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Abstract

Nowadays, Powered Two-Wheeled Vehicles (PTWV) are an increasingly popular means of transport in daily
urban and rural displacements, especially for the possibilities it offers to avoid traffic congestion. However,
riders are considered as the most vulnerable road users. In fact, the unstable nature of the PTWV makes
them more susceptible to loss of control. This problem is even more complex during emergency braking or on
cornering maneuvers. As matter of fact, passive and active safety systems such as Anti-Lock Braking (ABS),
Electronic Stability Control (ESP), seat belts, airbags developed in favour of passenger vehicles have largely
contributed to the reduction of risks on the road. However, the delay in the development of security systems
for motorcycles is notable. Moreover, despite some existing systems, motorcycle riders use them badly or
they don’t use them at all. Therefore, it is not trivial that this delay, in the development of Advanced Rider
Assistance Systems (ARAS), coming from a delay in the development of theoretical and research tools.

This thesis fits into the context of designing ARAS for PTWV. Our work deals with observation and iden-
tification techniques to estimate the PTWV dynamic states and physical parameters. These latter are
fundamental for risk quantification and to assess the safety of the PTWV, which are the main focus of
our research work. The first part of the thesis concerns classical identification techniques for estimating
the physical parameters of PTWV. The second part deals with model-based observers proposed to estimate
the dynamic states of the PTWV. We proposed an unknown input observer (UIO) for steering and road
geometry estimation and an interconnected fuzzy observer (IFO) for both longitudinal and lateral dynam-
ics. An alternative methods to identification algorithms are observer-based identifier which allow both the
parameters identification and the states estimation. Therefore, a Luenberger adaptive observer (LAO) for
lateral dynamic states and pneumatic stiffness as well as a delayed unknown inputs observer (DUIO) with
an arbitrary relative degree, have been developed in this thesis.

As matter of fact, all these techniques allow to estimate the motorcycle dynamics while reducing the number
of sensors and overcoming the problem of non-measurable states and parameters. These proposed methods
require a simple combination of sensors and take into account realistic assumption like the longitudinal speed
variation. Among others, this manuscript introduces a self calibration algorithm for Inertial Measurement
Units (IMUs) alignment. Such a self-calibration method is used for telematic boxes (e-Boxes) installed on
two-wheeled vehicles, whose IMUs’ axes are often result not to be aligned with the vehicle reference system.
Finally, objective indicators are setting up to quantify the riding risks. These functions were studied for
ARAS purpose. To highlight the performance of these approaches, we have acquired data from high-fidelity
motorcycle simulator or even with data from real motorcycles. To conclude, we have drawn up a comparison
tables with the proposed approaches. The results of both the numerical simulations and the performed
experimentation seem to be quite promising.
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General Introduction

The powered two-wheeler vehicles (PTWV) which include motorcycles, scooters and mopeds has been con-
stantly increasing much faster than the passenger cars. The technological progress of PTWV brought a
noteworthy convenience to its users through a significant reduction of transportation journey, especially for
the opportunities it offers in avoiding congestion. Nonetheless, their proliferation has highlighted serious
safety issues as well. Therewith, it is necessary to adopt safety interventions and assistive systems targeting
this mode of transport. As a matter of fact, the growing vehicle traffic has increased the number of accidents
and road fatalities. The global status report 2018 (WHO, 2018) on road safety highlights that the number
of annual world road traffic deaths has reached 1.35 million. Henceforth, the road traffic accident is the 8th

leading cause of violent death, after everyday accidents. As well, road crashes statistics reveal that more
than half of all road traffic deaths are among Vulnerable Road Users, VRU, (Otte, Facius, and Brand, 2018).
Although pedestrians, cyclists and riders of powered two and tree-wheelers are more vulnerable as a result
of being less protected than car occupants, the heavy burden of deaths arisen from these road users is also a
reflection of infrastructure and vehicle design that prioritizes cars and other motorized transport. The study
of road accidents shows that human factors (57%) appear far before the meteorological or technical issues.
The two most frequent human causes (alcohol and speed) are respectively responsible for 31% and 25% of
fatal accidents. Distraction and tiredness are also an important human factors in a road accident, that can
be seen in unsuitable lane crossing or abnormal steering behavior. In the scope of improving road safety,
insight into preventable causes of road accidents is of interest.

Currently, intelligent safety technologies have mainly targeted four-wheeled vehicles and continue to be
developed and tested primarily for passenger cars and commercial vehicles. Unlike four-wheeled vehicles,
the design of motorcycles does not include primordial components that inherently increase safety. As a
result, the consequences of a motorcycle crash are often quite serious for the motorcyclists. Besides, road
accident statistics underline the importance of improving motorcycle safety and highlight key safety concerns,
that new safety technologies should target. Notwithstanding the high risks associated with motorcycle use,
relatively little research on motorcycle safety design has been carried out. In spite of that, with the increasing
popularity of this transport mode and increasing casualty levels, new safety systems, traffic laws, national
and international attentions are currently being given to this area. Towards this end, many research broadly
surveyed a wide range of Intelligent Transportation Systems (ITS) technologies with the potential to advance
motorcycle safety. The integration of Advanced Rider Assistance Systems (ARAS) and ITS for PTWV is one
of the forward objectives of automakers and suppliers, to help making a partial automated riding and serve
as safety system to support/alert the rider of potentially hazardous situations. Further, the integration
of various safety systems into one architecture can leads to an unexpected behavior in hazardous riding
situations. The supply of road safety for PTWV riders remains useless, as long as some driving rules are
not always adapted to riding psycho-physical capacity, like the visual fields, distance assessment, dynamics
evaluation and loss of attention. Hence, the development of ARAS to improve rider safety should integrate
riding experience and vehicle controllability in different riding situations.

On-board roadway departure assistance systems are already integrated in modern car. In order to avoid
damage or even fatal crashes in dangerous steering situations, these systems make the vehicles more au-
tonomous, allowing to inspect the surrounding vehicle’s position and to detect the driver hypo-vigilance. In
spite of this fact, departure lane systems are not yet developed for motorcycles and those implemented for
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four-wheeled vehicles are not entirely transferable to motorcycles. As a matter of fact, the PTWV size can
be seen as a weakness. They tend to frequently change travel direction and speed, regardless number of lanes
or their width. Therefore, departure avoidance systems for motorcycles are the next step, aimed to detect
as early as possible, when the motorcycle is involuntary getting out of the lane. Needless to say, designing
warning systems for motorcycles or even vehicles requires risk quantification function, which can be used to
warn the rider, in the case of passive assistance or engage the control action in the case of active assistance.
Car Departure Lane Assist (DLA) system usually defines a Lane Crossing Time (TLC) and Distance to Lane
Crossing (DLC) as a risk index, to assess the time for involuntary trespassing the boundaries. An estimation
of the DLC provide with a clear view of emerging traffic situations, so that if rider makes a mistake, he
will have more time to respond, more space to maneuver and correct the trajectory. Among other, steady-
state analysis and handling capabilities issues are also very related to vehicle safe trajectory and roadway
departure. The analysis of the handling properties highlights certain dynamic aspects that are important to
define dangerous/safe stability threshold conditions, as the neutral, overturning or underturning behavior.
Nevertheless, there is a lack of warning systems related to the problem of Lane Crossing Point (LCP) de-
tection for motorcycles. Therefore, DLA systems for motorcycles need more thorough investigations to be
embedded in modern two-wheelers.

In the last decade, the challenge of creating more accurate models for active safety systems has increased.
Concerning PTWV, which are highly dynamic, nonlinear and coupled systems, many models have been
developed in the literature, with various levels of complexity and completeness. In fact, the uncertainties,
caused by the environment and induced by the aerodynamic phenomena as well as the motorcycle’s intrinsic
unstable platform and complex tire/road interaction make the modeling task more challenging. Withal,
even if a parametric model can be derived, the parameters values are not always available. Indeed, it
is well recognized in the automotive research community that knowledge of the real-time pertinent vehicles
parameters can be extremely valuable for active safety applications. In this scope, a thorough improvement of
this systems requires accurate motorcycle states information. Nevertheless, the measurement of all dynamic
states and inputs with conventional sensors is inconceivable for economic or technical reasons. To counter the
latter, virtual sensors are one of the key research fields using model-based estimators to overcome previous
shortcomings in providing estimates of unmeasured states and relevant parameters of the PTWV’s dynamics.
Besides, the emergence of new applications in many fields of mobile systems and robotics has promoted the
development of various approaches for estimation and identification. Nonetheless, each approach is suitable
for a class of mathematical representation of the system under consideration. Hence, developing ARAS
for PTWV remains a high theoretical and technical challenge because of the self-unstable characteristic of
PTWV, which gives rise to various difficulties in design of identification and observation methods of the
motorcycle. This topic is one of our research interest which intends to develop these systems starting from
a minimum set of vehicle self-integrated sensors to acquire measured states.

Withal, parametric identification is the process of finding a set of optimal system’s parameters, from available
input-output data, and a prior knowledge of the system’s structure. Several research works attempt to solve
the identification problem for a predefined class of systems. Among others, these techniques are designed for a
specific systems form and their direct transposition to the more general case is a complex task. Furthermore,
the identification problem is formulated assuming that all the system states are measured, which is really
untruthfully. Usually, identification is performed offline where online identification lays with some challenges.
Hence, enabling efficient solution of an identification experiment is conditioned by a purposeful set of input
signals related to persistence of excitation in order to reach an optimal solution. Hence, suitable rich input
signals should be considered, while in practice, these signals can not be freely applied to excite the PTWV
due to the system constraints, and the global optimization problem can settle to a set of incompatible
parameters. Alternative approaches suggest the use of observer-based identification. In this scope, observers
based identifier presents a convenient approach to deal with both dynamics states and parameters estimation.

