
HAL Id: tel-02473489
https://hal.science/tel-02473489v1

Submitted on 10 Feb 2020 (v1), last revised 11 Jun 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Domain Adaptation and Model Combination for the
Annotation of Multi-source, Multi-domain Texts

Tian Tian

To cite this version:
Tian Tian. Domain Adaptation and Model Combination for the Annotation of Multi-source, Multi-
domain Texts. Document and Text Processing. Université Sorbonne Nouvelle - Paris 3, 2019. English.
�NNT : �. �tel-02473489v1�

https://hal.science/tel-02473489v1
https://hal.archives-ouvertes.fr

UNIVERSITÉ SORBONNE NOUVELLE PARIS 3

Ecole doctorale Langage et langues : ED 268
Langues, Textes, Traitements informatiques et Cognition: Lattice (UMR8094)

THÈSE DE DOCTORAT CIFRE

SPÉCIALITÉ DU DOCTORAT : SCIENCES DU LANGAGE

Domain Adaptation and Model
Combination for the Annotation of
Multi-source, Multi-domain Texts

Par :
Tian TIAN

Sous la direction de :
Dr. Isabelle TELLIER†

Dr. Thierry POIBEAU

Dr. Marco DINARELLI

Composition du jury:
Iris ESHKOL, Professeure, Université Paris Nanterre, rapporteure
Anne-Laure LIGOZAT, MCF, HDR, ENSIIE, rapporteure
Sophie PREVOST, DR-CNRS, Université Paris 3, examinatrice
Thierry POIBEAU, DR-CNRS, Université Paris 3, directeur de thèse
Marco DINARELLI, CR-CNRS, Université Grenoble Alpes, co-directeur
Patrick MARTY, Ingénieur de recherche, FNAC, examinateur

Soutenue le 16 octobre 2019

http://www.univ-paris3.fr/
http://www.univ-paris3.fr/ed-268-langage-et-langues-description-theorisation-transmission-3413.kjsp
http://www.lattice.cnrs.fr/en/lattice-laboratory/

ii

Domain adaptation and model
combination for the annotation of
multi-source, multi-domain texts

Abstract

The increasing mass of User-Generated Content (UGC) on the Internet means
that people are now willing to comment, edit or share their opinions on dif-
ferent topics. This content is now the main ressource for sentiment analysis
on the Internet. Due to abbreviations, noise, spelling errors and all other
problems with UGC, traditional Natural Language Processing (NLP) tools,
including Named Entity Recognizers and part-of-speech (POS) taggers, per-
form poorly when compared to their usual results on canonical text (Ritter
et al., 2011).

This thesis deals with Named Entity Recognition (NER) on some User-
Generated Content (UGC). We have created an evaluation dataset includ-
ing multi-domain and multi-sources texts. We then developed a Conditional
Random Fields (CRFs) model trained on User-Generated Content (UGC).

In order to improve NER results in this context, we first developed a POS-
tagger on UGC and used the predicted POS tags as a feature in the CRFs
model. To turn UGC into canonical text, we also developed a normalization
model using neural networks to propose a correct form for Non-Standard
Words (NSW) in the UGC.

Keywords: domain adaptation, named entity recognition, machine learning,
conditional random fields, neural networks

iii

Adaptation au domaine et
combinaison de modèles pour

l’annotation de textes multi-sources
et multi-domaines

Résumé

Internet propose aujourd’hui aux utilisateurs de services en ligne de com-
menter, d’éditer et de partager leurs points de vue sur différents sujets de
discussion. Ce type de contenu est maintenant devenu la ressource prin-
cipale pour les analyses d’opinions sur Internet. Néanmoins, à cause des
abréviations, du bruit, des fautes d’orthographe et toutes autres sortes de
problèmes, les outils de traitements automatiques des langues, y compris les
reconnaisseurs d’entités nommées et les étiqueteurs automatiques morpho-
syntaxiques, ont des performances plus faibles que sur les textes bien-formés
(Ritter et al., 2011).

Cette thèse a pour objet la reconnaissance d’entités nommées sur les con-
tenus générés par les utilisateurs sur Internet. Nous avons établi un corpus
d’évaluation avec des textes multi-sources et multi-domaines. Ensuite, nous
avons développé un modèle de champs conditionnels aléatoires, entrainé sur
un corpus annoté provenant des contenus générés par les utilisateurs.

Dans le but d’améliorer les résultats de la reconnaissance d’entités nom-
mées, nous avons d’abord développé un étiqueteur morpho-syntaxique sur
les contenus générés par les utilisateurs et nous avons utilisé les étiquettes
prédites comme un attribut du modèle des champs conditionels aléatoire.
Enfin, pour transformer les contenus générés par les utilisateurs en textes
bien-formés, nous avons développé un modèle de normalisation lexicale basé
sur des réseaux de neurones pour proposer une forme correcte pour les mots
non-standard.

Mots-clés : adaptation au domaine, reconnaissance des entités nommées,
apprentissage automatique, champs aléatoires conditionnels, réseaux de neu-
rones

iv

Acknowledgements
I have been really lucky to have many people who helped me to accom-

plish this thesis, this thesis would never have been completed without them.
First, I would like to express my heartfelt gratitude to my thesis supervi-

sors, Dr. Marco Dinarelli and Dr. Isabelle Tellier, with whom I had a meeting
every two weeks in Synthesio’s office along with M. Pedro Cardoso for my
thesis progress. They were always by my side, gave me their advices and
helped me writing, correcting and publishing papers. I also want to thank Dr.
Thierry Poibeau, who took over the supervision of this thesis since Isabelle
Tellier’s death from a cancer, and who was always ready to read, comment
and correct my writings.

I would also like to thank my two reporters, Dr. Iris Eshkol and Dr. Anne-
Laure Ligozat for their helpful and complementary remarks during the pre-
sentation of this thesis. My examinator Dr. Patrick Marty also made sugges-
tions for some experiments.

I also want to thank the director of the Lattice laboratory, Dr. Sophie Pre-
vost, all the members of the laboratory who gave me a warm place and al-
ways encouraged me, Other phd students of Lattice, Mylène, Marine, Auphélie,
Marie-Amelie, Loïc who kept me company and to whom I heartfully wish
succes for their own phd soon.

I won’t forget to thank my colleagues from the Paris-Sorbonne University
Gaël Lejeune, Christian Vincent, Dhaou Ghoul, Vincent Lully, who helped
me arranging my teaching schedule for my thesis.

At last, I want to thank my parents, my parents in-law and my husband
for their encouragements, their company and their efforts to back me both
emotionally and physically.

v

Contents

Acknowledgements iv

1 Introduction 1
1.1 Background . 1
1.2 Aim and Scope . 2

1.2.1 About Synthesio . 2
1.2.2 Internal organization . 5
1.2.3 Natural language processing at Synthesio 5
1.2.4 Necessity of named entity recognition 6

1.3 Contributions . 8
1.4 Thesis outline . 9

2 Literature review 12
2.1 History of Named Entity Recognition 13
2.2 Named entity definition . 15

2.2.1 From the linguistic point of view 15
2.2.2 From a practical perspective 17

2.3 Domain and text genre . 18
2.4 Taxonomy of named entities . 20
2.5 Evaluation of Named Entity Recognition (NER) 21

2.5.1 MUC evaluation (partial match evaluation) 22
2.5.2 CoNLL evaluation (exact match evaluation) 23
2.5.3 SemEval shared task evaluation 24

2.6 Machine learning based NER methods 26
2.6.1 Supervised learning . 26

Conditional Random Fields (CRFs) 28
An example of CRF training 30
Training . 30
Applying the trained CRFs model 32

2.6.2 Unsupervised learning and Semi-supervised learning . 34
2.7 Text normalization for User Generated Content 35

2.7.1 Definition and scope of lexical normalization 36

vi

2.7.2 Definition and Taxonomy of Non-Standard Words . . . 36
2.7.3 General procedure of lexical normalization 38

Neural Networks (NN) 45
Convolutional neural network (CNN) 48
Long short term memory (LSTM) 51

2.8 Conclusion . 57

3 Raw data, basic normalization and Synthesio’s dataset 58
3.1 Analysis of a Twitter subset data 59
3.2 Basic normalization on Synthesio’s data 61

3.2.1 Use rewrite rules for tweet lexical normalization 62
3.2.2 Uppercase/lowercase normalization 62
3.2.3 Construction of Synthesio word2vec model 70

3.3 Use Google Request to find correct form for non-standard words 71
3.4 Creation of Synthesio Reference corpus 75

3.4.1 Data extraction . 75
3.4.2 Entity type definition . 78
3.4.3 Data annotation . 79

Reference corpus statistics 80
3.5 Conclusion on Synthesio’s data 81

4 Improve named entity recognition results by POS tagging 82
4.1 First NER experiments . 83

4.1.1 Existing Named Entity Recognizers 83
4.1.2 Existing CRFs Named Entity Recognizer features and

patterns . 86
4.1.3 Annotated dataset for UGC in English 90
4.1.4 First NER results with CRFs on corpus from Ritter et

al., 2011 . 91
4.1.5 CRFs NER models on Synthesio annotated data 93
4.1.6 Iterative training . 94
4.1.7 Domain adaptation with reduced features 96

4.2 Aim and necessity to develop a POS tagger 97
4.3 Difficulties of developing a POS tagger for UGC 98
4.4 Annotated part-of-speech datasets 101
4.5 Synthesio tagset definition . 102
4.6 Feature space for a POS tagger 104

4.6.1 Features related to character type 105
4.6.2 Features about uppercase/lowercase letters 105

vii

4.6.3 Features about token value 106
4.6.4 Features using regular expression 107
4.6.5 Features using extern ressources 107

4.7 Experiments of CRFs POS tagger and results 109
4.7.1 Experiments uni-corpus 109
4.7.2 Experiments with multi-corpus 112
4.7.3 Results with artificial examples 113
4.7.4 Compare T-POS tagset and Synthesio tagset 116

Cross validation with only T-POS 116
Mixed model . 116

4.8 Experiments using POS tagger results for NER 117

5 Lexical normalization of tweets with neural networks 119
5.1 Annotated datasets for the lexical normalization of tweets . . 120

5.1.1 Dataset from (Li and Liu, 2014) 120
5.1.2 Dataset from workshop ACL2015 120
5.1.3 Typology Analysis of labeled corpora 121

5.2 Use SVM for NSW and SW classification 121
5.3 Experiments of SW and NSW classification with neural networks124

5.3.1 Context-free experiment 125
5.3.2 5-grams experiments . 126

First experiment . 127
Experiment by class . 127
5 words embedding and characters model with sigmoid

as output . 128
Optimisation of configurations 129
Other Neural network structures 130

5.3.3 Experiments with pre-trained word2vec models 132
Word2vec models . 132
Conclusion to word2vec model 135

5.3.4 Experiment with optimizers 135
Experiment with WNUT test 137

5.4 Word corrector . 138
5.4.1 Context-free corrector 140
5.4.2 Corrector with context 142

5.5 Conclusion . 149

viii

6 Using normalized text as CRFs features for NER 150
6.1 Using NSW/SW classification prediction as CRFs features for

NER . 151
6.1.1 NSW/SW classification experiments on the Synthesio

dataset . 152
6.1.2 NSW/SW classification experiments on dataset from

(Ritter et al., 2011) . 156
6.1.3 Using NSW/SW prediction as features to NER model . 159

6.2 Using normalized text as feature for NER 162
6.2.1 Word normalization based on NSW/SW classification

prediction . 162
6.2.2 Normalization model for all tokens prediction 168
6.2.3 Using normalized texts as features for NER 172

6.3 Conclusion . 175

7 Conclusion and perspectives 176
7.1 Summary of findings . 177
7.2 Limitations and Perspective . 184

Bibliography 186

ix

List of Figures

1.1 Examples of User-Generated Content applications 1
1.2 A "dashboard" with defined topics in timeline 2
1.3 Two dashboards with quality analysis 3
1.4 Example of a mention in Synthesio 3

2.1 Named Entity "Ohio" . 17
2.2 Syntactic analysis by tree diagram 27
2.3 Linear CRFs . 28
2.4 An unigram CRFs . 29
2.5 A bigram CRFs . 29
2.6 An annotated text . 31
2.7 The pattern’s movement . 31
2.8 A text to label . 32
2.9 The pattern’s movement in prediction 33
2.10 NSW and definition of normalization from Han, 2014 37
2.11 Details of SW words . 38
2.12 Extract of (Liu, Weng, and Jiang, 2012) dataset 39
2.13 First Classify then correct NSW 39
2.14 First propose candidates then sort 40
2.15 An example of tweet . 40
2.16 The correction of the tweet example 41
2.17 normalization processing in (Leeman-Munk, Lester, and Cox,

2015) . 43
2.18 Screen shot for Google’s auto-correction 44
2.19 a simple neural network in general 46
2.20 A perceptron . 47
2.21 CNN’s window movement . 50
2.22 CNN’s output . 50
2.23 Max pooling with CNN output 51
2.24 CNN from (Collobert and Weston, 2008) 51
2.25 Elman’s RNN . 52
2.26 LSTM States . 53

x

2.27 LSTM gates calculate inspired by colah’s blog (http://cola
h.github.io) . 55

2.28 A simple CBOW model from (Rong, 2014) 56

3.1 Google page with the request "I 4got my password" 72
3.2 Page descriptions for "posted by wfolarry view post" 73
3.3 Examples of a dashboard with three widgets 76
3.4 An example of an attached apostrophe 78
3.5 An example of long text . 80
3.6 An example of short text . 80

4.1 An example of Stanford NER prediction 86
4.2 Example of "North Yorkshire" 95
4.3 Example of "witch doctor" . 96
4.4 An example of tweet . 98
4.5 Correct form of tweet 4.4 . 98
4.6 Number usage in tweets from (Ritter et al., 2011) 99
4.7 Another exemple of tweet . 99
4.8 Hashtag as part of sentence . 100
4.9 Hashtag with multi-words . 100
4.10 At mention as part of sentence 101
4.11 At mention at the end of sentence 101
4.12 Cross validation adding Penn Treebank data 112

5.1 NSW substitution . 122
5.2 An example of sentence with NSW 139
5.3 CNN structure for corrector with context 143
5.4 Context-free CNN model structure with ch2vec 145
5.5 CNN 5-grams model structure with ch2vec 145

6.1 Token "ca" in training data . 154
6.2 Example of named entities as standard words 154
6.3 Example of noise in Deezer short text 155
6.4 Example of named entity and a predicted NSW 155
6.5 Example of a tweet in automobile demain 156
6.6 Example of succeeded NSW predictions 157
6.7 Example of Dutch tweet in dataset 157
6.8 Example of missed NSW predictions 157
6.9 Example of missed NSW predictions 158
6.10 Example of noises . 158

http://colah.github.io
http://colah.github.io

xi

6.11 Example of noises . 158
6.12 Tweet full of spelling errors . 159
6.13 Example of "BBC", predicted as NSW and detected as Company 160
6.14 Token "DD" detected as Company 161
6.15 Another occurrence of "DD" . 161
6.16 Example of "DC" . 161
6.17 Token "llol" in training data . 170
6.18 Token "fraggle" in training data 170
6.19 Named entity distribution in two datasets 174

xii

List of Tables

2.1 Examples of "McDonald’s" . 18
2.2 An example of MUC-6 annotation 21
2.3 An example of a NER system prediction 22
2.4 Same prediction example with SemEval evaluation 25
2.5 SemEval 2003 Evaluation results 26
2.6 Feature functions values . 33
2.7 Feature functions summations for each Y position 33
2.8 All possible sequences and the best path 34
2.9 Taxonomy of NSW in (Sproat et al., 2001) 36
2.10 Methods of WNUT workshop 38
2.11 SW/NSW classification references and results 40
2.12 Example of CRF labels for correcting NSW word 41

3.1 Term count and number of OOV words 60
3.2 Forms and their percentages for "crystal" 64
3.3 Forms and their percentages for "jack" 64
3.4 Forms and their percentages for "share" 64
3.5 Forms and their percentages for "however" 64
3.6 Forms and their percentages for "nissan" 64
3.7 Forms and their percentages for "McDonald" 64
3.8 Forms and their percentages for "4Runner" 64
3.9 Examples of the most frequent two forms 65
3.10 Vocabulary filters . 68
3.11 Final vocabulary filters . 68
3.12 Most frequent 5-grams in automotive industry domain 69
3.13 The most frequent context in automotive industry domain . . 70
3.14 Nearest words of "Chinese river" 71
3.15 Contexts and term count for "wfolarry" 73
3.16 Context of "wfolarry" and matched words 74
3.17 Candidates and edit distance with original token 74
3.18 Other edit distance with original token 74
3.19 Synthesio Reference Corpus. 78

xiii

3.20 Synthesio Named Entity Definition 79
3.21 Synthesio corpora named entities statistics 80

4.1 NER Toolkits . 83
4.2 CRFs pattern inspired by Nooralahzadeh, Brun, and Roux, 2014 89
4.3 Model Constant1 . 89
4.4 Model Constant2 . 90
4.5 Annotated named entities in (Ritter et al., 2011) 90
4.6 NER results with Constant1 pattern 91
4.7 NER results with Noor pattern 92
4.8 NER results with constant1 pattern 92
4.9 Synthesio corpus evaluation results 93
4.10 Evaluation of a mixed model trained with the Ritter corpus

and predicted sequences with a confidence score more higher
than 0.8. 95

4.11 Number of selected sequences in each domain 95
4.12 Evaluation of model with Ritter on reduced features with Deezer. 96
4.13 Universal tagset and Penn Treebank tagset mapping 103
4.14 PTB, Ritter and universal tagset correspondance 104
4.15 POS tags of token "a" in Penn Treebank 107
4.16 POS tags of token "down" in Penn Treebank 107
4.17 Penn Treebank POS tags feature values examples 108
4.18 Sample of Brown Clusters for Tweets 108
4.19 Results with model Nooralahzadeh2014 110
4.20 Model Constant1 . 111
4.21 Model Constant1 results . 111
4.22 Model Constant2 and results 112
4.23 Results of mixed-corpora experiments 113
4.24 Examples to test POS tagger . 114
4.25 Prediction results with first sentence "Yesterday I bought a new Re-

nault. It was cool, better than my old Ford focus." 114
4.26 Prediction results with second sentence "got an iPhone6 for my birth-

day, better than my old BlackBerry, wonderful!" 115
4.27 Prediction results with third sentence "A paper by Maggie Simpson and

Edna Krabappel from New York was accepted by two scientific journals urlhttp://vox.com/e/7103628?utm_campaign...

..." . 115
4.28 Prediction results with fourth sentence "If I had one wish it

would be to drive a bugatti for a day!" 115
4.29 cross validation with corpus T-POS 116

xiv

4.30 Results of mixed models with different tagsets 117
4.31 NER results using POS tagger as feature 118

5.1 Numbers of tokens in each class 121
5.2 NSW substitution in English . 122
5.3 Two datasets for text normalization and statistics 123
5.4 Results of cross validation in 5 folds 124
5.5 Train a model with one dataset and test with the other 124
5.6 Results of experiments with uni convolution layer 126
5.7 Results of experiments with multi convolution layers 126
5.8 Neural Network structure of character and word embedding

model . 128
5.9 NSW and SW classification results by class 128
5.10 5 words embedding and characters Convolutional model structure . 128
5.11 5 words embedding and characters convolutional model with

softmax functon . 128
5.12 5 words embedding and characters convolutional model with

sigmoid functon . 129
5.13 Optimisation of character embedding and word embedding

model . 129
5.14 5 words embeddings convolutional model structure 130
5.15 optimisation of 5 word embedding model 130
5.16 5 words embeddings LSTM model structure 131
5.17 Compare convolution and LSTM model 131
5.18 LSTM model on 2577 tweets . 131
5.19 LSTM experiments with 5-fold cross validation 132
5.20 Early Stopping with 100 epochs 132
5.21 CNN model with dataset in (Li and Liu, 2014) 133
5.22 CNN model with dataset (Baldwin et al., 2015) 134
5.23 CNN model with 2 datasets . 134
5.24 Optimizers experiment using (Li and Liu, 2014) 135
5.25 Optimizers experiment using (Baldwin et al., 2015) 136
5.26 Optimizers experiment on mixed dataset 136
5.27 Experiment with WNUT test, model trained with WNUT train-

ing . 137
5.28 Experiment with WNUT test, model trained with WNUT and

2577tweets . 138
5.29 Token "txtd" in characters . 139
5.30 Token "txtd" representation as vector 139

xv

5.31 Correction "texted" in character 139
5.32 Correction "texted" vector . 139
5.33 CNN structure for corrector . 139
5.34 First results of Corrector using CNN model 140
5.35 Ambiguous token examples . 140
5.36 Word list: corrector for all tokens 141
5.37 CNN structure for training NSW 141
5.38 Succeeded examples using edit distance 142
5.39 Failed examples using edit distance 142
5.40 Vocabulary sizes . 143
5.41 Corrector with context results on all words 143
5.42 Time needed for each vocabulary 143
5.43 Training and testing with only NSW 144
5.44 Results analysis by category by model 146
5.45 Some result of formes IV in training data 146
5.46 Some result of formes IV not in training data 147
5.47 Predict an IV forme by an IV but correction is OOV 148
5.48 Correction is IV but predicted with OOV 148
5.49 OOV with OOV correction predicted as IV 148

6.1 NSW/SW Classification on the Synthesio Dataset 152
6.2 NSW/SW Classification by domain and text type 153
6.3 Classification cases with the token "ca" 154
6.4 Example of a predicted NSW in Deezer short text 155
6.5 NSW/SW Classification on (Ritter et al., 2011) 157
6.6 NER results using NSW/SW classification feature 160
6.7 Annotated named entities in the text of figure 6.13 160
6.8 Succeeded normalization examples on (Ritter et al., 2011) . . . 163
6.9 Wrong candidates for predicted NSW 164
6.10 Wrong candidate for predicted NSW 165
6.11 candidate for predicted NSW on the Synthesio dataset 166
6.12 Correctly predicted tweet in (Ritter et al., 2011) 169
6.13 Miss-corrected tokens in (Ritter et al., 2011) 170
6.14 Miss-corrected tokens in (Ritter et al., 2011) using Aspell dic-

tionary . 172
6.15 NER results using POS tagger as feature 173
6.16 Clients names and their concurrents 174

xvi

List of Abbreviations

NER Named Entity Recognition
NLP Natural Language Processing
CRF Conditional Random Fields
NN Neural Network
CNN Convolutional Neural Network
LSTM Long Short-Term Memory
POS Part Of Speech
NSW Non Standard Words
SW Standard Words

1

Chapter 1

Introduction

User-Generated Content (UGC) is all form of content (photographs, videos,
podcasts, articles and blogs) created by Internet users and posted publicly
(George and Scerri, 2018).

A growing number of User-Generated Content (UGC) can be found on
the Internet everyday. Users increasingly express their opinions, concerns
and other sentiments on online platforms. YouTube1, Facebook2, Wikipedia3

and Twitter4 are some of the most popular social media which enable people
to comment, like, edit or share their thoughts on different subjects.

This thesis deals with Named Entity Recognition (NER) processing appli-
cation and text normalization on non-canonical words through textual User-
Generated Content (UGC). We will use the term UGC, for User-Generated
Content in the rest of this document.

1.1 Background

The huge amount of User-Generated Content (UGC) drives many new appli-
cations as shown in figure 1.1.

User-Generated
Content (UGC)

Event Detection:
Terrorist attack,
Earthquake

Sentiment Analysis:
Product reviews,
Customer services

Recommandation:
Youtube clip

And many others...

FIGURE 1.1: Examples of User-Generated Content applications

1https://www.youtube.com
2https://www.facebook.com
3https://www.wikipedia.org
4https://www.twitter.com

https://www.youtube.com
https://www.facebook.com
https://www.wikipedia.org
https://www.twitter.com

2 Chapter 1. Introduction

Beyond these examples, UGC has attracted attention from the research
community, government and industry: researchers dig from UGC to make
predictions on stock trends (Bollen, Mao, and Zeng, 2010); governments may
track public opinion in order to predict possible presidential outcomes (Hu
et al., 2012); companies use UGC to analyze user sentiment on particular
products (Jiang et al., 2011).

1.2 Aim and Scope

This thesis was funded by Synthesio (https://www.synthesio.com) in
the context of CIFRE (Conventions Industrielles de Formation par la REcherche)
in France.

1.2.1 About Synthesio

Synthesio, a global social intelligence and information monitoring company,
provides E-reputation services. Brands use the Synthesio Social Listening
Platform to monitor their online presence:

Synthesio customers belong to various domains and include global brands
such as L’Oréal (cosmetics), Deezer (entertainment) and Nissan (automobile)
etc. Synthesio provides different services such as social listening, alerting
and audience insights.

Social listening

Synthesio follows real-time conversations on the Internet around the world
with its industry-leading dashboards and data coverage.

Its clients define their "dashboards" with key-words which interest them,
time periode, geo-location (of posters), languages and ressources as their
command.

FIGURE 1.2: A "dashboard" with defined topics in timeline

https://www.synthesio.com

1.2. Aim and Scope 3

Figure 1.2 shows a dashboard defined by a time period (from Decem-
ber 4th to Decembrer 18th 2013) and key-words "iPhone", "Samsung Galaxy
S10" (in yellow), "HTC One M9", "Samsung Galaxy S8" (in dark green) and
"Nexus S". This dashboard shows during a fixed time period, the proportion
of different topics (subject brand and competitor brands) that have been men-
tioned in all ressources (mainstream and social media) in the mobile phone
domain.

FIGURE 1.3: Two dashboards with quality analysis

Figure 1.3 shows two other dashboards with a sentiment overview for the
target object (on the left) and a sentiment analysis with concurrent topics (on
the right).

Synthesio processes data which covers over 80 languages from 195 coun-
tries all over the world. The data is collected from mainstream resources like
corporate websites, online newspapers, information websites, specialized fo-
rums, etc, and social media like Facebook, Twitter and Instagram. Most of
this content is generated by Internet users.

The minimal unit of data in Synthesio is called a "mention". All mentions
are enriched with metadata which may include the title (if there is one), con-
tent, author, time, source (often Internet address) and tone (positive, negative
or neutral). The data can then be filtered and visualized by the customer.

mention ID: xxxxxxxxxx24795962548
title:
content: dnce 2 day at skool 2 dau wuz kinda corny evn doe i dnce a lil bit
ugh bored lke always whn is ya gurl neva nt trin 2 fin sunthn 2
sources: Twitter
url: https://twitter.com/sweetangel4000/status/24795962548
topic:
tone:

FIGURE 1.4: Example of a mention in Synthesio

https://twitter.com/sweetangel4000/status/24795962548

4 Chapter 1. Introduction

Figure 1.4 shows an example of a mention from Twitter in Synthesio. The
field "mention ID" is the unique identification. For tweets, the field "title" is
empty but for other ressources like newspaper articles, the value of the field
"title" is the title of the article. The field "topic" is annotated by humans with
key-words like "mobile phone", product name etc. The key-words are also
indexes used to find corresponding mentions according to clients’ research.
The "tone" field has three possible values: positive, negative and neutral,
annotated by sentiment analyzer.

Analysis of global social situation can help Synthesio customers create or
modify their communication strategies and surveil the impact of their social
activities.

Synthesio data also contain interaction and engagement metrics. Syn-
thesio tracks views, likes, favorites, replies, retweets and shares from social
media like Facebook, Twitter, Instagram and YouTube directly in the social
media listening dashboards.

Synthesio can also generate interaction (likes, edits or share) timelines to
determine how long a post was influent or to analyze the brand’s share of
voice as part of a competitive dataset.

Alerting

Synthesio constantly scans mainstream news sites (such as CNN5) special-
ized discussion forums and social media (like Facebook or Instagram). Syn-
thesio has also signed a special contract with Twitter which allows it to re-
ceive 10% of Twitter data in real-time. Some analysis on this constantly arriv-
ing stream of data is done in real-time. Particularly, if not originally present,
geolocation information is added when possible. This allows Synthesio to
detect new trending keywords and topics very quickly, to locate potential
events on the map and to alert specific customers.

For a concrete example, one of Synthesio’s customers subscribing to this
real-time alerting service is a security company. It has subscribed to dan-
ger and violence-related keywords associated to public concert venues in the
United States. Its goal is to respond to public attacks and shootings as fast
as possible. Social media alerting allows to receive this kind of information
faster than traditional systems based on phone calls.

5https://edition.cnn.com/

https://edition.cnn.com/

1.2. Aim and Scope 5

Audience insights

Synthesio runs demographic analysis on more than 10,000 data categories
related to target audiences. Its clients can both visualize the popularity of
some of their products on sale and analyze what their own clients are talk-
ing about. They can feed their marketing automation programs with deep
demographic audience analysis to deliver customized messaging.

Synthesio can also profile the audience from email, web visits and social
media. Its clients can analyze any target group based on age, location, inter-
ests and competitive affinities. They will have surface audience insights from
fans, followers or even consumers who visit the client’s website.

When demographic information is missing in the original text, Synthesio
uses a supervised machine learning method to complete the fields gender,
age, location etc.

1.2.2 Internal organization

The Synthesio group has agencies and marketing teams in London, Singa-
pore (for APAC), Paris and New York. Besides, there is a Research and De-
velopment (R&D) group of 20-30 people, and a 5-person sourcing group in
France. This R&D group has a back-end team, a front-end team, an infras-
tructure team and a Natural Language Processing (NLP) team.

The sourcing group collects URLs of websites and forums according to
clients’ domains and requirements. The back-end team develops and main-
tains a crawler to fetch documents from addresses obtained by the sourcing
group and stores the mentions on Synthesio servers.

The infrastructure team ensures the smooth operation of all Synthesio ser-
vices. Synthesio uses more than 500 physical servers and virtual machines lo-
cated all over the world in order to store and process data up to three years.
As for client’s visualisation, the front-end team keeps improving the visual
experience of the dashboards by adding animation effects, changing color
combinations etc.

1.2.3 Natural language processing at Synthesio

The Synthesio Natural Language Processing (NLP) team is doing more research-
driven work. Its members have developed a language identifier, tokenizers
for different languages and a sentiment analyzer.

6 Chapter 1. Introduction

For each of these tasks, the NLP team first tests open-source solutions and
runs them on existing Synthesio data in order to improve internal models. If
the results are unsatisfying, the team either develops its own software or
considers licensing proprietary pieces of software.

The present research work has been realized between November 2014 and
October 2017 for the Synthesio NLP team and was based on the language
identifier and the English tokenizer. Their functions are described later. At
that time, the team was working on demographic detection for the Synthe-
sio audience insights service, language identifiers for Arabic transliteration
(Dias Cardoso and Roy, 2016) and tokenizers for Chinese, Japanese and Ko-
rean.

The language identifier is based on a 5-gram language model. It takes a
text (a word sequence) for input and its output is the most probable language
of this text associated with its probability.

The tokenizers work with 80 languages supported by Synthesio. The En-
glish tokenizer uses a neural network (NN) and exception lists. Texts written
in some Asian languages such as Chinese, Japanese, Korean or Thai are the
most difficult to tokenize because there is no blank between words.

The English sentiment analyzer is working with a hybrid method with
Neural networks (NN) and word lists (Cardoso and Roy, 2016).

The present research work has been realized between November 2014
and October 2017 for the Synthesio NLP team and was based on the lan-
guage identifier and the English tokenizer. Their functions are described
later. The team was working on demographic detection for Synthesio au-
dience insights service, language identifier for Arabic transliteration (Dias-
Cardoso2016), Asian languages tokenizers (Chinese, Korean and Japanese)
and improvement of its existing modules.

1.2.4 Necessity of named entity recognition

In Synthesio, each document to be analyzed is considered as a "mention". A
mention contains a unique ID, the original text, a time stamp, source infor-
mation (url), maybe a title (depends on the ressource type) and a "topic". The
topic is supposed to be the subject discussed in the text and is associated with
a tone (positive, negative or neutral) as shown in figure 1.4.

Sometimes, one text can be repeated several times. These repetitions are
considered as different mentions even though their original texts are the
same. That is the reason why Synthesio has sometimes different mentions

1.2. Aim and Scope 7

with the same content. The duplicated data mean that the subject is men-
tioned several times at different moments or by different users. It is impor-
tant to keep all occurrences for Synthesio to show quantity analysis informa-
tion (like shown in figure 1.2) and to track "likes", replies and retweets. How-
ever, from the Natural Language Processing (NLP) point of view, it would
be a waste of time to process all these duplicated documents: the same doc-
ument more than once, and it will also change evaluation results. To avoid
this, removing duplicated texts in an extracted dataset is necessary.

The pipeline of Natural Language Processing of Synthesio in the NLP
team for the original text contains a natural language identifier, a tokenizer,
a sentiment analyser and a search engine. The tokenizer and the sentiment
analyser are different for each natural language. For each document, the
language identifier begins by identifying the natural language of the text. In
a second time, the corresponding tokenizer turns the text into an ordered
token list. After applying a filter of stopwords, the tokens remained in the
list are then indexed for the search engine.

As mentioned before, the clients of Synthesio can create their proper dash-
board with a selected time period, chosen ressources and most importantly,
with the keywords they entered. The search engine works with indexed key-
words. The customers have to enter their requests using Structured Query
Language (SQL).

These keywords are often the name of their company, their brands, the
name of competitors’ brands, the name of their products, similar products in
the market, etc. To analyze the texts, they sometimes try to get statistics for a
specific location, for example in Europe. These keywords contain more use-
ful information than a single token, a string with an assigned and identified
meaning. They also have different types (location, company, brand) and they
are probably the "topic" that one client could search for.

Some brand names are common words like "Apple", "Orange" (telecom-
munication company), "President" (French cheese brand). Clients searching
for "Apple" have to mention excluded words like "fruit" or "pie" in their SQL
requests to ignore mentions with "apple" and "fruit" or "pie" in the same text
or mentions related to apple pie recipes.

If we can add these types of information as metadata to these tokens of
company, brand and location names, there would be more information in
the research engine to distinguish the ambiguous names and to improve its
performance. The procedure would add a pre-treatement for each document,
to mark for example which token is a brand name, which token is a person

8 Chapter 1. Introduction

name, etc. That is to say, to add some metadata into these names.

1.3 Contributions

• Creation of Synthesio Corpus

Synthesio processes large amount of User-Generated Content (UGC)
everyday in 80 languages. 80% of textual data are in English (from
all users all over the world). When we want to extract named en-
tities from English text, we first need to create a dataset for evalua-
tion. This dataset represents multi-domain, multi-source textual User-
Generated Content (UGC) and is annotated with nine types of Named
Entity Recognition (NER) and twelve Part-of-Speech (POS) tags.

• Part-of-Speech (POS) tagger on User-Generated Content (UGC)

According to Synthesio’s needs, we defined a universal Part-of-Speech
(POS) tagset with twelve possible POS tag (for all the 80 languages that
Synthesio processes) and a mapping rule from other tagsets (of Penn
Tree Bank from Marcus, Marcinkiewicz, and Santorini, 1993 and T-POS
dataset from Ritter et al., 2011).

If we consider User-Generated Content (UGC) and well-formed text
as two different domains, to develop a Part-of-Speech (POS) tagger
for User-Generated Content (UGC), we tried two domains adaptation
methods: For the first one, we added well-formed text from Penn Tree
Bank (Marcus, Marcinkiewicz, and Santorini, 1993) into the training
data (Ritter et al., 2011) to adapt well-formed text of standard English
with specificities of User-Generated Content (UGC). We tested different
proportions of well-formed text and different numbers of features for
different texts.

Our second domain adaptation method is a semi-supervised training
method: the bootstraping method. The goal is to get use of Synthesio’s
large amount of unannotated texts to improve the results of our POS
tagger.

• Using Part-of-Speech (POS) tagger prediction as CRFs model on NER

We tagged the Synthesio dataset with our Part-of-Speech (POS) tagger
and we added these tags into features of the CRFs model for Named
Entity Recognition (NER).

1.4. Thesis outline 9

We also showed that the POS tagger improved the NER results on the
Synthesio NER evaluation dataset.

• Text normalization

Since User-Generated Content (UGC) often has a lot of Non-Standard
Words (NSW) compared to well-formed texts, the goal of text normal-
ization is to turn non-canonical texts into well-formed texts. Natu-
ral Language Processing (NLP) tools which perform better with well-
formed texts could be useful for normalized texts.

We developed a Non-Standard Words (NSW) and Standard Words (SW)
classifier with a Convolutional Neural Network (CNN) model trained
on datasets from Baldwin et al., 2015 and Li and Liu, 2014.

We also developed another Convolutional Neural Network (CNN) model
to normalize Non-Standard Words (NSW) in User-Generated Content
(UGC) (from Baldwin et al., 2015 and Li and Liu, 2014).

• Using normalized text as a feature in CRFs model for NER

We used Non-Standard Words (NSW) and Standard Words (SW) classes,
and then normalized text as features in previous CRFs model in order
to improve Named Entity Recognition (NER) performance on the Syn-
thesio dataset. This feature has helped to slightly improve these NER
results.

1.4 Thesis outline

The main goal of this thesis is to label defined named entities automatically
from textual User-Generated Content (UGC) for Synthesio. This work aims
to improve the performance of Synthesio’s existing search engine and to help
reduce ambiguity by adding named entities types as metadata into the text
collection.

Chapter 2

Chapter two begins with a literature review of the task of Named Entity
Recognition (NER) : the definition of a named entity from different points
of view, Named Entity Recognition (NER) with different text domains and
different text genre, taxonomy of named entities, how we evaluate a Named

10 Chapter 1. Introduction

Entity Recognition (NER) system, and general Named Entity Recognition
(NER) methods on canonical text: methods by rules and machine learning.

Since extracting named entities for linear text turns to a sequence labelling
task, we then explain how the most efficient sequence labelling method the
Conditional Random Fields (CRFs) works with an example.

Then some concrete Named Entity Recognition (NER) methods with user-
generated content (social media text) are presented.

Chapter 3

Chapter three is about how we created an annotated dataset for Named En-
tity Recognition (NER) evaluation and another unannotated data collection
as a vocabulary.

We will explain how we extracted data from different domains and differ-
ent ressources stored in the Synthesio dataset, how we defined named entity
types and how we annotated the corpus. Statistics obtained from this refer-
ence corpus are shown later in this chapter.

We will then explain the process of collecting another (non-annotated)
dataset from the Synthesio data collection. We will describe how we ex-
tracted and normalized texts using regular expression for some types of en-
tities like quantities, volumes etc...

Chapter 4

In chapter four, we will show the first developed CRFs model for Named
Entity Recognition (NER) on the Synthesio dataset.

For this first CRFs model, we have employed part-of-speech (POS) tag in
the Penn Tree Bank dataset from Marcus, Marcinkiewicz, and Santorini, 1993
as a feature. Since one token can have more than one Part-of-Speech (POS)
tag according to different contexts, this feature contains four (because it is
the maximum number of possible POS tags for one token in the dataset Penn
Tree Bank) sub-features, sorted by frequency. If we want the POS tag for the
token in its context, we need a Part-of-Speech (POS) tagger.

We will then present some experiments of developing a POS tagger with
CRFs model on User-Generated Content (UGC). To improve the POS tagging
results, we also used domain adaptation and bootstrapping for POS tagging.

We will then uses the developed Part-Of-Speech (POS) tagger in order to
improve the NER results on the Synthesio dataset.

1.4. Thesis outline 11

Chapter 5

In chapter five, we will first present existing text normalization datasets and
typology of Non-Standard Words (NSW). We will then show first experi-
ments of Non-Standard Words (NSW) classification with Support Vector Ma-
chine (SVM).

Then we will show the classification results of Non-Standard Words (NSW)
with Convolutional Neural Network (CNN), and then try to normalize Non-
Standard Words (NSW) with another Convolutional Neural Network (CNN)
model.

Lastly, we will try to combine the NSW classifier and the text normaliza-
tion model.

Chapter 6

In chapter six, we will present results of Non-Standard Words (NSW) and
Standard Words (SW) classifier on the Synthesio dataset and the annotated
Named Entity Recognition (NER) dataset (Ritter et al., 2011) training data.

Then we will employ the prediction of NSW/SW classifier as a feature
in the CRFs model for Named Entity Recognition (NER) on the Synthesio
dataset.

We will also present the results of text normalization models on the Syn-
thesio dataset and the dataset from Ritter et al., 2011 (for NER training). We
will add the normalized text as a feature in the CRFs model to try to improve
the Named Entity Recognization (NER).

Chapter 7

This chapter concludes the research outcomes of our proposed methods for
Named Entity Recognition (NER) and text normalization on User-Generated
Content (UGC).

We summarise our contributions and give a perspective for improving
Named Entity Recognition (NER), for developing a Part-of-Speech (POS)
tagger for Non-Standard Words (NSW) and Standard Words (SW classifi-
cation and for text normalization on Non-Standard Words (NSW) on User-
Generated Content (UGC).

12

Chapter 2

Literature review

This chapter reviews the literature on Named Entity Recognition (NER) and
text normalization.

First, the definition of named entity is presented from both linguistic and
Synthesio’s point of views.

Secondly, previous works on Named Entity Recognition (NER) in differ-
ent domains and with different types of text genres (journalistics texts, med-
ical notes or tweets) are discussed in section 2.3.

Thirdly, the taxonomy of named entity is illustrated and the evaluation
methods for NER are examined.

Machine learning based methods are then explained in section 2.6.
Written text can be considered as linear or structural. Linear as a sequence

of words (or tokens), structural as constituent analysis on syntactic structures
(Chomsky, 1957). However, named entities inside the text are often local
contiguous sequences in case of multi-words named entity expressions (or
only one word) in the text. Therefore, Named Entity Recognition (NER) tasks
can be solved by sequence labelling. Each label corresponds to a word (or a
token) in the text and these labels indicate if the word (or the token) begins
(B), or is inside (I) or out (O) of a named entity. The most efficient sequence
labelling model, the Conditional Random Fields (CRFs) is then explained
with a concrete example.

Most of Synthesio’s texts are from User Generated Content (UGC) found
on the Internet: product reviews, discussions from forums, and tweets from
Twitter. This User Generated Content (UGC) is full of abbreviations, spelling
errors and other non-canonical words. Specificities of User Generated Con-
tent (UGC) are then presented along with procedures of lexical normalization
for UGC.

Some machine learning methods: Convolutional Neural Networks (CNN)
and Long-Short Term Memories (LSTM) are proved as efficient text normal-
ization methods as in Yolchuyeva, Németh, and Gyires-Tóth, 2018; Kim et al.,

2.1. History of Named Entity Recognition 13

2015; Min and Mott, 2015. They are then explained with diagrams. Word em-
beddings, a word representation by vector, is often used as neural network
input. Word2vec (Mikolov et al., 2013), developed by Google and Glove
in Pennington, Socher, and Manning, 2014 is largely used as word embed-
dings. This word2vec training method, which is used by Synthesio, will be
explained in the end of this chapter.

Contents
1.1 Background . 1

1.2 Aim and Scope . 2

1.2.1 About Synthesio . 2

1.2.2 Internal organization 5

1.2.3 Natural language processing at Synthesio 5

1.2.4 Necessity of named entity recognition 6

1.3 Contributions . 8

1.4 Thesis outline . 9

2.1 History of Named Entity Recognition

In 1991, for the first time, "extracting company names" is mentioned in the in-
formation extraction task on the Conference on Artificial Intelligence Appli-
cations of Institute of Electrical and Electronics Engineers (IEEE) (Rau, 1991).

Later, in the Sixth Message Understanding Conference (MUC-6) on 1995
(Sundheim, 1995), the "named entity" task aimed at tagging named enti-
ties using the Standard Generalized Markup Language (SGML) to label each
character string representing:

• ENAMEX: a person, organization, location name

• TIMEX: a date, a time stamp

• NUMEX: a currency or percentage figure

The tag elements were ENAMEX, TIMEX and NUMEX respectively.
However, they ignored product names like "Macintosh", other miscella-

neous names like "Wall Street Journal" (in reference to the periodical as a
physical object), names of groups of people like "Republicans" and addresses.

14 Chapter 2. Literature review

It was also the first time the term "named entity" had been employed. The
task "coreference", related to named entity recognition, was also proposed in
MUC-6.

Later, in the Multi-lingual Entity Task (MET) of the Association for Com-
putational Linguistics (ACL) conference in 1996, there was a proposed task
"locate and tag with SGML: named entity expressions (person, organizations
and location); time expressions (time and date) and numeric expressions
(percentage and money)".

At that moment, the notion of "named entity" contained only person names,
organizations names and location names.

Two years later, on the Hub-4 workshop, Jonathan et al., 1999 talked
about the Information Extraction Named-Entity Evaluation (IE-NE). From
that point, named entity recognition (NER) has been considered as a subtask
of information extraction.

Similar to the previous MUC-6, MUC-7 task (Chinchor and Robinson,
1998) was concerned with the extraction of three types of information: named
entities, included organisation, person and location; temporal ex-
pressions and number expressions.

A very popular NER shared task was the Conference on Computational
Natural Language Learning (CoNLL) 2003 (Tjong Kim Sang and De Meul-
der, 2003). This shared task was called language-independent named entity
recognition and both English and German corpus were evaluated.

There were four types of named entities to be extracted: Organization,
Person, Location and MISC (miscellaneous names). There exists recursive
or overlapping named entities in natural language, but the authors chose to
annotate only the top level entity (the most complete entity) when a named
entity was embedded in another named entity.

Right after CoNLL2003 in 2004, the Automatic Content Extraction (ACE)
evaluation framework was proposed (Doddington et al., 2004). The tasks in-
cluded "recognition of entities", "recognition of relations", "event extraction"
and "event extraction on speech and on optical character recognition (OCR)
input". The "recognition of entities" part required not only named entities as
defined above, but also all referential expressions representing an entity, a
name that could be a description, a pronoun or a noun phrase. The goal was
to reuse these extracted mentions to extract relationships among all reference
of entities in the part of "recognition of relations" task.

Instead of recognizing instantly all types of defined named entities, we
can also first segment the beginning and the end of named entities and then

2.2. Named entity definition 15

classify extracted named entities into different types. That is how we talk
about named entity recognition and classification (NERC) (Poibeau and Kos-
seim, 2001).

Nowadays, Named Entity Recognition (NER) is considered as a subtask
of information extraction, and the tasks related to NER vary from "corefer-
ence" (Denis and Baldridge, 2009; Hajishirzi et al., 2013; Durrett and Klein,
2014), relation extraction (Bunescu and Mooney, 2005), entity linking (Dod-
dington et al., 2004), knowledge base creation (Surdeanu, 2013) to automatic
summarization (Gupta and Lehal, 2011) and question answering (QA) sys-
tem (Han et al., 2017).

2.2 Named entity definition

As we can see through the task of Information Extraction (IE), depending on
Natural Language Processing (NLP) tasks, named entities are often person
names, organisation names, location names and sometimes other time, date
or currency expressions. Apart from these examples of named entities, there
is not a clear, exact definition of what a named entity is.

According to linguists, a named entity is a linguistic unit that makes ref-
erence to a named entity in the world (Ehrmann, 2008; Fort, Ehrmann, and
Nazarenko, 2009; Dupont, 2017). This reference could refer to a specific ob-
ject with "a proper name in every possible world in which the object exists"
(by the American philosopher Saul Kripke in Kripke, 1972).

Therefore, a named entity refers to a concrete, existing object of a certain
domain. It has a proper name with a general agreement in the community of
the domain (Nadeau and Sekine, 2007; Nouvel, Ehrmann, and Rosset, 2016).

A named entity can be an organisation (a company, a facility), a person,
location (a city name, a country), and also a movie name, a song, a character
name (in a book) or a holiday name (like "Christmas"). It can also be a protein
name (Dupont, 2017) or a disease name (Zhao et al., 2017) in the biomedical
domain.

2.2.1 From the linguistic point of view

In general, Named Entities (NE) are "mentions" refering to entities of a spe-
cific domain, those mentions relating to different linguistic categories. A
Named Entity (NE) can be composed of only one proper noun like "Rabelais",

16 Chapter 2. Literature review

"Reuter" and "Orange". It can also be a noun phrase with common nouns like
"Assurance Maladie" (French for "health insurance").

If we follow the definition that all named object is a named entity, there
are film names, musician names, book names, fictional characters, sport-
steam, holidays, road names, airplane names (such as "Concorde") etc. From
the linguistic point of view, the original forms of named entities could be
common nouns (as "Orange"), noun phrases (as "Long Island") or complete
sentences (as a book name "Who Moved My Cheese?"), etc..

As a convention, in English, French and most Indo-European languages,
proper names begin with the first letter in uppercase like "Reuter", "Apple"
(as a company name) like person names (like "Obama").

Multi-words expressions are more complicated: in English, full words
and stop words are distinguished. Full words are words which contain mean-
ings in a sentence: nouns, pronouns, verbs, adjectives, and adverbs. Stop
words are grammatically necessary and are filtered out before or after pro-
cessing of natural language data (Rajaraman and Ullman, 2011): articles,
prepositions, or coordinating conjunctions. In English, all words in a loca-
tion name begin with an uppercase letter as in "New York"; But for book
titles, only full words begin with uppercases (and stop words begin with
lowercase letters) as in "Game of Thrones". There are also abbreviations with
all letters in uppercase like "CNN" (Cable News Network) and sometimes
there can be dots that separate these letters as in "S.N.C.F" (French for "So-
ciété Nationale des Chemins de Fer"). Some brand names also mix uppercase
characters and symbols as in "H&M" and "C&A".

The uppercase is often a mark of proper names and named entities. How-
ever, the convention that the first letter of a sentence be in uppercase makes
the first word ambiguous. "Twins" with "T" in uppercase can be a common
noun in the beginning of a sentence, or it can also refer to an all-female band,
a film name, a book name etc1. "Kiss" with "K" in uppercase is also a rock
band name 2.

Without the first letter in uppercase, one word could be ambiguous: it
could be a named entity or not. As mentioned before, "orange" is a commun
noun or an adjectif, the orange color with "o" in lowercase. However, "Or-
ange" with "O" in uppercase could be various types of named entities: a city
(in France), a telecommunication company or a noble family name.

1https://en.wikipedia.org/wiki/Twins_(disambiguation)
2https://www.kissonline.com/end-of-the-road

https://en.wikipedia.org/wiki/Twins_(disambiguation)
https://www.kissonline.com/end-of-the-road

2.2. Named entity definition 17

For coreference tasks, all referring expressions that refer to all named en-
tities are first extracted, including pronouns like "he" for a person that was
mentioned before. In a larger sense, descriptions like "the father of Gargan-
tua" is also considered as a referential expression.

Entities which refer to the same object are then categorized as referring to
the same object thanks to a unique identifier

Sometimes identical word sequences do not refer to the same "entity".
For example, the referential expression "the president of America" referred
to Barack Obama from 2009 to 2017 and since 2017, the same character string
refers to Donald Trump. And even though we can imagine that there are
other persons named Donald Trump, who are not the one of the president
of America. That means, the same character sequence may refer to different
entities (person).

Coreference will not be addressed in this thesis, so pronouns will not be
considered, neither do noun phrases as referential expression.

THE FOOTBALL FEVER: Ohio head coach Frank Solich says Ohio State
knows they have a special team and season underway

FIGURE 2.1: Named Entity "Ohio"

"Ohio" is often considered as a location name (a state name in the USA).
However, figure 2.1 shows an ambiguous case where the named entity

"Ohio" in blue is a sport team name and the "Ohio" in red refers to the state
inhabitants.

In conclusion, named entities are mentions that refer to an object of some
defined types like "person", "organisation" or "location", etc. They are often
proper nouns or noun phrases and multi-words named entities often have
each word beginning with an uppercase letter.

2.2.2 From a practical perspective

Synthesio works on E-reputation for clients like brands, local government
(like cities), music group or sportsteam etc. These brand names, music group
names and location names are considered as types named entities.

Therefore, in a larger point of view, information that we want to extract
can be from any category, not only named entity. For example, the goal of
Marty, Tian, and Tellier, 2014 is to find color, material and brand in
products’ description texts.

18 Chapter 2. Literature review

Sometimes the same name can refer to different aspects of the named en-
tity.

