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RÉSUMÉ EN FRANÇAIS

Les logiciels ont envahi presque tous les aspects de notre vie quotidienne. Aujourd’hui, nous
dépendons de plus en plus d’Internet et du Web, qui sont alimentés par des systèmes logiciels
complexes et interconnectés. Nous faisons confiance aux logiciels pour protéger nos comptes
bancaires et nos documents importants. Un logiciel vérifie nos passeports et nos informations de
base chaque fois que nous traversons une frontière. Grâce au logiciel, nous communiquons avec
d’autres personnes et partageons nos photos. Nous écoutons de la musique et regardons des
films en streaming. Nous apprenons et partageons les connaissances à travers les wikis.

Le processus de développement de logiciel a évolué en poursuivant l’objectif de faire plus, en
moins de temps et avec moins d’efforts. Les ingénieurs ont construit des outils pour concevoir,
programmer et vérifier les logiciels. Les plates-formes modernes permettent aux développeurs
de collaborer à la création de nouvelles applications et de nouveaux services et de partager
leurs expériences et leurs solutions. Etant donné l’omniprésence actuelle du logiciel, il y a des
conséquences lorsqu’il n’est pas correctement vérifié, qui peuvent aller d’une citation hilarante
sur un écran publicitaire à la perte tragique de vies humaines.

Les tests, et plus important encore, les tests automatisés, restent au cœur des activités de
développement, un moyen privilégié d’accroître la robustesse des logiciels. Mais les tests ont leur
limites. “Le test de programme peut être utilisé pour montrer la présence de bogues, mais jamais
pour montrer leur absence!” dit Dijsktra. Néanmoins, les méthodes formelles ne remplacent pas
la nécessité d’effectuer des tests. Elles s’appuient sur des modèles mathématiques du monde
réel qui peuvent faire des hypothèses irréalistes et, en tant qu’abstractions, sont différentes des
machines réelles dans lesquelles les programmes sont exécutés. Les tests aident à combler cette
lacune. “Méfiez-vous des bogues dans le code ci-dessus; je l’ai seulement prouvé correct, pas
essayé” a écrit Knuth dans une lettre. La plupart des développeurs préfèrent les tests qui sont un
bon compromis entre l’effort nécessaire et les résultats obtenus.

Le but du test est de révéler les erreurs, les défauts, les bogues dans le programme. Les
tests sont conçus pour couvrir les exigences de l’application logicielle et pour mettre l’accent
sur sa mise en œuvre. Les tests automatisés aident à diminuer la charge des tâches répéti-
tives. Ils peuvent stresser le logiciel dans des conditions non prévues par les concepteurs et les
développeurs, en générant de façon aléatoire de nouvelles données d’entrée. L’automatisation
permet d’exécuter les tests avec un grand nombre de paramètres et de configurations, ce qui
serait impossible pour l’homme. Il peut être aussi utile de repérer les régressions. Les tests au-
tomatisés sont aussi des logiciels à part entière, et ils doivent être vérifiés. Cela nous amène à
nous poser une question qui sous-tend tout le travail de cette thèse : Comment tester les tests ?

Défis

Un test, ou un cas de test, doit fournir les données d’entrée et placer le programme dans un état
spécifique pour déclencher le comportement du programme qui est jugé pertinent pour le test.
Le test doit ensuite vérifier la validité de ce comportement par rapport aux propriétés attendues.
Cette vérification est effectuée au moyen d’un oracle, habituellement une assertion, qui fournit le
verdict. Ainsi, un test capture une interaction spécifique entre une entrée, le programme testé et
un ensemble de propriétés attendues. Tester un test signifie évaluer la validité et la pertinence
de l’interaction entre ces trois éléments, c’est-à-dire, si le test est capable de révéler des dé-
fauts du programme. Pour évaluer un test, nous devons vérifier si l’entrée est adéquate, si les
comportements requis sont réellement déclenchés et si l’oracle est assez fort pour détecter les
défaillances.

L’évaluation de la qualité d’un ensemble de tests, ou suite de tests, est un défi de longue date
pour les ingénieurs et les chercheurs. L’amélioration de la qualité d’une suite de tests, c’est-à-dire
l’amélioration de sa capacité à détecter les pannes, est encore plus difficile.

Lorsque les développeurs/testeurs conçoivent et mettent en œuvre des tests, ils ont besoin
de conseils pour savoir à quel point ils testent un programme et comment améliorer leurs cas de
test existants. La couverture de code est le critère d’évaluation le plus courant pour les tests, elle
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indique aux développeurs quelles parties du code sont exécutées par les tests. La couverture
de code informatique est efficace car elle demande peu de ressources supplémentaires pour à
l’exécution régulière de la suite de tests. La plupart des languages courants disposent d’outils de
calcul de la couverture et la plupart des environnements de développement modernes les sup-
portent. Le résultat de la couverture de code est facile à comprendre, et il aide les programmeurs
à découvrir ce qu’ils n’ont pas encore testé. Cependant, il se limite seulement à signaler le code
qui est exécuté par la suite de tests et le code qui ne l’est pas. La couverture de code n’indique
rien sur la qualité des tests et leur capacité à découvrir des bugs.

À la fin des années 70, DeMillo et ses collègues ont proposé de mettre l’accent sur les tests
par mutation. [22], un critère qui subsume la couverture de code. L’idée est simple : comme
les tests sont censés trouver des erreurs, cette technique implante des bugs artificiels pour créer
une version défectueuse du programme, un mutant. Ensuite, elle vérifie si les tests existants
échouent ou non lors de l’exécution du mutant. S’ils le échouent, les test détectent bien la faille
implantée, dans le cas contraire, les tests devraient être inspectés et améliorés en conséquence.
Les erreurs artificielles sont conçues pour imiter les petites erreurs de programmation les plus
courantes en partant du principe que les programmeurs ont tendance à écrire du code proche de
la vérité, et que les tests qui détectent la plupart des petites erreurs peuvent également détecter
des erreurs plus importantes. L’objectif initial de DeMillo était, en fait, de fournir des conseils aux
développeurs et de les aider à créer de meilleurs tests.

Cependant, et malgré des décennies de recherche scientifique sur le sujet, l’industrie adopte
très lentement le test par mutation. Il y a des défis concrets à relever pour mettre la technique en
pratique: (i) le processus de test par mutation est coûteux en termes de ressources informatiques;
(ii) le résultat du test par mutation, fourni sous forme de score global de mutation, est difficile à
comprendre et à interpréter; (iii) il est difficile de comprendre pourquoi l’interaction entre le code
de test et le programme a empêché la détection d’un mutant ; (iv) il n’existe pas beaucoup de
support outillé pour aider les développeurs à améliorer leurs tests pour ce type d’analyse .

Dans cette thèse, nous concevons des techniques d’analyse de programme pour relever ces
défis. Ces analyses observent l’exécution de la suite de tests et identifient les parties du pro-
gramme que les développeurs n’ont pas vérifiés dans leurs tests. Nos propositions sont égale-
ment basées sur une forme plus légère de test par mutation, la mutation extrême.

Objectifs de la thèse

L’objectif principal de cette thèse est de revisiter l’objectif original de DeMillo, c’est-à-dire d’aider
les développeurs à évaluer la qualité de leurs scénarios de test et à générer automatiquement des
suggestions concrètes pour améliorer leurs suites de tests dans le contexte du développement
logiciel moderne.

Récemment, Niedermayr et ses collègues [51] ont proposé une alternative plus légère qu’ils
ont appelée mutation extrême. Au lieu de petites erreurs de programmation, ces auteurs pro-
posent de supprimer complètement le code d’une méthode et de vérifier ensuite si les tests sont
capables de détecter ce changement. D’une part, cette technique génère beaucoup moins de
variantes de programme, ce qui rend l’analyse plus rapide. D’autre part, les changements non
détectés sont plus faciles à comprendre au niveau de la méthode. Ces auteurs ont également dé-
couvert la présence de méthodes pseudo-testées dans des projets bien testés. C’est-à-dire une
méthode dont le code peut être complètement supprimé sans qu’aucun cas de test n’échoue.

La mutation extrême travaille au niveau de la méthode, ce qui est une bonne granularité
pour les développeurs pour raisonner sur le code et les tests. Dans cette thèse, nous émet-
tons l’hypothèse que la mutation extrême et les méthodes pseudo-testées peuvent être intégrées
dans les processus modernes de développement de logiciels pour fournir aux développeurs un
retour d’information exploitable sur la qualité de leurs tests.

La mutation extrême et les méthodes pseudo-testées doivent fournir le cadre permettant de
découvrir des problèmes de test bien localisés. Dans le cadre de ce travail, nous les étudions
plus avant afin de mieux comprendre comment elles peuvent être utilisées dans la pratique. Elles
sont la base sur laquelle nous construisons nos propositions.

Dans cette thèse, nous concevons et mettons en œuvre des analyses pour explorer l’interaction
entre le code de l’application et la suite de tests. Ces analyses devraient aider les développeurs à
comprendre où se trouvent les parties faiblement testées d’un programme (les méthodes pseudo-
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testées), quels cas de test doivent être améliorés et quelles actions doivent être effectuées pour
renforcer la suite de tests. Les résultats de ces analyses devraient déboucher sur des actions
concrètes que les développeurs pourraient suivre pour remédier aux problèmes de test.

Notre objectif est de mettre en œuvre nos techniques d’analyse de programmes de manière à
ce qu’elles puissent être intégrées dans des environnements de développement et des workflows
modernes : elles doivent être compatibles avec les pratiques de construction automatique ; les
développeurs doivent pouvoir les exploiter dans un environnement d’intégration continue et de test
continu. Nos implémentations doivent produire une rétroaction structurée et conviviale qui peut
être consultée par les humains et exploitée par d’autres outils. Nos techniques et nos résultats
doivent être validés par des développements logiciels réels.

Nous divisons notre objectif principal en sous-objectifs :

I Construire une implémentation robuste de la mutation extrême. Afin d’obtenir un retour
d’information de la part des développeurs réels, nous devons leur donner des outils qu’ils
peuvent utiliser sans perturber leurs pratiques actuelles. Les développeurs devraient pou-
voir utiliser ces outils dans leur espace de travail personnel et éventuellement les intégrer
dans une infrastructure plus sophistiquée comme un serveur d’intégration continue. Un outil
prêt pour l’industrie doit aider à atteindre les développeurs. L’insertion d’un tel outil dans un
environnement de développement réel avec des pratiques de développement modernes
aidera à évaluer la pertinence de la mutation extrême dans la détection des problèmes de
test. Nous proposons Descartes un util qui trouve automatiquement les mutations extrêmes
non detectées et les méthodes pseudo-testées.

II Comparez les mutations extrêmes aux tests par mutation traditionnels. Une comparaison
entre les deux techniques devrait aider à déterminer dans quelle mesure la mutation ex-
trême est la plus adaptée, et quelles sont ses principales limites. Nous utilisons un ensem-
ble de 21 projets open-source pour mesurer la réduction en termes de mutants et de temps
en cas de mutation extrême. Nous vérifions également la corrélation entre les résultats des
deux approches.

III Vérifier si des méthodes pseudo-testées et les mutations extrêmes non détectées dévoilent
des résultats pertinents dans une suite de tests. La pertinence des méthodes pseudo-
testées en tant que résultats de problèmes de tests a un impact sur le type d’amélioration
que nous pouvons produire à partir de leur analyse. Cette pertinence doit être établie avec
l’aide des développeurs et des résultats concrets dans leur code. Pour atteindre cet objectif,
nous commençons par répliquer le travail de Niedermayr et de ses collègues. Nous attén-
uons les menaces à la validité de leurs résultats en utilisant un outil différent et un ensemble
différent de 21 sujets d’étude. Nous corroborons la présence de méthodes pseudo-testées
dans des projets bien testés. Nous échangeons avec les développeurs pour évaluer la
pertinence de ces résultats.

IV Générer des suggestions concrètes d’amélioration à partir de transformations extrêmes.
Pour savoir pourquoi un mutant extrême n’est pas détecté, les développeurs doivent com-
prendre l’interaction entre les tests et le code de l’application. Ils devraient également
améliorer leur suite de tests en créant un nouveau scénario de test, en fournissant une
nouvelle entrée ou en renforçant les oracles existants. Nous proposons Reneri, un outil
qui génère des suggestions concrètes pour les développeurs afin d’améliorer leur suite de
tests. Reneri met en œuvre une analyse de propagation de l’infection pour découvrir dans
quelle mesure les effets des mutants extrêmes se propagent à des points observables dans
les cas de test. Nous corroborons, en consultant les développeurs, que ces suggestions
fournissent des informations utiles pour résoudre le problème de test et même la solution
exacte. Nous explorons également, si les développeurs peuvent être assistés par des outils
de génération de tests à la pointe de la technologie pour résoudre les problèmes découverts
par des mutations extrêmes.

Descartes un outil pour détecter les méthodes pseudo-testées

Descartes est un outil qui détecte automatiquement les méthodes pseudo-testées à l’aide de
transformations extrêmes. Il s’inspire directement des travaux de Niedermayr et de ses collègues
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[51]. Descartes a été conçu comme une extension de PITest pour exploiter sa maturité et ses
fonctionnalités. En nous appuyant sur PITest, nous obtenons une infrastructure solide et mul-
tithread pour la découverte et l’exécution de tests unitaires, le support des outils comme Ant,
Gradle et Maven, le support des bibliothèques de tests JUnit et TestNG et le support d’une com-
munauté de chercheurs et développeurs, tous engagés pour la qualité de l’outil. Le fait de compter
sur PITest a également permis une adoption plus rapide en production.

Descartes inclut des filtres spéciaux pour éviter de produire des résultats non pertinents pour
les développeurs. Il inclut également des fonctions de rapports personnalisés pour présenter aux
développeurs des explications en langage naturel sur les problèmes de test.

La collaboration avec nos partenaires industriels a été un élément clé dans le développement
de Descartes. Des entreprises comme TellU, Atos, ActiveEon et XWiki SAS ont utilisé l’outil sur
leur base de code et ont fourni un retour très intéressant et essentiel sur les problèmes et les
types de résultats et de transformations qui sont les plus utiles aux développeurs. XWiki SAS a
inclus des Descartes dans ses serveurs d’intégration continue pour observer automatiquement la
qualité des cas de test et faire échouer la livraison lorsque cette qualité diminue. A ce jour, les
contributeurs de XWiki ont fait 41 commits pour résoudre des problèmes détectés par Descartes.
Ces commits ont ajouté 66 nouvelles classes de test, et ont modifié 22 et ont édité directement
plus de 700 assertions dans le code. Les développeurs ont pu augmenter la couverture de code
de 2% en moyenne sur chaque commit.

Extrême mutation et tests par mutation

La mutation extrême utilise des transformations de code différentes de celles traditionnellement
proposées par les tests par mutation. Les mutants extrêmes éliminent en une fois tous les ef-
fets d’une méthode. Nous effectuons une comparaison quantitative entre les tests par mutation
traditionnels et la mutation extrême dans 21 projets open-source. Nous observons le nombre de
mutants, le temps d’exécution de l’analyse et le score de mutation. Nous montrons qu’une muta-
tion extrême crée moins de 30% des mutants créés par la mutation traditionnelle. Dans la plupart
des cas, une mutation extrême nécessite moins d’un tiers du temps requis par les tests par mu-
tation traditionnelle. Le score calculé par les deux techniques a une corrélation positive modérée.
Un projet avec un score élevé utilisant des mutants traditionnels est plus susceptible d’avoir un
score élevé avec des mutants extrêmes. Nous montrons également que ces indicateurs évoluent
d’un projet à l’autre en fonction de leurs particularités. Les résultats des mutations extrêmes sont
à fros grain, mais ils sont en mesure de déceler des problèmes de test pertinents.

Méthodes pseudo-testées en profondeur

Nous effectuons une analyse qualitative approfondie des méthodes pseudo-testées. Dans cette
analyse, nous évaluons la pertinence des méthodes pseudo-testées pour révéler les problèmes
de test, en particulier les oracles faibles. Nous faisons d’abord une réplication conceptuelle du
travail de Niedermayr avec un ensemble de données et un outillage différents. L’étude corrobore
les premières observations de ces auteurs et atténue les menaces internes et externes à la valid-
ité de leurs résultats. L’étude trouve également des méthodes pseudo-testées dans 21 projets de
Java matures. Nous confirmons que les méthodes pseudo-testées sont mal testées car le score
de mutation est systématiquement plus faible que dans le reste du code.

Ces problèmes que nous avons trouvés dans cette étude ont été confirmés par les développeurs
qui ont accepté les pull requests corrigeant les problèmes de test. Dans un échantillon de 101
méthodes pseudo-testées, les développeurs ont constaté que moins de 30% d’entre elles valaient
la peine d’être testées immédiatement. Ces méthodes sont principalement impliquées dans les
fonctionnalités de base et sont largement utilisées dans leur base de code. D’autre part, ils
considéraient que les méthodes triviales et les méthodes d’aide n’avaient pas besoin de tests
supplémentaires.
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Génération de suggestions d’amélioration des tests

Nous proposons Reneri, un outil qui implémente une analyse de propagation des infections, ca-
pable de générer des suggestions pratiques qui aident les développeurs à améliorer leurs suites
de tests. L’analyse examine les parties de l’état du programme qui sont affectées lorsqu’un mutant
extrême est créé et que les cas de test sont exécutés. Nous montrons que dans 74% des cas, les
effets de la transformation n’infectent pas l’état du programme et ne se propagent pas à un point
observable. Le reste est découvert par l’amplification des capacités d’observation de la suite de
tests. Les suggestions générées par l’analyse sont validées par les développeurs qui considèrent
qu’elles fournissent des informations utiles, ou la solution exacte pour résoudre le problème de
test.

Techniques de génération de tests contre les mutations ex-
trêmes

Nous explorons et comparons deux techniques de détection automatisée de mutants extrêmes
basées sur DSpot et EVOSUITE, deux outils pe point de génération de tests pour Java. La com-
paraison montre que l’approche basée sur DSpot est plus efficace car elle cible davantage les
mutants extrêmes. Cependant, les solutions entièrement automatisées sont encore loin de pro-
duire un résultat totalement satisfaisant.
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ABSTRACT

Automated testing is at the core of modern software development. Yet, developers struggle when
it comes to the evaluation of the quality of their test cases and how to improve them. The main
goal of this thesis is precisely that, to generate concrete suggestion that developers can follow to
improve their test suite. We propose the use of extreme mutation, or extreme transformations, as
an alternative to discover testing issues. Extreme transformations are a form of mutation testing
that remove the entire logic of a method instead of making a small syntactic change in the code.
As it traditional counterpart, it challenges the test suite with a transformed variant of the program
to see if the test cases can detect the change. In this thesis we assess the relevance of the testing
issues that extreme transformations can spot. We also propose a dynamic infection-propagation
analysis to automatically derive concrete test improvement suggestions from undetected extreme
transformations. Our results are validated through the interaction with actual developers. We also
report the industrial adoption of parts of our results. The main contributions of this work are:

• A robust and industrial ready implementation of extreme transformations.

• A quantitative comparison between traditional mutation testing and extreme mutation con-
sidering the number of mutants, execution time of the analysis and the mutation score.

• A conceptual replication of the work of Niedermayr and colleagues who first proposed the
use of extreme transformations. Our study corroborates the first observations of these au-
thors and mitigate both internal and external threats to the validity of their results.

• An in-depth qualitative analysis of pseudo-tested methods. In this analysis we assessed the
relevance of pseudo-tested methods to reveal testing issues, in particular weak test oracles.

• An infection-propagation analysis able to generate actionable suggestions that help devel-
opers improve their test suites. The analysis investigates the parts of program state that are
affected when an extreme mutant is created and the test cases are executed.

• A comparison between two techniques for the automated detection of extreme mutants
based on DSpot and EVOSUITE, two state-of-the-art test generation tools for Java.

Extreme transformations allow to spot concrete, relevant and easier to understand testing
issues that can be leverage to produce meaningful testing improvements.
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INTRODUCTION

Fifty years ago a man walked on the Moon. It was a great accomplishment, one giant leap for
mankind. Software played a crucial role on this mission. It was the fourth astronaut. The Apollo
program team understood very early the relevance of software. They had a glimpse of the future.
They also understood that software had to be robust and reliable, and software testing was one of
the most important tasks in this program. And it eventually paid off. The guidance computer was
able to recover from an unexpected error and ultimately saved the mission. The Apollo program
helped shape Software Engineering as a discipline on its own, and demonstrated the importance
of quality and robustness of software. “Software eventually and necessarily gained the same
respect as any other discipline” concluded Margaret H. Hamilton, who lead the team developing
the software components for the guidance and control systems of the in-flight command and lunar
modules. She, in fact, coined the term “software engineering” and her work is considered to be
“the foundation for ultra-reliable software design” [8].

After five decades, software keeps going to space and has invaded almost all aspects of our
daily lives. Nowadays, we depend more and more on the Internet and the Web, which are powered
by complex interconnected software systems. We trust software to guard our bank accounts and
important documents. Software checks our passports and background information every time
we cross a border. Through software we communicate with other people and share our photos.
We listen to music and watch films through streaming services. We learn and share knowledge
through wikis.

The software development process has evolved by pursuing the goal of achieving more in
less time and with less effort. Engineers have built tools to design, program and verify software.
Modern platforms allow developers to collaborate in the creation of new applications and services
and to share their experiences and solutions. Due to its omnipresence there are consequences
when software is not properly verified. They may go from a hilarious “blue screen of death” in an
advertising screen to the tragic loss of human lives.

Testing, and more importantly, automated testing, remains at the core of the development
activities as the preferred mean to increase the robustness of software. But testing is limited.
“Program testing can be used to show the presence of bugs, but never to show their absence!”
said Dijsktra. But formal methods do not replace the need for testing. They rely on mathematical
models of the real world that might make unrealistic assumptions and, as abstractions, are dif-
ferent from the real machines in which programs execute. Testing helps fill this gap. “Beware of
bugs in the above code; I have only proved it correct, not tried it” wrote Knuth in a letter. Testing
provides a tradeoff between effort and immediate results that is more appealing to most practicing
developers.

The goal of testing is to reveal errors, faults, bugs in the program. Tests are designed to cover
the requirements of the software application and to stress its implementation. Automated testing
helps to alleviate the burden of repetitive tasks. It can stress software in conditions not foreseen
by designers and developers by randomly generating new input data. Automation is good to run
large numbers of parameters and configurations that would be impossible for humans. It can help
to spot errors that reappear after being fixed. Yet, automated tests are a piece of software as well
and, as such, they have to be verified. This leads to one question that underlies all the work of
this thesis: how do we test a test?

Challenges

A test, or test case, should provide the input data and set the program in a specific state to
trigger program behaviors that are deemed relevant for testing. The test must then verify the
validity of this behavior with respect to expected properties. This verification is performed through
an oracle, usually an assertion, which provides the verdict. Thus, one test captures a specific
interaction between an input, the program under test and a set of expected properties. Testing a
test means assessing the validity and relevance of the interplay between these three elements,
that is, if the test is able to reveal program faults. To evaluate a test we must check if the input
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is adequate, if the required behaviors are actually triggered and if the oracle is strong enough to
spot failures.

Assessing the quality of a set of tests, or test suite, is a long standing challenge for practi-
tioners and researchers. Improving the quality of a test suite, that is, improving its fault detection
capabilities is even more challenging.

When developers/testers design and implement tests they need guidance to know how much
they test a program and how to improve their existing test cases. Code coverage is the most
common assessment criterion for tests, that is, let developers know which parts of the code are
executed by the tests. Computing code coverage is efficient as it does not add much overhead to
the regular execution of the test suite. Most mainstream languages have tools to compute cover-
age and most modern development environments support them out-of-the-box. The outcome of
code coverage is easy to understand, it helps programmers to discover what they have not tested
yet. However, it is limited to only that: signal the code that is executed by the test suite and the
code that is not. Code coverage indicates nothing about the quality of the tests and their ability to
discover bugs.

In the late 70’s DeMillo and colleagues proposed mutation testing [22], a criterion that sub-
sumes code coverage. The idea is simple: as tests are supposed to find errors, the technique
plants artificial bugs to create a faulty version of the program, a mutant. Then the technique
checks whether or not the existing tests fail when executing the mutant. If they do so, then the
tests are adequate to detect the planted fault. Otherwise tests should be inspected and improved
accordingly. The artificial errors are designed to mimic small traditional programming mistakes
under the assumptions that programmers tend to write code close to be correct and that tests
detecting most small faults can also detect bigger errors. The original goal of DeMillo was, in fact,
to provide hints for developers and help them create better tests.

However, and despite the decades of scientific research on the subject, mutation testing has
a languid adoption in industry. There are concrete challenges to overcome in order to put the
technique in practice: (i) the mutation testing process is expensive in terms of computational
resources; (ii) the outcome of mutation testing, provided as a global mutation score, is hard to
understand and interpret; (iii) it is difficult to comprehend why the interaction between the test
code and the program prevented the detection of a mutant; (iv) there is not much tooling support
to help developers improve their tests with respect to this type of analysis.

In this thesis we design program analysis techniques to address these challenges. These
analyses observe the execution of the test suite and find which parts of the program state de-
velopers have missed to verify in their tests. Our proposals are also based in a lighter form of
mutation testing, extreme mutation.

Objectives of the thesis

The main objective of this thesis is to revisit the original goal of DeMillo, that is, to help developers
assess the quality of their test cases and automatically generate concrete suggestions for them
to improve their test suites in the context of modern software development.

Recently, Niedermayr and colleagues [51] proposed a lighter alternative to mutation testing
which they called extreme mutation. Instead of small programming errors, these authors propose
to completely remove the code of a method and then check if the tests are able to detect the
change. For one thing, this technique generates much fewer program variants which makes
the analysis faster. On the other hand, undetected changes are easier to understand at the
method level. These authors also discovered the presence of pseudo-tested methods in well
tested projects. That is, method whose code can be completely removed and no test case fails.

Extreme mutations work a the global method level, which is a good granularity for developers
to reason about the code and the tests. In this thesis we hypothesize that extreme mutation
and pseudo-tested methods can be integrated into modern software development processes to
provide actionable feedback to developers about the quality of their tests.

Extreme mutation and pseudo-tested methods shall provide the framework to discover well
localized testing issues. In this work we study them further to gain understanding about how can
they be used in practice. They are the foundation in which we build our proposals.

In this thesis we design and implement a set of program analyses to explore the interplay
between the application code and the test suite. These analyses aim at helping developers un-
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derstand where are the weakly tested parts in a program (the pseudo-tested methods) which test
cases shall be improved and what actions shall be performed to strengthen the test suite. The
feedback of these analyses leads to concrete actions that developers may follow to remediate
testing issues.

We aim at implementing our program analysis techniques such that they can be integrated
into modern development environments and workflows: compatible with automatic build practices
and exploitable in a continuous integration/continuous testing setup. Our implementations should
produce structured and user-friendly feedback that can be consulted by humans and leveraged
by other tools. We evaluate our concepts and tools in modular and actively maintained Java
applications such as backend online services and reusable libraries. These are projects where we
can execute tests on small parts of them. We aim at obtaining feedback from the main developers
of these applications. Nevertheless, the concepts we develop in this thesis could be applied to
other types of projects.

We break down our main objective into the following sub-objectives:

I Build a robust implementation of extreme mutation. In order to obtain feedback from actual
developers we must give them tools they can use without disrupting their current practices.
Developers should be able to use these tools in their personal working space and possibly
integrate them into a more sophisticated infrastructure like a continuous integration server.
An industry and production ready tool for extreme mutation shall help reach developers in
this context. The insertion of such a tool into an actual development environment with mod-
ern development practices shall help assess extreme mutation in the detection of relevant
testing issues. In Chapter 2 we describe Descartes, a tool to automatically find undetected
extreme transformations and discover pseudo-tested methods.

II Compare extreme mutation with traditional mutation testing. A comparison between both
techniques should help determine to what extent extreme mutation scales better, and what
are its main limitations. In Section 2.2 we use a set of 21 open-source projects to measure
the reduction in terms of mutants and time when using extreme mutation. We also verify the
correlation between the results of both approaches.

III Check if pseudo-tested methods and undetected extreme mutations unveil relevant findings
in a test suite. The relevance of pseudo-tested methods as findings of testing issues im-
pacts the type of improvement we can produce from their analysis. This relevance has to
be established with the help of developers and concrete results in their code. To pursue
this objective we first conduct a replication of the work of Niedermayr and colleagues. We
mitigate threats to the validity of their results by using a different tooling and a different set
of 21 study subjects. We corroborate the presence of pseudo-tested methods in well tested
projects. We interact with developers to assess if they consider these findings are relevant.
Chapter 3 presents these results.

IV Generate concrete improvement suggestions from extreme transformations. To know why
an extreme mutant is not detected, developers must understand the interaction between the
tests and the application code. They should also improve their test suite by creating a new
test case, provide a new input or strengthening the existing oracles. In Chapter 4 we propose
Reneri, a tool that generates concrete suggestions for developers to improve their test suite.
Reneri implements an infection-propagation analysis to discover to what extent the effects
of extreme mutants are propagated to observable points in the test cases. We corroborate,
by consulting the developers, that these suggestions provide helpful information to solve the
testing issue and even the exact solution. We also explore if developers can be assisted
by state-of-the-art test generation tools in the solution of the issues discovered by extreme
mutation.

Contributions

The main contributions of this thesis are:

• A quantitative comparison between traditional mutation testing and extreme mutation con-
sidering the number of mutants, execution time of the analysis and the mutation score. We
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show that extreme mutation creates less than 30% of the mutants created by traditional
mutation testing. In most cases, extreme mutation requires less than one third of the time
required by mutation testing. The score computed by both techniques have a moderate pos-
itive correlation. A project with a high score using traditional mutants is more likely to have
a high score with extreme mutants. We also show that these indicators change from one
project to the other depending more on their particularities. This work has been published
in the Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Testing (ASE 2018) in the Tool Demonstration Track [80]. It will be described in Chapter 2.

• A conceptual replication of the work of Niedermayr with a different dataset and different
tooling. The study corroborates the first observations of these authors and mitigate both
internal and external threats to the validity of their results. The study also finds pseudo-
tested methods in 21 mature Java projects. We confirm that pseudo-tested methods are
poorly tested as the mutation score is systematically lower than in the rest of the code.

• An in-depth qualitative analysis of pseudo-tested methods. In this analysis we assessed the
relevance of pseudo-tested methods to reveal testing issues, in particular weak test oracles.
These issues were confirmed by developers who accepted pull requests fixing the testing
issues. In a sample of 101 pseudo-tested methods, developers found less than 30% of them
worth immediate testing actions. Developers would improve the tests verifying methods that
support the core functionality of their product, methods that are widely used inside their
projects and methods used by third parties. Developers consider worthless of additional
testing actions those methods they think are trivial or support secondary functionalities i.e.
helper methods. This work and the previous contribution have been published in the Em-
pirical Software Engineering Journal and presented in the Journal First Track of the 41st

International Conference of Software Engineering ICSE 2019. They will be presented in
Chapter 3.

• An infection-propagation analysis able to generate actionable suggestions that help devel-
opers improve their test suites. The analysis determines the parts of the program state that
are affected when an extreme mutant is created and the test cases are executed. We show
that, in 74% of the cases, the effects of the transformation do not infect the program state
nor propagate to an observable point. The rest are discovered through the amplification of
the observation capabilities of the test suite. The generated suggestions are validated by
developers. These developers consider that the suggestions provide helpful information, or
the exact solution to solve the testing issue.

