
HAL Id: tel-02462537
https://hal.science/tel-02462537v2

Submitted on 10 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Global optimization of polynomial programs with
mixed-integer variables

Arnaud Lazare

To cite this version:
Arnaud Lazare. Global optimization of polynomial programs with mixed-integer variables. Op-
timization and Control [math.OC]. Université Paris Saclay (COmUE), 2019. English. �NNT :
2019SACLY011�. �tel-02462537v2�

https://hal.science/tel-02462537v2
https://hal.archives-ouvertes.fr

NNT : 2019SACLY011

THÈSE DE DOCTORAT

de

l’Université Paris-Saclay

École doctorale de mathématiques Hadamard (EDMH, ED 574)

Établissement d’accueil : École Nationale Supérieure des Techniques Avancées

Laboratoire d’accueil : Unité de Mathématiques Appliquées, ENSTA-CNRS-INRIA

Spécialité de doctorat : Mathématiques appliquées

Arnaud LAZARE

Global optimization of polynomial programs with
mixed-integer variables

Date de soutenance : 3 décembre 2019

Après avis des rapporteurs :
Christoph BUCHHEIM (Technische Universität Dortmund)
François CLAUTIAUX (Institut de Mathématiques de Bordeaux)

Jury de soutenance :

Alain BILLIONNET (ENSIIE) Examinateur

Christoph BUCHHEIM (Technische Universität Dortmund) Rapporteur

François CLAUTIAUX (Institut de Mathématiques de Bordeaux) Rapporteur

Yves CRAMA (HEC Liège) Président du jury

Sourour ELLOUMI (ENSTA ParisTech) Directrice de thèse

Amélie LAMBERT (CNAM) Co-encadrante de thèse

Dominique QUADRI (Université Paris Sud) Examinatrice

2

3

4

Acknowledgements

Je tiens tout d’abord à remercier les deux personnes à l’origine de cette thèse. Merci Sourour
et Amélie pour votre investissement dans cette thèse. Vous m’avez accompagné durant trois ans
en partageant votre passion pour la recherche. Je vous remercie pour vos nombreuses idées, vos
encouragements ainsi que pour vos qualités humaines. J’éprouve énormément de reconnaissance
pour le travail que vous avez effectué. En particulier, merci Sourour d’avoir été à l’origine de cette
aventure et de m’avoir suivi depuis l’ENSIIE avec bienveillance, en me donnant de nombreux
conseils. Merci Amélie pour ton énergie, ta disponibilité, pour les nombreuses heures passés sur
mon code. Merci aussi pour ta bonne humeur au quotidien.

J’aimerais aussi remercier les rapporteurs de cette thèse pour le temps qu’ils ont consacré
ainsi que l’intérêt qu’ils ont porté. Thank you Professor Christoph Buchheim for your review and
for the discussions we had on quadratizations. Merci au Professeur François Clautiaux pour les
commentaires très encourageants qui m’ont particulièrement motivé.

Je remercie aussi les Professeurs Alain Billionnet, Yves Crama et Dominique Quadri de m’avoir
fait l’honneur de faire partie de mon jury de thèse.

Je tiens à remercier toutes les personnes du CEDRIC pour ces années passées dans la bonne
humeur, ainsi que les membres de l’UMA. Merci tout d’abord à Marie-Christine et Frédéric
pour leur aide précieuse dans l’obtention de la bourse de thèse. Merci à Agnès, Alain, Cédric,
Christophe M, Christophe P, Corinne, Daniel, Éric, Maurice, Pierre, Safia, Sami, Stéphane,
Tifanie et Zacharie.

Je voudrais faire une mention spéciale pour tous ceux qui ont partagé leur bureau avec moi.
Merci Dimitri et Pierre-Louis pour toutes les choses qu’ils m’ont apprises. Merci à Thomas pour
son accueil. Merci aussi à Alicia, Antoine, Hadrien, Rémi et Sofya.

Je n’oublie pas tous les collègues que j’ai côtoyés durant mes séjours à Liège et à Aix-la-
Chapelle. Je remercie particulièrement Élisabeth pour sa générosité, sa disponibilité ainsi que
pour son implication dans les différentes collaborations. Ce fut un plaisir de travailler ensemble.

5

Un grand merci à ma famille, sans qui je n’aurais pas surmonté toutes ces épreuves. Merci
d’avoir cru en moi et de m’avoir soutenu et encouragé dans les moments difficiles. Merci Papa
pour tout ce que tu m’as appris. Bien plus qu’un professeur, tu as été le meilleur modèle pour
moi. J’aimerais te dédier cette thèse, car je sais que si tu avais eu les mêmes chances que moi, tu
aurais fait un bien meilleur docteur. Peu importe les diplômes, je continuerai à te regarder avec
admiration. Merci Maman pour m’avoir appris à ne pas baisser les bras et pour m’avoir donné les
bons conseils. J’ai toujours admiré ta façon de surmonter les difficultés et j’essaie de m’en inspirer
au quotidien pour te ressembler. Je ne peux pas rêver de meilleur diplôme que celui d’avoir été
votre fils. Merci Jo et Arsène pour votre affection, je vous dois aussi beaucoup de choses dans la
réussite de cette thèse, et vous souhaite, à mon tour, beaucoup de réussite dans tout ce que vous
entreprendrez.

J’aimerais aussi dédier un paragraphe de mes remerciements à Ragavi. Merci pour ton soutien
inconditionnel, ta patience et ta compréhension. Il y énormément de raisons de te dire merci,
mais j’aimerais simplement te remercier d’être là au quotidien. Pendant ces trois ans, tu as aussi
traversé des moments importants, c’est l’occasion pour moi de te dire que je suis fier de toi. Je
remercie aussi ta famille pour sa bienveillance et son soutien, notamment durant la rédaction.

Merci à mes cousins, cousines, oncles, tantes pour m’avoir toujours accueilli à bras ouverts et
pour m’avoir aidé à sourire dans les moments plus compliqués. Merci aussi à mes grands-parents
et au reste de ma famille pour leur soutien.

Merci à tous mes professeurs, à mes amis de Lyon, de la Martinière, de l’ENSIIE, du MPRO
ainsi qu’à tous ceux qui ont contribué à la réalisation de ce travail.

6

7

Contents

List of Figures 11

List of Tables 12

1 Résumé long 16
1.1 Présentation du problème . 16
1.2 Plan détaillé du manuscrit . 17

2 Introduction 23
2.1 Presentation of the problem . 23
2.2 Applications considered in this thesis . 24

2.2.1 The image restoration problem (Vision) . 24
2.2.2 The Low Auto-correlation Binary Sequence problem (LABS) 25

2.3 Outline of the thesis . 27

3 State-of-the-art 32
3.1 Polynomial optimization . 32
3.2 Unconstrained polynomial optimization with binary variables 36
3.3 Quadratic reformulation of binary polynomial programs 42

3.3.1 Quadratizations with no additional constraints 44
3.3.2 Quadratizations with additional constraints 48

4 One-step reformulation methods for pseudo-Boolean optimization 52
4.1 Linear reformulations . 53

4.1.1 Linearization of a single monomial . 53
4.1.2 Linearization of a polynomial . 57

4.2 Direct convexification . 59
4.2.1 Approximation of the Hessian matrix . 59
4.2.2 Convexification by uniform diagonal perturbation 60
4.2.3 Convexification by non-uniform diagonal perturbation 62

4.3 Conclusion . 63

8

5 PQCR: Polynomial optimization in binary variables through Quadratic Convex
Reformulation 65
5.1 A quadratic convex reformulation framework . 66

5.1.1 Phase 1: Quadratization of polynomial program (P) into (QP) 67
5.1.2 Phase 2: Optimal quadratic convex reformulation of (QP) 69

5.2 Discussion on the impact of the chosen 2× 2 quadratization 80
5.2.1 2× 2 Full quadratization . 86
5.2.2 2× 2 Partial quadratization . 88
5.2.3 Replacing PQCR’s quadratization scheme with other pairwise covers 90

5.3 Link with the Lasserre’s hierarchy . 92
5.3.1 A hierarchy of exact quadratic convex reformulations 92

5.4 Conclusion . 95

6 Convexification with other quadratization schemes 97
6.1 "Rosenberg-like" quadratizations . 98

6.1.1 Applying diagonal convexification after Rosenberg’s procedure 98
6.1.2 Using Rosenberg’s procedure in a new compact convexification framework . 101

6.2 Applying QCR after quadratizations using pairwise covers 105
6.3 Applying QCR after termwise quadratization . 107
6.4 Conclusion . 109

7 Semi-definite relaxations of box-constrained polynomial programs 110
7.1 A quadratic reformulation of (P̄) . 111
7.2 A compact semidefinite programming relaxation 111
7.3 An improved semidefinite programming relaxation 112
7.4 Conclusion . 114

8 Computational experiments and implementations 116
8.1 Hardware and used software . 117
8.2 Details on the instances . 117
8.3 Performance of PQCR (presented in Chapter 5) . 118

8.3.1 The compared methods (PQCR, Q+QCR, Q+MIQCR, Q+cplex and Baron) . . . 118
8.3.2 Results on Vision instances . 119
8.3.3 Results on LABS instances . 120

8.4 Convex reformulation with other quadratization schemes (presented in Chapter 6) 127
8.4.1 Results related to Rosenberg’s reformulation 127
8.4.2 Experimental comparison between termwise and pairwise convexification . 135

8.5 Tightness of semi-definite relaxations for box-constrained polynomial programs
(presented in Chapter 7) . 140

9

8.5.1 Instance generation . 140
8.5.2 Experimental results . 140

9 Conclusion 143
9.1 Main contributions . 143
9.2 Perspectives and research directions . 146

A The PQCR solver 149
A.1 Implemented algorithms . 149
A.2 Quadratizations . 150
A.3 Instances . 150

Bibliography 153

10

List of Figures

2.1 An example of a 5×5 Vision instance. The problem consists in retrieving the base
image (right) from a perturbed one (left) . 25

8.1 Legend of Tables 8.1-8.3. 122
8.2 Comparison between the final gap of PQCR and the final gap computed with the

best known solution and the best bound from minlplib for the unsolved auto-
correlation instances . 125

8.3 Legend of Tables 8.4-8.15 . 129
8.4 Legend of Table 8.16 . 141

9.1 Theoretical comparison of the different methods. A vertical link means that the
method placed at the top is proven to have a better bound than the one at the
bottom. 146

9.2 Experimental comparison of the different methods. A vertical link means that the
method placed at the top obtains shorter CPU times than the one at the bottom
on the instances considered in this thesis. 146

11

List of Tables

5.1 Comparison of the full quadratization and the partial quadratization 89
5.2 Comparison of bounds (LB), number of variables (N) and total time (Tt) of PQCR

after different quadratizations . 91

8.1 Comparison of PQCR to Q+QCR, Q+Cplex and Baron for the vision instances - time
limit one hour. Legend on Figure 8.1. 123

8.2 Results of PQCR and Baron for the 45 instances of the LABS problem. Time limit
5 hours (3h for SDP, 2h for Cplex). Legend on Figure 8.1. 124

8.3 Comparison of the best known solution and best lower bound values of PQCR and
of the minlplib for the unsolved LABS instances. ∗∗: solved for the first time, #:
best known solution improved, and ∗: best known lower bound improved. Legend
on Figure 8.1. 126

8.4 Performance of ROS+QCR on small LABS instances. Time limit 1 hour for the
branch-and-bound. Legend on Figure 8.3. 129

8.5 Performance of PQCR ROS on small LABS instances. Time limit 1 hour for the
branch-and-bound. Legend on Figure 8.3. 130

8.6 Performance of Q+QCR on small LABS instances. Time limit 1 hour for the branch-
and-bound. Legend on Figure 8.3. 130

8.7 Performance of PQCR 2 on small LABS instances. Time limit 1 hour for the branch-
and-bound. Legend on Figure 8.3. 130

8.8 Performance of ROS+QCR on Vision instances. Time limit 1 hour for the branch-
and-bound. Legend on Figure 8.3. 131

8.9 Performance of PQCR ROS on Vision instances. Time limit 1 hour for the branch-
and-bound. Legend on Figure 8.3. 132

8.10 Performance of Q+QCR on Vision instances. Time limit 1 hour for the branch-and-
bound. Legend on Figure 8.3. 133

8.11 Performance of PQCR 2 on Vision instances. Time limit 1 hour for the branch-and-
bound. Legend on Figure 8.3. 134

8.12 Performance of PC+QCR using Pairwise Cover 0 on Vision instances. Time limit 1
hour for the branch-and-bound. Legend on Figure 8.3. 137

12

8.13 Performance of T+QCR on Vision instances. Time limit 1 hour for the branch-and-
bound. Legend on Figure 8.3. 138

8.14 Performance of PC+QCR using Pairwise Cover 0 on small LABS instances. Time
limit 1 hour for the branch-and-bound. Legend on Figure 8.3. 139

8.15 Performance of T+QCR on small LABS instances. Time limit 1 hour for the branch-
and-bound. Legend on Figure 8.3. 139

8.16 Comparison of the lower bounds of SDP 0
E and SDP 1

E with the lower bounds ob-
tained by the branch-and-cut of SCIP in one hour of CPU time. Legend on Figure
8.4 . 142

13

Notations

• X � 0, matrix X is positive semidefinite

• diag(α), diagonal matrix composed of the values of vector α

• λmin(M), smallest eigenvalue of M

• λmax(M), largest eigenvalue of M

• (P), continuous relaxation of problem (P)

• v(P), optimal value of problem (P)

• t, disjoint union operator.

• Vision, Image restoration problem

• LABS, Low autocorrelation binary sequences problem

14

15

Chapter 1

Résumé long

1.1 Présentation du problème

L’optimisation polynomiale est l’une des classes de problèmes d’optimisation les plus difficiles à
résoudre à l’heure actuelle. Dans sa forme la plus simple, le problème consiste à trouver la valeur
optimale d’une fonction polynomiale dans un ensemble défini par des contraintes polynomiales.
Nous appelons (PG) le problème d’optimisation polynomiale suivant.

(PG)

min h(x)
s.t.
hi(x) ≥ 0 i = 1, ...,m
x ∈ Rn

où les fonctions h et hi sont des fonctions polynomiales de x. Les progrès réalisés dans les cas
linéaires et quadratiques au cours des cinquante dernières années ont amené les chercheurs à
se concentrer sur la généralisation naturelle que sont les problèmes d’optimisation polynomiale.
Cependant, cette classe de problèmes est beaucoup plus difficile à résoudre. En effet, Murty et al
ont prouvé dans [66] que le fait de vérifier qu’un polynôme de degré 4 est positif est NP-difficile
en général. L’optimisation polynomiale est donc extrêmement difficile mais son étude est motivée
par un large éventail d’applications, puisque (PG) est un modèle général qui permet de formuler
plusieurs problèmes importants en optimisation et de nombreux problèmes non linéaires peuvent
être modélisés comme des problèmes d’optimisation polynomiale.

Considérons par exemple le problème de restauration d’images. Il consiste à reconstruire une
image nette à partir d’une image floue. Ce problème peut être modélisé comme un problème
d’optimisation polynomiale. Les algorithmes permettant de résoudre ce problème sont utilisés

16

dans de nombreux logiciels de retouche photo par exemple. De nombreux ingénieurs travaillent
sur ce problème mais, à notre connaissance, personne ne calcule la solution exacte du problème
d’optimisation sous-jacent. En effet, ce problème est très difficile et seuls des algorithmes heuris-
tiques sont implémentés. Le but est de calculer une solution rapide et approximative plutôt
que de calculer un optimum global avec un coût en temps prohibitif. En raison de sa difficulté,
l’optimisation polynomiale a été principalement étudiée dans certains cas spécifiques, comme
l’optimisation polynomiale en variables binaires ou dans le cas des polynômes univariés, par ex-
emple.

L’optimisation polynomiale a repris de l’intérêt au début du 21ème siècle avec les travaux de
Lasserre introduisant la puissante hiérarchie Moment/Sum-Of-Squares [51]. Bien que la méthode
originale contienne un vaste apport théorique, elle est aussi bien connue pour son intérêt pra-
tique. Le solveur GloptiPoly développé par Lasserre et al. [42] était sans doute le plus efficace
pour résoudre les programmes polynomiaux lorsqu’il a été publié. L’efficacité de la hiérarchie de
Lasserre s’explique aussi par plusieurs améliorations apportées à la programmation semi-définie,
sur laquelle la méthode Moment/SOS s’appuie fortement. Ce premier travail a ouvert la voie à de
nombreuses variantes et extensions de la méthode de Lasserre. Depuis, de nombreuses méthodes
alternatives ont vu le jour dans la littérature. Dans le chapitre 3, nous passons en revue plusieurs
avancées significatives dans le domaine de l’optimisation polynomiale, en commençant par des
problèmes généraux et en terminant par des problèmes plus spécifiques.

1.2 Plan détaillé du manuscrit
Tout au long de la première partie de cette thèse, nous étudions des problèmes d’optimisation en
variables binaires et non contraints. La forme générale d’un tel programme est la suivante

(P)

min f(x)
s.t.
x ∈ {0, 1}n

Ce problème d’optimisation est aussi appelé optimisation pseudo-booléenne dans la littérature.
En effet, il est prouvé dans [39] que chaque fonction pseudo-Booléenne f (c’est-à-dire une appli-
cation f : {0, 1}n → R) peut s’écrire comme un unique polynôme multilinéaire. Ce problème est
difficile à résoudre même lorsque f est quadratique. Plusieurs solveurs conçus pour des problèmes
plus généraux n’ont pas réussi à résoudre les instances difficiles de la littérature. Un des buts
principaux de cette thèse est de développer une méthode générale pour résoudre le problème (P)
et d’améliorer la performance sur les instances difficiles. Nous présentons plusieurs méthodes de
reformulation pour résoudre le problème de façon optimale. En partant du problème (P), nous
voulons construire un programme équivalent qui possède une sous-structure intéressante (linéaire,

17

quadratique et convexe, etc.) et qui est généralement plus facile à résoudre, et où la résolution de
ce nouveau problème revient à résoudre (P). Tout au long de notre étude, nous sommes amenés à
comparer théoriquement nos approches à certaines des méthodes bien connues dans la littérature.
Nous fournissons également des résultats expérimentaux pour les comparaisons numériques.

En plus de l’introduction dans le chapitre 2 et de la conclusion dans le chapitre 9, cette thèse
contient 6 autres chapitres. Nous commençons par une revue de la littérature dans le chapitre 3.
Ensuite, le chapitre 4 traite de deux méthodes de convexification, à savoir la linéarisation et la
convexification directe. Le chapitre 5 présente un nouvel algorithme utilisant la reformulation
quadratique convexe. Une discussion plus approfondie sur les quadratisations peut être trouvée
au chapitre 6. Le chapitre 7 discute des extensions de notre travail au cas des variables continues.
Enfin, tous les résultats expérimentaux sont présentés et commentés dans le chapitre 8. Nous
présentons un résumé détaillé de chaque chapitre dans la suite.

Chapitre 2 : Introduction Nous présentons le contexte actuel de l’optimisation polynomiale
et nous montrons deux applications réelles qui nous intéressent dans cette thèse.

Chapitre 3 : Etat de l’art Dans ce chapitre, nous étudions la littérature concernant l’optimisation
polynomiale. Nous commençons par les méthodes classiques qui résolvent les problèmes généraux
d’optimisation polynomiale. Ensuite, nous nous concentrons sur des restrictions spécifiques de
(P), telles que l’optimisation quadratique et l’optimisation polynomiale en variables binaires sans
contrainte. Nous terminons cette revue en présentant différentes reformulations quadratiques
pour des programmes polynomiaux en variables binaires. Nous comparons ensuite nos méthodes
avec ces familles de reformulations.

Chapitre 4 : Méthodes de reformulation en une étape pour l’optimisation pseudo-
booléenne Dans le chapitre 4, nous discutons des méthodes de reformulation en une seule étape
par opposition aux autres méthodes qui nécessitent plusieurs reformulations consécutives.

Le chapitre 4.1 présente la famille des reformulations linéaires aussi connues sous le nom de
linéarisations. Elle consiste à reformuler f en une fonction linéaire après avoir ajouté des variables
auxiliaires et des contraintes à (P). Plus précisément, pour chaque monôme, la linéarisation stan-
dard introduit une variable supplémentaire et un ensemble de contraintes qui imposent l’égalité
entre le monôme et la nouvelle variable. Cependant, nous montrons que ce n’est pas la seule refor-
mulation linéaire valide et que l’on peut appliquer de nombreuses linéarisations pour une instance
donnée. Chaque linéarisation conduit à un nombre différent de variables, à des ensembles de
contraintes différents et à des valeurs de bornes par relaxation continue différentes. Cette section
vise à mettre en évidence les cas particuliers où les bornes par relaxation continue peuvent être
comparées. Pour cela, nous définissons formellement un cadre général de linéarisation que nous
appelons q−linéarisation et qui représente une classe de reformulations linéaires. Nous prouvons
que, pour le cas d’un seul monôme, toute q−linéarisation donne la même borne. Nous montrons

18

ensuite que ce résultat peut être étendu à un polynôme entier lorsque chaque variable auxiliaire
n’est utilisée qu’une seule fois.

La section 4.2, au contraire, introduit une reformulation qui ne modifie ni le degré ni la
dimension du problème. Ici, nous voulons une reformulation de (P) qui a une relaxation continue
convexe. Pour cela, nous ajoutons des fonctions nulles sur {0, 1}n à f . Plus précisément, nous
utilisons le fait que la fonction xi 7→ x2

i − xi est nulle lorsque xi est une variable binaire. Puis,
nous considérons la fonction paramétrée par le vecteur λ, fλ : x 7→ f(x) + ∑

i λi(x2
i − xi) qui

est égale à f sur l’ensemble des variables binaires. La matrice hessienne Hfλ de fλ est telle que
Hfλ = H+2diag(λ). Ainsi, en choisissant soigneusement les valeurs de λ, nous pouvons rendre fλ
convexe. Evidemment, nous pouvons prendre des valeurs positives arbitrairement grandes pour λ
mais la valeur de la relaxation continue serait très faible. Le problème est de trouver λ qui rend
fλ convexe et qui donne la meilleure borne par relaxation continue. Cependant, lorsque le degré
du polynôme considéré est supérieur à 2, la matrice hessienne n’est plus constante et est donc une
fonction de x. Dans ce contexte, il est plus difficile de calculer un tel λ. Notre première étape est
d’approximer cette matrice non constante par une matrice d’intervalle. Puis nous appliquons les
théorèmes de Gerschgorin [33]. Le premier donne une borne inférieure sur la plus petite valeur
propre d’une telle matrice, et conduit donc à une perturbation uniforme de la diagonale de la
matrice hessienne. La seconde fournit une perturbation non uniforme.

Chapitre 5: PQCR: Optimisation polynomiale dans les variables binaires par refor-
mulation quadratique convexe Dans ce chapitre, nous nous intéressons à la reformulation
quadratique convexe de (P) c’est-à-dire une reformulation de (P) en (QP), un problème quadra-
tique possédant une certaine propriété de convexité.

Dans la section 5.1, nous proposons une approche de résolution exacte pour le problème
(P). Nous appelons PQCR (Polynomial Quadratic Convex Reformulation) cette méthode en
trois phases. La première phase consiste à reformuler (P) en un programme quadratique (QP).
Pour cela, nous réduisons itérativement le degré de (P) jusqu’à deux, en utilisant la linéarisation
standard du produit de deux variables par une nouvelle variable, que nous appelons quadratisation
2 × 2, ou de façon équivalente pairwise cover telle qu’elle est introduite dans [6]. On obtient
alors un programme quadratique en variables binaires et avec des contraintes linéaires. Dans
la deuxième phase, nous reformulons la fonction objectif de (QP) en une fonction quadratique
équivalente et paramétrée en utilisant l’identité x2

i = xi et d’autres égalités quadratiques valides
que nous introduisons à partir de la reformulation de la phase 1. Ensuite, nous nous concentrons
sur la recherche des meilleurs paramètres pour obtenir un programme quadratique convexe dont
la valeur optimale de la relaxation continue est maximisée. Pour cela, nous construisons une
nouvelle relaxation semi-définie (SDP) de (QP). Ensuite, nous prouvons que les inégalités de
linéarisation standard, utilisées pour l’étape de quadratisation, sont redondantes en présence des
nouvelles égalités quadratiques. Ensuite, nous déduisons nos paramètres optimaux à partir de la
solution optimale du dual de (SDP). La troisième phase consiste à résoudre (QP ∗), le problème

19

reformulé de façon optimale, avec un solveur standard. En particulier, à chaque nœud du branch-
and-bound, le solveur calcule la valeur optimale d’un programme quadratique convexe continu.

Dans la section 5.2, nous nous concentrons sur la phase de quadratisation. En effet, la valeur
de la relaxation continue (QP ∗) dépend du schéma de quadratisation et varie donc pour différentes
reformulations quadratiques 2 × 2. Le but de cette section est d’essayer de classer les quadrati-
sations en fonction de leurs bornes après convexification. Nous définissons d’abord la propriété
de stabilité pour une famille de quadratisations, qui caractérise un ensemble de quadratisations
ayant la même valeur par relaxation continue après convexification. Nous prouvons ensuite que,
si deux quadratisations différentes introduisent le même nombre de variables et si chaque variable
ajoutée représente le même produit, alors les deux quadratisations conduisent à la même borne
après convexification. Ensuite, nous montrons que l’ajout de variables à une quadratisation peut
aider à améliorer la borne. Nous présentons ainsi deux cas particuliers de quadratisation, à savoir
les quadratisations complète et partielle. La quadratisation complète présente un intérêt théorique
car elle permet de lier PQCR et la hiérarchie de Lasserre. En revanche, la quadratisation partielle
a un intérêt purement pratique car elle présente un bon compromis entre la qualité des bornes et
la dimension des problèmes. Enfin, nous comparons expérimentalement les bornes obtenues par
différents schémas de quadratisation 2× 2.

Nous terminons ce chapitre en présentant les liens entre PQCR et la hiérarchie de Lasserre pour
les programmes polynomiaux en variables binaires non contraints dans la section 5.3. Nous mon-
trons que, en appliquant PQCR avec la quadratisation complète, on obtient la même relaxation
semi-définie que le premier ordre de la hiérarchie de Lasserre. Ensuite, nous affirmons que pour
chaque ordre k de la hiérarchie de Lasserre, il existe une quadratisation de la méthode PQCR,
dont la relaxation semi-définie correspond à cette relaxation semi-définie d’ordre k. Ceci conduit
naturellement à une hiérarchie de reformulations quadratiques convexes basées sur la hiérarchie
de Lasserre. Cette hiérarchie hérite de toutes les propriétés intéressantes de la hiérarchie Momen-
t/SOS définie par Lasserre, y compris la propriété de convergence finie. Enfin, nous montrons que
PQCR, avec différentes quadratisations 2 × 2, se révèle être assez performant pour l’optimisation
polynomiale en variables binaires et sans contrainte car il ne nécessite pas de reformuler tous les
produits de deux variables d’un degré donné d. En effet, la reformulation quadratique effectuée
dans PQCR peut reformuler les produits apparaissant dans le problème initial seulement. Cela
conduit à un meilleur compromis entre la qualité de la borne et le temps de résolution.

Chapitre 6 : Convexification avec d’autres schémas de quadratisation Dans ce
chapitre, nous étudions la compatibilité entre PQCR et d’autres quadratisations décrites dans la
littérature. En effet, comme le Chapitre 5 est limité aux quadratisations utilisant les contraintes
de Fortet [29], nous construisons ici de nouvelles reformulations convexes plus adaptées à chaque
quadratisation.

Nous commençons par la procédure de Rosenberg dans la section 6.1. Etant donné un
polynôme f en variables binaires, cette quadratisation introduit de nouvelles variables et ajoute

20

un terme de pénalité à f . Plus précisément, on remarque que pour une nouvelle variable yij
remplaçant le produit xixj, l’égalité R(x, y) = xixj − 2xiyij − 2xjyij + 3yij = 0 est toujours
satisfaite. L’idée est de forcer cette égalité par une pénalité P dans une nouvelle fonction
fp(x, y) = f(x, y) + P × R(x, y), où f(x, y) est une fonction quadratique dans laquelle chaque
variable yij remplace le produit correspondant xixj et P est un grand nombre positif. Pour toute
solution optimale, on a fp(x, y) = f(x, y). De plus, une des caractéristiques de la procédure de
Rosenberg est de reformuler quadratiquement f sans ajouter de contraintes. Cependant, après
la phase de convexification, cette propriété n’est plus vérifiée car les contraintes de linéarisation
classiques sont nécessaires pour imposer l’équivalence à (P). Nous introduisons donc une première
reformulation convexe pour de telles quadratisations en utilisant l’égalité x2

i = xi, ce qui revient
à appliquer la méthode QCR [14]. Nous présentons ensuite une nouvelle convexification qui est
adaptée de la procédure de Rosenberg. Elle consiste à utiliser R(x, y) = 0 comme égalité valide
afin de calculer une reformulation convexe. Nous comparons ensuite l’impact de cette famille
d’égalités valides avec celle utilisée dans PQCR.

Dans la section 6.2, nous dérivons une nouvelle reformulation convexe pour la quadratisation
introduite dans [6]. De la même manière que la procédure de Rosenberg, les auteurs introduisent
une fonction quadratique égale à f sur tous les points optimaux en introduisant des variables et
des monômes supplémentaires. La seule égalité valide sur le domaine est x2

i = xi et on construit
une convexification ne perturbant que la diagonale de la matrice hessienne.

Dans la section 6.3, nous appliquons la reformulation convexe aux quadratisations termwise.
Cette famille de quadratisations introduit une reformulation quadratique pour chaque monôme
séparément. Nous appliquons la convexification diagonale standard en utilisant x2

i = xi.

Chapter 7 : Relaxations semi-définies de programmes polynomiaux avec contraintes
de boîtes Dans ce chapitre, nous calculons des relaxations convexes serrées pour l’optimisation
polynomiale continue et en particulier pour les problèmes avec des contraintes de boîtes (Pc) où
les variables sont dans des intervalles réels. On observe qu’il n’y a pas de moyen simple de dériver
une reformulation quadratique convexe comme cela a été fait dans le cas discret. En effet, l’égalité
yij = xixj ne peut plus être linéarisée de façon équivalente. De plus, certaines des égalités utilisées
dans PQCR ne sont plus valides, mais elles peuvent être remplacées par des inégalités. Dans ce
contexte, nous proposons une reformulation quadratique de (Pc). Nous présentons ensuite deux
relaxations semi-définies pour (Pc). Nous introduisons une première relaxation compacte que
nous améliorons ensuite pour atteindre des meilleures bornes.

Chapitre 8 : Résultats expérimentaux et implémentations Ce chapitre fournit des
résultats expérimentaux pour les méthodes qui sont introduites dans cette thèse. Nous présentons
des résultats où nous comparons notre méthode principale PQCR introduite dans le chapitre 5 avec
d’autres méthodes de convexification, et avec le solveur Baron [74]. Nous évaluons notre méthode
sur des instances du problème de restauration d’image [25] et du problème de suite binaire à

21

faible auto-corrélation [10] de minlplib [64]. Pour ce dernier problème, 33 instances parmi les
45 n’ont pas été résolues dans minlplib. Nous en résolvons 6 à l’optimum, et pour les 27 autres,
nous améliorons les bornes primales et/ou duales. Nous comparons et analysons les différentes
reformulations convexes introduites dans le chapitre 6 en termes de bornes et de nombre de
variables et nous justifions le choix d’une quadratisation 2 × 2. En particulier, nous comparons
ces nouvelles convexifications avec une version restreinte de PQCR où la seule égalité valide utilisée
est x2

i = xi. Enfin, nous illustrons la qualité de nos relaxations semi-définies introduites dans le
chapitre 7 sur des instances polynomiales générées aléatoirement.

Chapitre 9 : Conclusion Nous terminons cette étude par un bref aperçu des principaux
résultats présentés dans cette thèse. Nous présentons également des perspectives de travaux
futurs dans la continuité de ceux déjà réalisés. En particulier, nous considérons les programmes
polynomiaux en variables binaires avec contraintes et nous essayons de relier cette famille de
problèmes à notre méthode général utilisée dans PQCR. Ensuite, nous proposons une approche
pour prendre en compte les variables entières car la partie discrète de notre étude ne porte
que sur les variables binaires. Enfin, nous abordons le problème des programmes polynomiaux
généraux en variables mixtes-entières.

Nous terminons la partie théorique en présentant une extension de la reformulation quadra-
tique convexe à certains programmes polynomiaux en nombres entiers mixtes. Comme pour la
linéarisation d’un produit binaire, il est possible de reformuler les produits d’une variable binaire
par une variable continue à l’aide de contraintes linéaires. Nous exploitons cette reformulation
pour un cas spécifique de programmes polynomiaux en variables mixtes-entières. En effet, lorsque
l’on considère des monômes avec au plus deux variables continues, on peut appliquer une linéari-
sation récursive des produits de deux variables jusqu’à obtenir une fonction quadratique (QPMI).
Ensuite, nous ajoutons des fonctions nulles à cette fonction quadratique pour obtenir une fonction
quadratique paramétrée (QPMI

λ). Nous nous concentrons ensuite sur la recherche des meilleurs
paramètres, c’est-à-dire des paramètres qui rendent la nouvelle fonction objectif convexe et tels
que la valeur optimale de la relaxation continue de (QPMI

λ) soit maximisée.

22

Chapter 2

Introduction

Contents
2.1 Presentation of the problem . 23

2.2 Applications considered in this thesis 24

2.2.1 The image restoration problem (Vision) 24

2.2.2 The Low Auto-correlation Binary Sequence problem (LABS) 25

2.3 Outline of the thesis . 27

2.1 Presentation of the problem

Polynomial optimization is one of the current challenging classes of optimization problems. In
its simplest form, it consists in finding the optimal value of a polynomial function within a set
defined by polynomial constraints. We call (PG) the following polynomial optimization problem.

(PG)

min h(x)
s.t.
hi(x) ≥ 0 i = 1, ...,m
x ∈ Rn

where functions h and hi are polynomial functions of x. The advances made in both linear and
quadratic cases in the last fifty years have led researchers to focus on the natural generalization
of polynomial optimization problems. However, this class of problem is much harder to solve.
Indeed, Murty et al proved in [66] that even testing whether a degree-4 polynomial is nonnegative
is NP-hard in general. Polynomial optimization is thus extremely hard but its study is motivated

23

by a wide range of applications since (PG) is a general model that allows to formulate several im-
portant problems in optimization and many non-linear problems can be modeled as a polynomial
optimization problem.

Let us consider for example the image restoration problem that will be addressed later in
this thesis. It consists in retrieving a sharp image from a blurred one. This problem can be
modeled as a polynomial optimization problem. Algorithms solving this problem are used in
many photo editing softwares for example. Many engineers are working on this problem but none
of them venture to compute the exact global optimum. Indeed, this problem is very hard and
only heuristic algorithms are implemented. The goal is to compute a fast approximate solution
rather than computing the global optimum with a prohibitive time cost. Due to its difficulty,
polynomial optimization has been mostly studied in some specific cases, such as binary polynomial
optimization or univariate polynomials, for example.

Polynomial optimization has regained interest in the beginning of the 21st century with the
work of Lasserre introducing the powerful Moment/Sum-Of-Squares hierarchy [51]. Although the
original method contains a vast theoretical contribution, it is also well-known for its practical
interest. The solver GloptiPoly developped by Lasserre et al. [42] was arguably the most
efficient for general polynomial programs when it was published. The tractability of the Lasserre’s
hierarchy can also be explained by several improvements made on semi-definite programming, on
which the Moment/SOS method relies heavily. This first work has opened the way for many
variants and extensions of Lasserre’s method. Since then, many alternative methods are available
in the literature. In Chapter 3, we review several significant advances in polynomial optimization,
starting with general problems and ending with more specific ones.

2.2 Applications considered in this thesis

In addition to random instances coming from the literature, in this thesis we evaluate our algo-
rithms on real applications. In the following, we describe two applications that can be modeled
as unconstrained polynomial optimization problems with binary variables.

2.2.1 The image restoration problem (Vision)

The vision instances are inspired from the image restoration problem, which arises in computer
vision. The goal is to reconstruct an original sharp base image from a blurred image. In this
thesis, we study the restriction where there is only two colors, each pixel can be black or white.
An image is a rectangle containing n = l × h pixels. A complete description of these instances
can be found in [25]. Figure 2.1 illustrates this problem on a small example.

24

0 0 0 0 0
0 1 1 0 0
0 1 1 1 0
0 0 1 0 0
0 0 0 0 0

0 0 0 0 0
0 0 1 0 0
0 1 1 1 0
0 0 1 0 0
0 0 0 0 0

Figure 2.1: An example of a 5 × 5 Vision instance. The problem consists in retrieving the base
image (right) from a perturbed one (left)

This problem can be modeled as the minimization of a degree 4 polynomial of binary variables
where each variable represents a pixel. Indeed, the rectangle is modeled as a l × h matrix of
binary variables. For the objective function, we consider 2 × 2 squares of adjacent pixels in the
original image and we focus on the values taken by each of the 4 pixels in the base image. The
monomials thus represent a specific configuration of a given square. For a given 2 × 2 square c,
each monomial is of the form acfc(x), where fc is a multilinear product of the variables in c and
their complementary. For example, The monomial x1x2x3x4 refers to the following 2× 2 square:

x1 x2

x3 x4

and represents the configuration where pixels 1, 2 and 3 are white and pixel 4 is black. The
coefficient ac of a monomial is indicative of how likely configuration c is to appear on the sharp
base image. More precisely, an improbable configuration will be penalized with a large positive
coefficient. Finally, the polynomial optimization problem corresponding to the image restoration
problem is

min
x{0,1}n

∑
c∈C

acfc(x)

where C is the set of 2× 2 pixel squares of the initial image.

2.2.2 The Low Auto-correlation Binary Sequence problem (LABS)

We consider the problem of binary sequences with low off-peak auto-correlations, that is min-
imizing the auto-correlations outside their peak values. This problem has numerous practical
applications in communication engineering, or theoretical physics [10]. Among them, we can cite
the problem of synchronization in communication systems, where it is easier to detect a sequence
having a single high-peak and much lower off-peak levels. LABS is also used as modulation pulses
in radar and sonar as one can get accurate target detections with a sharply peaked auto-correlation
function.

25

An auto-correlation is the correlation between successive values of a variable over time. More
formally, let S be a sequence S = (s1, . . . , sn) with s ∈ {−1, 1}n. This sequence can be thought as
a representation of the value of variable S over a discrete time window. For a given k = 0, . . . , n−1,
we are interested in the correlation between the values of S at times i and i+ k. We thus define
the auto-correlations Ck(S) of S:

Ck(S) =
n−k∑
i=1

sisi+k

The problem is to find a sequence S of length n that minimizes the energy level E(S). This
problem amounts to the minimization of a degree 4 polynomial whose variables can take values
−1 and 1:

E(S) =
n−1∑
k=1

C2
k(S)

In this thesis, we consider truncated instances, i.e. sequences of length n where we compute
low off-peak auto-correlation up to a certain distance (or time window) 2 ≤ n0 ≤ n, i.e. we
consider the following function to minimize:

En0(S) =
n0−1∑
k=1

C2
k(S)

Example 1. We want to compute the optimal energy level for n = 4 and n0 = 4. Let S = (s1, s2, s3, s4)
be a binary sequence. The auto-correlations are given by

C1(S) = s1s2 + s2s3 + s3s4, C2(S) = s1s3 + s2s4, C3(S) = s1s4

The energy level E4(S) is defined by

E4(S) = C1(S)2 + C2(S)2 + C3(S)2 =

4s1s2s3s4 + 2s1s
2
2s3 + 2s2s

2
3s4 + s2

1s
2
2 + s2

2s
2
3 + s2

3s
2
4 + s2

1s
2
3 + s2

2s
2
4 + s2

1s
2
4

The corresponding LABS problem is
min

S∈{−1,1}4
E4(S)

The sequence S = (1, 1,−1, 1) is an optimal solution with an energy level of 2.

