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Abstract

It is virtually impossible to name all the spheres of society that have been pro-
foundly changed by the widespread of the Internet or to measure its impact inside
each sphere. However, a consensus opinion of network experts is that this influence
will only grow in the coming years. In the networking community, we are expecting
an ever-increasing amount of traffic that will more than ever depend on wireless
technologies, specifically Wireless Local Area Networks (WLANs).

The increase of traffic volume means that standardization organisms, vendors,
and network architects need to come up with solutions for more coverage and
capacity for WLANs. Given the distributed nature of resource sharing in 802.11-
based WLANs, these solutions can become inefficient when they amount to simply
deploying a larger number of resources. Thus, proper configuration and deployment
of the networks is crucial to their performance.

In this thesis, we propose stochastic performance modeling approaches for
WLANs. All our models are designed for unsaturated WLANs with arbitrary
topologies. The first three models are based on Markov chains and model the
network at a high level of abstraction. Each new model refines its predecessor by
being conceptually simpler and at the same time closer to the real system. Our
last Markovian model is tailor-made for IEEE 802.11ac WLANs and incorporates
channel bonding, MCS indexes, and frame aggregation.

The increasing system fidelity of the models and their precision have allowed
us to propose several different applications regarding the performance evaluation
and configuration of centrally-managed WLANs. In particular, we are interested
in issues of fairness and throughput maximization and propose several approaches
that can help a network administrator to properly configure a network given a
certain performance metric.

Our last modeling approach is profoundly different and incorporates a Graph
Signal Processing (GSP) method for the performance modeling of WLANs. The
need for such modeling arises mostly from scalability issues, as even though our
Markovian models’ accuracy makes them suitable for many applications, their lack
of scalability can sometimes be seen as restrictive. We show that this black box
approach can be successfully used for modeling the network and that incorporating
WLAN-specific knowledge can help increase the accuracy of the model.

The final chapter of this manuscript details the contributions and limitations
of each modeling approach we proposed, including a discussion on potential future
works and on general practices in the performance evaluation of WLANs.

xv





Chapter 1

Introduction

The Internet is the first thing
that humanity has built that
humanity doesn’t understand, the
largest experiment in anarchy
that we have ever had.

Eric Schmidt

It is hard to fully conceptualize today that a communication invention has
unprecedentedly revolutionized not only how we share information, but how we
generate and think of information. The Internet’s revolution is hardly reserved
to technophiles, as we see its massive impact in communication, entertainment,
economy, education, health care, and even governance structures and environmental
issues. As a result, the stakes today are much higher than simply providing an
efficient Internet access for entertainment and communication.

Global connectivity has allowed for the development of novel trends in education
and health care. Massive Open Online Courses (MOOCs) revolutionized the trans-
mission of knowledge. According to the Class Central platform, in 2018 a total of
101 million students attended 11 400 different classes from over 900 universities [1].
Quantifying the full impact of e-learning is an impossible task, however its effects
on knowledge sharing are undeniable and worldwide. The contributions to health
care, on the other hand, are usually more supervised and better defined. The In-
ternet of Things (IoT) for health care [2] has provided us with applications such
as glucose level sensing, electrocardiogram, blood pressure, and body temperature
monitoring, and medication management.

In the early years of the Internet widespread, many authors argued for its posi-
tive impact on environmental issues. The Internet provided an efficient platform for
dematerialization resulting in a smaller power consumption and less greenhouse gas
emissions, and office space and travel savings from telework [3]. Unfortunately, to-
day’s data shows that we may have guessed wrong. According to Climate Care [4],
the environmental impact of using the web can be summarized in two parts: the
manufacturing and shipping of electronic devices, and the powering and cooling
of connected devices. The Information and Communication Technologies (ICT)
industry is responsible for 2% of global carbon emissions, over a fifth of which are

1
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due to data centers. With the predicted constant increase in generated data and
deployment of data centers, the Internet will represent an even larger part of global
environmental issues. As a result, current (and future) works will largely focus on
making the Internet, and our use of it, more environmentally friendly.

The economic impact of the Internet is also far from negligible. The GSM
Association’s annual Mobile Economy [5] reports that by 2023, an estimated 60%
of the world’s population will have subscribed to mobile Internet services. In the
same period, mobile services will account for 4.8% of GDP.

A large contributor to the massive spread of the Internet is the popularization
of wireless technologies over the last two decades, including mobile technologies,
e.g., 3G and 4G, and Wireless Local Area Networks (WLANs), commonly known as
Wi-Fi. Smartphones have, for better or for worse, long surpassed their ancestor’s
role and today’s mobile traffic represents more than half of global Internet traffic.
However, mobile users often do not know that a large part of the Internet access on
smartphones is provided by WLANs, as operators choose to offload the traffic to
WLANs. In fact, Cisco’s Visual Networking Index [6] (VNI) predicts an increase
from 54% in 2017 to 59% in 2022 for offloaded traffic, resulting in an over eight-fold
growth in the volume of offloaded traffic.

The ever-increasing demands for capacity and coverage have resulted in several
generations of IEEE 802.11 standards for WLANs and the deployment of even more
Access Points (APs). Both the development of new (and more complex) standards
and the densification of WLANs result in a series of performance issues. Given the
only increasing popularity of wireless communications, the performance evaluation
of WLANs will remain an important research topic for years to come.

Challenges

The popularity of WLANs has led to a myriad of technological advances and stan-
dard improvements. Nevertheless, as it is often the case in communication systems,
a common approach to increase the available capacity and coverage is to simply
deploy more resources. In WLANs, the deployment predominantly concerns APs,
whose numbers will have increased over four-fold from 2017 to 2022, going from 124
to 549 million devices worldwide [6]. While this increase effectively solves many of
the coverage problems, if not properly executed, it potentially results in a marginal
capacity increase. Since APs in close proximity have to share the available re-
sources, WLANs suffer from their own paradox of plenty, as more is not always
better.

A common network densification problem arises when APs select their commu-
nication channel [7]. Consider a simple WLAN with two APs, denoted by A and
B, operating on the only available non-overlapping channels, a and b, respectively.
Let us suppose that a third interfering AP, denoted by C, from a different WLAN
is deployed close to AP B, but out of reach of AP A and that C is configured to use
channel b. In this scenario, APs B and C need to compete for the same resource,
channel b. From a local view though, both AP A and B have an optimal solution,
as A experiences no competition and B would be competing with one other AP on
either channel. Globally, however, an optimal configuration would be for APs A to
switch to channel b and for AP B to use channel a. This global optimum is most
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often achieved by implementing centralized control for the WLAN of APs A and
B.

Centralized control is a popular topic in WLAN management. Several vendors,
including Aruba [8], Cisco Mobility [9], Meraki [10], and Meru [11], have proposed
such solutions that are currently available for public use. Their technologies rely on
the software-defined networking (SDN) paradigm in which a centralized controller
manages all the WLAN’s APs. The software used by the controller is regularly
updated and can be defined to suit a particular user’s demands. With the increasing
presence of WLANs and their densification, and especially taking into account the
predicted increase in WLAN-native and offloaded traffic, it is reasonable to assume
that SDN will constitute an important part of the future of WLANs.

As appealing as centralized control is to anyone that has spend time working
on WLAN performance issues, it should be underlined that today’s solutions still
have years of improvements to come. If the reader is familiarized with the Medium
Access Control (MAC) layer enhancements of the recent 802.11 standards, they
understand that properly configuring a WLAN is far from a simple task. If not, we
have the pleasure to introduce the reader to the intertwined existence of standard
amendments, channel bonding, frame aggregation, and MCS indexes in Chapter 2.
Still, an avid connoisseur of WLANs knows that the challenges of their performance
evaluation are numerous and can often be divided into two groups: those relating
to choosing the appropriate performance metric and those more interested in the
performance methodology. In the next section we briefly review some of the possible
choices available and discuss the difficulty of properly designing and validating
WLAN performance evaluation tools.

Performance Analysis

Due to the complexity of communication networks, and in particular the ever-
growing complexity of WLANs, crucial trade-offs lie in the initial evaluation choices.
As a result, the early stages of the development of performance evaluation tools
for WLANs are always challenging and become easily overwhelming. Researchers
have significantly differing, and often equally valid, opinions on the topic and this
section summarizes only the author’s personal views. In an effort to provide a
concise summary and discussion on the topic, we focus on two questions:

1. What is the network behavior of interest?

2. How do we evaluate the current behavior?

Performance metrics

In communication networks, performance metrics allow us to measure certain quan-
tities of interest to the network provider and/or its users. In WLANs, common
metrics include delay, jitter, error rate, throughput, and, fairness. Choosing the
right performance metric, or their combination, will then depend on the desired
network behavior.

The average delay, jitter, and throughput are mainly significant to streaming
applications, i.e., applications such as video or game streaming and voice that
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generate data at (mostly) regular intervals and need the data to be delivered with
the same regularity. However, most of the time these applications allow larger error
rates, because losing a single frame of a video usually does not diminish the overall
viewing experience. A completely opposite example would be email services that
are fully elastic, as even delays of several minutes do not disturb the application,
however they are intolerant to losses. Between these two extremes, a multitude
of applications exist that have different performance requirements. While these
metrics mostly focus on the experience of a single network device or application,
we can also measure quantities such as the fairness of resource sharing that relate
to the network as a whole.

Choosing the right metric for a given performance evaluation approach is a
crucial decision. Not only does the choice affect the type of result and evaluation we
can expect from the approach, but it often defines the complexity of the approach.
An illustrative example is the modeling of delay and of throughput in WLANs.
While it is possible to obtain accurate estimations of a device’s achieved throughput
using only high-level descriptions of the network, modeling delay often requires
representing the transmissions of single packets and detailed buffer descriptions.
Hence, choosing the proper metric of interest for any performance evaluation tool
can be a make or break factor, as it is virtually impossible to represent all the
WLAN’s performance metrics in a tractable manner.

Performance methodologies

The three main approaches in WLAN performance evaluation are modeling, simu-
lation, and experimentation. When choosing the appropriate approach for a given
problem, it has to be clear that there are intrinsic trade-offs that are fundamen-
tal to every one of them. Most of the time, the development of a performance
evaluation tool is goal-driven and has well defined objectives that need to be met.
Thus, instead of reviewing the approaches separately, we discuss the five trade-offs
of every approach that seem essential to the author. After careful consideration of
these trade-offs, it should be relatively clear which evaluation approach is suitable
for which application.

Fidelity

Analytical models have always been the battlefield of practitioners and theorists.
Practitioners argue that analytical modes are often too far from reality, while the-
orists often forget that communication networks do exist in reality. More particu-
larly, in WLANs many critiques are concerned with the definitions of propagation
and error models, the perfectly shaped communication zones, the disappearance
of obstacles and interference, and the distributions of packet sizes and arrivals.
However, analytical models are, by definition, only modeling the existing system
and as such they are expected to have a given number of simplifying hypotheses.
A discussion on the validity of those hypotheses is always welcomed, as finding the
answer to “how simple is too simple?” is rarely an effortless exercise. My personal
opinion is that a model’s fidelity should be application-driven, i.e., fidelity is as
important as the model’s intended usage needs it to be.

Probably the most often encountered criticism of simulation, and thus advocacy
for experimentation, is the fidelity of the approach to the original system. Simu-
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lation can often be seen as a highly detailed and fully automatized model. This
view puts simulation somewhere between models and experiments, as they are
still simply modeling parts of the real functioning of the network, however their
level of detail brings them closer to experimentation. Given its later widespread
as a performance evaluation technique, as compared to theoretical and experi-
mental work, the simulation of communication networks has experienced several
crises of credibility. In the early 2000s, Pawlikowski et al. [12] reviewed over 2200
simulation-based articles and summarized three main points of criticism: i) use of
proper random number generators, ii) detailed and valid statistical analysis of the
obtained outputs, and iii) complete descriptions of the simulation results allow-
ing for reproducibility. Since then, methods of random number generation have
significantly improved and if properly used they are rarely an important point of
disagreement. The two other points, however, are not linked to simulation as a per-
formance evaluation tool, but to the publishing practices. It is the experience of the
author that a large portion of these practices are, regretfully, still prevalent both in
journal publications and conference proceedings. Modern criticism of simulation in
WLANs usually refers to the bridging the gap between simulation and experimen-
tation in the Physical (PHY) and Medium Access Control (MAC) layers. It should
be noted that substantial advancements have been made in WLAN simulation. A
series of works have focused solely on improving simulators by implementing re-
alistic code for Software-Defined Wireless Networks (SDWNs) [13], environmental
noise [14], or introducing experiment-driven simulator improvements [15,16].

Finally, the holy grail of system fidelity has always been experimentation. In
the last several years, 802.11 devices have become both widespread and reasonably
inexpensive, making place for a new wave of experimental WLAN performance
evaluation. The fidelity of experiments is less frequently questioned, as it is logical
to think that nothing could be closer to the real system than that system itself.
Today, testbeds are becoming more and more common and are being deployed
in either anechoic chambers or public spaces. In both scenarios, usually devices
are uniform and the traffic we monitor is generated solely for the performance
evaluation purposes. However, several works show that there is a substantial gap
between the 802.11 standards and the actual mechanisms implemented in Network
Interface Cards (NICs) [15, 17, 18]. Furthermore, anechoic chambers completely
isolate the WLAN from external influence, forcing us to rethink the realism of data
obtained in fully controlled environments with fully controlled external factors.
Still, it is important to note that the fidelity of experimentation to the system
relates almost exclusively to the reproducibility of the results and the sufficient
generality of the experimental setup.

Reproducibility

The reproducibility of experimental work, or lack there of, has been a recurring
topic in many fields. In WLAN performance evaluation, many early experimental
works only considered small topologies of a handful of nodes in highly homogeneous
networks and traffic conditions. Recent works, to the satisfaction of the community,
have incorporated larger WLANs with several dozens of nodes in many different
configurations. However, the lack of uniformity of the network devices from dif-
ferent vendors, the lack of transparency in the experimental procedure, and the
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volatility of WLANs to a changing environment often aggravate the reproducibil-
ity issues.

In simulations and analytical modeling, the main problems of reproducibility are
the same as identified by Pawlikowski et al [12] in 2002. Published works experience
a profound scarcity of detailed simulation setups and code availability in the case
of modeling. Fortunately, many existing initiatives are successfully encouraging
transparent publications, and their impact is far from negligible. When the all
necessary code is made available, reproducing simulation and analytical results is
usually fairly simple.

Cost

The cost of a performance evaluation approach usually relates to time and money.
Developing an analytical model from scratch requires a significant amount of time
and expertise, and should be avoided when immediate results are needed. However,
once the model is fully developed, obtaining output is usually notably faster than
in simulations or experiments. Additionally, analytical models can be developed in
fully open source environments and thus require almost no additional funds.

Simulation tools usually require a reasonable short time to master and many of
the available WLAN simulation environments are open source. Equipment costs
are usually similar for analytical models and simulation setups, with the benefit
of the simulation being that the code that reproduces the network’s behavior is
already written. However, depending on the complexity of the simulated network,
simulations can have an unreasonably long execution time when no parallelization
is enabled.

Experimentation is historically by far the costliest methodology, as not only is
the equipment potentially very expensive, but requiring the knowledge to properly
setup and run experiments takes a notable longer period of time than in simulation
or modeling. Today, many of the cost problems of experimentation have been
solved, or drastically reduced, by the deployment of open testbeds. The testbeds
have an already completed and fully detailed experimental setup that is usually
accompanied by a reasonably user-friendly access. Once the experimental setup is
mastered, executing scenarios is faster than in simulation.

Scalability and flexibility

When in comes to scalability and large deployments, simulation and analytical
models have an upper hand on experimental work. Increasing the network from 10
to 100 APs in simulation mostly requires very little code changes. Deploying 90
APs in reality takes a lot more than writing several lines of code. Still, it should
be noted that large-scale simulation and modeling do take longer to execute and
can require a significant amount of computational resources.

We refer to the process of easily modifying the network’s parameters as flexi-
bility. Flexibility is especially important when different network configurations are
being tested in order to find an optimal set of parameters. In analytical models
and in simulation, flexibility is straightforward: we simply modify the value of the
parameter we wish to evaluate, provided that parameter is taken into account in
the code. In experimental works, the flexibility of the network depends, once again,
on the chosen network devices. Another advantage of today’s testbeds is that they
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are often configured for remote use and are almost fully adaptable to the demanded
scenarios.

Finally, it is the author’s conviction that each performance evaluation approach
has its merits and appropriate applications. Fast and not costly results most often
call for the simulation and modeling of networks. When it is important to keep
the output closer to that of a real WLAN, then experimentation is most often the
right solution.

The three approaches have quite different learning curves. Simulation, most
often, can be used by anyone capable of running the corresponding simulation
script. Setting up experiments can be almost as simple as running a simulation
on existing testbeds, or it can require a significant effort when deploying a testbed
from scratch. Developing analytical models requires an expertise in the underlying
system. However, all three approaches have something in common: they provide
us serendipitous discoveries. When analyzing the simulation and experimental
results, we often find that parameters we have overlooked have a larger impact
than previously thought. The development of models requires nothing short of a
dissection of the network, as constructing an abstraction of a mechanism demands
having a deep knowledge of that mechanism. This process often provides us with
insight that is harder to achieve by simply looking at the network as a collection of
inputs and outputs obtained in simulation or experiment. Ultimately, there is still a
long road to full transparency in publishing results in all three approaches. As long
as network configurations, simulation and experimentation setups, and modeling
codes are not made available along with the published work, there will always
be doubt to the validity of the results and the possible undisclosed hypotheses
they might contain. However, it is the author’s strong opinion that the lack of
transparency is involuntary and represents a simple oversight in most publications,
as shown by the increase of available research data over the last years.

Thesis Statement

Since the beginning of our work on 802.11 networks, the question we try to answer
is how can we develop an efficient, accurate, and scalable performance evaluation
tool for resource sharing in WLANs? We begin by stating the broad context and
the motivation behind this thesis using several toy examples that we believe show
the complexity of the task.

Let us consider a fairly simple WLAN consisting of two APs and their associated
stations, pictured in Fig. 1.1. The two APs are in each others detection zones,
depicted with the dashed circles, and thus are obligated to share the medium.
To make matters simpler, we assume that the two APs are completely identical:
fully saturated, generating packets of the same size, using links with the same
transmission capacity. In such a WLAN, the fully distributed mechanisms of the
IEEE 802.11 standard will enforce a round-robin type of resource sharing, i.e., on
average the two APs take turns sending packets. As a result, both APs will attain
the same throughput (roughly equal to half their transmission capacity).

Let us now assume that the green AP suffers from too many errors and decides
to switch to a more robust modulation resulting in a link with a much smaller
transmission capacity. Since the packet size remains the same, the green AP needs
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Figure 1.1: WLAN with two APs and their associated stations.

a longer time to send its packets over the now slower link. The network continues
to function in a round-robin manner and the blue AP is forced to wait for the green
AP to finish its lengthy transmission before every packet. Heusse et al. [19] referred
to the phenomenon of the decline in throughput of the blue AP as 802.11’s per-
formance anomaly. Since then, the performance anomaly has been often revisited,
as its practical implications are of high importance to all WLANs. In a household
WLAN, the effect is often encountered when one of the connected stations moves
far away from the AP and thus decreases the throughput of all other stations.
Similarly, a neighboring AP can cause the exact effect if the two APs are within
reach, as is often the case in residential buildings.

Now let us go back to the original scenario, where the APs are equal in capacity.
A third AP is deployed close to the green one, with the same average capacity and
packet size, shown in Fig. 1.2. In the best case scenario, the middle AP can hope
for a round-sharing of the resources and thus obtain roughly a third of the available
transmission capacity. Unfortunately for the middle AP, the three-way round-robin
only is an exceptional phenomenon and in most cases, the middle node will spend
most of its time waiting for the medium to be idle, as it is occupied by one or both
edge APs. This particular network topology is known as a Flow In the Middle
(FIM) network, studied in depth by Chaudet et al. [20], and widely knows for its
unfairness towards the middle AP that experiences throughput starvation.

The two networks we have considered are quite simple, their nodes are fairly
homogeneous as they have the same packet sizes, they are always saturated, and
only sometimes their capacities are differing. If these issues happen with networks
of two or three APs, how do we manage larger networks? Even more so, how do
we manage unsaturated networks, with highly heterogeneous nodes, and differing
traffic demands? How do we centrally evaluate and control a network that is dis-
tributed by nature? Given the trade-offs of the different performance evaluation
methodologies, we opted for stochastic models of WLANs that allow us to have a
highly flexible and potentially scalable tool at a low cost with easily reproducible
results. The system fidelity of an analytical model is likely to be its largest draw-
back, as many simplifying hypothesis have to be made in order to keep the model
tractable.

Given the complexity of even small WLANs we seldom find models that are
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Figure 1.2: WLAN with three APs and their associated stations.

widely applicable without having highly limiting constraints on the network type.
These limitations often come from the complex nature of the WLANs, but also from
the fact that commonly the network is modeled at a very fine level of abstraction.
The works presented in this thesis have a more global view of the network. Hence,
instead of modeling the processes happening inside each node, we choose to model
the whole network as a set of nodes. The high-level modeling approach makes
it possible for all the models we propose to be applied to any WLAN with an
arbitrary topology and unsaturated nodes with different traffic demands. Our
models, however, provide only an estimation of the achieved throughput of every
node, and do not model metrics such as buffer occupation or delay. Given a WLAN
topology composed of APs and the knowledge about their traffic demands, our
models estimate the resource sharing, i.e., the attained throughputs of all nodes.
Such models allow for a fine tuning of already existing centrally managed WLANs
or be used as guidance tools for deploying new networks.

Manuscript Organization

The organization of the manuscript is as follows: Chapter 2 describes the details of
the internal mechanisms of IEEE 802.11 WLANs. Chapter 3 then reviews some of
the existing approaches in performance evaluation of WLANs and discusses several
open problems. In the interest of clarity, we include in Chapter 4 several opening
remarks that detail the exact system we consider in our modeling approaches and
a short summary of our Markovian models that should help the reader to better
understand the reasoning behind their presentation in this manuscript and their
development during the thesis. We advise that Chapter 4 be read before any mod-
eling chapter. Chapters 5, 6, 7 present our three generations of Markovian models.
Each of the three chapters includes a detailed description of the corresponding
modeling approach, an algorithmic version of the model, its numerical validation
and potential real-world applications. Our last model is presented in Chapter 8
and represents a work that is fully independent of our Markovian models and can
also be read independently. Chapter 8 still respects the system defined in Chap-
ter 4, however it also includes a review of the state of the art works in the field
of Graph Signal Processing. We conclude with Chapter 9 that summarizes the
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author’s views on the contributions of this thesis and discusses potential improve-
ments and drawbacks of the our modeling approaches and the field of performance
evaluation of WLANs in general.

The modeling approaches presented in Chapters 5, 6, 7 resulted in conference
and journal publications of the author, their supervisor Thomas Begin, and two
collaborators. The Markovian models are joint work with Anthony Busson that
was presented in the WiOpt conference in 2017 [21] and published in Performance
Evaluation in 2019 [22]. Our initial Graph Signal Processing model is a collab-
oration with Paulo Gonçalves published in the Gretsi conference in 2019 [23] (in
French). This collaboration later led to the work presented in Chapter 8, a joint
effort with Paulo Gonçalves and Maxime De Freitas.



Chapter 2

IEEE 802.11 Networks

In the end of the 20th century, the Internet’s popularity was experiencing constant
growth in the industrial, commercial, and domestic spheres. Users were connecting
more and more devices and it quickly became evident there is a need for mobility
and wireless connectivity. Wireless Local Area Networks (WLANs) became the an-
swer to these needs. Although initially developed for industry-specific applications,
WLANs quickly showed they have their place in the office and home environments.
In 1997, the first IEEE 802.11 standard was released [24], defining the Physical
(PHY) and Medium Access Control (MAC) layer protocols to be used in WLANs.
Since then, the IEEE 802.11 standard has become the norm for WLANs and in
this chapter we summarize its basic mechanisms as well as the improvements im-
plemented over the years. At the end of this chapter, we detail the specifics of the
system we consider throughout this thesis.

In WLANs, we distinguish two types of network devices: Access Points (APs)
and user stations (STAs). A STA associates to an AP in order to establish a
communication. A WLAN is simply a collection of interconnected devices that
communicate in one of two possible modes: infrastructure and ad-hoc mode. Fig-
ure 2.1 shows an example of the two modes. In the infrastructure mode, all STAs
are associated with an AP, meaning that all communication is centralized. Even
when two STAs are fairly close to each other, all communication between them
must pass through the AP. In the ad-hoc mode there is not a centralized AP and
STAs communicate directly with one another. While ad-hoc modes are a popular
choice for setting up a connection between a few devices, e.g., in LAN gaming,
most of the WLANs in use today, and the WLANs of interest in this thesis, use
the infrastructure mode.

In a wired network, two devices are directly connected by a physical link and
the speed at which they can communicate depends mostly on the characteristics
of that link. We refer to the physical speed of communication as the device’s data
rate. In wireless networks however, the interconnectivity and the data rate de-
pend on the distance between the devices as well as other environmental factors.
When two devices are in close proximity, they can communicate or detect each
others’ transmissions with only a few errors that can be detected and often cor-
rected. Such connections allow the devices to use dense modulations and achieve
high data rates. As the distance between the devices increases, it becomes harder

11
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Figure 2.1: Comparison of infrastructure (left) and ad-hoc (right) mode in WLANs.

to correctly decode the information being exchanged as the signals received can
significantly differ from those being sent. As a result, the devices are forced to use
more robust modulations to ensure (most of) the messages are correctly received,
i.e., use a large portion of the communication for encoding mechanisms facilitation
error detection. If the distance increases even further, the devices completely lose
all means of communication as they no longer detect each others’ transmissions.
These notions help us define the Carrier Sensing (CS) range. The CS range is the
area in which a device detects the transmissions of all other devices, denoted as its
neighbors. Because neighbors share the same resources, a collision occurs whenever
two neighboring devices transmit at the same time, resulting in the potential loss
of one or both frames. For example, Fig. 2.2 depicts an infrastructure WLAN with
four APs connected to the backbone, and eight stations associated to the APs. The
CS range of each AP is illustrated with a dashed circle around that AP. In this
network, the blue and red APs could simultaneously transmit to their associated
stations without collision. The yellow and red APs, on the other hand, have to
take turns when transmitting to their stations.

.
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.

Figure 2.2: WLAN with four APs and eight STAs.
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As neighbors have to share the available resources, there is strong incentive to
have as few neighbors as possible. Intelligent planning of the positioning of APs as
well as transmission power adjustments can significantly help in reducing the num-
ber of neighbors per AP. However, the increasing need for capacity and coverage
dictates that more and more APs need to be deployed. This leads to network den-
sification and generally low spatial reutilization, i.e., having several APs transmit
at the same time because they are sufficiently far apart. As a solution, all IEEE
802.11 standard amendments allow APs to choose one of several radio channel that
use different frequencies. Some of the channels are non-overlapping and can be used
for simultaneous transmissions even when the devices are neighbors. The details
of the available channels, data rates, and improvements in every new generation of
IEEE 802.11 standard amendments are presented in the next section.

