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Abstract

Photonic technologies hold the potential to replace electronic technologies in near-

future by solving most of the drawbacks of the electronic circuits. Generation and

manipulation of photons in an integrated waveguide-based platform are preferred

over bulk-optical components, mainly due to their compactness, stability, scalabil-

ity, connectivity, reproducibility, and low power consumptions. Sophisticated fab-

rication techniques have enabled to design low-loss intricate planar and non-planar

architectures consisting of several twists and turns. Optical directional couplers

(DCs), polarization beam splitters (PBSs), microring resonators (MRRs), etc. are

some of the indispensable components of the photonic circuits having a plethora

of applications in the linear, nonlinear, and quantum optical applications. Silicon

(Si) has been the preferred material to design the photonic components due to the

high refractive-index, low-loss, low-cost, and high nonlinearity.

A corpus of works has been done to shrink the overall device footprint dur-

ing the last few decades. At the beginning of the dissertation, a novel scheme to

miniaturize the existing designs of optical DCs and PBSs based on off-centered,

asymmetric, and hybrid dielectric slot waveguides is discussed. Slot dimensions

and positions are optimized to achieve maximum coupling coefficient (> 88% en-

hancement) between two adjacent silicon wire-waveguides. The scheme leads to

the device-length of 0.9µm, and 1.1µm, for the DC and the PBS, respectively,

which is a significant improvement over their contemporary counterparts. To

obtain ripple-free broadband band-pass or band-rejection filters, serially coupled

MRRs have been utilized which occupy large space on a chip. To overcome this

issue, non-concentric (off-axis) nested MRR has been proposed in this thesis work

that reduces the filter-size without compromising its performance, thereby en-

abling high-density photonic integration on-chip. High thermo-optic coefficient of

Si is the Achilles heel of the silicon-on-insulator MRR based electro-optic modu-

lators (EOMs). Off-axis MRR also helps to mitigate the thermal red-shift in the
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spectral response of an MRR which facilitates its applicability to achieve athermal

EOM. By further improvement in non-concentric nested MRRs, it is possible to at-

tain and maintain high quality-factor and high extinction-ratio with a fabrication

tolerance of 10–20%. Initial experiments on nested MRRs confirm the theoretical

predictions. Such nested configurations will be highly efficient in bio-sensing and

quantum applications for a broad ambient temperature range.

The Kerr nonlinearity of the microresonators has been exploited through a

narrow line-width continuous-wave laser source for the generation of equispaced

coherent frequency lines known as the optical frequency comb (FC). Most of the

nonlinear materials used to generate FC, including Si, exhibit nonlinear losses

and free-carrier effects in the telecom wavelength range. In the next part of the

thesis, an analytical model of FC in the presence of nonlinear losses, free-carrier

absorption, and dispersion effects has been developed, which capacitates us to

explain several experimental results previously obtained. Further, numerical sim-

ulations explore that, using dual-pump, it is possible to generate tunable FC

and synchronous all-optical buffers, which are robust to the writing-jitters, 3rd-

order dispersion, and Raman effect. Apart from linear and nonlinear applications,

integrated optical devices provide an efficient testbed for the realization of the

invincible quantum technologies. In the final portion of the dissertation, efficient

pumping schemes have been discussed to generate continuous variable bipartite

and multipartite entanglement in different waveguide-pairs, simultaneously, using

an integrated 5×5 periodically poled lithium niobate waveguide array through

spontaneous parametric down conversion.

Keywords: Integrated photonics, nonlinear and quantum optics, optical coupler,

polarization beam-splitter, Kerr microring resonator, optical frequency comb.
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C H A P T E R 1

Introduction

Optical technologies are ubiquitous, spanning from the detection of the delicate

gravitational waves emitted billion years ago by the gargantuan black-holes to

the accurate measurements on the minuscule subatomic particles and their sub-

picosecond oscillations! Our daily lives are persistently benefited from the subtle

omnipresence of the photonic technologies with the high-speed fiber-optic network,

medical instruments, LED lamps, LASIK technology, or the mundane compact

disks those are scattered carelessly at the corners of our tables. In fact, within a

decade, photonic technologies are expected to invade if not topple the electronic

technologies that we use in our mobile or personal computers. In this disser-

tation, several nanophotonic devices such as optical directional couplers (DCs),

polarization beam splitters (PBS), microring resonators (MRRs) etc., which can

be integrated with the existing electronic components as a part of optical inter-

connects, are explored. Furthermore, the thesis work is involved in modeling and

designing integrated photonic components for nonlinear and quantum optical ap-

plications. In this chapter, an overview of photonic devices which are used in

different linear, nonlinear and quantum optical applications is provided.
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1.1 Photonics over Electronics: On-chip Linear

Optical Devices

Electronic technologies, albeit revolutionized the 20th century, have many defi-

ciencies. The reduction in feature size due to advancement in the semiconductor

industry and integration of millions of transistors within the same chip, as prog-

nosticated by Moore’s law, have steered on-chip communication to the paradigm of

multi-core processors which are fast enough to execute huge computations within a

billionth of a second. However, the drift velocity of electrons and the parasitic ca-

pacitance between two electronic components limit the speed of electronic circuits.

The delay at metallic interconnects leads to a bottleneck forcing asynchronous

data transfer between the processor and the other parts of a computational sys-

tem [1,2]. In addition to this, the demand for higher bandwidth of a system is one

of the challenging issues. At the beginning of the 21st century, the problem aggra-

vates as electronic chips started defying Moore’s law, Koomey’s law, and Dennard

scaling (dark silicon effect), which finally inspires us to develop different non-Von

Neumann architecture such as Harvard architecture and even neuromorphic com-

puting. However, neuromorphic computers that attempt to mimic our brains are

still in the incipient stage [3]. On the other hand, by leveraging the mature com-

plementary metal-oxide-semiconductor (CMOS) technology, photonic components

and circuits have the nascent potentiality to overcome almost all the drawbacks

and limitations of the present-day electronic circuits and systems, including the

Von Neumann bottleneck problem. Low power consumption, low latencies, less

interference, ultra-compact size, extremely high data-rate, and wide bandwidth

are the key advantages of the optical circuits [1–5]. Also, photonic technology

with visible light and infrared is safe for in-situ medical applications. Silicon

(Si)-photonics is the most suitable pathway to realize the dream of high-speed

photonic computers. Various advantages of using silicon as a photonic platform

are mentioned below,

• Silicon is cheap and widely available,

• Broad transparency window (1.1µm–10µm) [5],

• Higher refractive index (RI) (3.477) compared to silica (1.445), and air (1)

at 1.55µm,
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• CMOS compatible,

• Availability of natural oxide,

• Can be purified up to 9N (99.9999999 %) by current technology,

• Higher Raman gain coefficient (dominant peak at 15.6 THz with 105 GHz

bandwidth at 1.55µm, 1 nm wider than that of silica),

• High nonlinear RI (n2 = 3 × 10−18 m2/W), almost 100 times higher than

that of silica,

The state-of-the-art silicon-on-insulator (SOI) technology has made it possible to

fabricate new optical components with the existing microelectronic components.

High RI contrast offered by Si in optical waveguides leads to strong optical con-

finement. The strong optical field inside the waveguide-core allows several low-

loss sharp bends and made it possible to realize ultra-compact optical devices,

such as, microring resonators (MRRs), which are scalable, robust, and have nu-

merous applications in optical communication, data-routing, spectroscopy, and

sensing [6–8]. Tight field confinement in the Si-waveguides also ensures very high

optical intensity (equivalently, a small effective area), which facilitates the use

of the SOI devices for nonlinear applications such as frequency conversion, su-

percontinuum generation, frequency-comb generation, and so on. [9–13]. These

devices also aid to achieve strong light-matter interaction within nano-scale ge-

ometry, which gives rise to many novel optical phenomena [12,13]. Mastering the

control on the nano-world using photonic technologies opens up a new field of

study called ‘Nanophotonics’ which administers us an unprecedented command

over the molecular interactions, green-energy harvesting, drug delivery (optical

tweezing), bio-sensing, and even genetic engineering. “There’s Plenty of Room

at the Bottom”—indeed, more than fifty years down the lane and now we realize

how accurately Feynman envisaged the future-world! Nevertheless, some of the

properties of silicon which are not always propitious to the photonic applications

are listed below [5]:

• High positive (+ve) thermo-optic coefficient (TOC),

• High nonlinear losses below the wavelength 2.2µm,

• Indirect band-gap, lack of efficient light emission,

• High electro-absorption,
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• Absence of linear electro-optic (Pockel) effect, absence of second-order non-

linearity without stress,

• Low Franz-Keldysh effect,

• Cannot be used to detect a signal at optical C-band.

It is interesting to note, though the high RI contrast offered by SOI waveguides is

advantageous to most of the applications, high field-confinement and a relatively

small coupling coefficient compel the coupling length of the device to be long. As

a result, the overall device footprint of optical couplers, PBS, etc. becomes large.

Recently, significant attention has been focused on designing very efficient, low-

loss, compact on-chip optical couplers based on slotted Si wires [14] and photonic

crystal circuits [15]. Also, several designs of compact PBS have been evolved,

including dielectric-plasmonic hybrid structures [16,17]. Nevertheless, the devices

are either lossy [17] or numerically intensive [18] to design. It remains a challenge

to achieve an efficient ultra-compact on-chip PBS with high extinction ratio (ER)

and full-width at half maximum (FWHM) while maintaining very low insertion

loss (IL) simultaneously. In the first part of the dissertation, a novel scheme to

reduce the device size based on asymmetric slot waveguides is discussed. The

proposed strategy can reduce the size of the DC and PBS at least by 88 %.

Optical bandpass/band-rejection filters [19] have extensive use in wavelength

division multiplexing (WDM) communication system. One requires higher-order

filters comprised of coupled MRRs to suppress the undesired ripples [20] in the pass

or the rejection band. However, serially coupled MRRs used to design broadband

bandpass filters, have large footprints. We have come up to an intelligent solution

to save the space and thereby, integration of additional components within the

same area. We refer this approach to non-concentric (or, off-axis) MRRs. Electro-

optic modulators (EOMs) based on MRRs is one of the most important photonic

components that drive the photonic interconnects to combat the bottle-neck issue.

Performances of the MRR-based EOMs are highly affected by the temperature

fluctuations [21]. The proposed athermal solutions are either power-inefficient,

affects the message signal, or occupy large space in the chip. It is also established

that off-axis MRR based EOM behaves athermally for a broad range of ambient

temperature as the off-axis MRR can decouple the message signal and the control-

ling bias very efficiently. Initial experimental results confirm that non-concentric
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rings are fabrication tolerant (> 20%) while arranged in a nested fashion, which

suggests potential use in sensing, nonlinear, and quantum applications.

It is important to contemplate that the physical mechanism which drives an

EOM is generally nonlinear (electro-absorption, Pockel or Kerr effect); however,

the transfer characteristics of the operating device follows a linear relationship

where the output optical signal requires to replicate the electrical input waveform.

1.2 Nonlinear Optics

A system (be it mechanical, electrical, optical; probabilistic or deterministic) is

nonlinear if the governing equation capable to describe the dynamics of the sys-

tem reasonably well, contains nonlinear terms. Nonlinear systems no longer follow

the superposition principle. Nonlinearity often leads to the formation of fractals

and chaos. In nonlinear optics, one studies the behavior of light in the medium

where the dielectric polarization of the medium depends nonlinearly upon the

incident electric field [9–11]. Being bosons, weakly interacting photons bestow

us interference-free communication channels, on the other hand, necessitate the

use of intense coherent light-sources and tight optical confinement to obtain the

nonlinear optical phenomena. The discovery of lasers by T. H. Maiman in the

middle of the twentieth century empowered us to demonstrate different nonlinear

optical phenomena, thereby opening the Pandora’s box to the quantum optics.

Nonlinear optical processes include second harmonic generation, Pockel’s effect,

third harmonic generation, sum, and difference frequency generation, self-phase

and cross-phase modulation, four-wave mixing, two-photon absorption, optical

phase conjugation, optical parametric amplification and oscillation, Raman and

Brillouin scattering, etc. Nonlinear interactions, though detrimental for optical

communication systems, pave the way to generate optical sources of any required

frequencies which were previously unattainable by natural laser sources. Nonlin-

ear spectroscopy is another important application of nonlinear optics. Also, the

generation of supercontinuum, optical solitons, frequency combs (FCs), and other

nonlinear optical phenomena have been demonstrated using SOI platforms. The

nonlinearity of photonic devices has been exploited for frequency conversions [9]

both in linear optical waveguides and resonator systems. Narrow linewidth ( kHz),
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continuous-wave (CW) laser sources have been employed to generate optical FC in

microresonators (MRs) utilizing Kerr nonlinearity, which manifests itself as cavity

soliton (CS) in time-domain [22, 23]. To model FC dynamics in MRs, damped-

driven nonlinear Schrödinger equation with boundary condition, also known as

Lugiato-Lefever equation (LLE) has been widely used [23]. Most of the optical

materials exhibit losses in the telecom wavelength range that restrict their use in

realizing various interesting nonlinear properties. However, in search of simplic-

ity, the majority of such theoretical models have mostly condoned the effects of

nonlinear losses and free-carriers in their analysis, except a few [24]. The exist-

ing studies are either numerical or experimental and do not provide much insight

into the dynamics of the comb-formation [25]. An in-depth theoretical analysis

of comb formation including the nonlinear losses, has been discussed through the

mathematical model in this thesis work. Bichromatic pumping scheme in MRs

provides an additional degree of freedom which results in robust and synchronous

all-optical buffer. We also investigate the advantages of dual-pump MRs over the

conventional monochromatic MRs in this thesis.

1.3 Integrated Quantum Optics

Quantum Mechanics is defined as a branch of physics capable of describing the es-

oteric behaviors of the atoms, subatomic, and elementary particles at the smallest

scale of the energy levels in nature, where classical mechanics usually fails [26].

Photons are considered as the mediator of electromagnetic energy, and ‘Quan-

tum optics’ is a field of research which deals with the light-matter interaction in

microscopic level with the help of quantum mechanics and quantum electrody-

namics, considering the flow of light as a stream of photons. In general, for the

ease of understanding, classical or semi-classical approaches are being adopted

to describe most of the linear and nonlinear optical phenomena. For example,

though the photo-electric effect cannot be described using classical physics, it can

be satisfactorily explained through the semi-classical approach. In contrary, a

few optical phenomena such as Hong-Ou-Mandel effect, photon anti-bunching or

the sub-Poissonian distribution of light, squeezing of light, parametric optical pro-

cesses, etc. cannot be described satisfactorily with any of these approaches [26–30]
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where quantum optics becomes indispensable. At this tiny scale, wave property

of the particle becomes prominent. In recent years, photonic platforms (mostly in

silicon, silicon nitride, lithium niobate, etc.) are exploited extensively to realize

quantum effects such as the on-chip generation of entangled states, which spawns

a new and intriguing branch of optics called ‘Integrated quantum optics’ [31,32].

1.4 Quantum Computation and Cryptography

As proposed by Feynman, devising the power of quantum entanglement and the

immense parallelism of superposed quantum states, quantum information process-

ing (QIP) techniques offer several benefits with respect to their classical counter-

parts [33]. Apart from quantum computing (QC), in 1984, Bennett and Brassard

have suggested that laws of quantum mechanics can also be used for secure com-

munications [34]. Consequently, ‘Quantum cryptography’ (QCr) emerges, which

is an art of science that exploits the fascinating features of quantum mechanics

such as Heisenberg’s uncertainty principle, no-cloning theorem, Bell’s inequality

or the quantum entanglement, i.e. ‘spooky action at a distance’ to perform cryp-

tographic tasks [29]. As an example, quantum key distribution (QKD) allows

two remote parties (viz. Alice and Bob) to distribute secret keys through public

channels using quantum cryptographic protocols for quantum communications. In

principle, QKD can offer unconditional security guaranteed by the laws of quan-

tum physics even in the presence of an omnipotent eavesdropper (Eve), which is

long been considered as ‘The Holy Grail’ of any communication systems [35, 36].

Quantum properties of light can be exploited in a myriad of applications such as

QC, QIP, QCr, quantum simulations, spectroscopy, metrology and sensing [37,38].

As discussed earlier, being bosonic in nature, photons show less interaction with

other particles and within themselves, thereby are less susceptible to the quantum

noise or decoherence. However, in 2001, Knill, Laflamme, and Milburn (KLM pro-

tocol) showed that linear optical components such as optical beam splitters and

couplers along with single-photon sources and photon detectors are sufficient for

quantum computation [30]. KLM protocol is regarded as one of the milestones in

realizing quantum computing devices through the discrete variable (DV) photonic

systems as obtaining nonlinearity using a few photons is extremely difficult [39].
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Generation and manipulation of photons in an integrated on-chip waveguide-based

platform are preferred over the crystal-based bulk-optical components mainly due

to their compactness, stability, scalability, connectivity, reproducibility, the po-

tential for lower power consumptions, etc. Recent developments in fabrication

technologies make integrated quantum photonic circuits a promising and versatile

approach for future QIP technologies. Photonic quantum circuits comprised of

on-chip photonic components such as optical couplers, PBS, etc., can easily ma-

nipulate the polarization of light and the flow of photons. Continuous-variable

(CV) approach for QC conversely utilizes low-cost deterministic laser sources and

detectors [39]. In the final part of my thesis, the best pumping scheme to gener-

ate bipartite and multipartite CV entangled states in periodically poled lithium

niobate waveguide array through spontaneous parametric down conversion has

been studied. Before proceeding for the experiments, we calculate the bipartite

CV-entanglement between waveguide modes through the Peres-Horodecki crite-

ria/positive partial transpose (PPT), whereas, the generation of multipartite en-

tanglement is investigated through the Van Loock Furusawa criteria (VLF) [40,41].

Such entangled states can be used for quantum computations or in a multi-party

quantum cryptographic protocols.

To summarize, in this thesis, I have chosen some of the fascinating applications,

which can be divided into three major categories, viz. the design of integrated

photonic components for (i) linear (DCs, PBSs, and MRR-filters) (ii) nonlinear

(FC generation), and (iii) quantum optical applications (entangled CV states gen-

eration).
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1.5 Motivation

A broad range of enthralling topics on linear, nonlinear, and quantum optics are

covered throughout the thesis-work. A few caveats of the existing photonic tech-

nologies, specifically in linear and nonlinear devices are found through an extensive

literature survey, which acts as the motivation of this dissertation.

• Tight optical confinement in individual SOI-waveguide entails weak evanes-

cent coupling when two optical waveguides are placed close to each other.

Weak coupling compels the SOI-based optical couplers and PBS to be longer

to attain the desirable performances [4, 5].

• A single MRR has a spectral response equivalent to the notch filter. How-

ever, to achieve a bandpass or band-rejection filter, a few of such MRRs are

coupled serially, which in turn increases the device footprint. To achieve a

ripple-free broadband filter response within a compact size remains a chal-

lenge [7, 8].

• Silicon has a high thermo-optic coefficient (TOC∼ 1.86×10−4 /K). There-

fore, a small change in temperature or the existence of local hot-spot is re-

flected by a dramatic change in the transmission characteristics and thereby

deforms the output waveform of a high-Q MRR based EOM. The current

technologies to mitigate the undesirable thermal effects are either power

inefficient, large in size, or CMOS incompatible, and costly.

• MRRs are mostly designed to operate in the critical coupling regime. Some

applications also demand the MRR to work either in the slightly over-

coupling, or marginally under-coupling condition [6]. The coupling condition

of an MRR is very sensitive to the fabrication errors and the ambient tem-

perature.

• Owing to the band-gap energies most of the materials used to build the

nonlinear photonic platforms including silicon, possess nonlinear losses such

as multi-photon absorptions, free-carrier absorption (FCA), and free-carrier

dispersion (FCD) in telecom wavelength range covering the C-band. Existing

theoretical models of FC still lack a general mathematical framework that

includes the effects of the nonlinear losses [22,23].
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• Monochromatic Kerr MR based all-optical buffers employ the cavity solitons

(CSs) as optical-bits. They are asynchronous in nature, and the performance

of these CS-based buffers is severely affected by the writing jitters, third-

order dispersion, and the Raman Effect.

• Integrated photonic waveguide based continuous variable (CV) bipartite and

multipartite entangled sources are highly coveted for the implementation of

quantum computing devices on a single chip. Nonetheless, nonlinear losses

such as two-photon absorption (2PA) make it difficult to realize squeezed

state and entangled photon pairs in telecom C-band within silicon waveg-

uides.

1.6 Research Objectives

Based on the motivation, the following objectives are set for the thesis work:

• To investigate the existing schemes for the miniaturization of optical com-

ponents; To study the slot-waveguide based DCs and PBSs using overlap-

integral method (OIM), super-mode analysis, and 3D finite-difference time-

domain (FDTD) method.

• To maximize the coupling between two adjacent slotted silicon wire waveg-

uides by optimizing the slot size and position.

• To develop a theoretical model based on the transfer matrix method (TMM),

and FDTD for the study of non-concentric microring resonators. Implemen-

tation of the non-concentric MRR to design the compact bandpass/band-

rejection filter and compact athermal EOM.

• To model the Kerr frequency-comb based on modified LLE in the presence of

multiphoton absorptions and free-carrier effects, which might help to study

the steady-state, self-pulsation, and modulation instability in the presence

of various nonlinear losses.

• To investigate the advantages of bichromatic pumping over monochromatic

Kerr MRs and to exploit the dual-pump Kerr MR configurations as an all-

optical buffer.
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• To determine the best pumping scheme of a PPLN waveguide array that

generates a large number of bipartite and multipartite quantum entangle-

ment in multiple waveguide pairs efficiently, which can be used in quantum

computation and cryptographic applications.

1.7 Thesis Organization

Chapter 1 serves as an introduction and literature survey on various linear, non-

linear, and quantum photonic devices and their applications. We briefly explain

each category with the relevant state-of-the-art optical devices, their pros, and

cons, along with the further scope of work, which motivate the thesis-work. Based

on the motivation, research objectives are proposed.

In chapter 2, we introduce a novel scheme to design ultra-compact photonic de-

vices maneuvering the asymmetric slot-waveguide.

The first part of chapter 3 presents non-concentric (or, off-axis) MRRs that

has the potential to offer wideband band-pass or band-rejection filter with a re-

duced device-size, whereas, the next part of chapter 3 describes an athermal EOM

based on off-axis MRR, and fabrication-tolerant nonconcentric nested (NN) MRR.

Chapter 3 finally ushers the way towards a possible solution to the performance

degradation caused by the alteration of coupling conditions.

Chapter 4 of the thesis is devoted in developing a complete mathematical model

of the Kerr FC in the presence of all nonlinear losses.

Chapter 5 discusses the potential of dual-pump Kerr MR based optical buffers

as a remedy of the problems experienced by the monochromatic Kerr FC.

In chapter 6 of the thesis, we employ PPLN waveguide arrays for the generation

of multipartite entanglement.

In a nut-shell, second and third chapters contain the designs of linear optical de-

vices whereas, chapter 4, chapter 5 and chapter 6 target the various aspects of FC

generation in nonlinear optical platforms including quantum optical devices.

Chapter 7 summarizes and concludes the dissertation discussing possible future

research directions.
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C H A P T E R 2

Ultra-compact Optical Couplers

and Polarization Beam-splitters

using Asymmetric Slots

In this chapter, at first, we briefly discuss the basics of various optical waveguides

and optical couplers. Subsequently, we introduce the concept of slot waveguides,

their fabrication processes, coupling mechanisms, various advantages over the con-

ventional waveguide structures and applications. In the next section, we present

novel schemes to design on-chip ultra-compact optical directional couplers (DCs)

and broadband polarization beam splitters (PBS) based on off-centered and asym-

metric dielectric slot waveguides, respectively. Slot dimensions and positions are

optimized to achieve maximum coupling coefficients between two symmetric and

non-symmetric slotted silicon wire waveguides through overlap integral method

(OIM). We observe > 88% enhancement in the coupling coefficients when the

size-optimized slots are placed in optimal positions, with respect to the same

waveguides having no slot. When the waveguides are parallel, in that case, a

coupling length as short as 1.73µm is accomplished for transverse-magnetic (TM)

mode with the off-centered and optimized slots. This scheme enables us to design

optical directional couplers with a very small footprint, Lc ∼ 0.9µm in presence
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of S-bends. We also report a compact (Lc ∼ 1.1µm) on-chip broadband PBS with

hybrid slots. Extinction ratios of 13 dB and 22.3 dB are realized with very low

insertion loss (0.055 dB and 0.008 dB) for TM and transverse-electric (TE) modes

at 1.55µm, respectively. The designed PBS exhibits a bandwidth of 78 nm for

the TM mode (C-and partial L-bands) and > 100 nm for the TE mode (S+C+L

wavelength bands). Such on-chip devices can be used to design compact photonic

interconnects and quantum information processing (QIP) units efficiently. At the

final section of this chapter, we have investigated the fabrication tolerances of the

proposed devices and described the fabrication steps to realize such hybrid devices.

Our results are in good agreement with 3D finite-difference time-domain (FDTD)

simulations. 1

2.1 Introduction

Photonic circuits have the potential to overcome most of the drawbacks and limita-

tions of present-day electronic circuits and systems including the bottleneck issues

between processors and interconnects [1, 2]. On-chip optical switches, couplers,

modulators, and PBS are essential components of photonic circuits [3]. With re-

cent developments in photonic circuits, analogously, we are approaching an era of

QIP that offers several benefits with respect to classical alternatives for several

applications [4]. In 2001, Knill, Laflamme, and Milburn showed that linear optical

components such as optical beam splitters and couplers along with single-photon

sources and photon detectors are sufficient for quantum computation [5, 6] which

is known as ‘KLM protocol’. Photonic quantum circuits comprised of on-chip

Si-based photonic components such as optical couplers, PBS, etc., can easily ma-

nipulate the polarization of light and the flow of photons [7,8]. Entangled quantum

state generation and GHz-clocked quantum key distribution systems using pho-

tonic circuits have been demonstrated in [8–10].

Due to the high refractive index (RI) contrast between silicon, silica, and air,

silicon-on-insulator (SOI) wire waveguides exhibit excellent light-guiding property

and has the potential for compact on-chip circuits as they allow small bends with

1Publications related to this chapter are [46], [47].
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Figure 2.1: Cross-sectional (I) and perspective view (II) of (a) Conventional SMF, (b) PCF
with a core, (c) Fiber with multiple cladding regions, (d) capillary optical fibers. Protective
layers, buffers, jackets, etc. are not shown in Figs. (b), (c), and (d) for simplicity and clarity.
Note that, the capillary optical fibers are equivalent to the slot waveguides.

negligible losses. Current advancements in complementary metal-oxide semicon-

ductor (CMOS) fabrication technology make it possible to fabricate highly dense

nano-scale devices [11, 12]. However, high field confinement and relatively small

coupling coefficient compel the coupling length of the device to be large, and as

a result, the overall device footprint of optical couplers, PBS etc. is increased.

It has been observed that narrow slot/slots in the waveguides further enhance

the confinement of particular optical modes in the core region and reduce the
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Figure 2.2: 3D perspective view of SOI—(I) planar/slab, (II) wire/ridge waveguide, (III) rib
waveguide, (IV) suspended, (V) strip-loaded, (VI) diffused, (VII) buried, (VIII) multi-layered or
triplex waveguides, (IX) anti-resonant reflective optical waveguide (ARROW), waveguides with
a single—(X) vertical (V) slot, and (XI) horizontal (H) slot.

bending loss of the waveguide [13]. Straight and bent waveguides with slotted

cross-sectional regions can be combined to build microring resonators which have

wide range of applications in integrated optics [14]. Slotted waveguides are par-

ticularly interesting in nonlinear optics due to their very small effective mode area

and flat dispersion profiles [15, 16]. Recently, significant attention has been fo-

cused on designing very efficient, low-loss, compact on-chip optical couplers based

on slotted Si wires [17] and photonic crystal circuits [18].

Over the last few years, several designs of compact PBS have been evolved

such as multimode interference splitters [19, 20], DC [21, 22] and adiabatic mode
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evolution [23, 24]. However, it is challenging to achieve an efficient ultra-compact

on-chip PBS with high extinction ratio (ER) and full-width at half maximum

(FWHM) while maintaining very low insertion loss (IL) simultaneously. To achieve

an ultra-short PBS, often high structural asymmetry or large birefringence is nec-

essary [25]. Plasmonic and hybrid plasmonic waveguides can provide the required

birefringence and can reduce the device size considerably [25–29]. Three-core

plasmonic PBS designs have also been reported in [30–33]. Plasmonic PBSs are

promising; nonetheless, plasmonic devices mostly suffer from very high propaga-

tion loss. It is also difficult to fabricate narrow metallic nano-ribbons, required by

several plasmonic structures in a SOI platform. Recently, a PBS with foot-print

as small as 2.4× 2.4µm2 has been reported [34] making the use of inverse design

algorithm [35]. But the design mentioned above [34] has moderately high IL, less

ER (∼ 10 dB), low FWHM (∼ 32 nm), and most importantly, it takes large time

to realize numerically. A few exotic approaches to design a PBS have also been

attempted based on photonic crystal circuits [36], grating couplers [37], and peri-

odic dielectric waveguides [38]. Such designs are novel, albeit, impractical to be

included for on-chip photonic circuits.

Similar to plasmonic waveguides, slots in the waveguide can also provide ex-

traordinary structural birefringence which can facilitate an efficient design of a

PBS. The general convention is to place narrow slots in the middle of the waveg-

uide and enhance the coupling for a particular mode to achieve a compact design.

Designs of PBS based on vertical [39, 40] and horizontal [41, 42] slotted Si-wire

waveguides have already been reported. The effects and advantages of multiple

vertical [43] and horizontal [44] slots are also discussed in the literature. The

modal properties of single core optical waveguide with asymmetric slots in dif-

ferent positions are discussed in [45]. While strong confinement of a particular

mode is possible within a slot, evanescent coupling for the other modes which are

not confined in the slot will be greater. Therefore, introducing slots provides us a

route to achieve very compact optical couplers and PBS. The aforementioned de-

signs are mostly based on either super-mode analysis of two symmetric (geometri-

cally identical) couplers or propagation characteristics of two adjacent asymmetric

(non-identical) couplers. FDTD and super-mode analysis [39, 40] have been used

extensively to analyze such structures; however, the OIM has rarely been used to
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investigate such devices. In the next subsection, we concisely discuss the basic

concepts of the slot-waveguides and their utilities as it is quintessential to proceed

further in this chapter.

At the beginning of this chapter, we have tersely discussed the OIM. Then,

the optimum slot-size and slot-position are numerically predicted for a particular

mode to achieve the highest coupling (κ) between two Si-waveguides using OIM.

Thereafter, we propose an on-chip compact broadband two-core PBS consisting of

a hybrid slot waveguide coupler (both vertical and horizontal slots) [46, 47]. The

Semi-analytical technique, for instance, the variational principle, can be used to

optimize such device geometries in achieving the highest coupling coefficients [48].

Incorporating the optimally placed off-centered slots reduces the coupling length

Lc and the device size by enhancing the coupling coefficient (κ). Not only does our

optimized design have a much smaller footprint compared to the designs reported

in [17, 18], but also, we believe, this general scheme enables us to achieve the

smallest footprint of an optical coupler reported till date with a very low IL. The

practical design of our optical coupler, which contains four S-bends has a sub-

micron coupling length of ∼ 0.9µm with an excess loss (EL) ∼ 0.12 dB for the

TM-mode. In the subsequent section, we elaborate the above-mentioned strategy

[46, 47] to arrive a novel design of a compact (Lc = 1.1µm in the presence of

S-bend) PBS which provides an ER>22.3 dB (TE-mode) at λ = 1.55µm and this

design is also smaller than that reported in [25–34, 39–44]. Parameters (IL, EL,

and ER) essential for performance analysis of the coupler and PBS are defined and

explained in the next sub-section. Finally, we conclude our work discussing the

future scope of fabricating such devices and using them for various applications.

We have used a finite element method (FEM) based full-vectorial mode solver

COMSOL Multiphysics and MATLAB to implement the OIM and verified our

results with the commercially available package, Lumerical FDTD [49].

2.1.1 Performance Indices for the Proposed Devices

We have studied the performance of the coupler and PBS numerically. For a 2×2

optical coupler, if the input power at port 1 is P1 and the output power at the
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coupled (cross) port is P2, then the IL at the cross port can be defined as [22],

IL = 10 log10

(
P1

P2

)
(2.1)

If the output power at the second (bar) output port or the transmission port is

P3 and at the isolated port is P4, then the EL can be defined as,

EL = 10 log10

(
P1

P2 + P3

)
(2.2)

On the other hand, for PBS, the ratio of the output power for TM mode at the

coupled (cross) port and at the through/transmission (bar) port is defined as the

ER for TM mode [29].

2.1.2 Slot Waveguide

Optical waveguides are physical structures which are capable of guiding electro-

magnetic (EM) waves in the optical spectrum (ultra-violet, visible, infra-red) with

a myriad of applications from optical communication, networking, sensing, spec-

troscopy, nonlinear optics to quantum optics [50–54]. Transmission lines and

metallic waveguides become too lossy to guide microwave (0.3 GHz to 300 GHz)

and THz optical signals, respectively. Optical waveguides can be dielectric (glass,

semiconductor, polymer) or plasmonic (dielectric and metal). These waveguides

can broadly be classified into two different categories on the basis of geometrical

structures, e.g. (i) cylindrical waveguides or optical fibers (non-planar), (ii) inte-

grated waveguides with rectangular cross-sections (also known as planar/slab or

rectangular waveguides). There exist other classifications as well, depending upon

the mode propagation such as (i) single-mode, (ii) few-mode, (iii) multi-mode opti-

cal waveguides. These waveguides can also be divided into two different categories

viz. (i) Graded-index, and (ii) step-index, based on the RI distribution from the

core to cladding region. Apart from this, most of the optical waveguides guide light

either by following the principle of total internal reflection (TIR) or by creating

photonic bandgap structures [50, 54] Fig. 2.1 shows various types of cylindrical

optical waveguides. Conventional single mode fibers (SMF) which are broadly
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Figure 2.3: (a) Schematic of a slab waveguide with a slot (cyan region). The quantitive RI-
distribution (not in scale) of the core, clad and the slot is indicated by a dashed blue curve,
overlayed on the waveguide geometry. Modal (quasi-TE) characterization of a 3D rectangular
waveguide with a vertical slot in the middle of the waveguide—(b) 3D plot of normalized intensity,
(c) cross-sectional view of the waveguide and the modal intensity. The direction of the dominant
E-field component is shown by a dotted green arrow, (d) normalized intensity distribution along
with the x-axis.

used in optical communication is shown in Fig. 2.1 (a). Fig 2.1 (b) depicts the

photonic crystal fibers (PCFs) which are widely used in communication as large

mode-area fiber [55], dispersion engineering, frequency conversions [50, 54], etc.

Perspective view and the cross-sectional view of the multi-clad optical fiber [56],

and the capillary optical fiber [57, 58] are shown in Fig. 2.1 (c) and Fig 2.1 (d),

respectively. On the other hand, silicon-on-insulator (SOI) technologies made it

possible to fabricate thousands of tiny optical waveguides with rectangular cross-

sections (as small as a few hundred nanometers squared), on-chip in a compact

fashion. Not only they are vastly used as optical interconnects [3], but also they

are used as highly efficient nonlinear platforms due to their small effective modal

area and modal volume. Different optical waveguides with planar geometry or

rectangular cross-section are shown in Fig. 2.2. Usually, the RI of the core (ncore)

is higher than both the substrate (nsub) and cladding (nclad) regions and guide light

through TIR. However, for ARROW, plasmonic, multi-layer, augmented, and slot
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waveguides, light can be confined and guided through the lower RI medium. In

ARROW, there is an anti-reflecting coating as shown in Fig. 2.2 (IX) to form an

optical bandgap that effectively guides light, minimizing the loss. On the other

hand, slot-waveguides those work on the principle of TIR were discovered serendip-

itously by Almeida et al. [13] in 2003 and proved themselves as the watershed in

optical technologies. In general, the core region of a slot-waveguide is made of

materials with high RI such as Si, Si3N4, Ge, etc. whereas, the slot is filled in with

any of the materials (e.g. air, SiO2, etc.) having relatively lower RI than that of

the core and sometimes even lesser than the core, clad, and the substrate. The

speciality of the slot-waveguide is that the optical field confinement factor (Γ) can

be enhanced significantly similar to the plasmonic (also known as dielectric-metal

hybrid) waveguides, however, with comparatively much lesser propagation loss,

just by using a vertical or horizontal slot inside the waveguide core even though

the RI of the slot is lower than the core. In this chapter, we restrict ourselves

mostly within the discussions on rectangular slot waveguides. Fig. 2.3 (a) shows

the schematic of a slab-waveguide with infinite height. A slot of width 2a is placed

at the center of it. Width of each core region or an individual rail is (b− a). The

RI of the core, cladding, and the slot are ncore, nclad, and nslot, respectively, such

that, ncore > nclad ≥ nslot. In the next paragraph, we derive the expression of the

E-field distribution for the slotted optical planar waveguide structure as given in

Fig. 2.3 (a).

A. Analytical Expression for the Mode Profile

In the case of Fig. 2.3 (a), the RI of the slotted planar waveguide varies along

the x-direction. Therefore, the direction of the electric field should be parallel to

the x-axis. The transverse Ex-component of the fundamental TM-mode can be

found by solving the Helmholtz equation or the time-independent wave equation

for each layer of the slot-waveguide and can be given by,

d2Ex
dx2

+
(
k2

0n
2(x)− β2

)
Ex = 0 (2.3)
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The RI distribution n(x) along with the x-axis is,

n(x) =


nslot, for |x| < a

ncore, for a < |x| < b

nclad, for |x| > b (2.4)

where, β = k0neff ; β, k0 and neff denote the mode propagation constant, free-space

wave-vector, and the effective RI, respectively. One can rewrite Eq. 2.3 as,

d2Ex
dx2

− γ2
slotEx = 0, if |x| < a

d2Ex
dx2

+ γ2
coreEx = 0, if a |x| < b

d2Ex
dx2

− γ2
cladEx = 0, if |x| > b (2.5)

where

γ2
slot = β2 − k2

0n
2
slot

γ2
core = k2

0n
2
core − β2

γ2
clad = β2 − k2

0n
2
clad (2.6)

Eigensolution of the Helmholtz equation yields the effective RI (neff). Ex for the

fundamental TM mode is given by,

Ex(x) =


A1 cosh (γslotx) , for |x| < a

A2 cos (γcore |x|) +B2 sin (γcore |x|) , for a < |x| < b

A3e
−(γclad|x|) for |x| > b (2.7)

where, A1, A2, A3, and B2 are arbitrary constants and can be determined from

the boundary conditions. For TM-mode, the normal component of the electric

displacement vectors should be continuous at the boundaries which demarcate the

clad and the core regions (x = ±b) i.e. n2
cladEx,clad = n2

coreEx,core as well as the core

and the slot regions (x = ±a) i.e. n2
slotEx,slot = n2

coreEx,core. As the nslot < ncore,

we witness a field enhancement in the slot region. In addition, dEx/dx is also
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continuous at the boundaries. These boundary conditions are used to find out the

propagation constant β from the transcendental eigenvalue equation given by Eq.

2.8 which can be solved numerically or graphically.

tan−1

(
n2

coreγclad

n2
cladγcore

)
+ tan−1

(
n2

coreγslot

n2
slotγcore

tanh (γslota)

)
+mπ = γcore (b− a) (2.8)

where m is an integer. The analytical expression of the fundamental mode profile

can be found as,

Ex(x) =



1

n2
slot

cosh (γslotx) , for |x| < a

1

n2
core

cosh (γslota) cos (γcore (|x| − a))

+
1

n2
slot

γslot

γcore

sinh (γslota) sin (γcore (|x| − a)) , for a < |x| < b

1

n2
clad

(
cosh (γslota) cos (γcore (b− a))

+
n2

core

n2
slot

γslot

γcore

sinh (γslota) sin (γcore (b− a))

)
e−γclad(|x|−b),

for |x| > b (2.9)

Here, A is an arbitrary constant. The E-field enhancement in the slot region can

be explained intuitively by the interaction between the two fundamental eigen-

modes of the individual waveguide cores. The E-field remains intense, smooth

and maintains its sharp peak throughout the slot if the slot width (2a) is much

smaller than the characteristics decay length (1/γs) of the EM-field inside the slot

(2a� 1/γslot) [13].

Modal characteristics of a 3D waveguide with finite thickness, a rectangular

cross-section (500 nm×350 nm), and a vertical slot (100 nm×350 nm) at its center

are plotted in Fig. 2.3 (b)–2.3 (d). We use COMSOL Multiphysics to find out

the modes at an operating wavelength, λ = 1.55µm. Note that, the formulations

derived in the previous section are equally compatible for the 3D waveguide struc-

tures except one requires to transform the original RI of the materials to the cor-

responding 2D-projected RI values through the effective index method (EIM) [51]
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before using the same formulations. Also notice that for 3D waveguide structure,

pure transverse modes do not exist. Vertical slots can confine the quasi-TE mode

(dominant Ex component), whereas, horizontal slots can support the quasi-TM

mode (dominant Ey component), respectively [13].

B. Applications of slot waveguide

Slot waveguides are extensively used in sensing and nonlinear frequency conver-

sion due to exceptionally high field confinement factor [16]. Flat dispersion over

a broad wavelength range can be achieved using waveguides with multiple slots

filled in by novel materials [59]. Therefore, such waveguides are advantageous for

supercontinuum generation and frequency-comb generation [59]. Slots, when filled

in by nonlinear organic electro-optic polymers [60, 61] or covered with graphene

layers [62] can be used to build ring modulators with very high tunability [61], and

optical photo-detectors with high sensitivity [63]. On the other hand, the fiber

analogue of the slot waveguides, i.e. capillary optical fibers as shown in Fig. 2.1

(d) also find several interesting applications [57,58].

C. Fabrication and coupling mechanisms

Later in this chapter, we propose a fabrication process-flow of PBS based on hy-

brid slot waveguides which consist of a vertical slot in one of the wires, whereas,

a horizontal slot in the other. Henceforth, it is essential to discuss the conven-

tional procedure to fabricate a single wire waveguide either having a vertical slot

or horizontal slot, so that we can better appreciate the design of the hybrid slot

waveguides [64, 65]. Fig. 2.4 (a) depicts the necessary process flow to fabricate a

void (air) vertical slot while Fig. 2.4 (b) portrays the various steps to fabricate

a horizontal slot filled in by silica. To fabricate a wire waveguide with a single

vertical slot, at first, (i) a silicon wafer is taken and oxidized at 1000–12000C tem-

perature in O2 environment to grow the buried oxide layer (BOX) of thickness

∼3µm for guiding light and electrical isolation. Thereafter, amorphous silicon (a-

Si) is grown to achieve the required waveguide height by plasma enhanced chemical

vapor deposition (PECVD) method. One can also use the commercially available

SOI wafer directly if the waveguide height is standard (i.e. 220 nm or 250 nm) for

single-mode operation at 1.55µm. (ii) After Piranha cleaning, a negative e-beam
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Figure 2.4: Standard CMOS fabrication process of wire-waveguide with (a) a single vertical
air-slot, and (b) a single horizontal silica slot.

resist (e.g. ma-N 2400) is spin-coated on the prepared sample. (iii) e-beam lithog-

raphy is performed to pattern the resist; the sample is developed (HF/CHF3-O2),

and reactive-ion etching (RIE) is performed to extricate the waveguide pattern as

shown in step (v) of Fig. 2.4 (a). Finally, the negative e-beam resist is stripped off
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to obtain the vertically slotted wire-waveguide. Protective cladding layer (PMMA

glass or silica) can be formed on top of the waveguide following the standard pro-

cess [65]. To fabricate the horizontal silica slot, we need to grow an extra PECVD

layer of silica as per the required height of the slot. For Si3N4 slot, low-pressure

chemical vapor deposition (LPCVD) can also be used [65, 66]. Rest of the fabri-

cation steps are mostly similar to that of the vertical slot. Note that, in general,

the loss of the PECVD a-Si layer is higher (6-7 dB/cm) than the crystalline Si

(2-3 dB/cm). Normally, obtaining a broadband coupling mechanism from strip to

slot-waveguide or from fiber to slot with negligible loss is not straightforward and

requires tremendous efforts [67, 68]. Note that, slot can be adiabatically tapered

out from a strip waveguide at the inputs and outputs to achieve coupling losses

comparable to that of the strip waveguide as demonstrated in the reference [67].

