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Abstract

Socioeconomic inequalities drag down economic growth and hamper social cohe-
sion. Their detection is therefore a necessary key step in the search of solutions
addressing them.

In this dissertation, we address this challenge by exploiting the increasingly large
collection of societal datasets to fuel novel computational pipelines able to gener-
ate fine-grained and accurate socioeconomic mappings. The updated and upscaled
picture of society that is generated in doing so can be later used as input for the
development of new critically needed socioeconomic policies. The technical focus of
this dissertation consists then on both the constructions of datasets rich enough to
expose these underlying correlations and the design of machine learning models able
to generate accurate estimations on socioeconomic status both at the individual and
neighborhood level.

To do so, we first collected and built several independent datasets enabling the fine
grained description of France in terms of socioeconomic status, sociolinguistic infor-
mation, social network and aerial imagery. The mining of the collected information
enabled us first to analyze the underlying entanglements linking these variables to
one another and later to use these interactions to build reliable predictors. These
systems are built on techniques drawn from the deep learning and representation
learning communities and allow for the reliable prediction of socioeconomic status to
later inform developmental policies and gain insights on the way inequalities may rise
in societies.
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Résumé

Nous vivons une période marquante: pour la première fois, nous sommes con-
scients des enjeux de notre temps, nous produisons suffisamment de données pour en
fournir une description complète et nous disposons d’algorithmes raisonnablement op-
timaux pour les traiter. Au centre de ce carrefour, une nouvelle discipline, la science
sociale computationelle, profondèment imprégnée des avances en intelligence artifi-
cielle et en algorithmique, vient se dresser comme une sphère de connaissance à part
entière.

Cette thèse s’inscrit dans cet élan et cherche à fournir des éléments de compréhension
à la problématique des inégalités socioéconomiques en traitant des données massives,
notamment issues de réseaux sociaux en ligne et de l’observation de l’environnement
urbain. Ainsi, les contributions principales de cette série de travaux sont centrées
autour de 1) l’étude des dépendances spatiales, temporelles, linguistique et du réseau
liées aux inégalités et 2) l’inférence du statut socioéconomique à partir de ces signaux
multimodaux.

Le contexte dans lequel cette série de travaux est inscrite est double. D’un côté,
nous cherchons à fournir aux chercheurs et aux éléments du pouvoir décisionnel des
outils qui leur permettront d’obtenir une image plus fine et détaillée de la répartition
de richesse dans le pays dans le but qu’ils puissent adopter des stratégies portant
à la résolution de deux défis de notre temps: la pauvreté et les inégalités socioé-
conomiques. De l’autre nous cherchons nous même à fournir des éléments de réponse
aux questions posées par les sciences sociales qui se sont avérées trop intractable pour
être abordées sans le volume et la qualité de données nécessaires.
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Introduction en français

Nous vivons une période particulièrement marquante de notre Histoire: pour la
première fois, nous sommes conscients des enjeux de notre temps, nous produisons
suffisamment de données pour en fournir une description complète et nous disposons
d’algorithmes raisonnablement optimaux pour les traiter. Au centre de ce carrefour
historique, une nouvelle discipline, la science sociale computationelle, profondément
imprégnée des avances en intelligence artificielle et en algorithmique, vient se dresser
comme une sphère de connaissance à part entière. En tant que telle, elle vise l’appropriation
des questions issues de sciences sociales, en particulier celles qui se sont avérées in-
tractables pour être résolues par leurs méthodes, pour en fournir des réponses axées
sur le traitement de données massives.

Cette thèse s’inscrit dans cet élan et cherche à fournir des éléments de compréhension
à la problématique des inégalités socioéconomiques en traitant des données massives,
notamment issues de réseaux sociaux en ligne et de l’observation de l’environnement
urbain.

Premièrement, nous débutons notre étude en analysant le lien entre le style linguis-
tique des individus, leurs réseaux sociaux, leur activité spatio-temporelle et leur statut
socioéconomique. Les données utilisées lors de ces étude sont issues du plus grand
corpus de tweets (Twitter) en France collecté jusqu’à présent. Afin de structurer ce
dernier, on introduit une série d’algorithmes permettant 1) la localisation du domicile
des utilisateurs à partir de leurs traces de géolocalisation 2) l’obtention de leur statut
socioéconomique en plaçant chaque individu au sein d’une grille socioéconomique de
haute-résoluttion à partir de leur localisation et 3) la reconstruction du réseau social
des utilisateurs via la définition d’une intéraction sociale à partir de l’ocurrence d’une
mention mutuelle (bidirectionelle) entre un couple d’usagers. Cette approche permet
ensuite de détecter des corrélations socioéconomiques à partir du recouvrement en-
gendré par ces trois couches de données.

Nous poursuivons nos études ensuite en construisant des algorithmes sur la base
des corrélations entre classe sociale, language et réseau détectées au préalable afin de
prédire le statut socioéconomique des utilisateurs Twitter contenus dans notre jeu de
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données. Au-delà de la construction d’une méthodologie solide permettant ce genre
d’inférence, nous abordons de-même la question du biais engendré par la dépendence
vis-à-vis d’une source de données particulières. Plus concrètement, plutôt que de
définir le statut socioéconomique des utilisateurs uniquement à partir de l’adresse de
leur logement, nous élargissons le contexte analysé en assignant la classe sociale à
partir de la catégorie socio-professionelle et de l’observation de l’environnement ur-
bain du logement des usagers (Chapitre 3).

En parallèle, dans le chapitre 4, on focalise notre attention sur les corrélations masquées
qui existent entre la classe sociale de chaque individu et son réseau social. Pour cela,
on développe un algorithme d’inférence du premier à partir du dernier via la mise en
place d’un modèle d’aprentissage basé sur des réseaux convolutionnels appliqués aux
graphes (Graph Convolutional Network, GCN ). Ce dernier est ensuite utilisé pour
appréhender le recouvrement entre attributs individuels de chaque noeud du réseau
et le réseau lui-même.

Finalement, dans le chapitre 5, on clôt notre étude en s’interrogeant sur la ques-
tion de la prédiction du statut socioéconomique d’une fine aire urbaine en croisant
images satellites et intelligence artificielle pour extraire de l’information économique
automatiquement à partir de l’image aérienne de la zone en question. Pour cela nous
collectons des données aériennes de toutes les aires urbaines françaises et dévelop-
pons un algorithme d’aprentissage machine capable de réaliser ces prédictions pour
cinq villes françaises avec des précisions comparables à l’état de l’art. Nous mettons
ensuite en valeur les éléments décisionnels employés par notre réseau de neurones,
en analysant et groupant les activations de ce dernier en fonction du tissu urbain
sous-jacent.

Le contexte dans lequel cette série de travaux est inscrite est double. D’un côté,
nous cherchons à fournir aux chercheurs et aux éléments du pouvoir décisionnel des
outils qui leur permettront d’obtenir une image plus fine et détaillée de la répartition
de richesse dans le pays dans le but qu’ils puissent adopter des stratégies portant
à la résolution de deux défis de notre temps: la pauvreté et les inégalités socioé-
conomiques. De l’autre nous cherchons nous même à fournir des éléments de réponse
aux questions posées par les sciences sociales qui se sont avérées trop intractable pour
être abordées sans le volume et la qualité de données nécessaires.
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Chapter 1

General Introduction

Uncovering the patterns characterizing human behavior has become one of the
main challenges of modern-day social sciences [162]. This claim becomes all too ev-
ident when one starts considering the numerous phenomena that are driven at their
core by the way individuals behave and interact with one another. The successful
comprehension of the spread of epidemics [178], the roots and consequences of socio-
political polarization [42], the design of transportation systems [12] as well as the
weaving of our own social networks [193] are all reliant upon the detailed understand-
ing of how we behave individually and collectively.

Despite the inherent edge that is gained by studying human dynamics, previous re-
search in this direction has been plagued by the difficulty of gathering observational
data at scale and over time [132], inherently begetting a scarcity of reliable mecha-
nistic models on human behaviour and society. This initial setback has however been
overcome in recent years due to three major feats: the successful development and
fast widespread adoption of new technologies, their subsequent ease in mining human
behaviour and the surge in increasingly optimal ways of processing and analyzing the
generated data [155].

Just as modern day deterrence policies are based upon the so-called nuclear triad, this
data triad is underpinning a paradigm shift in the social sciences, that keep moving
away from incomplete and a posteriori descriptions of individual and collective be-
haviour and tilting towards a more complete data-fueled modeling of observed human
behaviour. At the core of this shift lies the burgeoning field of computational social
science [132, 64] which aims to leverage the sea of information generated by these new
technologies to address longstanding questions in the social sciences.

While one might be tempted to underscore the importance of each of the individ-
ual factors behind this data triad, their effects are deeply intertwined and cannot
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be thought of in isolation from one another: the Internet, mobile phones and online
social networks have radically reshaped the means by which we communicate and
interact with one another at a global scale [155]. The social interactions these tech-
nologies enable leave in turn, by design, massive digital traces of individual and col-
lective habits. Mobility, consumption patterns, political leanings, personality traits
are among all the digital crumbs left by the widespread use of these technologies.
Their inference from raw data is nevertheless far from trivial: users of these services
are not required to provide self-defining attributes and the recorded data streams are
rarely well-structured or parsed at all. This caveat has typically hindered the use
of off-the-shelf algorithms to derive information of the sort and would probably have
limited the insights gained from these large volumes data where it not for the advent
and refinement of machine and deep learning models.

Traditionally, the use of machine learning (ML) models necessitated careful engi-
neering and considerable domain expertise to design a feature extractor able to turn
raw data such as pixel values in an image or words in a sentence into a suitable fea-
ture vector from which the classifier could detect or classify patterns in the input.
Once introduced, deep learning (DL) radically challenged this approach by learning
the representations of the data best suited for classification directly from the data
itself [133]. By composing several non-linear modules (layers), DL models are able
to transform the input sequentially into a more complex and abstract representa-
tion. Effectively, their architecture is generally composed of multiple layers of simple
modules stacked one after the other. Most of these modules feature weights, which
optimal values need to be learned and many of them compute non-linear input-output
mappings. Each stacked module can be thought of as a series of filters augmenting
the features of the input that are most important for discrimination and discard use-
less variations. When multiple non-linear layers are stacked (hence deep learning),
a neural network can implement very complex functions of its inputs. If trained on
a set of images for instance, it becomes able to sense minute details in each image
while at the same time discarding large irrelevant differences between samples such
as the background, pose, lighting and surrounding objects. The heavy parametriza-
tion that enables DL models to learn these intricate functions relies however upon
1) the right setup of the optimization routine to determine its parameters (weights)
as well as 2) the availability of a large enough collection of samples from which the
model can learn representations generalizable to unseen data. Furthermore, the same
volume of data that enables the models’ finetuning as well as the effective learning of
these representations is also key in improving the design of the models themselves as
new architectures are developed to make a more efficient use of the signals contained
within the data.

Data is of course not the single actor behind this success story, which has actu-
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ally hinged upon the introduction of several key design and implementation features:
proof that multilayer architectures could be trained by stochastic gradient descent
(SGD) provided that the non-linear models were smooth functions of their inputs
and their internal weights [192], pre-training of bottom layers [89, 15], introduction
of ReLU (Rectified Linear Units) non linearities speeding up learning in networks
with many layers (deep networks) [68], the advent of fast graphics processing units
(GPUs) [186] and design of regularization techniques such as dropout [208] and data
augmentation routines [179] can all be credited in part for the current importance of
deep learning.

Nevertheless the reasons why these methods are particularly well poised to dis-
covering intricate structures in high-dimensional data, it is hardly arguable that
they have dramatically improved the state-of-the-art in tasks ranging from speech
recognition [159, 88] to visual object recognition [206] and object detection [65],
with DL based solutions being deployed in every major software company [133]
and new models being developed to deal with machine learning related tasks on
other structures (graphs [176, 76, 116, 80], sequences [90, 212, 39]) and domains
(biomedicine [139, 223, 107], chemistry [51, 180]).

Social sciences have accordingly not been exempted from benefiting from deep learn-
ing based advances. Neural language models [14, 211, 69] have been extensively used
to analyze social and linguistic based phenomena such as, for instance, quantifying
semantic change and revealing statistical laws of semantic evolution [78], detecting
the ideological bias of news articles [124] or analyzing the spread of true and false
news online [226] among others. Similarly, convolutional neural networks have been
used in urban settings to explore the dynamics of urban change by determining which
characteristics predict neighborhood improvement [164] or by examining how the per-
ception of safety affects the liveliness of neighborhoods [45]. Such works are paving
the way for the use of social representations learned from raw data as means of an-
swering hitherto intractable social sciences questions.

In light of this fact, the core argument of this dissertation is that one particular
social phenomenon, socioeconomic inequalities, can be gainfully studied by means
of the above. Therein lies the main motivation of this thesis that sets out to col-
lect and combine large datasets enabling 1) the study of the spatial, temporal,
linguistic and network dependencies of socioeconomic inequalities and 2)
the inference of socioeconomic status (SES) from these multimodal sig-
nals. This task is one worthy of study as previous research endeavours have come
short of providing a complete picture on how these multiple factors are intertwined
with individual socioeconomic status and how the former can fuel better inference
methodologies for the latter. As I will endeavour to demonstrate in what follows, the
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study of these questions is important, as much is still unclear about the root causes
of SES inequalities and the deployment of ML/DL solutions to pinpoint them is still
very much in its infancy.

Understanding how this phenomenon came to be and whether it should be solved
at all is of utmost importance to fully appreciate the contributions that we’ll here
be presented. What follows will introduce the reader to these notions and clarify
the starting point of this research within the deep learning and machine learning for
social good communities.

A brief introduction to computational socioeconomics

A coarse historical overview of socioeconomic inequalities

Ever since the development of agriculture and herding, socioeconomic inequality
has been a defining feature of our civilization. Prior to that, humans have been shown
to live in small bands, numbering several dozens individuals, that mainly foraged and
hunted as a means of subsistence [81]. These societies are thought to actually have
been determined by low-levels of resource inequality and a strong egalitarian, some-
times aggressive ethos, where inequality was kept at bay by due to logistical and
infrastructural constrains. Indeed, the prevalence of a nomadic lifestyle with no pack
animals limited the accumulation of material possessions while the small size and flex-
ible composition of human groups left little room for establishing stable asymmetric
relationships beyond those related to age and gender [205].

Around 12,000 years ago however, in multiple locations, humans started cultivat-
ing crops and developed agriculture. Contrary to hunting and foraging, this new
technique was a reliable way to yield a predictable food supply, allowing for the
production of food surplus. Food surplus led to specialization of labor as well as pop-
ulation growth and concentration enabling, as farming got more efficient, for cities
and later states to emerge and what we call civilization to begin. It also generated
a transition into new forms of social organization that eroded forager egalitarianism
and replaced it with durable hierarchies and disparities in income and wealth [184].

The formation of states did little to flatten these emerging disparities, as these new
forms of organization established structures of power and force, skewing access to in-
come and wealth even further. Political inequality reinforced and amplified economic
inequality and, for most of the agrarian period, the state enriched a few at the ex-
pense of the many. Even when more benign institutions took over and promoted more
vigorous economic development, they continued to sustain high inequality. Urbaniza-
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tion, commercialization, innovation in the technological and financial sector, global
trade and finally industrialization gradually generated high returns for the holders
of capital. Even as economic structures, social norms and political systems changed,
income and wealth inequality remained high or found new ways to grow [196].

In developed countries, only recently the chaos of the first and second world wars
and the Depression have disrupted this pattern. High taxes, inflation, bankruptcies
and the growth of sprawling welfare states caused wealth to shrink dramatically, and
ushered in a period in which both income and wealth were distributed in relatively
egalitarian fashion. But the shocks of the early 20th century have faded and wealth is
now reasserting itself [177]. Indeed, income disparities have been growing in all coun-
tries for which data is available since the eighties: if in 2010, 388 persons owned as
much private net wealth as the poorer half of humanity, 62 billionaires were required
to do so in 2015 and 26 in 2019, carrying the burden of socioeconomic inequality to
the present day [82].

Am I My Brother’s Keeper?

While abundant data has been compiled to confirm the rise of income inequality
in modern developed countries (see for instance Figure 1-1), the question of whether
income and wealth inequality as such have a negative effect on the lives of individuals
is still an open one [196]. There is nevertheless some evidence to suggest so. Leaving
aside ethical objections to the skewed distribution of resources (which are undoubt-
edly worthy of consideration), approaches to tackle these questions have varied across
social sciences. On the one hand, economists have focused on the relation between
socioeconomic inequality and economic growth and shown that higher levels of in-
equality are actually linked to lower rates of growth while lower disposable income
inequality has been found to lead to faster growth and longer growth periods. Re-
cent research has even suggested that while moderate wealth inequality may enables
cooperation within a group, extreme inequality actually ends up preventing [84]. On
the other hand, sociologists and political scientists have linked higher inequality in
developed countries to less inter-generational economic mobility [43] and increasing
political polarization [173] while in developing countries, certain kinds of income in-
equality have been shown to heighten the possibility of internal conflicts and civil
wars [22]. These series of ideas were probably best summarized by U.S Supreme
Court Justice Louis Brandeis: "We can either have democracy in this country or we
can have great wealth concentrated in the hands of a few, but we can’t have both."

Despite this accruing body of evidence, other studies have actually downplayed
inequalities overall importance in democratic societies in the developed world. For
instance, Scheidel [196] pointed out to the occurrence of economic equality without
strong democratic governments while Scheve and Stasavage showed that the democ-
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Figure 1-1: Share of national income held by the bottom 50 % (blue) and top 1 %
(red) of earners. The rise of income inequality varies greatly across world regions
being the lowest (albeit occurring) in Europe and among the highest in India. Data
retrieved from the World Wealth and Income Database [127].

ratization of the West didn’t constrain material inequality [197].

In spite of the significant amount of effort devoted to the study of inequality, never
mind its effects as a whole in societies, the actual issue that is addressed when trying
to uncover the mechanisms and consequences of inequalities is without a doubt the
prevalence of poverty, said otherwise, as H. Frankfurt stated it, "[the issue] is not that
the incomes [...] are widely unequal. It is, rather, the fact that too many people of our
people are poor" [58]. To be sure, both notions are highly entangled, and the nature of
that entanglement actually varies with the guiding principles chosen to define poverty.

Indeed, it might actually look surprising to learn that despite this growth in ab-
solute inequality, absolute poverty has over the same period declined dramatically,
with 1.5 billion people having overcome it in the span of 50 years at the start of the
millennium [187]. Furthermore, this astounding achievement pales in comparison to
the current goal set by the World Bank to eradicate poverty by 2030 considered by
some to be fully within reach. The choice of metric gives a more complete view on
how both these trends can actually co-occur, as absolute poverty is measured as the
number of people living on less than 1.90 $ per day [9]. This in turn makes the notion
of absolute poverty difficult to export to developed countries, which explains why
in these cases, poverty rates are determined either by a different disposable income
threshold (25 100 $ for the US), or through a relative poverty measure as most Euro-
pean countries do, by considering people to be poor when they have less income and
opportunities than other individuals living in the same society (for example if they
earn less than 60% of the median income [171]), inducing relative poverty to become
actually a metric of inequality. Therefore, when accounting for these new variables,
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the trend seems to be reversed and hint towards to a rise in relative poverty [187]
mimicking the surge in absolute inequality discussed prior.

Because of their effects on society and modern economies as a whole, these two
intertwined issues have recently become two of the seventeen goals for sustainable
development set by the United Nations [167] and therefore must attract policies and
legislation that help curb their effects and eventually render them a curse of the past.
To ensure their success though, decision-makers must rely on two commodities to in-
form their actions: reliable societal data and robust statistical models able to extract
meaningful information on the processes generating these phenomena.

The Solution to these Problems lies in Data

In order to understand the processes generating the above social phenomena, hav-
ing reliable datasets on which to observe and test the underlying mechanisms thought
to be at play is quintessential. Historically speaking, for most of human history, the
best and sometimes only source to do so was the census. The first census dates back
to 3800 BC in the city-state of Babylon where every six or seven years official censors
counted the men, women, children, livestock, slaves, butter, milk, honey and vegeta-
bles in the kingdom [209]. The primary reason was to figure out how much food was
needed to feed the population, but the figures also gave an idea of how many men
were available for military service and how much they could be taxed without starv-
ing them. Ever since, as states consolidated and their bureaucracies expanded, their
regularity and scope increased accordingly, nowadays covering information ranging
from ethnic origins to language, occupation and income of each nations’ citizens.

This historical continuity in our ability to gather meaningful mass-scale population
information has however been severely disrupted in recent years due to two major
trends: the abrupt and rapid adoption of new technologies, namely mobile devices
and online services, as well as our increasing ability to process with ease the data
generated by them [155].

These elements when taken together actually ensure that as the cost of storing data
keeps decreasing and the ML/DL algorithms’ performance keeps increasing, access
to massive socioeconomic information and the ability to crunch it, though once only
available to states or big companies, is increasingly becoming democratized. In doing
so, not only is our ability to make better informed decisions regarding these social
problems enhanced but we also become able to significantly improve our understand-
ing of the causes that lie at their basis [132]. Before delving into the core of the
works conducted during this thesis, we’ll briefly see a shallow overview of some of the
domain concepts we’ll make use of.
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Extremely Brief Machine Learning Overview

In the course of this dissertation, the reader will appreciate that most of the
methods used or developed fit into one of three AI subfields, namely, computer vi-
sion, natural language processing or network embedding. To the untrained eye, each
of these areas might seem to have developped in isolation from the others but as we’ll
here see that is far from the case.

In language modelling, one seeks to learn a representation mapping a discrete word
into a continuous vector space. Traditionally, NLP systems would treat individual
words as atoms, i.e, each word was represented by a single index in a long vocabulary
list. For instance, in the widely used 𝑁 -gram model [26], for a given sentence 𝑤1:𝑛

considered as a sequence of individual words (𝑤𝑖), 𝑖 ∈ {1, .., 𝑛}, the probability of a
given word given the previous ones was estimated under the markovian assumption:

𝑃 (𝑤𝑖+1|𝑤1:𝑖) = 𝑃 (𝑤𝑖+1|𝑤𝑖−𝑁 :𝑖)

by means of Maximum Likelihood Estimation. The obtained encodings are of course
arbitrary, and fail to provide any meaningful information regarding the syntactical or
semantical similarity that might exist between pair of words. A more insightful rep-
resentation of words can be derived from the distributional hypothesis of Harris [83],
which states that words in similar contexts have similar meanings. In practice, this
involves the design of a vector space model the embeds every single word in a con-
tinuous vector space where words appearing in the same context, i.e co-appearing for
example within a certain word distance from each other in a sentence, are mapped to
nearby points (i.e embedded close to each other).

In practice, one straightforward way to leverage this principle is to learn word repre-
sentations by means of a word-context matrix 𝑀 where the value 𝑀𝑖𝑗 corresponds to
some association measure between the word indexed by 𝑖 and the context in which
that word appeared indexed by 𝑗. To do this, we assume a corpus of words 𝑤 ∈ 𝑉𝑊

and their contexts 𝑣 ∈ 𝑉𝐶 , where 𝑉𝑊 and 𝑉𝐶 are the word and context vocabu-
laries. In this setting, words would come from an unannotated textual corpus of
words 𝑤1, 𝑤2, ..., 𝑤𝑛 and the contexts for word 𝑤𝑖 are the words surrounding it in
an 𝐿-sized window 𝑤𝑖−𝐿, ..., 𝑤𝑖−1, 𝑤𝑖+1, ..., 𝑤𝑖+𝐿. #(𝑤, 𝑐) is then the number of times
the pair (𝑤, 𝑐) appeared in the collection of observed words and context 𝐷 while
#(𝑤) =

∑︀
𝑐′∈𝑉𝐶

#(𝑤, 𝑐′) and #(𝑐) =
∑︀

𝑤′∈𝑉𝑊
#(𝑤, 𝑐) are the number of times 𝑤 and

𝑐 occurred respectively in 𝐷. Every word in the vocabulary would then be modeled
as a row either in 𝑀 or some dimensionality-reduced matrix computed from 𝑀 .

Neural language models [161, 140] pushed this concept further by proposing to rep-
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resent every word as a dense vector computed by means of a neural network. Under
this setting, each word 𝑣 ∈ 𝑉𝑊 and each context 𝑐 ∈ 𝑉𝐶 are respectively associated
with a vector −→𝑣 ,−→𝑐 ∈ R𝑑 which entries are latent and thought of as parameters to be
learned. To compute this dense representation, the skip-gram with negative-sampling
(SGNS) training method (word2vec) in particular maximizes the dot-product between
the vectors of frequently occurring word-context pairs, and minimizes it for random
word-context pairs (negative examples hence the name negative sampling), i.e, sam-
ples for which the context is chosen at random for a given word resulting most likely
in an unobserved pair (𝑤, 𝑐). More formally, if we consider a word-context pair (𝑤, 𝑐),
the probability (𝑤, 𝑐) came from the data 𝐷, 𝑃 (𝐷 = 1|𝑤, 𝑐) is estimated as:

𝑃 (𝐷 = 1|𝑤, 𝑐) = 𝜎(−→𝑤 .−→𝑐 ) =
1

1 + 𝑒−
−→𝑤 .−→𝑐

Conversely, the probably the pair (𝑤, 𝑐) didn’t occur in 𝐷 is estimated as :

𝑃 (𝐷 = 0|𝑤, 𝑐) = 1 − 𝑃 (𝐷 = 1|𝑤, 𝑐) = 𝜎(−−→𝑤 .−→𝑐 )

The SGNS objective function to maximize is then defined by:

𝐿 =
∑︁
𝑤∈𝑉𝑊

∑︁
𝑐∈𝑉𝐶

#(𝑤, 𝑐)(log 𝜎(−→𝑤 .−→𝑐 ) + 𝑘.E𝑐𝑁∼𝑃𝐷

[︀
log 𝜎(−−→𝑤 .−→𝑐𝑁)

]︀
)

where 𝑘 is the number of negative samples and 𝑐𝑁 is the sampled context drawn
according the empirical unigram distribution: 𝑃𝐷(𝑐) = #(𝑐)

|𝐷| . The objective is hence
trained using stochastic gradient descent over the observed pairs in the corpus 𝐷

yielding, for every word, a low-dimensional dense vector that captures both syntac-
tic and semantic word relationships. Notice that despite its impressive performance,
SGNS actually relies on a shallow two layer neural network where the learned weights
of the first and second layer factually correspond to look-up tables for each type of
embedding (−→𝑤 ,−→𝑐 ). These learned latent representations are invaluable as they can
later be used for instance for downstream classical supervised learning tasks such as
predicting the political leaning of a given comment [183] or whether a given message
expresses suicidal thoughts [75].