IEEE 802.11 Standard Amendments

When the original IEEE 802.11-1997 standard was released [24], the maximum data
rate was 2Mbps. Today, the 2Mbps connections have been long surpassed by devel-
oping a series of techniques implemented in different 802.11 standard amendments.
An 802.11 standard amendment is a collection of improvements and/or specific
techniques to be implemented on top of an existing 802.11 standard that allow for
the use of higher data rates, incorporate specific security requirements, or adapt
to particular environments. For example, the 802.11a amendment introduced a
new frequency band and higher data rates, the 802.11i enhanced the security of
the transmissions, and the 802.11p adapted WLANs to the vehicular environment.
When several amendments become available and are used in practice, the original
802.11-1997 standard is revised. This revision is referred to as a roll-up and is
performed only once every several years, as modifying the entire 802.11 standard
is a delicate task. So far, the standard has been revised in 2007, 2012, and 2016,
with the 802.11-2016 being the most recent roll-up available. Below, we review
several of the main improvements implemented in the IEEE 802.11 standard over
the years.

Frequency bands and channels

WLANs operate mostly in two frequency bands: the 2.4GHz and the 5GHz band.
Initially, only the 2.4GHz band was available in the 802.11-1997 standard. In the
2.4GHz band, there is a maximum of 14 radio channels 20MHz wide that APs can
choose from, depicted in Fig. 2.3. As shown in the figure, neighboring channels are
overlapping and there can be at most three channels used simultaneously with no
overlap. Usually, the APs of a WLAN are configured to use channels 1, 6, or 11 in
order to minimize the number of neighbors per AP and thus maximize the spatial
reutilization or the network. It should be noted that depending on a country’s
legislation, not all channels are available for private use.

Not long after the first publication of the 802.11 standard, the 5GHz band was
introduced in the 802.11a-1999 amendment. The 5GHz band offers a larger choice
of channels, with 25 non-overlapping 20MHz channels available in five sub-bands:
the UNII-1, UNII-2, UNII-2 Extended, UNII-3, ISM. In practice, most WLANs use
UNII-1 and UNII-2 bands, depicted in Fig. 2.4. While the 5GHz band offers more
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Figure 2.3: Available channels in the 2.4GHz frequency band.

channels and thus less interference, the shorter waves result in a smaller range than
in the 2.4GHz band.

In older IEEE 802.11 standard amendments (802.11-1997,a,b,g), all frames are
sent over 20MHz channels. As more channels became available, the idea of using
larger channels emerged and led to the development of channel bonding in IEEE
802.11n. Channel bonding allows APs to use two contiguous channels as a single
40Mhz channel. The result is over two times larger data rates, as the guard interval
that was separating the channels can now also be used for transmissions. A novelty
introduced in IEEE 802.11ac is the channel bonding of up to eight channels resulting
in 160Mhz channels and over eight times larger data rates, as shown in Fig. 2.4.

UNII-1 UNII-2

20Mhz

40Mhz

80Mhz

160Mhz

Figure 2.4: An extract of the available channels in the 5GHz frequency band.

Data rates and modulation and coding schemes

Each standard amendment defines a series of available data rates, the 802.11-1997
standard has only two data rates: 1Mbps and 2Mbps. The more recent 802.11ac [25]
standard amendment (part of the 802.11-2016 roll-up) can reach data rates ranging
from 6.5Mbps to over 6.5Gbps. These high data rates are achieved by introducing
more advanced Modulation and Coding Schemes (MCS). Every connection in an
802.11ac WLAN has a given MCS index. This index is a combination of a modu-
lation type (such as BPSK, QPSK, 16-QAM) and a coding rate (1/3, 2/3, 3/4...)
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that result in a fixed data rate. The IEEE 802.11ac standard amendment offers ten
different MCSs, denoted MCS0 to MCS9. The higher the MCS index, the higher
the data rate of a node. When choosing an MCS, the network interface card’s
goal is to maximize the data rate, while keeping a relatively low packet error rate.
Table 2.1 lists the data rates for different MCS values in 802.11ac and for different
channel sizes. We notice that even for the same channel size, moving from MCS0
to MCS9 results in an over ten-fold increase in data rate. Overall, larger channels,
along with high MCS values, result in much higher data rates.

MCS 0 1 2 3 4 5 6 7 8 9
20MHz 7.2 14.4 21.7 28.9 43.3 57.8 65 72.2 86.7 NA
40Mhz 15 30 45 60 93 120 135 150 180 200
80MHz 32.5 65 97.5 130 195 260 292.5 325 390 433.3
160Mhz 65 130 195 260 390 520 585 650 780 866.7

Table 2.1: Data rates in Mbps, using short guard interval.

Frame aggregation

In IEEE 802.11 protocols, one of the largest overheads a node experiences is waiting
to acquire medium access. Legacy IEEE 802.11 standards send frames one at a
time, meaning that the node spends a significant amount of time trying to access the
medium, instead of actively transmitting data. A simple solution to this problem
is to send several frames as a single aggregate frame. IEEE 802.11n proposes two
types of frame aggregation: Aggregate MAC Service Data Unit (A-MSDU) and
Aggregate MAC Protocol Data Unit (A-MPDU). An A-MSDU is a collection of
several MSDUs that share a common MAC header and DCF overhead (see Fig. 2.5),
resulting in a very efficient network utilization. A-MPDU aggregation is slightly
less efficient, as several MPDUs share the DCF overhead however each MPDU
has its own MAC header (see Fig. 2.6). However, in environments that are prone
to error, A-MPDU allows the receiver to acknowledge MPDUs individually and
effectively results in higher throughput than when using A-MSDU [26].
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Figure 2.5: A-MSDU aggregation of three frames.
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Figure 2.6: A-MPDU aggregation of three frames.

By default, all frames in the IEEE 802.11ac standard amendment are sent us-
ing A-MPDU (even if they contain only a single MPDU). The 802.11-2016 and
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standard imposes new regulation on the maximum frame length when using aggre-
gation. More specifically, when using A-MPDU aggregation the maximum size of
the aggregated frame is limited by three conditions [25]:

1. at most 64 MPDUs can be aggregated in a single frame;

2. the duration of the Physical Protocol Data Unit (PPDU) must not exceed
5,484 µs;

3. the maximum length of the aggregate frame cannot be more than 1,048,575
bytes.

Distributed Coordination Function

Up to now, we have mostly focused on the parameters that can increase the data
rate in a WLAN. However, these mechanisms do not define how several devices
share a common medium. In order to ensure an efficient sharing of the wire-
less medium between neighbors, WLANs implement the Distributed Coordination
Function (DCF). DCF defines the procedure taking place before every frame trans-
mission in order to avoid collisions. Before starting a transmission, the device first
listens to the medium to make sure it is not occupied by one of its neighbors.
Should the medium be occupied, the device defers its transmission until it senses
an idle medium. Figure 2.7 schematically represent the DCF procedure for unicast
frames and Table 2.2 summarizes the corresponding DCF parameters for several
802.11 standard amendments.

  DIFS      Backoff     PHY           Frame         SIFS  PHY    ACKTDIFS Tbackoff TPHY TSIFS TPHY TACK    TFRAME
Figure 2.7: The DCF procedure for medium access.

Before a device starts a frame transmission, it first needs to make sure that the
medium is continuously sensed idle for the duration of one DCF Interframe Space
(DIFS) period, so as to avoid a collision with an ongoing transmission. Next,
the device starts the backoff period whose goal is to desynchronize the beginnings
of transmissions of neighboring nodes. The backoff’s random duration makes it
unlikely that neighboring nodes start transmitting at the exact same time once
they sense that a common neighbor has stopped transmitting. Unlike the DIFS
period, the backoff can be frozen if the medium is sensed busy and then resumed
when the medium becomes idle again. The duration of each backoff period is
calculated as the product of an integer value randomly generated in the interval
[0, CW ] and the slot time Tslot, where CW is the current contention window size.
Initially, the contention window is set to CW = CWmin. For every retransmission
of the same frame, the CW is doubled until it reaches CWmax. Thus, for frames
without retransmissions, the mean duration of the backoff period is:

Tbackoff =
CWmin × Tslot

2
. (2.1)
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Once the backoff countdown has finished, the physical header is sent and then
the frame transmission (payload and headers) begins. We use frame here to desig-
nate a simple non-aggregated frame, as well as A-MPDU or A-MSDU frame. The
duration of the frame transmission, TFRAME is calculated as:

TFRAME =
(L+H)× 8

R
, (2.2)

where L is the payload size in bytes, H is the sum of all headers from the MAC
and upper layers in bytes, and R is the data rate in Mbps. The PHY header of the
frame is sent at the lowest possible data rate, so that all devices can decode any
PHY header they receive.

The last mechanism is the Acknowledgement (ACK) frame. The destination
acknowledges every successfully received frame by sending an ACK to the source.
If the source does not receive an ACK for a unicast frame, it supposed that the
frame was lost and begins retransmission. As all other frames, the ACK frame is
preceded by a physical header (see Fig. 2.7). It should also be noted that the ACK
is sent using a data rate smaller or equal to the frame data rate and belonging to
the basic data rate set. The basic data rate set is simply a set of rates defined in
an 802.11 standard amendment that must be provided in every implementation of
that amendment. In practice it means that all ACKs are sent using a data rate
supported by all network devices.

Finally, the total transmission time, T , can be calculated:

T = Tbackoff + TDIFS + TPHY + TFRAME + TSIFS + TPHY + TACK , (2.3)

and we can obtain the maximum achievable throughput for a give L and R as:

tmax =
L

T
. (2.4)

There are two ways of increasing the maximum achievable throughput: increas-
ing the payload size or the data rate. If we suppose that no frame aggregation is
used and that the maximum frame size is 1500B, even with an infinite data rate, we
would be limited to a maximum throughput of around 80Mbps in 802.11n/ac. This
limitation comes from the SIFS, DIFS, backoff, and physical headers and shows the
impact of DCF on the WLAN’s capacity. However, if we increase the frame size
by aggregating (either A-MSDU or A-MPDU), we can achieve the several Gigabit
throughputs available in recent 802.11 standard amendments.

Parameter 802.11g/n@2.4GHz 802.11a/n@5GHz/ac
CWmin 15 15
CWmax 1023 1023
Tslot (µs) 9 or 20 9
Tbackoff (µs) 67.5 67.5
TDIFS (µs) 28 or 50 34
TSIFS (µs) 10 16

Table 2.2: The DCF parameters for different IEEE 802.11 standard amendments.

Having described the basic mechanisms of 802.11 WLANs, we now proceed with
a review of the performance evaluation works developed for them over the years.





Chapter 3

State of the Art

Ever since their first introduction in 1997, IEEE 802.11 networks have been a
constant and important part of performance evaluation research in communication
networks. As the standard evolved over the years, so did the works that modeled
and analyzed them. In this chapter, we review a selection of those works and
present their continuous development by dividing them in a section for legacy
802.11 including a/b/g, and a section for the more recent 802.11ac/n. Being of
special interest to Chapters 7 and 8, we also separately and briefly review works
that focus on channel bonding and Machine Learning (ML) in WLANs.

Legacy IEEE 802.11 including a/b/g

The introduction of WLANs in the late 1990s quickly prompted the development
of a series of works dedicated to WLAN performance evaluation. Given the spe-
cific nature and the novelty of the underlying system, most of these works are
analytical, constructive models of WLANs. Any review of WLAN models would
not be complete without the mention of the seminal works of Cali et al. [27] and
Bianchi [28]. Both works present analytical models of the network at a very fine
level of abstraction by taking into account every single frame transmission. In [27]
the authors analyze the ratio of the average frame size and its average transmission
time in order to study the utilization of the network’s capacity. Bianchi’s work [28]
introduces a model based on a two dimensional Markov chain. The Markov chain
models the backoff process that takes place before every frame transmission in a
fully connected network, i.e., all nodes are neighbors. A property shared by both
models is that the networks they consider are saturated, i.e., all nodes constantly
have backlogged frames waiting to be sent.

The saturation assumption can be deemed too restrictive in some cases, thus
many subsequent works are centered on relaxing it. Kosek-Szott [29] as well as
Gupta and Rai [30] circumvent this barrier by adding one more state to the Markov
chain proposed by Bianchi [28]. This new state represents a node that has no frames
to be sent. Another solution is proposed by Felemban and Ekici [31], who remove
the saturation condition by introducing the probability that a node has a frame
waiting to be sent. They do so by creating a second Markov chain, embedded into
Bianchi’s original Markov chain. The embedded chain describes the current state

19
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of the channel, which can be either idle, in collision, or in successful transmission.
The solution to their model is found by successively iterating between the two
chains. Upon convergence, the found solution delivers the steady state transmis-
sion probability for each node, which can then be used to evaluate the network’s
performance. However, like Bianchi’s original model [28], the focus of these works
is restricted to fully-connected networks.

Aside from performance evaluation, a fine-level modeling can also help refine
networking protocols in order to improve the overall network performance. To
achieve this goal, Lee et al. [32] introduce the so-called Optimal DCF (O-DCF). O-
DCF adapts a node’s MAC parameters, such as the backoff period and transmission
length, in order to improve the network’s utilization or fairness. The adaptation
depends on the current length of a node’s MAC queue and tends to favor nodes
that have more queue buildup. Even though the adaptation is calculated in a
distributed manner for every node, an estimation of global performance metrics is
required. This requirement is removed in [33] where Fitzgerald et al. introduce
the Throughput Optimal DCF (TO-DCF) that needs only local measurements.
TO-DCF also favors nodes with larger queue buildup, but it uses node weights to
express the different priorities. Nodes with higher weights decrement their backoffs
faster, which gives them a higher transmission priority. While O-DCF can be
directly implemented in an existing 802.11 chipset as a driver update, TO-DCF
modifies the DCF procedure and represents a new DCF-based protocol.

To overcome the inherent complexity tied to a fine level of abstraction when
the network grows in size, other works have developed modeling approaches that
incorporate both a fine-level and a high-level of abstraction. Two such models
are the works of Shi et al. [34] and Begin et al. [35]. Both models analyze non-
saturated multi-hop networks. In a multi-hop network, a packet from node A
travels across relay nodes before arriving at its destination node B (as opposed
to single-hop networks, where A and B directly exchange packets). Both papers
present two-level modeling approaches of unsaturated multi-hop wireless networks,
in which the low-level model is a version of Bianchi’s original Markov chain, while
the high-level model aims at capturing the inter-node dependencies in the network.
The solution to the overall model is found using a fixed-point iteration between
the high and low level. In [35], the high-level model consists of a set of M/M/1/K
queues, where each queue represents a given node of the network. Although their
modeling framework was designed to handle any number of nodes, examples shown
in their paper involve multi-hop wireless paths with at most 4 nodes. In [34],
the high-level model is a separate Markov chain describing the channel’s behavior
depending on the current states of neighboring nodes, with nodes being either idle,
transmitting, or in backoff. Because of the three possible states for each node and
the added complexity brought by multi-hop networks, the analytical model of [34]
leads to a large state space as the number of nodes increases, making it intractable
for networks with more than 7 or 8 nodes, for which a decomposition into smaller
networks is necessary.

Finally, at the other extreme of the spectrum, there are the modeling approaches
that analyze the network from a high level of abstraction. These models do not
take into account the behavior of every frame transmission, and instead, deal with
the behavior of the entire network as a whole. In [36–38], Markov chains are
used to model a network based on its topology. The states of the chain describe
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the set of nodes that are transmitting in the current network state. Nardeli and
Knightly [36] rely on their proposed Markov chain to derive a model that takes into
account the errors due to collisions and hidden terminals for a single-hop network.
The authors derive a closed-form multi-parameter expression of throughput, which
is subsequently used for evaluating the performance of the considered network.
Although the model accurately captures the behavior of CSMA/CA networks, it
only deals with saturated networks and introduces some complexity due to the
calculation of successful transmission probability. Durvy et al. [37] use a similar
Markov chain to evaluate the fairness and spatial reuse in multi-hop, saturated
networks with different carrier sensing and reception zones. More particularly, the
authors study the spatial reuse in line-networks to show that CSMA/CA achieves
maximal spatial reutilization as traffic intensity increases, at the cost of creating
starvation in certain links. Boorstyn et al. [39] and Wang and Kar [40] model
CSMA/CA networks as continuous time Markov chains and the model is then used
to study the fairness of the network. Jiang and Walrand [38] extend the usage
of this model by proposing an adaptive solution that changes the nodes’ backoff
periods in the goal of maximizing the network’s throughput and utilization.

A significant number of models have been developed for specific network topolo-
gies, such as chain networks. Chaudet et al. [20] study the behavior of the three-
node chain network known as the Flow In the Middle (FIM) topology. FIM net-
works are well-known for exhibiting high levels of inequality because, when placed
in saturation, the edge nodes experience a high throughput while the middle node
is in starvation. The authors model the network as a Markov chain in which ev-
ery state contains, among other values, the idle time experienced by the middle
node. They show that as this idle time increases, the inequality of channel ac-
cess decreases, i.e., the middle node gets more channel access. They conclude that
shorter transmission times favor equality at the expense of utilization. Recently,
Ducourthial et al. [41] developed a model that is also based on the idle time experi-
enced by a node. However, their model can be used on chain networks of arbitrary
lengths. They use a set of equations where the variables describe the transmission
probability of every node in the network. They show that chains with an even num-
ber of nodes manifest more equality, and that for very large chains the inequality
of channel access vanishes around the 15th node. The authors prove analytically
and in simulation that modifying either the data rate or the frame length of the
edge nodes can drastically increase the fairness in the network.

A novel approach in the modeling of non-saturated networks is introduced in [42]
and [43], where the authors have chosen to map the idle time of a node to a longer
backoff period. This approach keeps the simplicity of a saturated network model
by not explicitly representing idle states, and yet allows the study of unsaturated
nodes. Kai and Zhang [42] propose a model that calculates the throughput of
non-saturated CSMA/CA networks with arbitrary topologies. Laufer and Klein-
rock [43] use a similar model to estimate the throughput of a node in a fully-
connected CSMA/CA network using the ratio between the transmitting and the
backoff periods of that node, its probability of successful transmission, and the
channel capacity. The result is then used in the analysis of a network’s capacity
region, based on the nodes’ throughputs under stability conditions. Bonald and
Feuillet [44] also characterize both the capacity region and the stability of a wireless
network. However, their work focuses on multi-channel networks in either ad-hoc
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or infrastructure mode, and they propose a refinement to CSMA to achieve a more
efficient and fair access to the channel in the infrastructure mode.

IEEE 802.11n/ac

The introduction of 802.11n and 802.11ac significantly changed the landscape of
modern WLANs. These standards allow for the use of MIMO transmissions, frame
aggregations, as well as bonding two 20MHz channels into a single 40MHz channel
in 802.11n reaching data rates of over 600Mbps, or bonding up to 8 20MHz channels
into a single 160MHz channel in 802.11ac to achieve Gigabit connections. We invite
the reader to consult Perahia and Stacey [45] or the IEEE standards [46, 47] for a
detail description of the PHY and MAC layer specifications of both standards.

Frame aggregation and MIMO

Given the high number of parameters available for configuration in 802.11n/ac,
many works have focused on evaluating the impact of individual or combinations
of parameters on the network’s performance. Ginzburg and Kesselman [26] propose
an analytical model to study the maximum throughput experienced in an 802.11n
WLAN of a single Access Point (AP) and its station. They quantify the impact
of different types of frame aggregation when using either UDP or TCP as trans-
port layer protocols, and while having different levels of noise. They conclude that
A-MPDU aggregation largely outperforms A-MSDU aggregation as the noise level
increases. Lin and Wong [48] extend Bianchi’s original model to study the perfor-
mance of A-MSDU and A-MPDU aggregation in WLANs prone to errors. They
compare the results delivered by their analytical model to those provided by the
ns2 simulator and propose a frame aggregation adaption algorithm that chooses
the optimal size of an A-MSDU for a transmitter with a given bit error rate. Ong
et al. [49] perform an in-depth theoretical analysis of 802.11ac and 802.11n in a
saturated, error-free network and show how the enhancements of 802.11ac (channel
width and MIMO) can result in an 84% increase from 802.11n’s throughput. The
authors also show that a combination of A-MSDU and A-MPDU aggregation can
result in a higher throughput than using either aggregation alone. Cha et al. [50]
analytically compare Multi-User MIMO (MU-MIMO) to Single and Multi-User
Frame Aggregation (SU-FA and MU-FA) in a network consisting of a two-antenna
AP transmitting to two single-antenna stations. They conclude that when both
stations have similar frame lengths MU-MIMO renders higher throughputs as it
better utilizes the channel. When frame lengths are heterogeneous or the channel
is fast-varying it is better to use MU-FA. Both MU-MIMO and MU-FA always
outperform SU-FA due to the fact that SU-FA experiences a much higher MAC
overhead. Kosek-Szott [51] introduces a new scheduling mechanism named DEMS
based on the idea of decoupling Access Classes (AC) and Downlink MU-MIMO
(DL-MU-MIMO). Simulation results on the DEMS mechanism show that it man-
ages to increase the average throughput while decreasing delay in high priority
ACs.
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Comparing 802.11n and 802.11ac

As the 802.11n/ac equipment became widely available, many works focused on
experimental performance evaluation of WLANs. Dianu et al. [52] study the per-
formance of 802.11ac networks in an office environment. They test the maximum
achieved throughput when the transmitter-receiver distance and the interference
change and when the 802.11ac network cohabitates with an 802.11n network. They
show that the network can easily achieve a throughput of 700Mbps when the
transmitter-receiver distance is small. However, as any WLAN operating in the
5GHz frequency band, the network suffers from low throughput and bad connec-
tivity when obstacles are present, such as load-bearing walls. Pelechrinis et al. [53]
also show that high data rates in 802.11n are highly susceptible to noise and in-
terference. The authors perform a study in an indoor testbed and emphasize the
importance of properly combining packet size and MAC enhancements (e.g., chan-
nel bonding, MIMO) in order to improve network performance. Zeng et al. [54] test
802.11ac performance in an experimental indoor and outdoor setup. Their work
on energy efficiency shows that there are several combinations of MCS indexes and
number of spatial streams that result in the same throughput, but have differ-
ent energy consumptions. They also measure the energy consumption on different
channel widths to find that, contrarily to popular belief, larger channels, partic-
ularly the 80MHz channels, consume more in idle mode making them overall less
efficient. Through a series of tests, the authors show that properly configuring the
MAC parameters can result in a substantial energy gain while keeping the same
throughput performance. Kriara et al. [55] also empirically study the impact of
MIMO, channel bonding, MCS, and guard intervals on the performance of 802.11ac
networks in a home and office environment. They perform tests in an environment
with/without interference, using different link qualities and topologies. The au-
thors use multiple linear regression on their experimental findings to show how the
throughput and jitter are highly impacted not only by the choice made for a single
parameter, but also by the mutual influence of several parameters.

Channel bonding

Since the introduction of channel bonding in 802.11n, many works have been
focused specifically on modeling its impact on the performance of 802.11n/ac
WLANs. The trade-off to be made in channel bonding is between interference
and data rates, as wider channels mean higher data rates, but also larger neighbor-
hoods and more interference. Bukhari et al. [56] provide a detailed discussion on
channel bonding in wireless networks, as well as a survey of published works. We
use this section to summarize some of the main approaches in analytical models,
together with experimental and simulation studies.

Kim et al. [57] analytically study the achieved throughput of 802.11ac WLANs
using a Markovian model similar to Bianchi’s original work [28]. Like Kosek-
Szott [29], they use additional states to represent an empty buffer. Their model
takes into account channel bonding and it handles unsaturated networks with col-
lisions, however the model is limited to fully-connected WLANs. Sree Vasthav et
al. [58] model the coexistence of legacy and 802.11ac devices using Dynamic Chan-
nel Bonding (DCB). They use two 20MHz channels that can be bonded into a
single channel for the 802.11ac users. The authors present a six-state discrete-time
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Markov chain that explicitly models the 40MHz and 20MHz channels and from it
they derive the saturation throughput for a fully-connected network operating in
an error-free environment. Bellalta et al. [59] develop a Continuous Time Markov
Network (CTMN) model for static channel bonding in WLANs. The model of-
fers high accuracy on small and heterogeneous networks and the authors study
both throughput and fairness to show that channel bonding increases the overall
throughput even in dense networks, however this increase is often at the cost of cre-
ating localized starvation. As the WLANs increase in size the authors are forced to
simplify the considered system (introduce a saturated and fully connected network
with homogeneous nodes) in order to keep a tractable state space and a reasonable
execution time. Barrachina-Muñoz et al. [60] extend [59] and introduce a sim-
ilar analytical Markovian model for predicting throughput in saturated WLANs
using different DCB policies in dense networks. They find that the DCB policy
has a high impact on the network’s performance and that inter-node dependencies
are important even outside carrier sensing zones. They confirm the results of [59]
and conclude that using the widest available channel can lead to maximizing the
throughput of several nodes while creating starvation in others.

Deek et al. [61] study how the efficiency of channel bonding is impacted by
the interference, RSSI, physical obstacles and channel leakage, as well as data rate
and the transport protocol in 802.11n networks. They perform an extensive ex-
perimental study to conclude that both the network and environmental conditions
play an important role when choosing an intelligent channel bonding solution and
that a node’s knowledge about its environment can greatly help in choosing the
right channel width. In a testbed of 12 AP-station couples, Simić et al. [62] test the
benefits of using larger channels in high-density, saturated WLANs. They find that
the 80MHz channels are best suited for highly-dense networks, while lower-density
networks can take better advantage of separate 40MHz or even 20MHz channels
by providing independent simultaneous transmissions. Bhartia et al. [7] propose a
measurement-based algorithm for channel assignment in centrally-managed Meraki
networks implementing channel bonding. The measurements on the large Meraki
dataset show that the number of 802.11ac-capable devices has grown from 18%
to 47% from 2015 to 2017, emphasizing the importance of developing standard-
specific methods for WLAN management. The authors caution the use of cen-
tralized decision-making algorithms, as not all network devices today support the
Channel Switch Assignments (CSA) of 802.11h [63] and a channel switch causes an
average 8 seconds delay on a mobile device. To mitigate this issue, they propose
a penalty for channel switching when calculating the optimality of a new channel
assignment.

Ravindranath et al. [64] evaluate and compare the performance of 802.11n and
802.11ac using the ns3 discrete-event simulator. They show that while the higher
MCS indexes of 802.11ac offer a slight improvement, the actual benefit of upgrad-
ing the standard is the possibility to use wider channels of 80MHz and 160MHz.
Malekmohammadi [65] also uses ns3 to study dense, saturated WLANs. The au-
thor concludes that using shared wider channels with lower transmission powers
results in higher throughputs than using separate narrower channels. Moreover,
they show how the starvation experienced by some nodes can be lessened by finely
tuning the transmission powers and carrier sensing thresholds of those nodes.



3.3. MACHINE LEARNING IN WLANS 25

Machine Learning in WLANs

Machine Learning (ML) methods are applied to different problems where large
amounts of data are available. Communication networks, including WLANs, are a
prime candidate for such methods. In WLANs, ML is used in vastly diverse topics:
from traffic prediction and classification, to network security or QoS management.
A detailed description of all ML methods in WLANs is out of the scope of this
thesis, we however briefly summarize some of the proposed works and refer the
reader to Boutaba [66] for an extensive review on the topic.

In WLANs, ML is often used for classifying different types of traffic or types
of users that generate it. User classification and behavior prediction is often mo-
tivated by commercial goals. Manweiler et al. [67] experimentally show that there
exist patterns of user behavior in public WLANs and that certain applications
could leverage from using ML methods to detect those patterns. They propose a
measurement-based Support Vector Machine (SVM) approach for predicting user
length of stay at APs and suggest that such solutions can be used to prioritize
certain user classes depending on their dwell time. Ruiz-Ruiz et al. [68] also de-
velop a user classification method using large sets of WLAN traces and several ML
methods. The authors show how such predictive methods can be useful in the case
of facility planning.