Coupling efficiency as high as 97% and overall coupling loss as low as 0.15 dB are

achieved till date by embedding symmetrically tapered nano-wires, and asymmet-

ric rails, respectively [69, 70] within an effective strip-to-slot conversion length of

only 10µm.

2.1.3 Optical Couplers: Theory and Computations

Two dielectric optical waveguides start exchanging energy when they are brought

close to each other, as shown in Fig. 2.5 (a). Such coupled system can be treated

mathematically through coupled mode equations [51, 71]. Let us consider, β1

(κ11), and β2 (κ22) are the propagation constants (self-coupling coefficients) of

waveguide-I (W-I), and waveguide-II (W-II), respectively, while κ12 and κ21 are

the mutual coupling coefficients from W-II to W-I, and vice versa. The general

expressions for two weakly coupled modes having mode-amplitudes a and b with

implicit time-dependence (exp (iωt)) can be written as [51,71],

da

dz
= −i (β1 + κ11) a− iκ12b

db

dz
= −iκ21a− i (β2 + κ22) b (2.10)

When two guides are identical as shown in Fig. 2.5 (a), the coupling coefficients,

κ12 and κ21 will be the same, i.e. |κ12| = |κ21| = |κ|. κ can be obtained directly
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Figure 2.5: Cross-sectional geometry and corresponding E-field distributions for TM odd-
supermode in (a) two identical waveguides, (b) two non-identical waveguides. For non-identical
waveguides the two lobes of the odd-supermode are asymmetric (case-(b)).

from the supermode analysis (even: a = b, odd: a = −b) by,

κ =
βe − βo

2
(2.11)

The method to calculate the propagation constants of even (βe) and odd (βo) su-

permodes from any commercially available software is straightforward. However,

when adjacent waveguides are not geometrically identical, then the symmetry be-

tween the waveguides breaks down. Due to the asymmetry, coupling coefficients,

κ12 6= κ21; rather, κ12 and κ21 may differ considerably [72]. Electric field distri-

butions of the fundamental TM obtained from FEM are displayed in both the

cases—Figs. 2.5 (a) conventional coupler, (b) non-identical waveguide coupler.

The vertical slot in the W-I, as seen in Fig. 2.5 (b), breaks the structural symme-

try. Though for non-identical coupler the coupling coefficient κ can be found from

Eq. 2.11, it is also important to find out individual coupling coefficients, κ12 and

κ21 to understand and describe the complete behavior of the coupler. For couplers

consisting of non-identical waveguides, where the individual coupling coefficients

κ12 and κ21 are different, the coupling coefficient κ is defined as [51],

κ =
√
κ12.κ21 (2.12)
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The self (p = q) and mutual (p 6= q) coupling coefficients, κpq can be approximated

by coupled mode theory and can be given as Eq. 2.13.

κpq =

ωε0

∞∫
−∞

∞∫
−∞

(N2 −N2
q )E∗pEqdxdy

∞∫
−∞

∞∫
−∞

uz.(E∗p ×Hp + Ep ×H∗p)dxdy

(2.13)

Subscript p and q can either be 1 or 2. N denotes the overall combined RI

distribution when both the wires are present. uz is the unit vector along the

propagation direction (z-axis). To obtain κ12 and κ21 for any geometrically non-

identical coupled structures, we have used FEM mode solver to implement OIM.

Rectangular waveguides support quasi-TE and quasi-TM modes. In quasi-TE and

TM modes, the Ez and Hz field components are nonzero and significant. From

the FEM solver, we extract the field components Ex, Ey, Ez, and the propagation

constant for a particular mode of each waveguide individually. Thenceforth, we

evaluate the overlap integral of Eq. 2.13 by employing 2D Simpson’s 1/3rd rule

in MATLAB to compute the κ12 and κ21. The advantage of using OIM is that

the OIM yields the values of κ12 and κ21 directly, which in turn renders κ and the

coupling length, Lc. The coupled power in the second waveguide, PII at a distant

z from the input can be calculated with the help of analytical relation 2.14 derived

by solving the coupled amplitude equations.

PII = F sin2(qz); where, F =

(
κ

q

)2

=

[
1 +

(
δ

κ

)2
]−1

(2.14)

PII depends upon the power coupling efficiency F and the effective coupling co-

efficient q; F and q account for mutual coupling coefficient (κ) and the phase

propagation mismatch (δ) between the two waveguides [51]. For coupler consist-

ing of non-identical waveguides, the δ will no longer be zero.

To validate the OIM in such strongly coupled systems, we have exploited su-

permode analysis and Lumerical 3D-FDTD and compared our results with the

OIM. These methods are applied to three different coupler configurations consist-

ing of (i) two identical waveguides, (ii) one rectangular waveguide and one circular
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(a) (b)

(c)

Figure 2.6: Comparison of the coupling coefficients, κ (between parallel wires) with different
gap lengths for (a) two identical rectangular waveguides, (b) one circular and a rectangular
waveguide, (c) a hybrid-slot waveguide coupler configuration. Three different methods (Super-
mode, FDTD and OIM) to calculate κ have been used.

waveguide and (iii) two non-identical waveguides, possessing vertical and horizon-

tal slots, as depicted in the insets of Figs. 2.6 (a), 2.6 (b) and 2.6 (c), respectively.

For all three cases, the waveguides are parallel, and the core is made of Si. Fused

silica and air are used as substrate and cladding, respectively. Simulations for all

the results shown in Fig. 2.6, are carried out at wavelength λ = 1.55µm and the

RIs of Si, silica and air are taken as 3.477, 1.445 and 1, respectively. The dimension

of the rectangular waveguide is chosen as 400 nm×350 nm. For configuration (ii),

the diameter of the circular waveguide is 350 nm. The coupling coefficients as a

function of gap separation (g) for the TM-mode of three different configurations are

plotted in Figs. 2.6 (a), 2.6 (b) and 2.6 (c). For configuration (iii), the vertical air-

slot as shown in Fig. 2.6 (c) is 50 nm wide and 50 nm shifted to the left (i.e. away
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from W-II), whereas the horizontal slot (25 nm thick) in the W-II is comprised of

silica, and is placed 75.5 nm below from the top. For the first two cases, OIM finds

very good agreement with supermode analysis and 3D FDTD method. For the

third case, it can be seen from the inset that, when the gap between the adjacent

waveguide is <50 nm (for κ > 7.6× 105 m−1, Lc < 2µm comparable to operating

wavelength, λ = 1.55µm), the interaction between the modes becomes extremely

strong; consequently, the results obtained from the OIM and supermode analysis

start to mismatch. For example, if g = 25 nm (inset), κ(Supermode) ∼ 9 × 105 m−1

(Lc ∼ 1.726µm) and κ(OIM) ∼ 9.6 × 105 m−1 (Lc ∼ 1.636µm) and they differ to

each other significantly (5.5%). Still, in our case, OIM is applicable as we have

used OIM only to optimize the slot and predict the approximate device size. Once

we obtain the necessary parameters from OIM, we run 3D FDTD for further opti-

mization of device size including the S-bends, which saves a lot of time. Hence, our

semi-analytic approach is not only much faster than the 3D FDTD method but

also fairly accurate to adopt and can be implemented to design the ultra-compact

couplers and polarization beam splitters.

2.2 Design of Ultra-compact Directional Cou-

plers

To design the ultra-compact DC numerically, we begin with the DC consisting of

parallel silicon wires. Each wire is comprised of an off-centric groove or slot. The

schematic cross-section and the perspective view of this initial DC are sketched

in Figs. 2.7 (a) and 2.7 (b), respectively. The dimension of each Si-wire is chosen

arbitrarily as 400 nm×350 nm. The cladding is air and silica is used as a substrate.

The slot width and height of the first waveguide are denoted by wslot1 and hslot1,

respectively, while, wslot2 and hslot2 are the slot width and height of the second

waveguide. The symbols O and O’ represent the center of the waveguides W-

I and W-II, respectively, whereas, A and B indicate the location of the slot or

groove, respectively, as shown in Fig. 2.7. Lateral shift (O-A) of the vertical slot in

W-I is denoted by xslot1, whereas, the lateral shift (O’-B) in the second waveguide,

W-II is denoted by xslot2.
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Figure 2.7: (a) Schematic cross-section of two non-identical Si-wire waveguides with grooves
in it, (b) 3-D perspective view.

2.2.1 Design Recipe: Optimization of the Coupling Coef-

ficient

It is known that the quasi-TE mode is well confined within a vertical slot [13] of a

Si-wire waveguide, while the quasi-TM mode shows greater evanescent extent into

the cladding which would facilitate greater coupling. This suggests that Si-wires

with vertical slots can be used to design ultra-compact switches or couplers when

operating in the TM-mode. Note that, the low-index air-slot in the wire waveguide

reduces the effective index neff of the TM-mode, affecting the guiding property of

the waveguide for TM-mode which deteriorates as the slot-size increases. The aim

is to increase the evanescent coupling using suitable slots placed at proper positions

while keeping the guiding property of the waveguide nearly unaffected. We select

the slot-size and position to ensure that neff > 2 for the TM-mode that permits

to neglect the propagation losses at bends. We discard the other possibilities

even if the coupling coefficients for those cases are larger. This scheme should

be valid for waveguides with any cross-section. Moreover, decreasing the width

of the waveguide increases the coupling coefficient. In optimizing the groove/slot

size and position at operating wavelength λ = 1.55µm, at first a 25 nm×25 nm

groove/slot is placed at the center of the W-I, while the W-II has no slot in it. Note

that, the wire width is fixed to 400 nm as a trade-off between propagation losses

and evanescent coupling. The coupling coefficients κ12 and κ21 for quasi-TM mode
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(a)

(b)

Figure 2.8: Variations of κ12 and κ21 as a function of (a) hslot1, and (b) wslot1 for non-identical
Si-waveguide couplers as shown in figure 2.7.

are plotted by varying the height of the slot, hslot1 from 25 nm to 350 nm, as shown

in Fig. 2.8 (a) for two different waveguide separations, g = 50 nm and 100 nm. It

is evident that the maximum coupling (κ12 and κ21) can be attained when the slot

height is equal to the wire height, i.e. 350 nm. This numerical process sets the

slot height to 350 nm for the rest of the calculations. The slot width is increased

from 25 nm to 200 nm, i.e. half of the width of the waveguide at two different gap

values. It is observed from Fig. 2.8 (b) that the coupling coefficients are largest

for wslot1 ranging in between 50 nm to 100 nm. However, for wslot1 > 50 nm, the

effective index neff1 becomes smaller than 2.0 and the loss becomes high. In order

to maintain moderate confinement and large coupling coefficient values, we fix the

slot width at 50 nm.
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Instead of varying a single parameter, either hslot1 or wslot1 while keeping the

other parameter constant, we have also varied both hslot1 and wslot1 simultaneously,

and obtain the coupling coefficients κ12 and κ21. This design parameter space is

shown in Figs. 2.9 (a) and 2.9 (b) where color bar shows the magnitude of κ12 and

κ21, divided by a factor 105. The dashed curve indicates the values of hslot1 and

wslot1 for which neff1 = 2 and divides the map into two regions; neff1 < 2 (upper

region) and neff1 > 2 (lower region). Again, one has to choose hslot1 and wslot1

simultaneously within the red-shaded area under the blue dashed curve in such

a way that κ12 will be the largest while the effective index of the mode in the

first waveguide; neff1 > 2 in order to have a balance between greater coupling and

admissible propagation loss. Based on this analysis, we choose hslot1 = 350 nm and

wslot1 = 50 nm. Next, we optimize the slot-position by shifting the slot gradually

from, xslot1 = −150 nm to xslot1 = +150 nm, with respect to the center. Figure 2.10

(a) shows the variation of coupling coefficients for a quasi-TM mode with respect

to the lateral shift in the slot-position of W-I. When the slot is moved to the left

in W-I (xslot1 = −50 nm), the electric field is pushed towards W-II, enhancing

the evanescent coupling. We have corroborated the same findings by adopting a

multivariate approach where we observe κ12 by changing three parameters hslot1,

wslot1, and xslot1, simultaneously. The scatter plot for κ12, is shown in Fig. 2.10

(b), which confirms that when xslot1 is −50 nm, the coupling coefficient is the

highest. The scatter plot as displayed in Fig. 2.10 (c) for neff1 helps to determine

the allowed values of hslot1, wslot1 and xslot1 for which neff1 > 2.

In Fig. 2.11, we show the mechanical analogue that leads intuitively to the

final design of our ultra-compact directional coupler. If two balloons kept side-

by-side are pressed away from their corresponding centers, as shown in Fig. 2.11,

they inflate towards each other. This surprisingly simple and candid example can

be correlated easily to our design recipe. For g = 50 nm, a coupling coefficient of

κ12 = 7.22 × 105 m−1 is obtained when the slot is placed at an optimal position,

whereas, κ12 is only 5.22 × 105 m−1 without any slot. This situation is depicted

in Fig. 2.12 (a). Although this scheme will enhance the coupling coefficient to

its optimum value, but according to Eq. 2.14 the power coupling efficiency will

be less due to strong phase mismatch between the two waveguides. Therefore, to

enhance the power coupling efficiency, we make similar changes in W-II, as shown
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(a)

(b)

Figure 2.9: Two dimensional design parameter space of a slot based coupler for a quasi-TM
mode, (a) κ12(×10−5) and (b) κ21(×10−5). The dashed curve (neff1 = 2) indicates the values
of wslot1 and hslot1 for which neff1 = 2. It is preferred to opt parameters from region where
neff1 ≥ 2 to have balance between the greater coupling and low propagation loss.

in Fig. 2.12 (b). Previously, W-II has no slot in it. Presence of a similar slot in

W-II nullifies the phase mismatch and further enhances the κ12(= 9.1× 105 m−1)

because the modal field of the second waveguide is also pushed towards the W-I

due to the off-centered slot in the second waveguide. These can be seen from Figs.

2.12 (c)−2.12 (f). Slots in the middle force the electric field to disperse in both

the directions while optimized slots push the mode field only towards the opposite

waveguide. This is indicated by the arrows in Figs. 2.12 (e) and 2.12 (f).

Finally, the optimized parameters to realize ultra-compact DC are: hslot1 =
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(a)

(b) (c)

Figure 2.10: (a) Variation of coupling coefficients (κ12 and κ21) as a function of lateral shift
(xslot1) for two different gaps (g-s), and scatter plot for (b) κ12 and (b) neff1 with respect to the
simultaneous variation in hslot1, wslot1, and xslot1.

Table 2.1: Enhancement of coupling coefficients with slot positions

Gap
(nm)

κ (m−1) with
no slot

κ (m−1) with slots in
the middle (%)

κ (m−1) with
optimized slots (%)

50 5.22×105 7.63692×105 (46.3%) 9.15×105 (75.28%)
100 3.1827×105 5.0368×105 (58.23%) 5.997×105 (88.42%)
200 1.2078×105 2.221×105 (83%) 2.6037×105 (115.57%)
300 0.4656×105 0.992×105 (113.04%) 1.138×105 (144.4%)
400 0.182×105 0.45×105 (147.2%) 0.5056×105 (177.76%)

hslot2 = 350 nm, wslot1 = wslot2 = 50 nm and xslot2 = (−xslot1) = 50 nm (shifted

away from each other). This coupler structure (Fig. 2.12 (b)), where slot waveg-
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Figure 2.11: Mechanical analogue of the off-shifted slot waveguides which enhances the cou-
pling coefficient. Two adjacent balloons inflate towards each other when mechanical pressure is
induced to the balloons at points A and B which are away from each other with respect to the
corresponding balloon-centers O and O’, respectively.

uides are separated with a gap of 100 nm, can enhance the coupling coefficient by

88%, as demonstrated in Fig. 2.13 (a) in comparison to the coupling without any

slot in the waveguides. Following similar design procedure, it might be possible

to realize even smaller coupling length (Lc < 1.73µm) by reducing the wire width

below 400 nm. However, we restrict the design to the wire width ≥ 400 nm as

smaller widths may lead to higher propagation losses for quasi-TM mode. The

schematic 3D perspective-view of the final design is shown in Fig. 2.13 (b). The

results obtained from OIM are verified by 3D-FDTD method and are shown in

Figs. 2.13 (c) and (d). The κ-values for different scenarios (i.e., no slot, centrally

placed slots with an appropriate size, and optimized slots), are computed and

tabulated in Table 2.1. For, g = 100 nm, slots with optimum size can enhance

the coupling by 58% but a slot with both optimal size and position can further

increase the coupling up to 88%. It is noticed that with the increase in gap, the

enhancement in κ with optimized slot increases. This analysis proves that shifting

the slots from the center of the waveguide leads to a significant advancement for

realizing ultra-compact devices such as optical couplers and PBS.

To summarize, we have achieved coupling lengths as small as 1.73µm, 2.61µm

and 13.8µm when the gaps between two waveguides are 50 nm, 100 nm and 300 nm,

respectively, using Si-wire waveguides with a moderately large core (400 nm×350 nm).

This design scheme can be used to realize fabrication tolerant devices. As an ex-

ample, similar κ (5.22×105 m−1) can be achieved for a larger gap of ∼ 120 nm
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Figure 2.12: (a) Non-identical waveguide structures for optimized coupling, (b) symmetric
cross-section for optimized coupling as well as maximum power coupling efficiency, Normalized
electric field profile for the coupler for (c) TE even supermode, (d) TE odd supermode, (e) TM
even supermode, (f) TM odd supermode.

when the slots are in optimized positions in comparison to the coupler structure

where the gap is 50 nm. This relaxes the stringent requirement on the gap width

and provides relative fabrication ease.

2.2.2 Practical Design Considerations

Most of the CMOS compatible wire waveguides have typical cross-sections of

(500 nm×500 nm), (500 nm×250 nm) or (500 nm×220 nm). Waveguide with cross-
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Figure 2.13: (a) κ12 for TE and TM modes when there is no slot, single slot in each waveg-
uide at the center and single slot in each waveguide at the optimized position, (b) schematic
(perspective-view) of the proposed ultra-compact optical coupler with S-bends. The FDTD gen-
erated electric field snapshots for parallel waveguides with (c) optimized slots, and (d) with no
slot.

section 500 nm×500 nm has well-defined quasi-TE and TM modes, whereas, if the

waveguide height is less, between 200 nm–250 nm, the quasi-TM mode becomes

less confined with a mode-field discontinuity at the vertical side-walls [73]. More-

over, while fabricating, it is difficult to obtain perfect vertical side-walls as shown

in Fig. 2.14 (a). Generally, in practice, side-walls become slanted with an angle θ

with vertical axes where θ lies typically between 0-100 [74] mainly depending upon

the resist used and the etching recipe. In Figs. 2.14 (a) and 2.14 (b), waveguide

cross-sections with vertical and slanted waveguide side-walls are shown. We have

taken θ = 50 in our simulations to emulate the practical situations.

For H = 500 nm, the maximum coupling can be obtained, keeping the loss

within the desired limit (with S-bend < 0.2 dB) with hslot = 500 nm, wslot =

130 nm, and xslot = 85 nm. For wslot > 130 nm, coupling coefficient is improved
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(a) (b)

Figure 2.14: (a) Waveguide cross-section with vertical side-walls. Waveguide height (H) can
typically be 500 nm, 250 nm, and 220 nm. (b) Waveguide cross-section with slanted wall.

further; however, the propagation loss increases considerably. For H = 500 nm

the coupling coefficients between two parallel wires (in the absence of S-bend)

without slot, slot in the middle of the wire and optimized slot are listed for 50 nm

gap in Table 2.2. Interestingly, when the wall is slanted, the effective gap between

the two wires reduces, which further increases the coupling coefficient. The same

design parameters are also valid (hslot = H, wslot = 130 nm, xslot = 85 nm) for the

waveguide with H = 250 nm or 220 nm; nevertheless, the propagation losses for

TM mode will be much higher in those cases. Similarly, off-centered horizontal

slots can be used to make compact couplers which will operate in the TE-mode.

Horizontal slots can be fabricated using PECVD process as discussed later in this

chapter.

Table 2.2: neff , κ, Lc and % enhancement of κ for practical designs

Slot position
(waveguide-wall)

neff κ (m−1) Lc (µm)
Percentage (%)

enhancement of κ
No slot (vertical) 2.90529 2.45×105 6.42 100%
Middle (vertical) 2.37974 6.295×105 2.495 156.94%

Optimized (vertical) 2.57078 8.12×105 1.93 231.43%
Optimized (slanted) 2.70096 8.283×105 1.896 238.08%
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Figure 2.15: (a) Dimension of each section (coupling region and S-bend) of the proposed
optical coupler (top-view), (b) Power distribution in the coupler for TM-mode obtained from
3-D FDTD simulation.

2.2.3 Effect of S-bends

In practice, to decouple the input and output from each other, transition regions

called S-bends are essential. S-bends increase the EL of the structure through

the bends. However, it reduces the effective coupling length, Lc of the coupler as

the optical power not only couples to the other waveguide through the parallel

portion of the coupler, but also couples through the S-bends at the portions where

the gap between the coupling arms is relatively smaller. Finally, we obtain Lc as

small as 0.9µm with an overall EL∼0.12 dB and rejection ratio of 18 dB for the

TM mode through 3D-FDTD simulations with a cross-section of 500 nm×500 nm.

Figure 2.15 (a) shows the optimized dimensions and positions of coupling region,

S-bends, and the air-slots. The power distribution throughout the coupler for TM

mode is plotted in Fig. 2.15 (b). Note that, in the previous section for two parallel

wires we have considered only the predicted (by OIM) values of wslot, hslot and xslot

when neff ≥ 2. For practical design, we start with the predicted values of wslot,

hslot and xslot obtained from OIM and further optimize those parameters through

FDTD in presence of S-bends and input/output arms. Ultimately, the parameters

for which the excess loss is the minimum will be finalized.
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2.3 Design of Ultra-Compact Broadband PBS

In this section, we describe the design recipe of an ultra-compact and broadband

on-chip PBS, operating at communication wavelength, λ = 1.55µm. The afore-

mentioned ultra-compact DC with 50 nm gap cannot be used as an efficient PBS.

Due to existence of symmetry in the structure of the parallel wires (of cross-section

400 nm×350 nm), the κ12 for quasi-TM mode is 9.1×105 m−1 and κ12 for TE-like

mode is 7.4815×105 m−1 a ratio (κ12−TM/κ12−TE) of only ∼ 1.216. The effective

indices of the first and second waveguides (neff1 and neff2) are also the same for

both quasi-TE and quasi-TM modes. For quasi-TM mode neff1 = neff2 = 2.1282

whereas for quasi-TE mode, neff1 and neff2 are 1.5388. A similar effective in-

dex of the guided modes limit us to obtain an ER of ∼0.5 dB with a device size

of Lc(= 1.73µm). This suggests the exploration of a suitable longer device to

achieve a greater ER and affects the device’s ultimate effective fingerprint when

used as a PBS instead of an optical coupler.

To overcome these difficulties, we propose a novel design of an on-chip compact

PBS. The cross-sectional view of the proposed PBS is shown in Fig. 2.16 (a). A

horizontal silica slot of thickness 25 nm is placed in the W-II. The structure of W-I

having optimized vertical slot (wslot1 = 50 nm, hslot1 = 350 nm, xslot1 = −50 nm) is

kept unaltered. Location of the horizontal slot, yslot2 in the W-II is to be selected

in such a way that it can reduce the phase mismatch by making neff2 equal to

neff1(= 2.1282) for TM mode at λ = 1.55µm. For TE mode, neff of W-I and

W-II should be different. Figure 2.16 (b) plots the variation of effective RI of

the guided modes (both TE and TM). It is found that for two distinct values

of yslot2 = 75.5 nm and 289.5 nm, it is possible to realize the desired condition,

neff2 = neff1. Hence, for this particular design (wslot1 = 50 nm, hslot1 = 350 nm,

xslot1 = −50 nm; wslot2 = 400 nm, hslot2 = 25 nm, yslot2 = 75.5 nm), neff1−TM =

neff2−TM = 2.128197, neff1−TE = 2.383632 and neff2−TE = 1.538781. From OIM,

it is found that for g = 50 nm, the κ12 for quasi-TM and TE modes at λ =

1.55µm, is 7.845×105 m−1 and 5.3538×104 m−1, respectively, with a coupling

ratio (κ12−TM/κ12−TE) of ∼14.69. Note that, neff1 = neff2 for TM-mode, but for

the TE-mode, neff1(1.5388) < neff2(2.383632), which gives rise to a large phase

mismatch for the TE-mode.
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(a)

(b)

Figure 2.16: (a) Schematic cross-section of the proposed PBS, (b) phase matching diagram
and the choice of yslot2.

2.3.1 Input Criteria

As discussed above, the optical input must be fed to the second waveguide of

the proposed PBS for the device to function efficiently, this is due to the struc-

tural asymmetry between two adjacent waveguides. The computed coupling coef-

ficients, κ12−TM, κ21−TM, κ12−TE and κ21−TE are ∼7.845×105 m−1, 7.21×105 m−1,

5.354×104 m−1 and 7.8543×105 m−1, respectively. In such case, the coupling ra-

tio κ12−TM/κ12−TE(= 14.69) and κ21−TM/κ21−TE(= 0.9178) differs from each other

considerably. These calculations suggest that the input must be fed into W-II to

achieve the desired performances. Note that, we have carried out FDTD simula-
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(a) (b)

Figure 2.17: Polarization splitting behavior is demonstrated by the snapshots of electric field
distributions in two parallel waveguides with hybrid slots at an operating wavelength of 1550 nm.
Electric field distribution when (a) TM input is applied at the second waveguide (W-II) and (b)
TE-mode is applied at the second waveguide, W-II.

tions and FDTD results (Figs. 2.17 (a) and 2.17 (b)) are in good agreement with

our calculated values of Lc for two parallel waveguides from OIM. The aforemen-

tioned input criteria based on OIM are also confirmed through 3D-FDTD. From

Figs. 2.17 (a) and 2.17 (b), it is observed that, for parallel wires, when an optical

input is given to W-II (with the horizontal slot), the TM-mode couples to the

W-I with a coupling length Lc ∼ 2µm, whereas for the TE-mode a weak coupling

takes place from W-II to W-I that leads to a much larger Lc.

2.3.2 Practical Design Considerations: Effects of S-bends

The practical design of a PBS must contain transition regions (S-bends) along with

its parallel coupling region. The proposed waveguide configuration is displayed in

Fig. 2.18 (a). FDTD simulations (Figs. 2.18 (b) and 2.18 (c)) suggest that the

S-bends further reduce the effective coupling length from 2µm to ∼ 1.1µm due to

the partial coupling through the transition region. The length of the S-bend, SL is

taken as 2.5µm. Keeping the cross-section intact as in previous section, with this

structure, it is possible to achieve an ER>22.3 dB for TE-mode and ∼13 dB for

TM-mode within a very compact device size when the input is applied to the W-

II. The insertion losses for the TE mode and TM mode are respectively, 0.008 dB

and 0.055 dB, negligibly small values at the coupler section. The EL is always

below 0.2 dB. Since the waveguide structure is not symmetric, ER for TE and TM
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(a)

(b) (c)

Figure 2.18: (a) Perspective view of the proposed PBS with hybrid slots and S-bends. Snap-
shots of the electric field distribution through the PBS for (b) TM mode, (c) TE Mode, when
both the inputs are applied to the W-II.

modes differ considerably. The spectral variation of ER and IL for TE and TM

modes is depicted in Figs. 2.19 (a) and 2.19 (b). The FWHM for the TE-mode

is greater than 100 nm which covers the entire C band as well as some portions of

the S and L bands. The 3-dB bandwidth for the TM-mode is 78 nm and covers

the entire C-band and a part of the L band. We have also optimized the PBS

for the wire cross-section, 500 nm×500 nm. For this cross-section the optimized

parameters are: wslot1 = 130 nm, hslot1 = 500 nm, xslot1 = 85 nm, wslot2 = 500 nm,

hslot2 = 50 nm and yslot2 = 139.5 nm from the top. The effective coupling length,

Lc in presence of S-bends is 1.7µm for the best performance.
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(a) (b)

Figure 2.19: IL and ER for fundamental quasi- (a) TM mode, (b) TE modes. FWHM>100 nm
for TE mode, whereas, FWHM is 78 nm for quasi-TM mode.

2.3.3 Proposed Fabrication Scheme and Fabrication Tol-

erance

Recent advancements in SOI technology enable the fabrication of nanophotonic

structures with very narrow slots in Si-waveguides. A vertical air-slot with a width

of only 30 nm [75] and a horizontal silica slot with a height as small as 17 nm [76]

have already been realized with current state-of-the-art fabrication techniques.

Fabrication of cross-slot waveguides with narrow vertical slot and sub-wavelength

horizontal slot has been demonstrated in [77]. We propose a scheme to fabricate a

vertical air-slot in one waveguide along with a horizontal silica slot in the adjacent

waveguide simultaneously as shown in Fig. 2.18 (a). The recipe to create a vertical

slot in one waveguide in addition to a horizontal slot in the other waveguide might

not seem straightforward at a first glance. Hence, we briefly discuss on a possible

process flow to make such a device in a CMOS compatible fashion. A schematic,

including the step by step procedure of the proposed fabrication flow, is given in

Fig. 2.20 for clarity.

Initially, a bare Si wafer is thermally oxidized to grow a few-micron-thick layer

of buried oxide. A 262 nm thick layer of amorphous Si (a-Si) is deposited on

the oxidized wafer by PECVD. Note that, a-Si has recently been shown to have

relatively low linear and nonlinear loss in the 1.55µm wavelength [78,79]. Next, a

SiO2 layer is deposited through PECVD on the top of a-Si. This silica layer will
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Figure 2.20: Lithography process flow. (a) Begin with Si wafer. (b) Thermally grow oxide,
deposit ∼ 262 nm thick PECVD amorphous Si layer (a-Si), deposit ∼25 nm thick PECVD SiO2

layer (c) Spin-coat resist, (d) Pattern the resist by EBL, (e) RIE etch oxide, (f) Strip resist, (g)
Deposit a-Si layer of desired thickness (> 75 nm) by PECVD all over the whole platform (h)
CMP is used to flatten the top of the a-Si, (i) Spin-coat resist (j) Create pattern by EBL, (k)
Etch Si (l) Strip resist.

act as the horizontal slot. Resist is grown on the silica layer by spin-coating. The

resist is patterned with EBL to define the W-II. After spin coating and patterning

the resist by EBL, the oxide layer is RIE-etched as shown in Fig. 2.20 (e). Then

we strip off the resist. Again, a-Si of desired thickness (more than 75 nm in this

case) is deposited through PECVD all over the platform as shown in the Fig. 2.20

(g). However, the final heights of the W-I and W-II are required to be the same.

Hence, chemical-mechanical planarization (CMP) is being used to flatten the top

of the a-Si as shown in Fig. 2.20 (h). Instead of CMP one may also use shadow-

mask or ashable hard mask to deposit PECVD a-Si, selectively until the height of

the a-Si becomes the same everywhere. After flattening the top, the vertical slot

is defined by patterning the spin-coated resist through EBL. The two EBL steps

need to be aligned fairly accurately, making the process slightly challenging, but

still within the reach of current technology. Finally, the a-Si is plasma etched and
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the resist is removed. In the previous section we have discussed an ultra-short

coupler. For the coupler consisting of two adjacent vertically slotted waveguides,

as shown in Figs. 2.12 (b) and 2.12 (d), the process flow will be relatively easier.

As we do not need to fabricate the horizontal slot, we can start with a standard

SOI wafer and the two waveguides with asymmetric vertical slots can be patterned

using EBL.

We finally carry out the fabrication tolerance analysis of our PBS design, op-

erating at 1.55µm, by analyzing the effect of variation in horizontal slot height

and position. We have noted the changes in ER and IL of both the modes TE

and TM for the PBS structure (wslot1 = 50 nm, wslot2 = 400 nm, hslot1 = 350 nm,

hslot2 = 25 nm, xslot1 = −50 nm and yslot2 = 75.5 nm), when either of the param-

eters hslot2 or yslot2 is varied within ±20%. Figure 2.21 demonstrates how the IL

and ER of TM and TE modes deviate with ±20% alteration in slot-height and

slot-position. The solid curves in Fig. 2.21 (a) depict the impact of slot-position,

whereas the dashed curves correspond to slot-height. It is evident that a variation

in slot height and slot position in W-II does not affect TE mode characteristics,

however for TM mode the IL slightly increases and remains < 0.1 dB for shift in

hslot2 and > 0.5 dB when the yslot2 is decreased significantly.

On the other hand, the ER for the TM mode, as shown in Fig. 2.19 (b), is not

affected by the change in hslot2, and it decreases by less than 2 dB in magnitude

for variation in the slot-position. It is further seen that for the TE mode, the

ER remains nearly the same irrespective of the change in slot-height, hslot2, but

is degraded by almost 5 dB in magnitude for +20% deviations in slot-position,

yslot2. We have further extended the tolerance analysis over 100 nm wavelength

band (1500 nm–1600 nm). Numerical simulations reveal that ±20% variation in

the hslot2 and yslot2 for TE mode propagation in the designed PBS does not experi-

ence any change in the IL over 100 nm wavelength band, however for the TM mode,

the IL increases slightly but remains well below 0.5 dB for the entire wavelength

range considered. We have noticed that the ER for TM and TE modes changes

moderately for deviation in hslot2 whereas it decreases by almost 5 dB at shorter

wavelengths (< 1.55µm) for deviations of ±20% within yslot2 for both the modes.

For wavelengths greater than 1.55µm, the ER decreases significantly for the TM

mode whereas fewer changes are expected for the TE mode. In order to attain
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(a)

(b)

Figure 2.21: Fabrication tolerance analysis. Fluctuations in (a) IL and (b) ER with the
variation in hslot2 and yslot2 for the proposed design of PBS operating at λ = 1.55µm.

phase matching for the TM mode in both the waveguides (with vertical and hori-

zontal slot), it is recommended to choose hslot2 and yslot2 appropriately. Note that,

neff2 decreases with increasing slot height hslot2. In order to maintain neff2 = neff1,

one has to select a material of RI higher than silica for the horizontal slot in case

a design with hslot2 > 25 nm is desired. Initial simulation results suggest that it

is possible to choose hslot2 > 25 nm (e.g. 40 nm–50 nm) if the horizontal slot is

comprised of a different material with RI>silica (nsilica ∼ 1.445) at λ = 1.55µm.

An appropriate choice of such a material might be silicon nitride which is CMOS

compatible with negligible nonlinear absorption as an added advantage [80]. The

higher slot-width in W-II (hslot2) would facilitate the fabrication of the designed

PBS. Currently, we are investigating such on-chip PBS designs based on silicon

nitride slots.
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2.4 Summary and Conclusion

To summarize, we have numerically evaluated the coupling coefficient through

OIM after deducing the electric fields from the FEM based mode solver. OIM en-

ables us to find the coupling coefficient between any two arbitrary shaped waveg-

uides comprised of any material. An ultra-compact optical coupler and PBS design

have been proposed by optimizing the slot-size and position to maximize the cou-

pling between the waveguides for a particular mode. It is shown that, off-centered

slots enhance the coupling coefficient significantly compared to waveguides with

no slots in it and waveguides with conventional slots (at center positions). We be-

lieve, introducing off-centered slots is an important step towards achieving ultra-

compact photonic devices. The designed PBS which has a very low footprint of

Lc ∼ 1.1µm, exhibits a high ER, a broad 3-dB bandwidth and very low IL at an

operating wavelength of 1.55µm. It might be possible to fabricate such complex

devices with the combination of both the vertical and horizontal slots, and to

make a justice, fabrication scheme has been put forward. The tolerance analysis

provides us the flexibility in design and indicates the robustness of the device to

the fabrication variations. All the results are confirmed by 3D-FDTD simulations.
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C H A P T E R 3

Non-concentric Microring

Resonators

This chapter focuses on the linear characteristics of another important integrated

photonic component, microring resonator (MRR). We have developed the theory

of a non-concentric/off-axis MRR with single and multiple off-axis rings. The

off-axis inner ring introduces high-quality (Q) tunable extra notches with many

striking features in the transmission spectrum which facilitates its use as efficient

modulators and sensors. A few such notches when closely packed have been used to

design a compact band rejection filter with improved bandwidth (> 10 nm). In the

next portion, we demonstrate the performance of silicon-on-insulator (SOI) off-axis

MRR as electro-optic modulator (EOM). Adding an extra off-axis inner-ring to the

conventional microring structure provides control to compensate thermal effects

on EOM. It is shown that dynamically controlled bias-voltage applied to the outer

ring has the potency to quell the thermal effects over a wide range of temperature.

In the final section, we propose a non-concentric nested (NN) MRR configuration

that relaxes the stringent requirement of the critical coupling condition by 20%.

Numerical simulations reveal that unlike conventional MRRs, NN-MRRs maintain

a high Q-factor (> 105) and a large transmission notch-depth > 10 dB, irrespective

of rings’ coupling conditions. We also corroborate our numerical findings, exper-
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Figure 3.1: (a) Schematic of a conventional MRR with two linear waveguides. Basic topology
of serially coupled MRRs with (b) odd, and (c) even number of rings with two parallel buses.

imentally. The biggest appealing feature of the proposed non-concentric MRR

structure is the compactness. We believe that the off-axis/NN-MRR arrangement

will be highly efficient for bio-sensing, nonlinear and quantum applications within

a broad ambient temperature range. 1

3.1 Off-axis MRR: Theory and Applications

Microring resonator, a simple albeit essential integrated photonic component, finds

potpourri of applications from optical switching, signal processing, data routing,

optical communication, amplification, sensing, nonlinear frequency conversions to

quantum optics [1–17]. If multiple frequencies are sent into an MRR, it resonates

only with the waves of particular frequencies, satisfying the phase matching con-

dition, i.e. the ring perimeter becomes exactly equal to the integral multiple of

the effective optical wavelengths. The MRR passes other frequencies which are

not resonant via ‘through’ port. Such characteristic can be used to build add-

drop filter using MRRs [3, 5]. A single MRR has spectral response similar to an

optical notch filter. Systematic theory to understand the working principle of an

MRR has already been established by several researchers [1–3], which has been

1Publications related to this chapter are [18], [49], [50].
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further extended to cascaded MRRs either in serial or parallel configurations. The

cascaded MRR have been employed to construct band-pass or band-rejection fil-

ters. However, such configurations show several drawbacks such as, large device

size, high sensitivity to the fabrication errors, presence of several ripples either

in pass band or in rejection band, signal degradation, slow response, and disper-

sion. To overcome most of the drawbacks of the conventional MRR, off-axis MRR

configuration has been proposed. In support of the proposal, we derive a com-

plete theory to characterize MRRs with a single and multiple off-axis inner rings.

The off-axis MRR generates extra resonant notches in the transmission spectrum

which are attributed due to an extra phase matching between outer ring and the

inner off-axis ring. This feature has been utilized to build compact band pass or

band rejection filters with improved bandwidth and faster response. Transfer ma-

trix method (TMM) is used to analyze the off-axis MRR. We have also used the

finite-difference time-domain (FDTD) method to validate our simulation results.

A close agreement is observed between these two.

3.1.1 Transfer Matrix Method

In this section, TMM is discussed to analyze the transmission characteristics of a

conventional MRR of radius R with two linear waveguides as depicted in Fig. 3.1

(a). Direction of the light-propagation is also shown by the arrows. The light wave

is launched from the input-port through the linear waveguide. The evanescent field

of the input wave couples to the ring through coupler-I, as shown by the dotted

box in Fig. 3.1 (a). The evanescent optical field excites the whispering gallery

mode in the microring. To drop a signal from the ring, another linear waveguide is

placed in parallel to the input bus. Light can couple to the second linear bus and

exit through the drop port. A1 and B1 are the amplitudes of input waves at input

port and in the ring at coupler-I, whereas A2 and B2 are the amplitudes of the

output waves at through port and in the ring, respectively. An evanescent wave,

which is coupled to the ring, propagates in clockwise direction as displayed in Fig.

3.1 (a). The input wave amplitudes to the coupler-II are B2
′ and E (add-port),

whereas the output wave amplitudes are B1
′ and D at drop port. The light wave

with amplitude A2 and D appear at through and drop ports, respectively with
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corresponding phase delays. Using TMM [18], one can write,[
A2

B2

]
=

[
τ1 iκ1

iκ1 τ1

][
A1

B1

]
(3.1)

where the coupling and transmission coefficients of the coupler-I are κ1 and τ1,

respectively. For lossless couplers, |τ1|2 + |κ1|2 = 1. After rearranging, Eq. 3.1 can

conversely be written as,[
A1

A2

]
=

1

iκ1

[
−τ1 1

−1 τ1

][
B1

B2

]
= L

[
B1

B2

]
(3.2)

If the dimensionless round-trip loss factor that includes the coupling, bending,

radiation and all the other types of losses is α1, then[
B1
′

B2
′

]
=

[
1√
α1
eiφ1 0

0
√
α1e

−iφ1

][
B1

B2

]
= P

[
B1

B2

]
(3.3)

P is the propagation matrix. φ1 is the phase difference due to the path difference

l (= πR) between output of coupler-I and the input of the coupler-II and also

is equivalent to the half round-trip phase in the MRR. If β is the propagation

constant and neff1 is the effective refractive index (RI) of the guided mode, the

phase delay is given by,

φ1 = βl =
2π2neff1Rf

c
=

2π2neff1R

λ
(3.4)

Similarly, [
D

E

]
=

1

iκ1

[
τ1 −1

1 −τ1

][
B1
′

B2
′

]
= L′

[
B1
′

B2
′

]
(3.5)

Using Eqs. 3.2, 3.3 and 3.5, we can relate the amplitudes at input port (A1),

through port (A2), drop port (D) and add port (E) via coupling and propagation
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matrices as expressed in Eq. 3.6,[
A1

A2

]
= LP−1L′

−1

[
D

E

]
= M

[
D

E

]
=

[
M11 M12

M21 M22

][
D

E

]
(3.6)

In absence of any signal at the add port (E = 0), the normalized transmission at

through port can be calculated in dB from 20 log10(|σth|), where,

σth = A2/A1 =
M21

M11

∣∣∣∣
E=0

(3.7)

Higher-order filter response with improved pass-band characteristics and rejection

ratio can be achieved by cascading the MRRs [5]. Series and parallel combinations

of rings yield deeper notches with higher rejection ratio, wider rejection band and

ultra-high Q-factor, compared to the single MRR. Coupled mode theory (CMT)

in time domain is another powerful analytic tool to design a serially coupled band

pass filter [1, 5, 17, 19]. In Fig. 3.1 (b) and 3.1 (c), basic configurations of serially

coupled MRRs with odd and even number of rings are illustrated with two parallel

bus lines. If the total number of rings in the structure is odd, then output signal

is dropped from the same side of the input, while the output is measured from

the opposite side for even number of rings as indicated by the arrows in Fig. 3.1

(b), and (c). Note that, serially coupled MRRs would possess larger device size

to achieve desired spectral response and filter performance. If N numbers of rings

are serially coupled then for odd value of i.e., N = Nodd, general expression for

transmission characteristics can be written as:[
A1

A2

]
= L(ψ1ψ2)

Nodd−1

2 ψ1

[
D

E

]
= Modd

[
D

E

]
(3.8)

and instead, if N is even, i.e. N = Neven, then the expression is given by,[
A1

A2

]
= L(ψ1ψ2)

Neven
2

[
E

D

]
= Meven

[
E

D

]
(3.9)
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Figure 3.2: Transmission characteristics of (a) single MRR (TMM and FDTD), (b) six identical
serially coupled rings with R = 3µm. All gaps (ring-ring/bus) are set to 100 nm.

where the ψ1 and ψ2 are as follow,

ψ1 = P−1L′
−1

ψ2 = PL−1 (3.10)

The transmission characteristics is found from the Eq. 3.7. We have simulated

a single MRR (both TMM and FDTD) and a serially coupled microring (TMM)

structure with six identical rings of radius R = 3µm each, as shown in Fig 3.1.