LABS instances up to n = n0 = 60 can be found on the MINLPLIB website [64], and most
of them remain unsolved. Note that on the proposed instances, variables are converted from
s ∈ {−1, 1}n to x ∈ {0, 1}n using the standard transformation x = s+1

2 .
This problem admits several symmetries. One in particular is interesting from a computational

point of view: the correlations Ck are identical for a sequence S and its complement.

26

2.3 Outline of the thesis
Throughout the first part of this thesis we study unconstrained binary polynomial optimization
problems. The general form of such a program is the following

(P)

min f(x)
s.t.
x ∈ {0, 1}n

where f is a polynomial of n variables. This optimization problem is also called pseudo-Boolean
optimization in the literature. Indeed, it is proven in [39] that every pseudo-Boolean function f
(i.e. a mapping f : {0, 1}n → R) can be represented uniquely as a multilinear polynomial. This
problem is NP-hard even when f is quadratic. Several solvers designed for more general problems
failed to solve challenging instances from the literature. One of the main purposes of this thesis
is to develop a general method to solve problem (P) and to improve tractability on difficult
instances. We present several reformulation methods to solve the problem to optimality. Starting
from problem (P) we want to build an equivalent program which has some nice sub-structures
(linear, quadratic and convex, etc.) and is usually easier to solve, and where solving this new
problem amounts to solving (P). Throughout our study, we are led to theoretically compare our
approaches to some of the well-known methods in the literature. We also provide experimental
results for practical comparisons.

In addition to the introduction in Chapter 2 and the conclusion in Chapter 9, this thesis
contains 6 other chapters. We begin with a literature review in Chapter 3. Then, Chapter 4
is concerned with two convexification methods, namely the linearization and the direct convex-
ification. Chapter 5 introduces a new algorithm using quadratic convex reformulation. Further
discussion on quadratizations takes place in Chapter 6. Chapter 7 discusses of extensions of our
work to the case of continuous variables. Finally, all the computational results are presented and
commented in Chapter 8. We present a detailed summary of each chapter in the following.

Chapter 2: Introduction We present the current context of polynomial optimization and we
display two "real-life" applications by which we are concerned with in this thesis.

Chapter 3: State-of-the-art In this chapter, we study the literature concerning polynomial
optimization. We start with mainstream methods that solve general polynomial optimization
problems. Then we focus on specific restrictions of (P), such as quadratic optimization and un-
constrained binary polynomial optimization. We end this review by presenting different quadratic
reformulations for binary polynomial programs. We further compare our methods with these fam-
ilies of reformulations.

27

Chapter 4: One-step reformulation methods for pseudo-Boolean optimization In
Chapter 4, we discuss single-step reformulation methods in opposition to other methods requiring
several consecutive reformulations.

Section 4.1 presents the family of linear reformulations also known as linearizations. It consists
in reformulating f into a linear function after adding auxiliary variables and constraints to (P).
More precisely, for each monomial, the standard linearization introduces an additional variable
and a set of constraints that enforces the equality between the monomial and the new variable.
However, we show that this is not the only valid linear reformulation and one can apply plenty
of linearizations on a given instance. Each linearization leads to a different number of variables,
different sets of constraints and different continuous relaxation bound values. This section aims
at pointing out the special cases where the continuous relaxation bounds can be compared. For
this, we formally define a general linearization framework that we call q−linearization which
represents a large class of linear reformulations. We prove that, for the case of a single monomial,
any q−linearization gives the same bound. We then show that this result can be extended to a
whole polynomial when each auxiliary variable is only used once.

Section 4.2, on the opposite, introduces a reformulation that does not modify neither the
degree nor the dimension of the problem. Here, we want a reformulation of (P) that has a convex
continuous relaxation. For this we add null functions on {0, 1}n to f . More precisely, we use the
fact that the function xi 7→ x2

i − xi is null whenever xi is a binary variable. Now, let us consider
the function parameterized by the vector λ, fλ : x 7→ f(x) +∑

i λi(x2
i −xi) which is equal to f on

every binary point. The Hessian matrix of fλ is such that Hfλ = H+2diag(λ). Thus, by carefully
choosing the values of λ, we can make fλ convex. Obviously one can take large positive values
for λ but the continuous relaxation bound value would be very weak. The issue lies in finding
λ that makes fλ convex and gives the best continuous relaxation bound value. However, when
the degree of the considered polynomial is greater than 2, the Hessian matrix is not constant and
thus is a function of x. In this context it is more difficult to compute a tight λ. Our first step is to
approximate this non-constant matrix with an interval matrix. Then we apply the Gerschgorin
Theorems [33]. The first one gives a lower bound on the smallest eigenvalue of such a matrix,
and thus leads to a uniform perturbation of the diagonal of the Hessian matrix. The second one
provides a non-uniform perturbation.

Chapter 5: PQCR: Polynomial optimization in binary variables through Quadratic
Convex Reformulation In this Chapter, we are interested in the quadratic convex reformu-
lation of (P) that is, a reformulation of (P) into (QP), a quadratic problem with some convexity
properties.

In section 5.1, we propose an exact solution approach for problem (P). We call PQCR (Polynomial
Quadratic Convex Reformulation) this three-phase method. The first phase consists in refor-
mulating (P) into a quadratic program (QP). To that end, we iteratively reduce the degree of
(P) to two, by use of the standard substitution of the product of two variables by a new one,

28

which we call a 2 × 2 quadratization, or equivalently a pairwise cover as it is introduced in [6].
We then obtain a linearly constrained binary quadratic program. In the second phase, we rewrite
the objective function of (QP) into an equivalent and parameterized quadratic function using the
identity x2

i = xi and other valid quadratic equalities that we introduce from the reformulation of
Phase 1. Then, we focus on finding the best parameters to get a quadratic convex program which
continuous relaxation’s optimal value is maximized. For this, we build a new semi-definite relax-
ation (SDP) of (QP). Then, we prove that the standard linearization inequalities, used for the
quadratization step, are redundant in presence of the new quadratic equalities. Next, we deduce
our optimal parameters from the dual optimal solution of (SDP). The third phase consists in
solving (QP ∗), the optimally reformulated problem, with a standard solver. In particular, at each
node of the branch-and-bound, the solver computes the optimal value of a continuous quadratic
convex program.

In Section 5.2, we focus on the quadratization phase. Indeed, the continuous relaxation bound
value of (QP ∗) is dependent on the scheme of quadratization and thus varies for different 2 × 2
quadratic reformulations. The purpose of this section is to try to classify the quadratizations
depending on their convexification bound values. We first define the property of stability for a
family of quadratizations, that characterizes a set of quadratizations having the same continuous
relaxation bound value after convexification. We then prove that, if two different quadratizations
introduce the same number of variables and if each added variable represents the same product,
then the two quadratizations lead to the same bound after convexification. Next, we show that
adding more variables to a quadratization can help improving the bound. Thereby, we present
two special cases of quadratization, namely the full and the partial quadratizations. The full
quadratization displays a theoretical interest as it allows to link PQCR and the Lasserre’s hierarchy.
On the other hand, the partial quadratization has a purely practical interest since it has a good
trade-off between the quality of the bounds and the dimension of the problems. Finally, we
experimentally compare the bounds obtained by different 2× 2 quadratization schemes.

We end this chapter by presenting the connection between PQCR and the Lasserre’s hierarchy
for unconstrained binary polynomial programs in Section 5.3. We show that, when applying
PQCR with the full quadratization, one gets the same semi-definite relaxation as the first order of
the Lasserre’s hierarchy. Then, we claim that for each order k of the Lasserre’s hierarchy, there
exists a quadratization phase of method PQCR, whose semi-definite relaxation corresponds to this
order k semi-definite relaxation. This naturally leads to a hierarchy of quadratic convex refor-
mulations based on the Lasserre’s hierarchy. This hierarchy inherits all the nice properties of the
Moment/SOS hierarchy defined by Lasserre including the finite convergence property. Finally,
we show that PQCR , with different 2×2 quadratizations, can be quite tractable for unconstrained
binary polynomial optimization as it does not require to reformulate all the products of two vari-
ables of a given degree d. Indeed, the quadratic reformulation performed in PQCR may reformulate
the products appearing in the initial problem only. This leads to a better trade-off between the

29

quality of the bound and the solution time.

Chapter 6: Convexification with other quadratization schemes In this chapter, we
study the compatibility between PQCR and other quadratizations described in the literature. In-
deed, as Chapter 5 is restricted to quadratizations using Fortet’s constraints [29], here we build
new convex reformulations that are more suited to each quadratization.

We begin with Rosenberg’s procedure in Section 6.1. Given a polynomial f in binary variables,
this quadratization introduces new variables and adds a penalty term to f . More precisely, we
remark that for a new variable yij replacing the product xixj, the equality R(x, y) = xixj −
2xiyij − 2xjyij + 3yij = 0 is always satisfied. The idea is to enforce this equality through a
penalty term P in a new function fp(x, y) = f(x, y) + P × R(x, y), where f(x, y) is a quadratic
function in which each yij variable replaces the corresponding product xixj and P is a large
positive number. For all the optimal solutions, fp(x, y) = f(x, y). Furthermore, one of the
characteristics of Rosenberg’s procedure is to quadratically reformulate f without adding any
constraints. However, after the convexification phase, this property does not hold as the classical
linearization constraints are required to enforce the equivalence to (P). We thus introduce a first
diagonal convex reformulation for such quadratizations using the equality x2

i = xi, which amounts
to applying the QCR method [14]. We then present a new convexification that is adapted from the
Rosenberg’s procedure. It consists in using R(x, y) = 0 as a valid equality in order to compute
a convex reformulation. We then compare the impact of this family of valid equalities with the
one used in PQCR.

In Section 6.2, we derive a new convex reformulation for the quadratization introduced in [6].
In the same way as Rosenberg’s procedure, the authors introduce a quadratic function that is
equal to f on all the optimal points by introducing additional variables and monomials. The only
valid equality on the domain is x2

i = xi again and we build a convexification perturbing only the
diagonal of the Hessian matrix.

In Section 6.3, we apply convex reformulation to termwise quadratizations. This family of
quadratizations introduces a quadratic reformulation for each monomial separately. We apply
the standard diagonal convexification using x2

i = xi.

Chapter 7: Semi-definite relaxations of box-constrained polynomial programs In
this chapter, we compute tight convex relaxations to continuous polynomial optimization and in
particular to box-constrained problems (Pc) where the variables are contained in real intervals.
Observe that there is no simple way of deriving a convex quadratic reformulation as it was done
in the discrete case. Indeed, the equality yij = xixj cannot anymore be linearized equivalently.
Moreover, some of the equalities used in PQCR are not valid anymore, but they can be replaced
by inequalities. In this context, we propose quadratic reformulation of (Pc). We then present
two semi-definite relaxations for (Pc). We introduce a first compact relaxation that we further
improve to reach tight bounds.

30

Chapter 8: Computational experiments and implementations This chapter provides
experimental results for the methods that are introduced in this thesis. We present computa-
tional results where we compare our main method PQCR introduced in Chapter 5 with other
convexification methods, and with the solver Baron [74]. We evaluate our method on instances
of the image restoration problem [25] and the low auto-correlation binary sequence problem [10]
from minlplib [64]. For this last problem, 33 instances among the 45 were unsolved in minlplib.
We solve to optimality 6 of them, and for the 27 others, we improve primal and/or dual bounds.
We compare and analyze the different convex reformulations introduced in Chapter 6 in terms
of bounds and number of variables and we justify the choice of a 2 × 2 quadratization. In par-
ticular, we compare these new convexifications with a restricted version of PQCR where the only
valid equality used is x2

i = xi. Finally, we illustrate the tightness of our semi-definite relaxations
introduced in Chapter 7 on random box-constrained polynomial instances.

Chapter 9: Conclusion We end this study with a brief overview of the main results presented
in this thesis. We also present perspectives for future work in the continuity of those already
carried out. In particular, we consider constrained binary polynomial programs and we try to
connect this family of problems with our general PQCR framework. Next, we propose an approach
to take into account integer variables as the discrete part of our study only focuses on binary
variables. Finally, we address the problem of general mixed-integer polynomial programs.

31

Chapter 3

State-of-the-art

Contents
3.1 Polynomial optimization . 32

3.2 Unconstrained polynomial optimization with binary variables . . . 36

3.3 Quadratic reformulation of binary polynomial programs 42

3.3.1 Quadratizations with no additional constraints 44

3.3.2 Quadratizations with additional constraints 48

In this chapter we are interested in the state of the art of polynomial optimization. We
begin this review with methods dedicated to the general problem (PG) defined in (2.1). Last, we
consider the restriction of (PG) to unconstrained binary polynomial optimization problems. The
goal in this chapter is to describe some of the methods available in the literature.

3.1 Polynomial optimization
In this section, we describe theoretical and practical methods devoted to solve (PG). We also
present commercial and non-commercial solvers that can handle this problem at the end of this
section.

Convex envelops and linear relaxations One of the families of methods that are able to
solve (PG) to optimality are spatial Branch and Bound algorithms based on convex relaxations.
The most classical relaxation consists in computing linear relaxations of (PG), but non-linear
convex relaxations can also be used. To this end, several works revolve around characterizing
the convex envelope of a given expression. In fact, we can derive the exact convex envelope in
some special cases. For example, in [61], McCormick describes the convex envelope of a bilinear
term xixj of bounded variables. This result is applied to solve factorable problems which is a

32

very large class of problems including polynomial optimization problems with box constraints.
In this context, the paper introduces an algorithm to compute convex relaxations of both the
objective function and the constraints. For this, the author considers several intervals of the
feasible box. In each interval, one can compute a convex envelope if the objective function or
the constraints are not already convex in this interval. Let x be a continuous vector contained in
the box [l, u] = ∏

i[li, ui]. Let yij be the additional variable representing the product xixj. The
McCormick inequalities corresponding to the linearization of the equality yij = xixj are written
as follows:

yij ≥ lixj + xilj − lilj
yij ≥ uixj + xiuj − uiuj
yij ≤ uixj + xilj − uilj
yij ≤ xiuj + lixj − liuj

For trilinear terms (product of 3 different variables), recursive application of the previous
envelope for bilinear terms is sufficient to obtain a convex relaxation. However, Meyer et al. [62]
introduced linear constraints that fully describe the convex envelope of trilinear terms. They also
proved that the recursive use of the bilinear envelope rarely yields the convex envelope in the case
of a trilinear term.

Quadrilinear terms have been studied in [23]. For this special case, there is no explicit char-
acterization of the convex envelope so far. However, the authors exploit the convex envelopes of
bilinear and trilinear terms to compute tight relaxations for the quadrilinear case. More precisely,
given a quadrilinear term x1x2x3x4, they consider four types of term groupings and they apply
the previously mentioned convex envelope:

• ((x1x2)x3)x4 where the bilinear envelope is applied three times

• (x1x2)(x3x4) where the bilinear envelope is applied three times

• (x1x2x3)x4 where the trilinear envelope is applied on x1x2x3 and then the bilinear envelope
is applied to the resulting product

• (x1x2)x3x4 where the bilinear envelope is applied on x1x2 and then the trilinear envelope is
applied to the resulting product

They prove that the last two groupings lead to tighter relaxations than the first two.
For general multilinear terms, we can cite [79], where the authors explicit the convex envelope

of fractional terms of the form x/y. They also provide an important property of the convex
envelope of multilinear functions which include g. Let gc be the convex envelope of a multilinear
function g. They prove that gc(x) = g(x) only for the points x belonging to the faces over which g

33

is linear. Outside of these points, we have gc(x) 6= g(x). Further convex relaxations for signomial
terms (polynomials with real exponents) are presented in [58].

α−branch-and-bound and non-linear convex underestimators For general non-convex
functions, the α−branch-and-bound algorithm [2] computes convex underestimators by perturb-
ing the diagonal of the Hessian matrix of the objective function. More precisely, given a polynomial
f and n box-constrained continuous variables xi ∈ [li, ui], the authors build the parameterized
function Lα(x) = f(x) + ∑n

i=1 αi(xi − li)(xi − ui). The choice of α is motivated by making Lα
convex, which is equivalent to its Hessian matrix being positive semi-definite. Trivially, large
values of α suffice to attain the convexity. However, one should choose α carefully as we want to
obtain tight bounds when using Lα as a relaxation of f in a branch-and-bound algorithm. Note
that the parameter α is then recomputed at each node. Moreover, the main difficulty here is
that the Hessian matrix of f is non-constant whenever the degree of f is greater than 2. In this
context, it is proven in [2] that one of the most efficient computations of α is provided by the
Gerschgorin Theorem and will be detailed in section 4.2.

Several improvements have been made to the general framework of α−branch-and-bound. In
[59], the authors obtain a convex relaxation of (PG) by reducing it beforehand to a DC pro-
gramming problem where both the constraints and the objective function are decomposed into
the difference of two convex functions. In [63], the authors propose the spline α−branch-and-
bound where they use piecewise quadratic perturbations of f to compute the overall convex
underestimator. More precisely, the initial box B = [li, ui] is partitioned into smaller boxes
Bk, k = 1, ..., s, and in each box Bk a convex underestimator fk is computed using the previous
method. Moreover, all the convex underestimators should be continuous on the boundaries of
their respective box. In [38], the authors compute each underestimator fk independently, then a
global underestimator is built from the fk’s. Finally, in [54], the authors use the Lasserre hierarchy
to deduce a sequence of convex underestimators to approximate a given polynomial.

Separable underestimator In [21], Buchheim et al. compute a separable underestimator
for f . More precisely a separable function g is such that g(x) = ∑n

i=1 gi(xi), where each gi is
a function of variable xi only. As a result, finding the minimum of g amounts to finding the
minimum of each of the gi’s. Formally, one wants to find a separable function g such that for all
x ∈ [l, u], g(x) ≤ f(x). They first prove that every polynomial f of degree d admits a separable
underestimator of degree d̄ = 2d1

2de. For this it suffices to underestimate each monomial of f
separately. For a monomial f = c

∏
i x

αi
i of degree d, we consider two cases:

• If d is even, then we have
f(x) ≥ −|c|

d

n∑
i=1

αix
d
i .

34

• If d is odd, then we have
f(x) ≥ −|c|2d

n∑
i=1

αi(xd+1
i + xd−1

i).

Once they have proved the existence of a global separable underestimator, the authors focus
on tight underestimators. They explicit optimal separable underestimators of every monomial
of degree d ≤ 4. They have implemented a solver named Polyopt which performs very well on
continuous random instances. For integer programs it is a bit slower than other solvers but it still
manages to solve every instance up to 40 variables and 400 monomials.

Hierarchies Other families of methods consist in a hierarchy of programs. Some of them are
based on linear programming. This is the case for the RLT hierarchy [75]. This hierarchy is based
on lift and project methods. More precisely, starting from a linear relaxation of (PG), it consists
in multiplying the constraints by each variable and then adding auxiliary variables to linearize the
constraints. The relaxation bound value is then tightened. This process is repeated iteratively at
each step of the hierarchy, again by increasing the dimension of the relaxation. The authors also
proved that the optimal value of (PG) is attained in a finite number of iterations. This hierarchy
has been recently improved in [27].

More recently, Lasserre proposed in [53] an algorithm based on a hierarchy of semi-definite
relaxations of (PG) called Moment/SOS hierarchy. The idea is, at each rank of the hierarchy,
to successively tighten semi-definite relaxations of (PG) by increasing the dimension in order to
reach its optimal solution value. It is also proven in [53] that this hierarchy converges in a finite
number of iterations to the optimal solution of the considered problem. Further, this work has
been extended to hierarchies of second order conic programs [3, 34, 49], and of sparse doubly
non-negative relaxations [45]. For additional materials on semi-definite hierarchies, we refer the
reader to seminal surveys such as [4]. We will further develop the Lasserre’s hierarchy in detail
for the special case of binary polynomial optimization in Section 3.2.

For the special case of binary polynomial programs, an interesting comparison between all
these hierarchies can be found in [56]. The authors shows that the Lasserre’s hierarchy provides
the tightest relaxations of (PG).

Commercial and non-commercial solvers There exist many commercial and non-commercial
solvers that can handle (PG) and they include implementations of some of the algorithms pre-
viously mentioned. Among them we can cite Baron [74], which is a commercial solver that can
handle purely continuous, purely integer or mixed integer problems. It solves non-convex prob-
lems to optimality thanks to a branch-and-reduce algorithm. This algorithm is based on bound
reducing techniques. For a variable x ∈ [l, u], it consists in finding a new reduced domain for x,
[l′, u′] ⊆ [l, u] and then propagating this reduction to other variables recursively. For comparison

35

purpose, we used Baron for our experiments.
Antigone [65] is a mixed integer nonlinear program (MINLP) solver based on a branch-and-

cut algorithm. Given a MINLP, it first detects special structures of the problem such as convexity,
separability, etc. Then it computes convex relaxations of non convex problems at each node of
the branch-and-bound.

SCIP [1] is also a solver dedicated to MINLP. It relies on linear relaxations of MINLP alongside
with cutting planes. It focuses on having strong dual bounds in order to reduce the number of
nodes.

Next, Couenne [9] is a solver for factorable MINLP. It implements linearization, bound reduc-
tion and branching methods within a spatial branch-and-bound framework. It also implements
convex under and over-estimators for general non convex program.

One can find a comparison between all these solvers on low autocorrelation instances (2.2.2)
in the MINLPLIB website [64].

Finally, we can cite the GloptiPoly solver [42] which implements the Moment/SOS method
that we described. It is tailored for small and medium-sized instances.

3.2 Unconstrained polynomial optimization with binary
variables

A well studied restriction of polynomial optimization is the unconstrained binary polynomial
optimization problem. The following program is the general form of such an optimization problem.

(P)

min f(x)
s.t.
x ∈ {0, 1}n

Unconstrained binary polynomial optimization (also known as pseudo-Boolean optimization),
although being a particular case of polynomial optimization, is still a general framework that can
model various optimization problems.

Methods and applications for the quadratic case The special case where the polynomial
objective function of (P) is a quadratic function (i.e. d = 2) has been widely studied. Padberg
defined the class of boolean quadric polytopes in [67] which was followed by a comparison between
the cut polytope and the quadric polytope in [77]. These papers introduced interesting resolution
tools for d = 2 based on cutting plane algorithms. In this case, (P) has many applications, includ-
ing those from financial analysis [55], cluster analysis [70], computer aided design [48] or machine
scheduling [71]. Quadratic programming with binary variables has also been used recently in
quantum programming [37]. Moreover, many graph combinatorial optimization problems such as

36

determining maximum cliques, maximum cuts, maximum vertex packing or maximum indepen-
dent sets can be formulated as quadratic optimization problems [7, 20, 69]. Finally, we explicit
below an efficient method that has proven its worth on binary quadratic programming.

Quadratic Convex Reformulation method (QCR) In [14], Billionet et al. consider problem
(P) with f being a quadratic function. They compute an equivalent program to (P) where
the continuous relaxation is convex. Then this continuous relaxation is solved at each node of a
branch-and-bound algorithm. For this, they first introduce a parameter α ∈ Rn and they compute
the following equivalent program to (P) parameterized by α:

(Pα)

min fα(x) = f(x) +

n∑
i=1

αi(x2
i − xi)

s.t.
x ∈ {0, 1}n

Let us observe that it is possible to choose values of α that makes fα convex. Indeed, fα being
convex is equivalent to the Hessian matrix Hα of fα being positive semi-definite. Thereby, setting
each component of α to large positive values would be sufficient to attain the convexity. However,
the continuous relaxation bound value would be very weak and thus the resolution by branch-
and-bound would be slow. The goal is to compute values of α that maximize the continuous
relaxation bound value and that make fα convex. Billionet et al. prove that such a vector α
satisfying these two criteria can be computed thanks to a semi-definite relaxation of (P). The
authors also consider linearly constrained quadratic programs and they derive a quadratic convex
reformulation scheme for this case. Later, this approach has been extended to mixed-integer and
quadratically constrained problems in [12] and we refer to this new method as MIQCR.

Methods and applications for d > 2 In the cubic case (i.e. d = 3), the important class of
satisfiability problems known as 3-SAT, can be formulated as (P) [46]. In the case where d ≥ 3,
there also exist many applications including, for example: the construction of binary sequences
with low aperiodic correlation [10] that is one of the most challenging problems in signal design
theory, or the image restoration problem in computer vision [25]. We detail these two applications
in Section 2.2.

Problem (P) is also NP-hard [32]. Practical difficulties come from the non-convexity of f and
the integrality of its variables. During the last decades, several algorithms that can handle (P)
were introduced. In particular, methods were designed to solve the more general class of mixed-
integer nonlinear programs. These methods are branch-and-bound algorithms based on a convex
relaxation of (P). More precisely, in a first step a convex relaxation is designed and then a branch-
and-bound is performed based on this relaxation. Thus, algorithms presented for more general

37

cases of polynomial optimization in the Section 3.1 can be used to solve (P). The most classical
relaxation consists in the standard linearization of (P) [29, 82]. This standard linearization is used
to linearly reformulate products of binary variables by adding auxiliary variables. More precisely,
for each monomial m = α

∏d
i=1 xi we add one additional y that represents the monomial. This is

detailed in the following set of constraints:

y =

d∏
i=1

xi,

x ∈ {0, 1}d

y ∈ {0, 1}

Observe that m is always multilinear as we consider binary variables. The corresponding
standard linearization is the following set

y ≤ xi, i = 1, .., d

y ≥
d∑
i=1

xi − d+ 1

y ≥ 0
x ∈ {0, 1}d

The two sets are equivalent and the standard linearization gives a linear reformulation of any
binary polynomial programs by introducing additional variables and constraints.

This linearization was improved by Glover et al. in [35, 36] where the authors present equiv-
alent formulations with a reduced number of variables and constraints. Further improvements
can be found in [83, 76]. In [25] Crama et al. introduce valid inequalities for the standard lin-
earization. More precisely, let us consider two monomials indexed by subsets S and T and two
variables yS, yT such that yS = ∏

i∈S xi and yT = ∏
i∈T xi. Then the following 2−link inequality

associated with (S, T) is valid for the standard linearization polyhedron

yS ≤ yT −
∑
i∈T\S

xi + |T\S|.

Moreover they also prove that these 2−link inequalities are facet defining in the case of nested
monomials and in the case of a polynomial with 2 nonlinear monomials. We link these valid
inequalities with our approach in Section 4.1. These inequalities are generalized in [28]. Quadratic
reformulation methods have also been studied widely. We will mention some well-known quadratic
reformulations in the next section.

38

The Lasserre’s hierarchy for binary polynomial optimization This method has been
introduced to solve general polynomial problems using a hierarchy of relaxations. More precisely,
from the dual point of view, the general idea of the Moment/SOS method is to relax the initial
problem and then solve semi-definite relaxations whose sizes increase at each iteration. At the
end of the process, the last relaxation considered actually solves the initial problem. Indeed,
several results from algebraic geometry are used to prove that such a sequence of relaxations
converges towards the overall optimum [53]. Although this hierarchy is designed for continuous
optimization, one can solve binary polynomial programs by considering the constraints x2

i−xi = 0.
In the following we present the dual version of the hierarchy for unconstrained binary polynomial
programs.

We start by noticing that the problem (P) is equivalent to a linear infinite dimensional problem

(Peq)

min

µ∈M+({0,1}n)

∫
{0,1}n

fdµ

s.t.
µ({0, 1}n) = 1

whereM+({0, 1}n) is the set of positive measures over {0, 1}n. The difficulty of this equivalent
program lies in the characterization of theM+({0, 1}n) set. Indeed, it is difficult to optimize on
all positive measures on K since it is an infinite dimensional set and also we do not know an
effective characterization of this set. The author proposes an alternative equivalent reformulation
which is more tractable. For this Lasserre uses the moment matrix.

Let yα, α ∈ Nn be a finite sequence of real numbers. We can construct the moment matrix
associated with y as follows.

Definition 3.2.1 (Moment matrix). Let y = (yα) be a finite sequence of real numbers, α ∈ Nn.
We define the moment matrix of dimension r, the matrix

Mr(y)(α, β) = yα+β ∀α, β ∈ Nn
r .

The moment matrix can be thought as the matrix
 1 yT

y Y

 where Yij represents a lineariza-

tion of the product yiyj.
One way to remove the difficulty from the objective function of (Peq) is to reformulate it in

order to minimize over a finite dimensional set. By reformulating the objective function and
by moving the difficulty (set of positive measures over {0, 1}n) to the constraints we obtain an
equivalent program to (Peq)

39

(Peq)

min
y∈R2n

∑
α∈Nn

fαyα

s.t.
yα =

∫
{0,1}n

xαdµ ∀α ∈ Nn, for some µ ∈M({0, 1}n) (3.1)

µ({0, 1}n) = 1

Now the minimization is over the real vector yα and the constraints consist in finding a measure
µ satisfying a linear constraint. The existence of a measure µ supported on {0, 1}n and satisfying
(3.1) is a well-known problem called the truncated moment problem. One sufficient condition for
the existence of such a measure is the positive semi-definiteness of the moment matrix Md d2 e

.
Problem (Peq) can thus be rewritten

(Peq)

min
y∈Rs(d)

∑
α∈Nn

fαyα

s.t.
y0 = 1
Mn(y) � 0

where s(d) = (n+r
n) is the dimension of vector yα. In example 3.2 below, we explicit yα.

Unfortunately, this problem is very hard to solve because of the size of the moment matrix. The
idea of the Lasserre’s hierarchy is to relax the semi-definite constraints. We start with a moment
matrix of size dd2e and we solve the obtained problem. We then increase this size at each iteration.
We obtain a hierarchy where the relaxation of order r, dd2e ≤ r ≤ n is of the form

(Mr)

min
y∈R2n

∑
α∈Nn

fαyα

s.t.
y0 = 1
Mr(y) � 0

It is proven that the optimal value of these relaxations converges finitely to the optimal
value of (P) in n iterations [52]. This method aims at solving small to medium sized binary
polynomial instances. The Moment/SOS method is implemented in the solver GloptiPoly [42].
Unfortunately, the solver is not able to solve the Visions instance (2.2.1) or the low autocorrelation
instances (2.2.1) within one hour. We illustrate the behavior of the Lasserre’s hierarchy for binary
polynomial programs on a small instance.

Example 2. Let us consider the following problem which will be the common thread of the

40

different methods introduced in this thesis:

(Ex)
{

min
x∈{0,1}4

2x1 + 3x2x3 − 2x2x3x4 − 3x1x2x3x4

The optimal value of (Ex) is 0.
We apply the Lasserre’s hierarchy to (Ex). With the Lasserre’s notation, the initial variables

x1, x2, x3 and x4 are represented by y1000, y0100, y0010 and y0001 respectively, where yp represents the
monomial ∏n

i=1 x
pi
i . The first iteration corresponds to the order dd2e = 2 and gives the following

program

(M2)

min
y∈R10

2y1000 + 3y0110 − 2y0111 − 3y1111

s.t.
y0000 = 1
M2(y) � 0

Here M2(y) is a 11 × 11 matrix of the form
 1 yT

y Y

 where y is a vector of dimension 10

containing the 4 initial variables and 6 additional variables representing the products of degree 2
(y1100, y1010, y1001, y0110, y0101, y0011). For this example, M2(y) writes

M2(y) =

y0000 y1000 y0100 y0010 y0001 y1100 y1010 y1001 y0110 y0101 y0011

y1000 y1000 y1100 y1010 y1001 y1100 y1010 y1001 y1110 y1101 y1011

y0100 y1100 y0100 y0110 y0101 y1100 y1110 y1101 y0110 y0101 y0111

y0010 y1010 y0110 y0010 y0011 y1110 y1010 y1011 y0110 y0111 y0011

y0001 y1001 y0101 y0011 y0001 y1101 y1011 y1001 y0111 y0101 y0011

y1100 y1100 y1100 y1110 y1101 y1100 y1110 y1101 y1110 y1101 y1111

y1010 y1010 y1110 y1010 y1011 y1110 y1010 y1011 y1110 y1111 y1011

y1001 y1001 y1101 y1011 y1001 y1101 y1011 y1001 y1111 y1101 y1011

y0110 y1110 y0110 y0110 y0111 y1110 y1110 y1111 y0110 y0111 y0111

y0101 y1101 y0101 y0111 y0101 y1101 y1111 y1101 y0111 y0101 y0111

y0011 y1011 y0111 y0011 y0011 y1111 y1011 y1011 y0111 y0111 y0011

The optimum value of this relaxation is −0, 015. As the optimum of (Ex) is not attained, we

41

increment the order and we compute the relaxation of order r = 3.

(M3)

min
y∈R14

2y1000 + 3y0110 − 2y0111 − 3y1111

s.t.
y0000 = 1
M3(y) � 0

Here M3(y) is a 15×15 matrix where y is a vector of dimension 14 containing all the previous
variables and 4 additional variables representing the products of initial variables of degree 3. The
optimum value of this relaxation is 0 which is the optimum value of (P). The hierarchy stops at
order 3 as the optimal solution is attained.

In the following section we present in detail some state of the art quadratic reformulations
that will be used in this thesis.

3.3 Quadratic reformulation of binary polynomial pro-
grams

In this section we review the literature concerning the solution of binary polynomial programs
through quadratic reformulation. It consists in building a quadratic equivalent formulation to (P).
The obtained reformulation can then be solved by several commercial and non-commercial solvers,
since we consider quadratic problems with binary variables only. In particular, on top of the solvers
designed for general quadratic programs, we can also cite Cplex [43] which can handle binary
quadratic programs. Cplex uses a branch-and-cut algorithm after a custom convex reformulation
of the binary quadratic program. Note that the idea of quadratization is also used for continuous
variables for example in [26]. Once they have the equivalent quadratic reformulation to (P), the
authors then deduce RLT based linear programming relaxations.

Pairwise covers Most of the quadratizations that will be presented rely on a prior phase that
consists in building a 2 × 2 quadratization scheme or a pairwise cover as it was introduced by
the authors of [6]. The idea is to reformulate selected products of variables by a new one in
order to find a quadratic reformulation of f . LetM be the set of monomials of f . The authors
associate M with its standard hypergraph, where the vertices are the n variables of the inital
problem. Each edge of M represents a monomial, and contains the variables of this monomial.
To this hypergraph, they add auxiliary edges forming the pairwise cover H. H is a hypergraph
such that for each monomial m of degree greater than 2, there are two edges A(m), B(m) ∈ H
"covering" the monomial m, i.e. |A(m)| < |m|, |B(m)| < |m| and A(m) ∪ B(m) = m. In other
words, every variable of a monomial m is covered by at least the edge A(m) or the edge B(m).
By introducing additional variables yA and yB for the product of variables contained in A(m)

42

and B(m) respectively, we obtain the product yAyB which is a quadratic reformulation of the
monomial m. We say that A(m) and B(m) form a pairwise cover of the monomial m. The
example below illustrates several pairwise covers for a small instance.

Example 2 (continued). We present different pairwise covers leading to different quadratiza-
tion of (Ex)

• In quadratization l1, the third monomial is covered by x6x3 whereas the fourth monomial is
covered by x7x8:

l1(x) = 2x1 + 3x2x3 − 2x2x4︸ ︷︷ ︸
x6

x3 − 3x1x2︸ ︷︷ ︸
x7

x3x4︸ ︷︷ ︸
x8

and we have

H1 = {{2, 4}, {3}, {1, 2}, {3, 4}}

• In quadratization l2, the third monomial is covered by x6x4 whereas the fourth monomial is
covered by x8x4:

l2(x) = 2x1 + 3x2x3 − 2x2x3︸ ︷︷ ︸
x6

x4 − 3x1x2︸ ︷︷ ︸
x7

x3

︸ ︷︷ ︸
x8

x4

and we have

H2 = {{2, 3}, {3}, {1, 2}, {1, 2, 3}, {4}}

This covering property of the sets A(m) and B(m) and the necessary condition H ⊂ M
make it very similar to the idea of reducibility [22] that will be mentionned hereunder. However,
the main purpose of the authors here is to compute a quadratization of a polynomial program
by introducing auxiliary variables associated to elements in the pairwise cover (here yA and yB
for the monomial m). The authors were also interested in finding a pairwise cover with small
cardinality so as to introduce a small number of auxiliary variables. Unfortunately finding the
smallest pairwise cover is NP-hard [19]. Nevertheless we can find in [72] several quadratizations
heuristically built by introducing a small number of additional variables. In Section 6.2, we will
be interested in the impact of the choice of a pairwise cover for our particular framework.

Once a pairwise cover is defined, one can apply several quadratizations, i.e. different ways
of enforcing the equality m = yAyB, either for any solution or for optimal solutions only. Note
that we specifically focus on quadratic reformulation since we later introduce in Chapter 5 an
algorithm that relies on a quadratic reformulation. We make the distinction between two families
of quadratizations: those introducing constraints and those who do not introduce constraints in
the reformulated problem.

43

3.3.1 Quadratizations with no additional constraints

In [6], Anthony et al. define the concept of quadratization. More formally, given a binary polyno-
mial f with a monomial setM containing M monomials and x ∈ {0, 1}n, g(x, y) is a quadratiza-
tion of f with N additional variables if g(x, y) is a quadratic function of x and y where y ∈ {0, 1}N

are auxiliary binary variables such that

∀x ∈ {0, 1}n, f(x) = min
y∈{0,1}N

g(x, y).

Throughout this section, we call quadratization the particular framework introduced in [6] that
builds a quadratic reformulation without adding constraints.

Termwise quadratizations Termwise quadratizations consist in reformulating each monomial
independently with a quadratic function using both initial and additional variables. In this con-
text, the goal is to compute a quadratization gm(x, ym) for each monomial m independently.
The quadratization g(x, y) of f is then obtained by g(x, y) = ∑

m∈M gm(x, ym). Obviously at
least M̄ additional variables are required for a termwise quadratization, where M̄ is the number
of monomials of degree greater than 2. When we consider termwise quadratization, we gener-
ally distinguish between negative monomials and positive monomials, that are monomials with
negative or positive coefficients.

For negative monomials, the authors of [31] and [47] introduced the quadratization of a neg-
ative monomial m of degree dm and with a negative coefficient α,

gm(x, y) = −α
(dm − 1)y −

dm∑
i=1

xiy

 ,
where y ∈ [0, 1] is a single auxiliary variable. For example, the monomial −3x1x2x3x4x5 will be
quadratized with miny 3(4y− y(x1 + x2 + x3 + x4 + x5)). This quadratization has been used later
in [6] and called standard quadratization for negative monomials.

The case of positive monomials is more complicated since one needs more additional variables
to compute a quadratization. Several works revolve around reducing the number of auxiliary
variables. Among them, we can cite [44] which introduced a quadratization for positive monomials
using p = bdm−1

2 c auxiliary variables. More precisely, let m(x) = ∏dm
i=1 xi be a positive monomial.

The Ishikawa’s quadratization is defined by

m(x, y) =
p∑
i=1

yi(ci,dm(−|x|+ 2i)− 1) + |x|(|x| − 1)
2

where |x| = ∑dm
j=1 xj and

44

ci,dm =
{ 1, if dm is odd and i = p

2, otherwise

Thus p is an upper bound on the number of auxiliary variables. Another independent proof
of this upper bound can be found in [5].