Traffic classification is of great use in security applications, where it is highly
important to properly distinguish malicious and regular data. Rasthofer et al. [69]
propose a supervised learning method for classifying sources (i.e., code providing
device-related data) and sinks (i.e., code collecting data) on Android devices. They
show that a manual identification of all sources and sinks is virtually impossible,
as certain sources can only pose a problem when combined together. The authors
extract their own set of features, they test different ML approaches and show that
their proposed application, SuSi, is often more accurate in detecting sources that
are unnoticed by other similar applications. Kolias et al. [70] provide a detailed
summary of common security issues in WLANs. The authors then use a public
dataset to show how many different ML methods can be used to detect intrusions
in WLANs with a high degree of accuracy.

Lastly, one of the most common applications of ML in WLANs is the devel-
opment of positioning systems. WLAN positioning systems can be used comple-
mentary to GPS, as they can function both indoors and outdoors and the high
presence of APs allows for a higher degree of precision. Pan et al. [71] use manifold
co-regularization to build a multi-view adaptive representation of the environment
based on Received Signal Strength (RSS) measurements at different time inter-
vals. Online Sequential Extreme Learning Machines (OS-ELM) are used by Han
et al. [72] to provide a fast and accurate positioning estimation. Their online re-
calculation approach allows for a dynamic adaptation of the estimation and thus a
more accurate prediction than classic ELM methods. Figuera et al. [73] use SVMs
with a priori knowledge about the network (such as previous RSS values) to lo-
calize indoor devices. The authors especially focus on the importance of including
system-related knowledge when using ML methods for WLANs. A novel approach
is introduced by Krieg et al. [74] where the entire ML operation is done before any
estimation of the user’s location. The authors develop a framework that recog-
nizes elementary patters of human locomotion (e.g., running or walking) based on
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a real-life data set of measurements. The application is then capable of providing a
meter-level precise indoor localization using a single measurement from the device’s
sensors.

Summary and Open Problems

The performance evaluation publications we reviewed can be broadly divided into
analytical models [20, 27–44], and experimental (including ML) studies [7, 52–55,
61, 62, 67–74]. In the recent years, the affordability and availability of 802.11 de-
vices have allowed researchers to publish more experimental works and rely less on
simulation. While it is my opinion that experimental studies offer real-life insight
that analytical models simply cannot provide, I believe the inverse to be true as
well (as discussed in Chapter 1).

In this manuscript, we present four analytical models for WLANs. The three
following chapters describe Markovian models for unsaturated WLANs with arbi-
trary topologies. While analytical models of WLANs are not a novelty, researchers
still struggle to develop models that do not require the network to be saturated,
fully connected, or have homogeneous nodes.

The reader will notice that our system evolves with our modeling frameworks,
becoming more realistic over time and allowing us to represent channel bonding
in 802.11ac in our last Markovian model. Given the high number of parameters
that impact the efficiency of channel bonding, finding a single guideline for optimal
configuration remains an open issue. We believe that the model we propose in
Chapter 7 can help bridge the gap between the data we have from measurement-
based studies and our analytical understand of the underlying behavior.

Our Markovian models are all constructive, i.e., they are based on our under-
standing of the system and they reproduce several indispensable WLAN mecha-
nisms. The model in Chapter 8 describes, to the best of our knowledge, a novel,
ML-based, descriptive model of WLANs. Using ML methods for WLAN perfor-
mance evaluation, especially analytical ones, remains an issue to be tackled. Our
last model is based on a black box approach in which we initially assume no a pri-
ori knowledge of the underlying system and simple use an input/output dataset to
model the performance of the WLAN. Nevertheless, we quickly came to agree with
Figuera et al. [73] and realized that implementing parts of our expertise knowledge
into the black box can only be beneficial.

Before presenting the modeling approaches developed through the course of this
thesis, we describe the exact system they model and discuss their general evolution
and improvements over time.



Chapter 4

Opening Remarks to the
Modeling Approaches

The three years of this thesis were essentially focused on answering the question:
how can we develop an analytical model that helps make WLANs more efficient?
In that simple question are hidden the notions of performance metrics and the
choice on modeling tools we discussed in Chapter 1, as well as the description of
a WLAN. As it is often the case when developing performance evaluation mod-
els, the first modeling decisions take place when the system description is being
developed. Should the system be simple enough, as it is rarely the case, then its
full description can be used as the ground truth for the model. WLANs fall into
the category of complex systems, as they are made up of layers of functionalities,
each offering a multitude of implementation choices developed over twenty years
of evolution. It quickly became evident that an all-encompassing description of
today’s WLANs is a task that will almost inevitably fail, a reality that is clear to
anyone who attempted to understand 802.11 networks by only reading the stan-
dard’s documentation. Thus, our search was focused on a setup that is as simple as
possible, yet allows us to draw conclusions applicable to real-life WLANs. Having
already introduced 802.11 WLANs in Chapter 2 and a part of the existing modeling
approaches in Chapter 3, we now provide the high-level description of the system
considered throughout this thesis coupled with explanations of the reasoning be-
hind our choices. We also include a short discussion on the development of our
models, that should provide the reader with insight into the ordering and logic of
this manuscript and the thesis itself.

High-level description of a WLAN

We consider a network of APs belonging to the same WLAN implementing an IEEE
802.11 standard amendment. We assume that not all APs belong to each others’
CS ranges, i.e., the network is not fully connected and can have any arbitrary
topology. We also assume that the CS ranges are symmetrical, if AP n detects
AP m’s transmissions, then m also detects n’s transmissions. These assumptions
make it possible to depict each WLAN as a conflict graph in which two nodes share
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an edge if the corresponding APs are neighbors. Figure 4.1 presents a four-node
network, on the left, and its corresponding conflict graph, on the right. We assign,
in no particular order, an identifying number to every AP and we use N to denote
the total number of APs in the network.

When looking at our conflict graphs, the first thing we notice is that the stations
are not depicted. Our choice to describe WLANs using only their APs is motivated
by the aim of providing a simple performance evaluation tool that potentially allows
the discovery of a more efficient configuration. Avoiding the explicit representation
of the stations largely simplifies the model, both conceptually and computationally.
Reconfiguration, in the general case, can only be done on the network devices
controlled by the network administrator/architect. These devices usually include
only the APs, and it follows that we are more interested in how they share the
available resources between each other. Moreover, it is worth keeping in mind that
Internet traffic is highly asymmetrical [75, 76], i.e., user stations download much
more data than they upload. According to the Cisco Visual Networking Index [6],
this trend will not only continue, but also magnify in the future. In order to confirm
the existence of this trend, we performed our own measurements that we present in
detail at the end of Chapter 5 in Section 5.4.2. We also simulated networks where
10% of the network traffic is generated by the stations to find that it only impacts
the output rates of the APs by 5.5%. While these results show that uplink traffic
can be omitted at a reasonable loss in accuracy, we are fully aware that in some
cases uplink traffic potentially has a significant impact on the network’s behavior.
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Figure 4.1: A four-node network and its corresponding conflict graph.

We presume that we have a certain knowledge regarding the average traffic
parameters of every node, i.e., we know its frame size and aggregation rate (average
number of MPDUs per transmission), data rate, and channel size. With all this
information, we can calculate the maximum achievable throughput node n, denoted
by tn,max, n = [1, ..., N ] using Eq. (2.3) and (2.4). Node n also has a demanded
and achieved throughput, denoted vn and tn, respectively. They characterize the
rate the node wishes to obtain (in Mbps) and the rate the node does obtain.
Using the demanded and the maximum achievable throughput, we derive node
n’s input rate. A node’s input rate, xn, is simply the normalized version of its
demanded throughput, so that xn ∈ [0, 1]. Alternatively, xn can be calculated
as the proportion of time node n wishes to occupy the medium, be it in active



4.2. THREE GENERATIONS OF MARKOVIAN MODELS 29

transmission or in DCF overhead:

xn =
vn

tn,max
, (4.1)

where we assume that vn ≤ tn,max. Equivalently, we define node n’s output rate
as the proportion of time node n occupies the medium, calculated as:

yn =
tn

tn,max
. (4.2)

Depending on the node’s position inside the network’s topology and the through-
put demands of its neighbors, a node may obtain all or a part of its demanded
throughput. For example, in our four-node network of Fig. 4.1, it is clear that
node 4 has the most advantageous position as it has only one neighbor with whom
it shares the resources. Conversely, node 3 has to share the resources with all
other nodes. However, should nodes 1 and 2 have v1 = v2 = 0, then nodes 3
and 4, in practical terms, have the same neighborhood. Nevertheless, the nodes’
demanded throughputs and their traffic parameters still make it difficult to predict
exactly how the two nodes share the available resources, even in an overly-simplified
scenario. Over the years, many analytical models, simulations, and experimental
solutions were proposed to solve the question of resource sharing in WLANs. In the
following chapter we present a part of these works and we review the advantages
and drawbacks of every approach.

Parameter Description
N total number of nodes
wn node n’s neighborhood, not including node n
R data rate (in Mbps)
Rack data rate for the acknowledgement (in Mbps)
L mean payload length (in bytes)
H amount of headers brought by the MAC, Network, and Transport layers (in bytes)
vn demanded throughput of node n (in Mbps)
tn achieved throughput of node n (in Mbps)
tn,max maximal throughput node n can achieve if all its neighbors are silent (in Mbps)
xn input rate of n-th node, xn ∈ [0, 1]
yn output rate of n-th node, yn ∈ [0, 1]

Table 4.1: System notation.

Three Generations of Markovian Models

The development of the Markovian models in this manuscript reflects to a great
extent the advances made over the course of this thesis and even more so my
understanding of the underlying system. Figure 4.2 captures an effect that will
become evident to the reader after completing the three following chapters: over
time our models became simpler and more accurate and our system more complex.

We begin with Model A, a framework that, at the time, seemed conceptually
simple and accurate. When reading the manuscript however, the reader will no-
tice that though the idea of the framework is easily comprehensible, its actual
implementation (that includes a series of convoluted exceptions) does not offer a
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Figure 4.2: Evolution of our modeling approaches.

straightforward understanding. Had the considered system been closer to real-life
WLANs, maybe such a complex model would have been well founded. The system
we shall describe for Model A, however, is quite limiting and represents only a
small fraction of the technologies used in today’s WLANs. Nevertheless, Model
A provided us with solid learning ground and the development of all subsequent
models and ideas would not have been possible without it.

The second model represents the largest part of the achievements of this thesis.
The introduction of a Divide-and-Conquer approach allowed us to greatly simplify
Model A: we no longer have two intertwined state spaces and we avoid most of
the exceptional cases. By that time however, we were aware that Model A had
limitations that were not linked to its complexity but to its applicability to WLANs.
Being more familiarized with the system and the related works on the topic, we
managed to introduce the idea of more heterogeneous nodes while still keeping
Model B accurate.

Model B taught us about the importance of properly incorporating heterogene-
ity into the model. We learned that without introducing the backoff factor, all our
modeling approaches would be ultimately limited in the accuracy they can achieve,
as is the case for Model A. The greatest disadvantage of Model B comes from the
fact that it was modified to accommodate heterogeneous networks, but not designed
for them. The reader will notice this when comparing model B with our final model
C, and the simplification of many solutions we incorporated. Our final Markovian
model, Model C, is specifically designed for highly heterogeneous networks, and we
show how such a framework can substantially improve the configuration of today’s
WLANs.

As a final note, we wish to make it clear that all three models can be read
separately and independently of each other. Should the reader be interested in the
development and the detailed explanation of our work, we recommend the models
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be read in order. If only one model is to be read, then Model C is the right choice,
as it is our last and most advanced work. However, if the details of the modeling
approach are more important to the reader than its possible applications, we advise
that Model B be read instead.





Chapter 5

Model A: Arbitrary
Topologies and On/Off
Traffic

Introduction

Well before using Markovian models, we tested a series of different approaches for
modeling WLANs. Our aim was always to develop conceptually simple solutions
that model WLAN performace at a high level of abstraction, i.e., to view the
network as a set of nodes instead of modeling each node in detail. One of the
early methodologies we implemented was a resource sharing model based on the
nodes’ CS ranges using a system of equations which we then solved with nonlinear
optimization. Each equation described the neighborhood of a single node in which
the node needs to share the resources with its neighbors. After several iterations
in which we slightly modified the impact nodes have on each other in the system
of equations, we would always converge to a stable system whose solution provided
us the achieved throughputs of all the nodes. While this model worked reasonably
well on small and saturated networks, it was neither scalable nor applicable to
unsaturated networks.

As we were looking for solutions to the network size constraints, we decided to
test several different approaches that all heavily relied on the notions of cliques in
WLANs. The more we studied these cliques, the more we were convinced that their
impact on the behavior of WLANs is far from negligible [20, 41]. By separating
the network into cliques, we were able to virtually scale-down the network size and
process several nodes as a single clique. We modified our system of equations so
that it models the behavior of cliques instead of single nodes. We then found that
a simpler solution was to replace our system of equations by a Markov chain. In
the Markovian model a node’s medium access depended on the set of cliques to
which it belongs, and the position of those cliques in the entire network topology.

Relaxing the saturation constraint was also a step-by-step process. As many
other works presented in Chapter 3, our model initially handled only saturated
networks. We then tested the impact of each individual node in the network by
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Parameter Description
N total number of nodes
wn neighborhood of node n, wn ⊆ {1, 2, ..., N}
w′n restricted neighborhood of node n without synchronized, blocked, and preempted nodes
S set of possible sending states, S ⊆ {0, 1}N
sk k-th sending state, sk ∈ S
sk(n) state of node n in sending state sk, sk(n) ∈ {0, 1}
A set of possible activity states, A = {ON,OFF}N
At

k an activity state associated to sending state sk, At
k ∈ A

Ak` set of all activity states associated to sending state sl and compatible with sk
PAt

k
probability of occurrence of activity state At

k

Tr set of possible transitions between sending states
Trk` transition from sending state sk to sl, Trkl ∈ Tr
Pk` probability of transition from sending state sk to state sl
U network utilization, U ∈ [0, 1]
π stationary probability distribution of the Markov chain that describes the network
πsk steady state probability of sending state sk

Table 5.1: Modeling notation.

running our Markovian model when that node is present in the network and when
it is removed. We relaxed the saturation constraint for a single node by supposing
there is a linear transition between the scenario when the node is absent from the
network and when it is present (and saturated). Finally, we entirely removed the
saturation constraint by introducing states in our Markov chain in which nodes are
not sending, even though they sense an idle medium. This last relaxation allowed
us to develop our first stand-alone Markovian model for unsaturated networks with
On/Off traffic and arbitrary topologies and present it at the WiOpt symposium in
2017 [21]. In this chapter, we show that with only a small set of well-chosen param-
eters we are able to make a reasonably accurate prediction of the AP’s obtained
throughputs.

Modeling Approach and Algorithm

The modeling framework is based on a single Markov chain that describes the net-
work at a high level of abstraction. In building the Markov chain, we first present
the set of possible states and transitions, we then find the transition probabili-
ties and calculate the stationary probability distribution of the chain, and finally,
we compute the nodes’ achieved throughputs. We conclude this section with an
algorithmic description of the proposed model.

Modeling approach

We now describe our high-level approach to modeling a WLAN as defined in 4.1.
We rely on a single Markov chain that copes with the well-known complexity of
CSMA/CA-based networks, e.g., the random backoff, hidden node problems, or
starvation. However, we deal with two intertwined state spaces, each describing
differently and approximately the current state of the network. For the purpose of
readability, we illustrate each step of our approach with an example, whose conflict
graph is depicted in Fig. 5.1. We invite the reader to consult Tables 5.1 of this



5.2. MODELING APPROACH AND ALGORITHM 35

chapter and 4.1 in Section 4.1 for a complete listing of the used notation in the
model and in the system, respectively.
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Figure 5.1: Conflict graph of a four-node network.

Our first state space, denoted by S and referred to as the sending state space,
describes which nodes among the N are currently sending, and hence occupying the
channel. We denote each sending state of S by sk: S = {sk}k≥1. Each sending state
sk is a vector of sizeN in which the n-th value, sk(n), is set to 1 if node n is currently
sending, and to 0 otherwise. For example, in the sample four-node network, the
sending state [ 0 1 0 0 ] denotes the scenario in which only node 2 is sending.
Note that, in our work, a node’s sending period includes the frame transmission
itself, as well as all DCF and protocol overhead (see Eq. 2.3 of Chapter 2). Our
objective is to derive a Markov chain representing the possible transitions between
these sending states, to compute the probabilities of its state transitions, i.e., its
transition matrix, and finally, to derive the steady-state probabilities of sk.

In order to accommodate the fact that the network is unsaturated, we need
to introduce a secondary state space, referred to as the activity state space and
denoted by A. In any network, nodes typically alternate their activity between
ON and OFF periods. When in an ON period, a given node n has at least one
frame to send, and thus has a non-empty buffer. In other words, an ON node is
either transmitting or willing to start a transmission. In the OFF regime, a node’s
buffer is empty. We consider that the nodes’ regimes are independent of each other.
As a consequence, the nodes’ input rate are also independent of each other and can
be calculated as:

xn =
TON

TON + TOFF
, (5.1)

where TON and TOFF represent the average amount of time node n spends in the
ON and OFF regime, respectively. In reality, a node may postpone the trans-
mission of a frame because of the activity of its neighbors, thus extending its ON
period. In order to keep the model tractable, we decided to omit the potential de-
pendencies among the nodes’ ON periods. Analogously to S, each activity state,
At

k, is a vector of size N whose n-th value denotes the activity of node n as being
either ON or OFF . Let PAt

k
denote the (steady-state) probability that the activity

state At
k occurs. The mutual independence of the nodes’ input rates xn enables us

to obtain PAt
k

as follows:

PAt
k

=
∏

At
k(n)=ON

xn
∏

At
k(m)=OFF

(1− xm) . (5.2)

Note that a sending state, sk, can typically be associated to one or up to T
different activity states, each denoted by At

k with t = 1, . . . , T . While every sending
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node necessarily has an ON activity, the inverse does not hold. A node that is not
sending and has no sending neighbors is (undoubtedly) OFF , because if the node
were ON then it would be sending as it detects an idle medium. However, if node
n has a sending neighbor, we cannot be sure whether n is not sending because it
has no frames to be sent (n is OFF ) or because it detects a busy medium (n is
ON). The result of this ambiguity is that several activities can be associated to a
single sending state. For example, assuming a given sending state sk = [ 0 1 0 1 ]
for our network of four nodes, i.e., nodes 2 and 4 are transmitting, a total of four
activity states (T = 4) may be associated to sk:

A1
k = [ OFF ON OFF ON ]

A2
k = [ ON ON OFF ON ]

A3
k = [ OFF ON ON ON ]

A4
k = [ ON ON ON ON ]

. (5.3)

Determining the sending states

An intrinsic property of 802.11-based networks is that two neighbor nodes cannot
(or virtually not) be simultaneously transmitting. When two neighbors attempt to
access the medium at the same time, a collision occurs resulting in the potential
loss of one or both frames. In terms of our modeling approach, this means that
any sending state of the network is possible as long as any two neighbors are not
simultaneously sending.

In the case of our sample four-node network represented in Fig. 5.1, there is a
total of 24 = 16 different combinations where the four nodes are sending or not.
Out of those 16 sending states, only the following seven are considered possible and
they constitute the set S:

s1 = [ 1 0 0 1 ] s5 = [ 0 1 0 0 ]

s2 = [ 0 1 0 1 ] s6 = [ 0 0 0 1 ]

s3 = [ 0 0 1 0 ] s7 = [ 0 0 0 0 ] .

s4 = [ 1 0 0 0 ]

(5.4)

Establishing the possible transitions

Having defined the set of possible sending states, S, we need to decide when a
transition from sending state sk to s` is allowed. This transition represents the fact
that the network goes from state sk to s` upon the end of a frame transmission.
We apply a three-rule policy to discover the possible transitions.

First, at most one element of sk changes its value from 1 in sk to 0 in s`. This
rule expresses the idea that no more than one node stops sending at the same time.
The rule is derived from the observation that in practice it is highly unlikely for
two nodes to independently end their transmissions at the exact same time. In our
sample network, an example of a transition abiding by this rule is the transition
from s1 to s2 in which node 1 ends its transmission and node 2 begins one. A
negative example would be the transition from s1 to s3, as it would require both
nodes 1 and 4 to end their transmissions at the same time.
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Second, at most one element of sk changes its value from 0 in sk to 1 in s`,
unless in the case of a synchronizing node. Apart from this exception, this second
rule is analogous to the first one and it implies that no more than one node starts
sending at the same time. A node n is said to be synchronizing if i) it was sending
in state sk (i.e., sk(n) = 1), and ii) it has at least two neighbors that have an
ON activity but are not neighbors themselves. The exception allows to account
for the situation where a central node’s end of transmission triggers the beginnings
of transmissions of several of its neighboring nodes. Said differently, in a case with
two nodes, labeled m and p, and assuming that they have a common neighbor node
n for which sk(n) = 1 and s`(n) = 0, we allow the transition from sk to s` even
if we have sk(m) = sk(p) = 0 and s`(m) = s`(p) = 1. In the case of our sample
network, an example of this rule’s application is the transition from s4 to s1 while a
negative example is the transition from s5 to s1. The exception to the rule applies
twice, namely when we allow the transitions from s3 to s1 and from s3 to s2.

Third, considering all potential activity states {At
k} (t = 1, . . . , T ) associated

to sk and all potential activity states {Au
` } (u = 1, . . . , U) associated to s`, there

must be a combination (At
k, A

u
` ) in which at most one element changes its value

from ON in At
k to OFF in Au

` or from OFF to ON . A clear negative example is
the transition from s5 = [ 0 1 0 0 ] to s6 = [ 0 0 0 1 ] and vice versa. Nodes 2 and 4
can be simultaneously sending, so the only possible direct transition from s5 to s6

can happen if simultaneously node 2 switches OFF and node 4 switches ON . We
consider that such changes have a negligibly small likelihood in practice and a zero
probability in our modeling framework.

Overall, the rationale behind these three rules resorts to the fact that we con-
sider as negligible the probability that two nodes undergo simultaneous changes in
their behavior (be it their sending or activity). A consequence of the three rules is
that self-transitions between the sending states are always possible, as no change
is required in the sending state or in the activity.

By applying this three-rule policy, we discover all the possible transitions be-
tween the sending states, i.e., the transition matrix, in which a value of 1 in the
k-th row and `-th column indicates that the transition from sk to s` is possible,
while a value 0 indicated the transition is not possible. We represent below the
7×7 transition matrix obtained when applying the three-rule policy on the sample
four-node network:

s1 s2 s3 s4 s5 s6 s7



s1 1 1 0 1 0 1 0
s2 1 1 0 0 1 1 0
s3 1 1 1 1 1 1 1
s4 1 0 1 1 1 0 1
s5 0 1 1 1 1 0 1
s6 1 1 1 0 0 1 1
s7 0 0 1 1 1 1 1

. (5.5)

Computing the transition probabilities

The next stage of our modeling approach is to find the probability of each transition.
Let us consider the transition from sending state sk to s`. First, we evaluate the
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number of activity states associated to s` that are compatible with sk. An activity
state Au

` associated to s` is said to be compatible with sk if there is at least one
activity state associated to sk that differs by at most one ON to OFF change (or
vice versa) with Au

` . The reasoning behind this rule is similar in logic to the rules
we derived before, i.e., we consider the probability that two nodes independently
generate frames at the exact same time to be negligible. We denote by Ak` the
set of activity states associated to s` that are compatible with sk. For example, in
our sample network, there are four activity states associated to s1 = [ 1 0 0 1 ],
namely:

A1
1 = [ ON OFF OFF ON ]

A2
1 = [ ON ON OFF ON ]

A3
1 = [ ON OFF ON ON ]

A4
1 = [ ON ON ON ON ]

, (5.6)

while those associated to s2 = [ 0 1 0 1 ] are:

A1
2 = [ OFF ON OFF ON ]

A2
2 = [ ON ON OFF ON ]

A3
2 = [ OFF ON ON ON ]

A4
2 = [ ON ON ON ON ]

. (5.7)

We observe that all the activity states associated to s2 are compatible with s1, and
thus belong to the set A12, i.e., A12 = {A1

2, A
2
2, A

3
2, A

4
2}.

Then, we simply derive the transition probability from sk to sl as:

Pk` =
∑

Au
` ∈Ak`

(PAu
`

∏
s`(n)=1

1

1 +
∑

m∈wn

1ON(m)
) , (5.8)

where wn represents the set of neighbor nodes of node n. The sum
∑

m∈wn

1ON(m)

returns an integer value equal to the number of neighbors of node n that are ON
in the activity state Au

` . Equation (5.8) captures the idea that the transition
probabilities depend both on the nodes’ input rates and the underlying conflict
graph. For each activity state Au

` that is compatible with the transition from the
sending state sk to s`, we calculate the associated transition probability by first
assuming that all concerned nodes are equally likely to access the channel, and
then, we weight the obtained value by the probability of occurrence of that activity
state, PAu

l
. The term PAu

`
in Eq. (5.8) ensures that the presence of a node with a

high input rate will increase the probability that the whole network is in a sending
state in which that node is sending. On the other hand, the other term within the
sum represents the fact that a node that is well connected in the conflict graph
experiences a lot of competition for channel access, which in turn diminishes its
probability of gaining that access.

We now present two refinements to Eq. (5.8) that may occur, or not, depend-
ing on the network topology. This series of refinements allows us to finely tune
the transition probabilities by incorporating specific network scenarios. We know
that in these scenarios a node’s topological position puts it in a (dis)advantageous
position regarding its probability of gaining medium access.
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Considering a given sending state sk, the first modification regards nodes that
are blocked or preempted by their neighbors. To cope with these nodes, we simply
identify them and remove them from the considered neighbors of node n, i.e.,
w(n), when using Eq. (5.8). A node is said to be blocked when it cannot start
sending because it has two (or more) sending neighbors. For instance, node 3 is
blocked when our sample network is in sending state s1 = [ 1 0 0 1 ]. Indeed, it is
very unlikely for node 3 to start sending, as this would require nodes 1 and 4 to
simultaneously stop sending. Analogously, a node is said to be preempted if it has
one neighbor that is sending, and at least one other neighbor that is ON , which
itself has no sending neighbors. Such an example is node 3 when our sample network
is in sending state s4 = [ 1 0 0 0 ] with an activity state [ON OFF ON ON ]. Under
these circumstances, node 4 does not have to wait for the end of node 1’s sending
in order to start sending, which in turn means node 3 is likely to be preempted.
In our modeling approach, we simply account for these nodes by phasing them out
from the actual neighborhood of node n when considering the sending state sk. In
other words, in Eq. (5.8), we replace the set of neighbor nodes of n, i.e., w(n), by
the restricted set of neighbor nodes which excludes blocked and preempted nodes.

