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Abstract

The Internet has become indispensable for the daily activities of human beings. Nowa-
days, this network system serves as a platform for communication, transaction, and
entertainment, among others. This communication system is characterized by terres-
trial and Satellite components that interact between themselves to provide transmis-
sion paths of information between endpoints. Particularly, Satellite Communication
providers’ interest is to improve customer satisfaction by optimally exploiting on de-
mand available resources and offering Quality of Service (QoS). Improving the QoS
implies to reduce errors linked to information loss and delays of Internet packets in
Satellite Communications. In this sense, according to Internet traffic (Streaming,
VoIP, Browsing, etc.) and those error conditions, the Internet flows can be classi-
fied into different sensitive and non-sensitive classes. Following this idea, this thesis
project aims at finding new Internet traffic classification approaches to improving
customer satisfaction by improving the QoS.

Machine Learning (ML) algorithms will be studied and deployed to classify Inter-
net traffic. All the necessary elements, to couple an ML solution over a well-known
Satellite Communication and QoS management architecture, will be evaluated. In
this architecture, one or more monitoring points will intercept Satellite Internet traf-
fic, which in turn will be treated and marked with predefined classes by ML-based
classification techniques. The marked traffic will be interpreted by a QoS manage-
ment architecture that will take actions according to the class type.

To develop this ML-based solution, a rich and complete set of Internet traffic
is required; however, historical labeled data is hardly publicly available. In this
context, binary packets should be monitored and stored to generate historical data.
To do so, an emulated cloud platform will serve as a data generation environment in
which different Internet communications will be launched and captured. This study
is escalated to a Satellite Communication architecture.

Moreover, statistical-based features are extracted from the packet flows. Some
statistical-based computations will be adapted to achieve accurate Internet traffic
classification for encrypted and unencrypted packets in the historical data. After-
ward, a proposed classification system will deal with different Internet communica-
tions (encrypted, unencrypted, and tunneled). This system will process the incoming
traffic hierarchically to achieve a high classification performance. Besides, to cope
with the evolution of Internet applications, a new method is presented to induce up-
dates over the original classification system. Finally, some experiments in the cloud
emulated platform validate our proposal and set guidelines for its deployment over a
Satellite architecture.
Keywords: Internet traffic classification, Machine Learning, Satellite Communica-
tions, QoS management, Encrypted traffic.
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Résumé

De nos jours, Internet est devenu indispensable dans le quotidien des humains. Au-
jourd’hui, ce réseau sert entre autres de plate-forme de communication, de système
transactions et de divertissement. Ces activités sont possibles grâce à des com-
posants satellites qui gèrent les flux d’informations. Dans ce contexte, l’intérêt des
fournisseurs de communications satellites est d’améliorer la satisfaction des clients
à travers d’utilisation optimale de ces ressources. La qualité de service (QDS) est
utilisée pour accomplir cet objectif. Améliorer la QDS permet la réduction des er-
reurs liées à la perte et la latence paquets; par conséquent “la qualité de service”
(QDS) aide à optimiser le trafic internet. En fonction du trafic internet (Streaming,
VoIP, Transfert de fichiers, etc.) et de ses erreurs, le flux de paquet peut être classé
parmi plusieurs catégories. En suivant cette idée, ce projet de thèse vise à trouver
des nouvelles approches de classification du trafic Internet pour améliorer la QDS.

Pour classifier le trafic Internet, l’apprentissage automatique sera étudié et dé-
ployé. Les composants qui permettront de coupler une solution d’apprentissage au-
tomatique avec une architecture satellite et de qualité de service seront évalués. Dans
cette architecture, un ou plusieurs points de surveillance capteront le trafic Inter-
net. Des techniques de classifications marqueront le trafic capté en classes qui seront
interprétées par l’architecture de la qualité de service.

Pour développer notre solution, une base de données riche et complète sera req-
uise; toutefois, les données historiques labellisées sont difficilement disponibles pour
le public. Dans ce contexte, des paquets binaires seront extraits et stockées pour
générer un historique de données. Par conséquent, une plate-forme d’émulation du
trafic Internet sur le cloud pour générer des flux de communication a été proposée.
Cela sera aussi implanté sur une plateforme d’émulation de communication Satellite.

En outre, des flux IP devront être construits avec les paquets et quelques car-
actéristiques statistiques pour discriminer et décrire le trafic Internet correctement
seront présentées. Ensuite, un système de classification sera capable de gérer dif-
férentes communications sur Internet (cryptées, non cryptées et en tunnel). Ce sys-
tème traitera le trafic entrant de manière hiérarchique pour atteindre une performance
de classification élevée. Par ailleurs, pour faire face à l’évolution des applications In-
ternet, une nouvelle méthode est présentée pour induire des mises à jour au système
de classification initiale. Finalement, des expériences sur la plate-forme émulée dans
le cloud seront mises en place pour valider notre proposition et définir des directives
pour son déploiement sur l’architecture Satellite.
Mots-clés: trafic Internet, apprentissage automatique, communications satellites,
qualité de service, trafic crypté.
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1.1 Introduction

The Internet is an intricate network system that is organized and synchronized in such
a way that all its elements work in harmony. This network system is characterized
by terrestrial and Satellite components that interact between themselves to provide
transmission paths of information between endpoints [71]. The main goal of this con-
figuration is to offer communication services. This work will refer to this network
system as Satellite Communications all along with this document. Satellite Commu-
nications are conceived by architectural configurations that are continually evolving
to offer better services. Satellite communication services are in constant search for:
a) optimizing their infrastructure and network resources, and b) improving the cus-
tomer satisfaction by exploding optimally available resources so that offering a wide
range of services such as bandwidth and Quality of Service (QoS) on-demand [130].

This thesis project aims at finding new approaches to improving customer satis-
faction by improving the QoS. But what is the idea behind improving the QoS? The
primary purpose is to provide an adequate Quality of Experience (QoE) from the
user’s point of view. The QoE is a very subjective value that can be quantitatively
and qualitatively measured [76]. The metrics to measure the QoE range from cost, re-
liability, efficiency, privacy, security, interface user-friendliness, and user confidence.
However, different fields of computer science define these metrics differently [35]. For
Satellite Communications, the QoE might be translated to the delay and information
loss perceived by the customer in real-time communications. Based on this, improv-
ing the QoS is highly correlated with avoiding information loss and delays; hence, the
QoE can be indirectly improved.
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In order to improve the QoS, one of the most common and accepted actions is to
fulfill a set of requirements that can be executed by profiling Internet traffic [84, 156].
This idea is based on the assumption that some Internet traffic can be more sensitive
to information loss and delay such as Internet calling (commonly called Voice over IP)
or video conferences. In contrast, Internet browsing or file downloads are less pruned
to be affected by these error conditions. Following this idea, a new field emerges in
this area called traffic analysis.

Traffic analysis is the complete process that starts from intercepting traffic data
in order to find relationships, patterns, anomalies, and misconfigurations, among
other things, in the Internet network. Particularly, traffic classification is a subgroup
of strategies in this field that aims at classifying the Internet traffic into predefined
categories, such as normal or abnormal traffic, the type of application (streaming, web
browsing, VoIP, etc) or the name of the application (YouTube, Netflix, Facebook, etc).
Network traffic classification has become a key task for QoS management.

In the past, traffic classification relied on a port-based approach where its regis-
tered and known port identified each application, defined by the Internet Assigned
Numbers Authority (IANA) [81]. This approach became unreliable and inaccurate
due to, among other factors, the proliferation of new applications with unregistered
or random generated ports. Another method that gained a lot of popularity in this
field is called Deep Packet Inspection (DPI) [22]. DPI performs matchings between
the packet payload and a set of stored signatures to classify network traffic. However,
DPI fails when privacy policies and laws prevent accessing the packet content, as well
as the case of protocol obfuscation or encapsulation. To overcome the previous issues,
Machine Learning (ML) has emerged as a suitable solution, not only for the traffic
classification task but also for prediction and new knowledge discovery, among other
things [135]. In this context, the statistical features of IP flows are commonly ex-
tracted from network traces, and they are stored to generate historical data. In this
way, different ML models can be trained with this historical data, and new incoming
flows can be analyzed with such models.

To summarize, this project’s objective is focused on improving the QoS over Satel-
lite Communications through Internet classification based on ML. Along with this
thesis project, we will study all the elements needed to achieve this objective and
propose an ML-based Internet traffic classification solution.

1.2 Context

The context of this thesis covers three interleaved aspects: 1) QoS management in
Satellite Communications, 2) Internet Traffic classification, and 3) Machine Learning.
QoS management in Satellite Communications can be defined by a set of policies or
rules that permit to administer, manage, and control access to network resources. In-
ternet traffic classification can be achieved, marking Internet flows with QoS classes
(such as Streaming, VoIP, Chat, etc.) by using different well-known techniques. Fi-
nally, Machine Learning can be defined as a compound of strategies to perform clas-
sification, prediction, and clustering over vast amounts of datasets. The relationship
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between these subjects is presented in Figure 1.1, where:

A Satellite Architecture holds all the necessary components to offer Satellite
Communications. Among the elements of this architecture, it can be set an-
other architectural structure that will manage and optimize the resources of the
network system; we will denominated it at this stage as QoS architecture.

Monitoring points can be set along with the network appliances such as the
Gateways (GWs), Satellite Terminals (STs), and end-points. The main objective
is to capture inline Internet traffic.

Then, the traffic is evaluated by Classification techniques, that will label the
Internet traffic by using different approaches. In our particular case, we will
focus on Machine Learning techniques.

The result of the Internet traffic classification is used by the QoS architecture
to manage/administer the resources in order to better perform and achieve their
principal objective: offer an acceptable QoS to their clients.

In this context, different actors that interact in this architecture can be identified.
In principle, end-points or client and servers actors will hold Internet communication,
and the Satellite Architecture will serve as a supportive structure to perform this task.
Traditionally, communication between two end-points is carried out by using commu-
nication protocols. These protocols are defined by a set of rules, standardized by the
Internet Engineering Task Force (IETF) [82]. Internet applications use such protocols
indistinctly allowing traffic profiling. In addition to this, the applications involved in
a communication can also define particular behaviors for each type of traffic [185].
Given these characteristics, we can consider that Internet traffic modeling based on
ML is a suitable path to follow. In order to build ML models for traffic classification,
the common procedure is to have a representative number of interactions between
client and server. Such interactions so-called historical data must reflect the real
Internet communications passing through the Satellite architecture [135]. The most
common Internet communications vary from applications of type Video Streaming
(YouTube, Netflix, etc) to Voice over IP (Skype, Facebook calls, etc) and web brows-
ing (Google, Baidu, etc), among others [33]. However, it is important to state that
the success of the ML solution depends on how complete the historical data is. More-
over, the proliferation of new Internet applications demands a constant update of this
historical data.

These facts impose essential challenges that must be considered before applying
ML techniques for Internet traffic classification. Therefore, in the next section, we
make an account of the most critical challenges faced by this investigation.
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Figure 1.1: Context of the thesis.

1.3 Challenges

The principal challenge of this research work is to find a well-suited classification
system that can be implemented over a Satellite Architecture. As a consequence, we
will carry the problems that imply using ML for traffic classification. The work in
[36] identifies several of these challenges summarized as follows: i) the data available
with their ground truth is limited and hard to collect, ii) the scalability of traffic
classification solutions is a challenge, iii) adaptive solutions are required due to the
dynamism and evolution of the network, and iv) the solution applied to require a
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correct validation. Moreover, these future directions encourage the execution of more
rigorous evaluations and comparisons of the ML approaches, to the development of
tools for the ground truth definition, and the use of multiclassifier systems, among
other things. Furthermore, the ML approaches require to fulfill different challenges,
such as a provided performance, the management of the increasing amount of traffic
and transmission rates, and the reconfiguration capabilities, as it is exposed in [93],
and similarly in [60]. Notably, in our survey paper [135], we locate the challenges
concerned by this investigation in each of the steps to achieve ML:

• Data collection: historical data is hardly publicly available. The production
of a labeled historical data set is costly and time-demanding. One of the main
concerns, in this field, is the lack of public data, which can be considered as a
core resource for applying ML approaches. The difficulty of defining the ground
truth values of the data collected also represents a challenge.

• Feature extraction: typically, statistical features are computed from streams
of Internet data; however, different communication protocols disable the char-
acterization of the stream. Encrypted traffic has become a new way to prevent
intrusion into transmitted information in the Internet network. ML is highly
suitable for analyzing these types of communications due to it does not intrude
into the packet content; for instance, in some cases, the statistical behavior of
the connection might be sufficient as exposed in [173]. However, new encryp-
tion techniques affect the observable features that can be extracted for traffic
classification.

• ML solution deployment: in the field of Internet traffic classification, few
implementations have been conceived due to the maintainability of this solu-
tion; which is mainly promoted by the evolution of Internet traffic demanding
constant updates of the ML solutions. An update of the ML solution implies
an update of the data sources.

• Deployment architecture: this item is related to where the ML can be de-
ployed. Particularly, in Satellite Architectures, the resources allocated to the
ML solution might be limited and a fast classification response is expected.
In addition to this, the Internet network conditions might vary, making the
classification results very sensitive.

1.4 Related works

With the exponential growth of Internet communications, more and more efforts to
adequately optimize and manage Satellite resources have been accomplished. Traffic
classification helps resource managers to state some guidelines for the administration
of their assets. In this matter, the widely deployed classification approach is DPI.
Even though DPI tools have particular deficiencies, they are still widely used for traffic
classification thanks to their accuracy for non-encrypted traffic [7, 22]. However, the
increase of encrypted communications is unstoppable, impulsing the use of ML as one
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potential alternative. Some works already proposed the implementation of ML-based
solutions in different network components or structures such as in cellular networks,
WiFi networks, and Satellite networks.

In cellular networks, the mobile IP traffic classification can be performed at dif-
ferent levels either using the port, the packet payload [182, 137], or the statistical flow
distribution. [102] collected IP traffic extracted from mobile networks in fixed time
windows. Statistical based features from normal and abnormal traffic are computed,
and a classifier is trained for the analysis of the massive network users’ traffic behav-
iors. The work in [111] presents an approach to collect and label mobile IP network
traces correctly. For instance, the work in [126] exposed a generic architecture of a
cellular network, and the possible positions where traffic monitoring can be deployed,
such as in a Packet Switched (PS) Core.

Similarly, in WiFi networks, IP-data can be extracted to apply ML approaches for
the traffic classification. For instance, the work in [146] collected network traces from
Wi-Fi controllers at a large university campus. These controllers connected access
points to the campus backbone network, allowing the wireless devices to access the
Internet. The traces come from network traffic to/from malicious and benign domains,
and statistical-based features were computed over these traces. A binary ML classifier
was trained for detecting malicious domains. Similar approaches can be found in [148,
103, 187]. The difference between cellular/mobile networks and WiFi network resides
in the technology used for the data exchange that might affect the speed, cost, and
security.

Finally, in Satellite networks for improving the QoS, traffic data is captured from
Satellite Internet Service Providers (ISPs). The works in this area aim to classify
and to analyze Internet traffic in large networks [88, 166, 140, 68]. The principle
is the same as the previous cases, Internet traffic monitoring is deployed to perform
traffic classification. These monitoring points can be at routers [88, 166] or point of
presence (PoP) [140] of large ISP networks. Another emerging approach is the use
of Software-defined networks(SDNs) in Satellite-terrestrial networks. In SDNs, traffic
classification can be easily deployed in the SDN’ master controllers as it is exposed
in [129, 16].

In general, procedures such as Feature extraction and construction of ML solutions
on Internet traffic classification are equivalent in different network conditions (either
in WiFi, cellular and Satellite networks), what differs is the data collected that serves
as knowledge to build such solution. The previous implies that for each case, a
dedicated classification solution must respond to particular demands. For instance,
in Table 1.1, we show some of the most important attributes of selected works such as
the network structure, data, classification technique, and features used. In addition
to this, fours additional attributes act as advantages when filled with an “X”, and
as disadvantages when they do not. Those attributes are selected from the main
challenges found in the previous section, e.g., ground truth and encryption of the
Internet flows, evolution, and implementation of the ML models. From the table,
we can notice that private data is standard in this application, with some of them
correctly labeled with their ground truth. Statistical based features stand as the most
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used along with ML models. We can notice that most of the approaches do not treat
encrypted data and the evolution of the Internet network.
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ground truth encryption evolution implementation

ISP

[149] CAIDA [24] Statistical Stats X
[189] WIDE [32] and ISP Statistical/ML Stats
[88] Private ML Stats X X
[68] Private ML Stats X X X

Enterprise [127] Private ML Stats
Satellite [140] Private ML Stats X

Mobile [111] Private ML Stats X X
[102] WIDE [32], CAIDA, etc ML Stats

Wifi/Mobile [146] Private ML bag-of-words/Stats X
SDN [129] Private Statistical/Payload Stats

Table 1.1: Related works.

To conclude this section, we remark the need for counting with labeled histor-
ical data with a diversity of Internet communication protocols (encrypted or not
encrypted). Moreover, evolving approaches are necessaries; otherwise, ML model im-
plementation efforts are diminished. In the following section, we outline the scope of
this investigation.

1.5 Positioning

The main objective of this thesis project is to build a classification solution that can
be coupled to a Satellite Architecture. In order to do so, we will navigate between
three main fields.

• Satellite communication: Real Internet data from Satellite communications are
not publicly available due to privacy matters. To tackle this problem, we will get
historical data from an emulated Internet network platform. In this platform, we
will study how Satellite communications are handled and what are the elements
that allow performing traffic classification. This thesis project will not delve into
the QoS management implementation. Nonetheless, we study in general what
these components receive as inputs from an ML-based classification system. In
the same manner, we give guidelines for deploying our proposal in a real or
emulated Satellite architecture. It is important to mention that most of the
tests will be performed on an emulated Internet network created for this aim
on a cloud platform.

• Internet traffic: we need to consider encryption protocols and how they affect
potential classification systems. Among the Internet traffic studied, we also
include non-encrypted and tunneled connections. To have a knowledge base for
building the ML models, we used well-known available datasets generated in
small emulated Internet networks. In addition to this, data generated on an
emulated Satellite platform will be also analyzed.
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• Machine Learning: we will try to answer the principal challenges identified for
this proposal. In this matter, Internet flows will be represented by data streams,
where statistical-based features will describe such flows. The ML solution will
deal with multiple types of traffic, such as non-encrypted and tunneled. Finally,
we will propose an incremental learning system that copes with the evolution
of the internet.

Once stated the areas touched by this thesis project, the following section lists
the contributions achieved.

1.6 Contributions

The challenges found in this field guide the contributions of this thesis project. There-
fore, we will list each of them that fall in the area of Internet traffic classification for
Satellite communications.

i The first contribution presents an architectural proposal that couples an ML
solution within a Satellite Architecture for QoS management. This proposal
includes a heterogeneous Classification System that will treat some communi-
cation protocols such as tunneled communications differently. In this sense, we
evaluate all the necessary elements that this Classification System must include.

ii Our second contribution is the design and implementation on an emulated In-
ternet network on a cloud platform, that will serve for the production of data
in a Satellite emulated platform. In this prototype, the nominal behavior of
Internet users is mimicked to get human behaviors as realist as possible. In
addition to this, Internet traffic will be correctly labeled.

iii The data produced will be correctly treated, and statistical-based features will
represent the Internet data streams. In this context, we propose new features
that might improve the Classification System performance. Besides, a particular
feature extraction process for encrypted connections will be designed.

iv Regarding the Internet classification system, the contributions within this task
are listed below,

• Hierarchical classification: a set of classifiers is organized into classification
levels, where the traffic will pass through. These levels are characterized
by flow discriminator classifiers that will divide Internet protocols tech-
nologies, such as tunneled vs. not tunneled.

• Encrypted traffic classification: we use the multi-label classification ap-
proach for treating tunneled connections. Traditional ML models will
classify Internet streams with only one application within the tunnel.

• Incremental learning model: We propose a dedicated algorithm to learn
one class at a time. This method will try to find the evolution of one class
to update the current classifiers.
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v Finally, we study the reliability of implementing our ML solution on an emulated
Internet network placed on a cloud platform. Its implementation and test will
be later reproduced over the emulated Satellite platform.

It is important to mention that these main contributions cover the main challenges
found in the state of art study. In the next section, we show the organization of this
thesis project.

1.7 Structure of the Thesis

This thesis project is organized as follows,

Chapter 2. Background and Related works

This chapter presents the basis to understand how Internet traffic classification
is performed in Satellite Communications. The presentation of this chapter
follows the concepts presented in the context and challenges of this introduction.
Firstly, a general Satellite architecture is studied along with the most common
QoS management architecture. Secondly, traffic monitoring processes and tools
are reviewed. Following, the difference between some encrypted technologies
will be highlighted before entering in defining how different techniques perform
the Internet traffic classification. An ML introduction is given to appreciate
some of our contributions in this area better. Right after, it will be presented
how ML has served as a key classification tool for Internet traffic classification.
To conclude, a state of the art analysis is settled to remark the challenges and
contributions in this field.

Chapter 3. QoS management in Satellite Communications with ML

This chapter presents how the ML solution should be coupled to a Satellite Ar-
chitecture. Firstly, a theoretical proposition is presented. This proposition will
define how the monitoring and classification processes will be set in a Satellite
Architecture. Also, how all these elements need to communicate to perform QoS
management is also presented. Then, to formalize such a proposal, a require-
ment analysis will be done by using a software engineering tool. This chapter
concludes with an architecture identifying all the components to be developed
in order to achieve the goals.

Chapter 4. Characterizing and collecting Internet traffic

Historical Internet traffic is needed to carry our investigation. This need forced
us to search for publicly available historical data, as well as to create our data.
In this chapter, it will be presented the Internet traffic categories to set their
relative importance for QoS management. One encryption technology is com-
monly found in the historical data; therefore, we define some of its principles.
Two public datasets, used to validate our proposal, are described. Following, we
design a prototype to automatically generate Internet traces in a cloud-based
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platform. The result of this platform is implemented in an emulated Satel-
lite Communication platform where an important amount of Internet traffic is
collected for its analysis. Finally, a study of the resulting data is shown.

Chapter 5. Feature extraction from communication streams

How Internet communications are processed in order to obtain something usable
for the ML algorithms is studied in this chapter. It will be defined how the
feature extraction is performed over common Internet streams as well for the
encryption technologies concerned by this research work. In addition to this,
a novel feature extraction approach is given in order to improve the classical
approaches.

Chapter 6. A Heterogeneous Classification System for Internet traffic

The classification system, able to deal with different Internet communications,
is detailed. This system will process in a hierarchical way the incoming traffic
in order to achieve a high classification performance. In addition, in order to
cope with the evolution of Internet applications, a new method is presented to
induce updates over the original Classification System.

Chapter 7. Towards the implementation of the Classification System

A proposal to implement this solution in a Satellite Architecture is given. Some
experiments in a cloud emulated platform are carried on in order to show an
analog implementation. In this section, time response and performance are
evaluated in order to validate the system proposed.

Chapter 8. Conclusion and Perspectives

This chapter concludes the thesis and outlines the perspectives of this work.
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Chapter 2

Background and Related works
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2.1 Introduction

In this section, we present several topics that concern this investigation. These topics
are presented in a vertical way, going from the most general to the most specific to
define the elements that allow achieving QoS management in Satellite Communica-
tions. To recall the traffic classification process, in the first place, active Satellite
Communications are held by components and actors interacting in this architecture.
Internet traffic is then intercepted at one or more monitoring points; this process is
normally called Passive Monitoring. The traffic is analyzed by different classification
techniques which in turn will mark the traffic with predefined classes. The marked
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traffic will be interpreted by a QoS management architecture that will take actions
according to the class type.

In order to better understand the former process, we present in Section 2.2 a well-
known Satellite Communication and QoS management architecture. We will place the
main components that might interact with an ML-based solution. In Section 2.3, it is
described how traditional Internet traffic classification is done by practitioners in the
field. Within this section, we detailed the Passive Monitoring process, the structure
of the Internet traffic data by establishing differences between encrypted and non-
encrypted traffic, and finally the classical Internet traffic classification process. As
this investigation is focused on the ML branch, an introduction of this field is given in
Section 2.4. Following, a state of the art regarding Internet traffic classification with
ML is exposed in Section 2.5. A complete analysis of the state of the art is presented
in Section 2.6, where the challenges and possible research directions are discussed.
Finally, Section 2.7 concludes this chapter.

2.2 QoS management in Satellite Communications

At this point, we start by introducing the general architecture of Satellite Commu-
nications in Section 2.2.1. Whereas in Section 2.2.2, we present a common approach
to perform QoS management using a well-known architecture.

2.2.1 General Satellite architecture

A common reference model of a multi-gateway Satellite architecture is shown in Figure
2.1 [59, 167]. This model is divided into two main blocks: Satellite access network
and Satellite core network. On one hand, in the Satellite access network, a variety of
network topologies can be used to the connectivity of the elements; these included the
Satellite gateways and terminals. On the other hand, in the Satellite core network,
an aggregate network allows interconnecting with other operators, corporations and
Internet Service Providers (ISPs) through Points of Presence (PoPs).

The main components in each block of this model are described below:

• Satellite Terminal (ST): its function is to deliver broadband access to end-user
equipment through IP routers and/or Ethernet switches.

• Satellite Gateway (GW): this component is in charge of deploying user plane
functions such as packet routing and forwarding, interconnection to the data
network, policy enforcement, data buffering, and transmission of data on the
air interface, among others. These functionalities are coordinated by the con-
trol and management systems of the Satellite network. The GW is composed
of forward and return link (FL and RL) subsystems, and a set of network
functions. These network functions include the Performance Enhancing Proxy
(PEP), switching and routing interfaces for the interconnection with the Satel-
lite core network.
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Figure 2.1: Reference model of a multi-gateway satellite network ar-
chitecture.

• Backbone network: it interconnects network components to provide paths for
information exchange.

• End users and other networks: final clients or users of the Satellite network.

One of the main objectives of this architecture is to provide a reliable satellite
communication system between different entities. Moreover, improving the Quality
of Service (QoS) and Quality of Experience (QoE) of their users is of paramount
importance for network administrators. In principle, these last objectives can be
achieved by managing efficiently the network resources. More specifically, a Policy-
Based Network Architecture is deployed at this stage to perform traffic management;
this well-known reference model is described as follows.

2.2.2 Policy based network QoS management

This network architecture aims at providing and managing services in order to guaran-
tee efficient Satellite communications. A Policy-Based Network Architecture permits
disposing of the necessary elements to achieve QoS management. This architecture
must be able to administer, manage and control access of network resources following
a rule-based approach. These rules have a condition-action structure. In addition,
different types of rules are defined for different administrative domains. For instance,
the model Policy Core Information Model (PCIM) [123, 122] divided such policies
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into: i) Abstraction of policy rules, defined at different levels, from business to net-
work parameterization objectives, ii) Policy defining an action, define the actions
to take in order to guarantee the policy when its conditions are met, and ii) Pol-
icy defining a condition, the requirements or events needed to execute the policy’s
actions.

The more basic architecture of a Policy-Based Network (PBN) is shown in Figure
2.2. The PBN is composed of four main components,

• Policy Decision Point (PDP): is a logical entity that takes decisions for itself
and for other network elements. These decisions imply actions for enforcement
when the conditions of a policy rule are met [183].

• Policy Enforcement Point (PEP): is a logical entity that enforces policy decisions
[183]. In this architecture, the PEPs initiate persistent TCP connections with
the PDP. This connection will allow the exchange requests/decisions between
themselves (PDP and PEPs).

• Common Open Policy Service (COPS): is a query/response protocol.

• Human network manager: its objective is to construct, deploy policies, and
monitor the PBN status. In order to do so, the manager uses a policy manage-
ment tool that serves as the interface between the components related (PDP
and Policy repository).

• Policy repository: this element stores the policy rules and policy data.

Figure 2.2: Policy Based Network Architecture.

As stated earlier, the PBN is a structure that allows assuring basic QoS require-
ments. Therefore, in Internet traffic classification, this architecture is widely used.
Marked Internet traffic can be forwarded to the PDP. This last one can or cannot
take decisions according to the former results to schedule the traffic.

Up until this point, we notice that Internet classification solutions should be a
function coupled to the monitoring points and linked to the PDPs. As a consequence,
such solutions are highly correlated to the monitoring point process and conditions.
In the next section, we continue with the next fundamental level to this study: how
traditional approaches perform passive monitoring and traffic classification in Internet
networks.
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2.3 Traditional Internet traffic classification

In order to better understand the Internet traffic classification process, we present as
follows how to monitor Internet traffic in network appliances in Section 2.3.1. The
monitored traffic can be encrypted or unencrypted; the difference between these types
of traffic will be set in Section 2.3.2. Finally, classical approaches will be described
in Section 2.3.3.

2.3.1 Internet traffic monitoring

The standard approach in network traffic monitoring is based on the extraction of
a set of packets within a time window. The work in [78] presents a comprehensive
procedure for Internet flow extraction using NetFlow and IPFIX. More precisely,
the work defines the steps for data measurement as i) packet capturing, ii) flow
metering and exportation, and iii) data collection. The packet capturing step refers
to the procedure of extracting the binary data from monitoring points, in this step
each packet is considered as a single independent entity[86]. Following, the flow
metering process aims at aggregating the packets into Internet flows or streams. The
exportation process occurs when it is considered that a flow is culminated, meaning
that a communication was finished. The metering and exportation processes are
related and can be merged. Finally, the data collection is in charge of storing the
flows exported.