While learning these word representations is aided by the regularities governing lan-
guage (grammatical rules, defined ordering of words in a sentence), extending this
task to networks is far from a trivial task. A network can be generally thought of as
a set of items, called nodes, with connections between them, called edges (or links or
ties). Mathematically, it is represented by an undirected graph defined by a pair of
sets 𝐺 = {𝑉,𝐸}, where 𝑉 is a set of 𝑁 nodes/vertices 𝑢1, 𝑢2, ..., 𝑢𝑁 and 𝐸 is a set of
𝑀 edges linking pairs of elements from 𝑉 . A node typically represents an entity, an
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individual for example, while an edge represents a relation between two entities, such
as a friendship between two individuals. This framework can be further extended to
assign directionality (directed graphs) or weight to each edge (weighted graphs). In
this setting, the learning of network representations implies the embedding of every
node in the graph in a vector space whose geometry reflects the relationships between
the nodes themselves, i.e neighbouring nodes should be projected close to each other
in the embedding space.

A novel way to do so was introduced in a series of papers by Perozzi and collab-
orators [176] and Grover and collaborators [76] by re-purposing the aforementioned
SGNS neural language model for social networks. At the core of this bridging lies
the realization that both word frequency in natural language and node frequency
in short random walks on scale free networks both follow a power-law distribution
(Zipf’s law [234] for the former). These series of models proceeded thus to explore
the graph through a stream of short biased random walks which are thought of as
short sentences and phrases in a special language. In doing so, each node is, as in
language modeling, mapped to its latent representation that is in turn learned so as
to maximize the likelihood of observing pairs of nodes co-occurring in random walks
and minimize the likelihood of those not doing so. More formally, let 𝐺 = (𝑉,𝐸)

be a given (unweighted, undirected) network and 𝑓 : 𝑉 → R𝑑 the function mapping
from nodes to embedding we aim to learn. For every node in the network 𝑢 ∈ 𝑉 , we
obtain its network neighborhood 𝑁𝑆(𝑢) through the random walk procedure previ-
ously introduced. We then seek to maximize the the log-probability 𝐿 of observing a
network neighborhood 𝑁𝑆(𝑢) for a node 𝑢 conditioned on its feature representation,
given by 𝑓 :

𝐿 =
∑︁
𝑢∈𝑉

log 𝑃 (𝑁𝑆(𝑢)|𝑓(𝑢)) =
∑︁
𝑢∈𝑉

∑︁
𝑣∈𝑁𝑆(𝑢)

log 𝑃 (𝑣|𝑓(𝑢))

=
∑︁
𝑢∈𝑉

[−log 𝑍𝑢 +
∑︁

𝑣∈𝑁𝑆(𝑢)

𝑓(𝑢).𝑓(𝑣)]

as 𝑃 (𝑣|𝑓(𝑢)) = exp(𝑓(𝑢)𝑓(𝑣))∑︀
𝑣′∈𝑁𝑆(𝑢) 𝑓(𝑢)𝑓(𝑣

′)
. The 𝑍𝑢 normalization constant is furthermore com-

puted via negative sampling, making the connection with the SkipGram architecture
even clearer.

While these shallow architectures have proven themselves to be more than capable
of generating meaningful representations for social networks and language, they have
been generally found to lack sufficient representation power to be effectively used in
computer vision tasks. For these, one particular type of deep neural network has been
recursively shown to be much easier to train than deep networks with full connectivity
between adjacent layers and to generalize much better than shallow ones. This is the
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Convolutional Neural Network or ConvNet for short.

Just as regular deep networks, ConvNets are made of a sequential assembly of many
layers. The structure of these layers is however not preserved as we delve deeper into
the network: while deeper units can be fully connected layers, identical to the ones
found in a standard multilayer neural network, its initial layers are comprised of one or
more convolutional layers intertwined with subsampling or pooling layers [133]. This
architecture is in fact designed to take advantage of the regularities in the 2D/3D
structure of an input image by means of local connections and tied weights followed
by some form of pooling which results in translation invariant features [134, 121]. By
feats of this design, their resulting number of parameters is lessened with respect to
equally deep fully connected networks, which in turn makes them faster to train and
better at generalizing. These initial ConvNet architectures were subsequently im-
proved by the introduction of network within network modules [213] permitting the
computation of more abstract features for local patches of the input, residual connec-
tions [85] enabling the successful optimization of deeper networks by preventing the
emergence of non-convexities in the loss landscape [144], dense blocks [99] alleviating
vanishing gradient issues and strengthening feature propagation, and depthwise sep-
arable convolutions factorizing standard convolutions in previous architectures and
turning them more efficient with little loss in accuracy [96].

Most recently, ConvNets successes in computer vision tasks have diffused to the
network representation learning community: in a series of works [46, 51, 116, 80],
ConvNets were generalized to work on arbitrarily structured graphs by relying upon
graph convolutions known from spectral graph theory to define approximate smooth
parametrized filters that are then used in a multi-layer neural network model. These
models, which currently outperform previous SkipGram based network embedding
models in standard benchmarks, will be covered in greater detailed in the main body
of this thesis.

This brief summary is not meant to be taken as a detailed overview of any of three
aforementioned areas but rather as a means for the reader to 1) understand how ML
models devised for a particular task find their way into new disciplines and 2) get a
sense of the general state-of-the-art techniques available at the outset of this work.
Even if later chapters will go into greater detail regarding these methods, we nonethe-
less refer the reader to excellent surveys [24, 79, 188] for comprehensive overviews of
these areas separately.
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An improved understanding of society

Let us return to the matter at hand, socioeconomic inequalities. We have so far
reviewed works that argue that not only is it not a new phenomenon but that it
has also kept increasing steadily through periods of stability. Furthermore, in hopes
of highlighting its importance, we have examined further research suggesting that
absolute inequality is, as a whole, generally counterproductive for economic growth
and deeply tied with social issues ranging from political polarization and low inter-
generational economic mobility to relative poverty in developed countries (where most
of the work we’ll see is actually set). It may then be surprising to learn that in spite
of all the attention this issue has attracted as well as all the drawbacks it has been
linked to, economics has yet no accepted theory of inequality, i.e, no scientific un-
derstanding of the mechanisms and processes that engender it [40]. The mechanistic
comprehension of this and other socioeconomic phenomena is critical as our inability
to do so has so far hindered the forecasting and prevention of past economic crisis [13]
as well as curbed the enactment of effective policies for economical development [147].

Rising data production, storage and processing capabilities are however tilting the
scale. By fusing this updated and upscaled picture of society with the already stress-
tested methods borrowed from statistical physics, learning theory and network sci-
ence, researchers are effectively inducing a paradigm shift in the social sciences that
greatly emphasizes the reliance upon quantitative description of social systems [62].
To be sure, there are numerous issues bedeviling this approach: a biased access to
technology entails that the demographic coverage offered by these new sources is also
biased. The degree to which complete answers can be provided to research questions
is limited by our inability to fully control the experiments conclusion will be drawn
from. Repeatability and reproducibility of observed patterns are curtailed both by
the restrictions naturally set given the sensitive and sometimes private nature of the
collected datasets as well as the bursty and heterogeneous that is known to charac-
terize human behaviour [11].

Nevertheless, these limitations should not be thought of as barriers to using this
quantitative approach but rather as research avenues of themselves, whose answers
have, and will continue to ensure the robustness of observed trends, further shedding
light upon the hitherto intractable problems at hand.

Thesis Outline

In light of the above, we set out to develop novel computational pipelines able to
1) detect population-scale socioeconomic correlations with respect to language, social
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networks and urban environments and 2) make use of these correlations as build-
ing blocks for socioeconomic status inference algorithms. This dissertation discusses
works conducted during this degree that address these challenges in the hope that
they’ll be used in further research or policy-planning to solve some of the societal
issues of our time.

In Chapter 2, we show how key linguistic variables measured in individual Twit-
ter streams are linked to user features such as socioeconomic status, location, time,
and the social network of individuals. To do so we rely in a multi-layered dataset
constructed from the largest Twitter sample collected within France and the finest-
grained socioeconomic map of the country.

Chapter 3 builds upon these correlations to construct three different data collec-
tion and combination methods, each issued respectively from Twitter, LinkedIn and
Google Maps, to first estimate and, in turn, infer the socioeconomic status of French
Twitter users from their online semantics. We further establish links between the
estimated social class of users and their mobility patterns.

Chapter 4 presents a theoretical framework aimed at further refining our under-
standing of correlations between one’s network and socioeconomic status by jointly
reconstructing an attributed network by means of a variational autoencoder relying
on Graph Convolutional Networks. We further provide comparison with other state-
of-the-art methods in this field.

Finally in chapter 5, we provide a separate Convolutional Neural Network based
model able to predict socioeconomic status from aerial imagery at a 200m x 200m
scale for five French cities. Given the importance of this task as well as its increasingly
pervasive use by state agencies and NGOs, we further analyze the relation between
the socioeconomic predictions yielded by the trained network and the underlying ur-
ban topology of each city.

Chapter 6 concludes with final thoughts, challenges and potential future work.
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Chapter 2

Socioeconomic Correlations of
Linguistic Patterns

This work was originally published in the Proceedings of The Web Con-
ference [2] with myself as leading author

2.1 Introduction

The design of successful inference algorithms of individual socioeconomic status
(SES) relies on the detailed understanding of the latent correlations linking SES to
other facets of individual behaviour. To guide the former we delve into the study of
the latter.

Communication is highly variable and this variability contributes to language change
and fulfills social functions. Analyzing and modeling data from social media al-
lows the high-resolution and long-term follow-up of large samples of speakers, whose
social links and utterances are automatically collected. This empirical basis and
long-standing collaboration between computer and social scientists could dramati-
cally extend our understanding of the links between language variation, language
change, and society.

Languages and communication systems of several animal species vary in time, ge-
ographical space, and along social dimensions. Varieties are shared by individuals
frequenting the same space or belonging to the same group. The use of vocal variants
is flexible. It changes with the context and the communication partner and functions
as "social passwords" indicating which individual is a member of the local group [86].
Similar patterns can be found in human languages if one considers them as evolving
and dynamical systems that are made of several social or regional varieties, over-
lapping or nested into each other. Their emergence and evolution result from their
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internal dynamics, contact with each other, and link formation within the social or-
ganization, which itself is evolving, composite and multi-layered [120, 130].

The strong tendency of communication systems to vary, diversify and evolve seems to
contradict their basic function: allowing mutual intelligibility within large communi-
ties over time. Language variation is not counter adaptive. Rather, subtle differences
in the way others speak provide critical cues helping children and adults to organize
the social world [113]. Linguistic variability contributes to the construction of social
identity, definition of boundaries between social groups and the production of social
norms and hierarchies.

Sociolinguistics has traditionally carried out research on the quantitative analysis
of the so-called linguistic variables, i.e. points of the linguistic system which enable
speakers to say the same thing in different ways, with these variants being "identical
in reference or truth value, but opposed in their social [...] significance" [128]. Such
variables have been described in many languages: variable pronunciation of -ing as
[in] instead of [iŋ] in English (playing pronounced playin’ ); optional realization of
the first part of the French negation (je (ne) fume pas, "I do not smoke"); optional
realization of the plural ending of verb in Brazilian Portuguese (eles disse(ram), "they
said"). For decades, sociolinguistic studies have showed that hearing certain variants
triggers social stereotypes [30]. The so-called standard variants (e.g. [iŋ], realization
of negative ne and plural -ram) are associated with social prestige, high education,
professional ambition and effectiveness. They are more often produced in more formal
situation. Non-standard variants are linked to social skills, solidarity and loyalty to-
wards the local group, and they are produced more frequently in less formal situation.

It is therefore reasonable to say that the sociolinguistic task can benefit from the
rapid development of computational social science [132]: the similarity of the online
communication and face-to-face interaction [87] ensures the validity of the comparison
with previous works. In this context, the nascent field of computational sociolinguis-
tics found the digital counterparts of the sociolinguistic patterns already observed in
spoken interaction. Our work lies at the core of this burgeoning field. It constructs
the largest dataset of French tweets enriched with census sociodemographic informa-
tion existent to date to the best of our knowledge. From this dataset, we observed
variation of two grammatical cues and an index of vocabulary size in users located
in France. We study how the linguistic cues correlated with three features reflective
of the socioeconomic status of the users, their most representative location and their
daily periods of activity on Twitter. We also observed whether connected people are
more linguistically alike than disconnected ones. Multivariate analysis shows strong
correlations between linguistic cues and socioeconomic status as well as a broad spa-
tial pattern never observed before, with more standard language variants and lexical
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diversity in the southern part of the country. Moreover, we found an unexpected
daily cyclic evolution of the frequency of standard variants. Further analysis revealed
that the observed cycle arose from the ever changing average economic status of the
population of users present in Twitter through the day. Finally, we were able to es-
tablish that linguistic similarity between connected people does arises partially but
not uniquely due to status homophily (users with similar socioeconomic status are
linguistically similar and tend to connect). Its emergence is also due to other effects
potentially including other types of homophilic correlations or influence disseminated
over links of the social network. Beyond, we verify the presence of status homophily
in the Twitter social network our results may inform novel methods to infer socioe-
conomic status of people from the way they use language. Furthermore, our work,
rooted within the web content analysis line of research [95], extends the usual focus on
aggregated textual features (like document frequency metrics or embedding methods)
to specific linguistic markers, thus enabling sociolinguistics knowledge to inform the
data collection process.

2.2 Related Work

For decades, sociolinguistic studies have repeatedly shown that speakers vary the
way they talk depending on several factors. These studies have usually been limited
to the analysis of small scale datasets, often obtained by surveying a set of individuals,
or by direct observation after placing them in a controlled experimental setting. In
spite of the volume of data collected generally, these studies have consistently shown
the link between linguistic variation and social factors [18, 129].

Recently, the advent of social media and publicly available communication platforms
has opened up a new gate to access individual information at a massive scale. Among
all available social platforms, Twitter has been regarded as the choice by default,
namely thanks to the intrinsic nature of communications taking place through it and
the existence of data providers that are able to supply researchers with the volume
of data they require. Work previously done on demographic variation is now relying
increasingly on corpora from this social media platform as evidenced by the myriad of
results showing that this resource reflects not only morpholexical variation of spoken
language but also geographical [54, 172].

Although the value of this kind of platform for linguistic analysis has been more
than proven, the question remains on how previous sociolinguistic results scale up
to the sheer amount of data within reach and how can the latter enrich the former.
To do so, numerous studies have focused on enhancing the data emanating from
Twitter itself. Indeed, one of the core limitations of Twitter is the lack of reliable
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sociodemographic information about the sampled users as usually data fields such as
user-entered profile locations, gender or age differ from reality. This in turn implies
that user-generated profile content cannot be used as a useful proxy for the sociode-
mographic information [73].

Many studies have overcome this limitation by taking advantage of the geolocation
feature allowing Twitter users to include in their posts the location from which they
were tweeted. Based on this metadata, studies have been able to assign home location
to geolocated users with varying degrees of accuracy [4]. Subsequent work has also
been devoted to assigning to each user some indicator that might characterize their
socioeconomic status based on their estimated home location. These indicators are
generally extracted from other datasets used to complete the Twitter one, namely
census data [53, 54, 149] or real estate online services as Zillow.com [53]. Despite
the relative success of these methods, their common limitation is to provide obser-
vations and predictions based on a carefully hand-picked small set of users, letting
alone the problem of socioeconomic status inference on larger and more heteroge-
neous populations. Our work stands out from this well-established line of research
by expanding the definition of socioeconomic status to include several demographic
features as well as by pinpointing potential home location to individual users with
an unprecedented accuracy. Identifying socioeconomic status and the network effects
of homophily[195] is an open question [55]. However, recent results already showed
that status homophily, i.e. the tendency of people of similar socioeconomic status are
better connected among themselves, induce structural correlations which are pivotal
to understand the stratified structure of society [135]. While we verify the presence
of status homophily in the Twitter social network, we detect further sociolinguistic
correlations between language, location, socioeconomic status, and time, which may
inform novel methods to infer socioeconomic status for a broader set of people using
common information available on Twitter.

2.3 Data Description

One of the main achievements of our study was the construction of a combined
dataset for the analysis of sociolinguistic variables as a function of socioeconomic
status, geographic location, time, and the social network. As follows, we introduce
the two aforementioned independent datasets and how they were combined. We
also present a brief cross-correlation analysis to ground the validity of our combined
dataset for the rest of the study. In what follows, it should also be noted that
regression analysis was performed via linear regression as implemented in the Scikit
Learn Toolkit while data preprocessing and network study were performed using
respectively pandas [156] and NetworkX [198] Python libraries.
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2.3.1 Twitter dataset: sociolinguistic features

Our first dataset consists of a large data corpus collected from the online news and
social networking service, Twitter. On it, users can post and interact with messages,
"tweets", restricted to 140 characters. Tweets may come with several types of meta-
data including information about the author’s profile, the detected language, where
and when the tweet was posted, etc. Specifically, we recorded 170 million tweets
written in French, posted by 2.5 million users in the timezones GMT and GMT+1
over three years (between July 2014 to May 2017). These tweets were obtained via
the Twitter powertrack API feeds provided by Datasift and Gnip with an access rate
varying between 15 − 25% 1.

Linguistic data: To obtain meaningful linguistic data we preprocessed the incom-
ing tweet stream in several ways. As our central question here deals with the variabil-
ity of the language, repeated tweets do not bring any additional information to our
study. Therefore, as an initial filtering step, we decided to remove retweets. Next,
in order to facilitate the detection of the selected linguistic markers we removed any
URLs, emoticons, mentions of other users (denoted by the @ symbol) and hashtags
(denoted by the # symbol) from each tweet. These expressions were not considered
to be semantically meaningful and their filtering allowed to further increase the speed
and accuracy of our linguistic detection methods when run across the data. In addi-
tion we completed a last step of textual preprocessing by down-casing and stripping
the punctuation out of the tweets body. POS-taggers such as MElt [49] were also
tested but they provided no significant improvement in the detection of the linguistic
markers.

Network data: We used the collected tweets in another way to infer social rela-
tionships between users. Tweet messages may be direct interactions between users,
who mention each other in the text by using the @ symbol (@username). When one
user 𝑢, mentions another user 𝑣, user 𝑣 will see the tweet posted by user 𝑢 directly in
his / her feed and may tweet back. In our work we took direct mentions as proxies of
social interactions and used them to identify social ties between pairs of users. Op-
posite to the follower network, reflecting passive information exposure and less social
involvement, the mutual mention network has been shown [100] to capture better the
underlying social structure between users. We thus use this network definition in our
work as links are a greater proxy for social interactions.

In our definition we assumed a tie between users if they mutually mentioned each

1. In order to uphold the strict privacy laws in France as well as the agreement signed with
our data provider GNIP, full disclosure of the original dataset is not possible. Data collection and
preprocessing pipelines could however be released upon request.
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other at least once during the observation period. People who reciprocally mentioned
each other express some mutual interest, which may be a stronger reflection of real so-
cial relationships as compared to the non-mutual cases [94]. This constraint reduced
the egocentric social network considerably leading to a directed structure of 508, 975

users and 4, 029, 862 links that we considered being undirected in what follows.

(a) (b)

Figure 2-1: Distributions and correlations of socioeconomic indicators. (a) Spatial dis-
tribution of average income in France with 200𝑚× 200𝑚 resolution. (b) Distribution
of socioeconomic indicators (in the diag.) and their pairwise correlations measured in
the INSEE (upper diag. panels) and Twitter geotagged (lower diag. panels) datasets.
Contour plots assign the equidensity lines of the scatter plots, while solid lines are
the corresponding linear regression values. Population density in log.

Geolocated data: About 2% of tweets included in our dataset contained some
location information regarding either the tweet author’s self-provided position or the
place from which the tweet was posted. These pieces of information appeared as the
combination of self reported locations or usual places tagged with GPS coordinates at
different geographic resolution. We considered only tweets which contained the exact
GPS coordinates with resolution of ∼ 3 meters of the location where the actual tweet
was posted. This actually means that we excluded tweets where the user assigned a
place name such as "Paris" or "France" to the location field, which are by default
associated to the geographical center of the tagged areas. Practically, we discarded
coordinates that appeared more than 500 times throughout the whole GPS-tagged
data, assuming that there is no such 3 × 3 meter rectangle in the country where 500

users could appear and tweet by chance. After this selection procedure we rounded
up each tweet location to a 100 meter precision.

To obtain a unique representative location of each user, we extracted the sequence
of all declared locations from their geolocated tweets. Using this set of locations we
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selected the most frequent to be the representative one, and we took it as a proxy for
the user’s home location. Further we limited our users to ones located throughout the
French territory thus not considering others tweeting from places outside the coun-
try. This selection method provided us with 110, 369 geolocated users who are either
detected as French speakers or assigned to be such by Twitter and all associated to
specific ’home’ GPS coordinates in France. To verify the spatial distribution of the
selected population, we further assessed the correlations between the true popula-
tion distributions (obtained from census data [104]) at different administrative level
and the geolocated user distribution aggregated correspondingly. More precisely, we
computed the 𝑅2 coefficient of variation between the inferred and official population
distributions (a) at the level of 22 regions 2. Correlations at this level induced a high
coefficient of 𝑅2 ≃ 0.89 (𝑝 < 10−2); (b) At the arrondissement level with 322 admin-
istrative units and coefficient 𝑅2 ≃ 0.87 (𝑝 < 10−2); and (c) at the canton level with
4055 units with a coefficient 𝑅 ≃ 0.16 (𝑝 < 10−2). Note that the relatively small
coefficient at this level is due to the interplay of the sparsity of the inferred data
and the fine grained spatial resolution of cantons. All in all, we can conclude that
our sample is highly representative in terms of spatial population distribution, which
at the same time validate our selection method despite the potential inherent biases
induced by the method taking the most frequented GPS coordinates as the user’s
home location.

2.3.2 INSEE dataset: socioeconomic features

The second dataset we used was released in December 2016 by the National Insti-
tute of Statistics and Economic Studies (INSEE) of France. This data corpus [104]
contains a set of sociodemographic aggregated indicators, estimated from the 2010
tax return in France, for each 4 hectare (200𝑚×200𝑚) square patch across the whole
French territory. Using these indicators, one can estimate the distribution of the
average socioeconomic status (SES) of people with high spatial resolution. In this
study, we concentrated on three indicators for each patch 𝑖 , which we took to be
good proxies of the socioeconomic status of the people living within them. These
were the 𝑆𝑖

inc average yearly income per capita (in euros), the 𝑆𝑖
own fraction of owners

(not renters) of real estate, and the 𝑆𝑖
den density of population defined respectively as

: 𝑆𝑖
inc =

𝑆𝑖
ℎℎ

𝑁 𝑖
ℎℎ

, 𝑆𝑖
own =

𝑁 𝑖
own

𝑁 𝑖
, and 𝑆𝑖

den =
𝑁 𝑖

(200𝑚)2
. (2.1)

Here 𝑆𝑖
ℎℎ and 𝑁 𝑖

ℎℎ assign respectively the cumulative income and total number of
inhabitants of patch 𝑖, while 𝑁 𝑖

own and 𝑁 𝑖 are respectively the number of real estate

2. Note that since 2016 France law determines 13 metropolitan regions, however the available data
shared by INSEE [104] contained information about the earlier administrative structure containing
22 regions.
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owners and the number of individuals living in patch 𝑖. As an illustration we show
the spatial distribution of 𝑆𝑖

inc average income over the country in Fig.2-1a.

In order to uphold current privacy laws and due to the highly sensitive nature of
the disclosed data, some statistical pretreatments were applied to the data by IN-
SEE before its public release. More precisely, neighboring patches with less than
11 households were merged together, while some of the sociodemographic indicators
were winsorized. This set of treatments induced an inherent bias responsible for the
deviation of the distribution of some of the socioeconomic indicators. These quanti-
ties were expected to be determined by the Pareto principle, thus reflecting the high
level of socioeconomic imbalances present within the population. Instead, as shown
in Fig.2-1b [diagonal panels], distributions of the derived socioeconomic indicators (in
blue) appeared somewhat more symmetric than expected. This doesn’t hold though
for 𝑃 (𝑆𝑖

den) (shown on a log-log scale in the lowest right panel of Fig.2-1b), which
emerged with a broad tail similar to an expected power-law Pareto distribution. In
addition, although the patches are relatively small (200𝑚×200𝑚), the socioeconomic
status of people living may have some local variance, what we cannot consider here.
Nevertheless, all things considered, this dataset and the derived socioeconomic in-
dicators yield the most fine-grained description, allowed by national law, about the
population of France over its whole territory.