The other refinement refers to the case when the z-th node of sk is a synchro-
nizing node that continues to have an ON activity in the next activity state Au

`

associated to s`. We remind that a synchronizing node is a node sending in state
sk and having two neighbors that are ON and that are not neighbors themselves
(a mode detailed definition is given in Section 5.2.1). First, for each activity state
associated to s`, i.e., Au

` , we estimate the probability that the synchronizing node
continues to send in sl using:

Pzu
`

=
1

1 +
∑

m∈wz

1ON(m)
, (5.9)

where the sum
∑
1ON(m) returns an integer value equal to the number of neighbors

of node z that are ON in activity state Au
` . For example, considering the sending

state s3 = [ 0 0 1 0 ] of our sample network, node 3 is a synchronizing node. A
possible activity state associated to s3 is [ ON OFF ON ON ] in which node 3 has
two neighbors that are also ON (i.e., nodes 1 and 4). Using Eq. (5.9), we obtain:
Pzu

`
= 1

3 . The second step consists in refining the computation of the transition
probability Pk` as follows:

Pk` =
∑

Au
` ∈Ak`

(PAu
`

∏
s`(n)=1

1

1 +
∑

m∈w′
n

1ON(m)
(1− 1z sync.Pzu

`
)) , (5.10)

where 1z sync.Pzu
`

returns the probability Pzu
`

if a synchronizing node z exists in
node n’s neighborhood, and 0 otherwise, and w′n denotes the restricted neighbor-
hood of node n (without blocked, preempted, and synchronizing nodes).

Finally, we ensure that the matrix is row-stochastic by dividing each Pk` proba-
bility with the corresponding sum

∑N
m=1 Pkm. Figure 5.2 show the complete chain

for the four-node network with all sending states and some transition probabilities.
Note that in this depiction, if the edge from state sk to s` has no arrows, then both
transitions sk → s` and s` → sk are possible.
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Figure 5.2: Markov chain of the four-node network in Fig. 5.1. Edges with no
arrows represent transitions in both directions.

Deriving the output rates

Having evaluated all the transition probabilities, we can easily obtain the steady-
state probability of each sending state sk. Let us use the vector π = [πs1 , πs2 , ...]
to denote the corresponding steady-state probabilities. We calculate the output
rate of node i by summing the steady-state probabilities πsk over the set of sending
state sk in which node i is sending. Hence, we have:

yn =
∑

k; sk(i)=1

πsk . (5.11)

In our sample network, we notice that node 1’s is sending only in sending states s1

and s4. Thus, its output rate is given by: y1 = πs1 + πs4 .
Having fully described the modeling approach, we provide its summary in an

algorithmic form. We then test its accuracy in predicting the output rates in
different network scenarios.
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Algorithm

We use this section to show the algorithmic representation of the proposed modeling
framework.

Algorithm 1 Model A

1: Sending States: Find all possible sending states:
2: S = {0, 1}N
3: for k = |S| ...1 do
4: if sk contains two sending neighbor nodes then
5: remove sk from S
6: end if
7: end for
8: Activity States:
9: for sk ∈ S do

10: Find all the activity states associated to sk as described in Section 5.2.1
11: end for
12: Blocked nodes:
13: For any node n in a network state sk where sk(n) = 0:
14: if ∃m, p ∈ {wn}2 s.t. sk(m) = sk(p) = 1 then
15: node n is a blocked node in state sk
16: end if
17: Preempted nodes:
18: For any node n in a network state sk and its activity state At

k where sk(n) = 0:
19: if ∃m, p ∈ {wn}2,m /∈ wp s.t. sk(m) = 1 and At

k(p) = ON and 6 ∃r ∈ wp s.t.
sk(r) = 1 then

20: node n is a preempted node in state sk for activity state At
k

21: end if
22: Synchronized nodes:
23: For any node n in a network state sk where sk(n) = 1 and an activity state

At
k:

24: if ∃m, p ∈ {wn}2,m /∈ wp s.t. At
k(m) = At

k(p) = ON then
25: node n is a synchronizing node for nodes m and p
26: end if
27: Transitions: Find the possible network state transitions
28: for k = 1... |S| ; ` = 1... |S| do
29: if sk → s` implies more than one 1 → 0 change in the network state then
30: transition Trk` is not possible
31: else if sk → s` implies more than one 0 → 1 change in the network state

except for having up to n such changes in the n nodes synchronized by the
same node then

32: transition Trk` is not possible
33: else if there is no state Au

` compatible with sk then
34: transition Trk` is not possible
35: else
36: transition Trk` is possible
37: end if
38: end for
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39: Probabilities: Calculate all transition probabilities
40: for Trk` ∈ Tr do
41: Calculate activity state probabilities using (5.2)
42: If synchronizing nodes exist, calculate Pzu

`
using (5.9)

43: Calculate the probability Pk` of Trk` with (5.10)
44: end for
45: Normalize:

Normalize each transition probability Pk` by diving it with the sum of all
transition probabilities of transitions leaving state sk.

46: Solve the chain: Find the stationary distribution π of the Markov chain
created by the states in S and the transitions in Tr

47: Calculate output rates: Use (5.11) to calculate the output rates of all N
nodes.

Numerical Results

We begin this section with a study of our model’s accuracy in predicting the out-
put rates of a WLAN. We do so by comparing out model’s prediction with the
results obtained by simulation for several different networks. Then, we present two
examples of possible applications in WLANs.

Simulation setup and performance metrics

All results presented in this section were obtained using the IEEE 802.11g standard
in the ns2 discrete-event network simulator [77]. The nodes transmit frames with
a fixed payload size L = 500B over a link with R = 54Mbps data rate. In our
simulated networks, each node represents an AP that is sending downlink traffic
to a single associated station, as discussed in Section 4.1. Although in practice an
AP will have several associated stations most of the time, for the sake of simplicity
we consider that the aggregated traffic sent to these stations can be averaged and
modeled as a single downlink traffic. In the discussion at the end of this chapter,
we present some of our simulation and real-life measurements that help us validate
these hypotheses and show they are adapted to WLANs at a reasonable loss in
accuracy.

With regards to the performance metrics, we study the nodes’ output rates, yn,
and the network utilization, denoted by U and calculated as:

U =

N∑
n=1

yn

Umax
, (5.12)

where Umax is the maximum network utilization. Otherwise stated, Umax is simply
the maximum number of nodes that can be simultaneously sending, a quantity
that clearly depends on the conflict graph. For example, in our sample four-node
network of Fig. 5.1, at most two nodes can be sending simultaneously, i.e., nodes 1
and 4 or nodes 2 and 4. While the network utilization is very interesting from the
provider’s point of view, it can be a highly unfair performance metric from the
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users’ perspective as some users may obtain very low output rates while others can
transmit almost continually. We use Jain’s fairness index [78], J , to measures how
fairly the throughput is divided among the nodes. Jain’s index is a quantity in
the interval [0, 1], where 1 represents the highest fairness, meaning all nodes get an
equal share. It is calculated as:

J =

(
N∑

n=1
yn

)2

N∑
n=1

y2
n

. (5.13)

Validation

We evaluate the accuracy of our model by comparing its values with those provided
by the discrete-event network simulator ns2 [77]. Every simulation point presented
in the results is the average of 20 independent simulation runs lasting 60 seconds
each. The resulting confidence intervals are very narrow so we only use the mid-
point in our validation. As for the input rates xn, we represent their intensity in
the simulator by alternating between active and inactive periods with exponentially
distributed lengths. On average, the proportion of time spent in the active period
is set to xn. In active periods the node’s queue is constantly backlogged, while in
inactive period its queue is empty and the node is not attempting to access the
medium. The throughput obtained in simulation is then normalized by the link
speed, in order to obtain the dimensionless output rate, yn, which is comparable
with that of our model.

In our first example, we consider the four-node network of Fig. 5.1. We set the
input rates of nodes 1, 3, and 4 to x1 = 0.5, x3 = 1, x4 = 0.5, respectively. We
let the input rate of node 2 vary from x2 = 0 (constant OFF ) to x2 = 1 (constant
ON), taking several values in that interval. We then evaluate the output rates of
nodes 1 and 2, i.e., y1 and y2, as well as the network utilization, as delivered by
the simulator and by our model. Figure. 5.3 shows the corresponding results.

As expected, when the input rate of node 2 grows from 0 to 1, so does its output
rate, though to a lesser extent. Because y2 < x2 (except for x2 = 0), we conclude
that node 2 cannot meet all its demands, regardless of their actual intensity. As
for node 1, whose input rate x1 is kept constant, its output rate tends to decrease
with increasing values of x2. This behavior ensues from the competition between
nodes 1 and 2. Note that, even for x2 = 0, node 1 struggles to meet its demands
as y1 = 0.4 (while x1 = 0.5). Finally, the network utilization grows steadily from
around 0.6 to 0.75 as the input rate of node 2 increases. Overall, we observe that
our proposed model is able to accurately capture these behaviors with a relative
error typically less than 10%.

The second example involves a more complex network with a nine-node topology
whose conflict graph is given in Fig. 5.4. In this example we consider several values
for the input rate for node 6, x6, ranging from 0 to 1, while we keep the input
rates of other nodes constant. The other input rates are set to x1 = 0.7, x2 = 0.8,
x3 = 0.6, x4 = 0.5, x5 = 0.8, x7 = 0.7, x8 = 0.6, and x9 = 0.9. The corresponding
results are shown in Fig. 5.5. In order to keep the figure legible, we choose to trace
the output rates of nodes 5, 6, 7, and 9, bearing in mind that node 8’s output rate
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Figure 5.3: Four-node network of Fig. 5.1: varying the input rate of node 2.

evolves similarly to that of node 7, and that the first four nodes of the network
are not highly influenced by the change in input rate of node 6. We observe that,
as x6 grows from 0 to 1, the nodes’ behaviors can be significantly changed, with
some increasing their output rates (e.g., nodes 6 and 9), while others experience
a decrease (e.g., nodes 5, 7, and 8), that may result in a near node starvation
as x6 comes closer to saturation. In other words, node 6 allies with node 9 and
together they manage to silence their neighbors by turning them into blocked or
preempted nodes in many sending states. As shown by Fig. 5.5, our model was
able to reproduce these non-trivial behaviors with a satisfying degree of precision.
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Figure 5.4: Conflict graph of a nine-node network.

In the aim of providing a more comprehensive idea of the accuracy of our model,
Table 5.2 shows the overall error distribution obtained on over 250 samples. Each
sample characterizes the precision of a node’s output rate in the nine or four-node
network. The median value indicates that, in 50% of the samples, the difference
between yn as returned by the simulator and by our model is less than 0.047.
Table 5.2 also shows that, in all our samples, the difference between the model’s
and the simulator’s yn is never larger than 0.20.
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Figure 5.5: Nine-node network of Fig. 5.4: varying the input rate of node 6.

Median <0.05 0.05-0.1 0.1-0.2 >0.2 Utilization median
0.047 52.7% 33.3% 14% 0% 0.053

Table 5.2: Distribution of the absolute errors for the output rates, yn.

Note that in order to investigate the robustness of our approach, we explored
several other examples with different network topologies, packet sizes, and means
and distributions for the active and inactive periods. It was our experience that
our model’s accuracy was similar to that described by the two former examples.

Applications

Having validated the accuracy of our model, we now describe how its application
can help to improve the general performance of a network by ensuring a better
share of the channel resources. In the two scenarios that follow, we assume that
all nodes are APs. Furthermore, we assume the presence of a network controller
possessing the knowledge of the nodes’ input rates and the network topology. We
show how such a controller can be used to either restrain a node’s input rate, or
to completely turn off a node, in the goal of improving the network’s performance.

In our first scenario, we suppose that the controller is able to regulate the input
rate of a given node. Let us consider the nine-node network of Fig. 5.4 and that
node 9 is selected. Note that although node 9 is in a remote position in the conflict
graph, it plays a central role in the network topology as it is able to block or
preempt nodes 7 and 8 with the help of node 6. Using our model, we discover
the output rates of all nodes (including y9) for values of x9 ranging from 0.2 to
1, and we compute the associated value of Jain’s index [78]. Figure 5.6 reports
the corresponding results. It comes to no surprise that as we allow x9 to increase,
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nodes 7 and 8 undergo a significant decrease in their output rates, unlike node
6 that experiences a growth of its output rate. More interestingly, the network’s
Jain’s index exhibits a peak value for x9 close to 0.35. This peak is about 30%
higher than the value obtained with x9 = 1. In other words, to ensure a fair share
of the channel resources among the nodes, the best scheme would be to restrain
the input rate of node 9 to no more than x9 = 0.35. As it is often the case, the
trade-off when maximizing the fairness is a decreased network utilization. In this
particular scenario, on average, 3 nodes are transmitting in the maximum fairness
solution and 3.57 nodes are transmitting when x9 = 1.

Figure 5.6: Jain’s fairness index and output rates for the network of Fig. 5.4 as a
function of node 9’s input rate.

Our second scenario addresses the case in which the network controller can
completely turn off a node (e.g., by moving it to another radio channel). Our
goal is to show how our model can help determine which node should be turned
off in order to maximize a given performance metric (Jain’s index or the network
utilization U). To that effect, we consider the ten-node network whose conflict
graph is given in Fig. 5.7 in which the input rates have been set to x1 = 0.3,
x2 = 0.6, x3 = 0.8, x4 = 0.5, x5 = 0.7, x6 = 0.3, x7 = 0.5, x8 = 0.4, x9 = 0.9,
and x10 = 0.7. One at a time, we turn off each node, and then we calculate the
nodes’ output rates, together with the Jain’s index and the network utilization.
The corresponding results are shown in Fig. 5.8. Note that Ni denotes the case
where the i-th node is turned off, while Original refers to the original ten-node
network without any nodes off. It appears that turning node 3 off would be the
best option as not only does it allow to achieve the largest network utilization, but
also maximizes the Jain’s fairness index.
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Figure 5.7: Conflict graph of a ten-node network.

Figure 5.8: Jain’s fairness index and network utilization for the network in Fig. 5.7.

Discussion

We use this final section to discuss some of the modeling and simulation choices we
made throughout this work. We then conclude on several potential improvements
we believe are crucial to the future development of the modeling framework.

Choosing the network simulator

Choosing the right validation tools for an analytical model is a task that requires
careful consideration and (almost) always results in a trade-off. While we discussed
the main aspects of the three performance evaluation approaches (modeling, sim-
ulation, experimentation) in Chapter 1, we wish to now briefly reflect upon the
choices made regarding the numerical validation of the analytical model proposed
in this chapter. As it is often the practice in WLAN modeling, we resort to using
discrete-event simulators that are considered capable of rendering results close to
reality at a low cost in both time and money. Given our previous experience and
the need for simple simulation scenarios, we opted for the ns2 simulator [77]. Ns2



48 CHAPTER 5. MODEL A

11 22 33

Figure 5.9: Conflict graph of a three-node chain network.

is an open source and adequately user-friendly network simulator that implements
all the basic mechanisms of the IEEE 802.11 standard and the DCF procedure.
While the system considered in this model can be fully simulated in ns2, it quickly
became evident that extending it to more heterogeneous networks and more recent
standard amendments is a requisite in order to keep the model relevant and up to
date. However, ns2 maintenance has stopped a decade ago and all newer standard
amendments and their features are not implemented in the simulator. An example
is the simulation of links with different data rates which is not a straightforward
task. We decided to test the more recent ns3 simulator, developed as the logi-
cal suite to ns2, though not backwards compatible. Ns3 has more sophisticated
PHY and MAC layers and it is actively kept up to date on new procedures and
technologies, e.g., the 802.11ac standard amendment including frame aggregation,
MCS indexes, and channel bonding.

Before completely switching to ns3, we wanted to compare the results provided
by the two simulators when they are given the same network scenario. We chose
the three-node chain network in Fig. 5.9 in which the input rates of nodes 2 and
3 are fixed to x2 = 1 and x3 = 0.5, and the input rate of node 1 is varying in the
[0,1] interval. Figure 5.10 shows the achieved throughput of node 1 as a function
of the demanded throughput of node 1 for the two network simulators using the
802.11g standard amendment, payloads of 1000B, and a 54Mbps data rate. First,
we reassuringly notice that both simulators provide similar results, especially in the
mid-range input rates. However, on both extremities the maximum throughput
the middle node achieves varies significantly. We searched through the source
code of both simulators to find several possible explanations. The first one is the
implementation of the capture effect, a phenomenon potentially happening when
a node receives two frames in collision. In ns3, the capture effect allows a node to
successfully receive a frame, even in collision, if the frame’s signal is strong enough
so that it can be correctly decoded. In ns2, a frame can be successfully received
only if it was not in collision when the node began receiving the PHY header, i.e.,
if the frame is the first one of the two colliding frames to reach the node. Another
issue relates to the implementation of 802.11 standard amendments. As 802.11g is
not implemented in ns2, we had to modify the source code and manually set a list of
parameters to simulate this amendment. Needless to say, the two implementations
are not equivalent because simply modifying the DCF parameters of ns2 will not
provide the exact same results as ns3. We also found issues in the physical layer and
the backoff procedure, as the two simulators implement different default settings
that we do not always know how to properly set and are out of the scope of this
thesis.

In summary, we found that upgrading to the newer ns3 simulator allows us
to obtain results similar to those of ns2 for simple networks, but to also simulate
more elaborate scenarios closer to today’s real-life implementations. The upgrade’s
trade-off lies in the simulator’s complexity and its learning curve. While the fact
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Figure 5.10: Comparing ns2 and ns3’s results for the network in Fig. 5.9.

that both simulators are coded in C++ eases the transition, ns3’s extensive set
of features also leads to a much higher complexity in the source code and the
simulation scripts, as well as a longer execution time. However, we believe that the
benefits of using ns3 far outweigh the cost and we use it to obtain the rest of the
results presented in this manuscript.

Testing the impact of uplink traffic

Our model is validated in a network where we use the strong assumption that
all traffic is downlink, i.e., downloaded from the AP to the station. In order to
assert the validity of this hypothesis, we measured the uplink/downlink ratio at
three different locations: Lyon’s largest train station (Part Dieu), in the grande
école where this work was developed (ENS Lyon), and a residential building. We
used tshark [79] to sniff all the traffic transmitted on three different channels (1,
6, and 11) during 20 min intervals and then calculated the average over the three
channels. The corresponding results reported in Table 5.3 showing that download
data represent more than 90% of the traffic (in volume).

Location Percentage of download traffic
Train station (Part Dieu) 90.97%
Graduate school (ENS Lyon) 93.79%
Residential building 92.10%

Table 5.3: Comparison of downlink and uplink traffic in real-life WLANs.

However, even if the upload traffic represents only about 10% of the total traf-
fic, it does not by any means indicate that it can be neglected in our modeling
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framework. To test if the user stations that generate some upload traffic can be
reasonably omitted from the conflict graph, we run our ns3 simulations with no
uplink traffic and compare it with simulations where uplink traffic represents 10%
of the total network traffic. We simulated topologies of different sizes and com-
plexities using several sets of input rates for every topology. We observe that, on
average, having user stations generate 10% of the overall traffic changes the output
rates of the APs by 5.5%. As a side note, this difference in output rate does not
worsen the results of our model (in fact it improves them in most cases), as our
model generally tends to slightly underestimate the AP’s actual throughput (see
network utilization in Fig. 5.3).

Contributions and limitations

At the time of its development, the largest benefit of Model A was the fact that it
provided an accurate estimation of the nodes’ achieved throughputs in a random-
topology WLAN using only two input parameters, i.e., the input rates and the
conflict graph. In hindsight though, the role of Model A is to be an important
stepping stone for the two Markovian models that follow.

What was initially planned to be a simple Markovian model with a single chain,
quickly became a difficult to unravel scheme of rules and exceptions. The reader
surely took notice of our definitions of blocked, preempted, and synchronized nodes.
However, Model A did serve as a good learning ground for understanding the
complex system that are WLANs, and for understanding that such systems can
still be accurately modeled with only several carefully selected parameters.

The single-chain solution of Model A can quickly become difficult to manage
when the number of nodes increases. Even if larger Markov chains are easily solved
with modern processing power, any single change in the input parameters requires
the recalculation of the entire chain. Additionally, Model A imposes an important
list of limitations on the network. The model can only be used when all nodes are
homogeneous in data rates, payload sizes, and 802.11 standard amendments.

Every time we encountered an obstacle in the model or in the system descrip-
tion, we were forced to research further to find logical and feasible solutions. Model
A helped us develop both the intuition and gather the knowledge needed for the
model presented in the next chapter. This time, we opt for a highly-parallelized
Divide-and-Conquer approach for heterogeneous networks.



Chapter 6

Model B: Larger and
Heterogeneous WLANs

Introduction

Providing decision-making support has always been a crucial part of the modeling
frameworks we develop. Whether in the design of a WLAN or in its manage-
ment, having accurate and versatile analytical models can significantly lessen the
workload of network architects and engineers. Today’s WLANs, however, have ex-
perienced years of evolution and have come a long way since their first introduction
over two decades ago. This evolution made us rethink and upgrade our single-chain
Markovian model into a Divide-and-Conquer solution that accounts for larger and
more heterogeneous networks.

The largest obstacle to overcome was the uniformity of the AP’s traffic param-
eters. This chapter presents a Markovian model capable of handling WLANs with
different data rates and frame sizes for all the APs. The enhancement allows us
to also consider current standard features, such as frame aggregation. Moreover,
we take into account the impact of the neighbors’ traffic parameters on the maxi-
mum achievable throughput, a feature that has proven to be essential in accurately
estimating the nodes’ throughputs in some network configurations.

The growth of the Markov chain’s size with the number of nodes is also an issue
that highly impacts the model’s complexity. Having a single chain allows us almost
no space for parallelization (or partial solution) of Model A in case of a slight
modification in the WLAN parameters. We now propose a Divide-and-Conquer
approach that relies on a series on smaller and completely mutually independent
Markov chains, opening up a new set of parallelization possibilities.

Finally, we wanted to improve the validation process and bring the simulation
results a little closer to real-life WLANs. In order to do so, we traded the ns2
simulator for the more recent ns3 simulator, allowing us to assess the model’s
accuracy using a more detailed and precise depiction of WLANs. In this chapter, we
present all the specificities of our Model B using a sample network, we then present
the validation results and several possible applications for real-life WLANs, before
finally empirically studying its complexity and comparing it to that of Model A.

51
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Modeling Approach and Algorithm

Our Divide-and-Conquer Markovian approach relies on a series of Markov chains
that each model a specific network configuration which we refer to as subnetworks.
Figure 6.1 shows a schematic representation of the entire solution. We begin this
section by first describing how we obtain these subnetworks in Stage 1. We then
detail, as we did before, the process of creating and solving each Markov chain in
Stages 2 and 3. Finally, in Stage 4 we combine their solutions and thus obtain
the nodes’ output rates and achieved throughputs. Figure 6.1 distinctly shows the
parallelization capacity of the Divide-and-Conquer approach, as all the Markov
chains belonging to different subnetworks can be solved individually of one another,
as opposed to the single Markov chain of Model A shown in Fig. 5.2 of Chapter 5.
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Figure 6.1: Schematic representation of the proposed solution.

Table 4.1 of Section 4.1 and Table 6.1 summarize the system and model nota-
tion, respectively.
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Parameter Description
α backoff factor
B set of possible subnetworks, B = {1, 0}N
bi ith subnetwork, bi ∈ B
bi(n) regime of the nth node in subnetwork bi, bi(n) ∈ {ON,OFF}
βi occurrence probability of the ith subnetwork
S set of possible sending states, S ⊆ {0, 1}N
sk kth sending state, sk ∈ S
sk(n) state of the nth node in sending state sk, sk(n) ∈ {1, 0}
Si set of sending states associated to subnetwork bi, Si ⊆ S
cmi mth irreducible Markov chain of subnetwork bi
Sm
i set of sending states associated to cmi , Sm

i ⊆ Si

σi(k) probability that sending state sk of subnetwork bi is initially chosen
Pk,` probability of the transition from sending state sk to s`
w′n restricted set of neighbors of node n with blocked nodes removed
Mi number of irreducible Markov chains for the subnetwork bi
πm
i steady-state probability distribution of cmi
πi steady-state probability distribution of subnetwork bi
ωm
i occurrence probability of cmi
Di set of dominant chains in subnetwork bi
di set of dominated chains in subnetwork bi
Qn set of cliques that contain node n
qj jth clique

Table 6.1: Modeling notation.

The backoff factor α

Before detailing the process of building the Markov chains, we first study how the
nodes’ different data rates can impact the resource sharing. In this section, we
focus on the Flow in the Middle (FIM) topology shown in Fig. 6.2 and discussed
in some detail in Chapter 1.

11 22 33

Figure 6.2: Conflict graph of a three-node FIM network.

Chaudet et al. [20] and Ducourthial et al. [41] study the impact of a frame’s
transmission duration in the FIM topology of Fig. 6.2 and in larger chain networks,
respectively. They find that when transmissions are kept short the duration of the
backoff becomes comparable to the duration of the frame transmission. As a result,
it is more statistically likely that both nodes 1 and 3 of the FIM network are si-
multaneously in backoff, leaving the channel idle for a potential transmission of the
starving node 2. It follows that shorter transmissions can increase the fairness of
resource sharing. However, when transmissions times are long, node 2 almost con-
tinually senses the medium busy, as the edge nodes rarely simultaneously perform
backoff.

We introduce the backoff factor α as a means to quantify the impact of the
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transmission duration on fairness. The backoff factor is the ratio between the
average backoff period duration and the duration of the entire transmission:

α =
Tbackoff

TDIFS + TPHY + TFRAME + TSIFS + TPHY + TACK
. (6.1)

Having defined α, we choose the FIM topology and the IEEE 802.11g standard
amendment to test how it impacts resource sharing. We begin by varying α and
tracing the evolution of the middle node’s output rate, y2. In Fig. 6.3 we show this
evolution for 11 different α values in the [0.03, 0.50] interval obtained by changing
the data rate and/or frame size. Next, we perform a quadratic fit (using the least
squares method) of node 2’s output rate as a function of α and discovered it is
closely matched by the function:

y2(α) = −0.66α2 + 0.88α+ 0.01 . (6.2)

Figure 6.3: Influence of the backoff factor α on node 2’s output rate in the FIM
network of Fig. 6.2.

For the purpose of our modeling framework, we normalized the y2(α) function
so that we obtain an f(α) such that 0 ≤ f(α) ≤ 1, as shown by the right-hand
side y-axis of Fig. 6.3. Thus, the best-case scenario for the middle node is when
α = 0.5, i.e., the larger α, the more the nodes experience a fair sharing of the
medium. In fact, it is our experience that the value of α tends to significantly
affect the performance of many other network topologies beyond the FIM example.
Although we are fully aware that the exact quadratic function of α varies from
one network to another, we believe that it will be difficult (if not impossible) to
discover a general expression for α that applies equally to all networks. For this
reason, we choose to extrapolate the knowledge we obtain on the FIM topology
and reuse it on other networks. We detail this process at the end of our modeling
approach description.
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Modeling Approach

For the sake of clarity, we once again resort to the sample network depicted in
Fig. 6.4 to show the step by step execution of the proposed modeling approach.

22
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Figure 6.4: Conflict graph of a four-node network.

Decomposing into subnetworks

Analogously to the previous modeling framework, we consider that the nodes of
the WLAN alternate their activity between ON and OFF periods. We recall that
in the ON regime, a given node n has at least one frame to send, and thus has a
non-empty buffer, while in the OFF regime, a node’s buffer is empty. We consider
that the nodes’ regimes, and consequently their input rates, are independent of
each other. At any time, the state of the network activity can be described by a
vector of length N , where N is the number of nodes in the network and the nth
element expresses the current regime of node n (be it ON or OFF ). Thus, for a
network with N nodes, there are 2N such vectors that correspond to all the possible
combinations of the two regimes over the N nodes.

In this chapter, we apply a Divide-and-Conquer approach by choosing to ana-
lyze the WLAN not as a single complex network in which any node can alternate
between ON and OFF , but rather as a collection of 2N simpler networks in which
every node is permanently ON or OFF . We refer to these new networks as the
subnetworks and we denote them by b1, b2, ..., b2N . Hence bi(n) indicates the regime
of node n in subnetwork bi. We use B to designate the set that contains all sub-
networks.