Each waveguide dimension is 400 nm×350 nm. The gap between the waveguide

and the ring or in between two adjacent rings is 100 nm. Silicon and silica are

chosen as key materials for guiding and substrate, respectively. The transmis-

sion characteristics for single MRR and serially coupled MRRs are shown in Fig.

3.2 (a), and Fig. 3.2 (b), respectively. It is evident that five (N − 1) resonant

dips/notches are created by six (N) microrings in series connection.
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Figure 3.3: (a) Schematic of an off-axis MRR with parallel bus lines. The coupling regions
are shown by the dotted boxes. Off-axis MRR with (b)–(f) various configurations.

3.1.2 Theory of Off-axis MRR

A concrete theory to describe MRR with single and multiple off-axis inner rings

have been developed in this section. The structure is simulated by TMM and

compared to the results obtained from FDTD method. Inner rings can be either

concentric or off-axis. Concentric MRR configuration has been proposed (analyzed

through CMT in time) and demonstrated (in SOI platform) by Zhang et al. in

2008 [20]. The primary difference between a concentric inner ring and an off-axis

inner ring is the geometry. The center of off-axis circular ring does not overlap

with the center of the outer ring as seen in the schematic of an off-axis MRR

(Fig. 3.3 (a)), where R1 and R2 (3 R1 > R2) are the radii of the outer and

the inner rings, respectively. Variety of other MRR configurations with single

and multiple non-concentric inner rings are also shown in Fig. 3.3 (b)–(f). From

the geometry of off-axis MRR (Fig. 3.3 (a)), it can be seen that there are three

coupling regions through which light can couple. τ2 and κ2 are the transmission
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and the coupling coefficients of the additional coupler (coupler-III) appears in

Fig. 3.3 (a), respectively. In our calculations, we assume that the incoming wave

amplitudes are A1, B1 at coupler-I, B2
′, E at coupler-II and C1, B2

− at coupler

III and the outgoing wave amplitudes are A2, B2 at coupler I, D, B1
′ at coupler-

II, C2, B2
= at coupler-III, and it is assumed that coupler-I and II are identical.

Therefore, from TMM we obtain [18],[
A2

B2

]
=

[
τ1 iκ1

iκ1 τ1

][
A1

B1

]
(3.11a)

[
D

B1
′

]
=

[
τ1 iκ1

iκ1 τ1

][
E

B2
′

]
(3.11b)[

B=
2

C2

]
=

[
τ2 iκ2

iκ2 τ2

][
B−2

C1

]
(3.11c)

If α1 and α2 denote the round-trip dimensionless loss-factors of the outer and the

inner rings, respectively, then the modified propagation matrix P ′ can be given

by,

P ′ =

[
1√
α1
eiφ1 0

0
√
α1e

−iφ1χ2

]
(3.12)

where, the term χ2 includes the effect of the inner off-axis (2nd ring) microring,

χ2 =
B=

2

B−2
=
[
τ2 + α2(iκ2)2(eiφ2 − α2τ2)

−1
]

(3.13)

Here, the φ1 is the half round-trip phase evolution of the outer-ring with radius

R1 and is given by Eq. 3.4. The symbol R is replaced by R1. φ2 denotes the

round-trip phase evolution in the inner ring of radius R2, and is given by,

φ2 = β2l2 =
4π2neff2R2f

c
=

4π2neff2R2

λ
(3.14)

where, neff2 is the effective RI of the propagating mode in the inner ring. Rest of

the Eqs. are similar to those of the single MRR case and the transmission char-
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3.1 Off-axis MRR: Theory and Applications

Figure 3.4: Comparison of transmission characteristics of a conventional MRR and an off-axis
MRR. Simulation parameters: neff1 = 1.8, neff2 = 2.4, R1 = 3µm, R2 = 2µm, W = 400 nm,
H = 350 nm, τ1 = 0.8, τ2 = 0.9. In practice, if both the MRR configurations are made of the
same materials, then, neff1 . neff2, and α2 . α1 ≈ 1, due to the bending.

acteristics found from Eq. 3.7 is plotted in Fig. 3.4 (red curve) and is compared

with the transmission spectra of a conventional MRR (blue curve). Off-axis MRRs

are able to create extra resonant notches. These extra notches appear in between

the existing notches of conventional MRR, which is a distinctive feature of the

off-axis MRR. It is observed that the extra resonant dips appearing in the trans-

mission generally possess a larger Q-factor in comparison with the conventional

notches. Such resonances can be compared to the ‘Fano resonances’ those appear

in mutually coupled asymmetric resonating systems [21].

3.1.2.1 MRR with Multiple Inner Rings

Multiple off-axis rings can be accommodated in the outer ring if the outer ring has

large radius. In Fig. 3.3 (b)–3.3 (f), we show a few such examples. The inner rings

can be placed either in diagonal positions (Fig. 3.3 (b)) or can be aligned to be on

the same side (Fig. 3.3 (c)). More generic cases with closely-packed multiple inner

rings are sketched in Fig. 3.3 (d). In case the radii of the inner rings are small

enough, one can neglect the mutual coupling between them. Moreover, coupling

due to counter propagating optical waves can be neglected unless there exists, for

instance, a Bragg grating in the coupling regime between two closely spaced inner

rings. This special case is shown in Fig. 3.3 (f). If there are M and N number of

inner rings at the left and right-hand sides of the outermost ring, respectively, we
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Figure 3.5: Snapshots of the normalized E-field distribution when resonance occurs in (a)
the outer ring, and (b) the inner off-axis ring. (c) Normalized transmission (in dB) obtained
from TMM and FDTD simulations where the resonant notches corresponding to the particular
resonant modes are also indicated.

can write a general expression for the propagation matrix (P
′′
) as:

P ′′ =

[
1√
α1
ei
φ1χ2

′−1χ3
′−1...χM+1

′−1 0

0
√
α1e

−iφ1χ2χ3...χN+1

]
(3.15)

where, χi, and χi
′ represent the contributions of the (i− 1)-th inner rings located

at the right-hand side and the left-hand side of the outer ring, respectively.

χi, χi
′ =
[
τi + αi(iκi)

2(eiφi − αiτi)
−1
]

(3.16)

Special case where there is a Bragg grating in between two inner coupled rings is

also examined in detail [18].
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3.1 Off-axis MRR: Theory and Applications

Figure 3.6: (a) Tunability of the off-axis MRR, (b) Design of compact devices through off-axis
MRR.

3.1.2.2 Tunability and Compactness

The extra notches engendered due to the presence of the inner rings can be tuned

thermo/electro-optically to reject arbitrarily chosen single or multiple wavelength-

division multiplexing (WDM) channels [18] (Fig. 3.6 (a)). We observe that a small

change in neff2 reflects in a considerably large deviation (dλ/dneff2 ∼ 0.37µm) of

the high-Q extra notches those have been instigated by the inner off-axis ring.

Nevertheless, the shift in conventional notch is negligible (dλ/dneff2 ∼ 0.025µm).

This property can be used to design efficient bio-chemical/temperature sensors. In

the next section, the tunability feature of non-concentric MRR is being exploited

to design thermally insensitive EOM.

Wide-band compact photonic band-rejection filter can be achieved using seri-

ally coupled MRRs with very small ring radii. The free-spectral range (FSR) can

be enhanced by the Vernier effect [2]. However, fabrication complexity, dispersion
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Figure 3.7: (a) Proposed serially coupled off-axis MRRs with two inner rings in each outer
ring. (b) Normalized transmission of the proposed structure with optimized coupling efficiencies
between bus to ring and ring to ring to enhance the notch depth. (c) Closely packed extra
resonant notches are tunable and are able to reject arbitrarily chosen WDM channels.

effect and the bending loss increase with smaller bending radius of ring structure.

The issues associated with very small serially coupled rings to attain band-pass or

band-rejection filter can be overcome by utilizing non-concentric MRRs. we pro-

pose a new design based on off-axis ring that would enhance the rejection band,

and at the same time it will occupy less space than the conventional one. Tunable

extra-notches of the off-axis MRRs can be employed to build a band-rejection

filter with improved bandwidth. Fig. 3.6 (b) presents a comparative study be-

tween the transmission characteristics of two serially-coupled concentional MRRs

and a single off-axis MRR. It is shown that a similar spectral response compared

to the conventional MRR can be achieved by using the off-axis MRR, however,

the device footprint shrinks to 7µm from 13µm i.e., almost half of the conven-

tional (serial) architecture, which definitely is a significant reduction in device-size.

Therefore, serially coupled off-axis MRRs as shown in Fig. 3.7 is expected to yield

a broadband band-rejection filter within a very small device extent. We adopt the
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strategy and optimize six serially coupled MRRs each having two non-concentric

inner rings in it and finally, able to enhance the bandwidth of the band-rejection

filter by >10–12 nm. The extra-notches are easily tunable and therefore, can flex-

ibly eliminate unwanted noise or undesired channels as per the requirement of a

WDM-link (Fig. 3.7). We believe the proposed structure is highly beneficial for

integrated on-chip optical communication networks.

3.2 Athermal Electro-optic Modulators

It is well-known that, parasitic capacitance between the electronic components and

the drift velocity of electron limits the speed of electronic circuits. The delay at the

metallic interconnects forces asynchronous data transfer between the processor and

the other parts of a computational system and consequently creates an important

bottleneck problem [22–24]. Photonic interconnects have the ability to address

this issue [25, 26]. Low power consumption, low latencies, less interference, ultra

compact size and wide bandwidth are the key advantages of optical circuits [27].

Such key benefits have engendered interest among scientists to find out an efficient

design of EOM, which is an indispensable active optical component of photonic

circuits [7]. Recent advancements in SOI technology [28, 29] has opened up a

new window for the fabrication of micro optical devices with microelectronics on

chip [8]. Nonetheless, to design a compact, high-speed EOM is still a big challenge

due to the absence of Pockel’s effect, very low Franz-Keldysh and moderate Kerr

effect of pure crystalline Si [7]. Carrier plasma dispersion (CPD) effect of Si is the

only effective way to achieve a considerable amount of RI variation by applying

moderate external electromagnetic field avoiding the breakdown of Si-device. Soref

et al. have predicted the change in RI (∆n) and absorption coefficient (∆α) of Si

due to the CPD effect [30]. Carrier dispersion and absorption [7] at λ = 1.55µm

are approximated by Eqs. 3.17 (a) and 3.17 (b),

∆n = ∆ne + ∆nh = −
[
8.8× 10−22∆N + 8.5× 10−18 (∆P )0.8] (3.17a)

∆α = ∆αe + ∆αh =
[
8.5× 10−18∆N + 6× 10−18∆P

]
(3.17b)
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∆ne and ∆αe (cm−1) are the changes in RI and absorption coefficient variation

due to the electron concentration change ∆N (cm−3), ∆nh and ∆αh (cm−1) are

the RI change and absorption coefficient variation due to the change in hole con-

centration ∆P (cm−3), respectively. According to the previous results [7], a carrier

depletion/injection of ∼ 1018 cm−3 can yield a RI change ∆n ∼ 2× 10−3. A mod-

ulating device typically of the order of few millimetres is capable to provide a high

modulation with extinction ratio (ER) as high as 20 dB with sufficient variation

of RI [7] until the development of resonator based SOI-EOM. Microring confines

light within the ring cavity and can provide relatively longer path length without

increasing the device size. A small change in RI can detune an MRR and yields

a very high modulation-depth [7]. One of the critical issues of network-on-chip is

to keep power budgets manageable while increasing performance. Dense WDM

(DWDM) is one such solution which offers massive parallelism and is considered

very important in order to realize high performance optical interconnects which

can be achieved through MRRs. However, Si has high thermo-optic coefficient [31]

(TOC = ∆n/∆T ),∼ 1.86× 10−4/K. Small amount of change in RI results dras-

tic variation in transmission characteristics of SOI based MRR due to its large

Q-factor and narrow bandwidth [32]. MRRs are highly susceptible to the thermal

fluctuations. Heat generated from the surroundings, off-chip continuous-wave laser

sources, local hot-spots etc. can cause shift in resonance wavelength, as shown in

Fig. 3.8. Without the thermal effect, EOM can produce exact sinusoidal replica

of the input, whereas, thermal instability can deform the output signal or disturb

precise channel allocations for DWDM systems (Fig. 3.8). The shift in resonant

wavelength can be represented as [32],

dλ

dT
=

(
neffαclad + neffαsub +

∂neff

∂T

)
λ0

ng

≈ ∂neff

∂T

λ0

ng

(3.18a)

∂neff

∂T
= Γcore

∂ncore

∂T
+ Γclad

∂nclad

∂T
+ Γsub

∂nsub

∂T
(3.18b)

where λo is the resonant wavelength at the room temperature. neff denotes the

effective RI and ng is the group index. The cladding and substrate expansion co-

efficients are αclad and αsub, respectively. Both the αclad and αsub can be neglected

in Eq. 3.18 (a) for air-clad and SiO2-substrate [32]. The change of effective RI
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Figure 3.8: Working principle of EOM, (a) EOM without thermal effect, (b) deformed sinu-
soidal output in presence of thermal effect.

with the temperature is given by Eq. 3.18 (b) where Γ is the modal confine-

ment factor. In recent years, a few attempts were made to build athermal EOMs.

A detailed comparative study on these approaches has been discussed in [32].

Methods to compensate the thermal effects can be broadly classified in two major

categories—(i) athermal, and (ii) control-based solutions. One of the most well-

known control-based solution procedures to combat thermal degradation is the use

of heat sink and integrated heater simultaneously [33–35] which later on has been

proved highly power-inefficient [36]. Padmaraju et al. proposed an adaptive, inno-

vative and dynamic athermal design exploiting the heating effect of current [36],

which is more effective to deliver/extract heat using an external bias, albeit, this

bias voltage can affect the message signal. This approach also fails to compensate

wide range of temperature change. Moreover, it is not suitable for high data-rate

due to its large response delay and inability to use pre-emphasized [37] input signal.

Parallel efforts (athermal solution) to neutralize the thermal effect using negative

temperature coefficient materials e.g. polymers [38–40] as the key component of

the device cladding also exist. To overcome the thermal effects, one must produce

a zero effective TOC. Since the TOC of Si is very high, according to Eq. 3.18

(b) either we need a polymer with very high negative TOC or the mode confine-

ment factor of the core must be deliberately reduced. Mode confinement can be

reduced using narrow-ridged or slotted waveguides but these structures associate
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with high losses, greater radiation, lower Q-factor, small and corrupted FSR. The

weak confinement of the mode also leads to higher device footprint. Furthermore,

this method is not a successful commercial solution till date because of the CMOS-

incompatibility of these polymers. CMOS compatible titanium oxide (TiO2) with

negative TOC [41] may be a possible future solution which allows moderate optical

confinement in Si-core. Still the performance of these devices is not satisfactory

due to low Q-factor and low FSR. Temperature independent operation over a

small range has been shown employing MZI-coupled MRRs [42] and multiple cav-

ity coupled devices [43]. However, relatively large footprints make them ineffectual

for high-density on-chip applications. Adiabatic microdisk/microring modulators

and cascaded MRRs [44, 45] are capable of operating at as high data rate as 40

Gbps and provide uncorrupted FSR but these devices are also very susceptible to

the change in ambient temperature. Recently, resonant mode-splitting method to

negate the temperature effect has been reported [46]. Though, this method has

potential to eliminate most of the previously mentioned drawbacks, it possesses

a few serious disadvantages. Negative TOC CMOS incompatible polymers have

been used to achieve satisfactory performance. Device size is large and it is im-

possible to implement this device in DWDM system due to its inability of using

broad range of adjacent channels during the operation. It is also cumbersome to

define and retain the material properties intact throughout the entire operational

range. The inefficacy of all the aforementioned mechanisms motivate us to propose

a novel design of EOM using off-axis MRR.

Previous section has revealed many striking features of MRR with inner off-

axis ring [18]. The tunability aspects of conventional and extra resonant notches

usher us the way to obtain a highly efficient and compact EOM. Two rings within

the same structure provide us an extra degree of freedom of designing; we use one

ring to deliver message and another to minimize the thermal effects. According

to [32], our method falls in control-based solutions to avoid thermal degrada-

tion. Thus, besides the appositely biased conventional microring, off-axis inner

microring with pre-emphasized electrical input message signal enables our pro-

posed structure suitable for high data-rate DWDM scheme of optical communica-

tion systems within a very compact device size. In this work, device parameters are

extracted from commercial TCAD electro-optic device simulator based on FDTD-
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(a) (b)

Figure 3.9: (a) Schematic of MRR with off-axis inner ring structure used as a modulator; rsh,
rse and RT represent the shunt, series and temperature dependent equivalent resistances of the
device, Vm and VB are voltage sources. (b) Cross-section of p+n−n+ SOI waveguide structure.

Gummel solver. RI variations due to carrier injection or depletion are calculated

from mode solver. Other necessary design parameters are calculated from TMM

and verified by FDTD method.

3.2.1 Design of Off-axis MRR as an EOM

In Fig. 3.9 (a), it is depicted how an MRR with off-axis inner ring can be used

as an EOM. One can apply a modulating signal, Vm as an input to the off-axis

ring and another voltage source VB to the outer MRR to nullify the thermal effect.

Note that, Vm and VB are interchangeable. Cross-sectional view of the waveguide

is shown in Fig. 3.9 (b). A rib structure has been grown on buried oxide (BOX)

layer. Waveguide with dimension of 450 nm×350 nm is placed ontop a 50 nm

thick plateau which provides electrical connections to the optical device. The

junction volume is 3.48 × 10−12 cm3. We have created a p+n−n+ type structure.

As the conductivity of pure Si is very low, n− epitaxial layer with nominal carrier

concentration ∼ 1015 cm−3 has been sandwiched between p+ and n+ regions to

keep the carrier flow uninterrupted. Moreover, this denuded layer reduces the

number of recombination centres which further prevents the alteration of diode

current (RG current [47]) with the change in temperature. One must keep in mind

that high doping concentration in n− region will obtain a better RI sensitivity

(∆n/∆V ) for the waveguide with respect to applied bias but it will increase the
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device loss due to higher absorption coefficient [7]. We optimize our structure to

limit the absorption loss due to extra carrier injection within 20 dB/cm. Doping

concentration of p+ and n+ layers are ∼ 1019 cm−3; metallic contacts are made

through n++ and p++ with doping concentration of ∼ 1020 cm−3. The doping

concentration of n− layer is much lesser than the concentration of n+ or p+ layer.

Basically, this layer acts as an intrinsic layer.

3.2.2 Theory, Results and Discussions

We have applied an 8-bit, 3 Gbps pre-emphasized non-return-to-zero (NRZ) signal,

Vm = ±1 V (Vp−p = 2 V) to the inner off-axis ring with an off-set dc bias of 1 V. The

minority charge carriers diffuse from the junction to the terminal when a voltage

is applied to the p+n−n+ device (forward biasing). If np0 and pn0 are the minority

carrier concentrations at p and n sides at room temperature in thermal equilibrium,

we can write the extra charge carrier density as the function of distance x [47,48]

from the depletion layer as,

∆N(x) = np0

[
exp

( ev

kT

)
− 1
]

exp

(
xp + x

Lp

)
(3.19a)

∆P (x) = pn0

[
exp

( ev

kT

)
− 1
]

exp

(
xn + x

Ln

)
(3.19b)

where, xn and xp denote the depletion region widths at the n and p sides. Ln

and Lp represent the diffusion lengths of electrons and holes, respectively. The Lp

(∼ 22µm) and Ln (∼ 35µm) are greater than the depletion layer width (∼ 640 nm)

which assures moderate current flow through the device. Figure 3.10 (a) shows

the schematic cross-section of an off-axis micro ring resonator with three coupling

regions dictated by dashed rectangular boxes where R1 and R2 are the radii of

outer and inner rings, respectively. In order to understand the behavior of the

off-axis MRR, we compute the effective index of the guided mode by full-vectorial

finite element method (FEM) solver. Effective RI of a particular quasi-TE mode

for outer ring (R1 = 3µm) neff1 and off-axis ring (R2 = 2µm) i.e., neff2 have been

determined by changing applied bias and are plotted in Fig. 3.10 (b), whereas

the spectral variation of the effective RI of the quasi-TE mode for different ring
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(a)

(b)

(c) (d)

Figure 3.10: (a) Schematic of an off-axis MRR with necessary design parameters. (b) Effective
RI variation of outer and inner rings with respect to bias voltage, VB at 1.55µm, (c) spectral
variation of guided mode index for different ring radii at different biasing voltages, and (d) loss
as a function of applied voltage Vm, at wavelength 1.55µm.

radii and different biasing voltages is depicted in Fig. 3.10 (c). At wavelength

1.55µm, the dispersion coefficient D (= ∂neff/∂λ) for outer and inner rings are

obtained as −0.98965µm−1 and −1.0135µm−1, respectively, when no voltage is

applied and −0.9897µm−1 and −1.01295µm−1, respectively when an external bias

of 1 V is applied across the p+n−n+ junction of outer and inner rings, respectively.

Since we intend to implement the structure for several DWDM channels within a

broad operating wavelength range. Dispersion effect is taken into consideration.

The bending radius of the inner-ring is smaller than the outer ring, thereupon

both the effective RI and the dispersion coefficient of the inner ring is slightly

greater than the outer ring. The values of effective RIs and dispersion coefficients

depend upon external bias. In Fig. 3.10 (d), we plot the total losses (absorption,
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bending, radiation etc.) as a function of applied voltage Vm. As discussed earlier,

absorption losses have been restricted within 20 dB/cm. It is noticed that both

absorption loss and effective RI change rapidly after Vm > 0.7 V (built-in potential

of Si p-n junction). In this work, we have achieved ∆n = −1.163 × 10−3 and

∆n = −1.179× 10−3 for outer and inner rings with an external bias voltage of 1 V

when applied individually on outer and inner rings, respectively at λ = 1.55µm.

Propagation matrix for the non-concentric rings is found from Eq. 3.12. The

change in ambient temperature of MRR affects the effective RI (neff1 and neff2) of

outer and inner rings, modifying the transmission characteristics. Voltages applied

at the individual rings change the RI of the respective rings only. Propagation

matrix P ′ is a function of both φ1 (neff1) and φ2 (neff2). A positive voltage to

the outer ring modifies the P ′ and blue shifts the conventional resonant notches

as well as extra resonant notches. In this case, the shift in conventional resonant

notches is larger in comparison to the extra notches. If we apply a positive voltage

at the inner ring, blue-shift in extra notches will be greater than the blue-shift

in conventional notches. It has been observed that the shift of extra resonant

notches due to the change in neff1 is more than the shift of conventional resonant

notches due to the change in neff2. These facts have been theoretically established

and validated by FDTD method [18,49,50]. Mathematically, the phase matching

conditions for the outer and the inner ring are given by [18], Eqs. 3.20 (a), and

3.20 (b), respectively.

φ1 =
2π2neff1R1

λ
= mπ (3.20a)

φ1 +
κ2

2 sin(φ2)

τ2 (1 + τ2)− cos(φ2) (1 + τ2
2)

= mπ (3.20b)

where m = 1, 2, 3 . . . Both φ1 and φ2 depend on neff1 and neff2, respectively. From

Eq. 3.20 (b) it is viable that change in neff1 (due to the voltage applied to outer

MRR) is capable for a slight shift in the extra resonant notches. On contrary, from

Eq. 3.20 (a), it is conspicuous that change in neff2 (due to the voltage applied to the

inner MRR) has ideally no effect on the conventional resonant notches. The details

are tabulated in Table 3.1. This makes us confident to negate the thermal effects

on MRR using an extra biasing voltage VB at outer ring. The position of Vm and
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Table 3.1: Applied voltage at outer and inner MRRs and corresponding resonant
notch shifts.

Positive voltage
applied to

RI
Change

Major blue
shift in

Minor blue
shift in

Negligible blue
shift in

Outer ring neff1
Conventional

notches
Extra

notches
Not applicable

Inner off-axis
microring

neff2
Extra

notches
Not applicable

Conventional
notches

VB can be swapped at the cost of overall performances. For example, if we apply a

message signal at the outer ring and an extra bias voltage to the inner ring, it will

take higher voltage and consume more power to compensate the thermal effect as

the effect of external bias in the inner microring (or, change in neff2) is negligible

on conventional notches. Moreover, due to high Q-factor and narrow bandwidth

of the extra resonant notches, only a small message signal applied to inner ring

would be sufficient to achieve acceptable ER. Thereof, it is always preferable to

apply the message signal at the inner ring. The normalized power transmission of

off-axis MRR within optical communication wavelength range is depicted in Fig.

3.11 (a). It is conspicuous from inset of Fig. 3.11 (a) that Vm = +1 V results into

∼ 380 pm blue-shift of extra resonant notches (negligible blue-shift in conventional

notches) which is sufficient to achieve almost 100% (> 20 dB ER) modulation due

to an ultra-high Q-factor of extra resonant notches of off-axis MRR. Figure 3.11

(b) shows the effect of VB on conventional and extra resonant notches. Applying

∼ 1 V at conventional ring (i.e. outer ring) causes a blue shift of ∼250–300 pm in

the conventional resonant notches while ∼50–100 pm blue shift of extra resonant

notches. It is found that per Kelvin temperature rise can incur ∼40–50 pm and

∼50–70 pm red shifts for conventional and extra notches, respectively. Even 5 K

change in temperature may result in 20–30% change in modulation as Q-factor

is very high. Temperature effect, a nonlinear phenomenon in silicon waveguides,

can be compensated through proper biasing voltage VB at the outer ring. In

Fig. 3.11 (c), it is shown that VB = 3.4 V has nullified the effect of 20 K rise in

temperature. The solid blue curve shows an extra resonant notch at T = 300 K

with no voltage bias applied at outer ring. When 1 V modulating signal is applied

to the inner ring the notch is blue-shifted towards the left-hand side as shown by
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(a) (b)

(c)

Figure 3.11: Normalized transmission (dB) of an non-concentric MRR with change in (a) Vm,
(b) VB, and (c) transmission characteristics of thermally-compensated non-concentric MRR.

the solid violet curve. At 1 V, the off-axis MRR renders an extinction ratio of

∼38 dB. The solid red curve shows the transmission of the MRR with 20 K rise

in temperature without modulating signal while the solid green curve depicts the

transmission of the MRR with 20 K rise in temperature with an applied message

signal of 1 V to the inner ring. The solid black curve represents the transmission

characteristics of MRR with a temperature compensating extra bias VB = 3.4 V

applied to the outer ring. This bias voltage can counterbalance the thermal effect,

which is clearly visible from the inset where the solid black curve overlaps the solid

violet curve. Therefore, for the Fig. 3.11 (c) one can write,

∆λVm=1 V = ∆λ∆T=20 K + ∆λVB=3.4 V + ∆λVm=1 V (3.21)

where ∆λVm=1 V, ∆λ∆T=20 K, ∆λVB=3.4 V represent the shift in resonant wavelength

due to Vm = 1 V, ∆T = 20 K and VB = 3.4 V, respectively.

The athermal behavior has been further validated and corroborated through
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the eye diagrams. Figure 3.12 (a) shows the waveform of user defined pre-emphasized

message signal. NRZ signal is passed through a low noise amplifier-differentiator

block and the output is added with the original NRZ signal itself to provide pre-

emphasized NRZ signal. Using pre-emphasized input, rise time (tr) and fall-time

(tf) can be reduced significantly (as small as 100 ps and 40 ps, respectively) [37].

Figure 3.12 (b) shows the eye-diagram for the optical transmission in room tem-

perature. The parameters µ1 and µ2 refer to the eye amplitude levels, the stan-

dard deviations (SDs) σ1 and σ2 measure the noises at the levels µ1 and µ2,

respectively. The eye-opening is defined as (µ2 − µ1) which varies from 0 to 1

without thermal effects. The eye signal-to-noise ratio (SNR) can be defined as:

SNR = (µ2 − µ1) / (σ1 + σ2). From TMM, it has been found numerically that the

modulator amplitude varies from ∼ 0.42 to 1 (3.82 dB) at 5 K rise in temperature.

Consequently, the eye squints, which is demonstrated in Fig. 3.12 (c). Figure 3.12

(d) establishes that an extra bias of 2.2 V at the outer ring can nullify the thermal

effect. It is clearly observed that (µ2 − µ1) > (µ5
2 − µ5

1), σ5
2 > σ2 and σ5

1 > σ2 due

to the thermal effects, but at the same time (µ2 − µ1) ≈
(
µ5′

2 − µ5′
1

)
, where the

superscript 5 has been used to explicate the amplitude levels at ∆T = 5 K and a

prime is used in superscript to indicate the thermally compensated eye-levels. One

should also note carefully that even after the recompense, σ5′
2 ≈ σ2, and σ5′

1 ≈ σ1

as the thermal noise in Si waveguide remains intact and cannot be eliminated

through this procedure. If temperature is raised to 10 K the eye opening further

gets reduced and the transmission amplitude varies from 0.65 to 1 (swing 1.86 dB).

The closed eye can be reopened by counteracting the thermal effect using a bias

voltage VB of ∼2.82 V. These two cases have been delineated in Figs. 3.12 (e) and

3.12 (f). Further, an additional voltage of only 0.58 V can negate the temperature

effect of 20 K.

Padamraju et al., has clearly mentioned that thermal compensation with control-

based solution consumes more power than athermal based solutions, which is the

main disadvantage of the control-based solutions. Our process can be conceived as

control-based solution. Besides the fabrication complexity, low fabrication toler-

ance and the requirement of an extra power source are the challenges in the off-axis

MRR. While the thermal noise cannot be eliminated, however this does not affect

the performance of the proposed device. Moreover, the RI change with respect to
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Figure 3.12: (a) Pre-emphasized modulating signal waveform. (b) Eye-diagram of transmission
at room temperature (c) Eye-diagram at ∆T = 5 K and VB = 0 V. (d) Voltage compensated
eye-diagram of the transmission at ∆T = 5 K. (e) Eye-diagram at ∆T = 10 K. (f) Voltage
compensated eye-diagram at ∆T = 10 K.

the bias voltage is nonlinear due to the exponential I-V characteristics [48] of the

PIN-diode. Until the device breaks down, this characteristic enables the device

worthwhile to control the temperature effects more easily when the bias voltage

is already very high. Note that, the extra bias voltage (∆VB) applied to the outer

ring in order to compensate the thermal effect will be lesser for the same amount

of temperature rise (∆T ) while the temperature is already high in comparison to
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the required feedback voltage for low initial temperature value, for example, if

∆VB1 and ∆VB2 are the bias voltages to compensate the effect of same amount of

temperature rise ∆T at two different room temperatures T1 and T2 (3 T1 ≤ T2),

respectively, then within the break-down limit of the SOI-EOM one can assume,

∆VB1 > ∆VB2. The power consumption in the proposed device is therefore not

high in comparison with the other control-based solutions, which is one of the

important features of the proposed device. Apart from previously reported tech-

niques [32, 36], dynamic temperature control can also be achieved using proper

thermal coefficient of the resistance RT (i.e., ∆RT/∆T ) (Fig. 3.9 (a)) by choos-

ing suitable material and doping concentration. An ultra-sensitive on-chip optical

MRR sensor, temperature monitoring integrated photo-detector or fibre Bragg

grating sensor can be used to detect the ambient temperature. One can also use

pre-calibrated external feedback mechanism to control and maintain the required

value of VB dynamically to compensate thermal effect.

3.3 Nested-nonconcentric MRRs

3.3.1 Motivation: Quality-factors and Critical-coupling

Devices such as micro-cavities made of silicon photonic wires (strip waveguides)

can exhibit large Q-factor due to strong lateral confinement of the optical modes.

Sharp resonant notches in the transmission spectrum make these devices particu-

larly suitable for add-drop filters [3], EOMs [8] and so on. High RI and the large

third-order nonlinearity of Si make them attractive for several applications [51,52]

where small effective mode volume and high Q-factor are desired. The resonant

effect in ultra-compact and high-Q optical micro-cavities can greatly enhance the

efficiency of the nonlinear processes to achieve frequency comb [14], four-wave mix-

ing (FWM) [15], and electromagnetic induced transparency once the detrimental

two photon absorption effect is overcome. MRRs have also been employed in cav-

ity quantum electrodynamics (QED), on-chip optical squeezing [16] and entangled

photon pair generation [53]. The wide versatility of MRRs has made them indis-

pensable for next-generation on-chip optical functionalities. Other than numerous

nonlinear applications, MRRs have also been utilized for sensing purposes [54]. In
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most of the applications based on MRR, high Q-factor and large notch depths are

required which is only possible when critical coupling between the straight bus

waveguide and the microring is maintained [4]. To harness the utmost advantages

of the resonance, the high Q-factor can be attained by reducing the propagation

losses and the side-wall roughness, as demonstrated in [55–60]. MRRs comprising

rib waveguide exhibit very low losses (0.1 dB/cm), but at the same time their mini-

mum bending radius is limited to hundreds of micrometers [60]. Smaller bend radii

(sharper bends) at the cost of larger losses are provided by wire waveguides [61].

The Q-factor of MRRs with Si wire waveguides can further be improved by adopt-

ing various novel fabrication techniques [58–60]. Recently, it has been reported [16]

that MRR based on Si3N4 material exhibits losses < 0.5 dB/cm, but at the cost

of a reduced nonlinearity (10% that of Silicon). The Q-factor and the resonant

notch depths are very sensitive to the coupling condition (under-coupled, critically

coupled or over-coupled) of the microring and its input or output bus waveguides,

respectively. MRR with a single input bus, which is referred to as all-pass config-

uration offers deepest transmission notch in critical coupling [62]. The fabricated

MRR parameters in general deviate from the optimized parameters (5%-10%)

which result either into over-coupled or under-coupled regimes of MRR departing

the MRR from the properties that were designed. Thermal and electro-optic tun-

ability of the MRR resonant notches have also been utilized [63–65] to compensate

the fabrication errors. In most of the applications such as bio-sensing and quan-

tum photonic, MRRs are designed to operate in critically coupled condition [4,15].

For on-chip optical squeezing, photon pair generation in MRR etc. the preferred

choice is to consider slightly over-coupled regime [16,53]. On the other hand, when

an MRR is slightly under-coupled, the loaded Q-factor becomes greater than the

Q-factor for critical coupling [60,62], facilitating its use in the applications where

high-Q is more crucial rather than the transmission notch depth. However, with

further increase in transmission coefficient (decrease in coupling) due to fabrica-

tion errors, notch depth rapidly decreases and eventually becomes negligible. It is

well known that Si has high TOC. Therefore, similar to the fabrication errors, the

increase in local temperature may also alter the desired coupling condition and

can be detrimental for such applications. As a rule of thumb, we can say that

the higher the Q-factor of MRR, it would be more susceptible to the fabrication
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errors. This poses a strong challenge to achieve a perfect critical coupling between

the MRR and the input bus. To achieve exact critical coupling, large numbers of

devices are fabricated by sweeping the gap separation between the input bus and

the microring within a possible range [4, 63]. Once the technological parameters

for critical coupling are ensured, that particular MRR is further being used. This

is certainly undesirable for the commercialization of on-chip photonic circuits with

MRRs as crucial components. In order to relax the critical coupling, while main-

taining high Q-factor and large transmission notch depth, in this work, we report

a recipe based on coupled resonators which we refer to as nested non-concentric

MRR (NN-MRR) and provide an analytical model of internally-coupled, nested

MRR through the TMM [18]. In the previous section [18], we demonstrate the us-

age of two non-concentric MRRs that exhibits extra distinctive sharp transmission

notches with high-Q and have been used to attain athermal CMOS compatible

EOM [49]. The inclusion of additional ring in dual-ring system fosters large Q-

factor (> 105) and notch depth (> 10 dB) irrespective of the coupling conditions.

Such CMOS compatible compact high-Q coupled MRRs would be fabrication tol-

erant and highly suitable for sensing, nonlinear and cavity QED applications.

Relaxation in critical coupling condition in serially coupled MRRs has been previ-

ously reported in [66]. However, the reported design occupies a large space which

might not be suitable for high-density all-optical functionalities. Our proposed

NN-MRR outperforms the reported one and is very compact and suitable for on-

chip integration. The modal properties of the silicon wire waveguides have been

calculated through commercially available full-vectorial FEM based solver, COM-

SOL Multiphysics, where, the bending effects are taken into consideration through

conformal mapping. The TMM calculations have been performed in MATLAB.

3.3.2 Theory and Design of NN-MRR

Figure 3.13 (a) depicts the schematic of the proposed all-pass NN-MRR which is

comprised of three microrings of radii R1, R2 and R3 (3 R3 < R2 < R1). The

outermost microring is side coupled to a bus waveguide. The dashed rectangular

boxes in Fig. 3.13 (a) mark the coupling regions (CRs) which are characterized

by straight-through (τ) and cross-coupling (κ) coefficients for an optical wave. In-
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Figure 3.13: Geometrical configurations: (a) proposed all-pass NN-MRR configuration with
three coupled rings having radii R1, R2, and R3, depicting different coupling regions (CRs). (b)
Conventional MRR, (c) nonconcentric dual-MRR (off-axis MRR).

dividual microrings possess internal loss factors am = exp(−αmLm/2), where αm

is the linear loss coefficient (per unit length) and Lm = 2πRm is the circumfer-

ence of the respective ring where m = 1, 2, 3 . . . corresponding to the microring

numbers. The semi-round trip phase change in the largest microring of radius R1

is φ1, whereas φ2, φ3 are the respective round-trip phase shifts of the inner rings.

Input bus waveguide is coupled to the outermost microring through CR1, owning

transmission and coupling coefficients τ1 and κ1, respectively, as indicated in Fig.

3.13 (a). Inner ring 2 (radius R2) is coupled with the outer microring of radius R1

through CR2, possessing transmission and coupling coefficients τ2 and κ2, whereas

the innermost microring with radius R3 is coupled with the second microring with

radius R2 through CR3 which has transmission and coupling coefficient τ3 and

κ3, respectively. A1 is the complex input wave amplitude and A2 is the complex

output wave amplitude. Let, for a total n-number of serially coupled NN-MRRs

with single bus (all-pass configuration), the general expression for the normalized

transmission (in dB) be 20 log10|Tn|, where the Tn is given by,

Tn =
A2

A1

=

∣∣∣∣A2

A1

∣∣∣∣ eiφneff = τ1 + a1(iκ1)2(ei2φ1χ−1
1 − a1τ1

)−1
(3.22)

where, φneff
is the effective phase change/delay of the output wave with respect

to the input wave. aj, τj, and κj (j = 1, 2, 3 . . . ) represent the lumped amplitude

loss, straight-through transmission coefficients and cross-coupled transmission co-

efficients for the j-th ring or the j-th coupler, respectively. χ2, χ3, χn−1 and χn
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represent the effects of the second, third, (n− 1)-th and n-th inner non-concentric

rings. The theoretical model is valid for n number of total rings, with (n − 1)

inner rings and χn = 1. Therefore,

χ1 = τ2 + a2(iκ2)2(eiφin1χ−1
2 − a2τ2

)−1
(3.23a)

χn−1 = τn + an(iκn)2(eiφinn−1χ−1
n − anτn

)−1
(3.23b)

So, for the NN-MRR with 3 rings (2 inner rings), χ3 = 1. The effective phase

evolution (φjeff
) at the transmission port for n-number of nested-rings is given by,

φjeff
= tan−1

(
aj sinφj

′

τj − αj cosϕ′j

)
− tan−1

(
ajτj sinφj

′

1− τjaj cosφj
′

)
φj
′ = φj+1eff

+ φj, φj =
4π2neffjRj

λ0

, for j = 1, 2, . . . to . . . n (3.24)

where, φj is the round-trip phase-shift at the j-th ring with radius Rj and φn+1 =

0. We assume each waveguide of the NN-MRR is comprised of a photonic wire

waveguide of dimensions of 500 nm×250 nm. In our simulations we have considered

the dispersion effect (material and waveguide). The ring radii are, R1 = 30µm,

R2 = 20µm, R3 = 10µm. We have considered two different practical situations

for our analysis, (A) waveguide with rough side-walls (RSW) and (B) waveguide

with smooth side-walls (SSW). In both the scenarios, the losses are different. For

the case of RSW (case-A), we assume relatively higher dimensionless loss factors

α1, α2 and α3 corresponding to 0.5 dB/cm, 1 dB/cm and 2 dB/cm, for rings 1, 2,

and 3, respectively. Similarly for the case of SSW (case-B), the propagation losses

are relatively low and α1, α2 and α3 are related to 0.3 dB/cm, 0.5 dB/cm and

1 dB/cm, respectively. The overall loaded Q-factor, Qloaded in terms of intrinsic

and coupling Q-factor can be written as, Qloaded
−1 = Qintrinsic

−1 +Qcoupling
−1. We

assume that it is possible to achieve Q-factor as high as 106 when the waveguide

has smooth side-walls.
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3.3.3 Evolution of NN-MRR: Design Recipe

In the subsequent sections, we describe the methodology to arrive at NN-MRR

system, as shown in Fig. 3.13 (a). To produce a design space, we have mainly

focused on the achievable high Q-factor and large transmission notch depth when

the coupling condition is close and far from the critically coupled condition in both

the cases A and B, as explained before.

3.3.3.1 Single Microring

We start our analysis with a single microring (radius R1) in all-pass configura-

tion (inset of Fig 3.13 (b)). Strip-waveguide is being used having a cross-section

of 500 nm×250 nm. The calculated Q-factor and maximum transmission notch

depth, PT for this MRR configuration for different losses and transmission coeffi-

cients in two scenarios RSW and SSW, are plotted in Fig. 3.14 (a) and Fig. 3.14

(b), respectively. We consider two different coupling situations (i) large deviation

in critical coupling condition, and (ii) less deviation from critical coupling condi-

tion. The ratio of transmission coefficient and dimensionless loss factor i.e., (τ1/a1)

determines the region of operation of the microring. The microring is critically,

over or under coupled if the ratio (τ1/a1) is 1, < 1 or > 1, respectively. The dashed

green curve indicates the maximum possible transmission notch depth (dB), PT1

whereas the dashed-dotted red curve tells about intrinsic quality-factor of this par-

ticular MRR. Note that, notch depth< −52 dB is possible to achieve for case-B. It

is also possible to achieve high-Q(> 105) even the notch depth is very less. How-

ever, it is preferred to use a particular resonant frequency possessing both sharp

and deep transmission notches and high-Q in applications such as sensing [54] and

modulators [7]. In Fig. 3.14, we plot the quality factor (dashed-dotted red curve)

and maximum transmission notch depth (dashed green-curve) for a conventional

all-pass MRR. Note that, transmission notches with notch-depth, |PT| > 3 dB have

only been included for both the cases. It is known that even if the MRR is slightly

under-coupled, a maximum Q > Qcritical can be achieved at the cost of reduced

PT. For over-coupled situation, both the Q-factor and notch depth fall rapidly,

but with a relatively lower slope in comparison with the under-coupled regime. It

is well established that the coupling coefficient κ per unit length depends upon
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Figure 3.14: Design space parameters and availability of high Q-factor and transmission notch
depths in case of all-pass single ring MRR (conventional MRR). The plots govern all possible
Q-factors, Q1, and maximum transmission notch depth PT1 for transmission/loss factor (τ1/a1),
when the fabrication error (ε) from the critical coupling is varied for two different loss scenarios:
(a) RSW, (b) SSW, where the deviation is assumed (i) far from the critical coupling and (ii)
closer to critical coupling condition. For all situations, transmission notches greater than 3 dB
in the wavelength range of 1.5µm-1.6µm are considered.

the gap between the bus and the ring. A small deviation in fabrication is sufficient

to prevent the MRR from being in critically coupled condition. Also, it is evident

that MRR with less propagation loss (i.e. with SSW) is more sensitive towards

fabrication errors [59]. In Fig. 3.15, we summarize the accessibility of high quality

factor and transmission notch depth for different coupling conditions and devi-

ations for a single-ring MRR. We provide a comparative study of Q-factors and

maximum notch depths PT obtained for a MRR in different coupling regimes (2%
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Figure 3.15: Comparison of Q and |PT| for single MRR in different coupling regimes. Normal-
ized transmission of the single MRR of radius R1 (case-A) side-coupled to a single input bus with
(I) 2% over-coupling, (II) 1% over-coupling, (III) critical coupling, (IV) 0.1% under-coupling.

and 1% over-coupling, critical-coupling and 0.1% under-coupling) after evaluating

the normalized transmission, where the waveguide in MRR has rough side walls.