Regarding the data measurement steps, several reserach works try to improve sep-
arately each of their deficiencies. For instance, [86] presents a taxonomy to categorize
the packet sampling techniques, this work aims at giving guidelines to select the most
adequate method according to the objectives to achieve. The works in [124, 172, 177]
present packet capture engines running on commodity hardware, which are useful for
reducing the time response in traffic classification. Some other implementations of
traffic monitoring are found in the literature, such as the work in [128] over industrial
networks, while [9, 96] apply it over home networks. The work in [65] reports the
most common implementations of popular network monitoring approaches for packet
capture (Tcpdumb, Wireshark, etc.), flow metering (nProbe, YAF, QoF, etc.), and
data collecting (nProbe, flowd, nfdumb, etc.).

One of the main challenges regarding traffic monitoring relies on capturing packets
in real-time. A large volume of data at high speed is involved. In order to deal with
streaming data, classically batch-based methods are deployed; however, these meth-
ods do not offer fast responses in critical environments, such as multimedia traffic
monitoring [151] or network threats. Classically, the batch-based method is deployed
after the flow metering and exportation steps. Its main purpose is to manage and
store the exported flows, usually within an interval of time, into binary files (e.g.
pcap files). The batch-based method must fulfill certain requirements such as data
processing performance and fault tolerance. In the case of the stream-based approach,
the former requirements must be accomplished with more exigent demands, in par-
ticular, the data processing performance. For instance, the work in [89] analyzes the
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traffic observation process in a streaming way to reduce delays for traffic classifica-
tion. The authors propose a workflow that distributes the exported flows by using
a messaging system. The IP flows are transformed into a data serialization format.
The selected data serialization format was the Binary JavaScript Object Notation
(BSON). The final aim is to offer a distributed data system that is more efficient
than a batch-based method. The work in [29] evaluated the performance of one of
the most used distributed stream processing systems for traffic monitoring. The same
authors extended this work to compare three stream processing systems, in order to
find the suitability of each one for real-time network flow processing [30].

Prior to the Internet traffic classification, a correct monitoring system has to be
provided. However, suffice to say that there already exists well-defined traffic moni-
toring tools that cover this matter. To conclude this section, what it is important to
retain is the information captured into Internet flows. As complementary informa-
tion, we introduce how these flows are represented for different protocol and encrypted
technologies in the following section.

2.3.2 Encrypted vs Non-encrypted traffic

Monitored packets create data streams between client-server exchanges (also denoted
as source-to-destination, backward-to-forward exchanges). These exchanges are de-
fined by communication protocols, where the Transport Control Protocol (TCP) and
the User Datagram Protocol (UDP) are the most popular worldwide. However, the
packet content is accessible after monitoring points due to these protocols only define
a way to send and to receive information in the transport layer. We refer as non-
encrypted data to the Internet flows where their packet content can be inspected;
in other words, we can access to the packet header and payload transmitted. Nor-
mally, these fields are inspected in order to offer services such as traffic classification
for QoS management, anomaly, and cyber-attack detection, among others. However,
more and more protocols offer header and payload encryption to provide confiden-
tiality of the packets navigating in the Internet network.

The encryption comes along with a structured authentication between peers, data
integrity and replay protection. Most of the encryption protocols follow two steps,
i.e., initialization and transport [101]. Even though these steps are classic when using
connection-oriented services, they vary in the way they are performed. Normally, for
encryption protocols, the initialization is divided into an initial handshake, authenti-
cation, and a shared secret establishment. In the first phase, when the authentication
is confirmed between peers, secret keys are established, and the transferred data is
encrypted with such keys. Some classic encryption protocols are IPsec [101], TCPcryp
[17], and TLS/SSL [62, 46]. These encryption protocols encode the packets’ content
to assure data integrity. In addition to this, they also provide an attractive feature
that modifies the packet’s IP header allowing the navigation over a virtual tunnel.
In this context, it is impossible to avoid mentioning the Virtual Private Networks
(VPNs) which tunnels multiple flows into only one flow by using encryption proto-
cols such as IPsec [163]. VPNs are deployed to allow securing communications on
the Internet, and accessing to services with geographical constraints, among others.
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Enterprises all over the world secure their Internet communications by using VPNs.
However, this technology is also accessible to end-users.

For the objectives of this investigation, it suffices to show the difference that
the non-encrypted, encrypted and tunneled communications will carry for the data
processing steps. In Figure 2.3, we can graphically place these differences in a general
way. In summary, we observe:

• Non-encrypted data: Header and payload are available. Packet streams are
identifiable meaning that we can differentiate and separate the flows sent by the
client and those sent by the server. Figure 2.3(a) denotes the non-encrypted
packets streams as white blocks: the blue ones coming from the client (also
called source or forward traffic), and the red ones coming from the server (also
called destination or backward traffic).

• Encrypted data: A layer of encryption is added making the packet payload
inaccessible. In addition to this, the packet’s header is changed by the encryp-
tion protocol hiding the original source and destination IP addresses. In Figure
2.3(b), the packets with payload encryption are filled with gray color. Even
though the header is transformed, we can still separate the flows between the
client and server as seen in the figure.

• Tunneled data: Stream content is encrypted, and in addition, another layer
hides the IP directions of clients and servers. In this particular case, the
data streams are not separable. In Figure 2.3(c), we can notice that several
clients/servers can be using the same tunnel, mixing in this way the Internet
traffic.

Before continuing, let us remind that the classification objective is to label each
data stream seen between client and server. Intuitively, in Figure 2.3, for the cases a)
and b) the classification is easy to achieve, it suffices to model the data exchanges for
each Internet application; contrary case occurs with case c) where a special treatment
should be deployed. The knowledge provided, about the Internet flow streams, allows
us to continue our scientific review with the classification techniques in the next
section.



18 Chapter 2. Background and Related works

(a) Non-encrypted Internet streams

(b) Encrypted Internet streams

(c) Tunneled Internet streams

Figure 2.3: Illustrative example of the difference between non-
encrypted, encrypted and tunneled data

2.3.3 Traffic classification approaches

Several trends can be found to classify, comprehend, diagnose or observe the status
of the network. A taxonomy of traffic classification can be found in [92]. Nonetheless,
a modification of this taxonomy is proposed in Figure 2.4. This figure counts with
two main divisions: Data and Techniques. A brief description of each component is
given as follows.

• Data: it refers to the type of input data used to create the traffic classification
solution. It is noticeable that traffic data can be encrypted or non-encrypted.
The traffic can be labeled either by DPI tools or real-time captures.

• Techniques: four main branches are detected, such as Machine Learning, Sta-
tistical based, Behavioral based and Payload inspection. In this section, these
four approaches are briefly described in order to have a general idea of how they
work.

Payload inspection, normally denoted Deep Packet Inspection(DPI), is found as
the common approach to perform traffic analysis [7, 22]. This technique analyzes the
content of the Internet packets, i.e., the IP header and payload. DPI compares the
information extracted from the packets with a set of signatures (previously defined
and known) to identify different application protocols. Some of the DPI tools are
nDPI, Libprotoident, PACE, L7-filter, and NBAR, among others. Recently, DPI
tools have shown several drawbacks due to the growing number of new applications
and protocols. Particularly, when a new protocol is created, the DPI tools must be
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Figure 2.4: General view of the traffic classification approaches.

updated; otherwise, they will fail in their prediction getting as result an unknown
or an erroneous signature. As a consequence, the list of the tools’ signatures has
to be constantly updated. On the other hand, DPI is not adequate when a) packet
encryption is used to protect the content in communication sessions, b) HTTP2 is
deployed for multiplexing the packet content, c) NAT networks are utilized because
they unable to differentiate between communication sessions, and d) Virtual private
networks (VPNs) are deployed for data privacy and integrity, among others.

The statistical-based techniques try to find statistical differences between flows,
communicating end systems and network configurations, among others. Such differ-
ences can be the result of two or more different applications or behaviors, character-
ized by statistical properties. In some contexts, statistical distributions can be used
to model the network traffic patterns [18, 125, 164]. The work in [18] introduces
a monitoring scenario with public and private IP addresses, and measures statistics
for each profile, such as the number of TCP and UDP packets, as well as the num-
ber of failed flows. The objective is to construct different statistical distributions,
such as negative exponential or Gaussian, to detect the reachability in P2P com-
munications. In a similar manner, the work in [125] proposes the categorization of
the flows using statistical distributions. The main deficiency of this approach is the
static construction of statistical models that do not integrate learning processes. Like
the previous approach, this disadvantage affects its performance in the presence of
dynamic growing and evolution of the Internet traffic patterns. In addition, some of
the statistical-based approaches are adapted and improved by the ML techniques.

On the other hand, behavioral techniques aim at finding patterns among end-
to-end communications in a network. It also studies community patterns where the
communities are conformed of hosts at different points [107, 80, 90, 3]. The most
common representation of behavioral patterns in the network is through graph mod-
eling, in which graph theory is used to find highly connected nodes (hosts), number
of connections, and opened ports, among others [107]. As an example, [80] analyzes
traffic behavior to identify P2P traffic. The first step is to cluster together similar
flows through a k-means model. Following, the clusters are represented by a Traffic
Dispersion Graph (TDG), where the nodes are represented by the IP addresses and
the link between the nodes is the registered flows. Finally, a set of rules is applied
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over the graphs to detect the name of the application. These rules take into account
features, such as the percentage of nodes and the average node degree of the graph.
The work in [90] proposes an approach to identify P2P communities, where the in-
teractions in the network are represented by graphs. The nodes are formed by the
tuple (IP, port), and the connections are given by the number of packets interchanged
between nodes. P2P networks are identified by using the port distribution of known
remote peers, in order to do so, a multinomial classifier is built to decide whether a
graph represents one of the known networks. A different target that is normally stud-
ied by these techniques is identifying the traffic activity patterns, such as the works in
[87, 181]. For instance, [87] presents the Traffic Analysis Graphs (TAGs) for visually
unveiling the behavior of different types of applications. In a TAG, the nodes are the
IP addresses and the edges are the flows of interest; the flows of interest are defined
according to the purpose of the study, in order to build TAGs that capture relevant
traffic activities among hosts. [181] builds bipartite graphs and compute their sim-
ilarity matrix. This matrix will serve as input to a clustering algorithm (k-means)
that will gather together similar nodes. This technique is highly expensive due to a
lot of network information is required to build behavioral models; in addition to this,
Internet traffic evolution and network configuration updates remain as a deficiency.

The classical traffic classification techniques share the same constraints deficien-
cies that we can sum them up as follows: a) Internet traffic evolution causes a decrease
of the classifiers’ performance; in consequence, constants updates of the classification
solutions are needed, and b) encrypted traffic cannot be classified by DPI solution,
while statistical and behavioral techniques do not cover this subject either. Con-
versely, ML could cope with these challenges becoming in this way one of the front-
and-center tools used by this investigation. We will deeply explore it in the next two
sections.

2.4 Machine Learning introduction

Machine Learning (ML) techniques are very popular approaches to identify and clas-
sify patterns in different domains. Its main objective is to give to the computers
automatic learning capabilities, where the machines are able to extract knowledge
from a process under certain conditions. ML tries to extract knowledge from a set of
features or attributes, which represents the measurable properties of a process or ob-
served phenomena. In this way, the learning process is performed by training different
models, i.e., classification, prediction or clustering model; and their use depends on
the problem characteristics. The knowledge extraction is handled by an ML model,
which is built with historical experiences recorded from case studies.

In general, the steps to achieve knowledge discovery with ML techniques are shown
in Figure 2.5. In this figure, a distinction between the blocks that can be performed
in an offline (blue arrows) and online (gray arrows) manner is made.

Generally speaking, the offline procedures treat historical datasets stored by the
Data collection block at one or more monitoring points in the network. In the offline
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Figure 2.5: General steps to perform ML.

run, a historical dataset must be collected; on the contrary, in the online run, streams
of packets are continuously processed.

Once the historical dataset that characterizes the problem is recorded, relevant
features are extracted in the Feature Extraction block. At this point, the resulting
features can be processed by either Feature Selection(FS) or Feature Reduction(FR)
approaches, to obtain a reduced space or a set of new features. Following, the Al-
gorithm Selection block refers to the procedures and methods intended to select the
most adequate ML algorithms. Several works deploy different means of comparison
to justify or validate their selection. Finally, the Model Deployment block is focused
on the efforts for implementing such models. In Figure 2.5, the FR and FS procedure
also have a connection with the Algorithm Selection and Model Deployment blocks,
due to some approaches select the most relevant features based on the performance
given by the ML models.

On the other hand, in an online run, data is collected to perform feature extraction
and FS or FR, to later evaluate these features over the model built in the Model
Deployment block. We can remark that manipulations in an online manner, over
the Algorithm Selection and Model Deployment blocks, might envisage evolving or
upgraded ML solutions. It is also important to mention that this workflow represents
a guide that comprises the general steps to use ML for traffic classification. However,
the order of these steps may vary and can be also found combined. We briefly overview
these steps in the following sections.

2.4.1 Data collection

This step aims at gathering information regarding a case study. Measuring proce-
dures are established, in order to capture data either from physical or digital sensors.
Such data describes the current or historical status, which is used to define the exper-
imental testbed. A testbed is composed of all the software, hardware, and networking
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components, among others held by the process of interest. This testbed is necessary
for building the model (learning and testing) with the ML techniques. Samples are
captured and gathered from multiple scenarios set in the testbed.

2.4.2 Feature Engineering

It is one of the most important steps due to it allows measuring or computing features
that might give information about the state of the process. It also treats the features
to obtain a better representation of the process with feature selection and reduction
procedures. We briefly detail the common procedures in this phase.

a) Feature extraction (FE)

In brief, an FE procedure computes different metrics that reflect specific prop-
erties in the data collected. The main aim is to obtain descriptors that better
characterize the problem. The result of the FE process is a structured table
formed by columns of attributes where each row is a sample, with an additional
optional column with the current status of each sample (commonly called label
or class). In case that the status is unknown, the samples are unlabeled.

Data processing procedures can be performed in order to delete unwanted miss-
ing values and to clean the data, among other things. This last one is related to
outliers detection that might disrupt the ML solution performance. Also, the
data can be transformed through normalization or aggregation operations over
the values of the attributes. In the aggregation procedures, the features are
combined into a single feature that would be more meaningful to the problem.

b) Feature Reduction (FR) and Selection (FS)

This is an optional step that allows selecting or reducing the number of ex-
tracted features. FR is to create new attributes using the original ones, while
FS is to find a low set of attributes that better describes a process. FR and
FS aim at decreasing time response and memory consumption, and increasing
performance, among others. Surveys about the performance and comprehen-
sion of the FR and FS processes are presented by [110, 31]. These techniques
are commonly divided into Filter, Wrapper and Embedded approaches, which
in turn can be developed by supervised and unsupervised strategies. In the
supervised strategy, the objective is to find the features that most contribute
to defining the classification decision. In the unsupervised strategy, the main
aim is to determine the features that allow a correct clustering of the data.

2.4.3 Algorithm selection and model deployment

Different ML algorithms have been developed and tested for solving tasks, such as
classification, clustering, and regression. The selection of the ML algorithm is related
to the problem to solve or the type of knowledge that the practitioners want to
discover.

In ML, there are two classical types of learning, supervised and unsupervised
learning. Most of the supervised learning algorithms adjust their model parameters
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in order to minimize the error between the model output and the real expected
output of an input. This means that historical data has to be labeled. On the
other hand, unsupervised algorithms try to find relationships between the inputs
without beforehand knowledge of the outputs. These relationships can be similarities,
proximities, and statistical relationships, among others. As a derived consequence
of the learning process, the supervised algorithms are commonly used to perform
classification tasks, while the unsupervised ones are rather used to cluster inputs in
order to find anomalous or similar behaviors between themselves. In general, the ML
model and the type of learning are associated with the type of problem to solve.

Different categorizations of the ML algorithms can be found [52, 179, 73]. For
instance, a general classification groups the classical supervised algorithms based on a
statistical model, trees, rules, and neural networks (NNs), among others. In addition,
several approaches do not necessarily belong to the groups mentioned above and can
be grouped into parametric and non-parametric.

Nowadays, there is a big variety of ML algorithms not only based on supervised
and unsupervised learning. For instance, semi-supervised algorithms take advantage
of unlabeled data to train classifiers, either training a classifier with the labeled sam-
ples and then evaluating the unlabeled ones in the classifier, or using unsupervised
approaches for the unlabeled samples. Hybrid approaches are also found through the
combination of supervised and unsupervised learning, due to the presence of labeled
and unlabeled samples in datasets [141]. Moreover, ensemble techniques use a variety
of ML models (commonly classifiers) and combine their results through a combination
strategy. Strategies such as Bagging and Boosting are widely used to build ensemble
models [142].

2.4.4 Validation of classification models

This section overviews the most common validation approaches for classification so-
lutions. Supervised learning requires the beforehand knowledge of the sample labels,
which are key information to validate the ML models. The usual approach is to di-
vide the dataset into a training and a test set. The ML models are built with the
training set, while the resulting models are assessed by the test set in order to eval-
uate their prediction capabilities. Given the model predictions and the ground truth
labels of the test set, several performance metrics can be deployed to quantify the
classification capability of an ML solution. For instance, [159] presents a study of the
classification performance metrics divided into the type of classification to achieve:
binary, multi-class, multi-labeled and hierarchical. Binary classification occurs when
an input sample can be classified into only one of two distinct classes. On the con-
trary, multi-class classification implies that the input can be classified into only one
class within a pool of classes. Multi-labeled classification allows the classification of
an input sample into more than one class in the pool of classes. Finally, hierarchical
classification is similar to the multi-class classification but with more granularity, in
the sense that the principal classes are divided into lower levels of subclasses.

In order to validate ML models, one of the most common approaches is to measure
their performance in terms of the classification capabilities. Several relationships
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can be found among the model predictions and the ground truth labels, such as
the number of samples correctly and incorrectly assigned to a class, among others.
These counts allow computing metrics, such as Accuracy, Precision, Recall, F-score,
Receiver Operating Characteristic (ROC), etc. For instance, for binary classification
with a positive and a negative class, the counts of true positives (TP), false negatives
(FN), true negatives (TN), and false positives (FP) can be used to compute the
performance of the classifier through the sensitivity and the specificity metrics. A
combination of these metrics, such as the F-score and the ROC, offers more precise
information about the performance of the classifiers for both classes. Particularly,
the ROC curve is obtained by computing the sensitivity and specificity varying the
classifier’s discrimination threshold [58]. In the ROC curve, the ideal value represents
a high sensitivity and specificity. The result is an interpretable figure that illustrates
the performance of the classifier in different operating points; in addition, the Area
Under the Curve (AUC) can be computed to obtain a compact measure from the
ROC. The analysis above can be mapped to multiclass-problems by computing overall
performance measures with micro or macro averages of the binary performances. Each
of these metrics exposes different aspects of the model performance [143, 75].

Following the same scheme previously presented, in the next section, we envisage
to describe how ML is applied over our application, Internet traffic classification.

2.5 Internet traffic classification with ML

For this particular domain, one of the main goals is to classify traffic based on the
status of the Internet network. For such a case, IP flows are reported as the most
common representation of Internet communications, where representative features
can be extracted and used for traffic classification [121]. One of the main strengths of
the ML approach is that the feature extraction can be performed without inspecting
the packets’ content of IP flows; hence, these features are suitable for creating classifi-
cation models for encrypted communications. However, this approach can encounter
problems with the use of the HTTP2 protocol and VPNs, due to the separation of
communication sessions is not explicit.

In the following sections, we present an overview of the most important elements to
consider for each step in Figure 2.5. This study will lead us to identify the challenges
in this field.

2.5.1 Data collection

The Data Collection step allows measuring different scenarios on the Internet. This
phase mainly collects IP flows within a time window. Additionally, this block carries
several steps, such as packet management, flow reconstruction, and storage. Tra-
ditionally, historical data is a very important source of knowledge for building ML
solutions. A rich and complete set of observations regarding a problem can improve
the performance and generalization of the ML models. However, in the traffic clas-
sification domain, this aspect is critical due to: complexity and scalability of the
Internet network, the constant evolution of the traffic, and privacy policies that do
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not allow data collection, among others. In consequence, real Internet traffic data is
hardly available for analysis and knowledge extraction. Two main aspects must be
taken into account for the data collection, they will be explained as follows.

a) Network environment

In particular, three main trends were found in the field: real traffic acquisition,
traffic generation, and emulation. Real traffic is normally collected from the
network, obfuscating private information among communication entities (e.g.
clients-servers). Traffic generation tries to simulate similar real traffic conditions
by copying or modeling real interactions through scripts [19, 180, 37]. Finally,
traffic emulation aims at setting scenarios as close as real ones, where one or
more actors can intentionally emulate common interactions in the network [117,
120, 171, 131]. The optimal solution is to capture real traffic from the network
in order to have a reliable source of realistic data. However, this solution is hard
to conduct, mainly due to privacy matters; in addition to this, real traffic is hard
and most of the time impossible to label with its ground true application. Even
though some works manage to obtain realistic conditions for monitoring traffic,
the data is hardly ever publicly available for the research community.

b) Data measurement

The process detailed in Section 2.3 is followed for data collection: i) packet
capturing, ii) flow metering and exportation, and iii) storage. Moreover, a new
procedure, called label assignment, is defined. The label assignment procedure
refers to set an identifier for each flow; this identifier is related to particular pat-
terns in a communication session, e.g., name or type of application. Associate
ground truth information with traffic traces can be a tedious task due to the
complexity of tracking the flows belonging to specific applications; moreover,
this procedure is a key task for validating traffic classifiers. For the best of our
knowledge, few works implement a reliable ground truth assignment, due to the
most common approach is to use DPI tools for such task [69, 28].

2.5.2 Feature engineering

Once the IP flows are collected, the next step is to process this data to find represen-
tative features that describe the Internet communications.

a) Feature extraction

The features extracted from packet flows are mainly statistical-based features,
which are defined under the assumption that traffic at the network layer has sta-
tistical properties (such as the distribution of the flow duration, flow idle time,
packet inter-arrival time and packet lengths) that are unique for certain types of
applications, and enable different source applications to be distinguished from
each other [41, 116, 139]. Under this assumption, the work in [121] proposes
249 statistical features, which can be extracted from flow network traffic.
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b) Feature Selection and Reduction

ML processes might or might not count with an FR or FS process. Several
studies state that a low amount of features is needed to wholly obtain patterns
that differentiate an application to another. The works in [188, 56, 55] study
the most relevant statistical features for traffic classification. In [56], several
FS techniques are used to obtain the most important features, while a newly
proposed method selects the smallest set. The results were crossed validated
with three datasets measuring the goodness, similarity, and stability of each
feature; giving, as a result, a small set, between 6 and 14 statistical features,
that offers the best performance measured through the accuracy.

2.5.3 Classification with Machine Learning

It is common to find in this field different solutions using a variety of ML algorithms.
Given the wide number of ML algorithms, finding the most adequate is very impor-
tant in traffic classification. Particularly, most of the works have based their selection
on building and testing several models until finding the one with the highest perfor-
mance. In this section, selected works are detailed to outline the challenges involved
in selecting an ML algorithm.

Along with our study, it was noticed that most of the works are focused on par-
ticular objectives to achieve: either to identify the type of application, the protocol
application, anomalies or tunneled connections. The most popular task is Internet
traffic classification, which aims at detecting the application name of IP flows. La-
beled datasets are used to train supervised algorithms in order to select the best
model, which in turn is obtained by measuring the classification performance [161,
139, 118, 186]. However, for more fine classification tasks, the combination of sev-
eral classifiers might solve the generalization problem encountered by the classical
classifiers. These types of solutions aimed at creating more specialized classifiers to
solve the class-imbalance problem [25, 70, 1, 112]. One or more classes have more
samples than another. This case is very harmful to the ML classifiers due to it will
bias them to learn more from the majority class than the minority. It can also cause
over-specification (overfitting) of the minority class. This behavior is commonly found
in traffic classification.

Moreover, unsupervised techniques are deployed for anomalous detection, due to
its capabilities to detect patterns that are not similar to normal or nominal conditions;
but, also to perform classification tasks [10, 157, 175, 109, 50]. Finally, hybrids and
advanced approaches combined supervised and unsupervised techniques to achieve a
more accurate performance than the techniques above [190, 13, 14].

2.5.4 Model deployment

The main question that arises is how the ML solutions can be deployed into real
Internet network scenarios. For most of the works studied in our survey paper [135],
the implementation of the ML solution is not performed, and normally a proof of
concept is presented. Firstly, we present some works give hints about how the ML
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approach can be deployed. Finally, it is analyzed the importance of the ML solution
reconfiguration; which plays an important role in the traffic classification task.

a) Online implementation

One of the most important features, that the Internet network has, is that trans-
mission rates are normally very high and the dimension of the network is big.
These main characteristics make the classifier implementation efforts challeng-
ing. The most common approach is to deploy the ML solutions over the traffic
monitoring tools; hence, each time that a packet flow is observed, it is possible
to perform the classification. For instance, [27] uses a NetFlow enabled router
for monitoring the traces, which are forwarded in an online manner to an ML
classifier. NetFlow is a Cisco protocol that aims at exporting IP flow informa-
tion from routers and switches. Similarly, DBSstream [12] integrates the traffic
classification solutions into its monitoring platform. Another approach is to
implement the ML solution in a stand-alone classification module; for example,
the work in [150] implements the ML solution into a Field-Programmable Gate
Array (FPGA) based embedded system. The FPGA device uses the information
at the network layer, such as the packet sizes and IATs.

b) Reconfiguration

One of the main issues, found in most of the ML solutions studied so far, is that
when new patterns are appearing in the network (e.g. new codecs or applica-
tions), the ML models must be updated. The ML-based classification is pruned
to rapidly be out-of-date due to the dynamism of the network. Therefore, self-
learning, evolving or retraining strategies must be taken into account [91, 47,
176]. In general, for most of the ML techniques, an update implies a model
retraining with a new historical dataset (commonly labeled). This means that
the model has to be constantly retrained at any time that a new application or
behavior appears on the network. The cost of performing this step can be sig-
nificant; nonetheless, if this point is not considered then the model performance
is at risk.

In the next section, we make a summary of the main trends in each subject
discussed previously. This study will lead us to place the main challenges in this
field.

2.6 State of the Art Analysis

More concisely stated, particular characteristics are taken from each phase in Figure
2.5. These characteristics are detailed in Figure 2.6, likewise they represent some
paths that most of the works in this field follow for traffic classification. In this
figure, it can be noticed that for the Data collection phase, it will be studied if the In-
ternet traffic is: real or emulated, publicly available, encrypted and labeled (ground
truth). These aspects will become very important for characterizing the problem.
The Feature Engineering phase comprises the FE and FS approaches used by the
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reviewed papers. In this sense, four FE approaches were found as the most com-
mon ones, such as statistical-based (STATsB), graph-based (GRAPH), time series
based and hybrid approaches. In the FS phase, it will be denoted if the reviewed
papers performed or not this procedure. Following, for the Algorithm selection phase,
the ML approach used and the objective to achieve are defined. The trends stud-
ied are classical classification (CClass), Multi-classification and ensemble approach
(MClass&E), clustering for classification and anomaly detection (Clust), and hybrids
and advances techniques (H&A). Among the classification objectives studied were
found application name (AppN), application category (AppC) and anomaly detec-
tion (AD). Also, other objectives are considered, such as user behavior detection and
community search, among others. Finally, in the Model Deployment phase, it is dif-
ferentiated the papers that implemented the ML solution (YES), and the ones that
did not do it or do not specify it (NNS). The reconfiguration of the solution will be a
key aspect to study, in this sense, it is verified if the reviewed papers offer either a re-
training (RTraining), a self-learning or evolving (SLE), or other/non-specified (ONS)
process.

The question that arises is: which is the best path to take? 49 papers were selected
as they present the complete procedure in Figure 2.5 using a variety of strategies
for traffic classification, compelling to show the challenges remarked in the previous
sections. The results of the state of the art are summarized in Figure 2.6. A path is
drawn in order to know the procedural trends commonly taken.

It is noticeable from Fig 2.6, that most of the works studied did not use encrypted
data, and the ground truth establishment was not commonly performed. In the
feature engineering process, few works applied FS for their solution. In terms of
the ML approach used, the less explored are the unsupervised techniques, the multi-
classification, and the ensemble approaches. Finally, for the model deployment phase,
there are few works that implemented the solution in real-world scenarios. Moreover,
reconfiguration processes do not handle evolving or autonomic reconfiguration. Given
these scenarios and the discussions of the previous section, the following future trends
have been identified.

• The proposition of emulated traffic architectures, oriented to create ML solu-
tions, can allow the generation of encrypted and non-encrypted traffic, as well
as a reliable flow labeling process.

• Given the efficiency of the statistical-based approach, an exploration to improve
its computation will provide robust classification solutions. In the case of the FS,
an efficient dynamic selection of the features might offer a higher classification
performance.

• In the algorithm selection block, the future trends to exploit are the deployment
of multi-classification and ensemble approaches, which are very promising path
given the characteristics of the Internet data.

• For the ML solutions, more experimental tests are needed to measure the per-
formance in terms of response time and complexity. In this particular case, it is
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Figure 2.6: Trends of the selected papers for classifying traffic with
ML.

necessary to propose distributed and scalable ML solutions that can deal with
the dimension of the Internet network.

