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A B S T R A C T

Brain mapping studies the spatial organization of the brain and associ-
ations between mental functions or diseases and anatomical structures.
It relies on structural and functional neuroimaging techniques such
as functional Magnetic Resonance Imaging (fMRI). The neuroimaging
literature is growing rapidly, with thousands of publications every
year. Extracting general and reliable knowledge about the brain from
this huge amount of results is difficult. Indeed, individual studies lack
statistical power and report many spurious findings. Even genuine ef-
fects are often specific to particular experimental settings and difficult
to reproduce. Moreover, the mechanisms under study are very diverse,
and terminology is not yet fully formalized. Therefore, integrating
results across experiments and research domains is challenging.

Meta-analysis aggregates studies to identify consistent trends in
reported associations between brain structure and behavior. The stan-
dard approach to meta-analysis starts by gathering a sample of studies
that investigate a same mental process or disease. Then, a statistical
test is performed at every voxel to delineate brain regions where there
is a significant agreement among reported findings.

In this thesis, we develop a different kind of meta-analysis that fo-
cuses on prediction rather than hypothesis testing. We build predictive
models that map textual descriptions of experiments, mental processes
or diseases to anatomical regions in the brain. We use multivariate
models to combine terms used to describe experiments or observa-
tions rather than studying each concept in isolation. We introduce
models that learn from very few examples, thus extending the scope
of meta-analysis to seldom-studied diseases and mental processes.
Our supervised learning approach comes with a natural quantita-
tive evaluation framework, and we conduct extensive experiments to
validate and compare statistical models. To train these models, we
collect and share the largest existing dataset of neuroimaging studies
and stereotactic coordinates. This dataset contains the full text and
locations of neurological observations for over 13 000 publications.

In the last part, we turn to decoding: inferring mental states from
brain activity. We perform this task through meta-analysis of fMRI

statistical maps collected from an online data repository. We use fMRI

data to distinguish a wide range of mental conditions.
Standard meta-analysis is an essential tool to distinguish true dis-

coveries from noise and artifacts. This thesis introduces methods for
predictive meta-analysis, which complement the standard approach
and help interpret neuroimaging results and formulate hypotheses or
formal statistical priors.
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R É S U M É

La neuroimagerie permet d’étudier les liens entre la structure et le
fonctionnement du cerveau. La littérature de neuroimagerie croît
rapidement, avec des milliers de publications par an. Il est difficile
d’extraire des connaissances sur le fonctionnement du cerveau de
cette grande quantité de résultats. En effet, chaque étude manque de
puissance statistique et peut reporter beaucoup de faux positifs. De
plus, certains effets sont spécifiques à un protocole expérimental et
difficiles à reproduire.

Les méta-analyses rassemblent plusieurs études pour identifier les
associations entre structures anatomiques et processus cognitifs qui
sont établies de manière consistente dans la littérature. Les méthodes
classiques de méta-analyse commencent par constituer un échantillon
d’études focalisées sur un même processus mental ou une même
maladie. Ensuite, un test statistique est effectué pour chaque voxel,
afin de délimiter les régions cérébrales dans lesquelles le nombre
d’observations reportées est significatif.

Dans cette thèse, nous introduisons une nouvelle forme de méta-
analyse, qui s’attache à construire des prédictions plutôt qu’à tester
des hypothèses. Nous introduisons des modèles statistiques qui pré-
disent la distribution spatiale des observations neurologiques à partir
de la description textuelle d’une expérience, d’un processus cognitif
ou d’une maladie cérébrale. Nos modèles peuvent apprendre avec
très peu d’exemples à associer une carte cérébrale à une fonction ou
une maladie mentale. Notre approche est basée sur l’apprentissage
statistique supervisé qui fournit un cadre classique pour évaluer et
comparer les modèles. Pour entraîner nos modèles, nous construi-
sons le plus grand jeu de données d’études de neuroimagerie et de
coordonnées stéréotaxiques existant, qui rassemble plus de 13 000

publications. Dans la dernière partie, nous nous intéressons au dé-
codage, qui consiste à prédire des états psychologiques à partir de
l’activité cérébrale. Nous apprenons à décoder des images de cerveau
à travers la méta-analyse de données d’IRM fonctionnelle (IRMf). Les
images d’IRMf nous permettent de classifier un grand nombre d’états
psychologiques.

La méta-analyse standard est un outil indispensable pour distinguer
les vraies découvertes du bruit et des artefacts parmi les résultats
publiés en neuroimagerie. Cette thèse introduit des méthodes adaptées
à la méta-analyse prédictive. Cette approche est complémentaire de
la méta-analyse standard, et aide à interpréter les résultats d’études
de neuroimagerie ainsi qu’à formuler des hypothèses ou des a priori
statistiques.
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1 O V E R V I E W

Neuroimaging techniques such as fMRI offer insights into the spatial
organization of the brain, and the links between brain structure and
behavior. The neuroimaging literature has been growing very rapidly,
and now over 6 000 neuroimaging studies are published every year1.
Extracting reliable knowledge from this huge amount of results is
difficult, as terminology and experimental paradigms are not yet
formalized, and reported findings contain many false discoveries.
Therefore, important research efforts are dedicated to meta-analysis:
pooling many published studies to perform statistical analysis of their
findings. This enables identifying effects that are reported consistently
across experiments. So far, meta-analysis has focused on sets of studies
that investigate a common, well-defined psychological concept, such
as a disease or a mental process. The objective is to detect a significant
concordance of results within such homogeneous samples.

In this thesis, we develop a new framework for meta-analysis, which
treats it as a prediction problem. The task is to use text, such as the
description of a neuroimaging experiment, to predict the probable
locations of the associated observations in the brain. Mapping behav-
ior or phenotypes to brain structures is often called encoding. Our
predictive framework is complementary to standard meta-analysis,
which focuses on statistical inference and hypothesis testing.

In a supervised learning setting, we train multivariate regression
models to map vector representations of neuroimaging reports to
spatial densities over the brain. This approach is not restricted to
well-defined and frequently investigated neurological phenomena. It
opens the door to new applications of meta-analysis, to summarize
and explore the literature, generate hypotheses and formal priors
for new experiments, and ground the interpretation of neuroimaging
results in a comprehensive view of published findings. In this chapter,
we outline the structure of this manuscript.

1.1 large-scale meta-analysis

In this first part, we introduce brain mapping methods and the main
functional neuroimaging modality considered in this thesis: func-
tional Magnetic Resonance Imaging (fMRI). We describe the standard
approach to collection and statistical analysis of fMRI data. We also

1 https://www.ncbi.nlm.nih.gov/pubmed/?term=%22neuroimaging%22

1
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1.2 mapping text to brain locations 2

describe how neuroimaging results are reported, either in the form
of statistical maps of the brain or of sets of coordinates for the lo-
cations of neurological observations. We then turn to meta-analysis:
collecting reports of neuroimaging observations and analyzing them
at the study level. We describe standard approaches to meta-analysis,
and summarize how the work developed in this thesis departs from
existing methods. The last chapter of this introduction explains how
we collected the largest existing dataset of neuroimaging publications
and associated brain locations. We rely on this dataset throughout the
rest of this thesis to train and validate statistical models.

1.2 mapping text to brain locations

The second part of the manuscript builds a formal setting for super-
vised meta-analysis of neuroimaging studies. We describe our super-
vised learning framework, how we represent text and neuroimaging
data and how we evaluate the generalization performance of statistical
models. We also introduce our multivariate linear regression approach
to mapping neurological terms to spatial densities over the brain. The
supervised learning setting naturally provides us with tools for model
selection and enables us to quantitatively compare models and data
representations. Finally, we show that by embedding text into brain
space, encoding models enable exploiting the large number of openly
available neuroimaging reports that only contain text – i. e. no brain
images nor stereotactic coordinates. This allows us to delineate neural
support of diseases for which little imaging data is available.

1.3 mapping arbitrary queries

In the third part, we extend our encoding models to leverage rela-
tionships binding the terms used in neuroscience reports. We also
introduce a mechanism for feature selection suited to our particular
setting – which involves a very high-dimensional output space as there
is one dependent variable for each voxel in the brain. This enables
the encoding models to handle a wide class of inputs, from single,
seldom-used neuroimaging terms to full articles. Capturing relations
between terms alleviates the problem of inconsistent terminology. It
also enables models to cope with the fact that most terms of inter-
est are very rare, occurring in less than 1% of articles. This scarcity
is characteristic of high-cardinality sets of discrete objects, in which
occurrence frequencies often follow a power law (a. k. a. Zipf law for
the special case of word occurrences). Dealing with this curse of the
power law, and learning from few observations, is a central theme of
this thesis. This challenge arises in many other learning tasks, such as



1.4 decoding brain images 3

recommendation or prediction tasks involving categorical variables.
This third part also describes an extensive set of experiments that
measure the generalization performance and the sample complexity
of meta-analysis methods.

1.4 decoding brain images

In the last part of this thesis, we shift to a different problem. Instead of
using text to predict brain images, we perform the reverse task. Given
a statistical map of the brain, we predict the mental conditions it is
associated with. We frame this as a supervised classification task, and
use many neuroimaging studies from a large online repository to train
non-linear decoding models. Unlike previous decoding studies, we
strive to distinguish several dozens of labels, covering a wide range of
mental states. Again, we are confronted with the problem of terms that
are referenced in very few experiments. We show that it is possible to
distinguish many different mental states from brain imaging data, and
that with the large datasets that were gathered by the neuroimaging
community in recent years, non-linear models begin to outperform
the linear models that are typically used for decoding.

1.5 conclusion

In the conclusion, we summarize our results and the difficulties that
we met during the course of this thesis. We also present open data,
open-source software, and an online platform for meta-analysis that
resulted from our work.
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2 B R A I N M A P P I N G P R I M E R

Brain mapping studies associations between mental functions or dis-
eases and anatomical structures in the brain. In order to do so, it relies
heavily on neuroimaging – techniques, such as Magnetic Resonance
Imaging (MRI), that acquire images of the brain’s structure, or record
signals produced by its activity.

Brain mapping and neuroimaging have important applications in
clinical neuroscience. For example, MRI can reveal atrophy of some
brain structures in patients suffering from Alzheimer’s disease. Such
observations are useful for diagnosis and to understand the mecha-
nisms that underlie the disease.

Neuroimaging also helps cognitive neuroscience to study the spatial
organization of the brain. It is used to delineate the neural support of
mental functions: identify regions or networks – parts of the brain –
that are recruited to implement each mental process. For example, the
first stages of processing visual information take place in the occipi-
tal lobe; the precentral gyrus is involved in planning and executing
movements; Broca’s area, in the frontal lobe, plays an important role
in language comprehension and production. Many such associations
are stable across individuals, and brain mapping can be undertaken
at the individual or at the population level.

Functional neuroimaging techniques are particularly important for
brain mapping. They provide direct or indirect measures of neural
activity. They can thus be used to study how stimulating subjects in
a particular way – such as showing them a picture of an object – or
asking them to perform a certain task – such as reading a sentence out
loud – correlates with their brain activity.

These techniques have provided many insights into the roles and
interactions of brain structures during the past decades. Functional
mapping of the brain is a vast research field that publishes thousands
of articles every year. In this thesis, we develop methods to perform
large-scale statistical analysis of the neuroimaging literature, in or-
der to extract general and reliable knowledge about the brain from
thousands of published studies.

In this chapter, we describe how neuroimaging studies acquire
and analyze data, and how they represent and communicate their
findings. In subsequent chapters, we will turn to meta-analysis. We
will aggregate and analyze results from many studies, to extract
reliable statistical summaries, and to build predictive models of the
statistical links between brain structure and function.

5



2.1 templates and spatial normalization 6

To build an atlas of the human brain, and to associate mental func-
tions or disorders with positions in this organ, we need a spatial
reference. Moreover, in order to find links that hold for the human
population – and not only for individual subjects – and to assemble
findings from different neuroimaging studies, it must be possible
to register individual brains to a common reference. Hence, before
describing methods for statistical analysis of neuroimaging data, we
begin with spatial normalization, and explain how brains of different in-
dividuals, scanned in laboratories across the world, can be embedded
in a common spatial coordinate system.

2.1 templates and spatial normalization

Brains of different individuals have different shapes and sizes. Still, up
to a nonlinear deformation, many aspects of their spatial organization
are common, and brain mapping often aims to delineate regions that
play similar roles in all individuals. In order to compare brain activ-
ity across individuals and experiments, and to find commonalities
and differences, it is necessary to align brain images. Once images
are aligned, positions in different images correspond to the same
anatomical structures, and can be compared. This alignment is called
coregistration. Images of different brains are translated, rotated, scaled,
and deformed non-linearly until inter-individual variability in shape,
size and position is sufficiently small (about 1 cm). Only then, point-
wise comparison of brain images becomes meaningful. Even when
we perform individual-level analysis, and process each individual’s
recorded brain activity separately, it can be beneficial to align the
results obtained for several brains in order to assess similarities. This
is typically done by registering all brain images to a standard brain
template, that was obtained by coregistering and averaging anatomical
images from many individuals.

2.1.1 The ICBM 152 template

The first reference used for spatial normalization was the 1988 Ta-
lairach and Tournoux atlas (Talairach and Tournoux, 1988), that was
created by dissecting and labeling a single brain. Using this atlas is
problematic for several reasons: i) it is based on the brain of a single
60-year old woman and is not representative of the whole population,
ii) no MRI scan is available for this individual, which prevents the use
of automatic registration techniques, and iii) only the left hemisphere
was labeled, then reflected to obtain the right hemisphere, but there
are some well-known asymmetries in normal brains. An in-depth
discussion of the limitations of this spatial reference is provided in
Devlin and Poldrack (2007).
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Figure 2.1: ICBM 152 template. This anatomical image was created at the MNI

by coregistering and averaging brain scans of 152 adults. This template also
defines a coordinate system. On this plot, the image is sliced in the x, y, and
z directions at the origin of the coordinate system, and the cross shows the
axes. The numbers at the bottom of each plot indicate the coordinates (in
millimeters) at which the 3-dimensional image is sliced, i. e. x = 0, y = 0,
z = 0. Once an image is registered to this template, locations in the image
can be expressed in this standard spatial reference of the human brain.

The modern approach to spatial normalization is therefore to use an
image-based template obtained by averaging brain scans from many
individuals. The MNI 305 template (Evans et al., 1993) was created at
the Montreal Neurological Institute (MNI) by registering 305 structural
(anatomical) MRI images to the Talairach atlas brain. The current
standard template is the ICBM 152 template (Fonov et al., 2009). It
was created by registering 152 higher-resolution MRI images from the
International Consortium for Brain Mapping (ICBM) project to the MNI

305 template and averaging them. The ICBM template is often referred
to as the “MNI 152 template”, or simply “the MNI template”. Standard
neuroimaging data analysis therefore typically entails registering all
the acquired brain images to this standard (synthetic) brain. The ICBM

152 template is shown in Fig. 2.1.

2.1.2 Stereotactic coordinates

2.1.2.1 The MNI 152 reference

Once images are registered to the MNI template, brain locations can
be expressed in terms of a standard spatial coordinate system, shown
in Fig. 2.1. The different anatomical structures in the brain are aligned
and can be found at the same coordinates.

2.1.2.2 Positioning voxels

Even when images are registered to a template and are therefore in
the same coordinate space, they may have different resolutions or a
different Field of View (FoV). Images contain measurements spaced
on a regular spatial grid of voxels – the 3-dimensional equivalent of
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pixels. An image is then described by: i) a data array, that holds a
value for each voxel, and ii) an affine transformation, represented
by an augmented matrix1, that maps voxel indices to coordinates in
the spatial coordinate system of the brain (in millimeters). Therefore,
images can be downsampled, cropped, etc. , while remaining in the
MNI space without losing the essential property that for each voxel,
we can compute its MNI coordinate, and at that coordinate, the same
anatomical structure is found in all images.

Hence, the MNI standard template and coordinate system enable
communicating and comparing results across individual subjects, stud-
ies and labs. This can be done by providing full brain images registered
to the template, or providing the coordinates of observations (for ex-
ample of peaks of brain activity) in the standard coordinate system.
This common space is therefore essential for brain mapping, and par-
ticularly for meta-analysis – pooling and analyzing results from several
studies, which is the focus of this thesis.

2.2 statistical parametric mapping

Brain mapping estimates statistical links between measurements made
in the brain – for example by an MRI machine – and phenotypic or
behavioral quantities of interest, such as a particular mental condition.
The Statistical Parametric Mapping (SPM) approach (Penny et al., 2011)
consists in obtaining many brain scans, and using this sample to
compute a statistic for each voxel.

For example, in Voxel-Based Morphometry (VBM), we compute at
each voxel a measure of the local gray matter density. We can obtain
such images for a group of Alzheimer’s disease patients and for a
group of healthy controls. Then, for each voxel, we can compute
the (rescaled) difference between the group means. We thus obtain
one statistic for each voxel, which together form a statistical map.
A statistical test can then be applied to identify voxels in which
the observed statistic is significant – for example to reject, at some
positions in the brain, the hypothesis that the local gray matter density
is the same in patients as in healthy controls.

Functional neuroimaging techniques such as fMRI measure the brain
activity. During a session, the brain activity of an individual is scanned
repeatedly. For each voxel, we thus obtain a time series of measure-
ments. For each time point, i. e. for each measurement, we also have
variables that describe the mental condition of the subject – for exam-
ple a binary variable indicating whether the subject is hearing a sound
or not. The voxel time series can then be regressed on these behavioral
descriptors. This yields one brain map of regression coefficients for
each behavioral descriptor. Statistical tests can be applied, for example

1 https://en.wikipedia.org/wiki/Affine_transformation#Augmented_matrix

https://en.wikipedia.org/wiki/Affine_transformation#Augmented_matrix
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to identify regions in which hearing a sound has a significant effect
on brain activity – most likely the auditory cortex.

The nature of the measurements, the data processing steps, and the
topics of study vary between experiments and imaging modalities.
Still, the SPM framework remains similar, and this type of analysis
always results in statistical maps of the brain. In the next two sections,
we describe in more detail the statistical analysis of fMRI data, which
constitutes a canonical application of the SPM framework.

2.3 functional mri

Because of its high spatial resolution, fMRI is particularly adapted
for brain mapping. The tools developed in this thesis rely mostly on
statistical analysis of aggregated results from fMRI studies. Therefore,
in this section and the next, we summarize how fMRI data are obtained
and analyzed. Many aspects of the analysis of these data are shared
with other modalities. This chapter only covers the basic notions
needed to understand the rest of this thesis. For an extensive reference
of fMRI analysis, see for example Poldrack, Mumford, and Nichols
(2011).

2.3.1 The BOLD signal

fMRI provides an indirect measure of brain activity. The most common
fMRI technique, introduced in Ogawa et al. (1990), exploits the fact that
when neurons in a certain area of the brain become active, the blood
flow to that area increases. This increased blood flow overcompensates
the oxygen consumption of firing neurons, resulting in an increase
of the local blood oxygenation. This change in oxygenation can be
detected with an MRI machine, and this is the signal used in fMRI. It is
called the Blood Oxygenation Level Dependent (BOLD) signal.

fMRI studies therefore record the BOLD signal in the brains of subjects
in a scanner. Data analysis then aims to relate this indirect measure of
brain activity to the mental processes that the subjects are instructed
to perform, or the stimuli they receive.

2.3.2 The Haemodynamic Response Function

The change in blood oxygenation does not happen instantaneously
when neuronal activity takes place. The increase in blood flow reaches
its peak around 5 seconds after an impulse of neuronal activity, and
lasts several seconds. The BOLD signal measured by the MRI machine
is therefore the output of a filter, due to blood flow dynamics, that is
applied to the signal we are truly interested in – the neural activity.
This filter can be well approximated as a Linear Time-Invariant (LTI)
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Figure 2.2: The HRF: the impulse response of the BOLD signal. The peak of
the BOLD signal comes several seconds after a spike of neural activity, and is
followed by an undershoot. Synthetic HRF obtained with the Nistats library
(https://nistats.github.io)

filter. Its impulse response is called the Haemodynamic Response
Function (HRF) and is shown in Fig. 2.2.

2.3.3 fMRI data

During an fMRI acquisition, the subject, or participant, lies in an MRI

scanner. The scanner periodically records the BOLD signal in the brain
of the participant. This is is typically done one 2-dimensional slice
at a time, and the repetition time (TR) is around 2 seconds. During
each cycle, a 3-dimensional image of the brain is acquired, which
contains a BOLD signal measurement for each voxel (3-dimensional
pixel). Therefore, the whole acquisition results in a 4-dimensional data
array. For each voxel, we have one measurement per time point, and
we may talk about voxel time-series.

2.3.4 Preprocessing

Before fMRI data can be analyzed, several preprocessing steps are ap-
plied: i) motion (movements of the subject in the scanner) is estimated
and corrected, ii) images are co-registered, iii) images can be spatially
smoothed, iv) a temporal registration can be applied to align events
or conditions to which participants are subjected, and v) voxel time
series are detrended. Spatial smoothing is often applied, usually with
a Gaussian kernel, because it alleviates the issue of inter-subject vari-
ability, and it increases the statistical power of analyses by pooling
information from neighboring voxels.

https://nistats.github.io
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2.4 analysis of task fmri data

fMRI experiments are often categorized into two main setups: task
fMRI, in which participants perform tasks or receive stimuli in the
MRI scanner, and resting-state fMRI, in which participants remain idle
in the scanner while their brain activity is recorded. Task fMRI is
particularly relevant to this thesis, as it is an essential tool for brain
mapping. Indeed, these experiments enable researchers to study the
statistical link between the stimuli presented to the subjects and their
brain activity. In this section, we sketch an overview of task fMRI data
acquisition and analysis.

2.4.1 Experimental setup

In task fMRI, a scanner records the brain activity (the BOLD signal) of
participants while they traverse a series of mental conditions. The goal
is to find correlations between these mental conditions and activity in
certain brain regions. Placing subjects in a mental condition can involve
presenting them with certain stimuli, such as images of faces, music,
or flickering checkerboards. It can also involve asking them to perform
certain tasks, such as mental arithmetic, formulating a sentence, or
remembering a story. Each time point can be described by the tasks
and stimuli that are occurring at this instant: what is displayed on
the screen, what sound is being played, whether the subject is resting
or performing a task. For example, such a descriptor could take the
value 1 if a face is shown on the screen and 0 otherwise. It is up to
the researcher to decide which aspects of the stimuli and tasks are
relevant, and to design these vectorial descriptors. The subsequent
analysis aims to find correlations between these mental condition
descriptors and the voxel time series – the BOLD signal recorded in
each voxel at each cycle of the acquisition.

2.4.2 Modelling

The neural response is modeled as a linear function of the descriptors
of tasks and stimuli (Friston et al., 1994). Remember that the BOLD

signal, measured by the MRI scanner, is close to the result of a con-
volution of the neural activity signal with the HRF. We denote n the
number of time points, m the number of voxels in the brain, and d the
number of descriptors of the stimuli or mental condition. Each time
point is then described by i) a 3-dimensional image, which is flattened
to form a m-dimensional vector, and ii) a d-dimensional vector of
mental condition descriptors. By vertically stacking these vectors to
form matrices, we can write:

Y = h ? X̃ B+ E , (2.1)
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where Y ∈ Rn×m is the BOLD signal, h is the HRF (assumed to be
known in the simplest case), ? denotes convolution, X̃ ∈ Rn×d are the
mental condition descriptors, B ∈ Rd×m are the parameters of the
linear model, that we need to estimate, and E ∈ Rn×m is unexplained
noise. We strive to estimate B, which links the measurements Y to the
mental conditions X̃. By computing the convolution

X , h ? X̃ , (2.2)

we can form a matrix of regressors X ∈ Rn×d. This design matrix con-
tains the descriptors of mental conditions, convolved with the HRF. It
is also possible to add regressors corresponding to the convolution
with derivatives of the HRF to capture small time displacements, which
alleviates the need for temporal registration in preprocessing. More-
over, some regressors are included to capture the effect of nuisance
parameters or confounds, such as motion parameters (movements in
the scanner). Once the design matrix is built, we can write the General
Linear Model (GLM):

Y = XB+ E . (2.3)

2.4.2.1 Estimating model parameters

In the most common case of a full rank design matrix, the linear model
parameters B can be estimated with Ordinary Least Squares (OLS)
regression:

B̂ = (XTX)−1XTY . (2.4)

The covariance of B̂:,j for voxel (dependent variable) j is estimated by:

V̂j = σ̂
2
j (X

TX)−1 , (2.5)

where

σ̂2j = ||Y:,j −X B̂:,j||
2
2 (2.6)

estimates the residual variance.
However, we should note that the BOLD noise is not independent

identically distributed (i.i.d.), and in particular, it is temporally autocor-
related. Therefore, it is necessary to perform prewhitening before fitting
the linear model. The prewhitening can be carried out by fitting a
first linear model, using the residuals to estimate the covariance of the
noise, and finding a basis K of Rn in which this covariance becomes
the identity matrix. Each term in Eq. (2.3) is then premultiplied with
K:

KY = KXB+KE . (2.7)

Once the prewhitening has been applied, B can be estimated with OLS.
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2.4.3 Contrasts

The coefficient maps B estimate the effect of mental conditions on
brain activity. However, each mental condition, described by stimuli or
tasks, triggers a variety of mental processes in the brain. For example,
pressing a button in response to a visual cue involves seeing and
recognizing the stimulus, choosing the appropriate action, and moving
to press the button (Poldrack and Yarkoni, 2016). Usually, we are
interested in a subset of these mental processes, such as planning and
executing the motor response, and want to isolate its effect.

A generally accepted hypothesis states that we can add a processing
step to a task without causing important alterations to the other mental
processes involved. This is sometimes referred to as the assumption
of “pure insertion” (Sternberg, 1969). It then becomes possible to
isolate the process of interest by contrasting carefully designed mental
conditions that vary only with respect to that key process. For example,
we could isolate the processes involved in the motor response by
contrasting the condition in which participants press the button in
response to a visual stimulus against a condition in which they see
the stimulus but do not move. Based on the same logic, to isolate the
effect of recognizing a face, we might contrast the condition “seeing
a familiar face” versus the condition “seeing an unknown face”. By
doing so, we subtract the effects due to the process of visualizing
a face and perceiving its features, and isolate the effect of the face
recognition itself.

Applied to fMRI data, this subtraction logic leads us to compute
differences, or more elaborate linear combinations, of the coefficients
of the GLM that correspond to different mental conditions. As the
coefficient matrix B has d columns, these linear combinations, known
as contrasts, are expressed as vectors of Rd.

2.4.4 Statistical inference

The effect size B does not have a meaningful scale. We are usually not
interested in the effect size, but in discovering if the effect is statistically
significant. For a contrast c ∈ Rd on the model parameters, for each
voxel 1 6 j 6 m,

cT B̂:,j√
cT V̂jc

∼ tν , (2.8)

where tν is the Student distribution with ν = n− d− 1 degrees of
freedom. By computing this statistic for each voxel, we can form
statistical maps, or contrast maps, of the brain, in which each voxel
holds a T statistic. For convenience, it is also common to convert the
T statistics to Z statistics, to bypass the need to provide the degrees
of freedom when sharing or interpreting the images. These brain
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images holding one statistic in each voxel are often called T maps,
Z maps, and β maps for the unnormalized GLM coefficients. We can
compare the T (or Z) statistic at each voxel with quantiles of the
Student (or normal) distribution to decide if the effect is statistically
significant or not. Of course, other statistical tests are possible on the
GLM parameters. For example, we can perform an F-test if we are
interested in a multi-dimensional contrast. This can happen if some
relevant aspect of a mental condition is captured by several descriptors,
such as the one-hot encoding of a category of stimuli.

When performing such statistical tests, we should be aware that
we are performing one test for each voxel, and there are hundreds
of thousands of voxels in the brain. We should therefore correct for
multiple comparisons; for example by using the Benjamini-Hochberg
procedure to control the False Discovery Rate (FDR) (Benjamini and
Hochberg, 1995), or the Bonferroni procedure to control the Family-
Wise Error Rate (FWER) (Dunn, 1961). We can then compute a corrected
significance threshold, and visualize a brain map of the T or Z statistics
at each voxel for the contrast of interest. Some examples are shown in
Fig. 2.3.

