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ABSTRACT

Networks arise frequently in the study of complex systems, since
interactions among the components of such systems are critical. Net-
works can act as a substrate for dynamical process, such as the diffusion
of information or disease throughout populations. Network structure
can determine the temporal evolution of a dynamical process, including
the characteristics of the steady state.

The simplest representation of a complex system is an undirected,
unweighted, single layer graph. In contrast, real systems exhibit hetero-
geneity of interaction strength and type. Such systems are frequently
represented as weighted multiplex networks, and in this work we in-
corporate these heterogeneities into a master equation formalism in
order to study their effects on spreading processes. We also carry out
simulations on synthetic and empirical networks, and show that spread-
ing dynamics, in particular the speed at which contagion spreads via
threshold mechanisms, depend non-trivially on these heterogeneities.
Further, we show that an important family of networks undergo reen-
trant phase transitions in the size and frequency of global cascades as
a result of these interactions.

A challenging feature of real systems is their tendency to evolve over
time, since the changing structure of the underlying network is critical
to the behaviour of overlying dynamical processes. We show that one
aspect of temporality, the observed “burstiness” in interaction patterns,
leads to non-monotic changes in the spreading time of threshold driven
contagion processes.

The above results shed light on the effects of various network het-
erogeneities, with respect to dynamical processes that evolve on these
networks.






RESUME

Les interactions entre les composants des systemes complexes font
émerger différents types de réseaux. Ces réseaux peuvent jouer le role
d’un substrat pour des processus dynamiques tels que la diffusion
d’informations ou de maladies dans des populations. Les structures
de ces réseaux déterminent 1’évolution d'un processus dynamique, en
particulier son régime transitoire, mais aussi les caractéristiques du
régime permanent.

Les systemes complexes réels manifestent des intéractions hétérogenes
en type et en intensité. Ces systémes sont représetés comme des réseaux
pondérés a plusieurs couches. Dans cette thése, nous développons une
équation maitresse afin d’intégrer ces hétérogénéités et d’étudier leurs
effets sur les processus de diffusion. A l'aide de simulations mettant
en jeu des réseaux réels et générés, nous montrons que les dynamiques
de diffusion sont liées de maniére non triviale a 'hétérogénéité de ces
réseaux, en particulier la vitesse de propagation d’une contagion basée
sur un effet de seuil. De plus, nous montrons que certaines classes de
réseaux sont soumises a des transitions de phase réentrantes fonctions
de la taille des “global cascades”.

La tendance des réseaux réels a évoluer dans le temps rend difficile
la modélisation des processus de diffusion. Nous montrons enfin que
la durée de diffusion d’un processus de contagion basé sur un effet
de seuil change de maniere non-monotone du fait de la présence de
“rafales” dans les motifs d’intéractions. L'ensemble de ces résultats
mettent en lumiére les effets de 1'hétérogénéité des réseaux vis-a-vis
des processus dynamiques y évoluant.
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Part1

BACKGROUND

In Chapter 1 we review the existing literature, outlining
the systems that have been of interest to network scien-
tists, and giving a brief review of the main random graph
models. We sketch the dynamical systems to which our
mathematical methods apply. Then, in Chapter 2 we pro-
vide a background to the analytic tools of which we make
use throughout each of the remaining chapters. In partic-
ular, this chapter introduces a master equation formalism
that we extend to edge heterogeneous systems. We con-
clude by comparing these methods to alternative techniques
used to understand dynamical processes on networks. In
Part 11, we apply these tools to a number of specific systems.






INTRODUCTION

1.1 INTRODUCTION

Complex systems are structures composed of many entities whose
interactions lead to collective behaviour not easily inferred from the
examination of individual entities. Due to the interactions between
these entities, which are essential to emergent phenomena, networks
have emerged as a compelling modelling framework. Abstracting a
complex system as a network allows one to disregard features of the
entities that are relevant to system-wide behaviour.

Complex systems have long been the focus of study, but have seen
a renewal in methodology due to the emergence of so called “big
data.” This refers to the abundance of quantitative information about
real systems due to the improving ability to observe, record, read,
sensor, and output data. This increased availability of data is due
in large part to maturation of technology; with the digitisation of
communication, economics and finance, as well as medicine. This has
triggered the emergence of interdisciplinary techniques, and indeed a
new field in its own right, namely network science, complete with its
own methodology, techniques and literature.

The modelling of complex systems often proceeds in the following
steps. First, one defines the system itself, identifying a set of discrete
entities, and the interactions among them. From these interactions
emerges a network, whose nodes represent the elements of the system,
and edges the interactions between these elements. The study of the
structure of the resulting network is a central research direction, and
has lead to fundamental results in the science of complex systems.
Second, nodes and edges may be assigned a dimension or state, that is
allowed to evolve over time, according to a mixture of stochastic and
deterministic rules, almost always based upon the local topology of
the network. This amounts to a flow of information over the network,
which can be viewed as a substrate for the overlying node dynamics.
We refer to the time evolution of such a phenomena as dynamical
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processes, which thus amount to the second layer of a model built upon
the network itself.

In this thesis we will be concerned with idealised models of dynami-
cal processes that, despite their simplicity, provide meaningful insight
into real systems. In particular, we concentrate on binary-state models
of node dynamics, where the spread of information or disease is mod-
elled by attributing to nodes one of two possible states. In so doing, we
pay attention to emphasise the relationship between network structure
and dynamics, since spreading processes can often be framed in terms
of more fundamental, static systems. This is especially true when it
comes to various forms of contagion, which denotes an important class
of transmission models, and percolation, which refers to a network’s
connectivity.

In this introductory chapter, we first give an outline of the notions
of network science that are useful in understanding the contributions
of this thesis, to which subsequent chapters are dedicated. First, in
Section 1.2, we discuss the real systems that have stimulated research
in network science, in particular the study of dynamical processes and
the spread of information. In Section 1.3, we discuss the main types of
graphs studied in network science, and outline their representations.
Then, in Section 1.4, we outline notions and results from random
graph theory that arise recurrently throughout this thesis. In particular,
we emphasise the structural properties of networks that most affect
dynamical processes that are running on top of them. It will be seen
that there is a close relationships between network structure and the
evolution of such dynamics. We shall see that dynamical processes
can sometimes be reduced to more fundamental, static problems that
have been well studied from a network structure point of view. Then,
in Section 1.5, we’ll talk more about the different types of dynamical
systems, including a simple but important class of dynamics known as
binary-state processes, that will be the focus of this thesis. In particular,
we will be interested in a class of model called “social contagion,”
which has stimulated the study of threshold models, to which we pay
particular attention in Section 1.6. Finally, in Section 1.7, we introduce
the computational tools that are essential to the results of this thesis,
namely Monte Carlo simulation of networks and dynamics and Runge-
Kutta solutions of master equation systems. Following this general
introduction, in Section 1.8 we’ll outline the structure of this thesis, and
contextualise it within the existing literature.
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1.2 COMPLEX SYSTEMS AS NETWORKS

It is useful to briefly outline what we mean by complex systems,
networks and graphs. A complex system is seldom defined explicitly
in terms of a network. A key aspect of complex systems is that they
are composed of a large number of entities whose interactions are
significant. Inherent in the network description of complex systems is
the suppression of detail; often it is not the nature of an interaction that
matters, it is the fact that an interaction is occurring that is important.
From these interactions, we observe emergent phenomena such as self-
organisation, synchronisation and pattern formation - behaviour that is
difficult to extrapolate from the properties of individual constituents of
the system. Based on these interactions, there are clearly many ways of
defining a network. For example, the brain (see Section 1.2.4 for further
discussion) is a classic complex system from which there are countless
ways of defining network models, depending on the research question.
One “microscopic” network model may be to represent neurons as
nodes and axons as links. Another might be to have nodes represent
entire regions, and links to represent correlations in their activity; the
network itself is derivative of the complex system, and the network
definition depends on the goal of the study itself.

In the following sections we outline a number of systems that are
of interest to network scientists. For each, we give a brief outline of
the common network formulations, which are often constrained by
the nature of the available data and its collection method. Where
applicable, we outline the relevant dynamical processes that occur on
each network.

1.2.1  Computational social science

Outline of system. The emerging discipline of computational social
science (Css) is based on the study of social phenomena using large
scale behavioural datasets [33, 134]. When such datasets entail the
interaction between individuals, we enter the field of social network
analysis. Nodes in a social network can be defined in a variety of ways,
and can represent a variety of entities. Most often, nodes in a social net-
work represent individuals, but can equally represent collectivities such
as families, groups of friends, teams or communities. Most frequently,
social network studies are on humans, but animal sociological studies
are also common [61, 76]. The motivations behind the field of CSS
are well outlined in a manifesto by Conte and coauthors [57], where
“against a background of financial crises, riots and international epi-

social network



six degrees of
separation
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demics, the urgent need for a greater comprehension of the complexity
of our interconnected global society is clear.” Central to CSS, therefore,
is not only the underlying networks, but the dynamical processes that
they mediate.

Edges in a social network most commonly represent dyadic relation-
ships between pairs of individuals. This can be generalised to so-called
simplicial complex models of social networks [107], where one studies
groupings of nodes and edges. We shall see that heterogeneity of edge
type is fundamental property of social networks [168], and plays an
important role in network formation, as well as overlying dynamical
processes. In a social context, edge heterogeneities can be roughly
categorised as familial, friendship, acquaintanceship, or in the weakest
sense, recognition. Such heterogeneities are a dominant feature of real
networks. The role of “weak” ties such as acquaintanceship is espe-
cially important in large networks, as was pointed out in the seminal
work by Granovetter [96]. Whether it be in a large firm containing
thousands of employees, or society as a whole, weakly interacting
nodes serve to form bridges between distant parts of the network. The
first clues of this effect can be traced back to Milgram’s famous 1967y
letter-forwarding study [141]. This experiment inferred the distribution
of path lengths in an acquaintanceship network by asking participants
to pass a letter to one of their acquaintances in order to reach an as-
signed target individual. Although most of the letters were simply lost,
about one quarter reached the target individual, and on average, only
required the help of six individuals in order to do so. This experiment
lead to the concept of “six degrees of separation”, the ramifications of
which continue to be studied to this day (see Section 1.4). This idea
was finally formalised in a rather beautiful one parameter model in
[199], discussed in Section 1.4.3.

A vast array of social networks are of interest, and different social
networks entail different research questions and methodologies, de-
pending on the context. One may be interested in the psychology of
the individuals in question, which usually entails smaller networks
with mode detailed node and edge attributes. Here one may investi-
gate networks with dozens of nodes, with the resulting network being
relatively dense [98, 147]. This may be the case when studying the
nature of intimate relationships, such as friendships and marriages. In
Ref. [156] for example, authors study mother-daughter and father-son
relationships via communication data, and draw conclusions relating
to sex differences in the gender-bias of preferred relationships. In such
a study, the global structure of the network can be largely ignored
in favour of distinct, local neighbourhoods. Similarly, in Ref. [36], a
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study of online dating data, the authors study the messaging strategies
between individuals based on perceived attractiveness. Here as well,
global network structure can be discarded. In such studies, emphasis
is on human interest, rather than the implications of large-scale struc-
ture and collective phenomena. Historically, the study of small-scale
social networks predate “big data,” and labour-intensive surveys were
conducted. Even before big data, crucial insights had been obtained
from these methods, such as the observation of the small-world effect
by Milgram.

The global structure of online social networks or of immense inter-
est. A well-known 2011 study of Facebook data was carried out in
[188], where the authors study the number of users and friendships,
the degree distribution, path lengths, clustering, and mixing patterns.
It is found that 99.91% of nodes belong to a single giant connected
component. The authors confirmed the “six degrees of separation”
phenomenon, showing a mean shortest-path distance of about 4.74,
or an average of 3.74 intermediaries. It is perhaps unsurprising that
this is lower than the value obtained in Milgram’s letter-forwarding
experiment, ' given both the low cost of forming a link on the Facebook
network, and the increased population size in the Facebook study. * Via
analysis of community structure and the degeneracy of graph neigh-
bourhoods, the authors of [188] showed that while the Facebook graph
as a whole is clearly sparse, the graph neighbourhoods of users contain
surprisingly dense structure. Characterising assortativity patterns by
studying the basic demographic and network properties of users, clear
degree assortativity. Similar structural analysis has been carried out on
other social networks such as Twitter [127, 129], where in addition to
studies of demographics, the problem of maximising influence [182] is
of strong interest.

It is useful to note that different fields make drastically different
use of social networks, where they can even go by different names
and terminology. For example, the study of networks can go by the
term actor-network theory in the sociological literature [133], where
networks are introduced to provide a theoretical and methodological
approach to social theory. In sharp contrast, in a setting such as public
health, network studies are used to inform large scale intervention
policies. Researchers might use a centrality analysis of a network of

1. Milgram’s 1967 study gave a mean shortest-path distance of 6.4, or 5.4 intermedi-
aries, using data from 44 complete sender-recipient paths.

2. In fact, a 2016 study of the Facebook network [27] show the mean shortest-path
length to be as low as 4.57, requiring 3.57 intermediaries. The authors account for the
decrease from the 2011 value by pointing out that the number of users had subsequently
doubled.
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drug addicts to detect good candidates for costly training in healthful
practices, with the hope that these individuals would then diffuse the
practices through the network. Similarly, understanding the spread
of obesity [48], as well as the spread of smoking [49], can be achieved
by examining social networks. In the latter study, discernible clusters
of smokers and non-smokers were present in the network, and the
clusters extended to three degrees of separation. Clusters of smokers
remained the same across time, suggesting that whole groups of peo-
ple were quitting in unison. The general relationship between social
relationships and health is outlined in [55, 120].

Dynamical processes. Within the context of social networks, the dy-
namical processes studied focus on the spread of information and
behaviour throughout the network. Recently, models have been intro-
duced to understand the diffusion of memes, generically referred to as
a shareable unit of information. Mobile phone call and communication
network data [118, 130, 152] provide an ideal setting for studying the
spread of information. This can be very hard to study directly, although
network data itself is increasingly easy to come by, data pertaining
to the spreading process demands an additional layer, and is there-
fore relatively sparse. Experiments have nevertheless been attempted,
such as the famous work by Centola [45], where he studied spread of
behaviour in an online social network experiment. The motivation is
highly practical, and the results actionable. For many, the ultimate goal
in such studies is to optimise the spread of influence through a social
network, either by maximising desirable influece [122], or minimising
negative influence.

1.2.2  Computational economics and finance

Outline of system. Economic and financial systems are build upon
individuals and institutions such as banks and governments engaging
in complex interactions and transactions [62]. It is immediately clear
that the ensuing dependencies invite network representation. Clearly,
there is an overlap here with the preceeding section, since economic
and financial systems are inherently social [109, 111]. Behind every
transaction is an individual, and markets of all types are intrinsically
related to social networks of professionals. Behind trade, investment
and borrowing markets are networks that determine the dynamics and
stability of the resulting systems.

In studies of the structure of economic and financial networks [71,
110, 151], is typical to examine the formation and stochastic evolution
of networks in view of the potential “payoff” from an economic or
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social activity, with respect to network structure. Over time, individuals
form and sever links connecting themselves to other individuals based
on the improvement the resulting network offers them relative to
the current network. Such a process creates a sequence of networks
that are referred to as improving paths. Such approaches highlight the
economy of networks themselves, theorising that the cost of forming
and maintaining links is balanced by the benefits derived from such
relationships. We shall see in Chapter 4 that broad classes of networks
can be shown to result from entropy maximisation processes, driven
by differences in the cost of maintaining various ties in the network.
Typically, networks that form according to these principles drastically
affect the behaviour of overlying dynamical processes.

Dynamical processes on economic networks. The bulk of studies regard-
ing dynamics on financial networks concern risk and contagion [7,
73]. Systemic risk refers to the risk of default of a large portion of
the financial system. This can be shown to depend on the network of
financial exposures between connected institutions [25], typically banks.
The key node-level quantities are asset size, leverage, and a financial
connectivity measure given by the fraction of a financial institution’s
liabilities held by other financial institutions [84]. The goal is ultimately
preventative, to use knowledge of network structure and criticality to
inform financial policy.

1.2.3 Technology and Infrastructure networks

A major topic motivating the use of network analysis, are technologi-
cal and infrastructure systems. From communication systems to public
utilities, ideas from network science can be readily applied to areas of
practical importance.

Internet. Studies of the internet often relate to its growth [94, 177],
using models of preferential attachement [41] or the principles of sta-
tistical physics [158]. In [177] for example, the authors perform a study
of growth mechanisms to understand the simultaneous emergence of
fractality, modularity, as well as the small world effect and the scale-free
property in real world complex networks. Studies of structure and
topology including path-length distribution and diameter [4, 192, 205].
In the latter, the topology of the internet provides its connectivity, and
consequently, the effectiveness with which users can locate information.
In [159] the authors focus on the topological and dynamical properties
of real Internet maps. Such studies have helped to build an accurate
picture of the Internet’s topology.

systemic risk
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Studies of robustness have been a major focus of internet research.
[67, 186]. In particular, in [54], a common property of many large
networks, including the Internet, is that the connectivity of the various
nodes follows a scale-free power-law distribution. The stability of such
networks with respect to crashes are often examined, with respect
to attack strategies such as random removal of sites. Such studies
frequently draw upon percolation theory, aiming to derive general
conditions for the critical fraction of nodes, p,, that needs to be removed
before the network disintegrates. A well known result is that for a
class of scale-free networks, the transition never takes place, unless the
network is finite. In the special case of the physical structure of the
Internet, the network is impressively robust, with p. > 0.99.

Transport. In this section we follow the well-known work by Barthelemy
[21]. Here, airlines provide an important example of a spatial network,
as they connect distant parts of real physical networks, in contrast to
other transport networks. Nodes are identified as airports, located
in two-dimensional space. A number of studies have shown that its
structure displays both the small world and scale free property. In
contrast, the degree distribution of metro networks within a range
of cities is relatively narrow [131, 132], with the range of variation
normally being of the order of one decade. Due to the relatively small
range of variation in network size N in most studies, the behaviour of
the mean shortest path is not clear and could be fitted by a logarithm
or a power law as well. Barthelemy notes that the mean shortest path
is usually large compared to In N, suggesting that the behaviour of the
mean shortest path might not be logarithmic with N but more likely
scales as N1/ 2 a behaviour typical of a two-dimensional lattice. Rail
also appears to be consistent with a two dimensional lattice, scaling as
V/N. An interesting study is [77] where the authors apply the concept
of Dunbar’s number to transport networks. They ask whether cognitive
constraints affect the way we navigate cities.

Road. Still following [21], it is possible to construct various networks
from the physical network of roads and streets, and as such measure
spatial properties of a city by examining road networks. Edges repre-
sent roads, and nodes intersections. Except for roads that cross each
other uses bridges, planar graphs are a useful approximation. This un-
derlines that graph properties like degree distributions are constrained;
it is unlikely for an intersection (node) to connect more than say 5
roads (edges). Clearly, such networks are closer to a lattice than a small
world network. As such, studies generally focus on the total length I of
roads as a function of N across a large number of cities. In contrast to
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airline networks, the degree distribution of road networks thus defined
are narrow.

Utilities. A key infrastructure network is power grids, which are
clearly important when considering the impact of blackouts. In power
grid networks, nodes represent power plants, as well as distributing
and transmission substations, while edges correspond to transmission
lines. Like road and rail networks, such networks are generally planar.
Their degree distribution is usually exponential, in both Europe and
the US.

Dynamical processes. As mentioned in the case of the Internet, the
study of dynamical processes on infrastructure networks focus largely
on stability to random and targeted attacks. This is particularly im-
portant from a security point of view, as the interconnectedness of
communication and energy networks has been shown to increase their
vulnerability [38]. Here, cascading failures have been shown to rapidly
propagate throughout real networks, leading to large scale blackouts.
In the case of the Internet, the spread of information is a major topic of
study, with goals of optimisation of the spread of desirable information,
and the suppression of undesirable content such as viruses. Finally,
physical transport throughout networks, often modelled by random
walkers, is a typical paradigm, drawing upon the tools of classical
physics.

1.2.4 Biological networks

Biological networks refer to the large class of networks describing
complex biological systems [5, 207]. This is best illustrated with the
example of a cell, which can be viewed as a multiplex of at least
three types of networks, describing protein-protein, protein-DNA, and
protein-metabolite interactions. In other words, the nodes in such
networks represent proteins, DNA and metabolites, whereas edges
represent interactions. A general review outlining these dependencies
can be found in [16]. Given the importance of these networks, there
is increasing momentum within biological network communities to
systematically catalogue all molecules and their interactions within a
living cell. A type of connectome, as has been done for genomes, and
partially for the mammal brain, is now needed and in the case of cell
interaction networks. This arises from a need to understand how these
molecules and the interactions between them determine the function
of the resulting systems. Network perspectives attempt to rejuvenate
traditional approaches to the study of biological systems.

11
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The identification of biological networks gives rise to the study of
their structure. For example, [81] studies the community structure
in social and biological networks, including the community structure
of macroscopic systems such as food webs. Studies of the topology
[11, 148] often provide the foundation of future work, informing re-
search into dynamical processes evolving on such networks. These
studies again reveal the occurrence of scale-free structure [2]. Clearly,
the understanding of properties that arise from whole-cell function
require integrated, theoretical descriptions of the relationships between
different cellular components.

Brain. Perhaps the richest example of a biological network is the
brain [39]. Network studies have shown that the brain’s structural
[179] and functional systems have features of non-biological complex
networks, such as small-world topology [24], and heavy tailed degree
distributions [72], where highly connected hubs play an important
role. This is true at the whole-brain scale of human neuroimaging, also
known as functional network where one studies macroscopic areas of
correlated activity. Here, entire regions of the brain are represented as
nodes, and edges are drawn between areas with correlated electrical
activity. This is also true at a cellular scale, where neuronal elements
of the brain constitute a structural network. Importantly, the brain is
a type of temporal network due to its demonstrated plasticity, a term
used to broadly describe the dynamic reconfiguration during learning
[23].

Dynamical processes. In biological networks, dynamical processes are
often related to the network structure themselves, since links represent
interactions during chemical and biological reactions. For example, an
external signal in a cellular network can trigger a cascade of interactions
that involves both biochemical reactions and transcriptional regulation,
a process that orchestrates gene activity.

Regarding the brain, it is common to study the dynamic emergence
of coherent physiological activity, such as phase-locked high-frequency
electromagnetic oscillations, that can span the multiple spatially dis-
tinct brain regions that make up a functional network. Such networks
are thought to provide the physiological basis for information process-
ing and mental representations. Synchronisation represents just one
example of the many approaches to dynamics on biological networks.
Threshold dynamics, the focus of this thesis, have find one of their
main applications in models of neuron firing.
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Figure 1.1 — An unweighted, undirected, single-layer graph. See Eqn. 1.2 for
adjacency matrix and adjacency list representations, and Fig. 1.2 for the stub
sequence representation arising from the configuration model.

1.3 GRAPH TYPES AND REPRESENTATION

A large number of random graph models have been introduced in
order to understand systems observed in the real world. We highlight
those aspects of random graph theory that are relevant to dynamics
on networks. A particularly useful reference for understanding the
relation between random graphs and dynamical processes is Durrett’s
[70]. A classical reference for random graphs in general, without regard
to dynamical processes, is provided by Bollobas [32].

The simplest graph theoretical picture of a complex system is ob-
tained by disregarding various edge and node qualities, and consider-
ing only the connectivity between nodes. This leads to the undirected,
unweighted, single-layer representation in Fig. 1.1. In general, graphs
are composed of a set of nodes V, typically indexed by u or v, but also i
and j. In addition, edge sets are composed of edges e,, = (1, v) where
u,v € Vand E = {ey | u,v € V}. A graph G is defined as a tuple of
these two quantities, such that G = (V, E).

Weighted networks. This type of network arises when each edge e, is
attributed a fixed scalar value called a weight, which we denote w,
or w(u,v). We focus on this type of network in Chapter 3. In this work,
weights represent the strength of interaction between two nodes, or
similarly, the cost of an interaction. Weights can represent arbitrarily
different properties, however, depending on the context.

Mulitiplex networks. When a set of nodes V is connected by more than
one distinct set of edges, we have what is called a multiplex network.
We introduce multiple edge sets Eq, Ey, ..., Ep, where M is the total
number of layers, in order to model multiplexity. In these networks,
the nature of an edge is meaningful, not just in terms of weight, but

13
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some other context dependent quality that is necessary to preserve. If
such differences are not necessary to preserve, we take the single-layer
projection, E = U{\i 1 E1 and write G = (V, E), recovering a possibly
weighted single-layer network.

Temporal networks. As its name suggests, this type of network is
introduced in order to model systems that evolve over time. This
will be the focus of Chapter 5. In studies of dynamical processes on
networks, it is important that the time scales of network evolution are
commensurate with those of the dynamics. In the so-called quenched
regime, network structure evolves so slowly relative to node dynamics
that a static approximation is likely sufficient. In contrast, the annealed
regime refers to networks that evolve so rapidly that their behaviour
must be time-averaged in order to infer its interaction with node dy-
namics. At time scales between these two extremes, temporal network
representations are likely to provide insight.

1.3.1  Adjacency lists and matrices

There are two standard representations of a graph G = (V, E), ei-
ther as a collection of adjacency lists or as an adjacency matrix [58],
both of which are used extensively in this work. The adjacency-list
representation is usually preferred, because it provides a compact way
to represent sparse graphs, or those for which |E| is much less than
|V|2. This is the case for the real systems considered throughout the
remainder of this thesis. The graph algorithms presented in this book
assume that an input graph is represented in adjacency-list form. An
adjacency-matrix representation may be preferred, however, when the
graph is dense, or when |E| is close to |V |?. In the following we give an
outline of these data structures, as well as outline the use of edge-lists
and event sequences, which are required in the study of temporal
networks.

Adjacency matrix. This representation has a storage complexity of
O(|V]?). We denote the adjacency matrix by A. In a single layer
unweighted network the term a;; indicates the presence of an edge
between two nodes i and j, such that

1, (i,j) € E
aij = (i) (1.1)
0, otherwise.

As such, if two nodes i and j can be said to be connected in a simple
graph, one writes a;; = a;; = 1, and 0 otherwise. Recording the con-
nectivity of all pairs of nodes in this manner determines the adjacency
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matrix A. When the network is undirected, a case that we do not
generally consider in this thesis, we have a;; # aj;. As an illustration,
the adjacency matrix A, and adjacency list A of the undirected graph
in Fig. 1.1 are given by

0 0010O0O0TO0 1: 4

0 0010O0O0TO0 2: 4
00010O0O0TO 3: 4

A 11101001 i 4: 1,2, 3,5 8

00010111 5:4,6,7 8

0 000T1O0O0TPO0 6: 5
00001O0O0TO0 7:5
00011000 8: 4,5

(1.2)

In the case of a multiplex networks, we introduce the superscript !
to index layer, and write af-. This definition is straightforward to
generalise to weighted networks, where a;; = w;; stores the weight of
the edge connecting nodes i and j. Throughout this work, we can safely
ignore the case where nodes are connected to themselves, which we
call “self edges,” and in so doing set a;; = 0.

The size of a network refers to the number of nodes in V, and is
given by N = |V|. Throughout this work we refer to the degree k; of
node i, and to the average degree z = ) ; kpy across all nodes in the
network. We refer also to the notion of density. This is the ratio of the
number of edges present, |E|, to the total number of possible pairwise

combinations, (“2”), which gives

2|E|
VI(vi=1)
In practice, N is not only large, but growing, especially when modelling
social systems. Since average degree z in these settings remains rela-
tively constant, even as the overall size of the system grows, the notion
of density becomes important for graph representation. Consider that
the connectivity of individuals in real systems such as social networks
is determined by finite resources such as time and cognitive capacity,
features that do not depend on the population size N. Clearly then, a
node’s connectivity does not depend upon the size of the overall graph
in question, and the type of graph representation must be selected
appropriately.
In light of the above considerations, it is clear that the adjacency
matrix becomes sparse in the limit of large networks. This is especially

(1.3)
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true in the case of the social sciences. Finite energy considerations
means the same may be true in biological settings; when the number of
entities increases, there is a linear increase in the number of connections,
and a quadratic increase in the number of possible connections, meaning
that the corresponding adjacency matrix is increasingly sparse. As
such it’s no longer efficient, and we favour alternative representations.
In the following, we summarise the main graph representations used
variously throughout this work. It is useful to talk about the complexity
of various graph representations [58], which we do for the time take to
store the same graph in the following ways.

Adjacency list. By far the most useful and common, solves the sparsity
problem of adjacency matrices, and the lookup problem of edge lists.
O(|V| + |E|). The adjacency-list representation of a graph G = (V, E)
consists of an array A of |V| lists, one for each vertex in V. For each
u € V, the adjacency list A[u] contains all the vertices v such that
there is an edge (u,v) € E. That is, A[u| consists of all the vertices
adjacent to u in G. The vertices in each adjacency list are typically
stored in an arbitrary order. See Table 1.1 for a comparison of the
complexity of various operations on adjacency list structures. Finally,
note that there exist straightforward transformations between each of
the representations, and they store the exact same information. All
differences are practical.

Edge list. When network structure is not explicitly required, it is
available implicitly by storing the set of edges E. This would be useful,
for example, when all the weights in a weighted network had to be
incremented by a certain amount. This would involve cycling through
every edge in the network, meaning the network structure itself is
irrelevant. Practically speaking, this comes in handy when initialising
network simulations. However, this means that searching for a given
edge is inefficient. Such an iteration is slightly simpler to code than
on an adjacency list or matrix, and its complexity is O(|E|) rather
than O(|E| + |V]) so can be slightly more efficient. Edge lists are
also necessary for building more complex structures such as event
sequences, which we discuss further below. The edge list for Fig. 1.1 is
given by

E={(1,4),(2,4),(34),(45),(48),(56),(57),(58)}  (14)

A related structure is the list of so-called “stubs,” or half edges. This is
an edge where only one adjacent node index is specified, leaving the
other available for pairing with other half edges. We use a half-edge or
stub list in our implementation of the configuration model, shown in
Fig. 1.2.
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Table 1.1 — Time complexity of performing elementary operations on alterna-
tive graph data structures. Assumes graphs G(V, E) to be either directed or
undirected, and holds also for weighted graphs.

adjacency list adjacency matrix
store graph O(|V|+|E|) O(|V]?)
add vertex 0(1) fo(|v|?)
remove vertex O(|E)) to(|v|?)
add edge o(1) o)
remove edge o(|v)) o)
fcheck adjacency o(|v]) o)

t assumes matrix dimension fixed, and requires copying, otherwise O(|V|)
1 determine whether two nodes u and v are adjacent, assuming locations are known

1.4 RANDOM GRAPH MODELS

In this section, we outline some important generative models of
random graphs. Each model produces ensembles that, in one way or
another, help to understand the properties of the real systems outlined
in Section 1.2. Much of the material in this section can be found in
references [3, 70]. In each of the following models, we briefly describe
emergent properties such as connected component sizes, average path
length and clustering.

1.4.1 Erdds-Rényi model

Model description. In the late 1950’s Erd6s and Rényi introduced two
random graph models [74]. In each there are N vertices. In the first and
less commonly used version, one picks M of the N(N — 1) /2 possible
edges between these vertices at random. Investigation of the properties
of this model tells us what a “typical” graph with N vertices and |E|
edges looks like. However, there is a subtle dependence caused by
selecting a fixed number of edges, namely that each edge can only be
selected once, and must therefore be removed from the list of possible
edges after selection. In any case, we will follow here the more common
approach of studying the version in which each of the N(N —1)/2
possible edges between these vertices are independently present with
probability 3 p. When p = 2|E|/N(N — 1), the second model is closely

3. Not to be confused with the rate of spontaneous adoption in a spreading process
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related to the first. It is to this variant that we refer when we discuss
the Erdos-Rényi (ER) random-graph model.

Component sizes. Erd6s and Rényi discovered that there was a sharp
threshold for the appearance of many properties. One of the first
properties that was studied, and that will be the focus of much or our
attention here, is the emergence of a giant component.

If p = 5 and ¢ < 1 then, when N is large, most of the connected com-
ponents of the graph are small, with the largest having only O(log N)
vertices.4 In contrast if ¢ > 1 there is a constant 8(c) > 0 so that
for large N the largest component has on the order of 8(c)N vertices
and the second largest component O(log N). As such there is a critical
value at p = %, where a second order phase transition takes place [180].

As mentioned above, there is an interesting connection between the
Erd6s-Rényi model and epidemic processes. In a dynamical interpreta-
tion of the Erd8s-Rényi model, there are two extremes. In the first all
individuals are susceptible and there is a probability p that an infected
individual will transmit the infection to a neighbour, in the second
only a fraction p of individuals are susceptible, but the disease is so
contagious that if an individual gets infected all of their susceptible
neighbours will become infected.

In percolation terms, the first model is bond percolation, where edges
are retained with probability p and deleted with probability 1 — p. The
second is site percolation, where the randomness is applied to the sites
instead of the edges. Percolation is easy to study on a random graph,
since the result of retaining a fraction p of the edges or sites is another
random graph. Using a branching process heuristic, percolation occurs
if and only if the mean of the associated branching process is greater
than one, meaning a giant component is likely to occur.

In the Gy, variant of the model, the degree distribution is binomial, >

P = (Nk 1) P —p)NTL (1.5)

4. If we haven't yet defined asymptotic notation, the O symbol means that there is a
constant C < oo so that the probability that largest component is < Clog N tends to 1 as
N — co.

5. This is straightforward to show using the identity

X _ 1; x\n
¢ = lim (1)
and that for constant k, we have

lim - = nk.
n—oo (M—k)!
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It is easy to see that in this model the average degree is (k) = (N —1)p.
To see why this is the case, choose a node, iterate through the N — 1
nodes in the network as potential neighbours, wire with probability p.
In the limit N — oo and p = § > 0 for some constant c, we get

k
s (16)
Of course, this is nothing other than the Poisson distribution. As such,
when referring to random graphs, we shall frequently refer to their
degree distribution as Poissonian, even if in reality they are finite and
generated according to Erd6s-Rényi random graph models, which have
binomially distributed degrees.

Average path length. Path lengths and diameters of random graphs
have been studied in [50]. In random graphs, authors use the conven-
tion that the diameter of a graph G is the maximum diameter of its
connected components. For most values of p, almost all graphs with
the same N and p have precisely the same diameter. This means that
when we consider all graphs with N nodes and connection probability
p, the range of values in which the diameters d of these graphs can
vary is very small, usually concentrated around

InN

d= npN’ (1.7)

If k = pN < 1, a typical graph is composed of isolated trees and its
diameter equals that of the tree’s diameter. If pN > 1 a giant cluster
appears. The diameter of the graph equals the diameter of the giant
cluster if k > 3.5, and is proportional to InN/InNp. If pN > InN,
almost every graph is totally connected. The diameters of the graphs
having the same N and Np are concentrated on a few values around
InN/InNp.

Clustering coefficient. This is straightforward to calculate in the case
of a random graph generated according to the Erdés-Rényi model. ®
As such, the clustering coefficient C is simply

c=p=0. (1.8)

6. Since we haven't introduced it before, the clustering coefficient can be calculated

as
_ 3 x number of triangles

number of all triplets ’

and is a measure of transitivity. That is, if nodes a and b are connected to node ¢, then
the clustering coefficient gives the probability with which a and b are also connected to
each other.
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Figure 1.2 — A set of nodes with a desired degree sequence, enforced by the
use of half-edges or “stubs.” Such a configuration of nodes and stubs may
lead to the graph in Fig. 1.1 upon randomly wiring pairs of stubs, providing a
sample from a much larger ensemble of random graphs with the above degree
sequence.

This result presents a problem if one intends to use Erdés-Rényi ran-
dom graphs as a model of real systems. That is, real world networks
have relatively large clustering coefficients. A large part of the moti-
vation for the models of the following sections is to overcome these
shortfalls.

1.4.2 Configuration model

In this section we turn our attention to a generalisation of the much-
studied random graphs of Erd6s and Rényi, such that the resultant
networks are maximally random up to their degree distribution [145].
In contrast to the Erdés-Rényi model, where degree distributions were
asymptotically Poisson, this model produces graphs with fixed, arbi-
trary degree distribution. Such graphs have also been termed “semi-
random,” to highlight their connection to random graphs as studied
by Erdds, Rényi and others [3]. Indeed, in this section we aim to un-
derstand the same properties outlined above, namely the thresholds
at which such graphs exhibit a giant component, and become fully
connected. Similarly, we are interested in determining the clustering co-
efficient. We base this brief overview on references [3, 70, 145, 150]. The
techniques therein exploit a generating function formalism, developed
initially in [150]. We shall see that in general, the Gy, model of Erdés
and Rényi is easier to analyse than configuration model graphs; each
pair of nodes is independent in Erd6s-Rényi models, which has only
two parameters, N and p. In contrast, the input into the configuration
model is an entire distribution.