For the sample network of Fig. 6.4, as well as for any other four-node network,
there is a total of |B| = 16 such subnetworks:

B =




b1
b2
...
b16

=




OFF OFF OFF OFF
OFF OFF OFF ON

...
...

...
...

ON ON ON ON

. (6.3)

We refer to the probability that the current state of the network is subnetwork
bi as the occurrence probability of bi and we denote it by βi (i = 1, . . . , 2N ). Note
that a subnetwork’s occurrence probability depends only on the nodes’ input rates
and can be calculated as:

βi =
∏

n|bi(n)=ON

xn
∏

m|bi(m)=OFF

(1− xm) . (6.4)
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For example, in our four-node network, one of the possible subnetworks is b14 =
[ ON ON OFF ON ]. This subnetwork represents the case when nodes 1, 2, and 4
are in transmission or have a frame waiting to be sent, while node 3 has an empty
buffer. Its occurrence probability is calculated as:

β14 = x1x2(1− x3)x4 . (6.5)

Next, we show how to solve each of the subnetworks separately and indepen-
dently of the rest of the subnetworks.

Solving each subnetwork as one or more Markov chain(s)

We now detail how we analyze the behavior of each subnetwork using Markov
chains. We start by defining the possible states and transitions of the correspond-
ing Markov chains. Note that, in this subsection, the subject of study is any of
the subnetworks bi (i = 1, . . . , 2N ) resulting from the network decomposition (see
Section 6.2.3).

Defining the possible states for the subnetwork

While the regime (ON or OFF ) of each node is set and fixed (for the considered
subnetwork bi), knowing the regime is not sufficient to determine if a node is
currently sending a frame or not. As per our definition, an ON node can be
either transmitting or waiting for the medium to become idle. We eliminate this
ambiguity by reusing the notion of sending states.

Like a subnetwork, a sending state is a vector of length N whose nth element
refers to the activity of the nth node. However, unlike a subnetwork, a sending state
indicates for each node n if the node is transmitting (marked 1) or not (marked 0).
Let sk denote the kth sending state (with k = 1, . . . ,). Thus, if node n is currently
transmitting we have sk(n) = 1, and sk(n) = 0 otherwise, for n = 1, . . . , N . Let S
denote the set of all possible sending states over all existing subnetworks. For the
same of completeness, we remind that each possible sending state must comply with
a common property of CSMA/CA: neighboring nodes cannot transmit successfully
at the same time, i.e., Contrarily to Model A, we now use Si to designate the
set of possible sending states associated to the subnetwork bi. Note that we can
easily determine Si since Si is a subset of S whose elements satisfy the following
properties:

1. if bi(n) = ON and n has no transmitting neighbors, then sk(n) = 1;

2. if bi(n) = OFF , then sk(n) = 0.

Note that the rationale behind the second property is quite straightforward: a node
that has no frames to be sent cannot be sending. The first property is derived
from a phenomenon studied in [37]: CSMA/CA networks tend to increase the
spacial reutilization of the medium by maximizing the number of simultaneous
transmissions. As a result, in our model, we enforce any node that is ON and
senses an idle medium to be in transmission.

In the case of our sample network, the subnetwork b16 = [ ON ON ON ON ]
has three possible sending states, s1 = [ 1 0 0 1 ], s2 = [ 0 1 0 1 ], and s3 = [ 0 0 1 0 ].
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Note that other sending states may exist but we consider them to be negligible in
b16, however, some of them will appear in other subnetworks. For example, the
sending state [ 1 1 0 1 ] breaks the CSMA/CA condition, as nodes 1 and 2 are
neighbors and cannot be simultaneously transmitting, i.e., the state is neither a
part of S nor S16. The sending state [ 1 0 0 0 ] is deemed not possible since node 4
breaks the first condition. Indeed, b16 indicates that node 4 is ON , and because
it has no sending neighbors, it should be sending its frames. However, should the
current subnetwork be [ ON ON ON OFF ], then [ 1 0 0 0 ] is possible. This step
of determining the sending states is illustrated by Stage 2 of Fig. 6.1.

Determining the possible transitions

The set of sending states found for the subnetwork bi, denoted Si, will serve as the
Markov chain’s set of states. We now detail how we decide which transitions are
possible between those sending states. As it was before, our reasoning is based on
the idea that the probability of two nodes starting (or ending) their transmission
at the exact same time, in a CSMA/CA network, is negligibly small. However,
this time we significantly simplify our transition rules by removing the conditions
of blocked, preempted, and synchronizing nodes. Let sk and s` be two possible
sending states of Si. The transition from sending state sk to s` is deemed possible
if and only if sk and s` both verify that:

1. exactly one node alters from 1 in sk to 0 in s`, and

2. exactly one node alters from 0 in sk to 1 in s`.

Note that a self-transition on a given sending state sk is always possible, as it
implies no changes in the sending state.

For example, in our four-node network it is possible to go from sending state
[ 1 0 0 1 ] to [ 0 1 0 1 ], as in this transition node 1 ends and node 2 starts a
transmission. However, it is not possible to go from network state [ 1 0 0 1 ] to
[ 0 0 1 0 ], as it implies both nodes 1 and 4 ending their transmissions at the exact
same time. Figure 6.5 shows the existing transitions in our modeling framework
between the possible sending states associated to the subnetwork b16.

1 0 0 1

0 1 0 1

0 0 1 0

Figure 6.5: Possible sending states and corresponding existing transitions associ-
ated to the subnetwork b16 = [ ON ON ON ON ].

Calculating the transition probabilities

We now explain how we determine the probability of the transitions between the
possible sending states sk composing our Markov chain. Note that impossible
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transitions have zero probability. To evaluate the non-zero transition probabilities,
we need to recall our definition of a blocked node. A node having at least one of
its neighbors currently transmitting is said to be blocked as it is unable to start a
collision-free transmission. For example, in the four-node network, node 3 can be
blocked by the transmissions of any of the other three nodes.

We can now calculate Pk,`, the probability of the transition from sending state
sk to s`, as:

Pk,` = C
∏

n|s`(n)=1

1

1 +
∑

m∈w′
n

1bi(m)=ON
, (6.6)

where C is a normalizing constant such that
∑

`≥1 Pk,` = 1, and w′n defined as w′n =
{m ∈ wn\{n} | m is not blocked in s` by a node ∈ wm/{n}} is the restricted
neighborhood of node n, i.e., w′n contains all neighbors of n that are not blocked
by some node different from node n. As an example, in the subnetwork b16 =
[ ON ON ON ON ] and the sending state [ 1 0 0 1 ], the restricted neighborhood
of node 1 contains only node 2, as node 3 is blocked by node 4. Note that the
indicator function 1bi(m)=ON returns 1 if bi(m) = ON , and 0 otherwise.

The underlying logic behind Eq. (6.6) is that all nodes that are ON (whether
they are sending or not) compete with their neighbors for accessing the medium.
We also consider them equally likely to gain the medium access. On the other
hand, nodes that are OFF do not affect the transition probability because they do
not compete for medium access.

For instance, when node 3 of the subnetwork b16 in Fig. 6.1 competes with
nodes 1, 2, and 4, it has a 1

4 chance of gaining the medium. However, in this same
scenario node 4 competes with only one neighbor, so its chance of gaining access
would be 1

2 .

Calculating the steady-state probabilities

At this stage, the Markov chain associated to subnetwork bi is fully characterized
and we can calculate its steady-state probabilities. Let us remind that a Markov
chain is irreducible if from any of its states there is a way to reach any other state.
Depending on the setting of the subnetwork under study, the corresponding Markov
chain may or may not be irreducible. Should the Markov chain not be irreducible,
we consider each irreducible Markov chain separately. We denote by Mi the number
of irreducible Markov chains in subnetwork bi. For example, as shown by Fig. 6.5,
the subnetwork b16 = [ ON ON ON ON ] contains two irreducible chains, i.e.,
M16 = 2 (since it is not possible to go from the sending state [ 0 0 1 0 ] to the other
two sending states). We use cmi , m ∈ [1, ...,Mi], to denote the mth irreducible
chain of subnetwork bi. Hence the left-hand chain of Fig. 6.5 is denoted by c116 and
the right-hand chain is c216.

We compute the steady-state probabilities of each irreducible chain cmi for the
subnetwork bi and we denote by πm

i the vector containing the corresponding values.
Note that we use Sm

i to refer to the set of sending states in chain cmi (while, as
defined previously, Si denotes the set of possible sending states associated to bi). If
the subnetwork has a single irreducible Markov chain (Mi = 1), then it follows that
S1
i = Si. Thus, the steady-state probabilities of the subnetwork’s sending states

are equivalent to those of the Markov chain c1i and we have πi = π1
i , where πi is
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the vector containing the steady-state probabilities of subnetwork bi. In this case,
we can skip ahead to Section 6.2.5.

Combining several irreducible Markov Chains

For subnetworks that contain more than one irreducible Markov chain, we need
to combine the steady-state probabilities found for each Markov chain into the
steady-state probabilities for the whole subnetwork bi. To do so, our approach
consists in evaluating the odds of entering each irreducible chain. Let us denote by
σi(sk) the probability that the sending state sk of subnetwork bi is initially chosen.

Clearly, we must have:
|Si|∑
k=1

σi(sk) = 1. Our way to evaluate σi(sk) is to consider all

possible direct paths of reaching sk starting from the empty sending state where
no nodes are transmitting, namely [ 0 0 ... 0 ], and then to sum their probabilities.
For example, in the case of the subnetwork b16, we can identify two paths leading
to s1 = [ 1 0 0 1 ] from [ 0 0 0 0 ], namely (a) node 1 starts transmitting, followed
by node 4, and (b) vice versa. For path (a), the probability that node 1 gains
medium access is 1

4 , since a total of 4 nodes are competing for the access. Once
node 1 starts its transmission, its neighbors nodes 2 and 3 are blocked. This leaves
node 4 alone to compete for the medium meaning that node 4 gains access to the
medium with a probability of 1. Thus, the overall probability of path (a) is 1

4 .
Turning to path (b), the probability that node 4 is the first to gain access to the
medium is 1

4 . Once node 4 transmits, node 3 becomes blocked, while nodes 1 and
2 are still competing. Node 1’s chance of transmitting can then be approximated
to 1

2 . Therefore the overall probability of path (b) is 1
4 ·

1
2 = 1

8 . It follows that
σ16(1 0 0 1) = 1

4 + 1
8 = 3

8 . With the same reasoning, we obtain σ16(0 1 0 1) = 3
8

and σ16(0 0 1 0) = 1
4 .

Having calculated the probabilities of entering each sending state of bi, we now
introduce a weighting factor, denoted by ωm

i , to express the probability that this
particular irreducible Markov chain cmi is initially chosen. Keeping in mind that
Sm
i denotes the set of sending states in the mth irreducible Markov chain of bi, we

compute ωm
i as follows:

ωm
i =

∑
k|sk∈Sm

i

σi(k). (6.7)

In Fig. 6.6 we show the entry probabilities as well as the weighting factors for
the subnetwork b16 = [ ON ON ON ON ] of our sample network of Fig. 6.4. The
values found for the weighting factors are ω1

16 = σ16(1 0 0 1) + σ16(0 1 0 1) = 3
4

and ω2
16 = σ16(0 0 1 0) = 1

4 .

Finally, to calculate πi (steady-state probabilities of the subnetwork bi) from
πm
i ’s (steady-state probabilities found for each of the Mi irreducible Markov chains

associated with bi) we simply proceed as follows:

πi = [π1
i × ω1

i , ..., π
Mi
i × ωMi

i ] . (6.8)

In other words, πi is obtained as a weighted sum of πm
i ’s.
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1 0 0 1

0 1 0 1

0 0 1 0

ω16 = σ16(1 0 0 1) + σ16(0 1 0 1) ω16 =σ16(0 0 1 0)1 2

c162c161
Figure 6.6: Probabilities of entering each sending state, i.e., σi(k), and the corre-
sponding weighting factors, i.e., ωm

i for the subnetwork b16 = [ ON ON ON ON ].

Adjusting to the IEEE 802.11 parameters

In this section, we refine the computation of the weighting factors ωm
i to incorporate

the value of the backoff factor α (see Eq. (6.1) in Section 6.2.1), which accounts
for the mean length of the frames sent over the network, the data rates of the
used wireless channels, as well as the particular amendment of IEEE 802.11 in use.
In networks where nodes have different backoff factors, for example when not all
nodes use the same data rate, we simply calculate the average α over all nodes. We
have shown in Section 6.2.1, in the case of an FIM network topology, α correlates
highly with the severity of the starvation experienced by the node in the middle
(also shown in [20] and [41]).

We now detail how we incorporate the value found for α into our model by
adjusting the weighting factors ωm

i of the irreducible Markov chains cmi . To begin
with, we introduce the notion of dominant and dominated Markov chains. The
dominant Markov chains of a given subnetwork bi are those containing the highest
number of sending nodes. Conversely, irreducible Markov chains of bi with a lower
number of sending nodes than the dominant chain(s) are called dominated chains.
Clearly, should a subnetwork have a single irreducible Markov chain, the discussion
on dominant and dominated chains is of no relevance. We denote by Di (resp. di)
the set of all dominant (resp. dominated) Markov chains for the subnetwork bi,
while |Di| ≥ 1 (resp. |di| ≥ 0) refers to the number of dominant (resp. dominated)
Markov chains. In our example shown for the subnetwork b16 (see Fig. 6.6), the
Markov chain on the left is a dominant chain while the Markov chain on the right
is a dominated chain so that we have D16 = {c116}, |D16| = 1, d16 = {c216} and
|d16| = 1. To capture the increasing fairness between nodes for growing values of
α, we modify the values of the weighting factor of all chains as follows:

ω̃m
i =

{
ωm
i × f(α), if cmi ∈ di ,

1−Ωi

|Di| , if cmi ∈ Di ,
(6.9)

where Ωi the sum of the modified weighting factors of all the dominated irreducible
Markov chains in bi (i.e., Ωi =

∑
m|cmi ∈di

ω̃m
i ). It is clear that if Mi = 1 then

ω1
i = ω̃1

i = 1, as the subnetwork has a single irreducible Markov chain and it will
always be initialized in that chain.
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Let us assume that the network of Fig. 6.6 uses the IEEE 802.11g standard
amendment with frames of size L = 1064 bytes of which H = 64 bytes are headers,
and a data rate of R = 54Mbps. With these values we obtain an α = 0.268
from Eq. (6.1) and the chains’ weighting factors are adjusted as follows: ω̃2

16 =
ω2

16 × f(α) = 0.175 and ω̃1
16 = 1− ω2

16 × f(α) = 0.825.

Combining subnetwork solutions

So far we have divided the network into subnetworks and solved each one of them
separately. The last phase of the model consists in combining the results obtained
for different subnetworks and calculating the nodes’ output rates. A node’s out-
put rate represents the portion of time when the node is occupying the medium,
including the frame transmission itself and all the necessary DCF overhead. Thus,
we calculate node n’s output rate, yn, as:

yn =

|B|∑
i=1

1bi(n)=ON × βi ×
Mi∑
m=1

(
ω̃m
i ×

∑
k|sk∈Sm

i

(
1sk(n)=1 × πm

i (k)
)) , (6.10)

Equation (6.10) gives the sum of the stationary probabilities of all the sending states
in which node n is sending, times the occurrence probabilities of all the irreducible
Markov chains in which those states appear, times the occurrence probabilities of
the subnetwork to which those chains belong. Otherwise stated, it is simply the sum
product of the probabilities of all the subnetwork × Markov chain × sending state
combinations in which node n is sending. The normalization of the steady-state
probabilities is ensured by the βi and ω̃m

i terms.
We can now transform node n’s output rate into its obtained throughput, tn.

When all the network nodes use the same standard amendment, data rate, and
mean payload length, then all nodes have an equal maximum achievable through-
put, tn,max, and we can calculate the throughput of node n as:

tn = yn × tn,max . (6.11)

However, when these parameters vary per node, nodes will have different max-
imum achievable throughputs, tn,max, resulting in different node throughputs,
tn. First, we calculate the maximum achievable throughput of every node using
Eq. (2.4) of Chapter 2. Next, we consider all the maximal cliques of the network
and estimate their global clique throughput. We denote by qj (j ≥ 1), the jth
maximal clique of the network, and by Qn (n ≥ 1) the set of maximal cliques that
contain the node n. For example, our four-node network in Fig. 6.4 contains two
maximal cliques, the first one containing nodes 1, 2, and 3, denoted q1, and the
second containing nodes 3 and 4, denoted q2. Node 3 is the only node that belongs
to both cliques, thus Q3 = {q1, q2}. We calculate the global throughput of clique
qj , tqj as:

tqj =

∑
m∈qj

ym × Lm∑
m∈qj

ym × Lm

tm,max

, (6.12)

where Lm denotes the mean payload length of node m.
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The reasoning behind Eq. (6.12) is that every node m that belongs to the clique
qj will gain a portion of the medium access that is proportional to its output rate,
ym. If node m belongs to several cliques, we calculate the average throughput over
all those cliques. Finally, node m’s throughput is calculated as the product of its
output rate and its average clique throughput:

tn = yn ×

∑
j|qj∈Qn

tqj

|Qn|
. (6.13)

In the following section we provide a summarized version of the proposed model
in an algorithmic form.
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Algorithm

We use this section to show the algorithmic representation of the proposed modeling
framework.

Algorithm 2 Model B

1: Decomposing into subnetworks:
2: Find the set of all possible subnetworks B as given in Eq. (6.3)
3: Calculate the occurrence probability βi of each subnetwork bi of B
4: using Eq. (6.4)
5: for all bi ∈ B do
6: States:
7: Create the set Si, Si ⊆ S, containing all the possible sending states
8: associated to the subnetwork bi using the method of Section 6.2.4
9: Transitions:

10: Determine the possible transitions between the sending states
11: with the method described in Section 6.2.4
12: Transition probabilities:
13: Calculate the probability of each transition Pk,`:
14: (i) Pk,` = 0 if the transition is not possible
15: (ii) Pk,` is calculated with Eq. (6.6), otherwise
16: Building the chain:
17: Create the Markov chain of subnetwork bi with the states of step 6,
18: the transitions of step 9, and the transition probabilities of step 12
19: Irreducibility and steady-state probabilities:
20: If the Markov chain is not irreducible, divide it into its Mi

21: corresponding irreducible Markov chains, otherwise Mi = 1
22: Calculate the steady state probability for each of the Mi chains
23: Weighting factors:
24: Calculate the weighting factor using Eq. (6.7)
25: Adjusting to the IEEE 802.11 parameters:
26: Calculate the backoff factor α using Eq. (6.1)
27: Determine the set of dominant and dominated chains, Di and di,
28: respectively, as described in Section 6.2.4
29: Calculate the modified weighting factors using Eq. (6.9)
30: end for
31: Combining network solutions:
32: Combine the solutions of the different subnetworks to calculate
33: the output rate yn of node n using Eq. (6.10)
34: Calculate the throughput tn of node n using Eq. (6.11) or (6.13)

Numerical Results

We start this section by assessing the accuracy of the proposed modeling approach
by comparing the model’s outcomes with those delivered by a discrete-event sim-
ulator under various scenarios. Then, we study the computational complexity of
the modeling approach as a function of the network topology and compare it to
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Model A presented in Chapter 5. At last, we explore two possible applications of
the model relating to the configuration and performance improvement of a WLAN.

Model validation

To evaluate the accuracy of the proposed model, we explore several scenarios with
different values of various network parameters, such as the IEEE 802.11 standard,
the mean frame length, the data rate, the topology and size of the network, and
we compare the model’s estimations to the simulation results delivered by the
discrete-event network simulator ns3 [80].

Various network topologies and standard amendments

We begin by examining the proposed model’s accuracy under different topologies
and IEEE standard amendments. We consider three topologies: the four-node
network of Fig. 6.4, the larger six-node network depicted in Fig. 6.8, and the ten-
node network of Fig. 6.10. We recall that the nodes of a conflict graph represent
only the APs that belong to the same communication channel. and are transmitting
traffic to an associated user station. The four-node network uses the IEEE 802.11g
standard amendment while the six-node and the ten-node networks use the IEEE
802.11n standard amendment.

The simulation setup is similar in all three topologies and Table 6.2 sums up
the used parameters. We fix the input rates of all nodes to the default values given
in Table 6.3. We then choose one node and we gradually vary its input rate from
0 to 1 by step of 0.05, providing us a total of 21 different simulation scenarios. Let
us recall that xn = 0 indicates that node n never has a frame to be sent, while
xn = 1 denotes that the node is always willing to transmit frames. To account
for the intrinsic uncertainty of the measured quantities in a simulator, we replicate
each simulation scenario 20 times and we calculate the 95% confidence intervals.
However, given the length of the simulation runs and the number of replications,
the computed confidence intervals are virtually indistinguishable from their mean
values and we decided not to represent them in the following figures.

Parameter Four-node Six-node Ten-node
Standard amendment IEEE 802.11g IEEE 802.11n IEEE 802.11n
Simulation replications 20 20 20
Replication duration [sec] 60 90 120
Payload length [bytes] 1000 1000 1000
Data rate [Mbps] 54 65 65

Table 6.2: Simulation parameters.

Four-node network In our first scenario, we consider the four-node topology
(depicted in Fig. 6.4) with the IEEE 802.11g standard amendment and a data rate
of 54Mbps (maximum data rate in the standard amendment). Figure 6.7 shows
the throughput evolution of all four nodes, named N1 through N4, as a function
of the varying input rate of node 2, x2. We observe that as x2 grows, so does the
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Scenario x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Four-node 0.3 0.5 1 0.5 / / / / / /
Six-node 0.5 0.4 0.6 0.3 0.7 0.9 / / / /
Ten-node 0.3 0.6 0.8 0.4 0.7 0.3 0.5 0.4 0.9 0.7

Table 6.3: Default input rates.

throughput of node 4, while nodes 1 and 3’s throughputs decrease. Larger values
of x2 imply more competition between nodes 1, 2, and 3 in accessing the medium.
The gain in node 4’s throughput is not directly caused by the increased throughput
of node 2, but rather as a by-product of the decrease of node 3’s throughput (with
whom node 4 compete for medium access). In fact, Fig. 6.7 suggests that the
amount of throughput lost by node 3 is gained by node 4. Finally, we observe that
our model was able to accurately capture all these behaviors.

Figure 6.7: Four-node network of Fig. 6.4: varying the input rate of node 2.

For the sake of completeness, we repeat the same setup by varying the input
rate of one of the other three nodes, giving us a total of 21× 4× 4 = 336 points on
which we calculate the relative error statistics presented in Table 6.4. We notice
that in over 90% of the samples the relative error is less than 20%.

Scenario Mean Median <5% <10% <20% <30% >30%
Four-node 12.67% 13.43% 10.00% 35.00% 91.25% 100% 0.00%
Six-node 9.80% 9.77% 21.10% 54.91% 97.75% 99.20% 0.80%
Ten-node 9.11% 7.47% 27.78% 68.12% 88.77% 99.36% 0.64%

Table 6.4: Distribution of the relative error for the throughput, tn.
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Six-node network Our second scenario addresses the larger six-node network
of Fig. 6.8 and the IEEE 802.11n with a higher data rate of 65Mbps. Figure 6.9
shows the throughputs attained by each of the six nodes as the input rate of node
6 gradually increases from 0 to 1.

Not surprisingly, Fig. 6.9 shows that the throughputs of nodes 4, 5, and 6 are
the most affected by the increasing input rate of node 6, as all three belong to the
same clique. Node 6 increases its throughput mostly at the expense of node 5, that
loses more than a third of its original throughput. Node 4’s throughput decays
to a lesser extent, however its already small throughput is even further decreased.
We also notice that nodes 1, 2, and 3 are not directly affected by node 6 and they
keep an almost steady throughput regardless of the value of x6. As in the four-
node network, we repeat the same experience by letting the other nodes vary their
input rate one by one. Because it is a network of 6 nodes, this gives us a total of
21× 6× 6 = 756 samples that are used to derive the statistics shown in Table 6.4.
The table shows the predictions made by our model fit well those delivered by the
simulator with a mean relative error of less than 10%.

33

55

66

22

11 44

Figure 6.8: Conflict graph of a six-node network.

Ten-node network Our third scenario is a network of ten nodes (see Fig. 6.10)
using IEEE 802.11n. We study the throughput attained by all nodes as a function
of node 4’s input rate.

Figure 6.11 shows the corresponding results. In order to keep the figure legible,
we represent the attained throughput of only a subset of nodes. First, we observe
that the variation of node 4’s input rate causes its throughput to increase from
0 to approximately 20Mbps. On the other hand, as x4 grows, the throughput of
node 3 decays significantly (it is nearly halved). This agrees with the fact that
node 3 is the only neighbor of node 4 (see Fig. 6.10). Because of node 3’s declining
throughput, nodes 1 and 2 experience a slight gain in their throughput as x4 grows.
As for the nodes far from node 4 such as nodes 8 and 10, their attained throughput
is almost not influenced by the variations in x4. Finally, Fig. 6.11 shows that our
model manages to capture all these behaviors with a good level of precision. Like
in the two former scenarios, we repeat the same experiences letting the input rate
of each of the other nine nodes vary from 0 to 1. This leads to a total of 2100
samples that we use to compute the statistics shown in Table 6.4.

Overall, we explore hundreds of examples with differing input rates, two dif-
ferent standard amendments, and three topologies. To provide a broader overview
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Figure 6.9: Six-node network of Fig. 6.8: varying the input rate of node 6.
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Figure 6.10: Conflict graph of a ten-node network.

of the accuracy reached by our model, we computed the mean and the median of
the relative error as well as the distribution of the relative error attained on each
scenario. Table 6.4 presents the corresponding results. The typical mean relative
error is usually close to 10% and so is the median relative error. We also observe
that in the vast majority of examples (around 90% of cases), the relative error
made by our model is less than 20%.

Heterogeneous data rates

We now study the case when the nodes are heterogeneous with regard to their data
rates. We reuse the six-node node network of Fig. 6.8, but we assign a different
data rate to every node as indicated by Table 6.5. Note that under these settings,
node 2 has a data rate that is five times that of node 5. Due to the heterogeneity
in the data rates, each node has a different backoff factor, α (see Section 6.2.4) and
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Figure 6.11: Ten-node network of Fig. 6.10: varying the input rate of node 4.

we derive the throughputs of nodes using Eq. (6.13). Analogously to the former
scenarios, we let the input rate of each node vary from 0 to 1 while keeping the
input rates of the other nodes to their default values (see Table 6.3). This gives us
a total of 756 points on which we calculated the estimated throughputs using our
model and compare these values to those delivered by the simulator.

Scenario N1 N2 N3 N4 N5 N6
Six-node 18 Mbps 54 Mbps 24 Mbps 12 Mbps 9 Mbps 12 Mbps

Table 6.5: Data rates of the nodes in the six-node network in Fig. 6.8.

Table 6.6 presents the corresponding results. We notice that despite having
nodes with significantly different data rates, our model is still able to deliver accu-
rate estimations for the throughput. More precisely, the mean relative error of the
model is 9% with 94% of the samples having an error less than 20%.

Scenario Mean Median <5% <10% <20% <30% >30%
Six-node 9.31% 6.98% 20.29% 68.49% 94.13% 97.73% 2.27%

Table 6.6: Heterogeneous data rates: distribution of the relative error for the
throughput, tn.