• In terms of the Model reconfiguration, an alternative solution will be to deploy
the concept of incremental learning, in order to deal with the dynamism of the
Internet network.

2.7 Summary

This section presented the common procedures to achieve traffic classification through
ML techniques in Satellite Communications. In this way, the general Satellite Archi-
tecture was studied; as well, as the network functions that allow placing an Internet
traffic classification module. We notice that in a PBN architecture, the ML solution
can send the classification results to the PDP component, which in turn will act on
the Satellite Architecture for resource provisioning.

The procedures to achieve traffic classification were analyzed, where ML stands
as a promising path in this field. In particular, the ML approach can deal with



30 Chapter 2. Background and Related works

encrypted and non-encrypted data thanks to its non-intrusion to the content payload.
In general, working with encrypted traffic is challenging, where the type of features
should lead to improve classifications in the absence of the packet content. The
current publicly labeled data is scarce, which makes it hard to compare ML solutions.
Furthermore, for knowledge extraction with ML, the classification task was found as
the most popular. About this subject, multi-classification and ensemble approaches
present some advantages that make them compelling for dealing with some problems
in traffic classification, such as class-imbalance and generalization. However, the
clustering approach can help to find new or anomalous behaviors in Internet traffic;
therefore, its study in this field should be extended. Finally, the implementation of
such solutions remains an important task to achieve, due to different factors, mostly
related to performance and adaptability of the solutions.

In view of the aforementioned aspects, in the next chapter, we introduce a general
architectural view of our proposal. We propose a system to perform Internet traffic
classification with ML in a Satellite architecture.
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QoS management in Satellite
Communications with ML
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3.1 Introduction

The result of the state of the art analysis remarks the need for implementing an ML
solution for traffic classification in Satellite Communications. Current approaches and
commercial products are mightily pointing to this kind of solution; however, there are
few real implementations. Traditionally, traffic classification is widely implemented
by Payload Inspection solutions, however, recent efforts start including or proposing
ML learning solutions to their engines [145]. Moreover, according to our knowledge,
few works addressed the problem from the Satellite point of view. In this chapter,
we outline what will become our first contribution: a proposal for integrating an ML
solution in a Satellite architecture. We use as reference model an Architecture pro-
posed by Thales [44], which in turn will serve us as guidance along with this chapter.
Therefore, this chapter focuses its attention on developing a framework that can be
deployed in Satellite architectures. Such a framework comprises all the necessary ele-
ments to achieve the goal, as well as, additional components that should be integrated
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to assure a robust classification tool. We propose a hierarchical classification system
based on ML, which treats encryption and flow patterns differently. We also propose
to identify the requirements to integrate the solution in such architecture.

In order to formally define the requirements of the system, we follow the Model-
Based System Engineering methodology proposed by ARCADIA and the open-source
methodology tool named Capella. This tool will help us to identify the needs of
the system in order to create an implementable model. These requirements are in
compliance with the main challenges found in the literature in Chapter 2.

The remainder of this chapter is given as follows. Section 3.2 presents a brief
overview of the Capella methodology. Section 3.3 theoretically introduces the pro-
posed architecture. In Section 3.4, we model the proposed architecture by using
ARCADIA concepts and diagrams. Finally, Section 3.5 concludes this chapter.

3.2 Capella

Capella is a software engineering tool based on the ARChitecture Analysis and Design
Integrated Approach (ARCADIA) methodology to Model-Based System Engineering
(MBSE) systems. Both the methodology and the tool have been designed and de-
veloped by Thales in the framework of several industrial projects. Briefly speaking,
ARCADIA is a method for systems, hardware, and software architectural design.
ARCADIA tries to make a clear distinction between the operational context, the
needs to be satisfied by the system, the internal components, and functionalities to
be provided. Capella follows ARCADIA principles to provide methodological guid-
ance, intuitive model editing, and viewing capabilities for Systems, Software, and
Hardware Architects [26].

In Figure 3.1, we show the main phases to achieve the modeling and implemen-
tation of a system. In this figure, the Operational analysis and System analysis are
closely related, they help to find and define the requirements of the system. Whereas,
the Logical and Physical architectures aim at developing the solution.

More specifically, in Figure 3.1, from the left to the right, we find several views
integrated into viewpoints that hold the models and architectural designs for each
level. Briefly speaking, the first level consists of representing the operational activities
related to the problem, as well as the related actors and entities. These activities are
transformed into a flow of functions during the System Analysis, it is here where
the needs of the system are shaped. Following, in the Logical Architecture, the
functions are refined and allocated to specific components. Finally, in the physical
architecture, these components are expanded in view of their implementation over
software or hardware entities.

The viewpoints use different concepts which can be described by dataflows, sce-
narios, functional chains, etc. In the next section, we will briefly describe how to
build the first two levels of this methodology
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Figure 3.1: Phases for modeling with Capella.

3.2.1 Operational analysis

The operational analysis helps to define what the entities or users need to accomplish.
In this viewpoint, it is identified the actors and entities that will interact with the
system to be developed. The main activities that the actors/entities should or must
perform are described; in addition, the operational activities followed to fulfill the
requirements of the problem are also represented. In this phase, several concepts can
be used to represent the operational analysis. Some of them are described as follows,

• Entities and actors: the actors and entities interacting with the system.

• Capabilities: they help to find the interactions between the actors/entities
with the system.

• Actor Activity: it describes the flow of activities that the actor/entity follows
to develop a capability.

• Entity Scenarios: They complement the actor/entity activity diagram with
a sequence diagram like structure.

• Operational context: It captures the allocation of the activities into the
actors/entities in only one diagram. This is the final result of this phase.

3.2.2 System Analysis

The activities previously defined are broken down into system functions. In this
phase, more details about the needs and functionalities of the system are outlined.
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This analysis is focused on what the system needs to accomplish for achieving the
actors/entities’ goals. Some concepts commonly used in this phase are listed below.

• Missions and Capabilities: it is similar to the previous phase, however, the
capabilities can be finely detailed and can be specialized to better precise the
needs at the system level.

• System function: In this diagram, more fine-grained functions develop the
activities defined in the operational analysis.

• System architecture: The system functions are allocated into the system ac-
tors/entities. It is important to mention that these actors/entities are retrieved
from the operational analysis. Nonetheless, new component functions can be
defined to accomplish the mission of the system.

The ARCADIA methodology will be used to analyse and define the requirements
of the ML-based classification system, as well as to design and implement our pro-
posal. In order to do so, we use the Capella tool to develop the two phases previously
described; but at first, let us introduce in the following section the theoretical base-
ment of our proposal to later perform the requirement analysis.

3.3 Reference high-level architecture: QoS management
in Satellite Communications with ML

The architecture in Figure 3.2 is an operational architecture already studied and pro-
posed by Thales [44]. This architecture takes the network functions of Figure 2.1
and the PBN in Figure 2.2 integrated with the ML-based classification system. In
this figure, an abstraction of the elements in a real Satellite network distribution is
given. In the figure, we have added three new functional elements to provide Internet
traffic classification: Passive monitoring, Feature extraction and Classification Sys-
tem. Internet classification is forwarded to the PBN, following the PBN will take the
necessary actions to improve the QoS.

In the figure above, we also show three essential components in the PBN: PDP,
Resource allocation PEP, and QoS server. Briefly speaking, traffic classification is
forwarded to the PDP that will define what QoS policy should be applied to a flow
or set of flows. The QoS policy is then sent to the Policy Enforcement Functions
(PEFs) such as the QoS servers and Resource allocation PEP. On the one hand, the
QoS server applies the QoS rules on the equipment that handles the traffic (GW,
ST). The QoS Server could be composed of a PEP receiving the QoS Policies and
to a PEP formatting the QoS policies toward the concerned equipment: ST, GW,
routers, proxies. It is important to mention that PEF functions corresponding to QoS
Servers can be centralized or distributed in GWs and STs for the Quality of Service
enforcement. On the other hand, the resource allocation PEP provides the resource
when needed to the User Terminal. To instantiate the resource allocation toward
the terminal, the Resource allocation PEP is composed of a PEP receiving the QoS
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policy for the flow from the PDP communicating with an internal PDP. Additional
functional elements of the PEF functions are omitted due to they do not affect the
modeling of our approach. In particular, what will be of paramount importance is
correctly handling the traffic monitored and signaling the classification to the PBN.

Figure 3.2: Example of a Satellite Network Architecture with traffic
classification.

In the proposed reference architecture, the flow of activities of interest are:

1. Intercept Internet traffic in the GW and ST through the Passive monitoring
points.

2. Perform feature extraction over the Internet flows.

3. Send the extracted features to the Classification System and mark the flows
with their QoS classes.

4. Forward the classification to the PDP that will take decisions in order to improve
the QoS. Then the Resource allocation PEP and the QoS servers will execute
those decisions.

In Figure 2.2, the Internet traffic will be captured from both the GW and ST
components and decentralized ML-based classification will be performed. However,
another option will be to capture and to treat the traffic only in the GW. Moreover,
the PEF functions corresponding to QoS Servers can be centralized or distributed in
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GWs and STs for the Quality of Service enforcement. These modifications depend
on the architecture choices, and they will not affect the functional operations of our
ML-based classification solution. These functional operations will be described in the
sections above.

3.3.1 Passive monitoring

Internet packets are captured to be organized into flows. This action comprises steps
such as packet capture, flow metering, and exportation, detailed in Chapter 2. The
passive monitoring component will be in charge of monitoring the packets of a client
from the beginning of the connection until the end (for example, when the timeout is
reached). Among the most important parameters to gather per-flow in the monitoring
process, we have:

• ID of the flow f represented by a tuple t( f )

• Packet flow p in both directions f , in the source and destination fsrc and fdst

• Arrival of the last seen packet for f , fsrc and fdst

• Statistical features for f , fsrc and fdst

• ML classification value c( f )

• Type of flow t f flag, tunneled or not

3.3.2 Feature Extraction

Statistical based features are computed for each flow in order to describe the com-
munications. The feature extraction process is applied over the packets that are
captured in the monitoring step for each flow. However, when a tunneled connection
is detected, the flow is broken into chunks of flows within a time interval, as seen in
Figure 3.3. Then, statistical-based features are computed for each flow in order to
describe the communications.

Figure 3.3: Flow reconstruction.

In brief, the properties such as Inter-Arrival Time (IAT) between packets and
packets length (pktlen) are the most important characteristics considered, with their
metrics, such as maximum, minimum, mean and standard deviation, among others.
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In addition to the statistical behavior of the IAT and pktlen, one can add new char-
acteristics such as the counts of packets arriving within an interval time ∆t, as well as
the total bytes captured. The feature extraction process will be detailed in Chapter
5.

Conveniently enough, the Passive monitoring and Feature extraction processes are
found interleaved. In consequence, Table 3.1 shows the procedure to achieve these
processes. In short, the header of sniffed packets p allows getting the tuple t that
serves as the flow’s identifier. If the packet belongs to an existing flow, the statistical
features of such flow are updated. The tunneled flows have the peculiarity that once
the elapsed time te( f ) is upper than ∆t, the flow’s parameters are reset. Ending flows
are always notified to the PDP to keep track of the closed sessions.

Macro algorithm

Input: Network interface N
Procedure:
For p sniffed in N,

1. Get the tuple t(p) = (IPsrc, IPdst, proto) from p

2. If p belongs to an existing flow f ∈ F|t(p) = t( f )

2.1. If t f is False ( f is not tunneled),
2.1.1. Compute statistical features SF over f
2.1.2. Update t − 1 parameters of the flow

2.2. Else,
2.2.1. if te( f ) < ∆t, do the steps from 2.1.1. to 2.1.2.
2.2.2. Else, do the steps from 3.1. to 3.2.

3. Else,

3.1. Create a new flow with t(p)

3.2. Update t − 1 parameters of the flow

4. Check for flows in idle timeout

5. Send the IDs t( f ) of terminated flows to the PDP component

end for
Output: SF, t(p)

Table 3.1: Macro algorithm for passive monitoring and feature extrac-
tion

3.3.3 Classification system

Particularly, this system proposes an automatic and logic process to analyze traf-
fic in a hierarchical manner. The classification system is displayed in Figure 3.4.
Briefly speaking, the process starts performing the Offline configuration process in
order to initialize the whole classification system (training process). In an online
manner, the flow features pass through a Flow discriminator 1 (D1) that will be
in charge of disjointing the non-encrypted/encrypted flows from the tunneled flows.
This separation will allow us to treat each technology differently. For instance, for
the non-encrypted/encrypted flows, classical ML models or DPI solutions (denoted
as Cl1) can label the flows. Whereas, the tunneled flows will pass through another
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Flow discriminator 2 (D2) that separates the unitary (only one application within
the tunnel) and the multiple (several applications at the same time in the tunnel).
The unitary connections will be treated by a classical ML model called Cl2, while
the tunneled ones by Multi-label classifier 1 MLC1. Finally, once the classifiers are
actively working the Online configuration component is receiving information that
can induce to change or to add models in the Model repository. We can notice that
the Model repository gathers Cl1,Cl2,D1, D2 and MLC1. In particular, Cl1 and Cl2
are ensembles of classifiers formed by the set {C1, ..., Cn}. The Online configuration
will be somehow applied over these ensembles. We will give more details about all
the components of this Classification System in the following sections.

Figure 3.4: Classification framework

Offline configuration component

This component will be in charge of setting all the initial parameters of the classifi-
cation and online configuration components. Basically, this component will set the
primary knowledge of the classification models. In addition, it will define the require-
ments for monitoring in the Internet point selected, such as the packet length and
Inter-Arrival Time (IAT).

Hierarchical classification component

The classification prediction is computed by this component to classify Internet traffic.
This system will receive inline Internet flows that will be treated in the following order:

• Flow discriminators: classification models that separate different types of dis-
tinct Internet communications, such as non-encrypted traffic, encrypted traffic
and multiplexed traffic.
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• Classifiers: set of ML classifiers that identify the type of QoS traffic per flow.

• Multi-label classifier: a classification strategy to deal with tunneled connections
with more than one application simultaneously.

This component will forward the classification performed and relevant informa-
tion regarding the communication studied. In addition, it will inform the Online
reconfiguration about possible class distribution changes. The algorithm proposed to
perform this task is given in Table 3.2.

Macro algorithm

Input: ST, t( f )
Procedure:

1. Evaluate the flow discriminator d = D1(ST)

2. If d is not multiplexed, Evaluate the classifier c( f ) = Cl1(ST)

3. Else,

3.1. Set t f True
3.2. Evaluate the flow discriminator d = D2(ST)

3.3. If d == Unitary, Evaluate the classifier c( f ) = Cl2(ST)

3.4. Else, Perform the multiplexed treatment c( f ) = MLC1(ST)

4. Deliver results {t( f ), c( f )} to the PDP

Output: {t( f ), c( f )}

Table 3.2: Macro algorithm for the hierarchical classification compo-
nent for a new flow

Online reconfiguration component

This additional step will be in charge of monitoring the behavior of the input samples
in order to perform updates or upgrades on the classifiers. This element will be in
charge of evaluating the predictions performed by the classifiers. This is deployed
in order to cope with the evolution of the network. Therefore, in an online manner,
this component will evaluate if the traffic observed belongs to an existing QoS class;
if so the classifier will “evolve” to offer more accurate predictions. The steps of this
process are listed in Table 3.3. In brief, the Incremental Learning Model (ILM) will
indicate when a class of interest is changing its behavior with the value of b. The
simplest way to demonstrate this change is when a batch of samples is filled by this
class. This phenomenon will be detected by a semi-supervised algorithm that will be
presented in Chapter 6. Nonetheless, this approach can be replaced by a retraining
process when new data is collected.

3.3.4 Policy based network architecture

This component comprises three main modules: PDP, Resource allocation PEP and
QoS Server. The scope of this work only delves into the entries that this architecture
requires.
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Macro algorithm

Input: ST, name either Cl1 or Cl2
Procedure:

1. Get ILM given name

2. Evaluate the ILM c, b = ILM(ST)

3. If b shows an expansion of the class predicted c,

• Get the training dataset (X, y)

• Train the base classifier Cj

• Add Cj to name in the model repository in the hierarchical classification

Output: Cj

Table 3.3: Macro algorithm for the Online reconfiguration component

The basic interaction between these components begins with a request of a pol-
icy decision sent to the PDP as denoted in Table 3.4. This request is sent by the
Classification system and includes flow specifications such as a flow tuple t( f ) and
classification c( f ). The decision taken by the PDP depends on the value of c, named
in this work QoS class (reviewed in Chapter 4, Section 4.2). The PDP returns a pol-
icy decision to the Resource allocation PEP and QoS server. The Resource allocation
PEP then enforces the policy decision by appropriately translating it into commands
that will be executed allocating appropriated bandwidth to the related terminals. On
the other hand, a QoS server can be deployed for each ST and GW component in
order to offer local traffic shaping.

Macro algorithm

Input: request = t( f ), c( f )
Procedure:

1. If PDP received a request

• Evaluate the PDP rules over request

• Get the PDP decision d

• Send d to the Resource allocation PEP and QoS Server
• Execute PDP’s decisions

Output:

Table 3.4: Pseudo code for the PBN component

In this section, we have informally introduced the needs and functionalities of our
ML-based classification system. Hence, the formal modeling of this architecture is
proposed in the next section.

3.4 Requirement analysis with Capella

In this section, we specify the logical interaction between all the actors involved
in our architecture. We also identify the most important requirements and the most
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important functions guiding the design of our solution. Therefore, in order to correctly
proceed, several assumptions are stated for modeling the system. These are:

• Several components of Satellite communications are omitted from the model in
order to make an abstraction in client-server communications. For instance, the
network backbone is transparent to this model due to it is disconnected to the
QoS management of the Satellite System.

• In the same manner, only the network functions of interest are taken into ac-
count, such as the PDP, Resource allocation PEP and QoS server for improving
the QoS.

Given these assumptions, we start modeling the problem and the proposed solution.

3.4.1 Operational analysis

In this section, we try to answer what the users of the system need to accomplish
globally. Therefore, we define one by one each of the elements of the operational
analysis as follows.

Operational Entities/Actors and Capabilities

The first step is to define the operational entities and actors. These elements interact
along the modeling process to achieve the objectives defined. The entities and actors
are shown in Figure 3.5(a). The entities agree with those in the reference models
presented in the figures 2.1 and 2.2: Satellite (SAT), Satellite Terminal (ST), Satellite
Gateway (SW), and Policy-based Network (PBN). On the other hand, the actors are
those involved in a communication session (Client and Server), and network functions
(PDP, Resource allocation PEP and QoS servers).

On the other hand, the main capabilities that our system should be able to fulfill
are illustrated in Figure 3.5(b). The main capabilities are the communication between
client-server and the improvement of QoS. In this sense, communications between
clients and servers, either through the GW or the ST, are expected (Comm GW and
Comm ST). In the same manner, QoS improvement is provisioned for communications
in the GW and ST. In the figure, the entities/actors involved in each capability are
shown.

It is worth mentioning that the ability to offer client-server communications in
the GW is equivalent to the ST. In the same manner, QoS management in the ST
and GW are equivalent in terms of the operational analysis. Therefore, we present
as follows, the model of these two scenarios altogether.

Scenario 1: Communication GW/ST

We will present the general activities to achieve a communication between a client
and a server (denoted as a session). Only the handshake or connection establishment
is shown. In addition, intermediary network components are omitted to understand
and to simplify the model of a Satellite communication. The diagram in Figure 3.6
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(a) Entities and Actors (b) Capabilities

Figure 3.5: Operational Entities/Actors and Capabilities.

shows the activity interaction between the client and the server. The main functions
are displayed.

Basically, this model abstraction presents the client-server handshake in a Satellite
communication. The client traffic is supposedly passing through the ST, SAT, and
GW to arrive at the server, while the server inversely follows the same path to finally
perform the activity Sharing/Receiving. To this extent, different communication pat-
terns can appear (e.g. client-client communications); however, for QoS management,
what is important is the traffic captured whether in the ST or the GW.

Figure 3.6: Operational activity interaction of a client-server commu-
nication in the GW/ST.

Scenario 2: QoS management in the GW/ST

An opened session is monitored to perform a classification step. Depending on the
classification results, some decisions will be taken and executed to shape the traffic.
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The operational activity interaction of this scenario is shown in Figure 3.7. In brief,
the main objective is to monitor client-server traffic from the GW/ST in order to
perform traffic classification. The classification result is translated to a QoS class,
this QoS class helps to define decisions in the PDP. The PDP transmits the decisions
to the Resource allocation PEP and QoS servers that will translate them into actions
(for instance, reduce or increase the bandwidth allocation).

Figure 3.7: Operational activity iteration of the QoS management in
the GW/ST.

As it was previously mentioned, the GW and ST capabilities are equivalent. Con-
versely, additional operational models are unneeded.

Operational context

The operational architecture or product of the operational analysis is given in Figure
3.8. This figure summarizes the activities and interactions between the actors and
entities. The GW and ST perform equivalent operational activities. In the center, the
client and server actors can eventually open communication sessions passing through
the GW and the ST. Meanwhile, the ST and GW will handle the transmission to the
SAT. Once a communication session is started, monitoring and classification tasks
will be performed in the GW and the ST. The classification result is managed by the
PBN entity.

To conclude, the scenario to be developed is the QoS management with ML.
The communication between client and server is already well-known and deployed in
Satellite Architectures. However, we illustrated it in this architecture as additional
information to help to understand the problem. In the following sections, we per-
form the system analysis of the model, taking into account the capability of interest
(Improve QoS).
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Figure 3.8: Operational context.

3.4.2 System analysis

We now know what the users need. At this stage, with the system analysis, we
develop how the system will work to accomplish the users’ needs.

Missions and Capabilities

The principal mission of the system is to improve QoS through traffic classification.
In order to do so, our system has to be equipped with monitoring, classification and
management capabilities. Figure 3.9 shows the missions and capabilities proposed.

Figure 3.9: Missions and capabilities of the system analysis.
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System architecture composite

Firstly, we present a global architecture with composite functions that will allow us
to achieve the mission. These functions are depicted in Figure 3.10 and summarized
as follows.

Figure 3.10: System architecture.

• Management system entity: As a central control system, it will coordinate some
operations to classify Internet traffic. In this sense, four functions are disposed
of:

– Monitoring system: it will be in charge of Internet traffic monitoring
– Classification system: It will be in charge of deploying the classification

system as in Section 3.3.3
– Classification management: it handles configurations of the Classification

System
– Monitor Configuration: it handles configurations of the Monitoring System

• PDP entity: its main function is to process classification results to define suit-
able decisions. This accomplished by the Decision system.

• Resource allocation PEP entity: The decisions provided by the PDP are exe-
cuted by the Allocate bandwidth function

• QoS server GW entity: Similar to the previous case, the PDP will order to take
some actions that will be performed by the Schedule traffic function.
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• GW entity:

– Handle session: it is a functional port where the Internet traffic can be
monitored

– Configure the system GW: This function makes an abstraction of several
components that perform configurations over the GW.

Figure 3.10 is an initial system architecture that contains the main functions to
be developed in further system analysis. These composite functions are detailed as
follows.

Monitoring and Classification: system functions

Figure 3.11 presents the functional exchanges between the Monitoring and Classifi-
cation system. In order to show a simplified diagram, we only show the case when
the data flows go into one discriminator and classifier (let us say D1 and Cl1). In
the figure, two main functional chains are remarked: traffic monitoring and traffic
classification. Traffic monitoring is to follow these steps:

Figure 3.11: Monitoring and Classification system function.

• Sniff a communication session in the GW/ST

• Allocate the packets sniffed in a new or existing session

• Perform a metering process assigning the internet packets to their respective
flows



3.4. Requirement analysis with Capella 47

• Some information about the flow/session are stored for further analysis

On the other hand, a traffic classification process for a flow can be viewed as the
following sequence of steps:

• Execute the feature extraction and update the flows. Previous flow’ states are
used for computing the features

• Pass the flows’ statistics through a Flow discriminator classifier to define which
classifier will be used.

• Evaluate the flows’ statistics by the Classifier and deliver the result to other
system functions.

• Perform online or offline configurations when needed. The online and offline
configuration of the classifiers can occur in parallel. However, the offline con-
figuration is normally executed to initialize the system for the first time.

QoS management: system function

In this section, we present the functional activities to provide flow management. In
Figure 3.12, the result coming from the classification system is taken to perform the
following operations:

Figure 3.12: QoS management system function.



48 Chapter 3. QoS management in Satellite Communications with ML

• Identify this flow and perform a set of rules. The evaluation of the rules gives,
as a result, a set of decisions.

• Translate these decisions into commands with the Resource allocation PEP and
QoS servers, to later apply them.

The result of these activities is the shaping of the traffic according to the classifi-
cation results and the PDP previously defined rules.

Final System architecture

We allocate each of the functions in the sections 3.4.2 and 3.4.2 to their respective
composite functions. These functions are displayed in the System Architecture, in
Figure 3.13, standing up the functional chains defined in the previous sections.

Figure 3.13: System architecture.
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3.5 Summary

In this chapter, we follow an MBSE methodology in order to explicitly specify the
classification system’s requirements and to design the structural and behavioral di-
mensions of our solution. Conversely, we present a summary of those needs, and
where they will be developed along with the following chapters.

• Offline configuration component: in other to initialize the primary knowledge
of the ML solution, we need a large historical Internet network data. This data
has to represent all the conditions that the ML solution might face in a Satellite
Architecture. This requirement will be theoretically and practically developed
in Chapter 4.

• Feature extraction: a correct representation of the Internet streams is necessary
to perform correct Internet traffic classifications. This aspect will be presented
in Chapter 5.

• Flow discriminator: This block emerges from the need of treating protocol
communications differently. In this sense, a dedicated classifier will be designed
for this aim in Chapter 6.

• Multi-label classifier: the tunneled traffic will be treated by the multi-label
classification approach in Chapter 6.

• Classifier and Online configuration component: these elements will allow us to
have a self-reconfiguring solution coping with one of the challenges previously
detected, the evolution of the network. This need is also taken into account by
our work, and it will be detailed in Chapter 6.

To summarize, the modeling of the system needs allows us to focus on the design
of certain components. These needs will be sustained by scientific and experimental
results that will conceive the implementation of our solution. Such implementation
will be based on the two lower layers of the ARCADIA methodology: Logical Ar-
chitecture and Physical Architecture (both in Chapter 7). In the next Chapter, we
fulfill the first requirement that consists of selecting and collecting historical data set
to build the ML-based classification solution.
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Chapter 4

Characterizing and collecting
Internet traffic
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4.1 Introduction

Historical data is a very important source of knowledge for building ML solutions.
A rich and complete set of observations regarding a problem can improve the perfor-
mance and generalization of the ML models. In Internet traffic classification, a data
collection process needs to be established to correctly create this historical data. The
overall structure of the data collection procedure takes the form of Figure 4.1. In this
figure, an abstraction of three levels is given in the following order : i) the network
environment that is defined by the conditions in which the traffic is triggered, such as
real, generated or emulated, ii) the Internet network itself, and iii) the data collection
procedure, which refers to how network packets can be treated. In the figure, we can
see in the first level at the left how the Internet traffic is captured either by real
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interactions between users and servers, by artificial Internet traffic generated from
scripts, or by imitating the user behavior.

Figure 4.1: Main data collection components for traffic classification

Let us remark that the real Internet traffic available for the community does not
fulfill one of the most important requirements to apply ML; that is the ground truth
labels of the Internet traces are unknown. For instance, the reader can refer to the
MAWI repository [178] that gathers Internet traces at different monitoring points in
a backbone network. The deficiency of this and many other similar repositories [170,
24, 39, 32] is that the labeling process is not performed; therefore, a classification
process is hard to achieve. On one hand, unsupervised techniques can be viewed as
the logical path to take; however, the labeling problem is still a deficiency due to the
unsupervised approach that needs to be validated with the ground truth information.
On the other hand, DPI software can be used to label the Internet traces; despite
that, encrypted traffic will be left aside.

In this section, we present the data used to conduct this investigation. We propose
to use two publicly available data sets; moreover, we generated our own data in two
different platforms. First of all, Section 4.2 introduces the QoS categories in Internet
traffic, which in turn will be largely used for the production of the Internet network
data and for the classification solution. On the other hand, we give a brief description
of a VPN technology that will be used for generating tunneled communications in
Section 4.3. Following, we present the public datasets used to validate our proposal
in Section 4.4. In addition, we propose a prototype system on the cloud to generate
Internet traffic traces in Section 4.5. In a greater scale, the former experiments were
reproduced in a Satellite architecture in Section 4.6 by Thales under a collaborative
project “R&T CNES: Application du Machine Learning au Satcom” [42].
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4.2 QoS categories in Internet traffic

The advent of new network technologies, applications and grown of the Internet ser-
vice promote to offer better or customize services to certain users; such a paradigm
leads to improve the QoS. We already stated that the idea behind improving the QoS
is to provide an adequate QoE from the user’s point of view [162]. This is achieved by
fulfilling some performance requirements for different services and applications [85].
These requirements are mainly correlated to the packet loss rate and delivery delay;
said differently, the QoE can be measured mainly by the delay and the information
loss perceived by the user. In reference to our discussion, the work in [84] presents a
reference model where the QoS categories are defined and organized by their perfor-
mance requirements (delay and information loss) from the user’s point of view. This
study set a clear division between the QoS classes that can and cannot tolerate these
error conditions. Let us examine one of many QoS categorizations in Figure 4.2. In
this figure, two main groups are defined as follows,

• Voice and video comprise the applications of VoIP, Interactive video and
Video streaming. On one hand, according to [84], VoIP and Interactive video
applications are very sensitive to delivery delays, to be specific they can tolerate
around 100ms. On the other hand, Video streaming has lower requirements in
this aspect with 10s of tolerance. Regarding packet loss, [84] states that VoIP
and Interactive video can permit more packet loss than the Video streaming
class accounting for 3% for the first one and 1% for the last one.

