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Résumé

Aujourd’hui, la conception de réseaux est une problématique cruciale qui se pose dans

beaucoup de domaines tels que le transport ou l’énergie. En particulier, il est devenu

nécessaire d’optimiser la façon dont sont conçus les réseaux permettant de produire de

l’énergie. On se concentre ici sur la production électrique produite à travers des parcs

éoliens. Cette énergie apparait plus que jamais comme une bonne alternative à la produc-

tion d’électricité via des centrales thermiques ou nucléaires.

Nous nous intéressons dans cette thèse à la conception du câblage collectant l’énergie

dans les parcs éoliens. On connaît alors la position de l’ensemble des éoliennes appartenant

au parc ainsi que celle du site central collecteur vers laquelle l’énergie doit être acheminée.

On connaît également la position des câbles que l’on peut construire, leurs capacités, et la

position des nœuds d’interconnexion possibles. Il s’agit de déterminer un câblage de coût

minimal permettant de relier l’ensemble des éoliennes à la sous-station, tel que celui-ci soit

résistant à un certain nombre de pannes sur le réseau.

Mots clés: Recherche opérationnelle, Optimisation combinatoire, Conception de réseaux

robustes, Théorie des graphes, Programmation en nombres entiers, Câblage de parcs

éoliens.
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Abstract

Nowadays, the design of networks has become a decisive problematic which appears

in many fields such as transport or energy. In particular, it has become necessary and

important to optimize the way in which networks used to produce, collect or transport

energy are designed. We focus in this thesis on electricity produced through wind farms.

The production of energy by wind turbines appears more than ever like a good alterna-

tive to the electrical production of thermal or nuclear power plants, giving that both of

those production can have harmful consequences on the environment. It has then become

necessary to optimize the design and construction of such networks.

We focus in this thesis on the design of the cabling network which allows to collect and

route the energy from the wind turbines to a sub-station, linking the wind farm to the

electrical network. In this problem, we know the location of each wind turbine of the farm

and the one of the sub-station. We also know the location of possible inter-connection

nodes which allow to connect different cables between them. Each wind turbine produces

a known quantity of energy and with each cable are associated a cost and a capacity (the

maximum amount of energy that can be routed through this cable). The optimization

problem that we consider is to select a set of cables of minimum cost such that the energy

produced from the wind turbines can be routed to the sub-station in the network induced

by this set of cables, without exceeding the capacity of each cable. We focus on cabling

networks resilient to breakdowns.

Keywords : Operations Research, Combinatorial optimization, Robust networks design,

Graph theory, Mixed integer programming, Wind farm cabling networks.
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Résumé long
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Résumé long

Au 21ème siècle, il semble que l’un des plus grands défis auxquels notre population

sera confrontée est le réchauffement climatique. La température de l’air a augmenté de

1,5 degré depuis l’ère pré-industrielle et cette augmentation a été liée aux activités hu-

maines. Presque tous les spécialistes de la communauté s’accordent à dire que la cause

majeure de ce réchauffement climatique peut être attribuée à l’augmentation de la pro-

duction de gaz à effet de serre (causée principalement par les émissions de monoxyde de

carbone ou de méthane). Les conséquences pourraient être diverses et terribles : pour le

climat (par exemple, chaleur extrême dans certaines parties du globe ou augmentation des

phénomènes météorologiques extrêmes tels que tempêtes, inondations, cyclones et sécher-

esses) ; pour l’écosystème et la biodiversité (élévation du niveau des océans, destruction

d’écosystèmes fragiles comme les récifs coralliens et la forêt amazonienne et disparition

d’un grand nombre d’espèces animales) ; pour notre société et son économie (infrastruc-

tures pour s’adapter comme des installations médicales, de santé publique et capacité à

alimenter la population). De nombreuses forces semblent apparaitre pour lutter contre le

réchauffement climatique et impliquer l’écologie dans notre mode de vie (réduire notre con-

sommation d’énergie, limiter le gaspillage alimentaire, optimiser la gestion des ressources,

éviter de consommer des produits à forte empreinte carbone). Le développement durable,

qui vise à exploiter les ressources naturelles et biologiques à un rythme qui ne conduise pas

à l’appauvrissement ni même à l’épuisement mais qui permet de maintenir la productivité

biologique des ressources de la biosphère, apparaît comme une orientation intéressante

afin de limiter ces conséquences. En ce qui concerne la production d’électricité, les parcs

éoliens, les panneaux photovoltaïques et les installations hydro-électriques semblent être

des pistes intéressantes pour réduire les émissions de gaz à effet de serre.
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RÉSUMÉ LONG

Aujourd’hui, la conception des réseaux est devenue une problématique décisive qui

apparaît dans de nombreux domaines tels que les transports, les télécommunications ou

l’énergie. En particulier, il est devenu important, voire nécessaire, d’optimiser la con-

ception des réseaux de production, de collecte ou de transport de l’énergie. Nous nous

intéressons dans cette thèse à l’électricité produite par des parcs éoliens. La production

d’énergie par des éoliennes apparaît plus que jamais comme une bonne alternative à la

production électrique des centrales thermiques ou nucléaires, étant donné que ces deux pro-

ductions peuvent avoir des conséquences néfastes sur l’environnement. Le développement

des parcs éoliens est alors un enjeu mondial et il est donc devenu nécessaire d’optimiser la

conception et la construction de tels réseaux.

Nous nous concentrons dans cette thèse sur la conception du réseau de câblage qui

permet de collecter et d’acheminer l’énergie produite par les éoliennes vers une sous-

station, reliant le parc éolien au réseau électrique. Dans ce problème, nous connaissons

l’emplacement de chaque éolienne du parc et celui de la sous-station. Nous connaissons

également l’emplacement des nœuds d’interconnexion possibles qui permettent de con-

necter différents câbles entre eux. Chaque éolienne produit une quantité d’énergie connue

et à chaque câble est associé un coût et une capacité (la quantité maximale d’énergie

qui peut être acheminée par ce câble). Le problème d’optimisation que nous considérons

est de choisir un ensemble de câbles de coût minimum afin que l’énergie produite par les

éoliennes puisse être acheminée vers la sous-station du réseau induite par cet ensemble de

câbles, sans dépasser la capacité de chaque câble. Il doit donc exister un chemin utilisant

des câbles entre chaque turbine et la sous-station, mais pas nécessairement avec des nœuds

d’interconnexion, qui sont des points optionnels dans le réseau.

Dans ce contexte, des pannes peuvent survenir sur les câbles ou les appareils du réseau

(dues à l’environnement ou à un problème avec une turbine ou un noeud d’interconnexion

par exemple). Nous nous concentrons plus précisément sur la conception de réseaux ro-

bustes (ou résilients) pour plusieurs notions robustes qui seront définies dans cette thèse.

Nous prenons en compte une certaine incertitude des données : nous considérons le cas

des pannes sur les câbles ou les nœuds une fois le réseau construit (dans cette thèse nous

nous concentrons sur les pannes sur les câbles, mais les pannes sur les nœuds peuvent être
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RÉSUMÉ LONG

réduites aux pannes sur les câbles après une transformation du graphe). Nous visons alors

à minimiser le coût du réseau à construire tout en respectant les contraintes de robustesse

permettant de limiter les répercussions néfastes en cas de panne sur un ou plusieurs câbles

du réseau.

Dans le cadre de cette thèse, nous avons été en contact avec EDF (Électricité de

France), premier producteur et fournisseur d’électricité en France, via un projet PGMO

(Programme Gaspard Monge pour l’Optimisation de la Fondation Mathématique Jacques

Hadamard) et des ingénieurs travaillant dans le domaine des énergies renouvelables. Il

semble que les aspects combinatoires et discrets de ces problèmes aient été peu étudiés

jusqu’à présent chez EDF. Si la conception des réseaux de câblage présente des enjeux

économiques importants, la robustesse et la résistance aux pannes sont également des

critères importants. Des travaux ont également été réalisés avec la société canadienne

Hatch, ce qui nous a conduit à tester nos travaux sur des données réelles (nous pouvons

souligner que les parcs éoliens français sur lesquels nous travaillons avec EDF sont offshore

alors que les parcs éoliens canadiens sont onshore). Dans l’environnement offshore, chaque

éolienne produit à peu près la même quantité d’électricité, de sorte que l’on peut supposer

que l’énergie produite par les éoliennes est uniforme.

Dans cette thèse, nous alternons entre des problèmes plus théoriques liés à la con-

ception des réseaux de câblage de parcs éoliens en reformulant l’ensemble des contraintes

électriques en contraintes de flot classiques (comme les chapitres 1, 2 et 3) et des prob-

lèmes pratiques liés aux données réelles et contraintes techniques en électricité (chapitre

4). Nous étudions des problèmes qui sont des généralisations du problème de l’arbre de

Steiner : étant donné un graphe avec un ensemble de sommets, un ensemble d’arcs et un

sous-ensemble de sommets appelés terminaux, ce problème vise à trouver un arbre du coût

minimum couvrant tous les terminaux. Les sommets qui ne sont pas des terminaux sont

appelés sommets de Steiner. Nous introduisons un sommet racine dans nos problèmes.

Dans notre application de parc éolien, les éoliennes correspondent aux terminaux, la sous-

station à la racine, et les nœuds d’interconnexion aux sommets de Steiner. Notre objectif

est de résoudre ces généralisations des problèmes de l’arbre de Steiner en tenant compte

de la robustesse et des capacités des arcs.
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RÉSUMÉ LONG

Dans le chapitre 0.2, nous présentons et définissons quelques notions, notations et méth-

odes utilisées dans cette thèse. Nous définissons également les problématiques étudiées.

Nous présentons quelques résultats préliminaires et résumons quelques travaux antérieurs

trouvés dans la littérature.

Après discussion avec les ingénieurs d’EDF, il est apparu que les contraintes élec-

triques peuvent être formulées comme des contraintes de flot classiques si le réseau de

solutions est une arborescence. Ainsi, dans le chapitre 1, nous réduisons le problème à

la recherche d’une arborescence de Steiner qui respecte les contraintes de capacité. Nous

nous concentrons sur la conception des arborescences de Steiner pour lesquelles nous es-

sayons de réduire l’impact néfaste d’une suppression d’arc dans la solution arborescente,

selon plusieurs critères d’optimisation, à un coût raisonnable. Nous donnons des résultats

de complexité et proposons plusieurs formulations testées sur des données réelles.

Dans nos applications de parcs éoliens, les terminaux produisent de l’énergie, donc le

flot d’énergie doit être acheminé des terminaux vers la racine. Cependant, cela est stricte-

ment équivalent à considérer que l’on achemine l’énergie de la racine vers les terminaux

(dans un digraphe, il suffit de prendre les arcs opposés alors qu’il n’y a aucun changement

dans un graphe non dirigé). De plus, dans les applications de parcs éoliens offshore, on

considère souvent que l’énergie produite par les éoliennes est uniforme, ce qui équivaut à

considérer une demande unitaire et une capacité d’arc peut alors être considérée comme

le nombre de terminaux qui peuvent être reliées à la racine par cet arc.

Dans cette section, nous étudions le problème de la conception de réseaux résilients

à un nombre donné de suppressions d’arc. Une solution réalisable au problème que nous

considérons est un réseau enraciné en une racine donnée et couvrant un ensemble donné

de terminaux, et tel que, après avoir supprimé tout ensemble de k arcs, il est toujours

possible de router une unité de flot de la racine vers chaque terminal (voir Sous-section

0.2.3 en introduction), en respectant les capacités indiquées sur les arcs. Formellement,
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nous définissons le problème suivant:

Problème de réseau de Steiner enraciné k-arc connecté avec contraintes de

capacité (CRkECSN)

INSTANCE : Un digraphe connecté G = (V, A, r, T, u, c) avec un ensemble de sommets

V , un ensemble d’arcs A, une racine r ∈ V , un ensemble de terminaux T ⊆ V \ {r},

une fonction de capacité entière u sur A, une fonction de coût c sur A, un entier k à

1 ≤ k ≤ |A| − 1.

QUESTION : Trouver un sous-ensemble A′ ⊆ A de coût minimum tel qu’il y ait

un flot réalisable (c’est-à-dire respectant les capacités de l’arc) acheminant une unité de

flot de r vers chaque sommet de T dans le sous-graphe de G induit par A′, même si un

ensemble de k arcs de A′ est supprimé.

Puisque nous considérons que nous acheminons une unité de flot de la racine vers

chaque terminal, il est équivalent à considérer que la capacité uij correspond au nombre

maximum de terminaux qui peuvent être reliés à la racine par l’arc (i, j).

Afin de simplifier les formulations proposées dans les sections suivantes, nous ajoutons

au graphe d’entrée un sommet s (qui correspond à un puits fictif) relié à chaque terminal

t ∈ T par un arc fictif (t, s) avec cts = 0 et uts = 1. Ensuite, s est ajouté à V et les arcs

fictifs sont ajoutés à A, et nous désignons par AI l’ensemble des arcs initiaux. Nous avons

le fait suivant :

Fact 0.0.1 Trouver un flot qui achemine une unité de flux entre r et chaque terminal

dans le graphe d’entrée équivaut à trouver un flot de valeur |T | entre r et s dans le graphe

transformé avec le puits et les arcs fictifs.

Nous proposons alors une formulation bi-niveau pour résoudre ce problème. La for-

mulation bi-niveau proposée ici est particulière dans la mesure où le deuxième niveau est

un problème minmax. Il peut être vu comme un jeu avec un défenseur et un attaquant
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RÉSUMÉ LONG

(correspondant respectivement au leader et au suiveur).

Pour chaque (i, j) ∈ A, nous introduisons une variable xij qui correspond à la quantité

de flux que le défenseur choisit de faire passer par l’arc (i, j). La variable y est une variable

binaire de sélection d’arc dans le réseau final. Nous introduisons également les variables

binaires bij , ∀(i, j) ∈ A : bij = 1 si et seulement si l’attaquant choisit de supprimer l’arc

(i, j). De plus, nous supposons sans perte de généralité qu’il n’y a pas d’arc entrant r.

Ensuite, nous pouvons définir le polyèdre suivant :

X (y, b) =





∑

i∈Γ−(j)

xij −
∑

k∈Γ+(j)

xjk = 0 ∀j ∈ V \ {r, s}

xij ≤ uijyij ∀(i, j) ∈ A

xij ≤ uij(1 − bij) ∀(i, j) ∈ A

xij ≥ 0 ∀(i, j) ∈ A





(1a)

(1b)

(1c)

Ce polyèdre X (y, b) correspond à l’ensemble des flots possibles sur le sous-graphe de

G induits par les arcs (i, j) ∈ A tels que yij = 1, s’ils n’ont pas été supprimés, soit bij = 0.

Le polyèdre X (y, b) est défini par les contraintes de conservation du flot, les contraintes de

capacité et les contraintes imposant un flot égal à 0 sur tout arc qui est supprimé. Nous

définissons également le polyèdre suivant :

B = { b ∈ {0, 1}|A| |
∑
(i,j)∈A bij ≤ k ; bts = 0 ∀t ∈ T }

Le polyèdre B définit l’ensemble des scénarios possibles de défaillances d’arc (il garantit

qu’aucun arc fictif ne peut être supprimé). Nous proposons le programme bi-niveau suivant

:

(BILEV EL)

∣∣∣∣∣∣∣∣∣∣∣∣∣

min
y∈{0,1}|A|

∑

(i,j)∈A

cijyij

s.t. f(y) ≥ |T |

where f(y) = min
b∈B

max
x∈X (y,b)

∑

j∈Γ+(r)

xrj

(2a)

(2b)

où {(i, j) | yij = 1} définit l’ensemble des arcs sélectionnés. Au niveau supérieur, le
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défenseur sélectionne l’ensemble des arcs à ajouter au réseau, en choisissant une valeur de

y dans {0, 1}A. L’attaquant supprime alors certains arcs en définissant la variable b ∈ B

afin de minimiser le flot maximum que le défenseur calculera en définissant la variable x

dans le polyèdre de flot X (y, b). Le but du défenseur est de s’assurer que ce flot est au

moins égal à |T | (voir Contrainte (2a)).

Considérons le problème max dans le niveau inférieur : à ce stade, y et b sont déjà fixés

; nous appelons leurs valeurs ŷ et b̂ respectivement. Le problème est un problème de max-

flow de r à s, avec deux ensembles de contraintes de capacité. Dans notre problème, le flot

doit être entier puisqu’il correspond à un certain nombre de terminaux. Cependant, il est

bien connu que la matrice des coefficientsM dans la formulation de l’arc d’un max-flow est

totalement unimodulaire (voir Sous-section 0.2.2 dans l’introduction). Ensuite, ajouter le

second ensemble de contraintes de capacité équivaut à ajouter la matrice d’identité à M :

la matrice reste totalement unimodulaire et, puisque les capacités sont entières, on s’assure

que les points extrêmes du polyèdre défini par X (y, b) ont des coordonnées entières. Ainsi,

nous pouvons relâcher les contraintes d’intégralité sur x.

Dans le problème max du niveau inférieur (i.e. maxx∈X (y,b)
∑

j∈Γ+(r) xrj), il existe

toujours un flot réalisable de valeur 0 et le problème est aussi trivialement borné par |T |.

Par conséquent, la dualité forte tient et nous pouvons introduire le dual du problème

de niveau inférieur, où µ est la variable associée aux Contraintes (1a) tandis que λ et γ

sont respectivement associés aux Contraintes (1b) et (1c). Après une légère reformulation

due à l’ajout de µr et µs, le dual peut être écrit comme suit (voir Sous-section 0.2.2 en

introduction) :

(Φ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
λ,µ,γ

∑
(i,j)∈A

uij ŷijλij +
∑

(i,j)∈A

uij(1 − b̂ij)γij

s.t λij + γij − µi + µj ≥ 0 ∀(i, j) ∈ A

µr = 1

µs = 0

λ, γ ∈ [0, 1]|A|, µ ∈ [0, 1]|V |

(3a)

(3b)

(3c)

(3d)
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Parce que (Φ) est le dual du problème maxx∈X (y,b)
∑

j∈Γ+(r) xrj , nous avons que la

matrice de contraintes de (Φ) est totalement unimodulaire (parce que c’est la transposi-

tion d’une matrice totalement unimodulaire, voir Propriété 0.2.1 dans la sous-section 0.2.2

de l’introduction). Ainsi, les points extrêmes de (Φ) sont entiers. Ce problème est une

formulation spéciale d’un problème de coupe minimum : µ définit les deux parties de la

coupe, les variables γ et λ définissent les arcs de la coupe correspondante : pour chaque

arc (i, j) dans la coupe, nous avons soit λij = 1 ou γij = 1. Nous désignons par D le

polyèdre défini par deux Contraintes (3a)−(3d).

Puisque le niveau inférieur peut être reformulé en fonction min−min en utilisant le

dual décrit ci-dessus, il peut alors être réécrit comme suit :

(LL)

∣∣∣∣∣∣∣∣

min
b,λ,µ,γ

∑
(i,j)∈A

uij ŷijλij + uij(1 − bij)γij

s.t b ∈ B
(λ, µ, γ) ∈ D

A ce stade, b est une variable, donc la fonction objectif est non linéaire. Nous linéarisons

les termes bijγij de manière classique en introduisant des variables lij = bijγij où lij vérifie

l’ensemble des contraintes définies par L(b, γ) :

L(b, γ) =





l ∈ R
|A|

∣∣∣∣∣∣∣∣∣

lij ≤ bij ∀(i, j) ∈ A
lij ≤ γij ∀(i, j) ∈ A
lij ≥ γij − (1 − bij) ∀(i, j) ∈ A
lij ≥ 0 ∀(i, j) ∈ A





Le niveau inférieur peut alors être réécrit comme suit:

(LL)

∣∣∣∣∣∣∣∣∣∣

min
b,λ,µ,γ

∑
(i,j)∈A

uij ŷijλij + uijγij − uijlij

s.t b ∈ B
(λ, µ, γ) ∈ D
l ∈ L(b, γ)
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On définit alors la fonction g:

g(y, λ, γ, l) =
∑

(i,j)∈A

uijyijλij + uijγij − uijlij

On peut ensuite réécrire le programme bi-niveau comme suit:

min
y∈{0,1}|A|

∑
(i,j)∈A

cijyij

s.t f(y) ≥ |T |
where f(y) = min

b,λ,γ,µ,l
g(y, λ, γ, l)

s.t. b ∈ B
(λ, µ, γ) ∈ D
l ∈ L(b, γ)

On peut alors considérer l’enveloppe convexe du polyèdre de second niveau définie par

B, D et L(b, γ), et désigner par H l’ensemble de ses points extrêmes. On peut remarquer

que cette enveloppe convexe ne dépend pas de y (g(·) seulement) : l’ensemble des points

extrêmes H reste le même pour chaque y ∈ {0, 1}A. Nous désignons par (λ̂h, γ̂h, l̂h) les

valeurs respectives de (λ, γ, l) au point extrême h ∈ H. Nous pouvons ensuite reformuler

la formulation à deux niveaux en une formulation à un seul niveau comme suit :

min
∑

(i,j)∈A

cijyij

s.t. g(y, λ̂h, γ̂h, l̂h) ≥ |T | ∀h ∈ H

y ∈ {0, 1}|A|

(BP) b ∈ B

(λ, µ, γ) ∈ D

l ∈ L(b, γ)

(4a)

(4b)

(4c)

(4d)

(4e)

Les contraintes (4a) assurent que, pour chaque point extrême deH, f(y) est supérieur à

|T | (donc la valeur minimale de f(y) sur le polyèdre défini par les contraintes (4b)−(4e) est

supérieur à |T |), ce qui signifie que la valeur d’un flot maximum ne peut devenir inférieure

à |T |, même après toute décomposition k.

Cependant, il existe un nombre exponentiel de Contraintes (4a). Pour résoudre ce

problème, nous utilisons un algorithme de génération de contraintes où nous relâchons les
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Contraintes (4a) et utilisons (LL) comme problème de séparation : si la valeur optimale de

(LL) est inférieure à |T | pour la solution actuelle ŷ (solution entière de (BP) avec seule-

ment un sous-ensemble de contraintes (4a) initialisées), nous générons des Contraintes (4a)

associées au point extrême dont les coordonnées sont les valeurs optimales de (b, λ, γ, µ, l)

en (LL).

Dans le chapitre 3, nous nous concentrons sur les graphes planaires pour le réseau de

Steiner enraciné k-arc connecté avec contraintes de capacités. Nous présentons une méth-

ode pour vérifier si un réseau est résilient ou non à la suppression d’un ensemble de k arcs

en utilisant la dualité des graphes planaires et les problèmes de plus courts chemins. Nous

proposons et décrivons un algorithme de recherche tabu dérivé de cette méthode. Nous

testons notre algorithme et comparons son efficacité aux méthodes exactes présentées au

chapitre 2.

Dans le chapitre 4, nous étudions le problème réel de la conception d’un réseau de

câblage de parc éolien avec des contraintes électriques de load flow. Nous expliquons

l’étude du load flow, qui correspond à une analyse numérique du flux d’énergie électrique

dans un système interconnecté. Nous devons nous assurer que l’énergie acheminée par

chaque câble respecte les capacités électriques du câble en utilisant les équations de load

flow pour analyser l’état du réseau électrique une fois le réseau construit. Comme l’analyse

du load flow est un système non linéaire, nous utilisons une approximation afin de les in-

clure dans un programme linéaire à nombres entiers mixtes. Nous testons notre algorithme

sur des données réelles et donnons des résultats numériques.

Cette thèse est issue d’un travail conjoint du Conservatoire National des Arts et Métiers

(CNAM) de Paris, de l’ENSTA ParisTech et de Polytechnique Montréal, et aborde les prob-

lématiques de conception des réseaux soumis à des ruptures de arcs après leur conception.

Notre application principale étant la conception de réseaux de câblage de parcs éoliens,

nous avons travaillé avec un ingénieur d’EDF dans le cadre d’un projet PGMO (Programme

Gaspard Monge pour l’Optimisation, la recherche opérationnelle et leurs interactions avec

20



RÉSUMÉ LONG

les sciences des données) de la Fondation Mathématique Jacques Hadamard.

Dans ce qui suit, nous résumons les principales contributions et esquissons quelques

améliorations ou orientations de recherche pour l’avenir.

Les problèmes abordés dans cette thèse s’inspirent ou tournent autour du problème de

la conception d’un réseau de câblage d’un parc éolien avec plusieurs notions de robustesse.

Le développement durable étant aujourd’hui un objectif majeur, il apparaît important de

se concentrer sur plusieurs problèmes concernant les énergies renouvelables, y compris la

conception de tels réseaux de câblage.

Dans le chapitre 1, nous nous concentrons sur la conception de réseaux d’arborescence

(ou arbres enracinés). Dans ce contexte, les contraintes électriques peuvent être formulées

comme des contraintes de flot classiques. Nous donnons un théorème de complexité et sa

preuve qui dit que déterminer s’il y a un arbre de recouvrement enraciné, en respectant les

contraintes de capacité (qui dit pour chaque arc (i, j) que le nombre de sommets dans le

sous-arbre enraciné à j ne doit pas dépasser une valeur donnée uij), est un problème N P-

Complet, même dans le cas des capacités uniformes. Ce résultat prolonge un résultat de

Papadimitriou [Papadimitriou 1978], où un coût de sélection est associé à chaque arc du

graphe, qui indique que déterminer s’il existe un arbre enraciné respectant les contraintes

de capacité et sous un coût donné de sélection est N P-Complet. Nous étudions ensuite

la conception des arborescences de Steiner avec différentes notions de robustesse : nous

visons à concevoir des arborescences de Steiner en considérant le nombre de terminaux

déconnectées de la racine après une suppression d’arc dans plusieurs scénarios. Pour au-

tant que nous sachions, ce problème n’a pas été étudié dans la littérature. Nous donnons

plusieurs formulations pour différents scénarios et les testons sur des données réelles de

parcs éoliens afin d’évaluer leur impact sur le réseau conçu.

Dans le chapitre 2, nous introduisons un problème appelé CRkECSN : nous visons à

concevoir un réseau à coût minimum où nous pouvons acheminer une unité de flot de la

racine à chaque terminal en respectant les capacités (une quantité limitée de flot peut
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être acheminée par chaque arc) même dans le cas de la suppression d’un sous-ensemble

quelconque de k arcs dans le réseau construit (k étant un entier donné). Nous proposons

plusieurs formulations, dont une nouvelle formulation bi-niveau, où le deuxième niveau est

un problème min−max. Nous proposons également un algorithme basé sur la génération

de contraintes et donnons une méthode pour générer de meilleures contraintes à chaque

itération de l’algorithme (la contrainte améliorée interdit plus de solutions entières non

réalisables que la contrainte initiale). Nous montrons que la formulation à deux niveaux

est une reformulation d’une autre formulation basée sur les coupes dans le graphe. Nous

considérons la possibilité de protéger les arcs ; ces arcs ne peuvent pas être supprimés des

solutions. Nous donnons quelques résultats de test sur les instances générées et comparons

les performances de nos algorithmes.

Dans le chapitre 3, nous étudions également le CRkECSN, mais dans le cas des graphes

planaires. Ceci est motivé par le fait que les parcs éoliens en mer peuvent souvent être mod-

élisés par des graphes en grille. Le problème de déterminer si un graphe est k-survivable

(c.-à-d. résilient à la suppression de tout sous-ensemble de k arcs) est NP-complet dans

le cas général. Cependant, nous dérivons un théorème qui donne les propriétés sur le

graphe dual planaire d’un graphe k-survivable et l’étendons pour résoudre ce problème

en temps polynomial dans les graphes planaires, en déterminant une série de plus courts

chemins. Les méthodes exactes pour le CRkECSN ne peuvent résoudre que des cas de

taille relativement petite. Pour cette raison, nous décrivons également un algorithme de

recherche tabu qui peut traiter des instances beaucoup plus grandes, à condition qu’elles

soient planaires, et nous avons montré qu’il produit généralement des solutions optimales

lorsque celles-ci sont connues. Notre algorithme a des temps de calcul très courts, ce qui

le rend particulièrement intéressant dans la pratique, par exemple pour la conception de

réseaux de collecte de parcs éoliens survivables avec des centaines d’éoliennes.

Dans le chapitre 4, nous étudions le problème de la conception d’un réseau de câblage

pour parcs éoliens offshore tout en respectant les équations de load flow. L’analyse du load

flow correspond à un système non linéaire qui permet de déterminer l’état du réseau (cal-

culs des tensions, puissances et courants de phase à chaque noeud ou câble du réseau), puis
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de s’assurer que la puissance acheminée par chaque câble est inférieure à sa capacité max-

imale. Nous utilisons une approximation du courant continu pour obtenir des équations

linéaires. Ces équations sont ajoutées à un programme MIP (Mixed-Integer Program) et

nous montrons que, lorsque ces contraintes sont satisfaites, les équations de load flow le

sont et le réseau final est connecté. Nous donnons d’abord un MIP qui permet de résoudre

le problème dans le cas non robuste (où nous ne considérons pas la possibilité de pannes

sur les arcs). Dans un second temps, nous donnons un MIP pour le cas où k = 1 (une

panne peut se produire) et un algorithme de génération de contraintes pour le résoudre.

Nous testons ces MIP sur des données réelles fournies pour un parc éolien offshore. Enfin,

nous donnons une formulation à deux niveaux conçue pour résoudre le problème pour des

valeurs générales de k, et donnons des idées sur la façon de le résoudre efficacement.

Le travail présenté dans cette thèse a donné lieu à plusieurs questions ou pistes de

recherche intéressantes qu’il serait intéressant d’étudier dans l’avenir.

Il apparaît que les contraintes électriques que nous avons étudiées sont plus faciles à

prendre en compte lorsqu’on considère les réseaux arborescents. L’un des problèmes qu’il

serait intéressant d’étudier est une version plus restreinte du CRkECSN, où nous voulons

concevoir un réseau résilient à la suppression de tout sous-ensemble de k arcs et tel que le

flot résultant doit être acheminé de la racine vers les terminaux par un sous-réseau arbores-

cent (après suppression de ces k arcs). Nous avons commencé à étudier ce problème pour

k = 1 sur des graphes de grille avec des contraintes de capacité uniformes et nous avons

trouvé plusieurs propriétés pour des cas particuliers. Le problème semble plus difficile à

résoudre que le CRkECSN, car la contrainte que le flot doit passer par un sous-réseau

arborescent pour chaque scénario de suppression d’arc semble plus difficile à formuler que

le CRkECSN.

Nous pouvons également étudier le programme de bilevel proposé au chapitre 4. Cette

formulation propose des défis intéressants. Les formulations de programmation à deux

niveaux sont actuellement largement utilisées dans la littérature, et notre formulation

pour le deuxième niveau en utilisant des variables d’écart a un nombre de variables in-

férieur à celui que nous avons testé dans cette thèse. Une fois que le problème min a été
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dualisé au deuxième niveau, il peut être intéressant d’étudier différentes façons de résoudre

cette formulation.

Un autre aspect des cas réels qu’il pourrait être intéressant d’étudier est la stochasticité.

Pour les parcs éoliens offshore de puissance équivalente, l’énergie produite par chaque

éolienne est presque toujours la même, c’est pourquoi nous avons considéré une production

d’énergie fixe à chaque éolienne. Cependant, la production réelle dépend en partie de la

demande ou, dans les réseaux de parcs éoliens, de la quantité de vent, et il serait intéressant

de prendre en compte cette incertitude.
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Introduction

0.1 General introduction

In the 21st century, it appears that the biggest challenge that will face our popula-

tion is the global warming. The air temperature has been increased by 1.5 degrees since

preindustrial era and this rise has been linked to human activities. Almost all specialists

among the community agree that the major cause of this global warming can be attributed

to the increasing production of greenhouse gas (caused by carbon monoxide emission or

methane principally). The consequences could be diverse and terrible: for the climate (for

example extreme heat in some parts of the globe or increase of extreme weather events like

storms, floods, cyclones and droughts); for the ecosystem and the biodiversity (increase of

ocean levels, destruction of fragile ecosystems like coral reef and Amazon rainforest and

several extinctions of species); on our society and its economy (infrastructures to adapt

like medical ones or housings, public health and capacity to feed the population). Many

forces appear to fight the global warming and involve ecology in our way of life (reduc-

ing our consumption of energy, limiting the food waste, optimizing the management of

resources, avoiding to consume products with a high carbon print). Sustainable devel-

opment, which aims to exploit natural and biological resources at a rhythm which does

not lead impoverishment or even exhaustion but makes possible the sustain of biological

productivity of resources in the biosphere, comes out as a valid orientation in order to

limit those consequences. Regarding the electrical production, wind farms, photo-voltaic

panels and hydro-electrical facilities appear to be interesting directions in order to reduce

greenhouse gas emissions.
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0.1. GENERAL INTRODUCTION

Nowadays, the design of networks has become a decisive problematic which appears in

many fields such as transport, telecommunications or energy. In particular, it has become

important and even necessary to optimize the way in which networks used to produce,

collect or transport energy are designed. We are interested in this thesis on electricity

produced through wind farms. The production of energy by wind turbines appears more

than ever like a good alternative to the electrical production of thermal or nuclear power

plants, giving that both of those productions can have harmful consequences on the envi-

ronment. The development of wind farms is then a global issue and hence it has become

necessary to optimize the design and construction of such networks.

