luciferase). HEK 293T cells were seeded at 20,000 cells per well on 96-well plates. The following day, cells were transfected with the indicated plasmids (100 ng of total DNA) with lipofectamine 3000 (Invitrogen). After 24 h, cells were processed with the DualGlo kit (Promega) and luciferase activity was recorded on a plate reader.

Proximity ligation assays. Fully differentiated HAECs were dissociated by incubation with 0.1% protease type XIV from S. griseus (Sigma-Aldrich) in HBSS (Hanks' balanced salts) for 4 h at 4 °C. Cells were gently detached from the Transwells® by pipetting and then transferred to a microtube. Cells were then cytocentrifuged at 72×g for 8 min onto SuperFrostPlus slides using a Shandon Cytospin 3 cytocentrifuge. Slides were fixed for 10 min in methanol at -20 °C for Centrin2 and ZO1 assays, and for 10 min in 4% paraformaldehyde at room temperature and then permeabilized with 0.5% Triton X-100 in PBS for 10 min for acetylated-α-tubulin assays. Cells were blocked with 3% BSA in PBS for 30 min. The incubation with primary antibodies was carried out at room temperature for 2 h. Then, mouse and rabbit secondary antibodies from the Duolink® Red kit (Sigma-Aldrich) were applied and slides were processed according to manufacturer's instructions. Images were acquired using the Olympus Fv10i confocal imaging systems with ×60 oil immersion objective and Alexa 647 detection parameters.

Animals. All experiments were performed following the Directive 2010/63/EU of the European parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes. Experiments on X. laevis and mouse were approved by the 'Direction départementale de la Protection des Populations, Pôle Alimentation, Santé Animale, Environnement, des Bouches du Rhône' (agreement number F 13 055 21). Mouse experiments were approved by the French ethical committee no. 14 (permission number: 62-12112012). Timed pregnant CD1 mice were used (Charles Rivers, Lyon, France).

Immunostaining on mouse ependyma. Dissected brains were subjected to 12 min fixation in 4% paraformaldehyde, 0.1% Triton X-100, blocked 1 h in PBS, 3% BSA, incubated overnight with primary antibodies diluted in PBS, 3% BSA, and incubated 1 h with secondary antibodies at room temperature. Ependyma were dissected further and mounted with Mowiol before imaging using an SP8 confocal microscope (Leica microsystems) equipped with a ×63 oil objective. The same protocol was used to prepare samples for super-resolution acquisition. Pictures were acquired with a TCS SP8 STED ×3 microscope equipped with an HC PL APO 93×/1.30 GLYC motCORR TM objective (Leica microsystems). Pericentrin was revealed using Alexa 514 (detection 535-564 nm, depletion 660 nm), γ-tubulin was revealed using Alexa 568 (detection 582-667 nm, depletion 775), and FOP was revealed using Alexa 488 (detection 498-531 nm, depletion 592 nm). Pictures were deconvoluted using Huygens software. Maximum intensity projection of 3 deconvoluted pictures is presented in Fig. 4g. Primary antibodies: rabbit anti-CDC20B (1:500; Proteintech, 133376-1-AP), mouse IgG anti-PLK1 (1:500; Ther-moFisher, 33-1700), rabbit anti-Pericentrin (1:500, Abcam, ab4448), mouse IgG1 anti-FoxJ1 (1:1000; eBioscience, 14-9965), rabbit anti-Deup1 (1:1000; kindly provided by Dr Xueliang Zhu), rabbit anti-Deup1 (1:250; Proteintech, 24579-1-AP), mIgG1 anti-γ-Tubulin (clone GTU88) (1:250; Abcam, Ab 11316), rabbit anti-ZO1 (1:600; ThermoFisher Scientific, 61-7300), rabbit anti-Spag5 (1:500; Proteintech, 14726-1-AP), mouse IgG1 anti-ZO1 (1:600;Invitrogen,, mouse IgG2b anti-FGFR1OP (FOP) (1:2000; Abnova, H00011116-M01), mouse IgG1 anti-αtubulin (1:500; Sigma-Aldrich, T9026). Secondary antibodies: Alexa Fluor 488 goat anti-rabbit (1:800; ThermoFisher Scientific, A-11034), Alexa Fluor 647 goat antirabbit (1:800; ThermoFisher Scientific, A-21244), Alexa Fluor 514 goat anti-rabbit (1:800; ThermoFisher Scientific, A-31558), Alexa Fluor 488 goat anti-mouse IgG2b (1:800; ThermoFisher Scientific, A-21141), Alexa Fluor 568 goat anti-mouse IgG2b (1:800; ThermoFisher Scientific, A-21144), Alexa Fluor 488 goat anti-mouse IgG2a (1:800; ThermoFisher Scientific, A-21131), Alexa Fluor 568 goat anti-mouse IgG1 (1:800; ThermoFisher Scientific, A-21134), Alexa Fluor 647 goat anti-mouse IgG1 (1:800; ThermoFisher Scientific, A-21240). were obtained from , TRCN0000088274 (sh274), TRCN0000088277 (sh277)). PCX-mcs2-GFP vector (Control GFP) kindly provided by Xavier Morin (ENS, Paris, France), and U6 vector containing a validated shRNA targeting a specific sequence in the NeuroD1 coding sequence 52 (Control sh, ref. TRCN0000081777, Sigma-Aldrich) were used as controls for electroporation experiments.

Post-natal mouse brain electroporation. The detailed protocol for post-natal mouse brain electroporation established by Boutin and colleagues 53 was used with minor modifications. Briefly, P1 pups were anesthetized by hypothermia. A glass micropipette was inserted into the lateral ventricle, and 2 μL of plasmid solution (concentration 3 μg/μL) was injected by expiratory pressure using an aspirator tube assembly (Drummond). Successfully injected animals were subjected to five 95 V electrical pulses (50 ms, separated by 950 ms intervals) using the CUY21 edit device (Nepagene, Chiba, Japan), and 10 mm tweezer electrodes (CUY650P10, Nepagene) coated with conductive gel (Signagel, Parker laboratories). Electroporated animals were reanimated in a 37 °C incubator before returning to the mother.

Statistical analyses of mouse experiments. Analysis of CDC20B signal intensity in deuterosomes (dot plot in Fig. 3b). For each category, >25 cells from two different animals were analyzed. Deuterosome regions were delineated based on FOP staining and the intensity of CDC20B fluorescent immunostaining was recorded using ImageJ software, and expressed as arbitrary units. Unpaired t test vs immature: p = 0.0005 (intermediate, ***); p < 0.0001 (Mature, ****).

Analysis of Cdc20b shRNAs efficiency (Fig. 4c): For each cell at the deuterosomal stage, the intensity of CDC20B fluorescent immunostaining was recorded using ImageJ software and expressed as arbitrary units. Data are mean ± sem. Two independent experiments were analyzed. A minimum of 35 cells per condition was analyzed. n = 3, 4, 5 and 5 animals for sh control, sh273, sh274, and sh277, respectively. Unpaired t test vs sh control: p < 0.0001 (sh273, sh274, and sh277 ****).

Analysis of the number of FOXJ1-positive cells at 5dpe (Fig. 4d): Unpaired t test vs sh control: 0.3961 (sh273, ns), 0.1265 (sh274, ns), 0.3250 (sh277, ns).

Analysis of the number of cells with non-disengaged centrioles at 9dpe (Fig. 4g): 15-20 fields were analyzed per condition. n = 4, 4, 3, and 4 animals for sh control, sh273, sh274, and sh277, respectively, from two independent experiments. Unpaired t test vs sh control: p < 0.0001 (sh273, sh274, sh277 ****).

Analysis of the number of centrioles per cell at 15dpe (Fig. 4j): > 100 cells were analyzed per condition. n = 3, 3, 3, and 3 animals for sh control, sh273, sh274, and sh277, respectively, from two independent experiments. Unpaired t test vs sh control: p < 0.0001 (sh273, sh274, sh277 ****).

Analysis of ependymal cell categories at 15dpe (Fig. 4k): Data are mean ± sem from three independent experiments. More than 500 cells were analyzed for each condition. n = 4, 4, 3, and 3 animals for sh control, sh273, sh274, and sh277, respectively. Unpaired t test vs sh control: p = 0.0004 (sh273, ***), 0.0001 (sh274, ****), 0.0038 (sh277, **).

Mouse tracheal epithelial cells (MTECs). MTECs cell cultures were established from the tracheas of 12 weeks-old mice. After dissection, tracheas were placed in cold DMEM:F-12 medium (1:1) supplemented with 15 mM HEPES, 100 U/mL penicillin, 100 µg/mL streptomycin, 50 µg/mL gentamicin sulfate, and 2.5 µg/mL amphotericin B. Each trachea was processed under a binocular microscope to remove as much conjunctive tissue as possible with small forceps and was opened longitudinally with small dissecting scissors. Tracheas were then placed in supplemented DMEM:F-12 containing 0.15% protease XIV from S. griseus. After overnight incubation at 4 °C, FCS was added to a final concentration of 10%, and tracheal epithelial cells were detached by gentle agitation. Cells were centrifuged at 400 g for 10 min and resuspended in supplemented DMEM:F-12 containing 10% FCS. Cells were plated on regular cell culture plates and maintained in a humidified atmosphere of 5% CO 2 at 37 °C for 4 h to allow attachment of putative contaminating fibroblast. Medium containing cells in suspension was further centrifuged at 400×g for 5 min and cells were resuspended in supplemented DMEM:F-12 containing BEGM Singlequots kit supplements and 5% FCS. Cells were plated on rat tail collagen I-coated Transwell®. Typically, 5 tracheas resulted in 12 Transwells®. Medium was changed every other day. Air-liquid interface culture was conducted once transepithelial electrical resistance had reached a minimum of 1000 ohm/cm 2 (measured with EVOM2, World Precision Instruments).

Air-liquid interface culture was obtained by removing medium at the apical side of the Transwell®, and by replacing medium at the basal side with supplemented DMEM:F-12 containing 2% Ultroser-G TM (Pall Corporation). 10 µM DAPT (N-[N- (3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester) (Sigma) was added one day after setting-up the air-liquid interface.

Immunostaining on HAECs and MTECs. Three days after setting-up the air-liquid interface, MTECs on Transwell membranes were pre-extracted with 0.5% Triton X-100 in PBS for 3 min, and then fixed with 4% paraformaldehyde in PBS for 15 min at room temperature. HAECs were treated 21 days after setting-up the air-liquid interface. They were fixed directly on Transwells® with 100% cold methanol for 10 min at -20 °C (for CDC20B and Centrin2 co-staining, Supplementary Figure 4a,b) or with 4% paraformaldehyde in PBS for 15 min at room temperature (for CDC20B single staining, Supplementary Figure 4c). All cells were then permeabilized with 0.5% Triton X-100 in PBS for 5 min and blocked with 3% BSA in PBS for 30 min. The incubation with primary and secondary antibodies was carried out at room temperature for 2 h and 1 h, respectively. Nuclei were stained with 4,6-diamidino-2-phenylindole (DAPI). Transwell® membranes were cut with a razor blade and mounted with ProLong Gold medium (Thermo-Fisher). Primary antibodies: rabbit anti-CDC20B (1:500; Proteintech, 133376-1-AP), rabbit anti-DEUP1 (1:500; Proteintech, 24579-1-AP), anti-Centrin2 (Clone 20H5, 1:500; Millipore, 04-1624). Secondary antibodies: Alexa Fluor 488 goat antirabbit (1:1000; ThermoFisher Scientific, A-11034), Alexa Fluor 647 goat antimouse (1:1000; ThermoFisher Scientific, A-21235). For co-staining of CDC20B and DEUP1, CDC20B primary antibody was directly coupled to CF TM 633 with the Mix-n-Stain TM kit (Sigma-Aldrich) according to the manufacturer's instruction. Coupled primary antibody was applied after secondary antibodies had been extensively washed and after a 30 min blocking stage in 3% normal rabbit serum in PBS.