• A comparison between two state-of-the-art test generation tools in the automated detection
of extreme mutants: DSpot and EVOSUITE. The comparison shows that the approach based
on DSpot is more effective, since it is more targeted towards extreme mutants. However
fully automatic solutions are yet far from producing a completely satisfactory result. This
work and the previous contribution have been submitted to the Transactions in Software
Engineering Journal. They will be presented in Chapter 4.

List of scientific publications

The contributions listed above have been presented in the following publications:

• Oscar Luis Vera-Pérez, Martin Monperrus, and Benoit Baudry, “Descartes: A PITest Engine
to Detect Pseudo-Tested Methods”, in: Proceedings of the 2018 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineering (ASE ’18), 2018, pp. 908–911, DOI:
10.1145/3238147.3240474, URL: https://dl.acm.org/citation.cfm?doid=3238147.
3240474

• Oscar Luis Vera-Pérez, Benjamin Danglot, Martin Monperrus, and Benoit Baudry, “A Com-
prehensive Study of Pseudo-tested Methods”, in: Empirical Software Engineering 24.3
(June 2019), pp. 1195–1225, DOI: 10.1007/s10664- 018- 9653- 2, URL: https://doi.
org/10.1007/s10664-018-9653-2

• Oscar Luis Vera-Pérez, Benjamin Danglot, Martin Monperrus, and Benoit Baudry, Sug-
gestions on Test Suite Improvements with Automatic Infection and Propagation Analysis,
Submitted to Transactions in Software Engineering, 2019, arXiv: 1909.04770 [cs.SE]
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The content of these publications are adapted and included in the content of this document.
Other publications made in the context of this thesis:

• Benjamin Danglot, Oscar L. Vera-Perez, Zhongxing Yu, Andy Zaidman, Martin Monperrus,
and Benoit Baudry, “A snowballing literature study on test amplification”, in: Journal of
Systems and Software 157 (Nov. 2019), p. 110398, ISSN: 0164-1212, DOI: 10.1016/j.
jss . 2019 . 110398, URL: http : / / www . sciencedirect . com / science / article / pii /
S0164121219301736

• Benjamin Danglot, Oscar L. Vera-Pérez, Benoit Baudry, and Martin Monperrus, “Automatic
test improvement with DSpot: a study with ten mature open-source projects”, en, in: Em-
pirical Software Engineering 24.4 (Aug. 2019), pp. 2603–2635, ISSN: 1573-7616, DOI: 10.
1007/s10664-019-09692-y, URL: https://doi.org/10.1007/s10664-019-09692-y

Parts of “A Snowballing ...” are included in Chapter 1.

List of tools, prototypes and open data repositories

The following tools and prototypes have been developed in the context of this thesis:

• Descartes: a PITest extension to study extreme mutations and discover pseudo-tested
methods in Java projects. Descartes is a production ready tool that is also available from
Maven Central.
Repository: https://github.com/STAMP-project/pitest-descartes.

• Reneri: a tool that generates suggestions for test improvements based on an infection-
propagation analysis of undetected extreme mutants.
Repository: https://github.com/STAMP-project/reneri

• Method-inspector: A static analysis tool that classifies methods in a Maven project according
to their metadata and their bytecode instructions.
Repository: https://github.com/STAMP-project/method-inspector

• Dissector: A dynamic analysis tool that studies the interplay between a selected set of
methods and the test suite in a Maven project. This tool is able to compute, among other
things, the stack distance from a method to the covering test cases.
Repository: https://github.com/STAMP-project/dissector

Both, Descartes and Reneri can be seen as main contributions of this thesis. Method-inspector
and Dissector were designed and built to support the collection of data in our experiments.

All data supporting our results and additional material is publicly available for the sake of open
science and reproducibility:

• Collected data and supporting scripts for the studies presented in chapters 2 and 3:
https://ndownloader.figshare.com/files/11634542
https://github.com/STAMP-project/descartes-experiments

• Collected data and supporting scripts for the study presented in Chapter 4:
https://github.com/STAMP-project/descartes-amplification-experiments

Outline

The rest of this document has been organized as follows. Chapter 1 presents the background
of our research and the related works to this thesis. It also presents the main concepts and the
terminology that will be used in the following chapters. Chapter 2 presents Descartes, our tool
to detect pseudo-tested methods with the use of extreme mutation. We discuss the main capa-
bilities of the tool and report an industry experience of its use. We also present a comparison
between traditional mutation testing and extreme mutation. Chapter 3 contains an in-depth study
of pseudo-tested methods. There we perform a conceptual replication of the work of Niedermayr.
We study how frequent are these methods in Java projects, we corroborate that they are the weak-
est points of the program with respect to testing and we explore their relevance for developers.
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Chapter 4 presents an infection-propagation analysis to generate test improvement suggestions
based on undetected extreme mutants. We study the main reason why these extreme mutants
are not detected and which are the parts of the program state where the effects of these mutants
can be detected. We present Reneri, a tool implementing this analysis and we validate our results
by consulting developers. Finally we conclude this document with a recapitulation of our main
contributions. We also discuss the future actions that can be taken to extend this research.
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CHAPTER 1

BACKGROUND AND RELATED WORKS

Developers are constantly trying to improve the quality of their code. Their goal is to concentrate
on the development of the main features of their product while reducing as much as possible
the occurrence of errors. As software grows in complexity so does the development process.
Automated tests then become a great ally against bugs that persistently appear, disappear and
sometimes, appear again.

Automated tests are usually a piece of code themselves. As such, they can be objectively
improved and assessed. Developers wish to have guidance about how to consolidate their tests.
They would like to know what to test in their code and how. Improving the tests directly impacts
the quality of the application code.

The most used assessment criterion for automated tests is code coverage, that is, the parts
of the application code that tests execute. While this criterion tells developers what they have
not tested is does not say if the test cases are actually effective. The software testing literature
has studied for decades stronger techniques to evaluate the quality of automated tests. Mutation
testing is one of the strongest criteria. These techniques are the foundation of our work.

In this chapter we define the terminology and concepts that will be used throughout the doc-
ument. In Section 1.1 we discuss the concepts related to unit testing, coverage, mutation testing
and extreme mutation, a lighter alternative to mutation testing. In Section 1.2 we present a lit-
erature review of the main published works about mutation testing, how researchers propose to
overcome its limitations, how it has been used to automatically improve and generate test suites
and one example on how it has been used by industry.

1.1 Background

As defined in [2], software testing is the evaluation of a software system by observing its execution.
Testing is supposed to find software faults. There are different abstraction levels at which testing
can be performed. While system testing evaluates the architectural design to determine if the
software works as a whole, unit testing targets the implementation bricks at the lowest level:
classes, methods or functions. In this work, unless otherwise stated, when we refer to testing we
restrict ourselves to unit testing.

Nowadays, it is a common practice that software, and specially open-source software, is
shipped along with a considerable amount of code devoted solely to unit testing [87]. This code
is written with the help of libraries such as JUnit [36]. These libraries provide functionalities to
launch the testing process and specify concrete test cases.

These test cases are usually written as functions or methods inside specialized classes. A
test case should select the appropriate input, create the required objects and trigger the required
behaviors to put the unit under test in a specific state. Then, the test case must verify this state
with the help of an oracle. This oracle produces a verdict that deems the state of the unit as
correct or not according to the initial input. The usual oracle is an assertion, that is, a predicate
that produces a truth value given the state. If the predicate evaluates to false, the test case fails,
a testing failure is discovered. Our notion of a test case is formalized in Definition 1.

Definition 1. A test case t is a method that initializes the program P in a specific state, triggers
specific behaviors and specifies the expected effects for these behaviors through assertions. T is
called a test suite and it is the set of all test cases t written for a program P .

Here we consider a program P to be a set of methods. This simplified view is convenient to
express the rest of the concepts in this document. When a test case t initializes a program P , it
could be, in fact, a subset of P or even a single method.

Definition 1 is a simplification of what an actual test case can be in practice. The code of a
test case can be much more complicated than a single method. Unit test libraries often provide
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additional components that can alter the way test cases are executed and the way assertions are
specified. Take for example, the @Before and @After fixtures and the Parameterized test classes
in JUnit. As per the same definition, we understand that a set of one or more JUnit classes in a
Java program is a particular case of a test suite.

Listing 1.1 shows a simple Java class. This class implements a set of objects that keeps track
of the insertion operations using the version field (line 2). The class declares methods to check
the size of the set, determine if the set contains a given object, intersect two sets and check if two
given sets are equal.

In Listing 1.2 we show a test suite, in the form of a JUnit test class that contains three test
cases as per Definition 1. testAdd (line 4) verifies that after inserting a new element, the set
should be of size one. testEquals (line 10) verifies that two newly created sets should be equal.
testIntersection validates that the intersection of two disjoint sets can not contain their initial
elements.

In a closer look to testAdd we can see that lines 5 and 6 create the instance of VersionSet
and invoke the add method. So these two lines set the instance of the class in the required state.
Line 7 contains the assertion. The predicate checks if the size of the set is equal to one. The
other two test cases have a similar structure.

1.1.1 Code Coverage

A test suite executes a portion of the program under test. It does not necessarily execute the
entire program. The parts of the program that are executed by the test cases are said to be
covered by the test suite. A code coverage, or coverage, metric assesses the size of the portion
of the program executed by the test suite. As such, line coverage represent the lines of code
covered by the test suite and statement coverage measures the ratio of instructions executed by
all test cases. Statement coverage has been shown to better capture the effectiveness of the test
suite compared to other types of coverage such as branch or block coverages [31].

Coverage metrics can be computed efficiently [73]. They usually require no more than an ini-
tial code instrumentation which does not add a great overhead in terms of execution time. There
are also many high quality tools that can collect this metric for most mainstream languages. In
Java, developers can use JaCoco1, Cobertura2, OpenClover3 among others. These tools are
often included in popular Integrated Development Environments, such as Visual Studio and In-
telliJ. Popular Continuous Integration Servers like Jenkins or Travis also support code coverage
computation.

Listing 1.1 also shows the line coverage that VersionedSetTest achieves over VersionedSet.
Lines highlighted in green are those executed by the test suite. In turn, lines highlighted in red are
not executed by the test suite. One can see that the test class is able to cover a large portion of
the class under test. For example, all lines of intersect except lines 48 and 53 are executed by
the test suite.

One test case can invoke, directly or not, several methods of the program under test. In
Listing 1.2 testAdd, triggers the execution of the constructor of the class and the add method,
who also invoke contains and incrementVersion. We say that all these methods are covered by
testAdd. Definition 2 formalizes this concept.

Definition 2. A method m ∈ P is said to be covered if there exists at least one test case t ∈ T
that triggers the execution of at least one statement of the body of m.

1https://www.jacoco.org/jacoco/
2https://cobertura.github.io/cobertura/
3http://openclover.org/
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1.1. Background

1 public class VersionedSet {
2 private long version = 0;
3 private ArrayList elements = new

ArrayList();
4

5 public void add(Object item) {
6 if (contains(item))
7 return;
8 elements.add(item);
9 incrementVersion();

10 }
11

12 private void incrementVersion() {
13 version++;
14 }
15

16 protected long getVersion() {
17 return version;
18 }
19

20 public int size() {
21 return elements.size();
22 }
23

24 public boolean isEmpty() {
25 return size() == 0;
26 }
27

28 public boolean contains(Object item) {
29 return elements.contains(item);
30 }
31

32 @Override
33 public boolean equals(Object otr) {
34 if(!(otr instanceof VersionedSet))
35 return false;
36 VersionedSet otrSet = (VersionedSet)otr;
37 if(otrSet.size() != size())
38 return false;
39 for (Object item : elements) {
40 if(!otrSet.contains(item))
41 return false;
42 }
43 return true;
44 }
45

46 public VersionedSet
intersect(VersionedSet otr) {

47 if (isEmpty() || otr.isEmpty()) {
48 return new VersionedSet();
49 }
50 VersionedSet result = new

VersionedSet();
51 for(Object item : elements) {
52 if(otr.contains(item)) {
53 result.add(item);
54 }
55 }
56 result.version = 0;
57 return result;
58 }
59 }

Listing 1.1: A class under test

1 public class VersionedSetTest {
2

3 @Test
4 public void testAdd() {
5 VersionedSet list = new

VersionedSet();
6 list.add(1);
7 assertEquals(1, list.size());
8 }
9 @Test

10 public void testEquals() {
11 VersionedSet one = new VersionedSet();
12 VersionedSet two = new VersionedSet();
13 assertTrue(one.equals(two));
14 }
15 @Test
16 public void testIntersection() {
17 VersionedSet one = new VersionedSet();
18 one.add(1);
19 VersionedSet two = new VersionedSet();
20 two.add(2);
21 VersionedSet result =

one.intersect(two);
22 assertFalse(result.contains(1));
23 assertFalse(result.contains(2));
24 }
25 }

Listing 1.2: Test class verifying VersionedSet

1 @Test
2 public void testAdd() {
3 VersionedSet list = new VersionedSet();
4 list.add(1);
5 list.size();
6 }

Listing 1.3: testAdd with no assertion
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By extension, a method is partially covered if at least one statement is not executed by any test
case and fully covered otherwise. add is an example of a fully covered method, while intersect
is only partially covered.

Code coverage is useful to determine the parts of the code that are not being tested. For
example, since line 48 is not being covered one can deduce that no test case considers the
intersection with an empty set. A new test case is then required to cope with this situation.

Coverage metrics are often used as a synonym of test quality [31]. The higher the coverage,
the better the test suite is considered to be. However, a high coverage ratio does not necessarily
mean that the test suite is effective. Besides, achieving in practice a 100% of code coverage is
unrealistic as it demands great effort from developers and might produce not useful test cases.

It can be expected that, in a well tested codebase, the test suite achieves a high coverage but
the opposite is not true in general. As a rather extreme example, one can consider to remove all
assertions in Listing 1.2. The new test cases would be able to achieve the same line coverage but
they would not be checking the behavior of the class.

For instance, removing the assertion of testAdd (line 7 in Listing 1.2) produces the test case
shown in Listing 1.3. This new test case triggers the required behaviors and have the same
coverage as the original test case. However, this test case is not able to detect changes in the
behavior of the code. If we remove the body of add (line 5) and execute the test case no failure
will be reported. The test case is not able to spot the bug. In this sense we say that the test case
does not check the behavior of the method. This example manifests that only considering the
coverage of the test suite is not enough to establish its quality.

Mutation testing, introduced in the late 70’s by DeMillo and colleagues[22, 23] is a much better
assessment for automated test cases. The technique introduces artificial faults in the program and
then checks if the tests are able to fail when executing the faulty program. Decades of research
have been dedicated to mutation testing, however, it is not widely used by industry practitioners.
Mutation testing is a very expensive analysis and its outcome is hard to understand most of
the times. The majority of research focus the attention in making the process more efficient or
improving the mutation score, that is, the ratio of artificial faults a test suite can find.

The original goal of mutation testing was not to compute a score, but to provide hints for
programmers on how to select their test data and handle the artificial fault, which are proxies of
potential programming errors. In our work we have a similar goal: give developers actionable
and concrete hints on how to improve their unit test cases. Niedermayr et al [51] introduced the
concept of extreme mutation and pseudo-tested methods. Their technique seems to be able to
discover concrete and well located testing issues that developers should solve to improve their
test suites.

In the following sections we explain both, mutation testing and extreme mutation.

1.1.2 Mutation Testing

Mutation testing, mutation analysis or originally program mutation was introduced by DeMillo et al
[22] as an automated procedure to evaluate test suites.

The technique is based on two main assumptions:

• Programmers create programs that are close to being correct. That is, competent program-
mers make small mistakes. (The competent programmer hypothesis)

• A test suite that detects all simple faults can detect most complex faults. That is, complex
errors are coupled to simple errors. (The coupling effect)

So, mutation testing plants small artificial faults in the program under test in the form of com-
mon programming errors. Then, it verifies if the test suite is able to detect the planted changes.

Each program variant created after introducing a fault is called a mutant. A mutant is said to
be killed if the execution of at least one test case fails, that is, if it is detected by the current test
suite. Otherwise it is said to be a live mutant.

The model of faults that are introduced in a program are usually called mutation operators.
These operators perform small syntactical changes in the source code. The changes are de-
signed to mimic common mistakes that programmers tend to make. Typical mutation operators
would change a comparison operator by other, change an arithmetic operator, slightly alter the
result of a method or change a constant value.
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Data: P , T , Ops
Result: score, live, killed

1 M ← generateMutants(P, T,Ops)
2 foreach m ∈M do
3 if run(T,m) then
4 killed ← m
5 end
6 else
7 live ← m
8 end
9 end

10 score ← |killed|
|M |

11 return score, live
Algorithm 1: Mutation analysis

1 // Mutant 1
2 public class VersionedSet {
3 ...
4 protected long getVersion() {
5 return version + 1;
6 }
7 ...
8 }
9

10 // Mutant 2
11 public class VersionedSet {
12 ...
13 private void contains(Object item) {
14 return !element.contains(item);
15 }
16 ...
17 }
18

19 // Mutant 3
20 public class VersionedSet {
21 ...
22 public boolean incrementVersion() {
23 version--;
24 }
25 ...
26 }

Listing 1.4: Two examples of mutants created from VersionedSet

Listing 1.4 shows three examples of mutants that can be created for the VersionedSet class
in Listing 1.1.

The first mutant (line 5) adds one to the result of getVersion. Line 5 is not executed by the
test suite, so this mutant is not covered and therefore not detected. The second mutant (line 14)
negates the condition in the return value of contains. This mutant is covered by testAdd and it
is killed by the same test case. contains is expected to return false in line 6 of add. The mutant
makes the method return true, the element is not inserted and the assertion fails as the set is
empty. The third mutant in Listing 1.4 (line 23) replaces the increment operator by a decrement
operator. As the value of version is not assessed by any test case the mutant is not killed and
survives the analysis.

Algorithm 1 shows the general implementation of the mutation analysis. Every mutant is ana-
lyzed in isolation. The result of one mutant is not expected to affect the outcome of another. This
is not always true in practice. Some tests may modify external data or files that might affect the
initial conditions of other tests or even the same test when executed with a different mutant.

The mutation analysis produces, as a raw output, the list of live and killed mutants. Today these
lists are usually turned into a mutation score (line 11): the ratio of detected or killed mutants to the
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total number of mutants created for a program. Yet, the score is a single metric that summarizes
the entire process so it does not provide detailed information about the test suite. Its value is
highly dependent on the mutation operators. Different sets of operators are expected to produce
different scores.

Each live mutant may enclose a testing issue or flaw. They may uncover behaviors that are
not being assessed by the test suite or scenarios that testers might have missed. Live mutants
could be semantically equivalent to the original code. Determining if the mutant is equivalent to
the original program is undecidable in the general case. Testers/developers should analyze each
live mutant. Developers must discard those that are equivalent. They also should comprehend
why the existing test suite is not able to detect a given live mutant and improve the test cases
accordingly.

Mutation testing does not have a wide industrial adoption, despite being a simple and effective
idea. The related literature [50, 47] explains this scarce use beyond academic circles with the
following reasons:

• The cost of the analysis: The number of mutants that can be created is huge even for simple
programs. Each mutant must be created and challenged against the test suite. These
factors make the analysis very expensive in computational terms.

• The presence of equivalent mutants: The mutation operators may create program variants
which are equivalent to the original code and thus indistinguishable from live mutants. Each
live mutant must be manually analyzed to see if it is equivalent to the original code. This is
a hard and highly time consuming task. However, Coles [12], has suggested that equivalent
mutants can unveil parts of code requiring refactoring.

• The lack of integrated and production ready tools. Even when there are several tools for
mutation testing, most of them are created for academic purposes. Only a few alternatives
like PITest [13] are used in industrial contexts.

We can add yet another element to this list: the lack of a clear methodology on how to use
mutation testing. In our own experience with industrial partners [77] we have observed that the
mutation score evolves in a different way than code coverage, which is confusing for developers.
As a global metric the score is hard to interpret and produce a direct test improvement. Developers
find more value in discovering why a mutant is not killed by the test suite. But, as other authors
have also noticed [26], this is a hard task that requires a deep insight on the application code and
the test cases.

Most of the research related to mutation testing is directed to:

• Determine if the mutation operators are representative of actual programming errors.

• Overcome the limitations of the technique. A considerable number of works explore de use
of reduced sets of mutants, selected mutation operators, strategies for faster test execution
and proposals to avoid the creation of equivalent mutants.

• Use the mutation score as a fitness function for automatic test generation.

Little effort has been devoted to the help testers understand the interplay between the test
suite and live mutants and how to leverage this information to create new test cases or improve
the already existing test suite. Surprisingly, this was the actual goal of the seminal work of DeMillo
and Lipton: “ help developers improve their test cases through the hints provided by live mutants”.

The main objective of this thesis is to investigate the original intent of DeMillo’s work in the
context of modern software development practices and leveraging extreme mutation to discover
testing issues.

1.1.3 Reachability-Infection-Propagation

A fault, real or artificial as in mutation testing, can only be discovered if the following three con-
ditions are met at the same time: (i) the fault is executed/reached ; (ii) after the execution of the
fault, the program state changes/becomes infected, and (iii) the program infection propagates to
an observable point or the output.
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These three conditions conform the Reachability-Infection-Propagation (RIP) model for fault
detection [48, 49, 24].

Li and Offutt [45] evolve the RIP model into Reachability Infection Propagation Revealability,
(RIPR) to include the notion that the oracle in automated tests must reveal failures.

We can replay the analysis of the mutants Listing 1.4 using the conditions of the RIP model.
The first mutant (line 5) is not reached by any test case. The second mutant (line 14) is reached
by testAdd, its effects propagate to the code of the same test case and one assertion reveals
the infection. In turn, the test suite reaches the third mutant (line 23) but the infection does not
propagate to an observable point and therefore can not be revealed.

The RIP model provides a methodological framework to study why a fault or mutant is not
revealed by a test suite. In fact, the work of Voas [81] leverages a similar notion, the Propagation-
Infection-Execution Analysis (PIE). This proposal performs a dynamic analysis to determine the
likelihood for faults to be detected according to their location in the code.

In this work we leverage this framework to analyze an alternative approach to mutation testing:
extreme mutation.

1.1.4 Extreme mutation

Niedermayr et al [51, 52] introduced in 2016 the concept of extreme mutation. In their own words,
this is a lightweight alternative to traditional mutation testing.

They propose to use a different kind of mutation operators that work at the method level. If the
method is void, then all instructions are removed. If the method returns a value, then the entire
body is replaced by a single return instruction with a predefined constant value.

1 // Extreme Mutant 1
2 public class VersionedSet {
3 ...
4 public void add(Object item) { }
5 ...
6 }
7

8 // Extreme Mutant 2
9 public class VersionedSet {

10 ...
11 private void equals(Object otr) {
12 return true;
13 }
14 ...
15 }
16

17 // Extreme Mutant 3
18 public class VersionedSet {
19 ...
20 private void equals(Object otr) {
21 return false;
22 }
23 ...
24 }
25

26 // Extreme Mutant 4
27 public class VersionedSet {
28 ...
29 public boolean incrementVersion() { }
30 }
31 ...
32 }

Listing 1.5: Four examples of extreme mutants created from VersionedSet

Listing 1.5 shows four extreme mutants created from VersionedSet. The first (line 4) and
fourth (line 29) extreme mutants are created in void methods. The second and third mutants are
created both in the equals method. The first extreme mutant is detected by testAdd. As no
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object is actually inserted in the set, the collection remains empty and the assertion of the test
case fails. The third extreme mutant is also killed, as the equals method is expected to return
true in testEquals. The second and fourth extreme mutants are not detected by any test case.

According to Niedermayr et al , extreme mutation has two main advantages: (i) it creates less
mutants which makes the analysis faster and (ii) most equivalent mutants can be detected by
analyzing the code.

To our view, extreme mutation has two additional advantages. The reduced number of mutants
points to a much smaller and therefore more targeted set of potential testing issues that develop-
ers can handle. As they work at the method level, developers can understand their effects more
easily compared to traditional mutants.

Niedermayr et al use extreme mutants to discover pseudo-tested methods. These are meth-
ods where the test suite did not detect any extreme mutant. In Listing 1.5 incrementVersion
is pseudo-tested, as the only extreme mutant it has, was not detected. add and equals are not
pseudo-tested. The only extreme mutant of add is detected and the return false mutant for
equals was detected as well.

Pseudo-tested methods are arguably the worst tested methods in a project. Their effects can
be suppressed at once, yet no test case is able to notice the change. As a very interesting fact,
Niedermayr and colleagues found pseudo-tested methods in all the projects they studied.

Extreme mutation does not follow any fault model. We can say that it violates the competent
programmer assumption. As such, to further differentiate the two techniques and avoid confusion,
we will refer to extreme mutation as extreme transformations. We say a extreme transformation is
detected when the extreme mutant is killed otherwise it is not detected.

1.2 Related Works

Our work is directly inspired by the seminal work of DeMillo and colleagues [22] and the proposal
of Niedermayr and colleagues [51]. It is also related to several fields of the software testing liter-
ature: dynamic analysis of test execution, test improvement and mutation-based test generation.
In the following sections we present a review of the most representative works in the area.

1.2.1 Mutation testing

In 1978, DeMillo and colleagues proposed a seminal piece of work in the area of software testing;
“Hints on Test Data Selection: Help for the Practicing Programmer” [22]. This work is mostly
known for introducing mutation analysis as a novel test assessment criterion, stronger than code
coverage, and for the whole literature that has followed. Meanwhile, our work is more inspired by
the paper’s intention to provide “hints on test data selection”. In particular, the following concluding
remark is a key motivation for our work: mutation analysis “yields advice” to be used in generating
test data for similar programs”. While this quote dates from four decades back, there has been
very little work that pursued this idea of “advice” extraction from mutation analysis. Our work
explores this opportunity further, in the context of extreme transformations.

Traditional mutation testing has been evaluated against real faults in several occasions [17, 3,
37]. The evidence presented supports that mutation testing is able to create effective program
transformations under the assumption that programming errors are generally small and complex
faults can be detected by tests which also detect simpler issues.

Gopinath et al [32, 33] study the limits of the two assumptions on which mutation testing is
based. These authors investigated a total of 240000 bug fixes across 5000 programs written in
four different programming languages [32]. They concluded that a significant number of changes
are larger than the ones created by traditional mutation operators, which suggests that, in this
sense, real faults may be different from mutants. They also observe that there are differences in
the patterns of changes among different programming languages and that the mutation analysis
also exhibits differences in this aspect. This fact was also observed in practice by Petrovic and
Ivankovic [59]. In a later work [33] the same authors state that the understanding of the coupling
effect is yet incomplete. They propose the composite fault hypothesis which claims that tests
detecting a fault in isolation have a high chance to detect the fault when it occurs in combination
with others.
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A large body of works have been dedicated to make mutation analysis more efficient. Untch
[75] divides these works in three main strategies:

• do fewer : these approaches “try to run fewer mutated programs without incurring intolerable
loss in effectiveness”.

• do smarter : which “distribute the computational expense over several machines or factor
the expense over several executions by retaining state information between runs”.

• do faster : these “try to generate and run mutant programs more quickly”.

Works following the do faster and do smarter strategy propose to integrate mutation operators
in the compilation process to speed up mutation creation [21], or propose a cloud infrastructure
to distribute the analysis and make it faster [10, 64].

A notable set of works has been devoted to reduce the number of mutants in the analysis, (the
do fewer approach). Some authors propose to randomly sample the mutants to be used [9, 1, 85].
Other authors propose to use only a subset of mutation operators [53]. Another group of works
explore the trade-offs of mutant sampling and operator-based selection [84, 89, 88]. The use of
higher order mutants, that combine several first order traditional mutants, has been explored as a
way to reduce the execution time [62] and deal with equivalent mutants [40].

Kurtz et al [43] state that the mutation score is affected by the presence of equivalent mutants
and redundant mutants, that is, mutants that are killed by the same test cases that detect others. A
mutation score that eliminates such redundancies would be a better assessment for the detection
capabilities of a test suite. These authors also show [42] that mutation selection approaches do
not take this into account and therefore their evaluation is imprecise.

Untch [75] proposed to use statement deletion operators. It shows a drastic decrease on the
number of mutants while maintaining the accuracy. The idea was expanded by Deng et al [25] and
Delamaro et al [19] to additional programming languages and the deletion of blocks, variables,
operators and constants. These approaches create much fewer mutants than the traditional muta-
tion operators with decreases below 80%. Durelli et al. [26] observe that these statement deletion
mutants are as time-consuming as the traditional operators when developers try to determine their
equivalence to the original code.

Pizzoleto et al [61] present a more up-to-date survey on mutation cost reduction techniques.
These authors provide a comprehensive list of cost reduction goals, techniques and reduction
metrics used in the literature. Papadakis et al [56] also present an extensive review of recent
advances in the research related to mutation testing.

1.2.2 Extreme transformations

Niedermayr et al [51] presented a mutation testing alternative that uses extreme transformations
originally coined as extreme mutation. These transformations work at the method level, contrary
to traditional mutants, that modify single instructions or blocks.

Extreme transformations completely alter the body of a method. If the method is void, all
instructions are removed. If the method returns a value, then all instructions are replaced by
a single return statement with a predefined constant value. In this way, all side effects of the
method are removed and the result value would be the same for each invocation triggered by
the test suite. More than one transformation can be applied to a non-void method if the process
considers different constants of the same type. A method is said to be pseudo-tested when none
of the extreme transformations created on its body are detected by the test suite.

These transformations are less prone to create a program variant equivalent to the original
source code. It is possible to detect methods whose structure is as simple as the ones created
by the transformations with a simple static analysis. Also, the number of mutants that are created
for an entire program is much lower than what traditional mutation testing would create. These
two aspects directly account for two limitations of mutation testing. The effects of these trans-
formations should be easier to understand by developers, as the modifications affect the entire
method.

Niedermayr and colleagues explored 14 projects as study subjects. They were able to find
pseudo-tested methods in all these projects with ratios ranging from 6% to 53%. They also show
that pseudo-tested methods tend to be related with test cases that execute a large portion of the
entire system and that a significant number of these methods contains relevant functionalities.
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The ratio of pseudo-tested methods allowed these authors to conclude that code coverage is only
an indicator of the effectiveness of the test suite when it comes to unit test cases.

In a later work, Niedermayr and Wagner [52] showed a correlation between the stack distance
from the test code to the pseudo-tested method and the test effectiveness in 21 open-source
projects. Methods with a higher stack distance from test cases are more likely to be pseudo-
tested and therefore not well tested. These authors show that a classifier, trained with features
such as the stack distance, line and branch coverage, number of covering test cases, number
of invocations and others can predict whether a method is effectively tested or not with a 92.9%
precision and 93.4% recall.

In a sense, extreme transformations are a form of higher order mutation operators and a
special case of instruction removal operators. The do not follow, however, any fault model, unless
considering the extreme case where a developer did not implement a method.

The concepts introduced by Niedermayr and colleagues are intriguing. In this work we further
investigate extreme transformations and pseudo-tested methods and explore how developers can
use them to improve a test suite.

1.2.3 Mutation testing for test generation

Mutation testing evaluates the fault detection capabilities of the test suite. The outcome of this
analysis and, in particular, the mutation score, has been used to guide the automatic generation of
test cases and test inputs able to reveal regression faults in the system under test. In this section
we review some of these works.

DeMillo and Offutt [24] generate test data based on mutation testing. They derive the condi-
tions/constraints under which the execution of a mutant produces a different state than the original
code and then generate test inputs with a constraint solver.

