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Introduction

The theory of quantum mechanics was developed to explain a number of inconsistencies
that could not be explained by classical mechanics [1–3]. It predicts certain phenomena
which are highly counter-intuitive and remained largely controversial, especially since they
could not be demonstrated experimentally [4]. With the introduction of appropriate tools
like the laser [5], experiment to test these predictions were eventually designed [6]. Such
experiments were realized using cascades of single atoms interacting with light [7, 8] and
corroborated the theory of quantum mechanics.

In the mean time, the development of ion traps [9] made it possible to confine a single
ion in space and study its interaction with light. The quantized motion of a single trapped
ion can indeed be controled with a laser using sideband cooling [10], to eventually cool
it down to its ground state [11]. Subsequently, laser cooling of neutral atoms was also
achieved [12], following the development of magneto-optical traps. These new systems
provided a new route to probe the singularities of quantum mechanics. In particular its
laws can be used to devise algorithms faster than any classical analog [13]. Trapped ions
provide a means to implement these algorithms by building a quantum computer [14].
Such device would here rely on coupling the ion’s internal degree of freedom, eg its spin,
to its quantized motion [15]. For now, these protocols have allow coupling up to 14 ions
together [16].
These protocols can actually be implemented more broadly in any network of two level
systems that can be coupled to each other. In particular, a number of systems in the
solid-state are now able to perform these protocols with varying efficiency: a non exhaus-
tive list includes impurities in silicon [17] and diamond [18–20], superconducting circuits
[21, 22], quantum dots [23] or nuclear spins in molecules [24].

Notwithstanding the progress of these “quantum technologies”, a salient issue in our
understandings of quantum mechanics is the transition towards classical mechanics for
macroscopic objects. The quantum nature of massive particle like electrons was demon-
strated early on by matter-wave interferometry experiments [25]. Over time, similar
demonstrations were performed with free-falling molecules of increasing sizes [26, 27].
However, the advances in the field of trapped ions provide a new way to probe large ob-
jects in the quantum regime: one can envision similar experiments, where the motion of a
massive mechanical oscillator is cooled down to its ground state via side-band cooling and
then prepared in an arbitrary quantum state. This device could be used as a resource for
quantum computing, playing the role of a transducer [28–30] or test [31, 32].
The observation of the effect of light on large mechanical oscillators in fact preceeded laser
cooling of trapped ions: in interferometers or cavities, radiation pressure exert a force on
the mirrors and can cool their motion [33]. When this opto-mechanical coupling is strong
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Introduction

enough, one can achieve sideband cooling of the mirror’s motion to its ground state and
from there prepare any arbitrary state [34].
Realizing such experiment with large object is however challenging because the optome-
chanical coupling is small compared to the lifetime of the mechanical oscillator and of the
optical cavity.
To leverage these limitations, there has been a trend to reduce the size of the oscillator to
the micron-scale. The mirrors can also be replaced by a photonic structure [35, 36] and
one can use low-loss microwave cavities [37, 38].

An alternative scheme is to couple the mechanical oscillator not to light, but to a two
level system exhibiting high coherence properties and coherent control. Examples include
coupling between a mechanical oscillator and trapped atoms [39] or solid-state systems
like a superconducting circuit [40] or the spin of an impurity in a semi-conductor [41].
Most of these systems require a cryogenic environment in order to retain high coherence
and lifetime for both the two level system and the mechanical oscillator. In this regard,
the electron spin of the nitrogen vacancy (NV) center in diamond is an attractive system,
with a long coherence time even at room temperature [18]. Several schemes to couple an
NV spin to a mechanical oscillator are beeing pursued [42]. In particular, one can per-
form a magnetic coupling of the spin to the tip of a nearby mechanical oscillator [43–45].
However, the cooling of a mechanical oscillator using a single NV spin has for now been
elusive: for example, in the case of magnetic coupling, a sufficient coupling requires mag-
netic gradients that are challenging to attain.

Finally, the most direct route to suppress heating of the mechanical oscillator at room
temperature is to levitate the mechanical oscillator under high vacuum [46]. Levitation of
nano or micro-particles can be carried out with an optical tweezer [47], a Paul trap [48]
or a magneto-gravitational trap [49].
The motion of the levitating particle can then be addressed optically by positioning it in
a high finesse cavity [50]. One can also apply a feed-back loop to cool down the motion
through modulation of the trapping potential itself [51, 52] or by applying an external
optical [49, 53] or electric force [54, 55]. A nanosphere levitating in an optical tweezer was
recently cooled down to a mean phonon number of 4 and the signature of its quantized
motion was clearly observed [56].

These successes have sparked a keen interest in levitating a particle with an internal
quantum degree of freedom coupled to its motion. A nano-diamond with a single embed-
ded NV spin is a natural candidate for these experiments. Similarly to what was proposed
with a cantilever [43], magnetic coupling between the center of mass of the particle and its
spin can be used to realize matter-wave interferometry experiments [57–60], to cool down
the diamond’s motion [61], to generate arbitrary quantum superposition of its motional
state [58] or to interface two NV spins [60].
Nano-diamonds have been levitated in optical tweezers [62–64], in Paul traps [52, 65] or
in magneto-Gravitational traps [49]. The main challenge of these experiment is to achieve
a high enough single spin coupling, which means generating a magnetic gradient in the
order of 107 T/m [43] without disrupting the levitated particle. The use of optical tweezers
to levitate the diamond is also hampered by the absorption of the trapping beam by the
diamond, leading to an increased internal temperature [64, 66, 67].
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In this work, we levitate larger diamonds with many embedded NV spins (∼ 104-109)
in a Paul trap. The use of a scattering free trap allows us to avoid the strong heating ob-
served with optical tweezers. Further, to leverage the issue of the low single-spin coupling,
we turn towards the angular degrees of freedom, which is under increasing scrutiny in
levitation experiments [68–72], and more precisely towards libration (angular oscillation)
of the levitated particle. In fact, a homogeneous magnetic field allows us to observe a cou-
pling between the librational modes (angular oscillations) of a levitated micro-diamond
and an ensemble of embedded NV spins.

In the first chapter we will introduce the field of spin-mechanics: the coupling between
a spin and a mechanical oscillator. We will first describe the spin degree of freedom and
how it can be studied. We then show how a spin can be coupled to a mechanical oscillator
in the case of a single ion in a Paul trap. We finally present systems proposed to achieve
a similar coupling with a macroscopic oscillator.

The second chapter focuses on our levitation apparatus, which defines the mechanical
oscillator of our experiments. We first study the Paul trap theoretically: we show that for
non-isotropic particles it confines not only the center of mass, but also its angular degrees
of freedom [73] . We then describe its experimental implementation: first the levitation
set-up [74, 75], the detection of the mechanical modes [76, 77] and then its limitations.

In order to take advantage of the NV centers embedded in our levitating diamond, we
must combine our trapping scheme with the tools used to control NV spins [74, 75]. In
the third chapter, we first recall the basics of these tools before describing the combined
trap-spin set-up. We then use NV spins control to monitor the angular stability of a levi-
tating diamond and to show the spins properties are unaffected by the Paul trap.

In this fourth chapter, we use large spins ensemble which results in the observation of
a magnetic spin-induced torque applied to a levitating micro-diamond [77]. Further, we
detect a back-action of the NV spins unto the motion of the micro-diamond, similar to
what has been observed in optomechanics with photons. Thanks to the long lifetime of
the NV spins we use this back-action to cool down the motion of a levitating diamond
under moderate vacuum. Finally, we give a theoretical description of this spin-mechanical
coupling in the quantum regime [73]. In our system, the low frequency (∼ kHz) of the
mechanical oscillator and the low coherence time of the NV spins (∼µs) are the main
limitations to enter this regime.

In the last chapter, we introduce ferromagnetic particles in our levitation experiment
[76]. We first describe theoretically how magnetic forces can indeed be used to substan-
tially enhance the frequency of a micron-scale levitating oscillator. We then present first
experiments showing the oscillation of levitating iron-rods at frequencies up to 150 kHz.
Finally, hybrid particles composed of both diamond and ferromagnetic parts are levitated.
These particles have the potential to reach high mechanical frequencies while NV spins
can be used to cool down and control their motion.

9



Chapter 1

Basics of spin-mechanics

The spin is a magnetic and mechanical property inherent to some elementary particles
like eg the electron. It gives rise to an intrinsic magnetic moment and angular momentum
similar to the orbital spin and angular momentum which is generated by the motion of a
charged particle. In this introductory chapter, we will first focus on detection of the spin,
starting from its discovery to more refined detection scheme. We will then introduce how
it can be coupled to a mechanical oscillator to control its motion in the case of trapped ion.
We will finally describe the coupling schemes that have been developed for spin-mechanics
with NV spins.

1.1 Spin detection
Intriguingly, the existance and the quantum nature of the spin was first demonstrated by
the displacement of a mechanical object. The presence of an intrinsic electron spin was
first evidenced in 1915 by the Einstein de Haas [78] and the Barnett effects [79]. Both
these experiments make use of the angular momentum associated with the electron spin
and angular momentum conservation: when a piece of solid is magnetized, it slowly rotates
to compensate the change of angular momentum of the elctrons even though no torque
was applied to it.

In this work we focus on the coupling of the spin to mechanical motion through its
magnetic moment, under magnetic fields or magnetic gradient. The magnetic moment
µs of an electron spin is often described using the gyromagnetic ratio of the electron γe :
µs = γe~S, where ~S is the spin of the electron.

1.1.1 The Stern-Gerlach experiment

The quantum nature of the spin is most striking in the Stern Gelarch experiment [80]:
even if discrete quanta were observed before [81, 82] it evidenced for the first time two
distinct quantum states for the magnetic moment of atoms ie the spin states.

The Stern Gerlach experiment, developed in 1922 is described in figure 1.1.a). It
showed the discretization of the magnetic moment of atoms by observing the deviation of
a beam of silver atoms going through a magnetic gradient. Would the magnetic moment
of the atoms be a classical quantity, one would expect a continuous range of deviation as a

10
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Figure 1.1: a) Stern-Gerlach experiment: a beam of silver atoms passes through a magnetic
field gradient. Its deviation, which depends on the magnetic moment of each atom yield a
continuous and discrete dispersion in the classical (c) and quantum (q) case respectively.
b) First NMR experiment by Isidor Rabi: a beam of atoms is splitted and recombined
by two opposite magnetic gradient. If a resonant oscillating field is applied in a region
between the two gradient, the spin is flipped and the beams are not recombined.

function of its amplitude. The process actually taking place for each atom is an entangle-
ment between its deviated position and its spin projection along the magnetic field. When
its position is measured, only one of the two position-spin state can be obtained.

The Stern Gerlach experiment was later modified by Isidor Isaac Rabi to observe Nu-
clear Magnetic Resonance (NMR) of LiCl molecules [83]. This experiment is described
in figure 1.1.b): a beam of molecule is spread by a magnetic gradient in a first region
and recombined by an inverse magnetic gradient in a second region. In-between an os-
cillating magnetic field is applied. When its frequency is close to the Larmor frequency
ν = γeB0 where B0 is the uniform magnetic field between the gradients, the spin -and so
the magnetic moment- of each molecule can be inverted. At resonance, this results in a
lower recombination of the molecules beams as the deviations due to the gradients add up
instead of cancelling. The inversion of the magnetic moment is explained by its precession
about the permanent magnetic field and the probability to inverse it can be calculated
and was shown to follow the so-called Rabi oscillations [84].

1.1.2 Nuclear Mangetic Resonance

Rabi’s discovery was followed by its implementation in a solid state system: Bloch ex-
plained [85] and observed -simultaneously with Purcell- that this precession induced in
solid could be observed macroscopically. Contrary to previous experiment where atoms
could not be retained or thermalized, Bloch and Purcell were able to apply a uniform
magnetic field strong enough to polarize spin ensembles within a solid. They then applied
a perpendicular rotating magnetic field for a short time and could observe the magnetic
field generated by the precessing spins in a nearby pick-up coil, after the oscillating field
was turned off. Indeed, after the excitation the magnetic moment of the nuclear spins are
tilted away from their equilibrium point closer to the transverse plane and they rotate
around the permanent magnetic field at their Larmor frequency. These oscillation occurs
over a finite timescale due to:
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1.1. Spin detection

1. thermal fluctuations (ie relaxation)

2. inhomogeneities of the permanent magnetic field which cause the spins not to precess
at the same Larmor frequency and dephase from one another.

The nascent field of Nuclear Magnetic Resonance (NMR) was refined in 1950 by Er-
win Hahn with the spin echo (or Hahn echo) technique [86]. Instead of a single pulse, two
pulses were applied. A first precession can be observed after the first pulse but the signal
is lost due to dephasing. However when the second pulse is applied after a free precession
time τ , the nuclear spins precession are rephased after a time of 2τ from the first pulse. As
we will see later, this technique can be used with NV spins and allows more complex inves-
tigations of inhomogeneities and dephasing as well as protecting the NV spin against them.

Since then, NRM has considerably evolved, nowadays applications include imaging (for
example, medical) and analysis of molecule to obtain chemical/structural information.
Although sensitivity has been improved, the amplitude of the magnetic field generated
by the spins scales down with the size of the observed ensemble and constitute the main
limitation to increase resolution of imaging or observation of smaller samples.

1.1.3 Optically detected magnetic resonance

The weak magnetic field which a spins ensemble generates is not the only way to detect
it: in particular, the discovery of the spin was made through mechanical means. Al-
most simultaneously to NMR, Electron Paramagnetic Resonance (EPR) was discovered
by Yevgeny Zavoisky looking at the absorption of a microwave by salts.

Its sensitivity dramatically improved when it was combined with optical spectroscopy.
In the early days of NMR it was shown that due to spin-dependent lifetime of optically
excited state, spins can be both polarized and read-out through optical means [87]. The
high sensitivity of Optically Detected Magnetic Resonance (ODMR) in particular lead to
observation of single spins in molecules [88]. Single spins can be used as point-like mag-
netometer [89], or as a quantum memory to store an arbitrary quantum state.

The different systems of single spins in the solid state can be rated on account of their
lifetime, decoherence/dephasing rate, read-out fidelity and operating temperature. The
Nitrogen-Vacancy (NV) center is an atomic defect in diamond that stands out due to its
stable photoluminescence at room temperature. It further enables spin initialization and
read-out while microwave excitation allows transitions from one spin state to another.
This led to observation of a single NV spin at room-temperature in 1997 [90]. It has since
been used for nanoscale magnetometry [89, 91, 92] and to perform the first loophole-free
Bell inequality test [19].

1.1.4 Magnetic Resonance Force Microscopy

Mechanical detection of spins in the solid state was first realised in 1955 [93]: if one ap-
plies not only a strong magnetic field but also a gradient, a force is exerted on the solid
when the spins are polarized. However it was only with advancement in Atomic Force
Microscopy (AFM) that it sparked interest to increase the spatial resolution of magnetic
resonance imaging.
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Figure 1.2: a) MRFM basic principle: a force is applied by spin(s) on a magnet positioned
at the tip of a cantilever, the spin(s) are periodically flipped using microwave pulses. When
the pulse frequency ωr+δ matches the cantilever resonance, displacement of the cantilever
can be optically measure using a reflected laser beam.

The basis of Magnetic Resonance Force Microscopy (MRFM) operation is described
in figure 1.2.b). A similar cantilever to the one used for AFMs is used as a mechanical
oscillator: a mirror (eg constituted of a simple metallic coating) is placed on one side of
it so its position can be measured through optical interference of a reflected laser beam,
and a ferromagnet tip is added at its extremity. The cantilever is displaced so as to sweep
a plane close to the surface of a bulk material containing spins close to its surface. A
microwave is then used to flip the spin at the same rate than the mechanical oscillator.
When the magnetic tip is close to the spin, it exerts a periodic force on the magnetic
tip that resonantly excites the cantilever. The displacement of the oscillator can then be
optically measured by taking advantage of its high quality factor.

The first MRFM experiment was realized in 1993 [94], it showed nm-scale resolution
in 2003 [95] and in 2004 single spin detection was achieved [41]. This last experiment was
highly promising: by reproducing this experience with a long lifetime spin (like the spin
of an NV center), one could envision using it to both actuate and measure the position
of a mechanical resonator (the cantilever). Such coupling can be used to first cool down
the resonator motion and -if it is strong enough- to bring it in a quantum state. Practical
limitations however make this experience particularly challenging: first, in order to obtain
a strong enough coupling, the magnetized cantilever must be at a distance of a few tens
of nanometers from a single spin[43]. The mechanical oscillator must also be placed at
cryogenic temperature to reduce its heating rate and must have a micron-scale size for a
single spin to be able to displace it.

1.2 Trapped ion: an example of quantum harmonic mechan-
ical oscillator

In the Stern-Gerlach experiment, magnetic coupling displaces a free-falling beam of atoms
depending on the orientation of their spin. Similarly, one can couple a single spin to a
mechanical oscillator: an object confined in a harmonic oscillator. Under the right con-
dition, this coupling can actually be used to generate a quantum state of the mechanical
oscillator. Here we will first describe this coupling in the case of an ion.
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1.2. Trapped ion: an example of quantum harmonic mechanical oscillator

A Harmonic Oscillator (HO) can be used to describe any minimum of the energy -
at the first order approximation- and is therefore very pervasive in physics. According
to quantum mechanics, the energy states of a HO can be quantized. Observing such
quantized state for a mechanical HO however presents some challenge that trapped ions
were able to leverage. We will first present the formalism we use to described the HO in
the quantum regime.

1.2.1 Quantum harmonic oscillator with the ladder operators method

The Schrodinger equation for the wavefunction |Ψ〉 of a particle’s moving in a harmonic
potential in a single dimension reads:

i~∂Ψ
∂t = Ĥ |Ψ〉 , (1.1)

with the following Hamiltonian

Ĥ = ~2

2m p̂2 + 1
2 mω2

r x̂2, (1.2)

where m is the mass of the particle, ωr the angular frequency of the HO, x̂ and p̂ the
operators for the particle’s position and momentum respectively. Such equation can be
solved with the ladder operator methods developed by Paul Dirac [96]. In this method we
use the creation â† and annihilation â operators to describe the motion of the oscillator:

x̂ = a0
(
â† + â

)
p̂ = ip0

(
â† − â

) with a0 =
√

~
2mωr

, p0 =

√
~mωr

2 . (1.3)

Using these operators the Hamiltonian can be rewritten:

Ĥ = ωr

(
â†â + 1

2

)
. (1.4)

Its eigenstate are the so-called Fock states or number states:

|n〉 =

(
â†

)n

√
n!

|0〉 , (1.5)

with n a positive integer which describe here the number of excitation (phonon). Their
eigenvalues are : ωn = ~(n + 1

2).

The creation and annihilation operators as well as the phonon number operator N̂ = â†â
take their name from their action on the Fock states:

â† |n〉 =
√
n+ 1 |n+ 1〉

â† |n〉 =
√
n |n− 1〉

N̂ |n〉 =n |n〉 .
(1.6)
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1.2. Trapped ion: an example of quantum harmonic mechanical oscillator

1.2.2 The emergence of trapped ions

Most Mechanical Oscillator (MO) have a high average phonon number at room temper-
ature and do not lend themselves easily to quantum manipulation. Indeed 300kB/~ ∼7
THz, which means any oscillator of lower frequency will be in a thermal state at room
temperature, that is in a non-coherent superposition of many Fock states. Observing a
MO in the quantum regime therefore requires either to cool down the environment so that
kBT < ~ω or to have the MO decoupled/isolated from the environment and a cooling
mechanism to displace it from thermal equilibrium. Once in the ground state one can use
the cooling mechanism but reversed to create an arbitrary state of higher energy (eg Fock
state, superposition state) [34].
Trapped ions were the first system that met this criteria. At high vacuum the center of
mass of a trapped ion constitutes a well isolated HO. Then, its the motion can be manipu-
lated using laser or microwave fields to couple its motion to its internal degrees of freedom
such as electron orbitals or spins. Single ions were first isolated in a Paul trap in 1980
[97]. The Paul trap was proposed by W. Paul [9]: it uses a dynamical electric potential
to confine the ion and eventually earned him the Nobel prize in 1989. Typical electrodes
that generate the electric potential are shown in figure 1.3.a). Cooling of ion ensembles
was first showed in 1978 with an oscillator cooled to lower than 40K using laser light [10].
The limitation was found to be the linewidth of the optical transition compared to the
frequency of the MO: the latter must be higher than the former to enable efficient cooling.
Such regime is called the Resolved Sideband (RSB) regime and was reached ten years later
thereafter enabling ground state cooling of a mercury ion [11]. In the RSB regime one
can perform a Rabi oscillation on the sidebands and can not only cool down the MO to
its ground state, but also map any superposition state from the electronic states unto a
superposition of adjacent phonon states or entangle the MO state with the electronic state
[15].

1.2.3 Spin-mechanical coupling

We now take a look at the manipulation of the motion of trapped ion in the quantum
regime. We will here only describe a method using magnetic coupling to an electron spin.
It should be noted that for trapped ions, using laser light and the Doppler effect [98] is
more common. Coupling to the spin as we present it was only recently proposed [99] and
realized [100]. Still, this method uses a similar formalism and we will later use the same
coupling to control the motion of levitating micro-diamonds.

We consider the quantized energy of the Center of Mass (CoM) of a trapped ion
containing a one halve electron spin. The energy states of the two degrees of freedom are
depicted in figure 1.3.b)). One can use a magnetic field gradient to couple the spin and
the motion of the ion: the energies of the spin states will depends on the position of the
ion because of the varying Zeeman effect. The Hamiltonian of this coupled system can be
written using the ladder operators:

H/~ = ωrâ
†â+ ωsŜz + a0

(
â+ â†

)
GmγeŜz

= ωrâ
†â︸ ︷︷ ︸

Mechanics

+ωsŜz︸ ︷︷ ︸
Spin

+ λ(â+ â†)Ŝz︸ ︷︷ ︸
Spin−mechanical

with λ = Gmγea0, (1.7)
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Figure 1.3: a) Ion trap: an oscillating voltage is applied between the ring and endcaps
electrodes, resulting in harmonic confinement for ions at the center of the trap. A magnetic
field gradient associated with a microwave field or a laser can be used to control the
motion of the ion. b) Left: harmonic oscillator’s potential energy (red curve) and the
quatized phonon number states (black lines). a0 is the amplitude of the amplitude of the
zero-point fluctuations of the position. Right: two level system (spin one halve) which
energies depend on the position due to the field gradient and Zeeman effect. c) Dressed
states for the two level system and a harmonic oscillator. The electronic transition are
addressed by a microwave transition, and cross-phonon transition can occur due to spin-
mechanical coupling. d) Absorption spectra of a trapped ion, the sidebands generated
by the spin-mechanical coupling results in absorption (creation) of a phonon for the red
(blue) sideband.

where Ŝz is the Pauli operator along the B field direction, ωs is the energy splitting between
the spin states at the trap center, Gm the magnetic field gradient and γe the gyromagnetic
ration of the electron. The first two terms are the energy of the non-interacting MO and
spin while the third describe their magnetic coupling with a rate λ. This latter term
corresponds to a Zeeman effect to the spin and to a force applied to the MO.

Because the energy between the spin states ωs is often much larger than the energy span
between two adjacent Fock states ωr, a microwave usually drives the spin state to allow
a resonant coupling. In a frame rotating at the frequency of the microwave ω = ωs − ∆,
the full Hamiltonian is then:

H/~ = ωrâ
†â+ ∆

2 Ŝz + λ
(
â+ â†

)
Ŝz + Ω

2 Ŝx, (1.8)

where Ω is the Rabi frequency associated with the microwave drive.
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1.2. Trapped ion: an example of quantum harmonic mechanical oscillator

To better capture the effect of the spin-mechanical coupling, we diagonalize the spin-
only part of the Hamiltonian in the |±〉 basis:{

|+〉 = sinψ |−1/2〉 + cosψ |+1/2〉
|−〉 = − cosψ |−1/2〉 + sinψ |+1/2〉

with tan(2ψ) = Ω
∆ . (1.9)

Writing the spin operators in the |±〉 basis, the Hamiltonian then reads:

H/~ = ωrâ
†â+ ω±Ŝz + λ cos(2ψ)

(
â+ â†

)
Ŝz︸ ︷︷ ︸

longitudinal

−λ sin(2ψ)
(
â+ â†

)
Ŝx︸ ︷︷ ︸

transverse

, (1.10)

with ω± =
√

Ω2 + ∆2.

The spin-mechanical coupling is now splitted in two terms we have named “longitudi-
nal” and “transverse”. The longitudinal term corresponds to a spin-dependent force on par
with a position dependent Zeeman effect. The transverse term corresponds to an energy
exchange between the spin and the MO, it will in practice cause a cooling or heating of
the mechanical oscillator.
These two effects will play an important role in the latter work of this thesis but for now
we will focus on the transverse term which enables coherent manipulation of the MO.

(â + â†)(Ŝ+ + Ŝ−) and under the rotating wave approximation it becomes . This
corresponds to an energy exchange between the spin and the mechanical oscillator: the
spin can flip while emitting or absorbing a phonon of the mechanical oscillator. This will
in practice result in a cooling or heating of the mechanical oscillator.
These two effects will play an important role in the latter work of this thesis but for now
we will focus on the cooling/heating mechanism which enables coherent manipulation of
the MO.

1.2.4 Coherent manipulation of the mechanical state

Discarding the longitudinal term we obtain:

H/~ = ωrâ
†â+ ω±Ŝz − λ̃

(
â+ â†

)
Ŝx

= ωrâ
†â+ ω±Ŝz − λ̃(â+ â†)(Ŝ+ + Ŝ−)

(1.11)

with λ̃ = λ sin(2ψ) and where Ŝ+ = Ŝx + iŜy and Ŝ+ = Ŝx − iŜy are the creation
and annihilation operator for the spin. At the spin-mechanical resonance ωr = ω± and
under the rotating wave approximation, we eliminate the non-resonant term of the spin-
mechanical term thereby obtaining the Hamiltonian

H/~ = ωrâ
†â+ ω±Ŝz − λ̃

(
âŜ− + â†Ŝ+

)
. (1.12)

This is the Hamiltonian of the Jaynes–Cummings model. It describes the coherent ex-
change between spin and phonons which is embodied by coherent oscillations between
dressed state of adjacent phonon number |n〉 |−〉 and |n− 1〉 |+〉.
Given one can initialize the spin state in an arbitrary state and if the coupling rate λ is
stronger than the decoherence, it allows one to generate any arbitrary quantum state of
the mechanical oscillator [34]. Cooling can for example be achieved by polarizing the spin
state into the |−〉 state and tuning a weak driving field (Ω � ∆) red-detuned (∆ = −ωr)
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1.3. Center of mass spin-mechanics with NV spins

compared to the resonant spin transition at ωs. One can similarly heat up the CoM mo-
tion with a blue detuned microwave (∆ = +ωr). These cooling and heating transitions
between adjacent Fock states are shown in figure 1.3.c). Incidently, when these transitions
are possible (therefore, out of the ground state) the spin resonance spectrum features two
sidebands flanking the resonance at detunings of ±ωr, as depicted in figure 1.3.d).

Such a fine control and coupling of these internal (spin, electron) and external (CoM)
quantum degree of freedom [98] led to outstanding prospects. Trapped ions were for ex-
ample proposed to build quantum computers [14]. The motion of two ions in the same
trap is in fact coupled due to the Coulomb force, resulting in collective oscillation modes
that can be cooled down [101] and used as a bus to entangle two ions [102]. One therefore
obtains a logic gate between the information stored in the internal degree of freedom of
both ions. Up to 14 ions have been entangled in a single linear ion trap [16],

1.3 Center of mass spin-mechanics with NV spins
The same spin-mechanical coupling that allows control of an ion’s motion can actually be
used with a massive mechanical oscillator coupled led to a well controlled two level system.
The field of opto-mechanics has already achieved impressive results regarding the control
of a mechanical oscillator in the quantum regime [35, 37, 38]. However, the use of a two
level system offers interesting prospects. In particular, one could transfer the high degree
of control, which is now achieved for certain two-level systems in the solid-state, unto the
mechanical oscillator.

Figure 1.4.a) depicts the states of a two level system (here, a spin) dressed by the Fock
states of a mechanical oscillator. As explained for trapped ions, a strong spin-mechanical
coupling allows coherent diagonal transitions between two different spin states and adja-
cent Fock state. The ability to generate an arbitrary state for the two level system can
then be transferred to the state of the mechanical oscillator, if its decoherence and heating
rate are slower than the coupling. The NV spin is an attractive system for such scheme,
because it has a long lifetime and coherence time can fully be controlled using optical and
microwave fields [90]. Here, we will specifically describe schemes that have been proposed
to couple the motion of a mechanical oscillator to an NV spin.

1.3.1 Coupling schemes

Interaction between a two level system and a large mechanical oscillator can be achieved
through several means [42]. In the case of the NV center, two types of interaction have
been used.

Strain coupling

One can first use the intrinsic strain in the diamond crystal to mediate the coupling: figure
1.4.b) depicts a cantilever made of bulk diamond, with a single NV spin embedded in the
cantilever. The strain within the crystal actually depends on the position of the cantilever,
because its oscillation apply a stress on the diamond.
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Figure 1.4: a) Spin states dressed by the mechanical oscillator (MO). A microwave
magnetic field can be used to either solely change the spin or both the spin and the
phonon number with an additive Spin-Mechanical coupling (diagonal arrows). b) Schemes
for a strain mediated spin-mechanical coupling. Magnetic spin-mechanical coupling with
c) a diamond on a cantilever and d) a magnetized cantilever on top of a bulk diamond,
with a shallow single NV spin.

The strength of this coupling is however small: in order to observe it, the mechanical os-
cillator has to be strongly driven so that the large amplitude of its oscillations compensate
for the low, zero-phonon coupling rate. Coherent control of an NV spin was achieved using
this method [103, 104] but back-action of the NV spin on the mechanical oscillator have
not been observed.

Magnetic coupling

The NV spins can also be coupled to a cantilever through magnetic coupling [43]. Figure
1.4.c) illustrates how one obtain such coupling: a nano-diamond with a single NV spin is
positioned at the tip of a cantilever, while a magnetic structure is brought in its close vicin-
ity to generate a strong magnetic gradient Gm. Under these conditions, the Hamiltonian
for the NV spin and the mechanical oscillator of frequency ωr can the be written

H/~ = ωrâ
†â+ ωsŜz + a0

(
â+ â†

)
GmγeŜz with a0 =

√
~

2mωr
= ωrâ

†â+ ωsŜz + λ
(
â+ â†

)
Ŝz λ = Gmγea0,

(1.13)

where Ŝz is the Pauli operator along the z direction, ωs the energy splitting between the
spin states, γe the gyromagnetic ration of the electron and â† and â are the creation
and annihilation operators for the mechanical oscillator. We obtain exactly the same
spin-mechanical Hamiltonian than in equation 1.7, which, in particular enables coherent
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1.3. Center of mass spin-mechanics with NV spins

control of the mechanical oscillator.

However, entering the strong coupling regime, where the spin-mechanical coupling rate
is higher than the decoherence rate is here challenging. This mainly stems from the high
mass of the mechanical oscillator which reduces the amplitude of the zero-point fluctua-
tions a0 of the mechanical oscillator. The coupling rate can be increased by maximizing
the magnetic gradient: the strong coupling regime could then be reached with magnetic
gradients in the order of 107 T/m [43].

The first experiment to observe this coupling was performed with the scheme de-
scribed in figure 1.4.c) [44, 105]. A magnetic gradient of up to 4.5 104 T/m was achieved
by positioning a magnetic structure below a nano-diamond attached to a silicon carbide
nano-wire. The spin-mechanical coupling allowed for a single NV spin to measure excited
oscillations of the nano-wire.
In an other experiment, a reversed set-up was used: a magnetized cantilever was approach
close to the surface of a bulk diamond where shallow single NV spins were implanted
[45]. A magnetic gradient up to 105 T/m was achieved and the thermal fluctuation of the
mechanical oscillator could be measure by the NV spin. In both experiment, the coupling
rate λ did not exceed the Hz range and control of the mechanical oscillator could not be
achieved.

1.3.2 Levitated diamonds

An alternative system, which reduces the mass of the mechanical oscillator and to sup-
presses its heating would be to use a levitating nano-diamond as the mechanical oscillator.
Such particles, under high vacuum have reached record-high quality factor [46]. The center
of mass motion of these levitating particle is usually manipulated using optical [49, 51, 53]
or electric forces [54, 55]. Optical measurement of the particle’s position enables cooling
of its motion through a feed-back loop [53]. Recently, this method allowed the observation
of the quantized motion of a levitating silica nano-sphere [56].