"McDonald’s" is often considered as a company. Table 2.1 shows a typ-
ical example in Tian et al., 2016 and different aspects of this named entity
"McDonald’s".

My McDonald’s was still hot when it was served and it tasted delicious. product
The room was too hot when we ate at McDonald’s yesterday. location

TABLE 2.1: Examples of "McDonald’s"

In the first sentence, "McDonald’s" refers to the products (food). But in
the second sentence, "McDonald’s" refers to a restaurant, a location.

Synthesio’s requirement was to add metadata into character sequences
which represent company names, product names etc in order to add meda-
data into index for Synthesio’s search engine. However, the distinction be-
tween brands, companies and products is often far from clear.

A brand can be a company name or a product name. For example, "L’Oréal"
can refer to the "L’Oréal" group name (of type Company) or their products un-
der the brand of the same name, just like "BMW", which can be a company
name or a brand name.

This context entails specific problems like "J’adore" (French for "I love"),
being the name of parfum of brand Dior (a product name). Products are often
associated with brands like "Citroën C6". "Citroën" is the brand name and a
company name (a subsidiary of the PSA Peugeot Citroën group) ."C6" is the
car model name (of type product) of the company.

Therefore, it is difficult for Synthesio to extract company names and prod-
uct names. The Synthesio definition of named entities types is shown in
chapter 3.

2.3 Domain and text genre

A text genre is a type of written or spoken discourse, characterized by the
way it was created and by the register of language it uses, its audience,
etc (Kessler, Numberg, and Schütze, 1997). Therefore, we distinguish poet-
ries, journalistic texts, discourse transcriptions and User-Generated Content
(UGC) as different text genres.

As most of NLP tasks (Part-Of-Speech tagging, chunking etc), Named
Entity Recognition (NER) first processed on standard, well-formed texts as
journalistic texts.

2.3. Domain and text genre 19

Texts of different genres like oral conversation transcription and User-
Generated Content (UGC) on the Internet are then processed. There are also
Named Entity Recognition (NER) works on texts in other specialised do-
mains as medical notes, historical archive text and automobile product de-
scription.

For CoNLL 2003 (Tjong Kim Sang and De Meulder, 2003), the NER was
based on well-formed texts (news) from Reuters (for English) and from Ger-
man newspaper Frankfurter Rundshau (for German). The ACE 2004 corpus
was extracted from broadcast news, newspaper and newswire data (Dod-
dington et al., 2004).

In other domains, Quimbaya et al., 2016 tried to extract named entities
(diagnosis, treatment and etc) from electronic health records (EHR) using a
dictionary-based Fuzzy Gazetteer approach (by edit distance). Kumar et al.,
2015 tested a CRFs-based NER system with clinical notes. More specifically,
Wang et al., 2016 also employed a CRFs-based system to recognize entities
(disease, disease type, complaint-symptom, test-result, test and treatment)
from Chinese Electronic Medical Records and they achieved a F1 measure of
89.07%. Besides these medical text processing, Byrne, 2007 tested a NER task
with historical archive text. Their definition of named entities are hierarchi-
cal, for example, the named entity type Location were divided into PLACE
(cities, towns, etc). Their best result was up to about 77% on F1 measure.

With other text genre, in 2001, Poibeau and Kosseim, 2001 compared the
results obtained using a standard NER system when applied to news (MUC-
6 data) and to speech transcriptions. They reported a drop in F1 measure.
Proper names extraction systems’ (without adaptation) f1 measures drop be-
tween 0.25 (0.69 to 0.44 for Exibum system) and 0.40 (0.90 to 0.50 for Lexis
system). Nowadays, more and more user-generated content (UGC) appears
on Internet. With platforms such as forums, Facebook, Twitter, more and
more topics are being discussed everyday. On 2011, Ritter et al., 2011 created
an annotated NER corpus from Twitter and tested their CRFs-based NER sys-
tem. Liu et al., 2012; Cano Basave et al., 2013; Derczynski, Yang, and Jensen,
2013; Erp, Rizzo, and Troncy, 2013 also developed NER systems with Twitter
data.

As we can imagine, a NER system performs differently with texts in dif-
ferent domains and different text genres. Domain adaptation (DA) aims to
learn a model from a source data and then to apply this model (often well
preforming model) on a different (but related) target data. The target data is
often from different domain or different text genre (Ben-David et al., 2010).

20 Chapter 2. Literature review

Guo et al., 2009 tested their DA model in English and Chinese with four do-
mains: economics, entertainment, politics and sports. Alvarado, Verspoor,
and Baldwin, 2015 tried NER domain adaptation (DA) with risk assessment.
Finally, Tian et al., 2016 applied NER system trained from tweets with other
long and short texts.

2.4 Taxonomy of named entities

As discusted previously, NER tasks often extract person names, company
names and location names. Some systems also work with time, data, cur-
rency, number and percentages.

From 1996, in the Multi-lingual Entity Task (MET), the conference of As-
sociation for Computational Linguistics (ACL) (Merchant, Okurowski, and
Chinchor, 1996) defined, as in MUC-6, three types of named entity: person,
organization and location.

Later in 2002 and 2003, the CoNLL shared task added a MISC type for
names of miscellaneous entities that do not belong to the previous three
groups (Tjong Kim Sang, 2002; Tjong Kim Sang and De Meulder, 2003). We
can find named entities of MISC type like: "Christmas" (holiday name), "A6
Quattro" (car model name of Audi), "Africa Cup 2006" (rugby union tourna-
ment in Africa or football championship of Africa), "Chicken salad", "Alien"
(movie name) etc.

In French, the French Treebank (Abeillé, Clément, and Toussenel, 2003)
is annotated with eight types of named entities: Company, Organization,
Location, Fiction-Character, POI (Point Of Interest) and Product.

If we look at the User Generated Content (UGC), Ritter et al., 2011 cre-
ated a corpus from Twitter which talked about various subjects. The de-
veloper of the corpus annotated 2,400 tweets with 10 types which are both
popular on Twitter, and have good coverage in Freebase: Person, Company,
Geo-location, Product, Facility, Tv-Show, Movie, Music-artist,
Sports-team and Other.

In the medical domain, the named entities that we want to extract are
very different. (Wang et al., 2016) used a CRFs-based system to recognize six
entities: disease, disease-type, complaint-symptom, test-result,
medical-test and medical-treatment.

Sometimes in biomedical texts, one type of entity can include another
type of entity. For example in the character sequence "CIITA mRNA", the

2.5. Evaluation of Named Entity Recognition (NER) 21

string “CIITA” is a DNA name and the entire string “CIITA mRNA” refers to
an RNA (Ribonucleic acid).

Finkel and Manning, 2009 presented a nested named entity recognition
system for parsing and they tried to extract protein, DNA, RNA, cell line and
cell type as named entities.

Byrne, 2007 worked with historical archive text and tried to extract 11
classes: ORG, PERSNAME, ROLE, SITETYPE, ARTEFACT, PLACE, SITENAME,
ADDRESS, PERIOD, DATE and EVENT. Three of these, SITETYPE, ARTEFACT
and EVENT, are further divided into subclasses.

In this thesis, we only talk about simple named entities. We will extract
the most complete named entity in case of nested named entities. Synthesio’s
definition of named entity types is shown in chapter 3.

2.5 Evaluation of Named Entity Recognition (NER)

To evaluate a Named Entity Recognition (NER) method, we first need a ref-
erence annotation (a benchmark). The problems with human annotation as
benchmark will be discussed in chapter 3. The named entities extracted by
the NER method are then compared with the reference annotations.

Criteria of a correctly extracted named entity are: the named entity’s type
and boundaries: the beginning and end of the named entities.

For example, there is a cocktail name "Long Island Ice Tea" in a text and
we want the Named Entity Recognition (NER) system to recognize this named
entity. If the NER system only recognizes "Long Island" (a populated island
off the East Coast of the United States), that will not be considered as a correct
extraction because the end of the named entity is not correct.

Mr. <ENAMEX TYPE="PERSON">Dooner</ENAMEX> met with <ENAMEX
TYPE="PERSON">Martin Puris</ENAMEX>, president and chief executive of-
ficer of <ENAMEX TYPE="ORGANIZATION">Ammirati & Puris</ENAMEX>,
about <ENAMEX TYPE="ORGANIZATION">McCann</ENAMEX>’s acquiring
the agency with billings of <NUMEX TYPE="MONEY">$400 million</NUMEX>,
but nothing has materialized.

TABLE 2.2: An example of MUC-6 annotation

Figure 2.2 is an annotated example of MUC-6 from (Grishman and Sund-
heim, 1996). Each named entity is annotated with its type: PERSON, ORGANIZATION
for ENAMEX and MONEY for NUMEX and their boundaries (the beginning and
the end of each entity). The goal of MUC-6 is to find all the named entities (of
type person, organization and location), time, plus currency and percentage

22 Chapter 2. Literature review

expressions using SGML. The tag ENAMEX is used by person, organization
and location entities while the tag NUMEX is used for currency and percent-
age expressions.

Table 2.3 shows all possible errors that a NER system could make. We
will use this example to explain how to evaluate a NER system with different
evaluations.

Human annotation System prediction CommentType Entity value Type Entity value
PERSON Dooner PERSON Dooner Correct
PERSON Martin Puris PERSON with Martin Puris Boundaries error
ORG Ammirati & Puris PERSON Ammirati Boundaries and type errors
ORG McCann PERSON McCann Type error
MONEY $400 million Missing

ORG nothing Spurious
ORG materialized Spurious

TABLE 2.3: An example of a NER system prediction

2.5.1 MUC evaluation (partial match evaluation)

The MUC evaluation metrics is used in MUC-6 (Grishman and Sundheim,
1996) and MUC-7 (Chinchor, 1999). This evaluation metrics took into account
partially correct extraction which means: an entity correctly recognized but
with a wrong type and an entity with correct type but wrong boundarie(s) are
considered as 1/2 correct answer. The second case with wrong boundaries
concerns for example "Dooner" in the text and "Mr. Dooner" in the golden
annotation or vice-versa. In the example of the table 2.3, the prediction "with
Martin Puris" is considered as a partial correct answer for "Martin Puris" in
the golden annotation.

With this evaluation metric, the true positive (number of named entities
which are correctly extracted) is calculated as:

- 1: Dooner (PERSON)

- 0.5: Martin (PERSON) for Martin Puris (PERSON)

- 0.5: McCann (PERSON) for McCann (ORGANIZATION)

The global precision is calculated as:

1 + 0.5 + 0.5

number of prediction
=

2

6
≈ 0.33

2.5. Evaluation of Named Entity Recognition (NER) 23

The global recall is calculated as: 9

1 + 0.5 + 0.5

number of golden annotation
=

2

5
= 0.4

Then the global F1-measure is calculated as mean average of precision
and recall.

F1 = 2 ∗ precision ∗ recall
precision+ recall

≈ 0.362

This MUC evaluation is not so strict that they tolerate one error on either
type or boundary. Named entities extracted with correct boundaries but with
a wrong entity type are considered as a half of a true positive (0.5); named
entities extracted with correct entity type but with a wrong boundary is also
considered as a half of a true positive (0.5). Therefore, scores are higher than
other more strict metrics.

2.5.2 CoNLL evaluation (exact match evaluation)

On IREX (in Japanese), CoNLL 2002, CoNLL 2003 and WNUT 2015, the eval-
uation method employed is exact match evaluation. That means, only named
entities with correct boundaries and type that the system extracted are con-
sidered as positive answers. Either boundaries or type error is considered as
wrong prediction.

The global precision is calculated as:

true positive
number of prediction

=
1

6
≈ 0.17

The recall is calculated as:

true positive
number of golden annotation

=
1

5
= 0.2

Then the F1-measure is calculated as mean average of precision and recall.

F1 = 2 ∗ precision ∗ recall
precision+ recall

≈ 0.184

24 Chapter 2. Literature review

2.5.3 SemEval shared task evaluation

In the International Workshop on Semantic Evaluation (SemEval) in 2003, a
task of extracting Drug-Drug Interaction from BioMedical Texts (DDIExtrac-
tion) was proposed. It was divided into two parts: recognition and classi-
fication of drug names and Extraction of drug-drug interactions. The first
part correspond to a NER task and four different evaluation measures were
proposed, each requires different level of strictness.

• Strict: requires correct entity type and boundaries

• Exact: requires exact entity boundary matching regardless to type

• Partial: requires at least one boundary matching regardless to type

• Type: requires correct entity type when there is some overlap

We can see that the Strict evaluation correspond to the CoNLL 2003 eval-
uation: only extracted entities with correct type and two boundaries are
considered as a true positive result. The Exact and Partial evaluations treat
wrong types of entities as correct results.

The partial evaluation also tolerates entities with only one correct bound-
ary. Lastly, type evaluation only insists the entity type as well as there is an
overlap between the human annotation and the system prediction.

Table 2.4 shows the same exemple of a NER system prediction as table 2.3
but with more measures on the right. In each row, in the cases of scores, we
show the result of the four different metrics.

For all metrics:

• COR: correct answer

• INC: the system’s output and the gold-standard annotation disagree

• MIS: missing

• SPU: spurious

For partial evaluation, PAR means that the system’s output and the gold-
standard annotation are not identical but have some overlapping text. This
category makes sense only if the partial match is allowed.

With the indications of the table 2.4, we can calculate that:

POSSIBLE(POS) = COR + INC + PAR + MIS = TP + FN
ACTUAL(ACT) = COR + INC + PAR + SPU = TP + FP

2.5. Evaluation of Named Entity Recognition (NER) 25

Human annotation System prediction Evaluation measures
Type Entity value Type Entity value Strict Exact Partial Type

PERSON Dooner PERSON Dooner COR COR COR COR
PERSON Martin Puris PERSON with Martin Puris INC INC PAR COR
ORG Ammirati & Puris PERSON Ammirati INC INC PAR INC
ORG McCann PERSON McCann INC COR COR INC
MONEY $400 million MIS MIS MIS MIS

ORG nothing SPU SPU SPU SPU
ORG materialized SPU SPU SPU SPU

TABLE 2.4: Same prediction example with SemEval evaluation

where:
TP: True positive
FN: False negative
FP: False positive
Then evaluation results will be reported using the standard precision/recall

like :
Precision =

COR

ACT

Recall =
COR

POS

Except that for Partial evaluation, the precision and recall will be calcu-
lated as:

Precision =
COR + 0.5 ∗ PAR

ACT

Recall =
COR + 0.5 ∗ PAR

POS

At last, the F1-measure is calculated as:

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

We then get the evaluation results in the table 2.5.
As we can see, Strict is the strictest evaluation and Partial is the least strict

evaluation. Exact and Type evaluations are between these two.
The SemEval 2003 evaluation offered four evaluation measures with dif-

ferent strictness level. We can then evaluate different systems with more
flexibility. We can distinguish systems that are more precise on entity bound-
aries (Exact) or more suitable for entity types (type). With partial evaluation,
partly matched named entity (errors of boundaries) are considered as partly

26 Chapter 2. Literature review

Measure Strict Exact Partial Type
COR 1 2 2 2
INC 3 2 0 2
PAR x x 2 x
MIS 1 1 1 1
SPU 2 2 2 2
POS 5 5 5 5
ACT 6 6 6 6

Precision 0.17 0.33 0.5 0.33
Recall 0.2 0.4 0.6 0.4

F1 0.184 0.362 0.66 0.362

TABLE 2.5: SemEval 2003 Evaluation results

correct (for example,extracted "blue" from "dark blue"), not as wrong predic-
tions as missing named entities. Different applications may require different
strategies concerning accuracy and precision of named entity recognition.

In this thesis, we are going to use the CoNLL evaluation because it is the
strictest evaluation for both entity boundaries and entity type.

2.6 Machine learning based NER methods

First NER systems were often based on rules. Regular expressions are de-
fined to detect date, currency or time types. Person names, organisation
names and location names were often extracted from a list of all typed named
entities.

Machine learning is a study of algorithms and statistical models used in
different NLP tasks including the Named Entity Recognition (NER).

There are three families of machine learning methods: supervised learn-
ing, semi-supervised learning and unsupervised learning.

Since annotating data is expensive and never exhaustive compared to
real-world data we have to deal with, people may try to get use of large
amount of unannotated, relevant data as a semi-supervised method or an
unsupervised method.

2.6.1 Supervised learning

Supervised learning methods use annotated examples to learn a statistical
model.

Simple supervised learning methods often used are: Maximum Entropy
(MaxEnt) like in Bender, Och, and Ney, 2003; Chieu and Ng, 2003; Curran

2.6. Machine learning based NER methods 27

and Clark, 2003, Hidden Markov Models (Florian et al., 2003; Klein et al.,
2003; Mayfield, McNamee, and Piatko, 2003; Whitelaw and Patrick, 2003),
Conditional Random Fields like in McCallum and Li, 2003, Neural Networks
like LSTM in Hammerton, 2003; Murthy and Bhattacharyya, 2016.

Although sentences can be analyzed by syntactic trees as shown in fig-
ure 2.2 of Yule, 2010, in machine learning, texts are often treated as linear
sequences of tokens. Named Entity Recognition (NER) is then considered as
a sequence labelling problem.

FIGURE 2.2: Syntactic analysis by tree diagram

Raymond and Fayolle, 2010 tested two methods with two corpora. They
found that the CRFs performed better than Support Vector Machines (SVM)
(Cortes and Vapnik, 1995), which was itself already more efficient than a fi-
nite state automaton.

Putthividhya and Hu, 2011 also reported that the CRFs worked better
than Decision Trees (Quinlan, 1986), SVM, Maximum Entropy (MaxEnt) and
HMM (Hidden Markov Model) with the task of extracting product attributes
in the texts of description of cloth and shoe in eBay (http://www.ebay.c
om/).

Conditional Random Fields (CRFs) (Lafferty, McCallum, and Pereira, 2001;
McCallum and Li, 2003) is considered as the best supervised model in resolv-
ing sequence labelling problems including Named Entity Recognition (NER)
tasks (McCallum and Li, 2003; Ritter et al., 2011).

http://www.ebay.com/
http://www.ebay.com/

28 Chapter 2. Literature review

Conditional Random Fields (CRFs)

CRFs is a type of discriminative undirected probabilistic graphical model
that can be used to segment and label sequence data (Lafferty, McCallum,
and Pereira, 2001; Tellier and Tommasi, 2011).

For the NER task, CRFs that we employed are linear chain as in Sha and
Pereira, 2003. This is a supervised training method; that means, as train-
ing data, we already have a set of label sequences Y corresponding to text
sequences X (in the form of tokens).

Xi-1 Xi Xi+1

Yi-1 Yi Yi+1

FIGURE 2.3: Linear CRFs

In graph theory, a graph is a set of vertices (also called nodes) which are
connected by edges nodes (Bondy and Murty, 2008).

Figure 2.3 shows a linear CRFs model from Lafferty, McCallum, and Pereira,
2001. In this graph, Xi−1, Xi, Xi+1, Yi−1, Yi and Yi+1 are vertices (nodes) and
lines which connect vertices are edges.

X are (considered as) independent observations and correspond to the
sequence of tokens of the text. The order of tokens is from left to right, that
is from i− 1 to i+ 1 (i > 0) in the figure.

Y is a sequence of labels. Each label corresponds to one observation of X
in the sequence (for example Yi correspond to Xi, etc).

The prediction of a current Yi may depend on the whole X sequence and
the previous label Yi−1.

The prediction is based on combinations of feature functions. The feature
functions modelize properties local to the tokens sequence (observations).

The labels prediction for an X sequence, is to find the best sequence of
labels Y given the sequence of observations X, that is, to find a sequence of
labels Y which maximizes the probability P (Y |X).

This probability, depending on combinations of feature functions, is ex-
pressed with the formula:

P (Y |X) =
1

Z(X)

∏
c∈C

exp(
∑
k

λkfk(c, Yc, X)) (2.1)

2.6. Machine learning based NER methods 29

Z is a normalization factor over all output values. It is the same for all
possible Y sequences so it can be ignored when we calculate the most prob-
able Y sequence. "C" is for cliques, and "c" is one clique in the set of cliques
"C". A clique in an undirected graph is a subset of its vertices such that every
two vertices in the subset are connected by an edge (Luce and Perry, 1949).

fk(c, Yc, X) represents a feature function (for one clique "c"), which returns
a value of 0 or 1 according to the conditions in the definition. λk is the weight
associated to each feature function fk(c, Yc, X).

There are two types of feature functions that correspond to two types of
cliques in the figure 2.3: uni-gram and bi-gram. The uni-gram feature func-
tions return a value which depends on part of the entire set of observations
and its current label.

Xi-1 Xi Xi+1

Yi-1 Yi Yi+1

FIGURE 2.4: An unigram CRFs

The blue square in the figure 2.4 shows an unigram CRF, that is one type
of cliques). The feature functions for an unigram model will be:

f(i, Yi, X) =

1

if Yi = label value,
and X = token value

0 otherwise

(2.2)

The probability of a label sequence Y for this unigram CRF is calculated
like this:

P (Y |X) =
1

Z(X)

∏
i=1

exp(
∑
k

λkfk(i, Yi, X)) (2.3)

The bi-gram feature functions take in input the observations sequence X,
the current label Yi and the label of the previous observation: Yi−1.

Xi-1 Xi Xi+1

Yi-1 Yi Yi+1

FIGURE 2.5: A bigram CRFs

30 Chapter 2. Literature review

The red square of figure 2.5 shows a bigram CRF (that is the other type of
clique in CRFs sequence) and feature functions for a bi-gram model will be:

f ′(i, Yi, Yi−1, X) =

1

if Yi = label value,

Yi−1 = the previous label value,

and X = some values

0 otherwise

(2.4)

If we consider the two types of cliques (which are expressed by feature
functions) at the same time for the same model, the probability of the se-
quence of labels Y is calculated like this:

P (Y |X) =
1

Z(X)

∏
i=1

exp(
∑
k

λkfk(i, Yi, X))
∏
i=2

exp(
∑
k′
λ′k′f

′
k′(i, Yi, Yi−1, X))

(2.5)
The objective is to find the best label sequence Y which maximizes this

probability P (Y |X).

An example of CRF training

Linear CRFs are designed to label text sequences. A tokenized text is often
considered as a linear sequence ignoring syntactic dependencies.

The supervised training of linear CRFs is based on a pair of two sequences:
the sequence of tokens and the corresponding sequence of labels, and a pat-
tern which defines feature functions.

The generated model then fixes weights for each feature function by max-
imum likelihood estimation (MLE) and stochastic gradient descent (SGD).
Calculation of the most probable labels sequence for a sequence of tokens is
done with the Viterbi algorithm (Forney, 1973).

Training

In this example, we have a text "Welcome to Paris". We want to recognize the
named entity of the city "Paris". We will have an annotation for this text like
the figure 2.6 which follows the pattern of the CRF definition of figure 2.4:
the text (tokens) "Welcome to Paris" in the bottom, annotation on the top.

Each label corresponds to a token of the text just under it. One of the
possible label for annotation system is BIO (Ramshaw and Marcus, 1999):
"B" for "Beginning", "I" for "Inside" and "O" for "Outside". In what follows,
we use this BIO label system. In our Named Entity Recognition (NER) task,

2.6. Machine learning based NER methods 31

Welcome

O

to

O

Paris

B

X1 X2 X3

Y1 Y2 Y3

FIGURE 2.6: An annotated text

possible labels are "O" and combinations of "B" and "I" with named entity
types. "B" followed by a hyphen "-" and the entity type for the token is the
beginning of a named entity of the entity type that we want to recognize.

"I" followed by a hyphen "-" and the entity type for the token is inside of
a named entity.

For example, if we have "New York" as a named entity of type Location
to annotate, we will have label "B-location" for the token "New" and the label
"I-location" for the token "York".

In the example of figure 2.6, "Paris" is a location name that we want to
extract, so it is labelled with "B-Location", but we use "B" for short. "O" is
for "outside", which means the corresponding token is not interesting (not a
named entity to be extracted).

We then define a simple unigram CRF pattern for illustration: the current
label depends only on the previous token value. In real CRF patterns, we can
define bigram patterns using the previous label and the current label. The
pattern about observations X can also be features about the token.

In our example, if the previous token is "to", the current label will be "B-
Location". Other labels are all "O". That is to define a rule that the token that
follows the token "to" is a location name.

The defined pattern (in red) will move from the beginning of the text un-
til the last token of the text like in figure 2.7. The "$" is the beginning of a
sentence.

Welcome

O

to

O

Paris

B

X1 X2 X3
Welcome

O

to

O

Paris

B

X1 X2 X3
Welcome

O

to

O

Paris

B

X1 X2 X3

Y1 Y2 Y3

$
X0

i = 1 i = 2 i = 3

Y1 Y2 Y3 Y1 Y2 Y3

FIGURE 2.7: The pattern’s movement

32 Chapter 2. Literature review

With the annotated text and the defined pattern, the CRFs then creates
three corresponding feature functions:

f1(i, Yi, X) =

 1 if Yi = "O" and Xi−1 = $
0 otherwise

(2.6)

f2(i, Yi, X) =

 1 if Yi = "O" and Xi−1 = "Welcome"
0 otherwise

(2.7)

f3(i, Yi, X) =

 1 if Yi = "B" and Xi−1 = "to"
0 otherwise

(2.8)

We can see that CRFs are based on three feature functions, that is the
number of tokens in the training phase if there is no repetition. For each
feature function, two conditions (defined with the pattern) are required. If
the case satisfies the defined conditions (from annotated examples), feature
functions return the value 1 otherwise they return the value 0.

In this example, we can define all feature functions weights (λk with k
being from 1 to 3) as 1 (the real weights are first initialized and then adjusted
using maximum likelihood estimation (MLE)).

The set of feature functions and their weights forms a CRFs model. The
defined pattern and annotated examples are already included in the defini-
tion of feature functions.

Applying the trained CRFs model

We now have a CRFs model trained by our example "Welcome to Paris" and
we want to apply it to other texts like in the figure 2.8.

Welcome

to Beijing
X1 X2 X3

Y1 Y2 Y3

FIGURE 2.8: A text to label

When we apply feature functions with the new text "Welcome to Beijing",
we will test all possible labels values. Here we have only two possible labels:
"B-Loc" (B) and "O".

2.6. Machine learning based NER methods 33

Welcome

to Beijing
X1 X2 X3

Welcome

to Beijing
X1 X2 X3

Welcome

to Beijing
X1 X2 X3

Y1 Y2 Y3

$
X0

i = 1 i = 2 i = 3

Y1 Y2 Y3 Y1 Y2 Y3

FIGURE 2.9: The pattern’s movement in prediction

As shown in figure 2.9, when our defined pattern (in red) moves from the
beginning to the end of the text, we can obtain results like table 2.6 (we use
"B" for "B-Loc").

Y0 Y1 Y2
i=0

Xi−1 = ’$’
i=1

Xi−1 = ’Welcome’
i=2

Xi−1 = ’to’
f1(i, Yi =

′ O′, Xi−1) = 1
f1(i, Yi =

′ B′, Xi−1)= 0
f1(i, Yi =

′ O′, Xi−1) = 0
f1(i, Yi =

′ B′, Xi−1)= 0
f1(i, Yi =

′ O′, Xi−1) = 0
f1(i, Yi =

′ B′, Xi−1)= 0
f2(i, Yi =

′ O′, Xi−1) = 0
f2(i, Yi =

′ B′, Xi−1)= 0
f2(i, Yi =

′ O′, Xi−1) = 1
f2(i, Yi =

′ B′, Xi−1)= 0
f2(i, Yi =

′ O′, Xi−1) = 0
f2(i, Yi =

′ B′, Xi−1)= 0
f3(i, Yi =

′ O′, Xi−1) = 0
f3(i, Yi =

′ B′, Xi−1)= 0
f3(i, Yi =

′ O′, Xi−1) = 0
f3(i, Yi =

′ B′, Xi−1)= 0
f3(i, Yi =

′ O′, Xi−1) = 0
f3(i, Yi =

′ B′, Xi−1)= 1

TABLE 2.6: Feature functions values

Until now, we have all values of feature functions. The next stage is to
compute the most probable Y sequence depending on X: P (Y |X). The table
2.7 shows all combination of Yi values and feature functions values fi for i
from 0 to 2 and the sum of the values.

f1 f2 f3
∑
k
λkfk(i, Yi, X)

Y0 = ’O’ 1 0 0 1
Y0 = ’B’ 0 0 0 0
Y1 = ’O’ 0 1 0 1
Y1 = ’B’ 0 0 0 0
Y2 = ’O’ 0 0 0 0
Y2 = ’B’ 0 0 1 1

TABLE 2.7: Feature functions summations for each Y position

Finally, the table 2.8 shows all the possible Y sequences and the best path
which maximizes the value of P (Y |X).

We can see from the table 2.8 that the label sequence "OOB" gives the
maximum value of P (Y |X), which means the CRFs extracted the location
name "Beijing".

34 Chapter 2. Literature review

Y0 Y1 Y2 p(Y |X) =
∏
i=1

exp(
∑
k
fk(i, Yi, X))

B B B e0+0+1 = e1

B B O e0+0+0 = e0

B O B e0+1+1 = e2

B O O e0+1+0 = e1

O B B e1+0+1 = e2

O B O e1+0+0 = e1

O O B e1+1+1 = e3

O O O e1+1+0 = e2

TABLE 2.8: All possible sequences and the best path

This is a CRFs model only trained with the example "Welcome to Paris".
The trained model will extract the token just after the token "to". In the text
"Ready to go", the model will extract "go" as a location name. That means
more features about the token should be defined. For example, location
names often begin with a capital letter, words before a location names could
be "to", "from", "in" and so on.

The strongpoint of linear CRFs is that we can use any observation X, be-
cause feature functions have access to the whole observation sequence. In-
stead of defining token value equals to some value, the features could also be
whether the token begins with a capital letter, whether the token is in a word
list, the value of its part-of-speech tag, etc.

For real application, feature functions are often used to model local prop-
erties of the current token. These functions are defined according to the pat-
tern, which defines a conjunction of basic tests about the tokens sequence
properties. In addition, an observation window controls the locality of fea-
ture functions.

2.6.2 Unsupervised learning and Semi-supervised learning

Unsupervised learning

Evans, 2003 employed first a hyponyms extraction method. For each word
"X" in the text that begin with uppercase (potential named entity, or head of a
phrase), launch a Google (www.google.com) query "such as X" and collect
the 1000 words appearing just before the query "such as X". These words
are considered as X’s hyponyms (Hearst, 1992). These hyponyms are then
clustered and the clusters are labelled.

Many other works consist of named entity clustering. That is, the ex-
tracted named entities (with boundaries strings) are classifies into different

www.google.com

2.7. Text normalization for User Generated Content 35

clusters and then the cluster types are named. Algorithms often used in this
sort of clustering are KNNs (Altman, 1992) or more recently LDA (Blei, Ng,
and Jordan, 2003).

Semi-supervised learning

Semi-supervised learning methods are often based on supervised learning
methods and the objective is to complete the supervised learning models. As
introduced in Putthividhya and Hu, 2011, we followed the procedure to first
learn a model with annotated examples, then we can modify or complete the
model with unannotated data. Since annotating data is costly, the tendancy
is to employ unannotated data to improve supervised models.

Boostrapping learning

In this thesis, we will talk about a semi-supervised method with boostrap-
ping (Putthividhya and Hu, 2011). That means, we first learn a model with
annotated data. Then we use this model to predict other unannotated data,
and use the predicted data as annotated data to learn another model and
repeat the same procedure.

2.7 Text normalization for User Generated Content

User Generated Content (UGC) is becoming more and more important in
opinion analysis through the Internet. Because of the growing quantity of the
mass of information, more and more studies concentrate on how to process
the data automatically and efficiently.

However, almost for all Natural Language Processing (NLP) tools, the
performances declined on User Generated Content (UGC).

For example, the Standford POS tagger, trained by the Penn TreeBank
(Toutanova and Manning, 2000), reached 96.86% in accuracy on well-formed
texts but only 81.3% on tweet texts (Ritter et al., 2011).

Similar results are found on syntactic analysis (Plank et al., 2014; Kong
et al., 2014). and also on Named Entity Recognition (NER) as in Ritter et al.,
2011.

36 Chapter 2. Literature review

alpha EXPN abbreviation
LSEQ letter sequence
ASWD read as word
MSPL misspelling

NUMBERS NUM cardinal number
NORD ordinal number
NTEL telephone (or part of)
NDG number as digits
NIDE identifier
NADDR number as street address

TABLE 2.9: Taxonomy of NSW in (Sproat et al., 2001)

2.7.1 Definition and scope of lexical normalization

The definition of text normalization is first proposed in Sproat et al., 2001.
The problem that they try to resolve is to recognize all token forms from
written texts in systems like Text-to-speech synthesis systems. So their def-
initions of text normalization is to turn all texts into words which can be
found in a dictionary and can be pronounced correctly by a human that
speaks that language. All tokens which need to be transformed are called
"Non-Standard Words". These "Non-Standard Words" contain numbers, ab-
breviations, dates, currency amounts and acronyms.

Later, Han, 2014 distinguished Non-Standard Words and Out-Of-Vocabulary
words. Some Out-Of-Vocabulary words could be named entities like "Obama"
which is absent of the standard dictionary. These Out-Of-Vocabulary words
could not be replaced by other words. At the meantime, some In-Vocabulary
words could be incorrect according to their context like "wit" in "I will go wit
you". That is a Non-Standard Word which should be corrected.

The 2015 WNUT workshop focused on named entity recognition and
normalization of noisy text. They followed the definition of Non-Standard
Words of Han, 2014. In addition, they also kept unchanged noisy Out-Of-
Vocabulary in tweets, like "hahahahaha".

2.7.2 Definition and Taxonomy of Non-Standard Words

According to taxonomy defined in Sproat et al., 2001, Non-Standard Words
(NSW) contain numbers, abbreviations, dates, currency amounts, acronyms
etc.

2.7. Text normalization for User Generated Content 37

Further more, in thesis Han, 2014, the author defined Non-Standard Words
(NSW), compared them to standard words (SW) and showed relationships
with Out-Of-Vocabulary words (OOV) and In-Vocabulary words (IV) in fig-
ure 2.10.

FIGURE 2.10: NSW and definition of normalization from Han, 2014

Figure 2.10 shows some examples of each class and the notion of nor-
malization. All words are either In-Vocabulary (IV) or Out-Of-Vocabulary
(OOV) according a reference standard English dictionary (here we use the
union of the Aspell American and British English dictionary). Words are also
divided into standard words (SW) and Non-Standard Words (NSW). How-
ever, Non-Standard Word could be In-Vocabulary words as in the example
"wit" for "with you" shown in figure 2.10. On the other hand, some Out-Of-
Vocabulary words are standard words, that do not need to be normalized.
The example is a named entity, a proper noun "Obama", which does not exist
in the standard English dictionary. But this is already the standard form that
should not be normalized. We also find in this class tokens like "hahaha".

The objective of lexical normalization is to project Non-Standard Words
(in vocabulary or Out-Of-Vocabulary words) into standard and In-Vocabulary
words class. Here we only correct Non-Standard Words into In-Vocabulary
words, but in reality, we should be able to correct them into Out-Of-Vocabulary
words, like proposing "Obama" for the Non-Standard Word "Obamma".

They are often considered as standard words because we will not correct
their surface form. But there are also exceptions for example sometimes "2"
means "to" or "too" and "4" sometimes means "for".

38 Chapter 2. Literature review

In consequence, it is difficult to classify tokens into the four classes of the
figure 2.10.

If we use one classifier to separate all tokens in a text, we can get tokens
that we need to correct (Non-Standard Words, NSW) and tokens that we do
not have to correct (standard words, SW).

Token classifier

No need to be
corrected

Need to be
corrected

In Vocabulary

Out of
vocabulary

Number and
punctuation

Noise

Canonical
text

Named
Entity

FIGURE 2.11: Details of SW words

Figure 2.11 describes this procedure. Standard words are tokens that do
not need to be change. In this SW class, there are punctuations and num-
bers, there are also In-Vocabulary (IV) words and Out-Of-Vocabulary (OOV)
words. In-Vocabulary (IV) words are comprehensive standard English words
and Out-Of-Vocabulary (OOV) could be named entity (like "Obama" in fig-
ure 2.10), or simply some noise text (like "hahaha") for which we can not find
a standard form. The variety of this SW class bring difficulties to the task of
NSW/SW classification.

2.7.3 General procedure of lexical normalization

The ACL2015 workshop on noisy user-generated text (WNUT) proposed a
text normalization challenge with an annotated dataset (Baldwin et al., 2015).

For this workshop, there were two distinct competitions: a constrained
part, where participants develop their model without any external ressources
and an unconstrained part, where participants were allowed to use external
ressources and tools. The evaluation is done with F1 measure.

Reference part F1 Method
(Jin, 2015) C 84.21 generate candidate with Jaccard similarity, random forest
(Supranovich and Patsepnia, 2015) N 82.72 CRF for NSW/SW then lexicon
(Min and Mott, 2015) C 81.75 LSTM + lexicon (labelled by edit distance)
(Leeman-Munk, Lester, and Cox, 2015) C 81.49 char-level ANN for classification then ANN for training
(Berend and Tasnádi, 2015) N 80.52 CRF to predict edit correction
(Akhtar, Sikdar, and Ekbal, 2015) C 80.05 CRF for NSW/SW then rules
(Beckley, 2015) N 75.71 Lexicon+rules+ranker

TABLE 2.10: Methods of WNUT workshop

2.7. Text normalization for User Generated Content 39

Table 2.10 showed the four first teams in constrained part and the three
first teams in unconstrained part, their results in F1 measure and their major
methods.

(Liu, Weng, and Jiang, 2012) proposed a dataset of text normalization for
tweets. They are generated from unsupervised tweets with context.

FIGURE 2.12: Extract of (Liu, Weng, and Jiang, 2012) dataset

Figure 2.12 showed an extract of this dataset. In this dataset, not only
the NSW word and its corresponding correct form are shown, but also the
number of occurrence for each NSW word.

But this dataset also shows that some NSW words have more than one
correct forms and this depends on the context like "2" can be "too" or "to".

From these articles of WNUT workshop, we can see the general proce-
dure of lexical normalization. First, the classification of SW/NSW words
finds words to be corrected. In this step, we can use a dictionary to help find-
ing OOV/IV words. Then the classification is often done with supervised
learning methods. The corrector will only be executed on NSW words, as
shown in figure 2.13.

Token classifier

No need to be
corrected

Need to be
corrected Corrector Correct

Token

FIGURE 2.13: First Classify then correct NSW

40 Chapter 2. Literature review

Figure 2.14 showed another procedure: the corrector propose for all token
in the text, a list of candidates to replace token, including the token itself, in
the case that the token is SW. This model will be trained by all NSW and SW
words.

Token Correct
Token

List of
Candidates
proposition

Corrector

FIGURE 2.14: First propose candidates then sort

Reference Algorithm F1 (cv train|test for WNUT)
Han and Baldwin, 2011 SVM 71.2%
Supranovich and Patsepnia, 2015 CRF 86% 82%
Akhtar, Sikdar, and Ekbal, 2015 CRF 92% 86%
Leeman-Munk, Lester, and Cox, 2015 character-level ANN 98% 98%

TABLE 2.11: SW/NSW classification references and results

Table 2.11 shows references and results of SW/NSW classification. We
followed Leeman-Munk, Lester, and Cox, 2015 to use neural networks for
text normalization. The neural network will be explained later in this chapter.

This classification step is not always necessary, as shown in the general
procedure 2.14.

Secondly, for each NSW words, some candidates are proposed. In this
step, supervised learning methods are used to train a model and then to
predict a candidate word from a vocabulary set. As for creating a training
corpus, Gouws, Hovy, and Metzler, 2011 used vectors’ similarity from 2 cor-
pus. Liu et al., 2011a used Google request with OOV words’ context. Then
Liu, Weng, and Jiang, 2012 added more filter based on previous method, and
generated candidates by trained model form 3802 pairs of NSW and its cor-
rection. Li and Liu, 2014 used a word embedding model (word2vec) with
some more complexe formulas. Training algorithm also varise from machine
translation in Pennell and Liu, 2011, Maxent as in Li and Liu, 2014, Character-
level Neural Network as in Chrupała, 2014 and CRF (labelled by correction
propositions) as in Berend and Tasnádi, 2015.

Table 2.12 showed two NSW words and corresponding CRFs labels. The
original phrase is shown in 2.15. It correction is in 2.16.

I miss u my bie! Where u wanna out wif me?

FIGURE 2.15: An example of tweet

2.7. Text normalization for User Generated Content 41

I miss you my bie! Where you wanna out with me?

FIGURE 2.16: The correction of the tweet example

letter Feature examples labelv/c prononciation position
^ N N B correct
w C w 0 correct
i V i 1 correct
f C f 2 replace_by_th
$ N $ E correct
^ N N B insert_yo
u V u 0 correct
$ N $ E correct

TABLE 2.12: Example of CRF labels for correcting NSW word

Features for each character that they used are: vowel or consonant (v/c),
prononciation (represented by defined letters) and character position (B for
begin, E for end and the number of character position in the word).

We can see that they defined manually rules to correct a NSW word. For
"wif", they changed the position of "f" to "th" and for "u" they added "yo" at
the position of "u".

The downside is that only defined correction rules could be predicted. If
the correcting rule is not in the training data, the CRFs model could not pre-
dict the right label. For example, in the training data, we have "ASAP" rewrit-
ten as "as soon as possible", the CRFs model could not propose "as quickly
as possible" for "AQAP". On the other hand, this method considers only the
word without context, so they can not resolve the ambiguity problem.

Some unsupervised learning methods are also used, to generate a word
using alphabet character. Han and Baldwin, 2011 used edit distance, dou-
ble metaphone etc as supplement rules. If there was not the classification
step, candidates are proposed for all tokens, including the surface form in
the original text.

The last step is a ranker which determines the most probable candidate
for a word to correct. The criterion of ranking could be strings similarities
(word without context notion) like edit distance and distance between word
vector representations, sequence probability (with Viterbi), or by trained lan-
guage model Han and Baldwin, 2011. If there was not the classification step,
the most probable candidate could be its surface form in the original text.

42 Chapter 2. Literature review

Jin, 2015 proposed a candidate generation method and a ranking by fea-
tures. First, they generated candidates including the form of the token, all
corrections for this form in the training data and the top m forms the most
similar according to Jaccard Index Jaccard, 1912 similarity. Then they em-
ployed a random forest classifier with context-free features like:

• support: number of times that the token appeared

• confidence: the confidence of the form being normalised to a form c

• the similarity Jaccard Index with the original form

• string length

and features with context:

• pos-tagging confident: if the probability of the tagger is more with c
than the original form

• look up of tag-1 and tag 0 for a local context

Their conclusion is that the most important features to evaluate a candidate
are support and confidence, then the pos tagging.

Min and Mott, 2015 employed a contextual long-short term memory (LSTM)
recurrent neural network. They also made use of the CMU Twitter POS tag-
ger. They trained methods for normalization from Levenshtein distance al-
gorithm, that is, before each character, possibilities of operations "insert", "re-
place" and "delete".

First, according to annotation principle, they changed all tokens into low-
ercase, and they kept usernames(@username), hashtags (tokens begin with
#) and URLs unchanged. Then they created according to training data, pairs
of word to correct and its non ambiguous correction.

And they trained their LSTM model with the first three characters of its
POS tag plus all characters of the word. As context, they took one word
before and one word after. As input, the had the representation of binary
characters (in total 67 different characters), and they trained a character em-
bedding using a linear projection layer while training the text normalization
LSTM model. As output, they had one label for the current word, for exam-
ple, they had a label as "insert_t_replace_h" for normalising "dese" into its
correction "these".

Their conclusion is that using the context of one previous word and one
next word is better than context-free model, but they did not exclude larger
contexts.

2.7. Text normalization for User Generated Content 43

Leeman-Munk, Lester, and Cox, 2015 employed a context-free, feed for-
ward neural network without POS tag informations.

FIGURE 2.17: normalization processing in (Leeman-Munk,
Lester, and Cox, 2015)

In the figure 2.17, they used an example to normalise "u" into "you". They
first supposed that all words need to be normalised. Their "Normalizer",
a neural network takes input as characters presented by vectors (as in Col-
lobert et al., 2011) and through one hidden layer and proposes for each char-
acter position, the most probable character to reach the candidate "you". Then
the "Conformer", uses Levenshtein distance (Levenshtein, 1966) with words
in dictionary (generated from correct tokens of training data) to choose the
most probable candidate "you". The independant "Flagger", another feed
forward neural network, decides if we normalize or not. Their conclusion
is, more dimensions in character presentation vector is more important than
more layers in the neural network, and more iterations give always more
satisfying result.

Liu et al., 2011a proposed a normalization method trained by auto-correction
of google search as shown in figure 2.18. They collected the Out-Of-Vocabulary
word "4got" in the request, and got the word in blod-italic "forgot" from the
text "Including results for i forgot my password" in the web page as a pair of
Non-Standard Word and its correction ("4got", "forgot").

They first applied a LangID model to filter English Twitter messages from
97 million Twitter messages from Edinburgh Twitter corpus (Petrović, Os-
borne, and Lavrenko, 2010).

Comparing to the GNU Aspell English dictionary 3, they found all Out-
Of-Vocabulary (OOV) words. Then for OOV consisting of letters and apos-
trophe, they typed 6 possible “w1 w2 w3 OOV” or “OOV w1 w2 w3” se-
quences in google (w1, w2, w3 are context of OOV), kept the first 32 returned

3http://aspell.net/

http://aspell.net/

44 Chapter 2. Literature review

FIGURE 2.18: Screen shot for Google’s auto-correction

snippets where words in boldface as candidates. For OOVs consisting of both
letters and digits : they used rules like "1" rewritten as “one”, "2" rewritten as
“to” before using google query.

After some post-treatement, they obtained (NSW, SW) pairs and they cre-
ated a character-level alignment for each (NSW, SW) pair by longest sub-
string. Then they used alignment to train a CRFs model in order to generate
NSW words for each SW word : P(NSW|SW) and they tested their method
using Twitter and SMS data.

They evaluated their model by the best candidate and the first 3 best can-
didates comparing to simple dictionary method and spelling check system.

Liu, Weng, and Jiang, 2012 employed enhanced letter transformation to
calculate P(NSW|SW), then generated a list of candidates from SW in the
vocabulary using “Edit Distance”. Then they selected pairs by context-aware
training pair for candidates’ ranking (using TF-IDF) and a character-level se-
quence labelling using CRFs as in (Liu et al., 2011a). They used visual prim-
ing approach (“déjà vu”) by adding more weights for NSW in training data.
They also employed the Jazzy spell checker4 When combing candidates, they
tested a word-level only method and a message-level method (by Viterbi al-
gorithm (Forney, 1973)).

Chrupała, 2014 used a CRF (wapiti, LBFG) model for Levenshtein edit
labelling at character level. His CRF labels included NIL (no edits), DEL
(delete character at this position), INS(insert specified characters) etc.

This CRF model took usage of a character-level text embeddings. A model
was first trained by simple recurrent networks (RNN) from 414 million bytes
of UTF-8 text encoded in different languages at character-level for one tweet

4http://jazzy.sourceforge.net/

http://jazzy.sourceforge.net/

2.7. Text normalization for User Generated Content 45

(a character sequence), the feature used in CRFs is the probability of the char-
acter at current position. They evaluated their model by word error rates
(WER) and the result is outstanding from all combined dictionary method.

Park et al., 2016 published their results of classifying OOV terms (with-
out their contexts) on a domain-specific social media corpus en automobile.
They tries to classify into 9 categories: AUTO, DRUG, FOREIGN, MEA-
SUREMENT, NE-AUTO, NE-OTHER, NOISE, SLANG, SPELLING-ERROR,
or only 2 categories : NE-AUTO and OTHER (all the 8 rest).

Their OOV definition is:

1. frequency greater than 1000 in a automative corpus of 150 million posts

2. out of English dictionary Aspell

3. from 2 to 10 characters

Their CRF features contain:

• Character Ngrams (N from 1 to 3),

• language model character level (bigram and trigram models from En-
glish German and Spanish corpora)

• word frequency

They employed a word embedding by training a proper word2vec model
with 8 billion tokens from Forum, Wikipedia and Twitter. The absent OOVs
use average of all other OOV representations. They obtained a dataset of 665
OOVs, and they evaluated their model with 10-folds cross validation. They
tested random forest and found that logistic regression (maximum entropy)
works better. Their conclusion is that the proper pre-trained word embed-
ding is useful for classification.

Neural Networks (NN)

Since Leeman-Munk, Lester, and Cox, 2015 has obtained a 98% on F1-measure
for Non-Standard Words detection as in 2.11,

We followed this approch of neural networks for text normalization.
As its name suggests, neural networks were inspired by the brain’s com-

putation mechanism in neuroscience, which consists of computation units
called neurons.

As shown in figure 2.19, neurons are connected with each layer (input
layer and output layer in the figure) and neurons are not connected between

46 Chapter 2. Literature review

X0 X1 X2Input

Neuron

YOutput

Hidden layer Neuron

FIGURE 2.19: a simple neural network in general

them. In figure 2.19, there are two neurons in the middle level (hidden layer).
They are not connected one to another but only with the input layer X se-
quence and the output layer Y, according to the definition of a simple multi-
layer neural network.

The input and output layer could be defined by any numbers of dimen-
sions, here we use only one hidden layer for an example. In the figure, the
input layer X has three dimensions: X1, X2 and X3. The output layer Y has
only one dimension: Y. Each neuron represents a transformation from the
lower layer to the higher layer.

With a lot of annotated data (pair of X sequence and Y) and a defined
neural network like in figure 2.19, we can get a model capable to calculate a
Y for a given sequence X.

The simplest neural network: The Perceptron

The perceptron is a binary classifier which decides, whether a vector of num-
bers (input) belongs to one class or not (Rosenblatt, 1957).

The perceptron function is presented as only one neuron, its input is a
vector of numbers (of any dimensions), its output is binary: 0 or 1 here but it
could also be 1 and -1.

The figure 2.20 shows a simple perceptron where m is the number of in-
put vector dimension (or size). w is a vector of real-valued weights, each
dimension wi corresponding to xi. w = w0, w1, w2, ..., wm. "SUM" means the
function of dot product: W TX =

m∑
i=0

wi · xi. Here x0 = 1, w0 being the bias,

does not depend on any input value. f is a function that receives the value

2.7. Text normalization for User Generated Content 47

1

x1

x2

Input

SUM 0 or 1

Output

xm

...

f
w1

w2

wm

w0

FIGURE 2.20: A perceptron

of "SUM" and returns the value 0 or 1. Here we define

f(v) =

 1 if v > 0

0 otherwise
(2.9)

We can see then the perceptron model is just the weights vector w. So the
training step is to find the weights vector w with annotated examples.

Let vectorO = O1, O2, ..., On being n annotated examples andA = A1, A2, ..., An

the corresponding labels. The labels values are either 0 or 1. (Aj=0 or 1 for all
j from 1 to n). Here each Oj represents a vector of m + 1 dimensions, which
corresponds to the vector X in figure 2.20 (Oj = x0, x1, x2, ..., xm with x0 = 1).

To obtain the best w matrix, we first need to initialize the vector w. We
can initialize it with all 0, or a small value superior to 0.

Let w(t) being the actual (of the moment t) weights vector, it is a vector
of m + 1 dimensions: w(t) = w0(t), w1(t), w2(t), ..., wm(t) (initial weights w0

for the first time). Then for each annotated example Oj = oj,0, oj,1, oj,2, ..., oj,m

where oj,0 = 1 for all j in n. We calculate the actual output yj(t):

yj(t) = f(w(t) ·Oj) = f [w0(t) · oj,0 + w1(t) · oj,1 + ...+ wm(t) · oj,m]

Then we compare to the real value Aj (that yj(t) should be). We also de-
fine a 0 =< r <= 1 called "learning rate", that means, with which probability
we take each example into account. Then we can update the weights value.
The next weights vector w is w(t+1) = w0(t+1), w1(t+1), w2(t+1), ..., wm(t+

1). We calculate each value wi(t+ 1) of w(t+ 1) like this:

wi(t+ 1) = wi(t) + r · (Aj − yj(t))oj,i

48 Chapter 2. Literature review

And then we define an acceptable tolerance, the sum of errors threshold
γ. The training procedure will stop when

1

S

S∑
j=1

| Aj − yj(t) |<= γ

In the real training, we can browse more than one time all annotated ex-
amples and each time, a random order with all annotated examples to obtain
the best result. So here S is the entire browsed examples set, it is the prod-
uct of the number of iteration and n (number of annotated examples). That
explains that t can also be superior than n.