Frame aggregation in IEEE 802.11n

In our last validation scenario, we study the model’s precision when the nodes
implement the aggregation feature. When frame aggregation is enabled, multiples
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frames are concatenated into a single large frame before being transmitted, as
described in Chapter 2. This tends to diminish the cost of the overhead introduced
by the MAC protocol, thereby increasing the maximal achievable throughput.

Once again, we consider the six-node network of Fig. 6.8 with the input rates
given in Table 6.3 and the simulation setup of Table 6.2. However, all six nodes
now aggregate four MAC service data units (MSDUs) into a single frame at each
transmission. While the simulator actually implements the aggregation features,
in our model we simply introduce a four-fold extension of the frame length.

Figure 6.12 shows the attained throughputs of all nodes as a function of the
input rate of node 6. We can assess the influence of the frame aggregation feature on
this scenario by comparing Fig. 6.9 and Fig. 6.12. Although the trends exhibited
by the throughputs are still comparable, we observe that the frame aggregation
feature significantly increases (almost doubles) the attained throughput. Finally,
Table 6.7 summarizes the mean, median, and distribution of the relative error for
all the six scenarios when one of the nodes varies its input rate. Figure 6.12 along
with Table 6.7 show that our modeling approach can successfully reproduce the
behavior of a WLAN implementing frame aggregation.

Figure 6.12: Frame aggregation for the network in Fig. 6.8: varying the input rate
of node 6.

Scenario Mean Median <5% <10% <20% <30% >30%
Six-node 6.04% 5.07% 49.06% 92.03% 98.28% 99.22% 0.78%

Table 6.7: Frame aggregation: distribution of the relative error for the throughput,
tn.
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Applications

We provide two practical examples to illustrate how the proposed modeling frame-
work can help in the deployment and configuration of an IEEE 802.11 WLAN.

Channel assignment

In our first example, we consider the well-known issue of channel assignment. In
IEEE 802.11n and 802.11g networks, each AP can choose its channel among 14
different wireless channels in the 2.4GHz frequency range. However, out of these
14 channels, at most three can be chosen in a manner that no two channels have
overlapping frequencies (see Chapter 2). Obviously, given the way APs share the
channel, the choice of channel assignment considerably affects the network’s per-
formance.

We consider the 12-node network (N = 12) depicted in Fig. 6.13a with three
non-overlapping channels. The nodes’ input rates are given in Table 6.8. For the
sake of convenience, we classify nodes into two categories: high-demanding nodes
whose input rates are higher than 0.5, and low-demanding nodes whose input rates
are below 0.5. Let a be a vector of length N that represents one possible allocation
of the three channels among the N APs. We denote by y(a) = {y1, y2, . . . , yN}
the set of output rates obtained when implementing the channel assignment a.
Remind that yn can be viewed as a measure of the normalized throughput attained
by node n.

We consider four different performance metrics to evaluate the performance of
the network:

1. Global satisfaction rate, GSR, or the proportion of the network’s general
throughput demand that has been met, calculated as:

GSR(y(a)) =

N∑
n=1

yn

N∑
n=1

xn

. (6.14)

2. Jain’s fairness index [78], J , that measures how fairly the throughput was
divided among the nodes, calculated as:

J(y(a)) =

(
N∑

n=1
yn

)2

N∑
n=1

y2
n

. (6.15)

We also calculate the Normalized Jain’s index, NJ . The normalization refers
to accounting for the nodes’ input rates when calculating Jain’s index:

NJ(y(a)) =

(
N∑

n=1

yn

xn

)2

N∑
n=1

yn

xn

2

. (6.16)
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3. Proportional fairness, PF , that is a trade-off between GSR and J as it tries
to maximize both fairness and throughput by giving more throughput to
nodes with higher demands:

PF (y(a)) =

N∑
n=1

log
yn
xn

. (6.17)

Scenario x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

12-node 0.2 0.4 0.9 0.7 0.8 0.9 0.1 0.3 0.2 0.6 0.8 0.3

Table 6.8: Input rates of the 12-node network in Fig. 6.13a.

In practice, our model could be used jointly with existing solutions in the field of
channel allocation, such as [81,82]. A classical way of finding (sub)optimal channel
allocations is to start from a given allocation, and then iteratively improve it with
regard to some network performance parameters until convergence is found. In this
context, our model could be used to quickly evaluate the performance parameters
of interest at each iteration (rather than relying on long simulations). However,
for the sake of simplicity and given the size of the network, we choose to explore
all of the 312 ' 530, 000 possible allocations and retain the ones maximizing one
of the criteria given above. Figures 6.13b, 6.13c, and 6.13d illustrate the channel
assignment that maximize GSR, J , and PF , respectively. For each of these three
channel assignments, we also indicated in Table 6.9 their score over the other
performance metrics.

Performance metric GSR J NJ PF
Fig. 6.13b max GSR 96% 0.725 0.983 -1.27
Fig. 6.13c max J 73% 0.796 0.955 -3.30
Fig. 6.13d max PF 95% 0.735 0.987 -1.08

Table 6.9: Evaluation of the proposed channel allocations.

When maximizing the global satisfaction rate, GSR, the retained solution max-
imizes the overall throughput obtained in the network and leads a GSR of 96%.
Interestingly, we notice in Fig. 6.13b that all the high-demanding nodes (whose
input rate is over 0.5) do not share the channel with any other node, thereby en-
abling them to obtain the highest possible throughput. On the other hand, when
maximizing Jain’s index, we observe in Fig. 6.13c that almost all nodes have a
neighbor with whom they share the medium. In fact, with the exception of the
pair of nodes 6 and 2, all the other pairs involve two nodes belonging to the same
class (be it low-demanding or high-demanding nodes). As a consequence high-
demanding nodes get lower output rates, as they have to share the medium with
other high-demanding nodes. The optimal solution for the Jain’s index increases
its score from 0.725 to 0.796, at the expense of over 20% loss in the GSR. The
last optimal solution maximizes the proportional fairness, PF . In Fig. 6.13d we
observe that the only difference between the PF solution and the GSR solution
lies in the selected channel of node 8. This similarity can be understood by the fact
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(c) Maximize Jain’s fairness index.
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(d) Maximize proportional fairness.

Figure 6.13: Different channel allocations for a randomly-generated 12-node net-
work.

that proportional fairness, unlike Jain’s fairness index, takes into consideration not
only the output rate of each node but also its input rate. Overall, in this example,
the optimal solution for Proportional fairness coincides with the optimal solution
for Normalized Jain’s index, and appears as a good trade-off between maximiz-
ing throughput or fairness, as it offers both a GSR value and J value that are
remarkably close to their optimal values.

Upgrading from IEEE 802.11g to 802.11n

Our second example illustrates how our model can help when considering an up-
grade of the IEEE 802.11 standard amendment deployed over the APs of a WLAN.
More specifically, while the 802.11g amendment is still widely used, its maximum
data rate of 54Mbps can be viewed as insufficient in some cases. Upgrading to
802.11n can be an attractive solution as it enables higher data rates and also im-
plements the frame aggregation feature. However, by aggregating frames, there is
a potential risk in deepening the effect of starvation that some nodes may already
face. Therefore, a thorough analysis of an upgrade to 802.11n must include the
benefits both in terms of overall throughput and fairness.

We consider the four, six, and ten-node networks presented in Section 6.3.1
together with the input rates given in Table 6.3. Let us denote by k the number
of frames aggregated in each transmission. First, we run our model using IEEE
802.11g at 54Mbps (without aggregation, k = 1). Then, we rerun our model on the
same network but using IEEE 802.11n at 65Mbps, while considering two possible
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sizes for the frame aggregation, k = 4 and k = 16. We calculate the throughput
gain the network experiences with aggregation, as opposed to without, as well as
the Normalized Jain’s index.

Table 6.10 shows the associated results. We observe that the gain in throughput
is typically around 85% when aggregating four frames, while it reaches nearly 230%
if frames are aggregated by batches of 16. We include in Table 6.10 the values
found for the normalized Jain’s index. It appears that frame aggregation has
very little effect on Jain’s index suggesting that the medium sharing between the
nodes remains fair, regardless of the aggregation features. Based on these results,
upgrading from IEEE 802.11g to 802.11n appears to be an attractive option.

Scenario T.G. k = 4 T.G. k = 16 NJ k = 1 NJ k = 4 NJ k = 16
four-node network 86% 239% 0.981 0.965 0.953
six-node network 84% 233% 0.892 0.865 0.848
ten-node network 87% 238% 0.890 0.857 0.838

Table 6.10: Evaluating the gain in upgrading to IEEE 802.11n.

Discussion

We use this final section to discuss the complexity of the proposed modeling ap-
proach and compare it to our previous work. We then shortly review the solutions
we implemented thus far as well as some potential improvements to the framework.

Modeling complexity

In this section, we explore how the computational complexity of our modeling
framework increases as the size of the WLAN under study grows. Many existing
modeling approaches [36, 37, 42, 83] and our previous model presented in Chap-
ter 5, make use of a single Markov chain to describe the entire WLAN. The model
presented here revolves around a Divide-and-Conquer approach that breaks the
original problem into a set of smaller problems, each being solved individually as
a smaller Markov chain.

Unfortunately, during this thesis we were not able to derive a closed-form ex-
pression for the number of states in the Markov chains involved in our modeling
approach. This exercise is made difficult as the exact values depend significantly
not only on the number of nodes in the network, N , but also on the network’s
density, aka the average node degree. We nonetheless provide an empirical study.

We randomly generate thousands of conflict graphs with size varying from N =
5 up to N = 14. We sort them into five groups based on their density: average
node degree of less than 3, between 3 and 4, between 4 and 5, between 5 and 6,
and between 6 and 7. Then, we calculate the mean number of (sending) states
per Markov chain inside every density group. Figure 6.14 shows the corresponding
results. As expected, the average number of sending states per subnetwork grows
with increasing values of N . However, even for N = 14, the mean number of
states per Markov chain tends to lie around 8, meaning that most involved Markov
chains are very small. Figure 6.14 suggests that high-density networks tend to
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result in slightly larger Markov chain. Indeed, consider the subnetwork b16 =
[ ON ON ON ON ] for the four-node network of Fig. 6.4. Three possible (sending)
states exist: [ 1 0 0 1 ], [ 0 1 0 1 ], and [ 0 0 1 0 ]. However, if we remove the edge
between nodes 1 and 2, then only two (sending) states are possible: [ 1 1 0 1 ] and
[ 0 0 1 0 ]. In the ultimate low-density network with no edges, there would be a
single sending state: [ 1 1 1 1 ]. More generally, the fewer edges in a conflict graph,
the smaller the density and the smaller the mean number of states per Markov
chain.

The subplot in Fig. 6.14 shows the number of states in the classical single-
chain Markovian model, aka Model A. As expected, the mean number of states is
significantly larger (two orders of magnitude) when using a single Markov chain as
opposed to a series of smaller Markov chains, and can lead up to several hundreds of
states when the number of nodes closes 14. Hence, we chose to have a large number
of smaller Markov chains, keeping in mind that the last stage of our approach,
aiming to combine the solutions found for each subnetwork, is a simple summation
of the stationary probability distributions over all the subnetworks using the law
of total probability [84].

Overall, by splitting the original problem into many smaller problems, whose
solutions can be easily parallelized, our Divide-and-Conquer strategy circumvents
the dimensionality curse associated to large Markov chain for conflict graphs having
up to a dozen nodes. In practice, with a non-optimized implementation, models
are typically solved at a click-speed for N around 4 or 5, and within a couple of
seconds for N near to 10.

Figure 6.14: Number of (sending) states per Markov chain (subnetwork) as a func-
tion of the network’s size and density.
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Contributions and limitations

The presented modeling framework contains substantial improvements to its pre-
decessor, Model A. The paradigm shift from a single Markov chain to a series of
smaller Markov chains offers many possibilities for parallelization. Moreover, it
allows us to define separate Markov chains and avoid having preempted or syn-
chronizing nodes, making Model B significantly easier to comprehend. Although
Model B has more information on input (data rate and frame size of each AP), and
several more sophisticated computations are added, we believe that this intricacy
is justified by the increased accuracy and applicability.

Another important advantage of Model B is that it incorporates different data
rates and frame sizes. However, it can be argued that the implementation itself of
the backoff function and the computation of each node’s achieved throughput are
done in a less than elegant manner. The backoff factor is simply the quadratic fit
of an observed function. The heterogeneous data rates require an intricate compu-
tation of the final attained throughput that involves manipulating neighborhoods
and cliques. The reason this mechanisms are complex is because they were addi-
tions to a modeling idea that already existed. Our initial idea was to develop a
discrete time Markovian model that revolves around the Divide-and-Conquer ap-
proach. Only later did we decide that adding heterogeneity to the nodes would
allow us to expand the set of possible applications by bridging the gap between our
model and the simulated WLANs.

As we believe that these modeling problems can be cleverly solved, we propose
in the next chapter an enhanced framework. Model C is specifically designed to
accommodate current WLAN mechanisms, some of which were never consider in
the modeling frameworks we proposed so far.





Chapter 7

Model C: Channel Bonding
in IEEE 802.11ac

Introduction

During the course of this thesis, we constantly upgraded our models to make sure
they follow current trends in WLANs. A major change in the performance of
WLANs occurred as IEEE 802.11ac became widespread over the last several years.
The 802.11ac standard amendment offers higher data rates than any of its prede-
cessors, achieved by using a series of techniques such as channel bonding, frame
aggregation, and high MCS indexes (detailed in Chapter 2). Our final Marko-
vian model is conceived specifically for WLANs with highly heterogeneous nodes,
such as those in 802.11ac. The model relies on the Divide-and-Conquer approach
described in the previous chapter, however, this time we use a Continuous Time
Markov Chain (CTMC) to model the network.

The transition from discrete to continuous time can be done almost seamlessly,
yet its effect on the precision and versatility of the model is far from negligible.
Having continuous time means that the nodes’ output rates, provided by our model,
are now a proportion of time and no longer a proportion of medium access. Thus,
calculating a node’s attained throughput becomes a trivial task instead of a complex
manipulation of neighborhoods and cliques. More importantly, it allows us to avoid
an entire layer of modeling, resulting in higher-accuracy predictions.

This versatility of the new framework allows us to perform an extensive explo-
ration of the effects channel bonding has on resource sharing. We investigate issues
of fairness and throughput maximization in different network topologies. The new
study allows us to develop insights into the best practices for configuring channel
bonding in 802.11ac networks.

In this chapter, we present our continuous time Markovian model that uses
the Divide-and-Conquer approach. We begin by detailing how we can recalculate
the backoff factor function so that we obtain its closed-form. We then present
the modeling approach and validate its accuracy using ns3 simulation. In the
application section, we present a study of channel bonding in 802.11 networks and
its impact on the performance of the network. We conclude this chapter with a

77
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short discussion on the strengths and limitations of the modeling approach, as well
as some possible improvements.

Closed-form backoff factor α

There are two major improvements that we implement in Model C: continuous time
Markov chains and a closed-form expression for the backoff factor α. We remind
that α is the ratio between the average backoff duration and the average frame
transmission duration (detailed in Section 6.2.1 of Chapter 6). Typically, a small α
value indicates large frame sizes and/or low data rates. We found that in the FIM
topology of Fig. 7.1, the middle node’s throughput can be modeled as a quadratic
function of the backoff factor, denoted by f(α). In the previous chapter, we simply
provided the least squares fit for f(α) that we then implemented in Model B.

11 22 33

Figure 7.1: Conflict graph of a three-node FIM network.

After analyzing the behavior of the FIM topology in more detail, we concluded
that there exists a straightforward computation of f(α). Figures 7.2 and 7.3 depict
an example of a sequence of frame transmissions for a small and a large value of α,
respectively. All three nodes are saturated and they are sending frames of the same
size over a channel with the same data rate. The vertical dashed/white rectangles
depict the periods when node 2 senses an idle medium.

  11

  22

  33 time

Figure 7.2: Resource sharing for a small α.
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  3 3 time

Figure 7.3: Resource sharing for a large α.

When α is small, it is unlikely that both nodes 1 and 3 are simultaneously in
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backoff, leaving almost no opportunities for node 2 to transmit as shown in Fig. 7.2.
As the value of α grows, it becomes more likely that node 2 senses an idle medium
and thus the node obtains more channel access as shown in Fig. 7.3.

The probability that node 2 detects an idle medium can be calculated as:

Pidle =

(
Tbackoff

T

)2

, (7.1)

where Tbackoff and T are the average backoff and frame duration, respectively, as
defined in Section 2.2 of Chapter 2, and assuming independence of node 1 and 3.
Using Eq. 7.1 we can now calculate the mean time needed for node 2 to decrement
its backoff to zero, i.e., the average time node 2 has to wait between two frame
transmissions:

Twaiting =
Tbackoff

Pidle
. (7.2)

Analogously to Eq. (2.4) of Chapter 2, we can calculate node 2’s achieved through-
put as the ratio between its frame size and the time needed to send that frame:

t2 =
L

Twaiting
, (7.3)

and, finally, node 2’s output rate is:

y2 =
t2

t2,max
. (7.4)

We verify our method by comparing the output rate node 2 obtains in simula-
tion, the quadratic fit we used in Model B, and the newly calculated closed-form
y2. Figure 7.4 shows the results. It is clear that the new alpha cannot significantly
improve the accuracy of the model, however it represents a notable refinement
to the conceptual complexity of Model C and a considerable advancement in our
understanding of the system.

Modeling Approach and Algorithm

Our modeling framework is based on the idea that any unsaturated WLAN with
an arbitrary topology can be modeled as a collection of simpler, saturated WLANs.
We provide below a summary of the proposed model that implements Continuous
Time Markov Chains (CTMCs) to represent the WLAN. We remind that this
framework is largely based on Model B and we advise that Chapter 6 be read
beforehand. However, the current chapter can be read on its own when only the
model’s high-level description is sufficient.

Network decomposition

In a WLAN, any unsaturated node that experiences periods of activity where it
occupies or wishes to occupy the channel, and periods when it is idle because of the
absence of frames to be sent. We refer to these two periods as the node’s ON and
OFF regimes. In a network of N nodes, there can be at most 2N different combi-
nations of nodes being in the ON or OFF regime. These combinations represent
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Figure 7.4: The backoff function in simulation and in the two models.

our subnetworks. In every subnetwork, a node is either saturated (if it is ON) or is
completely removed from the subnetwork (if it is OFF ). Depending on the nodes’
input rates (see Section 4.1), some subnetworks are much more likely to occur than
others. For example, in a WLAN where all nodes are saturated, i.e., all the input
rates xn = 1, all nodes have a frame to send at all times and only a single subnet-
work exists. This leads us to calculate the subnetwork’s occurrence probability. Let
us denote by bi (i = 1, . . . , 2N ) the i-th subnetwork whose occurrence probability
is calculated as:

βi =
∏

n|bi(n)=ON

xn
∏

m|bi(m)=OFF

(1− xm) , (7.5)

where bi(n) is the regime of node n (ON or OFF ) in subnetwork bi.

Representing a subnetwork as a Markov chain

The next step is to solve all subnetworks independently of each other. We choose
to model the subnetworks as CTMCs and in this section we detail how we calculate
the states and transition probabilities of those Markov chains.

Finding the states of the Markov chain, their possible transitions and
transition probabilities

Knowing that node n is ON or OFF does not fully inform us whether the node is
currently sending or not. For this reason, we define the set of the network’s sending
states, denoted by S. S contains all combinations of sending states sk ∈ {0, 1}N
that satisfy the rule that two neighboring nodes cannot be simultaneously sending.
We denote by Si the subset of S containing all the sending states associated to the
subnetwork bi such that they satisfy:
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1. if bi(n) = OFF then node n is never sending (sk(n) = 0, ∀sk ∈ Si)

2. if bi(n) = ON and n has no sending neighbors, then n is sending.

The first rule is fairly easy to deduce, since a node that has no frames to send
cannot be in transmission. The second rule is inspired by CSMA/CA’s functioning
and the works of Durvy et al. [37] where the authors show that CSMA/CA tends
to maximize the number of concurrent transmissions in order to achieve higher
spatial reutilization.

Once we have the set of sending states for every subnetwork, we proceed by
calculating the probabilities of the transitions between them. We consider that a
transition from sending state sk to s` is possible if:

1. one node n changes from sk(n) = 1 to s`(n) = 0 and one node n changes
from sk(n) = 0 to s`(n) = 1, or;

2. k = l, i.e., self-transition,

and all other transitions are considered to have a probability of zero. These two
rules capture the fact that it is highly unlikely for two nodes to independently start
(or finish) transmitting at the exact same time. If the transition from state sk to
s` has a non-zero probability, then we calculate that probability as:

Pk,` = C
∏

n|s`(n)=1

1

1 +
∑

m∈wn

1bi(m)=ON
, (7.6)

where C is a normalizing constant that ensures
∑

`≥1 Pk,` = 1. We denote by
wn the set of neighbors of n that compete with n for medium access, i.e., nodes
that are ON and that do not have a currently transmitting neighbor. In short,
we consider that n and its competing neighbors have an equal chance of gaining
medium access. For a more detailed explanation, we refer to Section 6.2.4 of the
previous chapter.

Calculating the steady state probabilities and introducing holding times

So far, for every subnetwork bi we have a DTMC that is fully defined by its states
and their transition probabilities. We now proceed by describing how we solve each
DTMC and how we then transition to a CTMC.

Because some transitions between sending states are impossible, it may happen
that the DTMC is not irreducible. Should that be the case, we simply divide the
DTMC into its irreducible components and solve them separately. We denote by Mi

the number of irreducible DTMCs in subnetwork bi. We enumerate the irreducible
DTMCs by cmi , m ∈ [1, ...,Mi] and we use πm

i to denote their corresponding steady
state probabilities. Section 6.2.4 in Chapter 6 explains this procedure using a
sample network for more clarity.

Next, we transition from discrete to continuous time by introducing the holding
times of sending states. In the case of a WLAN, it is logical that the holding
times of the sending states represent the durations of the frame transmissions.
For example, should the middle node in FIM network of Fig. 7.1 be sending, i.e.,
sk = [ 0 1 0 ], then we expect that the holding time of that sending state can be
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modeled as the middle node’s transmission time. As several nodes are potentially
transmitting in a given state sk in the subnetwork bi, we calculate holding time of
sk, hi(k) as:

hi(k) =
1∑

n|sk(n)=1

1
Tn

, (7.7)

where Tn is the transmission duration of node n as defined in Eq. (2.3) of Chapter 2.
Then, we obtain the solution to each irreducible CTMC by applying:

µi(k) =
πkhk∑

s`∈Sm
i

π`h`
, (7.8)

where Sm
i ∈ Si is the set of sending states associated to the m-th irreducible

Markov chain (clearly, Si = Sm
i when the subnetwork has a single irreducible

Markov chain).
It is important to note that in the case of multiple irreducible CTMCs, we need

to calculate the entry probability of each chain. In such cases, we refer once again to
the work of Durvy et al. [37] and try to replicate the idea that CMSA/CA networks
tend to maximize the number of concurrent transmissions by assigning larger entry
probabilities to the irreducible CTMCs with a larger number of transmitting nodes.
We denote the entry probability of the m-th irreducible CTMC of subnetwork bi by
ω̃m
i and we refer the reader to Section 6.2.4 of Chapter 6 for a detailed explanation

of its calculation.

Calculating output rates and achieved throughputs

Finally, we can calculate node n’s output rate using Equation (7.9) that is simply
the sum product of the probabilities of all the subnetwork × Markov chain ×
sending state combinations in which node n is sending.

yn =

2N∑
i=1

1bi(n)=ON × βi ×
Mi∑
m=1

(
ω̃m
i ×

∑
k|sk∈Sm

i

(
1sk(n)=1 × µm

i (k)
)) . (7.9)

It should be noted that the passage from DTMC to CTMC allows us to largely
simplify the computation of a node’s achieved throughput. When using DTMCs,
the node’s output rate can be seen as the proportion of medium accesses the node
obtains in its neighborhood, thus its achieved throughput depends on its own data
rate as well as the data rate of its neighbors (see Section 6.2.5 in the previous
chapter). On the other hand, when using continuous time, the node’s output
rate yn is the percentage of time the node occupies the channel and obtaining
its achieved throughput is as simple as multiplying yn by the node’s maximum
achievable throughput:

vn = yn × tn,max . (7.10)

This simplification allows for two distinct improvements of the model. First,
the computation itself is less complex and requires only the knowledge of the node’s
maximum achievable throughput. Second, we are no longer obligated to introduce
another modeling hypothesis, i.e., derive the maximum throughput achievable per
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clique, and instead we use an exact and measurable value, making our predictions
more accurate. The second improvement is especially important in networks with
highly-heterogeneous nodes. In 802.11ac WLANs, for example, nodes can easily
have a ten-fold difference in their maximum achievable throughputs. In such cases,
having the exact value and not a clique-average can highly influence the model’s
accuracy.

Algorithm

Because Model C is largely based on Model B, Algorithm 3 presents only the
modifications highlighted in blue.

Algorithm 3 Model C

1: ...
2: Irreducibility and steady-state probabilities:
3: If the Markov chain is not irreducible, divide it into its Mi

4: corresponding irreducible Markov chains, otherwise Mi = 1
5: Calculate the steady state probability for each of the Mi chains
6: Introduce the holding time hi(k) for sending state sk of subnetwork
7: bi using Eq. (7.7)
8: Calculate the solution of the CTMC using Eq. (7.8)
9: ...

10: Adjusting to the IEEE 802.11 parameters:
11: Calculate the closed-form backoff factor α described in Section 7.2
12: Determine the set of dominant and dominated chains
13: Calculate the modified weighting factors
14: ...
15: Combining network solutions:
16: Combine the solutions of the different subnetworks to calculate
17: the output rate yn of node n using Eq. (7.9)
18: Calculate the throughput tn of node n using Eq. (7.10)

Model Validation

We use this section to validate the accuracy of our model by comparing its predicted
throughput to simulation results. Analogously to previous chapters, we validate the
model by comparing its prediction to the results delivered by a network simulator.
All our simulations are performed in the ns3 discrete-event network simulator [80]
using the IEEE 802.11ac standard amendment. We simulate the system described
in Section 4.1 of our Preamble, where a WLAN is composed of several APs that
send traffic to their associated stations. APs have different ON and OFF periods
that result in different input rates (see Eq. (4.1) in Preamble). All APs generate
datagrams of 1500 bytes that they transmit to their associated stations. We present
here the results for the nine-node network of Fig. 7.5 and the ten-node network of
Fig. 7.6.

The specific parameters regarding the rate of frame aggregation, channel bond-
ing, MCS, and the input rates of all nodes are summarized in Tables 7.1 and 7.2.
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Figure 7.5: Conflict graph of a nine-node network.
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Figure 7.6: Conflict graph of a ten-node network.

x1 x2 x3 x4 x5 x6 x7 x8 x9

MCS 9 8 7 1 4 6 5 2 3
Channel size 40 20 80 40 20 80 40 20 80
Frame aggr. 4 4 8 2 8 4 2 4 8
Input rate 0.5 0.2 0.7 0.4 0.9 0.3 0.8 0.6 0.9

Table 7.1: Traffic parameters for the nine-node network.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

MCS 9 8 5 1 3 5 7 2 4 6
Channel size 40 80 20 40 20 80 40 80 20 40
Frame aggr. 2 4 8 8 8 4 4 2 2 8
Input rate 0.5 0.6 0.2 0.4 0.9 0.3 0.8 0.7 0.9 0.1

Table 7.2: Traffic parameters for the ten-node network.