We focus in this thesis on the design of the cabling network which allows to collect and

route the energy from the wind turbines to a sub-station, linking the wind farm to the

electrical network. In this problem, we know the location of each wind turbine of the farm

and the one of the sub-station. We also know the location of possible inter-connection

nodes which allow to connect different cables between them. Each wind turbine produces

a known quantity of energy and with each cable are associated a cost and a capacity (the

maximum amount of energy that can be routed through this cable). The optimization

problem that we consider is to select a set of cables of minimum cost such that the energy

produced from the wind turbines can be routed to the sub-station in the network induced

by this set of cables, without exceeding the capacity of each cable. Hence there must exist

a path using cables between each turbine and the substation, but not necessarily with

inter-connection nodes, which are optional points in the network.

In this context, breakdowns can occur on cables or devices of the network (caused by

the environment or by a problem with a turbine or inter-connexion node for example).

We focus more precisely on the design of robust (or resilient) networks for several robust

notions that will be defined in this thesis. We take into account some data incertitude:

we consider the case of breakdowns on cables or nodes once the network is built (in this

thesis we focus on breakdowns on cables, but breakdowns on nodes can be reduced to

breakdowns on cables after a transformation of the graph). We then aim to minimize
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the cost of the network to build while respecting robustness constraints allowing to limit

the damaging repercussions in case of a breakdown on one or several cables in the network.

In the context of this thesis, we have been in contact with EDF (Électricité de France),

first producer and supplier of electricity in France, via PGMO (Programme Gaspard Monge

pour l’Optimisation de la Fondation Mathématique Jacques Hadamard) and engineers

working in the field of renewable energy networks. It appears that combinatorial and dis-

crete aspects of those problems have been sparsely studied until now at EDF. Although the

design of the cabling networks presents high economic stakes, robustness and resilience to

breakdowns are important criteria too. Some work has also been done with the Canadian

company Hatch, which led us to test our work on real data (we can underline that the

French wind farms we have been working on with EDF are offshore whereas Canadian

wind farms are onshore). In offshore environment, each wind turbine produces about the

same quantity of electricity, so we can make the assumption that the energy produced by

the wind turbines is uniform.

In this thesis, we alternate between more theoretical problems related to the design of

wind farm cabling networks by reformulating the set of electricity constraints into clas-

sical flow constraints (like Chapters 1, 2 and 3) and practical problems with real data

and technical constraints related to electricity (Chapter 4). We study problems which are

generalizations of the Steiner tree problem: given a graph with a set of vertices, a set

of edges and a subset of vertices called terminals, this problem aims at finding a tree of

minimum cost spanning all the terminals. The vertices which are not terminals are called

Steiner vertices. We introduce a root vertex in our problems. In our wind-farm applica-

tion, the wind turbines correspond to the terminals, the substation to the root, and the

inter-connection nodes to the Steiner vertices. We aim at solving generalizations of Steiner

tree problems taking robustness and edge capacities into account.

In Chapter 0.2, we introduce and define some notions, notations and methods used in

this thesis. We also define the studied problematics. We present some preliminary results
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and summarize some previous works found in the literature.

Following discussions with EDF engineers, it appeared that the electrical constraints

can be formulated as classical flow constraints if the solution network is an arborescence.

Hence, in Chapter 1, we reduce the problem to the search for a Steiner arborescence which

respects the capacity constraints. We focus on the design of Steiner arborescences for

which we try to reduce the damaging impact of an arc deletion in the arborescence solu-

tion, according to several optimization criteria, at a reasonable cost. We give complexity

results and propose several formulations tested on real data.

In our wind farm applications, the terminals produce energy, so the energy flow should

be routed from the terminals to the root. However, it is equivalent to consider that we

route the energy from the root to the terminals (in a digraph, we just have to take the

opposite arcs whereas there are no changes in an undirected graph). Furthermore, in off-

shore wind farm applications, we often consider that the energy produced by the wind

turbines is uniform, which is equivalent to consider a unit demand and an arc capacity

can then be seen as the number of terminals that can be linked to the root through this arc.

In Chapter 2, we define the Capacitated Rooted k-Edge Connected Steiner Network:

given a connected graph with a root vertex, a set of terminals and integer capacity and

cost on each arc of the graph, we aim to find a subset of arcs of minimum cost such that

there exists a feasible flow (i.e. respecting the capacities) routing one unit of flow from the

root to each terminal in the subgraph induced by those arcs, even if a given number k of

arcs is deleted. This problem is equivalent to finding a robust cabling network in a wind

farm, when the electricity constraints are formulated as classical flow constraints. We give

several formulations, including a new bilevel formulation, study the relations between the

different formulations, and test them in order to compare their efficiency.

In Chapter 3, we focus on planar graphs for the Capacitated Rooted k-Edge Con-

nected Steiner Network. We present a method to check whether a network is resilient
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or not to the deletion of any set of k arcs using planar graph duality and shortest paths

problems. We propose and describe a tabu search algorithm derived from this method.

We test our algorithm and compare its efficiency to exact methods presented in Chapter 2.

In Chapter 4, we study the real-life problem of designing a wind farm cabling network

with electrical constraints of load flow. We explain the load flow study, which corresponds

to a numerical analysis of the flow of electric power in an interconnected system. We must

ensure that the power routed through each cable respects the electric capacities of the

cable using the load flow equations to analyze the state of the electric network once the

network is built. Since the load flow analysis is a non-linear system, we use an approxima-

tion in order to include them into a mixed-integer linear program. We test our algorithm

on real data and give numerical results.

In a concluding chapter, we give some perspectives and future work leads.

0.2 Preliminaries

0.2.1 General notions in graph theory

In this section, we recall some notions from graph theory that will be used in this

thesis. For more information about graph theory, the reader is referred to [Berge 1973;

West 2001].

Formally, a directed graph (or digraph) G = (V, A) is defined by a set of vertices V and

a set of arcs A ⊆ V × V . The set of predecessors (respectively successors) of a vertex v in

G is defined by Γ−
G(v) (respectively Γ

+
G(v)). For a subset of vertices S ⊂ V in G, we define

δ−
G(S) = {(i, j) ∈ A | i ∈ V \S, j ∈ S} (respectively δ+G(S) = {(i, j) ∈ A | i ∈ S, j ∈ V \S})

as the set of arcs entering (resp. leaving) S. When there are no ambiguities about the

related graph G, we can refer to those sets as Γ−(v), Γ+(v), δ−(S) and δ+(S), respectively.

An undirected graph G′ = (V, E) is defined by a set of vertices V and a set of edges
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E ⊆ V × V . The set of neighbors of a vertex v ∈ V is denoted by ΓG′(v). For a subset of

vertices S ⊂ V in G′, we define δG′(S) as the set of edges [u, v] incident to S in G′ (u ∈ S

and v ∈ V \ S). When there are no ambiguities about the related graph G′, we can refer

to those sets as Γ(v) and δ(S) respectively.

Two paths p1 and p2 in a graph are said to be arc-disjoint (edge-disjoint in an undi-

rected graph) if there is no arc a which appears both in p1 and p2. In this thesis, we

will consider a special vertex r of a graph G, which is the root of the graph (i.e. there

exists a path between r and every vertex of G). A graph is said to be connected if there

is an undirected path between u and v for each pair of vertices u, v ∈ V 2. In a digraph

G = (V, A) (resp. an undirected graph G = (V, E)), an (i, j)−disconnecting set, with i

and j two distinct vertices of V , is a set of arcs D ⊆ A (resp. a set of edges D ⊆ E) such

that there are no path from i to j in the graph G′ = (V, A \ D) (resp. G′ = (V, E \ D)).

A graph (respectively digraph) is said to be k-edge-connected (resp. k-arc-connected) if

it remains connected (resp. strongly connected) whenever fewer than k edges (resp. arcs)

are removed.

Theorem 0.2.1 (k-edge-connectivity [Menger 1927]) If i and j are two vertices of

a digraph (resp. undirected graph), the minimum size of an (i, j)−disconnecting set is

equal to the maximum number of pairwise arc-disjoint (resp. edge-disjoint) paths from i to

j. Moreover, a graph G is k-edge-connected if and only if there exist k pairwise arc-disjoint

paths (resp. edge-disjoint) between each pair of vertices in G.

0.2.2 Flows and networks

We introduce here different notions about network flows; the reader is referred to

[Ahuja, Orlin, and Magnanti 1993] for more information about this topic. We define a

network as a digraph G = (V, A) with a non-negative capacity uij on each arc (i, j) ∈ A,

a distinguished root r ∈ V (also called source vertex) and a sink vertex s ∈ V . A flow x

is a function that assigns a value xij to each arc (i, j) ∈ A. A feasible flow satisfies the

capacity constraints 0 ≤ xij ≤ uij for each arc (i, j) ∈ A and the conservation constraints
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∑
u∈Γ−(v) xuv =

∑
w∈Γ+(v) xvw for each vertex v ∈ V \ {r, s}. The value of such a flow

is equal to
∑

v∈Γ+(r) xrv −
∑

u∈Γ−(r) xur =
∑

i∈Γ−(s) xis −
∑

j∈Γ+(s) xsj . In this thesis, we

assume without loss of generality that, in any network we consider, there are no arcs en-

tering the root r and no arcs leaving the sink s. Thus, the value of a flow x is equal to
∑

v∈Γ+(r) xrv =
∑

i∈Γ−(s) xis. A maximum flow is defined as a feasible flow of maximum

value.

In a network, for a given subset of vertices S ⊂ V with r ∈ S and s ∈ V \ S, we refer

to the partition [S, V \ S] of V as an r − s cut. The cut-set associated with S is the set of

arcs going from a vertex of S to a vertex of V \ S, i.e. the cut-set corresponds to δ+(S)

or δ−(V \ S). The capacity of a cut (or the capacity of a cut-set) is defined as the sum

of the capacities of the arcs of its cut-set, i.e.
∑
(i,j)∈δ+(S) uij . We recall the well-known

following theorem:

Theorem 0.2.2 (Max-flow min-cut theorem [Ford and Fulkerson 1956]) In a net-

work with a root r and a sink s, the minimum capacity of a r−s cut is equal to the maximum

value of a feasible flow from r to s.

The problem of searching for a maximum flow (respectively a minimum r − s cut) in

a network is called the maximum flow problem (respectively the minimum cut problem).

The flow xij on each arc (i, j) ∈ A is not constrained to be integer. However, in this thesis

we will work on integer flows because of the applications we are considering. Thus, we

remind the following theorem:

Theorem 0.2.3 (Integrality Theorem [Ahuja, Orlin, and Magnanti 1993]) If all

capacities in a network are integer, then there exists a maximum flow in which the amount

of flow on each arc is integer. Furthermore, a maximum flow can be partitioned into flows

of integer values along paths from the root to the sink.

Theorem 0.2.3 allows to relax the integrality constraint on the value of the flow when

searching for a maximum flow. We introduce the following well-known linear formulation

39



0.2. PRELIMINARIES

for the maximum flow problem:

(MAX − FLOW )

∣∣∣∣∣∣∣∣∣∣∣∣∣

max
x

∑

v∈Γ+(r)

xrv

s.t.
∑

i∈Γ−(j)

xij −
∑

k∈Γ+(j)

xjk = 0 ∀j ∈ V \{r, s}

0 ≤ xij ≤ uij ∀(i, j) ∈ A

(5a)

(5b)

where the variable xij defines for each arc (i, j) the amount of flow routed through

(i, j). We introduce Remark 0.2.1:

Remark 0.2.1 If there exist two vertices i and j in V \ {r, s} such that {(i, j), (j, i)} ⊂ A

and a flow defined by x such that xij > 0 and xji > 0, then there always exists a flow x′

of equal value with either x′
ij = 0 or x′

ji = 0.

Proof: Let us suppose that a given feasible flow x assigned to a network G = (V, A) is

such that there exist two vertices i and j in V such that (i, j), (j, i) ∈ A and there is a

positive amount of flow on both arcs (i.e. xijxji > 0). By reducing the flow on both arcs

by min(xij , xji), we find a flow x′ with either x′
ij = 0 or x′

ji = 0. The capacity constraints

are obviously satisfied because we only reduce the amount of flow on two arcs and they

were satisfied by x. The conservation constraints are also satisfied since we reduce the

amount of flow entering and leaving both i and j by min(xij , xji). Finally, the value of

the flow defined by x remains the same because
∑

i∈Γ−(s) xis is not changed. ✷

A matrix A is said to be totally unimodular if each square submatrix of A has a

determinant equal to −1, 0 or 1 (see [Schrijver 2003]). In particular, we have that each

entry of A is −1, 0 or 1.

Theorem 0.2.4 (Theorem 5.20 in [Schrijver 2003]) Let A be a totally unimodular

m × n matrix and let b ∈ Z
m. Then the polyhedron

P = {x|Ax ≤ b}

is integer.
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We have the following property and theorem on the totally unimodular matrices:

Property 0.2.1 Let A be a totally unimodular m × n matrix and Im the m × m identity

matrix. We have that −A, A⊤ and [A|Im] are totally unimodular matrices.

The matrix M associated with the left-hand side of Constraints (5a) is a sub-matrix

of the node-arc incidence matrix (we remove the rows associated to r and s) of a digraph.

Each column of the matrix corresponds to an arc (i, j): there is a 1 in the ith row and a

−1 in the jth row and the rest of the entries of the column are 0.

Theorem 0.2.5 (Theorem 11.12 in [Ahuja, Orlin, and Magnanti 1993]) The node-

arc incidence matrix M of a directed network is totally unimodular.

Following Theorems 0.2.4 and 0.2.5, we do not have to ensure that x is integer since

M is totally unimodular, which yields a proof of Theorem 0.2.3.

The dual of (MAX − FLOW ) corresponds to a formulation of the minimum-cut prob-

lem and can be written as follows:

min
µ,λ

∑

(i,j)∈A

uijλij

s.t. µv + λrv ≥ 1 ∀v ∈ Γ+(r)

µv − µu + λuv ≥ 0 ∀(u, v) ∈ A, u Ó= r, v Ó= s

− µu + λus ≥ 0 ∀u ∈ Γ−(s)

λij ≥ 0 ∀(i, j) ∈ A, µv ∈ R ∀v ∈ V \ {r, s}

(6a)

(6b)

(6c)

It can be reformulated, with the addition of variables µr and µs, as follows:

(MIN − CUT )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
µ,λ

∑

(i,j)∈A

uijλij

s.t. µv − µu + λuv ≥ 0 ∀(u, v) ∈ A

µr = 1

µs = 0

λij ≥ 0 ∀(i, j) ∈ A, µv ∈ R ∀v ∈ V

(7a)

(7b)

(7c)

In any optimal solution we have µv ∈ [0, 1] ∀v ∈ V , which implies λij ≤ 1 ∀(i, j) ∈

A. From Property 0.2.1, the transpose of a totally unimodular matrix is totally unimod-

ular, so the matrix of constraints of (MIN − CUT ) is totally unimodular, and thus there
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exists an optimal solution (λ∗, µ∗) with µ∗ ∈ {0, 1}|V | and λ∗ ∈ {0, 1}|A|. The dual problem

then formulates the minimum cut problem in this way: µ defines the partition associated

with the cut (we have µv = 1 if v is in the same part as the root and µv = 0 if v is in the

same part as the sink) while λ defines the cut-set (we have λij = 1 if the arc (i, j) is in

the cutset, i.e. µi = 1 and µj = 0).

In this thesis, we will consider arc-deletions in flow networks. However, vertices-deletion

can be considered using the same methods by a simple transformation of the input graph.

The graph transformation is the following: we replace each vertex v of the input graph

G by two vertices v1 and v2 and an arc (v1, v2) in the transformed graph and each arc

(u, v) is replaced by an arc (u2, v1). The deletion of the vertex v in the input graph then

corresponds to the deletion of the arc (v1, v2) in the transformed graph (as illustrated in

the example in Figure 1). For the non-oriented case, we can apply the transformation to

the bi-directed graph associated to the input graph.

v

i

j

w

z

(a) The vertex v in the input graph

v1 v2

i2

j2

w1

z1

(b) The arc (v1, v2) in the transformed graph

Figure 1: Example of graph transformation for the vertex v

0.2.3 Steiner trees and networks

We introduce in this subsection the concepts of Steiner trees and Steiner networks (see

[Hwang, Richards, and Winter 1992; Du, Smith, and Rubinstein 2013; Prömel and Steger

2012]). A tree is defined as a connected graph which is acyclic. Given an undirected graph

G = (V, E) and a subset of vertices T ⊆ V , a subgraph S of G is called a Steiner tree

if S is a tree containing all vertices of T . A vertex t ∈ T is called a terminal vertex (or

terminal) whereas a vertex v ∈ V \ T is called a Steiner vertex (or Steiner point). The

minimum Steiner tree problem can be defined as follows:
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Minimum Steiner Tree Problem

INSTANCE: A graph G = (V, E) and a set of terminals T ⊆ V .

PROBLEM: Find a minimum Steiner tree spanning T in G. That is, find a Steiner tree

S = (VS , ES) such that |ES | = min{|ES′ | | S′ = (VS′ , ES′) is a Steiner tree spanning T in G}.

Given a positive cost ce for each edge e ∈ E, we define similarly the Minimum-Cost

Steiner Tree Problem as the problem of finding a Steiner tree S = (VS , ES) for which

the sum of the costs ce′ for e′ ∈ ES is minimum. The Minimum-Cost Steiner Tree problem

is N P-hard and generalizes both the Minimum Spanning Tree problem and the Shortest

Path problem: if T = V , the Minimum Steiner Tree Problem is equivalent to the Minimum

Spanning Tree Problem whereas if |T | = 2, it is equivalent to the Shortest Path problem.

In this thesis, we consider Steiner problems with a root and a capacity uij on each

edge [i, j] in the graph. We consider that each terminal t ∈ T has the same demand and

we want to find a feasible flow (i.e. respecting the capacities defined by u and the flow

conservation constraints) such that a unit of flow is routed from the root to each terminal:

each terminal can hence be seen as a sink. We say that a feasible flow x routes one unit

of flow from the root r to each terminal if the flow conservation constraints are as follows:

∑

k∈Γ+(j)

xjk −
∑

i∈Γ−(j)

xij =





|T | if j = r
−1 if j ∈ T
0 otherwise

∀j ∈ V

If we add to the graph a fictive sink s with an edge (t, s) of capacity uts = 1 for each

terminal t ∈ T , our problem is equivalent to finding a feasible (r − s)-flow of value |T |.

0.3 Previous work

We summarize in this section the existing results in the literature for problems which

are related to the ones studied in this thesis.
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0.3.1 Wind farm cable layout optimization

The design of wind farms brings several challenges in optimization: one can think of

the optimization of the location of each wind turbine (a literature review for this kind

of problems is proposed by Gonzalez et al. [González, Payán, Santos, and González-

Longatt 2014]) or of the connection between the electric network and the wind farm [Qi,

Liang, and Shen 2015], for example. In this thesis, we will only consider the problem

of designing the cabling network that collects the energy produced by the wind turbines

and route it to the sub-station, once the locations of the different wind turbines are known.

Problems of designing the wind farm cabling network have already been studied in

the literature. Hertz et al. [Hertz, Marcotte, Mdimagh, Carreau, and Welt 2012] study

a real-life problem with real data for onshore wind farms, where several cable types are

available (subterranean or not). Furthermore, the energy produced by the wind turbines

and routed to the sub-station is non-splittable: once the energy is routed through a same

cable, it cannot be split and must be routed to the sub-station through the same path (i.e.

if a "chunk" of energy E is routed from u to v through the same cable with v different from

the substation, there exists a node w such that the "chunk" E is entirely routed from v to

w). The authors give mixed integer formulations and propose a cutting plane generation

method allowing to evaluate their algorithm on real data.

Other authors propose mixed integer formulations for the design of wind farm cabling

[Berzan, Veeramachaneni, McDermott, and O’Reilly 2011; Fagerfjäll 2010]. Regarding

offshore wind farms, Pillai et al. [Pillai, J, L, M, and de Laleu V 2015] propose a set of

algorithms computing approximate solutions in order to optimize successively the location

of the wind turbines and the design of the wind farm cabling network considering natu-

ral obstacles related to the environment. Fischetti and Pisinger [Fischetti and Pisinger

2018] also consider natural obstacles related to the environment but they additionally con-

sider the power losses related to the routing of electricity. They propose a mixed-integer

formulation and a method allowing to find good approximate solutions using matheuristics.

44



0.3. PREVIOUS WORK

To the best of our knowledge, there does not exist literature proposing a method that

could be applied to the problem of designing wind farm cabling networks with resilience

to breakdowns on cables and load flow constraints. In this thesis, we are interested in the

design of wind farm networks with such constraints.

0.3.2 Steiner arborescence problems

In some cases, production rules and electrical constraints related to the routing of elec-

tricity imply that the problem of designing such a wind farm cabling can be seen as the

search for a Steiner arborescence with capacity constraints and unitary demands. More

precisely, the problem can be defined as follows: we are given a graph with a subset of

vertices T and a root r, where each arc has a cost and a capacity. We look for an arbores-

cence rooted at r which contains each vertex of T , and such that, for each arc (i, j) of the

arborescence, the number of terminals in the sub-arborescence rooted at j is at most equal

to the capacity of (i, j). The problem is then a generalization of the Steiner arborescence

problem, but also a particular case of the generalized Steiner arborescence, in which there

is a fixed demand at each terminal and each arc capacity corresponds to the quantity of

demands which can be routed through this arc.

The minimum-cost (or weighted) Steiner tree problem (without capacity constraints)

has been widely studied in the literature; the reader is referred to [Du, Smith, and Rubin-

stein 2013; Hwang, Richards, and Winter 1992; Prömel and Steger 2012]. It has also

many applications in industry; see [Du and Hu 2008; Cheng and Du 2013]. This problem

is N P-hard even if all edge costs are equal (it corresponds to theMinimum Steiner Tree

Problem) and if G is planar [Garey and Johnson 1979]. However, if the number of ter-

minals is fixed, this problem can be solved in polynomial time [Dreyfus and Wagner 1971].

When taking into account the arc capacities, Papadimitriou shows that the problem is

N P-Hard in the spanning case (i.e. all vertices except the root are terminals) [Papadim-

itriou 1978]. The problem has been studied in the spanning case, and branch-and-bound
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as well as branch-and-price algorithms have been proposed [Chandy and Lo 1973; Uchoa,

Fukasawa, Lysgaard, Pessoa, De Aragao, and Andrade 2008]. Jothi and Raghavachari

[Jothi and Raghavachari 2005] and Arkin et al. [Arkin, Guttmann-Beck, and Hassin

2012] propose approximation algorithms when capacities are uniform.

Regarding Steiner arborescence problems with capacity constraints, Bentz et al. study

the complexity and approximation considering several parameters like the number of ter-

minals, the arc costs and the capacities [Bentz, Costa, and Hertz 2016]. Goemans and

Myung propose several Steiner tree formulations [Goemans and Myung 1993]. Bousba

et al. solve the Steiner arborescence problem with capacities and demands, which is a

generalization of the Steiner tree problem with capacities [Bousba and Wolsey 1991]:

each terminal has a specific amount of demand that must be routed from the root to this

terminal, and the capacity of an arc corresponds to the maximum amount of demands

that can be routed through this arc.

To the best of our knowledge, the design of Steiner trees with constraints of robustness,

i.e. where we aim to design trees which are not too much impacted by arc deletions, has

not been studied. However, different problems with arc deletions on trees have been

studied. Bazgan et al. [Bazgan, Toubaline, and Vanderpooten 2012] study the problem

of finding in a graph a subset of k edges whose deletion causes the largest increase in the

weight of a minimum spanning tree: they propose an enumeration algorithm and a MIP

to solve the problem. This problem has been shown to be N P-hard, and approximation

algorithms have been proposed [Frederickson and Solis-Oba 1999; Liang 2001]. However,

this problem considers the arc deletions before the design of the tree, whereas we consider

the arc deletions during the design of the tree.

0.3.3 Robust Steiner networks

Robust problems have been widely studied in continuous optimization [Ben-Tal, Goryashko,

Guslitzer, and Nemirovski 2004; Kouvelis and Yu 1997; Beyer and Sendhoff 2007] and

can be seen as problems modeling uncertainty, where the description of uncertainty is a

46



0.3. PREVIOUS WORK

deterministic variability of data or parameters. In this thesis, we consider an uncertainty

on the arcs (or cables in our application on wind farms): an arc can be deleted or not.

The robust aspect of "worst-case minimization" that we consider can be seen as the one

proposed by Bertsimas and Sim [Bertsimas and Sim 2004], who set an upper bound on

the total data uncertainty (budget of uncertainty).

More precisely, we address problems of designing networks in which we consider the

possibility of arc deletion: in our application, it corresponds to taking into account the risk

of a breakdown on one or several cables after the construction of the wind farm cabling

network. We estimate a budget of arc deletions k: there can be at most k simultaneous

arc deletions in the network (i.e. k breakdowns at the same time). The problem is then

to design a network which is still functional after the deletion of any set of k arcs.

In the literature, problems of designing survivable networks have been studied; the term

has been introduced by Steiglitz et al. [Steiglitz, Weiner, and Kleitman 1969]. Given a

graph G = (V, E) and a cost function on E, the problem consists in finding a subgraph of

G of minimum cost which respects some connectivity constraints. However, these connec-

tivity constraints can be defined in several ways in the literature.

On the one hand, it is possible to define a matrix R = [rij ]: a feasible solution must

then contain rij disjoint paths between each pair of vertices i and j. On the other hand,

connectivity requirements can be defined by a connectivity value rv given for each vertex

v, and we have to ensure that we have min(ri, rj) disjoint paths for each pair of vertices i

and j. In order to well dissociate the two problems, we refer to the first one as the Net-

work Design Problem with Connectivity Requirements (NDC) [Magnanti and Raghavan

2005] and to the second one as the Survivable Network Problem (SNP) [Steiglitz, Weiner,

and Kleitman 1969]. SNP is trivially a special case of NDC. Furthermore, the definition

of both problems can vary if we consider vertex-disjoint or edge-disjoint (or arc-disjoint

in directed graphs) paths. Those problems generalize well-studied problems such as the

minimum spanning tree (when all requirements are equal to 1), the minimum Steiner tree

47



0.3. PREVIOUS WORK

(when all requirements are equal to either 1 or 0) or the design of k-connected graphs at

minimum cost (when all requirements are equal to 0 or a given integer k).

Goemans and Bertsimas consider SNP in the case of edge-disjoint paths when the input

graph is complete [Goemans and Bertsimas 1993]. They give problem formulations and

properties on the structure of the continuous relaxation. They also propose a heuristic

which is based on solving several Steiner tree problems. This heuristic ensures a cost value

of at most 2min(logR, p) times the cost of an optimal solution, where R is the highest

connectivity requirement and p is the number of non-zero values in the connectivity re-

quirements.

Raghavan [Raghavan 1994] proposes a dual-ascent algorithm and new formulations

for NDC in the case of both vertex-disjoint and edge-disjoint paths. Williamson et al.

[Williamson, Goemans, Mihail, and Vazirani 1995] give an approximation algorithm run-

ning in polynomial time with an approximation radio equal to 2R (where R is defined as

previously), which has been enhanced afterward by Gabow et al. who propose an algo-

rithm with a better time complexity [Gabow, Goemans, and Williamson 1998]. Agrawal

et al. [Agrawal, Klein, and Ravi 1995] propose an approximation algorithm for NDC in

the case of arc-disjoint paths with a ratio equal to 2 logR when considering that an arc of

the input graph can be selected several times in a solution.

Grötschel et al. [Grotschel, Monma, and Stoer 1995] give properties on the structure

of an optimal solution for NDC allowing to design efficient heuristics. They also study the

polyhedral structure of the problem and propose a cutting plane algorithm based on those

results.

Mixed Integer Linear Programs for solving those problems often consist in formula-

tions based on the cut-sets of the input graphs. Magnanti and Raghavan [Magnanti and

Raghavan 2005] propose a formulation for NDC in the case of edge-disjoint paths based

on multi-commodity flows. They show that this formulation is stronger than the one us-
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ing cut-set. A method based on Benders decomposition is proposed by Botton et al. for

a problem with hop-constraints (the lengths of the different paths between vertices with

connectivity requirements should not exceed a given parameter) [Botton, Fortz, Gouveia,

and Poss 2013]. Kerivin and Mahjoub give a survey on this type of problems [Kerivin

and Mahjoub 2005].

One of the main problems we study is called the Capacitated Rooted k-Edge Connected

Steiner Network Problem: we aim to design a network of minimum cost in which, after

the deletion of any set of k arcs, we can still find a feasible flow (i.e. a flow respecting the

capacities) routing one unit of flow from the root to each terminal. Grotschel et al. study

this problem but do not take into account capacities, and use the connectivity requirement

function r like in SNP [Grotschel, Monma, and Stoer 1995]. In our case, the connectivity

requirement can be seen as using the requirement matrix R = [rij ] as in the case of

NDC, with the restriction that for each terminal t, we have rrt = k + 1 (where r denotes

the root vertex), and the value of each other entry in R is 0. Several authors take into

account capacities by considering a cost of allocation, whereas we consider fixed capacities

[Bienstock and Muratore 2000; Rajan and Atamtürk 2004]. Studies on more generalized

problems with multi-commodity flows have also been considered [Dahl and Stoer 1998;

Stoer and Dahl 1994]. There also exist studies of those problems in particular graphs

without the existence of root or the capacity constraints [Baïou and Mahjoub 1997;

Biha and Mahjoub 2000]. In this thesis we study the design of networks resilient to a

given number of arc-deletions and a single-source defined by the root, while taking fixed

capacities into account, whereas in the literature capacity allocation has been studied.

0.3.4 The k most vital arcs in flow networks and network interdiction
problems

Given a network with arc capacities, a root (or source) vertex r and a sink vertex s,

the problem of finding a subset of k arcs such that the deletion of these k arcs results in

the maximum decrease of the value of the maximum flow between r and s can be referred

as the k Most Vital Arcs Problem in Flow Networks (k-MVAPFN).

49



0.3. PREVIOUS WORK

Lubore et al. [Lubore, Ratliff, and Sicilia 1971] and Wollmer [Wollmer 1963] give fast

algorithms for the case where k = 1 using a sequence of maximum flow problems. Barton

[Barton 2005] proposes more efficient algorithms to solve the same problem for particular

graphs like acyclic graphs.

Ratliff et al. [Ratliff, Sicilia, and Lubore 1975] introduce the problem for a non-fixed

value of k. The problem has been generalized into the network interdiction problem by

Wood [Wood 1993]: he considers a deletion cost associated with each arc and a budget

B of deletion, the sum of the deletion costs of the arcs which are deleted must not ex-

ceed the budget B. Obviously, k-MVAPFN is a special case of the network interdiction

where B = k and all deletion costs are equal to 1. He shows that the problem is strongly

N P-hard for both k-MVAPFN and the network interdiction problem, and proposes a

mixed-integer formulation. This problem has several applications [Assimakopoulos 1987;

Ghare, Montgomery, and Turner 1971; Salmeron, Wood, and Baldick 2004].

On planar graphs, the problem becomes weakly N P-complete: Phillips [Phillips 1993]

and Zenklusen [Zenklusen 2010] propose algorithms using planar graph duality to solve

the problem in pseudo-polynomial time. We present in this thesis a tabu search using an

extension of those results in order to check whether a solution is feasible or not.
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Chapter 1

Robust arborescences

1.1 Introduction

In this chapter, we focus on finding a robust Steiner or spanning arborescence covering

the root and the terminals of G. Here, the robustness consists in finding a solution which

minimizes the number of terminals disconnected from the root in the worst case of an arc

failure.