Despite the inherent biases of the selected socioeconomic indicators, in general we
found weak but significant pairwise correlations between these three variables as
shown in the upper diagonal panels in Fig.2-1b (in red), with values in Table 2.1.
We observed that while 𝑆𝑖

inc income and 𝑆𝑖
own owner ratio are positively correlated

(𝑅 = 0.24, 𝑝 < 10−2), and the 𝑆𝑖
own and 𝑆𝑖

den population density are negatively cor-
related (𝑅 = −0.23, 𝑝 < 10−2), 𝑆𝑖

inc and 𝑆𝑖
den appeared to be very weakly correlated

(𝑅 = −0.07, 𝑝 < 10−2). This nevertheless suggested that high average income, high
owner ratio, and low population density are consistently indicative of high socioeco-
nomic status in the dataset.

Table 2.1: Pearson correlations and 𝑝-values measured between SES indicators in the
INSEE and Twitter datasets.

𝑆𝑖
inc ∼ 𝑆𝑖

own 𝑆𝑖
inc ∼ 𝑆𝑖

den 𝑆𝑖
own ∼ 𝑆𝑖

den

INSEE 0.24 (𝑝 < 10−2) −0.07 (𝑝 < 10−2) −0.23 (𝑝 < 10−2)
Twitter 0.19 (𝑝 < 10−2) 0.00 (𝑝 > 10−2) −0.22 (𝑝 < 10−2)
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2.3.3 Combined dataset: individual socioeconomic features

Data collected from Twitter provides a large variety of information about several
users including their tweets, which disclose their interests, vocabulary, and linguistic
patterns; their direct mentions from which their social interactions can be inferred;
and the sequence of their locations, which can be used to infer their representative
location. However, no information is directly available regarding their socioeconomic
status, which can be pivotal to understand the dynamics and structure of their per-
sonal linguistic patterns.

To overcome this limitation we combined our Twitter data with the socioeconomic
maps of INSEE by assigning each geolocated Twitter user to a patch closest to their
estimated home location (within 1 km). This way we obtained for all 110, 369 geolo-
cated users their dynamical linguistic data, their egocentric social network as well as
a set of SES indicators.

Such a dataset associating language with socioeconomic status and social network
throughout the French metropolitan territory is unique to our knowledge and pro-
vides unrivaled opportunities to verify sociolinguistic patterns observed over a long
period on a small-scale, but never established in such a large population.

To verify whether the geolocated Twitter users yet provide a representative sample
of the whole population we compared the distribution and correlations of the their
SES indicators to the population measures. Results are shown in Fig.2-1b diagonal
(red distributions) and lower diagonal panels (in blue) with correlation coefficients
and 𝑝-values summarized in Table.2.1. Even if we observed some discrepancy between
the corresponding distributions and somewhat weaker correlations between the SES
indicators, we found the same significant correlation trends (with the exception of the
pair density / income) as the ones seen when studying the whole population, assuring
us that each indicator correctly reflected the SES of individuals.

2.3.4 Socioeconomic Class Definition

In order to assign users to a particular socioeconomic class, we took the geolocated
Twitter users in France and partitioned them into nine socioeconomic classes using
their inferred income 𝑆𝑢

inc. Partitioning was done first by sorting users by their 𝑆𝑢
inc

income to calculate their 𝐶(𝑆𝑢
inc) cumulative income distribution function. We defined

socioeconomic classes by segmenting 𝐶(𝑆𝑢
inc) such that the sum of income is the same

for each classes (for an illustration of our method see Fig.2-6a).
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2.4 Linguistic variables

We identified the following three linguistic markers to study across users from
different socioeconomic backgrounds: Correlation with SES has been evidenced for
all of them. The optional deletion of negation is typical of spoken French, whereas
the omission of the mute letters marking the plural in the nominal phrase is a variable
cue of French writing. The third linguistic variable is a global measure of the lexical
diversity of the Twitter users. We present them here in greater detail.

2.4.1 Standard usage of negation

The basic form of negation in French includes two negative particles: ne (no) be-
fore the verb and another particle after the verb that conveys more accurate meaning:
pas (not), jamais (never), personne (no one), rien (nothing), etc. Due to this double
construction, the first part of the negation (ne) is optional in spoken French, but it
is obligatory in standard writing.

Sociolinguistic studies have previously observed the realization of ne in corpora of
recorded everyday spoken interactions. Although all the studies do not converge, a
general trend is that ne realization is more frequent in speakers with higher socioeco-
nomic status than in speakers with lower status [8, 16]. We built upon this research
to set out to detect both negation variants in the tweets using regular expressions. 3

We are namely interested in the rate of usage of the standard negation (featuring
both negative particles) across users:

𝐿𝑢
cn =

𝑛𝑢
cn

𝑛𝑢
cn + 𝑛𝑢

incn

and 𝐿
𝑖

cn =

∑︀
𝑢∈𝑖 𝐿

𝑢
cn

𝑁𝑖

, (2.2)

where 𝑛𝑢
cn and 𝑛𝑢

incn assign the number of correct negation and incorrect number of
negation of user 𝑢, thus 𝐿𝑢

cn defines the rate of correct negation of a users and 𝐿
𝑖

cn its
average over a selected 𝑖 group (like people living in a given place) of 𝑁𝑖 users.

2.4.2 Standard usage of plural ending of written words

In written French, adjectives and nouns are marked as being plural by generally
adding the letters s or x at the end of the word. Because these endings are mute
(without counterpart in spoken French), their omission is the most frequent spelling
error in adults [151]. Moreover, studies showed correlations between standard spelling
and social status of the writers, in preteens, teens and adults [23, 151, 221]. We then

3. Negation:∖∖b(pas|pa|aps|jamais|ni|personne|rien|ri1|r1|aucun|aucune)∖∖b
Standard Negation:. * ∖∖b(ne|n’)∖∖b. * ∖$
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set to estimate the use of standard plural across users:

𝐿𝑢
cp =

𝑛𝑢
cp

𝑛𝑢
cp + 𝑛𝑢

incp

and 𝐿
𝑖

cp =

∑︀
𝑢∈𝑖 𝐿

𝑢
cp

𝑁𝑖

(2.3)

where the notation follows as before (cp stands for correct plural and incp stands for
incorrect plural).

2.4.3 Normalized vocabulary set size

A positive relationship between an adult’s lexical diversity level and his or her
socioeconomic status has been evidenced in the field of language acquisition. Specifi-
cally, converging results showed that the growth of child lexicon depends on the lexical
diversity in the speech of the caretakers, which in turn is related to their socioeco-
nomic status and their educational level [91, 101]. We thus proceeded to study the
following metric:

𝐿𝑢
vs =

𝑁𝑢
vs

𝑁𝑢
𝑡𝑤

and 𝐿
𝑖

vs =

∑︀
𝑢∈𝑖𝑁

𝑢
vs

𝑁𝑖

, (2.4)

where 𝑁𝑣𝑠
𝑢 assigns the total number of unique words used by user 𝑢 who tweeted 𝑁𝑢

𝑡𝑤

times during the observation period. As such 𝐿𝑢
vs gives the normalized vocabulary set

size of a user 𝑢, while 𝐿
𝑖

vs defines its average for a population 𝑖.

2.5 Results

By measuring the defined linguistic variables in the Twitter timeline of users we
were finally set to address the core questions of our study, which dealt with linguistic
variation. More precisely, we asked whether the language variants used online depend
on the socioeconomic status of the users, on the location or time of usage, and on
ones social network. To answer these questions we present here a multidimensional
correlation study on a large set of Twitter geolocated users, to which we assigned a
representative location, three SES indicators, and a set of meaningful social ties based
on the collection of their tweets.

2.5.1 Socioeconomic variation

The socioeconomic status of a person is arguably correlated with education level,
income, habitual location, or even with ethnicity and political orientation and may
strongly determine to some extent patterns of individual language usage. Such depen-
dencies have been theoretically proposed before [129], but have rarely been inspected
at this scale yet. The use of our previously described datasets enabled us to do
so via the measuring of correlations between the inferred SES indicators of Twitter
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users and the use of the previously described linguistic markers which we expand
upon in this section. To compute and visualize these correlations we defined linear

Figure 2-2: Pairwise correlations between three SES indicators and three linguistic
markers. Columns correspond to SES indicators (resp. 𝑆𝑖

inc, 𝑆𝑖
own, 𝑆𝑖

den), while rows
correspond to linguistic variables (resp. 𝐿cn, 𝐿cp and 𝐿vs). On each plot colored
symbols are binned data values and a linear regression curve are shown together with
the 95 percentile confidence interval and 𝑅2 values.

bins (in numbers varying from 20 to 50) for the socioeconomic indicators and com-
puted the average of the given linguistic variables for people falling within the given
bin. These binned values (shown as symbols in Fig.2-2) were used to compute linear
regression curves and the corresponding confidence intervals (see Fig.2-2). An addi-
tional transformation was applied to the SES indicator describing population density,
which was broadly distributed (as discussed in Section 2.3.2 and Fig.2-1b), thus, for
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the regression process, the logarithm of its values were considered. To quantify pair-
wise correlations we computed the 𝑅2 coefficient of determination values in each case.

In Fig.2-2 we show the correlation plots of all nine pairs of SES indicators and

Table 2.2: The 𝑅2 coefficient of determination and the corresponding 𝑝-values com-
puted for the pairwise correlations of SES indicators and linguistic variables.

𝑆𝑖
inc 𝑆𝑖

own 𝑆𝑖
den

𝐿cn 0.19 (𝑝 < 10−2) 0.59 (𝑝 < 10−2) 0.74 (𝑝 < 10−2)
𝐿cp 0.59 (𝑝 < 10−2) 0.66 (𝑝 < 10−2) 0.76 (𝑝 < 10−2)
𝐿vs 0.70 (𝑝 < 10−2) 0.32 (𝑝 < 10−2) 0.41 (𝑝 < 10−2)

linguistic variables together with the linear regression curves, the corresponding 𝑅2

values and the 95 percentile confidence intervals (note that all values are also in Ta-
ble 2.2). These results show that correlations between socioeconomic indicators and
linguistic variables actually exist. Furthermore, these correlation trends suggest that
people with lower SES may use more non-standard expressions (higher rates of incor-
rect negation and plural forms) have a smaller vocabulary set size than people with
higher SES. Note that, although the observed variation of linguistic variables were
limited, all the correlations were statistically significant (𝑝 < 10−2) with considerably
high 𝑅2 values ranging from 0.19 (between 𝐿cn ∼ 𝑆inc) to 0.76 (between 𝐿cp ∼ 𝑆den).
For the rates of standard negation and plural terms the population density appeared
to be the most determinant indicator with 𝑅2 = 0.74 (and 0.76 respectively), while
for the vocabulary set size the average income provided the highest correlation (with
𝑅2 = 0.7).

One must also acknowledge that while these correlations exhibit high values con-
sistently across linguistic and socioeconomic indicators, they only hold meaning at
the population level at which the binning was performed. When the data is considered
at the user level, the variability of individual language usage hinders the observation
of the aforementioned correlation values.

2.5.2 Spatial variation

Next we will cover the spatial variation of linguistic variables. Although officially a
standard language is used over the whole country, geographic variations of the former
may exist due to several reasons [123, 228]. For instance, regional variability resulting
from remnants of local languages that have disappeared, uneven spatial distribution
of socioeconomic potentials, or influence spreading from neighboring countries might
play a part in this process. For the observation of such variability, by using their
representative locations, we assigned each user to a department of France. We then

26



computed the 𝐿
𝑖

cn (resp. 𝐿𝑖

cp) average rates of standard negation (resp. plural agree-
ment) and the 𝐿𝑖

vs average vocabulary set size for each "département" 𝑖 in the country
(administrative division of France – There are 97 départements).

Results shown in Fig.2-3a-c revealed some surprising patterns, which appeared

Figure 2-3: Geographical variability of linguistic markers in France. (a) Variability
of the rate of correct negation. Inset focuses on larger Paris. (b) Variability of the
rate of correct plural terms. (c) Variability of the average vocabulary size set. Each
plot depicts variability on the department level except the inset of (a) which is on the
"arrondissements" level.

to be consistent for each linguistic variable. By considering latitudinal variability it
appeared that, overall, people living in the northern part of the country used a less
standard language, i.e., negated and pluralized less standardly, and used a smaller
number of words. On the other hand, people from the South used a language which
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is somewhat closer to the standard (in terms of the aforementioned linguistic mark-
ers) and a more diverse vocabulary. The most notable exception is Paris, where in
the city center people used more standard language, while the contrary is true for
the suburbs. This observation, better shown in Fig.2-3a inset, can be explained by
the large differences in average socioeconomic status between districts. Such segre-
gation is known to divide the Eastern and Western sides of suburban Paris, and in
turn to induce apparent geographic patterns of standard language usage. We found
less evident longitudinal dependencies of the observed variables. Although each vari-
able shows a somewhat diagonal trend, the most evident longitudinal dependency
appeared for the average rate of standard pluralization (see Fig.2-3b), where users
from the Eastern side of the country used the language in less standard ways. Note
that we also performed a multivariate regression analysis (not shown here), using the
linguistic markers as target and considering as factors both location (in terms of lat-
itude and longitude) as and income as proxy of socioeconomic status. It showed that
while location is a strong global determinant of language variability, socioeconomic
variability may still be significant locally to determine standard language usage (just
as we demonstrated in the case of Paris).

2.5.3 Temporal variation

Another potentially important factor determining language variability is the time
of day when users are active in Twitter which we now proceed to study[78, 122]. The
temporal variability of standard language usage can be measured for a dynamical
quantity like the 𝐿cn(𝑡) rate of correct negation. To observe its periodic variability
(with a ∆𝑇 period of one week) over an observation period of 𝑇 (in our case 734

days), we computed

𝐿
Λ

cn(𝑡) =
∆𝑇

|Λ|𝑇
∑︁
𝑢∈Λ

⌊𝑇/Δ𝑇 ⌋∑︁
𝑘=0

𝐿𝑢
cn(𝑡 + 𝑘∆𝑇 ), (2.5)

in a population Λ of size |Λ| with a time resolution of one hour. This quantity reflects
the average standard negation rate in an hour over the week in the population Λ.
Note that an equivalent 𝐿Λ

cp(𝑡) measure can be defined for the rate of standard plural
terms, but not for the vocabulary set size as it is a static variable.

In Fig. 2-4a and b we show the temporal variability of 𝐿Λ

cn(𝑡) and 𝐿
Λ

cp(𝑡) (respec-
tively) computed for the whole Twitter user set (Γ = 𝑎𝑙𝑙, solid line) and for geolocated
users (Γ = 𝑔𝑒𝑜, dashed lines). Not surprisingly, these two curves were strongly corre-
lated as indicated by the high Pearson correlation coefficients summarized in the last
column of Table 2.3 which, again, assured us that our geolocated sample of Twitter
users was representative of the whole set of users. At the same time, the temporal
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Figure 2-4: Temporal variability of (a) 𝐿Λ

cn(𝑡) (resp. (b) 𝐿Λ

cp(𝑡)) average rate of correct
negation (resp. plural terms) over a week with one hour resolution. Rates were
computed for Λ = 𝑎𝑙𝑙 (solid line) and Λ = 𝑔𝑒𝑜located Twitter users. Colors indicates
the temporal variability of the average income of geolocated population active in a
given hour.

variability of these curves suggested that people tweeting during the day used a more
standard language than those users who are more active during the night. However,
after measuring the average income of active users in a given hour over a week, we
obtained an even more sophisticated picture. It turned out that people active during
the day have higher average income (warmer colors in Fig. 2-4) than people active
during the night (colder colors in Fig. 2-4). Thus the variability of standard language
patterns was largely explained by the changing overall composition of active Twitter
users during different times of day and the positive correlation between socioeconomic
status and the usage of higher linguistic standards (that we have seen earlier). This
explanation was supported by the high coefficients (summarized in Table 2.3), which
were indicative of strong and significant correlations between the temporal variability
of average linguistic variables and average income of the active population on Twitter.

Table 2.3: Pearson correlations and 𝑝-values of pairwise correlations of time varying
𝑆inc(𝑡) average income with 𝐿

Λ

cn(𝑡) and 𝐿
Λ

cp(𝑡) average linguistic variables; and between
average linguistic variables of Λ = 𝑎𝑙𝑙 and Λ = geo-localized users.

𝐿
𝑎𝑙𝑙

* (𝑡) ∼ 𝑆inc(𝑡) 𝐿
𝑔𝑒𝑜

* (𝑡) ∼ 𝑆inc(𝑡) 𝐿
𝑔𝑒𝑜

* (𝑡) ∼ 𝐿
𝑎𝑙𝑙

* (𝑡)

* = cn 0.5915 (𝑝 < 10−2) 0.622 (𝑝 < 10−2) 0.805 (𝑝 < 10−2)
* = cp 0.7027 (𝑝 < 10−2) 0.665 (𝑝 < 10−2) 0.98021 (𝑝 < 10−2)

29



2.5.4 Network variation

Finally we sought to understand the effect of the social network on the variabil-
ity of linguistic patterns which we now expand upon. People in a social structure
can be connected due to several reasons. Link creation mechanisms like focal or
cyclic closure [125, 131], or preferential attachment together with the effects of ho-
mophily [157] are all potentially driving the creation of social ties and communities,
and the emergence of community rich complex structure within social networks. In
terms of homophily, one can identify several individual characteristics like age, gen-
der, common interest or political opinion, etc., that might increase the likelihood of
creating relationships between disconnected but similar people, who in turn influ-
ence each other and become even more similar. Status homophily between people of
similar socioeconomic status has been shown to be important [135] in determining
the creation of social ties and to explain the stratified structure of society. By using
our combined datasets, we aim here to identify the effects of status homophily and to
distinguish them from other homophilic correlations and the effects of social influence
inducing similarities among already connected people. To do so, we constructed a so-
cial network by considering mutual mention links between these users (as introduced
in Section 3.3).

Status homophily in social networks appears as an increased tendency for people
from similar socioeconomic classes to be connected. This correlation can be identified
by comparing likelihood of connectedness in the empirical network to a random net-
work, which conserves all network properties except structural correlations. To do so,
we took each (𝑠𝑖, 𝑠𝑗) pair of the nine SES class in the Twitter network and counted
the number of links |𝐸(𝑠𝑖, 𝑠𝑗)| connecting people in classes 𝑠𝑖 and 𝑠𝑗. As a reference
system, we computed averages over 100 corresponding configuration model network
structures [169].

To signalize the effects of status homophily, we took the ratio |𝐸(𝑠𝑖, 𝑠𝑗)|/|𝐸𝑟𝑎𝑛𝑑(𝑠𝑖, 𝑠𝑗)|
of the two matrices (shown in Fig.2-6b). The diagonal component in Fig.2-6b with
values larger than 1 showed that users of the same or similar socioeconomic class
were better connected in the original structure than by chance, while the contrary
was true for users from classes far apart (see blue off-diagonal components). To verify
the statistical significance of this finding, we performed a 𝜒2-test, which showed that
the distribution of links in the original matrix was significantly different from the
one of the average randomized matrix (𝑝 < 10−5). This observation verified status
homophily present in the Twitter mention network. In order to measure linguistic
similarities between a pair of users 𝑢 and 𝑣, we simply computed the |𝐿𝑢

*−𝐿𝑣
*| absolute

difference of their corresponding individual linguistic variable * ∈ {cn, cp, 𝑣𝑠}. This
measure appeared with a minimum of 0 and associated smaller values to more similar
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Figure 2-5: Distribution of the |𝐿𝑢
* − 𝐿𝑣

*| absolute difference of linguistic variables
* ∈ {cn, cp, 𝑣𝑠} (resp. panels (a), (b), and (c)) of user pairs who were connected and
from the same socioeconomic group (red), connected (yellow), disconnected and from
the same socioeconomic group (light blue), disconnected pairs of randomly selected
users (blue).

pairs of users. To identify the effects of status homophily and the social network, we
proceeded by computing the similarity distribution in four cases: for connected users
from the same socioeconomic class; for disconnected randomly selected pairs of users
from the same socioeconomic class; for connected users in the network; and randomly
selected pairs of disconnected users in the network. Note that in each case the same
number of user pairs were sampled from the network to obtain comparable averages.
This number was naturally limited by the number of connected users in the smallest
socioeconomic class, and were chosen to be 10, 000 in each cases. By comparing the
distributions shown in Fig.2-5 we concluded that (a) connected users (red and yellow
bars) were the most similar in terms of any linguistic marker. This similarity was
even greater when the considered tie was connecting people from the same socioe-
conomic group; (b) network effects can be quantified by comparing the most similar
connected (red bar) and disconnected (light blue bar) users from the same socioeco-
nomic group. Since the similarity between disconnected users here is purely induced
by status homophily, the difference of these two bars indicates additional effects that
cannot be explained solely by status homophily. These additional similarities may
rather be induced by other factors such as social influence, the physical proximity of
users within a geographical area or other homophilic effects that were not accounted
for. (c) Randomly selected pairs of users were more dissimilar than connected ones as
they dominated the distributions for larger absolute difference values. We therefore
concluded that both the effects of network and status homophily mattered in terms
of linguistic similarity between users of this social media platform.

31



Figure 2-6: (a) Definition of socioeconomic classes by partitioning users into nine
groups with the same cumulative annual income. (b) Structural correlations between
SES groups depicted as matrix of the ratio |𝐸(𝑠𝑖, 𝑠𝑗)|/|𝐸𝑟𝑎𝑛𝑑(𝑠𝑖, 𝑠𝑗)| between the orig-
inal and the average randomized mention network

2.6 Conclusions

The overall goal of this work was to explore the dependencies of linguistic vari-
ables on the socioeconomic status, location, time varying activity, and social network
of users. To do so we constructed a combined dataset from a large Twitter data
corpus, including geotagged posts and proxy social interactions of millions of users,
as well as a detailed socioeconomic map describing average socioeconomic indicators
with a high spatial resolution in France. The combination of these datasets provided
us with a large set of Twitter users all assigned to their Twitter timeline over three
years, their location, three individual socioeconomic indicators, and a set of meaning-
ful social ties. Three linguistic variables extracted from individual Twitter timelines
were then studied as a function of the former, namely, the rate of standard negation,
the rate of plural agreement and the size of vocabulary set.

Via a detailed multidimensional correlation study we concluded that (a) socioeco-
nomic indicators and linguistic variables are significantly correlated. i.e. people with
higher socioeconomic status are more prone to use more standard variants of language
and a larger vocabulary set, while people on the other end of the socioeconomic spec-
trum tend to use more non-standard terms and, on average, a smaller vocabulary set;
(b) Spatial position was also found to be a key feature of standard language use as,
overall, people from the North tended to use more non-standard terms and a smaller
vocabulary set compared to people from the South; a more fine-grained analysis re-
veals that the spatial variability of language is determined to a greater extent locally
by the socioeconomic status; (c) In terms of temporal activity, standard language was
more likely to be used during the daytime while non-standard variants were predom-
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inant during the night. We explained this temporal variability by the turnover of
population with different socioeconomic status active during night and day; Finally
(d) we showed that the social network and status homophily mattered in terms of
linguistic similarity between peers, as connected users with the same socioeconomic
status appeared to be the most similar, while disconnected people were found to be
the most dissimilar in terms of their individual use of the previous linguistic markers.

Despite these findings, one has to acknowledge the multiple limitations affecting this
work: First of all, although Twitter is a broadly adopted service in most technolog-
ically enabled societies, it commonly provides a biased sample in terms of age and
socioeconomic status as older or poorer people may not have access to this technology.
In addition, home locations inferred for lower activity users may induced some noise in
our inference method. Nevertheless, we demonstrated that our selected Twitter users
are quite representative in terms of spatial, temporal, and socioeconomic distributions
once compared to census data. Other sources of bias include the "homogenization"
performed by INSEE to ensure privacy rights are upheld as well as the proxies we
devised to approximate users’ home location and social network. Currently, a sample
survey of our set of geolocated users is being conducted so as to bootstrap socioeco-
nomic data to users and definitely validate our inference results. Nonetheless, this
INSEE dataset provides still the most comprehensive available information on socioe-
conomic status over the whole country. For limiting such risk of bias, we analyzed the
potential effect of the confounding variables on distribution and cross-correlations of
SES indicators. Acknowledging possible limitations of this study, we consider it as a
necessary first step in analyzing income through social media using datasets orders
of magnitude larger than in previous research efforts.

Finally we would like to emphasize two scientific merits of this work. On one side,
based on a very large sample, we confirm and clarify results from the field of sociolin-
guistics and we highlight new findings. We thus confirm clear correlations between
the variable realization of the negative particle in French and three indices of socioe-
conomic status. This result challenges those among the sociolinguistic studies that
do not find such correlation. Our data also suggested that the language used in the
southern part of France is more standard. Understanding this pattern fosters fur-
ther investigations within sociolinguistics. We finally established that the linguistic
similarity of socially connected people is partially explained by status homophily but
could be potentially induced by social influences passing through the network of links
or other terms of homophilic correlations. Our results highlight the way ahead by
showcasing how we might rely on linguistic information, available on Twitter and
other online platforms, to infer socioeconomic status of individuals from their posi-
tion in the network as well as the way they use their language. This question will
therefore be addressed in the coming chapter.
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Chapter 3

Language based Socioeconomic
Status Inference

This work was originally published in the Proceedings of the Workshop
on Social Computing [2] and later extended as a journal paper in Com-
plexity [142] with myself as leading author

3.1 Introduction

The previous chapter compiled a series of observations indicating that one’s lan-
guage and socioeconomic class are deeply intertwined. This realization actually pro-
vides a stepping stone to design systems able to infer the former from the latter.
In this chapter, we hence demonstrate how semantic and syntactic features can be
turned into training data for an ensemble classifier of socioeconomic status.