Optical tweezers [47] is the most established trapping method and could provide a high
enough frequency (∼ 100 kHz) to reach the sideband resolved regime for spin-mechanics
with levitating diamonds. Several experiments have therefore been performed where nano-
diamonds are levitated in optical tweezers, and embedded NV spins are manipulated
through electron spin resonance [62–64].
However, these first experiments were performed under atmospheric pressure and, under
vacuum condition, a strong heating of the diamond was observed [64, 66, 67]. This heat-
ing is attributed to absorption of the trapping beam by impurities in the diamond crystal
[64, 67, 106]. Although the use of ultra-pure diamond samples could partially solve this
issue [106], even a few impurities will eventually limit the pressure achievable, given the
high optical power used to trap the particle [106]. It should be noted that heating of the
internal degrees of freedom was also observed with levitated silica nano-spheres [107], but
at a much higher vacuum, due to the low absorption of silica at the wavelength of the
trapping beam.
Apart from reducing the absorption of the levitated particle, it is also possible to opti-
cally cool down the internal degree of freedom using anti-stokes emission in rare-earth
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1.3. Center of mass spin-mechanics with NV spins

crystals [108, 109]. An interesting development is the realization of such cooling in an
optically levitated nano-crystal [110]: if such particle can be efficiently combined with a
nano-diamond, it could prevent it from heating under high vacuum.

To prevent a levitating diamond from heating, an other scattering-free trap could be
employed: an optical field is then only required to control and observe the NV spin, with a
much lower intensity than what is used in optical traps. Both Paul traps [65] and magneto-
gravitational traps [49] have shown stable trapping of nano-diamonds. The frequency of
the center of mass oscillations in those trap is however for now limited to the kHz range
[49, 52], which would prevent one from attaining the sideband resolved regime.

Spin-mechanics experiments are still possible outside of the resolved sideband regime.
In particular, matter wave interferometry experiments have been proposed with a levitat-
ing diamond when the trap is turned off or loosened [57, 60]. The general idea is similar
to the Stern-Gerlach or Rabi experiments described in section 1.1: a magnetic gradient
is used to spatially separate two spin-dependent paths, which are then recombined by
applying a π pulse on the NV spin.

Finally, levitation experiments are prone to the use of the angular degrees of freedom.
Its investigation was made possible following the levitation of non-spherical particles in
Paul traps [68] and optical tweezers [69, 70], in particular, light-driven rotation at MHz
frequencies have been observed [69, 70]. As we will see latter in this thesis, the NV spin
is in fact well-suited for coupling to the angular degrees of freedom.
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Chapter 2

Levitation of micro-particles in a
Paul trap

In this thesis, we investigate the coupling of a levitating oscillator with NV spins in
diamond. In order to do so, we propose using a Paul trap to levitate micro-diamonds or
micro-magnets. It should be noted that our levitation scheme drove us to focus not on
the Center of Mass (CoM) of this levitating object but on its angular degrees of freedom.
Here, we will first discuss the theory of the Paul trap, in particular how it confines the
CoM and the angular degrees of freedom of a charged particle. We then describe the
experimental set-up: first the trap itself and then the tools that we use to observe the
motion of a levitating particle. We finally present two limitations, which for now imposes
certain working conditions on the system as it is.

2.1 Confinement of a charged dielectric particle in a Paul
trap

Let us first describe the mechanism that allows Paul traps to confine charged particles.
We will see that this mechanism, well-established for the CoM of an ion [9, 48, 98] can be
extended to the angular degree of freedom of a particle with a macroscopic and anisotropic
charge distribution [73].

2.1.1 Confinement of the CoM

Paul traps rely on electric forces to confine ions or charged particles. A simple harmonic
electric potential is however not sufficient to confine a particle in all three directions of
space. This is evidenced by the Laplace equation for the electric potential φ(x, y, y)

∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 = 0, (2.1)

which shows that if two directions are confined (eg ∂2φ/∂2x, ∂2φ/∂2y > 0) the third one
is anti-confined (∂2φ/∂z2 < 0).

A Paul trap circumvents this issue by using an oscillating electric field. A voltage os-
cillating at a frequency Ω is applied to electrodes in order to generate the electric potential
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2.1. Confinement of a charged dielectric particle in a Paul trap

φ in a certain region of space close to the center of the trap (x, y, z = 0):

φ(x, y, z, t) = Vac cos(Ωt) + Vdc
z2

0

(
ηxx

2 + ηyy
2 + ηzz

2
)
, (2.2)

where VAC is the amplitude of the oscillating voltage, VDC a bias voltage, z0 a character-
istic dimension of the electrodes and ηx, ηy > 0, ηz = −ηx − ηy geometric factors related
to the shape of the electrodes. A typical electrodes confinguration is a ring associated to
endcap electrodes as shown in figure 1.3.a) but many variations are possible [111–113].

Equation of motion for the CoM

For a point-like particle of mass m and charge Q, the equations of motion are then

ẍ+ ηxQ

mz2
0

(Vdc + Vac cos(Ωt))x = 0

ÿ + ηyQ

mz2
0

(Vdc + Vac cos(Ωt)) y = 0

z̈ + ηzQ

mz2
0

(Vdc + Vac cos(Ωt)) z = 0.

(2.3)

The motion along each direction x, y and z is decoupled and can be written in the
so-called dimensionless Matthieu equation:

d2u

dτ2 + (au + 2qu cos 2τ)u = 0 (2.4)

where u = x, y, z and with the following dimensionless parameters

τ = Ωt
2

au = 4ηuQVdc
mz2

0Ω2

qu = 2ηuQVac
mz2

0Ω2 .

(2.5)

This equation can be solved and has two solutions. Given the values of the parameters
au and qu only one of the two solutions is possible :

• stable: u is bound, oscillates around u = 0 with an amplitude related to the initial
conditions

• unstable: u oscillates around 0 with increasing amplitude.

CoM stability condition

In practice, the particle is often only observed when the motion is stable and is otherwise
lost. Its motion is stable when the parameters a and q are within the region defined by
the two curves [48]: 

a+ = 1 − q − 1
8q

2 + 1
64q

3 − 1
1536q

4 + 11
35864q

5

a− = −1
2q

2 + 1
128q

4 − 29
2304q

6 + 68687
18874368q

8.
(2.6)
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2.1. Confinement of a charged dielectric particle in a Paul trap

This region is drawn in figure 2.1 for three axes x, y and z in the symmetric case
ηx = ηy = −ηz/2. Because the particle is only stably trapped if its motion is stable along
all axes, the stability region of the particle is the overlap of all three regions. In practice
one can always find a stable region by tuning the amplitude, bias and frequency of the
voltage applied to the trapping electrodes. Note that when one considers levitating solid
in finite vacuum, damping has to be taken into account in the equation of motion. This
results in Matthieu equations with modified parameters a′, q′, which usually broadens the
region of stable motion [114].
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Figure 2.1: Stability diagram for the motion of a trapped ion with a revolution symmetry
around the z axis for the trapping potential. Here r corresponds to the x or y coordinates.

Harmonic confinement

Within the stable region, for all three axes u = x, y, z the motion of the particle can be
decomposed into two parts with different frequencies [48]:

1. The micromotion: a fast oscillation at frequency Ω

2. The secular or macro-motion: slower oscillations at the frequency ωu.

The micromotion results directly from the oscillating potential: as long as the particle
is not at the center of the trap (u = 0), an oscillating electric force is applied to the par-
ticle. However since the particle has a finite mass and moves in the potential, the electric
force applied to it changes and does not cancel out completely over one period of the
micromotion: this results in the secular motion. Under certain conditions (q . 0.4) one
can show that the force applied to the particle, averaged over a period of the micromotion,
reproduces a harmonic confinement with angular frequency ωu yielding the secular motion
of the particle [115].

The position of the CoM of a trapped ion as a function of time is illustrated in figure
2.1.a): the slow oscillation correspond to the macro-motion while fast oscillations are the
micro-motion. The amplitude of the micro-motion depends on the average position of
the particle: as it moves further away from the center of the trap, the amplitude of the
oscillating electric field increases.

24



2.1. Confinement of a charged dielectric particle in a Paul trap

One can therefore consider the particle as being in a harmonic pseudo-potential with:

Ucom (x, y, z) = 1
2m

∑
u=x,y,z

ω2
uu

2 with ωu =

√
au + q2

u

2 Ω. (2.7)

Note that in order to have a harmonic potential, the condition q < 0.4 and the de-
pendency of the harmonic confinement frequency implies that the AC trap frequency Ω is
higher than the resulting confinement ωu.
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Figure 2.2: Position of the CoM of a trapped ion as a function of time: a) without external
forces and b) with a strong force which shifts the center of the trap.

Under ideal conditions, micro-motion will remain small as long as the amplitude of
the macro-motion is limited. However, an external force -eg gravity for large particles-
can shift the center of the trap at a position where the electric field induces a strong
micro-motion. Figure 2.2.b) depicts the CoM motion of a charged particle under these
conditions: a strong micro-motion occurs even at the center of the trap. In our experiment
in particular, the presence of a strong micro-motion is harmful for the measurement of the
position as it blurs the optical signal that we use (see section 2.4.2).

2.1.2 Confinement of the angular degree of freedom

Levitating a diamond particle of finite size, which contains NV centers makes the angular
degree of freedom an important issue. It first brings new requirement compared to ions:
as we will see later the NV center is not isotropic and its orientation compared to the
magnetic field matters and cannot be left randomly rotating. Besides, considering a finite
particle with multiple charges means the electric field exerts not only a force to the particle
but also a torque.
This situation bears similarities to the collective motion of ions in Paul traps: when two
or more ions are trapped in the same trap, Coulomb interaction gives rise to additional
modes of motion aside from single ion oscillations. One such mode, the so-called rocking
mode is described in figure 2.3.a): the two ions can oscillate out of phase along a direction
perpendicular to the axis which they are trapped on. A bigger particle with several charges
in fact behaves similarly: the diamond depicted in figure 2.3.b) with only two charges aligns
itself with one axis of the Paul trap, its angular degree of freedom is a confined oscillation
mode.
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(a)
VHV

VHV

(b)
VHV

VHV

- -

Figure 2.3: a) Ion trap with four rods as electrodes. Two trapped ions are depicted as red
discs while a cross indicates the center of the trap for a single ion. The black arrow shows
collective motion of the two ions, here a rocking mode. b) Trapped micro-diamond with
only two electronic charges which aligns with one axis of the trap (here the rod axis).

Although the collective motion of ions is well known, and micro-particle with multiple
charges were levitated in Paul traps [48] before ions, their angular confinement had to
the best of our knowledge not yet been studied. In fact, only after observing NV spins
in a levitating micro-diamond, did we consider the confinement of the angular degrees of
freedom caused by the Paul trap.

Electric torque and equilibrium position

Let us now consider a particle levitating in a Paul trap, with multiple charges at different
positions with respect to the centroid of the charges. Here, we consider that the centroid
of charges matches the center of mass and is frozen at the center of the trap: any rotation
of the particle happens around both and the total force applied to the particle always
cancels out.

The torque applied by the electric field deriving from eq. 2.2 to a charge Qi at vector
position

−−→
OM i with coordinates (xi, yi, zi) reads:

~Mi = Qi
−−→
OM i × ~E(xi, yi, zi) (2.8)

=

xiyi
zi

 ×Qi
V (t)ηz

2z2
0

(1 − δ)xi
(1 + δ)yi

2zi

 (2.9)

= QiV (t)ηz

2z2
0

yizi (3 − δ)
xizi (3 + δ)

xiyiδ

 , (2.10)

where we have defined δ = (ηy − ηx) /ηz and V (t) = Vac cos(Ωt) + Vdc.
The total torque applied to the particle is the sum of all individual torques for each

charge. It reads:

~M = V (t)ηz
2z2

0

∑
i

Qi

yizi (3 − δ)
xizi (3 + δ)

xiyiδ

 . (2.11)
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2.1. Confinement of a charged dielectric particle in a Paul trap

It should be noted that there exists at least one orientation of the particle for which this
torque cancels out. This can be demonstrated by considering a time-independent electric
potential (ie Vac = 0) with a particle maintained at the center of the trap through another
force applied to its center of mass. Here the time-independent electric potential yields a
conservative electric torque. At the minimum of the corresponding potential energy, the
particle is at its equilibrium and the electric torque cancels out. If the electric potential
varies with time as in equation 2.2 the considered orientation is either a minimum or a
maximum but remains an equilibrium point -alternating from stable to unstable. When
the particle is in this orientation, the coordinates of its charges therefore obey the equation:∑

i

Qiy
eq
i z

eq
i =

∑
i

Qix
eq
i z

eq
i =

∑
i

Qix
eq
i y

eq
i = 0. (2.12)

Equations for the Euler angles in the rotating frame

In order to describe the rotation dynamics of the particle within the Paul trap we use a
rotating frame (X,Y,Z) with axes fixed to the particle. We choose axes parallel to the
trap axes (x,y,z) when the particle is at its equilibrium position in the electric field. When
the particle orientation is out of the equilibrium, this frame can be obtained from the
laboratory frame (x,y,z) by performing three rotations, pictured in figure 2.4. First the
(x,y,z) frame is rotated of ψ around the z axis, the rotated frame (x’,y’,z’) is then rotated
of θ around the y’ axis giving the (x”,y”,z”) frame and finally rotated of φ around the x”
axis yielding the rotating frame (X,Y,Z). Here, we follow the Tait–Bryan angles (z,y,x)
convention for the ψ, θ and φ angles.
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Φ
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x''=X Y

Z
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Φ

Figure 2.4: Succesion of rotations transforming the trap axes (x,y,z) into the rotating
frame (X,Y,Z).

Let us now define the rotation matrices as:

Rz(φ) =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 , Ry(φ) =

 cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ

 , Rx(φ) =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 .

The matrix allowing one to obtain the coordinates (X,Y,Z) of the rotating frame from
(x,y,z) is then R(φ, θ, ψ) = Rz(ψ)Ry(θ)Rx(φ) and we have:XY

Z

 = R(φ, θ, ψ)

xy
z

 . (2.13)
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2.1. Confinement of a charged dielectric particle in a Paul trap

We will now rewrite the electric torque in the rotating frame using only coordinates
from the rotating frame. This will later be used in the Euler equation but more generally
it allows us to see how the electric torque varies with the orientation of the particle and
with intrinsic parameters such as the the geometry of the particle.
In order to do so, we write the electric field as a matrix product of, from right to left:
the rotating frame coordinates, a rotation matrix R−1 to obtain the x, y, z coordinates
from X, Y, Z, a matrix giving the electric field in the fixed frame from the fixed frame
coordinates and another rotation matrix R to write the electric field in the rotating frame
coordinates. The field in the rotating frame is then:EXEY

EZ

 = R
V (t)ηz

2z2
0

1 − δ 0 0
0 1 + δ 0
0 0 2

R−1

XY
Z

 . (2.14)

The total electric torque can then be rewritten as:

~M =
∑
i

QiV (t)ηz
2z2

0

Xi

Yi
Zi

 ×

A
Xi

Yi
Zi


 (2.15)

A = R

1 − δ 0 0
0 1 + δ 0
0 0 2

R−1 (2.16)

It should be noted that the coefficients of the matrix A are a linear combination of
X, Y , Z and that because R is orthogonal, A is symmetric ie Aij = Aji. We also
know that because the rotating frame was chosen to be at equilibrium we always have∑
iQiXiZi =

∑
iQiXiZi =

∑
iQiXiYi = 0 so all contributions of the cross product but

the square coordinates will be eliminated. Using the symmetry of A we finally obtain:

~M = QV (t)ηz
2z2

0

A2,3SX
A1,3SY
A1,2SZ

 (2.17)

with Q =
∑
iQi and

SX =
∑
iQi/Q(Y 2 − Z2)

SY =
∑
iQi/Q(Z2 −X2)

SZ =
∑
iQi/Q(X2 − Y 2).

(2.18)

In eq. 2.17, the coefficients of A depends on the orientation of the rotating frame (ie
of the particle) and on the geometry of the trap while the S parameters are fixed by the
geometry of the charges of the particle. Here we simplify the coefficients Ai,j by discarding
terms with mixed Euler angles, in the limit where at least all angles but one are small, we
obtain: 

A2,3 = (3 + δ) sin 2φ
2 + O (θψ) + O

(
φθ2)

A1,3 = (3 − δ) sin 2θ
2 + O (φ.ψ) + O

(
θψ2)

A1,2 = δ sin 2ψ + O (θφ) + O
(
ψφ2)

+ O
(
ψθ2) . (2.19)

Euler equation in the linear approximation

One can obtain the equation of motion for φ, θ and ψ using the Euler equation:

I.~̇ω + ~ω × (I~ω) = ~M, (2.20)
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2.1. Confinement of a charged dielectric particle in a Paul trap

where I is the inertia matrix and ~ω the angular velocity. In the general case this equation
is non-linear: products of different Euler angles arise from the expression of the angular
velocity, from the cross product in the Euler equation and from the Ai,j coefficients.
Here we do not attempt to solve it exactly: our approach to the problem is to demonstrate
we can obtain angular confinement with simplified equations, numerical simulations later
showed effective confinement in a more general case. It should be noted that we proceeded
while knowing that the orientation of a levitating particle was stable, and varied with the
trap parameters (see section 3.3). We also later confirmed this through observation of the
harmonic motion for the three angles of rotation of a levitating particle.
The simplified equations are obtained by discarding the terms with mixed Euler angles and
assuming small rotations around the equilibrium equilibrium. They can also be obtained
in the 2D case, as treated in [73], by considering one rotation frozen (about the Z axis eg),
a symmetry of the particle about this same axis and that the principal axis of the particle
are the trap axes when the particle is at its equilibrium position.

Here we assume that the particle undergoes small rotations along its equilibrium po-
sitions and simply discard the terms with mixed Euler angles. A strict mathematical
demonstration would therefore require further work to demonstrate that such terms can
be neglected. We also assume the principal axes of the particle are the rotating frame
axes, which can be justified if the spatial charge and mass distribution are identical or eg
have the same symmetries.
Under such assumptions, the angular velocity along each axis of the rotating frame is the
derivative of the corresponding Euler angle and the Euler equations yield:

IX φ̈ = QV (t)ηz

2z2
0

(3 + δ)SXφ
IY θ̈ = QV (t)ηz

2z2
0

(3 − δ)SY θ
IZψ̈ = QV (t)ηz

z2
0

δSZψ

(2.21)

These equations are Matthieu equation, as presented in equations 2.3 or 2.4, with
dimentionless parameters:

 aφ = 2QVdcηz

z2
0Ω2

(3+δ)SX

IX

qφ = QVacηz

z2
0Ω2

(3+δ)SX

IX

,

 aθ = 2QVdcηz

z2
0Ω2

(3−δ)SY

IY

qθ = QVacηz

z2
0Ω2

(3−δ)SY

IY

,

 aψ = 4QVdcηz

z2
0Ω2

δSZ
IZ

qψ = 2QVacηz

z2
0Ω2

δSZ
IZ

. (2.22)

The three Euler angles therefore behave as the position of the particle: when the
dimentionless parameters are within the stability region, the Paul trap confines the orien-
tation of the particle around its equilibrium position. For each Euler angle α = φ, θ, ψ we
therefore have a harmonic confinement:

Urot (φ, θ, ψ) =
∑

α=φ,θ,ψ

Iα
2 ω

2
αα

2

ωα =

√
aα = +q2

α

2 Ω,

(2.23)

and the particle undergoes librations at such frequency for each of the corresponding axes.
One should note that the electric torque can at a given time have the same sign for all
three axes of the rotating frame, depending on the particle’s orientation and geometry.
This is forbidden for the electric force due to the Laplace equation for the CoM and will
in turn change the shape of the stability diagram.
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2.1. Confinement of a charged dielectric particle in a Paul trap

Optimization of the confinement

The strength of the angular confinement is a key parameter in several experiments: either
for reaching the resolved sideband regime of the spin-mechanical coupling (see section 4.4)
or simply to have a sufficient angular stability to cope with strong parasitic fluctuating
torques (see section 3.3.2).

Let us here focus on increasing the confinement around the X rotation axis. If we
vary the Paul trap DC field and AC frequency in order to keep the a and q parameters
at the same value a0 and q0 -within the stability region for all degrees of freedom- the
confinement frequency can be rewritten:

ωφ =

√
q2

0
2 + a0

q0︸ ︷︷ ︸
stability

√
(3 + δ)Vacηz

z2
0︸ ︷︷ ︸

Paul trap

√
QSX
IX︸ ︷︷ ︸

particle

. (2.24)

We distinguish three contributions: the stability parameters, bound by the stability
region, the Paul trap parameters and the particles charge and geometry. The Paul trap
parameters Vac, z0 and δ can be tuned to increase the confinement frequency ωφ but tech-
nical limitations will set an upper bound. The Paul trap should not be smaller than a
few tens of microns in order not to be too sensitive to fluctuating charge patches [116],
by definition δ < 2 and reaching a voltage higher than a few thousands volts at high
frequencies will be challenging. The intrinsic parameters of the diamond particle are then
the only parameters that can be tuned.

First of all, for a given particle’s geometry, confinement increases with the number of
charge. With dielectric levitated particle the usual assumption is that there are charge
patches trapped on its surface, with a total excess charge that can either be positive or
negative. In experiments where diamond nano or micro particles are levitated in a Paul
trap, the charge to surface ratio strongly depends on the injection technique. Electro-spray
[117] yields the highest charge with, depending on the experiment, a charge to surface ra-
tio from 300 electrons per square micrometer for micro clusters of nanodiamonds [65] to
20000 electrons per square micrometer for single nano-diamonds [52]. Using dry injection
of micro-diamond we reach in our experiment about 15 charges per square micrometer. It
should be noted that those are crude estimation: usually only the charge to mass ratio is
directly measured and the charge is obtained using an often imprecise estimation of the
mass.

The geometry and size of the particle then plays a crucial role in confinement through
the inertia momentum IX and the SX parameter. Regarding the size: from equation 2.24
and assuming a constant surface charge density, we can expect the confinement to scale
as d− 1

2 where d is the size of the particle. One should therefore be able to reach higher
confinement frequencies with smaller particles. Finally confinement is impacted by the
spatial distribution of the charges compared to the mass: confinement is higher if the
charges are distributed at the extrema of the particle, but the more elongated its shape
is, the higher the inertia momentum gets, reducing the frequency of the confinement.

To gain insight into how the confinement depends on the shape, we consider particles
with regular shapes: spheroid (ellipsoid of revolution) described in figure 2.5, both prolate
and oblate. Because we do not know how the charges are distributed and have no control
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Figure 2.5: Ellipsoid of revolution with rotation symmetry around the Z axis. For the
oblate ellipsoid a) the long axis a is in the XY plane while for the prolate b) it is along the
Z axis. c) Ratio of angular to CoM confinement depending on the aspect ratio of ellipsoid
of revolution.

over it we assumed homogeneous charge distribution and calculated confinement for dif-
ferent aspect ratios. Results are showed in figure 2.5.c) where we plot the enhancement
factor ie the angular confinement over the center of mass confinement for both oblate and
prolate ellipsoid of revolution as a function of their aspect ratio. We see that although
the relative confinement increases with the asymmetry of the particle its enhancement
saturates at about 3.7 .

Hybrid particle for enhanced confinement

To further increase angular confinement, one can resort to more advanced engineering of
an asymmetric charge distribution. First, the diamond surface could be functionalized to
change its electrical properties and allow a higher surface charge density. Then one could
also use another material lighter than diamond and assemble a hybrid particle composed
of a small diamond and a strongly elongated light and highly charged particle. Because
the shape and size of the diamond also impact NV spin properties within the diamond
and the spin-mechanical coupling rate, this will be further discussed in section 4.4. Oe
can also envision discharging or charging the diamond locally through photo-ionisation
[118], electron bombardment [119] or small corona discharges [52, 120] to increase the
charge asymmetry. One could further use an additional force and torque to confine the
particle: for example if the charge distribution has a strong dipolar moment, adding a
uniform non-varying electric field would provide angular confinement. Adding an electric
field will however also displace the center of mass away from the minimum of the Paul
trap potential. This shift should therefore be compensated by an additional force to limit
the micro-motion of the particle.
An other option is to use a hybrid trap where the particle is levitated using the Paul
trap while its angular degrees of freedom are confined by another force. In chapter 5, we
demonstrate an increased confinement using a magnetic torque.
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2.2 Trap set-up
Let us start by describing the trapping apparatus. An ion trap typically consists in
electrodes that are placed at an oscillating potential generating a time-varying quadrupolar
electric field. In the adiabatic regime, this provides a ponderomotive force that brings
charged particles at the minimum of the electric field’s intensity [9]. While we explained
the concept and principle of this ponderomotive force in section 2.1.1 we here focus on
the experimental set-up and parameters. Because the charge to mass ratio of a micro or
nano-particle is much smaller than the one of an ion, confinement is considerably weaker.
This led us early on to work with smaller electrode, higher voltages and lower frequencies
than what is typically used in the ion trap community.

Overview

We first give an overview of the trap set-up before going into more detailed explanation
for specific parts. Figure 2.6 depicts the overall system. An electrode (typically a ring) is
used to levitate micro-diamonds by applying a high oscillating voltage between the trap
electrode(s) and the ground (typically 2000 V at 4 kHz). The electrodes (geometry and
fabrication) and the applied voltage are discussed in section 2.2.2 and 2.2.4 respectively.

We use an optical set-up to observe and measure the motion of the particle. A 4 mW
532 nm green laser is focused close to the particle using an aspheric lens. Its intensity
can be tuned using a halve-wave plate followed by a polarization beam splitter and it can
be chopped using an acousto-optic modulator. The trapped particle can be monitored
through phase-contrast imaging: as described in section 2.2.1 when laser light transmitted
by the particle is projected on a screen we can observe an image similar to a shadow.
Retro-reflected light scattered by the levitating particle also allows us to measure the par-
ticle dynamics using an additional set-up described in section 2.3.

Both the trap and the lens are encapsulated in a vacuum chamber (or in a cardboard
box for the early stages of the experiment). Injection of particles is accomplished under
atmospheric pressure in the opened vacuum chamber by approaching a metallic wire cov-
ered with micro-diamond close to the trap. As explained in section 2.2.3, Coulomb forces
allow for charged diamond particles to be expelled from the wire and eventually confined
in the trap.
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Figure 2.6: Overall set-up for micro-diamond levitation. Levitating particles can be mon-
itored by phase contrast imaging from the laser light projected on a paper screen. To
measure the dynamics of the particle, an additional set-up described in section 2.3 is used.
The vacuum chamber is equiped with three windows (front, back and top). The air is
pumped through a flexible tube connected to a turbomolecular pump while the pressure
is monitored by a vacuum Gauge. AOM: acousto-optic modulator, PBS: polarization
beam-splitter, λ/2 and λ/4 : halve and quarter-wave plate.

2.2.1 Diamond visualization

Phase contrast imaging is employed to visualize the levitating diamonds. Phase contrast
simply takes advantage of differences in optical refractive index to visualize structures. In
our case it allows us to observe micro-diamonds distinctly: because of the high refractive
index of diamond (∼2.5) the contour of the 2D projected image of the diamond appears
darkened. Figure 2.7.b) shows a typical image of a levitating micro-diamond captured by
a commercial camera.

The experimental scheme producing this image is depicted in figure 2.7.a). We use
aspheric lens (NA=0.77 LightPath 355330 or NA=0.5 C240TMD from Thorlabs) to focus
laser light in front of the levitating diamond and simply place a screen behind the latter.
Rough optical alignment is typically done while monitoring the phase contrast image by
direct visual observation of the screen.

Note that several interferences features might be observed because we use a coherent
light source. This can be seen on the edges of a micro-diamond, or on a nano-diamond
which displays concentric circles. Speckle patterns due to interferences in the reflected
light also turned out to be key for the measurement of the diamond motion as will be
detailed later in section 2.4.2.
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Figure 2.7: a) Schematics of the visualization system: an aspheric lens focuses a green
laser in front of a levitating particle. The laser light is projected onto a screen for visual
observation of phase contrast images. b) Phase contrast imaging of a single levitating
micro-diamond and shadow of the trapping electrodes (endcap trap). The various spots
on the lens are the diamonds that did not make it to the center of the trap and got
deposited on the surface of the aspherical lens. Here it lies 3.1 mm below the trap.

Another useful tool to adjust the trap settings is to chop the light source at a frequency
close to the frequency of the oscillating Paul trap potential. This stroboscopic illumination
of the particle allows visual observation of the periodic micro-motion of the particle even
if it is too fast to be directly perceived by the naked eye. The micro-motion is caused by
external forces, which shift the center of the Paul trap from the zero of the electric field.
It should be minimized, in particular to obtain a sharp image of the particle. The trap
parameters are first often adjusted to reduce micro-motion using this method.

2.2.2 Trapping electrode(s)

A number of geometries can be used for the trap electrodes, we use a simple ring or two
needles in front of each other in the so-called Paul-Straubel and endcaps geometries [111].
It should be noted that any electrodes configuration which is symmetric with respect to
the XY, XZ and YZ planes will generate the desired electric potential:

φ(x, y, z, t) = Vac cos(Ωt) + Vdc
z2

0

(
ηxx

2 + ηyy
2 + ηzz

2
)

+ O
(
x4, y4, z4

)
. (2.25)

where the additional fourth order terms can be neglected close enough to the trap center.
Here the aspect ratio of the needle and rings are chosen to roughly minimize such anhar-
monic components [111].

Endcap configuration

Figure 2.8.a) shows the trapping electrodes in the endcap configuration. Two tungsten
needles with a radius of curvature of ∼25µm are aligned in front of each other, separated
by a distance d = 2z0 of about 100µm. They are surrounded by an uncritical ground elec-
trode structure composed of our collection lens mount a few millimeters away and diverse
mechanical components a few centimeters away. When Electron Spin Resonance (ESR)
is carried out on NV spins within a levitating diamond (see section 3.2), a micro-wire is
brought a few hundreds micrometers from the trap center to drive the spins. The trapping
parameters then need to be adjusted as the trapping potential is modified by the proximity
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of a ground electrode and to avoid electric arcs (see section 3.2, also table 2.1).
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Figure 2.8: a) Needle electrodes: two needles with the trapping voltage applied to both
electrodes. An ESR antenna can be approached from the top to control NV spins. b) Ring
electrode: a tungsten wire producing a near-torus shape, opened at the top (bottleneck)
where two branches of the wire depart from the ring following radial trajectories. Both
the center of the ring and the bottleneck region provide stable trapping. The trapping
voltage is applied at both end of the wire and a microwave current can be driven through
the ring control NV spins. c) White light microscope image of a tungsten micro-ring.

Ring geometry

The ring electrodes are near-torus structures hand-made out of a single wire (see annex
A for details on the fabrication procedure). Figure 2.8.b) depicts its shape and figure
2.8.c shows a microscope image of an actual trapping ring. The wire forms a ring, slightly
opened at the upper extremity where the two branches of the wire deviate from the ring
and follow radial trajectories instead of joining each other. The extremity of these branches
is eventually used to hold the whole structure. As detailed in section 3.2 such ring can be
used not only to generate the trapping potential, but also to generate the microwave field
driving the NV spins.

Importantly, we noticed there is another region apart from the ring center where the
electric potential is nearly harmonic so that stable trapping occurs: at the point where
the two branches holding the ring almost join each other. We designate such region as the
bottleneck and because the distance between the two branches of the electrodes is much
smaller than the interior diameter of the ring, there are stronger electric fields resulting
in a stronger confinement. Moreover the asymmetry of the trapping field is higher than
at the center of the nearly symmetric ring. This will result in an enhanced confinement of
the angular degree of freedom (libration modes) compared to the center of mass (higher δ
in equation 2.22 of section 2.1.2).

The size of the rings that we use ranges from several from millimeters to about 120
µm for the interior diameter and depends on the intended confinement : a smaller ring
yields a higher potential curvature through higher η/z2

0 parameters. Table 2.1 presents an
overview of the different trap geometries and parameters that we used for the experiments
carried out. Note that because our fabrication procedure is not reproducible, confinement
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also varies from one ring to another even if they have the approximate same size.

2.2.3 Injection of micro-particle in the Paul trap

Injection process

Injection of micro-diamonds in the Paul trap is accomplished through a dry, low-yield,
atmospheric pressure method presented in figure 2.9.a). A metallic wire is used to bring
micro-diamonds in the vicinity of the trapping electrode(s). The width of the wire that we
use depends on the fragility of the trap: 25µm for micro-ring or 150µm for bigger trapping
electrodes. The tip of the wire is dipped into a large quantity of micro-diamonds (in the
form of a dry powder) so that large clusters of micro-diamond are stuck on its surface
(see figure 2.9.a)). This method can pick-up a large enough quantity of micro-diamonds
from large volume of material but also from a few millimeter squares of a single layer of
micro-diamonds laying on a glass coverslip (see section 5.3).