This setting arises in some wind farm cabling problems, when technical constraints

impose that all electrical flows arriving at any device except the substation must leave it

through one and only one cable: an inclusion-wise minimal sub-network of G respecting

those constraints then corresponds to a Steiner anti-arborescence. The wind turbines are

identical, and the wind is assumed to blow uniformly, so we can assume without loss of

generality that each turbine produces one unit of energy. Then, A is the set of all pos-

sible cable locations, r is the sub-station collecting the energy and delivering it to the

electric distribution network, T represents the set of nodes where a wind turbine lies, and

V \ ({r} ∪ T ) is the set of Steiner nodes, corresponding to possible junction nodes between

cables. In that case, the flow is routed from the vertices of T to r, and we search for

an anti-arborescence. However, the problem is easily seen to be equivalent to the Steiner

arborescence problem, by reversing the flow circulation in the solution.

We begin by defining the problem and giving some complexity results, and then we
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propose mathematical formulations which are tested on real wind farm instances.

1.2 Definition of problems and complexity results

We assume in this section that the graph G = (V, E) is undirected. We define the

robust problem without capacity constraints as follows:

Robust Steiner Arborescence problem (RStA)

INSTANCE: A connected graph G = (V, E, r, T ) with r ∈ V and T ⊆ V \ {r}.

PROBLEM: Find an arborescence S = (VS , AS) such that VS ⊆ V , AS ⊆ E and

T ⊂ VS , which is rooted at r and minimizes the number of terminals disconnected from r

when an arc a is removed from AS , in the worst case.

We also consider the spanning version of the problem (i.e., T = V \ {r}). In this case,

the problem is to minimize the number of vertices in the largest (regarding the number of

vertices) subarborescence not containing r. We define it as follows:

Robust Spanning Arborescence problem (RSpA)

INSTANCE: A connected graph G = (V, E, r) with r ∈ V .

PROBLEM: Find a spanning arborescence S of G, rooted at r, which minimizes the

size of the largest subarborescence of S not containing r.

Obviously, the largest subarborescence not containing r is rooted at a vertex v ∈ ΓG(r),

and the worst case is the failure of an arc incident to the root. We have the following

property:

Property 1.2.1 a) There is an optimal solution S∗ of RSpA containing (r, v) for all

v ∈ ΓG(r) (ΓG(r) = Γ+S∗(r)).

b) There is an optimal solution S∗ = (V ∗, A∗) of RStA containing (r, v) for all v ∈

V ∗ ∩ ΓG(r).
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Proof: Let S = (V, AS) be an optimal solution of RSpA such that there is v ∈ ΓG(r)

with (r, v) /∈ AS , and let w be the predecessor of v in the path from r to v in S. If we

remove (w, v) from AS and add (r, v), we obtain a new spanning arborescence at least as

good as S, since we have replaced a subarborescence by two subarborescences of smaller

sizes. Doing so for each v ∈ ΓG(r) with (r, v) /∈ AS yields a solution S∗ verifying the

property.

The proof is similar for RStA, by replacing ΓG(r) by V ∗
S ∩ ΓG(r): if we remove (w, v)

from AS and add (r, v), we obtain a new Steiner arborescence at least as good as S, since

we have replaced a subarborescence by two subarborescences spanning at most the same

number of terminals. ✷

Notice that the property does not hold if we have capacity constraints, because the

capacity of (r, v) can be smaller than the one of (w, v) in the proof above. Let us now

introduce the feasibility problem associated with RSpA:

Robust Spanning Arborescence Feasibility problem (RSpAF)

INSTANCE: A connected graph G = (V, E, r) with r ∈ V and an integer β with

1 ≤ β ≤ |V | − 1.

QUESTION: Is there a spanning arborescence S = (VS , AS) of G, rooted at r, such

that the size of any subarborescence of S not containing r is at most β?

Theorem 1.2.1 RSpAF is NP-Complete.

Proof: We introduce the 3-Partition problem [Garey and Johnson 1979] in order to

transform an instance of this problem into a RSpAF one.

3-Partition problem

INSTANCE: A finite set D of 3m positive integers di, i = 1, .., 3m, and a positive

integer B such that
∑

i=1,...,3m di = mB and B/4 < di < B/2 ∀i = 1, ..., 3m.

QUESTION: Can D be partitioned into m disjoints subsets M1, M2, ..., Mm of three
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elements such that the sum of the numbers in each subset is equal to B?

To obtain an instance of RSpAF from an instance of 3-Partition, we set β = B + 1

and we construct the following graph G = (V, E): we define a root r and m vertices vj

with an edge [r, vj ] for j = 1, ..., m, each vertex vj corresponding to a set Mj . We add 3m

vertices wi and the edges [vj , wi] for all j = 1, .., m and all i = 1, .., 3m, each vertex wi

corresponding to the element di of D (the subgraph induced by the vertices vj and wi is

complete bipartite). Finally, for each i = 1, .., 3m, we add di − 1 vertices adjacent to wi :

the subgraph induced by those vertices and the vertices wi is made of 3m disjoint stars.

See Figure 1.1 for a graph representation of a 3-Partition instance with m = 2, B = 11

and D = {5, 3, 4, 3, 4, 3}. Notice that |V | = 1 + m + mB.

Solving RSpAF on G with β = B + 1 amounts to finding an arborescence where the

size of the subarborescence rooted at each vj is smaller than or equal to B + 1. If there is

a solution to RSpAF on G, then, from the proof of Property 1.2.1, there is a solution S

such that (r, vj) ∈ S ∀j = 1, ..., m, and each wi is connected to exactly one vj , otherwise

there is a cycle. Given a vertex v ∈ S, let S(v) be the subarborescence of S rooted at v:

∀j = 1, ..., m, we have |S(vj)| ≤ B + 1 and
∑

j=1,..,m |S(vj)| = |V \ {r}| = mB +m. Thus,

∀j = 1, ..., m, |S(vj)| = B + 1 and S(vj) contains vj and several vertices wi, each having

di − 1 successors in S. Finally, the constraints B/4 < di < B/2 imply that, ∀j = 1, ..., m,

vj is connected to exactly 3 vertices wi denoted in the following by wj1
, wj2

and wj3
, and

such that |S(wj1
)| + |S(wj2

)| + |S(wj3
)| = |S(vj)| − 1 = B.

Then, it is easy to obtain a solution to the 3-Partition instance. For each j = 1, .., m,

we set Mj = {|S(wj1
)|, |S(wj2

)|, |S(wj3
)|} = {dj1

, dj2
, dj3

}. We have m disjoint sets, each

of size B, which cover exactly D. For the instance given in Figure 1.1, a solution to

3-Partition can be associated with the arborescence given in thick: M1 = {5, 3, 3} and

M2 = {4, 4, 3}.

Moreover, from a solution to the 3-Partition instance, it is easy to obtain a solution S
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r

v2v1

w2w1 w3 w5w4 w6

Figure 1.1: Graph and RSpAF solution resulting from the 3-Partition instance in which
m = 2, B = 11, D = {5, 3, 4, 3, 4, 3}

to RSpAF for the associated graph G, using similar arguments.

The 3-Partition problem is NP-Complete in the strong sense, meaning that it remains

NP-Complete even if the integers in D are bounded above by a polynomial in m. Thus,

the reduction can be done in polynomial time and RSpAF, which is clearly in NP, is

NP-Complete. ✷

RSpAF being NP-Complete, RSpA is NP-Hard, and so is RCStA because it is a

generalization of RSpA. Let us now consider capacity constraints on the edges. RSpAF

can be seen as a special case of the general capacitated spanning arborescence problem

where the demand at each node is an integer (our demands are all equal to 1), and hence

from Theorem 1.2.1 we obtain the following corollary:

Corollary 1.2.2 Given a graph G = (V, E, r, d, u) where d represents the (integral) de-

mands at each node and u the capacities of the edges, the problem of deciding whether

there exists a spanning arborescence of G, rooted at r and respecting the capacities, is

NP-Complete (even if u is a uniform function and all demands are equal to 1).
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This extends the following result due to Papadimitriou [Papadimitriou 1978]: given

two positive values C and K and a graph G = (V, E, r, c) where c is a cost function on the

edges, the problem of deciding whether there exists a spanning arborescence S of G rooted

at r, such that each subarborescence of S not containing r contains at most K vertices,

and with total cost at most C, is NP-Complete.

The complexity results given in this section concern undirected graphs, and so the

more general case of directed graphs too, since an undirected graph can be transformed

into a directed one by replacing each edge by two opposite arcs. If we consider problems

with capacity constraints, we give the same capacity to both opposite arcs: since we search

for an arborescence, only one of them will appear in the solution.

In the following, we study the more general following problem, which is hence also

NP-hard:

Robust Capacitated Steiner Arborescence problem (RCStA)

INSTANCE: A connected graph G = (V, E, r, T, u) with r ∈ V , T ⊆ V \ {r} and u a

positive integer function on E.

PROBLEM: Find an arborescence S = (VS , AS) with VS ⊆ V and AS ⊆ E, rooted

at r and spanning the terminals of T , which respects the arc capacities and minimizes the

number of terminals disconnected from r when an arc a is removed from AS , in the worst

case.

1.3 Mathematical formulations and tests

In this section we propose formulations for robust Steiner problems where the robust-

ness is considered either as a constraint with the objective of minimizing the cost, or as

an objective with or without constraints on the cost. Moreover, we study two kinds of

robustness by considering worst or average consequences of breakdowns.
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Let G = (V, A, r, T, u, c) be a directed graph with a vertex set V , an arc set A, a root

r, a set of terminals T , and capacity and cost functions, respectively denoted by u and c,

on the arcs. As seen before, if G is undirected, then we replace each edge by two opposite

arcs with the same capacity and cost. To formulate the different problems, for each arc

(i, j) ∈ A we introduce the 0-1 variable yij and the integer variable xij , where yij equals

1 if and only if the arc (i, j) is selected in the solution, and xij represents the number

of terminals connected to the root through the arc (i, j), or equivalently the number of

terminals in the subarborescence rooted at j. We introduce the following polyhedron T :

T =





x ∈ N
|A|, y ∈ {0, 1}|A|

∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
(i,j)∈A

xij −
∑

(j,k)∈A

xjk =





|T | if j = r
−1 if j ∈ T
0 otherwise

∀j ∈ V

∑
(i,j)∈A

yij ≤ 1 ∀j ∈ V \ {r}

xij ≤ uijyij ∀(i, j) ∈ A





In the following, we write (x, y) ∈ T when we consider a couple of variables verifying

the constraints of T . The first set of constraints in T ensures both the conservation of

the number of terminals connected through each Steiner vertex j ∈ V (flow conservation)

and the connection of the root to all terminals. The second set of constraints ensures

that the solution is an arborescence, i.e., that each vertex has at most one predecessor.

Finally, the third set ensures that there is no flow on a non existing arc, and that the

number of terminals connected through an arc (i, j) ∈ A does not exceed its capacity. In

the following, the relative gap between two costs will be denoted by ∆. The well-known

problem of the Capacitated Steiner Arborescence (CStA) can be formulated as follows

[Bousba and Wolsey 1991]:

CStA

∣∣∣∣∣∣
min

(x,y)∈T

∑

(i,j)∈A

cijyij

As explained previously, we evaluate the robustness of a Steiner tree by considering
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the number of terminals disconnected from the root in the worst scenario, that is, the

maximum number of terminals connected through an arc incident to the root, which is

equal to maxj∈Γ+

G
(r) xrj . Let R be a fixed bound on this value: we may disconnect at

most R terminals from the root by deleting an arc. We propose the following formulation

for the Capacitated Steiner Arborescence with bounded robustness (CStAbounded−robust):

CStAbounded−robust

∣∣∣∣∣∣

min
(x,y)∈T

∑
(i,j)∈A

cijyij

s.t. xrj ≤ R ∀j ∈ Γ+(r)

Let us now consider the robustness as an objective. Note that the default objective

function is to minimize the cost of the solution. If a model uses another objective function,

then its name will start by a given letter, e.g., R if we want to optimize the worst-case

robustness. We propose the following formulation for RCStA:

RCStA

∣∣∣∣∣ min
(x,y)∈T

max
j∈Γ+

G
(r)

xrj

The max function is handled in our formulation with the addition of a variable η with

η ≥ xrj ∀j ∈ Γ+G(r): the objective function is then to minimize η. Since this formulation

does not take the cost into account, we also propose a new formulation where we bound

the cost of a solution by a given value C:

RCStAbounded−cost

∣∣∣∣∣∣∣

min
(x,y)∈T

max
j∈Γ+

G
(r)

xrj

s.t.
∑

(i,j)∈A

cijyij ≤ C

The max function is handled in RCStAbounded−cost in the same way than in RCStA.

However, the previous models only consider the worst-case of a breakdown. It appears

that it could also be interesting to "balance" the tree in order to reduce the loss due to an

"average breakdown". To this end, we consider arc failures at each vertex and not only at

the root, i.e., for each i ∈ V , we consider the worst case of a breakdown of an arc leaving
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i. This corresponds, for each i ∈ V , to the maximum number of terminals that cannot be

reached from the root in case of a breakdown of an arc (i, j), j ∈ Γ+G(i), or equivalently

to the maximum flow on an arc (i, j), j ∈ Γ+G(i). We define the "balanced robustness" as

the sum of these values:
∑

i∈V maxj∈Γ+

G
(i) xij . This function appears to be an alternative

formulation of the losses in both the worst and the average breakdown robustness.

We will use the letters BR to refer to models where one wants to optimize the balanced

robustness. We propose formulations similar to the previous ones for the Capacitated

Steiner Arborescence with bounded balanced robustness, where we bound the balanced

robustness of a solution by a given value BR:

CStAbounded−balanced_robust

∣∣∣∣∣∣∣

min
(x,y)∈T

∑
(i,j)∈A

cijyij

s.t.
∑

i∈V

max
j∈Γ+

G
(i)

xij ≤ BR

The max function in the constraint is handled in CStAbounded−balanced_robust with the

addition of |V | variables βi for each vertex i of V with βi ≥ xij ∀j ∈ Γ+G(i): the sum of

the variables βi with i ∈ V must then not exceed BR.

The following formulation aims at computing the best balanced robustness:

BRCStA

∣∣∣∣∣ min
(x,y)∈T

∑

i∈V

max
j∈Γ+

G
(i)

xij

Themax function is handled inBRCStA in a similar way than inCStAbounded−balanced_robust:

we minimize the sum of the variables βi instead of setting an upper bound to this sum.

Moreover, we can keep this latter objective while bounding both the worst-case robust-

ness (by R) and the cost of the solution (by C). We obtain:
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BRCStAbounded−robust−cost

∣∣∣∣∣∣∣∣∣

min
(x,y)∈T

∑
i∈V

max
j∈Γ+

G
(i)

xij

s.t. xrj ≤ R ∀j ∈ Γ+G(i)∑
(i,j)∈A

cijyij ≤ C

The max function in the objective function of BRCStAbounded−robust−cost is handled

in the same way than in BRCStA.

We tested those formulations on real wind farm data sets. Even if the number of in-

stances is small, the results are interesting to analyze, and we can compare the robustness,

costs and structures of the solutions. Data parameters and results are available respec-

tively in Tables 1.1a and 1.1b. Figures 1.2, 1.3, 1.4 and 1.5 allow to visually compare the

arborescences obtained according to the different models for the fourth data set (the filled

circles correspond to terminals).

Figure 1.2 gives an optimal (non robust) capacitated Steiner arborescence (optimal

solution of CStA); let us denote its cost by C∗. This arborescence cannot be qualified

as robust since, in the worst case, all terminals can be disconnected by deleting the only

arc incident to the root. Furthermore, the tree has a large depth, and hence the balanced

robustness is not good either. This proves the importance of searching for a more robust

solution. We consider first the worst case, RCStA, and we denote by R∗ the best ro-

bustness, i.e., the minimum value of the loss of terminals in the worst case of a single arc

deletion. See Figure 1.3 for the associated solution on the test instance. Then, to obtain

the minimum cost of a most robust solution, denoted by C∗
R∗ , we solve CStAbounded−robust

with R = R∗: notice that the constraint is saturated in any feasible solution. Then,

∆Crob = (C∗
R∗ − C∗)/C∗ represents the "cost of robustness", i.e., the percentage of aug-

mentation of the cost to get a robust solution.

In the same way, let BR∗ be the best balanced robustness (optimal value of BRC-

StA, not given in the table); see Figure 1.4 for the associated solution on the test instance.
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The cost of a solution with the best balanced robustness, denoted by C∗
BR∗ , is obtained

by solving CStAbounded−balanced_robust with BR = BR∗, and ∆Cbrob = (C
∗
BR∗ − C∗)/C∗

represents the "cost of balanced robustness", i.e., the percentage of augmentation of the

cost of a non robust arborescence to get a balanced robust solution.

We also study the behavior of the robustness when we bound the cost to a value close

to the one of an optimal non robust arborescence : R8 (resp. R12) corresponds to the

optimal value of RCStAbounded−cost with a bound C = 1.08C∗ (resp. C = 1.12C∗).

We now analyze the results. The cost of robustness is quite variable on those instances

(from 9 to 24%) but remains rather low. On the contrary, we can see that the optimiza-

tion of the average robustness is way more expensive (raise from 33% to 64% of the cost)

because it involves significantly more edges (see Figure 1.4).

As we can see on Table 1.1b, a cost augmentation of 8% or 12% on the optimal cost

can result in a solution with a good value of worst-case robustness for some instances:

instances 2 and 4 present an excellent value of such robustness with only a cost augmenta-

tion of 8%, while instances 1 and 3 have a rather good one with a cost augmentation of 12%.

Finally, we compare the optimal robustness R∗ to the robustness of the balanced ar-

borescence Sb obtained by solving BRCStA, i.e., we compute in Sb (see Figure 1.4) the

maximum number of terminals which are disconnected after the deletion of an arc incident

to the root. Let RBR∗ be this number, shown in the last column of Table 1.1b. For the

test instances, the values of R∗ and RBR∗ are the same, which means that Sb is a good

solution for both the worst and balanced robustness, but we have seen before that its cost

is high. Indeed, for these instances, we see that forcing a solution with R = R∗ to be

optimally balanced increases the cost by at least 33 %. Nevertheless, there is no guarantee

in the general case that the best balanced solution also has the best robustness in the

worst case, although the arcs incident to the root are involved in the computation of the

balanced robustness.
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Set |V| |E| |T|
1 91 220 42
2 143 382 40
3 220 510 88
4 255 662 73

(a) Data parameters

Set R∗ R8 R12 ∆Crob ∆Cbrob RBR∗

1 21 35 29 0.18 0.56 21
2 20 21 20 0.09 0.64 20
3 22 32 30 0.24 0.33 22
4 37 41 38 0.19 0.37 37

(b) Results on robust arborescences

Table 1.1: Results on robust arborescences and data parameters

When trying to minimize the number of disconnected terminals in the worst case (see

RCStA in Figure 1.3), we have seen that the associated solutions have a reasonable cost,

but the average robustness is not good, since the tree remains too deep. When finding the

Balanced Steiner arborescence (see BRCStA in Figure 1.4), the balanced robustness is

optimal and the robustness in the worst case is fine, but the cost can be really high (a raise

of the optimal cost to 64% on those data sets). Adding bounds on both cost and worst-case

robustness, while minimizing the balanced robustness (see BRCStAbounded−robust−cost in

Figure 1.5), yields a solution which has both a reasonable cost and a really good worst-case

and balanced robustness, and hence it seems that it actually yields the best compromise

between the three optimization criteria (the cost and the two types of robustness consid-

ered here).
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Figure 1.2: Resulting arborescence for the fourth data set for CStA
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Figure 1.3: Resulting arborescence for the fourth data set for RCStA
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Figure 1.4: Resulting arborescence for the fourth data set for BRCStA
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Figure 1.5: Resulting arborescence for the fourth data set for BRCStAbounded−robust−cost
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Chapter 2

Capacitated Rooted k-Edge
Connected Steiner Network
problem (CRkECSN)

2.1 Definitions and notations

In this section, we study the problem of designing networks which are resilient to a

given number of arc-failures. A feasible solution to the problem we consider is a network

rooted at a given root and covering a given set of terminals, and such that, after deleting

any set of k arcs, it is still possible to route a unit of flow from the root to each terminal

(see Subsection 0.2.3 in the introduction), while respecting given capacities on the arcs.

Formally, we define the following problem:

Capacitated Rooted k-Edge Connected Steiner Network problem (CRkECSN)

INSTANCE: A connected digraph G = (V, A, r, T, u, c) with a set of vertices V , a set

of arcs A, a root r ∈ V , a set of terminals T ⊆ V \ {r}, an integer capacity function u on

A, a cost function c on A, an integer k with 1 ≤ k ≤ |A| − 1.

QUESTION: Find a subset A′ ⊆ A of minimum cost such that there is a feasible flow

(i.e. respecting the arc capacities) routing a unit of flow from r to each vertex of T in the

subgraph of G induced by A′, even if any set of k arcs in A′ is deleted.
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Since we consider that we route one unit of flow from the root to each terminal, it

is equivalent to consider that the capacity uij corresponds to the maximum number of

terminals that can be linked to the root through the arc (i, j).

Property 2.1.1 For k ∈ N
∗, there are at least k+1 arc-disjoint paths between the root and

each terminal in any feasible solution. Furthermore, any inclusion-wise minimal feasible

solution induces at least a 2-edge-connected graph in the underlying undirected graph.

Proof: The first part of the property is a consequence of Theorem 0.2.1 ([Menger

1927]), in Subsection 0.2.1. Let G′ be an inclusion-wise minimal feasible solution and

assume that G′ is not 2-edge-connected in the underlying undirected graph. Then there

exists at least one edge e whose removal cuts G′ into two parts. If the part that does not

include the root contains terminals, then G′ is clearly not a feasible solution because, if

we remove e, then at least one terminal cannot be reached from the root. Otherwise, G′

is not inclusion-wise minimal because, if we remove e, then the resulting graph is still a

feasible solution. Hence, any inclusion-wise minimal feasible solution induces at least a

2-edge-connected graph. ✷

Remark 2.1.1 Property 2.1.1 implies that a necessary condition for the existence of a

feasible solution is that there are at least k + 1 arc-disjoint paths between the root and

each terminal in G. We assume without loss of generality that this is always verified in G,

otherwise there is no feasible solution.

In order to simplify the formulations proposed in the next sections, we add to the input

graph a vertex s (which corresponds to a fictive sink) connected to every terminal t ∈ T

by a fictive arc (t, s) with cts = 0 and uts = 1. Then, s is added to V and the fictive arcs

are added to A, and we denote by AI the set of initial arcs (see Figure 2.1 for an example).

We have the following fact:

Fact 2.1.1 Finding a flow which routes one unit of flow between r and each terminal in

the input graph is equivalent to finding a flow of value |T | from r to s in the transformed
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graph with the sink and the fictive arcs.

For any partition of V \ {s} into two parts S1 and V \ ({s} ∪ S1) with r /∈ S1 and

S1 ∩ T Ó= ∅, we must have that
∑
(i,j)∈δ−(S1) uij ≥ |S1 ∩ T | in order to allow the routing

of a unit of flow from the root to each terminal (we remind that δ−(S1) is the set of arcs

entering S1, see Subsection 0.2.1). In the transformed graph, for any partition of V into

two parts S2 and V \ S2 with r /∈ S2 and s ∈ S2, we must have that
∑
(i,j)∈δ−(S2) uij ≥ |T |

(any cut must have a capacity at least equal to |T | or equivalently there exists a r − s flow

of value |T |) in order to be able to route a unit of flow from the root to each terminal. In

the example proposed in Figure 2.1, we have T = {t1, t2, t3} and we call ui the capacity of

the arc ei for i = 1, .., 8. If we take S1 = {r, v1, t1}, in the input graph we must have that

u3 + u4 ≥ 2 while in the transformed graph we must have u3 + u4 + u8 ≥ 3. Since e8 is a

fictive arc, we have u8 = 1, thus the constraints are equivalent.

r

t1

v1

t2

t3

e1

e2

e3

e4

e5
r

t1

v1

t2

t3

s

e1

e2

e3

e4

e5

e6

e7

e8

Figure 2.1: Example of addition of a sink to the input graph

2.2 Formulations

2.2.1 Cutset formulation

We introduce, for each (i, j) ∈ A, a binary variable yij equal to 1 if the arc (i, j) is

selected in A′, 0 otherwise. In this chapter, the variable y is defined for different formula-

tions and for each one, yts is set to 1 for each terminal t ∈ T : the fictive arcs will always

be selected in the final network (furthermore their cost is equal to 0 and they cannot fail).

Consider the r − s cuts [V \ VS , VS ] with VS ⊂ V , r ∈ V \ VS , s ∈ VS and VS Ó= {s},
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and let S be the set of all the associated cut-sets S in A, i.e. S = δ−(VS) for each VS . S

is the set of r − s cutsets except the one containing only fictive arcs. Notice that if S ∈ S

then S ∩ A′ is a cut-set in the selected network. For any set S ∈ S, let CS
k be the set of

subsets of S of size k of non-fictive arcs. Please note that there are always at least k + 1

non-fictive arcs in S because, from Remark 2.1.1, CS
k cannot be empty. For each S ∈ S,

we define MS as the maximum capacity of a subset of k selected arcs of S:

MS = max
C∈CS

k

∑

(i,j)∈C

uijyij
(2.1)

MS corresponds to the maximum capacity that can be lost in the cut-set S after the

deletion of k arcs. We propose the following cutset formulation:

(CUT )

∣∣∣∣∣∣∣∣∣∣∣∣∣

min
y

∑

(i,j)∈A

cijyij

s.t.
∑

(i,j)∈S

uijyij − MS ≥ |T | ∀S ∈ S

yij ∈ {0, 1} ∀(i, j) ∈ A

(2.2)

Constraints (2.2) ensure that, for each cut, the capacity of the cut after the worst-case

deletion of k arcs of the cut-set is at least equal to the number of terminals, i.e., one can

still route |T | units of flow from r to s while respecting the capacity constraints. They are

necessary to every feasible solution. Indeed, they ensure that, for each cut-set in the graph

induced by the arcs (i, j) such that yij = 1, the capacity of the cutset minus the k maximal

arc capacities of the cut is greater than or equal to the number of terminals. If a constraint

(2.2) is not satisfied for some S, it means that, the capacity of a cut (and consequently

of a min-cut) in the graph induced by y after removing k arcs becomes smaller than |T |.

Constraints (2.2) are also sufficient to ensure a feasible solution: if they are satisfied for

each cut-set S ∈ S, it means that you cannot find a set of k arcs whose removal will induce

a min-cut with capacity smaller than |T | (which from Theorem 0.2.2 [Ford and Fulkerson

1956] in Subsection 0.2.1 is a necessary and sufficient condition for the existence of a flow

of value |T |).
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Constraints (2.2) are non linear because of the use of the maximum operator in the

definition of MS . To linearize it, we can rewrite (2.2) as follows:

∑

(i,j)∈S\C

uijyij ≥ |T | ∀S ∈ S, ∀C ∈ CS
k

(2.3)

The number of Constraints (2.3) is obviously bigger than the number of Constraints

(2.2). The number of Constraints (2.3) being exponential, we propose a constraints gen-

eration algorithm. We begin with a small number of Constraints (2.3), associated with a

small subset of S. We obtain a lower bound for our problem. Then we search for a cut-set

that does not verify some constraint (2.3) by solving the following subproblem: given a

network induced by the arcs (i, j) such that ŷij = 1 (where ŷ is the current value of y),

we aim to find a cut-set S of minimum residual capacity once we delete its k most capac-

itated arcs. If this capacity is smaller than |T |, we add the constraints associated with

S, otherwise the algorithm terminates. For small values of k, one straightforward method

to find this cut of minimum residual capacity is the following: for each combination C

of k arcs in AI which are selected in the current solution, compute the min-cut on the

graph where the capacity of each arc (i, j) is defined as uij ŷij , except for the k arcs of C

whose capacities are set to 0. Otherwise, if k is too big, we use the following MIP, where

Â = {(i, j) ∈ A | ŷij = 1} and Ĝ = (V, Â) corresponds to the current solution:

(CUT − SEP )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
s,b,v

∑

(i,j)∈Â

uijsij

s.t sij + bij − vi + vj ≥ 0 ∀(i, j) ∈ Â

vr = 1

vs = 0
∑

(i,j)∈Â

bij ≤ k

∑

t∈T

bts = 0

sij , bij ∈ {0, 1} ∀(i, j) ∈ Â, v ∈ {0, 1}|V |

(2.4a)

(2.4b)

(2.4c)

(2.4d)

(2.4e)

(2.4f)

In this MIP, the variable v defines a r −s-cut on the network: any vertex j with vj = 1

is in the same part of the cut as r, and any vertex i with vi = 0 is in the same part as s.
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The variables bij and sij are binary and we have bij = 1 if and only if arc (i, j) is deleted,

whereas sij defines the selection of (i, j) in the cut-set: sij = 1 if and only if the arc (i, j)

is selected in the cut-set. Constraints (2.4a) ensure that S̃ = {(i, j) s.t. sij = 1 or bij = 1}

defines a cutset in the current network Ĝ (if bij = 1, we have sij = 0 in any optimal

solution because of the minimization of the objective function), and the objective function
∑
(i,j)∈Â

uijsij represents the residual capacity of S̃, i.e., the capacity of the undeleted arcs

of S̃. Constraints (2.4b) and (2.4c) ensure that the root and the sink are not in the same

part of the cut. Constraints (2.4d) and (2.4e) ensure that there are no more than k arc

deletions, and that no fictive arc can be deleted. If the solution provides a cutset with a

residual capacity at least equal to |T |, then the solution is feasible. Otherwise, we add the

associated constraint to the main MIP.

In the case of a uniform capacity U on each arc a ∈ AI , MS in Constraints (2.2)

becomes a constant equal to kU and hence these constraints are linear, which implies that

Constraints (2.3) are useless. The number of constraints is still exponential, but highly

reduced compared to the non-uniform case. The formulation can be rewritten as follows:

min
y

∑

(i,j)∈A

cijyij

s.t.
∑

(i,j)∈S

uijyij ≥ |T | + kU ∀S ∈ S

yij ∈ {0, 1} ∀(i, j) ∈ A

(2.5)

Undirected graphs

Adapting the formulation to the undirected case where we are given a set of edges E

instead of a set of arcs A is quite straightforward. Indeed, it can be done by considering

the undirected cut-sets of the graph instead of the directed ones.

2.2.2 Flow formulation

In this section, we introduce a formulation based on flow variables. We define F as

the set of all possible arc-failure scenarios: it corresponds to the set of all k-combinations
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in AI . We introduce the variable xF
ij which represents the amount of flow routed through

the arc (i, j) ∈ A when the scenario F ∈ F occurs (we have xF
ij = 0 if (i, j) ∈ F ). The

variable y is defined as in the previous formulation (see Subsection 2.2.1). We propose the

following flow formulation:

(FLOW )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
x,y

∑

(i,j)∈A

cijyij

s.t.
∑

i∈Γ−(j)

xF
ij −

∑

k∈Γ+(j)

xF
jk = 0 ∀j ∈ V \ {r, s}, ∀F ∈ F

∑

t∈Γ−(s)

xF
ts = |T | ∀F ∈ F

xF
ij ≤ uijyij ∀(i, j) ∈ A, ∀F ∈ F

xF
ij = 0 ∀F ∈ F , ∀(i, j) ∈ F

x ∈ R
|A|×|F|
+ , y ∈ {0, 1}|A|

(2.6a)

(2.6b)

(2.6c)

(2.6d)

Constraints (2.6a) and (2.6b) ensure that there is a flow of value |T | for each arc-failure

scenario F ∈ F , meaning that we can still route a unit of flow to each terminal after any

k arc failures. Constraints (2.6c) ensure that the arc capacities are respected for each

arc-failure scenario F ∈ F . Constraints (2.6d) ensure that, in each scenario F ∈ F , no

flow is routed through deleted arcs. One can notice that the variable x must be an integer

(because it corresponds to a number of terminals). However, we relax this integrality con-

straint. Indeed, for any value of y ∈ {0, 1}|E|, setting the value of x corresponds to routing

a set of flows of value |T | on |F| different networks with integer capacities. Then, for any

given value of y ∈ {0, 1}|E|, there exists a solution where x is integer (see Theorem 0.2.3 in

the Subsection 0.2.2 of the introduction), and hence there exists an optimal solution with

x integer.