• Data is composed of a diversity of applications that we will briefly intro-
duce. The Chat category states for the interactive messaging, and Client/server
transactions for interactions like Web Browsing. These two categories do not
present high requirement performance. Bulk data includes FTP transfers, e-
mail, database synchronization, among others; which have less priority in terms
of QoS requirements as well.

Figure 4.2: QoS classes for Internet traffic classification.

This figure leaves aside some categories that are less important for QoS manage-
ment, but that still can be found on the Internet (e.g., Peer to Peer (P2P)). Different
categorizations exist in the literature, as an example, the DPI solutions define their
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own application categorization which varies and can reach until at least fifteen classes
[22]. Nonetheless, for the objectives of this investigation, what is important to retain
is the most critical QoS classes: Voice and video, voice and video messaging and
streaming audio and video (that can also be considered within P2P comunications).

To complement this subject, we study the Internet applications within the cat-
egorization presented, that should be detected by our solution along with the most
vulnerable/critical and primordial applications. In this sense, it is worth acknowledg-
ing the worldwide application usage to know what to expect in the Internet network.
So then, [33] forecasts the application of traffic growth from 2015 to 2021. As we could
expect, the study found that Internet video will dominate most of the network traffic.
This QoS category includes IP Video on Demand (VoD), video-streamed gaming and
video conferencing, among others. However, other classes such as file sharing and
Web/Data will also account for an important amount of consumption. In summary,
the consumption percentage of Internet video varies from 51%-67.4%, Web/data 18%-
11% , file sharing 8%-3% and gaming 1%-4%, from 2013 to 2018 respectively. We
found that Internet video can be divided into some many others as described by [33];
currently, we can find: i) video delivered through the Internet to a TV screen, ii)
video messages or calling delivered on fixed Internet initiated by smartphones, non-
smartphones, and tablets, and iii) Peer-to-peer TV (excluding P2P video downloads)
and live television streaming over the Internet, among others. On the other hand, in
terms of the most used websites, the survey conducted by [4] shows that the top ten
are Google, YouTube, Facebook, Baidu, Wikipedia, Qq, Taobao, Tmall, Yahoo and
Amazon.

It is worth mentioning that one of the interests of this investigation is to provide a
fast classification response, in particular to QoS classes not tolerant of delay. Internet
video surfaces as one of the most used and sensitive applications. We will notice along
with the development of this project that all the QoS classes are important, making
a particular emphasis on the most critical ones (based mainly on critic near real-time
constraints).

4.3 Virtual Private Network

The Virtual Private Network (VPN) technology has been largely used nowadays with
different applications. One of the most popular applications is among enterprises,
which use such technology for secure communications between their employees. On
the other hand, many cyber-attacks have been carried by using VPNs; due to, among
other reasons, within a VPN connection the data is encrypted, and the actual IP is
hidden disabling the user location identification. Basically, a VPN assures a secure
connection between a local and a public network. This private network is built by
establishing a virtual point-to-point connection through the use of dedicated connec-
tions, virtual tunneling protocols, or traffic encryption.

A VPN assures a virtual secure isolated connection over the public Internet
through the construction of a tunnel. This tunnel encrypts the source/ destination
and message between two endpoints. The secure tunnel is created by using different
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encryption protocols. Internet traffic classification over a VPN connection is hard
to achieve due to, among other things, the modifications applied over the flows and
packets, such as flow multiplexing, packet fragmentation, padding and added control
packets. The work in [48] surveys the former techniques and classified them into the
following groups:

• Encryption

• Randomization

• Mimicry

• Tunneling

VPNs are normally categorized in the last group, however, there are some tech-
nologies that use a mix of these obfuscation techniques, the reader can refer to Obf-
sproxy and Tor. This study uses OpenVPN as a reference tool to build tunneled
connections [133]. OpenVPN is widely used and deployed over the network thanks to
its low-cost feature. One advantage of this tool is that only uses tunneling obfuscation
technique. OpenVPN normally uses SSL to create the tunnels [163].

Internet classification over VPNs is of great importance due to its common pres-
ence in the Internet network. DPI solutions only achieve to detect the VPN connec-
tion through the ports and protocols. However, they are unable to identify the type
of application(s) within the tunnel. In constrast, ML solutions can find ways to clas-
sify traffic based on this technology. In general, the first step is to isolate the VPN
connections from the rest of the traffic in order to perform a specialized treatment [6,
77]. We notice that the unitary scenarios (where only one application is within the
tunnel) can be treated by the classical classification approaches [119, 23, 174]. In the
case of multiplexed traffic (more than one application within the tunnel), most of the
papers are focused on detecting only one QoS application of interest [49, 174, 184].
In this sense, particular class behavior (such as codecs patterns in VoIP applications
[160]) allows making some assumptions to obtain a fair classification.

In our study, we will try to get tunneled traffic in order to design adequate clas-
sification techniques. In the next section, we describe the public available datasets
found to design and evaluate our classification solution.

4.4 Public available datasets

Two complete datasets, one with non-encrypted data and another one with encrypted
data, were selected for the development of our approach. These datasets are described
as follows.

• PAM : the authors in [22] created an emulated environment that allowed them
to acquire complete flows from several end-to-end communications. They used
4 hardware machines, 2 with Windows 7 and 2 with Ubuntu, plus 3 virtual
machines with Windows 7, Windows XP, and Ubuntu, as data generating sta-
tions. A server machine was used for data storage. The Volunteer-Based System



56 Chapter 4. Characterizing and collecting Internet traffic

(VBS) was used to collect the information describing the flows, such as start
time of the flow, the number of packets contained by the flow, local and re-
mote IP addresses, local and remote ports, transport layer protocol, along with
detailed information about each packet.

• VPN-NonVPN: the authors in [49] propose to launch the most common applica-
tions in the Internet network, and to reproduce the same experiments encrypting
the data under a VPN connection. Therefore, the data counts with four QoS
classes (Chat, Streaming, VoIP, Browsing, P2P, File Transfer, and Email) plus
the same classes encrypted. The authors captured the complete set of flows
for each class, and the sessions were saved in binary files with their respective
labels.

Table 4.1 details the number of opened sessions (traffic flows) and number of
classes in each dataset. Additionally, these datasets were processed by a DPI tool
called nDPI [45], in order to obtain the name of the application, and the category of
each flow. In Table 4.2, the application names are listed for the classes of interest such
as Browsing, VoIP, and Streaming, among others. It is important to mention that
nDPI was not applied for the encrypted data in the last dataset, and their labeling was
done using the file identifier. For both datasets, some flow sessions were discarded;
for instance, classes with samples lower than 20 flows and unknown unlabeled flows.

Name sessions classes Size
Pam 173429 17 22.7 GB

VPN-NonVPN 311686 22 28 GB

Table 4.1: Description of the datasets

These public datasets will allow us to test and validate our classification system,
however, they count with some drawbacks listed below:

• The PAM dataset is one of the most complete datasets found. Unfortunately,
it was not possible to find the ground truth values of the files. In addition to
this, the data is already obsolete in some cases, and encrypted traffic cannot be
studied.

• On the other hand, the VPN-nonVPN is more recent with appropriate label-
ing for the files. However, for VPN connections, only unitary applications are
launched within the tunnel. Thus, it cannot be exploited the VPN goodness of
multiplexing several applications in one session.

In light of these disadvantages, in the following section, we propose an emulated
environment on the cloud that will allow us to create our own Internet traffic data
under the desired conditions.
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PAM VPN-NonVPN
Class Flows Application Flows Application

Streaming (S) 5757 Flash, NetFlix, Quick-
Time, RTMP, Twitch,
Vevo, YouTube

474 Flash, NetFlix, Quick-
Time, RTMP, Spotify,
YouTube

File transfer (FT) 1125 - 163 -
Browsing (B) 88806 Amazon, Apple, Ap-

pleiTunes, CNN,
Cloudflare, GMail,
Google, GoogleMaps,
HTTP, HTTP Proxy,
Instagram, LastFM,
MSN, QUIC, SOCKS,
SSL, SSL No Cert,
Tuenti, Wikipedia,
Yahoo, eBay

11764 Amazon, Cloudflare,
GMail, Google, HTTP,
HTTP Proxy, MSN,
QUIC, SSL, SSL No
Cert, Unencryped
Jabber, Yahoo

P2P 49184 BitTorrent, eDonkey 1833 BitTorrent
Chat 48 59 -
VoIP 4787 CiscoSkinny, H323,

IAX, RTCP, RTP, SIP,
Skype

831 RTCP, RTP, SIP,
Skype, VHUA

Network protocols 11170 - 254197 -
RPC 2105 - 38 -
Mail - - 150 -
VPN 76 - - -

VPN-Chat - - 4038 -
VPN-FT - - 918 -
VPN-P2P - - 487 Bittorrent
VPN-B - - 2501 -

VPN-VoIP - - 12010 Facebook, Hangouts,
Skype, VoIPbuster

VPN-S - - 490 Spotify, Vimeo,
YouTube

VPN-Mail - - 300 -

Table 4.2: Flow and class distribution of the public datasets PAM and
VPN-nonVPN.

4.5 Internet traffic from an emulated network on a cloud
platform

In our study, we have designed and developed a small cloud-based platform on Prox-
mox [144]. Proxmox is an open-source server virtualization management solution,
that allows managing clusters, virtual machines, containers, storage and networks
with an integrated, easy-to-use web interface. This platform will allow us to emulate
normal user behavior on Internet [100, 38]. In order to do so, Figure 4.3 shows the
implemented platform. In this figure, we notice that a Proxmox node cluster holds a
set of VMs and routers, each dedicated to a specific function.

More specifically, in the figure, the subset 1 is set to hold several VMs, these will
emulate the user behavior when using different applications. In this sense, we create
a VM for each QoS class (such as VoIP, Streaming, Mail, etc). Within these VMs,
an User agent will emulate the behavior of real Internet users. Whereas, in an upper
level, a Coordinator agent will be in charge of controlling how and when the User
agent will act. The routers will intercept all the traffic from/to the VMs. In this last
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component, data collection procedures are deployed to store historical data for the
ML solution.

On the other hand, subnet 2 serves as an environment to get encrypted data. The
traffic generated in subnet 1 will pass through a VPN configuration to later access
to the Internet. This element is disposed of emulating tunneled connections in the
Internet backbone. The VPN technology selected was OpenVPN [133].

Figure 4.3: Traffic emulation platform proposed.

In our platform, we have created a node cluster based on several physical servers
with the following configuration: 8 x Intel(R) Xeon(R) CPU D-1521 2.40GHz (1
Socket), Kernel Version Linux 4.13.13-5-pve, 4x32 Go RAM, 2x2000 Go of hard disk,
1.5Gbps of network bandwidth. Over this cluster, we implemented the platform in
Figure 4.3. This emulated network will be a specialized platform for monitoring and
classifying inward/backward Internet traffic passing through the routers. We briefly
report the most important elements of this implementation as follows.

4.5.1 User agent

The main objective of this agent is to emulate the behavior of the applications and the
users, that normally intervene in the Internet network. In each VM, different scenarios
will be proposed to emulate the user behavior without the intervention of the human.
The main idea is to automatically launch applications in the same or similar way as
a real user. These scenarios will cover from non-encrypted to encrypted data. In the
non-encrypted case, applications of type Streaming, web browsing, and VoIP will be
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reproduced. In the encrypted case, a VPN communication will be established, and
the previous applications will pass through it.

In order to implement our agent, we studied several tools that aim at testing web
applications. The test is to reproduce the nominal behavior of the clients and repeat
it in order to find failures. In our particular case, we will use one of these tools to
emulate user behavior instead of using the same principle exposed before. We selected
the well-known tool Selenium for this aim [154]. This tool is very flexible and allows
easily reproducing user’s actions. In Figure 4.4, we show two ways of automating web
applications with selenium through a browser: (1) Use Selenium IDE and record a
sequence of actions that will be repeated to emulate user’s behavior, and (2) inspect
the HTML design of a web application and use the Selenium drive to reproduce user
actions. In our particular case, we implemented the second option.

Figure 4.4: Application and user emulation with Selenium.

The user agent is represented by a set of scripts, each of them defining the behavior
of an application (e.g. YouTube, Facebook, Netflix, etc.).

4.5.2 Coordination agent

In order to storage a significant number of scenarios, the way in which each appli-
cation is launched will be coordinated to obtain different variations of themselves.
In addition, a scheduling will be proposed to perform the task for a period of time.
These tasks will be performed by a Coordination agent.

To illustrate the interactions between the Coordination Agent with the rest of the
actors/entities in the cloud platform, we present in Figure 4.5 an activity diagram
example with only one VM. In this figure, we notice that the Coordination Agent
will start the process, and will set the parameters needed in the User Agent and the
GW. Selenium (denoted as User Agent in the image) will be in charge of starting
the user’s emulation in the VM. The emulation of the user is translated to executing
the scenario i, which in turn triggers a set of actions. Whereas these actions are
triggered, the User agent gets into a state where it is emulating the user’s behavior,
and the browser is executing such actions. On the other hand, the mission of the GW
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is to start sniffing the traffic coming from the VM and to perform the Data Collection
process. The Coordination Agent will force the end of the process according to the
settings established, these settings are normally related to the time and the user
agents.

Figure 4.5: The protocol to perform the data collection in the traffic
emulation platform proposed.

4.5.3 Traffic collection

Once a network traffic environment is adopted, the following issue to address is how
to export the packets, construct IP flows, and assign the application name (if needed)
of such flows, in order to finally store or use this data. The work in [78] presents a
comprehensive procedure for flow extraction using NetFlow and IPFIX. In brief, the
steps needed to perform these steps are:

• Packet capture: The packet capturing step refers to the procedure of extracting
the binary data from monitoring points, in this step each packet is considered
as a single independent entity. The key aspects to be considered at this stage
are the size of the sample and the sampling time.

• Flow metering: the flow metering process aims at aggregating the packets into
flows. The exportation process occurs when it is considered that a flow is
culminated, meaning that a communication was finished. The metering and
exportation processes are related and can be merged.

• Labeling process: This is an additional component needed for the ML approach
to building classifiers. It aims at defining the application name per flow, or any



4.6. Satellite dataset 61

other identifier needed to enrich the knowledge base, in particular for supervised
ML techniques

• Storage: it saves the flows exported. Each of the flows is named with the name
of the application launched by the VMs. In this sense, the labeled process will
be performed.

The cloud-based Internet traffic emulation platform has served as proof of concept
that was later implemented on a greater scale by Thales in a collaborative project in
which we actively participate. In this project, we provided the user agent implemen-
tations and guidance for the data collection process and the labeling of the Internet
data. In the next section, we will give more details about this project and the results
yielded.

4.6 Satellite dataset

A data generation process, equivalent to the former one, was developed in a Satellite
emulated architecture. This work form part of the Thales’ project called “R&T
CNES: Application du Machine Learning au Satcom” [43]. The architecture selected
to perform such a task is given in Figure 4.6. This figure corresponds to the reference
model of a multi-gateway satellite network presented in Section 2. However, a VPN
configuration is disposed between the ST and the GW, with the objective to emulate
tunneled communications in a Satellite architecture.

Figure 4.6: Traffic emulation platform proposed in a Satellite Archi-
tecture [43].



62 Chapter 4. Characterizing and collecting Internet traffic

The architecture in Figure 4.6 is an emulated architecture built with OpenSAND
[132]. OpenSAND is a software used to emulate satellite networks. This is composed
of elements the network functions and the elements to enforce QoS such as PEP,
PDP, and QoS Server. In addition to this, OpenBACH was used to implement the
user and coordination agents. OpenBACH is a tool developed to configure, supervise
and control networks under test (e.g. terrestrial networks, satellite networks, WAN,
LAN, etc.)[131]. We described as follows the variations that this work carried.

4.6.1 User agent

The User agents are equivalent to those introduced in Section 4.5.1. Moreover, more
applications were included besides some other variations/extensions that are listed in
Table 4.3. Regarding the Coordination Agents, they perform tasks such as those in
Section 4.5.2 but more generic and implemented on OpenBACH.

QoS class Application Parameter Value

VoIP- Voice
Skype Audio track 3 pistes randomly launched
Facebook Piste audio 3 tracks randomly launched
Twinkle codecs G.711, G.726 and GSM randomly

launched

VoIP- Video Skype Video track 3 pistes randomly launched
Facebook Video track 3 tracks randomly launched

Video Streaming YouTube Content Random list of videos

Browsing HTTP/HTTPS sites Duration From 10s to 60s randomly selected
Website launched Randomly selected

Table 4.3: Description of the applications launched for the SAT data.

4.6.2 Scenarios

The work also envisaged performing two main scenarios described below.

• Unitary scenarios: only one application at a time is launched.

• Multiplexed scenarios: several applications are launched at the same time. The
packet flows are multiplexed by the tunnel.

Additionally, some network configurations were imposed on OpenSand and Open-
VPN.

4.6.3 Data collection

The data collection process is equivalent to the previously presented. In this particular
case, the difference is where the monitoring process is performed. For each scenario,
the data collection process was performed in the GW, ST and within the tunnel. In
this sense, all the possible transformation that the data perceived is recorded.

The labeling process is performed per file and application launched. However, for
the VPN tunnel, a special treatment was performed. For each packet getting into
the VPN tunnel, a flag was used to denote the application launched. Therefore, the
multiplexed connections are correctly labeled.
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4.6.4 Results

Figure 4.7 shows the structure of the resulting SAT data. The applications were
launched without a VPN (denoted in the figure as None) and with a VPN. In the
VPN branch, four protocols were used: tcp and udp use TCP and UDP as the trans-
port protocol, the packets are only tunneled with OpenVPN. This configuration is
commonly used to accelerate the response time. Whereas, tcp_sec and udp_sec use
TCP and UDP with the packets encrypted and tunneled. Following, for each protocol
the unitary and multiplexed scenarios were launched and traffic was captured at the
same time in the ST and the GW. This dataset is still in development. In this partic-
ular work, we used only the data captured in the GW with the applications in Table
4.4. These applications were launched differently to get a heterogeneous dataset; for
instance, different codecs and websites were used for the VoIP and browsing applica-
tions, respectively. In Table 4.4, we show the flows captured per application and the
amount of packets with and without the VPN. It is important to mention that the
duration varies from 5min up to 15min.

Figure 4.7: Illustration of the experiment launched in the emulated
SAT plaform.

without VPN with VPN
QoS class Application Flows Packets Packets: Unitary Packets: Multiple

VoIP
facebook_voip 302 227997 74904 522275
skype_voip 565 315281 60764 673780
twinkle_voip 69 141663 26144 276995

Video skype_video 579 925391 318335 2235781
facebook_video 357 558880 162822 1000071

Streaming youtube_video_streaming 760 158177 19619 486141
Browsing web_browsing 6852 749979 91705 1824852
Unknown unknown 58 2860 1080 2334

Table 4.4: Class, packet and flow distribution of the SAT data in the
GW.
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4.7 Preliminary analysis of the datasets

What follows is an illustrative analysis of the data used by this research work. The
main aim is to know the distribution of Internet QoS classes and applications within
the binary files. We took the public datasets PAM and VPN-nonVPN and study the
class distribution of their non-encrypted samples. We can notice in Table 4.2 the
number of classes and the number of samples for the PAM and VPN-nonVPN. It is
noticeable that some classes are more dominant in numbers than the other ones. In
order to verify this, we display in Figure 4.8 a pie chart showing the class’ distribution.
The outer pie represents the QoS classes, while the inner pie the applications available
for each QoS class. As it is also apparent in the figure, the amount of applications
does not represent realistic numbers; the Internet traffic accounts for a higher rate of
applications in each QoS class. Nonetheless, it suffices with evaluating the most used
and important ones for a great audience on the Internet. In the same manner, for
our SAT dataset, we plot the distribution of the classes in Figure 4.9.

(a) Pam (b) VPN-nonVPN

Figure 4.8: Class and application distribution of the PAM and VPN-
nonVPN dataset.

Figure 4.9: Class and application distribution of our SAT dataset.

As regards the PAM dataset, we would like to make some interesting remarks for
our study. Unlike the VPN-nonVPN and SAT datasets, this dataset mostly contains
non-encrypted traffic and its labeling procedure was performed by a DPI tool. In
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Figure 4.8, we can notice that the majority classes is Remote Access . This rough
coincidence can be associated to the fact that most of the Internet applications were
launched in an emulated environment and different control protocols were used to
coordinate the data collection.

This study unveils one characteristic of the data called in the ML field as class-
imbalance: one or more classes have more samples than another. This case is very
harmful to most of the ML classifiers due to it will bias them to learn more from
the majority classes than the minority ones. It can also cause over-specification
(overfitting) of the minority class, which means that the classifier models too well the
training data to the extent that it negatively impacts its performance on new data.
This behavior is commonly found in traffic classification as it is exposed in [99, 105].
There are a variety of ML algorithms that deal with the unbalance problem [15].
Basically, the majority of these methods use strategies to balance the data per class.
For instance, under-sampling and over-sampling present ways to generate new samples
in the classes which are under-represented and over-represented, respectively. There
also exist combinations of the mentioned approaches and more advanced algorithms
[72]. However, we have to be aware that balancing the data can cause a loss of
information. Particularly, in Chapter 6, we will see how this property of the Internet
traffic classification will affect our Classification System, and how we intend to deal
with it.

4.8 Summary

In this chapter, we analyzed the Internet data that will be repeatedly studied along
with this work. We describe the QoS categories that will allow us to prioritize some
classes over other ones. The VPN technology was also reviewed in order to show how
we will use it and how current works treat it. Two public datasets will allow us to
validate our approach along with a data captured based on the work done on a cloud
platform.

This chapter shows the second project contribution with the creation of an emu-
lated network to capture and analyze Internet traffic. This initial prototype set on a
Proxmox-based cloud platform serves as a guidance to reproduce it on a bigger scale;
as it was done in our collaborative project [43], obtaining as a result the SAT data.
Even though not all the applications found on the Internet were launched, the most
used worldwide were considered. A controlled environment was set to launch those
applications within a VPN, the advantages of this setting are that a correctly label-
ing of the multiplexed data was performed. Later, by studying the data, we conclude
that a class-imbalance problem was detected. This characteristic is a key factor to
be considered by our ML solution.

Knowing the available data, we can proceed to design our solution. The next
chapter will be in charge of defining the feature extraction process for the Internet
data stream.
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Chapter 5

Feature extraction from
communication streams
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5.1 Introduction

Once a significant amount of raw Internet data is available, the next step is to find
a way to represent or describe this data. In ML, this process is called Feature Ex-
traction. This phase aims at finding attributes that will help to differentiate traffic
behaviors. In our work [135], we studied all the possible approaches getting into the
conclusion that the statistical-based features are the most reliable and adequate.

For decades, statistical-based features are used in different fields, such as in in-
dustrial processes for process and quality control, in medicine for analyzing the evo-
lution of patient treatments or patient system regulatory processes, in business for
tracking corporate metrics, stock market analysis and economic forecasting, in image
processing and Internet traffic analysis. Particularly, statistical features are highly
used for the description of time series data. For instance, Internet traffic presents
different characteristics that make statistical features able to proportionate valuable
information about the communications: i) ordered events are assessed to start and
to close communication sessions, ii) Internet applications use different protocols to
perform their operations, iii) such protocols change the way in which the information
is exchanged in terms of time and packets length.
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Network traffic classification with statistical features is preferred by practitioners
in this field due to their simplicity and characterization capabilities [135]. Addition-
ally, this approach does not intrude into the packet content, enabling its use for both
non-encrypted and encrypted traffic while respecting privacy. Several approaches
have already validated their performance by measuring the classification capabilities
of several Machine Learning (ML) models [139, 161]. The authors in [139] tested
ten classifiers to get into the conclusion that these features allow the classifier to
achieve high accuracy. However, when the flow sequence present abnormalities, the
statistical-based features can be affected causing a decrease of the classification per-
formance. For instance, one common abnormality is the packet retransmission in
TCP connections. In this case, a partial solution is to treat the retransmission before
performing the feature extraction as reported by [79]. The authors proposed a sys-
tem to discard retransmitted packets, detecting and using only the original packets.
To treat abnormalities, feature reduction and selection are deployed to discard noisy
statistical-based features. For instance, the works in [188, 56, 55] study the most
relevant statistical features for Internet traffic classification. In [56], several Feature
Selection techniques are used to obtain the most important features, while a newly
proposed method selects the smallest set.

Statistical-based features have been chosen by this thesis project. Particularly,
we adapt some statistical-based computations in order to achieve accurate Internet
traffic classification for encrypted and unencrypted packets. To do so, let us introduce
the statistical feature computation in Section 5.2. Following, in Section 5.3, we for-
mally define the feature extraction process for non-tunneled Internet flows, self-called
aggregated flows. Whereas, in Section 5.4, we describe the procedure to correctly ex-
tract statistical features over tunneled/multiplexed connections. Section 5.5 gathers
the results, and Section 3.5 concludes this chapter.

5.2 Statistical features for data streams

Statistical based features extracted from data streams are in common use in ML. For
instance, the classical metrics are the mean and standard deviation of data streams:
moreover, in the time domain, metrics such as Root Mean Square (RMS), crest factor,
mean, standard deviation, variance and skewness are also widely deployed.

Particularly, the mean of a data stream provides insights of the behavior of the
process. This measure in conjunction with the standard deviation are often used in a
diversity of problems. For data streams x = [x1, x2, ..., xn], the classical computation
of the mean (see Eq. 5.1) is not feasible due to the huge volume of data streams that
unables to have a memory of the past observations. In consequence, several alternative
approaches have emerged, where the most simple and effective is the moving average
described in Eq. 5.2. This mean approximation uses only the current observation
and the prior mean value. In data stream processing scenarios, this metric is suitable
for feature extraction. This metric has some properties such as i) reduce the online
fluctuations on the data to obtain a reliable measure in short and long term, ii) try
to smooth out shifts in short sampling window scenarios; on the contrary, in large
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sampling windows, it will stress tendencies, and iii) mathematically speaking, the
moving average is interpreted as a convolution function, while in signal processing
as a low-pass filter. To conclude, its main property is to average online streams for
sampling processes in different applications [20].

µn =
1
n

n

∑
i=1

xi (5.1)

µn = µn−1 +
1
n
(xn − µn−1) (5.2)

Several modifications and improvements to the moving average are found in the
literature. For instance, the exponentially weighted mean is a variation of the moving
average, where the error is modeled by an exponential function. Eq. 5.3 depicts this
modification with α is the parameter of an exponential distribution. The effect of
this parameter over the mean computation is to weight the error with an exponential
decrease over time [114]. In brief, the weight is mainly introduced to smooth the
average. In the same manner, other error approximations can modify the computa-
tion of the moving average: for instance, the kernel average, the nearest neighbor
and the local linear regression smoother, among others, also try capturing the most
appropriate value of the mean [73].

µn = µn−1 + α(xn − µn−1) (5.3)

The mean computation in data stream environments can be also used to obtain
some other statistical features, where the most closely related is the standard de-
viation. Such a feature can be obtained through the expectation function which
is a generalized version of the mean. For instance, an online approximation of the
standard deviation is presented in Eq. 5.5 [94].

Sn = Sn−1 + (xn − µn−1)(xn − µn) (5.4)

σn =
√

Sn/n (5.5)

As a final note, this investigation uses the moving average and its derivations
(such as the standard deviation) to describe Internet flows. In addition to that, we
also propose new features as will be described in the following sections.

5.3 Feature extraction for aggregate flows

In traffic, classification is commonly used the term flow to describe communications
between peers. An aggregated flow, according to [34], is a set of packets or frames
in the network intercepted in a monitoring point during a time interval. The packets
belonging to the same flow share several common properties, that is: a) transport
or application header fields (e.g. the destination IP address and the destination port
number, among others), b) characteristics of the packets such as the number of MPLS
labels, c) additional fields, such as the next-hop IP address, the output interface, etc.
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Therefore, we can outline the following classical definition for an unidirectional
flow Fi:

Definition 1 A flow Fi is described by the set,

Fi = {Hi, Pi} (5.6)

where Hi is the header of the flow, and Pi = {pi1, ..., pin} is a set of packets
belonging to the flow.

Definition 2 A flow header Hi is described by the tuple,

Hi = (IPsrc, IPdest, portsrc, portdest, proto) (5.7)

where IPsrc and IPdest are the IP source and destination addresses. portsrc and portdest

are the source and destination transport port, respectively; and proto is the transport
protocol.

A bidirectional flow F = Fscr ∪ Fdst is composed of a source flow Fsrc and a des-
tination flow Fdst, both normally identified when some elements of the headers Hsrc

and Hdst match. One of the main properties of the traffic flows is that they are or-
dered sequences of packets between the source and destination; this order is defined
by communication protocols. For modeling purposes, we use a modification of the
previous definition called Bag of Flows (BoFs) [189]. A BoF can be defined as a group
of flows that shares the same destination and source IP, and that presents variations
in the opened ports of a connection as follows.