In case of critical coupling, maximum notch depth of −56.12 dB along with a Q-

factor of ∼ 4.7× 105 is achievable. The notch depth PT and the Q-factor drop to

−1.7 dB and ∼ 8.3 × 104, respectively even for 1% over-coupling scenario. This

establishes that the performance of the MRR is very sensitive to coupling that

might result even from a very small fabrication error.

3.3.3.2 Non-concentric Dual-Ring MRR

As an intermediate step to design NN-MRR, we consider a situation where a

non-concentric MRR of smaller radius is added in a conventional MRR (referred
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as non-concentric dual MRR/off-axis ring). We analyze the Q-factor and notch

depth of two-ring MRR configuration, as shown in the inset of Fig. 3.16 (or, Fig.

3.13 (c)). The extra microring of smaller radius creates sharp extra notches as

predicted recently by authors in previous work [18, 50]. It was shown that MRR

with non-concentric inner ring provides greater flexibility in controlling different

parameters. For instance, it is not necessary for the non-concentric dual ring

MRR to be critically coupled to obtain a large Q and deep transmission notches as

depicted through Fig. 3.16. In Figs. 3.16 (a) and 3.16 (b), possible Q-factors and

the maximum transmission notch depth corresponding to the outermost (largest)

ring (denoted byQ1 and PT1) and due to the second non-concentric inner microring

(represented by Q2 and PT2) are plotted. The dashed and solid green curves stand

for PT1 and PT2, respectively. The transparent blue and light purple regions

indicate the possible values of the Q-factors for the conventional notches (Q1)

and the extra notches (Q2). It is observed that even though the outer MRR is

over-coupled with the bus waveguide (i.e. τ1 < a1) a Q-factor greater than 105

can be obtained. We find that up to 12% (case-A: RSW) and 8% (case-B: SSW)

deviations from the critical coupling conditions, the Q-factors greater than 105 of

the resonant modes can be sustained easily with notch depths |PT2| > 3 dB for

dual NN-MRR configuration. It is to be noted that the solid green curve has two

dips. At critical coupling, the total power supplied to the outer ring from bus is

equal to the power dissipated. The second dip appears due to the fact that at

over-coupling, the total power dissipation in the coupled ring system is exactly

compensated by the power supplied externally.

3.3.3.3 Non-concentric Nested MRR (NN-MRR)

The inclusion of another smaller non-concentric microring into the first inner ring,

as shown in Fig. 3.17 (as well Fig. 3.13 (a)), improves the performance in compar-

ison to the dual-ring MRR case discussed in previous sub-section. We refer this

three coupled rings configuration as non-concentric nested MRR. This structure

mimics the serially coupled microring resonators with different ring sizes. However,

the key benefit of the proposed NN-MMR structure is the compactness. Similar

performances can be achieved at much smaller device footprint which facilitates
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Figure 3.16: Design space parameters and availability of high-Q and transmission notch depths
in case of NN dual-MRR. The plots show all possible Q-factors (Q1, Q2) and notch depths (|PT1|,
|PT2|) when (τ1/a1), and ε are varied for two different loss scenarios: (a) RSW (b) SSW, where
the deviation is assumed to be (i) far from, and (ii) closer to the critical coupling condition.

the integration of more components on the same chip. The smallest microring

coupled to the larger inner ring creates a few additional extra resonant notches

with very high-Q, even if the outermost MRR is over-coupled to the input bus [50].

Similar to the analysis carried in previous subsections, we analyze the Q-factor

and notch depths for two different cases, RSW and SSW when the outermost ring

is coupled either far or near from the critically-coupled condition to the input bus

waveguide. In Figs. 3.17 (a) and 3.17 (b), possible Q-factors and the maximum

transmission notch depth due to only outermost ring (Q1, PT1), in presence of the

non-concentric single inner ring (Q2, PT2) and due to both non-concentric inner
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Figure 3.17: Design space parameters and availability of high-Q transmission notches in case of
NN-MRR with three rings. The plots govern all possible Q-factors (Q1, Q2, Q3) and maximum
transmission notch depths |PT1|, |PT2| and |PT3| when (τ1/a1), and ε are varied for two different
loss scenarios: (a) RSW (b) SSW, where the deviation is assumed to be (i) far from, and (ii)
closer to the critical coupling condition.

rings (Q3, PT3) are plotted for wavelength range 1.5µm–1.6µm. The transparent

blue, cyan and purple regions indicate allowed range of Q1, Q2 and Q3, respec-

tively. A maximum possible Q for the extra notches due to the smallest inner ring

viz. Q3 > 105 with |PT3| > 10 dB can be attained even at the large deviation of

greater than 20% from the critical coupling, whereas the conventional notches (due

to outer ring) and the extra notches due to the largest inner ring are already dis-

appeared for a slight variation in the critical coupling condition. An additional dip
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Figure 3.18: (a) Sets of possible values of a1 and τ1 are indicated by the enclosed regions
under the orange, red, green, and blue curves for which the transmission notch depth can reach
up to 5 dB, 10 dB, 15 dB and 20 dB, respectively for single microring. (b) Introducing another
ring in a nested fashion allows 67.95%, 43.37%, 26.42%, and 15.58%, of all the possible sets of
values of a2 and τ2 (i.e., the choice of a1, and τ1) to enhance the area under the orange, red,
green and blue curves for which the transmission notch depth at the through-port can reach
up to 5 dB, 10 dB, −15 dB, and −20 dB, respectively. This clearly indicates the relaxation for
the requirement of the critical coupling. Again, (c) 69.23%, 44.28%, 26.88%, and 15.89% of all
possible values of a3 and τ3 can further relax the critical coupling condition for the outermost
microring to the input bus, respectively while τ2 is fixed at an optimized value 0.86.

appears in the transmission curve (PT3, the dashed-dotted green curve), similar to

what has been observed in case of two rings system. The conclusions remain the

same even if all the outer rings are slightly more or less over-coupled to its imme-

diate inner rings. The maximum percentage deviation from the critical-coupling

towards the over-coupling regime for which Q-factors of single, dual and nested

MRR can be maintained greater than 105, are listed in Table 3.2. The innermost

ring improves the fabrication tolerance in comparison with single microring and

dual-ring MRR.

Table 3.2: Maximum percentage (%) deviation from critical-coupling towards the
over-coupling regime.

Device
Config.

Case A: RSW Case B: SSW
Q >
105

|PT| >
3 dB

|PT| >
5 dB

|PT| >
10 dB

Q >
105

|PT| >
3 dB

|PT| >
5 dB

|PT| >
10 dB

Single-
MRR

∼ 0.5 ∼ 0.5 ∼ 0.35 ∼ 0.1 ∼ 0.2 0.2 0.15 ∼ 0.05

Dual-
MRR

∼ 12 ∼ 16 11 7 8 8 6 4

NN-
MRR

> 20 > 20 > 20 ∼ 18 > 20 > 20 18 10
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3.3.3.4 Flexibility of parameters: Fabrication tolerance

In this section, we show how introducing another ring within a single MRR in

a nested fashion relaxes the stringent requirement of the critical coupling condi-

tion quantitatively. We also observe the transmission notch depth at throughput

improves if we introduce a third ring within the second ring from a different per-

spective. Fig. 3.18 (a) indicates all possible sets of values of τ1 and a1 marked by

the enclosed regions under the orange, red, green, and blue curves for which the

transmission notch depth can reach up to −5 dB, −10 dB, −15 dB and −20 dB,

respectively for a single microring. We know if the value of a1 approaches to

1, the propagation loss of the microring becomes negligible, whereas, the black

dashed-dotted straight-line given by the equation τ1 = a1 dictates the critical

coupling condition. Thus, for the single MRR the notch-depth is highest at the

critical coupling and a small deviation from the critical coupling decreases the

notch-depth. Now, our goal is to enhance the area under the orange, red, green,

and blue curves which in turn will relax the coupling condition. We observe, if

another smaller ring is introduced inside the outer-ring in a nested fashion, the

area under these curves are enhanced. In Fig. 3.18 (b) we illustrate that 67.95%,

43.37%, 26.42%, and 15.58% of all the possible values of the τ2 and a2, the area

under the blue, red, green, and black curves are increased, respectively. From the

same plots we also observe that for the transmission notch depths improve if the

second ring is over-coupled to the first microring, i.e. τ2 < a2 if the loss of the

second ring is very less (a2 ≈ 1). This clearly corroborates the fact that the second

ring relaxes the requirement of the critical coupling and enhances the fabrication

tolerances. Now, the overall propagation loss of the microring depends upon the

material loss, bending loss, radiation loss etc. and one cannot choose the exact

values of a1 or a2. With the advancement of the recent fabrication technologies

and the post-processing trimming, one can even achieve the values of a1 and a2

as high as > 0.999. Thus from Fig. 3.18 (b) we observe that for values of a2 that

approaches to 1, a prudent choice of τ2 will be ∼ 0.86 for the best performance of

the dual configuration. Now, keeping the value of τ2 fixed at 0.86 we introduce the

third ring inside the second ring in a nested fashion. We plot τ3 with respect to

a3 while the values of a2 and τ2 are fixed and calculate the set of values of a1 and
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τ1 for which the area under the orange, red, green, and blue curves are increased.

From Fig. 3.18 (c) we inspect that for 69.23%, 44.28%, 26.88%, and 15.89% of

all the possible values of a3 and τ3, the area under the brown, yellow, cyan and

blue curves are further enhanced. Hence, Fig. 7 (a), (b), and (c) clearly suggest a

further relaxation of the requirement of the critical coupling can be achieved using

a 3-ring nested configuration. Again for the practical cases a3 approaches to 1 and

the third ring must be over-coupled for the best performances. The over-coupling

condition between the microrings can be assured just by keeping the gap length

very small. We further investigate the underlying mechanism that gives rise to the

relaxation of critical coupling condition. Critical coupling condition occurs while

the input energy to the microring through the input bus is exactly equals to the

energy consumption or the overall energy decay/loss of the microring resonator,

whereas, if the input power is more than the power loss, then the microring is over-

coupled to the bus waveguide. However, it is easier to fabricate a microring which

is over-coupled to an input bus instead of achieving a perfect critical coupling. If

there are internal microrings properly placed in a nested fashion, the extra power

that is supplied by the input bus is consumed by the internal microrings and thus

one can still achieve deeper resonant notches even if the outermost microring is

not over-coupled with the input bus. Hence, To elicit maximum advantages from

this newly proposed nested off-axis MRR, our design objective is to make sure

that the gaps between ring-to-ring and bus-to-ring are such that all the rings are

over-coupled with its next inner ring and the largest ring is also over-coupled to

the input bus. It should be noted that even though the outermost microring is

large enough to accommodate many nested inner rings, one cannot keep on adding

arbitrary number of nested inner rings as with the decreasing ring radius, bending

loss would also will increase.

3.3.4 Experimental Results

Our theoretical model has previously been verified through FDTD based numer-

ical simulations [18]. To corroborate the robustness of the performance of the

3-ring NN-MRR, we fabricate the NN-MRR with dual and triple rings through

the electron beam lithography facility at KIT Germany. We have used the stan-
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Figure 3.19: Experimental set-up (at Karlsruhe Institute of Technology (KIT), Germany) to
characterize the NN-MRR. The magnified views of the coupling region are shown in the insets.

dard SOI wafer with silicon thickness of 220 nm. The designed parameters of the

waveguide cross-section are 450 nm×220 nm. The experimental set-up is shown

in Fig. 3.19. Light is coupled (collected) from fiber to chip (chip to fiber) using

standard grating coupler. Fig. 3.20 (a) depicts the SEM image of a single-bus

dual-ring MRR with a gap separation of 50 nm. The radii of two rings are 30µm

and 20µm. Fig. 3.20 (b) shows the image of a NN-MRR with three rings where

the radius of the third microring is 10µm. The gap is ∼ 50 nm which resembles the

case of strong over-coupling regime. The chip was coated with PMMA to protect

the waveguide surfaces. Note that our theoretical findings hold true irrespective of

the waveguide dimension and cladding material. Fig. 3.20 (c) shows the measured

transmission spectra for both the dual-ring (solid blue curve) and three-ring (solid

red curve) MRRs, respectively. Initial results shown in Fig. 3.20 (c) suggest that

if the rings are strongly over-coupled to each other and the bus waveguide having

all the gap separations of 50 nm, deeper transmission notches can be obtained for

the NN three-ring structure in comparison with the NN two-ring structure.
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Figure 3.20: (a) Fabricated NN 2-ring structure, (b) fabricated NN 3-microring structure.
Both the cases the coupling gaps are 50 nm. (c) Transmission (dB) from 2 ring NN structure
and 3 ring NN structure for wavelength 1500 nm to 1560 nm.

3.4 Further discussions

It is well established that positive TOC of silicon red-shifts the resonant notches

in MRR which in other words we can say that the coupling condition between bus

and the ring waveguide alters. Temperature effect can be highly detrimental for

different applications such as sensing, WDM communications, EOMs, nonlinear

and quantum optics, etc [32]. For example, photon pair generation rate is heavily

affected even with a small increase in temperature [53]. As temperature rises

during the experiment due to the power dissipation in the device, often microrings

slightly over-coupled with the input buses are used to achieve the maximum photon

pair generation rate [53]. For a fixed gap separation between the microring and

the input bus, the coupling coefficient, κ1 decreases (τ1 increases). If a MRR

is designed to operate in critical coupling condition, the mode of operation may

change to under-coupling for a slight variation in temperature. Therefore, for

applications such as sensing, nonlinear and quantum optics, where the precise

location of the transmission notches are not always that important rather deep and

sharp transmission notches are necessary, NN-MRR can be a solution since nested

MRR can maintain high-Q and large notch depth at any coupling condition.

3.5 Summary and Conclusions

To conclude this chapter,

In the first part of our work, we have devised a panoptic theoretical model for

96



References

off-axis MRR using the well-established TMM. Different designs and all possible

combinations of inner rings in multiple off-axis MRRs have been analyzed ana-

lytically. Phase matching conditions for off-axis MRR have been developed. The

results from more rigorous FDTD method are in good agreement with analytical

method. The off-axis MRR shows a distinctive feature of extra resonant dips with

very high Q-factor and high sensitivity towards a small change in effective RI and

radius of the inner off-axis ring. Moreover, the design of compact band-rejection

filter which is capable to reject arbitrarily chosen WDM channelshas been demon-

strated using serially coupled off-axis MRRs. The presence of extra notches in

the spectrum of off-axis MRR helps to reduce the device size considerably which

would offer an extra space to integrate more components on the same photonic

chip.

In section 3.2, we establish that off-axis MRR EOM can obviate the thermal

effects for wide range of temperatures very effectively through an extra ring within

the same MRR structure which not only creates highly sensitive and sharp res-

onant notches (with high Q-factor) but also offers another degree of freedom of

designing. This renders us an opportunity to build up an EOM untarnished by

thermal effects within the same compact dimension of a single MRR. The eye di-

agrams of the proposed off-axis MRR show the potential to overcome the thermal

detuning for DWDM applications.

In the final section of this chapter, we demonstrate (both numerically and

experimentally) that unlike single MRR (all-pass configuration), the nested NN-

MRR creates extra resonant notches which maintains extremely large Q-factor

(> 105) and high notch depth (> 10 dB) irrespective of its coupling conditions

with the input bus. Such high-Q compact resonators would be fabrication tolerant,

flexible to design, cost-effective, commercially viable and highly suitable in sensing,

nonlinear applications, cavity-QED and other quantum applications for a broad

range of ambient temperature.
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C H A P T E R 4

Kerr Frequency-comb with

Nonlinear Losses

This chapter describes the nonlinear characteristics of microresonators (MRs),

where the primary goal is to model and study the Kerr frequency comb (FC) in

the presence of nonlinear losses and free-carrier effects. At first, we discuss the

fundamental concepts relevant to the nonlinear MR-based FC and its applica-

tions. Subsequently, we elucidate various theoretical modeling, numerical simula-

tions and experimental methods to generate an optical FC in a concise manner.

Different material platforms used for frequency conversions within integrated op-

tical cavities, their unique features, advantages, disadvantages, fabrication tech-

niques, etc. are also discussed in details. Finally, we deduce, relate and implement

our mathematical model in explaining several numerical and experimental results

which are previously reported. This generalized mathematical framework is able

to provide a better understanding of the comb dynamics in practical scenarios

where different material platforms containing nonlinear losses are being utilized.
1

1Publications related to this chapter are [88], [91], [92].
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Figure 4.1: Schematic of an optical frequency comb. The pump wavelength is λp. Frequency
lines are apart from each other by approximately one cavity free spectral range (FSR), i.e. λFSR.

4.1 Fundamentals and Background

Optical FC, as shown in Fig. 4.1, is a set of equidistant and coherent frequency

lines in the ultraviolet, visible, and infrared regions [1], which can be used in

precision measurement [2, 3], microwave signal synthesis [4], optical communi-

cation [5, 6], sensing, spectroscopy [3, 5], molecular fingerprinting [7, 8], astron-

omy [9,10], entangled photon pair generation [11,12], or as an optical ruler [1,5,13].

In recent years, FC is even employed in determining the size and shape of the

atoms/molecules accurately and has helped in resolving the ‘proton-size puz-

zle’ [14, 15]. Mode-locked femtosecond lasers and fiber lasers have extensively

been used for the generation of optical FC [2, 16–19] until recently the paramet-

ric frequency conversion using continuous-wave (CW) optical pump in optical

micro-cavities (Fig. 4.2 (a) microspheres, (b) micro-disks, and (c) microring res-

onators, (d) fabricated structures) have revolutionized the technology for comb

generation [20–23]. Eventually, the device footprint has been reduced to a few

hundred micrometers while a repetition rate as high as >10 GHz can easily be

achieved [22,23]. There are several advantages of such on-chip microcavity-based

parametric FC which are:

(i) Compact in size (typical diameter<100µm),

(ii) High-Q (typically 104–109),

(iii) Very small effective modal area (Aeff) and modal volume (Veff) that ensure

higher effective nonlinear coefficient (γ) compared to the fiber-ring cavities,

(iv) Mode-spacing can be controlled by the perimeter length,

(v) Low/flat and controllable dispersion; octave-spanning FC can be obtained,
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Figure 4.2: Schematic of various optical microcavities which can be used as a platform for
FC generation: (a) Whispering gallery mode (WGM) microsphere, (b) WGM microdisk, (c)
microring resonators (MRRs), (d) fabricated MR platforms made of various materials for comb
generations. (Photo credits: collected from pioneering group websites or personal archive).

(vi) Threshold power (Pth) is less,

(vii) Advanced fabrication techniques (e.g., CMOS technologies) are available,

low-cost integrated chip-scale packaging, easy for mass production,

(viii) Higher repetition rate (typically>10 GHz),

(ix) Saturable absorber which is an indispensable component of the mode-locked

laser based FC in not required in this case,

In spite of these advantages, there exist a few drawbacks of using integrated plat-

forms which are:

(i) Although easy to fabricate, most of the coupling mechanisms including fiber

or grating based coupling methods are not robust and sophisticated, thereby

unstable and lossy,

(ii) Bending radius is small in comparison to the fiber-ring cavities, thus the

bending loss is very high.
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(iii) Conversion efficiencies are often low.

4.2 Theory and generation of Frequency Comb

There are numerous routes to generate FC as summarized in Fig. 4.3. In the

materials platform where χ(2) nonlinearity is dominant, comb formation occurs

through second harmonic generation (SHG), and sum frequency generation (SFG).

In third-order (Kerr) nonlinear materials, FC is generated through third harmonic

generation (THG), modulation instability (MI), degenerate four-wave mixing (D-

FWM), and non-degenerate four-wave mixing (ND-FWM). For both the second

and third order nonlinear processes, pump-photon energy is absorbed by the elec-

tronic clouds. Secondary radiations from the oscillating electron clouds manifest

themselves as frequency comb. Apart from that, FC can also be originated from

inelastic Raman scattering and Brillouin scattering where some part of the inci-

dent optical energies are dissipated as the optical and acoustic phonons through

the molecular and lattice vibrations, respectively. In this chapter, we mainly focus

on third-order/Kerr nonlinearity based FC that exploits the hyper (third-order)-

parametric frequency conversion in high-Q microcavities [5, 24, 25].

4.2.1 Formation of Kerr Comb: Basic Principle

To obtain a near- or mid-infrared (IR) frequency comb, a narrow linewidth (typ-

ically 5–10 kHz) continuous wave (CW) tunable laser source (TLS) is generally

employed. The signal of the CW-laser source (CW1) is amplified by an erbium

doped fiber amplifier (EDFA) as shown in Fig. 4.4 to accomplish an input power

level more than the Kerr comb threshold [23]. The polarization of the input signal

is maintained by the fiber polarization controller (FPC). The light is coupled to a

device under test (DUT), e.g. a MR through one of the various coupling methods

such as free-space coupling [5], prism coupling [5], butt-coupling [22, 26], grating

coupling [27], and most recently using photonic wire-bonds [28], etc. depending

upon the DUT. Silicon nitride (Si3N4) MRR is a popular choice as a platform for

nonlinear frequency conversion due to its low propagation loss and relatively high

Kerr nonlinearity [22]. Butt-coupling is being preferred to couple the light from
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Figure 4.3: Summary of different nonlinear processes to generate optical FC with their energy-
level diagrams and initial spectrums. |g〉, |v〉, and |e〉 represent the ground state, virtual state,
and the excited states, respectively.

fiber to the Si3N4 chip as shown in Fig. 4.4. For efficient butt-coupling often lensed

fiber and tapered waveguides are used [21, 26]. However, the grating coupling is

the most efficient (> 70 % light coupled with an overall insertion loss < 6–7 dB)

and well-established method to couple light from an input fiber into a silicon-on-

insulator (SOI) chip [27] and recently has also been implemented for silicon-nitride

waveguides [29]. If an MR operates in the under-coupled regime, then the comb

threshold is minimum, albeit the maximum nonlinear conversion efficiency can be

achieved when the resonator is over-coupled with the input waveguide [30]. For

butt-coupling, the light from the through port of the DUT is collected by an ob-

jective and again coupled to the fiber. The fiber can be connected to an optical

coupler. A small amount of light is sufficient to examine the spectral character-

istics of the generated FC, whereas, the rest of the output power can be used for

other applications.

Theoretical analysis suggests that the comb dynamics depends upon the effec-
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Figure 4.4: (a) Schematic/block diagram of the experimental set-up to generate an optical
frequency comb. (b) A realistic picture of the set-up.

tive frequency detuning between the external pump and microcavity mode along

with the input pump power [22]. However, it is important to note that the cold

cavity resonance positions are no longer the same as of the new effective resonance

positions under the influence of external pump induced Kerr and thermo-optic ef-

fects. In general, the locations of the cavity resonances fluctuate dynamically with

time and experience an overall shift towards the longer wavelength. Therefore, in

practice, it is extremely difficult to determine the effective pump detuning from the

nearest cavity-mode. Several well-known techniques are available to stabilize the

laser frequency by locking it to a cavity resonance such as Pound-Drever-Hall [30],

thermal self-locking [21,31], external thermal detuning [32], and self-injection lock-

ing [33], etc. Finally, one has to stabilize the carrier-envelope offset frequency, to

generate a self-referenced fully sustained steady FC or equivalently a dissipative

CS in time-domain [21, 34, 35]. For silicon MRRs multi-photon absorptions, free-

carrier absorption (FCA) and free-carrier dispersion (FCD) play a crucial role in
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determining the existence and dynamics of FC, which is discussed elaborately later

in this chapter. It is noteworthy that mode-locking of the FC in silicon MRRs can

also be achieved via controlling the free-carrier lifetime and free-carrier dispersion

effect [35].

4.2.2 Analytical Modeling

Dynamics of the FC can be understood analytically by two distinct, however,

equivalent approaches, viz. (i) the damped-driven nonlinear Schrödinger equation,

which is also known as the mean-field Lugiato Lefever Equation (LLE) [36, 37],

and (ii) coupled mode equation (CME) or modal expansion methods [38,39]. Each

of these analytical models has its advantages [40]. The salient features of the LLE

based approach are:

• LLE is a time-domain approach,

• Resembles the nonlinear Schrödinger equation, thus, familiar; easier to per-

ceive and solve numerically through fast and well-known simulation methods

(e.g. split-step Fourier method (SSFM)),

• Helps to connect the experimental findings to the numerical results as one

can obtain temporal solitons through the simulation of LLE, directly,

• Easier to include the nonlinear losses such as two-photon absorptions (2PA),

three-photon absorption (3PA), four-photon absorption (4PA), FCA, and

FCD effects in comparison with the CME approach,

• Easier to add self-steepening effect,

• Easier to incorporate Raman-effect,

Whereas, the important features and the advantages of the CME over the LLE

are:

• CME is a frequency domain approach,

• Evolution of each frequency components with the cavity round-trips can be

observed, directly,

• Frequency-dependent absorptions can be considered easily,

• Frequency-dependent coupling coefficient can be considered easily,
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• If the local dispersion for particular comb lines are severely perturbed and

can no longer be interpolated by the Taylor series expansions [40], such

rebarbative effects can be studied through CME with relative ease,

• CME approach is more convenient to handle for the modeling of coupled-

cavity systems [41] compared to the LLE.

Previously, it was anticipated that CME is inefficient in order to simulate FCs

with a large number of comb-lines (e.g. for octave spanned FCs), nonetheless,

soon it was discovered by Hansson et al. [42] that thousands of CMEs can be effi-

ciently integrated numerically by fast Fourier transform. It is now well-understood

that CME description is nothing but the discrete Fourier transform of the LLE

approach! Our main work focuses on the influence of nonlinear losses and free-

carrier effects on the FC dynamics; therefore, we limit our analytical description

only by adopting the LLE based approach.

4.2.2.1 Proof of the Lugiato-Lefever Equation

Let us assume an MR is driven by a CW-pump of wavelength λp and an electric-

field amplitude Ein, as shown in Fig. 4.5 (a). In MR, to obtain a temporal

cavity soliton (CS), the group velocity dispersion (GVD) has to be balanced by

the Kerr nonlinearity and the overall propagation loss should be compensated by

the external pump power. This balance occurs only for a suitable range of the

pump power and the cavity detuning which are capable of sustaining [22, 37] the

CS. In the frequency/Fourier (F) domain, the dissipative temporal CS manifests

itself as frequency-comb. Note that, FC can also be attained without creating

a CS in the temporal domain, however for simplicity, we restrict ourselves only

to the FCs arise from the CSs or sech pulse shapes in time [43]. Suppose the

intra-cavity field amplitude at the beginning and at the end of m-th round-trips

are E(m)(z = 0, T ), and E(m)(z = L = 2πR, T ), respectively where the cavity

circumference is L. z, T , and θ measure the propagation distance, propagation

time, and the power-coupling strength of the MR, respectively. Therefore, the

intra-cavity field-amplitude at the beginning of the (m+ 1)-th round-trip is,

E(m+1) (0, T ) =
√

1− θE(m) (L, T ) eiφ0 +
√
θEin (4.1)
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Figure 4.5: (a) Schematic of an MRR with CW input. At the throughport, FC is generated.
(b) Underlying physics to generate a temporal CS which is the Fourier-equivalent of the FC. (c)
Kerr-tilt and corresponding bistable behavior of the nonlinear cavity under external pump.

where the linear phase accumulation in a single round-trip is denoted by φ0. This

equation dictates the boundary condition of the MR. The Kerr nonlinearity is

taken into consideration by nonlinear Schrödinger equation,

∂E (z, T )

∂z
=

[
−αi

2
+ i
∑
k≥2

βk
k!

(
i
∂

∂T

)k
+ iγ|E (z, T )|2

]
E (z, T ) (4.2)

Equation 4.1 combined with Eq. 4.2 represent the infinite dimensional Ikeda map

which is adequate to describe the complete dynamical behavior of the Kerr MR

under the slowly varying envelope approximation [44]. Eq. 4.2 is homologous to,

E (z + ∆z, T )− E (z, T )

∆z
=− αi

2
E (z, T ) + i

∑
k≥2

βk
k!

(
i
∂

∂T

)k
E (z, T )

+ iγ|E (z, T )|2E (z, T ) (4.3)
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where αi is the round-trip power loss coefficient, βk is the k-th order dispersion

coefficient associated with the Taylor series expansion of the propagation constant

β. γ (= n2ω0/cAeff) is the nonlinear coefficient where n2 is the nonlinear refrac-

tive index and Aeff represents the effective modal area. If the evolution of the

intracavity field is sufficiently slow on the round-trip time scale, one can infer

that,

E(m) (L, T )− E(m) (0, T )

L
≈ ∂E(m) (0, T )

∂z

≈

[
−αi

2
+ i
∑
k≥2

βk
k!

(
i
∂

∂T

)k
+ iγ

∣∣E(m) (0, T )
∣∣2]E(m) (0, T ) (4.4)

The Eq. 4.4 can be rewritten as,

E(m) (L, T ) ≈

[
1− αiL

2
+ i
∑
k≥2

βkL

k!

(
i
∂

∂T

)k
+ iγL

∣∣E(m) (0, T )
∣∣2]E(m) (0, T )

(4.5)

Equation 4.5 is obtained by integrating Eq. 4.4 from 0 to L considering an average

value of the E(m)(z, T ) = E(m)(0, T ) throughout the integration and henceforth

is known as Mean-field equation. We define the cavity detuning δ0 equals to

(2lπ − φ0) where l corresponds to the nearest cold cavity resonance to the φ0.

Thus, the intra-cavity E-field at the beginning of the (m + 1)-th round-trip is

given by,

E(m+1) (0, T ) =
√

1− θE(m) (L, T ) eiφ0 +
√
θEin

'
(

1− θ

2
− iδ0

)
E(m) (L, T ) +

√
θEin (4.6)

We assume the loss factor (θ → 0) and the cavity detuning (δ0) is very small.

In deriving LLE one also requires to assume that the Q-factor and the finesse

F ∼ 102–105 [36,37] of the cavity is sufficiently high and the dispersion is low over

the single round-trip, i.e.,
∑
k≥2

βkL∆ωk/k! ≤ π where ∆ω is the spectral width of

the generated comb. Therefore, putting the value of E(m) (L, T ) (from Eq. 4.5) in
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terms of E(m) (0, T ) to Eq. 4.6, we can further obtain,

E(m+1) (0, T )− E(m) (0, T ) =

(
− α− iδ0 + i

∑
k≥2

βkL

k!

(
i
∂

∂T

)k
+iγL

∣∣E(m) (0, T )
∣∣2)E(m) (0, T ) +

√
θEin (4.7)

We obtain Eq. 4.7 from Eq. 4.6 by linearizing and neglecting the nonlinear mul-

tiplicative terms of αi, δ0, and βk, etc. as they are very very small, assuming,

α = (αiL+ θ) /2. Now, one can define a continuous time variable viz. slow time

(t) which relates the discrete cavity round-trip number m with the cavity round-

trip time tR as t = mtR such as,

E(m) (L = 0, T ) = E (t = mtR, T ) (4.8)

It is crucial to note that this slow-time (t) frame fundamentally differs from the

fast-time (T ). Slow-time provides the information about how many times the pulse

has been revolved (or crossed the point ‘A’ in Fig. 4.5 (a)) around the resonator

whereas, the fast-time frame that moves with the pulse describes the temporal

evolution of the pulse. One can also relate the slow-time corresponds to an integer

value of m with the distance (z) traversed by the pulse as, z (t = mtR) = mL.

Hence, the expression of the E-field in the left-hand side of the Eq. 4.7 can be

represented in terms of the slow-time (t) as

tR
∂E (t, T )

∂t
=

(
−α− iδ0 + i

∑
k≥2

βkL

k!

(
i
∂

∂T

)k
+ iγL|E (t, T )|2

)
E (t, T ) +

√
θEin

(4.9)

The Eq. 4.9 also known as Lugiato-Lefever equation is numerically less intensive,

can be solved easily through SSFM and is sufficiently accurate in predicting the

pulse behavior influenced by Kerr nonlinearity in an optical microresonator.
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Figure 4.6: (a) Generation of Turing rolls from vacuum fluctuation. The SSFM-simulation pa-
rameters are: ∆ = 1.5, X = 2.5, (b) generation of temporal CS with the simulation parameters:
∆ = 2.8, X = 3. All the parameters plotted (e.g. fast-time (τ), slow-time (ξ), and intra-cavity
power (Y )) are normalized at anomalous dispersion regime.

4.2.2.2 Normalization and Universal Scaling Law

It is more convenient to handle the normalized form of the LLE compared to the

form given by Eq. 4.9 [37],

∂u (ξ, τ)

∂ξ
= − (1 + i∆)u− is

2

∂2u

∂τ 2
+
∑
k≥3

dk
k!

∂ku

∂τ k
+ i|u|2u+ S (4.10)

where u(ξ, τ), ξ, τ , ∆, s, dk, and S denote the normalized field amplitude, nor-

malized slow-time, normalized fast-time, normalized cavity detuning, normalized

second-order dispersion coefficient (e.g. s = −1 for anomalous and s = 1 for

normal dispersion), higher-order dispersion coefficient, and the normalized in-

put pump amplitude, respectively. The normalized factors are as follows: u =

E
√(

γL
α

)
, τ = T/T0, T0 =

√
|β2|L
α

, ξ = t/LD, LD = tR/α, ∆ = δ0/α, S =
√

θγL
α3 Ein.

The steady-state homogeneous solution of Eq. 4.10 is given by,

X =
[(

1 + ∆2
)
Y − 2∆Y 2 + Y 3

]
(4.11)

where X = |S|2 and Y = |u|2 are the normalized input power and the normalized

intra-cavity power, respectively. If the normalized detuning ∆ >
√

3, then bista-

bility (BS) response or S-shaped hysteresis curve can be obtained as shown in Fig.

4.5 (c) where the dotted middle portion is unconditionally and homogeneously un-
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stable with respective to the periodic perturbations. The cavity resonance is also

tilted (peak at ∆ = X = Y ) as a consequence of Kerr nonlinearity, whereas, peak

occurs at ∆ = 0 (known as cold cavity response) in case of linear cavity. Kerr-tilt

is shown in Fig. 4.5 (c-i) and for the plotting purpose we choose X = 0.01 ≈ 0 to

display the cold-resonance. Therefore, for a passive cavity, a weak periodic pertur-

bation leads to the MI which in turn is ultimately stabilized by the dissipation of

the cavity to spawn a periodic pattern called the Turing rolls, both in anomalous

and normal dispersion regime. To obtain MI-gain, both the intra-cavity power

and pump power required to be ≥ 1. In anomalous dispersion (s = −1), if ∆ > 2,

minimum Y that initiates the MI has to be greater than ∆/2 implying the entire

upper branch of the homogeneous response will be unstable [37].

We validate our model through SSFM [36, 37]; Fig. 4.6 (a) illustrates the

formation of turing pattern at ∆ = 1.5, and X = 2.5, while the Fig. 4.6 (b)

delineates the evolution of a CS at ∆ = 2.8, and X = 3, both in anomalous

dispersion regime. Note that, in anomalous regime, MI occurs sub- and super-

critically at ∆ > 41/30 and ∆ < 41/30, respectively (higher-order dispersions are

neglected). Stable CS co-exists with the CW-background (CWB) as shown in Fig.

4.6 (b) and becomes stable approximately from π2X/8. The in-depth analysis of

the spatio-temporal dynamics of such nonlinear cavity-system is given in [45,46].

4.3 Effects of Nonlinear Losses on Kerr Comb

As it is discussed earlier in this chapter, CW pumped optical MRs have been

vastly exploited to generate FC utilizing the Kerr nonlinearity. Most of the non-

linear materials used to build photonic platforms exhibit nonlinear losses such as

multi-photon absorption, FCA, and FCD which can strongly affect their nonlin-

ear performances. In this section, we model the Kerr FC based on modified LLE

along with the rate equation and develop analytical formulations to make a quick

estimation of the steady-state, BS, self-pulsation (SP), MI gain and bandwidth in

presence of nonlinear losses. The analytical model is valid over a broad wavelength

range as it includes the effects of all nonlinear losses. Higher order (>3) charac-

teristic polynomial of intra-cavity power describing the steady-state homogeneous

solution of the modified LLE are discussed in detail. We derive the generalized
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analytical expressions for the threshold (normalized) pump detuning that initi-

ates the optical BS when nonlinear losses are present. Free-carrier dispersion-led

nonlinear cavity detuning is observed through the reverse Kerr-tilt of the resonant

peaks. We further deduce the expressions of the threshold pump intensity and the

range of possible cavity detuning for the initiation of the MI considering the pres-

ence of nonlinear losses. The proposed model will be helpful in explaining several

numerical and experimental results which are previously reported and thereby will

be able to provide a better understanding of the comb dynamics.

4.3.1 Motivation: Different Material Platforms

Varieties of materials have been used along with different novel fabrication tech-

niques to design ultra-high quality factor MRs [5, 47, 48] for low threshold, stable

FC generation; however, the search for the most suitable material is still on.

FC generation in crystalline fluorides [49–53], hydex glass [54], diamond [55],

quartz [56], aluminum nitride (AlN) [57, 58], lithium niobate (LiNbO3) [59], alu-

minium gallium arsenide (AlGaAs) [60], silica (SiO2) [5, 22], and silicon nitride

(SiN/Si3N4) [61] have already been demonstrated. Table A.1 contains some of

the relevant optical properties of the vastly used potential fluoride glasses which

have a broad transparency window. Beryllium fluoride (BeF2) and radium flu-

oride (RaF2) are discarded as BeF2 is soluble in water and harder to shape or

produce MR through the conventional process flow [62] whereas, RaF2 is radio-

active. Most of the fluorides have cubic crystalline (Pearson symbol cF12 and

space group Fm3̄m, #225) structure except magnesium fluoride (MgF2), that has

rutile/tetragonal crystal structure (tP6, space group P42/mnm, #136) and shows

birefringence which makes the material platform interesting for myriad of nonlin-

ear applications. The resonators made of CFs have typically more than a billion

Q-factor, and a threshold power (Pth) as low as 0.30 mW. Additionally, they do

not exhibit nonlinear losses in telecom wavelength due to their high band-gap

energies (Eg) as adduced from Table A.1. Nevertheless, they are not CMOS com-

patible [63].

Silicon-based platforms are often preferred due to several advantages such as

tight optical confinement, high Kerr-coefficient, transparency over a broad wave-
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length range (telecom to mid-IR), low-cost and most importantly its compatibility

with the existing microelectronics industry [64]. High refractive index (RI) con-

trast between silicon and other cladding materials (air, silica) results in strong op-

tical confinement in silicon waveguides which allows sharp waveguide bends that

help to reduce the device footprint [65]. Tight confinement also enhances the effec-

tive nonlinearity, which facilitates the realization of different nonlinear phenomena

with a very low input power [66, 67]. It has been shown that efficient dispersion

engineering in slot waveguide has the potential to achieve broadband frequency

combs [68]. Silicon, on the other hand, exhibits strong 2PA when operating below

2.2µm wavelength [69,70], which has been exploited to realize all-optical logic op-

erations [71] as well as all-optical signal processing [72]. Note that, nonlinear RI,

2PA, free-carrier absorption, etc. depend upon the material structure, bandgap

energy and wavelength of operations. The allotropes of silicon viz. crystalline

silicon (c-Si) (face-centered diamond-cubic, Fd-3m, #227), and amorphous silicon

(a-Si) having bandgap energies of 1.1 eV and ∼1.6–1.7 eV, respectively, are being

used in various optical applications [73] (Table A.2). Although optical waveg-

uides made of c-Si has a very low linear propagation loss (0.2–1 dB/cm) and high

χ(3) nonlinearity, high 2PA reduces the figure of merit (FOM) of c-Si in nonlin-

ear applications [67] thereby restricting the use of c-Si in most of the nonlinear

and quantum photonic applications in the telecom and near-IR (NIR) wavelength

ranges [74]. a-Si is easier to deposit and therefore, has been used to fabricate slot-

waveguides [75]. The waveguides made of a-Si have relatively higher propagation

loss (∼6–7 dB/cm) due to high material absorption [75]. If hydrogenated (a-Si:H),

the effective bandgap/mobility gap of a-Si can increase up to 1.9 eV [73]. Interest-

ingly, though the effective bandgap energy of a-Si or a-Si:H is much higher than

the c-Si, still a-Si and a-Si:H exhibit comparatively larger 2PA in the C-band due

to the amorphous nature of the material (i.e., the presence of exponential band

tails). However, overall FOM for a-Si:H can be improved by 5-15 times as the

nonlinear RI of a-Si:H is an order higher than that of c-Si [73].

Apart from silicon, GaAs, AlGaAs, Ge, etc. have 2PA in C-band owing to

their bandgap energies. AlxGa1−xAs has similar lattice structure (zincblende) as

that of GaAs with slightly larger bandgap depending upon ‘x’, and therefore,

exhibits 2PA in relatively shorter wavelength (Table A.3). Nevertheless, AlGaAs
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is identified as one of the potential nonlinear materials for FC generation due to

its very high nonlinear refractive index [60] and popularly known as the ‘silicon

of nonlinear optics’ ! SiC, chalcogenide glasses such as As2S3, As2Se3 possess 3PA,

whereas, GaN has 4PA in telecommunication wavelength. Silicon also exhibits

3PA and 4PA losses in mid-IR and far-IR wavelength ranges [76]. Due to its low

nonlinear losses, silicon-nitride (SiN) or trisilicon tetranitride (Si3N4) is often a

preferred choice over silicon for nonlinear applications [77] at an expense of Kerr

coefficient (an order lesser than the silicon). Recently, octave-spanning FC has

been demonstrated both in Si3N4 [78] and Si-MRRs [79, 80]. Note that, comb

generation is possible through both the 2nd and 3rd order nonlinear interactions

in Pockels/non-centrosymmetric medium, e.g. AlGaAs, AlN, GaP, as well as in

Kerr/centrosymmetric materials such as Si3N4, Si, etc. either at crystal-surface

or in the presence of external stress [81,82]. Different optical properties of widely

used essential nonlinear materials are listed in Table A.3. Other than these, FC

is also demonstrated in a few exotic platforms, for instance, organically modified

silica micro-cavities by Shen et al. in 2017 [83] with a very low threshold power,

microring resonator partially molded by graphene layer with wide tunability [84],

etc. Thus, a more realistic theoretical study on comb dynamics applicable for a

broad wavelength range of operation becomes indispensable where all the nonlinear

losses and higher-order dispersion terms are being considered. Nonlinear losses

include multi-photon absorptions (2PA, 3PA, 4PA), FCA, and FCD. As discussed

earlier, generalized mean-field LLE is used to model the Kerr FC in a high-Q, high-

finesse optical micro-cavity where the dispersion, nonlinear phase accumulation

over a round-trip and pump detuning is low [36]. It is known that temporal CS

generates Cherenkov radiation (dispersive-wave) in the presence of higher-order

dispersions, which leads to octave-spanning FC [36]. Recently, numerical studies

have shown that FCA-induced FCD causes nonlinear cavity detuning which in

turn helps to generate optical FC even in the absence of linear detuning of the

CW pump [85]. 2PA in telecom/NIR and 3PA with FCA, FCD in short and

mid-IR wavelength range generally inhibit the parametric oscillation in silicon-

waveguide [76]. External reverse-biased p-i-n junction, which is fabricated along

the cross-section of the Si-waveguide, has been employed to combat the free-carrier

induced nonlinear losses [79]. The external bias minimizes the FCA-FCD effects by
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sweeping the generated free-carriers. This method facilitates broadband (2.1µm–

3.5µm [79] and 2.4µm–4.3µm [35]) FC over the mid-IR wavelengths. Breather

solitons have been demonstrated both in Si3N4 and Si-waveguides and the effect

of 3PA along with the corresponding FCA-FCD is taken into consideration in the

theoretical models [35, 86]. Self-pulsating phenomenon in the presence of 2PA is

also discussed [87]. However, a detailed theoretical study that includes the effects

of all nonlinear losses and free-carriers on the generation of Kerr-comb is still

scarce.