The number of variables and constraints being exponential for arbitrary values of k, we

propose a constraints-and-columns generation algorithm to solve the problem. We begin

with a small subset of F . The separation problem is the problem of the k most vital links

in a flow network which is N P-hard [Ratliff, Sicilia, and Lubore 1975]: we search for the

k arcs which, once simultaneously deleted, reduce the most the value of a maximum s − t

73



2.2. FORMULATIONS

flow. We use a procedure similar to the one used in Subsection 2.2.1: for small values of

k, we compute a maximum s − t flow for each combination of k selected arcs of AI . If

there is a combination of arcs whose deletion results in a maximum s − t flow lower than

|T |, we add this arc-failure scenario, else the solution is feasible. If k is too big, we use the

auxiliary MIP (CUT − SEP ), see Subsection 2.2.1.

Undirected graphs

In order to adapt the formulation to the undirected case with a set of edges E instead

of a set of arcs A, one can define for each [i, j] ∈ E the variables yij , xF
ij and xF

ji. The

function Γ+ and Γ− are replaced by the function Γ in Constraints (2.6a) and (2.6b), while

Constraints (2.6c) and (2.6d) are replaced by:

xF
ij + xF

ji ≤ uijyij ∀[i, j] ∈ E, ∀F ∈ F

xF
ij + xF

ji = 0 ∀F ∈ F , ∀[i, j] ∈ F

(2.7a)

(2.7b)

A feasible solution induced by y and x implies a flow of value |T | for each scenario

F ∈ F . Then, if a given solution yields a strictly positive flow on both xF
ij and xF

ji for a

given edge [i, j] and a given scenario F , there exists another flow at least as good as this

one in which the flow verifies either xF
ij = 0 or xF

ji = 0 (see Remark 0.2.1 in Subsection

0.2.2 of the introduction).

2.2.3 Bilevel formulation

The bilevel formulation proposed here is particular in that the second level is aminmax

problem. It can be seen as a game with a defender and an attacker (corresponding respec-

tively to the leader and the follower).

For each (i, j) ∈ A, we introduce a variable xij which corresponds to the amount of

flow that the defender chooses to route through the arc (i, j). The variable y is defined as

in Subsection 2.2.1. We also introduce the binary variables bij , ∀(i, j) ∈ A: bij = 1 if and
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only if the attacker chooses to delete the arc (i, j). Moreover, we assume without loss of

generality that there is no arc entering r. Then, we can define the following polyhedron:

X (y, b) =





∑

i∈Γ−(j)

xij −
∑

k∈Γ+(j)

xjk = 0 ∀j ∈ V \ {r, s}

xij ≤ uijyij ∀(i, j) ∈ A

xij ≤ uij(1− bij) ∀(i, j) ∈ A

xij ≥ 0 ∀(i, j) ∈ A





(2.8a)

(2.8b)

(2.8c)

This polyhedron X (y, b) corresponds to the set of possible flows on the subgraph of

G induced by the arcs (i, j) ∈ A such that yij = 1, provided they have not been deleted,

i.e. bij = 0. The polyhedron X (y, b) is defined by the flow conservation constraints, the

capacity constraints and the constraints imposing a flow equal to 0 on any arc which is

deleted. We also define the following polyhedron:

B = { b ∈ {0, 1}|A| |
∑
(i,j)∈A bij ≤ k ; bts = 0 ∀t ∈ T }

The polyhedron B defines the set of possible scenarios of arc failures (it ensures that

no fictive arc can be deleted). We propose the following bilevel program:

(BILEV EL)

∣∣∣∣∣∣∣∣∣∣∣∣∣

min
y∈{0,1}|A|

∑

(i,j)∈A

cijyij

s.t. f(y) ≥ |T |

where f(y) = min
b∈B

max
x∈X (y,b)

∑

j∈Γ+(r)

xrj

(2.9a)

(2.9b)

where {(i, j) s.t. yij = 1} defines the set of selected arcs. At the upper level, the

defender selects the set of arcs to be added to the network, by choosing a value of y in

{0, 1}A. The attacker then deletes some arcs by setting the variable b ∈ B in order to

minimize the maximum flow that the defender will compute by setting the variable x in

the flow polyhedron X (y, b). The aim of the defender is to ensure that this flow is at least

equal to |T | (see Constraint (2.9a)).
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Consider the max problem in the lower level: at this stage, y and b are already fixed;

we refer to their values as ŷ and b̂ respectively. The problem is a max-flow problem from r

to s, with two sets of capacity constraints. In our problem, the flow must be integral since

it corresponds to a number of terminals. However, it is well-known that the matrix of

coefficients M in the arc-formulation of a max-flow is totally unimodular (see Subsection

0.2.2 in the introduction). Then, adding the second set of capacity constraints is equivalent

to appending the identity matrix to M : the matrix remains totally unimodular and, since

the capacities are integers, we ensure that the extreme points of the polyhedron defined

by X (y, b) have integral coordinates. Thus, we can relax the integrality constraints on x.

In the max problem of the lower level (i.e. maxx∈X (y,b)
∑

j∈Γ+(r) xrj), there always

exists a feasible flow of value 0 and the problem is also trivially upper bounded by |T |

(because of the cut-set with only the fictive arcs). Hence, the strong duality holds and we

can introduce the dual of the lower level problem, where µ is the variable associated with

Constraints (2.8a) while λ and γ are respectively associated with Constraints (2.8b) and

(2.8c). After a slight reformulation due to the addition of µr and µs, the dual problem

can be written as follows (see Subsection 0.2.2 in the introduction):

(Φ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
λ,µ,γ

∑
(i,j)∈A

uij ŷijλij +
∑

(i,j)∈A

uij(1 − b̂ij)γij

s.t λij + γij − µi + µj ≥ 0 ∀(i, j) ∈ A

µr = 1

µs = 0

λ, γ ∈ [0, 1]|A|, µ ∈ [0, 1]|V |

(2.10a)

(2.10b)

(2.10c)

(2.10d)

Because (Φ) is the dual of the problem maxx∈X (y,b)
∑

j∈Γ+(r) xrj , we have that the

matrix of constraints of (Φ) is totally unimodular (because it is the transpose of a totally

unimodular matrix, see Property 0.2.1 in Subsection 0.2.2 in the introduction). Thus, the

extreme points of (Φ) are integer. This problem is a special formulation of a min-cut

problem: µ defines the two parts of the cut (sets of vertices i ∈ V such that either µi = 0

or µi = 1), an arc (i, j) is in the corresponding cut-set if µi = 1 and µj = 0. The variables
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γ and λ define the cut-set of the corresponding cut: for each arc (i, j) in the cut-set, we

have either λij = 1 or γij = 1. If an arc (i, j) is not in the cut-set, because we minimize the

objective function with positive coefficients and µj − µi ≥ 0, we have γij = λij = 0 in an

optimal solution. Moreover, because of the economic function and the positive capacities,

we have that γij is equal to 1 for at least all arcs (i, j) in the cut-set with b̂ij = ŷij = 1

(i.e., the arcs selected but deleted), while λij is equal to 1 for at least all arcs (i, j) in

the cut-set with b̂ij = ŷij = 0 (i.e., the arcs that are neither selected nor deleted). For

other arcs in the cut-set, it does not matter which one is set to 1. We denote by D the

polyhedron defined by dual Constraints (2.10a)−(2.10d).

Since the lower level can be reformulated as a min−min function by using the dual

described above, it can then be rewritten as follows:

(LL)

∣∣∣∣∣∣∣∣

min
b,λ,µ,γ

∑
(i,j)∈A

uij ŷijλij + uij(1 − bij)γij

s.t b ∈ B
(λ, µ, γ) ∈ D

At this point, b is a variable, so the objective function is non-linear. We linearize the

terms bijγij in a classical way by introducing variables lij = bijγij where lij verifies the set

of constraints defined by L(b, γ):

L(b, γ) =





l ∈ R
|A|

∣∣∣∣∣∣∣∣∣

lij ≤ bij ∀(i, j) ∈ A
lij ≤ γij ∀(i, j) ∈ A
lij ≥ γij − (1 − bij) ∀(i, j) ∈ A
lij ≥ 0 ∀(i, j) ∈ A





The lower level can then be rewritten as follows:

(LL)

∣∣∣∣∣∣∣∣∣∣

min
b,λ,µ,γ

∑
(i,j)∈A

uij ŷijλij + uijγij − uijlij

s.t b ∈ B
(λ, µ, γ) ∈ D
l ∈ L(b, γ)
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We define the following function g:

g(y, λ, γ, l) =
∑

(i,j)∈A

uijyijλij + uijγij − uijlij

We can then rewrite the bilevel program as:

min
y∈{0,1}|A|

∑
(i,j)∈A

cijyij

s.t f(y) ≥ |T |
where f(y) = min

b,λ,γ,µ,l
g(y, λ, γ, l)

s.t. b ∈ B
(λ, µ, γ) ∈ D
l ∈ L(b, γ)

We can then consider the convex hull of the lower-level polyhedron defined by B, D and

L(b, γ), and denote by H the set of its extreme points. One can notice that this convex

hull does not depend on y (only g(·) does): the set of extreme points H remains the same

for every y ∈ {0, 1}A. We denote by (λ̂h, γ̂h, l̂h) the respective values of (λ, γ, l) at the

extreme point h ∈ H. We can then reformulate the bilevel formulation as a single-level

one as follows:

min
∑

(i,j)∈A

cijyij

s.t. g(y, λ̂h, γ̂h, l̂h) ≥ |T | ∀h ∈ H

y ∈ {0, 1}|A|

(BP) b ∈ B

(λ, µ, γ) ∈ D

l ∈ L(b, γ)

(2.11a)

(2.11b)

(2.11c)

(2.11d)

(2.11e)

Constraints (2.11a) ensure that, for each extreme point of H, f(y) is greater than |T |

(thus the minimum value of f(y) over the polyhedron defined by Constraints (2.11b)−(2.11e)

is greater than |T |), meaning that the value of a maximum flow cannot become smaller

than |T |, even after any k breakdowns.

Remark 2.2.1 One may think that the sets of constraints xij ≤ uijyij and xij ≤

uij(1− bij) could be replaced by xij ≤ uij(yij − bij) in the polyhedron X (y, b) to make the
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resulting polyhedron X̃ (y, b) more compact. However, if for a given (i, j), we have bij > yij

(i.e. bij = 1 and yij = 0), then X̃ (y, b) is empty and hence minb∈B maxx∈X̃ (y,b)

∑
j∈Γ+(r) xrj

is not defined because there are some values of b for which X̃ (y, b) is empty. Furthermore

the dualization of this polyhedron leads (LL) to be unbounded in this case.

A solution to this issue could be to add the set of constraints bij ≤ yij in the polyhedron

B but it would lead to the presence of constraints which depend on y in the lower level.

Remark 2.2.2 In (BP), g(y, λ, γ, l) is non-linear because of the products yijλij, but they

can be linearized as it has been done for bijγij above.

However, there is an exponential number of Constraints (2.11a). To tackle this issue,

we use a constraints generation algorithm where we relax Constraints (2.11a) and use

(LL) as the separation problem: while the optimum value of (LL) is smaller than |T | for

the current solution ŷ (integer solution to (BP) with a subset of Constraints (2.11a)), we

generate Constraints (2.11a) associated with the extreme point whose coordinates are the

optimal values of (b, λ, γ, µ, l) in (LL).

Property 2.2.1 Let ŷ1 and ŷ2 be two feasible solutions of (BP) such that ŷ1 ≥ ŷ2, i.e.,

ŷ1ij ≥ ŷ2ij for each arc (i, j). If adding a constraint g(y, λ̂a, γ̂a, l̂a) ≥ |T | makes any solution

with y = ŷ1 infeasible, then it also makes any solution with y = ŷ2 infeasible.

Proof: For any value (λ̂a, γ̂a, l̂a) of (λ, γ, l), we have g(ŷ1, λ̂a, γ̂a, l̂a) ≥ g(ŷ2, λ̂a, γ̂a, l̂a)

since ŷ1 ≥ ŷ2 (recall that u and λ are positive). Hence, if g(ŷ1, λ̂a, γ̂a, l̂a) ≤ |T | − 1, then

g(ŷ2, λa, γa, la) ≤ |T | − 1. ✷

To improve the cut added to (BP) to forbid the current non-feasible solution ŷ obtained

by solving (LL) for each constraint generation, we search for an unfeasible solution y such

that y ≥ ŷ in order to generate a stronger constraint, as explained in Property 2.2.1. To

get these values, we first solve the following problem, and then we compute the new ŷ

accordingly (as explained later). Given a starting solution ŷ, we propose to find a cut-set

in the support network (i.e., in the initial digraph G) with a minimum number of arcs

such that this cut-set is non-valid in the network induced by Â (i.e. the arcs (i, j) such
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that ŷij = 1), meaning that, if we remove k given arcs of the cut-set in Â, its remaining

capacity is smaller than |T |. This can be modeled as follows:

min
∑

(i,j)∈A λij

s.t
∑

(i,j)∈A

uij ŷijλij ≤ |T | − 1

∑

(i,j)∈A

γij = k

γts = 0 ∀t ∈ T

(λ, µ, γ) ∈ D, µ ∈ {0, 1}|V |

(2.12a)

(2.12b)

(2.12c)

The variables (λ, µ, γ) define a cut in the input graph since they belong to D (recall

that D is the set of Constraints (2.10a)−(2.10d)): µ defines the two parts of the cut,

while λ and γ define the arcs in the cut-set; in particular γ defines the arcs in the cut-set

that are deleted. However, adding the other constraints makes the constraints matrix not

unimodular anymore: thus, we have to set µ as a 0-1 variable. When µ is binary, there

always exist an optimal solution with γ and λ binary: for an arc (i, j), if µi = µj or µi = 0

and µj = 1, we have that λij = γij = 0; if µi = 1 and µj = 0, we must have λij + γij ≥ 1,

and because of the minimization of the objective function, there always exists an optimal

solution such that exactly one between λij and γij is equal to 1. Constraint (2.12a) ensures

that the cut-set selected is non-valid (i.e. has insufficient capacity). Constraint (2.12b)

ensure that the number of deleted arcs is equal to k, while Constraints (2.12c) forbid the

deletion of fictive arcs.

Then, the new values of the ŷij are computed as follows: we set ŷij to 1 for all (i, j)

with λij = γij = 0 and let the others to their current value. Indeed, we want to include as

many arcs as possible in the solution, while ensuring that there exists a cut with capacity

at most |T|-1: hence, any arc not associated with this cut can be included in the solution.

It implies that, for each arc (i, j), the new value of ŷij cannot be smaller than the old

one, and, using Proposition 2.2.1, we generate a better constraint than the original one by

computing the extreme points associated with this new value of ŷ.
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Undirected graphs

In order to obtain a formulation that works for the undirected case, we define for

each edge [i, j] the variables yij , bij , xij and xji. The only modification appears in the

polyhedron X (y, b), which can be modified as follows:

X (y, b) =





x ∈ R
|E|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
i∈Γ(j)

xij −
∑

k∈Γ(j)
xjk = 0 ∀j ∈ V \ {r, s}

xij ≤ uijyij ∀[i, j] ∈ E
xji ≤ uijyij ∀[i, j] ∈ E
xij ≤ uij(1− bij) ∀[i, j] ∈ E
xji ≤ uij(1− bij) ∀[i, j] ∈ E
xij , xji ≥ 0 ∀[i, j] ∈ E





Again, since this polyhedron is associated with a maximum flow problem (when the

values of y and b are fixed), we can always find a maximum flow where either xij = 0 or

xji = 0 for each edge [i, j] ∈ E. Once this polyhedron has been modified, one can use the

method proposed for the directed case to solve the formulation.

2.3 Relations between the formulations

2.3.1 Relations between the bilevel and the cutset formulations

Let us formulate (SL) the second level of the bilevel formulation by replacing Con-

straints (2.8b) and Constraints (2.8c) by the constraint xij ≤ uij(ŷij − bij) ∀(i, j) ∈ A

(see the polyhedron X̃ (y, b) in Remark 2.2.1 in Subsection 2.2.3). We introduce the poly-

hedron B̃(y) = {b ∈ B | b ≤ y} to ensure that X̃ (y, b) is non-empty for each possible

value of b ∈ B̃(y), i.e. the second level is defined. We obtain:

(SL)

∣∣∣∣∣∣∣∣∣∣∣∣∣

min
b∈B̃(y)

max
x

∑

j∈Γ+(r)

xrj

s.t
∑

i∈Γ−(j)

xij −
∑

k∈Γ+(j)

xjk = 0 ∀j ∈ V \ {r, s}

0 ≤ xij ≤ uij(ŷij − bij) ∀(i, j) ∈ A

(2.13a)

(2.13b)
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We introduce a reformulation of (SL), moving the variable b to the objective function:

(RSL)

∣∣∣∣∣∣∣∣∣∣∣∣∣

min
b∈B̃(y)

max
x

∑

j∈Γ+(r)

xrj −
∑

(i,j)∈A

bijxij

s.t
∑

i∈Γ−(j)

xij −
∑

k∈Γ+(j)

xjk = 0 ∀j ∈ V \ {r, s}

0 ≤ xij ≤ uij ŷij ∀(i, j) ∈ A

(2.14a)

(2.14b)

Property 2.3.1 (SL) and (RSL) have the same optimal values.

Proof: Let f1(b̂, x̂) (respectively f2(b̂, x̂)) be the value of the objective function of

(SL) (respectively (RSL)) when (b̂, x̂) is a feasible solution of (SL) (respectively (RSL)).

Let x1 be an optimal solution of the max problem of (SL) associated with b′ ∈ B̃(y). We

have that x1 is obviously a feasible solution of (RSL). Furthermore, Constraints (2.13b)

imply that x1
ij = 0 if b′

ij = 1. Then b′
ijx1

ij = 0 for all arcs (i, j) and f1(b′, x1) = f2(b′, x1).

Let x2 be an optimal solution of the max problem of (RSL) associated with b′′ ∈ B̃(y).

If b′′
ijx2

ij = 0 for all arcs (i, j), x2 is a feasible solution of the max problem of (SL) and

f2(b′′, x2) = f1(b′′, x2). Otherwise there is at least one arc (u, v) such that b′′
uvx2

uv > 0 (thus

x2 is not feasible for the max problem of (SL)). Let x3 be a new solution of (RSL) such

that x3
uv = 0, x3

ij ≤ x2
ij for each arc (i, j) Ó= (u, v) and the value of the flow defined by x3 is

equal to the value of the flow defined by x2 minus x2
uv (i.e.

∑
j∈Γ+(r)

x3
rj =

∑
j∈Γ+(r)

x2
rj − x2

uv).

Such a flow always exists: we reduce by x2
uv the value of the flow by reducing the amount

of flow on one or several paths from r to s containing (u, v).

We have f2(b′′, x3) =
∑

j∈Γ+(r)

x3
rj −

∑
(i,j)∈A

b′′
ijx3

ij = (
∑

j∈Γ+(r)

x2
rj − x2

uv) −
∑

(i,j)∈A

bijx3
ij .

Because x3 ≤ x2 and x3
uv = 0, we have that

∑
(i,j)∈A

b′′
ijx2

ij ≥
∑

(i,j)∈A

b′′
ijx3

ij + x2
uv and thus

f2(b′′, x3) ≥
∑

j∈Γ+(r)

x2
rj − x2

uv − (
∑

(i,j)∈A

bijx2
ij − x2

uv) which leads to f2(b′′, x3) ≥ f2(b′′, x2):

since x2 is optimal we have f2(b′′, x3) = f2(b′′, x2). We have found an optimal solution x3

of the max problem of (RSL) with x3
uv = 0 and x3 ≤ x2. By using this method iteratively,
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we obtain a solution xh with
∑

(i,j)∈A

b′′
ijxh

ij = 0. Thus, xh is optimal for (RSL) and feasible

for (SL) and f2(b′′, x2) = f2(b′′, xh) = f1(b′′, xh).

The optimal values of (SL) and (RSL) are then the same considering we can transform

an optimal solution for (SL) to a solution for (RSL) of same value and vice versa. ✷

In an optimal solution of (RSL), the defender will then route no flow through arcs

which had been deleted by the attacker because it would reduce the value of his objective

function. We can also replace the constraint b ∈ B̃(y) by b ∈ B in (RSL) (i.e. deleting the

constraint b ≤ y) since the polyhedron of the max problem is defined for each b ∈ B. This

does not affect the optimal value of (RSL) since, for an arc (i, j), xij = 0 if yij = 0 and

thus bijxij = 0 no matter the value of bij .

Property 2.3.1 can also be seen as a consequence of a Wood’s result [Wood 2010].

Wood considers the following generic bilevel network interdiction model:

(BNI1)

∣∣∣∣∣∣∣

min
z∈Z

max
w

c⊤w

s.t Aw ≤ a
0 ≤ w ≤ U(1 − z)

where Z = {z ∈ {0, 1}n | Hz ≤ h} is the polyhedron of the attacker variable z

(for a facility f , zf = 1 if the facility f is attacked, 0 otherwise). The defender operates

the network to maximize his objective function by setting the variable w, considering the

damages made by the attacker (if zf = 1, there cannot be any activity on the facility f ,

i.e. wf = 0 because of the constraint 0 ≤ w ≤ U(1 − z)). We have U = diag(u) where u

is the upper bound vector of w (for example a capacity).

Let rf be an upper bound on the optimal dual variable for the constraint wf ≤ uf (1−

zk) in (BNI1). We introduce r = (r1...rn)
⊤ and R = diag(r). Wood defines the following

formulation:
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(BNI2)

∣∣∣∣∣∣∣

min
z∈Z

max
w

(c⊤ − z⊤R)w

s.t Aw ≤ a
0 ≤ w ≤ u

In Wood [2010, Proposition 1], Wood shows that (BNI1) and (BNI2) are equivalent

in the sense that their optimal values are equal and z∗ is an optimal solution for (BNI2)

if and only if it is an optimal solution for (BNI1). Using this proposition on (SL), we

re-obtain the formulation (RSL) (R corresponds to the identity matrix in our case since

dual variables can be bounded by 1 similarly to Subsection 2.2.3).

Again, at this point, the variable ŷ and b̂ are fixed. The defender subproblem (RSL)

can then be dualized in this way:

min
λ,µ

∑
(i,j)∈A

uij ŷijλij

s.t λij − µi + µj ≥ − b̂ij ∀(i, j) ∈ A

µr = 1

µs = 0

λ ∈ [0, 1]|A|, µ ∈ [0, 1]|V |

(2.15a)

(2.15b)

(2.15c)

(2.15d)

The lower level can be reformulated as amin−min function by using the dual described

above, thus it can be rewritten as follows:

(DRSL)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
b,λ,µ

∑

(i,j)∈A

uij ŷijλij

s.t b ∈ B

λij + bij − µi + µj ≥ 0 ∀(i, j) ∈ A

µr = 1

µs = 0

λ ∈ [0, 1]|A|, µ ∈ [0, 1]|V |

(2.16a)

(2.16b)

(2.16c)

(2.16d)

(2.16e)

We can then rewrite the bilevel program as:
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min
y∈{0,1}|A|

∑
(i,j)∈A

cijyij

s.t f(y) ≥ |T |
where f(y) = min

(b,λ,µ)∈D

∑
(i,j)∈A

uijyijλij

where D is the polyhedron defined by Constraints (2.16a-2.16e).

One can notice that (DRSL) is strictly equivalent to the separation problem of the cut-

set formulation (2.4a-2.4e). Let us rewrite Constraint (2.3) from the cut-set formulation:

∑

(i,j)∈S\C

uijyij ≥ |T | ∀S ∈ S, ∀C ∈ CS
k

where S is the set of r−s cutsets except the one implying only fictive arcs and CS
k is the

set of subsets of S of non-fictive arcs of size k, for any set S ∈ S. We can see that using the

method generating the inequalities associated with the extreme points of the convex hull

of (DRSL) proposed in Subsection 2.2.3 generates the same inequalities as (2.3), since the

extreme points of (DRSL) represented by the values (b̂, λ̂, µ̂), which are integer because of

the total unimodularity of the matrix of constraints of (DRSL), will represent cuts on the

graph given by µ̂: a vertex v is in the same part as the root if µv = 1 and in the same part

as the sink if µv = 0. The residual cut-set S \ C is represented by the arcs (i, j) such that

λ̂ij = 1, the deleted arcs C in the cut-set are represented by the arcs (i, j) such that b̂ij = 1.

It is then clear that the bilevel formulation collapses with the cut-set formulation, as

stated in Theorem 2.3.1.

Theorem 2.3.1 The optimal values of the continuous relaxations of (BILEV EL) and

(CUT ) are equal.

Thus, we will only give the numerical results obtained for the cut-set and the flow

formulations.
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2.3.2 Relations between the flow and the cutset formulations

Let us introduce the continuous relaxation of the cutset formulation:

(RCF )

∣∣∣∣∣∣∣∣∣

min
y

∑
(i,j)∈A

cijyij

s.t
∑

(i,j)∈S\C

uijyij ≥ |T | ∀S ∈ S, ∀C ∈ CS
k

0 ≤ yij ≤ 1 ∀(i, j) ∈ A

We remind that S is the set of cut-sets associated with the r − s cuts [V \ VS , VS ] with

VS ⊂ V , r ∈ V \ VS , s ∈ VS and VS Ó= {s} and that for any S ∈ S, CS
k is the set of subsets

of non-fictive arcs of S of size k.

We also introduce the continuous relaxation of the flow formulation:

(RFF )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
x,y

∑
(i,j)∈A

cijyij

s.t.
∑

i∈Γ−(j)

xF
ij −

∑
k∈Γ+(j)

xF
jk = 0 ∀j ∈ V \ {r, s}, ∀F ∈ F

∑
t∈Γ−(s)

xF
ts = |T | ∀F ∈ F

xF
ij ≤ uijyij ∀(i, j) ∈ A, ∀F ∈ F

xF
ij = 0 ∀F ∈ F , ∀(i, j) ∈ F

x ∈ R
|A|×|F|
+ , y ∈ [0, 1]|A|

Let us call (y1, x1) a feasible solution for (RFF ). Setting y = y1 for (RCF ) would give

a solution with the same value. Let us check that such a solution is feasible for (RCF ).

Since (y1, x1) is feasible for (RFF ), there exists a flow of value |T | for each scenario of

breakdown of k arcs, considering the capacity uijy1ij on each arc (i, j), except obviously the

arcs which are attacked in this scenario which have a capacity equal to 0. Let us assume

that y1 is not a feasible solution for (RCF ). Then there is at least one constraint of type
∑

(i,j)∈S\C

uijy1ij ≥ |T | which is violated for some S ∈ S and C ∈ Cs
k. If such a constraint

is violated, it means that there is a r − s cut-set for which the capacity is lower than |T |

if we delete k arcs (again the capacity of each arc (i, j) here is uijy1ij). Then, the scenario

of breakdown F ∈ F in which those k arcs are deleted would not admit a feasible flow

of value |T |: a contradiction. So y1 is a feasible solution for (RCF ) with the same value
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than (y1, x1) for (RFF ).

Now let us call y2 a feasible solution for (RCF ). Setting y = y2 for (RFF ) would give

a solution with the same value. Assume there does not exist any x2 such that (y2, x2) is

a feasible solution for (RCC). It means that there exists at least a scenario of breakdown

F ∈ F such that there is no feasible flow of value |T | on the residual network (where we

delete the arcs in F ) with capacities equal to uijy2ij for each arc (i, j). As before, this

is impossible since this would involve a residual r − s cut-set with a capacity lower than

|T |. So there always exists at least one x2 such that (y2, x2) is a feasible solution for (RFF ).

We can then transform any solution of (RFF ) in a solution of same value in (RCF )

and vice versa and deduce Theorem 2.3.2.

Theorem 2.3.2 The optimal values of the continuous relaxations of the flow formulation

(RFF ) and the cut-set formulation (RCF ) are equal.

2.4 Addition of protected arcs

Let us now define another version of the problem, where we add the possibility of

protecting k′ arcs. In this version, in addition to A′, we also select a subset A′
p ⊂ A′ with

|A′
p| ≤ k′; those arcs are called protected arcs and cannot be deleted by the attacker. The

corresponding problem is called Capacitated Protected Rooted k-Edge Connected Steiner

Network problem (CPRkECSN). In the wind farm application, protecting arcs can be

seen as doubling a set of cables under a given budget for example, or protecting cables

from a difficult environment (like extreme cold).

Remark 2.4.1 With the addition of protected arcs, Property 2.1.1 in Section 2.1 does

not hold anymore: if some arcs are protected, a feasible solution does not necessarily imply

that there are k + 1 arc-disjoint paths between the root and each terminal t. For example,

k + 1 paths which are pairwise arc-disjoint except for the fact that they share a common
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arc (u, v) can be sufficient to ensure that the terminal t can be reached from the root even

after any k arc-deletions if the arc (u, v) is protected and capacities are sufficient. Hence,

Remark 2.1.1 can also be ignored.

For each non-fictive arc (i, j) ∈ AI , we define the variable pij as a binary variable

equal to 1 if the arc (i, j) is protected, and to 0 otherwise. We also define the following

polyhedron:

P = { p ∈ {0, 1}|AI | |
∑

(i,j)∈AI

pij ≤ k′ ; pij ≤ yij ∀(i, j) ∈ AI }

This set ensures that there are at most k′ protected arcs, and that we cannot protect

arcs which are not selected in the final network. In the following, we propose small

modifications to each one of the previous formulations in order to include the possibility

of protecting arcs.

2.4.1 Cut-set formulation

In order to include the possibility of protecting arcs to the cut-set formulation proposed

in Subsection 2.2.1, Constraints (2.3) can be replaced by the following ones:

∑

(i,j)∈S

uijyij −
∑

(i,j)∈C

uij(yij − pij) ≥ |T | ∀S ∈ S, ∀C ∈ CS
k

(2.17)

Constraints (2.17) ensure that the capacity of each cut-set minus the capacity of k

unprotected arcs of this cut-set is always larger than |T |. We also add to the cut-set

formulation the constraint p ∈ P .

We solve the resulting MIP using the same constraints generation algorithm as in

Subsection 2.2.1. The separation problem is slightly modified to take into account the

fact that the capacity of the protected arcs cannot be removed to compute the residual

capacity of the cut-set. For small values of k, for each combinations of k selected but

non-protected arcs, we compute the min-cut (in Subsection 2.2.1, we take into account all

selected arcs). Considering the MIP CUT − SEP (see Subsection 2.2.1) used to solve the
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subproblem, we have to modify the objective function to find a cut-set that is violating

some Constraint 2.17, which results in:

(CUT − SEP − PROT )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
s,b,v

∑

(i,j)∈Â

(uijsij + uij p̂ijbij)

s.t sij + bij − vi + vj ≥ 0 ∀(i, j) ∈ Â

vr = 1

vs = 0
∑

(i,j)∈Â

bij ≤ k

∑

t∈T

bts = 0

sij , bij ∈ {0, 1} ∀(i, j) ∈ Â, v ∈ {0, 1}|V |

(2.18a)

(2.18b)

(2.18c)

(2.18d)

(2.18e)

(2.18f)

where p̂ corresponds to the current value of p. We remind that v defines the partition of

the vertex set while s and b define the arcs of the cut-set, in particular b defines all the arcs

of the cut-set which are deleted. The objective value is equal to the sum of the capacity

of the arcs of the cut-set which are not deleted plus the capacity of the arcs which are

deleted but were protected. There always exists an optimal solution where bij p̂ij = 0 for

each arc (i, j): if there is some p̂ijbij > 0, we can set sij = 1 and bij = 0 which results in

a solution with the same objective value which still satisfies all the constraints. Thus, we

can add the constraints

bij ≤ 1 − p̂ij ∀(i, j) ∈ Â (2.19)

and set the objective function to

min
s,b,v

∑

(i,j)∈Â

uijsij

Thus, protected arcs cannot be deleted.