Note that Bollobés [31] proved results for the interesting special case
of a random k-regular graph,” whereas Molloy and Reed [142, 143]
were the first to construct graphs with a general distribution of degrees.

7. This is a graph where each node has degree k, but is maximally random otherwise
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In an Erd&s-Rényi random graph, vertices have degrees that have
asymptotically a Poisson distribution. However, as discussed in Sec-
tion 1.2, in social and communication networks, the distribution of
degrees differs significantly from Poisson, and in many cases has a
power law form, i.e., the fraction of vertices of degree k, frequently
obeys py ~ Ck™F as k — oo.

Model description. In order to define the configuration model, it is
useful to introduce the degree sequence,

(dlleI""dN)/ (19)

where d; € Ny is the degree of the i-th node. The graph in Fig. 1.1, and

the stub configuration in Fig. 1.2 have degree sequence (1,1,1,5,4,1,1, 2).

Further, we assume that d; are independent and have P(d; = k) = py.
Since we want d; to be the degree of vertex i, we condition on the sum
of degrees, ) ; d;, being even. To construct the graph now we imagine
d; half-edges or “stubs” attached to node i, and then pair the stubs at
random. The resulting graph may have self-edges® and multi-edges?
between points. The number of these self and multi-edges is is O(1),
and as such can be safely ignored for our purposes, as we deal with
large, sparse graphs. Nevertheless, one can condition on the event that
there are no loops or multiple edges, if this is desired. Again, interest
focuses first on the giant component, whose existence can be deter-
mined by considering the appropriate branching process. Importantly,
the condition for its emergence is not simply that the mean degree
satisfies ) ; kpy > 1, as was the case for random graphs.

Component sizes. The derivations of the distribution of component
sizes in the configuration model can be found in [150]. When p < 1 in
the Erd6s-Rényi model, the largest component is O(log N). This result
does not hold for graphs with arbitrary degree distributions. There
exist asymptotics of the cluster size distribution of configuration model
graphs, because something is known about the coefficients of generat-
ing functions. Properties are functions of the input degree distributions.
General. The authors focus on power law degree distributions with
exponential tails. Theory matches numerical simulation perfectly.

As is common in the analysis of Erd6s-Rényi random graph proper-
ties, the growth of clusters can be approximated by a branching process
for low average degrees. It is possible to show that a giant component,
or equivalently an infinite cluster, emerges almost surely using the
above mentioned generating function formalism. We reproduce this
here since it provides an important verification of results derived in

8. Also known as loops or 1-cycle
9. Also known as 2-cycles
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Chapter 2. The generating function Go(x) of the degree distribution *°
is given by
- k
Go(x) = Z prxs, (1.10)
k=0
which contains all the information of the distribution py, since

_ 1d*Gy
Pk =k

(1.11)
x=0

The distribution of outgoing edges is given by

k—1
Gi(x) = Likpe LGf)(x). (1.12)

Yi kpk (k)
Note that the breadth-first search (BFS) algorithm is implicitly incorpo-
rated into the generating function method. Let Hj(x) be the generating
function for the distribution of the sizes of components that are reached
by choosing a random edge and following it to one of its ends. This
means that

Hi(x) = xqo + xq1 Hy (x) + xq2 [H; (x)]2 +... (1.13)

so that using Eqn. 1.12 we can write

Hi (x) = xGa (Hy (x)). (1.14)
The generating function for the size of the whole component is
Hy(x) = xGo(Ho(x)). (1.15)

In principle, therefore, given the functions Go(x) and Gp(x), we can
solve Eqn. 1.14 for Hy(x) and substitute into Eqn. 1.15 to get Hp(x).
Then we can find the probability that a randomly chosen vertex belongs
to a component of size s by taking the s-th derivative of Hy. The mean
component size is given by

G _,, &

1+

($) = Ho(h) =1+ =Gy =1+ 5=,

(1.16)

where z1 = (k) = Gé(l) and z; = (k?) — (k) = G)(1)G/(1). This expres-
sion diverges when G} (1) =1, or z; = z,, indicating the appearance of
a giant cluster. It can also be written as

Zk(k - Z)Pk =0, (1‘17)
k
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which is the percolation transition for configuration model networks
with degree distribution py, analogous to when p = 1 for Erd6s-Rényi
model graphs. This expression was also derived in [142].

Average path length. Extending the method of calculating the average
number of nearest neighbours, we find the average number of m-th
neighbours,

m—1
2w = G4(1) [GL(1)]" " =2 m , (£.18)

where z; and z; are the numbers of nearest and next-nearest neighbours.

Using this expression, we can derive an approximative relation for the
average path length of the graph. Let us start from a given node

and find the number of its nearest, next-nearest, . . ., m-th neighbours.

Assuming that all nodes in the graph can be reached within [ steps, we
have

1
Z n(m)=N-1, (1.19)
m=1

where [ is the number of steps from a randomly selected node in order
to reach the remaining N — 1 nodes in the network. The term n(m) the
number of m-th order neighbours. To estimate the average path length,
one replaces n(m) with z,,. Further, we assume N > z; and z, > z,
meaning the average path length is

. IH(N/Zl)
 z/z

(1) +1, (1.20)
meaning it grows logarithmically with N.

Clustering coefficient. The probability that two randomly selected
nodes i and j are connected is k;k;/2|E|. The probability that two
nodes share a common neighbour and thus form a triangle is the above
probability, multiplied by the probability that i has excess degree k;
and j has excess degree kj, for any value of k; and k;. The clustering
coefficient can be shown to be

0 0 X 2\ 2
C= Z quﬂkjjz---zilw. (1.21)

Since this expression does not depend on network size N, it is a
constant of the degree distribution, or more precisely, a function of the
first and second moments of the degree distribution. As such, it is a

10. As is convention, we use x as the variable of the generating function, since k,
which is typical notation outside the network literature, is reserved for degree.
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Regular Smali-world

p=0 » p=1
Increasing randomness

Figure 1.3 — Rewiring in Watts-Strogatz model, taken from [199].

1.4.3 Small World model

The next model, termed the Watts-Strogatz (ws) model, was inspired
by the popular concept of “six degrees of separation,” which is based
on the notion that every one in the world is connected to everyone
else through a chain of at most six mutual acquaintances. An Erd6s-
Rényi random graph for N = 7 x 10? people in which each individual
has an average of (k) = 43.74 friends would have average pairwise
distance (log N)/(log(k)) = 6, but would lack the property of having
substantial clustering coefficients [3]. It was noted that clustering
coefficient varies very little as a function of network size N. One type
of graph that shares this property is a regular lattice. In their seminal
work [199], Watts and Strogatz used this idea by introducing a ring
lattice ™* as a structure that necessarily contains a positive density of
triangles, but also higher order cycles. To construct a network with
small diameter and a positive density of triangles, the authors started
from a ring lattice with N vertices and k edges per vertex, then rewired
each edge with probability p, connecting one end to a vertex chosen at
random. This construction interpolates between a regular ring lattice
where p = 0, and complete disorder when p = 1.

Average path length. As discussed in [199], the origin of the rapid drop
in (1) is the appearance of shortcuts between nodes. Every rewiring,
created at random, is likely to connect widely separated parts of the
graph, and thus has a significant impact on the characteristic path
length of the entire graph. Even a relatively low fraction of random

11. A regular ring lattice is a graph with N nodes each connected to k neighbours,
k/2 on each side.
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rewirings is sufficient to drastically decrease the average path length,
even if locally the network remains highly ordered.

Clustering coefficient. An alternative definition'* of the clustering
coefficient was provided by Barrat and Weigt in [17]. Typically, one
defines C as the fraction of edges among the (’2‘) neighbours of a node.
In other words, this is the local density of edges in the subgraph formed
by a node’s neighbours. If instead we define C as the ratio of the mean
number of links between the neighbours of a vertex and the mean
number of possible links between the neighbours of a vertex, we obtain

~ _ 3(k—1) 3

C(p) = m(l -p), (1.22)
as N — oo. Here, the prefactor is C(0) = |£|/2k, where |E| = 3k(k —
2)/2 and €& is the set of edges between a nodes neighbours.

The success of the model is due to that face that for certain values of
the rewiring probability p, the resulting network captures two crucial
features of many real world networks. The first is of course the small-
world property, which emerges for relatively small values of p, where
we observe a large drop in average path length by the time p = 1072
The second is the large clustering coefficient, which remains large
for a large interval of p values for which the average path length
is small. The fact that this simple, one parameter model is able to
simultaneously capture these two effects was a milestone in the study
of complex systems, in particular network science.

1.4.4 Barabdsi-Albert model

Although the Watts-Strogatz model accounted for the small world
property, as well as the high clustering property of real networks, it
fails to explain the broad degree distribution of real networks [6, 75,
113]. To this end, Barabdsi and Albert introduced a simple model [15]
that produces such graphs. It belongs to a family of random graphs
that work by growing. We refer to this model as the Barabasi-Albert (BA)
model.

Model description. The authors start with a graph with a small number
of vertices my, that will act as seed to the resultant network. At every
time step, one adds a new vertex with m edges that link the new vertex
to m different vertices already present in the graph. The key idea is
that nodes attach via preferential attachment, meaning that nodes are
biased in their choice of neighbour when attaching to existing nodes

12. Equivalent to “triangle” definition above.
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in the network. To this end, Barabasi and Albert assume that the
probability IT that a new vertex will be connected to an existing vertex
i depends on the connectivity of that vertex. That is,

ki
= Zj kj' (1.23)

I1(k;)

Clearly, after t steps, the model leads to a random network with t 4 my
vertices and mt edges.
Clustering coefficient. State without proving. Derived in [124]
_m(InN )2

C= s N (1.24)

where N is the network size as always, and m is the parameter of the
Barabasi-Albert model. Disregarding the logarithmic correction, the
clustering coefficient is the same as that of the Erd6s-Rényi model (see
Eqn. 1.8), and goes to zero in the limit N — coc.

Average path length. State without proving. Derived in [53]

InN
(= InInN

when m > 2, which results in a power law exponent of A = 3.

(1.25)

1.4.5 Other random graph models

Another generative model of random graphs will be used in Chap-
ter 4, called the forest-fire process (FFP). Provided a “seed” graph, the
forest-fire process models network densification, or the tendency of a
graph’s average degree to grow over time.

1.5 DYNAMICAL PROCESSES ON NETWORKS

We have already seen that graphs themselves exhibit dynamic be-
haviour, via random growth and other processes. We have even seen
that pure network dynamics can be construed as dynamical process on
top of these networks. We generalise this latter concept by explicitly
consider dynamical processes as separate from the network. Effectively,
this adds another layer to the models of random graphs. See [163]
by Porter and Gleeson For an excellent tutorial on dynamical process
on networks, as well as [20] by Barrat et al. Unsurprisingly, across
the many disciplines concerned, a large number of dynamics can be
defined. Typical examples are the spread of disease, as well as informa-
tion, behaviour and trends. The former we term biological or simple
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contagion, and the latter social or complex contagion, and. These are
examples of so called binary-state dynamics, [87], where nodes are
restricted to one of two mutually exclusive states. Further examples
include voter models [137, 178], language models [1, 193], majority
vote [63, 137, 162].

Such processes will be the focus of this section, and indeed the
remainder of this work. We outline other dynamical processes on
networks that are nevertheless of great importance to science in general.
Some examples include random walkers, oscillators, and general spin
systems. More broadly still, one can study signals on networks, as
well as control theory, however we do not even summarise these fields,
despite their depth.

1.5.1 Binary-state dynamics

While the state of a node in real systems may be complex to fully
characterise, it is often useful to abstract to a small, discrete number of
states. The state of a nodes is determined by the state of its neighbour,
and in our formalism, the state of the edge connecting the two nodes.
The local neighbourhood of a node is entirely described by its class
(k,m), and all such nodes become infected at rate Fy ,, and recover at
rate Ry m.

In the following sections, we detail the formulation of binary-state
models that appear throughout various physical, biological and social
settings, with a focus on complex contagion and threshold models. In
Tables 1.2 and 1.3 we summarise the infection and recovery in each
model, amounting to spin flip probabilities.

1.5.2 Biological contagion

One of the most mature areas of study of dynamical processes on
networks relates to epidemiology, or the study of the distribution and
determinants of states of health in population. For much of its history,
the approach was to assume that the population was fully mixed; this
is known as the homogeneous mixing approximation, which assumes
that the individuals in the population interact completely at random
[8], and that a chosen node is able to make contact with the remaining
N — 1 nodes in the network. A great review is [160]. Epidemic models
generally assume that the population can be divided into different
classes or “compartments” depending on the stage of the disease [8, 64,
65, 121]. The most important of these compartements are known as the
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Table 1.2 - Transition rates in various definitions of binary-state dynamics. Nodes with local configuration given by (k, m) become
infected at rate Fy 5, and recover with rate Ry 1. This table is a generalisation of Table I in [87], allowing for edge state heterogeneity.
Generically, the vector w of continuous variables wij > 0 determines the interaction strength, or weight. When setting wj = 1Vj, we
recover the edge-homogenous dynamics outlined in [87]

model infection rate F m recovery rate Ry m
A-m 0
SI
SIS A-m U
Bass c+d-m 0
Kirman ci+d-m cp+d-(k—m)
m-w (k—m)-w
Voter w S
. k—m)-
Link-update voter mw (k—m) w
z-w zZ-W
Laneuage (M) (1-g) (KW —m Wy
g k-w k-w
Q, B.SAW_A.S 1-Q, B.EAW_A.S
ZWH.OH@#% vote W\ m-w< st W\ m-w< st
1-Q, B.SVWW.S Q, E.SVWW.S
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Table 1.4 — See caption in Table 1.2. Also, note that continuous edge weight distributions are accounted for in Chapter 4, and that the

vector notation here (k and m vectors) indicate that edge types are discrete.

model infection rate Fy recovery rate Ry m
1, if m-w>¢k-wand k-w >0 0
Watts threshold 0, otherwise
._.s\wﬂum\ and 1, if myw; > AFNAN.N\S and k; >0, Vi 0
0, otherwise
HWatts, or 1, if 3 s.t. myw; > ¢ikjw; and k; > 0 0
0 otherwise
1, if m-w>M dk-w>0
Absolute threshold mew = My an w 0
0, otherwise

t Note that i is layer index, and j is edge type index. As outlined in Chapter 4, the layer index runs 1 < i < M, whereas 1 < j <2M —1
1 This is also referred to as the Centola-Macy threshold rule
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the susceptible (denoted by S, those who can contract the infection),
infectious (I, those who contracted the infection and are contagious)
classes. This allows one to define the susceptible-infected (SI) model,
where infected nodes remain infected for the remainder of the process,
and the susceptible-infected-susceptible (SIS) model, where nodes are
able to recover and rejoin the susceptible class. Clearly, the goal in
modelling is to understand and make sense of data, and eventually to
predict and control cascades of infection. To this end, Colizza et al have
developed the global epidemic and mobility model [56].

We allow for a discrete number of infection rates, determining the
dimension of the degree and partial degree vectors k and m, where
Ajdt is the probability of infection over an interval [t,t + dt]. We store
these rates in the vector A = (A4, ..., /\n)T. Since m; gives the number
of adjacent infected nodes via edges of type j, the infection rate is given
by

Fmdt = dltiglo;[l— (1—Ajdt)’"f}

= Z/\jmjdt (1.26)
]
= A-mdt.

In the case of the SI process, where dynamics are monotonic, we have
Ry,m = 0, and in the case of SIS, Ry ,, = . Having two compartments
of course corresponds to what we call binary-state dynamics. Although
it is clearly interesting to make more general classes, which many
authors have done. Common additional compartments are recovered
(R, those who recovered from the disease). Additional compartments
can be used to signal other possible states of individuals with respect
to the disease, for instance immune individuals. susceptible-infected-
recovered (SIR) model. Only the first two are binary state. Another is
the SEIR model, a variation of the SIR model including the effects of
exposed (E) individuals, which have been infected by the disease but
cannot yet transmit it.

1.5.3 Social contagion

In contrast to biological contagion, where contact with a single in-
fected neighbour is sufficient for a cascade of infection to develop,
social contagion refers to the spread of behaviours, ideas and trends
where reinforcement plays a role. Examples of social dynamics where
repeated exposure to a behaviours is important are fads [28, 82], riots
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[97], crime [83], competing technologies [9], and the spread of inno-
vations [10, 191], conventions [171], and cooperation [105]. Common
to all of these behaviours is that regardless of the nature of the social
epidemic, an individual’s binary decision is determined entirely by the
state of the local neighbourhood, in particular, the relative number of
neighbours who are observed to be in the adopting state, compared to
the total number of neighbours [171].

As pointed out in [198], the economic literature refers to this entire
class of problems generically as binary decisions with externalities.
The formulation of such problems in economic [28, 138, 175] and
technological networks [126, 167] can be traced back to the seminal
work by Schelling [171]. The idea of network being “robust yet fragile”
is discussed in [42], where the authors suggest that power laws in
real systems are due to tradeoffs between yield, cost of resources, and
tolerance to risks. These tradeoffs lead to highly optimized designs
that allow for occasional large events. These events are what we refer
to as global cascades or avalanches.

To take an extreme example, the creation of a political coalition or an
international treaty is unquestionably a complex, multifaceted process
with many potential outcomes. But once the coalition exists or the treaty
has been drafted, the decision of whether or not to join is essentially a
binary one. Similar reasoning applies to a firm’s choice between two
technologies, or an individual’s choice between two neighbourhood
restaurants - the factors involved in the decision may be many, but the
decision itself can be considered as binary.

1.5.4 Opinion and voter models

Another binary-state model is the voter model. In the basic voter
model nodes can have two opinions, analogous to the susceptible or
infected state in epidemic processes. At each time step (to see what this
means see Section 1.7 on computational methods), a node is selected
uniformly at random, and chooses a randomly selected neighbour
whose opinion the node adopts. For infinitesimal dt, the transition
rates then becomes

w (k—m)-w

m .
Pk,m = ﬁ and Rk,m = W (1.27)

In typical applications, edges are of homogeneous interaction strength,
or w; = 1Vj, meaning A m = § and Ry, = 1 — 7. The basic voter

model can be mapped to coalescing random walkers [52, 102]. An
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excellent review of social physics is provided by Ref. [43], where voter
models are discussed in detail.

1.6 THRESHOLD MODELS

In threshold driven processes, the state of an entity changes when
the concentration of incoming stimuli or cumulating force reaches a
certain threshold. Some typical examples are neural systems [125, 181],
earthquakes [100], and solar flares [30, 47], commonly identified as
self-organised critical systems driven by integrate-and-fire mechanisms.
Thresholds play a role in some epidemic diseases, such as tubercu-
losis and dysentery [115], where infection requires the concentration
of pathogens in an individual to overcome a threshold. Moreover,
thresholds are associated with social contagion phenomena, where
social influence from acquaintances may change the behaviour of an
individual after reaching a cognitive limit. Studies of so-called complex
contagion date back to Schelling, Axelrod, and Granovetter, but have
recently attracted interest due to the seminal cascade model formu-
lated by Watts [198], and also to the enormous amount of digital data
on human behaviour collected to observe, analyse and model social
contagion.

In this section we discuss the principle models of threshold dynamics,
with a strong focus on those modelling the transmission of information
and behaviour. We discuss the original work of Granovetter and
Schelling to provide historical context to the Watts model. It is this
model that we build upon in the following chapters, and as such, we
carefully outline its relevant properties here.

1.6.1  Granovetter

A pioneering model of collective behaviour using threshold models
was introduced by Granovetter in [97]. Binary decisions are defined
are those where an actor has two distinct and mutually exclusive be-
havioural alternatives. Granovetter adapted the idea of behavioural
thresholds from Schelling’s models of residential segregation, where
thresholds determines an actor’s decision to leave their neighbourhood,
as a function of how many of the actor’s own colour also do so. In
particular, see the second footnote of [97] for a historical overview of
the threshold models of behavioural contagion. Namely, Granovetter
builds upon the work of [169, 170, 172]. Some of the systems modelled
by threshold processes are; the diffusion of innovations; the propaga-
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tion of rumours and diseases; the decision of workers to strike; voting
behaviour; educational attainment; the decision to leave social events;
and the decision to migration. Granovetter discussed the notion of
equilibrium state, or number of people participating in a behaviour,
based on the initial distribution of thresholds. He assumed the popula-
tion to be small and fully mixed; now social networks are allowed to
be much larger.

1.6.2  Watts

Importantly, the model proposed by Granovetter is fully mixed,
meaning that any individual can be assumed to interact with every
other individual in the system. Such interactions can be represented
as a graph, even if its network structure is trivial - it is simply a
complete graph. In contrast, real networks are sparse. The Watts model
[198] generalised the work of Granovetter, removing the fully mixed
assumption. Essentially, this amounts to a networked version of the
Granovetter model.

In the Watts model, a network of size N is generated according to the
configuration model, with degree distribution py. Typical experiments
for this model vary a control parameter z, the average degree of the
network. A node’s threshold ¢ is drawn randomly from a distribution
py- At time t = 0, a randomly selected node is set to the active state.
The seed is therefore infinitesimal; regardless of the size of the network,
a single node is chosen as the seed. A remarkable result is that even for
a single seed, a positive fraction of an infinite network can be reached
by subsequent avalanches of infection. The dynamics of the system are
implemented in [198] via an asynchronous update rule, approximating
continuous time in the limit of large networks (see Section 1.7 for more
information regarding implementation). In our notation, the threshold
rule is given by

1, m > ¢k and k>0

Fem = (1.28)

0, otherwise,

where k =} ; kj and m = }_; m;. This is equivalent to saying that edge
weights are uniform in Table 1.4, or k = k-w and m = m - w, with
w = (1,...,1)T. We also assume k > 0 for this rule, and that degree
k = 0 nodes cannot become infected as they receive no influence. In
other models (see Section 1.6 for further generalisations), isolated nodes
may become infected spontaneously via random noise. Finally, note
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Figure 1.4 — Dynamics of the global cascades in the Watts model, as a function
of average degree z, and uniform threshold ¢ = 0.18. Filled black circles
give the size of global cascades resulting from a single initial seed in an
N = 10* node network. Until the discontinuous transition at z ~ 7, this
coincides almost exactly with the underlying black line, the size of the largest
connected component. The frequency of global cascades after 10% perturbations
is given be unfilled circles. Although these are relatively noisy, they are well
approximated by the underlying densely dotted line, which is the size of the
extended vulnerable cluster. Finally, the innermost curve gives the size of the
vulnerable cluster itself, which is well predicted by theory. Taken from [198].

that in the case of an undirected, unweighted network, we can write
F km — F k,m-

Watts” famous experiment was to explore a (¢, z) phase space, vary-
ing the average threshold and the average degree. As has remained
common in such studies, thresholds are set to a uniform value for most
of the study, and the effect of normally distributed thresholds was
verified as a generalisation. The effect of a increased variance in the
threshold distribution was to broaden the region in (¢, z) space that
allowed global cascades. In contrast, the effect of a power-law degree
distribution was to diminish the range of parameters leading to global
cascades, relative to a binomially distributed degree k.

We briefly outline a number of concepts that are crucial to the results
of this thesis. The first is the idea of a node being vulnerable, meaning
that a single active neighbour is sufficient to induce activation in the
node in question. Inactive nodes that are not vulnerable are either
stable, or isolated, meaning they have no neighbours and k = 0. If the
initial seed in the Watts model is not adjacent to a vulnerable node,
then no transmission takes place. A set of connected vulnerable nodes
is referred to as a vulnerable cluster. By definition, if a single node
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within or adjacent to a set of vulnerable nodes is active, then it will
eventually topple all the nodes in that set. If such a cluster percolates
throughout the entire network, it is said to satisfy the condition for the
emergence of global cascades. Necessarily, the vulnerable cluster must
reside within the giant component of the network. Then, any randomly
selected seed within the cluster, or adjacent to it, termed the extended
vulnerable cluster, will trigger a global cascade. The frequency with
which a single randomly selected node triggers a global cascade is
given by the relative size of the extended vulnerable cluster.

These concepts are explained in Fig. 1.4, which is extracted from [198].
As expected, the frequency with which global cascades emerge as a
result of a single initial seed is given by the relative size of the extended
vulnerable cluster. Once such an avalanche is triggered, it generally
extends beyond the vulnerable cluster, to reach every node in the giant
component. This is reflected in the fact that global cascade size is in
precise agreement with the size of the giant component in Fig. 1.4. As
expected, the continuous phase transition in cascade size occurs around
z = 1 since the degree distribution is binomial. The discontinuous
transition is marked by the vertical arrow and occurs around z = 7.
This transition is due to the increased stability of nodes at higher z
values, meaning the vulnerable cluster becomes finite.

1.6.3 Variations

In the original formulation by Watts [198], all neighbours we qual-
itatively identical, distinguishable only in their state. We generalise
this by allowing a discrete number of edge types, so that a node’s local
neighbourhood is characterised in general by (k,m), in contrast to
simply (k,m). A node’s total influence is given by k - w, and influence
due to active neighbours m - w. This is shown as the Watts threshold
rule in Table 1.4, and recovers the homogeneous Eqn. 1.28 when setting
n=1

Further, it is possible to extend all the threshold rules in Table 1.4 by
allowing a rate of spontaneous activation p, which amounts to random
noise. The activation rule then becomes

1, m-w>¢k-wand k-w >0
Fiom = 4 (1.20)
v, otherwise.

We are also able to introduce blocked nodes to model individuals who
refuse to adopt, or equivalently, nodes whose threshold exceeds ¢ > 1,
as was studied in [166]. Further generalisations will be explored espe-
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cially in Chapter 4, where the boolean and and or rules are introduced
in a multiplex setting.

An important alternative to the Watts threshold rule is that of Centola
and Macy. Whereas the former rule measures relative influence, the
latter measures absolute influence. The absolute influence required for
activation is given by My, and the rule becomes

1, m-w>M, and k-w >0
Fiom = ’ (1.30)
. otherwise.

As a result it may be better suited to fitting data, as one does not require
a complete mapping of a node’s ego-centric network. Incomplete data,
at a certain point, doesn’t diminish the model. If a node’s threshold is
My = 3, and it has m = 3 infected neighbours, it doesn’t matter if the
node’s total degree is k = 3, 10, 100 or 1000, the threshold is still met
and the relevant node becomes active.

1.7 COMPUTATIONAL METHODS

In this section we provide a brief overview of the technical consid-
erations that are recurrent throughout this thesis. The methodology
that we follow relies heavily on numerical simulation of the physical
processes in question, and at the same time, numerical integration of
master equation systems derived to model such processes. For com-
pleteness, we reproduce the fourth-order Runge-Kutta (RK) system that
we use throughout this thesis, as well as the Monte Carlo (MC) simula-
tion techniques that are most of use. Since simulations are expansive,
both in terms of the size of the networks studied, the statistics that we
seek to obtain requiring huge numbers of realisations, and the fact that
we study fine-grained parameter spaces, we give a brief sketch of our
approach to the distribution of such calculations.

1.7.1  Runge-Kutta solution

The analytical solution of the systems under examination takes the
form of a master equation. This refers to a set of first-order differential
equations describing the time evolution of a discrete number of states,
which in our context refers to a density with respect to network-node
configurations. If the column vector s(t) contains the time-dependent
densities s;(t), then the matrix A stores the transition rates A;; between
states i and j. In general, these transition rates may depend on time,
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both explicitly 3, and implicitly via a dependence on s(t). As such, we
write either A = A(t,s), or in the case of no explicit time dependence,
A = A(s). For a complete outline of the master-equation solution and
its derivation, see Chapter 2.

In light of these considerations, the numerical implementation of our
analytic solution amounts to solving the first-order ordinary differential

equation (ODE),

%s = A(s)s, (1.31)
where the dimension of s and A is the dimension of the so-called
configuration space. Throughout this work we use a fourth-order
Runge-Kutta solution, which for completeness we outline here. We
denote by t, the n-th discrete time step, where step size is At, such that
ty = nAt, always setting ty = 0. Then, s, is the value of the state vector
at time t,,. After determining the initial conditions sy, the fourth-order

Runge-Kutta system involves the sum
1
Sutl = Snt g(ll + 2l +2I3 + 1) (1.32)

tip1 =t AL (1.33)

at every time step, or n = 0,1,2,..., until the system reaches some
steady state. If we define f(t,s) = A(t,s)s, then the coefficients I in
Eqn. 1.32 are given by

I = Atf(ty,sn) (1.34a)
At I

L = Atf |ty + > S, + 0} (1.34b)
At l

s = Atf (tn + st 22) (1.340)

ly = Atf(th+Atsy+13). (1.34d)

We use this solution for the numerical integration for all the systems
in this thesis. In Chapter 2 we compare the configuration space for
the full and reduced AMEs, that is, solving for s and v. The reduced
AMESs has a complete graph, because the v; depends on all v; such that

i#j.
1.7.2  Asynchronous vs synchronous update

The key to the Monte Carlo implementation of dynamical processes
on networks, in this setting, is the manner of the execution of the

13. We shall see that this depends on whether the system is full or reduced. The
reduced AMEs allowing spontaneous adoption has an explicit time dependence
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update rules that we’ve seen in Tables 1.2, 1.3 and 1.4. Briefly, it is
useful to distinguish between two closely related operations when
discussing Monte Carlo simulation. First, we refer to node selection,
which is the process of choosing a node v, either randomly or via
some pre-determined sequence. Secondly, we refer to node update.
This involves determining the state of the selected node v at the next
time step. One does this by evaluating the state of v’s immediate
neighbourhood ™4, and applying the rules of Tables 1.2, 1.3 and 1.4.
Crucially, a node update does not necessarily lead to a change in a
node’s state - the result of an update could very well be to remain in its
current state, depending on the outcome of the adoption or recovery
rules.

Having distinguished between node selection and node update, we
now outline two variations of the implementation of these operations.
The first involves a node v being selected uniformly at random, and
its updated state being immediately visible to its neighbours. This
is called the asynchronous update rule, since the updating of different
nodes is independent. In contrast, one may select nodes sequentially,
and the state of a node at time f,, 1 depends on the state of its neigh-
bours at time t,. In other words, when determining the state of a
node v at time ¢,,;1, it considers the state of a neighbour u at time ¢,
even if u was selected and updated before v at the t,;-th time step.
This is termed the synchronous update rule, and implies a system that
advances discretely in time *>. In contrast, the asynchronous update
rule corresponds naturally to a differential equation solution. This is
because if time is incremented at every node update, then the time step
is normalised to system size. That is, for a network of size N, we have

M=, (1.35)
meaning that time is quasi-continuous in the large network limit, with
At — 0 as N — oo. Since we wish to model the systems of Section 1.2,
the asynchronous update rule is clearly better adapted.

Since nodes are selected for update uniformly at random following
the asynchronous update rule, it is clear that the time spent between
consecutive node updates is exponentially distributed. This corre-
sponds to a simple survival process. Since the probability of a node

14. In practice we do not actually do this, since it’s wasteful. We prefer to update the
state-change probability of all of a node’s neighbours after it changes state. That means
all that we do after selecting a node is flip a coin and compare to Fy m and Ry m.

15. Although both synchronous and asynchronous systems involve a discrete time
step, a synchronous rule implies that time is course grained, typically with At =1,
whereas an asynchronous rule has a time step diminishing with system size, At = 1/N.
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being randomly selected at time t is At = 1/N, the probability of
becoming infected or recovering is FAt or RAt, respectively. Assume a
node is in the susceptible state, and that it has just undergone a node
update, where no change in state has been recorded. We are interested
in the probability that the node has not updated after a time 7. This is
clearly (1 — FAt)™/?, since there are T/At increments of duration At
over an interval 7. Taking the limit At — 0 gives

lim (1 — FAH) /M = 7T, (1.36)
At—0
so that the “residual” adoption time is exponentially distributed. If

we follow the natural interpretation of this quantity as a residual
distribution, or the CDF of the inter-update time PDF. The CDF of the

inter-update time distribution is 1 — ¢~ fT, meaning the inter-update
time PDF is p
Z(1—eFry=FefT, .
gp(l—e ") =Fe (1.37)

Crucially, this corresponds to a Poisson process, where F (or the re-
covery rate R in the mirroring process) can be construed as constant
rates of infection and adoption, as discussed in [163]. This is important
in the case of dynamical processes where infection and recovery are
defined as constant hazard rates. In fact, since we’ve defined Fy ,, and
Ry m in terms of probabilities per dt, we have implicitly suggested an
asynchronous update regime, as well as constant rate infection and
recovery processes.

Throughout the remainder of this thesis, we use the asynchronous
update rule in our Monte Carlo simulation of dynamical processes.

1.7.3 Event sequences for temporal networks

In addition to the simulation node dynamics, we will be confronted
with the problem of simulating a temporal network, which is a network
evolving in time, at a scale commensurate with node state dynamics.
We shall introduce these networks in more detail in Chapter 5. In
the above algorithms, we have not specified whether the underlying
network is static, or dynamic. When the state of a link is able to evolve
over time, we have what is called a temporal network. Whereas nodes
can take on one of two possible states, we can do the same with edges,
and attribute them with any number of possible states. If these states
are fixed, edges are static, and if allowed to evolve over time, can be
useful as a model of temporal networks. Following the discussion
above regarding asynchronous node update, edge state evolution at
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constant-rate could be implemented via the random selection of edges
combined with Monte Carlo state flip probabilities. However, we are
interested in temporal network models that don’t necessarily evolve at
a constant rate.

When simulating general classes of temporal networks, we cannot
assume constant rates of evolution, and therefore turn to an event-based
simulation models 1. This borders on a class of event-based algorithms,
going back to Gillespie algorithms [80], Instead of advancing in time by
uniform discrete steps, an event based simulation advances according
to events. This amounts to a time-ordered queue of events, typically
represented as a tuple containing at least the following attributes; the
time t at which the event takes place, the adjacent nodes (u, v), as well
as the operation that is taking place on the edge, ¢. We can thus define
ane,

e={t, (u,v),Z}, (1.38)

which we implement as an ordered set. Such a set can be made to
act as a sequence of events, if the set is equipped with a comparison
operator, which we choose to be time. Also need to be able to insert
and delete elements. Algorithms are straightforward, as the next event
we effectuate is the first in the ordering, fast to access. Inserting is
logarithmic in the size of the event sequence, O(log |S|). Accessing the
next event is constant or O(1).

We have to pay attention to degeneracy, since even with high preci-
sion of the event time f, multiple events might share a single time ¢. For
very large networks, so called “collisions” are possible, and therefore
require a more sophisticated comparison operator (instead of t < /,
node comparison as well (u,v) ~ (w, z)). This is because certain data
structures don’t allow multiple entries; trying to insert two events e;
and e;. Alternatively, one can exploit pre-defined templates and data
structures. In C++, we have available the multiset. However when
this is not possible, class can be built manually using the described
comparison. This is essential if large networks or event sequences are
required, and double precision not available.

1.7.4 System size considerations

In general we will be interested in large networks with constant
average degree. Such networks are sparse, and since we mostly use the

16. As pointed out in [163], constant rate processes can also be simulated using an
event-based algorithm, by leveraging our knowledge of the inter-update distribution.
That is, one can generate a queue of events, which here means spin flips, based on the
known adoption rates F and R of nodes in the network
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Table 1.5 — Time complexity of performing elementary operations on an edge-
activity stream. The set is equiped with a comparison operator applied to the
time ¢ key. This may be extended to include the tuple of adjacent nodes, (1, v)
to avoid collisions. Assumes a C++ set of size |S|. Time degeneracy can be
avoided by using a multiset.

taccess head terase head insert element

edge stream o) o) O(log|S|)

t returns a pointer to the next event
t assumes input is a pointer to location in set, if input is element, O(log |S|)

configuration model to generate networks, self-edges and multi-edges
can be neglected in principle. In fact, in order to favour speed of
implementation, we do not even check for them '7. Throughout this
work we shall sometimes refer to thermodynamic limit, which is the same
as saying N — oo, and implies that O(1) effects can be comfortably
neglected.

One instance in which the large N assumption is essential, is in
the derivation of our master equation solution. We will see that such
a derivation takes place independent of network size.’® As a conse-
quence, the predictions of our master equation solution correspond
most closely to large networks. In fact, the larger the simulated network,
the better the fit with analytics.

1.7.4.1 A caution against blindly performing averages

Fluctuations play a significant role in dynamical processes. As such,
it is always good practice to explore these systems using large numbers
of realisations, and collect a distribution of outcomes. In simulation,
one should never measure the average alone, which can be misleading.
As a simple illustration, consider that a global cascade in the Watts
model as per Section 1.6.2 is either local, or global. When the network
is very large, and the network is connected, cascade sizes can be well
approximated by 0, local cascades, or 1, global cascades. Clearly, taking
the mean of experimental data gives 0 < p < 1, which is misleading.