Another group of works have proposed search-based approaches. Baudry et al [6, 7] improve
the mutation score of an existing test suite by generating variants of existing tests through the
application of specific transformations of the test cases. They iteratively run these transformations,
and propose an adaptation of genetic algorithms (GA), called a bacteriological algorithm (BA),
to guide the search for test cases that kill more mutants. The results demonstrate the ability
of search-based approaches to significantly increase the mutation score of a test suite. They
evaluated their proposal on 2 .NET classes. The evaluation shows promising results, however the
result have little external validity since only 2 classes are considered.

Pacheco and Ernst [55] proposed Randoop, a tool to randomly generate regression tests. The
tool creates method sequences and checks the execution of these sequences against a given set
of contracts. Those executions that do not violate the contract are given back as regression tests.

Fraser and Zeller [29] present µTest, a genetic algorithm implementation to generate unit tests
based on mutation analysis. The fitness function they use combines notions of how close is the
test case to execute the mutated statement and whether the execution of the mutant leads to an
infection of the program state and a subsequent propagation. The tool observes the objects cre-
ated in the test cases to extract field values and the results of method invocations. The observed
values are used to generate a reduced set of assertions, able to tell the original code apart from
its mutants. The idea is further explored by Fraser and Arcuri and implemented a later tool named
EVOSUITE [27].

Using two open source programs as study subjects, Smith and Williams [69] empirically eval-
uate the usefulness of mutation analysis in improving an existing test suite. They execute the
existing test cases against a set of generated mutants. Then, for each mutant that is not killed,
a new test case is written with a single intention: kill this mutant and only this one. Their results
reveal that a majority of mutation operators are useful for producing new tests, and the focused
effort on increasing mutation score leads to an increase in line and branch coverage. The same
authors conduct another study [70] that confirms this finding. It also emphasizes the importance
of choosing the appropriate mutation tool and operators to guide the production of new test cases.

Rojas et al [63] have investigated several seeding strategies for the test generation tool EVO-
SUITE. Traditionally, EVOSUITE generates unit test cases from scratch. In this context, seeding
consists in feeding EVOSUITE with initial material to start the automatic generation process. The
authors evaluate different sources for the seeds: constants in the program, dynamic values, con-
crete types and existing test cases. The experiments with 28 projects from the Apache Commons
repository show a 2% improvement of code coverage, on average, compared to a generation from
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scratch. The evaluation based on Apache artifacts is stronger than most related work, because
Apache artifacts are known to be complex and well tested.

These works use traditional mutation testing as an objective function to guide automatic test
generation. As a consequence, the set of generated tests is expected to have good fault detection
capabilities. However, none of these works validate the relevance of mutants for developers nor
they assess the utility of the generated tests.

In our work we leverage extreme transformations. Our goal is not to automatically generate
test cases but to provide guidance to developers in the form of suggestions. The suggestions also
seek to improve the test suite in terms of fault detection. Although, we do evaluate how automatic
test generation tools perform when targeting extreme transformations.

1.2.4 Improving the test oracle

The automation of the test oracle is of great relevance for software testing. In this section we
review a selection of works oriented to generate or improve test oracles.

Schuler and Zeller [67] introduce the concept of checked coverage, as the percentage of pro-
gram statements that are executed by the test suite and whose effects are also checked in the
oracles. They compare this metric to code coverage and mutation testing with respect to their
ability at assessing oracle decay. They perform manual checks on seven real software projects
and conclude that checked coverage is more realistic than the usual coverage.

Jahangirova et al. [35] propose a technique for assessing and improving test oracles. They use
mutation testing to increase the fault detection capabilities of the oracles and automated unit test
generation to reduce the number of correct executions rejected by the assertions. Their approach
is shown to be effective in five real software projects. The fault detection ratio, approximated with
the mutation score, is increased by 48.6% in average.

Pacheco and Ernst implemented Eclat [54], which aims to help the tester in the creation of
new test inputs with constructed oracles. Eclat first uses the execution of some available correct
runs to infer an operational model of the software. Eclat then uses this model and a classification-
guided technique to generate new test inputs. Next, the tool reduces the inputs by selecting only
those that are most likely to reveal faults. Finally, Eclat adds an oracle for each remaining test
input from the operational model.

Fraser and Zeller [28] propose an approach to generate parametrized unit tests containing
symbolic pre- and post-conditions. Taking concrete inputs and results as inputs, the technique
uses test generation and mutation to systematically generalize pre- and post-conditions. Evalu-
ation results on five open source libraries show that the approach can successfully generalize a
concrete test to a parameterized unit test, which is more general and expressive, needs fewer
computation steps, and achieves a higher code coverage than the original concrete test.

Xie [86] amplifies object-oriented unit tests by adding assertions on the state of the receiver
object, the returned value of the tested method and the state of parameters. The approach,
named Orstra, instruments the application code and runs the test suite to collect state of objects.
Orstra generates assertions y calling observer methods, that is, non-void methods. The author
evaluates the tool with 11 Java classes different in number of methods and lines of code. The
evaluation uses tests generated by two external tools. The results show that Orstra can effectively
improve the fault-detection capabilities of the original tests.

Daniel et al developed ReAssert [16] a tool that suggests test repairs to developers. The tool
tries to change the behavior of failing test cases to make them pass while trying to maintain the
original test code as much as possible and retaining the test’s regression detection capabilities.
The resulting test case is proposed to the developers as a potential fix. The tool records the values
of failing assertions and leverages the information in the failure exception to locate the code to
repair and select a repair strategy from a predefined set. This is repeated until no assertion fails.
The tool is evaluated in six open-source projects and was able to produce fixes from 25% to 100%
of failing tests for all their study subjects. The authors also carried out a usability study, where
developers were asked to write failing tests. The tool was able to solve 98% of them.

Staats et al [72] propose an automated process to support the creation of test oracles. These
authors are interested in the creation of test oracles defined as concrete values the system under
test is expected to produce. Their goal is not to fully automate the oracle creation, but to guide the
tester in the selection of variables and outputs for which the values should be specified. Their pro-
posal leverages mutation analysis to determine how often each variable is able to reveal a mutant
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and the variables and outputs are ranked in terms of fault finding. The approach is evaluated with
four systems and shows improvements from 5% to 30% with a best case of 145.8% compared to
only using the original output as an oracle and random data set selection.

Most of these works leverage the observation during test executions to create regression or-
acles and new assertions. These principles can be also used to study extreme transformations.
A difference between the execution of the original program and a variant of the program with an
undetected extreme transformation, can lead to a potential flaw in the oracle.

1.2.5 Reachability-Infection-Propagation

The Reachability, Infection, Propagation model (RIP) [48, 49, 24] states the necessary conditions
to detect a fault. That is: (i) the fault should be reached/executed (ii) the program state should
be changed/infected after the fault is executed (iii) the program infection should propagate to the
output.

This model provides a framework that can be leveraged to analyze faults in their context and
produce test suite improvements.

Voas introduced the propagation, infection and execution (PIE) analysis [81]. It operates in
three phases: estimate the frequency at which random inputs execute different code locations;
mutate these locations to produce a different program state from the previously observed values;
estimate the probability that altered program states change the output of the program. Subse-
quently, Voas and Miller [83, 82] discussed the notion of testability in relation to the PIE analysis:
“the likelihood that the code can fail if something in the code is incorrect”. The authors express
concerns about the loss of observation ability linked to information hiding in object-oriented pro-
grams.

Li and Offutt [45] evolve the RIP model into Reachability Infection Propagation Revealability,
(RIPR) to include the notion that the oracle in automated tests must reveal failures. They explore
RIPR for model-based testing and devise several test oracle strategies, i.e., rules to specify which
program states to check.

Lin et al [46] recently proposed D-RIP, a combination of RIP analysis with domain-based test-
ing. The authors estimate the degree at which mutants can be detected by different test selection
strategies considering different test assessment criteria. Their goal is to identify stubborn mutants
and rank mutants by difficulty of detection. These authors conclude that the no propagation of the
program infection is the main reason why a mutant is not detected.

The work of Androutsopoulos et al. [4] focuses on how faulty program states propagate to
observable points in the program. They show that one in ten test inputs fails to propagate to
observable points. The authors provide an information theoretic formulation of the phenomenon
through five metrics and experiment with 30 programs and more than 7M test cases. They state
that better understanding the causes of failed error propagation leads to better testing.

1.2.6 Tools and Industrial exploitation of mutation testing

Practitioners and researches have created several tools implementing mutation testing. Pa-
padakis and colleagues [56] report the existence of 76 tools introduced after 2001.

The paper reports 17 tools for Java. However, most of these tools were created for specific
academic purposes or they are discontinued and not available anymore. Most of them do not
integrate with exiting build systems or can not be extended beyond their basic functionalities.
Major [38], LittleDarwin [57] and PITest [13] stand apart from the rest in those terms. Major and
PITest allow extending their functionalities with new set of mutation operators. LittleDarwin and
PITest integrate with Ant, Gradle and Maven. PITest targets compiled bytecode which allows
to use the tool in other JVM languages. Of these three alternatives PITest is the most mature,
popular and extensible.

PITest [13] was created by a developer, to assist developers in the creation of unit test cases.
This tool implements most traditional mutation operators and performs the transformations at the
bytecode level. The tool executes only the test cases covering each mutant. It also sorts each
test cases so that the ones requiring less time are executed first. PITest is able to executed the
tests in parallel. The tool can be extended with plugins to change how test cases are discovered
and prioritized and even to provide an alternative implementation of the mutation operators.
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Delahaye and Bousquet [18], then Kintis et al. [41] compare mutation tools from the usability
point of view concluding that PITest is one of the best alternatives for concurrent execution and
adaptability to distinct requirements. In a follow-up paper, Laurent and colleagues [44] propose to
improve PITest with an extended set of mutation operators shown to obtain better results.

More recently, Gopinath et al. [30] performed a comprehensive analysis of three software
tools, including PITest, with 27 projects. They run several statistical analyses to compare the
performance of the tools considering projects and tool characteristics against raw mutation score,
a refined mutation score to mitigate the impact of equivalent mutants and the relationship among
mutants. They conclude that PITest is slightly better than the other tools. They also state that the
specificity of each project have a high impact on the effectiveness of the mutation analysis.

Despite the existence of several mutation testing tools there is no wide adoption of the tech-
nique by industry practitioners. One of the few large scale industrial experiences is reported by
Petrovic and Ivankovic at Google [59].

These authors explain that the Google monolithic repository contains about two billion lines of
code and on average, 40000 changes are commited every workday. 60% of those changes are
created by automated systems. In this environment it is not practical to compute a mutation score
for the entire codebase and it is very hard to provide actionable feedback from this analysis.

Most changes in the repository pass through a code review process. Hence, the authors argue
that this is the best location in the workflow to provide feedback about the mutation analysis and
eliminate the need for developers to run a separated program and act upon its output. So, live
mutants are shown as code findings in code reviews.

To make the mutation analysis feasible the proposed system creates at most one mutant by
covered line. The mutation operator is selected at random from a set of available options. To
further reduce the number of mutants, they classify each node of the Abstract Syntax Tree (AST)
as important or non-important (arid). To do this, they maintain a curated collection of simple
AST nodes classified by experts, that keeps updating with the feedback of the reviewing process.
Compound nodes are classified as arid if all their children are arid. Uninteresting nodes may
be related to logging, non-functional properties and nodes seen as “axiomatic” for the language
and thus the mutants are trivially killed. This selection may suppress relevant live mutants but
the authors state that the tradeoff between correctness and usability of the system is good. The
number of potential mutants is always much larger than what can be presented to reviewers.

The system analyses programs written in C++, Java, Python, Go, JavaScript, TypeScript and
Common Lisp. It has been validated with more than 1M mutants in more than 70K diffs. 150K live
mutants were presented and 11K received feedback from developers. 75% of the findings with
feedback were reported to be useful. The authors also observed interesting differences related
to the survival ratio of mutants when contrasted with the programming language and mutation
operator.

In a follow-up paper [60], these authors explain that there are killable mutants that become un-
productive, in a sense that they could be killed with a test case that developers deem unnecessary
and represent a waste of time. These could be, for example, mutants that break the stablished
coding practices of the company or changing > by >= in float point comparisons, among others.
These authors also corroborate the observations made by Coles [12] that equivalent mutants can
point to redundancy on the application code that could be removed via refactoring. They also
argue that mutants should be presented to developers at the commit level, which is the “standard
unit of work for a developer”. Finally they argue that the focus should not be to produce a mu-
tation adequate test suite, that is, to reach a high mutation score. The goal should rather be to
help make the test suite better. In their own words “this returns to the roots of mutation testing:
providing hints for the practitioner programmer”.

1.2.7 Helping testers

Some works in the specialized literature provide developers with concrete hints to improve their
tests. The following set of papers find the conditions inputs should meet to execute a change in
the code and propagate the effects of the change to observable points. The goal of the authors is
to help developers in the creation of new test cases exercising those changes.

Apiwattanapong et al [5] target the problem of finding test conditions that could propagate the
effects of a change in a program to a certain execution point. Their method takes as input two
versions of the same program. First, an alignment of the statements in both versions is performed.
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Then, starting from the originally changed statement and its counterpart in the new version, all
statements whose execution is affected by the change are gathered up to a certain distance. The
distance is computed over the control and data dependency graph. A partial symbolic execution is
performed over the affected instructions to retrieve the states of both program versions, which are
in turn used to compute testing requirements that can propagate the effects of the original change
to the given distance. As said before, the method does not deal with test case creation, it only finds
new testing conditions that could be used in a separate generation process, manual or automatic,
and is not able to handle changes to several statements unless the changed statements are
unrelated. The approach is evaluated on Java translations of two small C programs (102 Loc and
268 LoC) originally included in the Siemens program dataset [34]. The authors conclude that,
although limited to one change at a time, the technique can be leveraged to generate new test
cases during regular development.

Santelices et al [65] continue and extend the previous work by addressing changes to multiple
statements and considering the effects they could have on each other. In order to achieve this
they do not compute state requirements for changes affected by others. This time, the evaluation
is done in one of the study subjects form their previous study and two versions of Nanoxml from
SIR.

In another paper [66] the same authors address the efficiency problems of applying symbolic
execution. They state that limiting the analysis of affected statements up to a certain distance
from changes reduces the computational cost, but scalability issues still exist. They also explain
that their previous approach often produces test conditions which are unfeasible or difficult to
satisfy within a reasonable resource budget. To overcome this, they perform a dynamic inspection
of the program during test case execution over statically computed slices around changes. The
technique is evaluated over five small Java programs, comprising Nanoxml with 3 KLoC and
translations of C programs from SIR having between 283 LoC and 478 LoC. This approach also
considers multiple program changes. Removing the need of symbolic execution leads to a less
expensive method. The authors claim that propagation-based testing strategies are superior to
coverage-based in the presence of evolving software.

Song and colleagues [71] have developed UnitPlus, a tool to assist developers in test creation.
The tool recommends observer methods that could be used to verify the effects of methods that
change the state of the receiver. The already mentioned ReAssert [16] presents its output as
suggestions for developers instead of automatically replacing the existing test cases.

Delplanque et al [20] propose DrTest, a tool to find green rotten tests in Pharo programs by
combining static and dynamic test code analysis. Green rotten tests are those whose assertions
are not executed and therefore do not fail and do not properly verify the program under test. These
authors theorize that not executing the assertion could be a cause of pseudo-tested methods.

1.3 Conclusion

In this chapter we settled the background for the rest of the document. We reviewed how mutation
testing is used to assess test suites and automatically improve test cases. We have discussed
extreme mutations and the results from Niedermayr and colleages. We have also described the
RIP model which organizes the analysis of software faults. Our main goal is to provide developers
with concrete, targeted an easy to understand feedback to improve their test suites. We leverage
extreme transformations, pseudo-tested methods and the RIP analysis to achieve this goal. In
Chapter 2 we present, Descartes, our own tool to detect pseudo-tested methods and compare
both approaches mutation testing and extreme transformations. In Chapter 3 we expand the
study on pseudo-tested methods and check their utility in practice. In Chapter 4 we propose a
novel analysis inspired by the RIP model to help developers understand the results produced by
Descartes and how to fix testing issues revealed by undetected extreme transformations.
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CHAPTER 2

DESCARTES A PITEST PLUGIN FOR
EXTREME TRANSFORMATIONS

Software development escapes from the solitude of a single programmer in a closed environment.
Software is built from the interactions of teams composed of dozens of developers. These devel-
opers are constantly refactoring the code, adding new features and committing their changes to
distributed version control systems several times a day. These code repositories are automatically
monitored by Continuous Integration (CI) servers that verify the quality of the code. Developers
expect a concise and actionable feedback from the CI that helps them to improve their code.
In most cases, developers also create their own unit tests. Since test suites are also software
artifacts, the CI can analyze and provide feedback about their quality.

In this thesis we investigate extreme transformations and pseudo-tested methods in order to
point to concrete testing issues and help developers to improve their test suites. This novel line of
research mixes static and dynamic program analyses with the generation of concrete feedback to
developers. It is, by essence, a research line based on empirical methods. The relevance of this
approach can be assessed only through sound experiments with real-world software applications
under continuous development and with their developers. Consequently, we need a tool that
can be inserted in such a development environment. To achieve this goal we have developed
Descartes, a tool built on top of PITest, able to study extreme transformations and detect pseudo-
tested methods in Java projects.

This chapter addresses the first two objectives of this thesis: create a robust tool for extreme
transformations and empirically compare extreme transformations with traditional mutation test-
ing. Here we introduce Descartes, the main ideas behind its development and how it is used. In
Section 2.1 we briefly describe the tool, how it fits in the PITest framework and the transformations
that the tool implements. In Section 2.2 we perform an empirical comparison, between extreme
transformations and traditional mutation testing using Descartes and Gregor, PITest’s default mu-
tation engine. Finally, in Section 2.3.1 we present an industrial experience of the exploitation of
Descartes by XWiki, a software development company.

2.1 An overview of Descartes

Descartes is a tool that automatically detects pseudo-tested methods with the help of extreme
transformations. It has been directly inspired by the work of Niedermayr and colleagues [51]. The
requirements for Descartes demanded the analysis of Java projects using build systems such as
Maven and Gradle. It is also required that the tool could be integrated in modern development
workflows i.e. CI servers. Therefore, the natural choice was to base Descartes on PITest to
leverage its maturity and functionalities.

Descartes heavily exploits PITest’s extensible architecture. By using and extending PITest we
obtain a solid and multithread infrastructure for unit test discovery and execution, support for Ant
and the already mentioned Gradle and Maven build systems, support for JUnit and TestNG test
libraries and the support of an engaged community of researchers and developers contributors all
committed to the quality of the tool. Relying on PITest also allowed a faster adoption of Descartes
in production.

The main challenges developing Descartes are: (i) The lack of documentation describing how
to create extensions for PITest, the code of the tools and plugin examples 1 provided by the author
are the main source of information; (ii) the design and implementation of meaningful abstractions
for extreme transformations and their interaction with the rest of the PITest framework; (iii) main-
taining the tool up to date with the regular evolution and releases of PITest; (iv) making the tool

1https://github.com/hcoles/pitest-plugins
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Figure 2.1: Interconnection between PITest and Descartes.

useful for developers by reducing the number of uninteresting findings and providing a meaningful
output.

Descartes is in fact a collection of extensions for PITest. Its main component is a mutation
engine, that is, an extension that provides an alternative set of mutation operators, in this case,
extreme transformations. It also includes an extension to avoid creating transformations in meth-
ods that are not usually targeted by developers in test cases as they are trivial or non-important
and custom reporting extensions. In the following sections we provide a brief description of these
components.

2.1.1 Engine for extreme transformations

The main component of Descartes is an alternative mutation engine for PITest. In PITest’s jargon,
a mutation engine is a plugin that handles the discovery and creation of mutants. Such a plugin
should also manage a set of mutation operators, which are models of the transformations to be
performed. The mutation operators provided by Descartes actually implement extreme transfor-
mations as described in

Figure 2.1 illustrates the interaction between PITest and our mutation engine. PITest handles
the inspection of the target project to discover all dependencies, creates execution units composed
by the mutants and the tests to be executed, and ultimately runs the test cases. The mutation
engine leverages all these functionalities and is in charge of discovering the places in code where
the transformations/mutations can be performed and creates the program variants/mutants.

The mutation engine can be configured to use a custom set of extreme transformations. The
engine is able to transform any Java method, except constructors. As of Descartes 1.2.6 2, the tool
includes the transformation of void methods, methods returning reference objects by replacing the
code with return null and methods returning arrays by replacing the result value with an empty
array. The engine allows to specify the constant values to use for methods returning values of
primitive types or String. It also includes two special operators, one to handle methods returning
instances of Optional and methods returning instances of classes having a constructor without
parameters. The full list of transformations is shown in Table 2.1.

To the best of our knowledge, Descartes is the only available alternative to the default mutation
engine provided by PITest. Our project could be used as an additional supporting material for
those who are willing to create their own extensions.

2.1.2 Stop-methods

Petrovic and colleagues [60] discuss that unproductive findings reported by a mutation testing
tool represent a waste of time for developers. Descartes includes an extension that discards
transformations which are arguably not interesting for developers.

The extension filters out all transformations that would be created in methods that developers
usually consider as trivial or methods generated by the compiler. It also excludes methods whose
transformation could result in an equivalent mutant. These are what we call stop methods. The
full list of stop methods is shown in Table 2.2.

2https://github.com/STAMP-project/pitest-descartes/releases/tag/descartes-1.2.5
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Table 2.1: Extreme transformations included in Descartes
Operator Description Configuration Transformation

null Replaces the instructions
by return null

null Object m(){ return null; }

void Removes all instructions
in void methods

void void m(){ }

empty Makes the method return
an empty array

empty int[] m(){ return new int[0]; }

Constant
values

Makes the method re-
turn an specified constant
value of the appropriate
type

true, 1,
2L, 3.0f,
4.0, ’a’,
"literal

int m(){ return 1; }

new Uses a constructor with-
out parameter

new List m(){ return new ArrayList(); }

optional Returns an empty op-
tional

optional
Optional<Integer> m() {

return new Optional<>.empty();
}

Table 2.2: Stop-methods
Description Example

Empty void methods public void m(){}
Methods generated to support enum types
(values and valueOf)
toString methods
hashCode methods
Methods annotated with @Deprecated or be-
longing to a class with the same annotation

@Deprecated public void m(){...}

Synthetic methods i.e. generated by the com-
piler for internal purposes
Simple getters public int getAge(){ return this.age; }
Simple setters including also fluent simple
setters public void setX(int x) {

this.x = x;
}

public A setX(int x) {
this.x = x;
return this;

}

Methods returning a literal value public double getPI(){ return 3.14; }
Methods implementing simple delegation

public int sum(int[] a, int i, int j) {
return this.adder(a, i, j);

}

Static class initializers
Methods that only return this public A m(){ return this; }
Methods that only return the value of a real
parameter

public int m(int x, int y){ return y; }

Setters generated for data classes in Kotlin
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Figure 2.2: Finite automaton to detect simple getter methods
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Figure 2.3: Finite automaton to detect simple setter methods

toString methods, hasCode methods, most compiler generated methods, deprecated meth-
ods and class initializers can be detected by inspecting the metadata of each method. These
methods have a particular signature, or their names include special characters or they have been
marked with a special annotation such as @Deprecated.

All other stop-methods have to be detected by inspecting their code. Our extension achieves
this goal by checking the code of each method against a set of Deterministic Finite Automata.
Each automaton encodes the structure of a category of stop-methods and takes as input a string
whose symbols are JVM opcodes. Figures 2.2 and 2.3 show the transition function of the au-
tomata that detect simple getters and setters respectively.

2.1.3 Output of Descartes

Descartes includes three additional extensions to produce reports with the output of the analysis.
One extension generates the same output as the default reports from PITest, but using the JSON
format. The other two reporting extensions are dedicated to pseudo-tested methods.

Niedermayr et al define pseudo-tested methods as those for which no extreme transformation
is detected by the test suite. The two reporting extensions monitor the test executions and group
all the transformations by the method in which they are created. Then the extensions classify
each method specifying whether they are pseudo-tested or not.

One of the extensions produces a JSON file, meant to support the incorporation of the tool in
larger workflows, in the CI, for example. This file contains all the static information of the method:
name, signature, declaring class, code location. It also includes all the test cases found to cover
the method and whether the method is pseudo-tested. The report contains the information relative
to the extreme transformations: how many of them were created for the method, if they were
detected or not and the operator, as shown in Table 2.1 that were used to create the program
variant.

The other extension produces the same information but in a human readable presentation.
Figure 2.4 shows an example of a report produced by Descartes for a method in the Apache
Commons CLI project 3.

These two extensions report the pseudo-tested methods in the project but they also include
all undetected extreme transformations. Methods with mixed results, that is where some extreme
transformations were detected and at the same time others were not, may also indicate the pres-
ence of testing issues. This will be explored in Chapter 4.

3https://github.com/apache/commons-cli
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Figure 2.4: An example of a human readable report produced by Descartes

2.2 Descartes VS Gregor

Niedermayr et al [51] affirm that extreme transformations generate much less program variants
than traditional mutation testing. In this section we quantify this fact for 21 Java open-source
projects. We compare the execution of Descartes with Gregor, the default mutation engine for
PITest. Gregor implements most traditional mutation operators 4. These operators work at the
instruction level similar to the example in Listing 1.4.

The 21 selected projects are shown in Table 2.4. This selection is a combination of the projects
studied in the original paper of Niedermayr and colleagues, projects studied in the related liter-
ature, projects from our industrial partners and projects with a mature development history. All
these projects use Maven as main build system, JUnit as main testing framework and are avail-
able form a version control hosting service, mostly Github. We will provide more insight about this
selection in Chapter 3. We provide the code revision used for each project in Appendix A.

We execute both mutation engines in all projects. For each observation we observe the time
it takes to complete the analysis, how many program variants/mutants both engine create, how
many of them are actually executed by the test suite and how many of them are detected/killed
by the existing test cases. We used in the analysis all traditional mutation operators available
for Gregor. With Descartes we used the same mutation operators as Niedermayrs et. al. [51]
plus two additional transformations, one to return null for reference types and another to return an
empty array. The full list of extreme mutation operators is shown in table 2.3.

Table 2.3: Extreme mutation operators used in the comparison.
Method type Transformations

void Empties the method
Reference types Returns null
boolean Returns true or false
byte,short,int,long Returns 0 or 1
float,double Returns 0.0 or 0.1
char Returns ‘ ’ or ‘A’
String Returns “” or “A”
T[] Returns new T[]{}

Table 2.4 shows the metrics we recorded for the comparison. For each mutation engine the
table shows the execution time and number of mutants/program variants created. The “Covered”
columns show how many of them are actually executed by the test suite and planted in methods
that were transformed by both engines. This distinction removes from the comparison mutants
that Gregor may create in methods not analyzed by Descartes, and vice-versa. For example,

4The full list is available here: http://pitest.org/quickstart/mutators/
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Figure 2.5: Visual comparison between the number of mutants/program variants create by both
engines
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Figure 2.6: Visual comparison between the execution time of both engines

mutants created in constructors and other stop-methods are left out. The “Killed” columns contain
the number of mutants from the respective “Covered” column that were detected/killed by the test
suite. The “Score” columns show the corresponding mutation score, that is the ratio of “Killed” to
“Covered”.

For a better visual perspective Figure 2.5 and Figure 2.6 compare the number of mutants and
execution time of both engines in the entire set of projects. In both figures we show the relative
reduction achieved by Descartes wit respect to Gregor. The values measured for Gregor has
been normalized to 100% so the values of Descartes are shown in proportion.

One can observe that Descartes creates much less mutants than Gregor which is reflected in
the difference between the times to execute the analysis of each engine. In all cases, Descartes
completed the task in much less time. Some interesting contrasts in this matter come from projects
like Spoon where Descartes took a little less than two hours and a half while Gregor took more than
56 hours, Java Git with one hour and a half for extreme mutation and 16 hours for Gregor and
Jaxen XPath Engine with less than two minutes against nearly 25 minutes. While the number of
mutants created and covered affects the execution time, the tests themselves play an important
role as they can involve heavy computation. Take, for example, the difference between Apache
Commons Lang and SCIFIO with similar numbers of mutants and very different execution times.
This comparison in terms of execution time is just an illustration of the actual reduction. There
are expected fluctuations in time from one execution of PITest or Descartes to another. For an
accurate comparison one should run the tools several times per project and provide statistical
evidence.
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Figure 2.7: Visual correlation between the scores of both engines

1 public static boolean isValidXmlChar(int ch) {
2 return (ch == 0x9)
3 || (ch == 0xA)
4 || (ch == 0xD)
5 || (ch >= 0x20 && ch <= 0xD7FF)
6 || (ch >= 0xE000 && ch <= 0xFFFD)
7 || (ch >= 0x10000 && ch <= 0x10FFFF);
8 }

Listing 2.1: Real example of a pseudo-tested method.

As for the scores, one can notice that there is a certain correlation between the values obtained
by both engines. Figure 2.7 shows a scatter plot, in which each point represents a project. The
coordinates for each point are given by the scores, the x axis corresponds to the score from
Descartes while the y represents the score from Gregor. The figure corroborates the tendency for
a positive monotonic correlation between both scores, which means that, if the score with Gregor
is high, it is more likely that the score with Descartes will be also high. The Spearman correlation
coefficient results in 0.6 for the projects studied with a p-value of 0.003, which indeed indicates
that there is a moderate positive correlation. Anyways, there are cases such as SCIFIO and XWiki
Rendering Engine which produce a medium to low mutation score with Gregor and scores above
83% with Descartes. We can conclude that, in general, well tested projects, taking the traditional
mutation score as the main assessment, will also detect or kill most extreme transformations.
Badly tested projects, or projects in their initial state of development could benefit the most from
Descartes.

2.2.1 Pseudo-tested methods

The results of Descartes are not limited to produce a score for a given project. The proposal
of Niedermayr et al [51] classifies methods according to the extreme transformation detection.
A method is said to be pseudo-tested if it is covered by the test suite but no related extreme
transformation is detected. These methods are the worst tested in the code base. The detec-
tion of extreme transformations provides a framework to find such methods more efficiently than
traditional mutation testing.

Listing 2.1 shows a method belonging to one of the projects included in table 2.4. It was found
to be pseudo-tested by Descartes. Only two extreme mutations are required to detect that the
value of this method is not correctly verified by the test suite, if verified at all, while Gregor created
45 mutants. This is an example of the utility of extreme transformations.

Among the pseudo-tested methods discovered by Descartes we found cases of apparent rel-
evance. Code listing 2.2 shows a pseudo-tested method found in Apache Commons Collections
declared in a hash map implementation.
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Chapter 2 – Descartes a PITest plugin for extreme transformations

All the instructions of this method are covered across 38 test cases and the method itself is
executed 11593 times while running the test suite. The method enlarges the internal structure
of the hash map to match a new capacity. It is called when the number of collisions in the map
reaches a defined threshold. It is clearly a relevant method for the functionalities of the class.
Despite its importance, it is pseudo-tested. There are some factors that affect the testability of
this method. First, it is declared in an abstract class. Second, it is a private method. It can not,
and should not, be directly verified by any test case. However, its effects play an important role
in the class, so they should be assessed. This method affects the state of the receiver, namely
the values of the threshold and data fields, both protected and therefore accessible to the test
cases. Yet, no assertion checks those modifications.