The tip of the wire is then approached to the trapping electrode: either close to the
tip of the needles of an endcap trap or hundreds of microns above the bottleneck with a
ring trap (see figure 2.9.a)). This is done manually by holding the -insulated- other end of
the injection wire. When the trap voltage is turned on, charged diamond will be ejected
from the tip and if the trap is stable, some micro-diamonds can be captured by the trap
and optically detected (see below). Electric arcs may form between the injection wire and
the trapping electrodes and the two of them might come into contact but trapping often
occurs without those events happening.

trapping 
electrode

micro-diamond clusters
z

x

y
100 µm

g

loading/injection wire

insulator and
hand holder

charged ejected
microdiamond

(a)

(b)

bottleneck

Figure 2.9: a) Injection of micro-diamonds in a ring trap. The tip of the injection wire was
prealably dipped in micro-diamonds powder so it is covered in micro-diamonds clusters as
can be seen under optical microscope in bottom left caption. When the injection wire is
brought close to the trapping electrode and the trapping voltage is on, charged diamonds
are ejected and follow nearly random trajectory with some of them slowed down within a
stable trapping region. b) Phase contrast image of a several micro-diamonds trapped in
the bottlenech region and above. Particles can also be trapped below, near the center of
the ring. The shadow of the trapping electrode as well as diverse mechanical elements can
also be seen.
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The injection method that we use has a low yield, so we need a relatively large supply
of micro-diamonds. As an order of magnitude, 50 mg of 15 µm diamonds is sufficient to
carry experiments for several months, with several daily injection in the trap. In order to
produce large quantities of micro-diamond, the usual method is to mill a bulk diamond.
Our most common micro-diamond sample originates from bulk diamonds made at high
pressure and high temperature (MSY from microdiamond). They are sold as powders of
different micro-diamond sizes, we use sizes ranging from 500 nm to 10 µm.

Injection mechanism

We have not exhaustively studied the injection mechanism but it can be understood by
basic mechanical and electric considerations. We propose two non mutually exclusive ex-
planations for the ejection of charged diamonds from the tip as it is brought in the strong
electric field, close to the center of the trap. First, the tip and the diamond clusters on
it can be capacitively charged and the excess charge can break the cluster apart when
repulsive Coulomb forces overcome van der Waals forces. Second, we observed on a glass
coverslip that a strong electric field can break apart micro-diamonds clusters, it is there-
fore possible the electric fields polarizes and break clusters at the tip of the injection wire.
Once clouds of charged micro-diamond are dispersed around the trapping electrode some
of the micro-diamond’s -slowed down by air damping- will be captured by the Paul trap.

Interestingly, when using our ring electrodes we noticed diamonds can be trapped into
the bottleneck as explained in section 2.2.2 but also above, in between the two branches
holding the electrode with sometime a chain of trapped micro-diamonds. The geometry
can indeed be assimilated to linear Paul traps -usually build of four rods placed at the
vertices of a square, with the trapping voltage applied between adjacent rods. Here the
two branches provide confinement in the YZ plane (see figure 2.9) while gravity and re-
pulsive Coulomb forces provide confinement along the x axis. Figure 2.9.b) shows a phase
contrast image of a chain of trapped diamonds in and above the bottleneck of a ring elec-
trode. Such observation points towards the branches and the bottleneck as playing the
role of a guide for charged micro-diamonds toward the center of the ring, increasing the
injection yield.

This loading method gives us a reliable and simple way to load the diamonds as each
trapping run only requires one minute on average. This loading technique further provides
a charge to mass ratio that enables trapping of the diamond particles for several days under
ambient conditions. Other potential injection methods are described in section 2.1.2.

2.2.4 Tuning the stability and confinement of the Paul trap

In order for injected charged diamonds to remain in the trap, its parameters must be cor-
rectly tuned. Let us rewrite the formulas from section 2.1.1 for the stability dimensionless
parameters and confinement along a direction u:
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Stable trapping in the three directions first requires the a and q stability parameters
to be within a bounded region, with in particular |a|, |q| < 1 (see section 2.1.1 for details).
The charge to mass ratio Q/m is determined by the injection mechanism and the ηu/z2

0
factor by the trap geometry. For a given electrode and injection method, the amplitude
(Vac), frequency (Ω) and bias (Vdc) of the voltage must therefore be tuned to allow stable
trapping.

Note however that because the confinement strength diminishes with the a and q sta-
bility parameters, gravity or stray electric fields might pull the particle out of the trap if
a and q are too low. There hence exists only a finite window of parameters for which a
given particle can be trapped. The width of this stable window is very variable depend-
ing on the particle type, the trapping electrode and the maximum amplitude of the tension.

Table 2.1: Shape and size of the trap electrodes and trap parameters used for different
experiments carried out. Size, amplitude voltage and frequency of the trap are only rough
indicative values as they change from one trap to the other and depends on the -variable-
charge to mass ratio of the trapped particle

Experiment electrode size pressure frequency voltage
Injection, trapping, observation ring 5 mm Patm 50 Hz 6000 V

[74] trapping needles 100 µm 1 Atm 2-6 kHz 2000 V
splitted ESR + antenna 1-3 kHz 600 V

[121] zero-field ESR ring 700 µm 1 Atm to 1-3 kHz 600 V0.01 mbar

[75] zeeman splitted ESR ring 180 µm 1 Atm 3-6 kHz 2000 V
Rabi, Ramsey, echo 1 mbar 1-3 kHz 600 V

[77]

zeeman-splitted ESR
Spin-dependent torque

Bistability bottleneck ∼ 30 µm 1 Atm 3-6 kHz 2000 V

Spin-cooling
Spin-lasing
Spin-spring

1 mbar 1-3 kHz 600 V

Typical voltage used

We generally us an AC voltage with only a small DC offset. The amplitude and frequency
of the AC tension is highly variable and depends on the geometry and size of the trapping
electrode as well as on the experimental conditions. A small DC offset is added when
a higher confinement along a specific direction is required, for example to reduce micro-
motion due to an external force.

Usually we use a high voltage and high frequency during the injection to both max-
imize the ejection of charged particle from the injection wire and trapping of only the
most charged particle, the trap thus acts as a filter for the charge to mass ratio. Once
a particle is trapped, parameters are adjusted depending on the experiment carried out.
In order not to loose the particle, both amplitude and frequency are smoothly changed
in opposite ways and a DC tension might be added to compensate stray electric fields or
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gravity. When using needle electrodes the distance separating them can also be decreased
to increase the electric potential curvature.

Table 2.1 gives an overview of the range of amplitude and frequency used depending
on the size of the electrode and the experiment. Vacuum conditions typically requires
amplitude as low as 600 V to avoid forming a plasma when pressure is lowered. The same
goes if one uses an additional antenna brought close to the trap to prevent electric arcs
from forming between them.

Instability onset

When the trap is unstable because the a and q stability parameters are too high, the parti-
cle follows oscillation of increasing amplitude until it escapes from the trap or hit the trap
electrodes. Under atmospheric conditions, damping however enlarge the stability region
and tempers the onset of the instability. Instead of oscillations of increasing amplitude,
the particle describes large but bounded oscillations similar to micro-motion.

This motion is often observed when the parameters of the trap are modified to increase
confinement (increasing voltage or reducing the frequency). We noticed the instability ap-
pears more abruptly for an endcap trap than for a ring Paul-Straubel trap and noticed this
is correlated with the sign of the trap anharmonicities [111]. In both cases it is however
still possible to observe the onset of the motion instability without loosing the particle if
we (very) slowly sweep the trap parameters while carefully monitoring the motion of the
particle.

Charge to mass ratio

Observation of the instability provides us a means to determine the charge to mass ratio
Q/m of the levitating particles: as equation 2.26 shows, Q/m is a critical factor for
confinement and stability of the Paul trap. In particular, it depends on the injection
method as discussed in section 2.1.2. In order to measure it, we perform a slow ramp of
the trap frequency downwards from 4 kHz to a few kHz. As the stability factor q increases,
the trapping eventually becomes unstable at q ∼ 0.9 and we can then infer Q/m. The first
observed instability corresponds to the highest confinement frequency ωz. We measured
it to be about 1 kHz for diamonds that have a 10 µm diameter in a needle trap. Using
the stability criterion, the diamond density and an estimation of the field generated by
the trapping electrodes, we can extract the total charge on the surface of the levitated
particle. The stability parameter qmax is 0.908 in our case (a ∼ 0), and relates to |Qtot|/m
via the formula

|Qtot|/m = qmax
4ξ Ω2

where ξ is the curvature of the static electric potential. We obtain ξ = 2 × 106 V/m2 from
3D simulations of the electric potential of our trap, so the total number of elementary
excess charges |Qtot| in the diamond is about 5000.

We also measured the sign of the total charge by adding a constant voltage to the
needles. Due to residual static electric fields, the particles are slightly displaced from
the zero of the oscillating electric field. Adding an extra DC voltage displaces particles
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corrects or amplifies this displacement depending on the relative sign between the voltage
and surface charges. Applying a positive voltage on more than 20 different particles
systematically displaced them towards the trap center needle, letting us conclude that the
total surface charge is negative.

2.2.5 Vacuum conditions

It should be noted that although particles are levitated, they are far from being insulated
due to the background gas: all the experiments presented until now are carried under at-
mospheric pressure. In order to harness the mechanical properties of our levitation system,
one must work under vacuum condition to reduce damping and brownian motion caused
by collision with gas molecules. Although we eventually want to work under high vacuum,
as a first step we aim at accessing the underdamped regime where the damping rate is
lower than the frequency of the mechanical oscillator. In our case this can be achieved at
a relatively low vacuum, in the mbar range.

For any vacuum condition experiments, we proceed by first trapping a particle under
atmospheric pressure before (slowly) pumping out the air. Note it is possible to inject
particles in a Paul trap already under high vacuum [122], here the procedure we perform
is well suited for moderate pressure (10−2 − 1 mbar), with one successful iteration taking
between 10 and 30 minutes only.

Equipment

When vacuum conditions are required, the Paul trap as well as the collection lens is placed
within a custom-made vacuum chamber (from Neyco). A vacuum pump composed of a
primary pump and a turbomolecular pump is connected to the chamber through a flexible
tube. The pressure within the chamber can be lowered to below 10−3 milibars within
hours starting at atmospheric pressure and without any heat treatment or specific clean-
ing procedure for elements within the chamber. A vacuum Gauge is directly connected to
the chamber to monitor the vacuum pressure and an exhaust valve is available to restore
atmospheric pressure.

Breakdown voltage

As the pressure is lowered, the voltage needs to be lowered to 600 V to avoid plasmas that
would otherwise appear in the chamber as the breakdown voltage, which follows Paschen’s
law [123], is lowered. Since this systematically leads to a lowered confinement, a prese-
lection of particles with a high charge to mass ratio can be performed at atmospheric
pressures to compensate. The whole procedure typically requires 3 to 4 loading steps
before a high enough charge to mass ratio is attained. Once a particle is trapped, the
voltage and frequency are lowered in air, following an iso-q curve. Once 600 V is reached,
the turbomolecular pump is turned on.
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2.3. Center of mass motion

Impact of vacuum conditions on the trapped particle

We observed both in transmission and by looking at the back-scattered green light that
when the pressure reaches 500 mbars already, the center of the trap shifts. This takes place
because of two cummulative effects. First the secular frequency depends on the damping
rate, i.e. on the vacuum level [114, 124]. In the presence of residual electric fields or
gravity, changing the confinement via the damping rate displaces the particle. Secondly,
vacuum condition might alter the surface of the trapped diamond [64] and may cause a
change in the charge to mass ratio. The observed displacement has both a reversible and
an irreversible part which prompted us to consider both effects.

When using a low confinement trap (eg larger ring), the back-scattered image of the di-
amond also appeared elongated in a direction perpendicular to the optical axis, consistant
with a large amplitude of the micromotion. When the damping rate decreases the particle
indeed explores a larger volume away from the center of the trap so that micromotion
increases.

Note that when the vacuum reaches 10−2 mbars, the voltage can be increased back to
4000 V without any arching in the chamber. In principle, the optimum voltage for high
confinement and no arching, could be chosen by following the Paschen law [123].

2.3 Center of mass motion
Once the particle is stably levitated, we aim at observing its dynamics in order to even-
tually use it as a mechanical oscillator coupled to NV spins. This is typically done under
vacuum conditions, in the underdamped regime where the damping rate is lower than the
mechanical frequencies so that we can observe harmonic motion of the particle.

We first focus on the harmonic oscillations of the particle Center of Mass (CoM). As
already mentioned, the mechanical modes we are most interested with are the libration
of the particle. Monitoring the CoM is however important, especially to ensure the lev-
itated particle does not escape the trap. In order to observe the CoM modes, one can
proceed either by exciting the CoM of the particle while observing its response or simply
by observing spontaneous oscillations due to the finite temperature of the system, here
determined by collision with the background gas. Here we choose the latter method, we
first describe our detection set-up before showing the results obtained in the underdamped
regime.
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laser

λ/2

PBS

AOM

spectrum	analyser

DSM

vacuum 
gauge

lens

screen

vacuum 
pump high voltage

ampli�ier

function generator

vacuum
chamber

trap	electrode(s)

λ/4

PD

PD

110 120 130 140 150 160

0

5

10

15

20 ωx ωy

A
m

pl
it

ud
e 

(d
B

m
)

Detection frequency (Hz)

(a)

(b)- -

Figure 2.10: a) Trap set-up including detection of the CoM motion. DSM: D-shape mirror,
PD: photo-detector. b) Power Spectral Density (PSD) of the CoM motion obtained from
the spectrum analyser. The two mechanical modes of lower frequencies are labelled ωx
and ωy.

Figure 2.10.a) shows the overall trap set-up, which was described in previous section,
except for the part used to measure the dynamics of the particle. We use the retro-reflected
light scattered by the levitating particle : it is first separated from the incident laser using
an optical circulator composed of a λ/4 waveplate followed by a polarization beam-splitter.
The light is then focused on the edge of a D-shape mirror and the reflected and transmitted
light are measured by a photo-detector (PDB210A, from Thorlabs). The two signal are
then subtracted and sent to a spectrum analyser (Keysight N9020A MXA). When the CoM
of the particle moves, its image on the D-shape mirror is displaced, therefore changing the
subtracted signal. Depending on the orientation of the D-shape mirror and of the trap
axes relative to the optical axis, we can use this method to measure oscillations of the
CoM along the three axes of the Paul trap.

Harmonic CoM oscillations

Figure 2.10.b) shows the Power Spectral Density (PSD) of the CoM motion of a levitating
diamond acquired on the spectrum analyzer. This spectrum is taken at 0.5 mbar at 300
V of trap voltage and 1.12 kHz of trap frequency. We distinguish two peaks, which varies
with the trap parameters, the peak in-between is at a multiple frequency of 50 Hz and
is an artifact. Here the third most confined trap axis is along the optical axis and the
sensitivity of our detection to motion along this axis is diminished, therefore preventing
us from observing this mode on the spectrum.

The observation of these modes enables useful technical implementations. In particu-
lar, one can use the detection of the position to cool down the CoM motion using an active
feed-back loop which applies a force proportional to the velocity through the trap elec-
trodes [52] (parametric feed-back [51]) or an additional electrode (cold damping [54, 125]).
This method can allow for cooling the CoM modes to about a dozen phonons [54]. Since we
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are here interested in the angular motion, this method would be implemented for example
to prevent heating of the CoM modes. Such heating could result in the particle escaping
the trap or to heating of the angular degress of freedom through coupling with the CoM
modes. Although the means to apply parametric feedback cooling or cold damping have
been established, we have not performed it yet and it should be the subject of future work.
These peaks also give relevant informations regarding the external temperature, ie tem-
perature of the CoM modes [53]. Note that measurement of the absolute temperature
however requires a calibration of the measurement. It is typically obtained by observing
the PSD at high enough pressure so that the external temperature does not depend on
the pressure and is equal to the gas temperature (∼300 K) [53]. A strong limitation to the
use of such technique in our experiment is that the position of the particle can drift when
the pressure is lowered (see section 2.2.5), changing in turn the sensitivity of the position
measurement as the optical alignment changes.

Amplitude of the micro-motion

When external forces are strong compared to the confinement of the Paul trap (eg ωz),
the center of the trap is shifted away from the zero of the oscillating electric field. This
causes the so-called micro-motion (see section 2.1.1): the position of the particle oscillates
at the frequency of the Paul trap Ω. In our case the micro-motion originates from gravity
and stray electric fields generated by charge patches on the trapping electrodes. A large
micro-motion will actually blur the optical image of the particle, which we use to measure
the position of the particle.

The amplitude of the micro-motion can be monitored on the PSD of the motion, or
simply using the phase contrast image of the particle while the green laser is chopped at a
frequency close to Ω. This amplitude could be reduced by applying another external force
to compensate the already existing ones. In our case we simply increase the confinement
of the trap: for small ring electrodes we reach a confinement strong enough so that micro-
motion does not impact our detection apparatus.

2.4 Angular confinement: the librational modes
Although our focus was initially the center of mass of the levitated particle, it turned early
on towards the angular degrees of freedom as we noticed its confinement. First observation
of the confinement were made thanks to the shape anisotropy of the particle through phase
imaging and confirmed through NV magnetometry (see section 3.2) but we will here focus
on the characterization of this confinement. We first discuss whether we can confirm its
origin to be the Paul trap as described previously or if others are likely. We then present
the set-up for detection of the angular degrees of freedom of the particle which allows us
to observe librations of the particle under vacuum condition.

2.4.1 Origin of the confinement

In section 2.1.2 we theoretically demonstrated the Paul trap can confine not only the cen-
ter of mass but also the angular degrees of freedom of a levitating particle. There are in
fact several mechanisms that could stabilize the angular degrees of freedom as well. For
example if the charges distribution of the trapped particle has an electric moment, a static
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electric field introduces a torque and can stabilize the particle rotation around at least
two axes. This could in practice occur thanks to electric stray fields generated by charges
patches on the surface of the trap electrodes. Another mechanism would be the effect of
gravity (or any volume force) combined with a localized charge distribution on the trap
particle. As long as the charges are not localized at the center of mass, the forces from
the Paul trap will introduce a torque and the particle will be stabilized with most charges
pointing upward. Currently, we cannot assert that the Paul trap angular confinement is
always the dominating mechanism, but several observations point towards it being present
and at least not negligible.

First, looking at elongated particles, one can visually observe ”micro-motion” of the an-
gular degree of freedom using the visualization methods described in section 2.2.1. Angular
micro-motion consists of oscillation of the angular degrees of freedom at the frequency of
the Paul trap voltage. It is key to the confinement generated by the Paul trap but also
means that external torques do displace the angular equilibrium position.

A second observation consisted in observing a change of the orientation of a levitating
micro-diamond as the trap frequency was modified. We can see this on the phase contrast
image which is seen rotating, but it was also confirmed using NV magnetometry to mea-
sure the particle orientation with respect to the magnetic field (see below, section 3.3).
It is tempting to conclude from this experiment that the shift of the orientation of the
particle is caused by a change of the dominant confinement mechanism, from the Paul
trap to another one. There are however loopholes to this reasoning: when the frequency
of the trap changes, the trap center is also shifted (if external forces are not fully compen-
sated). This eventually changes the stray electric field felt by the particle and its resulting
confinement as well. Further experiments are therefore required to fully settle this issue
but it does not prevent us from taking advantage of the observed angular confinement.

2.4.2 Detection of the angular position

In previous measurement of the mechanical oscillator, we did not take into account the
angular degrees of freedom of the particle: their aim is solely to measure a translation of
the particle’s CoM and the optical detection is aligned so that all other signals -considered
as noise- are minimized. Here we describe an other set-up, similar but designed to detect
the angular degrees of freedom.

Set-up

We can distinguish two ways for optical detection of the angular position of the par-
ticle. Overall, we make use of the anisotropy of the particle to modify the collected
back-scattered light when the particle rotates. Since the particle (typically 10 µm size)
is much bigger than the wavelength (532 nm) we can use the anisotropy from its overall
shape anisotropy or from the roughness of the particle’s surface.
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Figure 2.11: a) Trap set-up with detection of the angular position. PBS: Polarisation
Beam Splitter, SPD: Single Photon Detector, APD: Avalanche Photo-Diode. b) Image of
a levitated iron micro-rod obtained from the back-scattered light before the lens coupling
it into the single mode fiber. Similar speckle patterns are obtained with levitated micro-
diamond

Figure 2.11.a) depicts the set-up we use. It is similar to the one presented for the CoM
detection except we don’t use a D-shape mirror but directly couple the back-scattered light
into a single mode fiber and detect it using a single photon detector (APD SPCM-ARQ-15
from Perkin-Elmer). Here we however don’t optimize the intensity of the collected light:
in fact we take care not to focus the back-scattered light exactly into the core of the fiber.
First of all, we misalign the position of the image of the levitating particle so that it is not
centered on the core of the fiber. This breaks the symmetry around the optical axis and
the collected light will vary depending on the orientation and shape of the particle’s image.

Although this method allows us to track large rotation of the particle (as in section
3.3.2), one can take advantage of the coherence of our laser combined with the roughness of
the particle to obtain a more sensitive measurement. Figure 2.11.b) shows the image of a
levitated particle before the lens that couples it into the fiber. Here the image is produced
by an iron rod but similar features are observed with levitated micro-diamonds. Beside
the elongated shape, we can see the intensity of the light varies due to speckle patterns,
ie interferences between light scattered by the particle at different positions and different
heights due to the material roughness. These speckle patterns can be used to detect the
angular position by coupling only a bright -or dark- spot in the fiber. In order to do so,
one can eclipse the rest of the image with a diaphragm of the right size. In practice it
is however simpler to set the distance between the diamond and the collection lens such
that the back-scattered light diverges. This way the lens before the fiber will only couple
into the fiber a small area of the speckle patterns.

Sensitivity and calibration

This latter method, which exploit the interferences creating the speckle pattern, is very
sensitive. However, it has the considerable drawback of yielding a sensitivity that is diffi-
cult to precisely calibrate. We therefore cannot relate our signal with an absolute angular
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position.
Optimization of the signal is realized either using thermal fluctuations of the angular de-
grees of freedom or a controlled pulsed excitation (usually a magnetic torque, see section
4.1 and 5.2). One can then check the linearity of the dependency of the signal on the
angular position by exerting a controlled torque or observing harmonic oscillations, but
the sensitivity itself is highly dependent on the surface that determines the speckle pattern
and will vary with the three Euler angles, the CoM position and with the optical alignment.

Our best experimental estimation of the sensitivity is obtained using NV spin magne-
tometry: we measure a variation of 43 mrad between the magnetic field and the NV axis
for a shift of the countrate of one MHz. Given our nois this gives us a measured sensitivity
of 0.29 mrad/

√
Hz (see section 4.1.3). Note that since the rotation we optically measure

is not necessarily about an axis perpendicular to both the NV and the magnetic field axis,
the exact sensitivity remains unknown.
We can also calculate a rough order of magnitude of this sensitivity with a simplified model
of the speckle patterns. Let us assume a bright spot of the speckle pattern is produced by
two scattering surfaces within the same diffraction spot (distant of ∼1 µm), at a height
difference of λ compared to the wavefront of the laser. For a rotation other than about
the optical axis, one can expect a complete extinction of this bright spot for a relative
displacement of the two surfaces of ∼ λ/2 = 266 nm. This corresponds to a displacement
of roughly 0.25 rad, given the usual photon count rate at the outpout of our detector of
10 MHz (close to saturation) we obtain a sensitivity of about 0.1 mrad.

√
Hz, in the same

range as the measured sensitivity.

2.4.3 Librational modes in the underdamped regime

The measurement of the angular position allows us to observe the librational modes ie
oscillations of the angular degrees of freedom around an equilibrium position. As for the
CoM modes, this can be done either by exciting those modes and observing the response
of the mechanical oscillator or simply observing the thermal fluctuations in the under-
damped regime, where damping is lower than the frequency of the oscillator. Although
excitation through a magnetic torque was used to initially detect the librational modes,
here we directly present the observation of the oscillator under thermal fluctuations.
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Experimental observation
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Figure 2.12: a) Representation of a levitated diamond in the bottleneck region of a ring
electrode. The rotation of the particle is confined by harmonic potentials for all the three
axis of the Paul trap (x, y, z). b) Power Spectral Density (PSD) of the collected speckle
spot of the light backscattered by a levitating diamond. We associate each peak with
librations along the most probable axis of the Paul trap.

Figure 2.12.b) shows the Power Spectral Density (PSD)of the angular position measured
using the speckle patterns under a pressure of 1.5 mbar. We use a 15 µm diamond lev-
itating in the bottleneck region of a ring trap made of a 25 µm wire. The trap voltage
is 600 V with trapping frequencies typically ranging from 2 to 4 kHz. We distinguish
three peaks in the spectrum, ranging from 400 Hz to 1.1 kHz. Each of them corresponds
to a librational modes for rotation about one axis of the Paul trap. These mechanical
frequencies are consistent with confinement resulting from the Paul trap mechanism, with
the trapping frequency Ω higher than the resulting confinement.

Model

We fit the power spectral density of the librational modes using equations derived from the
following model, relying on linear response theory. We first treat each librational modes
independently, here we therefore consider a single angle of rotation, assuming it does not
couple to other angles.
Noting φ the angle between the equilibrium position of the diamond and its angular
position, the librational motion is ruled by the equation

Iφ̈ = −Iω2
φφ− Iγφ̇+ ΓT (t) (2.27)

where I is the moment of inertia, ωφ is the angular frequency, γ is the damping rate
due to collisions with the background gaz and ΓT (t) is the associated Langevin torque.

Fourier Transforming this equation yields

φ(ω) = χ(ω)ΓT (ω),

where
χ(ω) = 1

I(ω2
φ − ω2 + iωγ)

.
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2.4. Angular confinement: the librational modes

The Langevin torque ΓT (t) obeys the relation

〈ΓT (ω)ΓT (ω′)〉 = 2πδ(ω + ω′)ST (ω)

where
ST (ω) = −2kT

ω
Im

[ 1
χ(ω)

]
.

We therefore have
ST (ω) = 2kTγI.

The librational spectrum is then found to be

Sφ(ω) = |χ(ω)|2ST (ω) (2.28)

= 2γkT
I((ω2

φ − ω2)2 + γ2ω2)

This formula describes very well the observed librational motion from our experience.

Note that integrating this expression over ω, we obtain

1
2Iω

2
φ〈φ2〉 = 1

2kT

where
〈φ2〉 =

∫
Sφ(ω)dω,

in agreement with the equipartition theorem.

Estimation of the temperature

In principle, the area below the lorentzian curves observed in the PSD gives us direct
access to the temperature through the relation

T =
∫
Sφ(ω)dω

Iω2
φ

k
.

Obtaining an absolute value for the temperature would however require a precise es-
timate of both the moment of intertia I of the particle as well as the sensitivity of the
angular position measurement, both of which are prone to strong systematic errors.

The standard method to circumvent this issue is to vary the pressure [107] while ob-
serving the power spectral density (PSD): over the pressure range where its area is constant
the librational mode temperature is known to be 300 K as it is thermalized with the gas
temperature. In our case, pressure variations slightly change the orientation and position
of the trapped particle (see section 2.2.5). Incidentally, the sensitivity to angular motion
is not constant and we cannot employ this method.

An alternative method is to work at a fixed pressure and identify the heat sources that
would prevent thermalization. If no noticeable changes of the PSD shape occur when they
are increased, we can assume the particle’s motion to be at 300 K. This is the method we
used for the experiment of chapter 4 with microdiamond in the mbar pressure range.
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2.5. Limitations

2.5 Limitations
The main advantage of a levitated mechanical oscillator is its isolation: one only needs
to pump the gas out and go to high vacuum to remove the main cause of damping. The
limitation of the system is then either how high a vacuum one can get, or how strong are
other noise or heat sources. In our case, although we can observe a levitated diamond
under vacuum pressure down to 10−3 mbars, the properties of the mechanical oscillator
are not retained below ∼1 mbar.

We identified two limitations to our system that cause fluctuating forces or torques
or induce rotation of the particle. These effects are either due to laser-induced radiation
pressure or driven by the Paul trap itself. We will here only attempt to introduce the
issues surrounding these limitations or how they can be mitigated. Further investigation
are needed and will be conducted to give a better understanding and overcome them.

2.5.1 Effect of the radiation pressure

Beside conservative forces that shift or create a stable angular potential, there are also
nonconservative forces at play in the experiment. We first focus on optical forces, in
particular on the radiation pressure. Radiation pressure is caused by the scattering or ab-
sorption of light and the conservation of momentum: the difference of momentum between
a scattered and incident photon is necessarily passed onto the reflecting material. In an
optical tweezer, combining a high numerical aperture and an isotropic particle results in
the observation of a mainly conservative optical force (the optical spring force). A small
nonconservative force is nonetheless always applied to the particle through radiation pres-
sure and can accumulate work due to the inhomogeneity of the light field [126, 127]. In
a simplified picture, this effect can be explained by the particle undergoing heating cycle:
figure 2.13.a) depicts such cycle where the particle position cycle while it gains kinetic
energy. This effect is however strongly mitigated when the particle motion is cooled down
because ”the heating rate due to the [optical] nonconservative force is proportional to the
energy of the [levitating particle]” [128].

Force and torque

Contrary to usual nano or micro-sphere in optical tweezer, the anisotropy of micro-
diamond makes the angular degree of freedom relevant when considering the radiation
pressure. This comes from the irregular shapes -bigger than the optical wavelength- of
most micro-diamonds. Here, we will show with simple examples how additional heating
mechanisms can rise from this anisotropy. An exhaustive theoretical description is beyond
the scope of this work, we just give a hint of the processes at play before showing the
experimental consequences. We also only treat reflected light: due to the high refractive
index of diamond (2.5) transmitted light is also deflected and generates another radiation-
induced force that we don’t consider here.

Figure 2.13.b) shows the effect of radiation pressure for very simple shapes. In (i) ra-
diation pressure on a prism-shaped particle applies a force similar to wind on a sail, both
along and perpendicular to the direction of the incident light field. In (ii) we see how a par-
ticle composed of two prisms with opposite slopes next to each other sees a torque induced
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by radiation pressure along the optical axis in a similar fashion to the blades of a propeller.

(a) (b)

heating
cycle

(i) (ii)

z

x

y

z

xy

Figure 2.13: a) Example of heating mechanism for the center of mass of an isotropic
particle. Here it follows a heating cycle in and out of the light beam, during which it gains
energy from the radiation pressure. b) Effect of radiation pressure on basic shape: (i)
prism-like particle, (ii) prisms of opposite slopes next to each other. Particles are shown
from two point of view: the z optical axis (top) and the y axis. Black arrows indicate
optical forces while light green beams show how the laser field is reflected off the particle.

Rotation of the particle

These forces allow new heating cycles involving the angular degree of freedom, even with a
homogeneous light field: for example full rotation around the optical axis for the particle
in (ii) from 2.13.b) -like a windmill. This has in fact been confirmed early on by experi-
mental observations in the case where radiation pressure strongly displaces the levitating
particle [74]. In particular, we observed radiation-induced continuous rotations about the
optical axis (windmill-like heating cycle).

The rotation around the optical axis and the heating of the center of mass can be
observed visually using the method described in 2.2.1 for a slow motion (<10 Hz). The
cause of such motion is confirmed by observing an initially stable micro-diamond and
increasing the laser intensity: both center of mass and angular degrees of freedom are dis-
placed with increasing intensity. Finally if we compare the calculated order of magnitude
of the radiation pressure to the measurement of the stiffness of the Paul trap we indeed
find displacement that agrees with visual observations [74]. It should be noted that as the
radiation pressure and the Paul trap stiffness don’t vary identically with the size of the
levitating particle, we find different displacements for different sizes: about 350 nm for a
10 µm diamond and 11 µm for 2.8 µm diamond under 1 mW of total laser power.
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Figure 2.14: Power spectral density (PSD) of the back-scattered light from a levitated
micro-diamond roating due to radiation pressure.

By tuning the parameters of the experiment (size of the particle, intensity of the laser,
frequency of the trap) we can observe both angularly confined particles (as shown in pre-
vious section under vacuum conditions) or particles rotating due to radiation pressure.
Figure 2.14 shows the power spectral density from the back-scattered light obtained from
a rotating micro-diamond at two different laser powers. Here the rotation is rather slow
and can be seen with the naked eye using phase contrast imaging, the PSD features the
first and second harmonics corresponding to rotations at a rate of about 8 Hz (ie angular
velocity of 8 × 2π rad/s). This rate clearly increases with the laser power and radiation
pressure.