17. If we store the networks using an adjacency list (see Section 1.3.1), implementing
the adjacency list using a data structure not allowing the repetition of keys, such as sets
in C++, multi-edges will be cancelled out anyway.

18. This is in contrast to other popular modelling approaches such as the well-known
master stability equation [22, 161, 163], where the dimension of the system is precisely
N, the number of nodes in the network.
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However, our master equation solution is deterministic, and doesn’t
inform matters of stochasticity encountered in experiment. Since this
is the case, we have to be careful, especially when we are averaging
spreading curves. In general we store distributions of results from
experiments; it is almost never a good idea to perform averages on-the-
go. It is preferable to save all experimental data, and consider averages
during post-processing.

1.7.4.2 Asynchronous update vs breadth-first search

We shall encounter a particular variety of experiment where both
asynchronous and synchronous Monte Carlo simulation are hopelessly
inefficient. This is the case when studying threshold models with small
initial seeds, with no noise (this is the focus of Chapter 4). If initial
seed is small, no point updating as before; only the k neighbours of the
initial seed have any chance of updating. As such, N(1 —zpy) selections
will have been wasted. If N is large, very inefficient. If N small, we
don’t care. In these experiments, much better to branch outwards from
the seed using an adapted breadth-first search algorithm. The gains
are magnified in topologies where the cascade dies out quickly. Say
you have N = 108 and your initial seed contains only isolated nodes.
If you diligently wait 100 time steps, equivalent to 10! random node
selections under an asynchronous update rule, you get the same result
as for the modified BFS which would require Np, operations. Note
po < 1, so amounts to checking the degree of something like 1, 10 or
100 nodes, whatever the seed size is, to verify that no global cascade is
possible. The message is that we use a mixture of simulation regimes
depending on the context. A Monte Carlo component is still important
in such an experiment, namely in the random sampling of seeds from
which to start the breadth-first search.

1.7.5 Distribution of experiments

Throughout this thesis, we shall frequently face the problem of
simulating both large networks, as well as smaller networks over a
large number of realisations. We briefly sketch here the bottlenecks in
computation that present themselves at various points in this work, and
the solutions that we employ to overcome them. When we talk about
network size, we don’t just mean the number of nodes N, because
storing node information is inexpensive compared to edge information
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if the network is dense . Note that simulating a dynamical process
on a large network is memory intensive, because of graph storage,
but also CPU intensive because the complexity of the simulation is
O(N + |E]). As such, when we say CPU intensive we imply medium
sized networks.

1.7.5.1 CPU intensive experiments

At various points we shall wish to explore large parameter spaces for
various experiments. These parameters are typically network topology,
and parameters of node dynamics such as node threshold ¢. Further,
for each configuration of parameters, we normally wish for a substantial
number of realisations in order to collect valuable statistics regarding
experimental outcomes. Because of the computational demands of
such tasks, we simulate networks that are smaller than the maximum
available, favouring instead a large number of network instances.

When this is the case, we are able to exploit the resources of high-
performance computing centre*°, many of which have physical re-
sources for computationally expensive, but memory-cheap calculations.
Balance between real time, and available resources.

1.7.5.2 Memory intensive experiments

Memory intensive networks arise when networks are very large, very
dense, or both. Memory bottlenecks are in terms density rather than
number of nodes, that is, O(N + |E|). For example, we have a tradeoff
in simulating large sparse networks, a typical example involves single
runs on a N = 108 node network (simple static network spreading
process) with average degree z ~ 5. In contrast, we can afford N = 107
nodes if z ~ 50. If memory resources become sparse, for example if
we require the simulation of very large networks, whilst still demand-
ing a large number of realisations and parameter space, we turn to
parallelisation (see Fig. 1.5). We save memory by only storing one
copy of the graph, which dominates the memory, and running many
dynamical processes on top of it in parallel. Note that node dynamics
can be stored in just O(N) space, in the case of discrete state dynamics

19. See Table 1.1, the spatial complexity of an adjacency list is O(N + |E|), meaning
edge information dominates node information for dense networks. For example, in
Chapter 4 we probe networks up to average degree z = 10°, meaning edge storage
|E| = Z¥ > N dominates node information.

20. We have benefited immensely from the assistance of the Pdle Scientifique de
Modelisation Numérique (PSMN) in Lyon, France, throughout this thesis. Here, the
distribution of millions of processes is made straightforward by a batch queueing system
(also known as a job scheduler, or grid engine).
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Figure 1.5 — Approaches to the distribution of experiments on a computing
cluster. (a) Distribution of graph realisations along with dynamical process,
where on average each CPU (rectangles) is allocated one graph (circles). This
is important when sampling from a random graph ensemble is important. (b)
When large graphs (in terms of |V| + |E|) are favoured, multiple CPUs simulate
independent spreading processes on each core, on an identical graph. The
dynamical process is inexpensive, on the order of |V| in size.

(effectively a time-dependent vector of integers detailing the state of
each node).

1.8 THESIS OUTLINE AND CONTRIBUTIONS

The remainder of this thesis is structured as follows. Throughout
the rest of this part, we further develop the background information,
including original analytic results, required for the studies in Part 11. In
Chapter 2 we introduce the analytical framework used throughout this
work. Here we briefly discuss existing analytic results, before focussing
on results that are novel to this thesis. A major original contribution
of this thesis is the development of an extension to analytic tools
that incorporate a broad range of edge heterogeneities. This refers to
heterogeneity in edge weight, layer, direction, sign, or some otherwise
specified state.

Then, in Part 11, we apply our master equation framework to a
number of systems of interest. In Chapter 3 we outline the results
of [190], where we apply the static edge-heterogeneous master equation
solution to threshold driven contagion on weighted networks. Analytic
tools, combinatorial arguments, simulation on synthetic networks, as
well as a data driven study on a number of empirical networks. In
addition to prompting the initial development of the analytic tools
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introduced in Chapter 2, we provide a microscopic explanation of the
impact of weight heterogeneity on spreading dynamics. This manifests
as a non-monotonic acceleration and deceleration of the spreading
process relative to that on an unweighted network.

In Chapter 4 we study the effect of multiplexity on threshold driven
contagion. We shall see that rich dynamics occur when multiplex
topology is defined by so-called intimacy circles, an elementary network
structure that can be shown to result from entropy maximisation in
the presence of cost heterogeneity of forming an edge. We show that
the effect of these structures is to fundamentally destabilise resulting
multiplexes. This is particularly true at large values of average degree
z.

In Chapter 5 we examine contagion on network structures that are
not fixed in time. We use a simple model of temporal networks, known
as stochastic temporal networks. Our main concern is to understand
the effect of temporal heterogeneities on spreading processes. In other
words, what is the effect of burstiness in interaction patterns on the
spread of information over a network.

In Chapter 6 we discuss open questions, the limitations of our ap-
proach, as well as potential further work.



MATHEMATICAL METHODS

In this chapter we give a detailed outline of a master equation
formulation of spreading processes on edge-heterogeneous networks.
This formalism is applied in subsequent chapters, and represents the
principal analytic contribution of this thesis. This framework builds
upon the work of Gleeson [86, 87], who introduced a master equation
solution of binary state dynamics on unweighted, single-layer static
networks. In this work, we generalise this framework in order to
introduce various edge heterogeneities. In particular, this includes
edge weight, layer and direction, as well as general framework to
incorporate temporality.

After deriving a general master equation solution, we show how the
resulting system of ordinary differential equations can be reduced in
dimension, allowing qualitative analyses via the tools of dynamical
systems theory. This includes linear stability analysis (LsA), as well as
vector field analysis (VFA). Additionally, we compare this approach to
other analyses of binary state dynamics on networks. This includes
the use of tree-based methods, such as branching processes and mes-
sage passing, but also node based methods such as master stability
equations.

2.1 MASTER EQUATIONS

In this section we provide a general derivation of the approximate
master equation (AME) formalism. A master equation is a phenomeno-
logical set of first-order differential equations describing the time evo-
lution of a dynamical system, in terms of the densities of a discrete set
of states composing the system, over a continuous time variable .

Our approach is to assume that heterogeneities in edge qualities,
such as weight, layer and temporal state, can be modelled with discrete,
finite distributions. It then follows that each edge can be assigned
an index representing such a state, providing the value of its edge
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weight, the layer that it belongs to in a multiplex network, or some
time varying quantity in a model of temporal networks.

In order that the resulting system of differential equations be finite,
there must exist upper and lower cutoffs in the discrete distribution
of possible edge states. We shall see that even coarse discretisations
can yield useful insights. Continuous quantities are things like weight
distributions which are often smooth?® can be discretised, with con-
tinuous systems readily explorable via simulation, even if the corre-
sponding analytical solution is infinite. On the other hand, many
edge-heterogeneous systems are inherently discrete and can be readily
approached with this formalism. In Chapter 4, we note that many real
systems are multiplexed, where the number of layers provides the level
of edge-state heterogeneity. We shall refer to an edge’s fype, a term
which is interchangeable with edge state.

Although the following master equation formalism is able to solve
for a range of binary-state dynamics, it is particularly appropriate
for the use of threshold models. That is, dynamics such as SI and
SIS processes can be accurately solved on random networks using the
fully mixed assumption, requiring only the average degree (k). This
leads to a single equation describing the spreading process. When the
degree distribution is heterogeneous, the degree-block approximations
is introduced [157], where nodes are partitioned into classes by their
degree k, where they are assumed to be statistically equivalent. This
increases the number of equations from 1 to k, reflecting the information
cost of degree heterogeneity. While the degree-block approximation
is sufficient in the case of epidemic models, where the effect of an
additional infected neighbour is independent of a node’s configuration,
it is insufficient in the case of threshold models. We shall see that
degree-active degree blocks are necessary here, where the network is
further partitioned according to the number of active neighbours m, in
addition to the total number of neighbours k. This allows us to model
more complex phenomena such as threshold dynamics, where as we
saw in Section 1.5.1, nodes consider neighbours collectively rather than
independently.

2.1.1  Node configurations

Since we are interested in systems where edge properties can be
discretised into a finite number of states, we let n be the number
of possible edge states, and index these edge states by j, such that

1. This depends on the network in question. A mobile call network where weights
are defined by the number of calls in a day, gives a discrete distribution.
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ego neighbour edge

Figure 2.1 — A k = 7 degree node in a system allowing n = 2 edge types, with
its allowed transitions. The node configuration in (a) is given by k = (4, 3T
and m = (1,2)T. Activation of the ego in (b) does not change the local
neighbourhood description (k,m). A neighbour becoming infected in (c)
changes the active degree vector to m = (2,2)7, while k remains unchanged.
The edge-state increment in (d) gives k = (3,4)7, leaving m unchanged since
the adjacent neighbour is inactive.

1 < j < n. We introduce the term k; to quantify the number of
neighbours adjacent to a given node via edges of type j. We call this
the j-th degree, or degree of j-type edges. Similarly, m; is the number
of those neighbours that are active.? The total number of neighbours,
or degree, of a given node is defined as k, the total degree, such that
k= Zj kj. While we have 0 < k]- < k, we can also state 0 < m; < k]-,
and we call m; the j-th partial degree, or partial degree of j-type edges.
The total number of active neighbours is given by m, where m = }_; m;
and 0 < m < k, and we call m the partial degree. We store the n values
ki and m; in the degree vector k, and partial degree vector m. We
sometimes refer to k as the structural degree vector, since it depends
only on network connectivity, and not node state which is a function
of a dynamical process. Thus, a node’s instantaneous local configuration
is given by the tuple of degree vectors (k, m), which we also refer to as
a node class. This incorporates both neighbour state, by distinguishing
between inactive and active neighbours via the partial degree vector
m, as well as neighbour edge type. Note however that ego state is
not conveyed by (k, m), since both inactive and active nodes can have
identical neighbour configurations in this notation. Since every node
belongs to exactly one class, the set of classes partitions a network.
We now turn to the notion of configuration space. While a node’s local
configuration is given by (k, m), the set of all configurations allowed by
a given topology of an infinite network, provide the points in this space.
This space accommodates all configurations (k, m) that may occur at
any time t over the course of a dynamical process, with t € [0,00).

2. We use interchangeably the terms active, infected and adopting to refer to nodes
in this state. Opposing states are termed inactive or susceptible.
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A node’s configuration is not fixed in time, and may change via two
mechanisms. The first is via a change in the partial degree vector m,
which occurs when an inactive neighbour becomes active, or an active
neighbour recovers to the inactive state. The ego in question transitions
between classes (k, m) as a result of the change in m (see Section 2.1.9).
The second transition is via a change in degree vector k, which occurs
in models of temporal networks (see Sections 2.1.10 and 2.1.11). If
all nodes in the network are inactive at the beginning of a dynamical
process, at t = 0, then every node has m = 0. If at the end of this
process, all nodes in the network are active, then m = k for each node.
Since time is continuous, and node dynamics are Markovian, nodes
follow a smooth path through configuration space, such that m; (and
kj in the case of Chapter 5) are only incremented by +1 over any dt.

2.1.2  Degree and edge-quality distributions

In general our approach will be to first define the distribution pj of
total degree k, then to specify how those various edge qualities such as
weight and layer membership are distributed among those edges. The
total degree k is comprised of edge-type degrees k; summing to k. If
P, is the probability of a node having degree k; of edge type i, then

pi = prp(ki, - ks K Prys 0 PRy ) (2.1)

gives the probability that a randomly selected node has degree vector
k, where the second term is the multinomial distribution. As such, the
sum over all degree vectors is normalised, and we write ) py, = 1.

2.1.3 Configuration space

As discussed above, a network is partitioned by the configurations
(k, m), since each node has exactly one configuration. We introduce
Cik,m, the set of all nodes in the network with local configuration (k, m).
We define a number of quantities based on this that will prove useful in
following discussions. First, we define Cy to be the set of all sets Cy
having degree vector k, that is Cx = {Cy/ v | k' = k}. Whereas Cy
is a set of nodes, Cy is a set of sets. Similarly, we define Cy to be the
set of all sets Cy n, with total degree k, that is Cx = {Cy | Yiki= k}.
Finally, C is the set of all possible sets Cy n,, provided a distribution of
total degrees py, and edge dimension n. This includes sets for which
Cxm = @ at a given time. The cardinality of this universal set, |C|,
is determined by the support of py, in addition to n. We discuss the
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structure of C, in particular the dependence of |C| on k and n, in
Section 2.1.5.

Since (k, m) does not convey ego state, just edge and neighbour
configuration, we partition Cy ,, into inactive and active nodes, 3 such
that Cy m = Sim U Ixm. Similar definitions allow us to introduce Sy
and Iy, Si and Iy, as well as S and I. Although in general |Sy m| #
|Ik m|, the structure of the inactive and active configuration spaces is
identical, such that |C| = |S| = |I|, |Ck| = |Sk| = |Ik| and |Cy| = |Sk| =
| Ii|-

2.1.4 Density of states

The evolution of a dynamical process over a network amounts to
a flow of nodes through the sets Sy ,, and Iy ;. Since the number of
nodes N in the network is conserved, it is just their distribution over
the sets Sy m and Iy y, that evolves in time. These distribution provide
the state of the network at time t. Since our formalism is independent
of network size, we treat the distributions of nodes rather than the
absolute sizes of these sets. To simplify the following discussion, we
define

ICll= Y [Cuml and [IGll= )} |Ciml  (22)

Cim€Ck Cim€Ck

in order to give the number of nodes with degree vector k, and total
degree k, respectively. This is in contrast to |Cy| and |Cy| which give
the number of configurations with degrees k and k. To convert from
absolute node count to densities of nodes, we need to normalise Sy
and I ;m by some non-zero quantity that is conserved over the course
of a dynamical process. In static networks (see Chapters 3 and 4), such
a quantity is the number of nodes with degree vector k or ||Cy||. This

allows us to define

|Sk,m|
S = . 2.
k,m ||CkH ( 3)

We define iy , in a similar way, replacing Sy y, with Iy ;, in the expres-
sion above. The normalised quantities sy m and iy m give the probability
that a randomly selected node with degree vector k is inactive or active,
respectively, with partial degree vector m, at time ¢. In contrast, we
shall see that ||Cy|| is not fixed in the case of temporal networks (see
Chapter 5), therefore we need to normalise by another quantity. See

3. The use of S and I here is a vestige of epidemiology, where inactive and active
nodes are termed susceptible and infected, respectively.
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Fig. B.1 to see that it is the connected components of configuration
space that determine the conserved quantities to be used for normal-
isation. For the temporal network models in question, the desired
quantity is ||Ck||, defined above. The density of inactive nodes in class
(k, m) in this case is given by

|Sk,m|
S = , 2.

with iy , defined analogously. We have the normalisation condition
Ym|k(Sk,m +ik,m) = 1 for a given k class in the case of static networks.
This allows us to write

pr=1-) sum and p=) pipx (25)
m|k k

where the sum in the first expression is over all partial degree vectors
m that satisfy 0 < m; < k;. This gives the probability py that a
randomly selected node with degree vector k will be active at time ¢.
A weighted sum over all py gives the probability p that a randomly
selected node is active. Similarly, in the case of temporal networks,
the node conservation principle leads to the normalisation condition
Yiom|k(Sk,m T ik,m) = 1, for a given k class. We then have

ok=1—3 sim and p=) pips (2.6)
km|k k

where the sum in the first expression is over all configurations (k, m)
that satisfy } ; kj = k. The term pj gives the probability that a randomly
selected node with total degree k will be active, and p the probability
that any randomly selected node will be active. We turn to temporal
networks in detail in Chapter 5.

2.1.5 Size of configuration space

By far the most important quantity in determining the feasibility
of a master equation solution to a given problem, is the number of
points in its configuration space, or |C|. Crucially, this determines the
order of the resultant system of differential equations, with each point
associated to a rate equation for sy, and iy . As such, it is the size of
C that ultimately determines the efficiency of a given implementation.
Even in special cases where one can derive equivalent low dimensional
systems, as in Section 2.2, their terms are still evaluated by iterating
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logyg(e)

logqg k logqg k logqg k

Figure 2.2 — Size of configuration space for fixed n and increasing k. In (a) we
plot (Cy ), the expected number of m per k, for a given k. In (b) we plot |Cy|,
the number of classes (k, m) with total degree k, or equivalently, the entire
space C of a k-regular random network. To calculate |C| for a general degree
distribution in (c), we assume that the support of the total degree distribution
is supp(px) = {0,...,k}, and as such can be construed as the cumulative sum
of the terms in (b). Dashed lines correspond to k", k2"=1 and k2", in plots (a),
(b) and (c) respectively, as per Table 2.1. Since scale is log-log, dashed lines are
straight with slopes 1, 2n — 1 and 2n, with vertical intercepts in Table 2.1. See
Fig. 2.3 for side-by-size comparison of corresponding n values.

over C. As such, we devote this section to providing approximate
bounds 4 on the size of this space.

Importantly, the configuration space is finite if and only the degree
distribution has some cutoff and the number of allowed edge states
n is finite. In the following we refer to two types of dimension, the
first being the dimension of vectors k and m which is 1, as well as the
dimension of configuration space |C|, which is expressed in terms of n
and maximum degree k, and whose growth rate as a function of k are
shown in Table 2.1.

Our approach will be to first calculate the sizes of Cy and Cy, or
the number of configurations with degree vector k and k, respectively.
These results then determine the total size of a system whose degree
distribution has support {0, ..., k}, such that |C| = Y1 |Cy|, where k

4. Many of the results are asymptotic, and we use the standard asymptotic notation:
for two functions f and g, we write f = O(g) if f < g for all sufficiently large values of
the variables of the two functions, where c is an absolute positive constant. We write
f=0(g)if g=0O(f) and f = O(g) if f = O(g) and f = Q(g). If the limit of the ratio
f/g tends to zero as the variables of the functions tend to infinity we write f = 0(g).
Finally, f ~ g denotes that f = (14 0(1))g, that is f/g tends to 1 when the variables
tend to infinity.
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Figure 2.3 — Same data as for Fig. 2.2, but comparing (Cy ), |Cx| and |C| for
equal n. Colours do not necessarily correspond to those in Fig. 2.2.

equals the maximum degree in the remainder of this section. Explicitly,
|Ck| and |Cg| are related by

Gl =) |Cxl (2.72)
K
= ZH(k]- +1) (2.7b)
K j=1
<Y (k+1)", (2.7¢)
K

where the sum runs over all degree vectors k with total degree k, or
Yjkj = k. The product in Eqn. 2.7b gives the number of partial degree
vectors m corresponding to a given k. This is because every j-type
degree has k]- + 1 possible inactive, active configurations, given by
mj =0,... ,ki. Enumerating the total number of m then entails the
product of the j edge types. Since it is not clear how to write Eqn. 2.7
in closed form, we attempt now to find a more useful expression by
considering its bounds.

We estimate the growth rates of two quantities, namely the number
of terms in the sum of Eqn. 2.7, and the average value of its summand
|Cx| for a given k, which we denote (Cy)y. The sum is constrained to
all degree vectors k whose elements add to k. There are (k%*l) such
vectors, a result that can be obtained by enumerating the number of
ways of placing k objects into n containers. This binomial obeys the
inequalities

(k+1)"1  (k+n—-1)!  (k+n—-1)""1
-0 = Kn—1) O
with the three terms converging when 7 is constant and k — oo, each
term growing as @(k"1). In order to determine the expected value of

(2.8)
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Table 2.1 — Growth rate of the size of configuration space C, as well as the
subspaces Cy and C. These rates are accurate up to a multiplicative constant,
which are shown here for the cases n = 1,...,4, and correspond to Figs. 2.2
and 2.3. In these figures we plot these limits against actual set sizes.

(Cik |Gkl C|
n ek O(k¥—1) O (k™)
1 1.00000 1.00000 0.50000
2 0.16500 0.16500 0.04200
3 0.01660 0.00830 0.00140
4 0.00125 0.00020 0.00002

|Ck| for a given k, it is clear that for some degree vector k, the number
of corresponding m is bounded above as per Eqn. 2.7c. This inequality
holds because k; < k for all j, with equality holding only when n = 1.
Although this is sufficient to write O(k"), we propose that the bound
is actually stricter, > growing as © (k™).

(Ci)k = O(K"). (2.9)

This appears to be confirmed in Fig. 2.2(a), where we plot the average
number of active degree vectors m per degree vector k, for a given k.
Actual values of Cy are solid, dashed lines are the expected value.

Given that the number of terms in Eqn. 2.7 grows like k", and
that the mean value of its summand |Cy| grows like k", we conclude
that the total number of configurations with total degree k, or |Cy/,
grows like k?"~1. This is confirmed in Fig. 2.2(b), where we plot the
actual value of |Cy| against its expected value, for some multiplicative
constant that we find manually by tuning.

|G| = @K™ 1) x O(k") = ©(k*"1). (2.10)

Since Fig. 2.2 is on a log-log scale, polynomials appear as straight
lines whose slope is given by their leading order. The multiplicative
constants of ® determine the vertical intercept, and are provided in
Table 2.1. Finally, we can generate an upper bound on the total number
of points in |C|, not just for a particular subset of degree k. To do this,
we observe that the number of k for each k is monotonically increasing,

5. See footnote 4 for summary of asymptotic notation.
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and does so gradually © for large k. As such, if the cutoff in total degree
is k, there will be on the order of

IC| =k x ©(K*" 1) = (k™). (2.11)

total configurations in C. This result is once again confirmed in

Fig. 2.2(c), with the multiplicative constants listed in Table 2.1. Note
that our result of |C| = @(k?") is consistent with Gleeson’s result
of @(k?), reported in [86], since the setting there was networks of
homogeneous edge-type, a case recovered here by setting n = 1.

A consequence of these results is that a precise master equation
implementation of real systems is quite impractical. Real systems often
include hubs, or nodes whose degrees reach into the tens of thousands.
In the presence of edge heterogeneity, we have seen that such systems
are prohibitively large. For example, a four-level multiplex with a
maximum total degree of k = 10* is out of reach analytically, as it
contains 10% terms. Nevertheless, a great deal of intuition can be build
be studying the behaviour of more tractable systems, by imposing
cutoffs on the maximum degree, and formulating the system in terms
of low edge heterogeneity n.

2.1.6  Time evolution of density of states

The initial condition refers to the distribution of inactive and active
nodes over the classes Sy and Iy y, (or the distribution of densities
Sk,m and iy ) at time t = 0. A common situation is that the network
is entirely inactive at t = 0, except for an infinitesimal perturbation
which refers to a finite number of nodes that are active in an infinite
network. Once the configuration space is defined (by the topology,
degree distribution and edge heterogeneity), the time evolution of
these distributions is determined entirely by the node dynamics, or the
functions Fy p, and Ry . We assume that experiments are run until a
steady state is reached.

6. The relative number of k with total degree k and k + 1 increases smoothly for
large k and constant 7, with

. B — . k+n
lim Bertan—lirt _ g _

= =1
k—oo  Brin_1k k—oo k+1
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We index the elements of the space C using lexicographic ordering”?
of the configurations (k, m). This allows us to define one dimensional
vectors s and i of length |C| to contain the distribution of densities
skm and ix ;m. As such, s; and i; give the i-th elements of s and i
according to the lexicographic ordering of (k, m). We introduce the
matrix A°® of transition rates a;; between states s; and s;. The matrix
Al is defined analogously. The full equations (see following sections)
amount to solving s; = };ajjs;, effectively a rate equation for the
variable s. We shall see that transitions can be time dependent, such
that a;; = a;;(t). The time evolution of the system can thus takes
the form of the autonomous system When solving for non-recovery
dynamics, we simply write A° = A, as there is no need to solve for i.
Since dynamics are Markovian, the state of the system s in this case,
evolves according to the rate equation

%s = As. (2.12)
The meaning of this will become clear over the remainder of the chapter.
In the following sections, we show how to determine the transition
rates between classes, by explicitly writing the flux equations for sy n
and iy , for general binary state dynamics.

It is useful to note that the diagonals are necessarily less than or
equal to zero, a;; < 0, as they represent the loss terms from s;. In
contrast, off-diagonal terms are greater than or equal to zero, 4;; for
i # j, as they represent gain terms, or flows into s; from neighbouring
classes. Keep in mind that configuration space is amounts to a directed
graph, with time-dependent weights, as illustrated in Fig. 2.4, as well
as Appendices A and B. Since they are generally sparse, we store A as
an adjacency list. The above statements still hold, keeping in mind that
there is a one-to-one mapping between adjacency matrices and lists.

2.1.7 Configuration transitions

In Section 2.1.1 we outlined how the local neighbourhood of a node
is fully described by the quantity (k, m). In this section we derive the
transition rates between these configurations. There are slightly differ-
ent formulations of the AMEs depending on the system in question,

7. Technically, any one-to-one mapping of i € {1,...,|C|} is sufficient in a numerical
implementation of the following system. For simplicity, we store the set of configurations
(k, m) in lexicographic order. This defines a map (k,m) — i for some i € {1,...,|C|}.
In other words, whenever we write a class using a subscript with a single index, such as
s;, one can assume there exists a precise sy, that corresponds to it, and vice versa.
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Figure 2.4 — Configuration space for nodes with total degree k = 3 and n = 2
allowed edge states. Points represent node configurations (k, m), and links the
transitions between these configurations due to a dynamical process on nodes,
or network temporality. See Appendices A and B for a detailed explanation, as
well as more examples.

be it static weighted and multiplex networks, or temporal networks.
If the network is static, nodes are confined to two types of transitions,
which we call ego state transitions, as well as neighbour state transitions.
The first is where an ego changes between the inactive and active state.
The second type of transition is derivative of the first, where an ego
observes a change in its local configuration (k, m) due to the change in
state of one of its neighbours. Whereas ego-state transitions are binary,
the number of neighbour-state transitions is specified by the state j of
the corresponding edge. In Chapters 3 and 4, we study systems where
these are the only allowed transitions.

In addition, temporal networks exhibit a third type of transition,
where the state of an edge changes according to the dynamics of the
temporal network model in question. We term these transitions edge-
state transitions. As outlined above, we confine ourselves to systems
where edges have discrete state, and in Chapter 5, we consider a
temporal network model that satisfies this constraint.

The following sections provide the exact form of these transitions.
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2.1.8 Ego transitions

Ego transitions from the inactive state S to the active state I, and vice
versa, drive the dynamical process. The transitions between these two
classes are defined by infection and recovery rates Fy ;, and Ry, as
discussed extensively in Chapter 1, and summarised in Tables 1.2, 1.3
and 1.4. We assume that node transitions occur homogeneously in time
regardless of the underlying dynamics. In other words, a node in the
inactive state becomes active over an interval [t, t + dt] with probability
F,mdt, and recovers with probability Ry mdt. If W(Ci, m, — Ci,m,) is
the rate of transition from class Cy, m, to Cy, m,, the two ego transitions
are given by

W(Sk,m — Ik,m)dt = Fk,mdi’ (2.13)

and
W(Ixm — Skm)dt = Ry mdt. (2.14)

Combining these terms gives the total flux through the classes Sy
and I m, due to ego transitions, which in terms of the corresponding
densities gives

ds%’; = —FmSk,mdt + R mix,mdt (2.15)

and
dide, = —Riomilmdt + FigmSiomdt- (2.16)

Ego transitions can be viewed as the transition driving the dynamical
process, from which the following transitions are derived.

2.1.9 Neighbour transitions

Neighbour transitions refer to the change in nodes class due to the
change in state of one of its neighbours. Whereas ego transitions do
not entail a change in (k, m), neighbour transitions involve a change
in partial degree vector m. We distinguish neighbour transitions by
the type j of the corresponding edge, as well as the direction of the
transition, i.e., whether it is inactive to active, or inactive to active. The
rates at which nodes leave the class (k, m) due to neighbour adoption
are given by

W(Sk,m — Sk,m+ej)dt = ;Bj (k]' - mj)dt (2.17)

and ‘
W(Ik,m — Ik,m+e]-)dt = ﬁ;(k] — m])dt (2.18)
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The coefficients ,B? and /3; give the rates at which inactive neighbours
of inactive and active nodes, respectively, become active. These quan-
tities are derived below. Influxes to the class (k, m) due to the same
mechanism are

W(Sk,m,e], — Sym)dt = ,Bj(k]- —mj+ 1)dt. (2.19)

and ‘
W(Ik,m—e]- — Ik,m)dt = ﬁ;(k] —m; + 1)dt. (2.20)

Conversely, the outflux of (k, m) due to the recovery of active j-type
neighbours is denoted by

W(Skm — Sk,m_e],)dt = 'yjs»m]-dt (2.21)

and ‘
W(Ixm — Ik,m,ej)dt = 'y}m]'dt. (2.22)

The coefficients 'y]? and 7;- give the rates at which active neighbours
of inactive and active nodes, respectively, become inactive. These
quantities are also derived below. Influxes to the class (k,m) due to
the same mechanism are

W(Skm+e; = Siim)dt = 7;(m;j + 1)dt (2.23)

and '
W(Ik,m—',-ej — Ik,m)dt = 'y;(m] + 1)dt. (2.24)

To calculate § and y we use straightforward ensemble arguments. That
is, we don’t calculate the transition rate for a particular class, but an
expected rate over the entire network, and assume that such a rate
applies to every node. To obtain the expected fraction of neighbours
undergoing transitions, we observe the number of egos undergoing
transitions at time ¢, and count the number of neighbour transitions
thus produced. That is, when an inactive node in class (k, m) becomes
active, which occurs with probability F mdt, it produces k; — m; sus-
ceptible nodes that observe neighbour transitions. The number of such
edges across the entire network is given by ) ¢ pk(k]- — m]-)Fk,msk,m,
where the sum is over all susceptible classes. We compare this to the
total number of inactive-inactive edges, } ¢ pk(kj —m j)sk,m, giving the
neighbour transition rate f;. The remaining rates are found in a similar
way.

The rates B and < are implicitly time-dependent, due to their depen-
dence on the distributions s(t) and i(t). They are explicit functions of
the rates Fy 1, and Ry, and can be written

g — Yiom Pr(kj — M) Ao mSiom
! Yiom Pr(kj — m})S1cm

(2:25)
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and
i Ykm PxMjFimSkm

4 Liom PxMjSkm
which gives the expected rate at which an inactive neighbour of an in-
active or active node, respectively, becomes active. Similar expressions
provide the expected rate at which an active neighbour of an inactive
or active node, respectively, recovers. That is,

(2.26)

r)/s o Zk,m Pk(k] - mj)Rk,mik,m
J Yiom Pr(kj — ;)i m

(2.27)

and .
i = Yk,m PxMjRi mik,m
] Zk,m pkm]'ik,m
As indicated, these rates may differ by edge type j, so that neighbour
transition rates are given by the n-dimensional vectors g° and B' as
well as 4° and 9'. Note that when Ry ,, = 0, we have 'y? = 'y;» =0 for
all j. Configuration flows due to these transitions are combined in the
term

(2.28)

n
igh
dslrf;lﬁ = ZO [_ﬁi(kj - mj)sk,m + ﬁ; (kj —mj+ 1)Sk,m—ej
]:
S S
—7;MjSk,m + Vi (m] + 1)Sk,m+e]-] dt
(2.29)

for inactive classes, and
neigh ! i .
dip 8" = Z(l) [_ﬁ;(kj — 1 Yitgm + Bi(kj — 1+ Vit m—e,
]:
_r)/;:m]‘ik,m + ’7;(771] + l)ik,m+e]} dt
(2.30)

for active classes. These terms, as well as those corresponding to ego
transitions above, are due to node dynamics. The remainder of this
section deals with flows due to edge dynamics, such as those defined
by the temporal network model in Chapter 5.

2.1.10 Positive edge transitions

A positive edge transition refers to the change in a node’s configura-
tion due to an increment in the state of one of its edges over an interval
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dt. Regardless of the interpretation of edge state and the mechanism
driving the transition, the probability of this occurring on an edge of
type j is p;dt. In fact, we delay until Chapter 5 all discussions of models
of temporal networks - for now it suffices to assume that they can be
represented by networks with dynamic edge state. For a configuration
(k,m), a positive edge transition on a j-type edge means losing an
edge of that type, and gaining an edge of type j + 1. For brevity, we
introduce the term A; = —e; + ;1 corresponding to the change in the
degree vector k imposed by such a transition. That is, an adjacent node
loses a j-type edge, and gains a j + 1-type edge, all while conserving
the overall degree k.

The configuration that a (k, m) node enters when undergoing a
positive transition on a j-type edge is (k + A;, m), or (k +A;, m + 4;),
depending on whether the neighbouring node was inactive or active,
respectively. If the edge in question is connected to a inactive neighbour,
we have

W(Sk,m - Sk+Aj,m)dt = .u](k] - mj)dt/ (2.31)

and if the j-neighbour is active, we have
W(Skm — Skra;mta;)dt = pjmjdt. (232)

Similarly, nodes may enter the configuration (k, m) through a positive
transition on a j-type edge, via the classes (k — A;,m) and (k — A;, m —
A;) as follows. If the event occurs between a node and an inactive
neighbour, we have

W(Sk-a;m = Sim)dt = pj(kj —mj+ 1)dt, (2.33)

and if the event occurs between a node and an active neighbour, we
have

Combining these terms gives the flow through the configuration (k, m)
due to positive transitions on j-type edges. Note that we typically
impose boundary conditions, if not because they arise naturally in
many temporal network models, because we require the configurations
space to remain finite (see Table 2.1). If n remains the number of
allowed edge states, we impose the condition that one cannot observe
a positive edge transition on an n-type edge. As such, a node cannot
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lose an n-type edge through a positive edge transition, and we write
un = 0. Positive edge transitions combine to give

dSiem = Z[—Vj(kj — M;)Sk;m — HilMjSim
j

(2:35)

and

iy = Z[—ﬂj(kj — m;)iicm — HiMjikm
]
+ pj(k; = mj+ V)i a,m + pj(mj + 1)ik7Aj,mfAj:| dt
(2.36)

which give the positive edge transition terms for s and i, respectively.

2.1.11 Negative edge transitions

A negative edge transition refers to the change in a node’s configura-
tion when an adjacent event is forgotten over an interval dt, causing a
decrease in the number of memorable events on that edge. As defined
above, this occurs with probability V]'di‘. When an event terminates on
an edge of type j, it gains an edge of type j — 1, and loses and edge of
type j, conserving the total degree k.

The relations between node classes due to negative edge transitions
are the reverse of their positive counterparts. We write them below for
completeness.