Remark 2.4.2 When arcs can be protected, the case of uniform capacities equal to U does

not admit the reformulation (2.5) anymore. For example, for a cut-set S ∈ S, if all arcs

of S are protected, we must just ensure that their capacity is at least equal to |T |, whereas

if no arc is protected we must ensure that
∑

(i,j)∈S uijyij − kU is at least equal to |T |.
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2.4.2 Equivalence between cut-set and bilevel formulations in the pro-
tected case

The bilevel formulation introduced in Subsection 2.2.3 can be adapted to the protected

case as follows:

(BIL − PROT )

∣∣∣∣∣∣∣∣∣∣∣∣∣

min
y∈{0,1}|A|

∑

(i,j)∈A

cijyij

s.t. f(y) ≥ |T |

where f(y) = min
b∈B(p)

max
x∈X (y,b)

∑

j∈Γ+(r)

xrj

(2.20a)

(2.20b)

where b ∈ B(p) with

B(p) = { b ∈ {0, 1}|A| |
∑

(i,j)∈A

bij ≤ k ;
∑

t∈T

bts = 0 ; bij ≤ 1− pij ∀(i, j) ∈ A }

forbids the attacker to delete some protected arcs.

The reformulation of the second level results in:

(RSL−Prot)

∣∣∣∣∣∣∣∣∣∣∣∣∣

min
b∈B̃(p)

max
x

∑

j∈Γ+(r)

xrj −
∑

(i,j)∈A

bijxij

s.t
∑

i∈Γ−(j)

xij −
∑

k∈Γ+(j)

xjk = 0 ∀j ∈ V \ {r, s}

0 ≤ xij ≤ uij ŷij ∀(i, j) ∈ A

(2.21a)

(2.21b)

This leads to the dual reformulated second level problem:

(DRSL−Prot)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
b,λ,µ

∑

(i,j)∈A

uij ŷijλij

s.t λij + bij − µi + µj ≥ 0 ∀(i, j) ∈ A

µr = 1

µs = 0
∑

(i,j)∈A

bij ≤ k

∑

t∈T

bts = 0

bij ≤ 1 − p̂ij ∀(i, j) ∈ A

λ ∈ [0, 1]|A|, µ ∈ [0, 1]|V |, b ∈ {0, 1}|A|

(2.22a)

(2.22b)

(2.22c)

(2.22d)

(2.22e)

(2.22f)

(2.22g)
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2.5. VALID AND STRENGTHENING INEQUALITIES

which is equivalent to (CUT − SEP − PROT ) in Subsection 2.4.1. Similarly to Sub-

section 2.3.1, the two formulations are equivalent as in the unprotected case.

2.4.3 Flow formulation

In the flow formulation, in addition to the constraint p ∈ P , we can replace Constraints

(2.6d) by the following ones:

xF
ij ≤ uijpij ∀F ∈ F , ∀(i, j) ∈ F (2.23)

Those constraints ensure that in a scenario F where an arc (i, j) ∈ F , we can route

some flow through this arc (i, j) only if this arc is protected. Again, we can use the same

columns-and-constraints generation algorithm as in Subsection 2.2.2, in order to find the

most vital arcs in the separation problem among the non-fictive and non-protected arcs

(we consider only combinations of selected but non-protected arcs when computing the

set of maximum flows).

2.5 Valid and strengthening inequalities

In this section, we propose some valid or strengthening inequalities for both formu-

lations to enhance the quality of the lower bound obtained by solving the continuous

relaxation. We first consider the case where we are not allowed to protect some arcs of the

network. Secondly, we propose modifications of those inequalities to take the possibility

of protecting arcs into account.

2.5.1 Case without the possibility of protecting arcs

Inequalities (2.24a) ensure that there are at least k + 1 arcs entering each terminal.

Indeed, if there are less than k+1 arcs entering it, then it is possible to delete all of them

and thus to prevent one unit of flow from reaching the sink. Inequality (2.24b) states the
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same constraint for the arcs leaving the root.

∑

(i,t)∈A

yit ≥ k + 1 ∀t ∈ T

∑

(r,i)∈A

yri ≥ k + 1

(2.24a)

(2.24b)

Both Inequalities (2.24a) and (2.24b) are valid and cut some non-integer solutions. In

Figure 2.2, we have T = {t1} and let ui be the capacity of ai for i = 1, .., 5 and yi be the

variable associated with the selection of ai. The constraints associated with this graph

for the cut-set formulation with k = 1 are u1y1 ≥ 1, u2y2 ≥ 1, u3y3 ≥ 1, u4y4 ≥ 1 and

y5 = 1. If we set ui = 2 for all i = 1, .., 4 (u5 = 1 because a5 is a fictive arc), we have that

the solution in which y1 = y2 = y3 = y4 = 0.5 and y5 = 1 is optimal for the continuous

relaxation since we consider positive costs in the objective function. Inequalities (2.24a)

are then violated and impose that y3 + y4 ≥ 2 (i.e. y3 = y4 = 1). Similarly, Inequalities

(2.24b) impose that y1 + y2 ≥ 2 (i.e. y1 = y2 = 1). In this case, the addition of both

inequalities results in the cut of non-integer solutions (here, it even results in an optimal

value of the integer problem equal to the optimal value of the continuous relaxation).

r

v1

v2

t1 s

a1

a2

a3

a4

a5

Figure 2.2: Graph where Inequalities (2.24a) and (2.24b) cut some non-integer solutions

Inequalities (2.25a) state that, for each Steiner vertex j, if an arc entering j is selected,

then at least one arc leaving j must be selected, since all arc costs are assumed to be

positive. Inequalities (2.25b) state the same for arcs leaving a Steiner vertex j. Notice

that these inequalities cut some integer but non-optimal solutions.

yij ≤
∑

k∈Γ+(j)

yjk ∀j ∈ V \ {T ∪ {r}}, ∀i ∈ Γ−(j)

yjk ≤
∑

i∈Γ−(j)

yij ∀j ∈ V \ {T ∪ {r}}, ∀k ∈ Γ+(j)

(2.25a)

(2.25b)
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2.5.2 Case with the possibility of protecting arcs

The two families of Inequalities (2.24a) and (2.24b) are only true for the case without

protection (k′ = 0). Since one arc may be sufficient to ensure that one of the terminals is

not isolated if it is protected, we can replace Inequalities (2.24a) and (2.24b) by (2.26a-

2.26b) and (2.26c-2.26d) in this case. Inequalities (2.26a-2.26b) state that, for any terminal

t, if there are no protected arcs entering t, there must be at least k + 1 arcs entering t,

otherwise there must be at least one. Inequalities (2.26c-2.26d) state the same constraint

for the arcs entering the root.

∑

(i,t)∈A

yit ≥ 1 + (k(1−
∑

(i,t)∈A

pit)) ∀t ∈ T

∑

(i,t)∈A

yit ≥ 1 ∀t ∈ T

∑

(r,i)∈A

yri ≥ 1 + (k(1−
∑

(r,i)∈A

pri))

∑

(r,i)∈A

yri ≥ 1

(2.26a)

(2.26b)

(2.26c)

(2.26d)

Inequalities (2.27) state that at least one arc entering a terminal t must be protected

if there are less than k + 1 arcs entering t.

∑

(i,t)∈A

pit ≥ 1 ∀t ∈ T with |Γ−(t)| ≤ k (2.27)

Inequalities (2.25a) and (2.25b) are still valid inequalities for the case with the possi-

bility of protecting arcs.

2.6 Results analysis

In this section, we present the results of the tests for the formulations proposed previ-

ously. All experiments were performed on a computer with a 2.40GHz Intel(R) Core(TM)

i7-5500U CPU and a 16GB RAM, using the solver CPLEX version 12.6.1, interfaced with

Julia 0.6.0. We used in particular the package JuMP, a tool allowing mathematical mod-

eling. For each test, the algorithm has been stopped after 3000 seconds if it has not
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terminated yet.

I |V| |T| |E|
1 20 4 46
2 20 6 45
3 20 12 46
4 20 19 46
5 25 5 59
6 25 8 61
7 25 15 61
8 25 24 59
9 30 3 74
10 30 6 73
11 30 9 74
12 30 18 74
13 30 29 74
14 35 4 89
15 35 7 87
16 35 10 91
17 35 21 89
18 35 34 88
19 40 4 104
20 40 8 103

I |V| |T| |E|
21 40 12 100
22 40 24 104
23 40 39 103
24 45 4 119
25 45 9 118
26 45 14 118
27 45 27 114
28 45 44 119
29 50 5 133
30 50 10 133
31 50 15 131
32 50 30 133
33 50 49 130
34 60 6 160
35 60 12 157
36 60 18 161
37 60 36 161
38 60 59 161
39 70 7 188
40 70 14 189

I |V| |T| |E|
41 70 21 188
42 70 42 190
43 70 69 189
44 80 8 221
45 80 16 219
46 80 24 216
47 80 48 213
48 80 79 223
49 90 9 249
50 90 18 248
51 90 27 250
52 90 54 248
53 90 89 247
54 100 10 281
55 100 20 279
56 100 30 278
57 100 60 277
58 100 99 282

Table 2.1: Instance parameters

Table 2.1 shows for each instance its number I, as well as the number of vertices

|V |, terminals |T |, and edges |E|. All instances have been generated in the following

way: the vertices have been randomly generated in the plane, and the capacity of an

arc is more likely to be high if this arc is close to the root. We compute 5 instances

for each different value of |V | selected (except for |V | = 20 and |V | = 25 because the

number of vertices is too small): for each one we assign a different value of |T | selected

in { 1
10 |V |, 2

10 |V |, 3
10 |V |, 6

10 |V |, |V | − 1}. The graph associated with each instance is parse,

corresponding to the wind-farm application where graphs are not dense. Also, the formu-

lations are very dependent on the number of arcs and graphs which are too dense would

be too difficult to solve (for similar reasons, the number of vertices is bounded by 100).

The arc capacities are high enough to ensure that there is at least one feasible solution to

our problem, but low enough to keep the problem difficult enough to solve. More precisely,

the capacities are chosen randomly among four values: 0.8|T |, 0.6|T | and, except for the
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edges with endpoints at distance 1 or 2 from the root, 0.4|T | and 0.2|T |. Furthermore, the

cost of an arc depends on both its length and its capacity, and hence is not necessarily

integral.

Table 2.2 presents the results for the cutset and flow formulations for one possible arc

deletion and no protection allowed (i.e. k = 1 and k′ = 0) on instances with non-uniform

capacities. The column I gives the number of the instance on which the formulation is

tested, the column gapLR gives the gap between the optimal value of the initial continuous

relaxation with the valid inequalities and the optimal integer value (please remind that

the relaxations of the flow and cutset formulations are equal, see Theorem 2.3.2). For each

formulations, the column gapf gives the final gap between the best lower bound bestLB

and the best integer solution found bestI (if the gap is equal to 0, we have found an optimal

solution, otherwise we give the gap obtained after 3000 seconds of computation): formally

we have that gapf = (bestI − bestLB)/bestI ; the column time gives the time in seconds

needed to find an optimal solution or 3000 if the algorithm has not terminated yet; the

column it gives the number of iterations performed by the algorithm (i.e. the number of

times the algorithm of constraints generation is executed); the column nodes gives the

number of nodes explored in the branch-and-cut.

In Table 2.2, we can observe that both formulations manage to find an optimal solu-

tion to the problem within 3000 seconds for instances with a number of vertices smaller

than or equal to 45, except for two instances for the flow formulation. However, the cut-

set formulation has a better solving time for almost all instances, although it performs

more iterations of constraints generation and has a higher number of nodes explored in

the branch-and-cut. This can be explained by the fact that although the number of con-

straints that can be generated in the cutset formulation is importantly higher than the

family of constraints that can be generated in the flow formulation for k = 1 (whose num-

ber is bounded by |E|), at each constraint generation in the flow formulation, we add at

least |E| variables to the formulation. On instances having 50 to 100 vertices, the cutset

formulation allows to find a feasible solution which is often optimal or has a value close to
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Cutset Flow
I gapLR gapf time (s) it nodes gapf time (s) it nodes
1 0.15 0 0.4 13 0 0 0.1 2 32
2 0.25 0 1.7 46 800 0 0.9 13 279
3 0.28 0 5.8 113 4859 0 6.3 15 2237
4 0.18 0 4.2 92 4423 0 6.2 20 1995
5 0.19 0 3.0 61 554 0 1.4 14 273
6 0.16 0 3.6 79 5194 0 9.5 12 2426
7 0.24 0 8.8 127 19143 0 28.6 30 2290
8 0.1 0 0.4 13 179 0 0.5 7 35
9 0.2 0 5.7 106 4141 0 28.6 24 866
10 0.21 0 8.8 126 11361 0 64.6 23 8408
11 0.17 0 8.5 115 13161 0 41.3 16 7995
12 0.07 0 0.5 13 13 0 0.38 4 13
13 0.28 0 18.1 243 18441 0 87.4 26 3488
14 0.25 0 10.0 143 8188 0 23.2 13 4070
15 0.1 0 5.5 67 552 0 8.9 17 1316
16 0.22 0 6.7 129 4318 0 20.8 15 1540
17 0.17 0 6.4 93 3586 0 41.2 24 2961
18 0.26 0 710 391 15.104 0 1947 34 35683
19 0.15 0 13.6 116 20339 0 251 37 5016
20 0.08 0 10.7 98 1964 0 9.16 5 1432
21 0.16 0 3.4 70 601 0 4.9 11 363
22 0.18 0 32.4 217 50927 0 384 16 28156
23 0.19 0 19.6 149 21588 0 466 22 7129
24 0.24 0 2050 766 57.104 0.09 3000 36 21610
25 0.13 0 31.1 182 62060 0 353 20 22834
26 0.28 0 21.2 188 24570 0 1642 27 8680
27 0.21 0 1335 533 19.104 0.1 3000 34 8513
28 0.29 0 20.0 155 22125 0 1812 29 12645
29 0.08 0 8.6 66 1880 0 159.7 21 1431
30 0.34 0 2950 557 14.104 0.3 3000 45 2015
31 0.19 0 300.7 319 26.103 0.05 3000 29 32515
32 0.24 0 130.0 301 16.103 0.09 3000 44 7547
33 0.16 0 127.8 302 21.103 0.03 3000 38 5995
34 0.33 0 223.6 369 20.103 0.15 3000 51 4065
35 0.27 0 1102 667 10.104 0.26 3000 56 937
36 0.17 0 73.1 304 65183 0.12 3000 49 2057
37 0.16 0 791.4 386 13.104 0.12 3000 50 2234
38 0.13 0.02 3000 580 99.104 0.13 3000 55 1458
39 0.18 0 245.3 436 16.103 - - - -
40 0.27 0.09 3000 939 19.104 - - - -
41 0.17 0.03 3000 1050 35.104 - - - -
42 0.1 0.02 3000 827 59.104 - - - -
43 0.32 0.18 3000 928 11.104 - - - -
44 0.25 0.11 3000 957 11.104 - - - -
45 0.26 0.15 3000 1142 12.104 - - - -
46 0.17 0.08 3000 1227 30.104 - - - -
47 0.1 0.01 3000 799 77.104 - - - -
48 0.27 0.1 3000 1155 10.104 - - - -
49 0.26 0.1 3000 909 10.104 - - - -
50 0.26 0.12 3000 1190 12.104 - - - -
51 0.13 0 964.2 558 89.103 - - - -
52 0.12 0.01 3000 672 80.104 - - - -

Table 2.2: Results for non-uniform capacities, k = 1 and k′ = 0
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the optimal one. The algorithm associated with the cutset formulation finds the optimal

solution for 39 instances out of 52 tested. For the other instances, the mean final gap

is equal to 0.07. The algorithm associated with the flow formulation finds the optimal

solutions for 27 instances out of 38 tested (all those instances have been optimally solved

by the cutset formulation except Instance 38 which presents a final gap equal to 0.02). For

the other instances, the mean final gap is equal to 0.13.

Cutset Flow
I gapLR gapf time (s) it nodes gapf time (s) it nodes
1 0.06 0.0 0.6 23 35 0.0 0.6 3 5
2 0.15 0.0 1.2 27 104 0.0 4.7 22 377
6 0.13 0.0 4.4 90 5405 0.0 172 55 5110
7 0.17 0.0 6.0 106 3602 0.0 196 52 5968
11 0.15 0.0 6.4 97 3150 0.0 664 83 12249
16 0.18 0.0 11.7 161 3989 0.0 878 75 9969
19 0.22 0.0 22.5 291 16159 0.0 2710 74 14376
21 0.22 0.0 160 495 332748 0.13 3000 94 14827
23 0.04 0.0 5.4 40 435 0.0 194 18 1621
24 0.11 0.0 6.0 123 1843 - - - -
25 0.12 0.0 25.6 211 32959 - - - -
26 0.12 0.0 24.2 216 15778 - - - -
29 0.24 0.0 59.3 267 72991 - - - -
30 0.16 0.0 1085 582 2039248 - - - -
31 0.21 0.0 79.4 250 152911 - - - -
34 0.28 0.07 3000 1339 1524965 - - - -
36 0.17 0.0 229 406 249593 - - - -
37 0.12 0.0 52.6 202 54918 - - - -
39 0.25 0.0 193 541 143432 - - - -
40 0.18 0.0 966 650 944465 - - - -
44 0.22 0.04 3000 945 1236272 - - - -
49 0.26 0.15 3000 1542 1027765 - - - -
50 0.18 0.08 3000 966 1750500 - - - -
51 0.2 0.1 3000 1536 2051800 - - - -
52 0.13 0.06 3000 1232 3777198 - - - -
53 0.04 0.0 37.7 70 7970 - - - -
54 0.27 0.13 3000 1717 1097985 - - - -
55 0.25 0.14 3000 1670 1156704 - - - -
57 0.09 0.0 149 257 66364 - - - -
58 0.03 0.0 49.3 95 4253 - - - -

Table 2.3: Results for non-uniform capacities, k = 2 and k′ = 0

Table 2.3 presents the results of the cutset and flow formulations for k = 2 and k′ = 0
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Cutset Flow
I gapLR gapf time (s) it nodes gapf time (s) it nodes
6 0.1 0.0 6.5 121 1409 0.0 1209 68 4326
7 0.06 0.0 3.0 29 136 0.0 98.4 19 255
16 0.12 0.0 88.1 78 1041 0.04 3000 69 1365
19 0.21 0.0 63.5 380 82935 - - - -
25 0.08 0.0 10.2 130 2526 - - - -
34 0.27 0.12 3000 1474 1972379 - - - -
39 0.26 0.03 3000 1028 2651353 - - - -
40 0.19 0.0 1194 770 1578225 - - - -

Table 2.4: Results for non-uniform capacities, k = 3 and k′ = 0

on instances with non-uniform capacities. The columns are defined similarly to the ones

in Table 2.2. For some instances, the instance does not admit any feasible solution for

k = 2 and k′ = 0, thus we remove from the table those instances (the formulations deter-

mine when no solution exists within a few seconds for this set of instances). Again, the

cutset formulation is way more efficient than the flow formulation. The flow formulation

still presents a smaller number of constraints generation iterations but the difference with

the number of iterations of the cutset formulation is less important than for k = 1, due

to the fact that we now may have to generate up to
(|E|
2

)
constraints, whereas the num-

ber of iterations for the cutset formulations is only slightly higher for k = 2 than for k = 1.

In Table 2.3, the cutset formulation manages to find an optimal solution for most of

the instances of at most 70 vertices, and does not appear to be as sensitive to the value of

k as the flow formulation. For instances with 80 vertices and more, the cutset formulation

manages to find a feasible solution which is optimal or has a value reasonably close to

the optimal one. The algorithm associated with the cutset formulation finds the optimal

solution for 22 instances out of 30 tested. For the other instances, the mean final gap is

equal to 0.9.

Table 2.4 presents the results of the cutset and flow formulations for k = 3 and k′ = 0 on

instances with non-uniform capacities. The columns are defined similarly to the previous

tables. Again, some instances do not admit any feasible solution for k = 3 and k′ = 0, thus
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we remove from the table those instances. Similarly to the previous results for k ∈ {1, 2},

the cutset formulation is more efficient. Furthermore, the number of constraints gener-

ated in the flow formulation is closer to the one of the cutset formulation than in k ∈ {1, 2}.

Cutset Flow
I k’ gapLR gapf time(s) it n gapf time (s) it n

1-10 1 0.24 0.0 5.0 92 6941 0.0 25.9 17 2826
- 2 0.27 0.0 7.9 114 12897 0.0 59.1 29 3017
- 3 0.3 0.0 11.1 125 20934 0.0 66.4 31 4052

11-20 1 0.23 0.0 12.0 141 13319 0.0 201 35 3734
- 2 0.25 0.0 16.0 158 19726 0.0 337 41 5099
- 3 0.28 0.0 24.2 182 40042 0.0 642 52 7656

21-30 1 0.22 0.01 727 346 8.104 0.07 2308 38 11728
- 2 0.24 0.01 937 388 9.104 0.06 2290 47 7198
- 3 0.26 0.02 945 424 9.104 0.08 2561 55 8795

31-40 1 0.26 0.01 952 402 5.104 0.19 2740 46 3764
- 2 0.28 0.01 1207 494 7.104 0.23 3000 58 3514
- 3 0.3 0.02 1321 531 6.104 0.23 3000 62 2532

41-50 1 0.24 0.08 2176 818 11.104 - - - -
- 2 0.27 0.1 2590 932 13.104 - - - -
- 3 0.29 0.13 2755 1028 14.104 - - - -

51-58 1 0.2 0.1 3000 1237 17.104 - - - -
- 2 0.23 0.14 3000 1564 14.104 - - - -
- 3 0.24 0.15 3000 1466 15.104 - - - -

Table 2.5: Results for non-uniform capacities, k = 1 and k′ ∈ {1, 2, 3}

Tables 2.5, 2.6 and 2.7 present results for our problem with the possibility of protecting

some arcs. In real applications, protecting an arc can correspond to double the cable or

adding devices protecting the cables against the environment (like extreme cold). Since

those modifications can be expensive, we only consider small values of k′.

Table 2.5 presents the results of the cutset and flow formulations for k = 1 and

k′ ∈ {1, 2, 3} on instances with non-uniform capacities. The column I gives the set of

the instances on which the formulation is tested, the column gapLR gives the mean value

of the gap between the optimal value of the continuous relaxation and the optimal value

of the integer formulation for each instance of the data set tested. For each formulation,

the column gapf gives the mean value of the final gap of each instance of the data sets

between the best lower bound and the best integer solution found (if the gap is equal
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Cutset Flow
I k’ gapLR gapf time (s) it n gapf time (s) it n

1-10 1 0.14 0.0 7.5 108 9088 0.0 384 48 7971
- 2 0.2 0.0 14.6 152 21575 0.02 1047 64 10902
- 3 0.22 0.0 28.2 190 53192 0.05 1238 78 14521

11-20 1 0.19 0.0 18.7 167 17192 0.04 1818 69 11621
- 2 0.22 0.0 37.7 261 42657 0.12 2598 86 14564
- 3 0.24 0.0 80.4 291 100650 0.15 2533 98 12030

21-30 1 0.17 0.0 450 397 590660 - - - -
- 2 0.19 0.0 606 491 829507 - - - -
- 3 0.22 0.02 1066 531 1148662 - - - -

31-40 1 0.23 0.02 1275 699 856019 - - - -
- 2 0.26 0.06 1514 746 726194 - - - -
- 3 0.28 0.08 1592 797 796008 - - - -

41-50 1 0.2 0.08 1719 908 1298931 - - - -
- 2 0.23 0.1 1909 1113 902446 - - - -
- 3 0.3 0.16 2503 1367 1295592 - - - -

51-58 1 0.23 0.05 1842 929 733356 - - - -
- 2 0.24 0.07 1924 1209 944623 - - - -
- 3 0.3 0.1 2632 1406 1343762 - - - -

Table 2.6: Results for non-uniform capacities, k = 2 and k′ ∈ {1, 2, 3}

to 0, we have found an optimal solution, otherwise we give the gap obtained after 3000

seconds of computation); the column time gives the mean solving time to find an optimal

solution or 3000 if the algorithm has not terminated yet for the data set; the column it

gives the mean number of iterations performed by the algorithm (i.e. the number of times

the algorithm of constraints generation is executed) for the data set; the column n gives

the mean number of nodes explored in the branch-and-cut for the data set.

One can see that the cutset formulation is also more efficient with the addition of the

possibility of protecting arcs. The solving time is higher in the case with k′ > 0 than in

the case with k′ = 0 and it increases as well as the gaps and the number of iterations

and nodes when k′ becomes bigger. It appears that the flow formulation is slightly less

impacted by the variation of k′.

Table 2.6 presents the results of the cutset and flow formulations for k = 2 and

k′ ∈ {1, 2, 3} on instances with non-uniform capacities; the columns are similar to the
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ones in Table 2.5. The flow formulation is logically still importantly slower when k in-

creases in the protected case, and the mean number of iterations is around the double

of the one for k = 1. Again, the cutset formulation appears to be less impacted by the

increase of k in the protected case: the gaps are equivalent, the solving times appear to be

even better for some sets of instances (sets 41-50 and 51-58), and the number of iterations

does not increase as much as the ones of the flow formulation.

Cutset Flow
I k’ gapLR gapf time it n gapf time it n

1-10 1 0.14 0.0 16.7 234 9584 0.08 1835 114 4384
- 2 0.21 0.0 16.6 186 25975 0.06 1910 132 3757
- 3 0.23 0.0 29.9 221 53703 0.15 1992 136 3948

11-20 1 0.21 0.0 117 372 108708 0.13 3000 66 588
- 2 0.21 0.0 234 359 247729 0.18 3000 90 914
- 3 0.3 0.01 472 503 340496 0.25 2869 76 1413

21-30 1 0.16 0.0 149 364 272985 - - - -
- 2 0.28 0.02 1078 715 1182379 - - - -
- 3 0.3 0.03 990 827 678130 - - - -

31-40 1 0.31 0.07 1843 1127 1038762 - - - -
- 2 0.36 0.11 2021 1392 994130 - - - -
- 3 0.37 0.14 2049 1512 975210 - - - -

41-50 1 0.31 0.08 3000 1580 1950209 - - - -
- 2 0.27 0.11 2430 1683 824006 - - - -
- 3 0.35 0.21 2451 2246 680713 - - - -

51-58 2 0.26 0.0 1174 350 1189524 - - - -
- 3 0.36 0.0 2150 674 1156240 - - - -

Table 2.7: Results for non-uniform capacities, k = 3 and k′ ∈ {1, 2, 3}

Table 2.7 presents the results of the cutset and flow formulations for k = 3 and

k′ ∈ {1, 2, 3} on instances with non-uniform capacities; the columns are similar to the

ones in Table 2.5. Similar remarks as the ones of Table 2.6 can be made: the flow formu-

lation is much slower when k = 3 whereas the cutset formulation is not as much impacted

by the incrementation of k.

Table 2.8 presents the results of the cutset formulations for k = 1 and k′ = 0 on in-

stances with uniform capacities. We compute the tests on the Regular-Cutset formulation

(which corresponds to the classic cutset formulation proposed in Equation (2.2) in Sub-
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Uniform-Cutset Regular-Cutset
I time(s) it nbn time(s) it nbn

1 0.07 2 0 0.11 4 0
2 0.28 6 2 0.65 28 184
3 4.98 32 1215 5.39 44 978
4 0.24 5 0 0.32 9 2
5 0.36 8 0 0.9 29 285
6 0.44 10 46 0.64 22 146
7 0.43 8 0 1.1 28 138
8 0.28 3 0 0.37 7 0
9 0.25 5 28 0.31 11 67
10 0.59 14 23 1.02 32 234
11 0.39 8 0 0.89 24 111
12 0.61 11 21 1.44 36 399
13 0.46 7 1 0.87 16 44
14 0.23 5 0 0.34 10 15
15 0.35 5 0 0.51 15 57
16 0.54 9 32 1.96 45 445
17 0.74 10 0 2.01 37 254
18 0.36 4 0 0.33 5 0
19 0.53 8 208 1.11 30 539
20 0.36 5 3 0.6 13 22
21 0.72 10 55 1.47 28 608
22 1.2 14 124 2.78 41 691
23 0.55 5 2 0.82 11 21
24 0.36 5 2 0.57 15 69
25 0.7 8 118 1.12 19 270
26 1.62 17 276 3.58 49 937
27 2.55 24 146 7.19 81 1606
28 1.42 11 4 1.83 17 23
29 1.39 17 589 3.34 57 3329
30 2.07 21 853 5.4 71 2904
31 1.2 12 12 4.81 59 2174
32 0.54 4 0 0.87 8 0
33 2.65 15 33 4.3 29 193
34 3.25 33 1009 8.79 86 9662
35 1.42 13 185 2.07 24 274
36 3.78 31 642 10.37 95 5146
37 3.32 19 111 7.2 48 1967
38 2.38 9 50 3.41 17 58
39 2.98 27 1273 7.8 88 4958
40 3.14 25 406 6.57 60 2351
41 3.22 22 709 6.82 60 1011
42 1.27 5 19 2.74 15 114
43 3.76 12 112 12.69 52 482
44 6.39 43 2325 25.06 140 27009
45 5.85 40 1772 13.56 92 8873
46 7.76 36 1409 16.07 84 6268
47 6.32 25 217 10.25 45 1034
48 8.47 26 481 34.09 113 2946
49 11.72 56 5350 76.47 134 85820
50 10.18 37 1244 24.34 127 9320
51 12.99 51 2975 65.37 181 53467
52 15.06 40 1247 33.08 99 5027
53 13.43 20 198 26.14 46 646

Table 2.8: Results for uniform capacities and k = 1
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section 2.2.1) and the Uniform-Cutset formulation (which corresponds to the modification

of the formulation to reduce the number of constraints in the case of uniform capacities,

see Equation (2.5) in Subsection 2.2.1). For each instance, we test the formulations when

uniform capacities are equal to 0.4|T |, 0.6|T | and 0.8|T |. Column I gives the instance on

which the formulations are tested; column time gives the solving time of the instance for

each formulation; column it gives the number of iterations of the constraints generation

algorithm for the instance for each formulation; column nbn gives the number of nodes

generated for the instance for each formulation. We did not give the final gap since each

instance has been optimally solved by both formulations within the 3000 seconds given to

the algorithms.

The results are impressive in comparison to the case with non-uniform capacities. The

solving times are much smaller, as well as the mean number of nodes and the mean num-

ber of iterations for both Regular-Cutset and Uniform-Cutset formulations. The Uniform-

Cutset formulation appears to be more efficient, which appears to be logical since the

number of constraints of the formulation is highly reduced and the number of variables

remains the same. The number of iterations is always smaller than the one of the Regular-

Cutset formulation and the number of nodes is often smaller than the one of the regular

formulation too.

Table 2.9 presents the results obtained with the Regular-Cutset and Uniform-Cutset

formulations for k = 2 and k′ = 0 on instances with uniform capacities. Columns are

defined as in Table 2.8. For k = 2, the uniform formulation appears to be way more

efficient than the regular one. The mean solving time and number of iterations and nodes

have only slightly increased with the incrementation of k for the uniform formulation (the

mean solving time for each instance is bounded by 70 seconds) whereas it has consequently

increased for the regular one (the mean solving time is around 2678 seconds for Instance

51 for example).

Table 2.10 presents the results obtained with the Regular-Cutset and Uniform-Cutset
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Uniform-Cutset Regular-Cutset
I time(s) it nbn time(s) it nbn

1 0.31 7 5 0.65 20 57
2 0.33 8 6 1.27 44 405
5 0.49 10 61 2.02 56 585
6 0.84 16 134 2.69 68 923
7 0.77 11 10 1.51 34 265
9 0.28 4 2 1.14 30 134
10 1.44 26 111 5.25 106 2122
11 0.82 14 0 3.58 71 1027
16 0.68 9 19 2.94 52 418
19 1.44 22 859 6.85 116 7179
20 3.25 34 1310 8.77 108 4528
21 2.6 31 463 8.97 121 4061
22 2.19 16 99 5.06 47 639
23 0.73 4 1 0.85 8 2
24 0.97 16 85 4.4 85 1996
25 3.84 43 567 9.56 120 4451
26 2.59 22 228 11.56 111 3082
28 0.85 4 0 0.77 6 0
29 3.86 42 2783 37.0 260 45720
30 7.09 68 2328 33.25 236 33383
31 4.73 39 1338 38.18 233 48585
32 1.55 7 24 1.59 11 2
33 0.41 1 0 0.36 2 0
34 30.24 85 43667 2720.92 645 3252043
36 6.79 42 2504 34.65 189 28947
37 4.27 19 150 28.48 132 3862
38 1.96 6 0 2.59 10 0
39 4.95 43 1789 40.9 276 35710
40 14.27 78 7095 198.69 344 284762
41 6.79 36 505 16.62 102 1704
42 8.03 27 1210 25.26 97 3832
43 3.81 9 94 5.0 15 42
44 50.38 118 73169 2656.92 744 1733895
49 68.69 110 65440 1536.17 421 1310976
50 59.39 108 90681 1450.07 460 1657034
51 46.41 108 27507 2678.41 533 3052695
52 37.85 67 6070 222.36 270 341739
53 17.27 23 1214 30.83 55 2869

Table 2.9: Results for uniform capacities and k = 2

formulations for k = 3 and k′ = 0 on instances with uniform capacities. Columns are

defined as in Tables 2.8 and 2.9. Again, the uniform formulation appears to be a con-
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Uniform-Cutset Regular-Cutset
I time(s) it nbn time(s) it nbn

1 0.19 5 0 0.46 13 0
6 0.74 9 18 1.72 36 184
7 0.43 3 0 0.66 8 0
9 0.66 7 0 2.42 53 711
16 0.77 9 5 4.32 58 495
19 1.88 21 220 8.51 115 3565
20 0.79 6 0 6.71 68 575
24 0.75 9 0 3.63 55 428
34 14.39 73 3669 594.06 635 720890
39 7.91 45 1692 71.66 349 48393
40 11.37 39 593 87.91 320 28594
44 16.17 66 1635 197.38 581 108704
49 38.66 76 5924 644.54 553 358451

Table 2.10: Results for uniform capacities and k = 3

sequent upgrade of the regular one, and the solving times are really smaller than in the

non-uniform case.