The quantification and inference of SES of individuals is a long-standing question
in the social sciences. It is a rather difficult problem as it may depend on a combi-
nation of individual characteristics and environmental variables [146]. Some of these
features can be easier assessed like income, gender, or age whereas others, relying
to some degree on self-definition and sometimes entangled with privacy issues, are
harder to assign like ethnicity, occupation, education level or home location. Fur-
thermore, as we previously saw, individual SES correlates with other individual or
network attributes, as users tend to build social links with others of similar SES, a
phenomenon known as status homophily[157], arguably driving the observed stratifi-
cation of society [135]. At the same time, shared social environment, similar education
level, and social influence have been shown to jointly lead socioeconomic groups to
exhibit stereotypical behavioral patterns, such as shared political opinion [27] or sim-
ilar linguistic patterns [2]. Although these features are entangled and causal relation
between them is far from understood, they appear as correlations in the data.
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As the previous chapter proved, datasets recording multiple characteristics of human
behaviour are more and more available due to recent developments in data collection
technologies and increasingly popular online platforms and personal digital devices.
The automatic tracking of online activities (commonly associated with profile data
and meta-information), the precise recording of daily interaction dynamics and mo-
bility patterns collected through mobile personal devices, together with the detailed
and expert annotated census data all provide new grounds for the inference of individ-
ual features or behavioral patterns [132]. The exploitation of these data sources has
already been proven to be fruitful as cutting edge recommendation systems, advanced
methods for health record analysis, or successful prediction tools for social behaviour
heavily rely on them [117]. Nevertheless, despite the available data, some inference
tasks, like individual SES prediction, remain an open challenge.

The precise inference of SES would contribute to overcome multiple scientific chal-
lenges and could potentially have multiple commercial applications [136]. Further,
robust SES inference would provide unique opportunities to gain deeper insights into
socioeconomic inequalities [177], social stratification [135], and into the mechanisms
driving network evolution, such as status homophily or social segregation.

In this chapter, we take a horizontal approach to this problem and explore various
ways to infer the SES of a large sample of social media users. We propose different
data collection and combination strategies using open, crawlable, or expert annotated
socioeconomic data for the prediction task. Specifically, we use an extensive Twitter
dataset of 1.3M users located in France, all associated with their tweets and profile
information; 32,053 of them having inferred home locations. This collection actually
results from the subsampling and extension from the one previously used Individual
SES is estimated by relying on three separate datasets, namely socioeconomic census
data; crawled profession information; and expert annotated Google Street View im-
ages of users’ home locations. Each of these datasets is then used as ground-truth to
infer the SES of Twitter users from profile and semantic features similar to [181]. We
explore and assess how the SES of social media users can be obtained and how much
the inference problem depends on annotation and the user’s individual and linguistic
attributes. In addition, to demonstrate the power of our location inference method,
we group users into nine distinct socioeconomic classes to identify correlations be-
tween the predictability of mobility [207] of geolocated users and their socioeconomic
status. We observe that as a user’s SES increases, so to does his/her radius of gyra-
tion which in turn lowers the upper bound of predictability of his/her whereabouts.

We provide in Section 3.2 an overview of the related literature to contextualize the
novelty of our work. In Section 3.3 we provide a detailed description of the data
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collection and combination methods including analysis of Twitter, census, mobility,
occupation and home location data. In Section 3.4 we introduce the features extracted
to solve the SES inference problem, with results summarized in Section 3.5.

3.2 Related Work

There is a growing effort in the field of computational social science to combine
online behavioral data with census records, and expert annotated information to infer
social attributes of users of online services. The predicted attributes range from eas-
ily assessable individual characteristics such as age [35], or occupation [181, 182, 98]
to more complex psychological and sociological traits like political affiliation [225],
personality [199], or SES [152, 181].

Predictive features proposed to infer the desired attributes are also numerous. In
case of Twitter, user information can be publicly queried within the limits of the
public API [224]. User characteristics collected in this way, such as profile features,
tweeting behavior, social network and linguistic content have been used for predic-
tion, while other inference methods relying on external data sources such as website
traffic data [44] or census data [149, 54] have also proven effective. Nonetheless, only
recent works involve user semantics in a broader context related to social networks,
spatiotemporal information, and personal attributes [182, 181, 6].

In this framework, aggregated studies of user spatial data have been particularly
useful in fueling the analysis of human mobility patterns. Early work on mobile com-
munication datasets [207, 70] showed that individuals tend to return to a few highly
frequented locations leading to a high predictability in human travelling patterns.
Analogous behaviour was later exposed in Twitter [109], enabling the use of this so-
cial media platform as a proxy for tracking and predicting human movement.

Akin to this strand of research, user features collected from online platforms have also
been used in the inference of individual demographic traits. The tradition of relating
SES of individuals to their language dates back to the early stages of sociolinguistics
where it was first shown that social status reflected through a person’s occupation
is a determinant factor in the way language is used [17]. This line of research was
recently revisited by Lampos et al. to study the SES inference problem on Twitter. In
a series of works [182, 181, 6], the authors applied Gaussian Processes to predict user
income, occupation and socioeconomic class based on demographic, psycho-linguistic
features and a standardized job classification taxonomy, which mapped Twitter users
to their professional occupations. The high predictive performance has proven this
concept with 𝑟 = 0.633 for income prediction, and a precision of 55% for 9-ways SOC
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classification, and 82% for binary SES classification. Nevertheless, the models devel-
oped by the authors are learned by relying on datasets, which were manually labeled
through an annotation process crowdsourced through Amazon Mechanical Turk at
a high monetary cost. Although the labeled data has been released and provides
the base for new extensions [35], it has two potential shortfalls that need to be ac-
knowledged. First, the method requires access to a detailed job taxonomy, in this
case specific to England, which hinders potential extensions of this line of work to
other languages and countries. Furthermore, the language to income pipeline seems
to show some dependency on the sample of users that actively chose to disclose their
profession in their Twitter profile. Features obtained on this set might not be easily
recovered from a wider sample of Twitter users. This limits the generalization of these
results without assuming a costly acquisition of a new dataset.

3.3 Data collection and combination

Our first motivation in this study was to overcome earlier limitations by exploring
alternative data collection and combination methods. We study here three ways to
estimate the SES of Twitter users by using (a) open census data, (b) crawled and
manually annotated data on professional skills and occupation, and (c) expert an-
notated data on home location Street View images. We provide here a collection
of procedures that enable interested researchers to introduce predictive performance
and scalability considerations when interested in developing language to SES infer-
ence pipelines. In the following we present in detail all of our data collection and
combination methods.

3.3.1 Twitter corpus

In this work, we rely significantly upon the datasets previously collected to build
several different corpora:

Geolocated users

To find users with a representative home location we followed the method pub-
lished in [41, 97]. As a bottom line, we concentrated on 127, 614 users who posted at
least five geolocated tweets with valid GPS coordinates, with at least three of them
within a valid census cell (for definition see later), and over a longer period than seven
days. Applying these filters we obtained 1,000,064 locations from geolocated tweets.
By focusing on the geolocated users, we kept those with limited mobility, i.e., with
median distance between locations not greater than 30 km, with tweets posted at
places and times, which did not require travel faster than 130 𝑘𝑚/ℎ (maximum speed
allowed within France), and with no more than three tweets within a two seconds
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window. We further filtered out tweets with coordinates corresponding to locations
referring to places (such as “Paris" or “France"). Thus, we removed locations that
didn’t exactly correspond to GPS-tagged tweets and also users, which were most
likely bots. Despite the inherent similarities in deriving home location with respect
to the previous study, the current methodology imposes a more stringent filtering on
raw geolocation data to derive a more finegrained and accurate home location and
socioeconomic status assignment.

Home location was estimated by the most frequent location for a user among all
coordinates she visited. This way we obtained 32, 053 users, each associated with a
unique home location. Finally, we collected the latest 3, 200 tweets from the timeline
of all of geolocated users using the Twitter public API [224]. Note, that by applying
these consecutive filters we obtained a more representative population as the Gini
index, indicating overall socioeconomic inequalities, was 37.3% before filtering be-
come 36.4% due to the filtering methods, which is closer to the value reported by the
World Bank (33.7%) [10]. To verify our results, we computed the average weekday and
weekend distance from each recorded location of a user to her inferred home location
defined either as her most frequent location overall or among locations posted outside
of work-hours from 9AM to 6PM (see Fig. 3-1a and b)). This circadian pattern dis-
plays great similarity to earlier results [97] with two maxima, roughly corresponding
to times at the workplace, and a local minimum at 1PM due to people having lunch at
home for locations posted in weekdays. Moreover, when comparing the weekday and
weekend patterns of behaviour, we notice that the average distance to the inferred
home location seemed to be smaller when considering only geolocations posted during
the weekend, most likely due to the absence of the home-to-work commuting during
the weekend. We found that this circadian pattern was more consistent with earlier
results [97] when we considered all geolocated tweets (“All" in Fig. 3-1a) rather than
only tweets including “home-related" expressions (“Night" in Fig. 3-1a). To further
verify the inferred home locations, for a subset of 29,389 users we looked for regular
expressions in their tweets that were indicative of being at home [97], such as “chez
moi", “bruit", “dormir" or “nuit". In Fig. 3-1c we show the temporal distribution of
the rate of the word “dormir" at the inferred home locations. This distribution ap-
pears with a peak around 10PM, which is very different from the overall distribution
of geolocated tweets throughout the day considering any location (see Fig. 3-1b).

Linguistic data

To obtain meaningful linguistic data we pre-processed the incoming tweet streams
in several ways. As our central question here deals with language semantics of in-
dividuals, re-tweets do not bring any additional information to our study, thus we
removed them by default. We also removed any expressions considered to be seman-
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(a) (b)

(d)(c)

Figure 3-1: Average distance from home of active users per hour of the day depending
on whether the geolocated tweet was posted during in a weekday (a) or the weekend
(b) and the most frequent location was chosen among all (blue) or only the night ones
(red). (c) Hourly rate of all geolocated tweets and (d) geolocated tweets mentioning
‘dormir’ averaged over all weekdays.

tically meaningless like URLs, emoticons, mentions of other users (denoted by the @
symbol) and hashtags (denoted by the # symbol) to simplify later post-processing.
In addition, as a last step of textual pre-processing, we downcased and stripped the
punctuation from the text of every tweet. The reader might be wondering why the
current algorithm doesn’t build upon exclusively on the previous correlations to de-
rive SES inference. The reasons for these are two-fold: As it turns out, we observed
that while such correlations are meaningful at the population level the former study
was conducted, they hold little predictive power of SES when studying users at the
individual level. Furthermore, the here proposed way of deriving semantical informa-
tion enables the extraction of these and other richer linguistic features that, as we’ll
be able to see, later permitted the completion of our inference task.
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3.3.2 Census data

Our first method to associate SES to geolocated users builds on an open census
income dataset at intra-urban level for France [105]. For this study, we moved away
from the 200m x 200m dataset and relied upon a coarser grained but more discrimi-
native sociodemographic data. In doing so, we hoped to avoid the biases associated
with the winsorization of the income distribution. This dataset collects detailed so-
cioeconomic information of individuals at the census block level (called IRIS), which
are defined as territorial cells with varying size but corresponding to blocks of around
2, 000 inhabitants, as shown in Fig. 3-2 for greater Paris. For each cell, the data
records the deciles of the income distribution of inhabitants. Note that the IRIS data
does not provide full coverage of the French territory, as some cells were not reported
to avoid identification of individuals (in accordance with current privacy laws), or to
avoid territorial cells of excessive area. Nevertheless, this limitation did not hinder our
results significantly as we only considered users who posted at least three times from
valid IRIS cells, as explained in Section 3.3.1. To associate a single income value to

1 km
3000 ft

1 km
3000 ft

7,404 18,821 30,328 41,656 53,073 64,490

Median Income Distribution (€)

Figure 3-2: IRIS area cells in central Paris colored according to the median income
of inhabitants, with inferred home locations of 2, 000 Twitter users.

each user, we identified the cell of their estimated home locations and assigned them
with the median of the corresponding income distribution. Thus we obtained an av-
erage socioeconomic indicator for each user, which was distributed heterogeneously
in accordance with Pareto’s law [170]. This is demonstrated in Fig. 3-6a, where the
𝐶(𝑓) cumulative income distributions as the function of population fraction 𝑓 ap-
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pears as a Lorentz-curve with area under the diagonal proportional to socioeconomic
inequalities. As an example, Fig. 3-2 depicts the spatial distribution of 2, 000 users
with inferred home locations in IRIS cells located in central Paris and colored as the
median income.

3.3.3 Mobility Analysis

In order to further assess the validity of the assignment of location to socioeco-
nomic status, we studied in this section the mobility traces generated by the set of
geolocated users. Specifically, mirroring previous work [207, 109], we focused on the
predictability of individual trajectories by analyzing the visitation patterns of the top
𝑛 = 10 locations. To do so, given a user having visited at least 𝑘 = 5 different census
blocks, we computed 𝜋𝑘(𝑖) the fraction of time a user spends in the top 𝑖 most visited
location as:

𝜋𝑘(𝑖) =
𝑁𝑖∑︀𝑛
𝑗=1𝑁𝑗

, 𝑖 = 1, ..., 𝑛

with 𝑁𝑖 the number of times the user appeared in the 𝑖-th location. Note that in
the above definition, ∀𝑖 ≤ 𝑘, 𝑁𝑖 ∈ N*. This metric was shown by Song et al. [207]
to be an upper bound to an individual’s predictability. At the same time, taking
geolocated users’ median income inferred from census cells we associated them into
one of nine socioeconomic classes (1-poorest, 9-richest) following the social stratum
model introduced in [135]. This procedure sorts users by their income, takes the CDF
of income (shown in Fig. 3-6a) and divides users into groups such that each group
represents the same total sum of income. This partitioning, due to the Lorentz-curve
shape of the CDF, provides socioeconomic classes with decreasing size with increasing
income, as expected from theory and other real observations [194, 135].

As previously pointed out [207, 109] we noticed, that for all socioeconomic classes,
the first and second most visited location concentrate between 60 and 74% of all
geolocations , suggesting the high likelihood of an individual tweeting preferentially
from his/her home or office [109]. Furthermore, by aggregating users per socioeco-
nomic class, an interesting trend was exposed: the higher the socioeconomic class
in question, the lower the (upper bound of) predictability of the considered users
was for any of the top 𝑛 locations. Indeed, when studying how 𝜋5(1) is related to
a user’s socioeconomic status, we see that the higher one’s socioeconomic class the
less frequently he is seen at the most visited location (see Fig. 3-3a). The robustness
of this trend was further assessed by repeating our analysis for different values of 𝑘,
always recovering this decreasing trend (see Fig. 3-3b). The underlying explanation
to this pattern may actually lie in the correlation between the socioeconomic status
of people and the diversity of locations they visit. For instance, greater diversity may
lead to a lower predictability of movement, which in turn might cause the observed
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trends. To control for this, we computed the average radius of gyration 𝑟𝑔, describing
the typical range of a user’s trajectory per socioeconomic class, defined as:

𝑟𝑔 =

⎯⎸⎸⎷ 1

𝐿

𝐿∑︁
𝑖=1

(−→𝑟𝑖 −−→𝑟𝑐𝑚)2.

Here −→𝑟𝑖 represents the position at time 𝑖, −→𝑟𝑐𝑚 = 1
𝐿

∑︀𝐿
𝑖=1

−→𝑟𝑖 is the center of mass of the
trajectory and 𝐿 is the total number of recorded points for the userâĂŹs location. As
we see in Fig. 3-3c, 𝑟𝑔 seems to increase on average as higher socioeconomic status
is considered. Hence, high SES users tend to have more diverse mobility patterns
than low SES ones, which in turn leads to lower predictability of their whereabouts.
These results may relate to previous work [229, 135], which explain this trend by
means of the positive payoff between commuting farther for better jobs, while keeping
better housing conditions. As a consequence, the inferred home location for high SES
users might be less precise due to their more dispersed mobility patterns and the
lower predictability of their whereabouts. This is one reason why we define our SES
inference later as a two-ways inference problem, dividing users into a “rich” and a
“poor” class.
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Figure 3-3: (a) The fraction of time a user spends in his/her top 10 most visited
locations per socioeconomic class. (b) 𝜋𝑘(1), fraction of time spent at the most
visited location per socioeconomic class for users with at least 𝑘 different locations.
(c) Average radius of gyration per socioeconomic class (error-bars are computed as
𝜎(𝑟𝑔)/

√
𝑁 , with 𝑁 number of samples)

3.3.4 Occupation data

Earlier studies [181, 182] demonstrated that annotated occupation information
can be effectively used to derive precise income for individuals and to infer therefore
their SES. However, these methods required a somewhat selective set of Twitter users

42



as well as an expensive annotation process by hiring premium annotators e.g. from
Amazon Mechanical Turk. Our goal here was to obtain the occupations for a general
set of Twitter users without the involvement of annotators, but by collecting data
from parallel online services.

As a second method to estimate SES, we took a sample of Twitter users who men-
tioned their LinkedIn [148] profile url in their tweets or Twitter profile. Using these
pointers we collected professional profile descriptions from LinkedIn by relying on an
automatic crawler mainly used in Search Engine Optimization (SEO) tasks [1]. We
obtained 4, 140 Twitter/LinkedIn users all associated with their job title, professional
skills and profile description. Apart from the advantage of working with structured
data, professional information extracted from LinkedIn is significantly more reliable
than Twitter’s due to the high degree of social scrutiny to which each profile is ex-
posed [153].

To associate income to Twitter users with LinkedIn profiles, we matched them with
a given salary based on their reported profession and an occupational salary classi-
fication table provided by INSEE [103]. Due to the ambiguous naming of jobs and
to acknowledge permanent/non-permanent, senior/junior contract types we followed
three strategies for the matching. In 40% of the cases we directly associated the re-
ported job titles to regular expressions of an occupation. In 50% of the cases we used
string sequencing methods [59] to associate reported and official names of occupa-
tions with at least 90% match. For the remaining 10% of users we directly inspected
profiles. The distribution of estimated salaries reflects the expected income hetero-
geneities as shown in Fig. 3-6a. Users were eventually assigned to one of two SES
classes based on whether their salary was higher or lower than the average value of the
income distribution. Also note, that LinkedIn users may not be representative of the
whole population. We discuss this and other types of potential biases in Section 3.6.

3.3.5 Expert annotated home location data

Finally, motivated by recent remote sensing techniques, we sought to estimate
SES via the analysis of the urban environment around the inferred home locations.
Similar methodology has been lately reported by the remote sensing community [63]
to predict socio-demographic features of a given neighborhood by analyzing Google
Street View images to detect different car models, or to predict poverty rates across
urban areas in Africa from satellite imagery [108]. Driven by this line of work, we
estimated the SES of geolocated Twitter users as follows:

43



Pre-selection of home locations

Using geolocated users identified in Section 3.3.1, we further filtered them to
obtain a smaller set of users with more precise inferred home locations. We screened
all of their geotagged tweets and looked for regular expressions determining whether
or not a tweet was sent from home [97]. As explained in Section 3.3.1, we exploited
that “home-suspected" expressions appeared with a particular temporal distribution
(see Fig. 3-1c) since these expressions were used during the night when users are at
home. This selection yielded 28, 397 users mentioning “home-suspected" expressions
regularly at their inferred home locations.

Figure 3-4: Confusion matrix in the test set obtained with a ResNet50 trained on the
UCMerced for land use inference

Identification of urban/residential areas

In order to filter out inferred home locations not in urban/residential areas, we
downloaded via Google Maps Static API [71] a satellite view in a 100𝑚 radius around
each coordinate (for a sample see Fig. 3-5a). To discriminate between residential and
non-residential areas, we built on land use classifier [33] using aerial imagery from the
UC Merced dataset [230]. This dataset contains 2100 256 × 256 1𝑚/𝑝𝑥 aerial RGB
images over 21 classes of different land use (for a pair of sample images see Fig. 3-5b).
To classify land use, a CaffeNet architecture was trained, which reached an accuracy
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over 95%. Here, we instantiated a ResNet50 network using keras [38] pre-trained on
ImageNet [48], where all layers except the last five were frozen. The network was
then trained with 10-fold cross validation achieving a 93% accuracy after the first
100 epochs (cf. Figure 3-4). We used this model to classify images of the estimated
home location satellite views (cf. Figure 3-5a) and kept those which were identified as
residential areas (see Fig. 3-5b, showing the activation of the two first hidden layers
of the trained model). This way 5, 396 inferred home locations were discarded.

(a)

(b) (c)

(a) (b)

(a) (b)

(c)

(d)

Figure 3-5: Top: ResNet50 Output: (a): Original satellite view; (b): First two hidden
layers activation; (c): Final top-3 most frequent predicted area types; (d) Architect
SES score agreement with census median income for the sampled home locations. It
is shown as violin plots of income distributions for users annotated in different classes
(shown on x-axis and by color).

Home location data with expert annotated SES

Next we aimed to estimate SES from architectural/urban features associated to
the home locations. Given that our goal here was to lean on socioeconomic labels that
weren’t estimated by the census, we forfeit the use of deep learning models to infer
SES by relying upon human annotation. Thus, for each home location we collected
two additional satellite views at different resolutions as well as six Street View images,
each with a horizontal view of approximately 90∘. We randomly selected a sample
of 1, 000 locations and involved architects to assign a SES score (from 1 to 9) to
a sample set of selected locations based on the satellite and Street View around it
(both samples had 333 overlapping locations). For validation, we took users from each
annotated SES class and computed the distribution of their incomes inferred from the
IRIS census data (see Section 3.3.2). Violin plots in Fig. 3-5d show that in expert
annotated data, as expected, the inferred income values were positively correlated
with the annotated SES classes. Labels were then categorized into two socioeconomic
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classes for comparison purposes. All in all, both annotators assigned the same label
to the overlapping locations in 81.7% of samples.

Census Occupation Expert
Size 32, 053 4, 140 1, 000
Low SES 0.54 0.46 0.58
High SES 0.46 0.54 0.42

Table 3.1: Number of users and estimated fractions of low and high SES in each
dataset

To solve the SES inference problem we used the above described three datasets (for
a summary see Table 3.1). We defined the inference task as a two-way classification
problem by dividing the user set of each dataset into two groups. For the census
and occupation datasets the lower and higher SES classes were separated by the
average income computed from the whole distribution, while in the case of the expert
annotated data we assigned people from the lowest five SES labels to the lower SES
class in the two-way task. The relative fractions of people assigned to the two classes
are depicted in Fig. 3-6b for each dataset and summarized in Table 3.1.

(a)

(b) (c)

(a) (b)

(a) (b)

(c)

(d)

Figure 3-6: Cumulative distributions of income as a function of sorted fraction 𝑓 of
individuals. Dashed line corresponds to the perfectly balanced distribution. Distri-
butions appear similar in spite of dealing with heterogeneous samples.

3.4 Feature selection

Using the user profile information and tweets collected from every account’s time-
line, we built a feature set for each user, similar to Lampos et al. [181]. We categorized
features into two sets, one containing shallow features directly observable from the
data, while the other was obtained via a pipeline of data processing methods to
capture semantic user features.
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3.4.1 User Level Features

The user level features are based on the general user information or aggregated
statistics about the tweets [181]. We therefore include general ordinal values such as
the number and rate of retweets, mentions, and coarse-grained information about the
social network of users (number of friends, followers, and ratio of friends to follow-
ers). Finally we vectorized each user’s profile description and tweets and selected the
top 450 and 560 1-grams and 2-grams, respectively, observed through their accounts
(where the rank of a given 1-gram was estimated via tf-idf [138]).

3.4.2 Linguistic features

To represent textual information, in addition to word count data, we used topic
models to encode coarse-grained information on the content of the tweets of a user,
similar to [181]. This enabled us to easily interpret the relation between semantic and
socioeconomic features. Specifically, we started by training a word2vec model [160] on
the whole set of tweets (obtained in the 2014-2015 time-frame) by using the skip-gram
model and negative sampling with parameters similar to [35]. To scale up the analysis,
the number of dimensions for the embedding was kept at 50. This embedded words
in the initial dataset in a R50 vector space. Eventually we extracted conversation top-
ics by running a spectral clustering algorithm on the word-to-word similarity matrix
𝑀 ∈ R𝑉×𝑉 with 𝑉 vocabulary size and elements defined as the 𝑀𝑖𝑗 =

⟨𝑢𝑖,𝑢𝑗⟩
||𝑢𝑖||||𝑢𝑗 || cosine

similarity between word vectors. Here 𝑢𝑖 ∈ R50 is a vector of a word 𝑖 ∈ 𝑉 in the
embedding, ⟨·⟩ is the dot product of vectors, and || · || is the 𝐿2 norm of a vector. This
definition allows for negative entries in the matrix to cluster, which were set to null
in our case. This is consistent with the goal of the clustering procedure as negative
similarities shouldn’t encode dissimilarity between pairs of words but orthogonality
between the embeddings. This procedure was run for 50, 100 and 200 clusters and
allowed the homogeneous distribution of words among clusters (hard clustering). The
best results were obtained with 100 topics in the topic model. Finally, we manually
labeled topics based on the words assigned to them, and computed the topic-to-topic
correlation matrix shown in Fig. 3-7. There, after block diagonalization, we found
clearly correlated groups of topics which could be associated to larger topical areas
such as communication, advertisement or soccer.

As a result we could compute a representative topic distribution for each user, defined
as a vector of normalized usage frequency of words from each topic. Also note that
the topic distribution for a given user was automatically obtained as it depends only
on the set of tweets and the learned topic clusters without further parametrization.

