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Preamble

This manuscript motivates and details the research project chosen for investigating today’s and

future real-time embedded systems. In it, the research activities as well as the research perspectives

are described in order to outline project challenges, achievements already made, and future works.

The manuscript and the research project are also for preparing and defending the ”Habilitation

Diriger des Recherches” (HDR).

As research project, it has been chosen to investigate mixed criticality real-time embedded systems.

In few words, the project aims at guaranteeing timing constraint and schedulability of applications

with different requirements/criticality that are running together. Mixing criticality tries to reconcile

efficient resource usage and safety assurance, thus it is critical with today’s and future multi-core

and many-core implementations for real-time embedded systems. It is a complex problem and has

some interesting open problems that requires to be studied.

The project is presented with respect to works already made, and more importantly with perspectives

that will be elaborated with future achievements. Previous research on non-mixed critical real-time

embedded systems for timing analysis and schedulability analysis is also described; it is background

work for mixed criticality achievements.

The manuscript is organized into three parts: i) the first is for presenting the professional experience

made before the PhD as well as the academic experience in the real-time community made since the

PhD; ii) the second is for detailing with some publications the research topics approached so far and

the research problem under investigation; iii) the third, concludes the manuscript with observations

on works already made for the research project, and ideas for future work.

The first part of the document is where it is detailed the curriculum vitae from the Master thesis

up until today. In it, there are presented the training, the different positions hold, and every

involvement in the scientific community. There are also listed the students supervised, the research

and technology transfer projects worked on, and the collaborations made.

The second part is more technical since there is presented the past research and some early works

on mixed criticality. The past works do not approach the mixed criticality problem, but are used

as background for developing solutions for mixed criticality. Moreover, there are presented recent

works which contributes to timing analysis and schedulability analysis for mixed criticality.

The third part concludes the manuscript with a discussion on the mixed criticality research project.

There are illustrated limitations of already existing solutions, and there are discussed future research

for more effective resource usage, for reducing pessimism and complexity, and for flexible safety

guarantees. In particular, it is discussed the opportunities as well as the challenges that multi- and

many-core platforms brings to mixed criticality.

The research project is the results of the twofold motivation from professional as well as academic

experience made on real-time embedded systems. In it, both academic and industrial perspectives to

mixed criticality are considered with solutions that will benefit both. The achievements will continue

to come from research and technology transfer projects, from the collaborations with academic and

industrial partners, and from the supervision of PhD as well as Master students.
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Chapter 1

Experience with real-time embedded

systems

I am PhD Luca Santinelli research engineer at the DTIS-SEAS ONERA, and Assistant Professor at the

Institut Superieur de l’Aeronautique et de l’Espace (ISAE). I work in Toulouse, 2 Edouard Belin 31400 Toulouse,

France; phone: (+33) (0)5.62.25.28.60, fax: (+33) (0)5.62.25.25.93, email: luca.santinelli@onera.fr, and home

page: https://www.onera.fr/staff/luca-santinelli.

Fellow research engineer at the ONERA, Office national d’études et de recherches aérospatiales – French

AereospaceLab since 2012, working in the SEAS team within the DTIS department, traitement de l’information

et systemes departement.

Graduated in Electronic Engineering, with specialization in Computer Science, at the Polytechnic University

of Marche in 2003. Master thesis on artificial intelligence approaches implemented on embedded systems.

From 2003 to 2007, professional experience at the MTS Group (now ARISTON Thermo) as software de-

veloper in the R&D department. Specialized on microcontroller, control systems, and safety critical embedded

systems.

In 2010, PhD in Computer Science, curriculum in Innovative Technologies of Info. & Com. Eng. and

Robotics, at the Scuola Superiore Sant’Anna working on real-time systems at the RETIS laboratory. PhD

thesis on adaptive resource mechanisms for real-time systems. During the PhD thesis, in 2008− 2009, visiting

student at the ETH Zurich working within the TIK laboratory. Research activity on real-time calculus, and

real-time scheduling for adaptive real-time systems.

In 2011−2012, Postdoc at LORIA, a joint unit within INRIA Nancy-Grand Est, CNRS and Nancy University.

Working within the TRIO team on probabilistic timing analysis and probabilistic schedulability analysis for real-

time systems.

The main research interests include real-time operating systems, schedulability and scheduling algorithms,

energy aware scheduling, dynamic and adaptive resource reservation/allocation policies, probabilistic real-time

modeling and analysis, real-time controls, formal methods and artificial intelligence. The research activity at

the ONERA involves modeling and analysis of avionic safety critical real-time systems, performance analysis of

multi- and many-core platforms, and certification arguments for mixed critical applications.

1.1 Professional and academic experience

Here the list of steps taken since 1994, the year of high school graduation; the list is in chronological order.

- 10/1994 − 06/2003 - Master in Electronic Engineering with specialization in Computer Science at the

Polytechnic University of Marche, Ancona Italy. The Master studies were mainly Mathematics and Physics

in the first two years, then they become more specific to Electronic and Computer Science in the last three

years. The Master thesis under the supervision of Prof. Guido Tascini has been defended in 06/2018;

1
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1.1 Professional and academic experience

it is entitled: ”Analysis and development of techniques for fingerprint matching”; Master thesis grade of

110/110 cum laude. In the thesis, have been proposed artificial intelligence algorithms such as neural

networks, and applied for fingerprint recognition implemented with embedded systems. A tool has been

developed and tested with real fingerprints, while in [181] the publication that recaps the achievements.

During the Master, 03/1995 − 10/1997, it has been completed the Military service and as Policemen, at

the time mandatory. It has been exploited in Italian cities like Torino, Roma, and Napoli.

- 10/2003− 12/2006 - Professional experience as research engineer in the private sector for the MTS group

(now Ariston Thermo) company, Fabriano Italy. Main activities were on embedded systems research and

development, embedded system networks and protocol development, and certification issues for safety

critical embedded systems like wall-hung boilers and heating systems. During that period, collaborations

and research projects with ELCO Engineers, Chaffoteaux & Maury Engineers, TUV Netherlands for SW

and HW certification, and Rinnai Japan Engineers.

- 01/2007 − 12/2010 - PhD candidate at the Scuola Superiore Sant’Anna, RETIS lab, Pisa Italy. The

PhD program was on Innovative Technologies and focused on Embedded Systems and the thesis has been

supervised by Prof. Giorgio Buttazzo. The PhD has been about schedulability analysis, component-based

design of real-time embedded systems, and adaptive real-time and resource reservation. In 12/2010, the

PhD degree with the thesis entitled: ”Adaptive Resource Reservation”. The thesis has been focused on

resource management issues for real-time embedded systems; in there, the notion of adaptivity has been

developed and applied to different applications. During the thesis period, collaborations with Marconi-

Ericsson, the CNR in Pisa for the IPERMOB project, and other Scuola Superiore Sant’Anna departments.

Also, the collaboration with ETH Zurich and Prof. Lothar Thiele while visiting the ETH for one year.

In 2008− 2009, during the PhD, the visit at the ETH for one year under the supervision of Prof. Lothar

Thiele; the research visit insisted on component-based design of real-time embedded systems and the use of

real-time calculus for modeling and schedulability analysis. Last 6 months of the thesis (06/2010−12/2010)
has been spent visiting INRIA Nancy, and under the supervision of Ph.D Liliana Cucu-Grosjean. In that

period, the beginning of works and contributions on EU FP7 project PROARTIS.

- 01/2011−05/2012 - Postdoc on ”Probabilistic Real-Time Systems” at the INRIA Nancy (LORIA lab), Trio

Team, Nancy France. The Postdoc was under the supervision of PhD Liliana Cucu-Grosjean, and it has

been focused on developing reliable probabilistic time modeling and efficient probabilistic schedulability

analysis for real-time systems. During the Postdoc, the collaboration with Barcelona Supercomputing

Center, University of Padova, RAPITA in York, and the University of York on the probabilistic timing

analysis topic for real-time embedded systems. In the Postdoc period the contributions to EU research

project like PROARTIS and TIMMMO-2-USE. In 2012, while Postdoc in Nancy, qualification to ”maitre

du conference” in computer science, class ”Informatique 27”.

- 06/2012− today - Research engineer at the ONERA Toulouse within the DTIM department first, now at

the DTIS department. The research activities relate to real-time embedded systems for timing analysis and

schedulability analysis. Safety critical and mixed critical [networked] real-time systems are investigated,

efficient resource reservation mechanisms are proposed. The research activity couples with technology

transfer for ONERA industrial partners mainly in the Avionic and Space domains; the projects with

contributions are listed in the following. The collaborations in this period have been extended to French

and International partners, both academic and industrial.

Past and present professional as well as academic experiences intertwine and contributes toward the defini-

tion, the implementation, and the verification of real-time embedded systems.

The professional approaches driven by practical needs such as cost reductions, low complexity, low com-

putational costs, and resource efficiency. Besides, the academic approaches focus on worst-case modeling, and

analytical approached to timing guarantees. Combining both ends up into a constant focus on practical moti-

vations, and solutions which are able to trade efficiency with worst-case guarantees.
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1.2 Supervising and teaching activities

Figure 1.1: Time-line of the path from the Master thesis graduation to today.

Figure 1.1 zooms in on the time-line of professional and academic paths since the Master thesis. The pro-

fessional experience at MTS group is included because it is about the development, validation, and certification

of embedded systems, as the rest of the academic activities. In the time-line are also listed the main research

that are related to embedded systems and real-time development.

1.2 Supervising and teaching activities

Since 2009, 3 PhD students, 6 Master students, and 1 Postdoc have been supervised. Here the details of the

supervision activity made.

The PhD students supervised are:

1. Tomasz Kloda at ONERA Toulouse. Thesis subject on ”Conditions dordonnancabilit pour un langage

dirig par le temps”; defense in 2016 and thesis director PhD Bruno d’Ausbourg. At the beginning of

the thesis, Bruno D’Ausbourg was director and supervisor; at my arrival at the ONERA, I begun a

strong collaboration with Tomasz Kloda and Bruno D’Ausbourg such that I become thesis supervisor.

Collaboration and supervising were on ”adaptive guarantees for real-time systems” were for developing

schedulability analysis for multi-mode real-time systems. In 2016 as member of the Tomasz Kloda’s thesis

jury as supervisor. With Thomaz Kloda, the main publications were on deterministic scheduling with time

triggered languages and adaptive behaviors guarantees for real-time systems. Thomaz Kloda is actually a

Postdoc at the University of Modena and Reggio Emilia Italy.

2. Fabrice Guet at ONERA Toulouse. Thesis subject on ”Etude de lapplication de la thorie des valeurs

extremes pour lestimation fiable et robuste du pire temps dexcution probabiliste”; defense in 2017. Nom-

inated supervisor by the ONERA and EDMITT PhD school while thesis director was PhD Jerome Morio

3
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1.2 Supervising and teaching activities

from the ONERA. Publications and collaborations with Fabrice Guet were based on probabilistic timing

analysis and statistical approaches to worst-case models to task execution. Fabrice Guet is actually an

Embedded System Engineer at SII group.

3. Jasdeep Singh, ONERA Toulouse. Thesis subject on ”Probabilistic schedulability analysis of safety critical

embedded systems”. The thesis is ongoing with a possible defense in 2019. For Jasdeep Singh thesis,

director (with derogation) from the EDMITT PhD school, co-supervisors are PhD Guillaume Infantes

and PhD Jean-Loup Farges from the ONERA. The collaborations and publications with Jasdeep Singh

are on formal methods applied to schedulability analysis of probabilistic real-time systems.

The Master students supervised at the ONERA for internships of at least 4 months are the following.

1. 03/2013 − 08/2013 - Alessandra Melani, Master student at Scuola Superiore Sant’Anna. Stage with

subject: ”Accuracy in Worst-Case Execution time”; During the stage, there has been a publication [180]

and the contributions made to SchedMcore (https://forge.onera.fr/projects/schedmcore).

2. 03/2016 − 07/2016 - Corentin Damman, Master M2AE student at the ISAE – Ingegnerie aerospatiale,

aeronautique et astronautique. PIR project with subject: ”Architectural performance analysis”. During

the stage, there has been a publication [157] and the contributions made to SchedMcore as well and FPGA

implementation tools.

3. 03/2016−07/2016 - Gregory Edison, Master M2AE student at ISAE Ingegnerie aerospatiale, aeronautique

et astronautique. PIR project with subject: ”Architectural performance analysis”. During the stage, there

has been a publication [157] and the contributions made to SchedMcore as well and FPGA implementation

tools.

4. 03/2017 − 07/2017 - Gregor Vindry, Master M2AE student at the ISAE – Ingegnerie aerospatiale, aero-

nautique et astronautique. PIR project with the subject on: Subject: ”Timing analysis for multi-core

architectures”. Contribution made to multi-core embedded systems running under Linux.

5. 05/2016− 09/2016 - Jasdeep Singh, Master International student at ISAE – Ingegnerie aerospatiale, aero-

nautique et astronautique. Stage with subject: ”Schedulability analysis for probabilities and with prob-

abilities”. The stage has been about studying the applicability of formal methods to real-time modeling

and analysis.

6. 5/2018− 10/2018 - Julien Durand, Master M2AE student at ISAE – Ingegnerie aerospatiale, aronautique

et astronautique. Stage with subject: ”Toward predictable many-core real-time systems”. The stage

studied the predictability of multi-core and many-core platforms while running real-time applications. It

has been developed a statistical analysis for average and worst-case task modeling.

Since 12/2017, supervision of Postdoc Phavorin Guillaume with subject: ”Probabilistic timing analysis of

multi-core platforms”. The 18 months Postdoc contract comes from the IRT Saint Exupery in Toulouse and

the ANR project CAPHCA. During the Postdoc, there are investigated the predictability and the deterministic

levels of multi-core architectures with probabilistic/statistical approaches to timing analysis.

The research activity has been accompanied with the teaching activity:

- 2008 − 2009: Assistant Professor for the ”Sistemi Real-Time” course of Prof. Dragoni, Polytechnic Uni-

versity of Marche Ancona. The course was about real-time systems and networks for real-time systems.

- 2012: Assistant Professor for the course ”Real-Time Operating Systems” of Prof. Jerome Hugues at the

ISAE Toulouse.

- 2012-today: Assistant professor at the ISAE Toulouse. Courses are on:

1. Embedded systems and control systems (Master first year), 20 hours classes;
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1.3 Serving within the research community

2. Real-Time Operating Systems (International Master and Master third year), 10 hours classes;

3. Worst-Case Execution Time (Master third year), 3 hours classes as part of the real-time embedded

system course;

4. Object oriented programming - Java theory and practice - (Master second year), 40 hours classes;

5. Multi-core scheduling (Master third year), 6 hours classes as part of the real-time embedded system

course;

6. C language (International Master), 12 hours classes.

All the ISAE teaching are in English and French; the teaching in Italy were in Italian.

1.3 Serving within the research community

Participation to PhD and Master thesis juries as a reviewer or examiner:

- In 2013 the Master M2R Mathematique appliquées thesis of Alexandra de Cecco at the ONERA Toulouse;

- In 2013 the PhD of Francesco Prosperi and PhD Christian Nastasi at the Scuola Superiore Sant’Anna

Pisa;

- In 2014 the Master research thesis of Bestien Pasdelopup at IRISA Renne;

- In 2016 the PhD thesis of Dario Socci at VERIMAG Grenoble;

- In 2017 the PhD thesis of Ignacio Sanudo Olmedo at the University of Ferrara;

The activity made for the research community is exploited, among others, with review efforts and partici-

pating to technical committees.

Regularly reviewer for journals such as ACM Embedded Letters, ACM Transactions on Embedded Comput-

ing Systems, Springer Real- Time Systems, Transactions on Computers, Future Generation Computer Systems,

as well as JCSC and JSA Elsevier. Reviewer for conference and workshops like ETFA, SIES, ECRTS (sub-

reviewer), RTNS, RTSS (sub-reviewer), ARCS, CRTS, WCET, and WMC.

Serving in the technical committee of SIES, ETFA, RTNS, and ARCS conferences, at the Workshops WMC

and CRTS at RTSS conference, WCET at ECRTS, and WFCS. Program chair of the Junior Workshop at

RNTS 2011, program chair for the IEEE SIES WiP session 2013, program chair for Brief Presentation session

(ex. WiP) at RTSS 2017. Serving as session chair at RTNS, ETFA, and SIES.

Since 2014, review of ANR projects; also, registered as external project reviewer for the EU on real-time

embedded systems. IEEE fellow from 2009.

Since the beginning of the PhD in 2003, there have been proposed different technical seminars on the research

topics approached. Keynote and seminars given are:

- Seminar at ETH Zurich 2008−2009. Department seminars about real-time calculus achievements and ap-

plicability to real-time. In particular, they were about adaptive resource reservation mechanisms validated

with real-time calculus;

- Seminar at LORIA Nancy, 2010 − 2012. Seminars on projects and research activity results mostly on

probabilistic real-time systems;

- Keynote on mixed critical embedded systems in Grenoble 2016. Seminar about probabilistic approaches

for real-time task modeling and schedulability conditions;

- Seminar at the University of Missouri Science and Technology in Rolla 2016. Seminar on probabilistic

approaches to real-time;
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1.4 Collaborations and international mobility

- Seminar at ISAE Toulouse in 2017. Seminar on the mathematics behind probabilistic time models and

probabilistic approaches to real-time;

- Seminars ONERA from 2012, two every year. Periodic seminars about the research activity made and the

results obtained on topics such as deterministic real-time and probabilistic real-time;

- Seminars for projects like EU FP7 PROARTIS, EU ITEA3 TIMMO-2-USE, DGA IREHDO2, and ANR

CAPACITES.

In the last years, together with the collaborations and the students supervised, there have been developed

modeling and analysis tools:

- diagXtrm – https://forge.onera.fr/projects/diagxtrm2. Measurement-based probabilistic timing

analysis tools,

- RTprob – https://forge.onera.fr/projects/probscheduling. Analysis tool for the probabilistic

schedulability with Markov chain models. The tool proposed models tasks and jobs with continuous

time Markov chains and interfaces with the PRISM model checker.

The tools have been realized for projects that have been carried out together with Ph.D students Fabrice Guet

and Jasdeep Singh. They are for probabilistic analysis and have been published with papers; they are open

source and made available for artifact evaluation and for project use.

1.4 Collaborations and international mobility

Since the PhD thesis, there have been collaborations together with: colleagues at the ONERA Toulouse within

the former DTIM department and now DTIS, the IRIT Toulouse with Christine Rochange and Hugues Casse,

INRIA Nancy and Paris with Liliana Cucu-Grosjean, the Scuola Superiore Sant’Anna at the RETIS lab with

the Giorgio Buttazzo group, the ISAE Touloue, The Barcelone Supercomputing Center with Francisco Cazorla,

Jaume Abella and Eduardo Quinones, the VERIMAG in Grenoble Claire Maize, the University of Sciences et

Technologies of Lille with Giuseppe Lipari, the School of Engineering of the Polytechnic Institute of Porto and

CISTER Porto with Konstantinos Bletsas, the University of North Carolina at Chapell Hill, the Malardalen

University, the Ecole Polytechnique of Montreal, the University of Missouri Science and Technology Rolla (now

at University of Central Florida in Orlando) with Zhishan Guo, the University of Paris Est with Laurent George,

the University of Luxembourg, the University of British Columbia in Vancouver, the Texas State University,

the ESIEE Paris, and the IRT Saint Exupery in Toulouse.

There exist also collaborations with companies like AIRBUS, Thales, Honeywell, Real-Time at Work (RT@W),

Rapita UK, MBDA, SAFRAN, Continental, Cobham Gaisler, and Kalray.

With some PhD students and research groups there have been strong collaborations on specific scientific

topics.

- Francesco Prosperi at the Scuola Superiore Sant’Anna Pisa. Thesis on ”Energy management in embedded

systems under timing and resource constraints”; defense in 2013, thesis supervisor was Prof. Giorgio

Buttazzo. The collaboration with Francesco Propsperi focused on adaptive behaviors for real-time sys-

tems and timing guarantees during mode transitions; publications have been made as a result of such

collaboration. The collaboration continued as a Postdoc; participation to the thesis jury.

- Dorin Maxim at INRIA Nancy (LORIA). Thesis on ”Probabilistic analysis of real-time systems”; defense in

2013, supervisor was PhD Liliana Cucu-Grosjean. Collaborations and publications on ”probabilistic real-

time systems” i.e., probabilistic schedulability analysis, priority assignment, and distribution re-samplings

with safety/pessimism guarantees. They all have been made with Dorin Maxim, Liliana Cucu-Grosjean,

and other members of the TRIO team.
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1.4 Collaborations and international mobility

- Chao Chen at Polytechnic University of Montreal. Thesis on ”Static probabilistic timing analysis for

real-time systems in presence of faults”; defense in 2017, supervisor Prof. Giovanni Beltrame. With Chao

Chen, the collaboration and publications were about Markov chains applied to static probabilistic timing

analysis for random replacement caches and space applications. In particular, it has been developed and

applied a Markov chain approach for probabilistic timing analysis. Chao Chen visited the ONERA for

three months in 2016.

All the collaborations brought and are bringing to publications, project proposals, and research projects.

The scientific production so far composes of 7 journal papers, 2 book chapters on wireless sensor networks and

artificial intelligence, and 64 conference papers.

Hereby the exhaustive list of projects (EU project, Italian and French national projects, e.g. ANR projects,

and ONERA internal projects) on which there have been contributions and that served as inspiration for the

research made or to be made. To all of them, the contribution exploits with deliverables, publications, and

technical reports. With the projects, it is also listed the role covered.

1. 2007 − 2009: Scuola Superiore SantAnna and ERICSSON-MARCONI project about data logging and

monitoring for real-time networked applications - participant with the Retis Lab in Pisa.

2. 2009− 2010: Italian project IPERMOB on traffic control and mobility. The project was about the tech-

nology transfer from research activity on wireless sensor networks and vision applications - participation

with the Retis Lab in Pisa.

3. 2010−2012: EU FP7 project PROARTIS ”Probabilistically Analyze Real-Time Systems”. In the project,

the development of real-time embedded systems that can be easily and reliably analyzable with probabil-

ities, https://www.proartis-project.eu/ - within WP3 coordinated by PhD Liliana Cucu-Grosjean at

INRIA Nancy.

4. 2011−2012: EU ITEA3 projet TIMMO-2-USE as continuation of the EU TIMMO project. Model tempo-

ral, tools, algorithms, languages, methodology, and use cases; https://itea3.org/project/timmo-2-use.html.

The project applies to automotive and other embedded system applications; contribution made are with

modeling and analysis tools for real-time - participant with the TRIO team at INRIA Nancy.

5. 2013: DGAC French project ADCN+. The project was about avionic network performance analysis -

participant with the ONERA at the former department DTIM.

6. 2014−2017: BGLE French project CAPACITE. The project was about software and hardware development

for embedded real-time reviews on ”many-core” architectures;

http://capacites.minalogic.net/en/. Contributions for timing analysis and certification arguments -

coordinator ONERA.

7. 2013 − 2017: ONERA PRF project R2D2. The project relates to creating a deterministic mid-layer for

robotic applications. In R2D2, the MAUVE tool-chain developed at the ONERA is applied;

https://forge.onera.fr/projects/mauve - participant with ONERA former DTIM and DCSD depart-

ments.

8. 2015 − 2018: DGAC French project IREHDO2. Performance analysis on AFDX networks. Network

calculus and probabilities applied to evaluate and compare performance. - WP1.2.4 participant with the

ONERA former DTIM department.

9. Since 2015: ONERA PRF WIRELESS. External collaboration with AIRBUS and ISAE to study appli-

cability of wireless technology within avionic applications - WP2 participant with the multiple ONERA

departments, included the new DTIS department.
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10. Since 2015: ONERA PRF project MACSIMA. ONERA project to investigate predictability of multi-core

platforms. Vision and control algorithms are considered as applications - participant within the ONERA

DTIM, now DTIS, department.

11. Since 2018: ANR PRCI project CORTEVA about the development of a correct methodology by con-

struction for support the variability of execution time in real-time systems. Schedulability analysis and

sensitivity analysis applied to single- and multi-core platforms - coordinator ONERA, other partners are

the University of Lille and RT@W.

12. Since 2018: ANR IRT Saint Exupery project CAPHCA about predictability of systems embedded real-time

multi-core http://www.irt-saintexupery.com/ourprojects/caphca-project/ - within WP2, coordi-

nator ONERA.

13. Since 2018: ONERA PRF project MUSIK. Contributions to big data and statistical analysis of real-time

system performance - participant with the ONERA DTIS department.

14. Since 2018: Industrial collaboration project MAMA with MBDA UK and France, and Rapita York.

Study of predictability for multi-core architecture with statistical analysis and partitioning techniques -

participant within the ONERA DTIS department.

In 2014 and 2015 two H2020 ICT project proposals with French and International partners have been

coordinated. In 2014, coordinator of the H2020 ICT-1 Cyber Physical Systems project proposal named TASCOS

with 10 EU partners and 4 Millions budget asked. The proposal has not been accepted, but it has been classed

first in the waiting list. Noted 14.1/15. In 2015, a similar consortium has been coordinated for second H2020

ICT-4 Customized and Low Power Computing project proposal named TASCOS with 10 EU partners and 4

Millions budget asked. The proposal has not been accepted. Both TASCOS proposal were about the study of

trade-off performance/predictability within multi-core platforms.

For all the projects, there has been active participation with technical reports, redacting deliverables, and

developing analytical tools for the analysis, the validation, and the simulation of [networked] real-time embedded

systems.

Figure 1.2 recaps the professional and academic path listing the main steps from the Master graduation up

until today. There are also represented the main projects, the main achievements, and the main collaborations

per step.

1.5 Organization of the manuscript

This manuscript is a research oriented document which presents the research project proposed for mixed critical

real-time embedded systems. Both, manuscript and research project are also for preparing and defending the

”Habilitation Diriger des Recherches” (HDR).

This first chapter, Chapter 1, describes the path made from the Master thesis up until today. It describes

the professional and academic experiences, the contributions to the real-time community, the collaborations in

the academic and industry communities, and the projects worked on so far.

In Chapter 2 is presented the mixed criticality research project as a journey from past research activity,

present contributions on mixed criticality, and future works to mixed criticality open problems. The first

session of the chapter presents past research made on real-time during the PhD, during the Postdoc, and during

the first years at ONERA. In the past research, the mixed criticality has not been considered, but it is presented

in this Chapter in order to outline that I consider the mixed criticality approach as the evolution of previous

understanding of embedded systems. The second section introduces the mixed criticality problem with a brief

state of the art which lists methods already established. Last session presents the research project around the

mixed criticality problem with an introduction to the research activity on mixed criticality since 2015. Also,

research perspectives, some inspired from the past and present research, are briefly discussed.
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Figure 1.2: Time-line of the research steps since the Master thesis graduation.

In Chapter 3 are presented some research results made before electing mixed criticality real-time embedded

systems as research project i.e., the past. They are works made during the PhD thesis, during the Postdoc,

and also during the first period at the ONERA. Those results define the background for timing analysis and

schedulability analysis. Among them, the deterministic approaches to task schedulability analysis are defined

during the PhD; there is the formalization of probabilistic approaches to task timing analysis made during the

Postdoc; there are the probabilistic approaches to task schedulability analysis elaborated during the first years

at the ONERA. The past research does not relate to mixed criticality, but it is applied to solve mixed criticality

problems. All the works made have the twofold motivation from professional as well as academic experience

made on embedded systems.

In Chapter 4 are detailed some works already published on mixed criticality i.e., the present ; they are the

beginning of exploration of the research problem envisioned. Those works apply the background presented in

the previous chapter, and allow to address the mixed criticality problem letting it to evolve over its actual state

of the art. With respect to timing analysis, the research project considers probabilistic approaches to define

more flexible and less pessimistic task models for mixed criticality. With respect to schedulability analysis,

the project makes use of both deterministic and probabilistic approaches in order to reduce the pessimism of

already existing solutions, to cope with more realistic behavior of mixed critical systems/tasks, and to define

more efficient resource usage with multi- and many-core platforms. Such solutions are motivated from both

practical and theoretical needs from industry and research projects that ONERA can access.

Chapter 5 concludes the manuscript with remarks as lessons learned from the works already done on mixed

criticality, including the potential and the limitations of the solutions proposed. Future work will be proposed

to overcome the limitations of already existing solutions and push forward the development of mixed criticality

real-time embedded systems for multi- and many-core platforms. Also, are presented future perspectives in

order to continue approaching the mixed criticality problem.
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Chapter 2

From safety critical real-time to mixed

criticality real-time

In this chapter, the mixed criticality problem for real-time embedded systems is introduced as a journey from

past ”understanding” of real-time systems which was not considering mixed criticality i.e., safety critical systems

with only one criticality level, to present and future research which consider mixed criticality. Next chapters

detail such journey with past contributions, present contributions, and research perspectives.

The chapter begins introducing the research topics approached since the Master thesis. This section defines

the past research which did not considered mixed criticality. The contributions come from the PhD thesis on

”adaptive real-time systems”, and works on classical real-time modeling as well as analysis. Also, they are from

the Postdoc, in which probabilistic approaches have been developed and applied to modeling and analysis of

real-time embedded systems. Lastly, in this part there is the initial research at the ONERA that have considered

real-time modeling and analysis for multi-core and many-core implementations.

In the middle section, the chapter presents the mixed criticality problem with solutions existing in the

literature. The state of the art is in terms of task models and schedulability analyses; there are depicted the

academic and industry perspectives to mixed criticality with the differences between academic and industry

task models, and academic and industry scheduling approaches. As of today, the two perspectives are still

conflicting.

The chapter ends detailing the research project about mixed criticality for real-time embedded systems. In

the concluding section, present research and research perspectives are introduced. The project is conceived in

order to approach both academic and industry perspectives to mixed criticality. Timing analysis and schedula-

bility analysis are investigated within the research project; multi-core and many-core systems are tackled with

since the represent the present and the future platforms for real-time embedded systems.

With the mixed criticality research project there are applied probabilistic representations. Also, it is discussed

the need for less pessimistic deterministic scheduling algorithms which apply more realistic hypothesis on the

behavior of the tasks. Finally, the probabilistic scheduling and its potential for mixed criticality are presented:

probabilities will actively take part into scheduling decisions.

Mixed criticality for real-time embedded systems is considered as one of the key elements for developing

today’s and future real-time embedded systems.

2.1 Past contributions on real-time

In this section there are introduced the works made since the master thesis graduation in 2003. Since then,

research interests have always included real-time topics, and among them, real-time operating systems, schedu-

lability analysis and scheduling algorithms, energy aware scheduling, dynamic and adaptive resource reserva-

tion/allocation policies, probabilistic real-time modeling and analysis, real-time controls, and formal methods.
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2.1 Past contributions on real-time

We name the past research as safety critical since no mixed criticality problems have been approached in

that period: only application with one criticality level i.e., safety critical, have been considered. Although not

related to mixed criticality, the past research is presented in this chapter in order to build the link between

past approaches to real-time and a new vision of real-time based on mixed criticality. All the past experience is

bringing toward the mixed criticality problem, and is providing me tools and knowledge with which effectively

approach mixed criticality.

The past research focused on meeting theoretical and industrial needs related to modeling and analysis of

real-time embedded systems. This comes from the professional and academic experiences. The underlying

theme such past works is to guarantee the performance of real-time embedded systems, critical and non-critical,

that run on single-core, multi-core and many-core platforms. With that, five main phases can be identified in

order to characterize the past research activity. The phases refer respectively to the professional experience, the

PhD. period, the Postdoc period, and the research engineer period at the ONERA.

- Phase 1: When the initiation to embedded system took place. The Master thesis, written in 2002− 2003

under the supervision of Prof. Tascini at the Computer Science department of Polytechnic University

of Marche Italy, has supported research activity for fingerprint recognition with artificial intelligence ap-

proaches. The solutions proposed applied neural networks and reactive agents: machine learning has been

proposed for fingerprint recognition devices, and the algorithms have been implemented into embedded

systems [181]. The Master degree in electronic engineering with specialization in computer science has

allowed to make the first steps with embedded systems.

- Phase 2: During the professional experience in the private sector (2003− 2006), there has been research

and development activities with safety critical embedded systems. Boilers and wall-hung boilers systems

have been designed and developed, functional and non-functional requirements have been studied, and

real product challenges have been approached. There have been produced certification arguments for

single-core platforms, and for the software applications of such products. The collaborations with TUV

Netherlands engineers has results into product certifications. The participation to the GALILEO industrial

project for defining new boiling systems; in there, the definition of requirements and the implementation

of safety critical embedded systems. Participation to industrial projects for introducing RTOSs and RTOS

principles with single-core boards on the wall hung boilers. Also, participation to projects for defining and

implementing communication protocols for distributed embedded systems. There have been collaborations

with ELCO and RINNAI engineers in defining embedded system requirements and implementing time

constrained embedded systems.

- Phase 3: After the professional experience, it has been chosen in 2007 the PhD program on Innovative

Technologies and focused on Embedded Systems from the Scuola Superiore Sant’Anna of Pisa. During the

PhD (2007−2010), real-time theory has been applied to embedded systems; there has been the study of the

scheduling theory applied to single-core implementations for real-time embedded systems. Component-

based design paradigms as well as resource reservation mechanisms and policies have been developed

and guaranteed [155, 186, 187, 195, 196, 199, 205, 206]. Deterministic approaches have been applied,

and sensitivity analysis has been proposed for adaptive real-time as well as for distributed embedded

systems. As modeling and analysis tools applied to investigate real-time embedded systems, there are the

analytical approaches like the processor demand criterion, the response time analysis, and the real-time

calculus [167, 168, 169, 170, 171]. The real-time calculus has been studied with with the one year visit at

the ETH Zurich. Initially, it was for modeling embedded systems and defined component-based feasibility

theory for real-time embedded systems. During the visit, the real-time calculus become also a tool for

modeling and analyzing adaptive and dynamic systems.

- Phase 4: During the Postdoc (2011− 2012), there has been developed probabilistic approaches for tim-

ing analysis (worst-case execution time modeling) and schedulability analysis. The Postdoc has been

financed by the EU project PROARTIS and contributions have been made on the timing analysis work
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2.1 Past contributions on real-time

package WP3. Measurement-based probabilistic timing analysis approaches have been formalized in or-

der to derive reliable and safe probabilistic estimates of task worst case execution time [153, 156, 177];

measurement-based probabilistic timing analysis is the intended contribution for PROARTIS project.

During the postdoc, there has been developed research on static probabilistic timing analysis for random

replacement cache memories [158]. Moreover, the probabilistic timing models have been applied into

probabilistic schedulability analysis [172, 173, 178, 179, 189, 197]. Those works, have been inspired by the

real-time calculus or other analytical approaches to schedulability analysis, and have been designed, vali-

dated, and applied to both academic and industrial case studies. The whole contribution of probabilistic

approaches to real-time systems is the result of collaborations within the PROARTIS project, with the

support of PhD Liliana Cucu-Grosjean and PhD Rob Davis.

- Phase 5: During the ONERA fellowship (2012 − today), there has been approached the study of real-

time embedded systems, mostly implemented with multi-core and many-core platforms. Both deterministic

and probabilistic approaches have been applied to adaptivity problems and mixed criticality under the

different conditions that system can experience [151, 160, 161, 165, 166, 174, 175, 190, 193]. Deterministic

and probabilistic guarantees have been proposed for those topics. The works on measurement-based

probabilistic timing analysis have been extended to multi-core, many-core, and GPU architectures [148,

149, 159, 162, 163, 164, 180, 182, 192, 193]. Also, sensitivity analysis and formal methods applied to

scheduling guarantees have been developed. The schedulability analysis has been approached with both

tools for less complex approaches and a correct construction of the systems [152, 191, 194, 201, 202, 203].

Formal methods have been applied also to the static probabilistic timing analysis in order to improve

previous results on random replacement caches [154]. Distributed embedded systems and embedded

networks have been studied with approaches similar to the real-time calculus for performance analysis [150,

183]. Problems with performance guarantees and performance comparisons have been considered with

both deterministic and probabilistic approaches for real-time [distributed] embedded systems. The whole

contribution of this phase is the result of collaborations within the ONERA, French and International

collaborations with both academic and industry, and from the supervision of PhD and Master students.

Some minor contributions are not included into the list above presented; the complete list of works made

can be found in https://www.onera.fr/staff/luca-santinelli.

The whole work made relates to developing tools for modeling and analysis of real-time embedded systems.

What has been changed across the phases are the tools applied and the perspective adopted to tackle with pre-

dictability guarantees; all the works had the twofold motivation from professional as well as academic experience

made on embedded systems.

Phase 1 and Phase 2 have been important for understanding the requirements of embedded systems. In

particular, Phase 2 gave the industrial perspective with more practical motivations for developing embedded

systems. No notion of real-time has been maturated during those, since the experience was more oriented to

performance – Phase 1, and efficient resource usage as well as safety criticality by HW and SW construction –

Phase 2.

The PhD (Phase 3) served the purpose was for introducing real-time and understanding its benefit for

embedded systems. It is the first structured research experience in which the deterministic schedulability

analysis has been studied. Single-core and distributed real-time applications have been considered. Also, the

problem of adaptivity for real-time embedded systems has been approached and solutions for schedulability

analysis have been proposed.

The second research experience, Phase 4, has been for investigating alternative timing models for real-time

systems i.e., the probabilistic timing models for tasks parameters. During the Postdoc, it has been developed

a measurement-based approach to timing analysis. Probabilistic models have been developed with single-core

platforms, but measurement-based approaches will mostly benefit multi-core platforms. Also, the probabilistic

models have been applied into specifically developed probabilistic schedulability analysis. The coupling between
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2.2 The mixed criticality problem

probabilistic models and probabilistic schedulability analysis allows for more flexibility and more efficient re-

source usage. The motivation for investigating probabilistic approaches, is to have accurate models for describing

system natural variability, a to reduce pessimism with respect to the classical deterministic analysis.

The development of probabilistic models and probabilistic schedulability analyses have continued with the

third research experience, Phase 5. In it, deterministic/probabilistic sensitivity analysis and formal methods

have been added to the set of tools developed for investigating real-time embedded systems. Since the objective

was, and still is, guaranteeing predictability with more efficient resource usage, reduced complexity, and reduced

pessimism, both sensitivity and formal methods allow to explore those.

� �

���������	
��
����

��������������	������
�
������������
������������	��	�������	

��
����	

��������	���
�����
�
������������	��������
�����������	��������

������	��������
�����������������	
������������
	������	
��������

 �!"!	������  �����
 							������
�	#�������

���
�
$�����


$���������

"
�
�
�
�
�

	�
�
�
��
��
�
�

 
��
�
�

��
�
���
��
%	
$
�
�
�
��
�
��
�&
	

�
�
�
�
	

�
�
�
�
�

$
�

�
��
�


��
��
%	
�
��
�
��
	

�
��

"
��
��
��
�
��
�
	�
�
�
��

��
�
�

�
�
�
�
	

�
�
�
�
�

'
�
��
�
��
��
�
%	
�
��
�
��
�
�
	�
�
�
�
�
�	

�
�
��
�
��

 
��
�
�
�
���
�
��


	�
�
�
��
��
�
�

 
��
�
�
�
���
��
�

	�
�
�
�
��

 
��
�
�
�
���
��
�

	�


�
�
�
�
��
�
���
��

$
�

�
��
�


��
��
%	
�
��
�
��
�

�
��
	�
�
�
	�
�
��
��


�
��

������


���������	
�����
������ ���
�

������	�������
�
������������	�������� �

�
��
��


�
��
	�
�
�
��
��
�
�

(�
��
��
�
��
�


�
	�
�
�
��
�
��
&	
�


�
�
�
�
��
�
���
��
	

�
�
�
��
�
��
&	
�
�)
�
�
	

��
��


�
���
�
	*
�
�
�
�
	�
�
�
	

�
�
�
�
	

�
�
�
�
�
�
+&
	�
�
�
�
	�
�
�
�
���
�

$
�

�
��
�


��
��
%	
�
��
�
��
�

�
��
&	
�
�
��
��


�
��
�
&	

�
�
�
�
�

�
��
�
&	
�
�
��
�
��
�

�����	�������

Figure 2.1: Research topics (in the middle), theoretical tools (on the left) and applications (at the top) approached
during the PhD Thesis, the Postdoc, and as Research Engineer.

The research topics since the PhD are represented in Figure 2.1. There are represented also the theoretical

tools applied: real-time calculus, bounding functions, timing analysis approaches, and formal methods for

schedulability analysis. In particular, are represented the topics approached during the PhD i.e., dynamic and

distributed real-time approached with deterministic techniques; those at the Postdoc i.e., probabilistic real-time

for modeling and analysis As researcher at the ONERA, the focus is on multi-core real-time approached with

both deterministic and probabilistic methods. Avionic, space, robotic, and automotive applications have be

considered all along the path in both publications and research projects.

All the references in this section are my publications since the PhD; they are also not related to mixed

criticality but they represent the background to approach mixed criticality research.

2.2 The mixed criticality problem

In the following an introduction to mixed criticality with its state of the art. None of my contributions are cited

in this section.
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2.2 The mixed criticality problem

Nowadays real-time systems are mostly implemented with multi-core and many-core commercial-off-the-shelf

platforms. Cache memories, branch predictors, communication buses/networks and other features present in

such implementations allow increasing average performance.

With multi-core and many-core implementations, it comes the opportunity to combine different applications

on the same platform which may have different criticality levels, e.g. safety critical, mission-critical, non-critical.

The trend of combining different criticality levels within the same system is driven by the demand for a more

efficient platform resource usage.

All of the above contribute making predictability much harder to guarantee.

Criticality is a designation of the level of assurance against failure needed for a system component. A Mixed

Criticality (MC) system is one that has two or more distinct levels, e.g. safety critical, mission critical and

low-critical. It can have two or more distinct levels, perhaps up to five levels may be identified, see for example

the IEC 61508 [81], DO-178B [59] and DO-178C [60], DO-254 and ISO 26262 [82] standards.

The fundamental research question underlying the mixed criticality problem is how to reconcile the conflicting

requirements of ’partitioning’ for safety assurance and ’sharing’ for efficient resource usage. This question gives

rise to theoretical problems in modeling and verification, and systems problems relating to the design and

implementation of the necessary hardware and software runtime controls [35].

The mixed criticality view

For mixed criticality systems there are distinct issues to be considered. Among them, the survivability in terms

of graceful degradation, the static verification, and the schedulability analysis.

In the form of fault tolerance, survivability allows for graceful degradation to occur. Graceful degradation

abstractly describes the behavior in which in the event that all components cannot be serviced satisfactorily;

the goal is to ensure that lower-criticality components are denied their requested levels of service before higher-

criticality components are [35].

Static verification is closely related to the certification problem of safety critical systems. In safety critical

systems, typically only a relatively small fraction of the overall system is actually of the highest criticality. In

order to certify a system as being correct (or acceptably correct), the designers are guided by the appropriate

certification standards, and must make certain assumptions about the runtime worst-case behavior of the system.

The certification methods tend to be very conservative, and thus the analysis assumptions result in more

pessimism than those that would typically be used if certification was not required 1.

A full review of the certification standards on the subjects of mixed criticality is beyond the scope of this

manuscript. For that, the reader is referred to [68, 69]. As a synopsis, few words on standard and mixed

criticality. The main points from ISO 26262 [82] for automotive systems are that software safety requirements

should include any necessary timing constraints. The software architecture should describe temporal constraints

on the software components, including tasks [69], and software testing must include resource usage tests to

confirm that the execution time allocated to each task is sufficient [82].

The standards other than the ISO 26262 say very little about timing issues related to mixed criticality.

DO-178B and DO-178C (Software Considerations in Airborne Systems and Equipment Certification) are guide-

line dealing with the safety of safety critical software used in certain airborne systems. Although technically

guidelines, they are a de-facto standard for developing avionics software systems. The software level, also known

as the Development Assurance Level (DAL) is determined from the safety assessment process and hazard anal-

ysis by examining the effects of a failure condition in the system. The failure conditions are categorized by

their effects on the aircraft, crew, and passengers. DO-178B alone is not intended to guarantee software safety

aspects. Safety attributes in the design and implemented as functionality must receive additional mandatory

system safety tasks to drive and show objective evidence of meeting explicit safety requirements.

In automotive, the risk classification defined by the ISO 26262 - functional safety for road vehicles stan-

dard [82] - is from the Automotive Safety Integrity Level (ASIL). This is an adaptation of the safety integrity

1More details on mode degradation and possible notions of mixed criticality can be taken from the contributions of PhD Robert
Davis at University of York, Prof. Alan Burns at University of York, Prof. Sanjoy Baruah at Washington University St. Louis, and
Prof. Zhishan Guo at University of Central Florida.
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level used in the standard IEC 61508 [1, 81]. This classification helps defining the safety requirements necessary

to be in line with the ISO 26262 standard. The ASIL is established by performing a risk analysis of a potential

hazard by looking at the severity, exposure and controllability of the vehicle operating scenario.

Figure 2.2 and Figure 2.3 give some details about criticality levels according to different standards. The

levels are ordered from less constraining to most constraining. The determination of criticality comes from DAL

and SIL notions that are assigned to system level functionalities and to all the software elements that contribute

to them [55].

For static verification and mixed criticality, it has to be shown that in the worst-case scenario i.e., all high-

criticality functions simultaneously require their maximum pessimistic resource quotas, all of these functions will

meet their timing requirements. For graceful degradation and mixed criticality, it has to be measured responses

to varying levels of overrun: to not disproportionate the response to a small effect. Indeed for minor overruns

it is possible to expect full system functionality to continue to be delivered (a requirement that is termed fail

operational or fail passive).

Mixed criticality and mode changes

MC systems are typically defined to execute in a number of criticality modes. The schedulability analysis

for the MC problem focuses on providing multiple assurance levels to the possible execution conditions or

modes. Today’s MC schedulers tend to efficiently schedule functionalities of different criticality so that the less

critical tasks may execute in the resource gaps left from the execution of high criticality tasks under normal

circumstances. Instead, they may be dropped in a occasional situation where tasks of higher importance level

execute beyond their estimated common case running time.

Figure 2.2: DAL criticality levels with failure condi-
tions and their interpretations [59, 60].

Figure 2.3: ASIL and DAL comparisons [60, 82] with
criticality levels ordered from most stringent to the
least.

Complex real-time systems are dynamic, which consists in having several behaviors and is described by a set of

functionalities that are carried out by different parameter settings. Those systems are characterized by different

operational modes, designed to achieve different functionalities or to respond to changes in the environment,

[114, 117, 124, 130]. Each mode defines functional and not functional characteristics and consists of specific

computational demands, resource requirements and resource availability. The overall computational load and

the allocated resources may change over time depending on the operational mode selected for the system. For

example, adding a new task into the system at runtime may result in a reduction of the computational resources

allocated to the other tasks.

A typical example is that of an aircraft control system where it can be distinguished landing, take off and

normal cruise modes, each with a different general objective. The current operating mode of the aircraft depends

on the particular phase it is executing. A change in the system state, e.g. from start-up to normal, or from

normal to energy saving, or from normal to shut-down, may also require re-allocating the computational resources

among the tasks composing the application. Changing one or more parameters in the system components at

runtime must also be considered a mode change, because it affects the system load and hence modifies the

timing behavior of the application and the system itself.
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2.2 The mixed criticality problem

The mode change is required to cope with the changing conditions so that the system can work properly with

the new requirements. in order to change the operating mode it is necessary to switch form a set of parameters

to another and this circumstance introduces a transient stage where it is not well defined what are the condition

and the parameters of the system along that phase. Such an uncertainty has to be investigated to make the

system predictable even during the mode changes. A mode change is initiated whenever the system detects a

change either in the environment or in the internal state.

The transformation of real-time systems into MC real-time systems demands for timing analysis which is able

to cope with multiple criticality levels for tasks, and schedulability analysis which can guarantee the different

possible execution modes.

2.2.1 Mixed critical task models

Vestal’s work [140] launched the mixed criticality scheduling theory. In there, a criticality level is assigned to

each task derived from the system function that the task is implementing or contributing to. It is the Worst-Case

Execution Time (WCET) parameter of task that depends on the criticality level that has to be assured for each

task.

In its most general representation, the task model of a period task τi is:

τi = ([C1,A, C1,B , C1,C , C1,E ], Ti, Di, χi). (2.1)

Ti and Di are respectively the task period and deadline. With X = {A,B,C,E} an ordered set of design

assurance levels, where A is the highest and E is the lowest. χi specifies the assurance level for τi. Ci = {ci,χi
}

with χi ∈ X, specifies a set of execution times for τi, and χi is the degree of assurance that the execution time

of τi will not exceed Ci,χi
. It is assumed that Di ≤ Ti and Ci,A ≥ Ci,B ≥ Ci,C ≥ Ci,E for all i. χ is the assigned

task criticality level [140]. To note that in Equation (2.1), and in the rest of the manuscript, classical criticality

level ”D” has been replaced with ”E” to resolve the ambiguity with task deadline Di.

A piece of code could have a higher WCET if it is defined to be safety critical with higher level of assurance

required (Ci,A larger than the others). Instead, if the task is just considered to be mission critical its WCET

requirement would be smaller, as the task demands less in terms of resource request and guarantees (Ci,B or

less). Finally, if the task is considered to be non-critical, it demands even less resource request and guarantees.

Its WCET requirements would be the smallest (Ci,E) [54, 140], [165].

Restricting the modeling to two criticality levels, it is possible to name the high criticality level as hi and

the low criticality lo. In the following there is detailed the interpretation for C(hi) and C(lo).

- Ci(hi) (equivalently Ci,A) that models the hi-criticality behavior of the system, thus the worst possible

conditions τi can suffer. Ci(hi) would be derived from the most safe timing analysis in order to guarantee

the worst model and the most assurance to the execution behavior, [165]; Ci(hi) has to be the task

model with maximum confidence of being the worst-case, [140]. This would be the case of safety critical

applications that have to account for the worst-case behaviors that can possibly happen. The ’best’

modeling of task parameters has to assure the coverage of any of the execution conditions, including the

worst-cases [55, 140].

- Ci(lo) (equivalently Ci,E) that models the lo-criticality conditions for τi; Ci(lo) is for mission critical

or less-critical conditions; it does not assure against faults, at least it does not against all of them; Ci(lo)

could come from less safe timing analysis and encode a certain confidence to be the worst-case model under

specific execution conditions [140]. This would be the case of mission critical or low critical applications

rely on less constrained/demanding models and the guarantees on them are not as strict as those for safety

critical applications [55, 140].

By MC constraints, it has to be Ci(hi) ≥ Ci(lo), [140].
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In a more common two-critcality-level model, the MC paradigm it is possible to distinguish between hi-

criticality tasks from lo-criticality tasks such that: hi-criticality tasks can have two execution modes, hi-

criticality mode and lo-criticality mode, represented by [Ci(hi), Ci(lo)]. The hi-criticality task τi is represented

with multiple parameters:

τi
def
= ([Ci(lo), Ci(hi)], Ti, Di, χi), (2.2)

where Ti is the period and Di is the deadline of the task; χi ∈ {lo,hi} is the task’s criticality level; and

[ci(lo), ci(hi)] is the tuple of WCETs, where ci(lo) ≤ ci(hi). The lo-criticality task τj is represented with

parameters:

τj
def
= (Cj(lo), Tj , Dj), (2.3)

where Tj is the period and Dj is the deadline of the task and Cj(lo) characterizes the lo-criticality mode

worst-case execution time. For lo-criticality tasks only the lo-criticality behavior is possible, as they will be

discarded upon a mode switch into hi-criticality level.

The system mode will be switched from lo to hi if any hi-criticality task exhausted its lo-WCET and

did not signal finishing. Form the Vestal task model it is notable the increased flexibility to represent task

behaviors: with multiple WCETs per task could represent more task behavior, thus reduce pessimism. Current

discussions on enhancing the classical (Vestal) MC model could make interesting future contribution to mixed

criticality [35, 75].

The MC modeling resolves into a timing analysis problem. Timing analysis seeks upper bounds to the task

execution time (with WCET estimates), and so the predictability required by real-time systems can be granted.

Classically, the bounds are deterministic WCET which are single values able to upper bound the time needed

to finish execution. Refer to [143] for definitions and a survey of approaches for WCET estimates. In order

to be safe, WCETs have to account for any case/execution condition possible, including the highly improbable

pathological cases such as faults. Deterministic WCETs could be very pessimistic with respect to task actual

execution times, and could lead to resource under-utilization. Nonetheless, it is safe.