1

2 abstract class AbstractHashedMap<K, V> {
3 ...
4 protected void ensureCapacity(final int newCapacity) {
5 final int oldCapacity = data.length;
6 if (newCapacity <= oldCapacity) {
7 return;
8 }
9 if (size == 0) {

10 threshold = calculateThreshold(newCapacity, loadFactor);
11 data = new HashEntry[newCapacity];
12 }
13 else {
14 final HashEntry<K, V> oldEntries[] = data;
15 final HashEntry<K, V> newEntries[] = new HashEntry[newCapacity];
16 //Rehash code
17 ...
18 threshold = calculateThreshold(newCapacity, loadFactor);
19 data = newEntries;
20 }
21 }
22 ...
23 }

Listing 2.2: pseudo-tested method in Apache Commons Collections

Nevertheless, the result of Descartes is coarse-grained. Methods where extreme transforma-
tions are detected are not exempt from having testing issues. Listing 2.3 shows a real example
of a method where all extreme transformations were detected but Gregor created mutants that
survived the analysis. In particular one of the traditional mutation operators changed the value of
Long.MIN_VALUE in line 2. The modification was unnoticed by the test suite, which indicates that
the corner case is not being tested. This level of detail can not be reached with the use of extreme
mutation alone.

1 public long subtract(long instant, long value) {
2 if (value == Long.MIN_VALUE)
3 throw new ArithmeticException(...);
4 return add(instant, -value);
5 }

Listing 2.3: Example of a non pseudo-tested method.

In Chapter 3 we expand the discussion about pseudo-tested methods. We perform a concep-
tual replication of the work of Niedermayr and colleagues and analyze whether these methods
are valid hints to improve existing test cases. We also provide a set of testing issues found with
the help of Descartes in real and well tested open-source projects.
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Table 2.4: List of projects used to compare both engines, the execution time for the analysis, the number of mutants created, mutants covered and placed in
methods targeted by both tools, mutants killed and the mutation score.

Descartes Gregor
Project Time Created Covered Killed Score Time Created Covered Killed Score

AuthZForce PDP Core 0:08:00 626 378 358 94.71 1:23:50 7296 3536 3188 90.16
Amazon Web Services SDK 1:32:23 161758 3090 2732 88.41 6:11:22 2141689 17406 13536 77.77
Apache Commons CLI 0:00:13 271 256 246 96.09 0:01:26 2560 2455 2183 88.92
Apache Commons Codec 0:02:02 979 912 875 95.94 0:07:57 9233 8687 7765 89.39
Apache Commons Collections 0:01:41 3558 1556 1463 94.02 0:05:41 20394 8144 7073 86.85
Apache Commons IO 0:02:16 1164 1035 968 93.53 0:12:48 8809 7633 6500 85.16
Apache Commons Lang 0:02:07 3872 3261 3135 96.14 0:21:02 30361 25431 22120 86.98
Apache Flink 0:14:04 4935 2781 2373 85.33 2:29:45 43619 21350 16647 77.97
Google Gson 0:01:08 848 657 617 93.91 0:05:34 7353 6179 5079 82.20
Jaxen XPath Engine 0:01:31 1252 953 921 96.64 0:24:40 12210 9002 6041 67.11
JFreeChart 0:05:48 7210 4686 3775 80.56 0:41:28 89592 47305 28080 59.36
Java Git 1:30:08 7152 5007 4507 90.01 16:02:03 78316 54441 40756 74.86
Joda-Time 0:03:39 4525 3996 3827 95.77 0:16:32 31233 26443 21911 82.86
JOpt Simple 0:00:37 412 397 379 95.47 0:01:36 2271 2136 2000 93.63
jsoup 0:02:43 1566 1248 1197 95.91 0:12:49 14054 11092 8771 79.08
SAT4J Core 0:53:09 2304 804 617 76.74 10:55:50 17163 7945 5489 69.09
Apache PdfBox 0:44:07 7559 3185 2548 80.00 6:20:25 79763 32753 20226 61.75
SCIFIO 0:24:14 3627 1235 1158 93.77 3:12:11 62768 19615 9496 48.41
Spoon 2:24:55 4713 3452 3171 91.86 56:47:57 43916 34694 27519 79.32
Urban Airship Client Library 0:07:25 3082 2362 2242 94.92 0:11:31 17345 11015 8956 81.31
XWiki Rendering Engine 0:10:56 5534 3099 2594 83.70 2:07:19 112605 50472 26292 52.09
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Chapter 2 – Descartes a PITest plugin for extreme transformations

2.3 Development and adoption

At the moment of writing this document the last stable version of Descartes is 1.2.6. The tool
has been released to Maven Central eight times starting from its version 1.1. In the lapse of
three years 99 issues have been opened of which 67 have been closed. Other collaborators have
created 11 pull request 10 of them have been merged into the code base. The project has been
forked 13 times.

Descartes is an active component of her two sister projects DSpot and Reneri. DSpot [14] is
a tool that automatically improves/amplifies existing test cases. It uses the ratio of undetected ex-
treme transformations as a fitness function for the improvement process. Reneri analyzes the out-
put of Descartes and produces test improvement suggestions for developers. It uses Descartes
to replay the previously undetected transformations. We will present Reneri in Chapter 4. In the
same chapter we will evaluate the effectiveness of DSpot against undetected extreme transfor-
mations.

Niedermayr and Wagner [52] report the use of the tool in their experiments to explore the
correlation between the stack distance and test case effectiveness.

By leveraging PITest, Descartes integrates with Ant, Maven and Gradle. Apart from this, our in-
dustrial partners have developed other integration alternatives targeting the CI. The OW2 consor-
tium developed a Gitlab plugin that creates issues in the tracker based on the output of Descartes.
We have also developed a Github application, that makes use of the Github checks API. This ap-
plication triggers a remote Descartes execution after a pull request and annotates the output of
the Github checks with the list of pseudo-tested methods. Engineering, a software service com-
pany, developed a Jenkins plugin for Descartes. This plugin keeps track of the ratio of undetected
extreme mutations and the number of pseudo-tested methods in a project throughout the devel-
opment history.

The collaboration with our industrial partners has been a key element in the development
of Descartes. Companies as TellU, Atos, ActiveEon and XWiki SA. have tried the tool in their
codebase and have provided valuable and key feedback on issues and what kind of output and
transformations are most relevant for developers.

Most of these partners have limited themselves to manually launching the tool and analyzing
the output. However, XWiki proposed an original methodology which incorporates the tool in their
CI and ensures the improvement of their test suite in time.

2.3.1 XWiki: an industry case study with Descartes

XWiki5 is an open-source Enterprise Knowledge Management and Collaboration Solution. XWiki
is developed by an open-source community where the company XWiki SAS is the main contribu-
tor. The main codebase of XWiki includes three multi-module Maven projects: xwiki-commons6,
xwiki-rendering7 and xwiki-platform8. These three projects are mainly written in Java and to-
gether contain more than 340K lines of application code (excluding comments) and around 170K
of lines of test code distributed in 196 Maven modules. All these test cases achieve a 74% state-
ment coverage ranging from 55% to 95% on each module. From October 13th, 2006, the initial
commit, to September 17th 2019 the three aforementioned projects accumulated 45114 commits.
The contributors made 11 commits per day on average. So, these projects are in constant devel-
opment.

Software quality at XWiki

The XWiki solution is a complex and extensible platform. Its developers pay special attention
to code and test quality. They have set a highly sophisticated infrastructure which includes the
integration with tools like Jira as an issue tracker, Sonarqube for code analysis, Nexus as an
artifact repository and Jenkins, as a continuous integration server. The XWiki community has put
in place strict practices for unit test development. For example, each test class should test only a
single class in isolation. The test cases must not interact with the environment, that is databases,

5https://xwiki.org
6https://github.com/xwiki/xwiki-commons
7https://github.com/xwiki/xwiki-rendering
8https://github.com/xwiki/xwiki-platform
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2.3. Development and adoption

file systems and alike. Test cases must not require any configuration to run nor output anything
to the standard error and standard output. Every commit on any of the XWiki projects triggers the
execution of the test suite in the CI.

To promote the continuous improvement of their very well crafted test cases, the XWiki com-
munity has devised the following approach. A job in the CI monitors the code coverage when
the test suite is executed. Each Maven module in the codebase has a predefined threshold and
the code coverage can not decrease below this value, otherwise the build fails. In this way, if a
developer adds some code she has to also provide new tests cases so the coverage ratio remains
above or equal the predefined value. If a developer achieves a coverage above threshold, then
she is given the possibility to raise the threshold value for the module. In this way it is ensured
that the code coverage never decreases, this is what they call the Ratchet Effect. This strategy
has led to an effective use of the code coverage metric. They report an increase of around 6% of
the global code coverage in little less than 11 months9.

Descartes at XWiki

The XWiki projects started using Descartes after September 2017. At first, the tool was used
manually to target specific modules and find testing issues. During this time, the contributors
created 20 commits fixing or adding new test cases following the results produced by Descartes.

In March, 2018 the team proposed to take Descartes to the CI. They implemented a strategy
similar to the one already in practice for code coverage. Each module is configured with a thresh-
old for the ratio of undetected extreme transformations. If the score produced by Descartes is
below the threshold then the build fails. Unlike code coverage, this CI job is not triggered after
every commit as it takes several hours to complete the execution.

After implementing this CI approach, XWiki developers have produced 21 additional commits
fixing testing issues found by Descartes. In 12 occasions the CI job has failed due to a drop in the
score and prevented the test quality to decrease.

Developers made 41 commits in total. 20 before the CI integration and 21 after the inclusion of
Descartes in their build workflow. These commits increased by 2% in average the code coverage
of the module in which they were created. In total , XWiki contributors added 66 new test classes,
modified 22 classes and directly edited more than 700 assertions in the code.

One of the main issues in the adoption of Descartes has been the realization that the score
does not evolve in the same way as code coverage does. Listing 2.4 illustrates this phenomenon.

Method m (line 2) has been refactored into a new version (line 9) where the validation is per-
formed by method check (line 14). Let us assume that m has only been tested with a value of x
greater than zero. In the original version of m 2/3 lines are covered. In the refactored code 3/4
lines are covered.

However, the introduction of check also induces the creation of a new extreme transformation
that removes the code of this method. This transformation will pass undetected as the case in
which x is lower than zero is never tested.

So, in this example, developers improved their code, the code coverage improves but the score
computed by Descartes decreases. In the case of XWiki this means that the build in their CI fails.

To our view this is a positive result since a testing issue that passed unnoticed before was
detected after the refactoring. But it requires a change of mindset for developers.

1 // Before refactoring
2 void m (int x) {
3 if ( x < 0 )
4 throw new Exception();
5 doSomething();
6 }
7

8 // After refactoring
9 void m(int x) {

10 check();
11 doSomething();
12 }
13

9https://massol.myxwiki.org/xwiki/bin/view/Blog/ComparingCloverReports
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14 void check(int x) {
15 if (x < 0)
16 throw new Exception();
17 }

Listing 2.4: A code refactoring action that decreases the ratio of undetected extreme
transformations

2.4 Conclusion

In this chapter we presented Descartes, a tool to create extreme mutations and discover pseudo-
tested methods in Java projects. By leveraging the functionalities of PITest, Descartes could make
a short transit from laboratory prototype to a production ready tool. We illustrated in 21 open-
source projects how the use of extreme transformations compare to traditional mutation testing
in terms of number of mutants and execution time. We also showed that the score computed
by both approaches is positively correlated. While the improvement and score depends on the
specificities of each project, the reduction using extreme transformations in noticeable and can
make the analysis more scalable. We also presented how Descartes is being used by an industrial
actor as part of their CI infrastructure. We also illustrated the kind of testing issues that pseudo-
tested methods can reveal and showed that the analysis is coarse grained and has limitations in
this sense. In Chapter 3 we address the third objective of this thesis by extending the study of
pseudo-tested methods and evaluating their utility for developers.
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CHAPTER 3

A COMPREHENSIVE STUDY OF
PSEUDO-TESTED METHODS

Extreme transformations work at the global method level. This is a good granularity for developers
to reason about the interaction between the application code and the test cases. If we can find
pseudo-tested methods in well tested real open-source projects and they point at relevant testing
issues, we hypothesize that they can serve as a solid basis to address the main objective of this
thesis: provide feedback to developers about the quality of their test suite and help them improve
it.

The third objective of this thesis is precisely to know to what extent pseudo-tested methods can
inform developers about the quality of their tests. We want to know whether these methods are
relevant indicators for developers who wish to improve their test suite. In fact, these methods may
encapsulate behaviors that are poorly specified by the test suite, but are not relevant functionalities
for the project.

To achieve this objective, we first challenge the external validity of Niedermayr et al ’s ex-
periment with new study subjects, second we perform an in-depth qualitative empirical study of
pseudo-tested methods. While it seems to be intuitively true that pseudo-tested methods are indi-
cators of badly tested code, we aim at quantifying this phenomenon. To investigate pseudo-tested
methods, we perform an empirical study based on the analysis of 21 open source Java projects.
In total, we analyze 28K+ methods in these projects. We articulate this chapter around three
parts.

In the first part of the chapter we characterize our study subjects by looking at the number
and proportion of pseudo-tested methods. This also acts as a conceptual replication [68] of
Niedermayr’s study. Our results mitigate two threats to the validity of Niedermayr’s results: our
methodology mitigates internal threats, by using another tool to detect pseudo-tested methods,
and our experiment mitigates external threats by augmenting Niedermayr’s original set of study
objects with 19 additional open source project.

In the second part, we quantify the difference between pseudo-tested methods and the other
covered methods. We compare both sets of methods with respect to the fault detection ratio of
the test suite and prove that pseudo-tested methods are significantly worse tested with respect to
this criterion.

In the third part, we aim at collecting a qualitative feedback from the developers. First, we
manually sample a set of pseudo-tested methods that reveal specific issues in the test suites of
seven projects. Then, we submit pull requests and send emails to the developers, asking their
feedback about the relevance of these test issues. All pull requests have been merged to improve
the test suite. Second, we met with the developers of three projects and inspected together a
sample of 101 pseudo-tested methods. We found that developers consider only 30 of them worth
spending time improving the test suite.

To summarize, the contributions of this chapter are as follows:

• a conceptual replication of Niedermayr’s initial study on pseudo-tested methods. Our repli-
cation confirms the generalized presence of such methods, and improves the external va-
lidity of this empirical observation.

• a quantitative analysis of pseudo-tested methods, which measures how different they are
compared to other covered, not pseudo-tested methods.

• a qualitative manual analysis of 101 pseudo-tested methods, involving developers, that re-
veals that less than 30% of these methods are clearly worth the additional testing effort.

• open science, with a complete replication package available at: https://github.com/
STAMP-project/descartes-experiments/.
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Chapter 3 – A comprehensive study of pseudo-tested methods

The rest of this chapter is organized as follows. Section 3.1 defines the key concepts that form
the core of this empirical study. Section 3.2 introduces the research questions that we investigate
in this chapter, as well as the set of study subjects and the metrics that we collect. In Section 3.3,
we present and discuss the observations for each research question. In Section 3.4, we discuss
the threats to the validity of this study.

3.1 Pseudo-tested Methods

Niedermayr et al defined pseudo-tested methods as those executed by the test suite and none of
the covering test cases fails when the whole logic of the method is removed. In this section we
derive the definition of pseudo-tested methods from the concepts discussed in Chapter 1. Our
alternative definition is elaborated by considering the effects of the method and it is equivalent
to the one given by Niedermayr. We also discuss the procedure to discover such methods in a
program.

The effects of a method are the changes in the program state it produces: changes to the
state of receiver instance, changes to the state of other objects (by calling other methods), return
a value as a result of its computation, changes to the state of the parameters, and any other global
change that the code of the method provokes i.e. changing the value of a global static field.

For the sake of simplicity and as introduced in Section 4.2.1, we consider a program P to be a
set of methods, and a test suite T to be a set of test cases as defined in Definition 1.

Let m be a method; S = ∪m∈P effects(m) the set of effects of all methods in P ; effects(m) a
function effects : P → S that returns all the effects of a method m; detect, a predicate T × S →
{>,⊥} that determines if an effect is detected by T .

We can define pseudo-tested methods as follows.

Definition 3. A method is said to be pseudo-tested with respect to a test suite, if the test suite
covers the method and does not assess any of its effects:

∀s ∈ effects(m),@t ∈ T : detect(t, s)

Those methods that are not pseudo-tested are considered as required.

Definition 4. A method is said to be required if the test suite covers the method and assesses at
least one of its effects:

∃s ∈ effects(m),∃t ∈ T : detect(t, s)

Recall Listing 1.1 and Listing 1.2. In the VersionedSet class, the incrementVersion method
(line 13) is pseudo-tested. The testAdd test case in Listing 1.2 (line 4) triggers the execution of
the method but does not assess its effect: the modification of the version field. None of the other
test cases in this test suite assess this effect. So, the body of this method could be removed and
the test suite will not notice the change. This particular example also shows that pseudo-tested
methods may pose a testing challenge derived from testability issues in the code. The method in
question is private and its effects are produced over private fields.

One can note that Niedermayr et al. [51] call required methods, “tested methods”. We do not
keep this terminology here, for two key reasons: (i) these covered methods may include behaviors
that are not specified by the test suite, hence not all the effects have been tested; (ii) meanwhile,
by contrast to pseudo-tested methods, the correct execution of these methods is required to make
the whole test suite pass correctly since at least one effect of the method is assessed.

3.1.1 Finding Pseudo-tested Methods

A “pseudo-tested” method, as defined previously, is an idealized concept. In this section, we de-
scribe an algorithm that implements a practical way of collecting a set of pseudo-tested methods
in a program P , in the context of the test suite T , based on the original proposal of Niedermayr
et al. [51]. It relies on the idea of “extreme code transformations”, which consists in completely
stripping out the body of a method.

Algorithm 2 starts by analyzing all methods of P that are covered by the test suite and fulfill a
predefined selection criterion (predicate ofInterest in line 1). This criterion is based on the struc-
ture of the method and aims at reducing the number of false positives detected by the procedure.
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Data: P , T
Result: pseudo: {pseudo-tested methods in P }

1 foreach m ∈ P |covered(m,T ) ∧ ofInterest(m) do
2 variants : {extreme variants of m}
3 if returnsValue(m) then
4 stripBody(m)
5 checkReturnType(m)
6 variants← fixReturnValues(m)
7 end
8 else
9 variants← stripBody(m)

10 end
11 failure← false
12 foreach v ∈ variants do
13 P ′ ← replace(m, v, P )
14 failure← failure ∨ run(T, P ′)
15 end
16 if ¬failure then
17 pseudo← pseudo ∪m
18 end
19 end
20 return pseudo

Algorithm 2: Procedure to detect pseudo-tested methods

Table 3.1: Extreme transformations used depending on return type.
Method type Values used

void -
Reference types null
boolean true,false
byte,short,int,long 0,1
float,double 0.0,0.1
char ‘ ’, ‘A’
String “”, “A”
T[] new T[]{}

It eliminates uninteresting methods such as trivial setter and getters or empty void methods. More
insight on this will be given in Section 3.2.3. If the method returns a value, the body of the method
is stripped out and we generate a few variants that simply return predefined values (line 3). These
values depend on the return type, and are shown in Table 3.1. Compared to Niedermayr et al.
[51], we add two new transformations, one to return null and another to return an empty array.
These additions allow to expand the scope of methods to be analyzed. These are the same
transformations we used for the empirical study in Chapter 2.

If the method is void, we strip the body without further action (line 8). Once we have a set of
variants, we run the test suite on each of them, if no test case fails on any of the variants of a
given method, we consider the method as pseudo-tested (line 16). One can notice in line 13 that
all extreme transformations are applied to the original program and are analyzed separately.

Algorithm 2 has been implemented in Descartes, which was presented in Chapter 2

3.2 Experimental Protocol

Pseudo-tested methods are intriguing. They are covered by the test suite, their body can be dras-
tically altered and yet the test suite does not notice the transformation. We design an experimental
protocol to explore the nature of those methods.
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3.2.1 Research Questions

Our work in this chapter is organized around the following research questions:

RQ1 How frequent are pseudo-tested methods?

This first question aims at characterizing the prevalence of pseudo-tested methods. It is a
conceptual replication of the work by Niedermayr et al. [51], with a larger set of study objects and
a different tool support for the detection of pseudo-tested methods.

RQ2 Are pseudo-tested methods the weakest points in the program, with respect to the test
suite?

This second question aims at determining to what extent pseudo-tested methods actually cap-
ture areas in the code that are less tested than other parts. Here we use the mutation score
as a standard test quality assessment metric. We compare the method-level mutation score of
pseudo-tested methods against that of other covered and required methods (that are not pseudo-
tested). Here by method-level mutation score we mean the mutation score computed for each
method, considering only the mutants created inside each particular method.

RQ3 Are pseudo-tested methods helpful for developers to improve the quality of the test suite?

In this question we manually identify eight issues in the test suites of seven projects. We
communicate these issues to the development teams through pull requests or email and collect
their feedback.

RQ4 Which pseudo-tested methods do developers consider worth an additional testing action?

Following our exchange with the developers, we expand the qualitative analysis to a sample of
101 pseudo-tested methods distributed across three of our study subjects. We consulted devel-
opers to characterize the pseudo-tested methods that are worth an additional testing action and
the ones that are not worth it.

3.2.2 Study Subjects

We selected 21 open source projects in a systematic manner to conduct our experiments. We
considered active projects written in Java, that use Maven as main build system, JUnit as the main
testing framework and their code is available in a version control hosting service, mostly Github.
This is the same set of projects used in the study presented in Chapter 2. Here we provide more
details about their selection as study subjects.

A project is selected if it meets one of the following conditions: (i) they are present in the
experiment of Niedermayr et al. [51] (4 projects), (ii) they are maintained by industry partners
from whom we can get qualitative feedback (4 projects), (iii) they are regularly used in the software
testing literature (11 projects), (iv) they have a mature history with more than 12,000 commits (one
project) or they have a code base surpassing one million lines of code (one project).

Table 3.2 shows the entire list. The first two columns show the name of each project and the
identifiers we use to distinguish them in the present study. The third and fourth columns of this
table show the number of lines of code in the main code base and testing code respectively. Both
numbers were obtained using cloc1. The last column shows the number of test cases as reported
by Maven when running mvn test. For instance, Apache Commons IO (commons-io) has 8 839
lines of application code and 3 463 lines of test code spread over 634 test cases. The smallest
project, Apache Commons Cli (commons-cli), has 2 764 lines, while the largest, Amazon Web
Services (aws-sdk-java) is composed of 1.6 million lines of Java code. The list shows that our
inclusion criteria enable us to have a wide diversity in terms of project size. In many cases the
test code is as large or larger than the application code base.

Appendix A contains the links to access the source code of all the projects and the identifiers
of the commits marking the revision used in our study.

1https://github.com/AlDanial/cloc
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Table 3.2: Projects used as study subjects. N: Projects taken from the work of Niedermayr et al.
[51]. H: Projects taken from our industry partners. �: Other projects used in the software testing
literature. �: Project from Github with more than 12,000 commits. F: Projects with more than a
million LOC

Project ID App LOC Test LOC Tests

H AuthZForce PDP Core authzforce 12 596 3 463 634
F Amazon Web Services SDK aws-sdk-java 1 676 098 24 115 1 291
� Apache Commons CLI commons-cli 2 764 4 241 460
� Apache Commons Codec commons-codec 6 485 10 782 663
N Apache Commons Collections commons-collections 23 713 27 919 13 677
� Apache Commons IO commons-io 8 839 15 495 963
N Apache Commons Lang commons-lang 23 496 37 237 2 358
� Apache Flink flink-core 46 390 30 049 2 341
� Google Gson gson 7 184 12 884 951
� Jaxen XPath Engine jaxen 12 467 8 579 716
N JFreeChart jfreechart 94 478 39 875 2 138
� Java Git jgit 75 893 52 981 2 760
� Joda-Time joda-time 28 724 55 311 4 207
� JOpt Simple jopt-simple 2 386 6 828 817
� jsoup jsoup 11 528 6 311 561
H SAT4J Core sat4j-core 18 310 8 091 710
� Apache PdfBox pdfbox 121 121 15 978 1 519
� SCIFIO scifio 49 005 6 342 1 021
H Spoon spoon 48 363 32 833 1 371
N Urban Airship Client Library urbanairship 25 260 15 625 701
H XWiki Rendering Engine xwiki-rendering 37 571 9 276 2 247
Total 2 332 671 424 215 42 106

3.2.3 Metrics

In this section, we define the metrics we used to perform the quantitative analysis of pseudo-tested
methods.

Number of methods (#METH). The total number of methods found in a project, after exclud-
ing constructors and static initializers. We make this choice because these methods cannot be
targeted by our extreme transformations.

Certain types of methods are not generally targeted by developers in unit tests, we exclude
them to reduce the number of methods that developers may consider as false positives. In our
analysis, we do not consider:

• methods that are not covered by the test suite. We ignore these methods, since, by defini-
tion, pseudo-tested methods are covered.

• hashCode methods, as suggested by Niedermayr et al. [51], since this type of transformation
would still convey with the hash code protocol

• methods with the structure of a simple getter or setter (i.e. methods that only return the
value of an instance field or assign a given value to an instance field), methods marked as
deprecated (i.e. methods explicitly marked with the (@Deprecated) annotation or declared
in a class marked with that same annotation), empty void methods, methods returning a
literal constant and compiler generated methods such as synthetic methods or methods
generated to support enum types

These methods are a subset of the stop-methods presented in Section 2.1.2. There we provided
a comprehensive list of these methods and how they are detected by Descartes.

Number of methods under analysis (#MUA). Given a program P , that includes #METH
methods, the number of methods under analysis #MUA is obtained after excluding the methods
described above.
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Ratio of covered methods (C_RATE). A program P can be seen, in a simplified view, as a
set of methods. When running a test suite T on P a subset of methods COV ⊂ P are covered by
the test suite. The ratio of covered methods is defined as C_RATE= |COV |

|P | . In practice, COV is
computed by Descartes, as explained in Section 3.1.1.

Ratio of pseudo-tested methods (PS_RATE). For all methods under analysis, we run the
procedure described in Algorithm 2. This produces the subset of pseudo-tested methods, noted
as #PSEUDO methods. The ratio of pseudo-tested methods in a program is computed against
the methods under analysis and it is defined as PS_RATE= #PSEUDO

#MUA .
PS_RATE is used in RQ1 to determine the presence of pseudo-tested methods in our study

subjects. We also use the Pearson coefficient to check if we can state a correlation between
PS_RATE and C_RATE.

Mutation score. Given a program P , its test suite T and a set of mutation operators op, a
mutation tool generates a set M of mutants for P . The mutation score of the test suite T over M
is defined as the ratio of detected mutants included in M . That is:

score(M) = |µ : µ ∈M ∧ detected(µ)|
|M |

(3.1)

where detected(µ) means that at least one test case in T fails when the test suite is executed
against µ.

Mutation score for pseudo-tested methods (MS_pseudo): the score, as defined in Equa-
tion 3.1, but M is the subset of mutants generated on the pseudo-tested methods of P .

Mutation score for required methods (MS_req): the score, as defined in Equation 3.1 but
M is the subset of mutants generated only on the required methods of P .

These three mutation score metrics are used in RQ2 to quantitatively determine if pseudo-
tested methods are the worst tested methods in the code base. We perform a Wilcoxon statistical
test to compare the values obtained for MS_pseudo and MS_req on our study subjects.2

3.3 Experimental Results

The following sections present in depth our experimental results.

3.3.1 RQ1: How frequent are pseudo-tested methods?

We analyzed each study subject following the procedure described in Section 3.1.1. The results
are summarized in Table 3.3. The second column shows the total number of methods excluding
constructors. The third, lists the methods covered by the test suite. The following column shows
the ratio of covered methods. The “#MUA” column shows the number of methods under analysis,
per the criteria described in Section 3.2.3. The last two columns give the number of pseudo-tested
methods (#PSEUDO) and their ratio to the methods under analysis (PS_RATE). In Figure 3.1 we
represent PS_RATE by showing #PSEUDO in proportion to #MUA for each project.

For instance, in authzforce, 325 methods are covered by the test suite, of which 291 are
relevant for the analysis. In total, we identify 13 pseudo-tested methods representing 4% of the
methods under analysis.

We discover pseudo-tested methods in all our study objects, even for those with high coverage.
This corroborates the observations made by Niedermayr et al. [51]. The number of observed
pseudo-tested methods ranges from 2 methods, in commons-cli, to 476 methods in jfreechart.
The PS_RATE varies from 1% to 46%. In 14 cases its value remains below 7% of all analyzed
methods. This means that, compared to the total number of methods in a project, the amount of
pseudo-tested methods can be managed by the developers in order to guide the improvement of
test suites.

Analysis of outliers

Some projects have specific features that may affect the PS_RATE value in a distinctive way. In
this section we discuss those cases.

2The computation of the Pearson coefficient and the Wilcoxon test were performed using the features of the R language.
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Figure 3.1: Proportion of pseudo-tested methods with respect of all methods under analysis for
each each project
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authzforce, uses almost exclusively parameterized tests. The ratio of covered methods is
low, but these methods have been tested exhaustively and therefore they have a lower PS_RATE
compared to other projects with similar coverage.

The application domain can have an impact on the design of test suites. For example, scifio
is a framework that provides input/output functionalities for image formats that are typically used in
scientific research. This project shows the highest PS_RATE in our study. When we look into the
details, we find that 62 out of their 72 pseudo-tested methods belong to the same class and deal
with the insertion of metadata values in DICOM images, a format widely used in medical imaging.
Not all the metadata values are always required and the test cases covering these methods do not
check their presence. pdfbox is another interesting example in this sense. It is a library designed
for the creation and manipulation of PDF files. Some of their functionalities can only be checked
by visual means which increases the level of difficulty to specify an automated and fine-grained
oracle. Consequently, this project has a high PS_RATE.

At the other end of the PS_RATE spectrum, we find commons-cli and jopt-simple. These
are small projects, similar in purpose and both have comprehensive test suites that reach 97%
and 98% of line coverage respectively (as measured by cobertura3). Only two pseudo-tested
methods were found for each one of them. Three of those four methods create and return an
exception message. The remaining method is a toString implementation.

Relationship between pseudo-tested methods and coverage

We observe that the projects with lowest method coverage show higher ratios of pseudo-tested
methods. The Pearson coefficient between the coverage ratio and the ratio of pseudo-tested
methods is -0.67 and p < 0.01 which indicates a moderate negative relationship.

This confirms our intuition that pseudo-tested methods are more frequent in projects that are
poorly tested (high pseudo-tested ratios and low coverage ratios). However, the ratio of pseudo-
tested methods is more directly impacted by the way the methods are verified and not the ratio of
methods covered. It is possible to achieve a low ratio of pseudo-tested methods covering a small
portion of the code. For example, authzforce and xwiki-rendering have comparable coverage
ratios but the former has a lower ratio of pseudo-tested methods. The correlation with the ratio is
a consequence of the fact that, in general, well tested projects also have higher coverage ratios.