In this chapter, we obtain the steady-state homogeneous solutions of free-

carrier driven generalized mean-field LLE and report the reverse Kerr-tilt as a

consequence of FCA-FCD induced nonlinear cavity detuning [88]. The character-

istic polynomials for the steady-state homogeneous solutions of the LLE possessing

all the nonlinear losses are derived having an order greater than three instead of the

well-known cubic polynomial [37]. In subsequent sections, we discuss the threshold

detuning to initiate the BS in the presence of multi-photon absorption and free-

carrier effects, which is a necessary condition to obtain FC. Finally, we generalize

the existing formulations [37, 89, 90] to study the MI in the presence of higher-

order dispersion terms, 2PA, 3PA, 4PA, FCA, and FCD. Most of the parameters

used in simulations are taken from [76]. To validate the analytical model, we solve

the modified LLE along with the coupled rate equations numerically through the

SSFM. Our theoretical study can explain several experimental results [35, 76, 78],

and thereby provides an in-depth understanding of the FC dynamics in the most

practical scenarios.

4.3.2 Theoretical Model

Micro-resonator based Kerr FC can be modeled by mean-field LLE. Solving the

LLE is computationally less intensive than other methods [36, 39], while the nu-

merical results obtained from LLE match with the experiments reasonably well

even for octave-spanning FC.
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Figure 4.7: Effect of 2PA on optical BS. (a) Normalized detuning ∆ vs. normalized 2PA
coefficient Q2, (b) Saddle node positions, X± and X2PA± with Q2 when ∆ is fixed at 2.216.
Intra-cavity power Y with the change in input pump power, X for (c) ∆ =

√
3, (d) ∆ = 2.216,

(e) ∆ = 3.496, and (f) ∆ = 10, with a set of five different values of Q2, in each case (Q2 =
0, 0.2, 0.5, 1.0 and 1.5). Bistable behavior initiates at ∆ =

√
3, 2.216, and 3.496 when the Q2 is

0, 0.2 and 0.5, respectively. For Q2 > 2/
√

3, bistability does not occur even if ∆ is as high as
10.0 (4.7 (a) and 4.7 (f)) with positive and realistic values of X and Y .
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(a) (b)

(c) (d)

Figure 4.8: The possible range of 2PA coefficient for which BS can occur. Intra-cavity power
Y with respect to normalized detuning ∆ at (a) Q2 = 0.2, (c) Q2 = 4. Input pump power
X vs. ∆ at (b) Q2 = 0.2, (d) Q2 = 4.0. Bistability occurs at a positive value of Y and X
if Q2 = 0.2(< 2/

√
3), whereas, BS can be obtained for a very small value of ∆, with negative

values of X and Y when ∆ = 4(> 2
√

3).

4.3.2.1 Normalization of LLE

The generalized mean-field Lugiato-Lefever equation including multi-photon ab-

sorption, FCA and FCD to model the Kerr-comb along with the rate equation can

be written as [76],

tR
∂E (t, T )

∂t
=

[
− (α + iδ0) + iL

∑
k≥2

βk

k!

(
i
∂

∂T

)k
+

(
1 +

i

ω0

∂

∂T

)
(
iγL|E (t, T )|2 − β2PAL

2Aeff

|E (t, T )|2 − β3PAL

3A2
eff

|E (t, T )|4
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−β4PAL

4A3
eff

|E (t, T )|6
)
− σL

2
(1 + iµc)Nc (t, T )

]
E(t, T ) +

√
θEin (4.12)

∂Nc (t, T )

∂T
=
β2PA

2~ω0

|E (t, T )|4

Aeff
2 +

β3PA

3~ω0

|E (t, T )|6

Aeff
3 +

β4PA

4~ω0

|E (t, T )|8

Aeff
4 − Nc (t, T )

τeff

(4.13)

Where t, T and tR (= FSR−1) represent the fast-time, slow-time, and the round-

trip time, respectively. E(t, T ) is the field amplitude, whereas α, δ0, L, βk, ω0, Ein

denote the dimensionless total round-trip loss coefficient, external pump detuning,

cavity perimeter length, k-th order dispersion coefficient, the angular frequency

of the CW-pump and input pump amplitude, respectively. βnPA(n = 2, 3, 4),

σ, µc, Nc, Aeff , teff , and ~ (= h/2π) are the multi-photon absorption coefficient,

FCA, FCD, free-carrier density, effective mode area, carrier lifetime and reduced

Plancks constant, respectively. At first, we neglect the self-steepening term and

normalize [36] the LLE and the rate-equation including multi-photon absorption

(nPA), FCA and FCD terms in convenient compact series forms, as given by Eqs.

4.14 and 4.15, respectively where n runs from 2 to 4.

∂u

∂ξ
= − (1 + i∆)u− 1

2
(1 + iK)φcu− i

s

2

∂2u

∂τ 2
+
∑
k≥3

dk

k!

∂ku

∂τ k

+ i|u|2u−
4∑

n=2

Qn

n
|u|2(n−1)u+ S (4.14)

∂φc

∂τ
=

4∑
n=2

θcn |u|
2n − φc

τc

(4.15)

u(ξ, τ), ξ, τ , ∆, K, φc, s, dk, Qn (n = 2, 3, 4), S , θcn (n=2, 3, 4) and τc are

the normalized- intra-cavity field amplitude, slow-time, fast-time, pump detuning,

FCD coefficient, free-carrier density, second and higher-order dispersion terms,

multi-photon absorption coefficients, pump amplitude, FCA coefficients and nor-

malized carrier lifetime, respectively where possible values of the normalization

factors are given in Table A.4 [91,92]. One can easily calculate the values of nor-

malized parameters that correspond to the experimentally obtained parameters
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from table-2 of Ref. [91]. As the carrier life-time (τeff) is usually greater than

round-trip time (tR), one should consider the carrier accumulation over successive

round-trips through the boundary condition, Nc(t,−tR/2) = Nc(t + ∆t,+tR/2).

Similarly, tc is also greater than normalized cavity round-trip time t′R(= tR/LD)

and φc(ξ,−t′R/2) = φc(ξ + ∆ξ,+t′R/2). At the steady-state, φc(ξ,−t′R/2) =

φc(ξ + ∆ξ,+t′R/2) = φ0 where φ0 is the steady-state free-carrier concentration.

Equations 4.14 and 4.15 can further be simplified by assuming the dominant multi-

photon absorption terms only in the operating pump wavelength range. This

assumption holds satisfactorily true when the nonlinear losses either inhibit the

formation of FC or significantly reduce the span of the frequency comb. Neverthe-

less, Eqs. 4.14 and 4.15 are more suitable if the FC is octave spanned. Therefore,

Eqs. 4.14 and 4.15 that include only the dominant nPA, FCA and FCD, and rate

equations can be rewritten as,

∂u

∂ξ
= − (1 + i∆)u− 1

2
(1 + iK)φcu− i

s

2

∂2u

∂τ 2

+
∑
k≥3

dk

k!

∂ku

∂τ k
+ i|u|2u− Qn

n
|u|2(n−1)u+ S (4.16)

∂φc

∂τ
= θcn|u|

2n − φc

τc

(4.17)

where n=2 in case of 2PA is dominant, n=3 while 3PA is significant and n=4

while 4PA is the dominant nonlinear loss mechanism. As an example, depending

upon the band-gap energy of silicon (i.e. Eg ∼1.1 eV), only 2PA, 3PA or 4PA

is significant at the operating wavelength λ < 2.2µm (telecommunication and

near IR wavelength), λ > 2.2µm to λ < 3.3µm (short wavelength IR) and λ >

3.3µm (mid-IR), respectively, for silicon waveguides. Note that the operating

wavelength range depends upon the doping concentration of the intrinsic material

of the optical waveguide [79]. Free-carriers are generated through multi-photon

absorption that induces additional FCA losses to the system. FCA is associated

with the FCD as free-carriers are also able to modify the RI of the medium [76,79].

Particularly, if the intensity of the input incident pulse is very high, the effects of

FCA and FCD will be crucial. However, in suitable conditions such as low pulse

energy or in the presence of external bias that is able to sweep the free-carriers,
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the effects of FCA-FCD can be neglected [76]. The carrier-evolution given in Eq.

4.15 with respect to the slow-time can be rewritten in the following form after

including the boundary condition:

∂φc

∂ξ
= θcn

(
1

tR

∫ tR
2

− tR
2

|u|2ndτ

)
− φc

τc

≈ θcn |u|
2n − φc

τc

(4.18)

The approximation given in Eq. 4.18 works reasonably well at steady-state or at

the onset of both the SP and the MI. Realistic values of different parameters are

taken from [76] and normalized [91]. In our simulations, the waveguide area and

the effective area (Aeff) are equivalents [76, 93].

4.3.2.2 Steady-state Solutions

We find the stationary (∂u/∂ξ = 0), CW (∂u/∂τ = 0) solutions of Eq. 4.16. In

steady-state [94], the wave amplitude, u follows the relationship with the pump

amplitude, S given by Eq. 4.19.

u =
S

(1 + i∆) + 1
2
(1 + iK)

4∑
n=2

Cn|u|2n − i|u|2 +
4∑

n=2

Qn

n
|u|2(n−1)

(4.19)

If the intra-cavity power and input pump power are denoted by Y (= |u|2) and

X(= |S|2), respectively, the homogeneous, steady-state (HSS) solution of LLE

can be expressed by the characteristics polynomial of Y having a degree of (2n+1)

and can be written as Eq. 4.20 where n varies from 2 to 4 if 2PA, 3PA, and 4PA

all are present. Thus the characteristic polynomial satisfies a nonic polynomial of

Y .

X =
(
1 + ∆2

)
Y − 2∆Y 2 + Y 3 + 2

4∑
n=2

Qn

n
Y n

+ (1 + ∆K)
4∑

n=2

CnY
n+1 −K

4∑
n=2

CnY
n+2 +

4∑
n=2

Qn
2

n2
Y 2n−1

+
1

4

(
1 +K2

) 4∑
n=2

C2
nY

2n+1 +
4∑

n=2

4∑
q=2

CnQq

q
Y n+q (4.20)
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In case, only one out of 2PA, 3PA and 4PA is dominant along with the FCA and

FCD, Eq. 4.20 can be simplified as:

X =
(
1 + ∆2

)
Y − 2∆Y 2 + Y 3 +

2

n
QnY

n + Cn (1 + ∆K)Y n+1

−KCnY
n+2 +

Qn
2

n2
Y 2n−1 +

CnQn

n
Y 2n +

Cn
2

4

(
1 +K2

)
Y 2n+1 (4.21)

Equation 4.21 can be reduced further into Eq. 4.22 in the presence of only multi-

photon absorption whereas, FCA and FCD are negligible.

X =
(
1 + ∆2

)
Y − 2∆Y 2 + Y 3 +

2

n
QnY

n +
Qn

2

n2
Y 2n−1 (4.22)

Equation 4.23 is the HSS solution of LLE while multi-photon absorption, along

with FCA is considered while the effect of FCD can be neglected.

X =
(
1 + ∆2

)
Y − 2∆Y 2 + Y 3 +

2

n
QnY

n + CnY
n+1

+
Qn

2

n2
Y 2n−1 +

CnQn

n
Y 2n +

Cn
2

4
Y 2n+1 (4.23)

It is clearly visible that the Eq. 4.23 becomes quintic, septic and a nonic polyno-

mial of Y in the presence of either 2PA, 3PA or 4PA along with the corresponding

FCA-FCD, respectively. Note that, all these Eqs. 4.20–4.23 are reduced to the

well-known cubic polynomial of Y if all the nonlinear losses are neglected [37],

as given in Eq. 4.11. Cn is defined as the product of θcn and the τc. Thus, the

polynomial of degree (2n+1>3) accounts for the HSS solutions of LLE with all

nonlinear losses.

4.3.3 Bistability and Kerr-tilt

Different important features such as the threshold pump power and threshold

pump detuning that initiate the Turing pattern and eventually the stable FC can

be retrieved from the BS curve and the Kerr-tilt which are obtained from the

steady-state behavior of LLE [37, 89, 90]. In addition, the dynamics of FC can

partially be understood through Kerr-tilt and the BS curve as the CS solutions of

LLE results from the coexistence of patterned and CW solutions [94].
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(a) (b)

(c) (d)

Figure 4.9: Effect of 2PA on Kerr-tilt. (a) The ratio of maximum normalized intra-cavity power
(Ymax) and the normalized pump power (X) with 2PA parameters, (b) normalized detuning (∆)
with 2PA coefficient (Q2) where the maxima occur. Kerr tilts with different 2PA coefficients
when normalized input power is (c) X = 1, and (d) X = 1.5.

4.3.3.1 Threshold Condition to Initiate Optical Bistability

It is known that the minimum value of the normalized cavity detuning that can

initiate the optical BS in the absence of all the nonlinear losses is
√

3 [37, 89, 90].

Multi-photon absorption along with FCA-FCD changes the threshold value of the

cavity detuning. We show, in presence of 2PA, FCA-FCD, the HSS solution of

the LLE satisfies the quintic polynomial of Y . However, if the FCA and FCD are

negligible, the polynomial reduces to a cubic polynomial having 2PA coefficient
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(a)

(b) (c)

Figure 4.10: (a) Bistability curve at ∆ = 2.216, and (b) Kerr-tilt at X = 1, for a set of six
different values of 2PA induced FCA-FCD (C2 and K2, respectively). (c) Dependence of Kerr
tilt on input pump power X when C2 = K2 = 5. For all the cases, the 2PA coefficient, Q2 is
taken as 0.2.

(Q2 6= 0, C2 = 0, K = 0), and is given by:

X =
(
1 + ∆2

)
Y + (Q2 − 2∆)Y 2 +

{
1 +

Q2
2

4

}
Y 3 (4.24)

In this case, as Eq. 4.24 is a cubic polynomial of Y , it is possible to find out

an analytical expression of the threshold value of the normalized cavity detuning

that initiates the optical bistability. Equating the dX/dY = 0, one can obtain

the value of detuning beyond which the intra-cavity power will be multi-valued,
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which is given by Eq. 4.25:

∆± ≥
8Q2

4− 3Q2
2

±
√

3

4− 3Q2
2

(
Q2

2 + 4
)

(4.25)

Negative values of ∆ being neglected. We calculate the threshold value of ∆ from

Eq. 4.25 and plot in Fig. 4.7 (a). It is observed that 2PA increases the threshold

of optical bistability. We also find the saddle-node positions X± of the bistable

curve by plugging the ∆+ in Eq. 4.24.

X± = ± 4

27

(
1

4 +Q2
2

)2(
±4∆∓ 2Q2 +

√
4− 3Q2

2

√
Θ

)
×

[
12 +Q2

2 + ∆2
(
4 + 3Q2

2

)
±Q2

√
4− 3Q2

2

√
Θ

+ 2∆

(
4Q2 ∓

√
4− 3Q2

2

√
Θ

)]
(4.26)

Θ = ∆2 − 16Q2

4− 3Q2
2

∆ +
Q2

2 − 12

4− 3Q2
2

(4.27)

In the absence of 2PA, Eq. 4.26 reduces to the known expression:

X± = ±
(

2

27

)(
±2∆ +

√
∆2 − 3

)(
3 + ∆2 ∓∆

√
∆2 − 3

)
(4.28)

The intra-cavity steady-state power, Y± in the presence of 2PA can be given by,

Y± = −1

3

(Q2 − 2∆)(
1 +

Q2
2

4

) ± 1

6

√
4− 3Q2

2(
1 +

Q2
2

4

) √Θ (4.29)

Y± =
1

3

(
2∆±

√
∆2 − 3

)
(4.30)

which reduces to the well-known Eq. 4.30 when Q2 = 0. In Fig. 4.7 (b), X±

and X2PA± represent the values of normalized input pump power in the absence

and presence of 2PA, respectively at which the BS starts (saddle nodes). In the

absence of 2PA, both the curves (red curve) for X+ (X−, blue curve) and the cyan

curve for X2PA+ (X2PA−, magenta) initiate from the same point, as shown in Fig.
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(a) (b)

Figure 4.11: Effective detuning ∆eff (red curve) and FCD-induced detuning ∆FCD (green
curve), with the variation in pump detuning when (a) C2 = K2 = 2, and (b) C2 = K2 = 5 at
input pump power, X = 1 in both the cases. Input pump detuning is also plotted (blue-curve)
both in (a) and (b) to indicate the reference level in the absence of FCA-FCD. ∆FCD can possess
multiple values if FCA-FCD coefficients are high.

4.7 (b). For Q2 = 0.2, when the detuning, ∆ is 2.216, both the values of X+ and

X− merge into 2.7762 and indicates that if the Q2 is large, BS does not occur.

As an example, we show that the 2PA increases the BS threshold as presented in

Figs. 4.7 (c)–4.7 (f). If there is no 2PA, the BS occurs at ∆ =
√

3. However, if

the 2PA coefficient Q2 is 0.2 and 0.5, the minimum pump detuning that initiates

the BS are 2.216 and 3.496, respectively. Also, it can easily be found that, for any

of the two roots (∆+ or ∆−) of Eq. 4.25 to be positive, the condition given by

Eq. 4.31 has to be satisfied:

Q2 ≤
2√
3

or Q2 ≥ 2
√

3 (4.31)

Earlier, it has been predicted numerically that after a certain maximum value of

2PA coefficient, BS may cease to exist [95]. In contrast, our theoretical model

predicts that it is possible to observe BS at Q2 ≥ 2
√

3 with a very small detuning

(even less than
√

3) (as shown in Figs. 4.8(a)–4.8 (d)). For Figs. 4.8 (a)–4.8 (b),

at first, we consider the case where Q2 is less than 2/
√

3 and show the values of

intra-cavity and pump power for which the BS initiates. On the other hand, in

Fig. 4.8 (c) we plot the intra-cavity and pump power for which the BS occurs

when Q2 > 2
√

3. To obtain BS in the latter case, the input pump power X and
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intra-cavity power Y both have to be negative, which is not possible in practice.

Therefore, we restrict our analysis for 2PA coefficient within 2/
√

3(≈ 1.154) and

discard the other possibilities. It should also be noted that although optical BS

is a necessary condition for the formation of the optical cavity soliton, it is not a

sufficient condition [95] to generate the cavity soliton.

B. Kerr-tilt with nonlinear losses

Resonance of a cavity is tilted as a consequence of Kerr nonlinearity. In these

circumstances, the resonance peak occurs at the normalized pump detuning ∆ =

Y = X [94]. Therefore, the real roots of Eq. 4.32 which can be obtained by

putting ∆ = Y in Eq. 4.22, yield the maximum value of Y , i.e., Ymax for a

particular normalized pump power, X in the presence of 2PA (n=2).

Q2
n

n2
Y 2n−1 +

2

n
QnY

n + Y −X = 0 (4.32)

The ratio of normalized intra-cavity power with respect to the normalized pump

power (i.e. Ymax/X) and the corresponding normalized detuning ∆ at which the

maxima occur are plotted in Figs. 4.9 (a) and 4.9 (b), respectively for different

values of normalized TPA coefficients Q2 (0-0.5). Figs. 4.9 (c) and 4.9 (d) show

the Kerr-tilt for three distinct values of Q2 (0, 0.2, and 0.5) at two different input

pump powers (X = 1 and 1.5). It is apparent that higher the input pump power,

greater is the slope of the Kerr-tilt, which means one requires larger external pump

detuning to obtain maximum intra-cavity power. Besides, if the 2PA is present,

with the increase in input pump power, intra-cavity power decreases as the non-

linear absorption is more prominent at comparatively high input power.

C. Bistability and Kerr-tilt in presence of FCA-FCD

In the previous section, we have provided a detailed quantitative analysis of the

shift in Kerr-tilt as well as the reduction in the intra-cavity output power in the

presence of 2PA. In this section, we discuss the optical BS and Kerr-tilt in the

presence of FCA-FCD. To investigate the effect of FCA-FCD, we have assumed

arbitrary values of FCA and FCD coefficients. The BS curves at a fixed pump

detuning are plotted in Fig. 4.10 (a) for different values of FCA and FCD co-
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(a) (b)

(c) (d)

Figure 4.12: Kerr-tilt (Y/X) with the change in effective detuning (∆eff), instead of pump
detuning (∆) for two different pump powers: (a), X = 1, and (b) X = 2.5. FCD induced
steady-state cavity detuning (∆FCD) with the intra-cavity power (Y ) when the free-carriers are
generated due to the (c) 2PA (solid blue curve), (d) 3PA (solid red curve), and 4PA (dotted
green curve).

efficients. Figures 4.10 (b)-4.10 (c) exhibit the Kerr-tilt as a function of pump

detuning. FCA induced loss has a similar effect on BS curve that of the multi-

photon absorption. It is also evident that FCD introduces a cavity detuning that

manifests itself through the reverse Kerr-tilt. In practice, reverse Kerr-tilt shown

in Fig. 4.10 (b) indicates that with suitable FCD-induced cavity detuning, one

can obtain maximum intra-cavity power even without any external pump detun-

ing (solid pink curve). For a fixed value of FCA-FCD coefficient, the reverse tilt

increases with the increase in the input pump power X, as depicted in Fig. 4.10

(c). It is seen that the intra-cavity power becomes multivalued with large detun-
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ing and pump power. Similar kind of reverse Kerr-tilt as shown in 4.10 (b)-4.10

(d) is also reported in a recently published manuscript that discusses the possi-

bility of parametric oscillations in silicon micro-cavities in the presence of 2PA [96].

D. FCA-FCD induced cavity detuning

To explain the reverse Kerr-tilt analytically, we further modify the normalized

LLE given in Eq. 4.16 as:

∂u

∂ξ
= − (1 + i∆eff)u− 1

2
φcu− i

s

2

∂2u

∂τ 2

+
∑
k≥3

dk

k!

∂ku

∂τ k
+ i|u|2u− Qn

n
|u|2(n−1)u+ S (4.33)

∆eff = ∆ + ∆FCD = ∆ +
Kφc

2
(4.34)

where the effective cavity detuning ∆eff is defined as the sum of the external

pump detuning ∆ and the FCD-induced detuning (∆FCD). It should be noted

that the ∆eff changes over round-trips. Effective detuning ∆eff (solid red curve)

and FCD-induced detuning ∆FCD (solid green curve), for two sets of FCA-FCD

coefficients, C2 = K2 = 2, and C2 = K2 = 5 at input pump power X = 1 are

plotted in Figs. 4.11 (a) and 4.11 (b), respectively. In both the cases, input pump

detuning has also been plotted (solid blue-curve) to indicate the reference level

in the absence of FCA-FCD. Figs. 4.11 (a) and 4.11 (b) show how the overall

cavity detuning is affected by the FCD induced detuning at different FCA-FCD

coefficients. The intersection between the red and the green curves indicates the

effective cavity detuning when the external pump detuning is zero. Generation of

stable frequency comb even without external pump detuning with suitable initial

pump power has been previously demonstrated [85].

Note that, in order to excite the temporal cavity soliton in the microresonator

experimentally, one requires to modulate the phase of the microresonator driving

field which can be done through electrical or thermal detuning. Recently, the

effect of thermo-optical chaos on soliton generation is studied both numerically

and experimentally [97]. Thermal detuning can easily be included in our numer-

ical modeling following the approach adopted in [97]. However, we assume that
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the microresonator is in thermally equilibrium state and neglect such thermally

induced detuning while studying the steady-state behavior and the MI in the pres-

ence of all nonlinear losses. We also plot the normalized intra-cavity power (Y/X)

with the change in ∆eff instead of ∆ in Figs. 4.12 (a) and 4.12 (b) for two differ-

ent values of X. As expected, this time, there is no tilt in the opposite direction.

When the carrier accumulation reaches in the steady state, the effective detuning,

∆eff can be written as

∆
(Steady−state)
eff = ∆ +

KCn|u0|2n

2
= ∆ +

KCnY0
n

2
(4.35)

where u0 is the steady-state amplitude, and the Y0 is the steady-state intra-cavity

power. The steady-state FCD-induced cavity detuning for 2PA, as plotted in Fig.

4.12 (c), is much larger than the FCD-induced cavity detuning due to the 3PA and

4PA as shown in Fig. 4.12 (d). We have considered realistic values of FCA-FCD

coefficients calculated from [76, 91] in order to obtain the steady-state maximum

FCD induced cavity detuning for 2PA, 3PA, and 4PA as shown in Figs. 4.12 (c)

and 4.12 (d).

4.3.4 Generalized Expression: Bistability & Self-Pulsation

The stability of Eq. 4.21 can be analyzed by perturbing the steady-state solutions

u0 and φ0 with small variation in the amplitude, δu(ξ) and the free-carriers, δφc(ξ)

with respect to the slow-time, respectively. Thus if, u(ξ) = u0 + δu(ξ), and

φc(ξ) = φ0+δφc(ξ), then the perturbation array, ε = (δu, δu∗, δφc)
T in the presence

of nPA and corresponding FCA-FCD is found to satisfy the following linearized

Eq.:

dε

dξ
= JBS,SP

(n)ε (4.36)
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where JBS,SP
(n) is the 3×3 Jacobian matrix of Eqs. 4.21-4.22, and is given by:

JBS,SP
(n) =

( RBS,SP
(n) + iIBS,SP

(n) −
(
n−1
n
Y n−2Qn − i

)
u2

0 −1
2

(1 + iK)u0

−
(
n−1
n
Y n−2Qn + i

)
u∗0

2 RBS,SP
(n) − iIBS,SP

(n) −1
2

(1− iK)u∗0

nY n−1u∗0θcn nY n−1u0θcn − 1
τc

)

(4.37)

where RBS,SP
(n) and IBS,SP

(n) are:

RBS,SP
(n) = −

[
1 +

Cn

2
Y n +QnY

(n−1)

]
(4.38)

IBS,SP
(n) = −

[
∆ +

KCn

2
Y n − 2Y

]
(4.39)

The conditions for BS and SP (free-carrier oscillation) can be obtained from

JBS,SP
(n) in the presence of FCA-FCD which can be written in a general form

as:

BS: det
(
JBS,SP

(n)
)
> 0 (4.40)

SP:

{
tr
(
JBS,SP

(n)
)2

− tr

((
JBS,SP

(n)
)2
)}

tr
(
JBS,SP

(n)
)
− 2 det

(
JBS,SP

(n)
)
> 0

(4.41)

where det and tr are the determinant and the trace, respectively. Equation 4.41

corresponds to the Hopf-bifurcation.

4.3.5 Linear Stability Analysis

In this section, we perform the linear stability analysis of the stationary CW so-

lutions (u0 and φ0) of free-carrier driven LLE. The evolution of normalized carrier

density and signal amplitude due to the spatiotemporal perturbations are given

by Eqs. 4.42 and 4.43, respectively in the presence of nonlinear losses including

FCA-FCD. In each case, we find the MI gain λ with the normalized side-band

frequency Ω. We also show the dependence of MI gain and bandwidth on normal-
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(a) (b)

Figure 4.13: (a) MI-gain lobes λ± in the absence and presence of 2PA for Ω > 0, (b) λ+ in
the presence and absence of 3PA. Simulation parameters are: s = 1, Y = 2.5,∆ = 7.5, Q2 =
1,K2 = 0.05, C2 = 0.1, θc2 = 0.05, θc3 = 6.31 × 10−7, Q3 = 8.73 × 10−4, C3 = 0.049,K3 = 4.9.
Effect of third-order dispersion (d3 = 0.1) is also considered in Fig. 4.13 (b) (red-curve). Third
order dispersion induces asymmetry in the gain lobe with respect to Ω = 0.

ized detuning ∆, signal power Y , and higher-order dispersion. Finally, we provide

a general expression of MI-gain for multi-photon absorptions. Throughout our

manuscript, superscript (n) stands for nPA and unlike the powers, the super and

subscripts are not italics.

φc (ξ) ≈ φ0 (ξ) + δφ (ξ) (4.42)

u (ξ, τ) = u0 (ξ) + u+ (ξ) eiΩτ + u− (ξ) e−iΩτ (4.43)

The carriers cannot follow the quick oscillation of the optical field and therefore,

unlike the optical field amplitude (u) the carrier density cannot change in fast-

time τ . In the presence of nPA at the onset of the MI, the carrier density is equal

to φ0. Substituting the φc and u given by Eqs. 4.42 and 4.43 into Eqs. 4.14

and 4.15 respectively, the general expressions for homogeneous solutions for the

normalized free-carrier and the intra-cavity field amplitude (φ0, u0, respectively)

can be obtained as:

φ0 = θcnτc|u0|2n = Cn|u0|2n (4.44)
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∂u0

∂ξ
= − (1 + i∆)u0 −

1

2
(1 + iK) θcnτc|u0|2nu0

+i|u0|2u0 −
Qn

n
|u0|2(n−1)u0 + S (4.45)

Whereas, the perturbations signal amplitudes (u+ and u−
∗) are written as:

∂u+

∂ξ
= − (1 + i∆)u+ −

1

2
(1 + iK)φ0u+ + i

s

2
Ω2u+

− id3

6
Ω3u+ + i

(
2|u0|2u+ + (u0)2u∗−

)
− Qn

n

(
n|u0|2(n−1)u+ + (n− 1) |u0|2(n−2)(u0)2u∗−

)
and, (4.46)

∂u∗−
∂ξ

= − (1− i∆)u∗− −
1

2
(1− iK)φ0u

∗
− − i

s

2
Ω2u∗−

+ i
d3

6
Ω3u∗− − i

(
2|u0|2u∗− + (u∗0)2u+

)
− Qn

n

(
n|u0|2(n−1)u∗− + (n− 1) |u0|2(n−2)(u∗0)2u+

)
Note that for the weak amplitudes and exponentially growing solutions, u−

∗ = u+.

The Jacobian, JMI to find MI growth rate (gain) can be written as:

JMI =

[
∂
∂u+

(
∂u+

∂ξ

)
∂

∂u∗−

(
∂u+

∂ξ

)
∂
∂u+

(
∂u∗−
∂ξ

)
∂

∂u∗−

(
∂u∗−
∂ξ

)] =

[
JMI

11 JMI
12 (u0)2

JMI
21 (u∗0)2 JMI

22

]
(4.47)

The eigenvalues of the matrix JMI yields the modulation instability growth-rate,

λ which is calculated by equating the det(JMI− λI) = 0 where I is a 2×2 identity

matrix. The growth of the side-band amplitude can be expressed as u+ = C ·
exp(λξ) where C is an arbitrary constant. One can write Jpq

MI in the following

form:

JMI
pq =

 R
(n)
MI + (−1)(q−1)iI

(n)
MI ; when, p=q(

−α(n)
MI

)
+ (−1)(q)i

(
−β(n)

MI

)
; when, p 6= q

(4.48)
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The MI-gain can be obtained by solving the quadratic Eq. 4.49 of λ only for the

real values: 
{
RMI

(n) − λ
}2

+
{
IMI

(n)
}2

{αMI
(n)}2

+
{
βMI

(n)
}2 − Y 2

 = 0 (4.49)

Here, the LLE is truncated up to the 3rd order dispersion. RMI
(n),IMI

(n), α(n), and

β(n) are given as,

RMI
(n) = −

[
1 +

Cn

2
Y n +QnY

(n−1)

]
(4.50)

IMI
(n) = −

[
∆ +

KCn
2

Y n − s

2
Ω2 +

d3

6
Ω3 − 2Y

]
(4.51)

α
(n)
MI =

[
n− 1

n
QnY

(n−2)

]
(4.52)

β
(n)
MI = −1 (4.53)

Equation 4.49 can be simplified in a more convenient form given by Eq. 4.54,[
λ2 − 2R

(n)
MIλ+R

(n)
MI

2

+ I
(n)
MI

2

−
(
α

(n)
MI

2

+ β
(n)
MI

2
)
Y 2

]
= 0 (4.54)

Note that, in absence of all nonlinear losses (multi-photon absorption, FCA, FCD)

and the higher-order dispersion terms, RMI
(n), IMI

(n), αMI
(n), and βMI

(n) becomes

−1, −(∆ − sΩ2/2 − 2Y ), 0 and −1, respectively such that the λ reduces to the

well-known expression 4.55 for MI-gain [89,90]:

λ± (Ω) = −1±

√
4Y

(
∆− sΩ2

2

)
−
(

∆− sΩ2

2

)2

− 3Y 2 (4.55)

A. MI in normal dispersion regime (s = +1)

It is known that unlike straight waveguide or optical fiber, MI can occur in
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Figure 4.14: Real part of the MI gain λ vs. (a) Ω and ∆ (at Y = 2.5), (b) Ω and Y (at
∆ = 7.5) in absence of all nonlinear losses. Variation of λ with (c) Ω and ∆ (at Y = 2.5), (d) Ω
and Y (at ∆ = 7.5) while 2PA, FCA-FCD are present. Change in λ with the change in (e) Ω
and ∆ (at Y = 2.5), and (f) Ω and Y (at ∆ = 7.5) when 3PA, FCA-FCD are present. λ with (g)
Ω and ∆ (at Y = 2.5), and (h) Ω and Y (at ∆ = 7.5) in presence of 4PA, FCA-FCD. For all the
cases, 3rd order dispersion (d3 = 0.1) is taken into consideration. Other simulation parameters
are: s = 1, θc2 = 0.0005, Q2 = 0.93, C2 = 29.81, K2 = 7.5 (at λ0 ∼ 1.56µm); θc3 = 6.31× 10−7,
Q3 = 8.73× 10−4, C3 = 0.049, K3 = 4.9 (at λ0 ∼ 2.4µm); θc4 = 6.018× 10−8, Q4 = 6.16× 10−6,
C4 = 4.66 × 10−3, K4 = 2.9 (at λ0 ∼ 4.0µm). The cyan and magenta lines overlaid on the 2D
plots indicate the corresponding values of λ for ∆ = 7.5 and Y = 2.5, respectively.
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synchronously driven optical cavities or ring lasers even if the system is pumped

in normal dispersion regime [89]. As a result, a stable stationary train of pulses

can be generated in the cavity irrespective of the sign of the dispersion.

In this section, we discuss the dependency of MI-gain λ on Ω and ∆ (at Y = 2.5)

as well as on Ω and Y (at ∆ = 7.5), respectively in the normal dispersion region.

At first, we plot MI-gain, λ± with respect to normalized frequency Ω(> 0) in

Fig. 4.13 (a). It is seen that 2PA in silicon can completely inhibit the parametric

oscillations. Fig. 4.13 (b) shows the MI-gain in the presence of 3PA. Non-zero

third-order dispersion (d3 = 0.1) induces the asymmetry in MI-gain lobe with

respect to Ω = 0 and thereby enhances the MI-bandwidth [36]. The values of

nPA, FCA-FCD coefficients are taken from [76]. Figs. 4.14 (a) and 4.14 (b)

depict the dependency of MI gain λ on Ω and ∆(at Y = 2.5) as well as on Ω and

Y (at ∆ = 7.5), respectively, in normal dispersion region while all the nonlinear

losses are ignored.

To produce rest of curves (Fig 4.14 (c)-4.14 (h)) we use the realistic values

of nPA, FCA-FCD coefficients for silicon (c-Si) waveguides from [76, 91]. In the

presence of 2PA no parametric gain lobe has been observed (Fig. 4.14 (c) and 4.14

(d)). The MI gain in the presence of 3PA, 4PA, and the corresponding FCA-FCD

is plotted in the Figs. 4.14 (e)–4.14 (h). The cyan and magenta lines are drawn on

the 2-D plots to indicate the corresponding values of λ for ∆ = 7.5 and Y = 2.5,

respectively [89]. Projection of the 2-D plot on each axis through the shadow-plot

helps to anticipate the approximate values of the MI-gain with respect to different

parameters.

B. MI in anomalous dispersion regime (s = −1) and the Effect of FCA-

FCD on MI-growth rate

Similar curves can be plotted for the MI gain in case of anomalous dispersion

regime of operation. We observe there is no parametric gain in presence of 2PA

at telecom wavelengths. It is previously reported by Lau et al. [76] that in MIR

while the dominant loss mechanism in 3PA, the effect of 3PA induced FCA-FCD is

prominent and the parametric oscillations can only take place if the pump power

is sufficiently low [76]. In their simulations, the waveguide is pumped at the

anomalous region (s = 1). This claim can be supported analytically through the
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Figure 4.15: MI-gain λ with respect to Ω and ∆ when Y is fixed at 2.5 in (a) absence of all
nonlinear losses, (b) presence of only 3PA and no FCA-FCD, (c) presence of 3PA, FCA-FCD.
MI-gain λ with respect to Ω and ∆ when Y = 10.5 in (d) absence of all nonlinear losses, (e)
presence of only 3PA and no FCA-FCD, (f) presence of 3PA, FCA-FCD. It is observed that
if input power X is high (high intra-cavity power Y ) parametric oscillation ceases to occur in
presence of FCA-FCD along with 3PA.

MI-analysis in presence of nonlinear losses as shown in Fig. 4.15. We plot the λ

with Ω and ∆ in Fig. 4.15 (a) in absence of any nonlinear losses, whereas Fig. 4.15

(b) dictates the MI-gain in the absence of FCA-FCD while 3PA is present. Fig.

4.15 (c) shows the MI-gain in presence of 3PA, FCA-FCD at Y = 2.5. Similarly,

when the intra-cavity power is almost quadrupled (Y = 10.5) the corresponding

MI-gain has been plotted in Figs. 4.15 (d)–4.15 (f) for three different cases as

described earlier. It is conspicuous from Figs. 4.15 (c) and 4.15 (f) that there is

no parametric oscillation if FCA-FCD is present while the intra-cavity power is

high (Y = 10.5) however, MI gain lobes exist for relatively low intra-cavity power

(Y = 2.5). Therefore, in the case of 3PA, the principle mechanisms to inhibit
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the comb formation are 3PA-induced FCA and FCD [76]. To obtain parametric

oscillation in presence of 3PA, either the generated free-carriers have to be swept

away by suitable external-bias or the input pump power X (consequently, Y ) has

to be sufficiently low.

(a) (b)

Figure 4.16: (a) Maximum MI-gain with the change in intra-cavity power Y with a set of four
2PA coefficients (Q2 = 0, 0.2, 0.5, 0.9), (b) Range of ∆ for which MI can initiate with different
2PA coefficients (Q2 = 0, 0.2, 0.5, 0.9). As 2PA coefficient increases, the range of ∆ for which MI
can initiate, becomes narrower.

4.3.6 Condition for Maximum MI-Gain and Threshold In-

tensity

It is known [90] that the MI-gain in the absence of nonlinear losses can be given by

Eq. 4.56 while the maximum gain (λ = λmax = Y − 1) can be achieved if ∆k = 0,

λ± (Ω) = −1±
√
Y 2 − (∆k)2 (4.56)

where ∆k is given by,

∆k =
(

∆− s

2
Ω2 − 2Y

)
(4.57)

Therefore, the steady state solution will always be stable if Y < 1. However, in

presence of nonlinear losses, the solution of λ can be written as 4.58 instead of Eq.
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4.56.

λ(n) = R
(n)
MI ±

√{(
α

(n)
MI

)2

+
(
β

(n)
MI

)2
}
Y 2 −

(
I

(n)
MI

)2

(4.58)

In this case, the maximum gain can be obtained if IMI
(n) = 0. One can write the

general expression of λmax in terms of Y , αMI
(n), βMI

(n), and RMI
(n) as follows:

λ(n)
max

= Y

√{(
α

(n)
MI

)2

+
(
β

(n)
MI

)2
}

+R
(n)
MI (4.59)

If the FCA and FCD are neglected, the expression of maximum gain becomes:

λ(n)
max

= Y

√(
n− 1

n

)2

Q2
nY

2(n−2) + 1−
(
1 +QnY

n−1
)

(4.60)

We further deduce the expression for the minimum intensity to initiate the MI.

It can be shown after algebraic simplification that the steady-state solution will

always be stable for,

Y ≤ −R(n)
MI√{(

α
(n)
MI

)2

+
(
β

(n)
MI

)2
} (4.61)

As an example, in the presence of only 2PA, the value of Y for which the steady-

state solution of the LLE will always be stable in the presence of only 2PA is,

Y ≤ 1(√(
Q2

2

4
+ 1
)
−Q2

) (4.62)

Maximum MI gain λmax is plotted in Fig. 4.16 (a) for four different values (0,

0.2, 0.5, and 0.9) of 2PA coefficients Q2 in the absence of FCA-FCD. It should be

noted that 2PA coefficient for silicon at telecom wavelength, Q2 is ∼ 0.9.
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4.3.7 Range of Normalized Detuning to obtain MI

In this section, we find the range of possible normalized detuning to initiate the

MI and compare the results for different cases such as, while all the nonlinear

losses are absent, only nPA is present, both the nPA, FCA are present, and all the

nonlinear losses are present. The condition for threshold can be found by equating

λ given by Eq. 4.59 to 0. It is known [90] that in absence of nonlinear losses,

s

2
Ω2 = (∆− g±) (4.63)

where g± can be expressed in terms of Y ,

g± = 2Y ±
√
Y 2 − 1 (4.64)

Note that, in anomalous dispersion region, for Ω to possess real solution, ∆ must

be less than g+ whereas, for normal dispersion regime, the required detuning ∆

should be more than g− for MI to occur. When, the pump detuning lies in between

∈(g−, g+), i.e. g− < ∆ < g+, MI can be initiated for both the anomalous and

normal dispersion regimes. Similarly, in presence of all the nonlinear losses, the

general expression to obtain the threshold condition can be determined from Eq.

4.54, {
I

(n)
MI

}2

=

{(
α

(n)
MI

)2

+
(
β

(n)
MI

)2
}
Y 2 −

{
R

(n)
MI

}2

(4.65)

However, the relation of MI Gain, Ω with ∆ and output power Y obtained from

the Eqs. 4.63-(IR) can be given by a 3rd-th order polynomial of Ω,

−d3

6
Ω3 +

s

2
Ω2 =

(
∆− g(n)′

±

)
(4.66)

where,

g
(n)
1± = 2Y ±

√{(
α

(n)
MI

)2

+
(
β

(n)
MI

)2
}
Y 2 −

(
R

(n)
MI

)2

(4.67)
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g(n)′

± = g
(n)
1± −

KCn
2

Y n (4.68)

If the carrier-lifetime can be reduced by sweeping the carriers applied the external

bias voltage across the device cross-section, which often can be done by forming a

p-i-n junction across the waveguide cross-section, then the square of τc term can

be negligible. The situation is equivalent to the case when nPA is present while

FCA and FCD are absent. In this case, neglecting the higher-order dispersion

terms (dk(k ≥ 3) = 0) the Eqs. 4.66-4.68 are reduced into,

s

2
Ω2 =

(
∆− g(n)

1±

)
(4.69)

For 2PA without FCA-FCD,

s

2
Ω2 =

(
∆− g(2)

1±

)
(4.70)

g
(2)
1± = 2Y ±

√√√√((n− 1

n

)2

Q2
nY

2(n−2) + 1

)
Y 2 − (1 +QnY n−1)2 (4.71)

In Fig. 4.16 (b) we plot the range of ∆ both in absence of all nonlinear losses and

in presence of only 2PA, for which the steady-state solution can be unstable. It

is discussed earlier that in absence of all nonlinear losses the steady-state solution

will be unstable in the range: g− < ∆ < g+ where g± is given by Eq. 4.70. From

Fig. 4.16 (b) it can be seen clearly that with the gradual increase in the 2PA

coefficient, the range of ∆ for which MI can initiate, gradually shrinks.

Recently, we have noticed an in-depth existing study on optical micro-cavity

that discusses the generation of Turing pattern analytically for two distinct cases

considering either intensity dependent nonlinear losses or intensity dependent non-

linear refractive index of the medium. However, the mathematical framework out-

lined in [98] did not include the effects of multi-photon absorptions, FCA and FCD.

Another interesting work led by Chembo [46] presents the generation of Turing

rolls as well as the generation of bright and dark temporal solitons in anomalous

and normal dispersion regimes, respectively without considering nonlinear losses.

We believe that our work can further be extended following the mathematical
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analysis given in [46, 98] including all the nonlinear losses and our formalism is

amenable to the incorporation of other associated physical effects like thermal

detuning [97].

4.4 Summary and Conclusion

To conclude the chapter, we have derived analytical expressions of steady-state

homogeneous solutions of free-carrier driven Kerr FC. Higher-order (> 3) charac-

teristic polynomial of intra-cavity power describing the steady-state homogeneous

solution of the modified LLE are discussed in detail. The nonlinear phase detun-

ing of the cavity has been observed through negative Kerr-tilt. We also find an

analytical expression for the steady-state FCD induced cavity detuning. Expres-

sion of MI-gain in the presence of all nonlinear losses is found, and the threshold

detuning along with the range of normalized pump detuning to initiate MI are

discussed. The maximum allowed value of 2PA coefficient for which the optical

bistability can occur and the analytical expression of the threshold pump detuning

to initiate the MI are important parameters from the experimental point of view.