2.5.2 Trap-driven rotations

In a more confined trap designed to mitigate the effect of radiation pressure, only a strong
torque is able to induce a full rotation of a levitating particle. It should however be noted
that once the energy of the particle has exceeded the potential barrier of the angular con-
finement, the particle will continuously rotates if damping forces are not strong enough.

In practice, we observed that stable particles under atmospheric pressure often start to
rotate when the pressure is lowered, and then show hysteresis ie rotation stops at a much
higher pressure than the one at which it started. Here we first show that such rotations
can actually be driven by the Paul trap. We then discuss the mechanism kick-starting
these rotations.

Crankshaft mechanism

Figure 2.15 shows the Power Spectral Density (PSD) of the signal used to measure an-
gular position under a vacuum of 0.5 mbar for three different trap frequencies Ω. Here
the particle is continuously rotating, this can be observed through NV spin magnetometry
(see section 3.3) or simply by looking at the phase contrast image or the back-scattered
light which both show fast time averaging of the shape of the particle and of its speckle
patterns. Interestingly the particle rotates at a frequency of Ω/2: in figure 2.15 one can
observe the peak corresponding to the rotation, which indeed varies as we slightly ramp
up the trap frequency Ω. The rotation of the particle is therefore locked by the electric
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potential driving the Paul trap. Note that such locked rotations have already been ob-
served with elongated particles levitating in an optical trap where the polarization of the
optical field was periodically switched [129].
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Figure 2.15: Power Spectral Density (PSD) of the angular position of a levitated diamond
under a vacuum pressure of 0.5 mbar as the rotation of the particle is driven by the Paul
trap.

It is possible to explain the synchronization of the particle’s rotation with the Paul
trap by a locking mechanism similar to a crankshaft. In order to do so, we consider a
simplified problem with a single angular degree of freedom φ. Using the results presented
in section 2.1.2 we can rewrite the torque applied by the electric field on the particle as:

M = M0 sin(2φ) cos(Ωt) with M0 = QVacηz
4z2

0
SX (3 + δ) , (2.29)

where we consider only an AC field.

One can then notice that when the particle rotates at a frequency Ω/2 with a constant
velocity and at the right phase so that φ = Ωt/2 + π/2 the electric torque becomes:

M = M0 cos(Ωt)2, (2.30)

and therefore always have the same sign, here supporting the rotation.

This can be understood intuitively by looking at the modification of the electric poten-
tial energy as a function of time, as the particle rotates. Figure 2.16 shows a particle, with
a rotation period 2T = 4π/Ω at different timescales with below, the corresponding electric
potential energy. As the particle arrives at the bottom of a potential well, the time depen-
dency of the electric field inverts the bottom of the well with the top of a potential barrier.
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Figure 2.16: Rotation of a particle in a Paul trap. Top: illustration of the diamond
rotating, at different timescales after an initial time t=0. Bottom: electric potential
energy Uelec of the particle as a function of the orientation of the particle (φ).

This mechanism can maintain the rotation of a particle, compensating the drag force
similarly to a mechanical crankshaft. The actual velocity is of course not constant and
further investigation are being carried out in the team in order to better understand and
perhaps exploit this effect and will be the focus of future work [130].

Causes of the instability

Assuming one explains rotation of the particle under vacuum condition is maintained by
the Paul trap through the crankshaft mechanism one still has to explain how the transi-
tion to vacuum condition kick-starts the rotation. Two processes could be involved here:
the appearance of a new torque (or the increase of an existing one) or a change of the
temperature of the librational modes such that the potential barrier between two adjacent
wells can be overcome.

Identifying the exact process requires further work to be carried out. One could for
example track the temperature of the librational modes or the angular position (eg using
NV magnetometry, see section 3.3) as the pressure is lowered. Drifts of the particle position
as the pressure is lowered however make such experiment non trivial and we were not able
to perform them for now.

2.6 Conclusion
In this chapter, we have shown that a Paul trap can confine the center of mass and the
angular degrees of freedom of a levitating micro-particle. We first showed theoretically
that the mechanism allowing confinement of the center of mass is also at work for the an-
gular degrees of freedom. We have described the experimental apparatus, which is similar
to an ion trap, but with a different design due to the large size and lower charge to mass
ratio of the levitated particle. We then considered the levitated diamond as a mechanical
oscillator: we measured the harmonic oscillations of the center of mass and of the angular
degrees of freedom (librational modes) by optical means. Finally we discussed the main
limitations that we observed, namely the torque induced by the radiation pressure and
rotations locked by the electric field of the Paul trap below 1 mbar of vacuum pressure.
Overall, we leverage the first issue by working with smaller electrodes (∼ 200 µm diameter
ring), which produces a higher confinement. We also observed larger (∼10 µm) are more
stable than smaller one (∼ 1 µm) and therefore focus on this size range. Finally, we have
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2.6. Conclusion

not been able to suppress the locked rotations, which limits the use of the librational
mode to about 1 mbar of vacuum pressure. Although this limits the quality factor of the
librational modes, we are still able to reach the underdamped regime at this pressure range.
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Chapter 3

Spin control in levitating diamond

We now turn to the second component of our system: the Nitrogen Vacancy (NV) center
and its spin. We have seen in the previous section that the angular degrees of freedom
of a levitating diamond can be confined owing to the anisotropy of the diamond particle.
Because of the crystalline anisotropy, the NV spins are sensitive to this angular degree
of freedom. Here we will describe the optical and spin properties of NV centers, before
expanding on how we manipulate them experimentally. We will see how they can be used
to monitor angular stability in the Paul trap and whether or not their spin properties are
affected by the trap.

3.1 The NV center in diamond
Let us first describe the NV center and how its spin is experimentally manipulated, outside
of a Paul trap.

3.1.1 Atomic and electronic structure of the NV center

Diamond is a solid made of carbons arranged in a crystal, it is widely studied for the
properties granted by its crystalline structure and the strong covalent bond provided by
carbon atoms. Under ambient conditions diamond is metastable, it is formed naturally at
High Pressure and High Temperature (HPHT) within the earth crust. It can also be arti-
ficially synthesized either by placing carbon under HPHT conditions or by using Chemical
Vapour Deposition (CVD). Diamond is a semiconductor with a high band gap of 5.49
eV [131]. This makes diamond a highly favorable host crystal for optically active atomic
defects: in a semiconductor, such defect can only be optically active if both its ground
and excited states lie within the material band gap. These atomic defects in diamond
are called color centers because through absorption, emission or scattering of light, they
give different colors to a diamond. More than 500 different color centers were found and
studied in diamond [131], we are here interested in the nitrogen vacancy center only.

The crystal structure of diamond is called “diamond cubic”, each carbon atoms has
four neighboring atoms. Figure 3.1.a) shows the composition of a Nitrogen Vacancy (NV)
center: it consists of a nitrogen atom replacing a carbon in the diamond lattice next to a
site left vacant. It has a C3v symmetry around the NV axis which can be used to calculate
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its molecular orbitals and accounts for some of its properties [132, 133].
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Figure 3.1: a) NV center embedded o, a diamond crystal, with a C3v symmetry around the
NV axis. N : nitrogen, C : carbon, V : vacancy b) Detailed electronic structure of the NV−

center, the molecular orbitals are named after their symmetry. VB: Valance Band, CB:
Conduction Band. c) Orbital ground and excited state of the NV− center. Excitation is
typically done at 532 nm in the phonon band (grey gradient) while the photoluminescence
spectrum is mostly in the red, following phonon emission (wavy arrow).

The NV center has two well-studied charge states: the neutral NV0 and the negatively
charged NV−. There are several conversion processes from one to the other including op-
tical ionization [134, 135]. We are here interested solely by the NV− center and although
the conversion to and presence of the NV0 can be an issue (eg regarding spin state fidelity
[136]), it is not addressed here.

Since we are mostly interested in the NV− center, unless specifically discussing the NV
center charge states, we will systematically omit the − and the reader should now consider
implied we are referring by NV center to the negative charge state.

The NV center has six electrons which share four molecular orbitals, two configurations
with two unpaired electrons as presented in figure 3.1.b) give rise to a ground and excited
states separated by an energy corresponding to a wavelength of 637 nm.

3.1.2 Orbital states and optical observation

The orbitals of the NV center result in specific optical features. We will first describe them
and then elaborate on the optical set-up used to characterize them. The optical set-up
used here is similar to the one in the levitating diamond experiment.

NV optical transition

Figure 3.1.c) shows the ground and excited states from the NV center and its optical tran-
sition. Despite having its emission in the red, NV centers are often excited using a 532
nm green laser. Because of coupling to the phonons of the diamond lattice, both the NV
center excitation and emission optical spectrum is broadened by Stokes and anti-Stokes
shifts. The NV center can hence be efficiently excited by a green laser and emits light
between 637 nm and ∼750 nm. Coupling to the phonon gives rise to specific features in
the emission spectrum: a sharp peak, the Zero Phonon Line (ZPL) at the difference of
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Figure 3.2: Confocal set-up for optical observation of NV centers. Optical excitation is
carried out by a 532 nm green laser, the power of which can be tuned using a waveplate
(λ/2) followed by a Polarization Beam Splitter (PBS). The laser is focused onto an NV-rich
diamond and the red PL is collected by the same lens (high numerical aperture aspheric
lens). The excitation and PL beams are separated by a Dichroic Mirror (DM) and after
being further filtered by a Notch Filter (NF) the PL is coupled into a Multi-Mode (MM)
or Single-Mode (SM) fiber. The PL is analysed using a spectrometer or measured by an
APD. In the latter case the photons are counted by a PCIe acquisition card.

energy between the ground and excited state and the Phonon Side Band (PSB), a broader
peak at lower energy. They correspond to emission of light without and with creation
of phonon(s) respectively. Do note that the phonons considered here are the one of the
diamond crystal ie vibration between carbon atoms not phonons corresponding to the
collective motion of the whole crystal as one harmonic mechanical oscillator.

NV spectrum using a confocal microscope

The optical spectrum of NV centers is acquired using the home-build confocal microscope
described in figure 3.2. The 532 nm laser source is a ∼4.5 mW laser module from Thorlabs
(CPS532) and its intensity can be tuned using a halve-wave plate followed by a polarization
beam splitter which can be combined with neutral density filters if needed. A high Numer-
ical Aperture (NA) aspheric lens (NA=0.77 LightPath 355330 or NA=0.5 C240TMD from
Thorlabs) is used to both focus the excitation laser and collect the PhotoLuminescence
(PL) unto and from a diamond sample containing NV centers. The collected red PL is
separated from the excitation laser by a dichroic mirror and a notch filter around 532 nm.
It is then coupled into a Single-Mode (SM) or Multi-Mode (MM) fiber. When the system
is well-aligned, the SM or MM fiber is conjugated with the focus point of the collection
lens (hence the confocal term) and the fiber provides spatial filtering: light coming from
any other point of the sample or from the room is not efficiently injected in the fiber. This
allows one to reduce the background light from the room or from the sample. In practice
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a SM fiber provides a more efficient spatial filtering than what a MM fiber does since it
rejects all optical modes but one. Light transmitted by the fiber is finally sent either to
a spectrometer or to an Avalanche Photo-Diode (APD). The spectrometer consists of a
CCD camera (iDus 401A from Andor) mounted on a grating spectrograph (Shamrock 500i
gratings 1200 or 1800 l/mm from Andor).

The emission spectrum of an NV centers ensemble is shown in figure 3.3. It shows the
characteristic features of the NV− center as well as of the NV0 center, which is also opti-
cally active. The proportion of the two charge states incidentally depends on the optical
power used, evidencing the optically activated charge conversion process [134, 135]. The
NV− centers typically emit about 5% of the total photoluminescence intensity in the Zero
Phonon Line (ZPL) at 637 nm and 95% of the PL into the phonon sidebands ranging from
around 640 to 800 nm.
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Figure 3.3: Photoluminescence spectrum of an ensemble of NV centers within a 10 µm
diamond, deposited on a quartz coverslip under green laser excitation, for two different
powers. Both features of the NV− and NV0 can be distinguished: the Zero Phonon Line
(ZPL) and the Phonon SideBand (PSB). The sharp peak on the left of the NV0 ZPL is
Raman scattering of the green laser by the diamond.

The NV center presents some key advantages as optical emitters: in particular, they
are photo-stable at room temperatures and the ZPL is nearly lifetime-limited at cryogenic
temperature. Most of their PL (>70%) is however emitted in the PSB following phonon
emission which is a considerable drawback for applications requiring optical coherence.
Light emission can however still be used as a detection tool in biology for example to
observe the motion of marked cells [137, 138].

Note that in the entirety of this manuscript we show results on NV ensembles. While
the properties of single NV centers (especially spin properties) can be superior to the one
of NV ensembles due to inhomogeneities, working with large ensemble grants a higher PL
and signal to noise ratio. Since it considerably lowers the acquisition time it allows for
faster development and understanding of the system.

The spectrum shown in figure 3.3 is obtained from a 10 µm micro-diamond (sam-
ple: MSY 8-12). We estimate the number of NV centers in a micro-diamond with the
photoluminescence count rate measure by a single photon detector. We observed strong
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inhomogeneities in our sample : with count rates varying from 0.5 to 200 MHz, under
3.6 mW of excitation laser and with a high numerical aperture (NA=0.77) aspheric lens.
Given our collection efficiency, we find there are roughly from 103 to 106 NV centers in
each of these micro-diamonds.

Here we are interested in using NV centers spins to control a mechanical oscillator.
As we will see, thanks to spin-dependent process between the NV orbital states, the NV
optical transition provides a practical means to control the NV spins.

3.1.3 Optically detected magnetic resonance

One of the most important features of the NV center is its optically addressable and long
lived electron spin. We will make extensive use of these properties in this thesis. Here, in
order to introduce how NV spins are manipulated at room temperatures, we describe the
processes allowing Optically Detected Magnetic Resonance (ODMR) of NV spins, which
combines optical initialization and read-out with Electron Spin Resonance (ESR).

Optical spin initialization and read-out

Figure 3.4.a) illustrates the energies of the orbital ground and excited states as well as
the fine structure of their spin states. Due to the presence of two unpaired electrons in
its electronic structure, the NV center is a spin one system with three possible spin states
ms = 0,±1 where ms is the projection of the spin on the N-V axis. In the orbital ground
state, spin-spin interation between the two unpaired electrons lift the degeneracy between
the ms = ±1 and ms = 0 states and induces a zero-field splitting of D = 2.87 GHz [133]. In
the orbital excited state, a similar coupling is present with a lower interaction Dexc = 1.43
GHz and combined with two orbital states. At room temperature those orbital states are
however mixed through a dynamical Jahn-Teller effect [139, 140] such that the orbital
excited state can be described in a simplified picture similarly to the ground state.

Optical transitions are electric dipole transitions and therefore conserve the spin pro-
jection: ∆ms = 0. The orbital excited state has a relatively short lifetime of τexc ' 10
ns and two decay paths: through optical emission (spin-conserving) and through a non-
radiative decay to an intermediate singlet meta-stable state (τmet ' 200 ns [141]) . The
later process is spin-dependent and is at the heart of the optical control of the NV spin at
room temperature: decay into the meta-stable state is about ten times more likely for the
ms = ±1 states than for the ms = 0 state [142, 143]. From the meta-stable state there are
(almost) equal decay rates into all three spin states of the orbital ground state through
other intermediates states not described here [141, 144].

The consequences from this spin-selective process are two-fold: first, under optical
excitation the NV spin’s population is polarized in the ms = 0 spin state; second, after
optical excitation the ground ms = 0 spin state is on average brighter than the ms = ±1
states which spend longer time in the meta-stable state. This results both in the ability
to optically initialize and to read-out the NV center spin states.

The optical polarization efficiency is about 80 % [142, 143] , it is limited by the non-
zero relaxation rate from the spin ground state into the metastable state which does not
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Figure 3.4: a) Simplified struture of the electronic state of the NV− center, including the
three spin states ms = 0,±1. Red (green) arrows are optical (off) resonant transitions
while the blue arrow is a microwave transition. Wavy arrows represent non-radiative
decay. b) Simplified scheme of the spin system: under green laser excitation, the ms = ±1
spin states are darker than the ms = 0 and decay towards the ground states at a rate γL.
A microwave (µw) can then drive the transition between them.

allow for fully spin-conserving optical cycle of the spin ground state. Considering a single
optical cycle, the ms = ±1 dark states emit about half as many photons than the ms = 0
bright state, the spin read-out efficiency then depends on the amount of PL detected.

Electron Spin Resonance

Besides optical transition, there are microwave dipole magnetic transitions between the
ms = 0 and ms = ±1 states within the orbital ground or excited states. A transverse
magnetic field oscillating resonantly with the transition will therefore allow the spin state
to flip.

Figure 3.5.b) shows Electron Spin Resonance (ESR) spectra obtained by combining
optical and microwave excitation to carry out an Optically Detected Magnetic Resonance
(ODMR) measurement. It is produced by detecting the Photoluminescence (PL) from the
NV centers while applying a strong microwave field and sweeping its frequency across the
spin resonance at ν = 2.87 GHz. If the microwave is detuned from the resonance, optical
cycles polarize the NV centers in the brighter ms = 0 spin states whereas at resonance a
strong continuous microwave drive balances each spin states population therefore reducing
the detected PL. Under a strong continuous microwave drive the contrast of the ESR can
be expected to be as high as 30 %. The contrast of the ESR in fact depends on many
factors: the relative strength of the optical and microwave fields, the spin lifetime, and the
selectivity of the spin-dependent non-radiative decay which can vary (see next section).
Figure 3.5.b) shows two ESR at different microwave powers. The ESR plotted in trace
(ii) was done under a weaker microwave excitation: it has a lower contrast but displays a
sharper peak, which evidence a power broadening as the ESR becomes saturated.
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Figure 3.5: a) Set-up for measurement of the NV electron spin resonance. We use a confo-
cal microscope (previously described) to excite and collect the PL emitted by NV centers.
The PL is measured by an APD and the photon count rate is couted by the acquisition
card of a computer. We send a microwave current in an antenna -a wire loop- that we ap-
proach close to the sample. For the microwave current we use a generator and an amplifier.
APD: Avalanche PhotoDiode, SM/MM fiber: Single/Multi Mode fiber, DM: Dichroic Mir-
ror, NF: Notch Filter, PBS: Polarizing Beam-Splitter. b) Typical Electron Spin Resonance
(ESR) spectra obtained when scanning a microwave field around the magnetic resonance
while shining a green laser unto NV centers and observing their photoluminescence (PL).
We use (i) 10 dBm, (ii) 0 dBm of microwave power.

Figure 3.5.a) presents our ESR set-up. We collect the PL of the NV center using
a home-build confocal microscope further described above. The light is then sent to
an Avalanche Photo-Diode (APD) which sends the photon count to an acquisition card
(PCIe 6320 from National instrument). To generate the microwave field, we send a strong
microwave current through an antenna brought in the vicinity of the NV centers. The
microwave current is generated by a Rhode & Schwartz generator (SMB100A, up to 25
dBm) followed by an amplification stage (amplifier ZHL-5W or 15W 422 from mini-circuit).
The antenna is made of a simple wire loop soldered to an opened SMA coaxial cable. We
use wires between 15 µm and 150 µm diameter and bring them at least within a few
hundreds of µm away from the NV centers. The microwave generator is controlled by the
same acquisition card that counts the photons. This allows us to perform sweeps of its
frequency with triggered steps while the PL is measured. A single sweep typically lasts a
few hundred miliseconds and we accumulate a few hundreds of them to obtain the ESR
spectra showed in figure 3.5.b). We show two spectra realized with different microwave
powers. Trace (ii), for which we use a lower power displays two unresolved peaks due to
a small strain in the diamond crystal (see next section).
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3.1.4 Impact of the magnetic field

NV spins and ESR measurement can be used for magnetometry thanks to the Zeeman
effect. When one applies an external magnetic field to an NV center, it does not only
modify the energies of the spin states, but it also changes the eigenstate of the Hamiltonian
if the magnetic field break the crystalline symmetry around the NV axis. Here we will
describe the new Eigenstates of the Hamiltonian due to the Zeeman effect and discuss the
implications on the ESR spectrum.

Zeeman effect and new Eigenstates

The Hamiltonian describing the spin in the orbital ground state can be written [145]:

ĤNV /~ = D

(
Ŝ2
z − 1

3S (S + 1)
)

+ E
(
S2
x − S2

y

)
+ γeŜ.B, (3.1)

where ~ is the reduced Planck constant, D and E are zero-field splittings, Ŝx, Ŝy, Ŝz
are the Pauli matrices for a spin S = 1 and S the corresponding Pauli vector, γe is the
gyromagnetic ratio of the electron and B is the external magnetic field.

The D = 2.87GHz coupling is due to spin-spin interaction [133] while E mainly comes
from mechanical strain of the diamond crystal and ranges from 100 kHz in high purity
bulk crystals to 5 MHz in nano-structures. Without magnetic field the strain can slightly
lift the degeneracy between the spin excited states, splitting the |±1〉 states of generally
around 10 MHz. In most of our sample, this strain leads to the observation of two lines in
the ESR spectrum even under no magnetic field. These two peaks -although unresolved-
can be observed in the trace (ii) of figure 3.5.b). This is comparable to the Zeeman split-
ting introduced by a 5 G magnetic field, in order to simplify the diagonalization of the
Hamiltonian, we therefore neglect the impact of strain from now on.

The last term is the Zeeman energy, which lifts the degeneracy between the ms = ±1
states when a magnetic field is applied. Because the spin-spin interaction is strongly
anisotropic, the orientation of the magnetic field compared to the NV crystalline axis
is critical. Plots from figure 3.6 demonstrate the impact of this anisotropy on the spin
energies of the eigenstates, as well as on their projection on the zero-field eigenstates |0〉
and |±1〉. Let us rewrite the Hamiltonian while neglecting the strain and considering a
field in the XZ plane:

ĤNV /~ = DŜ2
z + γeŜzB‖ + γeŜxB⊥, (3.2)

where B = B⊥ex + B‖ez. If there is no transverse field, the Hamiltonian is diagonal and
gives a linear Zeeman effect, plotted in figure 3.6-a). On the contrary if there is a trans-
verse field, the new eigenstates will be superpositions of the zero-field eigenstates (|0〉,
|±1〉).

Figure 3.6.b) shows the energies of the eigenstates under a transverse B field only: the
Zeeman effect is much weaker and affect the ground and excited state while the third eigen-
state becomes insensitive to the magnetic field. This specific case is treated in more details
in section 4.4 but in short this is directly caused by the spin mixing of the new eigenstates.

Let us now consider the eigenstates and their energies when the magnetic field inten-
sity is fixed but its orientation compared to the NV axis is continuously rotated. The
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Figure 3.6: a), b), c) Eigenenergies of the spin orbital ground states of an NV center under
a longitudinal, transverse and rotating magnetic field respectivaly. d), e), f) Square of the
projection of the three zero-field egenstates unto the ground, intermediate and excited
spin states respectively as a function of the orientation of a 500 G magnetic field.

eigenenergies, plotted in figure 3.6.c) follow a pi-periodic curve with an avoided crossing
when the field is transverse. Note that this variation of the energy with the orientation is
at the core of the proposal to obtain a spin-mechanical coupling using the angular degrees
of freedom: it translates into a magnetic torque applied to the diamond crystal through
the NV spin.

In order to evidence the mixing of the zero-field eigenstates (|0〉, |±1〉) in the new
eigenstates we plot for each new eigenstates the square of its projection on the zero-field
eigenstates in figure 3.6.d-e). We can see that this mixing occurs for the three new eigen-
states as soon as the field is not longitudinal.

This mixing has important implications for the optical cycles because it allows optical
transitions between different spin levels: optical excitation are not spin-conservative any-
more. It will also average the spin-selective non-radiative decay, which is at the core of
the optical spin read-out. Both effects will lower optical initialization and read-out fidelity
and incidentally reduces the contrast of an ESR spectrum. Such effects are described in
more details in section 4.4.

ESR of spin ensembles under a magnetic field

The tetrahedral structure of the diamond crystal allows for four non-degenerate axis for
NV centers to co-exist in a single crystal. Although it is possible to synthesize a crystal
with preferentially oriented NV centers, most of our work was carried out on diamond
with NV centers equally distributed among the four possible orientations. As we work
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with large ensembles, there is the same amount of NV centers along the four orientations.
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Figure 3.7: ESR spectrum for an NV centers ensemble within a single microdiamond taken
under a magnetic field of about 100 G. We use a microwave power of 10 dBm.

Figure 3.7 shows an ESR spectrum with a magnetic field of about 100 G. The field is
generated by a neodynium magnet brought in the vicinity of the diamond. Since the energy
of the spin states under a magnetic field depends on the orientation of the magnetic field
compared to the NV axis, we can observe up to eight resolved ESR peaks corresponding
to the two new excited eigenstates of the four different NV orientations. In practice all
peaks are often not resolved and the magnetic field has to be properly set for the eight
lines to be revealed.

3.1.5 Hyperfine coupling to nuclear spins

The full energy structure of an NV spin is actually enriched by the presence of nuclear
spins nearby, embedded in the diamond lattice. Magnetic dipole-dipole and contact in-
teraction with 13C (spin one) or Nitrogen (spin one for 14N and spin one half for 15N)
atoms gives rise to a hyperfine structure in the electron resonance spectrum. Another
analogous point of view -for magnetic dipole-dipole coupling- would be that an NV spin
energy depends on the state of nearby nuclear spins, as its energy is shifted through the
Zeeman effect by the magnetic field generated by the nuclear spins.

When observing a single NV spin coupled to few nuclear spins, the hyperfine structure
is resolved. Figure 3.8 shows an ESR spectrum from NV spins in a high purity diamond,
here the hyperfine structure is due to the coupling of each NV spin to the nuclear spin of
its nitrogen (14N, with a spin 1). One can actually use the NV electron spin to control
nearby nuclear spins [146, 147], recently, up to 10 nuclear spins were simultaneously ma-
nipulated by a single NV spin [20]. Because they are strongly localised and have a weaker
gyromagnetic ratio compared to electron spins, nuclear spins are well insulated from their
environment and constitute two level systems with excellent lifetime and coherence time.

64



3.1. The NV center in diamond

2.682 2.684 2.686 2.688 2.69 2.692 2.694 2.696

Frequency (GHz)

0.99

0.992

0.994

0.996

0.998

N
or

m
al

iz
ed

 P
L 

(a
.u

.)

2.16 MHz

Figure 3.8: Electron spin resonance from NV spins in an isitopically purified CVD-grown
bulk diamond. We use a microwave power of -20 dBm.

If there are too many nuclear spins or if one observes an inhomogeneous spins ensemble,
coupling to the nuclear spins will broaden the ESR line. This will result in an apparent
drop of the coherence of the NV spin that is comparable to spectral diffusion: the energy
of the NV spin -coupled to nuclear spins- will vary with time (as the nuclear spins will
flip), and so will the dephasing between two NV spin states. Note that given the long
lifetime of nuclear spins, one might use decoupling -or rephasing- scheme to recover the
NV spin coherence. This issue is discussed in more details in the next section.

Coupling of an NV electron spin to nuclear spins can be described in the Hamiltonian
using the hyperfine tensor A(n)

ij :

ĤNV /h = DŜ2
z + γeŜ. ~B +

∑
n

S.A(n).I(n), (3.3)

where n are indexes for nearby nuclear spins and I(n) is their Pauli vector. The form of
the hyperfine tensor depends on the geometry of the system and on the distance between
the two spins.

For the nitrogen of the NV center, we have:

AN =

AN⊥ 0 0
0 AN⊥ 0
0 0 ANzz

 (3.4)

with ANzz = 2.16 MHz [148] while AN⊥ ∼ ANzz � D [149] -off-diagonal terms in the
Hamiltonian- can often be neglected in the secular approximation. As each NV center
has the same coupling to its Nitrogen nuclear spin and with an overwhelming majority
of 14N isotope (99.6% natural abundance), it can be observed with ensembles as soon as
the inhomogeneous width is small enough. This is indeed the frequency span between two
peaks in the spectrum of figure 3.8.

3.1.6 NV spins lifetime and coherence

Measurement of the ESR observed through Optically Detected Magnetic Resonance showed
above are continuous measurement: the photoluminescence is detected under a continuous
microwave and optical pumping for different microwave frequencies.
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3.1. The NV center in diamond

However, because the NV spin lifetime (longitudinal relaxation time) and coherence life-
time (transverse relaxation time) are long compared to the time it takes to perform optical
initialization/read-out and microwave drive respectively, one can also perform pulsed ex-
periments to coherently address the spin or for example measure its relaxation. Such
control of the NV spin is mandatory if one is to implement proposals where the NV spin
is used for coherent control of a mechanical oscillator.

The main features of the set-up we use are depicted in figure 3.9, they will be further
detailed below for each measurements carried out. In these measurement, we use micro-
diamonds obtained by milling HPHT diamonds (MSY 8-12 µm from microdiamond) which
are deposited on a quartz coverslip. Note that as already mentioned, we found the NV
density to be inhomogeneous from one diamond to an other (∼ 103 to 106 NV per micro-
diamond).

laser

λ/2 PBS
DM

lens

iber coupler

AOM

bulk diamond or

micro-diamond on coverslip

antenna

NV centers

microwave

generator

microwave

ampli ier

switch

computer with
acquisition cards

APD

NF

SM or MM iber

Figure 3.9: Set-up for pulsed measurement of NV spins. Optical excitation is carried out
by a 532 nm green laser which can be rapidly (<50 ns) switched off using an acousto-
optic modulator (AOM). The laser is focused and the red PL collected by the same lens
while the two beams are separted by a Dichroic Mirror (DM) and a Notch Filter (NF).
The PL is coupled into a multi-mode (MM) or single-mode (SM) fiber and sent into an
avalanche photodiode (APD), the photons count rate is counted by the acquisition card of
a computer. We send a microwave current in an antenna -a wire loop- that we approache
close to the sample.. For the microwave current we use a generator and an amplifier.
Acquisition cards are used to both set the frequency of the generator and rapidly shut down
the microwave current using a switch situated between the generator and the amplifier.

Longitudinal relaxation time

Let us first consider the spin lifetime (longitudinal relaxation time), that is the so-called
T1 time of the electron spin. There are two relaxation mechanisms which songly impact
the spin T1: interaction with lattice phonons and cross-relaxation with nearbye spin im-
purities [150]. At room temperature and in a pure enough sample, the former processes
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dominates the relaxation dynamics while the latter limits the lifetime at cryogenic tem-
peratures [150], as the average phonon number is lowered. Similarly, if the number of bulk
impurity is high enough or if the NV spins are shallow and therefore close to surface im-
purities, cross-relaxation also limits the NV spins lifetime at room temperature [150, 151].

To estimate the T1 time in our samples we use the pulse sequence depicted in Fig.
3.10.a). Typically, a 15 microseconds, 1 mW green laser pulse first polarises the NV elec-
tron spins by using the intersystem crossing in the excited state described in section 3.1.3.
Then, an identical second laser pulse is used to excite the NV center. The the PL (Photo-
Luminescence) the NV centers emit is collected, and sent to an avalanche photodiode
(APD SPCM-ARQ-15 from Perkin-Elmer). A PCI card (PCIe 6320 National instrument)
then measures the count rate during the first ∼10 microseconds of the laser pulse (using
an internal gate). The amplitude of the measured PL depends linearly on the probability
of being in the ground |ms = 0〉 state.
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Figure 3.10: a) Pulse sequence used for measuring the T1 time of NV centers. b) Photo-
luminescence as a function of the dark time between the two laser pulses. An exponential
fit gives T1 = 3.2 ± 0.2ms.

By repeating this sequence while varying the delay between the two laser pulses, we
thus measures how fast the NV spins relax back to the thermal equilibrium. Figure 3.10-b)
shows a typical result for micro-diamonds laying on a coverslip. We obtain a decay time
T1 = 3.2 ± 0.2ms from an exponential fit to the data. Typically the lifetime measurement
is repeated and accumulated about 10000 times per point, depending on the intensity of
the PL. The T1 values that we measure actually range from 1 ms to 10 ms and are limited
by coupling to the phonon bath of the diamond crystal or to nearby impurities [150].

Note that in order to perform an efficient measurement, the duration of the laser pulse
and of the measurement window must be properly tuned to be longer and shorter re-
spectively than the time it takes to optically polarize the spins. Since the polarization
time depends on the optical power used, it should be measured every time the experi-
ence conditions are changed. It can be obtained simply by looking at the contrast of
the lifetime measurement while varying the parameters (duration of the laser pulse and
of the measurement window). Alternatively, we can perform the measurement sequence
presented in figure 3.11.a): the spins are initialized in the spin excited state (eg |1〉) by a
microwave pulse (see experimental details below) and the PL is read-out after a varying
re-polarization time. Figure 3.11.b) shows the results from this sequence: with 1 mW of
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Figure 3.11: a) Shows the pulse sequence used for measuring polarization time of NV
centers. b) Photoluminescence as a function of the re-polarization time, after a microwave
pulse.

laser power it takes a few tens of microseconds for the spin polarization to saturates.