To demonstrate how discriminative the identified topics were in terms of the SES
of users we associated to each user the 9th decile value of the income distribution cor-

47



Figure 3-7: Clustered topic-to-topic correlation matrix: Topics are generated via the
spectral clustering of the word2vec word co-similarity matrix. Row labels are the
name of topics while column labels are their categories. Blue cells (resp. red) assign
negative (resp. positive) Pearson’s correlation coefficients.
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Figure 3-8: Average income for users who tweeted about a given topic (blue) vs. those
who didn’t (red). Label of the considered topic is on the left.

responding to the census block of their home location and computed for each labelled
topic the average income of users depending on whether or not they mentioned the
given topic. Results in Fig. 3-8 demonstrate that topics related to politics, technol-
ogy or culture are more discussed by people with higher income, while other topics
associated to slang, insults or informal abbreviations are more used by people of lower
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income. These observable differences between the average income of people, who use
(or not) words from discriminative topics, demonstrates well the potential of word
topic clustering used as features for the inference of SES. All in all, each user in our
dataset was assigned with a 1117 feature vector encoding the lexical and semantic
profile she displayed on Twitter. We did not apply any further feature selection as
the distribution of importance of features appeared rather smooth (not shown here).
It did not provided evident ways to identify a clear set of particularly determinant
features, but rather indicated that the combination of them were important.

3.5 Results

In order to assess the degree to which linguistic features can be used for discrimi-
nating users by their socioeconomic class, we trained with these feature sets different
learning algorithms. Namely, we used the XGBoost algorithm [36], an implementation
of the gradient-boosted decision trees for this task. Training a decision tree learning
algorithm involves the generation of a series of rules, split points or nodes ordered
in a tree-like structure enabling the prediction of a target output value based on the
values of the input features. More specifically, XGBoost, as an ensemble technique,
is trained by sequentially adding a high number of individually weak but comple-
mentary classifiers to produce a robust estimator: each new model is built to be
maximally correlated with the negative gradient of the loss function associated with
the model assembly [220]. To evaluate the performance of this method we bench-
marked it against more standard ensemble learning algorithms such as AdaBoost,
Logistic Regression, SVM and Random Forest. For each socioeconomic dataset, we

Census Occupation Expert
AdaBoost 0.549 ± 0.009 0.628 ± 0.022 0.575 ± 0.013
Logistic Reg. 0.658 ± 0.013 0.778 ± 0.058 0.571 ± 0.033
SVM 0.657 ± 0.016 0.788 ± 0.041 0.600 ± 0.012
Random Forest 0.677 ± 0.011 0.783 ± 0.017 0.593 ± 0.049
XGBoost 0.700± 0.011 0.798± 0.015 0.605± 0.029

Table 3.2: Classification performance (5-CV): AUC scores (mean ± STD) of five
different classifiers on each dataset)

trained our models by using 75% of the available data for training and the remaining
25% for testing. During the training phase, the training data undergoes a 𝑘-fold inner
cross-validation, with 𝑘 = 5, where all splits are computed in a stratified manner to
get the same ratio of lower to higher SES users. The four first blocks were used for
inner training and the remainder for inner testing. This was repeated ten times for
each model so that in the end, each model’s performance on the validation set was
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averaged over 50 samples. For each model, the parameters were fine-tuned by training
500 different models over the aforementioned splits. The selected one was that which
gave the best performance on average, which was then applied to the held-out test
set. This is then repeated through a 5-fold outer cross-validation.

In terms of prediction score, we followed a standard procedure in the literature [185]
and evaluated the learned models by considering the area under the receiver operat-
ing characteristic curve (AUC). This metric can be thought as the probability that a
classifier ranks a randomly chosen positive instance higher than a randomly chosen
negative one [220]. This procedure was applied to each of our datasets. The obtained
results are shown in Fig. 3-9 and in Table 3.3. As a result, we first observed that

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

LinkedIn : AUC = 0.80
Census : AUC = 0.70
Architect : AUC = 0.61

Figure 3-9: ROC curves for 2-way SES prediction using tuned XGBoost in each of the
3 SES datasets. AUC values are reported in the legend. The dashed line corresponds
to the line of no discrimination. Solid lines assign average values over all folds while
shaded regions represent standard deviation.

XGBoost consistently provided top prediction scores when compared to AdaBoost
and Random Forest (all performance scores are summarised in Table 3.2). We hence
used it for our predictions in the remainder of this study. We found that the LinkedIn
data was the best, with 𝐴𝑈𝐶 = 0.80, to train a model to predict SES of people based
on their semantic features. It provided a 10% increase in performance as compared to
the census based inference with 𝐴𝑈𝐶 = 0.70, and 19% relative to expert annotated
data with 𝐴𝑈𝐶 = 0.61. Thus we can conclude that there seem to be a trade-off
between scalability and prediction quality, as while the occupation dataset provided
the best results, it seems unlikely to be subject to any upscaling due to the high cost
of obtaining a clean dataset. Relying on location to estimate SES seems to be more
likely to benefit from such an approach, though at the cost of an increased number of
mislabelled users in the dataset. Moreover, the annotator’s estimation of SES using
Street View at each home location seems to be hindered by the large variability of
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urban features. Note that even though inter-agreement is 76%, the Cohen’s kappa
score for annotator inter-agreement is low at 0.169. Furthermore, we remark that
the expert annotated pipeline was also subject to noise affecting the home location
estimations, which potentially contributed to the lowest predictive performance. We

Figure 3-10: Top (red) and bottom (blue) five topics ranked in terms of their pre-
dictive performance in the XGBoost model trained on LinkedIn. Error bars indicate
s.d. across the 10 cross-validation samples.

also report the top and bottom five topics ranked by their importance when the
XGBoost model was trained on the best performing proxy, i.e., on occupation (see
Figure 3-10). Perhaps unsurprisingly, topics related to professional occupations are
the ones recognized by the model as most important. Nevertheless, syntax remains
an important feature too. Furthermore, topics associated to particular communities
(German/Turkish) or general interest (Soccer) seem to be less useful in terms of SES
discrimination. This could in turn be explained by the sparsity of individuals using
them or inversely, by the breadth of users discussing them.

Dataset SES Class Performance on test set
Precision Recall F1-score

Census Low 0.652 0.596 0.624
High 0.628 0.682 0.652

LinkedIn Low 0.700 0.733 0.717
High 0.735 0.702 0.720

Architect Low 0.622 0.598 0.607
High 0.550 0.573 0.556

Table 3.3: Detailed average performance (5-CV) on test data for the binary SES
inference problem for each of the 3 datasets
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3.6 Limitations

In this work we combined multiple datasets collected from various sources. Each
of them came with some bias due to the data collection and post-treatment methods
or the incomplete set of users. These biases may limit the success of our inference,
thus their identification is important for the interpretation and future developments
of our framework.

∙ Location data: Although we designed very strict conditions for the precise infer-
ence of home locations of geolocated users, this process may have some uncertainty
due to outlier behaviour. Further bias may be induced by the relatively long time
passed between the posting of the location data and of the tweets collection of users.

∙ Census data: As we already mentioned the census data does not cover the entire
French territory as it reports only cells with close to 2, 000 inhabitants. This may
introduce biases in two ways: by limiting the number of people in our sample living
in rural areas, and by associating income with large variation to each cell. While the
former limit had marginal effects on our predictions, as Twitter users mostly live in
urban areas, we addressed the latter effect by associating the median income to users
located in a given cell.

∙ Occupation data: LinkedIn as a professional online social network is predom-
inantly used by people from IT, business, management, marketing or other expert
areas, typically associated with higher education levels and higher salaries. More-
over, we could observe only users who shared their professional profiles on Twitter,
which may further biased our training set. In terms of occupational-salary classi-
fication, the data in [103] was collected in 2010 thus may not contain more recent
professions. These biases may induce limits in the representativeness of our training
data and thus in the predictions’ precision. However, results based on this method of
SES annotation performed best in our measurements, indicating that professions are
among the most predictive features of SES, as has been reported in [181].

∙ Annotated home locations : The remote sensing annotation was done by experts
and their evaluation was based on visual inspection and biased by some unavoid-
able subjectivity. Although their annotations were cross-referenced and found to be
consistent, they still contained biases, like over-representative middle classes, which
somewhat undermined the prediction task based on this dataset.

∙ Different sets of users : Our methodologies rely on non-entirely overlapping user
sets when they turn to SES inference using occupational data, census data, or re-
motely sensed values as proxy for individual socioeconomic status. The obtained
results are undoubtedly linked to the set of individuals used in each dataset, which
may affect the discriminative analysis on the advantages that each proxy provides
for the inference task. On the other hand, due to the same collection filters and
pre-processing conditions, users in these subsets may be considered similar enough to
be able to compare the performance provided by the different methods.
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Despite these shortcomings, using all three datasets, we were able to infer SES with
performances close to earlier reported results, which were based on more thoroughly
annotated datasets. Our results, and our approach of using open, crawlable, or re-
motely sensed data highlights the potential of the proposed methodologies.

3.7 Conclusions

This chapter introduced a novel methodology for the inference of the SES of
Twitter users. We built our models combining information obtained from numerous
sources, including Twitter, census data, LinkedIn and Google Maps. We developed
precise methods of home location inference from geolocation, novel annotation of re-
motely sensed images of living environments, and effective combination of datasets
collected from multiple sources. In terms of novelty, we demonstrated that within
the French Twitter space, the utilization of words in different topic categories, iden-
tified via advanced semantic analysis of tweets, can discriminate between people of
different income; and that the mobility patterns and such the predictability of users’
whereabouts is strongly dependent on SES of people. Furthermore, we showed that
among the candidate socioeconomic proxies chosen, the best results were obtained
using occupational data. More importantly, we presented a proof-of-concept that our
methods are competitive in terms of SES inference when compared to other methods
relying on domain specific information. Note that after training, our model requires
as input only information that can be collected exclusively from Twitter, without
relying on other data sources. This holds a large potential in terms of SES inference
of larger sets of Twitter users, which in turn opens the door for studies to address
population level correlations of SES with language, space, time, or social network. In
doing so it opens the gate to the greater development and refinement of precise SES
inference techniques from disparate data sources. In the chapters that will follow, we
will elaborate on this theme and show that deep learning tools are fully capable of
extracting meaningful socioeconomic information from satellite imagery. Moreover,
we will build upon the so far shown correlations between individual social features
and collective network structure, to examine whether a model able to jointly represent
node features and network structure has an enhanced representation power.
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Chapter 4

Joint embedding of features and
network structure with graph
convolutional networks

This work is currently in submission as a journal paper in Applied
Network Science [137] with myself as co-author

4.1 Introduction

In this chapter we bring together the threads of the previous two chapters and
simultaneously consider network and user information (both features and target, e.g
respectively user’s language and socioeconomic status) as different dimensions of the
same latent space. More precisely, in the triangle 𝑇 defined by a user’s network, lan-
guage and socioeconomic status, we have so far confirmed the existence of pairwise
correlations between all the concerned pairs and have shown how, at least for one of
them, it was possible to infer it from the other. Here, we work under the underlying
idea that these correlations are indeed evidence of hidden social mechanisms driving
the variations observed in Chapter 2, hence enabling inference tasks between all pairs
in 𝑇 . Rather than carrying out the empirical validation of this hypothesis, we take a
step back and ask what is exactly gained by modelling all these elements under the
same framework. We expand this idea in greater detail below.

Although it is relatively easy to obtain the proxy social network and various in-
dividual features for users of online social platforms, the combined characterisation
of these types of information is still challenging our methodology. While current ap-
proaches have been able to approximate the observed marginal distributions of node
and network features separately, their combined consideration was usually done via
summary network statistics merged with otherwise independently built feature sets
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of nodes. However, the entanglement between structural patterns and feature simi-
larities appears to be fundamental to a deeper understanding of network formation
and dynamics. The value of this joint information then calls for the development of
statistical tools for the learning of combined representation of network and feature
information and their dependencies.

The formation of ties and mesoscopic structures in online social networks is arguably
determined by several competing factors. Considering only network information,
neighbour similarities between people are thought to explain network communities,
where triadic closure mechanisms [125, 118] induce ties between peers with larger frac-
tions of common friends [74]. Meanwhile, random bridges [118] are built via focal clo-
sure mechanisms, optimising the structure for global connectedness and information
dissemination. At the same time, people in the network can be characterised by vari-
ous individual features such as their socio-demographic background [135, 2], linguistic
characters [77, 2, 141], or the distributions of their topics of interests [34, 94], to men-
tion just a few. Such features generate homophilic tie creation preferences [157, 119],
which induce links with higher probability between similar individuals, whom in turn
form feature communities of shared interest, age, gender, or socio-economic status,
and so on [135, 204]. Though these mechanisms are not independent and lead to cor-
relations between feature and network communities, it is difficult to define the causal
relationship between the two: first, because simultaneously characterising similari-
ties between multiple features and a complex network structure is not an easy task;
second, because it is difficult to determine, which of the two types of information,
features or structure, is driving network formation to a greater extent. Indeed, we do
not know what fraction of similar people initially get connected through homophilic
tie creation, versus the fraction that first get connected due to structural similarities
before influencing each other to become more similar [126, 7].

Over the last decade popular methods have been developed to characterise struc-
tural and feature similarities and to identify these two notions of communities. The
detection of network communities has been a major challenge in network science
with various concepts proposed [19, 190, 175] to solve it as an unsupervised learn-
ing task [56, 57]. Commonly, these algorithms rely solely on network information,
and their output is difficult to cross-examine without additional meta-data, which
is usually disregarded in their description. On the other hand, methods grouping
similar people into feature communities typically ignore network information, and
exclusively rely on individual features to solve the problem as a data clustering chal-
lenge [110, 60]. Some semi-supervised learning tasks, such as link prediction, may take
feature and structural information simultaneously into account, but only by enriching
individual feature vectors with node-level network characteristics such as degree or
local clustering [145, 150, 94]. Methods that would take higher order network corre-
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lations and multivariate feature information into account at the same time are still
to be defined. Their development would offer huge potential in understanding the
relation between individuals’ characters, their social relationships, the content they
are engaged with, and the larger communities they belong to. This would not only
provide us with deeper insight about social behaviour, it would give us predictive tools
for the emergence of network structure, individual interests and behavioural patterns.

In this chapter we propose a contribution to solve this problem by developing a joint
feature-network embedding built on multitask Graph Convolutional Networks [116,
28, 80, 231] and Variational Autoencoders (GCN-VAE) [112, 189, 115, 227, 233], which
we call the Attributed Node to Vector method (AN2VEC). In our model, different
dimensions of the generated embeddings can be dedicated to encode feature infor-
mation, network structure, or shared feature-network information separately. Unlike
previous embedding methods dealing with features [61, 222, 203, 21], this interaction
model [3] allows us to explore the dependencies between the disentangled network
and feature information by comparing the embedding reconstruction performance
to a baseline case where no shared information is extracted. Using this method,
we can identify an optimal reduced embedding, which indicates whether combined
information coming from the structure and features is important, or whether their
non-interacting combination is sufficient for reconstructing the featured network.

In practice, as this method solves a reconstruction problem, it may give important
insights about the combination of feature- and structure-driven mechanisms which
determine the formation of a given network. As an embedding, it is useful to identify
people sharing similar individual and structural characters. And finally, by measuring
the optimal overlap between feature– and network-associated dimensions, it can be
used to verify network community detection methods to see how well they identify
communities explained by feature similarities.

In what follows, after summarising the relevant literature, we introduce our method
and demonstrate its performance on synthetic featured networks, for which we con-
trol the structural and feature communities as well as the correlations between the
two. As a result, we will show that our embeddings, when relying on shared in-
formation, outperform the corresponding reference without shared information, and
that this performance gap increases with the correlation between network and feature
structure since the method can capture the increased joint information. Next, we ex-
tensively explore the behaviour of our model on link prediction and node classification
on standard benchmark datasets, comparing it to well-known embedding methods.
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4.2 Related Work

The advent of increasing computational power coupled with the continuous release
and ubiquity of large graph-structured datasets has triggered a surge of research in
the field of network embeddings. The main motivation behind this trend is to be
able to convert a graph into a low-dimensional space where its structural informa-
tion and properties are maximally preserved [29]. The aim is to extract unseen or
hard to obtain properties of the network, either directly or by feeding the learned
representations to a downstream inference pipeline.

4.2.1 Graph embedding survey: from matrix factorisation to
deep learning

In early work, low-dimensional node embeddings were learned for graphs con-
structed from non-relational data by relying on matrix factorisation techniques. By
assuming that the input data lies on a low dimensional manifold, such methods sought
to reduce the dimensionality of the data while preserving its structure, and did so by
factorising graph Laplacian eigenmaps [218] or node proximity matrices [31].

More recent work has attempted to develop embedding architectures that can use deep
learning techniques to compute node representations. DeepWalk [176], for instance,
computes node co-occurrence statistics by sampling the input graph via truncated
random walks, and adopts a SkipGram neural language model to maximise the prob-
ability of observing the neighbourhood of a node given its embedding. By doing so
the learned embedding space preserves second order proximity in the original graph.
However, this technique and the ones that followed [76, 143] present generalisation
caveats, as unobserved nodes during training cannot be meaningfully embedded in the
representation space, and the embedding space itself cannot be generalised between
graphs. Instead of relying on random walk-based sampling of graphs to feed deep
learning architectures, other approaches have used the whole network as input to au-
toencoders in order to learn, at the bottleneck layer, an efficient representation able
to recover proximity information [227, 32, 222]. However, the techniques developed
herein remained limited due to the fact that successful deep learning models such as
convolutional neural networks require an underlying euclidean structure in order to
be applicable.

4.2.2 Geometric deep learning survey: defining convolutional
layers on non-euclidean domains

This restriction has been gradually overcome by the development of graph con-
volutions or Graph Convolutional Networks (GCN). By relying on the definition of
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convolutions in the spectral domain, Bruna et al. [28] defined spectral convolution
layers based on the spectrum of the graph Laplacian. Several modifications and ad-
ditions followed and were progressively added to ensure the feasibility of learning on
large networks, as well as the spatial localisation of the learned filters [25, 231]. A
key step is made by [47] with the use of Chebychev polynomials of the Laplacian, in
order to avoid having to work in the spectral domain. These polynomials, of order up
to 𝑟, generate localised filters that behave as a diffusion operator limited to 𝑟 hops
around each vertex. This construction is then further simplified by Kipf and Welling
by assuming among others that 𝑟 ≈ 2 [116].

Recently, these approaches have been extended into more flexible and scalable frame-
works. For instance, Hamilton et al. [80] extended the original GCN framework by
enabling the inductive embedding of individual nodes, training a set of functions that
learn to aggregate feature information from a node’s local neighborhood. In doing
so, every node defines a computational graph whose parameters are shared for all the
graphs nodes.

More broadly, the combination of GCN with autoencoder architectures has proved
fertile for creating new embedding methods. The introduction of probabilistic node
embeddings, for instance, has appeared naturally from the application of variational
autoencoders to graph data [189, 112, 115], and has since led to explorations of the
uncertainty of embeddings [21, 233], of appropriate levels of disentanglement and
overlap [154], and of better representation spaces for measuring pairwise embedding
distances (see in particular recent applications of the Wasserstein distance between
probabilistic embeddings [233, 163]). Such models consistently outperform earlier
techniques on different benchmarks and have opened several interesting lines of re-
search in fields ranging from drug design [52] to particle physics [114]. Most of the
more recent approaches mentioned above can incorporate node features (either be-
cause they rely on them centrally, or as an add-on). However, with the exception
of DANE [61], they mostly do so by assuming that node features are an additional
source of information, which is congruent with the network structure (e.g. multi-task
learning with shared weights [222], or fusing both information types together [203]).
That assumption may not hold in many complex datasets, and it seems important
to explore what type of embeddings can be constructed when we lift it, considering
different levels of congruence between a network and the features of its nodes.

We therefore set out to make a change to the initial GCN-VAE in order to: (i)
create embeddings that are explicitly trained to encode both node features and net-
work structure; (ii) make it so that these embeddings can separate the information
that is shared between network and features, from the (possibly non-congruent) in-
formation that is specific to either network or features; and (iii) be able to tune the
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importance that is given to each type of information in the embeddings.

4.3 Methods

In this section we present the architecture of the neural network model we use
to generate shared feature-structure node embeddings 1. We take a featured net-
work as input, with structure represented as an adjacency matrix and node features
represented as vectors (see below for a formal definition). Our starting point is a
GCN-VAE, and our first goal is a multitask reconstruction of both node features and
network adjacency matrix. Then, as a second goal, we tune the architecture to be able
to scale the number of embedding dimensions dedicated to feature-only reconstruc-
tion, adjacency-only reconstruction, or shared feature-adjacency information, while
keeping the number of trainable parameters in the model constant.

4.3.1 Multitask graph convolutional autoencoder

We begin with the graph-convolutional variational autoencoder developed by [115],
which stacks graph-convolutional (GC) layers [116] in the encoder part of a variational
autoencoder [189, 112] to obtain a lower dimensional embedding of the input struc-
ture. This embedding is then used for the reconstruction of the original graph (and
in our case, also of the features) in the decoding part of the model. Similarly to [116],
we use two GC layers in our encoder and generate Gaussian-distributed node embed-
dings at the bottleneck layer of the autoencoder. We now introduce each phase of
our embedding method in formal terms.

Encoder

We are given an undirected unweighted feautured graph 𝒢 = (𝒱 , ℰ), with 𝑁 = |𝒱|
nodes, each node having a 𝐷-dimensional feature vector. Loosely following the no-
tations of [115], we note A the graph’s 𝑁 ×𝑁 adjacency matrix (diagonal elements
set to 0), X the 𝑁 × 𝐷 matrix of node features, and X𝑖 the D-dimensional feature
vector of a node 𝑖.

The encoder part of our model is where 𝐹 -dimensional node embeddings are gen-
erated. It computes 𝜇 and 𝜎, two 𝑁 × 𝐹 matrices, which parametrise a stochastic
embedding of each node:

𝜇 = GCN𝜇(X,A) and log𝜎 = GCN𝜎(X,A).

1. The implementation of our model is available online at github.com/ixxi-dante/an2vec.
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Here we use two graph-convolutional layers for each parameter set, with shared
weights at the first layer and parameter-specific weights at the second layer:

GCN𝛼(X,A) = ÂReLU(ÂXW𝑒𝑛𝑐
0 )W𝑒𝑛𝑐

1,𝛼

In this equation, 𝑊 𝑒𝑛𝑐
0 and 𝑊 𝑒𝑛𝑐

1,𝛼 are the weight matrices for the linear transformations
of each layer’s input; ReLU refers to a rectified linear unit [165]; and following the
formalism introduced in [116], Â is the standard normalised adjacency matrix with
added self-connections, defined as:

Â = D̃− 1
2 ÃD̃− 1

2

Ã = A + I𝑁

�̃�𝑖𝑖 =
∑︁
𝑗

𝐴𝑖𝑗

where I𝑁 is the 𝑁 ×𝑁 identity matrix.

Embedding

The parameters 𝜇 and 𝜎 produced by the encoder define the distribution of an
𝐹 -dimensional stochastic embedding 𝜉𝑖 for each node 𝑖, defined as:

𝜉𝑖|A,X ∼ 𝒩 (𝜇𝑖, diag(𝜎2
𝑖 )).

Thus, for all the nodes we can write a probability density function over a given set of
embeddings 𝜉, in the form of an 𝑁 × 𝐹 matrix:

𝑞(𝜉|X,A) =
𝑁∏︁
𝑖=1

𝑞(𝜉𝑖|A,X).

Decoder

The decoder part of our model aims to reconstruct both the input node features
and the input adjacency matrix by producing parameters of a generative model for
each of the inputs. On one hand, the adjacency matrix A is modelled as a set of
independent Bernoulli random variables, whose parameters come from a bi-linear
form applied to the output of a single dense layer:

𝐴𝑖𝑗|𝜉𝑖, 𝜉𝑗 ∼ Ber(MLB(𝜉)𝑖𝑗)

MLB(𝜉) = sigmoid(𝛾𝑇W𝑑𝑒𝑐
A,1𝛾)

𝛾 = ReLU(𝜉W𝑑𝑒𝑐
A,0).‘
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Similarly to above, 𝑊 𝑑𝑒𝑐
A,0 is the weight matrix for the first adjacency matrix decoder

layer, and 𝑊 𝑑𝑒𝑐
A,1 is the weight matrix for the bilinear form which follows.

On the other hand, features can be modelled in a variety of ways, depending on
whether they are binary or continuous, and if their norm is constrained or not. Fea-
tures in our experiments are one-hot encodings, so we model the reconstruction of the
feature matrix X by using 𝑁 single-draw 𝐷-categories multinomial random variables.
The parameters of those multinomial variables are computed from the embeddings
with a two-layer perceptron: 2

X𝑖|𝜉𝑖 ∼ Multinomial(1,MLP(𝜉)𝑖)

MLP(𝜉) = softmax(ReLU(𝜉W𝑑𝑒𝑐
X,0)W

𝑑𝑒𝑐
X,1)

In the above equations, sigmoid(𝑧) = 1
1+𝑒−𝑧 refers to the logistic function applied

element-wise on vectors or matrices, and softmax(z)𝑖 = 𝑒𝑧𝑖∑︀
𝑗 𝑒

𝑧𝑗 refers to the normalised
exponential function, also applied element-wise, with 𝑗 running along the rows of ma-
trices (and along the indices of vectors).