In most of the references, the estimation of the PTWV dynamics is done by considering restrictive as-
sumptions regarding riding motorcycle practices, constant longitudinal speed, parameters variation, road
geometry and/or neglected tire-road contact and also by considering a known tire friction. Indeed, the
coupling motion of the lateral and longitudinal dynamics of two-wheeled vehicle has not received much at-
tention in the literature related to motorcycle. All these assumptions simplify the estimation problem but
lead to an inaccurate estimation with respect to the real dynamics. Furthermore, it is commonly known that
a physical system may include unknown parts and subjected to various intrinsic parameters and external
perturbations. In this context, designing a virtual sensor for these systems has got significant consideration.
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Withal these approaches, almost real systems subjected to unknown inputs, parameters and/or disturbances,
the matching condition does not hold every time. The motorcycle model is one of these complex systems
which does not fulfill the requirement to design a classical observer. Several open topics related to PTWV
field of research need more thorough investigations as for structural constraints and the convergence of the
state estimates jointly with a parametric identification.

Concerning instrumentation and data acquisition, axes calibration is a mandatory operation when inertial
sensors mounted within some sort of Electronic Control Unit (ECU) installed on a vehicle must be used
for measuring or estimating variables of interest for vehicle control and/or estimation purpose. In fact,
inertial sensors are strongly affected by mounting angles, and the correct rotation to be applied in order to
recover an alignment which is consistent with the vehicle motion is paramount to obtain sensible data to be
employed as representative of the variables of interest. In general, the aim of the calibration is to align axes
of sensors present in various aftermarket equipment, which may be installed in non-standard positions, and
for which the internal alignment of the sensors is also in general not known. In two-wheeled vehicles, such
a calibration step becomes even more crucial than in cars, as space and vibration constraints often do not
allow installations of the needed inertial measurement unit (IMU) in such a way to obtain a nearly natural
alignment with the direction of motion, so that the mounting angles can result in being quite significant.

For all these reasons, this thesis manuscript provides several contributions to the identification and estimation
of the dynamics of powered two-wheelers vehicles. In this particular context, the objective of this thesis is
to identify the main problems related to PTWV and to study its critical cases. A part of this PhD is
dedicated to identification algorithms, these techniques are designed to estimate the unknown parameters of
the motorcycle parametric models. The second part deals with model-based observers proposed to estimate
the dynamic states of the PTWV. An alternative methods to identification approaches are observer based
identifier which allows both the parameters identification and the states estimation. Further, this manuscript
introduces a self calibration algorithm for Inertial Measurement Units (IMUs) alignment. The last part of
this thesis deals with objective indicators for risk quantification.

Thesis Organisation

This manuscript is organized as follows:

Part I: presents the general context and the motivation of these three years of research.

• Chapter 1 provides a state of the art on road accident analysis and road safety systems as well as
the important features of these systems for powered two-wheeler vehicles.

• Chapter 2 offers a brief review of PTWVs and we show the motivation of our choice to consider the
motorcycle as typical vehicles for the research study. Indeed, this chapter provides mathematical
modeling of tire-ground forces and moments as well as, the powered two-wheeler vehicle kinematic
and dynamic modeling. For the sake of validation, we present the instrumented motorcycle
(Scooter lab’s) and we introduce a self calibration algorithm to align Inertial Measurement Units
(IMUs) data.

Part II: is dedicated to open-ended questions related to parameter identification for motorcycle. With
regard to the modeling scope, we have studied two structures of models according to the expected
fineness. The first is a rigid body model (Inverted pendulum), then we have extended the model to
two-body model according to our requirements. This part is divided in two chapters:

• Chapter 3 considers the identification of the rigid one-body motorcycle model. Three design meth-
ods are studied in this chapter: using static test, an algebraic identification approach compared
to an iterative gradient descent algorithm.

• Chapter 4 focuses on the identification of a mathematical two-bodies model of a two-wheeled
vehicle. Two methods were proposed: a cascade, multiple-objective optimization algorithm and a
Levenberg-Marquardt (LM) identifier.
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Part III: focuses on the states estimation and the parameters identification of the PTWV dynamics with
observers synthesized from the two-bodies PTWV model. To this end, four observers are introduced:

• Chapter 5 introduces Unknown Input Observer (UIO): for road and steering dynamics reconstruc-
tion.

• Chapter 6 addresses an original method for designing a delayed unknown input observer (DUIO)
for nonlinear system with mismatched condition.

• Chapter 7 proposes an LPV Luenberger Adaptive Observer (LAO) for the PTWV dynamics states
estimation and tires’ cornering stiffness identification.

• Chapter 8 presents Interconnected fuzzy Observer (IFO) for PTWV: both lateral and longitudinal
dynamics estimation of the two-wheelers.

Part IV: aims at identifying objective indicators for the quantification of risk as well as carry out and
discuss the design of possible warning system for riders of PTW vehicles. To do this, we divided this
part into two chapters:

• Chapter 9 presents a neutral-path departure (NPD) algorithm towards getting circular stationary
states and analytical handling conditions.

• Chapter 10 focuses on Lane Crossing Prediction (LCP) for PTWV.

This design requires a precise knowledge of the various dynamic states and parameters of the motorcycle
as well as the external effort acquired either from measurement, estimation or identification techniques.

Last chapter provides a general conclusion to end-up this thesis and introduces the perspectives opened
by the work presented in this manuscript.
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Chapter 1

Road fatalities and ARAS for PTWV

Limited access to certain territories, the environmental and climatic urgency, the ever-increasing
daily transportation needs, faced to these challenges, it is time for a general overhaul of transporta-
tion policy and to rethink new mobility solutions for forthcoming decades. In France, the mobility
orientation project is started in 2018 and is structured around four main objectives: to provide all
and everywhere alternative solutions to the individual cars, to develop innovation and new mobility
solutions, to reduce the environmental footprint of transport and to invest more to improve the
infrastructures. While waiting for those promised solutions, several alternatives have already been
democratized all over the world to simplify mobility and especially two-wheeled vehicles. The prac-
tice of such vehicles is no longer exclusive to a few crops or cultures. Using bicycles and motorcycles
is an economic and social reality. However, from a road safety point of view, the increase in the
traffic of two-wheeled vehicles has not been foreseen in time and the lack of security systems and
adequat infrastructure testifies this.
This chapter gives a review of road fatalities and safety of ground vehicles and in particular the
Powered Two-Wheeled Vehicle (PTWV) to show the motivation of our choice to consider the PTWV
as typical vehicles for our research study. In section 1.1 road accident analysis is studied. Section
1.2 discusses the most frequent factors contributing to PTWV crashes. They are described following
the interaction between the three basic components of the traffic system: PTW riders and other
road users, road environment and vehicle factors. Indeed, section 1.4 describe the existing methods
in the literature of Advanced Rider Assistance Systems (ARAS), also we present their limits and
recommandations to future works to improves the reliability and safety of motorcycle rider. Our
motivations and the specific challenges within the framework of VIROLO++ project are highlighted
in section 1.6.

Abstract

1.1 Road Traffic Fatalities

In roadway safety, the road traffic accident is the usual term used to describe a collision between two vehicles
or a fixed/mobile obstacle. It refers to any accident occurring on a road open to public circulation, and in
which at least one person is injured or unfortunately killed.

The road accidentology consists essentially of decrypting the accident reports in order to identify their causal
factors, consequences, and to suggest corrective measures at potential location (Faheem, 2017). This can be
achieved by an in-depth knowledge of accidentology and statistical methods to evaluate the number and the
severity of accident and also their frequency and circumstances. Several risk variables including population,
road kilometer, distance traveled and economic cost are considered in the accidentology analysis. The
statistical analysis of accidents is carried out periodically at critical locations or road stretches which will
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1.3.1 Attractiveness of PTWV

Beyond the fun side, PTWV have specific features that make them an effective means of transportation. In
urban areas, PTWV have the potential to go relatively quickly by their capacity to overtake vehicles and
the use of traffic ways dedicated for other public transportation. In addition, PTWV users save time when
searching for a parking place, by parking legally or not very close to their destination. In rural areas, they
offer mobility options for users who do not have access to a car and where public transport is sometimes
non-existent. PTWV can bring benefits from an environmental perspective with respect to car vehicles,
less fuel consumption and less emissions. The emergence of electric PTWV, which are much cheaper than
electric cars, may bring additional environmental benefits.

Figure 1.5: In Bangladesh, riding a PTWV has become an efficient solution for urban
mobility (Dhaka Tribune, December 2017).

However, PTWV have also a number of drawbacks compared to car vehicles: vulnerability, more riskier,
less comfort, less visible and very few riding assistance system. PTW riders have a higher risk of injury
due to their greater vulnerability, resulting from a lack of protection compared to passenger cars, which
can lead to very severe consequences in the event of collisions above a given speed. Safety measures that
are already well-recognized, such as helmets, protective clothes, etc., have diminished this vulnerability, but
further progress still needs to be made. Indeed, motorcycles exhibit other intrinsic difficulty of riding due to
the necessity to balance the vehicle, its lower friction capacity and its great sensitivity to the environmental
perturbations (wind, gravel, any change in road surface, etc.) which may destabilize the vehicle. Also,
PTWVs are a significant source of noise.

Figure 1.6: Gendarme dead in Trieux, Meurthe-et-Moselle, 2015.

1.3.2 Dynamic Specification of Motorcycles

As discussed in the previous section, PTWV presents a different dynamics behavior due its design and
motorization. Unlike car vehicles, a PTWV is inherently unstable and can’t be balanced without rider
actions. They also exhibit a non-minimum phase steering behavior and non-linearities due to the steering
geometry and tire-road interactions. Generally, the stability of the vehicle is guaranteed by a combination of
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• DRL, Daytime Running Lights is a lighting device on the front of the vehicle in which a multicolor
lights are emitted to increase the visibilty of the vehicle during daylight conditions.

1.5.4 Motorcycle Autonomous Emergency Braking

The Collision Warning and Avoidance Systems are known as Motorcycle Autonomous Emergency Braking
(MAEB). MAEB refer to systems that detect objects in the roadway through sensors embedded in the front
of the vehicle and alert the rider if objects become a potential collision risk. In most cases, MAEB would
then apply autonomous emergency braking if the rider does not answer to the collision risk warn (Tanelli
et al., 2009a; Savino et al., 2013a).