Traditional rigorous WCET analysis may lead to not affordable pessimism (for safety), and the occurrence of

such WCET is extremely unlikely, unless under highly pathological circumstances. The gap between the actual

running time and the WCET may be significantly large, which makes a strong argument for MC task modeling

according to Equation (2.2).

Much prior research on mixed criticality scheduling has focused upon the phenomenon that different tools

for determining WCET bounds may be more or less conservative than one another, which results in multiple

WCET estimations for each individual task or piece of code. Typically in the two-criticality-level case, each

task is designated as being of either higher (hi) or lower (lo) criticality, and two WCETs are specified for each

hi-criticality task: a lo-WCET determined by a less pessimistic tool, and a larger hi-WCET determined by a

more conservative one, which is sometimes larger than the lo-WCET by several orders of magnitude.

Safety critical systems are failure prone as any other system, and today’s system certification approaches recog-

nize this with permitted system failure probabilities. The underlying idea is to certify considering more realistic

system models which account for any possible behavior, included faulty conditions, and the probability of these

behaviors occurring. The gap that still exists is between such enhanced models and the current conservative

deterministic analyses.

Task models have to embed fault manifestations and fault effects in order to provide upper bounds to every

possible condition the real-time system can experience at runtime. In the MC framework, and with the highest

abstraction model, faults can be seen as task passing C(lo) thresholds. Timing analysis approaches have to

take fault effects into account. System faults have a non negligible impact on worst-case models; although as

pathological and improbable cases, they have to be considered with timing analysis.
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2.2.2 Mixed criticality scheduling

The MC scheduling extends with multiple conditions the classical scheduling conditions. Restraining to two-

criticality level, MC schedulability analysis objective is to determine a runtime scheduling strategy which ensures

that: (i) all jobs of all tasks complete by their deadlines if each job completes upon executing for no more than its

lo-WCET; and (ii) all jobs of tasks designated as being of hi criticality continue to complete by their deadlines

(although the lo-criticality jobs may not) if any job requires execution for more than its lo-WCET (but no

larger than its hi-WCET) to complete.

MC systems are typically defined to execute in a number of criticality modes. All of them have to be

guaranteed at runtime. According to Vestal’s definition [140], mode switch can be defined as follows: if any

task attempts to execute for a longer time or more frequently like in case of faults, then a mode change occurs

imposing high-criticality behavior to the tasks and the system [21, 46]. Under classical MC model, all low-critical

tasks could be dropped from the system upon a mode switch, which may be a result of one single high-criticality

task overrunning for 1 ms, or a 1 ms speed drop of one of the many processors. Obviously huge pessimism is

involved under such modeling, even with the recent developments in providing multiple assurance levels to the

possible execution conditions [22, 24, 25, 57].

In the real-time systems community, some existing work in MC scheduling consider the concept of graceful

degradation and proposes effective scheduling techniques, such as fluid-based scheduling [17], utilization-based

Earliest Deadline First with Virtual Deadlines (EDF-VD) [103], putting restriction on the asymptotic rate-

based correctness notation [20, 125], and involving mixed criticality weakly hard constraints [67]. [110] applies

probability thresholds into MC schedulability conditions; different schedulability conditions are defined from

lo-criticality to hi-criticality.

The Own-Criticality-Based-Priority (OCBP) algorithm is proposed to generate a correct priority list for

mixed-criticality jobs in polynomial time [23, 27]. This is an efficient approximation algorithm which recursively

searches a lowest-priority job by simulating the behavior of all other jobs according to the candidates own

criticality. OCBP following the idea of Audsleys priority assignment mechanism [12].

In the traditional real-time scheduling, Earliest Deadline First (EDF) is proved to be an optimal exact

algorithm on preemptive single-processor platform. Its philosophy of favoring urgent jobs, in the form of always

choosing the job with the earliest deadline to execute, provably maximizes the use of processor capacity in the

traditional real-time systems. In order to promote high-criticality tasks in MC systems, these tasks will be

given earlier virtual deadlines to reflect their importance over low-criticality tasks. This is how the modified

EDF algorithm named EDF-VD [23], where VD stands for virtual deadlines, works for MC systems. EDF-VD

algorithm shrinks the high-criticality deadlines proportionally by a certain factor so that the high-criticality

tasks will be promoted by the EDF scheduler.

The OCBP algorithm is aimed at discrete one-shot tasks with an arbitrary number of criticality levels. The

EDF-VD algorithm is aimed at recurrent tasks with two criticality levels (safety critical and non-critical). The

two algorithms differentiate also because they consider respectively jobs and tasks.

Another MC scheduler is the Mixed-Criticality Federated Scheduler (MCFS) [100] which can reduce the

pessimism in resource allocation by allowing hi-criticality tasks designating a worst-case overload utilization as

well as a common case nominal utilization, and allowing lower-criticality tasks to meet their deadline as long

as hi-criticality tasks requires their nominal utilization. MCFS still ensures that hi-criticality tasks will meet

their deadlines if they end up requiring their overload utilization.

Under MC, the resource is utilized in the manner such that all tasks are allowed to execute under low-critical

modes in a more fairly manner, while priorities will be given to more critical tasks in a dedicated manner upon a

mode switch. Such mode based correctness definition is welcomed by the industry, yet providing many research

challenges [19].

It is known [8] that MC scheduling under Vestal model is highly intractable, such that polynomial-time

optimal solution is impossible unless P = NP . As a result, speedup bound is widely used in MC scheduling for

measuring how close to optimal is a given schedulability analysis. A schedulability test has speedup factor of s
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(s ≥ 1), if any task set that is schedulable by any algorithm on a given platform with processing speed of 1, it

will be deemed schedulable by this test upon a platform that is s times as fast.

Of course when deriving MC schedulers and associated schedulability tests, one of the goals is to identi-

fy/prove a relative small speedup bound (that is closer to 1). A minimum possible speedup is often presented

as the optimal speedup bound of a given MC scheduling problem.

When deriving speedup bounds, in most of the existing works of the community, the proposed algorithm

is compared with a clairvoyant optimal scheduler, and adapts the necessary conditions for MC schedulability.

This may not be a very fair way of comparison, since the penalty for unawareness of the future is applied into

the speedup bounds

For scheduling (dual-criticality) Vestal job set on a single-core platform, it has been shown [27] that OCBP

algorithm has an optimal speedup bound of

√
(5)−1

2 . However, several algorithms has been identified to strictly

dominate OCBP, e.g. Lazy Priority Adjustment [70], LE-EDF [73, 74]. They have the same speedup, yet the

latter has better schedulability at all time. Similar results can be observed when it is considered the scheduling

of Vestal task as well. It has been shown that 4
3 is the best speedup that any non-clairvoyant scheduler can

achieve. Upon proposing a speedup-optimal single-processor EDF-VD [27], improvements on the schedulability

can still be made, e.g. [50, 52]. As for the multiprocessor case, it is proved [18] that both MC-Fluid [123] and

MCF [18] achieve the optimal speedup of 4
3 . However, MCF is a simplified version of (and is dominated by)

MC-Fluid. Moreover, improvements on schedulability can be further made to MC-Fluid [123].

So far, the academic perspective to the MC problem which focuses on merging tasks within the same core.

The objective is to improve resource usage by mixing tasks with different criticality levels. It is left to the

schedulability analysis guarantees task timing constraints depending on the criticality level and the available

resource. Have a look at [8] for recent observations on the complexity of the MC schedulability problem.

2.2.3 The industry perspective to mixed criticality: partitioning and isolating

The industry perspective to the MC problem focuses more on partitioning and isolating applications by their

criticality level, and then guaranteeing separation mechanisms. Safety critical applications would be isolated

in time and/or in space from mission critical applications, [55, 85]: both safety critical and mission critical

MC models and MC schedulability are guaranteed within the partition with approaches that resembles more to

classical schedulability analysis. For industrial MC applications, a MC system is not a system where to sacrifice

lower criticality applications. Instead the applications are partitioned by their criticality level and execute in

isolated environment to avoid that hi-criticality tasks suffers interference from lo-criticality tasks.

With the industry, the core concept in realizing MC systems is the demonstration of ”sufficient independence”

and guaranteeing that the mechanisms that should provide sufficient independence actually provide it. The

mechanisms are kernels and schedulers that guarantees resource management to provide independence in the

functional and time domain, and mechanisms that detects faults and control them, e.g. monitors, scheduling.

A clear example of the industry perspective to the MC problem is the IMA paradigm for avionic real-time

embedded systems. The IMA concept proposes an integrated architecture with application software portable

across common hardware modules. An IMA architecture imposes multiple requirements on the underlying

operating system and consists of a number of computing modules capable of supporting numerous applications

of differing criticality levels. It is clear how the industry goals from mixing criticality are more about partitioning

applications into modules and easy the certification jobs of each module and module composition.

Figure 2.4 represents an example of distributed IMA avionic embedded systems where modules communicate

via the safety critical embedded network like AFDX 1. Other examples of IMA applications can be find, including

comparisons between IMA and the former federated architecture design paradigm.

Partitioning is a concept for spatial and temporal isolation/segregation of functionally independent compo-

nents in order to prevent interference between two components. Also, partitioning is key in incremental de-

velopment as pushed by IMA. There exists time partitioning where temporal aspects are involved; there exists

1The picture is taken from the AIRBUS presentation at the ARTIST2 Workshop on Integrated Modular Avionics, PARADES,
Rome 2007.
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space partitioning which focused on memory aspects; in the I/O partitioning, both time and space partitioning

for I/O are involved.

The partitioning is achieved through independent segregated environments. The use of a separation kernel

or memory management unit to control execution instances. Instead, temporal partitioning does not need to

be implemented in time slots [33].

The complexity of the ”industrial MC” shifts toward partitioning problems and guaranteeing temporal and

spatially each partition. In that, the most significant effort is devoted to develop and certifying real-time

operating systems and/or hypervisors which guarantees that. Few research works have approached the MC

scheduling with industry perspective. [85] is an example where the solution consist on executing the most

critical tasks in isolation and then the execution of the remaining tasks follows.

Moreover, in ”industrial MC” it does not exist the notion of criticality mode, mode change, nor lo-criticality

WCET overrun. Instead, the task model remains the classical Liu and Layland task model [102], with only one

WCET per task, and the criticality classification is applied to tasks according to their level of assurance.

Figure 2.4: An example of IMA for avionic distributed application with different functionalities and criticality
levels associated.

2.2.4 Dynamic systems: toward mixed criticality

The problem of schedulability analysis across mode changes, similarly to mode MC, has been addressed in the

real-time literature under different assumptions and system models [117, 127, 133, 138]. For instance, Fohler

[58] investigated the problem of mode changes in the context of pre-runtime scheduled hard real-time systems,

where a table-driven schedule is constructed for each operational mode and an appropriate time must be selected

to start a new mode and avoid deadline misses. Crespo et al. [124] presented a survey of mode change protocols

for single-processor systems under fixed-priority scheduling and proposed a new protocol along with their own

schedulability analysis. Guangming [71] computed the earliest time at which a new task can be safely added to

the system under the EDF scheduling, without jeopardizing the feasibility of the task set. The underline idea

behind such solutions is to wait for a certain amount time before changing the schedule, identifying a safe time

instant where the new mode can be activated without causing deadline misses.
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All of these results address the problem of performing mode transitions in applications without violating

their schedulability. System that can changes are called dynamic systems, and guaranteeing timing constraints

during steady states and during mode transitions is a research topic often named adaptivity.

Together with the applications, any other element of real-time system may change at runtime. The pa-

rameters of servers, schedulers (hence the scheduling policy) and more other can change as a consequence of

either external or internal changes, [119]. Furthermore, whereas a server manages an application by supplying

the resource it requires, adaptive applications must rely on adaptive servers to meet their changing resource

requirements.

Fixed reservations paradigms are not appropriate to achieve the desired performance with applications in

which the computational demand is highly variable. To cope with such dynamic systems, Buttazzo et al. [36]

proposed an elastic scheduling methodology for adapting the rates of a periodic task set to All of these frame-

works are only suitable for soft real-time systems. Abeni and Buttazzo [7] introduced a bandwidth reservation

mechanism (the constant bandwidth server) that allows real-time tasks to execute in dynamic environments un-

der a temporal protection mechanism, so that the server never exceeds a predefined bandwidth, independently

on the actual requests of the server tasks.

Despite the amount of works done so far, the classical server paradigms and models do not allow adaptations

to changing conditions. To the best of our knowledge, however, none of the proposed reservation mechanisms

has been analyzed to predict the timing behavior of the served application during a reconfiguration process.

Clearly, a safe approach could be to delay the mode change at the next idle time in the system, as done in the

FRESCOR framework [41]. However, the delay cold be too long and it is highly unlikely that the idle time

occurs at the same time for all applications.

Recently, some mechanisms have been proposed to dynamically change the server models at runtime. For

instance, de Olivera et al. [47] addressed the problem of dynamically reconfiguring reservation parameters,

offering support for multi-mode and adaptive real-time applications. Valls et al. [139] presented an adaptation

protocol based on the definition of a contract model for filtering peaks in resource demands. However, in both

frameworks no schedulability guarantee is provided during reconfigurations. The FRESCOR project [79] has

proposed mode change protocols for sporadic servers, but they are not as general as the results presented in

this paper, which can cope with arbitrary activation patterns.

To stress the fact that I see mode change analysis and adaptivity for real-time systems as the precursor to

MC analysis. They both aim at defining safe mode change and guaranteeing determinism during steady states

as well as during mode transitions. With MC the notion of mode change is applied to describe different possible

behaviors for the task in relationship with the criticality level to be guaranteed during execution; the MC

schedulability analysis guarantees task schedulability once the mode change has taken place. The techniques

applied in adaptive real-time and the MC problem are slightly different, but both relates to the common need

of guaranteeing predictability during possible changing conditions fro real-time systems. This is the reason

for which adaptive real-time works are in this state of the art, and are also among the research topics I have

approached in the past.

There exist a difference between the notion of mode change with MC and the notion of mode change for

adaptivity. In MC, mode changes happens for different reasons, and the scheduling conditions after the mode

change have to be guaranteed; the guarantees are for higher criticality level after the mode change. In adaptivity,

it is the mode transition that is taken into account; the guarantees here are for making a predictable transition.

The investigation of dynamic real-time systems consists of proposing schedulability analysis that accounts

for modes as steady states modes and mode transitions [5, 6, 7, 36, 41, 112, 117]. Dynamic real-time systems,

with their adaptive problem could be considered the precursor of MC; the research serves as inspiration for the

MC.
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2.3 Mixed criticality as research perspective

The research project chosen to be investigated in the present research activity and mostly in the future, is

mixed criticality for real-time embedded systems. With it, the intent is to define accurate mixed critical

task models as well as efficient mixed criticality scheduling algorithms.

The research project collects the past research as background, presents some early works to timing analysis

and schedulability analysis, and outlines research perspectives. Future contributions from it will continue

investigating the mixed criticality problem tackling with timing models and schedulability analysis for improving

already existing solutions or proposing new ones.

In my past research, before 2015, and for the professional experience, the mixed criticality problem never

appeared. This is because past activity was more focused on understanding and modeling traditional real-time

embedded systems. The MC research project is the evolution of my perception of real-time systems and of

the past research topics. It is interesting and it is challenging for the real-time community, especially for the

development of today’s and tomorrow real-time embedded systems.

The MC is becoming one of the key perspectives for studying real-time embedded systems and for guarantee-

ing their predictability. The manuscript and the research project chosen represents the occasion for formalizing

future perspective around the mixed criticality problem, for defining the tools to be applied to approach MC

problems, and for proposing research direction to take. In both, industry and academic requirements and

motivations for mixed criticality are taken into account.

MC in real-time means different level of guarantees combined in the same system: approaches for studying

MC systems have to apply techniques for hard real-time as well as techniques for soft-real-time. MC means

also complexity issues for assuring timing constraints from the different requirements needed: MC schedulers

have to manage the different requirements guaranteeing first safety critical tasks. Moreover, MC means also

efficient resource usage challenges: once guaranteed hi-criticality tasks, less critical tasks can be executed without

jeopardizing the rest.

Mixing criticality within the same system is becoming the trend that both academics and industry tackle with

when implementing and guaranteeing real-time embedded systems.

Evolution of real-time embedded systems. Multi-core and many-core allow for enhancing performance due

to their features, e.g. the large amount of shared resources, the parallelism and the inter-core communication

infrastructure. But in order to be effectively applied with real-time systems, their main challenge remains the

reconciliation of performance and predictability.

With that amount of resource available, real-time systems begin packing applications with different criticality

and different functionalities within the same platform. Thus, it exist the need to model different behavior

depending on the runtime conditions, and to guarantee different timing requirements depending on criticality

requirements.

The MC problem is the evolution of classical real-time and it very actual due to multi-core and many-core

implementations: many open problems exist and need to be taken into account. Among them, and what will

be studied with the research project, there are: 1) the complexity of scheduling algorithms, 2) the pessimism of

task models and of schedulability results, and 3) the trade-offs between partitioning and resource sharing.

MC demands for enhancing already existing approaches. In the past, the problem of adaptivity and mode

change guarantees has been approached; the research project naturally looks at MC as continuation of that.

Past contributions on deterministic scheduling such as sensitivity analysis will be applied in order to reduce

complexity of already existing MC approaches. Also, previous research has been made with probabilistic models

which proved to reduce the pessimism of classical deterministic models. It is necessary a research project that

applies such models with MC tasks in order to reduce pessimism and in order to evaluate effects of resource

partitioning or complete sharing. Past research has also considered probabilistic schedulability analysis. With

the use of probabilistic models, it will be approached both complexity and pessimism problems for MC.
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Interests and challenges with MC. The MC problem is interesting since it concentrates the attention of

academics and industry from the embedded system community. They offer different perspective to the MC

problem, but both concord that it is the actuality and the future of real-time embedded system development.

Multi-core implementation and MC problems, combined together give rise to theoretical problems in modeling

and verification, and systems problems relating to the design and implementation of the necessary hardware

and software runtime controls. The MC problem is challenging and in large part remains an open problem.

Recent attention is dedicated to certification issues and its challenges with multi-core and many-core. All those

aspects have to be considered.

Industry and academic perspectives to MC. There still exist the dichotomy between the research com-

munity and the industry, in coping with the MC problems. Either the two communities do not speak the same

language with respect to MC, or they propose completely different models and algorithms. This represent a

problem that keeps the two communities separated with limited communication and sharing. The research

community should make an effort in interpreting industry needs with today’s and future real-time systems, and

proposing solutions that can cope with those.

With multi-core implementation, mixing criticality problem is not just ordering (scheduling) task execution

anymore. There are problems which have to be taken into account for timing analysis and schedulability

analysis. All of them deserve an important role in developing MC task models and MC scheduling algorithms.

- There is the problem of partitioning tasks and placing them into different cores and guaranteeing their

predictability according to different possible criticality levels. In case of partitions, what are the isolation

properties from the RTOS or the hypervisor? What are the guarantees that every shared resource is well

partitioned among the applications? What is the interference level from other tasks and partitions?

- There is the concurrency problem and the interference that shared resources create with or without

partitioning. The interference have to be embedded into efficient task models and only then they can

be taken into account by the schedulability analysis. This is even more important without partitioning,

with more task competing for shared resources: the interference effects can be important and affect

schedulability conditions. Timing analysis has to take into account interference on shared resources and

the impact they have on worst-case models; timing models have to be parametrized by the criticality levels

and the guarantees that different criticality levels deserves.

- There is the problem of efficient resource utilization among different criticality tasks and the development

of less pessimistic or more realistic scheduling algorithms.

MC has to involve timing analysis and schedulability analysis problems. With multi-core and many-core imple-

mentation, this brings in plenty of elements to be investigated and to be guaranteed. With respect to timing

analysis, the study of interference, the evaluation of resource partitioning, and more, have to be taken into

account. Probabilistic models and statistical approaches allow for better task models and reduce the pessimism

in MC representations. With respect to schedulability analysis, mode change and mode combinations have to be

efficiently included into scheduling decisions. The challenge here is on developing better (more efficient and less

complex) scheduling decisions able to account for all the possibilities that can happen at runtime. Probabilistic

approaches and sensitivity analysis will help with that.

The research project plan consists on approaching both timing analysis problems and schedu-

lability problems which are related to MC. Both are necessary for effective modeling and analysis

of mixed criticality; both contributes to efficient resource usage with multi-core and many-core

applications.

MC timing models can be improved, and also newly developed, especially the probabilistic ones. Probabilistic

model to task behavior can be applied to the MC problem. The enhanced flexibility of such models will allow

to represent tasks with different criticality with less pessimism but still safely. Interference analysis between

tasks and on shared resources will allow characterizing interference effects and quantify those with respect

to the criticality levels. Statistical analysis will allow for guaranteeing space and time partitioning between
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applications. Partitioning mechanisms can be analyzed studying the impact that partitions have on MC task

models. Moreover, interference, contentions, and their effects have to be studied in order to improve the

knowledge of multi-core dynamics, and evaluate the quality of partitioning.

Scheduling algorithms for MC need to be improved, and efficient analyses analyses need to be developed. The

extension of existing deterministic approaches based on a flexible mode change and a smarter priority assignment

is possible. In addition, new analyzes of probabilistic schedulability are possible by applying the flexibility of

the probabilistic model. The new deterministic and/or probabilistic solutions must all guarantee the level of

criticality and should improve the use of resources and the predictability of these systems, primary needs for

the industry as well.

The research project will exclusively tackle with multi-core and many-core applications. All the contributions

will have the twofold motivation from professional as well as academic experience made on embedded systems.

The research project will account for academic problems as well as industry problems to MC. A complete

research project cannot neglect that: i) theoretical problems are important to push forward research and con-

tributions to the development of today’s and future real-time embedded systems; ii) practical problems are

necessary to face needs that realistic MC systems have. The attempt in this project is to develop similar ap-

proaches for academic and industry challenges, and also develop adhoc solutions for issues that are peculiar

to the specific perspective considered. The professional experience and academic experience made so far make

approaching the problem from both theoretical and practical requirements.

The academic perspective is important also for arguing classical research approaches to MC and the assump-

tions made to obtain them. Among the academic assumptions that will be studied or revised, there are:

- The multiple execution time model proposed i.e., Vestal’s, which will be studied and extended with

probabilities;

- The criticality level that apply to tasks and to system level functions. Differences and commonalities to

both will be investigated;

- The definition of criticality mode change. Classically, it happens when there is violation of timing as-

sumption; it will also be studied other possible definition of mode change which could better cope with

realistic conditions;

- Resource usage improvement is obtained leveraging the difference between C(hi) and C(lo). The research

project will study that as well as other solutions for more efficient resource utilization for the MC paradigm.

The industry perspective focuses more on guaranteeing safe resource partitioning and isolation. In there,

partitioning mechanisms are tested, interference analysis are proposed, and rigorous guarantees are provided.

Also, the attention to certification requirements proper of industry approaches would benefit academic results

with rigor and formalism.

Figure 2.5 illustrates how the theoretical tools prepared since the master thesis (in white background), and

applied to non-MC topics (in gray background), have and will be applied to MC. Previous contribution, as in

Figure 2.1 can be compared with the research perspective on MC. In Figure 2.5 are outlined the challenges to

be approached and how the research topics as well as the tools will apply for that. Also, it is listed a brief

list of motivations for the use of such into the MC problem which embed research and professional experience:

reduced pessimism, flexibility, and trade-offs which will be detailed in the following.

In the following, some MC problems are discussed listing past and present contributions as well as the

research perspective for them.
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Figure 2.5: Research topics since 2003 and theoretical tools applied to MC problem: possible achievements and
motivations.

2.3.1 Some thoughts about timing analysis for mixed criticality

With regard to timing analysis and mixed critical task models, the research project will focus on probabilistic

models.

Recently, probabilistic timing models are emerging as alternative to the classical deterministic ones. For ex-

ample, what the real-time community is discussing nowadays is the notion of probabilistic Worst-Case Execution

Time (pWCET) and the confidence that can be offered to probabilistic bounds for task behavior.

The pWCETmodel generalizes the WCET with a worst-case distribution that upper bounds any possible task

execution behavior. Hence, pWCET representations focus on probability of occurrence of worst-case conditions

and abstract them into multiple worst-case values with their correspondent probability of happening [158].

The task execution worst-case representation using random variables is richer and less pessimistic than

with classical deterministic WCET. A deterministic WCET can be far from the real behavior since it has to

upper bound any possible task behavior, including the extremely rare worst-cases. WCET representations using

random variables are emerging as alternative to deterministic WCETs. In that regard, a pWCET models what

is behind the WCET bound with possible WCET values each with an associated probability/confidence of being

passed.

The task nominal behavior is made of multiple execution times depending on the different phenomena that

can apply at runtime: on average, the task behavior resemble more to a random variable than a deterministic

variable. The notion of pWCET is a generalization of that, applied as a probabilistic worst-case bound to the

task execution behavior.

From pWCET estimates, it is possible extract WCET thresholds, each with an associated probability of

being overcome. Multiple thresholds or different distributions, each with a confidence associated depending on
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2.3 Mixed criticality as research perspective

the conditions considered, will cope with the MC task modeling; they will aim at providing less pessimistic

models able to face the different runtime behavior that MC task exhibit.

Probabilistic models with MC are for improving the quality of the models: reduce pessimism, have more

flexible representations with multiple possible values, and maps probabilistic values with criticality levels. Also,

statistical approaches and probabilistic models are for representing interference effects, partitioning properties

and shared resource usage with MC multi-core and many-core implementations. Furthermore, fault effects will

be included into MC probabilistic task models to parametrize criticality levels with different fault models. In

Chapter 4 and Chapter 5, are presented respectively few works and future ideas to begin explaining probabilistic

timing analysis and its potential for MC.

During the Postdoc period, with the support of the EU project PROARTIS, I made works on probabilistic

timing models.

Few have been my contributions on static probabilistic timing analysis which apply to randomized real-

time systems [154, 158]. Exact and estimated pWCET are computed from the knowledge of the task instruction

sequence (task model) and from the possible interactions with concurrent tasks i.e., preemptions. More have been

my contributions on measurement-based probabilistic timing analysis [148, 149, 159, 162, 163, 164, 182, 192].

In those, the pWCET are estimated from task execution time measurement: the pWCET are from nominal

models of task executions. In particular, the PhD thesis of Fabrice Guet 2014− 2017 have addressed confidence

and robustness problems of the measurement-based methodology.

The research project is for applying all those results with probabilistic timing models to the MC problem.

Modes for timing analysis are execution scenario, or subset of execution scenarios, or system system hypotheses

which define specific behaviors of the task to be modeled.

So far, I have not maturated the competence to approach deterministic timing analysis. Instead, in collab-

oration with the IRIT Toulouse, it will be developed a hybrid timing analysis approach which combines static

timing analysis and Measurement-Based Probabilistic Timing Analysis (MBPTA). This will apply to MC since

different tools applied for tasks depending to their criticality levels. The idea of hybrid timing analysis is briefly

presented in Chapter 5.

2.3.2 Some thoughts about schedulability for mixed criticality

Deterministic schedulability. The deterministic schedulability analysis has already provided quite contri-

butions to MC. Complexity issues and overlay pessimism are critical for continuing investigating MC with

multi-core and many-core implementations. The research project proposed will tackle with those aspects.

The research project will continue to apply deterministic approaches to schedulability analysis with realistic

representations on the task behavior i.e., if a hi-criticality task or job goes in hi-criticality mode, it assumed

that all the hi-criticality tasks or jobs go in hi-criticality mode. The work in [166] is a the result of an existing

collaboration which aiming at reducing pessimism by applying more realistic representations. With that, new

scheduling algorithms will be developed in order to guarantee timing constraints for the different criticality and

the possible mode combinations at runtime.

Also, the plan is to continue exploring trade-offs between resource reservation, schedulability, and criticality

level guarantees, as done in [190, 193, 198]. The trade-offs are for defining which criticality can be scheduled,

and at which cost (resource utilization), as well as for defining beforehand the system conditions that can be

guaranteed and those that cannot. There will be applied already existing deterministic scheduling, and the

notion of deterministic sensitivity analysis with deterministic abstract representations.

Probabilistic schedulability. In terms of probabilistic schedulability analysis, the contributions to the MC

scheduling problem will come from newly developed scheduling algorithms that can effectively leveraging proba-

bility information into scheduling decisions. The potential for probabilistic scheduling is to develop more efficient

(”smarter”) scheduling decisions based on the actual execution conditions and the probabilities that represent

those.
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Based upon pWCETs, execution time distributions, and/or other possible parameters, probabilistic schedula-

bility analyses have been developed. Here a brief state of the art to explain already existing probabilistic timing

analysis.

Probabilistic schedulability analysis approaches compute the probability of missing a deadline an check if it is

small enough as safety requirements. Tia et al. [136] focus on unbalanced heavy loaded system, with maximum

utilization larger than 1 and much smaller average utilization, and provide two methods for probabilistic schedu-

lability guarantees. Lehoczky [93] proposes the first schedulability analysis of task systems with probabilistic

execution times. This work is further extended to specific schedulers, such as EDF in [147] and under fixed

priority policy in [63].

[48] provides a very general analysis for probabilistic systems with pWCET estimations for tasks. In addition to

WCET estimations, statistical guarantees are performed upon the minimum inter-arrival time (MIT) estimation

as well [3, 109]. Schedulability analysis based on probabilistic Execution Time1 (pET) (instead of pWCETs) is

also done in [78] for limited priority level case (quantized EDF), and in [107] where an associated schedulability

analysis on multiprocessors is presented. Statistical response-time analysis, e.g. [105], can be further done to

real-time embedded systems based upon those probabilistic schedulability analysis.

The works applying discrete distributions to schedulability analysis [48, 109] mainly rely on the convolution

operation between distributions to find tasks discrete probabilistic response time.

As demonstrated by [110], MC problems can be approached with probabilities for quantifying and managing the

unlikely events such as high criticality modes. There is a strong belief that a tighter coupling between MC and

probabilistic frameworks can end up into ‘smart’ schedulers for more efficient utilization of the computational

resource. The strategy here would be to continue researching and pushing for more efficient probabilistic

scheduling and more formalized and effective probabilistic sensitivity analysis. This will allow to take full

advantage of the flexibility from the probabilistic task models with scheduling decisions from probabilities.

It is worthy to mention recent works on probabilities applied to the MC scheduling problem which will inspire

the research project. Probabilistic analysis for the static mixed criticality and adaptive mixed criticality schemes

is derived in [110, 111]. This valid research activity can be extended with the use of probabilistic calculus or

probabilistic bounding functions.

The flexibility from probabilistic models should be used into system design, especially with scheduling policies

that actively apply probabilities into both off-line and runtime decisions. The aim of those algorithm is to

improve overall performance, especially with soft real-time systems. Actual works have not yet explored such

flexibility. This is due to the fact that it is extremely complex to do schedulability analysis with probabilities – all

the values from every task have to be combined for reliable results. Existing probabilistic schedulability analyses

are empirical solutions and not structured as formal methods. So far, they rely on appropriate mathematical

analysis to ease the obtaining and the guaranteeing of the results.

With the MC research project, the modes for schedulability analysis are in the MC sense as well as in the

adaptivity sense: conditions after the mode change and during the mode change are guaranteed. In the past, I

made some works about probabilistic schedulability analysis are [189, 197]. Also, I made some early works on

probabilistic schedulability analysis specific to MC [165, 191]. Those contributions will continue to inspire the

exploration of the MC scheduling problem and will serve to actively apply probability into scheduling decisions.

Complexity and formalism for MC probabilistic scheduling. The complexity of probabilistic schedu-

lability approaches has driven recent studies that tends to apply formal methods for developing probabilistic

schedulers. Among the formal methods, it is possible to list the use of stochastic Markov chain [43], or the use

of stochastic Petri nets [107]. In particular, in the latter case, it is possible to derive exact result of probability

of deadline miss along with the trace representing the probability of task being executed at a certain time.

The idea of applying formal methods and model checking is to benefit of the formal mathematical support of

such approach, in order to develop models which can be validated/checked. The models are used to describe

1Probabilistic execution times are execution time profiles as empirical distribution made with all the possible execution times
of a task; the probability associated to each execution time is the probability of happening for that execution time.
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task and scheduling behaviors. Formally and correctly representing the system dynamics allows also for more

efficient scheduling decisions.

Also, Markov decision processes can be used in [9, 10] to model job releases in MC systems. Probabilistic

analysis is also used to investigate the safety of each criticality level [49]. Current works assumes that task

execution times are independent. This is an unrealistic assumption, but one that will be weakened in future

work.

Faults and fault effects have to be accounted into MC schedulability analysis as they contribute defining the

criticality level of tasks. Various methods applies to perform fault diagnosis [15, 76]; they can be combined with

adaptivity and reliability analysis for safety critical systems [16, 64, 88].

Some attempts with formal methods and real-time systems have been made in collaboration with Jasdeep Singh,

during his thesis at the ONERA [201, 203]. Also, among Jasdeep Singh works there are results obtained applying

formal methods to probabilistic MC problems [200, 202]. Such works tackle with the extreme complexity of the

MC schedulability with the use of easier to validate formal methods and model checkers. Models of the MC

system are built and formally validated in order to increase the confidence on the correctness of the models

as well as of the analysis developed on top of them. With the PhD thesis of Jasdeep Singh, it is started such

investigation of formal methods and their application for real-time scheduling problems. Future work is planned

to continue such investigation with probabilities, formal methods and model checkers.

An early contribution with formal methods involved stochastic Petri Nets for developing probabilistic schedu-

lability conditions [152]; stochastic Petri Nets will also be applied to the MC scheduling problem.

In [194], a first attempt of developing schedulability analysis that is able to consider some fault effects into task

executions. With this work, abstract fault effects are embedded into both timing analysis and schedulability

analysis. Future contribution will be devoted to proficiently make use of probabilistic MC task models with dif-

ferent fault effects into probabilistic schedulability analysis. This will contribute building the MC schedulability

analysis in presence of faults.

The details about all those contributions and further developments with probabilistic MC schedulability analysis

are given in Chapter 4 and Chapter 5.
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Chapter 3

Contributions to timing analysis and

schedulability analysis

In this chapter are listed some of my research papers and projects made from 2003 until 2015 i.e., the past

research, equivalently safety critical research. They all are tools and background, that are used or will be used

in order to approach MC. Such background composes of timing analysis approaches and of schedulability analysis

approaches for real-time embedded systems. In it, it has been approached both theoretical and industrial needs

related to modeling, analysis, and verification of real-time embedded systems.

The works on timing analysis are mainly about probabilistic timing analysis applied for deriving pWCET

estimates. They have started during the Postdoc thanks to EU project PROARTIS, and have continued at the

ONERA. Probabilistic timing models are from the need for understanding where worst-case models are from,

and what is the complexity for deriving them, especially with multi-core platforms. Thus, instead of regarding

classical deterministic approaches like static timing analysis, probabilistic approaches have been considered.

Classical deterministic task models can be overlay pessimistic when system models are not accurate; the prob-

abilities can mitigate such pessimism thanks to multiple WCETs available, each with a probability associated.

Also, distributions for representing worst-case behaviors can cope better with execution conditions that can

happen at runtime, since they are directly inferred from nominal behaviors of task or systems.

Guaranteeing that probabilistic representations are worst-case modeling, and quality modeling of system

dynamics are among main problems. There are ongoing collaborations with static timing analysis groups

for coupling measurement-based probabilistic timing analysis with deterministic static timing analysis. Future

contributions will improve the model quality as well as the understanding of system dynamics from measurements

information. Moreover, measurement-based probabilistic timing analysis will benefit from system models to

enhance quality and confidence of pWCET estimates.

Works on schedulability analysis apply deterministic approaches made since the PhD thesis, and probabilistic

approaches made since the Postdoc.

The deterministic schedulability analysis was the subject of my PhD thesis. It marked the first steps

within real-time and allows defining predictability for single-core and distributed real-time embedded systems.

Those works tackled with the adaptivity problem for dynamic systems and the challenge of guaranteeing timing

constraints with changing execution modes. Hard real-time predictability has been enforced for safety critical

systems. Deterministic schedulability analysis has been the subject of Francesco Propseri PhD thesis at the

Scuola Superiore Sant’Anna, and of Tomasz Kloda thesis at the ONERA.

There is also the contribution on probabilistic schedulability analysis which is first motivated by the need

for schedulability analysis that can apply probabilistic task models. Its purpose is for providing more flexible

schedulability conditions which can cope with the different safety levels that real-time tasks can have. Prob-

abilistic schedulability conditions generalizes deterministic ones adding to the deterministic condition many

other conditions, each with associated a probability; the probability defines the confidence on respecting timing

constraints; with probabilities, both soft and hard real-time can be studied. Probabilistic schedulability analysis
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has been the subject of Dorin Maxim PhD thesis at INRIA Nancy, and is the subject of Jasdeep Singh thesis

at the ONERA.

Past research is grouped as:

- Deterministic and probabilistic timing analysis. Deterministic modeling is presented as background and

used for the deterministic schedulability analysis proposed. So far there are not made contribution on

deterministic static timing analysis. The only research produced is on probabilistic timing analysis, in

the form of static probabilistic timing analysis [154, 158] and measurement-based probabilistic timing

analysis [148, 149, 153, 156, 159, 162, 192, 192]. only some of those works are detailed in the following.

- Deterministic and probabilistic schedulability analysis. With respect to deterministic schedulability, are

presented the basics for deterministic bounding curves, and mostly for the sensitivity analysis applied to

the abstract representations with the C-space and the (α,∆)-space. The deterministic sensitivity analysis

has been used for studying dynamic real-time systems and guarantee their adaptivity [174, 175, 186]. With

respect to probabilistic approaches to schedulability, are presented works on probabilistic bounding curves,

and how the notion of probabilistic schedulability is defined [151, 152, 172, 173, 188, 189, 197, 201, 203].

Also, I made some works that formalize the sensitivity analysis with probabilistic models for defining

probabilistic versions of the C-space and of the (α,∆)-space; those are presented in the next chapter

because they are applied directly into the MC problem.

The first notions are about timing analysis: deterministic task models and probabilistic extensions are

detailed; timing analysis contributions are about the estimation of pWCETs with static probabilistic timing

analysis and measurement-based probabilistic timing analysis approaches. Next, are proposed notions of deter-

ministic and probabilistic schedulability analysis together with the abstract representations which are applied

for defining and developing sensitivity analysis. Both versions of deterministic and probabilistic versions of

sensitivity analysis are presented. A contribution on deterministic schedulability analysis for dynamic real-time

systems is detailed. In it, deterministic sensitivity analysis is applied to evaluate changes and trade-offs between

schedulability conditions and resource changes. Then, are described the probabilistic bounding functions as

extension of deterministic bounds. It is described their definition and how they apply to represent task execu-

tions, and then to do schedulability analysis. The chapter ends with two works on probabilistic schedulability

analysis: the first applies probabilistic bounds, while the second makes use of formal methods to reduce com-

plexity of previous probabilistic schedulability analysis. Remarks and future developments are outlined for each

contribution.

All the works in this chapter are the results of collaborations and supervision of PhD and Master thesis;

they are applied to research projects or have been inspired by those. As a reminder, the works here presented

does not consider the MC; instead, they are used and will be used as tools for approaching MC.

3.1 Computational models

In this section there are presented the basis for deterministic and probabilistic computational models for real-

time.

3.1.1 Deterministic models

Hereby it is presented what is a real-time application with its deterministic models and the notions of deter-

ministic schedulability.

A real-time application Γ, each composed by n tasks: Γ
def
= {τ1, τ2, . . . , τn}. Each τi can be a periodic task,

such that it is characterized deterministic parameters such as:

τi
def
= (Oi, Ci, Ti, Di). (3.1)
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Oi is the task offset; Ci is the task WCET upper bounding any possible execution time; Ti is the task period or

inter arrival time, which denotes the periodicity of task executions. Di is the task relative deadline. All these

parameters are given with the interpretation that a periodic task τi generates an infinite number of successive

jobs τi,j , with j = 1, . . . ,∞. Each such job has an execution requirement described by Ci; the arrival of the

jobs is described by Ti. All the jobs are assumed to be independent of other jobs of the same task and those

of other tasks. This assumption is possible to to the WCET modeling which does not change from instance to

instance.

A τi can also be an aperiodic task. An aperiodic task, also called sporadic, is a task where consecutive jobs

are separated by the minimum inter-arrival time. The parameters describing aperiodic tasks τi = (Oi, Ci, Ti, Di)

are such that: Oi is the task offset; Ci is the task WCET upper bounding any possible execution time; Ti is the

task period or minimum inter arrival time; Di is the task relative deadline.

In this manuscript, if otherwise specified, it is considered that the task offset Oi equals to zero; in the previous

chapter, to present the MC task model it has implicitly assumed Ti = Di; in then following, if otherwise specified

it is also assumed Ti = Di.

The environment and system models describe how the system is being used by the environment: how often

will system functions be called, how much data is provided as input to the system, and how much data is

generated by the system back to its environment. Real-time systems have functional and mainly temporal

requirements that have to be represented.

The real-time theory aims at modeling elements of a real-time system and their requirements. It also applies

the abstraction of those elements to the scheduling and feasibility analysis frameworks in order to guarantee

hard real-time or simply quality of service requirements in complex systems. The schedulability of a system

depends on the scheduling policy and most of all on the available resource.

Hereby, the focus on Fixed-Priority (FP) and dynamic priority scheduling paradigms such as EDF. In those

cases, the resource required to execute applications and the resource provided by the system are compared to

derive feasibility conditions. The task models like Equation (3.1) are the classical Liu and Layland models [37,

102].

Fixed-priority scheduling. In fixed-priority scheduling any task has assigned a priority that the scheduler

applies to order the task set and let at any time the highest priority runnable task actually run. There is a

unique priority associated with each task, and all the jobs generated by a task are assigned this priority.

The absolute priority can be assigned in many ways i.e., the rate monotonic policy where the deadline is assigned

according to the period of the tasks [94], or deadline monotonic scheduling algorithm [99], which assigns priorities

to tasks in inverse order of their relative deadline parameters. Without loss of generality, it is assumed that the

tasks are indexed in decreasing order of priority: task τis jobs have priority over task τjs jobs for all i, j such

that 1 ≤ i < j ≤ n.

Definition 3.1.1 (Response time) The response time R is the time (measured from the release time) at
which the task instance is completed.

Audisley et al. have developed a necessary and sufficient method in order to compute the interference received

by the task τi from its higher priority tasks, [13, 14]. The basic idea is that in oder to compute the largest

response time of τi, Ri, then the interference Ii has to be computed in the interval [0, Ri]. The interference is

the Ii =
∑i−1

j=1⌈Ri

Tj
⌉, and the response time results from Ri = Ci +

∑i−1
j=1⌈Ri

Tj
⌉Cj . In order to get a result from

the last equation and provide the maximum response time for a task, an iterative solution is obtained by:

Rs
i = Ci +

i−1
∑

j=1

⌈R
s−1
i

Tj
⌉Cj , (3.2)

and the iteration ends with two consecutive Ri, (R
s−1
i , Rs

i ) with the same value or Rs
i > Di. Index s define the

iteration in the fixed point formula.
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From Lehoczky et al. [94], it comes the schedulability criteria for rate monotonic scheduling algorithms. It

compares the workload ad the total available resource task by task. The set of all schedulability point as been

refined in order to reduce the complexity of such schedulability condition [30, 94].

With the tasks ordered by priority, from higher to lower priority, where hp(i) = {τ1, τ2, . . . , τi} denotes the

sub-set of all tasks with a priority higher than or equal to τi.

A task resource request can be represented with the resource bound function (rbf) rbfi(t)
def
= max

{

0,
(⌈

t
Ti

⌉

· Ci

)}

;

rbfi(t) upper bounds any resource request.

The level-i workload wbfi is the resource request from τi and it includes all the contributions of all higher

priority tasks than τi:

wbfi(t)
def
=

hp(i)
∑

i

rbfk. (3.3)

The workload function is used into FP scheduling conditions.

Dynamic-priority scheduling. EDF is among the dynamic-priority scheduling. Under EDF, the analysis of

periodic tasks with deadline less than the period can be carried out using the processor demand criterion as

introduced by Baruah et al. [28]. In general, the processor demand of a task τi in an interval [t1, t2] is the

amount of processing time gi(t1, t2) requested by the instances of τi activated and that must be completed in

that interval: gi(t1, t2) =
∑

ri,k≥t1,di,k≤t2
Ci. For the whole task set Γ, the processor demand in [t1, t2] g(t1, t2)

is given by the sum of the processing time of the tasks composing the task set. The feasibility of the task set is

guaranteed if and only if in any interval of time the processor demand does not exceed the available time, that

is if and only if

∀t1, t2 g(t1, t2) =
∑

i∈Γ

gi(t1, t2) ≤ (t2 − t1). (3.4)

Theorem 3.1.2 (Processor demand criterion) A set of synchronous periodic tasks with relative deadline
less than or equal to periods can be scheduled under EDF iff:

∀t ∈ D
n
∑

i=1

⌊L+ Ti −Di

Ti
⌋ ≤ t, (3.5)

where D = {dk | dk ≤ min(t∗, H)}, and t∗ =
∑n

i=1(Ti−Di)Ui

1−U .

As a reminder, Ui is the task τi utilization, Ui =
Ci

Ti
.

The computational demand of a task set can be precisely described by the demand bound function (dbf),

introduced by Baruah et al. [26]. It expresses the total computation that must be executed by the processor in

each interval of time when tasks are scheduled by EDF. For any given periodic task τi activated at time t = 0,

its demand bound function dbfτi(t) in any interval [0, t] is given by:

dbfτi(t) = max

{

0,

(⌊

t−Di

Ti
+ 1

⌋

Ci

)}

.

The task computational demand dbfi is equivalent to gi in [0, t].

The computational demand of a task set Γ of periodic tasks synchronously activated at time t = 0 can be

computed as the sum the individual demand bound functions of each task, that is

dbfΓ(t) =
∑

τi∈Γ

dbfτi(t).

Resource provisioning. The computational resources are provided by reservation servers. A class of server

algorithms that can be described by a periodic server abstraction. A periodic server S is characterized by two

parameters (Q,P ) where Q is the maximum budget (or server capacity), and P is the server period. A server

must guarantee that Q units of time are allocated in each period P to the served application, with Q ≤ P .
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Given server S, its supply bound function sbfS(t) is the minimum amount of time provided by S in any

interval of length t ≥ 0 [56, 61, 128].

The resource provided by a reservation server can also be described by the bounded delay function (bdf)

[56, 61, 128] characterized by the pair (α,∆), where α is the resource provisioning rate of the server and ∆ is

the longest interval with no resource provisioning itself. The bdf is defined in the interval domain as

bdf(t) = max{0, α(t−∆)} (3.6)

with

α
def
= lim

t→∞

sbf(t)

t
∆

def
= inf{q | α(t− q) ≤ sbf(t) ∀t}.

The bounded delay function bdfS of a server S is defined as a linear approximation of the resource provisioning

that lower bounds the resource provisioning, ∀t bdfS(t) ≤ sbfS(t). It is used for schedulability abstractions

applied into sensitivity analysis, as described in the following.

Feasibility analysis. Using the former abstractions, the EDF schedulability of a task set Γ within a server S

can be guaranteed if:

∀t dbfΓ(t) ≤ sbfS(t). (3.7)

Note that the schedulability can also be tested using the linear bounded delay function bdf, which however

provides a more pessimistic condition, because of the approximation applied. An example of demand bound

function, supply bound function and its bounded delay approximation is illustrated in

The FP schedulability is guaranteed if each task in Γ, with static priority ordering, has enough resource to

execute within its deadline. A task set Γ executing within a server S can be guaranteed under FP iff:

∀ i ∃ t ∈ SchedP : wbfi(t) ≤ sbfS(t). (3.8)

SchedP defines the set of time instances where FP schedulability has to be verified [30, 44].

So far, I did not make any research activity around the definition or the to develop deterministic task

models. The static timing analysis, [143] to derive WCET estimates is assumed as reference: it has not been

considered during my research activity. Also, the classical scheduling algorithms such as FP and EDF, have

been considered in the works on schedulability analysis; no alternative deterministic scheduling algorithms have

been developed alternative algorithms. Nonetheless, such deterministic background has been applied to various

works and projects listed in the following.

3.1.2 Probabilistic models

In the following, more details about the motivations for probabilistic models and how they apply to real-time

tasks. Such models are formalized, and there are presented the research for deriving those.

Before presenting the probabilistic task model, some fundamentals about probabilities are needed.

Probability fundamentals. Given a continuous random variable X defined in [0,+∞), the Probability

Density Function (PDF) fX (x) of X gives the probability that a value extracted from X lies between a and b

as: P (a ≤ X ≤ b) def
=

∫ b

a
fX (x)dx. In [0,+∞),

∫∞

0
fX (x)dx = 1. In case of X being a discrete random variable,

the PDF (alternatively the probability mass function) gives the probability of an event x, fX (x)
def
= P (X = x).

The Cumulative Distribution Function (CDF) FX (x) of X gives the cumulative probability for X ≤ x. With a

continuous random variable it is FX (x)
def
=

∫ x

0
fX (y)dy, while with a discrete random variable it is FX (x)

def
=

∑x
0 fX (y).

The Inverse Cumulative Distribution Function (ICDF) F ′
X (x) of X gives the exceeding threshold probability

a x as the probability that X > x. F ′
X (x)

def
= 1 −

∫ x

0
fX (y)dy. With X a discrete random variable, it is

F ′
X (x)

def
= 1−∑x

0 fX (y).
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The convolution of two continuous PDFs fX (x) and gY(y), denoted by ⊗, refers to the summation of the random

variables X and Y, given as: f ⊗ g(z) =
∫∞

−∞ f(z)g(x− z)dz. With discrete random variables, the convolution

is such that: f ⊗ g(z) = ∑∞
−∞ f(z)g(x− z). The convolution of more than two PDFs is represented as ⊗

i
Ci.

Figure 3.1 illustrates an example of a continuous random variable represented respectively with the PDF, the

CDF and the ICDF. With the PDF it is the probability in certain interval, while with the CDF and ICDF there

are the cumulative probabilities starting from O or ending at ∞ in the respective cases. Figure 3.2 illustrates

an example of a discrete random variable.

t0

Pr

(a) PDF

1

t0

Pr

(b) CDF

1

t0

Pr

(c) ICDF

Figure 3.1: PDF, CDF, and ICDF representation of pWCET continuous and finite random variable.

Figure 3.2: CDF, and ICDF representations of pWCET discrete and finite random variable.

Probabilistic representations such as the pWCETs attempt to describe the [epistemic] uncertainty within

a system with random variables [45]. The aim is to overcome the pessimism of classical deterministic models

by characterizing with probabilities, what is behind single value representations. A real-time system with

probabilistic parameters described with random variables, e.g. pWCETs, is called probabilistic Real-Time

System (pRTS).

Probabilistic worst-case execution time. In here, the task probabilistic parameter considered here of

pRTSs is the worst-case execution time. The task execution behavior is characterized with a pWCET instead

of a deterministic WCET. It is such that τi = (Ci, Ti, Di). Ti and Di are deterministic values (single value

parameters) and Ci is the worst-case execution time distribution pWCET.

Task execution behavior can change from one instance to another due to multiple interference conditions that

can happen at runtime. The actual execution time of a task can be better represented with an empirical random

variable to capture the variability of the runtime task behavior. The Execution Time Profile (ETP) C is the

discrete empirical random variable1 defined on the finite support ΩC of possible execution time values C(k),

ΩC = (C(k))k∈[[1;N ]]. C represents the variability of the task under specific execution conditions imposed or

considered while evaluating the task execution times. Probabilistic timing analysis approaches look for pWCET

distribution estimates C that are able to upper bound any possible task execution behavior, thus ETPs under

every possible execution condition.

Jobs of tasks can exhibit multiple duration (execution times) at run time, due to interference and changing

conditions from the system elements and the environment. It is then reasonable to describe task execution

time with random processes2. The ETP is the execution time distribution of the task obtained under specific

execution conditions.
1The ETP is a discrete random variable since execution time Cj can only assume values multiple of the system tick. Calligraphic

letters are for both random variables, discrete or continuous, and traces; non-calligraphic letters are for single value variables.
2Note that a random process is a sequence of random variables describing a process whose outcomes do not follow a deterministic

pattern, but follow probability distributions.
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3.1 Computational models

A trace T is a collection of execution time measurements Cj , T = {Cj | j ∈ [[1;n]]} and ∀j ∈ [[1;n]] T (j) = Cj .