Hi = (IPsrc, IPdest, proto) (5.8)

This behavior is commonly seen in communication sessions. Several works already
tested the advantages of using BoFs to improve the performance using ML classifica-
tion and clustering approaches [175, 47]. Therefore, once the flow is constituted for
Internet communications, one can start computing appropriate statistics as below.

5.3.1 Statistical based features

The features extracted from packet flows are mainly statistical-based features, which
are defined under the assumption that traffic at the network layer has statistical
properties (such as the distribution of the flow duration, flow idle time, packet inter-
arrival times and packet lengths) that are unique for certain types of applications, and
enable different source applications to be distinguished from each other. Under this
assumption, the work in [121] proposes 249 statistical features, which can be extracted
from flow network traffic. Traffic characterization based on statistical features has
been largely reported [41]. We illustrate the process in Figure 5.1, where a packet is
“aggregated” to its corresponding flow; for each flow, a set of properties is extracted.
Properties such as inter-arrival time (IAT) and packet lengths are the most important
characteristics considered, with their metrics, such as maximum, minimum, mean and
standard deviation, among others.
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Figure 5.1: Feature extraction overview

Table 5.1 reports the features selected for this study. These features are computed
for the bidirectional flows, where F is the bidirectional flow, Fsrc is the forward traffic
generated by the source and Fdst is the backward traffic generated by the destination
in response. In the table, there are also depicted the formulas used to compute such
metrics.

The features in Table 5.1 are extracted from the flow level point of view, meaning
that no intrusion within the packet datagrams is performed. We can extend to 249
statistic features as proposed by [121]; however, it is noticeable that the extended
features are derived from Table 5.1. They are mainly the same statistics coming
from packet length in the Data, Data Control/wire, Ethernet, IP, and among others.
Additionally, the packets with the flags of Ack, Sack, dSack, Rexmt, FIN/SYN are
also considered in [121]; nonetheless, we avoid inspecting these flags to not intrude
into the packet content. It has been found in the literature that with only the general
statistical features shown in Table 5.1, an accurate flow classification can be achieved
[135].

It is worth mentioning that the moving average is directly deployed to envisage
an online environment. In order to reinforce the online statistical-based features, we
proposed new features that will try finding better approximations to the real mean.
This work was published by the authors in [134], and a summary is given as follows.

5.3.2 Statistical feature generation with Linear Regression

Acknowledging that the Internet traffic representation will be centered on the statis-
tical features, we decided to take a deep look at them and find a way to improve their
calculations. If we imagine that the Internet communication properties are time-series
streams, why not to model their curve shape. For instance, we can propose to model
the packet length overtime in an opened session. This brings us to propose a new way
to compute the mean of a property A. Similar to the moving average, we propose
to compute µ = m(A) with m a new mathematical estimated relationship. This m
function has some parameters that will be set thanks to a Linear Regression (LR)
model trained with raw Internet data.
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Property Feature Formula

Packet length in F, Fsrc and Fdst

Minimum

min(len(p)) ∀p ∈ F

Maximum

max(len(p)) ∀p ∈ F

Mean
1
m

|F|

∑
i=0

len(pi)

Standard deviation

σ =

√√√√ |F|

∑
i=0

(len(pi)− µ)

Inter-arrival time (iat) F, Fsrc and Fdst

Minimum

min(iat(pi−1, pi)) ∀p ∈ F

Maximum

max(iat(pi−1, pi)) ∀p ∈ F

Mean
1
m

|F|

∑
i=0

iat(pi−1, pi)

Standard deviation

σ =

√√√√ |F|

∑
i=1

(iat(pi−1, pi)− µ)

Table 5.1: Features extracted from the bidirectional flows

A simple LR model is useful for finding relationships between two continuous
variables by fitting a linear equation to observed data; with one independent variable,
and other dependent variables [61]. For example, the previous mean µt−1 and current
property At values can help us to estimate the current mean µt. Therefore, the main
aim is to estimate feature values by modeling the statistical distribution of a set of
observations. In this particular case, the modeling will be performed over the moving
average. This modeling will be achieved separately for each class.

Figure 5.2 shows the intuition of our approach. The general idea is described
below:

• The raw data is labeled for its further separation by class. Each color in Figure
5.2 represents a class.

• A feature modeling process will return as a result of a mathematical relation
that will model the feature (moving average) for each class
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• The feature models M are created by using an ML algorithm, Linear Regression
(LR). The training of such models is performed by using the samples for the
class.

• For new incoming observations, all the features models by class are assessed,
and the result is given by the one that shows the highest similarity with the
past estimation.

Figure 5.2: Graphical description of the proposal.

To correctly apply this proposal, the following assumptions are set,
Assumption 1. We can differentiate a raw input, which will be interpreted as

an ordered sequence of samples in a finite period of time, from another raw input.
Assumption 2. The statistical behavior of a variable is different from class to

class, enabling to differentiate them from one another.
Assumption 3. Given the previous statements, it is possible to model statistical

feature behaviors for each class separately.
Let X = [X1, X2, ..., Xn] be the raw data from a historical dataset with class labels

L = [l1, l2, ..., ln], C = [c1, c2, ..., cp] distinct classes identified in L, F the current
statistical based features, and A the selected features to be modeled. In Table 5.2, it
is depicted the general procedure of our approach. This algorithm starts selecting a
subset of raw samples {Xs, Ls} from the original raw data {X, L}. For this particular
case, it is preferable to use the training set. The next step is to select the features A



74 Chapter 5. Feature extraction from communication streams

to be estimated; this proposal chose the moving average. Following, the models M
are created and a FE process is executed.

In the following sections, the main components of the proposal are detailed.

Macro algorithm

Input: X and F.
Procedure:

% Proposal

1. Select a subset Xs from the original raw data X

2. Select the feature set A to be estimated/modeled from F,

% Create the feature models

2.1. Create the models M with Xs using the algorithm in Table
5.3

% Feature extraction

3. Perform the FE process with X and M using the algorithm in
Table 5.4

Output: M

Table 5.2: Pseudo code of the proposal

Create the feature models

The goal is to obtain a model that can estimate the value of a feature. In signal
processing, we can found several methods to find an approximate function of a signal
where polynomial representations are widely used. In this field, several ML methods
have been also studied to perform this task, such as neural networks. In this sense,
the proposal here exposed uses the simple Linear Regression model for estimating the
behavior of a feature.

A LR model is created for each class c ∈ C and for each raw sample in Xc ∈ Xs.
This means that |C| × |Xs| LR models will be created; for instance, in the example
in Figure 5.2, we will obtain 3 × 8 models. This model for class c and sample j is
described as follows.

Definition 3 The LR of a raw sample Xc
j ∈ Xc with Xc

j = [xji, ..., xjh] is defined as,

mc
j = g(Θc

j ) (5.9)

where Θc
j is a vector holding the parameters of the LR model, and g the function

that specifies the relationship among them. In this particular case, the type of LR
model fixed will depend on the number of historical and current raw features that will
be used to make the prediction. In the present work, we propose to use the model in
Eq. 5.10 for the mean and the model in Eq. 5.11 for the standard deviation.

µc
i = mc(xi) = θc

0 + θc
1 × µi−1 + θc

2 × xi (5.10)
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σc
i = mc(xi) = θc

0 + θc
1 × σi−1 + θc

2 × xi + θc
4 × µc

i−1 + θc
5 × µc

i (5.11)

where µ, σ ∈ A are the attributes to be estimated and, for simplicity, the sample
xji ∈ Xc

j will be denoted as xi . Therefore, µc
i and σc

i are the current predicted values
for the sample i by the LR models in the equations 5.10 and 5.11.

This LR function is inspired by the moving average and standard deviation pa-
rameters described in Section 5.2. We can also compute the training error for its
further use, by using Eq. 5.12.

Definition 4 The training error of mc will be measured through the mean squared
error as follows,

ec
i =

1
h

h

∑
i=1

( f (xc
i )− mc(xi))

2 (5.12)

where f (x) is the feature computation using the classical statistical expression, in-
terpreted as the ground truth; and h the amount of the raw values in a time series
sample.

Once all the models are constructed (|C| × |Xs| in total), the next step is to define
only one model by class. Such generalization can be achieved by using Assumption
3, where we can presume that the model parameters of each raw sample should be
similar for the same class. In this sense, we propose a weighted mean computation of
the parameters Θc by using the following definition.

Definition 5 The final parameters for the class c with k samples are given by Eq.
6.2, where ec

j in Eq. 5.12 will weight the impact of each parameter. This weight is
scaled from 0 to 1, meaning that values of ēc

j close to 0 had a big error when building
the LR model; the contrary case will occur if ēc

j is close to 1.

Θc =
1
k

k

∑
i=1

ēc
j × Θc

j (5.13)

Table 5.3 shows the algorithm to create the feature models for each class. The
selected raw set Xs is divided into subsets by means of the unique class labels in C;
i.e., the rows in Xs that belongs to the class c are in Xc = [X1, ..., Xk], with k the
number of samples labeled with c. This selection is performed in order to improve
the inner-class differentiation based on Assumption 2. Consequently, an LR model
will be built for each class in the set Xs. The LR models are trained by means of
the raw time-series samples and their ground truth feature value (for this case, the
mean of the series). Following, to obtain the parameters that generalize the model,
the normalized error is used to weight the mean computation of Θ. At the end of
this process, we will end with a model for each class in the raw data set; defined as
M = [m1, ..., mc]. These models will feed the next process, in order to add one or
more attributes a to the feature extraction process.
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Macro algorithm

Input: Xs and Ls.
Procedure:

% Feature modeling

1. Separate the raw dataset Xs into subsets Xc, using Ls

2. For X j in | Xc |,

2.1. For X j
i in X j,

2.1.1. Train a regression model mi with X j
i and f (X j

i )

2.1.2. Compute the error ei by using Definition 4
2.1.3. Save the pair ei and Θi in the sets E and Θ, respectively

2.2. end for
2.3. Normalize the errors in E

2.4. Compute the parameters Θc through Definition 5, and obtain
the final models M with the parameters.

2.5. end for

Output: M

Table 5.3: Pseudo code to build the feature models for each class.

Feature extraction

The result of the previous phase gives a set of feature models for each class. When the
feature extraction process is deployed and new incoming features need to be assessed,
only one feature estimation has to be given as a result of the ML classifier. The
proposal performs such a task using the algorithm in Table 5.4.

The FE process starts with the computation of the original statistical features.
Then, our proposal will compute the feature estimated with all the models in M. The
selection of the best feature value will be the one that originates the lowest distance
between the prior prediction and the current value as it is depicted in Table 5.4. The
definitions and formulas that support the algorithm in Table 5.4 are described as
follows.

Definition 6 The error of mj will be measured through the Euclidean distance between
the previous value computation and the current sample value,

dc
j = [(ac

j + w)− xj]
2 (5.14)

This error can be affected by shifts in the sample behavior. In this sense, a
momentum w is added at this stage for balancing the final decision. The momentum
is given by,

w = (aj−1 − xj)/t (5.15)

where t is the number of samples currently evaluated. Our approach considers a
shifting backward with w for improving the current prediction.

Once each of the estimated metric values is computed (evaluating each LR model),
the selection of the model will use the following definition.
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Definition 7 The best approximation to the attribute of interest a, is given by the
LR model that obtains the lowest distance value, as follows.

aj = {ai
j ∈ P | argmin(di

j)} (5.16)

Macro algorithm

Input: X, M, F.
Procedure:

% Feature extraction

1. For Xd in | X |,

1.1. For xj in | Xd |,
1.1.1. Compute the original statistical features S by using the

functions in F
1.1.2. For mi in M
1.1.2.1. Compute ai

j = mi([aj−1, xj]) by using Equation ??
1.1.2.2. Compute di(ai

j + w, xj) by using Definition 6
1.1.2.3. Add to the set P(i) = (ai

j, di
j)

1.1.3. end for
1.1.4. Select the feature value estimation aj by using Definition

7
1.1.5. aj−1 = aj

1.1.6. Append to the data set data(j) = [s1, sn, ..., aj]

Output: data

Table 5.4: Pseudo code to extract the features from the raw data

In order to test the boundaries of our approach, several tests were carried com-
paring our approach with different moving average approaches. We present as follows
a brief analysis of those tests.

Result analysis

In this section, we will try to interpret the feature estimation given by our proposal.
In this sense, we take two flows where one flow belongs to the class Streaming in
Figure 5.3, and the other to the class VoIP in Figure 5.4. We compute the original
mean (Original), the simple moving average (Cl), the exponentially weighted moving
average (Exp), and finally our proposal (Prop).

In our experiments, the best method to estimate the mean of the packet length
is given by the exponentially weighted moving average. However, our approach was
outstanding when the sampling window is small. We can try to validate this result
based on the design of the proposal. We know that the proposal estimates the mean
of the sequence by selecting the most suitable LR model output, in the next iteration
the same operation is performed with the same or a different LR model. Therefore,
there is not memory about which LR model output was selected as the most suitable
in the previous iteration. In this sense, our approach aims at creating a new feature
value that tends to their class mean behavior, and not to the raw sample mean. It is
for this reason, that in the figures 5.3 and 5.4, the proposal does not follow the raw
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mean value, and starts with trends that can change sharply according to LR model
outputs. The latter analysis allows us to infer that our approach does not predict
the time-series values, instead, it is oriented to predict the most likely next value
regarding each class.

From the traffic classification point of view, in a standard streaming connection,
the communication protocol starts with the client making a request and if the server
agrees, this last one will send most of the session workload at its maximum capacity
(packet lengths with 1500 bytes). Figure 5.3(a) and Figure 5.3(b) are reflecting this
behavior. A different case occurs with VoIP session, where both parties can interact
in the same way interchanging their roles, as we can notice in the figures 5.4(a) and
5.4(b).

(a) (b)

Figure 5.3: (a) Statistical feature values computed for a packet se-
quence in the client with the Streaming class. (b) Statistical feature
values computed for a packet sequence in the server with the Streaming

class.

(a) (b)

Figure 5.4: (a) Statistical feature values computed for a packet se-
quence in the client with the VoIP class. (b) Statistical feature values
computed for a packet sequence in the client with the VoIP class.

The feature models will aim at supporting classical statistical-based computation,
and to help the inner-class discrimination. The results showed promising results, pro-
moting the use of these features in our study. We encourage the interested reader to
refer to [134], where more experimental details and results are found. In the next sec-
tion, we describe the statistical-based features extracted from tunneled connections.
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The last remains a challenge in this field due to the difficulty of describing multiple
sessions encrypted and multiplexed in a tunnel.

5.4 Feature extraction for tunneled flows

Let us move forward to another type of representation, that is tunneled flows. Intu-
itively, the Internet traffic over a Virtual Private Network (VPN) session changes the
definition of an aggregate flow; in the sense that, all the client flows are embedded in
only one flow as it is shown in Figure 5.5.

Figure 5.5: Packet and flow tranformation in a VPN communication

Definition 8 Formally speaking, given a set of flows F, each of their packets is
tunneled after passing through the VPN client by adding a new header. This new
header will transform the set of flows into only one flow TF defined as,

TF = {TH, F} (5.17)

where F = { fi, ..., fn} is a set of flows, which in turn are conformed by an ordered
sequence of packets, and TH is the shared tunneled header.

It is important to remark that within the tunnel the flows are multiplexed, and
in consequence, the order of the packets is unknown. The server takes this tunneled
flow and demultiplexes them to reconstruct the same flow F̂ with the difference that
the IP addresses are changed. The main objective of our investigation is to describe
what type of applications are within the tunneled flow of TF.

A TF can be an endless flow with no recollection of the opened or closed sessions
and the number of clients within the tunnel, among others. For ML-based solutions,
modeling this behavior might be complex due to the statistical properties might be
different from tunnel to tunnel, which might decrease the classification performance
and generalization. What we propose is to constantly cut this TF in chunks of sub-
flows that will be partly “independent” of the global behavior of the tunnel. These
partitions are defined as follows.

5.4.1 Slicing tunneled connections

In this section, we define the sliced flows taken from tunneled connections to perform
classification tasks. In order to provide a rationale for our slicing process, we state
the following considerations:
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• In order to find isolated behaviors, we consider to break the tunneled flow into
segments of sub-flows and to perform a feature extraction process.

• There is no information about the starting or ending flows within a tunneled
flow.

• The main objective will be to detect one or more classes within this sub-flow.

• The flow behavior of past observations helps to define the classes of the current
sub-flow.

Given these statements, we proposed to compute a set of statistical-based features
over two flows: a small sub-flow SF and a bigger sub-flow BF. Taking into account
that: i) the classification is performed over SF, and ii) BF serves as a memory to
register past behaviors in the tunneled connection. Figure 5.6 illustrates the creation
of such sub-flows, which are defined by means of a time window. In the figure, we
can notice that ∆t1 defines SF1 with 8 units of time, while ∆t2 gathers the statistical
information about BF with 24 units of time. In further experiments, we will define
the most adequate values for ∆t1 and ∆t2. It is important to mention that in an online
manner, the construction of these flows is performed by sliding the time windows.

Figure 5.6: Flow construction for a VPN communication

Once the flow construction is finished, we used the same statistical based features
described in Table 5.1 for the SF and BF in F,Fsrc and Fdst. However, more information
is required to characterize applications within a tunnel. One can consider to study the
distribution of the packet’s length regarding each application. Therefore, we propose
to extend the statistical features by computing the metrics over each packet category,
as it will be detailed as follow.
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5.4.2 Categorizing tunneled packets

In order to find the packet length distribution, we can think about a clustering ap-
proach that groups similar packet lengths. However, in order to improve the inner-
class separation, we build instead of a Decision Tree (DT) over the packet lengths.
But how a DT helps us with this task. If we overview the construction of a DT, we
found that this technique can create highly interpretable models for classification.
The principle is based on partitioning the feature space into disjoint regions, which
in turn are associated with a class. This partition is represented by a tree, where the
nodes are the features (attributes) and the leaves are classes [179]. Each level of the
tree is built using the attributes that distinguish between one class and another.

In our particular case, we count with only one attribute the packet length (pktlen).
The pktlen is represented in the tree as nodes and the possible values of it are the
branches. A metric is used to determinate the information that is contributed to
the attribute with regard to the classes, this metric is used for the tree construction.
The entropy or Gini degree is used to decide how to build the tree. Intrinsically,
these metrics indicate the information degree that is provided by pktlen to each class.
Considering this, if we build a DT with only the packet length and its corresponding
class, we divided this property into a range of values. This naive approach allows
us to find an adequate packet categorization. For instance, using the SAT data with
udp and udp_sec as transport protocols, we get as a result the arrangement below
(the details of this construction can be found in Appendix A).

Category (cat) Range
A pktlen <= 170
B pktlen > 170 and pktlen <= 902
C pktlen > 902 and pktlen <= 1314
D pktlen > 1314 and pktlen <= 1426
E pktlen > 1426 and pktlen <= 1500
F pktlen > 1500

Given this result, we empirically study the packet distribution with violin plots.
We notice that for each application launched the packet’s lengths are normally within
the interval value defined by the DT as seen in Figure 5.7.
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Figure 5.7: Packet distribution of the tunneled connections using udp
and udp_sec.

5.5 Result

Now let us put all the features together as a result of this section. To start, let us
remark the features that will be used for each of our proposed classifiers. In order to
do so, Table 5.5 shows the flows needed for each classifier in order to obtain significant
information.

Aggregate flows Tunneled flow Tunneled’s sub-flow
Classifier Description F,Fsrc and Fdst BF,BFsrc and BFdst SF,SFsrc and SFdst

Flow discriminator 1 (D1) Traffic discriminator
Classifier 1 (Cl1) Classifier of unencrypted traffic

Flow discriminator 1 (D2) Traffic discriminator
Classifier 2 (Cl2) Classifier of unitary tunneled traffic

Multi-label classifier 1 (MLC1) Multilabel classifier of tunneled traffic

Table 5.5: Flows used for each classifier

In Table 5.6, the features computed for aggregated flows are listed along with
their description and the flow direction used. Whereas Table 5.7 shows the features
for the tunneled connections. We can notice that the difference is that in aggregated
flows the LR estimated features are computed, while in the tunneled connections we
add the statistical features for the categories previously defined. Moreover, the flow
reconstruction is performed differently for each case.
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Feature Metric Additional Information Total of features Total
pktlen_[m] [m] of the packet lengths “m” refers to the metric

Mean, Std, Min and Max
3 12

iat_[m] [m] of the inter-arrival
time(iat)

- 3 12

lr_pktlen_[m] [m] of the packet lengths “lr” refers to the LR proposal 2 4
bytes_[∆t] bytes per [∆t] “∆t” is the time windows 3 3
pkt_[∆t] packets counts per [∆t] - 3 3

Total 42

Table 5.6: Result of the feature extraction process for aggregated flows

Feature Metric Additional Information Total of features Total
pktlen_[m] [m] of the packet lengths “m” refers to the metric

Mean, Std, Min and Max
6 24

iat_[m] [m] of the inter-arrival
time(iat)

- 6 24

pktlen_[cat]_[m] [m] of the packet lengths
per [cat]

“cat” refers to the type of
packeta

6 144

iat_[cat]_[m] [m] of the iat per [cat] 6 144
Total 336

a cat defined in Section 5.4.2

Table 5.7: Result of the feature extraction process for tunneled flows

In addition, we would like to remark some functional and nonfunctional aspects
that these features must fulfill.

• Speed: we have to assure that the feature extraction is fast regarding the num-
ber of packets per second received per flow. We will see in Chapter 7 that
the computation of the statistical features selected takes a small time almost
negligible compared with other tasks for traffic classification.

• Memory: two things can be considered here. On one hand, the memory used
to gather the current statistical computation in t; and, on the other hand, the
past observations needed to compute the statistical-based features (remember-
ing that metrics such as the mean, std, min and max need a set of previous
values). In this particular case, only the t − 1 observations are gathered for
the computation of the metrics. In Chapter 7, we make an estimation of the
average memory needed by the features selected.

• Smoothing property: this particular constraint refers to the robustness of the
metric at facing noisy packets. In this sense, what is desirable is that the metric
smooths short-term fluctuations and highlights longer-term trends. We make
sure that this property is maintained by using the moving average and the new
proposed features based on LR.

5.6 Summary

In this chapter, we describe the feature extraction processes deployed over different
Internet communication streams. We notice that the two types of flows treated by
this investigation are either aggregated or tunneled flows.
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On one hand, for aggregated flows, we investigate a new novel way to extract
statistical-based features that can improve the discrimination capabilities of the clas-
sical approaches. For instance, we outline the classical selected features and their
computation. In addition to those features, LR based features are introduced to ad-
dress the statistical-based feature computation taking the distinctive behavior of each
class. Therefore, an LR model is created for each class; this LR model belongs to a
set that models the statistical behavior of a feature such as the mean. In Internet
traffic classification, correctly detecting some types of applications at the beginning
of a communication is very important because it enables taking fast actions to guar-
antee QoS in Satellite communication. Conversely, this effort helps to assure that the
statistical features computed are correctly measuring the communication behavior for
aggregated flows.

On the other hand, for multiplexed flows, we defined a procedure to describe the
tunneled connections. This is translated to sub-flows that will describe the status of
the tunneled connection in a short time window, aided by a bigger flow that represents
the more generic behavior of the tunneled connection. In this sense, we aim to find
tendencies over the tunneled connections using statistical features over this mixture
of flows.

To conclude, we stated the flow features that will be used by each classifier pro-
posed by our initial architecture. Giving this result, in the next section, we can
continue shaping our solution by presenting more formal aspects of the Classification
System.
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Chapter 6

A Heterogeneous Classification
System for Internet traffic
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6.1 Introduction

The interest in implementing ML solutions for Internet traffic classification in recent
years has promoted the development of a significant amount of works in this area.
We can find in the literature approaches that use classic ML algorithms to detect
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QoS classes [135], as well as more specialized methods such as Online Sequential Ex-
treme Learning Machine [158], Convolutional Neural Networks [113], Wavelet Kernel
Extreme Machine Learning (WK-EML) and Genetic Algorithm (GA) [54], among
others. Few works have remarked the need for dealing with the Internet protocols
differently [49]. That is to say, that protocols such as IPsec, HTTP2 and SSL/TLS
prevent the ML solutions from working correctly due to their properties to change the
initial datagrams by adding new headers or dividing and joining the packet content.
In this sense, we propose in our architecture ( Chapter 3, Section 3.3) a hierarchical
approach that will be dividing the traffic according to its encryption characteristics.
An ML classifier will evaluate each type of traffic, and different strategies will allow
us to obtain a good classification performance.

Moreover, evolving solutions are required for Internet traffic classification. New
applications and concept distributions are seen in a short space of time making static
Machine Learning (ML) solutions obsolete. Evolving classification solutions are also
a challenge in the ML field by itself. In this subject, the more close-related subfields
are concept drift, incremental learning, active learning, and online classifiers, among
others [105]. In a classical ML classification problem, a classifier is trained with
historical data; when new class behaviors are seen, this classifier is unable to detect
them. One of the most common approaches used by practitioners in this field is to
propose scheduled retrainings. However, in most of the cases, it is hard to capture new
historical data for such aim, mainly due to the implied cost. Therefore, we will also
present a proposal that will combine several ML approaches to detect concept changes
in a semi-supervised manner. The idea is to somehow add competent classifiers in
selected areas of the data.

The contributions of this chapter would be two-fold,

• For the hierarchical classification, we define the algorithms that will build the
Flow Discriminators, Multi-label classifier and the Classifiers. We took into ac-
count the problem of class imbalance detected in the data description; so then,
we focus our attention on the ML algorithms adequate for this application,
such as the ensemble approaches. In addition to this, we also take into account
that lightweight models should be constructed to perform fast Internet traffic
classification. Lastly, the performance of the ML models is also taken into ac-
count. All the previous conditions biased us to select tree-based ML algorithms.
We will demonstrate that this approach fulfills all of our requirements for the
hierarchical classification.

• Lastly, one important component of the Classification System is also defined
in this chapter, i.e., the Online Configuration. This component is presented as
an ML approach based on K Nearest Neighbors (KNN) [51]. We will describe
some modifications performed over KNN by using the One-class classification
approach [97] for dealing with the class imbalance problem. The result of this
system will be denoted as Incremental Learning Model (ILM).

The remainder of this chapter is organized as follows. Section 6.2 presents a
short overview of the proposed Classification System. This section shows that we will
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have mainly Flow discriminators, Multi-label classifiers, Classifiers and Incremental
Learning Models. In this order, in Section 6.3, we show the flow discrimination
capabilities of some ML models. Following, we define and evaluate the multi-label
classification approach for tunneled connections in Section 6.4. The classifiers are
proposed and validated in Section 6.5. Section 6.6 shows the theoretical basement
and tests that allow analyzing and validating our ILM. Moreover, to complement
the classification system proposed, in Section 6.7, we highlight some perspectives.
Finally, we conclude this chapter in Section 6.8.

6.2 Classification System overview

The system proposed is depicted in Figure 6.1. In summary, after inline traffic is
processed, flow features are evaluated by several classifiers disposed of hierarchically.
That is to say, that the flow of information is bifurcated depending on its properties.
Let us recall each of the levels of this system.

• In the first level, flow discriminators are disposed. The Flow discriminator 1
separates tunneled from not tunneled flows. Whereas, the Flow discriminator
2 detects if a tunneled flow has unitary or multiple sessions.

• In the second level, a standard classification is performed. The Classifier 1 (Cl1)
marks the not tunneled/aggregated flows, and the Classifier 2 (Cl2) marks the
unitary tunneled connections. A multi-label classifier is also placed at this level
to treat the tunneled flows with multiple sessions

• Finally, in the third level, class evolution might be detected by an Incremental
Learning Model (ILM) that will induce reconfigurations over the Classi f iers.

Regarding the evolution of the Internet, in one of our works [136], we showed the
need for counting with autonomic systems that can somehow be self-reconfiguring
given the knowledge acquired from online traffic. The main objective behind it is to
offer a self-learning and self-configuration approach to i) detect new traffic behaviors
(new Internet applications), ii) learn or complete the knowledge of minority classes,
iii) improve the classification performance, and iv) cope with the evolution of Internet
network. This idea is retaken and considered by our classification system, as shown in
Figure 6.1. As it was initially proposed, our system will have active traffic classifiers,
allocated in the Model Repository component, dealing with the traffic classification
task. The Model Repository represents the brain of our system, which is classically
implemented as a static module. In our particular case, this module is dynamically
updated by creating an ensemble of models that represent the traffic classifiers (e.g.,
Classifier 1, Classifier 2 and Multi-label classifier), and by progressively adding base
classifiers to the ensembles of this repository when evolution is seen.

Let us understand the problem with a set of question-answer statements.
What are we going to modify? An ensemble of classifiers that must have a

structure that can be easily adjustable as it will be presented in Section 6.5.
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Where are we going to modify? Within this ensemble, we can add or delete
base classifiers denoted as Reactive Classifiers (RCs), whereas the Static Classifiers
(SCs) are built with a reliable historical dataset.

How are we going to modify it? An incremental learning model will induce
the parameters to alter the corresponding repository.

Figure 6.1: Hierarchical classification system.

This work only covers the evolution of the multiclass classifiers Cl1 and Cl2. Al-
though, that the Multi-label classifier will eventually need a retraining or incremental
learning process, we start validating our approach on the multi-class models. After-
ward, we could propose a possible equivalent approach for the multi-label case.