This bound on the number of auxiliary variables was reduced recently by Boros, Crama and
Rodríguez-Heck in [16] with a quadratization using only dlog2(dm)e− 1 auxiliary variables. More
precisely, the authors define the following quadratization of m(x)

m(x, y) = 1
2(|x|+ 2l − dm −

l−1∑
i=1

2iyi)(|x|+ 2l − dm −
l−1∑
i=1

2iyi − 1)

where l = dlog(dm)e. They also proved that this is a lower bound on the number of additional
variables for the unconstrained quadratization framework. Note that for a monomial of degree
6 or less, the Ishikawa’s quadratization and the Boros-Crama-Rodríguez quadratization (which
will be called "log quadratization" in the following) lead to the exact same reformulation with the
same number of variables (see Remark 10 of [72]). In terms of number of auxiliary variables, it can
be explained easily as dlog(dm)e − 1 = bdm−1

2 c for all 1 ≤ dm ≤ 6. Thus for m(x) = x1x2x3x4x5,
both reformulations lead to the quadratization

m(x, y) = 1
2(x1 + x2 + x3 + x4 + x5 + 3− 2y1 − 4y2)(x1 + x2 + x3 + x4 + x5 + 2− 2y1 − 4y2).

In [72], the authors ran these quadratizations on several families of instances. More precisely
they solve the equivalent quadratic reformulation with Cplex 12.7. On low degree sparse random
instances, the Ishikawa’s quadratization and the log quadratization give the same results and solve
every instance within one hour. On higher degree random instances, the log quadratization is
faster than the Ishikawa’s one, but both methods solve all the instances to optimality within
one hour. On Vision instances (2.2.1), the two quadratizations solve every instance within 400
seconds. Finally, on the low autocorrelation instances (2.2.2), both methods only solve the 5
smallest instances. It is interesting to notice that on all the considered instances, the standard
linearization performs better than both quadratizations.

In the above paragraph we were interested in termwise quadratizations, that is quadratization
where each monomial is reformulated independently by introducing one or several additional
variables. In the below paragraph we present quadratizations where we focus on reformulating
products of several variables up to a certain degree rather than reformulating a whole monomial.
An additional variable can thus be used in several monomials.

45

Rosenberg’s procedure We start by introducing the first quadratic reformulation published
chronologically. Rosenberg’s procedure [73] is based on a perturbation of the polynomial objective
function by adding additional variables but without adding constraints. This procedure was the
first to use penalties to build equivalent quadratic reformulation to pseudo-Boolean optimization
problems. We recall Rosenberg’s quadratization. The idea is, given a pseudo-Boolean function
f , to reduce iteratively the degree of f . We first define a pairwise cover. Then, at each iteration
one or several products xixj from this cover are chosen from a highest-degree monomial of f .
These products are then replaced by new variables yij. To enforce the equality yij = xixj at
all the optimal solutions, a penalty term is added to the objective function. This penalty term
is P (xixj − 2xiyij − 2xjyij + 3yij) where P is a large positive number (for the minimization
case). Rosenberg’s procedure can thus lead to several quadratic reformulations depending on the
choice of the products xixj that will be linearized. The drawback of a direct resolution using this
procedure is that the continuous relaxation bound obtained is often weak since the reformulation
involves large positive numbers. We illustrate this quadratization in the following example.

Example 2 (continued). We want to reformulate (Ex) into a quadratic program using the
additional variables y1 = x2x3 and y2 = x1x4. By applying Rosenberg’s procedure to (Ex), we
obtain

g(x, y) = 2x1 + 3x2x3 − y1x4 − 3y1y2 + P (x2x3 − 2x2y1 − 2x3y1 + 3y1)
+P (x1x4 − 2x1y2 − 2x4y2 + 3y2)

Note that for the penalty term P , it suffices to take P = max(∑ci≤0 |ci|,
∑
ci≥0 ci) where ci is

the coefficient of the ith monomial. Here we can set P = 5.

Quadratization using pairwise covers Once a pairwise cover is defined, the authors of [6]
build a quadratization. This quadratization, like Rosenberg’s procedure, introduces additional
monomials to the objective function to obtain a quadratic function that is equal to f on all the
optimal points.

More precisely, ifM and H are two hypergraphs such that H ⊂M and H is a pairwise cover
of M, then the authors compute a quadratization using |H| auxiliary variables yi. Thus, every
pseudo-Boolean function of the form f(x) = ∑

M∈M aM
∏
j∈M xj is such that

 f(x) = min
y∈{0,1}|H|

∑
M∈M

aMyA(M)yB(M) +
∑
H∈H

bH

yH
|H| − 1

2 −
∑
j∈H

xj

+ 1
2
∏
j∈H

xj

 (3.2)

where bH = 0 for H ∈M\H and for H ∈ H we have

46

1
2bH =

∑
M∈M:

H∈{A(M),B(M)}

(
|aM |+

1
2bM

)
,

In [6], the authors build a quadratization by recursively "covering" a product of two variables
by a new one until the objective function is quadratic. The function defined in 3.2 is thus the
resulting quadratization.

Note that a major difference with Rosenberg’s procedure is that the equality yA(M) = ∏
i∈A(M) xi

is not necessarily satisfied on optimal points.

Example 2 (continued). We take again the previous example and we introduce a quadratic
reformulation using the additional variables y1 = x1x2 and y2 = x3x4. Note that we have to
rewrite the objective function and the setM as follows

f(x) = 2x1 + 3x2x3 − 2x2x3x4 − 3x1x2x3x4 + 0x1x2 + 0x3x4 + 0x2

and

M = {{1}, {2, 3}, {2, 3, 4}, {1, 2, 3, 4}, {1, 2}, {3, 4}, {2}}

We have to add the monomials x2, x1x2 and x3x4, since it is necessary to satisfy the condition
H ⊂M.

Next, the pairwise cover H is defined by initial variables contained in monomials of degree
greater than 2:

H = {{3, 4}, {2}, {1, 2}, {3, 4}} = {{1, 2}, {2}, {3, 4}}

We can now compute the coefficients of the objective function.
We haveM\H = {{1}, {2, 3}, {2, 3, 4}, {1, 2, 3, 4}} which leads to b1 = b23 = b234 = b1234 = 0.

For other coefficients, we use the formula given in (3.2). Thus, {3, 4} is in the cover of
{2, 3, 4} and {1, 2, 3, 4}, so

1
2b34 = |a234|+

1
2b234 + |a1234|+

1
2b1234 = | − 2|+ 1

20 + | − 3|+ 1
20 = 5

which leads to b34 = 10. Similarly, we get b2 = 4 (as {2} is in the cover of {2, 3, 4}) and b12 = 6
(as {1, 2} is in the cover of {1, 2, 3, 4}).

Finally, the new quadratic objective function writes

47

f(x) = min
{y1,y2}∈{0,1}2

2x1 + 3x2x3 − 2y1x2 − 3y1y2

+10
[
y2(2− 1

2 − x3 − x4) + 1
2x3x4

]
+4

[
x2(1− 1

2 − x2) + 1
2x2

]
+6

[
y1(2− 1

2 − x1 − x2) + 1
2x1x2

]
which can be simplified as

f(x) = min
{y1,y2}∈{0,1}2

2x1 + 3x2x3 − 2y1x2 − 3y1y2

+10
[
y2(2− 1

2 − x3 − x4) + 1
2x3x4

]
+6

[
y1(2− 1

2 − x1 − x2) + 1
2x1x2

]

since |H| = 1 leads to a null "penalty term".

3.3.2 Quadratizations with additional constraints

In this section, we refer to quadratization as a more general framework where one can introduce
constraints during the quadratic reformulation. More precisely, here we call quadratization any
equivalent quadratic reformulation to (P).

Quadratization using Fortet’s inequalities A constrained quadratization scheme can be de-
rived from the Fortet’ inequalities [29]. This set of inequalities is a special case of the McCormick’s
constraints [61] for the bilinear case xixj. Although originally designed for the linearization of a
product of two variables, we can recursively build a quadratization based on these inequalities.
More precisely, let xixj be a product of two binary variables. We introduce an additional vari-
able yij for i < j and the following Fortet’s constraints ensure the equality yij = xixj for every
x ∈ {0, 1}n.

(F)

yij ≤ xi,

yij ≤ xj,

yij ≥ xi + xj − 1,
yij ≥ 0,

This linearization of a single quadratic term can be generalized for the quadratization of a

48

whole polynomial. Our main algorithm presented in this thesis relies on a quadratization using
recursively this substitution by first defining a pairwise cover. More precisely, considering a
binary polynomial f , we can substitute each product of two variables of f by a new one by
adding the corresponding set of constraints until we get a quadratic function. Again there are
several quadratizations that are possible for the same instance and the choice of the products,
i.e. the pairwise cover, is important. We address this problem later in this thesis. We illustrate
this quadratization in the following example.

Example 2 (continued). We present the quadratization of (Ex) using Fortet’s inequalities
with x5 = x2x3 and x6 = x1x4.

min g(x) = 2x1 + 3x2x3 − 2x5x4 − 3x5x6

s.t.
x5 − x2 ≤ 0,
x5 − x3 ≤ 0,
−x5 + x2 + x3 ≤ 1,
x6 − x1 ≤ 0,
x6 − x4 ≤ 0,
−x6 + x1 + x4 ≤ 1,
x ∈ {0, 1}6

Note that another set of inequalities can be derived similarly when considering a product of
a binary variable by a continuous one.

Quadratization and reducibility In [22], Buchheim and Rinaldi aim at computing tight
linear relaxations of (P). These relaxations can then be used at every node of a branch-and-cut
algorithm. For this, they focus on a polyhedral description of the quadratization of a binary
polynomial program. They first build a quadratization of the initial problem. This is followed by
a complete linearization, by associating a new variables for each monomial. Finally they improve
this linearization by adding cuts. These cuts are deduced from an interpretation of the equivalent
quadratic problem as a max-cut problem.

More precisely, from (P) and its associated monomial setM, the authors derive a first equiv-
alent reformulation with a linear objective function.

(R1)

min h(z)
s.t.
zi =

∏
a∈M

z{a}, for all M ∈M

z ∈ {0, 1}M

49

Starting from this equivalent program, one can relax the non-linear constraints with the stan-
dard linearization constraints. However this relaxation would be rather weak in terms of con-
tinuous relaxation value. Instead, the authors define a new polyhedron (P ∗). First they define
the setM∗ = {{I, J}|I, J ∈ M and I ∪ J ∈ M} which represents product of monomials. Then
they associate a variable y{I,J} for every element {I, J} of M∗ and consider the following new
reformulation

(R2)

min h∗(y)
s.t. (3.3)
y{I,J} = y{I}y{J}, for all {I, J} ∈ M∗, I 6= J

y ∈ {0, 1}|M∗|

This problem can be thought as the linearization of a binary quadratic optimization problem.
Let F ∗ be the set of feasible solutions of (3.3) and let (P ∗) be the convex hull of F ∗. The authors
prove that, under a weak assumption on M (the reducibility property detailed further), (P) is
isomorphic to a face of (P ∗). Moreover, for unconstrained binary polynomials, (P ∗) is known
to be a boolean quadric polytope. Finally the main purpose of this approach is to use all the
well-known valid inequalities and separation techniques of the quadric polytope for the purpose
of binary polynomial optimization.

A sufficient condition for these results to hold is that the set of monomials M is reducible,
i.e. any monomial m ∈ M is the product of two other monomials in M, both of them being
strictly included inM. The authors show that every monomial setM can be made reducible by
adding some suitable sets. This corresponds to adding monomials with coefficient 0 to f . They
also discuss two possible ways of making an instance reducible: the upwards-completeness and
the downwards-completeness. We will link these particular family of reducibility with our work
in Section 5.2.

The connection to other approaches comes out as making an instance reducible amounts to
introducing additional variables to reduce the degree of the instance to 2 in a "Rosenberg-like"
framework. There exist several ways to attain reducibility, however finding the smallest set of
monomials to add is NP-hard [19]. We present below an illustration of this method on a small
example.

Example 2 (continued). The set of monomials corresponding to (Ex) is

M = {{1}, {2, 3}, {2, 3, 4}, {1, 2, 3, 4}}.

M is made reducible by adding the singletons {2}, {3} and {4}. We denote by M1, ...,M7 the
elements of this new reducible set. We introduce a new variable zi representing each monomial in
M. We then obtain the first reformulation.

50

(R1)

min 2z1 + 3z5 − 2z6 − 3z7

s.t.
z1 = x1,

z2 = x2,

z3 = x3,

z4 = x4,

z5 = x2x3,

z6 = x2x3x4,

z7 = x1x2x3x4,

z ∈ {0, 1}7

Next we build the set M∗ = {M1, ...,M7, {M1,M6}, {M1,M7}, {M2,M3}, ..., {M6,M7}} and
consider the following reformulation

(R2)

min 2yM1 + 3yM5 − 2yM6 − 3yM7

s.t.
y{I,J} = y{I}y{J}, for all {I, J} ∈ M∗, I 6= J

y ∈ {0, 1}|M∗|

This program gives the polyhedron P ∗ of R|M∗|. We can then use a cutting plane algorithm
based on any separation algorithm in P ∗ to solve (P).

Finally note that, for this example, the upwards-completeness and the downwards-completeness
give the same reducible set

M = {{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4},

{3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}.

Conclusion In this section, we have presented a sample of different quadratizations that are
close to the ones presented in this thesis. Quadratizations have been widely studied and there
exist plenty of quadratizations with different purposes such as in [17]. Finally we conclude this
section by referring to [18] and [72] for more complete surveys on quadratizations.

51

Chapter 4

One-step reformulation methods for
pseudo-Boolean optimization

Contents
4.1 Linear reformulations . 53

4.1.1 Linearization of a single monomial . 53

4.1.2 Linearization of a polynomial . 57

4.2 Direct convexification . 59

4.2.1 Approximation of the Hessian matrix 59

4.2.2 Convexification by uniform diagonal perturbation 60

4.2.3 Convexification by non-uniform diagonal perturbation 62

4.3 Conclusion . 63

This chapter introduces two special cases of convex reformulations of (P). The goal is to build
a single equivalent reformulation to (P) with a convex continuous relaxation and then solve the
resulting equivalent program with a branch-and-bound algorithm.

In Section 4.1, we discuss the well-known case of complete linearization, that is a reformulation
of (P) where both the objective function and the constraints are linear. Our study is rather
theoretical as we compare the continuous relaxation bound values of several linearizations. In
particular, we specify the cases where different linearizations lead to the same bound.

In Section 4.2, we study the direct convexification of (P), which consists in modifying the
Hessian matrix of f to make it positive semi-definite. This leads to an equivalent reformulation
to (P) without additional variables nor constraints. The main difficulty is that the Hessian matrix
is a function of x whenever the degree of f is greater than or equal to 3. We present a general
method to tackle this problem.

52

4.1 Linear reformulations
In this section we discuss the linearization of polynomial programs with binary variables. It
consists in rewriting f into an equivalent linear function in an extended space. In the literature,
we can find plenty of different linearizations, but in this section we are interested in the ones
coming from the work on pseudo boolean optimization [29]. This family of linearizations reduces
the degree of f by introducing additional variables and constraints. To describe our approach,
we show how we linearize a single monomial of degree d. We further extend the approach to the
whole polynomial f .

4.1.1 Linearization of a single monomial

We first focus on the reformulation of the optimization problem of a single monomial subject to
binary constraints into an equivalent linear program. Let m(x) be the monomial α∏d

i=1 xi and
let (P0) be the following program with one monomial:

(P0)

minm(x) = α

d∏
i=1

xi

s.t.
x ∈ {0, 1}d

We introduce a new variable xL and we write the following inequalities:

(F)

xL ≤ xi, i = 1, .., d

xL ≥
d∑
i=1

xi − d+ 1

xL ≥ 0

It is well-known that the equality xL = ∏d
i=1 xi is ensured by inequalities (F) and the integrality

of the variables. We thus obtain (PL), a linear program equivalent to (P0):

(PL)

minm(x) = αxL

s.t.
xL ≤ xi, i = 1, .., d (4.1)

xL ≥
d∑
i=1

xi − d+ 1 (4.2)

xL ≥ 0 (4.3)
x ∈ {0, 1}d+1

Let us remark that it is not necessary to enforce xL to be binary as it is ensured by constraints

53

(4.1) - (4.3), (PL) is thus a mixed-integer linear program.
As for any degree d, a monomial can be linearized by a single additional variable as it is

stated in (PL). It can also be decomposed as a product of two monomials of degrees k and l such
that k + l = d. Each monomial is then linearized by an additional variable. This decomposition
can then be done recursively on the two resulting monomials. We call J the set of indices of
the additional variables introduced for the linearization. Each different linearization leads to a
different set J and a different linear reformulation of (P0). Considering all the possible ways to
linearize such a monomial, we now consider a linearization parameterized by q, the number of
additional variables it involves. We denote this parameterized linearization q-linearization and in
the following, we prove that for any positive integer q, the continuous relaxation bound obtained
by a q−linearization has the same value.

We first define two sets that will give a characterization of any linearization. The set E contains
indices of the initial variables only. For an additional variable xi ∈ J , Ei gives the indices of the
underlying initial variables whose product is equal to xi. The formal construction of this set is
given in the following definition.

Definition 4.1.1. For all i ∈ I ∪ J , we define Ei as the set of indices of the variables whose
product is equal to xi:

• If i ∈ I, i.e. xi is an initial variable, then we set Ei = {i}

• If i ∈ J , i.e. xi is an additional variable, then there exist (i1, ..., ik) ∈ (I ∪ J)k such that xi
replaces ∏k

j=1 xij and we set Ei = ⋃k
j=1 Eij

Next, we define the set S that contains the variables forming a direct decomposition of an
additional variable xi.

Definition 4.1.2. For all i ∈ I ∪ J , we define Si as the set of indices of the variables whose
product is equal to xi:

• If i ∈ I, i.e. xi is an initial variable, then we set Si = {i}

• If i ∈ J , i.e. xi is an additional variable, then there exist (i1, ..., ik) ∈ (I ∪ J)k such that xi
replaces ∏k

j=1 xij and we set Si = ⋃k
j=1{ij}

The difference between sets E and S is rather difficult to picture. Example 3 explicits the
description of these sets and illustrates the difference.

54

Example 3. Let x1x2x3x4x5x6 be a monomial. We introduce 4 new variables x7, x8, x9, x10 which
represent the product x1x2, x3x4, x5x6 and x7x8x9 respectively. The hierarchy of the variables and
the sets E10 and S10 are represented in the following tree.

10

7 ∈ S10

1 ∈ E10 2 ∈ E10

8 ∈ S10

3 ∈ E10 4 ∈ E10

9 ∈ S10

5 ∈ E10 6 ∈ E10

We have S10 = {7, 8, 9} whereas E10 = {1, 2, 3, 4, 5, 6}. Concerning the additional variables
x7, x8, x9 we have S7 = E7 = {1, 2}, S8 = E8 = {3, 4} and S9 = E9 = {5, 6}.

We can see in Example 3 that E represents the underlying initial variables involved in a
product whereas S represents the variables (either initial or additional) directly involved in the
product that the additional variables models.

With these new sets, we can now properly define a q−linearization, that is a linearization
parameterized by the number of additional variables added to the equivalent problem.

Definition 4.1.3. Let q be a positive integer, we call q-linearization of the monomial m(x) =
α
∏d
i=1 xi, a Fortet’s linearization of m using exactly q additional variables. The following program

(Pq) coming from such a q−linearization is equivalent to (P0) in the {0, 1} space:

(Pq)

minm(x) = αxd+q

s.t.
xd+k ≤ xi, ∀i ∈ Sd+k, ∀k ∈ {1, .., q} (4.4)
xd+k ≥

∑
i∈Sd+k

xi − |Sd+k|+ 1, ∀k ∈ {1, .., q} (4.5)

xd+k ≥ 0, ∀k ∈ {1, .., q} (4.6)
x ∈ {0, 1}d

The special case of (PL) corresponding to q = 1 is called standard linearization. With the
definition of a q−linearization, we can now consider several ways to linearize a monomial and each
linearization can lead to a different continuous relaxation bound. The following lemma states
that, in the case of a single monomial, every q−linearization has the same continuous relaxation
bound. We show this result by comparing the bounds obtained by every q−linearization to the
one obtained by the standard linearization.

Lemma 4.1.1. For any 1 ≤ q ≤ n, the continuous relaxation bound value of (Pq) (denoted as
v(P̄q)) is equal to the continuous relaxation bound value of (PL) (denoted as v(P̄L)).

55

Proof.

1. We first show that v(P̄L) ≤ v(P̄q). Let (x̄1, .., x̄n, x̄d+1, .., x̄d+q) be a feasible solution of (P̄q).

(a) Building a new feasible solution: we build (x1, .., xd, xL) a feasible solution of (P̄L). We
set xi = x̄i for all i = 1, .., d and xL = x̄d+q. We now prove that the constraints of (P̄L)
are satisfied.

i. Constraint (4.1): by transitivity of (4.4), we have ∀i = 1, .., n, xL ≤ xi.
ii. Constraint (4.2): by transitivity of (4.5) and as ∑q

k=1 |Sd+k| = d + q − 1, we have
xL ≥

∑d
i=1 xi − d+ 1.

iii. Constraint (4.3): by (4.6), we have xL ≥ 0.

(b) Comparison of the value of the objective functions: trivially, as xL = x̄d+q, the equality
holds and thus v(P̄L) ≤ v(P̄q).

2. We now show that v(P̄L) ≥ v(P̄q). Let (x̄1, .., x̄d, x̄L) be an optimal solution of (P̄L).

(a) Building a new feasible solution: We consider two different cases

• If α ≤ 0, we have x̄L = min(x̄i) and we set

xi = x̄i, ∀i ∈ {1, .., d}
xd+k = min

j∈Sd+k
(x̄j), ∀k ∈ {1, .., q − 1}

xd+q = x̄L

The solution (x̄1, .., x̄d, xd+1, .., xd+q−1, x̄L) satisfies Constraints (4.4) and (4.6) by
construction.
For constraints (4.5), let k ∈ J and let j0 = argminj∈Sd+k{x̄j}. We have xd+k = x̄j0 .
It follows that x̄j0 −

∑
j∈Sd+k xj + |Sd+k| − 1 = −∑j∈Sd+k\{j0} xj + |Sd+k| − 1 =∑

j∈Sd+k\{j0}(1− xj) ≥ 0.

• If α ≥ 0, we have x̄L = max(0,
d∑
i=1

x̄i − d+ 1) and we set

xi = x̄i, ∀i ∈ {1, .., d}
xd+k = max(0,

∑
i∈Sd+k

xi − |Sd+k|+ 1), ∀k ∈ {1, .., q − 1}

xd+q = x̄L

It is easy to see that the solution (x̄1, .., x̄d, xd+1, .., xd+q−1, x̄L) satisfies constraints
(4.5) and (4.6) of (P̄q) by construction. We show that constraints (4.4) are also
satisfied. Let k ∈ J , if xd+k = 0, then (4.4) is satisfied. Else, xd+k =

d∑
i=1

x̄i− d+ 1.
Let j ∈ I, ∑i∈I\{j}(x̄i − 1) ≤ 0, by adding xj to both sides we obtain ∑i∈I(x̄i −
1) + 1 ≤ xj which is exactly xd+k ≤ xj.

56

(b) Comparison of the value of the objective functions: here again the equality trivially
holds and thus v(P̄L) ≥ v(P̄q).

We have proven that from an optimal solution of (P̄q), we can build a feasible solution of (P̄L)
with the same objective value and vice versa. We thus have v(P̄L) = v(P̄q). �

This shows that when linearizing a single monomial, the number of additional variables and the
order of product decompositions do not influence the bound obtained by continuous relaxation.
Moreover, the link we have made between q−linearizations and the standard linearization allows
the q−linearization to benefit from the nice polyhedral properties of the standard linearization
of a single monomial. Especially, it is well-known (see for example [8]) that in the case of a
single binary monomial, the standard linearization yields an integer polytope. As a corollary, any
q−linearization set of constraints also describes the integer polytope. In the next paragraph, we
show that this result can be generalized, with some assumptions, to the linearization of a whole
polynomial.

4.1.2 Linearization of a polynomial

We have seen previously that different q−linearizations of a single monomial lead to the same
continuous relaxation bound. One simple idea to generalize this result to a whole polynomial is
to consider each monomial of this polynomial and linearize them separately. In other words, if we
apply a q−linearization to each monomial of a polynomial, then by Lemma 4.1.1, the continuous
relaxation bound obtained by any q−linearization would be the same. This result is valid as long
as an additional variable is used exclusively in one monomial. In this case, Lemma 4.1.1 holds
for each monomial as it is stated in the following corollary.

Corollary 4.1.1. For q ≥ 1, all q−linearizations of a polynomial where monomials are linearized
independently lead to the same bound by continuous relaxation.

Proof. When using an additional variable exclusively in one monomial, we can apply the
previous proof on each monomial separately. �

In light of these results, we remark that reusing additional variables in several monomials may
lead to different bounds. For now, we do not know the exact impact of re-usability of additional
variables on continuous relaxation bound. Indeed, when considering re-usability, we can not build
a partially ordered set of the continuous relaxation bounds obtained by every q−linearization.
In other words, it is difficult to compare the bound obtained by two q−linearizations and this
remains an open question. However, in some other linearizations frameworks (LP hierarchy,
valid inequalities, etc.) it is possible to compute the best linearization, see for example [68]. In
the following example, we present a small example to illustrate Corollary 4.1.1 and show how
re-usability can impact the bound.

57

Example 2 (continued). We recall program (Ex):

(Ex)
{

min
x∈{0,1}4

2x1 + 3x2x3 − 2x2x3x4 − 3x1x2x3x4

We consider three different q−linearizations:

• l1(x) = 2x1 + 3 x2x3︸ ︷︷ ︸
x5

−2x2x3x4︸ ︷︷ ︸
x6

−3x1x2x3x4︸ ︷︷ ︸
x7

• l2(x) = 2x1 + 3 x2x3︸ ︷︷ ︸
x5

−2x2x3︸ ︷︷ ︸
x6

x4

︸ ︷︷ ︸
x8

−3x1x2x3︸ ︷︷ ︸
x7

x4

︸ ︷︷ ︸
x9

• l3(x) = 2x1 + 3 x2x3︸ ︷︷ ︸
x5

−2x2x3︸ ︷︷ ︸
x5

x4

︸ ︷︷ ︸
x7

−3x1x2x3︸ ︷︷ ︸
x6

x4

︸ ︷︷ ︸
x8

Observe that l1 represents the standard linearization. By Corollary 4.1.1, we know that lineariza-
tions l1 and l2 have the same continuous relaxation bounds, that is −1.5. However, we can not
say anything a priori concerning the continuous relaxation bound of l3 since it uses the additional
variable x5 twice. For this linearization, the bound value is −0.5 which is tighter than the other
linearizations. Intuitively, if we add the equality x5 = x6 in l2, then we get l3. In this case we can
justify that reusing variables can improve the bound as it amounts to adding a valid equality to l2.

These valid equalities are closely related to the 2−links cut presented in [25]. More precisely,
when writing the 2−link cuts for S = {2, 3} and T = {2, 3, 4}, we obtain exactly x5 = x6. In terms
of polyhedral characterization, the projection of the polyhedron corresponding to l3 on the space
spanned by (x1, x2, x3, x4, x5, x7, x8) is exactly the same as the 2-link polyhedron for the product
x2x3 and x2x3x4.

Finally, it seems that the number of additional variables added does not affect the quality of
the bound, since l3 has less variables than l1 but more than l2.

We present below the continuous relaxation bound value of the standard linearization for this
example. The following table will be used as a comparison tool for each new method introduced in
this thesis.

Degree Method Continuous relaxation bound value
1 Standard linearization −1.5

The proven property of equivalence between the linearizations is a nice and important result
when considering linearization of a polynomial program from degree d to degree 1. We have
shown that linearizing each monomial of a polynomial separately leads to the same continuous
relaxation bound value for any q−linearization.

58

4.2 Direct convexification
The previous method for solving (P) was based on a first phase of reformulation to reduce the
degree of the objective function. More precisely, we projected (P) in a higher dimensional space
by adding additional variables. The resulting program was linear and thus convex. Here we focus
on finding another convex reformulation of (P) with the same degree and the same number of
variables as (P). For this, we follow the ideas of the α−branch-and-bound algorithm [2]. We
first introduce an approximation of the non-constant Hessian matrix of f with an interval matrix
and then we use some eigenvalues results on these matrices. We obtain an equivalent program
to (P) with a convex continuous relaxation. This relaxation is then used at each node of a
branch-and-bound algorithm.

4.2.1 Approximation of the Hessian matrix

In this section, we present an algorithm to compute an equivalent convex reformulation to any
binary polynomial. The goal here is to make f convex which is equivalent to its Hessian matrix
H being positive semi-definite. For this reason, one solution is to perturb H so that its smallest
eigenvalue becomes positive. The difficulty here is that, as soon as the degree of the polynomial
f is strictly greater than 2, the Hessian matrix H(x) is no longer constant and is a function of
x. Thus finding the smallest eigenvalue of such a matrix is NP-hard as it amounts to find the
minimum and maximum of each entry of H. The first step of our approach is to build a constant
matrix that gathers all the information of the non-constant matrix H(x). For this we use the
concept of interval matrix.

Definition 4.2.1. An interval matrix [H] is a matrix whose entries are real intervals of the form
[h]ij = [hij, hij].

The purpose of the interval matrix is to find such a matrix [H] so that, for each entry hij

of H(x) we have hij ∈ [h]ij. Since the variables are binary (and hence bounded), it is possible
to compute bounds for each entry of H(x). Note that we only approximate the bounds of the
interval matrix. Indeed, computing the "optimal" interval matrix (i.e. computing the tightest
bounds for each interval) of the Hessian matrix of (P) is difficult starting from degree 4, i.e. the
computation of the maximum and minimum for any entry of the Hessian. To do this, it would
be necessary to find the global optima of a 0-1 function for each term of the interval matrix,
and thus solve approximately n2 integer programs. As a consequence, rather than computing an
optimal interval matrix [H∗], we will compute an approximate interval matrix [H] (i.e. such that
for all entries (i, j), [h∗]ij ⊂ [h]ij) and we present in the following a possible approximation of the
bounds of the Hessian matrix. More precisely, we compute upper and lower bounds for each term
of the Hessian matrix, ∂2f

∂xixj
.

59

Proposition 4.2.1. Let cm be the coefficient of monomial m in f . The following inequalities
hold

cij =
∑

monomial m:
xi∧xj∈m
and cm<0

cm ≤
∂2f

∂xixj
≤

∑
monomial m:
xi∧xj∈m
and cm>0

cm = cij

Proof. We consider a monomial m = c
∏n
k=1 xk. If xi /∈ monomial m, or xj /∈ monomial m, then

∂2m
∂xixj

= 0. Else, ∂2m
∂xixj

= c
∏
k 6=i
k 6=j

xk. In this case, the variables are contained in [0, 1], and we have

0 ≤ ∂2m
∂xixj

≤ c if c > 0, or c ≤ ∂2m
∂xixj

≤ 0 else. By summing up on the monomials we have

∑
monomial m:
xi∧xj∈m
and cm<0

cm ≤
∂2f

∂xixj
≤

∑
monomial m:
xi∧xj∈m
and cm>0

cm

�

Thanks to this result, we can build an interval matrix that approximates the Hessian matrix
of f . For every entry (i, j), we have [h]ij = [cij, cij] and hij ∈ [h]ij.

Example 2 (continued). The Hessian matrix of f is written as follows

Hf (x) =

0 −3x3x4 −3x2x4 −3x2x3

−3x3x4 0 3− 3x1x4 − 2x4 −2x3 − 3x1x3

−3x2x4 3− 3x1x4 − 2x4 0 −2x2 − 3x1x2

−3x2x3 −2x3 − 3x1x3 −2x2 − 3x1x2 0

Its associated interval matrix [H] writes

M =

[0, 0] [−3, 0] [−3, 0] [−3, 0]

[−3, 0] [0, 0] [−2, 3] [−5, 0]
[−3, 0] [−2, 3] [0, 0] [−5, 0]
[−3, 0] [−5, 0] [−5, 0] [0, 0]

Note that the diagonal terms of the Hessian matrix as well as the interval matrix are always

null as we consider binary variables.

In the next section we modify selected entries of [H] to find a convex reformulation of (P).

4.2.2 Convexification by uniform diagonal perturbation

In the last section we built a constant interval matrix that approximates the Hessian matrix
of f . Here we present some theoretical results used in the α−branch-and-bound algorithm [2]
concerning the eigenvalues of interval matrices. These results will lead to a convex reformulation

60

by making the interval matrix [H] positive semi-definite. We first define the notion of positive
semi-definiteness for an interval matrix.

Definition 4.2.2. An interval matrix [H] is positive semi-definite if every real matrix contained
in [H] is positive semi-definite.

Finally, [H] positive semi-definite implies H(x) positive semi-definite for all x ∈ [0, 1]n as
values of H(x) are contained in the interval matrix [H].

We then write an equivalent program to (P). Observe that the equality x2
i − xi = 0 is valid

for all xi ∈ {0, 1}n. Thus the function fλ̄ : x 7→ f(x)− λ̄∑i(x2
i − xi) parameterized by λ̄ is equal

to f on {0, 1}n. We then consider the following equivalent program to (P).

(Pλ̄)

min fλ̄(x) = f(x)− λ̄

∑
i

(x2
i − xi)

s.t.
x ∈ {0, 1}n

We denote by [Hλ̄] the corresponding interval matrix of fλ̄ which is equal to [H]−2diag(λ̄). The
parameter λ̄ can be thought as a lever to the convexity of f . Indeed, for large negative values of λ̄,
we have [Hλ̄] � 0 and thus fλ̄ is convex. However, recall that the resulting continuous relaxation
will be solved through a branch-and-bound algorithm and one has to provide tight continuous
relaxations at the root node of the branch-and-bound in order to improve its efficiency. The
difficulty lies in finding λ̄ such that fλ̄ is convex and at the same time the continuous relaxation
bound value should be as tight as possible. The Gerschgorin Theorem [33] gives a possible value
for λ̄.

Theorem 4.2.1 (Scaled Gerschgorin). [33] The smallest eigenvalue λmin of [H] is bounded by

λmin ≥ λ̄ = min
i

−∑
j 6=i

max(|cij|, |cij|)

The convexification parameter λ̄ is based on two successive approximations. Indeed, a first
approximation is made on the Hessian matrix H which leads to the construction of the interval
matrix [H]. Then a second approximation is made on the smallest eigenvalue of [H]. The resulting
λ̄ suffices to make fλ̄ convex given its associated interval matrix. The more accurate the interval
matrix is, the tighter the continuous relaxation will be. This leads to a trade-off between the
tightness of [H] and the computational speed.

We illustrate the approach presented in this section in a small example.

Example 2 (continued). After applying Theorem 4.2.1 to our example, we obtain λ̄ = −13.
Thus the equivalent program (Pλ̄) is

61

(Pλ̄)

min fλ̄(x) = 2x1 + 3x2x3 − 2x2x3x4 − 3x1x2x3x4 + 6.5

∑
i

(x2
i − xi)

s.t.
x ∈ {0, 1}4

Finally the Hessian of fλ̄ writes

Hfλ̄
(x) =

13 −3x3x4 −3x2x4 −3x2x3

−3x3x4 13 3− 3x1x4 − 2x4 −2x3 − 3x1x3

−3x2x4 3− 3x1x4 − 2x4 13 −2x2 − 3x1x2

−3x2x3 −2x3 − 3x1x3 −2x2 − 3x1x2 13

Degree Method Continuous relaxation bound value
1 Standard linearization −1.5
d Uniform interval −5.3

4.2.3 Convexification by non-uniform diagonal perturbation

In the previous convexification, we perturbed the diagonal of the interval matrix [H] by adding
a constant term on the diagonal. This parameter λ̄ approximates the smallest eigenvalue of the
interval matrix. In this section, we will refine our convexification by perturbing the diagonal of
[H] with a vectorial parameter σ̄. The corresponding equivalent problem (Pσ̄) is

(Pσ̄)

min fσ̄(x) = f(x)−

∑
i

σ̄i(x2
i − xi)

s.t.
x ∈ {0, 1}n

The new interval matrix [Hσ] satisfies [Hσ] = [H] +diag(σ). Similarly to the previous section,
it is possible to choose specific values for σ̄ such that [Hσ] � 0 and thus fσ̄ is convex. The
following Theorem gives an example of such a vector σ̄.

Theorem 4.2.2 (Scaled Gerschgorin). Let σ̄ be the n−dimensional vector defined by

σ̄i =
∑
j 6=i
−max

(∣∣∣cij∣∣∣ , |cij|) ∀i ∈ {1, ..., n} (4.7)

Then H − diag(σ̄) is positive semi-definite.

62

Note that this convexification is better than the previous one. Indeed, mini(σ̄i) = λ̄ and thus
for all i ∈ {1, ..., }, σ̄i ≥ λ̄. A more refined convexification is obtained, in the sense that the value
of the continuous relaxation bound of (Pσ̄) is greater or equal than the one of (Pλ̄). We illustrate
the comparison between the two programs in the following example.

Example 2 (continued). After applying Theorem 4.7 to our example, we obtain
σ̄ = (−9,−11,−11,−13). Thus the equivalent program (Pσ̄) is

(Pσ̄)

min fσ̄(x) = 2x1 + 3x2x3 − 2x2x3x4 − 3x1x2x3x4

+4.5(x2
1 − x1) + 5.5(x2

2 − x2) + 5.5(x2
3 − x3) + 6.5(x2

4 − x4)
s.t.
x ∈ {0, 1}4

Finally the Hessian of fσ̄ writes

Hfσ̄(x) =

9 −3x3x4 −3x2x4 −3x2x3

−3x3x4 11 3− 3x1x4 − 2x4 −2x3 − 3x1x3

−3x2x4 3− 3x1x4 − 2x4 11 −2x2 − 3x1x2

−3x2x3 −2x3 − 3x1x3 −2x2 − 3x1x2 13

Degree Method Continuous relaxation bound value
1 Standard linearization −1.5
d Uniform interval −5.3
d Non-uniform interval −4.3

4.3 Conclusion
In this Chapter we have presented two specific cases of convex reformulation of (P). In Section 4.1,
we introduced the concept of q−linearizations and proved that the continuous relaxation bounds
obtained by every q−linearization are the same when using an additional variable only once.
Especially, the standard linearization has the same continuous relaxation bound value than any
other q−linearization in this case. In section 4.2, we approximated the non-constant Hessian
matrix H(x) of f with a constant interval matrix [H]. The Gerschgorin Theorems 4.2.1 and 4.2.2
provide feasible values for diagonal perturbation of [H]. The first Theorem leads to a uniform
perturbation of the diagonal of H, whereas the second leads to a non-uniform perturbation with a
slightly better bound. However, the continuous relaxation bound values obtained by this method

63

are not enough tight as they are far from the optimal value. For this reason, in the next Chapter,
we present a general framework to solve (P) with tight continuous relaxation bounds. It consists
in a double reformulation phase before applying a branch-and-bound algorithm.

64

Chapter 5

PQCR: Polynomial optimization in binary
variables through Quadratic Convex
Reformulation

Contents
5.1 A quadratic convex reformulation framework 66

5.1.1 Phase 1: Quadratization of polynomial program (P) into (QP) 67

5.1.2 Phase 2: Optimal quadratic convex reformulation of (QP) 69

5.2 Discussion on the impact of the chosen 2× 2 quadratization 80

5.2.1 2× 2 Full quadratization . 86

5.2.2 2× 2 Partial quadratization . 88

5.2.3 Replacing PQCR’s quadratization scheme with other pairwise covers . . . 90

5.3 Link with the Lasserre’s hierarchy . 92

5.3.1 A hierarchy of exact quadratic convex reformulations 92

5.4 Conclusion . 95

In this chapter, we are interested in building an equivalent program to (P), defined in 3.1,
using two successive reformulations, a first quadratic reformulation and then a convex reformu-
lation. We then solve the resulting quadratic convex program by a branch-and-bound algorithm.
We introduce our main algorithm to solve (P), called PQCR (Polynomial optimization in binary
variables through Quadratic Convex Reformulation).