We also compute the results obtained by both formulations, without the addition of the

valid inequalities proposed in Subsection 2.5, on a subset of instances with k ∈ {1, 2, 3},

k′ = 0, and non-uniform capacities. Let ∆
C

time (respectively ∆
F

time) be the mean aug-

mentation of the solving time when these valid inequalities are removed from the cut-set

(respectively flow) formulation. On the test instances, ∆
C

time is equal to 3.24 (meaning

that the solving time is multiplied by 3.24 on average without the valid inequalities),

while ∆
F

time is equal to 10.78. Hence, adding these valid inequalities has a huge impact on

the solving time, especially on the flow formulation. Furthermore, let ∆CR be the mean

augmentation of the optimal value of the continuous relaxation when these valid inequal-

ities are added to the formulation. On the test instances, ∆CR is equal to 1.28 (meaning

that the optimal value of the continuous relaxation is multiplied by 1.28 on average with

these valid inequalities). The optimal value of the continuous relaxation is then conse-

quently increased when we add these valid inequalities.

Figure 2.3 deals with the cost of designing failure-resilient networks; the number of the
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Figure 2.3: Cost of the solutions for different instances

corresponding test instance is displayed on the x-axis. Each subfigure shows the cost of an

optimal solution for the case where k equals 0 (no arc deleted), 1, 2 and 3. The subfigure

(a) corresponds to the case where k′ = 0 (no protection allowed), whereas (b), (c) and

(d) correspond to the case where k′ is equal to 1, 2 and 3, respectively. This figure shows

that designing a network resilient to even a small number of arc-failures can be costly (the

cost increases greatly with the value of k). However, on subfigure (d), we can see that, by

protecting a sufficiently large but still small subset of arcs on the test instances, one can

obtain networks that are resilient to 1 or 2 arc deletions while maintaining a cost close to

the optimal value of the case with no arc failures.
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Chapter 3

A Tabu Search for the Design of
Capacitated Rooted k-Edge
Connected Steiner Planar
Networks

3.1 Introduction

In this chapter, we focus on the design of networks which are resilient to one or sev-

eral breakdowns, studying the Capacitated Rooted k-Edge Connected Steiner Network

Problem (CRkECSN) defined in Chapter 2 in the case of planar networks. We recall that

G = (V, A) is a directed input graph, that c and u are respectively a cost and a capacity

function on A, and that r and |T | are respectively the root and the terminals. We say

that G has a feasible flow if it is possible to route one unit of flow from the root to each

terminal while respecting the arc capacity constraints. Given an integer k ≥ 0, a subgraph

G′ = (V, A′) of G is said to be k-survivable if every subgraph obtained from G′ by removing

at most k arcs of A′ has a feasible flow. We aim at selecting a minimum cost subset A′ ⊆ A

of arcs such that G′ = (V, A′) is k-survivable.

In this chapter, we focus on planar graphs which are useful in practice since many

underlying graphs in real-world networks are planar. In the next section, we describe a

procedure that determines in polynomial time whether a given planar graph is k-survivable.

In Section 3.3, we embed this procedure into a tabu search. Computational experiments
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and comparisons with the exact algorithm introduced in Chapter 2 are presented in Section

3.4.

3.2 Testing survivability

Given a subset A′ of the original arc set A, we present in this section a method to test

whether G′ = (V, A′) is k-survivable, based on a method proposed in [Zenklusen 2010].

Every arc a = (i, j) ∈ A′ has an associated upper bound ua = uij (called capacity) on the

amount of flow that can traverse it, while the lower bound la = lij is equal to zero since

there is no imposed flow on any arc of G′ (we introduce lower bounds here because they

will be used later for other arcs).

The first step of the procedure consists in determining a subset of arcs S in the com-

plete graph associated with V such that S corresponds to a tree rooted at r spanning all

terminals of T and S does not break the planarity of the input graph G′ (i.e. if we add

the arcs of S to G′, the graph G′′ = (V, A′ ∪ S) is still planar), which is an easy task.

Note that such a tree necessarily exists since r is a root and we do not forbid the graph

G′′ = (V, A′ ∪S) to be a multigraph (i.e. we can select in S arcs from A′): an easy solution

to find S is then to compute a tree using arcs of A′ (and this is what we will do).

For every vertex v in S, let nv be the number of terminals in the subtree rooted at v.

For each arc (i, j) in S, we add the reverse arc (j, i) in G′ and set lji = uji = nj (there is

no issue if (j, i) is already in A′ since the resulting graph can be a multigraph). We denote

by AR the set of arcs added to G′ and by G̃′ the resulting graph. An example is depicted

in Figure 3.1. The left graph G′ has two terminals t1 and t2. The directed tree S with arc

set {(r, u), (u, t1), (u, v), (v, t2)} induces the graph G̃′ on the right, the arcs in AR being

represented by bold lines. Since nr = nu = 2 while nv = nt1
= nt2

= 1, all arcs (j, i) in

AR have lji = uji = 1, except the arc (u, r) for which lur = uur = 2.

The circulation problem is a generalization of the network flow problem where flow
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Figure 3.1: Construction of G̃′ from G′

.

conservation is required for all vertices (i.e. there are no source and sink). It is easy to

observe that the original graph G′ has a feasible flow routing a unit of flow from r to each

terminal if and only if the extended graph G̃′ has a feasible circulation: the flow sent from

the root to the terminals travels back to r using the arcs in AR.

The problem of determining whether G′ is k-survivable was shown to be NP-complete

in the general case [Wood 1993], but can be solved in polynomial time if the graph G′+ t

obtained from G′ by adding a sink t to which all terminals are linked is planar [Phillips

1993]. Since the addition of a sink to a planar graph G′ does not necessarily preserves

planarity, Zenklusen [Zenklusen 2010] has shown how to solve the problem in polynomial

time when G′ (and not necessarily G′+ t) is planar. His procedure is described here below.

Notice first that if G′ is planar, then G̃′ is also planar. We can therefore consider its

dual. By convention (see [Lawler 2001] for more details), the dual of a directed planar

graph is obtained by creating a vertex for each face of the original graph, and by con-

necting two vertices by an arc if they correspond to faces in the original graph sharing an

arc. Every dual arc is oriented so that it corresponds to a 90◦ anticlockwise turn from

the corresponding primal arc. As proposed by Zenklusen [Zenklusen 2010], we consider

here an extended dual graph that contains not only the standard dual arcs, but also the

arcs with the opposite direction. More precisely, we build a graph D
G̃′ from G̃′ as follows.

We first create a vertex in D
G̃′ for every face in G̃′. Then, for every arc (i, j) in G̃′, we
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consider the two faces F1 and F2 that (i, j) separates (see Remark 3.2.1), where F1 is the

face below (i, j) when (i, j) is drawn horizontally with an arrow going from left to right.

We create an arc (F1, F2) of length uij and an arc (F2, F1) of length −lij in D
G̃′ . Note that

(F1, F2) is the standard dual arc associated with (i, j), while (F2, F1) is the opposite one.

We also denote by ad
ij the standard dual arc (F1, F2) in order to distinguish it from its

opposite. Note that the arc (F2, F1) has length 0 if (i, j) ∈ A′ (since there is no imposed

flow on any arc of G′), while its length is −nj if (i, j) ∈ AR.

The construction of D
G̃′ from G̃′ is illustrated in Figure 3.2. The general arc creation

procedure appears on the left, while the dual graph associated with the graph G̃′ of Figure

3.1 is drawn on the right with dashed lines. To simplify the drawing, arcs with arrows on

both sides represent two oppositely directed arcs.

t1

t2

r

v

u

c

a

e

d

g hfb[lij,uij]

face F2

i j

face F1

vertex associated

with F2

vertex associated

with F1

uij- lij

Figure 3.2: Illustration of the construction of D
G̃′ from G̃′

(the arc of length uij corresponds to the standard dual arc)

Remark 3.2.1 If an arc (i, j) does not separate two faces, it means that (i, j) is a bridge.

If we delete (i, j), G′ is then non-connected: we call G1 (resp. G2) the component with

the vertex i (resp. j). Since the arc is from i to j, we have that r is in G1, otherwise the

arc (i, j) is useless. If there is at least one terminal t in G2, then there does not exist a

path from r to t after the deletion of (i, j) and hence G′ is not k-survivable. Otherwise,

the arc (i, j) is useless because G2 can be disconnected from the graph without impacting

the feasibility of the solution. Hence, we consider that there are no bridges in G′.
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Zenklusen [Zenklusen 2010] has shown that there exists a feasible circulation in G̃′ if

and only if there is no negative circuit in D
G̃′ . Indeed, there is a correspondence between

the circuits in D
G̃′ and the cutsets in G̃′. In a circuit of D

G̃′ , the total length of the

standard dual arcs corresponds to the available capacity, while the absolute value of the

total length of the other arcs corresponds to the demand. A circuit of negative total length

means that the demand cannot be satisfied. For example, consider the circuit (f, d, h, g, f)

in the graph D
G̃′ of Figure 3.2: the standard dual arcs (f, d) and (h, g) give a total ca-

pacity uut1
+ ut2t1

, while the other arcs (d, h) and (g, f) induce a demand of 1 unit (since

|ldh + lgf | = | − 1 + 0| = 1), which means that uut1
+ ut2t1

must be at least equal to 1 to

satisfy the demand of terminal t1.

The above construction shows how to determine if G′ = (V, A′) has a feasible flow,

which is equivalent to deciding whether G̃′ has a feasible circulation. By definition, G′ is

k-survivable if and only if there is no subgraph G′′ of G′, obtained by removing at most k

arcs of A′, so that G̃′′ has no feasible circulation. Every arc removal is equivalent to paying

one unit of a budget of k units, and we therefore try to find a subgraph G′′ of G′ so that

G̃′′ has no feasible circulation, without exceeding the budget. Zenklusen [Zenklusen 2010]

(who considers more general budget constraints) shows how this can be done by solving

a multi-objective shortest path problem. In our simpler case, we propose to consider a

graph (k + 1)D
G̃′ that is built as follows. We make k + 1 copies of D

G̃′ , and for every arc

(i, j) in A′, we consider its standard dual arc ad
ij = (x, y) in D

G̃′ , and add links of length

0 from the s-th copy of x to the (s+1)-th copy of y (s = 1, . . . , k). Note that if a vertex v

is not the tail of any standard dual arc (v, w) in D
G̃′ , then each of its neighbors in D

G̃′ is

the tail of at least one standard dual arc (since if (v, w) is not a standard arc, then (w, v)

is). The resulting graph is denoted by (k + 1)D
G̃′ . An example for k = 1 and the graph

D
G̃′ of Figure 3.2 is given in Figure 3.3. Since A′ contains seven arcs, there are seven arcs

linking the first to the second copy of D
G̃′ .

We now prove that it is possible to test the k-survivability of G′ by solving a series of

shortest path problems in (k + 1)D
G̃′ .
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Figure 3.3: Construction of 2D
G̃′ for the graph G̃′ of Figure 3.1
.

Theorem 3.2.1 A graph G′ = (V, A′) is k-survivable if and only if all shortest paths

linking a first to a (k + 1)-th copy of a vertex in (k + 1)D
G̃′ have a non-negative length.

Proof: Assume G′ = (V, A′) is not k-survivable. As explained previously, this means that

there is a circuit C in D
G̃′ and a subset AC of its arc set such that |AC | ≤ k, all arcs in AC

are standard dual arcs, and the total length L of the other arcs on C is strictly negative

(because deleting an arc in the primal graph corresponds to contracting the two vertices

associated in the dual graph). Let v be a vertex on C which is the tail of at least one

standard dual arc (not necessarily on C) in D
G̃′ (note that there always exists such v since

we showed that if v is not the tail of any standard dual arcs then each of its neighbors is

the tail of at least one standard dual arc). Consider the path P in (k + 1)D
G̃′ that links

the first to the (|AC | + 1)-th copy of v, and uses arcs (x, y) that link consecutive copies

of D
G̃′ whenever an arc (x, y) of C belongs to AC . Clearly, the total length of P is L.

Consider any standard dual arc (v, w) in D
G̃′ . Note that its opposite arc (w, v) exists and

has a non-positive length. We now extend P by adding an arc from the s-th copy of v to

the (s+ 1)-th copy of w and an arc for the (s+ 1)-th copy of w to the (s+ 1)-th copy of

v, s = |AC |+ 1, · · · , k. Clearly the resulting path P ′ links the first to the (k + 1)-th copy

of v and has length L < 0 in (k + 1)D
G̃′ .

Suppose now there is a path P of strictly negative length L linking a first to a (k+1)-th

copy of a vertex v in (k+1)D
G̃′ . Let us consider that P contains a proper subpath linking

two copies of a vertex w: it covers the case where two arcs in the path linking one copy of
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D
G̃′ to the next one represent the deletion of the same arc in the input graph.

Suppose that P admits at least one proper subpath linking two copies of a vertex and

whose length is strictly negative, and consider a minimal (inclusion-wise) such subpath P ′

(i.e., no proper subpath of P ′ links two copies of a vertex). If the total length L′ of P ′ in

(k+ 1)D
G̃′ is strictly negative, then P ′ corresponds to a circuit C in D

G̃′ , and the set AC

of arcs on P ′ that link two vertices in different copies of D
G̃′ is such that |AC | ≤ k, all

arcs in AC are standard dual arcs, and the total length of the other arcs on C is L′ < 0.

Hence G′ is not k-survivable.

So assume all proper subpaths of P that link two copies of a vertex w have a non-

negative length. Let (v = x1, x2, . . . , xp = v) be the sequence of vertices visited by P . If

P contains two copies xi and xj (j > i) of a vertex with i Ó= 1 or j Ó= p, then assume xi

belongs to the s-th copy of D
G̃′ , while xj belongs to the s′-th copy (s′ > s). We build a new

path P ′ from P by considering the new sequence (v = x1, . . . , xi, xj+1, xj+2, . . . , xp = v)

where each xq = w with q ≥ j + 1 that belongs to the sq ≥ s′-th copy of D
G̃′ is replaced

by the copy of w lying in the (sq + s − s′)-th copy of D
G̃′ . Hence, P ′ is a path linking the

first to the (k + s − s′ + 1)-copy of v, and its length is at most L since we have removed

a subpath of P of non-negative length. By repeating this process, we obtain a path P ∗

linking the first to the k′-th copy of v such that k′ ≤ k, whose length is at most L < 0 in

(k + 1)D
G̃′ , and that does not contain any proper subpath linking two copies of a vertex.

Hence, P ∗ corresponds to a circuit C in D
G̃′ and the set AC of arcs on P ∗ that link two

vertices in different copies of D
G̃′ is such that |AC | ≤ k, all arcs in AC are standard dual

arcs, and the total length of the other arcs on C is strictly negative, which means that G′

is not k-survivable. ✷

For illustration of the above theorem, consider the path (f, d, h, g, f) in the graph 2D
G̃′

of Figure 3.3, with (h, g) as unique arc in this path linking the first to the second copy of

D
G̃′ . The length of this path in 2DG̃′ is uut1

−1+0+0 = uut1
−1, while the corresponding

circuit (f, d, h, g, f) in D
G̃′ has length uut1

−1+ut2t1
+0 = uut1

+ut2t1
−1. Requiring that

the total length of the arcs on P must be non-negative is equivalent to impose uut1
≥ 1,

which corresponds to the fact that the arc (t2, t1) is possibly removed from A′, and the
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flow reaching t1 can then only come from vertex u.

Theorem 3.2.1 provides an easy way to test k-survivability. Indeed, it is sufficient to

determine all shortest paths in (k + 1)D
G̃′ linking a first to a (k + 1)-th copy of a vertex.

If one of these paths has a strictly negative length, then the second part of the proof of

Theorem 3.2.1 provides a procedure to determine a set A′′ of at most k arcs whose re-

moval transforms G′ into a graph with no feasible flow. This is summarized in Procedure

TestSurvivability which, given an arc set A′, either determines a subset A′′ of A′ such

that |A′′| ≤ k and G′ = (V, A′ \ A′′) has no feasible flow, or produces the message “The

graph is k-survivable”.

Procedure TestSurvivability(A′)

Input : A subgraph S = (V, A′) of G;
Output: A subset A′′ ⊆ A′ with |A′′| ≤ k such that G′ = (V, A′ \ A′′) has no

feasible flow, or the message “G′ = (V, A′) is k-survivable”
1 Construct (k + 1)D

G̃′ and set survivable = true;
2 foreach vertex x in (k + 1)D

G̃′ do

3 if survivable then
4 Determine a shortest path P linking the first to the (k + 1)-th copy of x in

(k + 1)D
G̃′ ;

5 if the total cost of the arcs on P is strictly negative then
6 Apply the procedure used in the second part of the proof of Theorem

3.2.1 to determine a set A′′ such that |A′′| <= k and G′ = (V, A′ \ A′′)
has no feasible flow;

7 Set survivable = false;
8 Go to 12;
9 end

10 end

11 end
12 if survivable then write the message “S = (V, A′) is k-survivable”;
13 else Return A′′;

3.3 Tabu Search

As shown in [Bentz, Costa, and Hertz 2017], CRkECSN is NP-hard, and exact meth-

ods can only solve instances of relatively small size. This justifies the use of metaheuristics
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for larger instances. We propose to apply to this problem a tabu search, which is one of

the most frequently used metaheuristics in combinatorial optimization [Glover 1989]. The

method can be summarized as follows. Let S be the solution space (set of feasible solu-

tions) to a combinatorial optimization problem, and let F be a function to be minimized

over S. For a solution s ∈ S, let N(s) denote the neighborhood of s, which is defined as

the set of solutions in S obtained from s by performing a local change, called move. A

tabu search generates a sequence s0, · · · , sq of solutions in S where s0 is an initial solution

and each si (i = 1, · · · , q) belongs to N(si−1). In order to avoid cycling, the algorithm

uses a tabu list that contains forbidden moves. Hence, a move m from si to si+1 can only

be performed if m does not belong to the tabu list, unless F (si+1) is strictly smaller than

the value F (s∗) of the best solution encountered so far. A move belonging to the tabu list

has a tabu status until is is removed from it. As stopping criterion, one may use a fixed

amount of CPU time, a fixed number of iterations, a fixed gap to a lower bound value or

a fixed number of consecutive iterations without improvement of the value F (s∗). More

details are given in [Glover 1989].

The proposed adaptation of tabu search to CRkECSN can be roughly described as

follows. A k-survivable graph is said to be inclusion-wise minimal if the removal of any of

its arcs makes it non k-survivable. The solution space S explored by the tabu search is the

set of inclusion-wise minimal k-survivable subgraphs G′ of the input graph G = (V, A).

A move from a solution G′ = (V, A′) to a solution in its neighborhood is performed as

follows. We first remove an arc from A′ and put a tabu status on this arc in order to

avoid the possibility of cycling, by forbidding to select this arc too early in the current

solution again. Since G′ is inclusion-wise minimal, this means that the resulting graph is

not k-survivable, and we therefore repair it by adding arcs (different from the arcs which

have been recently deleted if those are not necessary to a feasible solution) until we obtain

a k-survivable subgraph of G. We then remove arcs in order to get a new inclusion-wise

minimal k-survivable subgraph. More details about each phase of such a move are given

in the next subsections. We will then be ready to give a more precise description of the

proposed tabu search.
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3.3.1 A repair procedure

In what follows, we denote by ca the cost of arc a in the input graph G, and by G′ + t

the graph obtained from a subgraph G′ of G by adding a sink t to which all terminals are

linked. Let G′ = (V, A′) be a subgraph of G which has to be repaired in order to become k-

survivable. We use the TestSurvivability procedure in order to determine a subset A′′

of at most k arcs in A′ whose removal transforms G′ into a subgraph G′′ = (V, A′ \ A′′) of

G with no feasible flow. We then determine a maximum flow f in G′′+ t . This maximum

flow has a value fr→t strictly smaller than |T | (since it is not feasible). In the next step,

we build a graph H from G+ t as follows:

• all arcs a ∈ A′ \ A′′ for which the flow f(a) is equal to the capacity ua of a (i.e.

saturated arcs) are removed from H; the other arcs of A′ \ A′′ are kept in H, but

with a zero cost cH(a) = 0. This can be explained by the fact that we do not reroute

existing and non-deleted flow, the repair procedure increases the existing flow.

• all arcs a ∈ A \ A′ are kept in H. Those with no tabu status have their original cost

cH(a) = ca, while the others have a cost cH(a) = ca +M , where M is an integer

greater than the total cost of the arcs in G.

• all arcs a linking a terminal to the sink t are kept in H and have cost cH(a) = 0.

We next determine a path P of minimum cost linking r to t in H, using cost function

cH . Every arc a on P which does not belong to A′ is added to G′, which means that by

sending one unit of flow on P , the value of the new flow in G′′+ t (where G′′ = (V, A′ \A′′)

uses the updated arc set A′) is exactly one unit larger than the previous one. The idea

behind the definition of cost function cH is to only pay for the addition of arcs not in A′:

if an arc a ∈ A \ A′ has no tabu status, then the cost of its addition is its original cost

ca, while a penalty M is added to ca if a has a tabu status (the arc is then only added

if it is necessary for the solution to be feasible, otherwise its cost is too high to be selected).

We repeat this process until we get a flow of |T | units in G′′ + t, which means that,

with this new set A′ of arcs, the removal of the arcs in A′′ does not transform G′ = (V, A′)
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into a graph with no feasible flow. There is however possibly another set A′′′ so that

G′′ = (V, A′ \ A′′′) has no feasible flow. We therefore repeat the complete process until

we obtain a k-survivable subgraph of G. The whole repair procedure is summarized in

Procedure Repair. Note that, if the original graph G is k-survivable, then Procedure

Repair necessarily produces a set A′ so that (V, A′) is a k-survivable subgraph of G, since

the graph (V, A \ A′′) has a feasible flow for all subsets A′′ containing at most k arcs of A.

Procedure Repair(A′)

Input : A set A′ ⊆ A of arcs such that G′ = (V, A′) is not k-survivable;
Output: An updated set A′ ⊆ A of arcs such that G′ = (V, A′) is k-survivable;

1 Set ToBeRepaired = true;
2 Set A′′ =TestSurvivability(A′) and G′′ = (V, A′ \ A′′);
3 while ToBeRepaired do
4 Determine a maximum flow f in G′′ + t and set H equal to G+ t;
5 foreach a ∈ A′ do
6 if (a ∈ A′′ or f(a) = ua) then remove a from H;
7 else set cH(a) = 0;
8 end
9 foreach a ∈ A \ A′ do

10 if a has a tabu status then set cH(a) = ca +M ;
11 else set cH(a) = ca;
12 end
13 for i = 1 to |T | − fr→t do
14 Compute a minimum cost path P (using cH) linking r to t in H
15 foreach a ∈ P do
16 if a /∈ A′ then
17 Add a to A′;
18 if ua > 1 then set cH(a) = 0 and f(a) = 1;
19 else remove a from H;
20 else
21 if f(a) < ua − 1 then set f(a) = f(a) + 1;
22 else remove a from H;
23 end

24 end
25 if the output of TestSurvivability(A′) is an arc set A′′ then set

G′′ = (V, A′ \ A′′);
26 else set ToBeRepaired = false;
27 end
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3.3.2 Inclusion-wise minimal solutions

Given a k-survivable subgraph G′ = (V, A′) of G, we now explain how to remove arcs

from A′ in order to obtain an inclusion-wise minimal solution. Following the notations

of Section 2, let D
G̃′ be the graph that contains a negative circuit if and only if G′ has

no feasible flow. For every arc (i, j) ∈ A′, we consider its standard dual arc ad
ij = (x, y)

and determine a shortest path P linking the first copy of y to the (k + 1)-th copy of x in

(k + 1)D
G̃′ . Let P ′ be the path in (k + 2)D

G̃′ obtained from P by adding the arc linking

the (k+1)-th copy of x to the (k+2)-th copy of y. Clearly, P and P ′ have the same length.

Hence, if P has a negative length, this means that there is a path of negative length in

(k+2)D
G̃′ linking the first to the last copy of y, and this path contains an arc linking x to

y in different copies of D
G̃′ . In other words, the negative length of P ′ means that there is

a graph obtained from G′ by removing (i, j) and k additional arcs which does not contains

a feasible flow. This means that, if (i, j) is removed from G′, then the resulting graph is

not k-survivable.

If follows that a procedure that transforms G′ into an inclusion-wise minimal k-

survivable subgraph of G simply consists in considering all standard dual arcs ad
ij = (x, y)

in D
G̃′ and determining a shortest path P linking the first copy of y to the (k+1)-th copy

of x in (k+1)D
G̃′ : if P has a negative length, this means that (i, j) must stay in A′ since

its removal would make G′ not k-survivable; if P has a non-negative length, then (i, j) can

be removed from G′.

The procedure that transforms G′ into an inclusion-wise minimal solution is called

MakeMinimal and is described here below.

Note that there are possibly more than one inclusion-wise minimal subgraphs of G′,

and the order in which the arcs are considered for possible deletion may therefore have

an impact on the resulting graph. We suggest an ordering that gives preference to large

costs, but with a random component to bring diversity. More precisely, we suggest to first

multiply each cost ca by a random number ρa uniformly chosen in ]0, 1], which gives a new
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Procedure MakeMinimal(A′)

Input : A subset A′ ⊆ A of arcs so that G′ = (V, A′) is k-survivable;
Output: An updated subset A′ so that G′ = (V, A′) is k-survivable and

inclusion-wise minimal;
1 foreach (i, j) ∈ A′ do
2 Consider the standard dual arc ad

ij = (x, y) of (i, j) and compute a shortest
path P from the first copy of y to the (k + 1)-th copy of x in (k + 1)D

G̃′ ;
3 if P has a non-negative total length then remove (i, j) from A′ ;
4 end

cost c′
a = ρaca, and to then order the arcs by non-increasing values of c′

a.

Remark 3.3.1 In Procedure MakeMinimal, at each iteration on an arc (i, j) ∈ A′, if P

has a negative length, it means that there is a set of k arcs Ak such that if Ak ∪ {(i, j)}

is removed from G′ there does not exist a feasible flow between the root and the terminals.

It is useless then to visit in the foreach all arcs of ak ∈ Ak because they are obviously

necessary to a solution. Therefore, the algorithm is modified in this case to not visit them

after.

3.3.3 The proposed tabu search for the CRkECSN

We now describe in more details the proposed tabu search procedure. In what follows,

we denote by c(A) =
∑

a∈A ca the total cost of an arc set A.

We first determine whether the input graph G = (V, A) is k-survivable, using the

TestSurvivability procedure. If it turns out that G = (V, A) is not k-survivable, then

there is obviously no feasible solution to the CRkECSN instance, and we therefore stop

the procedure. Otherwise, we start the tabu search. The initial solution G′ = (V, A′) is

generated by applying the MakeMinimal procedure to A′ = A.

Then, given any solution G′ = (V, A′) visited by the tabu search, we select a subset

SA′ of ⌈λ|A′|⌉ arcs in A′, where λ is a parameter whose value belongs to ]0, 1]. For every

arc a in SA′ , we create a new set Sa
A′ by first removing a from A′, then applying the

Repair procedure, and finally running the MakeMinimal procedure to get a set Sa
A′
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so that (V, Sa
A′)) is an inclusion-wise minimal k-survivable subgraph of G. In order to

avoid the presence of the arc a in Sa
A′ , we add a temporary penalty M to its cost ca, this

penalty being removed when moving to the next arc in SA′ . Note that it may happen

that a necessarily belongs to Sa
A′ . For example, if G = (V, A) contains only two vertices,

one being the root r and the other a terminal t1, and if only two parallel arcs of capacity

1 link r to t1, then G is 1-survivable since it contains a feasible flow, even if one of its

arcs is removed. However, no proper subgraph of G is 1-survivable. Hence, if one of its

arc is removed, the Repair procedure has to add it again to recover 1-survivability. This

is the reason why we penalize the insertion of a in Sa
A′ instead of forbidding it. For the

same reason, the arcs with a tabu status can be required to repair A \ {a}, and they are

therefore also considered for insertion into Sa
A′ , but with a penalty M .

Once all arcs in SA′ are treated, the algorithm moves from A′ to the set Sa
A′ with lowest

total cost, and the arc a that was removed from A′ to produce Sa
A′ gets a tabu status for

the next τ iterations, where τ is a parameter of the method. The algorithm stops when a

stopping criterion is met (which will be a time limit in our case). A detailed description

of the whole process appears in Procedure TabuSearchCRkECSN.

In order not to always choose the same subset SA′ of arcs while giving preference to

arcs with a large cost, we suggest to use the same kind of techniques as the one proposed

for ordering the vertices before applying the MakeMinimal procedure. More precisely,

we suggest to compute a value c′
a = ρaca for each a ∈ A′, where ρa is a random number

uniformly generated in ]0, 1] (this is done in the computations in Section 3.4). We then

sort the arcs a of A′ by non-increasing values of c′
a, and include the ⌈λ|A′|⌉ first ones in SA′ .
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Procedure TabuSearchCRkECSN
Input : A graph G = (V, A) with capacity and cost functions on the arc set u

and c respectively, four parameters λ, τ , ρ and M , a positive integer k;
Output: A set A∗ of arcs so that (V, A∗) is inclusion-wise minimal k-survivable,

or the message “G = (V, A) is not k-survivable”;
1 if the output of TestSurvivability(A) is an arc set then
2 write the message “G = (V, A) is not k-survivable”
3 end
4 else
5 Set A′ = A, apply MakeMinimal(A′) and set A∗ = A′;
6 while no stopping criterion is met do
7 Generate a subset SA′ of ⌈λ|A′|⌉ arcs in A′ and set BestCost = +∞ (the

arcs in SA′ are the ⌈λ|A′|⌉ first arcs a of A′ when the arcs of A′ are sorted
by decreasing value of ρaca);

8 foreach a ∈ SA′ do
9 Set Sa

A′ = A′ \ {a} and ca = ca +M ;
10 Apply Repair(Sa

A′);
11 Apply MakeMinimal(Sa

A′);
12 if c(Sa

A′) < BestCost then set BestCost = c(Sa
A′) and abest = a;

13 Set ca = ca − M ;
14 end
15 Set A′ = Sabest

A′ and assign a tabu status to abest for τ iterations;
16 if c(A′) < c(A∗) then set A∗ = A′;
17 end

18 end

3.4 Computational Experiments

Several exact algorithms for CRkECSN based on an integer programming formulation

is described in Chapter 2. It applies to all graphs, hence also to non planar ones. We

compare it to our TabuSearchCRkECSN procedure. All experiments are performed on

a computer with a 2.40GHz Intel(R) Core(TM) i7-5500U CPU and 16Gb of RAM, and

the integer programs are solved using CPLEX (v12.2).

Tests are performed on instances with |V | ∈ {20, 25, 30, 35, 40, 45, 50, 60, 70, 80,

90, 100} vertices, and with |T | ∈ {⌈0.1|V |⌉ , ⌈0.2|V |⌉ , ⌈0.3|V |⌉ , ⌈0.6|V |⌉ , |V | − 1} termi-

nals. To create them, we have generated |V | random vertices in the Euclidean plane
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[0, 1] × [0, 1], and the edges are those of a Delauney triangulation. One vertex, chosen

at random, is defined as the root r, while |T | other vertices, chosen at random, are con-

sidered as terminals. This gives a total of 60 undirected planar graphs. To get oriented

graphs, we have replaced every edge linking two vertices i and j by two arcs (i, j) and (j, i).