A node in configuration (k, m) moves to the class (k — A;_;, m), if
an event on a j-type edge terminates while connected to a inactive
neighbour, such that

W(Sk’m — Sk—A/-,l,m)dt = U](k] — m])dt (2.37)
If the j-type neighbour is active, we have
W(Sk,m — Sk—A];l,m—qu )di’ = v]m]dt (2.38)

Similarly, nodes may enter the configuration (k, m) with a negative
edge transition via the classes (k + A;, m) and (k + Aj, m + A;) as fol-
lows. If the event terminates between a node and a inactive neighbour,
we have

W(Sk+AH,m — Sim)dt = vj(kj — m; +1)dt, (2.39)

63



64

MATHEMATICAL METHODS

and if the event terminates between a node and an active neighbour,
we have
W(5k+A]-,1,m+Aj,1 — Skm)dt = vj(m; +1)dt. (2.40)

Combining these terms gives the flow through the configuration (k, m)
due to negative edge transitions. Note the boundary condition, namely
that a j = 0 edge is the case where no events have taken place in the
last # interval. As such, a node cannot lose a 0-type edge through a
negative edge transition, and we reflect this by writing vy = 0. Negative
edge transitions combine to give the term

dsltii = Z[—I/](k] — m]-)sk,m — vjm]-sk,m
J
+Vj (k] - m] + 1>Sk+A]-,1,m + 1/](n/l] + 1)Sk—A]-,1,m—Aj,1 dt
(2.41)
and
dlﬁ(fn = Z{—V](k] — m]-)ik,m — V]'m]'ik,m
j
—H/]'(kj —mj+ 1)ik+AJv,1,m + vj(mj + 1)ik—Aj,1,m—Aj,1 dt
(2.42)

which we combine with the other terms below.

2.1.11.1  Combining the configuration flows

Combining these terms for positive and negative edge transitions,
the total flux through the class (k, m) due to changes in edge state can
be written ;

0S n
S\ s = dSp o +dS 8. (2.43)

,m k,m

As such, the rate equation governing the configuration (k, m) can be
written

d

TS (Azgo + Afzeigh + Ange)S = Asgs (2.44)
d. j i TN .

Fril (Abgo + Aeign + Avdge)i = Ai (2.45)

where 5°° transitions are those due to infection and recovery of nodes,
Seigh are transitions due to neighbour infection and recovery, and
S¢dge are transitions due to edge activity. Clearly, if edge state is
fixed, as is the case in static networks, then W =vj = 0, then we
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have Sf(dlglf = Ilidf = 0. This is the case for our studies of weighted
and mlﬂtiplex networks in Chapter 3 and 4, where we allow edge
heterogeneity, n > 1, in order to study different weight and layer
configurations. Setting n = 1 recovers the static edge-homogeneous
master equations [86, 87].

The explicit equations above can be viewed as the result of the
matrix, vector product s; = Z]- a;jS;. Also, diagonal terms are neces-
sarily negative and correspond to outflow from s;, Off-diagonal terms
are positive, and correspond to inflow from other classes. In other
words, a;; = (—1)5"f|al-j|, where J;; is the Kronecker delta. Explain
that basically, the matrix representation is necessary for the numerical
implementation.

2.2 REDUCED DIMENSION MASTER EQUATIONS

As seen in Section 2.1.5, the system of ODEs resulting from a (k, m)
partition of configuration space is exponentially large in n, the dimen-
sion of the vectors k and m. Such as system may still be practical,
i.e., much faster than the corresponding Monte Carlo simulation, espe-
cially since low dimensional systems can be very useful (we study a
non-recovery system, with k = 3 and n = 2, yielding just 20 equations,
which is extremely fast to solve). However, for larger k and #, the
number of equations |C| quickly becomes overwhelming, in terms of
memory, and the Runge-Kutta solution in Section 1.7.1 is linear (in
space and time) in system size. In this section we extend a technique
introduced in [87] to decrease the system size by transforming the ODE
variables.

Note that this is applicable only to threshold models,® so nodes
cannot recover and we do not need to solve for iy ,,. We can write such
a system explicitly, with the |C| ordinary differential equations

n n
S‘k,m = _Fk,msk,m - Z ﬁ?(kj - mj)sk,m + Z ﬁ; (k] —mj + 1)Sk,m7e]~

j=1 =1
(2.46)
To reduce the dimension of Eqn. 2.46, we need to consider system-wide
quantities that are more aggregated than sy ,,. One is the probability
that a randomly chosen node is active, i.e., the fraction of active nodes
in the network, Eqn. 2.5. The other is the probability v;(t) that a

8. More precisely, we mean any model that can be expressed in terms of a step-
function adoption rate. This includes threshold models that allow spontaneous adoption,
that are built of conditionals, such as the and and or multiplex rules, as well as relative
and absolute threshold rules
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randomly chosen neighbour (across a j-type edge) of an inactive node
is active,
Ym MiSiom (1)
vi(t) = - (2.47)
]( ) ;pk kajsk,m(t) 47

We start by proposing an exact solution for the AME system in form
of the ansatz

n
Skm (1) = efptl—{Bkj,mj [vi(t)] for Sim € S|r=p, (2.48)
]:

where Bkj,mj is the binomial distribution? and v; is given by Eqn. 2.47.
The meaning of the ansatz in Eqn. 2.48 is quite intuitive and considers
two processes. First, an inactive agent with k; edges of type j and
m; active neighbours across these edges is connected to the m; active
nodes with the binomially distributed probability B (vj). Second,
for g, < ¢qi an inactive node does not fulfil the threshold rule and can
only get active spontaneously with probability e !, since the system
is progressively filled via spontaneous infection. Considering these
processes as independent we end up with the product in Eqn. 2.48.

The next step is to insert the ansatz (2.48) into the AME system, writ-
ten explicitly in Eqn. 2.46, and derive a set of ODEs for the aggregated
quantities p and v;. Taking the time derivative of Eqn. 2.48 (i.e. the
left-hand side of Eqn. 2.46) we get

n Tm: ki—m:

: _ ] ] I

Skm = (Z lv - 1_1/] vi— P) Skm- (2.49)
j=1 ] ]

Then, we use the threshold rule given by Eqn. 1.30, those classes (k, m)

for which g, < ¢qy, the ansatz (2.48) and the binomial identity

B . 1-— I/j m] B

(vj), (2.50)

in the right-hand side of Eqn. 2.46 to obtain

- g 1-y
—p+ Zﬁ] m]—k]+7m] Sk,m =
=1 j

n n
—Fk,msk,m — Z 'B; (k] — mj)sk,m—l— Z :B; (k] —m;j + 1)Sk,m—ej-
j=1 j=1

(2.51)

9. The binomial term is given by

Be,m; (9) = (
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Equating Eqns. 2.49 and 2.51 as in the AME system (2.46), and separat-
ing terms for a given value of j from the rest (i # j) leads to

(1 —vj)m; + v;(m; k]-)< vj _5]>

vj 1—1/]

i(l_vi)mi“‘vi( i )(ﬁs 1 Ui )
_—

iZj Vi

(2.52)

Since the left-hand side of Eqn. 2.52 depends on the function v; and
its derivative only, while the right-hand side depends on the rest of
the functions v;, both sides must be equal to some constant c;. For the
left-hand side, this means that
vj Vi
| B =ci—L— Vmj,k
1-— 1/]' '8] C] m] - V]k] m], I (253)

For the ODE (2.53) to hold regardless of the values of m; and k;, we
need ¢; = 0. Then, the condition on v; such that the ansatz (2.48) is a
solution of Eqn. 2.46 is

= B;. (2.54)

This ODE has the initial condition v;(0) = 0, obtained by evaluat-
ing Eqn. 2.48 at t = 0 and comparing with the expression B m; (0),
which corresponds to an infinitesimally small initial infection randomly
distributed in the network.

Now, we wish to extend a general result derived by Gleeson in [87]
[Eqns. (F6)—(F10) therein] to the case of edge heterogeneous networks.
We start by multiplying Eqn. 2.46 by py (k; — m;) and summing over
all classes (k, m),

at Z pi(k m] Sk,m = — Z Pk(kj - mj)Pk,mSk,m

- Z Px zﬁs (kj — mj) [(ki = m;)s1em — (ki = 1 4+ 1)Si m—e, ]
(255)

From the definition of ‘B; in Eqn. 2.25, the first term on the right hand
side of Eqn. 2.55 may be written as

— B3 ) pi(kj — mp)sim. (2.56)
k,m
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As for the second term on the right hand side, when i = j the term
telescopes to Eqn. 2.56, and for i # j it telescopes to 0. Overall, we can
rearrange Eqn. 2.55 and obtain

1d
B; = Eﬁln Z P (kj = 1m;)Sicm- (2.57)

Since ‘Bj = —% In(1 —v;j) from Eqn. 2.54, equating Eqns. 2.54 and 2.57
implies that
d; (1—1/ Zpk (kj — m;)S1cm, (2.58)
k,m
with d; a constant that can be determined from initial conditions. By
using Eqn. 2.48 we have sy n, (0) =TT Bk/.,mj(O), and since v;(0) = 0 and
By, m;(0) = d, 0 with ¢;; the Kronecker delta, we have

n
dj = kz Pk(kj o mf) HBkifmi(O) = ;pkk]' = Zjr (2:59)
,m i=1

where z; is the average number of j-type edges a node has in the
network, or average j-degree. Thus,

Y pic(kj —mj)sim = zj(1— 1/]-)2. (2.60)
k,m

The next step is to use Eqn. 2.60 to find a new expression for f; and
thus write the ODE (2.54) explicitly in terms of v;. Noting that the
left-hand side of Eqn. 2.60 is the denominator in the definition (2.25) of
/3}?, we get

1
B “za—v)e |P Y. pilkj—mp)sim + Y piclk; = mj)sim
I J7 L Sle=p Slr=1
- : 5 |z =) =(1=p) Y prlkj—m))sicm
Z](l —1/]') S|F:1
1 —pt kj

:1_1/, l_Vj_(l_ Epk Bk —1,m; V] HBkm, Vl)

J Sle=p % i#]

where the sums ZS\F:,, and Ys|p_, Tun over all sets Sy, that lead
to adoption rates F , = p and F, = 1, respectively. Essentially,
we’re exploiting the fact that the threshold condition partitions the
network into two classes - those that satisfy the threshold rule, the set
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of configurations S|r—; and those that don't, the set of configurations
S|F=p- We have also inserted the ansatz (2.48) and the binomial identity

ki(1—v;)
B@WWAZAEj%fmFM¢w) (2.61)

to simplify the expression of 3. Moreover, it is useful to introduce the
response function of the monotone, threshold-driven dynamics of our
model,

0 Fk,m =p
1 Fm=1,

f(k,m) = (2.62)

a function that activates when a (k, m)-class node fulfils the threshold
condition and gets active, in order to invert the restricted sum of
Eqn. 2.61,

n
Y Bi1m (V) HBk (Vi) =1 =Y Beo1 (V) [ T B, (i)
Sle=p S|p=1 i#j
(2.63)

Overall, comparing Eqns. 2.54 and 2.61, we can write an explicit ODE
for v;
]!

d
L= gi(w.1) — v, (264)

withv = (v1,...,v,)", j=1,...,n, and the function gj(v, t) given by

siv,t)=fi+(1—fi) ), Pk Bk ~1,m; (Vj HBkz,m, v;),  (2.65)
Sl i i#]

where we have defined f; =1 — (1 — p)e .

Even though the system (2.64) is closed and in this sense equivalent
to Eqn. 2.46, we may also derive a corresponding ODE for p, since
we are mainly interested in the temporal evolution of the fraction of
adopters in the network. Using Eqns. 2.5 and 2.46 we have

- 2 pksk,m = Z PkPk,msk,m
k,m

+ ZPk Z B;[(kj — mj)sim — (kj — mj + 1)siom—e;],

(2.66)

69



70

MATHEMATICAL METHODS

where the second term in the right-hand side telescopes to zero. Then,
we use an algebraic manipulation similar to that of Eqn. 2.61 to obtain

P=p Y PSikm+ Y PkSkom

SlF=p Slr=1
n
=1—p—(1—=ple ™ Y p] [Brjm 1))- (2:67)
S‘F:p j=1

Thus, the ODE for p is

d
P = h(v,t) —p, (2.68)

where the function h(v, t) is given by

W) = fi+(1—f) ¥ pkf{Bkj,mj ). (@6
1

S|p=1

Combining all of these results, the AME system (2.46) is reduced to
the closed system of n coupled, non-linear ODEs by solving for v;, or a
system of n + 1 ODESs by solving for both v; and p,

v =gi(v,t) —vj, (2.70a)
p="h(v,t)—p, (2.70b)

with the quantities g;(v,t) and h(v, t) given explicitly by Eqns. 2.65
and 2.69. Note that in contrast to the full AMESs, the system is no longer
autonomous due the e P! factors in g and h.

2.2.1  Complexity of reduced system

The reduced dimension master equation system given by Eqn. 2.70 is
of dimension 7 if one is solving only for v, or of size nn + 1 when solving
simultaneously for both v and p. While the system size is relatively
small (with n = 2 or 3 in the systems studied in Chapters 3 and 4),
each equation involves summing over the entire configuration space. °
This is very large compared to 7, growing exponentially as outlined in
Table 2.1. In contrast, the corresponding full system, Eqn. 2.46, entails
|C| equations, and at most 21 + 1 terms per equation. Thus, the number
of operations is of the same order when integrating the two systems is

10. Technically only sums over the subset S|r_1, but this is on the order of |S|. In
practice, this may involve iterating over all S anyway, and determining for each class
(k, m) whether F = 1.
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Table 2.2 - Size comparison of the full and reduced master equation systems.
Since the reduced solution, Eqn. 2.70a, assumes a threshold dynamic which is
monotonic, the full solution we compare to is Eqn. 2.46.

system size Tterms per equation
full solution IC| o@2n+1)
reduced solution n o(|Cl)

t the multiplicative constant for the big O is 1, 2n + 1 and |C| being strict upper bounds.

approximately the same, with the reduced system shifting the burden
of the number of equations |C| to the sum of terms on the right hand
side of the equation. Quite simply, instead of having a large system
with a small number of terms to sum in each equation, the reduced
system has a small number of equations, each involving a sum of a
very large number of terms.

Despite this seeming equivalence, note that there are potential sav-
ings in space, because it is not necessary to store the entire set of
configurations C, which can be immensely costly in heterogeneous
systems. If one knows the support of the distribution py as well as n,
one can construct the set of configurations on-the-fly, and thus calculate
the terms py, k;/zj, Bkj—l,m]-(vj) and By, ,,, (v;) in Eqn. 2.65. That is, we
store only the n values of v, and generate the full set of (k, m) at each
Runge-Kutta step. However, if savings in space are intended to be
made in this way, one must sacrifice the large amount of time required
to repeatedly generate the space C.

A much more concrete saving afforded by the reduced system is in
regards to its stability analysis. That is, if the dynamical system in the
full solution is described by the density of states s, and its trajectory s(t),
then the reduced solution involves the study of v(t). Studying these
trajectories under small perturbations of the initial conditions sheds
light on the stability of the dynamical system. This qualitative analysis
amounts to studying a well-known problem involving eigenvalues of
matrices. In the case of the full solution, such matrices are of size
|C| x |C|, but only n x n for the reduced solution. Both reveal system
stability in theory, but in practice, finding the eigenvalues of matrix
of rank |C| is prohibitive, since |C| can grow to the order of 10%, for
example, in a network allowing n = 4 edge types, and degrees up to
k = 10* (see Figs. 2.2 and 2.3). In contrast, stability analysis is well
within reach of the reduced system, which has size n, and we turn our
attention to this in the next section.
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2.3 QUALITATIVE METHODS

If we do not desire the entire spreading curve, for example if the
size of the space |C]| is too large to perform Runge-Kutta integration of
the full or reduced master equations, then we can turn to qualitative
methods that exploit the low dimension of the reduced system.

2.3.1  Linear stability analysis

As discussed in the previous section, it is possible to study the master
equation system qualitatively via stability theory. In so doing, we
derive a cascade condition, as has been done previously for the Watts
model [163] and for complex contagion in homogeneous networks [166].
First, note that it is sufficient to consider Eqn. 2.70a and determine the
stability of the trajectories v(t). The stability or otherwise of v informs
us of the stability of p. Then, we observe that by assuming p = 0,
ft = 0, removing the explicit time dependence in the function g;, such
that g; = gj(v). Then, the system simplifies to

vj = gj(v) —vj, (2.71)

where

k: n
giv) =) Pk;{Bkjfl,mj<Vj)HBki,m; (vi)- (272)

Slp=1 / i#]
We perform a linear stability analysis of the reduced AME system in
Eqn. 2.70a around the fixed point v* = 0, corresponding to a total
lack of infection. If v* is unstable, then a small perturbation (such as
a single active node at f = 0) can drive the system out of equilibrium
and create a global cascade of infection where p > 0, that is, a system
where a non-vanishing fraction of nodes is active in the limit N — oo.
Since the system (2.71) is closed, the stability of Eqn. 2.70 is determined
by the stability of this equation at v* = 0. According to linear stability
theory, a local instability exists if the Jacobian matrix of the system

evaluated at the fixed point,

] 9g;(v)
Jii = —9ji + v, , (2.73)

v=v*
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has at least one eigenvalue with a real part larger than zero. We can
write the partial derivative in Eqn. 2.73 explicitly by expanding the
Bx, m; (v;) factors in Eqn. 2.72,

k: . .

% _ Yk,m F;pkfk,mBkj*l,m]'(V]') Hl’#]' B,m; (vi) J=1
Y kj : .,

Vi Yicm 7, PicfiomBii—1,m; (Vi) By, (Vi) Tlizji By, (Vi) j #

(2.74)
where

i ki—1 mj— i—1—

Bkj—l,m,- (1/]-) — < ij > [m]-v] i (1 — 1/) m;

= (kj =1 —=mj)y; D=yl
(2.75)

and By, . (v;) is written similarly (by making the changes j — i and
ki —1 — k;). Then, for j = i we analyse terms in the sum over m at
the fixed point v* = 0. That is, for m; = 0 we have Bkj—l,o(o) =1—k;
but since By, ., (0) = d,,0 and f(k,0) = 0 for ¢ > 0 (for all threshold
rules), the associated term in Eqn. 2.74 is zero. For m; = 1 we have
Bkj—l,l (0) = kj — 1. Finally, for m; > 1 we get Bk]-—l,m]- (0) = 0, so the
only non-zero term corresponds to m; = 1. By a similar argument, for
j # i the only surviving term in Eqn. 2.74 is Bki,l(o) = k; (for m; = 1).
Combining these results, we can write 2.73 explicitly as

]1 = + 2 k - 5 Pkf(k, ei)r (2-76)

where e; is the i-th basis vector of dimension #n. The Jacobian matrix J*
of Eqn. 2.76 encodes the structure of the network, namely the distribu-
tion of degrees and heterogeneous quantities such as weights and layer
via py, as well as node dynamics via the response function f(k, e;),
which provides the response of a node with degree vector k to a single
active neighbour across an i-type edge. The eigenvalues A; of J* are
obtained by solving the characteristic equation det(J* — A1) = 0. Then,
the cascade condition for complex contagion over multiplex networks
(in the case p = 0) is

Re(A;) >0 (2.77)

for at least one j € {1,...,n}. Even though we cannot write an al-
gebraic formula for A; when n > 4, we can compute the eigenvalues
numerically. We may also find an explicit expression for the cascade
condition in simple cases such as when n = 1,2 or 3. This is done in
Chapters 3, 4 and 5.
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Table 2.3 — We provide some approximate bounds on linear stability and
phase space analyses of our system of ODEs. These provide upper bounds,
asymptotic in the maximum degree of k, with constant edge heterogeneity n.

upper bound
linear stability O(k")
vector field O (k)

2.3.2  Phase space analysis

Another related qualitative method that we can use to gain insight to
the system (2.70) is phase space analysis. Since our system is entirely
described by the probabilities v, the time evolution of the dynamical
process is given by paths through the n-dimensional space spanned
by v;. In other words, given some initial condition v*, the dynamical
process is represented by a trajectory in v-space. Taking the set of
possible initial conditions gives the flows through the phase space of
the system.

Instead of finding the trajectory itself [this would amount to integrat-
ing Eqn. 2.70a over time to obtain the curves v(t)], it can be easier to
study the vector field associated with the velocities of the trajectories,
in other words, the tangents v, around a fixed point. When that point
corresponds to the initial conditions, we can gain a picture of the sta-
bility of the system. Graphically, the stability of the initial conditions
can be easily identified; limit cycles as opposed to a divergent velocity
field.

Concretely, to find v we evaluate gj(l/, t), given by Eqn. 2.65 at (v*,0),
for a region about v* = 0. Linear stability analysis, see Section 2.3.1,
via the eigenvalues of the linearised system, implicitly contains the in-
formation that we obtain by visualising the velocity field. In particular,
combinations of signs of the eigenvalues of the Jacobian describe the
velocity field.

2.3.3 Complexity of qualitative methods

To determine the computational complexity of linear stability analy-
sis, we recall that we require the 1% elements of the Jacobian J*, as per
Eqn. 2.76. The computation of each element | 1’; assumes that all sets
Sk.m are unpopulated, except for those with m = 0. This is simply the
initial condition of v = 0 at time ¢ = 0, and is why there is no sum over
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m in Eqn. 2.76. As a result, it is sufficient to sum over the classes (k, 0).
This was precisely our assumption in Section 2.1.5, when estimating a
lower bound, asymptotically in k, on the number of classes with total
degree k. This was shown to be k"~!, and assuming that each k' < k
has this maximum amount provides an upper bound on the number
of k across the network. Thus, k x k"~ = k" provides the order of
terms required for evaluating each element in [*. We then perform
an eigenvalue decomposition of J*, which assuming a QR algorithm **
requires O(n?) floating point operations.

In contrast to linear stability analysis, vector field analysis of v-
phase space involves iterating over the full set of classes (k, m), if not
to include them in the sum, to determine whether they satisfy the
condition Fy ;, = 1 (see Eqn. 2.72). As we saw in Section 2.1.5, such
an iteration entails O(k?") classes. Note that despite the vector field
usually being about the fixed point v = 0, the entire configuration
space will be in fact be populated. This is why we cannot apply the
(k, 0) reduction above, and is precisely why this analysis works.

Finally, it is useful to underline that one only has to cycle through
the relevant configurations once, meaning we do not have to store
their values in memory. This is in contrast to Runge-Kutta methods
for finding the trajectories v (t) over time, which involves Alt iterations
through C, if T is the time taken to reach steady state, and At is the
time step. These results are summarised in Table 2.3.

2.4 COMPARISON WITH OTHER METHODS

Here we briefly review alternative mathematical methods frequently
employed in the literature to model spreading processes on networks.
Each differs in some way from our master equation approach, and we
highlight the different settings and applications in which such methods
are useful. We also briefly mention how a pair-approximation method,
as well as a mean field approximation can be derived from our master
equation method.

2.4.1 Branching processes

A central assumption in our master equation derivation is that the
dynamics occur on infinite networks, where spreading outcomes that

11. The QR algorithm computes the so-called Schur decomposition of a matrix. It is
the workhorse of eigenvalue decomposition, especially for dense matrices. In our case,
J* is clearly dense in general. This can be seen by considering the summand in Eqn. 2.76,
which will clearly be non-zero in general. See [197] for more details.
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are small and finite in experiment correspond may correspond to
o = 0 analytically (see Section 4.6 for further discussion). As such, we
simulate networks that are as large as possible, observing increasing
agreement between Monte Carlo simulation and analytic solution as
network size grows. In particular, we see reduced fluctuations about
the average behaviour. On smaller networks, stochastic effects are
important in determining the final outcome. Different approaches are
thus required to describe the distribution of results among realisations,
and effect that a system of ordinary differential equations are unable
to capture. A typical solution here is to use branching processes [99].

Branching processes is a broad term that encompasses a number of
analytical techniques. However, all such techniques use some kind of
tree structure approximation. Initial works, such as [198] and [149]
don’t even use the term “branching process”, but use its key features
of tree-like assumptions and generating functions. Since these works,
a large number of studies have used similar techniques to extend to
different settings [89, 91—93].

Following the treatment in [89], we outline some of the key quantities
that arise in branching process analyses. The offspring distribution,
denoted by g, where k € {0,1,2,...}. Roughly speaking, this distribu-
tion gives the likelihood that if a cascade of activation reaches a node
(i.e., if one of the node’s neighbours becomes active), that the node will
activate and expose k other neighbouring nodes to potential activation.
For an undirected network,

k+1
z

gk = Pk+1%k+1- (2.78)

This uses the probability k;r—lpkﬂ that a randomly selected neighbour
of a node in a configuration model network has degree k + 1. The
quantity v is the probability that a node i of degree k is vulnerable,
meaning that the activation of a single neighbouring node (at time t1)
will lead to the activation of node i at some time t > t;, assuming
no other neighbour of i becomes active by time ¢. Then, r = ) §i
is the probability that a node reached by travelling along a random
edge is vulnerable. This is then related to the offspring distribution as
follows. An exposed vulnerable node has k' inactive neighbours with
probability §/r, and since each inactive neighbour is vulnerable with
probability r, the offspring distribution is given by

1& . (K ;o
Gk = Y e (k>rk(1 — )k (2.79)
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Finally, the branching number defines whether the dynamical pro-
cess on a given network is subcritical, critical, or supercritical. The
branching number is the mean of the offspring distribution, in other
words, the expected number of “children” per “parent,” and it can be
expressed as:

&=Y kqe =Y ki (2.80)
k k

Then we have three cases, the subcritical case ¢ < 1, the critical case
¢ =1, and the supercritcal case ¢ > 1. In the critical case, power-law
distributions of avalanche sizes are observed.

This is sufficient to highlight a weakness relative to the AMEs; it’s not
clear how this handles large thresholds, where more than one active
node is necessary, because vy is by definition for vulnerable nodes.
Further, network size is infinite, but branching process is finite. AMEs
are technically infinite, but deals in probabilities.

2.4.2  Message-passing methods

Similar to the use of branching processes is message passing. Mes-
sage passing solutions for spreading on networks were first introduced
in [85, 88], and recently summarised in [9o]. Once again, this approach
assumes configuration model random graphs with degree distribution
given by py, such that cascades propagate in tree-like dynamics. They
appear to have been introduced to solve for seed size, as the original
threshold model on networks assumed only an infinitesimal seed py.
Unlike branching processes, but like master equations, message passing
gives the fraction p of active nodes in an infinite network.

The original formulation is in discrete time, with time-step indexed
by n. The average final fraction of nodes p is

p=po0+ (1—p0) ;sz (:;) g (1= qoo) T F (%) (2.81)

where g is the fixed point of the recursion relation

gn+1 =po+ (1 —po)G(qn), for n=0,1,2,... (2.82)
with gg = pg. The function G is given by

k k-1 _1-
G =Lin D (5 ) - . ey
k m
Like master equations, message passing solutions can be extended to
a large number of different settings, but with the cost of increased
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computational complexity. Similar to branching process techniques,
message passing can be solved for both discrete and continuous time
[85]. Conveniently, message passing recovers the cascade condition of
[198], that we also see in Chapter 1.

Finally, it is not clear how this handles large ¢. Master equations
can also solve for arbitrary seed size, by incorporating it into its initial
condition, but with the cost of system size. For small threshold values,
message passing is likely to be accurate since it only considers ¢ < %,
i.e. m = 1. In contrast, a master equation naturally stores all m.

2.4.3 Master stability functions

A master stability equation is a tool used to determine the stability
of a systems of coupled oscillators. This approach was originally in
[161], and has since been extended in many other works. A concise
outline of its use is given in [163], which in turn follows parts of [146].
It’s application to a broad class of dynamics of interest is carried out in
[22].

An important difference between our master equation formalism and
the master stability functions is that the ODE system size here simply
the number of nodes N in the network. We associate each node i with
a dynamical variable x; that describes node state, such that the system
evolves according to

X; N
% = W(xi(t)) + ;AijQ(xi(t),xj(t)), (2.84)
j=

where W(x;(t)) describes the “self” dynamics, or dynamics that are
independent of the node’s neighbours. Then, A is the adjacency ma-
trix and Q(x;, x;) describes the dynamical mechanism governing the
pairwise interactions. Instead of solving the system 2.84 explicitly, one
usually performs linear stability analysis, in a manner similar to Sec-
tion 2.3.1. Such an approach is attractive, since we reduce the numerical
integration of the system to an eigenvalue problem. Here, we directly
obtain information regarding stability of equilibrium points, and gain

Another difference between this and our master equation approach is
that the form of x; is unspecified, and can correspond to oscillator phase
as well as binary state or compartment. In fact it is straightforward
to generalise to x;, where the state of each node is defined by a vector
instead of a scalar.



PartII

OVERVIEW OF PUBLICATIONS

In this part, we apply the mathematical methods of Part 1 to
a number of systems. In Chapter 3, we examine threshold
driven contagion on weighted networks. In Chapter 4, we
extend our study of threshold driven contagion to multiplex
networks, where we observe reentrant phase transitions in
cascade size due to a fundamental and widespread model of
multiplexity. In Chapter 5, we generalise previous applica-
tions of master equations to network dynamics by allowing
for temporal evolution of the network structure.






THRESHOLD-DRIVEN CONTAGION ON WEIGHTED
NETWORKS

In this chapter we apply the master equation formalism outlined
in Chapter 2 to a static, weighted network system. We examine the
dynamics of threshold driven contagion on these networks, following
closely the work carried out by Unicomb et al in [190]. Both the main
text as well as its supporting information are followed closely.

Weighted networks capture the structure of complex systems where
interaction strength is meaningful. This information is essential to a
large number of processes, such as threshold dynamics, where link
weights reflect the amount of influence that neighbours have in deter-
mining a node’s behaviour. Despite describing numerous cascading
phenomena, such as neural firing or social contagion, the modelling of
threshold dynamics on weighted networks has been somewhat over-
looked. We fill this gap by studying a dynamical threshold model
over synthetic and real weighted networks with numerical and ana-
lytical tools. We show that the time of cascade emergence depends
non-monotonously on weight heterogeneities, which accelerate or de-
celerate the dynamics, and lead to non-trivial parameter spaces for
various degree and weight distributions. As discussed in Chapters 1
and 2, our master equation approach applies to arbitrary binary state
processes and link properties, and may prove useful in understanding
the role of edge heterogeneities in various natural and social phenom-
ena.

3.1 INTRODUCTION TO WEIGHTED NETWORKS

Weighted networks provide meaningful representations of the archi-
tecture of a large number of complex systems where interacting entities,
represented as nodes in a graph, are connected with links weighted by
the strength of their interactions. Weighted networks are ubiquitous
across a range of systems, from biological [104] and ecological [139],
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to infrastructure [18, 158, 203], social [46, 96, 153, 196], information
and economic [7, 101] systems. A number of these were highlighted
in Section 1.2. Their analysis has been in focus from the early stages
of complex networks research [144, 195], with several measures [154,
155, 174] and models [19, 204] introduced. These studies show that link
weights in real networks are usually heterogeneous, may be correlated
with the network structure [96, 152], and can even capture signed rela-
tionships [183]. More importantly, weights help to differentiate links
of varying importance, influence, and role. On a microscopic level,
weights identify the most relevant neighbours of a node [168]; on a
network level, they indicate links with special roles or positions in the
system [96, 152]. Such information is crucial for dynamical processes
evolving on weighted networks. Examples can be found in epidemi-
ology, where important ties maintained by frequent interactions may
enhance the spread of disease locally, while ties with infrequent interac-
tions but located between densely connected parts of the network may
suppress spreading globally [152, 208]. Link weights are also relevant
in phenomena like random walks, spin models, synchronization, evo-
lutionary games, as well as cascading failures. Despite this, weighted
networks have been less studied than their unweighted counterparts,
especially for threshold driven processes, which play an essential role
in systems of self-organised criticality [12, 59, 112], epidemiology [115],
firing neurons [79, 125, 181], or social contagion [96, 198].

In threshold models on networks links are usually considered un-
weighted, such that the stimuli or influence arriving from each neigh-
bour contributes uniformly to reaching the behavioural threshold. Al-
though this assumption simplifies their modelling, it does not lead to
an accurate representation of real world dynamics. For example, in
neural systems synaptic connections have weights that quantify the
strength of incoming stimuli, and contribute unequally in bringing
neurons to an excited state, as recognised recently in models of neural
population dynamics [108]. In social systems, link weights are asso-
ciated with tie strengths that quantify the influence that individuals
have on their peers. Measurement of tie strength is a long-standing
challenge, but it is generally accepted that social ties are not equal, as
some are more influential than others on one’s decision making. Sur-
prisingly, apart from some recent studies [60, 106, 122], weights have
been commonly overlooked in models of threshold driven phenomena.

Our aim is to close this gap by exploring the effect of weight het-
erogeneities on threshold driven contagion processes. We first study
a dynamical variant of the Watts cascade model on a simple system,
a random regular network with a bimodal weight distribution. We
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then provide an analytical solution of the dynamics, for arbitrary
degrees and weights, together with numerical simulations and com-
binatorial arguments to show that the speed of spreading depends
non-monotonously on the strength of weight heterogeneities and may
radically accelerate or decelerate with respect to the unweighted case,
even for fixed thresholds. We also observe this effect under more re-
alistic synthetic scenarios, such as scale-free networks and lognormal
weight distributions, as well as in data-driven simulations over large-
scale empirical weighted networks. Our contribution is a meaningful
step forward in the largely unexplored modelling of dynamical pro-
cesses with heterogeneous interactions, typical in neural systems and
social contagion. Moreover, our results may have broader implications
as our methodology is not specific to threshold dynamics and may
be easily extended to any binary state process, while our study and
conclusions may be useful in accurately modelling other dynamical
phenomena over weighted networks.

3.2 THRESHOLD MODEL AND APPROXIMATE SOLUTIONS

To study threshold driven dynamical processes over weighted net-
works we build on the seminal model proposed by Watts [198], which
we outlined in Section 1.6.2. Following its standard formulation [119,
166, 176, 198], we define a monotone binary-state dynamics over a
weighted, undirected network of size N. Degrees take discrete values
k=0,...,N —1 according to the distribution* py, and edge weights
w > 0 are continuous variables with distribution py,. The edge weight
wyy represents the capacity of connected nodes u and v to influence
each other. Denoting the set of neighbours of node u by N (u), the
total influence upon u is qx = Yy pr(u) w(1, v). Like in other conven-
tional models of spreading dynamics [163], nodes can be in one of
two mutually exclusive states, inactive (also called susceptible in the
epidemiology literature, initially accounting for all nodes), or active
(also called infected in epidemiology literature). An inactive node can
become active either spontaneously with rate p [119, 166], or if the in-
fluence of its active neighbours exceeds a given threshold ¢ (0 < ¢ < 1)
of its total received influence. Restricted to active neighbours, N (u)|;,
node influence is given by qm = Yycpr(u), w(u,v). If the condition

1. Alternatively, py is the probability that a randomly selected node has degree k. A
problem in these model descriptions is that the distribution p is routinely overloaded,
used for degree k, weight w and threshold ¢, which are written py, p, py. Incidentally,
we follow the notation of Newman, favouring subscripts to deal with this overloading,
writing py rather than P(k), for example.
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Figure 3.1 — Threshold driven contagion and cascade evolution on weighted
networks. (a) Parameter dependence of the time t, of cascade emergence (main
panel) on a random regular network with degree k = 7, and bimodal weight
distribution with mean 5, = 1 and standard deviation o, (for further details
see text). Cascade speed is measured by the time ¢, to reach p = 0.75 activation.
For fixed threshold ¢ and varying oy, t, changes non-monotonously, while
for fixed 0y, and varying ¢, dynamics slows down for increasing ¢ (top/right
panels, corresponding to horizontal /vertical dashed lines in main panel). (b-c)
Spreading time series p(t) for selected parameter values in (a). Simulation
results in (b-c) are averages of 25 simulations with p =2 x 107 and N = 10%.

qm > ¢qy is fulfilled, a node becomes active and remains so indefinitely.
In the special case of discrete weight distributions, the above expres-
sions can be written g = k- w and 4, = m - w. For simplicity we
assume that all nodes have the same threshold ¢, just as in many other
studies [176, 198].