Western blot and immunofluorescence on transfected cells. Cos-1 or Hela cells cells were grown in DMEM supplemented with 10% heat inactivated FCS and transfected with Fugene HD (Roche Applied Science) according to manufacturer's protocol. Transfected or control cells were washed in PBS and lysed in 50 mM Tris HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, containing 1% NP-40 and 0.25% sodium deoxycholate (modified RIPA) plus a Complete Protease Inhibitor Cocktail (Roche Applied Science) on ice. Cell extracts separated on polyacrylamide gels were transfered onto Optitran membrane (Whatman) followed by incubation with rabbit anti-mouse CDC20B (1:500, Proteintech, 24579-1-AP) or homemade rabbit anti-Xenopus Cdc20b (1:300) antibody and horseradish peroxidase conjugated secondary antibody (Jackson Immunoresearch Laboratories,. Signal obtained from enhanced chemiluminescence (Western Lightning ECL Pro, Perkin Elmer) was detected with MyECL Imager (ThermoFisher Scientific).

For immunofluorescence staining, transfected cells were grown on glass coverslips and fixed for 6 min in methanol at -20 °C. Cells were washed in PBS, blocked in PBS, 3% BSA and stained with rabbit anti-Xenopus Cdc20b (1:300) or rabbit anti-CFTR (1:200, Santa-Cruz Biotechnology, 10747) as a negative control, in blocking buffer. After washings in PBS 0.1% Tween-20, cells were incubated with Alexa fluor 488 donkey anti-rabbit antibody (ThermoFisher Scientific, R37118), washed, and DNA was stained with 250 ng/mL DAPI. Coverslip were then rinsed and mounted in Prolong Gold antifade reagent (ThermoFisher Scientific) and confocal images were acquired by capturing Z-series with 0.3 μm step size on a Zeiss LSM 510 laser scanning confocal microscope.

Co-immunoprecipitation studies. Asynchronous HEK cells transfected with the plasmids described below, using lipofectamine 3000 according to manufacturer's instructions, were rinsed on ice with chilled Ca2+ and Mg2+ free Dulbecco's PBS (DPBS, Invitrogen), harvested using a cell scraper and lysed on ice for 5 min in lysis buffer (0.025 M Tris, 0.15 M NaCl, 0.001 M EDTA, 1% NP-40, 5% glycerol; pH 7.4) supplemented with EDTA and Halt™ Protease and Phosphatase Inhibitor Cocktail (Pierce, ThermoFisher). Lysates were clarified (12,000×g, 4 °C, 10 min) and the protein concentrations were determined using the Bradford assay (Bio-Rad). Immunoprecipitations were performed with the Pierce co-immunoprecipitation kit (Pierce, ThermoFisher) according to the manufacturer's instructions. For each immunoprecipitation, 1-1.5 mg of total lysate was precleared on a control column, then incubated on columns coupled with 20 µg of anti-GFP or anti-c-myc antibody (clone 9E10). Incubation was performed overnight at 4 °C. Columns were washed and eluted with 50 µL elution buffer. Samples were denatured at 70 °C for 10 min with Bolt™ LDS Sample Buffer and Bolt reducing agent, then separated on 4-12% gradient Bolt precast gels (ThermoFisher), transferred onto nitrocellulose (Millipore), and subjected to immunoblot analysis using either anti-CDC20B (Pro-teinTech, 133376-1-AP, 1/500) or anti-c-myc antibody (clone 9E10, 1/1000). In Fig. 6, note that the high level of expression of myc-PLK1 (Fig. 6a) and myc-SPAG5 (Fig. 6b) drained out locally the ECL reagent at the peak of the protein. The resulting double bands correspond in fact to unique ones. Human SPAG5, subcloned into pCMV6-MT, was from OriGene. Human DEUP1 and PLK1 were cloned into pCS2-MT vector (Addgene). Human CDC20B was cloned into pEGFP-C1, pEGFP-N1 (Clontech) for the GFP fusion protein and pIRES-EYFP (Addgene) for the untagged protein.

In-gel digestion, NanoHPLC, and Q-exactive plus analysis. For mass spectrometry analysis, protein spots were manually excised from the gel and destained with 100 µL of H2O/ACN (1/1). After 10 min vortexing, liquid was discarded, and the procedure was repeated 2 times. They were rinsed with acetonitrile and dried under vacuum. Extracts were reduced with 50 μL of 10 mM dithiothreitol for 30 min at 56 °C, then alkylated with 15 μL of 55 mM iodoacetamide for 15 min at room temperature in the dark. They were washed successively by: (i) 100 µL of H2O/ACN (1/1) (2 times) and (ii) 100 µL of acetonitrile. Gel pieces were rehydrated in 60 µL of 50 mM NH 4 HCO 3 containing 10 ng/µL of trypsin (modified porcine trypsin, sequence grade, Promega) incubated for one hour at 4 °C. After the removal of trypsin, samples were incubated overnight at 37 °C. Tryptic peptides were extracted with: (i) 60 µL of 1% FA (formic acid) in water (10 min at RT), (ii) 60 µL acetonitrile (10 min at RT). Extracts were pooled, concentrated under vacuum, resuspended in 15 µL of aqueous 0.1% formic acid for NanoHPLC separation.

Separation was carried out using a nanoHPLC (Ultimate 3000, ThermoFisher Scientific). After concentration on a µ-Precolumn Cartridge Acclaim PepMap 100 C 18 (i.d. 5 mm, 5 µm, 100 Å, ThermoFisher Scientific) at a flow rate of 10 µL/min, using a solution of H 2 O/ACN/FA 98%/2%/0.1%, a second peptide separation was performed on a 75 µm i.d. × 250 mm (3 µm, 100 Å) Acclaim PepMap 100 C 18 column (ThermoFisher Scientific) at a flow rate of 300 nL/min. Solvent systems were: (A) 100% water, 0.1% FA, (B) 100% acetonitrile, 0.08% FA. The following gradient was used t = 0 min 6% B; t = 3 min 6% B; t = 119 min, 45% B; t = 120 min, 90% B; t = 130 min 90% B (temperature at 35 °C).

NanoHPLC was coupled via a nanoelectrospray ionization source to the Hybrid Quadrupole-Orbitrap High Resolution Mass Spectrometer (ThermoFisher Scientific). MS spectra were acquired at a resolution of 70,000 (200 m/z) in a mass range of 300-2000 m/z with an AGC target 3e6 value of and a maximum injection time of 100 ms. The 10 most intense precursor ions were selected and isolated with a window of 2 m/z and fragmented by HCD (Higher energy C-Trap Dissociation) with normalized collision energy (NCE) of 27. MS/MS spectra were acquired in the ion trap with an AGC target 2e5 value, the resolution was set at 17 500 at 200 m/z combined with an injection time of 100 ms.

Data were reprocessed using Proteome Discoverer 2.1 equipped with Sequest HT. Files were searched against the Swissprot Homo sapiens FASTA database (update of February 2016). A mass accuracy of ±10 ppm was used to precursor ions and 0.02 Da for product ions. Enzyme specificity was fixed to trypsin, allowing at most two miscleavages. Because of the previous chemical modifications, carbamidomethylation of cysteines was set as a fixed modification and only oxydation of methionine was considered as a dynamic modification. Reverse decoy databases were included for all searches to estimate false discovery rates, and filtered using the Percolator algorithm at a 1% FDR.

Xenopus embryo injections, plasmids, RNAs, and morpholinos. Eggs obtained from NASCO females were fertilized in vitro, dejellied and cultured using standard protocols 54 . All injections were done at the 8-cell stage in one animal-ventral blastomere (presumptive epidermis), except for electron microscopy analysis for which both sides of the embryo were injected, and for RT-PCR analysis for which 2-cell embryos were injected.

cdc20b riboprobe was generated from X. laevis cDNA. Full-length sequence was subcloned in pGEM™-T Easy Vector Systems (Promega). For sense probe, it was linearized by SpeI and transcribed by T7. For antisense probe it was linearized by ApaI and transcribed by Sp6 RNA polymerase. Synthetic capped mRNAs were produced with the Ambion mMESSAGE mMACHINE Kit. pCS105/GFP-CAAX was linearized with AseI and mRNA was synthesized with Sp6 polymerase. pCS2-mRFP and pCS2-GFP-gpi were linearized with NotI and mRNA was synthesized with Sp6 polymerase. pCS-Centrin4-YFP (a gift from Reinhard Köster, Technische Universität Braunschweig, Germany) was linearized with Notl and mRNA was synthesized with Sp6 polymerase. pCS2-GFP-Deup1 and pCS2-Multicilin(MCI)-hGR were kindly provided by Chris Kintner; both plasmids were linearized with ApaI, and mRNAs were synthesized with Sp6 polymerase. Embryos injected with MCI-hGR mRNA were cultured in Dexamethasone 20 μM in MBS 0,1× from st11 until fixation. pCS2-Separase wild-type and phosphomutant 2/4 (protease dead, PD) were provided by Marc Kirchner and Olaf Stemann, respectively; plasmids were linearized with NotI and mRNAs were synthesized with Sp6 polymerase. Venus-cdc20b, cdc20b-Venus, and cdc20b were generated by GATEWAY™ Cloning Technology (GIBCO BRL) from Xenopus laevis cdc20b cDNA. cdc20b was also subcloned in pCS2-RFP to make RFP-cdc20b and cdc20b-RFP fusions. All cdc20b constructs were linearized with NotI and mRNAs were synthesized with Sp6 polymerase. Quantities of mRNA injected: 500 pg for GFP-CAAX, RFP, GFP-gpi, Separase and Separase(PD); 25 to 500 pg for GFP-Deup1; 40 to 500 pg for MCI-hGR; 1 ng for Venus-cdc20b, cdc20b-Venus, cdc20b, and cdc20b-RFP; 500 pg to 1 ng for RFP-cdc20b.

Two independent morpholino antisense oligonucleotides were designed against cdc20b (GeneTools, LLC). cdc20b ATG Mo: 5′-aaatcttctctaacttccagtccat-3′, cdc20b Spl Mo 5′-acacatggcacaacgtacccacatc-3′. 20 ng of MOs was injected per blastomere or 10 ng of each Mo for co-injection.

PCR and quantitative RT-qPCR. Xenopus embryos were snap frozen at different stages and stored at -80 °C. Total RNAs were purified with a Qiagen RNeasy kit (Qiagen). Primers were designed using Primer-BLAST Software. PCR reactions were carried out using GoTaq® G2 Flexi DNA Polymerase (Promega). RT reactions were carried out using iScript™ Reverse Transcription Supermix for RT-qPCR (BIO-RAD). qPCR reactions were carried out using SYBRGreen on a CFX Bio-rad qPCR cycler. To check cdc20b temporal expression by qPCR we directed primers to exons 9/10 junction (Forward: 5′-ggctatgaattggtgcccg-3′) and exons 10/11 junction (Reverse: 5′-gcagggagcagatctggg-3′) to avoid amplification from genomic DNA. The relative expression of cdc20b was normalized to the expression of the housekeeping gene ornithine decarboxylase (ODC) for which primers were as follows: forward: 5′-gccattgtgaagactctctccattc-3′: reverse: 5′-ttcgggtgattccttgccac-3′.

To check the efficiency of Mo SPL, expected to cause retention of intron 1 in the mature mRNA of cdc20b we directed forward (5′-cctcccgagagttagagga-3′) and reverse (5′-gcatgttgtactttctgctcca-3′) primers in exon 1 and exon2, respectively.