2.4.5 Group-level analysis

In some cases, we are not interested in the effect of a mental condition
on a particular subject’s brain activity, but in the population in general.
Sometimes, we may also be interested in discovering how this effect
varies from one population to another, such as patients suffering
from a particular disease against healthy controls. Answering such
questions, and drawing conclusions that hold for the population under
study, is the goal of group-level analysis. A tutorial can be found in
Thirion (2016). In order to find effects that are common across subjects,
and generalize to the population, we must take into account two
sources of variance: the intra-subject variance – the variance of the
estimates of each subject’s individual brain maps, and the inter-subject
variance – the variability between subjects.

The simplest approach relies on a random effects model. This amounts
to making the approximation that all subjects have the same level of
intra-subject variance. Such an analysis begins by fitting a subject-level
– also called first-level – GLM, as described in Section 2.4.2, for each
subject enrolled in the study. In order to compare effects across indi-
viduals, their brain images must be registered to a common template,
typically the MNI template (Section 2.1.1). This can be done before
fitting the first-level GLM, or after – in this case the individuals’ GLM co-
efficients, or βmaps, are registered to the template. Then, a second-level
– or group-level – GLM is fitted to regress the coefficients of individual
first-level GLMs on descriptors of the individuals themselves. These
regressors can indicate for example age, sex, or the presence of a
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Figure 2.3: Subject-level example T maps: “left - right button press” contrast.
These maps from Pinel et al. (2007), corresponding to three different subjects
(participants), were obtained from a task where subjects had to press buttons
either with their left hand or their right hand. A GLM is fitted to the BOLD

time series, and these maps show T statistics for the contrast between the
conditions “pressing a button with the left hand” and “pressing a button
with the right hand”, i. e. the difference between the GLM coefficients cor-
responding to these two conditions. We can see that this contrast results
in positive values in the right motor cortex, which controls the left part
of the body, and negative values in the left motor cortex, which controls
the right part of the body, as expected. On this plot, we thresholded the
maps to control the FDR at 5%, using the Benjamini-Hochberg procedure, as
implemented by the Nistats library. We can also note that these images are
registered to the MNI space, which enables easy comparison of the subjects,
and that in this case brain activations are very similar across subjects. The
numbers at the bottom of each plot indicate the coordinates at which the
3-dimensional image is sliced.

disease. In the simplest case, we are only interested in the mean effect
of a mental condition in the population, and in this case the regressors
for the second-level model reduce to a column of ones: 1N, where N is
the number of subjects. These subject descriptors form a second-level
design matrix Z ∈ RN×a, where N is the number of subjects and
a the number of regressors. For a particular first-level contrast, we
can denote C ∈ RN×m the stacked β maps (GLM coefficients) of the
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individual subjects for this contrast. Then, the second-level GLM writes:

C = ZG+E , (2.9)

where G ∈ Ra×m are the second-level model parameters, and the
noise E is i.i.d. because we have assumed that all subjects have the
same variance, and noise on the estimated β maps is independent
from one subject to another. Then, the second-level model coefficients
G and their variance can be estimated from a least-squares fit, in a
similar way as what was done for the first-level GLM. Finally, it is
possible to compute contrasts and test statistics for the second-level
model coefficients, in the same way as for the first-level model. Thus,
one obtains group-level statistical maps.

An example of such a group-level statistical map is shown in Fig. 2.4.
It shows statistics for a simple one-sample test, which corresponds
to the case where we are simply interested in the mean effect of a
particular contrast (in this case pressing a button with the left finger
vs. pressing a button with the right finger) at the population level.
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Figure 2.4: Group-level example Z map: population average of “left - right
button press”. This map was obtained by performing second-level analysis on
the same data as Fig. 2.3 for 30 subjects, and for the same contrast: pressing
a button with the left hand vs. the right hand. In this case we are interested
in the mean effect in the population, hence the second-level design matrix is
simply a column of ones. As was the case for individual subject maps, we
see a contrast between left and right motor cortices. We also see the SMA and
the secondary sensory cortex. This map was computed using Nistats.

2.4.6 Peak activation coordinates

To communicate the results of an fMRI study, it is possible to show
plots of the resulting statistical maps (usually only the part above
the significant threshold), as is done in Fig. 2.3 and Fig. 2.4. It is also
possible (and recommended) to share the full unthresholded statistical
maps on an online repository such as NeuroVault2, after registering
them to the MNI template. Finally, it is common to report peak activation

2 https://neurovault.org

https://neurovault.org
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coordinates: the locations of significant effects (brain activations) in MNI

space.
To obtain peak activation coordinates, the researcher registers the

statistical map to the MNI template. Then, she thresholds the map at
the significance level. This thresholding forms clusters, connected com-
ponents of above-threshold voxels in the brain. Within each cluster, she
finds the position of the cluster maximum and reports its coordinates
in the standard MNI coordinate system, along with the value of the test
statistic at the corresponding position, and possibly other information
such as the cluster size.

Tables of such peak activation coordinates appear in thousands of
fMRI scientific publications. All software packages used for statistical
analysis of fMRI data can produce reports that contain these tables.
This allows us to extract a summary of the results of an article, in
a standard spatial coordinate system, that enables comparison of
findings across studies and laboratories, even when we do not have
access to the actual statistical maps. These coordinates are therefore
an essential resource. They are the basis of Coordinate-Based Meta-
Analysis (CBMA), and we collected such coordinates from thousands
of articles (Chapter 4) and used them throughout the rest of this thesis
(Part II, Part III).

2.4.7 Decoding

We have seen how, after recording the BOLD signal while subjects
receive stimuli or follow instructions, it is possible to find signifi-
cant correlations between the presence of a mental condition and
the activity of a particular brain region. This is done by regressing
voxel time series on descriptors of mental conditions, as described in
Sections 2.4.2 to 2.4.5. This process is called encoding: the fitted GLM

encodes, or embeds, mental conditions into brain space.
Once these maps are obtained, we can ask which aspects of a map

characterize the associated mental condition: given the statistical map,
can we predict what is the associated mental condition? Using brain
images to predict behavior or psychological conditions is called decod-
ing (Cox and Savoy, 2003). Decoding models learn to identify brain
activation patterns that are specific of a particular mental condition
within a dataset. Therefore, they contain valuable information for
brain mapping, and are complementary to encoding models (Nase-
laris et al., 2011). Performing decoding with very large output spaces,
distinguishing a wide spectrum of mental conditions, enables formu-
lating hypotheses or drawing conclusions about the cognitive role of
particular brain regions or networks. This is known as reverse inference
(Poldrack, 2006, 2011; Varoquaux and Poldrack, 2019). In Part IV, we
train decoding models in a meta-analysis setting, relying on a dataset
that regroups many different fMRI studies, tasks, and mental condi-
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tions. Covering a wide range of mental conditions is a motivation for
decoding meta-analyses and an important aspect of Part IV.

Decoding is a supervised learning problem. The inputs are brain
images, and the targets are mental conditions. Depending on the
descriptor of mental conditions that we are trying to predict, it can be
a classification problem – e. g. classify maps associated with watching
a face vs. watching a house as in Haxby et al. (2001), or a regression
problem – e. g. predict the angle of a checkerboard. If we use a linear
model, the coefficients for a particular output have the dimension of a
brain map, and highlight the brain regions that are predictive of that
mental condition. Being able to visualize and interpret these maps is
thus a motivation for using linear models. An example of a decoding
classifier’s coefficient map is shown in Fig. 2.5.
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Figure 2.5: Decoding classifier weights: classifying “face” versus “house”.
Using data from Haxby et al. (2001), we train a logistic regression to distin-
guish the conditions “watching a picture of a face” and “watching a picture
of a house”. To cope with the high dimensionality of brain images, we apply
a graph-net penalty on the classifier weights (Grosenick et al., 2013), which
is why the coefficient map is sparse. In this case, the features provided to
the decoder are not statistical maps, but directly the BOLD time series. This is
possible without particular adjustments for this dataset because of its par-
ticularly simple block design with long durations. The resulting coefficient
maps highlights the FFA, which is involved in face and object perception
and recognition (Kanwisher, McDermott, and Chun, 1997). This map was
obtained with the Nilearn Python library (https://nilearn.github.io/).

Usually, the input features are obtained from a first-level encoding
GLM, fitted as in Section 2.4.2.1 (Mumford et al., 2012). We can choose
to use the coefficients of the GLM (the β maps), or, more commonly,
statistical contrast maps (T or Z maps, Section 2.4.4). However, it is also
possible to predict mental conditions directly from the BOLD signal
itself (Loula, Varoquaux, and Thirion, 2018).

Decoding is a difficult statistical learning problem, as the input
features (brain maps) are very noisy and high-dimensional – there
are hundreds of thousands of voxels in the brain, and sample sizes

https://nilearn.github.io/
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are usually very small. Because of this high-dimensional setting, the
supervised learning engines used for decoding are typically linear
models, such as Support Vector Machines (SVM), logistic regression, or
Linear Discriminant Analysis. Moreover, several strategies have been
proposed to cope with the high dimensionality of brain images. These
include feature selection (Kriegeskorte, Goebel, and Bandettini, 2006;
Pereira, Mitchell, and Botvinick, 2009), dimensionality reduction based
on decomposition methods such as Independent Component Analysis
(ICA), Principal Component Analysis (PCA) or dictionary learning
(Beckmann and Smith, 2004; Dohmatob et al., 2016; Mourao-Miranda
et al., 2005; Varoquaux et al., 2010), projections on parcellations of the
brain (Etzel, Gazzola, and Keysers, 2009; Hoyos-Idrobo et al., 2018),
and several forms of regularization (Baldassarre, Mourao-Miranda,
and Pontil, 2012; Gramfort, Thirion, and Varoquaux, 2013; Grosenick
et al., 2013; Michel et al., 2011). Sparsity-inducing regularization terms,
such as `1 or elastic-net penalties, are popular as they identify the
relevant brain regions. Penalties that leverage the spatial structure
of images – and the brain – such as Total Variation have also been
successfully used.

2.5 conclusion

In this chapter, we have introduced the objectives of brain mapping
and described the analysis of fMRI data, an essential tool for this
research field. In particular, we have seen how statistical analysis
of fMRI data can provide maps of brain regions whose activity is
significantly associated with a particular mental condition, and how
these statistical maps can be registered to a standard spatial reference
of the human brain, the MNI space. This is important, as most of this
thesis (Part II and Part III) will focus on statistical analysis of peak
activations – significant local maxima in statistical maps, whose MNI

coordinates are reported in scientific publications.
We have also introduced the concept of decoding: predicting mental

states, based on brain images such as encoding statistical maps. We
will come back to decoding, in a large scale setting involving many
conditions and fMRI studies, in Part IV.

Finally, we can note that the MNI space is used beyond reporting
peak activation coordinates in task-fMRI encoding studies. The dataset
we will use in subsequent chapters mostly contains fMRI peak activa-
tions, but it also includes some coordinates from other sources, which
we briefly summarize here.
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2.5.1 Other sources of activation coordinates

The stereotactic coordinates we will gather and analyze in subsequent
parts can come from several sources, beyond task-fMRI.

2.5.1.1 Resting-state fMRI

We have described task fMRI, a paradigm where subjects perform tasks
or receive stimuli while a scanner records their brain activity. Another
paradigm is resting-state fMRI, where subjects lie idle in the scanner,
without any stimuli or instructions (but hopefully without falling
asleep). Resting-state fMRI enables studying brain connectivity: how
the brain is spatially organized in functional networks of regions
that communicate with each other. These correlation patterns across
regions in the resting brain, or connectomes, have several uses, which
include deriving biomarkers for prediction of behavior or diseases
(Dadi et al., 2019). In studies involving resting-state and connectivity,
it is also possible to report the locations of the regions considered (for
example of a seed region whose connectivity to the rest of the brain is
under study) in scientific publications.

2.5.1.2 Other modalities

Beyond fMRI, other modalities are extensively used for brain mapping.
Positron Emission Tomography (PET) measures emissions from radio-
tracers that are injected in the bloodstream. Electroencephalography
(EEG) and Magnetoencephalography (MEG) provide a direct measure
of the brain’s electrical activity. They are popular because they have a
better time resolution than fMRI, even though their spatial resolution
is worse and the analysis of their recordings involves a difficult source
localization inverse problem.

VBM measures differences in local concentrations of brain tissue.
For example, it can identify regions in which gray matter density is
smaller in patients that suffer from a particular disease. As in fMRI,
areas where a significant association exists can be identified with
statistical tests and their positions can be reported in MNI space.

Another important modality is Diffusion Tensor Imaging (DTI),
which probes the structural connectivity of the brain by tracking bun-
dles of axons. Again, DTI studies can report the locations of regions
where effects were found (for example significant differences in Frac-
tional Anisotropy, which is thought to reflect important features of the
white matter such as fiber density).

Finally, studies of injured patients, such as victims of strokes, may
report the locations of lesions.

As long as images are registered to MNI space, results from all these
modalities can be collected, pooled, and leveraged for meta-analysis,
which is introduced in Chapter 3.



3 M E TA - A N A LY S I S

In Chapter 2, we have described standard statistical analysis of fMRI

data, and how it can be used for brain mapping. Based on these tech-
niques, a huge literature has grown: over 6 000 publications containing
the term “neuroimaging” appear every year on PubMed1. Extracting
reliable knowledge about the brain from this impressive amount of
results poses some challenges. Most studies are conducted with few
subjects, and many report results that cannot be reproduced. Moreover,
many findings are specific to a particular experimental paradigm or
protocol, and do not generalize to slightly different settings. Finally,
many different aspects of cognition are studied almost in isolation,
and integrating results across experiments and labs is difficult. Meta-
analysis can address these limitations. It consists in pooling many
neuroimaging studies and identifying consistently reported associa-
tions between brain regions and mental processes or diseases. In this
chapter we give an overview of standard methods for meta-analysis.
We also introduce a new approach, that we explore in the rest of this
thesis, in Section 3.3.

3.1 a complex and noisy literature

In this section we summarize the main reasons why extracting compre-
hensive and reliable knowledge about the brain from the neuroimaging
literature is difficult.

3.1.1 Power failure

Many neuroimaging studies are conducted with small sample sizes, in-
volving less than 20 subjects. This causes a lack of statistical power and
hinders reproducibility of results (Simmons, Nelson, and Simonsohn,
2011; Thirion et al., 2007). Low statistical power reduces the Positive
Predictive Value (PPV), which is the probability that a positive finding
reflects a true effect (Ioannidis, 2005). Publication bias and flexibility
in data analysis contribute to excess significance and a high rate of
false positives being reported in the literature (Button et al., 2013).
Finally, some spurious findings are reported because of inadequate
statistical methods, such as fixed-effect analyses that ignore the inter-
subject variance, or lack of correction for multiple comparisons when

1 https://www.ncbi.nlm.nih.gov/pubmed/?term=%22neuroimaging%22
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performing one statistical test for each voxel – i. e. mass univariate
analysis (Poldrack et al., 2017; Thirion, 2016).

3.1.2 Lack of generalization

Besides false positives, genuine effects can be specific to an experi-
mental setup, a particular set of stimuli or protocol, and not tied to
the targeted cognitive processes (Westfall, Nichols, and Yarkoni, 2016).
Thus, some studies report effects that are artifacts of an experimental
protocol rather than general facts about the brain, and that fail to be
reproduced in slightly different settings. Moreover, it is common for
publications to extrapolate and over-interpret results.

3.1.3 Difficulty to integrate results

Even if true effects can be isolated from false positives, building a
comprehensive brain atlas of mental processes and diseases entails
the challenging task of integrating and summarizing genuine findings.
There are many ill-defined and overlapping concepts in neuroscience,
that are studied almost independently in different sub-fields. The wide
range of mental processes and diseases under study, the diversity of ex-
periments used to probe them, and the high variability of terminology
make the integration of results very difficult (Fox and Lancaster, 2002;
Poldrack and Yarkoni, 2016). Adapted statistical methods are therefore
needed to extract general and reliable facts from the thousands of
individual studies that have already been published.

3.2 meta-analysis: testing consensus

One possible answer to the diversity and high false positive rate of neu-
roimaging results is meta-analysis. Meta-analysis consists in gathering
many neuroimaging studies and analyzing their collective findings in
a systematic way. Typically, the goal is to discover which associations
between mental processes and brain regions are reported consistently
across experiments. Meta-analysis can rely on brain images or on peak
activation coordinates (Section 2.4.6).

In Image-Based Meta-Analysis (IBMA), we use the full statistical
maps that each study computes from neuroimaging data (Section 2.4).
IBMA collects unthresholded statistical maps from different studies and
fits a study-level GLM, in a way that is similar to fitting second-level
models as described in Section 2.4.5.

When feasible, IBMA is the preferred method (Salimi-Khorshidi et al.,
2009). However, the vast majority of neuroimaging studies does not
share unthresholded statistical maps. IBMA therefore cannot cover a
representative portion of the literature, and for many topics of interest
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Figure 3.1: example CBMA for “emotion”. This simplified illustration sum-
marizes the CBMA process: we collect many studies that mention “emotion”,
extract their coordinates, estimate the coordinate density or the activation
likelihood, and possibly threshold the resulting map at some significance
level. On this illustration we see that the amygdala are highlighted by a
meta-analysis for “emotion”, as expected.

it is not (yet) possible to gather enough statistical maps for meta-
analysis to achieve sufficient statistical power. Therefore, the most
common approach is Coordinate-Based Meta-Analysis (CBMA), which
relies on peak activation coordinates reported in scientific publications
(Section 2.4.6).

3.2.1 Coordinate-Based Meta-Analysis

To perform Coordinate-Based Meta-Analysis (CBMA), we identify stud-
ies related to a topic of interest, such as “emotion”. We aggregate
activation coordinates reported in these studies and use them to com-
pute either a probability of containing an activation, or an activation
density, for each voxel in the brain. Then, a statistical test detects
voxels in which this statistic significantly deviates from some null
distribution. Usually, the null hypothesis is a uniform distribution of
activations over the gray matter and the null distribution is estimated
with Monte Carlo sampling.

CBMA methods differ in the way they aggregate coordinates and the
meaning of the statistic they compute for each voxel, the kernel they
use, and the way the null distribution is estimated. Still, they tend to
follow the main steps summarized in Fig. 3.1. Here we summarize
the two main approaches to this type of meta-analysis, Activation
Likelihood Estimation (ALE) and Kernel Density Analysis (KDA). A
more detailed description can be found in Wager, Lindquist, and
Kaplan (2007).
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3.2.1.1 Activation Likelihood Estimation

Activation Likelihood Estimation (ALE) considers that there is uncer-
tainty about the position of brain activations (Laird, Fox, and Price,
2005; Turkeltaub et al., 2002): the location where an activation truly
occurred can deviate slightly from the reported location. According
to this model, the true location of an activation follows a Gaussian
distribution, centered on the reported location. Analysis focuses on
computing, for each voxel in the brain, the probability that at least
one activation truly occurred in this voxel. This is the union of the
probabilities associated with each activation. If there are n activations
included in the meta-analysis andm voxels in the brain, we can denote
Xij the event that activation i, 1 6 i 6 n occurred in voxel j, 1 6 j 6 m.
The simplest form of ALE makes the important assumption that all
activations are independent. Then the probability that at least one
activation truly occurred in voxel j is

P

(⋃
i

Xij

)
= 1−

∏

i

(
1− P(Xij)

)
. (3.1)

ALE computes this probability for every voxel. This procedure is sum-
marized in Fig. 3.2a.

To establish statistical significance, the most common approach is
non-parametric, although some works such as Eickhoff et al. (2012)
have proposed analytic estimators of the distribution of the test statistic
in Eq. (3.1) under the null hypothesis. Usually, the null hypothesis
is a uniform distribution of activations over the gray matter. Many
(typically thousands) of sets of n (i.i.d.) locations are sampled from such
a uniform distribution, and the same procedure (smoothing activations
with a Gaussian kernel and computing the probability of the union of
activations, Fig. 3.2a) is applied to each synthetic sample. This yields,
for each voxel, a histogram of the activation likelihood under the null
hypothesis, to which we can compare the value obtained from the real
set of peak activation coordinates. Note that a uniform distribution of
activations does not mean that the null distribution is the same for all
voxels – for example due to smoothing and limit conditions, voxels
close to the mask border may get lower activation likelihoods under
the null hypothesis.

If we pool together all the coordinates from all studies, we ignore
the inter-study variance and are performing a fixed-effects analysis. In
this case, the discovered effects are specific to the set of considered
studies and cannot be generalized to other studies. It is also possible
to perform a random-effects analysis, where the procedure depicted in
Fig. 3.2a is applied to each study or experiment separately, yielding
one activation likelihood map, or Modeled Activation (MA), for each
group of coordinates (Eickhoff et al., 2009). When computing the MA

maps, the Gaussian kernel width can be adapted to the sample size
of each study. Then, the procedure is repeated at the study level to
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P(X0) = 0.3

P(X1) = 0.13

P(X2) = 0.55

P(∪Xi)
= 1 − P(∩X̄i)

(a) ALE

y0 = 0

y1 = 0

y2 = 1

y =
∑
yi

(b) KDA

Figure 3.2: CBMA methods. (a): ALE. Each activation yields a probability dis-
tribution over voxels. We compute the probability that at least one activation
occurred in each voxel. (b): KDA. For each voxel we count the activations
that were reported within a certain radius, obtaining a local density of ac-
tivation. Both methods can be used in a fixed-effects analysis, where all
coordinates from all studies are pooled, and a random-effects analysis, where
the inter-study variance is taken into account.

compute the probability that each voxel was activated in at least one
study. This random-effects analysis is reminiscent of the first and
second level linear models used in standard fMRI analysis (Chapter 2).
To compute the first-level maps, i. e. the MA maps, Turkeltaub et al.
(2012) recommend to take the maximum of probabilities associated
with each activation, rather than the union. This reduces the influence
of the number and proximity of activations reported by individual
studies. Moreover, they recommend to group activations by group of
subjects rather than by experiment or study, so that subject groups
participating in multiple experiments do not have a greater influence.
The final ALE map is still computed as the union of MA maps, as in
the standard ALE algorithm (Eickhoff et al., 2009).

3.2.1.2 Kernel Density Analysis

Kernel Density Analysis (KDA) (Wager, Jonides, and Reading, 2004;
Wager and Smith, 2003; Wager et al., 2003) is another popular method
for CBMA. It relies on Kernel Density Estimation (Scott, 2015; Silver-
man, 1986), usually using a hard ball for the kernel. A histogram of
activations is computed over the brain and smoothed, yielding an esti-
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mate of the density of activations. The resulting map is not interpreted
as the probability that a voxel was activated at least once, as is the
case in ALE, but as an expected number of activations within a certain
radius of each voxel. The KDA method is depicted in Fig. 3.2b. The
Monte Carlo method to obtain a null distribution for each voxel is the
same as for ALE: sample many sets of coordinates from a uniform dis-
tribution and apply the procedure shown in Fig. 3.2b to each synthetic
sample.

As ALE, KDA can be performed in a fixed-effects fashion, pooling
together all the coordinates from all studies, or in a random-effects
fashion. The latter approach is called Multilevel Kernel Density Anal-
ysis (MKDA) (Wager, Lindquist, and Kaplan, 2007). In MKDA, we start
by computing one density for each study separately, before averaging
over studies.

3.2.2 Large-scale and automated meta-analysis

CBMA methods such as ALE and KDA estimate the density of coordi-
nates of a set of neuroimaging studies and compare it to the distribu-
tion of densities under a null hypothesis. Therefore, an essential step
is the identification of neuroimaging studies related to the topic of
interest and extraction of their peak activation coordinates. Software
tools have continuously improved to make this process easier and
more reproducible.

In a manual meta-analysis, we start by searching the literature
for candidate publications which could be included, for example by
querying PubMed2. Then, we inspect the retrieved studies to manually
select those that are relevant to the topic of interest and should be
included in the meta-analysis. This is difficult, time-consuming, and, to
a large extent, subjective. Next, we manually extract the peak activation
coordinates from each of the selected studies, which is tedious and
error-prone. Finally, we can perform ALE or MKDA on the extracted
coordinates.

This manual process limits the number of studies that can be in-
cluded in the meta-analysis, hence its statistical power, and introduces
variability across researchers who might select different studies. There-
fore, tools and datasets have been created to enable more efficient
and systematic meta-analysis. The most notable efforts are BrainMap
(Laird, Lancaster, and Fox, 2005a) and NeuroSynth (Yarkoni et al.,
2011), which we describe here. More details on the associated datasets
are provided in Chapter 4.

2 https://www.ncbi.nlm.nih.gov/pubmed/

https://www.ncbi.nlm.nih.gov/pubmed/
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3.2.2.1 BrainMap

The BrainMap3 database was created to enable efficient selection
of studies and peak activation coordinates (Laird, Lancaster, and
Fox, 2005a). It is a database of manually curated coordinates and
annotations of studies. The annotations rely on a taxonomy (Fox et al.,
2005) to provide rich and structured information about each study.
With BrainMap, we can automatically select studies by relying on
their structured metadata and the BrainMap taxonomy. This is done
with the Sleuth software tool. We can then obtain the selected studies’
peak activation coordinates, which have been manually extracted and
verified, and perform ALE meta-analysis with the GingerALE software
(Eickhoff et al., 2009).

BrainMap data is entered manually by neuroimaging researchers.
The Scribe tool is used to enter the study annotations. All submitted
data is examined by BrainMap staff before being added to the database.
Therefore, the database features high-quality data. New studies still
need to be annotated and their coordinates need to be extracted
manually, but this is only done once, and in a systematic way.

3.2.2.2 NeuroSynth

As the neuroimaging literature’s growth keeps accelerating, it can
be difficult for manually curated databases to continue covering a
representative proportion of publications. The NeuroSynth tool4 was
created to address this challenge (Yarkoni et al., 2011). It automatically
downloads thousands of articles and extracts their peak activation
coordinates. It enables users to perform meta-analyses on the result-
ing dataset. Studies in the NeuroSynth dataset are labelled with the
abstracts of the corresponding publications. Instead of relying on
structured metadata, as with BrainMap, studies are selected based on
the occurrence of a single phrase, such as “working memory”, in the
abstracts. The coordinates contain more errors than in BrainMap, and
the selection of studies is far less flexible, but NeuroSynth contains
much more data and is very fast and easy to use: we only need to
type the term of interest in a web interface. NeuroSynth thus enables
powerful and fully automated meta-analysis.

An important aspect of NeuroSynth is that it replaces the non-
parametric test of ALE and MKDA – in which the null hypothesis is usu-
ally a uniform distribution of activations over the gray matter – with
a mass-univariate χ2 test of independence between voxel activations
and term occurrences in the studies’ abstracts. This is computationally
more efficient than the usual Monte Carlo method. Moreover, it tests a
different null hypothesis and selects regions that are more specific of
the term of interest. With NeuroSynth, the null hypothesis is not that

3 http://www.brainmap.org/

4 https://neurosynth.org/

http://www.brainmap.org/
https://neurosynth.org/
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activations are distributed uniformly, but that they are independent
of the occurrence of the term of interest in the studies’ abstracts. This
yields more specific maps because regardless of the topic of study,
the distribution of brain activations is not uniform, as seen in Fig. 3.3.
Therefore, with enough data, a meta-analysis is likely to reject the null
hypothesis of a uniform distribution in many areas of the brain, even if
studies are selected randomly. Even in meta-analyses that do not have
great statistical power, this phenomenon can be observed, which is
one reason for only considering voxels inside the gray matter (another
reason is to reduce the number of multiple comparisons). Testing the
independence of a term’s occurrence and a voxel’s activation – as done
by NeuroSynth – circumvents this issue.
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Figure 3.3: Average density computed across 13 000 neuroimaging studies.
For each study, we estimate the density of its reported activations with a
Gaussian KDE. Then, we average the densities across studies. As expected, the
white matter contains far less activations, and it is often masked when per-
forming meta-analysis. Within the gray matter, we see important variations:
some regions such as the amygdala are often activated by neuroimaging
experiments.