• FCW, Forward Collision Warning, detects the distance between the vehicle and a potential obstacle
using laser sensors or camera. When a vehicle is approaching too close to the obstacle, it provides
alerts via an IHM.

• LatCA, Lateral Collision Avoidance, assists the rider to avoid collisions by providing warnings and/or
controlling the vehicle in imminent situation.

• LRM, Lateral and Rear Monitoring, aims to improve driver perception to reduce the risk of side and
rear collision.

• LgCA, Longitudinal Collision Avoidance, the same as LatCA but it concerns the front or rear of the
vehicle.

• ICA, Intersection Collision Avoidance, assists the rider to avoid potential collisions at intersections.

In SAFERIDER project, FCW is identified as one of the five key ARAS functionalities suitable to develop
and implement on a motorcycle prototype. It is shown that this system has a good predictive capability
under different riding styles and collision scenarios. However, the acceptability of this system reminds further
research.

1.5.5 Antilock Braking System Technology

ABS is a legacy safety system that allows vehicles to maintain contact with the road surface according to
driver inputs while braking and hence, preventing wheels locking up (Gail et al., 2009; Muller and Yildirim,
2011; Huang and Shih, 2011).

The ABS technology was firstly implemented on a PTWV motorcycles in the 1980s and it is a mandatory
system since 2016. Many works related to motorcycle conduct statistical analysis of crash data to determine
the safety benefits of ABS-enabled motorcycles (Roll, Hoffmann, and Konig, 2009; Rizzi et al., 2015). Among
other, some works have focused on improving the braking distance and time for motorcycles with ABS or
adapting ABS to lighter PTWV. It is proven that ABS technology has a great potential for motorcycle safety
due to its relatively widespread acceptance among the motorcycle community.

1.5.6 Precrash Systems and External Airbags

Precrash systems combine the active and passive collision avoidance technologies (Georgi et al., 2009).

• Airbag Jackets: functioning as a collision protection system for motorcyclists. When a motorcyclist is
thrown from the motorcycle during a crash, the airbag jacket instantly inflates to protect the rider’s
upper body.

• External Airbags: act to disperse the force of the crash more slowly rather than directly protecting
the occupant, they prevent collision force from reaching the motorcycle.
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1.5.7 Curve Speed Warning

CSW, Curve Speed Warnings, is a warning system for excessive cornering speed in particular when approach-
ing a turn (Yuen, Karim, and Saifizul, 2014; Huth et al., 2012; Biral et al., 2010). The literature review
concludes that this system has a good applicability and a real effectiveness for the PTWV safety.

1.5.8 Roadway Departure Warning Motorcycle

The roadway departure warning system provides assistance by alerting the driver of an inadvertent line
crossing due to driver inattention or fatigue. This system uses information from a video sensor and road
line detection algorithms to define the vehicle position and orientation in the lane. This makes possible to
compute a risk indicator, almost the lane departure time such TLC or DLC. If TLC is below a threshold
value, the system issues an alert.

• LKA, Lane Keeping Assist, and DWS, Departure Warning Systems, detects distance and time to line
crossing in order to generate a lane departure warning (Chiu and Lin, 2005, Lord et al., 2011).

• LDW, Lane crossing warning system, provides lateral control to correct the vehicle position within its
lane when the rider unintentionally cross the markings (Marumo and Katagiri, 2011a).

• Following Distance Warning detects other vehicles in the front of the driver and generates a warning
when the inter-distance becomes under a predefined threshold. This technology may be combined with
collision avoidance warning system and adaptive cruise control (Katagiri, Marumo, and Tsunashima,
2008a).

• RDCWS, Warning system to prevent road exit, a combination between CSW and LDW systems. It
provides a warning signal when with respect to the vehicle speed when approaching a turn. It allows
also to warn the rider for an excessive lateral displacement. It was developed as part of the RDCW
FOT project (LeBlanc, 2006).

1.5.9 Electronic Stability Program

ESP is an electronic control system for dynamic stability or trajectory control. It allows to keep control of the
vehicle despite the hazards of the road, (Kidane et al., 2009; De Filippi et al., 2011a; Murakami, Nishimura,
and Zhu, 2012; Seiniger, Schröter, and Gail, 2012). Most of these research studied the implementation and
performance of ESP systems during challenging maneuvers while braking, on curves, and on rough roads.

1.5.10 Inter-Vehicle Communication System for Motorcycle

IVCS facilitates communications between vehicles, e.g., car-to-car or motorcycle-to-car. It is also a key part
of evolving connected vehicle technologies V2X (Manzoni et al., 2010; Rajab, Othman, and Refai, 2012;
Ling, Gibson, and Middleton, 2013; Maruyama et al., 2014). Few researchers have been working to design
the Motorcycle Approaching Indication (MAI) function in V2V systems for automobiles. These technologies
offer considerable safety benefits to motorcyclists because they reduce the risk of automobile-motorcycle
crashes.

• Motorcycle Detection Systems use inter-vehicle communications to detect nearby vehicles and notify
the driver of potential risks or other relevant information (i.e., motorcycle in a truck’s blind spot).

• Road Surface Condition uses sensor systems that collect information on road surface conditions and
communicate that information to the driver via V2I and V2V systems (Svendenius, 2007; Savino et al.,
2013b).

Future research efforts should investigate motorcycle-based communication and detection technologies as
well, especially given that human-machine interfaces for these technologies will need to be specially designed
for motorcyclists.
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1.5.11 Helmet-Mounted Display

Helmet-Mounted Displays is a system that projects alerts, warnings and any possible other information such
as speed onto a helmet visor or as audible speech. Sensors in a helmet that sense light conditions, adjust
the darkness of the visor, and provide night vision capabilities in very dark conditions (Dee, 2009).

1.5.12 Longitudinal Control System

Riding in heavy traffic and maintaining the correct distance to the vehicle in front takes a great deal of
concentration and is strenuous over longer periods. As an example, ACC which maintains a safe distance
between the vehicle and another preceding it. This is made possible by an on-board sensors, radar or laser,
that detects the presence of a vehicle on the same track and measures the distance of the vehicle ahead as
well as its speed.

The Saspence (SAfe SPEed and Safe DistaNCE) project (Bertolazzi et al., 2009) develops a system capable
of helping the driver to maintain the maximum authorized speed and safety distance according to the given
driving conditions (road geometry, traffic situation and meteorological conditions). This system serves to
avoid the risk of accidents due to excessive speed and inappropriate distance in a particular situation.

1.5.13 Gaps in ITS for Motorcycle Safety

As crash causes for motorcycle safety issues are more precisely defined, Intelligent Transportation System
(ITS) solutions can be designed to address them, and improve safety issues across all users. The literature
presented in (Flanigan et al., 2018) revealed important gaps in current research on ITS for motorcycle
safety. Significant progress can be expected towards the development of devices for active and passive safety
by investigating future perspectives such that:

• Complete prototype systems for motorcycles allow assessing the safety benefits of such ITS and evaluate
their acceptability.

• Motorcycle safety data to overcome the lack of robust data sets. Improving safety also implies an
in-sight knowledge of PTWV by investing in the collection of crash data.

• Harmonization of ITS to address the important issue of ITS interoperability as well as, multi-sector
collaboration.

• Connectivity is as an important ITS application for the near-term behind connected vehicle technology
for automobiles and ensures that motorcycles are considered and included in the development of such
technologies.

1.6 VIROLO++ Project Overview

Many research programs have been undertaken in Europe and abroad to understand the factors contributing
to crashes. In particular, the MAIDS and RIDER projects allowed to characterize accidents situations
(Penumaka et al., 2014), which paved the way to other projects such as SAFERIDER (Evangelos, 2010)
for the development of ITS. 2BESAFE aimed to study the motorcyclists behavior and ergonomic factors
contributing to motorcycle crashes (Ng et al., 2018). The French ANR/Predit SUMOTORI and DAMOTO
collaborative projects proposed an automatic fall detection algorithm for early inflating of a wireless air-bag
jacket. SIM2CO+ aimed at identifying the risky situations experienced by novice motorcyclists who have
just passed their test, in order to improve pre-test training in France (ANR, 2014).

The VIROLO++ Project is a French ANR project, proposed to emphasize on bend-taking maneuvers. The
aim is to fill the knowledge gap on bend-taking practices for a group of experienced and novice riders, to
understand how riders enter a bend, maintain control and exit a bend. This system is mainly intended to
operate on highways, national and departmental roads and in adverse conditions. In particular, the goal
of this project is to develop tools and methods suitable for the study of the riders’ behavior and for the
understanding of the way they interact with their vehicle when negotiating a bend (Figure 1.17).
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riding situation. The risks considered here is related to unsuitable approach speeds, leading to a possible loss
of control or a collision with a third party. The risk functions to be synthesized will be mainly based on purely
dynamic considerations of the lateral dynamics and the mobilized adhesion. However, the implementation
of the road-risk assessment function requires the best possible knowledge of the various dynamic states of
the motorcycle and the external effort.

WP5 develops application to training and safe bend-taking. This covers the development of products for
industry based on the results of all previous WP, mainly targeting innovative training applications for safe
bend-taking: off-line and on-line devices for the evaluation of motorbike paths, and new scenarios for the
low-cost riding simulators. These new products will be evaluated by riding trainees and experienced riders.

WP6 deals mainly with project management. All partners will contribute to this work package, to define
the dissemination strategy and its execution during the project.