To check the expression of p53 in morphants by qPCR, primers were as follows: forward: 5′-cgcagccgctatgagatgatt-3′; reverse: 5′-cacttgcggcacttaatggt-3′. The relative expression of p53 was normalized to Histone4 expression (H4) for which primers were as follows: forward: 5′-ggtgatgccctggatgttgt-3′; reverse: 5′ggcaaaggaggaaaaggactg-3′.

Immunostainining on Xenopus embryos. Embryos were fixed in 4% paraformaldehyde (PFA) overnight at 4 °C and stored in 100% methanol at -20 °C. Embryos were rehydrated in PBT and washed in MABX (Maleic Acid Buffer + Triton X100 0,1% v/v). Next, embryos were incubated in Blocking reagent (Roche) 2% BR + 15% Serum + MABX with respective primary and secondary antibodies. The anti-Xenopus laevis CDC20B antibody was obtained by rabbit immunization with the peptide SPDQRRIFSAAANGT (amino acids 495-509) conjugated to keyhole limpet hemocyanin, followed by affinity purification (Eurogentec). For immunofluorescence, embryos were fixed at RT in PFA 4% in PBS, and incubated in the CDC20B antibody diluted 1/150 in BSA 3% in PBS. For all experiments, secondary antibodies conjugated with Alexa were used. GFP-CAAX in Supplementary Figure 5g was revealed using a rabbit anti-GFP antibody together with a secondary antibody coupled to Alkaline Phosphatase (AP), which was revealed as follows: embryos incubated with the AP-conjugated antibody were washed twice in alkaline phosphatase buffer (PAB) (NaCl 0.1 M, Tris HCl pH 9.5 0.1 M, MgCl 2 0.05 M, Tween 0.1%), 10 min each. Next, embryos were incubated in PAB with INT/BCIP substrate (Roche, REF:11681460001) until appropriate staining. Finally embryos were washed twice in MABX and fixed in MEMFA 30 min at RT. To mark cortical actin in MCCs, embryos were fixed in 4% paraformaldehyde (PFA) in PBT (PBS + 0.1% Tween v/v) for 1 h at room temperature (RT), washed 3 × 10 min in PBT at RT, then stained with phalloidin-Alexa Fluor 555 (Invitrogen, 1:40 in PBT) for 4 h at RT, and washed 3 × 10 min in PBT at RT. Primary antibodies: mouse anti-Acetylated-α-Tubulin (Clone 6-11B-1, Sigma-Aldrich, T7451, 1:1000), rabbit anti-γ-Tubulin (Abcam, Ab 16504, 1:500), mouse anti-γ-Tubulin (Clone GTU88, Ab 11316, Abcam, 1:500), Chicken anti-GFP (AVES, GFP-1020, 1:1000), rabbit anti-GFP (Torrey Pines Biolabs, TP401, 1:500), mouse anti-Centrin (Clone 20H5, EMD Millipore, 04-1624, 1:500). Secondary antibodies: donkey anti-rabbit-AP (Jackson ImmunoResearch, 711055152, 1:1000), Alexa Fluor 647 goat anti-mouse IgG2a (1:500; ThermoFisher Scientific, A-21241), Alexa Fluor 488 goat antichicken (1:500; ThermoFisher Scientific, A-11039), Alexa Fluor 568 goat antirabbit (1:500; ThermoFisher Scientific, A-11011).

In situ hybridization on Xenopus embryos. Whole-mount chromogenic in situ hybridization and whole-mount fluorescent in situ hybridization (FISH) was performed as detailed by Marchal and colleagues 54 , and Castillo-Briceno and Kodjabachian 55 , respectively. For single staining, all RNA probes were labeled with digoxigenin. For FISH on section, embryos were fixed in 4% paraformaldehyde (PFA), stored in methanol for at least 4 h at -20 °C, then rehydrated in PBT (PBS + Tween 0.1% v/v), treated with triethanolamine and acetic anhydride, incubated in increasing sucrose concentrations and finally embedded with OCT (VWR Chemicals). 12 μm-thick cryosections were made. Double FISH on sections was an adaptation of the whole-mount FISH method. 80 ng of cdc20b digoxigenin-labeled sense and antisense riboprobes and 40 ng of antisense α-tubulin fluorescein-labeled riboprobe 56 were used for hybridization. All probes were generated from linearized plasmids using RNA-labeling mix (Roche). FISH was carried out using Tyramide Signal Amplification -TSA TM Plus Cyanine 3/Fluorescein System (Perkin Elmer). Antibodies: Anti-DigAP (Roche, 11266026, 1:5000), Anti-DigPOD (Roche, 11207733910, 1:500), Anti-FluoPOD (Roche, 11426346910, 1:500).

Microscopy. Confocal: Flat-mounted epidermal explants were examined with a Zeiss LSM 780 confocal microscope. Four-colors confocal z-series images were acquired using sequential laser excitation, converted into single plane projection and analyzed using ImageJ software. Scanning Electron Microscopy (SEM): stage 37 Xenopus embryos were fixed in 3% glutaraldehyde in 0.1 M phosphatase buffer pH 7.4 (19 mL monosodium phosphate 0.2 M and 81 mL disodium phosphate 0.2 M) made with filtered (0.22 μm) bi-distilled water, during 4 h with vigorous agitation, then washed with phosphatase buffer and filtered bi-distilled water, to be successively dehydrated in ethanol at 25, 50, and 70% for 30 min each; then, embryos were stored in fresh ethanol 70% at 4 °C for 1-2 days before further processing. Embryos in 70% ethanol were further dehydrated with vigorous agitation in ethanol once at 90% and twice at 100% for 30 min each; they were subsequently subjected to CO 2 critical point drying (CPD030, Balzers) at 31 °C and 73 atm. Finally, samples were sputter-coated with gold (vacuum 1 × 10-12 Torr, beam energy 3-4 keV) for immediate SEM digital imaging (FEI TENEO) of the skin epidermis. Transmission Electron Microscopy (TEM): stage 25 Xenopus embryos were fixed overnight at 4 °C in 2.5% glutaraldehyde, 2% paraformaldehyde, 0.1% tannic acid in a sodium cacodylate buffer 0.05 M pH 7.3. Next, embryos were washed 3 × 15 min in cacodylate 0.05 M at 4 °C. Post-fixation was done in 1% osmium buffer for 2 h. Next, embryos were washed in buffer for 15 min. Then, embryos were washed in water and dehydrated conventionally with alcohol, followed by a step in 70% alcohol containing 2% uranyl during 1 to 2 h at RT, or overnight at 4 °C. Following three incubations in 100% alcohol, completed with three washes of acetone, embryos were included in classical epon resin, which was polymerized in oven at 60 °C for 48 h. Sections of 80 nm were made and analyzed into an FMI TECNAI microscope with acceleration of 200 kV.

Statistical analysis of Xenopus experiments.

To quantify the effect of our different experiments, we applied one-way ANOVA analysis and Bonferroni's multiple comparisons test (t test). ***p < 0.05; ns = not significant. Statistical analyses were done using GraphPad Prism 6.

Figure 5o and Fig. S6k: 10 cells per condition were analyzed and the total number of Centrin-YFP or γ-tubulin-positive spots per injected cell was counted. 
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 11 Figure 1.1: Cell structure of cork by Hooke (1665) .
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 12 Figure 1.2: Scaling of scRNA-seq experiments. Cell numbers reported in representative publications ordered by publication date. Key technologies are indicated. Figure extracted from Svensson et al., 2018.
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 13 Figure 1.3: Single-cell methods and heterogeneity of different molecular layers.
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 14 Figure 1.4: Single-cell analysis of whole developing vertebrate embryos. Xenopus embryos at 10 time points over the first day of life were dissociated, barcoded, and sequenced, yielding 136,966 single-cell transcriptomes. These data were clustered and connected over time to reveal a complete view of transcriptional changes in each embryonic lineage and clarify numerous features of early development. hpf, hours postfertilisation. Figure extracted from Briggs et al., 2018 .
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 15 Figure 1.5: A single-cell resolution atlas of mouse gastrulation and early organogenesis. A. Overview of embryonic developmental time points sampled, alongside corresponding Theiler stages (TS9-TS12) and Downs and Davies stages. Numbers indicate days post-fertilisation. PrS, pre-streak; ES, early streak; MS, mid-streak; LS, late streak; OB, neural plate no bud; EB, neural plate early bud; LB, neural plate late bud; EHF, early headfold; LHF, late headfold; 1-7S, 1-7 somites. B. Representative images of sampled embryos. Scale bars, 0.25 mm. C. Uniform manifold approximation and projection (UMAP) plot showing all the cells of the atlas (116,312 cells). Cells are coloured by their cell type annotation and numbered according to the legend below. Def., definitive; ExE, extra-embryonic; prog., progenitor. D. Fraction of cell type per time point, displaying a progressive increase in cell type complexity throughout our sampling. Figure extracted from Pijuan-Sala et al., 2019 .
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 216 Figure 1.6: Human cell atlas pilot projects distribution in six research areas .
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 21 Figure 2.1: Schematic of different approaches to isolate and capture single-cells.Figure modified from Hedlund et al., 2018 .
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Figure 2 . 2 :

 22 Figure 2.2: Split-and-pool synthesis of the cell barcode. To generate the cell barcode,the pool of microparticles is repeatedly split into four equally sized oligonucleotide synthesis reactions, to which one of the four DNA bases is added, and then pooled together after each cycle, in a total of 12 split-pool cycles. The barcode synthesised on any individual bead reflects that bead's unique path through the series of synthesis reactions. The result is a pool of microparticles, each possessing one of 412(16,777,216) possible sequences on its entire complement of primers. Figure extracted fromMacosko et al., 2015. 
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 23 Figure 2.3: Untargeted transcripts capture and amplification A. PCR amplification following reverse transcription using polyT primer. B. PCR amplification following reverse transcription using SMART technology. C. IVT amplification following reverse transcription..
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 24 Figure 2.4: Molecule counting using UMIs Overview of tagging single mRNA molecules with UMIs. A cell is shown containing mRNAs from different genes represented by distinct colors. UMIs are represented by colored boxes; untagged mRNA molecules (gray) were not reverse transcribed. Figure modified from Islam et al., 2014.
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 25 Figure 2.5: Schematic overview of library preparation stepsFigure inspired from Ziegenhain et al., 2017.
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 31 Figure 3.1: Schematic of a typical single-cell RNA-seq analysis workflow. Raw sequencing data are processed and aligned to give count matrices, which represent the start of the workflow. The count data undergo pre-processing and downstream analysis.Figure modified Luecken et al., 2019. Subplots were generated using airway epithelium data analysed during my thesis.

  Figure modified Luecken et al., 2019. Subplots were generated using airway epithelium data analysed during my thesis.

Figure 3 . 2 :

 32 Figure 3.2: CellRanger pipeline workflow. Sequentially performs sample demultiplexing, barcode processing and single-cell 3' gene counting for 10X Chromium data. Gene-barcode matrix (highlighted in green) is an output of the pipeline. Figure extracted from Zheng et al., 2017 .

•

  Number of counts (UMIs) per cell/barcode (or count depth); • Number of expressed genes per cell/barcode; • Percentage of counts from mitochondrial genes per cell/barcode. The distribution of these quality metrics, and more importantly, their outlier values, might relate to different 'cell states': • Stressed, broken of dying cells; • Capture sites (wells/droplets) that are empty, filled with cell debris, ambient mR-NAs, or containing multiple cells (doublets); • Distinct cell types with varying mRNA content and thus different sequencing quality metrics.