We can see from the training procedure that there are configurations to
define: initial weights vector, learning rate, error threshold and loss func-
tion (to calculate the difference of actual prediction value and the annotated
value).

Convolutional neural network (CNN)

Convolutional neural networks use a variation of multilayer perceptrons de-
signed to require minimal preprocessing (LeCun, 1989). The CNNs have
been showing good performance for image classification (Krizhevsky, Sutskever,
and Hinton, 2012). Compared to other algorithms, CNNs need less pre-
processing because the network learns the filters and in traditional algo-
rithms,the filters are often hand-engineered.

Then CNNs were used for natural language processing (Collobert and
Weston, 2008), especially achieving excellent results in semantic parsing (Grefen-
stette et al., 2014), search query retrieval (Shen et al., 2014), sentence mod-
eling (Kalchbrenner, Grefenstette, and Blunsom, 2014), classification (Kim,
2014) and other traditional NLP tasks (Collobert et al., 2011).

For sequence labelling task, CNNs are often used as the first layer of a
more complete network, and represent local features moving from the head
to the tail of a sequence. We first choose a window size representing the
local context. For NLP, we often use a context of 3 words, that means, the
current token, its previous token and its next token in the text. Sometimes,
this context can be up to 5 words: the current token, two tokens before and
two tokens after. When we study datasets from Baldwin et al., 2015 and
Li and Liu, 2014 for token normalization, we find that the window of five
words (current token, two token before and two token after) is capable of
disambiguation of standard word and non-standard word. That is the raison

2.7. Text normalization for User Generated Content 49

why we choose five as window size for token normalization. Here we use a
window of size 3 for an example.

We use figure 2.21 to show how the window moves and how to calculate
the output of the CNN layer from an input text of three words (phrase length
s = 3) U = "Ready to go". In neural networks, all data is represented by
vectors of numbers. Imagine that each word of the text is represented with a
n dimension vector. We will have

U1 = ”Ready” = [u1,1, u1,2, ..., u1,n]

U2 = ”to” = [u2,1, u2,2, ..., u2,n]

U3 = ”go” = [u3,1, u3,2, ..., u3,n]

Since we move the window of size l = 3 from the head to the tail of the
3-word-sentence. To consider each word to be the current word, we need
representations for the head to the tail as follows:

HEAD = [h1, h2, ..., hn]

TAIL = [t1, t2, ..., tn]

Like in figure 2.21.
After the transformation by the window’s movement, we obtain for this

CNN layer the output of a matrix of n ∗ l rows and s colomns: CNN(U)n∗l,s.
Like mentioned before, the output of one neural network’s layer is calcu-

lated as output = w·input, where w is the weights matrix, input isCNN(U)n∗l,s.
So if the desired output dimension of this layer is o, the dimensions of the
weights w will be o ∗ (n ∗ l).

We often use other layers after the CNN’s output, so we will need a vector
(with only one colomn) but not a matrix. It means that we need an operation
on CNN(U)n∗l,s to reduce s to 1. Pooling operation is the method to reduce
vector dimensions. Maxi Pooling operation is one of the pooling operation
methods. For each row ofCNN(U), we keep only the highest value (meaning
the most representative) of the s values as shown in the figure 2.23.

Then the output of this CNN and maxpooling layer will be another vector
of n ∗ l dimensions, Which will be used as the input of the next layer.

As we can see, the principle of CNN is to locally observe each input (in its
context) in order to determine the corresponding output. So this observation
is enriched by the context of the input.

50 Chapter 2. Literature review

h1
h2

hn

...

u1,1
u1,2...

u1,n
u2,1
u2,2...

u2,n

u2,1
u2,2

...

u3,1
u3,2

...
u3,n

u1,1
u1,2

...

u1,n

u2,n

u2,1
u2,2

...

u3,1
u3,2

...
u3,n

u2,n

t1
t2...

tn

h1
h2

hn

...

u1,1
u1,2...

u1,n
u2,1
u2,2...

u2,n

u2,1
u2,2

...

u3,1
u3,2

...

u3,n

u1,1
u1,2

...

u1,n

u2,n

u2,1
u2,2

...

u3,1
u3,2

...

u3,n

u2,n

t1
t2...

tn

CNN(U) n*l,s

HEAD Ready to go TAIL

t1

t2

tn

...

h1
h2

hn

...

u1,1

u1,2

u1,n

...

u2,1

u2,2

u2,n

...

u3,1

u3,2

u3,n

...

FIGURE 2.21: CNN’s window movement

CNN(U) n*l,s

.

n*l

o

Wo,n*l

Outputo*s =

h1

h2

hn

...

u1,1
u1,2...

u1,n
u2,1
u2,2...

u2,n

u2,1
u2,2

...

u3,1
u3,2

...

u3,n

u1,1
u1,2

...

u1,n

u2,n

u2,1
u2,2

...

u3,1
u3,2

...

u3,n

u2,n

t1
t2...

tn

FIGURE 2.22: CNN’s output

(Collobert and Weston, 2008) proposed a CNNs model for sequence la-
belling and phrase classification. As shown in figure 2.24, they first used a
lookup table to represent words and features, and they then employed a con-
volution layer befor a max over time (pooling method). Finally, a softmax
activation function gives the result of classification.

2.7. Text normalization for User Generated Content 51

CNN(U) n*l,s

...

maxpooling

h1
h2

hn

...

u1,1
u1,2...

u1,n
u2,1
u2,2...

u2,n

u2,1
u2,2

...

u3,1
u3,2

...

u3,n

u1,1
u1,2

...

u1,n

u2,n

u2,1
u2,2

...

u3,1
u3,2

...

u3,n

u2,n

t1
t2...

tn

FIGURE 2.23: Max pooling with CNN output

FIGURE 2.24: CNN from (Collobert and Weston, 2008)

Long short term memory (LSTM)

The perceptron and CNNs only consider the actual input. They do not keep
previous information. That is why the long short term memory (LSTM) was
invented later in (Hochreiter and Schmidhuber, 1997). The LSTM is a kind
of recurrent neural network (RNN). The simplest RNN is Elman’s network
(Elman, 1990).

52 Chapter 2. Literature review

The figure 2.25 on the left shows this simple RNN.

X

S

Y

U

V W

xt-1

st-1

yt-1

U

V
W W

x

st

yt

U

V

xt+1

st+1

yt+1

U

V
W W... ...

FIGURE 2.25: Elman’s RNN

The RNN is just a simple hidden layer of a neural network plus a loop W .
X is the input vector, Y is the output vector. U is the weights matrix for X to
transform to S, which is the statement value. V is another weights matrix for
statement S to transform to Y .

On the right of figure 2.25, we decompose the network structure in func-
tion of time: X is represented by [...xt−1, xt, xt+1, ...]. Similarly S is [...st−1, st, st+1, ...]

and Y is [...yt−1, yt, yt+1, ...].
The recurrent loop W means, each statement st depends on the input xt

and the previous statement st−1 at the moment t.
We suppose that the activation functions are f for X to S and g for S to

Y . Since for all neural networks, the output of a hidden layer is output =

function(weights · input), we can get for a RNN,

st = f(U · xt +W · st−1) (2.10)

and the output of a RNN will be

ot = g(V · st) (2.11)

if we rewrite the equation 2.11 with the equation 2.10, we will get:

ot = g(V · st) = g(V · f(U · xt +W · st−1))
= g(V · f(U · xt +W · f(U · xt−1 +W · st−2)))
= g(V · f(U · xt +W · f(U · xt−1 +W · f(U · xt−2 +W · st−3)...

(2.12)

The equation 2.12 means that the output of the time ot depends on all
previous input xt−1, xt−2.... That is long term memory.

2.7. Text normalization for User Generated Content 53

Long short-term memory is a little different from the simple RNN. At the
moment t, the statement st also depends on the previous output yt−1, which
is considered as short term memory, as shown in figure 2.26.

xt-1

yt-1

xt

yt

xt+1

yt+1

...

...

...

...

St-1

St

St+1

FIGURE 2.26: LSTM States

In this figure 2.26, blue squares replace the simple neuron of RNN. The
cell statement ct−1 is considered as long term memory for the moment t.

We can see that at the moment t, we have three entries: the input xt, long
term statement st−1 and short term output yt−1. There are two outputs at this
moment t: yt as output and st as the input of the next statements (the next
blue square).

LSTM also introduced the notion of "gate". A "gate" will control how
much information passes through. It is just like a hidden layer, represented
by a linear function

g(x) = Φ(W ·X) + b (2.13)

In formula 2.13, X is the input vector, W is the weights matrix of the gate
and b is the bias. g(x) returns a real number between 0 and 1. When g(x)=0,
that means the gate letting nothing pass through, the gate is completely close.
When g(x)=1, that means the gate letting all pass through, the gate is com-
pletely open as if the gate does not exist. So in general, the gate is always
between 0 and 1, that means between completely open and completely close.
To use the gate, we multiply all elements of a vector (or matrix) by the gate
value. The gate function often use the sigmoid function(Φ in equation 2.13).

LSTM defines three gates: The "input gate" decides how much informa-
tions of input xt previous output yt−1 pass to cell state st. The "forget gate"

54 Chapter 2. Literature review

decides how much memory of previous output yt−1 and the input xt we keep
in the moment t. At last, the "output gate" controls how much of st to output
to yt.

All the three gates are sigmoid functions of the concatenation of input xt
vector and previous cell state yt−1 (expressed by [,] symbol) Only weights
matrix (W) and bias (b) change.

The input gate:
it = Φ(Wi · [yt−1, xt] + bi) (2.14)

The forget gate:
ft = Φ(Wf · [yt−1, xt] + bf) (2.15)

The output gate:
ot = Φ(Wo · [yt−1, xt] + bo) (2.16)

Now we try to compute the output values: ct and yt. The output of the
LSTM layer yt only depends on the cell statement st and the output gate’s
value ot.

yt = ot · Φ(st) (2.17)

To compute the current cell statement st, we need an intermediate state-
ment value s̃, which also depends on input xt and previous output yt−1. That
is the memory of the moment t.

s̃ = Γ(Wc · [yt−1, xt] + bc) (2.18)

In the equation 2.18, Γ represents the tanh function, which returns a real
value from -1 to 1.

We can then compute the value of cell state st as follows:

st = ft · st−1 + it · s̃ (2.19)

With the control of the forget gate, the cell state st can keep information
from long ago (before the moment t) or avoid unimportant information en-
tering in the memory. Then the long term memory st will be the input of the
next moment t+ 1.

Figure 2.27 shows the calculates of gates and of outputs st and yt.

2.7. Text normalization for User Generated Content 55

St-1

yt-1

Φ tanh

*

*
ft

st ̃
it

ot
*

yt

st ...

... yt

St

xt

Φ

Φ

+

[yt-1, Xt]

Φ

FIGURE 2.27: LSTM gates calculate inspired by colah’s blog (ht
tp://colah.github.io)

Word representation with word2vec model

When we want to represent words in a form that our machine can read, we
define a function to project words into a defined space.

The word2vec model presented in Mikolov et al., 2013 is first an addi-
tional representation obtained from a neural network training procedure.
First, this NN model was in the objectif of training a language model, to
predict the next word according to previous word(s).

We have a vocabulary of V words and each word has an number as its
index in this vocabulary. With this index, we can represent this word by a
V-dimensions vector with only one value of 1 (the index of the word) and
other values of 0, this vector is called one-hot word representation.

This simple NN model takes the one-hot word representation of previous
words as input layer, then the input layer is projected into one hidden layer
of N dimensions with a linear activation function and then connects to a soft-
max output layer of V dimensions. The output is the next word according to
the context (previous words), each dimension of V is one word in the vocab-
ulary. In the hidden layer, the number of dimensions N is often much smaller
than V, so the representation dimensions is fixed for all words and is much
smaller than the vocabulary size V.

Figure 2.28 from Rong, 2014 shows a simple CBOW (Continuous Bag-of-
Word) model with only one previous word as input. The input is a one-hot
representation of size V. Only the previous word (for example xk) has the
value 1 and other dimensions have the value 0 for the input vector. With the

http://colah.github.io
http://colah.github.io

56 Chapter 2. Literature review

linear transformation using the vectorWV ∗N , we get a vector of N dimensions
for the hidden layer. Then with another vector W ′

V ∗N , we get into the output
layer with softmax as the activation function. In the output layer, we also
have a vector with only one value of 1 (for example, the word yj from the
vocabulary of size V) and other values are all 0.

FIGURE 2.28: A simple CBOW model from (Rong, 2014)

Initially, the CBOW model was used to train a language model which
predict the next word according to the context with the previous word. But
in the end, with the trained model, the hidden layer of N dimensions (the
vector h1, h2, ..., hi, ...hN) becomes a vector representation of the input word
(xk in the figure), and Mikolov, Yih, and Zweig, 2013 discovered that this
representation encode efficiently word meaning. Words in similar context are
considered as near to each other using cosinus distance. For example, "Paris",
"Rome" and other capital cities often apear in similar context so these words
are near to each other in the vector space. Since words are represented as
vectors, we can do some addition and multiplication operations and calculate
distance of two vectors. Mikolov, Yih, and Zweig, 2013 showed that "King -
Man + Woman” results in a vector very close to "Queen".

The vector representation trained by this neural network for language
model is called word2vec model. It is considered as an efficient represen-
tation for words in many nlp tasks since: for named entity recognition in
Godin et al., 2015; Cherry and Guo, 2015; Sienčnik, 2015 and Toh, Chen, and
Su, 2015, for text classifications in Lilleberg, Zhu, and Zhang, 2015, for syntax
problems as in Ling et al., 2015, for semantic analysis in Yao et al., 2017 and
etc...

2.8. Conclusion 57

There are also other similar word embeddings like GloVe (Pennington,
Socher, and Manning, 2014), also used on named entity recognition in Toh,
Chen, and Su, 2015.

2.8 Conclusion

In this section, named entity is defined from both linguistic and application
point of views. Then major machine learning methods: Conditional Random
Fields (CRFs) and Neural Networks (NN) are introduced. Some previous
works about Named Entity Recognition (NER) and text normalization are
examined.

58

Chapter 3

Raw data, basic normalization and
Synthesio’s dataset

In this chapter, we will first analyze a subset of Twitter, the most noisy so-
cial media. We will then try to analyze more finely a large unlabelled dataset
from three Synthesio’s classified domains: luxury, music and automotive in-
dustry.

We will talk about a basic normalization of an unannotated raw dataset
by regular expressions. This normalization reduced the size of vocabulary in
the dataset by using the same expression for similar tokens of time, quantity
or volume etc. Meanwhile, the meaning of sentences and words sequences
remain the same. The normalized large dataset is then used to create a word
representation by vector (a word2vec model). The word meaning and se-
mantic relations are preserved in the vector representation. This word2vec
model (word representation by vector) is then used as input layer in the neu-
ral networks model in chapter 5.

In chapter 1, we explained that Synthesio needed to develop a proper
named entity recognizer with a proper definition of named entity types. Fur-
thermore, to evaluate the named entity recognizer with Synthesio’s data, we
first needed an annotated dataset. In this chapter, we will first explain the
creation of the Synthesio reference dataset, including data extraction from
different domains, definition of named entity types and manual annotation
procedures.

Contents
2.1 History of Named Entity Recognition 13

2.2 Named entity definition . 15

2.2.1 From the linguistic point of view 15

2.2.2 From a practical perspective 17

2.3 Domain and text genre . 18

3.1. Analysis of a Twitter subset data 59

2.4 Taxonomy of named entities 20

2.5 Evaluation of Named Entity Recognition (NER) 21

2.5.1 MUC evaluation (partial match evaluation) 22

2.5.2 CoNLL evaluation (exact match evaluation) 23

2.5.3 SemEval shared task evaluation 24

2.6 Machine learning based NER methods 26

2.6.1 Supervised learning 26

2.6.2 Unsupervised learning and Semi-supervised learning 34

2.7 Text normalization for User Generated Content 35

2.7.1 Definition and scope of lexical normalization 36

2.7.2 Definition and Taxonomy of Non-Standard Words . . 36

2.7.3 General procedure of lexical normalization 38

2.8 Conclusion . 57

3.1 Analysis of a Twitter subset data

Synthesio processes a huge amount of data everyday and subscribes to a
Twitter service providing a randomized subset consisting of 10% of all given
tweets in a defined time period. This service provided by Twitter makes
it possible to trace world-wide trends. Useful information first needs to be
filtered out.

In this section, we try to study a collection of Tweets and try to filter some
forms of tokens. We then want to see the OOV words and their term count.

We collected 10% of random data from one month of tweets from the
first two weeks of September 2015. We then filtered them with language
identifier in Synthesio and kept only tweets with more than 90% probability
of being written in English. This data collection contains all tokens (all letters
in lowercase) and term counts for each token. There are 375,718 different
tokens in total after removing:

• Tokens containing non-ASCII characters (numbers and punctuation sym-
bols are kept)

• Extra apostrophes due to Synthesio tokenizer (tokens beginning with
apostrophes like ’the)

• html code (like > for <)

60 Chapter 3. Raw data, basic normalization and Synthesio’s dataset

• Tokens only containing punctuations (emoticons included)

We then extracted out-of-vocabulary words using the Aspell English dic-
tionary (British English and American English) and we studied the number
of OOV words with different term count.

Table 3.1 shows the statistics of this data collection. From this table, we
can see that the term count and the percentage of tokens which are in the
interval of term counts follows Zipf’s law (Powers, 1998). That means, in this
data collection, 37% tokens appear less than 10 times and 70% tokens appear
less than 20 times.

Term count percentage number of OOV words
-10 37%
-20 70%
1k+ 0.03% about 2500
5k+ 0.01% about 500

10k+ 0.005% about 200
total 85%

TABLE 3.1: Term count and number of OOV words

We then studied the OOVs with more than 5000 term counts, there are
almost 500.

They are:

• Named Entity (186)

– Person: 79

– Location: 48

– Other: 14

– Brand/company/product/Organization: 45

• Internet language words (164)

– Invented words like "lol": 62

– Extremely long words (such as "loooooove"): 5

– Extremely short words (with only one letter, such as "n" for "and",
"u" for "you"): 20

– New words like "wifi": 10

– Attached words: 7 (tokenizer error)

– Without apostrophe (as "Im"): 14

3.2. Basic normalization on Synthesio’s data 61

– Oral words: 10 (like "wanna")

– Interjection: 16

– Twitter language like "retweet": 14

– Emoji: 1

– Prononciation like "dat" for "that": 3

• Abbreviation: 6

• Standard words like $10: 16

• Unknown words (70)

– Other natural languages (5)

– Unknown words with only one letter (16)

– Other unknown words (49)

As we can see, standard words of quantities like "$10" or "10$" are consid-
ered as out-of-vocabulary words (OOV). Since we want to automatically an-
alyze texts, the token of the real quantity may not be so important for parsing
the whole sentence. That is why we try to rewrite some quantity expressions
with defined rules.

3.2 Basic normalization on Synthesio’s data

As mentioned before, Synthesio processes data from all kinds of ressources:
main stream articles, official web sites and User-Generated Content (UGC)
as forums, tweets etc. Texts are labelled by domains and labels are then used
as indexes. Synthesio’s clients choose labels which interest them in order
to create a dashboard to visualise data analysis results. We want to collect
a subset of labelled Synthesio’s data to simulate real-world data. We chose
three distinct domains where Synthesio has most clients: luxury, music and
automotive industry, and we tried to create a special vocabulary.

This data collection contains:

• 312,418,051 sentences

• 152, 260, 070 unique sentences

• 3,009026,341 tokens (in average 19.76 tokens per sentences)

• 11,562,105 unique tokens

62 Chapter 3. Raw data, basic normalization and Synthesio’s dataset

The Aspell English dictionary (standard American and British English)
contains 100,904 different words. This data collection has 115 times more
tokens.

This data collection is extremely raw. Even if we only want a token form
and the term count, we have to filter a lot of tokens.

3.2.1 Use rewrite rules for tweet lexical normalization

As showed in the first section, we can find other classes of quantity (with
different unit), volume and currency expressions and we can regroup similar
tokens like:

• Quantity: length (m, km), number with "k", volume (ml, cl), weight
(kg), currency

• Date, month, hour

• Expression of equation, age

• Game score like "1-0"

• Telephone number

We used regular expression to regroup some of these expressions into
sub-classes and changed them into normalized form. For example, we re-
grouped "1cm", "2m", "3inches" into the length class and we changed them
into "__LENGTH__". We are only interested in this token which expresses a
length. The exact length value of the expression is not so important, that is
why we changed them into one unique token for all length expressions.

Similarly, we processed listed numbers for volume (10ml, 1L) , telephone
numbers (from eight to ten consecutive numbers or separated by ’-’) , age
expressions like "6-year-old" and "7 years" and etc...

These changes allowed us to limit the size of the vocabulary to train a
word2vec model using Synthesio text.

3.2.2 Uppercase/lowercase normalization

In the previous study, we changed all tokens into lowercase form. This is not
useful to distinguish named entities. Lots of tokens appear in the text with
different forms in uppercase/lowercase.

3.2. Basic normalization on Synthesio’s data 63

We wanted to limit our vocabulary size and tried to normalize tokens
with uppercase/lowercase and we wanted to ignore the uppercase letter in
the beginning of a sentence.

For example, the Google word2vec model did not normalise different
form of tokens. So there are different vectorial representation for words "Nis-
san", "nissan" and "NISSAN". If the word’s vector represents the meaning of
the word, it should not change when the word changes its form: first letter in
uppercase, all letters in uppercase, etc. As we know, the character sequence
"nissan" should be the automotive brand, there is not any ambiguity. So we
want to normalize this kind of problems, to keep only the form "Nissan" for
"NISSAN" and "nissan". There will be only one form "Nissan" replacing other
forms "NISSAN" and "nissan", even eventually "nIssan", "niSsan" or "niSSan",
these will be considered as errors for "Nissan" and all would be changed into
one unique form "Nissan".

It is a delicate operation to ignore uppercase letters. To study the pos-
sibility to normalize tokens with this idea, we first tried to study different
category of words and get statistics of all forms.

We extracted data from 3 special domains of Synthesio data: luxury, mu-
sic and automotive industry. Data is extracted from Twitter and other sources
(websites, forums, etc).

This time we kept all forms of tokens (uppercase and lowercase) to see if
there was a huge impact of this normalization. We then filtered the data and
only kept tokens when their term count was more than 5 (as did word2vec
model), then we also filtered all classes like quantity, currency mentioned in
the previous section.

Common nouns and proper nouns

We chose some words from different part-of-speech categories, to see their
possible forms (letters in uppercase or lowercase) and for each form, the per-
centage in the whole large data collection. In order to limit vocabulary size,
we decided to change some possible forms of tokens into their most frequent
forms.

From tables 3.2to 3.8, we can see that "crystal" and "jack" are common
nouns and proper nouns, "share" is a verb, "however" is an adverb (often be-
gins a sentence), "Nissan" and "McDonald" are proper nouns and "4Runner"
is a proper noun which mixed number and letters.

We can also see that even very rare, special forms like "JaCk", "SHare" and
"MCDonald" exist in the large data collection. Two first letters in uppercase

64 Chapter 3. Raw data, basic normalization and Synthesio’s dataset

like "SHare" may be due to people inadvertently keeping a "shift" key longer
than necessary. "JaCk" is a classical style: there is one uppercase letter every
two letters.

In either case, we can replace these special forms into their form the most
frequent form.

crystal Crystal CRYSTAL
58.8% 39.5% 1.6%

TABLE 3.2: Forms and their percentages for "crystal"

jack Jack JACK JAck JaCk jACK
59% 39.8% 1.06% 0.01% 5.11e-05 4.3e-05 (16 occurrences)

TABLE 3.3: Forms and their percentages for "jack"

Share share SHARE SHare
64.1% 35.7% 0.21% 5.4e-06

TABLE 3.4: Forms and their percentages for "share"

However however HOWEVER HOwever
53.7% 45.3% 0.88% 9.5e-05

TABLE 3.5: Forms and their percentages for "however"

Nissan nissan NISSAN NIssan
89% 7.8% 2.6% 0.19%

TABLE 3.6: Forms and their percentages for "nissan"

McDonald Mcdonald mcdonald MCDONALD McDONALD MCDonald McDOnald
90.3% 4.4% 2.87% 1.144% 0.427% 0.414% 0.4136%

TABLE 3.7: Forms and their percentages for "McDonald"

4Runner 4runner 4RUNNER 4RuNnEr 4RUnner
57% 41.96% 0.79% 0.01% 9.4e-05

TABLE 3.8: Forms and their percentages for "4Runner"

However, for the second most frequent form, it is difficult to decide if we
keep this form as the standard one or replace it by its most frequent form.

3.2. Basic normalization on Synthesio’s data 65

Table 3.9 showed examples of tokens and its most frequent two forms. We
can see that for the proper noun "McDonald" (either familly name or part
of "McDonald’s" for the fastfood brand), the second most frequent form ap-
pears only 4.4% of the time, so we can change all letter sequences "mcdonald"
. Similarly, for "Nissan", we can say that the first letter written with an upper-
case letter and the next ones on lowercase is its standard form, and change
(normalize) all other forms into "Nissan".

For "share", sometimes it could be the first word of a sentence or simply
the text for a button in a website (Synthesio’s crawler kept words like this).
We should probably keep the two forms. The token "Yeah" often begins a
sentence, or itself forms a sentence. It should begin with Y in uppercase and
other letters in lowercase. But in user-generated content (UGC), people do
not always respect rules that words should begin with uppercase : writing
"yeah" is more convenient.

Token Form Percentage Form Percentage
crystal crystal 58.8% Crystal 39.5%

jack jack 59% Jack 39.8%
share Share 64.1% share 35.7%

however However 53.7% however 45.3%
nissan Nissan 89% nissan 7.8%

mcdonald McDonald 90.3% Mcdonald 4.4%
4runner 4Runner 57% 4runner 41.96%

yeah Yeah 60.07% yeah 39.1%

TABLE 3.9: Examples of the most frequent two forms

The goal of this uppercase/lowercase normalization is to limit the num-
ber of tokens. We first wanted to replace all case variations of a given word
by their most frequent form present in more than 50% of the total number
of occurrences. However, this rule would have caused some person names
(words with the first letter in uppercase) to be replaced by all lowercase vari-
ants, rendering them undistinguishable from common nouns as in "Crystal"
to "crystal". We decided to keep a variable number of the most used forms
of individual words instead, representing 60% or more of all possible case
variations.

We chose 60% as a test, to see if the generated word-embedding model
corresponds to a more representative word meanings than the Google word2vec
model.

66 Chapter 3. Raw data, basic normalization and Synthesio’s dataset

That means, we kept only forms in bold in table 3.9 and other forms were
changed into their most frequent form. As a consequence, in the data collec-
tion, for example, there would be only "Nissan", and the form nissan would
be excluded.

After that normalization on uppercase/lowercase, we can still see OOV
words in this data collection.

For frequent OOV words, we get some examples:

• Tokeniser errors (tokens begin with apostrophe):

– ’ipt: 165948

– ’tapatalk: 137830

– ’The: 36234

• Noise/unanalysable:

– T: 527860

– b: 568487

• Non-standard words (could be corrected)

– btw: 119526 (by the way)

– il: 47936

– tmrw: 4090 (tomorrow)

For less frequent OOV words, we get examples like:

• Tokenizer errors (words with punctuations):

– " With": 5

– Car’Opening: 1

– a*USED: 1

• Non-standard words (could be corrected)

– worryy: 5 (worry)

– zithout: 5 (without)

– 2murrow: 1 (tomorrow)

– CROSSIANTS: 1 (croissants)

– Catogary: 1 (Category)

3.2. Basic normalization on Synthesio’s data 67

– Causually: (Casually)

• Non-standard words (named entities)

– workshift: 5 (Japanese global crowdsourcing service)

– wingsonic: 5 (a hardware brand name)

In table 3.10, we tried different filters and at each step, we showed the
percentage of the remaining tokens, and the percentage of in-vocabulary (IV)
words (using Aspell dictionary, standard American and British English).

Initially, the number of extracted (different) tokens was 1,1562,105 (as in
the first row). The following rows in the table show applied filters and the
number of remaining tokens. "Type" is an automatic label added by Syn-
thesio’s tokenizer for each token. "Type=None" means the token is a regu-
lar word only containing letters. Other possible type values are "number",
"punctuation", "url", "email", "hashtag" (for tweets), etc. These type val-
ues are recognized by regular expressions defined in Synthesio’s tokenizer.
"hasAlpha" shows the number of remaining tokens if we keep only tokens
with at least one alphabetical letter. "lowerform" changes all tokens into their
lowercase form (all letters in lowercase). "removeApos" removes apostro-
phes as the first character of a token with at least two letters after the apostro-
phe (to keep tokens like "’s" and "’n"). "removeNonEnglish" uses a module
"langID" which is a 5-grams model trained on English words. In this step,
we only keep words which have more than 80% of probability of being in
English. From this step on, we have reduced the number of words (from
about 11 million to about 600,000) enough to become able to check them one
by one if they are In-Vocabulary (IV) words in a reasonably limited time. The
following four lines concern the number of occurrences. We can see that the
step which filters the most tokens is "removeNonEnglish", processed by the
language identifier of Synthesio.

We want to choose a threshold of the vocabulary size. Sometimes even a
token is not a standard word, for example "tmrw" for "tomorrow", if there is
a lot of term counts for "tmrw", we can consider that since people often write
like that, "tmrw" is a comprehensible word, and this should be considered as
a standard word (a new In-Vocabulary word).

Table 3.11 shows the final chosen filter process.
Since we chose 5 as window size for context (the two previous words

and the two following words), we studied the most frequent contexts in the
automotive industry domain in this data collection.

68 Chapter 3. Raw data, basic normalization and Synthesio’s dataset

Step # words percentage words in Aspell
Initial 11,562,105 100%

Type=None 11,522,036 99.7%
hasAlpha 9,801,682 86.8%
lowerform 8,242,706 71.3%

removeApos 8,169,132 70.7%
removeNonEnglish 644,725 5.6% 0.7%

Termcount >= 5 100,428 0.87% 4%
Termcount >= 100 13,166 0.11% 23%
Termcount >= 200 8,064 0.07% 33%
Termcount >= 300 6,186 0.05% 39%

TABLE 3.10: Vocabulary filters

Step # words percentage
Initial 11,562,105 100%

Type=None 11,522,036 99.7%
hasAlpha 9,801,682 86.8%

beginWithAlnum 9,704,710 83.9%
length<20 9,416,062 81.4%
length<15 8,810,122 76.2%

langID, prob>0.8 1,213,098 10.5%

TABLE 3.11: Final vocabulary filters

Table 3.12 shows the most frequent 5-grams in this data collection. When
the column "previous words" is empty, that means the "current word" is the
first word in a sentence.

We can see that the top-3 most frequent 5-gram is like "quote originally
posted ...", "quote originally posted by ..." and "originally posted by ...".

Then we can find sequences like "I don’t", "i have a" which is frequent in
our corpus.

With 232,590 term count, the sequence "’m ’m ’arket details id com quo-
ord" is clearly due to raw data and errors of Synthesio tokenizer.

After these, we can see more expressions from speaking English like "I’m
not ...", "it’s a ...", "I can’t ...", "I didn’t ...", "I don’t know ...", "I have the ...",
"thanks for the ..." and "I don’t think ...".

The last two lines are also present in the raw data.
If we ignore the current word and only consider the most frequent con-

text, we obtain table 3.13 which shows the most frequent context in the auto-
motive industry domain (same data of previous table). Single words in this
table mean that the word was the only word in the sentence because Syn-
thesio’s tokenizer first separates text into sentences and then tokenizes them

3.2. Basic normalization on Synthesio’s data 69

Term count previous words current word Next words
5,641,073 quote originally posted
5,641,058 quote originally posted by
1,828,859 originally posted by

650,758 i do n’t
428,743 i have a
232,590 ’m arket details id com
232,590 arket details id com quoord
232,590 ’m ’m arket details id
216,939 i ’m not
158,093 it ’s a
150,643 i ca n’t
146,403 i did n’t
142,136 i do n’t know
129,117 i have the
123,238 if you have
122,322 thanks for the
119,494 i do n’t think
116,295 app_android_url ’m ’m arket details
116,295 ’m obiquo smartbanner tapatalk2 png
116,295 tapatalk2 var app_iphone_id 3078807

TABLE 3.12: Most frequent 5-grams in automotive industry do-
main

separately.
If we represent the current word by "W", we can express the most frequent

context. We can see that the top-3 context are coming from a website pattern:
"W originally posted ...", "quote W posted by ...", "W posted by ...".

The next four lines showed some valid context like "... in the W", "... on
the W", "... of the W" and "... W don’t".

There are then still three lines which shows the raw data: "... posted by W
view post ...", "... kib viewed W times attachment", "... jpg kb W views" and
later "... kib viewed W times". They are clearly associated with websites and
attached files.

After these, we can also see some text sequences like "... to the W", "... for
the W", and "W have a".

Then another sequence associated with websites "attached images W jpg
kb".

The last 5 lines showed other common context: "W is a ...", "W it is ...",
"W’s a ...", "W" (the current word only forms a sentence like "Yeah") and "...
with the W".

70 Chapter 3. Raw data, basic normalization and Synthesio’s dataset

count previous words next words
5,650,220 originally posted
5,641,066 quote posted by
1,829,812 posted by
1,044,657 in the

971,744 on the
940,075 of the
875,005 do n’t
822,903 posted by view post
662,645 kib viewed times attachment
647,622 jpg kb views
571,335 to the
556,493 kib viewed times
551,768 for the
530,588 have a
480,067 attached images jpg kb
471,680 is a
444,985 it is
351,782 ’s a
346,314
345,179 with the

TABLE 3.13: The most frequent context in automotive industry
domain

As shown with these two tables, the top-20 most frequent 5-grams or only
context contains lots of noise, these non-canonical texts are easily extended
everywhere (by retweet or cited by responses on forums) and it is difficult to
define a threshold (of term count) to exclude raw data.

3.2.3 Construction of Synthesio word2vec model

With the dataset extracted from Synthesio, elementary uppercase and low-
ercase normalization and after the application of rewrite rules as detailed in
previous sections, Synthesio created a word2vec model which contains a vo-
cabulary composed of about 2 million tokens (2,086,985 exactly).

This word2vec model is created with exactly the same configuration as
the Google word2vec model from (Mikolov et al., 2013).

As mentioned in chapter 2, the pretrained Google word2vec model is
trained on about 3 billion words from Google news. The model contains
300-dimension vectors for 3 million words and phrases.

Each word is represented as a vector in the space of the set of the entire
text of 3 billion tokens. Here we chose a model with 300 dimensions, that

3.3. Use Google Request to find correct form for non-standard words 71

means, each vector of 300 dimensions represents one token in this space, and
the distance between two tokens is calculated by the cosinus distance of the
two vectors corresponding to the two tokens.

This word2vec model can also find the nearest words according to their
cosinus distance. For example, table 3.14 shows nearest words for the phrase
"Chinese river" from (Mikolov et al., 2013) 1.

Phrase Cosinus distance
Yangtze_River 0.667376

Yangtze 0.644091
Qiantang_River 0.632979

Yangtze_tributary 0.623527
Xiangjiang_River 0.615482
Huangpu_River 0.604726
Hanjiang_River 0.598110

Yangtze_river 0.597621
Hongze_Lake 0.594108

Yangtse 0.593442

TABLE 3.14: Nearest words of "Chinese river"

From table 3.14, "Yangtze_River", "Yangtze", "Yangtze_river" and "Yangtse"
are different ways for the same river, and "Yangtze_tributary" is for a tribu-
tary of the main river "Yangtze".

3.3 Use Google Request to find correct form for

non-standard words

Google provides 100 free requests per days, and then charges $5 for 1000
requests. We just did some tests with their free services.

This method came from (Liu et al., 2011a). They found 3802 non-standard
words and projected them into 2000 standard words.

If we compare this Non-Standard Words (NSW) set with the vocabu-
lary of Synthesio, there are 2954 non-standard words in Synthesio’s dataset.
These NSW are generated from unannotated tweets with context and it is
possible that one NSW can correspond to different standard forms. the same
form of a NSW is rewritten with more than one correct form. For example,
according to context, the token "2" can be rewritten as "to", "too" or "two".

1https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/

72 Chapter 3. Raw data, basic normalization and Synthesio’s dataset

The domains that we studied are still luxury, music and automotive in-
dustry. These are distinct domains and covered most important Synthesio
clients.

First we got out-of-vocabulary words and changed them into lowercase.
Secondly, we tried to get contexts for these OOV from these three domains.
The context is considered as two words before and two words after (punctu-
ations included). We then sorted the top-10 contexts (the 10 most frequent)
for one OOV as 10 requests. And then we sent these 10 requests to Google,
and we obtained the 10 first page descriptions that Google returned. Then
we kept text between and in the HTML source code of the page
(that are often corrections proposed by Google) without tokenization nor
change of uppercase/lowercase. Lastly, we used edit distance to get the near-
est forms of the OOV.

FIGURE 3.1: Google page with the request "I 4got my password"

Figure 3.1 shows an example of the Google page results with the request "I
4got my password". The Non-Standard Word (NSW) is "4got" (for "forgot").
From this Google page, there are proposed websites with urls and page de-
scriptions under the urls. We can see that in page descriptions, words that
matched with the request are in bold (as "The forgot password" in the first
proposed website), and the correct form of the NSW "4got" is in bold in the
page description.

We chose a OOV word "wfolarry" as an example to analyze. "wfolarry"
has 244 occurrences in our data collection.

Table 3.15 shows its 10 most frequent contexts and the term count.

3.3. Use Google Request to find correct form for non-standard words 73

wfolarry and context term count
posted by wfolarry view post 123
me wfolarry has done 6
quote wfolarry said leave 5
wfolarry 5
thanks wfolarry for finishing 4
don wfolarry bruce 4
posted by wfolarry you do 3
posted by wfolarry are you 3
scott or wfolarry or bean 3
’s ’cuz wfolarry has worked 3

TABLE 3.15: Contexts and term count for "wfolarry"

We can see that "wfolarry" is probably an username since the most fre-
quent context is "posted by wfolarry ...". However, we still want to see cor-
rection by Google. When we launch requests on google.com, we get HTML
source code with pages explications like:

• ... View on Time on Tumblr: Hover over the upper-right corner of a
posttoseethe
time-and the date if ... These blogs post
the time and date every 15 minutes to
help put your Dashboard posts
in the ... unwrapping postedthis.

• Below, you'II find out how to rearrange queued posts.
viewarepostedon a specific
 date.

• S$amp;S flywheels, wfolarry110 heads, Tman 662-2 cams, Dan Thayer 3
stage oil
 pump, Gaterman 2023 lifters, Smith Brothers ... 1,089 views.
3 ...

• ... Blogging on tumblr is like a walk in a park. Everaything is made easy for its users,

 from viewing postsof the blogs you follow to posting new
stuff ;...

• ...

FIGURE 3.2: Page descriptions for "posted by wfolarry view post"

When we calculate the edit distance between each proposition and the
original token "wfolarry", we can sort tokens obtained in the previous step.
From this table, we can also see that there is a lot of noise in the Synthesio
data. "WFO larry" could just be a user name but the frequency of the phrase
"posted by WFOlarry" in the Synthesio data raised the number of occurrence
but it should not be a word that appears regularly.

We calculated the edit distance between each proposition and the original
token "wfolarry" and we kept tokens until the length of the original token -1

google.com

74 Chapter 3. Raw data, basic normalization and Synthesio’s dataset

Context Words between and

posted by wfolarry view post

post, posted, posts, posting, Posted
View, view, views
see
viewing posts, View Post
wfolarry, WFOLarry

me wfolarry has done

me, Me
has, have
Done
has taken me, has taken, Has Taken Me

scott or wfolarry or bean

bean, Bean
Scott, scott
Scott Bean, Scott Bean&39;s
trombean

wfolarry WFO larry, wfo Larry
wfolarry, WFOLarry

TABLE 3.16: Context of "wfolarry" and matched words

Edit distance candidates
2 wfo Larry
4 WFOLarry
5 WFO Larry
6 will, Donald, working
7 Thank, trombean, scott, have, You ...

TABLE 3.17: Candidates and edit distance with original token

(that is 7 in the table). But we can see that possible candidates can have until
5 as edit distance.

Table 3.18 shows other results with different edit distance values.
We can see that until edit distance 5, the propositions of candidates are

useful. More than 6, the propositions are becoming unrelated words.

Token Term count Edit distance Candidates
thankyouverymuch 275 3 thank you very much
thses 289 2 these, thesis
toned-down 297 1 toned down
whulandary 35 1 Whulandary
thumpin 215 1 Thumpin, thumping
whippersnappers 280 1 Whippersnappers, whipper snappers
thebe 9 1 Thebe
therad 58 2 there, the Rad, The rad, thread
speights 32 1 Speights

TABLE 3.18: Other edit distance with original token

Using the Google search engine to find the correct form of a NSW word is

3.4. Creation of Synthesio Reference corpus 75

possible. But since late 2017, Google changed politics of their request/response
API. Google provides 100 free requests per day and charges $5 for 1000 re-
quests. So we did not proceed along this path.

3.4 Creation of Synthesio Reference corpus

In this section, we will explain how we created an annotated dataset from
Synthesio data.

We will first describe how texts have been extracted from different do-
mains and different ressources in available texts in Synthesio.

We will then describe how named entity types have been defined in sec-
tion 3.4.2 . Finally, section 3.4.3 will present the text annotation procedure in
Synthesio.

3.4.1 Data extraction

In Synthesio, a "mention" is a complete text which could be a tweet, an article
in a journal or a post from a discussion forum etc as illustrated in figure 1.4. It
is different from the definition of "mention" for named entity like mentioned
earlier in this thesis.

A mention in Synthesio data contains fields like an unique identification,
an url, a title, a content, a timestamp and eventually an author (a twitter
account for example) or url for images (for instagram), representing meta-
data. In Synthesio, the field "title" is for journal articles or forum posts and
is empty for "mentions" from Twitter. Since we only analyse data in form
of text, only the fields "title" and "content" are textual data. However, we
cannot connect the title text and the content text as one paragraph because
sometimes the title is not a complete sentence and is not syntactically correct
when directly pasted before the content. That is the reason why we will only
extract the field "content" as text in the dataset. We kept the mention’s unique
identifier to avoid duplicated data.

Synthesio provides services to its clients by creating a "dashboard" to dis-
play diagrams of data analysis.

Figure 3.3 is a demonstration of a dashboard created by a client in the
video game industry. This dashboard contains three widgets for gender anal-
ysis, age distribution and a word cloud.

76 Chapter 3. Raw data, basic normalization and Synthesio’s dataset

FIGURE 3.3: Examples of a dashboard with three widgets

When creating the dashboard, Synthesio’s clients use one or several key-
words (along with ressources and time periods etc.) and Synthesio’s search
engine returns related mentions.

Among these mentions, there are also mentions for other brands (for ex-
ample their competitors) classified manually for the client. For example,
when a dashboard with key word "Dunkin’ Donuts" is created, mentions re-
turned also include potential competitors of "Dunkin’ Donuts". Mentions
which contain other brands of fastfood (the same domain) like "McDonald’s"
and "Starbucks" can also be present in the dashboard.

From now on, we will only talk about texts, which are extracted from the
field "content" of the "mentions" in Synthesio. We will not continue to use
this definition of "mentions" for the rest of this thesis.

Synthesio processes texts of over 25 different languages and has a lan-
guage identifier based on a five-grams language model. To identify the En-
glish language (both American English and British English) for a text, the
probability of the language model is often fixed to more than 0.9. This score
means that there is 90% of probability that the text (represented as a word
sequence) is in English.

This threshold is supposed to filter texts from other languages. Since the
language model is based on a context with five consecutive tokens, one text
with two or three words in other languages may also be extracted as a text

3.4. Creation of Synthesio Reference corpus 77

written in English language.
We first fixed the time period to one month. That corresponds to the max-

imum data quantity (about 4GB) that we can handle with the language iden-
tifier using a laptop. We want to process only English text so we need precise
data. That is why we tested the threshold with 0.9, 0.95 and 0.98. We found
that even with a probability higher than 0.98, asian characters can always
be present in the extracted texts. With the increasing threshold from 0.9 to
0.98, the quantity of extracted data reduced rapidly. Therefore, we kept the
threshold at 0.9.

As mentioned in chapter 1, Synthesio’s clients cover domains from au-
tomotive industry, cosmetic, electronic devices to music streaming services.
When we create the reference annotated dataset, we want to get a corpus
as close as possible to the data analysed by Synthesio in order to get as reli-
able results as possible.We chose four major domains: "automotive industry",
"fast food", "online music streaming service" and "toy for children", which
cover most clients at the moment and these four domains are independant
from each other. We wanted to avoid related domains that may have similar
vocabulary. For example, similar domains as "food" (such as "Danon") and
"fast food" (such as Starbucks) may have similar vocabulary. In addition, we
chose two clients, "Land Rover" and "Nissan" from the automotive indus-
try to test if our model performs similarly in the same domain. Ideally, we
should get similar performance for different texts in the same domain. We
also chose one important client from each of the three other domains: Dunk-
ing Donuts from "fast food", Deezer from "online music streaming service"
and Mattel from "toy for children".

In order to vary data ressources, for each client, we extracted 50 texts
from long texts: forums and official web sites and 50 texts from short texts:
Twitter, Facebook and Instagram. This data forms the Syntesio dataset with
five clients from four domains and for each client, 50 long texts and 50 short
texts.

Synthesio already has a tokenizer based on a CRFs model associated with
an exception list. This tokenizer is configurated to separate tokens like "I’m"
and "it’s", so there are tokens beginning with apostrophe like "’m" and "’s".
That is why "McDonald’s" is tokenized as tokens "McDonald" and "’s". Fur-
ther more, negative expressions like "don’t" and "can’t" are tokenized by sep-
arating the verb and the negative expression as "do" and "n’t" then "ca" and
"n’t". The exception list contains words which were given a wrong tokeniza-
tion by the tokenizer. In previous examples, we can see that the apostrophe

78 Chapter 3. Raw data, basic normalization and Synthesio’s dataset

"’" is not considered as a word separator, it is attached with the letter that
follows, as in "’s", "’m", etc. However, in a text like:

He said :" We are going to watch ’The Avengers’a tonight."

aAn american film of 2012

FIGURE 3.4: An example of an attached apostrophe

the tokenizer returns a list of tokens with "’The" as one token. The apos-
trophe is thus attached to the word "The". Therefore, the exception list con-
tain these cases for the tokenizer as a post-treatment to correct this sort of
error.

Table 3.19 shows statistics of tokenized texts. Texts are first separated by
sentences (as sequences in CRFs model), that is why the text of 50 tweets can
have more than 50 sentences.

long text Deezer Dunkin Land Mattel Nissan
sentences 146 208 183 174 123

tokens 2314 3116 3836 2958 2166
short text Deezer Dunkin Land Mattel Nissan
sentences 52 50 59 57 74

tokens 854 827 1048 1123 1127

TABLE 3.19: Synthesio Reference Corpus.

3.4.2 Entity type definition

As mentioned in chapter 2, the definition of named entities first appeared in
the Sixth Message Understanding Conference (MUC-6) on 1995 (Sundheim,
1995). The named entities to be extracted were: person, organization,
location, date, time stamp, currency or percentage figure. The
next MUC-7 task (Chinchor and Robinson, 1998) regrouped three types of
information to be extracted: named entities, temporal expressions and num-
ber expressions and named entities included organization, person and
location.

Later in 2003, the Conll conference defined four types of entities for its
workshops on NER. These types were: person, location, organisation
and MISC (others). Later, authors of (Ritter et al., 2011) defined ten types of
entities: Company, Person, Geo-location, Facility, Product, Tvshow,
Sportsteam, Movie, Band (Music artist), Other, because they were

3.4. Creation of Synthesio Reference corpus 79

the top ten types of entities with good cover in Freebase 2, in order to com-
pare with the results by machine learning.

Synthesio’s purpose is to extract texts of interest to their clients. These
texts could be texts discussing the client’s product and these clients could be
famous persons, music bands, companies in some location or sports teams,
facilities etc... Synthesio took advantage of the type definition in (Ritter et al.,
2011) and regrouped Tvshow, Movie, Band (Music artist) into Media,
and added another important type for Synthesio: Job title. The table
3.20 shows Synthesio’s named entity definition.

Company Company name
Person Person name

Geo-loc Location, country or city name
Facility Organization name

Product Product name
Media Journal, music artist

Sportsteam Sports team name
Job-title Job names like director, CEO

Other Holidays, events, etc

TABLE 3.20: Synthesio Named Entity Definition

3.4.3 Data annotation

As for annotation, several human annotators (from freelancers) worked with
different text domains and then all annotations were checked (some named
entities were missing) and corrected by a developer who knows well the NER
problem and who has a tendancy of annotating most named entities possible
with the goal to test strictly a machine learning model.

When we wanted to develop a method for named entity recognition (NER)
for Synthesio, we first needed a corpus built with Synthesio data to represent
the actual data and also annotate typed named entities in this corpus for eval-
uation. That is why we created a Synthesio reference named entity corpus.
We first studied the types of named entities that Synthesio needed to extract,
then we extracted data from multi-domain and multi-sources texts. How-
ever, we were limited in mentions in English. After that, we tried to annotate
these corpus with types named entities to finally build this reference corpus
for Synthesio.

Figure 3.5 and 3.4.3 show one example of a long text of Deezer and an-
other example of short text of Mattel.

2https://en.wikipedia.org/wiki/Freebase

https://en.wikipedia.org/wiki/Freebase

80 Chapter 3. Raw data, basic normalization and Synthesio’s dataset

Spotify is expanding once again and is now available in Italy, Poland
and Portugal. The music streaming service has been available in sev-
eral European countries, but is still far behind Deezer in terms of
reach. That’s part of the strategy, Deezer is focusing on casting as
wide a net as possible, Spotify .. (read more)

FIGURE 3.5: An example of long text

DISNEY ATLANTIS THE LOST EMPOIRE MILO THATCH MAT-
TEL 00 MOC http://t.co/bkY0Vi7Fnv $4.99 @SILVERJACK810

FIGURE 3.6: An example of short text

In the Synthesio natural language process (NLP) procedure, according to
language detected by the language identifier, the corresponding tokenizer is
selected to tokenize the text first into sentences and then into a token list.
And then for sentiment analysis, the stopwords are filtered from this token
list and the sentiment of the text is calculated from a list of positive words
and a list of negative words of the language detected.

Since the context is important to recognize a named entity, our NER mod-
ule will work with the unfiltered token list (with all tokenized words in order
in the text).

Reference corpus statistics

Table 3.21 shows named entities statistics by domain and by long/short text.

Deezer Dunkin Donuts Landover Mattel Nissan total
L S L S L S L S L S

Company 50 32 62 48 49 27 99 106 66 57 596
Person 15 17 10 6 9 9 32 13 2 2 115
Geo-loc 11 1 13 6 10 5 10 5 4 11 76
Facility 4 0 2 0 3 1 3 1 0 0 14
Product 60 37 33 23 91 45 50 32 101 62 534
Media 3 16 0 1 2 1 14 16 1 1 55

Sportsteam 0 0 0 2 0 0 0 2 0 2 6
Job-title 2 1 4 2 4 0 11 1 0 4 29
Other 0 1 2 0 4 1 8 5 1 0 22
Total 145 105 126 88 172 89 227 181 175 139 1447

TABLE 3.21: Synthesio corpora named entities statistics

3.5. Conclusion on Synthesio’s data 81

3.5 Conclusion on Synthesio’s data

In this chapter, we first studied a subset data from Twitter. We analyzed
most frequent tokens and categories. We then extracted data from three do-
mains of Synthesio’s large dataset and analyzed the most frequent contexts
and most frequent tokens. Then, with the objective to limit the vocabulary
size, some rewrite rules with regular expression were applied. After that, a
simple normalization process replaced tokens with their most frequent forms
in terms of uppercase and lowercase. With these procedures, we trained a
word2vec model on this large dataset of Synthesio texts to be compared with
Google’s word2vec model (trained on Google news texts). We tried to use
Google’s services to normalize some out-of-vocabulary words and explained
why we did not proceed further.