NeuroSynth obtains, for each study, i) its abstract and ii) its peak
activation coordinates. For each study, an activation density map is
obtained by convolving the peaks with a ball (of radius 10 mm), as in
MKDA, and binarized. To perform a meta-analysis, NeuroSynth tests
the independence between the activation of a particular voxel in a
density map and the occurrence of the term of interest in the associated
abstract. For a term of interest such as “emotion” and a given voxel
(i, j,k), NeuroSynth builds a contingency table based on two binary
criteria, resulting into four categories: (i) does the abstract contain the
term “emotion”? and (ii) does the study report an activation within
10 mm of voxel (i, j,k)? Then, it applies Pearson’s χ2 test to this
contingency table to test the null hypothesis that outcomes (i) and
(ii) are independent. This test is repeated for every voxel (i, j,k) in
the brain – as usual, the significance threshold must be corrected for
multiple comparisons. An example result is shown in Fig. 3.4.



3.3 going beyond univariate meta-analysis 29

L R

z=-18
-10

2.7

10

Figure 3.4: NeuroSynth map for “emotion”. In above-threshold voxels, the
null hypothesis of independence between brain activation and the occurrence
of the term “emotion” in the study abstract is rejected. The χ2 statistics have
been converted to Z statistics for easier visualization. The map is thresholded
controlling the FDR at 5%.

3.3 going beyond univariate meta-analysis

All existing meta-analysis methods, described in this chapter, rely on
the same core paradigm: choosing a concept of interest, building a set
of relevant studies, and establishing consensus in the associated brain
images. This is true for both coordinate-based and image-based meta-
analysis. Establishing consensus among published studies is essential
to separate true neurological discoveries from noise and artifacts.
However, the basis of meta-analysis – aggregating many studies and
experiments for statistical analysis – also offers other possibilities.

Indeed, the high rate of false positives is only one of the challenges
posed by the neuroimaging literature. Another important difficulty
is the diversity of mental processes under study, of the concepts
used to describe them, and of the experiments used to probe them.
Current meta-analysis approaches enable integrating results across
labs and experiments that investigate the same mental process or
disease. However, using them to integrate results across domains and
paradigms is more difficult. Indeed, they must build a set of studies
that are relevant for a particular, well-identified mental process or
disease, and it is difficult to weight selected studies based on their
relevance to the topic of interest.

Existing methods do not provide mechanisms to combine results for
different concepts. They perform in-sample statistical inference, and
are not designed to interpolate between studies or make predictions
for unseen data. This means that it is difficult to obtain results outside
well-defined and frequently studied psychological concepts. These
constraints are mostly due to the goal of standard meta-analysis and
the need for a well-defined and meaningful null hypothesis.

Moreover, even for frequently studied concepts, building a set of
relevant studies is difficult with existing fully automated frameworks
such as NeuroSynth. Indeed, NeuroSynth relies on exact matching of
single terms or expressions, whereas the terminology used in the neu-
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roscience literature varies widely. NeuroSynth’s univariate approach,
based on the binary association of studies with a single expression, is
therefore limited when we need to combine terms and synthesize a
brain map for topics that are better described with a set of keywords,
an abstract or a full paper. These limitations are discussed further in
Part III.

3.3.1 Mapping text to brain regions

In this thesis, we introduce a new approach to meta-analysis. We use
a large dataset of neuroimaging studies to build predictive models.
The focus shifts from establishing consensus for a particular concept
to learning multivariate mappings from mental diseases and psycho-
logical states to anatomical structures in the brain. This approach is
complementary to methods such as ALE, MKDA or NeuroSynth: while
standard meta-analysis performs statistical tests to evaluate consis-
tency and trustworthiness of results among past studies, the new
framework predicts, based on the description of an experiment or
concept of interest, which brain areas are most likely to contain related
neurological observations.

This paradigm shift enables new applications of meta-analysis. For
example, it enables embedding any text related to neuroscience into
brain space. This permits analyzing the spatial and anatomical infor-
mation contained in the dozens of thousands of publications, case
studies, and health records that are not labelled with images nor ac-
tivation coordinates. The new framework also makes it possible to
generate hypotheses for new experiments, or statistical priors for ana-
lyzing new neuroimaging results. For this application, it removes the
restriction of meta-analysis to single, frequently-studied concepts. It
also provides a natural way to evaluate and compare methods, by mea-
suring their prediction performance on out-of-sample neuroimaging
studies.

In Part II, we formalize this predictive framework, propose an
adapted statistical model, quantify its performance and show how
it can be used to analyze neuroimaging studies that do not provide
images nor coordinates. In Part III, we improve the model described
in Part II to extend the class of queries that it can map to brain re-
gions. We also perform extensive experiments that show how the new
model can compile meaningful results for challenging queries, such
as rare terms or seldom-studied diseases. The evaluation methods
introduced in Part III can also be useful to compare more traditional
meta-analysis frameworks. We also introduce a new online tool for
predictive meta-analysis of the neuroimaging literature5. Finally, in
Part IV, we shift from encoding to decoding: predicting labels associ-
ated with neuroimaging studies, based on their statistical brain maps.

5 https://neuroquery.saclay.inria.fr

https://neuroquery.saclay.inria.fr
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This image-based meta-analysis framework is the first to decode a
wide variety of mental processes from brain images.

Most of this work relies on a new dataset that we created. It is
the largest existing dataset of neuroimaging text and peak activation
coordinates. Therefore, in Chapter 4, we start by describing this dataset
and how we assembled it.



4 B U I L D I N G A DATA S E T

In this chapter, we describe our dataset of neuroimaging publica-
tions and stereotactic activation coordinates, and explain how it is
constructed. This dataset contains 13 498 full-text articles and the loca-
tions of their 418 772 peak activations. It is by far the largest dataset of
its kind. Indeed, the NeuroSynth corpus (Yarkoni et al., 2011) contains
a similar number of studies (14 371), but only exploits the article’s
abstracts. As our corpus contains the full articles, it amounts to around
20 times more text and provides a richer indexing of studies and their
coordinates. Our dataset also contains a similar number of coordinates
as the NeuroSynth dataset – which contains 448 255 after removing
duplicates, but manual evaluation reveals that our coordinates are ex-
tracted with a higher precision (Section 4.4.3). We refer to our dataset
as the NeuroQuery dataset, as it is distributed with the NeuroQuery
tool described in Part III,

4.1 the need for a new dataset

Coordinate-based meta-analysis relies on estimating the spatial density
of reported peak activations and finding the statistical link between
this density and the description of mental conditions or disorders
under study. Therefore, it is crucial to have access to a large dataset of
labelled stereotactic coordinates. Coordinates are labelled either with
manually curated meta-data or with text extracted from articles in
which they were reported. Activation coordinates are a sparse and
noisy signal, and many studies must be included for meta-analyses
to have sufficient statistical power. The dataset size is therefore of
paramount importance.

BrainMap was the first large-scale dataset to appear (Laird, Lan-
caster, and Fox, 2005a). It regroups coordinates that are manually
entered and annotated according to a fixed taxonomy (Fox et al.,
2005). According to the BrainMap website1, in July 2019, the BrainMap
database regroups 159 843 locations for 4 561 publications (grouping
the functional and VBM databases). However, BrainMap does not con-
tain the text of articles from which coordinates were extracted. Thus,
only a restricted set of terms – included in the taxonomy and used
in the annotations – can be mapped onto brain structures. Moreover,
the amount of data increases slowly because the collection is not au-

1 http://www.brainmap.org
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tomated and relies on a community effort (Laird, Lancaster, and Fox,
2005b).

NeuroSynth (Yarkoni et al., 2011), an even larger dataset, was created
by automatically downloading articles and extracting peak activation
coordinates. In July 2019, NeuroSynth contains 448 255 unique loca-
tions for 14 371 studies. It also contains the term frequencies for 3 228

terms (1 335 are actually used in the NeuroSynth online tool2), based
on the abstracts of the studies.

For this thesis, we ruled out using the BrainMap database because i)
it is much smaller than NeuroSynth, ii) it does not contain the text of
the publications, and iii) it is not openly shared. We considered using
the NeuroSynth dataset. However, it only contains term frequencies
for abstracts, without the articles’ full text. This results in a shallow
description of the studies, based on a very short text (around 20 times
smaller than the full article). As a result, many important terms oc-
cur rarely: they seldom appear in abstracts, and can be associated
with very few studies. For such terms, meta-analysis lacks statistical
power. When the full text is available, the number of term occurrences
– associations between a term and a study – increases significantly
(Fig. 4.1). Therefore, the dataset is richer, terms are better described
by their set of associated studies, and meta-analyses have more statis-
tical power. In addition, as publications are subject to copyright and
restricted distribution, NeuroSynth only provides term frequencies for
a fixed vocabulary and not the text they are extracted from. Finally,
NeuroSynth’s coordinate extraction procedure can be improved, as
discussed in Section 4.4.3.

To overcome these limitations we create a new dataset, the Neu-
roQuery dataset. It contains a similar number of studies as the Neu-
roSynth dataset, but provides the full text rather than the abstracts
only. We also create a new coordinate extraction tool, producing less
noisy brain activation data.

4.2 gathering articles

To build our dataset, we first need to collect a large number of scientific
articles related to neuroimaging, from which we can extract text and
activation coordinates. Our primary goal is to use the full text of the
articles. Thus, it is important to retrieve them in a well-structured
format, in order to extract the relevant sections. NeuroSynth obtains
the full-text articles by scraping HTML pages from several scientific
journals’ websites. Then, NeuroSynth extracts coordinates from tables
in these pages. However, while it is relatively easy to find tables, it is
more challenging to extract the article’s text and separate it from other
content, such as advertisements, links to other articles, references, or

2 http://neurosynth.org

http://neurosynth.org
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Figure 4.1: Document frequencies (number of documents in which a word
appears) for terms from the NeuroSynth vocabulary, in our corpus and in
NeuroSynth. Words occur in fewer documents in the NeuroSynth corpus
because it only contains abstracts. Even when considering only terms present
in the NeuroSynth vocabulary, our corpus contains over 3M term-study
associations – 4.6 times more than NeuroSynth.

acknowledgments. This extraction becomes a daunting task if it has to
be done for many journals’ websites with different layouts and markup
conventions. Furthermore, within each journal, the structure of the
page can vary. As a result, the pages downloaded by NeuroSynth are
not usable beyond coordinate extraction. To obtain text, NeuroSynth
downloads separately the abstracts from the PubMed Central API3

using BioPython4. Additionally, websites can change their structure
frequently, so a collection of several scrapers is brittle and difficult to
maintain.

4.2.1 Data sources

Rather than scraping HTML pages from individual journals’ websites,
we download articles in bulk from platforms that aggregate articles
from many journals and distribute them in a structured format. We
focus on PubMed Central (PMC) and Elsevier. PMC, one of the National
Center for Biotechnology Information (NCBI) databases, contains over
5M articles. It is the largest free full-text archive of medical publica-
tions5. Elsevier is a commercial publisher. We use Elsevier because i)
it contains several important journals which are not free and therefore

3 https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.EFetch

4 https://biopython.org/DIST/docs/api/Bio.Entrez-module.html

5 Note that PMC is not the same database as PubMed; PubMed tracks citations while
PMC archives full-text articles: https://www.nlm.nih.gov/bsd/difference.html.

https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.EFetch
https://biopython.org/DIST/docs/api/Bio.Entrez-module.html
https://www.nlm.nih.gov/bsd/difference.html
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not accessible through PMC, ii) our institution (INRIA) has an account
that gives us access to Elsevier content, and iii) Elsevier exposes an
API which allows downloading articles in bulk in a uniform XML

language6.
We should note that some important neuroscience journals, such

as the Nature journals, are almost absent from our two data sources.
Thus, there is a selection bias with respect to the whole population of
neuroscience publications. We hypothesize that this does not introduce
an important bias in the reported links from mental functions or
disorders to brain structures but this assumption has not been checked.

4.2.2 Data collection architecture

All downloaded data is in XML format. In this first downloading
step, almost no transformation is performed. We store downloaded
elements in documents that also contain some provenance information,
such as the platform they were downloaded from and the query used
to retrieve them. We validate the results using XSD. Documents that
are not valid are discarded. Valid documents are stored in XML files.
As a consequence, we can index them with a appropriate tools, and
explore and query our corpus with XQuery. We use BaseX7 for this
(Grün, Holupirek, and Scholl, 2007).

In order to discover and download articles, we rely on the Entrez
Programming Utilities, or E-Utilities8 (Sayers, 2009). They are a set of
server-side programs that provide a programmatic interface to NCBI

resources. We use four E-Utilities: i) ESearch for discovering articles
that match a query, ii) ESummary for obtaining meta-data, iii) ELink
for URLs where the articles themselves may be found, and iv) EFetch
to download the full-text articles when they are available in PMC. We
also use the Elsevier API to retrieve some full-text articles. An overview
of the data collection architecture is shown in Fig. 4.2.

4.2.2.1 Discovering articles and full-text providers

Using ESearch, we query the PubMed database to discover relevant
articles. We search either for all articles from a particular journal or
based on keywords such as “fMRI” or “brain mapping”. The UIDs –
i. e. PMIDs, as we query the PubMed database – of matching articles are
stored on the Entrez History server. Using the keys that identify our
search results on the history server, we query ESummary to retrieve
articles’ meta-data in batches. This meta-data contains information
such as the title, journal, and publication type. Next, we upload the
PMIDs to Elink, which lists the available URLs to providers of the full
text or other information about the articles. We use ELink results to

6 https://dev.elsevier.com/api_docs.html

7 http://basex.org/

8 https://www.ncbi.nlm.nih.gov/books/NBK25501/

https://dev.elsevier.com/api_docs.html
http://basex.org/
https://www.ncbi.nlm.nih.gov/books/NBK25501/
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Figure 4.2: Data collection architecture. Several clients gather information
from web services and store it in XML files. E-Search and E-Summary provide
PMIDs and metadata about articles that match a query such as a set of journals.
E-link provides lists of URLs from which articles may be downloaded. Based
on E-link results, the full text can be downloaded from E-Fetch, Elsevier,
or the PMC website. The ID Converter converts from PubMed IDs to PMC

IDs. Search results can be stored in the Entrez history server, which avoids
uploading them when re-using them with different Entrez utilities. The
different clients share data such as IDs of articles to download or URLs where
they might be found in an SQLite database. All documents are validated
with XSD before entering the XML store and documents that fail to validate
are discarded.

discover which articles may be available on PMC or on the Elsevier
platform.

4.2.2.2 Downloading articles

The procedure described in Section 4.2.2.1 yields the PMIDs of relevant
publications and the platforms from which they are available. Next,
we can download the articles’ full text.

pmc open access Articles in the Open Access subset of PMC are
downloaded in batches using Efetch. First, PubMed IDs are converted
to PMC IDs using the NCBI’s ID converter9. The resulting PMC IDs are
uploaded to the history server. Using ESearch, we create a new result
set on the history server by adding the “open access” filter. Finally,
we use Efetch and the keys for this result set to retrieve the batches of
full-text articles in XML format. Some articles are in the PMC database
and freely available, but not in “open access”, meaning that they
cannot be downloaded through the API due to restrictions imposed by
their publisher. We download these articles by scraping the PMC web
interface.

pmc For articles that are in the PMC database but not accessible in
XML format from the API, we download the corresponding page from

9 https://www.ncbi.nlm.nih.gov/pmc/tools/id-converter-api/

https://www.ncbi.nlm.nih.gov/pmc/tools/id-converter-api/
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the PMC website10. We limit our tool to one request every 2 seconds
to avoid causing an important load on the server. As the website tries
to prevent automatic tools from downloading articles, it is necessary
to send requests with headers that seem like they could come from a
web browser and to change one’s apparent IP address regularly. The
resulting pages are obtained in XHTML format. As they are not meant
for programmatic use, they are more difficult to exploit than results
retrieved from an API. However, in this first downloading step, we
only make sure they are well-formed. We do so by parsing them with
the BeautifulSoup11 Python library (Richardson, 2007), trying to fix
them with this tool if they are malformed, and discarding them if they
cannot be fixed. Scraping a website is far less efficient than querying an
Application Programming Interface (API). Unlike NeuroSynth, we only
perform this operation for one website, whose pages are in eXtensible
HyperText Markup Language (XHTML) format and have a relatively
uniform structure.

elsevier When Elink information indicates that an article is avail-
able in Elsevier, we download it from the Elsevier Article Retrieval
API12 using INRIA’s authentication information. As Elsevier limits such
downloads to a fixed number of articles per week, we schedule the
download over several weeks.

4.2.2.3 Asynchronous data collection

Data is collected by five asynchronous processes, one for each queried
web service: one process searches for articles and downloads their
meta-data with ESearch and ESummary, one downloads link informa-
tion from Elink, and the other three download the full text articles
from Elsevier, the PMC API, and the PMC website, respectively. These
processes create XML files, but also store and share relevant informa-
tion (such as the discovered articles and URLs, or the PMIDs of articles
which have been downloaded from each platform) in an SQLite13

database – which is a single binary file (Owens, 2006).

4.3 transforming articles

The downloaded articles are written in one of three XML languages.
Those downloaded from the PMC website are in XHTML, those that
come from Elsevier are in this publisher’s “xocs” language14, and
those that come from the PMC API use the Journal Archiving and

10 https://www.ncbi.nlm.nih.gov/pmc/

11 https://www.crummy.com/software/BeautifulSoup/bs4/doc/

12 https://dev.elsevier.com/documentation/ArticleRetrievalAPI.wadl

13 https://www.sqlite.org/index.html

14 https://schema.elsevier.com/dtds/document/fulltext/xcr/xocs-article.xsd

https://www.ncbi.nlm.nih.gov/pmc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://dev.elsevier.com/documentation/ArticleRetrievalAPI.wadl
https://www.sqlite.org/index.html
https://schema.elsevier.com/dtds/document/fulltext/xcr/xocs-article.xsd
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Interchange Tag Set15 from the Journal Article Tag Suite (JATS), created
by the National Library of Medicine (NLM). In order to treat them
uniformly in the rest of the pipeline, the second step is to convert all
articles to a single language. We use the Archiving Tag Set because
many of the documents we download already use this tag set. In
addition, it is flexible, permissive, well documented, and used in many
applications. We use eXtensible Stylesheet Language Transformations
(XSLT) to translate documents from XHTML or Elsevier’s xocs to the
Archiving Tag Set. Translated documents are validated using the
schema provided by NCBI16. At the end of this step, we obtain over
149 000 full-text journal articles (with unique PMIDs) that validate
against the Archiving Tag Set’s schema.

4.4 extracting tables and coordinates

Once all articles are in a single XML language, extracting their text or
specific parts such as the abstract or keywords is straightforward. The
remaining challenge is to extract and normalize the tables and then
identify and extract the peak activation coordinates.

4.4.1 Extracting tables

We use XSLT to extract tables, translate them to the XHTML table format,
normalize them, and store them in a separate XML file for each article.
Tables for the articles obtained from the PMC website are not embedded
in the XHTML page, but have to be retrieved separately. We extract the
table IDs from the article and download the web pages that contain
the tables from the PMC website.

4.4.1.1 Translating CALS to XHTML

The Archiving Tag Set allows tables to be described using either the
XHTML 1.1 table model or the OASIS XML Exchange table model, which
is based on the CALS table model17. Elsevier uses its own table model,
based on CALS. We transform Elsevier tables to CALS during the
translation of all articles to JATS (Section 4.3). When extracting tables
from our articles, we translate them to the XHTML 1.1 table model
using stylesheets provided by docbook18.

15 https://jats.nlm.nih.gov/archiving/

16 https://jats.nlm.nih.gov/archiving/1.2/xsd.html

17 https://jats.nlm.nih.gov/archiving/tag-library/1.2/element/table.html

18 https://docbook.org/tools/

https://jats.nlm.nih.gov/archiving/
https://jats.nlm.nih.gov/archiving/1.2/xsd.html
https://jats.nlm.nih.gov/archiving/tag-library/1.2/element/table.html
https://docbook.org/tools/
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4.4.1.2 Normalizing tables

Cells in tables can span several rows and columns. NeuroSynth’s
chaotic parsing of tables sometimes results in coordinates from differ-
ent triplets getting mixed up or part of the table missing (e. g. PMIDs
15488911, 15862201). When extracting a table, we normalize it by
splitting cells that span several rows or columns and duplicating
these cells’ content; the normalized table has the shape of a matrix.
The original table and the normalized version are stored together.
Finally, all unicode characters that represent “+” or “-” signs (such
as &#x2212; “MINUS SIGN”) are mapped to their ASCII equivalents,
“+” (&#x2b; “PLUS SIGN”) or “-” (&#x2d; “HYPHEN MINUS”) using
XSLT’s character-map element. While this may seem obvious, many
coordinates lose their “-” sign or disappear during NeuroSynth’s coor-
dinate extraction because it overlooks this issue (e. g. PMIDs 15528081,
15589105), or because of a similar issue with whitespace.

4.4.2 Extracting and filtering coordinates

Once tables are isolated, in XHTML format, and their rows and columns
are well aligned, the last step is to find and extract peak activation
coordinates. This extraction is not performed in XSLT but in Python.
Heuristics find columns containing either single coordinates or triplets
of coordinates based on their header and the cells’ content. A heuristic
detects when the coordinates extracted from a table are probably not
stereotactic peak activation coordinates, either because many of them
lie outside a standard brain mask or because the group of coordinates
as a whole fits a normal distribution too well. In such a case, the
whole table is discarded. Finally, coordinates are stored in a csv file.
This file also contains, for each coordinate triplet, the identifier and
label of its table, as well as the identifier of its document of origin.
Out of the 149 000 downloaded and formatted articles, 13 498 contain
coordinates that were extracted by this process, resulting in a total of
418 772 locations.

All the extracted coordinates are treated as coordinates in the MNI

space (Section 2.1.1), even though some articles still refer to the Ta-
lairach space. The precision of extracted coordinates could be im-
proved by detecting which reference is used and transforming Ta-
lairach coordinates to MNI coordinates. However, differences between
the two coordinate systems are at most of the order of 1 cm, and much
smaller in most of the brain. This is comparable to inter-subject vari-
ability after spatial normalization and to the size of Gaussian kernels
typically used to smooth images. Moreover, the alignment of brain
images does not only depend on the used template but also on the
registration method, and there is no perfect transformation from Ta-
lairach to MNI space (Lancaster et al., 2007). Therefore, treating all
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False positives False negatives

NeuroSynth 20 28

NeuroQuery 3 8

Table 4.1: Number of extracted coordinate sets that contain at least one error
of each type, out of 40 manually annotated articles. The articles are chosen
from those on which NeuroSynth and NeuroQuery disagree – the most likely
to contain errors.

coordinates uniformly is acceptable, but better handling of Talairach
coordinates is a clear direction for improving the NeuroQuery dataset.

4.4.3 Coordinate extraction quality

We evaluate the coordinate extraction process by checking the articles
for which NeuroSynth and NeuroQuery disagree. Out of 8 692 articles
in the intersection of both corpora, the extracted coordinates differ (for
at least one coordinate) in 1 961 (i. e. in 23% of articles). We select the
first 40 articles (sorted by PMID) and check the extracted coordinates
manually. As shown in Table 4.1, our method extracts false coordinates
from far fewer articles: 3 out of 40 articles have at least one false loca-
tion in our dataset, against 20 for NeuroSynth. While these numbers
may seem high, note that errors are far less likely to occur in articles
for which both methods extract exactly the same locations.

4.5 building the vocabulary

Another essential resource is our vocabulary: the set of words or
phrases used to tokenize text and parametrize its representation in a
vector space. Using a vocabulary comprising only words or expres-
sions relevant to neuroscience reduces the amount of noise and the
dimensionality of the vector representations. In addition, we want to
recognize some phrases, or “n-grams”, as expressions that designate
a single entity – for example “white matter”, “Parkinson’s disease”,
or “Default Mode Network”. Therefore, we do not use all the words
found in our corpus as is often done. Instead, we build a vocabulary of
terms related to neuroscience by leveraging several manually curated
ontologies or controlled vocabularies.

4.5.1 Vocabulary sources

Our vocabulary comprises five important lexicons of neuroscience,
based on community efforts: the subset of Medical Subject Headings
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(MeSH) (Lipscomb, 2000) dedicated to neuroscience and psychology19,
Cognitive Atlas (Poldrack and Yarkoni, 2016), NeuroNames (Bowden
and Martin, 1995), and NIF (Gardner et al., 2008). We also include
all the terms and bigrams used by NeuroSynth (Yarkoni et al., 2011).
Finally, the vocabulary also comprises the labels of 12 anatomical
atlases, listed in Appendix A.1.

CognitiveAtlas20 is an ontology of cognitive processes, tasks and
phenotypes. We include it in our vocabulary and we also use it in
Chapter 10 to annotate brain images with cognitive labels.

4.5.2 Vocabulary extraction

We obtain the ontologies as Resource Description Framework (RDF)21

graphs, which we parse using the rdflib library22. We query each
ontology with SPARQL to construct a simplified graph based on a
subset of the Simple Knowledge Organization System (SKOS)23 RDF

vocabulary. We merge the resulting graphs. We also annotate some
labels as belonging to a category – either anatomy, pathology, or psy-
chology – based on the label’s source (for example NeuroNames is
only concerned with anatomy, the MeSH tree is organized by topic,
etc.). Although this graph could be useful in itself, it is not exploited
in the rest of this thesis, as we focused more on continuous associ-
ations between terms derived from co-occurrence statistics than on
ontology relations. Hence, we do not describe this graph at length. In
order to construct our vocabulary, we simply gather all the objects of
skos:literalForm relations.

Extracting all literal forms yields a list of strings, to which we add
all the terms from NeuroSynth’s vocabulary. All these strings are then
tokenized to identify the individual words that constitute them. When
the tokenization yields several words, we include both the full expres-
sion (the n-gram) and the individual words in the vocabulary. We
thus obtain 40 149 terms and expressions. Many expressions extracted
from the ontologies are very rare, especially when they contain several
words, such as “accessory medullary lamina globus pallidus”. We
discard all the terms and expressions that occur in less than 5 / 10 000

articles. The resulting vocabulary contains 7 547 terms and expressions
related to neuroscience.

We show the number of terms extracted from each source and the
size of the different vocabularies’ intersections in Table 4.2. These man-
ually curated vocabularies display relatively low overlaps, revealing
that there is still no fully established terminology in neuroscience.
This constitutes a motivation for associating peak locations with text

19 MeSH are the terms used by PubMed to index articles
20 http://www.cognitiveatlas.org/

21 https://www.w3.org/TR/rdf11-concepts/

22 https://rdflib.readthedocs.io/en/stable/

23 http://www.w3.org/TR/skos-reference

http://www.cognitiveatlas.org/
https://www.w3.org/TR/rdf11-concepts/
https://rdflib.readthedocs.io/en/stable/
http://www.w3.org/TR/skos-reference
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Cognitive Atlas 100% 14% 0% 3% 14% 68%
MeSH 1% 100% 3% 4% 1% 9%
NeuroNames 0% 9% 100% 29% 1% 10%
NIF 0% 12% 30% 100% 1% 10%
NeuroSynth 9% 14% 5% 5% 100% 98%
NeuroQuery 8% 25% 9% 9% 17% 100%

Table 4.2: Intersections of controlled vocabularies. NeuroQuery contains
all the terms from the other vocabularies that occur in more than 5 out of
10 000 articles. “MeSH” corresponds to the branches of PubMed’s MEdical
Subject Headings related to neurology, psychology, or neuroanatomy. The
NeuroSynth vocabulary is extracted from the NeuroSynth corpus and manu-
ally curated. Terms from the NeuroSynth vocabulary that are not included
in our vocabulary are bigrams such as “gyrus stg”, which are part of longer
expressions – “supplementary temporal gyrus (stg)” – and are tokenized dif-
ferently in our text preprocessing (see Appendix B.4 for the list of discarded
NeuroSynth terms and Appendix B.3 for details on tokenization).