Figure 3 . 3 :

 33 Figure 3.3: Quality metric plots before cell filtering. A. Violin plots of the three quality metrics previously mentioned, respectively number of expressed genes, number of counts and percentage of mitochondrial genes per cell. B. Scatter plot combining all three quality metrics. C. Scatter plot of the total number of expressed and total number of counts per cells colored by cell type. cell type-specific quality metrics can easily be distinguished. Example dataset from Barbry's lab Human Cell Atlas dataset. .
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 34 Figure 3.4: Inferred doublet rate per number of captured cells Number of doublet estimated by DoubletDetection tool. .
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 35 Figure 3.5: Expression of top genes found in the expression background, before and after SoupX correction. Violin plot of the normalised expression of SCGB1A1 and STATH genes per cell type before and after SoupX background correction. .
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 36 Figure 3.6: scRNA-seq gene expression model model. Left panel The measured expression of a gene i in a cell j is the combination of both gene and cell specific effects. Middle panel The normalisation step aims to correct for unwanted variation of cell specific effects. Right panel Global scaling normalisation principle. Figure extracted from Vallejos et al., 2017 .
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 37 Figure 3.7: Schematic of the scran normalisation method. All cells in the data set are averaged to make a reference pseudo-cell. Expression values for cells in pool A are summedtogether and normalised against the reference to yield a pool-based size factor A. This is equal to the sum of the cell-based factors j for cells j = 1-4 and can be used to formulate a linear equation. (For simplicity, the tj term is assumed to be unity here.) Repeating this for multiple pools (e.g., pool B) leads to the construction of a linear system that can be solved to estimate j for each cell j. Figure extracted from A. T.Lun et al., 2016 . 
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 38 Figure 3.8: Count normalisation using regression model diagram. Data are normalised through many combinations of scaling and regression-based procedures, modelling both known and unknown variations.Figure extracted from Cole et al., 2019 .
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 39 Figure 3.9: Count matrices before and after gene expression recovery. Gene expression recovery can be summarised as the association between zero counts imputation and non-zero counts correction. .
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 310 Figure 3.10: UMAP representation obtained whether or not the genes were scaled. UMAP colored by cell type. .
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 311 Figure 3.11: Representation of the effects of gene expression log transformation on data properties. A. Count data mean-variance relationship. B. House-keeping gene count distribution .
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 312 Figure 3.12: Multiple inter-sample batch types. Estimating the batch effect in single-cell RNA-seq data. A. Biological and technical replicates have different origins. Technical replicates are derived from the same biological samples (cell cultures in this case), whereas biological replicates are independent samples. B. Experimental designs. A balanced design allows one to separate technical and biological sources of variation, whereas a confounded design mixes the two. Figure extracted from Hicks et al., 2018 .
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 313 Figure 3.13: Common reduction dimension methods for scRNA-seq data. Cells are colored by cell types .
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 3 Figure 3.15: K-means algorithm step-by-step. .
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 316 Figure 3.16: Phenograph clusterings and final cell type annotation. UMAP rep-
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 317 Figure 3.17: Overview of the distinct trajectory types. Ordered by increasing complexity. Figure extracted from Saelens et al., 2019 .
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 318 Figure 3.18: Overview of some trajectory inference methods. Illustrations extracted from the original publication of each paper. .

Figure 3 . 19 :

 319 Figure 3.19: RNA velocity recapitulates dynamics of chromaffin cell differentiation. A. PCA projection showing major subpopulations of Schwann cell precursors differentiating into chromaffin cells in embryonic day (E)12.5 mice (n = 385 cells). B. The velocities are visualised on the pre-defined t-SNE plot from the original publication. Velocity estimates based on nearest-cell pooling (k = 5) were used. C. Same velocity field as B, visualised using Gaussian smoothing on a regular grid .
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 41 Figure 4.1: Human respiratory tract. .

  Figure 4.2.A).
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 42 Figure 4.2: Anatomy of the human upper airways. A. Anatomy of the human upper airways, B. Mucous membranes in the nasal cavities .
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 43 Figure 4.3: Evolution of the pseudostratified epithelium lining the airway tract.
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 44 Figure 4.4: Alveoli and the respiratory membrane. .
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 45 Figure 4.5: Cellular composition of human tracheal and large airway epithelium.

Figure 4 . 6 :

 46 Figure 4.6: Reconstruction of a human bronchial submucosal gland based on serial cross sections. The approximate cell heights for each region are shown and are color coded by cell type. Red label also indicates CFTR expression. Although mainly in serous cells, this was also found in occasional cells in the duct. Figure extracted from Widdicombe et al., 2019 .
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 47 Figure 4.7: Brush organisation of mucins on the cilia and microvilli surfaces.

  Figure extracted from Dickey et al. 2012 .

Figure 4 . 8 :

 48 Figure 4.8: Diagram of normal ciliary beat cycle. A normal ciliary beat pattern is characterised by a strong beating stroke (black) followed by a recovery stroke (grey). Whereas the cilia are in a straight position during the beating stroke, the recovery stroke is initiated by a bending of the proximal axoneme. Figure extracted from Raidt et al., 2014 .

Figure 4 . 9 :

 49 Figure 4.9: The different types of cell junctions. Tight junctions (blue dots) between cells are connected areas of the plasma membrane that stitch cells together. Adherens junctions (red dots) join the actin filaments of neighboring cells together. Desmosomes are even stronger connections that join the intermediate filaments of neighboring cells. Hemidesmosomes (light blue) connect intermediate filaments of a cell to the basal lamina, a combination of extracellular molecules on other cell surfaces. Gap junctions (yellow) are clusters of channels that form tunnels of aqueous connectivity between cells. .
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Figure 4 .

 4 Figure 4.10: A stepwise engagement of tiered responses following respiratory infection. Pathogens and certain noxious compounds are detected by sensor cells located within the respiratory tract.Sensor cells immediately initiate innate immune responses that may be sufficient to clear localised infections. For example, sensor cells may secrete factors such as interferons (IFNs) that lead to pathogen clearance (direct pathogen clearance, top arrow). In some cases, first order cytokines directly recruit effector cells that clear pathogens; for example, CXCL8 mediate recruitment of neutrophils to clear bacteria (direct effector recruitment and/or activation, second arrow from the top). In addition, a two-tiered response can be engaged, in which sensor cells secrete first order cytokines that act on tissue-resident lymphoid cell populations, which integrate these signals and release appropriate second order cytokines. These cytokines in turn recruit and activate effector cells and effector functions specific to the pathogen type, which serve to promote pathogen clearance and tissue repair. Figure extracted from[START_REF] Iwasaki | Early local immune defenses in the respiratory tract[END_REF] 

  Figure extracted from Iwasaki et al., 2017 .
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 411 Figure 4.11: Respiratory tract development and endoderm-mesoderm interactions. A. Respiratory tract development (Human time line). B. NKX2 -postive endoderm expresses SOX2 and SOX9 in proximal and distal cells, respectively. At this point branching morphogenesis has begun and the endoderm projects outward towards the FGF10 -expressing mesoderm (dashed outline). Primitive airway smooth muscle, tracheal cartilage and the vascular tree are being specified during this time. C The distal tip endoderm expresses SOX9 and ID2.These cells respond to FGF10 and WNTs derived from the mesoderm, which together stimulate their outgrowth. In a feedback response, the endoderm expresses ligands, such as sonic hedgehog and WNT7b, that stimulate the differentiation of the mesoderm to airway smooth muscle. Figure inspired from[START_REF] Zepp | Cellular crosstalk in the development and regeneration of the respiratory system[END_REF] 

  Figure extracted from[START_REF] Zepp | Cellular crosstalk in the development and regeneration of the respiratory system[END_REF] 

Figure 4 . 13 :

 413 Figure 4.13: Embryogenesis of the upper respiratory tract. .

Figure 4 . 14 :

 414 Figure 4.14: Airway epithlium cell trajectories. Schematic of the cell trajectories in homeostatic/quiescent (brown) and differentiation (grey) states. Mouse pictogram indicates a cell trajectory not yet validated in human airway epithelium .

Figure 5 . 1 :

 51 Figure 5.1: Timeline of the studies on the airway epithelium at single cell resolution. Studies are color coded based on their characterisation approach of the airway epithelium.

Figure 5 . 2 :

 52 Figure 5.2: Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. A. Spatially heterogeneous differentiation of distal lung epithelium. The micrograph of a newly forming alveolar sac (asterisk) and the diagram beside illustrates cell types and the gradient of developmental intermediates comprising the distal lung epithelium during sacculation (E18.5). Micrograph: green, Pdpn, alveolar type 1 (AT1) marker; red, Sftpc, AT2 marker; white, E-cadherin, pan-epithelial marker. BPs are characterised by co-expression of some AT1 and AT2 markers. In the diagram, BPs (brown) persist at the tip, and nascent AT2 (red) and AT1(orange) cells are located more proximally. Ciliated (green) and Club (blue) cells are located in the bronchiolar epithelium (not labelled in the micrograph). Scale bar, 75mm. B. Developmental sequence of AT1 (orange) and AT2 (red) specification from a common BP (brown). Two and three maturation intermediates were identified in the specification processes of AT2 and AT1 cell types, respectively, on the basis of the expression of known and previously unknown marker genes for both alveolar lineages measured by single-cell RNA-seq. Figure extracted from Treutlein et al., 2014 .

Figure 5 . 3 :

 53 Figure 5.3: A Single-Cell Map of Lung Cells during Development. A. Overview of the experimental design. Single cells were collected from 7 time points along lung development. B. Single-cell RNA-seq data from immune and non-immune compartments were analysed and clustered by the MetaCell package resulting in a two-dimensional projection of single cells onto a graph representation. 22 cell types and states were annotated and marked by color code. Figure extracted from Cohen et al., 2018 .
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 54 Figure 5.4: Drop-seq analysis identifies a diversity of cell types in mouse lung after birth cell types were identified using an iterative unbiased clustering strategy. Endo endothelial cells, Mesen mesenchymal cells, Immune immune cells, Epi epithelial cells. Cells were from two individual mice at postnatal day 1. Figure extracted from M. Guo et al., 2019 .

Figure 5 . 5 :

 55 Figure 5.5: Single-cell RNA-Seq reveals a population of gland-like cells in the airway surface epithelium following naphthalene injury. A. Overview of the experimental design and single-cell library preparation. B. t-SNE visualisation of the single-airway epithelial cells after naphthalene injury (n = 139 cells). Cells are color coded by k-means clusters. C. Whole-mount immunohistochemistry of submucosal glands for myoepithelial cell marker Acta2 (green), basal cell marker Krt5 (red), luminal cell marker Krt8 (gray), and nuclear DAPI (blue). The dotted line indicates border between submucosal gland and surface epithelium. The scale bar represents 50 mm. D. Whole-mount immunohistochemistry staining of tracheal surface epithelium in corn oil or naphthalene-treated mice at day 5 after injury. Dotted circles indicate gland pore opening. Higher magnification image of the gland pore is shown in inset right bottom. The scale bars represent 50 mm. .Figure and legend extracted from Tata et al., 2018

92 CHAPTER 5 .Figure 5 . 6 :

 556 Figure 5.6: Longitudinal single cell RNA-seq analysis of lung regeneration reveals cell state and cell communication dynamics.. A. Single cell suspensions from whole mouse lungs were analysed using scRNA-seq at the indicated time points after bleomycin-mediated lung injury. The color code in the UMAP embedding shows shifts of the indicated cell types in gene expression space during the regeneration time course. B. A high-resolution longitudinal data set was generated by subjecting sorted cells from the epithelial compartment to scRNAseq from the 18 indicated timepoints. C.D. UMAP embedding displays cells colored by cell type identity (b) and timepoint (c). E. Diffusion map of Louvain clusters 2, 10, and 11 colored by inferred terminal state likelihood reveals two distinct transdifferentiation trajectories from activated AT2 and MHC-II+ club cells towards a Krt8+ cell state. F. Velocity plot displays the UMAP embedding colored by timepoint with velocity information overlaid (arrows), indicating terminal differentiation of Krt8+ progenitors into AT1 cells. G. Summary of observations and revised model of alveolar regeneration. Figure extracted from Strunz et al., 2019.