In the last section of this chapter, we discussed how we created an anno-
tated dataset using Synthesio’s data. We extracted texts from different do-
mains and different ressources (long texts and short texts). Then definitions
of Synthesio’s named entity types were presented. After that, the annotation
was explained and statistics of the dataset were given.

82

Chapter 4

Improve named entity recognition
results by POS tagging

In this chapter, the first section presents existing Named Entity Recognizers,
and aims at explaining why Synthesio needs to develop its own Named En-
tity Recognition model. The annotated dataset is then presented along with
some results using a cross validation approach for evaluation. After that
the prediction on Synthesio’s dataset are presented, domain adaptation tech-
niques and boostraping are used to improve the NER results. This content is
also presented in (Tian et al., 2016).

In later sections, the aim and necessity to develop a POS tagger to im-
prove NER results are presented, and the difficulties of POS tagging on user-
generated content (UGC) are explained. Annotated part-of-speech datasets
and Synthesio’s tagset definition are presented. Then experiments about the
training of a model on mixed data from different domains are examined. This
part of the chapter is essentially published in (Tian et al., 2015).

Lastly, the preformance of the Named Entity Recognition (NER) model
using the POS tagger developed in this chapter is presented.

Contents
3.1 Analysis of a Twitter subset data 59

3.2 Basic normalization on Synthesio’s data 61

3.2.1 Use rewrite rules for tweet lexical normalization . . . 62

3.2.2 Uppercase/lowercase normalization 62

3.2.3 Construction of Synthesio word2vec model 70

3.3 Use Google Request to find correct form for non-standard
words . 71

3.4 Creation of Synthesio Reference corpus 75

3.4.1 Data extraction . 75

4.1. First NER experiments 83

3.4.2 Entity type definition 78

3.4.3 Data annotation . 79

3.5 Conclusion on Synthesio’s data 81

4.1 First NER experiments

In this section, we first have a look at previous work concerning named entity
recognition and we discuss why we need to develop our own NER tagger.
Then we use features inspired by different CRFs models to define our own
CRFs patterns and we show the results of our first NER experiments.

4.1.1 Existing Named Entity Recognizers

There exists already a large number of named entity recognizers as shown in
table 4.1.

Toolkit name Program Language License Comment
ABNER Java CPL for biomedical text
Apache OpenNLP Java Apache License 2.0
GATE Java LGPL
TwitIE Java GNU a GATE pipeline
SpaCy Python, Cython MIT multilingual
Stanford NER Java GNU v2 using CRFs

TABLE 4.1: NER Toolkits

Licenses of softwares are important because Synthesio wants to be able
to modify and to integrate NER components into their own natural language
processing (NLP) pipeline. Synthesio does not directly sell NLP software,
but only the analysis automatically produced by NLP software. At the same
time, Synthesio’s development team do not want to publish its code so some
licenses are fitting and others are not. Synthesio first tests softwares and
study license items before deciding to use it in their final product.

A requirement of Synthesio is to control the NLP pipeline, that is, to have
all source codes in a private library without calling external packages or pro-
grams. The Synthesio NLP pipeline is written in Python, so Synthesio is
looking for an open-source NER Python library or if it does not exist, the
company wants to create its own NER tagger in Python.

84 Chapter 4. Improve named entity recognition results by POS tagging

ABNER 1 (A Biomedical Named Entity Recognizer) is an open source text
mining program that uses linear-chain conditional random field sequence
models. It automatically tags genes, proteins and other entity names in text.
As it processes only biomedical text, all CRF features are related to bio-medical
domain affixes and lexicons. For example, if training sequences contain “PML/RAR
alpha,” “beta 2-M,” and “kappa B-specific DNA binding protein”, they will
all be labeled with PROTEIN (Settles, 2004).

The Apache OpenNLP 2 library is a machine learning based toolkit for
the processing of natural language text. It supports the most common NLP
tasks, such as language detection, tokenization, sentence segmentation, part-
of-speech tagging, named entity extraction, chunking, parsing and corefer-
ence resolution.

OpenNLP also has a command line tool which is used to train the models
available from the model download page on various corpora. This function
is potentially interesting for Synthesio but OpenNLP is written in Java and in
Synthesio, the whole Natural Language Processing (NLP) chain is written in
Python and Synthesio only wants to promote codes in Python. OpenNLP’s
Named Entity Recognition (NER) is based on previous steps in the pipeline
(as language identifier and tokenizer) and even all translate in Python is no
appropriate for Synthesio.

GATE 3 is an open source software toolkit and its has an information ex-
traction module ANNIE (a nearly-new information extraction system) (Cun-
ningham et al., 2002). This module proposes the following full solutions:

• Document Reset

• Tokenizer

• Gazetteer

• Sentence Splitter

• RegEx Sentence Splitter

• Part of Speech Tagger

• Semantic Tagger

• Orthographic Coreference (OrthoMatcher)

1http://pages.cs.wisc.edu/~bsettles/abner/
2https://opennlp.apache.org/
3https://gate.ac.uk/

http://pages.cs.wisc.edu/~bsettles/abner/
https://opennlp.apache.org/
https://gate.ac.uk/

4.1. First NER experiments 85

• Pronominal Coreference

TwitIE is a full GATE pipeline and is available as part of the GATE Twitter
plugin. This toolkit contains the following component:

• Social media data Language identification

• Twitter tokenizer, for handling smilies, user names, and URLS

• Twitter part-of-speech tagger

• Text normalization

• Information extraction

However Synthesio has already its own models of language identification
and tokenizers. We are only looking for a NER model for Social media data.

SpaCy 4 is is an open-source software library for advanced Natural Lan-
guage Processing, written in the programming languages Python and Cython.
The library is published under the MIT license and currently offers statistical
neural network models for English, German, Spanish, Portuguese, French,
Italian, Dutch and multi-language NER, as well as tokenization for various
other languages.

Since Spacy appeared in February 2015, Synthesio had already began the
NER project with CRFsuite since December 2014, so we kept this software
aside, but it is a tool which should have be evaluated.

The Stanford Named Entity Recognizer 5 is a CRFs java implementation
with various options for defining feature extractors. It also contains models
trained on different languages and with texts from different domains. This
Named Entity Recognizer defined named entities such as CoNLL2003, that
are:

• 3 classes: Location, Person, Organization

• 4 classes: Location, Person, Organization, Misc

• 7 classes: Location, Person, Organization, Money, Percent, Date,
Time

In addition, this Named Entity Recognizer is trained on well-formed texts
and (Ritter et al., 2011) tested the Standford Named Entity Recognizer on
their tweet dataset. Figure 4.1 shows an example of a tweet prediction.

4https://spacy.io/
5https://nlp.stanford.edu/software/CRF-NER.shtml

https://spacy.io/
https://nlp.stanford.edu/software/CRF-NER.shtml

86 Chapter 4. Improve named entity recognition results by POS tagging

FIGURE 4.1: An example of Stanford NER prediction

"Yess" and "Nintendo" are out-of-vocabulary words and they are recog-
nized as an organization name and a location name respectively.

However, their CRFs features and template may be useful for us and we
will discuss it in the next section.

4.1.2 Existing CRFs Named Entity Recognizer features and

patterns

As discussed in the previous section, Synthesio needs to create its own Named
Entity Recognizer with a Python implementation. This NER tagger is sup-
posed to be right after the Synthesio process language identification and to-
kenizer, so this model will process tokenized text and will try to label tokens
in the text with named entity labels (the BIO annotation scheme can be used
in this context). This task corresponds to a sequence labelling problem and
it is known that the CRFs are efficient for this kind of task. When this study
was performed, Synthesio was also beginning to include CRFsuite 6 into its
own NLP process library because it is fast, complete and simple to integrate,
so it seems to be logical to continue in this direction. An alternative imple-
mentation of CRFs is wapiti. But without any precisions, all experiments in
this thesis are done with CRFsuite.

We can train our CRFs model with existing annotated corpora in Named
entity. All we need at the moment is CRFs patterns.

The Stanford Named Entity Recognizer (NER) uses a CRF pattern similar
to the baseline local+Viterbi model in (Finkel, Grenager, and Manning, 2005),
as shown below.

• Current word

• Previous word

• Next word

• Current word character n-gram (all)

6http://www.chokkan.org/software/crfsuite/

http://www.chokkan.org/software/crfsuite/

4.1. First NER experiments 87

• Current POS tag

• Surrounding POS tag sequence

• Current word shape

• Surrounding word shape sequence

• Presence of word in left window (size 4)

• Presence of word in right window (size 4)

Brown cluster information is added as an option in this Stanford Named
Entity Recognizer. Distributional similarity features improve performance
but these models require somewhat more memory.

As we can see, the Stanford team used word value as it is in the text, plus
the current word shape. They did not precise the meaning of word shape but
we think features like "if the word begins with a uppercase letter" is included.

The principal contribution is the Java code implementation of the CRFs
algorithm. The English NER models were trained on a mixture of CoNLL,
MUC-6, MUC-7 and ACE named entity corpora, and as a result the models
are fairly robust across domains.

Later on, more studies about CRFs patterns and CRFs implementations
have been made accessible.

N.V, Mitra, and Ghosh, 2010 tried to extract named entities in geological
texts. A precise definition of named entities was given: country name, state
name, mineral name (like Zinc), waterbodies (like Indian Ocean), person and
organization. They used multiple features for their CRFs pattern: F= Wi−2,
Wi−1, Wi, Wi+1, Wi+2, |prefix| <= 3, |suffix| <= 3, POS tag, Digit informa-
tion.

Context word feature: Previous and next words of a particular word.
Word prefix: A fixed length prefix of the current and/or the surrounding

word(s).
Word suffix: Word suffix information (assists in identifying NEs). For

example, suffixes like -pur, -bad, etc are indicators of a name of a location.
Part of Speech (POS) Information: The POS of the current and/or the

surrounding word(s).
Digit features: Several binary digit features have been considered de-

pending upon the presence and/or the number of digits in a token (e.g., Con-
tainsDigit [token contains digits], FourDigit [token consists of four digits],

88 Chapter 4. Improve named entity recognition results by POS tagging

TwoDigit [token consists of two digits]), combination of digits and punctu-
ation symbols (e.g. ContainsDigitAndComma [token consists of digits and
comma].

From these patterns, we can first see that the context of the word is im-
portant but they did not use all tokens of the sequence, but only a window
of size 5. That is, two words before and two words after the current word.
Secondly, we can use until 3 letters of the word’s suffix and prefix. Then, the
POS tag of the current word can be useful to determine if the word is part of
a named entity.

Nooralahzadeh Pattern

Nooralahzadeh, Brun, and Roux, 2014 proposed a CRFs pattern with a lot
of features. They first applied this pattern to train a POS tagger for French
User Generated Content from Seddah et al., 2012. They then showed that this
pattern works better than the pattern in Ritter et al., 2011 on T-POS corpus
(90.1% vs 88.3%).

Their pattern contains a lot of features covering word context, prefix/suffix,
digital characters and etc. Since the CRFs model will compute a weight for
each feature function, important features will be combined with an impor-
tant weight. We try to add the most features possible to let CRFs choose.

Inspired by the pattern in Nooralahzadeh, Brun, and Roux, 2014, we cre-
ated a similar CRFs pattern as shown in table 4.2. In this table, C means class
in brown clustering.

This CRFs pattern employs features about token value, characters’ types,
context information (token value and characters’ types) and word cluster in-
formations. Nooralahzadeh, Brun, and Roux, 2014 trained their own Brown
cluster with the data from French User Generated Content corpus (Seddah
et al., 2012) on 500 classes and they also employed MKCLS cluster (Kneser
and Ney, 1993). We just used the the results of the Brown cluster on English
tweets.

Constant1 Pattern

(Constant et al., 2011) proposed two CRFs patterns for POS tagging in French.
Since the model of (Nooralahzadeh, Brun, and Roux, 2014) works well in
French and English, we try to implement the patterns in (Constant et al.,
2011) to training with our data.

Table 4.20 shows features and feature locations for the model Constant1.

4.1. First NER experiments 89

Feature name Locations
wi i=[-2, -1, 0, 1, 2]
wiwj i,j={(-1, 0),(0, 1),(-2, 0),(0, 2)}
wiwjwk i,j,k={(-2, -1, 0),(0, 1, 2),(-1, 0, 1)}
wiwjwkwlwm i,j,k,l,m=(-2,-1,0,1,2)
hasPunct,longPunct,hasNumber,allNumber [-1, 0, 1]
allUpper, fstUpper [-1, 0, 1]
isAbbrev, isTime, isDecimal, [-1, 0, 1]
isURL,isEmail,isRT,isUSR,isHashTag [-1, 0, 1]
tokenType,asciiVector [-1, 0, 1]

Combination of capital type : allCap,
shortCap,longCap,noCap,initCap,mixCap [-1, 0, 1]

prefix/suffix : first/last n letters (0<n<10) [-1, 0, 1]
C(wi) i=[-2, -1, 0, 1, 2]
C(wi)C(wj) i,j={(-1, 0),(0, 1),(-2, 0),(0, 2)}
C(wi)C(wj)C(wk) i,j,k={(-2, -1, 0),(0, 1, 2),(-1, 0, 1)}
C(wi)C(wj)C(wk)C(wl)C(wm) i,j,k,l,m=(-2,-1,0,1,2)

TABLE 4.2: CRFs pattern inspired by Nooralahzadeh, Brun,
and Roux, 2014

Feature name Locations
wi i=[-2, -1, 0, 1, 2]
wiwj i,j={(-1, 0),(0, 1),(-1,1)}
wi, lowercaseform 0
hasDash, hasNumber, fstUpper, allUpper 0
prefix/suffix: (0<n<5) 0
ACi: list of categories in Penn Treebank i= [-2, -1, 0, 1, 2]

TABLE 4.3: Model Constant1

This model uses a bigram feature, current token value and its previous
token value and the bigram feature for current label. The rest of the features
are all unigram features. They also used a list of grammar categories of the
token (and its context) in the French Treebank (Abeillé, Clément, and Tou-
ssenel, 2003). So we use here categories in the Penn Treebank.

The model Constant2 uses the same window size for all features and does
not require the POS tag.

• Locations for all features : [-2, -1, 0, 1, 2]

• Features :
wi, fstUpper, allUpper, allNumber, allPunct, prefix/suffix (n<=3)

We can see from table 4.4 that the Constant2 model has the simplest pat-
tern of the three.

90 Chapter 4. Improve named entity recognition results by POS tagging

Feature name Locations
wi i=[-2, -1, 0, 1, 2]
wiwj i,j={(-1, 0),(0, 1),(-1,1)}
fstUpper, allUpper, allNumber, allPunct i= [-2, -1, 0, 1, 2]
prefix/suffix: (0<n<3) i= [-2, -1, 0, 1, 2]

TABLE 4.4: Model Constant2

4.1.3 Annotated dataset for UGC in English

(Ritter et al., 2011) proposed a dataset with 2400 tweets. This dataset is to-
kenised and then annotated with ten types of named entities. Part of this
dataset is also annotated with Part-of-Speech (POS) tags, called the "T-POS"
corpus and is employed later in this chapter on Part-of-Speech (POS) tagging
section.

Table 4.5 shows the number of each type. Annotations on tokens follows
the convention of "BIO" labels. As for multi-word expressions: "B-entity" is
for the token that begins the named entity, "I-entity" is for tokens inside the
named entity and "O" for tokens that are not part of any named entities.

Entity number
Person 449
Geo-loc 276
Other 225
Company 171
Sportsteam 51
Facility 104
Product 97
Music artist 55
Movie 34
Tvshow 34

TABLE 4.5: Annotated named entities in (Ritter et al., 2011)

We can see from the statistics of this dataset that the most frequent types
of entities are "Person" and then "Geo-location". "Music artist", "Movie" and
"Tvshow" are less frequent. We will first try to develop a named entity recog-
nition model using CRFs on cross validation on this dataset before training a
CRFs model and then testing with the Synthesio dataset.

4.1. First NER experiments 91

4.1.4 First NER results with CRFs on corpus from Ritter et al.,

2011

As mentioned in chapter 2, Synthesio wants to control its text processing
pipeline: instead of using an existing NER system, the company prefer to
train its own NER model with labelled data. All the natural language pro-
cessing pipeline is implemented using Python based on CRFsuite.

First we based our approach on two previous works of CRFs patterns,
from Constant et al., 2011 and Nooralahzadeh, Brun, and Roux, 2014. We
want to test these CRFs patterns using cross validation en T-POS corpus. We
divided randomly the T-POS corpus into 10 parts: 9 parts of the corpus are
used for training and the 10th part is used for testing. We tested two CRFs
patterns from Constant et al., 2011 in table 4.20 and Nooralahzadeh, Brun,
and Roux, 2014 in table 4.2.

As for entity types, according to Synthesio’s interest, we tried to merge 10
labelled entities (original entity type in T-POS) into 7.

Synthesio has few clients in the music artist, movie, tv show or sports
team domains. Therefore, we classified Musicartist, Movie and Tv show

into only one class Media and we placed Sports team into Company class.
Evaluation of models is done with micro-average, that is, weighted by

entities numbers in each type.
Again we include orthographic, contextual and dictionary features; our

dictionaries included a set of type lists gathered from Freebase. (Ritter et al.,
2011) also used similar features.

10 entity types 7 entity types
Entity Precision Recall F1 Precision Recall F1
Person (449) 0.67 0.42 0.51 0.67 0.42 0.51
Geo-loc (276) 0.63 0.28 0.37 0.63 0.28 0.37
Other (225) 0.33 0.12 0.17 0.36 0.13 0.18
Company (171) 0.92 0.31 0.44 0.9 0.26 0.38Sportsteam (51) 0.1 0.01 0.03
Facility (104) 0.51 0.22 0.3 0.47 0.19 0.26
Product (97) 0.3 0.07 0.1 0.4 0.05 0.09
Music artist (55) 0 0 0

0.03 0.01 0.02Movie (34) 0 0 0
Tvshow (34) 0 0 0
Micro-Average 0.55 0.25 0.33 0.58 0.25 0.35

TABLE 4.6: NER results with Constant1 pattern

92 Chapter 4. Improve named entity recognition results by POS tagging

Table 4.6 shows the NER results with the Constant1 pattern, described in
table 4.20. The numbers after each type of entities are numbers of named
entities in the annotated dataset for evaluation.

Table 4.7 shows under the same condition with the pattern of Nooralahzadeh,
Brun, and Roux, 2014, described in table 4.2.

10 entity types 7 entity types
Entity Precision Recall F1 Precision Recall F1
Person (449) 0.65 0.47 0.54 0.63 0.43 0.5
Geo-loc (276) 0.56 0.32 0.39 0.56 0.31 0.4
Other (225) 0.4 0.19 0.24 0.37 0.18 0.24
Company (171) 0.89 0.34 0.46 0.8 0.28 0.39Sportsteam (51) 0.2 0.04 0.07
Facility (104) 0.57 0.36 0.41 0.62 0.35 0.42
Product (97) 0.42 0.07 0.12 0.45 0.09 0.14
Music artist (55) 0.2 0.03 0.06

0.27 0.05 0.08Movie (34) 0 0 0
Tvshow (34) 0.02 0.02 0.02
Micro-Average 0.56 0.25 0.33 0.57 0.29 0.36

TABLE 4.7: NER results with Noor pattern

We can see from the two results from table 4.6 and table 4.7 that the com-
plex pattern from Nooralahzadeh, Brun, and Roux, 2014 works only a little
better than the pattern Constant1 from Constant et al., 2011. Since the com-
plex pattern from from Nooralahzadeh, Brun, and Roux, 2014 took a largely
longer time to train a model and obtained only 0.01 more on F1-measure com-
paring to the pattern from Constant et al., 2011, we continue our experiments
with Constant1 pattern.

Table 4.8 shows the results with Constant1 model with ten types of named
entities and different configurations of parameters C1, C2 ∈ {0, 0.001, 0.003,
0.01, 0.03, 0.1, 0.3, 1} and we obtained the best F1-measure on the cross vali-
dation on dataset from Ritter et al., 2011.

C1 C2 Precision Recall F1-Measure
1 1 0.71 0.42 0.53
0 1 0.74 0.49 0.59
0.03 0.0625 0.74 0.48 0.58
0.001 0 0.79 0.37 0.51
0.01 0.03 0.71 0.53 0.60

TABLE 4.8: NER results with constant1 pattern

To be compared with the CRFs model in the literature, Ritter et al., 2011
has obtained 0.73 in precision, 0.61 in recall and 0.67 in F1-measure.

4.1. First NER experiments 93

Type error :

• Can’t believe the Super City is nearly open !

• Company (gold) vs Geo-Loc (predicted)

Missing :

• Today wasz Fun cusz anna Came juss for me <3(: hahaha

• Person

Noise :

• Check us out - we’re FEATURED on iTunes this week !

• iTunes : Product

Alignment error :

• Checking out this weeks tell’em Steve Dave Podcast

• predicted : Steve Dave Podcast : Person

• gold: Steve Dave : Person

4.1.5 CRFs NER models on Synthesio annotated data

Macro Deezer Dunkin Land Mattel Nissan
Precision 0.56 0.09 0.31 0.18 0.02

Recall 0.14 0.06 0.05 0.07 0.01
F1-measure 0.22 0.07 0.08 0.08 0.01

Micro Deezer Dunkin Land Mattel Nissan
Precision 0.74 0.39 0.56 0.19 0.06

Recall 0.09 0.08 0.05 0.02 0.02
F1-measure 0.16 0.13 0.09 0.03 0.03

TABLE 4.9: Synthesio corpus evaluation results

We can see that the model trained on the Ritter corpus does not perform
well on Synthesio data, compared to cross validation results on the Ritter cor-
pus in Ritter et al., 2011. This clearly shows these data come from a different
domain. The training data from Ritter et al., 2011 comes only from Twit-
ter, the annotated Synthesio dataset comes from different ressources (main
stream and social media) and is more product-oriented

Meanwhile, all Synthesio data are also different because they are from
different domains (food and coffee, automobile, etc). Moreover, none of the
annotated part of these corpora is big enough to build an effective model.

94 Chapter 4. Improve named entity recognition results by POS tagging

4.1.6 Iterative training

Synthesio has large amount of unlabelled texts in its database. We thus tried
to employ these unlabelled data to improve the NER task results, using the
model trained on the Ritter corpus as in Putthividhya and Hu, 2011.

We first extracted all texts in the Deezer domain published during one
day (2015 October 5th) in forums, blogs etc., what we call long texts (in con-
trast to texts coming from tweets, which are shorter). We then filtered re-
peated text sequences and similar text sequences. We obtained an unlabelled
long text Deezer data with 1M sequences, that is more than 41M tokens.
These data are quite noisy, with some sequences really different from well-
formed English texts.

Our iterative training procedure follows (Garcia-Fernandez, Ferret, and
Dinarelli, 2014). The idea is to annotate unlabelled data with an initial model
(here the CRF model trained on the Ritter corpus). We then pick up all an-
notated sequences for which the model has a confidence score higher than
a given threshold. We add these sequences to the initial data to train a new
model. At this stage, we keep the same features for the Ritter corpus and the
predicted Synthesio data. This process repeats until no more sequence passes
the threshold. This procedure was originally applied to sentiment classifica-
tion. In the NER task, where most of the labels are “O" (“Outside" an entity in
a BIO annotation), most sequences which pass a high threshold (for example
0.9) were predicted with only “O" labels. In order to add only meaningful se-
quences to the training data, we add only sequences which pass the threshold
and contain at least one named entity.

We chose first a high threshold of 0.8 and there were 1608 sequences with
more than one entity. We also tested 0.9 but there were only 189 sequences
with at least one named entity. Then for each Synthesio domain, kept as
test domain out of five domains, we trained a mixed model with the Ritter
corpus, plus these 1608 predicted sequences and the other eight corpora in
the other domains (4 of short texts and 4 of long texts). We can evaluate thus
on all Synthesio reference corpora.

The table 4.10 shows the results of this procedure with only a first itera-
tion. As we can see the model performs far better than the baseline 4.9 for
Dunkin Donuts, Mattel and Nissan, but not for Deezer. Among the 1608 se-
quences annotated, even the word “Deezer" was not labelled as an entity.

We also found by comparing the table 4.9 and the table 4.10 that the f1-
measure of all four domains are improved except the domain of "Deezer".
However, the predicted sequences that we added into the training data were

4.1. First NER experiments 95

long text Deezer Dunkin Land Mattel Nissan
Precision 0.68 0.5 0.23 0.55 0.58

Recall 0.13 0.24 0.08 0.28 0.09
F1-measure 0.22 0.32 0.12 0.37 0.16

short text Deezer Dunkin Land Mattel Nissan
Precision 0.5 0.6 0.05 0.49 0.3

Recall 0.08 0.23 0.06 0.19 0.09
F1-measure 0.14 0.33 0.05 0.27 0.14

TABLE 4.10: Evaluation of a mixed model trained with the
Ritter corpus and predicted sequences with a confidence score

more higher than 0.8.

all in the domain of "Deezer". We can see that our model can still be im-
proved by adding more annotated data, even annotated data from other do-
mains. Since we have much more selected data than the original corpus
Ritter, we also tried to filter annotated text sequences with a threshold of 0.9.
The table 4.11 shows the number of selected sequences for each domain after
first prediction.

Domain name Accepted Entities
long Nissan 9 9

short Nissan 6 6
long Mattel 1010 1056

short Mattel 19 24
long LandRover 2846 3057

short LandRover 47 48
long DunkinDonuts 22550 24156

short DunkinDonuts 102008 103176
long Deezer 1054 1105

short Deezer 32469 33166

TABLE 4.11: Number of selected sequences in each domain

From these selected sequences, we can note some examples:

Argyle fan in North Yorkshire

FIGURE 4.2: Example of "North Yorkshire"

Here our model annotated the "Geo-loc" entity "North Yorkshire" even
when this phrase is absent in our training data, which means the model is
somehow able to infer generalisations.

Figure 4.3 is an example of boundary error. This "job-title" entity should
be the whole phrase "witch doctor" but our model extracted only "doctor".

96 Chapter 4. Improve named entity recognition results by POS tagging

but people are saying that she’s a witch doctor

FIGURE 4.3: Example of "witch doctor"

In this example, neither company "Nissan" nor product "Note Nismo" is
extracted as entity, but "Japan" is annotated correctly as "Geo-loc" entity.

As shown in table 4.11, the unsupervised Synthesio data is not homogene.
Some domains have more selected data than others. We leave as future work
how this data could be used to trained (perhaps with a higher confidence
probability) to create a more suitable training dataset, and maybe to use an
entity list as CRF feature to improve the recall.

4.1.7 Domain adaptation with reduced features

Since Synthesio data are different from those of the Ritter corpus, we con-
sider them like two different domains. Following the annotation adaptation
approach in Raymond and Fayolle, 2010, we consider the Synthesio data as
the target domain, the Ritter corpus as the source domain. We thus use the
complete set of features for Synthesio data and only token values and pos
tags (from Synthesio pos-tagger which tags 17 grammatical categories) for
the Ritter Corpus. This affects the importance given by the CRF model to
features extracted from the two corpora, giving more weight to those ex-
tracted from the target domain. Here, the best model is the one which takes
into account only a window of size 3 (that is tokens in positions -1, 0 and 1).

The table 4.12 shows our results for the long-text and short-text Deezer
corpora with a model trained with Ritter plus the Synthesio corpus with the
full set of features (baseline templates). Here the Synthesio corpus contains
the 8 reference corpora provided by Synthesio and the 1608 sequences ob-
tained in the previous experiment.

Model Corpus Precision Recall F1

full features long text 0.83 0.08 0.15
short text 0.42 0.03 0.06

token1+pos5 long text 0.63 0.06 0.11
short text 0.52 0.03 0.06

token3+pos3 long text 0.67 0.06 0.11
short text 0.41 0.04 0.07

TABLE 4.12: Evaluation of model with Ritter on reduced fea-
tures with Deezer.

4.2. Aim and necessity to develop a POS tagger 97

We can see that compared to the “full features" model, the model with
reduced features gives a slightly better result on Twitter data (short-text cor-
pus).

4.2 Aim and necessity to develop a POS tagger

The main goal of our proper POS tagger is to help our NER task.
We tested our first NER model with CRFs using as feature the POS tag

of the token in the Penn Treebank corpus as in previous section. Now we
want to develop a customized POS tagger trained on User Generated Content
(UGC), and using the predicted POS tag as feature of our NER model. We
should thus be able to see whether we get a better result in NER task.

At the same time, as described in chapter 1, the goal of this thesis is to
help Synthesio to process their data better and analyse the sentiment of the
text.

The POS tagger could also help to find words that play the role opf a
topic in a discussion (proper noun, common nouns, etc), or words which
may contain sentiment information (verbes, adjectives, etc). Synthesio has
its own tokenizer and the POS tagger would be the next process in the chain.

There exists already some POS taggers, such as CRF Tagger 7, Stanford
tagger 8, even commercial software LingPipe 9 for canonical text in English
and SEM 10 (Constant et al., 2011) for French canonical text, but we need a
customized POS tagger for our NER task.

First, we work with User Generated Content (UGC). Sometimes we can
not parse the entire phrase as journal-like texts, so we do not need a delicate
grammatical categorization.

Secondly, compared to existing POS tagger trained by tweets in English
like the CMU Tweet POS tagger 11 and the GATE Twitter part-of-speech tag-
ger 12, Synthesio process 80 natural languages which means we need a uni-
versal definition of POS tags.

At last, the POS tagger in (Gimpel et al., 2011) is trained on the tweet cor-
pus, with their proper definition of POS tag set. For tokens like "we’ll", they

7http://crftagger.sourceforge.net/
8https://nlp.stanford.edu/software/tagger.shtml
9http://alias-i.com/lingpipe/

10http://www.lattice.cnrs.fr/sites/itellier/SEM.html
11http://www.cs.cmu.edu/~ark/TweetNLP/
12https://gate.ac.uk/wiki/twitter-postagger.html

http://crftagger.sourceforge.net/
https://nlp.stanford.edu/software/tagger.shtml
http://alias-i.com/lingpipe/
http://www.lattice.cnrs.fr/sites/itellier/SEM.html
http://www.cs.cmu.edu/~ark/TweetNLP/
https://gate.ac.uk/wiki/twitter-postagger.html

98 Chapter 4. Improve named entity recognition results by POS tagging

have a tag "pronounverb", but in Synthesio, its tokenizer already separated
"we" and "’ll" so this exist postagger can not be fit for our task.

4.3 Difficulties of developing a POS tagger for UGC

In the token level, User Generated Content (UGC) contains lots of abbrevia-
tions, spelling errors, emoticons and other specialities which do not exist in
canonical text. Tweets contain also sometimes tokens which do not exist in
canonical text such as "RT" for retweet, at mention and hashtags.

In user generated content (UGC), like SMS (Short Message Services), many
abbreviation are created and expanded over time like "ASAP" for "as soon as
possible", "OMG" for "Oh my god", etc. As for tweets, they are limited to 140
characters (this limit has been doubled up to 280 characters since September
26th 2017), so they may contain more abbreviations than SMS.

The usage of certain numbers to replace a word to shorten the text is also
common like using "2" for "to" or "too", or using "4" instead of "for", etc. Cer-
tain symbols became significant like "+" for "plus", "&" for "and", etc. These
numbers or symbols should be tagged as their correct forms as preposition
or verb.

Figure 4.4 is an example of a tweet from the corpus (Ritter et al., 2011).

Today wasz Fun cusz anna Came juss for me <3 : hahaha

FIGURE 4.4: An example of tweet

In this example of 4.4, there are multiple difficulties for our POS tagger :

• spelling errors: wasz (was), cusz (because), juss (just)

• uppercase/lowercase inversions: Fun (fun), anna (Anna), Came (came)

• emoticon: <3

• interjection: hahaha

The correct form of this tweet 4.4 should be:

Today was fun because Anna came just for me <3 : hahaha

FIGURE 4.5: Correct form of tweet 4.4

4.3. Difficulties of developing a POS tagger for UGC 99

In the view of canonical text, in this tweet, only four tokens (among 12)
are correct: "Today", "for", "me" and the punctuation ":". This tweet remains
comprehensible for a human, but causes multiple problems for a POS tagger.

Words with spelling errors are often out-of-vocabulary (OOV) words. They
would be tagged as unknown words with a POS tagger trained by canonical
text. Words beginning with an uppercase character are often proper nouns if
they are not in the first of a sentence. Emoticons are often combinations of
punctuations or numbers strings, they express together a face or a sentiment.
In the example 4.4, the token "<3" represents a heart if the reader leans his
head on the right. But a POS tagger trained by canonical text would proba-
bly separate the punctuation "<" and the number "3", or tag them together as
an unknown word. The interjection "hahaha" repeats the syllable "ha" three
times. So "hahaha" is also considered as an OOV word.

omg simone is coming over then 2morrow we foin 2 da
fall festival cant wait 4 GAC 2night!

FIGURE 4.6: Number usage in tweets from (Ritter et al., 2011)

In this tweet 4.6, we can find:

• abbreviation: omg (oh my god)

• uppercase/lowercase: simone (Simone)

• spelling errors: foin (going?), da (the), cant (can’t)

• number replacing words or syllables: 2morrow (tomorrow), 2 (to), 4
(for), 2night (tonight)

We can see that the number "2" can not only replace the word "to", but also
the syllable "to" in other words like "tomorrow" and "tonight". Sometimes a
spelling error can also be caused by a missing apostrophe ’ like "cant" for
"can’t". At last, we believe that the word "foin" may mean "going" as the
letters "f" and "g" are neighbors in the keyboard. These OOV words could be
tagged as unknown by a POS tagger trained by canonical text.

Figure 4.7 shows another problem for POS tagger.

Eduardo Surita: your a freaking ... http://tumblr.com/xmciuda0t

FIGURE 4.7: Another exemple of tweet

http://tumblr.com/xmciuda0t

100 Chapter 4. Improve named entity recognition results by POS tagging

In this example 4.7, the token "your" should be two tokens "you" and "’re"
to be correct syntactically. And the tokenizer would probably separate the
token "you’re" by two tokens "you" and "’re" (that is what the Synthesio tok-
enizer does). Since we process only tokenized text in this thesis, we will not
correct this sort of errors. So "your" would be tagged as pronoun but not
pronoun and verb.

Another characteristic of tweets is its system of RT (retweet), urls, hash-
tags (symbol # followed by a character string) and at-mentions (symbol @
followed by a username).

The pattern of a retweet for another tweet begins with "RT : " followed by
the content of original tweet.

Url are often at the end of a tweet like shown in the example of figure 4.7.
Hashtags (token begins with "#") help Twitter users to label their tweets

and one can tap on a hashtag to see all the tweets related to that topic. An
at-mention, the symbol @ followed by a username, insures that the Twitter
username is mentioned in the tweet and to add this user on a conversation
that’s currently happening.

The problem with POS tagger is that, the hashtag token or at-mentions
token could be part of the sentence or not according to author’s wish.

The hashtag in the example Figure 4.8 is a proper noun which modifies
"age".

My #twitter age is 458 days 0 hours 3 minutes 49 seconds

FIGURE 4.8: Hashtag as part of sentence

Figure 4.9 shows a tweet with a hashtag which itself is a noun phrase
as the attribute of the sentence "it’s time to get out". There is not only "its"
written without apostrophe, but also "TimeToGetOut" written written as a
single token (without blank characters between words) and begin with an
uppercase character "#TimeToGetOut".

On Thanksgiving after you done eating its #TimeToGetOut
unless you wanna help with the dishes

FIGURE 4.9: Hashtag with multi-words

This kind of hashtags need a specific tokenizer before analysis. But we
will not process these hashtags in this thesis.

Similarly, at-mentions could be a syntactic part of the sentence as attribute
in the example 4.10 or not, as in the example 4.11. But hashtags at the end

4.4. Annotated part-of-speech datasets 101

New book blogger @GennaSarnak launches weekly feature , Poetry Sunday:
http://tinyurl.com/47vbdy5 #Books #Poetry

FIGURE 4.10: At mention as part of sentence

of the tweet like 4.10 "#Books" and "#Poetry", often do not have any syntactic
function in the sentence. Their interest is just for the tweet to be easier to be
found.

Ryerson Quidditch team this Sunday at 4 p.m. Anyone know where to
get cheap brooms ? #Ryerson @RUQuidditch #Rams

FIGURE 4.11: At mention at the end of sentence

We can also see that in the tweet shown in figure 4.11, the verb "know"
should be its form in the third person singular "knows". That is also a spelling
error. It is comprehensible for a human but causes problems for an automatic
language parser.

The hashtags and at-mentions make tweets difficult to analyze with POS
tags. In this thesis, we will simplify that by processing at-mentions and hash-
tags with label Hashtag and Username whatever their syntactic function is
in the sentence like in (Ritter et al., 2011). This means that, these labels can
appear wherever they want in the text.

4.4 Annotated part-of-speech datasets

As mentioned in the first section, we need to build a cutomized POS tagger
trained on user generated content (UGC).

At this moment, there are three labelled POS tag microblog datasets, an
IRC text corpus and a SMS dataset available.

The T-POS corpus (Ritter et al., 2011) contains 787 tweets composed of
15185 tokens and annotated with 45 tags from the Penn Treebank annotation
scheme (Marcus, Marcinkiewicz, and Santorini, 1993) four special POS tags
specific to annotate data from twitter: RT for retweet, HT for hashtag, USR
for at-mentions and URL. That is 49 tags in total.

The DCU dataset (Foster et al., 2011) is related to sentence parsing. This
corpus of 14k tokens contains 519 sentences from Twitter. Links, usernames
and hashtags are all annotated as proper nouns and are assimilated to a sin-
gle word noun phrase. "RT" is annotated as a noun within a single word
noun phrase. This strategy is useful for parsing as canonical text, but in our

102 Chapter 4. Improve named entity recognition results by POS tagging

case, it is important to keep track of at-mentions and hashtags since these
expressions are relevant for the task.

The ARK corpus made of of 39K tokens (Gimpel et al., 2011) has its own
tokenizer and its own tagset, which is simpler than the tagset of the Penn
TreeBank. For example, in the corpus, the VB, VBD, VBG, VBN, VBP, VBZ,
and MD (for infinitif verb) tags from the Penn TreeBank are grouped into one
category of VERB. The developer of this corpus also defined combined tags
like pronoun+verb for tokens like "you’re" (only one token) and "I’m". This
corpus has less part-of-speech tags and the performance of POS tagging was
92.8% accuracy (Owoputi et al., 2012).

For our own problem, we had a similar idea: to define a simpler tagset as
only one tag VERB could be used for all verbs. But the Synthesio’s tokenizer
is more similar to T-POS (Brendan O’Connor’s Twitter tokenizer (O’Connor,
Krieger, and Ahn, 2010)) and we have already used T-POS for the NER task
(although there is only a small intersection of the two corpora for the two
tasks). That is the main reason why we want to train our POS tagger with the
T-POS dataset.

At last, the IRC text and SMS dataset represents messages that one sends
to another (point to point). In Synthesio, texts to process are mainly one to
others (one sends for public). So these two datasets are not important to be
studied.

4.5 Synthesio tagset definition

As mentioned in the first section, the objective of this POS tagger is to help the
named entity recognition (NER) task, and possibly also sentiment analysis.
The user generated content (UGC) that we try to process at Synthesio, is often
non-canonical text that may not contained well formed sentences as can be
found in journalistic texts. We may not need a part-of-speech tagset precise
as Penn Treebank and T-POS. Instead, we can use a tagset with less tags like
the ARK corpus (Gimpel et al., 2011). In addition, Synthesio processes 28
different languages so we need a tagset for all languages.

(Petrov, Das, and McDonald, 2012) proposed a universal POS tagset of 12
tags for 22 different languages as well as mapping tables for 25 different Tree-
banks, including the Penn Treebank. The table 4.13 shows Penn Treebank’s
tagset definition and the mapping with this universal tagset.

As mentioned before, we want to extract named entities in the text. Whether
a noun is a proper noun or a common noun is important. So we separated

4.5. Synthesio tagset definition 103

Universal Tag PTB Tag Definition Comment

NOUN

NN common noun, singular or mass
NNS common noun, plural
NNP proper noun, singular
NNPS proper noun, plural

VERB

MD modal verb all verbs that do not take an -s ending in 3rd
person singular present like can, dare, etc

VB verb, base form this tag subsumes imperatives, infinitives
and subjunctives

VBD verb, past tense includes the conditional form of the
verb "to be"

VBN verb, past participle
VBG verb, gerund or present participle

VBP verb, present tense, other than
3rd person singular

VBZ verb, present tense,
3rd person singular

ADJ
JJ adjective and ordinal number

JJR Adjective, comparative adjectives with the comparative ending
-er and a comparative meaning

JJS Adjective, superlative adjectives with the superlative ending -est

Adverb

RB Adverb, negation words end with \-ly, degree words like quite,
too and negative markers like not and never

RBR Adverb, comparative adverbs with the comparative ending
-er and a comparative meaning

RBS Adverb, superlative adverbs with the superlative ending -est
WRB Wh-adverb includes how, where, why etc

DET

DT Article Determiner

PDT predeterminer
determiner-like elements when precede
an article or possessive pronoun
(quite/PDT a mess)

WDT Wh-determiner includes which and "that" when used as
a relative pronoun

EX Existential there there

PRON

PRP personal pronoun
PRP$ prossessive pronoun
WP Wh-pronoun
WP$ possessive wh-pronoun

CC CC Coordinating conjuction includes and, but, nor, or, yet and
mathematical operators plus, minus, etc

ADP IN preposition or
subordinating conjuction

preposition precedes a noun phrase or a
prepositional phrase, subordinate
conjunction precedes a clause

PRT
RP particle
POS possessive ending ’s, or just ’ as in parents’
TO to for the preposition "to"

X

UH Interjection includes "yes", oh, please, see, uh, well, etc

SYM mathematical, scientific and
technical symbols or expressions

names of chemicals, units of measurements
should be tagged as nouns

FW foreign word

LS list item marker letters and numerals when they are used
to identify items in a list

NUM CD cardinal number

PUNCT
-LRB- #
-RRB- $
" , . : ” LS

LS, -LRB- and -RRB- :
itemize list markers each punctuation has itself as tag

TABLE 4.13: Universal tagset and Penn Treebank tagset map-
ping

the category NOUN into two different categories: NN for common noun (sin-
gular and plural) and NNP for proper noun (singular and plural). Practically
this means that for the Penn Treebank categories, we regrouped NN (singu-
lar common noun) and NNS (plural common noun) and for proper noun, we
regrouped NNP (singular proper noun) and NNPS (plural common noun).

104 Chapter 4. Improve named entity recognition results by POS tagging

Inspired by this universal POS tagset mapping for the Penn Treebank, we
only made minor modifications for the mapping of POS tagset of T-POS.

For verbs, as done by ARK dataset, we regrouped VB, VBD, VBG, VBN, VBP,
VBZ, and MD (infinitif) as one category of VERB.

At last, we did as T-POS, to process separately the four specific categories
of Twitter: RT (retweet), HT (hashtag), URL and USR (at-mention).

Table 4.14 shows the mapping of the Synthesio tagset, the Penn Treebank
tagset and the T-POS tagset.

Synthesio tags Tag Penn Treebank Tag T-POS Comment
NN NN NNS NN NNS common nouns
NP NNP NNPS NNP NNPS proper nouns

VB MD VB VBD VBG
VBN VBP VBZ

MD VB VBD VBG
VBN VBP VBZ verbs

ADJ JJ JJR JJS JJ JJR JJS
ADV RB RBR RBS WRB RB RBR RBS WRB WRB : where, when
DET DET PDT WDT EX PDT DT WDT EX TD PDT : half

PRON PRP WP PRP$ WP$ PRP PRP$ WP WP$ pronouns
CC CC CC

PREPCS IN IN prepositions and
subordinate conjuction

PRT POS TO RP POS TO RP particle
X # $ FW SYM INTJ INTJ SYM FW

NUM CD CD number
PUNCT " , -LRB- -RRB- . : ” LS " () . , : NONE O LS

RT RT Retweet
HT HT Hashtag

URL URL
USR USR at mention

TABLE 4.14: PTB, Ritter and universal tagset correspondance

We can see from the table that the tagset of T-POS has minor differences
with the Penn Treebank tagset.

Label "TD" was also only once for the token "a" in the context "doing a sit
up" so we consider that to be an error for "DT" (determiner). Label "O" was
only one case for a token of punctuation ("..). That maybe an annotation error
so we took it into category punctuation. Label "None" was used for hooks [
and] so we consider them as punctuation.

4.6 Feature space for a POS tagger

Considering the definition of a part-of-speech tag, there are a lot of features
that may be useful to categorize tokens. These features form a feature space
for the POS tagging task. They are also useful to create a pattern for models

4.6. Feature space for a POS tagger 105

like Conditional Random Fields (CRFs). CRFs pattern is defined by a set of
features and their window sizes. Since CRFs compute automatically weights
of each feature function, we want to define as many features as possible and
let CRFs choose functions more or less important.

4.6.1 Features related to character type

This kind of features contains two types of features according to the value
that they return.

Binary features

These features return a True or False value.
allLetter: all characters in the token are alphabet letters. allNumber: all

characters in the token are digital numbers (without symbols nor punctua-
tions) hasNumber: the token contains one or more digital numbers onePunct:
the token has only one character and it is a punctuation allPunct: the token
contains only punctuation character(s) hasPunct: the token contains one or
more punctuation character(s) longPunct: the token contains only punctua-
tion characters (more than one) hasDash: the token contains the dash "-"

Some features can be completely included in another feature, for exam-
ple, onePunct and allPunct are included in hasPunct (if one token contains
one punctuation or contains only punctuation, it returns True for the feature
"hasPunct"). In the training phase, CRFs will determine which feature func-
tions are more important than others by defining different weights.

Token type feature

This feature "tokenType" aimes to imitate characters which form the token.
We use "X" to replace all uppercase letters, "x" to replace all lowercase letters
and "9" to replace all numbers in the token. We then obtain a value which has
only "X", "x" and "9" as characters. For example, this feature returns "9xxxxx"
for "2night", "XxXxxxxx" for "McDonald" and "xXxxxx9" for "iPhone7".

4.6.2 Features about uppercase/lowercase letters

For canonical text, only proper nouns and the first word of a sentence an
uppercase letter at the initial of the word and other letters in lowercase and
some proper nouns and abbreviations can have all letters in uppercase (like
WTO for World Trade Organization). In the titles of articles, books’ sections,

106 Chapter 4. Improve named entity recognition results by POS tagging

full words begin with uppercase letters. This kind of features is important
to detect proper nouns. As showed before, some User Generated Content
does not always follow this rule. So we define here all possibilities of upper-
case/lowercase alternance.

• fstUpper: if the token begins with a letter in uppercase and other letters
in lowercase.

• shortCap: if the token has only one uppercase character.

• longCap: if the token has only uppercase characters (more than one).

• mixCap: if the token has on the same time uppercase character(s) and
lowercase character(s).

• hasUpper: if the token has at least one uppercase letter.

• allUpper: if the token contains only uppercase letter(s).

• allLower: if the token contains only lowercase letter(s).

4.6.3 Features about token value

Token values

These features concern different forms to represent the token.

• tokenValue: the token form in the text

• lower: the token value all in lowercase

• ASCIIVector: the token represented by a vector ASCII code (American
Standard Code for Information Interchange) corresponding tot the let-
ter of the word under consideration. For example, this feature returns
"99-97-116" for "cat" (on ASCII code).

Prefix/suffix features

These features concern token prefix and suffix.
We use from 1 to n first characters as prefix and from 1 to n on the right

for suffix. Here we count until n=10.

4.6. Feature space for a POS tagger 107

4.6.4 Features using regular expression

These features are used to find special tokens like URL, hash tags, etc.
isDecimal: the token is a decimal number, including numbers with comma

"," or even e for Euler’s number.
isEmail: the token contains symbol @ but not the first character, and a

period before the end of the token.
isAbbrev: the token contains only uppercase letters, maybe separated by

period like “U.N.” for United Nations.
isDate: if the token represents a date.
isTime: if the token represents a time.
isRT: if the token is exactly "RT".
isUSR: if the token begins with @ (is an at-mention).
isHashTag: if the token begins with # (is an hash tag).
isURL: if the token is an url link.

4.6.5 Features using extern ressources

Similarly to NER task, here we use POS tag in Penn Treebank and the Brown
clusters results as extern ressources.

Penn Treebank POS tag

We first change all the tokens in the Penn Treebank corpus into its form with
all letters in lowercase, and then we count the number of possible POS tag
that this token have in the corpus Penn Treebank. Then we find that one
token in lowercase can have up to 8 possible POS tags in the Penn Treebank.
That is "a" and "down".

a
NN FW SYM LS JJ IN DT NNP
10 8 11 2 2 1 24691 56

TABLE 4.15: POS tags of token "a" in Penn Treebank

down
RP RB NN RBR VBP JJ IN NNP
257 468 2 1 1 14 194 2

TABLE 4.16: POS tags of token "down" in Penn Treebank

So we created eight features related to 8 possible POS tags in the Penn
Treebank, from the most frequent to the less frequent. For tokens having less

108 Chapter 4. Improve named entity recognition results by POS tagging

possible POS tags, the other possible POS tags are defined as "not concerned"
(NCND), this is the value that the feature returns. When two tags have the
same number of frequency, they will ordered by tags’ names in alphabet.

token the most frequent
POS in PTB

2nd most
frequent 3rd 4th 5th 6th 7th the less

frequent
a DT (24691) NNP (56) SYM (11) NN (10) FW (8) JJ (2) LS (2) IN (1)

down RB (468) RP (257) IN (194) JJ (14) NN (2) NNP (2) RBR (1) VBP (1)
papers NNS (36) NNP (2) NCND NCND NCND NCND NCND NCND

TABLE 4.17: Penn Treebank POS tags feature values examples

Table 4.17 shows the 8 features about POS tag in Penn Treebank corpus
for three tokens: "a", "down" and "papers".

Brown cluster on tweets

Brown clusters is a hard hierarchical agglomerative clustering technique based
on distributional information proposed by (Brown et al., 1992) and have
been used successfully in NER applications (Miller, Guinness, and Zama-
nian, 2004), (Liang, 2005), (Ratinov and Roth, 2009), etc.

(Owoputi et al., 2012) proposed to use Brown clusters on tweets and
they obtained 1000 clusters for 56,345,753 tweets (that is 847,372,038 tokens).
These tweets are from a sample of 100k tweets per day from September 10th
2008 to August 14th 2012.

Here we just use their results as word class.

class token frequency
0010100 juuuuust 84
0010100 kust 92
0010100 jhus 102
0010100 jussss 103
0010100 jhuss 105
0010100 justs 106
0010100 jussst 116
0010100 jusx 117

TABLE 4.18: Sample of Brown Clusters for Tweets

Table 4.18 is a sample of the clusters results13.
The first column shows the class that the token belongs to, among the

defined 1000 classes. The hierarchical is included in the class code. From
the left to the right, the positions of the class code means the hierarchical
level. Then the value of 0 or 1 shows that it is a binary classification, so there

13http://www.cs.cmu.edu/ ark/TweetNLP/

4.7. Experiments of CRFs POS tagger and results 109

is only two classes in each level. For example, class "001010" has two son
classes, "0010100" and "0010101". As we can see, this clustering method can
recognize that all tokens in the table 4.18 are in the same class. In fact, they
are all variances of the word "just" and they are all out-of-vocabulary (OOV)
words. The Brown cluster class information can be useful for OOV words
presented in tweets. And with this clusters results, we can define numbers of
classes we want, among 2, 4, 8 until 214. For example, if we want only 26 = 64

classes, we can keep only the first 6 numbers of these class code and ignore
all descendants of one class are considered as belonging to this class.