Therefore, our theoretical study is a step towards predicting comb dynamics in

the realistic cases where all the nonlinear losses and higher-order dispersion are

present.
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ment of the cesium D1 line with a mode-locked laser,” Physical Review Letters, vol. 82,

no. 18, pp. 3568–3571, 1999.

[14] A. Beyer, L. Maisenbacher, A. Matveev, R. Pohl, K. Khabarova, A. Grinin, T. Lamour,
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lithium niobate microring resonator,” Optica, vol. 4, no. 12, pp. 1536–1537, 2017.

[60] M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, “Efficient frequency comb generation in

AlGaAs-on-insulator,” Optica, vol. 3, no. 8, pp. 823–826, 2016.

[61] K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R.

Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in

chip-based frequency combs,” Optics Express, vol. 21, no. 1, pp. 1335–1343, 2013.

[62] K. Saleh and Y. K. Chembo, “Advances in microwave generation using kerr optical fre-

quency combs,” in Laser Resonators, Microresonators, and Beam Control XIX, vol. 10090.

International Society for Optics and Photonics, 2017, p. 100900P.

[63] A. Dutt, “On-chip quantum and nonlinear optics: from squeezing to spectroscopy,” Ph.D.

dissertation, Cornell University, 2017.

[64] D. J. Lockwood and L. Pavesi, “Silicon fundamentals for photonics applications,” in Silicon

Photonics. Springer, 2004, pp. 1–50.

149



Kerr Frequency-comb with Nonlinear Losses

[65] Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-µm radius,”

Optics Express, vol. 16, no. 6, pp. 4309–4315, 2008.

[66] Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveg-

uides: modeling and applications,” Optics Express, vol. 15, no. 25, pp. 16 604–16 644, 2007.

[67] J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nature photonics,

vol. 4, no. 8, pp. 535–544, 2010.

[68] L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Analysis and engineering of chro-

matic dispersion in silicon waveguide bends and ring resonators,” Optics Express, vol. 19,

no. 9, pp. 8102–8107, 2011.

[69] B. Jalali, “Silicon photonics: Nonlinear optics in the mid-infrared,” Nature Photonics, vol. 4,

no. 8, pp. 506–508, 2010.

[70] L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon

waveguides,” Optics Letters, vol. 32, no. 4, pp. 391–393, 2007.

[71] Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Optics

Express, vol. 15, no. 3, pp. 924–929, 2007.

[72] C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-

insulator waveguides for all-optical signal processing,” Optics Express, vol. 15, no. 10, pp.

5976–5990, 2007.

[73] K. Li and A. C. Foster, “Nonlinear optics in hydrogenated amorphous silicon,” IEEE Jour-

nal of Selected Topics in Quantum Electronics, vol. 24, no. 6, pp. 1–12, 2018.

[74] C. A. Husko, A. S. Clark, M. J. Collins, A. De Rossi, S. Combrié, G. Lehoucq, I. H. Rey,
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C H A P T E R 5

Dual-pump Kerr Microresonators

In this chapter, we explore the advantages of using dual-pump Kerr microres-

onator (MR) frequency comb (FC) over conventional single-pump Kerr FC. In the

first part of the chapter, detailed analytical formulations of dual-pump Kerr FC

supported by numerical results are presented. In the next part of this chapter,

we uncover the synchronous nature and the robustness of dual-pump configura-

tion against the writing jitters, third-order dispersion, self-steepening effects, and

stimulated Raman scattering in optical buffer applications. Finally, we wind up

the chapter presenting a brief discussion on the existence of super-cavity solitons

in dual-pumped Kerr MRs. 1

5.1 Fundamentals and Background

Frequency comb offers an exciting field of active research, due to its potential ap-

plications in frequency metrology, arbitrary waveform synthesis, precision-clocking

and as highly coherent integrated optical sources or data carriers [1–6] for optical

communications. Kerr microresonator based FC has paved the way for the gen-

eration of on-chip mode-locked cavity soliton (CS) [1]. CS belongs to a class of

1Publications related to this chapter are [26], [27], [64], [68], [76].
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dissipative solitons which are stable, temporally confined optical pulses and cor-

responds to a broad FC, where the frequency lines are typically separated by one

cavity free spectral range (FSR) apart [7, 8]. Microresonators are the dissipative

systems that exploit the optical nonlinearity to generate CSs under the applica-

tions of an external driving field. A single continuous wave (CW) pump is mostly

employed in such configuration to generate the CS from vacuum fluctuations in

a high Q-factor cavity by transitioning through the modulation instability (MI)

and chaotic regime [9, 10], which is realized by making adjustments to the pump

detuning and the pump power [7–10]. Apart, from FC corresponding to CS, there

are other variants including Turing pattern, and variable FSR frequency Comb,

etc. [4].

Singly-pumped MR based FC has been recently employed for terabit commu-

nications [11, 12], high data-rate transmission via coherent wavelength division

multiplexing (WDM), and orthogonal frequency domain multiplexing schemes.

Micro-resonator based FC provides attractive solutions for RF photonics appli-

cations [13], spectroscopy [14] and optical frequency synthesizer [15]. Recently,

MR based tunable repetition rate clock source has also been demonstrated [16].

Chip-scale transceivers can be realized based on microresonator FC operating at

low powers. Such devices are capable of generating comb lines that span over

enormous bandwidth often covering multiple telecommunication bands [17]. This

clearly indicates that MR based FC is a potential candidate for optical commu-

nication systems which is capable to replace separate laser sources supporting

individual channels in WDM systems and equally useful for wide bandwidth uti-

lization. Therefore, it is highly desirable to produce several coherent comb lines

spanning the spectrum of interest.

Although CW-driven Kerr FC has been widely used for the above-mentioned

applications, researchers are now looking at different configurations and material

platforms for more versatility, flexibility, and application-specific benefits. These

endeavors include the dual-comb spectroscopy, coupled microresonator-based FC

for improving the nonlinear conversion efficiency, FC generation in MRs possessing

simultaneous second and third order nonlinearity for locking the carrier envelope

offset frequency [5, 18], use of organic molecules, graphene or carbon nano-tube

for low-threshold, and tunable FC generations, respectively [19–22] etc. Deploying
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Figure 5.1: Dual-pump Kerr MR frequency comb. Two CW pumps (CW1 and CW2) of slightly
different center frequencies are deployed. The first source can be modulated with an electro-
optic modulator (EOM) or an acousto-optic modulator (AOM). Both the inputs are coupled
to the device under test (DUT) (silicon-nitride microring resonator in this case) through a
50:50 combiner, a fiber polarization controller (FPC), by any of the fiber-to-waveguide (edge-
to-edge/butt/grating) coupling methods. The output from the MRR is collected through an
objective and divided into two parts by a splitter. The Smaller part of the output (O/P1) is
observed by an optical spectrum analyzer (OSA) and the other part (O/P2) can be used for
several applications. EDFA: erbium doped fiber amplifier, BPF: band-pass filter, V: V-groove,
O: Objective, WDMF: wavelength division multiplexing filter.

two pumps instead of a single CW input is another interesting dimension to explore

[23–25]. These schemes can either include two separate input laser sources, or one

of the two laser sources can be modulated by an external modulator which is

shown in Fig. 5.1. Consequently, we can access a whole new regime and tweaking

parameters including equal/unequal detuning, equal/unequal pump power, and

modulating frequency between the two pumps and so on.

We have studied this exciting, nevertheless less-explored operating regime of

FC i.e. dual-pump configuration which is alternatively known as bi-chromatic

pumping scheme. In the first part of our work, we develop an analytical model to

predict the onset of MI in this configuration [26]. It is to be noted that the FC

generation in dual-pump configuration proceeds via threshold-less non-degenerate

four-wave mixing (FWM) and also through degenerate MI. Using our model, we

can identify these distinct regimes of operations and used the analytical results

to predict MR parameters (namely the second-order group velocity dispersion
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(GVD), detuning, and input power) for flexible composite FC generation pos-

sessing tunable primary and secondary side-bands. Our model is also capable of

determining the transition from structured FC to monotonic FC with a single

spectral envelope.

In the next part of our work, we investigate the time-domain behavior of the

dual-pump Kerr MR and its benefits to several applications. We propose syn-

chronous all-optical buffer based on CS supported in bi-chromatically pumped

micro-cavity [27]. The synchronous nature arises because of the harmonic potential-

well originating from the oscillatory background. The extremums of the oscilla-

tory lobes in case of operation below the symmetry breaking bi-furcation threshold

represent robust trapping centers for CS which results in the optical buffer being

immune to the writing jitters. In the case of CS-based all-optical buffer, writ-

ing of the optical bits is done using suitable addressing seed pulses. We have

also numerically demonstrated the ability of these synchronous buffers to perform

elementary logic operations like AND, OR, rendering these units simultaneous

buffering and logical capability. We have noticed the suppression of third-order

GVD induced temporal drift up to a critical value. We also show that these optical

bits are Raman-resilient. Moreover, the limiting factors such as very high cavity

detuning that can diminish or cause the wreckage of the robust optical trapping

centers are numerically demonstrated in the final part of this chapter. Dual-pump

CS parameters obtained from the variational formalism based on Euler-Lagrange

equations of motions [28–32] match closely with those obtained from the numerical

simulations performed using the split-step Fourier method (SSFM).

It is evident that the dual pump based design is promising. Besides robust

operations, microresonator in dual-pump configuration provides additionally the

advantage of tunability and composite FC generation [17, 23, 24, 32–35] although

they suffer from thermal effect induced resonance shift under high pump intensity.

Such arrangements are potential candidates to study several nonlinear phenomena

if the issues related to thermal effect are addressed properly. We have listed some

of the advantages and disadvantages of using the dual-pump MR configuration

over the single-pump configuration in the next section. It is possible to extract

versatile features from the dual pump based Kerr MR which would otherwise not

have been possible in the single-pump configuration once one can address the
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issues associated with the dual-pump configuration.

5.1.1 Single Pumping versus Dual Pumping

There are several advantages of using dual-pump over a single-pump configuration

as listed below:

5.1.1.1 Advantages

(i) Thresholdless comb generation

(ii) Variable FSR Comb

(iii) Synchronous all-optical buffer

(iv) Robust against writing jitters, third order dispersion

(v) Raman resilience

A. Thresholdless comb generation:

As discussed earlier, integrated optical parametric oscillators (OPOs) having nu-

merous applications in photonics, spectroscopy, sensing, quantum information pro-

cessing require the parametric gain to be equal to the microcavity loss for the

frequency conversion [36–40]. In a cavity with third order/Kerr nonlinearity, two

pump photons (ωp) are converted into a signal (ωs) and an idler (ωI) photon by in-

teracting with two vacuum states at the signal and pump frequencies, respectively.

In order to occur such parametric (also known as hyperparametric oscillation [38])

oscillation, energy and momentum both must be conserved simultaneously [36].

As the signal and idler mode numbers ls and lI, respectively are symmetrically

located with respect to the pump mode (lp), i.e. ls,I=lp±N , momentum has to be

conserved automatically. However, the cavity modes are not exactly equidistant to

each other due to the waveguide and material dispersions. Therefore, energy con-

servation (2~ωp=~ωs+~ωI) gradually starts violating for the cavity modes away

from the pump mode (Fig. 2) which results in the parametric gain as a function

of the frequency detuning, ∆ω = 2ωp − ωs − ωI. If for a particular cavity-mode

the detuning ∆ω exceeds the parametric gain bandwidth (Ω=4cγP/n0) then the

parametric gain is no longer able to generate the frequency side-band at that par-

ticular mode and beyond, thereby restricting the span of the FC through OPO.
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Figure 5.2: Finite FC-bandwidth as a result of non-equidistant cavity modes due to GVD.

Here, γ (=ωn2/cAeff), P , n0, n2, ω, c, Aeff are the nonlinear coefficient, intra-cavity

power, linear refractive index (RI), nonlinear RI, operating angular frequency, the

speed of light in vacuum, and effective modal area, respectively. The threshold

pump power for parametric oscillation can be given by [36],

PKerr
Th (∆ω) =

ω2
0Q
−2
0 (1 +K)2 +

(
∆ω
2

)2

γ∆ω c
neff

× C (Γ) π2Rneff

2λ0

× (K + 1)2

Q0K
(5.1)

where Q0, K, neff , C(Γ), λ0 are the intrinsic quality factor of the cavity, mode

coupling coefficient, effective refractive index, modal power correction factor, and

pumping wavelength, respectively. For a cavity with extremely high Q-factor, the

beat-note signal produced by the mixing of the optical pump and the generated

side-bands does not depend upon the pump power, Q-factor of the mode, and

the laser detuning from the pump mode [38]. In this case, the threshold pump

power (Pth) for the oscillation can be found out by perturbing the steady-state

solutions of the intra-cavity field A. One can use either the Langevin formalism

[38], modal expansion approach, or the Lugiato-Lefever equation (LLE) to find

out the threshold pump power [37,39].

If a, b+, b− represent the pump mode and the sidebands at angular frequency

ω0, ω+, and ω−, respectively then the total Hamiltonian describing the three-mode
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interaction in presence of third-order nonlinearity can be given by, Htot = H0+Hint

where H0 is the system Hamiltonian without Kerr nonlinearity and the Hint is the

interaction Hamiltonian due to Kerr nonlinearity and can be written as,

H0 = ~ω0a
†a+ ~ω+b

†
+b+ + ~ω−b†−b− (5.2)

V = −~g
2

: (a+ b+ + b− + h.c)4 :

= −~g
2

(
a†a†aa+ b†+b

†
+b+b+ + b†−b

†
−b−b−

)
−2~g

(
b†−b

†
+b+b− + a†b†+b+a+ a†b†−b−a

)
−~g

(
b†−b

†
+aa+ a†a†b+b−

)
(5.3)

“: · · · :” means the normal ordering assuming rotating wave approximation. g

denotes the nonlinear coupling coefficient as given by Eq. 5.4,

g =
~ω2

0cn2

n2
0Veff

(5.4)

Veff =

∫
ε(~r)

∣∣∣ ~A (~r)
∣∣∣2dV

max

[
ε(~r)

∣∣∣ ~A (~r)
∣∣∣2] = AeffL (5.5)

where, A, L, and Veff are the mode amplitude, cavity length, and the effective

modal volume of the cavity, respectively. In Heisenberg's picture, the evolution of

an operator with respect to time can be given by,

dQ̂ (t)

dt
=
i

~

[
H, Q̂ (t)

]
(5.6)

where H is the overall Hamiltonian of the system. However, in practice a micro-

cavity is an open system having loss compensated by the external input power

(Pin). Hence, the decay term, as well as the Langevin fluctuation force, have to be

included to account the realistic scenario. Adding the cavity losses and Langevin
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forces one obtains,

ȧ = − [iω0 + ik0 (T ) + γ0 + γc0] a+ ig
[
a†a+ 2b†+b+ + 2b†−b−

]
a

+2iga†b+b− + f0 + fc0 (5.7a)

ḃ+ = − [iω+ + ik+ (T ) + γ+ + γc+] b+ + ig
[
2a†a+ b†+b+ + 2b†−b−

]
b+

+igb†−aa+ f+ + fc+ (5.7b)

ḃ− = − [iω− + ik− (T ) + γ− + γc−] b− + ig
[
2a†a+ 2b†+b+ + b†−b−

]
b−

+igb†+aa+ f− + fc− (5.7c)

γ0, γ+, γ− are intrinsic decay rates, whereas, γc0, γc+, γc− are the decay rates due

to external coupling. Coefficients κ0(T ), κ+(T ), and κ−(T ) account the frequency

shifts of the modes a, b+, and b− due to the temperature change, respectively.

Where, [
f0 (t) , f †0 (t′)

]
= 2γ0δ (t− t′) ,

[
fc0 (t) , f †c0 (t′)

]
= 2γc0δ (t− t′)[

f+ (t) , f †+ (t′)
]

= 2γ+δ (t− t′) ,
[
fc+ (t) , f †c+ (t′)

]
= 2γc+δ (t− t′) (5.8)[

f− (t) , f †− (t′)
]

= 2γ−δ (t− t′) ,
[
fc− (t) , f †c− (t′)

]
= 2γc−δ (t− t′)

and, the expectation values of the Langevin forces are as follows:

〈fc0〉 =

√
2γc0P0

~ω0

e−iωt, 〈f0〉 = 〈f+〉 = 〈f−〉 = 〈fc+〉 = 〈fc−〉 = 0 (5.9)

We assume the slowly varying harmonic mode amplitudes given by,

a = Ae−iωt

b+ = B+e
−iω̃+t (5.10)

b− = B−e
−iω̃−t

ω, ω̃+, and ω̃− are the carrier frequencies of modes a, b+, and b−, respectively.
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Finally, taking an average over a full-cycle, one can obtain the steady-state

expectation values of the mode amplitudes given by,

Γ0 〈A〉 = ig
[
|〈A〉|2 + 2|〈B+〉|2 + 2|〈B−〉|2

]
〈A〉

+2ig 〈A∗〉 〈B+〉 〈B−〉+ 〈Fc0〉 (5.11a)

Γ+ 〈B+〉 = ig
[
2|〈A〉|2 + |〈B+〉|2 + 2|〈B−〉|2

]
〈B+〉

+ig
〈
B∗−
〉
〈A〉2 (5.11b)

Γ− 〈B−〉 = ig
[
2|〈A〉|2 + 2|〈B+〉|2 + |〈B−〉|2

]
〈B−〉

+ig
〈
B∗+
〉
〈A〉2 (5.11c)

where,

Γ0 = i (ω0 − ω + κ0 (T )) + γ0 + γc0 (5.12a)

Γ+ = i (ω+ − ω̃+ + κ+ (T )) + γ+ + γc+ (5.12b)

Γ− = i (ω− − ω̃− + κ− (T )) + γ− + γc− (5.12c)

From the steady-state solution, the expression for the threshold power Pth that

can initiate the optical parametric oscillation can be found as,

Pth ≈ 1.54
(π

2

) γ0 + γc0

2γc0

n2
0Veff

n2λQL
2 = 1.54

(π
2

) Qc

2QL

n2
0Veff

n2λQL
2 (5.13)

where the numerical factor 1.54 appears due to the self-phase modulation effects

on the oscillation threshold. It is important to note that the threshold power (Pth)

is directly proportional to the mode volume of the cavity Veff and inversely propor-

tional to the square of the overall or loaded Q-factor, QL=(ω/2)(γ0 +γc0)−1 of the

cavity. Qc denotes the Q-factor only for the coupling. For sub-milli-Watt thresh-
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old power, small Veff and high Q-factor are always desirable, however, the value

of the Q-factor is generally restricted by the Veff as the bending loss increases

with the decrease in device size [41] thereby eventually dominates the material

and scattering losses. If the device is carefully designed, an ultra-high Q and

very low mode-volume with a sub-microwatt parametric threshold-power can be

obtained [42–44] For dual-pump configuration, there exists no such restriction of

the input pump power to initiate the parametric oscillation [26,40].

B. Variable FSR frequency comb:

The free spectral range (fFSR) of the optical microresonator for a particular mode

around an operating frequency f0 can be given by,

fFSR(f0) =
c

2πRng
=

1

tR
(5.14)

where R, ng, and tR are the radius of the microresonator, the group index, and

the round-trip time, respectively. It is seen that if the cavity perimeter is larger,

then the FSR becomes smaller. Alternatively, the FSR can also be written as Eq.

5.15 in terms of the wavelength,

λFSR(λ0) =
λ2

0

2πRng

(5.15)

It is well-known that the group index is related to the effective RI (neff) of a

particular mode by,

ng(ω) = neff(ω) + ω
∂neff(ω)

∂ω
(5.16)

Therefore, the conventional ways to change the FSR or to obtain a variable FSR

frequency-comb are:

(i) Changing the cavity size (by using different ring radius/perimeter),

(ii) Altering the mode of operation (TE/TM),

(iii) Changing the effective RI by using different cladding materials,

Transmission spectra for microrings with two different radii (R1=15 µm and

R2=30 µm) obtained from FDTD simulations are shown in Fig. 5.3. However, for

a particular design, the length of the cavity is fixed. One can change the overall
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5.1 Fundamentals and Background

Figure 5.3: Transmission spectra of the microring resonator (MRR) for, (a) two different
ring radii, R1=15µm, R2=30µm, (b) TE (neff = 2.73) and TM (neff = 2.52)-modes. (c)
Spatial distributions of different modes in a spherical resonator, and MRR (d) when the cladding
materials are air, saline water (20%), and glucose water (20%), respectively (for TE-mode).

ng (or neff) either by altering the mode of operation or by using different cladding

materials on top of the optical waveguides. This is also shown in Fig. 5.3 (b)

and Fig. 5.3 (c). Further, one can use different cladding materials as shown in

Fig. 5.3 (d). In that case, the FSR can slightly vary depending upon the RI and

material dispersion of the cladding material. Nevertheless, none of these methods

provide much freedom to change the FSR. On contrary, one of the most important

features of dual-pump configuration is that using the bichromatic pump provides

us the freedom to desirably tune the comb-FSR as an integral multiple of the FSR

of the cavity modes just by changing the modulation frequency between the two

pumps [23,24] (Fig. 5.1). Robustness of the synchronous all-optical buffers against

the third-order dispersion, self-steepening, and the Raman effect is discussed in
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detail in the subsequent sections.

Despite having the aforementioned advantages, the dual-pump configuration

has many drawbacks which prohibit us to use of the configuration, frequently.

Only a few experimental demonstrations on bichromatic Kerr FC exist in the

literature [17,23,25].

5.1.1.2 Disadvantages

(i) Complex circuitry and difficult to implement,

(ii) Power-inefficient,

(iii) Possibility of thermal instability,

(iv) Volatile in nature,

As listed above, most importantly, the configuration is power-inefficient and

volatile in nature, which implies that the moment the external laser source driving

the MR is switched off the configuration becomes unable to perform the logic

operations, does not show the robustness against the detrimental parameters such

as writing jitters, and can no longer be able to retain the optical bits intact and

the rotating solitons quickly decay over time.

5.2 Analytical Model of Dual-pump Microres-

onators

It is well known that degenerate modulation instability (MI) is the driving mecha-

nism for single pump configuration, whereas in case of dual-pump it is governed by

both threshold-less non-degenerate four-wave mixing (FWM) and threshold inten-

sity dependent MI [24,45]. Therefore, understanding these underlying mechanisms

and differentiating their regimes of operations without investing huge computa-

tional time and resources are essential to acquire better control of the comb gener-

ation process. In this section, we have investigated both analytically and numer-

ically, the importance of different primary physical mechanisms (non-degenerate

FWM, MI) and their regimes of operations responsible for FC generations in the

context of dual-pump. In addition, we study the implications of different physical

164



5.2 Analytical Model of Dual-pump Microresonators

mechanisms in generating variable free spectral range (FSR) and composite combs

in desired spectral locations. The theoretical model assists in the quick prediction

of regimes without performing intensive numerical simulations of Lugiato-Lefever

equation (LLE). One can easily determine the necessary parameters (pump power,

cavity detuning and so on) for application-specific FC generation. Our model finds

a close agreement with the numerically simulated results for dual-pump MR con-

figuration [26].

5.2.1 Theory

5.2.1.1 Governing equations and threshold-less comb

The driven and damped nonlinear system is modeled using normalized mean-field

LLE incorporating the dual-pump as [24],

∂A

∂t
+ iβ

∂2A

∂τ 2
− i|A|2A = −(1 + i∆)A+ f0 cos(Ωτ) (5.17)

where A is the normalized electric-field envelope, t is the slow-time variable and τ

denotes the normalized fast-time ranging from−π to π. The remaining parameters

are the normalized second-order dispersion coefficient β, normalized cavity detun-

ing ∆, normalized pump amplitude f0, and the modulation frequency Ω. Note

that in deriving the normalized LLE as given in Eq. 5.17, equal pump amplitudes

(f0) have been assumed for both the pumps, also the difference in detuning be-

tween two pumps is assumed sufficiently small to be neglected compared to the

average detuning [24]. By choosing suitable MR parameters and modulation fre-

quency, we can excite a variety of homogeneous or patterned steady-state solutions

both in the normal and anomalous dispersion regimes owing to the rich dynamics

exhibited by the dual-pump configuration [24].

Single pump FC generation is attributed to the degenerate MI which takes

place only above a particular threshold of the pump intensity [9] where the pump

corresponds to a cavity mode. The suitably detuned pump can further excite

symmetric side-bands through MI route and gradually leads to the formation of FC

via degenerate and non-degenerate FWM. In the case of dual-pump configuration,

it is known that FC can be generated without the requirement of pump threshold,

165



Dual-pump Kerr Microresonators

(a) (b)

Figure 5.4: Frequency comb in dual-pump MR configuration, (a) primary comb lines cor-
responding to β=1, Ω=1, ∆=5, f0=3, produced through non-degenerate FWM, (b) both the
secondary and primary comb lines when f0 is increased to 4.5, displaying the existence of dc
spectral component and even modes due to intensity-dependent MI besides the FWM process.

and is referred to as threshold-less FC generation [24, 40]. In the latter case, the

FC generation is due to non-degenerate FWM where two cavity modes annihilate

and give rise to symmetric side-bands following the phase and frequency matching

conditions. However, if any such mode possesses enough intensity to meet the

threshold requirement for MI then the comb generation would be governed by

both non-degenerate FWM and MI processes [24].

We numerically simulate dual-pump MR configuration by solving the LLE

through SSFM. The direct current (dc) component (zero normalized frequency)

and the even modes do not appear in the spectrum if the FC generation takes

place solely due to the threshold-less, non-degenerate FWM, as shown in Fig. 5.4

(a). On contrary, if both the non-degenerate FWM and MI act simultaneously on

FC generation, then both the dc component and the even modes appear in the

comb spectrum as depicted in Fig. 5.4 (b). Thus, MI leads to the formation of

secondary comb in the latter case in addition to the primary comb which occurs

only due to the non-degenerate FWM. Note that, additive white Gaussian noise

noise is assumed as an initial seed along with two pumps with proper detuning in

simulating the FCs.
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5.2.1.2 Four-wave model and the stationary states

The complicated dynamics of a dual-pump system can reasonably be well approx-

imated by the four-wave model which is sufficiently good to predict the stationary

states. The four-wave model [24] sheds light on the stability and can also provide

insight into the complete solution space that can be achieved via soft and/or hard

excitations. In the four-wave model, it is assumed that most of the spectral power

is confined in the pump modes and the first side-bands.

In the single pump case, there exists a homogeneous stationary solution (HSS)

over which other temporal patterns rest. This HSS is supported by the external

CW pumping and shows bistable behavior in the unperturbed steady state when

∆ ≥
√

3 [7]. However, in the dual-pump case, no such HSS can exist. If the

pump frequencies correspond to Ω and −Ω (symmetric pumping in normalized

frequency), it can be shown that the solution of the form: C
(
ei Ωτ + e− i Ωτ

)
cannot

be a steady-state solution of Eq. 5.17, where C is an arbitrary constant. It must

at least excite other side-bands to satisfy the steady state of Eq. 5.18 which we

consider as,

1

2

(
Ap

(
ei Ωτ + e−i Ωτ

)
+ As

(
ei3Ωτ + e−i3Ωτ

))
(5.18)

where, Ap and As are the normalized pump and the first side-band amplitudes,

respectively. We know from [24] that the stationary fixed points are obtained from

the following coupled Eqs. 5.19–5.20,

|f0|
2I0

2

=

[(
∆− βΩ2 − 3I0

2

)
− g+

1− η
η

]2

+
1

η2
(5.19)

9βΩ2 = ∆− g− −
3I0(1− η)

2η
(5.20)

where,

g± = I0[1 + cosϕ(2 cosϕ+
(2± 1)

2

√
1−η/η)] (5.21)

cosϕ =
∆− 9βΩ2 − I0 − 3

2
I0

1−η
η√(

∆− 9βΩ2 − I0 − 3I0(1−η)
2η

)2

+ 1

(5.22)
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Figure 5.5: The gradual build-up of secondary comb lines over the threshold-less FWM induced
background of primary comb lines due to the inception of intensity dependent MI. The color
map indicates the spectral intensity in dB. Vertical dashed line dictates the boundary between
two processes.

and,

η =
|Ap|2

P0

(5.23)

P0 = |Ap|2 + |As|2 (5.24)

I0 =
P0η

2
(5.25)

where φ=(φs−φp) is the relative phase between the pump mode and the sidebands.

In our calculations, we consider the steady state predicted from the four-wave

model as the equivalent HSS for the dual-pump configuration. This is because

the MI grows over the non-degenerate FWM generated FC, as shown in Fig. 5.5

where the evolution of comb lines as a function of roundtrips is plotted. The

colors represent the spectral intensity (in dB) of the comb lines. The figure clearly

highlights the transition of the FC into the FWM and MI combined regime from

the FWM regime through the initiation of secondary comb lines.
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5.2.2 Analytical Modelling

We perform the MI analysis by linearizing Eq. 5.17 about the steady state solution

predicted from the four-wave model. The MI analysis for a bi-chromatic pump in

the non-resonant case can be found in [46]. We assume a perturbation of the form

of Eq. 5.26 to perform linear stability analysis,

1

2

(
Ap

(
ei Ωτ + e− i Ωτ

)
+ As

(
ei 3Ωτ + e− i 3Ωτ

))
×

(
1 +

∑
µ=kΩ

aµeiµτ +
∑
µ=kΩ

a−µe− iµτ

)
(5.26)

Where k takes integer values and a is the amplitude of the noise at the corre-

sponding normalized frequency.

At the onset of modulation instability, the dc (zero-frequency) MI growth rate

owes to the contribution of amplitude growth rates corresponding to zero normal-

ized frequency. For the dc MI growth rate at onset, one should consider only dc

terms in the expansion of |A|2A. The perturbative terms arise due to µ = Ω,

termed as first lobe contribution, are given as:

aΩ

(
3|Ap|2 + 4|As|2 + 2Ap

∗As + As
∗Ap + 2A2

s
A∗p
Ap

)
Ap

4

+a−Ω

(
3|Ap|2 + 4|As|2 + 2Ap

∗As + As
∗Ap + 2A2

s
A∗p
Ap

)
Ap

4

+a∗Ω

(
3|Ap|2 + 4|As|2 + 2Ap

∗As + As
∗Ap + 2A2

s
A∗p
Ap

)
Ap

8

+a∗−Ω

(
3|Ap|2 + 4|As|2 + 2Ap

∗As + As
∗Ap + 2A2

s
A∗p
Ap

)
Ap

8
(5.27)

The first lobe refers to the MI gain curve responsible for the instability that

corresponds to the dc component. This is contributed by the cavity modes located

at the spectral location µ = Ω. Similarly, second and third lobes also indicate the

MI gain curves contributed by the cavity modes situated at the spectral locations

µ = 2Ω, and µ = 3Ω, respectively. Note that, no term arises due to µ = 2Ω

(second lobe contribution). Terms arising due to third lobe contribution (µ = 3Ω

are given as:

a3Ω

(
4|Ap|2 + 3|As|2 + 2Ap

2A∗s
As

+ Ap|Ap|2
As

)
As

4
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+a−3Ω

(
4|Ap|2 + 3|As|2 + 2Ap

2A∗s
As

+ Ap|Ap|2
As

)
As

4

+a∗3Ω

(
4|Ap|2 + 3|As|2 + 2Ap

2A∗s
As

+ Ap|Ap|2
As

)
As

8

+a∗−3Ω

(
4|Ap|2 + 3|As|2 + 2Ap

2A∗s
As

+ Ap|Ap|2
As

)
As

8
(5.28)

No contribution comes from higher-order lobes at the onset of instability. While

deriving the MI gain expression using the linear stability analysis, we have ne-

glected the contributions of the dispersion of the HSS and only considered the

dispersion of the noise signals in the perturbation expansion of β∂2A/∂τ 2. Due

to symmetry in the frequency domain LLE (where we neglect higher-order dis-

persion, self-steepening effect, and other higher-order nonlinearities), we take the

ansatz of the form as:

aΩ + a−Ω = k1eλ1t (5.29)

a3Ω + a−3Ω = k3eλ3t (5.30)

Where λ1 and λ3 are the dc MI growth rates due to the first and third lobe

contributions, respectively, while k1 and k3 are constants. If the perturbation does

not contain the term, the MI growth rate is governed by the first lobe contribution

(a3Ω ei 3Ωτ + a−3Ω e− i 3Ωτ ), as shown in Fig. 5.6 (a). Looking for the non-trivial

solution of Eqs. 5.17, 5.27, and 5.29, we obtain the expression for the MI gain as:

λ = λ1 = −1− 2 Im(X) +
√

Λ1;

Λ1 = 4{Im(X)}2 −
(
|K1|2 − |X|2

)
;

X = 1
4

(
3|Ap|2 + 4|As|2 + 2A∗pAs + A∗sAp + 2A2

s
A∗p
Ap

)
;

|K1|2 = (∆− βΩ2 − 2X) (∆− βΩ2 − 2X∗) (5.31)

Similarly, if we consider that the perturbation does not contain, aΩ ei Ωτ+a−Ω e− i Ωτ

then the MI growth rate will be determined by third lobe contribution (λ = λ3),

as shown in Fig. 5.6 (b). In that case, the expression for the MI-gain is obtained

from Eqs. 5.17, 5.28, and 5.30 and can be given by Eq. 5.32.
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λ = λ3 = −1− 2 Im(Y ) +
√

Λ3;

Λ3 = 4{Im(Y )}2 −
(
|K3|2 − |Y |2

)
;

Y = 1
4

(
4|Ap|2 + 3|As|2 + 2Ap

2A∗s
As

+ Ap|Ap|2
As

)
;

|K3|2 =
(
∆− β(3Ω)2 − 2Y

) (
∆− β(3Ω)2 − 2Y ∗

)
(5.32)

Where Ap and As are obtained from the four-wave model relations given by Eq.

5.24; Λ1 and Λ3 are the discriminants of λ1 and λ3 which determine the threshold

criterion.

Another interesting feature arises from the fact that X and Y can potentially

be complex with the non-zero imaginary component. In such a scenario, the MI

gain depends on Im(X) and Im(Y ) as depicted in Fig. 5.6 (c).

In Fig. 5.7, we plot the pump amplitude, f0 as a function of normalized de-

tuning ∆. Critical values of the pump amplitude f0, demarcating the FWM and

MI regions for different detuning values, are obtained numerically and analyti-

cally. The solid blue curve with filled circles corresponds to the analytical solu-

tion, which is in close agreement with the numerically obtained solution (solid-red

curve). We explore three different scenarios (A, B, C) for three different normalized

pump amplitudes at a fixed detuning value. For pump amplitude much smaller

than the critical value (case A), the FC will be generated through threshold-less

non-degenerate FWM, resulting in narrow bandwidth, as shown in sub-figure A.

When the pump amplitude is close to the critical value (case B), the comb gen-

eration is governed by threshold less non-degenerate FWM process with larger

FC bandwidth than in case A, as depicted in sub-figure B. As the pump ampli-

tude crosses the critical value (case C), the comb generation takes place via both

non-degenerate FWM and intensity dependent MI routes, possessing secondary

comb lines, as shown in sub-figure C. In order to create variable FSR comb, one

should ensure that the pump amplitude must be smaller than the critical pump

amplitude. However, if f0 is greater than the MI threshold, no control over the

FSR of the comb lines can be retained.

The slight discrepancy between numerical and analytical results arises due to
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(a) (b)

(c)

Figure 5.6: Threshold dependence of MI gain due to (a) first-lobe contribution, µ = Ω, and
(b) third-lobe contribution, µ = 3Ω for various detuning values as a function of X and Y ,
respectively. X and Y are assumed to be real. The threshold is shown by the black dashed
curve. (c) MI growth rate due to the first lobe contribution at a fixed detuning of ∆ = 4, when
X assumes particular values of the imaginary part as mentioned in the legend.

the fact that four-wave model relies on the representation of the steady state as

truncated four modes. However, some fraction of spectral energy must be present

in other cavity modes which are not being considered in the four-wave model.

Note that in Fig. 5.4 (b), the spectral amplitude of the dc component is greater

than the pump modes whereas in the inset C of Fig. 5.7 it is smaller—i.e. a

situation similar to the single-pump case. This is mainly due to contribution by

MI lobe created by two pumps.

For β = 1 and Ω = 1 the first lobe is the major contributor towards the non-
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Figure 5.7: Critical values of pump amplitude obtained numerically (solid red curve) and
analytically (solid blue curve) for a range of detuning parameters. Sub-figures A, B, and C
represent three different cases where the pump amplitude is varied at a fixed detuning. A close
agreement is observed between the two approaches.

degenerate MI process which makes the normalized dc component as the most MI

susceptible spectral component. In general, we need to locate the principle MI

gain lobe and identify the most susceptible spectral component and proceed in a

similar fashion. In the following section, such scenarios arise and are explained in

details.

5.2.3 Results and Discussions

5.2.3.1 Variable free spectral range frequency comb

Wang et al. have recently shown the advantage of dual-pump configuration in

creating variable FSR frequency comb [23]. It is always desired in optical com-

munication to produce FC whose FSR is several multiples of the intrinsic FSR of

the MR to avoid the cross-talk between the adjacent channels. Therefore, variable

FSR comb [23,47] generation can be ensured if the MR is driven with two pumps
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possessing the modulation frequency equals to the desired FSR of the FC, provided

we operate in the threshold-less non-degenerate FWM regime (i.e. in the param-

eter space below the solid red curve in Fig. 5.7). Once the threshold boundary is

crossed as dictated in Fig. 5.7, the combined MI and non-degenerate FWM pro-

cesses rule (sub-figure C). In this region, secondary comb generation takes place

resulting in filling up of rest of the cavity modes in between the primary comb

lines. Therefore, extra care must be taken to operate in the suitable parameter

space which can be easily predicted from our proposed analytical model. More-

over, one does not have the luxury of operating at low pump powers to avoid the

MI because it leads to narrow FC generation as is the case in sub-figure A. Pump

power should be sufficiently high to yield broader FC with variable FSR like the

one shown in the sub-figure B, however, it must be less than the MI threshold.

The proposed analytical model is capable to estimate the required input pump

power in optimizing the variable FSR frequency comb for optical communication

applications.

5.2.3.2 Tunable Composite Frequency Comb for WDM

Most of the composite comb structures reported so far [48,49] make use of a single-

pump and depend on parametric seeding, which needs a stringent requirement of

injecting the seed once the primary comb generation is completed. The generated

sub-comb lines disappear as soon as the seed is removed. However, the dual-

pump configuration does not suffer from this limitation. With the help of the

proposed analytical model, we present a multitude of tunable primary comb lines

along with associated sub-comb lines suitable for multichannel communications by

selecting suitable microresonator FC parameters in dual pump configuration. We

gain further insight into the tunability aspect by leveraging our analytical model.

When the cavity is driven by two pumps, excited pump modes undergo thresh-

old less FWM responsible for sub-comb line formation. If the power in the pump

mode and adjacent sidebands are greater than the MI threshold, primary comb

lines will be created at the spectral location where the resultant instability gain

is the maximum. Thereafter, these comb lines again undergo threshold-less FWM

combined with MI-induced gain, giving rise to additional sub-comb lines, as illus-
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Figure 5.8: Cartoon depicting the formation of primary and secondary comb lines using dual-
pump configuration. Red arrows denote two pump modes; green arrows correspond to primary
comb lines whereas the black arrows indicate the secondary comb lines. The MI gain lobe is
shown by the green dashed curves.

trated in Fig. 5.8.

Figure 5.8 shows the two pump modes designated as blue pump mode (BPM)

at frequency Ω and red pump mode (RPM) at frequency −Ω. It depicts the

emergence of primary comb lines due to MI at a frequency ωMI and secondary sub-

comb lines due to cascaded FWM. The green-dashed parabolic envelopes dictate

the MI gain region in both the sides of the pumps. Thus the primary comb lines

get flanked by secondary ones and are capable of spanning a wide frequency range

owing to this cascading nature of comb formation as visualized in Fig. 5.8. The

resultant composite comb can be used conveniently as separate channels for WDM

applications. In order to find out the spectral locations of the primary comb lines,

we perform the MI analysis.

5.2.3.3 MI Gain

It is evident that the pump modes, BPM (ω = Ω) and RPM (ω = −Ω), dominantly

contribute to the MI gain as most of the spectral power is concentrated in these

modes. The MI induced spectral peaks are situated at ωMI−Ω from the BPM and
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at ωMI + Ω from the RPM, respectively with reference to ωMI as depicted in Fig.

5.8. For the MI growth rate at onset, we need to consider only exp(iωMIt) terms

in the expansion of |A|2A. The perturbative terms arising due to µ = ωMI − Ω

(contribution from the BPM) are:

a(ωMI−Ω)

(
3|Ap|2

) Ap
4

+ a∗
(ωMI−Ω)

(
3|Ap|2

) Ap
8

(5.33)

And terms arising due to the RPM contribution µ = ωMI + Ω are:

a(ωMI+Ω)

(
3|Ap|2

) Ap
4

+ a∗
(ωMI+Ω)

(
3|Ap|2

) Ap
8

(5.34)

Contributions due to side-bands of amplitude As are neglected as they are neg-

ligible in the regime of interest. Due to the symmetry in the frequency domain

of LLE, under assumptions mentioned in the previous section, we can write noise

amplitudes as:

a(ωMI−Ω) = a∗−(ωMI−Ω) = k1eλ1t (5.35)

a(ωMI+Ω) = a∗−(ωMI+Ω) = k2eλ2t (5.36)

where λ1 and λ2 are the MI growth rate at the onset of instability due to the BPM

and RPM contributions, respectively while k1 and k2 are the constants. After

performing linearization of the nonlinear LLE akin to conventional MI analysis,

we get

λ1 = −1 +

((
3

4
|Ap|2

)2

−
(
β(ωMI − Ω)2 + 2

(
3

4
|Ap|2

)
−∆

)2
) 1

2

(5.37)

and,

λ1 = −1 +

((
3

4
|Ap|2

)2

−
(
β(ωMI + Ω)2 + 2

(
3

4
|Ap|2

)
−∆

)2
) 1

2

(5.38)

Modulation instability growth rate can be given approximately by (λ = λ1 + λ2).

We can add two contributions since there is no phase difference between the pump
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modes (following the assumption that the detuning of two pumps is identical). Pri-

mary comb lines will appear at the spectral location where λ is the highest for

all ωMI. Two spectral locations appear due to inherent beating nature of the dual

pump. From Eqs. 5.37 and 5.38, we can obtain the threshold intensity for MI to

occur which is dependent on the requirement that the term inside the square root

must be greater than one.

The tunability of Primary Comb and Sub-comb Lines Spectral Loca-

tions

The primary comb lines will appear at the location (ωPC + Ω) and (ωPC − Ω)

where the MI gain is maximum. The subscript PC refers to primary comb. The

cascaded generation will lead to primary comb location at ω = ±mωPC±Ω, where

m takes integer values and the normalized zero frequency lies between two pump

modes. This can be tuned by a suitable selection of MR parameters. Figure 5.9 (a)

shows the dependence of MI gain for two sets of MR parameters. The solid blue

curve corresponds to set of parameters, ∆ = −6, Ω = 1, β = −0.0005, f0 = 8.25

(set-1) whereas the solid red curve corresponds to ∆ = −4, Ω = 1, β = −0.0001,

f0 = 6 (set-2). Corresponding composite combs for parameter (set-1) and (set-2)

are exhibited in Figs. 5.9 (b)-5.9 (c), respectively. We can select the suitable set

of parameters as per the requirement of gain spectral location. Sub-comb lines are

formed due to parametric non-degenerate FWM combined with MI-induced gain

circumscribing the newly created primary comb lines. Their spectral locations are

given by ω = ±mωPC ± nΩ where n is an integer. Clearly, they can be manip-

ulated by changing the modulation frequency of the dual pump as illustrated in

Figs. 5.9 (d)-5.9 (e). The requirement on sub-comb line separation fixes the pump

modulation frequency, Ω. The other free normalized parameters namely β, ∆ and

f0 can suitably be chosen to cater the requirement on cascaded primary comb

location. Thus, the four-wave model helps us to map these parameters for tunable

composite FC generation. The primary comb lines that are formed are found to

be highly coherent following the coherence calculation methodology in [50].