We explore this model analytically using the master equation for-
malism laid out in Chapter 2. In particular, since we assume discrete
edge-weight distributions, each weight value w; can be directly associ-
ated to an edge type j. Then, a node’s local configuration is entirely
described by its class (k, m). Since the network topology is static, the
edge transition rates y; and v; are zero, and the configuration flows
are given by the matrices Aego and A,;gp- In the case of non-recovery
dynamics, such as the threshold rule to be explored, the matrix A can
be assumed to correspond to the inactive configuration space S. In
other words, it is sufficient to solve only for the inactive densities sy .
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In threshold driven contagion, an inactive node can become active in
two ways, either spontaneously with rate p, or if its weighted threshold
¢ is reached. As such, the activation rate of inactive nodes in class
(k,m) is Fxm = 1 when g, > ¢q, and p otherwise. Isolated nodes,
or the (0,0) class, are unable to activate unless they make up part of
the initial seed. These properties are specified by the “Watts thresh-
old” rule in Table 1.4. The stepwise nature of Fy n, is exactly what
allowed us to map the rate equations for sy , and iy y, to the reduced-
dimension system in Chapter 2, and we solve Eqn. 2.70 provided the
initial conditions p =0and v =0at t = 0.

3.3 REGULAR NETWORKS WITH BIMODAL WEIGHTS

In this section we consider a number of tools in order to understand
the role of edge weights in threshold driven contagion. To appreciate
the role of both degree and weight heterogeneity, we examine in detail
the case of degree-regular networks with bimodal weight distributions.
The results obtained in such a setting motivate the use of straightfor-
ward “combinatorial” arguments that build a microscopic picture of
spreading dynamics. These arguments can be extended by examining
asymmetries in active-active, and inactive-active edge types.

3.3.1 Relative versus absolute spreading times

To study the dynamics of our model we first consider a simple struc-
ture, namely a configuration-model k-regular network, with k = 7.
Edge weights are sampled from a bimodal distribution with n = 2
values, denoted strong and weak, or w; and w,, respectively. The
weight distribution is characterised by its average ji,,, standard devia-
tion 0 > 0, and the fraction 4, of strong links?. Thus, weights take

the values

-7z
0z

z

w1 = Yw + 0w 1—5.
— 0z

and wp = py — 0y

(3.1)

The parameter 6, contributes to the skewness of py,, initially fixed to
the symmetric case 6, = 0.5. The parameter oy, interpolates weight
heterogeneity between the homogeneous case of an unweighted net-
work (0, = 0), and the most heterogeneous case of a diluted network

(0w = pwy/ (1 — 0;)/6;, obtained by setting w, = 0 in Eqn. 3.1), where

2. Whereas ¢, is the fraction of strong links here, with 0 < J, < 1, in Chapter 4 it
will be the ratio of strong to weak links.
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Figure 3.2 — Relative speed of threshold driven cascades on weighted networks.
(a) Relative time t, of cascade emergence on (0, ¢) space, simulated over k-
regular regular networks (k = 7) with iy = 1,6, =05, p =2 x 1074, N =104
and averaged over 25 realisations. Time of cascades for given ¢ is either higher
or lower than the corresponding case (0, ¢) of an unweighted network. (b-c)
Selected regions of parameter space in (a), where t, is instead calculated from
the numerical solution of the AME systems in Eqn. 2.70. Boundaries are
obtained from a combinatorial argument (see Section 3.3.2) for various (k, m)
classes. For example, the boundary k = (2,5), m = (1,0) separates networks
where nodes with k; = 2 strong links and k, = 5 weak links may (or may not)
be activated by m; = 1 strong active neighbour. (d-e) Quantities characterising
the dynamics in simulations (solid lines) and AMEs (dashed lines) for ¢ = 0.25
and oy, corresponding to the unweighted case, as well as to a slow (d) or fast
(e) cascade. Quantities are the activation density p(f) (upper panel), and the
aggregated activation rate Fy ,(t) for various numbers of active neighbours m
(lower panel).

only strong links have influence and the weak are functionally ab-
sent. After fixing the spontaneous activation rate p and edge skewness
6, our model has only two parameters, 0, and ¢ (Fig. 3.1a). Simi-
lar to other dynamical cascade models [119, 166], contagion initially
evolves at a linear rate close to p until the density p(t) of active nodes
reaches a critical value, triggering a rapid cascade of activation that
spreads through the whole network (sample scenarios in Fig. 3.1b-c).
Thus, to characterise the speed of dynamics we introduce the quantity
t;, the time when activation density reaches a set value (0 = 0.75),
called the absolute time of cascade emergence. We measure t, via
numerical simulations of the (cy, ¢) space (Fig. 3.1a), which shows
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unexpected dependencies on both parameters. On one hand, for fixed
0w and increasing ¢ the dynamics slows down, since nodes with higher
thresholds require more active neighbours in order to become active
themselves. This can be seen in the right hand plot of Fig. 3.1a, where
the spreading time increases monotonously for increasing ¢. On the
other hand, for fixed ¢ the dynamics depends non-monotonously on
0w, where cascades may evolve either faster or slower as we increase
weight heterogeneity, relative to the unweighted case, i.e., o3, = 0. This
can be seen in the upper plot of Fig. 3.1a.
We concentrate on the 0y, dependency by calculating

_ ta(0, ) — ta(ow, §)
ta(0,¢) ’

the time of cascade emergence relative to the unweighted case with
the same ¢ value. (Fig. 3.2a). The relative time t, will be positive if
the weighted process evolves faster than the unweighted case, zero
if they evolve at the same speed, and negative if slower than the
unweighted case, such that —co < t, < 1. The (0w, ¢) space for ¢, is
highly structured and driven by competing effects of key (k, m) classes,
which either reduce or enhance the speed of the spreading process with
respect to the unweighted case. We also explore the corresponding
numerical solution of the AME systems in Eqn. 2.70, as well as an
independent combinatorial solution for the boundaries between regions
of low and high cascade speed (Fig. 3.2b-c) (see Section 3.3.2). Both
the AME and combinatorial solutions perfectly recover the parameter
space obtained by simulations. To explore how weight heterogeneities
produce slow or fast cascades, we partition the system according to the
total number m = }_; m; of active neighbours required for activation,
and measure the aggregated activation rate

ty (3-2)

Foo(t) = Yiom PicFimSkom (f)
o Zk,m pksk,m(t)

(3-3)

as well as other determinant quantities in several spreading scenarios
(Fig. 3.2d-e).

In the neutral scenario, all (k, m) classes of the weighted network
share the same dynamics as the corresponding (k,m) class in an un-
weighted network, so F;,, = p or 1 and weights have no impact on
contagion, meaning t, = 0. In a decelerating scenario like ¢ = 0.25
and oy = 0.3 (blue curve in Fig. 3.2d), F ,, for any m is equal to its un-
weighted counterpart, except for the m = 2 class, whose activation rate
is 1 in the unweighted case but strongly suppressed in the weighted
case. Consider that m = 2 active neighbours are always sufficient to
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trigger activation in the unweighted case, but configurations such as
k = (5,2), m = (0,2) are stable in the weighted case, since two weakly
influencing active neighbours are unable to overcome a node’s thresh-
old, due to the presence of strongly influencing inactive neighbours.
As such, the overall spreading speed is reduced.

In contrast, in an accelerating scenario, like ¢ = 0.25 and o, = 0.7,
competing effects from various (k, m) classes determine the emergent
dynamics (red curve in Fig. 3.2e). The rate Fy,, form = 2,...,4 is
lower than its corresponding value of 1 observed in the unweighted
case. This is due to the fact that m = 2,...,4 active neighbours are
always sufficient to cause activation in the unweighted case, but not so
when 0y, = 0.7. Clearly this amounts to a decelerative effect, as in the
previous case of Fig. 3.2d. However, a key difference here is that for
the class m = 1, Fy 1 exceeds its rate of p in the unweighted case, even if
only by a small amount, due to the presence of classes like k = (1, 6),
where a single active neighbour can induce activation, if that neighbour
is strong, i.e., when m = (1,0). This effect can be seen in the smallest
bump in Fig. 3.5e. Since the m = 1 class is critical in early stages of
contagion, vastly outnumbering classes with m > 1, spreading evolves
rapidly to an early cascade. In other words, the accelerative effect of the
m = 1 class outweighs the decelerative effect of the higher m classes,
due to their relative abundance at early spreading times.

This simple example is illustrative of more general settings, where the
observed dynamics is the result of competition between a large number
of classes with accelerative and decelerative effects. We examine this
effect more systematically in the following section.

3.3.2 Combinatorial description of parameter space

The dynamics of threshold driven contagion on weighted networks
depends on the stepwise activation rate Fy 5, given by the “Watts
threshold” rule of Table 1.4. Considering the case of equality, ., = ¢qi,
and writing g, and ¢, explicitly, we obtain ¢ = m - w/k - w. Noting
that the oy, dependence is contained in the weight vector w, we solve
for k and m, and associate the solution with a unique boundary in
(0w, ¢) space separating regions of differing t,, the relative time of
cascade emergence (see Fig. 3.3). In other words, boundaries for ¢, in
(0w, ¢) space separate network configurations where the corresponding
(k, m) class does and does not satisfy the threshold rule q,, > ¢qy,
thus promoting or hindering spreading. In Fig. 3.3, we enumerate all
possible boundaries for up to two active neighbours in the case of a
k-regular random network (k = 7) and a bimodal weight distribution
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Figure 3.3 — Phase boundaries in (v, ¢) space for a k-regular random network
(k =7) with m = 1,2. (a) Boundaries of regions where just one active neighbour
of type j = 1,2 is sufficient to induce activation. Curves in red indicate that the
associated (k, m) class produces a speed-up effect on the spreading process
relative to the same process on an unweighted network. Conversely, classes
associated with the curves in blue produce a slow-down effect on cascades. (b)
Similar boundaries for the networks where two active neighbours of the same
type are sufficient to cause induced activation, over a range of degree vectors.
(c) Boundaries where one active neighbour of each type causes activation.

(n = 2). This is the setting of the parameter space in Fig. 3.2. Plot
3.3a shows the case where one strong active neighbour, m = (1,0),
is sufficient to cause activation for nodes with k; = 1,...,k strong
neighbours. These curves are shown in red, since the corresponding
node classes induce a faster cascade of spreading compared to the
same process carried out on an unweighted network. Since the weight
vector is W = (piy + 0w, fw — 0w) ! for weight mean pi,, and skewness
0, = 0.5, boundaries can be written explicitly as

= miwy + mpwy Haw (my + my) + oy (my — my) (5.4)
kiwq + kowo pw(ky + ko) + ow(ky —kp) '

Curves in blue are the boundaries where one weak active neighbour,
m = (0,1), is sufficient to induce activation (and a slower cascade
than the unweighted case). These curves are enumerated by the num-
ber of strong neighbours, k1 = 0,...,k — 1. Curves in Fig. 3.3b are
analogous with Fig. 3.3a, except replacing m = (1,0) and m = (0,1)
with m = (2,0) and m = (0,2). Finally, Fig. 3.3¢ corresponds to the
boundaries due to node classes with m = (1,1), where having two
active neighbours, one of each type, is sufficient for these classes to
undergo induced activation.

As a concrete example, the boundary k = (3,4), m = (1,0) in
Fig. 3.2c separates networks where nodes with k; = 3 strong links
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Figure 3.4 — Comparison between numerical simulations and AME solutions.
(0w, ¢) space for the relative time t, of cascade emergence, obtained by Monte
Carlo numerical simulations (a) and the numerical solutions of the full and
reduced AME systems (b), the last two of which are indistinguishable. Numer-
ical simulations consider k-regular random networks (k = 7) with N = 10%,
p=2x 104, and averages over 25 realisations.

and k, = 4 weak links may be activated by just m; = 1 strong active
neighbour. If two networks differ only in the rate of activation of nodes
in this (k, m) class (such that one is vulnerable to activation and the
other is not), we observe a difference in spreading time. In the case of
Fig. 3.2d, the resultant spreading process is faster than its unweighted
counterpart, due precisely to this mechanism.

3.3.3 Accuracy of master equation, an aside

As discussed in Section 3.3.1, the simulated behaviour of threshold
driven contagion over weighted networks, and their corresponding
analytic solutions, are in close agreement. We have illustrated this
similarity by comparing f, values over (0w, ¢) space, as well as by
plotting the temporal evolution of the activation density p and other
quantities characterizing the dynamics. To further compare the (o, ¢)
space produced by Monte Carlo simulation and AME solution, we
show them side-by-side in Fig. 3.4, and quantify their similarity by
computing the mean absolute difference D, given by

1 y B (0, ) — £ (0, p)

D[tr(aun ¢)] = NCTwN(P ~ ffim((fw, 4)) ’ (3.5)
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where N;,, and N¢ are the number of points considered in each di-
mension of the parameter space, and t$™ (o3, ¢) and €0 (g, ¢) are
the relative times of cascade emergence for a given (0, ¢) point, mea-
sured by numerical simulations or AME solutions. This quantity is
very small, D = 1.3 x 1074, indicating that despite making a number
of assumptions during the derivation of the full and reduced AME
systems [Eqns. 2.46 and 2.70], they provide an excellent approximation
of the spreading process with differences due only to small statistical
fluctuations in finite-size numerical simulations.

It is worthwhile pointing out that in many settings, the numerical
solution can be computed orders of magnitude more rapidly than the
corresponding Monte Carlo simulation. Recall that simulation requires
large networks, or a large number of realisations to remove fluctuations,
which are expensive in terms of space and time, respectively (see
Chapters 1 and 2). In contrast, if these systems have small cutoff in
degree k, the cost of computing them analytically is negligible. For
instance, the system in Fig. 3.4 requires only 120 equations each with
less than 10 terms, so an entire parameter space can be produced within
seconds. In contrast the corresponding simulations, if done on large
networks, may take hours.

3.3.4 Bulk and interface of the contagion cluster

As a consequence of the arguments outlined in Section 3.3.2, an
asymmetry is observed to emerge in the fractions of weak and strong
links connecting active nodes, E'/(t), or inactive and active nodes,
ESI(t). Since strong ties contribute the most in reaching the threshold
of a node, they are critical early in the contagion process, and comprise
most ties within the active subgraph. Conversely, weak ties dominate
the surface of the cascade by connecting active and inactive nodes. This
asymmetry in edge type is an essential feature of weighted contagion
that is trivially absent in the unweighted case. This asymmetry evolves
both in cases of accelerated and decelerated spreading, with amplitude
dependent on the absolute value of the relative speed of contagion.

Explicitly, we compute the fraction of j-type links per node, con-
necting two active nodes. We term this the cascade “bulk”, with the
corresponding edge density given by

_ Yiem PiMjitem (1)
Yim PkMilm(t)

Ef(t) (3.6)
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Edges between inactive and active nodes, which we term the cascade
“surface”, are characterised by their densities

_ Lim PrMSim (1)
Zk,m pkmsk,m(t) ’

EFN(1) (3-7)

such that }; E]U =Y E]SI = 1. See Fig. 3.5b and Fig. 3.5¢ for the case of
n = 2. These quantities diverge from J, and 1 — &, their values when
the network is unweighted, with amplitude dependent on the relative
importance of strong links in triggering activation. When weights are
uniform, oy, = 0, we have E{I = Efl = d, and Eél = Egl =1-96,.

3.3.5 Asymmetry in edge types

Up until now we have considered the symmetric case J, = 0.5 with
equal numbers of strong and weak links. However, by skewing the
weight distribution we observe an additional effect of weight hetero-
geneities on the spreading behaviour. When J, = 0.2 the size of the
cascade decreases for large 0, with respect to the unweighted case
(Fig. 3.5a). In this case, despite their sparsity, strong links again drive
the contagion, but are soon exhausted causing spreading to slow down
and continue via spontaneous or infrequent threshold driven activa-
tions over weak ties (Fig. 3.5b). Indeed, strong links dominate the
bulk of the active component, but disappear quickly from its surface
(Fig. 3.5¢). These so-called partial cascades, which do not activate the
whole system through the cascade, are associated with relative sparsity
in the distribution of strong edges, J, < 0.5, as well as sufficiently large
standard deviation in the weight distribution. This effect is reminiscent
of the slow spreading caused by immune nodes, as well as low connec-
tivity networks in unweighted complex contagion, see Refs. [166] and
[198], respectively. Overall, we identify non-monotonous spreading
behaviour and partial cascades as the main consequences of weight
heterogeneities in threshold driven contagion.

3.4 HETEROGENEOUS SYNTHETIC AND REAL NETWORKS

Although regular networks and bimodal weights are useful in charac-
terising the qualitative impact of weights on contagion, they are rather
unrealistic since real complex networks commonly appear with broad
degree and weight distributions [18]. Thus, in the following we explore
how threshold driven contagion is influenced by weights using simula-
tions in heterogeneous synthetic and real weighted networks (Fig. 3.6).



3.4 HETEROGENEOUS SYNTHETIC AND REAL NETWORKS

05| 6z=02 ow 4

log t log t log t

Figure 3.5 — Effect of skewed weight distributions on cascade evolution. (a)
Infection density p(t) on k-regular networks (k = 7) and a bimodal weight
distribution with y, = 3 and 6, = 0.2, both for unweighted (¢, = 0) and
heterogeneous (o, > 0) cases. (b-c) Fractions of strong (j = 1) and weak (j = 2)
links connecting two active nodes in the bulk of the active component [E'!(t),
b] and inactive and active nodes on its surface [ES! (t), c] in the heterogeneous
spreading scenario of (a). Simulations (solid lines) are averaged over 25 realisa-
tions with p = 2 x 107% and N = 10%, and compared with the corresponding
AME solution of Eqn. 2.70 (dashed lines). Horizontal dashed lines are the
expected fractions of weak and strong links as determined by ¢, and 1 — 4.

We expect degree heterogeneities to affect threshold driven processes
since thresholds are defined relative to the degree (or strength) of nodes.
As a first step, we construct synthetic scale-free networks using the
configuration model, with degree distribution p; ~ k=7 and exponent
T = 2.5, but maintain a bimodal weight distribution with py = 1 and
d, = 0.5 as in the previous section (Fig. 3.6a). The increased number
of (k, m) classes (due to degree heterogeneity) fragment (o, ¢) space
with respect to t,, but its structure still exhibits areas of slow and fast
cascades and can be explained using the same arguments used in the
k-regular case. Real world examples of this synthetic structure are
signed social networks, like the network of Wikipedia editors [200],
where degrees are broadly distributed and edge signs indicate the
parity (or binary weight) of a social interaction like trust, intimacy,
or influence. We simulate our threshold model over the Wikipedia
social network by associating 4 and — tie signs with strong (w;) and
weak (w») links, thus obtaining a weighted network with 6, = 0.88 and
arbitrary oy, (Fig. 3.6b) (see Appendix C for data description). Despite
complex structural correlations potentially present in the real data,
the Wikipedia (0y, ¢) space is qualitatively similar to the case of a
synthetic scale-free degree distribution, although these correlations and
the high J, value modify the areas of relative acceleration and decel-
eration. To further validate these observations, we have also analysed
configuration-model random networks and another empirical signed
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Figure 3.6 — Threshold driven contagion on heterogeneous synthetic and real
networks, with network type and weight distribution as indicated. (a) Relative
time ¢, of cascade emergence on (v, ¢) space, simulated over synthetic scale-
free networks with degree exponent T = 2.5, average degree z = 4.54 and
minimum degree ki, = 2. Link weights are bimodally distributed with
Hw = 1 and 5, = 0.5. (b) A signed social network of Wikipedia editors
with heterogeneous degrees and skewed bimodal weight distribution, with
6, = 0.88 (see Appendix C for a description of data). (c) Same as (a) but over a
k-regular network (k = 7) and a lognormal weight distribution with py, = 1.
(d) Lognormally distributed weights over a mobile phone call network with
heterogeneously distributed degrees, and i, = 37.7. Synthetic networks in (a)
and (c) have N = 10* and parameter spaces are averaged over 25 realisations.
Parameter space in (b) is averaged over 103 realisations, while (d) is the result
of a single realisation. All simulations have rates of spontaneous activation
p=2x10"%

network, the Pardus dataset [183] (see Section 3.5 for the corresponding
(0w, ¢) spaces, and Appendix C for data description).

As with degree heterogeneities, weights in empirical networks are
broadly distributed and approximated by scale-free or lognormal dis-
tributions, which we address next by exploring the threshold model
on k-regular networks (k = 7) and a lognormal weight distribution
with average y, = 1 (Fig. 3.6¢). Even though all nodes have the same
degree, a broad distribution of weight values increases the number
of (k, m) classes, smoothing out the (0, ¢) space with respect to the
bimodal case but qualitatively maintaining its non-monotonous pat-
terns of slow and fast cascades. The standard deviation ¢, controls
the skewness of the weight distribution and determines the temporal
evolution of contagion, promoting partial cascades for large o,. Finally,
we consider threshold driven contagion in a large empirical weighted
social network, an aggregated mobile phone call (MPC) network, where
weights are proportional to the number of calls between individuals
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Figure 3.7 — Other heterogeneous synthetic and real networks. (0, ¢) space for
the relative time ¢, of cascade emergence, simulated on a configuration-model
random network (a) and the Pardus signed social network (b). Numerical
simulations on (a) consider networks with N = 10%, average degree z = 7 and
averages over 25 realisations. All simulations correspond to p =2 x 1074

(Fig. 3.6d) (see Appendix C for a description of data). This network
has broad degree and weight distributions [153], communities, degree
correlations and Granovetter-type degree-weight correlations [96]. De-
spite this added complexity, the (0w, ¢) space of the MPC network is
qualitatively similar to previous cases, apart from the magnitude of the
decelerative effect when weights are strongly heterogeneous. As before,
skewness in the weight distribution temporally inhibits contagion and
induces partial cascades. Our data-driven simulations show that, even
in empirical networks of vastly different origins, threshold driven conta-
gion strongly depends on link weights via simple mechanisms that can
be understood by master equations or combinatorial arguments. This
dependence may be responsible for the diverse dynamical scenarios
of threshold driven contagion observed in nature, like the diffusion
of information in techno-social networks, which typically reaches a
limited population, but can occasionally unfold globally through slow
or fast cascades of activation.

3.5 FURTHER HETEROGENEOUS NETWORKS

In the previous section we have seen that, even for heterogeneous
synthetic and real world networks, threshold driven contagion strongly
depends on link weights via simple mechanisms that can be under-
stood by master equations or combinatorial arguments, and develops
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spreading cascades that are either faster of slower than their counter-
parts in unweighted contagion, depending on the values of o, and ¢.
Here we further support this argument by exploring two additional
examples of synthetic and empirical networks. The synthetic structure
is a configuration-model random network with average degree z = 7,
and bimodal weight distribution with average y, = 1 and skewness
0, = 0.5 (Fig. 3.7a). The (0w, ¢) space for t, is qualitatively very similar
to the ones observed for configuration-model k-regular or scale-free
networks, with several fast and slow cascade regimes that start from
values on the ¢ axis determined by the harmonic series of degrees
present in the network. The empirical structure is a signed social net-
work, the alliance / enemy network of the Pardus massive multiplayer
online game [183] (see Appendix C for details). The (0w, ¢) space for
t, (Fig. 3.7b) is somewhat less structured than in the other explored
networks, but still shows regions of fast and slow cascades with respect
to the unweighted case.

3.6 DISCUSSION

In complex networks, weights quantify the strength of interactions
between nodes and distinguish neighbours by the relevance or influ-
ence among them. Threshold driven contagion in empirical settings is
particularly sensitive to link weights, since influence between connected
nodes may vary enormously, thus changing the temporal pattern of
global spreading. Examples of real-world threshold driven processes
over weighted networks can be found in epidemiology, where con-
tagion is enabled by direct human interactions that occur at varying
frequencies thoughout the population [115]. In the case of social conta-
gion, like the spreading of information, service or product adoption,
participation in collective movements, or the adoption of behavioural
patterns, heterogeneities in social tie strengths are relevant as they may
reflect the strength of mutual influence between individuals [46, 96,
152, 208]. In neural systems, the synaptic weight (a function of several
variables) may vary heterogeneously between connected neurons and
even in time due to synaptic plasticity [78, 108]. Despite this broad set
of real-world examples, threshold driven contagion has mostly only
been studied over unweighted networks where links are considered
equal.

Our aim in this chapter has been to address this shortfall by sys-
tematically studying a threshold model on synthetic and empirical
weighted networks. We explore networks with increasing complex-
ity, from configuration-model networks with bimodal or lognormal
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weights, to real world networks with broad degree and weight dis-
tributions as well as multiple correlations. We show that threshold
driven contagion depends non-monotonously on weight heterogeneity,
creating slow or fast cascades relative to the equivalent unweighted
spreading process. Via numerical simulations, master equations and
combinatorial arguments, we find that this effect is the result of com-
peting configurations of degree, weight, and active neighbours that
slow down or speed up contagion. We also observe that an imbalance
in the amount of strong and weak weights leads to partial cascades,
and smoother temporal patterns of spreading than those in unweighted
networks. By analysing many degree and weight distributions, we
show that these features are systematic and thus may drive a variety of
real world contagion phenomena.

Our contribution in [190] opens up directions of research in the
largely unexplored area of dynamical processes with heterogeneous
interactions. First, the weight-based, master equation formalism de-
scribed here can be modified to consider any interaction quality like di-
rection and type, thus providing analytical tools to characterise thresh-
old driven contagion in temporal and multiplex networks [103, 209].
Second, our methodology may be used to describe any binary-state
dynamics and thus a broad class of empirical processes over weighted
networks. We expect our results to find meaningful applications in
fields where threshold driven contagion is relevant, like computational
epidemiology, neural networks, and social contagion. In these fields
our modelling framework, which distinguishes the varied roles and
influence of links, may lead to advances in the understanding and
prediction of specific temporal features of global pandemics, collective
neural firing, or the adoption of innovations and behavioural norms.

In the following chapter, we extend the weighted network model
by introducing multiplexity. Here, weighted edges will be associated
with separate layers of a multiplex network, which allows individual
applications of the threshold rule by edge type. We shall see that the
effects of edge weights in a single layer case, in particular the competing
accelerative and decelerative effects of a given weight distribution,
inform the dynamics when the number of network layers is increased.
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THRESHOLD-DRIVEN CONTAGION ON MUTIPLEX
NETWORKS

Models of threshold driven contagion explain the cascading spread
of information, behaviour, systemic risk, and epidemics on social, fi-
nancial and biological networks. At odds with empirical observation,
these models predict that single-layer unweighted networks become
resistant to global cascades after reaching sufficient connectivity. We
investigate threshold driven contagion on weight heterogeneous mul-
tiplex networks and show that they can remain susceptible to global
cascades at any level of connectivity, and with increasing edge density
pass through alternating phases of stability and instability in the form
of reentrant phase transitions of contagion. Our results provide a novel
theoretical explanation for the observation of large scale contagion in
highly connected but heterogeneous networks.

4.1 INTRODUCTION TO MULTIPLEX NETWORKS

Information-communication technology has radically transformed
social and economic interaction [34], introducing new means of trans-
mitting ideas, behaviour, and innovation [46, 165], overcoming limi-
tations imposed by time and cognitive constraints [68, 95]. The same
technology provides an increasingly accurate picture of human in-
teraction, mapping the underlying network structures that mediate
dynamical processes, like epidemics [115, 184]. In complex conta-
gion [46], characteristic of the spreading of innovation, rumors, or
systemic risk, transmission is a collective phenomenon in which all
social ties of an individual may be involved. Node degree, or number
of links, is therefore critical to the dynamical outcome [198]; large
relative neighbour influence is easier to achieve the smaller the ego
network. This behaviour is well captured by threshold models of social
contagion on single-layer unweighted networks, which predict large-
scale cascades of activation in relatively sparse networks [97, 117, 166,
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198]. In empirical social networks, however, individuals can maintain
hundreds of ties [69, 95], with interaction strength varying across social
contexts [40, 114, 190], yet still exhibit frequent system-wide cascades
of social contagion [13, 66, 89, 119, 189].

We address this issue by incorporating relevant features of empir-
ical social networks into a conventional threshold model. We con-
sider that network ties are heterogeneous, and can be characterized
by edge “types”. In the case of social networks, these edge types
vary in “quality” [96, 120], usually associated with the intimacy or
perceived importance of a relationship between individuals [206], and
scale with the strength of interpersonal influence [51, 187]. Hetero-
geneity in tie quality is well modelled by multiplex structures, as has
been recognized in both network [29, 123] and social science [35, 194],
particularly regarding social contagion [37, 135, 202, 209]. In multi-
plex models of social networks, individual layers represent the social
context of a relationship (e.g. kinship, acquaintance), allowing us to
classify ties by social closeness, as recognised by Dunbar’s intimacy
circle theory [206]. According to this theory, due to cognitive and time
resources being finite but necessary to maintaining social ties, individ-
uals actively cultivate a limited number of relationships, organising
them into intimacy circles that increase in size as they decrease in
importance. Ego networks thus comprise a small but high-intimacy
circle of close relationships, like family and long term friends, followed
by large but low-intimacy circles of distant friends and acquaintances.
Empirical evidence shows the distribution of dyadic social commit-
ments (number of interactions or time devoted to peers) to be strongly
heterogeneous [140, 152]. Strikingly, this inverse relation between the
cost of maintaining an edge type, and the abundance of that edge type,
can be seen as an entropy maximisation process [185] that applies to
any system with heterogeneous cost of edge formation and finite node
resources. As such, although we use the language of social networks,
our results are of relevance to other systems, e.g., financial [y, 26, 73]
and biological [115, 184] contagion.

Using analytical and numerical tools, we show that layer hierarchy
can lead to global cascades in multiplexes with average degree in
the hundreds or thousands, perturbed by a single initial activation.
We report the novel observation that in a multiplex network with
increasing link density a sequence of phase transitions occur, resulting
in alternating phases of stability and instability to global cascades.
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Figure 4.1 — (a-b) Egocentric view of multiplex structure with M = 2 layers,
where edge density increases (5, > 1) and edge weight decreases (6, < 1)
by layer i. (c) Egocentric network overlap between layers. (d) Emergent edge
types in the overlapping network. In the multiplex, the central node has degree
vector k = (2,8, 1)T, encoding layer overlap.

4.2 MULTIPLEX NETWORK MODEL
4.2.1  Multiplex models of intimacy circles

Our model builds upon previous studies of threshold driven pro-
cesses [97, 117, 166, 198] and multiplex networks [29, 123]. We define
contagion as a binary-state dynamics over a weighted, undirected mul-
tiplex network of N nodes connected throughout M layers (Fig. 4.1). A
node represents an individual u, and layer i the social context in which
individuals interact, 1 < i < M. The degree of u in each layer i takes
discrete values k; = 0,..., N — 1 according to the degree distribution
P;(k). Edge weights w;(u,v) follow the continuous distribution P;(w)
and capture the total capacity of nodes u and v to influence each other
via layer i. The network allows for layer overlap [44] as nodes may be
connected in multiple layers, modelling individuals who share several
social contexts [Fig. 4.1(c)]. For simplicity, we assume that node degree
is independent across layers, and that degree and weight distributions
P;(k) and P;(w) differ by layer only in their means z; = Y ; kP;(k) and
w; = [wP;j(w)dw, otherwise retaining their functional form. In or-
der to reproduce the hierarchical organization of edges suggested by
intimacy circle theory [206], we assume that the mean degree z; and
weight w; scale with layer index 7 as

ziy1 = 0zz; and w1 = Swwy, (4.1)

with §; > 1 and 6, < 1. In other words, ego networks comprise a
small number of high-intimacy neighbours [Fig. 4.1(a)] and a larger
number of low-intimacy neighbours [Fig. 4.1(b)]. We fix the average
total degree z = ), z; as well as J,, which determines z;. We also
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Table 4.1 — Extensions of the Watts threshold rule to multiplex networks. Node
state is determined by a single threshold ¢ and a weighted sum of influence
over layers, or by individual layer thresholds ¢; and influence within each layer.
In the former the multiplex can be projected to a single weighted layer without
loss of information relevant to the dynamics.

weighted sum multiplex or multiplex and

Gm = Pqk Ji st qm; > ¢igy, Gm; = Piqr, Vi

impose the arbitrary constraint (w) = 1 and fix &,,, which determines
w; (see Section 4.2.3 for more details).

4.2.2  Multiplex threshold rules

In a binary-state model of contagion, nodes are in one of two mu-
tually exclusive states, inactive or active. Since nodes must be either
connected or disconnected via each of the M network layers, their
interaction is characterized by one of 2M — 1 resultant edge types
[Fig. 4.1(d)], disregarding nodes disconnected in all layers, and index-
ing by j such that 1 < j < 2M — 1. Node configuration is thus described
by the number of neighbours k; and active neighbours m; across edges
of type j, with 0 < m; < k;. We store k; and m; in the degree vector k
and partial degree vector m, respectively (of dimension 2™ — 1). Note
that we consistently index layer by i and resultant edge type by ;.

The threshold rule proposed by Watts [97, 117, 166, 198] defines the
fraction ¢ of neighbours that must be active for an inactive ego to acti-
vate. This rule can be extended to multiplex networks in several ways
(Table 4.2). Denoting the set of neighbours of node u in layer i by N;(u),
the total influence upon u in layer i is g, = Yo 7, (u) Wi(1, v). Restricted
to active neighbours, N;(u)|y, this gives qm, = Yoen; ()|, wi(4,0). In
one variant of the threshold rule, nodes perceive influence in aggre-
gate, summed over layers (reminiscent of neural networks [79, 108])
and activate with respect to a single threshold if g, > ¢qy, where
gk = Xi gk, and g = Y ; qm; (wWeighted sum rule). In another variant,
node state is determined by M layer thresholds ¢;, along with influ-
ence qi, and gy, within layers. A node activates when g, > ¢;q;, in
every layer (multiplex and rule by Lee [135]), or in at least one layer
(multiplex or rule [135]). Our aim is to show that multiplex networks
following the structure of intimacy circle theory exhibit reentrant phase
transitions for both the weighted sum and the multiplex or threshold
rules. Note that if weights are uniform within each layer and node
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state is determined by decisions within layers (and and or rules), then
the structure is effectively unweighted. We show that even with this
loss of weight information, reentrant phase transitions can still emerge
due to contagion within layers.

4.2.3 Degree and weight distributions

In the previous section we argued that the salient features of real mul-
tiplexes, scaling in the mean degree z; and mean weight w; from layer
to layer, can be modelled as following the scaling relations z; 1 = J,z;
and w;;q = dpw;, as per Eqn. 4.1. We term 0, the density scaling factor,
or density skewness, and J,, the weight scaling factor, or weight skew-
ness. Crucially, setting J, > 1 and J,, < 1 recovers the class of structure
outlined in intimacy circle theory, indicating a multiplex growing in
link density, and decreasing in mean interaction strength or weight,
by layer. Both J, and ¢, are constant in our model, and induce expo-
nentially distributed layer average degrees and layer average weights,
since

{z1, 22, 23, ..., zm} = {21, 8221, 0221, ..., SM 71z}, (4-2)

with a similar expression holding for the distribution of w; values.
Although z; appears in the latter expression, this choice is arbitrary
and it is not in fact a free parameter in the following experiments. For
example, we could equally have written {0; 'z, 23, .22, ..., 6M22,},
for some z, giving an identical set of values. In experiments we set the
total average connectivity z, defined as z = z1 + zp + ... 4+ z), as well
as the density skewness J,. Since each expression in Eqn. 4.1 has only
two degrees of freedom, choosing z and &, effectively prescribes the
individual layer averages z1, z2, ..., zp. Similarly, the distribution of
weight means wy, ..., wys has only two degrees of freedom. As for the
distribution of z; values, we do not explicitly set w;, rather, we constrain
the average weight (w), which along with the weight scaling constant
0w, determines each w;. The total mean weight (w) over the multiplex
can be found by summing over edge type means, (w) = Y, cjw;/c,
where ¢; is the average degree of the j-th edge type, equal to z; in the
case of zero overlap, and w; is the sum of edge weights constituting
the resultant edge of type j. In all experiments throughout this work
we set the network-wide average weight to (w) = 1. This allows us to
isolate the effect of varying the skewness 4, in edge density, and the
skewness Jy, in interaction strength, across layers. Note that we impose
the additional constraint that all edge weights be positive.
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Figure 4.2 — The dependence of weight means w; and standard deviation oy,
of the weight means on J;,. Weight distributions correspond to an M = 2
layer multiplex, with values of J, providing the density skewness of various
networks used in this text. We refer to the limit J;,, — 0 as maximal weight
heterogeneity, where wy = 1+ 6, wp, = 0 and 0y = /0.