Figure 5 . 7 :

 57 Figure 5.7: A single-cell expression atlas of mouse tracheal epithelial cells A. Overview of the experimental design. B. t-SNE of 7,193 scRNA-seq profiles, coloured by cell type. The ionocyte cluster is circled. C. Whole-mount stain of Krt13 (magenta) and acetylated tubulin (green), Scale bar: 500 µm (main), 50 µm (expanded inset). D. Schematic of squamous hillocks within pseudostratified ciliated epithelium. E. Lineage hierarchy of the airway epithelium. Specific cells are associated with novel cell type markers, pathways and diseases. Figure extracted from Montoro et al., 2018. .

Figure 5 . 8 :

 58 Figure 5.8: Single-cell RNA-seq of proximal airway epithelial cells in mouse and human A. Overview of the study experimental design. B. Mouse tracheal epithelium and differentiated HBEC culture are pseudostratified, containing basal cells (KRT5 ), secretory cells (Scgb1a1 in mouse; MUC5B in human), and ciliated cells (AcTub, acetylated -tubulin). Scale bars, 20 µm C. D. SPRING plots of scRNA-seq data for mouse tracheal epithelial cells (7,662 cells) (C) and HBECs (2,970 cells) (D) coloured by inferred cell type E. Fluorescent in situ hybridisation in mouse tracheal epithelium and human bronchial epithelium for FOXI1 (red) and CFTR (green).Figure extracted from Plasscheart et al., 2018.

98 CHAPTER 5 .

 5 Figure 5.9: A human lung cell census of epithelial, stromal and immune compartments across macro-anatomical locations. A. Schematic depicting anatomical regions analysed in this study. B. Table with the details of anatomical regions, tissue sources, donors, and cell numbers present in (D) C. Table with details of anatomical regions, tissue sources, donors, and cell numbers present in (E). D. t-SNE displaying the major epithelial clusters present in the full extent of the human respiratory tree. T1, type 1; T2, type 2. E. t-SNE displaying the major immune and mesenchymal clusters present in the full extent of the human respiratory tree. NK, natural killer. Figure extracted from Braga, 2019. .

100 CHAPTER 5 .Figure 5 . 10 :

 5510 Figure 5.10: Strategy for single cell RNA sequencing and annotation of human lung and blood cells. A. Workflow for capture and mRNA sequencing of single cells from the healthy unaffected regions indicated (D, distal; M, medial; P, proximal lung tissue) of fresh, surgically resected lungs with focal tumors from three subjects (1, 2, 3) and their matched peripheral blood. B. Cell clustering and annotation pipeline. C. Heatmap of pairwise Pearson correlations of the average expression profile of each cluster in the combined 10x dataset plus Smart-Seq2 analysis of neutrophils. Tissue compartment and identification number of each of the 58 clusters are indicated. . Figure extracted from Travaglini et al. Travaglini et al., 2019
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 5 Figure 5.11: A single-cell atlas of mouse lung reveals major cell type identities. A. Experimental design-whole lung single-cell suspensions of young and old mice were analysed using the Dropseq workflow. B. tSNE visualisation shows unsupervised transcriptome clustering, revealing 30 distinct cellular identities. C. The dotplot shows (1) the percentage of cells expressing the respective selected marker gene using dot size and (2) the average expression level of that gene based on UMI counts. Rows represent hierarchically clustered cell types, demonstrating similarities of transcriptional profile. D. Experimental design-three independent cohorts of young and old mice were analysed by scRNA-seq, bulk RNA-seq, and mass spectrometry-driven proteomics respectively. E. The scatter plot shows the result of a two-dimensional annotation enrichment analysis based on fold changes in the transcriptome (x-axis) and proteome (y-axis), which resulted in a significant positive correlation of both datasets. Types of databases used for gene annotation are color coded as depicted in the legend. . Figure extracted from Angelidis et al. Angelidis et al., 2019

104 CHAPTER 5 .Figure 5 . 12 :

 5512 Figure 5.12: Mapping the type 2 immunity inflamed human sinus cellular ecosystem by scRNA-seq. A.B. Clinical disease spectrum and experimental workflow leading to a t-distributed stochastic neighbour embedding (t-SNE) plot displaying 18,036 single cells, coloured by shared nearest neighbour (SNN) clusters (A) and cell types (B). Figure extracted from Ordovas-Montanes et al., 2018.
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 513 Figure 5.13: Single-cell RNA sequencing of human bronchial cells from never and current smokers. A. Bronchial brushings were procured from the right bronchus of 6 never smokers and 6 current smokers. B. t-SNE was performed to illustrate transcriptomic relationships amongst cells. Donor smoking status (NS = never smoker, CS = current smoker) was visualised for each cell as well as expression of bronchial cell type marker genes (z-normalised transcripts per million (TPM) values) across all cells. Figure extracted from Duclos, 2018.

Figure 5 . 14 :

 514 Figure 5.14: Whole epithelium smoking responses reconstructed from cell specific scRNA-seq analyses. A. Schematic for studying human tracheal epithelium by scRNA-seq. B. tSNE visualisation of cells in the human trachea depicts unsupervised clusters defining present cell types. C. Schematic summarises the smoking response of the whole epithelium. Figure extracted from Goldfarbmuren et al., n.d.
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 61 Figure 6.1: Measurement and theory of transcriptional fluctuations. A. Montage of a cell identified and tracked throughout a time lapse movie showing the transcription spot fluctuating over time. Detected cell (green) and nuclear boundaries (red) are shown. B. Spot intensity trace for the cell shown in A. Figure extracted from Corrigan et al., 2016 .
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 62 Figure 6.2: The Contribution of Transcriptional Bursts to Cell-to-Cell Variability. A. Transcription without bursts with a relatively small amount of noise. B. Bursts in transcription can cause significantly higher variability, even when producing the same mean number of transcripts. Figure extracted from Raj et al., 2008b. . These models of transcriptional bursting are at the basis of the many modelling of gene expression used in both bulk and single-cell RNA-seq data analysis. It is used for the modelling of count data necessary in many steps of the analysis workflow: normalisation, batch correction, differential expression testing, ... (cf. Chapter 3, edgeR, limma, MAST).
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 63 Figure 6.3: Schematic of the differential distribution of gene expression between two cell populations. A. Population of individual cells from two cell-population shaded by expression state of gene X. B. Histogram of the observed expression level of gene X for the cell populations in (A). C. Traditional differential expression (DE). D. Differential proportion of cells within each component (DP). E. Differential modality (DM). F. Both differential modality and different component means within each condition (DB). Figure extracted from Korthauer et al., 2015.

  Figure extracted from Korthauer et al., 2015.
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 64 Figure 6.4: SCsim simulation model .

à

  Developmental cell lineages inference Batch EffectDifferential analysis in single cell RNAseq is biased by the dropout rate. As a consequence, the size of a cell population might influence the possibility to detect differentially expressed genes.SCsim is a novel R package can simulate single-cell RNA-seq datasets matching real datasets characteristics and analysis challenges, such as rare cell populations, batch effect, differentially expressed genes and continuous processes. As a tool, it will provide unbiased datasets against which new scRNAseq analysis methods / workflows can be tested to evaluate their efficiency and limitations.

  Single-cell RNA-seq reveals novel cell differentiation dynamics during human airway epithelium regeneration, published in Development (see the end of the chapter). 126 CHAPTER 7. SINGLE-CELL RNA SEQUENCING REVEALS NOVEL CELL DIFFERENTIATION DYNAMICS DURING HUMAN AIRWAY EPITHELIUM REGENERATION

  ) non-cycling basal cells, (3) suprabasal cells, (4) secretory/club cells, (5) goblet cells and (6) multiciliated cells. I then studied the evolution of their proportion at each time point. It showed a global decrease in basal and club cells along the time-course followed by an initial detection of suprabasal cells at ALI 12 and of goblet and multiciliated cells at ALI 28. Lastly, using Monocle 2 as trajectory inference tool, I reconstructed the cell trajectories from cycling basal cells as a starting point to basal, suprabasal and club cells. A branching point was detected at the club cell stage, bifurcating into either goblet CHAPTER 7. SINGLE-CELL RNA SEQUENCING REVEALS NOVEL CELL DIFFERENTIATION DYNAMICS
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 7 SINGLE-CELL RNA SEQUENCING REVEALS NOVEL CELL DIFFERENTIATION DYNAMICS DURING HUMAN AIRWAY EPITHELIUM REGENERATION

CHAPTER 7 .Figure 7 . 1 :

 771 Figure 7.1: Schematic overview of the robust consensus clustering method.The key steps of the robust clustering method are represented. (i) Subsetting the dataset. (ii) Clustering each subset. (iii) Storing the result of each clustering in an affinity matrix. (iv) Constructing a consensus affinity matrix. (v) Performing final clutering step based on the consensus affinity matrix.

  2.C). 132 CHAPTER 7. SINGLE-CELL RNA SEQUENCING REVEALS NOVEL CELL DIFFERENTIATION DYNAMICS DURING HUMAN AIRWAY EPITHELIUM REGENERATION In some cases, additional sub-clustering might be necessary or of interest and this process is repeated on the selected cells (Figure 7.2.D.E). The final results are represented in a clustering tree (Figure 7.2.F).
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 72 Figure 7.2: Clustering method outputs for the robust clustering of the dataset Pneumacult ALI28. A Final consensus affinity matrix for each k number of clusters. B Clustering quality metric plots. Red box highlight the selected number of clusters. C Cluster annotation. D-E Robust sub-clustering and annotation. E Method's final clustering tree. .
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 7 SINGLE-CELL RNA SEQUENCING REVEALS NOVEL CELL DIFFERENTIATION DYNAMICS DURING HUMAN AIRWAY EPITHELIUM REGENERATION

Fig. 1 .

 1 Fig. 1. Characterization of multiciliated and goblet cell lineages during airway epithelium regeneration using single-cell RNA-Seq. (A) Model of upper airway epithelium, based on six major types of epithelial cells, with consensus lineage hierarchy. (B) scRNA-seq experimental design. Regenerating airway epithelia were dissociated on successive days (7, 12 and 28) after a transition to an air-liquid interface (ALI). (C) t-SNE plots of the scRNA-seq expression data highlighting the main cell types observed at ALI 7 (3426 cells), ALI 12 (2785 cells) and ALI 28 (3615 cells) (gray, unassigned cells). (D) Relative abundance of the six main cell types at each time point. (E) Aggregate t-SNE plot of gene expression in 9826 cells. (F) Inference of goblet and multiciliated cell lineages by Monocle 2, based on an aggregate of the entire experiment. Color code is the same as in C. Inset shows pseudotime picturing using a white-to-gray gradient along the differentiation trajectory. (G) Distribution of the six main cell types in the pseudotime along the two branches of the trajectory from F (bottom, goblet cell branch; top right, multiciliated cell branch). (H) Heatmap representing the smoothened temporal expression pattern of a representative list of cell type-specific markers, with branch representations as in G. Cells were ordered by branch, then cluster emergence, then pseudotime.

Fig. 2 .