1.7 Conclusions

Throughout this chapter, we have discussed the context and motivations of the thesis. In summary, Powered
Two-Wheelers riders are the most vulnerable road users. The accident analysis studies have shown that
reducing the number of road accidents requires designing and developing safety systems to ensure passengers
safeness. Nevertheless, assistive systems for cars are well known and increasingly popular but for PTW
riders the development of Advanced Rider Assistance Systems and On-Bike Information Systems have not
progressed far enough yet. The lack of consideration of these users explains these alarming statistics. To
overcome these problems, it is necessary to improve vehicles and road network infrastructure through the
proposal of intelligent systems. Now and in many countries, the use of safety-enhancing assistive systems for
passenger and commercial vehicles, including advanced driver assistance systems and In-Vehicle Information
Systems are quite commonplace. Nevertheless, only a limited amount of the PTW equivalents systems
have been developed so far. A better understanding of rider behavior would make it possible to sensitize
experienced riders who show good practice, but also to set up new training and retraining measures, to
improve the road design, to amend the highway code, and to identify areas for the design and/or assessment
of driving assistance devices dedicated to PTWVs. Finally, knowledge of the interaction between riders
and their PTWVs is critical for the tuning of riding simulators, which can then be used by a broader set
of the rider population. The above analysis of safety gaps indicates several opportunities to advance the
state of research on motorcycle safety and Intelligent Transportation Systems by addressing key gaps and
needs. To help take action to address the identified gaps and challenges in research on ITS for motorcycle
safety many recommended areas of research were identified to enhance ITS for motorcycle safety, include:
synthesizing ITS technology and implementation with the already successful technology of antilock braking
systems (ABS) in motorcycles, rider-motorcycle interface, motorcycle safety data including preparations to
take full advantage of big data moving forward, applied research and assessments of safety benefits; and the
harmonization of ITS technologies and standards such as inter-operable connected vehicles.

This thesis fits into this context by proposing a contribution to the development of rider assistive systems for
motorcyclists, also known as Advanced Rider Assistance Systems. During these three years of research, within
the VIROLO++ project, we have placed so much emphasis on the development of realistic solutions and
their validations. In this validation process, we used the BikeSim software and the experimental platforms
of the laboratory. Therewith, to accomplish ARAS design, the main elements of the PTWV structure and
the basic phenomena at the origin of its specific dynamic behavior are discussed. Indeed, to characterize the
behavior of the two wheeled vehicles, it is important to understand the V - I - R (Vehicle - Infrastructure
- Rider) system. These characteristics have to be considered in the synthesis of PTWV model, estimation
and control problems. In the next chapter, we present a detailed kinematic and dynamics modeling of the
motorcycle, taken into account various factors influencing this dynamic.
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Chapter 2

PTW Vehicle Modeling

Accurate modeling is important to analyze and understand the behavior of a system, to validate and
test the effectiveness of various control strategies and estimation methods. Henceforth, this chapter
deals with the mathematical modeling of powered two wheeled vehicle (PTWV). Since there is no
affordable way to measure the pneumatic forces and moments of a PTWV, a tire modeling is studied
with respect to different characteristics that have a strong influence on tire/road interaction. As a
first step, an overview of PTWVs is given in section 2.1. Thereby, we introduce the issues related to
tire modeling for a dynamic model in section 2.4. A brief description of the tire/road contact forces is
introduced based on the magic formula of Pacejka to understand the tire dynamics and consequently
the parameters of the tire model in section 2.5. The expressions of the pneumatic moments are also
derived. In section 2.6 a short review is presented showing the progress of the PTWV modeling.
Some important preliminaries are presented in section 2.7. Some technical simplifications for the
sake of implementation are reported in section 2.8. The different motorcycles/rider models are
introduced in section 2.9. In order to have an experimental platforms, used as a reference for the
validation of the two-wheeled models and algorithms, we will present the motorcycle (Scooter lab’s),
the different sensors and their characteristics in section 2.12. Last, we introduce a new procedure
for data calibration in section 2.13. Such a self-calibration method is focused for telematic boxes
(e-Boxes) installed on two-wheeled vehicles, whose IMUs’ axes often result not to be aligned with
the vehicle reference system.

Abstract

2.1 Overview of PTW Vehicle

PTWV is a two or three-wheeled motorized vehicle such that motorcycle, bike, motorbike, cycle, scooters
and mopeds (Figure 2.1). They have gained popularity as an efficient transportation way especially in urban
areas. The PTWV design varies greatly to fit a wide range of different purposes: long distance travel,
commuting, cruising, sport including racing, and off-road riding. More and more people are giving up their
four-wheeled vehicles and embracing life on two wheels vehicles. Motorcycles can be seen as a form of
transportation or as a way to be free to enjoy the open road. Furthermore riding a motorcycle offers several
advantages over driving a four wheeled vehicles. The most obvious, and greatest, advantage of traveling
by motorcycle, is the ability to get through traffic faster in highly congested areas. There are many fun
elements in owning a motorcycle but also a great disadvantage since the rider is most exposed to danger in
an accident and he is less protected from serious injuries.

Therewith, the involvement of PTWV in the daily life transportation has attracted the attention of industrial
and research laboratories around the world to face the new arising challenges. They are seriously thinking











32 Chapter 2. PTW Vehicle Modeling

with rV C is the position vector between the contact point C and the origin of the vehicle reference frame
RV which will be defined later. This deformation allows to calculate the normal load necessary to avoid
wheeling.

Once the tire’s kinematics variables are defined, the equivalent pneumatic effort can be computed at the
wheel center R by the following expressions:

FT = FxiT + FyjT + FzkT (2.4)

MT =MxiT +MyjT +MzkT + FT × rCR

Where Fx is the longitudinal force generated by the longitudinal slip κ and assumed to be positive during
acceleration phase and negative when braking. Fy is the lateral force generated by the sideslip angle α. Fz
corresponds to the normal force at the tire-road contact point. Mx is the tilting moment around iT , My is
the rolling resistance moment around jT and Mz is the self-alignment moment around the vertical axis kT .
In the next section 2.5, more details about the expressions of these forces and moments associated with the
model (2.4) are given.

2.5 Pneumatic efforts

The simulated motorcycle dynamics depend on the mathematical tire forces and moments (Sharp, Evan-
gelou, and Limebeer, 2004). In the literature, several theoretical, semi-empirical or experimental tire effort
representations are developed with respect to the intended complexity level.

2.5.1 The Magic Formula

The magic formula or Pacejka model is a non-linear representation of the pneumatic forces and moments,
introduced by Pacejka in 1993 (Pacejka, 2005). This model is the most widespread used for modeling tires of
land vehicles and also the PTWV (Sharp, Evangelou, and Limebeer, 2004). It is also an empirical approach
which allows to reflect the real tire behavior including tire saturation. According to Pacejka model, the
longitudinal force, the lateral force, and the self-alignment moment can be computed from the following
generic equation:

F (ϑ) = Dϑ sin

(
Cϑatan

(
Bϑϑ−Eϑ

(
Bϑϑ− atan (Bϑϑ)

)))
(2.5)

with Bϑ is called the stiffness factor, Cϑ is the shape factor, Dϑ is the peak value and Eϑ is the curvature
factor. These factors are related to the pneumatic intrinsic characteristics and determined empirically. ϑ is
a generic variable which corresponds to the sideslip α, longitudinal slip κ or the wheel camber γ. The tire
stiffness is the slope of the curve in its linear region as in figure 2.5.
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Figure 2.5: Normalised magic Formula or Pacejka model.

2.5.2 Lateral Force

Unlike a car vehicle, the camber angle is directly related to the PTWV roll angle and can reach significant
values depending on the forward speed and path curvature. Then, when cornering, the contribution of the
tire lateral force Fy depends mainly on the tire sideslip angle α and the camber angle γ which is a geometric
angle (Pacejka and Sharp, 1991, Bakker, Nyborg, and Pacejka, 1987). Figure 2.6 shows the effect of the
camber angle on the generated lateral force Fy as a function of the sideslip angle α.

The choice of a specific representation for tire lateral force requires some attention since it impacts the
stability analysis of the PTWV (Cossalter et al., 2006b). If the tire is in its linear region, an additional
amount of the tire force can be generated and hence the vehicle remains controllable, however, in saturation
region, the tire force is at its maximum and the rider will lose vehicle control.
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Figure 2.6: The influence of γ on the normalized Fy.

However, in control and estimation problems, the use of the magic formula is cumbersome. For small values
of sideslip and camber angles, the lateral force can be approximated by a linear model of the following form:

Fy = Cαα+Cγγ (2.6)
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The parameters Cα and Cγ are respectively the sideslip and camber cornering stiffness expressed in N
rad .

The previous magic formula or its corresponding linear form describes only the static behavior of the pneu-
matic efforts. However, due to its elastic deformation, a transient behavior occurs. To consider this transient
phenomenon, almost literature includes a first order low-pass filter to the model, known as the tire relaxation
given by:

σ

vx
Ḟy = −Fy + F 0

y (2.7)

where, σ is the relaxation length which models the transient time. F 0
y is the steady-state value of the lateral

force obtained by applying the magic formula (2.5) or the linear form (2.6). By solving the differential
equation (2.7), we get the instantaneous lateral force.

2.5.3 Longitudinal Force

During acceleration or braking, a corresponding torque is applied to the tire which generates a longitudinal
force. Figure 2.7 shows the evolution of the tire longitudinal force with respect to the slip ratio. Generally,
the longitudinal slip is considered as the normalized ratio as shown in the equation (2.2).
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Figure 2.7: Longitudinal tire force as a function of the longitudinal slip ratio.

As for the tire lateral force, for small longitudinal slips ratio, linear formulation is possible where:

Fx = Cκκ (2.8)

Cκ is the coefficient of stiffness which depends on the vertical force Fz according to the relation Cκ = kκFz
where kκ is the normalized stiffness.

To consider the transient phenomenon, the tire relaxation, introduced in the previous section, can also be
applied here as following:

σ

vx
Ḟx = −Fx + F 0

x (2.9)

where, σ is the relaxation length which model the transient time. F 0
x is the steady-state value of the

longitudinal force obtained by applying the magic formula (2.5) or the linear form (2.8). By solving the
differential equation (2.9), one can get the instantaneous longitudinal force.
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2.5.4 Vertical Forces

The vertical force Fz is the image of the load force applied on the tire at its contact point with the road.
This force is very important since it governs the maximum values of the generated tire longitudinal and
lateral forces. The distribution of the vertical forces between the two tires depends mainly on the position
of the vehicle’s gravity center (CoG) and on the longitudinal acceleration.