In order to compare the model to the simulation data, we need a dataset of
measurements and a definition of the relative error we use. Similarly to our previous
model validations, we obtain our dataset by fixing the input rates of all nodes except
for one, and we then vary the input rate of that one node in the interval [0, 1] (recall
that xn = 0 and xn = 1 mean that node n has no frames to send and node n is
saturated, respectively). The varying input rate takes 11 different values (0, 0.1,
0.2, ..., 1). To make sure we obtain a representative value of the nodes’ output rates
we execute 20 simulation runs for every scenario. In total, we obtain N × 11× 20
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different samples for a network of N nodes. We then run our model using the same
parameters as the simulation scenario and we obtain our predicted output rate,
denoted by ỹn. Finally, we calculate the relative error as:

e =

N∑
n=1

|ỹn − yn|
yn

, (7.11)

where yn is output rate of node n provided by the simulator, i.e., our ground truth.
Note that when yn and ỹn have a value lower than 0.1 we remove that data point
from the relative error dataset, as even small differences between the two values
result in abnormally large relative errors.

The cumulative distribution function (CDF) of the relative errors for the nine
and ten-node network is shown in Fig. 7.7. In general, we obtain a mean relative
error of 9.03% for the nine-node network and 6.48% for the ten-node network, with
a median of 7.09% and 4.86%, respectively. In both networks the relative error is
rarely greater that 20% and it never exceeds 50%.

Figure 7.7: CDF of the relative error.

Figures 7.8 and 7.9 show the evolution of the achieved throughputs of several
nodes when node 1 and node 10 vary their demanded throughput, i.e., input rate, in
the nine and ten-node network, respectively. In the interest of legibility, both figures
show only several selected nodes that are representative of the general behavior of
all nodes. Both figures show node n’s estimated throughput in solid lines (named
Model n) and the average simulation scenario throughput in discrete points (Simu
n).

In the nine-node network, the varying demanded throughput of node 1 mostly
impacts its one-hop neighbors. Nodes 2 and 3 need to forgo a part of the resources
they use in order to accommodate the newly increased demand of their neighbor
node 1. Nodes located at several hops from node 1, such as nodes 7 and 9, are only
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Figure 7.8: Nine-node network of Fig. 7.5: varying the input rate of node 1.

slightly affected by the dynamics happening at the right-hand side of the network.
As node 1’s demand varies, noded 7 and 9 keep an almost constant throughput
both in the simulation and in our estimation. We notice similar behavior in nodes
5, 6, and 8.

The results for the ten-node network show similar tendencies, presented in
Fig. 7.9. This time we vary the input rate of node 10. As node 10 approaches
saturation, we notice the behavior of a flow-in-the-middle topology composed of
nodes 8, 9, and 10. In these topologies, the edge nodes ally in order to maximize
their throughput, at the expense of a starving node in the middle [20]. As node 10
goes from 0Mbps to almost 80Mbps, node 8 nearly doubles its initial throughput
and node 9 slowly starts to experience starvation. Remote nodes show almost no
change in their achieved throughputs, such as nodes 1 to 5. As in the nine-node
network, the proposed model manages to accurately capture the tendencies of all
nodes.

Finally, it should be noted that a single 60 seconds simulation run of the ten-
node network with the parameters in Table 7.2 in ns3 takes, on average, 21 minutes
to execute. The unoptimized implementation of the proposed model takes roughly
3 seconds for the same network. We used our laboratory’s Dell Inc. PowerEdge
R630 workstation with 2 Intel(R) Xeon(R) CPUs E5-2697 2.60GHz, 28 cores, and
252 GB RAM.

In summary, we found that our model provides relative errors generally smaller
than 10% for networks of different topologies and different levels of node hetero-
geneity. Moreover, we obtain our model’s solution at a fraction of the time needed
for an ns3 simulation. In the next section, we take advantage of our model’s pre-
cision and its possibility to adapt to 802.11ac parameters to study the impact of
channel bonding in several network scenarios.
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Figure 7.9: Ten-node network of Fig. 7.6: varying the input rate of node 10.

Channel Bonding in IEEE 802.11ac

Channel bonding is one of several techniques implemented in recent 802.11 stan-
dard amendments that allow for a significant increase in the available data rates.
However, having larger channels can also lead to denser neighborhoods and there
is a trade-off to be made between a high data rate and a large set of neighbors.
We use this section to explore a series of channel bonding scenarios that gradu-
ally increase in complexity. First, we study the impact of channel bonding on a
network’s performance and examine how well channel bonding performs when the
nodes’ MCS indexes and frame aggregation rates vary. Next, we study a series of
saturated four-node networks with different topologies, allowing us to have more
insight into the best practices for proper configuration of WLANs under different
given performance metrics. Finally, we present how the model helps us find the
optimal channel bonding configuration of a given network with respect to a given
performance metric.

Impact of MCS and frame aggregation on channel bonding

We consider a WLAN containing four APs in close proximity that either share
a single 80MHz channel, or use four non-overlapping 20MHz channels. All APs
are saturated and generate datagrams of 1500B on an error-free channel. We
acquire the AP’s attained throughputs through simulations in the ns3 network
simulator [80]. The four APs, on average, obtain the same throughput, meaning
that the only quantity we need to monitor is the overall network throughput, V ,
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calculated as:

V =

4∑
n=1

vn , (7.12)

where vn is the achieved throughput of AP n. Figure 7.10 shows the network
throughput for MCS indexes 0 to 8. We also vary the maximum number of MPDUs
the nodes aggregate in every frame, called the aggregation rate. Note that the three
aggregation limits defined in Section 2.1.3 of Chapter 2 override our aggregation
rate. This means that for some MCS index and channel size combinations the
actual number of aggregated MPDUs will be smaller than our aggregation rate. For
example, when using MCS0 and a 20MHz channel, we can at most aggregate two
MPDUs of 1500B due to the limit on the maximum transmission duration. In the
following simulation results, we vary the aggregation rates from 2 to the maximum
number of MPDUs and use either a shared 80MHz channel or four separate 20MHz
channels.

Figure 7.10: The maximum network throughput as a function of MCS with varying
channel size and frame aggregation rate.

In agreement with previous works on the performance of frame aggregation [26,
49], Fig. 7.10 shows that the network throughput always increases with higher
frame aggregation rates. The same is true for increasing the nodes’ MCS indexes
when the stations and APs are close enough to support the denser modulations.
Moreover, we notice that the higher-order MCS indexes are more impacted by the
changing frame aggregation rates and channel sizes. Specifically, the best and worst
network throughputs for MCS0 are around 30Mbps and 23Mbps. In contrast, when
using MCS8 we see an almost three-fold increase in throughput between the lowest
(112Mbps) and the highest available throughput (313Mbps). Overall, we notice
an over 15-fold increase in throughput when moving from the worst case scenario
(MCS0, 20MHz channel, 2 MPDUs) to the best-case one (MCS8, 80MHz channel,
maximum number of MPDUs).

We now study the impact of channel bonding under different network parame-
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ters. Figure 7.10 shows that both the highest and the lowest network throughputs
for all MCS indexes are achieved using channel bonding, i.e., a single 80MHz chan-
nel. The lowest throughput is achieved with the aggregation rate of 2 MPDUs, and
the highest with the maximum possible aggregation rate. In other words, when
we have no information about the frame aggregation rate, using 20MHz channels
appears to be the safe option, as it will never provide a throughput as low as a
badly configured 80MHz network. However, if we know that the APs are likely
aggregating more than 8 MPDUs, then we can easily gain up to 40Mbps by simply
using an 80MHz channel.

We identified several reasons that explain the described behavior and conclude
that when choosing an 80MHz or a 20MHz channel there is a trade-off to be made
between four factors: the capture effect, the maximum aggregation rate, the guard
intervals, and the DCF overhead. When all four APs share the 80MHz channel,
sometimes transmissions will happen simultaneously and benefit from the capture
effect. As explained in Section 2.1.1 of Chapter 2, the 80MHz channel includes the
guard intervals separating the different 20MHz channels, resulting in data rates
slightly over four times higher that a single 20MHz channel. Because of the higher
data rates, transmissions are shorter. Shorter transmissions also allow for the ag-
gregation of more MPDUs at once, giving a large advantage to the 80MHz channel
(see Section 2.1.3 in Chapter 2). However, another side effect of short transmissions
is that the DCF overhead on the 80MHz channel becomes too important relative
to the data transmission time. This gives the 20MHz channels an advantage as, on
average, we send four frames on every DCF overhead.

In summary, our comparison shows us that using channel bonding in our sam-
ple network of four fully-connected APs is more beneficial when the APs aggregate
more MPDUs, especially when using higher MCS indexes. When nodes aggregate
less than 8 MPDUs, it is better to use separate channels and have concurrent trans-
missions to limit the effect of DCF overhead. Overall, we come to the conclusion
that finding the optimal channel configuration is far not straightforward even in a
simplified (saturated, fully-connected) network. In the rest of this section we try to
clarify and interpret the practical implications of these findings on networks with
different topologies.

Saturated networks with arbitrary topologies

We are now interested in how introducing the notion of topology affects the per-
formance of channel bonding. In the previous section, all nodes were statistically
identical and obtained, on average, the same throughput. We now investigate
the impact of channel bonding on issues of fairness in channel access in networks
with arbitrary topologies, i.e., not fully-connected or edgeless conflict graphs. We
use proportional fairness to quantify the degree of equity in resource sharing ex-
perienced by the nodes. We calculate the proportional fairness for a given de-
manded/achieved throughput combination as:

PF =

N∑
n=1

log
vn
tn

, (7.13)

where tn and vn are the demanded and achieved throughput of node n, respectively.
When maximizing proportional fairness we are looking for the channel allocation
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Figure 7.11: Enumeration of available channels.

that renders the PF value closest to zero, i.e., allow nodes with higher throughput
demands to have higher obtained throughputs without creating starvation in low-
demanding nodes.

We study the four-node networks in Fig. 7.12 and we consider the scenario where
every AP can choose one of the seven wireless channels depicted in Fig. 7.11. This
setup results in 74 = 2, 401 possible channel allocations. We use a quadruplet to
denote the current channel allocation, e.g., {5, 2, 7, 6} denotes the allocation of
channel 5 to node 1, channel 2 to node 2, channel 7 to node 3, and channel 6
to node 4. The channels in Fig. 7.11 that are vertically aligned use the same
frequency, e.g., the 80MHz channel 7 contains the four 20MHz channels 1 to 4,
as well as channels 5 and 6. Our initial conflict graphs are based on the physical
proximity of nodes that allows them to detect each others’ transmissions supposing
that they are all using the same channel. When a given channel allocation is chosen,
we can construct a new conflict graph as a sub-graph of the inital conflict graph.
The new graph reflects the modified neighborhoods as nodes are not necessarily
using overlapping channels. In the new conflict graph we keep the edges between
the nodes whose frequencies are at least partially overlapping. For example, the
allocation {1, 2, 3, 4} for the network in Fig. 7.12a renders an edgeless graph as
the four nodes use four separate channels. If the current channel allocation is
{7, 1, 2, 7} then we keep the edges between nodes 1 and 2 and between nodes 3
and 4.

We assume that all nodes are saturated, and they have an aggregation rate of 8
MPDUs using MCS0 or MCS8. We remind that when aggregating 8 MPDUs and
using MCS0 the highest throughput is obtained on the 80MHz channel, while for
MCS8 it is better to use 20MHz channels (see Fig. 7.10). This threshold behavior
allows us to have a wide variety of different optimal solutions by simply changing
the MCS index of one or several nodes. Once we fix the MCS indexes for all nodes,
we have fully defined all the parameters needed to run our model. We find the
optimal channel allocation by running our model on the 2,401 possible allocations
and we choose the allocation with the highest network throughput V or the highest
proportional fairness PF . Given how fast the number of channel allocations grows
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Figure 7.12: Initial conflict graphs of the four-node networks.

with both the network size and the number of available channels, the benefits of our
modeling approach are important as the model provides us a speedy and accurate
estimation of the nodes’ throughputs.

We begin with the four-node chain network in Fig. 7.12a in which all nodes are
using MCS8. For this scenario, we obtain the same channel allocation {5, 6, 5, 6}
as the optimal solution for maximizing both V and PF . Our results show that
if one of the edge nodes falls back to the MCS0, then the optimal allocation does
not change. However, should node 2 (or 3) switch to MCS0, the model proposes
us to switch to the channel allocation {7, 7, 5, 6} (or {5, 6, 7, 7}) if we wish to
optimize V . This allocation creates starvation in node 2 (or 3) as this node is now
in a the FIM topology [50]. The edge node takes advantage of having only one
neighbor that never gains medium access and increases its obtained throughput
to almost its maximum achievable throughput. While this solution maximizes
throughput, it does so by creating starvation in one node. If we wish to maximize
proportional fairness, it is still better to keep the nodes on separate channels and
use the allocation {5, 6, 5, 6}.

Next, we test the network in Fig. 7.12b. Once again we find that many of
the maximum throughput solutions consist in creating starvation in the middle
node 3. In fact, whenever node 3 and node 1 (or node 2) both use MCS 8, then the
maximum throughput solution is always {5, 6, 5, 7}, i.e., node 3 shares the channel
with node 1 and node 4 and thus experiences FIM starvation. In this network, it is
logical that maximizing throughput often means creating starvation in node 3, as
it will, on average, allow two other nodes to transmit simultaneously. In general,
we find that the solutions that maximize throughput tend to use larger channels
(channels 5, 6, and 7) than those maximizing fairness. When maximizing fairness,
we often have to separate the nodes on different channels, so that the unfavorable
topological position of a node, such as node 3, does not prevent it from achieving
a higher throughput.

Our last network is a cyclic network of four nodes depicted in Fig. 7.12c. Except
for the configurations when all nodes or all nodes but one use MCS0, the solution
that maximizes both network throughput and fairness is to use the {5, 6, 5, 6}
channel allocation. Interestingly, in this network, the maximum network through-
put is never achieved by creating starvation. Because of the circular nature of the
network, it is impossible to recreate the FIM topology without forcing starvation
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in two nodes. However, in that case the two high-throughput nodes cannot com-
pensate for the low throughput of the two others, and as a result the solution is to
always have a more fair resource sharing.

From the study of the four node networks, we conclude that the network’s
topology can highly influence the optimal choice of channel allocation, even in the
simplified conditions of a small saturated network. In the next section we extend
this study by applying our model to a larger unsaturated network.

Larger unsaturated network

Having studied several simplified network configurations, we are now interested in
the impact of channel bonding on a larger network where nodes are unsaturated
and have more diverse sets of MCS indexes and aggregation rates. We study the
network in Fig. 7.6 using the parameters defined in Table 7.3. Each of the ten APs
can choose to use one of the three channels in Fig. 7.13, where channels 1 and 2
are 80MHz wide and channel 3 is 160MHz wide. Analogously to the four-node
scenarios, we define the new conflict graph for every channel allocation by keeping
the conflicts between nodes belonging to at least partially overlapping channels.
This setup results in 310 = 59, 049 possible channel allocations.

1 2 80MHz

160MHz3

Figure 7.13: Enumeration of available channels.

Figure 7.14 shows the results we obtained when we maximize the network
throughput and the proportional fairness. We first notice that the two metrics
provide the same configuration for the first four nodes. This is the low-density
part of the network, where it is possible to completely separate the four nodes even
with only two non-overlapping channels. Although only node 1 can fully obtain its
demanded throughput on a 80MHz channel, all four nodes achieve at least 50% of
their demanded throughputs and none of them are in starvation. On the left-hand
side where the network becomes denser, we can no longer provide a separate chan-
nel for every node and the two performance metrics provide very different solutions.
If we maximize the network throughput V , we still obtain a connected component
containing nodes 5 to 10. In this component, nodes 6 and 9 are analogous to the
middle node of an FIM topology and they experience starvation by obtaining a
throughput of 0.7Mbps and 1.1Mbps while demanding a throughput of 45Mbps
and 50Mbps, respectively. Their neighbors, however, obtain throughputs as high
as 79Mbps and the network throughput is V = 262Mbps. When maximizing the
proportional fairness PF , we notice that a chain network equivalent to the one in
Fig. 7.12b is created using nodes 6, 7, 8, and 10. Characteristically for the four-node
chain, the throughput is shared fairly as long as the node’s throughput demands
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are somewhat similar as it is too costly to create starvation in the two middle nodes
for the benefit of the edge nodes. However, the overall network throughput in this
case is almost 60Mbps lower than the maximum throughput configuration.
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(a) Network throughput, V .
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(b) Proportional fairness, PF .

Figure 7.14: Channel allocation solutions for maximizing different performance
metrics.

In general, we conclude that the optimal solution is highly dependent on the
nodes’ demanded throughputs and their levels of saturation by testing several sets
of configurations. However, we find that when optimizing the network through-
put V , the solution often involves using larger channels at the expense of creating
starvation in some nodes. The use of smaller (and separate) channels when max-
imizing proportional fairness PF leads to smaller overall network throughputs, as
we avoid the network’s inherent working that maximizes the number of concurrent
transmissions.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 V PF
MCS 8 7 4 0 2 4 6 1 3 5 NA NA
Aggr. rate 2 4 8 8 8 4 4 2 2 8 NA NA
tn 40 60 50 10 25 45 70 20 30 100 NA NA
vn: max V 40 48.7 34.4 5.8 17.5 1.1 44.0 10.7 0.7 79.7 282.6 -4.6
vn: max PF 40 48.7 34.4 5.8 17.8 12.2 9.5 8.8 20.4 27.7 225.3 -3.3

Table 7.3: Input parameters, demanded and obtained throughputs for the ten-node
network.

Discussion

Contributions and limitations

This chapter presents our final Markovian model for IEEE 802.11 networks. The
continuous time component makes Model C especially adapted to highly hetero-
geneous networks and increases its accuracy. By using continuous time, a node’s
output rate is the portion of time that node occupies the medium, a quantity from
which we can easily derive the node’s achieved throughput as shown in Chapter 2.

While the computational complexity of the model stays the same as for Model B,
we decreased its conceptual complexity by implementing a close-form expression
for the backoff factor and a straightforward computation of the nodes’ achieved
throughputs.
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The detailed study of channel bonding in 802.11ac WLANs offers insight into
the best practices to properly configure WLANs that use channel bonding. We also
show the importance of choosing the right performance metric when configuring
a network, as the optimal solutions may differ significantly from one metric to
another. However, the task of developing definitive and general guidelines for
channel bonding proves to be more complicated that we initially estimated and
remains to be completed.

Possible improvements

This chapter concludes our work on Markovian models, however there are several
extensions that, mainly due to time limitations, we were not able to complete.
We briefly discuss several of those extensions here and leave the more detailed
discussion for Chapter 9.

In all three models, we propose applications that are mostly brute-force based,
i.e., we perform a search in the complete set of possible configurations. While this
approach undoubtedly results in finding the optimal solution given a performance
metric, its execution time is far from optimal. With regards to our application in
channel bonding and assignment, we believe that there are smarter heuristics that
we could implement in the future that would render our model of greater practical
use.

Although our model’s execution is fully automatized, its implementation is not
optimized and could benefit from a significant speed-up if properly coded. More-
over, parallelization and dynamic programming (where we keep already known
solutions in memory) could also help in reducing the cost of running our model,
especially on large WLANs.

Finally, as we discussed in Section 4.1, our system description can sometimes
be seen as limiting. Although throughout this thesis we made sure to constantly
evolve our system, there are widely used WLAN mechanisms that we still have
not considered. In our work we assume symmetric conflict graphs, ideal radio
conditions, and only downlink traffic. In spite of having A future extension could,
at least partially, alleviate these constraints by modifying the proposed model as
well as the used simulation setup.



Chapter 8

Graph Signal Processing for
802.11 WLANs

Introduction

In the performance evaluation of networks, one can broadly identify at least two
large groups of modeling approaches: constructive and descriptive models [85].
Constructive models use the knowledge of the system to reproduce its behavior,
i.e., for a given set of input parameters, a constructive model provides an output
similar to the real system by mimicking its internal mechanisms. Descriptive models
suppose (almost) no knowledge of the internal system and simply require a dataset
of input/output values from which they derive a model that describes the output
as a function of the input. The availability of large datasets have made descriptive
models popular in many different fields of study.

The modeling of WLANs is mostly done by networking experts who use their
knowledge of the underlying system and, as a result, most of the models developed
are of constructive nature, as shown in Chapter 3. Constructive models can be
beneficial for both improving the network performance and for extending our un-
derstanding of that performance, as discussed in Section 1.2 of Chapter 1. Because
constructive models explicitly take into account some of the network parameters,
they can be easily used to study the impact of those parameters. However, a large
drawback of constructive models is their complexity and, generally, their lack of
scalability. The models reviewed in Chapter 3, as well as our Markovian models of
Chapters 5, 6, and 7, all suffer from scalability issues as even conceptually simple
models often demand high computational power.

Descriptive modeling, in most cases, completely surpasses the dimensionality
curse by modeling the network as a black box to which we provide an input and
from which we recover an output. In WLANs, some descriptive models are used in
problems such as device localization, traffic classification, and security, and more
rarely for performance evaluation. This chapter presents our last modeling ap-
proach that focuses on one such descriptive method inspired by the recent works
in the field of Graph Signal Processing (GSP). To the best of our knowledge, GSP
methods have so far never been applied to the performance modeling of WLANs.

95
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Related Works

A detailed overview of current GSP methods is out of the scope of this thesis and
of the author’s expertise. Instead, we provide several works that can guide an
interested reader to a number of pioneering works in the field.

A growing part of the data available to us today has an underlying network
structure, e.g., the friendship connections in a social network, the neural pathways
in the brain, or the links in a communication network. GSP emerged as a solution
to process the available data while accounting for its structure by representing
the underlying structure as a graph and the data as a signal on that graph. The
two pioneering papers [86, 87] of GSP were published only five years ago, making
GSP a relatively new field of study. Shuman et al. [87] propose a spectral analysis
approach using the graph’s Laplace matrix as the building block of GSP. From
the Laplace matrix, they go on to define elementary operations including filtering,
translation, and convolution. Sandryhaila and Moura [86] approach the subject
from an algebraic signal processing perspective and develop the discrete signal
processing of graphs (DSPG) methodology. The authors provide the basis of DSPG

by defining the adjacency matrix as the graph shift., i.e., the graph signal equivalent
of the time shift in time series. Using the graph shift they define graph filters, the
graph Fourier transform, and show how their methods can be used for Linear
Prediction (LP).

These two works established the groundwork for many following research ques-
tions. Sandryhaila and Moura adapted their methodology to Big Data analysis [88],
where they use product graphs to increase the efficiency of DSPG on Big data
by lowering the arithmetic cost of the algorithms, as well as making them suit-
able for parallel and distributed implementations. Chen et al. [89] extend these
works further and develop a sampling theory on DSPG and show how their theory
can be used for semi-supervised learning. There exists a large number of other
ML applications using GSP, including denoising [90] and graph signal reconstruc-
tion [91], semi-supervised classification [92], or community detection and clustering
on graphs [93,94].

GSP for WLANs

Graph signal processing is an emerging field of research that translates the theory
of classic Signal Processing (SP) to data that has an underlying structure repre-
sented as a graph. We use this section to first define the basic notions of GSP
for WLANs and to then present some of the methods we designed especially for
WLANs. The methods presented here are to a great extent inspired by the Discrete
Signal Processing on Graphs (DSPG) theory developed in [86].

Before diving into the methodologies we tested, we first wish to discuss the
intuition and reasoning behind the idea of applying GSP to WLANs. The mere
presence of an underlying structure in data does not mean that the data itself is
impacted by that structure. Hence, before applying GSP methods to WLANs, we
need to make sure that the structure is an intrinsic part of the network’s behavior.
WLANs, as was shown in Chapters 1 and 3, are undeniably influenced by their
topology. A node that has no neighbors is, in the general case, capable of achieving
a higher throughput that a node that has to share the available resources with other
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nodes. Moreover, we know that there are certain topologies, such as the three-node
FIM network of Section 1.3 in Chapter 1, in which a node can experience great
(dis)advantage because of its location in the topology. This chapter summarizes
our efforts to reproduce the behavior of a WLAN using GSP methods.

Basic definitions: Graph and signal

There are two definitions that are essential to any GSP problem: the graph and
the graph signal. A classic representation of a WLAN as a graph is the adjacency
matrix, defined as:

An,m =

{
1, if n and m are neighbors
0, otherwise.

(8.1)

Our definition of neighboring nodes is the one given in Section 4.1 of Chapter 4, i.e.,
our adjacency matrix is simply a matrix representation of the network’s conflict
graph.

The graph signal should be a quantity that is proper to each node in the graph
and that can be measured on both input and output. Hence, appropriate signal
values in our networks can be the input and output rate of a node (defined in detail
in Section 4.1 of Chapter 4). We remind that the input (output) rate of a node is
the normalized demanded (achieved) throughput of that node.

Having defined the graph and the graph signal, the question we want to answer
is: Can we use GSP to predict the nodes’ output rates given only their input rates,
the conflict graph, and no other WLAN-related knowledge?

Moving average filters

Classical SP provides us with the tools needed to analyze and transform signals
with the help of signal filters. A filter takes an input signal, transforms it, and
then provides an output signal. The most basic filter is the time shift, which takes
an input signal and delays it by one sample. In classic time series, the time shift
is easily defined, as time is an intrinsic component of the series and by definition
the sample at time t is preceded by the sample at time t− 1. Thus, the time shift
at time t, x̃t, is simply defined as x̃t = xt−1.

Our work on GSP for WLANs focuses on a single type of simple, yet powerful,
linear filters: the Moving Average (MA) filters. In classic SP, an MA filter can be
seen a a sum of weighted time shifts, as it computes the weighted average of the
P past input of a time series to obtain the current output signal. By taking the
average of a sequence of inputs and not solely a single value, we obtain a smoother
function on output, i.e., we create a low pass filter. For example, the left-hand side
of Fig. 8.1 shows a time series provided on input and then a time series obtained
on output from some arbitrary MA filter. We can formally write the MA filter as:

yt =

P∑
p=0

hpxt−p , (8.2)

where yt and xt are the output and input signal at time t, P is the filter order,
and hp is the filter coefficient for order p. The filter order simply tells us how far
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into the past input signals we need to look to construct the present output signal.
The coefficients, usually summarized in the vector h = [h0 h1 h2, ..., hP ], define the
importance of the input signal at a given order. For example, in SP we sometimes
encounter filters where the coefficients are all equal to 1

P so that the output signal
is the arithmetic mean of the last P input signals.

input

output

time

time

Figure 8.1: Classic signal processing (left) and GSP (right).

In classic SP, time is inherently ordered and we only need to decide how far
back we need to look to calculate an output signal. In GSP, however, we replace
the notion of time by the notion of space and we have to define how a node’s signal
propagates through the network. We do so by using a shift operator, denoted by
S, and slightly modifying Eq. (8.2) so that we obtain:

y =

P∑
p=0

hpS
px , (8.3)

where x and y denote the vectors of input and output rates, respectively.
One of the most common shift operators is the adjacency matrix, given in

Eq. (8.1). The popularity of the adjacency matrix can, at least partially, be at-
tributed to the fact that it allows for a quick diffusion of the signal in the network.
At order p, the entry of Ap

n,m represents the number of different walks of length
p from node n to node m. As a consequence, in a connected graph, the signal
from one node can reach any other node when the order of the filter is at most the
network’s diameter.