3http://cobertura.github.io/cobertura/
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Table 3.3: Number of methods in each project, number of methods under analysis and number of
pseudo-tested methods

Project #Methods #Covered C_RATE #MUA #PSEUDO PS_RATE

authzforce 697 325 47% 291 13 4%
aws-sdk-java 177 449 2 314 1% 1 800 224 12%
commons-cli 237 181 76% 141 2 1%
commons-codec 536 449 84% 426 12 3%
commons-collections 2 729 1 270 47% 1 232 40 3%
commons-io 875 664 76% 641 29 5%
commons-lang 2 421 1 939 80% 1 889 47 2%
flink-core 4 133 1 886 46% 1 814 100 6%
gson 624 499 80% 477 10 2%
jaxen 958 616 64% 569 11 2%
jfreechart 7 289 3 639 50% 3 496 476 14%
jgit 6 137 3 702 60% 2 539 296 12%
joda-time 3 374 2 783 82% 2 526 82 3%
jopt-simple 298 265 89% 256 2 1%
jsoup 1 110 844 76% 751 28 4%
sat4j-core 2 218 613 28% 585 143 24%
pdfbox 8 164 2 418 30% 2 241 473 21%
scifio 3 269 895 27% 158 72 46%
spoon 4 470 2 976 67% 2 938 213 7%
urbanairship 2 933 2 140 73% 1 989 28 1%
xwiki-rendering 5 002 2 232 45% 2 049 239 12%

Total 234 923 32 650 14% 28 808 2 540 9%

Comparison with the study by Niedermayr et al. [51]

Our study, on a new dataset, confirms the major finding of Niedermayr et al. [51]’s study: pseudo-
tested methods exist in all projects, even the very well tested ones. This first-ever replication
improves the external validity of this finding. We note in the original study by Niedermayr et al.
[51], that the reported ratio was higher, ranging from 6% to 53%. The difference can be explained
from the fact that (i) we exclude deprecated methods and (ii) we consider two new other mutation
operators. These two factors change the set of methods that have been targeted.

We have made the first independent replication of Niedermayr et al ’s study.
Our replication confirms that all Java projects contain pseudo-tested methods,
even the very well tested ones. This improves the external validity of this
empirical fact. The ratio of pseudo-tested methods with respect to analyzed
methods ranged from 1% to 46% in our dataset.

Answer to RQ1

3.3.2 RQ2: Are pseudo-tested methods the weakest points in the program,
with respect to the test suite?

By definition, test suites fail to assess the presence of any effect in pseudo-tested methods. As
such, these methods can be considered as very badly tested, even though they are covered by
the test suite. To further confirm this fact we assess the test quality of these methods with a
traditional test adequacy criterion: mutation testing [22]. To do so, we measure the chance for a
mutant planted in a pseudo-tested method to be detected (killed).

For each of our study subjects, we run a mutation analysis based on PITest, a state-of-the-art
mutation tool for Java. We configure PITest with its standard set of mutation operators. PITest is
capable of listing: the comprehensive set of mutants, the method in which they have been inserted
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Figure 3.2: Mutation score for mutants placed inside pseudo-tested and required methods.
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and whether they have been detected (killed) by the test suite. We extract the set of mutants that
have been placed in the body of the pseudo-tested methods to compute the mutation score on
those methods (MS_pseudo) as well as the mutation score of required methods (MS_req).

Figure 3.2 shows the results of this experiment. In all cases, the mutation score of pseudo-
tested methods is significantly lower than the score of normal required methods. This means that a
mutant planted inside a pseudo-tested method has more chances to survive than a mutant planted
in required methods. The minimum gap is achieved in pdfbox with scores 32% for pseudo-tested
methods and 68% for others. For scifio, only 1% of PITest mutants in pseudo-tested methods
can be killed (as opposed to 84% in required methods). To validate this graphical finding, we
compare MS_pseudo and MS_req.

In average the mutation score of required methods is 52% above that of pseudo-tested meth-
ods. With the Wilcoxon statistical test, this is a significant evidence of a difference with a p-value
p < 0.01. The effect size is 1.5 which is considered as large per the standard guidelines in
software engineering [39].

Analysis of interesting examples

It calls the attention, that, in no case, MS_pseudo was 0%. So, even when extreme transforma-
tions are not spotted by the test suite, some mutants inside these methods can be detected. We
now explain this case.

Listing 3.1 shows a simplified extract of a pseudo-tested method we have found in auzthforce
and where some traditional mutants were detected. The checkNumberOfArgs method is covered
by six test cases and was found to be pseudo-tested. In all test cases, the value of numInputs
is greater than two, hence the condition on line 3 was always false and the exception was never
thrown. PITest created five mutants in the body of this method and two of them were detected.
Those mutants replaced the condition by true and< by<= respectively. With this, the condition is
always false, the exception is thrown and the mutants are detected. It means that those mutants
are trivially detected with an exception, not by an assertion. This is the major reason for which the
mutation score of pseudo-tested methods can be higher than 0.

This explanation holds for jopt-simple which achieves a seemingly high 53% MS_pseudo.
A total of 17 mutants are generated in the two pseudo-tested methods of the project. Nine of
these mutants are killed by the test suite. From these nine, six replaced internal method calls by
a default value and the other three replaced a constant by a different value. All nine mutations
made the program crash with an exception, and are thus trivially detected.
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1 class AnyOfAny {
2 protected void checkNumberOfArgs(int numInputs) {
3 if(numInputs < 2)
4 throw new IllegalArgumentException();
5 }
6

7 public void evaluate(... args) {
8 checkNumberOfArgs(args.size())
9 ...

10 }
11 }

Listing 3.1: A pseudo-tested method where traditional mutants were detected

scifio has the lowest MS_pseudo. PITest generated 7 598 mutants in the 62 methods dealing
with metadata and mentioned in Section 3.3.1. The mutants modify the metadata values to be
placed in the image and, as discussed earlier, those values are not specified in any oracle of the
test suite. Hence, none of these mutants are detected.

Distribution of method-level mutation score

To further explore the difference between MS_pseudo and MS_req, we compute the distribution
of the method-level mutation score. That is, we compute a mutation score for each method in
a project. The final distribution for each project is shown in Figure 3.3. Each row displays two
violin plots for a specific project.4 Each curve in the plot represents the distribution of mutation
scores computed per method. The thicker areas on each curve represent scores achieved by
more methods.

The main finding is that the distributions for the required methods are skewed to higher muta-
tion scores, while the scores for pseudo-tested methods tend to be skewed to lower values. This
is a clear trend, which confirms the results of Figure 3.2. It is also the case that most distribu-
tions cover a wide range of values. While most pseudo-tested methods have low scores, there
are cases for which the mutation score could reach high values, due to trivial exception-raising
mutants.

We observe that 63 pseudo-tested methods across all projects have a 100% mutation score.
Among those 63, 34 have only one or two trivial mutants. As an extreme case, in the jsoup project
we find that the method load of the Entities class5 is pseudo-tested and PITest generates 69
mutants that are all killed. All mutants make the program crash with an exception, yet the body
of the method can be removed and the absence of effects is unnoticed by the test suite. This
suggests that the extreme transformations performed to find pseudo-tested methods are less
susceptible to be trivially detected.

The hypothesis that pseudo-tested methods expose weakly tested regions of
code is confirmed by mutation analysis. For all the 21 considered projects, the
mutation score of pseudo-tested methods is significantly lower than the score
of required methods, a finding confirmed by a very low p-value lower than 0.01
and a very high effect size of 1.5.

Answer to RQ2

3.3.3 RQ3: Are pseudo-tested methods relevant for developers to improve
the quality of the test suite?

To answer this question, we manually analyze the void and boolean pseudo-tested methods which
are accessible from an existing test class. void and boolean methods have only one or two pos-

4The violin plot for pseudo-tested methods of commons-cli and jopt-simple are not displayed, as they have too few
methods in this category.

5https://github.com/jhy/jsoup/blob/35e80a779b7908ddcd41a6a7df5f21b30bf999d2/src/main/java/org/
jsoup/nodes/Entities.java#L295
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Figure 3.3: PITest method-level mutation score distribution by project and method category
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sible extreme transformations, thus are easier to explain to developers. We identify eight testing
issues revealed by these pseudo-tested methods: two cases of a miss-placed oracle, two cases
of missing oracle, three cases of a weak oracle and one case of a missing test input. These issues
have been found in seven of our study subjects.

For each testing issue we prepare a pull request that fixes the issue, or we send the information
by email. Our objective is to collect qualitative feedback from the development teams about the
relevance of the testing issues revealed by pseudo-tested methods.

We now summarize the discussion about each testing issue.

Feedback from aws-sdk-java

Per our selection criterion, we have spotted one pseudo-tested method. We made one pull re-
quest (PR)6 to explicitly assess the effects of one pseudo-tested method named prepareSocket.
This method is covered by four test cases that follow the same pattern. A simplified extract is
shown in Listing 3.2. The test cases mock a socket abstraction that verifies if a given array
matches the expected value. prepareSocket should call the setEnabledProtocols in the socket
abstraction. When running an extreme transformation on this method, the assertion is never eval-
uated and the test cases pass silently. In the pull request we moved the assertion out of the
setEnabledProtocols method, in order to have it verified after prepareSocket. Listing 3.3 shows
a simplified version of the proposed code. With this modification, the method is not pseudo-tested
anymore. The developer agreed that the proposed change was an improvement and the pull re-
quest was merged into the code. This is an example of a miss-placed oracle and the value of
pseudo-tested methods.

1 @Test
2 void typical() {
3 SdkTLSSocketFactory f = ...;
4 //prepareSocket was found to be pseudo-tested
5 f.prepareSocket(new TestSSLSocket() {
6 ...
7 @Override
8 public void setEnabledProtocols(String[] protocols) {
9 assertTrue(Arrays.equals(protocols, expected));

10 }

6https://github.com/aws/aws-sdk-java/pull/1437

55

https://github.com/aws/aws-sdk-java/pull/1437


Chapter 3 – A comprehensive study of pseudo-tested methods

11 ...
12 });
13 }

Listing 3.2: A weak test case for method prepareSocket.

1 @Test
2 void typical() {
3 SdkTLSSocketFactory f = ...;
4 SSLSocket s = new TestSSlSocket() {
5 @Override
6 public void setEnabledProtocols(String[] protocols) {
7 capturedProtocols = protocols;
8 }
9 ...

10 };
11 f.prepareSocket(s);
12 //This way the test fails if no protocol was enabled
13 assertArrayEquals(s.capturedProtocols, expected));
14 }

Listing 3.3: Proposed test improvement. The assertion was moved out of the socket
implementation. Consequently, prepareSocket is no longer pseudo-tested

Feedback from commons-collections

In this project, certain methods implementing iterator operations are found to be pseudo-tested.
Specifically two implementations of the add method and four of the remove method are pseudo-
tested in classes where these operations are not supported. Listing 3.4 shows one the methods
and a simplified extract of the test case designed to assess their effects. If the add method is
emptied, then the exception is never thrown and the test passes. We proposed a pull request
7 with the change shown in Listing 3.5. The proposed change verifies that an exception has
been thrown. As in the previous example, the issue is related to the placement of the assertion.
The developer agreed to merge the proposed test improvement into the code. This is a second
example of the value of pseudo-tested methods. Being in a different project, and assessed by
another developer, this increases our external validity.

1 class SingletonListIterator
2 implements Iterator<Node> {
3 ...
4 void add() {
5 //This method was found to be pseudo-tested
6 throw new UnsupportedOperationException();
7 }
8 ...
9 }

10

11 class SingletonListIteratorTest {
12 ...
13 @Test
14 void testAdd() {
15 SingletonListIterator it = ...;
16 ...
17 try {
18 //If the method is emptied, then nothing happens
19 //and the test passes.
20 it.add(value);
21 } catch(Exception ex) {}
22 ...
23 }

Listing 3.4: Class containing the pseudo-tested method and the covering test class.

7https://github.com/apache/commons-collections/pull/36
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1 ...
2 try {
3 it.add(value);
4 fail(); //If this is executed,
5 //then the test case fails
6 } catch(Exception ex) {}
7 ...

Listing 3.5: Change proposed in the pull request to verify the unsupported operation.

Feedback from commons-codec

For commons-codec we found that the boolean method isEncodeEqual was pseudo-tested. The
method is covered by only one test case, shown in Listing 3.6. As one can notice, the test case
lacks the corresponding assertion. So, none of the extreme transformations applied to this method
could cause the test to fail.

1 public void testIsEncodeEquals() {
2 final String[][] data = {
3 {"Meyer", "M\u00fcller"},
4 {"Meyer", "Mayr"},
5 ...
6 {"Miyagi", "Miyako"}
7 };
8 for (final String[] element : data) {
9 final boolean encodeEqual =

10 this.getStringEncoder().isEncodeEqual(element[1], element[0]);
11 }
12 }

Listing 3.6: Covering test case with no assertion.

All the inputs in the test case should make the method return true. When we placed the
corresponding assertion we found that the first input (in line 3) was wrong and we replaced it by
a correct pair of values. We made a pull request8 and the fixture was accepted by the developers
and also slightly increased the code coverage by 0.2%.

Feedback from commons-io

In commons-io we found several void write methods of the TeeOutputStream to be pseudo-
tested. This class represents an output stream that should send the data being written to other
two output streams. A reduced version of the test case covering these methods can be seen in
Listing 3.7. Line 7 shows that the assertion checks that both output streams should contain the
same data. If the write method is emptied, nothing is written to both streams but the assertion
remains valid as both have the same content (both are empty). The test case should verify not only
that those two streams have the same content but that they have the right value. In this sense, we
say that this is an example of a weak oracle. We made a pull request9 with the changes exposed
in Listing 3.8. The change adds a third output stream to be used as a reference value. The pull
request was accepted and it slightly increased the code coverage by 0.07%.

1 public void testTee() {
2 ByteArrayOutputStream baos1 = new ByteArrayOutputStream();
3 ByteArrayOutputStream baos2 = new ByteArrayOutputStream();
4 TeeOutputStream tos = new TeeOutputStream(baos1, baos2);
5 ...
6 tos.write(array);
7 assertByteArrayEquals(baos1.toByteArray(), baos2.toByteArray());
8 }

Listing 3.7: Test case verifying TeeOutputStream write methods

8https://github.com/apache/commons-codec/pull/13
9https://github.com/apache/commons-io/pull/61
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1 public void testTee() {
2 ByteArrayOutputStream baos1 = new ByteArrayOutputStream();
3 ByteArrayOutputStream baos2 = new ByteArrayOutputStream();
4 ByteArrayOutputStream expected = new ByteArrayOutputStream();
5 TeeOutputStream tos = new TeeOutputStream(baos1, baos2);
6 ...
7 tos.write(array);
8 expected.write(array);
9 assertByteArrayEquals(expected.toByteArray(), baos1.toByteArray());

10 assertByteArrayEquals(expected.toByteArray(), baos2.toByteArray());
11 }

Listing 3.8: Change proposed to verify the result of the write methods

For three projects, spoon, flink-core and sat4j-core, we discuss the details of the testing
issues10 directly with the developers via emails. We systematically collected their feedback.

Feedback from spoon

We ask the project team about a public void method, named visitCtAssert11, and covered
indirectly by only one test case. This method was part of a visitor pattern implementation, which
is common inside this project. This particular method handles assert Java expressions in an
Abstract Syntax Tree. The test case does not assess the effects of the method. The developers
expressed that this method should be verified by adding a stronger verification or a new test case.
They were interested in our findings. They took no immediate action but opened a general issue
12.

Feedback from flink-core

This team was contacted to discuss about a public void method, named configure13, which
is directly called by a single test case. This particular method loads a given configuration and
prevents a field value from being overwritten. Listing 3.9 shows a simplified extract of the code.
The body of the method could be removed and the test passes as the assertion only involves
the initial value of the field. The developers explained that the test case was designed precisely
to verify that the field is not changed after the method invocation. They expressed that more
tests could probably make the scenario more complete. In our view, the test case should assert
both facts: the configuration being loaded and the value not being changed. The current oracle
expresses a weaker condition as the former verification is not done. If the body is erased, the
configuration is never loaded and the value, of course, is never changed. The developers did not
take any further action.

1 public void configure(Configuration parameters) {
2 super.configure(parameters);
3 if(this.blockSize == NATIVE_BLOCK_SIZE) {
4 setBlockSize(...);
5 }
6 }

Listing 3.9: Pseudo-tested method in flink-core

Feedback from sat4j-core

We contacted the sat4j-core lead developer about two void methods. One of them, named
removeConstr14, was covered directly by only one test case to target a specific bug and avoid

10https://github.com/STAMP-project/descartes-experiments/blob/6f8a9c7c111a1da5794622652eae5327d0571ef1/
direct-communications.md

11https://github.com/INRIA/spoon/blob/fd878bc71b73fc1da82356eaa6578f760c70f0de/src/main/java/spoon/
reflect/visitor/DefaultJavaPrettyPrinter.java#L479

12https://github.com/INRIA/spoon/issues/1818
13https://github.com/apache/flink/blob/740f711c4ec9c4b7cdefd01c9f64857c345a68a1/flink-core/src/

main/java/org/apache/flink/api/common/io/BinaryInputFormat.java#L86
14https://gitlab.ow2.org/sat4j/sat4j/blob/09e9173e400ea6c1794354ca54c36607c53391ff/org.sat4j.core/

src/main/java/org/sat4j/tools/xplain/Xplain.java#L214
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regression issues. The other method, named learn15, was covered indirectly by 68 different test
cases. The lead developer considered the first method as helpful to realize that more asser-
tions were needed in the covering test case. Consequently, he made one commit16 to verify the
behavior of this method.

The second pseudo-tested method was considered a bigger problem, because it implements
certain key optimizations for better performance. The tests cases triggered the optimization code
but did not leverage the optimized result. Their result were the same with or without the optimiza-
tion code. Consequently, the developer made a new commit17 with an additional, more complex,
test case where the advantages of the optimization could be witnessed.

Discussion

We now discuss the main findings of this qualitative user study.
First, all developers agreed that it is easy to understand the problems identified by pseudo-

tested methods. This confirms the fact that, we, as outsiders to those projects, with no knowledge
or experience, can also grasp the issue and propose a solution. The developers acknowledged
the relevance of the uncovered flaws.

Second, when developers were given the solution for free (through pull requests written by
us), they accepted the test improvement.

Third, when the developers were only given the problem, they did not always act by improving
the test suite. They considered that pseudo-tested methods provide relevant information, and
that it would make sense to enhance their test suites to tackle the issues. But they do not con-
sider these improvements as a priority. With limited resources, the efforts are directed to the
development of new features and to fix existing bugs, not to improve existing tests.

Of the eight testing issues found, seven can be linked to oracle issues and one to an input
problem.

Pseudo-tested methods uncover flaws in the test suite which are considered
relevant by developers. These methods enable one to well understand the
problem in a short time. However, fixing the test flaws requires some time and
effort that cannot always be given, due to higher priority tasks such as new
features and bug fixing.

Answer to RQ3

3.3.4 RQ4: Which pseudo-tested methods do developers consider worth
an additional testing action?

To answer this question we contact the development teams directly. We select three projects for
which the developers have accepted to discuss with us: authzforce, sat4j-core and spoon. We
set up a video call with the head of each development team. The goal of the call is to present and
discuss a selection of pseudo-tested methods in approximately 90 minutes. With this discussion,
we seek to know which pseudo-tested methods developers consider relevant enough to trigger
additional work on the test suite and approximate their ratio on each project.

For projects sat4j-core and spoon, we randomly choose 2̃5% of all pseudo-tested methods.
The third project, authzforce, has only 13 of such methods so we consider them all, as it is a
number that can be discussed in reasonable time. We prepared a report for the developers that
contains the list of pseudo-tested methods, with the extreme transformations that were applied
and the test cases covering the method. To facilitate the discussion we also included links to the
exact version of the code we analyzed. This information was made available to the developers
before the meeting.

15https://gitlab.ow2.org/sat4j/sat4j/blob/09e9173e400ea6c1794354ca54c36607c53391ff/org.sat4j.core/
src/main/java/org/sat4j/minisat/core/Solver.java#L384

16https://gitlab.ow2.org/sat4j/sat4j/commit/afab137a4c1a54219f3990713b4647ff84b8bfea
17https://gitlab.ow2.org/sat4j/sat4j/commit/46291e4d15a654477bd17b0ce905926d24e042ca
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Table 3.4: The pseudo-tested methods systematically analyzed by the lead developers, through a
video call.

Project Sample size Worth Percentage Time spent (HH:MM)

authzforce18 13 (100%) 6 46% 29 min
sat4j-core19 35 (25%) 8 23% 1 hr 38 min
spoon20 53 (25%) 16 23% 1 hr 14 min

Total 101 30 30% 3 hr 21 min

For each method, we asked the developers to determine if: (i) given the structure of the
method, and, (ii) given its role in the code base, they consider it is worth spending time creating
new test cases or fixing existing ones to specify those methods. We also asked them to explain
the reasons behind their decision.

Table 3.4 shows the projects involved, footnotes with links to the online summary of the in-
terviews, the number of pseudo-tested methods included in the random sample, the number of
methods worth an additional testing action and the percentage they represent with respect to the
sample. We also show how much time we spent in the discussion.

We observe that only 23% of pseudo-tested methods in sat4j-core and spoon, the two largest
projects, are worth additional testing actions (having the same percentage is purely coincidental).
For authzforce the percentage of methods to be specified is 46%, but the absolute number (6)
does not differ much from sat4j-core (8). This indicates that, potentially, many pseudo-tested
come from functionalities considered less important or not a priority, therefore not well tested.
The proportion of methods considered as worthless additional testing appears surprisingly high.
It is important to notice that, among pseudo-tested methods, developers find cases, in their own
words, “surprising” and “definitively not well tested, but they should be”. Even for the cases they
don’t consider important, a developer from sat4j-core state that they “would like to know in which
scenarios the transformation was discovered”.

We now enumerate the main reasons given by developers to consider a method worth or
worthless spending time creating specific testing actions. We also include the projects in which
these reason manifested.

Worthless specifying: A pseudo-tested method could be considered as useless to test, i.e.,
not important, if it meets one of the following criteria:

• The code has been automatically generated (spoon).

• The method is part of debug functionalities, i.e., formatting a debug or log message or
creating and returning an exception message or an exception object (authzforce).

• The method is part of features that are not widely used in the code base or in external client
code (authzforce, sat4j-core, spoon).

• The method has not been deprecated but its functionality is being migrated to another inter-
face (spoon).

• The code of the method is considered as simple or trivial to need a specific test case
(sat4j-core, spoon). Short methods, involving a few simple instructions are generally not
considered worth to be specified by direct unit test cases (spoon). Listing 3.11 shows two
examples that spoon developers consider too simple to be worth of additional testing actions.

• Methods created just to complete an interface implementation (spoon). The object oriented
design may involve classes that need to implement a given interface but do not actually need
to provide a behavior for all methods. In those cases, developers write a placeholder body
which they are not interested in testing.

18https://github.com/STAMP-project/descartes-experiments/blob/master/actionable-hints/
authzforce-core/sample.md

19https://github.com/STAMP-project/descartes-experiments/blob/master/actionable-hints/sat4j-core/
sample.md

20https://github.com/STAMP-project/descartes-experiments/blob/master/actionable-hints/spoon/
sample.md
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1 ...
2 public void addArrayReference(CtArrayTypeReference<?> typeReference) {
3 arrayTypeReference.setComponentType(typeReference);
4 }
5 ...

Listing 3.10: Pseudo-tested method involving a delegation pattern.

1 ...
2 public void externalState() {
3 this.selectedState = external;
4 }
5 ...
6

7 public boolean matches(CtElement e) {
8 e.setFactory(f);
9 return false;

10 }

Listing 3.11: Pseudo-tested methods considered as too simple to require more testing actions.

• Receiving methods in a delegation pattern that add little or no logic when invoking the del-
egate (spoon). The delegation pattern exposes a method that simply calls another method
(delegate). Delegate methods may have the same signature as the receiving method. The
receiving method usually adds no or very little custom logic (e.g., provide a default value
for unused parameters or process the returning value). Listing 3.10 shows an example of
this pattern that developers do not consider to be worth of additional testing actions. If the
delegate is pseudo-tested then the receiving method will be pseudo-tested as well. The
opposite does not have to be necessarily true. In any case, the method exposing the actual
functionality to be tested is the delegate. The receiving method may not have the same
importance.

Worth specifying with additional tests: On the other hand, developers provided the follow-
ing reasons when they consider a pseudo-tested method to be worth of additional testing actions:

• A method that supports a core functionality of the project or part of the main responsibility of
the declaring class (authzforce, sat4j-core, spoon). For example, we find a class named
VisitorPartialEvaluator which implements a visitor pattern over a Java program Abstract
Syntax Tree (AST). This class simplifies the AST by evaluating all expressions that could
be statically reduced. The method visitCtAssignment21, declared in this class, handles
assignment instructions and was found to be pseudo-tested. Assignments may influence
the evaluation result, so this method plays an important role in the class.

• A method supporting a functionality that is widely used in the code base. It could be the
method itself that is being frequently used or the class that declares the method (authzforce,
sat4j-core, spoon).

• A method known to be relevant for external client code (sat4j-core).

• A new feature that is partially supported or not completed yet, which requires a clear speci-
fication (spoon).

• Methods which are the only possible way to access certain features of a class (authzforce).
For example, a public method that calls several private methods which actually contain the
implementation of the public behavior.

• Methods verifying preconditions (authzforce). These methods guarantee the integrity of the
operations to be performed. Listing 3.12 shows an example of one of those methods consid-

21https://github.com/INRIA/spoon/blob/fd878bc71b73fc1da82356eaa6578f760c70f0de/src/main/java/spoon/
support/reflect/eval/VisitorPartialEvaluator.java#L515
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1 protected final void checkNumberOfArgs(final int numInputs)
2 {
3 if (numInputs != 3)
4 {
5 throw new IllegalArgumentException(...);
6 }
7 }

Listing 3.12: A simple method that checks a precondition

ered to be important to specify. Despite the simplicity of the implementation, the authzforce
developers consider that it is important to specify them as accurately as possible.

We have observed cases where a method meets criteria to be worth of specification and at the
same time to be worthless of additional testing actions. The final decision of developers in those
cases is subjective and responds to their internal knowledge about the code base. This means
that it is difficult to devise an automatic procedure able to automatically determine which methods
are worth of additional testing actions.

In a sample of 101 pseudo-tested methods, systematically analyzed by the
lead developers of 3 mature projects, 30 methods (30%) were considered
worth of additional testing actions. The developer decisions are based on
a deep understanding of the application domain and design of the application.
This means that it is not reasonable to prescribe the absolute absence (zero)
of pseudo-tested methods.

Answer to RQ4

3.4 Threats to validity

RQ1 and RQ2. A threat to the quantitative analysis of RQ1 and RQ2 relates to external validity:

• Some extreme transformations could generate programs that are equivalent to the original.
Given the nature of these transformations many of possible equivalent variants are detected
by inspecting the method before applying the transformation. Methods with empty body and
those returning a constant value, are skipped from the analysis. This is a problem extreme
transformations have in common with traditional mutation testing. The equivalent mutant
problem could also affect the value of the mutation scores computed to answer RQ2.

• The values used to transform the body of non-void and non-boolean methods may affect
their categorization as pseudo-tested or required. A different set of values may produce
a different categorization. Since only one detected value is needed to label a method as
required, then we actually produce an over-estimation of these methods. More values could
be used to reduce the final set. In our study we find only 916 of non-void and non-boolean
pseudo-tested methods which represents a 36% of the total number of methods. void and
boolean methods tend to produce more pseudo-tested methods in our study subjects.

• As pointed by Petrovic and Ivankovic [59], mutation testing results can be affected by the
programming language. This affects both, the extreme transformations performed and the
mutation testing validation in RQ2. All our study subjects are Java projects, so our findings
can not be generalized to other languages.

• We have considered all test cases equally and did not attempt to distinguish between unit
and integration tests. We made this decision because such a distinction would require
setting an arbitrary threshold above which a JUnit test case is considered an integration
test. Yet, considering all test cases equally could influence the amount of pseudo-tested
methods.
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RQ3 and RQ4. The outcome of the qualitative analysis is influenced by our insight into each
project, the insight of the developers consulted, the characteristics of each code base and the
methods presented. Some of the teams showed more interest and gave more importance to the
findings than others. This was expected. Not all developers had strong opinions regarding the
presented issues.

3.5 Conclusion

In this chapter, we provide an in-depth analysis of pseudo-tested methods found in open source
projects. These methods, first coined by Niedermayr et al. [51], are intriguing from the perspective
of the interaction between a program and its test suite: their code is executed when running the
test suite, yet, none of their effects are assessed by the test cases. We study whether these
methods are an indicator of the quality of the test suite, so we can leverage them to fulfill our main
objective: help developers improve their test cases.

The novelty of our contribution with respect to the paper of Niedermayr and colleagues is three-
fold. First, we perform a study with novel study objects (19 among the 21 projects studied here are
not analyzed by Niedermayr in his original paper) and a different tool to detect the pseudo-tested
methods. This mitigates both internal and external threats to the validity of Niedermayr’s results.
Second, we perform a novel study about the adequacy of the test suite for pseudo-tested methods.
Third, our most significant novel contribution consists in extensive exchanges and interactions with
software developers to understand the type of testing issues that are revealed by pseudo-tested
methods, as well as the characteristic of pseudo-tested methods that developers consider worth
an additional testing effort.

The key findings discussed in this chapter are as intriguing as the original concept of pseudo-
tested methods. First, we observe that all 21 mature Java projects that we study include such
methods: from 1% to 46% in our dataset. Second, we confirm that pseudo-tested methods are
poorly tested, compared to the required methods: the mutation score of the former is systemati-
cally and significantly lower than the score of the latter. Third, our in-depth qualitative analysis of
pseudo-tested methods and feedback from developers reveals the following facts:

• We assessed the relevance of pseudo-tested methods as concrete hints to reveal weak test
oracles. These issues in the suite were confirmed by the developers, who accepted the pull
requests that we proposed, to fix weak oracles.

• Less than 30% of pseudo-tested methods in a sample of 101 represent an actual hint for
further actions to improve the test suite. Among the 70% considered as worthless an ad-
ditional testing action we found methods not widely used in the code base, automatically
generated code, trivial methods, helper methods for debugging and receiving methods in
delegation patterns.

• The pseudo-tested methods that actually reveal an issue in the interaction between the
program and its test suite are involved in core functionalities, are widely used in the code
base, are used by external clients or verify preconditions on input data.

As discussed in Section 1.2.1 the literature [26] recognizes that understanding why a tradi-
tional mutant is not detected by a test suite is a very hard task. Our work and our exchanges with
developers show that undetected extreme transformations are easier to grasp, yet still challeng-
ing in many cases. Understanding why the test suite is not able to detect such transformations
involves a deep comprehension of the interplay between the test cases and the method that has
been transformed.

In the next chapter, we propose an automatic technique that produces concrete clues on why
an extreme transformation is not detected and how developers can deal with those testing issues.
We also explore what current state-of-the-art test generation techniques can do against unde-
tected extreme transformations. This shall address the fourth and last objective of this thesis.
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CHAPTER 4

SUGGESTIONS ON TEST SUITE
IMPROVEMENTS WITH AUTOMATIC

INFECTION AND PROPAGATION
ANALYSIS

In Chapter 3 we addressed the third objective of this thesis by demonstrating two key phenomena:
(i) the pseudo-tested methods, those where an extreme transformation is not detected, are indeed
the worst tested in the program, and (ii) undetected extreme transformations provide valuable
information to the developers in order to improve their test suite.

Developers can improve a test suite by enhancing an existing test case with additional inputs,
strengthening the assertions, or they can add a new test. Yet, the complex interactions between
the test cases and the program under test make it challenging to decide which action to take. For
example, a given method can be executed only at the end of a long sequence of invocations, or
it can be private and indirectly executed by the test suite. In all these cases, developers need to
spend significant effort to understand the complex chain of invocations between the test cases and
the method, the effects of the method and how the extreme transformation affects the program
state.