Following this set of ideas, we present as follows the elements of the classification
system. We also demonstrate that the components of the hierarchical system and the
incremental model are reliable and comparable with classical approaches. To do so,
comparisons between different methods are set, and analysis of the results is given.

6.3 Flow discriminator

This module is in charge of separating different types of traffic as it is illustrated in
Figure 6.14. In this sense, we evaluate different classical ML classifiers to perform
this task. For instance, multiplexed connections are detectable because the packets
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counters per second are considerably higher than an aggregated connection. The
same logic could be applied over the tunneled flows with one or more sessions. Based
on this, we would like to test the capabilities of some ML algorithms to separate those
Internet flows.

Figure 6.2: Flow discriminators of the hierarchical system.

In principle, based on our experience with this application, we found out that the
most accurate ML approach is the tree-based one (such as Decision Tree introduced in
Chapter 5, Section 5.4.2). Particularity, Random Forest (RF) also highlights thanks
to its capabilities for dealing with class imbalance. Also, this method is suitable for
multi-label tasks. The ideal would be to have a set of models that can be interpretable,
easy to implement, and modify.

Tree-based approaches will serve as important knowledge for understanding the
flow discriminator results, and also for subsequent sections. At this stage, we would
like to provide a brief introduction to this approach. RF is a method derived from
decision trees. This algorithm is based on a bagging strategy where the results of
several classifiers are combined to get a better precision [21]. In RF, k decision trees
are built and trained with bootstrap samples versions of the original training data.
Then, the final result is given by a combination of each tree output [73]. RF is well-
known for reducing the variance by decreasing the correlation between the trees. This
is achieved with the random selection of the input variables.

In addition to RF, we test other ML algorithms such as the K-nearest neighbors
(KNN), Decision tree (DT), Extra Trees, Voting, and AdaBoost to build the flow
discriminator. We introduce right below the experimental results of this phase.

6.3.1 Experimental results

In Chapter 5, we defined the suitable features to perform this task. Therefore, we
need to select adequate classifiers Flow discriminator 1 (D1) and Flow discriminator
2 (D2) that will perform the discrimination tasks. For this experiment, two data
sets where selected: VPN-nonVPN and SAT data. In addition to this, we evaluate
the average most important variables to perform the classification. This study is
conducted training several RFs and registering the entropy value of each feature.
This feature selection process is applied to build more lightweight classifiers and to
offer fast discrimination outputs.
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For D1, we need to know if the input flows are multiplexed or not. To do so, we
partition the tunneled flows into windows of ∆t = 10ms and labeled as “multiplexed”;
while the rest of flows are “non-multiplexed”. From this data, 66% of the samples were
used for the training process, and the rest for the test. We train several classifiers and
evaluate the test set to measure their accuracy, as displayed in Table 6.1. In addition
to this, the most important features are retained, and the classifiers are retrained with
them. The result lets us conclude that with only the ten most important features (
pkt_0_min , c_pkt_0_min , pkt_min , and c_pkt_4_mean, among others), we can
perform an accurate flow discrimination task. From the table, we can select a DT as
D1.

SAT-data
VPN-NonVPN GW ST

Classifier All features 10 features All features 10 features All features 10 features
Desicion Tree (DT) 0.9981 0.9939 0.9989 0.9985 0.9989 0.9985
Random Forest (RF) 0.9987 0.9947 0.9989 0.9989 0.9989 0.9989

KNN 0.9853 0.9916 0.9946 0.9978 0.9961 0.9978
Extra Tree 0.9986 0.9951 0.9993 0.9989 0.9995 0.9987
Voting 0.9983 0.9947 0.9989 0.9987 0.9991 0.9987

AdaBoost 0.9984 0.9930 0.9993 0.9982 0.9995 0.9982

Table 6.1: Accuracy results after testing the D1 classifiers

To complement this result, we took the SAT data which counts with 135306
multiplexed window flows and with 3102 nonmultiplexed, and analyze the test results
of DT acting as D1 with its confusion matrix in Table 6.2. We can see from the table
that the class identification is appropriately done, with zero misclassifications.

Actual
non-multiplexed multiplexed

Predicted non-multiplexed 3102 0
multiplexed 0 135306

Table 6.2: Confusion matrix after evaluating D1

Finally, for D2, we want to identify the unitary connections from the multiple
ones. We took all the multiplexed connections and divided them into windows of
10ms, labeling each window with is respective class (Unitary or Multiple). The results
are similar to those for D1 with an accuracy equal to 0.9661, allowing us to conclude
that a simple DT is also suitable for this task. The confusion matrix of this evaluation
is given in Table 6.3. We can notice that some of the multiple tunneled connections
can be classified as unitary (4342 to be specific), while fewer flows are misclassified
as Unitary (223 flows). This result is expected due to during the launching of the
multiple applications within the tunnel, some of them appear as unitary for short
time periods.

Actual
Unitary Multiple

Predicted Unitary 4337 4342
Multiple 223 126414

Table 6.3: Confusion matrix after evaluating D2
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The flow discrimination tasks allow us to divide the problem into several sub-
classification problems. Therefore, once the traffic types are differentiated, we can
apply a different ML technique for each type. For instance, the tunneled connections
with multiple applications can be treated by a multi-label classifier as it is detailed
as follows.

6.4 Multi-label classifier

This block aims at detecting the classes within a tunnel with multiple sessions as it is
placed in Figure 6.3. The multi-label classification task seems to be a suitable path,
given the characteristics of the problem. The work in [155] already demonstrated
that multi-label classification could be achieved by a Neural Network-based approach
to detect Streaming connections in tunnels. Other methods present different strate-
gies based on classical multiclass classifiers to find a targeted class in a tunnel. For
instance, the work in [184] intents to detect VoIP traffic within IPsec tunnels. Re-
sults show that the approach is accurate; however, few tests were performed mixing
Internet traffic which might decrease the accuracy. Similar methods are found in
[5] to identify three main classes (Bulk transfer, Interactive and Streaming), and in
[106] for Streaming communications. In this last work, background traffic was added
for Streaming communications; the classification results decreased considerably given
the noise of these background packets. Those studies are thus giving hints about the
possible incapability of the ML model to maintain their classification accuracy for
tunneled sessions with mixed traffic. Nonetheless, the multilabel classifiers might be
able to take into account this mixed traffic as perceived by [155].

Figure 6.3: Multi-label classifier of the hierarchical system.

But what is the paradigm of multilabel classification? If we take a standard classi-
fication approach, we know that the problem is to assign a sample to a single class. In
contrast, the multi-label classification problem states that a sample belongs to more
than one class at the same time [147]. This new way to see the classification problem
has become very useful in different domains; for instance, the more representative
cases are found in image and text classification. For example, a text can belong to
different categories at the same time, and an image can be classified into different
classes and can have embedded different sub-images at the same time.
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Before continuing, let us define the classical multiclass classification problem with
the description below.

• Training data {X, Y} with X ∈ Rn×m and Y =∈ Rn

• The label of a sample xi ∈ X is yi ∈ Y = {1, 2, ..., L}.

• Learn a relation: f : X → Y

• Each sample xi is associated with a single label yi

On the other hand, for the multi-label classification problem, we have transformed
the labels Y using a binary alphabet {0, 1}L. This means that each sample will be
related to a vector class where the columns with a value equal to one represent the
membership to the class of the column that they represent.

• Training data {X, Y} with X ∈ Rn×m and Y =∈ Rn×L

• The label of a sample xi ∈ X is yi ∈ {0, 1}L

• Learn a relation: g : X → {0, 1}L

• Each sample xi is associated with more than one label by the vector yi

The simplest way to approach a multi-label problem is to divide it into multiple
independent binary classification problems (one per class). Nonetheless, relationships
between the labels are not considered, which can cause inconsistencies [168]. To
overcome those issues, several ML algorithms include the multi-label learning task
such as multi-label decision trees [95], multi-label kernel methods [115], multi-label
neural networks, and multi-label KNN [191]. For instance, an RF acting as a multi-
label classifier changes in the way that the node splitting cost function handles multi-
label problems. The label entropy or the Gini index of the child nodes suffer some
modifications that lead to consider the node as a bag of positive labels with a certain
probability [2]. We present our multilabel classification proposal as follows.

6.4.1 Proposal

Once the flow discriminator D2 detects a tunneled connection with multiple applica-
tions, a multi-label classifier will be in charge of defining what type of applications
are within the tunnel. Somehow this approach allows us to determine the QoS classes
in the multiplexed session. For tunneled applications, we defined a different way to
build the Internet flows: a small sub-flow SF and a bigger sub-flow BF that represents
the local and global behavior of the tunnel, respectively.

In Figure 6.4, we propose two approaches to deal with multiple connections:

• Flow classification: a multi-label classifier defines the classes of the flow SF.
In this case, taking RF as a multi-label classifier, we expect to have a set of
positive labels with a certain probability. In Figure 6.4, we define the positive
class those with a probability higher than 0.5, for example, such as the VoIP
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and Streaming classes. The probability threshold is set in most of the cases at
0.5; however, some ML algorithms define this value depending on the training
performance results.

• Packet classification: an incoming packet from the flow SF is classified into
only one class by using the packet’s length and statistical-based features of SF
and BF. The packet classification task will be treated as a multi-class classifi-
cation problem.

In the Flow classification task, the multi-label output is transmitted to the QoS
architecture, and the complete tunnel might be prioritized when a class of interest is
detected. On the other hand, if a packet classification output is provisioned, packet
prioritization can be achieved. More about this will be discussed in Chapter 7. The
packet classification case has not been yet included in our architectural framework.
However, it is a desirable solution and needs more exhaustive work to its validation.
Nonetheless, in this section, we give some hints to solve the Packet classification
task.

Figure 6.4: Classification process for multiplexed flows.

In the following sections, we present the experimental results of both approaches.
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6.4.2 Multi-label classifier: Experimental results

For this experiment, only the SAT data contains multiple applications multiplexed
within a tunnel. Therefore, we take the data under udp as the transport protocol.
First of all, we analyze the effect caused by the feature extraction process proposed
in Chapter 5 to an RF multi-label classifier. Metrics such as accuracy (Acc) and
Label ranking average precision score (LRPS) will allow us to interpret the results.
Following, we train several multi-label classifiers and evaluate their performance to
select the most accurate. Finally, we make a brief analysis of the statistical-based
features in tunneled connections.

Feature extraction window

The feature extraction over multiplexed connections is performed over two-time win-
dows ∆t1 and ∆t2. Two flows are derived from this construction: SF for ∆t1 and BF
for ∆t2. The question that arises is how to define these window values. One can con-
sider the minimum amount of packets needed to perform an accurate classification as
classically done for aggregate flows [139]. However, in a tunneled connection, this as-
sumption is not valid due to the variety of scenarios found in a tunnel. For such a case,
we opted to empirically propose three possible values of ∆t1 = {5ms, 10ms, 50ms} to
build SF that will represent the statistical behavior of a local stream zone where the
classification is performed. The values of ∆t1 are defined according to the maximum
delivery delay (100ms) allowed by classes such as VoIP, Interactive video, and Video
streaming. On the other hand, ∆t2 does not have any time constraints due to it
builds a flow BF that serves as additional information. In this case, we vary ∆t2’s
value from ∆t1 to 300ms. An RF was trained with all the time windows proposed,
and the accuracy and LRPS were computed to select the most suitable combination.

(a) Accuracy (b) LRPS

Figure 6.5: Accuracy and LRPS of a RF with ∆t1 =
{5ms, 10ms, 50ms}, and ∆t2 varied from 0.01s to 300s.

Regarding the most suitable value of ∆t2, it is noticeable from the figures that
values upper than 10s help to increase the accuracy and the LRPS. While for ∆t1,
we can conclude that while smaller the better. The reasoning of this is that a QoS
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management decision is performed over the local flow SF implemented as a sliding
window. This decision can be to prioritize the complete tunnel when some classes of
interest are seen. This decision might be updated every ∆t1. We found out that for
∆t1 = 5ms, the global accuracy was better than the other cases. However, we have
to be aware of the functional constraints such as response time when monitoring and
classifying time-constrained interactive applications. We will retake this discussion
in the implementation section (Chapter 7).

Multi-label classifiers comparison

In this part, we study in more detail the multi-label classification performance. It is
logical to find that the RF multi-label classifier is accurate for this type of application.
In Table 6.4, we validate the use of RF as the multi-label classifier by comparing it
with close related approaches.

Algorithm Acc LRPS
RF 0.9537 0.9805
DT 0.9111 0.9658

Extra trees 0.9089 0.9544
MLP 0.4252 0.6656

One vs All (Logistic regression) 0.5398 0.7878

Table 6.4: Accuracy result after evaluating the multi-label classifier

For the tcp protocol the same experiments were launched getting similar results.
For instance, the accuracy and LRPS with ∆t1 = 10ms and ∆t2 = 60s is 0.9261 and
0.9703, respectively; while the confusion matrix of this test is presented in Figure 6.6.

Figure 6.6: Confusion matrix for Multiplexed tcp sessions with ∆t1 =
10ms and ∆t2 = 60s

Analysis

The following shows a graphical analysis of the statistical features’ discrimination
capabilities over tunneled connections. In this analysis, we took the packet length
raw values before and after the tunnel, and compute their cumulative mean value.
Three cases were analyzed as follows.

• Video-Streaming-Browsing: destination direction
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In Figure 6.7(a), the packet length behavior of the three sessions is depicted.
We can notice that the beginning of these connections is very similar, and
afterward, we can notice that the time series varies from 1000 to 1400. Figure
6.7(b) shows the equivalent tunneled connection. We notice that the behavior
of the beginning of the connection for the three applications is lost; however,
an indistinguishable new time series behavior emerges. This behavior was also
found in some of the statistical-based features; as an example, for the pktlen
categories.

(a) Before the tunnel (b) After the tunnel

Figure 6.7: Cumulative mean value of the packet lenght of three ap-
plications Video-Streaming-Browsing, before and after the tunnel for

the destination direction flow.

• Streaming-Streaming-Streaming: destination direction

When we analyze three parallel applications from the same category, we saw
that the resulting tunneled stream behaves as if only one application is in the
tunnel. For instance, in Figure 6.8(a), we count with three YouTube flows
with cumulative means varying from 1000 to 1400. Figure 6.8(b) shows the
equivalent tunneled connection.

• Streamingx3-Browsingx3-Voicex2: both directions

Let us now increase the number of parallel connections as in Figure 6.9(a).
The tunneled mean is smoothing its behavior according to the type of parallel
connections perceived as it is shown in Figure 6.9(b). A similar case occurs for
the source flow streams displayed in Figure 6.10.

To conclude this section, we found that our approach to compute the statistical-
based feature over two sub-flows in the VPN tunnel allows us to improve the accuracy
of the classifier. We also demonstrate that the RF multi-label classifier is the most
adequate for this problem. Finally, analyzing the tunneled and not tunneled data
statistical behavior, we understood the behaviors of the flows, which in turn help to
somehow validate our approach.
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(a) Before the tunnel (b) After the tunnel

Figure 6.8: Cumulative mean value of the packet lenght for three ap-
plications Streaming-Streaming-Streaming, before and after the tunnel

for the destination direction flow.

(a) Before the tunnel (b) After the tunnel

Figure 6.9: Cumulative mean value of the packet lenght for 8 applica-
tions, before and after the tunnel for the destination direction flow.

(a) Before the tunnel (b) After the tunnel

Figure 6.10: Cumulative mean value of the packet lenght for 8 appli-
cations, before and after the tunnel for the source direction flow.
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6.4.3 Packet classifier: Experimental results

The multi-label classification results allowed us to validate the construction and dis-
crimination capabilities of our statistical features for tunneled applications. By using
those results, we envisage predicting the class of unitary packets.

To built this classifier, we consider:

• Only the packets that fall into a flow SF with more than one application at a
time are considered. In consequence, we are going to filter all the packets where
only one class is predicted for flow SF.

• The statistical features of the multi-label classifier with ∆t1 = 10ms and ∆t2 =

60s, and the current packet length and its class form our historical dataset.

• With the filtered data, we build a packet classifier represented by a Random
Forest.

The dataset characteristics are depicted in Table 6.5. In this table, we can notice
that the total number of samples is equivalent to the total number of packets in a
tunneled communication. Whereas, the filtered samples represent the packets that
fall into a window ∆t1 with more than one class within the tunnel. The accuracy
(acc) in Table 6.5 lets us conclude that a good packet classifier can be built with the
flows and packet length information.

Dataset # samples # filtered samples (% total) acc
udp 3527278 196778 (5.58%) 0.9610

udp_sec 3425113 216210 (6.31%) 0.9655
tcp_sec 3145291 124512 (3.96%) 0.9586

Table 6.5: Accuracy result after evaluating the multi-label classifier

In addition, we show the performance per class expressed by a Precision-Recall
curve in the figures 6.11, 6.12 and 6.13 for udp, udp_sec, tcp_sec, respectively. On
the one hand, for all the cases, we compute the Area Under The Curve (AUC) which
is a performance measurement for classification models at various thresholds settings.
This metric tells how much model is capable of distinguishing between classes. AUCs
close to one indicates good model prediction capabilities. We observe that for all the
cases, the AUC is upper than 0.95. On the other hand, Precision-Recall tendencies
indicate that the classifiers have good performance levels globally. However, we can
notice that a small decrease is presented for the class “streaming” which in turn in a
minority class.

From these figures, we can notice that adequate performance per class is achieved.
However, when developing these experiments, we discover that there are few samples
with more than two applications in parallel with our window configuration (lower than
10 % as shown in Table 6.5). This characteristic can be attributed to the construction
of the data; for instance, how the applications were launched in parallel and for how
long they are running, among others. Therefore, more fine experiments should be
addressed for other cases.
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(a) Global Precision-Recall (b) Precision-Recall for class

Figure 6.11: Precision-Recall curves for the udp dataset.

(a) Global Precision-Recall (b) Precision-Recall for class

Figure 6.12: Precision-Recall curves for the udp_sec dataset.

(a) Global Precision-Recall (b) Precision-Recall for class

Figure 6.13: Precision-Recall curves for the tcp_sec dataset.

We culminate this section with two approaches to deal with multiplexed connec-
tions. Up until now, we validated the multi-label classification for our architectural
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framework. In the next section, we present another essential component of this ar-
chitecture the Classi f iers.

6.5 Classifiers

The classifiers belong to the second level of our hierarchical classification as in Figure
6.15. In this proposal, we notice that an ILM might continuously update a repository
of models. In this section, we describe and build all the elements of these classifiers.

Figure 6.14: Classifiers of the hierarchical system.

There already exist ML-based classifiers that can perform the task needed by the
Classifiers. However, they are static and require constant retraining processes for
their updates. Modern applications with massive volumes of data are in continuous
search of automatic, self-learning, and auto-reinforced approaches that can cope with
the evolution of data. Human experts can annotate a negligible fraction of data,
and Internet traffic is out of this fraction. The most reliable solution for highly
evolving environments is scheduling retrainings; however, labeled data dependency
is a deficiency. In Internet traffic, this latter approach is the most provisioned [91,
47]. Few are indeed the efforts to create online reconfigurable classifiers that still
depend on labeled data, such as online Random Forest [153, 66] or concept drift
based ones. In particular, concept drift aims at detecting data distribution change
over time. For instance, some of these methods monitor the classifier performance
in an online manner; if the performance considerably decreases a drift is detected,
and the classifier must be updated. These methods are usually supervised based
approaches[11, 63, 67].
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An interesting approach, presented by [152], creates an ensemble of classifiers
that is adaptive over time. New base classifiers are added with selected labeled
data to improve the performance of online classifiers. Following this idea, let us say
that we achieve to fill a batch of samples that represents a new distribution; then,
the classifiers should be aware of this distribution change. In this sense, we would
like to propose an ensemble of classifiers that can be easily modified. The general
idea is to add base classifiers to our repository that represents the new distribution.
Therefore, this ensemble of classifiers has some parameters that will be presented in
Section 6.5.1. How the classification decision is performed is presented Section 6.5.2.
Moreover, Section 6.5.3 details the procedures for penalizing, pruning, and adding
new classifiers to the Model Repository.

6.5.1 Base classifiers

The ensemble of k base classifiers will be defined as the tuple below,

Ci = (name, mi, t, Wi, Fi, Qi, s) (6.1)

where,

• name is the identifier of the classifier

• mi is the model trained

• t is the type of classifier either static or reactive.

• Fi represents the f-score metric for the classes of the problem as follows Fi =

[ f 1
i , f 2

i , ..., f c
i ] with c the number of the classes.

• Wi = [w1
i , w2

i , ..., wc
i ] stands for a classification weight that will be used to pe-

nalize the classifier by class.

• Finally, Qi = [q1
i , q2

i , ..., qc
i ] is a vector that stores the cumulative value of the

classifier’s quality on predicting an input sample for the class j.

The F-score is computed when the classifiers are trained. These values will be
used to compute the quality of the classification given by the classifier for a specific
class. This will be detailed in Section 6.5.2. While the qualities in Q are updated
any time that a new input is evaluated.

We will denominate W the vector W = [w1, ..., wk], likewise Q = [q1, ..., qk] and
M the set of models M = [m1, ..., mk]. The prediction given by the k classifiers will
be denoted as P = [p1, p2, ..., pk]. Note that initially all the classifiers have the same
weight w = 1, the variation of this value will be given by the reconfiguration process.

In addition, we set a differentiation between the base classifiers with the attribute
t, as follow:

• Static classifiers (SC): they are mostly trained with the historical data
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• Reactive classifiers (RC): they are trained with online data being specialized in
one class.

This division is made to avoid losing generalization. For instance, if in a time
interval, the amount of classifiers favors only one class; therefore, the ensemble might
be biased to the just added reactive classifiers. We will notice in the following section
that the reactive classifiers will be treated differently than the static classifiers to
maintain the performance and the integrity of the ensemble.

6.5.2 Meta-classifier

The meta-classifier consists of a combination method used for making a consensus of
the ensemble prediction. In the literature can be found several suitable combination
methods for this aim such as hard and soft voting [169]. In this particular approach,
any of the existing combination methods can be used to define the final output. The
meta-classifier has as objective to compute the quality of the prediction. This variable
is heuristically set, and it will be calculated as follows,

Q′ = P′ (W
′ + F′)

2
(6.2)

P′ is the vector of probabilities for the class predicted y′ by the models. As a
result, we will obtain a vector of qualities for each classifier.

6.5.3 Reconfiguration process

Once the incremental learning system has evaluated the sample xi, two things can
happen, either the sample represents a change in a class distribution, or not. If a
change is detected, a new classifier will be added to the ensemble, and an old one
might be penalized or discarded.

1. Penalizing a reactive classifier

We envisage penalizing the learner that provided the lowest classification quality
for the class y′. This action is tied to the event of a class distribution change.
Therefore, the classifier that got the lower classification quality is given by,

{Ci| arg min
q′i∈Q

(Q)} (6.3)

The classifier i that got the lower q′ is penalized as follows.

w′
t = w′

t−1 ×
(

1 − 1
k + c

)
(6.4)

In this case, wt−1 is the previous weight, k the number of classes and c the num-
ber of classifiers. The justification is that one of the classifiers is not answering
correctly for the class y′, that is why its classification capability decreases.
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2. Adding a reactive classifier

A classifier is added when the incremental learning system has detected a change
in one or more class distributions by sending the new training set {X̂, ŷ}. The
new learner is marked as a reactive classifier, due to it is trained with unreliable
data.

To know which type of algorithm and model will be used to train a new classifier,
we detect the most “accurate” classifier as follows,

{Ci| arg max
qi∈Q

(Q)} (6.5)

Therefore, we train a new base learner with the same structure (model and
algorithm) than Ci. When adding a new classifier, all the parameters of the
ensemble are updated, such as W, F, Q and M. In case that, it is the first time
that a new RC is added for a class, we attach as many RC as the amount of
SC.

3. Pruning the ensemble

The ensemble is pruned in the sense that reactive classifiers will be deleted over
time. In this particular case, we consider that the amount of RC for a class
won’t be higher than the amount of SC. Therefore, a new added RC replaces
the weakest RC in the ensemble.

To conclude this section, we present the sequence of steps of this module in Table
6.6.

Macro algorithm

Input: Samples {X̂, ŷ}
Procedure:

1. Obtain the weakest learner Ci by using Eq. 6.3

2. Penalize Ci by using Eq. 6.4

3. if a distribution change was detected,

• Detect the most capable model Cj with Eq. 6.5
• Train a new RC with the same structure (model and algo-

rithm) as Cj and with {X̂, ŷ}

4. if |RCc| > |SC|, remove the weakest classifier in RCc

Ci from the ensemble

5. Update all the parameters of the ensemble, such as W, F, Q and
M

Output: Ensemble updated

Table 6.6: Pseudo code for penalizing and adding a base classifier
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6.5.4 Experimental results

This test allows us to validate the construction of our classification system. To do
so, the ensemble will be trained with two variations of the static base classifiers, and
it will be compared with classical approaches. We selected the Random Forest (RF),
Decision tree (DT), Extra Trees, Voting, and AdaBoost Classifiers. The classifiers’
settings were modified to obtain their overall best performance. Moreover, for the
dynamic ensemble, we will consider two variations: i) CS1: 3 DTs base classifiers
and CS2: 3 RFs base classifiers. We can notice from Table 6.7 that our approach
provides a good accuracy value, comparable with well-known classical methods such
as Random Forests and Extra Tree classifiers. However, this result is expected due to
the construction of our ensembles with well-known classifiers. These ensembles have
some settings that will allow us to perform modifications in an online manner.

Cl1 Cl2
Algorithm PAM VPN-NonVPN SAT-gw SAT-gw: Unitary

KNN 0.8783 0.9785 0.8634 0.9209
RF 0.9778 0.9876 0.9186 0.9401
DT 0.9356 0.8698 0.9066 0.9321

Extra Tree 0.9466 0.9879 0.9174 0.9304
Voting 0.9335 0.9850 0.9135 0.9358

AdaBoost 0.9466 0.9832 0.6242 0.8333
CS1 0.9450 0.9498 0.9094 0.9308
CS2 0.9677 0.9876 0.9180 0.9389

Table 6.7: Result after training the classifiers with all the flow sequence

Additionally, we demonstrated that Cl1 and Cl2 could be built with adequate
accuracy. For instance, for the SAT data, we got an accuracy between 0.90-0.95 %;
however, if we balance the data before creating the ML models, we reach values close
to 1. Therefore, for building the ML models, we recommend proper balancing before
the training process. Given these results, in the next section, the last component of
the classification system: the Incremental Learning approach.

6.6 Incremental learning model

The last level of our hierarchical classification system is composed of ILMs for each
classifier Cl1 and Cl2. This component is placed at the end of the chain to pro-
voke modifications over the Model repository as it is depicted in Figure 6.15. The
motivations and basements of this approach are presented as follows.

From the previous section, we notice that most of the self-learning approaches
use labeled data. Fortunately, there are some other promising options, such as semi-
supervised learning. Unlabeled data taken for real applications can be reused as
labeled samples for the model discrimination improvement. In novelty detection, one
of the most popular and simplest approaches is based on clustering methods. Distance
or density information can provide insights about the data distributions. Several
works try to use clustering constructions to detect samples that might be changing the
class distributions. These samples can be continually stored to later induce retraining
or modifications in the classifier’s parameters [57, 74]. The assumption is that the
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Figure 6.15: Incremental learning model (ILM) of the hierarchical sys-
tem.

commonly known concept distributions stay in their respective clusters, while new
concepts or unusual ones will form new patterns around the existing groups. One of
the main drawbacks of this approach is that the groups have to correctly represent
the data, which is a difficult and challenging task in this area. Well-separated classes
might be well represented by clustering constructions, which implies that the features
of the data describe and differentiate each of the classes. However, in the presence of
high dimensional spaces, we cannot make the same conclusions. Some of the questions
that arise are: i) What about not linearly separated data? For such a case, many of
the clustering approaches fail dramatically; the clusters can be overlapped in different
areas, which is not desirable for separating the data. ii) Will the sample belong to
a shared region assigned to the correct cluster? For the former problem, the best
option is to use a classifier that better performs data separation.

Presuming that we can find a system that somehow updates online classifiers with
partial new knowledge, we could achieve better performance. In particular, these
new classifiers should be representing the evolution of a class. This evolution can be
detected and targeted by experts in the field, applying active learning. However, most
of the time, it is hard for the experts to conclude about the behavior of the samples.
Another approach can be to have a repository of a training dataset that is updated
continuously. Nonetheless, in some cases, it is now hard to capture real-world data
measurements making this option non-desirable.

Evaluating all the arguments above, we will present a proposal so-called Incre-
mental Learning Model (ILM) that will combine several ML approaches to detect
concept changes in a semi-supervised manner, and to add competent classifiers in
selected areas of the data. In this phase, we present the incremental learning method
designed to evaluate the samples given by the classification system and to detect a
new class distribution. Experts target this class that contains a low amount of sam-
ples typically. The main idea is to take samples from the online process to complete
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the data available in this targeted class (minority class). When sufficient examples
belonging to the targeted class are seen, new base classifiers are added to the ensemble
in the classification system. The main properties of this model are listed below.

• The method is based on One-class classifiers that will detect new class distri-
butions in a semi-supervised manner. The One-class classifiers are modeled
with KNN and reinforced with K-means. The new class distribution is detected
based on the similarity given by the Euclidean distance.