As we will see next, both the T1 and the time it takes to polarize the spin are long
enough not to impact measurement of the coherence time.

Bloch sphere

In order to describe the evolution of a superposition of two states, we use the representation
of the spin wave-function on the Bloch sphere. Let us consider the wavefunction of a
superposition of the two spin states |ms = 0〉 and |ms = 1〉:

|Ψ〉 = α|0〉 + β|1〉. (3.5)

If we consider the wavefunction normalized and choose the overall phase so that α is real,
we can rewrite any superposition state:

|Ψ〉 = cos θ2 |0〉 + sin θ2e
iφ|1〉, (3.6)

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. Those two angles can then be used to define a vector
on a unity-radius sphere in polar coordinate as depicted in figure 3.12.a). We call such
sphere the Bloch sphere and the vector corresponding to a given state the Bloch vector.
When the Bloch vector is at the north or south pole of the sphere, the spin is in the |0〉
and |1〉 state respectively. The Bloch sphere gives a simplified view of the evolution of a
superposition state.
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Figure 3.12: a) Bloch sphere and Bloch vector. b) π and π/2 pulses depicted on the Bloch
sphere. c) Evolution of the Bloch vector during a Ramsey fringes experiment.

Rabi oscillation

Under a microwave magnetic field perpendicular to the spin quantization axis and os-
cillating in resonance with a transition between the ground and an excited spin states,
the spin undergoes Rabi oscillations. If it starts for example from the |0〉 states, it con-
tinuously evolves between superposition states to the |1〉 state and back and forth. In
a frame rotating at the frequency of the field, this consists in a simple rotation of the
Bloch vector around the x or y axis -depending on the phase of the microwave field. The
frequency of such rotation is called the Rabi frequency and depends on the strength of the
perpendicular oscillating field B1:

ΩR = γeB1. (3.7)

Depending on the duration τ of the microwave signal, one can perform rotation of
an arbitrary angle ΩRτ . π and π/2 pulses, which rotate the Bloch vector by π and π/2
respectively are depicted in figure 3.12.b).

Rabi oscillation can be observed on NV spins using a sequence where the microwave
is pulsed. A common sequence is detailed in figure 3.13.a):

• a laser pulse initializes the NV spins in the |0〉 state

• a resonant microwave pulse is applied for a duration τ

• a laser pulse is applied for both spin read-out (and spin re-polarization)

• a gated APD measure the spin state at the beginning of the laser pulse.
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Figure 3.13: a) Shows the usual pulse sequence performed to observe Rabi oscillations of
NV spins. b) Shows the sequence that we apply given a weak laser excitation. The axis
break symbolises a long waiting time necessary to initialize the spins (from a dozen to a
hundred microseconds).

In our specific case, the laser power is weak enough so that each NV center is efficiently
initialized only after about a dozen to a hundred microseconds. This is evidenced from
measurements like the one displayed in figure 3.11. On the other hand the Rabi oscil-
latons that we observe occur on timescales closer to one microsecond, which means that
even using a continuous laser, spins are only weakly re-initialized during or right after
the Rabi oscillations. Accordingly we apply the sequence described in figure 3.13.b) with
continuous laser excitation, long initialization time at the beginning and at the end of the
sequence and a short time between the microwave pulse and the spin read-out.

Microwave pulses are obtained using a microwave switch (ZASWA-2-50-DR+ from
Minicircuit) located between the microwave generator and the microwave amplifier. A
card (PulseBlaster from SpinCore Technologies, Inc.) then generates TTL pulses which
control the switch. It should be noted that in the current set-up, because we only switch
the input signal of the microwave amplifier, the latter slightly deforms the end of the mi-
crowave pulse. This comes from a ring-down of the amplifier [75] and could be improved
by adding a high power switch after the amplifier. During the sequence, the APD con-
tinuously counts photon but the cards measuring its signal (PCIe 6320) is gated by the
PulseBlaster card. Both cards are interfaced on a computer and the sequence is repeated
for different microwave durations and accumulated at least several hundreds times for each
point.

Observing clear Rabi oscillations on NV ensembles requires addressing the NV centers
with the same orientation, otherwise the Rabi frequencies for the different orientations
would likely not be the same and the Rabi oscillations would be blurred (see SI from [75]).
This can be done by applying a magnetic field as done in section 3.1.4 and tuning the
microwave frequency at a single, well-resolved peak.

Figure 3.14.a) and b) show the NV photoluminescence as a function of the micro-
wave pulse duration for two different microwave powers. One can see clear, damped Rabi
oscillations. We use different microwave powers, hence the different Rabi frequencies: in
a) we use 20 dBm, while in b) we use -5 dBm. Our fitting method and its result are the
following: for all fits of the Rabi oscillations, we use the function

f(t) = 1 − C1(1 − (C3e
−t2/τ2

1 + C5e
−t2/τ2

2 ) cos ΩRt). (3.8)
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Figure 3.14: Rabi oscillations from NV centers in deposited diamonds for two different
microwave powers in the presence of an externally applied magnetic field. All parameters
are the same apart from the two microwave powers: a) ΩR = 16 MHz, b) ΩR = 1.3 MHz.

For the first Rabi measurements a), the fit gives the following values: C1 = 0.017, C3 =
−5.500 × 10−4, τ1 = 179, C5 = 0.52, τ2 = 192, in nanoseconds units. It yields Rabi oscilla-
tions periods of 60 ns±4 ns. Here, the decay can be modeled by a single gaussian decay
to a good approximation.

For the second measuremt b), we get the following values for the fit C1 = 0.0048, C3 =
0.7778, τ1 = 176, C5 = 0.2548, τ2 = 1565. Two decay constants are thus non negligible
here. The short term evolution decays with a time constant of 176 ns while the long term
one is given by 1.565 µs.

We make two observations from these results: first the damping of the Rabi oscillations
depends strongly on the employed microwave power and secondly the damping cannot be
characterized by a single exponential decay. This can actually be explained by the fact
that damping of the Rabi oscillations is here governed by the inhomogeneity of the NV
spins [152, 153]. Each spin is differently coupled to the spin bath composed of nearby para-
magnetic impurities, and its energy varies with time depending on the spin bath state. In
a simplified picture, one can notice that with a Rabi frequency that is strong compared
to the ESR linewidth, all NV spins -including the one the most strongly coupled to the
spin bath- will undergo Rabi oscillations and contribute to the signal that we observe.
Conversely, a weak Rabi frequency will yield a lower contrast for the Rabi oscillations, but
only the NV spins at the center of the ESR line will contribute to it, enabling a weaker
decay [152]. Regarding the shape of the decay, it was theoretically showed that differences
of coupling strengths to the spin bath from one NV spin to another yields different decay
shapes [153, 154].

In practice, we were not able to fit our data to the theoretical model from [154]. Once
we are able to perform π pulses faster than the decoherence of the NV spins, more complex
protocols can be envisioned which allow quantitative measurement of the decoherence rate.
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3.1. The NV center in diamond

Dephasing: Ramsey fringes

Ramsey fringes provide a measurement of the transverse relaxation time ( T∗
2) of an NV

spins ensemble. It corresponds to the decay rate of the coherence between two spin states
ie the rate at which a coherent superposition of these two states changes into a statistical
superposition.
Figure 3.15.a) describes the Ramsey sequence we use while the evolution of the Bloch
vector is depicted in figure 3.12.c). The NV spins ensemble is first initialized, then a
microwave π/2 pulse put it in a superposition state. The microwave is usually slightly de-
tuned from the resonance of a quantity we note ∆. In the frame rotating at the microwave
frequency, the Bloch vector is therefore in the equatorial plane and rotates around the z
axis at a rate ∆. After a free precession time τ a second π/2 pulse is applied and the spin
state is read-out via the NV centers’ PL.
Depending on the position of the Bloch vector at the end of the free precession time,
the spin ends up in the |0〉 state (τ.∆ = (2n + 1)π where n is an integer), the |1〉 state
(τ.∆ = 2nπ) or in-between. This translates to oscillations of the PL signal with the free
precession time τ at a frequency ∆, the so-called Ramsey fringes. Those fringes are blurred
if the coherence is lost during the sequence, their decay is therefore a direct measurement
of the decoherence rate of a superposition state. Although we observe Ramsey fringes in
the time domain, one can proceed similarly but with a fixed free precession time τ while
scanning the detuning ∆, enabling precise measurement of the transition frequency. The
profile of the fringes decay is the Fourier transform of the ESR spectrum, here a Gaussian
because of the inhomogeneous broadening.
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Figure 3.15: a) Ramsey sequence measuring the T∗
2 of the NV spins under a weak laser.

The axis break symbolises a long waiting time necessary to initialize the spins. b) Photo-
luminescence as a function of the free precession time for an NV spins ensemble embedded
in micro-diamonds laying on a coverslip. The microwave frequency is detuned of 25 MHz
from resonance.

Ramsey fringes are more precise for measuring the T ∗
2 when using short intense π/2

pulses which yields a higher contrast for the oscillations. Figure 3.15.b) shows Ramsey
fringes obtained using the sequence described in figure 3.15.a) with diamonds laying on a
coverslip and with a microwave detuning of 25 MHz from the center of the ESR transition.
The microwave pulse duration is 50 ns. We fit the Ramsey signal with a Gaussian decay
and obtain a T ∗

2 of 45 ns. It should be noted that this value is very close to the values
expected from the gaussian ESR width whereas even the shortest measured Rabi decay
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would yield a smaller linewidth.

In the sample we study the width of the ESR line mainly comes from coupling to a
spin bath comprising nearby electron and nuclear spins. As mentioned in the previous
section, when an NV spin is coupled to a spin bath it witnesses an inhomogeneous-like
broadening. This in fact causes the fast decay of the Ramsey fringes that we observe.
Although Ramsey fringes give information relative to the coupling of each NV spin to
the spin bath, it does not take into account the dynamic of the spin bath. Decoupling
techniques such as spin echo take advantage of the slower dynamics of the spin bath and
can enhance the coherence time of the NV spins.

Spin echo and decoupling from the spin bath

Figure 3.16.c) depicts the sequence we apply to perform a spin echo on an NV spins en-
semble. Aside from the initialization and measurement stages it essentially consists of two
π/2 pulses separated by a precession time 2τ split in two by a π pulse at half the total
precession time. The role of the π pulse is to re-phase the inhomogeneous precession of the
different NV spins and of each single NV spin at a different time when the measurement
is averaged over time. Figure 3.16.a) shows a geometric analysis in the Bloch sphere that
demonstrates it simply. Let us consider the spin bath is frozen during one measurement
sequence. After the first π/2 pulse the spin precess which translates, in the rotating frame,
in a rotation in the equatorial plane at a speed equal to the detuning between the spin
transition and the microwave frequency. Inhomogeneities will cause the Bloch vector to
rotate at different speeds, for different spins but also for each spin at different times when
the sequence is repeated (and as the state of the spin bath changes). Figure 3.16.b) shows
the evolution of this dephasing for three different detunings. The inhomogeneous dephas-
ing causes a fast decay of the Ramsey fringes in the Ramsey sequence. We can see that
applying a π pulse at the center of the precession time allows inhomogeneous dephasings
to be rephased during the second part of the precession time. This happens as long as the
spin bath has not changed during one iteration of the sequence.
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Figure 3.16: a) Bloch vector during an echo sequence, in between the two π/2 pulses. b)
Evolution of the dephasing for three NV spins (or one NV spin for different spin bath
states) during the precession time. Dephasing is measured compared to the x axis before
the π pulse and compare to the -x axis after. Here we consider the π pulse to be infinitely
short. c) Echo sequence we use to measure the Techo

2 of the NV spins under weak laser.
The axis break symbolises a long waiting time necessary to initialize the spins. d) PL as a
function of the free precession time for NV spins ensemble in deposited micro-diamonds.

The PL as a function of the free precession time τ for an echo sequence is shown in
figure 3.16.c). Here an exponential fit yield a decay time of 1.65 µs. We typically measure
echo decays between 1 and 3 µs for this sample (MSY 8-12).

Damping of the echo signal is here due to the fluctuation of the spin bath: as it changes
during an echo sequence, it introduces errors in the rephasing process. Working with purer
sample comprising less electron spins and eventually less nuclear spins would increase the
T echo

2 . Otherwise, one can employ more complex decoupling sequences with more than
one rephasing π pulse like the Carr-Purcell-Meiboom-Gill (CPMG) sequence [155, 156],
spin locking [157] or the XY4 sequence [158].

3.1.7 Spin properties in diamond particles

Even if spin properties can be improved using decoupling schemes they will primarily
depend on the diamond material. Here we give a small overview of the NV spins properties
and what governs them.

Low temperature

Going from room temperature (RT) to Cryogenic Temperature (CT) usually enhances
coherence and lifetime because coupling to the phonon bath is reduced. This is especially
the case for the optical line of the NV center, the NV spin lifetime is similarly increased
to nearly a second below 80 K [156]. The spin coherence however remains limited by the

74



3.2. Observation and control of NV centers in levitating diamonds

coupling to the spin bath, even at CT (here 4-8 K): overall dynamical decoupling sequences
are still required to recover a coherence time limited by the spin lifetime [156].

Well-resolved optical lines nonetheless change the paradigm of NV spin read-out. In
fact optical transitions have different wavelengths for different spin states. Because they
are resolved at low temperature, it becomes possible to resonantly excite spin-selective
optical transitions. By repeating several optical cycles while measuring the PL in the
Phonon Side-Band (PSB) one can achieve high fidelity spin read-out. This additionally
provides high fidelity initialization through a slight spin mixing. In bulk material and with
a single NV center working at CT below 10 K, the fidelity for spin initialization is 0.998
[19] while the fidelity for spin read-out is as high as 0.96 [159].

Such attractive properties should be tempered by the implied experimental constraints:
the cited results were obtain within a liquid helium cryostat, using bulk diamond with a
solid immersion lens etched around a single NV spin to improve the PL collection efficiency.
Currently such conditions are hardly compatible with a levitating diamond experiments.
Although optical cryogenic cooling is possible [109, 160] and its implementation with a
levitating rare-earth particle was successful [110] it is for now limited to a final temperature
of about 80 K. NV spin properties at CT are therefore limited to experiments with clamped
diamond cantilever.

Role of the paramagnetic impurities

Since the NV spin coherence is limited by coupling to the surrounding spin bath, its co-
herence can be improved by removing as many spins as possible from its surroundings
[161, 162]. One can achieve this by producing high purity diamonds through Chemi-
cal Vapour Deposition (CVD) and using 12C isotopically purified carbons to limit the
number of nuclear spins from the 13C isotope [163]. A single NV spin in such diamond
for example displayed a coherence time as high as 500 µs without decoupling sequence [18].

Those coherence time are however obtained with NV center deep within the diamond
crystal: when the NV spin is closer to the surface, its properties will suffer from the
presence of surface impurities. The magnetic noise from those impurities lowers both
the lifetime [151] and coherence time [164] of shallow NV spins. This is crucial for spin-
mechanical experiments with levitating diamonds since working with smaller -eg nano- di-
amonds increases the spin-mechanical coupling rate while the NV decoherence is expected
to be the strongest limitation under high vacuum. Note that as discussed in section 4.4,
dynamical decoupling can be integrated within a spin-mechanical experiment to solve this
issue. With a single decoupling pulse (Hahn echo sequence) one can reach coherence time
up to 200 µs for 5-nm-deep NV spin and of 800 µs for 50-nm-deep NV spin [165]. The
impurities themselves could also be driven to decouple them from NV spins [166] .

3.2 Observation and control of NV centers in levitating di-
amonds

Once a micro-diamond is levitating, we aim at controlling embedded NV spins similarly
to what we have was shown with diamond laying on a coverslip. Here we will first describe
the observation and characterization of the PL from NV centers embedded in a levitating
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diamond and then explain how we combine a microwave antenna with the trap set-up to
achieve spin manipulation. Apart from the microwave antenna, we use a similar set-up as
described in sections 3.1.2 and 3.1.3 to read-out and control the spin states. Two different
antenna systems were operated: first an external antenna similar to the one from a non
levitating experiment and then a ring antenna integrated to the trap.

3.2.1 NV optical observation

Observation of the PL is achieved by modifying the tools described in sections 3.1.2 to
adapt them to the Paul trap. The confocal microscope and optical path is nearly identical
to the one previously described (section 3.1.2, figure 3.2) so we will only emphasize the dif-
ferences from a non-levitating set-up. The NV centers’ PL is collected by an aspheric lens
(NA=0.77 LightPath 355330 or NA=0.5 C240TMD from Thorlabs). We don’t focus the
excitation laser on but rather in front of the levitating particle for visualization purpose.
This introduces a mismatch between the divergence of the collected PL and the green
laser. It is usually corrected either by natural achromatism of the aspheric lens, or by an
additional lens on path of the green laser. After repeated loading of the trap, the aspheric
lens becomes soiled with micro-diamonds and is therefore often protected by an addi-
tional glass coverslip fixed to the lens mount. Finally since we don’t have parasitic light
from a substrate, a large core Multi-Mode fiber is used to facilitate the collection of the PL.

Once the PL is collected, its photon can be counted using an APD or its spectrum
analyzed by a grating spectrometer. Figure 3.17.a) shows the spectrum from NV centers
embedded within a levitating micro-diamond and figure 3.17.b) the spectrum from a sim-
ilar diamond laying on a quartz coverslip. We use the same sample for both experiments:
10 µm diamonds (MSY 8-12).
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Figure 3.17: Optical spectras of NV centers embedded within a micro-diamond for two
different powers for a) a levitating diamond and b) a diamond lying on a glass coverslip.

The same features of the NV− and NV0 centers (already described in section 3.1.2)
are visible with no distinguishable pattern when levitating compared to non levitating
samples. Although this experiment was carried with micro-diamond (8-12 µm), another
experiment found similar results with nano-diamond levitating in a Paul trap [52]. We
should note that as we don’t use chromatic aberration-corrected optics, the spectrum can
be slightly distorted depending on the alignment of the collection optics (aspheric lens and

76



3.2. Observation and control of NV centers in levitating diamonds

coupling into the fiber).

3.2.2 External antenna

Approaching an antenna close to the levitating micro-diamond to generate a microwave
field proved to be difficult due to the trap high voltage and the necessity to approach
the antenna at least within a few hundreds microns from the diamond. Figure 3.18.a)
depicts the antenna in the early stage of the experiment: we approached a 28 µm gold
wire stretched between two bigger wires close to an endcap trap. To avoid electric arcs,
the amplitude voltage of the trap is lowered to about 600 V while other parameters (fre-
quency, distance between the endcap electrodes) are adjusted to maintain the particle
stably trapped.

We noticed that the trap stability parameters depend upon the distance between the
antenna and the center of the trap. Numerical simulations show that the stiffness of the
trap increases when the distance with the antenna decreases. As the antenna is brought
close to the trap, the q factor of the Mathieu equation thus increases and so the frequency
and AC voltage are often adjusted to keep the q factor well within the stability region.
In the presence of the antenna, trapping is nonetheless still critical and the particle is
often lost due to small air flows, when the trapping apparatus is not properly enclosed.
This points towards a decrease of the potential depth due to the increasing asymmetry of
the trap. This issue, also confirmed by numerical simulations, prevents us from acquiring
data for more than half an hour and limits the signal to noise ratio of the ESR using such
antenna.
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Figure 3.18: a) External antenna system with an endcap trap: a 28 µm wire is approached
about 150 µm from the center of the trap. b) Electron spin resonance spectrum (ESR) from
NV spins embededd in a micro-diamond levitating in an endcap trap, under a magnetic
field of about 150 G.

Combining the microwave antenna with optical observation of the NV centers allows
us to read-out and efficiently manipulate NV spins embedded within levitating diamonds.
Figure 3.18.b) shows an ESR spectrum from a levitating micro-diamond (MSY 8-12 µm)
under a magnetic field of about 150 G. This spectrum already demonstrates two important
points: first the orientation of the levitating micro-diamond is stable, secondly we are not
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able to detect degradation of the spin properties (line width, initialization, read-out).
These points will be further discussed in the next two sections 3.3 and 3.4, let us focus
for now on the experimental system. Here, the inability to perform long measurements
requires us to use a strong micro-wave driving to saturate the NV spins and improve the
contrast of the ESR. This in turn first enlarges each spin line through power broadening
but also creates artifacts in the spectrum due to heating and dilation of the antenna.

3.2.3 Integrated ring antenna with Bias T

To overcome these limitations and simplify the system, one can use a ring geometry for the
trap and use this same ring for the antenna as well. The microwave amplifier then needs
to be insulated from the high voltage amplifier. This is achieved by a bias T, which acts
as a filter taking advantage of the large frequency difference between the two microwave
(GHz) and high voltage (kHz) signals.
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Figure 3.19: a) Ring trap mounted on a bias T. The bias T combine the microwave current
and the Paul trap high voltage while the ring plays the role of both the trap electrode
and the antenna. b) Electron spin resonance spectrum from NV spins embededd in a
micro-diamond levitating in a ring trap under a magnetic field of about 50 G. Here the
ring inner diameter is 180 µm and the diameter of the wire is 25 µm.

Figure 3.19.a) shows the trap mounted on the bias T. A small capacity (C∼pF) and
a resistance (R=50 Ω) are used to filter out the high voltage while a coil filters out the
microwave current. Note that in current scheme both microwave and high voltage are
connected to a nearly open load and are mainly coupled into the ring only thanks to the
auto-capacity of the circuit. This is always the case for a Paul trap and not uncommon
for a microwave antenna.

Figure 3.19.b) shows an ESR spectrum obtained from NV spins in a levitating micro-
diamond ((MSY 8-12 µm)) with this system and a small (180 µm) ring trap. The signal to
noise ratio (SNR) of the ESR is distinctly better than the one performed with an external
antenna (figure 3.18.b)). A direct consequence of this is that it is not necessary to strongly
drive the NV spins: we still clearly distinguish the ESR lines with a weaker microwave
field causing a lower contrast but also sharper lines.

The higher SNR can be traced back to several factors. First the antenna generates a
higher microwave field at the diamond position with fewer intensity and heating in the
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antenna. The small ring trap also confine the particle more strongly than the endcap
trap when the antenna has been approached and the voltage reduced, which means any
fluctuating force on the levitating diamond induces a smaller noise. Finally the ring trap
was enclosed in a vacuum chamber which provides better insulation from air flow than the
box used with the endcap trap. Overall, only the first experiments (see next section) were
performed with the endcap trap and external antenna: once installed the system with an
integrated antenna was preferred.

3.3 NV spins to monitor the angular stability
Here, we discuss the angular stability of a levitating diamond through the prism of the
NV spins embedded in it. In particular, we show how the ESR spectra can be used to
monitor the angular stability. This section is closely related to section 2.4 where consider
only the motion of the mechanical oscillator.
We describe two experiments : one where the angle of the diamond is stable and one where
the diamond is rotating in the trap due to radiation pressure.

3.3.1 Paul trap angular stability

The spectra showed in figure 3.18.b) and 3.19.b) clarify an important point regarding the
levitating diamond: its orientation is stable over time. If it wasn’t, the orientation of
the magnetic field compared to each of the four possible orientations would vary and so
would the spin states energies (see figure 3.21.a) or section 3.1.4 for details). In the ESR
spectrum this would considerably broaden the spin lines.
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Figure 3.20: a) ESR spectra from a levitated micro-diamond. Trace i) and ii) are obtained
with the same magnetic field and micro-diamond but with different frequencies for the trap
voltage. b) Orientation of the NV centers with respect to the magnetic field parametrised
by φ and θ. The angles are calculated from the corresponding ESR spectra.

Although one can consider angular stability was already demonstrated by the obser-

79



3.3. NV spins to monitor the angular stability

vation of the librational modes (see section 2.4.3, a well resolved ESR spectrum under a
magnetic field provides an unambiguous proof. The ESR spectrum can also be used to
characterized the rotation of a levitated diamond.

Figure 3.20.a) displays two ESR spectra for different frequencies of the Paul trap (3.3
KHz and 2.6 kHz): the angles between the magnetic field and each possible NV orienta-
tion changes and so does the position of the ESR lines. It is in fact possible to determine
the orientation of the diamond crystal with respect to the magnetic field using the eight
(eventually non-resolved) ESR lines of an NV spins ensemble. We show the orientation
of the crystal compared to the magnetic field in figure 3.20.b) for the two different ESR
spectra. Note we here used the specific features of the spectra to simplify calculations [74].

As discussed in section 2.4.1 the fact that the trap parameters have an impact on the
orientation of a levitated particles indicates the Paul trap has a role in the confinement
of the particle. Although the rotation of the particle can be observed via phase contrast
imaging, the ESR spectra were key to confirm it.

3.3.2 ESR spectra in rotating diamonds

Rotation of micro-diamonds due to radiation pressure have been observed through visu-
alization and measurement of the back-scattered light (see section 2.5.1). We now show
the impact of such rotation on the ESR spectra. Here we use smaller diamond than from
previous experiment (∼2.8 µm size). Because the radiation pressure has a stronger effect
on them, they tend to enter continuous rotation more often. Figure 3.21.a) shows the en-
ergies of the two spin transitions as a function of the angle between the magnetic field and
the NV axis. Contrary to ESR spectra previously shown, the ESR spectrum of a rotating
diamond under a magnetic field will be blurred because the NV spins energy varies when
the angle between the magnetic field and the NV axis changes.
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Figure 3.21: a) Frequencies of the spin transition as a function of the angle between the
magnetic field and an NV center for different magnetic field intensities (see section 3.1.4
for details). b) ESR from a levitating and rotating micro-diamond (2.8 µm size) for three
values of the magnetic field: B=0, B= 10 G and B= 30 G. The system used is composed
of an endcap trap with an external ESR antenna.

Figure 3.21.b) shows ESR spectra from rotating micro-diamond (MSY 2.25-3.5 µm)
under different magnetic field intensities.. As the magnetic field is increased the ESR is
broadened but do not show resolved lines. Since each spectrum is obtained by averaging
the signal over minutes while each NV senses a varying magnetic field, we observe the
mean distribution of the spins energies. For one NV crystalline axis it should be close
to the distribution of a sinus, here we observe a superposition of four distributions corre-
sponding to the different NV crystalline axes.

Note that if the particle rotation is confined to a single axis, a resolved spectrum can
be obtained by tuning the orientation of the magnetic field close to the rotation axis. In
practice attempts to do so failed, evidencing a more complex motion. This comes from
the fact than during a full rotation -eg around the optical axis- the particle explores angles
far from the trap equilibrium position which can results in electric torques along different
axes than the initial rotation.

3.4 Coherent control and spin properties in levitating dia-
monds

Let us turn to more advanced studies of NV spin properties as presented in section 3.1.6
but with levitating diamonds. Beside the spin lifetime measurement, these experiments
(Rabi oscillations, Ramsey fringes, spin echo) require coherent control of NV spins and
therefore an angularly stable levitating diamond. Those experiments allow us to verify
that NV spins properties are not degraded by the Paul trap mechanism but are also a
prerequisite to pulsed spin-mechanical protocols [43].

We have already showed that bigger ∼ 10 µm sized micro-diamonds are less impacted
by radiation pressure and show stable orientation within our Paul trap. More generally,
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the effects of radiation pressure are mitigated while working with a stronger angular con-
finement: the minimum torque needed to climb up the angular potential barrier is higher
and the fluctuations of the angle for a given temperature are lower. We hence used a small
ring trap (170 µm wide, described in section 2.2.2) to trap ∼ 10 µm micro-diamond (MSY
8-12 from micro-diamond).
The measurement we carry out here (spin lifetime, Rabi oscillations, Ramsey fringes and
spin echoes [75]) are similar to the one presented in section 3.1.6 except for the trap set-
up, described in section 3.2. We will therefore only briefly comment the results. The
main difficulty of these experiments stems from having a large enough confinement and a
strong enough microwave drive. Both these constraints are achieved by using the small
ring electrodes.
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Figure 3.22: a) Pulse sequence used for measuring the T1 time of NV centers. b) Photo-
luminescence as a function of the dark time between the two laser pulses. An exponential
fit gives a decay time T1 ∼ 3ms.

Figure 3.22.a) shows the sequence that we use to measure the NV spins lifetime and figure
3.22.b) the resulting photoluminescence. The measured T1 (3 ms here) is in the same
range as the one we measure from the same sample of micro-diamonds but laying on a
coverslip (1-10 ms).

Rabi oscillations

Figure 3.23.a) depicts the sequence that we use to observe Rabi oscillations from spin
ensembles. Figure 3.23.b) shows Rabi oscillations. We observe coherent oscillations for up
to 2.5 µs at a Rabi frequency of around 4 MHz.
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Figure 3.23: a) Shows the sequence that we apply given a weak laser excitation. The axis
break symbolises a long waiting time necessary to initialize the spins (from a dozen to
a hundred microseconds). b) Rabi oscillations from NV centers embedded in a levitated
micro-diamond. We use 5 dBm of microwave power.

In order to verify that the Rabi oscillations have the same response to variations of the
microwave power as non-levitating diamond (see section 3.1.6), we measure several Rabi
oscillations with different microwave powers and fit them with the function

f(t) = 1 − C1(1 − (C3e
−t2/τ2

1 + C5e
−t2/τ2

2 ) cos ΩRt). (3.9)

Table 3.23 gives an overview of the parameters used for the fitting these Rabi oscilla-
tions. We observe higher decay rates with stronger microwave powers, similarly to what
has been shown in section 3.1.6 with diamond laying on a coverslip.

Power C1 ΩR C3 τ1 C5 τ2
10 dBm 0.013 11.1 0.84 133 0.21 1536
15 dBm 0.016 18 0.86 95 0.23 1292
20 dBm 0.017 26 0.90 60 0.31 849

Table 3.1: Parameters used for the fits of the Rabi oscillations as the microwave power
varies. The Rabi frequency is expressed in rad/µs−1 and the decay times are in ns.

The Rabi frequencies that we obtain are smaller than the one we have attained with
a diamond laying on a coverslip. Still, we obtain Rabi frequencies high enough so that
a π pulse lasts for about 100 ns. The efficient microwave excitation mainly comes from
integration of microwave antenna in the trap set-up and the use of a small ring electrode
(∼ 200 µm). Note that a strong microwave drive is a necessary condition to probe the
coherence time of inhomogeneous ensembles of NV spins.

Ramsey fringes

We measure Ramsey fringes using the sequence described in figure 3.24.a). Figure 3.24.b)
shows the Ramsey fringes that we obtain with different detunings. We fit our experimental
data using a sine with a Gaussian decay. We obtain a T ∗

2 value of 47 ns, which corresponds
to an ESR width of 9.4 MHz.
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Figure 3.24: a) Ramsey sequence used to measure the T∗
2 of the NV spins under weak

laser. The axis break symbolises a long waiting time necessary to initialize the spins.
b) Photoluminescence as a function of the free precession time for NV spins ensemble in
deposited micro-diamonds. The microwave frequency is detuned of (i) 11 MHz (ii) 15 MHz
and (iii) 20 MHz from resonance.

Spin echo

A spin echo sequence can be used to decouple the NV spin from its spin bath, therefore
increasing its coherence time. The spin echo sequence that with use is depicted in figure
3.25.a). Figure 3.25.b) shows the photoluminescence of the NV centers as a function of
the precession time. We fit the echo signal with an exponential decay and extract a decay
rate of 3.3 µs.
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Figure 3.25: a) Echo sequence we use to measure the Techo
2 of the NV spins under weak

laser. The axis break symbolises a long waiting time necessary to initialize the spins.
b) PL as a function of the free precession time for an NV spin ensemble in a levitated
micro-diamonds.

Conclusion

We have performed measurement of the spin properties of a spin ensemble in a levitating
diamond. The lifetime and coherence times (Ramsey, echo) that we have measured show
no significant impact of the trap. In this regard, we are however currently limited by the
inhomogeneity of our sample: since we did not perform measurement in, and out of the
trap for the same particle, we cannot detect variations smaller than the inhomogeneous
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distribution amongst the micro-diamonds that we use.
Without carrying time consuming calibrations, we can therefore only assert that the spin
properties remain in the same order of magnitude: T1 ∼ 1-10 ms, T ∗

2 ∼ 50 ns and
T echo

2 ∼1-3 µs.