(abstracts or full articles), rather than a few entries from a taxonomy
as in BrainMap. Indeed, taxonomies are incomplete and do not always
reflect the terminology used in practice by researchers. For example,
32% of labels from the CognitiveAtlas ontology are used in less than
0.05% of articles from our corpus.

4.6 summary of collected data

The data collection described in this chapter provides us with im-
portant resources, which we exploit to train the models described in
the rest of this thesis: i) over 149K full-text journal articles related to
neuroscience – 13K of which contain peak activation coordinates – all
translated into the same structured format and validated; ii) over 418K
peak activation coordinates for more than 13K articles; iii) a vocabulary
of 7 547 terms related to neuroscience, each of them occurring in at
least 6 articles from which we extracted coordinates. This dataset is
the largest of its kind. In the rest of this thesis we focus on the set of
13K articles from which we extracted peak locations.

4.6.1 Text

In terms of raw amount of text, this corpus is 20 times larger than
NeuroSynth’s. Combined with our vocabulary, it yields over 5.5M
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occurrences of a unique term in an article. This is over 5 times more
than the word occurrence counts distributed by NeuroSynth24. When
considering only terms in NeuroSynth’s vocabulary, the corpus still
contains over 3M term-study associations, 4.6 times more than Neu-
roSynth. For the rest of this thesis, using this larger corpus will result
in denser representations, higher statistical power, and coverage of a
wider vocabulary.

4.6.2 Coordinates

The set of extracted coordinates is almost the size of NeuroSynth’s –
which is 7% larger with 448 255 coordinates) – and is less noisy. To
compare coordinate extractions, we manually annotated a small set
of articles for which NeuroSynth’s coordinates differ from ours. Com-
pared with NeuroSynth, our extraction method reduces the number
of articles with incorrect coordinates (false positives) by a factor of 7.
It also reduces the number of articles with missing coordinates (false
negatives) by a factor of 3 (Table 4.1). For subsequent work, this will
result in less noisy brain activation data.

4.6.3 Sharing data

We cannot share the full text of the articles because of copyright laws,
but the vocabulary, extracted coordinates, and term occurrence counts
for the whole corpus are freely available online25.

The dataset presented in this chapter is exploited in Part II and
Part III. Having text and the locations of neurological observations
for thousands of studies enables us to learn the associations between
mental processes or diseases and brain structures in a supervised
learning setting.

24 https://github.com/neurosynth/neurosynth-data

25 https://github.com/neuroquery/neuroquery_data

https://github.com/neurosynth/neurosynth-data
https://github.com/neuroquery/neuroquery_data
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5 T E X T TO S PAT I A L D E N S I T I E S

In the next two chapters, we build the framework for predictive meta-
analysis. Our goal is to map text onto brain regions: given a document,
such as an article or a case report, we want to synthesize a brain
map of the associated anatomical structures. Translating text into
brain maps can provide access to under-exploited information con-
tained in medical publications, case reports and health records. Indeed,
neuroimaging observations are usually reported and stored in text
documents. Even in the academic literature, most publications do not
provide the data that they used or the statistical maps that they com-
puted. Being able to extract spatial information from such documents
can yield new insights. Therefore, we need a principled way to map,
or encode, documents onto locations in the brain.

Encoding whole documents departs from standard meta-analyses.
We do not aim to perform a statistical test to evaluate the consistence
of results reported in different studies. Instead, we frame encoding as
a prediction problem: given text, we can predict the spatial distribu-
tion of the observations that it describes. We are not computing test
statistics but predictions for out-of-sample neuroimaging studies. In
this setting, we can compare predicted distributions with the locations
truly reported in neuroimaging studies. Encoding then becomes a
supervised learning problem, and we can benefit from a standard
framework to estimate the mapping from text to brain locations, and
to measure performance and compare models.

In this chapter, we formalize the problem of mapping text docu-
ments to brain images and propose a regression model. We refer to
this model as “text-to-brain”. In Chapter 6, we apply this approach
to our dataset, present quantitative and qualitative assessment of text
encoding models, and show how such models can be used to analyze
a large corpus of pure text.

5.1 problem setting

We want to map text, such as articles and case reports, to brain regions.
More precisely, we want to predict the spatial density of the observa-
tions that the text describes. One reason for focusing on this spatial
density is that it does not depend on the number of observations re-
ported in each study. The number of reported coordinates depends on
the number of computed contrasts and on details of the data analysis
procedure, and it is not meaningful when pooling a wide variety of

45



5.2 regression model 46

studies. To learn the mapping from text to spatial densities, we use
the neuroimaging studies from our dataset, described in Chapter 4.
For each study, we have the text extracted from the article, and a set
of peak activation coordinates.

We denote S a study, associated with a text T, and a set of c ∈N>0

peak locations L = {la ∈ R3,a = 1 . . . c}. The peak locations are
realizations of a continuous random variable that has a probability
density function (pdf) p over the brain. Our goal is to predict this
pdf, based on the text of the study. We denote q our predicted pdf. A
predicted density q should be close to the true pdf p, or take high
values at the coordinates actually reported in the study: the prediction
is good if

∏
l∈L q(l) is large.

In a supervised learning setting, we start from our collection of
studies {S = (T,L)}, with T the text and L the locations. Building
the prediction engine then entails the choice of a model relating the
density p to the text T, the choice of a loss, or data-fit term, and some
regularization on the model parameters. We now detail how we make
each of these choices to construct a prediction.

5.2 regression model

We start by modelling how the spatial density p of a study depends
on the text T. First, we choose a representation for the text. Then,
we define our model space – how we represent and parametrize our
predicted spatial density, and the class of functions to which belongs
the mapping from T to the prediction q.

5.2.1 Representing text: TFIDF features

To make a prediction based on the text T of a study, we start by
building a vector representation of T. We represent a document by its
Term Frequency · Inverse Document Frequency (TFIDF) features (Salton
and Buckley, 1988), which are reweighted Bag-of-words features. A
TFIDF representation is a vector in which each entry corresponds to
the (reweighted) frequency of occurrence of a particular term. The
term frequency, tf, of a word in a document is the number of times the
word occurs, divided by the total number of words in the document.
The document frequency, df, of a word in a corpus is the proportion of
documents in which it appears. The inverse document frequency, idf, is
defined as:

idf(w) = − log(df) + 1 = − log
| { i | w occurs in Ti } |

n
+ 1 , (5.1)

where n is the number of documents in the corpus and | · | is the car-
dinality. Term frequencies are reweighted by their idf, so that frequent
words, which occur in many documents (such as “results” or “brain”),
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are given less importance. Indeed, such words are usually not very
informative.

TFIDF features exploit a fixed vocabulary – each dimension is associ-
ated with a particular word. We denote d the size of the vocabulary
(i. e. the dimension of the TFIDF vector space), and x ∈ Rd a vector of
TFIDF features: it is the input on which we base our prediction.

5.2.2 Representing spatial distributions

In order to construct a predicted density q over the brain, we rely on
a brain parcellation – a finite partition R of R3:

R = {R0}∪ {Rk, k = 1 . . .m} . (5.2)

This partition contains a background region, R0: it is the region of
R3 that lies outside of the brain. Inside the brain, the partition can
be either a regular grid of voxels or a brain atlas, which is a division
into anatomical regions. These brain regions are considered to be
homogeneous. The predicted density q is then piece-wise constant
over each region of this brain parcellation, and equal to 0 outside of
the brain (in R0). We will therefore write q as a linear combination of
the indicator functions of the atlas regions (excluding the background).
To do so, we define the normalized region indicator functions:

rk =
Ik

‖Ik‖1
, k = 1 . . .m , (5.3)

and then q as a linear combination of these functions:

q =

m∑

k=1

αkrk . (5.4)

Defining q as a function of the input TFIDF vector x then reduces to
defining each weight {αk, k = 1 . . .m} as a function of x.

Using a brain parcellation is a form of regularization: constraining
the prediction to be in the span of {rk} reduces the size of the model
space. Fine partitions, such as atlases with many regions or voxel
grids, yield models with more expressive power, but more likely to
overfit. Choosing an atlas thus amounts to a bias-variance trade-off.

5.2.3 Linear model

We model the weight of each atlas region as a linear response to x:

q(z) =

d∑

t=1

m∑

k=1

xtBt,krk(z) ∀z ∈ R3 (5.5)
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where B ∈ Rd×m are model parameters, which we will learn. Note
that for some values of x and B, this linear approximation can yield
values for q which are not a valid pdf (for example if they do not
sum to 1). Therefore, once the model is trained, when we make a
prediction, we coerce it into a density in a post-processing step, by
taking its positive part and normalizing it.

5.2.4 Simple baseline: label-constrained encoder.

A simple approach to mapping text onto brain maps is to look for
atlas labels in the text, and ignore interactions between terms. To
apply this rule-based approach, we choose one atlas, whose regions
are labelled with meaningful names, such as “occipital cortex”. Then,
the probability assigned to a region is chosen to be proportional to
the frequency of its label in the text. For example, if the atlas contains
a region labelled “parietal lobe”, the predicted density in this region
is proportional to the number of occurrences of “parietal lobe” in the
text. In this case, the vocabulary is the set of atlas labels; the number
of features d is equal to the number of regression targets m and the
matrix of regression coefficients is square. The vocabulary can be
ordered so that for every k, the word wk is the label of the region Rk,
and in this case B is constrained to be diagonal. We call this model
the label-constrained encoder, and we use it as one of our baselines.

5.3 fitting the model

We fit the coefficients B of our model by empirical risk minimization.
We define an error function, E(p,q), that measures the mismatch be-
tween a predicted density q and the true density p of a neuroimaging
study’s peak activations. Then, we set B to minimize the average of
this error (augmented with a regularization term) over the example
studies in our training dataset.

5.3.1 Estimation of the true density

We do not have access to the true pdf, p, from which the peak locations
of each study in our training set were sampled. Therefore, we use an
estimate of this density, which we denote p̂. By construction of our
prediction q, the best approximation of p that we can obtain belongs
to the span of our brain regions {rk}. Hence, we build our estimate
p̂ in this space: p̂ is uniform over each voxel or atlas region. When
the brain is divided into small voxels, there are few coordinates for a
large number of regions. Therefore, we use Gaussian KDE (Scott, 2015;
Silverman, 1986; Wand, 1994). Peak locations are binned to obtain
voxel counts, which are then convolved with a Gaussian kernel. When
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using an atlas with larger brain regions, we estimate the density using
a histogram, with the atlas regions acting as the bins: we simply set the
probability of a region to be proportional to the number of coordinates
that it contains.

Whether we use KDE or a histogram, the estimated density p̂ is a
linear combination of {rk} and we denote {ŷk} the coefficients:

p̂ =

m∑

k=1

ŷkrk . (5.6)

5.3.2 Loss functions

The next step is to define our data-fit term – the error E(p̂,q) that we
minimize over the training sample to set the model parameters by
empirical risk minimization. We consider two common distances. The
simplest choice is the `2 distance, ‖p̂− q‖22, which is often used and
has the appeal of being differentiable everywhere and yielding a very
tractable optimization problem.

The second option we consider is a statistical distance , the Total
Variation (TV). Remember that p is the density of a probability distri-
bution P. Denoting U the finite σ-algebra of all unions of elements of
the partition R = {Rk,k = 0 . . .m} of R3, P constitutes a measure on
U characterized by:

P(Rk) =

∫

Rk

p(z)dz . (5.7)

In the same way, q is the density of a probability distribution Q. Then,
the TV between P and Q is defined by:

TV(P,Q) = sup
A∈U

|P(A) −Q(A)| . (5.8)

A classical result, stated for example in Gibbs and Su (2002), shows
that this supremum – which in our case is a maximum, as U is finite –
is attained by taking A to be the union of { Rk | P(Rk) > Q(Rk) } (or
its complementary) and:

TV(P,Q) =
1

2

m∑

k=1

|P(Rk) −Q(Rk)| (5.9)

=
1

2

∫

R3
|p(z) − q(z)|dz . (5.10)

The TV is half of the `1 distance between the pdfs. ‖p̂−q‖1 is therefore
a natural choice for our loss.

5.3.3 Decomposing the loss function

Let us call vk the volume of the region rk, i.e. the size of its support:

vk , ‖Ik‖1, k = 1 . . .m . (5.11)
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Remember from Eq. (5.3) that rk = 1
vk

Ik. Our loss can now be written
as a sum over regions (see Appendix B.1 for details):

E(p̂,q) =
∫

R3
δ(p̂(z) − q(z))dz (5.12)

=

m∑

k=1

vkδ

(
ŷk
vk

−

∑d
t=1 xtBt,k
vk

)
(5.13)

Where δ is either the absolute value or the square function.

5.4 solving the estimation problems

To set the model parameters B, we use n example studies from our
dataset {Si = (Ti,Li), i = 1 . . . n}. We learn B by minimizing the
empirical risk on {Si}, augmented with an `2 penalty on B. We add to
the previous notations the index i of each example: pi, qi. Ŷ ∈ Rn×m

is the matrix of dependent variables, whose ith row is Ŷi ∈ Rm. Ŷi
holds the estimated density in each brain region for study i. X ∈ Rn×d

is the design matrix, whose ith row is Xi ∈ Rd. Xi holds the TFIDF

features extracted from the text of study i.

5.4.1 Case δ = `2: ridge regression

When we choose the `2 loss, the empirical risk is

n∑

i=1

m∑

k=1

(
Ŷi,k√
vk

−

d∑

t=1

1√
vk
Xi,tBt,k

)2
. (5.14)

Defining Ỹ:,k =
Ŷ:,k√
(vk)

and B̃:,k =
B:,k√
(vk)

, and adding an `2 penalty, the

problem becomes:

argmin
B̃

(
‖Ỹ −X B̃‖2F + λ ‖B̃‖2F

)
(5.15)

where λ ∈ R+. This is the least-squares ridge regression predicting p̂
expressed in the orthonormal basis of our search space { rk

‖rk‖2 }.
In order to set the hyperparameter λ, we use Generalized Cross-

Validation (GCV) (Rifkin and Lippert, 2007). With this efficient scheme,
a Singular Value Decomposition (SVD) of the design matrix is com-
puted once. Then, for each hyperparameter, both the model coefficients
and the Leave-One-Out (LOO) cross-validation errors can be computed
very cheaply. With our large number of dependent variables, the com-
putational cost is essentially that of computing the product UDUT Y ,
where U are the left singular vectors of X and D ∈ Rd×d is diagonal,
once for each hyperparameter on the regularization path – see Rifkin
and Lippert (2007) for details.
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5.4.2 Case δ = `1: LAD regression

When we choose the `1 loss, the empirical risk becomes

n∑

i=1

m∑

k=1

|Ŷi,k −

d∑

t=1

Xi,tBt,k| (5.16)

This problem is known as Least Absolute Deviations (LAD) regression,
a particular case of quantile regression (Chen and Wei, 2005; Koenker
and Bassett Jr, 1978). Unlike `2 regression, which provides an estimate
of the conditional mean of the target variable, `1 provides an estimate
of the median. Quantile regression is more robust to outliers and better-
suited than least-squares when the noise is not normally distributed
(Koenker and Bassett Jr, 1978). Adding an `2 penalty, we have the
minimization problem:

B̂ = argmin
B

(
‖Ŷ −XB‖1 + λ ‖B‖2F

)
(5.17)

Unpenalized quantile regression is often written as a linear program
and solved with the simplex algorithm (Koenker and d’Orey, 1994),
Iteratively Reweighted Least Squares, or interior point methods (Port-
noy and Koenker, 1997). Yi and Huang (2017) use a coordinate-descent
to solve a differentiable approximation of the quantile loss (the Huber
loss) with elastic-net penalty. Here, we minimize Eq. (5.17) via its dual
formulation (c.f. supplementary material):

ν̂ = argmax
ν

(
Tr(νT Ŷ −

1

4λ
νTXXTν)

)
s.t. ‖ν‖∞ 6 1, (5.18)

where ν ∈ Rn×m and Tr is the trace operator. The primal solution is
given by B̂ = XT ν̂

2λ . As the dual loss is differentiable everywhere and
the constraints are bound constraints, we can use an efficient quasi-
Newton method such as L-BFGS-B (Byrd et al., 1995) to solve Eq. (5.18).
The hyperparameter λ is set by cross-validation on the training set.
We use warm-start on the regularization path (decreasing values for
λ) to initialize each problem.

5.4.3 Fitting the label-constrained encoder

For the label-constrained encoder (Section 5.2.4), the coefficient matrix
is constrained to be diagonal. Fitting this model amounts to fitting
one univariate regression for each region – finding the coefficient that
links the density in each region to the frequency of occurrence of its
label. This can be done with either loss; since this model is meant to
be a simple baseline, in our experiments we only use the least-squares
version.
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5.5 validation metric

Our supervised learning setting provides a natural way to quantify
performance and conduct model selection: using cross-validation to
measure the test error on left-out studies. While training models,
we use an estimate p̂ of the true spatial density p that we want to
predict. However, to measure performance, we want to use only the
actual observations: the peak coordinates extracted from neuroimaging
studies. Indeed, the loss we compute during training is dependent on
the density estimate, thus does not allow us to compare performance
across density estimators (varying atlas choice or Gaussian kernel
bandwidth). Moreover, density estimation is part of our modelling
pipeline, and measuring performance on unprocessed observations is
more meaningful. Therefore, the metric we choose is the average log-
likelihood with respect to peak locations that were actually reported in
test articles, i. e. the average of the log of q at reported locations. Since
the log diverges in 0, before computing this metric, we make sure the
predicted density is strictly positive everywhere in the brain. To do so,
we define q̃, a mixture of a uniform density over the whole brain, and
the normalized positive part of the regression model output:

q̃ = (1− ε)q+ ε

m∑

k=1

Ik

vk
, (5.19)

and we use q̃ as our prediction. This amounts to considering that in
the test coordinates, a proportion ε are noise – false positives in the
studies or errors in the coordinate extraction process. The score for a
study Si = (Ti, Li), with locations Li = {li,a, a = 1, . . . ci} is then:

1

ci

ci∑

a=1

log(q̃i(li,a)) (5.20)

and we average this score over all the studies in the test set.
In Chapter 6, we use this metric to quantitatively compare models

and brain parcellations, and we also present some qualitative results.



6 T E X T-TO - B R A I N E X P E R I M E N T S

In Chapter 5, we introduced a supervised learning framework to map
text onto spatial densities over the brain. In this chapter, we apply this
framework to the dataset described in Chapter 4. We measure quanti-
tative performance and compare models in Section 6.2. In Section 6.3,
we inspect the coefficients of a trained linear model. In Section 6.4, we
show an example use case for such a tool: deriving the brain regions
associated with neurological diseases, based on textual reports only.

6.1 experimental setting

We rely on our dataset of over 13 000 studies and their peak activa-
tion coordinates. In Section 6.4, we also exploit our larger corpus of
130 000 studies for which we do not have peak activation coordinates
(Chapter 4).

TFIDF representations depend on the choice of a vocabulary. The
terms that carry the most valuable spatial information are those re-
lated to anatomy, which directly describe the locations of observations.
To obtain good predictions, in this chapter, we restrict the vocabulary
described in Section 4.5 to the subset that is related to anatomy, re-
sulting in around 1000 neuroanatomical terms. Here, we are encoding
full journal articles, which describe their observations in terms of
anatomical regions. Restricting the vocabulary to these very informa-
tive features is therefore beneficial. However, for shorter documents,
that may not use anatomical terms, such a small and specialized vo-
cabulary could result in very sparse or empty TFIDF representations.
Therefore, we will revisit this choice in Part III.

Our TFIDF representation for a study is the uniform average of the
normalized TFIDF vectors for its title, abstract, full text, and keywords.
Therefore, all parts of the article are taken into account, but a word
that occurs in the title is more important than a word the article body
(since the title is shorter).

Remember that we are training regression models to predict brain
maps from TFIDF features. We have a training sample of n neuroimag-
ing studies. Each study is associated with d TFIDF features, correspond-
ing to a vocabulary of d words: X ∈ Rn×d. We use these features to
predict m target variables, that are the densities in each region in our
partition of the brain: Y ∈ Rn×m, where m is the number of regions.
With our choice of corpus and vocabulary, the dimensions of the
data used in this section are: the number of samples n ≈ 13 000, the
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number of features d ≈ 1 000, and the number of outputs m depends
on the brain parcellation used and ranges from 22 (Harvard-Oxford
subcortical atlas) to over 28 000 (4 mm voxel grid).

When using Gaussian KDE, we use a diagonal bandwidth matrix,
with diagonal (h2,h2,h2), where h = 1. The corresponding Full Width
at Half Maximum (FWHM) is given by:

FWHM = 2 δh
√
2 ln(2) , (6.1)

where δ = 4 mm is the voxel size. With our bandwidth choice this
results in a FWHM of 9.4 mm, which is in the range of kernel sizes
typically employed to smooth fMRI data.

6.2 prediction performance

This first experiment compares models and measures their prediction
performance on left-out data. We perform 100 folds of shuffle-split
cross-validation, keeping 10% (i. e. 1 300) of the studies in the test
set. To assess the impact of the brain parcellation {Rk}, we compare
several anatomical atlases and a regular grid of 4-mm cubic voxels.
We also compare several regression models. We include two naive
baselines. The first is the label-constrained encoder. It is a simple rule-
based approach that looks for the occurrence of the exact labels of a
single atlas in the text (Section 5.2.4). It is included to check if such
a discrete heuristic based on manually segmented and labelled brain
regions performs better than a more data-driven approach. The second
baseline is a sanity check: it simply predicts the average of the training
set. It can be considered to measure chance level. Finally, we measure
the performance of the linear model described in Chapter 5, using the
least-squares and LAD losses.

The results are presented on Fig. 6.1. For all models, voxel-wise
encoding performs better than any atlas. Large atlas regions regu-
larize too much. Despite its higher dimensionality, voxel-wise en-
coding learns better representations of anatomical terms. The label-
constrained model performs poorly, often below chance level. This
seems to indicate that covering a large vocabulary and taking into
account interactions between words is important. Moreover, the re-
gions associated with anatomical terms are more accurately described
with continuous densities than with discrete segmentations, and even
atlases often disagree (Bohland et al., 2009). Therefore, learning the
mappings from terms to regions is more reliable than relying on any
particular atlas. Finally, for voxel-wise encoding, `1 regression outper-
forms `2. The best encoder is therefore learned using LAD regression
and a voxel partition.
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Figure 6.1: Log-Likelihood of coordinates reported by left-out articles in the
predicted distribution . The vertical line represents the test log-likelihood
for a uniform distribution over the brain. Voxel-wise encoding is better than
relying on any atlas. In this setting, `1 regression significantly outperforms
least-squares.

6.3 model inspection

The coefficients of the linear regression (rows of B) are the brain maps
that the model associates with each anatomical term. They are close to
what neuroanatomists would expect (see for example Figs. 6.2 and 6.3).

6.4 meta-analysis of a text-only corpus

Once trained, the encoding models described in this chapter can ex-
tract spatial information from unannotated text. As an illustration,
suppose that we want to use our corpus of 130 000 unlabelled articles
(from which we could not extract peak locations) to estimate the dis-
tribution of observations associated with certain neurological diseases,
such as aphasia. This type of meta-analysis should be feasible, since
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Figure 6.2: regression coefficient for “anterior cingulate”

L R

y=-6

Figure 6.3: regression coefficients for “left amygdala”, “amygdala”, and
“right amygdala”

in the corpus, several articles study aphasia and provide the names
of anatomical structures that they examined, or in which they made
observations (such as finding a lesion). However, this information
is provided as free text, which we cannot use directly to compute
statistics and identify locations in the brain.

6.4.1 Estimating densities for text-only documents

Trying to extract this spatial information with a rule-based approach
and a predefined brain atlas is unreliable, as shown in Section 6.2. A
better approach is to use a statistical encoding model that maps text to
locations in the brain, trained on our dataset of 13 000 labelled articles.
We therefore start by training our model, which learns over 1 000

mappings from terms to brain locations, such as the ones shown in
Figs. 6.2 and 6.3. We denote B̂ ∈ Rd×m the coefficients of the trained
model. We then use the trained model to transform into brain maps
the articles of the unlabelled corpus – the corpus which provides no
activation coordinates. Thus, the unstructured spatial information that
these articles contain, which was out of reach before, is extracted in the
form of quantitative images: spatial densities over the brain. Denoting
N the number of documents in the text-only corpus and C ∈ RN×d

their TFIDF features, we obtain the matrix of predicted densities as
CB̂ ∈ RN×m.
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6.4.2 Average density of relevant documents

We can then compute the average brain map for articles that mention
“aphasia”, weighted by the frequency of this term in their text. We de-
note f ∈ RN the TFIDF of the term of interest in each of the documents;
we use these frequencies as a measure of relevance of each document
to the query. The average map for relevant documents is computed as:

ȳf ,
1

‖f‖1
fTCB̂ . (6.2)

We are interested in regions where the density of observations is
higher in articles that are related to aphasia than in other articles.
To identify these regions, we compute the ratio between the average
density for documents related to aphasia and the average density
across the whole corpus. In log space, this amounts to computing the
difference:

log(ȳf) − log(ȳ1) = log(
1

‖f‖1
fTCB̂) − log(

1

N
1TCB̂) . (6.3)

The resulting contrast map for the example of “aphasia” is shown
in Fig. 6.4, and correctly highlights regions affected by this disor-
der (Damasio, 1992). Brain maps obtained for other examples, Hunt-
ington’s disease and Parkinson’s disease, are shown respectively in
Fig. 6.6 and Fig. 6.5.

L R

z=14

Figure 6.4: Map obtained for “aphasia”, centered on Broca’s and Wernicke’s
areas, in agreement with the literature (Damasio, 1992).

6.4.3 Transfer learning through term co-occurrences

In the experiment we described in this section, learning the mapping
from text to distributions over the brain enables us extract spatial
information from articles in the form of brain maps, and compute
statistics on these structured representations. Contrasting the average
density associated with a disease against the mean density for the
whole corpus allows us to associate a meta-analytic brain map with
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Figure 6.5: Map obtained for “Parkinson”, highlighting the thalamus, basal
ganglia, and other subcortical nuclei involved in Parkinson’s disease (Davie,
2008).
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Figure 6.6: Map obtained for “Huntington”, highlighting the striatum, cau-
date, putamen, basal ganglia, that are involved in Huntington’s disease
(Walker, 2007)

the disease, which recovers established domain knowledge (Damasio,
1992; Davie, 2008; Walker, 2007).

The corpus analyzed to study the disease only contains text. What
enables us to recover maps for words that are not seen during the
supervised training is their co-occurrence, in the unlabelled corpus,
with anatomical terms whose spatial distribution is captured by the
encoding model.

Beyond this simple example, this statistical framework for extracting
spatial information from text could be applied to other datasets, such
as collections of patient health records. Moreover, although we do not
explore this further here, methods used for traditional meta-analysis
could be applied to the predicted densities to form a null hypothesis
and perform an actual statistical test.

6.5 conclusion

We have introduced a statistical framework to translate textual descrip-
tion of studies into spatial distributions over the brain. This framework
provides a natural metric to evaluate and compare models. Quantita-
tive evaluation reveals that for this task, a voxel-wise discretization
of the brain and Kernel Density Estimation are more appropriate
than computing histograms based on larger atlas regions. Moreover,
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high-dimensional term-frequency representations and multivariate
models outperform a rule-based approach based on manually seg-
mented atlases. When using KDE, penalized Least Absolute Deviations
regression (a form of robust regression) yields a performance gain
over ridge regression.

Learning to map text to brain locations enables using a corpus
of pure text (containing no images or coordinates) to conduct meta-
analyses in brain space. Applied to several diseases, this text-based
meta-analysis synthesizes accurate brain maps that reflect the domain
knowledge. This transfer from the labelled corpus to the unannotated
text that describes a disease is due to the co-occurrence, in the un-
labelled corpus, of the disease name with well-encoded anatomical
terms. In Part III, we will further exploit this idea. Leveraging co-
occurrence statistics will allow us to extend our encoding framework
from mapping the text of neuroimaging articles to mapping arbitrary
queries related to brain anatomy, function or diseases.