The outline of the section is the following. In Section 5.1, we define and present our algorithm
PQCR. We define the quadratic reformulation and the convex reformulation. We then compare the
results obtained by PQCR with the ones obtained by state-of-the-art solvers. In Section 5.2, we

65

focus on the quadratization phase. Indeed, PQCR is built on an optimal convex reformulation but
this reformulation highly depends on the quadratization phase. This is why, this section proposes
to compare some quadratizations in terms of continuous relaxation bound values. In Section 5.3,
we theoretically compare our approach to the Moment/SOS method. Finally, Section 5.4 draws
a conclusion on quadratic convex reformulations applied to (P).

5.1 A quadratic convex reformulation framework
Quadratic convex reformulation methods [11, 12] were introduced for the specific case where
d = 2. The idea of these approaches is to build tight equivalent reformulations to (P) that
have a convex objective function. This equivalent problem can be built using the dual solution
of a semi-definite relaxation of (P), and further solved by a branch-and-bound algorithm based
on quadratic convex relaxation. Here, we consider the more general case where d ≥ 3, and
we propose to compute an equivalent convex formulation to (P). Hence, we present an exact
solution method for problem (P) that can be split in three phases. The first phase consists in
building an equivalent formulation to (P) where both objective function and constraints are at
most quadratic. For this, we need to add some auxiliary variables. We then obtain problem (QP)
that has a quadratic objective function and linear inequalities.

Then in the second phase, we focus on the convexification of the obtained problem. As
illustrated in the experiments in Section 8.3.1, the original QCR and MIQCR methods are not able
to handle (QP). Indeed, QCR leads to a reformulation with a weak bound, and in method MIQCR
the semi-definite program that we need to solve is too large. This is why we introduce a tailored
convexification phase. The idea is to apply convex quadratic reformulation to any quadratization
of (P). For this, we need null quadratic functions on the domain of (QP) so as to perturb the
Hessian matrix of the new quadratic objective function. One of these null functions comes from
the classic binary identity, x2

i = xi. One contribution of this section is the introduction of new
null quadratic functions on the domain of (QP). This set of functions varies according to the
quadratization used in phase 1. Adding these functions to the new objective function, we get a
family of convex equivalent formulations to (QP) that depend on some parameters. We then want
to choose these parameters such that the continuous relaxation bound of the convexified problem
is maximized. We show that they can be computed thanks to a semi-definite program. Finally,
the last phase consists in solving the convexified problem using general-purpose optimization
software.

Our experiments show that PQCR is able to solve to global optimality 6 unsolved instances of
the low auto-correlation binary sequence problem and improves lower and/or upper bounds of
27 of the 45 instances available at the minlplib website, in comparison to the other available
solvers.

66

5.1.1 Phase 1: Quadratization of polynomial program (P) into (QP)
We present how we build equivalent quadratic formulations to (P). The basic idea is to reduce
the degree of f to 2. For this, in each monomial of degree 3 or greater, we simply recursively
replace each product of two variables by an additional variable.

More formally, we define the set of indices of the additional variables J = {n+1, .., N}, where
N is the total number of initial and additional variables. We also refer to the subsets Ei defined
in Definition 4.1.1 for the initial or additional variable i. Using these sets, we define a valid
quadratization as a reformulation with N variables where any monomial of degree at least 3 is
replaced by the product of two variables.

Definition 5.1.1. The sets J = {n+1, .., N} and {Ei, i ∈ I∪J} define a valid 2×2 quadratization
with N variables if, for any monomial p of degree greater than or equal to 3 (i.e. |Mp| ≥ 3),
there exist (j, k) ∈ (I ∪ J)2 such thatMp = Ej ∪Ek and then ∏

i∈Mp

xi = xjxk. Then the monomial

p is replaced by a quadratic term. Moreover, each additional variable (i.e. xi such that i ∈ J)
represents a product of two variables.

With this definition of a quadratization, we reformulate (P) as a non-convex quadratically
constrained quadratic program (QCQP) with N variables.

(QCQP)

min g(x) =
∑
|Mp|≥3
Mp=Ej∪Ek

cpxjxk +
∑
|Mp|≤2

cp
∏
i∈Mp

xi

s.t.
xi = xi1xi2 ∀(i, i1, i2) ∈ J × (I ∪ J)2 : Ei = Ei1 ∪ Ei2 (5.1)
x ∈ {0, 1}N

Note that the reformulation of f into a quadratic function is not unique and, given a polynomial
f and a set E , there exist several corresponding quadratic functions g. This is not impacting our
study as our approach applies to any quadratization. Further discussion on this issue is provided
in Section 5.2.

As the variables are binary, Constraints (5.1) are equivalent to the classical set of Fortet
inequalities [29]:

(Ci
i1,i2)

xi − xi1 ≤ 0,
xi − xi2 ≤ 0,
−xi + xi1 + xi2 ≤ 1,
−xi ≤ 0,

67

We now define set FE :

FE = {x ∈ {0, 1}N : Ci
i1,i2 is satisfied ∀(i, i1, i2) ∈ J × (I ∪ J)2 : Ei = Ei1 ∪ Ei2}.

We denote by M = 4(N − n) the number of Fortet inequalities. We thus obtain the following
linearly constrained quadratic formulation that is equivalent to (P) and has N variables and M
constraints:

(QP)

min g(x) ≡ xTQx+ ctx

s.t.
x ∈ FE

where Q ∈ SN (the set of N ×N real symmetric matrices), and c ∈ RN .

In the following, we will focus on the solution of problem (QP), that is a binary quadratic
program with linear constraints. It is equivalent to (P). Let us observe that (QP), as well
as (QCQP), are parameterized by the quadratization defined by sets E . Indeed, several valid
quadratizations can be applied to (P), each of them leading to different sets Ei.

Different quadratizations were introduced and compared from the size point of view in [6]. In
our case the comparison criterion is the continuous relaxation bound value from which we present
our experimental comparison.

Example 2 (continued). [Different valid quadratizations]
For instance, we can build three different equivalent functions to f :

• g1(x) = 2x1 + 3x2x3 − 2x2x4︸ ︷︷ ︸
x5

x3 − 3x1x4︸ ︷︷ ︸
x6

x2x3︸ ︷︷ ︸
x7

• g2(x) = 2x1 + 3x2x3 − 2x3x4︸ ︷︷ ︸
x6

x2 − 3x1x2︸ ︷︷ ︸
x5

x3x4︸ ︷︷ ︸
x6

• g3(x) = 2x1 + 3x2x3 − 2x2x4︸ ︷︷ ︸
x5

x3 − 3x1x2︸ ︷︷ ︸
x6

x3x4︸ ︷︷ ︸
x7

(QEx1)

min g1(x)

s.t.

(x2, x4, x5) ∈ C5
2,4

(x1, x4, x6) ∈ C6
1,4

(x2, x3, x7) ∈ C7
2,3

x ∈ {0, 1}7

(QEx2)

min g2(x)

s.t.

(x3, x4, x6) ∈ C6
3,4

(x1, x2, x5) ∈ C5
1,2

x ∈ {0, 1}6

(QEx3)

min g3(x)

s.t.

(x2, x4, x5) ∈ C5
2,4

(x1, x2, x6) ∈ C6
1,2

(x3, x4, x7) ∈ C7
3,4

x ∈ {0, 1}7

68

Here we obtain 3 different quadratizations of (Ex) with different sets E. They have different
sizes: (QEx1) and (QEx3) have 7 variables and 12 constraints, while (QEx2) has 6 variables and
8 constraints.

We have reduced the degree of the polynomial program (P) by building an equivalent quadratic
program to (P). However, the solution of (QP) still has two difficulties, the non-convexity of the
objective function g and the integrality of the variables.

Some state-of-the-art solvers can solve (QP) to global optimality (e.g. Cplex 12.7 [43]).
Unfortunately, these solvers may not be enough efficient for solving dense instances of (P). Here,
we propose to compute an equivalent quadratic convex formulation to (QP). There exist several
convexification methods devoted to quadratic programming (see, for example [12, 14, 24, 40, 60]).
These approaches can be directly applied to (QP). For instance, one can use the QCR method,
described in [14], that consists in computing an equivalent convex formulation to (QP) using semi-
definite programming. The convexification is obtained thanks to a non uniform perturbation of
the diagonal of the Hessian matrix. The semi-definite relaxation used can be easily solved due to
its reasonable size. However, the bound obtained by continuous relaxation of the reformulation is
very weak. As a consequence, for the considered instances of Section 4, the branch-and-bound used
to solve the reformulation failed as soon as n ≥ 20. Another alternative is to apply the MIQCR
method [12]. In this method, the perturbation is generalized to the whole Hessian matrix and
hence is more refined than the previous one. This leads to a reformulation with a significantly
sharper bound. Unfortunately, the semi-definite relaxation used in this approach is too large
and its computation failed even with instances of (P) containing only 10 variables. In the next
section, we present a new convexification that leads to sharper bounds than QCR but with a better
tractability than MIQCR.

5.1.2 Phase 2: Optimal quadratic convex reformulation of (QP)
We consider the problem of reformulating (QP) by an equivalent quadratic 0-1 program with a
convex objective function. To do this, we define a new convex function whose value is equal to
the value of g(x), but which Hessian matrix is positive semi-definite. More precisely, we first
add to g(x) sets of functions that vanish on the feasible set FE . Then we focus on computing
the best parameters that lead to a convex function and that maximize the optimal value of
the continuous relaxation of the obtained problem. For each function we introduce a scalar
parameter. We present two state-of-the-art convexification methods and then we introduce our
main convexification algorithm.

5.1.2.1 Smallest eigenvalue convexification [40]

We begin by one of the first convexifications chronologically speaking. This method was intro-
duced by Hammer and Rubin in [40] and it consists in modifying diagonal entries of the Hessian

69

matrix of f by adding null functions to it. More precisely, let λ ∈ R be a real number. We add
the function x 7→ λ

∑N
i=1(x2

i −xi) which is null over {0, 1}N . We thus get the following equivalent
program to (QP) and parameterized by λ:

(QPλ)

min gα(x) = g(x) + λ

N∑
i=1

(x2
i − xi)

s.t.
x ∈ FE

Observe that gλ(x) = g(x) for all x ∈ FE . Hammer and Rubin [40] have proved that for
any λ ≥ −λmin(Q), gλ is convex. In other words, the Hessian matrix Qλ of gλ is such that
Qλ = Q+diag(λ) � 0. Moreover, for a given vector x ∈ [0, 1]N , λ 7→ fλ(x) is a decreasing function.
Thus the optimal value of the continuous relaxation of (QPλ) is attained when λ∗ = −λmin(Q).

Example 2 (continued). We focus on the quadratic reformulation (QEx2) previously intro-
duced:

g2(x) = 2x1 + 3x2x3 − 2x3x4︸ ︷︷ ︸
x6

x2 − 3x1x2︸ ︷︷ ︸
x5

x3x4︸ ︷︷ ︸
x6

The Hessian matrix Q of g2 is the following

Q =

0 0 0 0 0 0
0 0 1.5 0 0 −1
0 1.5 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1.5
0 −1 0 0 −1.5 0

For this example, the smallest eigenvalue of Q is λmin = −2.08 and the equivalent program

(QPλ) is written as follows

(QPλ)

min gα(x) = 2x1 + 3x2x3 − 2x2x6 − 3x5x6 + 1.04

N∑
i=1

(x2
i − xi)

s.t.
x ∈ FE

The Hessian matrix of gλ after the diagonal perturbation is

70

Qλ =

2.08 0 0 0 0 0
0 2.08 1.5 0 0 −1
0 1.5 2.08 0 0 0
0 0 0 2.08 0 0
0 0 0 0 2.08 −1.5
0 −1 0 0 −1.5 2.08

Note that it is not necessary to modify the entries (1, 1) and (4, 4) of Qλ as the second order

partial derivatives of x1 and x4 are null.

Degree Method Continuous relaxation bound value
1 Standard linearization −1.5
d Uniform interval −5.3
d Non-uniform interval −4.3
2 Smallest eigenvalue −1.7

5.1.2.2 Non-uniform diagonal convexification: QCR [14]

It is possible to derive a more accurate convex reformulation than previously by taking a vectorial
parameter α ∈ RN . Thus the perturbation concerns every diagonal entry of the Hessian matrix
independently. More precisely, we consider the following equivalent program to (P) parameterized
by α ∈ RN .

(QPα)

min gα(x) = g(x) +
N∑
i=1

αi(x2
i − xi)

s.t.
x ∈ FE
x ∈ {0, 1}N

where FE is the set FE where the integrality constraints are relaxed, i.e. x ∈ [0, 1]N . We are
interested in the computation of a vector α such that the continuous relaxation bound value of
(QPα) is maximized for gα convex, i.e. for Qα = Q + diag(α) � 0. This amounts to solve the
following program:

(CPNU) : max
α∈RN ,
Qα�0

{
min
x∈FE

gα(x)
}

Billonnet et al. proved in [14] that (CPNU) is a convex problem and optimal values of α can

71

be extracted from a semi-definite relaxation of (QPα).

Theorem 5.1.1 ([14]). The optimal value of (CPNU) is equal to the optimal value of the following
semi-definite program (SDPα):

(SDPα)

min < Q,X > +cTx
s.t.
Xii − xi = 0 i ∈ I ∪ J (5.2)
x ∈ FE 1 xT

x X

 � 0

x ∈ RN , X ∈ SN

The optimal values of α∗ of problem (CPNU) are given by the optimal values of the dual
variables associated with constraints (5.2) .

Example 2 (continued). For this example, the resolution of (SDPα) leads to α∗1 = 0, α∗2 = 2.5,
α∗3 = 1.5, α∗4 = 0, α∗5 = 1.5 and α∗6 = 2.5. The equivalent program (QPα) is written as follows

(QPα)

min gα(x) = 2x1 + 3x2x3 − 2x2x6 − 3x5x6 + 1.25(x2
2 − x2)

+0.75(x2
3 − x3) + 0.75(x2

5 − x5) + 1.25(x2
6 − x6)

s.t.
x ∈ FE

The Hessian matrix of gα after the diagonal perturbation is

Qα =

0 0 0 0 0 0
0 2.5 1.5 0 0 −1
0 1.5 1.5 0 0 0
0 0 0 0 0 0
0 0 0 0 1.5 −1.5
0 −1 0 0 −1.5 2.5

Degree Method Continuous relaxation bound value
1 Standard linearization −1.5
d Uniform interval −5.3
d Non-uniform interval −4.3
2 Smallest eigenvalue −1.7
2 QCR −1.6

72

5.1.2.3 General convexification framework

We present the convexification algorithm that will be used within the PQCR framework. Unlike the
previous convex reformulations, this one takes advantage of the quadratization phase to derive
valid equalities. The null functions corresponding to these equalities are then added to g in order
to compute a new convexification. For a quadratization characterized by E , we first introduce
these null quadratic functions over the set FE .

Lemma 5.1.1. The following quadratic equalities characterize null functions over FE :

(SE)

x2
i − xi = 0 i ∈ I ∪ J (5.3)

xi − xixj = 0 (i, j) ∈ J × (I ∪ J) : Ej ⊂ Ei (5.4)

xi − xjxk = 0 (i, j, k) ∈ J × (I ∪ J)2 : Ei = Ej ∪ Ek (5.5)

xixj − xkxl = 0 (i, j, k, l) ∈ (I ∪ J)4 : Ei ∪ Ej = Ek ∪ El (5.6)

Proof. Constraints (5.3) trivially hold since xi ∈ {0, 1}. Constraints (5.5) come from Defini-
tion 1. We then prove the validity of the Constraints (5.4) and (5.6).

• Constraints (5.4): we have xi =
∏
i′∈Ei

xi′ and xj =
∏
j′∈Ej

xj′ , then:

xixj =
∏
i′∈Ei

xi′
∏
j′∈Ej

xj′

=
∏
j′∈Ej

x2
j′

∏
i′∈Ei\Ej

xi′ since Ej ⊂ Ei

=
∏
i′∈Ei

xi′ since x2
j′ = xj′ and Ej ∪ (Ei\Ej) = Ei

= xi

• Constraints (5.6): by definition we have:

xixj =
∏
i′∈Ei

x′i
∏
j′∈Ej

xj′

=
∏

i′∈Ei∪Ej
xi′

∏
j′∈Ei∩Ej

xj′

=
∏

i′∈(Ei∪Ej)\(Ei∩Ej)
xi′

∏
j′∈Ei∩Ej

x2
j′

=
∏

i′∈Ei∪Ej
xi′ since x2

j′ = xj′ and (Ei ∪ Ej)\(Ei ∩ Ej) ∪ (Ei ∩ Ej) = (Ei ∪ Ej)

=
∏

k′∈Ek∪El

xk′ since Ei ∪ Ej = Ek ∪ El

= xkxl

�

73

We now compute a quadratic convex reformulation of (QP) and thus of (P). For this, we add
to the objective function g the null quadratic forms in (5.3)–(5.6). For each of them, we associate a
real scalar parameter: αi for Constraints (5.3), βij for Constraints (5.4), δijk for Constraints (5.5),
and λijkl for Constraints (5.6). We get the following parameterized function:

gα,β,δ,λ(x) = g(x) +
∑
i∈I∪J

αi(x2
i − xi) +

∑
(i,j)∈J×(I∪J)
Ej⊂Ei

βij(xi − xixj)

+
∑

(i,j,k)∈J×(I∪J)2

Ei=Ej∪Ek

δijk(xi − xjxk) +
∑

(i,j,k,l)∈(I∪J)4

Ei∪Ej=Ek∪El

λijkl(xixj − xkxl)

Obviously gα,β,δ,λ(x) has the same value as g(x) for any x ∈ FE . Moreover, there exist vector
parameters α, β, δ and λ such that gα,β,δ,λ is a convex function. Take for instance, α equals to
the opposite of the smallest eigenvalue of Q, and β = δ = λ = 0, which amounts to apply the
smallest eigenvalue convexification.

By replacing g by the new function, we obtain the following family of quadratic convex equiv-
alent formulations to (QP):

(QPα,β,δ,λ)

min gα,β,δ,λ(x) ≡ xTQα,β,δ,λx+ cTα,β,δ,λx

s.t. (5.7)
x ∈ FE

where Qα,β,δ,λ ∈ SN is the Hessian matrix of gα,β,δ,λ(x), and cα,β,δ,λ ∈ RN is the vector of linear
coefficients of gα,β,δ,λ(x).

In order to use (QPα,β,δ,λ) within a branch-and-bound procedure, we are interested by parame-
ters (α, β, δ, λ) such that gα,β,δ,λ is a convex function. Moreover, in order to have a good behavior
of the branch-and-bound algorithm, we want to find parameters that give the tightest continuous
relaxation bound. More formally, we want to solve the following optimization problem:

(CP) : max
α∈RN ,β∈RT1 ,δ∈RT2 ,λ∈RT3

Qα,β,δ,λ�0

{
min
x∈FE

gα,β,δ,λ(x)
}

where T1, T2 and T3 are the number of Constraints (5.4), (5.5), and (5.6), respectively, and FE is
the set FE where the integrality constraints are relaxed, i.e. x ∈ [0, 1]N .

In the rest of the section we will focus on solving (CP). For this, we build a compact semi-
definite relaxation that uses our new valid equalities and prove that its optimal dual variables
provide an optimal solution to (CP).

74

5.1.2.4 Computing an optimal solution to (CP)

The following theorem shows that problem (CP) is equivalent to the dual of a semi-definite
relaxation of (QP).

Theorem 5.1.2. The optimal value of (CP) is equal to the optimal value of the following semi-
definite program (SDP):

(SDP)

min < Q,X > +cT x

s.t.

Xii − xi = 0 i ∈ I ∪ J (5.8)

−Xij + xi = 0 (i, j) ∈ J × (I ∪ J) : Ej ⊂ Ei (5.9)

−Xjk + xi = 0 (i, j, k) ∈ J × (I ∪ J)2 : Ei = Ej ∪ Ek (5.10)

Xij −Xkl = 0 (i, j, k, l) ∈ (I ∪ J)4 : Ei ∪ Ej = Ek ∪ El (5.11)(
1 xT

x X

)
� 0 (5.12)

x ∈ RN , X ∈ SN (5.13)

The optimal values (α∗, β∗, δ∗, λ∗) of problem (CP) are given by the optimal values of the dual
variables associated with constraints (5.8)–(5.11) respectively.

Proof. For simplicity, we rewrite FE as follows: FE = {x ∈ {0, 1}N : Ax ≤ b} where A is
a M × N -matrix, b ∈ RM (M refers to the number of constraints (Ci

i1,i2)), and we introduce
T = N + T1 + T2 + T3 the number of Constraints (5.3)–(5.6) respectively.

We start by observing that x ∈ [0, 1]N is equivalent to x2 ≤ x, thus, (CP) is equivalent to
(Q1):

(Q1) : max
α∈RN ,β∈RT1 ,δ∈RT2 ,λ∈RT3

Qα,β,δ,λ�0

{
min

x∈RN , x2≤x, Ax≤b
gα,β,δ,λ(x)

}

(Q1) is a convex optimization problem over a convex set. If we consider the solution x̃i = 0.5
∀i ∈ I and x̃i = x̃jx̃k ∀(i, j, k) ∈ J × (I ∪ J)2, Ei = Ej ∪ Ek, the obtained x̃ is an interior point
and the Slater’s conditions are satisfied for the minimization sub-problem. Then, by Lagrangian
duality, we have (Q1) equivalent to (Q2):

(Q2) : max
α∈RN ,β∈RT1 ,δ∈RT2 ,λ∈RT3 ,ω∈RN+ ,γ∈R

M
+

Qα,β,δ,λ�0

{
min
x∈RN

gα,β,δ,λ(x) + ωT (x2 − x) + γT (Ax− b)
}

By remarking that α and ω are the dual variables associated to the same constraints, it holds
that (Q2) is equivalent to (Q3):

(Q3) : max
α∈RN ,β∈RT1 ,δ∈RT2 ,λ∈RT3 ,γ∈RM+

Qα,β,δ,λ�0

{
min
x∈RN

gα,β,δ,λ(x) + γT (Ax− b)
}

75

It is well known that a necessary condition for the quadratic function gα,β,δ,λ,γ(x)+γT (Ax− b)
to have a minimum not equal to −∞ is that matrix Qα,β,δ,λ is positive semi-definite. Therefore
(Q3) is equivalent to (Q4):

(Q4) : max
α∈RN ,β∈RT1 ,δ∈RT2 ,λ∈RT3 ,γ∈RM+

{
min
x∈RN

gα,β,δ,λ,γ(x) + γT (Ax− b)
}

We know from [57] that (Q4) is equivalent to problem (D):

(D)

max t
s.t. −γT b− t 1

2(cTα,β,δ,λ + γTA)
1
2(cα,β,δ,λ + ATγ) Qα,β,δ,λ

 � 0

t ∈ R, α ∈ RN , β ∈ RT1 , δ ∈ RT2 , λ ∈ RT3 , γ ∈ RM
+

By semi-definite duality of program (D), and with α, β, δ, λ the dual variables associated with
Constraints (5.8)–(5.11) respectively, we get (SDP ′):

(SDP ′)

min < Q,X > +cTx
s.t.

(5.8)− (5.13)
Ax ≤ b

We now prove that there is no duality gap between (D) and (SDP ′), which holds since:

(i) The feasible domain of (SDP ′) is nonempty, as (QPα,β,δ,λ) contains 0 as a feasible solution
and (D) is bounded

(ii) (D) satisfies Slater’s condition. It is sufficient to take β, δ and λ equal to 0, α large enough so
that Qα,β,δ,λ � 0 holds, and t a large negative number that ensures the diagonal dominance

of the first row and the first column of matrix
 −γT b− t 1

2(cTα,β,δ,λ + γTA)
1
2(cα,β,δ,λ + ATγ) Qα,β,δ,λ

 .
From these equivalences, we know that we can build an optimal solution of (CP) from the

optimal dual variables of (SDP ′). However, constraints Ax ≤ b are redundant in (SDP ′) and
we thus prove in Lemma 5.1.2 that (SDP ′) and (SDP) are equivalent. As a consequence, an
optimal solution to (CP) can be deduced from the optimal dual variables of (SDP).

Lemma 5.1.2. Due to Constraints (5.8)–(5.10) and (5.12), inequalities Ax ≤ b are redundant
in (SDP ′).

76

Proof. Recall that Ax ≤ b are the inequalities of (Ci
j,k), ∀(i, j, k) ∈ J × (I ∪ J)2 : Ei = Ej ∪ Ek,

i.e xi ≥ 0 (a), xi ≤ xj (b), xi ≤ xk (c), and xi ≥ xj + xk − 1 (d).

The basic idea used here is that, since matrix
 1 xT

x X

 is positive semi-definite, all its

symmetric minors are non-negative.

• Constraint (a): xi ≥ 0. We consider the determinant

∣∣∣∣∣∣ 1 xi

xi Xii

∣∣∣∣∣∣, which implies Xii − x2
i ≥ 0.

By (5.8) we obtain xi − x2
i ≥ 0 and thus xi ≥ 0.

• Constraint (b): xi ≤ xj. Considering the determinant of the symmetric minor

∣∣∣∣∣∣Xjj Xji

Xij Xii

∣∣∣∣∣∣
implies XiiXjj − X2

ij ≥ 0. By (5.8) we have xjxi − X2
ij ≥ 0 and by (5.9) we obtain

xixj − x2
i ≥ 0. Either xi > 0 and then we have xj − xi ≥ 0, or xi = 0 and the inequality

comes from xj ≥ 0.

• Constraint (c): xi ≤ xk. By symmetry, i.e. considering the determinant

∣∣∣∣∣∣Xkk Xki

Xik Xii

∣∣∣∣∣∣ , the
inequality holds.

• Constraint (d): xi ≥ xj + xk − 1. By definition (5.12) implies zT
 1 xT

x X

 z ≥ 0,

∀z ∈ RN+1. By taking z̄ = (1, 0, .., 0, −1︸︷︷︸
j

, 0, .., 0, −1︸︷︷︸
k

, 0, .., 0, 1︸︷︷︸
i

, 0, .., 0), we have:

0 ≤ z̄T

 1 xT

x X

 z̄ = (xi + 1− xj − xk)− (xj −Xjj −Xkj +Xij)

−(xk −Xkk −Xjk +Xik) + (xi −Xji −Xki +Xii)
= (xi + 1− xj − xk) by (5.8), (5.9) and (5.10).

�

Let us state Corollary 1 that shows that from an optimal dual solution to (SDP) we can build
an optimal solution to (CP).

Corollary 5.1.1. We have v(CP) = v(SDP). Consequently, an optimal solution (α∗, β∗, δ∗, λ∗)
of (CP) corresponds to the optimal values of the dual variables associated with constraints (5.8)–
(5.11) of (SDP) respectively.

Proof. We have:

(i) v(CP) = v(D)

77

(ii) since there is no duality gap between (D) and (SDP ′), we have v(D) = v(SDP ′)

(iii) by Lemma 2, we get v(CP) = v(D) = v(SDP ′) = v(SDP)

�

This corollary ends the proof of Theorem 5.1.2. �

To sum up, we obtain (QP ∗), the best equivalent convex formulation to (QP):

(QP ∗)

min gα∗,β∗,δ∗,λ∗(x)
s.t.
x ∈ FE

From Theorem 1, we deduce the Algorithm 1 to solve (P).

Algorithm 5.1.1 PQCR an exact solution method for (P)
Step 1: Apply a quadratization E to (P) and thus generate sets FE and SE .
Step 2: Solve (SDP), deduce optimal values α∗, β∗, δ∗, λ∗, and build (QP ∗).
Step 3: Solve (QP ∗) by a standard quadratic convex programming solver.

Example 2 (continued). We focus on the quadratic reformulation (QEx2):

g2(x) = 2x1 + 3x2x3 − 2x3x4︸ ︷︷ ︸
x5

x2 − 3x1x2︸ ︷︷ ︸
x6

x3x4︸ ︷︷ ︸
x5

For this example, the semi-definite relaxation is

78

(SDPEx)

min 2x1 + 3X3,2 − 2X5,2 − 3X6,5

s.t.
X1,1 = x1

X2,2 = x2

X3,3 = x3

X4,4 = x4

X5,5 = x5

X6,6 = x6

X3,5 = x5

X4,5 = x5

X1,6 = x6

X2,6 = x6

X3,4 = x5

X1,2 = x6 1 xT

x X

 � 0

x ∈ R6, X ∈ S6

and its solution leads to the following dual variables

• α∗ = (2, 2, 1.5, 0.18, 4.47, 2.68)

• β∗1,5 = β∗5,1 = −1.98

• β∗2,5 = β∗5,2 = −0.98

• β∗3,6 = β∗6,3 = −1.59

• β∗4,6 = β∗6,4 = −0.18

• γ∗1,2 = γ∗2,1 = −0.02

• γ∗3,4 = γ∗4,3 = 0.09

The equivalent program (QPα,β,δ,λ) is written as follows

79

(QPα,β,δ,λ)

min gα,β,δ,λ(x) = 2x1 + 3x2x3 − 2x2x6 − 3x5x6 + 1(x2
1 − x1) + 1(x2

2 − x2)
+0.7(x2

3 − x3) + 0.09(x2
4 − x4) + 2.2(x2

5 − x5) + 1.3(x2
6 − x6)

−3.96(x1x5 − x5)− 1.96(x2x5 − x5)− 3.18(x3x6 − x6)− 0.36(x4x6 − x6)
−0.04(x1x2 − x5) + 0.18(x3x4 − x6)
s.t.
x ∈ FE

The Hessian matrix of gα,β,δ,λ after the diagonal perturbation is

Qα,β,δ,λ =

2 −0.02 0 0 −1.98 0
−0.02 2 1.5 0 −0.98 −1

0 1.5 1.5 0.09 0 −1.59
0 0 0.09 0.18 0 −0.18

−1.98 −0.98 0 0 4.47 −1.5
0 −1 −1.59 −0.18 −1.5 2.68

Degree Method Continuous relaxation bound value
1 Standard linearization −1.5
d Uniform interval −5.3
d Non-uniform interval −4.3
2 Smallest eigenvalue −1.7
2 QCR −1.6
2 PQCR −0.6

5.2 Discussion on the impact of the chosen 2 × 2 quadra-
tization

In the general framework of PQCR described in the previous section, we arbitrarily choose a 2× 2
quadratization for the first phase of the method. Moreover, the set of valid equalities SE involved
in the convexification phase is derived from the quadratization chosen in the first phase. We
experimentally observe that this choice impacts the quality of the continuous relaxation bound
after convexification. A comparative computational study can be found in Chapter 8.

In this section, we concentrate on the first phase of the PQCR method, i.e. we study different
quadratizations of (P) and more particularly the quadratizations that are stable by convexifica-

80

tion. By stable, we mean that we are looking for families of quadratizations that lead to the same
continuous relaxation bound after convexification. The purpose of this study can be seen as an
attempt to classify the quadratizations depending on the bound obtained after convexification.
Indeed, we can identify quadratizations that attain the same bound after convexification, leading
to a family of quadratizations. These families can then be compared in terms of continuous relax-
ation bound. Nevertheless, we do not pretend to draw a totally ordered set, i.e. not every pair
of quadratizations can be compared as it will be presented in the final example of this section.
Instead the idea is rather to underline special cases where we can compare the continuous relax-
ation bounds of two quadratizations. Even if we are not able to answer the ultimate question of
finding the 2×2 quadratization that gives the best bound with the PQCR framework, the following
study provides partial answers.

We start this section by redefining the concept of quadratization. Indeed, in Definition 5.1.1,
we did not take into account the multiple ways of defining quadratic reformulations given a set
E and a polynomial f . As we discuss on the impact of quadratization, we have to distinguish
between all the quadratic functions g obtained after the quadratization phase, given E and f .

Definition 5.2.1. Given sets J = {n+1, .., N} and {Ei, i ∈ I∪J} we can define several quadratic
reformulations f rE of the initial objective function f . A valid 2×2 quadratization with N variables
is a reformulation f rE such that, for any monomial p of f of degree greater than or equal to 3 (i.e.
|Mp| ≥ 3), there exist (j, k) ∈ (I ∪ J)2 such that Mp = Ej ∪ Ek and ∏

i∈Mp

xi = xjxk. Then the

monomial p is replaced by a quadratic term in f rE . Moreover, each additional variable (i.e. xi

such that i ∈ J) represents a product of two variables.

This definition allows us to consider all the possible decompositions of the objective function
into a quadratic one. Indeed, given a set E , there are several ways to reformulate the objective
function. The choices are made on the variables that will appear in the objective function.

We then properly define a family of quadratizations.

Definition 5.2.2. We consider B sets (E1, ..., EB) (not necessarily different) and B corresponding
decompositions of the objective function f (r1, ..., rB). Let f r1E1 , ..., f

rB
EB be B different quadratiza-

tions of f . We then define a family of quadratizations as the finite sequence f riEi , (i = 1, ..., B).

This definition of family of quadratizations allows us to consider all the possible decompo-
sitions of the objective function into a quadratic one and to cluster quadratizations that have
the same characteristic, namely the continuous relaxation bound value. We say that a family of
quadratization is stable if any quadratization of this family leads to the same continuous relax-
ation bound value after convexification by PQCR algorithm. We state more formally this definition
in the following.

Definition 5.2.3. A family of quadratizations f riEi , (i = 1, ..., B) is stable by convexification if,
for each pair (i, j) of {1, ..., B}2, we have v(QP f

ri
Ei

) = v(QP
f
rj

Ej
).

81

In the rest of the section, we are searching for quadratizations that can be compared to others.
In particular, two quadratizations that give the same bound after convexification can be qualified
as "equivalent". Then, we can decide to choose the one that has the smallest number of additional
variables for example to fasten computations. Establishing stable families of convexification can
be useful to compare quadratizations based on other criterion than the bound criteria. We next
bring these definitions to light with an example comparing different quadratizations.

Example 2 (continued). We present two different sets E for (Ex).

• E1 is defined by E1
5 = {2, 3}, E1

6 = {1, 2}, E1
7 = {3, 4}, E1

8 = {1, 4}, E1
9 = {1, 3} and

E1
10 = {2, 4}.

• E2 is defined by E2
5 = {2, 3} and E2

6 = {1, 4}.

From E1, we can derive at least two different quadratizations,

• f 1
E1(x) = 2x1 + 3x2x3 − 2x5x4 − 3x6x7

• f 2
E1(x) = 2x1 + 3x2x3 − 2x2x7 − 3x5x8

Then from E2 we can derive only one valid quadratization

• f 1
E2(x) = 2x1 + 3x2x3 − 2x4x5 − 3x5x6

The optimal solution in binary variables for (Ex) is 0. The continuous relaxation bound value
obtained after convexification is −0.015 for f 1

E1 and f 2
E1, whereas it is −0.125 for f 1

E2. We can
conclude that the family of quadratizations (f 1

E1 , f 2
E1) is stable by convexification.

From the example, it appears intuitively that for a given set E , all the quadratizations f iE
using this set of additional variables have the same bound.

In the same way, the difference between the bound values for the quadratizations in the ex-
ample seems rather intuitive. Indeed, adding more variables means adding more valid equalities
to the convexification. One can ask whether a quadratization introducing more additional vari-
ables has always a better bound than a quadratization introducing less variables. Unfortunately,
this does not hold in the general case as it will be seen in a counter example. However, we can
formalize this result in the special case of one quadratization being included in an other.

We state and prove a first theoretical result on the bounds obtained by different quadrati-
zations based on the same set E . Given a set E , all the quadratizations using this set have the
same continuous relaxation bound. In other words, the choice of the variables that appear in the
objective function does not impact the continuous relaxation bound value.

Proposition 5.2.1. Let E be a set representing the decomposition of additional variables and let
f iE and f jE be two quadratizations based on E. Then v(QP f iE

) = v(QP fjE
)

82

Proof. We focus on semi-definite programs (SDP i
E) and (SDP j

E) as v(QP f iE
) = v(SDPf iE). The

set of constraints is the same for both programs. We prove that the value of the objective
functions are the same. Let us consider a monomial αXij in the objective function of (SDPf iE)
which corresponds to the monomial αXkl in the objective function of (SDPf iE). Constraints (5.11)
ensures the equality Xij = Xkl when Ei ∪ Ej = Ek ∪ El, which is the case here. We thus have
the equality between the two monomials. By iterating this observation for all the monomials, we
obtain the equality between v(SDPf iE) and v(SDPfjE).

This result gives a first example of family of stable quadratizations. Indeed, given a set
E , we can equally consider all the possible decompositions of the objective function in terms
of continuous relaxation bound. This is comforting as the choice of variables in the quadratic
objective function does not add unnecessary complexity to find stable reformulations. Thus the
concept of quadratization proposed in Definition 5.1.1 is sufficient. In the following we can now
consider quadratic reformulations fE instead of f rE since the decomposition order does not play a
role neither in the size of the problem nor in the quality of the continuous relaxation bound.

Next, we present a result that orders some family of quadratizations according to the con-
tinuous relaxation bound. More precisely, we establish a domination result on quadratizations.
First, we introduce a notation that allows a comparison between the size (number of variables)
of different quadratizations in the following definition.

Definition 5.2.4. We consider two sets E1 and E2 involving N1 and N2 variables respectively,
with N1 ≤ N2. We say that the quadratization E1 is included in the quadratization E2 if for any
i ∈ {1, ..., N1}, there exists j ∈ {1, ..., N2} such that E1

i = E2
j . We then note E1 ⊂ E2.

This definition states that quadratization E1 is included into quadratization E2 if every product
of variables reformulated in E1 is also reformulated in E2. In other words, E2 contains all the
additional variables of E1. When considering these special case of quadratizations, we can compare
the bounds obtained by continuous relaxation as it is shown in the following Lemma.

Proposition 5.2.2. Let E1 and E2 be two quadratizations such that E1 ⊂ E2. Then v(QP fE1) ≤
v(QP fE2).

Proof. Again, we prove the inequality of the underlying semi-definite relaxations, that is v(SDPfE1) ≤
v(SDPfE2).

Let x∗ = (x∗1, ..., x∗N2) be the optimal solution of (SDPfE2). The truncated solution y∗ =
(x∗1, ..., x∗N1) satisfies constraints (5.8 - 5.11) of (SDPfE1) since these constraints are a subset of the
constraints of (SDPfE2). We now show that y∗ satisfies the positive semi-definite constraints. For
this, we state and prove the following two well-known results on positive semi-definite matrices.

Property 5.2.1. The property of positive semi-definiteness is invariant by symmetric permuta-
tions of rows and columns.

83

Proof. Let A be a symmetric positive semi-definite matrix. We show that, for every permutation
matrix P , PAP T � 0.

By application of the spectral theorem for matrix A, there exist an orthogonal matrix O and
a positive diagonal matrix D such that A = ODOT . We thus have PAP T = PODOTP T =
(PO)D(PO)T � 0. �

Property 5.2.2. The property of positive semi-definiteness is invariant by symmetric suppression
of some rows and the associated corresponding columns.

Proof. Consider the suppression of the last row and the last column of a semi-definite matrixM .
The resulting matrix M ′ is also positive semi-definite since the determinant of every symmetric
minors is positive a fortiori. Using Property 5.2.1, we can generalize the invariance for the
suppression of any number of symmetric rows and columns. �

With these two results, we can conclude that the truncated solutions y∗ satisfies constraints
(5.12).

Finally, as E1 ⊂ E2, with Theorem 5.2.1 we can deduce that, without loss of generality,
objective functions of (SDPfE1) and (SDPfE2) are the same and thus have the same value.