Since arcs that are close to the root r typically require larger capacities than the other

ones, the capacity uij of an arc (i, j) is chosen at random in {⌈0.8|T |⌉ , ⌈0.6|T |⌉} if there

is a path with at most 2 arcs linking r to i, and in {⌈0.8|T |⌉ , ⌈0.6|T |⌉ , ⌈0.4|T |⌉ , ⌈0.2|T |⌉}

otherwise. According to our experiments, these capacities are high enough to ensure, in

most cases, the existence of a 1-survivable subgraph, but are also low enough to make the

CRkECSN instances difficult to solve.

For the costs, we have chosen values that depend on the length (in the Euclidean plane)

and the capacities of the arcs. More precisely, for two vertices i and j with coordinates

(xi, yi) and (xj , yj), we have set cij =
1

|T |uij

√
(xj − xi)2 + (yj − yi)2, which means that

the Euclidian distance is multiplied by 0.8, 0.6, 0.4 or 0.2.

Seven of these 60 instances did not pass the test of 1-survivability at the first line

of Procedure TabuSearchCRkECSN. These instances therefore do not appear in our

experiments. The tabu search was run 10 times on the 53 remaining instances and each

execution was stopped after 45 seconds, while we have allocated 3000 seconds to each run

of the exact methods described in Chapter 2. Based on preliminary experiments, we have

used λ = 0.4 and τ =
⌈√

|A|/2
⌉
respectively at lines 7 and 15 of TabuSearchCRkECSN

(see Subsection 3.3.3).

Results for k = 1 appear in Table 3.1. The |V | and |T | columns indicate respectively

the number of vertices and terminals of each instance. Columns Copt and Topt indicate the

cost of an optimal solution and the time (in seconds) needed by the exact method to find

it, respectively. If no proof of optimality was obtained after 3000 seconds, we indicate the

cost of the best feasible solution found as well as, in brackets, the best lower bound on the
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value of an optimal solution. Column Cb indicates the best cost obtained after 10 runs of

the tabu search, while column Tb gives the best time needed to find such a solution, and

column nb shows the number of runs for which a solution of that cost was found. Gray

boxes in column Cb mean that we could reach the proven optimal solution, while gray boxes

in column nb indicate that the 10 runs of our tabu search all ended with the same cost.

Column Ca gives the average cost produced by our tabu search, over the 10 runs. While

each run was stopped after 45 seconds, column Ta indicates the average time at which

the best solution A∗ was last improved (line 16 of Procedure TabuSearchCRkECSN).

Column Ia indicates the average number of iterations of our tabu search in 45 seconds.

We observe that TabuSearchCRkECSN found the optimal solution for all instances

solved to optimality by the exact method. Moreover, these optimal solutions were ob-

tained for each of the 10 runs, except in one case. Indeed, for the instance with |V | = 45

vertices and |T | = 44 terminals, our tabu search has found the optimal solution in only 3 of

the 10 runs, but the average cost Ca = 28.03 is very close to the optimal value Copt = 27.90

(which corresponds to an increase of around 0.5% of the cost). We also note that, when

the exact method has produced a proven optimal solution (i.e., Topt < 3000), the average

time Ta needed by TabuSearchCRkECSN to obtain the same optimal cost is significantly

smaller than Topt. For the instances not solved to optimality (i.e., Topt = 3000), the aver-

age cost produced by our tabu search is always strictly better than the best cost found by

the exact method. We observe that the average number Ia of iterations of the tabu search

decreases when the number |T | of terminals or the number |V | of vertices increases. For

graphs with 100 vertices, less than 100 iterations could be performed, in average, which

indicates that more time should probably be allocated so that the tabu search has more

chance to find solutions of good quality.

Similar results appear in Tables 3.2 and 3.3 for k = 2 and k = 3, respectively. Among

the 53 1-survivable instances, only 31 instances passed the 2-survivability test, and 8

of them passed the 3-survivability test of line 1 in Procedure TabuSearchCRkECSN.

Again, we observe that our tabu search found the optimal solution for all instances solved
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to optimality by the exact method, and these optimal solutions were obtained for each of

the 10 runs, except in one case: the instance with |V | = 45 vertices, |T | = 14 terminals

and k = 2, where our tabu search has found the optimal solution in only 7 of the 10

runs. Again in this case, the average cost Ca = 25.71 is very close to the optimal value

Copt = 25.63 (which corresponds to an increase of around 0.3% of the cost). For these

larger values of k, we see that TabuSearchCRkECSN is able, in 45 seconds, to get very

big improvements when compared to the best solutions produced by the exact method in

almost one hour. For example, for the instance with |V | = 100 vertices, |T | = 20 terminals

and k = 3, the exact method stopped with a best upper bound equal to 54.79, while our

tabu search has generated a solution of value Cb = 35.82, and the average cost Ca is equal

to 36.43.

Up to this point, all instances had an arc (i, j) in A if and only if (j, i) ∈ A, while in

practice, it often happens that only one of them exists in the given graph G = (V, A). We

have thus decided to also test our tabu search on instances where each edge of the original

undirected graphs is oriented in exactly one of the two possible directions. For each of

the 53 1-survivable instances ot Table 3.1, we have deleted one of the two arcs (i, j), (j, i)

for each pair of adjacent vertices. The chosen directions were made so that the resulting

oriented graphs remained 1-survivable. We have then run our algorithm on these new in-

stances. Clearly, the optimal value for each new instance is at least as large as the value of

the same instance where all edges were associated with two arcs with opposite directions.

Results appear in Tables 3.4, 3.5 and 3.6. While 53 new instances were 1-survivable, only

26 of them were 2-survivable, and 4 were 3-survivable. We can observe that the removal

of exactly one of the two arcs (i, j), (j, i) for each pair of adjacent vertices has a big im-

pact on the optimal value. For example, for |V | = 35 vertices, |T | = 10 terminals, and

k = 3, the optimal solution in Table 3.3 has value 34.76, while the optimal cost Copt is

55.91 in Table 3.6. When comparing Copt with Cb we again observe that our tabu search

was always able to determine an optimal solution when the exact method stopped with a

proven optimal one, except in one case: for the instance with |V | = 90 vertices, |T | = 54

terminals and k = 2, the optimal cost Copt is 93.78, while the best solution produced by
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our tabu search has cost Cb = 94.05 (increase of around 0.2% of the cost), and the average

cost is Ca = 94.25 (increase of around 0.5% of the cost). Note however that both Ta and

Tb are larger than 40, which means that our tabu search improved the best solution A∗

less than 5 seconds before the process was stopped. For this particular instance, we have

determined that 25 additional seconds would have been sufficient to reach the optimal

solution. By allocating 120 seconds instead of 45, we have even been able to reach the

optimum in 7 of the 10 runs.

For four instances with k = 1, four with k = 2, and one with k = 3, our tabu search

had at least one run out of 10 which did not end with a proven optimal solution. But for

all these instances, the mean cost Ca is always very close to the optimal cost Copt.
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|V| |T| Copt Topt Cb Tb nb Ca Ta Ia

20 4 9.61 1.0 9.61 0.0 10 9.61 0.1 8613
20 6 14.26 5.6 14.26 0.0 10 14.26 0.1 3666
20 12 18.29 29.9 18.29 0.0 10 18.29 0.7 1912
20 19 21.79 13.1 21.79 0.2 10 21.79 0.9 1867
25 5 12.43 12.1 12.43 0.1 10 12.43 0.2 2776
25 8 14.27 13.9 14.27 0.2 10 14.27 0.4 2482
25 15 17.50 42.8 17.50 0.6 10 17.50 1.5 1126
30 3 8.49 1.7 8.49 0.0 10 8.49 0.1 5653
30 9 12.49 14.1 12.49 0.1 10 12.49 0.9 1603
30 18 16.40 47.7 16.40 0.5 10 16.40 2.3 1067
30 29 20.65 40.2 20.65 0.8 10 20.65 3.3 401
35 4 5.91 1.6 5.91 0.0 10 5.91 0.1 3998
35 7 14.25 127.7 14.25 0.3 10 14.25 1.2 1114
35 10 15.49 44.4 15.49 0.4 10 15.49 1.0 1063
35 34 19.18 16.8 19.18 2.1 10 19.18 3.7 256
40 4 11.43 48.6 11.43 0.1 10 11.43 0.8 2174
40 8 14.44 27.0 14.44 0.8 10 14.44 3.5 805
40 12 19.96 1971.7 19.96 2.3 10 19.96 16.2 501
40 24 17.14 104.0 17.14 0.8 10 17.14 6.3 350
40 39 20.45 55.5 20.45 6.0 10 20.45 16.4 183
45 4 7.90 112.8 7.90 0.2 10 7.90 1.0 1919
45 9 12.72 848.0 12.72 1.4 10 12.72 14.3 739
45 14 16.54 91.6 16.54 1.8 10 16.54 4.1 389
45 27 24.84 (24.34) 3000 24.78 6.5 4 24.83 22.4 219
45 44 27.90 186.5 27.90 11.5 3 28.03 19.9 131
50 5 12.65 1507.1 12.65 0.9 10 12.65 5.8 700
50 10 18.07 (13.73) 3000 17.31 4.8 8 17.31 13.6 329
50 15 13.78 1090.7 13.78 2.2 10 13.78 10.6 419
50 30 17.19 420.5 17.19 3.5 10 17.19 10.7 192
60 6 20.49 (10.45) 3000 16.75 2.1 7 16.81 15.8 452
60 12 20.04 (15.83) 3000 18.20 2.9 10 18.20 15.6 225
60 18 18.70 (15.33) 3000 17.14 12.6 9 17.14 23.1 192
60 36 25.39 (21.58) 3000 24.16 5.7 2 24.21 18.7 103
70 7 12.98 (10.12) 3000 12.35 2.4 9 12.35 9.7 404
70 14 22.09 (9.28) 3000 18.14 25.6 2 18.25 19.3 147
70 21 19.79 (17.02) 3000 19.21 31.1 1 19.34 21.5 108
70 42 26.60 (18.62) 3000 23.34 14.3 3 23.47 28.4 78
70 69 29.99 (21.59) 3000 26.34 40.9 1 26.61 35.2 41
80 8 14.82 (9.04) 3000 12.34 4.2 9 12.34 16.3 208
80 16 23.72 (9.49) 3000 16.83 9.5 6 16.95 24.5 125
80 24 27.70 (11.91) 3000 21.96 32.9 1 22.12 27.8 82
80 48 25.92 (14.77) 3000 21.75 39.3 1 21.88 30.8 59
80 79 32.76 (18.02) 3000 27.50 30.6 1 28.78 39.4 31
90 9 25.24 (9.59) 3000 18.85 40.2 1 19.09 33.5 103
90 18 28.10 (9.84) 3000 18.61 17.1 2 18.77 28.2 99
90 27 33.90 (7.80) 3000 23.14 34.8 1 23.48 34.0 62
90 54 34.49 (12.07) 3000 24.92 41.5 1 25.41 40.8 45
90 89 32.34 (21.02) 3000 29.36 43.0 1 30.25 41.6 36
100 10 26.21 (9.70) 3000 16.45 25.3 1 16.75 26.5 89
100 20 21.34 (11.10) 3000 16.60 15.1 1 16.66 27.0 82
100 30 31.27 (8.76) 3000 19.96 34.3 1 20.40 34.7 44
100 60 33.68 (14.15) 3000 25.03 40.7 1 25.53 40.6 27
100 99 34.04 (12.59) 3000 31.38 41.2 2 32.69 43.6 19

Table 3.1: Results for k = 1 where (i, j) ∈ A if and only if (j, i) ∈ A.

126



3.4. COMPUTATIONAL EXPERIMENTS

|V| |T| Copt Topt Cb Tb nb Ca Ta Ia

20 4 15.23 1.0 15.23 0.0 10 15.23 0.1 4929
20 6 20.93 5.6 20.93 0.0 10 20.93 0.1 2069
25 8 22.03 17.6 22.03 0.2 10 22.03 0.9 1309
25 15 26.49 94.6 26.49 0.4 10 26.49 1.1 616
30 9 19.46 17.1 19.46 0.2 10 19.46 1.6 1021
35 10 23.06 38.6 23.06 1.2 10 23.06 2.7 567
40 4 16.59 154.2 16.59 0.2 10 16.59 1.3 914
40 12 29.05 894.4 29.05 2.5 10 29.05 6.8 257
40 39 35.57 13.3 35.57 2.1 10 35.57 15.4 119
45 4 12.69 164.9 12.69 0.8 10 12.69 2.3 703
45 9 19.00 1425.4 19.00 0.5 10 19.00 4.1 327
45 14 25.63 138.2 25.63 5.9 7 25.71 15.0 175
50 5 17.56 991.7 17.56 2.2 10 17.56 5.5 338
50 10 28.57 (19.43) 3000 25.53 6.5 6 25.57 12.2 139
50 15 23.95 (22.27) 3000 23.33 2.0 10 23.33 7.0 177
60 6 25.72 (16.98) 3000 23.25 11.0 3 23.31 25.2 142
60 18 29.29 (21.97) 3000 26.92 17.4 7 26.92 28.1 100
60 36 40.59 (35.31) 3000 39.29 24.6 2 39.55 32.6 52
70 7 21.19 (10.81) 3000 17.59 3.9 9 17.60 23.7 189
70 14 33.25 (16.96) 3000 27.05 9.1 3 27.16 24.3 74
80 8 26.17 (12.56) 3000 18.84 11.1 8 18.86 21.8 89
90 9 41.56 (12.47) 3000 25.10 23.6 7 25.12 30.9 59
90 18 38.52 (11.56) 3000 28.05 29.0 1 28.40 36.1 47
90 27 47.35 (10.42) 3000 34.85 34.5 1 35.38 40.4 38
90 54 51.67 (10.85) 3000 41.16 41.5 1 41.79 41.3 22
90 89 52.89 (29.09) 3000 51.03 42.8 1 52.35 43.2 17
100 10 36.55 (12.06) 3000 23.29 15.1 1 23.64 33.6 47
100 20 39.24 (11.77) 3000 25.37 29.5 1 25.51 30.3 48
100 30 42.82 (11.99) 3000 32.04 39.6 1 32.80 39.7 31
100 60 50.52 (14.65) 3000 40.51 44.3 1 41.82 42.9 22
100 99 53.51 (26.76) 3000 51.02 45 1 52.55 44.6 16

Table 3.2: Results for k = 2 where (i, j) ∈ A if and only if (j, i) ∈ A.

|V| |T| Copt Topt Cb Tb nb Ca Ta Ia

35 10 34.76 42.4 34.76 1.2 10 34.76 3.2 320
40 4 23.51 356.1 23.51 0.9 10 23.51 3.6 423
45 4 18.64 335.1 18.64 1.0 10 18.64 2.4 335
60 6 35.78 (22.18) 3000 32.83 7.0 9 32.89 19.0 95
70 7 29.54 (15.36) 3000 25.96 14.9 3 26.03 17.1 74
70 14 44.53 (23.60) 3000 37.93 13.8 3 37.99 22.8 53
100 10 42.54 (15.31) 3000 32.12 38.8 2 32.60 40.7 27
100 20 54.79 (15.89) 3000 35.82 36.9 1 36.43 39.8 24

Table 3.3: Results for k = 3 where (i, j) ∈ A if and only if (j, i) ∈ A.
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|V| |T| Copt Topt Cb Tb nb Ca Ta Ia

20 4 12.63 11.5 12.63 0.0 10 12.63 0.0 4912
20 6 17.48 9.4 17.48 0.1 10 17.48 0.3 2293
20 12 24.94 16.0 24.94 0.0 10 24.94 1.6 1004
20 19 42.57 11.3 42.57 0.0 10 42.57 0.1 963
25 5 14.33 20.8 14.33 0.0 10 14.33 0.1 1748
25 8 20.45 28.2 20.45 0.0 10 20.45 0.5 1713
25 15 24.24 21.9 24.24 0.3 10 24.24 0.7 665
30 3 8.61 2.3 8.61 0.0 10 8.61 0.0 5479
30 9 20.18 77.0 20.18 0.3 10 20.18 0.9 907
30 18 30.40 23.5 30.40 0.1 10 30.40 0.4 520
30 29 41.76 20.0 41.76 0.3 10 41.76 0.8 312
35 4 9.03 10.2 9.03 0.1 10 9.03 0.2 2984
35 7 20.76 32.2 20.76 0.2 10 20.76 0.4 669
35 10 24.68 (22.46) 3000 24.07 0.4 10 24.07 3.7 538
35 34 50.56 57.2 50.56 1.2 3 50.56 1.6 213
40 4 13.28 116.2 13.28 0.1 10 13.28 0.9 1649
40 8 25.23 199.9 25.23 0.3 10 25.23 0.8 635
40 12 26.82 850.1 26.82 1.1 4 26.83 1.3 352
40 24 31.97 120.3 31.97 1.5 10 31.97 2.3 207
40 39 55.09 62.0 55.09 3.0 10 55.09 4.6 131
45 4 9.06 78.0 9.06 0.2 10 9.06 1.2 1036
45 9 18.14 241.3 18.14 0.8 10 18.14 1.7 449
45 14 26.20 440.5 26.20 5.4 10 26.20 10.9 267
45 27 44.85 162.6 44.85 2.3 10 44.85 4.1 191
45 44 59.17 126.8 59.17 5.5 10 59.17 8.6 102
50 5 13.87 373.5 13.87 0.1 10 13.87 1.1 690
50 10 25.40 (21.34) 3000 24.93 1.4 8 24.93 11.8 296
50 15 26.9 (19.37) 3000 25.85 2.3 7 25.96 3.4 238
50 30 37.74 183.3 37.74 2.5 10 37.74 6.2 141
60 6 24.75 (13.12) 3000 21.73 8.4 9 21.74 17.4 286
60 12 29.93 (26.64) 3000 29.41 5.0 2 29.53 9.1 198
60 18 32.33 (17.13) 3000 29.91 8.1 5 29.93 18.2 169
60 36 44.04 2487.4 44.04 14.3 7 44.06 25.6 101
70 7 19.03 (10.85) 3000 16.93 1.9 10 16.93 10.1 239
70 14 35.52 (7.81) 3000 28.71 19.7 3 28.79 29.4 121
70 21 34.28 (24.00) 3000 32.18 9.9 8 32.19 15.8 94
70 42 54.11 (45.45) 3000 52.23 19.6 1 52.45 24.6 63
70 69 64.24 731.2 64.24 35.6 2 64.32 39.1 52
80 8 20.51 (11.69) 3000 17.04 5.0 6 17.06 18.8 177
80 16 33.52 (5.36) 3000 26.20 22.0 1 26.75 16.6 99
80 24 45.90 (30.29) 3000 39.77 16.1 1 40.49 21.2 68
80 48 49.84 (38.38) 3000 48.61 39.6 1 48.77 37.5 46
80 79 65.31 (64.00) 3000 65.76 44.1 1 66.58 42.4 37
90 9 30.81 (8.32) 3000 23.40 9.7 2 23.51 27.8 83
90 18 41.73 (12.94) 3000 32.29 38.1 1 32.67 32.2 63
90 27 44.92 (17.07) 3000 38.07 26.9 1 38.43 34.0 48
90 54 51.14 (32.73) 3000 48.83 41.1 1 49.68 41.3 31
90 89 73.08 (73.08) 3000 73.94 40.7 1 74.92 42.4 27
100 10 24.27 (9.71) 3000 21.84 11.4 3 22.00 24.8 95
100 20 35.93 (8.98) 3000 27.38 34.3 1 27.71 30.9 70
100 30 46.31 (12.97) 3000 36.78 33.7 1 37.55 39.9 44
100 60 57.19 (37.17) 3000 56.38 40.5 1 57.12 42.7 37
100 99 75.05 (70.55) 3000 76.98 45 1 78.03 44.1 24

Table 3.4: Results for k = 1 where (i, j) /∈ A if (j, i) ∈ A.
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|V| |T| Copt Topt Cb Tb nb Ca Ta Ia

20 4 26.99 15.8 26.99 0.1 10 26.99 1.8 2084
20 6 29.39 5.9 29.39 0.0 10 29.39 0.0 1343
25 8 34.98 12.0 34.98 0.0 10 34.98 0.1 817
25 15 47.06 18.9 47.06 0.0 10 47.06 0.1 425
30 9 35.88 46.5 35.88 0.4 10 35.88 0.7 451
35 10 41.52 (38.61) 3000 41.34 1.0 4 41.34 2.6 292
40 4 21.51 515.6 21.51 0.5 10 21.51 1.2 749
40 12 43.32 75.0 43.32 1.6 4 43.43 5.7 216
45 4 17.40 (17.23) 3000 17.40 0.5 10 17.40 2.2 527
45 9 35.64 281.2 35.64 1.9 10 35.64 3.3 222
45 14 47.78 190.5 47.78 2.8 8 47.78 13.9 179
50 5 24.84 2313.6 24.84 1.0 10 24.84 3.4 325
50 10 43.90 (38.19) 3000 41.97 2.9 9 42.04 8.6 181
60 6 38.68 (17.79) 3000 33.81 12.2 1 33.91 19.2 124
60 18 52.55 (50.97) 3000 52.23 9.0 10 52.23 18.2 99
60 36 85.78 438.2 85.78 10.4 6 85.80 21.9 51
70 7 32.38 (18.46) 3000 29.82 6.8 4 29.93 11.8 119
70 14 56.24 (9.56) 3000 47.52 16.6 2 47.66 27.7 71
80 8 33.42 (19.38) 3000 29.58 7.1 7 29.63 15.2 84
90 18 61.59 (22.79) 3000 51.37 33.9 1 51.83 38.7 45
90 27 71.56 (46.51) 3000 68.61 40.8 1 68.94 41.8 36
90 54 93.78 1983.3 94.05 42.4 2 94.25 41.4 25
100 10 52.01 (12.48) 3000 36.29 34.6 1 36.94 37.3 36
100 20 58.46 (6.43) 3000 44.51 41.6 1 45.06 41.4 28
100 30 77.10 (40.09) 3000 65.17 43.1 1 65.55 43.3 19
100 60 106.62 (105.55) 3000 106.45 44.9 1 107.35 44.3 10

Table 3.5: Results for k = 2 where (i, j) /∈ A if (j, i) ∈ A.

V T Copt Topt Cb Tb nb Ca Ta Ia

35 10 55.91 121.8 55.91 18.8 1 56.92 16.5 222
40 4 33.59 988.4 33.59 1.0 9 33.64 11.2 379
45 4 28.54 2165.7 28.54 0.6 10 28.54 1.8 311
60 6 52.69 (32.67) 3000 49.12 13.2 1 49.24 12.8 109

Table 3.6: Results for k = 3 where (i, j) /∈ A if (j, i) ∈ A.
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Chapter 4

Wind farm cable layout
optimization with constraints of
load flow and robustness

4.1 Introduction

4.1.1 Presentation of the problem

The design of wind farm networks involves many challenges in optimization, see Sub-

section 0.3.1 in Chapter . In this chapter, we consider the problem of designing a robust

cabling network of an offshore wind-farm, at minimal cost, once the location of the tur-

bines has already been decided. The work presented here was carried out in collaboration

with an EDF engineer.

More precisely, given a set of offshore wind turbines producing a known quantity of

energy, we look for an optimal network able to route the energy produced by all the wind

turbines to the point of common coupling (PCC), called root node thereafter in this chap-

ter, that will collect the energy and dispatch it to the grid. One of the main characteristics

of our network is that it should be robust, i.e. resilient to the failure of one or several ca-

bles: hence, we aim to build the cheapest network that will be able to route, for a given

number of any possible breakdowns, all the produced energy from the wind turbines to

the root node. An important constraint of our problem is that the flow of energy routed

in the network must satisfy the Load Flow equations. We will explain these constraints in

131



4.1. INTRODUCTION

the next section.

We model the problem by using an undirected graph G = (V ∪ {r}, E), where r is the

root node, each vertex in V represents either a wind turbine or a junction node between

two or more cables, and E is the set of all possible "edges" on which a cable can be in-

stalled. The location of the root, of the wind turbines and of the possible junction nodes

are known, so the lengths of the edges of E are given. There are different types of electric

cables: the cost and capacity of a cable depend on the type of cable chosen and on the

length of the cable, and each type is defined by a cost per meter and a capacity.

The design of cabling networks of wind farms has been recently investigated, see Sub-

section 0.3.1 in Chapter .

In this chapter, we first consider the problem when no breakdown can occur: we present

a mathematical model to solve the problem exactly. We give some results obtained on real

data. Then we consider the problem in its full generality and present two mathematical

formulations for the robust case: the first one, derived from the problem without any

breakdowns, is a mixed-integer linear program that considers the case where the number

of breakdowns that can occur is 1; the second one is a bi-level mixed integer linear program

which is a compact formulation with few variables and constraints. We first explain briefly

the Load Flow equations and how to take into account these constraints.

4.1.2 The Load Flow constraints

4.1.2.1 Approximation of the load flow equations

Load flow studies, also known as power flow studies, are power system analysis. We

briefly explain them in this section but we refer the reader to [Seifi and Sadegh Sepasian

2011] for more information about electrical power system planning, especially Appendix A

for the load flow problem. We define a bus as a node of an electrical network (for example
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circuit breakers, transformers, conductors or capacitors); in our application, a bus is either

an inter-connection node or a wind turbine or the substation. In this chapter, buses are

referred to as nodes, and cables between two buses as lines.

Given the production capacities of the different generators (in our application, the gen-

erators will correspond to the wind turbines), the load flow equations allow to calculate

the electrical state of the network i.e. to determine the voltages, real and reactive power

flows, and currents in a system (at each node or cable) under given load conditions. They

are used in planning studies to determine if and when electrical devices will become over-

loaded. They can be used for example to verify that demands are met without overloading

the different network facilities or to ensure that maintenance plans (for example taking off

a line for replacement) can proceed without undermining the security of the system.

The load flow problem consists in finding the voltage magnitude and phase angle at

each node, and the real and reactive power flowing through each line of the network. We

define n as the number of nodes in the network. The formulation of the load flow problem

requires to consider four variables at each node v = 1, .., n of the network:

• Pv: the net active power injection in MW (Mega Watts), which is the difference

between active power generation and active power demand at node v

• Qv: the net reactive power injection in MVAr (Mega Volt Ampere reactive), which

is the difference between reactive power generation and reactive power demand at

node v

• Uv: the voltage magnitude in pu (per unit) at node v

• θv: the voltage angle in radians at node v.

We can apply Kirchhoff’s law (see Chapter 2.4 in [Alexander and Sadiku 2009]) to

each node, which results in:
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I = Y U (4.1)

Iv =
Pv − ιQv

|Uv|
eιθv , ∀v = 1, .., n (4.2)

where

• ι2 = −1

• Iv is the net injected current at node v and I is the vector (Iv)v=1,..,n

• U is the vector of node voltages

• Y is the nodal admittance matrix of the system, which represents the admittance

(measure in Siemens of how easily a device will allow a current to flow) at each node.

I, U and Y have complex components, and Uv = |Uv|eιθv is the vth element of U . Using

(4.1) and (4.2), we have:
Pv − ιQv

|Uv|
eιθv =

n∑

w=1

YvwUw

The Y matrix is symmetrical. The diagonal elements Yvv of Y (self admittance of node

v) are equal to the sum of admittances of all nodes w connected to v. The off diagonal ele-

ments Yvw (mutual admittance) are equal to the negative sum of the admittances between

v and w, and we have

Yvw = Ywv = |Yvw|eιδvw = Hvw + ιBvw = |Yvw| cos δvw + ι|Yvw| sin δvw

where Hvw and Bvw are respectively called conductance and susceptance at [v, w], and

where δvw is the argument of Yvw. Using (4.1) and (4.2), one can derive with some calcu-

lations the so-called Load Flow equations (see Appendix A in [Seifi and Sadegh Sepasian

2011]) for each node v = 1, .., n :

Pv =
n∑

w=1

|Yvw||Uv||Uw| cos(θv − θw − δvw) (4.3)

Qv =
n∑

w=1

|Yvw||Uv||Uw| sin(θv − θw − δvw) (4.4)
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To solve these equations, two of the four variables (P , Q, U and θ) must be known

in advance at each node. This formulation results in a non-linear system of equations

which requires iterative solution methods. However, for such methods, convergence is not

guaranteed.

In order to introduce these constraints in the optimization model, we consider the Di-

rect Current (DC) estimations of the load flow. If we consider the Direct Current Load

Flow, it is customary to make the following assumptions [Seifi and Sadegh Sepasian 2011]:

Assumption A

Line resistances (inducing active power losses) are negligible i.e. H ≪ B, and we can

assume that Hvw = 0 for all [v, w] or equivalently that Yvw = ιBvw and |Yvw| = Bvw.

Notice that, since Yvw = |Yvw|(cos(δvw) + ι sin(δvw)), the previous assumption implies

cos(δvw) = 0 and thus we have δvw ≈ π/2.

Assumption B

Voltage angle differences are small i.e. sin(θv − θw) ≈ θv − θw and cos(θv − θw) ≈ 1,

for all v, w = 1, .., n.

Assumption C

Magnitudes of node voltages are equal to 1.0 per unit (flat voltage profile) i.e. |Uv| = 1

for all v = 1, .., n.

Using Assumptions A and C and 4.3, we have for each v = 1, .., n:

Pv =
n∑

w=1

|Yvw||Uv||Uw| cos(θv − θw − δvw) =
n∑

w=1

Bvw cos(θv − θw −
π

2
)

Using cos(θv − θw − π
2 ) = sin(θv − θw) and Assumption B we have for each node v in
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the system:

Pv =
n∑

w=1

Bvw(θv − θw) (4.5)

4.1.2.2 Integration of the Load Flow equations in our problem

Regarding the design of a wind farm, we consider here a non-directed graph G = (V, E)

where V is the set of n nodes of the network (i.e. the substation r, the wind turbines and

the interconnection nodes) and E is the set of edges where we can build a cable. In the fol-

lowing, we will refer to the substation r as the root. We are given for each edge [v, w] ∈ E

a susceptance Bvw. However, if we do not build a cable on the edge [v, w] in the final

network, we can set Bvw to 0. We also consider þG = (V, þE) which is the bi-directed graph

associated with G (i.e. for each edge [v, w] ∈ E in G, there are the arcs {(v, w), (w, v)} ⊂ þE

in þG).

For each node v different from the root node (i.e. v ∈ V \{r}), it is known that Pv ≥ 0:

either Pv > 0 if v provides some power injection in the network (i.e. v is a wind turbine in

our case), or Pv = 0 if v is a junction node. If v is a wind turbine, Pv is known and gives

the estimation of the production of energy of the wind turbine v. For the root r, the load

flow equations imply that Pr = −
∑

v∈V \{r} Pv. For each (v, w) ∈ þE, we define:

Πvw := Bvw(θv − θw)

as the active power flow through [v, w] from v to w, and thus we have Πvw = −Πwv and

Pv =
∑n

w=1Πvw.

Property 4.1.1 If the load flow equations 4.5 are satisfied at each node of a subgraph

Ĝ = (V, Ê) of G = (V, E), with Ê ⊆ E and Bvw set to 0 if no cable is built on the edge

[v, w] (i.e. [v, w] /∈ Ê), then there exists a chain in Ĝ between each node v producing a

positive active power flow (i.e. such that Pv > 0) and the root.

Proof: Assume that there exists v′ ∈ V such that Pv′ > 0 and v′ is not connected to
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the root node r. Let G(v′) = (V ′, E′) be an inclusion-wise maximal connected subgraph

of G that contains v′. By assumptions r /∈ V ′. Let us consider the sum

S =
∑

v∈V ′

Pv

Since Pv′ > 0, Pv ≥ 0 ∀v ∈ V \ {r}, and r /∈ V ′, we have S > 0. However, using Equation

(4.5), we also have:

S =
∑

v∈V ′

Pv =
∑

v∈V ′

∑

w∈V ′

Πvw = 0

since Πvw = −Πwv. Hence a contradiction. ✷

Property 4.1.1 ensures that if Constraints 4.5 are satisfied in a mathematical program,

we do not have to add connectivity constraints to ensure that there exists a path between

the root and each wind turbine, since load flow equations will not be satisfied otherwise.

The approximation of the load flow analysis will be used to ensure that, for each feasible

solution, the power routed through the cables will not exceed its capacity.