The fourth objective of this thesis is to generate concrete test improvement suggestions from
undetected extreme transformations. In this chapter we present Reneri, a tool that automates the
analysis of the test execution on both, the original and the transformed method. The tool also
studies the interaction between the test suite and the method under test to assist the developer in
the improvement of the test suite. Reneri implements a dynamic analysis inspired by the Reach-
ability, Infection, Propagation model (RIP or PIE1)[49, 24, 81]. Reneri takes as input a program,
its test suite and the set of undetected extreme transformations. It then instruments the code of
the program and the test suite to gather information about the program state during test execu-
tions. Reneri compares the information produced during the execution of the original code with
the information from the execution of the extreme transformation.

Reneri determines the root cause of the undetected transformation: (i) the test inputs are not
sufficient to infect the state of the program (no-infection); (ii) the infection does not propagate to
the test cases (no-propagation); (iii) the test cases have a weak oracle that does not observe
the infection (weak-oracle).

Reneri uses the diagnosis information to synthesize suggestions, in plain English, that can be
directly followed by the developers to create a new test input, add a new assertion or create a new
test case.

We perform three systematic evaluations of Reneri: (i) a quantitative analysis of root causes
behind undetected extreme transformations; (ii) a qualitative analysis of the synthesized sugges-
tions through interviews with developers; (iii) a quantitative evaluation of test generation tools to
handle the undetected transformations.

The first evaluation is performed with 15 projects containing 312 undetected transformations.
We observe that there is no dominant root cause to miss a transformation, there is balance be-
tween no-infection, no-propagation and weak oracle.

In the second evaluation, we use Reneri to generate improvement suggestions for a selected
number of undetected extreme transformations in four open-source projects. Developers consid-
ered these suggestions helpful in most cases and also provided feedback on Reneri’s strengths
and weaknesses.

1Propagate Infect Execute
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In the third evaluation, we design and implement two strategies to handle the undetected
transformations: one based on EVOSUITE as a test generation alternative and another using
DSpot as a test case improvement approach. In total, both strategies were able to generate test
cases that detect 77% of the previously undetected extreme transformations.

The key contributions of this chapter are:

• Reneri, a new tool that automates the infection and propagation analysis on Java programs.
The key novelty is that it generates natural language suggestions that can be followed by
the developers to improve their test suite;

• an empirical assessment of the tool with 15 projects and a total of 312 undetected extreme
transformations. This analysis indicates that undetected extreme transformations are mostly
due to a lack of observation;

• a comparison between two strategies based on EVOSUITE and DSpot in the solution of
undetected extreme transformations;

• open science: Reneri is available as open source 2 and empirical data is provided as open
data 3 to facilitate future replication.

The rest of this chapter is organized as follows: first we describe extreme transformations
through the class shown in Listing 1.1 and the test suite shown in Listing 1.2. We discuss how
extreme transformations can be helpful to reveal weaknesses in the test suite; then we define the
main concepts behind the dynamic analysis implemented in our tool and how we adapt the RIP
model conditions to extreme transformations. In the following sections we describe the different
stages of the proposed dynamic analysis and how they are implemented. Then, we expose the
research questions we followed to validate our proposal, and the answers to these questions.
Finally, we discuss the threats to the validity of our study and the conclusions that can be drawn
from the results of this chapter.

4.1 Extreme transformations and test suite weaknesses

In this section we illustrate the possible interactions between a test suite, a program under test
and extreme transformations. We show what types of weaknesses in the test suite these extreme
transformations can reveal. We also illustrate how tailored dynamic analyses can be used to guide
the developers for test suite improvement.

4.1.1 Examples of undetected extreme transformations

Recall Listing 1.1, it shows the VersionedSet class which implements a set that keeps track
of the insertion operations through the version field. Listing 1.2 shows a JUnit test class that
verifies VersionedSet. The test class contains three test methods implementing three test cases.
These test cases are able to reach all but one method in the class under test, that is, at least one
statement of each method is executed by a test case except for getVersion. All tests pass when
executed with the original class code.

When applying Algorithm 2 (discussed in Section 3.1.1) to VersionedSet, using the transfor-
mations listed in Table 3.1 the following extreme transformations are applied: (1) remove the body
of add (line 5) (2) remove the body of incrementVersion (line 13) (3) replace the body of equals
by return true (line 33) (4) replace the body of equals by return false (5) replace the body
of intersect by return null (line 46) (6) replace the body of isEmpty by return true (line 25)
(7) replace the body of isEmpty by return false

Methods size, contains and getVersion are ignored as discussed in Section 2.1.2: size
and contains delegate the execution to similar methods of the underlying instance of ArrayList.
getVersion is a simple getter for the version field and it is not invoked by the test cases. Methods
matching these patterns are automatically detected and skipped. This design decision relies on
the observation that most developers do not target these types of methods directly in test cases.

2https://github.com/STAMP-project/reneri
3https://github.com/STAMP-project/descartes-amplification-experiments
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4.1. Extreme transformations and test suite weaknesses

The objective of the extreme transformations is to run the test class against each transformed
method. This provides an assessment of the test suite ability to reveal these transformations. For
our example, we observe the following: transformations (1), (4) and (5) are detected: at least one
of the test cases fails when the transformation is performed. Meanwhile transformations (2), (3),
(6) and (7) are not detected by the test suite.

4.1.2 Conditions to detect extreme transformations

In order for the test suite to detect an extreme transformation, the following conditions must hold
(we adapt these conditions from the Reachability, Infection, Propagation model): (i) reach: at
least one test case invokes the method modified by the extreme transformation (reaches the
transformed method) (ii) infect: the program state after the method call must be different from
the state observed when no transformation is performed (the transformation infects the state)
(iii) expose: the modification propagates to a point in the top level code of a test case (the
infection propagates to an observable point) (iv) assert: there is an oracle (i.e. an assertion) that
verifies the modified state.

The reach condition depends on the coverage achieved by the test suite. As before, in this
chapter we focus only on the analysis of methods that are reached by the test suite, that is, at
least one statement in their code is executed.

For the infect condition, we consider the following: after the execution of the transformed
method, we observe the state of the return value, the state of the object instance on which the
method has been invoked, and the state of any of the actual parameters. We compare these
values when running the test suite on the original and the transformed versions of the method. If
any value is different between these executions, we consider that the interaction between the test
suite and the extreme transformation can infect the program state.

An infection is exposed if it can be observed from a test case, i.e., if the test case can query
some program states that are affected by the infection at the boundary of the transformed method.
The last condition about assert holds if the test case actually checks a property that is influenced
by this visible state that is affected by the infection.

4.1.3 Analyzing undetected extreme transformations

The analysis of the previous conditions helps to explain why an extreme transformation is not
detected by the test suite. We illustrate this with our example.

The equals method (line 33) is reached by testEquals (line 10). Yet, the extreme transfor-
mation that replaces the body of equals by return true has no effect on the immediate state
of the program, when executed with testEquals. The equals method returns the same value
for the given input and has no other side effect. In fact, the test case makes the method return
true and no other test case makes the method return false. The transformation is reached in
the execution but the program state is not infected by the extreme transformation. The effects are
therefore not propagated and the transformation can not be detected. In this particular example it
is necessary to augment the test suite with a new test case using a new input.

When transformation (2) is applied the method incrementVersion (line 13) and testAdd is
executed, the immediate program state is infected: the value of version is 0 while it is 1 with the
original method body. The infection is propagated to the code of the test case, as the state of the
list variable is affected after the invocation of add in line 6. However, the test case is not verifying
this state element. In this example it is necessary to add a new assertion targeting getVersion.

Both transformations (7) and (6) affect the method isEmpty. The former transformation makes
the method return false. In the context of the testIntersection test case, this transformation
is similar to (3) for the equals method. The program state is not infected. As for the latter trans-
formation, the program state is infected. isEmpty should return false and not true. However,
the return value of intersect turns out to be the same as expected in the original test case and
therefore the infection is not propagated. This analysis could produce two possible outcomes.
The utility of isEmpty for the implementation of intersect could be questioned. No matter the
result of this method, the final effect is the same so the code could require some refactoring. On
the other hand, a completely new test case could handle these two transformations. In particular,
a test case that can target directly the isEmpty method, as it is public.
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According to Definition 3, of the three methods mentioned before, only incrementVersion is
pseudo-tested. equals and isEmpty are both required according to Definition 4, yet they are re-
lated to undetected extreme transformations. This indicates that, beyond pseudo-tested methods,
studied in Chapter 3, undetected transformations in required methods may signal testing issues.

The three examples above also illustrate how we can obtain valuable insights when analyzing
the interactions between test cases and extreme transformations at the immediate program state
after the transformation. This analysis can help developers to decide whether they should add
assertions to an existing test case, or add a new test case or if the program is not fully testable
and requires refactoring.

4.2 Automatic Synthesis of Suggestions for Test Improvement

The automatic synthesis of suggestions for test improvements takes as input a Java program, its
test suite, and a set of undetected extreme transformations. The approach consists in automat-
ically understanding why a given extreme transformation is not detected and in suggesting the
developers a possible test improvement to detect it. These understanding and suggestion syn-
thesis activities are based on the comparison of the test suite execution on the original and the
transformed program.

In this section, we provide precise definitions of the program analysis concepts that we ma-
nipulate to understand the effect of extreme transformations. Then, we detail each step of the
dynamic analysis and test improvement suggestion synthesis.

4.2.1 Definitions

We now rigorously define our terminology for state observation. Our definitions are scoped by
the Java language and the JVM. We believe they could be extrapolated to other languages and
runtimes in general.

Definition 5. Basic state of a value: Let v be a Java typed value, the basic state of v is a set of
property-value pairs BS defined as follows:

• If the type of v is any Java primitive type, any wrapper type or String , then BS = (value, v).

• If v is a reference to an object, then BS contains (null, b) where b is a boolean value indicat-
ing whether v is the null reference.

• If v is a reference to an array, then BS contains (length, l) where l is the length of the array.

• If the type of v implements interfaces java.util.Collection or java.util.Map, then BS
contains (size, s) where s is the size of the collection.

Definition 6. State of value: The state of a given value v is a set of properly-value pairs S defined
as follows:

• S contains all the elements in the basic state of v.

• If the type of v is not a Java primitive type, a wrapper type or String then S contains the
basic state of all values of all fields, declared or inherited by the type of v.

For example, the state of a reference to an instance of the VersionedSet class in Listing 1.1
right after its creation would be: {(null, false) (version, 0), (elements.null, false), (elements.size, 0)}.

As in previous chapters, here we consider a program P to be a set of method and its accom-
panying test suite T to be a set of test cases.

Definition 7. Extreme transformation: We consider an extreme transformation to be a tuple
(m,m′) where m ∈ P , m′ is the transformed variant of m, also called transformed method. m′ is
obtained from m by removing all the instructions in its body and adding a single return instruction
with a predefined value if m returns a value. The predefined values according to the return type
of m are shown in Table 3.1. An extreme transformation is said to be undetected if @t ∈ T that
fails when m is replaced by m′ in P and the tests in T are executed.
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Our analysis takes as input a program P , a test suite T and U , a set of undetected extreme
transformations as defined in Definition 7.

Definition 8. Local immediate program state after a method invocation: The local immediate
state of a program P after the execution of a method m ∈ P is a set of property-value pairs MSm

defined as follows:

• MSm contains all elements in the state (as defined in Definition 6) of all the arguments of m,
if any.

• If m has a return value, (i.e. m is not void), then MSm contains all elements in the state of
the result value as defined in Definition 6.

• If m is not static, then MSm contains all elements in the state (as defined in Definition 6) of
the instance on which m was invoked.

MSm,t denotes the immediate program state after the invocation of m when executing the test
case t ∈ T .

As an example, if a program creates an instance of VersionedSet and then invokes addElement
on this instance with a String "something", the local program state would be: {(null, false)
(version, 1), (elements.null, false), (elements.size, 1), (value, ”something”)}. Notice how this state
includes the state of the V ersionedSet instance and the state of the argument. In this case the
method is void, so the result value is not reflected in the state.

Definition 9. Local immediate program state infection: Letm ∈ P be a method that is reached
(executed) by at least one test case t ∈ T . Let (m,m′) ∈ U be an undetected transformation. We
say that the execution of the test case t provokes an infection of the local immediate program
state under the extreme transformation if MSm,t 6= MSm′,t. That is, there is an infection if we are
able to observe a difference in the immediate program state after the execution of m by t and the
execution of m′ by the same test case t.

Definition 10. Test case state: Let t ∈ T be a test case. Let O be the set of values local to t,
that is, all the values that result from any expression or subexpression in the code of t. Then, TS t

denotes the state of t and it is the union of the states of all values local to t. That is ∪o∈OSo. TS t,m

denotes the state of t when the original method m ∈ P is used and TS t,m′ denotes the state of
t when it is executed with m′. TSm denotes the union of the state of all tests in the test suite
when executing the original method, that is, TSm = ∪t∈T TS t,m. Analogously, TSm′ represents
the union of the state of all tests executed under the extreme transformation.

For example, the state of testEquals in line 10 of Listing 1.2 includes the state of the set
instances referenced by one and two and the result of the result of the invocation to the equals
method.

Definition 11. Program state infection propagation: Let m ∈ P be a method and (m,m′) ∈ U
an undetected extreme transformation. The immediate program infection is said to propagate to
the test case t ∈ T if there is a difference between the state of t while executing m and the state
of t when executing m′. That is if TS t,m 6= TS t,m′ .

As per the definitions above, we study the local state of a program after a method invocation
and the local state of a test case. The former includes the state of the receiver of the method,
the state of the arguments, and the state of the resulting value. The latter includes the state of all
values resulting from an expression in the code of the test case.

4.2.2 Overview of the process for test improvement suggestions synthesis

The global process to understand undetected extreme transformations and to synthesize a test
improvement suggestion operates in three main stages. Algorithm 3 outlines the process. Each
stage is detailed in the following sections:

1. Infection detection: identify the extreme transformations that infect the local immediate state;
(line 1, Section 4.2.3)
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2. Propagation detection: discover which infections reach some test case states; (line 2, Sec-
tion 4.2.4)

3. Test improvement suggestion: generate the report by consolidating the information gathered
in the two previous stages (line 3, Section 4.2.5).

The initial two stages include a dynamic analysis of the program. Each stage instruments the
elements to be observed and executes the test suite with the original code and the transformed
method variant. These executions of the instrumented program record the program and test states
to help the suggestion synthesis. The states are compared to discover the symptom that explains
why each transformation was not detected by the test suite.

Data: P : program under test, T : test suite, U : undetected extreme transformations
1 no-infection, infection← find_infections(P , T , U)
2 no-propagation, weak-oracle← find_propagations(P , T , infection)
3 gen_suggestions(no-infection, no-propagation, weak-oracle)

Algorithm 3: The three stages process implemented by Reneri

The analysis results in the identification of one symptom for each undetected extreme trans-
formation. The identified symptom shall help to explain why the extreme transformation was not
detected by the test suite. We identify the following three types of symptom:

• no-infection (ni): there is no observable difference in the local state of the program after the
method invocation when the test case is executed on the original and transformed methods.

• no-propagation(np): there is an observable difference in the program state after the method
invocation, but there is no observable difference in the state of the test case.

• weak-oracle (wo): the program state infection is propagated to the code of a test case but
no assertion fails.

These symptoms, as well as the intermediate observations of the dynamic program analysis
are consolidated in a final report to provide concrete improvement suggestions to the developers.

4.2.3 Infection detection

Data: P : program under test, T : test suite, U : set of undetected extreme transformations
Result: no-infection: {no-infection symptoms}, infection: {extreme transformations that

produce an infection}
1 function find_infections(P , T , U)does
2 foreach (m,m′) ∈ U do
3 Tm ← { t ∈ T : t executes m }
4 Pi ← instrument m in P
5 MSm ← observe(Pi, Tm)
6 P ′ ← replace m by m′ in P
7 P ′

i ← instrument m′ in P ′

8 MSm′ ← observe(P ′
i , Tm)

9 diff ← get_diff(MSm, MSm′)
10 if diff 6= ∅ then
11 infection ← infection ∪ {(m,m′), diff )}
12 else
13 no-infection← no-infection ∪{(m,m′)}
14 end
15 end
16 return no-infection, infection
17 end
Algorithm 4: Infection detection stage of the process. This stage identifies the extreme
transformations that are not detected due to a no-infection symptom
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1 function observe(P , T)does
2 for i← 1 to N do
3 Si ← execute T with P
4 end
5 return ∪N

i=1Si

6 end

7 function get_diff(S1, S2)does
8 diff ← ∅
9 foreach (p, v) ∈ S1 do

10 if ∃(p, w) ∈ S2 ∧ v 6= w then
11 diff ← diff ∪ {(p, v, w)}
12 end
13 end
14 return diff
15 end
Algorithm 5: Two functions to compute the state invariants across test executions and find
a difference between the state of the original program and the transformed variant.

The goal of the first stage is to determine whether the execution of the tests under an extreme
transformation infects the program state. We instrument the original program and the program
after the application of the extreme transformation to observe the immediate program state in
both situations. If we can observe a difference between the states, then this signals an infection.
The main steps of this stage are outlined in Algorithm 4

Instrumentation

For each method and its transformed variants we observe the following parts of the program state:
the instance on which the method is invoked, all arguments (if any), and the result value (if the
method returns a value).

For primitive values and strings, the observation is trivial. For objects of other types, an ob-
servation means inspecting public and private fields using reflection. In this way the observation
minimizes potential side-effects to the object being observed.

In practice, we obtain these observations by instrumenting the code of the original methods
and its transformed variant (lines 4 and 7 from Algorithm 4). The instrumentation targets the
compiled bytecode of the program.

Listing 4.1 shows an example of how the equals method from Listing 1.1 is instrumented for
observation. The observe function saves the state of the object as defined in Definition 6.

1 public boolean equals(Object other) {
2 boolean result = ... /* original method code */
3 /* Observation */
4 observe(this);
5 observe(other);
6 observe(result);
7 return result;
8 }

Listing 4.1: Method instrumented to observe the immediate program state

Dynamic Analysis

Each extreme transformation (m,m′) ∈ U is observed and analyzed independently. After the
instrumentation, all the test cases known to cover m are executed. With this, we observe the
original program state MSm. The same is done with m′ to obtain MSm′ . If there is at least a
property with a different value in both states, then the states are said to be different (get_diff in
Algorithm 5). The property points to the code location where the infection has manifested: one of
the arguments, the receiver or the result of an invocation.
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If no difference is observed, then the process has discovered a no-infection symptom for the
given extreme transformation.

A method could be invoked several times by the same test case. In our experience, we have
seen methods invoked thousands of times in a single test execution. During the dynamic analysis
of this stage, each method invocation is uniquely identified by its order in the entire method invoca-
tion sequence. This identification differentiates the states from each invocation of m and m′. The
properties from one method invocation are distinguished from the properties of another method
invocation. For example, the result value of the first invocation of m is considered as a distinct
property from the result value of the second invocation of m. With this, the state elements from
the first invocation of m are only compared to the same state elements form the first invocation of
m′ and so on.

During the observations, there may be changes from one execution to the other, that are not
due to the extreme transformations [14]. Such variations may be derived from random number
generation, usage of system time, usage of temporary file paths, and they should be discarded.
As a trivial example, in line 7 of Listing 4.2, the value of start depends on the current system
time. In order to identify such changing values, we execute the tests N times when recording the
states of the original methods and another N times when recorded their transformed variants. N
is a parameter that can be controlled by the user with a default value of 10.

1 @Test
2 public void handlesManyChildren() {
3 StringBuilder longBody = new StringBuilder(500000);
4 for (int i = 0; i < 25000; i++) {
5 longBody.append(i).append("<br>");
6 }
7 long start = currentTimeMillis();
8 Document doc = Parser.parseBodyFragment(longBody);
9 assertEquals(50000, doc.body().childNodeSize());

10 assertTrue(currentTimeMillis() - start < 1000);
11 }

Listing 4.2: Example of a test case using the system time. The value of start changes on every
tests excution

For the state comparison, we keep only the properties that had the same value across all N
executions. So, we actually consider as the state of the program only the set of state elements
that remained unchanged across executions, as can be seen in the get_diff function from Algo-
rithm 5.

If a difference is observed, we can collect the state property, that is, whether the infection can
be observed in a field or the value of the result of the method, in one of the arguments or the
receiver.

After this stage, the undetected transformations can be partitioned in two groups: those ex-
hibiting a no-infection symptom, and those for which the test executions produce the infection of
the immediate program state.

4.2.4 Propagation detection

The goal of this second stage is to determine which program state infections, detected in the
previous stage, are propagated to the test code. In this stage we observe the state of each test
case covering these transformations. At the end, we are able to detect whether the infection could
be observed in the existing test code (weak-oracle) or not (no-propagation). The main steps of
this stage are outlined in Algorithm 6.

Instrumentation

In this stage, the test states are also observed through source code instrumentation. Unlike in the
previous stage, here we instrument the Java source code of the test cases. This instrumentation
observes the test case state as defined in Definition 10. We instrument only the tests that cover
the method of at least one extreme transformation for which a program infection was previously
detected. The code is instrumented to observe the state of the values produced by all expressions
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Data: P , T , infection
Result: no-propagation, weak-oracle

1 function find_propagations(P , T , infection)does
2 foreach (m,m′, diffm) ∈ infection do
3 Tm ← { t ∈ T : t executes m }
4 Tm,i ← instrument Tm

5 TSm ← observe(P , Tm,i)
6 P ′ ← replace m by m′ in P
7 TSm′ ← observe(P ′, Tm,i)
8 difft ← get_diff(TSm, TSm′)
9 if difft 6= ∅ then

10 weak-oracle← weak-oracle ∪{((m,m′), difft)}
11 else
12 no-propagation← no-propagation ∪{((m,m′), diffm)}
13 end
14 end
15 return no-propagation, weak-oracle
16 end
Algorithm 6: Second stage of the process. This stage identifies no-propagation and
weak-oracle symptoms

and subexpressions in the code of the test case. This instrumentation amplifies the observation
capabilities of the test cases, limited before only to the values being asserted by the developers.

Listing 4.3 shows the instrumentation applied to the testAdd test method from Listing 1.2.
We exclude from the observation: constant expressions and expressions on the left side of an

assignment. Generic test method and test classes, that is with type arguments, are not considered
in our current implementation. The instrumentation inserts try...catch blocks in the test code,
in order to observe exceptions that could be thrown during test execution, as it is done in line 13.

1 @Test
2 public void testAdd() throws Exception {
3 try {
4 VersionedSet list =
5 observe(new VersionedSet());
6 observe(list).add(1); // State of list
7 assertEquals(1,
8 observe( // Result of size
9 observe(list).size() // State of list

10 ));
11 }
12 catch(Exception exc) {
13 observe(exc);
14 throw exc;
15 }
16 }

Listing 4.3: Test case instrumented to observe infection propagation

Dynamic analysis

The dynamic analysis in this stage is very similar to the infection detection. Each extreme trans-
formation is analyzed in isolation. The test are executed N times for the original code and N times
for the transformed code. Only the state elements that remained unchanged are kept for the state
comparison. Unlike the previous stage, here the states are recorded from the test code and the
properties point to code locations where developers can actually insert new assertions. If no dif-
ference was observed between the execution of the original method and the transformed method,
then a no-propagation symptom is signaled. The previously detected infection did not propagate
to an observable point in the test code. On the contrary, if a difference is observed, then we signal
a weak-oracle symptom. The existing assertions do not notice the extreme transformation.
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Figure 4.1: Suggestion synthesized for a no-infection symptom related to the equals method in
our example.

4.2.5 Suggestion synthesis

The third stage synthesizes the final suggestions. The suggestions are compiled into a human
readable report. The report includes a detailed diagnosis of the symptom for each extreme trans-
formation and an indication of the potential solution strategies. In this section we discuss how
these reports are generated, the exact information they include and provide an example for each
symptom.

Suggestion for a no-infection symptom

For a given undetected extreme transformation, if no immediate program infection is observed for
all tests case, it means that the test input is not able to generate a state difference (no-infection).
It also means that the method had no observable side-effects over the instance on which it was
invoked or the arguments. The result value of the method is the same across all invocations.
However, there are test cases that reach the method.

Altering the existing input in these test cases could alter the program state so the method can
return a different value or produce a different side effect. So, the suggestion generated in the
process tells developers to create new test cases from the ones covering the method and alter
their input to induce an observable effect.

Consider again the equals method in Listing 1.1. The suggestion given to the developer is to
create a new test case to make the method return a different value using testEquals as a starting
point. Figure 4.1 shows the report.

Suggestion for a no-propagation symptom

A no-propagation symptom unveils an immediate program infection that is not propagated to the
test code. A different program state is observed after one or more invocations of the transformed
method. However, no state difference is observed from the test cases. The effects of the program
infection are masked at some point in the execution path. Observing the changed state requires
a new invocation sequence able to propagate the infection to an observable point from the test.
This means that new test cases are then required to detect these extreme transformations. This
is the suggestion we generate for these symptoms.

However, the method under study could be private and not directly accessible from the test
cases. To address this problem, we find methods that are accessible from the test code, and that
are as close as possible in an invocation sequence to the method we want to target. For this we
perform a static analysis in the code of the project that follows the invocation graph. The analysis
produces the list of public or protected methods inside accessible classes that can be use to reach
the method.

The report for a no-propagation symptom includes a description of the transformation and the
list of methods that should be targeted in the new test cases. If the method is already accessible
then it is the only one listed as target. If it is not accessible, we include the list produced by the
static analysis. The report also includes the test cases executing the method.
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Figure 4.2: Suggestion synthesized for a no-propagation symptom related to the isEmpty
method in our example.

In our example, the isEmpty method has a no-propagation symptom. As, it is accessible from
the test code, the suggestion is to create a new test case targeting isEmpty directly. Figure 4.2
shows the report.

Suggestion for a weak-oracle symptom

If an infection propagation is detected (weak-oracle), it is visible in the result of an expression in
the test code. In the previous stage we have recorded the exact code location of this expression.

The weak-oracle suggestion is to add an assertion at the right location in the test code. We
even provide the developer with the value to be asserted.

The state difference could be the result of the expression itself if it is a primitive type or a string.
But, if the expression returns an object, the difference may be observed in one of its fields. For
instance, in our example from Listing 1.2 in line 21 the result of the expression at the right of the
assignment is a VersionedSet. With the original code, the value of the version field should be 1
while, with the transformed method it is observed to be 0.

If the state difference is observed through an accessible field of the result of the expression or
the result itself, the suggestion is to create an assertion targeting this value.

If the field is not accessible, (i.e. it is private) further actions are required. For this, we perform a
static analysis to find methods that use the identified field. These methods could be not accessible
from the test code. So, we find accessible class members invoking these methods, in the same
way it is done for the no-propagation reports. The final suggestion is to assert the result and
side effects of the final set of methods, invoked in the result of the initially identified expression.

In Listing 1.1, the process suggests the addition of a new assertion targeting the getVersion
method invoked in the list instance of line 7. Figure 4.3 shows the synthesized suggestion.

4.2.6 Implementation

We have implemented our proposal in an open-source tool which we named Reneri. The tool
has been conceived as a Maven plugin and it is able to target Java programs that use Maven
as main build system. The code and all data related to this chapter are available from Github 4

5. Reneri relies on Javassist 3.24.1 [11] for bytecode instrumentation, Spoon 7.1.0 [58] for static
code analysis and Java source code transformation and Descartes 1.2.5 [80] to apply extreme

4https://github.com/STAMP-project/reneri
5https://github.com/STAMP-project/descartes-amplification-experiments
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Figure 4.3: Suggestion synthesized for a weak-oracle symptom related to the incrementVersion
method in our example.

transformations. All stages in the process described before are exposed as Maven goals. Apart
from human readable reports, Reneri also generate files more suitable for automatic analysis that
could be used by external tools.

4.3 Experimental Evaluation

We assess our proposal based on a set of research questions. In this section we present these
questions, the projects we used as study subjects and the results we obtained.

4.3.1 Research questions

RQ1 To what extent does the execution of an extreme transformation infect the immediate pro-
gram state?

With this question we quantify (i) how frequent the no-infection symptom is and (ii) how often
an infection can be observed. We collect the number of extreme transformations exhibiting an
infection across projects.

RQ2 To what extent can test cases propagate the effects of extreme transformations to the top
level test code?

With this question we quantify how frequently no-propagation and weak-oracle symptoms
appear across projects. weak-oracle symptoms might represent assertions missed by develop-
ers. no-propagation symptoms may require the creation of new test cases.

RQ3 Are the suggestions synthesized by Reneri valuable for the developers?

In this question we empirically assess the suggestions generated by Reneri. The goal is
to know if explaining the undetected extreme transformations can actually help developers to
improve their test cases.

RQ4 Can developers leverage test improvement tools to deal with undetected extreme transfor-
mations?

With this question we explore if developers can leverage state-of-the-art automatic test gen-
eration and test improvement tools. We also quantify the effectiveness of these tools against
no-infection, no-propagation and weak-oracle symptoms.
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Table 4.1: Projects used as study subjects. The first column is the name of the project. App
LOC and Test LOC show the lines of code for the application code and the test code respectively.
Tests Shows the number of test cases as reported by Maven. Methods shows the number of
application methods with at least one undetected extreme transformation. Transformations shows
the number of undetected extreme transformations in the project. Min #Test, Max #Test and Avg
#Test refer to the minimum, maximum and average number of test cases in Test that execute
each method in Method

Project App LOC Test LOC Tests Methods Transformations Min #Test Max #Test Avg #Test

jpush-api-java-client 3667 3112 72 2 2 1 5 3
commons-cli 2800 4287 471 3 5 8 154 61
jopt-simple 2410 6940 838 3 7 1 77 26
yahoofinance-api 2925 453 15 3 5 3 4 4
gson-fire 1665 1644 79 4 4 2 17 7
j2html 3460 1250 51 5 5 1 1 1
spring-petclinic 731 687 40 6 6 2 11 5
javapoet 3363 5334 340 10 10 1 104 12
eaxy 3599 1670 204 11 14 1 63 18
java-html-sanitizer 7662 5944 260 13 14 1 134 44
cron-utils 4544 5202 466 16 16 1 207 49
commons-codec 8241 11957 889 20 22 1 96 21
jsoup 12015 7911 680 33 38 1 483 50
TridentSDK 5544 1670 127 35 46 1 17 3
jcodemodel 13752 1544 68 95 118 1 50 11

Global 76378 59605 4600 259 312 1 483 20

4.3.2 Study subjects

We select a set of 15 open-source projects as study subjects to answer our research questions.
All projects use Maven as the build system, are written in Java (8 or lower) and use JUnit(4.12
or lower). We selected these projects systematically as follows. We started from 51 single-
module projects, matching the above conditions and studied by the authors of [76] and included
in Chapter 3. We focus on single-module projects as they have a very well defined structure and
all unit test cases are well located. This eliminates the need to deal with the idiosyncrasies from
specific projects.

For these 51 initial projects, we performed the following actions: (i) Clone the repository
(ii) Switch to the commit of the last stable release (according to the Github API) or the latest
commit if the API produced no result (iii) Build the project using mvn clean test (iv) Execute
Descartes to find undetected extreme transformations.

The last step computes the set of undetected extreme transformations and the test cases
reaching these transformations. The full workflow was successful in only 25 projects. For the
other 26 projects the main reasons of failure were compilation errors, failing tests or specific set-
up requirements or dependencies external to the Maven ecosystem.

From these 25 projects, we kept those having at least one undetected extreme transformation.
We discarded projects with more than 100 application methods with at least one undetected
extreme transformation. With this we eliminated 6 projects where all extreme transformations were
detected and 2 that had more than 100 affected methods. 2 additional projects were discarded
due to technical incompatibilities with Reneri: one of them widely uses generic classes in the test
code, which we do not target in our current implementation. The testing configuration of the other
project clashed with the way we log the program state information during test execution.