We have proven that from an optimal solution of (SDPfE2) we can deduce a feasible solution
of (SDPfE1) with the same objective value. Thus v(SDPfE1) ≤ v(SDPfE2).

This result confirms an intuitive observation that is, adding more auxiliary variables to a
quadratization can sharpen the continuous relaxation bound after convexification. Indeed, the
more we introduce additional variables, the more we add valid equalities to the reformulated
problem. Thus the bound is expected to be tighter when adding more variables. However, the
inequality obtained in the previous Lemma is not always strict. We illustrate this point in the
following example.

Example 2 (continued). We consider 2 quadratizations for (Ex), E1 and E2, with E1 ⊂ E2:

• Quadratization E1 with 2 additional variables, E1
5 = {2, 3} and E1

6 = {1, 4}:

min 2x1 + 3x2x3 − 2x2x3︸ ︷︷ ︸
x5

x4 − 3x1x4︸ ︷︷ ︸
x6

x3x2︸ ︷︷ ︸
x5

Continuous relaxation bound value : -0,125

• Quadratization E2 with 3 additional variables, E2
5 = {2, 4}, E2

6 = {1, 4} and E2
7 = {2, 3}:

min 2x1 + 3x2x3 − 2x2x4︸ ︷︷ ︸
x5

x3 − 3x1x4︸ ︷︷ ︸
x6

x3x2︸ ︷︷ ︸
x7

Continuous relaxation bound value : -0,125

84

The bounds obtained by the two quadratizations are equal. From a computational point of view,
quadratization 1 should be chosen as it has less variables than quadratization 2 while having the
same bound.

We have proven that, in the special case of a quadratization included in another, we can derive
an inequality on the value of the continuous relaxation bound. One can now ask if we can derive
other relations on bounds for a more general case of quadratization. Unfortunately, we show
throughout the next example that the number of additional variables is not always correlated
with the quality of continuous relaxation bounds in the general case.

Example 2 (continued). We introduce 3 different quadratizations of (Ex) and we present the
continuous relaxation bounds obtained after convexification.

• Quadratization E1 with 2 additional variables, E1
5 = {2, 3} and E1

6 = {1, 4}:

min 2x1 + 3x2x3 − 2x2x3︸ ︷︷ ︸
x5

x4 − 3x1x4︸ ︷︷ ︸
x6

x3x2︸ ︷︷ ︸
x5

Continuous relaxation bound value : -0,125

• Quadratization E2 with 3 additional variables, E2
5 = {2, 3}, E2

6 = {1, 2} and E2
7 = {3, 4}:

min 2x1 + 3x2x3 − 2x2x3︸ ︷︷ ︸
x5

x4 − 3x1x2︸ ︷︷ ︸
x6

x3x4︸ ︷︷ ︸
x7

Continuous relaxation bound value : -0,625

• Quadratization E3 with 3 additional variables, E3
5 = {2, 4}, E3

6 = {1, 2} and E3
7 = {3, 4}:

min 2x1 + 3x2x3 − 2x2x4︸ ︷︷ ︸
x5

x3 − 3x1x2︸ ︷︷ ︸
x6

x3x4︸ ︷︷ ︸
x7

Continuous relaxation bound value : -0,375

We cannot draw any inclusion relationship between these three quadratizations. We remark
that the best bound is attained by the quadratization that has the smallest number of variables
(E1). This seems counterintuitive since adding less variables means adding less valid equalities.
However, the example shows that the valid equalities induced by E1 (and thus the choice of ad-
ditional variables) may be stronger than the ones of E2 and E3. Moreover, we have an example
of two quadratizations that use the same number of additional variables and whose bounds are
not equal (E2 and E3). Again these quadratizations are not comparable in terms of bounds. This
is in accordance with the fact that it can be difficult to build a totally ordered set, at least when
considering the size criterion only.

85

Our study on stability shows that considering the dimension of (QP) is not enough to compare
the bounds of different quadratizations in the general case. However, we know that a quadra-
tization E1 "larger" than other quadratizations E i (i.e. when E i ⊂ E1) has a bound that is at
least equal to the bounds of the quadratizations E i. One solution to have the best possible bound
would be to build a quadratization that contains all the other quadratizations. Unfortunately,
this is impossible as we can build quadratizations with a huge number of additional variables
that recursively reformulate product of variables. Nevertheless it can be interesting to add all the
variables "up to some fixed degree" to obtain a satisfying bound. Next, we address this problem
and we present two special cases of quadratizations that are interesting both from the compu-
tational and theoretical point of view. In particular, we present comparisons of our quadratic
convex reformulation using these quadratizations with other state of the art methods.

5.2.1 2× 2 Full quadratization

In this section we introduce the 2× 2 full quadratization (also called full quadratization). A full
quadratization of a binary polynomial f of degree d consists in the introduction of an additional
variable for each possible product of variables up to degree dd2e. In other words, each product of
initial variables of degree at most dd2e is reformulated by an additional variable. We state more
formally the definition in Definition 5.2.5.

Definition 5.2.5. We define by full quadratization, any quadratization E such that for every
product ∏j∈M̃ xj of degree at most dd2e, there exist i ∈ J such that Ei = ⋃

j Ej = M̃ .

The bound dd2e is not an arbitrary choice. Indeed, let us notice that in order to compute
a quadratic reformulation of a binary monomial of degree d, we need at least two additional
variables xi and xj and the monomial will be reformulated as xixj. As a consequence one of these
additional variables reformulates a product of variables of degree at least dd2e. When considering
the quadratic reformulation of a degree d polynomial, one needs to introduce at least one variable
of degree greater than or equal to dd2e.

In the last section, we supposed that "bigger" quadratizations (in the sense of inclusion) could
lead to tighter bounds. We thus need to find a quadratization that possesses a property of "com-
pleteness", that is a quadratization containing all the additional variables up to a certain degree
d′. And, in the case of a degree d polynomial, d′ is precisely dd2e. Indeed, we can quadratically
reformulate any polynomial of degree d with additional variables of degree at most dd2e. Moreover,
we cannot compute a quadratic reformulation of a degree d polynomial with additional variables
of degree at most dd2e − 1 as monomials of degree d can not be reformulated with the product
of two additional variables. Thus, the full quadratization is the smallest quadratization that can
be used to quadratically reformulate any polynomial of degree d and that contains all the other
quadratizations using additional variables of degree less than or equal to dd2e.

86

We can remark that this quadratization is not sensitive to the structure of the initial problem
as the number of additional variables only depends on the number of initial variables n. Indeed,
this quadratization reformulates every product of variables, even if it does not appear in the
objective function. In other words, the full quadratization will introduce the same number of
variables for a polynomial program with 10 initial variables and 10 monomials or a program with
10 variables and 1000 monomials.

This full quadratization has been introduced and used in different frameworks as in [6]. For
example, it shares the same ideas as the property of upward-completeness that was introduced
in [22]. The authors use this quadratization in a quadratic reformulation framework. We further
study the impact of this quadratization in a quadratic convex reformulation framework. More-
over, this quadratization is also linked with the Lasserre’s hierarchy for unconstrained binary
polynomial programs [52] as it will be stated further.

We next present an example of a full quadratization and we discuss on the dimension of such
a quadratization.

Example 4. We consider the following new polynomial program whose optimal value is -2

(Ex2)
{

min
x∈{0,1}5

2x1x5 + 3x2x3 − 2x2x3x4 − 3x1x2x3x4

Applying the full quadratization to (Ex2) amounts to introduce an additional variable for each
product in red in the following matrix:

xxT =

x2
1 x1x2 x1x3 x1x4 x1x5

x2x1 x2
2 x2x3 x2x4 x2x5

x3x1 x3x2 x2
3 x3x4 x3x5

x4x1 x4x2 x4x3 x2
4 x4x5

x5x1 x5x2 x5x3 x5x4 x2
5

We add a total of 10 additional variables which correspond to every possible product of degree 2.
The bound obtained is −2 .

Given a number of initial variables n and the degree d, the full quadratization will always
introduce the same number of additional variables. More precisely, applying full quadratization
to any degree d polynomial with 5 variables will lead to the same set E with these 10 additional
variables.

As it is illustrated in the example, the full quadratization does not depend on the number
of monomials, it only depends on the number of initial variables n and the degree d. Indeeed,
the number of additional variables added is O(n d

2), which can be very large. Although the
bound obtained after convexification can be very tight, this quadratization is intractable when
considering medium or large instances as it is explained in [22]. In the next paragraph, we

87

present a quadratization "extracted" from the full quadratization which can be interesting from
a computational point of view.

5.2.2 2× 2 Partial quadratization

The full quadratization presented in the last paragraph introduced a quadratization with some
completeness property and lead to very tight bounds. However, the number of additional variables
can be huge for many instances. One idea could be to reduce the number of additional variables
according to the structure of each polynomial instance. One way to proceed is to take the structure
of the monomials into consideration. To reduce the number of variables of the full quadratization,
without degrading the bound, we can build a quadratization which only reformulates products
of variables appearing in a same monomial of degree greater than 2. In the following, we present
and define formally such a quadratization that we call partial quadratization.

Definition 5.2.6. We define by partial quadratization, any quadratization E such that for every
product ∏j xj of degree dd2e contained in a same monomial of degree greater than 2, there exist
i ∈ J such that Ei = ⋃

j Ej.

Trivially, the partial quadratization is included in the full quadratization and thus has less
additional variables. Moreover the continuous relaxation bounds are expected to be weaker than
the ones with full quadratization by Theorem 5.2.2. The question is whether the partial quadra-
tization has a better trade-off between dimension and quality of the bound than the full quadrati-
zation. Again, the authors of [22] introduce the property of downward-completeness which shares
some similarities with the partial quadratization. In the case of quadratic reformulation, the
authors state that this quadratization is far more tractable than the first one. In the following ex-
ample we illustrate the application of partial quadratization to our quadratic convex reformulation
framework and we compare the results obtained with the ones obtained by full quadratization.

Example 4 (continued). Applying the partial quadratization to (Ex2) amounts to reformulate
all the products in blue in the following matrix:

M =

x2
1 x1x2 x1x3 x1x4 x1x5

x2x1 x2
2 x2x3 x2x4 x2x5

x3x1 x3x2 x2
3 x3x4 x3x5

x4x1 x4x2 x4x3 x2
4 x4x5

x5x1 x5x2 x5x3 x5x4 x2
5

We add a total of 6 additional variables to quadratize the last two monomials. Again, the bound
obtained is −2 which is the same as the bound obtained by the full quadratization. With this
instance it is shown that the inequality between the two quadratizations can be tight.

Moreover, this partial quadratization takes advantage of the structure of the instance. In other
words, an other instance would lead to an other set E with different additional variables.

88

In Table 5.1, we present experimental results on small low autocorrelation instances illustrat-
ing our study on quadratizations. We apply the PQCR algorithm with the two quadratizations
introduced in this section, namely the full quadratization (Full) and the partial quadratization
(Partial). We compare the total number of variables (N), the number of constraints in the
semi-definite relaxation (Const SDP), the continuous relaxation bound values (LB) and the total
solution time (Tt).

Instance PQCR with Full PQCR with Partial
Name n Opt N Const SDP N Const SDP
b.20.5 20 -416 210 22156 83 1308
b.20.10 20 -2936 210 22156 138 6275
b.20.15 20 -5960 210 22156 176 13757

Instance PQCR with Full PQCR with Partial
Name n Opt LB Tt LB Tt
b.20.5 20 -416 -417 9700 -422 3
b.20.10 20 -2936 -3016 7439 -3040 180
b.20.15 20 -5960 -6025 10831 -6059 2060

Table 5.1: Comparison of the full quadratization and the partial quadratization

The numerical results indicate that the bounds obtained by the full and the partial quadra-
tizations are not always equal, but the partial quadratization seems to have a better trade-off
which leads to a faster resolution. Indeed the partial quadratization solves every instance within
30 minutes whereas the full quadratization solves the hardest instance in 3 hours. Moreover,
we cannot compare these two quadratizations on other instances as the full quadratization does
not scale on bigger instances. The small loss on the bound quality can be explained as some
of the additional variables in the full quadratization reformulate products that do not appear
in any decomposition of the quadratic objective function. We may suppose that these variables
play a minor role in the quality of the bound since they do not appear explicitly in the objective
function. Thus, the partial quadratization contains a subset of additional variables that can be
qualified as the "most significant" variables in terms of bound quality. Note that the number of
variables added by the full quadratization is always the same because all the instances have the
same number of initial variables. This is another example of why the full quadratization does
not "suit" well. A future research work would be to measure theoretically, for any polynomial
instance, the difference of bounds between the two quadratizations.

89

5.2.3 Replacing PQCR’s quadratization scheme with other pairwise cov-
ers

In this section, we shortly explore the experimental impact of the chosen quadratization on the
tightness of the associated continuous relaxation bound after quadratic convex reformulation.
In Table 5.2, we report the continuous relaxation bound values obtained by convexification after
applying the quadratization used in PQCR, called PC0, and three quadratizations from [72], namely
Pairwise Cover 1, 2 and 3 (PC1, PC2 and PC3). We first describe, in Algorithm 5.2.1, our
quadratization algorithm, PC0 used in PQCR.

Algorithm 5.2.1 PC0
Require: A polynomial f of degree d > 2
Ensure: A quadratic function f ′ satisfying ∀x ∈ {0, 1}n, f ′(x) = f(x)

for each monomial p from 1 to m do
Sort p by lexicographical order
deg ← deg(p)
while deg > 2 do
s← bdeg2 c
for l from 1 to s do
Consider the lth consecutive pair of variables xjxk
Find xi that represents the product xjxk
if xi does not exist then
Create an additional variable xi and Ei ← Ej ∪ Ek

end if
Replace xjxk by xi

end for
deg ← ddeg2 e

end while
end for

Example 5. Applying the quadratization of Algorithm 5.2.1 to the monomial x1x2x3x4x5 we
obtain the following monomial of degree 3 at the first iteration:

x1x2︸ ︷︷ ︸
x6

x3x4︸ ︷︷ ︸
x7

x5

we then obtain a quadratic reformulation of the monomial at the second iteration using 3 additional
variables:

x6x7︸ ︷︷ ︸
x8

x5

90

In Pairwise Cover 1, for each monomial of degree d ≥ 3, the first two variables are linearized
to obtain a monomial of degree d−1. The process is recursively reproduced until d = 2. Pairwise
Covers 2 and 3 try to minimize the number of additional variables. In PC2, the authors compute
the sub-monomials of any degree that appear the most among all the intersection of pairs of
monomials. Then they linearize these sub-monomials using the set FE and they repeat the process
until the objective function is quadratic. PC3 linearizes in priority the pair of variables that
occurs the most frequently in all the monomials. For instance, if we consider the quadratization
of the following monomial of degree 4, x1x2x3x4, we will compute the most frequent pair of
variables among the six possible products. If x1x2 is the most frequent, then the monomial will
be quadratized using two variables, one for the reformulation of x1x2 and the other for x3x4.

Instance PQCR with PC1 PQCR with PC2 PQCR with PC3 PQCR with PC0
Name Opt N LB Tt N LB Tt N LB Tt N LB Tt
b.20.05 -416 64 -435 70 56 -439 63 40 -436 59 65 -435 64
b.20.10 -2936 123 -3052 112 135 -3115 132 93 -3068 112 124 -3051 130
b.40.10 -8248 303 -8590 4385 315 -8659 4562 262 -8745 2162 304 -8589 3723

Table 5.2: Comparison of bounds (LB), number of variables (N) and total time (Tt) of PQCR after
different quadratizations

By considering experimental results, we remark that PC1 and quadratization PC0 have similar
behavior in terms of dimension and bounds. PC0 has the best bounds among all the other
quadratizations whereas PC3 has the smallest number of variables on every instance. Thus the
chosen quadratization impacts N , the number of variables of (QP). It also impacts the quality
of the associated semi-definite bound, LBi. Indeed, we know from the study in stability that,
the more variables are added, the more the size of sets FE and SE increases. As there is not any
inclusion relation between the pairwise covers, they cannot be compared. As a consequence some
equalities of SE may be stronger than others. Interesting future research directions would be to
identify, for a given quadratization, a set of "important" equalities in SE , and to determine which
quadratization used in PQCR leads to faster solution time and/or sharper initial lower bound.

To conclude this section, after acknowledging that the bound after convexification varies de-
pending on the quadratization, we defined the stability property of quadratizations with respect to
the convexification phase. We have presented a first result on stability which proves that different
quadratic decompositions of a polynomial function using a single set E lead to the same bound.
Then, we have presented a special case where we are able to order the quadratizations according
to their bounds. Finally, we have introduced two special cases of quadratizations that are linked
to state of the art methods. The full quadratization is a theoretical quadratization which leads to
very sharp bounds, whereas the partial quadratization is a more tractable quadratization which
can be used in practice to have good bounds with a relatively small number of additional vari-

91

ables. In the next section, we explore the connexion between PQCR and the well-known Lasserre’s
hierarchy. We will see that the full quadratization allows us to link the two methods.

5.3 Link with the Lasserre’s hierarchy
In this section we establish the link between PQCR and the Moment/SOS method for unconstrained
binary polynomial programs. We show that we can use the powerful Moment/SOS method to
compute a quadratic convex reformulation for each order of the Lasserre’s hierarchy. Moreover
following the same ideas, we can also build a hierarchy of quadratic convex reformulations of (P)
whose optimal continuous relaxation values converge towards the optimal value of (P).

5.3.1 A hierarchy of exact quadratic convex reformulations

Our algorithm PQCR is built to compute a quadratic convex reformulation given a quadratization
phase. For special cases of quadratization, PQCR gives the same bounds as the hierarchy of
Lasserre. We first characterize these quadratizations. We then show that for each order of the
Lasserre’s hierarchy, we can deduce a quadratic convex reformulation. Using this property we can
build our own hierarchy of quadratic convex reformulations based on the Moment/SOS method
and taking benefit of all the convergence properties established by Lasserre. Finally we show
that, compared to the Lasserre’s hierarchy for unconstrained binary programs, PQCR can lead
to a better tractability on bigger problems. Indeed, it is possible to compute quadratic convex
reformulations that do not correspond to any given order of the hierarchy. This property has a
great practical impact. It allows PQCR to solve bigger instances than the Moment/SOS method
by using lighter SDP relaxations. In particular this explains why PQCR is able to solve several low
autocorrelation instances (see Chapter 8) whereas GloptiPoly cannot.

We start by proving that it is possible to choose a quadratization in PQCR such that the
continuous relaxation bound value given by PQCR is the same as the relaxation value of the first
order of the Lasserre’s hierarchy. Indeed, using the full quadratization in PQCR leads to the same
semidefinite relaxation.

Observation 5.3.1. Let E be the 2× 2 full quadratization. Then (SDPE) is (Md d2 e).

The two semidefinite programs have the same dimension and it suffices to remark that (Md d2 e)

92

can be written as

(SDP)

min < Q,X > +cT x

s.t.

Xii − xi = 0 i ∈ I ∪ J (5.14)

−Xij + xi = 0 (i, j) ∈ J × (I ∪ J) : Ej ⊂ Ei (5.15)

−Xjk + xi = 0 (i, j, k) ∈ J × (I ∪ J)2 : Ei = Ej ∪ Ek (5.16)

Xij −Xkl = 0 (i, j, k, l) ∈ (I ∪ J)4 : Ei ∪ Ej = Ek ∪ El (5.17)(
1 xT

x X

)
� 0 (5.18)

x ∈ RN , X ∈ SN (5.19)

since constraints (5.14-5.18) are equivalent to Md d2 e � 0. (See for example the moment matrix
described in Section 3.2).

The interest of the full quadratization presented in Definition 5.2.5 is rather theoretical. By
construction, this quadratization contains all the variables up to degree dd2e and thus explicits
the comparison with the first order of the Lasserre’s hierarchy. Moreover, this connection can be
done systematically for each order of the hierarchy. More precisely, the following Lemma states
that for each order of the Lasserre’s hierarchy, it is possible to choose a quadratization, so that
PQCR gives the same continuous relaxation bound value as the corresponding Lassere’s bound.

Proposition 5.3.1. For each order r of the Lasserre hierarchy, there exists a quadratization Er of
PQCR where every product up to degree r is reformulated by a new variable, such that v(SDPEr) =
v(Mr). Then the sequence of semidefinite programs (SDPEr), dd2e ≤ r ≤ n defines a hierarchy of
relaxations.

Proof. By applying Observation 5.3.1 for each order r, the constraints of (SDPEr) ensures that
the variable matrix is the moment matrix of order r.

Thus, using a well-chosen sequence of quadratizations, we can make a correspondence between
PQCR and the Moment/SOS method for the special case of unconstrained binary polynomial
optimization in terms of bounds. However, there is a major difference between the two approaches.
On the one hand, given an order and its associated semidefinite relaxation, the Lasserre’s hierarchy
computes other semidefinite relaxations of higher orders until it reaches the optimal value of (P).
On the other hand, given a quadratization and its associated semidefinite relaxation, PQCR builds
a single quadratic convex reformulation that is solved by a branch-and-bound algorithm. One of
the consequences of Proposition 5.3.1 is that, it is possible to combine the two approaches. More
precisely, one can stop the Lasserre’s hierarchy at a given order r and derive a quadratic convex
reformulation from the associated relaxation that will be solved by branch-and-bound. This is
stated formally in the following Corollary.

Corollary 5.3.1. At each order dd2e ≤ r ≤ n one can compute an exact equivalent quadratic
convex reformulation to (P) from the associate semidefinite relaxation.

93

This Corollary is important in terms of tractability. Indeed, instead of running the hierarchy
until optimality, one can choose the order r that has the best trade off between bound quality
and tractability. From this order, we then solve the obtained quadratic convex reformulation by
branch-and-bound.

In light of these results we can draw a hierarchy of quadratic convex reformulations based
on the Moment/SOS hierarchy. The obtained sequence of quadratic convex programs yields
increasing continuous relaxation bound values. The convergence results of [52] implies also that
there exists a quadratic convex reformulation whose continuous relaxation bound value is equal to
the optimal value of (P). Indeed, let En be the quadratization that reformulates every product up
to degree n. Then the corresponding semidefinite program (and thus the continuous relaxation of
the corresponding quadratic convex program) has the same optimal value as (P). However such
a quadratization is intractable in general as it requires O(2n) variables.

Another important remark is that PQCR can improve its tractability for binary polynomial
optimization as it allows non-integer orders (or partial orders) for the relaxation. We precise this
claim in the following definition

Definition 5.3.1. A non-integer order r is such that d − 1 < r < d for a given degree d. It
corresponds to a quadratization reformulating every product of degree d − 1 but only a subset of
the products of degree d.

For example, the quadratization we used in Algorithm 5.2.1 leads to a semidefinite relaxation
of order dd2e−1 ≤ r ≤ dd2e. Indeed, we only introduced a subset of new variables representing the
products of degree dd2e. In addition to the standard integer orders of the Moment/SOS hierarchy,
PQCR can also compute relaxation of partial orders leading to more tractable quadratic convex
reformulations.

Finally, and to justify this study, we show an example where the Lasserre’s bound is attained
with less variables than required. In other words, all the additional variables do not help improving
the bound value.

Example 4 (continued). We first apply PQCR with the partial quadratization defined in Section
5.2.2. This quadratization introduces 6 additional variables x6 = x1x2, x7 = x1x3, x8 = x1x4, x9 =
x2x3, x10 = x2x4 and x11 = x3x4. The continuous relaxation bound value after convexification is
−2 which is the optimal value of (Ex2).

We then apply the Lasserre’s hierarchy to (Ex2). The first iteration corresponds to the order
dd2e = 2. The corresponding relaxation has a 16× 16 moment matrix since it amounts to add the
variables x12 = x1x5, x13 = x2x5, x14 = x3x5 and x15 = x4x5 to the previous set of additional
variables. The optimal value is also reached after the first relaxation of the hierarchy.

This example shows the necessity of choosing a quadratization that suits the studied problem.
Indeed, for large problems, it is not necessary to introduce all the additional variables correspond-
ing to a given order r as it can be huge. Instead introducing only the "most useful" variables as
it is done in Algorithm 5.2.1 can help with tractability issues.

94

To conclude, we have shown that, from a given order of the Lasserre’s hierarchy, PQCR is able to
compute an equivalent quadratic convex reformulation to (P). One of the main advantages of this
method is that, unlike the moment/SOS hierarchy, we can avoid solving semidefinite programs
of increasing size to compute the optimal value of (P). Indeed, by choosing an arbitrary order r,
we can compute the optimal value of (P) by building a quadratic convex reformulation and then
running a branch and bound based on this reformulation. Moreover, it is also possible to build
a quadratic convex reformulation that does not correspond to any integer order of the hierarchy.
Such a reformulation can be useful when the first order of the Lasserre’s hierarchy is still not
tractable.

5.4 Conclusion
In this Chapter we introduced our main quadratic convex reformulation framework to solve (P).
In Section 5.1, we consider the general problem (P) of minimizing a polynomial function where
the variables are binary. In this section, we present PQCR, a solution approach for (P). PQCR can be
split in 3 phases. We called the first phase quadratization, where we rewrite (P) as an equivalent
quadratic program (QP). For this, we have to add new variables and linear constraints. We
get a linearly constrained quadratic program that still has a non-convex objective function and
binary variables. Moreover, even for small instances of (P), the existing convexification methods
failed to solve the associate (QP). This is why, we present a family of tailored quadratic convex
reformulations of (QP) that exploits its specific structure. For this, we introduce new valid
quadratic equalities that vanish on the feasible domain of (QP). We use these equalities to build
a family of equivalent quadratic convex formulations to (QP). Then, we focus on finding, within
this family, the equivalent convex formulation that maximizes the continuous relaxation bound
value. We show that we can compute this "best" convex reformulation using a new semidefinite
relaxation of (QP). Finally, we solve our optimal reformulation with a standard solver.

The convexification phase in PQCR gives the tightest bound with respect to the quadratiza-
tion phase. It means that for a given quadratization, PQCR gives the best possible bound after
convexification within this framework, but other quadratizations can give better bounds after
convexification. This is why we discuss about quadratization in Section 5.2. We first prove that,
given a quadratization E , all possible reformulations of the objective function using E lead to the
same bound after convexification. Then, we prove that adding more additional variables to a
given quadratization can improve the bound. We then present two special cases of quadratiza-
tion. The full quadratization provides a link between PQCR and the Lasserre’s hierarchy and the
partial quadratization which can be used for computational experiments as it is more tractable
than the full quadratization. We end this section by experimentally comparing several pairwise
covers within the PQCR framework.

Finally, in Section 5.3 we present the link between PQCR and the Lasserre’s hierarchy. More

95

precisely we prove that applying PQCR with the full quadratization gives the same bound as the
first order of the hierarchy. Then, we generalize this result by proving that, for each order of
the hierarchy, we can build an equivalent quadratic convex program with the same bound as the
corresponding relaxation. The advantage of PQCR lies in the fact that at each order, it is possible
to solve a quadratic convex reformulation of (P) with a branch-and-bound instead of continuing
the hierarchy and computing bigger relaxations. Finally, we also show that PQCR is more tractable
for unconstrained binary polynomial problems than the Lasserre hierarchy. Indeed, we are not
forced to add all the auxiliary variables corresponding to a given order. Instead, we can choose
a subset of additional variables that will be used in the quadratic reformulation, which amounts
to considering a non-integer order relaxation.

96

Chapter 6

Convexification with other
quadratization schemes

Contents
6.1 "Rosenberg-like" quadratizations . 98

6.1.1 Applying diagonal convexification after Rosenberg’s procedure 98

6.1.2 Using Rosenberg’s procedure in a new compact convexification framework101

6.2 Applying QCR after quadratizations using pairwise covers 105

6.3 Applying QCR after termwise quadratization 107

6.4 Conclusion . 109

In the last chapter we have presented our algorithm PQCR, which solves unconstrained binary
polynomial programs through quadratic convex relaxation. We have seen that, given a quadrati-
zation, we are able to compute a convexification that gives the tightest bound. We consider in this
section different state-of-the-art quadratizations that do not add constraints to the reformulation.
Further, we study their interactions with a suited convexification phase. For each quadratization,
we build an equivalent convex reformulation that keep the "constraintless" property. Moreover, we
also present an additional tailored quadratic convex reformulation in the spirit of method PQCR ,
that loses its "constraintless" property. We finally analyze their performance through computa-
tional experiments. We will be interested in two quadratizations using pairwise covers, namely
Rosenberg’s procedure [73] and the quadratization of Anthony and al. defined in [6], and by the
termwise quadratization introduced in [16].

The two first quadratizations depend on a pairwise cover. This means that the quadratiza-
tions are applied after the choice of a set E . Once this quadratization scheme is chosen, the two

97

quadratizations introduce different objective functions in which the link between initial and addi-
tional variables is removed. This is the main difference with our quadratization framework, where
the Fortet’s constraints ensure a relation between the initial and the additional variables. As we
make no distinction between these families of variables, we cannot apply our convexification using
the valid equalities SE and we must derive suited convex reformulations instead.

6.1 "Rosenberg-like" quadratizations
We begin by building a first suited convexification phase for Rosenberg’s procedure and we discuss
the obtained results. Then we improve our algorithm by introducing a strengthened convex
reformulation. We finally compare the results of this new algorithm with the results of the
PQCR method.

6.1.1 Applying diagonal convexification after Rosenberg’s procedure

We apply a diagonal convex reformulation method to "Rosenberg-like" quadratizations. As men-
tioned in Section 3.3, Rosenberg’s procedure [73] is based on a perturbation of the polynomial
objective function by adding variables but without adding constraints. This procedure was the
first to use penalties to compute equivalent quadratic reformulation to pseudo-Boolean optimiza-
tion problems. This method was since refined by numerous works including [6]. However, here
we only study the results of convexification on the original Rosenberg’s quadratization since the
study can be easily generalized to other similar quadratizations.

Given a set E and a quadratic decomposition of the objective function f rE , we can build the
following equivalent problem to (QP)

(QPP)

min gP (x, y) = f rE(x, y) +
∑
i,j

P (xixj − 2xiyij − 2xjyij + 3yij)

s.t.
x ∈ {0, 1}n

y ∈ {0, 1}NP−n

where P is a large positive number (penalty term) and NP is the total number of variables (initial
and auxiliary) used in the quadratization.

Let us remark that, in this quadratization, yij represents the product xixj in all the optimal
solutions. One idea is to apply the convexification phase of PQCR by adding the null functions
deduced from the set SE , defined in Lemma 5.1.1, to the objective function and we get the resulting
program (QPPα,β,δ,λ). Unfortunately, the link between variables x and y in this quadratization is
lost and only the constraints x2

i = xi of the set SE are still valid in (QPP). As a consequence, to
enforce the equivalence between (QPPα,β,δ,λ) and (QPP), we need to add the Fortet’s inequalities

98

FE , defined in Section 5.1.1, to both programs. We precise the relation between the different
programs below

(QP) ⇐⇒ (QPP) 6⇐⇒ (QPPα,β,δ,λ)

(QP) ⇐⇒ (QPP) + FE ⇐⇒ (QPPα,β,δ,λ) + FE

However, the whole purpose of Rosenberg’s quadratization is to build a quadratic reformula-
tion without any additional constraint. In this context, it is not possible to build an equivalent
program based on the set SE without the linearization constraints. The following example illus-
trates this remark.

Example 2 (continued). By introducing two additional variables x5 and x6 that represent the
products x1x2 and x3x4 respectively, we can write two parameterized programs: (QPPα∗,β∗,δ∗,λ∗)
which is equivalent to (QPP) through the linearization constraints

(QPPα∗,β∗,δ∗,λ∗)

min
x∈{0,1}6

gPα∗,β∗,δ∗,λ∗ (x)

s.t.
x5 − x1 ≤ 0
x5 − x2 ≤ 0
−x5 + x1 + x2 ≤ 1
x6 − x3 ≤ 0
x6 − x4 ≤ 0
−x6 + x3 + x4 ≤ 1
x ∈ {0, 1}6

and (RPPα∗,β∗,δ∗,λ∗) which does not contain the linearization constraints.

(RPPα∗,β∗,δ∗,λ∗)

min

x∈{0,1}6
gPα∗,β∗,δ∗,λ∗ (x)

s.t.
x ∈ {0, 1}6

The optimal value of (QPPα∗,β∗,δ∗,λ∗) is 0 whereas the optimal value of (RPPα∗,β∗,δ∗,λ∗) is −0.125.

In fact, applying our convexification after Rosenberg’s procedure decreases the "big M" value
and thus the equivalence does not hold anymore. The quadratization structure using penalty
terms without constraints is preserved if the convexification uses only diagonal perturbation.
This can be explained as the convexification does not modify the Hessian matrix on the same
entries as the penalty terms used in Rosenberg’s procedure. Indeed, the convexification using
x2
i = xi modifies diagonal entries of the Hessian matrix whereas the penalty terms modify only

99

non-diagonal terms as there are no squared variables inside the penalty terms. Thus, as x 7→ x2−x
is a null function over {0, 1}NP , we can build the following parameterized equivalent program to
(QPP).

(QPPα)

min gP (x) +

∑
i∈I∪J

αPi(x2
i − xi)

s.t.
x ∈ {0, 1}NP

Let us remark that this approach is exactly equivalent to apply the QCR [14] method to (QPP).
Following this method, we know that an optimal value of vector αPi corresponds to the optimal
dual variables of constraints (6.1) of the following semi-definite relaxation:

(SDPP)

min gP (x,X)
s.t.
Xii − xi = 0 i ∈ I ∪ J (6.1) 1 xT

x X

 � 0 (6.2)

x ∈ RNP , X ∈ SNP (6.3)

We further provide computational experiments obtained by this approach, called ROS+QCR,
on small LABS instances (2.2.2) and on Vision instances (2.2.1) in Chapter 8. In particular, we
remark that applying the QCR method after Rosenberg’s procedure is not an efficient method at
all, as large positive values on non-diagonal terms lead to large positive values for α. As a result
the continuous relaxation bound obtained is very weak.

Example 2 (continued). We recall the optimization problem we want to solve

(Ex)
{

min
x∈{0,1}4

2x1 + 3x2x3 − 2x2x3x4 − 3x1x2x3x4

For this example, we introduce two additional variables for the quadratization, namely x5 =
x1x2 and x6 = x3x4. The penalty parameter P is set to 5. Applying the QCR method, we get
αP = (4.3, 3.9, 4, 4, 10, 9). The equivalent program (QPPα) is written as follows

100

(QPPα)

min gPα(x) = 2x1 + 3x2x3 − 2x2x6 − 3x5x6 + 5(x3x4 − 2x3x6 − 2x4x6 + 3x6)
+5(x1x2 − 2x1x5 − 2x2x5 + 3x5) + 2.1(x2

1 − x1) + 1.9(x2
2 − x2) + 2(x2

3 − x3)
+2(x2

4 − x4) + 5(x2
5 − x5) + 4.5(x2

6 − x6)
s.t.
x ∈ {0, 1}6

The Hessian matrix of gPα after the perturbation is

QPα =

4.3 2.5 0 0 −5 0
2.5 3.9 1.5 0 −5 −1
0 1.5 4 2.5 0 −5
0 0 2.5 4 0 −5
−5 −5 0 0 10 −1.5
0 −1 −5 −5 −1.5 9

Degree Method Continuous relaxation bound value
1 Standard linearization −1.5
d Uniform interval −5.3
d Non-uniform interval −4.3
2 Smallest eigenvalue −1.7
2 QCR −1.6
2 PQCR −0.6
2 ROS+QCR −2

In the next paragraph, we study a smarter way to include Rosenberg’s procedure in our
convexification step.

6.1.2 Using Rosenberg’s procedure in a new compact convexification
framework

In this section, we build a new compact convexification phase that comes directly from the
Rosenberg’s procedure.

Let xk be the additional variable representing the product xixj. The penalty term P (xixj −
2xixk − 2xjxk + 3xk) induces a valid equality, which was proven in [73]. We formally state this
valid equality as the following set of constraints.

101

(RE)
{
xixj − 2xixk − 2xjxk + 3xk = 0, (i, j, k) ∈ (I ∪ J)2 × J : Ek = Ei ∪ Ej (6.4)

Let us observe that, for a triplet (xi, xj, xk) ∈ {0, 1}3, xixj − 2xixk − 2xjxk + 3xk = 0 if and
only if xk = xixj.

Proposition 6.1.1. Let (xi, xj, xk) ∈ {0, 1}3, then xixj−2xixk−2xjxk+3xk = 0 ⇐⇒ xk = xixj.

Proof. • (⇐=) We have xk = xixj

– If xk = 0 then xixj = 0 and thus the equality xk = xixj holds.

– If xk = 1 then xixj − 2xi − 2xj = 3 which implies xi = 1 and xj = 1 and the equality
xk = xixj holds again.

• (=⇒) We have xixj − 2xixk − 2xjxk + 3xk = 0

– if xi = 0 (respectively xj = 0) then −2xjxk + 3xk = 0 (respectively −2xixk + 3xk = 0)
which leads to xk = 0.

– if xi = 1 and xj = 1 then xk = 1

One of the consequences of this proposition is that, in the initial set of valid equalities SE ,
we can replace the constraints yij = xixj (5.5) by the constraints RE (6.4) without changing the
set of feasible solutions. Moreover, it is clear that all the points satisfying SE also satisfy RE and
we can compute a compact convex reformulation using valid equalities RE only. More precisely,
given a set E and a quadratic decomposition of the objective function f rE , we can build a new
equivalent quadratic program to (P):

(QPR)

min f rE(x)
s.t.
xixj − 2xixk − 2xjxk + 3xk = 0 (i, j, k) ∈ (I ∪ J)2 × J : Ek = Ei ∪ Ej
x ∈ {0, 1}NR

where NR is the total number of variables used in the quadratization.
We now use these quadratic constraints to compute a convexification of the objective function.

More precisely, we introduce the following equivalent program to (QP) parameterized by α and
λ.

102

(QPRα,λ)

min gRα,λ(x) = f rE(x) +
∑
i∈I∪J

αRi(x2
i − xi) +

∑
(i,j,k)∈(I∪J)2×J
Ek=Ei∪Ej

λRij(xixj − 2xixk − 2xjxk + 3xk)

s.t.
x ∈ FE

Note here that we need to add the set FE to ensure the equivalence between (QPR) and
(QPRα,λ). An advantage of constraints xixj − 2xixk − 2xjxk + 3xk = 0 when compared to
constraints xixj = yij, is that their dualization perturbs more entries of the Hessian matrix. This
can therefore lead to a more refined convexification in terms of continuous relaxation bound value.
An experimental illustration of this impact is presented in Chapter 8. The results confirm that
using xixj − 2xixk− 2xjxk + 3xk = 0 leads to tighter bounds than when using xixj = yij. Indeed,
the resolution method based on (QPRα,λ) is able to solve 10 more instances.

We now prove that the "best" continuous relaxation bound value of (QPR), such that gRα,λ is
convex, is equal to the optimal value of a semi-definite program. More precisely, let (CPR) be
the following program

(CPR) : max
α∈RNR ,λ∈RNR−n

QRα,λ�0

{
min
x∈FE

gRα,λ(x)
}

Where QRα,λ is the Hessian matrix of gRα,λ . We claim that the optimal value of (CPR) is equal
to the optimal value of a semi-definite program (SDPR). Moreover, we can also deduce optimal
values of α and λ from (SDPR).
Corollary 6.1.1. The optimal value of (CPR) is equal to the optimal value of the following
semi-definite program (SDPR):

(SDPR)

min < Q,X > +cT x

s.t.