 2 Fig. 2. Goblet cells as differentiation intermediates for multiciliated cells. (A) Venn diagram illustrating the closeness of the best marker genes for club and goblet cells deduced from scRNA-seq of cells differentiated in Pneumacult medium (ALI 28). (B) Violin plots of normalized expression of SCGB1A1, MUC5AC and MUC5B, three markers of club and goblet cells. (C) Heatmap of the most differentially expressed genes between groups of suprabasal, club and goblet cells at key points in the pseudotime (before branching, start of the GC branch and end of the GC branch). Cells are ordered by pseudotime. Bars on the top of the heatmap indicate cell type and pseudotime. (D-F) t-SNE plots of expression from scRNA-seq of ALI 28 (D), bronchial biopsy cells (E) and newborn pig tracheal cells (F). (G-I) Highlights of gene expression for FOXJ1+ cells (blue), MUC5AC+ cells (green) and FOXJ1+/MUC5AC+ cells ( pink) in the same samples as in D-F. (J-L) Relationships between normalized expression of MUC5AC and FOXJ1 in the three same samples. (M-O) Highlights of gene expressions for FOXJ1+ cells (blue), SCGB1A1+ cells (green) and FOXJ1+/SCGB1A1+ cells ( pink). (P) Immunodetection of cells co-expressing markers of multiciliated cells (acetylated tubulin) and of goblet cells (MUC5AC) (left) or of club cells (SCGB1A1) (right). Scale bars: 50 µm. (Q) Representation by a t-SNE plot (scRNA-seq of cells differentiated in Pneumacult medium at ALI 28) of the RNA velocity residuals colored according to estimates of the positive (red) and negative (blue) residuals for a multiciliated cell marker (CEP41), a goblet cell marker (MUC5B) and a club cell marker (SCGB1A1).

Fig. 3 .

 3 Fig. 3. Deuterosomal cells form a discrete multiciliated cell intermediate population with a centriole amplification signature. (A) Subclusterization of scRNA-seq from cells differentiated in Pneumacult medium (ALI 28) into 12 cell types, deduced from intra-heterogeneity analysis of the six initial clusters. (B) Illustration of the specific expression of DEUP1 and short CDC20B in the deuterosomal cell population (low to high expression, gray to red). (C) Identification of the cluster of deuterosomal cells in scRNA-seq data from a biopsy of human bronchi, newborn pig trachea and mouse primary culture (MTEC, ALI 3, stage of higher centriole amplification). Light blue, deuterosomal cells; dark blue, multiciliated cells. (D) Venn diagram showing that overlaps exist between top gene markers of deuterosomal cells (light blue) and those of proliferative ( pink) or multiciliated cells (dark blue). (E) Dot plot of marker genes for the deuterosomal cell population. Color gradient (gray to red) and dot size indicate for each cluster the mean marker expression and the percentage of cells expressing the marker, respectively. (F) Enriched gene sets in deuterosomal cell marker genes.

Fig. 4 .

 4 Fig. 4. Keratin signature switch during airway regeneration. (A) Plot of normalized gene expression of keratins according to pseudotime from scRNA-seq of cells differentiated in Pneumacult medium (ALI 28). (B) Double immunofluorescence staining for KRT5 and KRT13, KRT4 or KRT8. White arrowheads indicate doubly labeled cells (KRT5+/KRT13+, KRT5+/KRT4+, KRT5+/KRT8+). Nuclei are shown in blue (DAPI). (C) Quantification of double-positive cells from B. **P<0.01 (Wilcoxon test). The black line inside each box represents the median. The vertical size of the boxes are the interquartile range, or IQR. Whiskers indicate 1.5×IQR for the box at the extreme left, or most extreme values in the other two boxes. (D) tSNEs of scRNA-seq data from pig tracheal epithelial cells. KRT5+ cells are shown in emerald green, KRT13+ cells are shown in red, KRT4+ cells are shown in yellow-green and double-positive cells are shown in black. The indicated percentage corresponds to double-positive cells. (E) Heatmap for scRNA-seq data from Pneumacult ALI28 showing gene expression for keratins. (F) Immunohistochemistry for KRT5, KRT7 and acetylated tubulin or SCGB1A1 on sections of Pneumacult fully differentiated in vitro epithelium. Arrows indicate KRT7+ luminal non-multiciliated cells. Scale bars: 20 µm.

Fig. 5 .

 5 Fig. 5. Single-cell expression of signaling pathway components during airway regeneration. (A) Heatmap of the genes related to the Notch pathway with cells ordered by clusters. (B) Heatmap of the genes related to the Wnt pathway with cells ordered by cluster. (C) Heatmap of the genes related to the BMP/TGFβ pathway with cells ordered by cluster. (D) Violin plots for selected genes in the bronchial biopsy and nasal turbinate samples. (E) Summary of the major partners involved in specific cell types for the three pathways.
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 881 Figure 8.1: Schematic of the sampling methods of the airway epithelium. .
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 82 Figure 8.2: Overview of the trajectories of the airway epithelium. A. Epithelial rare cell trajectories. B. Surface epithelial cell trajectories .

Figure 8 . 3 :

 83 Figure 8.3: Radar plot representation of the sample quality metrics. Samples spread in four radar plots by sampling position. In each radar plot, samples are colored by donor. .

Figure 8 . 4 :

 84 Figure 8.4: Comparison of the doublet detection efficiency using Scrublet or DoubletDetection method. A. UMAP representation of the complete HCA dataset with predicted doublet represented in red. B. Scatter plot of the percentage of predicted doublets identified per dataset size. Dot colored by sampling-position and shaped by sampling-method. C. Barplot of the percentage of predicted doublets per cell-cluster. Bar colored by cell-clusters. .

Figure 8 . 5 :

 85 Figure 8.5: Top background genes. Heatmap of the top 50 genes found in the ambient mRNAs background. Scaled gene expression obtained from the 'empty droplets' (droplets with less than 10 UMIs in total) from each sample of the HCA dataset. Genes in row, samples in columns. Sample position and sampling-method are color-coded. .

Figure 8 . 6 :

 86 Figure 8.6: PCA plots of the HCA dataset. Scatter plot of the cells in the PC space, from PC1 to PC4. Cells colored by sampling-position and by cell type. .

Figure 8 . 8 :

 88 Figure 8.8: Phenograph clusterings and final cell type annotation. UMAP representation of phenograph clustering outputs with k parameter (number of nearest neighbours) equal to 100 or 10 compared to final cell type assignment. .

Figure 8 . 9 :

 89 Figure 8.9: Overview of the differential expression testing design. A. Schematic of the synthetic-bulk design of each cell type. Dot colored by cell types and shaped by samples. B. Heatmap of the correlation between the transcriptome of each bulk, colored by cell type. C. Barplot of the library size of each synthetic-bulk, colored by cell type. .

Figure 1 .

 1 Figure 1. Establishment of a molecular cell atlas of the healthy human airways. (A) Schematic representation of the sampled anatomical regions. (B) Experimental design of the study, detailing the anatomical regions, sampling methods, number of donors, biopsies and cells after data curation. (C) UMAP visualization of the whole human healthy airway dataset. Each distinct cell type is defined by a specific color. (D) Heatmap of expression for top marker genes of each cell type. (E) Pie chart of the total proportion of each cell type identified in human airways. (F) Barplot of the relative abundance of each cell type collected by two distinct modes of biopsies at four macro-anatomical locations.

Figure 2 .

 2 Figure 2. Distinct gene expression signatures are detected between nasal and trachebronchial airways. (A) Unsupervised hierarchical clustering of gene expression correlation between sample-specific cell types. (B-C) Venn Diagrams indicating the number of specific transcripts of each cell type (secretory, suprabasal and multiciliated cells), in the nose (B) and tracheobronchial airways (C). (D) MA-plot of differential expression between secretory cells from the nose versus tracheobronchial airways. Red and blue dots indicate nasal and tracheobronchial airways over-expressed genes, respectively. (E) Detection by immunofluorescence of proteins that are more specifically associated with a nose or a tracheobronchial expression. (F) Enriched gene sets associated with nasal and tracheobronchial secretory cell markers.

Figure 3 .

 3 Figure 3. Detection of rare epithelial cells across human airways. (A) Focussed UMAP visualization on a cluster of ionocytes, neuroendocrine, brush cells and undefined cells. (B) Pie charts of the anatomical distribution of each cell type according of location (top line) or mode of sampling (bottom line). (C) Dot plot of the top gene markers identified per cell type of interest. (D) Unsupervised hierarchical clustering of gene expression correlation between position-specific epithelial cell types. (E) UMAP visualization of double positive FOXJ1 + -MUC5AC + cells (purple), relative to FOXJ1 + cells (blue) and MUC5AC + cells (green). (F) RNAscope detection of a mucous-multiciliated cell in nasal tissue. Red: FOXJ1 + RNA; green: MUC5AC + RNA and white: SCGB1A1+ RNA.

Figure 4 .

 4 Figure 4. Characterization of cycling cells and KRT13 expression in the healthy airway epithelium. (A-B) Highlights of cycling basal cells in global UMAP representations without (A) or with (B) batch correction of the embedding. (C) Violin plot of the cell-cycle phase score in all cell types detected in the whole dataset. (D) Focussed UMAP visualizations on the subset of cycling cells, colored by cell cycle phase scores at G1, S, G2/M stages. (E) Dot Plot of marker gene expression in cycling, basal and suprabasal cells. (F) Immunostaining for MKI67 and KRT5 in a bronchial biopsy section. (G) Barplot of the percentage of cycling cells per sample. (H) Violin plots of the expression of KRT13 in suprabasal cells. (I) Immunostainings for KRT13 (green) and acetylated tubulin (red) in nasal turbinate whole mount (top view).
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 1 Figure 1

  genes were designed and synthesized by ACD. ACD probes used were: FOXJ1-C1 (430921), SCGB1A1-C4 (469971-C4), MUC5AC-C2 (312891-C2), KRT13-C1 (528111), KRT5-O1-C2 (547901-C2), MKI67-C3 (591771-C3). Hybridization signals were detected by Opal probes 520, 570 and 650 (Cat. No. FP1487001KT, FP1488001KT and FP1496001KT, Perkin Elmer) at 1:1500 dilution. At last, sections on glass slides were counterstained with DAPI for 30 sec and mounted in Prolong TM Gold antifade reagent with DAPI (Cat. No. P36931, Life technologies).

Figure E1 .

 E1 Figure E1. Sampling positions and cell type composition of the airways. (A) Schematic representation depicting the precise macro-anatomical location of each sample in the dataset. Numbers indicate donor identification number. (B) Barplot of the relative cell type composition of each sample, grouped by position and method of sampling.

Figure E2 .

 E2 Figure E2. mRNA content and cell size of each sample. (A) Violin plot of the number of detected genes per sample. (Student t-test ***: pval < 0.001). (B) Violin plot of the number of UMI (log10 scale) per sample. (Student t-test ***: pval < 0.001). (C) Boxplot of average measured cell size per sample grouped by position (Wilcoxon test **: pval < 0.01, ns : nonsignificant).

Figure E3 .

 E3 Figure E3. Dataset embeddings. (A) UMAP visualization colored by cell types, without embedding. (B) UMAP visualization of batch corrected and non-batch corrected data, colored by cell type, sampling method or sampling position.

Figure E4 .

 E4 Figure E4. Secretory genes expression in secretory and secretory N cells. (A) UMAP representation of secretory N (left) and secretory (right) cells for the selected genes.

Figure E5 .

 E5 Figure E5. Pneumocytes distribution and characterisation. (A) Pie chart of the anatomical region of origin for AT1 and AT2 cells (B) Dot plot of pneumocytes marker genes.

Figure E6 .

 E6 Figure E6. Immune cell distribution across the human airways. (A) UMAP visualization of the immune cell clusters. (B) Heatmap of cell type-specific regulatory unit activity score. (C) Pie chart of the anatomical region of origin for each immune cell type. (D) Barplot of the relative immune cell type composition of each sample, grouped by sampling position and method. (E) UMAP representation of T cells coloured by the expression of T cell subtypes marker genes

Figure E8 .

 E8 Figure E8. Robust heatmaps of cell type markers across all samples. (A) Heatmap of epithelial cell types. (B) Heatmap of stromal cell type. (C) Heatmap of immune cell types. Scaled by gene expression.

Figure E9 .

 E9 Figure E9. Nasal-Tracheobronchial specificities in gene expression in secretory cells. (A) Violin plot of up-regulated genes in nasal secretory cells (Secretory N). (B) Violin plot of up-regulated genes in tracheobronchial secretory cells. (C) Heatmap of cell type-specific regulatory unit activity score.