4.7 Experiments of CRFs POS tagger and results

Since we are working with tokenized text, that means that training a POS
tagger corresponds to sequence labelling. CRFs has already been applied
successfully to train a POS tagger as in (Pandian and Geetha, 2009), (Silfver-
berg et al., 2014) and (Constant et al., 2011) for French. We try to train our
own POS tagger with T-POS corpus and with our defined tagset.

4.7.1 Experiments uni-corpus

In this part of experiments, we try to train our CRFs models with patterns
defined in the previous section. First, we divide randomly the corpus T-POS
in three part: 80% for cross validation, 10% for development and 10% for
test. In the training of CRFs models, regularization is usually required to
prevent the model from over fitting the training data. The two most com-
mon regularization methods are L1 and L2 regularization. L1 regularization
penalizes the weight vector for its L1-norm (the sum of the absolute values
of the weights), and L2 regularization uses its L2-norm (Tsuruoka, Tsujii, and
Ananiadou, 2009). As in (Nooralahzadeh, Brun, and Roux, 2014), we uses the
elastic-net penalty of the form:

ρ1 ∗ |θ1|+
ρ2
2
∗ |θ2|2

To get the best L1 and L2 parameters, we use 5-block cross validation and
choose the best combination of L1 and L2 parameters from L1 ∈ {0, 0.0625,
0.125, 0.25, 0.5, 1, 2, 4, 8, 16} and L2 ∈ {0, 0.0325, 0.0625, 0.125, 0.25, 0.5, 1, 2,
4, 8, 16} as in (Owoputi et al., 2013). We added {0.01, 0.03, 0.1, 0.3} for L1 and
L2.

110 Chapter 4. Improve named entity recognition results by POS tagging

The table 4.19 shows for three variations of this CRFs pattern. The first
variation used all the 14 values from the class code in Brown Cluster trained
by tweets. That means, we have 214 different classes for all tokens. We also
added the bigram feature Yi−1 for current label Yi (chapter 2).

As for the seconde variation, we used only unigram feature Yi and we did
not consider the bigram, as in (Nooralahzadeh, Brun, and Roux, 2014). But
we kept 214 classes corresponding to Brown Cluster feature.

The third variation used only first the 9 positions of Brown Cluster class
code. That means, we have 29 = 512 classes for all tokens, which is closer to
500 classes in (Nooralahzadeh, Brun, and Roux, 2014). We also use only the
unigram feature. This is the most similar model to (Nooralahzadeh, Brun,
and Roux, 2014).

For each variation of this model, we show in the table 4.19 the two best
results (with best regularizations L1 and L2), and the last column shows the
result on development data with these two best regularizations.

Model name L1 L2 cv result dev result

14 values in Brown Cluster 0.03 0.0625 0.8628 0.8947
0.0625 0.0625 0.8616 0.8912

unigram features 0.0625 0.0625 0.8660 0.8863
0.03 0.625 0.8640 0.8724

first 9 values for brown
(Nearest to the reference)

0.25 0.5 0.8638 0.8745
0.03 0.0625 0.8672 0.8891

TABLE 4.19: Results with model Nooralahzadeh2014

As we can see in the table 4.19, we got the cross validation best results
with the third variation of the model, that is the most similar to (Nooralahzadeh,
Brun, and Roux, 2014). But the best result with development data was given
by the first variation of the model, that is, with model including more classes
in Brown Clusters.

We also discovered that the model (Nooralahzadeh, Brun, and Roux, 2014)
uses a lot of CPU ressources, to generate all these features. Maybe that is why
the authors of the corpus used only unigram features. Our implementation
with CRFsuite also requires a dynamic generation of feature values for each
experiment (keep all values in the memory instead of keep on storage on
the disk). So this model requires lots of ressources and time. As Synthesio
processes data in real time, we want to test simpler models.

(Constant et al., 2011) proposed two CRFs patterns for POS tagging in
French. Since the model of (Nooralahzadeh, Brun, and Roux, 2014) works

4.7. Experiments of CRFs POS tagger and results 111

well in French and English, we try to implement the patterns in (Constant
et al., 2011).

Table 4.20 shows features and feature locations for the model Constant1.

Feature name Locations
wi i=[-2, -1, 0, 1, 2]
wiwj i,j={(-1, 0),(0, 1),(-1,1)}
wi, lowercaseform 0
hasDash, hasNumber, fstUpper, allUpper 0
prefix/suffix: (0<n<5) 0
ACi: list of categories in Penn Treebank i= [-2, -1, 0, 1, 2]

TABLE 4.20: Model Constant1

This model uses a bigram feature, that is the current token value and its
previous token value and the bigram feature for current label. The rest of the
features are all unigram features. There is also feature of a list of grammar
categories of the token (and its context) from the French Treebank (Abeillé,
Clément, and Toussenel, 2003). So we use here categories in Penn Treebank
as mentioned in the previous section.

We tested regularization of L1, L2 ∈ {0 ,0.001,0.003,0.01,0.03,0.1,0.3}. Sim-
ilar to previous experiment, we first tested all combinations of L1 and L2
with cross validation (with the same part of corpus) and we kept only two
best combinations of L1 and L2. Then we tested these two best combinations
to development data.

Table 4.21 shows that the best combination of L1 and L2 regularization
is l1=0.01 and l2=0.001, and is close, although not better than the model in
(Nooralahzadeh, Brun, and Roux, 2014).

c1 c2 CV results dev result
0.03 0.01 0.8701 0.8856
0.01 0.001 0.8699 0.8926

TABLE 4.21: Model Constant1 results

This result encouraged us to test to also test a simpler model pattern, the
model Constant2, to see if it works as well as the model Constant1.

The model Constant2 uses the same window size for all features and does
not require the categories in a Treebank.

• Locations for all features : [-2, -1, 0, 1, 2]

• Features :
wi, fstUpper, allUpper, allNumber, allPunct, prefix/suffix n<=3

112 Chapter 4. Improve named entity recognition results by POS tagging

We tested regularizations L1, L2 ∈ {0 ,0.001,0.003,0.01,0.03,0.1,0.3} and we
got the results in table 4.22.

c1 c2 CV results dev result
0.03 0 0.8399 0.8068
0.01 0.001 0.8374 0.8445

TABLE 4.22: Model Constant2 and results

This result is worse than the model Constant1.
If we want to get a better report of performance and time, it is better to

use the model constant1.

4.7.2 Experiments with multi-corpus

T-POS remains a small annotated corpus (with only 787 tweets) and the Penn
Treebank is much larger. But the Penn Treebank was texts reporting news
from Wall Street Journal and the POS tagger trained on canonical text per-
forms poorly with User Generated content (Ritter et al., 2011), (Gimpel et al.,
2011).

In this section, we want to test our CRFs models with a mixed training
corpus. That is, to use mixed of Penn Treebank and T-POS with different
proportions of Penn Treebank, to see if we can get a better POS tagger.

FIGURE 4.12: Cross validation adding Penn Treebank data

As showed in the figure 4.12, for cross validation evaluation, we add some
proportions of Penn Treebank to the training data and then test the model

4.7. Experiments of CRFs POS tagger and results 113

with the last fold of data as previous experiment. In the end, we always
calculate the average result.

Model Name mixed corpus proportion
with Ritter c1 c2 result on cv

Constant2011 None None 0.03 0.01 0.8701

Nooralahzadeh PTB
1:1 0.25 0.125 0.8689
4:1 0.25 0.125 0.8718
9:1 0.25 0.125 0.8712

Constant1 PTB 9:1

0.001 0.125 0.8725
0.125 0.0625 0.8726
0 0.25 0.8671
0.001 0.01 0.8728

TABLE 4.23: Results of mixed-corpora experiments

Table 4.23 shows the results of two CRFs patterns: (Nooralahzadeh, Brun,
and Roux, 2014) and Constant1. The seconde line of the table is what we
obtained in the section of uni-corpus training.

4.7.3 Results with artificial examples

Before creating Synthesio’s annotated POS tag corpus, we want to see the
developed POS tagger’s performance on some artificial sentences. Here we
want to apply our POS tagger to some concrete sentences as showed in 4.24.
These sentences are created following context of a tweet. As discussted in the
previous section, the model in Nooralahzadeh, Brun, and Roux, 2014 uses too
many features and it took a long time to train a model for our applicative con-
text. When we try to use the model to process any sentence, we should first
generate all features for every token in the sentence. The model Constant1
does not work as well as the model in Nooralahzadeh, Brun, and Roux, 2014
but took much less time for training. In the long term, Synthesio may think
about training regularly (for example every week) a new model on its own
data, so training time is important. That is why we chose the model Con-
stant1 as our final POS tagger, and we want to test it with some artificial
sentences and some tweets.

The first two phrases were made artificially to test the behavior of our POS
tagger in regard to some proper nouns. We can find this style to talk about
a product in tweets. They contain products names and are for objective to
give some commentary on these products. That could be a text talking about
a product in Synthesio to process. The third sentence is a real tweet which
contains some person names that have never been seen from any training

114 Chapter 4. Improve named entity recognition results by POS tagging

data. That is to test the POS tagger to recognize proper nouns that are absent
from training data. Because in reality, new words and new names appear
everyday. The POS tagger should be able to give them the correct POS tag
instead of a UNKNOWN tag. The fourth sentence is a real text in Synthesio,
chosen with a product name and a company name. Product names are not
evident to detect and sometimes they maybe a multi-word expression.

1 Yesterday I bought a new Renault. It was cool, better than my old Ford focus.
2 got an iPhone6 for my birthday, better than my old BlackBerry, wonderful!

3
A paper by Maggie Simpson and Edna Krabappel from New York was accepted
by two scientific journals http://vox.com/e/7103628?utm_campaign...

4 If I had one wish it would be to drive a bugatti V for a day!

TABLE 4.24: Examples to test POS tagger

Table 4.25 shows the results of our POS tagger (from model Constant1)
with the first sentence in 4.24.

token Yesterday I bought a new Renault . It was cool ,

True NN PRON VB DET ADJ NP P PRON VB ADJ P

Pred NP PRON VB DET ADJ NP P X X X P

token better than my old Ford focus .

True ADJ PREPCS PRON ADJ NNP NNP P

Pred ADJ PREPCS ADV ADJ NNP NNP P

TABLE 4.25: Prediction results with first sentence
"Yesterday I bought a new Renault. It was cool, better than my old Ford focus."

As we can see, there are errors in the first sentence. "Yesterday" is tagged
as proper noun but it is an adverb. That maybe due to its position in the
sentence and it begins with a uppercase letter. "It was cool" are all tagged as
"X", we believe that means unknown words. Maybe the phrase is too short
(only three words) and in the training corpus, maybe there does not exist this
sort of construction of phrases. "my" is tagged as adverb instead of pronoun.
That must due to the tag sequence "PREPCS+ADV+ADJ+NNP". That is not
impossible to have this sequence in the training corpus. This error is due to
ill-formed tweets in the training data.

Table 4.26 shows the results of the POS tagger prediction with a sentence
similar to the first sentence. We can see that the first word of this sentence
begins with a lowercase letter and the POS tagger did not found the correct
tag ("VB") by tagging with "X" (UNKNOWN). "iPhone6" is tagged as number
because there is a number "6" in the token. And then "my" is also tagged as

http://vox.com/e/7103628?utm_campaign...

4.7. Experiments of CRFs POS tagger and results 115

token got an iPhone6 for my birthday ,
True VB DT NN? PREPCS PRON NN P
Pred X DT CD PREPCS ADJ NN P
token better than my old BlackBerry , wonderful !
True ADJ PREPCS PRON ADJ NNP P ADJ P
Pred ADJ PREPCS ADV ADJ NN P ADJ P

TABLE 4.26: Prediction results with second sentence
"got an iPhone6 for my birthday, better than my old BlackBerry, wonderful!"

adverb instead of pronoun as in the first sentence. At last, "BlackBerry" is
tagged as common noun but not proper noun.

Table 4.27 shows the prediction result with the third sentence. We can see
that our POS tagger has problem with the boudaries of the proper noun "New
York" that it thought the three following tokens "was accepted by" were all
proper noun. At last, it tagged "..." as X (UNKNOWN) but not punctuation
because in the model Constant1, there is only a feature about if token contains
a dash ("-") but not if the token has punctuation characters.

token A paper by Maggie Simpson and Edna Krabappel

true DT NN PRCS NP NP CC NP NP

pred DT NN PRCS NP NP CC NP NP

token from New York was accepted by two scientific journals

true PRCS NP NP VB VB PRCS NUM ADJ NN

pred PRCS NP NP NP NP NP NUM ADJ NN

token urlhttp://vox.com/e/7103628?utm_campaign... ...

true URL P

pred URL X

TABLE 4.27: Prediction results with third sentence
"A paper by Maggie Simpson and Edna Krabappel from New York was accepted by

two scientific journals urlhttp://vox.com/e/7103628?utm_campaign... ..."

Table 4.28 shows our POS tagger’s prediction with the fourth sentence.
All tokens were correctly tagged except "bugatti", which begins by a lower-
case letter. Instead of proper noun, it is tagged as common noun.

token If I had one wish it would be
True PRCS PRON VB NUM NN PRON VB VB
Pred PRCS PRON VB NUM NN PRON VB VB
token to drive a bugatti V for a day !
True PRT VB DT NP NP PRCS DT NN P
Pred PRT VB DT NN NP PRCS DT NN P

TABLE 4.28: Prediction results with fourth sentence
"If I had one wish it would be to drive a bugatti for a day!"

116 Chapter 4. Improve named entity recognition results by POS tagging

4.7.4 Compare T-POS tagset and Synthesio tagset

In this section, we try to use our pattern in k-fold cross validation (with k=10)
on T-POS corpus to compare the original T-POS tagset (49 tags) and Synthesio
tagset (18 tags).

We also tested our idea of adding annotated Penn Treebank texts into
training data to improve the cross validation result. We did first a cross vali-
dation with only T-POS corpus (with two tagsets). Then we added gradually
the same quantity (1:1), four times plus (1:4) and nine times plus (1:9) of Penn
Treebank sequences, to see if the POS tagging results are better (always with
two tagsets).

As for optimization, we first let L2 = 0.00001 (default value in wapiti 14),
and we tested possible value of L1 ∈ {0.01, 0.03, 0.1, 0.3, 1, 1.1, 1.2, 1.3, 1.4,
1.5, 1.6,1.7, 1.8, 1.9, 2.0} and obtained the L1 value which gives the best result
(accuracy in average for k-fold). Then we use this L1 value and tested L2 ∈
{0.00001, 0.0001, 0.001, 0.01, 0.1, 0.5, 1} and obtained the best result.

Cross validation with only T-POS

tagset L1 L2 accuracy average
Ritter 0.1 1 87.21%

Universal 0.01 1 89.25%

TABLE 4.29: cross validation with corpus T-POS

From the results in table 4.29, we can see that Synthesio tagset has ob-
tained 3% more in accuracy average, that means, just like in (Gimpel et al.,
2011), tagset with less tags has better performance than tagset with more tags.

Although Synthesio tagset imports more possible sequences than before,
this results gave us chance to a better syntactic analyse for Twitter data.

Mixed model

In this section, we are trying to create three mixed models with different pro-
portions of data from Penn Treebank are added into the training data of the
T-POS cross validation part.

We propose here first to add the same numbers of sequences of Penn Tree-
bank into training data, then four times plus and nine times plus. These three
parts of Penn Treebank are disjoint. We stopped at nine because we think
more than nine times plus could not consider the part of T-POS corpus.

14https://wapiti.limsi.fr/

4.8. Experiments using POS tagger results for NER 117

The mixed training data is created like followed: for each iteration of cross
validation, the part of Penn Treebank added into training data remains the
same, only the fold of T-POS corpus change, to get one results of the cross
validation.

The evaluation of models are calculated by average of 10 folds. The re-
sults are showed in the table 4.30.

We optimized L1 and L2 with the same procedure of the previous section.

Tagset Proportion L1 L2 Average of accuracy
Ritter 1:1 1.5 0.0001 85.40%
Ritter 4:1 1.8 0.001 86.72%
Ritter 9:1 1.9 0.0001 87.18%

Synthesio 1:1 1.0 0.01 89.11%
Synthesio 4:1 1.0 0.5 89.27%
Synthesio 9:1 1.6 0.01 88.95%

TABLE 4.30: Results of mixed models with different tagsets

This result shows that with the T-POS tagset, adding sequences from the
Peen Treebank is not really helping for a better average of accuracy than with-
out in cross validation (we had obtained 87.21% as accuracy).

That is because these two corpora are not so similar: the sequences in
Penn Treebank added unknown tokens and new tags sequences. These data
can not help to better predict Twitter sequences in T-POS corpus.

It seems that the results are lightly better with Synthesio tagset, which the
average of accuracy shows a light improvement.

We also noticed that with Synthesio tagset, more sequences added from
Penn Treebank (mixed with T-POS) can improve the POS tagger’s perfor-
mance.

4.8 Experiments using POS tagger results for NER

In this section, we use the prediction of our POS tagger as features for our
CRFs model and this feature takes two words before and two words after
plus current word as context window. This POS tagger is trained by both
PTB dataset and T-POS dataset with the proportion of 4:1.

Table 4.31 shows the results of each named entity type. Old scores without
POS tagger are presented before flash to be compare with. Score in green are
better.

Even though precision of company reaches 1.0 and the recall of person
type increased from 0.29 to 0.41, we can see that almost all company names in

118 Chapter 4. Improve named entity recognition results by POS tagging

Precision Recall F-Measure
Company 0.125/1.0 0.03/0.03 0.05/0.05

Person 0.36/0.35 0.29/0.41 0.32/0.38
Other 0.5/0.5 1.0/1.0 0.67/0.67

Product 0.5/0.5 0.05/0.03 0.10/0.05
Media 0/0.5 0/0.07 0/0.12

Geo-Location 0/0 0/0 0/0
Job title 0/0 0/0 0/0

Micro-Average 0.28/0.34 0.09/0.1 0.11/0.13

TABLE 4.31: NER results using POS tagger as feature

different domains are missing, both geo-location and job title named entities
are also missing.

We believe that the reason of this is that the user-generated content con-
tains a lot of out-of-vocabulary words, non-standard words and syntactic
structures that are different from well-formed text as showed in section 4.3.
(Ritter et al., 2011) also showed that traditional natural language processing
(NER) tools like POS tagger and Named Entity Recognizer performed must
worse than on well-formed texts.

In future chapters, we want to transform user-generated content into al-
most well-formed text, that means normalize some lexical words by replac-
ing them with correct forms.

119

Chapter 5

Lexical normalization of tweets
with neural networks

In our days, we find more and more user generated content (UGC) through
the Internet, including forums, tweets, products reviews, etc. Due to user’s
habit (intentionally) or because of the limited number of characters allowed
by the medium of communication, especially Twitter autorised only 144 char-
acters in one tweet, these texts contain specialities compared to journalis-
tic standard text (canonical text): they contain new words (like "Brexit"),
spelling errors (like "im" for "I’m"), abbreviations (like "u" for "you", "b/c"
for "because") and out-of-vocabulary words (like "mooooo" for "more"). This
writing behaviour poses problems for existing natural language processing
(NLP) such as tokenisation, part-of-speech (POS) tagging, chunking, pars-
ing and in our case, Named Entity Recognition (NER). The tools performing
these tasks face a degradation of their performance.

In order to improve the results, we want to add a pre-treatment that will
replace the parts of non-canonical text. This step is called lexical normaliza-
tion, and the words to be corrected are called Non-Standard Words (NSW).

Contents
4.1 First NER experiments . 83

4.1.1 Existing Named Entity Recognizers 83

4.1.2 Existing CRFs Named Entity Recognizer features and

patterns . 86

4.1.3 Annotated dataset for UGC in English 90

4.1.4 First NER results with CRFs on corpus from Ritter

et al., 2011 . 91

4.1.5 CRFs NER models on Synthesio annotated data . . . 93

4.1.6 Iterative training . 94

4.1.7 Domain adaptation with reduced features 96

120 Chapter 5. Lexical normalization of tweets with neural networks

4.2 Aim and necessity to develop a POS tagger 97

4.3 Difficulties of developing a POS tagger for UGC 98

4.4 Annotated part-of-speech datasets 101

4.5 Synthesio tagset definition 102

4.6 Feature space for a POS tagger 104

4.6.1 Features related to character type 105

4.6.2 Features about uppercase/lowercase letters 105

4.6.3 Features about token value 106

4.6.4 Features using regular expression 107

4.6.5 Features using extern ressources 107

4.7 Experiments of CRFs POS tagger and results 109

4.7.1 Experiments uni-corpus 109

4.7.2 Experiments with multi-corpus 112

4.7.3 Results with artificial examples 113

4.7.4 Compare T-POS tagset and Synthesio tagset 116

4.8 Experiments using POS tagger results for NER 117

5.1 Annotated datasets for the lexical normaliza-

tion of tweets

5.1.1 Dataset from (Li and Liu, 2014)

(Li and Liu, 2014) collected a dataset of 2,577 Twitter messages (from the
Edinburgh Twitter corpus in (Petrović, Osborne, and Lavrenko, 2010)) and
this dataset is used in (Pennell and Liu, 2011).

5.1.2 Dataset from workshop ACL2015

The workshop of ACL2015 proposed a task based on noisy user-generated
text (WNUT) to normalize noisy text (tweets) (Baldwin et al., 2015).

The organisers provided a dataset of 3k tweets with about 48k tokens.
For annotators’ convenience, all corrections for Non-Standard Words are

in lowercase, so even all standard words’ corrections are all in lowercase.
From the table 5.1 we can see that even for a dataset built especially for

the detection of Non-Standard Words (NSW), the number of NSW is only

5.2. Use SVM for NSW and SW classification 121

class number of tokens percentage comment
OOV-SW 22247 46% named entities, punctuation, numbers
IV-SW 22138 45.8%
OOV-NSW 3557 8%
IV-NSW 386 0.8%

TABLE 5.1: Numbers of tokens in each class

about 8.8% of all tokens. We can also see that half of standard words are out-
of-vocabulary tokens. That means it would be difficult to classify tokens into
the four classes.

(Li and Liu, 2015) proposed some features to this task of classification.

• number of vowel/consonant characters

• maximum consecutive vowel/consonant characters

• if the token contains consecutive three times the same character

We used these features to classify all tokens in this dataset with a 10-folds
cross validation and we obtained an accuracy about 60%.

5.1.3 Typology Analysis of labeled corpora

(Tarrade et al., 2017) proposed a typology of NSW in French including a mor-
pholexical analysis and a morphosyntactic analysis. Their work was based
on tweets and SMS in French but it is also useful for English. Here we used
their classes that concerned English language phenomenon. According to
their definition of NSW substitution table in figure 5.1, we can get for En-
glish classes in table 5.2.

5.2 Use SVM for NSW and SW classification

Based on table 2.11 concerning methods of text normalization, we want to
first try to classify NSW and SW words with SVM. As defined before, NSW
words are Non-Standard Words that we can correct with another form. But
SW words case is more complicated. First, there are protected categories
like url, at mention and hashtags. These words do not exist in any vocabu-
lary (OOV) but we cannot correct them. So they are considered as standard
words. Secondly, punctuations and numbers are not always standard words.
Sometimes the symbol "@" replaces the word "at", "+" replaces "plus" and "&"
replaces "and". As for numbers, "4" could be another way to write "for" in

122 Chapter 5. Lexical normalization of tweets with neural networks

FIGURE 5.1: NSW substitution

complet graphe
for one word

phonological correspondance

letter y->why
initial b->be, w->with

number 4->for, 2->to
symbol +->plus

phonological approximation da->the

partial graphe
for one word

phonological correspondance

letter ur->your
number 2morrow->tomorrow

written
form

cuz->because
double consonnant
mute letter removed wat->what
mute letter added

phonological approximation ya->you

typography letter case anne->Anne
elision dont->don’t

rebus special character @ (for ears)
emoji

crushing
contraction gonna->going to
other

TABLE 5.2: NSW substitution in English

some tweets. Third, that is also which interested us, named entities. They
may not exist in the vocabulary (OOV) but they are already in their standard
form so we cannot correct them. At last, there are noises like "jkkk". In the
tweet "One of my favourite songs, Asu wa kuru kara", the second part of the
tweet is the rewrite part of another language (Coreen). It is a named entity
(an album name) but considered as noise for the English corpus. But we will
classify these tokens as standard words, because we cannot correct them.

5.2. Use SVM for NSW and SW classification 123

For these two corpus: Li and Liu, 2015 and Baldwin et al., 2015 , we re-
moved duplicated tweets. Sometimes, only the same tweet repeats with the
same annotation and sometimes, they have different annotation. In this case,
we choose a correct annotation according to their context and kept only one.
Then we also removed tweets who have only correct tokens since we want
to maximize the NSW percentage in the text. Finally we obtained the two
datasets as showed in table 5.3.

reference number of tweets number of tokens number of NSW
Li and Liu, 2015 2303 36414 4051 (about 11%)
Baldwin et al., 2015 1955 7832 1157 (about 15%)

TABLE 5.3: Two datasets for text normalization and statistics

For SVM classifier, we chose features independent of word’s context and
we considered here only features of one token by character.

• nbVowel, nbConsonant, maxiNbVowel, maxiNbConsonant, has3SameLetter,
len, inAspell, inSynthesioVocab,

• nbLetter, nbNumb, nbPunct ,

• allLetter, singleLetter, hasNumber, allNumber, isDecimal, onePunct, allPunct,
hasPunct, longPunct,

• isAt, endWithIn, endWithNt, endWithVe,

• isUSR, isRT, isURL,isHashTag

We want to eliminate influence of doubled tweets for tokens, so we re-
moved ambiguous tokens in doubled tweets that we kept only the correct
form. But with different contexts, there always exists tokens that in some
cases are NSW and SW in other cases. We have three sort of strategy for this
problem. First, we count the most frequent case. For one token, if the oc-
currence number of NSW is more than SW word, we tag it as NSW, or SW
otherwise. In case where the numbers are equal, we count the token as NSW.
That is our choice because NSW is often rare in corpus and we want to keep
this NSW case. The second one is also in the idea of keeping rare NSW cases,
that is to keep a token as a NSW as soon as it is once NSW in the corpus.
That means, once the token tagged as NSW, it is considered as NSW in all
context. The third possibility is to consider the token as SW as soon as it is
once tagged as SW. This strategy privileged the SW and we do not think it
help to detect NSW, so we did not test this case.

124 Chapter 5. Lexical normalization of tweets with neural networks

The training process is defined like this: we did first cross validation with
5 folds using the two datasets. For each experiment, we tested all occurrence
and the most frequent case. To generalize our model, we tried to train the
model with one dataset and test with the other dataset.

Table 5.4 showed the results of 5-folds cross validation with the two datasets.
We tested the 5 classes of features (F1 to 5) and we showed in this table the
best result with each model and each dataset. VS is the feature of vocabu-
lary of Synthesio, that is the vocabulary generated in the previous section.
This feature depends on if the token is present in the Synthesio vocabulary
or not. The column "Model" showed the strategy of considering all token
occurrence "all Occ" and that of most frequent class "Freq". The last three
columns showed recall, precision and F1-measure of the NSW class.

Model Corpus Features Accuracy Recall Precision F1
all Occ 2577 tweets F12-VS 0.9206 0.6652 0.5791 0.6188
MFreq 2577 tweets F12345 0.7743 0.6174 0.8078 0.6994
all Occ WNUT F1 0.913 0.7153 0.6459 0.6787
MFreq WNUT F125-VS 0.8583 0.6189 0.1117 0.1881

TABLE 5.4: Results of cross validation in 5 folds

Table 5.5 showed the results of training a model with one dataset and test
with the other.

Train Test Features Accuracy Recall Precision F1
2577 WNUT F1245-VS 0.8841 0.5927 0.5949 0.5938

WNUT 2577 F1245-VS 0.9079 0.6472 0.3782 0.4774

TABLE 5.5: Train a model with one dataset and test with the
other

5.3 Experiments of SW and NSW classification with

neural networks

Based on the results of SW and NSW classification with SVM, we try to use
neural network models to classify tokens in datasets. We first proposed a
context-free model considering only the current token, then we proposed
several convolutional models using the 5-grams (including the current word),
with or without character embedding of the current word and a simple LSTM
model with different argument configurations.

5.3. Experiments of SW and NSW classification with neural networks 125

5.3.1 Context-free experiment

In this section we did some experiments with only the token without con-
sidering their context. So there is the same problem than the previous SVM
model.

We used the dataset from (Li and Liu, 2015) with 2303 valid tweets. This
dataset contains 36414 tokens including punctuations where 4051 are NSW
(about 11%). The critic of a NSW is only that its correction is the same of its
original form. We divided the dataset into two equal parts and used one part
to train and the other part to test.

The evaluation measures contain accuracy (global evaluation) and preci-
sion, recall and f1-measure for NSW class.

The input of our neural network is one token completed by the maximum
length with blanks. Each character is first changed into lowercase and then
represented by its ascii code (input of neural networks should be a numeral
vector).

There are two output possibilities for our neural network. One of them is
two probabilities of the two classes (NSW or SW) and then we took the class
with higher probability. The other one is only one dimension (between 1 and
0) with sigmoid activation function.

Our neural network contains:

• Embedding layer: characters representations vector

• Convolution layer: with different filter length

• Merge several convolution layers with different filter length

• GlobalMaxPooling layer: reduced output dimension of convolution layer

• Full-connected layer with "reLU" activation function

• Dropout layer: removed randomly some data to prevent overlapping

• Output layer: 2 dimensions with softmax function

Table 5.6 showed the results of uni-layer convolution experiments.
Table 5.7 showed results of experiments with merged multi convolution

layers.

126 Chapter 5. Lexical normalization of tweets with neural networks

Model Accuracy Recall Precision F1
Convolution(5,relu)+GlobalMaxPooling1D 0.9243 0.7077 0.5719 0.6281

Convolution(5)+lambda 0.6063
Convolution(5)+maxpooling+flatten 0.9248 0.7396 0.515 0.6044
Convolution(5)+GlobalMaxPooling 0.9227 0.7378 0.5068 0.5916

Convolution(3,relu)+GlobalMaxPooling 0.9236 0.758 0.4727 0.5806

TABLE 5.6: Results of experiments with uni convolution layer

Model Accuracy Recall Precision F1
10 convolution couches merged (1-10) 0.9298 0.7387 0.5824 0.6503

5 convolution couches merged 0.9248 0.7235 0.5477 0.619
10 convolution ’relu’ couches merged (1-10) 0.9259 0.7581 0.5101 0.602

2 convolution ’relu’ couches merged (2,3) 0.923 0.7315 0.5032 0.5928
2 convolution couches merged (2,3) 0.9215 0.7149 0.5108 0.5927

3 convolution ’relu’ couches merged (1,2,3) 0.9241 0.7633 0.4752 0.5828

TABLE 5.7: Results of experiments with multi convolution lay-
ers

5.3.2 5-grams experiments

As talked before, the context-free method cannot resolve the ambiguous prob-
lem and here we try to consider each word with its context, that is two words
before and two words right after the current word.

As a detail, we used numbers which represent no character to mark the
beginning of a sentence, position -2 and -1 if we begin a sentence with posi-
tion 0. Similarly, we have two special positions in the end of a sentence, for
position of the sentence length and sentence length plus 1.

From the dataset (Li and Liu, 2015), we extracted 36004 different 5-grams
in total. This dataset has 36414 tokens (all occurrence included). The rest of
the occurrence of 5-grams have the same label for the current word in the
same 5-gram. That means, there is no ambiguous NSW/SW word since we
consider the context.

In these 5-grams, there are 4044 NSW 5-grams (the current word of 5-
gram is a NSW), where 2782 NSW 5-grams have only SW in context (two
words before and two words after), 1262 NSW 5-grams have one or more
NSW in their context. There are 31960 SW 5-grams (the current word of 5-
gram is a SW) where 20542 alphabetic SW 5-grams (since punctuations are
considered as SW) have only SW in their context.

5.3. Experiments of SW and NSW classification with neural networks 127

First experiment

We selected randomly 20% of this dataset to be test data, to follow the same
distribution as 10% NSW and 90% SW. Then the training data contains the
reste 3235 NSW 5-grams and we picked up randomly the same quantity of
SW 5-grams.

The network structure we chose is one of the model from the previous
section. The embedding layer contains the concatenation of 5 words with
each word a maximum number of characters to keep the same dimension
of the input layer. Then the convolution layer merged filters of 1, 2 and 3.
After that, the global max pooling layer reduced the dimension before a full-
connect layer. Just before the output, a dropout removed some samples to
prevent over-training and at last we used categorical cross entropy as loss
function and softmax as activate function.

As the result, we got about a weak precision of 15% and a recall as 90%.

Experiment by class

Here we want to see which class is better classified, and if it is the NSW
context that leads errors in NSW’s label.

We divided all 5-grams into three classes:

• class1: 2782 NSW 5-grams have only SW in context

• class2: 1262 NSW 5-grams have one or more NSW in context

• class3: 20542 alphabet SW 5-grams have only SW in context

For class 1, we are sure that the model is trained with correct context.
The context of class 2 contains at least one NSW so training with this context
could be some wrong context. The class 3 has only SW 5-grams with only
SW context.

We try to train a model with only correct context, that is context with only
SW words. That is class1 for NSW and half of class 3 (the other half for test).
We want to test this model on class2, NSW with NSW context and the other
half of class3 for SW.

As for neural network structure, we used the character embedding for the
current word then word embedding (word2vec representations from (Mikolov
et al., 2013)) for context. Table 5.8 shows details of this neural network struc-
ture.

128 Chapter 5. Lexical normalization of tweets with neural networks

EmbedW−2 EmbedW−1 EmbedW0 EmbedW1 EmbedW2 CharEmbedW0

Convolution Convolution Convolution Convolution Convolution Convolution
MaxPool MaxPool MaxPool MaxPool MaxPool MaxPool

Hidden layer Dense(128, relu)
Dropout(0.5)

Output layer Dense(2, softmax), loss= categorical crossentropy

TABLE 5.8: Neural Network structure of character and word
embedding model

Table 5.9 shows the results with different classes. We can see that the
global results is better than previous section and the best result is with the all
SW class.

test set accuracy precision recall f1-measure
total 77.444% 77.812% 77.628%
moreThan1NSW 77.81% 1.0 77.81% 87.52%
allSW 97% 1.0 97% 98.58%

TABLE 5.9: NSW and SW classification results by class

This neural network performs better than the one of previous section.

5 words embedding and characters model with sigmoid as output

In this section, we try to use the same convolutional model structure and
change only output layer. We tested 2 output for two classes with softmax
function and only one output with sigmoid function.

Emb(W−2) Emb(W−1) Emb(W0) Emb(W1) Emb(W2) CharEmbW_0
Convolution1D
MaxPooling

Flatten ()
Dropout(0.2)

Hidden Layer Dense (dimension = 128, activation = relu)
Dropout(0.5)

Output Layer Dense (2, softmax),
loss = categorical_crossentropy

Output Layer Dense (1, sigmoid),
loss = binary_crossentropy

TABLE 5.10: 5 words embedding and characters Convolutional
model structure

We did three times the same experiment and we calculated the average of
the three times.

times precision recall f1
1 0.7023 0.5745 0.6097
2 0.6455 0.6537 0.6284
3 0.5838 0.7658 0.6561

average 0.6439 0.6647 0.6314

TABLE 5.11: 5 words embedding and characters convolutional
model with softmax functon

5.3. Experiments of SW and NSW classification with neural networks 129

times precision recall f1
1 0.6982 0.593 0.6377
2 0.6666 0.6429 0.6376
3 0.6568 0.6463 0.6416

average 0.6739 0.6274 0.6390

TABLE 5.12: 5 words embedding and characters convolutional
model with sigmoid functon

Optimisation of configurations

Now we try to optimize configurations of this model with 5-folds cross vali-
dation and then compare it with the model of previous section (only charac-
ter embeddings for 5-grams).

Since Initialization of parameters are random, we did three times the
same experiment to get a reliable result.

In the table 5.13, the first three lines showed the result of basic model.
Then instead of completing to maximum of characters by adding blanks in
the right of the word, we add blanks on the left of the word (the character
order remains the same). There are also three times of experiments. Then we
tried Xavier Initialization from (Glorot and Bengio, 2010) for the full-connect
layer just before the output. After that, we tried dropout = 0.2 (in the basic
model, this parameter is 0.5). All experiments are done with output of 2 di-
mensions and activation function softmax. For each experiment, the number
of iteration is fixed to 100 times and we chose at last the one with minimum
of loss function, that is categorical cross entropy.

precision recall f1
1 0.77 0.85 0.81
2 0.70 0.88 0.78
3 0.67 0.91 0.77
left1 0.68 0.86 0.76
left2 0.74 0.80 0.77
left3 0.68 0.88 0.77
Xavier 0.66 0.90 0.76
drop0.2 0.67 0.88 0.76
drop0.2 0.67 0.87 0.77
drop0.2 0.69 0.86 0.77

TABLE 5.13: Optimisation of character embedding and word
embedding model

130 Chapter 5. Lexical normalization of tweets with neural networks

wordEmb(W−2) wordEmbW(−1) wordEmb(W0) wordEmb(W1) wordEmb(W2)

Convolution Convolution Convolution Convolution Convolution
Max Pooling

Full-connected layer (128, relu)
Dropout(0.5)

Output layer Dense(2, softmax), loss= categorical crossentropy

TABLE 5.14: 5 words embeddings convolutional model struc-
ture

Other Neural network structures

In this section, we want to test a model without character representation of
current word. That means, we will use only word embedding of all 5 words
in 5-gram.

• charEmb init: Xavier,

• zeros on the right/ left

• dense relu init:
default/ Xavier

• dropout0.5 /0.2/
withoutdrop before output

• output dense 2 softmax

• nb epoch:100 (about 15s/epoch)

precision recall f1
1 0.65 0.49 0.56
2 0.53 0.66 0.59
3 0.43 0.76 0.55
left1 0.51 0.65 0.57
left2 0.56 0.57 0.56
left3 0.58 0.56 0.57
Xavier 0.0 0.0 0.0
drop0.2 0.58 0.59 0.58
drop0.2 0.55 0.62 0.58
drop0.2 0.57 0.60 0.59

TABLE 5.15: optimisation of 5 word embedding model

Another model that we will test is based on the previous model and to
change only the convolution layer into a LSTM layer.

Then we tried to test the LSTM model using 5-folds cross validation with
2577 tweets dataset. Since the LSTM model used much ressources (processor

5.3. Experiments of SW and NSW classification with neural networks 131

wordEmb(W−2) wordEmb(W−1) wordEmb(W0) wordEmb(W1) wordEmb(W2)
LSTM LSTM LSTM LSTM LSTM

Merged layer
Full-connected layer (128, relu)

Dropout(0.5)
Output layer Dense(2, softmax), loss= categorical crossentropy

TABLE 5.16: 5 words embeddings LSTM model structure

5wordsCharAndEmbConv 5wordEmbLSTM
charEmb=XavierInit
repr chars: zeros on right
relu init : default
dropOut(0.5) before output
output = 2, softmax

Precision: 0.54

Recall:0.59

F1:0.56

Precision: 0.61

Recall:0.73

F1:0.66
charEmb=initWithSeed
chars: zeros on right
relu init : default
dropOut(0.5) before output
output = 2, softmax

Precision: 0.44

Recall: 0.58

F1: 0.50

Precision: 0.56

Recall:0.70

F1:0.62
charEmb=default
chars: zeros on right
relu init : default
dropOut(0.5) before output
output = 2, softmax

Precision:0.54

Recall:0.64

F1:0.58

Precision: 0.54

Recall:0.64

F1:0.58

TABLE 5.17: Compare convolution and LSTM model

time and memory), we first tried with 10 iteration, even such 10 iteration (for
one fold) took 8580 seconds (2.4 hours).

precision recall f1
cv1 0.8162 0.5030 0.6225
cv2 0.7669 0.5162 0.6171
cv3 0.7903 0.4873 0.6029
cv4 0.7317 0.5264 0.6123
cv5 0.7524 0.4767 0.5836

average 0.7715 0.5019 0.6077

TABLE 5.18: LSTM model on 2577 tweets

Then we still did with 100 epochs one time and we noticed the results in
the table 5.19. This experiment took 87376 seconds (that is 24 hours).

Then we tried an option Early Stopping in Keras with 100 epochs, that
took 10892 seconds (3.03 hours). Table 5.20 showed the results of each cross
validation and the average scores. The result is not much better than 10 iter-
ation, so we did not continue with this model.

132 Chapter 5. Lexical normalization of tweets with neural networks

precision recall f1
cv1 0.7005 0.6894 0.6949
cv2 0.6903 0.6304 0.6590
cv3 0.7370 0.6212 0.6742
cv4 0.7019 0.6332 0.6658
cv5 0.7125 0.6409 0.6748

average 0.7084 0.643 0.6737

TABLE 5.19: LSTM experiments with 5-fold cross validation

precision recall f1
cv1 0.8030 0.5262 0.6358
cv2 0.7846 0.4630 0.5824
cv3 0.7385 0.5381 0.6226
cv4 0.7199 0.5161 0.6012
cv5 0.7480 0.4510 0.5627

average 0.7588 0.4989 0.6009

TABLE 5.20: Early Stopping with 100 epochs

5.3.3 Experiments with pre-trained word2vec models

From the previous section, we tested three models with variances and we
can see that the 5 words embedding and current word in characters with
convolutional model with two dimensions output and softmax function is
the best. In this section, we use only this model but try to improve the results
of NSW/SW classification.

First, in stead of random initialization for word embedding, we try to use
pre-trained models: one with Google’s word2vec model and another with a
word2vec model trained by Synthesio data. This time, our experiments are
using two corpus.

Then based on the obtained results, we tested different optimizers to im-
prove the results.

Word2vec models

Here we want to compare two word2vec modelsthe Google word2vec model
(Mikolov et al., 2013) and the Synthesio word2vec model. (Mikolov et al.,
2013) proposed a word2vec model trained with Google news. We call this
word2vec model as Google word2vec. This model is trained with over 3
million words included numbers but not punctuation. One word could be
all surface forms: all in lowercase, begin with uppercase, all in uppercase

5.3. Experiments of SW and NSW classification with neural networks 133

or a mix of uppercase/lowercase characters. For example, in this model,
"Nissan", "nissan" and "NISSAN" all exist with different vector values.

In Synthesio, as talked about in the previous chapter, we already nor-
malised some types of entities as date, time, currency, etc. We also nor-
malised tokens with uppercase/lowercase, we replaced the token with its
the most frequent form and we kept forms until 60% of the total number
of this token in all forms. For example, in the Synthesio word2vec model,
there exists only the token "Nissan", other forms as "nissan" or "NISSAN"
are all changed into this standard form. This Synthesio word2vec model is
trained by three different Synthesio domains: luxury (L), music (M) and au-
tomobile (A). The choice of the three domain was considered as different one
from another and they are economically interesting domains for Synthesio.
Automobile (A) is the domain where there is the most data. We trained in
total five word2vec model using Synthesio data including the same timeline
12h00-14h13 for all the three domains (T for all domains, L for luxury, M for
music and A for automobile) and 12h00-1259 for a smaller automobile data
(called a).

Table 5.21 showed the NSW/SW classification results on dataset (Li and
Liu, 2014) using this CNN model with different word2vec models. In the
dataset, the number of vocabulary is 8260. We showed the number of vocab-
ulary of each word2vec model. For each word2vec model, we also calculated
the number of intersections of words in the dataset and the word2vec model.

word2vec name # of v v in dataset prec NSW rec NSW F1 NSW
keras embedding – – 0.6881 0.6011 0.6301 (10)

google 3 000 000 5706 0.7922 0.7789 0.784 (20)
Synthesio M 515 886 6189 0.7444 0.8081 0.7735 (50)
Synthesio L 633 706 6226 0.7658 0.8167 0.7896 (100)
Synthesio a 788 260 6360 0.8324 0.6944 0.7548 (100)

Synthesio A 1 806 789 6743 0.8173 0.7525 0.7828 (20)
Synthesio T 2 086 985 6945 0.7741 0.8237 0.7962 (50)

TABLE 5.21: CNN model with dataset in (Li and Liu, 2014)

The number in the parenthesis is epoch number in training process (num-
ber of iteration). Since Keras kept random initialization for weights and some
configuration, even if we kept only the model with the minimum of loss func-
tion, we cannot get each time the same result. We executed numbers of epoch
of 10, 20, 50 and 100, and then we chose the best result with the number of
epoch in the parenthesis. We can also see that it is not always the most of
iteration works the best.

134 Chapter 5. Lexical normalization of tweets with neural networks

We can see that even if the Google word2vec model has a larger vocab-
ulary size (3 billion) than the Synthesio T word2vec model (about 2 billion),
the Synthesio T word2vec model gave better classification results (0.7962 of
NSW’s F1-measure). When we examine the number of words in the vo-
cabulary intersection, we can see that the Synthesio T word2vec model has
the largest intersection with the dataset. However, even though the Google
word2vec model has less words in the dataset, it has a better F1-measure for
NSW class (0.784 vs 0.7735).

Table 5.22 showed the NSW/SW classification results on dataset (Baldwin
et al., 2015) using this CNN model with different word2vec models. In this
dataset, the number of vocabulary is 11710. We want to see if we get similar
results than with dataset (Li and Liu, 2014).

word2vec name # of v v in WNUT prec NSW rec NSW F1 NSW
Keras embedding – – 0.63 0.7253 0.6618 (10)

Google 3 000 000 8963 0.8768 0.7349 0.7989 (50)
Synthesio M 515 886 9484 0.8335 0.7272 0.7765 (20)
Synthesio L 633 706 9777 0.876 0.723 0.79 (50)
Synthesio a 788 260 9497 0.9514 0.6478 0.7704 (20)

Synthesio A 1 806 789 10000 0.8565 0.7395 0.7924 (100)
Synthesio T 2 086 985 10470 0.9167 0.7413 0.8178 (100)

TABLE 5.22: CNN model with dataset (Baldwin et al., 2015)

We can see that it is still the model Synthesio T who has the most inter-
section vocabulary with the dataset (Baldwin et al., 2015) and this word2vec
model works the best.

Then we merged the two datasets and we did the same 5-fold cross val-
idations (randomly). The fusion of these two corpora has 17306 different
tokens. This mixed dataset has more variances in data and we want to see if
our model gives similar results.

word2vec name # of v v in corpora prec NSW rec NSW F1 NSW
Keras embedding – – 0.6655 0.6767 0.6654 (20)

Google 3 000 000 13324 0.7458 0.7445 0.7451 (50)
Synthesio M 515 886 13132 0.7108 0.6978 0.7014 (10)
Synthesio L 633 706 13467 0.7522 0.7677 0.7554 (20)
Synthesio a 788 260 13316 0.8128 0.6679 0.7313 (10)

Synthesio A 1 806 789 14194 0.7602 0.7388 0.7408 (10)
Synthesio T 2 086 985 14857 0.7265 0.8208 0.7696 (50)

TABLE 5.23: CNN model with 2 datasets

5.3. Experiments of SW and NSW classification with neural networks 135

Conclusion to word2vec model

Among these six word2vec models, Synthesio T got the best results in all
these three datasets: (Li and Liu, 2014) dataset, (Baldwin et al., 2015) dataset
and the mixed of these two datasets. This word2vec also has two third of
Google word2vec model’s vocabulary, smaller and faster to use. In addition,
with uppercase/lowercase normalization and quantity named entity normal-
ization, the Synthesio T word2vec model’s vectors are more representative
and we used this word2vec model for next experiments.

5.3.4 Experiment with optimizers

In this section, we tried to test different optimizers with the same neural net-
work model and the pre-trained Synthesio T word2vec model. Similarly, we
did experiments with datasets (Li and Liu, 2014), (Baldwin et al., 2015) and
the mixed of the two datasets.

Similarly, we tested with different epoch number, 10, 20, 50 and 100, with
each experiment, after all iterations we kept the model with the minimum of
loss function. Table 5.24 compared the results of two optimizers: rmsprop
and adagrad, using the dataset in (Li and Liu, 2014) with 5-fold cross valida-
tion.

optimizer name #epochs prec NSW rec NSW F1 NSW
rmsprop 10 0.7935 0.7429 0.7662

20 0.8203 0.7093 0.7587
50 0.7927 0.7544 0.7729

100 0.8075 0.7099 0.7543
adagrad 10 0.7938 0.7494 0.7707

20 0.8088 0.7348 0.7699
50 0.8185 0.7339 0.7737

100 0.8223 0.7301 0.7733

TABLE 5.24: Optimizers experiment using (Li and Liu, 2014)

We can see from the results that the model which gives the best f1 measure
of the NSW class is not the one with the most epoch number (100 epochs). For
both of the optimizers, experiments with 50 iterations was the best classifier
who got the best F1-measure for the NSW class.

Table 5.25 shows the same experiments with the dataset in (Baldwin et al.,
2015). We added another optimizer: adadelta.

136 Chapter 5. Lexical normalization of tweets with neural networks

optimizer name #epochs prec NSW rec NSW F1 NSW
rmsprop 10 0.8998 0.7303 0.8049

20 0.9014 0.7258 0.8031
50 0.8663 0.7497 0.8031

100 0.8557 0.7592 0.803
adadelta 10 0.888 0.7421 0.8071

20 0.8947 0.7553 0.8191
50 0.876 0.7684 0.8186

100 0.8781 0.7687 0.8196
adagrad 10 0.8976 0.7361 0.8087

20 0.9057 0.7488 0.8196
50 0.9032 0.7564 0.8232

100 0.9018 0.7584 0.8239

TABLE 5.25: Optimizers experiment using (Baldwin et al., 2015)

This time even 10 iterations experiment fund the best f1-measure score
for NSW class. But the other two optimizers are helping to find better model
with 100 times iterations.

We can also see from the comparison of the two datasets that with both
datasets, optimizer adagrad helped to find the best model.

Then we tried the same experiment with 5-fold cross validation using the
mixed of the two datasets. Table 5.26 showed the results with two optimizers:
rmsprop and adagrad.

optimizer name #epochs prec NSW rec NSW F1 NSW
rmsprop 10 0.9734 0.7676 0.858

20 0.9375 0.8531 0.8928
50 0.8954 0.8888 0.8909

100 0.9268 0.9037 0.9149
adagrad 10 0.9627 0.8458 0.9004

20 0.9771 0.8899 0.9315
50 0.9831 0.9294 0.9555

100 0.9824 0.9413 0.9614

TABLE 5.26: Optimizers experiment on mixed dataset

With the mixed dataset, we have got the best score ever in 5-fold cross
validation. We obtained 0.9614 of f1-measure for NSW class, it is comparable
of 98% in the workshop although we mixed two datasets. We kept the same
conclusion that the best optimizer is adagrad and most of the best number of
iterations is 100.

5.3. Experiments of SW and NSW classification with neural networks 137

Experiment with WNUT test

WNUT test is some data with similar ressources, it is just a part disjoint of
the corpus WNUT2015 to be used in the test. This data contains 1967 tweets
with 2776 Non-Standard Words and 26645 standard words. It is about 2/3
size of WNUT training data.