4.2.4 Maximal weight heterogeneity

In this section we discuss the consequences of our definition of
average degree and weight scaling. In particular, given the constraints
(w) =1 and w; > 0 Vi, the weight scaling constant J;, is defined over
the interval (0,1], with J,, = 1 giving identical mean weights w; in
each layer, and J;, — 0 producing maximal weight heterogeneity. The
interpolation between these limits is shown in Fig. 4.2 for weight means
w; and the standard deviation of the means?* oy, for various values of
6, used in this work. In M = 2 layers, assuming density skewness J, it
is straightforward to show that the weight heterogeneous limit of these
quantities is

lim w, =146, 43)
TU*>
li =0, .
i, w (4-4)
lim oy = /05, (4-5)
Ow—0

1. Not to be confused with 0w;, the weight standard deviation of edge type j
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where the standard deviation of edge weights across the multiplex
is defined as 02 = Y.z; (w; — (w))? /z. Clearly, increasing weight
heterogeneity by decreasing d;, has a saturating effect on the values
w; and 0. Furthermore, decreasing &, below the limiting value will
have diminishing effect on the actual threshold processes evolving over
the network. In the experiments described in the following sections,
we first set a density skewness J,, and then increase weight skewness
subject to the constraints that all weight values are positive (w; > 0 for
all layers i) and that (w) = 1. In Fig. 4.1, for example, we are interested
in the approach towards maximal weight heterogeneity from a uniform
distribution given by J;, = 1. The maximal weight distribution leads
to results given by the white contour in Fig. 4.5(c), corresponding
to a value of &, = 107°. Again, any positive value in the range
0 < 8y < 107° would give identical results due to the limiting effect of
0w — 0. In Fig. 4.15, we conduct a similar experiment in an empirical
Twitter network. There, we study the approach to maximal weight
heterogeneity 5, — 0, beginning with a uniform weight distribution
Ow = 1.

4.2.5 Poisson and log-normal degree distributions

The scaling conditions in Eqn. 4.1 specify only the average c; of the
degree distribution of edge type j, so we are free to choose the actual
form of the distribution. Specifically, we use Poisson distributions (PO)
in Fig. 4.7, as well as Figs. 4.8 and 4.9. Otherwise, we use log-normal
distributions (LN). A Poisson degree distribution is prescribed entirely
by its mean ¢,

¢l
Pi(kj | ¢cj) = Efcfé, (4-6)

which is defined for integer k;, as required, and the average degree c; of
each edge type j. In contrast, the log-normal distribution is defined for
continuous variables, so it remains to define an appropriate discretisa-
tion. Since the structural percolation transition is of critical importance
to the Watts model and its extensions, any discretisation must allow
for a non-zero mass of k = 0 degree nodes.> To this end, we round
to the nearest integer, although taking the floor function would also
be appropriate. In the numerical implementation of the configuration
model, it is straightforward to randomly sample continuous k, and

2. This rules out, for example, discretisations based on the ceiling function, since
values in the range 0 < k < 1 will be rounded to k = 1, resulting in P;(0) = 0.

105

percolation
transition



106

THRESHOLD-DRIVEN CONTAGION ON MUTIPLEX NETWORKS

round up or down to the nearest integer. The masses of the k values
thus obtained can be found by integrating the log-normal probability
density function over the interval (k — %, k+ %), or equivalently, evalu-
ating the cumulative distribution at the limits. As such, degrees k; are
distributed as

Pi(ki | ¢j o) = F(kj+ 5 | ¢jyon,) —F(kj— 5 [ ¢jyon),  (47)

where F is the cumulative distribution of the continuous log-normal
distribution, which we assume is defined F(k;) = 0 for k; <0, ¢; the
mean of the j-th type degree, and 0, its standard deviation. The actual
value of F is given by the error function

1 1 lnkj—c{
F(k]-|C‘,(Tkj):f+ i

—erf | —— |, .8
>tso V2o (4-8)
]

where c;- and 0’12_ are the mean and standard deviation of the underly-

ing normal distribution.3 This approach leads to precise agreement
between the simulated multiplex and analytic solution, and most im-
portantly, allows for a structural percolation transition in the resulting
configuration model multiplex, at low z due to the presence of k; = 0
degree nodes.

Finally, since our experiments generate log-normal distributions
with means ¢; spanning several orders of magnitude, we must select
experimental values of standard deviation o}, appropriately. That is, the
standard deviation must scale with the average, and we set 0%, = 2¢;.
To see why this is necessary, consider that oy, = 10 is a relatively high
variance if the average degree ¢; = 1, with a qualitatively broad spread.
However, if ¢j = 1000, a standard deviation of O, = 10 leads to a very
narrow overall distribution, qualitatively giving a sharp peak rather
than a broad tail.

4.3 ANALYTIC SOLUTION
4.3.1  Autonomous reduced-dimension solution

In this chapter we apply the master equation solution outlined in
Chapter 2. In multiplex networks comprised of M layers, there are

3. Normal moments, ' and ¢”, are related to log-normal moments, i and ¢, via the

1 1
relations i’ — log y<1+}%) 2} and o’ = (1+%)2.
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2M _ 1 possible edge types, which determines the edge heterogeneity
parameter n. To ensure a finite space of configurations (k,m), we
require discrete edge types, and therefore a discrete set of weights.
For simplicity, we assume a uniform weight distribution with each
layer when solving the AMEs, such that each edge type is associated
with a single weight. It is straightforward to relax this assumption to
general discrete weight distributions, but at the cost of computational
complexity.

Since we restrict ourselves to non-recovery dynamics with step-
wise activation rate Fy n,, the reduced master equations are applicable.
Whereas Eqn. 2.70 allows for spontaneous activation, and thus contains
an explicit time dependence, we are mostly in the case of p = 0. Here,
aside from an initial seed of active nodes, activation only occurs via
the threshold mechanism, and the corresponding reduced system is
autonomous.

1%

j
)

gi(v) —v, (4.92)
h(v) —p, (4.9b)

where the functions g;(v) and h(v) are obtained by setting t = 0 in
Eqns. 2.65 and 2.69, such that

k; 2M_1
g](I/) = 2 ?]Pk Zf(k/ m)Bkjfl,mj (V]) H Bki,mi (Vi) (4-10)
k “J m i#j
and
2M_q

i) = Zp S Okom) TT By, (1), (411)
m ]:

with By ,,,. (v;) the binomial distribution. The function f(k, m), imple-
menting the response of a node with degree vector k to a set of active
neighbours encoded by m, is equal to 1 if one of the conditions in
Table 4.2 is satisfied, and 0 otherwise (see Section 4.3.2 for explicit ex-
pressions of the response function for M = 2 in all multiplex threshold
rules explored here). Except in the experiments presented in Figs. 4.3
and 4.4, we set p = 0 and apply the time-independent solution pro-
vided by Eqn. 4.9. The computational complexity between the two
systems is unchanged.

In Egns. 4.10 and 4.11, P(k) is the probability that a randomly
selected node has degree vector k. Given that our multiplex network is
maximally random up to the degree distribution Pj(k;) of each edge
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typej = 1,. ..,2M _ 1, and that the corresponding degrees k]- are
uncorrelated, P(k) is the product of all edge-type degree probabilities,

2M_q
P(k) = [T Pi(k), (4.12)
j=1

with ¢; = Ek]- ijj(kj) the average degree for edge type j. If G]»(u) =
Zk]_ Pj(kj)ukf is the probability-generating function associated with edge
type j, then the aggregate degree k = }_; k; has probability-generating
function G(u) = Y P(k)uk = [1; Gj(u), from which the aggregate
degree distribution P(k) can be obtained.

4.3.2  Eigenvalues for M = 2 layers

Here we analyse the simple case of a multiplex network of M = 2
layers, with or without overlap (y > 0 or ¢ = 0, respectively), and with
Poissonian degree distributions for all composite edge types. There are
three edge types; two resulting from node pairs connected in exactly
one layer (j = 1,2), and one composite edge resulting from node
pairs connected in both layers (j = 3). The degree, partial degree,
and weight vectors are k = (kq,kp, k3), m = (my,myp, m3), and w =
(w1, wo, w3), respectively, subject to the constraints k = ky + kp + k3,
m = mq + my + m3, and w3 = w; + wp (assuming that weights are
additive over composite edges).

We consider Poissonian degree distributions for all edge types,

ki —c;
_ C] Te

Bitki) =" (4.13)

such that the only tunable parameter is the average degree for edge type
jci= ):kj kiP;i(kj). The probability-generating function of Eqn. 4.13
is Gj(u) = ¢ (=) from which the probability-generating function
of the aggregate degree k = }_; k; takes the form G(u) = [1; Gj(u) =
eXi %=1 Then, k also follows a Poisson distribution P(k) = cke~¢/k!
with average aggregate degree ¢ = }; ¢;. The total number of edges a
node has in layer i = 1,2 is the sum of its composite edges of type i
plus the overlap edges of type j = 3, i.e. k; + k3, which is also Poisson
distributed. Then, the average degrees z; in layer i = 1,2 and the total
average degree z = z1 + zp are given by

zi = ¢ +c3, (4.14)
z = c1 + ¢ + 2c3. (4.15)
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As stated in Section 4.2.1, we implement intimacy circle theory by
considering the scaling z» = 6,21 (0; > 1) and wy = dpwy (b < 1).
Since layer overlap is defined as v = |E1 N Ey|/|E1| with E; the edge
set in layer i = 1,2, we may also write v = (Nc3/2)/(Nz1/2) = c3/21,
where N is the size of the network. Assuming that all edges in layer
i = 1,2 have the same weight w; (and w3 = w; + w,), the average
weight in the network is (w) = Y;cjw;/c. Overall, we can choose a
set of four parameters, say z, 6,, 6, and 7, together with the arbitrary
constraint (w) = 1, and use these relations to write the remainder of
the network variables as

2z 46—y a=a(1-7)
1l = —— =755
146, 140,00 and C2:Z1(5z_7)
2y = 6,21, w2 = w1 3 =21y
3 = 417
(4.16)

Finally, we write the response function f(k, m) explicitly in the case
of a multiplex network of M = 2 layers, as per Table 4.2. For a single
threshold ¢ for all nodes in the network, the weighted sum threshold
rule implies f(k, m) =1 for

m-w>¢k-w and k>0, (4.17)

and f(k,m) = 0 otherwise. If a threshold ¢; is defined in layer i =1, 2,
the multiplex and and or rules imply f(k,m) =1 for

m; +mz > ¢i(kj +k3) and ki +ks >0, (4.18)

for either i = 1 or 2, in the case of the or rule, and i = 1 and 2, in the
case of the and rule. Otherwise, f(k, m) = 0. Eqns. 4.13 and 4.18 allow
us to write Eqn. 2.76 explicitly and solve its characteristic equation,
which we do below for the cases of non-overlapping and overlapping
layers.

4.3.2.1  Non-overlapping layers, v = 0

In the case of no overlap, ¥ = 0, k3 = m3 = 0 for all nodes, effectively
reducing the Jacobian matrix J* of Eqn. 2.76 to two dimensions. Then,
the characteristic equation A% — ATrJ* + Ji1J52 — Ji2J3; = 0 has solutions

1
At = 2 [Tr]* = \/(]fl —J3,)? +4135,05 | (4.19)

where TrJ* = Jj; + J3, is the trace of the Jacobian matrix. From
Eqn. 2.76 we have [},, J5; > 0, so the eigenvalues in Eqn. 4.19 are
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real numbers (with the largest corresponding to the + sign). We may
write the cascade condition of complex contagion in multiplex networks
(forp=vy=0)as

T+ /Uiy — J)? + 4100J5 > 0, (4.20)

an equation determining the region in (¢, z) space where infinitesimal
perturbations can trigger global cascades [163, 166].

4.3.2.2  Overlapping layers, v > 0

In an overlapping multiplex network, v > 0, with M = 2 layers, the
Jacobian matrix J* of Eqn. 2.76 is three-dimensional. 4 The characteristic
equation is jo + j1A + joA% + j3A3 = 0, where

jo=det(), 1=~ [IP07) ~Te(2)], p=Te0"), jr=-1

(4.21)
Instead of using the general methods of Cardano or Lagrange, we
may find a trigonometric solution by making the affine transformation
J* = aA + b1 for arbitrary constants a and b. If v is the eigenvector of J*
associated with eigenvalue A (J*v = Av), then Av = cv with A = ac+b.
By solving the eigenvalue problem for the affine transformation A we
can find the eigenvalues of the original Jacobian. We take

o=\ mgonp, b=t (422)

for which Tr(A) = 0 and Tr(A?) = 6. The characteristic equation for
A is det(A) + 3¢ — ¢ = 0 with discriminant A = 4 — det*(A), so we
have three (distinct or multiple) real roots for | det(A)| < 2. By making
the change of variable ¢ = 2 cos« and using the trigonometric identity
cos3x = 4cos®a — 3cosa, we finally write the eigenvalues A; of the
Jacobian matrix J* as

1 1 1, 2
A} = 2acos {3 arccos (2 det L’ J* - bl)]) + 31] +b, (4.23)
for I = 0,1,2. The cascade condition for complex contagion in multiplex

networks (for p = 0 and y > 0) is for the leading eigenvalue in Eqn. 4.23
to be positive, max{A;} > 0.

4. A possible exception is the case of maximal overlap where v = 1, and edges of
type j = 1 are absent. This is due to the assumption that |E;| < |E;|. Here, the Jacobian
can again be reduced to two dimensions, as was the case for vy = 0 where j = 3 edges
were absent.
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Figure 4.3 — Density p(t) of active nodes as a function of time . (a-b) Accel-
erative effect of increasing weight standard deviation oy, in Poisson (PO) and
scale-free (SF) configuration-model duplexes, with relative density J, = 2 and
threshold ¢ = 0.18. The multiplex and and or threshold rules can be viewed
as upper and lower bounds, respectively, on spreading time. Layer thresholds
are ¢; = 0.18 for i = 1,2. (c-e) Diminishing effect of layer overlap v when
increasing weight standard deviation oy in an ER duplex with ¢, = 10 and
¢ = 0.15. Simulations (solid lines) are averaged over 10° realisations of a
network of N = 107 nodes and average degree z = 10. Rate of spontaneous
activation is p = 2 x 10~*. AME solutions (dashed lines) are indistinguishable
from numerical simulations for all definitions of the threshold rule.

4.3.3 Dynamic solution of approximate master equation

As a first look at the emergent dynamics of our model, it is useful
to consider the case with non-zero rate of spontaneous activation p,
which is permitted in our model by using an activation function of the
form

1, mw>k-w
Fom = (4-24)

p, otherwise,

which is essentially the weighted sum rule for a uniform weight distri-
bution P;(w) (see Table 4.2), with noise at rate p. Using this update rule,
we explore the effects of varying edge weight heterogeneity and layer
overlap, Fig. 4.3. The former case can be studied by tuning the weight
scaling factor J, or equivalently, the total weight standard deviation
0y defined by 02 = Y™, ¢;(w; — (w))?/c, where ¢;/c is the probability
that a randomly selected edge has weight w;, c; being the average
degree in that layer. In configuration model networks with Poisson
(PO) or scale-free (SF) degree distributions, varying edge weight het-
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Figure 4.4 - Density p(t) of active nodes as a function of time t. (a-b) Decelera-
tive effect of decreasing density skewness J, and increasing threshold ¢ in a
Poisson distributed configuration-model multiplex, with M = 2. (a) decreasing
density skewness 4, increases the frequency of “immune” configurations (see
text), which serve to slow the spreading process, and decrease the size of global
cascades. Similarly, increasing the threshold ¢, in (b), slows the time taken to
reach maximal saturation, by increasing the reliance on spontaneous activation.
Simulations (solid lines) are averaged over 10 realisations of a network of
N = 107 nodes and average degree z = 10. Rate of spontaneous activation
is p = 2 x 107, AME solutions (dashed lines) are indistinguishable from
numerical simulations for all definitions of the threshold rule.

erogeneity can accelerate or decelerate spreading [Fig. 4.3(a) and (b)].
Such effects have been studied in detail previously [190], where spread-
ing speed was shown to be determined by competition between node
configurations (k, m) whose activation is either facilitated or hindered
by a given weight distribution. To quantify the effects of layer overlap
on the dynamics, we consider the simplest case of M = 2 layers, and
vary the overlap parameter o defined in Section 4.4.1 Via a similar
mechanism as edge weight heterogeneity, layer overlap tends to speed
up or slow down the process of contagion [see Fig. 4.3(c-e)]. This
occurs since a change in < implicitly varies the weight distribution
in the monoplex projection of the social network, with weights being
additive for overlapping edges. However, when weight heterogeneity
is large, a composite edge is always dominated by the layer with the
strongest weight, thus diminishing the effect of layer overlap. This is
most easily seen in Fig. 4.3(e), where interpolation between zero and
maximal layer overlap have negligible effect on the resultant spreading
process. Moreover, we observe partial cascades [190] as plateaus in p(t)
where spreading is temporarily slower.

Results obtained via master equations (dashed) and simulations
(solid) are in excellent agreement in Fig. 4.3, becoming indistinguishable
for very large networks. Interestingly, experiments allowing noise have
reduced fluctuations in the resulting spreading curves compared to
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the p = 0, or single seed case. This is because noise at rate p can be
construed as the addition of randomly chosen seeds sampled uniformly
over the entire network. Whereas a single seed experiment may exhibit
large variations in the final outcome due to the dependence on the local
topology of the seed, spontaneous activation ensures a global cascade.
As such, if p > 0 there is little sensitivity to the local configurations k
of the initial active nodes and their nearest neighbours. For example, if
p= 10~% and N = 107, 10% nodes are expected to activate in the first
“global” time step, uniformly sampled over the whole network.

4.4 WATTS PHASE SPACE FOR MULTIPLEX NETWORKS

In Section 4.3.3 we examined spreading dynamics over time, where
due to the presence of random noise, the system was guaranteed to
reach non-zero levels of activation p. For the remainder of this chapter,
we will be interested the response of the system to an infinitesimal
initial seed, over the Watts phase space (¢, z) of threshold and total av-
erage degree. Analytically, this entails linear stability analysis of space
to determine the regions allowing global cascades (see for example
the dash-dotted lines in Figs. 4.5 and 4.6, or the shaded intervals in
Fig. 4.7).

In what follows we study the response of the network to an in-
finitesimal perturbation, or single active seed, and record the relative
frequency f, of global cascades via Monte Carlo (MC) simulations.
Regions in (¢, z) space with non-zero f, in the N — co limit are well
predicted by the spectrum of Eqn. 2.76. For simplicity we assume
uniform edge weights with value w; within layers, which can be easily
generalised (see Section 4.5.3).

4.4.1 Emergence of reentrant phase transitions

The weighted sum rule leads to a high-z cascading phase, and thus
reentrant phase transitions for constant ¢, in an M = 2 layer multiplex
with a log-normal (LN) degree distribution in each layer (Fig. 4.5,
distribution details in Section 4.2.3). In two layers, we define layer
overlap as v = |E; N Ep|/|E1|, where E; is the edge set in layer i = 1,2
(|E1| < |Ez]). We can increase weight heterogeneity by decreasing the
weight scaling factor J, resulting in a second cascading regime. As
explained in [198], global cascades are due to “vulnerable” nodes with
sufficiently low threshold so that a single neighbour can infect them. A
cascading phase is formed in (¢, z) space when vulnerable nodes form a
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log z

Figure 4.5 — Emergence of a high-z cascading phase in (¢, z) space for the
weighted sum rule, for LN degree distribution, fixed 6, = 50, v = 0.5 and
decreasing d,,. MC simulations provide the relative frequency fg of global
cascades, after 10% instances of single node perturbation, in a configuration-
model multiplex with N = 10°. In (a) we recover the classic Watts phase
diagram (6, = 1). The constraint (w) = 1 means w = (1,1)7, (6,0.9)T and
(11,0.8)7, from (a) to (c). The outer contour (dash-double dotted white line) in
(c) shows the case 8, — 0 [6, = 1073; see heat map in Fig. 4.6(a)]. Dash-dotted
red lines show agreement with LSA prediction.

percolating cluster. In single-layer unweighted networks, large z results
in most nodes being stable against neighbour activation, and cascades
becoming exponentially rare. However, under the weighted sum rule,
weight heterogeneity allows one high-influence active neighbour to
dominate a node’s total received influence if remaining neighbours
have low influence. Crucially, such configurations are abundant when
the conditions J, > 1 and J,, < 1 are satisfied simultaneously, resulting
in a percolating vulnerable cluster at high z.

In the low-z phase, cascades are mediated by the connectivity of
the weak layer, since the strong layer is too sparse to percolate. In the
high-z phase, strong edges percolate and determine the stability of
adjacent nodes that are otherwise stable to the dense weak layer. Both
regions are accurately predicted by LSA [see Fig. 4.5 and the velocity
field analysis of Section 4.5.1]. Note that other mechanisms are able to
generate additional transitions in (¢, z) space (e.g., degree assortativity
in [209]).

4.4.2  Comparison of multiplex threshold rules
We compare the behaviour induced by the threshold rules of Table 4.2

for configuration-model multiplexes with LN degree distributions and
a real-world multiplex extracted from Twitter (TW) (Fig. 4.6). TW
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Figure 4.6 — Relative frequency f; of global cascades in LN (top) and TW
(bottom) multiplexes with M = 2 layers. LN networks in (a-c) are synthetic

(standard deviation o}, = 2z;, overlap ¢ = 0.5, and density scaling J, = 50).

(a) Maximal weight heterogeneity (d, = 10~3) leads to reentrant transitions
in the weighted sum rule. (b) Reentrant phase transitions also appear for the
or threshold rule. (c) Under the and rule only one global cascading phase
emerges, which vanishes when 7y = 0. Decreasing J, and increasing <y expands
the region of susceptibility to global cascades. See the outer dash-double

dotted white contours (the LSA solution for §, = 1, with 4 = 0.5 and 1).

(d-f) Reentrant phase transitions under the weighted sum and or rules in an
empirical Twitter network (4, = 30.2 and y = 0.45). The dashed horizontal
line at z = 166 is the empirical density, with sparsification providing lower z
values, and densification higher z (see Sections 4.7.1 and 4.7.2). (f) A single
phase region observed in the and multiplex rule. LN and TW networks have
size N = 10° and N = 3.7 x 10°. We obtain fq via 10% realisations of single
node perturbation. Dash-dotted red lines show the LSA prediction.

comprises a sparse, strongly interacting layer (z; = 5.4) formed by
mutual-mention interactions between N = 3.7 x 10° users, and a dense
layer of weak links (z; = 163) formed by the follower network of
the same users. The two layers (taken as undirected; data details in
Section 4.7) exhibit an overlap v = 0.45. In order to explore the effect of
single node perturbation over (¢, z) space, we remove edges uniformly
at random from TW, decreasing its average degree z below its observed
value of 165.8 [dashed lines in Fig. 4.6(d-f)]. Conversely, we use a
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model of network densification known as the Forest-Fire process [136]
to extrapolate to higher z values (details in Sections 4.7.1 and 4.7.2).

Assuming the weighted sum threshold rule [Fig. 4.6(a) and (d)], we
find reentrant cascading phases under maximal weight heterogeneity
(6w = 1073) [for the approach to maximal heterogeneity see Fig. 4.5(a-c)
for LN, and Section 4.7.3 for TW]. The multiplex or condition also leads
to reentrant transitions in both LN and TW networks [Fig. 4.6(b) and
(e)]. The onset of the high-z cascading phase, and thus of the reentrant
transition, is triggered by the structural percolation of the sparse layer.
Since the or rule considers influence within layers, and P;(w) is uniform
here, the structure is effectively unweighted, underlining that density
skewness is sufficient to trigger a reentrant phase when thresholds are
layered. For both LN and TW networks, overlap 7 and density skew-
ness J, determine the stability under the and threshold rule [Fig. 4.6(c)
and (f)]. Being the most restrictive condition, the and rule suppresses
reentrant phase transitions and confines global cascades to a single
phase at low ¢, with cascades vanishing when v = 0. As §, decreases
and v increases [Fig. 4.6(c)], overlapping edges, necessary for mediating
cascades under the and rule, become more abundant and increase the
area of the unstable phase [Fig. 4.6(c)]. For simplicity, we set ¢; = ¢ for
the and and or rules. Inspection of the contours of Fig. 4.6(a-c) reveals
that the weighted sum rule occupies an area intermediate between
the and and or rules; we perform a comparative eigenvalue analysis in
Section 4.5.2 to argue that this is generally the case.

4.4.3  Effect of additional layers

We illustrate using the weighted sum rule that density skewness
0, determines the average degree z at which reentrant phases are
triggered [Fig. 4.7(a) and (b)]. This is because the structural percolation
transition of individual layers is necessary for the percolation of a
subgraph of vulnerable nodes; the value of z at which this occurs
depends on J,. Increasing the number of layers in the network also
creates additional phases of contagion [see Fig. 4.7(c-e) for M = 3,4].
When 4, differs between layers, the onset of contagion phases may
be delayed or promoted [Fig. 4.7(d)]. In lower phases, strong edges
that are too sparse to percolate structurally inhibit cascades driven by
edges that are denser but weaker, leading to “partial” cascades that
are global but do not fill the network [e.g., lower phase in Fig. 4.7(a)].
This is due to the immunizing effect of strong edges in information
diffusion; pairs of inactive nodes connected by a sufficiently strong
edge are impossible to infect if all other neighbours are weak, even if all
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Figure 4.7 — Steady state global cascade size as a function of average degree z,
for constant threshold ¢ = 0.15 and maximal weight heterogeneity (5, = 107°),
using the weighted sum rule. Degree distributions are Poisson and overlap is
v = 0. Shaded intervals due to LSA indicate systems with a positive leading
eigenvalue (see Chapter 2); dashed lines indicate the steady state solution of
Eqn. 4.9; and MC solutions are given by the solid curve (error bars narrower
than line width). (a, b) Increasing density skewness ¢, delays the onset of
high-z phases of contagion, and allows larger cascades in low-z phases in an
M = 2 layer multiplex. (c-e) Increasing the number of layers to M = 3 and
4 induces 6 and 8 phase transitions in cascade size, respectively. (d) Varying
0z, such that z /z; = 100, and z3/zp = 10. MC results are averaged over 103
realizations of single node perturbation, with N = 107.

those weak neighbours are active. These configurations are abundant
when the strong layer is yet to undergo structural percolation.

4.5 UNDERSTANDING REENTRANT PHASE TRANSITIONS
4.5.1 Velocity field analysis

In this section we illustrate the typical results of the above linear
stability analysis [Eqn. 4.20], and compare with the output of Monte
Carlo simulation, as well the velocity field of Eqn. 2.70, as shown
in Fig. 4.8. We do this for the weighted sum threshold rule, as well
as the or threshold rule, for identical multiplexes. In Fig. 4.8(a), top
and bottom, the region enclosed by dashed lines corresponds to (¢, z)
configurations where the leading eigenvalue A is positive, and thus
satisfies Eqn. 4.20. In Fig. 4.8(b-f) we show the corresponding velocity
field analysis at five points along the ¢ = 0.15 axis: below the low-z
cascade phase at z = 0.5, within the low-z phase at z = 3, between
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Figure 4.8 — Linear stability analysis (a) and velocity field analysis (b—f) around the fixed point v = (v, v5) = o for two threshold
rules, in an M = 2 layer non-overlapping multiplex network with Poisson degree distributions in all layers and density skewness
6, = 20. Top row corresponds to the weighted sum threshold rule, and bottom row to the or threshold rule, for otherwise identical
configurations. Overlap is v = 0, so the third component v3 = 0 everywhere, since composite links are absent. The heat map in (a)
shows numerical calculations of the fraction of active nodes p as a function of threshold ¢ and average total degree z. The dashed
curve in (a) encloses the region where Eqn. 4.20 is satisfied, and the velocity vectors in (b-f) are found by evaluating Eqn. 2.70 for small
v. In (a), numerical calculations fit analytical results perfectly.
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cascade phases at z = 13, within the high-z phase at z = 56, and above
the high-z phase at z = 300. For z = 0.5 in both case, the system
is clearly stable, with the initial condition v = 0 being an attractor.
This is due to the lack of connectivity; a giant connected component
forms only at z = 1 for a Poisson distributed network, meaning the
multiplex consists of many small, disconnected components, and a
small perturbation cannot develop into a global cascade. In the lower
phase, low-weight links (i = 2) provide most of the connectivity,
being 4, = 10 times more abundant, and allow for the emergence of
a percolating vulnerable cluster. Hence, the system is unstable along
the 1, axis for both threshold rules. In the case of the weighted sum
rule, the sparse but high-weight links of layer one inhibit the size of
cascades driven by the sparse layer. This effect is absent for the or rule,
where layer one links only serve to facilitate cascades, resulting in the
increased v; component in Fig. 4.8(c), bottom compared to top.

Between cascade regions at z = 13, Fig. 4.8(d), the fixed point v =0
is again an attractor, since nodes are stable to low-weight neighbour
activation from layer two, and high-weight neighbours from layer one
are too sparse to percolate structurally, for both the weighted sum
and the or threshold rule. At z = 56, Fig. 4.8(e), nodes are mostly
connected through low-weight neighbours to whom they are stable,
but sparse, high-weight neighbours (i = 1) now percolate structurally,
and dominate the strength of adjacent nodes since weight heterogeneity
is maximal in this experiment (6, = 10’3). As such, a percolating
vulnerable cluster is able to form, and the system becomes unstable
along the v; axis. Beyond this phase, at z = 300 for example, Fig. 4.8(f),
all nodes are stable against active neighbours of all weights, since both
layers are excessively dense.

4.5.2  Comparative eigenvalue analysis

In this section, we develop the claim that the stability of the weighted
sum threshold rule is intermediate between that of the and and or
threshold rules. We do so without proof, performing instead a com-
parative eigenvalue analysis of the Jacobian, Eqn. 2.76, for each of the
three definitions of threshold rule, outlined in Table 4.2. By means of
elementary limiting arguments over (9, d,, ), the space of parameters
broadly defining our model multiplex, we see that the various rules
converge in terms of stability at certain extremities of this space. This
allows us to conclude that in general, in response to an initial pertur-
bation our model multiplex is most stable under the and rule, least
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Figure 4.9 — Comparison of Monte Carlo simulation with leading eigenvalues A, of Eqn. 2.76 as a function of increasing J;, 6 and 7,
for each threshold rule. Heat maps for a selected threshold rule are on the left. As a general rule, A, for the weighted sum rule is
bounded above and below by the or and and rules, respectively. Heat maps result from 10° single node perturbations of an N = 10°
node multiplex. Eigenvalues are along a constant ¢ = 0.15 slice of the corresponding heat map.
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stable under the or rule, with the weighted sum rule providing a level
of stability intermediate between the two.

In Fig. 4.9, left, we plot the Watts phase space (¢, z) along each of
the axes of the parameter space (d;, &y, ). On the right of Fig. 4.9, we
plot the leading eigenvalues A of Eqn. 4.19 for a constant ¢ = 0.15
slice of each Watts phase space, for each response function defined
in Table 4.2. That is, we plot A as a function of average total degree
z for a given ¢, for each threshold rule (in contrast, we do not plot
Monte Carlo simulations of each threshold rule, just a representative
one). When A > 0, the condition for global cascades of contagion
is satisfied. Gray horizontal lines on the right of Fig. 4.9 correspond
to A+ = 0, the value above which the system becomes unstable, and
an infinitesimal perturbation triggers global cascades. When A < 0,
the system is stable, and no global cascades emerge. It is worthwhile
noting that for all é,, §, and 7, in the limit of z — 0 and z — oo,
the eigenvalues of each rule converge at Ay = —1, the minimum
value arising from Eqn. 2.76 when the response function is f = 0 for all
configurations (k, m). Trivially, this means that cascades are impossible
if the multiplex is exceedingly sparse or dense, respectively.

What we observe across all values of 6, J, and v in Fig. 4.9, is
that the and and or rules bound the weighted sum rule below and
above, respectively, in the magnitude of the leading eigenvalue A . In
other words, the system is always least stable under an or response
function, and most stable under an and response function, with the
weighted sum rule intermediate between the two. In particular, these
rules converge at the limiting values of J;, d,, and y. Consider first the
leading eigenvalue A under the or rule, which is always larger than
or equal to that associated with the weighted projection, as seen in the
top two rows of Fig. 4.9. This can be interpreted as being due to the
permissiveness of the or rule; a node will activate if its threshold ¢; is
satisfied in any layer i. To trigger global cascades, an edge type must
be of sufficient density such that it percolates structurally, but not so
dense that nodes are stable against a single active neighbour of that
edge type. This condition roughly determines when the or rules leads
to global cascades. The same is true of the weighted sum rule, with the
additional constraint that edges in this range of density must dominate
the local neighbourhood in terms of weight. Clearly, this coupling
between layers via the weighted sum rule can only serve to increase
the system’s stability with respect to the or rule. This results in the or
rule being at least as unstable everywhere as the weighted sum rule. In
all experiments conducted, cascading phases due to the or rule begin
earlier, and finish later as function of z, with respect to corresponding
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experiments using the weighted sum rule. This is evident for all A,
from (a) to (1) in Fig. 4.9.

It is relatively straightforward to see why eigenvalues A are smaller
in the weighted sum rule than in the or rule. As explained in Sec-
tion 4.4.3, this increased stability is due to certain “blocked” configu-
rations that are formed when weight heterogeneity is large. That is,
pairs of inactive nodes connected via a high-weight edge, remainder
of their neighbourhoods are week. Even if all these weakly interacting
neighbours are active, the strong interaction mutually “immunises”
each inactive node, ensuring that they remain in this state forever. This
leads to partial cascades, evident for example in the lower phase of
Fig. 4.9(b). Such cascades spread more slowly due to the presence of
these immune configurations. See for example [166], where spreading
speed decreases as a result of “blocked” configurations. As such, the ef-
fective coupling between layers due to the weighted sum rule increases
the stability of these systems with respect to or dynamics under the
same settings. In other words, the independence of each layer in the
or rule. This coupling is minimised in the J, > 1, top row, where the
effect of partial cascade diminishes [compare color of bottom phase in
heat map of Fig. 4.9(b) and (f), for example], and the dynamics of the
two rules converge.

Now consider the and rule, which can be viewed as the most re-
strictive, requiring that a node’s threshold is satisfied in every layer
before activation takes place. When overlap 7y is zero, A = —1 and
the system is stable everywhere, illustrated in the top two rows of
Fig. 4.9. This is because overlapping links, which are necessary in
order for cascades to develop under the and rule, are absent in this
case. When overlap is present small perturbations can trigger global
cascades, as in the bottom row where we interpolate between no over-
lap, and maximal overlap. Even when the and rule allows a cascading
phase, the system is more robust than the corresponding weighted sum
response (with cascades emerging later and disappearing sooner in
terms z; see third column of the bottom row in the rightmost array).
An elegant illustration of the relative stability of each rule is when we
6, =1, and 1y increases from 0 to 1. Here we observe the “sandwiching”
of the weighted sum rule below and above by the and and or rules,
respectively. This occurs for any value of weight heterogeneity, which
is controlled by the skewness parameter dy.

The above eigenvalue analysis highlights the contrasting stability of
multiplex and aggregated systems, and even suggests that a weighted
aggregate has an intermediate stability between the two multiplex
behaviours, namely the and and or dynamics).
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4.5.3 Uniform and log-normal weight distributions

In Section 4.4, for simplicity of presentation as well as ease of analytic
solution, we assume that the weight distribution with each layer i is
uniform with value w;. In this section we verify the robustness of our
principal results when the weight distributions on each layer are no
longer uniform. In Fig. 4.10, we progressively increase the standard
deviation ¢y, of a log-normal weight distribution within each layer
with mean w;, with row one using the weighted mutliplex rule, row
two using the multiplex or rule, and row three using the multiplex
and rule. The mean weight w; in layer j is determined as before.
That is, the means of the weight distributions within each layer are
related by w;;1 = dpw;. Since weights in layer i have mean w;, and
we have applied the constraint (w) = 1, the system wide average is
also 1. The means between layers can be made more heterogeneous
by decreasing é, € (0,1], and the distributions within layers made
more heterogeneous by increasing o, € [0, 00). As is the case with log-
normal degree distributions, we provide a scale to the weight standard
deviation by varying it with respect to the mean w;.

When oy, = 0, we recover Fig. 4.6(a-c), where edge weights were
uniform with layers. This provides the first column in Fig. 4.10, namely
plots (a), (g) and (m). As discussed in Section 4.4.2, when node dynam-
ics are determined by the and and or rules, i.e., the second and third
rows of column one, the multiplex is effectively unweighted. In this
case, high-z cascades, and the associated reentrant phase transition,
are entirely driven by layer density skewness J, along with individual
layer thresholds.