The work presented in Part II was published in Dockès et al. (2018).
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M A P P I N G A R B I T R A R Y Q U E R I E S



7 T H E N E U R O Q U E R Y M O D E L

In Part I, we described standard meta-analysis methods, which find
consistent associations between mental processes or disorders and
brain structures across the neuroimaging literature. In Part II, we in-
troduced text-to-brain, a predictive framework that maps neuroscience
articles to distributions over the brain. Here, we improve the model
described in Part II, and enable it to handle a larger vocabulary and
very short documents, or even single terms. We create a general frame-
work, called “NeuroQuery”, that can encode into brain maps arbitrary
queries, from single terms to full articles. This new model can handle a
much larger vocabulary than previous approaches, including very rare
terms that are challenging for text-to-brain and for which standard
meta-analysis lacks statistical power. NeuroQuery can be used as an
online tool: https://neuroquery.saclay.inria.fr.

7.1 extending the scope of meta-analysis

For many relevant queries – descriptions of mental functions, tasks,
or diseases, neither standard meta-analysis methods such as ALE or
NeuroSynth nor the text-to-brain model introduced in Part II can
provide a satisfying brain map. Indeed, both approaches rely on a
restricted vocabulary.

Text-to-brain depends on the terms that parametrize its TFIDF feature
extraction. Documents that contain none of those terms cannot be
encoded. If a document does not contain any term from text-to-brain’s
vocabulary, the TFIDF representation for this document is empty and
the model cannot make a prediction. This is unlikely to happen with
full articles, which contain many words, but can happen if we want
a brain map for a short keyword search or for a single term. The
TFIDF vocabulary can be extended, but each new term introduces a
(potentially noisy) covariate when training the model. Hence, there is
a trade-off between vocabulary size and prediction accuracy. Indeed,
if the vocabulary is very large, inputs are very high-dimensional and
contain many uninformative features, which hinders the estimation of
model parameters.

Standard meta-analysis methods, such as NeuroSynth and ALE, are
based on a different approach. These methods build a set of studies
that investigate a mental process or a brain disorder. In the case of
NeuroSynth, relevant studies are identified by matching a single term
in their abstract. Standard methods then perform a statistical test to
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identify regions where activations are consistently reported in the
selected studies. They are therefore meant to produce statistical maps
for well-identified mental processes that have been investigated in
many neuroimaging studies. Standard meta-analysis is not meant to
interpolate between studies, nor to make predictions about topics of
interest that have seldom been investigated or require assembling and
weighting results from very diverse studies. Moreover, the main fully
automated framework, NeuroSynth, can only handle mental processes
or diseases that can be completely described with a single phrase,
such as “face recognition”.

In this chapter we introduce NeuroQuery. It extends the class of
queries for which we can obtain maps of the most relevant brain
regions – regions that are likely to contain related neurological obser-
vations. We are still in the predictive setting of Part II – and not testing
hypotheses as in standard meta-analysis. We start by presenting an
example application which would be challenging for both text-to-brain
and standard meta-analysis.

7.1.1 Motivating example

One of the simplest applications of meta-analysis is to put brain
locations identified in a neuroimaging study in perspective with the
literature. As an example, consider a study of the neural support
of the translation of orthography to phonology, studied with visual
stimuli by Pinho et al. (2018). Analyzing the results of this study
builds upon an experimental contrast labeled by the authors as “Read
pseudo-words vs. consonant strings”, shown in Fig. 7.1. Given this
description, what prior hypotheses arise from the literature for this
contrast? Conversely, given the statistical map resulting from the
experiment, how to compare it with previous reports on similar tasks?
Meta-analysis seems the tool of choice.

Standard meta-analysis would struggle to provide an answer. In-
deed, the current meta-analytic paradigm requires the practitioner to
select a set of studies that are included in the meta-analysis, usually
with equal weights. Existing methods provide no objective way to
continuously weight studies according to their relevance to the topic
of interest. In the case of “Read pseudo-words vs. consonant strings”,
which studies from the literature should be included? Even with the
corpus of 14 000 full-text articles described in Chapter 4, only 29 stud-
ies contain all 5 words from the contrast description, which leads to a
noisy and under-powered meta-analytic map (shown in Fig. 7.1b).

To avoid relying on the contrast name, which can be seen as too
short and terse, it could be beneficial to do a meta-analysis based
on the page-long task description1. This would require combining
even more terms, which precludes selecting studies that contain all of

1 https://project.inria.fr/IBC/files/2019/03/documentation.pdf

https://project.inria.fr/IBC/files/2019/03/documentation.pdf
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Figure 7.1: Studying the contrast “Read pseudo words vs. consonant strings”.
(a): Group-level map from IBC for the contrast “Read pseudo-words vs.
consonant strings” and contour of NeuroQuery map obtained from this query.
The NeuroQuery map was obtained directly from the contrast description
in the dataset’s documentation, without needing to manually select studies
for the meta-analysis nor convert this description to a string pattern usable
by existing automatic meta-analysis tools. The contour corresponds to the
arbitrary level 3.1. The map from which the contour is drawn, as well as a
NeuroQuery map for the page-long description of the RSVP language task,
are shown in Fig. 8.1. (b): GingerALE (Eickhoff et al., 2009) map for 29 studies
that contain all terms from the IBC contrast description: too few studies can
be automatically selected.

them. A more manual selection may help to identify relevant studies.
But manual or semi-automated meta-analysis is more difficult and
time-consuming. Moreover, some topics of interest may not have
been investigated by themselves, or only in very few studies. For
example, some rare diseases, or a task involving a combination of
mental processes that have been studied separately, but never – or
rarely – together. To compile a brain map from the literature for
such queries, we need to interpolate between studies that are only
partly related to the query. Standard meta-analytic methods lack an
automatic way to measure the relevance of studies to a question, and
to interpolate between them. This prevents them from answering new
questions, or questions that cannot be formulated simply.

It would also be difficult to encode the contrast label using the
text-to-brain model described in Part II. To make a prediction for
“pseudo-words vs. consonant strings” with text-to-brain, we would
need to include those terms in its vocabulary. Adding many terms to
the vocabulary makes the input features more high-dimensional and
could deteriorate the model’s predictions, as mentioned in Section 7.1.
Moreover, a query as short as a contrast label would result in an
extremely sparse TFIDF vector, far from the distribution of the text-to-
brain training documents. Therefore, there would be no guarantee of
an accurate prediction. In this chapter, we will extend the text-to-brain
model to address these difficulties.
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7.1.2 Contributions of this chapter

The approach we present here, NeuroQuery, can assemble results
from the literature into a brain map based on an arbitrary query. As
text-to-brain (Chapter 5), NeuroQuery uses a multivariate model of
the statistical link between multiple terms and corresponding brain
locations. It is fitted on full-text publications. Thus, it learns to weight
and combine terms to predict the brain locations most likely to be
reported in a study. It can predict a brain map given any query re-
lated to neuroscience – not only single words, but also, for example,
abstracts or full papers. With an extensive quantitative evaluation, we
show in Section 8.5 that it retains text-to-brain’s capacity to gener-
alize to unseen studies, and approximates well the results of actual
experimental data collection.

But unlike text-to-brain, NeuroQuery also models the semantic
relations that underlie the vocabulary of neuroscience. Existing auto-
matic meta-analysis methods such as NeuroSynth only include studies
that explicitly reference a term chosen by the user. On the contrary,
NeuroQuery leverages term co-occurrence statistics to model the se-
mantic similarities that bind the terms used in the literature. Thus,
it makes better use of the available information, and can recover bi-
ologically plausible brain maps where other methods lack statistical
power. In particular, it can encode rare terms, as shown in Section 8.3
and Section 8.4. This semantic smoothing also makes it less sensitive
to slight variations in terminology, as can be seen in Fig. 8.3. Inter-
changeable or very closely related terms yield similar brain maps
through NeuroQuery, whereas the choice of an exact word form can
change the results of traditional meta-analysis. This is central as there
is no universally established vocabulary to describe mental processes
and disorders. Indeed, the various controlled vocabularies built for
neuroscience ontologies or meta-analysis are very weakly overlapping
(Table 4.2). The similarities captured by NeuroQuery can also help
researchers to navigate related neuroscience concepts while exploring
their associations with brain activity.

In Part II, text-to-brain encoded documents through the anatomical
terms that they contain. As the focus of most meta-analyses is brain
function or diseases, here we use the whole vocabulary of over 7 000

terms collected in Chapter 4. To cope with the resulting sparse and
high-dimensional inputs, we introduce a feature selection and adaptive
regularization method, suited to regression problems with large output
spaces. Moreover, while text-to-brain predicts densities over the brain,
NeuroQuery can also estimate the variance of its predictions, and
output brain maps of Z statistics. Although these brain maps remain
predictions, and cannot be used for hypothesis testing, rescaling them
in this way is more practical for some applications, such as defining a
Region of Interest (ROI).
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Beyond the scope of traditional meta-analysis, NeuroQuery extracts
from the literature a coherent statistical summary of evidence accumu-
lated by neuroimaging research. It can be used to explore the domain
knowledge across sub-fields, generate new hypotheses, and construct
quantitative priors or ROIs for future studies, or put in perspective
results of an experiment. NeuroQuery is easily usable online2, and
can be openly downloaded for offline use3. We start by describing
the statistical model behind NeuroQuery in this chapter. In Chap-
ter 8, we present a qualitative and quantitative assessment of the new
possibilities it offers.

7.2 overview of the neuroquery model

NeuroQuery is an encoding model that maps text to a statistical map
of associated brain regions. The main components of the model are
an estimate of similarities between terms, derived from co-occurrence
statistics, and a regression model that links term occurrences to neural
activations. To generate a brain map, NeuroQuery first uses the esti-
mated semantic associations to map the query onto a set of keywords
that are well encoded in the brain. Then, it transforms the resulting
representation into brain space using its regression model (Fig. 7.2).
This model can thus be understood as a reduced rank regression,
where the low-dimensional representation is a distribution of weights
over keywords selected for their strong link with brain activity. In the
rest of this chapter, we describe how we estimate semantic relations,
select keywords, and map them onto brain activations.

7.3 revisiting the text-only meta-analysis

Like text-to-brain, NeuroQuery represents text with TFIDF vectors. The
first step of the NeuroQuery pipeline consists in smoothing these term-
frequency representations: adding weight to terms that are related
to the query but do not occur explicitly. Many expressions are chal-
lenging for existing meta-analysis frameworks, because they are too
rare, polysemic, or have a low correlation with brain activity. Rare
words are problematic because peak activation coordinates are a very
weak signal: from each article we extract little information about the
associated brain activity. Therefore existing frameworks typically need
to see a term in many studies (hundreds in the case of NeuroSynth,
see Section 8.4) in order to detect a pattern in peak activations. Term
co-occurrences are more consistent and reliable, and capture seman-
tic relationships (Turney and Pantel, 2010). It may require dozens or

2 https://neuroquery.saclay.inria.fr

3 https://github.com/neuroquery/neuroquery

https://neuroquery.saclay.inria.fr
https://github.com/neuroquery/neuroquery
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Figure 7.2: Overview of the NeuroQuery model: two examples of how
association maps are constructed for the terms “agnosia” and “visual”. The
query is expanded by adding weights to related terms. The resulting vector
is projected on the subspace spanned by the smaller vocabulary selected
during supervised feature selection. Those well-encoded terms are shown in
color. Finally, it is mapped onto brain space through the regression model.
When the word, as “visual”, has a strong association with brain activity and
is selected as a regressor, the smoothing has limited effect.

hundreds of studies to detect a peak activation pattern for “aphasia”,
but with a few examples we notice that it often appears close to “lan-
guage”. By leveraging this information, NeuroQuery recovers maps
for terms that are too rare to be mapped reliably.

We have already seen an example of exploiting term co-occurrences
in Section 6.4, where we perform meta-analysis on a corpus of pure
text by averaging the predicted densities for studies relevant to partic-
ular diseases. Here, we revisit this example and show that averaging
predictions for relevant studies is equivalent to smoothing an input
TFIDF vector by multiplying it with the covariance of TFIDF features
across the corpus.

In Section 6.4, we started from a trained regression model and a ma-
trix of TFIDF features for a corpus. The corpus contains n neuroimaging
studies. The TFIDF matrix X ∈ Rn×d contains the term frequencies
of d words in each of those studies4: Xi,j, 1 6 i 6 n, 1 6 j 6 d is the
TFIDF of term j in study i.

The regression coefficients are denoted B̂ ∈ Rd×m, where m is
the number of voxels in the brain. These coefficients result from

4 Regarding notation: in Section 6.4, we were dealing with two corpora. One was
labelled with peak coordinates, whereas the second one contained only text. To
distinguish them, we denoted C the TFIDF features for the unlabelled corpus. For
simplicity, let us suppose here that there is only one corpus, with TFIDF features X.
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regressing the activity of each voxel in the brain on the TFIDF features:
B̂ transforms a term-frequency vector x into a brain map ŷ = B̂T x.

For a particular query term, such as “aphasia”, we compute the
average prediction, weighted by the relevance f ∈ Rn>0 of documents
in the corpus:

ȳf ,
1

||f||1
fT X B̂ ∈ Rm . (7.1)

In Eq. (7.1), X B̂ computes the predictions for all the documents in the
corpus, and taking the product by ||f||−11 f

T computes the average of
these predictions, weighted by their relevance f to the term of interest.

If we extend the TFIDF vocabulary to include the term of interest, the
relevance fi of document i can be computed as the inner product of its
TFIDF representation xi, and the basis vector ej, where j is the index of
the term of interest in the vocabulary, and {ej, j = 1 . . . d} is the natural
basis of the TFIDF feature space. More generally, for any (non-empty)
query represented by the TFIDF vector q, the inner product xTi q is a
simple relevance score for the document xi. The weighting vector can
thus be chosen to be:

f(q) = Xq . (7.2)

Note that since q and X contain TFIDF features, they are non-negative,
and ||Xq||1 > 0 unless q is the empty query, which we do not consider.
Then, the average density for the query q can be computed as:

ȳf(q) =
1

||Xq||1
qT XT X B̂ . (7.3)

In Eq. (7.3), qTXT measures the relevance of documents, and X B̂
computes their associated brain map. However, we can also group fac-
tors differently to provide another interpretation of Eq. (7.3). Ignoring
the multiplicative constant ||Xq||−11 , we notice that the TFIDF vector q
representing the query is multiplied by a smoothing matrix XTX (the
covariance of the corpus), then mapped onto brain space through the
regression coefficients B̂. Computing the average prediction for docu-
ments similar to q thus amounts to smoothing q by the covariance of
the TFIDF features.

If we do not want to include new terms in the features used to learn
the supervised regression B̂, we can always project the smoothed
representation back to the original, smaller vocabulary. In this case,
we use two vocabularies. One large vocabulary, of size d, is used
for smoothing, and includes the term(s) of interest – “aphasia” in
this example. A smaller vocabulary of size u < d, included in the
large one, is used for learning the supervised regression B̂ ∈ Ru×m.
In Section 6.4, this smaller vocabulary was restricted to anatomical
terms. Denoting P ∈ Ru×d the projection matrix that selects the terms
present in the small vocabulary, the brain map can be computed as

ȳf(q) =
1

||Xq||1
qT XT XPT B̂ . (7.4)
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This is the approach of NeuroQuery: i) extract TFIDF features corre-
sponding to a large vocabulary, ii) smooth the extracted features – here
the smoothed features are ||Xq||−11 qT XT X, iii) project the resulting
representation on a subset of the large vocabulary, chosen because it
provides good features for predicting brain activity, and finally iv) map
the projected TFIDF onto the brain through a trained regression model
(Fig. 7.2). Based on the encouraging results obtained in Section 6.4,
we will revisit each step of this procedure: smoothing (Section 7.4),
selecting terms included as features for the supervised regression, and
learning the regression coefficients (Section 7.5).

7.4 building the smoothing matrix

In order to smooth the sparse input features, we exploit the covariance
of our training corpus. We rely on Non-negative Matrix Factorization
(NMF) (Lee and Seung, 1999). We use an NMF of X ∈ Rn×d to compute
a low-rank approximation of the covariance XT X ∈ Rd×d. Thus, we
obtain a denoised term co-occurrence matrix, which measures the
strength of association between pairs of terms. We start by computing
an approximate factorization of the corpus TFIDF matrix X:

U,V = argmin
U∈Rn×k>0

V∈Rk×d>0

||X−UV||2F +λ(||U||2F + ||V||2F)+γ(||U||1+ ||V||1) , (7.5)

where k < d is a pre-defined constant (set to k = 300 in our exper-
iments). Computing this factorization amounts to describing each
document in the corpus as a linear mixture of k latent factors, or
topics. In Natural Language Processing (NLP), similar decomposition
methods are referred to as topic modelling (Blei, Ng, and Jordan, 2003;
Deerwester et al., 1990). The hyperparameters λ = 0.1 and γ = 0.01
are set by evaluating the reconstruction error, sparsity of the similarity
matrix, and extracted topics (rows of V) on an unlabelled (separate)
corpus. We find that the NeuroQuery model as a whole is not very
sensitive to these hyperparameters and we obtain similar results for a
range of different values.

Eq. (7.5) is a well-known problem. We solve it with a coordinate-
descent algorithm described in Cichocki and Phan (2009) and imple-
mented in scikit-learn5 (Pedregosa et al., 2011). Then, letN ∈ Rk×k

be the diagonal matrix containing the Euclidean norms of the columns
of U, i. e. such that Nii = ||U:,i||2 and let Ṽ = NV. We define the

5 https://scikit-learn.org
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word similarity matrix A = ṼT Ṽ ∈ Rd×d. This matrix is a denoised,
low-rank approximation of the corpus covariance. Indeed,

XT X ≈ (UV)T UV (7.6)

= VT NT
(
UN−1

)T
UN−1NV (7.7)

≈ ṼT Ṽ . (7.8)

The last approximation is justified by the fact that the columns of
U ∈ Rn×k are almost orthogonal, and UT U is almost a diagonal
matrix. This is what we observe in practice, and is due to the fact that
n ≈ 13 000 is much larger than k = 300, and that to minimize the
reconstruction error in Eq. (7.5) the columns of U have an incentive to
span a large subspace of Rn.

The similarity matrix A contains the inner products of the low-
dimensional embeddings of the terms in our vocabulary. We form the
matrix T by dividing the rows of A by their `1 norm:

Ti,j =
Ai,j

||Ai,: ||1
∀ i = 1 . . . d, j = 1 . . . d . (7.9)

This normalization ensures that terms that have many neighbors
are not given more importance in the smoothed representation. The
smoothing matrix that we use is then defined as:

S = (1−α) I+α T , (7.10)

with 0 < α < 1 (in our experiments α is set to 0.1). This smoothing
matrix is a mixture of the identity matrix and the term associations
T . Thus, the amount of smoothing is controlled and terms actually
present in the query have a higher weight than terms introduced by the
query expansion. This prevents degrading performance for documents
which contain well-encoded terms, which obtain good prediction even
without smoothing. This explains why in Fig. 7.2, the prediction for
“visual” relies mostly on the regression coefficient for this exact term,
whereas the prediction for “agnosia” relies on coefficients of terms
that are related to “agnosia”.

The smoothed representation for a query q becomes: STq, where
q ∈ Rd is the TFIDF representation of the query in large vocabulary
space, and S ∈ Rd×d is the smoothing matrix.

7.5 multi-output feature selection

When building an encoder for full articles in Part II, we used only
anatomical terms to extract TFIDF features for documents. However,
now that we are building a meta-analysis tool, we must be able to
exploit a more diverse vocabulary, as most queries will focus on mental
processes or diseases, and contain no anatomical terms. Hence, we
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consider the whole vocabulary collected in Chapter 4, which contains
over 7 000 terms related to anatomy, psychology and psychiatry.

As a result, TFIDF representations become more high-dimensional,
and include some uninformative terms such as “magnetoencephalog-
raphy”. Such sparse, uninformative features can degrade the perfor-
mance of the regression model. As considering only anatomical terms
is no longer satisfactory, there is no easy way to decide which terms
should be used as features for the supervised text-to-brain regression.
We need a data-driven feature selection procedure. Moreover, among
terms that we do want to keep in the vocabulary, some words display
a much stronger correlation with brain activity than others. For ex-
ample, “auditory” is well correlated with activations in the auditory
areas, whereas “working memory” has a lower signal-to-noise ratio.
Therefore, once we have selected the most informative terms, we must
adapt the regularization applied to each feature, so that the most noisy
coefficients get penalized more.

7.5.1 Identifying informative terms

Many existing methods for feature selection are not adapted to our
case, because: i) the design matrix X is very sparse, and more impor-
tantly ii) we want to select the same features for ≈ 28 000 outputs (each
voxel in the brain is a dependent variable). We therefore introduce a
new reweighted ridge regression and feature selection procedure.

Our approach is based on the observation that when fitting a ridge
regression with a uniform regularization, the most informative words
are associated with large coefficients for many voxels. We start by
fitting a ridge regression with uniform regularization. We obtain one
statistical map of the brain for every feature (every term in the vocab-
ulary). The maps are rescaled to reduce the importance of coefficients
with a high variance. We then compute the squared `2 norms of these
brain maps across voxels. These norms are a good proxy for the impor-
tance of each feature. Terms associated with large norms explain well
the activity of many voxels and tend to be helpful features. We rely
on these brain map norms to determine which features are selected
and what regularization is applied. The feature selection and adaptive
regularization are described in detail in the rest of this section.

7.5.2 Z scores for ridge regression coefficients

We keep the notations of Part II. Our design matrix X ∈ Rn×d holds
TFIDF features for d terms in n studies. There are m dependent vari-
ables, one for each voxel in the brain, which form Y ∈ Rn×m.

The first ridge regression fit yields coefficients B̂(0):

B̂(0) = argmin
B∈Rd×m

||Y −XB||2F + λ ||B||2F , (7.11)
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where λ ∈ R>0 is a hyperparameter set with Generalized Cross-
Validation (Rifkin and Lippert, 2007). We then compute an estimate
of the variance of these coefficients. The approach is similar to the
one presented in Gaonkar and Davatzikos (2012) for the case of SVMs.
A simple estimator can be obtained by noting that the coefficients of
a ridge regression are a linear function of the dependent variables.
Indeed, solving Eq. (7.11) yields:

B̂(0) = (XTX+ λI)−1XTY . (7.12)

Defining

M = (XTX+ λI)−1XT , (7.13)

a simple estimate of the coefficients’ variance is then:

V̂ar(B̂(0)
:,j ) =M V̂ar(Y:,j)MT , (7.14)

where Y:,j indicates the jth column of matrix Y . The squared residuals
provide a plug-in estimate of Var(Y:,j), considering that samples are
i.i.d. and assuming that voxels are independent. We thus obtain a brain
map of Z scores for each term in the vocabulary: for i ∈ {1, . . . ,d},

ẑi ,
B̂
(0)
i,:

σ̂i
, (7.15)

where σ̂i ∈ Rm, σ̂ij , 1 6 j 6 m is an estimate of the standard
deviation of B̂(0)

ij , and division is performed element-wise.

7.5.3 Reweighted ridge matrix

Once we have a Z-map for each term, we summarize these maps by
computing their squared Euclidean norm. In practice, we smooth the
Z scores: ẑi in Eq. (7.15) is replaced by

ζ̂i =
B̂
(0)
i,:

σ̂i + δ
, (7.16)

where δ is a constant offset. The offset δ allows us to interpolate
between basing the regularization on the Z scores, or on the raw
coefficients, i. e. the β-maps. We obtain better results with a large
value for δ, such as the mean variance of all the regression coefficients.
This prevents selecting terms only because they have a very small
estimated variance in some voxels.

Next, we compute the mean µ and standard deviation s of
{ ||ζ̂i||

2
2, i = 1 . . . d }, and set an arbitrary cutoff

c = µ+ 2s . (7.17)
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All features i such that ||ζ̂i||22 6 c+ ε, where ε is a small margin to
avoid division by zero in Eq. (7.19), are discarded. In practice we set ε
to 0.001. The value of ε is not important, because features that are not
discarded but have their ζ norm close to c get very heavily penalized
in Eq. (7.19) and have coefficients very close to 0.

We denote u < d the number of features that remain in the selected
vocabulary. We denote φ : {1 . . . u} → {1 . . . d} the strictly increasing
mapping that reindexes the features by keeping only the u selected
terms: φ({1 . . . u}) is the set of selected features. We denote P ∈ Ru×d

the corresponding projection matrix:

PT:,i = eφ(i) ∀i ∈ {1 . . . u} , (7.18)

where {ei, i = 1 . . . d} is the natural basis of Rd. The regularization
for the selected features is then set to

wi =
1

||ζ̂φ(i)||
2
2 − c

. (7.19)

Finally, we define the diagonal matrix W ∈ Ru×u such that Wii = wi
and fit a new set of coefficients B̂ ∈ Ru×m with this new ridge matrix.

7.5.4 Fitting the reweighted ridge regression

The reweighted ridge regression problem writes:

B̂ = argmin
B∈Ru×m

||Y −XPT B||2F + γTr(BTWB) , (7.20)

Where γ ∈ R>0 is a new hyperparameter, that is again set by GCV.
With a change of variables this becomes equivalent to solving the
usual ridge regression problem:

Γ̂ = argmin
Γ

||Y − X̃ Γ||2F + γ ||Γ||2F , (7.21)

where X̃ = XPTW− 1
2 and we recover B̂ as B̂ =W− 1

2 Γ̂ .
The variance of the parameters B̂ can be estimated as in Eq. (7.14) –

without applying the smoothing of Eq. (7.16).

7.5.5 Summary of the regression with adaptive regularization

The whole procedure for feature selection and adaptive regularization
is summarized in Algorithm 1.

In practice, the feature selection keeps u ≈ 200 features. It has a very
low computational cost compared to other feature selection schemes.
The computational cost is that of fitting two ridge regressions (and
the second one is fitted with a much smaller number of features).
Moreover, the feature selection also reduces computation at prediction
time, which is useful because we deploy an online tool based on the
NeuroQuery model6 (Section 8.7). Using a low-rank factorization of

6 https://neuroquery.saclay.inria.fr

https://neuroquery.saclay.inria.fr
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Algorithm 1: Reweighted Ridge Regression
input : TFIDF features X, brain activation densities Y ,

regularization hyperparameters Λ, variance smoothing
parameter δ

use GCV to compute the best hyperparameter λ ∈ Λ and
B̂(0) = argminB ||Y −XB||2F + λ||B||2F ;

compute variance estimates σ̂2i as in Eq. (7.14);

ζ̂i ← B̂
(0)
i

σ̂i+δ
∀i ∈ {1 . . . d};

compute c according to Eq. (7.17) ;
define φ the reindexing that selects features i such that
||ζ̂i||

2
2 > c+ ε ;

define P ∈ Ru×d the projection matrix for φ as in Eq. (7.18) ;
wi ← 1

||ζ̂φ(i)||
2
2−c
∀i ∈ {1 . . . u};

W ← diag(wi, i = 1 . . . d);
use GCV to compute the best hyperparameter γ ∈ Λ and
B̂ = argminB ||Y −XPTB||2F + γTr(BTWB) ;

return B̂, V̂ar(B̂), γ, P, W

the covariance of the corpus TFIDF (Section 7.4), rather than the full
covariance matrix, also reduces the computational cost of making a
prediction. The feature selection procedure, despite being heuristic,
yields satisfying results on our dataset and problem (Chapter 8), and
on toy synthetic data (Appendix C.1).