Given T , the ETP C is the discrete empirical random variable. It is discrete since execution time Cj can only

assume values multiple of the system tick. C defined on the finite support ΩC of possible execution time values

C(k), ΩC = (C(k))k∈[[1;N ]] and C(k) ∈ T .
Probabilistic timing analysis approaches look for pWCET distribution estimates C that are able to upper bound

any possible task execution behavior. Representations for C are the PDF fC(c) either continuous or discrete,

the CDF FC(c) and the ICDF F ′
C(c).

C has to be pessimistic: it has to be larger than or equal to the exact pWCET distribution C∗, F ′
C(c) ≥ F ′

C∗(c)

for every c. The partial ordering between random variables is defined as in [48]. C∗ is the unknown exact pWCET

and it is definable as the tightest upper bound distribution to any possible ETP, [158]. The probabilistic worst-

case execution time Ci of a task τi generalizes the deterministic WCET It is defined as the worst-case distribution

that upper bounds any possible task execution time the task can exhibit, [158]. In its abstract interpretation,

Ci would includes multiple values, each with the probability of being the worst-case of the task execution time.

With the ETP C obtained under a measurement scenario, C has to be larger than or equal to C. F ′
C(c) ≥

F ′
C∗(c) ≥ F ′

C(c) for every c. C is safe if it is larger than or equal to C∗ and any C, F ′
C(c) ≥ F ′

C∗(c) ≥ F ′
C(c) for

every measurement scenario.

C has also to be a tight upper bound to C∗ and to the ETPs ; the tightness is for the quality of the pWCET

estimates.

WCET thresholds 〈WCET ; p〉 can be extracted from C. Given a risk probability p such as p = P (C >
WCET ), WCET is the worst-case value which has probability p of not being overcame at runtime.

From Ci of a task τi, it is possible to define WCET thresholds 〈Ci,j , pi,j〉. The value Ci,j is associated to the

probability pi,j of being the WCET for τi; pi,j
def
= F ′

Ci
(Ci,j) quantifies the probability that τi executes for more

than Ci,j . 1− pi,j is the probability of respecting Ci,j , thus the confidence on Ci,j of being the task worst-case

execution time. Depending on the granularity of the pWCET, it would be possible to define WCET thresholds

at probability of 10−3, 10−6, 10−9 and beyond. With finite support pWCETs, it exist a WCET threshold C∗
i

such that FCi
(C∗

i ) = 1. C∗
i would be the deterministic WCET estimation upper bounding any pWCET1.

P
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b
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b
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y Execution time profiles

WCET

pWCET

WCET(10^-6) WCET(10^-9)

1-sum(�������6

1-sum(P)=10^-9

t

Figure 3.3: WCET and pWCET representations to the task execution behavior; pWCET and execution time
profiles profiles compared.

In Figure 3.3, the pWCET is represented in its ICDF function together with thresholds at probability of

10−6 and 10−9. In particular, it is shown how both WCET and pWCET are estimated in order to upper bound

execution time profiles (as actual task execution time – normal task behavior) [201].

Worst-case independence. In order to be a worst-case distribution for τi, Ci has to include all the possi-

ble interference that τi can suffer [42]. This would include interference from concurrent task, environmental

interference, etc..

1In the rest of the document, WCET thresholds, distribution values, and deterministic variables are represented with upper- or
lower- case non calligraphic letters; distributions are represented with calligraphic upper-case letters.
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3.1 Computational models

If an interference I occurs during task execution, its pWCET does not change because of it: the conditional

distribution Ci|I = Ci because I has already been accounted for by Ci. This is the definition of statistical

independence between probabilistic tasks, since the task execution distribution does not change in presence

or not of interference. By considering worst-case distributions Ci to model task execution behavior, tasks and

jobs become independent between each other. To note that this reasoning is exactly the same the is implicitly

made with deterministic WCETs. Since they are worst-cases, they are able to upper bound any interference of

dependence effect. Hence for, tasks and jobs are independent.

Assuming the pWCET as continuous distribution, the PDF representation of Ci, fCi
described the probability

that a value extracted from Ci lies between C1 and C2: P (C1 ≤ C ≤ C2) =
∫ C2

C1
fCi

(C)dC Ci. The CDF FCi
(C)

gives the cumulative probability for Ci ≤ C, FCi
(C) =

∫ C

0
fCi

(c)dc. The ICDF F ′
Ci
(C) gives the exceeding

threshold probability as the probability that Ci > C (C is the threshold), F ′
Ci
(x) = 1−

∫ C

0
fCi

(c)dc. Continuous

pWCET distributions can be defined on a finite support of an infinite one.

Assuming the pWCET as a discrete distribution, the PDF representation of Ci fCi
describes the probability

of happening of a certain event C from Ci, fCi
(C) = P (Ci = C), with

∑∞
0 fCi

(C) = 1. The CDF is FCi
(C) =

∑C
0 fCi

(c); the ICDF F ′
Ci
(C) is such that F ′

Ci
(C) = 1 −∑C

0 fCi
(c). The values of the pWCET for a task τi

belong to [Cmin
i , Cmax

i ] and it is assumed that Cmax
i ≤ Di.

fCi
=

(

Ci,1 ≡ Cmin
i Ci,1 . . . Ci,ki

≡ Cmax
i

P (Ci = Ci,1) P (Ci = Ci,2) . . . P (Ci = Ci,ki
)

)

, (3.9)

with fCi
(Ci,r) = P (Ci = Ci,r),

∑ki

r=1 fCi
(Ci,r) = 1, and ki is the number of elements composing the pWCET

distribution.

Probabilistic minimum inter arrival time. There exist other task parameters which can be represented

with probabilities instead of using deterministic bounds.

An alternative probabilistic task parameter could be the period or arrival time. In this case, it is τi = (Ci, Ti, Di).

Ci and Di are deterministic values (single value parameters) and Ti is the worst-case inter arrival time distri-

bution.

Ti is the probabilistic minimal inter-arrival time (pMIT) with a known pdf denoted by fTi
(·). Di is the task

relative deadline.

In case of a discrete distribution setting, the values of Ti belong to [Tmin
i , Tmax

i ]. It is assumed that Di ≤ Tmin
i .

fTi
=

(

T 0
i = Tmax

i T 1
i · · · T li

i = Tmin
i

P (Ti)(Tmax
i ) P (Ti)(T 1

i ) · · · P (Ti)(Tmin
i )

)

(3.10)

where
∑ki

j=0 fTi
(Cj

i ) = 1 and
∑li

j=0 fTi
(T j

i ) = 1. Here, (ki + 1) and (li + 1) are respectively the number of

pWCET and pMIT representing task τi. The values of pMIT are ordered in an opposite manner than those of

pWCET for sake of readability and ease of representation of the mathematical expressions.

Of course, probabilistic tasks can have both WCET and MIT probabilistically described, as well as other

combinations of parameters. All those can be managed into probabilistic schedulability analysis, at the cost of

an increased complexity.

The probabilistic worst-case models as random variable generalize deterministic worst-case models. They

are defined as the worst-case distributions that upper bound any possible task execution time, respectively

lower bound task inter-arrival time, the task can exhibit, [158]. Hence, worst-case execution time distributions

represents a way to account for the system variability as the worst-case model to all of them. Probabilistic

models tend to characterize what is behind the worst-case single value. They offer more flexibility in the

representation, but makes schedulability analysis extremely complex.

C, T and other probabilistic models have been proven to be effective in characterizing the natural variability

of tasks. The predictability is achieved with probabilistic models applying them into probabilistic schedulability

analysis.

The pWCET Ci would includes multiple WCET values, each with the probability of being the worst-case.

For example, given a trace of task execution time which would be an empirical distribution due to the task

36



3.2 Probabilistic timing analysis

τi processor f(I, Env,Map)
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Figure 3.4: MBPTA work flow.

execution time variability, the worst-case execution time distribution could be the distribution made out of the

maximum of blocks of execution times, each block representing a specific task execution condition. The pMIT

Ti would includes multiple MIT values, each with the probability of being the worst-case.

3.2 Probabilistic timing analysis

Among probabilistic timing analysis approaches to estimate pWCETs, it is possible to distinguish between

Static Probabilistic Timing Analysis (SPTA) and measurement-based probabilistic timing analysis MBPTA.

First papers on probabilistic timing modeling describe the worst-case execution time of tasks with random

variables, using either discrete [3, 137] or continuous [96] distributions. Since Edgar and Burns [51], several

papers have worked on obtaining safe and reliable pWCET estimates [77, 80], [156].

SPTA methods analyze the software and use a model of the hardware behavior to derive an estimate of

pWCET; SPTA is applicable when some part of the system or the environment have been artificially time

randomized, [158], [11]. MBPTA approaches rely on the Extreme Value Theory (EVT) for computing pWCET

estimates out of measured behaviors [156]. Figure 3.4 depicts key elements for MBPTA which accepts input

measurements of task execution times under specific execution conditions and applies the EVT for inferring

pWCET estimates. The pWCET estimations from MBPTA are continuous distributions [156], [2], while those

from STPA are discrete distributions [98].

Few works on SPTA have been developed [154, 158]. SPTA uses techniques similar to static timing analysis,

applied on random replacement cache memories. As a result, they produces discrete pWCET estimates. In

particular, [154] approaches SPTA with Markov chain for randomized architectures. The MBPTA instead,

does only require measurements of the task execution time in different execution conditions, and from that it

estimates worst-case execution time models [153, 156, 162], [101, 142]. The EVT guarantees that if certain

hypotheses are verified, from the actual measured behavior it is possible to infer rare events, where the worst-

case execution time lie. Whenever correctly applied, the EVT produces continuous distributions which are safe

pWCET estimates Ci.
diagXtrm [162] and https://forge.onera.fr/projects/diagxtrm, is a MBPTA tool developed at the

ONERA by PhD Fabrice Guet in R. It proposes as an automatic tool for reliable and efficient pWCET estima-

tions with the use of the EVT. diagXtrmapplies up-to-date statistical tests for evaluating the EVT applicability

hypotheses. Moreover, it is able to provide confidence and reliability for the quality of the Ci worst-case proba-

bilistic model. Finally, ii applies exhaustive search of the best distribution parameters such as the shape or the

threshold to guarantee the best quality models as well as the best EVT applicability.

Figure 3.4 shows the basics of MBPTA, hence of diagXtrm, with the EVT applied to measurements of task

execution time – average execution time – for inferring pWCET estimation.

Execution scenarios and worst-case profiling. With timing analysis, it is evident the dependence of the

worst-case model with the execution scenario considered or the hypotheses made. In particular, this ”depen-

dence” has a large impact with measurement-based timing analysis approaches, included MBPTA.
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The guarantees that the EVT provides worst-case task models strongly depend on what has been measured,

e.g. the execution conditions for the measurements, the confidence or representativity of the measurements.

A trace of execution time measurements accounts for some of the interfering conditions and inputs (to the

system and tasks) which happen at runtime. The pWCET estimate Ci from the EVT embeds those system

conditions and others which have not been measured (the so called rare events which are costly to observe by

measurements) i.e., the EVT is able to infer some of the unknowns from the known measurements. Unfortu-

nately, not all the unknowns can be estimated with the only use of the EVT.

An execution scenario sj = f(I, Env,Map, . . .) abstracts the execution conditions the system (and the task)

subdue to. sj represents instances of the inputs (for tasks and system) I, of the environment Env, of the task

mapping and scheduling policy Map, etc.; sk is a function of I, Env, Map and more. For a real-time system,

it exists a finite set Sc of all the possible execution scenarios, Sc = {s1, s2, . . . , sn}, since inputs, environment

conditions, mapping, etc. are finite.

As any measurement-based approach, MBPTA with the EVT can guarantee the pWCET as worst-case

estimate only for the scenario or the scenarios applied/considered by the measurements. The pWCET obtained

with MBPTA is named relative pWCET as they are relative to only the scenarios applied, see Figure 3.4 for

some details on the impact of scenarios on measurements and thus on pWCET estimates. The absolute pWCET

has to be obtained exploring every possible scenario.

The scenarios in Sc can be ordered based on the pWCETs associated to them. There exist scenarios with worst

and less worst execution time measurements and consequently worst and less pWCETs. The worst scenario

sworst in Sc would be the scenario that produces the worst interferences on the task and the worst pWCET.

Analyzing Sc with respect to the worst-case scenario consists of seeking for sworst and then estimating Csworst

from execution time measurements under it; the worst pWCET Ci is Ci def
= Csworst

.

Envelope: With Sc the finite set of possible measurement scenarios for the system, the worst worst-case

estimate Ci could be defined as an envelope of all the possible probabilistic profiles: Ci def
= maxsj∈S{Cs

j

i }. With

the icdf it is:

F ′
Ci
(C)

def
= maxsj∈S{F ′

Csj

i

(C)}, (3.11)

This approach to worst-case profiling is named the envelope [192]. The worst pWCET could results not neces-

sarily from an actual scenario, but from multiple scenarios contributing to the worst-case.

Worst-case set: It is possible to define a task execution model that keeps all the scenarios estimates Csji ; the

Worst-case set representation [192] collects all the pWCET from Sc as a set of pWCET estimates Ci:

Ci def
= (Cs1i , Cs

2

i , . . . , Cs
|S|

i ). (3.12)

Although with today’s real-time systems it is reasonable to assume a finite number of measurement scenarios,

enumerating all the scenarios remains a complex problem. What would effectively allow applying the Worst-

Case Set representation, the envelope or the worst-case scenario is the existence of scenarios which dominate

other scenarios.

Scenario dominance is in the sense that a dominant scenario sk has larger pWCET than the pWCETs from

dominated scenarios sj ; the partial ordering between pWCET can be defined according to [48].

With dominance between scenarios it would be possible neglecting the dominated scenarios and ease the

task representation. For example, in case of Equation (3.12) fewer dominating scenarios could be considered

to represent the whole S, Ci def
= (Cski , Csji , Cs

r

i ); in here, sk dominates some scenarios in S, sj dominates other

scenarios as well as sk and its dominated scenarios, sr dominating all the scenarios.

The MBPTA is a relatively young approach to timing analysis. It does not have the rigor of static timing

analysis [143], and it suffer the limitations of every measurement-based approach: the cost for exploring the

whole space of inputs/execution scenarios.
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3.2 Probabilistic timing analysis

Probabilistic representations. With probabilistic models, multiple are the possible representations for the

task behavior. Hereby there are listed the inter-scenario and the intra-scenario representations, which accounts

for probabilities and scenario information. Given a probability p and the WCET threshold 〈Csj

i , p〉 at p for the

scenario sj , for each scenario sj ∈ S the inter-scenario task set WCET threshold 〈Ci, p〉 is such that:

Ci
def
= (Cs1

i , C
s2

i , . . . , C
s|S|

i ). (3.13)

In particular, it is possible to pick p = 10−9, 〈Csj

i , 10
−9〉 ∀sj ∈ S, and have the task set WCET threshold

〈Ci, 10
−9〉. The inter-scenario representation 〈Ci, p〉 of Equation (3.13) makes use of all the scenarios (at least

the dominating ones) for characterizing the task execution behavior.

For a given scenario sj ∈ S and a set of exceeding thresholds probabilities (p1, p2, . . . pm), the set of WCET

thresholds Ĉsj

i for sj is such that:

Ĉsj

i
def
= (〈Csj

1,i, p1〉, 〈Csj

2,i, p2〉, . . . , 〈Csj

m,i, pm〉). (3.14)

The intra-scenario representation focuses on a specific scenario with all the meaningful WCET thresholds and

probabilities for that scenario. For example, with (10−6, 10−9, 10−12) it would be

Ĉsj

i = (〈Csj

1,i, 10
−6〉, 〈Csj

2,i, 10
−9〉, 〈Csj

3,i, 10
−12〉) representing the task execution behavior with sj .

The notion of relative worst-case, representations specific to scenarios, and WCET thresholds parametrized

with probabilities will be very handy in order to represent MC task models.

3.2.1 Static probabilistic timing analysis

In this section, some details of one of the two works made on SPTA with random replacement caches [154, 158].

It is only outlined [158] which is the result a collaboration with Robert I. Davis (University of York), Sebastian

Altmeyer (formerly at Saarland University, now at University of Amsterdam), Claire Maiza (INP and VERIMAG

Grenoble) and Liliana Cucu-Grosjean (INRIA Paris).

This paper integrates analysis of probabilistic Cache Related Preemption Delays (pCRPD) and SPTA for

multi-path programs running on a hardware platform that uses an evict-on-miss random cache replacement

policy. The SPTA computes an upper bound on the pWCET of the program, which is an exceedence function

giving the probability that the execution time of the program will exceed any given value on any particular

run. The pCRPD analysis determines the maximum effect of a preemption on the pWCET. The integration

between SPTA and pCRPD updates the pWCET to account for the effects of one or more preemptions at any

arbitrary points in the program. This integration is a necessary step enabling effective schedulability analysis

for probabilistic hard real-time systems that use preemptive or co-operative scheduling.

Random cache replacement policy. The cache considered is a theoretical implementation [122] of a fully

associative cache with an evict-on-miss random replacement policy. Here, if the requested instruction is not in

the cache, then a cache line is randomly selected for eviction, and the memory block containing the instruction

is fetched from main memory and loaded into the evicted location in cache. Each cache line thus has the same

probability of being evicted on a miss i.e., for an N -way associative cache, the probability of each cache line

being evicted is 1
N for each cache set. The aim of such a cache replacement policy is to reduce the dependency

of execution times on execution history while leaving the functional behavior unchanged.

Instruction modeling

A task or program is a sequence of instructions stored in memory, thus a single path program may be represented

by a sequence of symbols a, b, c, . . . where each symbol represents the memory block containing the specific

instruction.

Definition 3.2.1 (Re-use Distance) Given an arbitrary sequence of instructions, then the re-use distance k
of a particular instruction is defined by the maximum possible number of evictions1 since the last use of the
memory block containing that instruction.

1Actually, the number of evictions in the same cache set; however, as it is assumed a fully associative cache, there is only one
cache set.
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3.2 Probabilistic timing analysis

Given the evict-on-miss policy, the second access to a in the sequence a, b, a has a re-use distance of 1. The

re-use distance of an instruction dictates its overall probability of being a hit, with larger re-use distances being

indicative of a higher probability of a cache miss. In the next, the calculation of these probabilities.

Any instruction is characterized by two discrete latency: i) one resulting from a cache hit L{hit} = H. H

is the time to load the instruction from cache and execute it; ii) and one for a cache miss L{miss} =M . M is

the time to check the cache, fetch the instruction from memory, load the instruction from cache and execute it.

For convenience, in [158], is assumed that each instruction takes the same time to execute, and hence H and

M are the same for every instruction. In practice, instructions may take different times to execute, in which

case this analysis can be applied with simple modifications provided that the cache miss penalty (M − H) is

consistent across all instructions.

Each instruction has a probability of being a cache hit P{hit}, and of being a cache miss P{miss} =

1 − P{hit}. At the instruction level, this results in a random variable I representing the execution time of

instruction I based on the history of previous accesses. Formally the probability mass function of I is

fI =

(

L{hit} = H L{miss} =M
P{hit} P{miss} = 1− P{hit}

)

(3.15)

Probabilistic real-time analysis focuses on random variables, the notion of independence among random

variables, and the “summation” of random variables via the convolution operator. Also, the partial ordering

among distributions can be defined according to [104]. The partial ordering among random variables (discrete

and continue) enables to say that some pWCET distributions are greater than or equal to (i.e., worse than)

others.

Since the execution time of a program can only take discrete values that are multiples of the processor clock

cycle, the execution time of the program for a combination j of path and initial cache state is given by a discrete

random variable Cj .

Definition 3.2.2 (probabilistic Worst-case Execution Time) The pWCET distribution Z of a program
is defined as a tight upper bound on the execution time Cj of the program for all combinations j of initial cache
states and possible paths. Hence, ∀j, Z � Cj. To note that for this model, an empty cache is the worst-case
initial cache state.

The execution time Ci of a program path is a discrete random variable with a probability mass function,

denoted by fCi
(·),

fCi
=

(

C0
i = Cmin

i C1
i · · · Cni

i = Cmax
i

fCi
(Cmin

i ) fCi
(C1

i ) · · · fCi
(Cmax

i )

)

(3.16)

where fCi
(c) is the probability that the execution time is c fCi

(c) = P{Ci = c} on any given run. Alternatively,

the execution time can be specified using its Cumulative Distribution Function (CDF), denoted by FCi
(·), where

FCi
(x) =

∑x
c=0 fCi

(c), Or by the 1-CDF denoted by F ′
Ci
(), where F ′

Ci
(x) = 1−∑x

c=0 fCi
(c) ≡ P{Ci ≥ x}.

Now it is derived for each instruction in a single-path program, a lower bound on the probability of a cache

hit. This lower bound is crucially independent of the previous sequences of cache hits and misses, and instead

depends only on the re-use distance. Hence, it is shown how SPTA can be used to determine the pWCET

distribution for single-path programs assuming an evict-on-miss random cache replacement policy. Extensions

to SPTA for the multi-path case are detailed in [158].

Probabilities from cache behavior

With an evict-on-miss random cache replacement policy, the probability of evicting a given line is 1/N on each

miss, where N is the number of cache lines in a set. (As it is assumed a fully associative cache, N equates to

the total number of cache lines). In 2010, Zhou [146] gave the following formula for the overall probability of a

hit on a particular access to such a cache

Phit =

(

N − 1

N

)k

(3.17)
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3.2 Probabilistic timing analysis

where k is the re-use distance of the instruction.

Unfortunately, with the evict-on-miss policy, the probability that the second occurrence of an instruction is

a hit is not independent of whether previous intervening instructions are hits or misses, neither does a sequence

of all misses necessarily provide the worst-case scenario. This lack of independence is reflected in the conditional

probability. If it is known that memory block a was not evicted because it is observed a hit, then the probability

that b was evicted instead may be higher than if we observed a miss for a; effectively there is a dependency via

the finite size of the cache.

For an evict-on-miss policy, consider the sequence of instructions represented by memory blocks b, c, b, a with

a cache of size N = 2. If the second access to b is a hit, then both b and c must be residing in the cache at this

point, and hence the conditional probability that the second access to a is also a hit is zero. This means that

the joint probability that the second accesses to both a and b are hits is zero. This differs from the probability

of 1/16 that would be obtained by assuming that all accesses were independent and could potentially be misses

causing evictions.

Computing conditional probabilities is exponential in the re-use distance and so quickly becomes intractable.

Instead, it is derived lower bounds on the probability of a hit that are a function of the re-use distance but

independent of the pattern of hits and misses for intervening instructions. This is achieved considering the

maximum amount of information that could be known due to the behavior of intervening instructions (e.g. by

them being hits). An upper bound on this information is obtained by assuming that the intermediate addresses

are all unique and remain in the cache for all of the re-use distance. This reduces the effective size of the cache

available to the instruction of interest.

In the case of an evict-on-miss policy, for an instruction with a re-use distance of k (given by the number of

intervening instructions located in different memory blocks), then the probability of a hit can be lower bounded

for each value of h = 0 · · · k, where h is the number of intervening instructions that are hits. Each such

instruction reduces the effective cache size by 1, but also reduces the number of evictions by 1, hence a lower

bound on the probability of a hit Phit(h) given h hits among the intervening instructions is given by:

Phit(h) =

(

N − h− 1

N − h

)k−h

(3.18)

provided that h < N , otherwise the effective cache size is zero, as is the lower bound probability of a hit. Thus

a lower bound on the probability of a hit assuming that any arbitrary number of intervening instructions may

be hits is given by:

Phit =

{

minh∈{0,...,k}

(

Phit(h)
)

if k < N
0 if k ≥ N, (3.19)

It is possible to show that the series of values given by Phit(h) for 0 ≤ h ≤ k is monotonically increasing

for k < N , and hence h = 0 gives the minimum value, and h = k the maximum value of 1. (A proof is

given in the appendix of the technical report associated to the paper and published by the University of York).

Equation (3.19) can be simplified as follows:

Phit =

{

(

N−1
N

)k
if k < N

0 if k ≥ N, (3.20)

Observe that Equation (3.20) is monotonically non-increasing with respect to k.

Phit delivers a lower bound on the probability of a hit P{hit} that is independent of the previous pattern

of hits or misses. Hence substituting P{hit} = Phit in Equation (3.15) delivers both an upper bound on the

1-CDF of the instruction, and a distribution that can be convolved.

It is interesting to compare the formula for Phit given by Equation (3.20) for the evict-on-miss policy, with

the formula for Phit given by Equation (1) in [156] for the evict-on-access policy; reproduced below with an

adjustment for the different definitions of re-use distance k.

Phit =

{

(

N−k−1
N−k)

)k+1

if k + 1 < N

0 if k + 1 ≥ N,
(3.21)
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Observe that evict-on-miss dominates evict-on-access as it provides a value of Phit that is larger for all values

of k < N . There are two reasons for this: evict-on-miss results in smaller re-use distances1 and evict-on-access

reduces the effective size of the cache by the number of intervening instructions k. As an example, with N = 256,

k = 104, Phit = 0.5 with evict-on-access and Phit = 0.66 with evict-on-miss.

Static probabilistic timing analysis

For a single-path program, SPTA computes the pWCET distribution as the joint distribution of all of the

composing instructions. As the lower bound probability of a hit for each instruction, given by Equation (3.20),

is valid irrespective of the previous sequence of hits and misses, there is effectively independence and hence the

pWCET C can be obtained via convolution. probability

C = CI1 ⊗ CI2 ⊗ . . . , (3.22)

where Ii are the instructions composing the program, with Ii ≡ CIi .
Assuming an evict-on-miss random cache replacement policy, the only information needed to characterize a

memory access is its re-use distance. A sequence of n instructions, is thus representable by the corresponding

sequence of re-use distances

Q = {k1, k2, . . . kn}. (3.23)

Further, as convolution is commutative, such a sequence Q can be reordered without changing the final result

i.e., the computed pWCET distribution. For ease of use later, Q is ordered by increasing re-use distance.

Probabilistic cache related preemption delay. Now the study the effect of preemption, referred to as the

pCRPD, on the pWCET of single-path programs. Extensions to the multi-path case are given in [158]. First, the

modeling of the effect of preemption on single instructions, from this it is derived analysis of the preemption effect

on multiple instructions due to preemption at a specific point in the program. Via the concept of dominance,

then it is computed an upper bound on the preemption effect at any arbitrary point in the program, and finally

the effect of multiple preemptions at arbitrary points.

Assuming a sequence of instructions for a program, Pp refers to a preemption point after the p-th instruction

in the sequence, hence P1 refers to preemption after the first instruction. Preemption at point Pp changes

the sequence of instructions executed by effectively inserting a sub-sequence of new instructions. These new

instructions are executed prior to the program being resumed and its remaining instructions being executed.

Instructions belonging to the program that are contained in memory blocks that are accessed both prior to

and after point Pp have the re-use distance of their first occurrence after point Pp increased as a result of

the preemption. Dp represents the set of instructions (memory blocks and their re-use distances) affected by

preemption at point Pp. Instructions that are in memory blocks not accessed prior to Pp or not accessed after

Pp do not suffer any change in their re-use distances. (To note that the sets of memory blocks whose re-use

distances are affected by preemption have some similarities with the sets of Useful Cache Blocks used in the

analysis of deterministic cache replacement policies [92]). The increase in re-use distances provides a way of

bounding the effect of preemption on a per instruction basis, and hence the effect on the overall execution time

of the program.

Single instruction bounding. For a single affected instruction I, preemption has the effect of changing its

distribution from I to I ′. To note that the latency do not change but the probabilities do, and they change

according to Equation (3.20) such that if k is the re-use distance of the instruction without preemption, then

the re-use distance with preemption becomes k′ = k + d, where d is the maximum number of evictions that

could be caused by the preemption. Hence preemption decreases the probability of a cache hit and increases

the probability of a cache miss.

1If the re-use distance for evict-on-miss is k, then it is at least k + 1 for evict-on-access
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3.2 Probabilistic timing analysis

Modeling the increased re-use distance in this way gives a safe upper bound on the preemption effect, but

requires precise information about the increase in the re-use distance caused by the preemption (i.e., knowledge

of the task or nested tasks that are preempting).

A simpler upper bound which is obtained by assuming that preemption flushes the cache, i.e., evicts all of the

cache contents. This can be modelled via the random variable BI representing the bounding instruction with

Phit = 0 and Pmiss = 1, which equates to an instruction with an infinite re-use distance, k =∞.

At the instruction level, intuitively the preemption effect is the difference between I and BI . The larger this

difference is, the bigger the preemption effect is on instruction I.

Preemption effects on a single instruction. To obtain effective static probabilistic timing analysis account-

ing for preemption at an arbitrary point in the program there is the need of the notion of dominance among

preemptions and preemption effects. First it is considered the dominance of the preemption effect on a single

instruction Ix over that of the preemption effect on another single instruction Iy. It is subsequently extend this

concept to preemption effects on multiple instructions.

In [158] are defined and proved notions such as preemption dominance for instructions, convolution mono-

tonicity, and instruction dominance.

Preemption effects on multiple instructions. Preemption effects affecting multiple instructions. These

instructions may be described using the D notation introduced earlier, for example D1 = {a1} represents the

set of instructions and memory blocks affected by a preemption at point P1, similarly D5 = {b3, c2, d2, a5}
represents the set of instructions and memory blocks affected by preemption at point P5. Preemption effects

can be expressed in terms of the Q notation, giving only the re-use distances, e.g. Q1 = {1}, Q5 = {2, 2, 3, 5}.
With this representation, it is assumed that the values are sorted, smallest first.

The aim is to determine an upper bound on the effect of preemption at any arbitrary point in the program.

This requires the concept of dominance between different preemption points, and hence dominance between

the corresponding sets of affected instructions and their re-use distances. For mathematical convenience and

without loss of generality, it is assumed that the sets of re-use distances for each preemption point are padded

with infinite re-use distance values so that they are all of the same length. For example, Q1 = {1,−,−,−} is
equivalent to Q1 = {1}. To note that this does not change the preemption effect represented, as replacing an

infinite re-use distance instruction by BI results in no change. In any case, such padded values will not appear

in the final analysis.

Definition 3.2.3 (Dominance for preemption points) The preemption effect due to preemption at point
Px is said to dominate that at point Py if XPy

� XPx
where XPy

(XPx
) is the convolution of the distributions of

the extended (padded) set of instructions affected by preemption at point Py (Px).

The binary operatormin+ applies to our extended (padded) sets of re-use distances. AssumingQi = {ki,1, ki,2, . . . , ki,n}
where ki,r is the r-th smallest re-use distance in Qi, and similarly for Qj , and that Qi and Qj are sorted, smallest

value first, and in their extended form, i.e., with the same cardinality, |Qi| = |Qj |.

min+(Qi,Qj) = {kr = min(ki,r, kj,r) ∀ r ≤ |Qi|} (3.24)

Hence for the sets Q1 = {1}, Q5 = {2, 2, 3, 5} referred to earlier, min+(Qi,Qj) = {1, 2, 3, 5}.

Theorem 3.2.4 (Preemption point dominance) The effect of preemption at point Px dominates the effect
of pre-emption at point Py if Qx = min+(Qx,Qy), where Qx and Qy are the extended representations of the
re-use distances of the instructions affected by preemptions at points Px and Py respectively.

Theorem 3.2.4 and the min+ operator allow us to construct the preemption effect of a virtual preemption point

P ∗ that dominates the effect of preemption at any point, and hence upper bounds the effect of preemption at

any arbitrary point in the program.

Q∗ = min+(Q1,Q2, . . . ,Qn) (3.25)
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To note that Q∗ does not include any infinite re-use distances, but may include re-use distances obtained from

a number of real preemption points. Hence the preemption effect captured by this virtual preemption point is

a safe upper bound, but may be pessimistic. The virtual preemption point depends on the program and all its

possible preemption points.

Theorem 3.2.5 (Dominant preemption point) The upper bound CPi,P∗ on the pWCET distribution of the
program assuming the preemption effect represented by the virtual preemption point P ∗, Q∗ computed by Equa-
tion (3.25), is greater than or equal to the upper bound on the pWCET CPi,Px

assuming preemption at any

arbitrary point Px (i.e., Ci,P∗ � CPi,Px
), with Px ∈ {P1, P2, . . . , Pn}.

An upper bound on the pWCET of a program assuming a single preemption at any arbitrary point can therefore

be obtained by applying the effect Q∗ of the virtual preemption point (obtained from the {P1, P2, . . . , Pn}
possible preemption points via Equation (3.25)) to the complete sequence of instructions of the program and

their re-use distances, as represented by QPROG. This is achieved for each element in Q∗ by checking for a

matching element in QPROG and if found, replacing that element in QPROG with the bounding instruction BI .
The set of instruction distributions represented by the modified QPROG may then be convolved to produce an

upper bound pWCET for the program which is valid for a single preemption at any arbitrary point.

Demonstration, examples and test cases applied to validate the solution proposed as SPTA can be seen

in [158].

3.2.2 Measurement-based probabilistic timing analysis

In this section, it is presented the foundation of MBPTA detail one of the first work done at the ONERA in

collaboration with Fabrice Guet and Jerome Morio [162]. This paper is used to recap more works resulting

from the collaboration with Samuel Jimenez Gil (University of York), Iain Bate (University of York), George

Lima (Federal University of Bahia), Adriana Gogonel (INRIA Paris), Liliana Cucu-Grosjean (INRIA Paris),

Konstantinos Bletasas (CISTER Porto), Kostiantyn Berezovskyi (CISTER Porto), Eduardo Tovar (CITER

Porto), Fabrice Guet, Jerome Morio [148, 149, 159, 163, 192].

In [162], it is proposed the first structured and formal MBPTA approach that makes use of the EVT and other

statistics for both the pWCET estimation problem and the average execution time behavior characterization

problem. The proposed framework defines automatic tests for reducing uncertainties and unreliabilities that

current MBPTA has due to non-optimal testing and to subjective decisions; it offers offers the most complete

set of tests to verify EVT applicability to the pWCET estimation problem. With it: i) it is investigated for the

first time the modeling of uncertainties due to parameter estimation and the choice of the probabilistic laws for

characterizing the pWCET of tasks; ii) it is evaluated the error on the estimation, from applying the tool to

real embedded systems execution traces; iii) it is analyzed the complexity in terms of mathematical modeling

and model parameter characterization.

Reliable pWCET estimates

The EVT is a widely used theory for predicting the improbable i.e., giving probabilities of occurrence to extreme

behaviors.

Under the hypothesis of independent and identically distributed (iid) execution time measurements C1, . . . , Cn

from an average discrete cumulative distribution function FC . The EVT ensures that the limit law of the max-

ima, i.e., the extreme execution times, denoted by Mn = max (C1, . . . , Cn) is a Generalized Extreme Value

Distribution (GEV) Hξ under norming constants such as the shape parameter ξ ∈ R, the mean µ ∈ R > 0 and

the variance σ2 ∈ R > 0 of the extreme execution times, with the Fisher-Tippett-Gnedenko theorem [53, 72].

This result implies that FC belongs to the Maximum Domain of Attraction of the GEV Hξ, denoted by

FC ∈ MDA(Hξ). Given C, whenever the iid hypothesis is respected and under good norming constants, the

GEV is an appropriate distribution for the extreme execution times.

Depending on the value of ξ, the GEV can be either the Frechet (ξ > 0), the Gumbel (ξ = 0), or the Weibull

(ξ < 0) distribution. In previous works the pWCET distribution has been assumed to be Gumbel, while here
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no assumption is made about the resulting GEV distribution and so there is no restriction on the values that ξ

can take. The objective of the study is to get reliable pWCET estimates so that the distribution has to best-fit

the measurements: the Gumbel can result from the best-fit or it can be imposed afterwards.

Considering C and FC , the CDF of the peaks C − u above the threshold u knowing C > u is

Fu(c) = P{C ≤ u+ c | C > u} = 1− 1− FC(u+ c)

1− FC(u)
. (3.26)

If FC ∈MDA(Hξ) then the limit law of the peaks is given by the Pickands theorem [120]:

Theorem 3.2.6 (Pickands theorem) FC ∈MDA(Hξ) iff

lim
u→c0

sup
0≤c≤c0−u

|Fu(c)−GPDξ(c)| = 0, (3.27)

where c0 is the potential WCET of τ . GPDξ the Generalized Pareto Distribution with the same shape parameter
ξ as Hξ, and F

u from Equation (3.26).

The Pickands Theorem states that for values above a threshold, the nearest the threshold is to the actual

WCET (which is the task execution time right end-point for increasing values) the more the distribution of

execution times tends to a Generalized Pareto Distribution.

Definition 3.2.7 (Generalized Pareto Distribution) The distribution function GPDξ is the Generalized
Pareto Distribution (GPD) defined as:

GPDξ(c) =

{

1− (1 + ξ × (c− u)/αu)
−1/ξ if ξ 6= 0

1− exp(−(c− u)/αu) if ξ = 0,
(3.28)

with αu = µ− ξ(u− σ2), and defined on {c, 1 + ξ(c− u)/αu > 0}.

This fixes the basis of the EVT POT approach which consists in extracting the execution time measurements

from T above a threshold u and fitting the experimental CDF with the continuous distribution function Pξ. By

applying the POT approach to the trace of execution times, the pWCET estimate which is the distribution of

extreme execution times Cλ is a GPD.

For applying the EVT, one needs i) independent and ii) identically distributed execution time measurements

from iii) a distribution in the Maximum Domain of Attraction of a GEV of shape parameter ξ. Those three

elements are the hypotheses to check for having reliable pWCET estimates.

In practice, the independence hypothesis is difficult to assume because of history dependence in memory

components as explained in the following. Moreover, the true distribution of the execution times is unknown

and prevents from proving that execution times are identically distributed from a distribution in the Maximum

Domain of Attraction of a GEV.

Further researches in the EVT domain proved the convergence of the Fisher-Tippett-Gnedenko theorem for

stationary execution time measurements under two conditions [90, 91], and so the applicability of the EVT in

the more general stationary case. The conditions especially relax the strict independence of the measurements

and it is not necessary to know precisely the probabilistic law of the execution times as soon as they are

stationary. The strict hypotheses that prevented EVT applicability to non time-randomized embedded systems

(todays systems), notably the independence, are so released allowing to apply the EVT to the pWCET estimate

problem for any real-time system (both time-randomized and non time-randomized).

A DIAGnostic tool for estimating the pWCET with the eXTReMe value theory – diagXtrm

The main challenge of the MBPTA is the definition of a systematic approach that provides reliable pWCET

estimates with the EVT. The reliability of a process comes from its definition: it is crucial to well identify the

hypotheses and to choose both powerful tests and a proper parameter estimate process. A test is said to be

powerful if it is able to reject a hypothesis when it is known to be false but also not reject it when it is known

to be true. The reliability of the pWCET estimates holds if every hypothesis of the EVT is verified. Making
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use of the well defined tests and a proper estimate of the distribution parameters, here ξ and αu, the reliability

can be guaranteed.

The diagXtrm, by construction tends to reduce the sources of uncertainty that lie on the execution time

measurements to fulfill the EVT hypotheses and the selection of the threshold [126]; moreover it quantify the

estimates confidence. In that sense, the tool is a diagnostic of the statistical modeling with the EVT.

The tool is designed as a logical workflow which checks the applicability of the EVT with specific tests. For

an input trace of execution times, diagXtrm provides a pWCET estimate Cλ and an associated confidence

with regard to the EVT applicability hypotheses. The hypotheses to check on the trace of execution time

measurements are: 1) stationarity, 2) short range dependence, 3) local independence of the peaks, 4) empirical

peaks over the threshold follow a GPD. The four hypotheses define the hypothesis testing blocks includes in the

main steps of the tool. They are carefully described in [162, 192]. In this section the diagXtrm is presented

at a high level; the tests that compose it will be detailed in the following section.

Trace T

Stationarity - h′
1?

Short range
Independence -

h′
2.1?

Extremal
independence -

h′
2.2?

select u/ b
PoT or

BM are iid

Time de-
pendent/

Not reliable

Matching - h′
3?

Reliable

Non id/
Not reliable

Not reliable

yes

yes

no

yes (u ∨ b)

no

ξ ∧ (u ∨ b)

no

<distance

else

Figure 3.5: MBPTA decision diagram with tests and action applied.

Figure 3.5 describes the MBPTA decision diagram based upon the generalized EVT. This is an improved

version of diagXtrm presented in [192] which extends the one in [162]. In here, the hypotheses to be verified

compose the MBPTA control flow under peak over threshold or block maxima versions of the EVT.

Design of the tests. diagXtrm is mainly based on the hypothesis testing theory that studies the rejection

of a null hypothesis H0. If H0 is not rejected it is a necessary but not sufficient condition to satisfy H0. The first

step is to select an appropriate metric that evaluates the possibility of rejecting H0, then the metric is applied

to the trace T of execution time measurements returning a result through which making a decision about H0.

In the design phase of the test, training sets are used to quantify the power of the metric for detecting H0. The

focus is on the conditional probability to reject H0 knowing that H0 is true p− value = P (H0|H0), which is the

false positive rate of the test. The arbitrary threshold to reject H0 is the value α defining the confidence interval

for the test, hence for the hypothesis testing. A test may have a symmetric confidence interval, a two-sided test,

otherwise this is a one-sided test. If the result of the applied metric to T is within the confidence interval, then

H0 is not rejected. Usually, α is chosen near 0, e.g. 0.01, 0.05 or 0.1, and corresponds to as many critical values

cvs like in the two-sided test. If the result is near 0, then H0 is rejected but one has α × 100% of rejecting

wrongly H0.

In diagXtrm, the possibility to fulfill H0 [84] is considered, and the fuzzy logic approach to test hypotheses is

applied. As the possibility to fulfill H0 increases and so the confidence in H0, the necessity to reject it decreases.
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Fuzzy logic is widely used to build decision making processes and is called robust statistics [34, 62, 84] when

applied to statistics by quantifying the uncertainties associated to classical statistical approaches.

For instance, instead of having or not a stationary trace of ETs, fuzzy logic quantifies whether the trace is

near or far from the stationary model. The nearest it is the more confidence there is in the EVT applicability.

Instead of one α level, 4 values are selected so that it is possible to either reject H0 or accept H0 with low,

medium, high and full confidence level, corresponding to the p − values 0.01, 0.025, 0.05 and 0.1. To resume,

the approach hereby described formalizes the pWCET estimation with EVT defuzzifies the statistical test by

associating fuzzy p− values to human-understandable confidence levels.

Decision making process. Each hypothesis testing block, blocks 1), 2), 3) and 4) in Figure 3.5, provides a

result about the trace of execution times and so a confidence levels. Those confidence levels aims at reliable

pWCET estimates with the EVT with regard to its hypotheses applicability. One purpose of the fuzzy approach

is to have a common scale for every test in order to aggregate each confidence level and to get a final confidence

level on the pWCET estimate with the EVT. There exist many ways to aggregate the confidence levels, but one

requirement is to have an aggregation in agreement with the tool specifications. In particular, the reliability is

ensured when every hypothesis is guaranteed.

In the proposed process, four are the hypotheses to check: 1) the stationarity, 2) the short range dependence, 3)

the local dependence of the peaks and 4) the matching with a GPD model. The final confidence level is denoted

by clreliability as a possibility metric to fulfill the whole process. Consequently, the confidence levels associated

to each hypothesis are: cl1, cl2, cl3 and cl4. To satisfy the reliability requirement, if one confidence level is zero

then the reliability has to be zero too. The confidence in the model is the barycenter of all the confidence levels

so that it leads to the algorithm in [162]. Alternatively, if min(confidence levels) ≥ 1 it is:

clreliability = (cl1 + cl2 + cl3 + cl4) /4 else: clreliability = 0.

Let H0: the EVT is applicable to T be a null hypothesis, then clreliability gives the confidence in fulfilling H0.

With regard to the algorithm in [162], either H0 is rejected for a null clreliability, or H0 is accepted and in this

case the higher clreliability is, the more confidence in the model there is and thus in the pWCET estimates. The

power of the tool to fulfill H0 and to provide reliable pWCET estimates, depends also on the selected tests for

each hypothesis. diagXtrm represents the reliability with spider plots in which the cls are illustrated.

Work [162] concludes with multi-core test cases and experimental evaluation.

The diagXtrm is a high level methodology to provide reliable pWCET estimates, and one may easily replace

a selected test in its respective hypothesis testing block by a better one thanks to new research works in time

series (trace) analysis. As a reminder, the pWCET estimated with MBPTA approaches are relative pWCET

depending on the conditions considered by the measurements. The EVT is able to infer some rare events from

the measurements (the known) but only related to the scenario exercised by the measurements.

3.2.3 Some conclusions on probabilistic timing analysis

pWCET estimates aim at reducing the pessimist of deterministic WCET bounds with more flexible task models:

there are considered multiple possible WCET thresholds each with the confidence associated. The pWCET gives

more insight on what happens to execution time smaller than the deterministic WCET. From that, the better

flexibility from probabilistic worst-case models.

The main problem with probabilistic timing analysis is the strong dependence with hypotheses and conditions

assumed for the measurements or the system behavior. This reflects into the notion of worst-case specific to the

hypothesis/condition considered, e.g. relative pWCET Csj , absolute pWCET. To note that this is exactly the

same problem happening to static timing analysis with multi-core processors [106]. With such platforms, the

complexity is such that timing analysis is decomposed with hypotheses and WCETs are estimated according to

the hypothesis considered. Then, it exists the WCET in isolation where the task executes in isolation within a

core, and other WCETs can be estimated adding possible behaviors i.e., execution hypotheses, to the isolation

case.
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To note that the trend of separating hypotheses and execution conditions copes well with the MC problem

and timing models which differentiates among criticality levels. This makes probabilistic models such as pWCET

handy for representing tasks with multiple criticality and to characterize behaviors for multi- and many-core

platforms.

SPTA sees the timing analysis from the same perspective as the deterministic static timing analysis: with

system and task models, worst-case bounds are computed from worst-case hypotheses that simplify the behavior

of the system. The risk with SPTA is to obtain overly pessimistic pWCET estimates from hypotheses that do

not represent accurately the behavior of tasks i.e., in case of preemption. SPTA applies only with randomized

replacement in cache memories. The papers on SPTA are [154, 158] and have been applied to real-time archi-

tectures with randomized memories. In the first work [158], it has tackled with convolution of distributions and

preemption effects on cache memories. In the second paper [154], it has been applied the Markov chain for-

malization to represent randomized cache behaviors. With the Markov chain formal methods, into the pWCET

estimates are embedded the costs for cache hit and cache misses.

MBPTA infers pWCET estimates from measurement of the system executions, and not from traditional

models. MBPTA empirically build the model from the measurements; unfortunately, it suffers from the challenge

of guaranteeing the worst-case conditions with just measurements. The works on measurement-based approaches

are [148, 149, 153, 154, 156, 158, 159, 162, 177, 180, 182, 192]. The projects related are PROARTIS, IRHEDO2,

R2D2, MAMA, CAPACITES, and CAPHCA. Fabrice Guet PhD Thesis has largely contributed to this subject,

including the tool diagXtrm1 that he has developed and the ONERA is using in projects. Moreover, the

probabilistic models have been objects of works with Master students Alessandra Melani, Corentin Damman,

Gregory Edison, Gregor Vindry, and Julien Durand that have faced multi-core platforms. Within project

CAPHCA, the collaboration with Postdoc Guillaume Phavorin is to extend diagXtrm applicability to realistic

multi-core real-time systems.

MBPTA and EVT in their classical formalization applies only if the measurements satisfy the independence

and identical distribution hypotheses. This makes difficult to use with realistic real-time embedded systems, in

which there manifest dependence effects from one execution to the next. In [148, 149, 159, 162, 180, 182, 192],

it has been formalized the generic definition of EVT which applies in case of ”weak dependence”: with certain

degree of dependence (local and extreme independence), the EVT can be applied and still provide safe worst-

case representations. Under weak dependence, MBPTA apply can to realistic platforms as proved by the

contributions made.

SPTA and MBPTA are relatively young approaches to task timing analysis and pWCET estimates, and

require further development. With respect to SPTA, research activities are necessary to reduce the pessimism,

and to extend its applicability to other randomized systems. For MBPTA, research is needed in order to increase

the reliability of the MBPTA methodology in each of its composing steps, and it is also needed the definition

of representativity of the measurements to be linked with pWCET estimates confidence and pWCET estimate

safety.

An important future work will develop the ”hybrid approach” to timing analysis which can take advantage

of the strong points of [deterministic] static timing analysis and measurement-based approaches. At one end,

the effectiveness of MBPTA requires only measurements of execution times, has to be applied to evaluate the

quality of deterministic WCET bounds and the assumptions made to derive them. MBPTA can help static

timing analysis to reduce his pessimism, especially with multi-core implementations. On the other end, an

improved knowledge of the system will be obtained via static timing analysis. That can improve the safety of

the MBPTA with more guarantees to have experienced the wort-case scenarios with measurements. Mixing the

two approaches will allow reducing the pessimism of task worst-case execution time estimates. The development

of the hybrid approach is in collaboration with IRIT Toulouse, Prof. Christine Rochange and Prof. Hugues

Casse.

1 https://forge.onera.fr/projects/diagxtrm as open source tool form probabilistic timing analysis.
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3.3 Deterministic and probabilistic schedulability analysis

This section illustrates deterministic and probabilistic approaches to schedulability analysis. First are presented

deterministic approaches, then are presented probabilistic approaches with probabilistic bounds and formal

methods. Section starts with abstract representations which are used to define the notion of deterministic and

probabilistic sensitivity analysis. The sensitivity analysis represents schedulability conditions.

3.3.1 Abstract models for sensitivity analysis

The sensitivity analysis to real-time scheduling aims at investigating the impact that task parameters have

on the application schedulability. Classically, the sensitivity analysis applies to deterministic task models in

order to study the impact that task parameters such as C and T have on schedulability, [186], [32]. With some

enhancements, the sensitivity analysis can be applied to probabilistic schedulability analysis (the so called prob-

abilistic sensitivity analysis), and also to both deterministic and probabilistic MC. The probabilistic sensitivity

analysis, specific to pRTSs, could reduce the complexity of probabilistic schedulability analysis. it is applicable

to probabilistic real-time frameworks and extend the impact evaluation to probabilities.

In the following are presented two deterministic abstract models for real-time systems schedulability under

EDF or FP that are used to develop sensitivity analysis. Also, are presented their probabilistic extensions which

are derived from probabilistic task models. All of them are applied into research works to define and apply

sensitivity analysis with both deterministic and probabilistic task models; [186] is an example of deterministic

sensitivity analysis, [194] is an example of probabilistic sensitivity analysis.

(α,∆)-space

A resource reservation mechanisms i.e., servers, Si can be described by the tuple (αi,∆i), where αi represents

its bandwidth and ∆i the worst-case delay in supplying the computational resource to the application. An

application can also be mapped into the (α,∆)-space, as its feasibility region, considered as the set of all service

supply pairs that guarantee the application timing constraints. Note that such a region depends on the applied

scheduling policy.
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Figure 3.6: (α,∆) space comparing EDF with
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The feasibility region ΦΓ in the (α,∆)-space for Γ is defined from the FP schedulability condition and the

definition of lsbf. Thus, ∀i ∃t ∈ SchedPi : wbfi(t) ≤ α(t−∆) means that ∀i it exists a t such that ∆ ≤ t− wbfi(t)
α .

For all i, ∆ ≤ maxt∈SchedPi

{

t− wbfi(t)
α

}

, and ∆ ≤ mini maxt∈SchedPi

{

t− wbfi(t)
α

}

.

The feasibility region ΦΓ for Γ is defined from the EDF schedulability condition and lsbf. ∀ t ∈ D : dbf(t) ≤
α · (t−∆) means that ∀ t ∈ D : ∆ ≤ t− dbf(t)

α , and ∆ ≤ mint∈D

{

t− dbf(t)
α

}

.

Given the schedulability condition with demand bound function and lsbf, it exists the (α,∆)-space where

to represent resource provisioning and resource requests/demands, [186]: an application Γ can be mapped

into the (α,∆)-space with its feasibility region ΦΓ as the set of all service supply pairs (α,∆) that guarantee
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the application timing constraints (schedulability). The feasibility region ΦΓ in case of EDF is such that

∀ t ∈ D : dbf(t) ≤ α · (t − ∆), which means that ∀ t ∈ D : ∆ ≤ t − dbf(t)
α , and ∆ ≤ mint∈D

{

t− dbf(t)
α

}

.