We first tested with model trained with WNUT training data, which is the
standard procedure of the workshop. We varied the word embedding model,
Google word2vec and the word2vec model trained by 3 domains of Synthe-
sio data. Optimizers that we tested are rmsprop, adadelta, adagrad and sgd.
We then tested the same model trained with WNUT training data and the
2577 tweets data. The idea is to add more data in the training phase to see if
the model works better. Table 5.27 showed the results of this experiment.

training word2vec optimizer name prec NSW rec NSW F1 NSW
wnut Google rmsprop 0.8084 0.9079 0.8553

adadelta 0.8480 0.9024 0.8744
adagrad 0.8881 0.8930 0.8906
sgd 0.8908 0.9024 0.8966

synthesio3 rmsprop 0.8044 0.9024 0.8506
adadelta 0.8776 0.8888 0.8832
adagrad 0.9491 0.8728 0.9094
sgd 0.9508 0.8783 0.9131

both google rmsprop 0.7748 0.9253 0.8434
adadelta 0.8442 0.9026 0.8724
adagrad 0.9004 0.8905 0.8954
sgd 0.9001 0.9015 0.9008

synthesio3 rmsprop 0.8251 0.8966 0.8594
adadelta 0.9122 0.8883 0.9001
adagrad 0.9595 0.8683 0.9116
sgd 0.9509 0.8775 0.9127

TABLE 5.27: Experiment with WNUT test, model trained with
WNUT training

We can see from the results that using the Synthesio word2vec model is al-
most always better than Google word2vec model (except training with wnut
experiment using rmsprop). For each experiment serie, using only wnut or
using the two corpora, using Google or Synthesio word2vec model, the opti-
mizer "sgd" gave always the best F1-measure result of NSW class.

Similarly, we tested in each optimizer, learning rate (lr) and learning de-
cay. Here we used the two datasets to train our model, to see the best clas-
sification results that we could have. For each optimizer, we tested the de-
fault value (in Keras) and then tested the value of decay = 0.01*lr or decay =

138 Chapter 5. Lexical normalization of tweets with neural networks

0.001*lr and kept the best results. The results are showed in the table 5.28.

word2vec optimizer name prec NSW rec NSW F1 NSW
google rmsprop lr=0.001, decay=0.0 0.7748 0.9189 0.8407

rmsprop lr=0.001, decay=0.00001 0.7791 0.7774 0.7782
adadelta lr = 1.0, decay = 0.0 0.8388 0.9143 0.8749
adadelta lr=1.0, decay=0.01 0.8821 0.5227 0.6564
adagrad lr=0.01, decay=0.0 0.8871 0.893 0.8901
adagrad lr=0.01, decay=0.0001 0.8774 0.7374 0.8013
sgd lr=1.0, decay=0.0 0.8295 0.8357 0.8326
sgd lr=0.1, decay=0.001 0.9465 0.7262 0.8219

synthesio3 rmsprop lr=0.001, decay=0.0 0.8028 0.9072 0.8518
rmsprop lr=0.001, decay=0.00001 0.6513 0.79323 0.7153
adadelta lr = 1.0, decay = 0.0 0.915 0.8779 0.8961
adadelta lr=1.0, decay=0.01 0.9007 0.5915 0.7141
adagrad lr=0.01, decay=0.0 0.9449 0.8675 0.9046
adagrad lr=0.01, decay=0.0001 0.9348 0.7233 0.8156
sgd lr=1.0, decay=0.0 0.9509 0.8775 0.9127
sgd lr=0.1, decay=0.001 0.9413 0.7388 0.8279

TABLE 5.28: Experiment with WNUT test, model trained with
WNUT and 2577tweets

We can see that among all models, the optimizer sgd got the best F1-
measure score and the optimizer rmsprop got the best recall score. We fund
similar conclusion that the Synthesio word2vec model works better than
Google word2vec model.

5.4 Word corrector

There are two types of corrector: first, we can only consider NSW to correct.
That means we did first the classification of NSW and SW, then the corrector
will only propose correct forms for NSW. Another corrector will consider all
tokens in dataset. As discussed before, punctuations and numbers are also
considered as SW. So this corrector will propose candidates for any NSW
and SW token, but the token form as in the original text is also one of the
candidate that this corrector propose and then we will try to sort the list of
candidate and obtain the most probable candidate of correction.

First we want to represent tokens in the dataset. For example, we have a
sentence as showed in figure 5.2. In this sentence, the NSW is "txtd" and its
correct form is "texted", the user ignored the two vowel characters ’e’.

If we already know that "txtd" is a NSW and we try to find its correct form
"texted", we want first represent the token "txtd" by character and with some
transforms, we want to get the representation of its correct form "texted". We

5.4. Word corrector 139

I txtd you last night.

FIGURE 5.2: An example of sentence with NSW

define that the possible longest word has seven characters, the input token
is showed in table 5.29. The token is completed until seven characters by
adding blanks on the right of the token.

t x t d

TABLE 5.29: Token "txtd" in characters

52 56 52 36 0 0 0

TABLE 5.30: Token "txtd" representation as vector

The correct form that we want to get is "texted" as showed in table 5.31.
It can be represented by a vector as in table 5.32, that would be the output
of our neural network model. To output these results, in fact, the neural
network will compute for each number position, the most probable number
in the possible character set (among 70 possibilities including punctuations
and numbers).

t e x t e d

TABLE 5.31: Correction "texted" in character

52 37 56 52 37 36 0

TABLE 5.32: Correction "texted" vector

To better represent characters, we chose the convolution model and its
structure is showed in the table 5.33.

character embedding
convolution filter_length=3

Dropout(0.5)
TimeDistributed(Dense(128)), activation=’relu’

Dropout(0.5)
TimeDistributed(Dense(70)), activation=’softmax’

loss = ’categorical_crossentropy’, optimizer = ’adagrad’

TABLE 5.33: CNN structure for corrector

We did 10-folds cross validation with all tokens in 2577 tweets dataset and
we got the results in the table 5.34.

140 Chapter 5. Lexical normalization of tweets with neural networks

Epochs accuracy
10 0.6377
20 0.6507
50 0.6553

100 0.6183

TABLE 5.34: First results of Corrector using CNN model

5.4.1 Context-free corrector

First we consider of a context-free corrector. This corrector will just study
the form of the token and try to propose a correction without its context.
The problem of this corrector is always ambiguous tokens. Sometimes the
ambiguity comes from the token, sometimes because of the annotation error
as showed in table 5.35.

form correction sentence
2 to thanx 2 u I will b gettin better
2 too u got 2 much going 4 u
qonna gonna 2nites qonna be qreat
qonna qonna im qonna chanqe my identity

TABLE 5.35: Ambiguous token examples

In the last line, qonna is not corrected so it is considered as a SW.
The context-free method ignored the context of one token and if we train

a model to correct NSW, we want our model to learn non-ambiguous words,
so we kept only the correction the most frequent. For example, in the dataset,
we have tokens, their corrections and the number of occurrence of the (token,
correction) pair, as showed in the left of the table 5.36. That means, for the
token "2", there are 92 times that "2" is corrected to "to" and 10 times "2" is
corrected to "too". As for "qonna", it should be corrected as "gonna" (here we
kept this oral expression instead of correcting to "going to"), but this happens
only one time, the other five times, this token kept its form "qonna".

When we keep only the correction (or its original form) the most frequent,
it remains as the middle of the table 5.36, the token and its correction (for the
SW the correction is itself). The right column showed pairs of token and its
correction, that is our training data.

Similarly, if we consider only NSW, and keep the correction the most fre-
quent, in the final training data, we will have "u" rewriting as "you", "2"
rewriting as "to" and "qonna" rewriting as "gonna".

The table 5.37 showed the neural network structure for training NSW.

5.4. Word corrector 141

u you 203 u you 203 u you
2 to 92 2 to 92 2 to
2 too 10
qonna qonna 5 qonna qonna 5 qonna qonna
qonna gonna 1
ur your 21 ur your 21 ur your
ur your’re 4
...

TABLE 5.36: Word list: corrector for all tokens

Character embedding layer (input: 45) output dim: 50, Xavier init
Convolution layer

Batch Normalization layer
Dropout(0.5)

Hidden Layer Dense (dim = 256, activation = relu, Xavier init)
Dropout(0.5)

Hidden Layer Dense (dim = 128, activation = relu, Xavier init)
Output layer (dim = 30, activation = softmax), categorical_crossentropy

TABLE 5.37: CNN structure for training NSW

The input has 45 possible characters (including punctuations and num-
bers) for each position, but for output we have only 30 possible characters
(26 alphabetic characters plus ’, -, _ and blank).

The evaluation is calculated by correct proposition divided by total num-
ber of tokens.

We executed a 5-folds cross validation with dataset in (Li and Liu, 2014).
First we trained a model with all tokens (SW included) and we got an accu-
racy as 65% with all tokens and only 12% for NSW tokens.

Since the output is the most probable character for each position, some-
times we cannot get the correct form immediately. If we want to correct a
NSW with a in-vocabulary (IV) word, we should find a way to match the
proposition correction to a vocabulary set.

Then we trained another model with only NSW and tested on NSW and
we got 25% as accuracy and this score reaches to 54% with a post-treatment
even though sometimes the post-treatment can bring other errors.

Here we first used edit distance to find the most similar IV word in all the
SW words in training data. Table 5.38 showed some succeeded examples.

We can see that the CNN model succeeded to find that there should be a
"g" at the end of the token "shoppin" but the model was not sure about the
position of the second "p", instead it predicted a blank. The second example
showed that the CNN model has difficulties to add some character but it can

142 Chapter 5. Lexical normalization of tweets with neural networks

token prediction dict map true
shoppin shop ing shopping shopping
2gether toether together together

l8ter l ter later later

TABLE 5.38: Succeeded examples using edit distance

be corrected by matching to vocabulary as post-treatment. Similarly with the
third example, the CNN model knows that the "8" should not be there (we
gave only characters as possible character for output), but with edit distance
matching with vocabulary, we can get its correction "later".

Table 5.39 showed failed examples with this post-treatment. The first line
of the results is about predictions errors not correcting by post-treatment. We
can see that even the token "holla" is in the vocabulary, it is not the correct
form that we try to find. As for the prediction "moo", the word "too" in the
vocabulary is more similar to the prediction that the correct form "more" be-
cause "moo" and "more" have distance as 2 and only 1 between "moo" and
"too". The seconde line showed that the sometimes the prediction is correct
but it is corrected by another word in the vocabulary. This is due to vo-
cabulary, if we had a larger vocabulary than only SW in training data, this
examples could be corrected. But the last token "hourse", that is difficult to
predict the correction without the context because both "house" and "horse"
are in vocabulary.

token prediction dict map true
wrong prediction brekkers brekkers preggers breakfast

holla holla holla holler
mooooooo moo too more

correct prediction lamberts lambert’s robert’s lambert’s
typin typing taking typing

hourse hou se house horse

TABLE 5.39: Failed examples using edit distance

5.4.2 Corrector with context

In this section, we want to add context to the current token, that is two words
before and two words after. The context is represented by word embedding
as in previous section for NSW/SW classification. The table 5.40 showed the
size of each vocabulary.

Figure 5.3 showed the convolutional neural network for this experiment.

5.4. Word corrector 143

data name # vocab
training words 11,712

Google word2vec model 3,000,000
Synthesio word2vec model 2,086,985

Aspell 100,904
intersection(synthesio word2vec, Aspell) 76,318

TABLE 5.40: Vocabulary sizes

FIGURE 5.3: CNN structure for corrector with context

First we trained a model with all SW and NSW and then tested with all
SW and NSW. The results are showed in the table 5.41.

data word2vec # vocab 1 epoch accuracy
training words Google 11712 180s 0.644
training words Synthesio 11712 180s 0.7342

intersection of synthesio and Aspell Synthesio 76318 890s 0.7235

TABLE 5.41: Corrector with context results on all words

Table 5.42 showed times needed for different vocabulary.

data # vocab 1 epoch 100 epochs
training words 11712 180s 5h

intersection of synthesio and Aspell 76318 890s 26h
all alphabet words from synthesio 1057676 12000s 2w

all words from synthesio 2000000 24000 s 4w

TABLE 5.42: Time needed for each vocabulary

Then we tried to only train on NSW words and evaluated with only NSW
words in test. That means, we supposed that all the NSW in test data are
already correctly classified. The results are showed in table 5.43.

144 Chapter 5. Lexical normalization of tweets with neural networks

data word2vec # vocab 1 epoch accuracy
training words Google 11712 13s 0.6310
training words Synthesio 11712 13s 0.7014

intersection of synthesio and Aspell Synthesio 76318 65s 0.5264

TABLE 5.43: Training and testing with only NSW

Then we tried to train a neural network model with an index of a in vo-
cabulary word. In the case of OOV as prediction, the output will be a special
index for OOV.

This time we followed Leeman-Munk, Lester, and Cox, 2015. We first
trained a neural network with character embedding as input and the index
of the word in the vocabulary as output. This training concerns all in vo-
cabulary words, so that depends on the vocabulary size. The objective is to
create a connection between characters sequence (spelling) and the index of
the word in the vocabulary. Then we saved the character embedding weights
in the trained model.

Instead of using random character embeddings by Keras, we used this
trained character embedding (we call it ch2vec) to represent each character.
We also tested the model with and without context.

• Input:

– character embeddings for current word

– with or without context word embedding

• output: word index from a vocabulary or a unknown label

• vocabulary: training data (as it or all in lowercase)

• training data: only NSW or NSW+SW

• test data: only NSW (evaluation by accuracy)

Figure 5.4 showed the character embedding convolutional Neural Net-
work structure, without context.

Figure 5.5 showed the character embedding convolutional neural net-
work with 5 grams context structure.

We tested different configuration of CNN model, these models are all us-
ing character embedding (pretrained or not) as input and the word index in
the vocabulary as output.

ch2ind: using context-free character embedding (uppercase and lower-
case), trained only by NSW

5.4. Word corrector 145

FIGURE 5.4: Context-free CNN model structure with ch2vec

FIGURE 5.5: CNN 5-grams model structure with ch2vec

ch2indl: using context-free character embedding, all training data changed
into lowercase, trained only by NSW
ch2indA: using context-free character (uppercase and lowercase) embedding,
trained by NSW and SW
chE5gr: character embedding (uppercase and lowercase) with 5 grams con-
text, trained only by NSW
chEw5gr: pretrained character embedding (uppercase and lowercase), with
5 grams context, trained only by NSW

Table 5.44 showed for each case (OOV or IV) by numbers of results (right
or wrong) of each model by token category. The first line showed that an IV
word should be corrected as another IV word (for model that trained by NSW
and SW, this correction could be the token itself) and the model predicted an
IV word as its correction (could be the token itself). The numbers of each
model showed numbers of cases that the prediction is right (the first line)
and wrong (the seconde line).

Since our model tries to predict a word in the vocabulary, it cannot predict
how to correct a word into an OOV word. The model can only suggest a word

146 Chapter 5. Lexical normalization of tweets with neural networks

forme corr pred r or w ch2ind ch2indl ch2indA chE5gr chEw5gr
IV IV IV right 969 860 876 956 952
IV IV IV wrong 58 59 154 70 67
IV IV OOV all wrong 7 8 4 8 15
IV OOV IV all wrong 15 7 27 16 16
IV OOV OOV as right 138 116 126 137 137

OOV IV IV right 134 251 176 3 9
OOV IV IV wrong 125 110 133 148 220
OOV IV OOV all wrong 78 102 28 186 108
OOV OOV IV all wrong 32 24 76 35 69
OOV OOV OOV as right 89 108 45 86 52

0.8091 0.8085 0.7398 0.7052 0.6729

TABLE 5.44: Results analysis by category by model

that already exists in our vocabulary. For OOV token as NSW, the model can
predict either a word in the vocabulary, or just an unknown tag.

forme IV correction IV prediction IV
Yea yeah yeah
boi boy boy

BRUH brother brother
tho though though
wut what what

ja just in
thot thought hot
ko to know

nah now no

TABLE 5.45: Some result of formes IV in training data

Table 5.45 showed examples that the forme of NSW, its correction and
the prediction of our model are all in-vocabulary words. These formes and
corrections are present in the training data. The first five lines showed correct
predictions and the last three lines are wrong predictions.

Table 5.46 showed examples in the same category: NSW forme, its correc-
tion and the prediction of our model are all in-vocabulary words, but the pair
of NSW and it correction is not present in the training data. We can see that
the CNN model can correctly find the forme in vocabulary for some NSW
words (the first nine lines in the table) and there are also cases that the model
fund another IV word (not the right word) to correct the NSW (the last seven
lines in the table).

Table 5.47 showed the category that an IV forme as NSW, its correction is
an OOV word but the model predicted an IV word. This category has only
cases that the model failed to find the correction of the NSW. The first three

5.4. Word corrector 147

forme OOV correction IV prediction IV
hdve have have

tomorroww tomorrow tomorrow
2moro tomorrow tomorrow
aight alright alright
tlkin talking talking
uuu you you
gyu you you

demam them them
YUUH you you

Makinng making thing
goddd god good
ONOW know your

twitt tweet with
Mooooneeeeey money one

Cuase cause because
alon alone taylor

TABLE 5.46: Some result of formes IV not in training data

lines in the table showed the limit of our model. We can only treat the case
one NSW to one correction. In the text, the annotation is to change "baby"
into "babysit" and the next token "sit" into none. That means, to regroup
two tokens "baby" and "sit" into only one token "babysit". Similarly with "I
Phone" rewritten as "iphone" and "Fav it" rewritten as "favorite".

Then for token "m", it was a tokeniser error to separate the "m" from the
number as its previous token "2m" to express "two millions". "diss" is a new
word invented by Internet user to say "disrespect".

As for "realise", "sittin" and "freaking", there are only corrections all in up-
percase present in the vocabulary so our model predicted with these tokens.
A post-treatment to change all prediction into lowercase could correct these
cases.

Table 5.48 showed examples that the correction of the token (IV or OOV) is
OOV. That means, the model predicted the token with an OOV label. In total,
7 in-vocabulary NSW words which corrections are IV, are predicted with an
OOV label; 78 out-of-vocabulary NSW words wich corrections are also IV,
are predicted with an OOV label. For the first case, we can find examples
from training data, as showed in the table 5.48.

The last category, that an OOV with also correction OOV are predicted
with an IV word. That means, our model succeeded to find an IV word for
the NSW token but its correction should be an OOV word. Some examples
are showed in the table 5.49.

148 Chapter 5. Lexical normalization of tweets with neural networks

forme IV corr OOV pred IV comment
baby babysit baby baby sit -> babysit ”

I iphone in I Phone -> iphone ”
Fav favor favorite Fav it
m millions am

diss disrespect this I’m not gon diss you on the internet
realise realize REALIZE
sittin sitting SITTING

freakin freaking FREAKING
cuss curse because
now nowadays your

TABLE 5.47: Predict an IV forme by an IV but correction is OOV

forme IV correction IV num=7
hw how
chill child
av have

OKC okay OKC -> okc in training data
dan than dan -> dan in training data
dun done dun -> don’t in training data
dere dare dere -> dere in training data

forme OOV correction IV num=78
okee okay

cumin coming
girlfrnd girlfriend

rhe her
Absolut absolute

TABLE 5.48: Correction is IV but predicted with OOV

forme OOV correction OOV prediction IV (32)
secs seconds second
hwk homework week

busses buses because
pompo pompous people
dyed dried the
lyft lift left

transforma transformation brother
gayz gays Jesus
wrkd worked weekend

Fri friday from
FAVOUR favor favorite

ridin riding Riding
switchin switching watching

TABLE 5.49: OOV with OOV correction predicted as IV

5.5. Conclusion 149

5.5 Conclusion

In this section, we tried to use neural networks for lexical normalization.
First, we proposed CNN models and LSTM models for standard word

(SW) and non-standard word (NSW) classification. We evaluated our model
with precision, recall and F1-measure of NSW class. We have got a best F1-
measure of 96% in 5-folds cross validation with the mixed dataset ((Baldwin
et al., 2015) and (Li and Liu, 2014)).

Then, we tested the corrector module using Convolutional Neural Net-
works. The corrector is either trained by all SW and NSW tokens, or just by
NSW tokens. In the first case, we consider that all tokens should have a cor-
rect form, even for SW, that is the token itself, and we evaluated our model
by accuracy of all SW and NSW tokens. The best score we have got is about
60%. In the second case, we suppose that all NSW are correctly classified
(by the previous classification). The corrector is only trained by NSW tokens
and tested with only NSW tokens. Our neural network model will output an
index of an in-vocabulary word or an label to mark that the correct form is
an OOV word. The best accuracy of NSW prediction is 80.91%. We consider
that the label OOV word is a correct prediction but in fact, our model did not
propose candidate for the NSW, it cannot find an OOV word to replace the
NSW, but it is considered as a correct case (explained in table 5.44).

Our objective was to use lexical normalization to improve our Named
Entity Recognition (NER) results, but not to correct all NSW words. We want
to add two features in our CRF model: NSW or SW class of the token and the
most probable candidate for a NSW or the token itself for a SW. If we have
an OOV word as correction of a NSW, that will add new values in the feature
and it may not be so useful. We will just label the token that its correction is
OOV word. That is why we did not continue to improve our corrector model.

150

Chapter 6

Using normalized text as CRFs
features for NER

In chapter 3, we presented our first named entity recognition (NER) results
using Conditional Random Fields (CRFs). Since the part-of-speech (POS) tag
is important for NER tasks, even with other models like Maximum Entropy
(MaxEnt) (Bender, Och, and Ney, 2003; Chieu and Ng, 2003; Curran and
Clark, 2003) and Hidden Markov Model (HMM) (Florian et al., 2003; Klein
et al., 2003; Mayfield, McNamee, and Piatko, 2003), we first used the POS tag
of each token in the Penn Treebank (Marcus, Marcinkiewicz, and Santorini,
1993) as a feature in this CRFs model. However, a token can have more than
one grammar category according to different contexts and we wanted to find
the Part-Of-Speech (POS) tag of each token in its context as the feature POS
tag for the token. This is the reason why we needed a Part-Of-Speech (POS)
tagger to label our NER evaluation dataset of Synthesio.

Since the Synthesio dataset is created only with User-Generated Content
(UGC) including social media data like forum posts and tweets, existing Part-
Of-Speech (POS) taggers trained with well-formed texts perform poorly with
it (Ritter et al., 2011; Owoputi et al., 2013). We thus decided to train a CRFs
POS tagger on social media data (tweets from (Ritter et al., 2011)) and to use
the predicted POS tag as a feature in CRFs model on named entity recogni-
tion (NER). The results are presented in chapter 4. There are improvements
comparing to using all possible POS tags in Penn Treebank for each token.

We then discussed in chapter 5 that User-Generated Content (UGC) con-
tains a lot of named entities, noisy tokens, abbreviations etc... which makes
it difficult for all natural language processing (NLP) tasks including NER
(Liu et al., 2013; Liu et al., 2011b). In the same chapter 5, we developed a
normaliser to first classify all tokens in an UGC text and then try to correct
non-standard words (NSW) with an in-vocabulary (IV) word. If the correc-
tion was an out-of-vocabulary (OOV) word, we only tagged the token with

6.1. Using NSW/SW classification prediction as CRFs features for NER 151

an "unknown" label.
In this chapter, we first apply our classifier to the Synthesio dataset and

our Named Entity Recognition (NER) training data from (Ritter et al., 2011)
to see if our model can automatically detect non-standard words (NSW). Af-
ter that, we test our CRFs NER model on the Synthesio dataset using this
NSW/SW classification results as features. We then apply two combined
context-free normalization models: normalization based on detected NSW
by classification and normalization for all NSW and standard words (SW).
This normalization will return the original token for standard words (SW).
Finally, we try to use the normalized tokens as a feature of our CRF model
in chapter 3 to improve the results of the named entity recognition (NER)
experiment on the Synthesio dataset.

Contents
5.1 Annotated datasets for the lexical normalization of tweets 120

5.1.1 Dataset from (Li and Liu, 2014) 120

5.1.2 Dataset from workshop ACL2015 120

5.1.3 Typology Analysis of labeled corpora 121

5.2 Use SVM for NSW and SW classification 121

5.3 Experiments of SW and NSW classification with neural
networks . 124

5.3.1 Context-free experiment 125

5.3.2 5-grams experiments 126

5.3.3 Experiments with pre-trained word2vec models . . . 132

5.3.4 Experiment with optimizers 135

5.4 Word corrector . 138

5.4.1 Context-free corrector 140

5.4.2 Corrector with context 142

5.5 Conclusion . 149

6.1 Using NSW/SW classification prediction as CRFs

features for NER

In chapter 5, we developed a NSW/SW classifier with a convolutional neural
network model and we obtained 0.9614 as F1-measure of NSW class with the

152 Chapter 6. Using normalized text as CRFs features for NER

mixed dataset from (Li and Liu, 2014) and (Baldwin et al., 2015). In this sec-
tion, we first try to use this classifier to detect all non-standard words (NSW)
on the Synthesio dataset and the dataset from (Ritter et al., 2011). Since these
two datasets are not annotated with non-standard words and their correc-
tions, we cannot evaluate our classifier but we still try to get a percentage
of detected NSW on each dataset. We then try to employ this prediction
of NSW/SW as a feature in our CRFs model for named entity recognition
(NER). So both the training data (dataset from (Ritter et al., 2011)) and the
Synthesio dataset are predicted with the same NSW/SW classifier and then
we train our CRFs model with this binary feature value: 0 for NSW and 1 for
SW and we present the obtained NER results.

6.1.1 NSW/SW classification experiments on the Synthesio

dataset

Our contextual NSW/SW classifier from chapter 5 was developed with con-
volutional neural networks. The input of this CNN model was 5 grams word
embedding as context and the word2vec model trained by the Synthesio data
(all 3 domains), plus the character representation. The input layer then passes
through the convolutional layer and another hidden layer, with the activa-
tion function "ReLU". The output is 2 dimensions, one for NSW class and
the other for SW class. The activation function is softmax and the chosen
optimizer was adagrad, which gave the best F1-measure of NSW class.

To get the maximum training data, we trained this CNN model with the
mix of the datasets (Liu, Weng, and Jiang, 2012) and (Baldwin et al., 2015)
with 100 epochs and we predicted all tokens in our evaluation dataset with
the Synthesio dataset.

item number of tokens percentage
total tokens 19104 100%
predicted NSW 265 1.39%
predicted SW 19104 98.61%

TABLE 6.1: NSW/SW Classification on the Synthesio Dataset

We can see in table 6.1 that the number of predicted NSW is only about
1.3% of all tokens in the Synthesio dataset. Table 6.2 showed the numbers of
predicted NSW in each domain and each type of texts from these corpora:
long texts (like forum posts) and short texts (tweets). However, the percent-
age of NSW in training data ((Liu, Weng, and Jiang, 2012) and (Baldwin et al.,
2015)) is between 9% and 10%.

6.1. Using NSW/SW classification prediction as CRFs features for NER 153

text type domain NSW total tokens percentage

long text

Deezer 22 2314 0.95%
DunkinDonuts 45 3116 1.44%
LandRover 62 3836 1.62%
Mattel 37 2958 1.25%
Nissan 29 2166 1.34%

short text

Deezer 14 854 1.64%
DunkinDonuts 14 827 1.69%
LandRover 18 1123 1.60%
Mattel 10 1048 0.95%
Nissan 14 1127 1.24%

TABLE 6.2: NSW/SW Classification by domain and text type

First of all, since the training model considered the context of the current
token, one token could be classified as NSW in some context and as SW in
another context.

We then realised that the Synthesio tokenizer was different from this of
the training data. In dataset (Liu, Weng, and Jiang, 2012) and (Baldwin et
al., 2015), tokens with apostrophes like "I’m", "it’s" and "can’t" are considered
as only one token. But the Synthesio tokenizer separated them into "I" and
"’m", "it" and "’s" and "ca" and "n’t". On one hand, it was demanded by the
sentiment analyser in Synthesio since the negative expression is important
to define the sentiment of a text. The negative marker like "n’t" should be
kept apart to calculate the sentiment of the text. On the other hand, the tok-
enizer of the NER dataset in (Ritter et al., 2011) also separated these tokens
with apostrophe. It was also demanded for the POS tagger because on these
tokens, there are subjects (pronoun) and verbs or verbs plus adverbs (not). It
would be difficult for the POS tagger to predict only one grammar category
for these tokens.

That is why there are tokens that begin with apostrophes like "’m" and "’s"
which are recognised as non-standard words with the CNN model trained by
datasets (Liu, Weng, and Jiang, 2012) and (Baldwin et al., 2015).

Table 6.3 shows some examples with the token "ca". We can see that
when the token "ca" comes with the context "I can’t...", it is labelled as a
non-standard word. When the token "ca" begins a sentence (the case that
we ignore the subject "we"), it is labelled as standard word.

When we analyse the training data, the token "ca" in dataset (Baldwin et
al., 2015) does not exist and there is only one occurence of the "ca" token in
dataset (Liu, Weng, and Jiang, 2012).

Figure 6.1 shows this sentence with the token "ca" in the training dataset

154 Chapter 6. Using normalized text as CRFs features for NER

cases where "ca"
labelled as NSW

Seems I ca n’t sign into the website
I ca n’t think of an easier customizing task
I ca n’t stand to see food commercials on tv
I ca n’t reduce it,

cases where "ca"
labelled as SW

Livermore, CA 94550, United States
(participating US + CA stores)
ca n’t wait to see the Casesar Romero Joker!
these Luxus ca n’t all be wrong
ca n’t wait to get a car
Ca n’t explain how much I hate this shitty Nissan micra

TABLE 6.3: Classification cases with the token "ca"

Just hurt em at the icehouse comedy club in pasadena ca. Who’s next?

FIGURE 6.1: Token "ca" in training data

(Liu, Weng, and Jiang, 2012). In this sentence, "ca" is replaced by "california"
(a state in the United States of America) in the annotated dataset (the token
"em" is also a NSW, it should be corrected as "them"). For the annotator’s
convenience, all corrections are in lowercase. With only one annotated ex-
ample in the training data, the CNN model succeeded to classify cases that
"ca" is standard words in these contexts (as in the last four lines in table 6.3).

We can choose here to correct the token "CA" or not depending on the
degree of language that we want. Americans often use two letters as abbre-
viations of a state name or a city name like "NY" for "New York", "US" for
"the United States (of America)".

Thirdly, according to the definition of non-standard word, the only tokens
for which we can find a correct form is a non-standard words. Noisy tokens
(like "PPOF"), tokens with numbers (like "$4bn") and the three protected cat-
egories: user name (begin with @), hash tag (begin with #) and urls, are all
labelled as standard words because we cannot find a "correct" form for these
tokens. Another category of standard word is the named entity with proper
noun, as in 6.2.

I already tripped Knox I think, the device is n’t under warranty anayway.
Sent from my C6903 using Tapatalk.

FIGURE 6.2: Example of named entities as standard words

"Knox" and "C6903" are product names of Samsung (mobile phones) and
"Tapatalk" is a a community platform application for mobiles. Typically,

6.1. Using NSW/SW classification prediction as CRFs features for NER 155

"Sent from my C6903 using Tapatalk" is a meta-message automatically gen-
erated by a mobile device. This sentence should not appear as part of the text
to analyse.

text with non-standard words correction
spotify premium is honestly a blessing in my life ngl not gonna lie
All I can say is it is party time lol laugh out and loud
please add it asap !! as soon as possible
Plz choose me it would mean the world to me if I met them xx please

TABLE 6.4: Example of a predicted NSW in Deezer short text

Table 6.4 shows some correctly predicted NSW. The token "ngl" (for "not
gonna lie") is not present in training data, but with the context the charac-
ter convolutional neural network model succeeded to predict it as a non-
standard word.

The Synthesio dataset contains a lot of noisy tokens.They are not classi-
fied as non-standard words because we cannot find a correct form to replace
them, or we do not know what the user wants to express by these words.
Figure 6.3 shows an example of noisy tokens. In this text, "1DHQ" and "x"
are noisy tokens since we cannot define what that means.

RT @onedirection: This weekend we’ll be mostly listening to this @Spotify
playlist.. 1DHQ x http://t.co/G4hSeRiIcw

FIGURE 6.3: Example of noise in Deezer short text

Named entities should not be labelled as non-standard words even though
sometimes their forms could be strange. In figure 6.4, we believe that the to-
ken "5sos" is short for "5 Seconds of Summer", an Australian pop rock band,
so it is a named entity and our model predicted it as a standard word. But on
reading the details of this band 1, we found that this it is composed of four
male musiciens. It is not so clear what "she" stands for in this context.

5sos she looks so perfect! Plz choose me it would mean
the world to me if I met them xx
FIGURE 6.4: Example of named entity and a predicted NSW

The last problem is that in the Synthesio dataset, there are a lot of sen-
tences which do not have meaning.

Figure 6.5 shows the complete content of a mention from the automobile
domain. The second part of the text (from "issue Current") only listed serial

1https://en.wikipedia.org/wiki/5_Seconds_of_Summer

http://t.co/G4hSeRiIcw
https://en.wikipedia.org/wiki/5_Seconds_of_Summer

156 Chapter 6. Using normalized text as CRFs features for NER

numbers of car models and motor models, the sentence "2010 BMW E90 LCI
320d Exclusive A/T-BMW Power pack 2006 BMW E90 320d Sport-pack A/T-
de-dpf, 63mm down-pipe & ODR tuned 2002 BMW E39 525i A/T-sw and
centre exhaust box 2011 LANDROVER DISCOVERY 4 A/T 2009 HONDA
ACCORD 2.4 A/T Exclusive" is only a sequence of key-words for a car model
and this sentence does not have any meaning and it can not be parsed auto-
matically by a parser. However, in the lexical level, there is not any NSW
token that we can correct.

Experienced the exact same issue, battery and alternator was changed, but
the issue still persisted. problem was traced to be a software isse, the car was
storing old error codes, a full software update from the agents fixed the issue
Current: 2010 BMW E90 LCI 320d Exclusive A/T-BMW Power pack 2006
BMW E90 320d Sport-pack A/T-de-dpf, 63mm down-pipe & ODR tuned
2002 BMW E39 525i A/T-sw and centre exhaust box 2011 LANDROVER DIS-
COVERY 4 A/T 2009 HONDA ACCORD 2.4 A/T Exclusive [img][/img]

FIGURE 6.5: Example of a tweet in automobile demain

We can see from these examples that the NSW/SW classification model is
not so efficient on the Synthesio dataset. Noises which can not be corrected,
named entities, and texts with no syntactic meanings made it difficult to de-
termine non-standard words to correct.

6.1.2 NSW/SW classification experiments on dataset from (Rit-

ter et al., 2011)

We wanted to use the NSW/SW classification results as features in our CRFs
model to try to improve the NER results on the Synthesio dataset. To train a
CRFs model for NER, we need this information on our training data, that is
the dataset from (Ritter et al., 2011).

We use the same NSW/SW classifier to predict dataset from (Ritter et al.,
2011). Table 6.5 shows the result of this prediction. Our model found 2.94%
NSW in this dataset. In datasets from (Baldwin et al., 2015), the percent-
age of NSW is 15% and in (Li and Liu, 2015), the percentage is 11%. This
low number of predicted non-standard words (NSW) means that maybe our
NSW/SW classifier is not so efficient for the (Ritter et al., 2011) dataset.

On the other hand, our classifier model has found non-standard words as
shown on figure 6.6 in blue. Tokens in red are NSW that are missed by our
classifier.

6.1. Using NSW/SW classification prediction as CRFs features for NER 157

item number of tokens percentage
total tokens 46469 100%
predicted NSW 1365 2.94%
predicted SW 45104 97.06%

TABLE 6.5: NSW/SW Classification on (Ritter et al., 2011)

@Suzie55 whispering cause I may have had 1 too many vodka’s last night
and am a lil fragile

every year your "bestfriend" get yo ass in trouble smdh #doinme

@MrzEndy tru tru I’m leavin again on Tuesday yo

Bonfire tonite. All are welcome, joe included

Yeah I cant come to the meeting tomorrow.

This is the 2nd hospital ive been in today.

FIGURE 6.6: Example of succeeded NSW predictions

The case that "bestfriend" should be written as two words "best friend". In
this case, we should either add a empty token in the tokenized text right after
the token "bestfriend" then the correction of the token "bestfriend" would be
"best" and the empty token that follows "bestfriend" should be corrected as
"friend", or we should propose a blank between "best" and "friend".

We also found a tweet in Dutch in the dataset of (Ritter et al., 2011) as
shown in figure 6.7. Only the token "nu" is detected as a non-standard word
but the entire tweet should be considered as noise because the goal was to
correct ill-formed English words and not to translate another language to
English.

Kreeg net een bruikbare tip van iemand die vorige week was begonnen met
een whiskydieet, hij was nu al 3 dagen kwijt

FIGURE 6.7: Example of Dutch tweet in dataset

Figure 6.8 shows other examples of missed non-standard words predic-
tion.

Cant wait for the ravens game tomorrow....

@stjosephs Empls of the Month

FIGURE 6.8: Example of missed NSW predictions

We can see from figure 6.6 that the token "cant" is correctly detected as
NSW in context "Yeah I cant come to"... but in figure 6.8 "Cant wait for"... the
token "cant" was not detected as NSW.

158 Chapter 6. Using normalized text as CRFs features for NER

The figure 6.9 shows a tweet which contains a lot of non-standard words.
Some of them are correctly detected (in blue) and some of them are missed
(in red).

Its stupid I hate getn a attitude from ppl when I’m jus tryna be nice n shit.
WTF now I’m mad so dnt talk to me right now

FIGURE 6.9: Example of missed NSW predictions

Similarly to "Cant" in the beginning of the sentence, "Its" was not detected
as NSW. This is also an ambiguous token, because "its" is a correct English
word and it is just not correct in this context. It should be "It’s" as a construc-
tion of subject plus verb but not as "its", the processive pronoun.

Our model has also detected named entity as NSW. In figure 6.10, "Scooter
Braun" is a named entity of type person name in dataset (Ritter et al., 2011).

When your mom makes you go live with your dad Scooter Braun

FIGURE 6.10: Example of noises

The dataset also contains raw tokens that are not possibly to correct.

@Phoebe1_ and i also loved the last years eurovision entry!! hoppaa! they
were cool too!!

FIGURE 6.11: Example of noises

In figure 6.11, "hoppaa" is detected as a non-standard words, but even for
a human being, it is difficult to find a correct form to replace it, as it is just an
interjection to express some feelings.

We also try our model on a tweet full of spelling errors in the dataset from
(Ritter et al., 2011). This original tweet is showed in the figure 6.12.

We can see that there are only seven correct tokens with in total 32 tokens
in this tweet. Our model based on context has a lot of difficulties to find
all non-standard words in it. Our model only detected "lil", "whn", "gurl",
"neva", "nt", and "trin" as non-standard words, others are all labelled as stan-
dard words.

We have reached a similar conclusion on the NSW/SW classification model:
that it is not so efficient on the dataset (Ritter et al., 2011). Noises, named en-
tities made it difficult to determine non-standard words to correct. It would
be interesting to test another context-free classifier model.

6.1. Using NSW/SW classification prediction as CRFs features for NER 159

FIGURE 6.12: Tweet full of spelling errors

6.1.3 Using NSW/SW prediction as features to NER model

We tried to improve our Named Entity Recognition results using CRFs mod-
els by adding the prediction of NSW/SW information for each token as a
feature.

Since the CRFs model will automatically choose features that count for
the best annotation sequence, we only need to add correction proposals for
each token as a feature and to let our CRFs model choose if this feature counts
and how much this feature counts.

We chose the best CRFs patterns from chapter 3, that is the Constant1
model. And for the added feature, the corrections of all tokens, we used the
token itself in lowercase for SW and corrections are also in lowercase as the
annotation convention.

Each CRFs feature can be defined on all tokens sequences. We used the
same window size as other features, that is two words before and two words
after, plus the current token. Similarly, we let our CRFs model choose which
is important as a feature’s position.

The CRFs model is then evaluated by named entity type and with preci-
sion, recall and F1-measure as previously done in the chapter 3.

This feature of NSW/SW classification value is represented by either 0
(for NSW) or 1 (for SW). To use this feature as maximum, we also include
this feature for the context of the current token. That is, two words before
and two words after the current token.

Other features and window sizes of the pattern remain the same as 4.20
in chapter 3.

We first tried this model with a cross validation with 5 blocks using dataset
form (Ritter et al., 2011) with their definition of named entity types.

160 Chapter 6. Using normalized text as CRFs features for NER

We then trained our model on dataset from (Ritter et al., 2011) and tested
with the Synthesio dataset with the Synthesio definition of named entity
types.

Precision Recall F-Measure
Company 1.0/1.0 0.0302/0.0369 0.0586/0.0712

Person 0.35/0.35 0.41/0.41 0.38/0.38
Other 0.5/0.5 1.0/1.0 0.67/0.67

Product 0.5/0.5 0.03/0.05 0.06/0.09
Media 0.5/0.5 0.0625/0.0625 0.11/0.11

Geo-Location 0/0 0/0 0/0
Job title 0/0 0/0 0/0

Micro-Average 0.34/0.34 0.1/0.1 0.12/0.1634

TABLE 6.6: NER results using NSW/SW classification feature

Table 6.6 shows the result on the Synthesio dataset. The only increased
score is the recall of named entity Company, from 0.0302 to 0.0369 and the
micro-average of f1-measure on this dataset has increased from 0.12 to 0.1634.
That means, the CRFs model took account this NSW/SW classification re-
sults as feature, and this feature has increased the recall of one type of named
entity.

The increase of the recall of the named entity Company is the result of four
occurrences of three tokens, missing from earlier model without NSW/SW
classification as features. The four tokens as named entity Company are:
"BBC", two occurrences of "DD" and "DC".

when I tried windows phone Sky sports TV and sky
go Bank apps BBC apps YouTube Spotify

FIGURE 6.13: Example of "BBC", predicted as NSW and de-
tected as Company

In the text of the figure 6.13, the annotated named entities are:

windows product
BBC company

Youtube company
Spotify product

TABLE 6.7: Annotated named entities in the text of figure 6.13

6.1. Using NSW/SW classification prediction as CRFs features for NER 161

These four named entities in the example of the figure 6.13 were all missed
in earlier CRFs models without NSW/SW classification predictions as fea-
tures. However, the NSW/SW classifier predicted "BBC" as the only non-
standard word in this text and with this feature value, our CRFs model suc-
ceeded to extract "BBC" as a company name.

No DD in Oregon either.

FIGURE 6.14: Token "DD" detected as Company

In the text of the figure 6.14, "DD", which refers to "Dunkin’ Donuts" (an
American fast food company), was detected as a non-standard word. Our
CRFs model then predicted it as a company name. Meanwhile, the token
"Oregon", an American state, was missed as a named entity of GEO-LOCATION.

I ate a dozen blueberry munchkins from DD this morning and they were
amazeballs!

FIGURE 6.15: Another occurrence of "DD"

The figure 6.15 showed another occurrence of the token "DD", also pre-
dicted as non-standard word and then detected as a named entity of the type
Company. Meanwhile, our CRFs model did not succeed to extract the prod-
uct "blueberry munchkins" from this text.

For that and a ton of DC properties, and MOTU, & Cancer, & Diabetes I too
blame Mattel.

FIGURE 6.16: Example of "DC"

In the text of figure 6.16, the token "DC" was detected as a NSW because
it is the abbreviation for "DC Comics". Then our CRFs model succeeded to
label this token as a name of a Company. However, "Mattel", failed to be
detected as Company again.

These four cases showed that the feature of non-standard word, along
with the feature "contains only letters in uppercase" helped to find tokens
with only letters in uppercase as named entities such as "DC", "BBC" and
"DD".

In this section, we tried to use NSW/SW classification prediction as a fea-
ture of our CRFs model for named entity recognition (NER). As shown in
table 6.6, only the recall of type Company increased with four succeeded to-
kens. Although our NSW/SW classifier has found less NSW in both datasets
from (Ritter et al., 2011) and from the Synthesio dataset, this feature helped
to improve our CRFs model for NER.

162 Chapter 6. Using normalized text as CRFs features for NER

6.2 Using normalized text as feature for NER

In the previous section, we have discussed the results of non-standard words
(NSW) and standard words (SW) classification on the Synthesio dataset and
the dataset from (Ritter et al., 2011): the neural network classifier predicted
1.39% and 2.94% NSW of all tokens in the two datasets respectively.

In this section, we first use a normalization model (from chapter 5) to
propose a correct form for detected NSWs by the classifier. This normaliza-
tion candidate will be used as a feature for the CRFs model for named entity
recognition (NER).

Secondly, we directly employ the second best normalization model, an-
other context-free model, which was trained on both NSWs and SWs. The
normalization model proposes for each token in the dataset, a form as cor-
rection. As for original SW tokens, the proposed corrections are supposed to
be their original forms in the dataset. We then use this correction as a feature
in CRFs model for NER.

6.2.1 Word normalization based on NSW/SW classification

prediction

The normalization model based on NSW/SW classification prediction results
proposes one candidate for each detected NSW by the classifier. In chapter
5, we have developed normalization models and we evaluated their perfor-
mances by eight categories. The eight categories were about original form in
the text, annotated canonical form and normalization candidate by normal-
ization model, each of the three categories can be in-vocabulary (IV) word or
out-of-vocabulary (OOV) word as presented in 5.44.

In this section we want to use the best normalization model obtained,
which has the best accuracy of all NSWs by cross validation on 5 blocks on
the mixed datasets of (Baldwin et al., 2015) and (Li and Liu, 2014).

All normalization models of chapter 5 proposes lowercase characters be-
cause of the annotator’s convention from the two datasets. The best normal-
ization model, with the highest accuracy score, was "ch2ind" from 5.44. As
output, this model will propose an in-vocabulary (IV) word, the vocabulary
being the interjection of the Aspell dictionary and the Synthesio vocabulary,
or an "unknown" label for a candidate that is not in the vocabulary.

As explained in chapter 5, when this normalization model proposed an
out-of-vocabulary word as correction for a NSW and the annotation of the

6.2. Using normalized text as feature for NER 163

NSW was also an OOV word, we considered as if the normalization model
proposed the correct normalized form for accuracy evaluation of all NSWs.
Therefore, instead of choosing the model with the best accuracy, we chose
the model with the most correct normalized forms and the least wrong nor-
malized forms, the model "ch2indL" as shown in table 5.44 of chapter 5. That
means, we chose the normalization model which has the best accuracy score
without considering annotations when they are OOV words.

We first applied the same classifier model from the previous section on
dataset from (Ritter et al., 2011) (for NER training) and then on the Synthesio
dataset (for NER prediction) as we did in the previous section.

We then trained this normalization model, "ch2indL" from 5.44, on all
annotated NSWs in datasets of (Baldwin et al., 2015) and (Li and Liu, 2014).
"ch2indL" is a neural network which takes the current words and its context
(two words before and two words after) as input, and its output is an id in
the vocabulary (the vocabulary is the interjection of the Aspell dictionary and
the Synthesio vocabulary) or a "unknown" label if the proposed candidate is
not in the vocabulary.

We then applied the normalization model on predicted NSW for both
training dataset from (Ritter et al., 2011) and the Synthesio dataset (the evalu-
ation dataset). After that, we added normalized form for each token as CRFs
feature value in the CRFs Named Entity Recognition (NER) model.

Normalization model on dataset from (Ritter et al., 2011)

The classifier found 2.94% NSW and we applied the normalization model on
these NSWs.

Table 6.8 shows examples on dataset from (Ritter et al., 2011) where the
normalization predictions were correct on detected NSW in this dataset.

Detected NSW Proposed correction
and am a lil fragile little
get yo ass in trouble your
I’m leavin again on Tuesday leaving
Whats goin on (in tally) tonight twitter!! going
jus about to get dressed and leave again just
enjoy it. like u just got married you
I did tweet him b4 n justthen about kenny before, and

TABLE 6.8: Succeeded normalization examples on (Ritter et al.,
2011)

164 Chapter 6. Using normalized text as CRFs features for NER

For cases where we should add letter(s) to the end of the token to correct
a NSW, the classifier has succeeded to find "yo", "jus", "leavin" and "goin" as
NSW, then the normalization model succeeded to find corrections "your" for
"yo", "just" for "jus", "leaving" for "leavin" and "going" for "goin".

Tokens with only one letter like "u", "n" are also correctly detected as
NSW and then the normalization model proposed "you" and "and" as cor-
rect forms. Cases with "lil" and "b4" also show that our normalization model
can propose a candidate by removing a character in the end of the token (the
last "l" from "lil" and "4" from "b4") then add other letters as candidates of
these NSWs.

Detected NSW Proposed correction Correction
How was ur day 2day? your, today
it is dnt have a move tonite but imma make not, tonight,my I’m going to
bestfriend "unknown" best friend
i dont have any change for the customers.. "unknown" don’t
cant believe her brother is leaving "unknown" can’t
Lmao ass laughing my ass off
Imma my I’m going to
smdh the shaking my damn head

TABLE 6.9: Wrong candidates for predicted NSW

Table 6.9 shows examples of wrong candidates and NSWs with "unknown"
label. Wrong predictions and missing NSW from classifier are shown in red.
Tokens in blue are predicted NSW by the classifier of the previous step. In
the first line, if the classifier had correctly detected the token "2day" as NSW,
the normalization model would have proposed its correct form "today". We
can see that our normalization model could not add a proper character in the
middle of the token, as in the example of adding a blank between "best" and
"friend" for "best friend". It can turn into a tokenisation problem.

As for tokens like "dont" and "cant", according to the Synthesio tokeniser,
tokens "don’t" and "can’t" are tokenised as "do", "n’t" and "ca", "n’t" respectly,
so tokens "don’t" and "can’t" do not exit in the vocabulary, so the normaliza-
tion model cannot propose these forms and it only returns a label "unknown"
as the candidate is an out-of-vocabulary word.

We can also see from examples of "Lmao", "Imma" and "smdh" that the
normalization model can’t really find multi-tokens expressions as correction.
If one character represents one word, there is not enough information.

Table 6.10 shows predictions on the last part of the tweet in Figure 6.12.
Tokens in red are detected as NSW in the previous step, so they are over
corrected words. We are not sure if the token "whn" means "when" and this

6.2. Using normalized text as feature for NER 165

is the end of the tweet. There is only one correct token in this sequence of
tokens and we find really difficult to understand a tweet like this one. The
classifier could not detect all NSW and the normalization model could have
corrected "ya" by "you", "2" by "to" and not so correctly "trin" by "nothing",
and "fin" by "fuck".

Token Proposed correction Correction
whn when
is
ya you
gurl girl girl
neva never never
nt not not
trin trying
2 "to" or "too"
fin find

TABLE 6.10: Wrong candidate for predicted NSW

Similarly, this normalization model can neither just add a blank for the
token "alot" nor add an apostrophe for the token "isnt". For both cases, a
label for an "unknown" word shows that the candidate of correction is not in
the vocabulary.

Combined normalization model on dataset from the Synthesio dataset

We can also see in table 6.11 that the normalization model proposed a word
shorter than the original token as "shit" for "shitty". That means, the nor-
malization model replaced the last two characters by blanks (since all to-
kens shorter than 29 characters are padded on the right). However, the word
"shitty" is just an informal and oral form for "shit". We can choose to correct it
or not according to different degree of our normaliser. It is similar to the case
of "gonna" for "going to" in spoken English. On one hand, we want to change
non-canonical text into standard, well-formed text and we are intended to
correct cases like this, we consider the spoken English as non-standard lan-
guage.

Further more, "gonna" is a typical case that we can generalised as "wanna"
(for "want to"). On the other hand, we consider in this thesis only cases of one
token to one correction (in the form of corrected token). These cases are like
to change one token "gonna" into two tokens ("going to"). That is why tokens
like "gonna" are not corrected in the training data and they are tagged as
standard words, as we do not want to correct them.

166 Chapter 6. Using normalized text as CRFs features for NER

Similarly for the word "BBQ". It is a common informal spelling of "barbe-
cue", and it is an out-of-vocabulary word for the Aspell English dictionary.
Our classifier has detected "BBQ" as a non-standard words, but the normal-
ization model was not able to propose an in-vocabulary candidate to correct
it. Only the label "unknown" is distributed for this token.

As for named entities, we can see that the normalization model over-
corrected named entities "Knightley", of type person name, "Nissan", the car
brand and another commun noun "BBQ". The token "Nissan" is the only oc-
currence in this dataset which is detected as NSW, all other occurrences are
detected as SW.