Xii − xi = 0 i ∈ I ∪ J (6.5)

Xij − 2Xik − 2Xjk + 3xk = 0 (i, j, k) ∈ (I ∪ J)2 × J : Ek = Ei ∪ Ej (6.6)(
1 xT

x X

)
� 0 (6.7)

x ∈ FE (6.8)

x ∈ RNR , X ∈ SNR (6.9)

The optimal values (α∗, λ∗) of problem (CPR) are given by the optimal values of the dual variables
associated with constraints (6.5) and (6.6) respectively.

Proof. Straightforward from the proof of Theorem 5.1.2 as constraint (6.6) is a linear combination
of constraints (5.9) and (5.10).

This convexification, called PQCR ROS, is thus more compact than the one used in PQCR as it
uses far less constraints. We illustrate the resulting convex reformulation in the following example.

103

Example 2 (continued). We recall the optimization problem we want to solve

(Ex)
{

min
x∈{0,1}4

2x1 + 3x2x3 − 2x2x3x4 − 3x1x2x3x4

For this example, we introduce two additional variables for the quadratization, namely x5 =
x1x2 and x6 = x3x4. We get αR = (0.3, 1.6, 2.1, 2.2, 2.1, 4.3) and λR = (0.3, 2.2). The equivalent
program (QPRα,λ) is written as follows

(QPRα,λ)

min gRα,λ(x) = 2x1 + 3x2x3 − 2x2x6 − 3x5x6 +
N∑
i=1

1
2αRi(x

2
i − xi)

+2.2(x3x4 − 2x3x6 − 2x4x6 + 3x6) + 0.3(x1x2 − 2x1x5 − 2x2x5 + 3x5)
s.t.
x ∈ {0, 1}6

The Hessian matrix of gRα,λ after the perturbation is

QRα,λ =

0.3 0.1 0 0 −0.3 0
0.1 1.6 1.5 0 −0.3 −1
0 1.5 2.1 1.1 0 −2.2
0 0 1.1 2.2 0 −2.2
−0.3 −0.3 0 0 2.1 −1.5

0 −1 −2.2 −2.2 −1.5 4.3

Degree Method Continuous relaxation bound value
1 Standard linearization −1.5
d Uniform interval −5.3
d Non-uniform interval −4.3
2 Smallest eigenvalue −1.7
2 QCR −1.6
2 PQCR −0.6
2 ROS+QCR −2
2 PQCR ROS −1

Even if the continuous relaxation bound value of (QPRα∗,λ∗) is smaller or equal to the one of
PQCR, PQCR ROS can be faster than PQCR. We present and comment experimental results in Tables
8.5-8.10.

104

6.2 Applying QCR after quadratizations using pairwise cov-
ers

Here we are interested in quadratizations using pairwise covers. We build a suited convexification
phase for a specific quadratization family. The concept of pairwise covers was introduced in [6]. It
consists in choosing a decomposition of product of initial variables by a new one. Several choices
are possible depending on the criterion we consider as it is shown in Section 5.2. Once a pairwise
cover is defined, the authors of [6] build a quadratization. As detailed in Section 3.3, the concept
of quadratization is different from our work and we renamed it quadratization without additional
constraint. Nevertheless, this quadratization, like Rosenberg’s procedure, introduces additional
monomials to the objective function to obtain a quadratic function that is equal to f on all the
optimal points. This quadratization of [6] is described below.

LetM be the set of all the monomials. Let H ⊂M be a pairwise cover ofM, that is a set of
products of variables that will be reformulated by a new one. Thus a monomialM covered by the
set of variables A(M) and B(M) (i.e. m = A(m) ∪B(M)) will be quadratically reformulated by
yA(M)yB(M). By doing so for all the monomials, Anthony et al. compute a quadratization using
|H| auxiliary variables yi leading to a quadratic reformulation with N = n+ |H| variables. Thus,
every pseudo-Boolean function of the form f(x) = ∑

M∈M aM
∏
j∈M xj is such that

f(x) = min
y∈{0,1}|H|

fPC(x, y)

where

fPC(x, y) =
∑
M∈M

aMyA(M)yB(M) +
∑
H∈H

bH

yH
|H| − 1

2 −
∑
j∈H

xj

+ 1
2
∏
j∈H

xj

and bH = 0 for H ∈M\H and for H ∈ H we have

1
2bH =

∑
M∈M:

H∈{A(M),B(M)}

(
|aM |+

1
2bM

)
,

Note that the second term of function fPC can be seen as a penalty term as it enforces the
equality with function f on all the optimal points. Another remark is that the term 1

2
∏
j∈H xj is

always quadratic, as the assumption H ⊂ M requires to make recursive substitution until H is
of cardinality 2. The property H ⊂M is thus equivalent to the reducibility property introduced
in [22].

For the sake of clarity, we can rewrite fPC(x, y) as fPC(x) where x is a N−dimensional vector.
Section 6.1 concerning Rosenberg’s quadratization made clear that, in the case of quadratization
using penalty terms in the objective function, it was not possible to build a convexification without

105

altering the quadratization itself. The same holds for this quadratization. Moreover, the equality
y∗ = ∏

i x
∗
i does not generally hold on all the optimal points (x∗, y∗) of fPC . Consequently, it

is difficult to derive new valid equalities to link the variables between them in this framework.
However, since fPC do not contain square terms, it is possible to convexify it by using only the
equality x2

i = xi, since this equality is valid for any x ∈ {0, 1}n. More precisely, we consider the
following equivalent program to (QP) in {0, 1}NPC and parameterized by α:

(QPPCα)

min gPCα(x) = fPC(x) +

∑
i∈I∪J

αPCi(x2
i − xi)

s.t.
x ∈ {0, 1}NPC

where NPC is the total number of variables used in the quadratization.
Note that this is again equivalent to apply the QCR method to an already quadratic program.

Similarly to what we have done with Rosenberg’s procedure, we can retrieve an optimal value of
vector αPC from a semi-definite relaxation of (QPPCα). We call this method PC+QCR.

Example 2 (continued). We consider the same example as previously with the same pairwise
cover. For this example, the resolution of the semi-definite relaxation leads to α∗1 = 3.3, α∗2 = 2.9,
α∗3 = 4, α∗4 = 4, α∗5 = 6.1 and α∗6 = 9. The equivalent program (QPPCα) is written as follows

(QPPCα)

min gPCα(x) = min 2x1 + 3x2x3 − 2x6x2 − 3x5x6

+10
[
y2(2− 1

2 − x3 − x4) + 1
2x3x4

]
+6

[
y1(2− 1

2 − x1 − x2) + 1
2x1x2

]
+1.6(x2

1 − x1) + 1.4(x2
2 − x2) + 2(x2

3 − x3)
+2(x2

4 − x4) + 3(x2
5 − x5) + 4.5(x2

6 − x6)
s.t.
x ∈ {0, 1}6

The Hessian matrix of gPCα after the diagonal perturbation is

QPCα =

3.3 0 0 0 −3 0
0 2.9 1.5 0 −3 −1
0 1.5 4 0 0 −5
0 0 0 4 0 −5
−3 −3 0 0 6.1 −1.5
0 −1 −5 −5 −1.5 9

106

Degree Method Continuous relaxation bound value
1 Standard linearization −1.5
d Uniform interval −5.3
d Non-uniform interval −4.3
2 Smallest eigenvalue −1.7
2 QCR −1.6
2 PQCR −0.6
2 ROS+QCR −2
2 PQCR ROS −1
2 PC+QCR −1.7

We have built a convexification based on pairwise covers and their associated quadratization.
Before presenting the experimental results, we introduce a convexification phase for termwise
quadratization.

6.3 Applying QCR after termwise quadratization
To conclude our comparative study on convexifications using other quadratization schemes, we
present a last convexification using termwise quadratization. As mentioned in Section 3.3, an
important result was stated in [16] showing that every monomial with positive coefficient can be
quadratically reformulated using dlog(n)e − 1 variables.

We denote by fT the new quadratic function obtained by applying this quadratization. We
recall the construction of fT explained in Section 3.3. First, fT contains all the monomials of f
of degree less or equal than 2. Let m(x) = α

∏dm
x=1 xi be a monomial of degree at least 3 of f .

If α is negative, the monomial m(x) is replaced in fT by

gm(x, y) = −α
(dm − 1)y −

dm∑
i=1

xiy

 ,
where y ∈ [0, 1] is a single auxiliary variable. If α is positive, then we introduce dlog(dm)e − 1
auxiliary variables yi and we replace m(x) in fT by

gm(x, y) = α

2 (|x|+ 2l − dm −
l−1∑
i=1

2iyi)(|x|+ 2l − dm −
l−1∑
i=1

2iyi − 1)

where l = dlog(dm)e.
We thus obtain the following equivalent program to (P)

107

(QPT)

min fT (x, y) =
∑

monomials m
of degree ≤2

m(x) +
∑

monomials m
of degree ≥3

gm(x, y)

s.t.
x ∈ {0, 1}NT

where NT is the total number of variables used in the quadratization.
Again the difficulty here lies in the fact that it is not possible to derive simple valid equalities

involving both initial and additional variables. Thus, the only family of valid equalities from SE

that we can use is x2
i = xi which amounts to apply the regular QCR method. We can thus build

the following new equivalent quadratic program to (QPT) parameterized by α.

(QPTα)

min gTα(x) = g(x) +

∑
i∈I∪J

αTi(x2
i − xi)

s.t.
x ∈ {0, 1}NT

As we have done previously, we can compute an optimal value of αT , i.e. the value of α that
maximizes the continuous relaxation of (QPTα) and that makes gTα convex. We call this approach
T+QCR.

Example 2 (continued). We consider the same example as previously and we introduce two
additional variables for the termwise quadratization, y1 = x2x3x4 and y2 = x1x2x3x4. For this
example, the resolution of the semi-definite relaxation leads to α∗1 = 1.8, α∗2 = 1.5, α∗3 = 1.5,
α∗4 = 2.9, α∗5 = 3.5 and α∗6 = 3.5. The equivalent program (QPTα) is written as follows

(QPTα)

min gTα(x) = min 2x1 + 3x2x3

+3 [2y1 − x2y1 − x3y1 − x4y1]
+2 [3y2 − x1y2 − x2y2 − x3y2 − x4y2]
+0.9(x2

1 − x1) + 0.7(x2
2 − x2) + 0.7(x2

3 − x3)
+1.4(x2

4 − x4) + 1.7(x2
5 − x5) + 1.7(x2

6 − x6)
s.t.
x ∈ {0, 1}4

y ∈ {0, 1}2

The Hessian matrix of gTα after the diagonal perturbation is

108

QTα =

1.8 0 0 0 0 −1
0 1.5 1.5 0 −1.5 −1
0 1.5 1.5 0 −1.5 −1
0 0 0 2.9 −1.5 −1
0 −1.5 −1.5 −1.5 3.5 0
−1 −1 −1 −1 0 3.5

Degree Method Continuous relaxation bound value
1 Standard linearization −1.5
d Uniform interval −5.3
d Non-uniform interval −4.3
2 Smallest eigenvalue −1.7
2 QCR −1.6
2 PQCR −0.6
2 ROS+QCR −2
2 PQCR ROS −1
2 PC+QCR −1.7
2 T+QCR −1.1

A detailed experimental comparisons of this approach is presented in Section 8.4.2.

6.4 Conclusion
This Chapter aimed at showing the behavior of convex reformulation methods when applied to
different quadratization frameworks. First, we use Rosenberg’s procedure for the first phase of
PQCR. We show that the quadratization enforced by the penalty term is no longer valid after
the convexification. As a result, when applying this kind of quadratizations, the linearization
constraints are required, which is not the spirit of Rosenberg’s procedure. We thus build a
diagonal convexification which amounts to apply the QCR method. Then we introduce a new
convexification using Rosenberg’s penalty term. This leads to a more compact reformulation
than PQCR. Then, we compute a convexification based on the quadratization defined in [6]. The
previous study on Rosenberg’s quadratization showed that non-diagonal perturbations can also
modify the validity of the quadratization. For this reason, we apply a convexification based
on a diagonal perturbation that we can compare with (QPα). Finally, we derive a diagonal
convexification for termwise quadratizations.

109

Chapter 7

Semi-definite relaxations of
box-constrained polynomial programs

Contents
7.1 A quadratic reformulation of (P̄) . 111

7.2 A compact semidefinite programming relaxation 111

7.3 An improved semidefinite programming relaxation 112

7.4 Conclusion . 114

Throughout this dissertation, we discussed binary polynomial optimization. In this chapter,
we compute tight bounds for box-constrained polynomial programs using quadratic convex relax-
ations. One can then use this relaxation at each node of a spatial branch-and-bound to compute
an optimal solution to the initial problem.

We consider the box-constrained polynomial optimization problem that can be stated as fol-
lows:

(P̄)

min f(x) =

m∑
p=1

cp
∏
i∈Mp

xi

s.t.
xi ∈ [0, 1], i ∈ I

where I = {1, .., n}, f is an n−variable polynomial of degree d andm is the number of monomials.
For a monomial p, Mp ⊂ I is a multiset containing the indexes of the variables involved in p.
It follows that d = maxp |Mp|. We suppose that each variable xi is in the interval [0, 1], since
variables in any [`i, ui] interval can be transformed into [0, 1] by a simple variable change.

110

We now introduce new quadratic convex relaxations of (P̄). For this, we first reformulate (P̄)
into an equivalent quadratic program (QP E) using the same algorithm as in Chapter 5. We then
obtain a quadratically constrained quadratic program. Then, we propose two positive semidefinite
relaxations of (QP E). We start with the classical compact semidefinite relaxation, and then we
strengthen it by addition of valid inequalities that come from the quadratization phase.

7.1 A quadratic reformulation of (P̄)
In this section, we present how we build equivalent quadratic formulations to (P̄). The basic idea
is to reduce the degree of f to 2. For this, we use the previously defined notational conventions
and Definitions 4.1.1 and 5.1.1.

With these definitions, we reformulate (P) as a non-convex quadratically constrained quadratic
program (QP E) with N variables:

(QP E)

min g(x) =
∑
|Mp|≥3
Mp=Ej∪Ek

cpxjxk +
∑
|Mp|≤2

cp
∏
i∈Mp

xi

s.t.

xi = xjxk, (i, j, k) ∈ J × (I ∪ J)2 : Ei = Ej ∪ Ek (7.1)

xi ∈ [0, 1], i ∈ I ∪ J (7.2)

By construction, problems (P̄) and (QPE) are equivalent in the sense that, from any solution of
one problem, one can deduce a solution for the other problem with the same objective function
value. Let us observe that (QPE) is parameterized by the quadratization defined by sets E . Indeed,
here again, several valid quadratizations can be applied to (P̄), each of them leading to different
sets Ei.

For the sake of simplicity, g(x) can be rewritten as g(x) = 〈Q, xxT 〉+ cTx, where Q ∈ SN and
c ∈ RN .

7.2 A compact semidefinite programming relaxation
Here we build the standard semidefinite relaxation of (QPE). Classically, we linearize the products
xxT using a matrix variable X ∈ SN and we relax the equality X = xxT as X − xxT � 0. We
obtain the following semidefinite program:

111

(SDP
0
E)

min < Q, X > +cTx

s.t.

xi = Xjk, (i, j, k) ∈ J × (I ∪ J)2 : Ei = Ej ∪ Ek (7.3)

Xii ≤ xi, i ∈ I ∪ J (7.4)(
1 xT

x X

)
� 0 (7.5)

x ∈ RN , X ∈ SN (7.6)

where Constraints (7.3) and (7.4) correspond to the linearization of Constraints (7.1) and (7.2), re-
spectively. By Schur’s Lemma, Constraint (7.5) is equivalent to the relaxed constraintX − xxT � 0.
It is important to note that the number N−n of Constraints (7.3) depends on the quadratization
E used. (SDP 0

E) has a reasonable size of O(N2) variables and O(N) constraints.

7.3 An improved semidefinite programming relaxation
We now focus on building a tighter semidefinite relaxation of (QPE) by strengthening (SDP 0

E).
We start by adapting the valid quadratic equalities of the set SE defined in Lemma 5.1.1. We
recall that these equalities come from the quadratization E .

More formally, for a quadratization characterized by E , we introduce the following set of
constraints that is valid when Constraints (7.1)-(7.2) are satisfied.

Lemma 7.3.1. The following quadratic equalities and inequalities are valid:{
xixj ≤ xi, (i, j) ∈ J × (I ∪ J) : Ej ⊂ Ei (7.7)

xixj = xkxl, (i, j, k, l) ∈ (I ∪ J)4 : Ei t Ej = Ek t El (7.8)

Proof. Constraints (7.7) trivially hold since xi ∈ [0, 1]. We then prove the validity of the
Constraints (7.8). By definition we have:

xixj =
∏
i′∈Ei

xi′
∏
j′∈Ej

xj′

=
∏

i′∈EitEj
xi′

=
∏

k′∈EktEl

xk′ since Ei t Ej = Ek t El

= xkxl

�

112

In a sense, Constraints (7.8) can be viewed as constraints that break symmetries. Con-
straints (7.7) and (7.8) are not convex, but since they are quadratic, we can easily linearize them
using the matrix variable X.

Adding these constraints to (SDP 0
E), we obtain the following semidefinite relaxation:

(SDP 1
E)

min < Q,X > +cT x

s.t.

(7.3)− (7.6)

Xij ≤ xi, (i, j) ∈ J × (I ∪ J) : Ej ⊂ Ei (7.9)

Xij = Xkl, (i, j, k, l) ∈ (I ∪ J)4 : Ei t Ej = Ek t El (7.10)

(SDP 1
E) is larger than (SDP 0

E). Indeed, it still has O(N2) variables, but there are O(N4)
constraints. Here again, the number N(N−n) of Constraints (7.9) depends on the quadratization
E used. As for the number of Constraints (7.10), it depends also on the structure of the instance
and can be up to N4.

We further evaluate and compare these two relaxations on random instances. The results, as
well as the comments, can be found in Chapter 8. Both of these relaxations can be used in a
spatial branch-and-bound based on semi-definite programming. Indeed, at each node we solve
(SDP 0

E) or (SDP 1
E) and we branch on the violation of constraints (7.1), i.e. xi = xjxk, to get

back the equivalence with the original problem (QP E).
Finally, we end this section with an illustration of our two relaxations on a small instance.

Example 6. Let us consider the following polynomial optimization problem with n = 4 variables
and m = 7 monomials.

(Ex)

min f(x) = −0.21x1 − 0.08x2 − 0.58x3 − 0.49x1x4

+0.78x1x3x4 − 0.54x1x2x4 + 0.88x2x3x4

s.t.

x ∈ [0, 1]4

The optimal value of (Ex) is −1, 32.
Applying the quadratization PC0 (Algorithm 5.2.1), we introduce 3 additionnal variables and 7

constraints. We obtain the following equivalent quadratic problem (ExE) to (Ex) with 7 variables.

(SDPExE)

min g(x) = −0.21x1 − 0.08x2 − 0.58x3 − 0.49x1x4

+0.78x5x4 − 0.54x6x4 + 0.88x7x4

s.t.

x1x3 = x5

x1x2 = x6

x2x3 = x7

x ∈ [0, 1]7

113

We now build the semidefinite relaxation (Ex0
E) which contains 35 variables and 11 constraints.

The optimal value of (Ex0
E) is −1, 37.

(SDPEx0
E)

min g(x,X) = −0.21x1 − 0.08x2 − 0.58x3 − 0.49X1,4

+0.78X5,4 − 0.54X6,4 + 0.88X7,4

s.t.

Xii ≤ xi, 1 ≤ i ≤ 7

X1,3 = x5

X1,2 = x6

X2,3 = x7(
1 xT

x X

)
� 0

x ∈ R7, X ∈ S7

We strengthen this first relaxation by adding the two families of valid constraints (7.9) and
(7.10) that we expand in the following. The resulting semidefinite relaxation (Ex1

E) has 35 vari-
ables and 23 constraints. The optimal value of (Ex1

E) is −1, 32 which is also the optimal value of
(Ex).

(Ex1
E)

min g(x,X)

s.t.

Xii ≤ xi, 1 ≤ i ≤ 7

X1,3 = x5

X1,2 = x6

X2,3 = x7

X1,5 ≤ x5 X3,5 ≤ x5

X1,6 ≤ x6 X2,6 ≤ x6

X2,7 ≤ x7 X3,7 ≤ x7

X2,5 = X6,3 X3,6 = X7,1

X2,5 = X7,1 X6,5 = X6,3

X7,6 = X7,1 X7,5 = X7,1(
1 xT

x X

)
� 0

x ∈ R7, X ∈ S7

7.4 Conclusion

We introduced two SDP relaxations based on a quadratization and we prove their practical
interest. Future work consists in embedding these relaxations within a spatial branch-and-
bound framework in order to compute an exact solution. More precisely, we can apply a spatial

114

branch-and-bound algorithm on such relaxations by enforcing the equality between a new variable
and its associated product through the branching phase.

115

Chapter 8

Computational experiments and
implementations

Contents
8.1 Hardware and used software . 117

8.2 Details on the instances . 117

8.3 Performance of PQCR (presented in Chapter 5) 118

8.3.1 The compared methods (PQCR, Q+QCR, Q+MIQCR, Q+cplex and Baron) . . 118

8.3.2 Results on Vision instances . 119

8.3.3 Results on LABS instances . 120

8.4 Convex reformulation with other quadratization schemes (presented
in Chapter 6) . 127

8.4.1 Results related to Rosenberg’s reformulation 127

8.4.2 Experimental comparison between termwise and pairwise convexification 135

8.5 Tightness of semi-definite relaxations for box-constrained polyno-
mial programs (presented in Chapter 7) 140

8.5.1 Instance generation . 140

8.5.2 Experimental results . 140

We present the computational results obtained by the different methods presented in this
thesis.

116

8.1 Hardware and used software
Experimental setting All our experiments were carried out on a server with 2 CPU Intel
Xeon each of them having 12 cores and 2 threads of 2.5 GHz and 4∗16 GB of RAM using a Linux
operating system. For all algorithms, we used the multi-threading version of Cplex 12.7 with
up to 48 threads. We have used the modeling language AMPL [30] to write our generic models.
The different equivalent quadratic convex reformulations are solved by Cplex 12.7 [43]. The semi-
definite relaxations are solved by the free software csdp [15] alongside with the Conic Bundle
algorithm [41] that will be explained further.

The Conic Bundle algorithm [41] The semi-definite relaxations presented in this thesis can
be hard to solve when considering dense instances. Standard semi-definite programming solvers
that implement interior point algorithms [15, 78] fail to solve them. Thus, following the ideas of
[13], we develop a sub-gradient algorithm within a Lagrangian duality framework to solve harder
instances.

The algorithm is an iterative method that computes at each iteration a "best" approximation of
dual variables. More precisely, it consists in dualizing a subset of the constraints in a given semi-
definite relaxation. For our experiments, we choose to dualize every constraint, except x2

i = xi.
We then obtain a parameterized program. For a given parameter, we evaluate the obtained
program which amounts to solve a semi-definite program with much less constraints than the
original one. Then, a subgradient is computed from the solution of the previous program. With
this subgradient, we can compute a new parameter that will be used at the next iteration. Our
implementation includes an additional parameter p that is the proportion of considered constraints
in the dualization. In that context, if p < 1, the algorithm returns only a feasible solution of
the original semi-definite relaxation. This solution can also be optimal if only a proportion p of
constraints are active at the optimum.

Parameters of the solvers To ensure that the experimental study is accurate, we set all the
parameters of the solvers to the same values for each method.

• Cplex : we let the default parameters, except the parameter qtolin that is set to 0 to avoid
linearization.

• csdp : Infeasibility tolerance parameters axtol, aytol of Csdp are set to 10−3.

• Conic Bundle : the precision is set to 10−3. Parameter p (see [13]) is set to 0.2.

8.2 Details on the instances
Although the presented methods can be applied to instances of any given degree, we focus on two
real-life instances of degree 4 in this chapter.

117

• Vision instances (described in 2.2.1): The size of the considered instances are l×h = 10×10,
10×15, and 15×15, or in the polynomial formulation n = 100, 150 and 225, with a number
of monomials of m = 668, 1033, and 1598 respectively. In our experiments, 15 instances of
each size are considered obtaining a total of 45 instances. The ith instance of l× h pixels is
labeled v.l.h i. Observe that the 15 instances of the same size have identical monomials
with different coefficients, because they represent different images with the same number of
pixels.

• LABS instances (described in 2.2.2): We consider the instances available on the MINLPLIB
website [64]. We exploit a specific symmetry of the objective function by fixing to 0 the
variable that appears the most in the polynomial. Each instance is labeled b.n.n0.

8.3 Performance of PQCR (presented in Chapter 5)

8.3.1 The compared methods (PQCR, Q+QCR, Q+MIQCR, Q+cplex and Baron)

In our experiments, we refer to different algorithms:

• PQCR: This is our main algorithm that we have presented in Algorithm 5.1.1. A first phase
of quadratic reformulation is performed on polynomial program (P) using algorithm PC0,
described in Algorithm 5.2.1. Then an equivalent parameterized convex program is built
and the optimal parameters are deduced from a semi-definite program. The resulting "op-
timal" convex program is solved by Cplex 12.7 using a branch-and-bound algorithm. The
quadratization is implemented in C, and we used the solver csdp to solve the semi-definite
program. For denser instances, we used the solver csdp [15] together with the Conic Bundle
algorithm [41] to solve the semi-definite program of PQCR, as described in [13].

• Q+QCR (described in Section 5.1.2.2): After a quadratization phase using algorithm PC0, we
compute a diagonal convexification by considering the valid equality x2

i = xi only and the
Fortet’s constraints FE defined in Section 5.1.1. The resulting convex continuous relaxation
is then solved at each node by Cplex.

• Q+MIQCR After the quadratization phase using PC0, we compute an equivalent quadratic
program by perturbing every entry of the Hessian matrix. The resulting convex continuous
relaxation is then solved at each node by Cplex.

• Q+Cplex: It consists in a quadratization followed by the direct submission to Cplex 12.7.
Here again, the quadratization is implemented in C, and we used the ampl interface of the
solver Cplex.

118

• Baron: Finally we evaluate the direct submission of polynomial program (P) to the general
mixed-integer non-linear solver Baron 17.4.1 [74]. Here, we used the gams interface of the
solver Baron.

An important remark is that all the methods relying on a prior quadratization phase introduce
additional variables through the pairwise cover PC0. We relax the integrality on these additional
variables in our experiments, since the integrality is ensured by the linearization constraints FE .

Here we evaluate PQCR on two applications. The first one is the image restoration problem
(Vision) presented in Section 2.2.1, whose results are presented in Table 8.1. The instances of this
application are quite sparse with an average ratio m

n
of about 7. We choose to use these instances

in order to compare PQCR with existing convexifications and in particular with methods Q+QCR
and Q+MIQCR that are not able to handle larger and/or denser instances. Then, in Tables 8.2 and
8.3, we present the results of the second application, the LABS problem presented in Section 2.2.2
whose instances are much denser (average ratio m

n
of about 212). These instances are available

on the minlplib website [64], and are very hard to solve. For most of them, the optimal solution
value is not known. The legend of the corresponding tables can be found in Figure 8.1.

8.3.2 Results on Vision instances

We focus on the comparison of several convexification methods after quadratization. Indeed,
several ways are possible to solve the quadratic non-convex program (QP) obtained after the
quadratization phase. For instance, the standard solver Cplex can directly handle it (Q+Cplex),
or one can apply the QCR [14] (Q+QCR) or MIQCR [12] (Q+MIQCR) methods. We compare PQCR with
these three approaches. We do not report the results for method Q+MIQCR since it was not able to
start the computation due to the size of the considered instances. We also give the computational
results coming from the direct submission of the initial polynomial (P) to the solver Baron
17.4.1. The results for these instances are summed up in Table 8.1, where each line corresponds
to one instance.

We start by comparing the convexification phase of our PQCR algorithm with the original
Q+QCR and Q+MIQCR methods. We observe that none of these convexifications are able to handle
any of the considered instances: Q+QCR because of the weakness of its initial bound, and Q+MIQCR
because of the size of the semi-definite problem considered for computing the best reformulation.
Note that Q+QCR has a better gap than Q+Cplex and Baron, which shows that a linearization
method performs better than a weak quadratic convex reformulation. These experiments confirm
the interest of designing PQCR, an algorithm devoted to polynomial optimization. Then, we can
see that Q+Cplex dominates PQCR. However, one has to note that these instances are very sparse
(average ratio m

n
of about 7). It is well known that the standard linearization performs very

well on sparse instances, and Cplex linearizes non-diagonal quadratic terms. Clearly, for these
instances, the time spent on solving a large semi-definite program, even once, is not profitable in

119

comparison to the efficiency of LP heuristic or cut methods implemented in cplex 12.7. Indeed,
Q+Cplex solves all the considered instances at the root node of its branch-and-bound. Moreover,
it is interesting to remark that 99% of the CPU time of PQCR is spent for solving the semi-definite
relaxation (SDP), while the CPU time for solving the optimal quadratic convex reformulation
(QP ∗) is always smaller than 14 seconds. Finally, we compare PQCR with the direct submission
to the solver Baron. We observe that Baron is faster than PQCR on the medium size instances
(n = 100 or 150), but is not able to solve all the larger instances within the time limit. Indeed,
for n = 225, it solves only 3 instances out of 15. On the contrary, PQCR seems quite stable to
the increase of the size of the instances. Indeed, the initial gap remains stable and very strong
(0.42% on average) while the total CPU time increases reasonably.

8.3.3 Results on LABS instances

For these instances, we do not report the results for methods Q+QCR and Q+MIQCR since they have
failed to solve all the considered instances. Two instances that are already quadratic (b.20.03
and b.25.03) are solved by the method Q+Cplex in 7 and 75 seconds respectively. However, this
method was not able to solve the other instances within the time limit.

We present in Table 8.2 a detailed comparison of PQCR with the direct submission to baron
17.1.4. For these experiences the total time limit was set to 5 hours, and we limit the CPU
time for solving (SDP) to 3 hours. Indeed, any feasible solution to the dual of (SDP) can be
used to get a convex objective function in the equivalent formulation. Thus, if the CPU time in
column tSdp is smaller than three hours it means that (SDP) was solved to optimality. In the
other case, we get a feasible dual solution and we can suppose that the initial gap of PQCR could
be improved. For these instances PQCR is faster than baron since it solves 17 instances out of 45
within the time limit while baron solves only 13 instances. Here, baron 17.1.4 solves 2 instances
that were stated as unsolved on minlplib. As expected, PQCR has an initial gap much smaller
than baron (reduced by a factor 22 on average). We also observe that the number of nodes visited
by Cplex during the branch-and-bound is significantly larger than the the number of nodes of
baron (increased by a factor of about 40000 on average).

We present in Table 8.3 the values of the best solutions and of the final lower bounds obtained
by PQCR within 5 hours of CPU time, and those available on the minlplib website. More precisely,
we report in the column minlplib the best solution/final lower bound value obtained among the
results of the solvers Antigone, Baron, Couenne, Lindo, and Scip. PQCR solves to optimality 6
unsolved instances (labeled as ∗∗). It also improves the best known solution values of 9 instances
(labeled as #), and improves the final lower bound of all the unsolved instances (labeled as ∗). In
this table, each line corresponds to one instance, and we only present results for instances that
were stated as unsolved on minlplib.

To illustrate these results, we plot in Figure 8.2, for each instance reported in Table 8.3, the
final gap of PQCR and minlplib. Clearly, the final gap of PQCR is much smaller than the final gap

120

of minlplib (reduced by a factor 3 on average).

A last remark concerns the CPU time necessary to solve (SDP). Indeed, this time represents
on average 75% of the total CPU time. A natural improvement would be to identify the set of
"important equalities" in a preprocessing step in order to improve the behavior of the solution of
(SDP).

121

• Name: Name of the considered instance.

• n: number of variables in the initial polynomial formulation.

• m: number of monomials.

• BKN : is the optimal solution value or the best known solution value of the instance.

• N : number of variables after quadratization.

• gap: is the initial gap, i.e. the gap at the root node of the branch-and-bound, gap =∣∣∣∣BKN − LBi

BKN

∣∣∣∣ ∗ 100, where LBi is the initial lower bound.

• Solution: best solution value found within the time limit.

• Const SDP: number of constraints in the semi-definite relaxation.

• Opt: optimal value of the objective function.

• LB: Optimal value of the associated semi-definite relaxation.

• Tt: total CPU time in seconds of the associated method. It takes into account the SDP
time and the branch-and-bound time.

• tSdp: CPU time in seconds for solving semi-definite programs in PQCR and Q+QCR. The time
limit is set to 2400 seconds for the vision problem and 3 hours for the LABS problem. If
the solver reaches the time limit, tSdp is labeled as "-".

• Tt: total CPU time in seconds of the associated method. The time limit is set to 1 hour
for the vision problem and 5 hours for the LABS problem. If an instance remains unsolved
within the time limit, we put the final gap=

∣∣∣∣BKN − LBf

BKN

∣∣∣∣ ∗ 100, where LBf is the final
lower bound.

• Nodes: number of nodes visited by the branch-and-bound algorithm.

• - : means that the time limit of 3h on the SDP phase is reached.

Figure 8.1: Legend of Tables 8.1-8.3.

122

Instance PQCR Q+QCR Q+Cplex Baron
Name n m N Gap (%) tSdp Tt Gap (%) tSdp Tt Gap (%) Tt Gap (%) Tt
v.10.10 1 100 668 352 0,59 66 68 396 7 (250 %) 1113 2 1098 15
v.10.10 2 100 668 352 0,28 64 66 536 8 (343 %) 1549 2 1529 10
v.10.10 3 100 668 352 0,05 65 67 973 8 (573 %) 3375 1 3332 6
v.10.10 4 100 668 352 0,12 63 65 957 8 (561 %) 3377 1 3334 6
v.10.10 5 100 668 352 0,13 65 66 1006 8 (585 %) 3568 1 3523 5
v.10.10 6 100 668 352 0,11 73 74 359 9 (229 %) 984 2 972 11
v.10.10 7 100 668 352 0,02 64 65 305 8 (194 %) 829 2 817 14
v.10.10 8 100 668 352 1,37 64 66 1376 8 (804 %) 4765 1 4705 7
v.10.10 9 100 668 352 3,02 65 67 1749 8 (1026 %) 6187 1 6110 4
v.10.10 10 100 668 352 3,64 66 68 1879 8 (1075 %) 6843 1 6757 4
v.10.10 11 100 668 352 0,36 70 72 489 8 (316 %) 1388 2 1370 35
v.10.10 12 100 668 352 0,20 70 72 361 9 (232 %) 997 2 984 23
v.10.10 13 100 668 352 0,00 60 61 709 8 (392 %) 2654 1 2620 2
v.10.10 14 100 668 352 0,00 60 61 546 8 (297 %) 2027 1 2001 2
v.10.10 15 100 668 352 0,00 118 119 541 8 (285 %) 2048 1 2022 1
v.10.15 1 150 1033 542 0,31 290 294 447 24 (351 %) 1245 5 1234 80
v.10.15 2 150 1033 542 0,00 285 287 367 24 (287 %) 999 5 990 36
v.10.15 3 150 1033 542 0,05 280 283 1027 27 (772 %) 3549 3 3520 6
v.10.15 4 150 1033 542 0,33 276 280 845 27 (640 %) 2840 3 2817 7
v.10.15 5 150 1033 542 0,07 269 271 799 27 (595 %) 2808 3 2785 4
v.10.15 6 150 1033 542 0,55 297 302 462 25 (366 %) 1277 5 1266 47
v.10.15 7 150 1033 542 0,08 288 291 360 26 (283 %) 981 5 972 38
v.10.15 8 150 1033 542 0,79 281 284 1792 26 (1356 %) 6202 3 6152 19
v.10.15 9 150 1033 542 1,80 283 286 1525 26 (1160 %) 5209 3 5167 10
v.10.15 10 150 1033 542 1,38 275 279 1510 25 (1124 %) 5500 3 5456 7
v.10.15 11 150 1033 542 0,10 283 286 391 25 (305 %) 1102 5 1092 41
v.10.15 12 150 1033 542 0,60 275 279 453 25 (355 %) 1269 5 1258 125
v.10.15 13 150 1033 542 0,00 254 256 634 27 (469 %) 2254 3 2236 4
v.10.15 14 150 1033 542 0,04 269 273 731 27 (547 %) 2590 3 2569 2
v.10.15 15 150 1033 542 0,00 258 259 576 28 (423 %) 2183 2 2165 2
v.15.15 1 225 1598 827 0,12 1234 1244 365 70 (320 %) 998 9 993 (95 %)
v.15.15 2 225 1598 827 0,43 1251 1265 482 83 (421 %) 1350 9 1343 (138 %)
v.15.15 3 225 1598 827 0,10 1167 1175 678 65 (582 %) 2326 5 2313 (83 %)
v.15.15 4 225 1598 827 0,04 1251 1256 877 65 (753 %) 2996 5 2980 (127 %)
v.15.15 5 225 1598 827 0,03 1167 1174 641 67 (546 %) 2252 5 2240 (76 %)
v.15.15 6 225 1598 827 0,28 1238 1249 403 64 (353 %) 1104 10 1098 (107 %)
v.15.15 7 225 1598 827 0,36 1237 1246 525 67 (463 %) 1455 10 1447 (144 %)
v.15.15 8 225 1598 827 0,29 1197 1205 1148 73 (979 %) 4104 5 4082 (137 %)
v.15.15 9 225 1598 827 0,27 1170 1176 1542 66 (1315 %) 5570 5 5541 (171 %)
v.15.15 10 225 1598 827 0,31 1173 1179 1194 67 (1020 %) 4380 5 4357 1154
v.15.15 11 225 1598 827 0,27 1224 1230 529 69 (462 %) 1528 8 1520 (144 %)
v.15.15 12 225 1598 827 0,25 1225 1235 461 68 (414 %) 1273 12 1266 (133 %)
v.15.15 13 225 1598 827 0,00 1124 1128 651 63 (551 %) 2398 4 2385 1239
v.15.15 14 225 1598 827 0,02 1171 1177 651 63 (553 %) 2359 5 2346 (79 %)
v.15.15 15 225 1598 827 0,00 1100 1103 609 65 (513 %) 2320 4 2308 263

Table 8.1: Comparison of PQCR to Q+QCR, Q+Cplex and Baron for the vision instances - time
limit one hour. Legend on Figure 8.1.