Similarly, with fixed priority and level-i workload, it is possible defining (α,∆)-space feasibility regions.

With probabilities there exist multiple probabilistic feasibility regions depending on the WCET thresholds C

applied. Each 〈ΦΓ(C), P 〉 is a feasibility region ΦΓ(C) from the WCET thresholds selected C and the probability

P associated to it. P is the same as the one of 〈dbf(t, C), P 〉 and is the probability of exceeding ΦΓ(C); it can be

also interpreted as the probability of verifying the condition dbf(·, ·) ≤ sbf, thus the ’schedulability probability’.

In the (α,∆)-space, it is possible to define exists the Euclidean distance (δα = α2 − α1, δ∆ = ∆2 − ∆1)

which defines the distance between two resource supply lsbf; it can be extended with probabilities and used for

sensitivity analysis.

With the probabilistic (α,∆)-space, the sensitivity analysis would:

- Evaluate the resource demand for probabilistic schedulability answering to: what is the resource that

can be accommodated as function of the probabilistic performance that it is intended to achieve? For a

specific probability, what are the resource provisioning necessary to guarantee the probabilistic real-time

application? Resource evaluation can be applied to develop and guarantee strategies that change resource

provisioning and obtain specific probabilistic schedulability levels.

- Define and explore the resource provisioning-probabilistic schedulability trade-offs. The resource provi-

sioning and the probabilistic performance, with their mutual effects, are link together and applied into

schedulability analysis. The trade-offs are to explore the effects that the WCET thresholds have on the

schedulability and on the resource necessary to achieve certain probabilistic schedulability levels.

Figure 3.6 shows how to build the (α,∆)-space for EDF and FP; also, it compares the feasibility region for

EDF and for FP with the same task set. In Figure 3.7, an example of (α,∆)-space for an probabilistic application

scheduled under EDF. 7 feasibility regions are represented together with 4 possible resource modifications which

can be applied in order to achieve the desired probabilistic schedulability level.

In the next chapter it is shown how the (α,∆)-space abstract representations is used for sensitivity analysis

applied to MC problems.

C-space

The C-space from [32, 66] is another abstract representation for real-time applications on which apply sensitivity

analysis. The C-Space is a space built on tasks WCETs Ci, [32, 65]. Within it, it is possible to represent

feasibility regions where each point c = (C1, C2, . . . , Cn) inside the region represents a schedulable task set. A

point c outside the feasibility region is a task set not schedulable. Each task τi assumes WCETs from c, Ci ∈ c.
Given the scheduling policy, in the probabilistic C-space there is the feasibility region where every point

c within the region is a schedulable WCET thresholds configuration. The points outside the region do not

represent schedulable WCET thresholds configurations.

From probabilistic models (pWCET and probabilistic dbf), it is possible to build the probabilistic version of

the C-space (pC-space), such that each point c has a P probability associated. c = {c1, c2, . . .} is a combination

of task WCET thresholds (possible WCET thresholds, one per task, like C), while the probability P is the

probability of exceeding such thresholds P = P1(c1,j) × P2(c2,k) × . . .. In the probabilistic the C-space, P

cannot easily represent the schedulability probability; instead, it represents the probability of overcoming at

least one of the WCET threshold.

For simplicity reasons, it is presented the discrete random variable Ci as two arrays: wcet = {ci1, ci2, . . .}
for the WCET thresholds, and pi = {pi1, pi2, . . .} for the probabilities with pij = fCi

(cij); Pij is the cumulative

probability Pij = 1−∑

k≥j pik.

Assuming the EDF scheduling to schedule probabilistic real-time applications; similar reasoning can be done

for fixed priority scheduling algorithms. The demand bound function dbfi of task τi is the resource requested

by τi to fully execute by its deadline. dbfi(t)
def
= (⌊ t−Di

Ti
⌋ + 1)0 × cij and it represents the minimum resource
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request in order to execute the task by its deadline; cij is the task WCET. dbfΓ is the resource demand of the

whole task set Γ: dbfΓ
def
=

∑

Γ dbfi.

With probabilities, it is possible defining multiple demand bound functions for τi, depending on the WCET

threshold cij from Ci. 〈dbfi(t, cij , Pij〉 is a probabilistic demand bound function for τi where to the dbfi there

is associated the probability Pij as the exceeding probability of the WCET threshold cij selected. Pij is the

probability for dbfi(t, cij) to be exceeded at runtime when the task executes for an execution time larger than

cij , Pij = F Ci
(cij). Γ is modeled with a set of probabilistic demand bound functions, each as 〈dbf(t, C), P 〉 from

the combination of tasks demand bound functions dbfi. With C = (c1j , c2k, . . .) the array of WCET threshold

values (one for each task), dbf(t, C) is computed as the summation of the tasks dbfi(cij), and P is the exceeding

probability of dbf(t, C) such that P = P1(c1j)× P2(c2k)× . . .1.
With the probabilistic C-space it is possible to apply Euclidean distance (δc1 = c1k− c1j , δc2 = c2r− cis, . . .)

combined with probabilities, and evaluate the impact that WCET choices have on the schedulability. The

sensitivity analysis for the probabilistic C-space can also work with parameter β. It is under discussion how to

develop effective sensitivity analysis for the probabilistic C-space and with β. The goal is also to show a reduced

complexity of the probabilistic schedulability analysis from the sensitivity analysis with the C-space.

Figure 3.8 give an example of the pC-space with points c and probabilities represented. The probabilities

are the exceeding thresholds associated to the points, equivalently the confidences of not passing the execution

times c at runtime. The example is 2D representations extracted from a 3D space of a real-time application of

3 tasks {τ1, τ2, τ3}.
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(b) 2D plane (τ1, τ2), C3 = 20

Figure 3.8: 2D representations with safety levels hi and lo to distinguish effects on schedulability. Some possible
transitions from non-schedulability to schedulability are represented.

In the next chapter, it is shown how the pC-space abstract representations is used for sensitivity analysis

applied to MC problems.

3.3.2 Dynamic real-time systems

Real-time embedded systems are dynamic, in the sense that there exist changes between criticality modes

at runtime. Adaptivity means guaranteeing timing constraints during system or task changes. Guaranteeing

adaptivity of dynamic real-time systems has been part of past research activity [186, 187, 195, 196, 199, 206].

1The probability multiplication for P as joint probability is possible due to the worst-case distribution assumption [42]. As Ci
are pWCETs they are independent, then the combination of dbf is independent. To remind that Pj are cumulative probabilities
and their multiplication ends up into cumulative probability.
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The research on dynamic systems and adaptivity for real-time represents a first step toward the guarantees for

MC real-time systems.

Adaptivity for resource reservation mechanisms

In [186], in collaboration with Prof. Giorgio Buttazzo and Prof. Enrico Bini, it is addressed the problem of

modifying reservation parameters in order to comply with different system requirements, specified through a set

of operational modes. Provided that, the schedulability can be guaranteed within each mode in the steady state

condition, the objective is to extend the schedulability analysis during mode transitions, under EDF scheduling.

Thus, it is first derived resource reservation functions to bound the server resource provisioning before, after,

and during mode transitions. Then, such functions are used to guarantee the resource provisioning in all the

working conditions and to check the application feasibility.

In here, dynamic systems are considered and mode change analysis is developed to guarantee both steady

states and mode changes that can happen in real-time systems. Also, in this work sensitivity analysis is applied

for of (α,∆)-space in order to quantify resource needs for changes in dynamic systems, and for developing mode

change strategies.

Mode change. Servers can change their parameters at runtime to cope with the system changing conditions.

Whenever a server S switches from an old mode SI = (QI , P I) to a new mode SII = (QII , P II), the equiv-

alent supply bound function changes from sbfIS(t) to sbfIIS (t). The supply bound function that describes the

computational resource provided by the server across the mode transition is denoted by sbfTS (t), the transition

supply bound function. The parameters of the corresponding bounded delay functions are denoted by the pairs

(αI ,∆I), (αII ,∆II), and (αT ,∆T ) respectively.

In the following, treq denotes the time instant at which the mode change is requested. From this time on, all

the required changes in the system are initiated, while the new mode begins at tgo after a delay δ ≥ 0 from the

mode change initiation, hence tgo = treq + δ. The mode transition is the stage between the two steady modes,

starting at time treq and ending when the new mode becomes effective, at tgo.

A mode changing server can abort its resource provisioning any time during the mode transition [treq, tgo]. The

focus is on two extreme transition cases:

- transitionA: at treq the old mode aborts, interrupting the resource provisioning until the new mode is

effective, see Figure 3.9(a).

- transitionB : the old mode server keeps on providing its service until the new mode is effective, see Fig-

ure 3.9(b).

The two cases results in a different behavior of the server and then of the whole system. The differences will be

explained in the next sections. All the intermediate cases, with abortion time tab such that treq < tab < tgo can

be easily inferred from the transitionB case.

It is assumed that the system is feasible in each mode, that is in both steady states conditions, and it has to be

derived the condition in which feasibility can also be preserved during mode transitions.

Resource reservation. Although with different peculiarities, a lot of servers can be modeled as periodic

servers because they guarantee to provide Q (and no more than Q) units of time in each period P . Examples

of periodic servers include the polling server [37], the deferrable server [95] and the sporadic server [131], which

are scheduled using fixed priority. Example of dynamic priority periodic servers include the constant bandwidth

servers [4] or the dynamic versions of the Polling, Deferrable and Sporadic servers [37].

To achieve a more general result, it is performed the analysis in a worst-case scenario where the processor is

allocated at the beginning of the first period and then at the end of all subsequent periods. Under this condition,

all the servers mentioned above have the same supply bound function, thus they are referred as generic periodic

servers. In the interval domain, the longest interval where no resource is provided is 2(P − Q), while after

2(P −Q) the server supplies the resource at a constant rate of Q
P .
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Figure 3.9: TransitionA and transitionB; the
service provisioning aborts or continues after the
mode change treq.
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Figure 3.10: Server mode change and mode
transition cases. Worst-case scenario resulting
in the worst-case service provisioning during the
mode transition stage.

The sbf of a periodic server, defined as the worst-case resource supply in time interval [0, t), is

sbfS(t) = max{0, (k − 1)Q, t− (k + 1)(P −Q)}, (3.29)

with k =
⌈

t−(P−Q)
P

⌉

. Such a resource supply bound can be lower bounded by the bounded delay function

of (3.6), with

α =
Q

P
, ∆ = 2(P −Q). (3.30)

The computational resource the server provides is used by the application of the server.

Definition 3.3.1 (Server Schedulability) A server is said to be schedulable if its budget is provided on time
within each period.

Definition 3.3.2 (Application Schedulability) An application is said to be schedulable by a server if all its
tasks are able to meet their deadlines.

Definition 3.3.3 (System Schedulability) A system consisting of multiple applications managed by a set of
reservations is said to be schedulable if both servers and applications are schedulable.

With multi-moded servers it is important to identify the minimum amount of resource provided in any stage

of the server. This includes the transition between different modes, where the service provisioning is affected

from both the old and the new mode. The transition supply bound function sbfT is the resource provisioning

during the transition stage, while the transition bounded delay

The following theorems provide the sbfT functions for the two types of transitions transitionA and transi-

tionB.

Theorem 3.3.4 (Mode change sbf - transitionA) Let S be a periodic server with steady states parameters
(QI , P I) and (QII , P II) and with corresponding supply bound functions sbf

I and sbf
II . Let treq be the time at

which the mode change is requested and let tgo be the time at which the new mode is started, after a delay δ,
such that tgo = treq + δ. If the server aborts the old mode at time treq (transitionA case), then the resource
provisioning during the transition stage is lower bounded by

sbf
T (t) = inf

0≤λ≤t
{sbfI(t − λ − γ + P I − QI) + sbf

II(λ + P II − QII)}, (3.31)

being γ = treq − tlast + δ and tlast the initial instant of the last period in the old mode.

Theorem proof can be found in [186].

Theorem 3.3.5 (Mode change sbf - transitionB) Let S be a periodic server with steady states parameters
(QI , P I) and (QII , P II) and with corresponding supply bound functions sbf

I and sbf
II . Let treq be the time at

which the mode change is requested and let tgo be the time at which the new mode is started, after a delay δ,

53

./Pictures/caseA.eps
./Pictures/caseB.eps
./Pictures/caseNewNewNewA.eps
./Pictures/caseNewNewNewB.eps
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such that tgo = treq + δ. If the server continues to provide its old mode service until time tgo (transitionB case),
then the resource provisioning during the transition stage is lower bounded by

sbf
T (t) = inf

0≤λ≤t
{sbfI(t − λ − γ + 2P I − QI) + sbf

II(λ + P II − QII)}, (3.32)

with γ = treq − tlast + δ and tlast the initial of the last period of the old mode.

Theorem proof can be found in [186].

The obtained sbfT s can be used to guarantee the service provisioning during the mode change transitions.

With the bounded delay modeling it is possible to derive the transition bounded delay functions. First, the

same idea of Equation (3.31) and Equation (3.32) can be applied with bounded delay functions obtaining

bdfTA(t) = inf
0≤λ≤t

{bdfI(t− λ+ 2P I − γ −QI) + bdfII(λ+ P II −QII)},

bdfTB(t) = inf
0≤λ≤t

{bdfI(t− λ+ 2P I − γ −QI) + bdfII(λ+ P II −QII)},

for transitionA and transitionB, respectively.

The transitionA resource supply results in (αT
A,∆

T
A) where

αT
A = min{αI , αII}

∆T
A = max{P I −QI + γ + P II −QII , 0}. (3.33)

For transitionB:

αT
B = min{αI , αII}

∆T
B = max{γ −QI + P II −QII , 0}. (3.34)

Both the transition supply bound function and the transition bounded delay functions depends on the

transition delay δ, sbfT (t, δ) and bdfT (t, δ).

Equation (3.33) and (3.34) define the relationship between the transition delay δ and the transition service

provisioning delay ∆T .

Server schedulability. In multi-mode systems, an application can change its resource demand from one

mode to another, thus dbfI and dbfII denote the resource demand of the application in the two modes, and

dbfT denotes its resource demand during the mode transition [118]. An application managed by a server is

schedulable if and only if the resource demanded by the application does not exceed the resource provided by

the server, in any possible stage of both the server and the application. Since it is assumed feasibility for each

mode in a steady state condition, the following lemma states the condition for a guaranteed transition in the

case both the application and the server change their mode at the same time.

Lemma 3.3.6 (Mode change EDF schedulability) Given a server S handling an application Γ that is fea-
sible in each in a steady state condition, if both S and Γ change their at the same time, then the application is
feasible during the transition stage if

∀ t dbf
T
Γ (t) ≤ sbf

T
S (t). (3.35)

Using the bounded delay linear approximation, the feasibility condition becomes:

∀ t dbfTΓ (t) ≤ bdfTS (t), (3.36)

Note that when the application increases its resource request, a short transition delay in the server adaptation

is good for the application. However, a too short delay could result in a service over-provisioning that would

steal bandwidth from the other servers, so jeopardizing the schedulability of the other applications during the

transient. On the other hand, a large delay in the server adaptation would affect the schedulability of the
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application itself. In general, there is a trade-off between schedulability of the application and the schedulability

of the servers.

Intra-Server Schedulability: By intra-server schedulability it is referred the schedulability of the application

based on the resources provided by the server. From the analysis performed by applying Condition (3.35) or

Condition (3.36), it can be derived a maximum delay δ♭ after which the new mode can safely start. For all

δ ≤ δ♭ the server mode change is feasible for the application because it will result in a larger resource supply.

Inter-Server Schedulability: By inter-server schedulability it is referred the schedulability of the servers

when they adapt their parameters, independently of the behavior of the served applications. Such an analysis

can be performed using the results achieved for multi-mode task sets, which is well known in the real-time

literature. The analysis can easily be applied to periodic servers by considering them as periodic tasks that

must receive Q units of computational resource every period P . Therefore, the effect of a mode change in a

server has to be investigated with respect to the entire set of servers composing the system.

Applying the results achieved in [71, 133] or [36], it is possible to derive a minimum mode change delay δ♯ that

does not affect the schedulability of the other servers. Any change performed with a delay δ ≥ δ♯ keeps the

system feasible because it reduces the amount of resource required by the server during its transition.

A real-time system with servers and applications is feasible during mode transitions if the delay is less than or

equal to a threshold derived from the intra-server analysis and greater than or equal to a threshold δ♭ derived

from the inter-server analysis; that is, δ ≤ δ♭ ∧ δ ≥ δ♯. The resulting feasibility region for δ is then

Φ =

{

0 if δ♯ > δ♭

∀δ | δ♯ ≤ δ ≤ δ♭ if δ♯ ≤ δ♭. (3.37)

This result is stated in the following theorem.

Theorem 3.3.7 Consider a multi-mode system with m servers Si, each managing an application Γi, such that
the system is feasible in any of its working mode. If server Si performs a mode transition with a delay δ, the
system remains feasible if δ ∈ Φi, where Φi is the feasibility region of server Si from Equation (3.37). If Φi is
empty, the transition is unfeasible under any condition.

Theorem proof can be found in [186]. The algorithm in [186] describes how to compute a transition delay that

keeps the system feasible.

Resource reservation analysis. The server and the application requirements during a mode transition are

encoded into the feasibility region Φ in terms of transition delays that the set of servers and the applications

can tolerate.

A server Si can be described by the tuple (αi,∆i), where αi represents its bandwidth and ∆i the worst-case

delay in supplying the computational resource to the application. An application can also be mapped into

the (α,∆)-space, as its feasibility region, considered as the set of all service supply pairs that guarantee the

application timing constraints. Note that such a region depends on the applied scheduling policy.

In the case of EDF, the application feasibility region is defined by

∀t ∈ D : dbf(t) ≤ α(t−∆),

meaning that:

∀t ∈ D : ∆ ≤ t− dbf(t)

α
∆ ≤ min

t∈D

{

t− dbf(t)

α

}

, (3.38)

where D is the set of deadlines in which the application schedulability has to checked.

Equation (3.38) describes the feasibility region ΩΓ,sched of the application in the (α,∆)-space, which depends

on the application Γ and the scheduling algorithm sched, that in this case is EDF.
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3.3.3 Real-time calculus and probabilities

The real-time calculus belongs to the class of so-called deterministic queuing theories. It is deterministic in the

sense that hard upper and lower bounds to the performance indicators are always found. This distinguishes it

from the class of probabilistic queuing theories for which this guarantee can not be provided in general.

Real-Time Calculus (RTC) [134, 141] is a direct extension of Network Calculus (NC) [89]. NC is used to

deterministically reason about timing properties of data flows in queuing networks and RTC extends these

concepts to the area of real-time embedded systems. In general, networked or distributed systems can be

characterized by looking at the data flows over the network. It is referred to these abstracted data flows as

event streams. In contrast to NC, RTC uses interval bound functions to characterize both event streams as well

as available resources. The interval bound function to describe the event stream is called Arrival Curve and the

interval bound function for the available resources is called service curve. The concept of arrival curve was first

defined by [134].

The relation between the input arrival and service curves and the output arrival and service curves can be

expressed using pure mathematical functions. Just like NC, RTC relies on max-plus and min-plus calculus,

as described extensively in [38, 134, 135]. This mathematical structure is very well-suited for describing and

manipulating arrival and service curves in Real-Time Calculus since these are functions that describe minimums

and maximums. Convolution and deconvolution formulas, which are used in Real-Time Calculus , can be defined

in min-plus and max-plus algebra.

In [150] are outlined main differences and commonalities between NC and RTC.

Probabilistic calculus

The probabilistic Calculus (pCalculus) is one of the research topic developed during the Postdoc in Nancy [172,

173, 189, 197]. With it, probabilistic bounding functions are formalized together with the algebra to compose

bounds and define probabilistic interfaces.

Here some details about its pCalculus basic notions and representations. This part is also to enforce the

link between RTC bounding and EDF or FP bounding with respectively demand bound function and workload

function.

Tasks activations and executions time may vary from one instance to another. Each task τi may be associated

with random traces of computation requests, depending on both the actual period and execution time of the task

at each activation. One possible representation is throughout a stochastic process which counts the amount of

resource requested in a time interval; then Xi(t) results as the cumulative distribution function of the stochastic

process describing its behavior in the interval [0, t).

Considering the function Ri(t) as the cumulative amount of execution that the probabilistic task τi has

requested up to time t, it is possible to define probabilistic bounds of the task upper and lower constraining its

actual behavior Xi with probabilities. A probability-based upper bounding function of the cumulative execution

time Ri(t) is defined as the “largest” Ri(t) such that the probability of Xi(t) being larger than or equal to Ri(t)

is lower than a probability value γi.

R+
i (t)

def
= sup{Ri(t) |P{Xi(t) ≥ Ri(t)} ≤ γi} (3.39)

The tuple R+
i (t), γi represents a probabilistic bound to the execution trace of τi in the time domain and γi is

a measure of the accuracy of such bound, being γ the probability that Xi(t) overtakes any of the Ri(t) and

consequently their superior R+
i (t). A valueγi = 0 would be the deterministic case where R+

i (t) bounding Xi

100% of the time.

A probability-based lower bounding function (probabilistic bound) to the task cumulative execution is defined

as the “smallest” Ri(t) such that the probability of Xi(t) being smaller than or equal to Ri(t) is lower than a

probability value φi. Formally, R−
i (t) = inf{Ri(t) | P{Xi(t) ≤ Ri(t)} ≤ φi}.

While any Xi andRi always describe one concrete trace of an event stream, the tuple αi(∆, ·) = [αu
i (∆, ·), αl

i(∆, ·)]
of upper and lower request curves provides an abstract execution stream model, with bounds on all the admis-

sible traces Ri of such execution stream, [134]: the request curve embeds information on both the arrivals and
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executions of tasks. The upper request curve αu
i (∆, ·) is an upper bound on the number of events that are seen

in any time interval of length ∆, αu
i (t − s, ·) : Ri(t) − Ri(s) ≤ αu

i (t − s, ·) ∀s < t and ∆ = t − s. The lower

request curve ᾱl(∆, ·) analogously provides a lower bound αl
i(t − s) : Ri(t) − Ri(s) ≥ αl

i(t − s, ·) ∀s < t and

∆ = t− s.
Parametrizing the request with a variable x, it follows that the upper bounding request curve αi(∆, x)

def
=

αi(∆, ·) − x is such that αi(t − s, ·) − [Ri(t) − Ri(s)] ≥ x for all 0 ≤ s ≤ t and ∆ = t − s. Then it can be

defined the probabilistic request curve, inspired from [145] but with the main difference from the probabilistic

bound: in this work the probability associated to the bound αi(∆, ·) − x is the probability that αi(∆, ·) − x
upper bounds Ri. A probability equal to 1 would correspond to the deterministic case where αi(∆, ·)−x upper

bounds 100% of the cases and no Ri happens to be above the bound.

The request curve αu
i (∆, x) of a request Ri is a non-decreasing non-negative function which satisfies

P {αu
i (t− s, ·)− [Ri(t)−Ri(s)] ≥ x} ≤ Fi(x), (3.40)

for all 0 ≤ s ≤ t, x ≥ 0 and ∆ = t− s.
In Inequality (3.40), Fi(x) is the probability that αu

i (∆, x) upper bounds the request curve of τi in the interval

[s, t]. The probabilistic request curve is 〈αu(∆, x), F (x)〉.
This definition introduces the notion of probabilistic curve 〈αu(∆, x), F (x)〉 as a set of bounding curves

αu(∆, x), one curve per value of x. Each of those curves parametrized by x has a probability associated F (x)

being the CDF of probability thresholds αu(∆, xj) | γi = F (xj) = P{Xi ≤ xj}. Hence, the set of curves can be

described with a PDF continuous or discrete according to the variability of x. Figure 3.11(a) shows an example

of probabilistic request curve.

In the same vein, it is possible to define probabilistic lower-bounding curve 〈αl(∆, x), H(x)〉 with bounding

curves αl(∆, ·) and probabilities H(x).

By following the same reasoning as for tasks, it is possible to derive a probabilistic abstraction based on

curves for the resource provisioning. Naming S(t) the total amount of resource provided at time t, the resource

provisioning is characterized by considering upper and lower bounding service curve β in the interval domain.

From now on it is referred to them as resource curves. The tuple β(∆, ·) = [βu∆, ·), βl∆, ·)] of upper and lower

resource curves abstract the resource provisioning, and the upper and lower bound on the available resources in

any time interval of length ∆, are defined such that:

βu(t− s, ·) ≤ S(t)− S(s) ≤ βu(t− s, ·)∀s < t, (3.41)

βl(t− s, ·) ≤ S(t)− S(s) ≥ βl(t− s, ·)∀s < t. (3.42)

As for the requests and generalizing the notion of resource provisioning (service), the resource provided

can be modeled according to some distribution Y (t), and based on probabilities it can be derived probabilistic

resource bounds as S(t)+ = sup{S(t) | P{Y (t) < S(t)} ≤ φ} and S(t)− = inf{S(t) | P{Y (t) ≥ S(t)} ≤ φ}.
Then parameterizing the resource provisioning function with a variable y, it follows that for all 0 ≤ s ≤ t and

∆ = t− s, the lower bounding service curve β(t− s, y) def
= β(∆, ·) + y is such that [S(t)− S(s)]− β(t− s, ·) ≥ y.

Thus, it is possible defining the probabilistic service curve differentiating from [145] by the definition of bounding

probability: in here it is the probability that β(∆, ·) lower bounds any resource provisioning S(t).

Definition 3.3.8 (Probabilistic resource curve) The resource curve β(∆, y) of a resource provisioning S
is a non-decreasing non-negative function which satisfies

P {[S(t)− S(s)]− β(t− s, ·) ≥ y} ≤ G(y), (3.43)

for all 0 ≤ s ≤ t, y ≥ 0 and ∆ = t− s.
In Inequality (3.43), G(y) is the probability that β(∆, y) lower bounds the resource provisioning S(t). The
probabilistic resource curve is 〈βl(∆, y), G(y)〉.
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With the notion of probabilistic curve for resource provisioning, 〈β(∆, y), G(y)〉 there is a set of bounding curves

β(∆, y), each with the changing y and a probability associatedG(y). G(y) is the cumulative probability threshold

β(∆, yj) | φ = G(yj) = P{Y ≤ yj}; see Figure 3.11(b) as an example of probabilistic resource provisioning curve.

In the same manner, it is possible defining the probabilistic upper bounding curve 〈βu(∆, y), I(y)〉.
The resource is provided by system elements which execute, hence have dynamic behaviors. Although not

as effective as for the tasks, the probabilistic resource curve allows to extend the probability model to the entire

system having probabilistic elements.

The concept of curves simplifies and unifies many common timing models, see [108]. Besides, the probabilities

allows to adjust the accuracy of bounds by thresholding the curves. Decreasing of probabilities of bounding is

equivalent of having less accurate bounding curves. On the other hand, a curve able to bound 100% of the cases

could be too pessimistic for the system analysis, see Figure 3.11 for a better insight. The curves are represented

with increasing cumulative probability, till p = 1. Schedulability and composability conditions makes use only

of the upper bound of the request curve and the lower-bound of the resource curve. Figures 3.12 and 3.13 gives

another example of probabilistic curves and their probabilistic representations with PDF and CDF.

To develop the algebra for the real-time analysis of probabilistic curves it is needed the notion of total

ordering among probabilistic curves. According to Diaz et al. [104] it is possible to define a stochastic order

among random variables which is similar to the notion of first stochastic order defined in statistics.

∆

α
(∆
,·)

x

α(∆, 1)

(a) Probabilistic request curve: the probability of bound-
ing requests decreases as the quality of the upper bound
decreases, ∀ xi ≤ xj , α(∆, xi) ≤ α(∆, xj), F (xi) ≤ F (xj).

∆

β
(∆
,·) y

β(∆, 1)

(b) Probabilistic resource curve: the probability of bounding
the resource decreases as the quality of the lower bound de-
creases, ∀ yi ≤ yj , β(∆, yi) ≥ β(∆, yj) and G(yi) ≤ G(yj).

Figure 3.11: Probabilistic request and resource curves.

∆

resource

Figure 3.12: Probabilistic curve: ordered multiple curves αi(∆, x) each with an associated probability.
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Figure 3.13: Probabilistic curve: distribution function fi(x) and cumulative distribution function Fi(x) indexed
by x.

As it will be shown in the next chapter, it is fairly easy to draw parallels between pCalculus and probabilistic

version of demand bound function or probabilistic version of workload bound function. The probabilistic model
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of task execution results into probabilistic bounds which could come from the RTC basis (pCalculus) or from

the probabilistic version of the dbf in case of EDF scheduling, or from the probabilistic version of the wbfi in

case of FP scheduling.

3.3.4 Probabilistic schedulability analysis

In the following are presented some works that apply probabilistic task models in order to define probabilistic

schedulability conditions. There are illustrated works which exploit the flexibility of the pCalculus and of

probabilistic bounds. With those tools, probabilistic schedulability conditions are defined.

A second work on probabilistic schedulability analysis applies formal methods to represent the execution of

probabilistic tasks and to compute probabilistic response times of job and tasks. In there, the motivations for

the use of formal methods are presented.

pCalculus and probabilistic bounds

The pCalculus is applied into probabilistic schedulability to define flexible schedulability conditions [189, 197].

A component-based view of real-time systems models each system element as a component [129]. Schedulers,

resource reservation mechanisms, and everything composing the system can be modeled as a real-time component

with well defined timing properties. Each component has an associated interface describing its functional and

non-functional aspects, and in case of real-time components, the real-time interfaces have to include also the

timing requirements of the components so that it is possible to carry out schedulability condition through

interface composition.

Within the real-time calculus modeling framework, real-time interfaces involves:

- the resource provisioning β as the actual resource amount provided to the component,

- the input task flow α representing the resource demand for the component,

- the output task flow α′ as the stream of executed tasks with the available resource and according the

scheduler policies,

- and the residual resource β′ which is the unused one and that can be passed to other components of the

system.

In RTC there is the concept of output curves which are the results of the scheduling process in terms of

task, then the executed task flow, and residual resource which is the unused resource to schedule the task. The

probabilistic output curves can be inferred by applying the relationship among the arrival and service inputs as

for the classical RTC [134]. In [83], the probabilistic output arrival curve has been defined as follows.

Definition 3.3.9 (Output arrival curve) Consider a system component with a probabilistic service curve
〈β(∆, x), g(x)〉 and the probabilistic arrival curve 〈α(∆, x), f(x)〉 as inputs. The task execution flow has a
probabilistic output curve (poc) 〈α′(∆, x), f ′(x)〉 with α′(·) = α⊘β(t2 − t1) and the bounding function f ′(·) =
f ∗ g(·)1, bounded as:

P{sup0≤t1≤t2{α⊘β(t2 − t1)− [a′(t2)− a′(t1)]} ≥ x} ≤ f ∗ g(x).

The probabilistic output arrival curve is represented as 〈α′(∆, x), f ′(x)〉.
The unused resource by processing real-time scheduling elements is passed to other parts of the system

according to a specific strategy. It is defined a probabilistic version of the residual curve as follows.

1∗ is the convolution between curves in the classical algebra; ⊗ is the min-plus convolution for RTC curves, and ⊗ is the
min-plus deconvolution.
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(b) RTC Interface: probabilistic
bounding behaviors
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Figure 3.14: A component and its probabilistic interface abstractions.

Lemma 3.3.10 (Residual service curve) Consider a component with a probabilistic service curve 〈β(∆, x), g(x)〉
and an arrival which has a probabilistic arrival curve 〈α(∆, x), f(x)〉. Let b′(t2) = b(t2) − a(t2) be the system
residual resource process and β′(∆) its bounded residual service curve, then b′(t) is bounded by

P{[b′(t2)− b′(t1)]− β ⊘ α(0) > x} ≤ f ∗ g(x). (3.44)

〈β′, g′〉 is the probabilistic residual curve (prc) with β′ = β ⊘ α(0)1, and g′(x) = f ∗ g(x).

The proof of the Lemma come form [188] and is inspired by the work done in [83].

The probabilistic service curve is then 〈β′(∆, x), g′(x)〉, with the cumulative distribution function g′(x)

resulting from the distribution of the input curves α(∆, x) and β(∆, x).

It is noticeable that probabilistic curves are set of curves, varying x, with probability thresholds associated.

To each composing curve the probability associated expresses the accuracy of that curve as a bound: it is the

probability that the curve upper/lower bounds arrivals/services. In particular, the curve upper bounding the

arrivals with a probability of 0 is indeed, the lower bound for the arrivals, while the lower-bound of the service

with 0 probability is the upper bound of the resource provisioning.

In this framework, it is considered probabilistic real-time interfaces to model real-time components with a

probabilistic behavior. The probabilistic interface of a generic probabilistic real-time component is defined as

the tuple (〈α, f〉, 〈β, g〉, 〈α′, f ′〉, 〈β′, g′〉) where the inputs and the outputs are in terms of probabilistic curves.

Figure 3.14 represents generic probabilistic interface of a probabilistic real-time component.

In a component-based real-time system the system schedulability necessarily translates into component

composability so that the resulting composable system offers schedulability guarantees. This means that the

composability is affected by the scheduling policy applies defining the resource distribution among the com-

ponents. For example, in case of fixed priority scheduling the priority describes the composition order among

the tasks. It is the resource to encode the scheduling policy as well as the composition architecture among

components.

With a probabilistic component model it is possible to define a flexible composability condition which

translates into schedulability of the composed components.

Theorem 3.3.11 (Probabilistic composability) Given two components i and j and two probabilistic curves
〈βi(∆, x), gi(x)〉 and 〈βj(∆, x), gj(x)〉 being respectively the probabilistic lower bound to the resource provisioning
of the i-th component and the probabilistic upper bound to the resource demand of the j-th component. Then i
and j are composable with a probability p iff

∃x1 : ∀∆ βi(∆, x1) ≥ βj(∆, x1) ∧ p ≤ min{1, gi(x1) · gj(x1)}. (3.45)

Proof of the theorem can be found in [183, 189, 197].

A schedulability condition for a probabilistic real-time system with probability level equal to 1 can be derived

as follows.
1As defined in the classical RTC [134], and by the notion of min-plus deconvolution
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Theorem 3.3.12 (1-FP schedulability) Any probabilistic task set Γ = {τ1, τ2, . . . , τn} is schedulable with a
probability level 1 (100%) under FP and a probabilistic resource provisioning 〈β,G〉 if for all i ∈ {1, 2, . . . , n},

∃∆0 ∈ schedPi | ωu
i (∆0, ·) ≤ βℓ(∆0, ·). (3.46)

Here, schedPi represents the set of points where to verify the schedulability as defined in [30], ωu
i is the

upper bound of the schedulability probabilistic level-i workload 〈ωi(∆, x), Hi(x)〉 and βℓ the lower bound of
〈β(∆, x), G(x)〉.

The theorem describes the classical real-time schedulability condition with the level-i workload. The demon-

stration is then straightforward from [30, 97].

The following theorem extends Theorem 3.3.12 to the case where the probability level equal to p ∈ [0, 1[,

thus taking the probability function into account in the schedulability conditions.

Theorem 3.3.13 (p-FP schedulability) Any probabilistic task set Γ = {τ1, τ2, . . . , τn} is schedulable with a
probability level p ∈ [0, 1[ under FP and a probabilistic resource provisioning 〈β,G〉 if for all i ∈ {1, 2, . . . , n}

∃∆0 ∈ schedPi and ∃ x1, x2 ≥ 0 such that ωi(∆0, x1) ≤ β(∆0, x2) andHi(x1) ·G(x2) ≥ p, (3.47)

with 〈ωi(∆, x), Hi(x)〉 the probabilistic level-i workload.

Theorem proof can be found in [189].

The schedulability criteria in case of FP scheduling policies applied can be derived in a compositional

manner. In [168] it has been derived the resource demand of a FP scheduling component assuming, without

loss of generality, the task set ordered by decreasing priority. Therefore, to guarantee the satisfaction of timing

constraint for task τn the service provided to task τn must be at least βA
n (∆, ·) = αn(∆ − Dn, ·) which is the

assumed resource amount the n-th task expect to guarantee its deadlines. In FP tasks are ordered according

their priority, meaning that the resource for task τn is provided by task τn−1. This also implies that the

remaining resource curve after have served τ1, τ2, . . . , τn−1 must be at least βA
n (∆, ·). The resource requirement

of the whole FP scheduling component is the resource bound of the most priority task composing the component

βA
1 (∆, ·). To derive that, it has to be sequentially computed the service bounds βA

n (∆, ·), βA
n−1(∆, ·), . . . , βA

2 (∆, ·)
that each element expects to work properly. The resource requirement of a generic task k is given as

βA
k−1(∆, ·) = max{β♯

k−1(∆, ·), αu
k−1(∆−Dk−1, ·)}. (3.48)

with β♯
k−1(t) = βA

k (∆ − λ, ·) + αk−1(∆ − λ, ·) where λ = sup{ψ : βA
k (∆ − ψ, ·) = βk}, that guarantees the

remaining service to be passed to the k-th component to be no less than what the k-th component requires,

βA
k (∆, ·). Equation (3.48) differs from the results of the Theorem 3.4 of [83] because of the real-time constraints

that have to be guaranteed in the RTC.

In order to guarantee the timing constraint of τk−1, the service provided to the k−1-th element βA
k−1(t) must

be no less than αk−1(∆−Dk−1, ·). Applying Equation (3.48) for k = n− 1, n− 2, . . . , 2 we guarantee the tasks

timing constraints by computing the resource required. βA
1 (∆, ·) is the resource amount that has to be provided

in order to satisfy the timing constraints of all the tasks scheduled: the assumed resource requirements.

Theorem 3.3.14 (Probabilistic FP composability) A FP component is composable with a resource provi-
sioning component that guarantees β amount of resource if

∀ t βA
1 (t) ≤ β(t), (3.49)

with βA
1 computed following Equation (3.48).

The 100% schedulability obtained with the former assumed bound βA
1 (∆, ·) guarantee also the level 1 schedu-

lability of the FP scheduling. The same reasoning can be applied with the level-p schedulability where the

probability are computed using the resource chain.

Since the EDF scheduler refers to the schedulability condition of the whole task set instead of each task, the

request curve of the task set Γ is given by 〈α, F 〉 where α(∆, x) def
= ⊗n

i=1αi(∆, x) and F (x)
def
= ⊗n

i=1Fi(x).

From these observations, the following result apply.
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Theorem 3.3.15 (1-EDF Schedulability) Any probabilistic task set Γ = {τ1, τ2, . . . , τn} is EDF schedulable
with a probability level 1 upon a resource provisioning curve 〈β,G〉 if

∀∆, αu(∆, ·) ≤ βℓ(∆, ·). (3.50)

Here, αu represents the request curve upper bounding 〈α, F 〉 and βℓ the resource provisioning curve lower bound-
ing 〈β,G〉.

Theorem proof can be found in [189].

Theorem 3.3.16 (p-EDF Schedulability) Any probabilistic task set Γ = {τ1, τ2, . . . , τn} resulting in a prob-
abilistic resource demand 〈α, F 〉 is schedulable under EDF with a probability level p ∈ [0, 1[ and upon a resource
curve 〈β,G〉 if

∀∆, ∃ x1, x2 ≥ 0 such that α(∆, x1) ≤ β(∆, x2) and F (x1) ·G(x2) ≥ p. (3.51)

Theorem proof can be found in [189].

By its compositional nature, EDF is more pessimistic, hence the accuracy from the probabilistic framework

is more evident and needed.

3.3.5 Formal methods for probabilistic real-time

The probabilistic schedulability analysis is key topic of the thesis of Jasdeep Singh. In the thesis, it is chosen

to approach such complex problems with formal methods. The models obtained with formal methods are for

representing task executions under different conditions, and to develop schedulability analysis with probabilities.

With respect to pRTSs, formal methods have to be able to model (i) the non-determinism i.e., the existence of

choice. This happens with preempted tasks or tasks which continue/resume execution at non-deterministic time

instances; and (ii) the probability in the choice i.e., existence of weight to each choice because with pWCETs, the

choices are probabilistic in nature. Among the formal methods that satisfy those requirements, the Continuous

Time Markov Chain (CTMC) is the one chosen for this work. CTMC is able to model pRTSs with continuous

probabilistic behaviors. This makes it possible to directly map continuous pWCETs onto a CTMC models and

study the task behavior.

With the use of CTMC, it is developed an approach to model and perform schedulability analysis of pRTSs

described with continuous pWCETs. For that, CTMC models are built to represent the task behaviors. The

executions are mapped into CTMC states and state transitions accounting for the probabilistic nature of task

executions and the probabilistic interference from concurrent tasks. The CTMC models are then applied into

schedulability analysis to compute the probability of deadline miss and the probabilistic response time for each

task. The correctness of the CTMC models and of the schedulability analysis is proved with model checking,

where timing properties for states and state transitions are formally validated. A case study is applied to show

how effective are CTMC models in representing and analyzing pRTSs.

To note that the works with CTMCs differ from [48] which also makes use of Markov Chains with pRTSs,

in particular CTMCs. Markov Chain is used for modeling and analyzing jobs through a scheduling policy

by accounting for all possible interactions between tasks. Instead, in [48] the MC is only to represent the

computation utilization in the hyperperiod. Secondly, the two works differ in the assumption of the given input

distribution: in this work are continuous distributions, while in [48] there are considered discrete distributions.

The first step of Jasdeep Singh thesis has been investigating the state of the art of formal methods ap-

plied to probabilistic schedulability analysis. Formal methods which could cope with the requirements of non-

determinism and probability of choice are probabilistic timed automata, stochastic timed automata, stochastic

Petri Net, stochastic model checking, and Markov chains (Mc).

Through PTA, many state transitions can emanate from a state; each transition has an associated probabil-

ity [132]. With pWCETs there is no question of choice of what the task does, since it can only execute after it

is released once the computational resource is made available. PTA cannot model the time spent in executing

(time staying in a state), as pWCET would represent.

62



3.3 Deterministic and probabilistic schedulability analysis

Another formal method which could be used with pRTSs is stochastic model checking [43]. With this,

performing Monte Carlo simulation requires a source of randomness. Unfortunately, safety of the source of

randomness being used in real-time system analysis is an open question.

Stochastic Petri Net can model probabilistic task executions through stochastic time triggers. Existing work

on stochastic Petri Net [152] can analyze probabilistic task set at a high computational cost. On the other hand,

it provides exact result of probability of deadline miss along with the trace representing the probability of task

being executed at a certain time.

The Mc is a set of states and transitions in which each transition is labeled with the probability of being

chosen [115]. Markov Chain possesses the memoryless property in which the determination of future state

depends only on the present state. Some works apply Mc to model cache memories with random replacement

policies [39]. They are SPTA approaches, and use Mc to compute discrete pWCETs. Another set of works

has applied Mc with schedulability analysis [48]. In there, the Mc is only to represent the system utilization

and study its stability in the hyperperiod; the Mc does not model task executions nor task interactions as it is

planned to do with CTMC.

This brief state of the art on formal methods for real-time has been made by Jasdeep Singh during his stage

at the ONERA. The CTMC is the formal methods applied in [201, 203].

Continuous time Markov chain. CTMC is a Mc which is able to characterize the task continuous execution

behaviors [115]. With CTMC, it is possible to represent the task executions and to build schedulability analysis

with probabilistic information; both task representations and analysis can be validated with model checking.

The complexity of the approach with CTMC is proven to be far less than other existing methods, such as [152].

This is mainly due the highly reduced requirement of distribution convolutions and the sequential nature of the

process implemented.

A CTMC has an exponentially distributed rate λ associated to state transition: (i) the time spent in a state

is exponentially distributed, and (ii) there exist a probability of choosing an outgoing transition from that

sate, [86]. The probability of choosing a state transition r with rate λr out of m outgoing state transitions is

given by P (λr) =
λr

m
∑

k=1

λi

, r ≤ m, and the rate of exponentially distributed time spent in each state Pk, denoted

by Λ, is given as Λ =
m
∑

i=1

λi.

The transitions for a CTMC are formalized as a Q-matrix Q = (qij : i, j ∈ I) where each elements qij is an

exponential rate and describes the transition itself.

The CTMC states represent the execution of each job after its arrival, after preemption and at the end of

execution. The exponential rates for a state describe the job execution; they include the delays caused by any

interfering job. The transitions between states are labeled with exponential rate and represent the probabilistic

time of executing until the end of execution.

Properties. For a job Jij , a property of its CTMC is a function:

Pij(state, time) = P (state, time). (3.52)

It refers to the CTMC of the job Jij and returns the probability that the CTMC is in the state state at the time

time. The argument time could be a single instant or an interval. Examples are Pij(finished, deadline) checks

the CTMC model of the job Jij and returns the probability that it has finished execution at the deadline.

PRISM Model Checker [87] is used to verify these properties. In

urlhttps://forge.onera.fr/projects/probscheduling it has been developed an interface to relate CTMC models

with PRISM model checker.

The notion of backlog is used to represent task interference and to build CTMC models. Hereby, the

definition of backlog and the classification of various ways in which backlog is produced.

The backlog is the delay or the ‘push’ that a victim job experiences from a higher priority job. The backlog

can come from:
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- A job released earlier - a job is released earlier than the victim job, thus its execution delays the victim

job;

- Synchronously released jobs - higher priority jobs and the victim job are released synchronously. The

higher priority jobs execute first and thus delay the victim job;

- Jobs preempting - higher priority jobs preempt the already executing victim job. From the preemption

instant the victim job is delayed and awaits execution.

The backlog changes the distribution of the victim job to incorporate the affect resulting in a new exponential

distribution. More details in [201, 202, 203].

For the job Jij , an initial set of states Xij = {P0, F} is given. State P0 represents the execution of job as

soon as it arrives. State F represents end of execution. If there exists a preemption to the job i.e., if set Ĵ(Jij)

is non-empty, a new state is added. For kth preemption this state is Pk. Thus the complete representation of

the job is a set of states Xij = {P0, P1, ...PK , F}. State F can be reached from any state and it is the final

state of the CTMC as shown in Figure 3.15. The initial state of Xij is P0 ( or Pk such that there is a non-zero

labeled transition going out of it with minimum k). The states are linked with transitions given by a Q-matrix

as follows with 0 representing nonexistence of transition.

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
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The subscript of λ for a transition denotes the final state, f if it goes to state F or the k if it goes to Pk state,
and kth state from which it goes out. For example λf2 denotes rate of transition from state P2 to state F .

Rates determination. The unknowns to be calculated are the rates in the Q-matrix. Here, block ‘Backlog’
is referred. If there is no preemption, i.e; k = K, λfK = λ∗f0 . For all positively increasing k > 1, the model is

checked using the block ‘Property’ with the property P(Pk, t
k
p) and new state Pk+1 is added. The addition of

new state expands the Q-matrix by adding the rates λpK
, λfk and λfk+1

at the appropriate places in the matrix.
Once all the job models are in hand, probability of deadline miss and response time curve can be extracted from

...

...

P0P0P0

P1P1 PK

FF
F

λf0

λf0
λf0

λp0
λp0 λf1

λfKλf1

λp1 λpK−1

Figure 3.15: Iterative process to build a CTMC model; the preemption effects are added and validated one
preemption by another.

them. This is what is called probabilistic schedulability analysis and is formalized as follows.

Deadline Miss. For each job Jij , the probability of deadline miss P (DM)ij is given by one minus the
probability that the job CTMC is in the state F at the deadline,

P (DMij) = PDM(Xij , Qij) = 1− P (state = F, time = Deadline) =

∫ ∞

dij

FRT ij
dx. (3.53)

The probability of deadline miss of a task is considered to be the maximum of its jobs:

P (DM)i = maxj(P (DM)ij) = maxj{P (DM)ij}. (3.54)

Response Time. In a similar manner the response time CDF for a job can be obtained. As a reminder,
in the probabilistic framework, the response time RT is a distribution, and can be represented with PDF, or
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with cumulative probabilities. It is done by checking the probability that the job is finished by some positively
increasing time t.

RT ij = PRT (Xij , Qij) = P (state = F, time ≤ t), (3.55)

and that of a task is given as the worst of its jobs:

RT i = maxj(RT ij) = max
j
{F ′

RT ij
}. (3.56)

preemptions

precede

synchronous
...
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Figure 3.16: Job CMTC model formalization with constituents as blocks and input information.

Figure 3.16 illustrates the three main steps (backlog, CTMC, and preemption) to build CTMC models.
There are illustrated the inputs and the interactions between those steps. The CTMC of a job is defined in
incremental steps: first the modeling without preemption, then refinement adding preemptions and their effects
one by one. Figure 3.15 present the CTMC model for a job which is build incrementally adding one preemption
at the time.

3.3.6 Some conclusions on deterministic and probabilistic schedulability analysis

Abstract models for sensitivity analysis. The abstract representations as the C-space, the pC-space,
the (α,∆)-space, and probabilistic (α,∆)-space, are alternative representations for developing schedulability
analysis. They reduce the complexity of analytical scheduling conditions with feasibility regions in which
comparison between the resource availability and resource demand can be made graphically with feasibility
regions.
The sensitivity analysis, or parametric analysis, applies to the abstract representations in order to explore
schedulability conditions and trade-offs between schedulability and resource. The sensitivity analysis is helpful
in modeling scheduling conditions and quantifying/qualifying the impact that certain parameters have on task
schedulability. The full potential of sensitivity analysis has not yet fully explored, especially with probabilistic
models; future work will investigate that by developing strategies for efficient resource changes or parameters
changes.
The sensitivity analysis will also prove to simplify complex scheduling problems such as the probabilistic schedul-
ing or the MC scheduling problem. In Chapter 4 there are presented some initial thoughts about probabilistic
sensitivity analysis which makes use of the pC-space and the probabilistic (α,∆)-space. The sensitivity analysis
there is used for the MC problem for defining and exploring computational resource-schedulability-criticality
levels trade-offs.

Dynamic real-time systems. Adaptivity is a way of guaranteeing timing constraints during mode changes
that dynamic real-time embedded systems have. Examples of adaptive resource reservation mechanisms and
sensitivity analysis applied to evaluate possible mode changes can be found in [186].
The adaptivity for real-time systems is a topic investigated in collaboration with PhD students Francesco
Prosperi, and with Tomasz Kloda, within the RETIS Lab at Scuola Superiore Sant’Anna, and the TIK group
at the ETH Zurich. It has been part of projects like R2D2, and CORTEVA.
The research activity with Francesco Prosperi, the RETIS Lab, and the TIK focuses on both real-time systems
and networked real-time systems in which changes can happen and for which timing guarantees have to be
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offered [155, 167, 168, 169, 171, 185, 186, 187, 196, 199, 205, 206]. In particular, the research activity with Tomasz
Kloda [174, 175, 176] proposes important results for time-triggered architectures and the timing definition
language. In these works, schedulability tests are proposed under EDF on a single processor for applications
that may change their operational modes.
To mention, the work [151] in collaboration with Prof. Giorgio Buttazzo which has applied probabilistic models
to adaptive paradigms for soft real-time systems and space applications.
Dynamic real-time systems and adaptivity for real-time systems make the background of techniques and algo-
rithms that will be applied to the MC problem. In particular, with those techniques there will be studied mode
changes with mixed critical tasks. Moreover, the sensitivity analysis in [186] will be applied to decide affordable
mode changes with the resource available, or what is the required resource to guarantee the worst possible mode
changing conditions.

Real-time and probabilistic calculus. With pWCET, discrete or continuous distributions, there is the need
to develop probabilistic schedulability analysis. the pCalculus is proposed for defining a version of probabilistic
schedulability. It is inspired by the RTC and deterministic bounding functions, and by previous works on
probabilistic timing models.
The pCalculus considers multiple bounding functions, each with an associated probability of being a bound
to the task or resource behavior. The functions composes into a probabilistic bounding curve which is a
distribution of functions; there can be defined probabilistic curves for the resource request and for the resource
provisioning. The pCalculus formalizes the composition of such curves as well as schedulability criteria by
confronting probabilistic bounds on resource provisioning (service) and resource demand (arrival).
In [188, 189, 197], the pCalculus is formalized; in [172, 173] it been applied to networked embedded systems.
The pCalculus has been applied in projects like IRHEDO2 and WIRELESS.