Thus we can write the probability density for a given reconstruction as:

𝑝(X,A|𝜉) = 𝑝(A|𝜉)𝑝(X|𝜉)

𝑝(A|𝜉) =
𝑁∏︁

𝑖,𝑗=1

MLB(𝜉)
𝐴𝑖𝑗

𝑖𝑗 (1 − MLB(𝜉)𝑖𝑗)
1−𝐴𝑖𝑗

𝑝(X|𝜉) =
𝑁∏︁
𝑖=1

𝐷∏︁
𝑗=1

MLP(𝜉)
𝑋𝑖𝑗

𝑖𝑗

Learning

The variational autoencoder is trained by minimising an upper bound to the
marginal likelihood-based loss [189] defined as:

− log 𝑝(A,X) ≤ ℒ(A,X)

= 𝐷𝐾𝐿(𝑞(𝜉|A,X)||𝒩 (0, I𝐹 ))

− E𝑞(𝜉|A,X)[log(𝑝(A,X|𝜉,𝜃)𝑝(𝜃))]

= ℒ𝐾𝐿 + ℒA + ℒX + ℒ𝜃

2. Other types of node features are modelled according to their constraints and domain. Binary
features are modelled as independent Bernoulli random variables. Continuous-range features are
modelled as Gaussian random variables in a similar way to the embeddings themselves.
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Here ℒ𝐾𝐿 is the Kullback-Leibler divergence between the distribution of the embed-
dings and a Gaussian Prior, and 𝜃 is the vector of decoder parameters whose associ-
ated loss ℒ𝜃 acts as a regulariser for the decoder layers. 3 Computing the adjacency
and feature reconstruction losses by using their exact formulas is computationally not
tractable, and the standard practice is instead to estimate those losses by using an
empirical mean. We generate 𝐾 samples of the embeddings by using the distribution
𝑞(𝜉|A,X) given by the encoder, and average the losses of each of those samples 4

[189, 112]:

ℒA = −E𝑞(𝜉|A,X)[log 𝑝(A|𝜉,𝜃)]

≃ − 1

𝐾

𝐾∑︁
𝑘=1

𝑁∑︁
𝑖,𝑗=1

[︀
𝐴𝑖𝑗 log(MLB(𝜉(𝑘))𝑖𝑗)

+ (1 − 𝐴𝑖𝑗) log(1 − MLB(𝜉(𝑘))𝑖𝑗)
]︀

ℒX = −E𝑞(𝜉|A,X)[log 𝑝(X|𝜉,𝜃)]

≃ − 1

𝐾

𝐾∑︁
𝑘=1

𝑁∑︁
𝑖=1

𝐷∑︁
𝑗=1

𝑋𝑖𝑗 log(MLP(𝜉(𝑘))𝑖𝑗)

Finally, for diagonal Gaussian embeddings such as the ones we use, ℒ𝐾𝐿 can be
expressed directly [112]:

ℒ𝐾𝐿 =
1

2

𝑁∑︁
𝑖=1

𝐹∑︁
𝑗=1

𝜇2
𝑖𝑗 + 𝜎2

𝑖𝑗 − 2 log 𝜎𝑖𝑗 − 1

Loss adjustments

In practice, to obtain useful results a few adjustments are necessary to this loss
function. First, given the high sparsity of real-world graphs, the 𝐴𝑖𝑗 and 1−𝐴𝑖𝑗 terms
in the adjacency loss must be scaled respectively up and down in order to avoid glob-
ally near-zero link reconstruction probabilities. Instead of penalising reconstruction
proportionally to the overall number of errors in edge prediction, we want false neg-
atives (𝐴𝑖𝑗 terms) and false positives (1 − 𝐴𝑖𝑗 terms) to contribute equally to the
reconstruction loss, independent of graph sparsity. Formally, let 𝑑 =

∑︀
𝑖𝑗 𝐴𝑖𝑗

𝑁2 denote
the density of the graph’s adjacency matrix (𝑑 = 𝑁−1

𝑁
× density(𝒢)); then we replace

3. Indeed, following [189] we assume 𝜃 ∼ 𝒩 (0, 𝜅𝜃I), such that ℒ𝜃 = − log 𝑝(𝜃) =
1
2 dim(𝜃) log(2𝜋𝜅𝜃) +

1
2𝜅𝜃

||𝜃||22.
4. In practice, 𝐾 = 1 is often enough.
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ℒA by the following re-scaled estimated loss (the so-called “balanced cross-entropy”):

ℒ̃A = − 1

𝐾

𝐾∑︁
𝑘=1

𝑁∑︁
𝑖,𝑗=1

1

2

[︂
𝐴𝑖𝑗

𝑑
log(MLB(𝜉(𝑘))𝑖𝑗)

+
1 − 𝐴𝑖𝑗

1 − 𝑑
log(1 − MLB(𝜉(𝑘))𝑖𝑗)

]︂
Second, we correct each component loss for its change of scale when the shapes

of the inputs and the model parameters change: ℒ𝐾𝐿 is linear in 𝑁 and 𝐹 , ℒ̃A is
quadratic in 𝑁 , and ℒX is linear in 𝑁 (but not in 𝐹 , remember that

∑︀
𝑗 𝑋𝑖𝑗 = 1 since

each X𝑖 is a single-draw multinomial).

Beyond dimension scaling, we also wish to keep the values of ℒ̃A and ℒX comparable
and, doing so, maintain a certain balance between the difficulty of each task. As a first
approximation to the solution, and in order to avoid more elaborate schemes which
would increase the complexity of our architecture (such as [37]), we divide both loss
components by their values at maximum uncertainty 5, respectively log 2 and log𝐷.

Finally, we make sure that the regulariser terms in the loss do not overpower the
actual learning terms (which are now down-scaled close to 1) by adjusting 𝜅𝜃 and an
additional factor, 𝜅𝐾𝐿, which scales the Kullback-Leibler term. 6 These adjustments
lead us to the final total loss the model is trained for:

ℒ =
ℒ̃A

𝑁2 log 2
+

ℒX

𝑁 log𝐷
+

ℒ𝐾𝐿

𝑁𝐹𝜅𝐾𝐿

+
||𝜃||22
2𝜅𝜃

where we have removed constant terms with respect to trainable model parameters.

4.3.2 Scaling shared information allocation

The model we just presented uses all dimensions of the embeddings indiscrimi-
nately to reconstruct the adjacency matrix and the node features. While this can be
useful in some cases, it cannot adapt to different interdependencies between graph
structure and node features; in cases where the two are not strongly correlated, the
embeddings would lose information by conflating features and graph structure. There-
fore our second aim is to adjust the dimensions of the embeddings used exclusively
for feature reconstruction, or for adjacency reconstruction, or used for both.

In a first step, we restrict which part of a node’s embedding is used for each task.
Let 𝐹A be the number of embedding dimensions we will allocate to adjacency ma-

5. That is, 𝑝(𝐴𝑖𝑗 |𝜉,𝜃) = 1
2 ∀𝑖, 𝑗, and 𝑝(𝑋𝑖𝑗 |𝜉,𝜃) = 1

𝐷 ∀𝑖, 𝑗.
6. We use 𝜅𝐾𝐿 = 2𝜅𝜃 = 103.
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trix reconstruction only, 𝐹X the number of dimensions allocated to feature recon-
struction only, and 𝐹AX the number of dimensions allocated to both. We have
𝐹A + 𝐹AX + 𝐹X = 𝐹 . We further introduce the following notation for the restriction
of the embedding of node 𝑖 to a set of dedicated dimensions {𝑎, . . . , 𝑏} 7:

𝜉𝑖,𝑎:𝑏 = (𝜉𝑖𝑗)𝑗∈{𝑎,...,𝑏}

This extends to the full matrix of embeddings similarly:

𝜉𝑎:𝑏 = (𝜉𝑖𝑗)𝑖∈{1,...,𝑁},𝑗∈{𝑎,...,𝑏}

Using these notations we adapt the decoder to reconstruct adjacency and features as
follows:

𝐴𝑖𝑗|𝜉𝑖,1:𝐹A+𝐹AX
, 𝜉𝑗,1:𝐹A+𝐹AX

∼ Ber(MLB(𝜉1:𝐹A+𝐹AX
)𝑖𝑗)

X𝑖|𝜉𝑖,𝐹A+1:𝐹 ∼ Multinomial(1,MLP(𝜉𝐹A+1:𝐹 )𝑖)

In other words, adjacency matrix reconstruction relies on 𝐹A + 𝐹AX embedding di-
mensions, feature reconstruction relies on 𝐹X+𝐹AX dimensions, and 𝐹AX overlapping
dimensions are shared between the two. Our reasoning is that for datasets where the
dependency between features and network structure is strong, shallow models with
higher overlap value will perform better than models with the same total embedding
dimensions 𝐹 and less overlap, or will perform on par with models that have more
total embedding dimensions and less overlap. Indeed, the overlapping model should
be able to extract the information shared between features and network structure
and store it in the overlapping dimensions, while keeping the feature-specific and
structure-specific information in their respective embedding dimensions. This is to
compare to the non-overlapping case, where shared network-feature information is
stored redundantly, both in feature- and structure-specific embeddings, at the ex-
pense of a larger number of distinct dimensions.

Therefore, to evaluate the performance gains of this architecture, one of our mea-
sures is to compare the final loss for different hyperparameter sets, keeping 𝐹A +𝐹AX

and 𝐹X + 𝐹AX fixed and varying the overlap size 𝐹AX. Now, to make sure the train-
ing losses for different hyperparameter sets are comparable, we must maintain the
overall number of trainable parameters in the model fixed. The decoder already has
a constant number of trainable parameters, since it only depends on the number of
dimensions used for decoding features (𝐹X +𝐹AX) and adjacency matrix (𝐹A +𝐹AX),
which are themselves fixed.

7. Note that the order of the indices does not change the training results, as the model has no
notion of ordering inside its layers. What follows is valid for any permutation of the dimensions,
and the actual indices only matter to downstream interpretation of the embeddings after training.

64



EmbeddingsEncoder

FA

FAX

FX

N(μ, σ²)
GC

GC

GC

GC μX

μA

n
o
d

e
 f

e
a
tu

re
s

Sampler

Dense

Dense Dense

Weighted
Bilinear

n
o
d

e
 f

e
a
tu

re
s

Decoder

Figure 4-1: Diagram of the overlapping embedding model we propose. Red and blue
blocks with a layer name (GC, Dense, Weighted Bilinear) indicate actual layers, with
their activation function depicted to the right as a curve in a green circle (either
ReLU or sigmoid). Red blocks concern processing for the adjacency matrix, blue
blocks processing for the node features. The encoder is made of four parallel GC
pipelines producing 𝜇A, 𝜇X, log 𝜎A and log 𝜎X (the last two being grayed out in the
background). Their output is then combined to create the overlap, then used by the
sampler to create the node embeddings. The decoder processes parts of the node
embeddings and separately reconstructs the adjacency matrix (top) and the node
features (bottom).

On the other hand, the encoder requires an additional change. We maintain the
dimensions of the encoder-generated 𝜇 and 𝜎 parameters fixed at 𝐹A + 2𝐹AX + 𝐹X

(independently from 𝐹AX, given the constraints above), and reduce those outputs to
𝐹A + 𝐹AX + 𝐹X dimensions by averaging dimensions {𝐹A + 1, . . . , 𝐹A + 𝐹AX} and
{𝐹A +𝐹AX + 1, . . . , 𝐹A + 2𝐹AX} together. 8 In turn, this model maintains a constant
number of trainable parameters, while allowing us to adjust the number of dimen-
sions 𝐹AX shared by feature and adjacency reconstruction (keeping 𝐹A + 𝐹AX and
𝐹X + 𝐹AX constant). Figure 4-1 schematically represents this architecture.

8. Formally:

�̃� = 𝜇1:𝐹A
‖ 1

2
(𝜇𝐹A+1:𝐹A+𝐹AX

+ 𝜇𝐹A+𝐹AX+1:𝐹A+2𝐹AX
)

‖𝜇𝐹A+2𝐹AX+1:𝐹A+2𝐹AX+𝐹X

log �̃� = log𝜎1:𝐹A
‖ 1

2
(log𝜎𝐹A+1:𝐹A+𝐹AX

+ log𝜎𝐹A+𝐹AX+1:𝐹A+2𝐹AX
)

‖ log𝜎𝐹A+2𝐹AX+1:𝐹A+2𝐹AX+𝐹X

where ‖ denotes concatenation along the columns of the matrices.

65



4.4 Results

We are interested in measuring two main effects: first, the variation in model per-
formance as we increase the overlap in the embeddings, and second, the capacity of
the embeddings with overlap (versus no overlap) to capture and benefit from depen-
dencies between graph structure and node features. To that end, we train overlapping
and non-overlapping models on synthetic data with different degrees of correlation
between network structure and node features.

4.4.1 Synthetic featured networks

We use a Stochastic Block Model [92] to generate synthetic featured networks, each
with 𝑀 communities of 𝑛 = 10 nodes, with intra-cluster connection probabilities of
0.25, and with inter-cluster connection probabilities of 0.01. Each node is initially
assigned a colour which encodes its feature community; we shuffle the colours of a
fraction 1 − 𝛼 of the nodes, randomly sampled. This procedure maintains constant
the overall count of each colour, and lets us control the correlation between the graph
structure and node features by moving 𝛼 from 0 (no correlation) to 1 (full correlation).

Node features are represented by a one-hot encoding of their colour (therefore, in
all our scenarios, the node features have dimension 𝑀 = 𝑁/𝑛). However, since in
this case all the nodes inside a community have exactly the same feature value, the
model can have difficulties differentiating nodes from one another. We therefore add
a small Gaussian noise (𝜎 = .1) to make sure that nodes in the same community can
be distinguished from one another.

Note that the feature matrix has less degrees of freedom than the adjacency ma-
trix in this setup, a fact that will be reflected in the plots below. However, opting
for this minimal generative model lets us avoid the parameter exploration of more
complex schemes for feature generation, while still demonstrating the effectiveness of
our model.

4.4.2 Comparison setup

To evaluate the efficiency of our model in terms of capturing meaningful corre-
lations between network and features, we compare overlapping and non-overlapping
models as follows. For a given maximum number of embedding dimensions 𝐹𝑚𝑎𝑥,
the overlapping models keep constant the number of dimensions used for adjacency
matrix reconstruction and the number of dimensions used for feature reconstruction,
with the same amount allocated to each task: 𝐹 𝑜𝑣

A + 𝐹 𝑜𝑣
AX = 𝐹 𝑜𝑣

X + 𝐹 𝑜𝑣
AX = 1

2
𝐹𝑚𝑎𝑥.

However they vary the overlap 𝐹 𝑜𝑣
AX from 0 to 1

2
𝐹𝑚𝑎𝑥 by steps of 2. Thus the total
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number of embedding dimensions 𝐹 varies from 𝐹𝑚𝑎𝑥 to 1
2
𝐹𝑚𝑎𝑥, and as 𝐹 decreases,

𝐹 𝑜𝑣
AX increases. We call one such model ℳ𝑜𝑣

𝐹 .

Now for a given overlapping model ℳ𝑜𝑣
𝐹 , we define a reference model ℳ𝑟𝑒𝑓

𝐹 , which has
the same total number of embedding dimensions, but without overlap: 𝐹 𝑟𝑒𝑓

AX = 0, and
𝐹 𝑟𝑒𝑓
A = 𝐹 𝑟𝑒𝑓

X = 1
2
𝐹 (explaining why we vary 𝐹 with steps of 2). Note that while the

reference model has the same information bottleneck as the overlapping model, it has
less trainable parameters in the decoder, since 𝐹 𝑟𝑒𝑓

A + 𝐹 𝑟𝑒𝑓
AX = 𝐹 𝑟𝑒𝑓

X + 𝐹 𝑟𝑒𝑓
AX = 1

2
𝐹 will

decrease as 𝐹 decreases. Nevertheless, this will not be a problem for our measures,
since we will be mainly looking at the behaviour of a given model for different values
of 𝛼 (i.e. the feature-network correlation parameter).

For our calculations (if not noted otherwise) we use synthetic networks of 𝑁 = 1000

nodes (i.e. 100 clusters), and set the maximum embedding dimensions 𝐹𝑚𝑎𝑥 to 20.
For all models, we set the intermediate layer in the encoder and the two intermediate
layers in the decoder to an output dimension of 50, and the internal number of samples
for loss estimation at 𝐾 = 5. We train our models for 1000 epochs using the Adam
optimiser [111] with a learning rate of 0.01 (following [115]), after initialising weights
following [67]. For each combination of 𝐹 and 𝛼, the training of the overlapping and
reference models is repeated 20 times on independent featured networks.

Since the size of our synthetic data is constant, and we average training results over
independently sampled data sets, we can meaningfully compare the averaged training
losses of models with different parameters. We therefore take the average best train-
ing loss of a model to be our main measure, indicating the capacity to reconstruct an
input data set for a given information bottleneck and embedding overlap.

4.4.3 Advantages of overlap

Absolute loss values

Figure 4-2 shows the variation of the best training loss (total loss, adjacency re-
construction loss, and feature reconstruction loss) for both overlapping and reference
models, with 𝛼 ranging from 0 to 1 and 𝐹 decreasing from 20 to 10 by steps of 2. One
curve in these plots represents the variation in losses of a model with fixed 𝐹 for data
sets with increasing correlation between network and features; each point aggregates
20 independent trainings, used to bootstrap 95% confidence intervals.

We first see that all losses, whether for overlapping model or reference, decrease
as we move from the uncorrelated scenario to the correlated scenario. This is true
despite the fact that the total loss is dominated by the adjacency reconstruction loss,
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Figure 4-2: Absolute training loss values of overlapping and reference models. The
curve colours represents the total embedding dimensions 𝐹 , and the x axis corresponds
to feature-network correlation. The top row is the total loss, the middle row is the
adjacency matrix reconstruction loss and the bottom row is the feature reconstruction
loss. The left column shows overlapping models, and the right column shows reference
non-overlapping models.

as feature reconstruction is an easier task overall. Second, recall that the decoder
in a reference model has less parameters than its corresponding overlapping model
of the same 𝐹 dimensions (except for zero overlap), such that the reference is less
powerful and produces higher training losses. The absolute values of the losses for
overlap and reference models are therefore not directly comparable. However, the
changes in slopes are meaningful. Indeed, we note that the curve slopes are steeper
for models with higher overlap (lower 𝐹 ) than for lower overlap (higher 𝐹 ), whereas
they seem relatively independent for the reference models of different 𝐹 . In other
words, as we increase the overlap, our models seem to benefit more from an increase
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in network-feature correlation than what a reference model benefits.

Relative loss disadvantage

In order to assess this trend more reliably, we examine losses relative to the max-
imum embedding models. Figure 4-3 plots the loss disadvantage that overlap and
reference models have compared to their corresponding model with 𝐹 = 𝐹𝑚𝑎𝑥, that
is,

ℒℳ𝐹
−ℒℳ𝐹𝑚𝑎𝑥

ℒℳ𝐹𝑚𝑎𝑥

. We call this the relative loss disadvantage of a model. In this plot,
the height of a curve thus represents the magnitude of the decrease in performance of
a model ℳ𝑜𝑣|𝑟𝑒𝑓

𝐹 relative to the model with maximum embedding size, ℳ𝑜𝑣|𝑟𝑒𝑓
𝐹𝑚𝑎𝑥

. Note
that for both the overlap model and the reference model, moving along one of the
curves does not change the number of trainable parameters in the model.

As the correlation between network and features increases, we see that the rela-
tive loss disadvantage decreases in overlap models, and that the effect is stronger for
higher overlaps. In other words, when the network and features are correlated, the
overlap captures this joint information and compensates for the lower total number
of dimensions (compared to ℳ𝑜𝑣|𝑟𝑒𝑓

𝐹𝑚𝑎𝑥
): the model achieves a better performance than

when network and features are more independent. Strikingly, for the reference model
these curves are flat, thus indicating no variation in relative loss disadvantage with
varying network-feature correlations in these cases. This confirms that the new mea-
sure successfully controls for the baseline decrease of absolute loss values when the
network-features correlation increases, as observed in Figure 4-2. Our architecture
is therefore capable of capturing and taking advantage of some of the correlation by
leveraging the overlap dimensions of the embeddings.

Finally note that for high overlaps, the feature reconstruction loss value actually
increases a little when 𝛼 grows. The behaviour is consistent with the fact that the
total loss is dominated by the adjacency matrix loss (the hardest task). In this case
it seems that the total loss is improved more by exploiting the gain of optimising
for adjacency matrix reconstruction, and paying the small cost of a lesser feature
reconstruction, than decreasing both adjacency matrix and feature losses together. If
wanted, this strategy could be controlled using a gradient normalisation scheme such
as [37].

4.4.4 Standard benchmarks

Finally we compare the performance of our architecture to other well-known em-
bedding methods, namely spectral clustering (SC) [215], DeepWalk (DW) [176], the
vanilla non-variational and variational Graph Auto-Encoders (GAE and VGAE) [115],
and GraphSAGE [80] which we look at in more detail. We do so on two tasks: (i) the
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Figure 4-3: Relative loss disadvantage for overlapping and reference models. The
curve colours represents the total embedding dimensions 𝐹 , and the x axis corresponds
to feature-network correlation. The top row is the total loss, the middle row is the
adjacency matrix reconstruction loss and the bottom row is the feature reconstruction
loss. The left column shows overlapping models, and the right column shows reference
non-overlapping models. See main text for a discussion.

link prediction task introduced by [115] and (ii) a node classification task, both on
the Cora, CiteSeer and PubMed datasets, which are regularly used as citation net-
work benchmarks in the literature [201, 166]. Note that neither SC nor DW support
feature information as an input.

The Cora and CiteSeer datasets are citation networks made of respectively 2708 and
3312 machine learning articles, each assigned to a small number of document classes
(7 for Cora, 6 for CiteSeer), with a bag-of-words feature vector for each article (respec-
tively 1433 and 3703 words). The PubMed network is made of 19717 diabetes-related
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articles from the PubMed database, each assigned to one of three classes, with arti-
cle feature vectors containing term frequency-inverse document frequency (TF/IDF)
scores for 500 words.

Link prediction

The link prediction task consists in training a model on a version of the datasets
where part of the edges has been removed, while node features are left intact. A
test set is formed by randomly sampling 15% of the edges combined with the same
number of random disconnected pairs (non-edges). Subsequently the model is trained
on the remaining dataset where 15% of the real edges are missing.

Method Cora CiteSeer PubMed
AUC AP AUC AP AUC AP

SC 84.6 ± 0.01 88.5 ± 0.00 80.5 ± 0.01 85.0 ± 0.01 84.2 ± 0.02 87.8 ± 0.01
DW 83.1 ± 0.01 85.0 ± 0.00 80.5 ± 0.02 83.6 ± 0.01 84.4 ± 0.00 84.1 ± 0.00
GAE 91.0 ± 0.02 92.0 ± 0.03 89.5 ± 0.04 89.9 ± 0.05 96.4 ± 0.00 96.5 ± 0.00
VGAE 91.4 ± 0.01 92.6 ± 0.01 90.8 ± 0.02 92.0 ± 0.02 94.4 ± 0.02 94.7 ± 0.02
AN2VEC-0 89.5 ± 0.01 90.6 ± 0.01 91.2 ± 0.01 91.5 ± 0.02 91.8 ± 0.01 93.2 ± 0.01
AN2VEC-16 89.4 ± 0.01 90.2 ± 0.01 91.1 ± 0.01 91.3 ± 0.02 92.1 ± 0.01 92.8 ± 0.01
AN2VEC-S-0 92.9 ± 0.01 93.4 ± 0.01 94.3 ± 0.01 94.8 ± 0.01 95.1 ± 0.01 95.4 ± 0.01
AN2VEC-S-16 93.0 ± 0.01 93.5 ± 0.00 94.9 ± 0.00 95.1 ± 0.00 93.1 ± 0.01 93.1 ± 0.01

Table 4.1: Link prediction task in citation networks. SC, DW, GAE and VGAE
values are from [115]. Error values indicate the sample standard deviation.

We pick hyperparameters such that the restriction of our model to VGAE would
match the hyperparameters used by [115]. That is a 32-dimensions intermediate layer
in the encoder and the two intermediate layers in the decoder, and 16 embedding di-
mensions for each reconstruction task (𝐹A + 𝐹AX = 𝐹X + 𝐹AX = 16). We call the
zero-overlap and the full-overlap versions of this model AN2VEC-0 and AN2VEC-16
respectively. In addition, we test a variant of these models with a shallow adjacency
matrix decoder, consisting of a direct inner product between node embeddings, while
keeping the two dense layers for feature decoding. Formally: 𝐴𝑖𝑗|𝜉𝑖, 𝜉𝑗 ∼ Ber(𝜉𝑇𝑖 𝜉𝑗).
This modified overlapping architecture can be seen as simply adding the feature de-
coding and embedding overlap mechanics to the vanilla VGAE. Consistently, we call
the zero-overlap and full-overlap versions AN2VEC-S-0 and AN2VEC-S-16.

We follow the test procedure laid out by [115]: we train for 200 epochs using the
Adam optimiser [111] with a learning rate of .01, initialise weights following [67], and
repeat each condition 10 times. The 𝜇 parameter of each node’s embedding is then
used for link prediction (i.e. the parameter is put through the decoder directly with-
out sampling), for which we report area under the ROC curve and average precision
scores in Table 4.1. 9

9. Note that in [115], the training set is also 85% of the full dataset, and test and validation sets
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Figure 4-4: Cora embeddings created by AN2VEC-S-16, downscaled to 2D using
Multidimensional scaling. Node colours correspond to document classes, and network
links are in grey.