This fact is experimentally demonstrated in [17, 35]. The temporal evolution

of the coherence clearly suggests the growth of primary comb lines via MI. The

reason behind the slight mismatch between the analytical and numerical results
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(a) (b)

(c) (d)

(e)

Figure 5.9: (a) MI gain curve, solid blue curve (set-1 parameters) and solid red curve (set-2
parameters). The composite comb for (b) set-2 and (c) set-1 parameters, (d) composite comb
for ∆ = −6, Ω = 2, β = −0.0001, f0 = 7.7, dictating sub-comb lines separation by four FSR, (e)
the composite comb for ∆ = −7.5, Ω = 3, β = −0.0005, f0 = 10.5, with sub-comb lines spacing
of six FSR. Insets show the variable FSR separation of the sub-comb lines.
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Table 5.1: Normalized spectral locations of primary combs obtained numerically
and analytically for different cases along with respective sub-comb lines separation
in units of intrinsic microresonator FSR.

Primary comb line locations Secondary-comb
line separationFig. number Numerical Analytical

Fig. 5.9 (b) ±m · 254± 1 ±m · 248± 1 2
Fig. 5.9 (c) ±m · 130± 1 ±m · 128± 1 2
Fig. 5.9 (d) ±m · 284± 2 ±m · 280± 2 4
Fig. 5.9 (e) ±m · 138± 3 ±m · 140± 3 6

Figure 5.10: Merging of primary comb islands with the secondary comb lines for ∆ = −6,
Ω = 1, β = −0.001, f0 = 9 parameters, as predicted through analytical model.

of Table 5.1 similar to the mismatch shown in Fig. 5.7 and is already discussed in

the previous section.

Finally, we predict the merging of primary comb islands as depicted in Fig.

5.10 with the help of the analytical model. When the separation between primary

comb lines (generated due to MI) decreases beyond a certain extent (called as

limiting case), secondary comb lines produced due to FWM starts to overlap,

resulting in the collapse of composite FC structure. This limiting case is illustrated

in Fig. 5.10 where the secondary comb lines are just about to overlap with each

other. Thereafter, it would yield a monotonic comb similar to a single-pump based

frequency comb. The set of parameters, estimated quickly from the analytical

model for this limiting case is, ∆ = −6, Ω = 1, β = −0.001, f0 = 9.
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5.2.4 Concluding Remarks

We have used the four-wave model to distinguish the regimes of operation: threshold-

less non-degenerate FWM and threshold intensity dependent MI for dual-pumped

microresonators. The proposed analytical model provides an efficient and quick

estimation of the design parameters to generate variable FSR frequency combs and

composite combs with tunable sub-comb lines. The model holds good for both

anomalous and normal dispersion regimes. Our analytical results closely match

with computationally intensive numerical simulations. Our method also helps to

provide more insight into the dynamics of operation of the dual-pump MR con-

figuration. We explore the flexibility of the coherent composite frequency combs

which we believe would be quite useful for WDM applications. In addition, the

parametric seeding can be combined with dual-pump to attain extra flexibility for

frequency comb, leading to tertiary comb generation apart from the primary and

secondary ones supported by the dual-pump.

5.3 Robust Synchronous All-optical Buffer and

Logic Operations

5.3.1 Introduction

Optical buffer (OB) is one of the crucial components for realizing optical delay

lines in integrated photonic systems. The ability to store and manipulate data is

highly desirable as far as a true all-optical network is concerned. OBs have been

achieved using optical waveguides [51], coupled resonators [52], grating structure

[53], photonic crystals [54], and frequency conversion-dispersion technique [55].

Recently, temporal CSs in microresonator has been deployed to realize all OB

where the CSs play the role of optical bits [56, 57]. Temporal CSs are stable

patterns which correspond to a FC [1, 4, 5] in the spectral domain and arise due

to the mutual interplay between dispersion, nonlinearity, attenuation, and driving

pump. Most of the works have focused on single-pump driven MRs to generate

FC. Dual-pumping, also familiarly known as bichromatic pumping [23–26, 34],

provides greater flexibility and control in the generation of FC and supports the
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rich dynamics of CSs [24]. For the bi-chromatic pumping, the normalized LLE is

given by [24]:

∂A

∂t
+ i

β2

2

∂2A

∂τ 2
− β3

6

∂3A

∂τ 3
− i |A|2A = −(1 + i ∆)A+ f0 cos(Ωτ) (5.39)

where A, t and τ are the normalized electric-field envelope, slow-time and fast-

time (ranging from −π to π), respectively. β2, β3, ∆, and f0 are the normalized

second-order dispersion coefficient, third-order dispersion (TOD) coefficient, cav-

ity detuning, and the pump amplitude, respectively, whereas the modulation fre-

quency is given by Ω. We have neglected the effect of other higher-order dispersion

terms. Note that, equal amplitudes of the pump are considered while deriving the

normalized LLE as given in Eq. 5.39. Again, the difference in detuning between

two pumps is assumed sufficiently small to be negligible compared to the average

detuning [24]. Two pumps are separated in frequency by multiples of the FSR,

referred to as the modulation frequency Ω. By choosing appropriate values of

these parameters, we can excite a variety of homogeneous or patterned steady

state solutions both in the normal and anomalous dispersion regimes owing to

the rich dynamics exhibited by the dual-pump configuration [24]. Hansson et al.

have recently proposed the use of CS in a dual-pump driven Kerr MR as bits in

synchronous OB. However, they did not explore the advantages associated with

such synchronous OB and the associated detailed analysis is also missing. There-

fore, in this section, we investigate the versatility of these synchronous OB along

with their robustness in performance via numerical simulations corroborated with

analytical results.

5.3.2 Analytic Modelling of Synchronous OB

The rich solution space of a dual-pump LLE can be attained either by soft or hard

excitations [24]. For certain values of normalized detuning and pump power, the

MR with dual-pump configuration supports temporal CS that rests on a periodic

background [24], which is a synchronous event as the CSs can exist only at the

top of the oscillatory lobes (i.e. equilibrium position) given that we operate in the

suitable parametric space. The regime of these set of parameters is demarcated by
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a bifurcation phenomenon, as mentioned in the latter part of this section, whereby

the CSs cease to exist on top of the oscillatory lobes. For the rest of this chapter,

we will assume that we operate in a suitable parametric space unless otherwise

specified. The number of such lobes is twice the modulation frequency [24]. The

inherent beating of two pumps provides a temporal synchronization analogous to

the functionality of a master clock in digital electronic circuits. Thus, these CSs

can be used to store optical bits thereby forming a synchronous buffer [24]. Mode-

locked CS supported in a dual-pump MR configuration can reasonably be well

approximated as given by Eq. 5.40, that accounts for the oscillatory background

(the first term and second term) and the CS (the third term).

Ψ (τ) = C̃1 cos(Ωτ) + C̃2 cos (3Ωτ) + C̃3 sech (B (τ − τ0)) eiφp (5.40)

C̃1 = C1eiφC1 , and C̃2 = C2eiφC2 , where C1 and C2 are the amplitudes of the

fundamental and the third harmonic components of the oscillatory background

respectively, and φC1 and φC2 denote the corresponding phases. The amplitude

C1 and C2 can be obtained with the help of four-wave model [24]. C̃3 = C3eiφC3

where C3 and φC3 represent the amplitude and the phase of the hyperbolic secant

pulse, respectively. B is related to the temporal width of the hyperbolic secant

pulse. φp is the phase of the soliton envelope contributed by the addressing pulse

and τ0 is the temporal location of the center of the soliton on the fast-time. The

mathematical expressions of C3, φC3, and B for a single pump case can be found

in [4,58]. On the other hand, for the dual-pump, these parameters can be obtained

using semi-analytical variational method [28–32] as given in the appendix B, Eq.

B.4. Dual-pumped based Kerr solitons frequency comb in the temporal domain

exhibit an oscillatory background where the CS may rest on any of the oscillatory

peaks [24].

The system that we consider in this work is similar to that given in [56] with

a MR replacing the fiber-cavity along with another modification whereby we use

a dual-pump instead of a single-pump. Figure 5.11 depicts multiple CS patterns

generated for a MR with ∆ = 1.8, f0 = 1.4, Ω = 12, β2 = −0.002 set of nor-

malized parameters. Each CS representing a logical bit 1 rests on the oscillatory

background, as seen clearly in Fig. 5.11 and each lobe without a CS in the os-
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Figure 5.11: Temporal cavity solitons in dual-pump MR for ∆ = 1.8, f0 = 1.4, Ω = 12,
β2 = −0.002 set of parameters. Multiples CSs are generated through suitable seeds with the
φp = 0 or φp = π as marked in the figure. Each CS appearing on the oscillatory lobes is
attributed as bit 1 for OB applications.

cillatory background is attributed as bit 0. CS can selectively be excited using

suitable seed pulses with a change in phase of pumps. It is also possible to impart

a suitable delay in the bit pattern that has been generated and distributed in the

resonator by changing the phase of dual-pump.

5.3.3 Simulation Results and Discussions

5.3.3.1 Immune to the Writing Jitter

Figure 5.12 demonstrates that the CS excitation process is immune to the writing

jitters. Seed pulses which are not exactly aligned initially with the steady state,

the temporal position of CS automatically adjust to the top of the oscillatory lobes,

as shown in the cartoon picture in Fig. 5.12 (a). This owes to the fact that the

dual-pump creates a potential well in which CS gets trapped. The CS experiences

a restoring force that eventually aligns itself to its equilibrium position. Based

on the approach given in [58], we derive analytical relations of the restoring force

that attracts the CSs on the top of the oscillatory lobes, which makes the CSs

immune to the writing jitters. Such dual-pumped MR based optical buffers can
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be very robust in performance. The pulse momentum can be defined as [58],

P =
1

2

π∫
−π

d τA∗
(
− i

∂

∂τ

)
A+ c .c (5.41)

where A is the intra-cavity field. If we differentiate Eq. 5.41 with respect to the

slow time, we get restoring force, as given by Eq. 5.42,

d
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(5.42)

where periodic boundary condition of the LLE has been used. Making substitution

of ∂A/∂t from Eq. 5.39 into 5.42, the restoring force can be recast as:

d

d t
P = −2P +

π∫
−π

d τ

[
A∗
(
− i

∂

∂τ

)
f0 cos (Ωτ)

]
+ c .c (5.43)

After performing algebraic simplification, considering narrow solitonic pulse-width,

we arrive a simple form of the restoring force which is given in Eq. 5.44.

d
d t
P = −2P + 2Ωf0C3S sin(Ωτ0) sin(φC3), φp = 0 (5.44a)

= −2P + 2Ωf0C3S cos(Ωτ0) cos(φC3), φp = π (5.44b)

where S =
π∫
−π

d τ sech [B (τ − τ0)] is the area under the solitonic pulse. Equation

5.44 clearly states that the presence of an induced force due to dual pumping is

responsible for the displacement of the misaligned CSs towards the equilibrium

positions. The induced force resembles as restoring force of a simple harmonic

oscillator. The stable equilibrium position from 5.44 (a) can be given by, Ωτ0 =

2mπ when φp = 0 and in case of 5.44 (b), it is given by Ωτ0 = (2m + 1)π

when φp = π here m is an integer. Both the cases are exhibited in Fig. 5.11.

Note that in deriving Eq. 5.44, we assume that the oscillatory background varies
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(a)

(b) (c)

Figure 5.12: Robustness of the OB to the writing jitter. (a) Cartoon picture depicting the
underlying mechanism for CS alignment, (b) and (c) exhibit the concept when the initial seed
pulse is not exactly aligned. Normalized parameters used in the simulation are ∆ = 1.7, f0 = 1.3,
Ω = 8, β2 = −0.002.

slowly as compared to the width of the soliton. This assumption leads to a simple

integration of Eq. 5.43 considering the quasi-static background. If the oscillatory

background varies rapidly within the solitonic width, we cannot perform the said

approximation and the equilibrium positions are then obtained by performing

numerical integration in Eq. 5.43. It turns out that the equilibrium positions are

offset to the extremas of the oscillatory background as shown in Fig. 5.13 when the

oscillatory background varies rapidly. This phenomenon arises from a pitch-fork

bifurcation and results in spontaneous symmetry breaking as reported in [59,60].
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Figure 5.13: Spontaneous symmetry breaking phenomena when the oscillatory background
changes rapidly within the solitonic temporal width. Normalized parameters used in simulations
are: ∆ = 2.7, f0 = 2.1, Ω = 12, β2 = −0.002.

In order to avoid such symmetry breaking and attaining robust synchronous buffer

operation, we must operate in the set of parameter regimes of CS existence, where

the amplitude of driving pumps is smaller than the critical bifurcation value at a

corresponding detuning.

5.3.3.2 Resilience to the TOD Induced Temporal Drift

When we incorporate the third-order dispersion parameter in the LLE for a single

pump case, it leads to the generation of the dispersive wave (DW) under a phase-

matched condition [61]. The DW emission is accompanied with the CS attaining a

drift velocity in the reference frame where the CS was stationary in the absence of

TOD, owing to momentum conservation relation. CSs in single pump MR based

OB suffer from this drifting phenomenon in the presence of the TOD and makes

reading and writing of data bits difficult. This drifting problem can be overcome

if we use two pumps up to a critical value of TOD. To derive the critical value

of the TOD parameter β3,cr, we have adopted the particle analogy of solitons

[62,63]. This analogy helps in estimating the β3,cr theoretically, where we restrict

the kinetic energy (KE) acquired by the CS in the presence of TOD to be less

than the maximum harmonic potential energy set up by the dual-pump. The
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(a)

(b) (c)

Figure 5.14: Resilience towards TOD induced drift for dual-pump MR. (a) Steady-state CS in
presence of TOD and (b) its temporal evolution for simulation parameters: ∆ = 1.7, f0 = 1.3,
Ω = 8, β2 = −0.002, β3 = 3 × 10−5 (c) A situation where the CS slowly vanishes when
β3 > β3,cr, MR parameters used in the simulation are: ∆ = 1.7, f0 = 1.3, Ω = 8, β2 = −0.002,
β3 = 1.8×10−4. The round-trip evolution shows the disappearance of the CS and gradual decay
of the CS energy into the oscillatory background. In (b) and (c) we have shown a truncated plot
along the fast-time co-ordinate for better visualization.

maximum potential energy (PE) and the corresponding kinetic energy of the CS

in the reference frame of fast time τ , taken from [62], is given by Eq. 5.45 (a) and

5.45 (b), respectively. The critical value of TOD is thus obtained by equating 5.45

(a) and 5.45 (b), which is shown in Eq. 5.45 (c). If the value of TOD is greater

than the critical value, then the CS dissipates its energy into the dispersive wave
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(a)

(b) (c)

(d) (e)

Figure 5.15: Basic logic operations in synchronous OB (a) Schematic describing the logical
AND and OR operations in dual-pumped MRRs (b) logical AND, (c) corresponding round-trip
slow-time evolution, (d) logical OR output, (e) corresponding round-trip slow-time evolution
when the bit streams (input 1 and input 2) are fed through rings R1 and R2 while the output
is taken from ring R3. All possible bit-stream combinations are considered. Insets I & II depict
the input bit streams I and II, respectively. The color map represents the scaled intra-cavity
intensity in arbitrary units for better clarity.
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and merges with the oscillatory background.

PE =
1
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2Ω2f0C3S sin (φC3)

) (π
Ω

)2

(5.45a)

KE =
C3

6

2

+
v2

2
(5.45b)

β3,cr =
(
72f0C3S sin (φC3) π2 − 12C3

2
) 1
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3
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Where ν in presence of the TOD is given by ν = β3/(6β2
3/2) [61]. The variables

in Eq. 5.45 (c) can be obtained from the variational principle, as given in the

Appendix B. The critical value of TOD computed numerically is 1.2× 10−4 which

is in close agreement with the value (1.1 × 10−4) obtained analytically using Eq.

5.45 (c) for the set of MR parameters (∆ = 1.7, f0 = 1.3, Ω = 8, β2 = −0.002).

For β3 < β3,cr, CSs are trapped within the harmonic potential established by

the dual-pump and do not undergo relative temporal drift. We may conclude

that the synchronous behavior is retained in the presence of TOD as shown in

Fig. 5.14 (a). The round-trip evolution is depicted in Fig. 5.14 (b) which clearly

shows that CS in dual-pumped MR does not experience temporal drift. With

β3 > β3,cr, the dual-pump cannot support CS and it will gradually shed its energy

into the background, resulting into the oscillatory intra-cavity field which is shown

as round-trip slow time evolution in Fig. 5.14 (c).

5.3.3.3 Ability to Perform Logic Operations

It is always desirable to perform logical operations in the buffer itself. We have

recently explored that the synchronous buffer can be used to execute logic oper-

ations efficiently [27, 64]. The schematic of the proposed architecture to perform

logical operations (AND, OR) is shown in Fig. 5.15 (a). The proposed configura-

tion consists of two microrings, viz. R1 and R2 which prepares the corresponding

input CS patterns from the respective input bit patterns. These CS patterns are

coupled to another micro-ring R3 which then produces the output bit pattern after

a few round-trips of transients. All these rings are driven by the dual-pump. The
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(a) (b)

Figure 5.16: Robustness in performing logical operations. (a) Input bitstream (I), and bit-
stream (II), the insets (a1), (a2), (a3) show the misalignment between the temporal input bits,
(b) logical AND output (shown by the solid blue curve). It is clearly observed that the output
is not affected even if the two input bit-streams are not perfectly aligned.

steady-state output of Ring R1 and Ring R2 are amplitude scaled by the factor

κ · κ1 and κ · κ2, respectively following which these two intra-cavity waveforms

are added coherently. This in turn is used as an initial seed for the simulation

governed by the LLE in Ring R3. The desired logic operations can be obtained

by controlling the coupling factors of the resonators (κ, κ1, and κ2). Figures 5.15

(b, c) and 5.15 (d, e) dictate the use of the proposed OB to perform the logical

AND, logical OR operations, respectively. The AND operation requires that for

(1, 1) combination the intra-cavity power should be able to support a CS at that

temporal position, while the OR operation requires the same for all sets of com-

binations except (0, 0). This will determine the required values of the coupling

factors mentioned above. The input bit-streams that are stored in R1 and R2,

respectively and coupled into R3 should be in phase though not necessarily ex-

actly identical, an artifact arising due to the robust operation as discussed later.

The OB operating as logic gates have a finite response time as evident from the

round-trip evolution (Fig. 5.15 (c) and Fig. 5.15 (e)) while the steady state is

attained. In the simulation of AND logic gate, we have considered the coupling

factors as κ · κ1 = κ · κ2 = 0.28, whereas for the OR logic gate, the coupling

factors are κ · κ1 = κ · κ2 = 0.45. It should be noted that the OB realized through

CSs supported by a single pump MR configuration can also perform these logic

operations, provided the bit streams are perfectly synchronized. However, unlike
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a single-pump MR based OB, the performance of the dual-pump MR based OB

does not demand of perfect synchronization between bit-streams while β3 < β3,cr.

A slight mismatch in the temporal positions of the logical bits can be tolerated

as the bit-streams adjust themselves on the top of the oscillatory background au-

tomatically after a few round-trips, thereby not affecting the logical operations

in such dual-pump configuration. This is demonstrated in Fig. 5.16 for logical

AND operation. Input bit streams (I and II), shown in Fig. 5.16 (a), are slightly

dislocated temporally, which is conspicuous from Figs. 5.16 (a1), 5.16 (a2), and

5.16 (a3). The dashed red and dotted green curves correspond to bitstream I and

bitstream II, respectively. When there is bit 1 (CS) in the bitstream I and bit 0

(no CS) in the bitstream II, the output is bit 0 (shown by the solid blue curve).

When there is logic 1 in both the bitstreams with the slight temporal deviation

(see the magnified view in Fig. 5.16 (a2)), the logical output remains high (bit 1),

as shown by the solid blue curve in Fig. 5.16 (b), which means one would see a

stable CS at the output of the third MR. This clearly establishes the fact that the

performance of the dual-pumped MR based OB is not affected even if the input

bit streams are not temporally aligned perfectly. This demonstrates the robust

logical capability of these devices which is attributed to the presence of the same

restoring force, as discussed earlier.

5.3.3.4 Effect of Non-idealities on Synchronous OB

Effect of Unequal Pump Amplitudes

Till now, we have assumed equal pump amplitudes for both the pumps. While

this is highly desired, there might be small fluctuations in the power of the pumps,

leading to a mismatch in their normalized amplitudes. To understand the effect

of mismatch in pump amplitudes, we consider the normalized pump amplitude of

each of the dual-pump as f1/2 and f2/2, such that ∆f = |f1 − f2|/2. The LLE

then takes the following form given in Eq. 5.46 where the parameters bear their

usual meaning.

∂A

∂t
+

i β2

2

∂2A

∂τ 2
− i |A|2A = − (1 + i σ)A+

f1

2
e− i Ωτ +

f2

2
ei Ωτ (5.46)
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Figure 5.17: Robustness to writing jitter for unequal pump amplitude. The dashed red curve
represents the seed pulse. The numerical simulation parameters are σ = 1.7, β2 = −0.002, and
Ω = 8, with f1 = 1.31 & f2 = 1.29 (∆f = 0.01).

Here, ‘σ’ is used to denote the detuning factor instead of ‘∆’ to avoid the confusion

between detuning coefficient and the small parameter mismatch due to different

non-ideal scenarios. The amplitude mismatch will result in a change in the equi-

librium positions of the CSs. However, the synchronous nature of the OB still

remains intact and the CSs continue to exist at well-defined positions that can be

obtained when there is no restoring force on the system i.e. by equating Eq. 5.47

to zero. Note that, Eq. 5.47 is a general expression of Eq. 5.44.

dP

d t
= −2P + ΩC3S [∓f1 cos (φC3 + Ωτ) + f2 cos (φC3 − Ωτ)] ; φp = 0, π (5.47)

Fig. 5.17 shows the simulated result for the mismatch in pump amplitude. We

observe that the robustness to writing jitter and the synchronous nature of the

OB along with other features remain valid and preserved even in the situation

where the pump amplitudes are not equal to each other.

Effect of Unequal Pump Detuning

In all the analysis done so far, equal pump detuning for both the pumps has

been considered. However, it is required that the difference in detuning between

two pumps should be sufficiently small, to be negligible compared to the average
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detuning. The difference in the detuning, if is too large, may introduce a time-

dependent phase difference on the slow-time scale between two pumps, which may

have a detrimental effect on the comb generation process [24]. If the dual-pump

excitation scheme is similar to as mentioned in [17], the aforesaid condition can be

easily met. Also, the same can be attained via fine-tuning and feedback mecha-

nism if we use two separate laser sources. Nevertheless, it is interesting to examine

the effect when the difference in detuning is not negligible.

To study this system under detuning mismatch, we derive the LLE based

on nonlinear coupled mode equations. Our approach closely resembles to that

of [58]. We write the amplitude evolution of each of the cavity modes in the

non-normalized form, as given in Eq. 5.48.

dAj
d t

= −∆ωj
2
Aj − i γ

∑
l,m,n

δj−(l−m+n)AlA
∗
mAn exp [i (ωl − ωm + ωn − ωj) t]

+
√

∆ωe,j1F1 exp [i (Ω1 − ωj1) t] +
√

∆ωe,j2F2 exp [i (Ω2 − ωj2) t] (5.48)

where Aj represents the complex amplitude of the j-th cavity mode, j1 and j2

are the cavity mode numbers closest to the two pumps. δ is the Kronecker delta

function. F1 and Ω1 are the amplitude and the frequency, respectively of the first

pump, while F2 and Ω2 represent the same quantities for the second pump. ωj is

the resonance frequency of the j-th cavity mode, and ∆ωj is the Full Width at Half

Maximum (FWHM) of the j-th mode which takes into consideration the losses in

the cavity. ∆ωe,j takes into account the losses incurred due to external coupling

between the bus waveguide and the cavity and γ denotes the Kerr nonlinearity

factor.

The resonance frequencies of the cavity are expressed in Taylor expansion as:

ωj = ωj0+D1(j−j0)+D2(j−j0)2/2+· · · where the expansion is done around j0. D1,

D2, etc. represent the various orders of the group velocity dispersion coefficients.

The discrete Fourier transform of the intra-cavity field envelope yields Eq. 5.49.

A (t, τ) =
∑
j

Aj (t) exp [i (ωj − ωj0) t− i (j − j0) τ ] (5.49)
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Using Eqs. 5.49 in Eq. 5.48, and doing algebraic simplifications, we arrive at

following mathematical expressions, 5.50 and 5.51.

d

d t
A =

∑
j

[
d

d t
Aj + i (ωj − ωj0)Aj

]
exp [i (ωj − ωj0) t− i (j − j0) τ ] (5.50)

and,

in
∂n

∂τn
A =

∑
j

(j − j0)nAj exp [i (ωj − ωj0) t− i (j − j0) τ ] (5.51)

With the help of Eqs. 5.48-5.51, we can derive the time domain formulation of

LLE with mismatched detuning given in Eq. 5.52.

∂A

∂t
=

(
−∆ω

2
− i γ|A|2 +

∑
n≥2

in+1Dn

n!

∂n

∂τn

)
A

+
√

∆ωe,j1F1 exp {i [σ1t+Dres (η = j1 − j0) t+ (j1 − j0) (D1t− τ)]}

+
√

∆ωe,j2F2 exp {i [σ2t+Dres (η = j2 − j0) t+ (j2 − j0) (D1t− τ)]} (5.52)

where, σk is the detuning of pump k from the nearest cavity resonance, i.e. σk =

Ωk − ωjk, where k ∈ {1, 2}. η = j − j0 is the relative mode number, and Dres(η)

denotes the residual dispersion and is defined as Dres (η) = 1
2!
D2η

2 + 1
3!
D3η

3 + · · · .
Also, we have assumed that the FWHM of all the cavity modes is the same and

equals to ∆ω. Applying the following transformations, τ −D1t → τ , and t → t,

we get the transformed version of Eq. 5.52.

∂A

∂t
=

(
−∆ω

2
− i γ|A|2 +

∑
n≥2

in+1Dn

n!

∂n

∂τn

)
A

+
√

∆ωe,j1F1 exp {i [σ1t+Dres (η = j1 − j0) t− (j1 − j0) τ ]}

+
√

∆ωe,j2F2 exp {i [σ2t+Dres (η = j2 − j0) t− (j2 − j0) τ ]} (5.53)

Special Case: Equal Detuning σ1 = σ2 = σ, equal pump amplitude: F1 = F2,

equidistant pump in the frequency domain: j1−j0 = −(j2−j0) = Ω, and ∆ωe,j1 =
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∆ωe,j2 . In this case, Eq. 5.53 reduces to the familiar form Eq. 5.54.

∂A

∂t
=

(
−α− i σ̃ − i γ|A|2 +

∑
n≥2

in+1Dn

n!

∂n

∂τn

)
A+ 2

√
∆ωeF cos (Ωτ) (5.54)

where we have replaced ∆ω/2 with α and made the transformation,

A→ exp (−iσt− iDres(Ω)t) such that σ̃ = σ +Dres(Ω).

The case of Interest : Unequal Detuning: σ1 6= σ2, equidistant pump in the fre-

quency domain: j1 − j0 = −(j2 − j0) = Ω. We neglect D3 and all higher-order

group velocity dispersion contributions for simplicity. In this case, we obtain :

∂A

∂t
=

(
−α− i γ|A|2 +

∑
n≥2

in+1Dn

n!

∂n

∂τn

)
A

+
√

∆ωe,j1F1 exp {i [σ1t+Dres (Ω) t− Ωτ ]}

+
√

∆ωe,j2F2 exp {i [σ2t+Dres (−Ω) t+ Ωτ ]} (5.55)

If we make the following transformation A→ A exp (−iσ1t− iDres(Ω)t), Eq. 5.55

can be re-expressed as,

∂A

∂t
=

(
−α− i σ̃ − i γ|A|2 +

∑
n≥2

in+1Dn

n!

∂n

∂τn

)
A

+
√

∆ωe,j1F1 exp {− i Ωτ}+
√

∆ωe,j2F2 exp {i [∆σt+ Ωτ ]} (5.56)

where ∆σ = σ2 − σ1 and σ̃ = σ1 + Dres(Ω). The presence of detuning difference

(∆σ) in the exponent of the third-term in Eq. 5.56 clearly indicates the extra

time-dependent phase difference between the pumps. We observe that a small

difference in detuning, ∆σ < 10% (Fig. 5.18 (a)) causes the drift in an entire bit-

stream pattern along the fast-time coordinate. This is because the CS equilibrium

positions creating the optical lattice now become slow-time dependent. If ∆σ �
1%, (Fig 5.18 (b)), which is the desired operating condition, then no observable

significant effect appears by the virtue of detuning mismatch. However, if ∆σ >

10%, it will disrupt the CS bit-stream and wont support CS in the dual-pump

configuration. This can also be understood from the restoring force i.e. pulse
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(a)

(b)

Figure 5.18: Effect of pump detuning mismatch. Round-trip evolution of the CS for the set
of parameters: f0 = 1.3, σ = 1.7, β2 = −0.002, Ω = 8, (a) ∆σ = 0.1, and (b) ∆σ = 0.01. Color
scale represents the normalized intensity.

momentum as derived for unequal pump detuning, given in Eq. (59).

dP

d t
= −2P + 2ΩC3S

[
∓
√

∆ωe,j1F1 cos (φC3 + Ωτ)

+
√

∆ωe,j2F2 cos (φC3 − Ωτ −∆σt)

]
; for, φp = 0, π (5.57)

5.3.3.5 Robustness against Raman and Self-steepening Effects

So far in our discussion, we have neglected the effects of self-steepening (SS) and

the stimulated Raman scattering (SRS) as they are justifiably small to be ne-
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glected in those simulations. However, the effects of SS are prominent in case

of ultra-short (/ ps) pulses [29]. SS arises due to the intensity dependence of

the group velocity and is responsible for introducing an asymmetry in the pulse

spectrum. In temporal domain, the pulse gets tilted thereby developing an optical

shock either at the trailing or the leading edge depending upon the dispersion

of the medium. Similarly, SRS is an intrinsic nonlinear mechanism that affects

the characteristics of Kerr micro-resonator based FC in a single pump case. SRS

includes the self-frequency shift which is manifested as red-shift in the CS spec-

trum and a temporal drift along the fast-time [29]. In addition, due to SRS, Kerr

CS operated at large detuning faces bandwidth limitation that truncates the CS

regime of existence [65]. Therefore, in general, SRS acts detrimentally on FC for-

mation [66, 67]. Nevertheless, one can get rid of the SRS if one operates at low

pump detuning or in a particular spatial mode of operation [27]. In this section,

we investigate the robustness of dual-pump MR based optical buffer in presence

of self-steepening effect and stimulated Raman scattering [68].

Effect of Self-steepening: The effect of the SS is investigated by modified LLE

(normalized) as given in Eq. 5.58 (a) (Eq. 5.58 (b)). TR, t, and τ represent the

round-trip time, slow-time and the fast-time, respectively; α, L, β2(η), γ, δ0(∆),

ω0, θ, Ein(f0), and ξ are the round-trip loss, cavity perimeter, 2nd order GVD

coefficient (normalized dispersion), Kerr nonlinear coefficient, central frequency of

the comb envelope, pump detuning (normalized detuning), coupling factor, driving

pump amplitude (normalized pump), and normalized SS factor, respectively.

TR
∂E

∂t
=
√
θEin cos (Ωτ) +

[
−α− i δ0 − iL

β2

2

∂2

∂τ 2

]
E

+

(
1 +

i

ω0

∂

∂τ

)(
i γL|E|2

)
E (5.58a)

∂E

∂t
= f0 cos (Ωτ) +

[
−1 + i

(
|E|2 −∆

)
− i η

∂2

∂τ 2

]
E
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−ξ ∂
∂τ

(
|E|2E

)
; where, ξ =

1

ω0

√
2α

|β2L|
(5.58b)

We plot the CS in the absence (red dashed curve) and presence (blue solid

curve) of SS in Fig. 5.19 (a) while Fig. 5.19 (b) shows the temporal evolution of

the CS in presence of SS. From Fig. 5.19 (a) and Fig. 5.19 (b) it is conspicuous

that SS has a negligible impact on the operation of synchronous OB, and in par-

ticular on the behaviour of dual-pump based CS.

Effects of SRS

The SRS effect has been modelled through the normalized LLE as given by Eq.

5.59 (a) and Eq. 5.59 (b). Here fR, and hR(τ) denote the fractional Raman contri-

bution and the time domain Raman response function, respectively. The convolu-

tion (⊗) term is evaluated through the linear approximation of the Raman response

function (Γ and TRM) given by: Γ(τ, τs) ⊗ |E|2≈|E|2−TRM(fRτs)
−1∂ |E|2 /∂τ .

TR
∂E

∂t
=
√
θEin cos (Ωτ) +

[
−α− i δ0 − iL

β2

2

∂2

∂τ 2

]
E

+ i γL
[
(1− fR) |E|2 + fRhR(τ)⊗ |E|2

]
E (5.59a)

∂E

∂t
= f0 cos (Ωτ) +

[
−1− i ∆− i η

∂2

∂τ 2

]
E

+ i
[
(1− fR) |E|2 + fR

(
Γ (τ, τs)⊗ |E|2

)]
E; (5.59b)

where, Γ(τ, τs) = τshR(τ, τs) and τs =
√
|β2|L

2α
. In Fig. 5.19 (c) and Fig. 5.19

(d) we plot the round-trip temporal evolution of the CS in the single-pumped and

dual-pumped MR. It is clear that in case of a single pump, the CS experiences a

temporal drift in fast-time scale which corresponds to a red shift in the frequency

domain whereas, in the case of dual-pump, the temporal drift is prevented. The

spectral profile of CS helps us to explain this phenomenon. The redshift associ-

ated with the Raman gain is also accompanied by four-wave mixing (FWM) which

causes partial power transfer to the blue side of the spectrum. The FWM is facil-
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Figure 5.19: (a) CS in the absence (red dashed curve) and in the presence (blue solid curve) of
SS. (b) The round-trip temporal evolution of the CS in presence of SS. Simulation parameters:
f0 = 1.3, ∆ = 1.7, η = −0.002, Ω = 8, ξ = 0.002. Round-trip temporal evolution of CS in
presence of SRS: (c) single-pump case, (d) dual-pump case. Rest of the simulation parameters:
η = −0.002, fR = 0.18, TRM = 3 fs, τs = 2 ps.

itated by the dual-pump. Thus, the effect of red-shift due to SRS is compensated

by FWM in case of dual-pump based CS. In other words, the intra-cavity field

potential induced by the oscillatory background thwarts the temporal drift in the

presence of SRS. This effect can be observed from the spectra of the dual-pumped

Kerr comb as shown in Fig. 5.20. All the normalized simulation parameters

are calculated from the realistic non-normalized parameters which can easily be

achieved through the current optical fabrication technologies [5, 26, 27]. There-

fore, numerical results prove the resilience of the dual-pumped OB against the

non-Kerr nonlinearities. Note that, the generation of CS in our model is assumed

to be based on transiently triggered seed pulse that makes our model thermally

stable [69]. The mode-locking of CSs can be preserved if the modulation frequency

of the pumps is adiabatically changed in presence of a programmable microheater

capable to balance the effect of modulation, thermally [70]. This will assist in
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Figure 5.20: Dual-pumped Kerr frequency comb spectra under the influence of stimulated
Raman scattering.

flexible dual-pump based comb generation. However, a detailed investigation on

the same needs to be carried out and is beyond the scope of this work. Therefore,

to summarize, in this section, we have presented an elegant methodology based on

dual-pumped Kerr microresonator to compensate the self-steepening and Raman

effects which might be advantageous in several photonic applications including

all-optical buffer. As a future prospect, such devices can also be useful in on-chip

entangled photon pair generation.

5.3.4 Conclusions

As a summary of section 5.3, we have presented the flexibility of the synchronous

optical buffer based on dual-pumped MR configuration. The numerical results

are well supported by the analytical model which was derived to understand the

trapping of CS in the dual-pump scheme that leads to its robustness to writing

jitter. The inherent logical capability combined with the clocked behavior is very

appealing. In our study, we have not identified the MR parameter space for CS

existence under dual pumping as well as the range where we can avoid spontaneous

symmetry breaking. Future studies focusing on these aspects can help in figuring

out the optimal operating MR parameters for synchronous OB. The impact of

non-idealistic situations on the performance of OB has been evaluated. If the
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challenges concerning bi-chromatic pumping can be overcome then these devices

can provide robust performance apart from being scalable.

5.4 Breakdown of Optical Lattice formation

5.4.1 Introduction

In this section, we inspect the super cavity soliton (SCS) states in MR under

bi-chromatic pumping scheme and the conditions for the breakdown of optical

lattice formation in dual-pumped SCSs. The SCS states are known to exist under

the application of high pump power when the Kerr induced phase shift exceeds

2π [71–75]. This leads to the observation of multi-stability and supports several

exciting nonlinear states which we observe in dual-pump configuration-akin to a

single-pump driven MR system under similar scenarios [76]. We have performed

numerical simulations of such systems based on the Ikeda formalism [71]. We

explore the possibility of optical lattice formation in dual-pump MR configuration

for the SCS states. It is shown that the optical lattice formation takes place

conditionally for the case of SCSs. The analytical relation to describe the steady-

state of the optical lattice in the context of dual-pump driven MR is derived [76].

In the previous sections, we observe that the CS resting on a CW background

allows the formation of an optical lattice. Even if the CS originates from chaotic

MI region randomly, it gets slowly attracted to the nearest equilibrium position.

However, we notice a breakdown of this optical lattice formation in case of CS

existing on MI induced temporal background. Apart from indicating the caveats

in the process of lattice formation with regards to the SCS states, our work will

help to gain an insight into the process of the formation of cavity solitons from MI

and the resulting phase of the generated solitons in the context of bi-chromatic

pumping.

5.4.2 Theoretical Analysis

The cavity resonances tilt in the presence of the Kerr effect, due to the occurrence

of intensity dependent phase-shift. These tilted resonances may become multi-
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valued and exhibits bi-stability. However, under strong pumping conditions, when

the nonlinear phase shift attributed to the Kerr effect exceeds 2π, even adjacent

resonances can overlap and lead to tri-stability and/or higher order stabilities

[71, 72]. As discussed earlier, the behavior of Kerr MR under strong pumping is

modeled by the Ikeda map. The description is given by coupled equations 5.60

and 5.61, one representing the boundary condition of coherent driving while the

other involves the evolution of the electric field envelope along with the round

trip [72].

Em+1 (z = 0, τ) =
√
θEin +

√
ρEm (z = L, τ) e−iδ0 (5.60)

∂Em (z, τ)

∂z
=
− i β2

2

∂2Em

∂τ 2
+ i γ|Em|2Em (5.61)

where Em, Em+1 · · · are the field envelopes after the m-th and (m + 1)-th · · ·
round-trips, respectively. L represents the cavity round-trip length, θ is related to

the coupling coefficient of the resonator and ρ depends on the cavity Finesse (=)

as ρ ' 1− 2π
= . Ein is the amplitude of the driving field, z stands for the coordinate

along the cavity round-trip and τ denotes the time variable in a reference frame

moving with the group velocity of light in the medium. β2 stands for the second-

order GVD coefficient and γ is the Kerr non-linearity co-efficient. The pump

detuning is given by δ0. The CW steady state solution relates the intra-cavity

power as [72]:

P =
θPin(

1−√ρ
)2 [

1 + =sin2
(
δ0−γLP

2

)] (5.62)

where δ0 is the linear detuning induced phase difference, and γLP is the intensity

dependent phase term, P and Pin are given by, P=|E|2 and Pin = |Ein|2. The Kerr-

tilt of the resonances is shown in Fig. 5.21. Anderson et al. [72] has demonstrated

multiple nonlinear states in these systems including, (I) homogeneous steady state,

(II) modulation instability induced periodic Turing pattern, (III) CS resting on a

continuous wave background, (IV) CS resting on a periodic MI pattern and (V) co-
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Figure 5.21: Kerr-tilt of the resonances obtained from the Ikeda map depicts the steady state
intra-cavity field with respect to the detuning. Clearly, the overlapping of adjacent resonances
and the tilt of resonances in excess of 2π is observed.

existence of two different CS states. Cases (I), (II) and (III) arise in conventional

Kerr MR, however, under strong pumping SCS states belonging to cases (IV)

and (V) may also exist. Case (IV) arises when the CS regime of one resonance

coincides with the MI regime of the other resonance. The case (V) appears when

the CS regime of adjacent resonances overlaps. In our work, we deal with the case

(III) and the case (IV).

Kerr MR in bi-chromatic configuration is driven by two pumps which are spec-

trally separated by modulation frequency Ω . If we assume that the detuning of

the two pumps are equal and they are having the same power then we can modify

Eq. 5.60 to incorporate the effect of the dual pump as,

Em+1 (z = 0, τ) =
√
θEin cos (Ωτ) +

√
ρEm (z = L, τ) e−iδ0 (5.63)

We depict the cases (III) and (IV) in Figs. 5.22 (a) and Fig. 5.22 (b), respectively.

We observe that the background gets modulated depending on the modulation

frequency Ω where the number of oscillatory lobes is double the dimensionless Ω,

which is a typical signature of dual pump configuration [24].
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Figure 5.22: (a) The existence of CS on an oscillatory background owing to the dual pump
configuration. Steady state simulation parameters are: δ0 = 3, Ω = 3, Pin = 15 W. This belongs
to the category of Case III. (b) The existence of SCS on an oscillatory background modulated
by MI induced temporal background. Steady-state simulation parameters for case (IV) are:
δ0 = 5.8, Ω = 4, Pin = 15 W. Other simulation parameters that are used and remain unchanged
throughout this work are: θ = 0.1, ρ = 0.73, β2 = −22 ps2/km, γ = 1.2 W−1km−1, L = 0.1 km.

5.4.3 Results and Discussions

5.4.3.1 Optical Lattice Formation driven by dual-pump

Taheri et al. showed that an optical lattice trap is formed when the Kerr MR

is driven by two CW optical pumps. This results in solitons existing at specific

equilibrium locations along the fast time co-ordinate which can be determined

analytically with the help of the approach mentioned in ref. [58]. When the Kerr

induced phase shift is less than 2π the description given by Ikeda map is well

approximated by the mean-field Lugiato-Lefever equation that can be rewritten

for dual-pump as [72]:

TR
∂E

∂t
+ i

β2L

2

∂2E

∂τ 2
− i γL|E|2E = −(α + i δ0)E +

√
θEin cos(Ωτ) (5.64)

Where E is the electric field envelope, TR is the round-trip time and α ' (1−ρ)
2

.

Other parameters are already mentioned earlier, t and τ represent the slow time

and fast time, respectively. A single CS supported in the dual pump configuration

can be expressed by:

E (τ) = C̃1 cos(Ωτ) + C̃2 sech (B (τ − τ0)) eiφp (5.65)
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Where C̃1 = C1eiφC1 represents the amplitude and phase of the oscillatory back-

ground and can be obtained from the four-wave model described in [24]. C̃2 =

C2eiφC2 , C2 is the amplitude and B is the temporal width of the hyperbolic secant

pulse representing the soliton, φp is the phase of the soliton envelope. τ0 is the

location of the center of soliton pulse on the fast time co-ordinate. C̃1, C̃2, B for

the single pump case are mentioned in [5]. In that case, the pulse momentum is

defined by the Eq. 5.41. As already derived, the restoring force exerted on the CS

due to the potential set up by the dual-pump is given by,

d

d t
P = −2

α

TR
P + 2

√
θEin
TR

ΩC2S sin(Ωτ0) sin(φC2) (5.66)

This force is responsible for the formation of an optical lattice. The steady-state

CS location (i.e the lattice points) will be given by Ωτ = mπ, wherem is an integer.

However, we find that the lattice points are displaced from the position as obtained

analytically. This is shown in Figs. 5.23 (a)–(c). This is because the base on which

the CS is resting gets locally modified. As a result, the potential gets perturbed,

thereby altering the equilibrium CS location. Also, it is attributed to the cause

that the LLE cannot accurately describe the dynamics of SCS states. These

lattice points form a regular array and act as CS trapping site which is located

symmetrically about by Ωτ = mπ. CS gets attracted towards these positions as is

evident from the bent trajectory in the round-trip evolution. Thus, if we know the

temporal position of one CS we can deterministically locate other CSs. It is to be

noted that in the numerical simulation we have varied the detuning δ0 gradually

from an initial value of −0.65 rad to the required final detuning value over 350

round-trips. Thereafter, the roundtrip evolution is captured until the steady state

is attained. This leads to the excitation of CS spontaneously without the need of

suitable seed pulse [8].