Probabilistic schedulability analysis. The probabilistic schedulability analysis is developed from the pCal-
culus or probabilistic version of the resource provisioning, resource demand, and workload bounds. Works on
probabilistic schedulability analysis have been object of publications on both task scheduling and networking
performance guarantees [151, 152, 172, 173, 189, 197, 201, 203]. The project activities related are CORTEVA,
CAPHCA, R2D2, and WIRELESS.
A key part of the activity on probabilistic schedulability analysis has been developed at the INRIA Nancy
while collaborating with PhD student Dorin Maxim and PhD Liliana Cucu-Grosjean. The works on probabilis-
tic re-sampling of pWCET discrete distributions in order to reduce complexity of probabilistic schedulability
analysis [178], or priority assignments with probabilistic tasks [177] are not detailed here.
Probabilistic schedulability analyses are more flexible and less pessimistic than classical deterministic ones, since
they can account for the multiple conditions that can happen, and that are parametrized with probabilities.
The probabilistic schedulability conditions can cope with both hard and soft real-time.
Unfortunately, the flexibility of probabilities is payed off with an increased complexity. Few approaches have been
developed in order to decrease complexity [178, 179, 189]; they all attempt to re-sample pWCET distributions
reducing the number of values in those, and in turn reducing the number of functions. The safety of those is
guaranted with an increased pessimism. Future work will be developed in order to reduce the complexity, and
make the pCaclulus effective for MC.
In [151], another example of probabilistic schedulability analysis applied to soft real-time applications such
as the space ones. In there, the composablity of system elements is validated with probabilistic bounds and
probabilistic notions of interference. Composability and schedulability are verified with probabilistic utilization
analysis.
The complexity also increase due to to the multiple possibilities that probabilities brings. Future works is under
discussion in order to reduce the complexity with more efficient representations and computations for discrete
distributions. Also formal methods are under investigation with that purpose.

Formal methods for probabilistic real-time. In [152, 201, 203], and with Jasdeep Singh thesis, we are
investigating the application of formal methods for characterizing task executions and develop schedulability
analysis for probabilistic real-time systems; both continuous and discrete distributions can be applied with for-
mal methods and the system models derived. In those works, the mathematical foundation of formal methods
is applied to verify the correctness of both system representations and schedulability analysis.
In https://forge.onera.fr/projects/probscheduling there is a tool developed by Jasdeep Singh for schedu-
lability analysis with continuous pWCET distributions with continuous time Markov chains.
In [152, 201, 203], and in the tool developed at the ONERA, the effort has been applying CTMC and stochastic
Petri nets to schedulability analysis of real-time systems. Although the use of formal methods makes execution
models and scheduler more formal and easier to validate, there still exist problems to be solved. In particular:
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- Probabilistic scheduling problems are complex because of the need to take into account for all the cases
that probabilities represent. With continuous distributions, the CTMC complexity is mitigated with the
use known distribution functions and the mathematics to represent and combine them; with stochastic
Petri nets expressiveness improves but the complexity increases because of the need for solving differential
equations. With discrete distributions the use of formal methods consist of moving the complexity to
the building of task execution models. Hence, at this stage, using formal methods does not significantly
reduce overall complexity of probabilistic schedulability analysis. Future contributions are needed in order
to significantly reduce complexity and make probabilistic scheduling approach more usable.

- Task execution models from formal methods are still pessimistic. The pessimism comes from the need of
bounding distributions with known distribution laws, e.g. the use of exponential distribution at each step
of the modeling. Future work has to be devoted to reduce such pessimism: more precise upper bounds
will be developed, and constraining hypotheses will be released.

Future work with formal methods and probabilistic scheduling developed with formal methods will show the
strong points of formal methods applied to complex scheduling problems. It will also bring formality to the MC
problem where the probabilities will allow defining efficient scheduling decisions.
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Chapter 4

Current state of mixed criticality

research

This chapter details my recent works, since 2015, on MC for real-time embedded systems, i.e., the present
research. The papers and projects listed in the previous chapter are the background for these achievements:
the tools developed are applied with mixed critical requirements. The current state of mixed criticality research
tackles with both timing modeling and schedulability analysis as both contribute to MC. it is also motivate
from both professional and academic experience, and from practical and theoretical needs of real-time embedded
systems.

There are works for deriving probabilistic MC task models – MC timing analysis approaches [159, 192,
193]. Those contributions are on providing more information than the classical ones i.e., Vestal’s model in
Equation (2.1). They are motivated from the need for having more flexible representations and reduce the
pessimism that MC timing models have. Probabilistic approaches to timing analysis are explored because they
parameterize by the criticality levels: hi-criticality levels would require high guarantees, possibly deterministic
ones; for lower-criticality, probabilistic guarantees would suffice for understanding task executions and system
dynamics. Deterministic and probabilistic models can be combined together to represent the multiple tasks
executions.

The probabilistic MC models proposed are flexible because they embed multiple WCET thresholds each with
the probability associated. They are investigated in order to have new models able to reduce the pessimism of
classical deterministic MC models. The pessimism reduces since more precise WCET threshold can be associated
to each criticality level demanded.

There are also works on MC schedulability analysis which apply deterministic models as well as probabilistic
models [165, 166, 184, 190, 191, 194, 198, 201, 202, 203].

The sensitivity analysis for MC scheduling, deterministic or probabilistic, is defined on abstract representa-
tions and is motivated by the need for simplifying the MC scheduling problems: the analytical MC scheduling
conditions convert into graphical conditions with a schedulability region per criticality modes. The sensitiv-
ity analysis is developed also for having an efficient way of exploring trade-offs between schedulability, re-
source usage, and criticality levels. The trade-offs allow designing the MC system according to the criteria
adopted; they allow also developing the best changing strategies possible for the specific execution conditions
considered. Some works explore the qualities of sensitivity analysis and define task parameters to be investi-
gated [184, 190, 191, 198]

Deterministic MC schedulability approaches without sensitivity analysis are proposed with the objective of
reducing the pessimism of classical MC scheduling hypotheses. A newly developed algorithm come from the
demand of better coping with realistic MC hypotheses in which not necessarily all the hi-criticality tasks are in
hi-criticality mode at the same time. The scheduling algorithm allows for more efficient resource usage [166].

Probabilistic MC schedulability approaches without sensitivity analysis are proposed in order to apply prob-
abilistic MC models. With those algorithms, it is possible to define scheduling decisions which makes use of
probabilities. Accurate scheduling decisions can be are taken from the probabilistic models: they are accurate
because they better cope with runtime conditions. With those, it is possible to achieve improved resource usage.

Besides, it is presented a work on probabilistic MC schedulability analysis which develops a MC scheduling
algorithms inspired by classical deterministic MC schedulers. In it, probabilities are effectively applied into
scheduling decisions [165]. Such work is motivated by the need for using probabilistic models, and by the need
for leveraging probabilities into scheduling decisions. In [165], the contribution allows to see and implement
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what probabilities can do for MC scheduling: they allow to estimate probable changes, and take decisions that
better cope with those.

Another set of works on probabilistic MC schedulability analysis [200, 201, 202, 203, 204] is presented; they all
make use of formal methods for the MC scheduling problem. Formal methods are studied in order to reduce the
complexity of MC schedulability problems. With formal methods, it is possible defining formal representations
of task scheduling which are validate during construction. With those, probabilistic task models are applied,
probability of mode changes are quantified, and ”smart” scheduling strategies are developed. The strategies are
for reducing probability of changes to hi-criticality mode, and for reducing the number of lo-criticality jobs to
be dropped.

Fault happens within real-time embedded systems; they are tightly couples with execution conditions/crit-
icality levels. For these, faults have to be included into task models as well as into schedulability analysis for
MC. It is then proposed a work which embeds fault effects into task models, and that develop MC schedul-
ing analysis with fault models [194]. In it, probabilistic timing models are developed depending on the fault
conditions applied, and probabilistic sensitivity analysis is developed in order to evaluate impact of faults on
schedulability and criticality levels that can be guaranteed.

The chapter is structured to show first works on deterministic mixed criticality. Among those, are listed the
contributions which tackles with the schedulability analysis with and without sensitivity analysis. In particular:

- There is [198] that tackles with deterministic sensitivity analysis and formalize it with classical schedulers
such as EDF, for defining resource-criticality trade-offs. Trade-offs are defined to explore MC schedulability
conditions, resource usage, and criticality levels;

- There is [166] that releases the pessimistic hypothesis that once a hi-criticality task/job goes in hi-criticality
mode, every hi-criticality task/job goes in hi-criticality mode. More realistic hypotheses allows reducing
the pessimism.

Then, the probabilistic works on MC, both on timing models and on schedulability analyses are presented:

- [193] which formalizes probabilistic models that account for all the possible execution conditions with
probability associated to each WCET threshold. A flexible and fine grained representation reduces pes-
simism and enhance representation of system execution conditions;

- [184, 191] for the probabilistic sensitivity analysis and how it is formalized for the MC problem. These
two works are for investigate the potential of probabilistic abstract representations in reducing complexity
of MC scheduling problems;

- [194] which embeds fault effects into both probabilistic timing models (pWCETs) and probabilistic schedu-
lability analysis made with probabilistic sensitivity analysis. The work is for studying fault effects and the
robustness of MC scheduling decisions with respect to fault conditions; sensitivity analysis defines fault
models, schedulability, and criticality trade-offs

- [165] is a work on probabilistic MC schedulability analysis without the use of sensitivity analysis. It is
the first work in which probabilities define scheduling decisions;

- [204] which introduces formal methods to model probabilistic MC scheduling decisions and to develop
lo-criticality task/jobs dropping to maximize the resource usage. Formal methods prove to be effective
in representing complex scheduling problems like the MC one, while verified scheduling decisions are
developed from such representations.

Present contributions are concluded with remarks and possible future developments. In Figure 4.1 there is
represented how the tools developed in past research apply into the MC problem; the works listed in the
following details such contributions, while the tools applied are those presented in Chapter 3.

The results here presented are from ongoing collaborations with Prof. Zhishan Guo of University of Central
Florida, Prof. Laurent George of University of Paris Est, PhD Konstantinos Bletsas of CISTER Porto, PhD
Liliana Cucu-Grosjean of INRIA Paris, Prof. Iain Bate of University of York, and Prof. Kecheng Yang of Texas
State University.

4.1 Deterministic approaches to mixed criticality

Hereby two works on deterministic MC analysis [166, 198]: [198] that applies sensitivity analysis and tackles with
the industry perspective to MC; [166] that apply more classical MC scheduling with less constrained hypotheses.
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4.1 Deterministic approaches to mixed criticality

Figure 4.1: Current state of contribution to MC problem. Listed tools applied, already existing contributions and
MC extension of those.

4.1.1 Sensitivity analysis for mixed criticality

In [198], in collaboration with Prof. Zhishan Guo, the deterministic sensitivity analysis is applied to task models
and schedulability analysis with MC. This work makes use of deterministic approaches to MC real-time; the
MC perspective explored here is more the industrial one, in which partitions and partitions effects are evaluated
with the help of sensitivity analysis. The sensitivity analysis applied is for defining and evaluating possible
trade-offs.

The MC task modeling is laid out with multiple bounding functions such as resource demand and workload
bound functions. Those functions are defined in order to bound task behaviors under the possible execution
modes that can happen at runtime. Each bound represents a criticality level as well as an execution mode for the
task set. The set of bounding functions is applied to develop the schedulability conditions with MC. Different
levels of schedulability are defined from the possible criticality levels for fixed priority and EDF scheduling.
Finally, the sensitivity analysis applies to evaluate the impact that MC task behaviors have on schedulability.
Trade-offs between schedulability, criticality levels and resource availability are explored. The work here listed
is a continuation of [190] which applies more specifically to cyber-physical systems. In both [190, 198] the MC
perspective approached is more the industrial one than the academic one.

Bounding with mixed criticality

In MC real-time systems, task parameters such as WCETs depend on criticality levels. Safety critical applica-
tions have to be assured against any possible execution condition, faults included. A way to do that is to consider
WCETs large enough to account for such conditions. Instead, if the task is mission critical or non-critical, its
WCET requirement would be smaller as the task demands less in terms of resource and assurance [54, 140], [165].
The modeling and analysis are restricted to two criticality levels: the high criticality hi and the low criticality
lo. Nonetheless, the reasoning can generalize to any criticality level.

hi-criticality tasks i.e., safety critical, can have two execution modes, hi-criticality mode represented with
Ci(hi), and lo-criticality mode represented with Ci(lo). Ci(hi) models the hi-criticality behavior of the task τi
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4.1 Deterministic approaches to mixed criticality

(most critical), thus the worst possible conditions it can suffer [165]. Ci(lo) models the lo-criticality conditions
for τi. It does not assure against faults, at least it does not against all of them [165]. It has to be Ci(hi) ≥
Ci(lo) [140].

The model of a hi-criticality task is:

τi = ([Ci(lo), Ci(hi)], Ti, Di, χi). (4.1)

For it, two are the resource requests rbf possible, depending on the criticality mode active:

rbfhihi,i = max
{

0,
(⌈

t
Ti

⌉

· Ci(hi)
)}

which models the resource request in hi-criticality mode, and rbflohi,i =

max
{

0,
(⌈

t
Ti

⌉

· Ci(lo)
)}

which models the resource request in lo-criticality mode. χi is the task critical-

ity level indicating the task actual criticality mode, χi ∈ {hi, lo}.
lo-criticality tasks are tasks that can only execute under lo-criticality mode. Ci(lo) is sufficient to model

the task behavior. The lo-criticality task model is:

τi = (Ci(lo), Ti, Di), (4.2)

with only the lo-criticality mode possible, and rbflo,i = max
{

0,
(⌈

t
Ti

⌉

· Ci(lo)
)}

models the resource request

of the lo-criticality task τi.
The MC real-time application Γ composes of a hi-criticality part Γhi which includes all and only the hi-

criticality tasks, and a lo-criticality part Γlo which includes all and only the lo-criticality tasks; Γ = Γhi ∪Γlo.
At runtime there are different possible combinations of tasks executing in their criticality modes. For

example, it could exist combinations of only hi-criticality tasks executing in hi-criticality mode. There could
also exist combinations where some hi-criticality tasks execute in hi-criticality mode, others executes in lo-
criticality mode, and lo-criticality tasks executes as well. It is also possible to have all the hi-criticality
task executing in lo-criticality mode together with some or all lo-criticality tasks. Each combination k is a
scheduling that can happen at runtime, and has a criticality level associated χk resulting from the combination
of the criticality mode applied in the scheduling/combination.

The system criticality level χ describes the combination of tasks and task modes at runtime, χ ∈ {χ1, χ2, . . .}.
The purpose of this work is to model all the possible combinations, and apply them into schedulability analysis.

From the MC task modeling, Equation (4.1) and Equation (4.2), multiple bounds can be defined to the task
set resource request. They represent execution conditions as combination of tasks and task modes that can
happen at runtime.

- rbfhihi - is the resource request from all and only the hi-criticality tasks being in hi-criticality mode:
rbfhihi =

∑

∀τi∈Γhi
rbfhihi,i;

- rbfhi,lo,jhi - is the resource request from all the hi-criticality tasks in hi-criticality mode which are combined

with lo-criticality tasks: rbfhi,lo,jhi =
∑

∀τi∈Γhi
rbfhihi,i +

∑

some τk∈Γlo
rbflo,k. rbf

hi,lo

hi = {rbfhi,lo,jhi } is the
set of those rbfs with index j specifying which lo-criticality tasks are added to the hi-criticality ones;

- rbfhi−lo,r
hi - is the resource request where some hi-criticality tasks in hi-criticality mode, the rest in lo-

criticality mode, in combination with lo-criticality tasks:
rbfhi,lo,rhi =

∑

some τi∈Γhi
rbfhihi,i+

∑

rest τj∈Γhi
rbflohi,j+

∑

some τk∈Γlo
rbflo,k The whole set of combinations

is rbf
hi−lo

hi = {rbfhi−lo,r
hi } with r the index to the combinations specifying which lo-criticality tasks are

applied and which hi-criticality tasks are in hi-criticality mode;

- rbflo,khi - is the resource request where all the hi-criticality tasks are in lo-criticality mode and the com-

bination with lo-criticality tasks: rbflo,khi =
∑

∀τi∈Γhi
rbfhihi,i +

∑

some τk∈Γlo
rbflo,k. rbf

lo

hi = {rbflo,khi } is
the set of such combinations, with k the index to represent which lo-criticality tasks are added;

- rbflo - is the resource request from only lo-criticality tasks: rbflo =
∑

∀τi∈Γlo
rbflo,i.

The resource requests of all the combinations between tasks and task modes can be grouped as:

rbf
def
= {rbfhihi, rbf

hi,lo

hi , rbf
hi−lo

hi , rbf
lo

hi , rbflo}. (4.3)

To each resource request there is a system criticality level χk associated, χk ∈ χ.
With the MC model there exist a set of level-i workload bounds, each obtained with the combination of hi-

and lo-criticality tasks in their respective modes. Only the tasks higher priority than τi are combined for the
level-i workload, and χk

i is the criticality level associated of the level-i workloads combination. There exist:
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- wbfhihi,i - only the hi-criticality tasks all in hi-criticality mode; χhi
hi,i = hi represents its criticality level;

- wbf
hi,lo

hi,i - the hi-criticality tasks all in hi-criticality mode combined with lo-criticality tasks. To each

wbf
hi,lo,k
hi,i ∈ wbf

hi,lo

hi,i , χhi,lo,k
hi,i represents its criticality level;

- wbf
hi−lo

hi,i - some of the hi-criticality tasks in hi-criticality mode (the rest is in lo-criticality mode) com-

bined with lo-criticality tasks. To each wbf
hi−lo,j
hi,i ∈ wbf

hi−lo

hi,i , χhi−lo,j
hi,i represents its criticality level;

- wbf
lo

hi,i - all the hi-criticality tasks in lo-criticality mode combined with lo-criticality modes. To each

wbf
lo,r
hi,i ∈ wbf

lo

hi,i, χ
lo,r
hi,i represents its criticality level;

- wbflo,i - only lo-criticality tasks; χlo,i = lo represents its criticality level.

All the combination of the level-i workload are grouped as:

wbfhi,i
def
= {wbfhihi,i,wbf

hi,lo

hi,i ,wbf
hi−lo

hi,i ,wbf
lo

hi,i,wbflo,i}, (4.4)

with the criticality levels for the level-i workload as:

χi
def
= {χhi

hi,i, χ
hi,lo
hi,i , χ

hi−lo
hi,i , χlo

hi,i, χlo,i}. (4.5)

The bounds in Equation (4.4) can be ordered in increasing order, wbfj ≤ wbfj+1; the set χi from Equation (4.5)
is ordered accordingly and such that χj

i is for wbfji and χj+1
i is for wbfj+1

i .
In case of hi − lo, instead of enlisting all the combinations it is possible to define ’envelope’ bounds de-

pending on the number of hi-criticality tasks that are in hi-criticality mode at the same time: wbf
∗hi−lo,k
hi,i

def
=

maxj{wbfhi−lo,j
hi,i }. k is the number of hi-criticality tasks in hi-criticality mode considered for the combina-

tion. wbf
∗hi−lo

hi,i collects all those envelopes, for all k, and can be applied into wbf instead of wbf
hi−lo

hi,i . This
would reduce the number of possible combinations and criticality levels, in turn reducing the complexity of the
modeling.

Under EDF, the different combinations are represented with dbfs. There exist: i) dbfhihi - only the hi-criticality

tasks all in hi-criticality mode; χhi
hi,i = hi represents its criticality level; ii) dbf

hi,lo

hi - the hi-criticality tasks all in

hi-criticality mode combined with lo-criticality tasks. To each dbfhi,lo,khi ∈ dbf
hi,lo

hi , χhi,lo,k
hi associated to, is its

criticality level; iii) dbf
hi−lo

hi - some of the hi-criticality tasks in hi-criticality mode (the rest is in lo-criticality

mode) combined with lo-criticality tasks. To each dbfhi−lo,j
hi ∈ dbf

hi−lo

hi , χhi−lo,j
hi is its criticality level; iv) dbf

lo

hi

- all the hi-criticality tasks in lo-criticality mode combined with lo-criticality modes. To each dbflo,rhi ∈ dbf
lo

hi ,
χlo,r
hi is its criticality level; v) dbflo - only lo-criticality tasks; χlo,i = lo representing its criticality level. The

set of all those dbfs is:

dbfhi
def
= {dbfhihi, dbf

hi

hi, dbf
hi−lo

hi , dbf
lo

hi , dbflo}, (4.6)

and the set of criticality levels is:

χ
def
= {χhi

hi, χ
hi,lo
hi , χhi−lo

hi , χlo
hi , χlo}. (4.7)

The bounds in Equation (4.6) can be ordered in increasing order, dbfi ≤ dbfi+1; the set χ from Equation (4.7)
is ordered accordingly and such that χj is for dbfj and χj+1 is for dbfj+1.

In the hi−lo case, bounds can be defined bounds such that: dbf∗hi−lo,k def
= maxj{dbfhi−lo,j}. k the number

of hi-criticality tasks in hi-criticality mode; dbf
∗hi−lo

hi collects them all and can be applied into dbf instead of

dbf
hi−lo

hi . This allows reducing the number of possible combinations and criticality levels, in turn reducing the
complexity of the modeling.

Figure 4.2 illustrates an example of some level-i bounds wbfi ∈ wbf, while Figure 4.3 is an example of some
demand bounds dbf ∈ dbf from different task mode combinations. For each bound there is associated a criticality
level. In the figures there are represented few bounds (3 lo and a hi) which can be compared among them and

with the available resource sbf. It is: wbf
hi,r
lo,i ≤ wbf

hi,t
lo,i ≤ wbf

hi,k
hi,i ≤ wbf

lo,s
hi,i and dbfhi,mlo ≤ dbfhi,nlo ≤ dbfhi,jhi ≤

dbflo,vhi .
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∆
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Figure 4.2: level-i wbfs from MC executions under FP. Some wbfis compared with the resource provisioning
sbf.
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Figure 4.3: dbfs from MC executions under EDF. Some dbfs compared with the resource provisioning sbf.

Scheduling with mixed criticality

There are proposed two schedulability analyses based on FP and EDF that apply MC tasks Equation (4.1)
and Equation (4.2). They are off-line analysis which account for all the criticality mode combinations that can
happen at runtime. They embeds criticality levels into schedulability conditions.

These analyses focus on finding which are the criticality levels (criticality mode combinations) that can be
assured schedulable. They also allow for evaluating the resource applied to execute Γhi, and thus the remaining
resource is left to execute Γlo without harming hi-criticality tasks’ executions.

To guarantee schedulability, the resource provisioning sbf is compared with resource requests (workloads) in
case of FP, or with the resource demand in case for EDF. Figure 4.2 and Figure 4.3 illustrate the comparison
between bounds and some available sbf. The way to compare depends on the scheduling policy.

Theorem 4.1.1 (FP schedulability with MC) Considering a mixed criticality task set
Γ = {τ1, τ2, . . . , τn} of n tasks ordered with decreasing priority i.e., τ1 is assigned the highest priority whereas
τn is assigned the lowest priority. Γ composes of hi-criticality tasks Γhi defined as in Equation (4.1), and
lo-criticality tasks Γlo defined as in Equation (4.2). ∀τi ∈ Γ, hp(i) = {τj , τk, . . . , τi} is the set of tasks
with priority higher or equal to τi; tasks in hp(i) belongs to Γhi and Γlo. The level-i workloads are: wbfi =

{wbfhihi,i,wbf
hi,lo

hi,i ,wbf
hi−lo

hi,i ,wbf
lo

hi,i,wbflo,i}, according to Equation (4.4), and χi defines the set of criticality
levels for the level-i workloads Equation (4.5). Γ is FP schedulable under resource provisioning sbf with system
criticality level χ = mini{χi}, χi being the level-i criticality level in χi, if for all i ∈ {1, 2, . . . , n} ∃t0 ∈ schedPi

such that:

wbf
χi

i (t0) ≤ sbf(t0); (4.8)

schedPi is the set of deadlines of all τj ∈ hp(i).

Equation (4.8) in Theorem 4.1.1 defines the FP schedulability conditions which apply MC models. It proposes
different degree of schedulability for MC tasks.

Theorem 4.1.2 (EDF schedulability with MC) Considering a mixed criticality task set Γ = {τ1, τ2, . . . , τn}
with hi-criticality tasks Γhi defined as in Equation (4.1) and lo-criticality tasks Γlo defined as in Equation (4.2),

Γ = Γhi∪Γlo. For Γ, the ordered demand bound functions are dbf = {dbfhihi, dbf
hi,lo

hi , dbf
hi−lo

hi , dbf
lo

hi , dbflo), Equa-
tion (4.6), with χ defining the ordered set of levels of criticality Equation (4.7).
Γ is EDF schedulable under resource provisioning sbf with system criticality level χ if ∀t0 ∈ D:

dbf
χ(t0) ≤ sbf(t0); (4.9)

χ ∈ χ and dbf
χ ∈ dbfhi.
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Equation (4.9) in Theorem 4.1.2 defines EDF schedulability conditions which apply the MC models. It proposes
different degree of schedulability for MC tasks.

The proof of previous theorems can be found in [198].
The FP scheduling condition parametrized with χi, Equation (4.8), translates into comparing feasibility

regions and points within the (α,∆)-space. A feasibility region Φχi is defined such that:

∆ ≤ mini maxt∈SchedPi

{

t− wbf
χj
i (t)

α

}

. It has associated the criticality level χi such that all the wbfi, for all i

applied, are from the same criticality level χi, Theorem 4.1.1.
For EDF it is the same with the scheduling condition in Equation (4.9). A feasibility region Φχ is defined

such that: ∆ ≤ mint∈D

{

t− dbfχ(t)
α

}

, and is parametrized with χ.

To both FP and EDF, the set Φ of feasibility regions can be computed for the possible criticality levels
resulting from the mode combinations – one set per scheduling policy. It is:

Φ
def
= {Φhi

hi,Φ
hi,lo

hi ,Φ
hi−lo

hi ,Φ
lo

hi ,Φlo}, (4.10)

with the criticality level associated:

χ
def
= {χhi

hi, χ
hi,lo
hi , χhi−lo

hi , χlo
hi , χlo}. (4.11)

Φ can be made of envelope bounds, with Φ
∗hi−lo

hi instead of Φ
hi−lo

hi . The feasibility regions in Equation (4.10)
can be ordered in increasing order (from the small region to the larger), with the consequent ordering of the
criticality levels in Equation (4.11).
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Figure 4.4: FP feasibility regions for an example application Γ.

Figure 4.4 details some feasibility regions for FP scheduling with mixed criticality. Here it is possible com-
paring regions between them (ordering between regions Φk ≤ Φj), and compare each region with the available
resource sbf (sbf is inside Φj thus χj is guaranteed). lo-criticality conditions (lo) are more prone to schedula-
bility since they require less computational resource – larger feasibility region. The more hi-criticality tasks are
scheduled in hi-criticality mode or the more lo-criticality tasks are scheduled together with hi-criticality tasks,
the larger is the resource required to schedule – smaller feasibility regions.

It is intended to use sensitivity analysis to investigate multiple elements which can impact the design of MC
real-time systems. In particular, sensitivity analysis is applied with schedulability conditions parametrized with
criticality levels, Theorem 4.1.1 and Theorem 4.1.2. The proposal is illustrated with three questions.
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Q1) Which is the criticality level that can be assured with the available resource provisioning? This is a critical
question for MC scheduling as it focus on how enhancing computational resource usage by scheduling both
hi-criticality and lo-criticality tasks together. With the (α,∆)-space representation, the sensitivity analysis
answers Q1 finding the combinations that can be scheduled for a given resource. Considering the (k,m) formal-
ization, k lo-criticality tasks out of m total task executing, Q1 becomes seeking how many lo-criticality tasks
can be executed together with m− k hi-criticality task in hi-criticality modes. k is the parameter to be studied
in order to find the largest value that can be guaranteed with the available resource. With the MC modeling
proposed in combination with the (α,∆) representation, this can be solved seeking for the largest feasibility
region that include the sbf given. It is exploring an index in Φ seeking for regions.
Q2)What is the cost to guarantee schedulable a certain criticality level? The cost being in terms of computational
resource. The sensitivity analysis can be used to define what is the resource change necessary to guarantee the
schedulability up to a specific criticality level. This is very helpful in defining and evaluating trade-offs between
resource and criticality/schedulability. The Euclidean distance dist(sbf2, sbf1) between two points in the (α,∆)-
space, defined as:

dist(sbf2, sbf1)
def
= (δα = α2 − α1, δ∆ = ∆2 −∆1), (4.12)

quantifies the distance between two resource provisioning sbf2− sbf1 = (α2−α1,∆2−∆1). The cost here is the
resource provisioning change necessary to move from sbf1 to sbf2. To note that in order to increase the resource
provisioning, α has to increase and ∆ has to decrease. There exist also the distance between a point and a
feasibility region, dist(sbf1,Φ

j). It is defined as:

dist(Φj , sbfk)
def
= (±≥0/<0min|δα|,±≥0/<0min|δ∆|). (4.13)

Metric (4.13) quantifies the resource change to guarantee schedulable the configuration represented by Φj . With
all positive δs, the sign of the minimum between the absolute values | · | is +; with all negative δs, the sign is −.
αs and ∆s for Φj are taken from the region border, and the min is for the δs between sbfk and all those points.
Q3) What is the cost to change a system criticality mode? With this, it is intended the possibility in the
(α,∆)-space to quantify the computational resource difference between two criticality levels. The sensitivity
analysis quantifies that difference as distance between the two regions which is defined as:

dist(Φk,Φj)
def
= (±≥0/<0min|δα|,±≥0/<0min|δ∆|). (4.14)

Metric (4.14) is applied at iso-parameter, which means computing the δ∆ with the same α, and δα with the
same ∆. With all positive δs, the sign of the minimum between the absolute values | · | is +; with all negative
δs, the sign is −; with both negative and positive δs, the min is 0 as the intersection between the regions. The
αs and the ∆s are taken from the regions border. Metric (4.13) and Metric (4.14) are computed differently to
signal the resource difference that exist between the two cases.

Figure 4.4 is an example of sensitivity analysis for evaluating the resource necessary to guarantee schedu-
lability – Q1 and Q2 with Metric (4.12) and Metric (4.13). There are 6 regions grouped in 4 different classes:
lo for only lo-criticality modes combined, hi for only hi-criticality modes combined, hi − lo for some hi-
criticality tasks in hi-criticality modes combined with some lo-criticality tasks, hi, lo for all hi-criticality tasks
in hi-criticality mode combined with lo-criticality tasks. There are three cases which define three resource
provisioning changes from an initial resource sbf1. With sbf1 available is not possible guarantee any of the
schedulability level represented, since sbf1 in not included in any of those feasibility regions.
Change 1: change of sbf1 to sbf2 to guarantee schedulability of hi, lo, the most demanding case among the
represented ones. dist(sbf2, sbf1) = (δα = 0.985− 0.4 = 0.585, δ∆ = 0.65− 3.25 = −2.6), Metric (4.12). Change
2 iso-∆: change of sbf1 to lo configuration schedulability by modifying only α Metric (4.13), dist(Φlo, sbf1) =
(δα = 0.65−0.4 = 0.25, δ∆ = 0). Change 3 iso-α: change of sbf1 to lo configuration schedulability by modifying
only ∆ Metric (4.13), dist(Φlo, sbf1) = (δα = 0, δ∆ = 1.3 − 3.25 = −1.95). The difference between change 2
and change 3 is in terms of changing either α’s or ∆’s. Distances where one dimension is 0 are advantaged,
since the resource change necessary is easier to apply – less constraints.

Figure 4.4 presents also an example of cost evaluation with sensitivity analysis, Q3 and Metric (4.14). From
hi to one hi − lo configuration k, it is: dist(Φhi,Φhi−lo,k) = (0.17,−0.2). It quantifies the resource difference
between Φhi and Φhi−lo,k, equivalently the resource increase necessary to schedule Φhi−lo,k from a schedulable
Φhi. This translates also into the resource necessary to add lo-criticality tasks into the scheduling.
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4.1.2 Mixed criticality scheduling with limited hi-criticality behaviors

In the following, some details and results from [166]. In this work, in collaboration with Prof. Zhishan Guo and
Prof. Kecheng Yang, it is proposed a new MC system model able to cope with more realistic assumptions for
real-time embedded systems. This work is about applying deterministic approaches to MC.

The proposed model is more general than the existing well-studied Vestal’s model in the sense that it allows
a system designer to specify the number of hi-criticality tasks that can exceed their lo-WCET simultaneously.
It is analyzed how this additional specification could impact the schedulability and develop an MC scheduler for
this new model. Schedulability experiments are conducted to compare the results from the scheduler proposed
and from a classical MC scheduler, namely EDF-VD. The advantages from having only subsets of hi-criticality
tasks exceeding their lo-WCET thresholds simultaneously are validated by these experimental results.

Limited hi-Criticality Behaviors. In some systems, it could be reasonable to assume that only a limited
number N of hi-criticality tasks that may exceed their lo-WCET and reach their hi-WCET simultaneously,
where N ≤ nhi. In contrast, existing MC analysis usually makes the most pessimistic assumption that all of the
nhi hi-criticality tasks may execute beyond their lo-WCET and reach its hi-WCET simultaneously. Even if this
could actually happen, it can also be viewed as a special case (N = nhi) under the new MC model proposed in
this paper. By saying simultaneously (or ”at the same time”), it is intended within any time window of length
T = maxi{Ti} 1. That is, at most N hi-criticality tasks can require an execution time larger than their ci(lo)
within any time window of length T . Again, please note that the Vestal’s model is a special case of the model,
by assigning N = nhi.

Determine N . In [166], it is generally assumed that the parameter N is a parameter given offline, instead of
to be determined online by the scheduler. That is, how to determine N is not the focus of this paper, and the
focus is on the problem of how to schedule the tasks with a valid schedulability test when N is given as an input
parameter. Nonetheless, for the sake of inspiring future work, it is also briefly discuss a couple of potential
sources for where the N parameter could come from.

First, it could come from physical constraints in the systems. Different set of hi-criticality tasks may be
triggered to perform their hi-criticality behaviors by different physical measurements. Such difference may be
significant enough so that they cannot have simultaneous impacts on the system.

Second, it could come from contradicting logic control flows in the code. When the code of tasks has
branches, which branch is chosen to execute may depend on some global variables. Different task might have
the same global variables in their code, and the same global variables control the branch choices in multiple
tasks. As a result, it could be logically impossible for some hi-criticality tasks to take their worst branch choices
simultaneously. That is, they cannot have their hi-criticality behaviors to have simultaneous impacts on the
system.

Third, it could also come from probabilistic analysis if the WCETs of hi-criticality tasks are independent [42].
In this approach, the probability of multiple hi-criticality tasks performing hi-criticality behaviors could be
calculated as a product of multiple (hopefully small) probabilities for each individual task to perform its hi-
criticality behavior. When this product is sufficiently small, the simultaneous hi-criticality behaviors of these
tasks could be probabilistically deemed impossible.2 This setting was also considered in [165], which more focuses
on the various detailed combinations of tasks that may not perform their hi-criticality behaviors. Therefore,
a somewhat complicated scheduling approach was studied there. In this paper, the focus is on the maximum
number of such tasks only, and therefore enable the applicability of the relatively simple scheduler, EDF-VD.

It is revised a commonly used and adapted MC scheduler, namely EDF-VD [22], which was proposed for the
classical Vestal’s model. There are are defined the original analysis of EDF-VD to cope with less pessimistic
assumptions, and derive a new schedulability test for EDF-VD under the new model proposed in this paper.

EDF-VD. Similar to the classical EDF scheduler, EDF-VD is a deadline-based, dynamic-priority scheduler. In
contrast to EDF, EDF-VD assigns virtual deadlines, which are earlier than the actual deadlines, to hi-criticality
jobs. In the runtime, their priorities are determined by their virtual deadlines in the lo-criticality mode; upon
a mode switch, their priorities are changed back to their actual deadlines in the hi-criticality mode. Intuitively,
the virtual deadlines in the lo-criticality mode provide the room for the hi-criticality tasks to still meet their
actual deadlines in the hi-criticality mode, when they occasionally overrun their lo-WCETs.

Let τ denote the MC implicit-deadline sporadic task system that is to be scheduled on a preemptive single-
processor. Prior to runtime, EDF-VD performs a schedulability test to determine whether τ can be correctly

1When considering a certain time window of length T , any task τi with a partially overlapping scheduling window that experience
hi-criticality behavior counts (although it may be already finished by the beginning of the period of interest, or it did not start
executing by the end of the period of interest).

2Or equivalently, even if it does happen, it is viewed as erroneous, and the system design does not take care of it.
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scheduled by it or not. If τ is deemed schedulable, then an additional parameter x is computed for setting
virtual deadlines to hi-criticality tasks. Each virtual relative deadline T ′

i can be calculated by “shrinking” the
actual relative deadline Ti by the scaling factor x.

Next, it is described a schedulability test for EDF-VD under the proposed new model and prove its cor-
rectness. Note that, when N = nhi, this schedulability test reduces to the one for the classical Vestal’s model
in [22].

Schedulability test. First, given an MC task instance, the parameter x is calculated as follows:

x← Ulo
hi

1− Ulo
lo

. (4.15)

By Theorem 4.1.3 (to be presented later), this assignment of x will be able to guarantee the schedulability under
lo-criticality mode.

Then, the schedulability under hi-criticality mode can also be guaranteed if the following inequality holds:

xUlo
lo + Ulo

hi +

N
∑

i=1

δi ≤ 1. (4.16)

That is, given an MC task instance, the schedulability test needs to check whether Inequality (4.16) is satisfied.
The schedulability test returns success if Inequality (4.16) is satisfied, and failure otherwise.
Upon success, EDF-VD assigns virtual deadline parameters for all hi-criticality tasks as follows:

T ′
i ← x · Ti. (4.17)

Correctness proof. The correctness proof of the above schedulability test contains two parts: (i) all deadlines
being met under lo-mode (Theorem 4.1.3) and (ii) hi-criticality deadlines under hi-mode (Theorem 4.1.5).

Theorem 4.1.3 Under EDF-VD, all tasks meet their deadlines in lo-mode (where all jobs complete upon
receiving execution time up to their lo-WCETs) if

x ≥ Ulo
hi

1− Ulo
lo

. (4.18)

Lemma 4.1.4 For any period of length t, total demand by hi-criticality tasks can not exceed (Ulo
hi +

∑N
i=1 δi)t.

Theorem 4.1.5 Under EDF-VD, all hi-criticality tasks meet their deadlines in hi-mode if Inequality (4.16)
holds. In the hi-mode, some but no more than N hi-criticality job(s) have not completed upon receiving execution
time up to their lo-WCETs but will complete upon receiving execution time up to their hi-WCETs.

Theorems and lemma proofs are available in [166].
Runtime behavior. During runtime, if a lo-criticality job of task τi arrives at time-instant ta, then the priority
of this job is determined by its deadline ta + Ti, whereas its priority will be determined by its virtual deadline
ta+T

′
i if it is a hi-criticality job. If any hi-criticality job executes for a duration exceeding its lo-WCET without

signaling completion, the scheduler immediately discards all lo-criticality jobs1 and executes hi-criticality hi-
criticality tasks according to EDF order with their actual (instead of virtual) deadlines. Moreover, idleness
always serves as the trigger to lo-criticality mode of the system.
Additional discussions. Under the MC scheduling approach, lo-criticality jobs will be dropped in the hi-
criticality mode, and any hi-criticality job overrunning its lo-WCET will trigger the mode switch. With the
proposed model, this dropping may not be necessary. The following inequality should be examined before the
system starts any execution:

Ulo
lo + Ulo

hi +

N
∑

i=1

δi ≤ 1. (4.19)

If Inequality (4.19) is true, then actually no mode switch nor virtual deadline is needed. The system can be
scheduled by ordinary preemptive EDF scheduler and all deadlines will be met. This result directly follows from
Lemma 4.1.4. If Inequality (4.19) is false, it is then applied the MC scheduling techniques described earlier in
this section, and examine Inequality (4.16) to verify the schedulability.

Case studies and experimental results are available in [166].

1An efficient implementation of such a runtime dispatcher may be obtained using the technique described in [22, Sec. V-A], to
have runtime that is logarithmic in the number of tasks.
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4.1.3 Some conclusions on deterministic approaches to mixed criticality

Sensitivity analysis for mixed criticality. In [190, 198] is formalized the deterministic sensitivity analysis
through which explore trade-off between computational resource, criticality levels, and schedulability. The effect
of changes on resource availability or on different modes are quantified with the abstract representation of the
deterministic (α,∆)-space.
In those papers there are presented multiple case studies from ONERA projects, e.g. ROSACE application
http://sites.onera.fr/schedmcore/ROSACE and
https://svn.onera.fr/schedmcore/branches/schedmcore-RTAS2014/Case_Study_RTAS/, which is a multi-
periodic controller executing on a multi/many-core target. In those, the deterministic sensitivity analysis applies
at design and development time. The MC perspective adopted is more the industrial one, with no mode changes
but just possible modes and mode combinations. Task sets are partitioned and for each partition, classical EDF
or FP schedulers are applied.
Future works will develop strategies for optimal or sub-optimal changes to resource or system parameter. Also,
future contributions will extend sensitivity analysis to probabilistic MC task models.

Mixed criticality scheduling with limited hi-criticality behaviors. Future development on deterministic
MC is necessary to overcome the pessimism of the classical Vestal’s model which states that if one hi-criticality
task goes in hi-criticality mode, all the hi-criticality tasks go in hi-criticality mode. This assumption is pes-
simistic and not necessarily representing real MC application; relaxing the assumption will continue to be in-
vestigated in order to achieve more efficient resource utilization under mixed criticality. As possible approaches,
there are those that explore (k, n) definition of system hi-criticality mode, or those that apply the notion of
graceful degradation.
The collaboration with Prof. Zhishan Guo and Prof. Kecheng Yang will continue developing more efficient
deterministic MC scheduling algorithms, but also to reduce the complexity of MC scheduling with more realistic
hypotheses.

4.2 Probabilistic approaches to mixed criticality

In this section there are presented the probabilistic approaches for the MC problems. First the timing models,
then the schedulability analyses are detailed.

4.2.1 On the criticality of pWCET models

The work in [193] proposes a probabilistic representation framework for real-time tasks which composes of
multiple probabilistic worst-case models, each estimating the worst-case of a specific possible execution condition
that both tasks and the system can encounter.

The probabilistic task model developed can be applied to the MC problem, since probabilities and multiple
pWCETs can characterize the criticality modes as different task conditions as well as different confidences.
Besides, the probabilistic representation can be used for characterize the effects that faults have on the tasks
executions, proving to be flexible and safe.

Worst-case bounding

The absolute pWCET Ci is the worst-case distribution that upper bounds every task execution time obtained
under any possible execution scenario sj ∈ S. The absolute pWCET Ci is safe if it upper bounds every task
execution time under any execution scenario.

Given sj ∈ S, the pWCET Csji comes from the measurements taken under sj and the EVT applied to them

(Figure 3.4). Csji is the pWCET specific to sj , the relative pWCET; the relative pWCET Csji is safe if it upper
bounds any task execution time under sj .

Measurement representativity is a fundamental requirement for guaranteeing both absolute and relative
pWCETs. Hereby the focus is on representativity as the measurement capability of well characterizing multiple
execution conditions (worst-cases included) like in [2, 113]. Differently than those works, it is not considered
artificially randomized systems that aim at increasing the chances of measuring the worst-case. The input
representativity can be built from an enhanced knowledge of the system and of its scenarios, thus from a study
of the system, its S and the coverage of the execution conditions.

From the partial ordering between pWCETs [48], it is possible defining a notion of dominance for scenarios.
With respect to task τi, given sr and st from S, sr dominates st if and only if Csri is greater than or equal
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to Csti , Csri � Cs
t

i , � being the ”greater than or equal to” operator which defines the partial ordering between
distributions [48].

It is also possible defining the notion of equivalence between scenarios. Given sk and sj from S, with respect

to task τi s
k is equivalent to sj if and only if there exist values in the support of Cski and Csji for which Cski � Cs

j

i

and there exist other values in the support of Cski and Cs
′j

i for which Csji � Cs
k

i .
For a set of equivalent scenarios Sj = {sj , sk, . . . , st} ⊆ S (sk, . . . , st equivalent to sj), it is possible defining

the scenario sj∗ that dominates all the scenarios in Sj . It would be such that Csj∗i
def
= maxsj∈Sj{Csji }, while

with the ICDF representation, it would be F ′
Csj∗
i

(C)
def
= maxsj∈Sj{F ′

Csj

i

(C)}. sj∗ is not a real scenario, but it

dominates all the sk ∈ Sj .

Worst-case set. The Worst-Case Set task representation is the collection of all the pWCET from S; Ci is
the Worst-Case Set representation as a set of pWCET estimates such that:

Ci def
= (Cs1i , Cs

2

i , . . . , Cs
n

i ). (4.20)

With partial ordering between relative pWCETs it is possible ordering scenarios and get S = {s1, s2, s3, . . . , sk}
such that Csk � Csk−1 � . . . � Cs1 ; the Worst-Case Set becomes:

Ci def
= (Cs1i , Cs

2

i , . . . , Cs
k

i ), (4.21)

with sk the worst-case scenario for τi, s
worst ≡ sk.

Although, the focus on MBPTA, the Worst-Case Set representation applies to both MBPTA and SPTA with
multiple execution conditions possible.

Worst-case set and dominance

Although with actual real-time systems it is reasonable to assume a finite number of measurement scenarios,
enumerating them all remains a complex problem. With dominance between scenarios, it would be possible
neglecting the dominated scenarios in order to ease the task representation from Equation (4.20) and Equa-
tion (4.21). Moreover, with equivalence between scenarios it would be possible to assume the correspondent
dominating scenario s∗,j to represent all the equivalent scenarios Sj .

From Equation (4.20) and Equation (4.21), fewer dominating scenarios S∗ could be considered to represent
the task execution behavior. S∗ = {sr, sj , sk} ⊆ S is such that sr dominates some scenarios in S, sj dominates
other scenarios as well as sr and sk dominates all the scenarios. The Worst-Case Set becomes:

Ci def
= (Csri , Cs

j

i , Cs
k

i ), (4.22)

as a less complex probabilistic representation to the task executions; Equation (4.22) remains a safe represen-

tation for the task behavior since the worst-cases sk and Cski are included.
Figure 4.8 depicts S = {s1, s2, . . . , sk ≡ sworst}, each scenario sj with a trace of execution time measure-

ments; the resulting pWCETs Cski are illustrated with the partial ordering guaranteed by �.
At this stage, S is assumed to be known; future work will investigate how to obtain the different scenarios

and how to guarantee the existence of worst-cases among them.
Combining the orthogonal information of WCET thresholds (with probability associated) and execution

scenarios from the Worst-Case Set, Equation (4.20), Equation (4.21) or Equation (4.22), inter-scenario and
intra-scenario representations exist.

Inter-scenario representation. The inter-scenario representation characterizes task behavior across scenar-
ios. Given an exceeding probability p and the WCET threshold at that exceeding probability for each scenario
sj ∈ S (equivalently sj ∈ S∗), it is 〈Ci, p〉 such that:

Ci
def
= (Cs1

i , C
s2

i , . . . , C
sk

i ) (4.23)

is the set of WCET thresholds such that 〈Cj
i , p〉 ∀sj ∈ S. As an example, it is possible picking p = 10−9 with

〈Cj
i , 10

−9〉 ∀sj ∈ S. Equation (4.23) is the inter-scenario representation for the task worst-case execution time.
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Intra-scenario representation. The intra-scenario representation describes the task behavior focusing on
a specific scenario. For a given scenario sj ∈ S (equivalently sj ∈ S∗) and a set of exceeding thresholds
probabilities (p1, p2, . . . pm) it is:

Ĉsj

i
def
= (〈Csj

1,i, p1〉, 〈Csj

2,i, p2〉, . . . , 〈Csj

m,i, pm〉). (4.24)

Equation (4.24) is the intra-scenario representation for the task worst-case execution time on a specific scenario
with all the meaningful WCET thresholds and exceeding probabilities.

Inter- and intra-scenario representations will be proven to be handy for schedulability and sensitivity analysis
with future work.

Each pWCET estimations composing the Worst-Case Set representation implicitly carries confidence (as
safety) of being the absolute task pWCET; execution scenarios may be more or less safe in defining pWCET
estimates and WCET thresholds. For example, s1 from Equation (4.21) provides the least confident absolute

pWCET as Cs1i : Cs1i is the least safe absolute pWCET for τi; s
2 provides slightly more confidence that Cs2i is

the absolute pWCET for τi: Cs
2

i is relatively safer than Cs1i . Going on with the scenarios within S, the safety

increases up until sk which is the worst-case scenario and Cski is the only 100% safe absolute pWCET for τi; Cs
k

i

is the safest among the pWCETs.
The MC task model makes use of multiple WCETs for characterizing the task behavior; such bounds results

from different timing analysis tools as well as different criticality requirements that task can respect at runtime.
For example, in the two-criticality-level case, each task is designated as being of either higher (hi) or lower
(lo) criticality, and two WCETs are specified for each hi-criticality task: a lo-WCET determined by a less
pessimistic tool or a less demanding safety requirements (e.g. mission-critical or non-critical) , and a larger
hi-WCET determined by a more conservative tool or more safety-critical requirements.

For real-time systems, safety and criticality have a strong relationship so that they can be interchanged
whenever applied for timing analysis and schedulability analysis: a safe pWCET is the worst-case models which
can apply with high critical modes.

Least critical Scenario lo-critical. In case of s1 from Equation (4.21), the task has the least execution

time, thus the least dominating relative pWCET Cs1i . Cs1i upper bounds any (and only) possible execution time

resulting from s1; it is the last safe absolute pWCET, equivalently the least critical lo-criticality. Cs1i is applied
to characterize lo-criticality requirements of τ1 and the lo-criticality functional mode.

Critical Scenarios mi-critical. From S ordered by dominance, Equation (4.21), s2 dominates s1 because

under s2 the task suffers execution times bigger than under s1. Considering Cs2i as absolute pWCET, it would

be slightly safer than Cs1i , but it is not safe enough to upper bound the other sj ∈ S. Cs2i is the middle criticality
(mi-criticality) characterization for τi.

With s3, it is Cs3i dominating Cs2i and Cs1i since s3 produces larger execution times than s1 and s2. Thus, Cs3i
would be safer than Cs2i as absolute pWCET. Also Cs3i is a mi-criticality characterization for τi but more critical

than Cs2i .

There are distinguished between mi-2-criticality and mi-3-criticality, respectively for s2 and s3, and Cs3i � Cs
2

i .
Other intermediate criticality levels can be defined from sj ∈ (S \ sk).
Most Critical Scenario, hi-critical. The pWCET Cski from sk is the safest absolute pWCET. Cski is also

the hi-criticality bound to the task behavior. Cski ≡ Cs
worst

i represents the worst conditions and is the most
conservative upper bound for τi to be applied in the highest critical modes.
From Cs1i it would be possible to extract 〈Ci(lo), 10

−9〉. It is named Ci(lo) the lo-critical WCET threshold

as it results from the least safe pWCET model Cs1i ≡ Cloi . Ci(lo) is the lo-criticality WCET threshold with a
confidence of 10−9.
sj , with 1 < j < k form Equation (4.21), is a mi-j-criticality scenario that upper bounds all the scenarios sr

such that r ≤ j; Csji ≡ Cmi−j
i is the mi-j-criticality pWCET. Csji � Cs

j−1

i and 〈Ci(mi − j), 10−9〉 is such that
Ci(mi− j) ≥ Ci(mi− j − 1); Ci(mi− j) is the mi-j-criticality WCET threshold with a confidence of 10−9.

sk is the worst-case scenario and Cski is the absolute pWCET for τi. Cs
k

i ≡ Chii is the hi-criticality pWCET and
sk is the hi-criticality scenario for the worst conditions. From Chii , it is 〈Ci(hi), 10

−9〉 such that Ci(hi) is the

hi-criticality WCET threshold. Chii � Cmi−j
i and Ci(hi) ≥ Ci(mi− j).

From the difference in safety/criticality between sworst, s3, s2 and s1 execution conditions, it is Chii � Cmii �
Cloi . Also, Ci(hi) ≥ Ci(mi) ≥ Ci(lo) for the same probability p from respectively Chii , Cmii and Cloi . How
much they differ depends on the relationship between the scenarios and the impact that the scenarios have on
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the execution times of tasks. p = 10−9 is chosen arbitrarily, but the probabilistic modeling proposed can make
use of any probability, depending on the confidence requirements.