7.6 smoothing, projection, mapping

To make a prediction, NeuroQuery combines the semantic smoothing
described in Section 7.4 and the linear regression of brain activations
described in Section 7.5. To encode a new document or query, the text
is expanded, or smoothed, by adding weight to related terms using
the semantic similarity matrix. The resulting smoothed representa-
tion is projected onto the reduced vocabulary of selected keywords,
then mapped onto the brain through the linear regression coefficients
(Fig. 7.2). A prediction thus writes:

ŷ = xT SPT B̂ (7.22)

= xT ((1−α) I+α T )PT B̂ . (7.23)

The rank of this linear model is the size u of the restricted vocabulary
that was found to be reliably mapped to the brain. Compared with
other latent factor models, this 2-layer linear model is easily inter-
pretable, as each dimension (both of the input and the latent space) is
associated with a term from our vocabulary.
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In addition, NeuroQuery uses an estimate of the voxel-level vari-
ance of association, using the approach detailed in Section 7.5.2 and
Eq. (7.14), and reports a map of Z statistics (The smoothing of Eq. (7.16)
is only used for feature selection and is not applied when comput-
ing output maps). However, we should remember that these maps
represent the prediction of a multivariate model for the smoothed rep-
resentation of a query, which is treated as a fixed quantity. Therefore
these maps must not be interpreted as direct associations between
a term and brain activity, and are not used to test any meaningful
null hypothesis. In particular, they have a different meaning than ALE,
MKDA or NeuroSynth maps.



8 N E U R O Q U E R Y E X P E R I M E N T S

In Chapter 7, we described the NeuroQuery model and how it per-
forms smoothing of sparse input features and adaptive regularization.
Here we explore the possibilities offered by NeuroQuery. We start by
presenting in more detail the motivating example based on the IBC

fMRI dataset from Section 7.1. Then, we evaluate how NeuroQuery
copes with queries that are challenging for other methods, including
rare terms. Finally, we measure prediction performance with cross-
validation, as was done for text-to-brain in Chapter 6.

8.1 illustration: interpreting fmri maps

After running an fMRI experiment, it is common to compare the com-
puted contrasts to what is known from the existing literature, and even
use prior knowledge to assess whether some activations are not spe-
cific to the targeted mental process, but due to experimental artifacts
such as the stimulus modality. It is also possible to introduce prior
knowledge earlier in the study and choose a Region of Interest (ROI)
before running the experiment. This is usually done based on the
expertise of the researcher, which is hard to formalize and reproduce.
With NeuroQuery, it is easy to capture the domain knowledge and
perform these comparisons or ROI selections in a principled way.

As an example, on Fig. 8.1, we take a contrast from the RSVP lan-
guage task (Humphries et al., 2006; Pinho et al., 2018) in the IBC dataset.
In the articles’ methods, it is described as “Read pseudo-words vs.
consonant strings”. The corresponding group-level map from the IBC

dataset is shown in Fig. 8.1a.
In theory, meta-analysis could tell us whether such a map is consis-

tent with the literature. However, selecting relevant studies is difficult.
Selecting all studies that contain all terms from the contrast name for
an ALE meta-analysis lacks statistical power, as seen in Fig. 8.1b. We
can obtain a brain map from NeuroQuery by simply transforming
the contrast description, without any manual intervention. This map,
shown on Fig. 8.1c, covers most of the activations from the group-level
map: activations revealed by the fMRI study are consistent with what
could be expected from the literature. Note that the NeuroQuery map
is a prediction of regions where activations are likely to occur, and
thus has a different interpretation than ALE, MKDA or NeuroSynth
maps. We can also query NeuroQuery with the task description to
obtain a map for the whole task, rather than a map that is specific to

75
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Figure 8.1: Using meta-analysis to interpret fMRI maps Example of the “Read
pseudo-words vs. consonant strings” contrast, derived from the RSVP lan-
guage task in the IBC dataset. (a): the group-level map obtained from the
actual fMRI data from IBC. (b): ALE map using the 29 studies in our corpus
that contain all 5 terms from the contrast name – computed with GingerALE
(Eickhoff et al., 2009). (c): NeuroQuery map obtained from the contrast name.
(d): NeuroQuery map obtained from the page-long RSVP task description
in the IBC dataset documentation: https://project.inria.fr/IBC/files/
2019/03/documentation.pdf

a particular contrast. This map is shown in Fig. 8.1d, and highlights
areas related to language, which is the focus of the RSVP language task
(Pinho et al., 2018).

8.2 baseline methods

In the next three sections we compare the NeuroQuery model with
existing automated meta-analysis methods, investigate how it han-
dles terms that are challenging for the current state of the art, and
quantitatively evaluate its predictive performance. We compare Neu-
roQuery with NeuroSynth (Yarkoni et al., 2011), the most well-known
open meta-analytic tool, and with Generalized Correspondence Latent
Dirichlet Allocation (GCLDA) (Rubin et al., 2017).

NeuroSynth computes meta-analytic map for single terms by per-
forming a test of independence between the occurrence of a given
term in the abstract of a study, and the fact that the study reports
an activation within 10 mm of a given voxel. It is described in more

https://project.inria.fr/IBC/files/2019/03/documentation.pdf
https://project.inria.fr/IBC/files/2019/03/documentation.pdf
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detail in Section 3.2.2.2 and Section 4.1. In our experiments, we use
the authors’ implementation, trained on their dataset1.

GCLDA is an extension of Latent Dirichlet Allocation (LDA) (Blei,
Ng, and Jordan, 2003). It models each study as a mixture of latent
variables, called “topics”. Each topic is associated with i) a distribu-
tion of weights over words, as in the original LDA model, and ii) a
mixture of 3-dimensional Gaussians, which describes a density over
the brain. In the author’s experiments, each topic is associated with
two Gaussians, whose means can be constrained to be symmetric
across the sagittal plane. GCLDA is an important baseline because it
is the only multivariate meta-analytic model that we are aware of.
However, the maps it produces have a low spatial resolution because
it models brain activations as a mixture of a small number of Gaus-
sians. Moreover, it takes several days to train and a dozen of seconds
to produce a map at test time, and is thus unsuitable for building
an online and responsive tool like NeuroSynth or NeuroQuery. In
our experiments, we use the implementation of GCLDA available at
https://github.com/tsalo/gclda.

8.3 mapping challenging queries

By combining term similarities and an additive encoding model, Neu-
roQuery can accurately map rare or difficult terms for which standard
meta-analysis lacks statistical power. A few examples are shown in
Fig. 8.2.

Moreover, capturing the relationships between terms results in con-
sistent meta-analytic maps for similar terms. For instance, “calcu-
lation”, “computation”, “arithmetic”, and “addition” are all related
terms that are associated with similar maps by NeuroQuery, as seen in
Fig. 8.3. On the contrary, NeuroSynth studies these terms in isolation,
and thus suffers from a lack of statistical power and produces empty,
or nearly empty, maps for some of these terms.

Finally, we can note that although the reweighted ridge regression
procedure selects relatively few features, the neural support of these
≈ 200 terms covers most of the brain (Appendix C.2).

8.4 measuring sample complexity

To measure how well methods cope with rare terms, we conduct meta-
analyses on subsampled corpora. We mask occurrences of some terms
to make them artificially rare, and use the maps obtained from the
full corpus as a reference. We choose a set of relatively frequent and
well-mapped terms, such as “language”, for which NeuroQuery and

1 https://github.com/neurosynth/neurosynth

https://github.com/tsalo/gclda
https://github.com/neurosynth/neurosynth
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Figure 8.2: Example of maps obtained for a given term, compared across
different large-scale meta-analysis frameworks. “GCLDA” has low spatial
resolution and produces inaccurate maps. For relatively straightforward
terms like “psts” (posterior superior temporal sulcus), NeuroSynth and
NeuroQuery give consistent results. For terms that are more rare or difficult
to map like “dyslexia”, only NeuroQuery generates usable brain maps.
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Figure 8.3: Maps obtained for a few words related to mental arithmetic. By
correctly capturing the fact that these words are related, NeuroQuery can
use its map for easier words like “calculation” and “arithmetic” to encode
terms like “computation” and “addition” that are difficult for meta-analysis.

NeuroSynth (trained on a full corpus) give consistent results. For each
of those terms, we construct a series of corpora in which the word
becomes more and more rare: starting from a full corpus, we erase
randomly the word from many documents until it occurs at most in
213 = 8912 articles, then 212 = 4096, and so on.

For many terms, with dozens of examples or even less, NeuroQuery
can produce maps that are qualitatively and quantitatively close to the
maps it obtains for the full corpus (and to NeuroSynth’s full-corpus
maps). NeuroSynth typically needs hundreds of examples to obtain
similar results, as seen in Figs. 8.4 and 8.5. Document frequencies
roughly follow a power law (Piantadosi, 2014), meaning that most
words are very rare. Despite discarding terms that occur in less than 6

articles, half the terms in our vocabulary occur in less than 76 articles
out of 13 000 (see Fig. 8.6). Reducing the number of studies required
to map well a term (a. k. a. sample complexity of the meta-analysis
model) therefore greatly widens the vocabulary that can be studied by
meta-analysis.

8.5 prediction performance

Unlike standard meta-analysis methods, that compute in-sample statis-
tics, NeuroQuery is a predictive model and can produce brain maps
for out-of-sample neuroimaging studies. This enables us to quanti-
tatively assess its generalization performance. Here we check that
NeuroQuery captures reliable links from concepts to brain activity
– associations that generalize to new, unseen neuroimaging studies.
We do this with 16-fold shuffle-split cross-validation. After fitting a
NeuroQuery model on 90% of the corpus, for each document in the
left-out test set (around 1 300), we encode it, normalize the predicted
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Figure 8.4: Learning good maps from few studies. Maps obtained from
subsampled corpora, in which the encoded word appears in 16 and 128

documents, and from the full corpus. NeuroQuery needs less examples to
learn a sensible brain map.
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Figure 8.5: Convergence of maps toward their value for the full corpus, as
the number of occurrences increases. Averaged over 13 words: “language”,
“auditory”, “emotional”, “hand”, “face”, “default mode”, “putamen”, “hip-
pocampus”, “reward”, “spatial”, “amygdala”, “sentence”, “memory”.
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Figure 8.6: Most terms occur in few documents: we plot the document
frequencies for terms in our vocabulary, sorted in decreasing order. While
some terms are very frequent, occurring in over 12 000 articles, most are very
rare: half occur in less than 76 (out of 14 000) articles.

brain map to coerce it into a probability density, and compute the
average log-likelihood with respect to the coordinates reported in the
article. The procedure is then repeated 16 times.

The results are presented in Fig. 8.7a. We also perform this proce-
dure with NeuroSynth and GCLDA. NeuroSynth does not perform well
for this task. Indeed, the NeuroSynth model is designed for single-
phrase meta-analysis, and does not have a mechanism to combine
words and encode a full document. Moreover, it is a tool for in-sample
statistical inference, which is not well suited for out-of sample predic-
tion. GCLDA performs significantly better than chance, but still worse
than a simple ridge regression baseline. This can be explained by
the unrealistic modelling of brain activations as a mixture of a few
Gaussians, which results in low spatial resolution, and by the diffi-
culty to perform posterior inference for GCLDA. To check that the good
performance is not only due to our choice of likelihood model, we
also use another metric, introduced in Mitchell et al., 2008. It tests the
ability of the meta-analytic model to match the text of a left-out study
with its brain map. For each article in the test set, we draw randomly
another one and check whether the predicted map is closer to the
correct map or to the random negative example. More than 72% of the
time, NeuroQuery’s output has a higher Pearson correlation with the
correct map (Fig. 8.7b) than with the negative example.
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Figure 8.7: Explaining coordinates reported in unseen studies. (a): log-
likelihood for coordinates reported in test articles, relative to log-likelihood
of a naive baseline that predicts the average density of the training set. Neu-
roQuery outperforms GCLDA, NeuroSynth, and a ridge regression baseline.
Note that NeuroSynth is not designed to make encoding predictions for full
documents, which is why it does not perform well on this task. (b): “mix
and match”, or “leave-two-out” metric (Mitchell et al., 2008): how often is
the predicted map closer to the true map than to a map randomly drawn
from the test set? For this metric GCLDA’s lack of spatial resolution is not
detrimental: the prediction does not need to accurately reconstruct the true
map, but only be closer to it than to other studies’ maps.
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8.6 example failure

In some rare cases, the use of semantic similarities can yield over-
confident results. As NeuroQuery is explicit about how it builds a
prediction, its failures are also easily detected. For example, failures
can happen when a term has no closely related neighbors that correlate
well with brain activity. “ADHD” is very similar to “attention deficit
hyperactivity disorder”, “hyperactivity”, “inattention”, but none of
these terms are selected as features by the model because their link
with brain activity is relatively loose. Hence, for “ADHD”, the model
builds its prediction on terms that are not very closely related and pro-
duces a map that highlights mostly the cerebellum, shown in Fig. 8.8.
Although Attention Deficit Hyperactivity Disorder (ADHD) seems to
be associated with differences in the volume and connectivity of the
cerebellum, this map is incomplete and misleading (Konrad and Eick-
hoff, 2010). However, the failure is easy to detect for a user, based on
the list of terms produced by NeuroQuery to support the prediction.
In this particular case, the online tool also issues a warning stating
that results may not be reliable. Being able to explore the internals of
the model – the terms it uses to make a prediction and their individual
coefficients, their weight, and the related studies and their coordinates,
is therefore essential and limits the risk of interpreting NeuroQuery
results incorrectly.

8.7 using neuroquery

NeuroQuery can easily be used online: https://neuroquery.saclay.
inria.fr. Users can enter free text in a search box (rather than select
a single term from a list as is the case with NeuroSynth) and discover
which terms, neuroimaging publications, and brain regions are related
to their query. NeuroQuery is also available as an open-source Python
package that can be easily installed on all platforms: https://github.
com/neuroquery/neuroquery. We hope this will allow advanced users
to integrate NeuroQuery in other applications, extend it, and test its
limitations. The package allows training new NeuroQuery models

https://neuroquery.saclay.inria.fr
https://neuroquery.saclay.inria.fr
https://github.com/neuroquery/neuroquery
https://github.com/neuroquery/neuroquery


8.8 conclusion: usable meta-analysis tools 84

as well as downloading and using a pre-trained model. Finally, the
data used to train our NeuroQuery model is freely available: https://
github.com/neuroquery/neuroquery_data. This repository contains
the vocabulary list and document frequencies, TFIDF features for our
whole corpus, and peak activation coordinates.

8.8 conclusion: usable meta-analysis tools

NeuroQuery departs from existing meta-analytic frameworks by per-
forming prediction rather than hypothesis testing, and by describing
neuroscience topics of interest by continuous combinations of con-
cepts rather than matching publications for exact terms. It is thus
complementary of previously existing methods such as ALE, MKDA

and NeuroSynth. As it combines multiple terms and interpolates be-
tween available studies, it predicts brain locations for new studies. It
can predict accurate brain maps for terms that are too rare for stan-
dard meta-analysis – and especially existing automated tools such as
NeuroSynth.

As it forms a comprehensive statistical summary of the literature,
NeuroQuery has many potential applications in neuroscience research.
i) In preparation of new functional neuroimaging studies, it helps to
formulate hypotheses, to define formal priors, ROIs, or even to pre-
register experiments. ii) To analyze neuroimaging results, it enables
comparing them with trends in the literature. Statistical maps directly
derived from the description of the experiment ground objective and
formal comparisons. iii) It can also help literature reviews by finding
individual studies that are related to the query and their reported
activations. iv) Finally, by navigating through the links to similar
terms or studies, it can be used in an exploratory way, discovering
relationships between neuroscience concepts as well as their neural
correlates (Yeo et al., 2014). NeuroQuery can readily be used online,
and one can also install it and download its data.

Compiling results across studies and laboratories is essential for
the progress of human brain mapping (Yarkoni et al., 2010). Mental
processes are difficult to isolate, and individual studies may report
results that do not generalize. Thus, tools are needed to denoise
and summarize knowledge accumulated across a large number of
studies. Such tools must be usable in practice and match the needs
of researchers who exploit them to study human brain function and
disorders. NeuroSynth took a huge step in this direction by enabling
anyone to perform, in a few seconds, a fully automated meta-analysis
across thousands of studies, for an important number of isolated terms.
Still, users are faced with the difficult task of mapping their question to
a single term from the NeuroSynth vocabulary, which cannot always be
done in a meaningful way. If the selected term is not popular enough,

https://github.com/neuroquery/neuroquery_data
https://github.com/neuroquery/neuroquery_data
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the resulting map also risks being unusable for lack of statistical power.
NeuroQuery provides brain maps for arbitrary queries –from seldom-
studied terms to free-text descriptions of experimental protocols. Thus,
it enables applying fully-automated and quantitative meta-analysis
in situations where only semi-manual and subjective solutions were
available. NeuroQuery therefore helps the feasibility of principled and
quantitative accumulation of knowledge in neuroscience.
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9 D E C O D I N G

In the next two chapters we present work in collaboration with Romuald
Menuet. He is the first author of this study, wrote the implementation of
the models described here, and performed the numerical experiments. I was
involved in the project since the beginning and participated in design choices
(from high-level decisions to implementation details) and writing the resulting
publication.

In this part of the manuscript, we depart from previous chapters in
two ways. First, we do not use reported peak activation coordinates
anymore; we use full statistical maps of the brain. Instead of extracting
the brain activation data from published articles, we download contrast
maps for many studies from the NeuroVault1 (Gorgolewski et al., 2015)
online repository. Second, we switch from encoding to the reverse
task: given a statistical map of the brain, which mental processes
can we associate with it? This task is often called decoding. We are
now mapping brain structures to behavioral annotations, whereas in
the previous chapters we were mapping behavioral terms to brain
structures. The NeuroVault repository contains dozens of thousands
of statistical maps, and metadata that describes the experiments that
produced these maps. We use this metadata to extract several labels
for each brain image, and train statistical models to predict those
labels, in a supervised learning setting. In this chapter, we formalize
this decoding problem, present our approach, and describe the metrics
that we use to evaluate methods. In Chapter 10, we detail how we
obtain and process data from NeuroVault, describe our experiments,
and present results.

9.1 problem setting

We train a model to predict which labels are relevant to describe a
statistical map of the brain. We are in a multi-label classification set-
ting. We have a set of n brain images, each represented by a vector
in Rm, where m is the number of voxels in the brain. These brain
images are the inputs, from which we must predict cognitive labels.
We have a fixed set of possible labels L that can be used to describe
an image, such as “language processing” or “finger tapping”. One
or several labels from this predefined set are attached to each image.
The labels for an image can be represented by their one-hot encoding,

1 https://neurovault.org
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https://neurovault.org
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a vector y ∈ {0, 1}|L|, such that yl is 1 if label l is true, and 0 oth-
erwise. These one-hot encodings thus form the classification targets
Y ∈ {0, 1}n×|L|. We want to train a statistical model to predict which
labels will be attached to a given image. To do so, we select an appro-
priate vector representation for input brain images (Section 9.2), and
a model that links the occurrence of each label to these input vectors
(Section 9.3.1). We set the model parameters with empirical risk mini-
mization, which entails choosing a data-fit term and a regularization
term (Sections 9.3.2 and 9.3.3).

9.2 representing statistical brain maps

fMRI statistical maps are very high-dimensional: there are typically
over 200 000 voxels inside of the brain. Moreover, statistical maps
contain some noise, and the location of activations can be influenced
by registration and other parts of the analysis pipeline (Carp, 2012).
As the number of available statistical maps is limited, it is therefore
beneficial to reduce the dimension of input feature vectors before
feeding them to a decoder. Many methods for feature selection and
dimensionality reduction of fMRI statistical maps have been presented
and compared in the literature.

One of the most successful approaches is to use an unsupervised
decomposition method such as PCA, ICA or dictionary learning (Ol-
shausen and Field, 1997) to learn a set of spatial components, which are
brain maps that span a meaningful subspace of Rm (Thirion et al.,
2014). Once such a basis is learned, fMRI maps can be projected on the
spanned subspace and represented as a linear combination of these
components. In extensive comparisons (Dadi et al., 2019; Mensch et al.,
2017a), dictionary learning has obtained the best performances among
other unsupervised decomposition methods, both in terms of recon-
struction error and as a feature extraction method for supervised tasks
such as decoding or predicting phenotypic variables. We therefore use
dictionary learning to learn the basis in which we represent our brain
maps.

The dictionary is learned from fMRI data. In order to learn such a
decomposition,N fMRI maps, coming from different subjects, tasks and
time points, are flattened into vectors and stacked. Thus, we form a
matrix S ∈ RN×m, in which each row is a brain map, and each column
corresponds to a voxel in the brain. Extracting the components then
relies on factorizing this data matrix. Matrix Factorization has been
extensively used in this way to learn unsupervised low-dimensional
representations in diverse settings (Lee and Seung, 1999). We start by
choosing a number of components p ∈N: the dimension of the basis
that we will learn. We then decompose the stacked fMRI maps S as

S ≈ AD , (9.1)



9.2 representing statistical brain maps 89

where A ∈ RN×p are the loadings of the N fMRI training maps, and
D ∈ Rp×m are the p spatial components that form the dictionary.
The loadings A and dictionary D are learned by minimizing the
reconstruction error ||S−AD||2F , augmented with regularization terms,
possibly under constraints. Formulations of dictionary learning differ
in their choice of regularization terms (such as `1 or `2 penalties on A
orD) and constraints (such as constraining A orD to be non-negative,
or to be in the `1 or `2 unit ball of Rm).

In our experiments, we use a dictionary trained by solving the
non-negative matrix factorization problem

A,D = argmin
D∈C

A∈RN×p

||S−AD ||2F + λ ||A ||2F , (9.2)

where the constraint C = {D ∈ Rp×m, ||Dj||1 6 1, Dj > 0 } forces the
dictionary components to be in the simplex of Rp×m, which results in
sparse and positive components. The dictionary is trained on 27 task
fMRI studies downloaded from OpenNeuro2. Learning decompositions
from such a huge dataset was made possible by recent optimization
methods for matrix factorization (Mensch et al., 2016, 2017b) and we
use the implementation provided by the authors3, with λ set to 0.001.

Once we are equipped with a dictionary D ∈ Rp×m, we can obtain
the low-dimensional representation of an fMRI map s ∈ Rm by regress-
ing it on the dictionary components with least-squares regression. We
obtain its low-dimensional representation as:

x = argmin
x∈Rp

|| s−DT x ||22 . (9.3)

These loadings, or embeddings, x ∈ Rp of the brain maps in our dataset
are used as the input features of the decoding model. They form the
design matrix X ∈ Rn×p of our decoding supervised classification
task.

Projecting the original maps on a dictionary yields a dimension
reduction from ≈ 105 voxels to ≈ 103 components. This projection
reduces the variance of input features and estimated model parameters.
It also makes training models much faster, enabling more extensive
model selection and validation.

We use dictionaries of 3 different resolutions (128, 512 and 1024

components) to embed the original voxel activations in spaces of
lower dimension. We also evaluate the performances when we use the
stacking of those 3 embeddings as features to decode. For those 4 reso-
lutions, we evaluate performance by keeping either all the component
loadings or only their positive part – i. e. setting negative loadings to
0. Because of the positivity constraint on dictionary components in
Eq. (9.2), non-negative loadings represent a non-negative brain map.

2 https://openneuro.org/

3 https://github.com/arthurmensch/modl

https://openneuro.org/
https://github.com/arthurmensch/modl


9.3 classification model 90

This can help decoding, as the negative part of statistical maps is often
related to control conditions, which are seldom represented in our
annotations (Section 10.1.2.1).

9.3 classification model

In this section, we describe the decoding model that we use to predict
the one-hot encodings of cognitive labels, which form a matrix of
targets Y ∈ {0, 1}n×|L|, from the loadings of brain maps on dictionary
components, which form a design matrix X ∈ Rn×p.

9.3.1 Model

Decoding commonly relies on high-dimensional multivariate linear
models (Naselaris et al., 2011). Indeed, fMRI maps are noisy high-
dimensional data and, aside from some rare large-scale studies such
as Human Connectome Project (HCP), they involve few subjects and
thus have small sample sizes (Bzdok and Yeo, 2017; Poldrack et al.,
2017). Hence, non-linear models, that are more expressive, tend to
overfit the noise in the data (Mensch et al., 2017a). As we are using
a very large dataset that aggregates several studies (Section 10.1),
and reduce the input dimension by projecting images on a dictionary,
we can explore fully connected neural networks as decoding models.
These models are particularly flexible in terms of regularization and
architecture. We train them to jointly score all the possible labels. The
input features of these networks are the compressed representations
of brain images: the loadings of images on dictionary components.
Such models are related to the factored logistic regressions of Bzdok
et al. (2015), but differ in the use of an alternate basis for the initial
projection and deeper models for the classification. As the brain maps
are projected on dictionary learning components, and the supervised
learner is a neural network, we call these models Neural Network
over Dictionary (NNoD). We use up to 3 hidden layers. For the hidden
units, we consider the identity activation function (resulting in a linear
model) and the rectifier activation function z 7→ max(z, 0). Output
units are discussed in Section 9.3.2 and regularization in Section 9.3.3.

9.3.2 Data-fit term

The form of the loss function depends on how we model the occurrence
of labels: whether we treat each label as a separate task, or want to
predict a categorical distribution over all possible labels. In both cases,
the corresponding model is trained with maximum likelihood. We
denote f the function learned by the neural network up to the output
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activation function. For example, if the simplest case where there are
no hidden layers – i. e. logistic regression – f can be written:

f(x) =Wx+b , (9.4)

where W ∈ R|L|×p and b ∈ R|L| are the coefficients of the model.
Then, the model’s prediction is:

ŷ = g(f(x)) , (9.5)

where g is the output activation function and x ∈ Rp is the input
vector of dictionary loadings.

9.3.2.1 Multi-task setting

We can consider labels separately, and treat the computation of a
score for each label as a different classification task. In this case the
output distribution for each label is a Bernoulli distribution and we
use sigmoid output units. Then the prediction ŷ ∈ R|L| is such that:

ŷl = σ(f(x)l) (9.6)

where σ is the sigmoid function:

σ(z) =
1

1+ e−z
. (9.7)

The cost function in this setting is then:

LB(y, ŷ) = −
∑

l∈L
yl log(ŷl) + (1−yl) log(1− ŷl) , (9.8)

where B stands for “Bernoulli”.

9.3.2.2 Multi-class setting

A slightly different approach is to introduce a tighter coupling between
the labels and consider that they are, to some extent, exclusive. In
this case, instead of producing one Bernoulli parameter for each label,
the model produces the parameter of a Multinoulli distribution, or
categorical distribution, over all the labels: a vector in the probability
simplex of R|L|, where |L| is the number of possible labels. In this
case, a softmax function is applied to the output layer of the network.
The prediction becomes:

ŷ = softmax(f(x)) (9.9)

where

softmax(z)l =
exp(zl)∑
l exp(zl)

. (9.10)

In this case the cost function becomes

LM(y, ŷ) = −
∑

l

yl∑
l yl

log(ŷl) , (9.11)

where M stands for “Multinoulli”.
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9.3.3 Regularization

We use an elastic-net penalty (Zou and Hastie, 2005) on the model
coefficients. This regularization penalizes a combination of the square
and absolute value of the parameters. Moreover, we apply dropout
(Srivastava et al., 2014) on the input and hidden layers. We apply the
same penalty and level of dropout on all layers.

9.3.4 Model selection

We select the amount of regularization (elastic-net penalty), amount
of dropout, type of hidden unit and width of the hidden layers by
cross-validation. To do so, we perform a randomized search for these
hyperparameters on the training data. The 2-layer perceptron using
the stacked dictionary loadings gives the best results. For this model,
the input dictionary loadings have dimension 1024+ 512+ 128 = 1664,
the hidden layer has width 300, and a dropout of 0.2 is applied on
the hidden layer (i. e. elements have a 0.2 probability of being set to 0).
The same penalty is applied on `1 and `2 norms of coefficients and is
set to 0.001. The activation function is the rectifier.

Results presented in Chapter 10 use a held-out test set (Sec-
tion 10.1.3).