Table 4.1 shows the list of projects used in the present study. The columns in the table show
the number of lines of the main source code (LOCs) as measured by cloc6, the number of lines for
the test code, the number of test cases in the project as reported by Maven with the execution of
mvn test, the number of application methods for which at least one extreme transformation was
not detected and the number of undetected extreme transformations for the entire project.

The last three columns show the minimum, maximum and average number of test cases exe-
cuting each method included in the Methods column.

Appendix B shows the code revision used for each project.
All projects included in the study are of small to medium size (731 to 13752 LOCs). In seven

cases, the size of the test suite is comparable or larger to the size of the application code. The

6https://github.com/AlDanial/cloc
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Figure 4.4: Number and proportion of no-infection in orange, no-propagation in yellow and
weak-oracle in green found for each project.

size is not always correlated to the number of test cases which range from 15 to 889. There
are 260 methods with at least one undetected extreme transformation, ranging from 2 to 95 per
project. The total number of transformations studied is 312, distributed from 2 to 118 per project.
In most projects there is at least one transformation that is covered by only one test case. In four
projects all the transformations are executed by more than one test case and in commons-cli the
methods are covered by at least eight test cases. Notably, in five projects, one of the identified
methods is covered by more than 100 test case: in jsoup, one transformation is covered by 483
test cases. The transformations are covered on average by 20 test cases.

4.3.3 RQ1: To what extent does the execution of an extreme transforma-
tion infect the immediate program state?

To answer RQ1 we execute the first stage of Reneri and collect the number of no-infection
symptoms for all our 15 study subjects.

We observe an immediate program infection for 198 out of the 312 undetected extreme trans-
formations. That is, in 63% of the cases, the existing test inputs do trigger an infection of the
local program state at the transformation point. The rest 114 (37%) does not provoke a program
infection. So, the execution of the majority of transformations provokes a program infection.

Figure 4.4 shows the number and proportion of the three symptoms: no-infection, no-propa-
gation and weak-oracle found for each study subject. For instance, jpush-api-java-client
has 50% of cases with no-infection and 50% of cases with weak-oracle. In all but three projects
the no-infection symptoms are less than 52% of all symptoms discovered. In two projects,
commons-cli and yahoofinance-api the execution of all extreme transformations infected the
program state. On the contrary, in j2html all the symptoms are no-infection. So, we observe
that the proportion of symptoms is different from one project to another.

A no-infection symptom occurs when the effects of the transformed method do not differ from
the effects of the original method, with respect to the existing test input. As an example, one of
the methods in j2html is an equals method executed by only one test case where it returns true.
There is no test case where the method should return false, that is, it is never presented with
objects that are not equal.

The other four methods in the same project are all void and are intended to perform a saniti-
zation in the fields of the class instance, if needed. These four methods are executed by only one
test case whose input does not contain a string requiring the sanitization. Thus, all these methods
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are executed and the expected program state is the same under the extreme transformations. So,
here, even when the test code executes these methods, the input does not trigger a behavior
where their effects can be manifested.

One common cause that prevents an immediate program infection is related to boolean meth-
ods. In many cases these methods are tested to return only one value: always true or always
false. In such a situation, the transformed method will have the same result in all invocations as
the original method. This produces a no-infection symptom. In fact, in our study, 129 undetected
extreme transformations were discovered in boolean methods. 65 of them do not provoke a pro-
gram infection. Notably, 19 were created in equals methods and none of them induced a program
infection.

So, boolean methods are related to a large portion of undetected extreme transformations
(41%) and half of them exhibit a no-infection symptom.

Another common scenario comes from methods checking preconditions that are not tested
with corner cases. Listing 4.4 shows one of those methods. As can be seen, these are void
methods that check the value of a boolean expression (line 2), which is the precondition. If the
expression is false, then an exception is thrown as in line 4. So, apart from the exception, these
methods have no other effect. It is common that developers do not create test cases with inputs
that do not meet the precondition.

1 private void checkMaxOneMatch() {
2 if (size() <= 1) return;
3 String message = ...
4 throw new IllegalArgumentException(message);
5 }

Listing 4.4: A no-infection example. The precondition is always satisfied in the test cases. the
corner case is not verified

Where are the infections detected?

Reneri observes program infections in the result of the invocation of the transformed method, its
arguments after the invocation and the instance on which the method was invoked. In this section
we explore how frequently the infection is observed at each location.

The result value can only be observed in non-void methods. In this study we analyze 312
extreme transformations: 254 of them were created in non-void methods. 176/254 transforma-
tions in non-void methods are related to an infection and 167/176 (95%) of these infections are
observed in the state of the result value. So, in non-void methods, the infection is observed in the
result value in a vast majority of cases.

An infection in the arguments can only be observed for parameterized methods. Our study
includes 227 transformations in methods with parameters. 144/227 of them caused an infection.
We observe that 37/144 (26%) of these infections are detected in the state of the arguments. That
corresponds to the best practice that the returned value stores the effect, not the argument.

An effect in the receiver instance can only be observed in non-static methods: 251 transfor-
mations in our study were created in instance methods. 160/251 of them provoked an infection
and 69/160 (43%) can be detected in the state of the receiver instance.

In global terms, of the 198 transformations that caused an infection, 84% (167) can be ob-
served in the state of the result value of the method, 19% (37) can be observed in the state of
the arguments and 35% (69) can be detected in the state of the receiver instance. While, these
numbers are more a reflection of the coding practices than of extreme transformations and even
testing, they still provide valuable insights for developers who wish to understand undetected
transformations.

Table 4.2 shows the details for the study subjects. The columns are divided in three groups.
The first group corresponds to the transformations created in non-void methods, how many of
them caused an infection and how many of them were detected in the state of the result value.
The two other groups show analogous numbers for transformations in methods with parameters,
non-static methods and whether the transformations can be detected in the state of the arguments
and the receiver instance. The numbers for each project do not differ much from the general
view. Only spring-petclinic shows more infections in the state of the arguments (4) less in the
receiver instance (2) and none in the state of the result value.
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Table 4.2: Number of times extreme transformations were detected in the state of the result
value, the arguments or the receiver instance. The table is divided in three groups: non-void
methods, parameterized methods and non-static methods. Each group shows the total number
of transformations, how many of them provoke an infection and if they were detected in the result,
the arguments or the receiver respectively.

Transformations in non-void methods Transformations in parameterized methods Transformations in non-static methods
Project Total Infection In result value Total Infection In parameters Total Infection In receiver instance

jpush-api-java-client 2 1 1 1 0 0 1 0 0
commons-cli 5 5 5 4 4 0 2 2 0
jopt-simple 7 6 6 7 6 0 6 6 0
yahoofinance-api 5 5 5 5 5 0 0 0 0
gson-fire 4 1 1 4 1 1 3 1 1
j2html 1 0 0 1 0 0 5 0 0
spring-petclinic 2 1 0 6 5 4 6 5 2
javapoet 9 2 2 9 1 1 8 1 1
eaxy 12 11 10 7 5 0 14 12 5
java-html-sanitizer 9 7 5 10 5 2 7 6 2
cron-utils 14 8 8 16 8 0 14 7 2
commons-codec 22 12 12 20 10 2 17 8 2
jsoup 27 15 15 24 13 3 33 16 6
TridentSDK 44 22 21 33 17 2 40 20 6
jcodemodel 91 80 76 80 64 22 95 76 42

Total 254 176 167 227 144 37 251 160 69

The existing tests infect the immediate program state at the transformation
point in 63% of the cases. This indicates that undetected extreme transfor-
mations are mostly due to a lack of observation in the test cases. 84% of
transformations infecting the program state result in a different return value for
the transformed method.

Answer to RQ1

4.3.4 RQ2: To what extent can test cases propagate the effects of extreme
transformations to the top level test code?

To answer this question we execute the second stage of our process and collect all no-propaga-
tion and weak-oracle symptoms. We observe an infection that successfully propagates (i.e., a
weak-oracle) for 83 extreme transformations, which represents 42% of the 198 transformations
causing a program infection (and 27% of all transformations in the study). The other 115 trans-
formations that can infect the program are diagnosed as no-propagation, which represents 58%
of the transformations that do infect the program state (37% of all transformations). A general
observation is that a weak oracle is clearly not the main symptom that prevents the test suite from
detecting the extreme transformations.

Here again we notice differences among projects. In Figure 4.4 we notice four projects that do
not have a single case of no-propagation. In three of them, all program infections reached the
test code at locations that can be verified. The other, j2html had no program infection, which was
discussed previously. In 11 projects, the weak-oracle symptoms are close or below 30% of all
symptoms detected. In commons-cli, jpush-api-java-client and cron-utils these symptoms
were majority or reached the 50% of all symptoms discovered for the project.

We hypothesize that the distance to the test code might be a factor that influences no-propa-
gation symptoms. If the methods are far from the test code in the invocation sequence, then
their effects are more likely to get hidden or lost before reaching the test code. To check this hy-
pothesis, we compute the stack distance from the method to the test case for all transformations.
We consider the stack distance to be the number of activation records in the method call stack
between the activation record of the test case and the activation record of the method related to
the transformation. If the method is invoked more than once in the test suite, we keep the lowest
stack distance.

Figure 4.5 shows the distributions of these distance measures between the test and the trans-
formed method. Yellow areas correspond to no-propagation symptoms and green areas corre-
spond to weak-oracle symptoms. The higher the values, the larger the stack distance is. The
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Figure 4.5: Distributions of the stack distance from the methods to the test cases for no-
propagation symptoms (yellow) and weak-oracle symptoms (green).

figure also shows the mean value for each distribution. For example, in commons-cli the stack
distances for no-propagation symptoms range from three to six with a mean value of 4.5 while
all the weak-oracle symptoms had a distance of five activation records.

We observe that, in most cases, the mean stack distance of weak-oracles tends to be lower
than the mean distance for no-propagation symptoms. This evidence confirms our hypothesis:
transformations that occur far from the tests tend to propagate less than the others. Smaller
projects tend to behave differently. The few weak-oracle cases that have higher stack distances
occur on small projects, e.g., java-html-sanitizer or jopt-simple where they have the same
distance. Larger projects,jsoup, TridentSDK, jcodemodel show a more significant tendency to
the stack distance difference between these two symptoms.

no-propagation examples

An infection is not propagated when the code executed between the method invocation and the
top level code of the test case masks the state infection. In many cases this happens for methods
that are reached through a long sequence of invocations. An example from commons-cli is given
in Listing 4.5: when the body of isLongOption (line 2) is replaced by return false, the test
suite does not fail. This method is reached through a sequence of five invocations starting from
parse (line 16). This sequence of invocations is triggered only when specific conditions are met
(line 12). isLongOption is invoked 32 times by seven test cases in the test suite. The method
is expected to return true in only one invocation. When the method is transformed to return only
false, the infection is observed for the invocation in which it should have returned true. However, in
this case, the isShortOption (line 5) method is executed and returns true. Therefore, the return
value of isOption (line 4) does not change in comparison with the expected result. Since these
methods have no other effects, the infection is not propagated.

1 public class DefaultParser {
2 private boolean isLongOption(String token) {...}
3

4 private boolean isOption(String token){
5 return isLongOption(token) || isShortOption(token); }
6

7 private boolean isArgument(final String token) {
8 return !isOption(token) || isNegativeNumber(token); }
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9

10 private void handleToken(final String token) {
11 ...
12 else if (currentOption != null && currentOption.acceptsArg() && isArgument(token))
13 ...
14 }
15

16 public CommandLine parse(...){
17 ...
18 if (arguments != null) {
19 for (final String argument : arguments) {
20 handleToken(argument);
21 }
22 }
23 ...
24 }
25 }

Listing 4.5: An example of no-propagation in commons-cli where the execution masks the effects
of the transformed method

A no-propagation occurrence might signal the need for code refactoring. In commons-cli we
found that the body of hasValueSeparator declared in the Option class (line 1 in Listing 4.6) could
be replaced by return true and, for the test cases in which the method should have returned
false, the change in the program state does not reach the top level test code. It is interesting to
notice that this is a public method, not directly assessed by any test case and it is used only by a
private method in the same class. In the code of processValue, some specific actions are taken
(lines 12 to 14) if the instance of Option has a value separator. If hasValueSeparator returns
the wrong value, that is, the method returns true when it should have been false the effects of
processValue are the same. The separator is not found in the given parameter (line 9), and the
actions are never taken as the condition of the while loop in line 10 is false. So, in this example,
hasValueSeparator has no effect whatsoever and the code could be refactored. Another way to
solve the problem is to directly assess the method, as it is public.

1 public boolean hasValueSeparator() {
2 return valuesep > 0;
3 }
4

5 private void processValue(String value)
6 {
7 if (hasValueSeparator()) {
8 char sep = getValueSeparator();
9 int index = value.indexOf(sep);

10 while (index != -1) {
11 if (values.size() == numberOfArgs - 1) break;
12 add(value.substring(0, index));
13 value = value.substring(index + 1);
14 index = value.indexOf(sep);
15 }
16 }
17 add(value);
18 }

Listing 4.6: An example of a no-propagation symptom in commons-cli that might require
refactoring

In general, a no-propagation symptom might be solved with the creation of new test cases
which are closer, in the invocation chain, to the method in question. This increases the chances
of immediate program infections to propagate to the top level code of the test case.

weak-oracle examples

When the infection is propagated to the test code we discover a weak-oracle symptom. The
infection propagations are observed in the result value of the expressions in the code of the test
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cases.
Listing 4.7 exposes an example of a weak-oracle symptom in jcodemodel.
The annotate methods of the class JPackage, declared in lines 5 and 15 have both a such a

symptom. The body of these two methods can be replaced by return null and the test suite ex-
ecutes without noticing the change. These methods are executed by the testPackageAnnotation
test case shown in line 27. This test seems to be designed to actually verify the package anno-
tation functionality. Both transformations do infect the program state, as they make the method
return null, which is not the expected value. The infection reaches the test code in line 29, where
the method is invoked and its result could be directly asserted. The transformation to the method
in line 15 can be also observed in line 30. This method has a side effect on the JCodeModel
instance by adding a reference to the annotation class. In the JCodeModel class, these references
are stored in the m_aRefClasses field (line 22). Our process notices that this field does not have
the expected size when the transformation is executed, as it misses a reference to Inherited.
The oracle in the same line 30 only checks if the code model is syntactically correct. It does not
check if the package has been annotated.

1 public class JPackage ... {
2 private final JCodeModel m_aOwner;
3 private List<JAnnotationUse> m_aAnnotations;
4

5 public JAnnotationUse annotate (AbstractJClass aClazz) {
6 JCValueEnforcer.isFalse(isUnnamed (), "...");
7 if (m_aAnnotations == null) {
8 m_aAnnotations = new ArrayList<>();
9 }

10 JAnnotationUse a = new JAnnotationUse(aClazz);
11 m_aAnnotations.add(a);
12 return a;
13 }
14

15 public JAnnotationUse annotate (Class aClazz) {
16 return annotate(m_aOwner.ref(aClazz));
17 }
18 ...
19 }
20

21 public class JCodeModel {
22 private Map<Class<?>, JReferencedClass> m_aRefClasses = new HashMap<> ();
23 ...
24 }
25

26 @Test
27 public void testPackageAnnotation () {
28 JCodeModel cm = new JCodeModel();
29 cm._package("foo").annotate(Inherited.class);
30 CodeModelTestsHelper.parseCodeModel(cm);
31 }

Listing 4.7: Example of weak-oracle symptoms in public methods in jcodemodel

4.3.5 The role of testability

Testability issues require modifying or refactoring the application code to be solved. We inspected
the 58 transformations of the first nine projects in Table 4.1. We manually wrote a test case to
detect each transformation. We found only two cases where the application code must be modified
to address the symptom, one of them is exposed in Listing 4.8 and the other in Listing 4.9. We
now discuss both findings.

Listing 4.8 shows the example of a private void method named getFromCache in gson-fire.
It is used by a public method (lines 16 and 21) to retrieve a cached result. Under extreme trans-
formations the instructions of this method are replaced by return null. The immediate program
state is infected for some invocations of the method where the result value should be non-null.
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When the cached result is null, the actual value is computed once again, therefore the returned
value of the public method is the same. The effects are propagated and observed in the cache
field (line 24). Under the transformation no value is ever cached and the collection remains empty
when it should contain some elements. However, there is no way to verify the effects of this
method from the test code.

Reneri is able to get the size of cache via reflection, but the field is not accessible. In order
to catch the extreme transformation the test code needs to check the content of cache. The only
way to achieve this is to modify the code of the class by adding a new accessor or changing the
visibility of cache.

1 public abstract class AnnotationInspector {
2 private ConcurrentMap cache = new ConcurrentHashMap();
3

4 private Collection getFromCache(Class clazz, Class annotation) {
5 Map annotationMap = cache.get(clazz);
6 if(annotationMap != null){
7 Collection methods = annotationMap.get(annotation);
8 if(methods != null)
9 return methods;

10 }
11 return null;
12 }
13

14 public Collection getAnnotatedMembers(Class clazz, Class annotation){
15 if(clazz != null) {
16 Collection members = getFromCache(clazz, annotation);
17 if (members != null) {
18 return members;
19 }
20 //Cache miss
21 members = getFromCache(clazz, annotation);
22 if (members == null) {
23 ...
24 ConcurrentMap storedAnnotationMap = cache.putIfAbsent(clazz, newAnnotationMap);
25 ...
26 }
27 }
28 return Collections.emptyList();
29 }
30 }

Listing 4.8: Example of a testability issue preventing the solution of a weak-oracle symptom in
gson-fire

Listing 4.9 shows isParseable, a private static boolean method from yahoofinance-api. This
method is used by nine other public methods that follow the same pattern as the one shown in line
7. If the input value can not be parsed as per the result of isParseable, getBigDecimal returns
a default value. The default value is also returned if the actual parsing throws an exception (line
15).

Some test cases in the existing test suite use "N/A" as input for getBigDecimal. In the exe-
cution of these test cases isParseable returns false. When the body of isParseable is changed
to return true no test case notices the change. What happens is that, when the method is sup-
posed to return false, as in the case of "N/A", the actual parsing (line 14) throws an exception,
which is captured in the body of getBigDecimal (line 15) and then the method returns the default
value. So getBigDecimal ends up returning the same value it is expected to return. The effects
of the extreme transformation are able to infect the program state at the end of the invocation
of isParseable, as it returns true instead of false. However the effects are not propagated to
getBigDecimal that returns the expected value.

So, no matter the outcome of isParseable, the result of getBigDecimal is the same. Since
isParseable is private it can not be tested directly. Even when the program state is infected
when the transformation is executed by the test suite, the effects do not propagate any further. As
there is no other effect than the result value, an error introduced inside isParseable can not be
observed.
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1 public class Utils {
2 private static boolean isParseable(String data) {
3 return !(data == null || data.equals("N/A") || data.equals("-")
4 || data.equals("") || data.equals("nan"));
5 }
6

7 public static BigDecimal getBigDecimal(String data) {
8 BigDecimal result = null;
9 if (!Utils.isParseable(data)) {

10 return result;
11 }
12 try {
13 ...
14 result = new BigDecimal(data).multiply(multiplier);
15 } catch (NumberFormatException e) {
16 log.debug("Failed to parse: " + data, e);
17 }
18 return result;
19 }
20 }

Listing 4.9: Example of a non-testable method in yahoofinance

We observed only two testability issues among 58 undetected extreme transformations. This
may indicate that the lack of testability does not appear to be a major influence for extreme trans-
formations to pass unnoticed by the test cases.

42% of the transformations infecting the program state, propagate to an ob-
servable point. In general, methods with weak-oracle symptoms are closer to
the test cases than no-propagation in the invocation sequence. Transforma-
tions that do not propagate may require new test cases closer to the method.
Testability issues may prevent weak-oracle symptoms to be solved without
refactoring.

Answer to RQ2

4.3.6 RQ3: Are the suggestions synthesized by Reneri valuable for the
developers?

With RQ3 we perform a qualitative evaluation of the suggestions synthesized by Reneri. We want
to know if developers find these suggestions relevant and helpful to fix undetected transformations.
To answer this question we target four open-source projects for which we are able to directly
consult developers who have a strong knowledge about the code.

For each project we select up to six undetected extreme transformations for which Reneri gen-
erated a suggestion. We manually select these transformations, so that they represent interesting
testing cases for the developers. Table Table 4.3 shows the projects and the symptoms of the
selected issues.

For each issue we create a form containing (i) a link to the automatically generated report
(similar to those shown in Figures 4.1, 4.2 and 4.3); and (ii) a set of questions.

The questionnaire can be consulted in Appendix C.

Qualitative feedback from the developers

Table 4.4 summarizes the developers’ feedback. We divide the answers from the developers ac-
cording to the three types of symptom. Of the 23 issues that were discussed, 18 were considered
as relevant or of medium relevance. The developers considered the report to contain helpful in-
formation in 18 cases, and even thought that the exact testing solution was given in 4 cases. In
all cases, the developers, could emit a verdict about all the testing issues in around 30 minutes.
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Table 4.3: Projects involved in the empirical validation with developers
Project Issues ni np wo

Funcon4J 5 2 3 0
greycat 6 2 2 2
sat4j-core 6 2 2 2
xwiki-commons-job 6 2 3 1

Total 23 8 10 5

Table 4.4: Summary of the feedback given by developers
ni np wo Total

The issue in the description is:

relevant 4 5 2 11
of medium relevance 2 4 1 7
not important 1 1 1 3
not really a testing issue 1 1 2

The suggestion provided:

points to the exact solution 3 1 4
provides helpful information 4 7 3 14
is not really helpful 1 2 3
is misleading 1 1 2

Developers solve the issue by:

adding a new assertion 1 4 1 6
slightly modifying a test case 1 1
creating a new test case 3 1 1 5
performing other actions 3 5 3 11
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Developers considered that six transformations can be solved with the addition of an assertion,
only one by slightly modifying an existing test case and five with the creation of a new test case.
In 11 cases developers considered that the transformations should be solved by other actions.
These actions included, for example, a complete replacement of the assertions in a test case,
or a combination of new input and new assertions, or, instead of adding a new verification to an
existing test case, developers would prefer the create a new test case by repeating the same
code with the new assertion. The solutions are in fact influenced by the testing practices of each
developer.

Even when developers would not modify the test code as suggested, the report provides infor-
mation that is generally considered as helpful and the proposed solution as a valid starting point
to ease the understanding of the testing issue.

The developers found that the synthesized suggestion was not helpful in three cases, two
no-propagation and one no-infection. In two of those cases, the developers argue that the
suggestion should contain more information about the state differences between the original and
the transformed method. For example, developers would like the tool to identify the instruction in
the test code that triggered the method invocation for which the state difference was observed.
The third case was a method related to the performance of the code. The developer argued that
a test case for this method would be “artificial”.

Two suggestions were considered as misleading. In one case, the issue could not be repro-
duced by the developer. In the other, the developer could not make the connection between the
program state difference and the test cases executing the method. So, developers find the sug-
gestions not helpful or misleading when they fail to understand what caused the program state
difference between the executions of the original and the transformed method. Suggestions could
be further improved with additional information, for example, the stack trace containing the invo-
cation sequence from the test code to method in no-propagation symptoms.

Actual solutions given by the developers

Developers actually solved 13 of the issues with 11 commits. The details of the commits are avail-
able online 7. One issue in funcon4j was not solved as it was related to a testability problem. No
issue was fixed for greycat due to non-technical and unrelated reasons. In this section we pro-
vide two examples of how developers solved the extreme transformations and how the solutions
relate to the synthesized suggestion.

In project funcon4j the developer was presented with a no-infection symptom. The sug-
gestion, was to create a variant of the existing test case to make the method produce a dif-
ferent value. In the questionnaire, the developer answered that the issue can be solved with
the addition of a new assertion. Listing 4.10 shows the actual test modification: the addition
of line 2. The commit can be seen at https://github.com/manuelleduc/Funcon4J/commit/
63722262313fb2dac5b516bbae5f04e0502e7f26.

The developer added a new assertion but she also included a new input derived from the exist-
ing code, using a small modification. The actual test improvement corresponds to the suggestion
generated by Reneri.

1 test("{a = 1, b = 2} > {b = 1, a = 1};;","true");
2 test("{a = 1, b = 1} > {b = 1, a = 1};;","false"); // Fix
3 test("\"abc\" > \"abd\";;","false");

Listing 4.10: Example of a test fix created by a developer based on the information contained in
the Reneri report

In Listing 4.11 we show an example of a test code fix created by a developer of sat4j-core,
with the help of Reneri. The original test code is in lines 2 and 8. The report, available at https://
github.com/STAMP-project/descartes-amplification-experiments/blob/master/validation/
sat4j-core/selected-issues/6.md pointed at line 6. The extreme transformation made the
method invocation produce a null value, while the original code should produce a non-null array.
The test fix can be seen between lines 11 and 21. The developer confirmed that Reneri provided
the exact solution and added the proposed assertion (cf. 18). An extra assertion was also added
in the following line.

7https://github.com/STAMP-project/descartes-amplification-experiments/blob/master/validation/commits.md

87

https://github.com/manuelleduc/Funcon4J/commit/63722262313fb2dac5b516bbae5f04e0502e7f26
https://github.com/manuelleduc/Funcon4J/commit/63722262313fb2dac5b516bbae5f04e0502e7f26
https://github.com/STAMP-project/descartes-amplification-experiments/blob/master/validation/sat4j-core/selected-issues/6.md
https://github.com/STAMP-project/descartes-amplification-experiments/blob/master/validation/sat4j-core/selected-issues/6.md
https://github.com/STAMP-project/descartes-amplification-experiments/blob/master/validation/sat4j-core/selected-issues/6.md


Chapter 4 – Suggestions on Test Suite Improvements with Automatic Infection and Propagation Analysis

1 // Original code
2 clause.push(-3);
3 solver.addClause(clause);
4 int counter = 0;
5 while (solver.isSatisfiable() && counter < 10) {
6 solver.model();
7 counter++;
8 }
9

10 // Fix created by the developer
11 clause.push(-3);
12 solver.addClause(clause);
13 int counter = 0;
14 int[] model;
15 while (solver.isSatisfiable() && counter < 10) {
16 solver.model();
17 model = solver.model();
18 assertNotNull(model); //Fix
19 assertEquals(3, model.length); //Fix
20 counter++;
21 }

Listing 4.11: Example of the addition of an assertion guided by the generated report

Our empirical evaluation shows that the synthesized suggestions are helpful
for developers. In the best case, Reneri even points to the exact solution. The
real test fixes created by the developers to solve the testing problems are in
line with the suggestions synthesized by Reneri.

Answer to RQ3

4.3.7 RQ4: Can developers leverage test improvement tools to deal with
undetected extreme transformations?

With this question we explore if state-of-the-art test generation tools can help developers to deal
with undetected extreme transformations, i.e. they can generate tests that detect the extreme
transformations missed by the original test suite.

With current tools, we have two possibilities: generate test cases from scratch targeting the
methods in question; or, improve existing test cases that are known to reach the method in the
extreme transformation. The expected benefit of the first alternative is that test cases are as
close as possible to the method. This increases the chances to observe the state differences.
Also, some developers prefer to preserve existing test cases (cf.4.3.6). The second option, uses
existing test cases as seeds for the generation process. These tests already have inputs able to
execute the method in the transformation. These test cases may just need small code adjustments
to make the method return a different value or to actually verify the effects of the transformation.

Based on the aforementioned options, we implemented two improvement strategies. One
strategy is based on EVOSUITE [27], a state-of-the-art tool for automatic test generation in Java. It
generates test cases from scratch and uses coverage and weak mutation to assess the generated
test suites. The other strategy is based on DSpot [14], is a test improvement tool that can use the
ratio of undetected extreme transformation as the objective function.

We applied both strategies to the projects listed in Table 4.1. Since both tools produce non-
deterministic results, we attempted the improvement process for each project and strategy ten
times.

We consider an undetected extreme transformation to be solved by one strategy if it is detected
by the test cases generated in any of the improvement attempts. In our experiments we evaluate
both strategies in terms of the stability of the results, that is, if they obtain similar results in all
attempts. We also analyze the absolute number of transformations solved by each strategy in
total and considering the type of symptom.
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In this section, we briefly summarize how each strategy selects the input and configures the
tools. Then we discuss the results we obtained and their implications.

Detecting extreme transformations with EVOSUITE

EVOSUITE is a test generation tool for Java classes. It implements a search-based approach to
produce test suites from scratch. As a fitness function, EVOSUITE maximizes a combination of
coverage criteria and weak mutation score. EVOSUITE also minimizes the generated test suite to
keep only test cases that are valuable according to the fitness function. The tool adds assertions
to the test cases based on the observation of the test executions.

In our experiment we identified a set of methods for each project as targets for EVOSUITE. The
set was computed as follows: (i) We include all methods with at least one undetected extreme
transformation (ii) If there is a private method in the set, we remove it and add all the accessible
methods in the project that could be used instead. This is done in the same way as in stages 2 and
3 of Reneri. (iii) If there is a method declared in an abstract class or an interface (default interface
methods in Java 8+), then we remove the method from the targets and add all its implementations
instead. (iv) The two previous steps are repeated until no further change can be done to the set.

The second column in Table 4.5 shows the number of target methods identified for each study
subject. Recall that the goal is to create test cases specifying the methods with undetected
extreme transformations using these identified target methods as entry points.

Next, we provide the target methods as inputs for EVOSUITE. We use the default parameter
configuration for the tool. The outcome, for a specific project, is a set of test cases generated for
all the target methods in that project. As final step, we run the generated test cases to determine
if the EVOSUITE tests can detect the extreme transformations that were previously undetected.

Detecting extreme transformations with DSpot

DSpot is a tool designed to improve test cases written by developers. It takes as input existing test
cases and gradually improves their fault detection capabilities. DSpot transforms the input of the
test cases by altering literals or adding and removing method calls. Then, new regression asser-
tions are inserted to the modified test cases. The assertions are built using the values observed
through existing getter methods. DSpot only keeps the generated test cases that increment the
mutation score of the existing test suite. As a proxy for the mutation score, we used the ratio of
detected extreme transformations in the code covered by the test to improve.

It is prohibitively expensive to use DSpot and improve all test cases executing one method
and do the same for every method with undetected extreme transformations. Recall that some
of these methods are executed by more than 100 test cases (cf. Table 4.1). For this reason, we
instruct DSpot to improve the test case that is the closest, in a sequence call, to a method where
there is an undetected extreme transformation.

We detect the closest test case by executing the test suite and obtaining the stack trace from
any method in a test class to the application methods with undetected extreme transformations.
For each application method, the closest test case is the test method that produces the shortest
stack trace. Different methods may be executed by the same test cases. In some situations, the
closest test case to more than one method is the same. In such a situation we keep the same test
case for these methods.

The selection results in a set of test cases for each project. The third column in Table 4.5
shows the number of test cases identified for each study subject.

An attempt to solve the undetected extreme transformations for a given project, consists in
executing DSpot for each test case in the identified set. We used all DSpot search operators
(amplifiers) available (by default DSpot only adds regression assertions to existing test cases)
and performed three amplification iterations for each target. The output of one attempt is the
combination of all the improved test cases.