In vehicle dynamics, the distribution of the vertical force is commonly referred to as static load balancing
and the load transfer. If we write Fzf , Fzr the vertical force on both tires, ∆Fz the amount of the load
transfer and, Fzf0, Fzr0 the static vertical forces then it comes:

Fzf = Fzf0 − ∆Fzf

Fzr = Fzr0 + ∆Fzr (2.10)

∆Fz is positive in acceleration phase and negative in braking phase. The expression of the dynamic vertical
forces Fz as a function of the longitudinal acceleration of the PTWV and its geometry is obtained from
equations of equilibrium forces:

Fzr =
m
(
lfg+ hax

)

lf + lr
(2.11)

Fzf =
m (lrg− hax)

lf + lr

where m is the PTWV mass, g is the gravity constant, ax the longitudinal acceleration, h the high of the
CoG and, lf , lr are respectively the longitudinal distance between the vehicle’s CoG and the front and rear
tires contact point. It goes that lf + lr is the vehicle’s wheelbase.

It should be noted that the PTWV are characterized by a low wheelbase and a relatively high CoG position.
This is why load transfer is much more important compared to passenger cars. It can lead to dangerous
phenomenon such as the wheelie or stoppie.

2.5.5 Self-Alignment Moment

In addition to the pneumatic forces, the tire generates moments about its different axes. These moments are
often neglected because of their small contributions. Nevertheless, pneumatic moments can be introduced to
compensate for simplistic modeling assumptions. Indeed, in section 2.4, the PTWV wheels are considered
as rigid, thin disks where the tire-road contact is dot shaped. Such considerations are not real even for a
simple modeling task. To overcome this limitations, three main moments are introduced and discussed.
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differential equations describing the motion of a bicycle including the rider are established. At this time,
the numeric computers were not available to solve effectively these nonlinear differential equations. Hence,
Whipple has linearized the model and study it for small disturbances around the straight-line equilibrium
at a given constant speed.

However, the works cited above deal only with the dynamics of the bicycles which is very different from a
PTWV in a manner of factors such : weigh, power, maximum speed, aerodynamics, and tire-road interaction.
In 1971, Sharp’s model is presented and it is considered as the most relevant reference in the PTWV dynamics
modeling field (Sharp, 1971). In this work, the dynamics of the PTWV in free control is detailed to perform
a stability analysis from straight line equilibrium. Sharp highlights the presence of three unstable vibration
modes namely the capsize, the weave and the wobble. In the work published in (Eaton, 1975), the auto-
alignment and overturning moments are introduced by modifying Sharp’s equations. Nevertheless, there
were an inconsistency in the tire equations between the analytical and physical results. This work will be
taken over in (Segel and Wilson, 1975) to develop a more refined model of tire. Aerodynamic efforts are
considered in (Cooper, 1974) to demonstrate their importance on the performance and the stability of the
PTWV in particular at high speeds. Afterward, Sharp includes the vehicle acceleration (Limebeer, Sharp,
and Evangelou, 2001) and the aerodynamic load transfer (Sharp and Jones, 1977) in the lateral dynamics to
prove their effects on the out-of-plane stability. Unfortunately, this is not enough to explain the discrepancy
between theory and practice.

Weir introduces the rider control in his modeling (Weir and Zellner, 1978) which presents the first motorcycle
stabilization approach (Weir and Zellner, 1978). In (Koenen, 1983), the author look for the influence of the
roll degree of freedom on the coupling between the in-plane and the out-of-plane vibration. (Katayama,
Aoki, and Nishimi, 1988) study the actions of the rider on the motorcycle control. The results indicate that
the PTWV is mainly controlled by the handlebar steering torque while it is always possible to control the
vehicle with a small movements of the rider’s lower part. Sharp proposed an improvement of his first model
to evaluate the influence of the rider and bodies flexibilities on the unstable vibration modes (Sharp, 1994).

With the development of high-end numerical solutions, more complex modeling approach have emerged.
(Imaizumi, Fujioka, and Omae, 1996) consider a set of twelve rigid bodies to model the PTWV dynamics.
The rider actions have been applied via the proportional controller. Sharp proposed a multibody model
integrating the suspension and a more elaborate representation of the road-tire contact and the pneumatic
efforts are computed by using the magic formula (Sharp, 2001). This model allowed to study the PTWV
dynamics over large motions around equilibrium conditions and to better understand the coupling between
longitudinal, lateral and vertical dynamics. Cossalter presents an eleven degrees of freedom using a modeling
approach called the natural coordinates approach (Cossalter and Lot, 2002). In this model, the front and rear
chassis, steering system, suspensions and tires are considered and a more original tire model was developed,
which takes into account the geometric shape of tires and the elastic deformation of tire carcasses. A
realistic representation of the vehicle wheel is showed in (Sharp, Evangelou, and Limebeer, 2004) where the
geometry of the rim and the tire width are taken into account. This model was the most complete of the
literature and it constitutes the base of the PTWV simulation environment BikeSim.

2.7 PTWV Dynamics Modeling

2.7.1 Motorcycle Description

In its mid-scale decomposition, the PTWV can be represented as the interconnection of a set of six bodies.
The rear body Gr includes the saddle, the engine and the fuel tank. The upper front body Gf includes the
handlebar and the upper part of the suspension assembly. The lower front body Gl represents the lower part
of the suspension assembly and the brake system. The swing arm body Gs contains the swing arm mass and
the rear brake system. Finally, Rf and Rr represent, respectively, the front and the rear-wheel bodies. Note
that we can also consider further bodies such that the rider upper body Gdu and rider lower body Gdl as in
Figure 2.11. To characterize the PTWV motion, we should introduce a set of natural coordinates (Damon,
2018) as follows:

• the longitudinal, lateral and vertical positions (x, y, z) of the chassis,

• the roll, pitch and yaw orientation (φ, θ, ψ) of the the chassis,
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virtual powers in a virtual motion provided by conservative constraint forces FGi,c and moments MGi,c is
null:

n∑

i=1

{
∆vOGiFGi,c + ∆ωOGiMGi,c

}
= 0 (2.18)

with n the number of bodies, ∆v and ∆ω are virtual variation in linear and angular velocities.

From Newton/Euler dynamics principle, the conservative efforts FGi,c and MGi,c can be separated from the
system motion and the external applied efforts FGi,a and MGi,a such that:

FGi,c = mGiaOGi − FGi,a (2.19)

MGi,c = IGiεOGi + ωOGi × IGiωOGi − MGi,a

with mGi and IGi are respectively the mass and the inertial matrix of the body i in its CoGi. Moreover,
from equations (2.16) and (2.17), the velocity and acceleration vectors of each body Gi can be written as
follows:

vOGi =
∂vOGi
∂ϑ

ϑ

ωOGi =
∂ωOGi
∂ϑ

ϑ

aOGi =
∂vOGi
∂ϑ

ϑ̇+ aR

ǫOGi =
∂ωOGi
∂ϑ

ϑ̇+ εR (2.20)

where ϑ denotes the vector of generalized velocities and the partial derivatives are called Jacobian matrices
of the velocity vector with respect to the generalized velocities vector. Vectors aR and εR are referred as the
residual acceleration terms.

Finally, by combining equations (2.18), (2.19) and (2.20) and after some algebraic manipulations, the system
dynamics can be described by the following first-order differential equation (Nehaoua et al., 2013a):

Mϑ̇ = Qa −QR (2.21)

with ϑ̇ is the derivative of the vector of generalized velocities. M denotes the mass matrix:

M =
n∑

i=1

{
mGi

(
∂vOGi
∂ϑ

)T ∂vOGi
∂ϑ

+

(
∂ωOGi
∂ϑ

)T
IGi

∂ωOGi
∂ϑ

}
(2.22)

Qa is the applied generalized effort vector and QR is the residual generalized effort vector:
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Qa =
n∑

i=1

{(
∂vOGi
∂ϑ

)T
FGi,a +

(
∂ωOGi
∂ϑ

)T
mGi,a

}
(2.23)

QR =
n∑

i=1

{
mGi

(
∂vOGi
∂ϑ

)T
aR +

(
∂ωOGi
∂ϑ

)T (
IGiεR + ωOGi × IGiωOGi

)
}

(2.24)

2.7.3 Technical Simplification for Implementation Purpose

The PTW multibody representation of the previous section is suitable for the simulation and the validation
of the vehicle’s dynamics behavior. In the other hand, the resulting mathematical model is strongly nonlinear
and highly complex which does not make it a suitable candidate to solve control, estimation and identification
problems.

A first approach consists to choose a reduced number of bodies with the minimum set of generalized coor-
dinates. Then, the lateral and longitudinal dynamics decoupling will simplify greatly the model. In both
cases, the front and rear wheels are assimilated to virtual masses but their rotation dynamics are considered
in the development of the models. Also, the upper and lower front bodies are merged into one body and
the swing arm is included into the rear body. This yields to a two bodies representation with decoupled
longitudinal and lateral dynamics. This issue will be the subject of the next section.

2.8 Two-Body Model for the Lateral Dynamics

This section presents the development of the lateral dynamics by considering the PTWV and its rider as a
set of two bodies: the front body and the rear body. Once established, a linearization around a straight line
trajectory is discussed.

2.8.1 Assumptions

In this section, the PTWV and its rider are represented by a set of two bodies linked by the steering
mechanism. We distinguish the front body Gf , including the front wheel, the fork and the handlebars. The
rear body Gr includes the chassis, the tank, the rider, the swing arm, the engine and the rear wheel. By
this simplifications, the dynamics of the suspensions is not taken into account which eliminates the pitch
dynamics and load transfer. Also, the longitudinal velocity is considered to be constant or at least it varies
very slowly allowing to neglect the longitudinal slip ratio for both tires.