3.5 NV thermometry
We have seen in the previous section that the Paul trap appears not to impact the prop-
erties of NV spins. This enables us to fully control them down to mbar pressures, before
the micro-diamond starts undergoing rotation driven by the Paul trap (see section 2.5.2).
Such pressure range are in fact difficult to attain with an optical levitation scheme: the
high optical power required to levitate the diamond heats up the internal temperature
of the diamond through absorption. As the pressure is lowered, gas collision cannot cool
down the diamond’s temperature and the particle is eventually lost [64, 66, 67]. Here we
will show that this issue is also relevant in our experiment at higher vacuum [121]: we
will see that despite the low optical power, the high number of impurities in our diamond
still cause heating, which we measure using NV thermometry. We will finally discuss the
causes of the heating and give an estimation of whether or not this will limit experiments
at higher vacuum in the future.

NV thermometry

Let us first introduce the NV thermometry method. As we have seen earlier, without a
magnetic field the degeneracy between the spin ground state |ms = 0〉 and excited states
|ms = ±1〉 is lifted by a zero-field splitting of D ∼ 2.87 GHz due to spin-spin interaction.
This coupling strength D is actually highly temperature-dependent and decreases with
the temperature [167]. This can be understood intuitively by the two unpaired electron of
the spin 1 system being further apart therefore diminishing the spin-spin coupling rate.

Figure 3.26.a) shows ESR spectra under different pressures with a constant laser power
of 50 µW and without a magnetic field obtained from a 10 µm diamond (sampe MSY 8-12).
At a given pressure, the ESR is constituted of two unresolved peaks which degeneracy is
partially lifted by the strain. As the pressure is lowered, the central frequency of these
peaks decreases. One should note that the contrast of the ESR also falls: this is due to
an increase of the non-radiative decay from the |ms = 0〉 spin state in the excited orbital
states, which lower its brightness bringing it closer to the one of the |ms = ±1〉 states [168].
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Figure 3.26: a) Electron Spin Resonance (ESR) from a levitated diamond under different
pressure ranging from 1 mbar (right) to 0.02 mbar (left), under the same optical excitation.
b) NV-measured temperature as a function of the vacuum pressure P . Experimental points
are fitted by a first order polynomial in 1/P .

The internal temperature of the diamond can be obtained from the central frequency
of the ESR by describing the zero-field splitting D(T ) by a third order polynomial [168].
Figure 3.26.b) shows the dependency of the measured temperature as the pressure is low-
ered. Temperatures higher than 700 K were measured at ∼ 10−2 mbar of vacuum pressure.
For a given pressure and laser power, we observed the attained temperature slightly varies
from one diamond to an other, which is consistent with inhomogeneous impurities density
in our samples. We confirmed the heat source to be the 50 µW green laser which we use to
observe the diamond and NV centers [121]. Finally we can also see that the temperature
evolves as the inverse of the pressure: here gas collisions are the main thermal contact and
in this pressure range the cooling rate of the internal temperature is proportional to the
vacuum pressure.

High vacuum limitations

In its present form, our system allow for spin control down to 0.1 mbar: below this pres-
sure the system is clearly degraded by heating of the internal temperature. Although this
boundary can be pushed by pulsing the laser, as in optical tweezer [66], further changes are
still required to work under high vacuum. Two solutions can be envisioned: incorporating
an additional cooling mechanism or optimizing the parameters given the current cooling
and heating sources.

Regarding the former proposal, optical cooling is possible using anti-stokes emission
in rare-earth crystals down to below 100 K [108, 109]. A remarkable experiment recently
realized such cooling while levitating this rare-earth crystal [110]. Combining a diamond
particle stuck to such rare-earth crystal offers an interesting prospect to mitigate the effect
of heating, although such experiment seems challenging (eg the high optical power used
for optical cooling could be absorbed by the diamond).

In optical tweezer, it was shown using milled high purity CVD diamonds that the main
source of absorption are nitrogen impurities in the diamond crystal [106]. We also made
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a similar observation: we levitated micro-diamonds with different concentrations of NV
centers, 10 µm diamonds with ∼ 106 NV centers (MSY 8-12) and 15 textmu m diamonds
with ∼ 109 NV centers (Adamas MDNV15u). For these samples, we find that heating due
to absorption of the green laser occurs at the same vacuum pressure (∼ 1 mbar). Here,
the sample containing more NV centers has a higher conversion ratio between nitrogen
impurities and NV centers, meaning both sample may contain the same number of nitro-
gen impurities. While we have not characterize the number of impurities, this result still
demonstrates that the NV spins are not the main heating source in the MSY sample.
If one is to rely on gas collision for dissipation, the relevant parameter is then the number
of impurities in the levitating particle divided by its surface. One should note that since
the number of impurities is proportional to the volume, working as we do with large, low
purity micro-diamonds is particularly disadvantageous. In order to reduce the temperature
at higher vacuum, we should therefore work with purer and smaller diamond. The size of
micro-diamond can be reduced by one order of magnitude to 1 µm without altering the
NV spin properties while in [106], the purity was improved by three order of magnitudes
compared to commercially available nano-diamonds. A rough estimation would therefore
yield a gain of four orders of magnitudes for the achievable pressure one could reach under
reasonable conditions.

3.6 Conclusion
In this chapter, we first presented the physics surrounding the NV spins and the tools
commonly used to manipulate them. We then described how one can include them in
our trap apparatus, in particular, we used a micro-metric ring playing the role of both
the trap electrode as well as the microwave antenna. Interestingly, the NV spins can be
used to monitor the angular stability of a levitating diamond by taking advantage of their
intrinsic anisotropy. This set-up also allowed us to coherently control NV spins embedded
in levitating diamond and thereby to measure their coherence properties. Under vacuum
conditions, we also observed heating of the internal temperature through NV thermometry.
For now this heating happens at a lower pressure (0.1 mbar) than the locked motion (1
mbar, as discussed in previous chapter). If this latter limitation is solved, we expect that
working with purer and smaller diamonds will allow the vacuum pressure to be lowered
by four orders of magnitude.
To conclude, the ability to coherently control the NV spins in a levitating diamond is
representative of the successful integration of the NV spins in the trap set-up: under the
right conditions, we can manipulate the NV spins at will in a levitating diamond with
stable orientation.
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Chapter 4

Spin-mechanical coupling

We have shown the manipulation of NV spins embedded in a levitated diamond, combin-
ing a Paul trap with the standard tools used to control NV centers. We have furthermore
used NV spins to monitor the angular stability of a levitating diamond, taking advantage
of the impact that the orientation of the mechanical oscillator has on the energy of the
NV spins. We will now focus on the effect of NV spins onto the mechanical oscillator,
in practice those two effects are two sides of the same coin: the spin-mechanical coupling
between the NV spins and the librational modes.

For now, we have used NV spins only to measure large rotation of the mechanical
oscillator, with angles in the radians range. We will see in the next chapter that NV spins
can also be used to measure the libration of the mechanical oscillator. Overall, such mea-
surements take advantage of the efficient spin read-out and the relatively large amplitude
of the mechanical oscillations. The impact of a single spin on a macroscopic mechanical
oscillator is, in contrast, much more difficult to observe: eg it constitutes, in the field
of magnetic resonance force microscopy, an experimental tour de force [41]. Our system
however has a strong asset: contrary to usual schemes, which rely on a magnetic field
gradient to apply a force on an electron spin, we use a homogeneous field and consider
the spin-induced torque on the angular degrees of freedom of the mechanical oscillator.
We can therefore use large ensembles of NV spins without magnetic field gradients which
would create an additional inhomogeneous broadening.

In the previous chapter, we have already used spins ensemble with ∼ 106 NV spins,
here we will use even larger ensembles. We use the micro-diamonds from the sample
(Adamas MDNV15u) in all the experiments from this chapter: they have an approximate
size of 15 µm and contain ∼ 109 NV spins. We will first observe a spin-induced torque
applied to the levitating diamond. We will then use this torque to exert a back-action on
the mechanical oscillator. In the linear regime this back-action yields a spin-spring effect
and spin-cooling of the librations, while in the non-linear regime we observe the bistability
and amplification of the libration motion. We will finally give a theoretical description of
the quantum regime, where the NV spins are used to manipulate the librational modes at
the single phonon level.
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4.1. Spin-induced torque

4.1 Spin-induced torque
The simplest action that the NV spins can have on our mechanical oscillator is a spin-
dependent torque. Here we consider a simple experiment where both the spins and the
mechanical oscillator are at their equilibrium position and do not vary over time. Unlike
freely rotating spins from single atoms, an NV spin under a magnetic field applies a torque
on the diamond crystal. Its origin lies in the spin-spin interaction of the two unpaired
electrons of the NV center and in the structure of its orbitals. Let us first give an idea of
the process at play, before laying the formalism we will use.

As described in the previous chapter, the NV center is a spin triplet system with three
eigenstates due to the presence of two unpaired electrons. Without a magnetic field, the
magnetic states ms = ±1 have a higher energy than the ms = 0 state due to a coupling
between the two electron spin of D ∼ 2.87 GHz. Figure 4.1.a) depicts an NV center in
the diamond crystal: in a naive picture, one can consider that the orientation of the two
electronic spins is fixed to the NV crystalline axis. Let us consider the magnetic state
ms = 1: in the presence of an external magnetic field, a magnetic torque Γs is applied
to these spins, but because of the spin-spin coupling, the electronic spins do not precess
about or align themselves along the magnetic field -as the spin of a free electron would
normally do. The magnetic torque is instead transmitted to the diamond crystal itself.
We will now give a more thorough theoretical description of this spin-induced torque,
before showing its experimental observation.

4.1.1 Theoretical description

Under our experimental conditions, the levitating diamond contains a large number of NV
centers (N ∼ 109) and their orientations are equally distributed along the four crystalline
axes of the diamond, depicted in figure 4.2.a). Under an external magnetic field, the en-
ergies of these four classes of NV spins will however be non degenerate. By combining
green laser illuminations and a microwave field tuned close to the resonance of NV spins
along one specific axis, we can therefore ensure that only this class of NV spins are in a
magnetic state.
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Figure 4.1: a) Simplified picture of an NV center and its spin in the m = −1 magnetic
state: under an external magnetic field B, a torque ~Γs is applied to the diamond crystal.
b) Eigenenergies Es for the two magnetic spin states ms = ±1 as a function of the angle
φ between the NV axis and the magnetic field, for a B = 100 G. c) Normalized derivative
of the eigenenergies Es as a function of φ for 100 G of field intensity.

89



4.1. Spin-induced torque

NV spin Hamiltonian

Let us write the average spin operators for N spins oriented along the same axis:

Ŝα = 1
N

N∑
i=1

σiα,

where α denotes the three spin directions x, y and z, and σiα are the Pauli matrices of the
NV number i corresponding to the direction α.

The Hamiltonian for the NV ensemble aligned along the z direction reads

ĤNV = ~NDŜ2
z + ~γeNB · Ŝ (4.1)

where γe is the electron gyromagnetic factor, ~ the reduced Planck constant, B the ex-
ternal magnetic field and Ŝ is the Pauli vector. The first term describes the spin-spin
interaction, which is the dominant energy contribution and the second term is the Zeeman
energy.
Figure 4.1.b) shows the eigenenergies of the two magnetic states ms = ±1 as a function of
the angle φ between the magnetic field and the NV spins orientation. When an NV spin is
in a magnetic state, a torque deriving from this energy is therefore applied to the diamond
particle. The derivative of the eigenenergies with respect to the angle φ and normalized by
~γeB is plotted in figure 4.1.b). We can see that for a moderate field of 100 G, the torque
reaches an optimal value close to ~γeB per NV spin (here ∼ 3.10−26 J, which corresponds
to ∼ 300 MHz) at an angle φ close to π/4.

New equilibrium position

In order to estimate the effect of the torque in our experiment, we consider a single angular
degree of freedom, which is confined by the Paul trap. In the secular approximation the
Hamiltonian describing the angular motion resulting from the Paul trap potential reads

Hmeca = 1
2Iω

2
φφ

2 + L2

2I ,
(4.2)

where ωφ is the angular frequency of the librational mode we consider, L the angular
momentum of the particle and I its moment of inertia.

We now assume that N spins are in a magnetic state (eg ms = −1) and that the
magnetic field is at the optimal angle φ ∼ π/4 so that each spin produces a torque ~γeB.
For small deviation from this angle, the total energy of the system then reads

E = 1
2Iω

2
φφ

2 + L2

2I − ~NγeBφ+ cte.

The center of the angular potential is thus shifted by the NV spins by

δφ0 = ~NγeB
Iω2

φ

.

In practice, we consider a 15 µm particle with 109 NV spins. Only a quarter of the NV
spins are along one of the four directions and only up to 80% of them can be initialized in
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4.1. Spin-induced torque

a given magnetic state so we have N ∼ 2.108. Taking a typical librational mode frequency
of ωφ/2π = 500Hz and an external magnetic field of 100 G, we estimate an angle shift of
φ0 = 0.1 rad that should be easily observable given our sensitivity of 0.29 mrad/

√
Hz for

the detection of the angular position (see section 2.4.2 for estimation, section 4.1.3 -below-
for calibration).

4.1.2 Mechanically-detected Electron Spin Resonance

The observation of the torque can be accomplished by comparing the angular position of
a levitating diamond with and without a microwave tuned at the magnetic resonance for
one orientation of NV spins. We carry out this experimentally by slowly sweeping the
frequency of a continuous microwave drive while looking at the angular position of the
diamond: at each NV spin resonance, the equilibrium position of the diamond will slightly
change.
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Figure 4.2: a) Vacancy (white circle) in a diamond crystal and its four adjacent lattice
site. Each site can be occupied by a nitrogen atom instead of a carbon, yielding the four
possible orientations for NV centers. Under an external magnetic field, a torque is applied
to the NV spins (Γs for NV orientation 1). b) Photo-detector count rate as a function of the
microwave’s frequency for (i) laser light back-scattered by the levitating diamond and (ii)
Photoluminescence (PL) collected from NV centers embedded in the levitating diamond.
c) Normalized torque exerted on a single NV spin in a magnetic state ∂Es/∂φ/(~γeB) as
a function of the angle between the magnetic field and the NV center’s orientation.

As depicted in figure 4.2.a), there are four possible orientations for NV centers in the
diamond crystal and therefore four pairs of magnetic resonances for NV spins under a mag-
netic field. Figure 4.2.b) shows the result of a microwave sweep as we monitor the particle.
We measure in trace (i) the back-scattered green laser light (proportional to the angular
position, see section 2.4.2) while in trace (ii) we observe the NV spins Photoluminescence
(PL) executing a standard Optically Detected Magnetic Resonance (ODMR, see section
3.1.3). We can readily identify in the ODMR the four pairs of peaks corresponding to the
magnetic resonances. Here the microwave power is kept low so that even at resonance the
NV spins are weakly magnetized and the contrast of the ODMR is low (∼ 0.2%). For trace
(i), the microwave power is increased and when one class of NV spins is polarized into a
magnetic state the spin-induced torque shifts the angular position, which translates into
a change of the intensity of the back-scattered light we collect Iscatt. We can clearly see
three pairs of peaks, with the two magnetic states ms = ±1 applying an opposite torque
on the diamond, which results in an opposite signal (eg see highlighted peaks ).

91



4.1. Spin-induced torque

The fourth pair (labelled 4) produces a much weaker signal, which is explained by the
fact that the NV center from this class are almost perpendicular to the magnetic field.
Figure 4.2.c) shows the normalized torque applied to a single NV spin depending on its
orientation with respect to the magnetic field. Here we have added the angular position
of each class of NV centers calculated from the frequencies of their magnetic resonances
and we can see that the fourth class produces a much smaller torque than other NV classes.

Note that although here the relative strength of the torques explains the weakness of
the peaks 4, other factors also affect the detected signal. Indeed, spin-induced torques are
applied along different axes for each NV class (except for particular symmetric configu-
rations). Since the trap confinement is not the same for the three main axes of the trap,
each NV class will produce a different displacement. Moreover, as already mentioned, the
angular position sensitivity is not necessarily the same for rotation about different axes.
In the spectrum from figure 4.2.b) this explains why the NV classes 2 and 3 -which are
expected to produce stronger torques- do not show a stronger signal than the NV class 1.

4.1.3 Calibration of the angular detection sensitivity

Interestingly the ability to apply a controlled torque on a levitated diamond, combined
with NV spin magnetometry gives us a mean to roughly calibrate the sensitivity of our
detection scheme to the angular motion. Indeed, an ESR spectrum can be used to deter-
mine the angle between NV spins and the magnetic field: several of those spectra carried
out while the diamond is at different angular positions (due to a different spin-induced
torque) can be used to relate the optical signal we measure to the absolute value of the
angular position.
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Figure 4.3: a) Upper plot: mechanically-detected ESR spectra for three different mi-
crowave powers of (i) -15 dBm, (ii) -25 dBm and (iii) -30 dBm under a magnetic field of
144 G. Bottom plot: angle between the magnetic field and the NV spins as a function of
the magnetic resonance energy. b) Energy of the magnetic spin states as a function of the
angle θNV between the magnetic field and the NV for a field of 144 G. The red dot labels
the angular position of the NV spins we observe.
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Figure 4.3.a) shows three ESR spectra under 144 G and with three different microwave
powers. For a given microwave power, the lower point of the spectra corresponds to the
frequency of the magnetic resonance: at this point polarization of the NV spins is the
most efficient therefore producing the strongest torque. The frequency of the magnetic
resonance is found to depend linearly on the optical signal used to measure the angular
position (black dotted line). We then use calculations of the NV spins energy as func-
tion of the angle, as shown in figure 4.3.b), to retrieve an absolute measurement of the
angle between the NV spins and the magnetic field as a function of the magnetic reso-
nance frequency. This curve is close to linear over the range of angular shifts that we
observe, as plotted in figure 4.3.a), bottom plot. We are finally able to relate a varia-
tion of our signal (∆S) to an angular shift ∆θ and find a ratio of 43 mrad/Mcounts/s (see
figure 4.3.a)). Given our noise level we then estimate our sensitivity to be 0.29 mrad/

√
Hz.

Note that this calibration is given here as an insight and to provide an order of mag-
nitude: the exact sensitivity varies for each instance of the experiment as the alignment
and the speckle patterns change (see section 2.4.2).

4.2 Linear back-action
We have insofar described and shown a static spin-induced torque but the action of the
NV spins on the levitating diamond is actually much richer. This stems from the fact that
simultaneously to the effect of the spin-induced torque, the modification of the mechanical
state of the diamond impacts the NV spins as well. For example, we see in figure 4.3.a)
that the magnetic resonance of the NV spins is shifted by around 10 MHz precisely due to
the torque, which the spins apply to the mechanical oscillator. Beyond this static case, the
NV spins will actually induce a back-action on the libration of the diamond and impact
its dynamics.

We will here describe the back-action the spins apply to the mechanical oscillator in
the linear regime where we consider small angular displacements. We first describe the
expected effects this back-action has on the librational mode. These effects will then be
studied in two different experiments: first, observation of the relaxation of the excited
librational mode and then cooling of its thermal fluctuations.

4.2.1 Theoretical description

Let us consider a microwave tuned close to the magnetic resonance of NV spins. For mod-
erate microwave powers, the population of the NV spins in a magnetic state then depends
on the detuning of the microwave compared to the magnetic resonance, in fact following
the Gaussian shape of the ESR. However, as we have extensively seen, the position of the
magnetic resonance varies with the orientation of the NV spins and so with the orientation
of the diamond. Since the torque applied by NV spins is proportional to the population
in the magnetic state it therefore also depends on the angular position.

This mechanism is analogous to optomechanical systems where the motion of the mir-
ror of a high finesse cavity constitutes a harmonic oscillator [169]. As a detuned laser is
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injected in the cavity, the radiation pressure applies a force that depends on its detuning,
which itself depends on the mirror’s position therefore yielding a back-action on the mir-
ror’s position.
The formalism from these well-studied systems can in fact be used in our experiment by
replacing the photons inside the cavity by the NV spins in a magnetic state and the mir-
ror’s position by the micro-diamond’s angle.

We will not give in this work the full theoretical description but rather emphasize the
causes of the two main effects in the linear case. A complete description of the model we
use to fit our experimental data or simulate the system can be found in the supplementary
information of reference [77].

Here we make the following simplifications: we consider a single rotation axis orthog-
onal to both the NV spins and the magnetic field and only consider small shifts of the
angle φ around the equilibrium position. We also consider that only two spin states are
populated: the ms = 0 non-magnetic state and the ms = −1 magnetic state.

Spin-spring effect

Let us first assume that the spin dynamics is fast compared to the mechanical oscillator.
Accordingly, for a constant microwave the spin’s population in the magnetic state only
depends on the angle φ. Since the spin-induced torque Γs is proportional to this popula-
tion, it also depends on φ.

We therefore obtain that the spin-induced torque derives from the potential energy

Us = −∂Γs
∂φ

φ2 + O(φ3).

This potential is at the first order a confining or anti-confining harmonic potential (de-
pending on the sign of ∂Γs/∂φ).

In optomechanics this effect is named the optical-spring effect: it enhances or dimin-
ishes the frequency of the mechanical oscillator when the laser is blue or red detuned
respectively. Here we will mention the first order conservative back-action of the NV spins
as the spin-spring effect. Its sign depends similarly on the detuning of the microwave
compared to the spin magnetic resonance.

Non-conservative torque

The assumption of fast spin dynamics we previously made is not entirely valid. Figure
4.4.b) and c) show the time it takes for the spin’s populations to reach their steady state
when a resonant microwave is turned off and on respectively. The measurements are car-
ried out using the sequences described in figure 4.4.a) on a levitating micro-diamond. Both
time constants are around 100 µs, which is only one order of magnitude faster than the
typical period of a libration (1-2 ms).
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Figure 4.4: a) Sequences used to measure the time necessary for the spins’ population
to reach their steady states when a resonant microwave is turned (i) off and (ii) on. b)
Polarization time of the spins in the non-magnetic bright state. c) Polarization time of the
spins in the magnetic dark state under continuous microwave pumping (0 dBm). Curves
are fitted by an exponential decay.

The consequence of this non-zero polarization time is that the population of the spin
states also depends on time: they are slightly delayed compared to their steady state -
which depends of φ. It follows that the spin-induced torque cannot derive from a potential
energy: the spins instead apply a non-conservative torque.

Similarly to the spin-spring effect, the torque will oppose or support the velocity of
the particle depending on the sign of ∂Γs/∂φ. When the microwave is red detuned, one
will expect a cooling of the motion and conversely a blue detuned microwave will cause
its amplification.

4.2.2 Ring-down measurement

In a first set of experiments, we excite the mechanical oscillator while observing the relax-
ation of its angular degrees of freedom. In the underdamped regime -when the damping
rate is lower than the mechanical resonance- one can observe the so-called ring-down of
the mechanical oscillation: strong oscillations at the resonance frequency of the oscillator.

Figure 4.5.b) illustrates the sequence we use for a ring-down measurement: starting
at the diamond equilibrium position and under a magnetic field, we periodically excite
NV spins by turning on and off a microwave with a period of 2π/ωφ, where ωφ is the
angular frequency of one librational mode of the levitating diamond. As the spins go from
their magnetic state when the microwave is turned on to their non-magnetic state when
it is turned off, we apply a periodic torque on the particle. We choose the period of this
torque to be resonant with one librational mode so that it is excited far from equilibrium
after a few excitations (typically 5). We then let the microwave turned on and observe
the angular position of the diamond using the back-scattered light from the diamond. We
keep the diamond under continuous green laser excitation during the whole experiment.
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Figure 4.5: a) Ring-down of the librational modes of a levitating micro-diamond observed
when a microwave is turned on (i) blue detuned, (ii) resonant and (iii) red-detuned from
the magnetic resonance of a spins ensemble. Upper right caption: magnetic resonance
mechanically detected, the three microwave frequencies (red, blue detuned and resonant)
are marked by dots on the curve. b) Sequence we use for a ring down measurement. c)
Frequency and d) damping rate of a librational mode during a ring-down as a function of
the microwave detuning. Lines are simulation according to the model described in [77]

Figure 4.5.a) shows measurement of the ring-down of the librational modes of a lev-
itating diamond for three different microwave frequencies: on the magnetic resonance,
red-detuned and blue detuned. The measurements are done at a vacuum pressure of 2
mbar and the ring-down sequence is repeated 500 times for each curve (∼100 s), with a
period for the microwave pulses corresponding to a librational mode at 480 Hz. During
the relaxation, we observe oscillations of this librational mode with a small contribution
from neighboring modes at 590 Hz creating a small beating. We can already clearly see
the change of damping rate as depending on the sign of the detuning. In order to extract
the values of the damping rates and frequencies, we fit the ring-down with the formula

S(t) = A1sin(ωefft+ φ)exp(−γefft/2) +A2sin(ω2t+ φ2)exp(−γ2t/2) +A0,

where ωeff and γeff are the modified frequency and damping rate of the 480 Hz librational
mode and the second sinus describes the other slightly excited mode at 590 Hz.

We carried out such measurements for different detunings and the resulting modified
frequencies and damping rates are presented in figure 4.5.c) and 4.5.d). As expected from
the theory, the NV spins apply a back-action to the librational mode. First, a conservative
effect, the spin-spring effect increases (decreases) confinement when the microwave is blue
(red) detuned. Secondly the spins also exert a non-conservative torque that causes the
damping rate to decreases (increases) when the microwave is blue (red) detuned. The
damping can thus be enhanced by a factor of ∼ 3 compared to the damping due to fric-
tion with the gas. The experimental points are fitted using the model described in the
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4.2. Linear back-action

SI of [77], with a remarkable discrepancy when the damping becomes negative for a blue-
detuned microwave. As we will see latter, this corresponds to an amplification of the
librational motion which becomes self-sustained (see section 4.3.2). These oscillations ap-
pears, however necessarily damped in our ring-down measurement because each iteration
of the sequence undergoes a different dephasing over time.

4.2.3 Cooling of the thermal fluctuations

The enhanced damping which we observe during the ring-down of the librations means
that using NV spins, the motion of the mechanical oscillator can be cooled down below
the thermal fluctuations due to gas collisions. In order to do so, one simply needs to turn
a microwave on, red detuned to one of the NV spin magnetic resonance.
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Figure 4.6: a) Mechanically-detected electron spin resonance of a single orientation of
NV spins under two different microwave powers (i) -20 dBm and (ii) -10 dBm. The three
labelled points correspond to different pairs of microwave frequencies and powers (detuned
at -10 dBm and on resonance at -20 dBm) which apply the same torque and for which the
angular position is the same. b) Power Spectral Density (PSD) of the angular position
optically measured, for three different microwave detunings and frequencies: (i) 2.634 GHz
at -10 dBm (blue), (ii) 2.623 GHz at -20 dBm (resonant) and (iii) 2.617 GHz at -10 dBm.

To confirm cooling below thermal fluctuations, we need to measure the temperature
of the librational modes. This can be achieved by comparing the Power Spectral Den-
sity (PSD) of the angular position of the diamond with and without the red detuned
microwave. However in our case the sensitivity of the angular position measurement is
not easily calibrated and can vary as the angular position is shifted when we apply a
spin-induced torque. We counteract this by realizing three measurements of the PSD at
the same angular position with different microwave detunings and powers. Figure 4.6.a)
shows the magnetic resonance for an NV spins in a levitating diamond detected through
the shift of the angular position. Under two different microwave powers, we can find three
pairs of frequencies and powers (labels 1, 2, 3 on the figure) that induce the same torque
on the particle. The particle is then at same angular position, thereby insuring equal
sensitivity for measurement of the angular position and of its PSD.

Figure 4.6.b) shows the PSD of the angular position for these three points. Here, we
detect simultaneously two librational modes whose frequencies are close to each-other (480
Hz and 590 Hz), the vacuum pressure is 2 mbar and the spectra are averaged for about
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100 seconds. The height of the peaks are clearly smaller for the PSD where the microwave
is red detuned which indicates a lower temperature than when the microwave is resonant
or blue detuned.

We fit the data using equations from section 2.4.3, assuming the temperatures of the
librational modes are 300 K under resonant microwave, we obtain a final temperature of
80 K under a red detuned microwave. As explained in section 2.4.3 we cannot check that
without microwave the particle is thermalized by changing the pressure as the sensitivy
to angular motion would drift. We however verify that the radiation pressure has a neg-
ligeable impact by ramping up the laser power from 100 µW to 1 mW while monitoring
the PSD at the same average count rate. We observed no change of the PSD

4.3 Non linear back-action
We now consider the non-linear effect at play when the spin torque is strong enough for
the angle to be strongly modified. We distinguish two effects when the microwave is red
and blue detuned respectively: bistability and phonon lasing. Once again, the analogy
with cavity optomechanics experiments holds and both of these effects can be observed in
such systems [169].

4.3.1 Bistability

In our system a bistable behavior arises when the energy shift of the NV spins due to
the spin torque is in the same order of magnitude as the linewidth of the electron spin
resonance. When the microwave is strongly red detuned, there are then two stable an-
gular positions: one where the microwave is too far from the resonance so the spins are
not polarized and the other where the microwave polarizes the NV spins thus generating
a torque that is sufficient for maintaining the magnetic resonance close to the microwave
frequency.
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Figure 4.7: a) Expected bistable behaviour: the continuous line shows stable angular posi-
tion as a function of the detuning from the magnetic resonance. For a range of parameters,
two stable sites exist (eg A and B). b) Mechanically detected magnetic resonance realized
by sweeping towards higher (blue) and lower (red) frequencies. c) Trace of the signal
measuring the angular position under a strong red-detuned microwave.

Figure 4.7.a) displays the expected bistability as the microwave is swept across the
ESR. When the frequency is red detuned compared to the initial resonance frequency, two
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4.3. Non linear back-action

stable sites can be found eg A and B. The angular position will then depend on the history
of the angular trajectory. We observe this hysteretic behavior in figure 4.7.b) where we
perform two ESR sweeps from low to high frequency and from high to low frequency. A
mismatch between the two curves -on the red of the resonance- results from the bistability.
These experiments were carried out under atmospheric pressure. Figure 4.7.c) shows the
evolution of the angle of a particle as a function of time when the microwave is turned on.
We can see that due to thermal fluctuations caused by the Brownian motion of the gas
molecules, the particle can jump from one site to the other.

4.3.2 Lasing of a librational mode

We now examine the case of a blue detuned microwave under vacuum conditions. Here the
non-conservative torque does not only heat up the particle’s motion but more singularly
amplifies it.

Figure 4.8.a) shows the angular motion when a blue detuned microwave is turned on.
The experiment is carried out at 2 mbar of vacuum pressure, under a magnetic field of
∼ 100 G and we typically detune the microwave 5 MHz from the magnetic resonance.
When the microwave is turned on, the motion of the particle changes from thermal mo-
tion -governed by collisions with gas molecules- to a self-sustained coherent oscillation of
large amplitude at the frequency of the librational mode. The signature of this motion is
clearly visible in the histogram of the angular position plotted in figure 4.8.b): the parti-
cle at rest follows a Boltzmann distribution in the harmonic well while for the amplified
motion the distribution tends toward a sinusoidal distribution.
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Brownian motion (Boltzmann distribution) and lasing.

This behavior has been previously shown in a Paul trap with a single ion [170] and
more recently with a nano-particle levitated in an optical tweezer [171]. In the latter
experiment, a feed-back loop is used to amplify one mechanical mode, however in both
experiments, continuous cooling is applied to all modes in order to introduce non-linearity
in the gain and to prevent the particle from escaping the trap. In our case the non-linearity
comes directly from the limited width of the ESR: the back-action stops when the spins
are too far from the magnetic resonance.
One can describe these experiments as a phonon laser in analogy with the optical laser:
here, the NV spins give rise to stimulated emission of phonons in a single mechanical
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mode therefore creating a coherent oscillation. As for optical lasers, this effect has a
power threshold and saturation.
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Figure 4.9: a) Evolution of the PSD with pump power of the blue detuned microwave. b)
Threshold behavior of the oscillator’s energy as a function of the microwave power.

Figure 4.9.a) shows the power spectral density of the angular position of a levitating
diamond under vacuum conditions (2 mbar) when the microwave is blue detuned for dif-
ferent microwave powers. A librational mode can be identified at 240 Hz and is found to
grow in amplitude as the microwave power is increased. Above a critical value (∼ 5), a
much sharper peak corresponding to the lasing mode appears in the PSD. This threshold
behaviour is better elucidated in figure 4.9.b) where the energy of the oscillator is plotted
as a function of the microwave power: above 5 mW of microwave power, the gain compen-
sates the losses and lasing occurs. The energy in the librational mode then substantially
increases until it saturates due to the non-linearity.