The NSW/SW classifier is a model which took account of the word’s con-
text (two words before and two word after). The token "Nissan" following the
determinant "a" in the context "of a Nissan note", the POS tagger has tagged
both "Nissan" and "note" as common nouns. However, the form "Nissan"
should be a proper noun as a company name (all other occurrences of "Nis-
san" are tagged as proper nouns), that is why the classifier labelled "Nissan"
as a non-standard word, and then the normalization model proposed an in-
vocabulary (IV) word, "saying". If "Nissan" was labelled with "proper noun"
as POS tag, maybe it would not be detected as a NSW as other occurrences
of "Nissan" in other contexts. Proper nouns are often SW tokens in training
data, and we do not need to normalize them.

Token Proposed correction Correction
Apps like Spotify can sync and control even music "unknown" synchronize
It is gonna take alot more than deep pockets always a lot
but mainstream isnt a genre a music. shit isn’t
After speaking to someone in your call centre center
Wtf. with what the fuck
even were given em away free, them
I hate this shitty Nissan micra shit
Keira Knightley Says No To Airbrushed Boobs "unknown"
we are having a backyard BBQ reception. "unknown"
I booked a test drive of a Nissan note saying

TABLE 6.11: candidate for predicted NSW on the Synthesio
dataset

When we applied our classifier, we had predicted 2.94% of non-standard
words with the dataset from (Ritter et al., 2011) and 1.39% for the Synthesio
dataset. Meanwhile, the percentage of NSW in both training datasets ((Li and
Liu, 2014) and (Baldwin et al., 2015)) was between 9% and 10%. If we assume
that the NSW percentage should follow this distribution, there should be a
lot of NSW detected as SW. That means, the normalization model would only

6.2. Using normalized text as feature for NER 167

propose candidate of correction for these predicted NSW and it will never be
applied to others from 97% to 98% tokens. In addition, the classifier has
also predicted SW as NSW as in the last three examples in table 6.11, and
the normalization model intended to propose candidates for these standard
words, named entities "Knightley" and "Nissan".

Using predicted candidate for NSW and SW itself as feature value for NER

The normalization candidate is then added into the CRFs model’s feature
value for Named Entity Recognition (NER). This feature value will be an
"unknown" label for an OOV correction for a NSW detected by the classifier.

Similarly to NSW/SW class feature, we trained the CRFs model with this
feature value (the candidate for detected NSW) with the context window size
of 5 (two words before and two words after, including the current word). For
detected SW, the original form will be the value of this feature.

We applied this combination of NSW/SW classifier and the normalization
model on predicted NSW to our training data from (Ritter et al., 2011) and on
the Synthesio dataset. The candidate proposed by the normalization model
on predicted NSW is employed as a feature value "correction" of NSW in
CRFs model. As for predicted SW, only the original form in the dataset with
all letters in lowercase (according to NSW annotation convention) is consid-
ered as the feature value.

We also want to keep the context window size as 5 (two words before and
two words after) to maximize numbers of feature values as we did for the
part-of-speech (POS) tag feature.

However, the NER results with our CRFs model did not change and from
the generated CRFs model file, we did not see the feature "correction of NSW"
appear in the optimized model. The CRFs model computed all feature values
with many iterations (100 iterations as previous case) and finally reached an
optimized set of feature and a weight for each feature function. That means,
this "correction of NSW" feature value did not help for our NER task in the
final generated CRFs model because it is not so useful comparing to other
features. The optimized CRFs model remains the same and so are the results
of NER prediction.

This result makes us consider the other possibility to train the normal-
ization model, that is, training the normalization model with all NSW and
SW tokens with their corrections. The correction of a SW word would be its
original form with all letters in lowercase (according to NSW/SW annota-
tion convention). This usage of the normalization model ignored the step of

168 Chapter 6. Using normalized text as CRFs features for NER

NSW/SW classification and the normalization model proposes directly the
correction to replace a token either a NSW or a SW.

6.2.2 Normalization model for all tokens prediction

We think that a normalization model which proposes a correction for all to-
kens is maybe more reasonable and it will propose the original form for stan-
dard words.

The normalization model that we chose, as the best NN model from chap-
ter 5, takes only the current token as input. The token is a list of characters
and each character (numbers and symbols included) is represented by an in-
teger number as we did previously. The largest word in all training data has
29 characters. To cover all letters for all words, we fixed the length of words
as 29 characters. Words containing less than 29 characters are padded to the
right with the space character " ".

The convolutional neural network contains a convolution layer which fol-
lows the input layer. There is another hidden layer of 128 nodes before the
output layer.

The output layer also has 29 positions to fill with, for each position, the
most probable character. Blanks are also filled to complete until 29 positions.
For each position, possible characters are: all 26 English alphabet characters,
plus symbols "’", "-" and blank " " (for padding).

Sometimes the list of characters in the output do not form an in-vocabulary
word. The vocabulary is only generated from all the corrections from training
data. A post-processing step will match the list of characters to the nearest
word according to the edit distance (Levenshtein, 1966) from the vocabulary.

To get the maximum data in training, we trained this neural network
model on (Li and Liu, 2014) and (Baldwin et al., 2015).

Neither the dataset from (Ritter et al., 2011) nor the Synthesio dataset is
annotated with normalized words. We cannot really evaluate the normaliza-
tion model with this dataset. We only got the percentage of corrected words,
they are supposed to be non-standard words and we tried to analyse some
example from these words which had been corrected by the normalization
model.

As described earlier, our correct model on neural network proposed a
candidate for each token as a correction. This candidate, is a list of possible
characters including the hyphen "-" to join two words, the apostrophe "’" for
the omission of one or more letters (as in the contraction of do not to don’t);

6.2. Using normalized text as feature for NER 169

the marking of possessive case of nouns (as in the eagle’s feathers, or in one
month’s time); and the marking of plurals of individual characters (e.g. p’s
and q’s). The third possible character except alphabet letters is the blank " ".

The candidate is a list of possible characters and the most probable char-
acter in each position of the candidate.

As post-treatment, we first used all SW tokens plus all corrections in the
training data to test rapidly our model. The real size of the total vocabulary
of these tokens counted until 10 thousand, and we will test our model with
this total vocabulary later.

Tables 6.12 to 6.13 showed examples of the normalization model predic-
tions with tweets in (Ritter et al., 2011), including the candidate that the nor-
malization model proposed, and the in-vocabulary word found in all training
data.

Tokens Proposed candidate IV word
pretty pretty pretty
bad bad bad
storm storm storm
here heree here
last last last
evening evening evening

TABLE 6.12: Correctly predicted tweet in (Ritter et al., 2011)

In the tweet from table 6.12, the normalization model proposed a wrong
candidate "heree" for the token "here" but the post-treatment found the near-
est IV word "here" from the vocabulary (from all SW and corrections in train-
ing data).

The token "’s" has no syntactic meaning in this tweet, it should even not
be in this context.

In the tweet from table 6.13, the correct form of the token "lil", according
to the context, should be "little", but here the normalization model predicted
a candidate form like "lil l" and after the post-treatment to find the nearest IV
word in training data, we found "llol" as its correct form. In fact, the token
"llol" exists in the training data as a noisy token, as in figure 6.17, which can
not be corrected because there is not a correct form for this token and in the
training data, the token has been left as it is, as a standard word. That is why
the form "llol" is distributed as the nearest form in the vocabulary.

In the training data, there is the token "fraggle" as a SW and that is why
"fraggle" is also in the vocabulary. Fraggle Rock (also known as Jim Henson’s
Fraggle Rock or Fraggle Rock with Jim Henson’s Muppets) is a children’s

170 Chapter 6. Using normalized text as CRFs features for NER

form in text normalization prediction matching in vocabulary
whispering whispering whispering
cause cause cause
i i i
may may may
have have have
had had had
1 1 1
too too too
many many many
vodka vodka vodka
’s ’s ’s
last last last
night night night
and and and
am am am
a a a
lil lil l llol
fragile fraggle fraggle

TABLE 6.13: Miss-corrected tokens in (Ritter et al., 2011)

don’t act lyke (like) you don’t lyke (like) that llol
if you 4got (forgot) you still have me until winter

FIGURE 6.17: Token "llol" in training data

television series, created by Jim Henson 2. So the token "fraggle" is a part of
a named entity "Fraggle Rock" of type "tv show". That is why in the training
data, there is not a correct form annotated for the token "fraggle" and we
generated the vocabulary with all SW and corrections.

Watching some fraggle rock & making breakfast.

FIGURE 6.18: Token "fraggle" in training data

As mentioned in chapter 5, noise tokens and named entities are consid-
ered as standard words since there is no need and no possibility to find a
"correct" form for these tokens. However, we can see the problem when we
use standard words in the spelling vocabulary: the named entity "Fraggle"
and the noise token "llol" are found as nearest spelling form for the word
"fragile" and the token "lil", we over-corrected "fragile", which already was a
well-formed word and we did not find the correct form of "lil", which should
be "little".

2https://en.wikipedia.org/wiki/Fraggle_Rock

https://en.wikipedia.org/wiki/Fraggle_Rock

6.2. Using normalized text as feature for NER 171

We then considered another standard English dictionary, the Aspell dic-
tionary 3 as vocabulary. In the Aspell dictionary, there is only one occurence
for one word, but this word could be all letters in lowercase, all letters in up-
percase or only first letter in uppercase and others in lowercase. These words
are also sorted by standard ASCII code (or "C" locale on Unix systems). That
is, first in uppercase (from A to Z) and then in lowercase (from a to z) follow-
ing alphabetical order. The only punctuation character in this dictionary is
the apostrophe "’".

To cover all English words, we merged the American English and British
English dictionaries to reach to an American-British English dictionary and
we then sorted the words list in the same order.

When our post-treatment traverses all words in a dictionary, it stops at the
first word which has the defined edit distance even though there are others
words with the same edit distance.

In this example, we expect that the form proposed by our corrector "frag-
gle" be matched with "fragile". Table 6.14 showed the same sentence pre-
dicted by the same normalization model and then matching the nearest word
from Aspell dictionary. We verified that tokens "fraggle", "Fraggle" and "FRAG-
GLE" are not in this dictionary.

We can see that the post-treatment has corrected the prediction "fraggle"
into "fragile", which is the original form of this token. Meanwhile, we noticed
that the post-treatment has found another word "Gill" for the prediction "lil
l" from the Aspell dictionary.

"Gill" was the first word (in alphabetical order) in vocabulary which is the
nearest from the prediction "lil l", with edit distance 2. The objective word
that we are looking for, "little", has edit distance 3 from "lil l".

We also could define from all words which have the same edit distance as
3 with "lil l", only the words with the same first letter as correction. If there
was always more than one nearest word, we chose the word with the same
two first letters as correction, etc... until the number of letters minus the edit
distance (2), the result is 3 (so for the first three letters).

In this case, our post-treatment found "lilt" and "lily" in the Aspell dictio-
nary. As "lilt" appears before "lily" in alphabetical order, the returned correc-
tion for "lil l" will be "lilt".

Using Aspell dictionary can help in some cases to find the standard form
for the prediction of the normalization model as post-treatment. However,

3http://aspell.net/

http://aspell.net/

172 Chapter 6. Using normalized text as CRFs features for NER

form in text normalization prediction matching in vocabulary
whispering whispering whispering
cause causes causes
i i i
may may may
have have have
had had had
1 1 1
too too too
many many many
vodka vodka vodka
’s ’s ’s
last last last
night night night
and and and
am am am
a a a
lil lil l Gill, lilt
fragile fraggle fragile

TABLE 6.14: Miss-corrected tokens in (Ritter et al., 2011) using
Aspell dictionary

sometimes the nearest form is not the correction of the non-standard word
(as "lilt" for "lil").

On the other hand, Traversing a list of words to find the nearest word in
edit distance could take very long time according to the size of the vocabu-
lary. The size of the Aspell dictionary is 100905 words, and the vocabulary in
the training data is only 13926. Using the Aspell dictionary takes almost 10
more time than only using standard words and corrections of non-standard
words in training data in case of uni-thread processing. We can surely pro-
cess on multi-thread and then find a better way to choose a candidate among
nearest tokens by edit distance in the vocabulary.

6.2.3 Using normalized texts as features for NER

In this section, we add the normalized texts to CRFs features for named entity
recognition (NER).

Other features of the CRFs model is the same as in chapter 4.
In the previous chapter 3, the pos tagger helped to improve our NER

model, in this step, we will try to get two results, with the pos tagger and
without the pos tagger.

6.2. Using normalized text as feature for NER 173

The pos tagger model that we chose is the mixed model trained by dataset
(Ritter et al., 2011) and the PTB dataset. The POS tagset is the Synthesio
universal tagset with 17 possible tags.

Since the CRFs model will automatically choose features that count for
the best annotation sequence, we only need to add correction proposals for
each token as a feature and to let our CRFs model choose if this feature counts
and how much this feature counts.

We chose the best CRFs patterns from chapter 3, that is the Constant1
model. And for the added feature, the corrections of all tokens, we used the
token itself in lowercase for SW and corrections are also in lowercase as the
annotation convention.

Each CRFs feature can be defined on all tokens sequences. We used the
same window size as other features, that is two words before and two words
after, plus the current token. Similarly, we let our CRFs model choose which
is important as feature’s position.

The CRFs model is evaluated by named entity type and with precision,
recall and F1-measure as previously done in the chapter 3.

Table 6.15 shows the results of each named entity type.

Precision Recall F-Measure
Company 1.0 0.03/0.05 0.06/ 0.10

Person 0.35/0.38 0.41/0.52 0.38/0.44
Other 0.5 1.0/1.0 0.67/0.67

Product 0.5 0.03/0.04 0.06/0.07
Media 0.5 0.07 0.12

Geo-Location 0/0 0/0 0/0
Job-title 0/0 0/0 0/0

Micro-Average 0.45/0.49 0.07/0.10 0.12/0.17

TABLE 6.15: NER results using POS tagger as feature

Named entities of type Company, Product and Person have better re-
call score and for Person, the precision is also better than without normal-
ized text. For Media, Geo-location and Job-title, the result of NER
have not been improved.

However, the true positive predictions increased from 18 to 30 for named
entity Company, from 47 to 60 for Person and from 16 to 21 for Product
and for other types, the scores remain the same.

In this Synthesio dataset, there is 596 labelled named entities of the type
Company and 534 labelled named entities of the type Product, Therefore,
this dataset is more business-oriented.

174 Chapter 6. Using normalized text as CRFs features for NER

FIGURE 6.19: Named entity distribution in two datasets

The figure 6.19 shows the distribution of each type of named entities in
both datasets. These two datasets are very different. The Synthesio dataset
has more Company and Product named entities. These two types of named
entities also have a lot of repetitions for one named entity.

named entity occurrence named entity (concurrent) occurrence
Deezer 15 Spotify 28

Dunkin Donuts 13 Starbucks 37
McDonalds 25

Mattel 87 Disney 13
Nissan 74 Toyota 8

Land Rover 13 Jeep 27
Total 340

TABLE 6.16: Clients names and their concurrents

For example, in all labelled named entities of type Company, some named
entities and their numbers of occurrences are shown in table 6.16. All these
named entities are not in the training dataset (from (Ritter et al., 2011)), and
the total number of their occurrences counts more than half of the labelled
Company named entity (340 on 534). These named entity of type Company
have never been in the training data from (Ritter et al., 2011), and the context
from CRFs features is not sufficient to detect them.

6.3. Conclusion 175

6.3 Conclusion

In this chapter, we wanted to add normalization results as a new feature of
the CRFs model from chapter 4 for Named Entity Recognition (NER) on the
Synthesio dataset.

We first applied the non-standard words (NSW) and standard words (SW)
classifier from chapter 5 to predict all tokens for the dataset from (Ritter et al.,
2011) and for the Synthesio dataset. The percentages of detected NSW were
2.94% and 1.39% respectively.

When we used the classifier prediction as a feature (which value is either
NSW or SW) in the CRFs model, the CRFs model succeeded to correctly label
more named entities of type Company.

We then tried to normalize the text by proposing a normalized form for
detected non-standard words (NSW) or for all tokens in the text.

We tested two normalization models.
The first normalization model was only trained on detected non-standard

words (NSW) from the training data (from (Baldwin et al., 2015) and (Li and
Liu, 2014)). This model was then only applied on NSW predicted by the
NSW/SW classifier, and we added the proposed normalization candidate
as feature value of the CRFs model. The detected SW have their original
forms as feature value. The NER results by the CRFs model did not change
because the generated CRFs model did not keep this feature in optimized set
of features and weights because the CRFs model considered that this feature
was not useful according to the labelled training data.

We tried then another normalization model which proposed a normalized
form for all tokens. The feature value was the normalized form for NSW and
the original form for SW. The NER results with the same CRFs model showed
improvement for some types of named entities and the same results as before
for other types.

Finally, analysis of the distribution of named entities of these two datasets
showed that they are very different. That is the reason why the CRFs model
trained on one dataset does not perform the same on the other dataset.

Having normalized texts as features of the CRF model allowed more named
entities to be detected in the Synthesio corpus. However, some are still miss-
ing as examples shown in table 6.16.

176

Chapter 7

Conclusion and perspectives

This PHD thesis aimed to improve Named Entity Recognition (NER) results
on User-Generated Content (UGC). In this chapter, we try to summarize our
entire work and contributions regarding this theme.

This work is the result of a Cifre grant and our results are thus more prac-
tical than theoretical.

We analysed the differences between UGC and well-formed text (stan-
dard text) from a lexical, morpho-syntactic and syntactic point of view (chap-
ter 2). We then created a multi-domain, multi-type dataset in English, and we
labelled this dataset with eight types of named entities (chapter 3). The first
results of the Named Entity Recognition (NER) task using Conditional Ran-
dom fields (CRFs) on this dataset are presented in chapter 4.

Since the results were not satisfying enough, we tried two ways to im-
prove them. The first method consisted in training a POS tagger on mixed
data with User-Generated Content (UGC) and standard texts. This POS tag-
ger was trained with a defined universal tagset suitable for all 80 languages
that Synthesio works on. Then we used the predicted POS tags as a feature
in our NER model with CRFs (chapter 4).

As mentioned in chapter 2, user-generated content (UGC) often contains
spelling errors, abbreviations, etc. compared to standard text. In order to
normalize a part of the UGC vocabulary in the Synthesio datatset, we first
tried to unify some date, time, currency, quantity and volume expressions
using regular expressions. We then created a Synthesio word2vec model after
this first normalization (chapter 3).

After that, we tried to normalize non-standard words (NSW) by propos-
ing a correct form for them. We first developed a convolutional neural net-
work (CNN) model to classify standard words (SW) and non-standard words
(NSW). We then developed a lexical normalization model that proposes a cor-
rect form to replace non-standard words (NSW) in the text. As for standard
words, this proposition was itself (chapter 5). We then used the proposed

7.1. Summary of findings 177

candidates as another feature in our NER model with CRFs to try to improve
the NER results (chapter 6).

7.1 Summary of findings

Nowadays, more and more User-Generated Content (UGC) is present on the
Internet. In this context, Natural Language Processing (NLP) tasks make it
possible to analyze the mass of information with less human efforts. These
NLP tools include tokenizers, part-of-speech (POS) taggers, chunkers, parsers
and named entity recognizers. Many applications like sentiment analysis, so-
cial recommendations and advertising are based on these NLP tools.

This work is the result of a Cifre thesis developed within the company
Synthesio. Synthesio works on social media data analysis and sentiment
analysis. Its clients cover the cosmetics, automobile, music streaming do-
mains. Synthesio provides text analysis for more than 80 languages all over
the world.

Synthesio first extracts text data through the Internet that interest their
clients, then tries to analyze these data in time period, geolocation, and lan-
guage. Synthesio also developed a sentiment analyser with three values for
each document: positive, negative and neutral.

The Named Entity Recognition (NER) task aimed to help them identify
the topic of a text. The topic could be a company, a product, a person, a sports
team, a music artist... according to the domains and need of their clients.

There are existing named entity recognisers trained on tweets but for Syn-
thesio, the ressources of User-Generated Contents (UGC) are short texts like
tweets (limited in 140 characters) and also long texts on forums. The defini-
tions of entity types are also different from other named entity recognisers.
That is why we should develop our own named entity recogniser.

There are already User-Generated Content (UGC) datasets in which named
entities are annotated (Ritter et al., 2011) if we want to train a proper NER
model on them. We only had to add a new type of named entity, the job ti-
tle and merge some types of existing named entities (TV shows, movies and
music artist into media) following Synthesio’s named entity definitions.

Dataset creation and annotation

Since we wanted to work with real data for Synthesio, we first needed to
create a dataset for evaluation.

178 Chapter 7. Conclusion and perspectives

We created a multi-domain, multi-type dataset in English using Synthesio
data.

We chose five Synthesio clients: Deezer, Dunkin donuts, Land Rover, Mat-
tel and Nissan from four different domains: music, street food, automobile
and toys. For each domain, we extracted 50 long texts from discussion fo-
rums, websites and 50 short texts from Twitter. They were organized by do-
main and by text type (long text and short text). We tokenized the text with
the Synthesio tokenizer, then we annotated these data following the recom-
mendations of Ritter et al., 2011 and Synthesio’s definitions of types of named
entities. The human annotation was done with the same person that devel-
oped the NER model in CRFs. In order to test the model’s performance, the
tendency was to annotate the most named entity possible, that is, when we
are not sure if a word sequence is a named entity (for example, "witch doctor"
for named entity of type Job-title), we define it as a named entity.

These texts, whether they were long or short, were all User-Generated
Content (UGC), so they contained a lot of noise and mistakes. Some texts
were not syntactically correct, they were real pieces of data that Synthesio
tried to analyse.

This dataset also contained some duplicated data since Synthesio kept
all quotes in forum, all retweets from one tweet (beginning with "RT:" then
following by the content of the original tweet) and these duplicated texts had
different identifications.

This dataset was not a proper dataset for training, but it was a good be-
ginning for an evaluation data.

POS tagger

The POS tagger’s performance decreases on user-generated content as men-
tioned in (Gimpel et al., 2011) and in (Owoputi et al., 2013).

We developed a new POS tagger for UGC, with the objective to improve
our NER model’s performance.

This POS tagger is different from the existing ones. First, our goal is to
improve NER results. We want to use the grammar category for each token as
a feature. Secondly, the User-Generated Content (UGC) that we try to process
contains a lot of syntax errors. Lastly, Synthesio wanted a POS tagger for all
the eighty languages that they process, so the definition of tagset should be
compatible to almost all human languages.

7.1. Summary of findings 179

That is the reason why we do not need a detailled tagset like Penn Tree-
bank (Marcus, Marcinkiewicz, and Santorini, 1993) (with forty-five different
POS tags). So we defined a POS tagset with 17 tags, and a mapping rule to
match the tagset of Penn Treebank (Marcus, Marcinkiewicz, and Santorini,
1993) and (Ritter et al., 2011) into these 17 tags.

We used a cross validation approach for validation on dataset in (Ritter
et al., 2011). We found that the mixed training data with the Penn Tree Bank
(Marcus, Marcinkiewicz, and Santorini, 1993) plus the training part of cross
validation) works better than a model trained only on one dataset.

We can conclude that having more training data is the best option to reach
the best performing model. But since we evaluate our model on tweet data
in (Ritter et al., 2011), if the quantity of Penn Tree Bank data adding into
training data exceeds some limit (in our experiment, that’s nine times more
sequences), the performance of the pos tagger will decrease.

Synthesio has already implemented this POS tagger as a component of
its natural language processing (NLP) pipeline right after the tokenizer. This
POS tagger can help Synthesio to find the object (topic) mentionned in the
text and the corresponding sentiment (for sentiment analysing).

Lexical normalization for tweets

In chapter 2, we talked about the specificities of User-Generated Content
(UGC) compared to standard texts, and traditional NLP tools’ performances
decline on UGC. If we want to continue to use these traditional NLP tools,
we need a special preprocessing procedure for the noisy, non-canonical UGC.
We tested lexical normalization model as a preprocessing step for UGC. This
normalization procedure contains three levels.

The first two levels are about to create a vocabulary using unlabelled data.
Synthesio processes a lot of semi-structured data. The meta-data of each doc-
ument contains informations as date, source (urls), platform (like Facebook,
Twitter) etc... We want to make use of this mass of unlabelled data.

The first level was morpho-lexical normalization. On this level, we tried
to normalize the form in lowercase or uppercase. Tokens are replaced into
their most frequent form according to a large Synthesio dataset. For example,
for the token all letters in lowercase "nissan", the form "Nissan" is the most
frequent form with almost 90%. But there are also other forms like "NISSAN",
"nissan" even "NIssan". When we replace all the other forms by the most

180 Chapter 7. Conclusion and perspectives

frequent form "Nissan", we can limit our vocabulary size without changing
any text meaning.

The second normalization step dealt with the lexical level. UGC and
well-formed texts both contain non-standard words, numbers, abbreviations,
dates, currency amounts, acronyms, etc. In addition, these texts contain a lot
of unknown words and spelling errors.

When we tried to analyze a large quantity of data, we found out that there
were tokens with similar tokens which express volume, date, currency, etc.
For example, "3000" and "3k" have the same meaning: both of them refer to
the number of three thousand. On the other hand, sometimes we do not take
exact numbers into account. All numeric values can be normalized with a
simple indication of quantity in the normalization stage. For example, when
one text talks about "3m people" (3 million people) and another text talks
about "five hundred people", they are both about some number of people
that we can ignore the exact number. So if we normalize tokens "3m" and
"five" in only one expression, that would limit the number of vocabulary.

As a result of the first two levels of lexical normalization, we trained a
word2vec model with unannotated Synthesio data. In this word2vec model,
tokens were represented by their most frequent forms (on the morpho-lexical
level). Quantity, volume expression and date expression were unified into
general labels like "quantity", "volume" and "date" etc.

The third normalization step also dealt with the lexical level. We tried to
find non-standard words (NSW) to replace them with standard forms.

Non-standard words (NSW) contain out-of-vocabulary (OOV) words and
in some cases, in-vocabulary words as showed in the NSW definition figure
2.10 of chapter 2.

Not all OOV words are non-standard words (NSW). For example, some
named entity which are not present in a standard vocabulary (like "Obama")
are OOV words but they are in standard form because we do not need to
correct them and it is impossible to correct them) so they are standard words
(SW).

Sometimes an in-vocabulary (IV) word is NSW, as "wit" in "I will go wit
you". Here "wit" exists in standard English dictionary but it should be de-
tected as non-standard word and be replaced by its standard form "with"
according to this context.

Noises in a text are incomprehensible words or words which have no se-
mantic meanings. They were considered as standard words (SW) because we

7.1. Summary of findings 181

cannot find a standard form to replace the noisy tokens (like "hahahaha") for
the following step.

The definition of non-standard words (NSW) makes it difficult to classify
all tokens in a tokenized text into non-standard words (NSW) and standard
words (SW).

We first developed a simple SVM model to classify NSW and SW in order
to provide a baseline. Then we developed and tested more complex neural
networks (NN) models: long short-term memory (LSTM) model and a con-
volutional neural networks (CNN) model.

This CNN model used character-level representation for the current token
and two words before and after the current token as context window. We
achieved a F1-measure of the NSW class at about 96% on cross validation
with a mixed dataset from (Baldwin et al., 2015) and (Li and Liu, 2014). This
score is a little less than that in Baldwin et al., 2015 (98% on F1-measure for
NSW class).

We then developed a word normalization model proposing a correct form
(in a defined vocabulary) to replace a NSW token in the text.

There were two possibilities to use the normalization model. We could
train this normalization model only on NSW and evaluate on NSW words,
which implied that all tokens had to be correctly classified on NSW and SW.
We could also train this normalization model on NSW and SW. For SW, the
correct form proposed by the normalization model was just its form itself in
the text. We evaluated this normalization model on all tokens (both NSW
and SW). For each case, we also tested the normalization model with the
context (two words before and two words after) and without the context of
the current token.

The normalization model took the sequence of all characters in the token
as input. We also trained a character representation from all words in the
vocabulary, to take into account relations between characters in one word.
Then as output, the normalization model gave an in-vocabulary (IV) word as
candidate proposed for the given token, or an "unknown" label for an out-
of-vocabulary (OOV) word proposed. In this case, if the correction of the
token was an OOV word, the proposed "unknown" label was considered as
a correct answer, as if the normalization model had found the correct form.

As a conclusion, the normalization model trained only on NSW had more
accuracy than the normalization model working for both NSW and SW (80%
vs 73%). But for the correct forms on out-of-vocabulary (OOV) word, our

182 Chapter 7. Conclusion and perspectives

normalization model only returned an "unknown" label as it was trained to
do.

Named entity recognition

The Named Entity Recognition (NER) task on user-generated content (UGC)
was the main subject of this thesis.

Ritter et al., 2011 already showed that existing Named Entity Recogni-
zers do not perform so well on User-Generated Content (UGC) because of
spelling errors, noises and syntactic errors in the text. They also developed a
NER tool trained on an annotated dataset of tweets.

However, we could not use this tool directly for Synthesio because Syn-
thesio had a different set of named entities types. But based on this anno-
tated dataset, Synthesio defined a subset of similar types as geo-location,
sportsteam, person, facility, company and product. Among these
types of named entities, company, product and sportsteam could be the
ones of Synthesio’s customers (potential customer in the future). Other types
of named entities in the dataset of Ritter et al., 2011 like music artists,
TV shows and movies are less likely to be Synthesio’s client and Synthesio
wants to merge these three classes into one: media. We also added one type
of named entity job title for Synthesio. We kept the type other for other
types of named entities like holidays, constellation names, etc.

Similar to Ritter et al., 2011, we found that our CRFs named entity recog-
nition model in chapter 3 did not perform well on User-Generated Content
(UGC). We tried to improve those results for the rest of the thesis.

The first method that we tried was to add part-of-speech tag as a feature
in the CRFs model for NER.

The part-of-speech tag is important for the NER task. We included the
POS tag as features in our CRFs model for NER task, but there were problems
with the annotated POS tag in the Penn Treebank. On the one hand, there was
a lot of out-of-vocabulary (OOV) words in our evaluation dataset (created by
Synthesio), which were not present in the Penn Treebank dataset (we labelled
these tokens with "None" label). On the other hand, there were 65 POS tags in
the Penn Treebank’s tagset and sometimes one token could have more than
one possible POS tags in different contexts in the dataset (up to 7 possible
POS tags). This feature was represented by 7 sub-features: the most frequent
POS tag, the second frequent POS tag, etc. These 7 sub-features were then
considered as independent features for all tokens.

7.1. Summary of findings 183

Similarly to NER task, the POS tagging on user-generated content (UGC)
declined compared to standard text.

We developed our own POS tagger trained on UGC, which predicted to-
kens with 17 possible POS tags from defined POS tagset (from chapter 3). We
then used this POS tagger to first predict tokenized texts and then used the
predicted POS tag as a CRF feature in our NER model.

As a conclusion, according to the results in chapter 4, the CRFs model
with the results of our POS tagger was slightly better than the other mod-
els (with POS tag in Penn Treebank as feature) for some types of entities:
company, person and some types of entities that do not have any correctly
extracted entities: media and sportsteam.

Another method that we tried in order to improve the NER results was
lexical normalization. We first created a large unannotated Synthesio dataset
and we normalized uppercase/lowercase forms. Then we normalized some
common expressions such as date, quantity, volume, etc. We then trained a
word2vec model with this dataset and we obtained a vector representation
of this dataset. We used this word2vec model as word representation for the
following NSW/SW classifier and the word normalization model.

To add the normalized tokens as a feature in the CRFs model for the
NER task, we classified NSW and SW tokens and developed a normalization
model which could propose an in-vocabulary (IV) word to replace a NSW
token. If the correction of the NSW token was an out-of-vocabulary word,
the normalization model would label it "unknown".

According to the results in chapter 6, the NER model was slightly better
with the correct form proposed by the normalization model as a CRF feature.

The NER result remained largely worse on Synthesio’s reference evalu-
ation dataset than on dataset of Ritter et al., 2011. On one hand, all of our
CRF models are developed to maximise the cross validation on the dataset
from Ritter et al., 2011 and we expected that the model would adapt to the
domains of Synthesio dataset. The result means that the Synthesio dataset
was too various and too different from Ritter et al., 2011 even though both
are User-Generated Content (UGC). On the other hand, the Synthesio evalu-
ation dataset was created to test our CRF models and this dataset was anno-
tated by our CRF model developper. So the annotation was stricter and more
complex.

184 Chapter 7. Conclusion and perspectives

7.2 Limitations and Perspective

This work aimed to help the company Synthesio with its natural language
processing (NLP) task: the named entity recognition (NER).

Since the beginning, creating a client list and extracting only the corre-
sponding tokens has not been an option because it was difficult to maintain
the client list in all 80 language and that would only work for named entity
types like company, product. It would be almost impossible to create a list of
person names and a geo-location list. That is why we considered a machine
learning method.

We first created an annotated dataset on Synthesio data and we evaluated
our model on it. However, in that dataset, there were doubled texts and
the vocabulary and contexts were very limited. For example, in the domain
of "Nissan", we had already selected texts with the token "Nissan" (because
we extracted texts for this client), but this token was absent in the training
data and it appeared in almost all the texts in the domain, that is a missing
named entity of all occurrence of the token "Nissan" (the company name for
the named entity).

On the other hand, this dataset was very different from the one of Ritter et
al., 2011, our CRF models known to be working fine during cross validation
on the dataset from Ritter et al., 2011, did not perform as well as we expected.
These two datasets were from different domains and even the dataset of Syn-
thesio was from four different domains. For example, our CRF model never
learnt that "Nissan" was a company. It is almost impossible for a CRF model
to predict some token with its value and its context since the model has never
learned that "Nissan" is a company.

For future work, Synthesio should create a proper training dataset which
covers a maximum number of domains to try to train a proper CRF model. If
this data is not sufficient, we can mix the Synthesio training dataset with the
dataset in (Ritter et al., 2011) for domain adaptation as we did for POS tagger
in chapter 3.

The lexical normalization part of this thesis aimed to improve the NER
results. So we did not annotate Synthesio dataset with correct form for non-
standard words (NSW) and we did not develop a real pipeline for this nor-
malization task. We stopped at the point that the correction of a token could
be an out-of-vocabulary (OOV) word by only labelling "unknown" as the
proposed correct form.

The entire pipeline could be: first classify a token as non-standard word

7.2. Limitations and Perspective 185

(NSW) or standard word (SW). Then for SW, the model will propose its origi-
nal form as correction. As for NSW, the model will propose an in-vocabulary
(IV) word as proposition of correct form as we already did. After that, if the
proposition is an out-of-vocabulary (OOV) word, the model will propose a
sequence of characters (possible spellings) as corrections (as the test that we
did in the chapter 5). Finally, if necessary, we could develop a post-treatment
to match the proposed form with the nearest word in the vocabulary using
edit distance.

We could evaluate our NSW/SW classifier and lexical normalization model
with this dataset. There are less variances on the character level (with spelling
variance) than the named entity level.

We only normalized texts on the morpho-syntactic level. There are al-
ready studies on phonetic level as in Xu, Xia, and Lee, 2015. They used the
cmu pronouncing dictionary 1 to represent tokens on phonemes according
to their pronunciation. For example, if the symbol ’f’ represents the pro-
nunciation of the letter ’f’, the combination of letters ’ph’ will have the same
representation since this combination pronounces the same as the letter ’f’.
This is a new method to represent a given token. With this method, we can
imagine that tokens variance like "thanks" with undefined number of ’s’ in
the end like "thanksssssss" will have the same representation by pronuncia-
tion because the sequence of some repeating ’s’ is spelled the same as only
one letter ’s’.

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

186

Bibliography

Abeillé, Anne, Lionel Clément, and François Toussenel (2003). “Building a
Treebank for French”. In: Treebanks: Building and Using Parsed Corpora. Ed.
by Anne Abeillé. Dordrecht: Springer Netherlands, pp. 165–187. ISBN:
978-94-010-0201-1. DOI: 10.1007/978-94-010-0201-1_10. URL:
https://doi.org/10.1007/978-94-010-0201-1_10.

Akhtar, Md Shad, Utpal Kumar Sikdar, and Asif Ekbal (2015). “IITP: Hybrid
Approach for Text Normalization in Twitter”. In: Proceedings of the Work-
shop on Noisy User-generated Text. Beijing, China: Association for Compu-
tational Linguistics, pp. 106–110. DOI: 10.18653/v1/W15-4316. URL:
http://aclweb.org/anthology/W15-4316.

Altman, N. S. (1992). “An Introduction to Kernel and Nearest-Neighbor Non-
parametric Regression”. In: The American Statistician 46.3, pp. 175–185.
DOI: 10.1080/00031305.1992.10475879. eprint: https://www.
tandfonline.com/doi/pdf/10.1080/00031305.1992.10475879.
URL: https : / / www . tandfonline . com / doi / abs / 10 . 1080 /
00031305.1992.10475879.

Alvarado, Julio Cesar Salinas, Karin Verspoor, and Timothy Baldwin (2015).
“Domain adaption of named entity recognition to support credit risk as-
sessment”. In: Proceedings of the Australasian Language Technology Associa-
tion Workshop 2015, pp. 84–90.

Baldwin, Timothy et al. (2015). “Shared Tasks of the 2015 Workshop on Noisy
User-generated Text: Twitter Lexical Normalization and Named Entity
Recognition”. In: Proceedings of the Workshop on Noisy User-generated Text.
Beijing, China: Association for Computational Linguistics, pp. 126–135.
DOI: 10.18653/v1/W15-4319. URL: http://aclweb.org/anthology/
W15-4319.

Beckley, Russell (2015). “Bekli:A Simple Approach to Twitter Text Normal-
ization.” In: Proceedings of the Workshop on Noisy User-generated Text. Bei-
jing, China: Association for Computational Linguistics, pp. 82–86. DOI:
10.18653/v1/W15-4312. URL: http://aclweb.org/anthology/
W15-4312.

https://doi.org/10.1007/978-94-010-0201-1_10
https://doi.org/10.1007/978-94-010-0201-1_10
https://doi.org/10.18653/v1/W15-4316
http://aclweb.org/anthology/W15-4316
https://doi.org/10.1080/00031305.1992.10475879
https://www.tandfonline.com/doi/pdf/10.1080/00031305.1992.10475879
https://www.tandfonline.com/doi/pdf/10.1080/00031305.1992.10475879
https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879
https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879
https://doi.org/10.18653/v1/W15-4319
http://aclweb.org/anthology/W15-4319
http://aclweb.org/anthology/W15-4319
https://doi.org/10.18653/v1/W15-4312
http://aclweb.org/anthology/W15-4312
http://aclweb.org/anthology/W15-4312

Bibliography 187

Ben-David, Shai et al. (May 2010). “A Theory of Learning from Different Do-
mains”. In: Machine Learning 79.1-2, pp. 151–175. ISSN: 0885-6125. DOI:
10.1007/s10994-009-5152- 4. URL: https://doi.org/10.
1007/s10994-009-5152-4.

Bender, Oliver, Franz Josef Och, and Hermann Ney (2003). “Maximum En-
tropy Models for Named Entity Recognition”. In: Proceedings of the Sev-
enth Conference on Natural Language Learning at HLT-NAACL 2003 - Volume
4. CONLL ’03. Edmonton, Canada: Association for Computational Lin-
guistics, pp. 148–151. DOI: 10.3115/1119176.1119196. URL: https:
//doi.org/10.3115/1119176.1119196.

Berend, Gábor and Ervin Tasnádi (2015). “USZEGED: Correction Type-sensitive
Normalization of English Tweets Using Efficiently Indexed n-gram Statis-
tics”. In: Proceedings of the Workshop on Noisy User-generated Text. Beijing,
China: Association for Computational Linguistics, pp. 120–125. DOI: 10.
18653/v1/W15-4318. URL: http://aclweb.org/anthology/W15-
4318.

Blei, David M, Andrew Y Ng, and Michael I Jordan (2003). “Latent dirichlet
allocation”. In: Journal of machine Learning research 3.Jan, pp. 993–1022.

Bollen, Johan, Huina Mao, and Xiao-Jun Zeng (Oct. 2010). “Twitter Mood
Predicts the Stock Market”. In: Journal of Computational Science.

Bondy, J.A. and U.S.R Murty (2008). Graph Theory. 1st. Springer Publishing
Company, Incorporated. ISBN: 1846289696.

Brown, Peter F. et al. (Dec. 1992). “Class-based N-gram Models of Natu-
ral Language”. In: Computational Linguistics 18.4, pp. 467–479. ISSN: 0891-
2017. URL: http://dl.acm.org/citation.cfm?id=176313.
176316.

Bunescu, Razvan C. and Raymond J. Mooney (Dec. 2005). “A shortest path
dependency kernel for relation extraction”. English (US). In: Proceedings of
Human Language Technology Conference and Conference on Empirical Methods
in Natural Language Processing. Human Language Technology Conference
and Conference on Empirical Methods in Natural Language Processing,
HLT/EMNLP 2005, Co-located with the 2005 Document Understanding
Conference, DUC and the 9th International Workshop on Parsing Tech-
nologies, IWPT ; Conference date: 06-10-2005 Through 08-10-2005, pp. 724–
731. URL: http://www.aclweb.org/anthology/H05-1091.

Byrne, Kate (2007). “Nested named entity recognition in historical archive
text”. In: Semantic Computing, 2007. ICSC 2007. International Conference on.
IEEE, pp. 589–596.

https://doi.org/10.1007/s10994-009-5152-4
https://doi.org/10.1007/s10994-009-5152-4
https://doi.org/10.1007/s10994-009-5152-4
https://doi.org/10.3115/1119176.1119196
https://doi.org/10.3115/1119176.1119196
https://doi.org/10.3115/1119176.1119196
https://doi.org/10.18653/v1/W15-4318
https://doi.org/10.18653/v1/W15-4318
http://aclweb.org/anthology/W15-4318
http://aclweb.org/anthology/W15-4318
http://dl.acm.org/citation.cfm?id=176313.176316
http://dl.acm.org/citation.cfm?id=176313.176316
http://www.aclweb.org/anthology/H05-1091

188 Bibliography

Cano Basave, Amparo Elizabeth et al. (2013). “Making sense of microposts
(#MSM2013) concept extraction challenge”. In: #MSM2013 : concept extrac-
tion challenge at Making Sense of Microposts 2013. Ed. by Amparo E. Cano
et al. CEUR workshop proceedings. CEUR-WS.org, pp. 1–15.

Cardoso, Pedro Dias and Anindya Roy (2016). “Sentiment Lexicon Creation
using Continuous Latent Space and Neural Networks”. In: Proceedings of
the 7th Workshop on Computational Approaches to Subjectivity, Sentiment and
Social Media Analysis, pp. 37–42.

Cherry, Colin and Hongyu Guo (2015). “The unreasonable effectiveness of
word representations for twitter named entity recognition”. In: Proceed-
ings of the 2015 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 735–745.

Chieu, Hai Leong and Hwee Tou Ng (2003). “Named Entity Recognition with
a Maximum Entropy Approach”. In: Proceedings of the Seventh Conference
on Natural Language Learning at HLT-NAACL 2003 - Volume 4. CONLL ’03.
Edmonton, Canada: Association for Computational Linguistics, pp. 160–
163. DOI: 10.3115/1119176.1119199. URL: https://doi.org/10.
3115/1119176.1119199.

Chinchor, N. and P. Robinson (1998). “Appendix E: MUC-7 Named Entity
Task Definition (version 3.5)”. In: Seventh Message Understanding Confer-
ence (MUC-7): Proceedings of a Conference Held in Fairfax, Virginia, April 29 -
May 1, 1998. URL: http://www.aclweb.org/anthology/M98-1028.

Chinchor, Nancy (1999). “Overview of MUC-7”. In: Seventh Message Under-
standing Conference (MUC-7): Proceedings of a Conference Held in Fairfax,
Virginia, April 29-May 1, 1998.

Chomsky, Noam (1957). Syntactic Structures. The Hague: Mouton and Co.
Chrupała, Grzegorz (2014). “Normalizing tweets with edit scripts and recur-

rent neural embeddings”. In: Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers). Baltimore,
Maryland: Association for Computational Linguistics, pp. 680–686. DOI:
10.3115/v1/P14-2111. URL: http://aclweb.org/anthology/
P14-2111.

Collobert, Ronan and Jason Weston (2008). “A Unified Architecture for Nat-
ural Language Processing: Deep Neural Networks with Multitask Learn-
ing”. In: Proceedings of the 25th International Conference on Machine Learning.
ICML ’08. Helsinki, Finland: ACM, pp. 160–167. ISBN: 978-1-60558-205-4.
DOI: 10.1145/1390156.1390177. URL: http://doi.acm.org/10.
1145/1390156.1390177.

https://doi.org/10.3115/1119176.1119199
https://doi.org/10.3115/1119176.1119199
https://doi.org/10.3115/1119176.1119199
http://www.aclweb.org/anthology/M98-1028
https://doi.org/10.3115/v1/P14-2111
http://aclweb.org/anthology/P14-2111
http://aclweb.org/anthology/P14-2111
https://doi.org/10.1145/1390156.1390177
http://doi.acm.org/10.1145/1390156.1390177
http://doi.acm.org/10.1145/1390156.1390177

Bibliography 189

Collobert, Ronan et al. (Nov. 2011). “Natural Language Processing (Almost)
from Scratch”. In: Journal of Machine Learning Research (2011) 12, pp. 2493–
2537. ISSN: 1532-4435. URL: http://dl.acm.org/citation.cfm?
id=1953048.2078186.

Constant, Mathieu et al. (June 2011). “Intégrer des connaissances linguis-
tiques dans un CRF : application à l’apprentissage d’un segmenteur-étiqueteur
du français”. In: TALN. Vol. 1. Montpellier, France, p. 321. URL: https:
//hal.archives-ouvertes.fr/hal-00620923.

Cortes, Corinna and Vladimir Vapnik (1995). “Support-vector networks”. In:
Machine learning 20.3, pp. 273–297.

Cunningham, Hamish et al. (2002). “GATE: A Framework and Graphical De-
velopment Environment for Robust NLP Tools and Applications”. In: Pro-
ceedings of the 40th Anniversary Meeting of the Association for Computational
Linguistics (ACL’02).

Curran, James R. and Stephen Clark (2003). “Language Independent NER
Using a Maximum Entropy Tagger”. In: Proceedings of the Seventh Confer-
ence on Natural Language Learning at HLT-NAACL 2003 - Volume 4. CONLL
’03. Edmonton, Canada: Association for Computational Linguistics, pp. 164–
167. DOI: 10.3115/1119176.1119200. URL: https://doi.org/10.
3115/1119176.1119200.

Denis, Pascal, Jason Baldridge, et al. (2009). “Global joint models for coref-
erence resolution and named entity classification”. In: Procesamiento del
Lenguaje Natural 42.1, pp. 87–96. URL: https : / / hal . inria . fr /
inria-00514302.

Derczynski, Leon R. A., Bin Yang, and Christian S. Jensen (2013). “Towards
Context-aware Search and Analysis on Social Media Data”. In: Proceedings
of the 16th International Conference on Extending Database Technology. EDBT
’13. Genoa, Italy: ACM, pp. 137–142. ISBN: 978-1-4503-1597-5. DOI: 10.
1145/2452376.2452393. URL: http://doi.acm.org/10.1145/
2452376.2452393.

Dias Cardoso, Pedro Miguel and Anindya Roy (2016). “Language Identi-
fication for Social Media: Short Messages and Transliteration”. In: Pro-
ceedings of the 25th International Conference Companion on World Wide Web.
WWW ’16 Companion. Montréal, Québec, Canada: Interna-
tional World Wide Web Conferences Steering Committee, pp. 611–614.
ISBN: 978-1-4503-4144-8. DOI: 10.1145/2872518.2890560. URL: https:
//doi.org/10.1145/2872518.2890560.

http://dl.acm.org/citation.cfm?id=1953048.2078186
http://dl.acm.org/citation.cfm?id=1953048.2078186
https://hal.archives-ouvertes.fr/hal-00620923
https://hal.archives-ouvertes.fr/hal-00620923
https://doi.org/10.3115/1119176.1119200
https://doi.org/10.3115/1119176.1119200
https://doi.org/10.3115/1119176.1119200
https://hal.inria.fr/inria-00514302
https://hal.inria.fr/inria-00514302
https://doi.org/10.1145/2452376.2452393
https://doi.org/10.1145/2452376.2452393
http://doi.acm.org/10.1145/2452376.2452393
http://doi.acm.org/10.1145/2452376.2452393
https://doi.org/10.1145/2872518.2890560
https://doi.org/10.1145/2872518.2890560
https://doi.org/10.1145/2872518.2890560

190 Bibliography

Doddington, George R et al. (2004). “The Automatic Content Extraction (ACE)
Program-Tasks, Data, and Evaluation”. In: Proceedings of Language Resources
and Evaluation Conference 2004. Vol. 2, pp. 837–840.

Dupont, Yoann (Nov. 2017). “Structuration in named entities”. Theses. Uni-
versité Sorbonne Paris Cité. URL: https://tel.archives-ouvertes.
fr/tel-01772268.

Durrett, Greg and Dan Klein (2014). “A joint model for entity analysis: Coref-
erence, typing, and linking”. In: Transactions of the Association for Compu-
tational Linguistics 2, pp. 477–490.

Ehrmann, Maud (June 2008). “Named entities, from Linguistics to NLP: The-
oretical status and disambiguation methods”. Theses. Paris Diderot Uni-
versity. URL: https://hal.archives-ouvertes.fr/tel-01639190.

Elman, Jeffrey L (1990). “Finding structure in time”. In: Cognitive science 14.2,
pp. 179–211.

Erp, Marieke Van, Giuseppe Rizzo, and Raphaël Troncy (May 2013). “Learn-
ing with the Web: Spotting named entities on the intersection of NERD
and machine learning”. In: WWW 2013, 3rd International Workshop on Mak-
ing Sense of Microposts (#MSM’13), Concept Extraction Challenge, May 13,
2013, Rio de Janeiro, Brazil. Rio de Janeiro, BRAZIL. URL: http://www.
eurecom.fr/publication/3968.

Evans, Richard (2003). “A framework for named entity recognition in the
open domain”. In: In Proceedings of the Recent Advances in Natural Language
Processing (RANLP, pp. 137–144.

Finkel, Jenny Rose, Trond Grenager, and Christopher Manning (2005). “In-
corporating Non-local Information into Information Extraction Systems
by Gibbs Sampling”. In: Proceedings of the 43rd Annual Meeting on Asso-
ciation for Computational Linguistics. ACL ’05. Ann Arbor, Michigan: As-
sociation for Computational Linguistics, pp. 363–370. DOI: 10.3115/
1219840.1219885. URL: https://doi.org/10.3115/1219840.
1219885.

Finkel, Jenny Rose and Christopher D. Manning (2009). “Nested Named En-
tity Recognition”. In: Proceedings of the 2009 Conference on Empirical Meth-
ods in Natural Language Processing: Volume 1 - Volume 1. EMNLP ’09. Singa-
pore: Association for Computational Linguistics, pp. 141–150. ISBN: 978-
1-932432-59-6. URL: http://dl.acm.org/citation.cfm?id=
1699510.1699529.

Florian, Radu et al. (2003). “Named Entity Recognition Through Classifier
Combination”. In: Proceedings of the Seventh Conference on Natural Language

https://tel.archives-ouvertes.fr/tel-01772268
https://tel.archives-ouvertes.fr/tel-01772268
https://hal.archives-ouvertes.fr/tel-01639190
http://www.eurecom.fr/publication/3968
http://www.eurecom.fr/publication/3968
https://doi.org/10.3115/1219840.1219885
https://doi.org/10.3115/1219840.1219885
https://doi.org/10.3115/1219840.1219885
https://doi.org/10.3115/1219840.1219885
http://dl.acm.org/citation.cfm?id=1699510.1699529
http://dl.acm.org/citation.cfm?id=1699510.1699529

Bibliography 191

Learning at HLT-NAACL 2003 - Volume 4. CONLL ’03. Edmonton, Canada:
Association for Computational Linguistics, pp. 168–171. DOI: 10.3115/
1119176.1119201. URL: https://doi.org/10.3115/1119176.
1119201.

Forney, G David (1973). “The viterbi algorithm”. In: Proceedings of the Institute
of Electrical and Electronics Engineers (IEEE) 61.3, pp. 268–278.