Increasing 0y, = 0 across the top row of Fig. 4.10(a-f), using the
weighted sum rule, reentrant transitions are observed to emerge even
in the presence of very large weight heterogeneity within layers. This is
surprising, and highlights that it is the first moment of the layer weight
distributions, the mean w;, along with the inter-layer skewness J;, that
drive high-z cascades under this threshold rule. Similarly, reentrant
phase transitions persist under the or threshold rule, as seen along row
two of Fig. 4.10(g-1), although are not visible under the most strongly
heterogeneous distributions (ij = 5w; and 10w;). Further, we observe
that the cascading phase shrinks to lower and lower ¢, for increasing
Uy, in row one. In contrast, the effect of weight heterogeneity in the or
rule in row two is to extend the cascading phase to higher ¢. This is
surprising, and represents another instance where explicit multiplexity
leads to global cascades in settings where a pure weighted structure
cannot.
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Figure 4.10 — Varying the standard deviation of weights in layer 7, using a log-normal weight distribution with average w; and standard
deviation y,. The first column corresponds to Fig. 4.6(a-c), with 0y, = 0 recovering the uniform weight distribution. We use the
weighted sum threshold rule in row one, the or threshold rule in row two, and the and threshold rule in row three. Networks are of
size N = 10°, and we record the frequency f, of global cascades after 10° realisations of single node perturbation.
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Finally, in row three of Fig. 4.10(m-r), where node dynamics are
determined by the and rule, we see that the effect of intra-layer weight
heterogeneity is to diminish the size of the cascading phase. That is,
for larger and larger ¢y, the cascading phase extends to smaller and
smaller ¢. This was the case in row one, for the weighted sum rule,
and the opposite of the case in row two for the or rule.

4.5.4 Weak and strong conditions for reentrant phases

In this section we summarise the conditions on J, and J,, such that
a cascading regime at high z is formed, resulting in reentrant phase
transitions in cascade size for constant ¢ intervals in (¢, z) space. By
way of illustration, we consider an M = 2 layer multiplex and vary J,
and J,,, demonstrating three behavioural regimes as follows. Case I
represents the null condition in Fig. 4.11(a), where reentrant transitions
are not observed in either the weighted sum threshold rule, or the or
threshold rule. In case II, reentrant transitions are observed only under
multiplex-or dynamics, called the weak condition in Fig. 4.11(b). In
case III, reentrant transitions are observed under both the weighted
and multiplex-or dynamics, called the strong condition in Fig. 4.11(b).
We show the values w; and their masses z;/(z; + z2), for a low-4;
configuration in (a), and a high ¢, configuration in (b), each comparing
a low and high variance weight distribution (blue and red masses,
respectively). For the purposes of this illustration we can assume layer
overlap = 0. Further, we use synonymously the expressions “high-z
cascades” and reentrant phase transitions.

If density scaling J, is not substantial, as is the case in Fig. 4.11(a),
then no reentrant transitions occur regardless of the activation rule.
Consider first the dynamics of the weighted sum threshold rule, in a
system where all nodes are in the inactive state except for an infinitesi-
mal seed. If J; is close to unity, a node u with a single active neighbour
of the strong type is unlikely activate. That is because when ¢, ~ 1,
u is likely to have other strong neighbours contributing to its overall
influence, meaning one active neighbour is insufficient to overcome the
threshold ¢, even if that neighbour is of the strong type. This is the
case even when weight heterogeneity is maximal, i.e., when &, — 0.
Likewise, in the dynamics of the multiplex or rule when 4, ~ 1, a node
is likely to have a similar number of neighbours of each type. At high-z,
this means a typical node configuration has large number of links both
layers, meaning that a small perturbation is unlikely to satisfy the
threshold in any layer. We thus term 6, ~ 1 the null condition.
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Figure 4.11 — Conditions for the observations of a cascading phase at high z, resulting in reentrant phase transitions. The null case,
when J, ~ 1, does not exhibit reentrant transitions, under any dynamic. If the weak condition is met, §, > 1 but with low weight
variance Jy ~ 1, reentrant transitions only emerge under the multiplex-or case, where there is the increased cost of considering
thresholds in individual layers. When the strong condition is met, 6, > 1 and 6, < 1, reentrant transitions occur under all dynamics.



4.5 UNDERSTANDING REENTRANT PHASE TRANSITIONS

Now consider the case where J, is substantially larger than 1, but
where weight heterogeneity between layers is low, d;, ~ 1. This corre-
sponds to the weak condition, case II in Fig. 4.11(b), where reentrant
transitions are observed in the or rule, but not in the weighted sum
rule. Again, let us first consider the weighted sum threshold rule in
the presence of an infinitesimal seed. At high-z configurations, a node
is likely to have a small number of links from the strong layer, and a
large number of links from the weak layer. If a node u has only one
neighbour from the strong layer, and that neighbour is active, its influ-
ence may still be insufficient to overcome the threshold ¢ and infect
u, as long as the condition d; ~ 1 is in place. That is, the sum of the
influence from the weak neighbours of #, which are numerous when
d; > 1, is enough for u to remain stable. In contrast, the or rule readily
leads to activation of u in this setting. By considering its configuration
layer by layer and applying the threshold rule, u activates due to all
influence in the strong layer being active. However, this comes with
a trade-off in complexity; u now has to consciously consider M layer
configurations, and make M decisions.

Finally, consider case III in Fig. 4.11(b), identical to that described
above, except that weight heterogeneity between layers is now substan-
tial, or d,, < 1. Under the weighted sum threshold rule, the scenario
described above may now lead to the activation of node u. This is be-
cause the active influence of the one strong neighbour now overwhelms
the influence of the inactive weak neighbours, despite them being more
numerous. Cascades still occur in the or case, since this effect was
driven by the density scaling factor J,, which has not changed. As such,
we recover the strong condition for the observation of reentrant phase
transitions. Namely that when ¢, > 1 simultaneously with &, < 1, the
system is vulnerable to cascades at high-z regardless of the functional
form of the threshold rule. This leads to reentrant transitions, where
the high-z cascading regime is separated from the low-z cascading
regime by an intermediate stable phase. As shown in Fig. 4.7(a) and (b),
the actual size of this intermediate phase depends on the magnitude of
0.

We conclude that a necessary condition for the observation of high-z
cascades is that 6, > 1, regardless of whether dynamics are defined
by a weighted sum threshold rule, or the or multiplex rule. We refer
to this as the weak condition, since it is necessary for high-z cascades
under all response functions, but sufficient only in the case of the or
threshold rule. When the weak condition is not met, we recover the
null case of Fig. 4.11(a). In node dynamics following the weighted sum
threshold rule, a necessary and sufficient condition for the emergence
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of high-z cascades entailing reentrant phase transitions is that §, > 1
simultaneously with J;, < 1. Of course, if these conditions are satisfied,
dynamics following the or threshold rule also lead to reentrant phases.

46 MONTE CARLO SIMULATION, AN ASIDE

We implement numerically a multiplex network using the multivari-
ate configuration model, which entails 2™ — 1 independent applications
of the single layer configuration model, one for each composite link
type. Since layer overlap is accounted for by the use of composite edges,
we do not allow for double edges in the resultant network. Complex
contagion is implemented numerically via Monte Carlo simulations of
a monotone binary-state dynamics, where nodes are selected uniformly
at random for update in asynchronous order, generating a series of
time steps. Once a node state changes from inactive to active, it re-
mains so for the rest of the dynamics, thus ensuring a steady state in a
finite simulation. Each time step consists of N node updates, where a
randomly selected node activates only if the threshold rule is satisfied.

In all experiments in this paper, we are interested in the steady state
of the system after single node perturbation. This state is captured by p,
the total fraction of the N nodes in network that are active at t — cc. In
[198], Watts defines a cascade to be “global” if its size is non vanishing
in the infinite network limit. In other words, the cascade size is not
constant, and occupies a positive fraction of an infinite network. It is
straightforward to identify local cascading regimes in Fig. 4.12 via finite
size scaling. Here, we plot the outcome p of individual realisations,
over a range of z and constant ¢. Clearly, the noise at p — 0 is of
constant size, occupying a range 0 < pN < 102, regardless of network
size. A simple approach to distinguishing local and global cascades is
to simulate sufficiently large networks (we choose N = 10°, 10° and 107
throughout this work), and to set a relatively high threshold p, for what
constitutes a global cascade. In (b,c) and (e,f), given the magnitude of
N, cascades larger than p, = 102 will with high probability be global,
and scale with network size. This allows us to define f, the frequency
of occurrence of global cascades, used throughout this work. We also
use (p), the expected final size of cascades that are determined global
by the cutoff p,.

Finally, it is useful to note that global cascades, once they occur,
display very little variance in size. This can be seen in Fig. 4.12(a-c),
with variance of global cascade size diminishing for larger and larger N.
As such, error bars indicating the variance after multiple realisations
would be smaller than the point sizes in (b) and (c).
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Figure 4.12 - Finite-size scaling of individual realisations of single node per-
turbation on an M = 2 layer multiplex with 6, = 1, §;, = 1, overlap v = 0,
with Poisson degree distributions on each layer. Thresholds are uniform, with
¢ = 0.13, and the “weighted sum” rule applied. As such identical results are
expected on and equivalent single layer network. Each point gives the size pN
of a cascade triggered by a single initial activation. Adjacent plots illustrate
identical data, left on a linear scale, right on a log scale. Shaded red interval
indicates a low-p range of constant size or “local” cascades, where cascade size
does not scale with N, appearing to exhibit a sharp cutoff of size less than
pN = 100 nodes.
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Table 4.2 — Number of occurrences | o |, and average degree z, of each multiplex
edge type in an empirical Twitter multiplex. E; and E; are the sets of edges in
the mutual-mention and follower networks, respectively. Sizes of E1g = Eq \ Ep,
Eo1 = Ez \ Eq and Eq; = E1 N E; are shown, and N = 370, 544.

E Eq E, Eyo En En
| o] 30,717,559 999,182 30,168, 645 548,914 29,718,377 450,268
z 165.8 5.393 162.8 2.963 160.4 2.430

4.7 VERIFICATION ON A TWITTER MULTIPLEX

We validate out model on an empirical Twitter dataset, which was
collected over the period of June 2014 and October 2018 through the
Twitter Powertrack API provided by Datasift with an access rate of
15%. The data records microblog posts of 140 characters, called tweets,
posted in French in the GMT and GMT+1 time zones, together with
user profile information. In order to construct a multiplex represen-
tation of the proxy social network, first we followed user interactions
defined as direct mentions. In Twitter, a mention represents a direct
interaction between users in the content of a tweet using the @ sym-
bol (@username). When a user u mentions another user v, the tweet
containing the mention is visible directly in the feed of user v. Af-
ter creating the network of users who at least once mentioned each
other mutually during the observation period, we extracted the second
largest connected component of this structure for further investiga-
tion. The obtained network contained N = 370, 544 nodes and 999, 182
mutual-mention links. In order to construct a multiplex structure, we
considered as a second layer of interaction all follower/followee links
between the same set of users, which in turn provided us 30,717,559
links. We argue that while the first mutual-mention layer corresponds
to the relatively sparse but strongly interacting layer, the second layer
corresponds to the densely connected but weakly interacting layer in
our model. >

As such, the Twitter multiplex qualitatively supports intimacy circle
theory. Consider that mutual-mentions consume both the time and
cognitive capacities of each user involved, constraining the number of
mentions that can be made by a given individual. In contrast, following
another user is inexpensive in terms of time and concentration, and a

5. Following the data handling policy of the company and the GDPR regulations of
the EC regarding privacy, the utilized dataset cannot be shared directly. However, similar
dataset can be collected via the open API maintained by Twitter or could be constrained
using already open datasets.
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Figure 4.13 — Degree distributions for an empirical Twitter dataset. Plots (a)
and (b) show layer edge types i = 1 and 2, (c) to (e) the resultant edge types
j=1,2and 3 due to layer overlap.

greater quantity of these relationships can be afforded. Once a user
follows another, the cost of maintaining that link is minimal. It can
be maintained passively, unlike mutual-mention relationships. As
expected, the average mutual-mention degree of (k1) = 5.39 is much
smaller than the average follower degree of (k;) = 162.83. In our
model, the degree skewness factor therefore equals J, = 30.2.

The various degree distributions for the Twitter multiplex are shown
in Fig. 4.13. The degree distributions within layers are shown in
Fig. 4.13(a) and (b), and are clearly broad tailed. Given that the densities
in each layer are relatively skewed, with J, = 30.2, and that edge
set overlap is substantial, with v = 0.45, the degree distributions of
the three resultant link types are well approximated by the degree
distributions within each layer, Fig. 4.13(c-e). That is, the distributions
of kig and kg; degrees follow closely those of layer one and layer
two degrees, respectively. Finally, the degree ki1 of the overlapping

edge type is well approximated by that of the sparse layer, layer one.

This is to be expected given the density skewness 6, = 30.2, since
overlapping links constitute a much larger sample of layer one than
layer two links, proportionally. In other words, |E11|/|E1| ~ 0.45
whereas |Eq1|/|Ez| =~ 0.015. The former quantity provides the overlap
v = 0.45.
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4.7.1  Sparsification

Throughout previous sections, we were interested in studying the
dependence of the global cascade condition on the average degree z =
z1 + zo of the underlying multiplex. That is, we wish to explore a phase
space (¢, z), which requires producing networks of a desired average
degree z. The Twitter network as collected has an average degree
of 165.8, and thus requires sparsification to produce samples with a
desired average degree lower than this initial value, and densification
for average degrees that are higher. Any choice of algorithm can only
approximate the network at higher and lower z, since we do not have
access to historical data showing the multiplex at differing levels of
connectivity, nor do we know how the network will evolve beyond its
actual state. As such, sparsification and densification algorithms must
be used to suggest extrapolations of the empirical network to desired
values of connectivity z, with the caveat that each algorithm introduces
its own biases.

To obtain average degrees of 0.1 < z < 165.8, we sparsify by re-
moving links uniformly at random. Quite simply, we randomly select
and remove links sequentially until the original empirical network is
reduced to the desired z value. This has the advantage that certain
correlations are preserved, such as degree-degree correlations, cluster-
ing and community structure. Importantly, this algorithm preserves
density skewness &, and overlap -y, while keeping the overall shape of
the degree distribution relatively unaltered. As shown in Fig. 4.6(d-f),
sparsified Twitter multiplexes behave in accordance with predictions
made on configuration model networks. That is, using the weighted
sum and the or threshold rules, the sparsifying network undergoes
three transitions; the first by exiting the upper cascading phase, the
second and third by entering and exiting the lower cascading phase,
respectively. Using the and multiplex rule the sparsified network passes
through a single transition by exiting the cascading phase [Fig. 3(f)], as
expected given the Twitter network’s layer density skewness 6, = 30.2
and overlap v = 0.45

4.7.2  Densification

Preliminary experiments indicate that at its original value of z =
165.8, the multiplex is susceptible to global cascades under the weighted
sum rule, as well as the or multiplex rule, over a large interval of
thresholds ¢. In particular, since both layers have average degree
z; > 1, we expect the observed network to be situated within the
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Algorithm 1: Forest-Fire Process(Gog = (V, E1, Ez), z)

1 G+ Gy

> while zg < z do

v < node chosen u.a.r from V

Vs < Burn(G, v)

Ei < E1U{(v,w) | (w,i,j) € Vsandi=1}
Ey +— E;U{(v,w) | (w,i,j) € Vsand j =1}
G+ (V, Eq, Ez)

z; 4 average degree of G

® NN o U s W

upper cascading phase. By applying the sparsification algorithm of
the previous section, this is indeed found to be true; the network
undergoes three phase transitions in susceptibility to global cascades
when lowering z from 165.8, to 0.1 [see below the horizontal dashed
line in Fig. 4.15(f), and Fig. 4.6(d-f)]. The goal of this section will
be to show that by increasing the connectivity of the multiplex, the
fourth and final phase transition is traversed. That is, by increasing
its average degree, the empirical multiplex can be made stable against
global cascades, thus exiting the upper cascading phase.

To extrapolate the empirical Twitter network to average degrees
165.8 < z <1000, it is not desirable to add links uniformly at random.
This is because by the time it grows to z = 1000, the network will be
almost entirely random, significantly reducing the correlations typical
of empirical networks. To incorporate the original structure and pre-
serve as much as possible its empirical correlations, we use a model
of densification known as the forest-fire process [116, 136], which is
described in Algs. 1 and 2. This process amounts to an extrapolation of
the original network to higher z, through the probabilistic addition of
links biased by the existing structure. The forest-fire model originally
proposed by Leskovec et al. in [136] has a simple intuitive justification.
It is based on having new nodes attach to the network by “burning”
through existing edges in an epidemic manner. For example, a new
node u attaches to a randomly selected node v in the existing graph,
and begins burning through the edges of v, attaching to any new node
it encounters following a certain probability distribution. In the context
of Twitter network growth, this would be interpreted as a new user ran-
domly selecting initial accounts to follow, then browsing the followers
of those users in order to find additional accounts to follow, which he
does with some probability. The new user continues recursively, using
accounts discovered in previous steps to extend their list of contacts,
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Algorithm 2: Burn(G = (V, Eq, Ey), v)
output:set Vs of stubs (u,1,), tuple of u € Vand i,j € {0,1}
indicating (u,v) € Eq, Ep
1 Vs + @;
2 D+ @
3 enqueue Q with v;
4 while Q not empty do

5 u < dequeue Q;

6 | forwe N(u)do

7 if w ¢ D then

8 p < real number chosen u.a.r from (0,1);
9 if p < min{1, m} then

10 D+ DU {ZU},

11 enqueue Q with w;

12 if (M,ZU) € Ey theni <+ 1;

13 if (u,w) € E; then j < 1;

14 Vs<—V5U{(w,l,])}

until the process dies out. We modify this algorithm in several ways
to suit our framework; the authors of [116, 136] consider single layer
directed networks, whereas we require a process corresponding to
undirected multiplexes. Further, [136] uses a geometric distribution to
determine whether to burn through a particular edge. In contrast, we
traverse edges adjacent to a node v with probability Waiv)l’ where N (v)

is the set of neighbours of v, meaning |N (v)| provides the degree of v.
Here, « is a parameter of the model determining the average number
of edges to burn per node. For results in Fig. 4.6(d-f), we set « = 1,
meaning that when a node u is exploring the neighbours of a node
v, it selects on average one with whom to connect. If w € N (v), the
edge type formed between u and w is determined by the type of edge

Table 4.3 — Same as Table 4.2, but for the Twitter network extrapolated to
z = 1000 using forest-fire densification. The layer density skewness J, = 29.6,
compared to 30.2 in the original. Overlap is v = 0.45, as before.

E E1 Ez Em E(n Ell
| o] 185,323,675 6,139,522 181,954,417 3,369,258 179,184,153 2,770,264
z 1000 33.13 982.1 18.19 967.1 14.95
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(v, w). In other words, if u discovers w via v, and v is connected to w
via layer two and not layer one, then u also connects to w via layer two
and not layer one. In the context of a growing Twitter multiplex, this
corresponds to a form of cyclic closure [128, 164]; if a user u discovers
a user w via v, and v has a follower / followee relationship with w
(not going so far as to form a mutual-mention bond), then u is inclined
to also form an inexpensive follower relationship with w. Although
this argument may not apply in every instance, the assumption ap-
pears reasonable for a simple model of multiplex densification, and
most importantly, preserves the balance of edge types in the multiplex
(with density skewness maintained at J, ~ 30.2 even when the original
network is extrapolated far beyond its original density, i.e., z > 165.8).

Finally, to remain consistent with our approach to sparsification
which preserves the network size N, we implement a variant of the
forest-fire process that adds edges without adding nodes. In [136], a
new node randomly attaches to a node of the existing graph (termed
the “ambassador” node by Leskovec and coauthors), and then starts
the forest-fire process at that node. In contrast, we begin each step by
randomly selecting an existing node, and performing the forest-fire
process from that node. As such, our implementation of the forest-
fire process amounts to a randomised version of a graph traversal
algorithm, such as a BFs. In fact, in the limiting case of & — oo, the
forest-fire process recovers the BFS. In this case, the node at which
we start the forest-fire process eventually discovers every node in the
graph. If this occurs at each step of our algorithm, eventually we will
have a complete graph. If # = 0, no new nodes are discovered and no
edges added. As such, a parameterises a Twitter user’s tendency to
recursively build its network. A consequence of this algorithm is that
we’re mostly adding short cycles to the network, with edges added
after one hop forming 3-cycles, edges added after two hops forming
4-cycles, and so on.°

4.7.3 Emergence of unstable phase

In the final section of this study, we demonstrate the emergence
of a high-z cascading phase in the empirical Twitter multiplex, using
the weighted sum rule. In so doing, we summarise the arguments of

6. This is desirable since (i) the formation of cycles is well motivated empirically
[128, 164], and (ii), our goal in carrying out experiments on the Twitter dataset is to
test our results beyond a configuration model setting, where networks are maximally
random up to degree distribution, by construction. Clearly, one way this is achieved is
through the addition of short cycles.
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Figure 4.14 — Degree distributions of the Twitter network extrapolated to
z = 1000. Gray curves in (a) and (b) are the original distributions of k1 and k;
degrees [see Fig. 4.13(a) and (b)]. Gray curves in (c-e) are the blue curves in (a)
and (b).

previous sections in the language of real networks. Since this experi-
ment involves varying the relative weights w; in each layer using 4y,
which are assumed to be uniform here, the dynamics of the and and or
threshold rule would be unchanged. In Fig. 4.15(a-f), we vary weight
skewness J,, from 1, meaning weights are of equal strength in the
mutual-mention and follower layers, to 104, such that the strength of
interaction in the mutual-mention layer is 10* times stronger than that
in the follower layer. Weights are additive in overlapping links, which
represent a substantial fraction 7y = 0.45 of the mutual-mention layer.
In each panel of Fig. 4.15, we explore a complete (¢, z) phase space,
meaning we perform sparsification and densification to explore below
and above the dashed horizontal line, respectively. This experiment is
the empirical analogue of that presented in Fig. 4.5, where we vary &
in a configuration model multiplex with log-normal degree distribu-
tion. The values of weight skewness d, in Fig. 4.15(a-f) correspond to
weights w = (1,1), (7,0.8), (13,0.6), (19,0.4), (25,0.2) and (30.7,0.01),
such that average weight across the entire multiplex gives (w) = 1, for
all plots.

When J;, = 1, and the mutual-mention network is of equal interac-
tion strength to the follower network, a large overall z ensures that
global cascades are exponentially rare [Fig. 4.15(a)]. That is, if the
threshold ¢ = 0.1 for example, it suffices that the total average degree
be z > 30 to ensure stability against global cascades. In this setting,
no cascading phase is observed at high z, where the follower network
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overwhelms the influence of the mutual-mention network. In contrast,
if weight heterogeneity is large, say d,, = 0.012 as in Fig. 4.15(e), then
the multiplex has to reach a much higher average degree z than in the
previous case, before becoming stable to perturbations. This is due
to the presence of a high-z cascading phase. Now if ¢ = 0.1, then
the overall connectivity must surpass z > 300 before global cascades
become exponentially rare. This can be understood by noting that
the mutual-mention average degree lags behind that of the follower
network. In the case of J;, = 1, by the time the mutual-mention net-
work undergoes structural percolation, follower links are too abundant
for influence from mutual-mention links to be perceptible. Taking the
mutual-mention layer alone at ¢ = 0.1 and z = 5.4, i.e., at its original
value corresponding to the horizontal dashed line in (a), the network
would be of ideal density to undergo global cascades. Since, however,
the mutual-mention layer is coupled to the follower layer, and here they
are of equal influence, J,, = 1, the nodes in the mutual-mention layer
become highly stable. Thus, no cascades are observed at this point.
In contrast, when J,, = 0.012, at that same point (¢ = 0.1,z; = 5.4)
but in Fig. 4.15(e), mutual-mention links are of sufficient strength to
overwhelm the influence from the follower network, despite being
vastly outnumbered. Since the strong links are of ideal connectivity to
trigger global cascades (percolating structurally and forming a giant
component, but not too dense so as to stabilize adjacent nodes), global
cascades emerge even from a single initial perturbation.

The above example suggests a straightforward manner to evaluate
the susceptibility of an observed network to global cascades at an
observed value of z. First, one attempts to determine whether the
network is comprised of links of heterogeneous interaction strength.
If so, and if this heterogeneity is substantial, even a high overall z
does not guarantee stability against external shocks. This is not the
case when links are of homogeneous strength, where relatively low
connectivity z may be sufficient to suppress global cascades.

4.8 DISCUSSION

Our results demonstrate that global information cascades emerge
in arbitrarily dense networked systems, typically viewed as stable
against small perturbations. The types of multiplex structure triggering
this behaviour are elementary, and have even been derived from an
entropy maximisation process. We have shown that skewness in edge
density by layer is necessary for the emergence of reentrant phase
transitions under all variants of the threshold rule, but sufficient only
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when thresholds are layered and the or rule applied. When influence is
summed over layers and evaluated with respect to a single threshold,
an additional weight skewness condition is necessary. We confirm these
phenomena using an analytical formalism that we have extended to
multiplex networks, as well as simulation, both on synthetic networks
and an empirical Twitter multiplex where all results are recovered. Our
results suggest approaches to network design that may promote or
suppress system-wide cascades of threshold driven contagion.

In the next chapter we relax one of the major assumptions of this
work, namely, that the underlying network is static.






THE DYNAMICS OF CASCADES ON BURSTY
TEMPORAL NETWORKS

5.1 INTRODUCTION TO TEMPORAL NETWORKS

Consideration of real systems make it clear that their underlying
networks are far from static, as was assumed throughout the previous
chapters in this thesis. Whether it is due to network growth and
evolution, or an overlying dynamical process, real networks invariably
exhibit temporal behaviour. Whether this is relevant to dynamics
such as the spread of information depends on the relative time scale
at which the network is evolving. As discussed in Section 1.3 of
Chapter 1, the quenched regime refers to network structures that
evolves so slowly relative to node dynamics that a static approximation
is likely sufficient, whereas the annealed regime refers to networks that
evolve so rapidly that their behaviour must be time-averaged in order
to infer its interaction with node dynamics. The study of dynamics on
networks concerns itself in the intermediate regime, where temporality
is critical to the process’s evolution.

In this final chapter, we study a general model of binary-state dynam-
ics on temporal networks. In particular, when temporality is defined by
a stochastic process, a network may exhibit bursts of event activity [14].
So-called burstiness is a well-studied phenomenon, and refers to the
tendency of inter-event times to be heavy tailed. This is in contrast
to constant rate or Poisson processes, where very long waiting times
between events is exponentially rare. Burstiness is characterised by
the presence of these long intervals of inactivity, and corresponding
intervals of very high activity.

In the following sections we outline our approach to studying binary-
state dynamics on these stochastic temporal networks. We study the
effect of our model on threshold driven contagion in the presence of
exogenous noise.
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Figure 5.1 — Relative sizes of the edge sets E;. In an ensemble of edges following
a renewal process §(7) with memory 7, E; is the fraction of edges at time ¢
that have observed j events over the interval [t — 1, t]. Alternatively, a single
edge following an infinitely long renewal process occupies state j for a fraction
E; of the experiment’s duration. Plot (a) illustrates the E; sets resulting from a
heavy-tailed inter-event time distribution 1, where long inter-event times are
rare, but are of sufficient duration to cause edges to spend most of their time in
state j = 0. Plot (b), illustrates the set sizes E; resulting from an exponentially
distributed (7). Here, long waits between events are rare, and the expected
edge state will recall several events. Edges move between states with rates y;
and v;.

5.2 MODEL DESCRIPTION
5.2.1 Renewal processes

Our first application of this AME formalism involves a straightfor-
ward yet compelling interpretation of temporality. First, we assume a
renewal process is taking place on every edge, each following a distri-
bution ¢(7), with T being the time between consecutive, independent
events on a given edge. Edge events represent interactions between
the adjacent nodes, such as information exchange or physical contact.
Consistent with the framework of the AMEs, the renewal process is
continuous in time, and we interpret events as points in time with
zero duration. For the time being, the only constraint that we place on
the renewal process 1 is that no more than one event may take place
over an infinitesimal interval dt. Moreover, we attribute to each node
a memory of duration 7, allowing it to recall the number of events j
that have occurred over the interval [t — 7, t] for each adjacent edge.
As such, at any point in time, we can attribute to every edge a state j,
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Figure 5.2 — Configuration of j events occuring between [t — 77, t], where 7 is
the memory time, used to calculate the rate of positive edge transition ;dt.
In plot a we enumerate all configurations of edges in state j at time t, with
a (j +1)-th event occurring over the interval t < t;;1 < t +dt. In plot b we
enumerate all the configurations of edges in state j. Inter-event times 7y, ..., 7
are drawn from 1, whereas v’ and 1" are drawn from ¥, defined in the text.

corresponding to the number of events that have taken place on that
edge over the last 7-window. Further, the state of each edge increments
by at most +1 over an interval [t,t + dt]. In our AME framework,
the type j of an edge will correspond exactly to the state of an edge
undergoing a renewal process with memory 7. As such, k; enumerates
the number of neighbours connected to a node via edges in state j, and
m; represents the corresponding number of infected neighbours.

It is worth noting that the window of memory 7 can in some cases
be construed as the duration of an event. That is, one can interpret an
instantaneous event happening at time ¢, and the event is remembered
by adjacent nodes for a duration 7. This is equivalent, at least with
respect to our model, of an event of duration # commencing at time ¢,
with adjacent nodes forgetting the event immediately after the event
terminates, provided that the events in question are not mutually exclu-
sive and can occur simultaneously. The event-duration interpretation
may therefore be appropriate for systems whose maximum edge state
is constrained to j = 1; for example, a distribution ¢ whose minimum
T exceeds 7.

The renewal process that we described above is ergodic, meaning
that the properties of an ensemble of such processes at any given time
t correspond to the properties of a single process of infinite duration.
We introduce the quantity E; to represent the fraction of time that a
single edge spends occupying a state j over the course of an infinite
renewal process, and we shall refer to E as the distribution of edge
states. We assign p;dt and v;dt to the probabilities that, if the edge is
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in state j at a randomly chosen time ¢, it will be in state j +1or j —1
at time f + dt, respectively. Of course, for a single edge undergoing
a renewal process, the interval between an arbitrary time ¢ and the
next event is not probabilistic, and is described by the residual time 7’.
The edge transition rates y;dt and v;dt apply when nothing is known
about a node a priori, other than its current state. In the ensemble
picture, E; is the fraction of edges that have state j, and the rates p;dt
and v;dt are the fraction of edges in class j that increment or decrement
state over an interval d¢, respectively. This idea is illustrated in Figure
5.1 for heavy-tailed and exponential distributions. We shall see that
heterogeneity in the distribution §(7) is captured by heterogeneity in
the distribution of edge set sizes E, as well as the rates of transitions
between them, y; and v;. In the following calculations, quantities are
most easily interpreted as those of a single edge following an infinitely
long renewal process.

Renewal processes and non-Markovianity

In this section we clarify we discuss the Markovian and non-Markovian
features ' of our renewal process with an 7 memory window. On the
level of a single edge, it is clear that the state j of an edge at time ¢ + dt
is determined not by its state at time ¢, but by the time until the next
event, or T’. In other words, once an event is observed at time ¢, the
state of the edge is predetermined by the inter-event time 7. It could
be argued, on the other hand, that in the so-called “event-space” repre-
sentation of the renewal process, single-edge dynamics are Markovian.
This representation is discrete, and incrementing the system from one
point to the next involves randomly sampling from the inter-event time
distribution . Since consecutive inter-event times are uncorrelated,
the system can be described as Markovian in this representation.

Finally, although individual edges are non-Markovian in time ¢, if
we define our “system” as being the ensemble of edges in an infinite
network, the system as a whole is Markovian.

5.2.2  Density and mixing rates

A consequence of the “renewal process with memory” is that we
induce a distribution of edge states, where E; gives the distribution of
edges in state j and y; and v; the rates of positive and negative edge
transition, as outlined in Chapter 2.

1. A process is Markovian if it exhibits the Markov property, i.e., where the state of
the system at time ¢ + dt, depends only on the state at time £.
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The rate of positive edge transition p;dt is calculated by finding the
probability of a (j + 1)-th event occurring over an interval [t, t + dt]
if there have already been j events in the interval [t — 7, t]. This is
illustrated in Figure 5.2, where we shall set t = 7 for convenience. In
Figure 5.2, the inter-event times 7y, ..., 7; are drawn from (7). The
times 7’ and 7" are drawn from ¥ (1), defined as

¥ = [y, 5.1

which is the probability that the time between events is of duration
at least T. As such, the probability of observing the configuration in
Figure 5.2a is ¥(7')¢(71) ... ¥(7;), which is the same as ¥ (t1)(t2 —
t1) ... (7 —t;) given that we’ve set the time t to 77. The sum over all
such configurations can be expressed as

/Tdtl .. .di’j‘Y(tl)lp(tz — tl) ce llJ(ﬂ — t]) =Y llJ*], (52)

where 1*/ is the j-th convolution power of ¢, and integration is over
the domain T defined by

T = (0,7] x (0,7 — h1] x (0,7 — o] X ... x (0,5 —tj 1] CR,. (53)

To obtain the rate y;dt, the above quantity must be normalised by the
probability E; that at a randomly selected time ¢, an edge is in state
j. This corresponds to the illustration in Figure 5.2b, and involves a
similar calculation to the one above. The probability of observing the
configuration in Figure 5.2b is ¥(7')(71) ... ¥(1;-1)¥(7"), which is
the same as ¥ (t1)y(t2 — t1) ... ¥(tj —tj_1)¥ (7 — t;). The normalisation
constant is therefore

/Tdt1 AR ()Pt —h) .t — i) ¥ (i — ) = T U D ¥,

(54)
where the domain T is as defined above. As such p;dt, the probability
of a positive edge transition from state j to j + 1 over an interval dt,
can be written compactly as

]ijdt = ﬁdt, (5.5)

which incorporates the details of both the renewal process i and the
memory function 7. Similar arguments can be used to calculate v;dt,
the probability of a negative edge transition from j to j — 1 occurring
over an interval dt. This allows us to write

Y % 1/]*(]71)

V]'dt = 1{]—* 47*(]*1) N ‘Pdt

(5.6)
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Note that the denominator is the same in the rates for y; and vj, as the
normalisation constant corresponds to the size of the set E;. Finally,
we can argue that by induction from j = 0, and using the fact that the
distribution E is constant at sationarity of the renewal process, that

WiEi =vinEjq, (5.7)

which is illustrated in Figure 5.1. The rates y; and v; can be calculated
either numerically or analytically, depending on the tractability of the
chosen distribution ¢. In general, if ¢(7) is locally integrable, then
the Laplace transform of ¢ and ¥ exists and allows us to calculate the
convolution as a product in the frequency domain, which will be useful
especially if j is large. In particular, if we denote the Laplace transform

of (1) by .
LUp} =) = [ plope e 59

then the transform of Equation 5.1 can be written as

= —". (5-9)

As illustrated in Figure 5.3, the observed experimental rates y;, v; and
E; closely match the predicted values. In this Figure we’ve simulated
a large temporal network, with N = 5 x 10”7 nodes, constituting an
ensemble of edges each following a renewal process with inter-event
time distribution . Node state is irrelevant to these statistics, so we
consider only edge state. At the beginning of each interval At = 1073,
we count the number of edges in state j, then count those who make a
transition to state j £ 1 over the interval At. The number of j-state edges
becoming (j + 1) and (j — 1)-type edges over this interval, normalised
by the total number of edges in state j, give the positive and negative
edge transition rates y; and v}, respectively.

5.2.3 Initial conditions

If we assume that at the start of a spreading process edge activity is
already at equilibrium, then the probability of a node having degree
vector k is calculated directly using the distribution E; = ¥ * U= 9,
Remember that if edge-state j describes the number of events recalled
within 7-memory, then k; gives the total number of edges adjacent
to a node in state j, while k enumerates edge states over the local
neighbourhood, k = (kq, ..., kn)T, for some maximum allowed edge-
state n. In contrast, one might imagine initialising a network at t = 0
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Figure 5.3 — Simulation of an ensemble of 107 edges following a power-law
inter-event time distribution (), and corresponding theoretical values. Snap-
shots of At = 1073 are used to calculate edge state flows. Experiment is
coloured, theory results are solid black lines. Power law has exponent & = 2.5
and average () = 1, and memory is § = 1.

by assigning all edges to the Ej state. This means that at { = 0 no
edge activity has yet taken place, and edge states evolve to equilibrium
concurrently with the spreading process. To remove the effect of this
changing topology, in the following we assume that edge activity
has been occurring for a sufficiently long time when we begin the
dynamical process at t = 0, meaning E; will be distributed according
to their stationary values from the beginning. The Laplace transform
of the probability E; can be written as

L{(T)E;} = L{‘I’*lp*(jfl) *‘I’} (5.10)
= ¥v.¢9 1. ¢ (5.11)
_ =19
= VT (5.12)

in any case where §(7) is locally integrable.