For the development of the two-body model, we define a vehicle reference RA = (A, iA, jA, kA) attached to
the PTWV at point A according to the ISO standard. The origin A corresponds to the projection of the
rear body CoG on the ground along the longitudinal plane of symmetry as in figure 2.13. Starting from the
vehicle reference RA, a roll rotation φ around iA gives an intermediate reference Rφ(A, iφ, jφ, kφ). Next, a
rotation ǫ around jφ gives Rǫ(A, iǫ, jǫ, kǫ). Finally, a steering rotation δ around kǫ gives Rδ(B, iδ, jδ, kδ).
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vOGr = vOA + ωOA × rAGr + ṙAGr (2.29)

ωOGr = ωOA + ωAGr

aOGr = v̇OA + εOV × rAGr + r̈AGr + ωOA × (vOGr + ṙAGr )

εOGr = ω̇OA + ωOA × ωAGr + ω̇AGr

where ωAGr = ωφ and ω̇AGr = [ω̈φ, 0, 0]T . We recall that ωOA = [0, 0, ψ̇]T and vOA = [vx, vy, 0]T . By the
set of equations (2.29), it is straightforward to define the velocity Jacobian matrices for the rear body as:

∂vOGr
∂ϑ

= [jA kA × rAGr iA × rAGr 03,1] (2.30)

∂ωOGr
∂ϑ

= [03,1 kA iA 03,1]

and the residual acceleration terms:

aR,Gr = ωOA × (vOGr + ṙAGr ) + ωφ × ṙAGr (2.31)

εR,Gr = ωOA × ωφ

The front body has only 1 DoF relative to the rear body Gr corresponding to the steering angle δ. The posi-
tion of the CoG of the front body in its local reference frame Rδ is a constant vector rδBGf = [xGf , 0, zGf ]

T .

Also, the position of B in its local reference frame Rǫ is a constant vector rǫAB = [xB , 0, 0]T . Then, in the
vehicle reference frame we have:

rAGf = rAB + rBGf = Rφ,ǫr
ǫ
AB +Rφ,ǫ,δr

δ
BGf

(2.32)

By differentiating the equation (2.32), we can express the vector of the relative linear velocities by:

ṙAGf = ṙAB + ṙBGf = ωφ × rAB + ωφ,δrBGf (2.33)

where ωφ,δ = ωφ + ωδ and ωδ = Rφ,ǫ[0, 0, δ̇]T . A second differentiation, the vector of the relative linear
accelerations is:

r̈AGf = ω̇φ × rAB + ωφ × ṙAB + ω̇φ,δ × rBGf + ωφ,δ × ṙBGf (2.34)

where ω̇φ,δ = ω̇φ + ω̇δ and ω̇δ = Rφ,ǫ[0, 0, δ̈] + ωφ × ωδ.

By using equations (2.16) and (2.17), we can express the front body kinematics in the vehicle reference frame
as follows:
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vOGf = vOA + ωOA × rAGf + ṙAGf (2.35)

ωOGf = ωOA + ωAGf

aOGf = v̇OA + εOV × rAGf + r̈AGf + ωOA × (vOGf + ṙAGf )

εOGf = ω̇OA + ωOA × ωAGf + ω̇AGf

where ωAGf = ωφ,δ and ω̇AGf = ω̈φ,δ. By the set of equations (2.35), it is straightforward to define the
velocity Jacobian matrices for the front body as:

∂vOGf

∂ϑ
= [jA kA × rAGf iA × rAGf kδ × rBGf ] (2.36)

∂ωOGf

∂ϑ
= [03,1 kA iA kδ ]

and the residual acceleration terms:

aR,Gf = ωOA × (vOGf + ṙAGf ) + ωφ × ṙAB + (ωφ × ωδ) × rBGf + ωφ,δ × ṙBGf (2.37)

εR,Gf = ωOA × ωφ,δ + ωφ × ωδ

2.8.3 Rear and Front Tire-Road Contact Point Kinematics

The position of the rear tire-road contact point Cr in its local reference Rφ is a constant vector rφACr =

[xRr , 0, 0]T . Then, in the vehicle reference frame, we have:

rACr = Rφr
φ
ACr

(2.38)

By differentiating the equation (2.38), we can express the vector of the relative linear velocities by:

ṙACr = ωφ × rACr (2.39)

By using equations (2.16) we can express the rear tire-road contact point linear velocity in the vehicle
reference frame as follows:

vOCr = vOA + ωOA × rACr + ṙACr (2.40)
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By using equation (2.16) we can express the front tire-road contact point linear velocity in the vehicle
reference frame as follows:

vOCf = vOA + ωOA × rACf + ṙACf (2.45)

From equations (2.40) and (2.45), we can define the sideslip angle α for both rear and front tire.

Finally, the last issue in this section concerns the gyroscopic effect of both wheels. We assumed that the
front and rear wheels are mass-less bodies, hence, their contribution in the mass matrix is null. So, it is
useless to compute the linear velocity Jacobian matrices and also the linear residual acceleration. However,
each wheel is supposed to rotate about its axis with a given inertia. To count with the gyroscopic effect, we
should express the angular velocity Jacobian matrices and the angular residual acceleration.

The rear wheel rotates about jθr with an angular velocity ωθr = θ̇rjθr . Then, the angular velocity vector of
the rear wheel with respect to the vehicle reference frame is given by:

ωARr = ωφ + ωθr (2.46)

where, in the vehicle reference frame jθr = Rφ[0, 1, 0]T . By differentiating the equation (2.46), we get the
relative angular acceleration vector:

ω̇ARr = ω̇φ + ω̇θr (2.47)

where ω̇θr = θ̈rjθr + ωφ × ωθr .

As for the rear wheel, the front wheel rotates about jθf with an angular velocity ωθf = θ̇f jθf . Then, the
angular velocity vector with respect to the vehicle reference is given by:

ωARf = ωφ + ωδ + ωθf (2.48)

where, in the vehicle reference frame jθf = Rφ,ǫ,δ [0, 1, 0]T . By differentiating the equation (2.48), we get the
relative angular acceleration vector:

ω̇ARf = ω̇φ + ω̇δ + ω̇θf (2.49)

where ω̇θf = θ̈f jθf + (ωφ + ωδ) × ωθf .

By using equations (2.16) and (2.17) we can express the angular kinematics of both wheels in the vehicle
reference frame as follows:
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ωORr = ωOA + ωARr (2.50)

ωORf = ωOA + ωARf

εORr = ω̇OA + ωOA × ωARr + ω̇ARr

εORf = ω̇OA + ωOA × ωARf + ω̇ARf

Finally, we can deduce the residual acceleration terms by:

εR,Rr = ωOA × (ωφ + ωθr ) + ωφ × ωθr (2.51)

εR,Rf = ωOA × (ωφ + ωδ + ωθf ) + ωφ × ωδ + (ωφ + ωδ) × ωθf

2.8.4 Non-Conservative Generalized Efforts

The PTWV is subject to various force and torque elements. In this section, we account for the gravity force,
rider steering torque, steer damper torque and tire lateral force on the front and rear tire contact points.

To express the contribution of gravity force in the generalized effort vector Qa, we can make use of equation
(2.23):

Qa,g =



mr

(
∂vOGr
∂ϑ

)T
+ mf

(
∂vOGf

∂ϑ

)T





0
0

−g


 (2.52)

In the same way, the contribution of the tire/road contact efforts into the generalized effort vector is given
by:

Qa,T =
∑

i=r,f

{(
∂vORi
∂ϑ

)T
FTi +

(
∂ωORi
∂ϑ

)T
(FTi × rCiRi)

}
(2.53)

where FTi are defined in equation (2.4).

Afterward, to evaluate the contribution of the rider steering torque τ and the steer damper torque Kδ δ̇ in
the generalized effort vector, it may be tedious to use equation (2.23). Therefore, it is most convenient to
find the virtual power done by each effort and hence its associated contribution. So, it is more simple to
write :

Qa,h =

(
∂δ̇

∂ϑ

)T



0
0

τ −Kδ δ̇


 (2.54)

2.9 Linearisation and State Space Models

For PTWV dynamics, we distinguish two classes of motions around the equilibrium. The first one is the
in-plane motion which relates to the longitudinal motion of the vehicle in its plane of symmetry. It is mainly
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affected by acceleration, braking, suspension motions and irregularities of the road. The other one is the
out-of-plane motion which refers to the lateral motion in turns and hence to the roll, the yaw, the steering
and the lateral displacement degrees of freedom. Besides these two main classes, other subdivisions can be
done by separating braking and acceleration phases from the turning ones (Cossalter et al., 2006b). Actually,
in the real world these phases happen together in a coupled way so that the result is that the vehicle turns
while it is braking or accelerating. Also, neutral phase occurs when the vehicle is going on a coast down
condition. Usually neutral phase is not developed in mathematical models.

The objective of this section is to set up PTWV dynamic models taking into account the triplet motorcycle-
rider-environment. Motorcycle models can be accomplished in several ways depending on the use that will
be made and the desired precision. These models should represent all dynamics of interest as simply as
possible.

• The out-of-plane model: incorporates the most important parameters and dynamic states of the mo-
torcycle. It is used to understand the lateral motion and estimate the included variables, which is the
topic of interest for this work.

• The one-body lateral model: is studied in a motorcycle-fixed reference frame with the origin located
at the Centre of Gravity (CoG). It is used in the sake of identifying the CoG and the total mass of the
motorcycle/rider. It allowed also to design a steady-state risk function to detect the abnormal steering
behavior.

• The in-plane model: describes the braking and acceleration dynamics. It is used in estimating the
complete dynamic and the coupling between the longitudinal and lateral motions.

The differences between these models are the number of bodies, flexibility and degrees of freedom. These
requirements are imposed by the application. In this context, selecting a suitable model structure is pre-
requisite before its estimation and identification. This selection is also constrained by the availability of the
motorcycle measurements. Based on what is developed in section 2.8, these dynamics models are given in
the following sections.