Figure E10 .

 E10 Figure E10. Rare cells detailed description. (A) Heatmap of specific regulatory unit activity score of rare cell type. (B-C) PAGA representations of airway epithelial cell lineages in nasal

Figure E11 .

 E11 Figure E11. Identification and characterization of KRT13-positive cells. (A) Violin plot of the expression of KRT13 by cell type (B) UMAP representation colored by the expression of KRT13 and KRT4 respectively. (C) RNAscope of KRT13 and MKI67 in nasal epithelial tissue.
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Figure 1 :

 1 Figure 1: Left: Decay of the Frobenius norm for the two synthetic datasets versus the number of loops of the alternating minimization scheme emphasizes the fast and smooth convergence of our algorithm. Right: The evolution of the number of selected genes versus the constraint is a smooth monotonous function.

Figure 2 :

 2 Figure 2: Up. Evolution of the silhouette coefficient versus the sparsity constraint η. The silhouette coefficient can be viewed as a function of η, so that we can chose a parameter η which allows to obtain a high silhouette coefficient. Down. Evolution of the silhouette coefficient versus the number of selected features.

Figure 3 :

 3 Figure 3: Comparison of 2D visualization using tsne (Van der Maaten and Hinton (2008)). Each point represents a cell. Misclassified cells in black are reported for each method. This figure shows the nice small ball-shaped clusters computed by k-sparse and SIMLR methods.

3. 4

 4 Evaluation and comparison between methodsWe provide accuracy, ARI, NMI and time processing for four different methods: PCA k-means, spectral clustering (Von Luxburg (2007)), SIMLR (Single-cell Interpretation via Multikernel Learning)(Wang et al. (

Figure 4 :

 4 Figure 4: Left: Decay of the Frobenius norm for the three datasets versus the number of loops of the alternating minimization scheme emphasizes the fast and smooth convergence of our algorithm.Right: The evolution of the number of selected genes versus the constraint is a smooth monotonous function. In our constrained approach, parameter η is directly connected to the number of genes.

Figure 5 :

 5 Figure 5: Up. Evolution of the silhouette coefficient versus the sparsity constraint η. The silhouette coefficient can be viewed as a function of η, so that we can chose a parameter η which allows to obtain a high silhouette coefficient. Down. Evolution of the silhouette coefficient versus the number of selected features.

3. 5

 5 ScalabilityK-sparse converges within around L = 10 loops. The complexity of the inner iteration of k-sparse is O(d × d × d n (η)) for the gradient part (sparse matrix multiplication X T XW ), plus O(d × d) for the projection part, where d n (η) is the average number of nonzero entries of the sparse matrix W . This number depends on the sharpness of the 1 constraint (5) defined by η, and on the iteration n. (As n ranges from 0 to N , sparsity is increased as illustrated by the numerical simulations.) The number of genes decreases rapidly with the iterates which allows to use sparse computing. One must then add the cost of k-means, that is expected to be O(m × d) in average. This allows k-sparse to scale up to large or very large databases. In contrast, optimizing the values of the Lagrangian parameter using permutations

Figure 6 :

 6 Figure 6: Comparison of 2D visualization using tsne (Van der Maaten and Hinton (2008)). Each point represents a cell. Misclassified cells in black are reported for two datasets: Klein and Usoskin. k-sparse significantly improves visually the results of Sparcl and SIMLR (note that SIMLR fails to discover one class on Usoskin). This figure shows the nice small ball-shaped clusters computed by k-sparse and SIMLR methods.
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Fig. 1

 1 Fig. 1 Single-cell RNA-seq analysis reveals MCC transcriptome at deuterosome stage. a Experimental design of the scRNA-seq experiment. b tSNE plot. Each point is a projection of a unique cell on a 2D space generated by the tSNE algorithm. Blue dots represent MKI67-positive proliferating cells, and red dots represent DEUP1-positive cells corresponding to maturing MCCs at deuterosome stage. c Cell cycle-related gene set expression in HAECs measured by scRNA-seq. Cells were ordered along a pseudotime axis, defined with the Monocle2 package. Phase-specific scores are displayed in the top heatmap. Expression of selected genes is displayed in the bottom heatmap. d tSNEs plots for a selection of genes specifically enriched in deuterosome stage cells. Note that CDC20B exhibits the most specific expression among deuterosome marker genes

Fig. 2

 2 Fig. 2 Composition and organization of vertebrate deuterosomes a, b Maturing mouse ependymal MCCs were immunostained as indicated, pictures were taken with confocal (a) or STED (b) microscope. a Individual deuterosomes (dashed boxes in top panels) are shown at higher magnification in bottom panels. DEUP1 stains the deuterosome core (ring) and a close fibrous area that defines the perideuterosomal region. The centriolar marker FOP reveals procentrioles arranged in a circle around the deuterosome. Pericentrin (PCNT) is enriched in the perideuterosomal region. γ-Tubulin (γ-TUB) stains the core as well as the periphery of the deuterosome. b STED pictures showing the organization of FOP, PCNT, and γ-TUB around deuterosomes. Individual centrioles identified by FOP staining are pointed out with arrowheads. The diagram was drawn from the adjacent FOP photograph to help reveal the regular concentric organization of nascent centrioles in a typical deuterosomal figure. c Xenopus embryos were immunostained for γ-Tubulin (γ-Tub) and Centrin and high magnification pictures of immature epidermal MCCs were taken. In these cells, Centrin-positive procentrioles grow around γ-Tubulin-positive structures. d Xenopus embryos were injected with Multicilin-hGR and GFP-Deup1 mRNAs, treated with dexamethasone at gastrula st11 to induce Multicilin activity, and immunostained at neurula st18 for γ-Tubulin, GFP, and Centrin. In c and d, zooms (right panels) were made on regions identified by dashed boxes. Scale bars: 5 µm (a, top), 500 nm (a, bottom), 500 nm (b), 10 µm (c, d, large view), 1 µm (c, d, high magnification)

Fig. 3

 3 Fig. 3 CDC20B associates to vertebrate deuterosomes. a Double immunofluorescence was performed on mouse tracheal MCCs after 3 days of culture in air-liquid interface. Low magnification confocal panels show coincident CDC20B and DEUP1 staining in several individual MCCs. High magnification on a single MCC reveals the prominent association of CDC20B to large deuterosomes marked by DEUP1 (arrowheads). Note that some smaller deuterosomes do not contain CDC20B (arrows). b Mouse ependymal MCCs were immunostained as indicated, and high magnification confocal pictures of cells with immature and mature deuterosomal figures were taken. In these cells, centrioles revealed by FOP form a ring around deuterosomes. CDC20B staining forms a ring inside the ring of FOP-positive procentrioles indicating that CDC20B is tightly associated to deuterosomes. Note that the CDC20B signal associated to deuterosome increased with their maturation (high magnification pictures of >25 cells per category from two different animals were quantified in the graph; mean values and standard deviations are shown). Unpaired t test vs immature: p = 0.0005 (intermediate, ***); p < 0.0001 (mature, ****). In a and b, zooms were made on regions identified by dashed boxes. c Xenopus embryos were injected with GFP-Deup1 mRNA and immunostained at neurula st18 as indicated. Scale bars: 5 µm (a, b, large view), 1.5 µm (a, high magnification), 500 nm (b, high magnification), 10 µm (c)

Fig. 4

 4 Fig. 4 CDC20B knockdown impairs multiciliogenesis in mouse ependymal MCCs. a, b Ependyma were stained for CDC20B (green) and FOXJ1 (nuclear MCC fate marker, red) 5 days post electroporation (5dpe) of control shRNA (a) or Cdc20b shRNA (b). sh277 is exemplified here, but all three Cdc20b shRNAs produced similar effects. c Graph showing the quantification of CDC20B protein levels in cells at the deuterosomal stage at 5dpe from two experiments. Mean values and standard error are shown. Unpaired t-test: ****p < 0.0001. d Dot plot showing the number of FOXJ1-positive nuclei observed for each field, with mean values and standard deviations from two experiments. Unpaired t-test: p = 0.3961 (sh273, ns), p = 0.1265 (sh274, ns), p = 0.3250 (sh277, ns). No significant variations were observed between conditions, indicating that MCC fate acquisition was not affected by Cdc20b knockdown. e, f Confocal pictures of 9dpe ependyma electroporated with control shRNA (e) or Cdc20b shRNAs (f) and stained for DEUP1 (deuterosome, green), FOP (centrioles, red) and ZO1 (cell junction, white). DEUP1-positive deuterosomes with non-disengaged FOP-positive centrioles were observed much more frequently in MCCs electroporated with Cdc20b shRNAs compared to control. g Dot plot showing the percentage of MCCs with nondisengaged centrioles per field, with mean values and standard deviations. Two experiments were analyzed. Unpaired t-test: ****p < 0.0001. h, i Confocal pictures of 15dpe ependyma stained for FOP (centrioles, green), α-Tubulin (α-TUB, cilia, red), and ZO1 (cell junction, white) showing the morphology of normal MCCs in shRNA control condition (h), and examples of defects observed in MCCs treated with sh Cdc20b (i). j Dot plot showing the number of released centrioles per cell, with mean values and standard deviations. k Dot plot showing the percentage of normal and abnormal MCCs per field of observation, with mean values and standard deviations. MCCs were scored abnormal when they did not display organized centriole patches associated to cilia. Three experiments were analyzed. Unpaired t-test: p = 0.0004 (sh273, ***), p = 0.0001 (sh274, ****), p = 0.0038 (sh277, **). Scale bars: 20 μm (a), 5μm (e, i)

Fig. 5

 5 Fig. 5 cdc20b knockdown impairs multiciliogenesis in Xenopus epidermal MCCs. a-c 8-cell embryos were injected in presumptive epidermis with GFP-CAAX mRNA and cdc20b morpholinos, as indicated. Embryos at tailbud st25 were processed for fluorescent staining against GFP (injection tracer, green) and Acetylated-α-Tubulin (Ac-α-Tub, cilia, white). White dotted lines indicate the position of orthogonal projections shown in bottom panels. Note that cdc20b morphant MCCs display cytoplasmic filaments but do not grow cilia (white arrowheads). d-f Scanning electron microscopy (SEM) of control (d) and cdc20b morphant (e, f) embryos at tadpole st31. Yellow arrowheads point at normal (d) and defective MCCs (e, f). g-i Transmission electron microscopy (TEM) of control (g) and cdc20b morphant (h, i) embryos at tailbud st25. Yellow arrowheads point at normally docked basal bodies supporting cilia (g) and undocked centrioles unable to support cilia (h, i). j-n 8-cell embryos were injected in presumptive epidermis with centrin-YFP mRNA, cdc20b morpholinos, and cdc20b mRNA, as indicated. Centrin-YFP fluorescence was observed directly to reveal centrioles (yellow). Nuclei were revealed by DAPI staining in blue. White dotted lines indicate the position of orthogonal projections shown in bottom panels. Yellow arrowheads point at undocked centrioles. o Bar graph showing the mean number of BBs per MCC, and standard error mean, as counted by Centrin-YFP dots. One-way ANOVA and Bonferroni's multiple comparisons test on two experiments, ***p < 0.0001. cdc20b knockdown significantly reduced the number of BBs per cell, and this defect could be corrected by cdc20b co-injection with Mo Spl. p-u Embryos were injected with Multicilin-hGR and GFP-Deup1 mRNAs, treated with dexamethasone at gastrula st11 to induce Multicilin activity, and immunostained at neurula st23 against Acetylated-α-tubulin (cilia, white), GFP (deuterosomes, green), and Centrin (centrioles, red). p Control cells showed individual centrioles, many of which had initiated ciliogenesis. Note that Deup1-positive deuterosomes were no longer visible at this stage. (q, r, t, u) cdc20b morphant MCCs showed procentrioles still engaged on deuterosomes and lacked cilia. In t and u, zooms were made on regions identified by dashed boxes in q and r. s Bar graph showing the mean percentage of cells that completed or not centriole disengagement with standard deviations. Three experiments were analyzed. Unpaired t-test: p = 0.0037 (Mo ATG, **), p = 0.0004 (Mo Spl, ***). Scale bars: 20 µm (a, d), 1 µm (g, t), 5 µm (j, p)