We argue that AN2VEC-0 and AN2VEC-16 should have somewhat poorer perfor-
mance than VGAE. These models are required to reconstruct an additional output,
which is not directly used to the link prediction task at hand. First results confirmed
our intuition. However, we found that the shallow decoder models AN2VEC-S-0 and
AN2VEC-S-16 perform consistently better than the vanilla VGAE for Cora and Cite-
Seer while their deep counterparts (AN2VEC-0 and AN2VEC-16) outperforms VGAE
for all datasets. As neither AN2VEC-0 nor AN2VEC-16 exhibited over-fitting, this
behaviour is surprising and calls for further explorations which are beyond the scope of
this work (in particular, this may be specific to the link prediction task). Nonetheless,
the higher performance of AN2VEC-S-0 and AN2VEC-S-16 over the vanilla VGAE
on Cora and CiteSeer confirms that including feature reconstruction in the constraints
of node embeddings is capable of increasing link prediction performance when feature
and structure are not independent (consistent with [61, 203, 222]). An illustration of
the embeddings produced by AN2VEC-S-16 on Cora is shown in Figure 4-4.

On the other hand, performance of AN2VEC-S-0 on PubMed is comparable with
GAE and VGAE, while AN2VEC-S-16 has slightly lower performance. The fact
that lower overlap models perform better on this dataset indicates that features and
structure are less congruent here than in Cora or CiteSeer (again consistent with the
comparisons found in [222]). Despite this, an advantage of the embeddings produced
by the AN2VEC-S-16 model is that they encode both the network structure and the

are formed with the remaining edges, respectively 10% and 5% (and the same amount of non-edges).
Here, since we use the same hyperparameters as [115] we do not need a validation set. We therefore
chose to use the full 15% remaining edges (with added non-edges) as a test set, as explained above.
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node features, and can therefore be used for downstream tasks involving both types
of information.

We further explore the behaviour of the model for different sizes of the training
set, ranging from 10% to 90% of the edges in each dataset (reducing the training
set accordingly), and compare the behaviour of AN2VEC to GraphSAGE. To make
the comparison meaningful we train two variants of the two-layer GraphSAGE model
with mean aggregators and no bias vectors: one with an intermediate layer of 32
dimensions and an embedding layer of 16 dimensions (roughly equivalent in dimen-
sions to the full overlap AN2VEC models), the second with an intermediate layer of
64 dimensions and an embedding layer of 32 dimensions (roughly equivalent to no
overlap in AN2VEC). Both layers use neighbourhood sampling, 10 neighbours for the
first layer and 5 for the second. Similarly to the shallow AN2VEC decoder, each pair
of node embeddings is reduced by inner product and a sigmoid activation, yielding
a scalar prediction between 0 and 1 for each possible edge. The model is trained on
minibatches of 50 edges and non-edges (edges generated with random walks of length
5), learning rate 0.001, and 4 total epochs. Note that on Cora, one epoch represents
about 542 minibatches, 10 such that 4 epochs represent about 2166 gradient updates;
thus with a learning rate of 0.001, we remain comparable to the 200 full batches with
learning rate 0.01 used to train AN2VEC.

Figure 4-5 plots the AUC produced by AN2VEC and GraphSAGE for different train-
ing set sizes and different embedding sizes (and overlaps, for AN2VEC), for each
dataset. As expected, the performance of both models decreases as the size of the
test set increases, though less so for AN2VEC. For Cora and CiteSeer, similarly to
Table 4.1, higher overlaps and a shallow decoder in AN2VEC give better performance.
Notably, the shallow decoder version of AN2VEC with full overlap is still around .75
for a test size of 90%, whereas both GraphSAGE variants are well below .65. For
PubMed, as in Table 4.1, the behaviour is different to the first two datasets, as over-
laps 0 and 16 yield the best results. As for Cora and CiteSeer, the approach taken by
AN2VEC gives good results: with a test size of 90%, all AN2VEC deep decoder vari-
ants are still above .75 (and shallow decoders above .70), whereas both GraphSAGE
variants are below .50.

Node classification

Since the embeddings produced also to encode feature information, we then evalu-
ate the model’s performance on a node classification task. Here the models are trained
on a version of the dataset where a portion of the nodes (randomly selected) have

10. One epoch is 2708 nodes × 5 edges per node × 2 (for non-edges) = 27080 training edges or
non-edges; divided by 50, this makes 541.6 minibatches per epoch.

73



0.4

0.5

0.6

0.7

0.8

0.9

1.0
AU

C

Cora CiteSeer

Shallow decoder

PubMed

20% 40% 60%
test size

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

20% 40% 60%
test size

20% 40% 60%
test size

Deep decoder

FAX (overlap)
0
8
16

(a) AN2VEC

20% 40% 60%
test size

0.4

0.6

0.8

1.0

AU
C

Cora

20% 40% 60%
test size

CiteSeer

20% 40% 60%
test size

PubMed

dim( A)

16
32

(b) GraphSAGE

Figure 4-5: AUC for link prediction using AN2VEC and GraphSAGE over all
datasets. AN2VEC top row is the shallow decoder variant, and the bottom row
is the deep decoder variant; colour and line styles indicate different levels of overlap.
GraphSAGE colours and line styles indicate embedding size as described in the main
text (colour and style correspond to the comparable variant of AN2VEC). Each point
on a curve aggregates 10 independent training runs.

been removed; next, a logistic classifier 11 is trained on the embeddings to classify
training nodes into their classes; finally, embeddings are produced for the removed
nodes, for which we show the F1 scores of the classifier.

Figure 4-6 shows the results for AN2VEC and GraphSAGE on all datasets. The

11. Using Scikit-learn’s [174] interface to the liblinear library, with one-vs-rest classes.
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scale of the reduction in performance as the test size increases is similar for both
models (and similar to the behaviour for link prediction), though overlap and shallow
versus deep decoding seem to have less effect. Still, the deep decoder is less affected by
the change in test size than the shallow decoder; and contrary to the link prediction
case, the 0 overlap models perform best (on all datasets). Overall, the performance
levels of GraphSAGE and AN2VEC on this task are quite similar, with slightly bet-
ter results of AN2VEC on Cora, slightly stronger performance for GraphSAGE on
CiteSeer, and mixed behaviour on PubMed (AN2VEC is better for small test sizes
and worse for large test sizes).

Variable embedding size

Finally, we explore the behaviour of AN2VEC for different embedding sizes. We
train models with 𝐹A = 𝐹X ∈ {8, 16, 24, 32} and overlaps 0, 8, 16, 24, 32 (when-
ever there are enough dimensions to do so), with variable test size. Figure 4-7 shows
the AUC scores for link prediction, and Figure 4-8 shows the F1-micro scores for
node classification, both on CiteSeer (the behaviour is similar on Cora, though less
salient). For link prediction, beyond confirming trends already observed previously,
we see that models with less total embedding dimensions perform slightly better than
models with more total dimensions. More interestingly, all models seem to reach a
plateau at overlap 8, and then exhibit a slightly fluctuating behaviour as overlap con-
tinues to increase (in models that have enough dimensions to do so). This is valid for
all test sizes, and suggests (i) that at most 8 dimensions are necessary to capture the
commonalities between network and features in CiteSeer, and (ii) that having more
dimensions to capture either shared or non-shared information is not necessarily use-
ful. In other words, 8 overlapping dimensions seem to capture most of what can be
captured by AN2VEC on the CiteSeer dataset, and further increase in dimensions
(either overlapping or not) would capture redundant information.

Node classification, on the other hand, does not exhibit any consistent behaviour
beyond the reduction in performance as the test size increases. Models with less total
dimensions seems to perform slightly better at 0 overlap (though this behaviour is re-
versed on Cora), but neither the ordering of models by total dimensions nor the effect
of increasing overlap are consistent across all conditions. This suggests, similarly to
Figure 4-6a, that overlap is less relevant to this particular node classification scheme
than it is to link prediction.

4.5 Conclusions

In this chapter, we proposed an attributed network embedding method based on
the combination of Graph Convolutional Networks and Variational Autoencoders.
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Figure 4-6: F1-micro score for node classification using AN2VEC and GraphSAGE
over all datasets. AN2VEC top row is the shallow decoder variant, and the bottom
row is the deep decoder variant; colour and line styles indicate different levels of
overlap. GraphSAGE colours and line styles indicate embedding size as described in
the main text (colour and style correspond to the comparable variant of AN2VEC).
Each point on a curve aggregates 10 independent training runs.

Beyond the novelty of this architecture, it is able to consider jointly network infor-
mation and node attributes for the embedding of nodes. We further introduced a
control parameter able to regulate the amount of information allocated to the recon-
struction of the network, the features, or both. In doing so, we showed how shallow
versions of the proposed model outperform the corresponding non-interacting refer-
ence embeddings on given benchmarks, and demonstrated how this overlap parameter
consistently captures joint network-feature information when they are correlated.
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Figure 4-7: AUC for link prediction using AN2VEC on CiteSeer, as a function of over-
lap, with variable total embedding dimensions. Columns correspond to different test
set sizes. Top row is with shallow decoder, bottom row with deep decoder. Colours, as
well as marker and line styles, indicate the number of embedding dimensions available
for adjacency and features.

Our method therefore opens several new lines of research and applications in fields
where attributed networks are relevant. Examples range from the coevolution of social
networks to dynamical processes taking place on them such as language or trending
information, and can be potentially envisaged in systems biology or social sciences.
In particular, it is well-poised by design to shed light upon the hidden network and in-
dividual factors that drive socioeconomic inequalities by providing us with an edge in
terms of predictive performance and indicating which similarities, structural, feature-
related, or both, better explain why a a certain individual is of a given socioeconomic
status.
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Figure 4-8: F1-micro score for node classification using AN2VEC on CiteSeer, as a
function of overlap, with variable total embedding dimensions. Columns correspond
to different test set sizes. Top row is with shallow decoder, bottom row with deep
decoder. Colours, as well as marker and line styles, indicate the number of embedding
dimensions available for adjacency and features.
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Chapter 5

Deep learning captured
socioeconomic correlations of urban
patterns

This work is currently in submission as a journal paper in Scientific
Reports [?] with myself as leading author

5.1 Introduction

Up to this point, all the proposed models were assumed to be operating in data-rich
environments in which individuals could be observed from a sociological perspective
based on whom they were connected to as well as on the syntactic style and semantic
content of their tweets. Because of this, their ability to have a meaningful societal
impact is limited by the heavy data reliance needed to train them. Most of the world
is nevertheless living in a rather data scarce environment, as social media penetration
rate can be dramatically lower in developing countries than in developed ones and
census information can be severely outdated [20] thus failing to provide the updated
upscaled picture of society that would be desirable. Because of this, satellite and
aerial data have become the cornerstone of new models aimed at curbing this scarcity
of information as the surge in works fueled by them testifies. These models gener-
ally rely on Convolutional Neural Network based models which not only require vast
amounts of data to be trained but have also been shown to generalize poorly among
different countries [108]. In this chapter, we introduce a model able to generate so-
cioeconomic predictions from aerial views at an unprecented spatial scale in France
and interpret the model’s predictions in terms of urban classes. Our hope in doing
so is to provide a benchmark for future remote sensing socioeconomic predictions as
well as to inform future works aimed at increasing the transferability of the afore-
mentioned models, so that one day, models trained in data rich environments could
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be used off the shelf in different data scarce ones.

Cities have become the economic bedrock of modern nations; in little more than a
century they have gone from concentrating 13% to an estimated 55% of the world
population with 600 of them currently accounting for around half of the global eco-
nomic output ($34 trillion of GDP) [168]. This transition will likely be accelerated in
the coming years as an estimated three billion people will move into cities by 2030.
This increased urbanization is in turn a key driver of development as cities provide
the national platform for shared prosperity. Indeed, the concentration of people in
cities generate agglomeration economies where the sheer population density increases
the ease of moving goods, people, and ideas by removing the physical spaces between
people and firms and thus increasing the returns of urban proximity [66].

Nevertheless, while urbanization can entail economic dynamism, and social develop-
ment, it can also create enormous social challenges, from the management of natural
hazards and pollution to the exclusion of the poor from the city’s socioeconomic fabric
and the surge of social and economic inequalities. This last issue is especially acute
in some of the cities with greatest concentration of wealth. For instance, Gourevitch
et al. reported a 24 years difference in average lifespan in San Francisco for citizens
inhabiting neighbouring census tracks [72], while recent statistics show the area of
Greater Paris containing respectively 2 and 5 of the top 5 poorest and richest census
tracks in all of France [105]. Providing a solution to these challenges is of paramount
importance to fulfill the economic and social promises that cities hold and to avoid
them becoming sources of social and political instability.

The successful development and deployment of urban solutions to address these issues
requires however both detailed socioeconomic information at the city level as well as
a fine-grained understanding on how the distribution of wealth and the underlying
urban topology of the city are entangled. In order to generate the former, differ-
ent types of proxies have been used such as communication patterns in call detail
records [20] and social media [149] or restaurant data [50]. Most notably, some works
have relied heavily upon large collections of satellite and street imagery to train deep
learning models able to predict wealth either from visual features within each image
(e.g Suel et al. for 3 UK cities [210]) or, in order to enhance the interpretability of the
learned models, by predicting features known to correlate with wealth (e.g night time
light intensities [108], models of car per census track [63]). Surprisingly, despite the
overall use and reliability of these methods, no previous work has looked consistently
at the features learned by these models, nor tried to uncover any existing correlations
between the existing urban topology of the city and the high resolution socioeconomic
map the model is tasked with predicting. Understanding these correlations is a mile-
stone in ensuring the usability of these methods for policy makers, as they not only
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provide an enhanced understanding on the model’s attentions but they also might
yield valuable insights for urban development and planning of economically deprived
areas within the city.

Our aim is to close this gap by exploring how the weights of a Convolutional Neural
Network (CNN) model trained to predict the socioeconomic status of a given location
from its aerial image relate to the land use classes of that urban area. We first overlay
three publicly available datasets to provide a complete description of 5 French cities
in terms of socioeconomic and land use data as well as aerial imagery. We then train
a deep learning model to predict accurately the socioeconomic status of inhabited
200m x 200m tiles and backtrack the gradients to generate high resolution class dis-
criminative activation maps. These are later projected onto the original image and
overlayed with the land use data to generate empirical statistics on the features used
by each model to predict socioeconomic status in terms of land use classes. We find
that this framework enables the inference of socioeconomic status at scales rarely seen
before, as well the observation of distinct city to city patterns of correlations between
urban topology and the spread of wealth. More precisely, we find that when inferring
socioeconomic status, our CNN models disregard existing correlations between land
use and socioeconomic data and focus mostly on features contained within residential
areas to draw their predictions. In what follows we will cover the datasets this work
is reliant upon to then cover the architecture of the CNN used to predict income
from satellite imagery as well as the activation maps enabling the examination of the
features models drew their predictions from. We will eventually examine how urban
structure and income are related to each other and how our deep learning model relies
on one to predict the other.

5.2 Datasets

Socioeconomic Data. We obtained detailed sociodemographic information from
the French National Institute of Statistics and Economic Studies (INSEE) 2019 grid-
ded dataset [106]. This data corpus describes the winsorized average household in-
come, estimated from the 2015 tax return in France, for each 4 hectare (200m x
200m) square patch across the whole French territory (Figure 5-1c). In what fol-
lows these socioeconomic patches will also be referred as census cells. Contrary to
previous versions of this dataset, the winsorization is done at the department level,
which enables us to get an in-depth view of socioeconomic disparities for the whole
country. For each city, income values were partitioned into one of five (𝑛𝑆𝐸𝑆 = 5)
socioeconomic classes defined by the five quantiles of the city-wise income distribu-
tion so that classes 0 and 4 correspond respectively to the bottom and top 20% of
earners in each city. For the remainder of this study, we singled out 5 major cities
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located within the French metropolitan territory, namely: Paris, Lyon, Marseille,
Nice and Lille. Geographical boundaries for each of these cities/urban areas were
obtained from the ensuing Land Use Data. The corresponding spatial distribution
of income may be observed in Figures 5-5a, A-1a, A-2a, A-3a, A-4a where each
coloured pixel corresponds to a single socioeconomic patch.

Aerial Imagery Data. We obtained high resolution orthophotography taken be-
tween 2013 and 2016 of the complete French metropolitan territory (20cm/pixel)
from the National Geographical Information Institute (IGN). This dataset is pro-
vided as a series of georeferenced 5km x 5km tiles at the department (administrative
delimitation) level as shown in Figure 5-1a. In order to extract the aerial imagery
corresponding to each socioeconomic square patch (aerial tiles in what follows), we
derived the following procedure: First, for each tile 𝑇 , we identified all the socioe-
conomic patches contained exclusively within 𝑇 and we extracted them. Then, we
identified all the socioeconomic cells overlapping multiple aerial tiles. These tiles are
subsequently merged and the corresponding patches extracted. The results of this
procedure can be seen in Figure 5-3a where we show the image associated to a given
socioeconomic patch associated with a particular socioeconomic label. Contrary to
previous works [210, 63, 108], we chose not to rely on Google Maps/Streets as a
source of data for two basic reasons. First, API crawled data lacks georeferencing
which hinders any attempt of overlaying activation maps with land use data. Sec-
ond, these datasets have recently become harder to access [217] at the scale needed
for conducting this type of work, leading us to eventually discard them. So far, our
dataset consists of a series of 200m x 200m aerial tiles fully covering five French cities
and each associated to one of five socioeconomic classes.

Land Use Data. We gathered land use information from the 2012 European Union
Urban Atlas dataset. This dataset provides high-resolution maps of roughly 700 ur-
ban areas of more than 100,000 inhabitants in EU28 and EFTA countries. In doing
so, it yields consistent land cover maps encoded via detailed polygons organized in
commonly used ESRI shapefiles and covering 27 standardized land use classes (see
Figure 5-1b). This number was later reduced to 19 for this study as infrequent and
similar classes were respectively discarded and merged (see explicit list in Table 5.1).
Further information regarding the procedure by which this dataset was generated can
be obtained from the European Environment Agency [202] and is explained in the
Supplementary Information (SI). The land cover information is hence overlayed on
top of the image of every socioeconomic patch, yielding results shown in Figure 5-3d.

Note that all the collected datasets can be openly accessed and emanate from a
single 4-year time window hence reducing temporal misalignment between them to a
minimum.
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Figure 5-1: Sample of Overlayed Datasets (Paris): (a) 5km x 5km aerial tile
(20cm/pixel), (b) Land cover map of the same area, each color representing a differ-
ent urban class (not shown here for clarity), (c) Spatial Distribution of Income: each
patch corresponds to a single 200m x 200m patch with precise income data.

5.3 Methods

5.3.1 Model development and training

To estimate the socioeconomic status (SES) of every image in our dataset, we
trained a modified EfficientNetB0 [214] (EB0, see Figure 5-2) model on each urban
area to predict the SES label of a census cell from its aerial tile. This model was
chosen over more classical ones (VGGs, ResNets) mostly for its architectural design:
by making use of an effective compound coefficient to scale up CNNs , EfficientNets
have been shown to achieve much better accuracy and efficiency than other ConvNets
enabling us to make use of the original fine-grained resolution of the aerial imagery
to predict the SES at a lower computational cost.

Our model used the original EB0 architecture consisting of serial mobile inverted
bottleneck blocks (MBConv) augmented with squeeze-and-excitation optimization,
to which we added a max pooling layer, to downsample the feature maps, followed
by global average pooling and dense layers (see Figure 5-2). In order for the model
to yield an estimated probability for the input to belong to each of the quantiles,
we followed the approach used by Suel et al. [210], and connected the dense layer
to a binomial layer taking a single 𝑝 value, interpreted as a probability with which
Bernoulli trials are performed, as input and outputting the probabilities for each SES
class 𝑌 = [𝑦1, ..., 𝑦𝑛𝑆𝐸𝑆

], with:

𝑦𝑘 =

(︂
𝑛𝑆𝐸𝑆

𝑘

)︂
𝑝𝑘−1(1 − 𝑝)𝑛𝑆𝐸𝑆−𝑘, 𝑘 ∈ [1, ..., 𝑛𝑆𝐸𝑆]
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In doing so, the model becomes sensitive to the ordinal relationship existing between
quantiles. Training is then performed with a classic categorical cross-entropy loss.

It is worth mentioning that the original EB0 model was trained on object-centric
224 x 224 x 3 images and therefore the weights the model was initialized with were
unfit for the dataset we wanted to apply it unto. Because of this, even though the
CNN’s weights were initially set to those of a model trained on ImageNet (except
for the final added layers which are initialized randomly), we didn’t freeze any of the
model’s layers to train the model from scratch. This of course assumes the optimiza-
tion procedure will more readily converge by adapting the weights from the optimal
ones learned at lower resolutions than by actually learning them from scratch, which
stands to reason since the first layers of the network will already be sensitive to low-
level features.

In all our experiments, we augmented the data through random horizontal and ver-
tical flipping of the input images and the images were scaled to 800 x 800 x 3 so as
not to decrease excessively the original image resolution whilst, at the same time,
not overwhelming our computational resources. An Adam variant of Stochastic Gra-
dient Descent was used to learn the models weights. Initially, we started with a
learning rate of 8e-5 and decreased it by 90% every 3 epochs the validation loss sees
no improvement. All networks were trained on either NVIDIA Tesla K20X or V100
graphics processing units for at most 30 epochs with 2500 samples in each epoch,
stopping the training whenever the loss in the validation set didn’t decrease for more
than 10 epochs. Furthermore, within each city, we used five-fold cross validation.
In each fold, 80% of data was used for training the network and the remaining 20%
were withheld. The training set was further randomly subdivided with a 75-25% split
for inner-fold training and validation. Every reported performance metrics is then
averaged over all folds.
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…

Figure 5-2: Model Architecture: The model takes the aerial tile as an input which is
then fed through several MBConv blocks. The feature maps end up going through a
global average pooling layer and a dense layer to output a single value 𝑝. From it,
probabilities for each socioeconomic class are generated from a binomial distribution
𝐵(𝑁𝑆𝐸𝑆 ,𝑝)
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5.3.2 Guided Grad-CAM (GG-CAM)

Grad-CAM generates coarse, discriminative regions for each of the socioeconomi-
cal classes the models were trained to predict. It is calculated as the rectified linear of
the weighted sum of the feature maps 𝐴𝑘 from the last convolutional layer (conv2d_65
in the original EfficientNetB0 model) of the CNN:

𝐿𝑐
Grad-CAM = ReLU

(︁∑︁
𝑘

𝛼𝑐
𝑘𝐴

𝑘
)︁

This weighted combination of forward activation maps is based on the weights 𝛼𝑐
𝑘,

defined by :

𝛼𝑐
𝑘 =

1

𝑍

∑︁
𝑖

∑︁
𝑗

𝜕𝑦𝑐

𝜕𝐴𝑘
𝑖,𝑗

where 𝑍 is a normalization constant, 𝑦𝑐 is the prediction score for SES class 𝑐 and
𝐴𝑘

𝑖,𝑗 is the 𝑖𝑗th element of 𝐴𝑘. Each 𝛼𝑐
𝑘 represents a partial linearization of the CNN

downstream from 𝐴𝑘, and captures the importance of the feature map 𝑘 for a SES
class 𝑐. Once computed, activation maps are 𝐿1-normalized.

Guided BackPropagation, on the other hand, is a method that captures non class-
discriminative details of visual components that are of some importance to the net-
work by suppressing the flow of gradients through neurons wherein either of input or
incoming gradients were negative. It is computed as :

𝑅𝑙 = 𝑓 𝑙′ ReLU
(︁𝜕𝑓 𝑜𝑢𝑡

𝜕𝑓 𝑙′

)︁𝜕𝑓 𝑜𝑢𝑡

𝜕𝑓 𝑙′

with 𝑅𝑙 guided backpropagation product of the 𝑙-th layer, 𝑓𝑙 and 𝑓 out feature
maps respectively of the 𝑙−th and last convolutional layer and 𝑓 𝑙′ = ReLU (𝑓 𝑙).
Guided GradCAM are then generated via the Hadamard product of GradCAM and
the guided backpropagation saliency map. Contrary to previous works, the outcome
of this operation isn’t normalized any further so as to enable comparison between
samples from the same city.

5.3.3 Guided gradient-weight class activation maps

Once all models were trained, we cross-examined the features in the original im-
ages that activated the model the most when predicting a given SES class. To do so,
we applied a guided gradient-weighted class activation mapping [200] (Guided Grad-
CAM) to identify salient visual features underlying the model’s predictions. Previous
uses of this method include the identification of patterns learned by CNN models
trained to predict Alzheimer’s disease [102, 216], lung cancer [93] as well as to classify
wildlife [158] and plants disease [219]. As we saw previously, Guided Grad-CAM
follows the CNN’s gradient flow from individual output classes back onto the original
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image tile to establish an activation map, highlighting the input features most rele-
vant to each CNN prediction. To generate such mappings, we first computed saliency
maps via guided backpropagation, producing a pixel-space gradient map of predicted
class scores with respect to pixel intensities of the input image. This gradient visual-
ization, though fine-grained is known not to be class-discriminative. It can however
be combined with Grad-CAM via pointwise multiplication to generate Guided Grad-
CAM (see Appendix for more information). Grad-CAM itself results from the dot
product of the feature map of the last convolutional layer and the partial derivatives
of predicted class scores with respect to the neurons in the last convolutional layer.
All mappings were done in a cluster of 96 CPUs.