4.4 Spin-mechanics in the quantum regime
Inasmuch as the mechanical oscillator in our experiment is in the classical regime, we have
so far overlooked the study of the spin-mechanical coupling using quantum mechanics.
However, one of the long-term goals of this experiment is to enter the quantum regime
where the energy of the mechanical oscillator is quantified. Moreover, the spin-mechanical
coupling between librational modes and NV spins was first proposed for ground state
cooling and coherent coupling in [73] with a Paul trap and simultaneously in [60] with an
optical tweezer. These protocols are largely inspired from a similar theoretical proposal
put forward in [43], where the coupling between an NV spin and the center of mass of a
cantilever is realized using a strong magnetic gradient.

We will here present a theoretical description of the spin-mechanical coupling between
a librational mode and an NV spin in the quantum regime. We consider a single spin
for simplicity but as this scheme does not require a magnetic field gradient, it could be
extended to an spins ensemble. We will also consider a magnetic field perpendicular to the
NV axis, such condition allowed us to present more comprehensive analytical results in
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our initial proposal [73]. However working with a different angle should yield an increased
coupling rate [60].

We will first present the Hamiltonian of the spin-mechanical system and then discuss
two main issues: how to increase the coupling and mechanical frequencies above the deco-
herence rates and how the cooling efficiency is impacted by adverse effects of the transverse
magnetic field on the NV spins.

4.4.1 Spin-mechanical Hamiltonian

The scheme we propose is depicted in figure 4.10.a): a diamond particle is levitated in
a Paul trap (here a needle trap) with an NV spin embedded in it. We consider rotation
around the y axis and designate φ the shift of the particle’s angle from the center of the
harmonic confinement. An external homogeneous magnetic field of intensity B is applied
and is orthogonal to the NV spin axis when φ = 0. Finally, an oscillating magnetic field
at microwave frequencies can be applied along the y axis to control the NV spin and a
green laser can be used to polarize the spin in the ms = 0 state.
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Figure 4.10: a) Scheme for spin-mechanical coupling between an NV spin and the libra-
tional mode of a Paul trap. b) Harmonic potential for φ, with the energies of the first
phonon Fock states and φ0 the amplitude of the zero-point fluctuations. c) Energies of
the eigenstate of HNV as a function of the intensity of the transverse magnetic field.

Quantization of the angular degree of freedom

We quantify the angular degree of freedom similarly to what is done for the center of mass
mode of a particle in harmonic potential well. For small rotations, we consider a harmonic
potential for φ and the mechanical Hamiltonian reads

Hmeca = 1
2Iyω

2
φφ̂

2 + L̂2

2Iy
, (4.3)

where ωφ is the rotational frequency, Iy the moment of inertia with respect to the y axis
and L̂ the angular momentum.
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In analogy with the center of mass mode (see section 1.2), we define the annihilation
and creation operators â and â† such that φ̂ = φ0(â† + â), where φ0 =

√
~/(2Iyωφ) is the

amplitude of the zero-point fluctuations, and L̂ = Iy
ˆ̇φ = iL0(â† − â) with L0 =

√
~Iyωφ/2.

Using these operators the Hamiltonian can be rewritten

Ĥ = ωφ

(
â†â+ 1

2

)
. (4.4)

Its eigenstates are the so-called phonon number Fock states and can be obtained from
the ground state using the creation operator:

|n〉 =

(
â†

)n

√
n!

|0〉 , (4.5)

with n a positive integer. The first eigenstates are depicted in figure 4.10.b), their energy
is ωn = ~(n + 1

2). Note that the ground state will here have an angular extension φ0
inversely proportional to the square root of the moment of inertia Iy.

NV spin Hamiltonian

The Hamiltonian for the NV spin reads

HB/~ = DŜ2
z + γeB.Ŝ

where the first term is the zero-field splitting (spin-spin coupling) while the second term
is the Zeeman effect. Since the zero-field splitting D = 2.87 GHz originates from the
diamond crystal and the NV orientation in it, we must write the Pauli vector Ŝ and the
corresponding Pauli operators in the frame rotating with the diamond.

We obtain the following Hamiltonian

ĤB/~ = DŜ2
z + γB

(
sin φ̂Ŝz + cos φ̂Ŝx

)
.

Considering only the first order in φ̂, the Hamiltonian becomes

ĤB/~ = DŜ2
z + γBŜx︸ ︷︷ ︸
HNV

+ γBφ0︸ ︷︷ ︸
λφ

(
â+ â†

)
Ŝz. (4.6)

We have here distinguished two terms: a spin-only Hamiltonian HNV and the spin-
mechanical coupling term characterized by the coupling rate λφ proportional to the mag-
netic field.

We first diagonalize the spin-only Hamiltonian HNV and find the eigenstates to be the
mixed states

|d〉 = (|−1〉 − |1〉) /
√

2
|g〉 = cos θ|0〉 − sin θ|b〉 (4.7)
|e〉 = sin θ|0〉 + cos θ|b〉,
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where |b〉 = (|−1〉 + |1〉) /
√

2 and tan 2θ = 2γB/D.
Figure 4.10.c) shows the energies of these mixed states ωe/g = 2πD

(
1 ±

√
1 + (2γB/D)2

)
/2

and ωd = 2πD.

A direct spin-mechanical coupling between these states and the mechanical oscillator
is however not possible because the spin-mechanical resonance is not reached: the energy
between two spin states must match the energy between two phonon states ~ωφ. Here, at
a field of about 0.01 mT (100 G), the two closest spin states |e〉 and |g〉 are already dozens
of MHz apart.

Microwave-assisted resonance condition

A microwave is thus added to create new eigenstates at the proper energies. An other
point of view is that we will use the microwave to drive diagonal transition between dif-
ferent spin states and different phonon states (the red or blue sidebands). Here, in order
to maximize the coupling we will however not drive the spin transitions with a detuning
ωφ, writing the Hamiltonian using the new eigenstates is therefore more relevant.

We set the microwave at a frequency ω ∼ ωdg = ωd − ωg 6= ωed so that the microwave
only drives the transition between the |g〉 and |d〉 mixed states, as is depicted in figure
4.10.c). The Hamiltonian with the added microwave now reads

HNV/~ = DŜ2
z + γBŜx + ΩRŜy cos(ωt),

where ΩR is the microwave Rabi frequency and ∆ = ω − ωdg is its detuning.

In a frame rotating at the microwave frequency it becomes:

ĤNV = ~/2

−∆ 0 0
0 ∆ 0
0 0 ωe′

 + ~/2i

 0 −ΩR 0
ΩR 0 0
0 0 0

 , (4.8)

where ωe′ = ωe − (ω + ωg + ωd)/2 and the energy origin has been set to (ωg + ωd)/2.

The new eigenstates of this Hamiltonian are now |e〉, |+〉 = i sinψ|g〉 + cosψ|d〉 and
|−〉 = −i cosψ|g〉 + sinψ|d〉, where tan 2ψ = ΩR/∆ and with ω+/− = ±

√
∆2 + Ω2

R/2.

We finally obtain a Rabi Hamiltonian, which we write in the (|e〉 , |+〉) subspace for
simplicity:

ˆHSM/~ = ωφâ
†â︸ ︷︷ ︸

mechanics

+ω+|+〉〈+| + ~ωe′ |e〉〈e|︸ ︷︷ ︸
spin

+ λ̃φ
(
â+ â†

)
(|e〉〈+| + h.c.)︸ ︷︷ ︸

spin−mechanics

, (4.9)

where λ̃φ = λφ cos θ sinψ is the effective spin-mechanical coupling rate.

Figure 4.11.a) depicts the |+, N〉 and |e,M〉 states in the dressed states basis under
the resonant condition ωe′ − ω+ = ωφ. The Hamiltonian 4.9 and more precisely its spin-
mechanical part describes a coherent exchange between the phonons of the librational
mode and spin states at a rate λ̃φ.
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4.4. Spin-mechanics in the quantum regime

In practice, two conditions are required to allow such coherent spin-mechanical cou-
pling. First, one needs to be in the resolved sideband regime (RSB), where the frequency
of the mechanical oscillator must be stronger than the decoherence rate of the NV spin.
Secondly, the so-called strong coupling regime must be reached: the spin-mechanical cou-
pling rate must exceed the decoherence rates of both the spin and the librational mode of
the mechanical oscillator.

4.4.2 Coupling rate

The effective coupling rate reads

λ̃φ = γB
√
~/(2Iyωφ) cos θ sinψ, (4.10)

in particular, it increases for a stronger magnetic field and smaller particles.
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Figure 4.11: a) Level diagram and coupling between the spin states with librational phonon
numbers N + 1 and N. b) Coupling rate as a function of the B-field and ψ for ωφ = 5
MHz and a 20 nm diameter prolate particle. The black continuous, dashed and dotted
lines are the parameter ψ required for the spin-mechanical resonance as a function of the
B-field for Rabi frequencies of 250, 500 and 1000 MHz respectively.

Figure 4.11.b) shows the coupling rate λ̃φ as a function of the magnetic field and of
the ψ parameter which depends on the microwave Rabi frequency and detuning. Here we
consider a spheroid-shaped nano-diamond with a diameter of 20 nm and an aspect ration
of 2 (see below, section 4.4.4). The coupling rate can be optimized by taking a resonant
microwave (ψ = π/4) and a strong magnetic field. There is however a practical limitation
to these parameters: as the magnetic field is increased, the spin-mechanical resonance
condition (ωe′ − ω+ = ωφ) requires a large splitting

√
∆2 + Ω2

R between the |+〉 and |−〉
states. Since it is technically challenging to increase ΩR above the GHz range [172], one
will have to increase ∆, therefore limiting oneself to lower ψ values.

The ψ parameter needed to obtain the resonant condition as a function of the magnetic
field given certain Rabi frequencies has been plotted above λ̃φ in figure 4.11.b). We find
that reaching coupling rates in the 50 kHz range could be feasible under these conditions.
Note that we consider here the coupling rate of a single spin : using N spins will enhance
the coupling by a factor of

√
N [60].
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4.4. Spin-mechanics in the quantum regime

4.4.3 Decoherence sources

Before studying how the experiment can be optimized to enter both the sideband resolved
regime and the strong coupling regime, we give a small overview of the decoherence sources.

NV spin decoherence

The coherence time T2 of the spin of the NV center can be written T−1
2 = (2T1)−1 +(T ∗

2 )−1

where T1 is the spin lifetime -longitudinal relaxation- and (T ∗
2 )−1 the inhomogeneous de-

coherence rate due to the coupling between the NV spin to the nuclear spin bath.
Even for very shallow (5 nm deep) NV centers, T1 generally ranges from several hundreds
of microseconds to milliseconds [164], the main constraint is therefore the T ∗

2 time.

The decoherence of the NV center spin is described in section 3.1.7. We will here sum-
marize the relevant points. The best NV spin coherence is obtained in bulk, high-purity
CVD diamond made of isotopically purified carbons so as to remove as many nuclear spins
as possible [161, 162]. A record-high coherence time of 500 µs was observed using a single
NV in a bulk 12C-enriched sample [18].
The NV spins inside nanostructures however suffer from the magnetic noise produced by
surface impurities [151, 164], and even working with isotopically purified nano-diamonds
implies T ∗

2 in the range of a few µs [173].

A longer coherence time can however be recovered by decoupling the NV spin from
the spin bath. Using a single decoupling π pulse (Hahn echo sequence) one can then reach
coherence time up to 200 µs for 5-nm-deep NV spins and of 800 µs for 50-nm-deep NV
spins [165]. That being said, retaining the spin-mechanical coupling sets conditions to the
decoupling sequence we can apply: a dynamical sequence faster than the period of the
mechanical oscillator will indeed also decouple the mechanical oscillator from the NV spin
and be counter-productive.
It should be noted that in the present protocol, we use a microwave to drive the NV spin
at a Rabi frequency ΩR ∼ ωφ which is in fact already a spin decoupling sequence (spin
locking [157]) and will provide decoupling from the spin bath, as mentionned in [43].
Experiments should be carried out on high purity isotopically purified nano-diamond to
precisely determine how efficient this decoupling will be and if it is insufficient, a more
advanced protocol could be designed. Still, the results mentioned above (single Hahn
echo) indicate that a decoupling frequency in the 10 kHz range (below what is attainable
for the mechanical frequency ωφ) should be sufficient to reach a coherence time between
200 and 800 µs depending on the size of the diamond.

Heating rate of the mechanical oscillator

Regarding the mechanical oscillator, the strong coupling regime requires λ̃φ � 1/Tmec
2 ,

where Tmec
2 is the coherence of the mechanical oscillator. Here, gas collision will limit

the coherence of the mechanical oscillator. Although some theoretical tools are being
developed to estimate the decoherence rate [174–176] of librational states, it will highly
depend on the shape of the levitating particle, its roughness and eventually the energy
potential governing the scattering of molecules impacting it [174]. It can be strongly
mitigated at high enough vacuum. Here to give a rough estimate of the heating rate and
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4.4. Spin-mechanics in the quantum regime

hence of the lifetime of a mechanical state, we calculate the damping rate of the levitating
particle Γgas due to air molecules in the classical regime.

In the Knudsen regime, when the mean free path of the gas molecules is higher than
the size of the levitating particle, one gets [177]:

Γgas = σeff
10π
aρ

P

c
(4.11)

with σeff ∼ 1.1 the accommodation coefficient, a the radius of the particle, P the pressure
in Pa, ρ its density and c the molecular velocity of the gas molecules considered. We
obtain a relatively low heating rate. For example, we find a heating rate of about 1Hz for
a 1µm radius particle at P = 10−3mbar.

4.4.4 Role of the geometry

Both the decoherence rate of NV spins and the spin mechanical coupling rate increase
when using smaller particles. The frequency of the mechanical oscillator also increases
for smaller particles as mentioned in section 2.1.2. In short this means that micron-size
diamonds do not lend themselves easily to spin-mechanics since they are heavier, but
they will retain the superior spin properties of bulk diamonds. Conversely, nanodiamonds
have shorter coherence time than in the bulk but faster spin-mechanical coupling can be
reached. Here we will discuss how a compromise can be reached by tuning the geometry
of the particles.

The crucial parameters to attain the resolved sideband regime and the strong coupling
regime can be extracted from the formulas

λ̃φ = γB
√
~/(2Iyωφ) cos θ sinψ,

ωφ =
√
q0
2 + a0

q0︸ ︷︷ ︸
stability

√
(3 + δ)Vacηz

z2
0︸ ︷︷ ︸

Paul trap

√
QSX
IX︸ ︷︷ ︸

particle

. (4.12)

Both ωφ and λ̃φ depend on parameters that are both intrinsic and extrinsic to the
diamond. Because of the cosψ term in λ̃φ, the Rabi frequency ΩR has to be as large as
possible with no detuning ∆. Here we consider ΩR/2π = 500 MHz, which is technically
challenging but has been achieved [172]. This in turn limits the intensity of the B-field we
can use while achieving the spin-phonon resonance to ∼30 mT= 300 G.
As discussed in section 2.1.2 the other extrinsic parameters such as the Paul trap pa-
rameters Vac, z0 and Ω can be increased to tune the frequency ωφ. Technical limitations
will however set an upper bound: the Paul trap should not be smaller than a few tens of
microns and reaching a voltage higher than a few thousands volts at high frequencies will
be challenging.

The intrinsic parameters of the diamond particle are then the only parameters we can
tune. First of all, the geometry of the diamond must be chosen to minimize the moment
of inertia Iy which impacts both the confinement and the coupling. Assuming the charge
density on the diamond surface is shape-independent, one must however retain a sufficient
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surface and asymmetry.
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Figure 4.12: Proposed shapes for the levitating particles: a) Diamond oblate spheroid, b)
Prolate spheroid and c) Composite particle made of a diamond sphere deposited on a thin
disk, approximated by an oblate spheroid.

Figure 4.12 depicts three geometries that we propose using: oblate and prolate spheroid,
and composite particles formed by a diamond sphere deposited on a thin disk. The ad-
vantage of the latter composite particle is that the shape and material of the disk can
be chosen to optimize the number of charge and the asymmetry while retaining a low
moment of inertia and a minimum thickness for the diamond. For all shapes, the b and a
parameters always correspond to the minimum, resp. maximum, particle radii.

We calculated the trapping frequencies and moment of inertia for these shapes and
listed them in table 4.1. They are normalized with respect to the trapping frequencies
(ω0) and moment of inertia (I0) of a sphere with the same radius b. One can indeed expect
similar spin properties for particles with the same minimum radius. The librational fre-
quency is also compared to the center of mass mode ωcom, for the same b and for an aspect
ratio a/b = 2.5. The trapping frequencies are calculated according to the results from
section 2.1.2, considering a homogeneous surface charge. Looking at table 4.1, one sees
that particles with a higher asymmetry and spatial extent experience a higher libration
frequency. They however also have a greater moment of inertia, which will reduce the
coupling λφ. The proposed composite particle comprising a spherical diamond of size b
within or deposited on a thinner disk of silica allows to considerably increase the confine-
ment of the particle with a moment of inertia much smaller than with simpler shapes.

The last parameter we have not yet tuned is the number of charges on the diamond
surface. In order to obtain an order of magnitude for the needed total surface charge,
we compute the trapping frequencies according to equation 4.12 obtained in section 2.1.2.
The shape and size of the electrodes determine the electric field: we take a needle trap with
a distance between the electrodes of 10 µm which yield an efficiency parameter η = 0.3
and consider a voltage Vac=5000 V at a trapping frequency Ω =5 MHz.

With a prolate nano-diamond of aspect ratio 2.5 and small radius b = 80 nm, we find
that in order to reach a trapping frequency of 0.5 MHz the diamond surface must host
at least 60 elementary charges. This corresponds to about 1000 e/µm2. In our current
experiment, we measure approximately 15 e/µm2 on the surface of the levitated micro-
diamond, which is far from what would be required. Recent experiments with levitated
nano-diamond and a different loading technique however yielded a surface charge of 20000
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particle type c/b ωcom/ω0 ωφ/ω0 ωφ/ωcom Iy/I0
sphere - 1 0 0 1
oblate ellipsoid - 0.64 1.8 2.9 23
prolate ellipsoid - 0.83 2.3 2.8 9
composite 0.125 2.8 19 5.3 2.4
composite 0.0625 3.3 27.6 6.3 1.2

Table 4.1: Comparison of the mechanical parameters of different particles shapes, as
shown in figure 4.12 for the same b, the same aspect ratio a/b = 2.5 and identical surface
charge density. ω0 and I0 are the secular frequency of the center of mass and the moment
of inertia of a sphere with radius b respectively. For each considered particles, ωcom and
ωφ are the secular frequencies of the center of mass and the librational modes respectively
while Iy is the moment of inertia along the y axis.

e/µm2 with a nano-diamond [52].
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Figure 4.13: Coupling rate λ̃φ for nanodiamonds of different shapes, with dimensions and
confinement frequencies: a) b = 20 nm and ωφ = 5 MHz; b) b = 80 nm and ωφ = 0.5
MHz. The microwave is resonant wirh the |g〉-|d〉 magnetic resonance and has a varying
Rabi frequency ΩR. The magnetic field is tuned to obtain resonant conditions (eg B∼30
mT at ΩR/2π =500 MHz). The aspect ratio of the proposed particles is a/b = 2.5 for all
particles and c/b = 1/8, 1/16 for the composite 20 nm and 10 nm disks respectively. The
coupling rate for a zero-mass disk (i.e. for a sphere) is plotted as a limit for such particles
(trace iv).

Let us now estimate the spin-phonon coupling rate for the above particle’s geometries.
We compare two different particle sizes with a minimum radius of 20 and 80 nm. In figure
4.13, the coupling rate λ̃φ is plotted as a function of the Rabi frequency for the particle
geometries described above, such as oblate, prolate or composite particles. We tune the
magnetic field to achieve the spin-mechanical resonant condition. Figure 4.13.a) shows the
coupling rate for particles with a radius b = 20 nm and and aspect ratio of a/b = 2.5. As
expected we obtain a better coupling with a higher Rabi frequency as it allows a higher
magnetic field under the resonance condition. Here for a Rabi frequency ΩR/2π = 500
MHz and a magnetic field B ∼ 30 mT, λ̃φ ranges between 35 to 60 kHz. In figure 4.13.b)
we consider particles with a larger radius of b = 80 nm. Due to the high mass, the cou-
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4.4. Spin-mechanics in the quantum regime

pling rate is then smaller, barely exceeding 5 kHz. It can however be increased using a
composite particle made out of a silica pancake-like shape with a nanodiamond deposited
on top. The coupling strength will then depend crucially on how thin can the disk of the
composite particle be.

4.4.5 Cooling efficiency

We have for now solely focused on the conditions for obtaining a coherent spin-mechanical
coupling, which would allow us to fully control the mechanical oscillator at the single
phonon level using NV spins. This proposal then relies on an efficient control of the NV
spin in order to first cool down the mechanical oscillator to its ground state and from
there generate an arbitrary mechanical state. We focus here on the efficiency of the cool-
ing mechanism: the ability to reach the ground state is a key to more advanced protocols.

A cooling scheme can be set up similarly to [43] by adding an optical field to excite the
NV electronic states. Optical pumping polarizes the spin state to the |0〉 state through
non-radiative decay via a metastable state [142] (see section 3.1.3). This process is at the
core of the cooling scheme which extracts energy from the librational mode using the NV
spin. Note that the transverse magnetic field mixes the |0〉 and |±1〉 states, which lowers
the polarization efficiency.

To obtain the cooling rate, we calculate the fluctuation spectrum of Ŝz, taking into
account both the unitary evolution (magnetic field, microwave) and the dissipative process
(laser polarization) [43, 178]. We present, in annex B, the full derivation which includes
the excited orbital states and the metastable states to account for the influence of the
transverse magnetic field in both the ground and excited orbital manifold.
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Figure 4.14: a) Power spectrum showing the emission (ω < 0) or absorption (ω > 0) of
phonons under resonant conditions ωe′ −ω+ = ωφ. The inset shows the cooling mechanism
as a cascade between the dressed states from rotational phonon numbers N +1 to N . The
parameters are: B = 2.6 mT, ΩR/(2π) = 0.5 MHz, ∆/(2π) = 3 MHz and Γop =10 kHz.
b) Normalized cooling rate as a function of the B-field and Ψ/π for Γop=100 kHz and
ωφ/(2π)=5 MHz. The black line is the ψ parameter under resonant conditions as a function
of the B-field for ΩR/(2π) = 1 GHz.
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4.4. Spin-mechanics in the quantum regime

The optical polarization into the ms = 0 state results in unbalanced populations be-
tween the states |+, N + 1〉 and |e,N〉 from the Hamiltonian 4.9. The spin-mechanical
coupling will thereby enable continuous cooling through, as depicted in the inset of figure
4.14.a). Figure 4.14.a) shows the fluctuation spectrum S(ω) of Ŝz under 2.6 mT of trans-
verse magnetic field and the spin-mechanical resonance. A clear asymmetry is obtained
between the negative frequency part (heating) and positive frequency part (cooling) of the
spectrum showing that cooling dominates. Figure 4.14.b) shows the normalized cooling
rate Wop/RB, where RB = (hγB0φ0)2/Γop, B0 = 60 mT and Wop = S(ωφ) − S(−ωφ)
when varying the B-field and the microwave detuning (ψ parameter). The highest cooling
rate is achieved for ψ/π = 0.15 and under strong magnetic fields. As mentionned before,
there is however a practical limitation to accessing this range of parameters: as the mag-
netic field is increased, the resonance condition (ωe′ − ω+ = ωφ) requires a large splitting√

∆2 + Ω2
R between the |+〉 and |−〉 states. Since it is technically challenging to increase

ΩR above the GHz range [172], one will have to increase ∆ therefore limiting oneself to
lower ψ values.

To study how the cooling efficiency varies with the B field and microwave parameters,
we now look for the phonon mean occupation number. The ψ parameter that allows
resonant conditions for a Rabi frequency of 1 GHz is plotted in figure 4.14.b) as a function
of the magnetic field. This line shows that for such a Rabi frequency the cooling rate
reaches an optimum for a magnetic field of only 60 mT, as shown by the dashed lines.
We will use this value to extract the final phonon occupation number under continuous
cooling. The mean phonon number is given by :

〈n〉0 =
A+

op +Wgas

Wop
, (4.13)

with A+
op = S(−ωφ) the optical heating rate and Wgas the heating rate due to collisions

with a residual gas [43]. The heating rate due to gas collision was estimated in section
4.4.3 to be about 1 Hz at 10−3 mbar.

Here, we consider a diamond of 70 nm diameter under a vacuum pressure of 10−8

mbar. Under a magnetic field B0 = 60 mT, with a Rabi frequency of 1 GHz and an
optical excitation rate Γop = 100 kHz, the final phonon number is found to be 〈n〉0 = 10.7
far from the ground state. The mechanism limiting this number is not heating by gas
collision but the mixing of the spin states, which prevent us from reaching the usually
high polarization efficiency of NV spins. An option to get closer to the ground state is to
tune the B-field again. Provided Wgas is much smaller than Wop, we can decrease the B
field and even though the cooling rate will be lower, a lower 〈n〉0 will be reached due to a
better polarization efficiency.

For a Rabi frequency of 0.5 MHz at a magnetic field of 2.6 mT and with Γop = 10
kHz we actually find a final phonon number 〈n〉0 = 0.30, close to the ground state. Those
conditions differ from the one derived to obtain a coherent spin-mechanical coupling. In its
current state, this proposal therefore requires a pulsed scheme where one would ramp up
and down the magnetic field between cooling/spin polarization stages and spin-mechanical
coupling stages. Although this adds experimental constraints, the high lifetime of both
the NV spin and the mechanical oscillator impose relatively long timescale (ms).
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Conclusion
In this chapter, we have successfully observed the coupling of spin ensembles to the mo-
tion of levitated micro-particles. Here, a key point is that we exploit the angular degree of
freedom to achieve coupling between the NV spins and the libration of the particle under
a homogeneous magnetic field. We are therefore able to use large spin ensembles, whereas
for the center of mass motion, strong magnetic gradients entail the use of a single spin.

We first observed a spin-induced torque, which depends on the state of the NV spins.
The long lifetime of the NV spins then enabled us to cool down the librational motion
of the levitating diamond despite a relatively low frequency for the mechanical oscillator.
In strong analogy with cavity opto-mechanics, we also observed a broad range of effects,
including a spin-spring effect, bistability and lasing of the librational modes.
Finally, we theoretically described this spin-mechanical coupling in the quantum regime.
It is similar to sideband cooling, although our experimental scheme is, for now, far from
the resolved sideband regime. Further, we derived the conditions to enter the sideband
resolved and strong coupling regime, which are required to achieve ground state cooling.
We found that reducing the size of the levitating diamonds and improving their purity
would allow those conditions to be satisfied.
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Chapter 5

Levitating ferromagnets

The spin-mechanical effects that we have observed show that the NV spin is a potent
system to manipulate the motion of a levitating particle. However, the low frequency
of our mechanical oscillator limits for now these effects. Working with smaller particle
could leverage this issue but does require non-trivial experimental progress regarding the
injection mechanism. Ferromagnetic particles provide an additional access route to en-
hance the frequency of a levitating oscillator. Here we will specifically use a Paul trap
to levitate ferromagnetic particles, but other trapping mechanism could also benefit from
the enhanced confinement that we describe.

Just like the Laplace equation shows a charged particle cannot be trapped solely by
an electric field, the Earnshaw theorem shows that a magnetic field alone cannot con-
fine a magnet in three dimensions. This constraint can however be bypassed by building
a magneto-gravitational trap where two dimensions are confined solely by the magnetic
force while gravity provides confinement for the third dimension [179]. In practice this is
realized by using the repulsive force between a ferromagnetic material (usually a magnet)
and a diamagnetic one. Both diamagnetic and ferromagnetic particles can be levitated this
way. Objects from living frogs [179] to micro-particles [180, 181], nano-diamond [49, 182]
and silica nanosphere [183] were thus levitated. One can then use magnetic forces to
control their motion, in particular, cold damping for center of mass motion reached mK
temperature [49, 182, 183] thanks to ultra high-vacuum [183].

Because of weak diamagnetism, the frequency of the center of mass motion in this trap
is however low (100 Hz). In this regard working with the angular degree of freedom is
quite oportune: using a homogeneous field one can apply a strong confining torque to a
levitating magnet. We will first elaborate on the theoretical principle of such confinement,
before showing experiments with levitated ferromagnet and hybrid particles composed of
a ferromagnet combined with a diamond.

5.1 Magnet libration in hybrid trap
A ferromagnetic particle that aligns itself with an external magnetic field is in essence
a compass. However, when the particles scales down to micrometric size, the magnetic
torque becomes strong compared to the inertia momentum of the particle, resulting in a
high frequency mechanical oscillator.
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In our case, we use a hybrid trap: the center of mass is confined as in previous chapters
by a Paul trap while the magnetic field additionally provides angular confinement. We first
describe confinement of hard ferromagnets before moving to the case of soft ferromagnets.
Although the latter do not provide a confinement as strong as the former, its experimental
implementation is less challenging: the experiment presented in the next section were
indeed carried out using soft ferromagnets.

5.1.1 Hard ferromagnet

Let us consider a particle of volume V and magnetisation M which is submitted to a ho-
mogeneous magnetic field ~B = B~ey. For simplicity we will only consider only one angle of
rotation φ, around the x axis and assume the other angular degrees of freedom to be frozen.
In practice, two angular degrees of freedom are confined by the magnetic field while con-
finement of the third one (rotation around the magnetic field) solely relies on the Paul trap.

Figure 5.1.a) depicts a levitated magnet under a homogeneous magnetic field. When
φ = 0 we take the magnetisation anti-aligned with the x axis. Let Iφ be the inertia
momentum of this particle along the x axis, the magnetic energy and magnetic torque
applied to this particle are then:

Em = −BVM

µ0
cosφ

Γm = ~M × ~B,

(5.1)

where µ0 = 4π× 10−6 T.m/A is the vacuum permeability, B and M are in Tesla and V in
m3.
In the small angle approximation we therefore obtain near-harmonic confinement for φ:

Em = Iφ
2 ω

2
φ

(
φ2 − 1 + O

(
φ4

))
ωφ =

√
BVM

µ0Iφ
.

(5.2)

We now see that the angular frequency of the confinement ωφ scales as the inverse of
the size of the magnet. We apply this formula to a spheric neodynium magnet with a
magnetisation M = 1.4T and a volumic mass ρ = 4.5g.cm−3 under an external field of
1000 G. We find confinement frequences ωφ > 2π × 100kHz with a 10µm radius particle
and ωφ > 2π × 1MHz with a 1µm radius particle.

Levitation of micro-magnet is however not a trivial task : although one can fabricate
magnets in the micro-size range, they tend to aggregate due to magnetic forces if they
are too close to each other and if one tries to inject a single one in a trap it is likely to
remain stuck on the fabrication substrate because of van der Waals forces [180]. So far,
experiments with levitated micro-magnet have mostly used magnetic traps. In [184], a
∼ 25 µm hard ferromagnet was levitated above a superconductor, only weak fields were
however applied to the magnet because any external magnetic field is shielded by the
superconductor.
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Figure 5.1: a) Round hard and asymmetric b) soft ferromagnets levitating via electric
forces. Under a homogeneous external magnetic field the magnetic moment of both par-
ticles anti-aligns itself to the field due to the magnetic torque. The hard ferromagnet
has its magnetic moment fixed to the particle axes (below coercitive field), the magnetic
moment of the soft ferromagnet lies between the magnetic field z axis and the long axis
of the particle. θm is the angle between the z axis and the magnetic moment, φ is the
displacement from the equilibrium position.

5.1.2 Soft ferromagnet

Using magnetic-field-free trap (eg a Paul trap) and soft ferromagnetic particle provides
an appreciable escape route from the above-mentioned obstacles. A soft ferromagnets is
characterized by a very small remanent magnetization: the material acquires a magneti-
zation when subjected to an external magnetic field but loses most of it if the external
field is turned off. One can therefore use a large number of soft ferromagnetic particles,
inject them in a Paul trap and only then turn the magnetic field on.

Here we consider a soft ferromagnetic particle levitating in a Paul trap. The amount of
anisotropy determines how much the magnetic moment of a soft ferromagnet deviates from
the external magnetic field. For example one can use crystalline anisotropy, but here we
consider prolate spheroid (ellipsoid of revolution) and only take into account their shape
anisotropy. Calculation of the magnetisation and the resulting torque for such particles
have been treated both theoretically and experimentally in [185].