5.2.4 Model properties

In this section we list a number of properties that are useful in
verifying the correctness of Monte Carlo simulations. First, we have
the relation

LYl ¥ = (), (5.13)
]

the average inter-event time. This is very useful in checking the numeri-
cal implementation. Also, consider carefully the case j = 0 in the above
equations. We get negative convolution powers. Shouldn’t sweep this
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under the rug. The number of configurations in which an edge can be
in state zero, and therefore the average time spent in this state, is

Ey = /770011[(’[/)(11'/. (5.14)

This is the expression corresponding to probability that there is no event
at time ¢, and no event until time ¢ — #, or that there is no event at time
t, and no event until time t — y — dt, or that there is no event at time f,
and no event until time f — 57 — 2dt, and so on. Slightly more compactly,
¥ (t — t')dt is the probability that there has been no event from time ¢ to
t —t, including the intervals [t — dt] and [t — 7, t — 1 — dt]. Summing
all of these configurations, from t' =1,..., 00 gives

Ey = Y(t—n)+Y(t—(y+dt))+¥(t— (y+2dt))+...(5.15)
= /t:;o‘f(t —t")at (5.16)
= /1700‘P(T/)d’f/, (5.17)

making the substitution t — ' = 7’. Finally, to calculate p, the fraction
of Ey edges that increment over [, t + dt], we perform a weighted sum
of configurations in which an event occurs between t and ¢ + d¢t, and
compare this to the total number of configurations. That is,

iy wdt S wdt
= = 18
0= foeg M T (5.18)
as well as - .
Ey = / Ydt and E; = / Ydr, (5.19)
Vi 0

which we use to veryify the emergent transition rates in an n = 2-level
system.

5.2.5 Residual time distribution and CDFs

With heavy tailed distributions, it is especially important to be able
to initialise simulations using the residual time distribution, ¥ (7). This
is because an ensemble of edges undergoing renewal process takes
longer to reach equilibrium when long interevent times, T > (1),
are significant. Without use of the residual time distribution, the
convergence to equilibrium distributions of E, y and v can take an
extremely long time.
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For simulation purposes it’s crucial to relate the CDF of 1 to the
residual time distribution. If the probability density function ¢(7) is
normalised, and (7t < 0) = 0, we have the relation

[ _emar = [y (520)
= /()Tl/)(r’)dr’ + /:O p()dt (5.21)
= Y(1)+Y¥: (1) (5.22)
=1 (5.23)

and we refer to the residual time distribution as ¥,(7) = [ y(')d7,
and hence make use of the relation ¥, = 1 — Y. Now we concentrate
on the lognormal distribution. Note that to initialise our system in a
steady state, we apply rejection sampling of the residual distribution
Y (7), rather than inverse sampling.

5.2.6 Networks and dynamics

Networks are undirected and composed of a single layer, generated
using the configuration model. Edge state is determined by our renewal
process with memory model, and node state is binary, determined by
neighbour and edge state. Here we argue that neighbour influence is
proportional to the number of events in 77-memory. As such, the class
(k,m) is determined by the local configuration of event activity and
neighbour state, and node activation and recovery occurs at rates Fy
and Ry ;. Thus, fits the framework outlined in Chapter 2. Rather than
a single initial seed, we allow random noise, or spontaneous activation
at rate p.

Up until this point, we have been discussing the edge statistics
induced by our temporal network model. The results in the previous
section, namely the calculation of rates y; and v;, pertain only to the
edge dynamics, without saying anything in particular about node
dynamics. It remains therefore to specify exactly how a spreading
process might result from this time-dependent topology.

We apply our temporal network model to node dynamics defined
by the Watts threshold model. It is useful to mention that thanks to
the generality of the AME formalism, there are a number of ways of
defining the infection rates, Fy n, in the context of renewal processes
with memory #. The most straightforward approach is to say that
influence of a node upon its neighbour is directly proportional to the
number of events that have occurred on that edge over the preceding
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Figure 5.4 — Solution of AMEs, dashed, and corresponding Monte Carlo exper-
iment, solid. Exponential inter-event time distribution. Network is a 5-regular
random network with ¢ = 0.15 with an event memory of # = 1. Increasing the
average time between events, (T) decreases the spreading time to the theoretical
slowest value, namely p = 1 — ¢~ P!, or the solution to ¢ = (1 — p)p. Network
size is N = 10°.

n-interval. That is, edges in state j = 0 have weight w = 0, edges in
state j = 1 have weight w = 1, and so on.

We shall set a uniform threshold ¢ across the network. Nodes adopt
atrate i,y = 1if m-w > ¢k -w, and F ,, = p otherwise. We shall
see that bursts in activity along inactive-active edges lead to thresholds
being overcome.

5.3 EXPONENTIAL INTER-EVENT TIME DISTRIBUTION

In this section we explicitly calculate the rates y; and v; for an expo-
nential inter-event time distribution . Consider such a distribution
with average (7) defined by

P(r) = e/ (5.24)

and
Y = 0, (5.25)

The Laplace transforms of these distributions can be written explicitly

as
1

W (5-26)

h(s) =
and R )
s 1-19¢ T
Y¥(s) = = . .
Substituting these transforms into Equation 5.10, and applying the
convolution theorem allows us to calculate the expected size of the set
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of edges in state j, which is also the normalising constant in the rates
pj and vj, as the expression

C{‘i’*tp*(j_l)*‘l’} = ¥.¢ . (5.28)

Y
_ (1) 1 =)
- (ms+1 ((T}s+1> <T>S+1(5-29)

1 1 j+1
= W <s+<i>> . (5.30)

(5:31)

Using the fact that £~ (S]%) = 1/ /j!, the scaling property L~ (a)) =
al~1(¢), as well as the translation property £ '[{(s + a)] = e~ "Iy,
the inverse Laplace transform of the above expression can be written
explicitly as

(i 67’7/<T> n j
Yoy 0oy == () 532

meaning E is simply the Poisson distribution, as expected. Similarly,
the Laplace transform of the numerator in Equations 5.5 and 5.6 can be
used to calculate

i g777/<1'> j
eyl =—5 < <Z> > (533)
and /e -
_ j—
e A
Yxip G=1 \m : (5:34)
Normalising these quantities using Equation 5.32 we obtain
1
uidt = Tyt (535)
and ,
vidt = %dt, (5.36)

which we are able to derive by much simpler arguments, namely with
the definition of the Poisson process. Crucially, i has no j dependence
in the case of the Poisson process, which we interpret as the “memo-
ryless” property of that distribution. These rates may be verified to
be correct in one of two ways. First, by simulating an ensemble of
independent renewal processes, one observes the change in the system
over an interval [t, ¢ + dt]. The flow through the set E; over that interval,
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Figure 5.5 — Solution of approximate master equation, dashed, and correspond-
ing Monte Carlo experiment, solid. Here we vary the parameter #, controlling
the event duration. Decreased memory slows down threshold driven contagion.
This feature is consistent for a number of k and ¢ values, even in the case of
k = 7. Note the curious overlap for # = 1 and 0.1 here.
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Figure 5.6 — Identical to Fig. 5.5, but with # constant and increasing threshold
¢.

normalised by the size of that set, give the rates y; and v;. Alternatively,
by simulating a single renewal process for a sufficiently long time, and
observing its change in behaviour over each interval dt, one obtains the
rates y/; and v; which are identical to those calculated in the ensemble.
See Figure 5.3 for the case of a power law.

5.4 POWER-LAW INTER-EVENT TIME DISTRIBUTION

A typical model of heavy tailed distributions is the power law, with
¢ = Ct* for some positive constant a. Given that our study will
eventually involve a comparison of the effects of different inter-event
time distributions, it is important here to precisely obtain a desired ()
for any «, to ensure a fair comparison against different ¢ distributions.
Since the power-law as stated is a one parameter function, its average
depends explicitly on « and thus cannot be held constant in a study of
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the effects of varying a. To counter this, we introduce the minimum
and maximum cutoffs, Ty and 7 respectively, and will eventually tune
them provided the exponent « and the desired (7). As such we have

0 T< 71
P(T)=Ct™ <t<T (537)
0 T>1,

where C is the normalisation constant
1—a

C=———. 38
T (5-38)

This function has the related distribution ¥ (7) = [ (1')d7’ given by

1 T< T
1—a 1—a
T — 7T
¥(1)=§ 2= 0<Tt<T (5.39)
Tl o Tl o
1 0
0 T> T,

which is piecewise continuous. Note that the residual distribution ¥
is not normalised. The integral fooo Ydt with ¥ defined as above gives
C/(t), with C defined below. To implement a temporal network whose
edges undergo renewal processes following a distribution i, one is
normally interested in initialising the system at steady state. To do
this one performs inverse transform sampling of both ¢ and ¢’, the
residual time distribution. As such, we require the CDF of both these
functions. First, we have

0 T<T
T Tlfzx _ Tlfpc
/ y(7')dt = Tl,aiﬁ,,x TH<T<T (5-40)
J —00 1 —_— 0
1 T>1T,

which can be inverted to allow inverse transform sampling of the o
distribution, giving
1
T= {Tg_”‘ + (% - T(}_‘X)lf} e (5.41)
As such, ¥ is set to a value uniformly sampled from the interval (0,1),
and we evaluate Eqn. 5.41 to get the corresponding 7 value.
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Figure 5.7 — Power law inter-event time distribution ¢(7) with exponent a =
2.5, and average (T) = 1. Networks are random-regular with degree k, and
of size N = 10°. Output from simulation are solid curves, and result from 50
realisations. results from theory are dashed lines. There is strong agreement
between theory and experiment for values of ¢ in the range 0 < ¢ < 0.25, but
as shown below, theory starts to deviate for larger threshold values.

5.4.1 Laplace transform of power law

Without introducing the upper and lower bounds, 71 and 1y respec-
tively, obeying the relation 0 < 19 < 71 < oo, the Laplace transform

/ T %t (5.42)
0
is clearly divergent for « > 1. But writing

¢(t) =Ct “[H(t — 1) — H(T—11)], (5.43)

where H(7) is the Heaviside step function, ensures the Laplace trans-
form converges if 1) and 7y are finite. For now, to avoid a large amount
of algebra, we calculate Equations 5.5 and 5.6 numerically using Equa-
tions 5.37 and 5.39, by manually computing the convolutions of ¢ and
Y. In the following sections we discuss the close agreement between
Monte-Carlo simulation and the AMEs for small and intermediate
ranges of threshold values ¢, and somewhat worse agreement for high
thresholds.
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Figure 5.8 — Divergence of theory from experiment for high threshold values
¢. Power law has exponent « = 2.5 and average (1) = 1, while memory has
duration 5 = 1. Networks are degree regular, with N = 10° nodes and 10?
realisations of the spreading process.

5.4.2  Effectiveness of master equation solution

For small and intermediate values of the threshold ¢, we see strong
agreement between the approximate master equations and the corre-
sponding Monte Carlo simulation. As illustrated in Figure 5.7, the
AME theory recovers the behaviour of threshold driven contagion for
a range of degrees k, and for the threshold range 0 < ¢ < 0.3. In par-
ticular, the AMEs capture the decelerative effect induced by increasing
the threshold ¢. This is important, because it means that the rates
#; and v; hold even for node configurations (k, m) with a number of
infected neighbours. However, for very large thresholds ¢, a disparity
begins to emerge between simulation and theory, as depicted in Fig. 5.8.
Although solid lines (experiment) and dashed lines (theory) no longer
converge, the qualitative decelerative effect is still captured. The error
can be traced back to a deviation in the edge transition rates y and v,
which are are really system-wide rates. In reality, edge transition rates
for each class appear to vary slightly over time. This can be remedied,
but at the cost of increased system size, and is beyond the scope of the
work in this chapter.

5.4.3 Phenomenology

In this section we change speed and turn our attention to the conse-
quences of our model. Our primary interest is in determining the effect
of the interevent time distribution i on threshold driven contagion. We
wish to compare a homogeneous process, where events arrive at a con-
stant rate, with a heterogenous process. Such a study can be performed
by comparing an exponential distribution 1, with a heavy-tailed distri-
bution, such as the power law defined in Eq. 5.37. To ensure a valid
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comparison of the two dynamics, we ensure that the average interevent
time (7) is constant across experiments (and maybe even control for 1,
because this parameter controls the maximum edge-state in the power
law, and therefore the maximum weight). This is straightforward in the
exponential distribution 5.24, where (T) is the sole parameter, however
in the case of the power law, the three parameters 1), 77 and « must
be adjusted for a desired mean. a controls the heaviness of the tail, 7y
controls its length, and 1) controls where it begins.

It is critical to control for the average inter-event time (1), which we
shall do for a power law by varying the cutoffs 7y and 7y after selecting
a desired exponent a. These values are related by the expression

2—u 2—n
l—ahg "1

(1) =

P (5-44)
When a < 2, the mean (1) of the integral f;ﬂl T~ *dt diverges when
T1 — 0. As such, if 1y is fixed as some small value, there is guaranteed
to exist an upper cutoff 7; that produces the desired mean. In contrast,
when a > 2, the mean is well defined. This restricts the (7, 71) param-
eter space, since the desired mean must be smaller than its limiting
value

. 1—ag ™ 1-a
Jim () = >— e (545)

for constant 7y. This provides a lower bound for 1y in order that the
desired (7) be achievable by tuning 7y when a > 2. For example, if
we require (7) = 1 and have set « = 2.5, then 15 > 1/3. In general we

have the relation
T0 1—«a

(1) ey
This has a number of implications for the interpretation of the model.
For example, if we set the average inter-event time to (7) = 1, the
event memory to # = 1, and select & = 2.5 as the exponent, then we
limit the range of the lower bound to 1/3 < 19 < 1, meaning that no
more than 3 events can ever be recalled on a given edge. This is not a
problem per se, except in the case where one wishes to model a broad
weight distribution. The easiest solution here would be to increase the
memory length 7.

(5-46)

5.5 SAMPLING THE LOG-NORMAL AND GAMMA DISTRIBUTIONS

In this section we study log-normal inter-event time distributions.
The log-normal distribution has the advantage of directly inputting
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Figure 5.9 — Random sample of sorted T for log-normal and gamma 1 distri-
butions, all with mean 1, and standard deviation o+ = 4, (a) and (c), and 30, (b)
and (d). The gamma distribution samples with much higher probability from
small T values. The distributions E; resulting from the log-normal and gamma
1, with o = 4 and 30. Because of the large number of small T values drawn
from the gamma distribution, higher E; states are reached in this distribution
compared to the log-normal. Crucially, the network is effectively much sparser
under the gamma distribution than the lognormal (see the mass of j = 0 edge
states in the legends, Ey).

its average p; and standard deviation o, which was not possible in
the case of the power law, above. The Gamma distribution is equally
convenient, albeit after some minor transformation of typically used
parameterisations. For the log-normal distribution, the probability
density and cumulative distribution functions are given by

_ 1 _(Int—p)?
P(r) = = ex l s 1 (5.47)
and 11 |
1= ¥(r) = 3+ gert (L)), (549

where Y is the residual distribution of . It goes without saying that u
is the mean of the distribution, not the positive edge transition rate u
defined above.

In addition to a log-normal distribution of inter-event times, we
conduct identical experiments using a gamma distribution. This has the
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advantage of being able to interpolate between exponential and power
law distributions. The gamma distribution is of the two parameter
family, with probability density given by

Pp(r) = r(al)ﬁa e B, (5-49)
and CDF given by
1-¥(1) = r(la)v(oc,g). (5-50)

Here, («, %) is the lower incomplete gamma function?. In contrast
to the log-normal, the Gamma distribution does not input the mean
and standard deviation of the inter-event times, yir and o+. They are
related by the expressions

ur =af and 0’12. = 04,82, (5.51)

which can be straightforwardly inverted to give

2 1 02
K= % =2 and B = }T: =02, (5.52)
T T

as we set u; = 1 everywhere. Under this parameterisation, setting
or = 1 and fixing as always pur = 1, we get « = B = 1. Then the
inter-event distribution reduces to the exponential, with ¥(7) = e~ .
We begin our study of these distributions by examining their steady
state properties in the context of our renewal process model, where
edge state is determined by the number of events j to have been
observed in the preceding time window of duration #. In the top row
of Fig. 5.9 we plot a random sample of T values drawn from both the
log-normal and gamma distribution, with means yr = 1 and o = 4
and 30 (left and right plots in the top row, respectively). From this first
glance at the distributions, it is clear the gamma distribution weights
much more highly values of 7 in the limit T — 0. Despite having
identical mean and standard deviation, almost every sample from the
gamma distribution is smaller than that of the log-normal distribution,
excepting of course that the gamma distribution compensates by having
a proportionally heavier tail. This is true for both values of the standard

2. Whereas the ordinary gamma function is defined as I'(s) = j;]w t°~le~t, the upper
and lower incomplete gamma functions are given by I'(s,x) = [~ #~le~ and (s, x) =
fox 571!, respectively. They obey the relations T'(s) = (s, x) +T'(s,x), and T(s) =
I'(s,0) = limy_,e0 ¥(s, x). Sampling from the lower incomplete gamma function will be
crucial when initialising our temporal network system at steady state.
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Figure 5.10 — Spreading time as a function of inter-event time standard de-
viation ¢, for different values of memory 7 (see legend). Left is gamma
distributed 7, right is log-normally distributed 7. Network has log-normal
degree distribution with N = 5 x 10°. See below for comparisons of gamma
and log-normal results for each 5. Thresholds are uniformly distributed with
¢ = 0.25.

deviation of 7, but the effect is clearly exaggerated for larger values,
that is, when o = 30.

We are interested, of course, in the impact of the inter-event time
distribution ¢ on the resultant distribution of edge states E; (bottom
row of Fig. 5.9). Clearly, the effect of the greater skewness in ¢ demon-
strated by the gamma distribution, will be to increase the frequency
of higher valued edge states. This is seen in the heavy tail of the E
distribution for gamma-distributed T (green curves), and the relatively
sharp cutoff in the edge state distribution for log-normally distributed
T (purple curves). Importantly, we observe that the E distributions
here are bimodal; there is a spike in the value of the edge state E
for each distribution, corresponding the frequency of edges that have
observed j = 0 events in the last 7 window. The heavier the tail of the
E distribution, the sharper the spike appears to be. This is key, as it
captures the effects of burstiness; a relative abundance of edges in large
states (those that observed bursts of activity, T < 1) is compensated by
a large number of edges caught in a long waiting time between events
(those that have drawn from the heavy tail of i, where 7 >> 1).
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Figure 5.11 — Identical to Fig. 5.10, but with log-normal and gamma distributed
(1) plotted side-by-side for corresponding parameter values. Solid is log-
normal ¢, dashed is gamma.

5.5.1 Spreading speed

We are interested in the time t. required to reach some arbitrary
density of active nodes in the network, which we set to p. = 0.5. In
Fig. 5.10, we compare the value of t. obtained as a function of inter-
event time standard deviation o+, for a select number of memory values
1, for both log-normally distributed 7, in (a), and gamma distributed T,
in (b). For # =1, 5 and 10, we recover a static network when o — 0,
a consequence of setting y: = 1. This is because when events are
periodic, and memory is an integer multiple of the uniform inter-event
time T = 1, edges are always in state j = 1, 5 and 10, respectively.
This leads to a relatively rapid spreading speed, ¢, ~ 16, a time that
is accelerated by decreasing the memory duration to # = 0.1. Here,
a static network is no longer recovered when taking o — 0. Rather,
edges occupy state j = 1 for 0.1 units of time after an event has occurred,
before waiting in state j = 0 for the remaining 0.9 units until the next
event. Despite the network being sparsified by 90%, this decrease in
memory length is able to increase the spreading speed by introducing
mixing. By this we mean that a node’s local configuration (k, m) is no
longer frozen, and edges are allowed to fluctuate between j = 0 and 1,
meaning that nodes may occupy configurations that are favourable to
activation at one point in time, and not in another.

It is precisely the effect outlined above that accelerates the process
for increasing o when 7 = 1, 5 and 10, in both Fig. 5.10(a) and (b).
That is, nodes that are stable with a given k have the chance of passing
through configurations that leave them vulnerable, once o increases
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Figure 5.12 — Spreading time as a function of memory 7, for different values
of memory o+ (see legend). Left is gamma distributed 7, right is log-normally
distributed 7. Network has log-normal degree distribution with N = 5 x 10°.
See below for comparisons of gamma and log-normal results for each 7.

to 0 or 1 and the spreading time reaches a minimum. Here of course,
events are no longer periodic. When # = 0.1, the increased variance
of the inter-event time distribution has no such accelerative effect. For
all values of 1 depicted in Fig. 5.10, larger values of o exaggerate the
sparsifying effect outlined above, so much so that the accelerative effect
of mixing is overwhelmed.

This deceleration occurs at a faster rate in Fig. 5.10(b), for a given
value of o+, due to the effects of the gamma distribution discussed in
Section 5.5. That is, for equal values of o¢, the gamma distribution
samples more heavily from very small 7, meaning larger bursts, and
correspondingly, more edges in state j = 0. To emphasise this effect,
we plot the curves in Fig. 5.10 side-by-side in Fig. 5.11, where a gamma-
distributed (7) is always equal to or slower than the corresponding
process with log-normally distributed (7).

In Fig. 5.12 we expand the above experiment in order to better
understand the role of memory. In so doing we perform the inverse
experiment, and we fix o+ at selected values and smoothly vary the
length of the memory duration #7. When taking # — 0, for any value of
or, and regardless of the inter-event time distribution ), we effectively
sparsify the network. Clearly, when node memory goes to zero, an
increasing number of edges are in the j = 0 state, and activation can
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Figure 5.13 — Identical to Fig. 5.12, but with log-normal and gamma distributed
(1) plotted side-by-side for corresponding parameter values. Solid is log-
normal ¢, dashed is gamma.

only occur spontaneously at rate p. Spreading process relying purely on
noise will always be slower than processes allowing activation through
their interactions. It is for this reason that spreading accelerates (or
equivalently, ¢ decreases), as 1 grows. For intermediate 7, processes
allow mixing, which is an accelerative effect as discussed above. When
1 is very large, large memory duration allows edges to increasingly
“sample” from the inter-event time distribution, and the edge state
distribution becomes uniform. Even if the average edge state is very
large, 3, accelerative effects due to mixing start to diminish. Since we
are using a relative threshold ¢ here, our temporal-network extension
of the Watts model, we begin to recover a static network.

These changes occur at different rates as a function of 7, depending
on whether the distribution ¢ is log-normal or gamma, as we show
in Fig. 5.13. As before, the small-T sampling effect of the gamma
distribution means that the network will always be as or more sparse
than the corresponding log-normal distribution. This is especially
evident for short memory 7.

5.5.2 Limiting cases of 11 and o

In summary, we outline the four limiting scenarios that we recover
regardless of whether the system follows a log-normal or gamma
inter-event time distribution .

3. The average edge state (E) increases linearly for large enough 7.
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Constant y, with ox — 0

In this case, we have fixed memory, with interevent times tending
towards a periodic signal. In the special case of # = p, interaction
strength is constant across the network, with all edges in state j = 1.
This is equivalent to a static network, and in the case of the Watts model
where influence is normalised over a node’s local neighbourhood, an
unweighted network. Here, the spreading speed is rapid compared to
the case of o — 0. In this case, the network is maximally filled, with
Eg=0and E; = 1.

Constant y, with or — o0

In this case, we have fixed memory, with interevent times tending
towards extreme bursts. In the infinite network limit, the average edge
state is still L7, but interaction strength is concentrated among those
edges undergoing bursts in activity. We refer to this as the sparsifying
effect of increasing burstiness, as oy — oo. The effect of this is Eg — 1,
with Ey increasing monotonically as a function of increasing o-.

Constant o+, with § — 0

Clearly the effect of this is sparsifying, or Ey — 1. Regardless of the
dynamics, no influence occurs when memory # goes to zero. Since
we allow for an exogenous input noise at rate p in these experiments,
spreading curve given by p = 1 — e ?!, for all dynamics.

Constant o, with § — oo

Clearly the effect of this is densifying, or Eg — 0. Nodes recall a
larger and larger number of events for fixed o and increasing 7. As
1 — oo, the distribution of edge states E; narrows, and the network ap-
proaches a uniform weight distribution, whose value increases linearly
with 7.

In the case of the Watts model, which is normalised, this will be
identical to a static, unweighted network. This is a consequence of
the threshold ¢ being relative. For absolute thresholds, as described
by the Centola-Macy model, spreading speeds will be saturated; since
the threshold is fixed, increasing # has a limited effect on node’s
whose thresholds have already been overcome. In contrast, if effective
infection rate in the SI model is proportional to edge state, we can
expect the spreading speed to increase uniformly for increasing 7.
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Figure 5.14 — Memory 7 and inter-event time standard deviation o behaving
like conjugate variables. The upper plateau represents the theoretical slowest
spreading process, driven entirely by spontaneous adoption. This ¢, is given
by the solution to p = p(1 — p). The lower plateau gives the corresponding
static network.

5.5.3 Conjugate behaviour of memory and burstiness

Considering the scenarios outlined above, it appears that memory
 and inter-event time standard deviation ¢; have mirroring effects
on the spreading process. That is, taking # — 0 for constant o+, and
or — oo for constant 7, tend towards an empty network where Eg =1,
where almost all edges are in the j = 0 state. Further, taking # — oo for
constant ¢, and o — 0 for constant 7, tend towards a static network, 4
where all edges are in state E; = 1, for some [ > 0. This is summarised
in Fig. 5.14.

5.6 DISCUSSION

We have seen that in a model of stochastic temporal networks, bursti-
ness has a substantial effect on the dynamics of threshold-driven conta-
gion. There emerges a non-monotonic dependence of spreading speed
on both o+, the inter-event time standard deviation, and event memory

4. We require that 7 is an integer multiple of yi; in order to exactly recover a static
network using this mechanism.



5.6 DISCUSSION

7. This is due to two competing effects. First, is the accelerative effect
of mixing, where edge activity allows the local configuration of a given
node to evolve over time. This leads to nodes that are otherwise stable
to active neighbours, becoming temporarily vulnerable. At the same
time, as inter-event times become more heterogeneous, the network
becomes sparsified, which is clearly a decelerative effect. These two
features of our model combine to produce a rich array of dynamics,
that may help to inform our understanding of information spread in
the presence of heterogeneous dyadic activity.

This work contributes a general and effective theoretical framework
with which to study binary-state dynamics on temporal networks. >
In addition, we have shown that in a simple model of the spread
of contagion on temporal networks, dynamical processes are highly
sensitive to temporal heterogeneities such as burstiness.

5. Although the present version of this work is unpublished, it is expected to be
finished and submitted by the time of my PhD defence.
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Part II1

OUTLOOK

In Chapter 6 we discuss the limitations of this work, and
suggest a number of promising future research directions.






DISCUSSION AND FUTURE WORK

In this thesis we have examined threshold-driven contagion on com-
plex networks. We have extended a master-equation formalism to
account for edge-based properties that are of importance in real world
systems, such as edge weights, edge multiplexity, and network tem-
porality, which we have successfully interpreted as a type of time-
dependent edge property. We have applied this formalism alongside
an extensive experimental study of these systems, by means of Monte
Carlo simulations on synthetic and real networks.

6.1 LIMITATIONS OF THE PRESENT WORK

Generically, the same limitations that apply to the complex systems
methodology as a whole also apply to this work. The abstraction of a
complex system as a network comes with a number of assumptions,
in particular, that models lose information exogenous to the network
itself.

More particular to this work is the assumption of binary-state dynam-
ics. With regards to the spread of information, it is doubtless that the
interaction among various content plays an important role. While the
binary-assumption is exact in many respects, for example that exposure
in the form of receiving and sharing information is plainly a binary
fact, the competition between the different types of content is likely to
be critical. Further, it must be pointed out that gathering empirical evi-
dence for threshold models is notoriously difficult. Even determining
whether genuine social influence is behind instances of spreading over
a network, as opposed to homophily, is extremely challenging,

On the analytical side, a number of limitations are evident. Chief
among them is the sheer computational cost of solving high-dimensional
master equations. We saw that system sizes grow like O(k*"), which
becomes prohibitively expensive when either k or n is large. Since
degrees and edge heterogeneities are frequently large in real world
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scenarios, the master equation approach is limited to academic use. In
other words, although applying a master-equation solution can deepen
one’s understanding of spreading dynamics, it is unlikely to be of
practical use when attempting to draw conclusions from industrial
data, be it telecommunicative, financial or economic. At least in the
way that we have employed it, the master equations are most effective
when anatomising a theoretical system - by explicitly considering what
constitutes a local configuration, and what is driving its conditions,
one begins to build up a low-level intuition for the dynamics.

Finally, although the infinite network assumption massively simpli-
fies analytic calculations, reducing computational complexity at the
same time, it places finite dynamics out of reach. In other words, while
the master-equation solution, including all of its variations, are able to
provide global cascade conditions, they say nothing about finite-sized
cascades. The spread of information through finite populations is
an important avenue to explore, and our configuration-based master
equations are inapplicable here.

Note also that in a master equation framework, we lose all notion of
cascade depth, path length, and other such topological features.

6.2 FUTURE WORK

A great strength of the master-equation approach used throughout
this work is its modularity. In other words, the simplicity of edge-
heterogenous assumption invites the study of a broad range of systems
that we have left untouched. For instance, it is well known that direct-
edness can be critical to dynamical processes which we have ignored
entirely. This is particularly the case in Chapter 5, where the direction
of temporal contacts is often important. Further, since our framework
applies to arbitrary binary-state dynamics, we are encouraged to look
beyond the threshold models that have been the focus of this thesis.

Our interpretation of temporality was extremely confined, and re-
newal process are just one of a large variety of stochastic processes that
may define activity on edges. Extensions to this are already underway
in view of deepening the results of Chapter 5.



Part IV

APPENDIX

In Appendices A and B we provide illustrations of a number
of configuration space structures in order to build intuition
for the master equation solution. Finally, in Appendix C we
describe some of the data sets used in this work.






ILLUSTRATIONS OF CONFIGURATION SPACE

In this appendix we provide concrete illustrations of so-called config-
uration space, introduced in Chapter 2. Whereas the networks that we
simulate are produced by random graph models, configuration graphs
provide the highly regular relations between node classes (k, m), de-
fined in Chapter 2. In Fig. A.1, we show the set of classes satisfying the
constraints k = 0,1,2 and 3, with n = 2 allowed edge states. The degree
vectors k are indicated on the bottom-left of each set, and total number
of active neighbours m on the bottom-right. The active degree vector
m7 is the label of the points in the space. Right diagonal transitions,
in black, are neighbour transitions and are shown to be unidirectional
here, indicating a non-recovery dynamics. These transitions preserve
k, and incrememnt m by one. Left diagonal transitions in red indicate
edge-state transitions, which are shown to be bidirectional, indicating
a temporal network model where edge states can alternate repeatedly
between two states, j = 0 and 1.

The number of classes |Cy| in each component of total degree k are
|Col =1, |C1| =4, |C2] =10 and |C3| = 20, for plots Fig. A.1(a), (b),
(c) and (d), respectively. An illustration of k = 4, where |C4| = 35, is
shown in Appendix B. Note that although the degree vector k of a
node may change due to edge dynamics, the total degree k = }_;k;
is fixed over the course of the dynamical processes. As such, nodes
cannot jump between the various connected components of Fig. A.1.
The k = 0 class in (a) may appear trivial, but the density of nodes in this
class is critical in determining the existance of a percolating vulnerable
cluster under the Watts model, or equivalently, the possibility of global
cascades.

The solution of the master equation used throughout this work
amounts to tracking the density of nodes belonging to each class
(k,m). Clearly the matrices A,;¢; and A,z are block-diagonal, since
nodes can only transition between k-components.
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Figure A.1 — Temporal network transitions for nodes of total degree k = 0, 1, 2 and 3, as labelled,
with n = 2 allowed edge states. Right-diagonal transitions indicate neighbour adoption, and left-
diagonals the increments and decrements between edge-states j = 0 and 1 that may occur in models
of temporal network. Labelled points in the graph give the active degree vector m”. Right-diagonal
transitions preserve the degree vector k, indicated at the bottom of these diagonals. Left-diagonal
transitions preserve total active neighbour count m, shown at the top of these diagonals.



STATIC AND TEMPORAL CONFIGURATION SPACE

In this appendix, we briefly discuss the extension of the static, edge-
heterogeneous master equation solution to temporal networks. As
outlined in Chapter 2, a node’s local configuration is described by the
tuple (k,m). The dimension of the degree vectors k and m is n, giving
the number of allowed edge types in the system.

In the case of a static network undergoing non-recovery dynamics,
such as the SI process or the Watts threshold model, a node’s degree
vector k is fixed, and its dynamics over the course of a spreading
process is given by its path from the m = 0 position in the inactive
configuration space, up to the point where the node becomes active.
Such a space is indicated in Fig. B.1(a), for a node with total degree
k = 4 and n = 2 possible edge states, containing 35 total configurations
(k, m). Crucially, connected components are isolated according to the
5 degree vectors k! = (4,0),(3,1),...,(0,4). That is, once k is deter-
mined for a node (via a bimodal weight distribution, or an M = 2-layer
multiplex, for example), it is fixed throughout the entire dynamical
process. Its path through the configuration space in Fig. B.1(a) is given
by its neighbour configurations, m, which are labelled for each point.

In contrast, a temporal-network configuration space makes the cru-
cial step of allowing a node’s edge-configuration, given by k, to vary.
A system allowing n = 2 edge states might be defined by renewal
processes, such as that described in Chapter 5. A node with a total of
k = 4 neighbours in such a system is given by Fig. B.1(b). This space is
comprised of an identical set of 35 configurations (k, m), as the static
network in Fig. B.1(a), but allowing additional transitions. Note that
temporal transitions are “symmetric” to neighbour transitions. The
number of non-zero entries in Ao, and A,gq, are equal, depending
on directionality. There is a (4n + 1)-th allowed transition, the A.g
transition, from a configuration (k, m) to the corresponding transition
in the opposing space.
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DATA DESCRIPTION

In this appendix, we give an overview of the various empirical
datasets used throughout this thesis.

C.1 WIKIPEDIA

In Chapter 3 we perform data-driven simulations of our threshold
model in a network of N = 138,592 English Wikipedia editors con-
tributing to articles about politics. Each of the 740,397 directed links
(defining an edit, revert, restore, or vote action in an article) has a
sign (£), interpreted as the parity of trust between connected editors
(for free access online and details see [200]). In our study we remove
self-loops and assume bidirectional links appear as undirected links
with their original sign (if they shared the same sign), while choosing a
sign randomly in the case where they appear with different signs (such
edges only form 0.96% of the network, so their effect is not significant).
Unidirectional links are also regarded as undirected with their original
sign. Finally, we associate 4 and — tie signs to strong (w;) and weak
(wy) links. The network has a broad degree distribution, a fraction
0 = 0.88 of strong links and average weight y,, = 2.7.

C.2 MOBILE PHONE CALL

In Chapter 3 we perform data-driven simulations of our thresh-
old model in a network of N = 6,243,322 individuals connected by
16,783,865 undirected links with weights defined as the number of
phone calls between people in an observation period of 6 months (a
link exists if people have mutually called each other at least once).
All individuals are customers of a single phone provider with 20%
market share in an undisclosed European country. Degree and weight
distributions are broad and can be approximated by power-law and log-
normal distributions, respectively (for details see [153]). Since for the
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MPC network py, is fixed, we introduce a method to scale oy, without
changing the shape of the distribution, described as follows. We first
assume that the MPC network has a weight set W = {wy,..., wg},
where w; is the weight of the i-th edge, and |E| is the number of edges
in the network. This set has mean and variance

1 LE
How = E Zwi and (TZZU = m Z(wl - Hw)z- (C-l)
i— i=1

Now we consider a new weight set W = {py + a(w1 — pw), ..., o +
a(w|g| — Hw)}, where we have applied the transformation w} = py +
a(w; — pw), i=1,...,|E|,and 0 < a < 1 is a tuning parameter. The
limits of this transformation give a Dirac delta distribution (¢ = 0)
or py (¢ = 1). Substituting wl’ into the expression for oy, we see
that the mean and standard deviation of the transformed weight set
are ul, = py and o0}, = aoy. Then, we may obtain a new weight
distribution retaining the shape of py, by applying the transformation
w; — w,. If oy, is the desired standard deviation, the required tuning
parameter is & = 07,/ 0%.

C.3 PARDUS

The empirical structure is a signed social network, the alliance /
enemy network of the Pardus massive multiplayer online game [183].
Pardus is set in a futuristic universe where players interact and compete
in space. It is an open-ended game with a player-driven economy. Play-
ers travel through hundreds of solar systems while trading, building
or battling with non-player characters and other players. The network
consists of N = 4650 nodes connected by 66,580 links, of which a
fraction 6, = 0.64 have a positive alliance sign (and are considered as
strong ties by us), while the rest of the links have a negative enemy
sign and are interpreted as weak.
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