Experimental Results

Figure 4.6 shows the distribution of the relative improvement obtained for each project. The y-
axis is the percentage of undetected extreme transformations that the new test cases can detect.
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Table 4.5: Targets identified for automatic test generation and test improvement. The Target
methods column shows the methods identified as targets to be used with EVOSUITE. The Target
test cases are the test cases selected for improvement with DSpot

Project Target methods Target test cases

jpush-api-java-client 2 2
commons-cli 6 3
jopt-simple 2 3
yahoofinance-api 11 1
gson-fire 7 3
j2html 3 2
spring-petclinic 6 5
javapoet 10 10
eaxy 21 8
java-html-sanitizer 13 11
cron-utils 28 10
commons-codec 30 18
jsoup 60 26
TridentSDK 49 13
jcodemodel 147 25

Total 395 140

The figure also shows the number of extreme transformations detected for the worst and best
attempts.

Both strategies produce test improvements for 11/15 projects. Eight projects are improved
by both strategies. No strategy can generate tests that fix undetected extreme transformations
in jpush-api-java-client. DSpot produces the best improvement in one attempt for seven
projects while EVOSUITE achieves the best improvement for six projects. The same best improve-
ment is obtained for java-html-sanitizer and jpush-api-java-client.

No strategy reaches an improvement beyond 85% in one attempt. DSpot reaches this percent-
age by handling 6/7 extreme transformations in jopt-simple. The EVOSUITE strategy achieves
an 83% improvement handling 5/6 extreme transformations in spring-petclinic. In the largest
project, jcodemodel, the EVOSUITE strategy handles 64/118 transformations while DSpot handles
89/118. The improvement is below 75% for both cases.

This means that no strategy was considerably better than the other in terms of handling all
projects and even all the transformations on each project.

Inspecting the improvement distributions we notice that DSpot has better convergence in all
projects but jcodemodel and jsoup. This is a consequence of using the existing test cases as
seeds for the generation process. Those test cases have been created by developers, therefore,
they are close to a local optimum and DSpot, as it implements a local search approach, is able to
converge more frequently to this solution.

We computed the set of solved extreme transformations for each strategy. That is, the extreme
transformations detected in at least one attempt in one project by each strategy. EVOSUITE solves
146 (47%) of all 312 transformations. On its side, the DSpot strategy solved 180 (58%). Only 87
(28%) transformations are solved by both strategies. A total of 239 (77%) are solved by any of the
strategies, which leaves 73 (23%) transformations unsolved.

Figure 4.7 shows a Venn diagram displaying the relationship between the sets of extreme
transformations solved by both tools. The set of unsolved transformation is also provided as a
reference.

DSpot solves more extreme transformations, but no strategy solves more than 60% of all
transformations. The intersection between the transformations solved by both strategies is low,
below 30%. Only when both results are combined, we are able to solve 77% of all transformations
but still remains below 80%. This is a direct result of the very diverse nature of undetected extreme
transformations. A subset of the transformations is more challenging for one of the strategies than
the other.

Table 4.6 shows the set of solved extreme transformations by symptom (It is only a coincidence
that the intersection for all symptoms is 29). DSpot performs better for all symptoms but more
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Table 4.6: Solved transformations according to their symptom. Second and third columns show
the transformations solved by EVOSUITE and DSpot respectively. Intersection shows the number
of transformations solved by both tools and Union shows those transformations solved by at least
one strategy.

Symptom EVOSUITE DSpot Intersection Union

no-infection 53 57 29 81
no-propagation 55 66 29 92
weak-oracle 38 57 29 66

Total 146 180 87 239

notable for weak-oracle symptoms. These are precisely the symptoms that Reneri identifies that
benefit the most from modifying existing test cases, in particular, the addition of new assertions,
which is one of the main features of DSpot.

DSpot produces better results because it uses the test cases written by developers as seed
and its fitness function considers extreme tranformations. We believe that this strategy is closer
to what a developer would do. The developer actions exemplified in 4.3.6 provide supporting
evidence in this sense. However, the strategy based on EVOSUITE does not fall too much behind.
A better fine-tuning of the tool and the incorporation of a notion of extreme transformation to the
fitness function may help the strategy achieve a much better result.

This opens the opportunity for a more targeted solution that fully exploits the results of Reneri.
Nevertheless, we observe in 4.3.6 that developers have strong and diverse opinions when it
comes to refactor the testing code to deal with extreme transformations. Providing them with
helpful and well localized information extracted from dynamic and static analysis and perhaps
small code changes might be the adequate solution instead of a fully automated approach.

Examples

In this section we illustrate, with two examples, scenarios in which only one of the strategies was
successful.

Listing 4.12 shows the conditionC0 method in line 3. This is a private method of a class in
commons-codec. The body of the method can be replaced by return false and no test case fails.
Notice that this method is reachable through a sequence of at least three invocations comprising
non-trivial conditions. So, generating an input that even makes the execution reach the method is
already difficult.

1 public class DoubleMetaphone ... {
2

3 private boolean conditionC0(final String value, final int index) {
4 if (contains(value, index, 4, "CHIA")) {
5 return true;
6 } else if (index <= 1) {
7 return false;
8 } else if (isVowel(charAt(value, index - 2))) {
9 return false;

10 } else if (!contains(value, index - 1, 3, "ACH")) {
11 return false;
12 } else {
13 final char c = charAt(value, index + 2);
14 return (c != ’I’ && c != ’E’) ||
15 contains(value, index - 2, 6, "BACHER", "MACHER");
16 }
17 }
18

19 private int handleC(final String value, final DoubleMetaphoneResult result, int index) {
20 if (conditionC0(value, index)) { // very confusing, moved out
21 result.append(’K’);
22 index += 2;
23 }
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24 ...
25 }
26

27 public String doubleMetaphone(String value, final boolean alternate) {
28 ...
29 while (!result.isComplete() && index <= value.length() - 1) {
30 switch (value.charAt(index)) {
31 ...
32 case ’C’:
33 index = handleC(value, result, index);
34 break;
35 ...
36 }
37 ...
38 }
39 ...
40 }
41

42 public String doubleMetaphone(final String value) {
43 return doubleMetaphone(value, false);
44 }
45 }

Listing 4.12: An extreme transformation in conditionC0 was solved by EVOSUITE

To solve this transformation, DSpot is given as input a test case whose code is composed
of statements like the ones shown in Listing 4.13. These instructions correspond to custom as-
sertions verifying the output for an specified input. In front of such a test case, DSpot starts to
randomly alter the literal values in the test code. This random process did not produce anything
of value to solve the transformation.

1 ...
2 assertDoubleMetaphoneAlt("MKFR", "MacCafferey");
3 assertDoubleMetaphoneAlt("STFN", "Stephan");
4 ...

Listing 4.13: Extract of the test case given as input to DSpot

On its side EVOSUITE generated the test case shown in Listing 4.14. It creates the required
instance and triggers the required behaviors. An interesting fact to notice here is that the gener-
ated test case is effective only because the tool reused as input a string (line 15) that appeared in
the code of the conditionC0 method (Listing 4.12 line 2).

1 DoubleMetaphone doubleMetaphone0 = new DoubleMetaphone();
2 String string0 = doubleMetaphone0.doubleMetaphone("MACHER");
3 assertNotNull(string0);
4 assertEquals("MKR", string0);
5 assertEquals(4, doubleMetaphone0.getMaxCodeLen());

Listing 4.14: Solution given by EVOSUITE

Listing 4.15 shows the hasHeaderComment method from jcodemodel. The body of this method
can be replaced by return false and no test case would notice the change. The method itself is
very simple, but its result depends on the state of the receiver instance which can be only modified
by invoking headerComment (line 9). So, to being able to solve the transformation, the test case
must invoke headerComment first and then hasHeaderComment to make the latter method return
true.

1 public class JDefinedClass ... {
2 private JDocComment m_aHeaderComment;
3

4 public boolean hasHeaderComment ()
5 {
6 return m_aHeaderComment != null;
7 }
8
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9 public JDocComment headerComment ()
10 {
11 if (m_aHeaderComment == null) {
12 m_aHeaderComment = new JDocComment (owner ());
13 }
14 return m_aHeaderComment;
15 }
16 ...
17 }

Listing 4.15: An extreme transformation in hasHeaderComment was solved by DSpot

In all attempts EVOSUITE failed to produce a test case with the right method sequence call.
On its side, DSpot was given as input the test case shown in Listing 4.16 and produced the test
case shown in Listing 4.17.

1 final JCodeModel cm = new JCodeModel ();
2 final JDefinedClass jClass = cm._class ("EmptyNarrowed", EClassType.INTERFACE);
3 final AbstractJClass hashMap = cm.ref (java.util.HashMap.class).narrowEmpty ();
4 jClass.field (JMod.PRIVATE, cm.ref (Map.class).narrow (String.class), "strMap",

JExpr._new (hashMap));
5 CodeModelTestsHelper.parseCodeModel (cm);

Listing 4.16: Input given to DSpot

Notice how, in the resulting test case, an invocation to headerComment is inserted in line 5.
Later in the code hasHeaderComment is used by DSpot to observe the object and thus capturing
the transformation.

1 final JCodeModel cm = new JCodeModel();
2 final JDefinedClass jClass = cm._class("EmptyNarrowed", EClassType.INTERFACE);
3 final AbstractJClass hashMap = cm.ref(HashMap.class).narrowEmpty();
4 JFieldVar o58_8 = jClass.field(JMod.PRIVATE, cm.ref(Map.class).narrow(String.class),

"strMap", JExpr._new(hashMap));
5 JDocComment o58_13 = jClass.headerComment();
6 ...
7 assertTrue(jClass.hasHeaderComment());
8 ...

Listing 4.17: Solution obtained with DSpot

As seen in the previous examples, the effectiveness of each tool is influenced by both, the
application code and the test code.

DSpot solves 58% of the undetected transformations, while the EVOSUITE
solves 47% . None of state-of-the-art test generation tools can fix all testing
issues revealed by extreme transformations.

Answer to RQ4

4.4 Threats to validity

As said before, we believe that the definitions included in Section 4.2.1 and the entire process
implemented in Reneri can be extrapolated to other programming languages and runtimes. How-
ever we can not assure that the results we have obtained for RQ1 and RQ2 may generalize to
other environments and even a different set of Java projects. The set of study subjects used to
answer these two questions include only 15 projects, which is not large enough to derive statisti-
cally robust results. This selection is also restricted to small to medium sized Maven projects with
a single module. In large and multimodule projects the situation may be different. Nonetheless,
our set of subjects is diverse with regards to the obtained results.

The tooling we have developed and also the external tools we have used are not exempt from
the presence of bugs. Reneri has been conceived as an open-source project available in Github.
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We have used PITest 1.4.7, and Descartes 1.2.5 to answer all questions. We used DSpot 2.1.0
and built EVOSUITE from revision 1895b6d to answer RQ4. Using a different version of these tools
may produce a different result given their natural evolution.

The validation to answer RQ3 was conducted over a very small set of projects and issues.
Also, the selection included projects whose developers we know and can reach. In order to be
able to generalize these results a more impartial and larger evaluation is required. However, we
selected projects with different application domains and developers with different backgrounds
and experience.

4.5 Conclusion

In this chapter we describe an infection-propagation analysis to generate actionable suggestions
that can help developers deal with undetected extreme transformations. The process is imple-
mented in an open-source tool, Reneri, that can target Java projects built with Maven. With the
help of Reneri we study the undetected extreme transformations of 15 Java open-source projects.
In 312 transformations:

• 37% do not infect the immediate program state

• 37% infect the immediate program state but the infection do not propagate to an observable
point

• the rest propagate the infection to an observable point, yet the existing test cases do not
assess the program state items that are affected.

With Reneri we addressed the fourth and final objective of this thesis. We validated the sug-
gestions generated by Reneri with the help of the developers of three open-source projects. Most
suggestions provided helpful information or the exact solution to detect the extreme transforma-
tions.

Part of our results supports the observations made by Niedermayr and Wagner [52]. These
authors showed a correlation between the stack distance from the test code to the pseudo-tested
method and the test effectiveness. In this chapter we provide evidence that the effects of methods
with higher stack distance are more likely to be masked in the invocation sequence. The core of
our contribution is completely novel: automatically analyze undetected extreme transformations
to generate suggestions to be used in improving the test suite.

In this chapter we also explore two automatic strategies to solve undetected extreme trans-
formations. These strategies were based in state-of-the-art test generation and test improvement
tools. The DSpot based strategy produces better results as it uses the ratio of undetected extreme
transformations as fitness function and a seed that already executes the method involved in the
transformation.
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CONCLUSION

The main objective of this thesis is to help developers in the assessment of the quality of their
test suites and automatically generate concrete test improvement suggestions. We have explored
extreme transformations as the vehicle to detect testing issues.

We have built two main tools: Descartes, a PITest extension to challenge test suites against
extreme transformations and discover pseudo-tested methods; and Reneri, which implements an
infection-propagation analysis to generate suggestions for test improvements.

In Chapter 2 we presented Descartes as a robust implementation for extreme transformations
and reported its industrial adoption. We also compared the use of extreme transformations to
traditional mutation testing in terms of execution time and number of mutants in 21 open-source
projects. Extreme transformations create less than 30% of the program variants than the tradi-
tional approach. The gain in execution time is also notable. We saw that the detection pseudo-
tested methods is able to spot relevant testing issues. However, extreme transformations produce
coarse-grained results.

As per the results of the same Chapter 2, extreme transformations are not a substitute of
traditional mutation testing. They are more a complement. Projects in their earlier stages or with
low-quality test suites may benefit the most from the outcome of a tool like Descartes. These
projects could first work on the issues that can be discovered with extreme transformations before
using mutation testing with more fine-grained operators. Although, we have shown that a mature
project with strict testing practices can also improve their existing test cases with the help of
Descartes.

In Chapter 3 we performed an in-depth analysis of pseudo-tested methods to check whether
they can inform developers about the quality of their test cases. In this analysis we mitigate the
threats to the validity of the results of Niedermayr and colleagues with a different set of projects
and different tooling. We found pseudo-tested methods in all the 21 projects we studied on ratios
from 1% to 46% of all inspected methods. We confirmed, using the traditional mutation score, the
fact that pseudo-tested methods are the weakest point in the project in terms of fault detection
capabilities.

We provided evidence that pseudo-tested methods hint the presence of weak test oracles,
which was confirmed by developers through the acceptance of pull requests made by us. Also,
through the interaction with developers we were able to understand the characteristic of pseudo-
tested methods they consider more relevant and worth further testing effort. In general, methods
involved in core functionalities, widely used in the code, methods used by external clients and
those verifying preconditions are among the ones developers give more importance.

Even when the effects of extreme transformations are easier to understand when compared
to a traditional mutant, they require a deep insight on how the application code and the test suite
interact. Only through this insight developers are able to wrasp their importance and properly
solve the related testing issues.

In Chapter 4 we presented an infection-propagation analysis to produce test improvement
suggestions for developers. This analysis investigates undetected extreme transformations to
discover the parts of the program state in which they can be noticed during test executions. We
applied this analysis to 15 open-source projects. We observed that 37% extreme transformations
do not infect the immediate program state, 37% infect the program state but the infection do not
propagate to an observable point, the rest propagate the infection to an observable point, yet the
existing test cases do not assess the program state items that are affected. We evaluated the
suggestions Reneri generates by consulting developers from three open-source projects. Most
suggestions provided helpful information or the exact solution to detect the extreme transforma-
tions.

In the same Chapter 4 we showed evidence that the effects of methods with higher stack
distance are more likely to be masked in the invocation sequence and therefore not propagated to
the test code. This corroborates the results of Niedermayr and Wagner who showed a correlation
between the stack distance and test effectiveness.

In general we can conclude that extreme transformations can be leveraged to improve a test
suite. They can point to important testing issues and, by performing dynamic analyses, it is pos-
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sible to find concrete actions to improve the test suite. However, this line of work is far from being
finished. In the next section we discuss potential future research directions, their perspectives
and how the tools developed in this work can be improved.

Future work and perspectives

The results we have presented in this thesis open the perspectives to continue studying extreme
transformations and to find newer ways to support test improvements. The two main tools we
have built can be evolved with new functionalities and better analyses. Here we discuss the lines
of work that can be followed in the future for the assessment of test cases and the generation of
improvement suggestions.

Detection of test weakness

The category of pseudo-tested methods, as currently defined, can be quite restrictive. All unde-
tected extreme transformations may lead to a potential testing issue. Methods with mixed results,
that is, with detected and undetected extreme transformations at the same time, are not consid-
ered as pseudo-tested. Yet we have observed, and provided examples, that these methods can
also point to testing issues. For example, boolean methods returning only true in the execution of
the test suite will exhibit this behavior. So, these methods need to be separated from those where
all transformations are detected. Diagnosing the testing issue in those methods should consider
undetected and also detected extreme transformations. At the moment, Descartes simply informs
developers about these methods.

Petrovic et al [60], observed that there are notable differences among different programming
languages when applying mutation testing. This may be also the case for extreme transforma-
tions. A future line of research could expand the study of extreme transformations and pseudo-
tested methods to other languages. Other authors [74] have taken some steps in this direction by
exploring these concepts in Python.

It is imperative for developers to know which are the findings that deserve their immediate
attention. At the moment, we give the same importance to all pseudo-tested methods and extreme
transformations. A ranking of these methods would be useful for practitioners. An initial sorting
criterion that could be explored is to consider the static call graph of the project. Methods which
are used the most should have more relevance. Also, the more a method depends on others, the
lower its relevance should be. The extreme case are delegation patterns, which are automatically
skipped by Descartes. Methods adding little code on top of invocations to other methods should
have a lower rank than those they invoke. This is supported by the feedback we obtained from
developers in Chapter 3.

Kurtz et al [43] explore the role of redundant mutants in the assessment of the quality of the
test suite. They compute a subsumption graph between traditional mutants with the help of the
entire killing matrix, that is, challenging each mutant against each test regardless of whether they
are detected by an earlier test case. Each mutant is characterized by the set of test cases able to
detect it. A mutant is said to subsume the other if all test cases detecting the former mutant also
detect the latter. A better mutation score results from only considering non-subsumed mutants.
We explored the obtention of a full killing matrix for extreme transformations in 13 open-source
projects from the ones studied in Chapter 3. We observed, though not quantified, that there is
redundancy among extreme transformations. This redundancy could be studied to assess its
practical consequences. A redundancy analysis can help, for example, to determine the most
relevant undetected extreme transformations.

Improving Descartes

Descartes, as PITest, transforms the bytecode of compiled Java classes. This opens the door for
the application of Descartes to projects developed in other JVM languages like Kotlin or Scala.
The tool should avoid applying unproductive transformations in order to make the results accurate
for the semantics of those languages. Some preliminary steps have been taken towards this goal.
For example Descartes does not force a return null transformation in methods annotated by the
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Kotlin compiler as @NotNull. However, more insight about the languages, their recommended
practices and compilers is required to provide a comprehensive solution.

The extensible architecture of PITest makes possible the development of Descartes. Our ex-
tension brings a new set of mutation operators. Building a new mutation engine facilitated the
development of Descartes as a separate product from PITest. However, this prevents the com-
bined use of Descartes and Gregor, the default mutation engine. The operators from both engines
can not be used at the same time. Also neither Descartes nor Gregor are extensible on their own.
A way to overcome this limitation is to build a new mutation engine that can be dynamically ex-
tended with new mutation operators. There are two non-exclusive options to achieve this. One
approach could be to configure the mutation engine using a Domain Specific Language to spec-
ify mutations, similar to what Major does [38]; the other is to use a plugin architecture based on
reflection or a similar mechanism. This mutation engine shall contain by default all operator form
Gregor and Descartes.

Suggestions for test improvement

Extreme transformations eliminate all the effects of the methods. This has advantages but, as we
saw in Chapter 2, makes the analysis coarse-grained and limited. Deletion mutation operators [75]
seem to provide a trade-off between traditional operators and extreme transformations. A future
line of work could replicate the analysis performed by Reneri with deletion operators and validate
the suggestions that can be obtained from them. This can also help to evaluate the testability of
the code, as defined by Voas [81].

The suggestion generation process described in Chapter 4 and implemented by Reneri use
extreme transformations. However, the process is independent from these transformations and
could be used directly to analyze traditional live mutants. A future study can explore whether
this analysis can produce meaningful suggestions for developers and if it can help to ease the
understanding of live mutants.

Developers do not tend to improve the quality of the tests verifying pseudo-tested methods.
Either they are not aware of the testing issue or they do not consider these methods important
enough for the effort. We explored eight projects from the ones included in Chapter 3. In these
projects we studied the last 100 commits that edited code files and not only data or configuration
files. We selected all methods categorized as pseudo-tested in at least one of the commits. This
resulted in a set of 1189 methods. Only 20 of these methods improved, that is, they went from
being pseudo-tested to be required. Three methods had erratic category changes, that is, they
changed several times from pseudo-tested to required and back. Further studies are required
to generalize these partial results. However, this situation opens the opportunity to automated
solutions. It could be interesting to validate with developers the inclusion of the test generated
with DSpot and EVOSUITE, as done in Chapter 4, as a complement to the suggestions provided
by Reneri.

Improving Reneri

Reneri generates suggestions from extreme transformations that consist in very well localized
issues. In the case of weak-oracles we can identify the exact location where the test code may
be modified to catch the extreme transformation. A next step is to include Reneri in an Integrated
Development Environment as it was done for ReaAssert [16]. The suggestions generated by
Reneri could be displayed as warnings in the code.

At the moment, the improvement suggestions for weak-oracles are generated for every test
code location where Reneri detected a program state difference. All the suggestions generated
for the same test case and the same extreme transformation are related to the same finding.
Reporting all these suggestions is redundant. It is possible to select only one code location by
using heuristics as simple as pointing to the first location where the difference is spotted, or the
code location closer to an assertion. This improves the output of Reneri.

Reneri instruments the Java source code of a test case. This can avoided to favor bytecode
instrumentation and thus facilitating the expansion of the tool to other JVM languages. This in-
strumentation gathers much more information than what is really needed in the analysis of one
method. It is possible to enhance Reneri with a static code inspection to determine the exact
method calls and expressions that need to be observed. This would make the dynamic analysis
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more efficient. The static analysis that Reneri performs can be done at the bytecode level. This
shift imposes then a challenge when reporting the generated suggestions. These reports must
comply with the language in which the source code was written.

Embedding the test intention in automatic test generation

In this thesis we have implemented a tool that automatically analyses the code and suggests
developers what to do to improve their test suites. This approach seems to be, at the moment,
more appealing than fully automated test generation tools.

There are several reasons why test generation tools are not adopted by practitioners. Tools
like EVOSUITE and DSpot generate tests following adequacy criteria like code coverage or the
mutation score. In practice reaching 100% of code coverage or mutation score is not realistic and
not even a goal for developers.

By only targeting the mentioned adequacy criteria as fitness functions, these test generation
tools leave aside other notions that are relevant for developers. Most of the times the code these
tools generate is hard to understand and does not follow good coding practices. The generated
test cases are not useful for developers as they are often too trivial, or too complex or, more
importantly, do not manifest a clear intent. Test cases without a clear purpose or whose intent is
not relevant are dropped and not included in the test suite.

There is no model for the intent of a test case. The concept itself is not well defined. The
fitness functions of test generation algorithms do not encode such a notion of purpose.

A way to overcome this challenge could be to initially select concrete and relevant objectives
for the test generation process. The intent of the generated test cases would be to address these
objectives. For example, the intention of a test case could be to catch an specific undetected
extreme transformation discovered by Descartes. This is a concrete intention. The generated
test case should reflect this purpose. The relevance of the test case is then determined by the
relevance of the method in the code base.

The problem is now transposed to the selection of the most relevant issues from the output
of Descartes. The existing test cases can be used as initial solutions for the test generation
process. The exploration of the solution space can be guided by the suggestions produced by
Reneri. These suggestions point to a direction in which the concrete objective, that is, detecting
the extreme transformation can be solved. The move from one solution, a test case, to the other
by following these suggestions guarantees an improvement in the fitness function. This assures
a faster convergence to a local optimum. This is a viable strategy that can be implemented and
studied in future investigations. The success of this alternative is conditioned by the improvement
of Descartes and Reneri in the ways we have previously discussed.

To conclude, the long term perspective of this thesis is to close the gap between current test
generation techniques and our recent results on generated suggestions for test improvement.
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APPENDIX A

LIST OF PROJECTS USED IN
CHAPTER 2 AND CHAPTER 3 AND

THEIR RESPECTIVE REVISIONS

Legend. Column “Project" list the projects used in chapters 2 and 3. Column “Repository URL"
contains links to the available source code. Column “Commit" contains the prefix of the SHA-1
hash identifying the commit with the source code state that was used in this study.

Project Repository URL Commit

authzforce https://github.com/authzforce/core.git 81ae566
aws-sdk-java https://github.com/aws/aws-sdk-java b5ae6ce
commons-cli https://github.com/apache/commons-cli c246bd4
commons-codec https://github.com/apache/commons-codec e9da3d1
commons-collections https://github.com/apache/commons-collections db18992
commons-io https://github.com/apache/commons-io e36d531
commons-lang https://github.com/apache/commons-lang e8f924f
flink-core https://github.com/apache/flink/tree/master/flink-core 740f711
gson https://github.com/google/gson c3d17e3
jaxen https://github.com/jaxen-xpath/jaxen a8bd805
jfreechart https://github.com/jfree/jfreechart a7156d4
jgit https://github.com/eclipse/jgit 1513a56
joda-time https://github.com/JodaOrg/joda-time 6ad1338
jopt-simple https://github.com/jopt-simple/jopt-simple b38b70d
jsoup https://github.com/jhy/jsoup 35e80a7
pdfbox https://github.com/apache/pdfbox 09e9173
sat4j-core https://gitlab.ow2.org/sat4j/sat4j/tree/master/org.sat4j.core 1a01276
scifio https://github.com/scifio/scifio 2760af6
spoon https://github.com/INRIA/spoon fd878bc
urbanairship https://github.com/urbanairship/java-library aafc049
xwiki-rendering https://github.com/xwiki/xwiki-rendering cb3c444

101

https://github.com/authzforce/core.git
https://github.com/aws/aws-sdk-java
https://github.com/apache/commons-cli
https://github.com/apache/commons-codec
https://github.com/apache/commons-collections
https://github.com/apache/commons-io
https://github.com/apache/commons-lang
https://github.com/apache/flink/tree/master/flink-core
https://github.com/google/gson
https://github.com/jaxen-xpath/jaxen
https://github.com/jfree/jfreechart
https://github.com/eclipse/jgit
https://github.com/JodaOrg/joda-time
https://github.com/jopt-simple/jopt-simple
https://github.com/jhy/jsoup
https://github.com/apache/pdfbox
https://gitlab.ow2.org/sat4j/sat4j/tree/master/org.sat4j.core
https://github.com/scifio/scifio
https://github.com/INRIA/spoon
https://github.com/urbanairship/java-library
https://github.com/xwiki/xwiki-rendering


APPENDIX B

LIST OF PROJECTS IN CHAPTER 4
AND THEIR RESPECTIVE REVISIONS

Legend. Column “Project" list the projects used in Chapter 4. Column “Repository URL" contains
links to the available source code. Column “Revision" contains the tag referencing the commit
used in the study.

Project Repository URL Revision

spring-petclinic https://github.com/spring-projects/spring-petclinic 85aab20
jpush-api-java-client https://github.com/jpush/jpush-api-java-client v3.3.8
commons-cli https://github.com/apache/commons-cli 18f8576
jopt-simple https://github.com/jopt-simple/jopt-simple 31ed6b5
yahoofinance-api https://github.com/sstrickx/yahoofinance-api v3.14.0
gson-fire https://github.com/julman99/gson-fire de961ba
j2html https://github.com/tipsy/j2html cd6e008
eaxy https://github.com/jhannes/eaxy 5d66430
javapoet https://github.com/square/javapoet 30a8bda
java-html-sanitizer https://github.com/OWASP/java-html-sanitizer release-20180219.1
cron-utils https://github.com/jmrozanec/cron-utils 6.0.3
commons-codec https://github.com/apache/commons-codec 5e3b6f7
jsoup https://github.com/jhy/jsoup cecdb32
TridentSDK https://github.com/TridentSDK/TridentSDK c60da34
jcodemodel https://github.com/phax/jcodemodel jcodemodel-3.2.0
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APPENDIX C

QUESTIONNAIRE PROVIDED TO
DEVELOPERS IN THE ANSWER OF

RQ3 IN CHAPTER 4

Questions included on the form describing each testing issue and its corresponding hint. All the
options inside a question are exclusive.

Please check the testing issue and hint described in the following URL https://github.com/...

• The issue in the description is:

– relevant

– of medium relevance

– not important

– not really a testing issue

• You would solve the issue by:

– adding a new assertion to an existing test case (Possibly adding a new method call as
well)

– creating a new test case which is a slight modification of an existing test case

– creating a completely new test case

– Other (Specify)

• If you actually solve the issue, please share the URL to the commit

• The suggestion provided in the description

– points to the exact solution

– provides helpful information to solve the issue

– is not really helpful

– is misleading

• Please, include here any general feedback you would like to provide regarding this issue
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Titre: Analyse dynamique du programme pour suggérer des améliora-
tions de test aux développeurs

Mot clés : Test de logiciels – analyse de programmes – transformations extrêmes – amélioration de tests –
développeurs de logiciels

Resumé : Les tests automatisés sont au cœur du
développement de logiciels modernes. Pourtant, les
développeurs éprouvent des difficultés lorsqu’il s’agit
d’évaluer la qualité de leurs scénarios de test et de
trouver des moyens de les améliorer. Le but prin-
cipal de cette thèse est précisément de générer des
suggestions concrètes que les développeurs peuvent
suivre pour améliorer leurs suites de tests. Nous
proposons l’utilisation de mutations extrêmes ou de
transformations extrêmes comme alternative pour dé-
couvrir les problèmes de test. Les transformations
extrêmes sont une forme de test par mutation qui
supprime toute la logique d’une méthode au lieu
d’effectuer un petit changement syntaxique dans le

code. Comme son homologue traditionnel, elle chal-
lenge la suite de tests avec une variante du pro-
gramme pour voir si les cas de tests peuvent détecter
le changement. Dans cette thèse, nous évaluons
la pertinence des problèmes de test que les trans-
formations extrêmes peuvent mettre en évidence.
Nous proposons également une analyse dynamique
de infection-propagation pour dériver automatique-
ment des suggestions concrètes d’amélioration des
tests à partir de transformations extrêmes non détec-
tées. Nos résultats sont validés par les échanges avec
les développeurs. Nous faisons également état de
l’adoption industrielle de certaines parties de nos ré-
sultats.

Title: Dynamic program analysis for suggesting test improvements to
developers

Keywords : Software testing – program analysis – extreme transformations – test improvements – software
developers

Abstract : Automated testing is at the core of modern
software development. Yet developers struggle when
it comes to the evaluation of the quality of their test
cases and how to improve them. The main goal of this
thesis is precisely that, to generate concrete sugges-
tion that developers can follow to improve their test
suite. We propose the use of extreme mutation, or
extreme transformations as an alternative to discover
testing issues. Extreme transformations are a form
of mutation testing that remove the entire logic of a
method instead of making a small syntactic change in
the code. As it traditional counterpart it challenges the
test suite with a transformed variant of the program to

see if the test cases can detect the change. In this the-
sis we assess the relevance of the testing issues that
extreme transformations can spot. We also propose
a dynamic infection-propagation analysis to automat-
ically derive concrete test improvement suggestions
from undetected extreme transformations. Our results
are validated through the interaction with actual devel-
opers. We also report the industrial adoption of parts
of our results. developers to improve their tests by de-
tecting more of these transformations. Our results are
validated through the interaction with actual develop-
ers.
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