• A resampling procedure is designed for the one-class classifiers to assure a good
data representation in the presence of class-imbalance.

To start, we will introduce the One-class classification approach, and how KNN
is adapted to it as follows.

6.6.1 One-class classification

One-class classification (OCC) is an ML approach that handles the classification prob-
lem differently to the classical methods. Classical pattern classification disposes of a
training set to learn a model that characterizes the problem; typically, the training set
gathers a variety of concepts (classes). In OCC, the principle is: one unitary concept
is available for the training and a boundary like function models this concept. After
the boundary function is built, samples that fall outside are considered as outliers.
This approach is commonly denoted as learning in the absence of counter-samples.

Formally speaking, an one-class classifier model for an unitary concept is described
as a model Mc : X → {c, co} with c the concept or class. Then, the model for each
class available is,

Mc(x) =

{
c, if Fc(x) ≥ θ

co, otherwise
(6.6)

where Fc is the boundary function, co the outlier class, and θ the classification
threshold.

For the one-class multiclassification problem, a model is built for each class. A
new sample xi is evaluated by all the models. Considering that an input can fit into
one or more one-class classifiers, a decision or combination function will give the final
classification of the sample [97].

We can find four main trends in this area, differentiated mainly on how the bound-
ary and the decision or combination function are defined [98]. For instance, density-
based methods find estimated distributions for each class. Incoming samples are
contrasted with these distributions, and the decision function is based on their simi-
larity. Boundary based methods enclose the data into boundaries such as One-class
Support Vector Machines, Support Vector Data Description, and Minimum Spanning
Tree Classifier. Finally, reconstruction-based methods are based on clustering and
data modeling to find the data structure of the classes. In this approach, outliers will
be significantly dissimilar to the data representation. The reconstruction based ap-
proaches are mainly based on k-means, self-organizing maps, and auto-encoder neural
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networks, among others. This latter approach is the interest of our approach due to
KNN is used as a reconstruction method for our incremental learning system. We
present as follows the principle of KNN, and its applicability in OCC.

KNN and one-class classification

KNN is a distance-based approach based on the distance between samples in a dataset;
in general, a small distance means high similarity. The distance value between two
samples can be measured by different metrics, such as the Euclidean, Cosine, Pearson,
Mahalanobis, and City-block distance, among others. The samples are arranged
according to their similarity; after that, samples with high similarities are grouped
or classified using an unsupervised or supervised learning process [51].

The algorithm KNN is one of the simplest and most effective learning algorithms
based on distance. KNN locates the K nearest neighbors of a sample xi, computing the
distance between xi and the rest of the samples in the training dataset. Commonly, a
sample xi will belong to the class where the distance to its K nearest neighbors is the
minimum [104]. In the case of one-class classification, the samples can be separated
by class, and a combination method is defined to perform the final decision. Such a
combination method can be:

ci = argminck{dc
nn} c = 1, · · · , |C| (6.7)

where dc
nn is the distance between the sample xi, and the samples X in each

one-classifier as follows.

dc
nn = avg{mink{d(xi, xj)}} j = 1, ..., |Xc| (6.8)

6.6.2 Proposal

In this section, we present the algorithm and model to perform an incremental learning
kind task using a semi-supervised approach. In general, our approach is composed of
three main steps: model build, test, and online evaluation. In brief, each of the steps
will be in charge of:

• Model build: it will be in charge of setting the organization of the data. Our
approach will be based on KNN to create the classes, and K-means to form
clusters in the classes called microclusters. Therefore, the training of the model
is to place the samples in an n-dimensional space labeled with their respective
classes.

• Test: in this step, we will evaluate the test set, and we will detect overlapping
zones to reorganize the data model.

• Online evaluation: finally, we will evaluate samples in an online manner. Batches
of samples can be built for each class in the data model. These batches of sam-
ples can be used furthermore for the classification system.
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We show a graphical workflow of our approach in Fig. 6.16. In the following
sections, we formally define each of the steps.

Figure 6.16: Graphical description of the proposal.

6.6.3 Model build

For this case, we represent a class by the tuple in 6.9,

Cr =
(
Xr, MCr, B

)
(6.9)

where Xr is the set of samples {xi|M(xi) = Cr}, and MCr is a vector that denotes to
which micro-cluster each sample belongs. Finally, B stores samples evaluated in an
online manner.

The standard procedure to build ML models is to perform a training process that
will allow defining the parameters or structure of the model. In our approach, any
training is required; instead, this process is translated into an organization of the
samples based on their similarity.

This organization is performed by dividing the samples into c disjointed groups.
These groups can be classes or clusters. For our particular application, we will part
from the assumption that the historical data is labeled; therefore, only classes can
be formed in the construction step. At first, we use the OCC approach, where: a)
we separate the data by class, and b) for each class, we divide the data by clusters,
which will be called microclusters (MC). We can use any clustering approach, whether
k-means, spectral clustering, etc. Figure 6.17 illustrates a data distribution of three
classes and their microclusters. In Table 6.8, we present the algorithm of this step.

When a new sample xi is evaluated, the average distance between the sample and
all the k nearest neighbors in each class Xc

nn is separately computed by using the
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Macro algorithm

Input: Samples X, classes C
Procedure:

1. For c in C,

• Identify Xc ∈ X.
• Create m micro clusters using K-means and Xc.
• Create the tuple in 6.9

2. End.

Output:M

Table 6.8: Pseudo code of the model build

Figure 6.17: Graphical description of the model build step.

expression in Eq. 6.8. The sample is assigned to the class that gets the minimum
distance as in Eq. 6.7.

We can think that this approach is an intrinsic KNN classification; neverthe-
less, the separation of the data by class and the fusion metric differentiates these
approaches. We might expect similar performance between them. It is worth men-
tioning that improving the classification performance is not our aim. Our primary
interest is to detect the areas of misclassifications or evolution for creating more ca-
pable classifiers. Classifiers based on non-distance approaches will be more suitable
for this task, such as the classifiers proposed in Section 6.5.

6.6.4 Test

The test task will be a crucial aspect of our approach. This process will allow us
to refit the model, in the sense that a new reconfiguration of the data might emerge
from this step. We are going to base this procedure on the following assumption,

Assumption: The test dataset helps to determine overlapping areas between the
one-class classifiers when they are misclassified in the test process.

This assumption allows us to detect overlapped areas between the one-class clas-
sifiers, and what is worth the microclusters implied in these zones, as it is illustrated
in Fig. 6.18.

Given the overlapped areas, we define a set of micro clusters that are sharing the
same zone as it is shown in Fig. 6.19. In this toy example, we detect two sets of micro-
clusters that might be in overlapping: S1 = {m12, m21} and S2 = {m13, m31, m33}.
These tuples of microclusters might indicate either class-imbalance or data-imbalance.
In our particular case, we will assume that we are working with class imbalance, given
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Figure 6.18: Graphical description of the overlap detected between
three one-class classifiers.

the characteristics of the Internet traffic classification. Therefore, we can formulate
the following assumption to correct this behavior.

Assumption: Micro clusters in a shared area or “overlapped” area that belongs
to the majority classes will be deleted to perform resampling of the data and to
improve the model’s data representation.

Figure 6.19: Graphical description of the micro clusters in overlap
detected between three one-class classifiers.

This last assumption will allow us to perform a resampling, based on the misclas-
sifications found with the test set. The result of this operation over our toy example
is shown in Fig. 6.20.

Figure 6.20: Graphical ilustration after resampling the data.

As an additional point, we consider the shared areas denoted by the sets S as
valuable information for the classification system. Therefore, the data therein can
be shared with the classification system to add expert classifiers in these zones. To
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conclude this section, we present the algorithm in Table 6.9. In some cases, the
resampling process is not executed because any majority class is involved in the
misclassifications; these sets will still be considered for the online evaluation.

Macro algorithm

Input: Training samples X, real outputs Y and the name of
the majority classes N
Procedure:

1. Evaluate X in M, and get the classes Y′

2. Detect the missclassifications with Y and Y′

3. Obtain the set of shared areas S

4. For s in S:

• For cm in N:
– If cm is in s, delete the micro clusters in-

volved.
– Reorganize the data in cm, creating new

micro-clusters.
• end for

5. end for

Output:M

Table 6.9: Pseudo code of the test

6.6.5 Online evaluation

As it was previously mentioned, this approach does not have as an objective to cor-
rectly classify input samples. Instead, it tries to find similarities between classes to
detect new behaviors. These solution aims to reinforce or support a more accurate
classifier.

Generally speaking, in an online manner, the samples are placed to their more
similar one-class classifiers. However, for those samples assigned to micro-clusters
in S, they will be denoted as inconclusive by our model. In an online manner, we
envisage to stock samples for each class in a batch. The user defines the size of the
batch, and it will help to gather new behaviors of a class. When a batch is filled,
the data in the ILM and the batch are sent to the Model repository to activate a
reconfiguration process. The algorithm of this process is presented in Table 6.10.

The evaluation of the new sample xi to our model will sightly change in the sense
that the samples in the batches B will be considered to obtain the nearest neighbors,
following the following assumption.

Assumption: Given a set of new samples in a period, that is being assigned to
the same class, we can assume that a new or similar behavior is emerging for this
class.

The average distance presented in Eq. 6.10 is changed to,

dnn = dc
nn + dbc

nn (6.10)
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Macro algorithm

Input: input sample xi
Procedure:

1. Evaluate xi in ILM, and get the class y′

2. If xi is S,

• Target xi as inconclusive
• End

3. Else,

• Save xi to its corresponding batch bc.
• If bc is filled, empty bc and send the new dataset

{X̂, ŷ} to the classification system.

4. End.

Output:bc

Table 6.10: Pseudo code of the online evaluation

where bc is the batch of the class c and dbc
nn is the minimum average distance of

the k samples in the batch.
This new measure will allow us to partially consider the new “behaviors” included

in the one-class classifiers over some time.
We present as follows the datasets selected to test and validate our framework.

6.6.6 Experimental results

The ILM has some essential parameters defined for the training process. In Appendix
B, we listed their values and how they were selected for this application. In Table
6.11, we present the accuracy results after training and testing the ILM against its
more similar adversary KNN. We can notice that the results are very similar to KNN’s
performance. As was previously mentioned, in this case, we are not trying to improve
the accuracy performance, instead, we intend to represent the data correctly.

Classifier PAM VPN-NonVPN SAT-gw
KNN 0.8783 0.9785 0.8634
IML 0.8643 0.9276 0.8653

Table 6.11: Accuracy result after evaluating the ILM and KNN models

On the other hand, to demonstrate that this approach can detect new class dis-
tributions, we present as follows several tests that will emulate new incoming classes
and how the ML models behave. Most of the results of the next section will be dis-
played graphically with one image that will measure the accuracy every time that
a new sample (of the new class) is evaluated. The setting of this test is detailed in
Appendix B.
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PAM results

The PAM dataset, built on an emulated environment, allowed the recollection of more
than ten types of classes as it was described in Chapter 4, Section 4.4. In this case,
we illustrate the classification results after evaluating a new incoming behavior from
the class Streaming. Figure 6.21(a) summarizes the online conduct of the application
YouTube. From the figure, we can notice that the original ensemble fails dramati-
cally. On the other hand, the ILM started progressively correcting the classification
system by adding new learners, who are experts in the class Streaming. A remarkable
improvement of the accuracy is perceived after these modifications. The same exper-
iment was reproduced for the Skype application, which belongs to the VoIP class. In
Figure 6.21(b), we can notice that the results are very similar to the previous case.

(a) YouTube (b) Skype

Figure 6.21: Accuracy for two applications of the class Streaming and
VoIP, with B = 50.

Additionally, we present the results after evaluating our approach with some ap-
plications of the majority classes, such as Browsing and P2P. In Figure 6.22, we can
notice that both the static and dynamic ensemble give satisfactory results. We can
also see that the ILM does not perform well for the majority class, which is expected
due to the method was designed to favor the minority class. The resampling process
deprives the ILM to get good accuracy with the majority class; the contrary case is
found with KNN. This particular case does not cause a problem for our classification
system due to the static classifiers are working adequately for the majority classes.

The results in Figure 6.23 demonstrates that our approach could also improve the
accuracy for identifying new applications of the majority class, such as the case of
eDonkey belonging to the P2P class.

VPN-nonVPN results

Similarly, we evaluate some non-tunneled and tunneled applications as new unknown
behavior. However, this dataset presents some constraints because the authors col-
lected a few samples of different applications. For this case study, we treated the
tunneled and non-tunneled data differently, in the sense that a dynamic ensemble
and an ILM is built for each case separately. We already demonstrated that that
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Figure 6.22: Accuracy for the application Wikipedia, B = 50

Figure 6.23: Accuracy for the application eDonkey, B = 50

tunneled and non-tunneled data could be easily separated using their statistical fea-
tures.

For the non-encrypted case, we evaluate YouTube and NetFlix applications as a
new behavior. We can notice from Figure 6.24 that similar results than the previous
cases are perceived. In the case of the majority class, for the non-tunneled case, we
evaluate several samples belonging to the Browsing class; these samples belong to
unseen new applications. We can notice in Figure 6.25 that the classifiers behave
correctly. Although the ILM was not able to place their correct class, the addition of
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reactive classifiers does not affect the performance of the dynamic classifier.

(a) YouTube (b) NetFlix

Figure 6.24: Accuracy for the applications with B = 50

Figure 6.25: Results for the applications Amazon, Yahoo and others,
B = 50

In the same manner, we evaluate tunneled Hangouts and YouTube applications
as new unknown behavior. In Figure 6.26, we can see the results of these tests. In
this particular case, the class VoIP belongs to the majority class, while the Streaming
application to the minority class. To conclude, we found similar result patterns with
the non-tunneled and tunneled data tests.

SAT results

We repeated the same experiments as in the previous cases, and the only difference
remains in the treatment of the data. We merged the classes Video and Voice coming
from the same application, let us call these QoS classes Interactive Skype and Interac-
tive Facebook. The logic behind it is that the beginning of the connection (handshake
for Video and Voice) is equivalent to the application of Skype or Facebook.
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(a) Hangouts (b) YouTube

Figure 6.26: Accuracy for the applications with B = 50

Interactive Facebook and Skype are considered as new incoming behavior for the
Static and Dynamic ensemble. In figures 6.27 and 6.28, we get remarkable good
results by using our proposal. It is noticeable in Figure 6.21 that the accuracy can
be easily elevated if enough input samples are seen form the same class.

Figure 6.27: Results for the application Skype, B = 500

Table 6.12 shows the final accuracy of the previous tests. Additionally, we set
experiments with validation tests to show that the generalization property is not lost.
We can notice that static classifiers give a fair accuracy, while our approach is slightly
higher. The samples of the new classes are randomly placed in the validation test set,
and this affects their learning. However, we estimated that after some time, a new
application could be detected by our approach, and this will depend on its usage on
the Internet.

We would also take into account the modifications suffered by our approach in
Table 6.13 with only the unknown application, and Table 6.14 with the validation
test set. We can list the following observations:
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Figure 6.28: Results for the application Facebook, B = 100

One unknown application Validation set
RF DE RF DE

Interactive Skype 0.4287 0.7083 0.4194 0.5168
Interactive Facebook 0.1829 0.4602 0.4983 0.5480

Table 6.12: Final accuracy after evaluating only one unknown appli-
cation and a validation set.

• In both tables 6.13 and 6.14, few samples fell into inconclusive zones, and in
consequence were filtered by ILM.

• In Table 6.13, we can notice that not more that 6 times an update was pro-
duced over the ensemble. Whereas in the validation case, in Table 6.14, for the
Facebook application, 15 updates were executed.

MA S added RCs samples of the class Total of samples Filtered by IML
Interactive Skype 1 12 1 1840 1840 79

Interactive Facebook 1 12 6 880 880 37

Table 6.13: Online modification with one unknown application.

MA S added RCs samples of the class Total of samples Filtered by IML
Interactive Skype 1 32 1 2225 3049 0

Interactive Facebook 1 27 15 880 1812 142

Table 6.14: Online modification with the validation set.

For the SAT data, more promising results were found thanks to the good construc-
tion of this data. We believed that more challenges could be added to this approach
when treating with more interactive applications at the same time.

To conclude, we present a more fine detail study in Appendix C about how the
selection of base classifiers affects the performance of the new class identification. We
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found out that with only Decision Trees as base classifiers, we can eventually learn
one class at a time. We also made a study of the effect that the batch size might
bring to this task. We notice that this will depend on the number of samples available
for testing our method. However, we recommend a batch size considerably large in a
real-world environment.

Up until this point, we already defined all the elements that conform to our
Heterogeneous Classification System for Internet traffic. What we present in the next
section is the perspective of this approach.

6.7 Classification System perspective

The former theoretical and experimental analysis provide a reconfigurable system that
can somehow learn one minority class. However, the nature of Internet traffic leads
us to deduce that our proposal needs to be extended. Other types of communications
should be considered for the Classification System; for instance, different types of
tunneled protocols such as IPsec and HTTP2, among others. In this sense, the
hierarchical classification could grow in depth and shallowness as it is depicted in
Figure 6.29. New historical behaviors captured from the Internet network might
lead to design new Flow discriminators either by using ML techniques or classical
approaches (such as port and protocol identification). Following, a dedicated classifier
might correctly analyze each type of communication. Moreover, the class evolution
is prevalent for any communication technology. Therefore, it will be necessary to set
evolving models such as ILM to update the classifiers designed.

In Internet traffic classification, the detection of some classes is a crucial factor
to mainly improve the QoS. In this case study, we found that the datasets available
for the research community are limited; in addition to that, the publicly available
data counts with class-imbalance. In this context, minority classes might not be
well represented by ML models. The present investigation tries to find an approach
that can learn one class at a time, in particular, that can learn the minority class.
We remark the need for building dynamic models that can be shaped according to
unlabeled online knowledge. Conversely, two classification systems work in parallel
to cope with our objectives.

The results after synchronizing these two elements were promising, inspiring new
future paths in this field. For instance, a concept drift detector can be added between
the classification system and the ILM, to filter the samples that are considered as new
knowledge. On the other hand, dynamic feature selection can be deployed, where a set
of features can better describe a minority class than another one. To build the DTs,
we can directly consider the trees produced by RF, and use them as base classifiers.
Finally, it is important to make more efforts to adapt this solution to a multi-label
classifier and other possible classifiers as it is shown in Figure 6.29.
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Figure 6.29: Graphical perspective of the Classification System

6.8 Summary

In this chapter, classification problems were addressed. To start, we build ML models
that will serve as flow discriminators and classifiers in our Classification System. Fol-
lowing, we define the multi-label classifier that will be in charge of treating tunneled
connections. We analyze the results of a multi-label classification and its reliability.
Also, we present an approach to perform packet classification over tunneled flows with
multiple tunneled sessions. Finally, we present a method that can learn new class
behaviors in Internet traffic classification. This approach aims to learn one class at a
time, and in particular the minority classes. We can outline the following discussions
about this last approach.

• The classifier proposed is a classic ensemble of classifiers that allows the re-
placement and the addition of base classifiers. The new base classifiers are
trained with historical data, and new unlabeled samples are considered as new
knowledge managed by the ILM.

• The ILM is based on one-class classifiers, which in turn are modeled by KNN.
This representation allows us to find new behaviors similar to the known classes.
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In this sense, this model must deal with the class-imbalance through the resam-
pling process.

• We demonstrated that the resampling process and modification of the ensemble
do not affect the generalization properties of the classification system.

• In Section 6.6.6, we notice that our approach is not 100 % accurate for the
new class behaviors. However, it shows better performance than the static
classifiers and the KNN by itself. Conversely, it is reasonable to think that with
more input samples, the solution can notably improve the accuracy.

• Although the amount of new behaviors per class is limited, we selected the most
critical applications to be detected by the practitioners in this field. The results
were satisfactory for each of the experiments.

• A lightweight implementation was proposed taking into account the require-
ments of the case study. We notice that if we replace the RFs by DTs as based
classifiers, we also obtain a good performance. Besides, this gives us more
flexibility to implement the solution.

• Finally, a possible extension of our ILM for multi-label tasks is feasible due to
KNN and OCC that can be adapted to work as multi-label classifiers.

In addition to this, we described the perspectives of the Classification System
designed. More Flow Discriminators, Classifiers and ILMs might be needed to cover
other communication technologies. In this sense, more historical data must be cap-
tured to extend our approach. In the next chapter, we will cover more technical
aspects to implement the ML solution into a network appliance.
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Chapter 7

Towards the implementation of
the Classification System
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7.1 Introduction

After studying the theoretical aspects of this project, we come back to more technical
matters that drive the implementation of our proposal. We acknowledge that few
classification systems based on ML have been genuinely implemented in real network
appliances [146, 88, 166, 140, 68]. Most of the works are deployed over home networks,
cellular networks, routers or PoPs of large ISP. In Satellite Communications, few
works address this task mainly due to the limited access to Satellite components and
data.

In Chapter 3, we detected and established the requirements of our solution. The
primary need was to provide for a classification system that can feed a QoS man-
agement architecture. What we would like to asset in this chapter is the potential
functional and physical interactions required to deploy our proposal. We use the last
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phases of the ARCADIA methodology to formalize the implementation of the pro-
posal. The result of this analysis is a lightweight prototype that can be coupled to
any network appliance where passive monitoring is permitted.

In addition to this, we need to submit our system to different scenarios to eval-
uate its performance. It would be ideal to have a real Satellite testbed system to
execute performance tests. However, this kind of environment will be assessed in
our collaborative project. In our case, we set the guidelines to test the classification
system in a testbed environment placed on the Proxmox Virtual Environment as in
Chapter 4. We will establish a simple communication between peers acting as source
(Internet client) and destination (Internet server). A router will be placed between
source and destination to intercept and to classify the Internet traffic. We will pro-
pose several scenarios to measure the overhead provoked by the classification system
to the router. Finally, we conclude with some important points to be considered for
QoS management by using the Classification System proposed.

This chapter is organized as follows. Section 7.2 defines the last two phases of the
ARCADIA modeling process. Section 7.3 shows the implementation proposal with
its logical and physical architecture. Section 7.4 presents an experimental test set
on the Proxmox Virtual Environment. Several tests were carried on to measure the
performance of the proposal. Even though the system was not tested over a Satellite
Architecture, we state the guidelines to asset this system in the GW or ST component.
Finally, in Section 7.5, we establish some considerations about how to interpret the
classification outputs to perform QoS management. Section 7.6 summarizes this
chapter.

7.2 ARCADIA and Capella for the solution implemen-
tation

In Chapter 3, the ARCADIA methodology and the Capella software modeling tool
were introduced for four main phases. The two first phases develop the system re-
quirements while the left ones the design and implementation. We notice that in the
second phase, the resulting architecture represents a prototype composed of system
functions. These functions are composed of internal activities that allow them to
achieve their goals. Additional concepts and viewpoints must be introduced to de-
fine the physical elements that will implement such a solution. Therefore, we briefly
describe the last two levels of modeling with Capella.

7.2.1 Logical architecture

In this phase, we enter a more detailed description of the system design for its later
implementation. Among the concepts here used, we find,

• Components: new components that will allow extending the system before-
hand designed.

• Functional exchanges between components.
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• Function allocation into components: this is the final result of this phase,
and it allocates all the components, systems and actors in only one diagram.

7.2.2 Physical architecture

The main objective is to design a physical reference architecture, reusing all the
diagrams of the logical architecture.

• Behavioral components refine the operational components and implement
their behaviors.

• Implementation components supply the resources needed by the behavioral
components.

• Physical links establish connections between the implementation components.

• Physical architecture is the final result of this phase, where all the compo-
nents are allocated in the same diagram.

7.3 Implementation proposal

Once the requirements are fully defined, we can introduce the proposed implementa-
tion. To build the two last phases of the Capella model, we also make some assump-
tions regarding the resources available in a real Satellite Architecture.

7.3.1 Logical architecture

In this section, a refinement of the system proposed is carried out. In Figure 7.1,
we make a comparison between the system and logical analysis. The subsystems
proposed will define how the components of the QoS management system will work.
Only two points will suffer major modifications,

• The Offline configuration will be developed by the Training process and Histor-
ical data manager components

• The Online configuration will be unfolded between the Classifier manager and
the ILM manager components.

In the following sections, we will only detail the operational functions of the offline
and online configuration processes. The reader can notice that the other operational
functions (such as Monitoring system and Classification system) were already de-
tailed in the System Analysis in Chapter 4. These functions suffer small technical
modifications that are not worth to specify at this point.
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(a) Phase 2: System Analysis (b) Phase 3: Logical Analysis

Figure 7.1: Transition from the system to the logical analysis.

Offline configuration: logical function

The sequence of steps, for achieving an offline configuration in Figure 7.2, agrees
with the steps described in Chapter 3, Section 3.3.3. Feature extraction for the Flow
discriminator (either FD1 or FD2) model and the Classifier (either Cl1 or Cl2) are
performed. Data processing is executed when needed. The data is separated into a
training and test set for building the ML models. Once the models are validated,
they are sent to the external components such as the Flow discriminator and the
Classifier. These functions are placed into the operational architecture to see the
connection with the other actors, as shown in Figure 7.3.
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Figure 7.2: Logical function of the Offline configuration system.

Figure 7.3: The Offline configuration system integrated in the Logical
architecture.

Online configuration: logical function

In an online manner, we would like to retain flow behaviors to detect new distributions
of a targeted class. In this sense, in Figure 7.4 ,we present the logical function of this
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task. Statistical based features are delivered to the ILM, which in turn will evaluate
these values and assign them into a batch. When the batch of the targeted class is
filled, an RC classifier will be trained and added to its corresponding the Classifier.

These operations are displayed in the Logical architecture as in Figure 7.5.

Figure 7.4: Logical function of the Online configuration.

The final result of this phase is a logical way to approach the physical imple-
mentation of our prototype. We notice that all the functions proposed were already
theoretically developed. In the next section, we show possible implementations of our
prototype, and also the tools used and needed for the development of this system.
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Figure 7.5: The Online configuration system integrated in the logical
architecture.

7.3.2 Physical architecture

To culminate, the implementation proposal is presented in Figure 7.6. We define
two new components that will be necessary for the implementation. A GW server
that will be in charge of taking the Internet traffic for its further classification. In
addition to this, we will need a Management Server that will handle offline and online
configurations.

It is worth mentioning that the functions of the GW server and the Management
Server can be comprised in the GW entity. This is modifiable according to the
resources available in the real Satellite Architecture. On the other hand, all the
functions concerning the Classification system are comprised in Framework: which in
turn is a library developed for this aim. For what concerns the sniffer API, we use
existing solutions such as Libpcap [108] for performing the sniffing. Then, we add the
Flow Metering and Feature Extraction behaviors.

As an additional comment, the reader can notice that the proposed implemen-
tation can be easily replicated in the ST component, as well as in different network
components where packet monitoring is feasible. For instance, we present a configu-
ration suitable with the ST actor in Figure 7.7. In this figure, we remarked that the
Management server is centralized; however, this configuration can be easily replaced
by disposing of a Management server component for each the GW and ST.
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Figure 7.6: Physical architecture of the ML solution in the GW.

Figure 7.7: Physical architecture of the ML solution in the GW and
ST.

Implementation details

The implementation of the solution is partly conceived in C aided by some libraries
included in nDPI and in Python. The most important libraries developed are listed
below:
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• Framework: this library coordinates the operations between the classifier and
the incremental learning model. Here the training process can be performed for
the defined models (Flow discriminators, classifiers and ILMs). In addition, this
library coordinates the connection between the online classifier and the offline
reconfiguration. This library is developed in Python aided by scikit-learn library
[138], and it contains other classes such as

– Ensemble: it gathers the classifiers. Functions such as predict, add en-
semble, delete ensemble, save in a file, load from a file, among other useful
functions are developed. This library was developed in C, the details about
such implementation are detailed in Appendix D.

– ILM: similar to the previous case, it gathers the incremental learning
model. Functions such as predict, assign into a batch, save in a file, load
from a file, among others useful functions are developed. This library is
developed in Python aided by scikit-learn library.

– data-utils: it comprises supporting functions to treat historical and online
data. This program was developed in Python.

– Dashboard-utils: It helps to correctly send the data to the Remote Dis-
play, managing Elasticsearch [53] principally.

• Sniffer API: It is in charge of performing passive monitoring, including the
feature extraction process. Within this C API, we find,

– Libpcap: This library manages the sniffing process given an interface, IP
address, etc.

– flowManager: It takes the binary packets and performs a metering pro-
cess. This allows us to differentiate one flow from another. In this partic-
ular case, we use a hast table to find existing flows or register a new flow
tuple. This library was developed using the example implementation called
“ndpiReader” from nDPI which offers an efficient flow metering process.

– Features: it complements the previous library by computing in an online
manner the statistical-based features. It also has some complementary
functions for treating the different types of encryption. It also handles the
features needed for each classifier.

To sum up, we present an ML system that can be integrated into Internet traffic
architectures, being the Satellite Architecture of our primary interest. The proposal
presented can be comparable with existing DPI solutions, which offer a portable
software solution for Internet traffic inspection. In the next section, we perform
several experiments to validate our proposal.

7.4 Experimental results

In this section, we present an implementation proposal in a cloud-based emulated
network. The main objective is to measure the prototype performance and to give
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guidelines to test our approach over a Satellite network component either in the GW
or the ST.