The right-hand side of Fig. 8.1 depicts the propagation of a signal in a six-node
network from the point of view of a single node. At order p = 0, the node only has
information about its own input signal, depicted in red. At order p = 1, the signal
from one-hop neighbors has reached the node, depicted in green, and so on. The
figure simply summarizes the idea that as we elevate the orders of A we reconstruct
the classic mechanism of message flooding by reaching one-hop neighbors, two-hop
neighbors, three-hop neighbors...

Our first attempts to model WLANs using GSP all revolved around using clas-
sic GSP methods. Thus, we tested a series of shift operators, such as the Laplace
operator, before coming to the same conclusion as the authors of [73], and de-
ciding that incorporating WLAN-specific knowledge into the model can be highly
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beneficial. The next section introduces a series of shift operators we developed
specifically for WLANs.

Adapting GSP to WLANs

Our adaptation of GSP methods for WLANs consists in modifying the shift opera-
tors and, to a lesser extent, the graph signal. From the different graph signals that
we tested, we found that using the input/output rate as input/output signal pro-
vides the lowest errors and all following results are based on that signal definition.
However, different shift operators have shown significantly varying results and we
use this section to present the reasoning behind their development. It should be
noted that we only present several selected shift operators that are (currently) the
final result of an extensive trial and error learning process, as we believe that pre-
vious operators are merely a stepping stone to the present ones, just as the present
ones will be to the future operators.

There are three main WLAN notions that we consider to be relevant to each
node and that our homemade operators capture:

1. The number of neighboring cliques.

2. The number of neighboring nodes.

3. The nuisance value of every neighbor based on its particular traffic parame-
ters.

To illustrate these issues, we begin by studying the two sample WLANs of Fig. 8.2.
The node in light gray has four neighbors in both WLANs, however, our expe-
rience shows that its performance is notably different in the two topologies. In
the left-hand side topology, the node is an aggravated version of the three-node
FIM topology (see Section 1.3 in Chapter 1). In such topologies, the gray node
experiences starvation as it has four nodes that can send frames independently of
each other. As a result, the node rarely senses an idle medium that would allow it
to send frames. In the right-hand side topology, i.e., a full-mesh network, all five
nodes are essentially equal, as they can all detect each others’ transmissions and
thus share the channel in a round-robin fashion. The work on the 802.11 perfor-
mance anomaly in [19] has shown that even in a full-mesh network, equity is only
achieved in the number of medium accesses and not in the duration of medium
occupation. This implies that the particular traffic characteristics of a neighbors
will, to a great degree, define how inconvenient that neighbor is: a neighbor with
a high input rate and high data rate might sometimes be less of a nuisance that a
neighbor with a lower input rate but also a lower data rate.

In order to quantify these metrics, we propose two homemade operators based
on modifications of the adjacency matrix: the Nuisance Value operator ANV, and
the Cliques and Neighbors operator ACN.

Nuisance value operator ANV

The nuisance value operator quantifies the impact of neighbors by taking into
account each neighbor’s specific traffic parameters. We already know that having
a neighbor that is highly demanding, i.e., has a large input rate, can be of great
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Figure 8.2: Conflict graphs of five-node networks.

11 22

Figure 8.3: Conflict graph of a two-node network.

nuisance. We also know that neighbors that use lower data rates can have a larger
nuisance value than those using higher data rates, as they need a longer time
to transmit their frames. In order to properly quantify the nuisance value of a
neighbor, we tested a simple topology of only two nodes, shown in Fig. 8.3.

First, we define the nuisance value experienced by node 2 because of node 1,
denoted by φ1,2. We calculate φ1,2 as the difference between the output rate node
2 can achieve when node 1 is not present in the network, i.e., y2 = x2, and the
output rate node 2 achieves when node 1 is present. Figure 8.4 reports the results
we found in simulation using ns3. Node 2 is always saturated, i.e., x2 = 1, and
has a fixed MCS index of MCS0 in Fig. 8.4a and MCS7 in Fig. 8.4b (the lowest
and highest MCS indexes available in both 802.11n and 802.11ac). Node 1 varies
its input rate in the [0, 1] interval and also varies its MCS index from MCS0 to
MCS7. We choose this type of variation for node 1 as we wish to discover how
both the input rate and the data rate impact the neighborhood of node 1. We first
notice that both figures represent two highly distinct patterns of behaviors, first a
linear increase in the nuisance value and then a constant period during which the
nuisance value has reached its maximum. In fact, we found that there are three
distinct regimes of resource sharing. The first one, not represented in our figures,
happens when x1 + x2 < 1 and in that case node 1 does not cause any nuisance to
node 2 as they can both achieve their demanded throughputs and φ1,2 = 0. The
second regime starts when x1 + x2 = 1 and φ1,2 linearly increases from 0 until it
reaches its approximated maximum value, denoted by Φ1,2:

Φ1,2 =

1
t1,max

1
t1,max

+ 1
t2,max

. (8.4)

Interestingly, the maximum nuisance value is achieved when node 1’s input rate
matches that value, i.e., when x1 = Φ1,2. Any further increase in the input rate of
node 1 will now change the nuisance value, representing the third and final regime
of resource sharing.

A more detailed study of Fig. 8.4 reveals that the largest nuisance happens
when node 2 has the highest MCS index of 7 and node 1 the lowest MCS index of
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(a) MCS2 = 0. (b) MCS2 = 7.

Figure 8.4: Nuisance value experienced by node 2 in Fig. 8.3 when node 1 is varying
its input rate and MCS index.

0. This is the classic example of the 802.11 performance anomaly, and our results
show that node 2 loses a little over 80% of the output rate it obtains when node 1
is not present. However, if node 1 is also using the slowest index MCS0, then is
can at most lose 50% of its output rate.

These results encouraged us to try and implement the maximum nuisance value
into our operator, ANV. Our idea is that the knowledge we have obtained on the
two-node sample can be generalized to a network of any arbitrary size by calculating
the nuisance value of any two nodes. We do so by defining the (n,m)-th entry of
ANV as:

ANV(n,m) =
Φm,n

N∑̀
=1

Φ`,n

A(n,m) , (8.5)

where the multiplication of the nuisance value by the adjacency matrix allows us
to keep the topological information and add to it the traffic information.

Cliques and neighbors operators ACN

A significant part of our work on 802.11 WLANs focuses on the importance of the
number of neighbors a node has and the number of cliques to which it belongs.
Our simulations have shown us a precise modeling of WLANS should include both
values, as a node that belongs to many maximal cliques of two nodes or to a single
maximal clique of many nodes can experience radically different resource sharing,
as the two topologies of Fig. 8.2 have shown. To quantify these values, we introduce
the matrix Ψ such that each entry on the main diagonal, Ψ(n, n), represents the
inverse of the sum of the number of neighbors and number of maximal cliques to
which node n belongs:

Ψ(n, n) =
1

neighbors of n+ maximal cliques of n
, (8.6)

and all other entries of Ψ are zero.
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We can now define our new shift operator as:

Ap
CN =

{
A0, if p = 0
1ApΨp, otherwise,

(8.7)

where 1Ap returns a matrix whose (n,m)-th entry is 1 if Ap(m,n) 6= 0, and 0
otherwise. Similarly to the previous operator, the multiplication of these matrices
allows us to keep both the topological information of A and add to it node-specific
information contained in Ψ. It should, however, be noted that from a purely SP
standpoint, this new matrix does not fully respect the definition of an MA filter
as the shift operator at every order is no longer simply a power of the initial
shift operator. While this deviation from the standard definition can cause a loss
of spectral interpretation for the obtained results, in no way does it harm the
applicability to WLANs or reduces the validity of the presented results.

Finally, our last operator is a convex combination of ANV and ACN:

δANV + (1− δ)ACN , (8.8)

where δ ∈ [0, 1]. The convex combination operator, originally proposed in [95],
should allow us to integrate the knowledge about the network’s topology as well
as the neighborhood of a node and its traffic parameters. It should be noted that
because it is a combination of two operators, this new operator will have twice as
many coefficients for any given order P .

Model Validation

The validation section of this chapter is slightly different than the ones presented
for the Markovian models. The GSP approach has a considerable learning phase
for which we need to provide a large dataset. Moreover, the networks we consider
need to be of several dozen nodes, so that the conflict graph is diverse enough to
allow for a real learning of its behavior and avoid quickly stepping into overfitting.
For these reasons, we decided to turn back to the ns2 simulator. The advantage of
ns2 over ns3 is that results can be obtained much faster, as the simulator codes the
WLAN in much less detail than its successor and in this initial phase of testing we
can afford to gain some speed at the cost of system fidelity. The speediness of ns2
has allowed us to test the model on several networks and make sure that we obtain
consistent errors. In the interest of brevity, we only present the results for two
topologies that are representative of the general behavior: a 42-node network with
an average node degree of 3 in Fig. 8.5a and a 41-node network with an average
node degree of 2 in Fig. 8.5b.

Before presenting the results, we first define the network scenarios. We use the
802.11g standard with nodes generating frames of 1000B sent over links of 54Mbps.
One of the main differences between our Markovian models and the GSP model
is the fact that the GSP model has two distinct phases of learning and testing.
In the learning phase, the model estimates the filter coefficients on a series of
training samples. We then use a different set of test samples to assess the model’s
accuracy in predicting the nodes’ output rates. More specifically, for each network,
we generate 200 samples: 100 training and 100 testing samples. Every sample has
its own set of input rates that are uniformly chosen in the [0.2, 1] interval. All
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(a) Conflict graph of a 42-node net-
work.

(b) Conflict graph of a 41-node net-
work.

Figure 8.5: WLANs used for the model validation.

nodes are generating Poisson traffic whose rate is chosen so that is satisfies the
node’s input rate. Each training and test sample is the average of 10 simulation
runs of 2 minutes each, so as to make sure that we obtain a representative value
for the node’s output rates. This means that in total we have 200 × 10 = 2000
simulation runs for any WLAN.

In the training phase, we firs calculate the vector of filter coefficients, h, for
every sample in the training set. We then simply calculate the average over all
the coefficients of the training phase to obtain the filter coefficients for the testing
phase. To assess the accuracy of both the training and the testing phase, we
calculate the mean squared error for the prediction made for every sample:

e =

√√√√√√√√
N∑
i=1

(yn − ỹn)2

N∑
i=1

y 2
n

, (8.9)

where ỹn is the filter’s prediction for node n’s output rate, yn, provided by ns2.
Figures 8.6 and 8.7 present the mean squared error as a function of the filter

order for four shift operators (A, ANV, ACN, and ANV + ACN) in modeling
(left) and prediction (right) for the 42-node and the 41-node network, respectively.
We first notice that there is a notable similarity between the results provided
by the operators A and ANV on one side, and ACN and ANV + ACN on the
other. Moreover, the first two operators largely underperform, as they only achieve
modeling errors of around 35% at order 15 for the 42-node network, and 30% at
order 13 for the 41-node network. Given that all the nodes use the same data rate,
it is no surprise that both matrices provide similar results, as their core information
remains the same. In prediction (Fig. 8.7b and 8.6b) the mean squared error is
systematically above 40% for both networks. These results lead us to believe that
the proposed operator lacks information and is not able to capture the network’s
behavior even for filter orders as high as 15.

The cliques and neighbors operator, ACN, and the convex combination provide
more promising results. In modeling, the mean squared error can be as low as 15%
for the 42-node network and close to 10% for the 41-node network. As expected,
the results in prediction are slightly less accurate, with relative errors little bellow
20%. When comparing the two operators one should be careful as the convex



104 CHAPTER 8. GSP IN WLANS

combination, at any order, contains twice as many coefficients as the cliques and
neighbors operator at the same order. However, this gives an ever larger advantage
to the ACN shift operator, as it provides similar results to the convex combination
operator with half the number of coefficients.

(a) Modeling. (b) Prediction.

Figure 8.6: Results for the 42-node network of Fig. 8.5a.

(a) Modeling. (b) Prediction.

Figure 8.7: Results for the 41-node network of Fig. 8.5b.

Lastly, we want to make sure that the obtained error is not highly dependent
on the size of our training/testing set. We compare the mean squared error as the
number of samples varies between 1 and 150 for the 42-node network in Fig. 8.5a
when using the ACN operator. Figure 8.8 shows these results. We first notice that
even for small dataset sizes, around 25 samples, the errors in both modeling and
prediction does not deviate more than 2 points between two consecutive sample
sizes. As we increase the size of the dataset, the error quickly approaches its
asymptotic value and we consider that in modeling it stabilizes around 50 samples,
while in prediction we need 75 samples to make sure the results are coherent. In
order to have a safety margin, we decided to use 100 samples in both modeling and
prediction. Note that other networks have been tested and provide similar results.
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Figure 8.8: Mean squared error as a function of the number of samples in the
training set.

While these results are of lower precision that the modeling approaches we
presented before, there are several encouraging reasons:

• The prediction error does not rapidly grow with the increasing orders, mean-
ing that the model is not overfitting to the network, i.e., the model learns a
real behavior of the network and not simply reproducing every sample.

• We can do better that the adjacency matrix by using operators specifically
designed for WLAN networks.

• The dimensionality curse is completely circumvented, as the most complex
part in solving each filter lies in the inversion of a matrix that can be easily
computer by today’s computers.

Conclusions

This chapter represents our latest work, and as such it contains many aspects that
need to be improved and/or completed. Specifically, due to time constraints on
our last collaboration, the application was never fully implemented and tested. We
use this concluding section to discuss one possible application and then several
drawbacks and possible improvements to the proposed modeling approach.

Application

The most important advantage of the GSP approach lies in its scalability with the
size of the WLAN. For this reason, we believe that such models can be used to
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reconfigure already existing large networks in real time. One such application is
the load balancing among the APs of a WLAN.

In a load balancing scenario, we envision a WLAN with a given number of APs
each with one or more connected stations. As many of our examples have shown,
the position of the AP inside the WLAN can highly impact its achieved throughput
and result in the AP having a much lower achieved than demanded throughput. In
reality, when an AP is experiencing starvation it means that its associated stations
do not acquire all the throughput they demanded. In some scenarios, redistributing
the demanded throughput of each AP by shuffling the associated stations among
neighboring APs can result in either a much higher overall network throughput or
in a more fair sharing of the available throughput among stations.

The GSP model can potentially be helpful in finding more optimal association
schemes for the stations and APs. The fact that the model is highly scalable would
allow us to adapt it to WLANs with dozens of APs and associated stations. Our
idea is to include the stations into the model and representing the input rate of
a node as the sum of the input rates of its associated stations. We can then try
to detect the APs that are struggling the most to achieve their input rates and
redistribute their load to neighboring APs by associating the stations with those
APs. We imagine that our approach can at first be applied only to one AP at a
time, before developing a more complete version in which the association process
in the entire network is optimized.

Contributions and limitations

To the best of our knowledge, our work is the first effort to apply GSP methods
to the modeling of WLANs. As such, it benefits from great novelty and gave us a
lot opportunities for exploration, but it also suffers from a lack of established and
confirmed theoretical foundation.

The work presented in this chapter is fully based on a trial and error exploration
during which we tested a large number of different shift operators and graph signals.
An important upside of the model is that we managed to improve the original
adjacency matrix filter and incorporate many WLAN-specific parameters. In the
author’s opinion, the most important part of this work is that it forces us to rethink
what we know about WLANs. Developing new shift operators requires finding the
set of parameters that are crucial to the current network behavior. The notions of
cliques, neighbors, and data rates are merely a small subset of the parameters we
have tested and of the parameters that can still be tested.

The computational simplicity of the approach itself, and not its development, is
remarkable. Solving large WLANs comes down to the inversion of a matrix whose
dimensions are of the order of the WLAN’s size, an easy task for any modern
computer.

There is a number of limitations of the approach that still need to be overcome.
The prediction result of the filters is acceptable, with errors of around 20%, yet
needs to be improved. Improving these errors will require working on new shift
operators, and also possibly new graph signals.

It should be noted that even though our methods are adapted to heterogeneous
networks, so far they have only been tested in WLANs where all APs have the
same data rate and frame size. If there are new shift operators that offer higher
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precision, the model would need to be tested not only on heterogeneous networks,
but ideally in real WLAN testbeds.





Chapter 9

Conclusions

The three years of a thesis are paradoxically both too fast and too slow, since the
last year goes by an order of magnitude faster than the first one. In hindsight of
the thesis, we realize that its purpose was never to solve all the problems of WLAN
performance evaluation, but to learn how to recognize and properly evaluate the
important ones. This concluding chapter discusses those potential future works
that, mostly due to time constraints, we did not prioritize and that I hope will
one day be completed. Before addressing these improvements, we shortly state the
contributions made thus far.

Contributions

The contributions of this thesis can be summarized into two types of WLAN models:

1. Constructive Markovian models for small to medium-sized WLANs with
highly heterogeneous nodes.

2. Descriptive graph signal processing models for large and homogeneous WLANs.

Our three generations of Markovian models have an increasing system fidelity
and a decreasing conceptual complexity. Since the beginning of this thesis, we were
always focused on developing models that handle WLANs with two important fea-
tures: unsaturated nodes and arbitrary network topologies. In order to incorporate
these features and to have a model applicable to networks of more than a handful
of nodes, we opted for a high-level description of the network. Over the course of
the three years, and throughout this manuscript, this description has significantly
evolved so that it more accurately represents today’s WLANs. While comparing
our most recent model, Model C in Chapter 7, with its oldest predecessor, model
A of Chapter 5, the reader will notice that we have come a long way from the
802.11g WLAN whose nodes have homogeneous rates. Model C is adapted to the
(currently) most recent 802.11ac standard amendment and to WLANs contain-
ing nodes with heterogeneous MCS indexes, channel bonding schemes, and frame
aggregation rates.

The decreasing conceptual complexity is evident when comparing our three
Markovian models: we avoid a series of complex modeling notions when transition-

109
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ing from Model A to Model B, we then simplify several computations in Model C
by replacing the discrete time Markov chains with their continuous time equiva-
lents. As a result, the relative errors of the Model C’s estimations are generally
between 5% and 10% for networks of different sizes and complexities.

The development of our models has a strong application incentive. Hence, each
modeling generation is presented with its subset of possible applications in the
context of centrally-managed WLANs. These applications relate to optimizing the
WLAN’s performance with regards to throughput and/or fairness by choosing a
better network configuration. We show, for example, how a centralized controller
could use our model to choose the appropriate channel allocation given several
different performance metrics. Using Model C, we scratch the surface of optimal
channel bonding configuration and show that, even in largely simplified scenarios,
the abundance of choices makes finding the optimal one an elaborate problem.

Our last model of Chapter 8 takes a radically different descriptive approach.
The Markovian models are all of constructive nature, i.e., we used our networking
expertise to replicate some essential mechanisms of the network. Our last model
focuses on a Graph Signal Processing (GSP) method in which the network is mod-
eled as an unknown black box to which we input a demanded throughput and from
which we recover an obtained throughput. We use GSP techniques and homemade
shift operators to try and replicate the WLAN’s behavior using moving average
filters.

The most important part of applying GSP to WLANs consisted in choosing the
appropriate shift operator. While the existing literature on the topic provided us
with a multitude of classic operators, such as the adjacency matrix or the Laplace
operator, we quickly discovered that the modeling of WLANs most likely requires
operators specifically designed for WLANs. The operators we developed try to
implement knowledge about a node’s topological position, i.e., number of cliques
to which the node belongs or number of neighbors it has, and traffic characteristics,
i.e., transmission capacity and packet size.

Currently, the GSP model provides relative errors of, at best, 15% that could
potentially be improved using different WLAN-centric shift operators. Given that
the computational complexity of the GSP model is much lower than that of our
Markovian models, we envision applications where a global optimization of a larger
WLAN (several dozens of nodes) is needed. This configuration could, for example,
try to better redistribute the associated stations among nearby APs so that the
traffic demand is more equilibrated.

Limitations and Possible Extensions

Our modeling approaches and the system they describe are based on a series of
hypotheses that can be deemed too restrictive or unrealistic in some scenarios. It
should be noted that most of these hypotheses can be relaxed in future extensions
of our models, and we discuss only briefly some possible solutions.

Validation in simulation

Although the author is a keen supporter of simulation as a validation tool for
analytical models (as discussed in Chapter 1), the lack of experimental validation
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can objectively be seen as restrictive. Future improvements need to contain at
least partial experimental validation of the proposed modeling approaches, either
using in-house testbeds or the anechoic chamber testbeds already available for use.
Using experimentation will also allow us to have a (more) realistic physical layer
in our WLANs, as simulators have often been criticized about the fact that the
implement somewhat idealized physical conditions.

Network of APs generating downlink traffic

For the sake of simplicity, in our simulations each AP has a single associated station
to which it sends downlink traffic. The reasoning behind this assumption is that our
models are mainly interested in how the APs are sharing the available resources, and
not how each AP distributes the acquired resources among its associated stations.
To make sure these assumptions were not too restrictive, we measured the real-life
distribution of downlink vs. uplink traffic. We then simulated the impact of a
corresponding amount of uplink traffic to conclude that it can be neglected at a
reasonable loss of accuracy.

In future experimental works, the setup should contain WLANs with a single
station per AP and WLANs with several stations per AP, as well as WLANs with
and without uplink traffic. These kinds of tests will allow us to i) properly quantify
the impact of stations and uplink traffic and ii) modify our models to accommodate
the findings, if such modifications are deemed necessary.

Traffic

In our Markovian models and the system they consider (including simulation), our
nodes are generating traffic using exponentially distributed On/Off periods. It
is important to note that there is no perfect choice of traffic distribution, as its
characteristics depend on too many factors and will result in completely different
distributions for different WLANs. However, the On/Off traffic has the benefits of
allowing us to arbitrarily define the average length of each period, thus allowing us
to generate anything from a Poisson traffic to fully saturated sources. While On/Off
traffic is not ideal, it is important to know that a large portion of streaming (non-
elastic) traffic does have an On/Off pattern after the initial buffering stage [96,97].
Moreover, video traffic is expected to surpass 80% of all IP traffic by 2022 [6].

MIMO and beamforming

Throughout the manuscript we tried to show how our system evolved over the
years: from an 802.11g with homogeneous data rates to an 802.11ac with frame
aggregation, channel bonding, and different MCS indexes. A connoisseur of 802.11
standards will notice that there are still several technologies widely used by today’s
WLANs that we have never tested. Two such technologies are Multiple Input
Multiple Output (MIMO) and beamforming. In MIMO, the AP can send data
to several stations at a time using several antennas, or use multiple antennas to
send data to a single station. Together with MIMO, beamforming can be used
to increase the energy concentration in a single direction and isolate concurrent
transmissions.
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Something that MIMO and beamforming have in common is that they affect
how the physical layer handles transmissions, yet the medium access procedure
stays the same. We believe that in future works our validation setup should contain
devices implementing MIMO and beamforming. In the modeling approach, these
techniques will probably only require modifications in the conflict graph definition.

Brute-force application

Most of the applications we presented are based on a brute-force approach, i.e.,
testing all possible configurations to find the optimal one. Finding the optimal
channel configuration for a four-node network with seven wireless channels results
in only 74 = 2401 channel allocations. However, let us assume the network size
increases to ten APs, a completely reasonable size for an office WLAN, and the
network switches to the 5Ghz frequency band where anywhere from 15 to 45 differ-
ent channels are potentially available. The execution of the model on a ten node
network is reasonably fast, yet testing the 1510 to 4510 possible allocations cannot
result in a timely solution.

A part of our future works will focus on developing heuristics for choosing a
subset containing only fairly logical allocations, and then using our model only on
that subset to find the (sub)optimal solution. We believe that such heuristics are
certainly feasible and will be a part of our upcoming works.

Performance Evaluation for WLANs: Concluding
Remarks

General issues

In my modest experience, the performance evaluation of computer networks com-
munity has (at least) two major oversight: a profound lack of analytical models
with experimental validation and a lack of reproducible results.

In the state of the art portion of this thesis, we reviewed about 20 different
analytical models of WLANs developed over the last two decades. Out of those
20 works, only a single model was validated using experimental work and not
solely simulation. I do realize that given the validation we provided in this thesis,
we do not have much ground to stand on when stating that more experimental
validation is needed. However, the community should be aware of the lack of
overlap between theoretical and experimental works and try to remedy it. It is
also my experience that substantial efforts are being made to encourage young
researchers in performance evaluation to have a more hands-on experience with
the available experimentation platforms, which I believe will encourage us to try
and bridge the existing gap.

Major advancements have been made that contribute to more reproducible
results, and we have personally started to contribute more to the community by
including the simulation scripts and the code for the modeling approach in our
last paper submission. Reproducing analytical results often requires recoding the
approach from scratch when the original code is not available. The same is true
for simulation studies, where often some details are provided and we can reproduce
similar results, yet the lack of simulation scripts and system information makes it
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nearly impossible to obtain the exact same values. Lastly, experimental studies
suffer the most from reproducibility, as there is an intrinsic irreproducibility tied
to the hardware in use. The problem often arises not from the lack of details about
the setup, but from the instability of the used material, e.g., a change in driver or
firmware on the same device can result in different results.

Are (our) analytical models still relevant?

The rapid development of 802.11 standards quickly renders some performance eval-
uation approaches irrelevant, forcing us to ask whether the models we have devel-
oped so far will have a practical use in a decade?

There are two especially encouraging points for WLAN performance evaluation:
the quantity of Internet traffic is in constant increase largely due to the mobile and
wireless environments, and the densification of WLANs makes them more and
more centralized. In such conditions, performance evaluation helps centralized
controllers to find optimal solutions given a performance metric.

Our Markovian models are adapted to all IEEE 802.11 versions up to, and
excluding, the upcoming 802.11ax. For a long time we were able to avoid changing
the basics of our modeling approach, as our approximation of the conflict graph and
the medium access remained almost intact in several generations of amendments.
The 802.11ax introduces two notions that will inevitably change how conflicts are
managed and how nodes access the medium: BSS coloring and OFDMA. Without
going into the details of the two techniques, we shortly describe the general ideas.
BSS coloring will allow nodes on the same channel, but in different Basic Service
Sets (BSSs) to access the channel at the same time by using different colors for
different BSSs. OFDMA (Orthogonal Frequency Division Multiple Access) allows
neighboring nodes to simultaneously transmit on the same channel using different
sub-carriers.

BSS coloring and OFDMA render our current Markovian models unadapted
to 802.11ax. Nevertheless, I personally find it encouraging that 802.11ax forces
us to rethink the notions of conflicts and medium sharing, as centralized control
and efficient algorithms will be needed more than ever in tomorrow’s denser net-
works. In my opinion, analytical models will become increasingly more important
as future WLANs become increasingly more complex. It is up to the performance
evaluation community to reassess existing and conceive new models, simulations,
and experiments for tomorrow’s WLANs.
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Signal Recovery on Graphs: Variation Minimization. IEEE Transactions on
Signal Processing, 2015.

[92] Venkatesan N Ekambaram, Giulia Fanti, Babak Ayazifar, and Kannan Ram-
chandran. Wavelet-Regularized Graph Semi-Supervised Learning. In Global
Conference on Signal and Information Processing. IEEE, 2013.

[93] Nicolas Tremblay and Pierre Borgnat. Graph Wavelets for Multiscale Com-
munity Mining. Transactions Signal Processing, 2014.

[94] Xiaowen Dong, Pascal Frossard, Pierre Vandergheynst, and Nikolai Nefedov.
Clustering on Multi-Layer Graphs Via Subspace Analysis on Grassmann Man-
ifolds. Transactions on Signal Processing, 2014.



122 BIBLIOGRAPHY

[95] Fei Hua, Cédric Richard, Haiyan Chen, Jie Wang, Pierre Borgnat, and Paulo
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