The MC Worst-Case Set representation for τi is:

Ci def
= (Cloi , . . . , Cmi−j

i , . . . , Cski ). (4.25)

For the intra- and inter-scenario perspective, adding criticality levels to Equation (4.23) and Equation (4.24)

it is Ci
def
= (Ci(lo), . . . , Ci(hi)) for the inter-scenario MC representation 〈Ci, p〉 at probability p and Ĉ(l)i def

=
(〈C(χi)1,i, p1〉, 〈C(χi)2,i, p2〉, . . . , 〈C(χ〉)m,i, pm〉) for the intra-scenario MC representation at the criticality level
χi and probabilities p1, p2, . . . pm.

MC probabilistic task model. With three criticality levels, the MC task model based on the Worst-Case
Set is:

τi = ([Ci, 〈Ci, 10
−9〉, (Ĉloi , Ĉmii , Ĉhii )], Ti, Di), (4.26)

where Ci = (Cloi , Cmii , Chii ) and 〈Ci, p〉 = (Cloi , Cmii , Chii ). The intra-scenario representation is such that

Ĉloi = (〈Clo1,i , 10
−3〉, 〈Clo2,i , 10

−6〉, 〈Clo3,i , 10
−9〉) for the lo-safety,

Ĉmii = (〈Cmi1,i , 10
−3〉, 〈Cmi2,i , 10

−6〉, 〈Cmi3,i , 10
−9〉) for the mi-safety scenario and

Ĉhii = (〈Chi1,i , 10
−3〉, 〈Chi2,i , 10

−6〉, 〈Chi3,i , 10
−9〉) for the hi-safety scenario.

The MC task model is essentially asserting that depending on the conditions for the timing analysis applied
it is possible to have more or less guarantees on the pWCET and the WCET thresholds estimates. Only by
considering most of the possibilities (necessarily the dominating ones) the MC worst-case models are safe. The
MC task model can be generalized to multiple criticality levels and different probabilities in order to better cope
with the requirements.

It is necessary to investigate the statistical independence between criticality levels and pWCETs for the MC
Worst-Case Set representation. It has already been showed that there exist independence between absolute
pWCETs, thus between hi-criticality representations Chii and Ci(hi) from sk.

Supposing sj represents a criticality level other than hi-criticality, what happens to the pWCET estimates of
τi and τk? Under sj , the conditional probability pdf

Csj

i |Csj

k

equals pdf
Csj

i

(equivalently pdf
Csj

k
|Csj

i

equals pdf
Csj

k

)

because all the effects from sj have been included into the relative pWCETs Csji and Csjk . This assures tasks
independence with the same scenario.

With sr dominating sj for both τi and τk, what happens to Cs
r

i and Csjk ? It is pdf
Csr

i |Csj

k

= pdfCsr

i
, since all

the effects of sj and τk on τi have been already taken into account by Csri . This guarantees the independence
between τi and τk under sr and sj , respectively for τi and τk.

Worst-Case Set representations guarantee tasks independence and independence between criticality levels
which will ease task combination and schedulability analysis.

Faults (either transient or permanent) translate into penalties δ (latency) to the task execution time which
depends on the time t the fault happens, δ(t). With C(t) the expected task execution time at time t, in presence
of fault it would be C(t) + δ(t) the task execution time accounting for the fault penalty on task computations.
With a measurement-based approach, fault effects on task execution can be measured and directly embedded
into traces of execution time measurements; then, with EVT it is possible infer pWCET estimates which upper
bounds faulty execution conditions.

Different scenarios are possible with respect to faults. By considering non-faulty conditions (fault never
happening), it is scenario sNF that describes the task behavior. Here, the execution times observed exploit

only the task functional behavior due to the absence of faults. For sNF it exists CsNF

i ; sNF is the lo-criticality

scenario with Cloi ≡ CNF
i , C(lo) and Ĉi(lo) representing it.

It could also exist sFW which assumes that the worst fault condition manifests at runtime; CFW
i is the

pWCET estimate for sFW . sFW is the wort-case scenario where the task executes always under the most
critical conditions; Chii ≡ CFW

i , Ci(hi) and Ĉi(hi) represents it.
In between these two extreme scenarios, it exist a set of possible faulty scenarios where faults are not as

extreme as sFW and sNF , nonetheless they happen and affect the normal task behavior. For example, it could

exist sF1 which is the mi-1-criticality scenario with Cmi−1
i ≡ CsF1

i , Ci(mi−1) and Ĉi(mi−1); Ci(mi−1) ≥ Ci(lo)

and Cmi−1
i � Cloi . It could also exist sF2 as the mi-2-criticality scenario with Cmi−2

i ≡ CsF2

i , C(mi − 2) and

Ĉi(mi− 2); Ci(mi− 2) ≥ Ci(mi− 1) and Cmi−2
i � Cmi−1

i .
Specific to faults and faulty scenarios, it is S = {sNF ≡ slo, sF1 ≡ smi−1, sF2 ≡ smi−2, . . . , sFW ≡ smi}

with the task MC Worst-Case Set given by Ci = (Csloi , Csmi−1

i , Csmi−2

i , . . . , Cshii ).
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What is about to be proposed is a representation framework that applies to faults effects. It could ab-
stract different faults and fault tolerant mechanisms implemented as recovery functions or task extra-executions
resulting into larger task execution times and worst-case execution times.

The complexity from such MC representations is not considered here, preferring at this stage to investigate
the benefits of a detailed probabilistic model to task MC behaviors.

4.2.2 Probabilistic sensitivity analysis for mixed criticality

[191] is the first work on defining probabilistic sensitivity analysis for probabilistic MC problems. This work is
the result of the collaboration between Prof. Laurent George and Prof. Zhishan Guo on probabilistic sensitivity
analysis for MC problems. The attempt is to leverage probability information into scheduling and trade-off
decisions aiming at resource usage parametrized with probability and criticality level. In here, it is defined the
notion of parameter β, and how it can be applied for probabilistic sensitivity analysis.

Probabilistic bounds. Real-time systems with probabilistic models require schedulability conditions which
involve probabilities. Given a random process Ci describing the evolution of τi worst-case execution time, it is
possible to state the notion of probabilistic demand bound function, [189, 197].

The dbfi,j(t) is the demand bound function in the interval [0, t]: dbfi,j(t)
def
= ⌊ t−Di

Ti
+ 1⌋ × ci,j . The bound

is the result of a specific WCET threshold ci,j , and by definition, it represents an upper-bound to any dbfi,k
obtained from ci,k ≤ ci,j . The confidence of the bound associated is the confidence pi,j of the WCET ci,j
applied. ci,j defines a probabilistic bound 〈dbfi,j(t), pi,j〉 to the task resource demand; 〈dbfi,j(t), pi,j〉 is such
that pi,j is the probability that dbfi,j(t) is an upper-bound to the τi resource demand in [0, t]. Equivalently to
dbfi,j(t) it can be written dbfi(t, ci,j).

As 〈dbfi(t, ci,j), pi,j〉 represents a single demand bound function with its associated confidence, it exists a
dbfi(t, ci,j) for each ci,j ∈ Ci. All together the 〈dbfi(t, ci,j), pi,j〉 form a distribution of demand bound functions,
DBF i(t) = (dbfi(t, ·), pi(·)) which is the probabilistic demand bound function (probabilistic demand curve) of
τi in [0, t]. DBF i(t) collects the set of all demand bound functions dbfi(t) and the set of all confidences pi. In
particular, the pis forms the CDF of DBF i(t), cdfDBFi(t), as cumulative probabilities. To note that the set of
probabilities pi does not change with the interval [0, t], therefore form one interval to another is only the bounds
dbfi(t) to change, but not their confidence.

The application Γ probabilistic demand curve DBF = (dbf(t, ·), p(·)) results from the combination of tasks
demand bound functions DBF i:

DBF(t) = ⊗iDBF i(t), (4.27)

with ⊗ the convolution of the distributions. dbf(t, ·) is the set of all the demand bound functions:

dbf(t, ·) def
= +idbfi(t, ·), (4.28)

with + the combination (sum) of all the demand bound function. p(·) is the set of all the confidence probabilities:

p(·) def
= ×ipi(·), (4.29)

with × the combination (product) of all the demand bound function probabilities.
The demand bound function dbf(t, c) is the application demand with c = (c1,j , c2,k, . . .) the array of WCET

thresholds used for achieving dbf(t, c); p(c) is the confidence of dbf(t, c) such that:

p(c) = p1(c1,j)× p2(c2,k)× . . . . (4.30)

The probability multiplication for the joint probability p(c) is possible due to the worst-case distribution as-
sumption. As Ci are pWCETs they are independent, the distributions DBF i are independent among each other;
consequently the joint probability p(·) could result from the probability multiplication, Equation (4.30).

The schedulability under EDF states that

∀t ∈ D, dbf(t) ≤ t, (4.31)

with D the set of Γ deadlines within the hyperperiod, according to [29, 31].
With a probabilistic framework each condition dbf(t, ·) ≤ t has a probability p(t) associated, which is the

confidence on the demand bound function dbf(t, ·). Being p = p(c) the probability of not passing dbf(t, c), with
the condition dbf(t) ≤ t the probability p could be also interpreted as the probability of verifying the condition.
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For all t ∈ D, it exist c∗ such that dbf(t, c∗) = max{dbf(t, c) | dbf(t, c) ≤ t}. P (t) = p(c∗) from Equa-
tion (4.30) is the probability for which dbf(t) ≤ t is true. The overall schedulability probability P is given such
that all the conditions are satisfied:

P = P (t1)× P (t2)× . . . , (4.32)

with P (tk) the schedulability probability of the k-th condition dbf(tk) ≤ tk, tk ∈ D. The independence between
conditions and the probability product as the joint probability, are guaranteed by the use of pWCET distri-
butions. 1 − P is the probability that at least one condition is not respected, thus the probability of deadline
miss.

Probabilistic C-space. From Condition (4.31) and Equation (4.32) it is possible to build the probabilistic
version of the C-space (pC-space), [65]. The pC-Space is the abstraction that applies the schedulability condition,
Condition (4.31), to a vector of execution times c = {c1, c2, . . .}. Each point c = {c1, c2, . . .} in the pC-Space
is a combination of task WCET thresholds. Within the pC-Space, given the scheduling policy, it is possible
to define the schedulability region where every point c within the region is a schedulable WCET thresholds
configuration, and the points outside the region do not represent schedulable WCET thresholds configurations.
[65] for the details on the definition of the deterministic C-space under EDF.

The pC-Space maps also probabilities onto points. Each c within the space has a probability associated
which is the probability of being the application set of worst-case execution times, Equation (4.30). Then,
depending on where the point is with respect to the schedulability region, the probability could translate into
schedulability probability. For the points at the feasibility region border, their ps, Equation (4.30), are exactly
the schedulability probability, Equation (4.32). With the different probabilities P within the region and at the
border it would be possible to classify portions of the regions with respect to the schedulability probability P .

The probabilities within the pC-Space can be interpreted in various ways:

- As the confidence of not passing the WCET thresholds of c. With the criticality levels there is also the
probability of remaining at a certain criticality level p(crit) = p1(crit)× p2(crit)× . . .. Consequently it is
quantifiable the possibility of changing that level as 1− p(crit).

- As the confidence on the system schedulability P , or the confidence per schedulability condition, Pk. The
feasibility region is characterized by P and all the points inside the region are schedulable but with a
confidence of at least P , Equation (4.32). It translates into a per-condition schedulability probability of
Pk.

- As the confidence β on the worst-case behavior of the tasks. β is the probability of passing the c(β);
per-task it would be cj(β).

With different probability interpretations the pC-Space can be used for different purposes. At one end there
is the modeling of the probabilistic applications; on the other end, it is possible to develop analysis on top of
the pC-Space with probabilities.
pC-Space for MC. The pC-Space is the extension of C-space developed for pWCETs applying the new task
model of Equation (4.26) for different execution scenarios and different safety levels. The pC-Space is used
for formalizing the sensitivity sensitivity and the schedulability analysis with probabilities and safety levels.
The pC-Space accounts for the fault models with the discrete and finite possible execution conditions per task,
Equation (4.26). pC-Space is a space built on tasks WCET thresholds of Equation (4.23), where it is possible
to represent schedulable task set, safety levels and confidence probabilities. A point c outside the feasibility
region is a task set not schedulable.
The task model τi = ((Ci(lo), Ci(hi)), Ti, Di) results into the set of dbfs:

dbfi(t, Ci(hi))
def
= ⌊ t−Di

Ti
+ 1⌋ × Ci(hi) and dbfi(t, Ci(lo))

def
= ⌊ t−Di

Ti
+ 1⌋ × Ci(lo),

with dbfi(t, Ci(hi)) ≥ dbfi(t, Ci(lo)). Some tasks combinations accounting for the safety levels are:

clo = (C1(lo), C2(lo), . . . , Cn(lo)),

c1 = (C1(lo), C2(lo), . . . Cn(hi)),

c2 = (C1(lo), C2(lo), . . . , Cn−1(hi), Cn(lo)),

. . . ,

chi = (C1(hi), C2(hi), . . . Cn(hi)).
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As a result, there exist multiple possible demand bound functions for the set of tasks depending on the WCET
thresholds chosen:

dbf(t, clo) =
n
∑

i

dbfi(t, Ci(lo)),

dbf(t, c1) =

n−1
∑

i=1

dbfi(t, Ci(lo)) + dbfn(t, Cn(hi)),

. . . ,

dbf(t, chi) =

n
∑

i=1

dbfi(t, Ci(hi)).

As a reminder, the combinations and dbfs here before are not all the possible combinations. They are a subset
where each element dominates other configurations i.e., upper-bounds other configurations.

The different WCET thresholds per task allow enriching the pC-Space representation with more informations
about the safety or not of the points c. Moreover, by considering the probability associated to the Cis, it is
possible to add probabilities to the pC-Space. Indeed, with 〈Ci,j , pi,j〉, the resulting demand bound function
dbfi(t, Ci,j) = ⌊ t−Di

Ti
+ 1⌋ × Ci,j has pi,j associated which is the confidence on the demand bound function

upper-bounding task behaviors. With probability pi,j , τi demands more computation time than dbfi(t, Ci,j).
For a point c, the probability is given by the product of the WCET thresholds composing c due to the pWCET
independence. The hi and lo safety levels and the probabilities remain separated.

The probabilistic version of the sensitivity analysis [65] intends to combine the information from the proba-
bilistic models (the pWCETs, β, and the confidences β and ps) and the pC-Space representation.

The Cis discretize the pC-Space as they maps the points to only the possible WCET thresholds of the tasks.
Out of that, the probabilistic sensitivity analysis can be applied to quantify the effects of changes in terms of
schedulability, probabilities/confidences, and criticality.

- What are the resource demand that can be accommodated? Hence, which task combinations can be
accounted for a schedulable systems, the criticality levels that can be considered in order to make the
system schedulable, etc..

- What can be done with β? By acting on β (limiting task WCETs to c(β)) it is possible to evaluate
the effect on the execution of tasks. What are the effect of β on the tasks criticality levels? With the
relationship β → crit is is possible to infer the criticality levels which subdue to the c(β) bounding.

Furthermore, with the probabilistic sensitivity analysis it is possible to evaluate the effect of changes on
Γ. For example a change on β, from β to β′ would result into a WCET threshold change c to c′, such that
c = (c1,j , c2,k, . . .) and c′ = (c1,r, c2,s, . . .). The change of probabilities, from p(c) to p(c′), is an immediate
consequence of the change of β. It would also be evident the effects of changes on the allowed criticality levels,
from β → crit.

While P does not change by moving the points toward the feasibility region (by limiting task execution
behavior with β), it is possible to increase the confidence that the feasibility condition is respected.

4.2.3 Open problems with probabilistic sensitivity analysis

With the pWCETs it is possible to construct the probabilistic version of the C-space (pC-space) and the
probabilistic version of the (α,∆)-space. This work intends to provide an initial evaluation to the flexibility
brought by the probabilistic models and the probabilistic scheduling to the mixed criticality problem. The
sensitivity analysis is enhanced with probabilities, and the paper illustrates some initial thoughts and possible
strategies for resource allocation with mixed critical tasks are provided. It has been proposed to the open
problems workshop because how to efficiently use the sensitivity analysis remains an open problem.

This abstract presented at RTSOPS is for illustrating possible ways to apply sensitivity analysis with prob-
abilistic models and ease the complexity of actual probabilistic schedulability analysis. The sensitivity analysis
would allow exploring the flexibility of the probabilistic models into real-time systems design and development.
Moreover, the sensitivity analysis would directly link probabilities to scheduling conditions and effectively apply
them into scheduling decisions. This is an open problem since so far there are not proposed effective works on
that. The abstract illustrates ideas around sensitivity analysis and probabilities which could lead to unexplored
contributions for reducing the pessimism and implementing better probabilistic schedulers.
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(α,∆)-space

With probabilities there exist multiple probabilistic feasibility regions depending on the WCET thresholds C
applied. Each 〈ΦΓ(C,P 〉 is a feasibility region ΦΓ(C) from the WCET thresholds selected C and the probability
P associated to it. P is the same as the one of 〈dbf(t, C), P 〉 and is the probability of exceeding ΦΓ(C); it can be
also interpreted as the probability of verifying the condition dbf(·, ·) ≤ sbf, thus the ’schedulability probability’.

In (α,∆)-space, the Euclidean distance (δα = α2 − α1, δ∆ = ∆2 − ∆1) defines the distance between two
resource supply lsbf; it can be extended with probabilities and used for sensitivity analysis.

With the probabilistic (α,∆)-space, the sensitivity analysis would:
1) Evaluate the resource demand for probabilistic schedulability answering to: For a specific probability, what are
the resource provisioning necessary to guarantee the probabilistic real-time application? Resource evaluation can
be applied to develop and guarantee strategies that change resource provisioning and obtain specific probabilistic
schedulability levels.
2) Define and explore the resource provisioning-probabilistic schedulability trade-offs. The trade-offs are to
explore the effects that the WCET thresholds have on the schedulability and on the resource necessary to
achieve certain probabilistic schedulability levels.

The proposal is to do sensitivity analysis with the use of a parameter β applied to pWCETs. β would
define the cumulative probability at which extract pWCET thresholds from a pWCET. It is possible to define
a unique β for Γ or a βi per task τi, βi = {β1, β2, . . .}. β is represented in Figure 4.5 with the multiple possible
WCET threshold extracted from a continuous distribution. The more β reduces, the more the WCET threshold
increases and becomes more ”confident” to be the worst-case single-value model. β applies the same way to
discrete pWCET distributions.

In Figure 4.6 there is an example of that where the 5 feasibility regions derived from 5 different β. The
arrows propose possible changes to resource reservations in order to achieve specific properties. The sensitivity
analysis with strategies for changes and the use of β is under development. Under definition there are the
metrics for quantifying the advantages from probabilistic models (pessimism reduced for different degrees of
schedulability). The complexity of the probabilistic analysis and for developing strategies appears reduced with
the (α,∆).
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Figure 4.5: β thresholds on a continuous distribution
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can be extracted to impose certain behavior to tasks.
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Figure 4.6: (α,∆)-space and the sensitivity analysis
that applies to it.

β is the key parameter for sensitivity analysis to be investigated in the future and to build strategies around.
In [184, 191] the properties of β parameter begin to be defined. Future contributions will be proposed to develop
β into a scheduling and trade-off worthy parameter.

C-space

From probabilistic models (pWCET and probabilistic dbf), it is possible to build the probabilistic version of
the C-space, such that each point c has a P probability associated. c = {c1, c2, . . .} is a combination of task
WCET thresholds (possible WCET thresholds, one per task, like C), while the probability P is the probability
of exceeding such thresholds P = P1(c1,j)×P2(c2,k)× . . .. In the probabilistic the C-space, P cannot represent
the schedulability probability.

Given the scheduling policy, in the probabilistic C-space there is the feasibility region where every point
c within the region is a schedulable WCET thresholds configuration. The points outside the region do not

85

fig/plot_thresholds_WCET_beta_cdf.eps
fig/MCedf_sensitivity_prob.eps
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represent schedulable WCET thresholds configurations. Figure 4.7 shows an example probabilistic real-time
application with three tasks, and its pC-Space in 2D form; to each point, there is a probability associated.

With the probabilistic C-space it is possible to apply Euclidean distance (δc1 = c1k− c1j , δc2 = c2r− cis, . . .)
combined with probabilities, and evaluate the impact that WCET choices have on the schedulability. The
sensitivity analysis for the probabilistic C-space can also work with parameter β. It is under discussion how to
develop effective sensitivity analysis for the probabilistic C-space and with β. The goal is also to show a reduced
complexity of the probabilistic schedulability analysis from the sensitivity analysis with the C-space.

It is possible to define a design parameter β as the probability threshold for the pWCET defining the level
of confidence for a WCET limit imposed to a task. β comes from the quantile q(p) as the probability threshold
p, and q(Ci, β) is the WCET threshold such that β × 100% of the worst-case execution time experienced by τi
are below that threshold.

β offers another perspective to the task execution model. By fixing β it is possible to specify which is the
limit WCET reachable, ci(β); β imposes a bound to the task WCET such that ci(β) = q(Ci, β).

A trace TCi
reports the sequence of WCET values that τi has assumed from one execution instance to another.

From TCi
it is then possible to infer the timing behavior of the task WCETs as well as identify ci(β) = q(TCi

, β).
Therefore, β can model the task (or the whole application) timing behavior and it could be applied as design
parameter: by imposing ci(β) as the task WCET value the behavior of τi is limited to ci(β). With respect of
the actual task behavior TCi

(which follow Ci, β is the confidence that τi respects it WCET limit ci(β).
From β it is also possible to infer the criticality level crit that would allow respecting ci(β):

max{crit} such that ci(crit) ≤ ci(β). (4.33)

It is β 6= p(crit), as c(β) 6= c(crit), but there is a close relationship between the two thresholds c(β) and c(crit)
which come from the probabilistic modeling of the task (the pWCET).

In Figure 4.7 there are represented possible choices to change task WCET and reach schedulability condition
in 2D projections of multiple dimensions pC-Spaces; such changes have impact also on the probabilistic task
models. The example here is a 2D representation extracted from a 3D space of a real-time application of 3 tasks
{τ1, τ2, τ3}.
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Figure 4.7: 2D representations with safety levels hi and lo to distinguish effects on schedulability. Some possible
transitions from non-schedulability to schedulability are represented.

In [191] the focus is on the pC-Space in defining β parameter interests to probabilistic sensitivity analysis and
MC. Future contributions will be proposed to develop the pC-Space (at the actual stage, the (α,∆)-space and
sensitivity analysis in it is more developed than in the pC-Space) and how to cope β properties with pC-Space
formalism.
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4.2.4 Fault-aware sensitivity analysis for probabilistic real-time systems

In [194], in collaboration with Prof. Laurent George and Prof. Zhishan Guo, there are presented some de-
velopment in modeling tasks in presence of faults. Probabilistic models comes from different faulty conditions
and various effects that fault have on task behaviors. The impact of faults onto MC schedulability is also
investigated.

Fault models are applied for abstracting the effects that faults have on tasks executions; the faults are
modeled according to probability laws which characterize fault manifestation and fault impacts in realistic
systems. The task execution behavior is represented in both non-faulty conditions and multiple faulty conditions;
pWCET models are proposed for the different system execution conditions. The pWCETs are obtained with
measurement-based probabilistic timing analysis from measurements of the actual task behavior, in presence or
absence of faults. Furthermore, it is proposed the formalization of the scheduling problem for probabilistic task
models i.e., pWCETs, and sensitivity analysis applied to task models and schedulability analysis to quantify fault
effects on system schedulability. Performance-predictability trade-offs are exploited through the fault modeling
and the analysis. A case study is applied to validate the framework and illustrate the benefits of probabilistic
modeling and schedulability analysis to design and validate real-time systems.

This is a generic work which apply to any possible fault that can happen to task executions. Since fault
effects are plugged into measurements, it would be possible to include multiple fault model representations from
different distributions laws.

Probabilistic worst-case execution time modeling

A real-time task consists of a sequence of recurring jobs; each job must complete execution before a given
deadline.

In a periodic task system, a task is described with the tuple (Oi, Ti, Di, Ci). Oi is the offset that specifies
the time instant at which the first job of τi is released; Ti is the period representing the temporal separation
between two successive jobs; Di is the deadline that defines the time interval in which task execution has to
terminate; Ci is the worst-case execution time defining the execution processing requirements for each job. In a
probabilistic framework, Ci is the worst-case distribution pWCET that upper bound any task execution time.

The scheduling policy decides the task execution ordering, possibly with task preemption or migration
between cores. Schedulability analysis of task models guarantees the respect of the timing constraints (deadline);
in particular, it checks if there are enough resources for the tasks to finish executions by their deadlines.

The MBPTA applies the Extreme Value Theory (EVT) for computing pWCET estimates out of measured
behaviors, [156, 162], [101, 142]. The EVT guarantees that if certain hypotheses are verified, from the actual
measured behavior it is possible to infer rare events, where the worst-case execution time lie; whenever correctly
applied, the EVT produces a continuous distribution which is a safe pWCET estimate Ci.

The guarantees from EVT to the worst-case are still questionable, depending on what is measured, e.g. the
execution conditions for the measurements, the confidence or representativity of the measurements. A trace of
execution time measurements accounts for some of the interfering conditions and the inputs which happens at
runtime; the pWCET estimate Ci from the EVT embeds those system conditions and others that have not been
measured, since the EVT is able to infer some of the unknown from the known measurements.

An execution scenario sj abstract the execution conditions as an instance of the inputs I, of the environment
Env, of the task mapping Map, etc., sj(I, Env,Map, . . .). Given sj , the worst-case profile for sj is Csji and it
comes from the measurements taken under sj . For a real-time system, there exist a finite set S of all the possible
execution scenarios, S = {sj}, and the only way for guaranteeing safe pWCET estimates Ci is to account for all
the scenarios within S.

Worst-case scenario: The scenarios in S can be ordered based on the pWCETs associated to them. There exist
scenarios with worst and less worst execution time measurements and consequently worst and less pWCETs.
The worst scenario sworst in S would be the scenario that produces the worst interference on the task and the
worst pWCET. Analyzing S with respect to the worst-case scenario consists of seeking for sworst and then

estimating Csworst

from execution time measurements under it; the worst pWCET Ci is Ci def
= Csworst

.

Envelope: With S the finite set of possible measurement scenarios for the system, the worst worst-case estimate

Ci could be defined as an envelope of all the possible probabilistic profiles: Ci def
= maxsj∈S{Cs

j

i }. With the ICDF
it is:

F ′
Ci
(C)

def
= maxsj∈S{F ′

Csj

i

(C)}. (4.34)
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This approach to worst-case profiling is named the envelope [192]. The worst pWCET could results not neces-
sarily from an actual scenario, but from multiple scenarios contributing to the worst-case.
Worst-case set: It is possible to define a task execution model that keeps all the scenarios estimates Csji ; the
Worst-case set representation collects all the pWCET from S as a set of pWCET estimates Ci:

Ci def
= (Cs1i , Cs

2

i , . . . , Cs
|S|

i ). (4.35)

In this work it is used the Worst-Case Set representation, Equation (4.35), because it is more accurate
and complete in describing the multiple possible task behaviors than the Worst-case scenario or the Envelope.
Figure 4.8(a) depicts an example of traces of execution time measurements, one per scenario sj . Figure 5.8(d)
illustrates the three enumeration approaches (worst-case scenario, envelope and worst-case set) to task proba-
bilistic worst-case modeling applied to k+1 different scenarios; in there, there exist a worst-case scenario sworst

which is also the envelope to all the pWCETs.

Scenario dominance. Although with today’s real-time systems it is reasonable to assume a finite number of
measurement scenarios, enumerating all the scenarios remains a complex problem. What would effectively allow
applying the orst-Case Set representation, the envelope or the worst-case scenario is the existence of scenarios
which dominate other scenarios.
Scenario dominance is in the sense that a dominant scenario sk has larger pWCET than the pWCETs from
dominated scenarios sj . The partial ordering between pWCET can be defined according to [48]. With dominance
between scenarios it would be possible neglecting the dominated scenarios and ease the task representation. For
example, in case of Equation (4.35) fewer dominating scenarios could be considered to represent the whole S,

Ci def
= (Cski , Csji , Cs

r

i ); in here, sk dominates some scenarios in S, sj dominates other scenarios as well as sk and its
dominated scenarios, sr dominating all the scenarios. Figure 5.8(d) shows and example of scenario dominance
where sk dominates all the scenarios except sworst and s2.
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(b) Different execution time scenarios and the resulting worst-case estimates
with the ICDF representation

Figure 4.8: Representations of traces of execution times and pWCETs for different execution scenarios.

Probabilistic representations. With probabilistic models such the Worst-Case Sets of Equation (4.35),
multiple are the possible representations for the task behavior. Two of them are hereby listed, named respectively
inter-scenario and intra-scenario representations, which accounts for probability and scenario information.

Inter-scenario representation: Given a probability p and the WCET threshold 〈Csj

i , p〉 at p for the scenario
sj , for each scenario sj ∈ S the inter-scenario task set WCET threshold 〈Ci, p〉 is such that:

Ci
def
= (Cs1

i , C
s2

i , . . . , C
s|S|

i ). (4.36)
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In particular, it is possible to pick p = 10−9, 〈Csj

i , 10
−9〉 ∀sj ∈ S, and have the task set WCET threshold

〈Ci, 10
−9〉. The inter-scenario representation 〈Ci, p〉 of Equation (4.36) makes use of all the scenarios (at least

the dominating ones) for characterizing the task execution behavior.

Intra-scenario representation: For a given scenario sj ∈ S and a set of exceeding thresholds probabilities
(p1, p2, . . . pm), the set of WCET thresholds Ĉsj

i for sj is such that:

Ĉsj

i
def
= (〈Csj

1,i, p1〉, 〈Csj

2,i, p2〉, . . . , 〈Csj

m,i, pm〉). (4.37)

The intra-scenario representation focuses on a specific scenario with all the meaningful WCET thresholds and
probabilities for that scenario. For example, with (10−6, 10−9, 10−12) it would be

Ĉsj

i = (〈Csj

1,i, 10
−6〉, 〈Csj

2,i, 10
−9〉, 〈Csj

3,i, 10
−12〉) representing the task execution behavior with sj .

Scenarios and faults

By considering non-faulty conditions i.e., fault never happening, there exist the so called no-fault scenario. In
case of no-fault the task execute in its normal way (thus no faults happening) with ci(t) the execution time of
the task at time t. The execution time variability comes from functional and systemic effects from the normal
task behavior. From no-fault, it exist the pWCET estimate Cno−fault

i as the worst-case for no-fault only.
It could also exist the all-fault scenario which assumes that faults manifest at each task instance. In case of

all-fault the task executes always under the most critical faulty condition. Traces of measurements under the
all-fault scenario would have execution times, each impacted by the presence of faults. Call−fault

i is the pWCET
estimate for the scenario. The execution times under all-fault are c(t) + δ(t), with δ(t) the fault penalty model
applied for all-fault. all-fault is an extreme scenario, virtually impossible to happen, and extremely pessimistic;
it has been applied in [194], but it is here improved with more realistic, still pessimistic, scenarios.

In between these two extreme scenarios, there exists a set of possible faulty conditions where faults are
characterized according to precise fault models (δ and fault frequency). Consequently, there exist different

possible fault scenarios, each abstracted with Cfault−k
i and related to the fault condition modeled.

In this work, the focus is on two faulty scenarios fault-1 and fault-2, the non-faulty scenario and the all-fault
scenario:

S
def
= {no− fault, fault− 1, fault− 2, all − fault}. (4.38)

no-fault is the baseline scenario where no faults manifests; fault-1 includes some faults and some fault effects,
while fault-2 models some other faults. It is assumed that fault-2 dominates fault-1 since the faults modeled by
it have larger effects or more frequent manifestation that those in fault-1. all-fault is the scenario where faults
manifests at each task execution; it is the worst scenario among the four and dominates all the others.

Safety levels and task modeling

The different execution scenarios affect the safety of pWCET estimations. To recall, a pWCET is a safe worst-
case estimate if it upper bounds any task execution time with every possible scenarios. With pWCETs from
multiple scenarios and dominance between scenarios, it is possible defining levels of safety in the worst-case
probabilistic representations which resembles to the confidence of WCET thresholds.

no-fault scenario: The no-fault scenario with Cno−fault
i as the pWCET; Cno−fault

i is a worst-case only in case
of absence of faults; it cannot be considered a safe worst-case estimation for the task because the fault effects
are not included. Cno−fault

i is not safe enough for characterizing the task worst-case behavior for S. Cno−fault
i is

the low safe representation, equivalently lo-safe worst-case representation, Cno−fault
i ≡ Cloi . From Cno−fault

i it
would be possible to extract WCET thresholds 〈Ci(lo), p〉 that is named lo-safe thresholds; C(lo) is a lo-safe
upper bound to the task behavior with confidence probability p.

fault-1 scenario: The fault-1 scenario embeds the fault effects form the faults models in fault-1. fault-1
dominates no-fault conditions, hence the pWCET Cfault−1

i could be considered a relatively safe estimation of

the worst-case task behavior since it upper bounds no-fault and of course fault-1 conditions. Cfault−1
i is a

middle safe representation (mi-safe worst-case representation) for S, Cfault−1
i ≡ Cmii . From Cfault−1

i it would
be possible to extract 〈Ci(mi), p〉, each named mi-safe WCET threshold; C(mi) is the mi-safe upper bound to
the task behavior at probability p.

all-fault scenario: The all-fault scenario embeds all the fault effects at each task execution. This is the
scenario which dominates all the others since it considers faults always manifesting, at each job. Call−fault

i
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would be the most pessimistic pWCET and the most safe. all-fault is unrealistic because it consider impossible
to happen conditions. It can be neglected and replaced with more realistic, still safe, scenarios.

fault-2 scenario: The fault-2 scenario embeds the faults present in fault-2 ; it is a scenario which dominates
non-faulty conditions and fault-1 conditions. Hence, its pWCET Cfault−2

i could be considered a safe estimation

of the worst-case task behavior since it upper bounds every realistic execution conditions. Cfault−2
i is a high safe

representation, hi-safe worst-case representation, with S, unrealistic/too pessimistic cases excluded, Cfault−2
i ≡

Chii . From Cfault−2
i it would be possible to extract 〈Ci(hi), p〉, each named hi-safe WCET threshold with

associated the probability/confidence p.

From the difference between fault-1, fault-2 and no-fault execution conditions, it is Chii greater than or equal
to Cmii which is greater than or equal to Cloi , with the partial ordering between distributions defined as in [48].
Also Ci(hi) ≥ Ci(mi) ≥ Ci(lo) as they are both taken at the same probability p from respectively Chii and Cloi .
In order to quantify the differences, the relationship between between faulty and non-faulty conditions have to
be known as well as the fault impact models for the task execution time.

The modeling can apply to multiple faults; with specific fault and fault models, the safe levels will be
instantiated case by case.

Figure 4.9 proposes three pWCETs, each resulting from a different scenarios {lo,mi,hi}. Comparison be-
tween the three distributions outlines the safety levels of pWCETs together with their flexibility in characterizing
the worst-case behavior of the tasks under different execution conditions.
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Figure 4.9: Different execution scenarios with different worst-case estimates; the pWCETs are represented as pdf.

To note that the probabilistic models here applied to faults can be extended to more abstract representations,
including scenarios and task with different execution modes which are not strictly related to fault effects.

With three safety levels {lo,mi,hi} it is:

τi
def
= ([Ci, 〈Ci, 10

−9〉, (Ĉloi , Ĉmii , Ĉhii )], Ti, Di), (4.39)

where Ci = (Cloi , Cmii , Chii ) is the inter-scenario representation at p = 10−9; p = 10−9 is taken because in
certification documents is considered a low-enough probability for guaranteeing safety-critical systems.

With the intra-scenario representation is is Ĉloi = (〈C1,i(lo), 10
−3〉, 〈C2,i(lo), 10

−6〉, 〈C3,i(lo), 10
−9〉) for

the lo-safe, Ĉmii = (〈C1,i(mi), 10
−3〉, 〈C2,i(mi), 10

−6〉, 〈C3,i(mi), 10
−9〉) for the mi-safe scenario and Ĉhii =

(〈C1,i(hi), 10
−3〉, 〈C2,i(hi), 10

−6〉, 〈C3,i(hi), 10
−9〉) for the hi-safe scenario. The partial ordering between the

WCET thresholds such that at the same probability Ck,i(lo) ≤ Ck,i(mi) ≤ Ck,i(hi) is guaranteed with the
dominance within S.

Generalizing, there could exist larger sets of pWCETs (Cloi , C1i , . . . , Chii ) and larger sets of WCET thresh-
olds (Ci(lo), Ci(1), . . . , Ci(hi)) for a task. The intermediate safety levels would model execution conditions in
between the worst-case and the no-fault case with different faults and fault impacts modeled.

The task model from Equation (4.39) is asserting that depending on the conditions for the timing analysis
applied it is possible to have more or less guarantees on the pWCET and the WCET thresholds estimates. By
considering all the possibilities, safe worst-case models are also flexible in representing the variability of the
task/system behavior due to the changing conditions, including faults.

With the safety level notation {lo,mi,hi}, the set of scenarios S in Equation (4.38) becomes:

S = {lo,mi,hi}.

Probabilistic sensitivity analysis with faults

The sensitivity analysis studies how uncertainty in the output of a system can be appointed to the system inputs.
When it comes to real-time systems, sensitivity analysis is coupled with schedulability analysis. It quantifies
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how much a task wort-case execution time must be reduced to achieve feasibility or must be increased in case
of a performance improvements.

It is applied the sensitivity analysis with probabilities and safety levels on the pC-Space (C-Space+ in the
paper referenced). With respect to faults, the sensitivity analysis allows defining metrics for i) quantifying their
effects on schedulability and ii) quantifying the maximum safety level it is possible guaranteeing for a specific
system configuration/scenario. With the probabilities, the sensitivity analysis quantifies the confidence cost of
WCET thresholds changes.

- Through the sensitivity analysis there are quantified the cost of changes of task configurations, e.g. from
non-schedulability to schedulability. There are defined two metrics ∆sl and ∆p, where ∆sl quantifies the
variation of safety level due to the task set configuration change and ∆p quantifies the probability variation
due to the task configuration change.

sl(·) {lo,mi,hi} → N : sl(lo)
def
= 1, sl(mi)

def
= 2, sl(hi)

def
= 3 (4.40)

For a task τi, the safety level change from a beginning WCET threshold Cbegin
i to a final WCET threshold

Cfinal
i it is ∆sl(Ci)

def
= sl(Cfinal

i )− sl(Cbegin
i ). ∆sl < 0 would mean safety level reduction for τi, ∆sl > 0

increase of safety level, ∆sl = 0 the safety level does not change.

For a point c, it is sl(c)
def
= (sl(C1), sl(C2), . . . , sl(Cn)), and ∆sl from cbegin to cfinal is ∆sl(c

final, cbegin)
def
=

(sl(Cfinal
1 )− sl(Cbegin

1 ), . . . , sl(Cfinal
n )− sl(Cbegin

n )).
p(Ci) is the probability associated to the WCET threshold Ci; p(c) can be defined as in [194] where the
safety level has to remain the same in order to combine the WCET thresholds. Within the same safety level,

the probability change from cbegin to cfinal is ∆p(c
final, cbegin)

def
= (p(Cfinal

1 )− p(Cfinal
1 ), . . . , p(Cfinal

n )−
p(Cfinal

n )).

- Through the sensitivity analysis it is possible defining policies to change system configurations, e.g. from
non-schedulability to schedulability. For example it is possible to define:
policy1: policy1 minimizes ∆sl(c

final, cbegin). policy1 plays with safety levels to reduce the safety
level modifications. As an example, it is possible to change the system configuration seeking to make
a non-schedulable configuration schedulable; policy1 can be applied in order to find csched such that
∆sl(c

sched, cnon−sched) is minimized. csched is the final schedulable point inside the feasibility region and
cnon−sched is the starting configuration which is non-schedulable.
policy1: policy2 minimizes ∆p(c

final, cbegin). policy2 makes the configuration change at fixed safety level.
As an example, looking for making schedulable a non-schedulable point cnon−sched without changing the
safety level, policy2 would minimize the probability increase (confidence reduction) due to the change,
∆p(c

sched, cnon−sched).

With metrics and change policies, the sensitivity analysis can enforce safety-schedulability (performance-
predictability) trade-offs. For example, to guarantee all the timing behavior of the systems (including the worst
faulty conditions), tasks would require large amount of computational resource which could jeopardize system
schedulability. In order to make the system schedulable, the timing analysis has to make some concessions.
For example, reducing the safety level of the WCET thresholds or increasing their probability (reducing their
confidence).

The sensitivity analysis for studying real-time system schedulability provides useful feedback to system
design, and will be further developed in future contributions.

4.2.5 Probabilistic scheduling for mixed criticality

In [165], with Prof. Zhishan Guo and Prof. Kecheng Yang, a first attempt in applying probabilistic models
into mixed critical schedulers. In this work the probability is leveraged into scheduling decisions. In addition
to the existing mixed criticality task model, this work introduces a new parameter to each task that represents
the distribution information about its WCET. The aim is to provide schedulability analysis to instances with
this additional probability information, with respect to the given safety certification requirement of the whole
system, which is the permitted system failure probability per hour.

Considering the scheduling of dual-criticality task systems upon preemptive single-processor platforms. As
stated above, dual-criticality tasks are traditionally characterized with two WCET estimations – a lo-WCET
and a larger hi-WCET. The contributions are as follows:
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- It is proposed a supplement to current MC task models: an additional parameter for each hi-criticality
task, denoting the probability of no job of this task exceeding its lo-WCET within an hour of execution.

- It is further generalized the notion of system behavior by allowing for the specification of a permitted
system failure probability per hour, denoting an upper bound on the probability that the system may fail
to meet its timing constraints during any hour of running.

- It is derived a novel scheduling algorithm (and an associated sufficient schedulability test) for a given
MC task set and an allowed system failure probability. Seeking to schedule the system such that the
probability of failing to meet timing constraints during runtime is guaranteed to be no larger than the
specified allowed system failure probability.

The algorithm, in the two criticality level case, requires just one probabilistic parameter per task – the
probability that the actual execution requirement will exceed the specified lo-WCET in an hour. The scheduling
algorithm is novel in that it is the first MC scheduling algorithm that makes scheduling decisions (e.g. when to
trigger a mode switch) based not only on release dates, deadlines, and WCETs, but also on the probabilities
drawn from probabilistic timing analysis tools (see e.g. [153, 156], [77]).

In the model, an allowed system failure probability FS is specified. It describes the permitted probability of
the system failing to meet timing constraints during one hour of execution1. FS may be very close to zero, e.g.
10−12 for some safety critical avionics functionalities.

A failure probability parameter fi can be added to the hi-criticality tasks. fi denotes the probability that
the actual execution requirement of any job of a hi-criticality task τi exceeds ci(lo) (but still below ci(hi)) in
one hour (i.e., the adequate long time interval assumed). fi depends on a failure distribution Fi(t) that describes
the task τi probability of failure (at least) up to and including time t. Since Fi(t) would refer to time (interval)
and to task execution, it is going to be the one computed for one hour interval or any another interval. Thus,
fi is directly derived from FCi

.
Thus a hi-criticality task is represented in the model with four parameters: τi = ([ci(lo), ci(hi)], fi, pi, χi);

lo-criticality tasks continue to be represented with three parameters as before. This enhanced model is essen-
tially asserting, for each hi-criticality task τi, within a time interval of one hour, no job of τi has an execution
greater than ci(hi) and the probability of any job of τi has an execution greater than ci(lo) is fi > 0 —
expect fi to be a very small value. In this work it is assumed ci(hi) the deterministic WCET, 〈ci(hi), 0〉, while
〈ci(lo), fi > 0〉 the probabilistic WCET with ci(lo) ≤ ci(hi). Normally it is not guaranteed higher assurance for
lo-criticality tasks (than hi-criticality ones), and thus only ci(lo) are adopted for them.

Definition 4.2.1 (MC task instance) A MC task instance I is composed of a MC task set τ = {τ1, τ2, . . . , τn}
and a system failure requirement FS ∈ (0, 1). (Although FS may be arbitrarily close to 0, FS = 0 is not an
acceptable value — “nothing is impossible.”)

Let nhi ≤ n denote the number of hi-criticality tasks in τ . It is assumed that the tasks are indexed such that
the hi-criticality ones have lower indices; i.e., the hi-criticality tasks are indexed 1, 2, . . . , nhi.

Seeking to determine the probabilistic schedulability of any given MC task instance:

Definition 4.2.2 (Probabilistic schedulability) A MC task set is strongly probabilistic schedulable by a
scheduling strategy if it possesses the property that upon execution, the probability of missing any deadline is
less than FS. It is weakly probabilistic schedulable if the probability of missing any hi-criticality deadline is less
than FS. (In either case, all deadlines are met during system runs where no job exceeds its lo-WCET.)

That is, if a schedulability test returns strongly schedulable then all jobs meet their deadlines with a probability
of no less than 1−FS , while weakly schedulable only guarantees (with probability no less than 1−FS that) hi-
criticality jobs meet their deadlines. Moreover, similar to all MC works, for either strongly or weakly probabilistic
schedulable, all deadlines are met when all jobs finish upon executing their lo-WCETs. Again, FS comes from
the natural need of some system certifications, while fi is the additional information for each task that has to
be derived from WCET estimations to achieve such probabilistic certification levels.

In the model, the failure probability per hour of each task fi represents the probability of any job of the task
τi exceeding its lo-WCET. Thus dependences between tasks and task executions could have a strong impact
on fi.

In [42] it has been shown that neither probabilistic dependence among random variables nor statistical de-
pendence of data implies the loss of independence between tasks’ pWCETs or WCET estimates. The WCET is

1Failure probability are easily referable to failure rate, being careful at considering the failure rate as a probability.
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an upper-bound to any execution time, and it embeds all the dependence effects. This makes the important con-
sequence on the independence between WCETs: jobs and tasks modeled with WCETs are independent because
WCETs already embed dependence effects. In the MC study, the lo-WCET may come from consideration of the
execution time rather than of the WCET. Although both execution bounds (lo-WCET, hi-WCET) are so far
called worst-case execution time estimations, the lo-WCET may also serve as an execution time upper-bound,
where dependence between tasks and within tasks needs to be more carefully accounted for.

Each MC task may generate an unbounded number of jobs. Since jobs generated from the same task
set typically represent execution of the same piece of code, the failure probability fi of a task τi represents
the likelihood that the required execution time of any job generated within an hour by τi will exceed ci(lo).
In [180, 182] it has been showed that real safety-critical embedded systems have natural variability on the task
execution time, thus it is reasonable assume independence or extreme independence between jobs.

Concerning task dependencies, it is possible to cope with the dependence by specifying the task pairwise
dependence model. Assuming it is given a list of pairs (τi, τj) indicating that (WC)ETs of these two tasks may
be dependent on each other. It means that the probability of them both exceeding their lo-WCET is no longer
the product of their individual probabilities. By knowing P (Ci > ci(lo), Cj > cj(lo)) it is possible to model
(τi, τj) dependence including execution time task dependencies in the framework. It is however reasonable to
assume that many (or most) task pairs do not have such dependencies to each other (although at the execution
time level), since the limited impact of one task to another in a mixed critical partitioned system. Furthermore,
it is worthy to note that execution times are observed with other tasks executing in parallel, thus the execution
time measuring embeds already dependence effects from other tasks. In future work better task dependence
modeling at runtime will be explained.

To resume, dependence between jobs of the same task and between tasks are covered by the model.
The notion of additional utilization cost, defined below, helps quantify the capacity that must be provisioned

under hi-criticality mode.

Definition 4.2.3 (Additional utilization cost) The additional utilization cost of hi-criticality task τi is
given by

δi = (ci(hi)− ci(lo))/pi. (4.41)

Since it is considered EDF schedulability instead of fixed priority, whether and how likely system utilization
may exceed 1 are under investigation: (i) if it is extremely unlikely that the total hi-criticality utilization
exceeds 1 (weakly probabilistic schedulable), it is possible to assert a system that is infeasible in traditional
MC model to be probabilistic feasible; (ii) if it is extremely unlikely that total system utilization exceeds 1
(strongly probabilistic schedulable), it could be possible to decide not to drop any lo-criticality task even if
some hi-criticality tasks accidentally suffer from failures (that they require more execution time than expected).

In [165], the example has shown an infeasible task set (under traditional MC scheduling) being weakly
probabilistic schedulable under the model. As seen from the definitions, existing mixed criticality systems are
often analyzed under two modes – the hi mode and the lo mode, and mode switch is triggered when any
hi-criticality job exceeds its lo-WCET without signaling finishing. Upon such a mode switch, deadlines of all
lo-criticality jobs will no longer be guaranteed. A natural questions arises – is such sacrifice (dropping all
lo-criticality jobs) necessary whenever a hi-criticality job requires execution for more than its lo-WCET?

The LFF-clustering algorithm

In this subsection, it is presented the strategy proposed for scheduling independent preemptive MC task in-
stances, by combining hi-criticality tasks into clusters intelligently, and provide a sufficient schedulability test
for it. Consider what done in [165], we: (i) conceptually combined the hi-criticality tasks τ1 and τ2 into a single
cluster, provisioning an additional server into the system to accommodate their possible occasional hi-mode
behaviors (execution beyond their lo-WCETs); and (ii) performed two EDF schedulability tests: one consider-
ing only hi-criticality tasks (with lo-WCETs) and the server, and the other also considering the lo-criticality
task (τ3). Since both tests succeed, it is declared strongly probabilistic schedulable for the given instance; it
could be declared weakly probabilistic schedulable if the second schedulability test had failed while the first one
succeeded.

The technique that was illustrated in the example [165] forms the basis of the scheduling strategy that
is derived in in this section. To obtain a good upper bound to hi-criticality utilization of the system, tasks
are combine into clusters – suppose that the nhi hi-criticality tasks have been partitioned into M clusters
G1, G2, ..., GM , and let yi ∈ {1, 2, ...,M} denote to which cluster (number) task τi is assigned.
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Definition 4.2.4 (Failure probability of a cluster) Failure of a cluster Gm is defined as job generated by
more than one tasks in a single cluster exceeding their lo-WCETs within an hour. The probability of a failure
occurring in cluster m is denoted as gm and is given by

gm
def
= 1−

∏

i|yi=m

(1− fi)−
∑

j|yj=m

fj

∏

i|yi=m(1− fi)
1− fj

, (4.42)

where the second term of right hand side is the probability of no task (in the cluster) exceeding its lo-WCET,
and the last term represents the probability of exact one of the tasks exceeding its lo-WCET in an hour.

Lemma 4.2.5 If gm < FS/M holds for any cluster Gm, then the probability of having no failure in any cluster
is greater than (1− FS).

Lemma 4.2.5 provides a safe failure threshold FS/M for each cluster; i.e., the rule for forming clusters is
gm < FS/M , where M is the current number of clusters.

The additional utilization cost of a cluster Gm is defined to be equal to the additional utilization cost (δi)
of the task within the cluster with the largest δi value; i.e.,

∆m
def
= max

i|τi∈Gm

δi. (4.43)

The total system additional utilization cost is given by the sum of additional utilization cost of allM clusters;

∆
def
=

M
∑

m=1

∆m. (4.44)

A critical observation is that, if a task τi with additional utilization cost δi has been assigned to a cluster,
assigning any other task τj with δj ≤ δi to the cluster will not increase the additional utilization cost. To
minimize the total additional utilization cost of the entire task set, it is therefore greedily expanded existing
clusters with tasks of larger additional utilization cost while ensuring that the relationship gm < FS/M continues
to hold, leading to the Largest Fit First (LFF)-Clustering algorithm.

LLF Algorithm can be found in [165]. This algorithm greedily expands each existing cluster with unassigned
tasks while the condition gm < FS/M holds; while a new cluster is created only if it is not possible to assign a
task to any current cluster without violating the condition (gm < FS/M).

- Remark 1. Similar to what has been done in [48] and [109], it would be possible to achieve a precise
distribution to the total utilization of all tasks by applying the convolution operation ‘⊗’, which results
in an exponential (O(2nhi), to be precise) running time. The sufficient schedulability test based on the
LFF-Clustering algorithm runs in O(n2hi) time, where nhi is the number of hi-criticality tasks.