4.2 The problem without breakdowns

In this section, we present the problem when no breakdown can occur on the cables. We

first give a mixed-integer linear model to solve the problem, then we present a heuristic to

get a good feasible solution. In the following, we are given Pv for every node different from

the root node. We recall that if v ∈ V represents a wind turbine, then Pv corresponds

to the active power produced and collected through the network by the wind turbine,

otherwise v is either a junction node and Pv = 0 or the root node r and Pr is not defined

(technically it is equal to −
∑

v∈V \{r} Pv).

4.2.1 Mathematical formulation

In practice, the given undirected support network, G = (V, E) is often the union of a

partial grid on n nodes, of some diagonal edges and of the root node linked to a subset

of vertices of the grid. Let (i, j) be the position of a vertex v in the grid, a diagonal edge
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incident to v is an edge linking v to another vertex at the position (i+1, j+1), (i+1, j−1),

(i − 1, j + 1) or (i − 1, j − 1); see Figure 4.1 for an example. The set of wind turbines is

denoted by T ⊂ V \ {r}. Hence V \ (T ∪ {r}) denotes the set of junction nodes. We also

consider Q different types of electrical cables numbered by q ∈ [1, ..., Q]; Q is generally a

small number (≤ 3). For each q ∈ [1, ..., Q] and each [v, w] ∈ E, we denote by cq
vw, the

cost of installing a cable of type q on [v, w]. This cost depends on the type of cable chosen

and on the length of [v, w]. The capacity of a cable of type q on [v, w] is denoted by uq
vw

(cq
vw = cq

wv and uq
vw = uq

wv ). Hence, we aim to design the cheapest network such that

the capacity on each installed cable is greater than the active power flow routed through

this cable, i.e. Πuv ≤ uq
uv and Πvu ≤ uq

uv for each edge [u, v] where a cable of type q is

installed. Notice that the network must verify the load flow equations.

r

e2 e1

Figure 4.1: A network buildt on a grid 4× 3

For technical constraints given by EDF, there is a set I ⊂ E × E of pairs of edges

{e, e′} such that it is not allowed to install a cable on both e and e′. In practice, the set

I is used to avoid installing cables on two edges that intersect each other, and hence to

ensure that the resulting network is planar (on Figure 4.1, we would have for example

{e1, e2} ∈ I because e1 and e2 are crossing diagonal edges).

4.2.2 Variables and constraints

Recall that the power injection Pv at node v ∈ V is given for each vertex v. Moreover,

Bq
vw, corresponding to the susceptance of a cable of type q between v and w, is also given

for each [v, w] ∈ E and each q ∈ [1, .., Q].
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We introduce the following variables:

• For each q ∈ [1, ..., Q] and for each e = [v, w] ∈ E, let yq
e be the binary variable such

that yq
e = 1 if and only if a cable of type q is installed on e = [v, w]. Notice that, in

the following, for each e = [v, w] ∈ E, yq
e can be written indifferently yq

e , yq
vw or yq

wv.

• For each v ∈ V , let θv be the voltage angle at v.

We now introduce the different constraints associated with our problem:

Cable types constraints:

For each e ∈ E, we cannot install more than one type of cable:

Q∑

q=1

yq
e ≤ 1, ∀e ∈ E (4.6)

Constraints of incompatibility between edges:

The set I ⊂ E × E contains every pair {e1, e2} such that there cannot be a cable on

both edges e1 and e2:
Q∑

q=1

(yq
e1
+ yq

e2
) ≤ 1, ∀(e1, e2) ∈ I (4.7)

Voltage angles constraints:

In the load flow equations, we only consider the differences of angles θv −θw for each pair

(v, w) ∈ V 2 with v Ó= w, i.e. the value of θv alone is useless. Using this fact and Assumption

B, which states that voltage angles are assumed to be small, we can fix arbitrarily and

without loss of generality the value of the angle at the root node r:

θr = 0 (4.8)

Therefore, since, by Assumption B, for any v, w ∈ V , θv − θw is very small, we have that,

for all v ∈ V , −ε ≤ θv − θr ≤ ε for some small ε > 0, which implies:

−ε ≤ θv ≤ ε ∀v ∈ V

Differences of voltage angles are assumed to be less than 10−1, hence we have ε ≈ 10−1.
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Load Flow constraints:

For all v ∈ V , the load flow equations are given by:

Pv =
Q∑

q=1

∑

w:[v,w]∈E

Bq
vwyq

vw(θv − θw) (4.9)

where
Q∑

q=1

Bq
vwyq

vw(θv − θw) = Πvw

corresponds to the active power sent through (v, w) ∈ þE. In other words, the load flow

constraints ensure that each wind turbine is connected to the root, and allow to calculate

the power routed through each cable.

Power line constraints:

For each e ∈ E, the power flow Πe routed through e must be smaller than the capacity

of the cable installed on e:

Q∑

q=1

Bq
vwyq

vw(θv − θw) ≤
Q∑

q=1

uq
vwyq

vw ∀(v, w) ∈ þE (4.10)

One can notice that, if
Q∑

q=1
Bq

vwyq
vw(θv − θw) < 0 (resp. > 0), then

Q∑
q=1

Bq
wvyq

wv(θw − θv) > 0

(resp. < 0), depending on whether the energy is routed from v to w or from w to v.

4.2.3 Mathematical program

We aim to minimize the total cost of the resulting network, i.e.:

min
∑

e∈E

Q∑

q=1

cq
eyq

e

We introduce EI the set of edges e with at least one constraint of incompatibility with

another edge, i.e. e ∈ EI if there exists at least one edge e′ such that {e, e′} ∈ I. The

mathematical program to solve can be written as follows:
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(LFF)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
y,θ

∑

e∈E

Q∑

q=1

cq
eyq

e

s.c.
Q∑

q=1

yq
e ≤ 1, ∀e ∈ E \ EI

Q∑

q=1

(yq
e1
+ yq

e2
) ≤ 1, ∀(e1, e2) ∈ I

θr = 0

Q∑

q=1

∑

w:[v,w]∈E

Bq
vwyq

vw(θv − θw) = Pv, ∀v ∈ V \ {r}

Q∑

q=1

Bq
vwyq

vw(θv − θw) ≤
Q∑

q=1

uq
vwyq

vw, ∀(v, w) ∈ þE

y ∈ {0, 1}|E|Q, θ ∈ [−ε, ε]|V |

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

Using Property 4.1.1, Constraints 4.9 ensure the connectivity between the root and

the wind turbines, while Constraints 4.10 ensure that no cable is overloaded.

4.2.4 Linearization of the program

One can notice that the above program have non-linear terms, yq
vwθv and yq

vwθw in

Constraints 4.9 and 4.10. Since −ε ≤ θv ≤ ε ∀v ∈ V , we have that 0 ≤ θv+ε ≤ 2ε for each

v ∈ V \{r}. We can now propose a well-known solution, to linearize each term yq
vw(θv+ε)

which is the product of a binary variable by a non-negative bounded real variable, see for

instance [Billionnet 2007]. For all (v, w) ∈ þE, q ∈ [1, ..., Q], we introduce a non-negative

variable ρq
vw and the following polyhedron:

L(θ, y) =





ρ ∈ R
| þE|Q

∣∣∣∣∣∣∣

ρq
vw ≤ θv + ε ∀(v, w) ∈ þE, ∀q ∈ [1, .., Q]

ρq
vw ≤ 2εyq

vw ∀(v, w) ∈ þE, ∀q ∈ [1, .., Q]

ρq
vw ≥ θv + ε − 2ε(1− yq

vw) ∀(v, w) ∈ þE, ∀q ∈ [1, .., Q]





We have:

ρ ≥ 0, ρ ∈ L(θ, y) ⇒ ρq
vw = yq

vw(θv + ε) ∀(v, w) ∈ þE, ∀q ∈ [1, .., Q]

Notice that, for each edge [v, w] and each cable type q ∈ [1, .., Q], we have ρq
vw =

yq
vw(θv+ε) while ρq

wv = yq
vw(θw+ε). Products between θ and y only appear in our problem
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in the form yq
vw(θv − θw) with (v, w) ∈ V 2. Since we have yq

vw(θv − θw) = yq
vwθv − yq

vwθw =

yq
vw(θv + ε)− yq

vw(θw + ε), we also have

yq
vw(θv − θw) = ρq

vw − ρq
wv

.

We can then linearize the mathematical program:

(LLFF)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
y,θ,ρ

∑

e∈E

Q∑

q=1

cq
eyq

e

s.c.
Q∑

q=1

yq
e ≤ 1, ∀e ∈ E \ EI

Q∑

q=1

(yq
e1
+ yq

e2
) ≤ 1, ∀(e1, e2) ∈ I

θr = 0

Q∑

q=1

∑

w:[v,w]∈E

Bq
vw(ρ

q
vw − ρq

wv) = Pv, ∀v ∈ V \ {r}

Q∑

q=1

Bq
vw(ρ

q
vw − ρq

wv) ≤
Q∑

q=1

uq
vwyq

vw, ∀(v, w) ∈ þE

ρ ∈ L(θ, y)

y ∈ {0, 1}|E|Q, θ ∈ [−ε, ε]|V |, ρ ≥ 0

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

4.3 Robust approach

In this section we consider that a breakdown may occur on one or several installed

cables. We denote by k the maximal number of breakdowns that may occur simultaneously

in the network.

4.3.1 The case k = 1

Let us denote by ξ ∈ E the cable where the breakdown occurs. We introduce the

following variables:
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• For each q ∈ [1, ..., Q] and for each e ∈ E, let yq
e be the binary variable such that

yq
e = 1 if and only if a cable of type q is installed on e.

• For each v ∈ V and each ξ ∈ E, let θξ
v be the voltage angle at v in the network where

no power can transit through ξ.

We introduce þξ for ξ ∈ E as the set of bi-directed arcs associated with the edge ξ. We

propose the following mathematical program to design an optimal network which is robust

to one breakdown:

(κ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
y,θ

∑

e∈E

Q∑

q=1

cq
eyq

e

s.c.
Q∑

q=1

yq
e ≤ 1, ∀e ∈ E \ EI

Q∑

q=1

(yq
e1
+ yq

e2
) ≤ 1, ∀(e1, e2) ∈ I

θξ
r = 0 ∀ξ ∈ E

Q∑

q=1

∑

[v,w]∈E\{ξ}

Bq
vwyq

vw(θ
ξ
v − θξ

w) = Pv ∀v ∈ V \ {r}, ∀ξ ∈ E

Q∑

q=1

Bq
vwyq

vw(θ
ξ
v − θξ

w) ≤
Q∑

q=1

uq
vwyq

vw ∀ξ ∈ E, ∀(v, w) ∈ þE \ {þξ}

y ∈ {0, 1}|E|Q, θ ∈ [−ε, ε]|V ||E|

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

In this formulation, θξ
v represents the voltage angle at the node v in the current network

when there is a breakdown on the cable built on the edge ξ: we aim to ensure that the

load flow equations are satisfied when we cannot route any power flow through this cable.

Constraints (4.11) and (4.12) are identical to (4.6) and (4.7), while Constraints (4.13) en-

sure that θr is equal to 0 for each case of breakdown ξ ∈ E. Constraints (4.14) ensure that

the load flow is respected (and so each turbine is connected to the root) for any breakdown

ξ ∈ E by not considering the active power on ξ in this case. Indeed, for each scenario of

breakdown on a cable built on the edge ξ ∈ E, we do not consider in Constraints (4.14)

the edge ξ in the calculation of the sum of energy leaving v, which is equivalent to not

143



4.3. ROBUST APPROACH

considering the cable built on ξ. Constraints (4.15) then ensure that, for any breakdown

on ξ ∈ E, the capacities in the resulting network are high enough to support the active

power through the cables. The program above hence computes a network of minimal cost

which is robust to one breakdown.

Again, we have a product of variables θ and y, which we linearize in a similar way as

in the non-robust model. We introduce Lξ(θ, y), which is the linearization of the product

yq
uv(θ

ξ
v+ε), where yq

uv is a binary variable and (θ
ξ
v+ε) is a non-negative variable, considering

the robust case:

Lξ(θ, y) =





ρ ∈ R
| þE||E|Q

∣∣∣∣∣∣∣

ρq,ξ
vw ≤ θξ

v + ε ∀(v, w) ∈ þE, ∀q ∈ [1, .., Q], ∀ξ ∈ E

ρq,ξ
vw ≤ 2εyq

vw ∀(v, w) ∈ þE, ∀q ∈ [1, .., Q], ∀ξ ∈ E

ρq,ξ
vw ≥ θξ

v + ε − 2ε(1− yq
vw) ∀(v, w) ∈ þE, ∀q ∈ [1, .., Q], ∀ξ ∈ E





The linearized problem becomes:

(Lκ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
y,θ,ρ

∑

e∈E

∑

q∈Q

cq
eyq

e

s.c.
Q∑

q=1

yq
e ≤ 1, ∀e ∈ E \ EI

Q∑

q=1

(yq
e1
+ yq

e2
) ≤ 1, ∀(e1, e2) ∈ I

θξ
r = 0 ∀ξ ∈ E

Q∑

q=1

∑

[v,w]∈E\{ξ}

Bq
vw(ρ

q,ξ
vw − ρq,ξ

wv) = Pv, ∀v ∈ V \ r, ξ ∈ E

Q∑

q=1

Bq
vw(ρ

q,ξ
vw − ρq,ξ

wv) ≤
Q∑

q=1

uq
vwyq

vw ∀(v, w) ∈ þE, ξ ∈ E

ρ ∈ Lξ(θ, y)

y ∈ {0, 1}|E|Q, θ ∈ [−ε, ε]|V ||E|, ρ ≥ 0

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

When we allow an arbitrary number of breakdowns, the number of variables and con-

straints becomes exponential: with k breakdowns, we would have to consider (|V ||E|k +

|E|Q) variables before linearization and (Q| þE||E|k + |V ||E|k + |E|Q) after. Therefore we
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end up with an intractable model to solve.

Even for k = 1, the number of constraints and columns of (Lκ) can be very high

depending on the size of the graph. We propose a constraints generation algorithm similar

to the one described in Subsection 2.2.2 in Chapter 2 to deal with this case. We initialize

(Lκ)ES
which corresponds to (Lκ) with only a small subset of edges ES ⊂ E in Constraints

(4.13)-(4.15), i.e. we define those constraints only for ξ ∈ ES . We begin to solve the

reduced problem (Lκ)ES
. When a relevant integer feasible solution (ŷ, θ̂, ρ̂) is found, we

solve a set of sub-problems (κ-sub)e with continuous variables. We define the set of edges

selected in the current integer solution (ŷ, θ̂, ρ̂)

ÊC = {e ∈ E |
Q∑

q=1

ŷq
e = 1}

and þEC corresponds to the set of bi-directed arcs associated to ÊC . We define

ÊS = ES ∩ ÊC

corresponding to the intersection between the set of edges which are in the solution (ŷ, θ̂, ρ̂)

and the set of edges for which the scenario of breakdown has been taken into account at

this moment in the algorithm. Finally, we define:

B̂vw =
Q∑

q=1

Bq
vwŷq

vw ∀(v, w) ∈ þEC

ûvw =
Q∑

q=1

uq
vwŷq

vw ∀(v, w) ∈ þEC

where B̂vw (respectively ûvw) corresponds to the susceptance (respectively capacity) on the

cable built on [v, w]. For the integer feasible solution (ŷ, θ̂, ρ̂), we introduce the following

sub-problem (κ-sub)e for each e ∈ ÊC \ ÊS :

145



4.3. ROBUST APPROACH

(κ-sub)e

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
θ

0

s.c. θr = 0∑

w:[v,w]∈EC\{e}

B̂vw(θv − θw) = Pv ∀v ∈ V \ r

B̂vw(θv − θw) ≤ ûvw ∀(v, w) ∈ þEC \ {e}

θ ∈ [−ε, ε]|V |

(4.16)

(4.17)

(4.18)

The formulation (κ-sub)e allows to determine whether if the load-flow constraints are

still satisfied if we remove the edge e from the current integer solution, i.e. to ensure that

the solution is resilient to a breakdown on e. Indeed, if there is no feasible solution to

(κ-sub)e, it means that there are no solutions respecting both the load-flow equations and

the capacity constraints if we remove the cable on the edge e. We already ensure that the

energy is still routed to the sub-station even in the event of a breakdown on any edge in ÊS ,

and we have to ensure that this is the case for edges in ÊC \ ÊS . When an integer solution

better than the current one is found, we then solve the set of sub-problems (κ-sub)e for

e ∈ ÊC \ÊS . If one subproblem (κ-sub)ē for a given ē ∈ ÊC \ÊS does not have any feasible

solution, we add ē to ES and we add the constraints associated to (Lκ)ES
. Otherwise,

if all subproblems have feasible solutions, the integer solution is feasible for the general

problem. Please note that the subproblems (κ-sub)e have only continuous variables.

4.3.2 Bilevel formulation

In this subsection, we give a bilevel formulation for the general case where the num-

ber of breakdowns is bounded by k, which is similar to the one proposed in Subsection

2.2.3 of Chapter 2. The bilevel formulation proposed here is also particular in that the sec-

ond level is a maxmin problem (it can be seen as a game with a defender and an attacker).

For each [i, j] ∈ E, we introduce a binary variable bij where bij = 1 if and only if the

attacker chooses to delete the arc (i, j). The variables y and θ are defined as in Subsection

4.2.2. We also introduce the variables ηv for each v ∈ V \{r}, which correspond to penalty

variables used to satisfy the load flow equations. We define the following polyhedron:
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B(y) = { b ∈ {0, 1}|E| |
∑

[i,j]∈E bij ≤ k ; bij ≤
∑

q∈Q yq
ij ∀[i, j] ∈ E }

which defines the set of possible scenarios of edge deletions (i.e. the set of constraints

of the attacker): at most k edges can be deleted, and those edges must belong to the ones

selected by the defender. We also introduce for each [i, j] ∈ E and q ∈ Q the notation

βq
ij = Bq

ij(y
q
ij − bij)

where βij is equal to Bq
ij if a cable of type q is built by the defender on the edge [i, j] and

not deleted by the attacker, and to 0 otherwise (since we have bij ≤
∑

q∈Q yq
ij).

We then define another polyhedron:

X (y, b) =





θr = 0

Q∑

q=1

∑

[v,w]∈E

βq
vw(θv − θw) + ηv = Pv ∀v ∈ V \ r

βq
vw(θv − θw) ≤ uq

vw ∀(v, w) ∈ þE, ∀q ∈ Q

η ∈ R
|V |−1
+ , θ ∈ [−ε, ε]|V |





(4.19a)

(4.19b)

(4.19c)

This polyhedron X (y, b) corresponds to the set of load flow and capacity constraints

with penalty variables for a given value of y and b, i.e. once the network has been built

and the attacker has deleted some edges. We have that β corresponds to the susceptances

in the residual network defined by (y, b). Furthermore, at this point we consider that y

and b have already been fixed, so β is not a variable. The variables ηv are penalty variables

which ensure that the polyhedron is non-empty: the solution where we have θv = 0 and

ηv = Pv for each vertex v is always feasible. The load flow and capacity constraints are

satisfied if there exists a feasible solution with
∑

v∈V ηv is equal to 0.
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We propose the following bilevel program:

(BIL)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
y∈{0,1}|A|

∑

(i,j)∈A

cijyij

s.t.
Q∑

q=1

yq
e ≤ 1 ∀e ∈ E \ EI

Q∑

q=1

(yq
e1
+ yq

e2
) ≤ 1 ∀(e1, e2) ∈ I

f(y) = 0

where f(y) = max
b∈B(y)

min
(θ,η)∈X (y,b)

∑

v∈V

ηv

(4.20a)

(4.20b)

(4.20c)

(4.20d)

The defender first builds a network considering the constraints on the number of cables

between two nodes and the planarity constraints given by Constraints (4.20a) and (4.20b)

respectively. Then, the attacker deletes a set of at most k edges that the defender has

built. Then, the defender ensures that the load flow and capacity constraints are still

satisfied: he minimizes
∑

v∈V

ηv, which is a sum of positive variables. If this sum is equal

to 0, it means that the load flow and capacity constraints are still satisfied; if it is strictly

positive, it means that the load flow constraints and the capacity constraints cannot be

satisfied at the same time.

An intuition for the solving method is to dualize the min problem in the second level

in order to reformulate the maxmin problem into a max problem and use a constraints

generation algorithm similar to the one proposed in Subsection 2.2.3 in Chapter 2.

4.4 Results analysis

In this section, we present the results of the formulations proposed for the design of

wind farm cabling networks with load flow constraints. All experiments were performed

on a computer with a 2.40GHz Intel(R) Core(TM) i7-5500U CPU and 16GB RAM, using

the solver CPLEX version 12.6.1, interfaced with Julia 0.6.0. We used in particular the

package JuMP, a tool allowing mathematical modeling. For each test, the algorithm has
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been stopped after 3000 seconds if it has not terminated yet.

We introduce five real or subpart of real data sets data10, data23, data28, data35 and

data53. Each data set data|T | contains a set of the |T | wind turbines, their geographical

location as well as the one of the sub-station. The graphs are partial grids with some

diagonal edges. For each type of cable, we are given a cost per meter, a capacity and a

susceptance.

Non-Robust Robust (k = 1)
I |Q| gapf gapr time(s) gapf gapr time(s)

data10 1 0 0.13 0.12 0 0 2.44
- 2 0 0.1 1.13 0 0.12 2.63
- 3 0 0.11 0.94 0 0.17 10.48

data24 1 0 0.07 3.07 0 0.04 84.3
- 2 0 0.17 6.33 0.003 0.34 3000
- 3 0 0.14 8.21 0.04 0.41 3000

data28 1 0 0.14 2.75 0 0.05 58.59
- 2 0 0.22 28.1 0 0.17 2349
- 3 0 0.26 77.9 0.02 0.29 3000

data35 1 0 0.21 74.9 0 0.18 553
- 2 0 0.17 375 0.1 0.37 3000
- 3 0.04 0.33 3000 - - -

data53 1 0.02 0.22 224 0.08 0.33 3000
- 2 0.06 0.2 3000 - - -
- 3 0.14 0.38 3000 - - -

Table 4.1: Results of the tests for the non-robust case and for the robust case with k = 1

Table 4.1 gives the results of the tests for the non-robust case (with the formulation

(LLFF)) and for the robust case with k = 1 (with the formulation (Lκ)). The column I

gives the instance on which the formulations are tested. The column |Q| gives the number

of types of cables that we consider for the instance. The column gapf gives the final gap

between the best integer solution found and the best lower bound (i.e. 0 if an optimal

solution has been found). The column gapr gives the gap between the best integer solu-

tion found and the best lower bound at the root node of the branch-and-cut. Finally, the

column time(s) gives the time to find the optimal solution (or 3000 if an optimal solution
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has not been found in 3000 seconds).

In Table 4.1, the formulation for the non-robust case allows to solve exactly the prob-

lem for all instances with a number of wind turbines of at most 35, except for data35 with

|Q| = 3 where it founds an integer solution within a gap of at most 0.04 to the optimal

solution. For data53, the final gap is 0.02 for |Q| = 1, 0.06 for |Q| = 2 and 0.14 for |Q| = 3.

The solving time or the final gap logically increase with the number of types of cables

available, but the formulation still manages to find a solution within a reasonable gap

from the optimum value.

For the robust case with k = 1, the formulation is efficient especially for |Q| = 1, where

it solves all the instances to the optimum except data53, where the gap between the best

integer solution and the optimal value is 8%, which sounds reasonable in this case. For

|Q| = 2, the formulation gets slower and is not efficient on data53. However, it allows to

solve optimally data10 and data28 and find an integer solution guaranteed to be within a

really small gap of the optimum (0.3 %). For data35, the final gap is 10%. For |Q| = 3,

the formulation is not efficient on data35 and data53 but find an integer solution which is

optimal or at least close to the optimal value (gaps of 4% and 2%).

The robust formulation has a number of variables |E| times bigger than the one of the

non-robust one, which logically explains why it is importantly slower. Furthermore, each

incrementation of |Q| adds 3|E| variables for the non-robust formulation and 2|E||E|+ |E|

variables for the robust formulation with k = 1. Logically, the incrementation of |Q| has

thus a higher impact on the robust formulation. Furthermore, the case where |Q| = 1

corresponds to the case with uniform capacities, which appears to be easier to solve.
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This thesis originates from a joint work between the Conservatoire National des Arts

et Métiers (CNAM) in Paris, ENSTA ParisTech and Polytechnique Montréal, and ad-

dresses the problems of designing networks subject to edge failures after their design. Our

main application being the design of wind farm cabling networks, we have been working

with an engineer from EDF (largest producer of electricity in France) through a PGMO

project (Programme Gaspard Monge pour l’Optimisation, la recherche opérationnelle et

leurs interactions avec les sciences des données) of the Fondation Mathématique Jacques

Hadamard.

In the following we sum up the main contributions and we outline some future im-

provements or research directions.

Main contributions

The problems addressed in this thesis take inspiration or revolve around the problem

of designing a cabling network of a wind farm with several notions of robustness. Sustain-

able development being a major goal nowadays, it appears important to focus on several

problems concerning renewable energies, including the design of such cabling networks.

In Chapter 1, we focus on the design of arborescence (or rooted tree) networks. In this

context, electricity constraints can be formulated as classical flow constraints. We give a

complexity theorem and its proof which states that determining whether there is a rooted

spanning tree, respecting the capacity constraints (which states for each arc (i, j) that
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the number of vertices in the subtree rooted at j must not exceed a given value uij), is

N P-Complete, even in the case of uniform capacities. This results extends a result from

Papadimitriou [Papadimitriou 1978], where a cost of selection is associated with each arc

of the graph, which states that determining whether there exists a rooted tree respecting

the capacity constraints and under a given cost of selection is N P-Complete. We then

study the design of Steiner arborescences with various notions of robustness: we aim at

designing Steiner arborescences while considering the number of terminals disconnected

from the root after an arc-deletion in several scenarios. To the best of our knowledge, this

problem has not been studied in the literature. We give several formulations for different

scenarios and test them on real wind farm data in order to evaluate their impact on the

network designed.

In Chapter 2, we introduce a problem called CRkECSN: we aim at designing a minimum-

cost network where we are able to route a unit of flow from the root to each terminal re-

specting the capacities (a limited amount of flow can be routed through each arc) even in

the event of the deletion of any subset of k arcs in the network built (k being a given inte-

ger). We propose several formulations, including a new bilevel one, where the second level

is a min−max problem. We also propose an algorithm based on constraints generation

and give a method to generate better constraints at each iteration of the algorithm (the

enhanced constraint forbids more non-feasible integer solutions than the initial one). We

show that the bilevel formulation is a reformulation of another one based on the cut-sets

in the graph. We consider the possibility of protecting arcs; those arcs cannot be deleted

from the solutions. We give some test results on generated instances and compare the

performance of our algorithms.

In Chapter 3, we also study CRkECSN, but in the case of planar graphs. This is

motivated by the fact that the wind-farms in offshore environment can often be modeled

by grid graphs. The problem of determining whether a graph is k-survivable (i.e. resilient

to the deletion of any subset of k arcs) is NP-complete in the general case. However, we

derive a theorem which gives properties of the planar dual graph of a k-survivable graph
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and extend it to solve this problem in polynomial time in planar graphs, by determining a

series of shortest paths. Exact methods for CRkECSN can only solve relatively small size

instances. For this reason, we also describe a tabu search algorithm that can handle much

larger instances, provided they are planar, and we have shown that it typically produces

optimal solutions when these are known. Our algorithm has very low computing times,

which makes it particularly interesting in practice, for example for the design of survivable

wind farm collection networks with hundreds of wind turbines.

In Chapter 4, we study the problem of designing a cabling network for offshore wind

farms while respecting the load flow equations. The load flow analysis corresponds to a

non-linear system which allows to determine the state of the network (computations of

phase voltages, powers and currents at each node or cable of the network), and then ensure

that the power routed through each cable is smaller than its maximum capacity. We use

a DC current approximation in order to obtain linear equations. Those equations are

added to a Mixed-Integer Program (MIP) and we show that, whenever these constraints

are satisfied, the load flow equations are satisfied and the final network is connected. We

first give a MIP which allows to solve the problem in the non-robust case (where we do

not consider the possibility of breakdowns on the arcs). In a second time, we give a MIP

for the case where k = 1 breakdown can occur and a constraints generation algorithm to

solve it. We test those MIP on real data given for an offshore wind farm. Finally, we give

a bilevel formulation designed to solve the problem for general values of k, and give ideas

on how to solve it efficiently.

Research directions

The work presented in this thesis has lead to several questions or interesting research

paths that would be appealing to investigate in the future.

It appears that the electricity constraints we studied are easier to take into account

when we consider arborescence networks. One of the problems that could be worth study-
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ing is a more constrained version of CRkECSN, where we want to design a network which

is resilient to the deletion of any subset of k arcs and such that the resulting flow must

be routed from the root to the terminals through an arborescent sub-network (after these

k arcs have been deleted). We have begun to investigate this problem for k = 1 on grid

graphs with uniform capacity constraints and have found several properties for particular

cases. The problem appears to be more difficult to solve than CRkECSN, since the con-

straint that the flow must be routed through an arborescent sub-network for each scenario

of arc deletions seems more difficult to formulate than CRkECSN.

We can also investigate the bilevel program proposed in Chapter 4. This formulation

proposes interesting challenges. Bilevel programming formulations are currently widely

used in the literature, and our formulation for the second level using slack variables has

a number of variables smaller than the one we have tested in this thesis. Once that the

min problem has been dualized in the second level, it can be interesting to study different

ways to solve this formulation.

Another aspect of the real instances that could be interesting to investigate is the

stochasticity. For offshore wind farms with equivalent power, the energy produced by each

wind turbine is almost always the same, and hence we have considered a fixed energy pro-

duction at each turbine. However, the actual production depends partly on the demands

or, in wind farm networks, on the amount of wind, and it would be an interesting issue to

take this uncertainty into account.
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Design of robust networks.

Application to the design of wind
farm cabling networks.

Résumé :
Aujourd’hui, la conception de réseaux est une problématique cruciale qui se pose dans beaucoup
de domaines tels que le transport ou l’énergie. En particulier, il est devenu nécessaire d’optimiser
la façon dont sont conçus les réseaux permettant de produire de l’énergie. On se concentre ici
sur la production électrique produite à travers des parcs éoliens. Cette énergie apparait plus que ja-
mais comme une bonne alternative à la production d’électricité via des centrales thermiques ou nucléaires.

Nous nous intéressons dans cette thèse à la conception du câblage collectant l’énergie dans les parcs
éoliens. On connaît alors la position de l’ensemble des éoliennes appartenant au parc ainsi que celle
du site central collecteur vers laquelle l’énergie doit être acheminée. On connaît également la position
des câbles que l’on peut construire, leurs capacités, et la position des nœuds d’interconnexion possibles.
Il s’agit de déterminer un câblage de coût minimal permettant de relier l’ensemble des éoliennes à la
sous-station, tel que celui-ci soit résistant à un certain nombre de pannes sur le réseau.

Mots clés : Recherche opérationnelle, Optimisation combinatoire, Conception de réseaux robustes,
Théorie des graphes, Programmation en nombres entiers, Câblage de parcs éoliens.

Abstract :
Nowadays, the design of networks has become a decisive problematic which appears in many fields such
as transport or energy. In particular, it has become necessary and important to optimize the way in
which networks used to produce, collect or transport energy are designed. We focus in this thesis on
electricity produced through wind farms. The production of energy by wind turbines appears more than
ever like a good alternative to the electrical production of thermal or nuclear power plants.

We focus in this thesis on the design of the cabling network which allows to collect and route the energy
from the wind turbines to a sub-station, linking the wind farm to the electrical network. In this problem,
we know the location of each wind turbine of the farm and the one of the sub-station. We also know
the location of possible inter-connection nodes which allow to connect different cables between them.
Each wind turbine produces a known quantity of energy and with each cable are associated a cost and
a capacity (the maximum amount of energy that can be routed through this cable). The optimization
problem that we consider is to select a set of cables of minimum cost such that the energy produced
from the wind turbines can be routed to the sub-station in the network induced by this set of cables,
without exceeding the capacity of each cable. We focus on cabling networks resilient to breakdowns.

Keywords : Operations Research, Combinatorial optimization, Robust networks design, Graph theory,
Mixed integer programming, Wind farm cabling networks.