Let us note φ the angle between the long axis of the ellipsoid and the external magnetic
field as described in figure 5.1-b). When the external magnetic field is weak enough so
the ferromagnet doesn’t reach its saturation magnetization, the magnetic moment of the
particle will align itself in-between the external magnetic field and the particle’s long axis
giving rise to a magnetic torque T . The magnetic torque T applied to a spheroid of long
axis a and short axis b can be obtained with the formula [185]:

T (φ) = V (nr − na)
2µ0nanr

B2 sin(2φ), (5.3)

where a and b are the long and short radii respectively, V = 4π
3 ab

2 is the volume of
the particle, µ0 is the vacuum magnetic permeability and nr, na ∈ [0, 1] are the so-called
demagnetisation factors. Those are purely geometrical and can be calculated analytically
for ellipsoidal bodies [186]:

na = 1
R2−1

(
R

2
√
R2−1 ln

(
R+

√
R2−1

R−
√
R2−1

)
− 1

)
nr = 1

2(1 − na),
(5.4)
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where R = a/b > 1 is the aspect ratio of the particle. This expression of the torque is
valid for a soft ferromagnetic material with large magnetic susceptibility (χ � 1) and a
magnetic field such as

B < µ0ms
nanr

√
2√

n2
a + n2

r

where ms is the magnetisation at saturation of the material. It is quite remarkable that,
under those conditions, the torque does not depend on the magnetic properties of the
body but only on its geometry.

From kinematics principles, we find that the confinement frequency for the angle φ
resulting from the magnetic torque Tsoft is given by

ωφ =
√
V (nr − na)
Iφµ0nanr

B (5.5)

where Iφ = ρV (a2 +b2)/5 is the relevant component of the particle’s moment of inertia
and ρ is the particle’s density.

The angular confinement frequency is proportional to the applied magnetic field and,
for a given aspect ratio, it is inversely proportional to the particle size. This latter property
can be seen by writing

V

Iφ
= V − 2

3
5
ρ

(4π
3

) 2
3 R

2
3

R2 + 1 .

Two opposing effects impact the dependency of confinement on the aspect ratio: when
the particle is more elongated its torque is stronger but also its moment of intertia. An
optimum is actually found at the value of R ≈ 2.606 [76].

Under an external field of 1000 G and for pure iron with a volumic mass ρ = 7.86.cm−3

we obtain a confinement frequency of ωφ ≈ 2π × 150 kHz for a particle of dimensions
4µm × 10.4µm. For submicron particles, frequencies higher than the MHz are attainable.

5.2 Libration of iron rods
As mentioned above, we focused on soft ferromagnets to avoid the experimental constraints
associated with hard ferromagnets. In the first experiments we carried out, we inject iron
particles in a Paul trap, assemble them in situ into rods and observe their librational mode
following excitation during a ring-down sequence.

5.2.1 Levitation of asymmetric iron particles

The set-up used for levitation, visualization and vacuum condition is the same as already
described in section 2.2. Here the trap electrodes that we use are rings of varying sizes,
mostly in the 200-200 µm range for the inner diameter. We levitate particle made of 98%
pure iron that have a spherical shape (Goodfellow, ref. FE006045). Figure 5.2 shows a
scanning electron microscopy image of these particles: although their diameters is rated
to be from 1 to 6 µm, we observe that it varies roughly from 0.5 to 3 µm with most of the
particles having a diameter around 1 µm.
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3μm

Figure 5.2: Scanning electron microscopy image of iron micro-spheres deposited on a
coverslip.

As explained in previous section we aim at using the shape anisotropy of the levitated
particle to fix its magnetic moment to the particle axes. We obtain asymmetric particles
from our sample by assembling several levitated iron sphere in the Paul trap.
In order to do this we proceed as follows:

1. We inject several iron particles simultaneously in the Paul trap. A large enough trap
can simultaneously levitate tens of particles which form a Coulomb crystal [187] as
they are both attracted toward the trap center but repulse each other.

2. We eliminate all but a few particles (typically 2-4) by lowering the trap potential.

3. We increase the Paul trap confinement by tuning the trap frequency and voltage to
decrease the distance between each particles.

4. We apply a magnetic field by bringing manually a permanent magnet next to the
trap. Each particle becomes magnetized thereby creating attractive forces between
the particles. For sufficiently high magnetic field, of the order of hundreds of Gauss,
magnetic forces overcome the repulsive electrostatic ones and the particles bind
together, forming a rod aligned with the direction of the magnetic field.

During the assembly, the eventual presence of charge patches of different polarities on
the particles might assist the binding process by mitigating the Coulomb repulsive forces.
This method allows us to obtain elongated rods as such shape minimize the magnetic
energy.

5 μm

10 μm

5 μm 5 μm

(a) (b) (c)

(d)

Figure 5.3: Image of a), b), c) a levitated micro-rod and d) a 15 µm wire taken for
calibration of the magnification.

We characterize the size and shape of the levitated particle by shining incoherent light
onto the particles and use the aspheric lens to image the particles onto a CCD camera.
Figure 5.3.a-c) shows images of levitated rods obtained using this imaging system, we
calibrate its magnification by imaging a 15 µm wire (figure 5.3.d)). We obtain elongated
rods, ∼ 4 µm long for the shorter one and 15 µm long for the larger one.
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5.2.2 Ring-down of the librational mode

We observe the librational mode of a levitated ferromagnetic particle via its ring-down
following an excitation sequence. The ring-down of the mechanical oscillator can be ob-
served in the underdamped regime: when the damping rate is lower than the mechanical
resonance. Here, contrary to the case of a levitating diamond, the libration occcurs at
a higher frequency than the damping rate even under atmospheric pressure. Most ring-
down experiments therefore do not require vacuum conditions and are carried out under
atmospheric pressure.

ϕ

Figure 5.4: Set-up for a ring-down measurment: permanent magnets generates a static
homogeneous magnetic field B while two coils in a Helmotz configuration generates a time
varying homogeneous field Bexc.

Figure 5.4 describes the set-up allowing excitation of the librational mode and obser-
vation of its ring-down. We generate the static magnetic field which confines the angular
degree of freedom with two permanent magnets positioned in a Helmholtz configuration
on each side of the trap at a distance of ∼1-5 cm. The magnetic field gradients are thus
minimized: at high field, when the magnets are brought close to the levitating particle,
the magnetic force of a single magnet would pull the particle out of the trap.

The optical set-up is similar to the one described for levitating diamond in section 2.2:
we focus a green laser close to the particle using an aspheric lens. This allows direct visu-
alization (see section 2.2.1) as well as measurement of the angular position of the magnet
φ, using the speckle pattern of the back-scattered light (see section 2.4.2).

Finally two coils are placed on top and at the bottom of the trap in a Helmholtz
configuration to generate a homogeneous time varying magnetic field Bexc in a direction
perpendicular to the static magnetic field. Applying a current on the coils changes the
orientation of the magnetic field and therefore rotates a levitating iron rod out of its initial
equilibrium position.
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5.2. Libration of iron rods

(a)
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Figure 5.5: a) Ring-down sequence: Icoil generates a periodic exciting field Bexc and we
detect the following ring-down of the mechanical oscillator at the frequency ωφ. b) Ring-
down of an iron rod under atmospheric pressure. Points are experimental datas and the
solid line is a fit. The inset shows the Fourier transform of the temporal signals.

Figure 5.5.a) depicts the sequence that we use to observe the ring-down of the libra-
tional mode. We switch the current (0.5 A) in the coil on and off a few time (typically
5 times) with a period corresponding to the frequency of the librational mode ωφ. Once
the angle of the iron rod is far from its initial position, the current is turned off and we
observe its relaxation through optical measurement.

Figure 5.5.b) shows the result of such ring-down measurement under atmospheric pres-
sure and for a small magnetic field of 10 mT. The frequency of the ring-down is obtained
either by a Fourrier transforming the signal or by fitting the time trace with an exponen-
tially decaying sinus. Here we find a frequency ωφ of 2π × 20.7 kHz, already more than
one order of magnitude higher than the confinement of non-magnetic micro-particles in a
Paul trap.

Remarkably, we also observe small oscillations at lower frequency (∼ 250 Hz) which
we identify to be a center of mass mode. Two effects can cause this excitation of a
CoM mode following a ring down. First, the two coils that we use to generate the exciting
magnetic field can be misaligned, therefore producing a small magnetic gradient. Secondly,
it can come from coupling between the libration and the CoM. In particular, if there is a
mismatch between the centroid of charge and the center of mass, large rotations around
the center of mass will displace the centroid of charge. The Paul trap will therefore exert
a spring force to the particle. Here this coupling is small as the frequency of the exciting
magnetic field is on resonance with the librational mode, the frequency of which is two
orders of magnitude higher than the confinement of the Paul trap.

5.2.3 Characterization of the mechanical properties

We now take a closer look at the mechanical properties of these levitating iron rods.

High libration frequency

Within the context of spin-mechanics, we are especially interested in increasing the fre-
quency of the mechanical oscillator. The formula for the frequency of the librational mode
of a soft ferromagnet (obtained in section 5.1.2) reads:

ωφ =
√
V (nr − na)
Iφµ0nanr

B, (5.6)
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5.2. Libration of iron rods

so the magnetic confinement is proportional to the magnetic field. As mentioned in
section 5.1.2, in the case of a prolate spheroid, the magnetic confinement is also optimized
for a moderate aspect ratio (2.6). Finally the factor V/Iφ implies that a stronger confine-
ment is obtained for smaller particles.

4 µm

(a) (b)

Figure 5.6: a) Image of a small elongated particle. The particle is fitted well by an ellipse
of size 5.4µm×2.5µm. b) Angular frequency ωφ of the libration mode of the particle as a
function of the magnetic field.

Due to the inhomogeneous sizes of the iron sphere in our sample, we accomplish lev-
itation of smaller particle by simply iterating the injection and post-selecting smaller
particles. Figure 5.6.a) shows an image of such particle, we approximate its shape by a
prolate spheroid and find a size of 5.4µm×2.5µm. Once such a small particle is levitated,
we tune the magnetic field by bringing the permanent magnets closer to the trap. Note
that for strong magnetic fields, the magnets need to be carefully aligned in a Helmholtz
configuration: small deviations will produce a substantial shift of the particle in the trap
due to magnetic gradients and can easily pull the particle out of the trap.

Figure 5.6.b) shows the frequency of the librational mode for this particle as a func-
tion of the magnetic field. Its is measured by fitting relaxation of the angular degree of
freedom during a ring-down sequence under atmospheric pressure. The magnetic field
is calibrated for each positions of the magnet using NV magnetometry. We confirm the
linear dependency of the confinement with the magnetic field and for the highest field of
0.1 T we reach a frequency of ωφ = 2π × (170 ± 10) kHz. Calculations taking the fitted
spheroidal shape yield a confinement of ωφ = 2π× 240 kHz, in reasonable agreement with
the experiment given the approximate shape. Further improvement of the frequency could
be reached with smaller levitated particles.

Quality factor

A levitated mechanical oscillator with a high frequency is also an attractive system be-
cause it can reach a high quality factor as the vacuum pressure is reduced. Figure 5.7
shows the result of a ring-down sequence at a vacuum pressure of 1 mbar. The reduced
damping allows us to increase the quality factor to 1.3 103.
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5.3. Hybrid diamond-ferromagnet particles

Figure 5.7: Ring-down of the librational mode of a levitated ferromagnet under 1 mbar.
Points are taken around 0, 10 and 30 ms. The inset shows the evolution of amplitude of
the libration as a function of the relaxation time.

A higher quality factor will be reached at higher vacuum but further experiments are
required to measure it. For now, at ∼ 10−1 mbar, we observe trap-driven rotation of the
iron rods about the axis of the magnetic field, which is solely confined by the Paul trap.
This instability presents was already observed in the case of micro-diamonds and presents
a strong limitation , as discussed in section 2.5.2. In the case of a ferromagnet, they are
not necessarily an issue as we are mostly interested in confinement along axes that are
perpendicular to the rotation axis. In the present scheme they however blur the speckle
patterns we use to detect the angular motion.

5.3 Hybrid diamond-ferromagnet particles
We now examine how to combine magnetic confinement together with NV spins. The most
direct approach is to use hybrid particles composed of a diamond with embedded NV spins
and a ferromagnetic material. Following this idea, we followed two directions: firstly we
deposited nano-diamond on iron spheres and secondly we deposited a nickel coating on
micro-diamonds.

5.3.1 Nano-diamonds on iron micro-spheres

(a) (b)
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Figure 5.8: a) SEM image of a hybrid particle, with nano-diamond on the surface of an
iron sphere. b) Rabi oscillations and b) Hahn echo from NV spins embedded in a nano-
diamond lying on the surface of an iron sphere levitating in a Paul trap under atmospheric
pressure.

Figure 5.8.a) shows a scanning microscope image of a hybrid particle made of nano-
diamonds laying on an iron micro-sphere. We use the same sample as in previous section
for the iron spheres and 100 nm nano-diamonds (brFND-100 from FND biotech) which
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5.3. Hybrid diamond-ferromagnet particles

each contains a large number of NV spins. The hybrid particle is obtained by using a
nebulizer to spray a solution containing the nano-diamond on a glass coverslip covered of
iron spheres. We then follow the same injection method as before to inject the hybrid
particles in the trap. Once inside the trap, even though the particles are close to isotropic,
we observed that their orientation depends on the magnetic field.

This method was found to be poorly reliable for reasons we have not yet understood.
Many injected particles showed low photo-luminescence (PL) signal or low ESR contrast
compared with when they were outside the trap. Some particles still displayed good PL
and spin properties. However, under a moderate magnetic field and atmospheric pressure,
we were able to measure well-resolved ESR lines and perform Rabi oscillations (see figure
5.8.b)) as well as spin echoes (see figure 5.8.c)) on NV spins embedded in such particle.
We found coherence times in the µs range, in agreement to what is expected from these
nano-diamonds.

5.3.2 Nickel coating on micro-diamond

We made hybrid particles using a second method: we evaporated a nickel coating (∼200
nm) on top of micro-diamond (∼ 10 µm MSY 8-12) laying on a glass coverslip. Figure
5.9.a) illustrates the resulting hybrid particles.
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Figure 5.9: a) Illustration of the hybrid particle made of a micro-diamond with a nickel
coating. b) Electron spin resonance from one class of NV centers embeded in such hybrid
particle under a magnetic field. c) Libration of a hybrid particles during a ring-down se-
quence. Trace (i) is measured via the speckle patterns in the backscattered light. Trace (ii)
is obtained by measuring the NV spins Photoluminescence (PL) while tuning microwaves
on the slope of the ESR peak.

Once levitating in the trap, these particles display unaffected spin properties as well
as magnetic confinement of their angular degree of freedom. Due to the small volume
of magnetic material, frequencies for the librational modes are lower than for iron rods:
typically a few kHz for B ∼ 100 G.

We measure librations of these particles during a ring-down sequence where we excite
the librational modes with a time-varying magnetic field as in section 5.2. Figure 5.9.c),
trace (i) shows the ring-down measured using the backscattered light.

We were also able to measure this ring-down using the NV spins from the hybrid parti-
cles. To this end, we apply a microwave blue or red detuned from the magnetic resonance
of a spins ensemble as depicted in the ESR of figure 5.9.b). As the particle rotate, the
magnetic resonance shifts and so does the detuning thereby affecting the efficiency of the
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5.3. Hybrid diamond-ferromagnet particles

microwave pumping. This implies that the spins population in the magnetic state and
therefore the photoluminescence from the NV centers depend on the angle of the particle.
In particular, this variation has an opposite sign depending on whether the microwave is
red detuned or blue detuned: for example, as depicted on the ESR from figure 5.9.b) if
the frequency of the magnetic resonance decreases (horizontal black arrow), the PL de-
creases or increases when the microwave is red or blue detuned respectively (vertical black
arrows).
In figure 5.9.c) trace (ii), we show the subtracted PL signal of two ring-down sequences
where the microwave was blue and red detuned. This allows us to eliminate artifacts that
would appear due to a change of the collection efficiency when the diamond rotates: here
we only measure the spin-population. Both traces (i) and (ii) are accumulated during the
same time but the signal originating from the NV spins is actually ∼ 35 times smaller.
Increasing the spins coherence would result in a sharper ESR line and could considerably
improve it.

Remarkably one can observe a small delay between the NV spins’ population (obtained
from the PL signal) and the direct measurement of the angular position (back-scattered
light). This delay originates from the finite polarization time and lifetime of the NV spins
and it enables them to exert the non-conservative torque that we have used to cool down
librational modes in the previous chapter.

Conclusion
In this chapter, we have shown that magnetic forces can produce a strong confinement
of the angular degrees of freedom of levitating micro-magnets. We have levitated iron
micro-rods in a Paul trap and observed librational frequencies up to 150 kHz, resulting
from the confinement procured by the alignment of the rods with an externally applied
magnetic field. At 1 mbar, we measure a quality factor for such oscillator of ∼ 103, which
is promising given the low vacuum conditions. We have finally levitated hybrid particles
composed of both a diamond and ferromagnetic materials. These hybrid particles enabled
us to combine the NV spins with an oscillator that has higher frequency than what we
attain without magnetic confinement.
The use of smaller particles, or hard ferromagnets would dramatically increase the confine-
ment frequency; once combined with high-purity diamond, such platform has the potential
to yield a spin-mechanical coupling in the sideband resolved regime.
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General conclusion

At the beginning of the twentieth century, quantum mechanics arose as a theory to ex-
plain specific phenomena that contradicted classical physics. Since then, the application
of these new laws in solid state physics and optics yielded tremendous advances in many
technological fields. Now, even the most counter-intuitive predictions of quantum mechan-
ics have been confirmed, and devices that were designed to test quantum mechanics are
finding applications, in particular as sensors.
In an attempt to build new ”quantum technologies“, we are witnessing an increasing de-
gree of control of quantum systems, which will also be beneficial to fundamental physics.
For example, nitrogen vacancy (NV) spins in diamond have extensively been used as a
point-like magnetometer [89] or as fluorescent marker [137, 138], but it also demonstrated
the first loophole-free Bell inequality test [19]. The work of this thesis fits well in this
broader context: we use the electron spins of Nitrogen Vacancy (NV) centers to control
the motion of levitated diamonds, with both fundamental and more practical prospects.

During this thesis, we developed a practical platform to both levitate micro-diamonds
and trap their angular degrees of freedom [74]. In order to manipulate NV spins in levitat-
ing diamonds, we integrated spin control tools to the trapping apparatus while retaining
a relatively simple design with an ample margin for improvement [121]. Electron spin
resonance have already been carried out in optical tweezer [62–64], but this system also
allowed us to probe the coherence time of the NV spins in a levitating diamond, showing
unaltered spin properties [75].
We then turned our focus to exploring the spin-mechanical coupling between the libra-
tional modes and the NV spins [73]. Such spin-mechanical coupling contrasts with more
usual schemes, which rely on high magnetic gradients to couple the center of mass of an
oscillator to a single spin.
Here, we were able to use a large number of NV spins to apply a torque to the levitating di-
amond under a homogeneous magnetic field [77]. While the observation of a spin-induced
force by a mechanical means is not new and was, in particular, achieved using a single spin
[41], the spin properties of the NV center make it particularly engaging for such experi-
ments. So far, only detection of the excited [44] and thermal [45] motion of a mechanical
oscillator had been achieved using single spin. Here, the long lifetime of the NV spins in
a levitating diamond allowed us to exert a non-conservative torque to it, cooling down its
librational modes to a final temperature of ∼80 K.
The main obstacle to achieving a lower temperature, and a coherent coupling, are the low
frequency of our mechanical oscillator and the quality of our diamond samples.
Lastly, we levitated iron micro-rods in a Paul trap and observed the confinement of their
angular degrees of freedom when an external magnetic field is applied, essentially realizing
a micron-scale compass. Magnetic forces applied at this micron-scale allow a two orders
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General conclusion

of magnitude enhancement of the librational frequencies compared to the Paul trap’s li-
brational confinement [76]. Moreover, this system can be integrated with NV spins by
levitating a diamond-ferromagnet particle. This hybrid particle displays both a stronger
confinement and efficient NV spin control.

The most immediate prospect that comes to mind is the possibility to prepare a me-
chanical oscillator in an arbitrary quantum state using NV spins. However, this entails
having a similar degree of control than trapped ion platforms, which means, in partic-
ular reaching the resolved sideband and the strong coupling regimes [43, 73]. Several
improvements in the current system are required in order to do so. To begin with, the
experiments should be carried out with isotopically purified CVD-grown diamond: the NV
spins coherence will be significantly enhanced in such samples. The size of the levitating
diamond must also be decreased to about 100 nm to increase both the single spin coupling
and the confinement of the Paul trap. Alternatively other confinement mechanisms may
also be used: magnetic confinement, using a hybrid ferromagnetic-diamond particle [76]
or gyroscopic stabilization using fast trap-driven rotations [130].

Reaching the sideband resolved regime with a single spin coupling stronger than the
NV decoherence rate would also open up interesting perspective for quantum information
and simulation. In this regime, NV spins embedded in the same levitating diamond could
indeed be coupled to each other [60]. Here, the mechanical oscillator would be used as a
bus, for example to mediate entanglement and perform a gate operation between two NV
spins [188], in close analogy to gates protocols designed for ion traps [189].
An other intriguing possibility is to use the coupling of the NV electron spin to a nearby
nuclear spin with longer coherence time [18, 20, 147]. One could envision experiments
where several nuclear spins are coupled to the same mechanical oscillator via the NV elec-
tron spins and therefore coupled to each other.

Even out of the sideband resolved regime, a loose trap might provide opportunities as
well. For example, the spin-induced torque that we have observed could be used as an
efficient measurement of the spin population. In the single spin limit and with a sufficient
sensitivity one could, for example perform a quantum non-destructive measurement of the
spin state. In such experiment, a small particle and a deliberately loose trap maximizes
the rotation induced by the torque. Similarly to magnetic-resonance force microscopy, one
could also observe other defects, which possess a spin that have an intrisic asymmetry but
that cannot be detected by optical means.
Finally is also possible to devise matter wave interferometry experiments where the trap
is turned off or softened [57, 60]: depending on the spin state the diamond would follow
two different trajectories that should be recombined with the coherence time of NV spins.

To conclude, levitating diamonds constitutes a novel platform for experiments that
aim at bridging the gap between the quantum and the classical worlds. We believe this
hybrid system offers a fertile playground, giving rise to a rich physics with bright prospects
in quantum information and solid-state physics.
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Appendix A

Ring electrode

Ring fabrication

The ring electrodes are made from single wires bend to form the right shape. This is typ-
ically done by wrapping the wire around a bigger round wire the size of which determines
the torus interior diameter. Once the shape of a loop is imprinted, the ring is held into
place with a pressed caliper as described in figure 2.8-b) while the two tips of the wire are
pulled toward the exterior of the ring, so they don’t touch each other and allow in fine to
hold the ring. The bigger, internal wire is retrieved either after the first branch is bent
or when both are. Care is taken to let a small space between the two branches of the
structure so an electrical current can be applied through the ring. Figure 2.8-a) displays
a white light microscope image of a micro-ring thereby made.

~170 µm

25 µm

high voltage
Vpk=2000 V at 5 kHz

VHV

100 µm100 µm
caliper pressed

to pinch the ring

bending of the
�irst branch

micro-wire
loop

(a) (b)

Figure A.1: a) White light microscope image of a tungsten micro-ring. b) Micro-ring
fabrication procedure: bending stage when a caliper is used to maintain the torus structure
while the branches are bent.

The smaller rings are made using either a 25 µm tungsten micro-wire or a 15 µm
gold-coated tungsten wire. For larger ring we use copper alloy wire larger than 120 µm.
Fabrication of a single functioning micro-ring takes from ten minutes to a few hours, de-
pending on dexterity, luck and whether the caliper is for example mounted on a translation
stage. Since the exact shape of the rings is quite variable, some ring allow better trapping
than others, usually a few rings are made and tested before one has appropriate confine-
ment and injection rate.
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Impact of the ring experimental features

Although we did not attempt to precisely characterize the features of the electrodes which
allow efficient trapping, we were able to discern several key points that impact confine-
ment and injection rate. The empirical observations are discussed in the section below.
We conclude that confinement along at least one direction is reduced if the ring is too
asymmetric or the bottleneck too wide. On the other hand, the injection rate is lowered
when the bottleneck is narrow compared to the size of the injected particles. When trap-
ping in the bottleneck region, a better confinement is obtained for the center of mass when
the bottleneck is narrow and the branches departing from the ring section are bent with a
sharp angle. If they are not, center of mass confinement along the direction in between the
two branches is lowered but the confinement of the angular degree of freedom is increased.

Note that it is possible to use two electrodes composed of two sharply bent wire in
front of each other, to produce a similar trapping than in the bottleneck of a ring electrode.
Because of the small size of the wire, flexibility of the two electrodes is however an issue:
while using a ring firmly binds them to each other, a length of several millimeters for each
electrode allows them to move away from each other when a high voltage is applied on
both of them.

Rings made from micro-wires are quite fragile: they can easily be bent into another
shape and typically suffer degradation of their surface, supposedly from corrosion caused
by small electric arcs when particles are injected in the trap (see section below). As a result
their surface appears darkened after a few weeks of use and trapping is less efficient (lower
confinement or higher stray electric fields). This state can be reversed to some extend by
plunging them in an acid bath (ammonia or piranha etch) but most often than not when
a ring is too damaged -due to corrosion or deformation- so that trapping becomes difficult
it is simply replaced by a new one.
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Appendix B

Calculation of the cooling rate

To evaluate the cooling rate in presence of an optical field, we separate the spin dynamics
[43, 178] by considering it to be much faster than the phonon one (ωr/(2π),Γop � λ̃φ).
The master equation for the spin degree of freedom therefore becomes

ˆ̇ρ = i
[
ρ̂, Ĥ

]
/~ + R̂op, (B.1)

where R̂op is the evolution caused by the optical dephasing processes. Typically, a green
laser excites the ground spin states |g〉, |d〉 and |e〉 into excited electronic states |g′〉, |d′〉
and |e′〉 from where they decay to the ground states radiatively or through a metastable
state |m〉. Note that since the coherence are systematically destroyed in the excited and
metastable states, one needs only to treat their population without unitary evolution.

The optical term can be written:

R̂op = R̂exc + R̂rad + R̂meta, (B.2)

with
R̂exc =

∑j=g′,d′,e′

i=g,d,e kijD[|j〉〈i|],
R̂rad =

∑j=g,d,e
i=g′,d′,e′ kijD[|j〉〈i|],

R̂meta =
∑
i=g′,d′,e′ kimD[|m〉〈i|] +

∑
j=g,d,e kmjD[|j〉〈m|],

(B.3)

where kij is the transition rates between the i and j spin states and the Lindblad su-
peroperator D[ĉ] = ĉρ̂ĉ† −

(
ĉ†ĉρ̂+ ρ̂ĉ†ĉ

)
/2 is used to describe the dissipative transitions

between spin states. The rates kij for the mixed states |g〉, |d〉 and |e〉 depends on the
magnetic field and can be calculated from the rates k0

ij of the zero-field states |0〉, |±1〉
[143]. The optical excitation rate Γop is defined as the excitation rate of the zero-field
states k0

ii′ = Γop.
The effect of the spin lifetime and decoherence are neglected, since the considered rates

are expected to be much slower than the spin dynamics. The total cooling rate is W =
Wop+Wgas where Wgas is the heating rate due to residual gas and Wop = S(ωφ)−S(−ωφ)
is the optical cooling rate determined by the fluctuation spectrum [43]:

S(ω) = 2λ2
φ

∫ ∞

0
dτ〈Ŝz(τ)Ŝz(0)〉eiωτ . (B.4)

For a given set of parameters, we use the master equation and the quantum regression
theorem to obtain the fluctuation spectrum and in turn the cooling rate. This was done
numerically using Matlab. In fig. 4.14 the fluctuation spectrum is plotted under resonant
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conditions for the |e〉 and |+〉 states and with a Rabi frequency larger than the microwave
detuning. With such parameters, the red sideband is higher than the blue sideband
showing continuous cooling (i.e. W > 0).

Contrary to [43] neither |+〉 nor |e〉 is orthogonal to |0〉 due to the spin mixing induced
by the transverse magnetic field. As a result the spin polarization is less efficient: the
optical excitation can change the spin states and the depopulation -and cooling- only
occur if we ensure the probabilities |〈0|e〉| and |〈0|+〉| to be sufficiently unbalanced. This
can be tuned using the magnetic field, the microwave and Rabi frequencies as well as the
optical dephasing rate. A high cooling rate can be achieved for φ/π = 0.15 and under
magnetic fields above 100 mT. There is a practical limitation to accessing the area of this
map however: as the magnetic field is increased, the resonance condition (ωe′ − ω+ = ωφ)
requires a large splitting

√
∆2 + Ω2

R of the |+〉 and |−〉 states. Since it is technically
challenging to increase ΩR above the GHz range [172], one will have to increase ∆ therefore
limiting oneself to lower values of ψ.
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RÉSUMÉ

Inspiré des expériences d’atomes froids ou d’ions piégés, l’opto-mécanique a réalisé d’important progrès vers des ex-

périences de mécanique quantique avec un oscillateur mécanique macroscopique. Une autre approche prometteuse est

l'utilisation de systèmes hybrides ou le couplage entre un atome et un oscillateur mécanique permet le contrôle cohérent

de ce dernier. Dans ce travail, les modes de librations (oscillation angulaire) de micro-diamants en lévitation constituent

l'oscillateur mécanique. Celui-ci est couplé via un champ magnétique aux spins de centre azote-lacune (NV) contenu

dans le micro-diamant. Ce couplage permet alors le refroidissement du mouvement du micro-diamant, similairement à

ce qui a pu être fait avec le mouvement d'ions ou d'atomes piégés.

La lévitation est réalisée à l’aide d’un piège de Paul qui confine le centre de masse mais également les degrés de liberté

angulaire d’un micro-diamant chargé. Lors des premières expériences, nous utilisons les centres NV pour démontrer la

stabilité angulaire et montrons que leurs propriétés de spin (cohérence, temps de vie) ne sont pas affectées par le piège.

Nous lévitons ensuite des diamants hautement dopés contenant un grand nombre de centres NV et utilisons leur spin pour

exercer un couple sur le micro-diamant en lévitation. L’observation de ce couple ouvre de nombreuses perspectives telles

que le contrôle de l’oscillateur mécanique dans le régime quantique, le couplage spin-spin et la mesure non-destructive

d’un spin NV à température ambiante dans la limite du spin unique. Ici l’application la plus directe de cet effet est l’utilisa-

tion de ces ensembles de spins pour exercer une rétroaction non-conservative sur le mouvement angulaire du diamant.

Cela résulte en un refroidissement ou une amplification du mode de libration du diamant.

La principale limitation du système est la faiblesse des fréquences de l’oscillateur mécanique comparées au taux de dé-

cohérence des spins des centres NV. Pour résoudre ce problème, nous lévitons des particules ferromagnétiques ainsi

que des particules composites ferromagnétique-diamant. Nous montrons que le moment magnétique de ces particules

peut être utilisé pour augmenter le confinement angulaire de deux ordres de grandeur, plaçant ainsi les fréquences de

l’oscillateur mécanique au-delà des taux de décohérences typique de centres NV dans des diamants ultra-pures.

ABSTRACT

Inspired by experiments on cold atoms and ions, the field optomechanics has mademajor steps towards realizing quantum

mechanical experiments with macroscopic mechanical oscillators. Hybrid systems such as the spin of Nitrogen Vacancy

(NV) centers coupled to a mechanical oscillator levitating under vacuum offer another promising approach. In this work,

we levitate microdiamonds with ensembles of embedded NV spins and explore effects related to the coupling between

the NV spins and the libration (angular oscillations) of the micro-diamonds.

Levitation is carried out by a Paul trap, which confines both the center of mass and angular degrees of freedom of a

charged micro-diamond. In a first set of experiments, we demonstrate angular stability using NV spins and perform spin

echoes with levitating diamond, showing no detectable impact of the trapping mechanism on the NV spins coherence

and lifetime. We then use highly doped diamonds with large NV spins ensembles to exert a spin-dependent torque on a

levitating micro-diamond. Observation of an NV spin-induced torque on a mechanical oscillator offers many prospects,

such as controlling the mechanical oscillator in the quantum regime, spin-spin coupling or room temperature quantum

non-destructive read-out, in the single spin limit. Here the most direct application is the use of these ensembles to apply a

non-conservative back-action on the angular motion of the diamond. This results in cooling or amplification of the librational

modes of the diamond.

The main limitation of the current system is the low mechanical frequencies compared to the NV spins decoherence rate.

To leverage this issue we levitate both ferromagnetic and composite ferromagnetic-diamond particles. We show one can

use the magnetic moment of these particles to gain two order of magnitude in confinement for the angular degree of

freedom, putting the mechanical frequencies higher than NV spins decoherence rate in high-purity diamond samples.

KEYWORDS

Diamond, levitation, spin, NV center, Paul trap, spin-mechanics.
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