2.9.1 Out-of-Plane Motion

The large number of accidents on the bend motivates the fact that many of our works deal with lateral
dynamic model. This model is widely used for the development of estimation and control algorithms of the
PTWV dynamics. Therewith, a linearized version of the lateral dynamics model representing small motions
in the neighborhood of the straight motion is derived which leads to a four degree-of-freedom (4 Dof) model.
This representation considers that the main frame is subject to lateral motion, roll motion about the x−axis,
yaw motion about the z− axis and the front frame is subject to steering motion, due essentially to the effect
of pneumatic forces acting on the front and rear wheels (Fyf and Fyr) with tire relaxation.

By neglecting the nonlinearities associated with the products between dynamic variables, the motions are
expressed by the following dynamic equations:





Lateral motion e33v̇y + e34ψ̈ + e35φ̈+ e36δ̈ = a34ψ̇ +
∑

Fy

Yaw motion e34v̇y + e44ψ̈ + e45φ̈+ e46δ̈ = a44ψ̇ + a45φ̇+ a46δ̇ +
∑

Mz

Roll motion e35v̇y + e45ψ̈ + e55φ̈+ e56δ̈ = a54ψ̇ + a56δ̇ +
∑

Mx

Steering motion e36v̇y + e46ψ̈ + e56φ̈+ e66δ̈ = a64ψ̇ + a65φ̇+ a66δ̇ +
∑

Ms

Front lateral force motion Ḟyf = a71φ+ a72δ + a73vy + a74ψ̇ + a76δ̇ + a77Fyf

Rear lateral force motion Ḟyr = a81φ+ a83vy + a84ψ̇ + a88Fyr

(2.55)
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Figure 2.15: Schematic side view of the PTWV two-body model with notation, Sharp
equivalent model.

where: 



∑
Fy = Fyf + Fyr∑
Mz = a47Fyf + a48Fyr∑
Mx = a51φ+ a52δ∑
Ms = a61φ+ a62δ + a67Fyf + τ

Nevertheless, there is an interesting alternative to consider the nonlinearities of the roll and the steering
angle due to the potential energy. The expression (2.56) becomes:





∑
Fy = Fyf + Fyr∑
Mz = a47Fyf + a48Fyr∑
Mx = a51 sin(φ) + a52 sin(δ)∑
Ms = a61 sin(φ) + a62 sin(δ) + a67Fyf + τ

For further details on the motorcycle parameters (eij − aij) and expressions refer to the appendix C .

The motorcycle dynamic model given by equation (2.55-2.56) can be expressed by the following descriptor
model: {

Eẋ = M (vx)x+Rτ

y = Cx
(2.56)

whereas x = [φ, δ, vy, ψ̇, φ̇, δ̇,Fyf ,Fyr]T denotes the state vector, the matrix M (vx)=[aij ]8×8 is parameter
varying, R is a constant matrix, y is the vector of measures and C is the observation matrix E=[eij ] is a
constant nonsingular matrix, its inverse E−1 exists. Let us consider ζ(t) = vx(t). The Linear Parameter
Varying (LPV) structure is expressed by:

{
ẋ(t) = A(ζ)x(t) +Bu(t)

y = Cx(t)
(2.57)

where x(t) ∈ Rn, u(t) = τ (t) ∈ Rm, and y(t) ∈ Rny . The matrix A(ζ) = E−1M (ζ) ∈ Rn×n, the matrices
C ∈ Rny×n , B = E−1R ∈ Rn×m. Whereas, n = 8, m = 1, p = 6, ny = 5.

2.9.2 Road Consideration

This section extends the model in section 2.9.1, taking into account the road bank angle, denoted φr at
which the road is inclined about its longitudinal axis with respect to the horizontal one. It has the effect of
transferring a portion of the gravity force to lateral tire forces keeping the motorcycle in its path. Also, it
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2.9.3 One-Body Model of Lateral Dynamic

In this part, the lateral dynamics of the PTWV is reconsidered by simplifying the two-body model, leading
to a rigid one-body model. The inertial parameters of the motorcycle are generally represented by: it mass
m, the moments of inertia Ix, Iy, Iz and the position of its center of gravity CoG. Let us consider the
following one body motorcycle model with 3 DoF giving the lateral, the yaw and the roll motion dynamics:





m(v̇y + ψ̇vx) = Fyf + Fyr
Izψ̈ = aFyf − bFyr

Ixφ̈+mh(v̇y + ψ̇vx) = mghφ

(2.61)

and the tire relaxation dynamics

{
Ḟyf = − vx

σ Fyf +Cf1(δ− vy−aψ̇
vx

) +Cf2γ

Ḟyr = − vx

σ Fyr −Cr1(
vy−bψ̇
vx

) +Cr2γ
(2.62)

Let x = [vy, ψ̇,φ, φ̇,Fyf ,Fyr]T . We conclude the following Linear Parameter Varying (LPV) system :

{
ẋ = A(ζ)x+Bu+Q(ζ)d
y = Cx

(2.63)

where the input u(t) is the steering angle δ and d(t) is the nonlinear part of the lateral forces, with ζ = vx,
A(ζ) = E−1M (ζ), B = E−1N and Q(ζ) = E−1F (vx).

2.9.4 In-Plane Motion

The in-plane motion is related to the longitudinal dynamic of the vehicle in its plane of symmetry. It refers
to the vehicle’s ability to accelerate and brake. Hence, the behavior of the motorcycle during straight-line
movements depends on longitudinal pneumatic and aerodynamic forces. It is mainly affected by acceleration,
braking, suspension motions and irregularities of the road. The in-plane model is given by the following
equations:





m(v̇x − vyψ̇) = Fxf + Fxr − Fa − Frr
ifyω̇f = −RfFxf +Bf
iryω̇r = −RrFxr + T +Br

(2.64)

Gr

Gf

vx

vyFyf Fyr

δ, τ

φ

ax

vxFxf Fxr

ωr,T

Br

ωf

Bf

ǫ

ǫ

Figure 2.17: Kinematic representation of PTWV.

• Fa = Cdv
2
x is the aerodynamic force with Cd is the drag coefficient.
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• Frr = fωFz is the rolling resistance force with fω is the rolling resistance coefficient (Cossalter et al.,
2006b).

• Bf and Br are the braking torques applied to the front and rear wheels, T is the total engine torque
applied only to rear wheel.

• ωf ,r is the wheel rotational speed , i(f ,r)y the moment of inertia of the wheels, Rf ,r are the wheel
radius.

2.10 Stability and Handling

The role of the gyroscopic effect in bike designs is to help steer the front wheel. This phenomenon is called
precession. The rate at which an object precesses is inversely proportional to its rate of spin. At low speeds,
the precession of the front wheel is quick, causing an uncontrolled bike’s tendency to oversteer. At high
speeds, the precession is usually too slow, contributing to an uncontrolled bike’s tendency to. This tendency
is very easy for riders to counteract. Another reason of gyroscopic effects is a roll moment generated by the
front wheel during countersteering. This effect is presented in Figure 4. The moment is smaller than the
moment generated by the out-tracking front wheel, but begins as soon as the rider applies torque to the
handlebars and so can be used even when the front tire does not have contact with a ground. The magnitude
of this moment is proportional to the moment of inertia of the front wheel, its spin rate, the rate of torque
that the rider applies to the handlebars , the cosine of the angle between the steering axis and the vertical.

2.10.1 Gyroscopic effect

Any object rotating about a spin axis is subject to the gyroscopic effect which refers to the ability of this
object to keep in balance its rotation axis. Henceforth, the PTWV gyroscopic effect arises from the front
wheel speed. This physical effect is prominent to ensure the motorcycle balance in straight line and when
steering (Cossalter et al., 2010; Grzegożek and Weigel-Milleret, 2015). It is worth noting that its amplitude
is relatively small compared to other moments, but its transitory character is crucial in cornering. Once
the wheel is in rotation with a given angular speed, the gyroscopic effect can be generated by one or by
the combination of three motion: steer, roll and yaw. First, the gyroscopic steer-lean effect is created by a
steering maneuver. For example, to initiate a left turn, the motorcycle’s handlebar is turned in the counter
sense allowing the vehicle to lean in the turn direction. When the desired angle of the lean is reached,
the handlebar is brought back to its neutral position to get a balance trajectory within turn. Second, the
gyroscopic roll-steer effect is generated by the motorcycle roll independently of any handlebar motion. Then,
the gyroscopic yaw-righting effect arises from the circular motion of the vehicle as those generated by rotation
of the wheels in a constant turn. This is the only gyroscopic effect that tends to destabilize the vehicle.

2.10.2 Vibration Modes

While in motion, single track vehicle and its rider remain in an unstable equilibrium like an inverted pendulum
(Cossalter et al., 2006a). The term stable means that the vehicle remains at its steady equilibrium at constant
speed without falling. Therewith, the safe ranges of stability are determined by the vehicle characteristic,
the forward speed and the rider actions.

A PTWV maintains a state of equilibrium as long as the applied external efforts are balanced with the
generated tire/road efforts. In a straight line, this stability is provided when the rider is controlling the
forward speed and applying a suitable handlebar torque to reject perturbations or to control the roll angle
of the PTWV. On the other hand, this also can be done by a lateral displacement of the rider body with
respect to the vehicle’s main body. However, for an uncontrolled motorcycle, three main modes of instability
arises with respect to the vehicle forward speed (Sharp, 1971).

From Figure 2.18, the first non-oscillating vibration mode called capsize, is a well damped mode that appears
at low speed. In this mode, the front wheel is steered toward the direction of the roll but not enough to
avoid a fall. Next, a second mode named weave appears as a slow oscillatory mode between the rear wheel
and the front steering wheel. This mode has a frequency ranging from 0.2Hz at low speed and up to 4Hz
at high speed. It is unstable at low speeds less than 5m/s, well damped at medium speed and moderately
damped in high-speed and stable beyond 30m/s. It affects the whole vehicle whose trajectory undulates,
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Figure 2.18: Lateral stability curve of PTWV.

the steering is 180 deg out of phase with the yaw and it is 90 deg out of phase with the roll. Last, wobble
mode describes a fast vibration oscillation of the steering body with a frequency of 8Hz to 10Hz which is
independent of the vehicle speed. In this mode, the vehicle’s handlebar starts to swing from one side to the
other until fall. This unstable mode is naturally present on the PTWV mainly at high speed and it can be
damped by adding a suitable steering damper.