9.4 evaluation

We use unthresholded statistical brain maps from NeuroVault, labelled
with terms from CognitiveAtlas. CognitiveAtlas (Poldrack and Yarkoni,
2016) is a large ontology of cognitive processes and tasks. We label
each image with one or several CognitiveAtlas terms and learn to
predict these labels. Details on NeuroVault and CognitiveAtlas are
provided in Section 10.1. The number of true labels varies widely
from one statistical map to another, depending on the way metadata
fields were filled (Section 10.1.2). Hence, we prefer to use metrics
that are not strongly influenced by the number of true labels. No
decoding study has used the same set of labels as we do. Still, some
works such as Varoquaux et al., 2018, Yarkoni et al., 2011 and Rubin
et al., 2016, have targeted label sets that overlap with ours. To validate
decoding performance, we need metrics that support comparison on
the intersections of the sets of labels used by these different studies.
Another important issue is that the frequency of labels varies greatly,
with many labels used for a few images only, and a few very frequent
labels such as “visual perception”. We choose the metrics to ensure that
they measure the performance of models for all the labels: capturing
only the most frequent terms should not suffice to obtain a high score.
Based on these criteria, we use two different metrics that are both
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independent from label prevalence and are computed on a per-label
(instead of per-sample) basis.

9.4.1 Pseudo Recall at k

For each label, we estimate the probability that, given a map for which
this label is true, the decoder will rank it in the first k labels. Then, we
average this score across labels to obtain our metric. This is slightly
different from Recall at k, which estimates the expected number of true
labels among the first k. We compute an average over all labels, rather
than over all samples, because standard Recall at k would give too
much importance to the few very frequent labels. Therefore, we call
our metric Pseudo Recall at k. We denote Y ∈ {0, 1}n×|L| the true labels
and Ŷ ∈ {0, 1}n×|L| the predicted labels for the n images in our dataset.
We denote by r̂i the ranking of the labels induced by the prediction
Ŷi for sample i. It is a bijective function r̂i : {1, . . . |L|}→ {1, . . . |L|} such
that:

Ŷi,l > Ŷi,l ′ =⇒ r̂i(l) < r̂i(l
′) . (9.12)

For example, if the label l obtained the highest score for sample i,
r̂i(l) = 1. Then, we define the pseudo-Recall at k:

Pseudo-Recall@k =
1

|L|

∑

l∈L

|{i, r̂i(l) 6 k,Yi,l = 1}|
|{i,Yi,l = 1}|

, (9.13)

where | · | is the cardinality. For comparison, the Recall at k would be
defined as:

Recall@k =
1

n

n∑

i=1

|{l, r̂i(l) 6 k,Yi,l = 1}|
|{l,Yi,l = 1}|

. (9.14)

Note that for simplicity we ignored the possibility of ties here; as ŷ
are continuous values ties do not happen in practice. Pseudo Recall
at k is easy to interpret and would make sense to evaluate a tool
that suggests annotations for statistical maps. However, it does not
enable comparing decoders that work with different sets of labels.
Moreover, it only considers the induced ranking. Therefore, in order
to obtain scores for individual labels, we also consider a widely used
binary classification metric: the area under the Receiver Operating
Characteristic (ROC) curve.

9.4.2 Receiver Operating Characteristic (ROC)

For a given label l, the Area under the ROC curve, which we will
simply refer to as Area Under Curve (AUC) in the following, is defined
as:

AUC
l

= P(Ŷi,l > Ŷj,l | Yi,l = 1, Yj,l = 0) . (9.15)
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We can obtain a global score by averaging this metric over all labels.

AUC =
1

|L|

∑

l∈L
P(Ŷi,l > Ŷj,l | Yi,l = 1, Yj,l = 0) . (9.16)

In a multi-label setting, averaging metrics such as the AUC over labels
is sometimes computed with weights, for example proportional to the
frequency of each label. Here, we want to weight all labels equally. In
particular, we do not want to give more importance to frequent labels.

Having described our decoding models and appropriate metrics to
evaluate them, in the next chapter we perform experiments on a large
dataset of statistical maps annotated with cognitive labels.



10 D E C O D I N G E X P E R I M E N T S

In this chapter, we apply the decoding framework introduced in
Chapter 9 to a large dataset that aggregates statistical maps from many
neuroimaging studies, labelled with dozens of cognitive concepts. We
start by describing our dataset in Section 10.1, and the dictionary on
which we project fMRI maps in Section 10.2. We then present qualitative
and quantitative results in Sections 10.3 and 10.4.

10.1 dataset

Here we describe how we build a dataset to train supervised decoders
that predict cognitive labels from unthresholded fMRI statistical maps
(Chapter 9). We detail in Section 10.1.1 how we obtain statistical maps
and metadata from the NeuroVault online repository (Gorgolewski
et al., 2015). In Section 10.1.2, we explain how we use terms from the
CognitiveAtlas ontology (Poldrack et al., 2011) to label brain images
for supervised learning.

10.1.1 Neurovault

We collect statistical maps from the NeuroVault online platform1 (Gor-
golewski et al., 2015). NeuroVault is the largest existing repository
of fMRI statistical maps and can provide material for Image-Based
Meta-Analysis (IBMA). NeuroVault images can be explored and vi-
sualized via the website. The platform also exposes an API2. At the
beginning of this thesis, we wrote a client for this API and integrated
it in the Python library Nilearn3 (Abraham et al., 2014). We use this
client to download all the brain maps available on NeuroVault and
their metadata. In January 2019 and after removing exact duplicates,
we retrieved from NeuroVault over 60 000 brain images, coming from
many different sources and adding up to more than 60 gigabytes of
compressed data.

Images on NeuroVault are organized into collections. The data we
downloaded is divided into 1 522 collections. Collections can regroup
images for several tasks and usually from one task many contrasts can
be derived. A collection can contain first-level contrasts (for individual

1 https://neurovault.org/

2 https://neurovault.org/api-docs

3 https://nilearn.github.io/
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Figure 10.1: Distribution of neurovault collection sizes. Each dot represents
a collection and shows the number of statistical maps it contains. Most
collections contain only a few images, but some contain several thousands.

subjects), or second-level (group-level) contrasts (Section 2.4). There-
fore, depending on the number of contrasts probed, on the nature of
the statistical maps (subject-level or group-level), and the number of
participants, the size of collections varies widely, ranging from 1 con-
trast to over 18 000. The distribution of collection sizes is long-tailed,
with many small collections – the median size is 3 contrasts – and
some very large collections (Fig. 10.1)

10.1.1.1 Selecting NeuroVault maps

NeuroVault aims to store “unthresholded statistical maps, parcella-
tions, and atlases produced by MRI and PET studies”4. These images
can correspond to human adults, children or other species. They can
cover the whole brain or be restricted to a smaller ROI. Some collec-
tions also provide anatomical images. Moreover, in practice, many of
the uploaded statistical maps are thresholded. For this study, we are
only interested in whole-brain unthresholded statistical maps resulting
from fMRI experiments on human adults.

We therefore select a subset of NeuroVault to train our models.
To do so, we take into account the metadata as well as the image
values. Relevant metadata fields for this purpose include is_valid,
is_thresholded, modality, not_mni (indicating that the image is not
registered to MNI space), image_type (indicating if the image is a sta-
tistical map or an atlas), map_type (partly redundant with image_type,
can indicate the statistic such as Z or T, or take values such as “anatom-
ical” or “ROI/mask”), and subject_species. Unfortunately, the meta-
data is not always accurate. For example, many statistical maps are
annotated as unthresholded but have obviously been thresholded.

4 https://neurovault.org/

https://neurovault.org/
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Errors can happen when uploading maps and many images do not
contain sensible values. Therefore, after an initial filtering based on
metadata, we also perform an automatic selection based on the image
values. We exclude images that contain too many exact zeros, as they
are either thresholded or the result of ROI analyses. We also exclude
images that contain very large values, indicating that they are probably
not Z nor T statistics. This selection yields around 54,000 maps, which
represents a large fraction of the NeuroVault statistical maps.

10.1.2 Labelling statistical brain maps

Maps from NeuroVault come with metadata. Some fields in the meta-
data, such as contrast_definition or task, describe the experiment
behind the image. Using NeuroVault metadata, we annotate our train-
ing images with one or more labels from the CognitiveAtlas ontology5

(Poldrack et al., 2011). CognitiveAtlas is an online cognitive neuro-
science knowledge base. It provides a description for more than 800

cognitive concepts and 700 experimental tasks, with some relationships
between concepts as well as between concepts and tasks. CognitiveAt-
las is one of the knowledge bases that were used to assemble the
vocabulary described in Section 4.5 (see Table 4.2).

10.1.2.1 Label extraction

To label an image, we start by pruning the corresponding metadata.
Some terms in the metadata are related to control conditions, with
contrast definitions such as “reading vs. listening”. Unfortunately,
control conditions are not consistently represented in the metadata,
and completely absent for many images. Hence, they cannot be ex-
tracted reliably. Therefore, we discard information related to control
conditions – text that appears after patterns such as “>”, “vs. ”, “-”,
“versus”, etc. in the contrast_definition or name metadata fields. This
motivates considering only the positive part of the statistical maps
(Section 9.2), since negative activations are often related to the control
condition. Once control conditions have been removed, we extract
all CognitiveAtlas concept labels from the remaining metadata. We
discard extremely rare labels – those that occur in less than 10 images
(out of over 29,000). Moreover, when the occurrences of two labels
have a Pearson correlation above 0.95, we only keep the most frequent
one.

10.1.2.2 Limitations of exact label matching

The labels that result from the simple extraction of exact matches
described in Section 10.1.2.1 contain some errors.

5 http://www.cognitiveatlas.org/

http://www.cognitiveatlas.org/
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string form variations CognitiveAtlas does not distinguish enti-
ties or concepts from their labels. Terms in the CognitiveAtlas ontology
are the full denominations of tasks or mental conditions, which can be
quite long and do not always match the terminology that is used in
practice. On the contrary, NeuroVault metadata is unconstrained and
uncurated. The terminology used in this metadata is not always the
same as in CognitiveAtlas. Moreover, most of the relevant metadata is
entered by hand, and not validated. Hence, abbreviations and typos
are frequent. For example, some collections use “right hand”, “r. hand”
or “RH” to indicate that subjects had to use their right hand (e. g. to
press a button). The corresponding CognitiveAtlas term is “right hand
response execution”. Exact matching of CognitiveAtlas therefore limits
the number of studies that we can exploit.

spurious labels The metadata fields in NeuroVault are not used
consistently. For many images, the annotations include labels that
describe the collection, or the overall task or experiment, rather than
the particular contrast they are attached to. For example, 786 maps
corresponding to the “shape recognition” condition display the label
“emotion” in their annotations, because the corresponding study uses
this condition as a baseline in an emotional task. This introduces false
positives in the extracted labels.

label structure Many mental conditions are related. For exam-
ple, performing “auditory sentence comprehension” implies perform-
ing “auditory perception” and “language comprehension”. Some are
also very similar, or at least used interchangeably in NeuroVault an-
notations. For example, “audition” and “auditory perception” are
distinct CognitiveAtlas concepts (and not directly related in Cogni-
tiveAtlas), but unrestricted manual annotations on NeuroVault do not
make such distinctions consistently and for our purposes they should
be treated as synonyms. Ignoring these relations causes false negatives
(missing labels) in our annotations.

10.1.2.3 Improving cognitive labels

To mitigate the issues described in Section 10.1.2.2, we design a set
of heuristics to enrich and correct the raw annotations extracted from
NeuroVault metadata.

dedicated label extractors for large collections As
shown in Fig. 10.1, the distribution of NeuroVault collection sizes
has a long tail and contains some very large collections, such as HCP.
Within a single collection, annotations are more consistent than across
the whole NeuroVault repository. It is therefore worthwhile to exam-
ine the few very large collections and their use of metadata fields,
in order to design dedicated rules to extract labels for their images.
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Figure 10.2: Number of images for which each label is used. Each dot is one
of the 96 labels that we learn to decode and shows how many times it occurs
in the dataset. Most labels occur in less 7 out of every 1 000 images: we must
rely on few training examples despite having a large dataset.

Indeed, doing so can improve the training labels for thousands of
statistical maps. We improve our training annotations by adding 123

rules to extract labels from the largest collections, fix some mistakes
and handle some frequent synonyms.

missing label inference An important difficulty is that many
labels are very rare. Even among the 96 labels that we selected for
training, most are used to tag only a few images (Fig. 10.2). However,
we can slightly alleviate this scarcity by using the hierarchical structure
of cognitive concepts to infer missing labels.

To exploit the structure of cognitive concepts, we assert a set of
related and broader relations to infer some missing labels. For example,
if an image is labelled with “speech production”, the label “language”
is added if it is missing. Or if an image is labelled with one of “audition”
and “auditory perception”, the other label is added. These relations
form a directed graph, a small part of which is shown in Fig. 10.3.

We build this new ad-hoc graph rather than using CognitiveAtlas
relations because CognitiveAtlas is too incomplete for missing label
inference. Indeed, many concepts in CognitiveAtlas are disconnected
from the graph, and some important relations are missing. For exam-
ple, “auditory sentence comprehension” is not related to any other
auditory concept. Moreover, the graph we construct aims to reflect
the practical use of the most frequent terms in NeuroVault metadata,
and capture which terms are used in similar contexts on this platform.
This is far less ambitious than constructing an ontology that reflects
the accumulated knowledge of cognitive science.

Using a hand-made discrete graph is a different approach than
relying on continuous similarities, estimated from raw data, as was
done in the context of encoding in Part III. In the decoding study
presented here, we obtain better results (i. e. a higher decoding AUC

on the IBC test data) with the rule-based approach described in this
section. This can be explained by the fact that here we are in a more
controlled setting, and decode a restricted set of labels. Moreover,
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Audition,
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Listening

Language,
Language processing Visual perceptionVoice perception

Syntax

Semantic processing Speech production ReadingSpeech perception
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Word comprehension Word repetition Word generation

Figure 10.3: Missing labels inference graph. Here we illustrate a part of our
label completion graph, for some labels related to language. The arrows
assert implication. For example, “Reading” implies “Language” and “Visual
perception”. When several expressions appear in a box, separated by commas,
they are treated as synonyms: for example “Language” and “Language
processing” are merged.

obtaining appropriate continuous similarities for this study would
be challenging, as NeuroVault metadata is of a very different nature
than free text: there is a large distribution shift from data used to train
unsupervised word representations to NeuroVault annotations.

10.1.3 Held-out test data

To measure prediction performance, we set aside a large and well-
annotated collection: the Individual Brain Charting (IBC) dataset (Pinho
et al., 2018). Using this collection as our test set ensures that there is no
overlap between training and testing data. This would be more difficult
to ensure if we performed cross-validation, as some collections or parts
of collections can be duplicated on NeuroVault. Indeed, collections
can be tied to publications that rely on common experiments, and
provide duplicated or almost identical images. These duplicates or
quasi-duplicates can be very difficult to detect. For example, two
independent studies can perform the same analysis on the same
data, obtaining similar but slightly different results, and upload the
statistical maps in separate collections and with different image names.
The IBC collection contains over 6 500 contrasts, which come from 12

individual subjects. As it is one of the largest collections and was
uploaded very recently, there is little risk that it is duplicated on
NeuroVault.



10.2 dictionary selection 101

10.2 dictionary selection

For our low-dimensional representations of brain maps, we consider
dictionaries of different resolutions (see Section 9.2): 128, 512 or 1024

components. We also consider a multi-resolution representation ob-
tained by stacking the loadings over the components of these three
dictionaries. Contours of the dictionary components are shown in
Fig. 10.4. For simplicity, we choose the representation that yields the
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Figure 10.4: Dictionary components: outlines of the thresholded components
of the three dictionaries we use. Input maps are regressed on these stacked
components to obtain the dictionary loadings, which are the input features of
the neural network.

best average AUC on the IBC dataset – at the risk of overfitting the
dictionary choice. The multi-resolution representation yields the best
predictions. Moreover, using only the positive part of statistical maps
yields a performance gain. This may be due to the fact that we ignore
labels related to control conditions or baselines (Section 10.1.2.1).

10.3 inspecting trained models

As we use non-linear models (Section 9.3.1), the model coefficients do
not provide a direct mapping from brain images to cognitive labels.
Still, we can perform a sensitivity analysis on our decoding model,
by automatic differentiation of the model’s output over its inputs.
For each label, we compute the gradient with respect to the input
features (dictionary component loadings), averaged over images in
the training set. The sensitivity analysis reveals which brain regions
are characteristic of a particular cognitive label. Some examples are
shown in Figs. 10.6 and D.1.

We can see that the decoding model captures biologically plausi-
ble links between mental processes and brain activity. However, it
also captures some biases of the neuroimaging data accumulated
on NeuroVault, related to common practices, choices of stimuli and
response media, and choices of control conditions. Indeed, due to
some repeated standard experimental protocols designed to probe
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specific cognitive processes, the model sometimes learns to recognize
those protocols instead of more fundamental associations between the
targeted processes and structures in the brain. For example, in the
data we collected from NeuroVault “emotion perception” is usually
probed by showing pictures of faces expressing different emotions.
The model therefore learns to use activations in areas related to face
perception, such as the FFA, to predict the label “emotion” (Fig. 10.5).
Experimental protocols and stimulus modalities can therefore be im-
portant confounders, despite the large number of independent studies
in our training dataset. The correlation of “emotion perception” with
activity in the FFA would not generalize to a new study that would
use a different stimulus, such as spoken descriptions of emotions.

L R

z=-16

L R

z=-16
face perception

AUC=0.91
emotion perception

AUC=0.98

Figure 10.5: Face and emotion perception. The decoder correctly captures
areas related to face perception, such as the FFA, to predict the occurrence
of the label “face perception”. However, we see that its decoding map for
“emotion perception” is almost identical, and shows areas related to face
perception rather than emotion perception. This is due to the fact that in our
training dataset, visual stimuli are used to probe emotion perception, and
maps that are labelled with “emotion perception” often contain activations
related to face perception. Therefore, we must be careful when interpreting
the decoding maps, as they capture the biases of the training data. Of course,
this is also true of encoding or any other analysis method.

10.4 prediction performance

10.4.1 Predicting exactly matched labels

In this section we present quantitative results with the raw la-
bels, matched exactly in NeuroVault metadata, as described in Sec-
tion 10.1.2.1. Hence, we do not use the rules described in Sec-
tion 10.1.2.3. With this exact matching, 96 unique CognitiveAtlas
concepts are found in the metadata of at least 10 NeuroVault images.
We train our models using these 96 labels and the 26 000 NeuroVault
images that are annotated with at least one of them. Only 37 of these
labels are found in IBC annotations with this labelling procedure. Per-
formance is therefore measured on 6 500 maps from the IBC study and
37 labels.
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10.4.1.1 Model comparison

We compare the performance for different models in this setting in
Table 10.1. The models we consider obtain similar results. Still, the non-

Output distribution Hidden layers AUC Pseudo Recall at 10

Bernoulli 0 0.80 0.42

Bernoulli 1 0.81 0.36

Bernoulli 3 0.79 0.34

Multinoulli 0 0.80 0.46

Multinoulli 1 0.80 0.38

Multinoulli 3 0.77 0.30

Table 10.1: NNoD performance on IBC — 37 original concepts.

linear Bernoulli model (a 2-layer perceptron with a sigmoid output
activation function, see Section 9.3.2) achieves a slightly higher AUC

(averaged over concepts). The best model is trained with an elastic net
penalty (combined `1 and `2 regularization on the model weights of
both layers), while applying dropout on the input and hidden layers
(see Section 9.3.3). We also compare our decoder with pre-trained
NeuroSynth and GCLDA models in Table 10.2. To do so, we compute
AUC on labels that appear both in IBC CognitiveAtlas annotations, and
on either NeuroSynth’s or GCLDA’s vocabulary.

10.4.1.2 Detailed scores for the best model

The AUC and some example decoding maps are shown in Fig. 10.6: our
decoding model achieves higher-than-chance predictions for 35 out of
37 considered labels. The AUC metric seems meaningful. Indeed terms
for which the AUC is high, such as “left finger response execution”,
tend to have plausible decoding maps, whereas terms that are not
decoded above chance level, such as “working memory”, do not
capture relevant brain regions in their decoding maps. The detailed
AUC scores for each term and model are shown in Fig. D.2.

Model Common labels Model AUC NNoD AUC

GCLDA 20 0.53 0.73

NeuroSynth 14 0.58 0.71

Table 10.2: Comparison with GCLDA and NeuroSynth. The AUC (both for the
considered model and for NNoD) is averaged over CognitiveAtlas concepts
found both in IBC annotations and in the considered model’s vocabulary.
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Figure 10.6: Decoding exactly-matched labels. We evaluate the AUC of our
NNoD model on 37 labels matched in the IBC dataset (test set), after training
it to decode 96 labels on all the other collections. Using pre-trained GCLDA

and NeuroSynth models, we compare our results for the labels that also
appear in the vocabulary recognized by these models (NNoD AUCs for terms
in the vocabulary intersections are shown in light blue). Detailed scores for
each label are shown in Appendix D and show that NNoD outperforms other
methods for most labels. On the top, we show decoding maps for some
example terms. Terms that are well decoded such as “place maintenance”
have meaningful maps, whereas terms such as “working memory” whose
neural correlates are poorly captured get low AUC scores. As the decoding
maps do not have a meaningful scale, we threshold them arbitrarily at the
95th percentile for visualization.

10.4.2 Predicting expanded labels

In this section we present results obtained with the improved labels,
derived from CognitiveAtlas terms that are matched in NeuroVault an-
notations using the heuristics described in Section 10.1.2.3: collection-
specific rules and missing label inference. Using these rules, some
missing labels are inferred and the annotations become less sparse.
Therefore, in this setting, 106 CognitiveAtlas labels occur in the anno-
tations (despite merging 27 pairs of synonyms) of the 26 000 training
maps. Among 106 labels, 51 are found in the enriched dataset annota-
tions of the 6 500 IBC maps, that we use once again for validation.

10.4.2.1 Model comparison

The AUC scores are presented in Table 10.3. With these new annota-
tions, once again the considered architectures yield similar perfor-
mance, with the non-linear Bernoulli model (multi-class, sigmoid out-
put activation function) obtaining a slightly higher AUC. In Table 10.4,
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Output distribution Hidden layers AUC Pseudo Recall at 10

Bernoulli 0 0.82 0.63

Bernoulli 1 0.84 0.66

Bernoulli 3 0.83 0.64

Multinoulli 0 0.80 0.63

Multinoulli 1 0.83 0.65

Multinoulli 3 0.81 0.63

Table 10.3: NNoD AUC on the IBC dataset, averaged 51 enriched concepts.

Model Common labels Model AUC NNoD AUC

GCLDA 31 0.54 0.81

NeuroSynth 23 0.62 0.80

Table 10.4: Model comparison using enriched labels.

we show the comparison with NeuroSynth and GCLDA on labels that
are recognized by these models and present in IBC annotations.

10.4.2.2 Detailed scores for the best model

The results are similar to those obtained with the exactly-matched
labels, but with a slight improvement for NNoD, NeuroSynth and
GCLDA, and a larger number of mental conditions, since more labels
are found in the IBC dataset. All terms are decoded above chance level.
Example decoding maps and decoding AUC scores for each term are
shown in Fig. D.1 and Fig. D.2.

10.5 conclusion

In this chapter, we have presented the first study to decode a wide
variety of cognitive processes from functional brain images. Our statis-
tical models achieve good classification performance, as measured by
the AUC, for 90% of several dozen mental conditions found in the IBC

dataset, which provides an extensive coverage of human cognition.

10.5.1 Large scale decoding

We have used thousands of statistical maps coming from many differ-
ent sources, and of different natures. We found that the heterogeneity
of these images is not a roadblock. In particular, models were trained
on a dataset that contains Z-maps, T-maps and univariate beta-maps,
and mixes subject-level and group-level maps. Still, these models pro-
vided good predictions for the subject-level Z-maps of the IBC dataset.
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Removing T-maps from the training data slightly decreased perfor-
mance, indicating that exploiting more data is more important than
making the distinction between Z and T statistics (we did not try
to use the number_of_subjects field from NeuroVault to transform
T-maps into Z-maps).

10.5.2 Non-linear decoding architectures

On the considered feature and label spaces, non-linear models per-
formed slightly better than linear ones for decoding (best linear AUC

= 0.82, best non-linear AUC = 0.84), on a test set containing thousands
of brain images. To our knowledge, even if this increase is minor, this
is the first time that those models proved useful to increase decoding
performance on fMRI images. Our approach also confirms that good
decoding performance can be reached through aggressive dimension-
ality reduction, obtained from unsupervised decompositions. This has
already been observed in several studies such as Dadi et al. (2019) and
Mensch et al. (2017a). We did not try training models on the original
voxels maps as it would have incurred a very important computational
cost, given the size of our dataset.

10.5.3 Handling heterogeneous annotations

One of the most difficult aspects of this work was to construct us-
able annotations for our training images. CognitiveAtlas is the largest
ontology of human cognition, and NeuroVault is the largest online
repository of statistical maps of the brain. Still, less than 100 Cogni-
tiveAtlas concepts (out of over 800) could be found in NeuroVault
metadata. Moreover, for most studies the NeuroVault annotations are
very scarce and inconsistent. This is not surprising, as providing rich
annotations for neuroimaging studies in a uniform way is a huge
challenge. Even selecting the relevant vocabulary is a daunting task
(Poldrack and Yarkoni, 2016). Still, better describing the semantic con-
tent, and the experiments behind shared data is crucial. In this study
we found this to be much more important than detailed information
about the acquisition settings or the analysis pipeline.

As is usually the case when the set of tags is unrestricted, Neu-
roVault annotations are very sparse and contain a myriad of very
rare labels (Fig. 10.2). We explored several ways to densify these
annotations and infer missing labels. We considered smoothing the
label matrix, relying on term co-occurrences in large corpora, as was
successfully done in an encoding context in Part III. For this, we
used co-occurrences in documents of the NeuroQuery corpus (Chap-
ter 4), but also word embeddings trained with Skip-Gram Negative
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Sampling (SGNS) on larger corpora, such as dumps of Wikipedia6

or PubMed Central7. These approaches did not improve prediction
scores.

In the experiments presented here, we were more successful with
rule-based completion of the labels than with continuous data-driven
approaches (Section 10.1.2.3). This indicates that discrete graphs and
high-dimensional embeddings can both be useful tools to cope with
noisy and sparse data. In this study, although we decoded a larger and
more varied set of mental conditions than what had been attempted
before, we could control the terms that we include in our label set.
This is different from the setting of Part II and Part III, where input
features were extracted from free text or arbitrary queries, and mod-
els had to cope with a much wider vocabulary. Moreover, although
they are mostly uncurated, NeuroVault metadata remain structured
annotations. They are more restricted, and of a different nature, than
free text. Therefore, building dedicated rules to exploit the structure
of these annotations is beneficial.

Finally, although we did not explore this further, it is likely that
statistical and rule-based label completion can be complementary
approaches, with statistical associations capturing general similarities,
and dedicated rules yielding a performance gain for specific tasks.

10.5.4 Capturing bias

Although NeuroVault is a large repository and its maps come from
many different sources, some spurious associations between mental
conditions and brain regions arise from experiments, stimuli and
response modalities that are used very frequently in functional neu-
roimaging. Meta-analysis captures these systematic associations. Al-
though carefully crafted baselines and contrasts alleviate this issue,
mental processes can only be isolated by probing them in many dif-
ferent ways in order to discover which links with brain activity can
be reproduced in varied settings. Meta-analysis allows us to measure
these effects across studies and laboratories, and possibly identify pro-
cesses such as “emotion perception” that are targeted very uniformly.

10.5.5 Combining encoding and decoding

A possible extension of this work is to combine it with coordinate-
based meta-analyses, based on the literature. Encoding maps obtained
with CBMA could be used to regularize decoding models, especially for
labels that are seldom used in NeuroVault annotations. Indeed, meta-
analysis on the literature can reliably cover a much larger vocabulary.

6 https://meta.wikimedia.org/wiki/Data_dumps

7 https://www.ncbi.nlm.nih.gov/pmc/tools/ftp/

https://meta.wikimedia.org/wiki/Data_dumps
https://www.ncbi.nlm.nih.gov/pmc/tools/ftp/
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In this thesis, we propose a new approach to meta-analysis of neu-
roimaging studies, based on predictive modelling. This framework
enables embedding rich descriptions of experiments, cognitive pro-
cesses or neurological diseases into brain space. Here we summarize
some of the difficulties that we met, possible directions for future
research and resources that resulted from our work.