7.4.1 Experimental setup

Using the Proxmox Virtual Environment, we create a testbed on the cloud (OVH
cloud provider). We set the components in Figure 7.8 with an User agent that will
act as a real Internet client. This agent will be in charge of emulating real Internet
connections. All the traffic generated by this agent will pass through a router before
going to the Internet. In this router, we will place our monitoring and classification
system. Let us say that this router is equivalent to the GW server proposed in Figure
7.6. Connected to this router, we placed a management server that will hold offline
processed, such as the training process and the ILM. The configurations established
for our router and management server were Virtual Machines (VMs) with the follow-
ing configuration 4*1.2Ghz CPU and 10Gb RAM. Indeed, these values might vary
according to real Satellite resources.

Figure 7.8: Implementation proposal on Proxmox.

If we go deep into the router appliance, we can illustrate in Figure 7.9 the internal
process to perform the Internet traffic classification task by our prototype. Briefly
speaking, Libpcap captures a copy of the Internet packets which in turn are organized
into flows by using a hast table. Following the feature extraction process is executed,
and the ML solution can be evaluated. In parallel, we set up nDPI to compare both
approaches.
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Figure 7.9: Implementation proposal on the router.

7.4.2 nDPI vs hierarchical classification results

In this section, we measure the classification capabilities of our implemented prototype
against its more close competitor. The data used to train our proposal is specified
in Table 7.1. All the data is used to build D1 while the rest of the data is adapted
according to their objectives. In order to build Cl2 and D1, we set ∆t1 = 10ms and
∆t2 = 100ms.

Classifier All data
D1 Without VPN With VPN
Cl1 Unencrypted Encrypted
D2 unitary multiple
Cl2 unitary
MT multiple

Table 7.1: Data settings for building the classifiers.

Following, the complete framework was implemented in C ( this implementation
is described in Appendix D). In Table 7.2, we can notice that the C models maintain
their accuracy. In the unencrypted case, ML outperforms nDPI; while, for the en-
crypted example, nDPI is unable to detect the class of a unitary session as Cl2 does.
Regarding the response time of the classifiers, in Table 7.3, we show the number of
packets per second processed by each approach. We can notice that fast Internet
classifications are possible with an ML-based classifier. It is important to mention
that the model response time differs for each entry depending on how deep they go
into the tree’s branches until a leaf is reached.

ML nDPI

Unencrypted D1 0.9999 1
Cl1 0.9186 0.5830

Encrypted D2 0.9588 N/A
Cl2 0.9401 N/A

Table 7.2: Accuracy evaluating
the test data

ML nDPI

Unencrypted D1 348796 1000000
Cl1 200000 150466

Encrypted D2 368053 N/A
Cl2 200000 N/A

Table 7.3: Average packets per
second processed pkt/s
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On the other hand, we would like to show in Figure 7.10 the estimated time to
perform the complete classification process. For this experiment, we sniff in inline
mode the traffic generated by the agent during 60s. We compute the overall time
that the packets stay in each activity. In this Figure, we can notice that the sniffing
process is the longest by using libpcap. This might be caused by the packet processing
time in the kernel space, but also by libpcap and the threaded functions designed to
deal with the packets. Regarding the classification process, we found out that the
average is lower than 15 µs; where the flow metering process is around 5µs and the
feature extraction 1 µs.

Figure 7.10: Time analysis of the classification process.

The response time obtained is acceptable principally for the Hierarchical classi-
fication task implemented in C. Regarding the packet processing task, the response
time could be improved depending on the operational needs of the Satellite architec-
ture. Emerging technologies are dedicated to minimizing packet processing time. For
instance, a project called Data Plane Development Kit (DPDK) is a set of libraries
devoted to enabling high-speed packet processing [40]. In our particular case, DPDK
can be programmed as a kernel-bypass toolkit as it was already proposed by nDPI in
its architecture [165].

7.4.3 Load/Stress performance

The main goal of this section is to know the load provoked by our approach under
different scenarios to the router. In this sense, our router is put through different
conditions by varying the data rate and the number of flows. To do so, we used
iPref [83], which is a tool dedicated to measuring bandwidth on IP networks. This
tool allows us to define the desirable flow packets at a specific data rate, transmitted
from one VM to another one. In Table 7.4, we show the configuration selected: the
data rate (Mbps) and the number of flows sent from the client to the router, and the
results of such tests: the RAM and CPU consumption, and the input bytes perceived
by the router.

It is important to mention that the tests are limited to the cloud-servers’ Internet
bandwidth which is around 3.6 Gbps. In a more powerful architecture, these tests
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Datarate (Mbps)/# flows % RAM memory % CPU consumption (avg) % of input bytes (Mbps)
1 Mbps/100 4% 2.81 % 101.28
1 Mbps/1000 4% 5.97 % 524.64
15 Mbps/10 4% 2.86 % 78.96
15 Mbps/100 4% 8.67 % 1019.84
80 Mbps/10 4% 10 % 620
500 Mbps/10 4% 17 % 2598.8

Table 7.4: Load/stress performance

can be scaled to perform more fine studies. Nonetheless, the results in Table 7.4 let
us remark the following aspects:

• The performance of the solution is mainly correlated to the specifications of the
machine. In addition to this, our tests were limited by the cloud-server network,
we achieved to send around only 3.6Gbps, and in some cases, we incurred on
information loss.

• The load fells under the sniffer and flow metering processes. For instance, the
sniffer has to deal with a big load of information at the same time with threaded
processes. In the same manner, the flow metering also requires threaded func-
tions for fast flow search and flow classification.

• The average CPU consumption rises steadily as the datarate increases. This is
typical behavior caused by the number of preprocessing tasks in the kernel to
treat the raw packets. Also, libpcab uses only one core that limits the packet
capture speed. This problem has been widely studied; for instance, the work in
[8] shows that libpcap causes an exponential increase of the CPU consumption
as the bit rate increases.

• Our system only takes the first 15 packets for aggregated flows, which might
alleviate the memory and CPU consumption. Once a flow is classified, it is
marked as classified, and it is never processed until a time-out is reached.

• Regarding the RAM used by our system, we can make a greedy approximation
by considering using double variables (8 bytes), and compared with the memory
used by nDPI. Therefore, with a total of 346 statistical features and other 160
necessary historical features, we get the approximate result in Table 7.5. From
the table, we can conclude that the RAM consumption increases 4KB per-flow
regarding nDPI.

Memory
nDPI 1KB*F

Hierarchical classifier (346+160)*8B*F + 1KB*F = (4KB+1KB)*F

Table 7.5: Memory consumed by our proposal and by nDPI

Future studies should be carried out to enhance the available resource usage. For
instance, CPU usage might be decreased by bypassing the default packet handling
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mechanism of the kernel with tools such as PF_RING 1 and DPDK [40], among
others. It is important to mention that the ML-based solution provokes a negligible
overhead over the router; all its operations are reduced to if-then evaluations with few
loops involved. Following this line of ideas, our ongoing-project will instance these
tests to perform a more extensive assessment of the system. In the next section, we
propose an alternative way to interpret the Classification System results through a
dashboard.

7.4.4 Online Display

In order to complement the results of the classification system, we can forward the
status of the network to a data visualization plugin. This dashboard was set in the
Management server for simplicity. Elasticsearch [53] was used to the connection and
online update with the dashboard. For instance, in Figure 7.11 proposes a dashboard
that counts with five data representations,

• DE figure: in the left hand, we can find the ensemble classifications over time.
The possible class values are set according to small data captured from the
virtual environment.

• ILM figure: in this figure, we can keep recollection about the batch of data
that it is being captured for the ILM. Although, in this case, only one class of
interest should appear; we displayed all the results that ILM provides.

• DE pie: it summarizes in a pie chart the classification results.

• count_updates : it is the number of flows processed.

• table_bytes : it is a summary of the bytes processed by the classification system.

Figure 7.11: Dashboard of the proposal.

1https://www.ntop.org/products/packet-capture/pf_ring/
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Although this solution is not operational, it is a good possibility to monitor the
classification system results. The dashboard is flexible and easy to modify.

7.5 Notes about the QoS management

In this section, we set a discussion about the use of our solution in a Satellite Ar-
chitecture for QoS management. As we previously mentioned, it suffices to place the
classification system over a network appliance that permits traffic monitoring. For
instance, in the GW component, the classification output is signaled to the PDP to
perform the QoS management task. Depending on the classification output, QoS
rules will be applied to trigger actions that will manage the Satellite resources. If a
QoS rule is satisfied the traffic will be shaped as follows:

• Aggregate flows: the QoS rule is applied over all the incoming packets sharing
the same tuple (IPsrc, IPdst, portsrc, portdst, proto).

• Unitary tunneled flows: all the incoming packets of the unitary tunneled com-
munications will be prioritized. However, this may be updated when the clas-
sification prediction of D2 or Cl2 changes in ∆t.

• Multiplexed tunneled flows: we can think about prioritizing the tunnel as the
unitary case. Nevertheless, in parallel, other, less sensitive applications will also
be benefited from this action. To avoid this, a classification per packet task is
desired. The result obtained for the packet classification (in Chapter 6 Section
6.4.3) are promising and might solve the problem for some protocols that allow
per packet prioritization.

In tunneled connections, the prioritization per packet means a reordering of the
packets that is not always feasible. The IPSec VPN and OpenVPN allow packet
reordering with some constraints. For instance, OpenVPN with udp as transport
protocol allows reordering of the packets within a certain fixed sequence number
window; contrary case occurs when tcp is used as a transport protocol. Any reordering
process for OpenVPN tunnels with tcp will be considered as cyber-attacks, and the
packets will be dropped as specified in the reference manual 2. In Figure 7.12, we
illustrate the approach proposed for each protocol with OpenVPN.

In addition to this, we need to be sure that the QoS requirements are satisfied
on time. For instance, according to [84], VoIP and Interactive video applications
are susceptible to delivery delays. To be specific, they can tolerate around 100ms of
delay; whereas, another important class such as Video streaming no more than 10s.
We notice that the classification task can be achieved in 15µs, giving sufficient time
to treat those sensitive classes.

2https://openvpn.net/community-resources/reference-manual-for-openvpn-2-4/
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Figure 7.12: QoS management for OpenVPN tunneled connections.

7.6 Summary

This chapter presented the final phase of our project, which is the implementation
and evaluation of the proposal. We culminate in the two last stages of ARCADIA to
formalize the design and implementation of the proposal. We define all the elements
designed to give life to the physical architecture’s components. Afterward, our ap-
proach was tested over an emulated platform in which we set several conditions that
aided to evaluate its benefits and limitations. In this sense, we set some recommen-
dations to test this approach over an emulated or real Satellite architecture that will
be covered in our collaborative project.

The experiments let us conclude that the proposal can be comparable in terms
of accuracy and overhead with an existing DPI solution. We tested our approach in
the GW component, with data captured from an emulated Satellite platform. This
approach outperformed in accuracy and processing time to a well-known DPI solution.
We displayed the needs of tuning the framework proposed, given different Satellite
network conditions. In addition to this, we gave some insights into the effect of the
traffic classification over the QoS management architecture. This chapter closes the
development of this research work; therefore, the next chapter concludes and shows
the future perspectives of our scientific proposal.
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8.1 Introduction

In this chapter, we summarized the results of our research project by presenting a
set of contributions in Section 8.2. In this sense, we offer the conclusion of our work,
along with the lessons learned in this Ph.D. thesis. Finally, in Section 8.3, we present
the perspectives and highlight new future research directions.

8.2 Conclusions

ML has become a valuable tool for knowledge extraction in different domains of
science. Although, the main procedures, to achieve knowledge extraction through
ML, are easy to comprehend; they might change and increase in complexity depending
on the application studied. In our particular case, we intended to design Internet
traffic classification techniques for QoS management in Satellite Communications.
This thesis project tackled the problem from different methodological points of view.
The main principle was to follow the steps to achieve ML: i) problem description
(architecture, actors, activities, etc.), ii) data collection, iii) feature extraction, iv)
classification system design and construction, and v) implementation. This way of
approaching our research work allowed us to provide contributions by solving inherent
challenges in each step, as it will be detailed as follows.

Problem description: ML solution in a Satellite Architecture

The structure of Satellite Communications presents a high complexity that yields us
to study an abstraction of its components and interactions. To do so, in Chapter 3,
we theoretically propose a Satellite communication architecture; as well as, all the
necessary elements needed to perform QoS management and to integrate an ML-
based classification system. Following, this theoretical approach allows us to deliver
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more formal modeling by using a model-based software engineering methodology and
tool. The results are translated into the needs, the internal components, and the
functionalities of the system.

We found out that an ML-based classification solution should cover some compo-
nents to offer an accurate and possible operational solution. Among these function-
alities, we have:

• Offline configuration component: On one hand, building a classification system
from scratch can be costly for the final users of this solution. Therefore, it is
necessary to provide accessible modules that perform this task automatically.
On the other hand, to build an ML-based solution, historical data is required,
and special attention needs to be taken into account regarding this subject.

• Hierarchical classification system: the principle of divide and conquer is valid
for this item. We propose to decompose the problem of traffic classification into
small classification problems that might improve the accuracy and comprehen-
sion of the system.

• Online configuration component: the evolution of the Internet network is present;
therefore, ML-based solutions should foresee this matter. We propose a com-
ponent that can somehow offer a self-reconfiguring structure.

The integration of an ML-based classification system in a Satellite architecture
allowed us to have a global view of the problem affronted. Besides, this study per-
mitted to establish some boundaries for our solution. In our literature review, few
works arrive to deploy this solution correctly, and some of the main challenges were
no covered. Hence, our proposal becomes our first contribution in this field. Our
second contribution addresses data production for building our solution.

Data collection: Toward automatic Internet traffic generation and collec-
tion

The central knowledge base of intelligent systems constitutes significant historical
observations of a problem. No matter the domain in which ML is applied, this is
a crucial need that contributes to the success of this approach, and Internet traffic
classification does not escape from it. We saw that few publicly available data is
available, forcing us to propose a cloud-based platform for the Internet traffic data
generation. This platform served as proof of concept to later be reproduced in an
emulated Satellite architecture. The resulting dataset has become a valuable source
of information not only for our research project but also for future works in this area.

Feature extraction: How to describe Internet communication streams

Internet traffic communications are carried out using different communication pro-
tocols. At the same time, Internet applications can change the way these protocols
interact with the actors in the network to offer various services such as security and
data integrity, among others. In light of this, the description of the Internet stream
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becomes challenging. Nonetheless, we found out that each combination of application-
protocol has some indistinctively statistical properties that allow us to differentiate
them. We propose an enhancement of these statistical properties by introducing new
statistical descriptors based on LR models. In addition to this, we offer a new way
to compute the statistical-based features for tunneled connections to maximize the
knowledge extracted from multiplexed flows. The special care and enrichment of the
statistical features allow us to assure good discrimination in our classification system,
which becomes our next contribution.

Classification System design and construction

The core of our classification system is a classification per level kind of approach. In
this sense, we tried to divide different Internet traffic behaviors by using Discriminator
classifiers. Following, more specialize classifiers (such as Classifiers and Multi-label
classifiers) will be in charge of predicting the application name of an Internet stream.

Moreover, in the requirement analysis of our system, we remarked the need to
have a component that can detect the evolution or distribution change of a QoS
class. To do so, we propose an Incremental Learning Model (ILM) that can modify the
Classifier’s structure when evolution needs are detected. Such Classifier is represented
by a classic ensemble that allows the replacement and the addition of base classifiers.
These new base classifiers are trained with historical data, and new unlabeled samples
are considered as new knowledge managed by the ILM. Also, we propose a lightweight
equivalent implementation that uses Decision Trees as a base classifier. More formal
aspects of our implementation approach are given in our next contribution.

Implementation approach

At this point, we culminate in our research project by formalizing the implementation
architecture with ARCADIA and Capella. In this phase, all the proposed functional-
ities are placed in physical and software components. However, before continuing, we
consider the fact that in Internet traffic classification, the optimal use of the resources
is a crucial and essential factor to deploy any software solution. In our case, we re-
quire to integrate a new module that might need physical equipment and consume
memory and CPU to work correctly. Following this line of ideas, our implementation
fulfills this requirement by deploying online functionalities in a low-level program-
ming language. Whereas, more sophisticated features that do not require fast online
responses are coded in a high-level programming language.

To validate our implementation, we submit our solution to several conditions in
which the response was satisfactory regarding its close competitor, nDPI. We set
the guidelines to perform the same experiments in an emulated Satellite architecture
in our collaborative project. In addition, we gave some insights into how the QoS
management architecture should treat the traffic classification.
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8.3 Perspectives

The contributions achieved during this investigation introduced novel classification
techniques for the field of Internet classification. Up until this date, the company
Thales Alenia Space does not count with an ML-based Internet classification system.
Therefore, this study opens the doors to a variety of new research directions that can
complement and refine our approach. Among the most important points to address,
we listed:

i Enriching Internet data:

The cloud-based platform gave us the facility to emulate Internet communica-
tion. Nonetheless, only a small fraction of the most used worldwide applications
was launched and studied. In this sense, more efforts to produce more labeled
Internet communications are needed covering the majority of applications found
in Satellite Communications. For instance, the system can be extended to gen-
erate data with other protocols not studied in this investigation, such as HTTP2
and IPsec.

ii Covering more types of communication streams:

As a consequence of the expansion of the historical dataset, different featuring
engineering approaches might be designed to deal with the features of the new
protocols.

iii Expanding our Classification system:

We already outlined the perspective of our Classification System in Chapter
6. As a summary, we found that we could expand the hierarchical levels of
our system to include more applications and protocols behaviors. Indeed, we
could also propose and validate ILM for each new Classifiers designed. In this
context, it is important to say the ILM of the multi-label classifiers remains as
a future work that can be quickly undertaken.

iv Evaluating and implementing our solution in different Internet network config-
urations:

ML solutions are most of the time biased to only work correctly in the same
or similar environment where the data collection process was performed. In
particular, Internet traffic classification is very sensitive to the network con-
figuration due to they change the statistical behavior of some properties such
as the IAT. This variation can cause misclassifications of an ML-based classi-
fier trained with data with other conditions. Then, a transformation over the
features needs to be performed to transition from one network condition to an-
other. As a perspective, we propose to evaluate the differences between different
Satellite networks and to find a mathematical relationship that can harmonize
this difference. The main objective is to have a classification solution that can
be used in different network conditions.
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v Evaluating and implementing our solution in QoS management architectures:

Part of this final perspective will be accomplished in our collaborative project.
In this matter, it is necessary to apply all the guidelines proposed in the imple-
mentation chapter. Although QoS management was indeed out of the scope of
this investigation, it stands as the principal motivation of our work. Therefore,
it will be adequate to evaluate the impact of our solution over QoS management
architectures.
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Appendix A

Packet categorization

This appendix presents the decision tree used to define the categories of the Internet
packet. Figure A.1 shows the resulting decision tree.

Figure A.1: Decision tree udp and udp_sec.
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Appendix B

Classification system settings

We proposed different scenarios to test the reliability of our framework. In this section
we present the experimental set up for the ILM.

B.1 Offline training

In this particular case, it is necessary to evaluate the accuracy of the semi-supervised
approach proposed. We will analyze the overlapping areas found by our approach,
and the new organization proposed by ILM. The model settings are described in Table
B.1.

Parameter Description Value
k number of nearest neighbors k= 3

mc number of micro-clusters built for
each class

mc = 20

α maximum size of the batch α = 100
MA it holds the name of the majority

classes, the user can set this number
|MA| = 3

Table B.1: Setting defined to test the Incremental learning system

B.2 ILM testbed

In order to reproduce a dynamic learning or an evolutionary process, we manually
remove samples of one or more applications specially from the minority class. For
instance, from the Streaming class, we can consider the application YouTube or Net-
Flix as new incoming behavior or class distribution change. This new dataset will
be called online validation set. The setting established for each of the case studies is
shown as follows,

• PAM

– Streaming: YouTube and NetFlix applications

– VoIP: Skype application

– Browsing : Wikipedia application

– P2P : eDonkey application

• VPN-nonVPN
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– Streaming: YouTube and Netflix applications

– Browsing : Yahoo, Amazon and others

– VPN-Streaming: YouTube application

– VPN-VoIP : Hangouts application

It is worth mentioning that we selected these applications because they are the
most used and popular on Internet. In addition, we consider the key classes for
improving the QoS such as Streaming, VoIP and P2P classes.
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Appendix C

Ensemble and ILM analysis

The Internet traffic classification counts with some constraints in terms of implemen-
tation. One of the most important ones is the time of response, which has to be very
rapid. However, reducing the response time in ML models can lead to decreasing
the classification performance. In this topic, the work in [64] present an efficient
implementation of RF models for Internet classification, where the prediction time is
reduced to 2µs per flow. Due to we are dynamically adding classifiers to our ensem-
ble, the RF might or might not be the best solution. In this sense, we first find an
equivalent low cost model, that can offer the same performance. We aim at building
a model that can be easily implemented along with nDPI, because this tool is used
to process the Internet packets, to build the flows and to compute the statistical
features.

In order to achieve this, we propose to evaluate our proposal with a greedy and
more simple approach using RF as base classifiers. Therefore, we will try to find
an approximate model that can keep the performance obtained with the previous
models. For this particular objective, we will use DTs as base classifiers, which in
turn represent a simple classification model that can be denoted as lighter and, in
some cases, weaker than RF.

This section is organized as follow. Section C.1 will present the performance of
a greedy and simple models using RF as base classifiers. In section C.2, we envisage
to find a configuration that approximate the results given in the previous section; in
this sense, we can offer a lightweight model that can be implemented in the Internet
traffic classification application by using DTs as base classifiers.

C.1 Random forests as base classifiers

We propose two configurations that provide the best average performance. CSw

counts with three RF base classifier, where the number of estimators by trees is 10,
and the maximum depth of the trees is 20. On the other hand, CSs have also 3
base classifiers but with 100 estimators for the RFs, and not limit for the depth of
the trees. These trees use the entropy metric as the split criterion. In Table C.1,
we show the accuracy (acc), the Area Under the Receiver Operating Characteristic
Curve (ROC-AUC) score, the f-scores of the classes of interest in this investigation.
From the table, we can notice that is not necessary to create a greedy model CSs
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to obtain good average performance, the model CSw offers the same classification
performance.

PAM VPN-nonVPN
CSw CSs CSw CSs

Acc 0.9765 0.9773 0.9685 0.9704
ROC-AUC 0.9928 0.9937 0.9927 0.9954

f-score

Browsing 0.9840 0.9845 0.9824 0.9795
P2P 0.9882 0.9887 0.9303 0.9371

Streaming 0.8073 0.8140 0.8354 0.8476
VoIP 0.9650 0.9681 0.8467 0.8688

Table C.1

The performance given by the model CSs is taken as reference value for finding
an approximation with DTs that can guarantee a low cost implementation. It is
important to mention that the motivation of this approach is also supported by
the dynamic construction base classifiers. In this sense, we have to assure that our
approach is sustainable.

C.2 Decision trees as base classifiers

In order to find an approximate model, that disposes a lightweight configuration main-
taining the performance given by the reference values, we propose to evaluate different
configurations until find the closest to the expected values. This new configuration
can be potentially implemented in a real word application for traffic classification.

We variate several parameters of the dynamic ensemble using DTs as base clas-
sifiers. Therefore, we build a grid graphic that will serve as the validation tool of
the new configuration. All the results here presented are obtained using the PAM
dataset, and the VPN-nonVPN dataset.

For the PAM case, we summarize and analyze the results as follows:

• Figure C.1 shows the acc and ROC-AUC values after varying the number of
base classifiers and the maximum depth of the trees. We can notice that with
a maximum depth from 10 to 20 the results are good and comparable with
the reference values. The ROC-AUC scores decreased however the accuracy is
almost the same as the reference values.

• The f-score of the majority classes in Figure C.2 is high and close to the reference
values. However, we notice that for the minority class in Figure C.3, the f-scores
decreased with a relative error to the reference value equal to 8% and 4% for
the Streaming and VoIP classes. Although, this deference is significant, it is
expected due to the imbalance property of the application. We do not consider
it negligible, but acceptable for the objectives of this proposal.

To conclude this section, the model that fits all the requirements is given by an
ensemble with 5 DTs as base classifiers and maximum depth equal to 15.
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(a) Acc (b) ROC-AUC

Figure C.1: Acc and ROC-AUC of the dynamic ensemble varying the
number of base classifiers and the maximum depth of the DTs

(a) Streaming (b) VoIP

Figure C.2: F-score of the dynamic ensemble varying the number of
base classifiers and the maximum depth of the DTs

(a) Browsing (b) P2P

Figure C.3: F-score of the dynamic ensemble varying the number of
base classifiers and the maximum depth of the DTs

For the VPN-nonVPN dataset, we varied several parameters of the dynamic en-
semble using DTs as base classifiers. The new lightweight configuration is based on
the following results:

• Figure C.4 shows the acc and ROC-AUC values after varying the number of
base classifiers and the maximum depth of the threes. We can notice that with
a maximum depth upper than 15 the results are good and comparable with the
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reference values. However, the best ROC-AUC scores are obtained between 10
and 15 as a maximum depth.

• The f-score values of the majority classes Browsing and VPN-VoIP in Figure
C.5 are high and close to the reference values. However, we notice that for the
minority classes Figure C.6 and Figure ?? the f-scores decreased with a relative
error to the reference value lower or equal than 6% the Streaming, VoIP and
P2P classes.

• Finally, the time of training and prediction are reduced as it was the case for
the PAM dataset.

To conclude this section, the model that fits all the requirements is given by an
ensemble with 5 DTs as base classifiers and maximum depth equal to 15.

(a) Acc (b) ROC-AUC

Figure C.4: Acc and ROC-AUC of the dynamic ensemble varying the
number of base classifiers and the maximum depth of the DTs

(a) Browsing (b) VPN-VoIP

Figure C.5: F-score of the dynamic ensemble varying the number of
base classifiers and the maximum depth of the DTs

Implementation results

Taking the best DT configuration, we repeated the tests in Section 7.4 to demonstrate
that new knowledge is being discovered by this new ensemble. In Table C.2, the
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(a) Streaming (b) VoIP

Figure C.6: F-score of the dynamic ensemble varying the number of
base classifiers and the maximum depth of the DTs

performance of both proposals is shown, where the DTs as base classifiers give even
better results in some cases.

PAM VPN-NonVPN
DTs RFs DTs RFs

Steaming 0.1313 0.1112 0.6127 4180
VoIP 0.5017 0.5413 0.3131 0.2543

Browsing 0.8980 0.9921 0.9412 0.97
P2P 0.3011 0.3550 - -

Table C.2: Accuracy of the evolutionary test

C.3 Further analysis

As an additional test, we evaluate the effect of varying the size of the batch and
the number of base classifiers. The batch’s size will be dependent on the available
input samples. For instance, for the PAM case study, the number of samples available
was between 3000 and 3500 for the YouTube and Skype applications, respectively.
However, from Figure C.7, we can notice that it is the amount of base classifiers
which considerably affects the performance of the framework. For both applications,
the number of base classifiers that give the best performance are between 50 and 100
DTs.
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(a) YouTube (b) Skype

Figure C.7: Heat map varying the number of base classifiers and batch
size
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Appendix D

Tree based model
implementation in C

This appendix shows how to parse a tree based model from python to C. In this sense,
we show in Figure D.1 the scheme followed.

Figure D.1: Schema to parse a tree based model from python to C.

We describe in Table D.1 the steps performed in python. Each node in the three
T has the following attributes: left child, right child, feature, threshold and Class. It
is important to take into account:

• The nodes are saved in order, meaning that the first element in the .csv file is
the root of the tree.

• The properties left child and right child denote where are the child of the current
node with a number (the row position in the .csv file).

• Feature is the position i of the attribute to be evaluated in an input vector x.
If i < 0, it is necessary to stop the inspection of tree’s nodes.

• Threshold takes the value to be compared with x[i].

• Class is vector with the class’ membership probability of x.
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Macro algorithm

Input data: {X, y}
Procedure:

1. Train the model with {X, y}

2. For each three T in the model,

2.1. Get the nodes of the trees
2.2. Save the nodes into a .csv format

Output: T in .csv format

Table D.1: Pseudo code for building the model in python

Following, in C, we load each tree of the ensemble and build the structure of the
tree with the parameters previously defined. Once the trees are loaded, the prediction
can be made by following the steps in Table D.2, using as combination method the
classical voting process. However, the combination method adapted by scikit-learn
is the mean terminal leaf probability across all trees. We also have the possibility of
using this method by considering two new properties for each tree: samples which is
the total amount of samples fell in the node, and value a vector with the class values
of those samples.

Macro algorithm

Input data: x
Procedure:

1. For each tree T[i] in the ensemble,

1.1. pos = 0
1.2. For True

1.2.1. If tree[pos]. f eature > 0,
• if x[tree[pos]. f eature] <= tree[pos].threshold, then pos = tree[pos].le f t_child
• else, pos = tree[pos].right_child

1.2.2. else, pred[i] = tree[pos].Class and break the for

2. Apply a combination method over the vector pred and get f inal_pred

Output: f inal_pred

Table D.2: Pseudo code for reconstructing the model in C

For a multiclass classification, the combination method is equivalent to the may-
ority vote by the trees weighted by their probability estimates. On the other hand,
the multilabel classification result is the classes with an average probability estimates
by the trees upper than a threshold values (in our case, fixed to 0.6).
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