123

Instance PQCR Baron 17.4.1
Name n m N Gap (%) tSdp Tt Nodes Gap (%) Tt Nodes
b.20.03 20 38 20 0 1 2 0 100 1 1
b.20.05 20 207 65 23 22 23 5886 1838 2 1
b.20.10 20 833 124 8 837 846 24183 2918 125 7
b.20.15 20 1494 164 5 1228 1242 9130 3202 728 9
b.25.03 25 48 25 0 1 2 0 100 0 1
b.25.06 25 407 105 17 461 469 163903 2307 65 27
b.25.13 25 1782 206 4 1552 1603 76828 3109 3750 75
b.25.19 25 3040 265 4 - 13433 224550 3356 14399 129
b.25.25 25 3677 289 5 - 13395 167423 3405 (12 %) 100
b.30.04 30 223 82 23 58 78 134635 1347 7 7
b.30.08 30 926 174 10 1940 2040 752765 2696 2778 237
b.30.15 30 2944 296 5 - 13525 438278 3221 (21 %) 103
b.30.23 30 5376 390 11 5953 6865 9337391 3450 (135 %) 8
b.30.30 30 6412 422 4 8500 15352 452460 3470 (161 %) 5
b.35.04 35 263 97 19 135 167 156085 1350 32 13
b.35.09 35 1381 234 10 2245 4630 8163651 2826 (29 %) 354
b.35.18 35 5002 419 644 - (12 %) 4899872 3356 (133 %) 10
b.35.26 35 8347 530 30 - (5 %) 5006407 3508 (229 %) 3
b.35.35 35 10252 579 12 - (11 %) 134426 3499 (214 %) 3
b.40.05 40 447 145 25 430 1630 23459121 1856 3674 1021
b.40.10 40 2053 304 9 - (4 %) 25480163 2953 (54 %) 147
b.40.20 40 7243 544 9 - (4 %) 9783350 3405 (203 %) 3
b.40.30 40 12690 702 360 - (25 %) 281134 3561 (274 %) 1
b.40.40 40 15384 762 62 - (44 %) 57534 3536 (464 %) 1
b.45.05 45 507 165 24 1384 (4 %) 84159279 1854 16609 4727
b.45.11 45 2813 382 9 - (2 %) 25114985 3018 (132 %) 33
b.45.23 45 10776 706 21 - (16 %) 1225234 3470 (242 %) 2
b.45.34 45 18348 898 137 - (105 %) 38513 3604 (375 %) 1
b.45.45 45 21993 969 187 - (153 %) 25964 3559 (624 %) 1
b.50.06 50 882 230 19 1230 (9 %) 49490829 2321 (35 %) 1225
b.50.13 50 4457 506 8 - (5 %) 12039566 3131 (192 %) 7
b.50.25 50 14412 866 676 - (247 %) 684010 3511 (280 %) 1
b.50.38 50 25446 1118 242 - (163 %) 309289 3646 (505 %) 1
b.50.50 50 30271 1202 360 - (305 %) 49507 3541 (729 %) 1
b.55.06 55 977 255 21 - (11 %) 23603952 2323 (54 %) 6
b.55.14 55 5790 607 11 - (7 %) 7829649 3186 (373 %) 6
b.55.28 55 19897 1069 174 - (106 %) 580827 3553 (646 %) 2
b.55.41 55 33318 1347 330 - (244 %) 117912 3654 (639 %) 1
b.55.55 55 40402 1459 547 - (493 %) 117027 3575 (705 %) 1
b.60.08 60 2036 384 12 - (9 %) 24800852 2712 (175 %) 1
b.60.15 60 7294 716 16 - (14 %) 4044387 3236 (404 %) 1
b.60.30 60 25230 1264 256 - (165 %) 295197 3578 (471 %) 1
b.60.45 60 43689 1614 547 - (439 %) 26955 704 (671 %) 1
b.60.60 60 52575 1742 784 - (704 %) 23716 3604 (762 %) 1

Table 8.2: Results of PQCR and Baron for the 45 instances of the LABS problem. Time limit 5
hours (3h for SDP, 2h for Cplex). Legend on Figure 8.1.

124

Figure 8.2: Comparison between the final gap of PQCR and the final gap computed with the best
known solution and the best bound from minlplib for the unsolved auto-correlation instances

125

Instance PQCR (5h) minlplib [64]
Name Solution LBf Solution LBf

b.25.19∗∗ -14644 -14644 -14644 -16108
b.25.25∗∗ -10664 -10664 -10664 -12494
b.30.15∗∗ -15744 -15744 -15744 -19780
b.30.23∗∗ -30460 -30460 -30420 -72030
b.30.30∗∗ -22888 -22888 -22888 -54014
b.35.09∗∗ -5108 -5108 -5108 -6312
b.35.18∗ -31144 -34964 -31160 -74586
b.35.26#∗ -55288 -57789 -55184 -191466
b.35.35∗ -41052 -45787 -41068 -290424
b.40.10#∗ -8248 -8551 -8240 -14618
b.40.20#∗ -50576 -52465 -50516 -162365
b.40.30#∗ -94872 -118324 -94768 -398617
b.40.40∗ -67528 -98031 -67964 -302028
b.45.05∗ -1068 -1112 -1068 -1145
b.45.11#∗ -12748 -13035 -12740 -30771
b.45.23#∗ -85423 -98984 -85248 -320397
b.45.34∗ -151352 -311627 -152368 -752427
b.45.45∗ -111292 -285811 -112764 -685911
b.50.06∗ -2160 -2363 -2160 -2921
b.50.13#∗ -23791 -24975 -23772 -74768
b.50.25∗ -124572 -433247 -124748 -562446
b.50.38∗ -232344 -611906 -232496 -1318325
b.50.50∗ -162640 -681105 -168216 -1173058
b.55.06∗ -2400 -2659 -2400 -3439
b.55.14#∗ -33272 -35698 -33168 -116748
b.55.28∗ -189896 -392929 -190472 -989145
b.55.41∗ -335388 -1160180 -337388 -2494477
b.55.55∗ -233648 -1434663 -241912 -1947633
b.60.08∗ -6792 -7388 -6792 -13915
b.60.15#∗ -45232 -51467 -44896 -169767
b.60.30∗ -259271 -692721 -261048 -1491016
b.60.45∗ -475504 -2579935 -478528 -3687344
b.60.60∗ -343400 -2816441 -350312 -3021077

Table 8.3: Comparison of the best known solution and best lower bound values of PQCR and of the
minlplib for the unsolved LABS instances. ∗∗: solved for the first time, #: best known solution
improved, and ∗: best known lower bound improved. Legend on Figure 8.1.

126

8.4 Convex reformulation with other quadratization schemes
(presented in Chapter 6)

8.4.1 Results related to Rosenberg’s reformulation

We presented theoretical results on the tightness of the different bounds presented in Chapter
6, but we want to measure experimentally this difference on real polynomial instances. We thus
compare several convexifications on the instances presented in Sections 2.2.1 and 2.2.2. The
results are presented in Tables 8.4-8.11, and the corresponding legend can be found in Figure 8.3.
We first describe the methods we refer to in this section:

• PQCR detailed in Section 8.3.1.

• Q+QCR detailed in Section 8.3.1.

• ROS+QCR (Described in Section 6.1.1): We apply Rosenberg’s procedure to (P) by using
the pairwise cover PC0. We then apply the QCR method to the obtained equivalent un-
constrained quadratic program. The resulting convex continuous relaxation is then solved
by Cplex. For the penalty term in Rosenberg’s procedure, we choose the sum of absolute
values of negative coefficients of f .

• PQCR ROS (Described in Section 6.1.2): After the quadratization phase using PC0, we apply
a convexification using the valid equalities x2

i = xi and xixj − 2xixk − 2xjxk + 3xk = 0 and
the Fortet’s constraints FE . The resulting convex continuous relaxation is then solved at
each node by Cplex.

• PQCR 2: After a quadratization phase using algorithm PC0, we compute a compact convex-
ification by considering the valid equalities x2

i = xi and yij = xixj of SE defined in Lemma
5.1.1, and the Fortet’s constraints FE . The resulting convex continuous relaxation is then
solved at each node by Cplex.

We start by noticing that ROS+QCR is not a viable method to solve problem (P), since only
the instances that are already quadratic can be solved by this method. Indeed, the average gap
is huge with more than 105% for both the Vision instances (Table 8.8) and the LABS instances
(Table 8.4). This can be explained by the fact that we apply a diagonal convexification on a
quadratic function whose Hessian matrix contains large positive values (up to 106) in off-diagonal
terms. In order to get a positive semi-definite Hessian matrix, the QCR algorithm introduces
diagonal parameters of the same magnitude to balance the Hessian matrix. We know that large
positive values for diagonal convexification significantly deteriorate the quality of the bound and
that’s the most likely reason to explain such a gap.

127

Next we focus on Q+QCR whose results are presented in Tables 8.6 and 8.10, and PQCR 2 whose
results are presented in Tables 8.7 and 8.11. Obviously, PQCR 2 has a better continuous relaxation
bound value than Q+QCR, but it is interesting to experimentally measure the differences between
the two methods. We can notice for example that adding only N additional constraints reduces
the gap by half. As a matter of fact, Q+QCR has an average gap of 776% on Vision instances and
404% on LABS instances, whereas PQCR 2 obtains 441% and 269% respectively. Again, this can
be explained theoretically, as unlike the x2

i = xi, the valid equality yij = xixj involves both initial
and additional variables and as a result, the continuous relaxation bound is much stronger.

One interesting result to analyze is the performance of PQCR ROS defined in Section 6.1.2
(Tables 8.5 and Table 8.9). In our theoretical development, we proved that this equality is
equivalent to yij = xixj when considering the {0, 1}N space. The main difference between these
constraints is that the equality xixj − 2xiyij − 2xjyij + 3yij = 0 modifies more entries of the
Hessian matrix and thus, could lead to sharper bounds. Experimentally, we indeed measure
better performances for PQCR ROS than PQCR 2. Recall that both methods have the same number
of constraints in their respective semi-definite relaxations. As for the LABS instances, both
methods solve 8 out of 9. However, the bound obtained by PQCR ROS is twice as good (166%
on average for Vision and 146% for LABS) and its number of nodes is also reduced. For these
reasons, PQCR ROS is able to solve every instance within 7 minutes, whereas it takes more than
12 minutes for PQCR 2 to solve the hardest instance. For the vision instances, the difference is
more remarkable as PQCR 2 cannot solve any instance within one hour whereas PQCR ROS solves
10 out of 45. The quality of the gap of PQCR ROS seems to play a major role here as the number
of nodes is reduced by a factor 1.5 and leads to the resolution of several instances. In terms of
computational results, this reformulation is very interesting as it perturbs the Hessian matrix both
on diagonal and non-diagonal entries at the same cost as PQCR 2. Indeed, the computation of the
semi-definite relaxation is still very fast but the gain on the bound is significant and allows to solve
additional instances. Theoretically, it means that, although both equalities are equivalent in the
quadratic reformulation, their linearized counterparts do not describe the same set of points in the
semi-definite relaxation. Experimentally, it seems that the equality Xij − 2Xik − 2Xjk + 3xk = 0
is a tighter cut than Xij = xk.

Finally note that the method PQCR dominates all the previously mentioned methods concerning
continuous relaxation bound values, as it has an average bound of 0.42% on Vision instances
Table (8.1) and 11% on LABS instances (Table 8.2, note that the small LABS instances are
solved within one hour even if the time limit is set to 5 hours). However, on small LABS
instances, we remark that Q+QCR, PQCR 2 and PQCR ROS are faster than PQCR. Indeed, PQCR spends
a lot of time on solving a heavy semi-definite relaxation leading to tight bounds. On small
instances, this difference between the bounds is not significant enough as the branch-and-bound of
Cplex computes the optimal solution within a few seconds. As a conclusion, on small instances,

128

it is not worth computing a heavy semi-definite relaxation and one would prefer running the
alternative methods we presented in this paragraph instead. Finally, to support this conclusion,
these alternative methods should be viewed as complementary methods to PQCR on easy instances,
rather than competitive methods.

• Name: name of the considered instance.

• N : total number of variables after each quadratization phase.

• Const: number of constraints in the quadratic convex reformulation.

• Const SDP: number of constraints in the semi-definite relaxation.

• Opt: optimal value of the objective function.

• BKN : is the best known solution value of the instance.

• LB: Optimal value of the associated semi-definite relaxation.

• gap: is the initial gap, i.e. the gap at the root node of the branch-and-bound, gap =∣∣∣∣BKN − LBi

BKN

∣∣∣∣ ∗ 100, where LBi is the initial lower bound.

• Nodes: number of nodes visited by the branch-and-bound algorithm.

• Tt: total CPU time in seconds of the associated method. It takes into account the SDP
time and the branch-and-bound time.

• - : means that the time limit is reached.

Figure 8.3: Legend of Tables 8.4-8.15

Name N Const Const SDP Opt Gap (%) Nodes Tt
b.20.3 20 0 21 -72 0 0 0
b.20.5 65 0 66 -416 804612 73437542 -
b.20.10 124 0 125 -2936 31206 38511235 -
b.20.15 164 0 165 -5960 48643 35727150 -
b.25.3 25 0 26 -92 0 0 0
b.25.6 105 0 106 -960 1843723 36766956 -
b.25.13 206 0 207 -8144 59614 20336389 -
b.30.4 82 0 83 -324 829465 38587389 -
b.35.4 97 0 98 -384 1038548 39040424 -

Table 8.4: Performance of ROS+QCR on small LABS instances. Time limit 1 hour for the branch-
and-bound. Legend on Figure 8.3.

129

Name N Const Const SDP Opt Gap (%) Nodes Tt
b.20.3 20 0 21 -72 0 0 1
b.20.5 65 180 291 -416 160 87279 10
b.20.10 124 416 645 -2936 217 279796 25
b.20.15 164 576 885 -5960 276 401423 27
b.25.3 25 0 26 -92 0 0 1
b.25.6 105 320 506 -960 191 4734342 108
b.25.13 206 724 1112 -8148 230 7609987 344
b.30.4 82 208 343 -324 118 20439127 438
b.35.4 97 248 408 -384 119 63351897 -

Table 8.5: Performance of PQCR ROS on small LABS instances. Time limit 1 hour for the branch-
and-bound. Legend on Figure 8.3.

Name N Const Const SDP Opt Gap (%) Nodes Tt
b.20.3 20 0 21 -72 0 0 1
b.20.5 65 180 246 -416 489 153530 7
b.20.10 124 416 541 -2936 552 420776 32
b.20.15 164 576 741 -5960 598 475440 41
b.25.3 25 0 26 -92 0 0 1
b.25.6 105 320 426 -960 579 7712985 154
b.25.13 206 724 931 -8148 566 10528468 422
b.30.4 82 208 291 -324 423 60649294 1255
b.35.4 97 248 346 -384 428 54495492 -

Table 8.6: Performance of Q+QCR on small LABS instances. Time limit 1 hour for the branch-
and-bound. Legend on Figure 8.3.

Name N Const Const SDP Opt Gap (%) Nodes Tt
b.20.3 20 0 21 -72 0 0 0
b.20.5 65 180 291 -416 342 109396 4
b.20.10 124 416 645 -2936 350 323266 20
b.20.15 164 576 885 -5960 364 455265 32
b.25.3 25 0 26 -92 0 0 0
b.25.6 105 320 506 -960 403 5946968 132
b.25.13 206 724 1112 -8148 354 7959187 279
b.30.4 82 208 343 -324 303 36426676 709
b.35.4 97 248 408 -384 307 59173465 -

Table 8.7: Performance of PQCR 2 on small LABS instances. Time limit 1 hour for the branch-
and-bound. Legend on Figure 8.3.

130

Name N Const Const SDP Opt Gap (%) Nodes Tt
v.10.10 1 352 0 353 -810 38129 26146170 -
v.10.10 2 352 0 353 -595 51819 26264035 -
v.10.10 3 352 0 353 -280 109073 28656310 -
v.10.10 4 352 0 353 -280 109106 28560442 -
v.10.10 5 352 0 353 -265 115099 28136129 -
v.10.10 6 352 0 353 -905 34075 29567303 -
v.10.10 7 352 0 353 -1060 29191 27511353 -
v.10.10 8 352 0 353 -200 152704 28935338 -
v.10.10 9 352 0 353 -155 197337 29465221 -
v.10.10 10 352 0 353 -140 217844 28322295 -
v.10.10 11 352 0 353 -660 46770 29361189 -
v.10.10 12 352 0 353 -900 34488 28307833 -
v.10.10 13 352 0 353 -355 86361 28494142 -
v.10.10 14 352 0 353 -460 66709 28780161 -
v.10.10 15 352 0 353 -455 67366 28561339 -
v.10.15 1 542 0 543 -1135 65813 21605315 -
v.10.15 2 542 0 543 -1390 53776 22112650 -
v.10.15 3 542 0 543 -415 178399 21699346 -
v.10.15 4 542 0 543 -515 143729 23412975 -
v.10.15 5 542 0 543 -520 142118 23935673 -
v.10.15 6 542 0 543 -1110 67364 23778466 -
v.10.15 7 542 0 543 -1415 52875 24187953 -
v.10.15 8 542 0 543 -240 308101 23512819 -
v.10.15 9 542 0 543 -285 259550 20895722 -
v.10.15 10 542 0 543 -270 273685 24518261 -
v.10.15 11 542 0 543 -1270 58788 22255609 -
v.10.15 12 542 0 543 -1115 66970 24327878 -
v.10.15 13 542 0 543 -645 115060 24477737 -
v.10.15 14 542 0 543 -565 131491 24204581 -
v.10.15 15 542 0 543 -665 111554 24058813 -
v.15.15 1 827 0 828 -2155 82560 14821039 -
v.15.15 2 827 0 828 -1630 109039 15502130 -
v.15.15 3 827 0 828 -970 182251 14235378 -
v.15.15 4 827 0 828 -760 232624 14329857 -
v.15.15 5 827 0 828 -1000 176691 15031426 -
v.15.15 6 827 0 828 -1970 90510 15582782 -
v.15.15 7 827 0 828 -1520 116939 15595444 -
v.15.15 8 827 0 828 -560 315795 14430103 -
v.15.15 9 827 0 828 -415 425951 14718402 -
v.15.15 10 827 0 828 -525 336530 13512351 -
v.15.15 11 827 0 828 -1455 122402 21603879 -
v.15.15 12 827 0 828 -1730 103262 21591569 -
v.15.15 13 827 0 828 -945 187622 15160372 -
v.15.15 14 827 0 828 -960 184703 15150889 -
v.15.15 15 827 0 828 -975 181747 18182499 -

Table 8.8: Performance of ROS+QCR on Vision instances. Time limit 1 hour for the branch-and-
bound. Legend on Figure 8.3.

131

Name N Const Const SDP Opt Gap (%) Nodes Tt
v.10.10 1 352 1008 1613 -810 129 26694693 -
v.10.10 2 352 1008 1613 -595 170 24887588 -
v.10.10 3 352 1008 1613 -280 198 7377592 673
v.10.10 4 352 1008 1613 -280 184 2929643 280
v.10.10 5 352 1008 1613 -265 193 2468343 191
v.10.10 6 352 1008 1613 -905 120 25073715 -
v.10.10 7 352 1008 1613 -1060 102 24731654 -
v.10.10 8 352 1008 1613 -200 289 23552060 1001
v.10.10 9 352 1008 1613 -155 341 7030061 714
v.10.10 10 352 1008 1613 -140 340 1598095 185
v.10.10 11 352 1008 1613 -660 163 27881823 -
v.10.10 12 352 1008 1613 -900 120 25390765 -
v.10.10 13 352 1008 1613 -355 100 62103 38
v.10.10 14 352 1008 1613 -460 71 44271 23
v.10.10 15 352 1008 1613 -455 66 19716 15
v.10.15 1 542 1568 2503 -1135 149 19661206 -
v.10.15 2 542 1568 2503 -1390 126 18481035 -
v.10.15 3 542 1568 2503 -415 208 16367035 -
v.10.15 4 542 1568 2503 -515 185 17147424 -
v.10.15 5 542 1568 2503 -520 150 17245322 -
v.10.15 6 542 1568 2503 -1110 159 19672116 -
v.10.15 7 542 1568 2503 -1415 122 18126880 -
v.10.15 8 542 1568 2503 -240 372 16300894 -
v.10.15 9 542 1568 2503 -285 330 16402882 -
v.10.15 10 542 1568 2503 -270 260 16186793 -
v.10.15 11 542 1568 2503 -1270 126 17744761 -
v.10.15 12 542 1568 2503 -1095 155 17290458 -
v.10.15 13 542 1568 2503 -645 102 15786500 -
v.10.15 14 542 1568 2503 -565 120 16598840 -
v.10.15 15 542 1568 2503 -665 67 319546 166
v.15.15 1 827 2408 3838 -2155 121 11538754 -
v.15.15 2 827 2408 3838 -1630 157 10079701 -
v.15.15 3 827 2408 3838 -970 132 7032342 -
v.15.15 4 827 2408 3838 -760 179 8278511 -
v.15.15 5 827 2408 3838 -1000 114 4203730 -
v.15.15 6 827 2408 3838 -1970 136 10898839 -
v.15.15 7 827 2408 3838 -1520 180 10820196 -
v.15.15 8 827 2408 3838 -560 201 7000064 -
v.15.15 9 827 2408 3838 -415 259 7090928 -
v.15.15 10 827 2408 3838 -525 188 3846681 -
v.15.15 11 827 2408 3838 -1395 176 9187650 -
v.15.15 12 827 2408 3838 -1690 163 10018801 -
v.15.15 13 827 2408 3838 -945 83 5881992 -
v.15.15 14 827 2408 3838 -960 93 560000 -
v.15.15 15 827 2408 3838 -975 64 393056 -

Table 8.9: Performance of PQCR ROS on Vision instances. Time limit 1 hour for the branch-and-
bound. Legend on Figure 8.3.

132

Name N Const Const SDP Opt Gap (%) Nodes Tt
v.10.10 1 352 1008 1361 -810 396 29093538 -
v.10.10 2 352 1008 1361 -595 536 26308369 -
v.10.10 3 352 1008 1361 -280 973 25377770 -
v.10.10 4 352 1008 1361 -280 957 25177676 -
v.10.10 5 352 1008 1361 -265 1006 24068178 -
v.10.10 6 352 1008 1361 -905 359 26207273 -
v.10.10 7 352 1008 1361 -1060 305 26429950 -
v.10.10 8 352 1008 1361 -200 1376 24684882 -
v.10.10 9 352 1008 1361 -155 1749 24187338 -
v.10.10 10 352 1008 1361 -140 1879 25307018 -
v.10.10 11 352 1008 1361 -660 489 26623135 -
v.10.10 12 352 1008 1361 -900 361 25468762 -
v.10.10 13 352 1008 1361 -355 709 23737082 -
v.10.10 14 352 1008 1361 -460 546 22692423 -
v.10.10 15 352 1008 1361 -455 541 23620814 -
v.10.15 1 542 1568 2111 -1135 447 17890981 -
v.10.15 2 542 1568 2111 -1390 367 17939444 -
v.10.15 3 542 1568 2111 -415 1027 15984793 -
v.10.15 4 542 1568 2111 -515 845 16369673 -
v.10.15 5 542 1568 2111 -520 799 15767968 -
v.10.15 6 542 1568 2111 -1110 462 17083565 -
v.10.15 7 542 1568 2111 -1415 360 16765612 -
v.10.15 8 542 1568 2111 -240 1792 14425697 -
v.10.15 9 542 1568 2111 -285 1525 14172456 -
v.10.15 10 542 1568 2111 -270 1510 14082116 -
v.10.15 11 542 1568 2111 -1270 391 16575441 -
v.10.15 12 542 1568 2111 -1115 453 14605369 -
v.10.15 13 542 1568 2111 -645 634 13722945 -
v.10.15 14 542 1568 2111 -565 731 13766844 -
v.10.15 15 542 1568 2111 -665 576 12604173 -
v.15.15 1 827 2408 3236 -2155 365 9341315 -
v.15.15 2 827 2408 3236 -1630 482 8592313 -
v.15.15 3 827 2408 3236 -970 678 8701600 -
v.15.15 4 827 2408 3236 -760 877 8851069 -
v.15.15 5 827 2408 3236 -1000 641 7540246 -
v.15.15 6 827 2408 3236 -1970 403 7579696 -
v.15.15 7 827 2408 3236 -1520 525 9868868 -
v.15.15 8 827 2408 3236 -560 1148 11576520 -
v.15.15 9 827 2408 3236 -415 1542 11830253 -
v.15.15 10 827 2408 3236 -525 1194 11576160 -
v.15.15 11 827 2408 3236 -1395 557 13103706 -
v.15.15 12 827 2408 3236 -1690 474 13837716 -
v.15.15 13 827 2408 3236 -945 651 12103779 -
v.15.15 14 827 2408 3236 -960 651 11965495 -
v.15.15 15 827 2408 3236 -975 609 11447030 -

Table 8.10: Performance of Q+QCR on Vision instances. Time limit 1 hour for the branch-and-
bound. Legend on Figure 8.3.

133

Name N Const Const SDP Opt Gap (%) Nodes Tt
v.10.10 1 352 1008 1613 -810 259 24264617 -
v.10.10 2 352 1008 1613 -595 347 24358116 -
v.10.10 3 352 1008 1613 -280 551 23995725 -
v.10.10 4 352 1008 1613 -280 533 24118791 -
v.10.10 5 352 1008 1613 -265 557 24331395 -
v.10.10 6 352 1008 1613 -905 237 24777297 -
v.10.10 7 352 1008 1613 -1060 200 24609050 -
v.10.10 8 352 1008 1613 -200 783 23589203 -
v.10.10 9 352 1008 1613 -155 987 23934929 -
v.10.10 10 352 1008 1613 -140 1020 24462952 -
v.10.10 11 352 1008 1613 -660 320 24829708 -
v.10.10 12 352 1008 1613 -900 237 24342792 -
v.10.10 13 352 1008 1613 -355 367 25112545 -
v.10.10 14 352 1008 1613 -460 283 24806402 -
v.10.10 15 352 1008 1613 -455 273 27022983 -
v.10.15 1 542 1568 2503 -1135 292 17351911 -
v.10.15 2 542 1568 2503 -1390 241 18101388 -
v.10.15 3 542 1568 2503 -415 574 16702074 -
v.10.15 4 542 1568 2503 -515 484 16872548 -
v.10.15 5 542 1568 2503 -520 436 16694187 -
v.10.15 6 542 1568 2503 -1110 303 18004770 -
v.10.15 7 542 1568 2503 -1415 236 17801167 -
v.10.15 8 542 1568 2503 -240 1013 16618705 -
v.10.15 9 542 1568 2503 -285 872 16460247 -
v.10.15 10 542 1568 2503 -270 803 16525592 -
v.10.15 11 542 1568 2503 -1270 253 17507848 -
v.10.15 12 542 1568 2503 -1115 295 17563707 -
v.10.15 13 542 1568 2503 -645 343 16360888 -
v.10.15 14 542 1568 2503 -565 399 16288976 -
v.10.15 15 542 1568 2503 -665 285 16797284 -
v.15.15 1 827 2408 3838 -2155 237 11739426 -
v.15.15 2 827 2408 3838 -1630 312 11871919 -
v.15.15 3 827 2408 3838 -970 375 10796046 -
v.15.15 4 827 2408 3838 -760 491 10928145 -
v.15.15 5 827 2408 3838 -1000 345 10966658 -
v.15.15 6 827 2408 3838 -1970 265 11797979 -
v.15.15 7 827 2408 3838 -1520 345 11789411 -
v.15.15 8 827 2408 3838 -560 617 10741699 -
v.15.15 9 827 2408 3838 -415 822 10675188 -
v.15.15 10 827 2408 3838 -525 620 10912085 -
v.15.15 11 827 2408 3838 -1455 338 11466148 -
v.15.15 12 827 2408 3838 -1730 302 11554104 -
v.15.15 13 827 2408 3838 -945 333 10860798 -
v.15.15 14 827 2408 3838 -960 340 10952590 -
v.15.15 15 827 2408 3838 -975 297 11056701 -

Table 8.11: Performance of PQCR 2 on Vision instances. Time limit 1 hour for the branch-and-
bound. Legend on Figure 8.3.

134

8.4.2 Experimental comparison between termwise and pairwise con-
vexification

This section aims at commenting and analyzing the computational results obtained by termwise
and pairwise quadratizations within the convexification framework defined for each method in
Sections 6.2 and 6.3. We recall these methods:

• PC+QCR (Described in Section 6.2): We apply the QCR method after the quadratic reformu-
lation of Anthony et al. [6] using the pairwise cover PC0.

• T+QCR (Described in Section 6.3): We apply the QCR method after the termwise quadrati-
zation of Boros et al. [16].

The comparison is based on small LABS instances and 10× 10 and 15× 15 Vision instances.

We start with the Vision instances whose results are detailed in Tables 8.12 and 8.13. These
instances are sparse but they contain more variables than LABS instances. This is why, none of
the tested methods is able to solve any instance within one hour. The best bounds are obtained
by T+QCR with an average gap of 306% against 518% for PC+QCR. However, the number of variables
is bigger with an average of 855 variables against 590. The number of nodes for both methods
is of the same order of magnitude, that is O(107). This number reflects the poor quality of the
bounds as the branch-and-bound of cplex cannot prune a sufficient number of nodes.

In Tables 8.14 and 8.15, we present the results for small LABS instances. Unlike Vision
instances, the LABS instances are smaller in terms of number of variables but they are much
denser with a huge number of monomials. As a consequence, T+QCR has much more variables as
it introduces one additional variable for each monomial. Thus, although the bounds obtained are
the best with an average gap of (402%), the number of variables is huge with an average of 1926
against 283 only for PC+QCR. Logically, this method failed to solve a single LABS instance. As
for PC+QCR, it is able to solve 1 instance within the time limit. The gaps are similar to the Vision
instances with an average of 517%.

For the convexification PC+QCR, note that the bounds are worse than Q+QCR. However, both
methods use the valid equality x2

i = xi only. The difference of tractability can be explained on
the one hand by noticing that the quadratization of [16] introduces a "hidden" penalty term by
introducing additional monomials in the objective function. On the other hand, by applying the
QCR method to this quadratization, the idea was to keep the constraint-less property. As for
Q+QCR, not only does it not contain penalty terms but it also has the linearization constraints FE
to enforce yij = xixj. This seems to make the difference here. It is also interesting to note the
performance of T+QCR. The bounds obtained are better than PC+QCR and Q+QCR. However, one
should prefer this method for very sparse instances as termwise quadratizations are very sensitive
to the number of monomials.

135

These results also highlights the choice of 2 × 2 quadratizations for the PQCR method. In-
deed, thanks to this family of quadratizations, we are able to derive numerous valid equalities
which highly improve the continuous relaxation bound values. As a result, within the considered
quadratic convex reformulation framework, PQCR obtains the best experimental results. For the
quadratizations considered here, there is no explicit link between initial and additional variables
which makes it difficult to derive valid equalities other than x2 = x. Future research directions
would be to derive other kind of valid equalities for these state-of-the-art quadratizations. To
conclude, these experimentations were aimed at illustrating the application of quadratic con-
vex reformulation frameworks to state-of-the-art quadratization. The obtained results prove that
these methods are not tractable in general. It also suggests that quadratizations using constraints
can be better as they do not contain penalty terms that can alter the bound. Moreover they also
lead to additional valid equalities and thus better bounds. As a result, one would rather choose
the original PQCR algorithm, as expanding slightly the number of constraints highly improves the
tractability.

136

Name N BKN Gap (%) Nodes Tt
v.10.10 1 352 -810 286 28948477 -
v.10.10 2 352 -595 387 27330545 -
v.10.10 3 352 -280 669 29661973 -
v.10.10 4 352 -280 648 29897428 -
v.10.10 5 352 -265 681 28964929 -
v.10.10 6 352 -905 259 29661662 -
v.10.10 7 352 -1060 219 29735079 -
v.10.10 8 352 -200 945 29304165 -
v.10.10 9 352 -155 1207 28768728 -
v.10.10 10 352 -140 1267 29444380 -
v.10.10 11 352 -660 355 28813894 -
v.10.10 12 352 -900 258 29917453 -
v.10.10 13 352 -355 462 29466236 -
v.10.10 14 352 -460 351 29858728 -
v.10.10 15 352 -455 346 29401641 -
v.15.15 1 827 -2155 257 19188044 -
v.15.15 2 827 -1630 344 19379560 -
v.15.15 3 827 -970 450 19401033 -
v.15.15 4 827 -760 589 19349873 -
v.15.15 5 827 -1000 419 19466247 -
v.15.15 6 827 -1970 287 18619118 -
v.15.15 7 827 -1520 380 18796389 -
v.15.15 8 827 -560 757 19524808 -
v.15.15 9 827 -415 1021 18933569 -
v.15.15 10 827 -525 776 19410174 -
v.15.15 11 827 -1455 375 18220156 -
v.15.15 12 827 -1730 330 19037547 -
v.15.15 13 827 -945 416 19679357 -
v.15.15 14 827 -960 421 17420934 -
v.15.15 15 827 -975 379 19022822 -

Table 8.12: Performance of PC+QCR using Pairwise Cover 0 on Vision instances. Time limit 1
hour for the branch-and-bound. Legend on Figure 8.3.

137

Name N BKN Gap (%) Nodes Tt
v.10.10 1 505 -810 192 26101236 -
v.10.10 2 505 -595 259 25511303 -
v.10.10 3 505 -280 398 25652122 -
v.10.10 4 505 -280 373 25936300 -
v.10.10 5 505 -265 390 24326513 -
v.10.10 6 505 -905 174 22995208 -
v.10.10 7 505 -1060 143 25936617 -
v.10.10 8 505 -200 568 27531478 -
v.10.10 9 505 -155 732 26975910 -
v.10.10 10 505 -140 718 27236854 -
v.10.10 11 505 -660 246 26524840 -
v.10.10 12 505 -900 174 24896938 -
v.10.10 13 505 -355 254 26799355 -
v.10.10 14 505 -460 186 27401515 -
v.10.10 15 505 -455 175 27309292 -
v.15.15 1 1205 -2155 170 15797347 -
v.15.15 2 1205 -1630 226 15602283 -
v.15.15 3 1205 -970 253 15795763 -
v.15.15 4 1205 -760 350 15516077 -
v.15.15 5 1205 -1000 225 15991191 -
v.15.15 6 1205 -1970 193 15748388 -
v.15.15 7 1205 -1520 260 15315590 -
v.15.15 8 1205 -560 428 16082729 -
v.15.15 9 1205 -415 580 16085086 -
v.15.15 10 1205 -525 419 15731195 -
v.15.15 11 1205 -1455 251 15512693 -
v.15.15 12 1205 -1730 227 15268273 -
v.15.15 13 1205 -945 215 16441029 -
v.15.15 14 1205 -960 224 15784924 -
v.15.15 15 1205 -975 180 16686176 -

Table 8.13: Performance of T+QCR on Vision instances. Time limit 1 hour for the branch-and-
bound. Legend on Figure 8.3.

138

Name N BKN Gap (%) Nodes Tt
b.20.5 65 -416 310 20255336 452
b.20.10 124 -2936 441 47323811 -
b.25.6 105 -960 404 48685587 -
b.25.13 206 -8148 488 36563196 -
b.25.19 265 -14644 597 33516200 -
b.25.25 289 -10664 679 33441895 -
b.30.4 82 -324 249 63623531 -
b.30.8 173 -2952 484 41274044 -
b.30.15 295 -15744 553 31382764 -
b.30.23 390 -30460 641 26603808 -
b.30.30 422 -22888 719 25066030 -
b.35.4 97 -384 255 39199517 -
b.35.9 233 -5108 520 33395749 -
b.35.18 417 -31160 586 26226133 -
b.40.5 144 -936 359 22764283 -
b.40.10 303 -8248 553 32192359 -
b.40.20 543 -50576 623 23499347 -

Table 8.14: Performance of PC+QCR using Pairwise Cover 0 on small LABS instances. Time limit
1 hour for the branch-and-bound. Legend on Figure 8.3.

Name N BKN Gap (%) Nodes Tt
b.20.5 114 -416 239 32889233 -
b.20.10 529 -2936 361 24897180 -
b.25.6 254 -960 328 30810993 -
b.25.13 1248 -8148 403 19983753 -
b.25.19 2335 -14644 472 15494328 -
b.25.25 2912 -10664 512 11478226 -
b.30.4 126 -324 191 19931268 -
b.30.8 648 -2952 396 24152445 -
b.30.15 2197 -15744 463 11285716 -
b.30.23 4333 -30460 527 3526886 -
b.30.30 5289 -22888 544 3333009 -
b.35.4 151 -384 196 20091757 -
b.35.9 1011 -5108 439 20747980 -
b.35.18 3905 -31160 483 9016580 -
b.40.5 274 -936 283 29217808 -
b.40.10 1569 -8248 466 17305500 -
b.40.20 5845 -50576 527 1876860 -

Table 8.15: Performance of T+QCR on small LABS instances. Time limit 1 hour for the branch-
and-bound. Legend on Figure 8.3.

139

8.5 Tightness of semi-definite relaxations for box-constrained
polynomial programs (presented in Chapter 7)

More precisely, we compare the following methods:

• (SDP 0
E): After a quadratization phase using PC0, we compute the compact relaxation

described in Section 7.2. For this we use the Conic Bundle algorithm [41].

• (SDP 1
E): After a quadratization phase using PC0, we compute the improved relaxation

described in Section 7.5. For this we use the Conic Bundle algorithm [41].

• SCIP 5.0.0 (described in Section 3.1): We submit the polynomial program (P) to this
MINLP solver. The problem is then solved by successive linear relaxations and cutting
planes methods. We use the default parameters.

8.5.1 Instance generation

In this section, we evaluate the bound obtained by our relaxations (SDP 0
E) and (SDP 1

E) on
randomly generated instances of degree 4. The number of variables varies between 10 and 40 and
the number of monomials from 10 to 400. These instances are quite sparse as their density, i.e.
the ratio m

n
, is between 1 and 10. The generation process is similar to [21], that is:

• the number of initial variables n is contained in {10, 15, 20, 25, 30, 35, 40}.

• the number of monomials m is a multiple of n.

• the coefficient of each monomial is uniformly generated in the interval [−1, 1].

• the variables composing each monomial are generated by randomly choosing indices within
{0, 1, ..., n}. Each time the value 0 is generated, the degree of the monomial decreases by
one. An index can only be chosen once in a monomial.

8.5.2 Experimental results

We present in Table 8.16 a comparison of the lower bounds obtained by (SDP 0
E) and (SDP 1

E) after
20 minutes of CPU time, with the final lower bound obtained by the solver SCIP after one hour of
CPU time. Each line represents one instance and the legend of this table is presented in Figure 8.4.
As expected, we observe that the gap obtained with the relaxation (SDP 1

E) is significantly smaller
than the gap obtained with (SDP 0

E). Indeed, out of the 70 considered instances, (SDP 0
E) has

an average gap of 64% whereas (SDP 1
E) has an average gap of 33%. This shows the importance

of the valid constraints added to (SDP 1
E) that exploit both the quadratization used, and the

structure of the instances. Comparing the gaps obtained by (SDP 1
E) to those obtained by the

140

solver SCIP, we observe that SCIP is not able to provide better lower bounds than our relaxation
on 21 instances even after one hour of branch-and-bound. The average gap for SCIP is about
27% over all the instances. In fact, SCIP is able to close the gap within one hour of CPU time
for the smaller instances, but its gap significantly increases on medium sized instances and dense
instances. On the contrary, the gap obtained with (SDP 1

E) is more stable with respect to the
increase of n.

• n: number of variables in the polynomial formulation.

• N : number of variables after the quadratization.

• m: number of monomials.

• BKN : is the best known solution value at the end of the branch-and-cut of SCIP (1 hour).

• LBend: is the lower bound obtained by the branch-and-cut of SCIP, after 1 hour.

• Gapend: is the final optimality gap at the end of the branch-and-cut of SCIP, i.e.
Gapend =

∣∣∣∣BKN − LBend

BKN

∣∣∣∣ ∗ 100.

• LB: is the lower bound obtained within 20 minutes of CPU time when solving (SDP 0
E) and

(SDP 1
E).

• Gap: is the relative gap between BKN and LB for (SDP 0
E) and (SDP 1

E), i.e.
Gap =

∣∣∣∣BKN − LBBKN

∣∣∣∣ ∗ 100.