11.1 practical challenges

Comprehensive meta-analysis faces many challenges. An important
one is the rarity of many neuroscience terms. This scarcity of obser-
vations is typical of machine learning problems that involve text or
other high-cardinality sets of discrete objects. Several methods help us
alleviate this problem. Collecting more data, and data of a higher qual-
ity, gives us access to more observations with a higher signal-to-noise
ratio. Considering terms not in isolation, but in the context of their
relationships, allows us to guide predictions for rare terms with the
mappings of their better-understood neighbors. Adapted feature se-
lection methods, either based on domain knowledge (e. g. considering
only anatomical terms) or data-driven, keep the dimension and spar-
sity of input features under control, and prevent drowning the signal
in noise coming from uninformative terms.

Rare terms or labels also raise the issue of adapted metrics and vali-
dation methods. Validation scores can be inflated by good predictions
on frequent items, which are not always the most important. Ground
truth to validate predictions for rare items is scarce. One possible
approach is to make some terms artificially rare by masking them
in randomly sampled documents. More generally, training and test-
ing models on subsampled data, subsampling either articles, sections
of articles, or terms based on their document frequency or category,
helps us understand the strengths and limitations of our methods and
improve them.

Regarding aspects that are more specific to neuroimaging, one of the
major difficulties is access to good-quality data. Very few studies share
their data on standard online platforms. Therefore, comprehensive
meta-analysis is limited to peak activation coordinates, at the cost
of a huge loss of information. Moreover, the brain images available
on online platforms are poorly annotated. Standards for annotations
mostly focus on details of the acquisition and analysis procedure,

109
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which are easy to describe. Neuroscience still lacks a standardized
way to describe the cognitive processes, behavioral or phenotypic data
that underlie statistical maps. This is an important roadblock for meta-
analysis. Finally, despite efforts towards openly shared data, accessing
descriptions of experimental protocols and results to perform meta-
analysis is difficult. Publications and data can only be considered to
be openly shared if they can be downloaded automatically and in
standard formats, and this is not often the case.

11.2 future directions

Having efficient encoding models that can handle a large class of
queries opens new perspectives for meta-analysis. For example, we
explored very briefly the possibility to use comprehensive mappings
from text to brain regions, learned from the literature, to regularize
models trained on specific tasks. The simplest example is through
the definition of an ROI. In a small experiment, the performance of a
decoder classifying different language tasks was improved by restrict-
ing the input features to an ROI selected through meta-analysis. The
fact that our encoding models can handle any text, without needing
to manually map queries to a restricted set of single terms, makes
it possible to generalize this regularization strategy to other encod-
ing or decoding tasks. Beyond the definition of an ROI, meta-analytic
encoding mappings could regularize decoding coefficients by shrink-
ing them towards the encoding maps, or by modulating other forms
of regularization. Meta-analytic maps could also provide priors for
small-sample encoding studies, thus reducing the degrees of freedom
of encoding models, increasing statistical power, and reducing the
variance of effect estimates.

To improve the encoding models presented in this thesis, future
work could also focus on modelling noise on the design matrix, i. e. the
TFIDF features. In regression settings the design matrix is often treated
as a fixed quantity, but this may not be justified when dealing with
features that represent text. Indeed, there are many different ways to
describe an experiment, and the exact choice of terms can be consid-
ered as random. Noise on the input features may be the main source
of errors in the encoding model’s coefficients and predictions. Taking
it into account might lead to better uncertainty estimation and better
regularization strategies.

11.3 what did not work

During this thesis, we also explored several ideas that did not improve
results.
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11.3.1 More complex Natural Language Processing

To deal with the sparsity and high dimensionality of text, a common
approach is to use word embeddings, trained for example with SGNS

(Mikolov et al., 2013) or more modern techniques such as language
models or Bidirectional Encoder Representations from Transform-
ers (BERT) (Devlin et al., 2018). Replacing TFIDF features with word
embeddings trained with SGNS degrades the performance of our en-
coding models, and hinders their interpretability. We obtain better
results by smoothing the high-dimensional inputs and performing
feature selection. A similar idea is to use word embeddings or other cri-
teria to define similarities between documents and exploit them with
kernel ridge regression. Again, we obtain better results by performing
regression in the TFIDF feature space.

11.3.2 More specific text extraction

Fully automated meta-analytic tools such as NeuroSynth and Neuro-
Query often raise the question that one article can provide results on
different experiments, and that pooling coordinates from all activation
maps can bias results. As we have the articles in XML format, we can
conduct encoding experiments where we treat each table of stereotactic
coordinates separately. Each table is then associated with specific text,
such as the text of paragraphs that contain a hyperlink to it and the
table caption. This does not improve predictions, suggesting that using
denser and less noisy data is more important than isolating specific
portions of the text. For other questions raised by fully automated
meta-analysis, we recommend reading the NeuroSynth FAQ1.

11.3.3 Compressing encoding targets

Reducing the dimension of brain maps for encoding, either through
the use of atlases or parcellations, could reduce computational cost
and denoise brain activations. We considered several atlases, data-
driven parcellations, and dictionary loadings. All these approaches
degrade performance and we obtain the best results by constructing
the target maps with Gaussian KDE in the high-dimensional voxel
space.

11.3.4 Data-driven smoothing of decoding labels

Using either encoding maps or similarities based on co-occurrence
statistics for label inference in the decoding setting does not improve
the classification scores of our pipeline. Instead, we are more suc-

1 https://neurosynth.org/faq/

https://neurosynth.org/faq/


11.4 resources resulting from this thesis 112

cessful when curating and completing labels with a heuristic and
rule-based approach. We hope that as ontologies continue to grow
and annotations continue to improve, such an automatic curation can
be performed in a more principled way.

11.4 resources resulting from this thesis

Here we list resources that we created and shared during this thesis
and that can be useful for other projects related to meta-analysis,
machine learning and neuroimaging.

11.4.1 Data

In https://github.com/neuroquery/neuroquery_data, we share data
and a pre-trained encoding model. This repository contains vocabu-
lary files with document frequencies, term counts and TFIDF features
for all the documents in our dataset, and extracted peak activation
coordinates. We only share term frequency matrices, and not the
text of articles, to comply with copyright regulations. The repository
also contains a pre-trained encoding model that can be downloaded,
used offline and integrated in software applications. This model is
provided as a directory containing its vocabulary, term similarities,
and regression coefficients. Keeping these resources separate helps
reusability.

11.4.2 Software

In https://github.com/neuroquery/neuroquery, we share tested and
documented code to train and use our encoding model. This library
contains functions to automatically download and use the data and
pre-trained model provided in the data repository. It also enables
easily training new models from scratch, which helps the possibility
to replicate and extend our experiments. The repository also contains
some didactic examples that can be run online2.

11.4.3 Online meta-analysis

In collaboration with Hande Gözükan and Romain Primet, we devel-
oped the NeuroQuery online platform: https://neuroquery.saclay.
inria.fr. Users can enter a query and see a brain map of the most
relevant regions, a list of related terms, and a list of related publica-
tions. The brain map can be downloaded in a standard format. The

2 https://mybinder.org/v2/gh/neuroquery/neuroquery.git/master?filepath=

examples

https://github.com/neuroquery/neuroquery_data
https://github.com/neuroquery/neuroquery
https://neuroquery.saclay.inria.fr
https://neuroquery.saclay.inria.fr
https://mybinder.org/v2/gh/neuroquery/neuroquery.git/master?filepath=examples
https://mybinder.org/v2/gh/neuroquery/neuroquery.git/master?filepath=examples
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model used in the online platform is provided in the data repository,
and it is easy to download it and access the same functionality offline
and programmatically.

Future work on this platform may involve better integration with
other services such as NeuroSynth and CognitiveAtlas.

11.4.4 Contributions to other projects

During this thesis, I also participated in larger open-source projects. I
have been actively contributing to Nilearn3 throughout the duration
of the thesis. I have also contributed to other Python packages such as
Scikit-learn4 and Nistats5.

11.5 final note

This thesis introduces predictive meta-analysis. This approach studies
the links that tie anatomical structures to mental processes or brain
diseases in a supervised learning setting. In the encoding setting, our
models use the description of an experiment, mental condition or
disease to predict the probable locations of associated neurological
observations. In the decoding setting, we analyze brain maps to predict
the associated mental processes.

Predictive meta-analysis is complementary to standard methods,
which focus on hypothesis testing and identifying effects that are
reported consistently. Meta-analytic supervised encoding models help
prepare neuroimaging studies – by predicting possible results, inter-
pret statistical brain maps and interactively explore the literature. They
can generalize to new combinations of terms. Our models can handle
queries such as single terms or full articles. This makes them useful
beyond the analysis of scientific neuroimaging publications, as they
can embed into brain space reports that do not provide brain images
nor stereotactic coordinates. We also propose a validation framework
and metrics to evaluate and compare meta-analytic encoding and
decoding models.

We provide an open-source implementation of our encoding models
and expose a trained model through a web application. We also
share a large dataset of term counts and stereotactic coordinates.
We thus hope that predictive meta-analysis will be a useful addition
to the neuroimaging community’s toolbox of software packages and
statistical methods.

3 https://nilearn.github.io/

4 https://scikit-learn.org/stable/

5 https://nistats.github.io/

https://nilearn.github.io/
https://scikit-learn.org/stable/
https://nistats.github.io/
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A DATA S E T D E TA I L S

a.1 atlases

List of the atlases whose labels were included in the vocabulary.

name URL

talairach http://www.talairach.org/talairach.nii

harvard_oxford http://www.nitrc.org/frs/download.php/7700/

HarvardOxford.tgz

destrieux https://www.nitrc.org/frs/download.php/7739/

destrieux2009.tgz

aal http://www.gin.cnrs.fr/AAL-217

JHU-labels https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases#

JHU-labels

Striatum-
Structural

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases#

Striatum-Structural

STN https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases#

STN

Striatum-
Connectivity-
7sub

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases#

Striatum-Connectivity-7sub

Juelich https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases#

Juelich

MNI https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases#

MNI

JHU-tracts https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases#

JHU-tracts

Thalamus https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases#

Thalamus
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B P E A K D E N S I T Y P R E D I C T I O N

b.1 decomposition of the loss function

Here we detail how the text-to-brain loss function can be written as a
sum over brain regions.

E(p̂,q) =
∫

R3
δ(p̂(z) − q(z))dz (B.1)

=

∫

R3
δ(p̂(z) − q(z))

m∑

k=0

Ik(z)dz (B.2)

=

∫

R3
δ(p̂(z) − q(z))

m∑

k=1

Ik(z)dz (B.3)

because p̂ and q are null in the background and δ(0, 0) = 0. Moreover,
Ik 6= 0 =⇒ rk ′ = 0 ∀k ′ 6= k, so:

E(p̂,q) =
m∑

k=1

∫

R3
δ

(
ŷkrk(z) −

d∑

t=1

xtBt,krk(z)

)
Ik(z)dz (B.4)

=

m∑

k=1

∫

R3
δ

(
ŷk
vk

−

∑d
t=1 xtBt,k
vk

)
Ik(z)dz (B.5)

=

m∑

k=1

vkδ

(
ŷk
vk

−

∑d
t=1 xtBt,k
vk

)
. (B.6)

b.2 `2-penalized `1 regression

We have the minimization problem:

B̂ = argmin
B

(
‖Ŷ −XB‖1 + λ ‖B‖2F

)
(B.7)

where X = (xi) ∈ Rn×d and Ŷ = (ŷi) ∈ Rn×m and λ ∈ R+.
The problem is equivalent to:

argmin
Z,B

(
‖Z‖1 + λ ‖B‖2F

)
(B.8)

s.t. Ŷ −XB−Z = 0 . (B.9)

Introducing the dual variable ν ∈ Rn×m, the Lagrangian is:

L(Z,B,ν) = ‖Z‖1 + λ ‖B‖2F + Tr(νT (Ŷ −XB−Z)) . (B.10)
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The derivative with respect to B is

2 λB−XT ν , (B.11)

so minimizing with respect to B yields B = XTν
2λ and

min
B
L(Z,B,ν) = ‖Z‖1 + Tr(νT Ŷ − νTZ−

1

4λ
νTXXTν) . (B.12)

The dual norm of the l1 norm is l∞, so minimizing with respect to Z
we get the Lagrange dual function

g(ν) = min
Z,B

L(Z,B,ν) (B.13)

=





Tr(νT Ŷ − 1
4λν

TXXTν) if ‖ν‖∞ 6 1

−∞ otherwise .
(B.14)

Hence the dual problem is:

ν̂ = argmax
ν

(
Tr(νT Ŷ −

1

4λ
νTXXTν)

)
s.t. ‖ν‖∞ 6 1 . (B.15)

g is differentiable; its gradient is

∇g(ν) = Ŷ −
1

2λ
XXTν . (B.16)

We solve this problem using an efficient algorithm: L-BFGS-B (Byrd
et al., 1995). Then we obtain the primal solution as B̂ = XT ν̂

2λ .
This approach can easily be generalized to the quantile loss for any

quantile ρ ∈ (0, 1). The regularized quantile regression problem, for
a quantile ρ, can be written by separating the positive and negative
parts of the error:

argmin
U,V,B

ρU+ (1− ρ)V + λ ||B||2F (B.17)

s.t. U � 0 (B.18)

V � 0 (B.19)

Y −XB−U+V = 0 . (B.20)

A similar derivation as the one used for the LAD problem yields the
dual quantile regression problem:

argmax
ν

νT Y −
1

4λ
νT XXT ν (B.21)

s. t. − ν+ ρ � 0 (B.22)

ν− ρ+ 1 � 0 . (B.23)

This problem can thus be solved with the same approach as the one
we used for LAD regression.
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b.3 details on tokenization

The first step of Term Frequency · Inverse Document Frequency (TFIDF)
feature extraction is tokenization: transforming a string of characters
into a list of entries from our vocabulary. Here we summarize the
tokenization pipeline that we implemented. It follows the usual steps
of text preprocessing for information extraction. To make explanations
concrete, we consider tokenizing an example (meaningless) document:

"Lesions in the supplementary motor areas (and the

auditory cortex)" .

b.3.1 Extracting words

The first step is to transform a string of characters into a list of words.
This is done by matching a simple regular expression. For our example
document, this step yields the list:

["Lesions", "in", "the", "supplementary", "motor",

"areas", "and", "the", "auditory", "cortex"] .

b.3.2 Standardizing words

Extracted words are then standardized. In all our experiments, they
are converted to lower case. We also experimented with stemming
or lemmatizing them, but found available stemmers, such as imple-
mentations of the Porter stemmer, to be too aggressive in some cases.
This may be due to the fact that we are considering a very specialized
vocabulary. The above list becomes

["lesions", "in", "the", "supplementary", "motor",

"areas", "and", "the", "auditory", "cortex"] .

If we are using a Porter stemmer, it becomes

["lesion", "in", "the", "supplementari", "motor",

"area", "and", "the", "auditori", "cortex"] .

b.3.3 Removing stop words

Some stop words, such as “the” and “and”, are removed from the list
of extracted words. The filtered list for our example is:

["lesions", "supplementary", "motor", "areas",

"auditory", "cortex"] .
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b.3.4 Extracting phrases

Once we have a list of (standardized and filtered) words, the next step
is to extract collocations. Collocations are sequences of words that
often appear together, such as “anterior cingulate cortex”. Collocations
are sometimes called n-grams; for example “anterior cingulate cortex”
is a 3-gram, or trigram. Once the previous steps have created a list of
words, we group them into phrases (possibly of length 1).

In other information extraction settings, the vocabulary is often
built from the text corpus itself. Collocations are then discovered by
considering all the collocations that occur at least once in the whole
corpus, and selecting the most relevant ones. This selection can be a
simple threshold on frequency. It can also be based on more elaborate
strategies, such as keeping n-grams that occur much more often than
would be expected if the words they contain occurred independently
(Bouma, 2009; Mikolov et al., 2013). When discovering n-grams in this
way, the number of n-grams to consider grows very rapidly with n,
the maximum number of words in a vocabulary entry.

Our vocabulary, on the other hand, comes from curated vocabulary
lists such as the Medical Subject Headings. It includes some relatively
long expressions, such as “caudal anterior cingulate cortex” or “mild
traumatic brain injury”. We do not consider all possible sub-parts of
these expressions. Our greedy tokenization method extracts full ex-
pressions sequentially, rather than building all possible pairs, triplets,
and quadruplets of words. We build, for each word, a graph of the
terms that can follow it to form an expression in our vocabulary. An
example for the term “supplementary” is shown in Fig. B.1. When a
term is found in the text, we consume the following words, matching
the longest sequence that results in an expression in the vocabulary.
After grouping adjacent terms into phrases, our example becomes

[["lesions"], ["supplementary", "motor", "areas"],

["auditory", "cortex"]] .

Other tokenizing methods might have produced

[["lesion"], ["supplementary"], ["motor"],

["area"], ["supplementary", "motor"], ["motor",

"area"], ["supplementary", "motor", "area"]].

If we want to add the sub-parts of each expression, it can be easily done
once the TFIDF features are extracted, by multiplying the (sparse) TFIDF

matrix with the sparse matrix S ∈ Rv×v (where v is the vocabulary
size) such that Sij = 1 if phrase i is a sub-part of phrase j and 0

otherwise.
This different tokenization method explains why some terms from

the NeuroSynth vocabulary appear too rare to be included in ours.
They are pairs of terms that are the end of longer expressions,
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supplementary

motor

eye

areas

area

cortex

field

fields

Figure B.1: tokenization paths after "supplementary". Paths ending with a
filled (gray) node correspond to expressions in the vocabulary. Paths ending
with a white node are not in the vocabulary. When extracting phrases, we
match the longest sequence that ends in a gray node. For example, "supple-
mentary eye field" is parsed as [["supplementary", "eye", "field"]], but
"supplementary eye" is parsed as [["supplementary"], ["eye"]] .

or spurious collocation detections. For example, “superior tempo-
ral gyrus (stg)” is tokenized with our method as [["superior",

"temporal", "gyrus" ], ["stg"]] , which is why the collocation
["gyrus", "stg"], from NeuroSynth’s vocabulary, almost never oc-
curs and is not included in our vocabulary. The complete list of expres-
sions present in NeuroSynth’s vocabulary but not ours is provided in
Appendix B.4.

b.3.5 Merging synonyms

Finally, expressions that are very similar are merged to remove dupli-
cates due to small spelling variations and reduce the dimensionality
of the TFIDF features. To discover similar expressions, we rely on the
Jaro-Winkler distance (Cohen, Ravikumar, and Fienberg, 2003). If two
expressions have a very small Jaro-Winkler distance, the least frequent
is replaced by the most frequent one. For example, “brain stem” is
replaced by “brainstem” and “movements” is replaced by “move-
ment”. This is a less aggressive alternative to stemming for improving
robustness to spelling variability. After this last step, our tokenized
document finally becomes

[["lesion"], ["supplementary", "motor", "area"],

["auditory", "cortex"]] .

Counting the occurrences of each unique phrase then yields the Bag-
of-words (BOW) features from which the TFIDF features are derived.
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b.4 discarded neurosynth terms

Although all NeuroSynth terms are considered for inclusion in our
vocabulary, some are found too rare and are discarded:

gyrus stg, cortex vmpfc, gyrus posterior, gyrus insula, cor-
tex ppc, gyrus medial, cortex vlpfc, gyrus mfg, sulcus sts,
incentive delay, gyrus cerebellum, memory wm, deficit
hyperactivity, gyrus anterior, compulsive disorder, hyper-
activity disorder, disorder ocd, mind tom, face ffa, cortex
dacc, stress disorder, cortex mpfc, frontal eye, cortex dor-
solateral, gyrus ifg, gyrus superior, motor sma, disorder
ptsd, lobule ipl

These terms are all bigrams. They are present in NeuroSynth’s vocabu-
lary but not ours because of differences in the tokenization process. For
example “gyrus stg” occurs in the expression “superior temporal gyrus
(stg)”, which is parsed as [[ “superior”, “temporal”, “gyrus” ],

[ “stg”]] in our case.



C N E U R O Q U E R Y D E TA I L S

c.1 reweighted ridge on toy dataset

As a sanity check for our reweighted ridge regression model, we apply
it to a toy synthetic dataset. We generate a small dataset. We choose
a number of samples n = 260, a number of targets m = 560, a total
number of regressors d = 160 to be roughly proportional to the size of
our real data. We set a smaller number of informative features u < d
arbitrarily to 10. We build a design matrix X ∈ Rn×d, and a true
coefficient matrix B∗ ∈ Ru×m. We generate

Y ∈ Rn×m = X:,:uB+ E , (C.1)

where E ∈ Rn×m is Gaussian noise. For all the outputs, only the
first u features are informative. The design matrix, regression coef-
ficients and dependent variables are created with scikit-learn’s
make_regression (Pedregosa et al., 2011). We can check that the
reweighted ridge outperforms a usual ridge regression, as well as
a multi-task lasso (Liu, Palatucci, and Zhang, 2009) (whose hyperpa-
rameter is set with an inner cross-validation loop), in Fig. C.1. It also

0.0 0.2 0.4 0.6
R2

Dummy

Ridge regression

Multi-task LASSO

Feature selection

True coefficients

Figure C.1: Cross-validation R2 scores. We see that on this dataset with
many uninformative features, the reweighted ridge with feature selection
and the multi-task lasso both outperform a uniform ridge regression baseline.
“Dummy” predicts the mean of the training set and measures chance level.

correctly recovers the support of the coefficients (Fig. C.2). The multi-
task lasso is included here for reference, but it would be extremely
costly to fit to our real problem, which is 50 times bigger than this toy
example.

132



C.2 neuroquery brain coverage 133

true coefficients

ou
tp

ut

feature

feature selection multi-task lasso

Figure C.2: Support of coefficients for the true coefficients, the feature selec-
tion procedure, and the multi-task lasso. Each row corresponds to an output
and each column corresponds to a feature. Non-zero entries are shown
in black. We see that on this toy example the feature selection procedure
correctly recovers the true coefficients’ support.

c.2 neuroquery brain coverage

In Fig. C.3, we assess how well the brain is covered by the few terms
chosen by our feature selection procedure. We threshold the super-
vised regression coefficients and count, for each voxel, the number of
terms (coefficients) for which it is above the threshold. We can see that
most brain areas are in the support of several brain maps (i. e. covered
by several selected terms).
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Figure C.3: Brain coverage: we consider only the Z maps of the ≈ 200 terms
selected by the supervised regression. We threshold them to control the FDR

at 5% across all voxels and all terms, and count, for each voxel, the number
of terms for which it is above the threshold. We see that most brain areas are
covered by several terms, and that only a small part of the brain (in white) is
not covered.



D D E C O D I N G R E S U LT S

d.1 example maps with enriched labels

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Decoding AUC on IBC dataset

NNoD

NeuroSynth

GCLDA

L R

z=40

L R

z=-16

L R

z=-10

L R

z=54

working
memory

AUC=0.55

face
maintenance

AUC=0.91

place
maintenance

AUC=0.93

left finger
response execution

AUC=0.99

Figure D.1: Performances on enriched concepts. Compared with original
labels decoding, after enriching our training dataset with heuristics, a similar
model manages to decode more labels (51 in the IBC dataset) with a slightly
better accuracy.
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d.2 detailed scores per label

0.00 0.25 0.50 0.75 1.00
AUC on IBC dataset

right toe response execution
left toe response execution

left finger response execution
relational comparison

animacy decision
place maintenance

visual form recognition
detection

emotional face recognition
auditory arithmetic processing

decision
face maintenance

visual tool recognition
pattern recognition

tool maintenance
body maintenance

right finger response execution
punishment processing
visual body recognition

feature comparison
arithmetic processing

reward processing
face recognition

visual face recognition
auditory sentence recognition

story comprehension
emotion

perception
response execution

theory of mind
recognition

updating
response selection

maintenance
memory

discrimination
working memory

NNoD
NeuroSynth
GCLDA

Figure D.2: Classification AUC for each term on the IBC test set. Most terms
are decoded far above chance level. We also report the AUC of NeuroSynth
and GCLDA models, pre-trained on the NeuroSynth dataset of coordinates,
for the terms in their vocabulary.
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place maintenance
visual body recognition

pattern recognition
detection

motor control
face perception

face maintenance
body maintenance

loss
emotion

tool maintenance
visual tool recognition

face recognition
right finger response execution

punishment processing
feature comparison
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facial trustworthiness recognition
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audition
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Figure D.3: Classification AUC when using our heuristics to enrich the labels.
All models perform slightly better than with the exactly-matched labels, and
more terms are found in the IBC test set after label inference.
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Résumé : La neuroimagerie permet d’étudier les
liens entre la structure et le fonctionnement du cer-
veau. Des milliers d’études de neuroimagerie sont pu-
bliées chaque année. Il est difficile d’exploiter cette
grande quantité de résultats. En effet, chaque étude
manque de puissance statistique et peut reporter
beaucoup de faux positifs. De plus, certains effets
sont spécifiques à un protocole expérimental et dif-
ficiles à reproduire.
Les méta-analyses rassemblent plusieurs études
pour identifier les associations entre structures ana-
tomiques et processus cognitifs qui sont établies de
manière consistente dans la littérature. Les méthodes
classiques de méta-analyse commencent par consti-
tuer un échantillon d’études focalisées sur un même
processus mental ou une même maladie. Ensuite,
un test statistique permet de délimiter les régions
cérébrales dans lesquelles le nombre d’observations
reportées est significatif.
Dans cette thèse, nous introduisons une nouvelle
forme de méta-analyse, qui s’attache à construire des
prédictions plutôt qu’à tester des hypothèses. Nous

introduisons des modèles statistiques qui prédisent la
distribution spatiale des observations neurologiques
à partir de la description textuelle d’une expérience,
d’un processus cognitif ou d’une maladie cérébrale.
Notre approche est basée sur l’apprentissage statis-
tique supervisé qui fournit un cadre classique pour
évaluer et comparer les modèles. Nous construisons
le plus grand jeu de données d’études de neuroi-
magerie et de coordonnées stéréotaxiques existant,
qui rassemble plus de 13 000 publications. Dans la
dernière partie, nous nous intéressons au décodage:
prédire des états psychologiques à partir de l’activité
cérébrale.
La méta-analyse standard est un outil indispensable
pour distinguer les vraies découvertes du bruit et
des artefacts parmi les résultats publiés en neuroima-
gerie. Cette thèse introduit des méthodes adaptées
à la méta-analyse prédictive. Cette approche est
complémentaire de la méta-analyse standard, et aide
à interpréter les résultats d’études de neuroimagerie
ainsi qu’à formuler des hypothèses ou des a priori sta-
tistiques.
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Abstract :
Thousands of neuroimaging studies are published
every year. Exploiting this huge amount of results is
difficult. Indeed, individual studies lack statistical po-
wer and report many spurious findings. Even genuine
effects are often specific to particular experimental
settings and difficult to reproduce.
Meta-analysis aggregates studies to identify
consistent trends in reported associations between
brain structure and behavior. The standard approach
to meta-analysis starts by gathering a sample of stu-
dies that investigate a same mental process or di-
sease. Then, a statistical test delineates brain regions
where there is a significant agreement among repor-
ted findings.
In this thesis, we develop a different kind of meta-
analysis that focuses on prediction rather than hypo-
thesis testing. We build predictive models that map
textual descriptions of experiments, mental processes
or diseases to anatomical regions in the brain. Our

supervised learning approach comes with a natural
quantitative evaluation framework, and we conduct
extensive experiments to validate and compare sta-
tistical models. We collect and share the largest exis-
ting dataset of neuroimaging studies and stereotactic
coordinates. This dataset contains the full text and lo-
cations of neurological observations for over 13 000
publications.
In the last part, we turn to decoding: inferring mental
states from brain activity. We perform this task through
meta-analysis of fMRI statistical maps collected from
an online data repository. We use fMRI data to distin-
guish a wide range of mental conditions.
Standard meta-analysis is an essential tool to dis-
tinguish true discoveries from noise and artifacts.
This thesis introduces methods for predictive meta-
analysis, which complement the standard approach
and help interpret neuroimaging results and formulate
hypotheses or formal statistical priors.
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