Fort, Karën, Maud Ehrmann, and Adeline Nazarenko (2009). “Towards a
Methodology for Named Entities Annotation”. In: Proceedings of the Third
Linguistic Annotation Workshop. ACL-IJCNLP ’09. Suntec, Singapore: As-
sociation for Computational Linguistics, pp. 142–145. ISBN: 978-1-932432-
52-7. URL: http://dl.acm.org/citation.cfm?id=1698381.
1698406.

Foster, Jennifer et al. (2011). “#hardtoparse: POS Tagging and Parsing the
Twitterverse”. In: AAAI 2011 Workshop On Analyzing Microtext. United
States, pp. 20–25. URL: https://hal.archives-ouvertes.fr/hal-
00702445.

Garcia-Fernandez, Anne, Olivier Ferret, and Marco Dinarelli (2014). “Eval-
uation of Different Strategies for Domain Adaptation in Opinion Min-
ing”. In: Proceedings of the Ninth International Conference on Language Re-
sources and Evaluation (LREC’14). Ed. by Nicoletta Calzolari (Conference
Chair) et al. Reykjavik, Iceland: European Language Resources Associa-
tion (ELRA). ISBN: 978-2-9517408-8-4.

George, Carlisle and Jackie Scerri (June 2018). “Web 2.0 and User-Generated
Content: Legal Challenges in the New Frontier”. In: Journal of Information,
Law and Technology.

Gimpel, Kevin et al. (2011). “Part-of-speech Tagging for Twitter: Annotation,
Features, and Experiments”. In: Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies:
Short Papers - Volume 2. HLT ’11. Portland, Oregon: Association for Com-
putational Linguistics, pp. 42–47. ISBN: 978-1-932432-88-6. URL: http:
//dl.acm.org/citation.cfm?id=2002736.2002747.

Glorot, Xavier and Yoshua Bengio (May 2010). “Understanding the difficulty
of training deep feedforward neural networks”. In: JMLR W&CP: Pro-
ceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics (AISTATS 2010). Vol. 9. Chia Laguna Resort, Sardinia, Italy,
pp. 249–256.

Godin, Fréderic et al. (2015). “Multimedia Lab $@$ ACL WNUT NER Shared
Task: Named Entity Recognition for Twitter Microposts using Distributed

https://doi.org/10.3115/1119176.1119201
https://doi.org/10.3115/1119176.1119201
https://doi.org/10.3115/1119176.1119201
https://doi.org/10.3115/1119176.1119201
http://dl.acm.org/citation.cfm?id=1698381.1698406
http://dl.acm.org/citation.cfm?id=1698381.1698406
https://hal.archives-ouvertes.fr/hal-00702445
https://hal.archives-ouvertes.fr/hal-00702445
http://dl.acm.org/citation.cfm?id=2002736.2002747
http://dl.acm.org/citation.cfm?id=2002736.2002747

192 Bibliography

Word Representations”. In: Proceedings of the Workshop on Noisy User-generated
Text. Beijing, China: Association for Computational Linguistics, pp. 146–
153. DOI: 10.18653/v1/W15-4322. URL: http://aclweb.org/
anthology/W15-4322.

Gouws, Stephan, Dirk Hovy, and Donald Metzler (2011). “Unsupervised Min-
ing of Lexical Variants from Noisy Text”. In: Proceedings of the First Work-
shop on Unsupervised Learning in NLP. EMNLP ’11. Edinburgh, Scotland:
Association for Computational Linguistics, pp. 82–90. ISBN: 978-1-937284-
13-8. URL: http://dl.acm.org/citation.cfm?id=2140458.
2140468.

Grefenstette, Edward et al. (2014). “A Deep Architecture for Semantic Pars-
ing”. In: Proceedings of the ACL 2014 Workshop on Semantic Parsing. Bal-
timore, MD: Association for Computational Linguistics, pp. 22–27. DOI:
10.3115/v1/W14-2405. URL: http://www.aclweb.org/anthology/
W14-2405.

Grishman, Ralph and Beth Sundheim (1996). “Message Understanding Conference-
6: A Brief History”. In: Proceedings of the 16th Conference on Computational
Linguistics - Volume 1. COLING ’96. Copenhagen, Denmark: Association
for Computational Linguistics, pp. 466–471. DOI: 10.3115/992628.
992709. URL: https://doi.org/10.3115/992628.992709.

Guo, Honglei et al. (2009). “Domain Adaptation with Latent Semantic As-
sociation for Named Entity Recognition”. In: Proceedings of Human Lan-
guage Technologies: The 2009 Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics. NAACL ’09. Boulder,
Colorado: Association for Computational Linguistics, pp. 281–289. ISBN:
978-1-932432-41-1. URL: http://dl.acm.org/citation.cfm?id=
1620754.1620795.

Gupta, Vishal and Gurpreet Singh Lehal (2011). “Article: Named Entity Recog-
nition for Punjabi Language Text Summarization”. In: International Journal
of Computer Applications 33.3, pp. 28–32.

Hajishirzi, Hannaneh et al. (2013). “Joint Coreference Resolution and Named-
Entity Linking with Multi-Pass Sieves.” In: EMNLP. ACL, pp. 289–299.
ISBN: 978-1-937284-97-8. URL: http://dblp.uni- trier.de/db/
conf/emnlp/emnlp2013.html#HajishirziZWZ13.

Hammerton, James (2003). “Named Entity Recognition with Long Short-term
Memory”. In: Proceedings of the Seventh Conference on Natural Language
Learning at HLT-NAACL 2003 - Volume 4. CONLL ’03. Edmonton, Canada:
Association for Computational Linguistics, pp. 172–175. DOI: 10.3115/

https://doi.org/10.18653/v1/W15-4322
http://aclweb.org/anthology/W15-4322
http://aclweb.org/anthology/W15-4322
http://dl.acm.org/citation.cfm?id=2140458.2140468
http://dl.acm.org/citation.cfm?id=2140458.2140468
https://doi.org/10.3115/v1/W14-2405
http://www.aclweb.org/anthology/W14-2405
http://www.aclweb.org/anthology/W14-2405
https://doi.org/10.3115/992628.992709
https://doi.org/10.3115/992628.992709
https://doi.org/10.3115/992628.992709
http://dl.acm.org/citation.cfm?id=1620754.1620795
http://dl.acm.org/citation.cfm?id=1620754.1620795
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2013.html#HajishirziZWZ13
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2013.html#HajishirziZWZ13
https://doi.org/10.3115/1119176.1119202
https://doi.org/10.3115/1119176.1119202

Bibliography 193

1119176.1119202. URL: https://doi.org/10.3115/1119176.
1119202.

Han, Bo (2014). “Improving the utility of social media with Natural Language
Processing”. In: URL: http://hdl.handle.net/11343/41029.

Han, Bo and Timothy Baldwin (2011). “Lexical Normalisation of Short Text
Messages: Makn Sens a #Twitter”. In: Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics: Human Language Tech-
nologies - Volume 1. HLT ’11. Portland, Oregon: Association for Compu-
tational Linguistics, pp. 368–378. ISBN: 978-1-932432-87-9. URL: http://
dl.acm.org/citation.cfm?id=2002472.2002520.

Han, Sangdo et al. (2017). “Answer Ranking Based on Named Entity Types
for Question Answering”. In: Proceedings of the 11th International Confer-
ence on Ubiquitous Information Management and Communication. IMCOM
’17. Beppu, Japan: ACM, 71:1–71:4. ISBN: 978-1-4503-4888-1. DOI: 10.1145/
3022227.3022297. URL: http://doi.acm.org/10.1145/3022227.
3022297.

Hearst, Marti A. (1992). “Automatic Acquisition of Hyponyms from Large
Text Corpora”. In: Proceedings of the 14th Conference on Computational Lin-
guistics - Volume 2. COLING ’92. Nantes, France: Association for Compu-
tational Linguistics, pp. 539–545. DOI: 10.3115/992133.992154. URL:
https://doi.org/10.3115/992133.992154.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term mem-
ory”. In: Neural computation 9.8, pp. 1735–1780.

Hu, Yuheng et al. (2012). “What Were the Tweets About? Topical Associations
between Public Events and Twitter Feeds”. In: Proceedings of the Sixth In-
ternational AAAI Conference on Weblogs and Social Media (ICWSM).

Jaccard, Paul (1912). “The distribution of the flora in the alpine zone. 1”. In:
New phytologist 11.2, pp. 37–50.

Jiang, Long et al. (2011). “Target-dependent Twitter Sentiment Classification”.
In: Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies - Volume 1. HLT ’11. Portland,
Oregon: Association for Computational Linguistics, pp. 151–160. ISBN:
978-1-932432-87-9. URL: http://dl.acm.org/citation.cfm?id=
2002472.2002492.

https://doi.org/10.3115/1119176.1119202
https://doi.org/10.3115/1119176.1119202
https://doi.org/10.3115/1119176.1119202
https://doi.org/10.3115/1119176.1119202
http://hdl.handle.net/11343/41029
http://dl.acm.org/citation.cfm?id=2002472.2002520
http://dl.acm.org/citation.cfm?id=2002472.2002520
https://doi.org/10.1145/3022227.3022297
https://doi.org/10.1145/3022227.3022297
http://doi.acm.org/10.1145/3022227.3022297
http://doi.acm.org/10.1145/3022227.3022297
https://doi.org/10.3115/992133.992154
https://doi.org/10.3115/992133.992154
http://dl.acm.org/citation.cfm?id=2002472.2002492
http://dl.acm.org/citation.cfm?id=2002472.2002492

194 Bibliography

Jin, Ning (2015). “NCSU-SAS-Ning: Candidate Generation and Feature Engi-
neering for Supervised Lexical Normalization”. In: Proceedings of the Work-
shop on Noisy User-generated Text. Beijing, China: Association for Compu-
tational Linguistics, pp. 87–92. DOI: 10.18653/v1/W15-4313. URL:
http://aclweb.org/anthology/W15-4313.

Jonathan, Mark Przybocki et al. (1999). “Hub-4 Information Extraction Eval-
uation”. In: In Proceedings of the DARPA Broadcast News Workshop. Morgan
Kaufmann, pp. 13–18.

Kalchbrenner, Nal, Edward Grefenstette, and Phil Blunsom (2014). “A con-
volutional neural network for modelling sentences”. In: Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics. Balti-
more, Maryland: Association for Computational Linguistics, pp. 655–665.
DOI: 10.3115/v1/P14-1062. URL: http://www.aclweb.org/
anthology/P14-1062.

Kessler, Brett, Geoffrey Numberg, and Hinrich Schütze (1997). “Automatic
Detection of Text Genre”. In: Proceedings of the 35th Annual Meeting of the
Association for Computational Linguistics and Eighth Conference of the Euro-
pean Chapter of the Association for Computational Linguistics. ACL ’98/EACL
’98. Madrid, Spain: Association for Computational Linguistics, pp. 32–38.
DOI: 10.3115/976909.979622. URL: https://doi.org/10.3115/
976909.979622.

Kim, Yoon (2014). “Convolutional Neural Networks for Sentence Classifica-
tion”. In: Proceedings of the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP). Doha, Qatar: Association for Computa-
tional Linguistics, pp. 1746–1751. DOI: 10.3115/v1/D14-1181. URL:
http://www.aclweb.org/anthology/D14-1181.

Kim, Yoon et al. (2015). “Character-Aware Neural Language Models”. In:
The Computing Research Repository (CoRR) abs/1508.06615. arXiv: 1508.
06615. URL: http://arxiv.org/abs/1508.06615.

Klein, Dan et al. (2003). “Named Entity Recognition with Character-level
Models”. In: Proceedings of the Seventh Conference on Natural Language Learn-
ing at HLT-NAACL 2003 - Volume 4. CONLL ’03. Edmonton, Canada: As-
sociation for Computational Linguistics, pp. 180–183. DOI: 10.3115/
1119176.1119204. URL: https://doi.org/10.3115/1119176.
1119204.

Kneser, Reinhard and Hermann Ney (1993). “Improved clustering techniques
for class-based statistical language modelling”. In: Third European Confer-
ence on Speech Communication and Technology.

https://doi.org/10.18653/v1/W15-4313
http://aclweb.org/anthology/W15-4313
https://doi.org/10.3115/v1/P14-1062
http://www.aclweb.org/anthology/P14-1062
http://www.aclweb.org/anthology/P14-1062
https://doi.org/10.3115/976909.979622
https://doi.org/10.3115/976909.979622
https://doi.org/10.3115/976909.979622
https://doi.org/10.3115/v1/D14-1181
http://www.aclweb.org/anthology/D14-1181
https://arxiv.org/abs/1508.06615
https://arxiv.org/abs/1508.06615
http://arxiv.org/abs/1508.06615
https://doi.org/10.3115/1119176.1119204
https://doi.org/10.3115/1119176.1119204
https://doi.org/10.3115/1119176.1119204
https://doi.org/10.3115/1119176.1119204

Bibliography 195

Kong, Lingpeng et al. (2014). “A dependency parser for tweets”. In: Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pp. 1001–1012.

Kripke, Saul A (1972). “Naming and necessity”. In: Semantics of natural lan-
guage. Springer, pp. 253–355.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “Imagenet
classification with deep convolutional neural networks”. In: Advances in
neural information processing systems, pp. 1097–1105.

Kumar, Aman et al. (2015). “Understanding Medical Named Entity Extrac-
tion in Clinical Notes”. In:

Lafferty, John D., Andrew McCallum, and Fernando C. N. Pereira (2001).
“Conditional Random Fields: Probabilistic Models for Segmenting and
Labeling Sequence Data”. In: Proceedings of the Eighteenth International Con-
ference on Machine Learning. ICML ’01. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., pp. 282–289. ISBN: 1-55860-778-1. URL: http:
//dl.acm.org/citation.cfm?id=645530.655813.

LeCun, Yann et al. (1989). “Generalization and network design strategies”.
In: Connectionism in perspective, pp. 143–155.

Leeman-Munk, Samuel, James Lester, and James Cox (2015). “NCSU_SAS_SAM:
Deep Encoding and Reconstruction for Normalization of Noisy Text”. In:
Proceedings of the Workshop on Noisy User-generated Text. Beijing, China: As-
sociation for Computational Linguistics, pp. 154–161. DOI: 10.18653/
v1/W15-4323. URL: http://aclweb.org/anthology/W15-4323.

Levenshtein, Vladimir I (1966). “Binary codes capable of correcting deletions,
insertions, and reversals”. In: Soviet physics doklady. Vol. 10. 8, pp. 707–710.

Li, Chen and Yang Liu (2014). “Improving Text Normalization via Unsuper-
vised Model and Discriminative Reranking”. In: Proceedings of the ACL
2014 Student Research Workshop. Baltimore, Maryland, USA: Association
for Computational Linguistics, pp. 86–93. DOI: 10.3115/v1/P14-3012.
URL: http://aclweb.org/anthology/P14-3012.

— (2015). “Improving Named Entity Recognition in Tweets via Detecting
Non-Standard Words”. In: Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1: Long Papers). Beijing, China:
Association for Computational Linguistics, pp. 929–938. DOI: 10.3115/
v1/P15-1090. URL: http://aclweb.org/anthology/P15-1090.

Liang, Percy (2005). “Semi-supervised learning for natural language”. PhD
thesis. Massachusetts Institute of Technology.

http://dl.acm.org/citation.cfm?id=645530.655813
http://dl.acm.org/citation.cfm?id=645530.655813
https://doi.org/10.18653/v1/W15-4323
https://doi.org/10.18653/v1/W15-4323
http://aclweb.org/anthology/W15-4323
https://doi.org/10.3115/v1/P14-3012
http://aclweb.org/anthology/P14-3012
https://doi.org/10.3115/v1/P15-1090
https://doi.org/10.3115/v1/P15-1090
http://aclweb.org/anthology/P15-1090

196 Bibliography

Lilleberg, J., Y. Zhu, and Y. Zhang (2015). “Support vector machines and
Word2vec for text classification with semantic features”. In: 2015 IEEE
14th International Conference on Cognitive Informatics Cognitive Computing
(ICCI*CC), pp. 136–140. DOI: 10.1109/ICCI-CC.2015.7259377.

Ling, Wang et al. (2015). “Two/Too Simple Adaptations of Word2Vec for Syn-
tax Problems”. In: Proceedings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies. Denver, Colorado: Association for Computational Linguis-
tics, pp. 1299–1304. DOI: 10.3115/v1/N15- 1142. URL: http://
aclweb.org/anthology/N15-1142.

Liu, Fei, Fuliang Weng, and Xiao Jiang (2012). “A Broad-coverage Normaliza-
tion System for Social Media Language”. In: Proceedings of the 50th Annual
Meeting of the Association for Computational Linguistics: Long Papers - Volume
1. ACL ’12. Jeju Island, Korea: Association for Computational Linguistics,
pp. 1035–1044. URL: http://dl.acm.org/citation.cfm?id=
2390524.2390662.

Liu, Fei et al. (2011a). “Insertion, Deletion, or Substitution?: Normalizing
Text Messages Without Pre-categorization nor Supervision”. In: Proceed-
ings of the 49th Annual Meeting of the Association for Computational Linguis-
tics: Human Language Technologies: Short Papers - Volume 2. HLT ’11. Port-
land, Oregon: Association for Computational Linguistics, pp. 71–76. ISBN:
978-1-932432-88-6. URL: http://dl.acm.org/citation.cfm?id=
2002736.2002753.

Liu, Xiaohua et al. (2011b). “Recognizing named entities in tweets”. In: Pro-
ceedings of the 49th Annual Meeting of the Association for Computational Lin-
guistics: Human Language Technologies-Volume 1. Association for Computa-
tional Linguistics, pp. 359–367.

Liu, Xiaohua et al. (2012). “Joint Inference of Named Entity Recognition and
Normalization for Tweets”. In: Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics: Long Papers - Volume 1. ACL ’12.
Jeju Island, Korea: Association for Computational Linguistics, pp. 526–
535. URL: http://dl.acm.org/citation.cfm?id=2390524.
2390598.

Liu, Xiaohua et al. (2013). “Named entity recognition for tweets”. In: ACM
Transactions on Intelligent Systems and Technology (TIST) 4.1, p. 3.

Luce, R. Duncan and Albert D. Perry (1949). “A method of matrix analysis
of group structure”. In: Psychometrika 14.2, pp. 95–116. ISSN: 1860-0980.

https://doi.org/10.1109/ICCI-CC.2015.7259377
https://doi.org/10.3115/v1/N15-1142
http://aclweb.org/anthology/N15-1142
http://aclweb.org/anthology/N15-1142
http://dl.acm.org/citation.cfm?id=2390524.2390662
http://dl.acm.org/citation.cfm?id=2390524.2390662
http://dl.acm.org/citation.cfm?id=2002736.2002753
http://dl.acm.org/citation.cfm?id=2002736.2002753
http://dl.acm.org/citation.cfm?id=2390524.2390598
http://dl.acm.org/citation.cfm?id=2390524.2390598

Bibliography 197

DOI: 10.1007/BF02289146. URL: https://doi.org/10.1007/
BF02289146.

Marcus, Mitchell P, Mary Ann Marcinkiewicz, and Beatrice Santorini (1993).
“Building a large annotated corpus of English: The Penn Treebank”. In:
Computational linguistics 19.2, pp. 313–330.

Marty, Patrick, Tian Tian, and Isabelle Tellier (Mar. 2014). “Extraction de pro-
priétés de produits”. In: COnférence en Recherche d’Information et Applica-
tions (CORIA 2014). CORIA 2014. Nancy, France, pp. 121–136. URL: https:
//hal.archives-ouvertes.fr/hal-01473389.

Mayfield, James, Paul McNamee, and Christine Piatko (2003). “Named Entity
Recognition Using Hundreds of Thousands of Features”. In: Proceedings
of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003
- Volume 4. CONLL ’03. Edmonton, Canada: Association for Computa-
tional Linguistics, pp. 184–187. DOI: 10.3115/1119176.1119205. URL:
https://doi.org/10.3115/1119176.1119205.

McCallum, Andrew and Wei Li (2003). “Early Results for Named Entity Recog-
nition with Conditional Random Fields, Feature Induction and Web-enhanced
Lexicons”. In: Proceedings of the Seventh Conference on Natural Language
Learning at HLT-NAACL 2003 - Volume 4. CONLL ’03. Edmonton, Canada:
Association for Computational Linguistics, pp. 188–191. DOI: 10.3115/
1119176.1119206. URL: https://doi.org/10.3115/1119176.
1119206.

Merchant, Roberta, Mary Ellen Okurowski, and Nancy Chinchor (1996). “The
Multilingual Entity Task (MET) Overview”. In: Proceedings of a Workshop
on Held at Vienna, Virginia: May 6-8, 1996. TIPSTER ’96. Vienna, Virginia:
Association for Computational Linguistics, pp. 445–447. DOI: 10.3115/
1119018.1119075. URL: https://doi.org/10.3115/1119018.
1119075.

Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig (2013). “Linguistic Reg-
ularities in Continuous Space Word Representations.” In: HLT-NAACL,
pp. 746–751.

Mikolov, Tomas et al. (2013). “Distributed Representations of Words and Phrases
and Their Compositionality”. In: Proceedings of the 26th International Con-
ference on Neural Information Processing Systems - Volume 2. NIPS’13. Lake
Tahoe, Nevada: Curran Associates Inc., pp. 3111–3119. URL: http://dl.
acm.org/citation.cfm?id=2999792.2999959.

https://doi.org/10.1007/BF02289146
https://doi.org/10.1007/BF02289146
https://doi.org/10.1007/BF02289146
https://hal.archives-ouvertes.fr/hal-01473389
https://hal.archives-ouvertes.fr/hal-01473389
https://doi.org/10.3115/1119176.1119205
https://doi.org/10.3115/1119176.1119205
https://doi.org/10.3115/1119176.1119206
https://doi.org/10.3115/1119176.1119206
https://doi.org/10.3115/1119176.1119206
https://doi.org/10.3115/1119176.1119206
https://doi.org/10.3115/1119018.1119075
https://doi.org/10.3115/1119018.1119075
https://doi.org/10.3115/1119018.1119075
https://doi.org/10.3115/1119018.1119075
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959

198 Bibliography

Miller, S., J. Guinness, and A. Zamanian (2004). “Name tagging with word
clusters and discriminative training”. In: Proceedings of 2004 Human Lan-
guage Technology conference / North American chapter of the Association for
Computational Linguistics annual meeting. Vol. 4.

Min, Wookhee and Bradford Mott (2015). “NCSU_SAS_WOOKHEE: A Deep
Contextual Long-Short Term Memory Model for Text Normalization”. In:
Proceedings of the Workshop on Noisy User-generated Text. Beijing, China: As-
sociation for Computational Linguistics, pp. 111–119. DOI: 10.18653/
v1/W15-4317. URL: http://aclweb.org/anthology/W15-4317.

Murthy, V. Rudra and Pushpak Bhattacharyya (2016). “A Deep Learning So-
lution to Named Entity Recognition”. In: 17th International Conference on
Intelligent Text Processing and Computational Linguistics (CICLing2016).

Nadeau, David and Satoshi Sekine (2007). “A survey of named entity recog-
nition and classification”. In: Linguisticae Investigationes 30.1. Publisher:
John Benjamins Publishing Company, pp. 3–26. URL: http : / / www .
ingentaconnect.com/content/jbp/li/2007/00000030/00000001/

art00002.
Nooralahzadeh, Farhad, Caroline Brun, and Claude Roux (2014). “Part of

Speech Tagging for French Social Media Data”. In: Proceedings of COLING
2014, the 25th International Conference on Computational Linguistics: Techni-
cal Papers. Dublin, Ireland: Dublin City University and Association for
Computational Linguistics, pp. 1764–1772. URL: http://www.aclweb.
org/anthology/C14-1166.

Nouvel, Damien, Maud Ehrmann, and Sophie Rosset (2016). Named Entities
for Computational Linguistics. URL: https://hal-inalco.archives-
ouvertes.fr/hal-01359440.

N.V, Sobhana, Pabitra Mitra, and S.K. Ghosh (2010). “Article: Conditional
Random Field Based Named Entity Recognition in Geological text”. In:
International Journal of Computer Applications 1.3. Published By Foundation
of Computer Science, pp. 119–125.

O’Connor, Brendan T., Michel Krieger, and David Ahn (2010). “TweetMotif:
Exploratory Search and Topic Summarization for Twitter”. In: In Proc. of
AAAI Conference on Weblogs and Social.

Owoputi, Olutobi et al. (2012). “Part-of-speech tagging for Twitter: Word
clusters and other advances”. In: Technical Report CMU-ML-12-107.

https://doi.org/10.18653/v1/W15-4317
https://doi.org/10.18653/v1/W15-4317
http://aclweb.org/anthology/W15-4317
http://www.ingentaconnect.com/content/jbp/li/2007/00000030/00000001/art00002
http://www.ingentaconnect.com/content/jbp/li/2007/00000030/00000001/art00002
http://www.ingentaconnect.com/content/jbp/li/2007/00000030/00000001/art00002
http://www.aclweb.org/anthology/C14-1166
http://www.aclweb.org/anthology/C14-1166
https://hal-inalco.archives-ouvertes.fr/hal-01359440
https://hal-inalco.archives-ouvertes.fr/hal-01359440

Bibliography 199

Owoputi, Olutobi et al. (2013). “Improved Part-of-Speech Tagging for Online
Conversational Text with Word Clusters”. In: Proceedings of the 2013 Con-
ference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies. Atlanta, Georgia: Association for
Computational Linguistics, pp. 380–390. URL: http://www.aclweb.
org/anthology/N13-1039.

Pandian, S. Lakshmana and T. V. Geetha (2009). “CRF Models for Tamil Part
of Speech Tagging and Chunking”. In: Proceedings of the 22Nd International
Conference on Computer Processing of Oriental Languages. Language Technol-
ogy for the Knowledge-based Economy. ICCPOL ’09. Hong Kong: Springer-
Verlag, pp. 11–22. ISBN: 978-3-642-00830-6. DOI: 10.1007/978-3-642-
00831-3_2. URL: http://dx.doi.org/10.1007/978-3-642-
00831-3_2.

Park, SoHyun et al. (2016). “Classifying Out-of-vocabulary Terms in a Domain-
Specific Social Media Corpus”. In: Proceedings of the Tenth International
Conference on Language Resources and Evaluation (LREC 2016). Ed. by Nico-
letta Calzolari (Conference Chair) et al. Portorož, Slovenia: European Lan-
guage Resources Association (ELRA). ISBN: 978-2-9517408-9-1.

Pennell, Deana and Yang Liu (2011). “A Character-Level Machine Translation
Approach for Normalization of SMS Abbreviations”. In: Proceedings of 5th
International Joint Conference on Natural Language Processing. Chiang Mai,
Thailand: Asian Federation of Natural Language Processing, pp. 974–982.
URL: http://aclweb.org/anthology/I11-1109.

Pennington, Jeffrey, Richard Socher, and Christopher D. Manning (2014). “GloVe:
Global Vectors for Word Representation”. In: Empirical Methods in Natu-
ral Language Processing (EMNLP), pp. 1532–1543. URL: http://www.
aclweb.org/anthology/D14-1162.

Petrov, Slav, Dipanjan Das, and Ryan McDonald (2012). “A Universal Part-
of-Speech Tagset”. In: Proceedings of the Eight International Conference on
Language Resources and Evaluation (LREC’12). Ed. by Nicoletta Calzolari
(Conference Chair) et al. Istanbul, Turkey: European Language Resources
Association (ELRA). ISBN: 978-2-9517408-7-7.

Petrović, Saša, Miles Osborne, and Victor Lavrenko (2010). “The edinburgh
twitter corpus”. In: Proceedings of the NAACL HLT 2010 Workshop on Com-
putational Linguistics in a World of Social Media, pp. 25–26.

http://www.aclweb.org/anthology/N13-1039
http://www.aclweb.org/anthology/N13-1039
https://doi.org/10.1007/978-3-642-00831-3_2
https://doi.org/10.1007/978-3-642-00831-3_2
http://dx.doi.org/10.1007/978-3-642-00831-3_2
http://dx.doi.org/10.1007/978-3-642-00831-3_2
http://aclweb.org/anthology/I11-1109
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162

200 Bibliography

Plank, Barbara et al. (2014). “Adapting taggers to Twitter with not-so-distant
supervision”. English. In: Proceedings of COLING 2014, the 25th Interna-
tional Conference on Computational Linguistics: Technical Papers. Association
for Computational Linguistics, pp. 1783–1792.

Poibeau, Thierry and Leila Kosseim (2001). “Proper Name Extraction from
Non-Journalistic Texts”. In: Computational Linguistics in the Netherlands.
Selected Papers from the Eleventh CLIN Meeting. Ed. by W. Daelemans et
al. Amsterdam/New York, pp. 144–157.

Powers, David M. W. (1998). “Applications and Explanations of Zipf’s Law”.
In: Proceedings of the Joint Conferences on New Methods in Language Process-
ing and Computational Natural Language Learning. NeMLaP3/CoNLL ’98.
Sydney, Australia: Association for Computational Linguistics, pp. 151–
160. ISBN: 0-7258-0634-6. URL: http://dl.acm.org/citation.cfm?
id=1603899.1603924.

Putthividhya, Duangmanee (Pew) and Junling Hu (2011). “Bootstrapped named
entity recognition for product attribute extraction”. In: Proceedings of the
Conference on Empirical Methods in Natural Language Processing. EMNLP
’11. Edinburgh, United Kingdom: Association for Computational Linguis-
tics, pp. 1557–1567. ISBN: 978-1-937284-11-4. URL: http://dl.acm.
org/citation.cfm?id=2145432.2145598.

Quimbaya, Alexandra Pomares et al. (2016). “Named Entity Recognition Over
Electronic Health Records Through a Combined Dictionary-based Ap-
proach”. In: Procedia Computer Science 100. International Conference on
ENTERprise Information Systems/International Conference on Project MAN-
agement/International Conference on Health and Social Care Informa-
tion Systems and Technologies, CENTERIS/ProjMAN / HCist 2016, pp. 55
–61. ISSN: 1877-0509. DOI: https://doi.org/10.1016/j.procs.
2016.09.123. URL: http://www.sciencedirect.com/science/
article/pii/S1877050916322906.

Quinlan, J. Ross (1986). “Induction of decision trees”. In: Machine learning 1.1,
pp. 81–106.

Rajaraman, Anand and Jeffrey David Ullman (2011). Mining of Massive Datasets.
New York, NY, USA: Cambridge University Press. ISBN: 1107015359, 9781107015357.

Ramshaw, Lance A and Mitchell P Marcus (1999). “Text chunking using transformation-
based learning”. In: Natural language processing using very large corpora.
Springer, pp. 157–176.

Ratinov, Lev and Dan Roth (2009). “Design Challenges and Misconceptions
in Named Entity Recognition”. In: Proceedings of the Thirteenth Conference

http://dl.acm.org/citation.cfm?id=1603899.1603924
http://dl.acm.org/citation.cfm?id=1603899.1603924
http://dl.acm.org/citation.cfm?id=2145432.2145598
http://dl.acm.org/citation.cfm?id=2145432.2145598
https://doi.org/https://doi.org/10.1016/j.procs.2016.09.123
https://doi.org/https://doi.org/10.1016/j.procs.2016.09.123
http://www.sciencedirect.com/science/article/pii/S1877050916322906
http://www.sciencedirect.com/science/article/pii/S1877050916322906

Bibliography 201

on Computational Natural Language Learning. CoNLL ’09. Boulder, Colorado:
Association for Computational Linguistics, pp. 147–155. ISBN: 978-1-932432-
29-9. URL: http://dl.acm.org/citation.cfm?id=1596374.
1596399.

Rau, L. F. (1991). “Extracting company names from text”. In: [1991] Proceed-
ings. The Seventh IEEE Conference on Artificial Intelligence Application. Vol. i,
pp. 29–32. ISBN: 0-8186-2135-4. DOI: 10.1109/CAIA.1991.120841.

Raymond, Christian and Julien Fayolle (July 2010). “Reconnaissance robuste
d’entités nommées sur de la parole transcrite automatiquement”. Français.
In: TALN’10. ATALA. Montréal, Québec, Canada. URL: http://hal.
inria.fr/inria-00561732.

Ritter, Alan et al. (2011). “Named Entity Recognition in Tweets: An Experi-
mental Study”. In: Proceedings of the Conference on Empirical Methods in Nat-
ural Language Processing. EMNLP ’11. Edinburgh, United Kingdom: Asso-
ciation for Computational Linguistics, pp. 1524–1534. ISBN: 978-1-937284-
11-4. URL: http://dl.acm.org/citation.cfm?id=2145432.
2145595.

Rong, Xin (2014). “word2vec parameter learning explained”. In: arXiv preprint
arXiv:1411.2738.

Rosenblatt, F. (1957). The Perceptron, a Perceiving and Recognizing Automaton
Project Para. Report: Cornell Aeronautical Laboratory. Cornell Aeronau-
tical Laboratory. URL: https://books.google.fr/books?id=P\
_XGPgAACAAJ.

Seddah, Djamé et al. (2012). “The French Social Media Bank: a treebank of
noisy user generated content”. In: COLING 2012-24th International Confer-
ence on Computational Linguistics.

Settles, Burr (2004). “Biomedical Named Entity Recognition Using Condi-
tional Random Fields and Rich Feature Sets”. In: Proceedings of the Interna-
tional Joint Workshop on Natural Language Processing in Biomedicine and Its
Applications. JNLPBA ’04. Geneva, Switzerland: Association for Computa-
tional Linguistics, pp. 104–107. URL: http://dl.acm.org/citation.
cfm?id=1567594.1567618.

Sha, Fei and Fernando Pereira (2003). “Shallow Parsing with Conditional
Random Fields”. In: Proceedings of the 2003 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics on Human Lan-
guage Technology - Volume 1. NAACL ’03. Edmonton, Canada: Association
for Computational Linguistics, pp. 134–141. DOI: 10.3115/1073445.
1073473. URL: https://doi.org/10.3115/1073445.1073473.

http://dl.acm.org/citation.cfm?id=1596374.1596399
http://dl.acm.org/citation.cfm?id=1596374.1596399
https://doi.org/10.1109/CAIA.1991.120841
http://hal.inria.fr/inria-00561732
http://hal.inria.fr/inria-00561732
http://dl.acm.org/citation.cfm?id=2145432.2145595
http://dl.acm.org/citation.cfm?id=2145432.2145595
https://books.google.fr/books?id=P_XGPgAACAAJ
https://books.google.fr/books?id=P_XGPgAACAAJ
http://dl.acm.org/citation.cfm?id=1567594.1567618
http://dl.acm.org/citation.cfm?id=1567594.1567618
https://doi.org/10.3115/1073445.1073473
https://doi.org/10.3115/1073445.1073473
https://doi.org/10.3115/1073445.1073473

202 Bibliography

Shen, Yelong et al. (2014). “Learning Semantic Representations Using Convo-
lutional Neural Networks for Web Search”. In: Proceedings of the 23rd Inter-
national Conference on World Wide Web. WWW ’14 Companion. Seoul, Ko-
rea: ACM, pp. 373–374. ISBN: 978-1-4503-2745-9. DOI: 10.1145/2567948.
2577348. URL: http://doi.acm.org/10.1145/2567948.2577348.

Sienčnik, Scharolta Katharina (2015). “Adapting word2vec to named entity
recognition”. In: Proceedings of the 20th nordic conference of computational
linguistics, nodalida 2015, may 11-13, 2015, vilnius, lithuania. 109. Linköping
University Electronic Press, pp. 239–243.

Silfverberg, Miikka et al. (2014). “Part-of-Speech Tagging using Conditional
Random Fields: Exploiting Sub-Label Dependencies for Improved Accu-
racy”. In: Proceedings of the 52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers). Baltimore, Maryland: Asso-
ciation for Computational Linguistics, pp. 259–264. DOI: 10.3115/v1/
P14-2043. URL: http://www.aclweb.org/anthology/P14-2043.

Sproat, Richard et al. (July 2001). “Normalization of Non-standard Words”.
In: Comput. Speech Lang. 15.3, pp. 287–333. ISSN: 0885-2308. DOI: 10.1006/
csla.2001.0169. URL: http://dx.doi.org/10.1006/csla.
2001.0169.

Sundheim, Beth M. (1995). “Overview of Results of the MUC-6 Evaluation”.
In: Proceedings of the 6th Conference on Message Understanding. MUC6 ’95.
Columbia, Maryland: Association for Computational Linguistics, pp. 13–
31. ISBN: 1-55860-402-2. DOI: 10.3115/1072399.1072402. URL: https:
//doi.org/10.3115/1072399.1072402.

Supranovich, Dmitry and Viachaslau Patsepnia (2015). “Ihs_rd: Lexical nor-
malization for english tweets”. In: Proceedings of the Workshop on Noisy
User-generated Text, pp. 78–81.

Surdeanu, Mihai (2013). “Overview of the TAC2013 Knowledge Base Popu-
lation Evaluation: English Slot Filling and Temporal Slot Filling”. In: Pro-
ceedings of the Sixth Text Analysis Conference, TAC 2013, Gaithersburg, Mary-
land, USA, November 18-19, 2013. URL: http://www.nist.gov/tac/
publications/2013/additional.papers/KBP2013_English_

and_Temporal_Slot_Filling_overview.TAC2013.proceedings.

pdf.
Tarrade, Louise et al. (June 2017). Typologies pour l’annotation de textes non stan-

dard en français. TALN 2017. Poster. URL: https://hal.archives-
ouvertes.fr/hal-01646442.

https://doi.org/10.1145/2567948.2577348
https://doi.org/10.1145/2567948.2577348
http://doi.acm.org/10.1145/2567948.2577348
https://doi.org/10.3115/v1/P14-2043
https://doi.org/10.3115/v1/P14-2043
http://www.aclweb.org/anthology/P14-2043
https://doi.org/10.1006/csla.2001.0169
https://doi.org/10.1006/csla.2001.0169
http://dx.doi.org/10.1006/csla.2001.0169
http://dx.doi.org/10.1006/csla.2001.0169
https://doi.org/10.3115/1072399.1072402
https://doi.org/10.3115/1072399.1072402
https://doi.org/10.3115/1072399.1072402
http://www.nist.gov/tac/publications/2013/additional.papers/KBP2013_English_and_Temporal_Slot_Filling_overview.TAC2013.proceedings.pdf
http://www.nist.gov/tac/publications/2013/additional.papers/KBP2013_English_and_Temporal_Slot_Filling_overview.TAC2013.proceedings.pdf
http://www.nist.gov/tac/publications/2013/additional.papers/KBP2013_English_and_Temporal_Slot_Filling_overview.TAC2013.proceedings.pdf
http://www.nist.gov/tac/publications/2013/additional.papers/KBP2013_English_and_Temporal_Slot_Filling_overview.TAC2013.proceedings.pdf
https://hal.archives-ouvertes.fr/hal-01646442
https://hal.archives-ouvertes.fr/hal-01646442

Bibliography 203

Tellier, Isabelle and Marc Tommasi (Jan. 2011). “Champs Markoviens Con-
ditionnels pour l’extraction d’information”. In: Modèles probabilistes pour
l’accès à l’information textuelle. Ed. by E. Gaussier et F. Yvon, pp. 223–267.

Tian, Tian et al. (June 2015). “Etiquetage morpho-syntaxique de tweets avec
des CRF”. In: TALN 2015. Caen, France. URL: https://hal.archives-
ouvertes.fr/hal-01473383.

Tian, Tian et al. (2016). “Domain Adaptation for Named Entity Recognition
Using CRFs”. In: Proceedings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC 2016). Ed. by Nicoletta Calzolari
(Conference Chair) et al. Portorož, Slovenia: European Language Resources
Association (ELRA). ISBN: 978-2-9517408-9-1.

Tjong Kim Sang, Erik F. (2002). “Introduction to the CoNLL-2002 Shared
Task: Language-independent Named Entity Recognition”. In: Proceedings
of the 6th Conference on Natural Language Learning - Volume 20. COLING-02.
Stroudsburg, PA, USA: Association for Computational Linguistics, pp. 1–
4. DOI: 10.3115/1118853.1118877. URL: https://doi.org/10.
3115/1118853.1118877.

Tjong Kim Sang, Erik F. and Fien De Meulder (July 2003). “Introduction to the
CoNLL-2003 Shared Task: Language-independent Named Entity Recog-
nition”. In: Proceedings of the Seventh Conference on Natural Language Learn-
ing at HLT-NAACL 2003 - Volume 4. CONLL ’03. Edmonton, Canada: As-
sociation for Computational Linguistics, pp. 142–147. DOI: 10.3115/
1119176.1119195. URL: https://doi.org/10.3115/1119176.
1119195.

Toh, Zhiqiang, Bin Chen, and Jian Su (2015). “Improving twitter named entity
recognition using word representations”. In: Proceedings of the Workshop on
Noisy User-generated Text, pp. 141–145.

Toutanova, Kristina and Christopher D. Manning (2000). “Enriching the Knowl-
edge Sources Used in a Maximum Entropy Part-of-speech Tagger”. In:
Proceedings of the 2000 Joint SIGDAT Conference on Empirical Methods in
Natural Language Processing and Very Large Corpora: Held in Conjunction
with the 38th Annual Meeting of the Association for Computational Linguis-
tics - Volume 13. EMNLP ’00. Hong Kong: Association for Computational
Linguistics, pp. 63–70. DOI: 10.3115/1117794.1117802. URL: https:
//doi.org/10.3115/1117794.1117802.

Tsuruoka, Yoshimasa, Jun’ichi Tsujii, and Sophia Ananiadou (2009). “Stochas-
tic Gradient Descent Training for L1-regularized Log-linear Models with

https://hal.archives-ouvertes.fr/hal-01473383
https://hal.archives-ouvertes.fr/hal-01473383
https://doi.org/10.3115/1118853.1118877
https://doi.org/10.3115/1118853.1118877
https://doi.org/10.3115/1118853.1118877
https://doi.org/10.3115/1119176.1119195
https://doi.org/10.3115/1119176.1119195
https://doi.org/10.3115/1119176.1119195
https://doi.org/10.3115/1119176.1119195
https://doi.org/10.3115/1117794.1117802
https://doi.org/10.3115/1117794.1117802
https://doi.org/10.3115/1117794.1117802

Cumulative Penalty”. In: Proceedings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP: Volume 1 - Volume 1. ACL ’09. Suntec,
Singapore: Association for Computational Linguistics, pp. 477–485. ISBN:
978-1-932432-45-9. URL: http://dl.acm.org/citation.cfm?id=
1687878.1687946.

Wang, Jianhong et al. (2016). “Extracting Clinical entities and their asser-
tions from Chinese Electronic Medical Records Based on Machine Learn-
ing”. In: 3rd International Conference on Materials Engineering, Manufactur-
ing Technology and Control (ICMEMTC 2016).

Whitelaw, Casey and Jon Patrick (2003). “Named Entity Recognition Using
a Character-based Probabilistic Approach”. In: Proceedings of the Seventh
Conference on Natural Language Learning at HLT-NAACL 2003 - Volume 4.
CONLL ’03. Edmonton, Canada: Association for Computational Linguis-
tics, pp. 196–199. DOI: 10.3115/1119176.1119208. URL: https://
doi.org/10.3115/1119176.1119208.

Xu, Ke, Yunqing Xia, and Chin-Hui Lee (2015). “Tweet Normalization with
Syllables”. In: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers). Beijing, China: Associ-
ation for Computational Linguistics, pp. 920–928. URL: http://www.
aclweb.org/anthology/P15-1089.

Yao, Yao et al. (2017). “Sensing spatial distribution of urban land use by
integrating points-of-interest and Google Word2Vec model”. In: Interna-
tional Journal of Geographical Information Science 31.4, pp. 825–848. DOI:
10.1080/13658816.2016.1244608. eprint: https://doi.org/
10.1080/13658816.2016.1244608. URL: https://doi.org/10.
1080/13658816.2016.1244608.

Yolchuyeva, Sevinj, Géza Németh, and Bálint Gyires-Tóth (2018). “Text nor-
malization with convolutional neural networks”. In: International Journal
of Speech Technology 21.3, pp. 589–600. ISSN: 1572-8110. DOI: 10.1007/
s10772-018-9521-x. URL: https://doi.org/10.1007/s10772-
018-9521-x.

Yule, George (2010). The Study of Language. 4th ed. Cambridge University
Press. DOI: 10.1017/CBO9780511757754.

Zhao, Zhehuan et al. (2017). “Disease named entity recognition from biomed-
ical literature using a novel convolutional neural network”. In: BMC med-
ical genomics 10.5, p. 73.

http://dl.acm.org/citation.cfm?id=1687878.1687946
http://dl.acm.org/citation.cfm?id=1687878.1687946
https://doi.org/10.3115/1119176.1119208
https://doi.org/10.3115/1119176.1119208
https://doi.org/10.3115/1119176.1119208
http://www.aclweb.org/anthology/P15-1089
http://www.aclweb.org/anthology/P15-1089
https://doi.org/10.1080/13658816.2016.1244608
https://doi.org/10.1080/13658816.2016.1244608
https://doi.org/10.1080/13658816.2016.1244608
https://doi.org/10.1080/13658816.2016.1244608
https://doi.org/10.1080/13658816.2016.1244608
https://doi.org/10.1007/s10772-018-9521-x
https://doi.org/10.1007/s10772-018-9521-x
https://doi.org/10.1007/s10772-018-9521-x
https://doi.org/10.1007/s10772-018-9521-x
https://doi.org/10.1017/CBO9780511757754

Domain adaptation and model combination for
the annotation of multi-source, multi-domain texts

The increasing mass of User-Generated Content (UGC) on the Internet means that people are now

willing to comment, edit or share their opinions on different topics. This content is now the main ressource

for sentiment analysis on the Internet.

Due to abbreviations, noise, spelling errors and all other problems with UGC, traditional Natural Lan-

guage Processing (NLP) tools, including Named Entity Recognizers and part-of-speech (POS) taggers, per-

form poorly when compared to their usual results on canonical text (Ritter et al., 2011).

This thesis deals with Named Entity Recognition (NER) on some User-Generated Content (UGC). We

have created an evaluation dataset including multi-domain and multi-sources texts. We then developed a

Conditional Random Fields (CRFs) model trained on User-Generated Content (UGC).

In order to improve NER results in this context, we first developed a POS-tagger on UGC and used the

predicted POS tags as a feature in the CRFs model. To turn UGC into canonical text, we also developed a

normalization model using neural networks to propose a correct form for Non-Standard Words (NSW) in

the UGC.

Keywords: domain adaptation, named entity recognition, machine learning, conditional random fields,

neural networks

Adaptation au domaine et combinaison de modèles pour
l’annotation de textes multi-sources et multi-domaines

Internet propose aujourd’hui aux utilisateurs de services en ligne de commenter, d’éditer et de partager

leurs points de vue sur différents sujets de discussion. Ce type de contenu est maintenant devenu la

ressource principale pour les analyses d’opinions sur Internet. Néanmoins, à cause des abréviations, du

bruit, des fautes d’orthographe et toutes autres sortes de problèmes, les outils de traitements automatiques

des langues, y compris les reconnaisseurs d’entités nommées et les étiqueteurs automatiques morpho-

syntaxiques, ont des performances plus faibles que sur les textes bien-formés (Ritter et al., 2011).

Cette thèse a pour objet la reconnaissance d’entités nommées sur les contenus générés par les util-

isateurs sur Internet. Nous avons établi un corpus d’évaluation avec des textes multi-sources et multi-

domaines. Ensuite, nous avons développé un modèle de champs conditionnels aléatoires, entrainé sur un

corpus annoté provenant des contenus générés par les utilisateurs.

Dans le but d’améliorer les résultats de la reconnaissance d’entités nommées, nous avons d’abord

développé un étiqueteur morpho-syntaxique sur les contenus générés par les utilisateurs et nous avons

utilisé les étiquettes prédites comme un attribut du modèle des champs conditionels aléatoire. Enfin, pour

transformer les contenus générés par les utilisateurs en textes bien-formés, nous avons développé un mod-

èle de normalisation lexicale basé sur des réseaux de neurones pour proposer une forme correcte pour les

mots non-standard.

Mots-clés : adaptation au domaine, reconnaissance des entités nommées, apprentissage automatique,

champs aléatoires conditionnels, réseaux de neurones

Ecole doctorale ED268, Langage et Langues, Université Sorbonne Nouvelle

Maison de la recherche, Bureau A006, 4 rue des Irlandais, 75005 PARIS

	Acknowledgements
	Introduction
	Background
	Aim and Scope
	About Synthesio
	Internal organization
	Natural language processing at Synthesio
	Necessity of named entity recognition

	Contributions
	Thesis outline

	Literature review
	History of Named Entity Recognition
	Named entity definition
	From the linguistic point of view
	From a practical perspective

	Domain and text genre
	Taxonomy of named entities
	Evaluation of Named Entity Recognition (NER)
	MUC evaluation (partial match evaluation)
	CoNLL evaluation (exact match evaluation)
	SemEval shared task evaluation

	Machine learning based NER methods
	Supervised learning
	Conditional Random Fields (CRFs)
	An example of CRF training
	Training
	Applying the trained CRFs model

	Unsupervised learning and Semi-supervised learning

	Text normalization for User Generated Content
	Definition and scope of lexical normalization
	Definition and Taxonomy of Non-Standard Words
	General procedure of lexical normalization
	Neural Networks (NN)
	Convolutional neural network (CNN)
	Long short term memory (LSTM)

	Conclusion

	Raw data, basic normalization and Synthesio's dataset
	Analysis of a Twitter subset data
	Basic normalization on Synthesio's data
	Use rewrite rules for tweet lexical normalization
	Uppercase/lowercase normalization
	Construction of Synthesio word2vec model

	Use Google Request to find correct form for non-standard words
	Creation of Synthesio Reference corpus
	Data extraction
	Entity type definition
	Data annotation
	Reference corpus statistics

	Conclusion on Synthesio's data

	Improve named entity recognition results by POS tagging
	First NER experiments
	Existing Named Entity Recognizers Recognizer
	Existing CRFs Named Entity Recognizer features and patterns
	Annotated dataset for UGC in English datasets
	First NER results with CRFs on corpus from Ritter2011
	CRFs NER models on Synthesio annotated data
	Iterative training
	Domain adaptation with reduced features

	Aim and necessity to develop a POS tagger
	Difficulties of developing a POS tagger for UGC
	Annotated part-of-speech datasets
	Synthesio tagset definition
	Feature space for a POS tagger
	Features related to character type
	Features about uppercase/lowercase letters
	Features about token value
	Features using regular expression
	Features using extern ressources

	Experiments of CRFs POS tagger and results
	Experiments uni-corpus
	Experiments with multi-corpus
	Results with artificial examples
	Compare T-POS tagset and Synthesio tagset
	Cross validation with only T-POS
	Mixed model

	Experiments using POS tagger results for NER

	Lexical normalization of tweets with neural networks
	Annotated datasets for the lexical normalization of tweets
	Dataset from Li2014
	Dataset from workshop ACL2015
	Typology Analysis of labeled corpora

	Use SVM for NSW and SW classification
	Experiments of SW and NSW classification with neural networks
	Context-free experiment
	5-grams experiments
	First experiment
	Experiment by class
	5 words embedding and characters model with sigmoid as output
	Optimisation of configurations
	Other Neural network structures

	Experiments with pre-trained word2vec models
	Word2vec models
	Conclusion to word2vec model

	Experiment with optimizers
	Experiment with WNUT test

	Word corrector
	Context-free corrector
	Corrector with context

	Conclusion

	Using normalized text as CRFs features for NER
	Using NSW/SW classification prediction as CRFs features for NER
	NSW/SW classification experiments on the Synthesio dataset
	NSW/SW classification experiments on dataset from Ritter2011
	Using NSW/SW prediction as features to NER model

	Using normalized text as feature for NER
	Word normalization based on NSW/SW classification prediction
	Normalization model for all tokens prediction
	Using normalized texts as features for NER

	Conclusion

	Conclusion and perspectives
	Summary of findings
	Limitations and Perspective

	Bibliography