- Remark 2. In the case that all tasks share the same fi value, the schedulability test based on LFF-
Clustering becomes necessary and sufficient.

runtime strategy. During execution, a hi-criticality server τs with utilization ∆ and a period of 1 tick is
added to the task system. It is needed the server period as 1 tick because the mechanism and the analysis will
not work if there is release or deadline within a server period. At any time instant that the server is executing,
the active1 hi-criticality job, if any, with earliest deadline is executed; if there is no such job, the current job
of the server is dropped2. All jobs including the server are scheduled and executed in EDF order, and a job is
dropped at its deadline if it is not completed by then.

Note that although it is introduced a server task with period of 1, preemption does not necessarily happen
that often. The goal of the sever task with utilization ∆ is to preserve a “bandwidth” of at least ∆ for hi-
criticality jobs if the hi-criticality ready queue is not empty. There are three situations to be considered:

Situation 1 : The job with the earliest deadline is a hi-criticality job. In this situation, it is executed the
hi-criticality job with 100% processor share, and no more preemption is incurred by the server.

Situation 2 : The job with the earliest deadline is a lo-criticality job and the hi-criticality ready queue is
empty. In this situation, it is executed execute the lo-criticality job with 100% processor share, and hence there
is no additional preemption in this situation either.

1A job is active if it is released and incomplete at that time instant.
2Since an integer model of time is assumed (i.e., all task periods are integers and all job arrivals occur at integer instants in

time), and the server has a period of 1, it is safe to drop the current job of the server if there is no active hi-criticality jobs since
there can be no hi-criticality job releases in the current period of the server.
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Situation 3 : The job with the earliest deadline is a lo-criticality job and the hi-criticality ready queue is
not empty. In this situation, the aim is to preserve a processor share of ∆ for hi- criticality jobs and to execute
the lo-criticality ones with the rest 1−∆ of the processor capacity. Therefore, the server creates preemptions
every time unit.

That is, only in Situation 3, that the algorithm “introduces” extra preemptions due to the server scheme,
and normal EDF scheduling is applied in other cases. One may claim that such server allocation scheme may
results in more preemptions than the approaches where the server capacity is only used for overruns. Actually
this is because that the goal here is trying not to drop lo-criticality tasks even when a few hi-criticality
ones exceed their lo-WCETs. Thus, in order to guarantee hi-deadline being met always, certain use of the
server even when no hi-criticality behavior is detected – simply taking “precautions”. Alternative way such as
assigning hi-criticality jobs virtual deadlines may lead to fewer preemptions, at a cost of losing the performance
of schedulability ratio (see experimental comparisons).

There are used servers to implement the algorithms and prove the possibility of proficiently apply failure
probability to both MC modeling and MC scheduling. In future work, the server period assumption of 1 unit of
time will be released by applying adaptivity to resource reservation [185, 206]. With the analysis of the deadline
and task periods it will be possible to implement realistic servers which adapt their period and budget to the
MC-scheduler needs, while leaving the system predictable at any time interval. Such adaptive behavior will not
introduce any overhead, and mostly will allow not to miss task deadline.

It is evident that for strongly probabilistic schedulable (i.e., to ensure that the probability of missing any
deadline is no larger than the specified system failure probability FS – see Definition 4.2.2), it is (necessary and)
sufficient that

(
∑n

i=1 ci(lo)/pi +∆
)

must be no larger than the capacity of the processor (which is 1).
For weakly probabilistic schedulable (i.e., to ensure that the probability of missing any hi-criticality deadline

is no larger than FS – again, see Definition 4.2.2), it is necessary that
(
∑

i|χi=hi ci(lo)/pi+∆
)

must be no larger
than 1 as well. The following theorem helps establish a sufficient condition for ensuring weakly probabilistic
schedulable:

Theorem 4.2.6 If no job exceeds its lo-WCET, then no deadline is missed if

∆ · (1−
∑

i|χi=hi

ci(lo)

pi
) +

n
∑

i=1

ci(lo)

pi
≤ 1. (4.45)

The complete Theorem proof can be found in [165].
Theorem 4.2.6 yields the schedulability test pMC, while Theorem 4.2.7 below establishes its correctness.

Algorithm 1 Algorithm LFF-Clustering

Input: FS , {fi}nhii=1, {δi}nhii=1

Output: maximum total additional utilization cost ∆
Sort the tasks in non-increasing order of δi;
m← 1, M ← nhi, yi ← 0 for i = 1, ..., n;
while

∏nhi
i=1 yi = 0 (an unassigned task exists) do

∆m ← 0 (additional utilization of each cluster);
for i = 1 to nhi do

if yi > 0: continue;
yi ← m, M ←M − 1;
if gm ≥ FS/M : yi ← 0, M ←M + 1;

∆m ← maxi|yi=m δi;
m← m+ 1;

return
∑M

m=1 ∆M

Theorem 4.2.7 The schedulability test pMC is sufficient in the following sense:

• if it returns strongly probabilistic schedulable, the probability of any task missing its deadline is no
greater than FS; and

• if it returns weakly probabilistic schedulable, the probability of any hi-criticality task missing its dead-
line is no greater than FS, and no deadline is missed when all jobs finish upon execution of their lo-
WCETs.
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Proof to the lemma and the theorem are available in [165].
The schedulability test pMC returns strongly probabilistic schedulable if it is possible to schedule the system

such that the probability of missing any deadline is at most the specified threshold FS , or weakly probabilistic
schedulable if it is possible to schedule the system such that the probability of missing any hi-criticality deadline
is at most FS . It will then use EDF to schedule and execute the task set with lo-WCETs and the additional
server task τs = {∆, 1,hi}.

In the case that the schedulability test pMC returns unknown, it is not possible to schedule the system
using the proposed probabilistic analysis technique. Normally it is either that there is set a too high safety
requirement to the system; i.e., the threshold FS is too small, or the WCET estimations are not precise enough
for hi-criticality tasks; i.e., the fi’s are not small enough comparing to FS (and nhi), and/or the ci(lo)’s are
still not differentiable enough with respect to ci(hi)’s.

Experimental results with randomly generated task are available in [165].

4.2.6 Formal methods and mixed criticality

The PhD thesis of Jasdeep Singh has the objective to investigate and apply formal methods to the schedula-
bility of pRTSs. Its original effort has been on classical schedulability and probabilistic schedulability analy-
sis [201, 203], https://forge.onera.fr/projects/probscheduling. More recent works are focusing on the
MC problem for pRTSs and the use of formal methods for ”smarter” scheduling decisions [202],
https://forge.onera.fr/projects/probscheduling.

[202] is about describing and studying the execution of MC jobs in pRTSs with the use of formal methods.
Two problems are distinguished, and approached. The first problem is: P1 – to quantify the probability for the
system to execute in high criticality mode. It is proposed a formal model with associated model checking to
extract the probability of the system tasking paths through high criticality modes. Formal methods are used to
ensure that both the MC models and the MC analysis with probabilities are correct (validated).
The second problem is: P2 – to control the schedulability of hi-criticality jobs based on their deadline miss
probability. Here, it is reasoned a strategy to avoid dropping all the lo-criticality jobs in the system, once the
system is in high criticality mode. The analysis which that is developed selectively decides which lo-criticality
job to drop based on its effects on hi-criticality jobs. With that, it is possible to maximize the number of
lo-criticality jobs which can execute with hi-criticality jobs without jeopardizing their timing constraints.

A real-time application Γ has m tasks Γ = {τ1, τ2, . . . τm}, m ∈ N+ where N+ is the set of positive natural
numbers. A task τi is tuple τi = (Ci, Ti, Di, χi) where Ci is the pWCET PDF, Ti is period, Di is the deadline
of the task; Di ≤ Ti. Both Ti and Di are deterministic parameters – single valued. Ci can be continuous or
discrete worst-case distribution. In the task model, χi identifies the task criticality level.

Since the tasks are periodic, each j-th instance of a task τi is a job Jij . The job model is such that:
Jij = (Ci, aij , dij , pij , χij), j = 1, 2, ...n. Jij arrives at time aij = (j − 1) · Ti; dij is the job absolute deadline,
dij = aij +Di; pij is the job priority, 0 being the highest priority i.e., if pij ≤ pkr then Jij has higher priority
than Jkr. In the job model, χij identifies the job criticality level; it is assumed that χij = χi. The hyperperiod,
defined as the least common factor of the periods of all the tasks periods lcm(Ti), i = 1, 2, ...,m is the scope of
the analysis. In the hyperperiod there are n jobs, with ni jobs for each task τi, n =

∑m
k=0 nk. The real-time

application can be represented with the n jobs, Γ = {Jij} i = 1, 2, ...,m; j = 1, 2, ..., n.
In pRTSs, the worst-case response time of a job is a random variable, represented as RT .

Definition 4.2.8 (Job probabilistic worst-case response time) A probabilistic Worst-Case Response Time
(pWCRT) for a job Jij, denoted as RT ij, is a probabilistic distribution which upper bounds every possible job
response time due to concurrent job interference and preemptions during its execution. It is represented with
PDF as fRT ij

(x), CDF as FRT ij
(x) and ICDF as F ′

RT ij
(x).

Definition 4.2.9 (Job deadline miss probability) The probability that a job executes until a time greater
than or equal to the respective deadline is called deadline miss probability of the job. For a job Jij, it is denoted
as P dm

ij :

P dm
ij = Pr(Jij finishes executing after dij)

def
=

∫ ∞

dij

fRT ij
dx. (4.46)

Assumptions. In a probabilistic framework, the schedulability analysis refers to the process to obtain the
pWCRTs and deadline miss probabilities of the constituent jobs: a task set is schedulable if the deadline miss
probability of each of its tasks is smaller than a certain required probability. The pWCRT can be a discrete or
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a continuous probability distribution. The framework proposed utilizes the pWCRT of each job in the system.
This framework is valid irrespective of whether the input (pWCET) or the output (pWCRT) distributions of the
analysis are discrete or continuous. Thanks to the worst-case assumption, pWCET of tasks are independent [42].
All the execution intereference during the job executions are considered in the schedulability analysis and are
represented by their pWCRT. It is the probabilistic counterpart of the same assumption in the deterministic
context. In this work, the scheduling follows the EDF preemptive policy which defines the job ordering by static
job-wise priorities pij . It applies to single-core platforms, and it is assumed the tasks’ jobs are suspended at the
deadline.

In the two-criticality-level case, each job is designated as being of either higher criticality hi-criticality
or lower criticality lo-criticality. The hi-criticality mode is where the job executes in highly critical (and
more demanding) conditions – critical function or fault recovery; a lo-criticality mode is the nominal working
condition for the job where it executes in normal conditions. Having a higher criticality is regarded as giving
more execution time to the task.

A hi-criticality job Jhi
ij is the tuple: Jhi

ij
def
= (Ci, aij , dij , pij , lij , χij). Ci, aij ,pij and dij are as defined earlier.

χij is the job criticality level defined for a job Jij [22] which can take two values at runtime: hi and lo;
χij = {hi, lo}. lij ≤ Di describes the threshold with which the job criticality mode is defined.

A lo-criticality job Jlo
kr is the tuple: Jlo

kr

def
= (Ck, akr, dkr, pkr, χkr). χkr for a lo-criticality job can take only

one value, χkr = {lo}.
For the jobs, the criticality level of its task is inherited, e.g. for Jij and Jik have the same criticality level as

of the task τi level. However, the actual criticality mode of the jobs can change at runtime depending on their
scheduling.

The real-time application is formed from these tasks which is partitioned between their hi-criticality jobs
and lo-criticality jobs. Γhi = {Jhi

ij } is the set of high criticality jobs with nhi number of hi-criticality jobs;
Γlo = {Jlo

kr} is the set of lo-criticality jobs with nlo the number of lo-criticality jobs; Γ = Γhi ∪ Γlo and n is
the total number of jobs in the hyperperiod, n = nhi + nlo. With tasks, it is mhi the number of hi-criticality
tasks, and mlo the number of lo-criticality tasks; mhi +mlo = m.

Classically, the definition of system criticality is such that: the system enters high criticality mode whenever
at least one of the hi-criticality job enters high criticality mode [22]. The following more generic and flexible
definition of system criticality is proposed.

Definition 4.2.10 ((k,n) System criticality) The system criticality level χ is high (hi) if at least khi out of
nhi hi-criticality jobs enter high criticality mode.

Using the above definition for system criticality allows the flexibility to choose the value of khi depending on
the system. This also implies that a khi greater than 1 is less pessimistic than the classical definition of system
criticality. Because of the nature of the pRTSs, the system entering high criticality mode is not deterministically
known anymore: there exists a probability of the system entering the high criticality mode. This is why it is
needed to use reliable probabilistic analysis tools to analyze such a system.

Criticality threshold. The job criticality mode is defined using a threshold lij ≤ Di which applies to the job
pWCRT. The probability P hi

ij that a job Jij executes in the high criticality mode is:

P hi
ij

def
=

∫ ∞

lij

fRT ij
(x)dx. (4.47)

If the pWCRT is discrete as shown in Figure 5.12(b) with WCET as the maximum possible execution time,

P hi
ij

def
=

∑WCET
x≥lij

fRT ij
(x).

The MC definitions and modeling proposed, is slightly different than the classical ones with multiple WCET
thresholds [140], [165]. With the MC modeling via pWCRT, it is possible to distinguish the job behavior at
runtime, which, otherwise impossible to do with pWCETs and WCET thresholds. This allows to relate the
system criticality to the actual job execution which includes the job waiting time due to preemptions and
postponements. Nonetheless, the MC analysis proposed is general enough to apply to WCET thresholds also.
Note that in the latter case, every job of the same task would have the same criticality mode.

Discrete time Markov chain. It is assumed that a task set is given, it is scheduled using EDF scheduling
policy, and the pWCRT for each job in the hyperperiod is known. The system criticality modes are modeled as
a Discrete Time Markov Chain (DTMC). The choice of DTMC makes it possible to simply arrange the readily
available probabilities from the schedulability analysis. System depiction as states replicates the switching of the
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real-time system between high the low criticality modes. The transitions between those states can be labeled
with the probability of it being chosen. Moreover, DTMC allows modeling of a probabilistically distributed
system subject to its mathematical foundation. This is unlike a linear system, like Petri net or automata, where
discrete actions form a complex explorable tree. DTMC is subject to formal model checking in which path
properties or the probability of reaching certain states can be formally checked. This is useful to know the
probability of a path taken by the system. A DTMCM is defined as a set of states S and state transitions given
by a Q-matrix Q, M = (S,Q) [121]. In the following are given the basics to build DTMC for mode changes in
MC pRTSs and the properties which are formally verified with PRISM Model Checker [87].

System criticality mode modeling. It is presented here the DTMC model for problem P1, M crit =
(Scrit, Qcrit);
To buildM crit it is required to consider only the hi-criticality jobs in this DTMC. It is because only hi-criticality
jobs contribute to decide the system criticality. For each job Jhi

ij ∈ Γhi, the set of states Sij = {Jhi
ij , HCij , LCij}

is defined. State HCij represents execution of Jhi
ij in high criticality mode ([lij ,∞)) and state LCij represents

execution of Jhi
ij in low criticality mode ([0, lij)). The state Jhi

ij is simply a passing state used for the ease of

modeling and representation; it has no contribution to the analysis. The set of states Scrit for the whole system

is defined as an union of the sets Sij , ∀i, j such that job Jij is a hi-criticality job: Scrit def
= (

⋃

i,j Sij) : Jij ∈ Γhi.

Scrit is ordered in the increasing priorities of the jobs that it contains, for the ease of formalization and pre-
sentation. Any other ordering would be possible, since the DTMC does not represent the scheduling but only
the criticality configurations. The set of states and transitions in M crit is shown in Figure 4.10 for an example
task set Γ. There are unidirectional transitions Jhi

ij− > HCij , J
hi
ij− > LCij , HCij− > Jab, LCij− > Jab; such

that pab > pij and the priority difference |pij − pab| is minimum ∀i, j, a, b, Jab, Jij ∈ Γhi. The initial state is a
Jab such that pab is minimum and Jab ∈ Γhi.
The state transitions are labeled such that the sum of the probabilities of all the outgoing transitions is equal to
one. Each transition emanating from a state Jij to HCij is labeled with the probability P hi

ij . This implies, each
transition emanating from a state Jij to LCij is labeled with the probability 1 − P hi

ij . The transition matrix

Qcrit defined as:


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




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
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

(4.48)

To refer to an element of the matrix, Qcrit(Stater, Statec) gives the probability of transition from a state Stater
in the row to a state Statec in the column, e.g. probability of transition from J11 to HC11 is referred as
QDTMC(J11, HC11), equal to P11.
The DTMC models construction is quite straightforward without involving any mathematical operations like
convolution or upper-bounding of any kind. It is simply arranging the probabilities obtained from the schedu-
lability analysis into formally verifiable DTMC structure. The safety of this construction comes from a safe
schedulability analysis.

Criticality analysis

In this section, it is detailed the proposition to tackle with problem P1. With DTMCM crit = (Scrit, Qcrit) Ma-
trix (4.48), it is defined the meaning of system criticality from the criticality levels of the jobs. Then, it is quan-
tified the probability of the system criticality by exploring M crit with formal model checking. This analysis
is named ‘criticality analysis’ (crit). The definition of system criticality level translates into paths within the
DTMC taken by the system through certain states. Each path has a probability of being taken at runtime.
This is a probability for the system entering the high criticality mode.
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J11 J12 Jmhinhi

S11

P11 P12 Pmhinhi

1− P11 1− P12
1− Pmhinhi

1

1

1

1

S12 Smhinlo

HC11 HC12 HCmhinlo

LC11 LC12 LCmhinlo

Figure 4.10: System DTMC model Mcrit, assuming J11, J12, . . . , Jmhinhi ∈ Γhi and such that p11 ≤ p12 ≤ . . . ≤

pmhinhi .

A path D in M crit represents the trace of the jobs taking high or low criticality modes at runtime. It is an

ordered set of states D
def
= [State1, State2, ...Statenhi ], such that Qcrit(Statek, Statek+1) > 0 i.e., there exists

a transition between two consecutive states. The probability of occurrence of the path D is Pr(D), and it is
computed by performing model checking on DTMC using the property: ‘the maximum probability that the
next state is State1 AND the next to next state is State2 AND the next to next to next...’. This property
is formally written as: Pmax =?[Xstate = State1 & XXXstate = State2 &XXXXXstate = State3 . . .]. It
should be noted that for each state, the next (X) is considered one from the initial state. Doing so defines a
model checking property which navigates through the states.

For M crit, 2n
hi

are possible paths which start from the initial state. Examples of a path are: D1 =
[J11, HC11, J12, LC12 . . . , LCmhinhi ], D2 = [J11, LC11, J12, HC12, . . . , HCmhinhi ].

(k,n) system criticality. Here, it is recalled Definition 4.2.10 that system is said to be in high criticality mode
if at least khi out of mhi jobs enter high criticality mode. The system entered high criticality mode in paths in
which there is more than or equal to khi high criticality states HC. Such paths are denoted by the superscript
kn.

The q-th path Dkn
q has a probability of occurrence Pr(Dkn

q ). There are qk paths which pass through a
minimum of khi high criticality state. The exact value of qk follows the mathematics of partitioning of numbers,
which is left for future discussions. Now, using Definition 4.2.10 system entered the critical region if, Dkn

1

occurred OR Dkn
2 occurred OR . . . Dkn

qk
occurred. Thus, the probability P kn that the system entered high

criticality region is:

P kn def
= Pr(Dkn

1 ) + . . .+ Pr(Dkn
qk

) =

qk
∑

q=0

Pr(Dkn
q ). (4.49)

As special cases, (1,n) and (n,n) system criticality are the two extremes of the (k,n) definition. (1,n) is
to say that the system is in high criticality mode if at least one hi-criticality jobs is in high criticality mode:

P 1n def
= Pr(D1n

1 ) + . . . + Pr(D1n
2n−1) =

∑2n−1
q=1 Pr(D1n

q ). Where D1n are the paths taken through at least one
high criticality states. (n,n) is to say that the system criticality level as high whenever all the hi-criticality jobs

are in high criticality mode: Pnn def
= Pr(Dnn

1 ). Where Dnn
1 is the path taken through all the high criticality

states. This concludes the solution to problem P1.
This part focuses on the deadline miss probability of hi-criticality jobs. The problem P2 can be stated as: the

deadline miss probability of a job Jij should be less than or equal to certain probability P dm,max. Here P dm,max

is assumed to be given and is the requirement to meet in order to guarantee the probabilistic schedulability.
Here, the focus is on the job to reduce its probability of deadline miss. Solving P2 is to define a MC scheduling
algorithm that is able to improve the probability of deadline miss of jobs of choice.

Usually, MC scheduling directs that when the system is in high criticality mode, all the lo-criticality jobs
are dropped to ensure the timing requirements of the remaining hi-criticality jobs [22]. Instead, the scheduling
algorithms proposed acts by selectively dropping lo-criticality jobs whenever the deadline miss probability
constraint is not met. It is conceived to minimize the number of lo-criticality job to drop allowing some of the
lo-criticality jobs executing with hi-criticality jobs. This way, the computational resources are better used and
the scheduling of hi-criticality tasks is not jeopardized. One such method is presented below.
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Job strategy

The job strategy is the scheduling algorithm proposed to reduce the probability of deadline miss of a hi-
criticality job without dropping all the lo-criticality jobs in the system. Classically, all the lo-criticality jobs
are dropped in the high criticality mode. A choice to drop a single job in the ordered list of jobs requires
complete re-evaluation of the whole system to prove optimality. This is because the response times depends
on the execution of the previously executed jobs. The strategy to choose needs to ensure optimality as well as
the safety of the resulting schedule. The complexity of doing so for every job to prove optimality and safety
is O(nn), where there are n jobs in the hyperperiod. Such complexity does not include the complexity of the
probabilistic schedulability analysis applied; it is only for exploring all the jobs.

What is presented here is not an optimal strategy to maximize the deadline miss probability reduction per
job dropped. However, it is better than classical MC scheduling strategies in which all the lo-criticality jobs
whenever system enters high criticality mode [22].

Interference isolation. The set of lo-criticality jobs J
over

(Jhi
ij ) which overlap to the execution of a job Jhi

ij is:

J
over

(Jhi
ij )

def
= {Jgh : pgh < pij , dgh > aij , Jgh ∈ Γlo}. (4.50)

The jobs in this set directly impose a probabilistic delay/backlog in the execution of Jhi
ij , as depicted in the

Figure 4.11 by jobs Jlo
rt and Jlo

kj . All the jobs in J
over

(Jhi
ij ) impose an indirect backlog to Jhi

ij . The indirect
backlog is passing a certain amount of backlog in their order of priority and thus indirectly to the job Jhi

ij . The
term ‘interference isolation’ refers to the separation of Jhi

ij from the indirect backlog.

}
Jxy

Jlo
rt

Jlo
kj

Jhi
ij

backlog

Dropped jobs

t

arrival

deadline

aij

Figure 4.11: The backlog to the hi-criticality job Jhi
ij reduces to zero by dropping jobs Jlo

rt and Jlo
kj .

Lemma 4.2.11 (Backlog isolation) The backlog for a hi-criticality job Jhi
ij reduces by the maximum amount

if all the lo-criticality jobs in J
over

(Jhi
ij ) from Equation (4.50) are dropped, given that the jobs are suspended at

their respective deadlines.

The lemma is proven in [202, 204].
The job-level scheduling strategy proposed reduces the probability of deadline miss of a hi-criticality job by

dropping all the lo-criticality jobs in J
over

(Jhi
ij ). Lemma 4.2.11 proves that dropping all those jobs ensures the

maximum possible deadline miss probability reduction for Jhi
ij . Thus, the strategy is: 1) identifying J

over
(Jhi

ij ),

2) dropping all the jobs in J
over

(Jhi
ij ). Referring to the Figure 4.11, the backlog to the hi-criticality job Jhi

minimizes by dropping jobs Jlo
rt and Jlo

kj : there is no affect from the job Jxy to the job Jhi
ij because Jxy suspends

at the deadline. The hi-criticality job in observation still retains its own execution after dropping the jobs in
the set J

over
(Jhi

ij ), that is after removing maximum interference. The P dm
ij obtained once dropping all the jobs

in J
over

(Jhi
ij ), is the best (minimum) deadline miss probability that can be achieved for Jhi

ij . If it is not enough

to meet the constraint P dm,max
ij , P dm

ij is still larger than P dm,max
ij , the problem for this job is unsolvable.

This work has been recently accepted to the MC workshop WMC at RTSS 2018 [204]. In it, explicative ex-
amples and a test case applied for validating the dropping algorithm. Future work is already under development
in collaboration with Jasdeep Singh, with Prof. Giuseppe Lipari in Lille, and Prof. Laura Carnevali in Florence.
With it, the effort is for releasing the constraining hypothesis of independence and taking into account multiple
source of dependence between tasks.

100

fig/joboverlap.eps


4.2 Probabilistic approaches to mixed criticality

4.2.7 Some conclusions on probabilistic approaches to mixed criticality

On the criticality of pWCET models. In [193] there are the basis for the most flexible probabilistic task
model that accounts for all the modes and mode combinations. The complexity from such MC representations
is not considered here, preferring at this stage to investigate the benefits of a detailed probabilistic model to task
MC behaviors. A case study is in [193] for validating the probabilistic models and illustrating its effectiveness
in modeling different conditions/criticality.
Such fine grained representation, coupled with probabilistic MC scheduler will allow taking more accurate
decisions depending on the actual execution conditions. Future work will apply the representations into MC
schedulability and MC probabilistic sensitivity analysis to better explore the flexibility of the probabilistic
representations.

Probabilistic sensitivity analysis for mixed criticality. [191] defines probabilistic sensitivity analysis for
MC problems. The notion of parameter β is just introduced, but its envisioned potential for the MC problem
deserves more investigation.
Future works will exploit the use of β, the same for the whole task set or each task with a different βi, to develop
MC real-time systems. Also, there will be developed strategies to change resource or application parameters. The
strategies are for better exploring the probabilistic regions, for defining more trade-offs, and propose changing
strategies. All those notions will be applied to MC problems.

Open problems with probabilistic sensitivity analysis. [184] has been proposed to the open problems
workshop RTSOPS at ECRTS 2018. The abstract is an attempt to show how sensitivity analysis can help with
the intrinsic complexity of probabilistic [MC] scheduling. Exploring the abstract representations (pCspace or
probabilistic (α,∆)-space) can avoid applying complex analytic expression for the probabilistic schedulability;
the trade-off definition and exploration are for simplifying the definition and development of MC real-time
embedded systems.
Future works will develop probabilistic sensitivity analysis for probabilistic MC scheduling with the objective
that remains to reduce the complexity of MC scheduling. Also, the trade-offs, parametrized with probability,
will be explored with sensitivity analysis for smart/efficient MC scheduling decisions based on probabilities.

Fault-aware sensitivity analysis for probabilistic real-time systems. [194] is an example of faults and
fault effects included into probabilistic task models, and then applied into schedulability analysis. The notion
of safety can be seen as equivalent to criticality level, as it is used to distinguish execution scenarios different
than the absolute worst-case. Probabilistic sensitivity analysis applies to evaluate the impact that faults have
on the scheduling of real-time applications.
Future work is necessary for integrating fault effects into timing analysis approaches for task pWCET which is
more realistic and less pessimistic. Also, schedulability analysis will profit of more accurate task models with
faults, in order to study the impact that faults have, or could have, on scheduling decisions. Natural will be the
application of the results in [194] to the MC problem.
In those future contributions, the modeling with faults will parameterize the execution scenarios, and criticality
levels, with faults models. Instead, the sensitivity analysis will exploit such parameters and relate scheduling
conditions to fault conditions.

Probabilistic scheduling for mixed criticality. [165] proposes a MC scheduling algorithm which mixes
probabilistic task models for lo-criticality modes and deterministic WCET for hi-criticality modes. The al-
gorithm apply probability information into scheduling decisions in order to reduce the pessimism and increase
resource usage with respect to classical deterministic MC scheduling.
The solution proposed has limitations in the server implementation, applieddue to the need to react at each
valuable time instant (arrival, deadline, period, etc.) in order to be effective. From that, the solution proposed
with servers of period 1. In future work, the server period assumption of 1 unit of time will be released by
applying adaptivity to resource reservation inspired by [185, 206]. With the analysis of the deadline and task
periods, it would be possible to implement realistic servers which adapt their period and budget to the MC-
scheduler needs, while leaving the system predictable at any time interval. Also, the sensitivity analysis will
help releasing such constraints and extend the algorithm applicability to real implementations.

Formal methods and mixed criticality. Formal methods, with their solid mathematical background, have
already proven to be able to model complex systems. They can be very helpful in representing pRTSs and in
taking efficient scheduling decisions. Also, with formal methods, validation becomes much easier and provable
with model checkers.
Once explored in detail, formal methods will be an alternative way to model MC scheduling. Scheduling decisions
can be characterized and validated, with formal methods. Specifically, formal methods and probabilities could
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help taking the decision that best cope with the actual execution conditions. Efficient resource usage can be
enforced with probabilities and accurate task execution models.
Currently, Jasdeep Singh is investigating other formal methods to be applied to the MC problem. He is also
enhancing already existing solutions [202, 204].
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Chapter 5

Concluding remarks, lessons learned,

and future perspectives on mixed

criticality

This concluding chapter comments my contributions on MC, and outlines possible and necessary progresses for it.
The research perspectives are mainly necessary for the challenges that multi-core and many-core implementations
are posing and will continue to pose for real-time systems. There will be always considered both theoretical and
industrial problems, and the solutions proposed will always get inspired from practical and academic experience.

MC is one of the real-time problems under heavy scrutiny from research groups and industry. It has been
largely investigated with single-core platforms. Nowadays, the focus is more on multi-core implementations and
the challenges from partitioning and safe resource sharing.

The MC problem affects task models: more flexible representations imposes with the goal of reducing
pessimism. Tasks worst-case models parametrized with criticality is a good starting but the multiple execution
conditions possible with multi-core and many-core have to be better represented with MC models than just
with WCET thresholds. Also, the numerous source of interference have to be identified and embedded into MC
task models in order to increase the knowledge of system dynamics, improve system models, and embed them
into more fine grained task models.

The MC problem affects also schedulability analysis. The largely available resource with multi-core and
many-core implementations require better management: functionality increase demands for efficiency and safety.
More effective resource partitioning have to be defined, while partitioning tools have to be verified. Safe resource
sharing have to be guaranteed with scheduling algorithms that are efficient.

As at today, I consider two main perspectives for the MC problem:

- The academic perspective takes the mixed criticality literally by studying how mixing together applications
with different criticality levels. In it, criticality levels are combined and there are developed scheduling
algorithms that are able to guarantee such mixture of tasks. The classical guarantee offered in MC is such
that: all the hi-criticality tasks are assured execution first, and then the lo-criticality tasks if there is
some resource left. Combining together mixed critical real-time applications aims at an efficient resource
usage.
In the academic perspective, multiple WCETs are possible to represent task executions i.e., Vestal’s
model Equation (2.1), there exist the notion of criticality mode, and the classical scheduling algorithms
are deterministic. The tasks that can switch to higher criticality modes whenever their lower WCET
threshold is overcome, which make scheduling guarantees complex. It is left to MC scheduling algorithms
the guarantee criticality modes (and mode transitions), and the respect of timing constraints in each mode.
The claim of the academic approach to MC is that mixing applications of criticality levels would allow for
more efficient resource utilization, while the complexity is for the scheduling algorithms.

- the industry perspective to the MC problem is more partitioning oriented. Temporal and spatial isolation
between different criticality are defined, and are guaranteed with partitioning mechanisms such as OS and
hypervisors. The partitions are for separating criticality levels in order to limit the interactions across
criticality levels. The scheduling within the partitions can apply classical scheduling algorithms, both
on-line and off-line. Task execute in single mode and criticality is more about importance or safety level
of the functionality. The main claim of the industry approach to MC is that separating applications is

103



5.1 Lessons learned on mixed criticality

safer for certification purposes or system development; the complexity is on guaranteeing the separation,
especially with multi- and many-core implementations.

With both academic and industry perspective, the challenge is to safely make use of multi-core and many-core,
and efficiently apply shared resources. For that, there is still plenty of room for investigating the MC problem
as both academic and industry perspectives demands for further studies.

One of the main effort of the research project here defined is to make the two perspectives converge, such
that:

- Similar requirements and certification arguments are defined. An interesting question is: why certification
arguments for SW talks about probabilities/failure rates for any criticality level, but safety critical guaran-
tees are never probabilistic?. Here the effort would be about probabilistic approaches and make them more
trustable/reliable, such that the industry can rely on them. Also, schedulability analysis should approach
schedulability guarantees from a perspective close to certification requirements.

- Similar languages and understandings appears from the research project to share MC notions among the
two perspectives. Certification and certification arguments could help with that; also, timing models
and schedulability analysis should approach the MC problem from a common background and similar
techniques.

- Same (at least similar) techniques for timing guarantees and efficient resource usage to be developed: trad-
ing partitioning with safe sharing would allow efficient resource usage with comparable safety guarantees.

On the other end, it is not always possible to propose solutions that would work well for academic and for
industry. There will be proposed adhoc solutions which best approach peculiar challenges that either academic
or industry have with respect to MC. Multi-core implementations, and upcoming many-core platforms, are
creating plenty of opportunity to keep developing efficient solutions which apply to one or the other perspective.

5.1 Lessons learned on mixed criticality

The interest to MC problem is motivated by the same trend that is ongoing with real-time: real-time embedded
system are becoming more and more mixed critical, thus real-time has more and more to consider MC timing
models and MC schedulability analysis. This is especially true with multi-core and many-core implementations
and the demand for safe resource sharing and guaranteed partitioning. MC tackles with both, thus the interest
for it.

In the last three years, some works have been made on MC. Earlier than two years ago, it has not been con-
sidered the MC problem because the interest was about understanding multi-core platforms and their challenges
for real-time guarantees with more classical approaches i.e., pre mixed criticality problem. Since 2015, the MC
problem is seen as crucial designing and developing real-time embedded systems; it is seen the need for timing
modeling and for guaranteeing timing constraints in presence of different criticality levels. This comes from
working on safety critical and mixed critical systems such as avionic and space as a researcher at the ONERA.

The research project proposed is for investigating MC. In particular:

- it is for deriving more accurate and flexible timing models for the multiple requirements that MC appli-
cations have;

- it is for developing scheduling algorithms that can safely mix tasks with different needs;

- it is for exploring less pessimistic resource partitioning and safer resource sharing.

The research project is also motivated from professional and research experiences. Hence for, both academic
and industry perspectives to MC will be considered with shared and adhoc solutions.

All the contributions made, and that will continue to be made, apply modeling and analysis tools developed
since the PhD. In particular, probabilistic timing models that will contribute with more flexible task timing
models coping with the different criticality modes, and deterministic as well as probabilistic schedulability
analysis to improve already existing solutions. All of the contributions aim at reducing pessimism and more
efficient resource utilization.

So far, the contributions made tackled with timing models and schedulability analysis such that:

- The MBPTA approach and the quality of the input measurements are investigated in details in order
to improve the quality of the pWCET estimates [159, 163, 192, 193]. Those works are not presented in
Chapter 4, but they affect MC timing models as multiple execution conditions are taken into account.
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- Formal deterministic bounds to task behaviors, deterministic schedulability analysis, and deterministic
sensitivity analysis are applied to MC. The bounds are able to account for different MC modes and mode
combinations between tasks [190, 198]. These works involve mainly the industry perspective to MC, since
task applications are partitioned and within the partitions classical scheduling paradigms are applied.

- It is proposed a deterministic scheduling algorithm that releases some non-realistic hypotheses of the
classical MC scheduling [166]. With it, the pessimism of deterministic MC scheduling algorithm can be
reduced.

- Probabilistic sensitivity analyses have been developed and applied for academic and industrial MC prob-
lems [184, 191, 194]. The abstract representations considered are the pC-space and the probabilistic
(α,∆)-space. The sensitivity analysis, equivalently parametric analysis, relates small changes of WCETs
or resource provisioning to schedulability conditions. Initial trade-off resource-schedulability-criticality are
studied, and some changing strategies for efficient resource usage are proposed.

- Timing analysis and schedulability analysis for MC with fault and fault effects have been marginally
approached [194]. In this work, the faults are abstract and considered as extra execution time; probabilistic
timing models are derived to describe fault effects. Different fault models have been studied and modeled
with safety levels, equivalent to criticality levels. Probabilistic sensitivity analysis with the pC-space is
applied to quantify fault effect into schedulability conditions;

- It is proposed a probabilistic scheduling algorithm which is able to leverage probability into scheduling
decisions [165]. This work has some limitations, but it represent the first schedulability analysis in which
probabilities are actively applied into scheduling decisions.

- Some early works on formal methods for modeling MC behavior and defining formal MC scheduling
decisions have been proposed [202, 204]. Formal methods are to model task executions and mode changes.
The scheduling strategies are off-line and based on probability information; they act selecting the lo-
criticality jobs to drop in order to maximize the resource utilization and minimize the probability of
system hi-criticality mode.

Figure 4.1 recaps the contributions made so far to MC which have been applied to avionic, space, and robotic
real-time applications. The lack of contributions with real-time calculus and its probabilistic version pCalculus
is because so far the research activities insisted more on bounding functions i.e., demand bound function and
level-i workload function, both deterministic and probabilistic. Future work will consider also the real-time
calculus for MC applications, as the group of Prof. Lothar Thiele is actually doing at the ETH.

In the following, the contributions are commented with the lessons learned and future directions for those.
There are presented first probabilistic approaches to timing analysis, then deterministic approaches for schedu-
lability analysis, and in the end probabilistic approaches to schedulability analysis.

5.1.1 Probabilistic timing models for mixed criticality

The purpose of pWCET estimates is to give more insight on what happens to execution times smaller than
the deterministic WCET estimate. Such more flexible probabilistic worst-case models have multiple possible
WCET thresholds each with the confidence associated i.e., the probability of being overcome. With the new
developments [148, 149, 159, 162, 163, 180, 182, 192], it is possible to have an accurate and confident pWCET
distribution per execution scenario. To each scenario there can be applied the notion of safety or criticality level
since it represents specific execution conditions. To stress that a pWCET distribution is the worst-case for only
the scenario considered: they are relative pWCET, which fits well with MC.

Probabilistic representations can be applied to the MC problem such that the task model of a hi-criticality
task changes into different possibilities, each with a probability associated.

There can exist the ”probabilistic lo-criticality model” for hi-criticality tasks:

τi
def
= ([〈Ci(lo), pi(lo)〉, Ci(hi)], Ti, χi), (5.1)

where Ci(lo) is associated with the probability pi(lo) as the probability (equivalently confidence) that tasks has
of overcoming Ci(lo) while executing. pi(lo) represents the probability of mode change [165]. The hi-criticality
mode remains deterministic and impossible to overcome.

There can also be the ”pWCET model” for hi-criticality tasks:

τi
def
= (Ci, Ti, χi), (5.2)
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Figure 5.1: Multiple pWCET distribution for a MC
task with the inverse cumulative distribution represen-
tation. Each distribution represent a criticality level
or equivalently an execution condition; WCET thresh-
olds can be extracted from each distribution at dif-
ferent probability which are represented by horizontal
lines.
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Figure 5.2: pWCET and pWCRT representation for
mode change. hi-criticality and lo-criticality levels
can be represented with WCET threshold and WCRT
thresholds extracted respectively from pWCET and
pWCRT distributions.

where the pWCET distribution Ci describes all the modes possible to τi, each with a probability associated [194].
With discrete it is possible to associate as many criticality levels as the distribution domain; the probabilities
would depend on the granularity of the distribution support. With continuous distributions, the criticality levels
to be associated with any possible probability are potentially infinite.

In between Equation (5.1) and Equation (5.2), there could be the ”probabilistic thresholds model” for hi-
criticality tasks:

τi
def
= ([〈Ci(lo), pi(lo)〉, 〈Ci(hi), pi(hi)〉], Ti, χi), (5.3)

in which both lo and hi modes are described with probabilistic WCET thresholds; each has a probability
associated, representing the probability/confidence of overcoming it at runtime [110]. pi(hi) ≤ pi(lo); all pi(·)
are cumulative probabilities.

Ci(lo) and Ci(hi) can come from the same pWCET estimates, at different probabilities as it is the case of
Equation (5.2) and Equation (5.3), or two different pWCET estimates with different conditions. In the latter
case, it can be inferred the ”pWCETs model” for hi-criticality tasks such as:

τi
def
= ([Ci(lo), Ci(hi)], Ti, χi), (5.4)

as an extension of Equation (5.2) with two different pWCET distributions describing task behaviors in the two
possible criticality modes.

Figure 5.1 illustrates multiple pWCET estimates, one per criticality mode that the task can have. lo-
criticality mode, lo+1-criticality mode, . . . , hi-1-criticality mode, and hi-critcality mode are represented with
examples of possible pWCET distributions that can overlap for high cumulative probabilities. Each pWCET
distribution represent the worst-case model for the specific mode, thus execution condition (less critical, highly
critical), considered. Figure 5.1 illustrates also how to infer criticality modes from a pWCET estimate i.e.,
selecting WCET thresholds at different probabilities. This could be the case for obtaining the models in
Equation (5.1), Equation (5.2), and Equation (5.3) from the same pWCET representation. Instead, the two
distributions in Equation (5.4) could come from two timing analysis tools, two separate criticality conditions
required for timing analysis, or two execution conditions accounted for. This is also represented in Figure 5.1
with different distribution, one per tool considered.

For lo-criticality tasks, the ”pWCET model” could be such that:

τi
def
= (Ci, Ti, χi), (5.5)

where Ci represents the only possible lo-criticality behavior of the task.
Also, the ”probabilistic threshold model”:

τi
def
= (〈Ci(lo), pi(lo)〉, Ti, χi), (5.6)
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5.1 Lessons learned on mixed criticality

with only Ci(lo) representing the task behavior; pi(lo) is the confidence associated to Ci(lo) bound, equiva-
lently the confidence of not overcoming it.

In all those models, χij parameter is the job criticality level, the same as χi or different in case each job could
have its own behavior. In the probabilistic paradigm it has associated a probability representing the probability
of mode change from lo to hi criticality mode. In a generalization effort, probabilities can be associated to any
criticality level, included the hi-criticality mode.

All those probabilistic models would benefit MC models with reduced pessimism, and more flexibility;
probabilities distributions and probability thresholds would help with more precise models that can represent
better task behaviors. This would especially important with less critical levels.

Probabilistic criticality mode. Normally, χ is defined from pWCET models. By doing this, only the mode
change effects that belongs to task conditions are included in such representation: the mode change depends
on the task and other effect embedded into worst-case models for execution time: the criticality level depends
on the task. Currently, there are under investigation other representations for probabilistic mode changes and
χ parameters. For example, in [202, 204] it is studied the possibility of modeling mode changes from pWCRTs.
The advantages of such representations can be significant, since in the pWCRT can be embedded more effects on
mode changes, e.g. interference from concurrent tasks, preemption overheads, dependence. Another advantage
with mode characterized with pWCRT is that probabilities can be actively applied into scheduling decisions :
response time changes by dropping lo-criticality tasks or with a different job ordering [202, 204], thus the
mode change probability can change accordingly: the criticality level depends on the application. In this case,
dependence effects between concurrent tasks can be represented and taken into account into scheduling decisions.
On the other end, the complexity with mode change representation from pWCRT consists of removing from
pWCRT representations the preemption time and other conditions that do not actively impact mode change: the
thresholds imposed have to take into account such problems. Figure 5.2 details the difference between pWCET
and pWCRT representations for mode changes; χ parameter can be inferred from both with different impact, and
the differences among the two representations are from the different effects that can be embedded. Figure 5.12
gives another example of pWCRT, continuous or discrete distribution, used for mode characterization.

In this manuscript are not discussed the motivation nor the validity of the possible probabilistic models
proposed. It is only noted that probabilistic representations can potentially increase the amount of information
in the task model. Such flexibility will reduce pessimism of task models and will be applied into schedulability
analysis.

It is also true that probabilistic representations negatively impact the complexity of probabilistic MC
schedulability. There are works made in the past for reducing the complexity from probabilistic representa-
tions [178, 179, 189] by re-sampling the distributions. Here the trade-off become in terms of flexibility and
complexity, and efficient choices can be continued to be developed in the future. Future researches will focus
also on reducing complexity of probabilistic schedulability analysis side in order to effectively apply probabilistic
approaches to MC problems.

On the criticality of pWCET models

In [193] are the basis for the most flexible probabilistic task model that accounts for multiple modes and mode
combinations possible as well as multiple bounding probabilities. The complexity from such MC representations
is not considered here, preferring at this stage to investigate the benefits of a detailed probabilistic model to
task MC behaviors.

Figure 5.3 presents the two traces of measurements and a comparison between pWCET estimates from
the measurements in case of hi-criticality scenario e.g. most conservative and pessimistic described by Chi,
and in case of lo-criticality scenario described by Clo. In Figure 5.3(a) and Figure 5.3(b), the two traces of
measurements which represents the two modes for task; they are trace2 1 for the lms Malardalen benchmark
in lo-criticality mode, and trace2 2 for the same benchmark in hi-criticality mode. Figure 5.3(c) compares the
pWCETs illustrating the partial ordering between the two criticality level with trace2 2 dominating trace2 2 ;
it it, the pWCET is represented with ICDFs. The case study applied is the lms task from the Malardalen
benchmark
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html running on a multi-core platform [157].

[193] has been presented to SETTA conference in 2017 as an alternative representation for MC task worst-
case models. Such fine grained representation, coupled with probabilistic MC scheduler, will allow taking more
accurate decisions depending on the actual execution conditions.
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Figure 5.3: lms benchmark with two traces of execution time measurements trace2 1 (lms in lo-criticality mode)
and trace2 2 (lms in hi-criticality mode).

pWCET challenges

Probabilistic timing analysis and probabilistic models are able to represent accurately task mixed critical be-
havior. Parameterizing WCET bounds with probabilities, i.e., pWCETs, allows to better cope with criticality
levels and the different safety requirements. This is how pWCET reduce the pessimism of the task models.

The main problem with probabilistic timing analysis is the strong dependence with hypotheses and conditions
assumed for the measurements or the system behavior i.e., hypotheses assumed. This reflects into the notion of
worst-case specific to the hypothesis/condition considered, i.e., relative pWCET Csj specific to scenario sj versus
the absolute pWCET which upper bound them all. To note that this is exactly the same problem happening to
static timing analysis with multi-core processors [106]. With such platforms, the complexity is such that timing
analysis is decomposed with hypotheses and WCETs are estimated according to those: there exist the WCET in
isolation where the task execute in isolation within a core, and other WCET are estimated adding hypotheses to
the isolation case. To note that the trend of separating hypotheses and execution conditions copes well with the
MC problem and timing models which differentiates among criticality levels. This makes probabilistic models
such as pWCET handy for representing tasks with multiple criticality as well as for multi-core and many-core
implementations.

Static probabilistic timing analysis. The papers on SPTA [154, 158] have been applied to real-time archi-
tectures with randomized memories. At this stage, SPTA applies only with randomized replacement in cache
memories. In [158], it has tackled with convolution of distributions and preemption effects on cache memories.
In it, the MC problem is left for future contributions: multiple execution conditions will be considered with
different preemption effect (preemption costs). As such, different pWCET estimates will be computed, each
representing a specific execution condition, and thus a criticality level.

In [154], it has been applied the Markov chain formalization to represent randomized cache behaviors. The
cost of cache hit and misses are embedded into the pWCET estimates with Markov chains models. In this
work, different permanent and transient fault conditions can be applied, and pWCET estimates are computed
for each. Implicitly, the MC problem has been considered in [154], since more conservative fault models can be
associated with hi-criticality modes, while less conservative fault models can be associated with lo-criticality
modes. Future work will continue applying formal methods for SPTA extending probabilistic models to effects
other than faults.

Measurement-based probabilistic timing analysis. MBPTA does not rely on traditional analytical system
models as static timing analysis. Instead, it empirically builds the models from the measurements, and that is
a quality used for reducing complexity and increasing applicability of timing analysis. Unfortunately, MBPTA
suffers from the challenge of guaranteeing the worst-case conditions with just measurements.
Contributions have been made to distinguish between the notion of absolute pWCET and relative pWCET [163,
192]. There are formalized models that keeps all the possible input scenarios i.e., ”Worst-case group, or those
which upper bounds every possible relative pWCET i.e., ”Envelope”. Also, works that begin considering the
input measurements representativity problem [159] exist. For the moment, that contribution provides few
observations to define measurements representativity, and how representativity impacts pWCET estimates.
The MC problem is touched by [159, 163, 192], in which the dependence to the input translates into task modes

108

./fig/trace17_2_Value_trace.eps
./fig/trace17_1_Value_trace.eps
./fig/comparator_trace2_1_trace2_2_Value_modellog.eps


5.1 Lessons learned on mixed criticality

and different criticality level models to task executions.
MBPTA and EVT in their classical formalization applies only if the measurements satisfy the ”independence
and identical distribution hypotheses”. This makes difficult to use with realistic real-time embedded systems, in
which there manifest dependence effects from one execution to the next. In [148, 149, 159, 162, 180, 182, 192],
it has been formalized the generic definition of EVT which applies in case of weak dependence: with certain
degree of dependence (local and extreme independence), the EVT can be applied and still provide safe worst-
case representations. Under weak dependence, MBPTA can apply to realistic platforms, as proved by the test
cases in the contributions made.
The production on measurement-based approaches is [148, 149, 153, 154, 156, 158, 159, 162, 163, 177, 180,
182, 192], while the projects related are PROARTIS, IRHEDO2, R2D2, MAMA, CAPACITES, and CAPHCA.
Fabrice Guet PhD Thesis has largely contributed to this subject, including the tool diagXtrm1 that he has
developed and the ONERA is using in projects. Moreover, the probabilistic models have been objects of works
with Master students Alessandra Melani, Corentin Damman, Gregory Edison, Gregor Vindry, and Julien Durand
that have faced multi-core platforms. Within project CAPHCA, the collaboration with Postdoc Guillaume
Phavorin is to extend diagXtrmapplicability to realistic multi-core real-time systems.

SPTA and MBPTA are relatively young approaches to task timing analysis and pWCET estimates: further
development with those are required. With respect to SPTA, research activities are necessary to reduce the
pessimism, and to extend its applicability to other randomized systems. For MBPTA, the need is to do re-
search for increasing the reliability of the MBPTA methodology in each of its composing steps, and to define
representativity of the measurements to be linked to pWCET estimates confidence.

Hybrid approach to timing analysis. Most important future work will be on developing the ”hybrid
approach” to timing analysis which can take advantage of the strong points of [deterministic] static timing
analysis and measurement-based approaches. At one end, the effectiveness of MBPTA, which requires only
measurements of execution times, can be applied to evaluate the quality of deterministic WCET bounds and
the assumptions made to derive them. MBPTA can help static timing analysis to reduce his pessimism, especially
with multi-core implementations. On the other end, an improved knowledge of the system via static timing
analysis, can improve the safety of the MBPTA with more guarantees to have explored the wort-case scenarios
with measurements. Mixing the two approaches will allow reducing the pessimism of task worst-case execution
time estimates, thus benefit MC modeling for every criticality level. The development of the hybrid approach
is in collaboration with IRIT Toulouse, Prof. Christine Rochange and Prof. Hugues Casse.

5.1.2 Deterministic schedulability approaches to mixed criticality

Some are the contributions with deterministic approaches made for the MC problem are [166, 190, 198]; they all
relate to schedulability analysis applied to mixed criticality. In [190, 198], the deterministic sensitivity analysis
has been applied to partitioned real-time embedded systems and MC trask sets; in [166] it has been released an
important hypothesis about MC and system mode definition and the result obtained are less pessimistic.

Sensitivity analysis for MC

In [190, 198] it is formalized the deterministic sensitivity analysis through which explore trade-off between
computational resource, criticality levels, and schedulability. The effect of changes on resource availability or
on different modes are quantified with the abstract representation of the deterministic (α,∆)-space.

The two works differentiate from the case studies and from the strategies developed. Multiple practical case
studies are applied for validating the deterministic sensitivity analysis and outlining the advantage to design
and develop MC real-time embedded systems.

The MC perspective adopted here is more the industrial one: no online mode changes are considered, multiple
possible modes and mode combinations between tasks, instead what can change is the resource provisioning. The
task sets are partitioned resembling to multi-core partitioned scheduling problem. For each partition classical
EDF or FP schedulers are applied.