We now define the setting we worked with. In what follows, we treated Guided-
GradCAM maps as saliency maps describing pixels that were most determinant for
the model’s prediction. For a given city, we named 𝑆 the set of aerial tiles corre-
sponding to this city, 𝐹𝑠 the CNN trained on that city (intaking a sample 𝑠 ∈ 𝑆 and
outputting its predicted class 𝑦𝑠 ∈ [1...𝑛𝑆𝐸𝑆]), 𝑁𝑢𝑎 the total number of different urban
classes included in our dataset and 𝐴𝑠

𝑖𝑗 the activation value of the Guided GradCAM
for pixel (𝑖, 𝑗) of tile 𝑠. Each tile is moreover defined by a mapping 𝑓 linking each
pixel to the urban class of the polygon it belongs to, so that, ∀(𝑖, 𝑗), 𝑓(𝑖, 𝑗) ∈ [1..𝑁𝑢𝑎].
We then introduce the total activation for urban class 𝑢 ∈ [1...𝑁𝑢𝑎] in tile 𝑠 ∈ 𝑆 as :

𝐴𝑠
𝑢 =

∑︁
(𝑖,𝑗)|𝑓(𝑖,𝑗)=𝑢

𝐴𝑖,𝑗

It is worth noting then that each sample 𝑠 ∈ 𝑆 is defined by the tuple (𝐴𝑠
𝑢)𝑢∈[1..𝑁𝑢𝑎]

where 𝐴𝑠
𝑢 = NA for all urban classes 𝑢 not contained in tile 𝑠. We then sought

to probe the model’s learned features by assessing the validity of the two following
hypotheses:

— H0: All urban classes contain features equally contributing to the model’s
prediction for the top and bottom SES class.

— H1: Urban class activation maps are pairwise independent, i.e, activations
for a given urban class are on average invariant to activation values for other
urban classes.

In order to examine the former, we introduced the activation ratio for urban class 𝑢

defined as the ratio between the sum of activations and the expected sum of activations
in a random diffusion model concentrated by polygons of urban class 𝑢:

𝑟𝑠𝑢 =
𝐴𝑠

𝑢

𝐹𝑢

∑︀𝑁𝑢𝑎

𝑘=1 𝐴
𝑠
𝑘

with 𝐹𝑢 fraction of area occupied by polygons of urban class 𝑢

This metric actually describes how the pixels that most trigger the model’s prediction
are distributed across urban classes. For instance, if no urban class contains more
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important features than others (H0) we should expect its expected value to be equal
to 1 over all samples and for all urban classes contained in each sample. To quantify
this as well as the distributions of activation values over different urban classes, we
respectively introduce the expected activation ratio for urban class 𝑢, 𝑥𝑢 and the
co-activation ratio 𝑥𝑢,𝑣 for pairs of urban classes 𝑢 and 𝑣 defined by:

𝑥𝜎
𝑢 = E𝜎(𝑟𝑠𝑢) and 𝑥𝜎

𝑢,𝑣 =
E𝜎′(𝑟𝑠𝑢)

E𝜎(𝑟𝑠𝑢)
− 1 with 𝜎′ = {𝑠 ∈ 𝜎|𝐴𝑠

𝑢, 𝐴
𝑠
𝑣 ̸= NA}

with 𝜎 ⊆ 𝑆 , set of aerial tiles over which the expectation is computed. Notice that,
in general, the co-activation ratio is not symmetric and should be close to 1 under
(H1).
Both metrics above are to be computed over a specific set of tiles for each city. To yield
a better understanding of the features learned by each model when predicting wealth
and poverty, we respectively merged the top two and bottom two SES classes that from
here on out will be referred to as high SES and low SES. An overview of this process
can be seen in Figure 5-3. The expected activation ratio and co-activation ratio for
urban classes were then computed both in samples for which the model predicted
low SES (𝜎low = {𝑠 ∈ 𝑆|𝑦𝑠 ∈ {0, 1}}) and high SES (𝜎high = {𝑠 ∈ 𝑆|𝑦𝑠 ∈ {3, 4}}
respectively).We finally define the expected activation ratio for low SES and high
SES as: {︃

𝑐0,1 = (𝑥𝜎low
𝑢 )𝑢 and 𝑐3,4 = (𝑥

𝜎high
𝑢 )𝑢

𝑑0,1 = (𝑥𝜎low
𝑢,𝑣 )𝑢,𝑣 and 𝑑3,4 = (𝑥

𝜎high
𝑢,𝑣 )𝑢,𝑣

We have hitherto focused on the activation maps of each model to investigate the
correlations learned between urban patterns and SES. To provide a more grounded
comparison between the former and the actual link between SES and urban classes,
we introduce the empirical probabilities 𝑝0,1 = (𝑝𝑢0,1)𝑢 and 𝑝3,4 = (𝑝𝑢3,4)𝑢 that a sample
is of respectively low (high) SES given that it contains urban class 𝑢 as well as the
co-appearance gains:

{︃
𝑔0,1 = (𝑔

(𝑢,𝑣)
0,1 )(𝑢,𝑣) = (𝑝

(𝑢,𝑣)
0,1 /𝑝𝑢0,1 − 1)(𝑢,𝑣)

𝑔3,4 = (𝑔
(𝑢,𝑣)
3,4 )(𝑢,𝑣) = (𝑝

(𝑢,𝑣)
3,4 /𝑝𝑢3,4 − 1)(𝑢,𝑣)

which are thought of as the increase in the likelihood of a sample being of respectively
low (high) SES given that it contains urban class 𝑢 co-appearing with urban class
𝑣. Notice as well that for a pair of urban classes (𝑢, 𝑣) co-appearance gains are not
symmetrical.
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(a) (b) (c)

(d) (e) (f)0 3.5 0 4.0(d)
Figure 5-3: Model interpretability studies using Guided Grad-CAM (GGC). From
an aerial tile (a), GGC is used to compute activation maps for the poorest (b) and
wealthiest (c) socioeconomical class. The activation maps are then overlayed with
the tile’s tesselation into urban classes polygon (d) to compute the normalized ratio
of activations per polygon for the poorest (e) and wealthiest (f) class.

5.4 Results

5.4.1 CNN-based socioeconomic predictions

Modified EfficientNetB0 models were separately trained on 5 cities (Paris, Lyon,
Marseille, Nice, Lille) to predict 5-class socioeconomic status from 200m x 200m aerial
tiles. To assess the quality of the predictions made by each model, we computed the
metrics for reported by Suel et al. [210] for each city in our dataset. We report the
5-fold averaged observed performance per city in Figure 5-4. All values are computed
for samples not seen either during training or validation of the model.
The quality of the predictions tends to be quite homogeneous between cities with the
average Pearson correlation between true and predicted quantiles varying between
0.65 for Lyon and 0.71 in Nice. Furthermore, in all cities, the mean average error
between predicted and observed socioeconomical class tends to be bounded between
0.72 for Paris and 0.80 for Lyon which in turn explains why misclassifications occur
between neighbouring quantiles. It is worth mentioning that all tiles were classified
within ±1 of their class with similar accuracies to those reported in previous studies
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(ranging from 0.82 to 0.85) [210]. Also, it is interesting to observe that between cities
the worst performing classes predicted by each model tends to vary from one another:
In Paris and Lyon, the fourth quantile appears to be the hardest one to predict cor-
rectly, while the third and second one seem to be the prone to errors respectively in
Marseille and Nice.

We further report the observed and predicted spread of wealth for each of the five
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Figure 5-4: Observed performance of models trained to predict wealth in French cities:
Confusion matrices between predicted and observed SES classes. Perfect prediction
would correspond to a red diagonal and blue off-diagonal cells. In each plot, Pearson
correlation coefficient (𝑟, 𝑝 < 0.01)) as well as mean average error (MAE) and accuracy
within ±1 classes are provided. All results are average over the 𝑘 cross-validation folds
(with 𝑘 = 5).

cities we work with (see Paris in Figure 5-5 and others in Appendix A.1). Contrary
to other studies [210, 63], each map pixel here represents a single sample correspond-
ing to a unique tile, socioeconomic class pair. Consequently, predicted values are
not aggregated but are individually computed. It is therefore interesting to see that
neighbouring tiles of equal SES are overall predicted to be of the same socioeconomic
class, hence recovering the small-scale spatial homogeneity of the original income dis-
tribution (see center of Paris, Lyon or south-west of Nice and Marseille). Moreover,
conversely, regions characterized by socioeconomic disparity seem to be recovered as
well in the prediction maps (see for instance in the west of Marseille, East of Lille,
and downtown-suburbs predicted socioeconomic segregation in Paris), further show-
ing that the trained models are able to recover the complex spatial distributions of
income featured in our dataset.
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Figure 5-5: Maps of observed and predicted average income for Paris. Each pixel
represents a single 200m x 200m tile which color codifies the average socioeconomic
status of its inhabitants. Maps for the other cities can be found in the Appendix.

5.4.2 GradCAM derived model correlations between SES and
urban topology

Univariate Correlations

We now sought to investigate the CNN model’s internal logic for predicting the
socioeconomic label of a given area. To do so, we applied guided gradient-weighted
class activation mapping (Guided Grad-CAM) to identify the salient visual features
underlying the model’s predictions in terms of land use for samples predicted as low
SES (𝑐0,1) and high SES(𝑐3,4). As a means of comparison, we provide as well the
empirical probabilities for a sample to actually be of low SES and high SES given the
urban classes it contains (𝑝0,1 and 𝑝3,4 respectively). Results for Paris can be found
in Figure 5-6 while other cities are included in the SI.

When compared across different cities, the spectrum of activations per urban class
differs from one city to the next, indicating the disparity of elements models trained
on different settings focus on to predict socioeconomic status. In what follows, we
will refer to a urban class 𝑢 being overactivated if the expected activation ratio for
that class is greater than one, i.e 𝑥𝜎

𝑢 > 1, which is of course the expected value one
would observe if activations were spread randomly across each each tile. Conversely,
it is said to be underactivated whenever its expected activation ratio is below 1, i.e
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𝑥𝜎
𝑢 < 1. To ease the description of the results, we grouped each urban class into four

categories (see Figure 5-6 and Table 5.1).

ID Abbreviation Full Denomination
1 agri_wetland Agricultural Areas/ Wetlands
2 green ua Green Urban Areas
3 ntral areas Natural Areas
4 comr_indst Industrial, Commercial, Public, Military and Private Units
5 leis fac. Sports and Leisure Facilities
6 const/dmp Mine, Dump and Construction Sites
7 no use Land without Current Use
8 roads Other roads and associated land
9 rlway Railways and Associated Land
10 mtrways Fast Transit roads and associated land
11 port Port Areas
12 water Water Bodies
13 osp/bch Open Spaces with little or no vegetation (beaches, dunes, bare

rocks, glaciers)
14 isoltd Isolated Structures
15 vld uf Discontinuous Very Low Density Urban Fabric (s.l. < 10%)
16 ld uf Discontinuous Low Density Urban Fabric (s.l. 10% - 30%)
17 md uf Discontinuous Medium Density Urban Fabric (s.l. 30% - 50%)
18 hd uf Discontinuous Dense Urban Fabric (s.l. 50% - 80%)
19 vhd uf Continuous Urban Fabric (s.l. > 80%)

Table 5.1: Land cover classes (i.e urban classes) used in this study.

Looking back upon the spectrum of activations, certain structural elements tend to be
shared across all trained models. Residential areas tend to be overall overactivated
both when predicting low and high SES with some differences between cities: For
models trained to predict SES in Lyon and Marseille, residential areas tend to acti-
vate more when predicting high SES rather than low SES (also to a lesser extent in
Lille) while in Paris and Nice, on the contrary, residential areas appear overactivated
when predicting low SES.

Infrastructural areas on the other hand follow quite a different pattern, as they
tend to be underactivated in the prediction of high SES except for the city of Lille
where both motorways and roads are triggered when predicting high SES. This trend
is however not the case for low SES predictions, where railways and motorways are
triggered in Lyon and Marseille while features contained within roads are generally
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Figure 5-6: Correlations between urban topology and socioeconomic status in the
city of Paris: (a) Mean model activation rate per urban class with 95% confidence
interval for samples predicted as respectively as low SES (blue) or high SES (red) by
the model (b) Estimated probability of a urban polygon belonging to the bottom or
top quintile of the income distribution with bootstrapped 95% confidence interval.

active for all cities.
This is perhaps most surprising when we consider that the urban classes residential
areas co-ocurr with are actually quite determinant in terms of the socioeconomic
status of the sampl

When considering nature related areas, these tend to be ignored for high SES
predictions while for low SES, this seems to be the case as well except for Nice and
Marseille. A similar trend was observed for functional areas which tend to be under-
activated as well for all SES predictions and all cities except commercial/industrial
areas that trigger low SES predictions mostly. More generally, if we were to look at
the above results as a whole, we would conclude that CNN models trained to predict
SES in urban areas are mostly reliant on features lying within residential areas to
draw their predictions, while the degree to which other amenities are determinant in
the prediction shifts from city to city, therefore invalidating (H0).

Furthermore, the spectrum of activation these models exhibit differs significantly
from the urban classes that empirically determine SES the most, identified by means
of the analysis of 𝑝0,1 and 𝑝3,4 (see Section 5.3.3). For instance, while the type of
residential areas contained in a given tile greatly varies between high SES and low
SES samples, with low and medium density areas being more prone to be of high
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SES and very high density ones more likely to be of low SES, similar variations are
observed as well in other categories: Tiles containing motorways, railways and com-
mercial/industrial units are mostly associated to poor areas where as those including
natural areas are more likely to be of high SES.

Bivariate Correlations

We have so far established that the models we trained to estimate SES from aerial
tiles derive their predictions mostly from features contained within residential areas.
Even though the previous analysis sheds light on the features behind the models
prediction for both low and high SES, it is still unclear how the importance of a
residential area is affected by the fact it neighbors other types of urban classes. In
order to address this question, we now focused on the spectrum of coactivations for
both low (𝑑0,1) and high (𝑑3,4) SES. Mimicking the former analysis, we provide as a
means of comparison the co-appearance gains (𝑔

(𝑢,𝑣)
0,1 )(𝑢,𝑣) and (𝑔

(𝑢,𝑣)
3,4 )(𝑢,𝑣) describing

how much more/less likely a polygon of class 𝑢 is to be within a low or high SES tile
given that it co-occurs with a polygon of class 𝑣. As we focus on residential areas, we
restrain 𝑢 to be either a very low, low, medium, high or very high density residential
area (isolated residential areas are left out since they are less likely to co-ocurr with
other urban classes). Coactivations and co-appearance gains for the city of Paris are
reported in Figures 5-7 while results for other cities may be found in the SI.

In terms of the models coactivations, we find surprisingly that models low SES ac-
tivations of residential areas are the highest with respect to the reference, whenever
these areas co-occur with clear non-residential ones. More surprisingly perhaps is
the fact that these trends also take place when we consider high SES activations.
What these results suggests is that whenever the model is presented with a sample
containing residential areas next to non-residential ones, it tends to focus more on
the former ones than whenever they occur by themselves or with other residential
areas, indeed confirming that these types of models base their prediction mostly on
elements contained within residential areas. This is perhaps most surprising when
we consider that the type of neighbouring urban classes are quite determinant of the
socioeconomic status of a given residential area. For instance, in the city of Paris,
residential areas located next to infrastructures such as ports, railways or motorways
are between 20 and 90% more likely to be of low SES than those either co-ocurring
with other areas or that are by themselves. Even more, low density urban areas lo-
cated next to very high density ones are between 90 and 264% more likely to be of low
SES than in the reference, when considering all cities together. This further confirms
that the model ignores differences among residential areas. Conversely, if we were to
look at high SES coappearance gains, residential areas located next to nature related
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Figure 5-7: Chord diagrams of coactivations (top) and coappearance gains (bottom)
estimated for both low (left) and high (right) SES in the city of Paris. Whenever urban
class 𝑖 appears more activated or is more likely to be of a given SES in the presence
of urban class 𝑗 than when appearing by itself or any other random urban class, it
is represented in the diagram as 𝑗 → 𝑖. Each circular segment represents a urban
class 𝑖 connected by chords with width proportional to the coactivation/coappearance
gain. Urban classes are labeled based on their ID (Table 5.1). Colors are assigned
in order of appearance for better visualization based on a common colormap and are
not exclusive of a given class. Also, to avoid overbearing results, only pairs of classes
with values for both coactivations and coappearance gains of over 0.2 (at least 20%
improvement over the univariate case) are shown.
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scenery such as water, natural areas or agricultural land are between 20 and 110%
more likely to be of high ses than in the reference, reinstating what is said above and
invalidating (H1).

5.5 Discussion

The successful deployment of urban policies aimed at curbing social problems
as income inequality and poverty requires and updated and upscaled socioeconomic
description of the city. To do so, policy makers are increasingly turning to deep
learning based solutions despite their inherent lack of interpretability [191].

Our aim in this study has been to address this shortfall by 1) building a dataset
from open data sources susceptible to be used for deep learning based urban solutions
2) providing a CNN-based framework for predicting socioeconomic status from aerial
imagery using only open datasets for five French cities and 3) examining the activa-
tions derived from these models in terms of land cover. In doing so, we have built a
model able to generate these predictions with state-of-the-art performance and have
shown that models trained under these conditions seem to rely on features contained
mostly within residential areas rather than non-residential ones. Finally, we have
also observed that this pattern of activations differs significantly from the statistical
information one can derive by joining land cover and socioeconomic information.
Our contribution opens up directions of research in the growing body of literature
interested in the link between urban topology, architecture and socioeconomic sta-
tus inference. It is not clear for instance how previously shown similarities between
urban environments [5] affect the end prediction of socioeconomic status as well as
the transferability of the learned models between cities. Further tests on different
models, resolutions and interpretatibility techniques are necessary to reach the end-
goal of deploying these models with a more complete understanding of their inner
mechanisms.
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Chapter 6

Conclusion

In this dissertation, we considered the task of detecting and developing tools
making use of the socioeconomic correlations existing with respect to language, social
networks and urban areas. The ever-expanding collection of social datasets that are
now available hold an enormous potential to radically change the way in which we
detect and update our societal knowledge on the formation and maintaining of socioe-
conomic inequalities. Leveraging the information contained within can nonetheless
be a sisyphean task. Therefore, fulfilling the promise this sea of information holds
calls for the development of well-designed and fine-tuned models able to accommo-
date the high-dimensional, multi-layered nature of social data and extract precise
and reliable socioeconomic information. Through these series of works, we aimed at
pushing current boundaries in that direction. To that end, we introduced a number
of novel inference platforms that, fueled by the latent socioeconomic correlations that
sway our behavior (Chapter 2), are able to provide an accurate socioeconomic por-
trait of society. In doing so, they rely on machine and deep learning algorithms that
are able to process language (Chapter 3), network (Chapter 4) and neighborhood
(Chapter 5) information and generate accurate predictions on individual attributes.
Despite the progress that has ensued this work regarding the computational detection
of socioeconomic inequalities many questions remain yet unanswered.

Disentangled network embedding to understand link formation

A logical next step regarding the network representation learning work here con-
ducted is the understanding of disentanglement between network structure and node
features. Indeed, in order to generate predictions on whether a given link between
two users exist, it is still unclear whether users are linked together because they share
similar features or rather they share similar features because they are linked. The
framework introduced in Chapter 4 is able by design to take this information into
account by modifying the information overlap between each. When applied to real-
world social networks such as the one used in Chapter 2 aggregated with different
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time-windows, our framework would be sensitive to changes in the amount of overlap
needed to reach similar link prediction performances hence shedding light upon the
homophily/social influence question.

Deep learning based detection of socioeconomic improvement

In Chapter 5, we developed an end-to-end pipeline able to generate fine-grained
and accurate socioeconomic maps from census cells based on their corresponding satel-
lite image. This technology is actually well-poised to generate continuous updates on
the improvement/deterioration of a given neighborhood thus enabling the setup of
policies to encourage/reverse the currents trend. Therefore, a key challenge associated
to such techniques is to actually ensure that the model learned with a given snapshot
of the country is still fit to predict socioeconomic inequalities later in time. In order
to do so, we would then need to verify whether our model is able to generate reliable
predictions at different timestamps or whether it needs to be adapted or retrained
to ensure this capability. More generally, the application of deep learning technolo-
gies for socioeconomic inference can actually be plagued by issues related inherently
to their design, particularly in terms of bias, interpretability and accessibility. In
terms of the former two, most models learn associations between features originally
contained in the dataset to give back predictions. In doing so, deep learning models
are quite susceptible to silently learn and replicate biases originally contained in the
datasets we train them on. This becomes even more problematic when we consider
the task at hand and the uses that may be made from our predictions ,e.g , providing
economical relief to socioeconomically deprived areas or deciding whether or not to
open a business in a given neighborhood based on the predicted wealth of its inhab-
itants. Even if significant progress in this direction is currently taking place [232],
more work needs to be done to address not only how to mitigate inherent biases but
also on reacting on how directing aid to given areas might change the behaviour of
its inhabitants and in turn the predictions our systems made. Regarding accessi-
bility, currently, training large deep learning models requires significant amounts of
computing power. This limits the type of work conducted here to few centers with
enough resources to actually train our models. In order to further democratize their
development and use, a greater amount of emphasis needs to be put in the design of
smaller and faster models able to compete with state-of-the-art architectures such as
the ones used in Chapter 5.

Transferable models to apply to data-sparse environments

Satellite to socioeconomic status computer vision models tend to function espe-
cially well in data rich environments and especially at fine-grained spatial resolutions.
However, the settings were this technology would be most beneficial are actually lo-
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cated in notorious data-scarce environments. Although much effort has already been
invested in overcoming this key challenge, a direction worth exploring is the degree to
which models trained in a given area might be able to be re-used in areas for which
the model saw no data during training. In order to carry this to term, an interesting
starting point would be to examine the spatial distributions of the error made by a
model trained in a given country and tasked with predicting SES in similar regions.
Once this task is completed, we would be able to understand the design features that
need to be implemented to actually export these frameworks to the places they are
needed the most.

Finally, I’m convinced that the potential that these models hold to improve our
understanding and view of societal problems is great but not yet fulfilled. Granted,
our ability to perform detailed and fine-grained analysis of society at the scale pre-
sented in this work, has never been so widespread. However, to truly develop models
able to work within the efficiency and unbiased constraints we need them to, as well
as to fully comprehend the hidden mechanisms that govern social processes, we need
to further invest in diversifying the datasets we rely on and favor models not only
in terms of performance score but also based on the resources they require to run.
Moreover, we need to bridge the gap existing between industry and academia to
enable public research to gain similar insights to the ones that seem exclusively avail-
able within industry, both in terms of computing power and data capabilities. Only
by addressing these issues will we be able to fully pave the way for the techniques
developed here to fully reach the people needing them the most.
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Appendix A

Satellite to socioeconomic status
inference results for other cities

A.1 Socioeconomic Predictions for other cities

Figure A-1: Maps of observed and predicted average income for Lyon.
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Figure A-2: Maps of observed and predicted average income for Marseille.

Figure A-3: Maps of observed and predicted average income for Nice.
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Figure A-4: Maps of observed and predicted average income for Lille.

A.2 Activation ratios & empirical probabilities

p̂0,1
p̂3,4

c0,1
c3,4

Lyon

(a) (b)

Figure A-5: Correlations between urban topology and socioeconomic status in the
city of Lyon: (a) Mean model activation rate per urban class with 95% confidence
interval for samples predicted as respectively as low SES (blue) or high SES (red) by
the model (b) Estimated probability of a urban polygon belonging to the bottom or
top quintile of the income distribution with bootstrapped 95% confidence interval.
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Marseille

(a) (b)

Figure A-6: Correlations between urban topology and socioeconomic status in the
city of Marseille: (a) Mean model activation rate per urban class with 95% confidence
interval for samples predicted as respectively as low SES (blue) or high SES (red) by
the model (b) Estimated probability of a urban polygon belonging to the bottom or
top quintile of the income distribution with bootstrapped 95% confidence interval.

p̂0,1
p̂3,4

c0,1
c3,4

Nice

(a) (b)

Figure A-7: Correlations between urban topology and socioeconomic status in the
city of Nice: (a) Mean model activation rate per urban class with 95% confidence
interval for samples predicted as respectively as low SES (blue) or high SES (red) by
the model (b) Estimated probability of a urban polygon belonging to the bottom or
top quintile of the income distribution with bootstrapped 95% confidence interval.
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(a) (b)

Figure A-8: Correlations between urban topology and socioeconomic status in the
city of Lille: (a) Mean model activation rate per urban class with 95% confidence
interval for samples predicted as respectively as low SES (blue) or high SES (red) by
the model (b) Estimated probability of a urban polygon belonging to the bottom or
top quintile of the income distribution with bootstrapped 95% confidence interval.
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A.3 Co-Appearance Gains for other cities
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Figure A-9: Chord diagrams of coactivations estimated for both low (left) and high
(right) SES in the remaining set of cities. Whenever urban class 𝑖 appears more
activated for a given SES in the presence of urban class 𝑗 than when appearing by
itself or any other random urban class, it is represented in the diagram as 𝑗 → 𝑖.
Each circular segment represents a urban class 𝑖 connected by chords with width
proportional to the coactivation value. Urban classes are labeled based on their
ID (Table 5.1). Colors are assigned in order of appearance for better visualization
based on a common colormap and are not exclusive of a given class. Also, to avoid
overbearing results, only pairs of classes with coactivations values of over 0.2 (at least
20% improvement over the univariate case) are shown.
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Figure A-10: Chord diagrams of coappearance gains estimated for both low (left)
and high (right) SES in the remaining set of cities. Whenever urban class 𝑖 is more
likely to be of a given SES in the presence of urban class 𝑗 than when appearing by
itself or any other random urban class, it is represented in the diagram as 𝑗 → 𝑖.
Each circular segment represents a urban class 𝑖 connected by chords with width
proportional to the coappearance gain. Urban classes are labeled based on their
ID (Table 5.1). Colors are assigned in order of appearance for better visualization
based on a common colormap and are not exclusive of a given class. Also, to avoid
overbearing results, only pairs of classes with coappearance gains of over 0.2 (at least
20% improvement over the univariate case) are shown.
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