Figure 8.4: Legend of Table 8.16

141

Instance SCIP SDP0
E SDP1

E
n N m BKN LBend Gapend (%) LB Gap (%) LB Gap (%)
10 17 10 -2,07 -2,07 0 -2,14 3,34 -2,13 3,19
10 26 20 -2,28 -2,28 0 -2,79 22,01 -2,68 17,20
10 25 30 -3,38 -3,38 0 -5,37 58,94 -4,74 40,38
10 34 40 -5,25 -5,25 0 -6,49 23,63 -5,76 9,70
10 36 50 -5,43 -5,43 0 -7,16 31,76 -6,31 16,03
10 38 60 -3,54 -3,54 0 -6,34 78,84 -4,65 31,29
10 46 70 -3,75 -3,75 0 -7,38 97,08 -4,88 30,20
10 39 80 -5,51 -5,51 0 -7,99 45,09 -5,97 8,46
10 44 90 -4,39 -4,39 0 -8,26 88,25 -5,33 21,53
10 50 100 -6,36 -6,36 0 -9,84 54,85 -6,73 5,82
15 29 15 -1,54 -1,54 0 -2,06 33,84 -1,98 28,90
15 33 30 -3,57 -3,57 0 -4,40 23,28 -3,87 8,43
15 59 45 -4,89 -4,89 0 -6,18 26,43 -5,58 14,04
15 64 60 -5,43 -5,43 0 -8,36 53,94 -7,09 30,64
15 75 75 -12,20 -12,20 0 -14,43 18,29 -12,80 4,88
15 77 90 -9,33 -9,33 0 -12,67 35,82 -10,44 11,93
15 85 105 -9,34 -9,34 0 -14,58 56,07 -11,17 19,53
15 85 120 -10,65 -10,65 0 -16,47 54,61 -12,05 13,13
15 87 135 -7,85 -7,85 0 -14,98 90,92 -10,56 34,57
15 98 150 -7,53 -9,31 23,65 -18,03 139,50 -11,13 47,78
20 27 20 -3,92 -3,92 0 -3,95 0,86 -3,98 1,46
20 73 40 -5,18 -5,18 0 -7,64 47,42 -6,80 31,23
20 95 60 -7,82 -7,82 0 -12,26 56,71 -10,57 35,15
20 101 80 -8,48 -8,48 0 -13,54 59,73 -10,73 26,63
20 116 100 -12,77 -12,77 0 -16,85 32,01 -14,47 13,35
20 115 120 -9,41 -10,64 13,11 -17,33 84,14 -13,43 42,76
20 138 140 -11,57 -12,54 8,44 -20,63 78,34 -15,27 32,04
20 139 160 -10,38 -13,28 27,97 -20,39 96,42 -13,91 34,04
20 143 180 -14,22 -19,82 39,35 -26,66 87,47 -19,09 34,27
20 157 200 -12,53 -16,37 30,64 -24,24 93,47 -16,44 31,19
25 51 25 -4,37 -4,37 0 -5,11 17,00 -4,99 14,35
25 79 50 -8,81 -8,81 0 -10,50 19,14 -9,77 10,92
25 118 75 -8,73 -8,73 0 -13,18 51,03 -11,50 31,82
25 147 100 -12,02 -12,02 0 -17,22 43,20 -14,15 17,73
25 165 125 -15,28 -17,92 17,28 -24,17 58,18 -19,62 28,42
25 165 150 -12,20 -14,16 16,04 -20,86 70,99 -16,01 31,22
25 197 175 -16,24 -22,98 41,50 -28,78 77,22 -22,24 36,96
25 188 200 -18,28 -28,22 54,36 -32,02 75,18 -24,62 34,67
25 217 225 -19,03 -28,81 51,38 -34,06 78,95 -25,45 33,72
25 213 250 -12,54 -25,50 103,33 -30,82 145,76 -21,13 68,49
30 43 30 -6,65 -6,65 0 -6,82 2,53 -6,73 1,09
30 103 60 -9,38 -9,38 0 -13,33 42,09 -12,19 29,93
30 150 90 -12,27 -12,27 0 -17,88 45,75 -16,09 31,14
30 181 120 -9,25 -13,04 40,96 -19,46 110,41 -15,86 71,47
30 216 150 -12,98 -16,35 25,99 -22,58 73,96 -18,35 41,40
30 237 180 -12,74 -22,31 75,11 -26,14 105,14 -20,69 62,37
30 260 210 -20,39 -31,54 54,68 -36,75 80,22 -28,47 39,62
30 266 240 -20,32 -35,89 76,60 -40,24 98,01 -30,04 47,81
30 274 270 -17,44 -35,58 104,04 -39,40 125,92 -28,23 61,87
30 292 300 -15,38 -38,68 151,52 -42,09 173,69 -28,30 84,00
35 59 35 -6,12 -6,12 0 -6,51 6,28 -6,49 6,05
35 130 70 -10,29 -10,29 0 -13,93 35,38 -13,33 29,52
35 182 105 -15,97 -15,97 0 -21,13 32,28 -19,28 20,73
35 220 140 -15,36 -20,68 34,64 -25,41 65,42 -22,21 44,62
35 252 175 -15,76 -22,67 43,83 -28,59 81,39 -23,83 51,21
35 275 210 -20,81 -27,07 30,09 -31,29 50,35 -26,71 28,38
35 304 245 -22,83 -36,02 57,80 -39,64 73,63 -32,09 40,55
35 344 280 -29,01 -47,36 63,26 -48,13 65,90 -39,39 35,77
35 347 315 -27,09 -46,81 72,80 -48,66 79,61 -38,42 41,84
35 369 350 -34,13 -55,09 61,41 -57,00 67,01 -45,27 32,63
40 85 40 -4,22 -4,22 0 -5,00 18,32 -4,86 15,04
40 139 80 -9,50 -9,50 0 -11,98 26,05 -11,61 22,15
40 215 120 -11,19 -13,28 18,70 -18,23 62,93 -16,38 46,34
40 272 160 -19,26 -22,46 16,59 -27,07 40,54 -23,98 24,50
40 300 200 -23,04 -34,49 49,69 -38,22 65,89 -33,09 43,61
40 327 240 -22,25 -37,66 69,25 -40,37 81,42 -34,44 54,80
40 375 280 -22,29 -38,30 71,81 -41,20 84,85 -33,80 51,62
40 397 320 -26,01 -51,03 96,21 -51,72 98,85 -44,38 70,63
40 436 360 -25,29 -54,27 114,60 -53,90 113,14 -47,40 87,43
40 454 400 -24,68 -62,84 154,61 -61,88 150,72 -53,97 118,68

Table 8.16: Comparison of the lower bounds of SDP 0
E and SDP 1

E with the lower bounds obtained
by the branch-and-cut of SCIP in one hour of CPU time. Legend on Figure 8.4

142

Chapter 9

Conclusion

Contents
9.1 Main contributions . 143

9.2 Perspectives and research directions 146

This thesis was prepared in Ecole Nationale Supérieure des Techniques Avancées (ENSTA
ParisTech) in Palaiseau and Conservatoire National des Arts et Métiers (CNAM) in Paris thanks
to a scholarship granted by École Doctorale Mathématiques Hadamard (EDMH). It has also
widely benefited from the research stays in HEC Liège and RWTH Aachen, thanks to mobility
grants obtained through the GDR RO foundation.

In the following we recall the main contributions and we outline some future improvements of
the work presented.

9.1 Main contributions
This dissertation is concerned with polynomial optimization with mixed-integer variables. The
major part of our work concerns unconstrained binary and box-constrained polynomial optimiza-
tion problems. The recent advances in this area have led to a renewed interest and various theses,
articles, tutorials and solvers have been published in the last decade. These advances concerned
theoretical as well as practical materials. In this thesis we focus on both. The main practical
part corresponds to implementing PQCR, our main solver for unconstrained binary polynomial pro-
grams. This solver can be efficient on very hard instances such as the LABS instances (2.2.2). The
computational experiments in Section 8 confirm that PQCR performs better on these instances than
the other available solvers. We also implemented linearization and direct convexification meth-
ods. Finally, we implemented a relaxation computation framework for box-constrained programs.
On the other hand, the theoretical part of this thesis concerns the designing of all the previous

143

methods. Moreover, we also provide detailed theoretical comparisons between our methods and
those of the literature.

One-step reformulation methods Chapter 4 presents one-step reformulation algorithms for
exact solution of binary polynomial programs. It begins with the introduction of a special frame-
work called q−linearization. This framework regroups all the linearizations that introduce addi-
tional variables and use reformulation constraints. The main result here concerns the continuous
relaxation bound values of such linearizations. We prove that when linearizing each monomial
separately, for all q, any q−linearization leads to the same bound. We further show the connection
with the 2−links cuts proposed in [25]. Indeed, reusing additional variables in several monomials
amounts to adding some of these inequalities.

We then discuss direct convexification. Starting from problem (P), we compute an interval
matrix that approximates the non-constant Hessian matrix of f . Then we add the null function
x 7→ λ

∑
i(x2

i − xi) to f . Using the interval matrix, we provide a value for real parameter λ such
that the new objective function is convex. Next we consider a vector parameter α and we add
to f the null function x 7→ ∑

i αi(x2
i − xi). Similarly, we provide values for α in order to attain

convexity.

Quadratic convex reformulation methods Chapter 5 addresses our main resolution algo-
rithm, that is quadratic convex reformulation. The PQCR method is a 3−phases algorithm with
a two-steps reformulation. We first compute a quadratic reformulation (QP) of (P) by using ad-
ditional variables and linearization constraints. Then, after presenting standard convexification
methods, we introduce the set SE of null functions. These functions are used to build a new pa-
rameterized objective function gα,β,δ,λ. We then characterize optimal values of α, β, δ, λ such that,
the new objective function is convex and the continuous relaxation bound value is maximized.
Moreover, we show that one can extract these optimal values from a semi-definite relaxation of
(QP). Finally, the resulting quadratic convex continuous relaxation is then solved at each node
of a branch-and-bound algorithm.

However, our "best" convexification is dependent on the quadratization phase and from one
quadratization to another, the bounds may vary. We thus study the quadratization phase more
thoroughly. We prove that, given a quadratization defined by E , all the possible quadratic objec-
tive functions lead to the same bound after convexification. Then we show that adding auxiliary
variables to a quadratization cannot worsen the bound. Finally we present the 2× 2 full quadra-
tization, which consists in reformulating every product of two variables. This allows us to relate
PQCR with the Moment/SOS method. We also introduce the partial quadratization, which con-
sists in reformulating products of variables appearing in the same monomial. We show that we
obtain nice numerical results with this quadratization.

144

Finally, we establish the link between the PQCR framework and the Lasserre’s hierarchy. More
precisely, we state that the semi-definite relaxation obtained after applying the full quadratization
is the same as the first order hierarchy of the Moment/SOS method. Then we show that at each
order of the hierarchy, we can derive a quadratic convex reformulation to (P) with the same
bound as the semi-definite relaxation of the considered order. We also show that the PQCR method
considers partial orders of the hierarchy for unconstrained binary polynomial programs, i.e. not
every product of degree less or equal to a given degree needs to be reformulated. This allows to
reduce the number of variables and to solve larger instances.

Convex reformulation with other quadratization schemes Chapter 6 discusses the im-
pact of other quadratization families within the PQCR framework. We begin by studying the
quadratizations using penalty terms such as Rosenberg’s procedure. We prove that applying this
quadratization within our framework amounts to apply the QCR algorithm after the quadratiza-
tion phase. We then show that we can derive a new convexification by using the penalty term as
a null function.

We then study different quadratization schemes (called pairwise covers) and measure their
impact on the number of variables and the continuous relaxation bound value. We then derive a
convexification phase for the types of quadratizations described in [6]. Similarly to Rosenberg’s
procedure, these quadratizations use penalty terms without any constraints. We show that it is
possible to preserve this "constraintless" structure by only perturbing diagonal terms by adding
the null function x 7→ ∑

i αi(x2
i − xi). We finally apply this diagonal perturbation on termwise

quadratizations. We further compare the results obtained by these methods.

Semi-definite relaxations for box-constrained polynomial programs Chapter 7 is con-
cerned with other classes of polynomial programs. We compute semi-definite relaxations for
box-constrained polynomial programs. We build a first compact relaxation (SDP 0

E) with O(N2)
variables and O(N) constraints. Then we build an improved relaxation (SDP 1

E) by adding more
constraints corresponding to valid inequalities. It has O(N4) constraints.

Summary and comparison of the methods presented in this thesis Finally, we end this
thesis by illustrating the links between the different methods introduced in this manuscript. We
propose a theoretical comparison in Figure 9.1, as well as an experimental comparison in Figure
9.2. We remark that PQCR dominates every other method both theoretically and experimentally.
Indeed, we know by construction that PQCR has the best continuous relaxation bounds and the
computational results confirm that PQCR is able to solve the highest number of instances among
all the considered methods. Let us also remark that, even though PQCR performs better than the

145

linearization methods, there is no proof that the bound obtained by PQCR is always better than
the one obtained by linearization. For the same reasons, the q−linearizations cannot be compared
with other families of quadratic convex reformulation.

PQCR

PQCR ROS

PC+QCR Non-uniform interval

Uniform interval

T+QCR ROS+QCR

Figure 9.1: Theoretical comparison of the different methods. A vertical link means that the method
placed at the top is proven to have a better bound than the one at the bottom.

PQCR

PQCR ROS

PC+QCR Non-uniform interval

Uniform interval

ROS+QCR

T+QCR

q-linearization

Figure 9.2: Experimental comparison of the different methods. A vertical link means that the
method placed at the top obtains shorter CPU times than the one at the bottom on the instances
considered in this thesis.

9.2 Perspectives and research directions
In this thesis we have addressed unconstrained binary polynomial problems and relaxation for
the continuous case. Other classes of problems could be handled by our quadratic convex refor-
mulation framework. In the next paragraphs, we give some suggestions to extend our approach
to more general class of problems.

146

Linearly constrained binary polynomial optimization Throughout our studies we did not
consider constrained polynomial programs. We only focused on unconstrained programs. The
work we have done within the PQCR framework allows us to compute exact reformulation for the
linearly constrained case. In this case, one can directly apply the PQCR method. Indeed, linear
constraints are already taken into account in the same way as constraints FE . They are added
to the equivalent quadratic convex program as well as the semidefinite relaxation without any
change.

Polynomially constrained binary polynomial optimization We now consider the case
of polynomially constrained binary polynomial program (PP). We can perform a first phase of
quadratic reformulation on the objective function by applying PQCR on the relaxation of (PP) ob-
tained by removing its constraints. We thus get a polynomial program with a quadratic objective
function. Then, one can apply any q−linearization to the polynomial constraints. For exam-
ple, we can apply the q−linearization that reuses the maximum number of additional variables
introduced in the convexification phase.

For quadratic programs, the authors of [12] derive a convex reformulation method. They also
prove that linearizing quadratic constraints suffices to get the best continuous relaxation bound
values within their framework. It would be interesting to study whether similar properties can
hold for constrained binary polynomial programs.

General integer polynomial optimization In this thesis, we discussed polynomial programs
with both binary and continuous variables. One can extend this approach to general integer
variables. We follow the ideas presented in [50]. Let 0 ≤ x ≤ u be an integer variable. By
introducing blog(u)c + 1 binary variables ti, observe that x = ∑blog(u)c

i=0 2iti. Thus by replacing
each integer variable by its binary decomposition, each product of integer variables xixj is reduced
to several products of binary variables. Thus our quadratic convex reformulation framework
presented in Section 5.1 can be applied. However, this may not be tractable as the number of
additional binary variables is huge. Indeed, for n integer variables such that 0 ≤ xi ≤ ui, the
number of additional binary variables is O(∑blog(ui)c

i=0
2
). This method was tractable for the case

of quadratic programs but since we introduce other additional variables for the quadratization
phase, the number of variables becomes too restrictive.

Semi-definite relaxations for mixed-integer polynomial programs In this paragraph, we
give some clues to compute tight semi-definite relaxations for general mixed-integer polynomial
programs. Here we focus on unconstrained programs, as we have established that the constraints
can be handled by an additional linearization phase. Moreover, we can also consider mixed-
binary variables without loss of generality, as integer variables can be reduced to binary ones
thanks to the binary decomposition. Let (PMB) be an unconstrained mixed-binary program.
We can derive a first quadratic reformulation of (PMB) by successively reformulating products

147

of variables with a new one by using a pairwise cover. We then obtain a constrained quadratic
program. The constraints establish the equality between an additional variable tij and the product
of two variables that it represents. In addition to these reformulation constraints, we can add
other constraints to further tighten the semi-definite relaxation. We make the distinction between
three cases:

• tij is a product of 2 binary variables (i.e. tij = xixj): We add the set of constraints SE
defined in Lemma 5.1.1.

• tij is a product of 2 continuous variables (i.e. tij = yiyj): We add the set of constraints
defined in Chapter 7 for the continuous case.

• tij is a product of a continuous variable by a binary one (i.e. tij = yixj): We add the
following set of linear constraints

tij ≤ xj,

tij ≥ 0,
tij ≤ yi,

tij ≥ yi − (1− xj),
0 ≤ tij ≤ 1

From this quadratic program, we can compute a semi-definite relaxation by linearizing these
constraints in the space of semi-definite matrices, as it was done in Chapter 7.

148

Appendix A

The PQCR solver

The PQCR solver (Polynomial optimization in binary variables through Quadratic Convex
Reformulation) solves unconstrained binary polynomial optimization problems to optimality and
is able to derive strong convex relaxations on continuous problems. The solver is not available
as an open-source software yet since it is still in development phase. Various methods are imple-
mented to solve (P). All the generic models are written in AMPL [30] and all the preprocessing
is coded in C. All the solvers presented hereunder admit a boolean parameter relative to the
symmetry of the problem: 1 if the problems admits a symmetry that allows to remove a variable,
0 otherwise. Moreover, a first phase of presolve is performed commonly for all the algorithms
in order to remove the "trivial" variables, i.e. variables that appear only in negative or positive
monomials.

A.1 Implemented algorithms
• q−linearizations: the standard linearization presented in Section 4.1 as well as other bench-

mark linearizations are implemented. The resulting linear program is solved with Cplex

• Direct convexification: both the convexification using uniform and non-uniform diagonal
perturbation presented in Section 4.2 are implemented. The resulting polynomial program
is solved by Ipopt [81] or SCIP [80].

• Smallest eigenvalue convexification. After the quadratization of (P), the smallest eigenvalue
of the new Hessian is computed in Matlab. The resulting quadratic convex reformulation
is solved by Cplex.

• PQCR the original algorithm presented in this thesis. For tractability issues, a second pa-
rameter is required by PQCR , which is the number of families of valid equalities added from
SE between 0 and 4. A quadratization is first chosen among the available ones, this point is
discussed hereunder. Then the semidefinite relaxation (SDP) is solved with CSDP [15]. The

149

dual variables are then recovered. Finally the equivalent quadratic convex reformulation
(QP ∗) is solved by Cplex.

• PQCR using the Conic Bundle algorithm: this version of PQCR relies on the Conic Bundle
algorithm [41]. It consists in solving iteratively a relaxed version of the quadratic convex
reformulation by dynamically adding constraints to it. The resulting program is then solved
by Cplex.

• Semidefinite relaxation for continuous programs. This algorithm presented in Chapter 7
computes tight relaxations for unconstrained continuous polynomial programs. After the
quadratization phase, the semidefinite relaxation is solved by Csdp.

A.2 Quadratizations
PQCR computes a quadratic convex reformulation given any quadratization. We have coded a
sample of quadratizations that we used in this thesis.

• Random 2 × 2 quadratization. This quadratization reformulates random product of two
variables with a new one until the function is quadratic.

• Partial and Full quadratization described in Section 5.2. Additional variables are iteratively
added.

• "Rosenberg-like" quadratizations. Any quadratization using penalty terms can be used for
PQCR. The parameter is the value of the penalty term P .

• "Lasserre quadratization". In section 5.3.1, we established that for any order r of the
Lasserre’s hierarchy, there exist a quadratization such that we can compute an equivalent
quadratic convex reformulation with the same bound. These quadratizations satisfy this
property. The code requires an integer r representing the order of the hierarchy and the
quadratization in question will be computed.

A.3 Instances
PQCR reads a certain format of instance and can also randomly generate instances.

Format For a binary polynomial program of the form

150

(P)

min

M∑
m=1

cm
dm∏
j=1

xj

s.t.
x ∈ {0, 1}n

The corresponding instance file for PQCR is:
n

b li ui (where li and ui are 0 and 1 for the binary case)
M

cm dm j (where j are the indices of the variables in the monomial m)

Random instances PQCR generates random instances of (P). These instances are rather purely
continuous or purely binary. The program takes 8 parameters, namely n, m, cl, cu, d, t, l, u where:

• n is the number of variables.

• m is the number of monomials.

• cl and cu are the lower and upper bounds of the coefficients.

• d is the degree of the polynomial. For each monomial, the coefficient and the degree are
randomly chosen, respectively in [cl, cu] and between 1 and d. The variables composing each
monomial are generated by randomly choosing an index within {1, ..., n}. A same variable
cannot appear more than once in a monomial for the special case of binary variables.

• t is the type of the variables, "c" for continuous and "i" for integer.

• l and u are the upper and lower bounds for the variables. Once the bounds are fixed, a
random number is chosen in [l, u] for each variable. If the variables are integers then the
random numbers are rounded.

Both the format of instance and the generation process are similar to [21]. A random generator
for mixed-integer programs is yet to be developed.

151

152

153

Bibliography

[1] T. Achterberg. Scip : solving constraint integer programs. Mathematical Programming
Computation, (1):1–41, 2009.

[2] C.S. Adjiman, S. Dallwig, C.A. Floudas, and A. Neumaier. A global optimization method,
αbb, for general twice-differentiable constrained nlps—i. theoretical advances. Computers
and Chemical Engineering, 22(9):1137–1158, 1998.

[3] A. A. Ahmadi and A. Majumdar. Dsos and sdsos optimization: Lp and socp-based alter-
natives to sum of squares optimization. In 2014 48th Annual Conference on Information
Sciences and Systems (CISS), pages 1–5, March 2014.

[4] M.F. Anjos and J.B. Lasserre. Handbook of semidefinite, conic and polynomial optimization:
Theory, algorithms, software and applications. International Series in Operational Research
and Management Science, 166, 2012.

[5] M. Anthony, E. Boros, Y. Crama, and A. Gruber. Quadratization of symmetric pseudo-
boolean functions. Discrete Applied Mathematics, 203:1–12, 2016.

[6] M. Anthony, E. Boros, Y. Crama, and A. Gruber. Quadratic reformulations of nonlinear
binary optimization problems. Mathematical Programming, 162:115–144, 2017.

[7] B. Balasundaram and A.O. Prokopyev. On characterization of maximal independent sets via
quadratic optimization. 19, 06 2011.

[8] M. Baratto. Enveloppe convexe de la linéarisation d’une fonction pseudo-booléenne. Master
thesis, Université de Liège, Liège, Belgique, 2018.

[9] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching and bounds tightening
techniques for non-convex minlp. Optimization Methods and Software, 4–5(24):597–634, 2009.

[10] J. Bernasconi. Low autocorrelation binary sequences: statistical mechanics and configuration
space analysis. J. Physique, 141(48):559–567, 1987.

[11] A. Billionnet and S. Elloumi. Using a mixed integer quadratic programming solver for the
unconstrained quadratic 0-1 problem. Mathematical Programming, 109(1):55–68, 2007.

154

[12] A. Billionnet, S. Elloumi, and A. Lambert. Exact quadratic convex reformulations of mixed-
integer quadratically constrained problems. Mathematical Programming, 158(1):235–266,
2016.

[13] A. Billionnet, S. Elloumi, A. Lambert, and A. Wiegele. Using a Conic Bundle method
to accelerate both phases of a Quadratic Convex Reformulation. INFORMS Journal on
Computing, 29(2):318–331, 2017.

[14] A. Billionnet, S. Elloumi, and M. C. Plateau. Improving the performance of standard solvers
for quadratic 0-1 programs by a tight convex reformulation: The QCR method. Discrete
Applied Mathematics, 157(6):1185 – 1197, 2009. Reformulation Techniques and Mathematical
Programming.

[15] B. Borchers. CSDP, A C Library for Semidefinite Programming. Optimization Methods and
Software, 11(1):613–623, 1999.

[16] E. Boros, Y. Crama, and E. Rodríguez-Heck. Quadratizations of symmetric pseudo-Boolean
functions: sub-linear bounds on the number of auxiliary variables. In ISAIM, Fort Laud-
erdale, 2018. ISAIM, International Symposium on Artificial Intelligence and Mathematics.
Available at http://isaim2018.cs.virginia.edu/.

[17] E. Boros, A. Fix, A. Gruber, and R. Zabih. A hypergraph-based reduction for higher-
order binary Markov random fields. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 37(7):1387–1395, 2015.

[18] E. Boros and A. Gruber. On quadratization of pseudo-Boolean functions. In ISAIM, Fort
Lauderdale, 2012. ISAIM, International Symposium on Artificial Intelligence and Mathemat-
ics. Open Source: arXiv:1404.6538v1.

[19] E. Boros and P. L. Hammer. Pseudo-boolean optimization. Discrete Applied Mathematics,
123(1):155 – 225, 2002.

[20] E. Boros, P.L. Hammer, and X. Sun. Network flows and minimization of quadratic pseudo-
boolean functions. Technical Report TR: 1991-17, RUTCOR, 1991.

[21] C. Buchheim and C. D’Ambrosio. Monomial-wise optimal separable underestimators for
mixed-integer polynomial optimization. Journal of Global Optimization, pages 1–28, 2016.

[22] C. Buchheim and G. Rinaldi. Efficient reduction of polynomial zero-one optimization to the
quadratic case. SIAM Journal on Optimization, 18(4):1398–1413, 2007.

[23] S. Cafieri, J. Lee, and L. Liberti. On convex relaxations of quadrilinear terms. Journal of
Global Optimization, 47(4):661–685, Aug 2010.

155

[24] M.W. Carter. The indefinite zero-one quadratic problem. Discrete Applied Mathematics,
pages 23–44, 1984.

[25] Y. Crama and E. Rodríguez-Heck. A class of valid inequalities for multilinear 0-1 optimization
problems. Discrete Optimization, pages 28–47, 2017.

[26] E. Dalkiran and L. Ghalami. On linear programming relaxations for solving polynomial
programming problems. Computers and Operations Research, 99:67 – 77, 2018.

[27] E. Dalkiran and H.D. Sherali. Rlt-pos: Reformulation-linearization technique-based opti-
mization software for solving polynomial programming problems. Mathematical Programming
Computation, 8(3):337–375, Sep 2016.

[28] A. Del Pia and A. Khajavirad. The multilinear polytope for acyclic hypergraphs. SIAM
Journal on Optimization, 28(2):1049–1076, 2018.

[29] R. Fortet. L’algèbre de Boole et ses Applications en Recherche Opérationnelle. Cahiers du
Centre d’Etudes de Recherche Opérationnelle, 4:5–36, 1959.

[30] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for Mathematical
Programming. The Scientific Press (now an imprint of Boyd & Fraser Publishing Co.),
Danvers, MA, USA, 1993.

[31] D. Freedman and P. Drineas. Energy minimization via graph cuts: settling what is possi-
ble. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), 2:939–946 vol. 2, 2005.

[32] M.R. Garey and D.S. Johnson. Computers and Intractability: A guide to the theory of
NP-Completness. W.H. Freeman, San Francisco, CA, 1979.

[33] S. Gershgorin. Uber die Abgrenzung der Eigenwerte einer Matrix. Bulletin de l’Académie
des Sciences de l’URSS., 6:749–754, 1931.

[34] B. Ghaddar, J. C. Vera, and M. F. Anjos. A dynamic inequality generation scheme for
polynomial programming. Mathematical Programming, 156(1):21–57, Mar 2016.

[35] F. Glover and E. Woolsey. Further reduction of zero-one polynomial programs to zero-one
linear programming, 1973.

[36] F. Glover and E. Woolsey. Converting the 0-1 polynomial programming problem to a 0-1
linear program, 1974.

[37] F. W. Glover and G. A. Kochenberger. A tutorial on formulating QUBO models. CoRR,
abs/1811.11538, 2018.

156

[38] C. E. Gounaris and C. A. Floudas. Tight convex underestimators for C2-continuous problems:
II. multivariate functions. Journal of Global Optimization, 42(1):69–89, Sep 2008.

[39] P.L. Hammer, I. Rosenberg, and S. Rudeanu. Boolean Methods in Operations Research and
Related Areas. Springer, New York, 1968.

[40] P.L. Hammer and A.A. Rubin. Some remarks on quadratic programming with 0-1 variables.
Revue Française d’Informatique et de Recherche Opérationnelle, 4:67–79, 1970.

[41] C. Helmberg. Conic Bundle v0.3.10, 2011.

[42] D. Henrion and J. B. Lasserre. Gloptipoly: Global optimization over polynomials with
matlab and sedumi. ACM Transactions on Mathematical Software, 29(2):165–194, 2003.

[43] IBM-ILOG. IBM ILOG CPLEX 12.7 Reference Manual. "http://www-01.ibm.com/
support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.studio.help/Optimization_
Studio/topics/COS_home.html", 2017.

[44] H. Ishikawa. Transformation of general binary MRF minimization to the first-order case.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(6):1234–1249, June
2011.

[45] N. Ito, S. Kim, and M. Kojima nad A.Takeda K.C. Toh. BBCPOP: A Sparse Doubly
Nonnegative Relaxation of Polynomial Optimization Problems with Binary, Box and Com-
plementarity Constraints. ArXiv e-prints, April 2018.

[46] R.M. Karp. Reducibility among combinatorial problems. pages 85–103, 1972.

[47] V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts?
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(2):147–159, Feb 2004.

[48] J. Krarup and P.M. Pruzan. Computer-aided layout design. pages 75–94, 1978.

[49] X. Kuang, , B. Ghaddar, J . Naoum-Sawaya, and L.F. Zuluaga. Alternative SDP and SOCP
Approximations for Polynomial Optimization. ArXiv e-prints, October 2015.

[50] A. Lambert. Résolution de programmes quadratiques en nombres entiers. Thèse de doctorat
en informatique, Conservatoire National des Arts et Métiers, Paris, 2009.

[51] J.B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM
Journal on Optimization, 11(3):796–817, 2001.

[52] J.B. Lasserre. An explicit equivalent positive semidefinite program for nonlinear 0-1 pro-
grams. SIAM Journal on Optimization, 12(3):756–769, 2002.

157

http://www-01.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.html
http://www-01.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.html
http://www-01.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.html

[53] J.B. Lasserre. An Introduction to Polynomial and Semi-Algebraic Optimization. Cambridge
University Press, Cambridge, 2015.

[54] J.B. Lasserre and T.P. Thanh. Convex underestimators of polynomials. Journal of Global
Optimization, pages 1–25, 2013.

[55] J.D. Laughhunn. Quadratic binary programming with applications to capital budgeting
problems. 18:454–461, 06 1970.

[56] M. Laurent. A comparison of the sherali-adams, lovász-schrijver, and lasserre relaxations for
0–1 programming. Mathematics of Operations Research, 28(3):470–496, 2003.

[57] C. Lemarechal and F. Oustry. Semidefinite relaxations and lagrangian duality with applica-
tion to combinatorial optimization. Technical report, RR-3710, INRIA Rhones-Alpes, 1999.

[58] A. Lundell, J. Westerlund, and T. Westerlund. Some transformation techniques with appli-
cations in global optimization. Journal of Global Optimization, 43(2):391–405, Mar 2009.

[59] C. D. Maranas and C. A. Floudas. Global optimization in generalized geometric program-
ming. Computers & Chemical Engineering, 21(4):351 – 369, 1997.

[60] R.D. McBride and J.S. Yormark. An implicit enumeration algorithm for quadratic integer
programming. Management Science, 1980.

[61] G.P. McCormick. Computability of global solutions to factorable non-convex programs: Part
i - convex underestimating problems. Mathematical Programming, 10(1):147–175, 1976.

[62] C. A. Meyer and C. A. Floudas. Trilinear monomials with mixed sign domains: Facets of
the convex and concave envelopes. Journal of Global Optimization, 29(2):125–155, Jun 2004.

[63] C. A. Meyer and C. A. Floudas. Convex underestimation of twice continuously differentiable
functions by piecewise quadratic perturbation: Spline αbb underestimators. Journal of Global
Optimization, 32(2):221–258, Jun 2005.

[64] MINLPLIB. Library of mixed integer non linear programs. "http://www.gamsworld.org/
minlp/minlplib.htm", 2012.

[65] R. Misener and C.A. Floudas. Antigone: algorithms for continuous/integer global optimiza-
tion of nonlinear equations. Journal of Global Optimization, 59(2-3):503–526, 2014.

[66] K. Murty and S. Kabadi. Some np-complete problems in quadratic and nonlinear program-
ming. Mathematical Programming, 39:117–129, 1987.

[67] M. Padberg. The boolean quadric polytope: some characteristics, facets and relatives. Math-
ematical programming, 45(1):139–172, 1989.

158

http://www.gamsworld.org/minlp/minlplib.htm
http://www.gamsworld.org/minlp/minlplib.htm

[68] M. Padberg and M.J. Wilczak. Boolean polynomials and set functions. Mathematical and
computer modelling, 17(9):3–6, 1989.

[69] P.M Pardalos and J. Xue. The maximum clique problem. Journal of Global Optimization,
4(3):301–328, Apr 1994.

[70] M.R. Rao. Cluster analysis and mathematical programming. Journal of the American Sta-
tistical Association, 66(335):622–626, 1971.

[71] J.M.W. Rhys. A selection problem of shared fixed costs and network flows. Management
Science, 17(3):200–207, 1970.

[72] E. Rodríguez-Heck. Linear and quadratic reformulations of nonlinear optimization problems
in binary variables. PhD thesis, Université de Liège, 2018.

[73] I. G. Rosenberg. Reduction of bivalent maximization to the quadratic case. Cahiers du
Centre d’Études de Recherche Opérationnelle, 17:71–74, 1975.

[74] N.V. Sahinidis and M. Tawarmalani. Baron 9.0.4: Global optimization of mixed-integer
nonlinear programs. User’s Manual, 2010.

[75] H.D. Sherali and W.P. Adams. A hierarchy of relaxation between the continuous and convex
hull representations for zero-one programming problems. SIAM Journal Discrete Mathemat-
ics, 3:411–430, 1990.

[76] H.D. Sherali and C.H. Tuncbilek. A global optimization algorithm for polynomial pro-
gramming using a reformulation-linearization technique. Journal of Global Optimization,
2:101–112, 1992.

[77] C. De Simone. The cut polytope and the boolean quadric polytope. Discrete Mathematics,
79(1):71 – 75, 1990.

[78] J. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.
OPTMS, 11-12:625–653, 1999.

[79] M. Tawarmalani and N. V. Sahinidis. Convex extensions and convex envelopes of l.s.c.
functions. math. program. 93, 247-263. Mathematical Programming, 93:247–263, 12 2002.

[80] S. Vigerske and Ambros G. Scip: Global optimization of mixed-integer nonlinear programs
in a branch-and-cut framework. Optimization Methods and Software, pages 1–31, 2017.

[81] A. Wächter and L.T. Biegler. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):25–57,
Mar 2006.

159

[82] L. J. Watters. Letter to the editor—reduction of integer polynomial programming problems
to zero-one linear programming problems. Operations Research, 15(6):1171–1174, 1967.

[83] W. I. Zangwill. Media Selection by Decision Programming, pages 132–133. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1976.

160

161

Titre : Optimisation globale de programmes polynomiaux en variables mixtes-
entières
Mots Clefs : Optimisation non convexe, Optimisation discrète, Optimisation
polynomiale, Résolution exacte, Reformulation quadratique convexe
Résumé : Dans cette thèse, nous nous intéressons à l’étude des programmes poly-
nomiaux. Ces problèmes ont de nombreuses applications pratiques et constituent
actuellement un champ de recherche très actif, mais restent très difficiles et on ne
sait résoudre en toute généralité que des instances de petite taille. Dans la majeure
partie de ce manuscrit, nous étudions les problèmes d’optimisation en variables
binaires. Nous proposons plusieurs reformulations convexes pour ces problèmes.
Nous nous intéressons tout d’abord aux linéarisations en introduisant le concept
de q−linéarisation. Ensuite, nous appliquons une reformulation convexe au prob-
lème polynomial. Nous étendons ensuite la reformulation quadratique convexe au
cas polynomial. Nous proposons plusieurs nouvelles reformulations que nous com-
parons aux méthodes existantes sur des instances de la littérature. En particulier
nous présentons la méthode PQCR pour les problèmes polynomiaux binaires sans con-
trainte qui permet de résoudre des instances jusqu’ici non résolues. Nous proposons
aussi une étude théorique visant à comparer les différentes reformulations quadra-
tiques de la littérature puis à leur appliquer une reformulation convexe. Enfin nous
considérons des cas plus généraux et nous proposons une méthode permettant de
calculer des relaxations convexes pour des problèmes en variables continues.

Title : Global optimization of polynomial programs with mixed-integer variables
Keys words : Non convex optimization, Discrete optimization, Polynomial opti-
mization, Exact resolution, Convex quadratic reformulation
Abstract : In this thesis, we are interested in the study of polynomial programs.
These problems have many practical applications and are currently actively studied,
but they remain very difficult and only small instances are addressed. In most of
this manuscript, we study optimization problems with binary variables. We propose
several convex reformulations for these problems. We first focus on linearizations by
introducing the concept of q−linearization. Then, we apply convex reformulation
to the polynomial problem. We then extend quadratic convex reformulation to the
polynomial case. We propose several new reformulations that we compare to existing
methods on instances of the literature. In particular we present method PQCR for
unconstrained binary polynomial problems, which is able to solve several unsolved
instances. We also propose a theoretical study to compare the different quadratic
reformulations of the literature and then apply a convex reformulation to them.
Finally, we consider more general problems and we propose a method to compute
convex relaxations for problems with continuous variables.

	List of Figures
	List of Tables
	Résumé long
	Présentation du problème
	Plan détaillé du manuscrit

	Introduction
	Presentation of the problem
	Applications considered in this thesis
	The image restoration problem (Vision)
	The Low Auto-correlation Binary Sequence problem (LABS)

	Outline of the thesis

	State-of-the-art
	Polynomial optimization
	Unconstrained polynomial optimization with binary variables
	Quadratic reformulation of binary polynomial programs
	Quadratizations with no additional constraints
	Quadratizations with additional constraints

	One-step reformulation methods for pseudo-Boolean optimization
	Linear reformulations
	Linearization of a single monomial
	Linearization of a polynomial

	Direct convexification
	Approximation of the Hessian matrix
	Convexification by uniform diagonal perturbation
	Convexification by non-uniform diagonal perturbation

	Conclusion

	PQCR: Polynomial optimization in binary variables through Quadratic Convex Reformulation
	A quadratic convex reformulation framework
	Phase 1: Quadratization of polynomial program (P) into (QP)
	Phase 2: Optimal quadratic convex reformulation of (QP)

	Discussion on the impact of the chosen 22 quadratization
	22 Full quadratization
	22 Partial quadratization
	Replacing PQCR's quadratization scheme with other pairwise covers

	Link with the Lasserre's hierarchy
	A hierarchy of exact quadratic convex reformulations

	Conclusion

	Convexification with other quadratization schemes
	"Rosenberg-like" quadratizations
	Applying diagonal convexification after Rosenberg's procedure
	Using Rosenberg's procedure in a new compact convexification framework

	Applying QCR after quadratizations using pairwise covers
	Applying QCR after termwise quadratization
	Conclusion

	Semi-definite relaxations of box-constrained polynomial programs
	A quadratic reformulation of ()
	A compact semidefinite programming relaxation
	An improved semidefinite programming relaxation
	Conclusion

	Computational experiments and implementations
	Hardware and used software
	Details on the instances
	Performance of PQCR (presented in Chapter 5)
	The compared methods (PQCR, Q+QCR, Q+MIQCR, Q+cplex and Baron)
	Results on Vision instances
	Results on LABS instances

	Convex reformulation with other quadratization schemes (presented in Chapter 6)
	Results related to Rosenberg's reformulation
	Experimental comparison between termwise and pairwise convexification

	Tightness of semi-definite relaxations for box-constrained polynomial programs (presented in Chapter 7)
	Instance generation
	Experimental results

	Conclusion
	Main contributions
	Perspectives and research directions

	The PQCR solver
	Implemented algorithms
	Quadratizations
	Instances

	Bibliography