In the following, some results from the MC version of the ROSACE case study2, named ROSACE++ [190].
The test case is a real MC real-time applications which requires partitioning to run on multi-core platform. In
those, it is possible to see how sensitivity analysis works for defining better system design improving resource
usage for the criticality level to be guaranteed.

1 https://forge.onera.fr/projects/diagxtrm as open source tool form probabilistic timing analysis.
2ROSACE case study developed at the ONERA, http://sites.onera.fr/schedmcore/ROSACE and

https://svn.onera.fr/schedmcore/branches/schedmcore-RTAS2014/Case_Study_RTAS/.
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Figure 5.4: (α,∆)-space and EDF feasibility regions with MC models for ROSACE++.

� �

(a) Partition P1 with some bounds represented
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(b) Partition P2 with some bounds represented

Figure 5.5: (α,∆)-space and EDF with MC models for ROSACE++.

In this system design, the application of 14 tasks (11 hi-criticality tasks, and 3 lo-criticality tasks). A first
analysis is without application partitioning. A resource provisioning of sbf1 is able to guarantee schedulability of
all hi-criticality tasks in lo-criticality mode plus any combination of the lo-criticality tasks, even all the tasks
together. Instead, only a resource of sbf2 = (0.95, 5) is able to guarantee the schedulability of hi-criticality tasks
in hi-criticality mode. This comes with a cost of resource change of δα = 0.95−0.7 = 0.2 and δ∆ = 5−20 = −15.
A negative δ∆ means a reduction of idle time, thus more resource to be provided. Figure 5.4 illustrates the
case.

A second analysis is carried out partitioning the application with a first partition P1 = {τ1, τ4, τ5, τ6, τ7, τ9, τ12},
and a second partition P2 = {τ2, τ3, τ8, τ10, τ11, τ13, τ14}. In terms of utilization, P1 is such that U1,hi−1

hi =
188/200, when the hi-criticality tasks are in hi-criticality mode; P2 is such that U2,hi−2

hi = 135/200 when hi-
criticality tasks are in hi-criticality mode. In terms of resource, per partition there are two possible resource
availability: sbf11 = (0.4, 20) and sbf12 = (0.8, 5) for P1, sbf21 = (0.8, 38), sbf22 = (0.8, 11) for P2; Figure 5.5
illustrates the partitions, each with the available resources.

With P1 and sbf11 available, it is possible to guarantee up to dbflo−12
hi = dbflohi + dbflo,12 (lo). All the

other dbfs dbfhi−k
hi are larger than the available resource. With sbf12, it is possible to guarantee all the tasks in

P1, see Figure 5.5(a) where only some of the bounds are represented. In it, hi stands for all the hi-criticality
tasks in hi-criticality mode plus τ12, while lo stands for the all the hi-criticality tasks in lo-criticality mode
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plus τ12. The cost for the full schedulability within P1, guaranteed by sbf12, is δα = 0.4 and δ∆ = −15, see
Figure 5.5(a) in which some regions are presented with the possible the supply bound function sbf. We remind
that full schedulability means that lo-criticality tasks can execute concurrently with hi-criticality tasks without
jeopardizing any timing constraint.

With P2, sbf21 guarantees all the tasks, but with the hi-criticality in lo-criticality mode (lo-6 case in
Figure 5.5(b)). Instead, with sbf21, it is also possible to schedule all the hi-criticality tasks in P2 in hi-criticality
modes; in that case, τ13 and τ14 have to be dropped. By increasing the resource to sbf12, it is possible to guarantee
all the tasks in P2 in hi-criticality mode (hi-6), see Figure 5.5(b). The cost for the full schedulability within P2
is δα = 0 and δ∆ = −27. The partitioned solution can be implemented with a dual core platform.

Figure 5.5(a) and Figure 5.5(b) present some of the regions together with two possible sbfper partition.
From that, the guarantees that can be provided with each sbfcan be inferred, while possible other changes can
apply in order to increase the schedulability guarantees.

So far, resource availability and trade-offs are only quantified. Future works will develop strategies to decide
optimal or sub-optimal changes for resource or system parameter i.e., task modes. Also, future contributions
will consider better partitioning strategies in order to minimize resource pessimism.

MC scheduling with limited hi-criticality behaviors

Classical MC scheduling algorithms assume that once a hi-criticality task moves to hi-criticality mode, all the hi-
criticality tasks are in hi-criticality modes. This is a pessimistic hypothesis which requires a lot of computational
resource; it is also a non-realistic hypothesis since it does not reflect actual task conditions.

The deterministic scheduling contribution [166] releases that hypothesis since it is assumed that not all
the hi-criticality tasks move to hi-criticality at the same time. This work elaborate on the (k, n) definition
of criticality mode: k ≤ n hi-criticality tasks in hi-criticality mode which is an intermediate step toward MC
scheduling where each hi-criticality task has to be treated separately.

Figure 5.6: Schedulability ratio comparison of our
proposed model and the classical Vestal’s model under
various N ’s, with nhi = 16.

Figure 5.7: Schedulability ratio comparison of our
proposed model and the classical Vestal’s model under
various N ’s, with nhi = 32.

Figure 5.6 and Figure 5.7 show how beneficial is the work made in order to reduce pessimism. In particular,
they demonstrate the effectiveness of the new model (”Our model”) along with the corresponding EDF-VD
schedulability test under various settings of numbers of hi-criticality tasks nhi (16 and 32) and sizes of N (i.e.,
number of hi-criticality tasks that can simultaneously exceed lo-WCETs. It is natural that the acceptance
ratios will drop when system is more heavily loaded (with higher utilization). However, we notice that our
methods maintains relatively higher acceptance ratio even when normalized utilization gets close to 1.

The collaboration with Prof. Zhishan Guo and Prof. Kecheng Yang will continue investigating the complexity
and pessimism of MC scheduling; more realistic hypotheses will be presented. The approaches that continue
exploring (k, n) definition of system criticality mode, or those that apply the notion of graceful degradation will
be investigated in future research. It has already planned to contribute to fixed-priority schedulers applying
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proposed model. The results will also be extended (at a measurable cost) into multi-processor and/or multi-
criticality-level cases.

5.1.3 Probabilistic schedulability approaches to mixed criticality

Probabilistic approaches to schedulability analysis makes use of probabilistic task models. Scheduling conditions
get parametrized with criticality levels and probabilities in order to cover the multiple cases that can happen at
runtime. the objective of that is to reduce the pessimism of schedulability results; the probabilistic conditions
will apply to criticality levels and the different guarantees that each criticality level could require.

There are developed probabilistic approaches to MC: i) some of them define a fine grained probabilistic
representation which account for all the conditions/modes task can experience; ii) some of them define and apply
probabilistic sensitivity analysis to MC problems; iii) others enhance task models with fault representations and
apply such models to probabilistic schedulability analysis with sensitivity; iv) others define scheduling algorithms
that effectively leverage probability into scheduling decisions; v) the rest apply formal methods for scheduling
representation and scheduling strategies. The contributions are presented in this order.

Probabilistic sensitivity analysis for mixed criticality

The MC problem for real-time embedded systems requires for continue exploration of complexity issues, and for
developing new solutions that can manage such complexity. The sensitivity analysis has proved to be effective in
representing schedulability parameters and system resources with abstract representations such as the pC-space
and the probabilistic (α,∆)-space [184, 191]. Also, it proves to be effective in developing strategies to explore
trade-offs between computational resource, schedulability and criticality levels. The trade-offs are i) helpful
in designing and guaranteeing the multiple conditions that MC real-time systems can run into; ii) developing
changing strategies parametrized with criticality levels and resource usage.

The research on probabilistic sensitivity analysis is not yet complete. The abstract representations have
been formalized and initial thoughts to the β parameter have been laid out. See Figure 4.5 and Figure 4.6 for
insight on investigation of β.

Future work will apply the representations into MC scheduling and MC probabilistic sensitivity analysis
to better exploring the flexibility of the probabilistic representations. Future contributions are necessary to
propose meaningful parameters for designing efficient MC real-time systems. In particular, it will be exploited
the use of β, the same for the whole task set or each task with a different βi β = {βi}, and how β can help
developing MC real-time systems.

Also, future contributions are necessary to fully exploit the benefits of sensitivity analysis in reducing the
complexity of MC schedulability analysis. With abstract representations there will be developed strategies to
change resource or application parameters. The strategies are for better exploring the probabilistic regions
and defining trade-off between schedulability and criticality levels that apply probabilities. The notion of
probabilistic trade-off will be defined and applied to MC problems so that probabilities can have an active role
into scheduling policies. Such active role have to be better defined, but can be inspired by [165, 204].

Fault-aware sensitivity analysis for probabilistic real-time systems

In order to be an upper bound, the WCET has to account for any condition, including the highly improbable
pathological cases such as faults. This could lead to extremely pessimistic worst-case execution models. For
these, pWCETs represent a valid alternative to classical deterministic models able to reduce pessimism with
multiple WCET values.

A brief state of the art for fault modeling and real-time in order to motivate some contributions and possible
perspectives.

Fault modeling and fault management intertwines with timing analysis as faults introduce latency to the
task execution behavior which have to be embedded into the task models, [40]. As examples, in [116] backups
are executed for fault tolerance and recovering form task errors caused by hardware or software faults; in [144]
it is proposed an algorithm to abort and restart a task in case of conflicts in shared resources accesses.

Faults and fault effects have to be accounted into MC task models. Various methods applies to perform fault
diagnosis [15, 76]; they can be combined with adaptivity and reliability analysis for safety critical systems [16,
64, 88].

Very few are the works which integrate fault effects into real-time analyses. [194] is an example of faults and
fault effects included into probabilistic task models, and then applied into schedulability analysis. The notion
of safety applied in the paper is equivalent to criticality as it is used to distinguish execution scenarios different
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than the absolute worst-case. Besides, [194] applies the probabilistic sensitivity analysis to evaluate the impact
that faults have on the scheduling of real-time applications.

In [194], it is presented an example of industrial case study of a multi-core avionic application, also applied
in [192]. The two papers consider real-time tasks executing under different scenarios and the MBPTA is applied
to the traces for inferring pWCET estimates for the possible scenarios. The results obtained are available in the
two a fore mentioned papers. This is The contribution of the paper with respect to timing analysis; Figure 5.8
depicts how the task models can be affected by fault models.

[193, 194] are two initial works for exploring the impact of hypotheses and execution scenarios on pWCET
estimates. With different possible execution conditions it is possible to propose multiple pWCET estimates,
each representing a worst case for the condition considered. This reflects today’s trend with STA and the use
of hypotheses to distinguish conditions and WCETs.

Future work is necessary for continuing integrating fault effects into timing analysis approaches and derive
task pWCETs which are more realistic and pessimistic less. Natural will be the application of the results in [194]
to the MC problem, since the idea behind Vestal’s MC task model ”for each criticality level there could be a
WCET model that best fit the task behavior under this case”, matches fault effects and the need for including
those into MC timing models.

In [194], with fault probabilistic task it is applied probabilistic sensitivity analysis. Here the idea is to have
schedulability analysis that can profit of more accurate task models in order to study the impact that faults
have, or could have, on scheduling decisions. Better strategies and trade-offs will be proposed in the future, as
well as scheduling algorithms that can effectively apply probabilistic models.

Future work is necessary to study more general coupling of fault effects, probabilistic models, and MC, along
the line of [154, 194]. In those, the modeling with faults will parameterize the execution scenarios, and criticality
levels, with faults models.
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(f) First scenario faults: CDF

Figure 5.8: Two execution scenarios (without faults and with faults) with histogram, PDF, and CDF represen-
tations. The two scenarios are empirically constructed from 1000 measurements following two different Gaussian
distributions.

In Figure 5.8 are presented two execution scenarios no-fault and faults. The two scenarios are empirically
constructed from 1000 measurements following two different Gaussian distributions, but they can represent
realistic cases: one where the execution scenario does not considered fault conditions, the second in which faults

113

fig/multiple_conditions_HIST_3.eps
fig/multiple_conditions_PDF_3.eps
fig/multiple_conditions_CDF_3.eps
fig/multiple_conditions_HIST_1.eps
fig/multiple_conditions_PDF_1.eps
fig/multiple_conditions_CDF_1.eps


5.1 Lessons learned on mixed criticality

are included into the measurements. The difference among the two is the fault effect on task executions.
Also, in [194] only the formalization of abstract representations probabilities and faults models are defined; in

particular, abstract representation applied is the probabilistic C-space. Future work will apply the probabilistic
(α,∆)-space as well as sensitivity analysis strategies for enhanced trade-off evaluations.
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Figure 5.9: Discrete points represented with proba-
bilities associated to each point.
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Figure 5.10: pC-space with discrete points and safety
levels for task τ3.

Figure 5.9 and Figure 5.10 illustrate the pC-space representation for the test case in [194]. In particular,
Figure 5.9 represents the space with probabilities for each point in it; the probabilities are cumulative and come
from scenario combinations; Figure 5.10 represents the same space where each point is judged as schedulable
or not schedulable. From the pC-space, sensitivity analysis can be developed in order to explore the enormous
flexibility of probabilistic representations.

Future contribution will be devoted to proficiently make use of probabilistic MC task models (with different
fault effects) into probabilistic schedulability analysis. This will contribute building the MC schedulability
analysis in presence of faults. Future enhancements to sensitivity analysis will exploit different parameter to
fault models and relate scheduling conditions to fault conditions. Trade-offs will be developed to explore regions,
resource needs and guarantees that can be provided for each fault model.

Probabilistic scheduling for MC

[165] proposes a MC scheduling algorithm which mixes probabilistic task models for lo-criticality modes and
deterministic WCET for hi-criticality modes. Even if this is a probabilistic framework, for hi-criticality tasks
the constraints remains hard real-time – deterministic model. The scheduling algorithm applies probability
information into scheduling decisions in order to reduce the pessimism and increase resource usage with respect
to classical deterministic MC scheduling.

The algorithm proposed is the LFF-clustering algorithm; it implements a runtime strategy with servers that
executed every time units. The strategy is such that: at any time instant that the server is executing, the active
hi-criticality job, if any, with earliest deadline is executed; if there is no such job, the current job of the server
is dropped. All jobs including the server are scheduled and executed in EDF order, and a job is dropped at its
deadline if it is not completed by then.

Note that although it is introduced a server task with period of 1, preemption does not necessarily happen
that often. The goal of the sever task with utilization ∆ is to preserve a “bandwidth” of at least ∆ for hi-
criticality jobs if the hi-criticality ready queue is not empty. There are three situations to be considered:

Figure 5.11 compares LFF-clustering algorithm with more classical MC scheduling. As it can be seen, by
applying probability into scheduling decisions it is possible to reduce the pessimism and increase resource usage
with respect to classical deterministic MC scheduling. The solution proposed has limitations in the server
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Figure 5.11: Schedulability comparison of the EDF-VD algorithm (left), the algorithm when returning partial
correct or correct (middle), and it returning only correct (right), where color of each block represents the percentage
of schedulable sets within certain utilization ranges.

implementation, due to the need to react at each valuable time instant (arrival, deadline, period, etc.) in order
to be effective. From that, the solution proposed with servers of period 1.

In future work, the server period assumption of 1 unit of time will be released by applying adaptivity to
resource reservation [185, 206]. With the analysis of the deadline and task periods, it would be possible to
implement realistic servers which adapt their period and budget to the MC-scheduler needs, while leaving the
system predictable at any time interval. Also, the sensitivity analysis will help releasing such constraints and
extend the algorithm applicability to real implementations.

Formal methods and MC

The idea of applying formal methods and model checking into schedulability analysis is for benefiting of the
formal mathematical support of such approach, in order to develop models which can be validated/checked.
The models are used to describe task and scheduling behaviors. The aim with formal methods is to formally
and correctly representing the system dynamics allows also for more efficient scheduling decisions.

Formal methods and schedulability. With the rising complexity of schedulability analysis, alternative
approaches are appearing to manage that issue. The thesis Jasdeep Singh at the ONERA is to explore some
alternatives, in particular the approaches that apply formal methods for probabilistic scheduling problems.
Formal methods which could cope with the requirements of non-determinism and probability of choice are
probabilistic timed automata, stochastic timed automata, stochastic Petri net, stochastic model checking and
Markov chains.
Through probabilistic timed automata, many state transitions can emanate from a state; each transition has an
associated probability [132]. With pWCETs there is no question of choice of what the task does, since it can
only execute after it is released once the computational resource is made available. PTA cannot model the time
spent in executing (time staying in a state), as pWCET would represent.
Another formal method which could be used with pRTSs is stochastic model checking [43]. With this, performing
Monte Carlo simulation requires a source of randomness. Unfortunately, safety of the source of randomness being
used in real-time system analysis is an open question.
Stochastic Petri nets can model probabilistic task executions through stochastic time triggers. Existing work on
stochastic Petri nets [152] can analyze probabilistic task set at a high computational cost. On the other hand,
it provides exact result of probability of deadline miss along with the trace representing the probability of task
being executed at a certain time.
The Markov chain a set of states and transitions in which each transition is labeled with the probability of
being chosen [115]. Markov Chain possesses the memoryless property in which the determination of future state
depends only on the present state. Some works apply MC to model cache memories with random replacement
policies [39]. They are SPTA approaches, and use MC to compute discrete pWCETs. Another set of works
has applied MC with schedulability analysis [48]. In there, the Markov chain is only to represent the system
utilization and study its stability in the hyperperiod; the Markov chain does not model task executions nor task
interactions as it is planned to do with CTMC.
In [152, 201, 203] the initial effort of the thesis has been to apply continuous time Markov chains and stochastic
Petri nets to schedulability analysis of real-time systems. Although the use of formal methods makes execution
models and scheduler more formal and easier to validate, problems to be solved still exist. Future work with
formal methods and probabilistic scheduling developed with formal methods will show the strong points of
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formal methods applied to complex scheduling problems. It will also apply formal to the MC problem where
the probabilities will allow defining efficient scheduling decisions.
To mention that Jasdeep Singh developed a tool https://forge.onera.fr/projects/probscheduling to
model probabilistic real-time schedulers with CTMCs. In it there is the interface with model checkers allows to
formally check scheduler models and do probabilistic schedulability analysis from the models.

Formal methods and MC. Recent works from Jasdeep Singh thesis attempt to use formal methods in order
to represent probabilistic MC problems with formal methods [200, 202]. The effort is to tackle with the extreme
complexity of the MC schedulability with the use of easier to validate formal methods and model checkers.
Markov decision process and Discrete Time Markov Chain (DTMC) are the tool applied with MC problems;
with them are defined and investigated path among job states as sequence of task MC modes. With path
exploration it is possible to quantify the probabilities of system criticality level across the paths; also, a more
generic (and more realistic) definition of (k, n) system criticality can be applied. Most of all, with Markov
decision process and DTMC there are developed ”smart” lo-criticality job dropping strategies that select the
least number of lo-criticality jobs to drop executing in order to reduce the probability of hi-criticality mode.
The MC system models are built and formally validated in order to increase the confidence on the correctness
of the models as well as of the analysis developed on top of them.

Figure 5.12 shows the example in which the criticality mode is defined from pWCRT continuous or discrete
distribution. There are depicted hi- and lo-criticality regions: if the job finishing time is in [lij ,∞), the job is
considered to execute in high criticality mode, otherwise the job executes in low criticality mode, [0, lij). The
probability is associated to mode transition from lo-criticality mode to hi-criticality mode. lij is the criticality
WCRT threshold which is used to distinguish between a lo-criticality behavior (mode) and a hi-criticality
behavior of a task; the job criticality level is χij .
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lo hi

Probability
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(a) Continuous
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Figure 5.12: pWCRT of job Jij in its ICDF in (a) continuous and (b) discrete form . High and low criticality
regions are separated by lij . Low and High criticality zones denoted as lo and hi.
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Figure 5.13: Probability of deadline miss of the jobs J26, J14, and J24 vs the lo-criticality jobs dropped.

The scheduling strategy proposed consists of dropping lo-criticality jobs in case some objectives are not achieved.
The probability of moving to hi-criticality system mode is among the objectives. Figure 5.13 details some
results on the dropping strategy implemented. It illustrates the probability of deadline miss for the jobs J26,
J14, J24 before and after dropping corresponding lo-criticality jobs. Sensible modification applies because the
job dropping changes job response time. The percent change in P dm of the hi-criticality jobs from dropping
lo-ciriticality jobs is also shown. This effect can be applied also to control probability of mode change, e.g. job
passing to hi-criticality mode, whenever the pWCRT modeling of modes is applied.
However, from the discussion in [202, 204], a best case can be ensured if all the jobs in the set J

over
(Jhi

ij ) are
dropped. In all the other cases, the reduction cannot be ensured to be the best for the job or the whole system.

116

https://forge.onera.fr/projects/probscheduling
fig/threshold.eps
fig/threshold_disc.eps
fig/result_jobs.eps


5.2 On the future of mixed criticality

Current works assumes that task execution times are independent. This is an unrealistic assumption, but it will
be weakened in future work. Also, future work is under development to apply graph models and graph theory
to represent probabilistic MC scheduling. Future extensions will keep applying Markov decision processes and
DTMC, but will also explore other formal methods for reducing the complexity of the MC scheduling problem
and for developing more efficient schedulers.

5.2 On the future of mixed criticality

In the MC framework, timing analysis and schedulability analysis demands for more work with respect to MC.
The issues addressed in the research project are representativity, flexibility, complexity, and pessimism. They
instantiate for multi-core and many-core implementations with the challenges due to the enormous resource
availability, the contention to it, and the predictability guarantees.

The guidelines for future contributions are derived from four keywords: representativity, flexibility, complex-
ity, pessimism

- Representativity is for timing models that have to represent well the MC behavior: they have to be able
to consider multiple modes and/or multiple execution scenarios, they have to include well represented
interference from concurrent executions or shared resources with multiple cores available, etc.. Represen-
tativity for schedulability analysis means that the hypotheses considered are representative of the system
real behavior: they are not too pessimistic, nor too far away from nominal behavior.

- Flexibility is the main quality that timing models and schedulability analysis have whenever embedding
multiple system behaviors. Flexibility for timing analysis is considering the worst-case model for hard
guarantees (hi-criticality tasks) and also different worst-case thresholds for lower criticality levels. Proba-
bilistic models or complete deterministic models have to be applied in order to obtain flexible task models.
Flexibility is also for schedulability analysis, and it means including all the thresholds into multiple schedul-
ing conditions: the timing constraints of all the criticality levels have to be guaranteed depending on the
requirements of each criticality level.

- Complexity is key for conceiving and validating MC systems with multi-core and many-core. Nowadays
MC scheduling algorithms are complex and not that performing; complexity is reduced with more efficient
deterministic scheduling approaches, and by developing alternative scheduling approaches like formal
methods, with the use of probabilities, and with sensitivity analysis.

- Today’s MC timing models and MC schedulability analysis are pessimistic; such pessimism is not affordable
anymore, even with multi-core and many-core implementations. The computational resource has to be
well managed since it is limited and MC applications are very demanding. With more representativity,
with the use of sensitivity analysis, and applying probabilities to timing models and schedulability analysis
more efficient resource usage is guaranteed and the pessimism is reduced.

Special attention will be given: i) to develop accurate statistical modeling analysis for studying interference,
independence, and partitioning properties of multi-core and many-core platforms ; ii) to develop a timing analysis
that combines measurement-based and static in order to reduce pessimism and increase applicability for multi-
core and many-core real-time systems ; iii) to develop deterministic schedulability analysis processes which are
more realistic, and thus less pessimistic; iv) to develop probabilistic schedulability analysis efficient, with reduced
complexity, and effective in applying probabilities into scheduling decisions.

As for the previous chapters, future work on MC is presented with timing analysis first, and schedulability
analysis next.

In all those future works with timing analysis and schedulability analysis, it will be applied both the academic
and industry perspectives. Moreover, the focus will be on multi-core and many-core implementations with the
challenges they pose for MC.

In Figure 4.1 are depicted previous contributions and present works for the MC problem. It recaps some
contributions made for the MC problem in terms of timing analysis approaches as well as in terms of scheduling
analysis approaches. But what has been done so far is just an initial step; Further works and projects are
already under development and will be more specific to multi-core platforms and the challenges they present.
The lack of contributions with real-time calculus and its probabilistic version pCalculus is evident in the figure.
This is because so far the research activities insisted more on bounding functions i.e., demand bound function
and level-i workload function, both deterministic and probabilistic. Future work will consider also the real-time
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calculus for MC schedulability analysis, as the group of Prof. Lothar Thiele is actually doing at the ETH, and
the pCalculus for more flexible representations and efficient schedulability decisions depending on probabilities.

Figure 5.14: MC problem for academics and industry with commonalities and differences.

Figure 5.14 illustrates some challenges related to MC for both industry and academics. In it, it is briefly
presented what could be considered the differences among them with impact on timing models (Vestal’s task
model vs Liu and Layland task model – L&L) and schedulability analysis (mixing tasks vs separating tasks –
partitioning). Instead, at the intersection there are commonalities and potential contributions to both industry
and academic. Such contributions recaps what has previously discussed and will defines the some important
directions for the research project. Those will be approached to close the gap between academic and industry
perspectives as well as to provide adhoc solutions which would benefit one or the other. In the intersection, the
picture presents what I consider to be the main issues to be addressed with academic and industry perspectives,
for multi-core and many-core; they recaps present and future contributions previously discussed.

1. Partitioning problem: guaranteeing partitions and characterizing interference – Partitions are for isolating
MC tasks and avoid that hazardous phenomena propagates or infect other hi-criticality tasks. They will
be investigated with statistical analyses and analytical approaches. Partitions properties, guarantees, and
their impact to MC models are evaluated. This is mostly helpful to the industry perspective to the MC
problem.

2. Need for enhanced probabilistic models – There will be proposed probabilistic models for lower criticality
tasks that can account for different execution conditions and embed different confidence level according
to the criticality required. The flexibility from probabilities will reduce pessimism of timing models. This
will contribute to both academic and industry perspectives.

3. More effective scheduling – The contributions relate to deterministic and probabilistic schedulability anal-
ysis. With deterministic approaches, the releasing non-realistic hypotheses and trade-offs are proposed.
Academic and industry perspectives will benefit thanks to the sensitivity analysis and deterministic ap-
proaches. Probabilities are for reducing pessimism and for taking better scheduling decisions that allow
for more efficient resource usage. Complexity and MC system design are explored with probabilistic sensi-
tivity analysis. Academic and industry perspectives will be impacted from use of probabilities within the
partitions and across them.

Timing analysis and schedulability analysis further investigation will consider and revise some of the classical
assumptions to MC made with academic contributions. Special attention will be given to the MC task modeling
where the multiple execution time threshold will be generalized with probabilistic task models. The multiple
pWCET applied will result from MBPTA and the hybrid timing analysis approach applied to different execution
conditions or to different interference scenarios. Beside, it will be investigated the tools for task modeling i.e.,

118

./fig/../fig/R-I_MC_1.eps


5.2 On the future of mixed criticality

MBPTA, the SPTA and the hybrid, for their degree of independence and to which criticality level is better
apply one or the others.

Also, special attention will be given to MC schedulability analysis approaches in order to enforce efficient
resource usage with improved scheduling algorithms. At one end, it will be applied and verified more realistic
execution conditions with deterministic schedulability analysis. On the other end, the probabilistic schedulability
analysis will apply actively into scheduling decisions to leverage the different criticality requirements into smarter
scheduling decisions.

In future contributions it will be explored the difference in modeling and analysis between ”task” criticality
levels and ”application” criticality levels; motivations of the two different notions will be explored while the
results obtained will be compared. This will continue the work started with Jasdeep Singh thesis for exploring
differences between pWCET representations for MC tasks (task criticality) and the pWCRT representations for
MC tasks (application criticality).
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Figure 5.15: Partitioning problem: guarantee-
ing isolation and separation of criticality.

Figure 5.16: Execution scenarios with task
placement onto different partitions.

Timing analysis for mixed criticality

The timing analysis defines the possible interpretations of predictability with MC. Task timing models are for
clarifying ontological and epistemological hypotheses of system behavior. With multi-core and many-core im-
plementations, epistemic variability increases enormously, while ontological hypotheses are necessary to simplify
system behavior.

Timing models have to be built depending on the criticality requirements. That is achievable with models
specific to well identified execution conditions that can happen within the systems; among those conditions,
worst-cases have to be included. Research on timing models aims for the best possible representation that can
minimize pessimism and reduce complexity: good models have to be produced for specific modes (representa-
tivity).

Probabilistic models and probabilistic timing analysis will be effective in modeling the variability that exist
in today’s multi-core and many-core embedded systems. Also, they will apply to study interference that can
happen at runtime and that can affect task executions. Interference are evaluated in order to identify interference
channels according to certification standards, e.g. CAST-32A; partitioning mechanisms are evaluated to see
their capability of temporal and spatial isolation; mechanisms/execution conditions will be applied to mitigate
interference effects or limit anomalies propagation.

It is chosen to investigate the probabilistic timing analysis approaches because probabilistic models have
proved flexibility and accuracy [159, 163, 192, 193]. Probabilistic models will allow better representing the
multiple requirements that each criticality demands i.e., more flexibly and less pessimistically. At one end, the
possible multiple execution scenarios will be modeled with probabilistic models; on the other end, interference
effects will be characterized with probabilistic representations for nominal and worst-case behaviors.

Particular attention will be given to the lower criticality tasks and their representation with probabilities;
this is to associate a confidence degree (probability) to their worst-case models of lower criticality modes,
while the hi-criticality tasks remain deterministic in their representations. The mixture of deterministic and
probabilistic representations will allow to apply probabilities for guaranteeing both hard and soft real-time
constraints: probabilities reduces pessimism of lower criticality modes, deterministic models enforce safety with
hi-criticality modes.

For MC timing analysis, the new collaboration with Polytechnic of Milan (Prof. Wiliam Fornaciari and
PhD Student Federico Reghenzani), and the ongoing collaboration with Prof. Iain Bate (University of York),
PhD Liliana Cucu Grosjean (INRIA Paris), and PhD Francisco Cazorla (Barcelona Supercomputing Center)
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will allow improving all the aspect above mentioned. In particular, with Polytechnic of Milan, the collaboration
will produce results on:

- Enhancing the MBPTA methodology: more reliable and robust statistical tests are under investigation.
Applied to the EVT, they will increase confidence on pWCET estimates especially for lower criticality
modes. The statistical power is used for evaluating reliability of statistical tests: it is applied to find
the best goodness-of-fit test for pWCET estimation. Also, it is applied sensitivity analysis to pWCET
estimates parameters to seek for the best pWCET distribution according to multiple criteria. The quality
of pWCET estimates will be enhanced, that in turn it will reduce pessimism of MC task models.

- Improving representativity of input measurements: it is under investigation the notion of representativity
of input measurements. When and how is a trace of measurements representative enough of some specific
execution conditions? When is it representative of the worst-case conditions? What does it mean that
the system hypotheses are represented well enough? In particular, the maximum domain of attraction of
the EVT is under exploration in order to identify which are the system hypotheses and see if the EVT
embeds them well into pWCET estimates. Also, it will be studied the problem of input coverage, where
representativity is used for assuring to have included the worst-cases among the inputs. With an increased
input representativity, the quality of MC timing models will increase.

- System behavior monitoring: identify which are the statistics that allow to characterize task condition
changes, and then from the changes derive the best worst-case model that needs less measurements (reduce
cost). The monitor will apply in order to reduce complexity of MBPTA, and to focus pWCET estimates
to specific modes/execution conditions: the model pessimism is reduced. To the MC problem, the monitor
will help separating modes (thus better models for each mode), and it will contribute representing the
dependence between modes and other runtime system behaviors.

Also, it will be investigated the combination of deterministic timing analysis approaches (static timing analy-
sis) and probabilistic timing analysis into the so called hybrid timing analysis approach. In the hybrid approach,
probabilistic methods like MBPTA will allow evaluating the accuracy of static timing analysis: measuring are
for validating static timing analysis hypotheses. The pessimism will be reduced with hypotheses that better
cope with the behavior of the system. Besides, with a more precise system model from static timing analysis,
input representativity for MBPTA will improve, and more accurate pWCET estimates would be computed.
The coupling between MBPTA and static timing analysis is for increasing confidence on probabilistic models
(MBPTA) and to reduce pessimism of deterministic models (static timing analysis).

The hybrid approach will also apply to characterize MC applications. Each tool will be used for a specific
criticality level i.e., MBPTA for lower criticality modes and tasks, static timing analysis for higher criticality
models.

The collaboration with IRIT Toulouse and Prof. Hugues Casse and Prof. Christine Rochange with the
OTAWA static timing analysis tool developed by them is for developing the hybrid tool and explore its benefits.

Schedulability analysis for mixed criticality

With respect to schedulability analysis, the plan is to continue the investigation of deterministic approaches to
MC schedulability. Collaborations are planned in order to continue releasing pessimistic and non-realistic hy-
potheses e.g. reduced number of hi-criticality tasks in hi-criticality mode. Also, new deterministic schedulability
analysis are proposed in order to improve the resource usage within multi-core platforms.

Realistic hypothesis on system criticality mode will be applied and compared in terms of resource efficiency.
This will be coupled with multi-core and many-core implementations, and the deterministic scheduling algo-
rithms proposed will explore the trade-off between resource partitioning, resource sharing, and realistic behavior.

Also, the complexity of deterministic MC scheduling will be investigated: efficient deterministic MC schedul-
ing policies will be proposed for the specific conditions considered (execution scenarios) and for the specific task
allocation within the multiple cores available. Under investigation are better priority assignment for reduced
scheduling complexity.

The ongoing collaboration with with Prof. Zhishan Guo and Prof. Kecheng Yang (Texas State University)
will focus on relaxing the classical MC hypothesis for which once a hi-criticality task goes in himode, every
hi-criticality tasks goes on himode. By doing that, we plan to contribute with more realistic conditions and less
pessimistic scheduling results. New (k, n) definitions of system criticality will be explored, together with their
realism and efficient resource usage.

In parallel, probabilistic MC scheduling approaches will be investigated. New probabilistic schedulers will
be proposed such that they will be able to leverage probabilities into scheduling decisions: better decisions
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will improve resource utilization. Those contribution will follow the work done in [165]; they will focus on
reducing some of its limitations, and by continuing developing efficient scheduling decisions which actively
apply probabilities. In particular, the limitations in [165] will be overcome with adaptive and efficient servers
that are able to capture decision instants and convenient runtime scheduling decisions.

Other ways to include probabilities into scheduling decisions will be investigated: the probabilistic models,
that better cope with runtime behavior, will be applied to foresee the next decision, e.g. by considering the
most probable event. More efficient resource usage and reduced pessimism will be achieved with better decisions
from probabilities.

Collaborations with Prof. Zhishan Guo, PhD Konstantinos Bletsas, Prof. Laurent George, and other will
allow producing more results for probabilistic MC problems.

The schedulability analysis, both deterministic and probabilistic, will have a key role in investigating complex
problems such as MC for multi-core and many-core. With sensitivity analysis applied to schedulability, the idea
is to explore effects that parameter changes would have on schedulability or other criteria that can be defined.

Deterministic sensitivity analysis like [190, 198] will continue to be studied in order to explore the multiple
mode combinations that can happen within the system. With a complete and flexible deterministic represen-
tation of the runtime behavior, it will be qualified/quantified the impact of scheduling decisions and resource
changes on criticality guarantees.

Probabilistic sensitivity analysis will continue to be developed and applied to study impact of system parame-
ters have with MC schedulability [184, 191, 194]. There will be evaluated multiple trade-offs, e.g. predictability-
resource usage and probabilistic guarantees. Also, it will be proposed enhanced strategies for more efficient
mode changes and/or resource changes.

Finally, formal methods have been shown promising in representing MC system behavior and in taking
scheduling decisions with probabilities [202, 204]. Such investigation will continue with the help of PhD Student
Jasdeep Singh and Prof. Laura Carnevali (University of Florence). In particular, it will be applied Markov
decision process with the reward mechanisms to be associated with probabilities, and there will be developed
new schedulers and less pessimistic scheduling decisions than classical ones with the help of probabilities.

Jasdeep Singh is now investigating other tools to represent MC task executions. In particular, he is studying
graphs and how they can be handy representing the task ordering. From graphs, the idea is to develop first
off-line scheduling strategies that define best execution paths in order to increase the resource utilization. Once
on-line, the strategies are to promptly adapt to mode changes and apply sub optimal strategies with similar
objectives. The thesis aim at making graph and graph theory a formal approach for MC schedulability analysis,
where everything is proved and validated.

In the literature, tasks are always assumed fully dependent of fully independent with respect to criticality
levels and mode changes. If one hi-criticality task/job changes mode, either all the hi-criticality task/jobs are
considered to change (full dependence), or each mode change has to be evaluated independently (full indepen-
dence). In reality, things are more complex than that. There can exist dependence relationship among task/jobs,
and their investigation can and will help reducing pessimism of actual results on MC schedulability analysis.

With Jasdeep Singh, future work is also devoted releasing the independence hypothesis between tasks. Dif-
ferent causes of dependence will be introduced in the Markov chain formalization with probabilities representing
dependence effects. With this new model, scheduling decisions that account for dependence effects can be made
and embedded into the MC scheduler. The thesis is currently investigating how to plug dependence models into
formal methods, included graphs, and applied to MC schedulability analysis.

Partitioning guarantees and interference analysis

Partitioning guarantees and interference analysis are crucial for MC timing analysis and MC schedulability
analysis. Moreover, they affect both academic and industry studies.

Figure 5.15 and Figure 5.16 are for outlining the importance of the partitioning problem to MC. Figure 5.15
describes an abstract case of partitioned system in which time and space partitioning is guaranteed with a
separation kernel like real-time OSs or hypervisors. Figure 5.16 is from an example with the NXP T4240 multi-
core platform with PikeOS hypervisor for partitioning, currently under investigation at the ONERA. In it, the
partitioning is by cores, while cores are grouped by clusters; C0 is the execution scenario with just one task
running in core/partition 0, C1 NC0 NC2 NC3 is the scenario with the task under observation C1 running in core
1 and other tasks NC running in other cores within the same cluster, and C1 NC0 NC2 NC3 NC4 is the scenario
with the task under observation running in core 1 and other tasks running in cores within the same cluster
and in other clusters. Guaranteeing the isolation is complex; interference have to be studied, represented, and
limited or canceled; for that, it is planned to apply the statistical analysis with measurements. The probabilistic
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models derived from the statistical analysis are for characterizing how good are the partitioning tools applied,
and eventually for improving their effectiveness with better placement or scheduling choices.

Average (nominal) models, worst-case models, and statistics to identify behaviors, trends, hypothesis testing,
etc. are proposed. All of it will be applied to measurements of execution times or other system parameters. The
statistical analysis will also apply to qualify the partitioning applied for separating mixed critical applications.

Figure 5.17: Interference effects from shared resources
and different execution scenarios.

Figure 5.18: Maximum measured execution
time under different resource requirements and
under different execution scenarios.

Figure 5.17 motivates the need for interference modeling since it represents the effect on maximum measured
execution time of a task under observation with respect to memory requirements of the task and its interfering
tasks. Here the execution scenarios are named with CaseX. Interference from shared resources such as cache
memories can impact 5 times task execution time (CaseF) with respect to the case where shared resources are
not used (isolation case, CaseA), when resource usage increases only 3.5 times.

Figure 5.18, Figure 5.19, and Figure 5.20 illustrate some preliminary results of an on-going work for studying
interference. The investigation is made with the NXP T4240 multi-core platform and PikeOS hypervisor. In
it, different execution scenarios are considered; they are are different tasks and task placement within the cores
and clusters which exercise interference with shared resources, e.g. C1 NC0 NC2 NC3 NC4 is the scenario where
the task under observation C1 is running in core 1, and other four tasks execute in four different cores (NC).
Task executions are observed with measurements on execution time and the interference levels is parametrized
since the tasks composing the application can change their memory requirements.

Figure 5.19: Average measured execution time
from different execution scenarios and different
resource requirements.

Figure 5.20: Standard deviation of measured
execution time from different execution scenarios
and different resource requirements.

The interference analysis is conducted with measurements and a formal statistical approach in which different
metrics are applied to characterize the task execution times under different conditions. The statistical analysis
is still under development, and applies for average and worst-case modeling of task execution times. It will be
useful to qualify and quantify resource partitioning from hypervisor or operating systems mechanisms. Moreover,
statistical analysis tackles with schedulability analysis and MC, since task placement and task ordering are
among the parameters to be investigated.

In Figure 5.18 there are represented the maximum execution time of the task under observation with different
memory requirement (in abscissa, with X-Y representing the memory requirements of the task under observation
(X) and of the task interfering with it (Y)) at different scenarios. Figure 5.19 and Figure 5.20 illustrate other
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statistical metrics, respectively average and standard deviation, applied to characterize interference effects under
different memory requirements and execution scenarios.

The statistical analysis will be coupled with task placement and scheduling policies to limit/remove interfer-
ence and increase the predictability per criticality level. Such iterative approach will apply in order to evaluate
placements/scheduling policies. The aim is proposing multiple policies and eventually converging toward optimal
or sub-optimal solutions for the application or the implementations.

5.3 Future projects

There are hereby presented projects proposals under submission and future ideas around MC which will con-
tribute to the research project defined. Among the project proposals, there are PhD thesis proposals, Postdoc
offers, collaborations, and research or technology transfer. The tools formerly described, see Figure 4.1, are
included in the comments since the idea is apply them in order to make contributions to the MC problem for
multi-core and many-core implementations.

- An ANR ”jeunes chercheuses et jeunes chercheurs” JCJC project proposal under submission. It is for
investigating mixed critical system with multi-core and many-core implementations, as for the research
project hereby presented. The project proposal is to define the research activity in the next four year
around the MC problem. It tackles with timing analysis and schedulability analysis, with deterministic
and probabilistic approaches, and for multi-core and many-core platforms.
The JCJC project proposal is for building the collaboration network and propose breakthrough contribu-
tions for multi- and many-cores. The proposal includes industry and academic partners: Prof. Hugues
Casse, Prof. Zhishan Guo, PhD Konstantinos Bletsas, Prof. Laura Canevali, and industrial partners
such as AIRBUS, COBHAM Gaisler, ESA. It refines the research project described in this manuscript;
steps and intermediate objectives with respect to timing analysis and schedulability analysis for MC are
detailed. Timing analysis approaches and schedulers will be enhanced/newly developed for both academic
and industry perspectives.
The project proposal asks funding for a PhD thesis on probabilistic MC schedulability analysis with the
use of sensitivity analysis techniques. The PhD candidate will investigate MC applications implemented
with multi-core and many-core platforms and will apply sensitivity analysis in order to reduce pessimism
and complexity with innovative scheduling algorithms.

- The ongoing collaboration with prof. Zhishan Guo, PhD Konstantinos Bletsas, and Prof. Kecheng Yang
about scheduling problems for MC.
The collaboration is for applying deterministic and probabilistic approaches with the objective of proposing
alternative scheduling algorithms for more efficient resource utilization. Also, the Vestal’s model [140] will
be revised, and less pessimistic scheduling algorithms will be proposed. The collaboration will continue
investigating MC scheduling with limited hi-criticality behaviors [166], and probabilistic MC scheduling
algorithms like [165]. There is also under investigation a priority assignment problems for MC task
scheduling, and how they can help defining less complex deterministic scheduling algorithms. The project
will pursue only the academic perspective to MC.

- The third year of Thesis of PhD student Jasdeep Singh in 2019 is for further investigating the use of formal
methods (and the advantages related to those) for more efficient probabilistic MC scheduling decisions.
The collaboration with Prof. Laura Carnevali and Prof. Giuseppe Lipari (University of Sciences and
Technologies of Lille) during this last year is for pursuing investigation and development of formal methods
applied to MC scheduling. In particular, more realistic hypothesis will be applied to model and study
dependent tasks. This project will pursue only the academic perspective to MC.

- The six years PEA DRONE project, 2019 − 2025. The project is for investigating different aspects of
drone development and analysis. The PEA project is in collaboration with the ONERA, the ISAE and
the ENAC in Toulouse.
A work package of the project tackles with embedded system implementations for Drone applications, and
in particular, it considers the use of GPU platforms. In the project there is financed a PhD thesis for
studying GPU architecture for Drone MC applications. During the thesis the candidate will investigate
safety problems and scheduling/placement problems related to MC applications. The PhD thesis is be-
tween the ONERA and the ISAE.
Also, in the project there are the funding for a 18 months Postdoc for implementing MC applications with
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GPU platforms. During the implementation, it will be evaluated the determinism of GPU implementa-
tions with Drone MC applications; measurement-based approaches will be applied together with statistical
analysis. Both PhD thesis and Postdoc have to finish by the project deadline in 2025; the PhD thesis
goes first and then the Postdoc which is for validating thesis achievement. The project will pursue only
the academic perspective to MC. Within the PEA, it will be close collaboration with PhD David Doose
(ONERA), PhD Youcef Bouchebaba (ONERA), and PhD Jean-Baptiste Chaudron (ISAE Toulouse) on
placement policies for MC applications, schedulability analysis of safety-critical as well as mixed critical
applications, and determinism evaluation of MC applications on GPU platforms.

- A proposed PhD thesis starting from October 2019 to be financed ONERA-ISAE (shared research team
ONERA-ISAE). The thesis if for studying interference of mixed critical applications within multi-core
platforms. A clear understanding of system dynamics will help producing better timing models, and
having better models is critical with today’s and future multi-core implementations of MC real-time
embedded systems. Here, representativity and flexibility issues are addressed in order to improve the
representations of complex MC multi-core real-time embedded systems.
The PhD candidate will apply statistical analysis based on measurements in order to identify and quantify
interference effects on task execution times. Also, parameters like bus latency and cache misses will
be applied for such characterization. The statistical analysis will embed all the parameters and will
provide average (nominal) and worst-case models to interference and task execution times. The thesis will
investigate both academic and industry perspectives to MC.

- An ANR project proposal ”projet de recherche collaborative” PRC AAP 2019 on innovative parallel
processors for real-time systems under submission. The proposal is for studying a many-core platform
(Little Big Processor - LBP), its deterministic characteristics, and its performance with MC real-time
applications.
The project proposal is with academic partners from INRIA Lyon, INRIA Rennes, IRIT Toulouse, and
University of Perpignan for studying and validating the determinism with such an innovative many-core
architecture as the Little Big RPcessor. In particular, the ONERA is involved into the schedulability
analysis of safety-critical and mixed critical applications, and performance evaluation for those.
The proposal has funding for a 12 months Postdoc for performance evaluation. The interest for the project
proposal and for proposing the Postdoc come from the need for studying and guaranteeing predictability
with future implementations for real-time embedded systems such as many-core. MC applications will
be studied, while sensitivity analysis will be applied to explore performance-predictability trade-offs. The
project will pursue both academic and industry perspective to MC.

In the upcoming months other collaboration projects will be proposed in order to tackle with MC for multi-
core and many-core platforms. With those, the many open problems with MC and the new architectures for
real-time embedded systems will be explored with timing analysis and schedulability analysis tools. The pursuit
of both industry and academic perspectives for MC will continue.

Figure 5.21 details some of the project proposal already mentioned with their topics. Also, are represented
PhD thesis proposals, and Postdocs proposals with a brief description of interest for MC. PhD thesis and
the Postdoc are for investigating more in details some of the topics in the projects: both timing analysis and
schedulability analysis are approached by them. There are also enlisted existing and future collaborations related
to such projects that will help working on MC with multi-core and many-core platforms.
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Figure 5.21: Research perspective and projects under submission.
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Abella, Adriana Gogonel, Andrea Baldovin, Enrico Mezzetti, Liliana Cucu, Tullio

Vardanega, and Francisco J. Cazorla. Measurement-based probabilistic timing analysis:
Lessons from an integrated-modular avionics case study. In 8th IEEE International Symposium
on Industrial Embedded Systems, SIES, 2013.

[143] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, T. Mitra,

F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenström. The worst-case
execution-time problem – overview of methods and survey of tools. ACM Transactions on
Embedded Computing Systems (TECS), 7(3):1–53, 2008.

[144] H. C. Wong and A. Burns. Schedulability Analysis for the Abort-and-Restart (AR) Model.
In Proceedings of the 22Nd International Conference on Real-Time Networks and Systems (RTNS), 2014.

[145] Jing Xie and Yuming Jiang. Stochastic Network Calculus Models under Max-Plus Algebra.
In Proceedings of the Global Communications Conference (GLOBECOM), pages 1–6, 2009.

[146] S. Zhou. An efficient simulation algorithm for cache of random replacement policy. In the 7th
IFIP international conference on Network and parallel computing (NPC2010), pages 144–154, 2010.

[147] H. Zhu, J. Hansen, J. Lehoczky, and R. Rajkumar. Optimal partitioning for quantized EDF
scheduling. In the 23rd IEEE Real-Time Systems Symposium (RTSS’02), 2002.

134

http://www.mpa.ethz.ch/Rtctoolbox


Own references

[148] Kostiantyn Berezovskyi, Fabrice Guet, Luca Santinelli, Konstantinos Bletsas, and Eduardo Tovar.
Measurement-based probabilistic timing analysis for graphics processor units. In Architecture of Com-
puting Systems - ARCS 2016 - 29th International Conference, Nuremberg, Germany, April 4-7, 2016,
Proceedings, pages 223–236, 2016.

[149] Kostiantyn Berezovskyi, Luca Santinelli, Konstantinos Bletsas, and Eduardo Tovar. WCET measurement-
based and extreme value theory characterisation of CUDA kernels. In 22nd International Conference on
Real-Time Networks and Systems, RTNS ’14, Versaille, France, October 8-10, 2014, page 279, 2014.

[150] Marc Boyer, Guillaume Dufour, and Luca Santinelli. Continuity for network calculus. In 21st International
Conference on Real-Time Networks and Systems, RTNS 2013, Sophia Antipolis, France, October 17-18,
2013, pages 235–244, 2013.

[151] Giorgio C. Buttazzo and Luca Santinelli. Adaptive mechanisms for component-based real-time systems.
In 2015 NASA/ESA Conference on Adaptive Hardware and Systems, AHS 2015, Montreal, QC, Canada,
June 15-18, 2015, pages 1–8, 2015.

[152] Laura Carnevali, Alessandra Melani, Luca Santinelli, and Giuseppe Lipari. Probabilistic deadline miss
analysis of real-time systems using regenerative transient analysis. In 22nd International Conference on
Real-Time Networks and Systems, RTNS ’14, Versaille, France, October 8-10, 2014, page 299, 2014.
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Mixed Criticality Modeling and Analysis Paradigms for Real-Time Embedded
Systems

As research project, it has been chosen to investigate mixed criticality real-time embedded systems. 
The project aims at guaranteeing timing constraint and schedulability of applications with different 
requirements/criticality that are running together. Mixing criticality tries to reconcile efficient resource 
usage and safety assurance, thus it is critical with today’s and future multi-core and many-core 
implementations for real-time embedded systems. It is a complex problem and has some interesting 
open problems that requires to be studied.
The project is presented with respect to works already made, and more importantly with perspectives 
that will be elaborated with future achievements. Previous research on non-mixed critical real-time 
embedded systems for timing analysis and schedulability analysis is also described; it is background 
work for mixed criticality achievements.

Keywords : MIXED-CRITICALITY;REAL-TIME EMBEDDED SYSTEMS

Modélisation  et analyse de la criticité mixte pour le Systèmes embarqués
temps réel

En tant que projet de recherche, il a été choisi d’étudier les systèmes embarqués en temps réel à 
criticité mixte. Le projet vise à garantir la contrainte de temps et l'ordonnancement des applications 
avec différentes exigences / criticité qui fonctionnent ensemble. La criticité mixte tente de concilier 
l'utilisation efficace des ressources et l'assurance de la sécurité, elle est donc essentielle avec les 
implémentations multicœurs et multicœurs actuelles et futures pour les systèmes embarqués en temps 
réel. Il s'agit d'un problème complexe qui présente des problèmes ouverts intéressants qui doivent 
être étudiés.
Le projet est présenté par rapport aux travaux déjà réalisés, et surtout avec des perspectives qui 
seront élaborées avec les réalisations futures. Des recherches antérieures sur les systèmes 
embarqués critiques en temps réel non mixtes pour l'analyse temporelle et l'analyse 
d'ordonnancement sont également décrites; c'est un travail de fond pour des réalisations de criticité 
mixte.

Mots-clés : CRITICITE MIXTE ; SYSTEME EMBARQUE TEMPS REEL
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