Fig. 7

 7 Fig. 7 Separase overexpression rescues multiciliogenesis in absence of Cdc20b. a-f 8-cell Xenopus embryos were injected in the presumptive epidermis with GFP-gpi mRNA, cdc20b morpholinos, and human Separase mRNA, as indicated. Embryos were fixed at tailbud st25 and immunostained against GFP (injection tracer, green), Acetylated-α-Tubulin (cilia, white) and ɣ-Tubulin (BBs, red). White dotted lines indicate the position of orthogonal projections shown in bottom panels. Red arrowheads point undocked BBs. Left inset in e shows zoom on clustered centrioles. g Bar graph showing the mean number of properly ciliated MCCs among injected cells, per field of observation, with standard error mean, from two independent experiments. Counting was performed on pictures taken at low magnification (×20), in order to score a large number of cells. Separase overexpression fully rescued multiciliogenesis in cdc20b morphant MCCs. One-way ANOVA and Bonferroni's multiple comparisons on two experiments, ***p < 0.0001, ns p > 0.05. Scale bars: 5 µm (a). h Model illustrating the analogy between centriole disengagement in mitotic cells and centriole release from deuterosomes in post-mitotic MCCs
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Figure 7g: 5

 5 fields (×20 zoom) per condition were analyzed, and the total number of properly ciliated MCCs based on acetylated α-tubulin staining among GFP positive cells per field was counted. Each field corresponded to a different embryo.

  Figure 5s: 160-200 cells per condition were analyzed. n = 6, 8, and 10 embryos from three independent experiments for control, Mo ATG and Mo Spl, respectively. Unpaired t test vs control: p = 0.0037 (Mo ATG **) and 0.0004 (Mo Spl ***).
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  Identification of novel transitional cells arranged in discrete high turnover structures, named 'hillocks'. They characterised them by a high expression of Krt13 and Krt4 and potential function as a squamous barrier and immunomodulation.
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CHAPTER 5. A COMBINED EFFORT TO IMPROVE OUR UNDERSTANDING OF THE AIRWAY EPITHELIUM USING SINGLE-CELL TECHNOLOGIES

  In this chapter, I will describe the initial computational development done during my thesis: a R package, named scSim, for the simulation of scRNA-seq data. This package was used to simulate data for the development and testing of a new clustering method developed in a collaborative work done with Cyprien Gillet, Michel Barlaud and Jean-Baptiste Caillau (publication in submission, see Annexe). I also presented this package in a poster session at the BC2 conference in Basel in September 2017 (see end of the chapter).
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CHAPTER 5. A COMBINED EFFORT TO IMPROVE OUR UNDERSTANDING OF THE AIRWAY EPITHELIUM USING SINGLE-CELL TECHNOLOGIES

  . A direct differentiation of BCs into MCCs has been reported after injury(Pardo-Saganta et al., 2015a), but the current consensus is that BCs can differentiate first into CCs(Watson et al., 2015), i.e. club/ secretory or Clara cells. CCs are widespread in the whole mouse airways. They are less abundant in human, being nearly absent from upper airways but enriched in terminal and respiratory bronchioles

Table S8 : Heatmaps for clustering of each dataset Table S7: Primers used in the Biomark qRT-PCR

 S8 

	Development: doi:10.1242/dev.177428: Supplementary information
	Chapter 8
	Click here to Download Table S8
	Development • Supplementary information

Table E6 : Antibody used for immunostainings.

 E6 

	Goat anti-Rabbit IgG (H+L) Cross-	thermoFisher Scientific	A-11008
	Adsorbed Secondary Antibody, Alexa			
	Fluor 488				
		Provider	Ref	Clone	Host species
	KRT5	Biolegend/Ozym	BLE905501 Poly19055	Rabbit
		e			
	MUC4	Invitrogen	35-4900	1G8	Mouse
	PI3/ANTI-TRAPPIN-2 R&D Systems	AF1747		Goat
	KI67	Abcam	ab15580		Rabbit
	KRT13	Abcam	ab92551	EPR3671	Rabbit
	SCGB1A1	Millipore	07-623		Rabbit
	ACETYLATED	Sigma-Aldrich	T7451	6B11	Mouse
	TUBULIN				
	Secondary antibody		Provider		Ref
	Donkey anti-Goat IgG (H+L) Cross-	thermoFisher Scientific	A21447
	Adsorbed Secondary Antibody, Alexa			
	Fluor 647				
	Donkey anti-Mouse IgG (H+L) Highly	thermoFisher Scientific	A-21203
	Cross-Adsorbed Secondary Antibody,			
	Alexa Fluor 594				
	Goat anti-Rabbit IgG (H+L) Highly Cross-	thermoFisher Scientific	A-11034
	Adsorbed Secondary Antibody, Alexa			
	Fluor 488				

Table 2 :

 2 Simulation 2 (4 clusters, 600 cells, 15,000 genes): Comparison between methods and with real labels. According to Figure2, we can chose η = 6000 which allows us to have both an excellent silhouette coefficient and also to discard a large number of noisy features. With η = 6000, k-sparse selected 5, 531 genes and outperforms others methods in terms of silhouette coefficient. Note that here the labels computed with SIMLR match better with real labels than for our method. But according to our silhouette coefficient, the clustering computed with k-sparse should also have sense.

	Simulation 1	PCA Spectral SIMLR k-sparse
	Silhouette coefficient 0.58	0.72	0.85	0.98
	Accuracy (%)	61.33	74.50	97.50	97.83
	ARI (%)	34.75	57.37	93.27	94.04
	NMI	0.49	0.60	0.90	0.91
	Time (s)	0.80	0.74	13.90	33.74
	Simulation 2	PCA Spectral SIMLR k-sparse
	Silhouette coefficient 0.60	0.77	0.85	0.97
	Accuracy (%)	61.33	74.00	96.00	80.00
	ARI (%)	36.06	56.06	91.76	65.18
	NMI	0.49	0.60	0.86	0.74
	Time (s)	0.97	0.99	9.76	75.31

Table 3 :

 3 Usoskin dataset (4 clusters, 622 cells, 

Table 4 :

 4 Klein dataset (4 clusters, 2,717 cells, 10,322 genes): Comparison between methods and with real labels. For η = 25000, k-sparse selected 9, 870 genes and has an accuracy close to 100%. SIMLR has similar performances (accuracy, ARI and NMI) than k-sparse (which is 5 times faster than SIMLR).

	Klein dataset	PCA Spectral SIMLR k-sparse
	Silhouette coefficient	0.61	0.73	0.95	0.96
	Accuracy (%)	68.50	63.31	99.12	99.12
	ARI (%)	44.82	38.91	98.34	98.34
	NMI	0.55	0.54	0.97	0.97
	Time (s)	10.91	20.81	511	97.10

Table 5 :

 5 Zeisel dataset (9 clusters, 3,005 cells, 7,364 genes): Comparison between methods and with real labels. According to Figure5, we can chose η = 12500 which allows us to have both a solid silhouette coefficient and also to discard a large number of noisy features. With η = 12500, k-sparse selected 3, 981 genes and outperforms others methods in terms of accuracy by 16%. For this clustering K-sparse is 6 times faster than SIMLR.

	Zeisel dataset	PCA Spectral SIMLR k-sparse
	Silhouette coefficient 0.45	0.56	0.82	0.83
	Accuracy (%)	39.60	59.30	71.85	88.15
	ARI (%)	34.67	50.55	64.8	84.17
	NMI	0.54	0.68	0.75	0.81
	Time (s)	11	23	464	71.60

Sparcl is computationally expensive, with complexity O(m 2 × d). Naive implementation of Kernel methods SIMLR results in O(m 2 ) complexity. The computational cost can be reduced to O(p 2 × m) (p is the low rank) using low rank kernel matrix approximation

(Bach 

Table 6 :

 6 Comparison between SIMLR, Large SIMLR and k-sparse in terms of ARI (%) on large datasets. K-sparse outperforms Large SIMLR by 36% on Klein dataset and 27% on Zeisel dataset in terms of ARI.

	Methods	SIMLR Large SIMLR k-sparse
	Klein (2,717 cells, 10, 322 genes, k = 4) 98.34	61.49	98.34
	Zeisel (3,005 cells, 7, 364 genes, k = 9)	64.8	56.39	84.17

Table 7 :

 7 Comparison between SIMLR, Large SIMLR and k-sparse in terms of time (s) on large datasets. K-sparse is 8 times faster on Klein dataset and 10 times faster on Zeisel dataset than SIMLR. Large SIMLR is faster than k-sparse but Table6shows that the clusters performed by Large SIMLR are not similar to real clusters.

	Methods	SIMLR Large SIMLR k-sparse
	Klein (2,717 cells, 10, 322 genes, k = 4)	511	8.64	97.10
	Zeisel (3,005 cells, 7, 364 genes, k = 9)	464	8.19	71.60
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Data integration

I first performed a complete analysis of the dataset without batch correction nor data integration. This 'complete' analysis included data visualisation with UMAP, clustering using the Phenograph algorithm (Scanpy) and cluster annotation. 

Financial support

The matrix of labels is constrained according to

Note that (3) implies that each sample belongs to exactly one cluster while (4) ensures that each cluster is not empty (no fusion of clusters). This prevents trivial solutions consisting in k -1 empty clusters and W = 0. In contrast with the Lagrangian LASSO formulation, we want to have a direct control on the value of the 1 bound, so we constrain W according to

where . 1 is the 1 norm of the vectorized d × d matrix of weights:

The problem is to estimate labels Y together with the sparse projection matrix W . As Y and W are bounded, the set of constraints is compact and existence of minimizers holds.

Proposition 1 The minimization of the norm (1), jointly in Y and W under the constraints ( 2)-( 5), has a solution.

To attack this difficult nonconvex problem, we propose an alternating (or Gauss-Seidel) scheme as in de la [START_REF] De La Torre | Discriminative cluster analysis[END_REF]; [START_REF] Ding | Adaptive dimension reduction using discriminant analysis and k-means clustering[END_REF]; [START_REF] Witten | A framework for feature selection in clustering[END_REF]. Another option would be to design a global convex relaxation to address the joint minimization in Y and W (see, e.g., Bach and Harchaoui (2008); [START_REF] Flammarion | Robust discriminative clustering with sparse regularizers[END_REF]).

The first convex subproblem is to find the best projection from dimension d to dimension d for a given clustering.

Problem 1 For a fixed clustering Y (and a given η > 0),

under the constraint (5) on W .

Given the matrix of weights W , the second subproblem is the standard k-means on the projected data.

Problem 2 For a fixed projection matrix W ,

under the constraints ( 2)-( 4) on Y .

of the multiciliogenesis process. From that perspective, the nested organization of miR-449 and CDC20B in vertebrate genomes, which allows their coordinated expression, appears crucial for successful multiciliogenesis.

It is also noteworthy to point out the location of this gene in a genomic locus where congenital mutations in MCIDAS and CCNO were recently shown to cause a newly-recognized MCC-specific disease, called reduced generation of multiple motile cilia (RGMC). RGMC is characterized by severe chronic lung infections and increased risk of infertility 12,13 . Its location in the same genetic locus as MCIDAS and CCNO makes CDC20B a putative candidate for RGMC. By extension, the deuterosome stagespecific genes uncovered by scRNA-seq in this study also represent potential candidates for additional RGMC mutations. 
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