5.4.3.2 Break-down of Optical Lattice Formation

Case (IV) of SCS states arise when the CS rests on the oscillatory background is

modified by the MI of the adjacent resonance MI regime. The equilibrium positions

now deviate from the normal lattice points and become randomly oriented as
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Figure 5.23: The top row of each of sub-figures a, b, c represents the evolution of the intra-
cavity field as the circulating light traverses several round trips. Formation of the optical lattice
is evident from the fact that the steady state location of the CS is aligned with the optical
lattice equilibrium positions which are depicted as vertical lines. The bottom row of each of the
subfigures (a), (b), (c) show the temporal field profile along the fast time when the steady state
is attained. Parameters used in each of these simulations are: (a) δ0 = 3, Ω = 4, Pin = 15 W,
(b) δ0 = 3, Ω = 3, Pin = 15 W, and (c) δ0 = 3, Ω = 2, Pin = 15 W.

depicted in Fig 5.24. The modulation instability induced periodic background can

locally trap the SCS and hence the regular array of lattice points no more exists.

This marks the breakdown of the optical lattice.

5.4.4 Conclusions

In section 5.4, we have derived the lattice points corresponding to CS equilibrium

positions. We also presented that the dual pump configuration can support SCS

states. Observations made regarding the breakdown of optical lattice formation

demonstrate the conditional lattice existence. Our study will have severe impli-

cations in studies involving the utilization of SCS states as bits of an all-optical

buffer.
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Figure 5.24: The top row of each of sub-figures a, b, c represents the evolution of the
intra-cavity field as the circulating light traverses several round trips. Different regimes in the
roundtrip evolution are demarcated as R1, R2, and R3. Clearly, the MI-induced background
is visible in the R3 regime which is responsible for the breakdown of the optical lattice. The
bottom row of each of the subfigures (a), (b), (c) shows the temporal field profile along the fast
time when the steady state is attained. Parameters used in each of these simulations are: (a)
δ0 = 5.8, Ω = 4, Pin = 15 W, (b) δ0 = 3, Ω = 3, Pin = 15 W, and (c) δ0 = 3, Ω = 2, Pin = 15 W.

5.5 Summary

Therefore, to summarize the chapter,

• In the first section, the background-study of dual-comb Kerr frequency comb

has been briefly covered. We have also highlighted the advantages and dis-

advantages of using dual-pump configuration over single-pump.

• In section 5.2, four-wave model has been used to distinguish the regimes of

operation, viz. (i) threshold-less non-degenerate FWM, and (ii) threshold

intensity dependent MI for dual-pumped microresonators. The proposed

analytical model provides an efficient and quick estimation of the design

parameters to generate variable FSR frequency combs and composite combs

with tunable sub-comb lines.

• Section 5.3 have discussed the flexibility of the dual-pump synchronous all-

optical buffers and their robustness against the writing jitters, third order

dispersion, self-steepening, and stimulated Raman scattering. These buffers

are also capable to perform logic operations.
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• In section 5.4 we have presented a detailed numerical study on the exis-

tence of super-cavity solitons in the dual-pump configuration. We have also

demonstrated the breakdown of optical lattice formation demonstrate under

certain conditions. We believe, this study has severe implications in deter-

mining the utilization of super-cavity soliton states as bits of an all-optical

buffer.
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C H A P T E R 6

Spatially Entangled Continuous

Variable States in Periodically

Poled LiNbO3Waveguide Array

In this chapter, we theoretically and numerically investigate the parallel generation

of spatially entangled continuous-variable (CV) states between different waveguide

pairs of a 5×5 periodically poled lithium niobate (LiNbO3) waveguide array for

different pumping arrangements with a perspective of multipartite entanglement.

The bipartite entanglement is determined by following the Peres-Horodecky crite-

ria.1

6.1 Introduction

Quantum properties of light can be exploited in a myriad of applications such as

quantum computing (QC), quantum teleportation, quantum information process-

ing (QIP), quantum key distribution (QKD), and cryptography (QCr), quantum

simulations, spectroscopy, metrology and even in sensing [1–4]. Photonic systems

follow most of the DiVincenzo’s Criteria for QC approaches [5]. Integrated on-chip

1This work is partially conducted under Raman-Charpak Fellowship 2017-2018 at CNRS.
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waveguide based platform makes the technology scalable and compact for which

the scientists were striving for a decade now. Being bosonic in nature, photons

show less interaction with other particles and within themselves, thereby are less

susceptible to the quantum noise or decoherence. Therefore, QIP using photons

as qubits is a very robust approach over other existing approaches [1–4, 6]. Gen-

eration and manipulation of photons in an integrated on-chip waveguide-based

platform are preferred over crystal-based bulk-optical components mainly due to

their compactness, scalability, connectivity, reproducibility and very low power

consumption [6, 7]. Recent developments in nano-fabrication technologies make

the integrated quantum photonic circuit a promising and versatile candidate for

future QIP technologies [6] as well as for quantum cryptography.

QIP and QKD through photonic technologies, both come in two possible forms

based on discrete variable (DV) and continuous variable (CV) systems, each of

them having its own pros and cons [8, 9]. Similar to the digital electronic sys-

tems, DV systems deal with the single photon’s discrete degrees of freedom (num-

ber/polarization/phase) as qubits, whereas, CV systems encode position (x) and

momentum (p) or amplitude (A) and phase (φ) of the electromagnetic fields as

the quadratures residing in the infinite-dimensional Hilbert space. In QIP, DV

has been a popular choice as it is notably more robust to noise. The advent of

Knill, Laflamme and Milburn (KLM) protocol in 2001 that facilitates high-fidelity

DV quantum computing only with the linear optical components, single-photon

sources and detectors in a relatively deterministic way through quantum teleporta-

tion, is considered to be the cornerstone of quantum photonic technologies [10]. As

opposed to DV, CV systems utilize coherent laser sources and homo/heterodyne

receivers those are extensively used in present-day mature telecommunication sys-

tems. Therefore, photonic CV devices indeed would benefit from widely available

laser sources operate deterministically and therefore, has been recently recognized

as an extremely powerful alternative of DV for QIP [9]. CV detectors show quan-

tum efficiency close to unity without demanding expensive laboratory equipment.

Thus in the last decade, CV-versions of quantum protocols to logic gates, telepor-

tation, search algorithms, Fourier transform, Deutsch algorithm etc. have been

developed rapidly [1, 11, 12]. Nevertheless, recent developments in this direction

shows that Gaussian CV operations in their present forms are not useful for more
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advanced quantum protocols such as entanglement distillation [13] and we should

combine both the CV and DV approaches together to form a hybrid CV and DV

quantum network [14].

Both for the CV and DV systems, generation of quantum entanglement is

indispensable to realize different protocols for QIP and QKD [3]. Some of the

QKD protocols (BB84, Decoy, BB92, SSP, SARG04, KMB09, S13 etc.) also

known as ‘prepare-and-measure’ protocols are based on uncertainty principle, and

no-cloning theorem whereas, entanglement is a crucial part of several quantum

cryptographic protocols like E91, DPS, COW etc [8]. Multi-partite entanglement

further enhances the performances of a quantum computer thanks to the elegance

of algorithms leveraging the higher dimensionality [15, 16]. Security in quantum

cryptography relies on the fact that the bipartite entanglement distributed be-

tween two parties cannot be shared with another/third party if the two parties

are maximally entangled. Therefore, multi-partite entanglement is an essential

candidate for a quantum communication link [17, 18]. Popular applications of

multi-partite entanglement in quantum communication are the super-dense cod-

ing [19] and Byzantine agreement protocol [20]. Moreover, from this, highly entan-

gled cluster states can be a very powerful tool to realize large scale linear optical

quantum computing [21].

6.1.1 Choice of Materials

Quantum logic gates (Pauli-X bit-flip, Pauli-Y, Pauli-Z, Hadamard, SWAP, Phase-

shift gate, arbitrary rotational gate, Controlled-Not CNOT, Toffoli gates), small-

scale factoring algorithms, quantum simulations and entanglement generation and

manipulation are already demonstrated in integrated platforms [1, 4, 22, 23]. Un-

fortunately, efficient generation, manipulation and detection on the same chip

composed of same material have not yet been achieved [24]. Among LiNbO3, Si,

other III-V (GaAs etc.) semiconductors [24–26], which material will finally survive

that continues to stay as an open question and still the development of integrated

quantum photonic circuit is in its very early stage [26,27].

Recent progresses in this direction show [28] that both Si and LiNbO3 are

becoming competitive materials to each other. In 2014, fully integrated quan-
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tum circuits has been demonstrated in silicon-on-insulator (SOI) platform where

photon pairs are generated through spontaneous four-wave mixing (SFWM) ex-

ploiting Kerr/χ(3) nonlinearity of Si within a very compact size. In general, silicon

has a much higher refractive index contrast with silica and air in comparison with

LiNbO3. Therefore, silicon based devices are much more compact in size. How-

ever, in addition to the negligible propagation loss, the efficiency of the nonlinear

conversion through quasi-phase matching is much higher in lithium niobate than

that of silicon. Also, mature CMOS compatible fabrication techniques are avail-

able for these devices [28–31]. However, the two-photon absorption loss (2PA) at

telecommunication wavelength (λ < 2.2µm), free-carrier absorption and disper-

sion, absence of Pockels/Electro-optic effect, very low Franz-Keldysh effect, high

temperature sensitivity etc. limit the performance of SOI-based devices [32–34].

On the other hand, LiNbO3 is preferred over Si mainly for the manipulation of pho-

tons [24, 26, 35, 36] due to its high χ(2) nonlinearity, high acousto-optic and large

electro-optic coefficient. Although the device size are relatively larger in com-

parison with Si-based devices, periodically poled lithium niobate (PPLN) waveg-

uides recently have drawn significant attention for the generation of photon pairs

exploiting spontaneous parametric down conversion (SPDC) through (type-I or

type-II) quasi phase matching (QPM). LiNbO3 is not CMOS compatible; nev-

ertheless, standard fabrication techniques (proton exchange or Ti-indiffusion) are

available to design such PPLN waveguides [26]. The most significant advancement

in LiNbO3 based integrated quantum technology comes forward in 2017 with the

advent of highly entangled cluster states [37]. Complexity of the photonic circuitry

exponentially increases with the increase in the number of qubits in cluster states.

However, exploiting the spatial degrees of freedom of PPNL waveguide arrays, a

cluster state of four qubits are realized with relative ease. The effect of nonlin-

ear losses on the generation of quantum states in PPLN array waveguide is also

studied [38]. Possibility of hybrid silicon and lithium niobate integrated platform

harvesting the advantages of both the materials is also discussed in details in the

literature [39,40].

The primary objective of this work is to determine the best pumping scheme

and the most suitable waveguide parameters to maximize the squeezing of light

through spontaneous parametric down conversion (SPDC: χ(2) method) by QPM
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in a PPLN waveguide coupler as well as the to maximize the entanglement between

the non-classical optical modes propagating in the adjacent waveguides [41–43].

We investigate the generation of bipartite CV-entanglement between different

guided-modes pairs of a PPLN waveguide array (WGA) made up of 5 waveg-

uides in presence of symmetric and asymmetric optical pumping. Bipartite en-

tanglement is assessed by the Peres-Horodecki criterion through the logarithmic

negativity EN, where EN > 0 is indicative of entanglement [15,44–46]. WGA is a

promising candidate for the generation of multipartite entanglement and Gaussian-

steering [47–52]. We have chosen a 5×5 coupler as the architecture provides more

degrees of freedom and output ports than the directional coupler. We implement

different pumping scheme to gain insight about entanglement with large number

of parties in more general optical lattices. This device is a new source of multiple

bipartite entangled states to be sent through a quantum network. The results

help us to get an idea of the suitable waveguide structure as well as the efficient

waveguide architecture in terms of spatial CV entanglement. Finally, we attempt

to find the best possible pumping scheme along with the optimized waveguide cou-

pler architecture to achieve the maximum multipartite entanglement (both fully

and genuinely) between the waveguides.

Recently on-chip optical squeezing of ∼ 1.7 dB and ∼ 1.83 dB have been demon-

strated in integrated Si3N4 [53], and periodically poled Lithium Niobate (PPLN)

[54] platforms using spontaneous four-wave mixing and spontaneous parametric

down conversion (SPDC) through quasi-phase matching (QPM), respectively. The

possibility of achieving bipartite and multipartite multicolor CV-entanglement

with realistic parameters with a PPLN-based waveguide directional coupler have

been theoretically explored in [46,55]. However, to the best of our knowledge, ef-

ficient generation of both bi-partite and multi-partite quantum entanglement and

optical squeezing through spontaneous parametric down conversion have yet not

been demonstrated simultaneously in an integrated platform. Our current work

based on coupled PPLN array waveguides may facilitate the possibility of obtain-

ing this goal. Once, we achieve the multipartite entanglement, we plan to use this

in a known quantum protocol to verify the usefulness of our proposed scheme as

well as the proposed device.

219



Spatially Entangled Continuous Variable States in Periodically . . .

Figure 6.1: (a) Single PPLN waveguide, (b) PPLN waveguide array, (c) the perspective view,
and (d) the top-view of the proposed 5×5 PPLN coupled waveguide array for CV-entanglement
generation.

6.2 Theory and Numerical Results

6.2.1 Waveguide Structure

In our simulation to find the best pumping scheme, we consider the realistic waveg-

uide parameters. The group performs experiments on PPLN chips consisting of

buried waveguides as shown in Fig. 6.1 (a). The PPLN waveguides fabricated in

lasi, RAMTECH, Romania and INPHYNI, Nice, France through soft photon ex-

change usually have diffusion induced Gaussian refractive index (RI) profiles with

base width, w ∼ 6µm and RI contrast, ∆n = 2.4× 10−2. The pitch of the PPLN,

Λ is ∼16µm. We show a typical PPLN AWG in Fig. 6.1 (b). The separation, g

between any pair of waveguides in the array, shown in Fig. 6.1 (b), is typically

12–18µm to achieve the desired coupling coefficient.
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6.2.2 Theory

As mentioned earlier, in this work, we numerically investigate the generation

of bipartite CV-entanglement between different waveguide pairs of five coupled

PPLN waveguides in presence of symmetric and asymmetric optical pumping.

The primary objective is to determine the best possible pumping scheme and the

most suitable waveguide parameters to maximize the two-mode squeezing of light

through SPDC and the entanglement between the desired waveguide pairs. Peres-

Horodecki criterion is used to determine the bipartite entanglement between the

desired quantum states by calculating the logarithmic negativity, EN that is in-

dicative of entanglement when EN > 0. A brief discussion related to the Peres

Horodecki criteria/positive partial trace (PPT) method to distinguish the entan-

gled and separable states along with the procedure that quantifies the entangle-

ment mathematically is mentioned in the next section. A brief introduction on

squeezed state is also discussed.

6.2.2.1 Peres Horodecki Criteria

Schmidt decomposition is extensively used to find if a composite pure state is

entangled or separable. Schmidt decomposition does not apply for the mixed

states [12]. Peres Horodecki criteria or positive partial transpose (PPT) comes

to rescue in this regard. The PPT is a necessary condition for the joint density

matrix (ρAB) of two quantum systems A and B, to be separable. Suppose the

partial trace (PT) of the composite matrix ρAB with respect to A is defined as,

ρB
PT = trA(ρAB). PPT criterion states that if the density matrix of a composite

state ρAB is still a positive semi-definite (i.e. none of the eigenvalues of the matrix

is negative) matrix after the PT (with respect to A or B) of ρAB, then the state

is separable. Even if a single eigenvalue after the PT becomes negative then the

state must have entanglement. The number of negative eigenvalues is an indirect

measurement of the entanglement. The PPT criteria is also a sufficient criteria

for 2×2 and 2×3 cases.
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6.2.2.2 PPT for Gaussian CV States

The Peres Horodecki criteria can be generalized for the Gaussian CV systems [12].

If a bipartite CV composite-state represented by the density matrix (ρAB) an

be expressed in terms of a summation of the tensor products between two sub-

systems density matrices ρA and ρB, respectively as given by the Eq. 6.1 then the

composite state is separable,

ρAB =
∑
j

pjρ
j
A⊗ρ

j
B (6.1)

Suppose, a composite system has a Wigner function (WF), W (x1, p1, x2, p2) that

depends upon the quadratures (position and momentum) of the two systems given

in equation Eq. 6.2:

W (x1, p1, x2, p2) =

(
1

π

)2 ∫∫
dy1dy2

(
e2i(p1y1+p2y2)

)
×
∑
j

pj 〈x1 − y1| ρj1 |x1 + y1〉 ⊗ 〈x2 − y2| ρj2 |x2 + y2〉 (6.2)

Partial transpose of the WF of the Gaussian CV states is reflected as the reflection

of one of the momentum components, i.e. p2 −→ −p2. Thus it can be written as:

WPT(x1, p1, x2, p2) = W (x1, p1, x2,−p2) (6.3)

Therefore, for Gaussian CV states, PT≡reflection of the momentum direction.

According to the Weyl correspondence, the Wigner distribution relates quantum

operators to their corresponding phase space variables, in which for this situation,

the operators and the variables are the quadratures. For convenience the quadra-

tures are put together into a column vector. Thereby, the quadrature operators

and the variables are expressed as follows:

ξ̂ =


x̂1

p̂1

x̂2

p̂2

 ; and ξ =


x1

p1

x2

p2

 (6.4)
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For our convenience we can also define the two matrices:

Ω =

(
J 0

0 J

)
, J =

(
0 1

−1 0

)
(6.5)

Where,
[
ξ̂α, ξ̂β

]
= iΩαβ and α, β can run from 1 to 4. The result of performing a

PT on the WF can be seen to be equivalent to perform an operator Λ on ξ, where

Λ =diag(1, 1, 1, −1).

6.2.2.3 Uncertainty Principle as Separable Criteria

According to the quantum mechanics, every physical state requires to fulfil the

uncertainty principle and the converse is also true [12]. To define the uncertainty

principle for quadrature operators, a covariance matrix (V ) is defined as follows,

V =
〈{

∆ξ̂α,∆ξ̂β

}〉
=

〈
1

2

(
∆ξ̂α∆ξ̂β + ∆ξ̂β∆ξ̂α

)〉
where,

∆ξ̂α = ξ̂α − 〈ξ〉

∆ξ̂β = ξ̂β − 〈ξ〉〈
ξ̂
〉

= Tr
(
ρ̂ξ̂
)

(6.6)

Therefore, the uncertainty principle can be written as:

V +
i

2
Ω ≥ 0 (6.7)

After the PT the new covariance matrix would also follow the uncertainty principle

in case it represent a realizable physical state. Hence, one can write:

ΛV Λ +
i

2
Ω ≥ 0 (6.8)

If the condition does not follow, the state must not be separable.
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6.2.2.4 Effect of Nonlinear Interactions

Now suppose for any waveguide-system at the input (z = 0) the covariance matrix

be V (z = 0) = V (0). The optical wave propagates along z direction and the effects

of the nonlinear interactions can be accounted by the unitary operation S(z). The

evolution of the covariance matrix within the waveguide at distance z from the

input-port can be given by,

V (z) = S (z)V (0)S(z)T (6.9)

V (z) also should follow the uncertainty principle as given by Eq. 6.7. According

to the PPT if entanglement exists then ΛV (z)Λ must not satisfy the uncertainty

principle. In that case, the entanglement can be measured by following the rule

given in [46] from the density matrix of the composite state. The entanglement

can also be calculated from the covariance matrix. If V (z)PT denotes the partial

transpose of V (z), the logarithmic negativity is obtained from the symplectic

spectrum {vk}4
k=1 calculated from the matrix |iΩV (z)PT| must contain one or

more negative eigenvalues. So, the entanglement, EN can be given by,

EN =
4∑

k=1

F (vk) , with F (v) =

{
0, for v ≥ 1/2

−log2 (2v) , for v < 1/2 ;
(6.10)

Any value EN > 0 indicates the presence of entanglement.

6.2.3 Optical Squeezing and Covariance Matrix

In the previous section, we have described how to evaluate the CV-entanglement,

numerically. This section briefly discusses the fundamental concepts of the squeezed

light. In principle, the tangible measurement of the CV-entanglement is not

straight-forward. The amount (dB) of the optical squeezing of two-mode squeezed

coherent states at the outputs of the PPLN waveguide array can be measured,

experimentally. From squeezing, the co-variance matrix (V ) can be directly calcu-

lated. Once the co-variance matrix is obtained, as explained earlier, PPT criteria

helps to identify the existence of the CV-entanglement. Further, the logarithmic

negativity quantifies the spatial CV-entanglement.
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Figure 6.2: (a) Vacuum state, (b) squeezed (x-quadrature) vacuum, (c) squeezed (p-
quadrature) vacuum, (d) coherent state, (e) squeezed (x-quadrature) coherent state, (f) coherent
state squeezed in p-quadrature.

6.2.3.1 Squeezed State of Light

According to the Heisenberg’s principle, all light fields inherently fluctuate and

their amplitudes and phases are subject to a stochastic indeterminacy. The mea-

sured electric field amplitude (E) and the phase (φ) are the eigenvalues of the

normalized position (x) and momentum (p) quadrature operators. If the fluctu-

ations in these quadratures are denoted by ∆x and ∆p, respectively, then the

product of the fluctuations must follow the Heisenberg’s principle (normalized)

given by,

∆x∆p ≥ 1

2
(6.11)

where, [x, p] = i. In Fig. 6.2 (a), (b), and (c), we illustrate the vacuum state (|0〉),
squeezed vacuum with less amplitude noise (|0〉x), and less noise in phase (|0〉p),
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Figure 6.3: (a) EN14, EN15, EN24; EN14, EN15, EN24 when the (b) pump power is doubled,
(c) coupling coefficient become doubled.

respectively. Normal vacuum state possesses a circular Gaussian WF, whereas, the

phase-space distribution of the squeezed state resembles to an ellipse. Again, the

coherent state (|α〉) having a Gaussian WF (Fig. 6.2 (d)) is a minimal uncertainty

state where the ∆x∆p = 1/2 and the fluctuation (shot-noise) in both the quadra-

tures are the same (i.e. ∆x = 1/
√

2, ∆p = 1/
√

2). The WF of such coherent

state is circularly symmetric with respect to its centre shifted by a displacement

vector (D(α)) from the vacuum state given by |0〉. In quantum physics, light is

in squeezed state if the quantum uncertainty of one of the two quadratures x or p

(amplitude (E) or phase (φ), respectively) is less than the coherent state. There-

fore, for squeezed state, either, ∆x < 1/
√

2 (Fig. 6.2 (e)) or ∆p < 1/
√

2 (Fig. 6.2

(f)). Squeezed light has a myriad of applications in different domains [53, 56, 57].

We can measure the squeezed state just by using a homodyne detector [58], that

can yield the co-variance matrix.

6.2.3.2 Theoretical Framework of Our Work

We have chosen a 5×5 coupler as the architecture provides more degrees of freedom

in implementing the different pumping schemes. Besides, as a future scope, we

believe this coupled array waveguide structure is a promising candidate for the

generation of multipartite entanglement and Gaussian-steering.

The perspective view of the proposed nonlinear waveguide array (WGA) is

shown in Fig. 6.1 (c). Optical modes are guided through the diffusion induced

waveguides. Five identical χ(2) waveguides are placed side by side as shown in

Fig. 6.1. Note that, the waveguide separation is designed in such a way that the
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modes at 1.55µm are evanescently coupled at the coupling region whereas, the

pump-modes at 780 nm remained guided. The phase-matching condition is only

fulfilled in the coupling region. Second harmonic generation, SPDC, and optical

parametric amplification can happen in the 2nd order nonlinear waveguides de-

pending upon the initial conditions. The effective interaction momentum operator

(M̂), for all of these processes, is the same, and for such a 5×5 waveguide-coupler

can be written as:

M̂ = ~

(
gAAs

†2 + gBBs
†2 + gCCs

†2 + gDDs
†2 + gEEs

†2

+ CABAsBs
† + CBCBsCs

† + CCDCsDs
† + CDEDsEs

† + h.c.

)
(6.12)

Where As (As
†), Bs (Bs

†), Cs (Cs
†), Ds (Ds

†), and Es (Es
†) are the annihilation

(creation) operators of the harmonic optical modes propagating, respectively in

waveguides labeled as A, B, C, D, and E in Fig. 6.1 (d). gi is the efficiency of the

2nd order process in the i-th waveguide and Cij represents the linear coupling co-

efficient between the adjacent i-th and j-th waveguides. ~ is the reduced Planck’s

constant. It is to be noted that the coupler is designed in such a way that pump

modes cannot couple to each other. Coupling between the adjacent waveguides

is only considered. Pump depletion is negligible and thus pump-modes Ap, Bp

etc. do not appear in equation 6.12. In the Heisenberg’s interaction picture, the

mode-operators evolve along the propagation length z of the waveguides. Corre-

sponding normalized quadrature operators of mode i are denoted by x̂i (position)

and p̂i (momentum) where [x̂i, p̂i] = i. In our work, we have used the definition of

the quadrature operators, x̂A = (A†s +As)/
√

2, and p̂A = i(A†s−As)/
√

2 and so on.

The Heisenberg-Langevin equation for the system neglecting the loss can be given

as: dξ̂/dz = M10ξ, where, ξ̂ = (x̂A, p̂A, x̂B, p̂B, x̂C, p̂C, x̂D, p̂D, x̂E, p̂E)T and M10 is

a 10×10 matrix given in Eq. 6.13. Thus the evolution of the co-variance matrix

along the propagation length of the waveguide coupler follows Eq. 6.9, where

S(z) = exp(M10z) and V0 = I10/2 represents the vacuum fluctuation at the input

port of the WGA. From the matrix V , CV bi-partite entanglement is determined

by calculating the logarithmic negativity, EN (> 0) following the procedure given

in [41,42,46]. At first, we pump the 3rd waveguide (C) and plot the entanglement,
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Figure 6.4: (a) EN14, EN15, EN24, and (b) EN23, EN34, EN35 while 2nd and 4th waveg-
uides are pumped; (c) EN14, EN15, EN24, and (d) EN23, EN34, EN35 while 1st, 3rd and 5th
waveguides are pumped. (e) EN14, EN15, EN24, (f) EN13, EN23, EN34, EN35 while the 1st
and 2nd waveguides are pumped (asymmetric case).

EN with respect to the propagation length, z in Fig. 6.3 (a). Fig. 6.3 (a) shows

that there is no CV-entanglement generated in asymmetric waveguide pairs such

as 1 and 4 when the WGA is pumped symmetrically while entanglement between

2nd and 4th waveguides and 1st and 5th waveguides gradually builds-up. Realistic

simulation parameters are identical to the ones used in Barral et al. [46]: We take
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all non-vanishing couplings to be equal to C = Cij = 0.24 mm−1 and all nonlinear

efficiency to g = gi = 0.025 mm−1.

M10 =



−SA CA SL −CL 0 0 0 0 0 0

CA SA CL SL 0 0 0 0 0 0

−SL −CL −SB CB SL −CL 0 0 0 0

CL −SL CB SB CL SL 0 0 0 0

0 0 −SL −CL −SC CC SL −CL 0 0

0 0 CL −SL CC SC CL SL 0 0

0 0 0 0 −SL −CL −SD CD SL −CL

0 0 0 0 CL −SL CD SD CL SL

0 0 0 0 0 0 −SL −CL −SE CE

0 0 0 0 0 0 CL −SL CE SE



(6.13)

where,

Si = 2 |gi| sin (φi)

Ci = 2 |gi| cos (φi)

SL = |Cij| sin (φij)

CL = |Cij| cos (φij) (6.14)

As demonstrated in Fig. 6.3, pump-power and coupling coefficient act as scaling

factors on the CV-entanglement EN. If the input power is increased, the oscilla-

tion depth enhances, entanglement is built faster and the unentangled component

decays quickly. If the coupling coefficient increased by 4-times, the oscillation pe-

riod of EN decreases proportionately. Therefore, the entanglement configuration

obtained in Fig 6.3 (a)–(c) is especially interesting to generate bipartite entangled

states in ‘parallel’ (modes 1–5 and 2–4) in a compact stable device and distribute

entangled telecom pairs in an optical network. This arises from a simple single

waveguide pumping. Scaling up the number of generated entangled pairs or getting

multipartite entangled states involves optimization of the pumping arrangement.

Change of pumping scheme for entanglement optimization is readily implemented

by changing the g coefficient values as exemplified in figure 6.3. Fig. 6.4 (a) and

6.4 (b) show the EN while the 2nd and 4th waveguides are pumped and the en-
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tanglement between different waveguide pairs are shown in Fig. 6.4 (c) and 6.4

(d) while 1st, 3rd, and 5th waveguides are pumped. We also study the generation

of CV-entanglement between the previously chosen pair of waveguides while the

array is asymmetrically pumped. If only 1st and 2nd waveguides are pumped then

entanglement between the 2nd and 4th waveguide (EN24), entanglement between

the 1st and 3rd waveguide (EN13), and entanglement between the 3rd and 5th

waveguide (EN35) are gradually increased with the propagation length of the cou-

pled region. The achieved entanglements are comparable with the entanglements

that can be obtained in cavities [59].

6.3 Summary and Conclusion

To summarize, a theoretical study on the generation of CV-entanglement in PPLN

waveguide arrays has been presented. This framework enables the determina-

tion of suitable device parameters (length, inter-waveguide distance) and pumping

scheme (amplitude and phase) to conduct experiments. We exemplify this on the

numerical evolution of bipartite entanglement in a 5×5 coupler for symmetric and

asymmetric pumping configurations. We demonstrate the efficient parallel gener-

ation of two entangled pairs for injection in an optical network in a device without

a bulk-optic analogue.

Multi-partite entanglement has well-known application in super-dense coding

and can further enhance the performances of a quantum computer thanks to the

elegance of algorithms leveraging the higher dimensionality. We believe the cho-

sen waveguide array is a promising system for multipartite entanglement. Perspec-

tives, of course, involve the determination of the best system and input parameters

for maximal multipartite entanglement using Van Loock-Furusawa criteria.
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C H A P T E R 7

Conclusion and Future Scopes

7.1 Conclusion

This dissertation summarizes an attempt towards advancing some of the state-

of-the-art integrated photonic technologies for their applications in linear (opti-

cal directional coupler (DC)), polarization beam-splitter (PBS), filters), nonlinear

(frequency comb (FC)), and quantum (continuous-variable (CV) entanglement)

optics. Current chapter discusses the possible scopes of improvement and future-

direction of this thesis-work.

Chapter 2 presents a novel scheme to miniaturize the DC and PBS using

off-centered and hybrid slot waveguides. Optimally placed off-centered slots can

enhance the coupling coefficients between two adjacent waveguides by > 88%.

Employing this scheme, we have achieved a DC and a PBS of coupling length

∼ 0.9µm, and ∼ 1.1µm, respectively. In chapter 3, non-concentric nested micror-

ing resonators (NN-MRR) are proposed for ultra-compact broadband (>10 nm)

filter design and for athermal electro-optic modulation. Such NN-MRRs are fab-

rication tolerant and can circumvent the stringent requirement of the critical-

coupling to obtain the optimal performance. Next chapter onward we enter in the

domain of nonlinear optics; we develop a theory of Kerr FC in the presence of all

nonlinear losses and free-carrier effects based on modified Lugiato-Lefever Equa-
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Conclusion and Future Scopes

tion. Chapter 5 demonstrates the advantages of bi-chromatic pumping over the

single-pump configuration to generate FC. Chapter 6 is dedicated to the quantum

optics. We culminate our thesis-work by disserting the best possible pumping

scheme for the parallel generation of spatially entangled (bipartite) CV-states

in multiple waveguide pairs of a 5×5 periodically-poled lithium niobate (PPLN)

waveguide array.

7.2 Future Scopes

Future scopes of the thesis are listed below:

• The strategy proposed in chapter 2 to shrink the optical devices is new, al-

beit, the slots are optimized by trial and error method. Sophisticated opti-

mization techniques such as variational principle [1], evolutionary algorithms

(genetic algorithm, particle swarm optimization etc.), machine learning can

be used instead [2–4]. Also the fabrication of hybrid (horizontal and vertical

together) slots is still a big challenge. Dearth of high-end fabrication facility

precluded us to demonstrate the hybrid-slot PBS.

• The complete soliton dynamics in presence of nonlinear losses and free-carrier

effects is yet to be explored and there remains a huge-scope to extend the

theory presented in chapter 4. For instance, photo-refractive index induced

reverse Kerr-tilt provides an alternative mechanism to soliton generation

against the predominantly followed laser-detuning approach. The full poten-

tial of this approach deserves further exploration. The emergence of second-

order nonlinear material based FC platforms, with lithium niobate being

the dominant material of interest is also governed by strong photo-refractive

effects. Thus identifying the role of the photo-refractive and photo-thermal

effects in χ(2) based FC is an important problem to consider. Some of the

highly nonlinear materials (e.g. AlGaAs) simultaneously exhibit both χ(2)

and χ(3) nonlinearity. The presented study requires to be modified to include

the χ(2) effects. Furthermore, recently, the advantages of coupled microres-

onators for FC generation is being studied extensively [5]. The proposed

non-concentric microrings (Chapter 3) can be utilized to fetch all those ad-
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vantages, however, within a compact geometry. Such NN-MRRs or internally

cascaded MRRs when coupled with III-V semiconductor quantum dots can

be a very efficient narrowband single-photon sources (SPSs) [6]. Spectrally

engineered Kerr NN-MRRs can also be implemented as quasi-determinant

SPSs [7].

• Complete spatio-temporal dynamics of the dual-pump microresonator (chap-

ter 5) is yet to be discovered. It is already established that stimulated Ra-

man scattering degrades the performance of the FC [8]. Currently, we are

investigating the Raman-resilience and the possibility to obtain the breather

soliton in the presence of dual-pump [9]. Whether dual-pump can amend

the entanglement between the generated photon-pairs from a Kerr micro-

resonator in the presence of Raman-effect would be a very interesting aspect

to study [10]. In addition, PT -Symmetric Non-Hermitian optical resonators

have bright prospect because of their use as topological insulators or for

nonlinear mixing [11].

• Chapter 6 of my thesis deals with the numerical study of the parallel gen-

eration of the CV entangled (bipartite) states in PPLN waveguide array.

Our study shows further promise of generating higher dimensional entan-

gled CV cluster states and unveils new avenues in the realization of pho-

tonic quantum computing [12]. We are currently examining the possibility

of generating multipartite and cluster states in PPLN waveguide arrays.

An immediate approach forward is to investigate the generation of higher

dimensional Schrödinger cat states using such waveguide arrays.

• Apart from these, the generation of higher-dimensional discrete-variable en-

tangled (time-energy) quantum states are already demonstrated on an in-

tegrated FC platform [13]. Quantum computing with CV-entangled states

generated through the quantum optical FC can be another interesting do-

main to be explored. [14].
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A P P E N D I X A

Kerr Frequency Comb with
Nonlinear Losses

A.1 Nonlinear properties of different materials

Table A.1: Optical properties such as transparency (Tx), refractive indices (RIs),
nonlinear (NL) RIs, thermo-optic coefficients (TOCs), band-gap (BG) energies
of CFs, and the Q-factor of the CF based optical resonators achieved till date.
Atomic numbers of the materials which are combined with fluorine to yield the
CFs are mentioned in blue texts.

Material
Platform

Tx
(µm)

RI (n0)
(1.55 µm)

NL-RI (n2)
×10−20 m2/W

TOC
×10−6/K

BG
(eV)

Q
×109

4BeF2 soluble in water

12MgF2 0.12−7
1.37 (o)
1.38 (e)

∼0.99
2.3 (o)
1.7 (e)

6.824 ∼10

20CaF2 1.399−5 1.426 1− 3.2 −10.6 ∼12 300

38SrF2 0.13−11 1.43 ∼1.51 −12.6 ∼11.25 ∼1.1

56BaF2 0.15−12 1.466 ∼1.97 −15.2 ∼11 ∼1.3

88RaF2 radio-active, unsafe to use

Important performance measures for the generation of the FC are: Q-factor
of the micro-cavity, threshold power (Pth), FOM (= λ−1n2/β2PA), etc. Note that,
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Appendix A

Table A.2: Comparison of different nonlinear optical parameters such as BG, RI,
N-RI, 2PA-coefficient (β2PA), FCA-coefficient (σFCA) etc. for c-Si, a-Si, a-Si:H at
operating wavelength 1.55µm. NA: Not available/found.

Material
Platform

BG
(eV)

RI
(n0)

NL-RI (n2)
×10−18 m2/W

β2PA

(cm/GW)
σFCA×10−17

(cm2)
τ

(ns)
c-Si 1.14 3.477 (4.5±1.5) 0.5− 1.5 1.47 0.45
a-Si 1.4-1.7 3.48 ∼ 42 ∼ 4.1 NA 0.4

a-Si:H 1.6-1.9 3.4− 3.48
∼ 42

(3− 70)
4.1

(0.14− 7)
19 0.4

crystals with energy bandgap (BG) < 1.6µm do not exhibit 2PA in telecom wave-
length. In table A.1 the optical properties of the crystalline fluorides are provided.
Table A.2 tabulates the optical properties of different the allotropes of widely used
silicon. Finally, table A.3 discusses necessary properties (at 1.55 µm except Ge)
of the extensively used χ(3) materials.

Table A.3: Comparison of different optical parameters of various third-order non-
linear materials. NA: Not available

Material
Tx

(µm)
n0

n2 × 10−20

(m2/W)
BG
(eV)

β2PA

(cm/GW)
Pth

(mW)

Si 1.2− 9 3.477 250 1.1 0.5 3
SiO2 0.18− 3 1.445 2.2 8.9 × 0.3
Si3N4 upto 7 1.98 25 5.0 × 0.3
SiC 0.37− 5.6 2.6 80 2.36− 3.23 × NA

Diamond 0.3− > 10 2.4 8.2 5.5 × 20
Hydex 0.18− 3.5 1.7 12 9.0 × 54

Ge 1.8− > 15 4 500 0.67 25.6 NA
AlxGa1−xAs 0.9− 17 3.3 2600 1.42− 2.16 0.5 3

GaAs 1− 16 3.37 2000 1.43 2.5 NA
GaP 0.5− > 12 3.128 600 2.26 × NA
GaN 0.36− 7 2.32 340 3.4 × NA
AlN 0.2− 13.6 2.1 23 6.0 × 200
TiO2 > 0.5 2.4 16 3.2 × NA
As2S3 1− 12 2.44 300− 600 2.26− 2.4 × NA

GaxIn1−xP NA 3.1 600 1.8− 1.9 × NA

A.2 Normalization of the modified LLE
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A.3 SSFM: Algorithm in a nutshell

Table A.4: Values of different parameters/symbols in the presence and absence of
different nonlinear losses (NLL) and higher-order dispersion (HOD). NLL includes
nPA, and free-carrier effects (FCE) i.e. FCA and FCD

Symbol
No NLL
No HOD

no NLL
HOD

Only
nPA

nPA
& FCA

nPA,
FCE,

no HOD

nPA,
FCE

& HOD
θcn = 0 = 0 6= 0 6= 0 6= 0 6= 0
τc = 0 = 0 → 0 6= 0 6= 0 6= 0

Cn(θcnτc) = 0 = 0 → 0 6= 0 6= 0 6= 0
φc = 0 = 0 → 0 6= 0 6= 0 6= 0
∂φc

∂τ
−∞ −∞ −∞ finite finite finite

Qn = 0 = 0 6= 0 6= 0 6= 0 6= 0
K = 0 = 0 = 0 = 0 6= 0 6= 0

dk(k ≥ 3) = 0 6= 0 = 0 = 0 = 0 6= 0

A.3 SSFM: Algorithm in a nutshell

LLE does not possess an exact analytic solution. Therefore, We adopt SSFM to
solve the normalized LLE given by Eq. 4.10. The equation is divided into two
different parts, viz. (a) Linear (L), and (b) Nonlinear (NL) with the pump term
(S) given by,

∂u

∂ξ
= Lu = −is

2

∂2u

∂τ 2
+
∑
k≥3

dk
k!

∂ku

∂τ k
(A.1)

∂u

∂ξ
= − (NL)u+ S = −

[
1 + i

(
∆− |u|2

)]
u+ S (A.2)

Eq. A.1 has analytical solution in Fourier-domain, whereas, the solution of Eq.
A.2 can be approximated by the help of integrating factor in time-domain, given
that the step-size ∆ξ is sufficiently small to converge the solution. During the
thesis work, we perform the integral as given in Eq. A.2 by the well-known ‘RK4-
method’. The SSFM in elucidated in Fig. A.1 where one can initiate the algorithm
following any of the two paths, ‘Path 1’ and ‘Path 2’, before entering the FFT-
iFFT loop. Obeying the same algorithm we study the generation of FC in absence
of any nonlinear losses, in presence of only 2PA, and in presence of only 3PA, in
Si microresonators as illustrated in Fig. A.2. As discussed earlier, it is observed
that the 2PA in silicon MR can completely inhibit the FC formation.
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Appendix A

Figure A.1: Algorithm for SSFM in a nut-shell

Figure A.2: Normalized spectrum of frequency-comb without any nonlinear losses (solid blue
curve), with only 2PA (dashed red curve) and with 3PA (dotted green curve). The inset shows
the final pulses in the time domain.
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A P P E N D I X B

Dual-pump Kerr Microresonators

B.1 Variational Treatment for Dual-pump Fre-

quency Comb

Figure B.1: Agreement between the temporal waveform obtained through simulation (blue
dotted curve) with the one obtained using the variational method (red solid curve). Both the
peak intensity and temporal width match closely. The MR parameters considered are: ∆ = 1.7,
φ0 = 1.3, β2 = −0.002, and Ω = 8.

We adopt the semi-analytical variational approach to justify the ansatz of the
CS supported by the dual pumped MR as given in Eq. 5.40. The normalized LLE
can be expressed as,

i
∂A

∂t
− β2

2

∂2A

∂τ 2
+ |A|2A−∆A = i ε (A) (B.1)
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Appendix B

We have neglected The higher-order dispersion terms. ε(A) represents the pertur-
bation arising due to the pump-term and linear absorption, which is given by:

ε (A) = fo cos (Ωτ)− A. (B.2)

This analysis considers only the solitonic part, thereby excluding the oscillatory
background from our ansatz. To completely match the numerical results with
that of the results obtained from the variational method, one has to include the
oscillatory background as well, which eventually leads to cumbersome calculations
and hence not considered in this derivation. The ansatz can be written as:

A (t, τ) =

(
E (t) η (t)

2

) 1
2

[sech (η (t) τ)] exp (iφ (t)) (B.3)

C3 =

(
E (t∞) η (t∞)

2

) 1
2

, B=η (t∞) and φC3 = φ (t∞) (B.4)

where t∞ represents the steady-state values. we obtain the following reduced
Lagrangian equation:

L =
∂φ

∂t
− β2

6
Eη2 − E2η

6
+ ∆E + i

π∫
−π

(εA∗ − ε∗A) d τ (B.5)

which results in the following Euler-Lagrangian equations that describe the slow-
time evolution of the variational parameters.

∂φ

∂t
=
η

3

(
E +

β2

2
η

)
−∆− f0

(
1

2Eη

) 1
2

π sin (φ) sech

(
Ωπ

2η

)
(B.6)

∂E

∂t
= −2E + 2f0

(
E

2η

) 1
2

π cos (φ) sech

(
Ωπ

2η

)
(B.7)

η =
−2

β2

[
E

4
− 3f0

2η

(
1

2Eη

) 1
2

π sin (φ) sech

(
Ωπ

2η

)
+

3f0

η

(
1

2Eη

) 1
2

sin (φ) I

]
(B.8)

where,

I =

π∫
−π

Ψ sech (Ψ) tanh (Ψ) cos

(
Ω

Ψ

η

)
d Ψ (B.9)

Figure B.1 displays an excellent agreement between semi-analytical variational
method and the numerical simulation based on SSFM. To conclude, our analytical
expressions and numerical results obtained from the SSFM are validated through
the semi-analytical variational principle.
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