Figure 2.18 shows also the concept of the critical speed, under which the vehicle self-stabilization is not
possible. Also, unstable modes are well differentiated and separated over the all speed range. In (Limebeer,
Sharp, and Evangelou, 2001), the authors studied the influence of other parameters on the out-of-plane
stability of PTWV in particular the effect of the front and rear suspensions.

2.10.3 PTWV Control

Riding a PTWV is not as simple and intuitive as driving a car vehicle. In normal riding conditions, the
PTWV is an unstable system which requires the presence of the rider to stabilize his motorcycle and correct
its trajectory. Also, with a comparable dynamics, the vehicle power to the rider mass ratio is very important
and hence, each riding style gives rise to a specific control strategy which changes from one to another rider
depending on his sensation and his perception of the external driving environment. So, reproducing the rider
control behavior with a mathematical model is difficult and it is still the subject of several research works.
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National Instrument (PCIe-6353) is plugged to interface the various sensors and actuators. On the other
hand, a high-end Inertial Measurement Unit, SBG IG-500A is installed near the rear body center of mass.
It incorporates an accelerometer, a gyroscope and a magnetometer providing accurate measurements of the
three Euler angles and their associated rates and the three axes acceleration. Also, the steering system is
equipped with an IOV GA210 absolute encoder directly installed on the steering column without reduction
stage, and offering a 10-bit resolution for 1024 steps per revolution. This sensor measures the handlebar
position seen by the actuator axle. For wheel rotational speed, optical encoder has been selected. Data
acquisition is performed at 100 Hz except for the computer-integrated GPS which is slower with a maximum
frequency of 10 Hz (Damon et al., 2017).

Figure 2.20: Instrumented Scooter at the IBISC Lab, university of Evry.

2.13 Inertial Sensor Calibration

The results of this section were obtained during an internship at PoliMi laboratory (Politecnico di Milano,
Italy), lasted two months (April-May 2018). The work was published in (Fouka et al., 2018d).

2.13.1 Overview of Calibration

IMU axes calibration is an important step when installing on a vehicle to get accurate and significant
measurements of the different degrees of freedom of interest (Maeder and Morari, 2011; Syed et al., 2008;
Boniolo, Savaresi, and Tanelli, 2009b; Syed et al., 2007). In fact, IMU are strongly affected by mounting
angles with respect to the vehicle reference frame and this relative positioning should be recovered by an
alignment method (Syed et al., 2008; Groves, 2015; Vinande, Axelrad, and Akos, 2010). IMU calibration is
even more essential for PTWV than cars vehicle since the roll angle can reach 50◦. Also, the narrow space
occupied largely by the vehicle’s engine does not simplify the installation of the IMU closer to the center
of mass of the vehicle. So, natural alignment with the vehicle’s direction of motion may be impossible and
significant differences can be observed between measured variables and the real ones.

To perform such a calibration, some of the existing methods use the Global Navigation Satellite System
(GNSS) to compare positioning data with the IMU outputs (De Tommasi, 2014). However, these methods
imply that the GNSS must be always active and running at its highest possible frequency to cover all
possible measured signals bandwidth. This results have a significant increase in energy consumption, as an
accelerometer/gyroscope pair requires approximately 1 mA at 3 V, thus an energy of 3 mW, while GNSS
consumes 10 − 20 mA at 3 V, thus 30 − 60 mW. In applications where energy consumption is critical, as it is
in two-wheeled vehicles, and in general in electric vehicles, algorithms that make sporadic use of the GNSS
or even ovoid the GNSS are to be preferred. Furthermore, GNSS data are subject to errors which affect the
measurement precision (Groves, 2013).

In the present work, a self-calibration, energy-efficient, algorithm for triaxial IMU installed on motorcycles
is proposed. Also, this looks for limiting the use of geo-localization data. The objective is to estimate the
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case of standing still is not taken into account to avoid an extra rotation due to the PTWV kickstand, not
present in car vehicles.

Under these assumptions, the acceleration in the vehicle reference system can be expressed as

av =




0
0
g


 , (2.67)

where g is gravity. However, since the telematic box is not aligned with the vehicle’s frame, the IMU’s
acceleration vector am is rotated by R. Defining axm , aym , and azm as the accelerations measured by the
IMU, am can be expressed in the vehicle reference frame by:

am = R · av =




−sϑg
cϑsϕg

cϕcϑg


 =



axm
aym
azm


 (2.68)

It is clear that the gravity vector and the mounting angles (ϕ, ϑ) influence the measured acceleration along
the three axes. To estimate these two angles, a quadratic cost function Jg is defined as the sum of the
squared error between av and am as:

Jg(ϕ,ϑ) =(axm + sϑg)
2 + (aym − cϑsϕg)

2 + (azm − cϕcϑg)
2. (2.69)

The estimation of the pitch ϑ̂ and the roll ϕ̂ angles is obtained by minimizing the following cost function:

[
ϕ̂

ϑ̂

]
= argmin

ϕ,ϑ
Jg(ϕ,ϑ) (2.70)

The optimization problem can be solved making
∂Jg(ϕ,ϑ)

∂ϑ = 0 and
∂Jg(ϕ,ϑ)

∂ϕ = 0 which gives the following
closed form expression:




ϕ = arctan

(
aym
azm

)

ϑ = arctan
(

−axm
sϕaym+cϕazm

) (2.71)

Before moving to the second part of the algorithm, few considerations need to be addressed:

• thanks to the result obtained in (2.71), at each new sample we obtain the value of the two angles which
minimize the mismatch, according to the assumptions made (numerically defined in (2.67)). Because
of sensor’s noise and drifts, the estimate is never constant. To remove these undesired effects, since
the mounting angles are assumed not changing over time, the estimated values are averaged;

• estimations of ϕ and ϑ strongly depend on the assumption made. This means that, a data selection
is needed in order to limits the estimate to only the samples which satisfy the assumptions. This is

done checking that the acceleration norm (i.e., ‖a‖ =
√
a2
xm + a2

ym + a2
zm) is approximately equal to

gravity (i.e., |a| ≈ g);

• during the averaging process, significant variations of the two angles may correspond to variations of
road slope, banking or any tilting action performed by the driver. To avoid the estimate to be biased,
any detected outlier is removed by resetting the average process.
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To estimate the yaw, the vehicle longitudinal dynamics is used, then in the vehicle reference frame the
vehicle acceleration vector is av = [axv , 0, g]. the IMU’s acceleration vector am can be expressed in the
vehicle reference frame by:

am = R · av =




cψcϑaxv − sϑg

(cψsϕsϑ − cϕsψ)axv + cϑsϕg

(sϕsψ + cϕcψsϑ)axv + cϕcϑg


 (2.72)

in which ϕ and ϑ can be substituted with their estimates. The previous equation can be rearranged in the
following form:



axm
aym
azm


 =




cψcϑ −sϑ
(cψsϕsϑ − cϕsψ) cϑsϕ
(sϕsψ + cϕcψsϑ) cϕcϑ



[
axv
g

]
. (2.73)

Thanks to the estimated pitch and roll angles, gravity can be compensated on the measured angles, as




axm + sϑg

aym − cϑsϕg

azm − cϕcϑg


 =




cψcϑ
(cψsϕsϑ − cϕsψ)
(sϕsψ + cϕcψsϑ)


 axv . (2.74)

By factorizing cψ, sψ, we obtain




axm+sϑg
cϑ

aym−cϑsϕg
−cϕ

azm−cϕcϑg
sϕ




︸ ︷︷ ︸
y

=




1 0
−tϕsϑ 1
t−1
ϕ sϑ 1




︸ ︷︷ ︸
φ

[
cψaxv
sψaxv

]

︸ ︷︷ ︸
θ

(2.75)

which can now be rewritten as a least squares (LS) problem y = φ · θ.

Once vector θ is estimated from equation (2.75), the ratio of the two parameters is equal to
θ(1)
θ(2)

=
cψaxv
sψaxv

=
cψ
sψ

. Which is the tangent of ψ. Hence, ψ is then obtained by computing the inverse tangent of the parameters

ratio ψ = atan
(
θ(2)
θ(1)

)
.

2.13.3 Experimental Results

Th proposed algorithm is tested offline by using experimental data collected over few hours of driving and
thus by considering three scenarios. Figure 2.24 shows a comparison between IMU raw data and aligned
(rotated) data obtained from the estimated mounting angles. Differences in the accelerations are due to the
forces experienced in the different locations of the vehicle. In Table 2.1, the estimated angles are compared
for the different datasets, proving that the estimated angles converge to a very narrow range.
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Location Test # ϕ [deg] ϑ [deg] ψ [deg]

Box 1
1 −74.79 −23.94 22.48
2 −74.47 −23.93 22.93
3 −74.66 −23.81 22.98

Box 2
1 4.02 3.56 38.53
2 3.92 3.66 39.03
3 3.93 3.69 39.68

Box 3
1 2.51 68.99 −1.94
2 2.35 68.84 −2.51
3 1.93 69.06 −2.16

Table 2.1: Analysis of the estimated angles for the different boxes for all the tests conducted.
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Figure 2.24: Self-calibration and experimental measurements: (left) the raw acceleration
vector, (right) the acceleration vector along the virtual aligned axes.

A sensitivity analysis has been performed on the averaging window, as shown in Figure 2.25. The estimate
of the two angles converges in a close range even with few samples, but it settles for a window length of 4000
useful samples.

In order to study the estimation convergence rate of ψ, the least square (LS) problem is compared with its
recursive (RLS) version depicted in figure 2.26. The RLS converges to the final estimate with 400 useful
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samples, an order of samples smaller than the number of samples required in the averaging process of ϕ and
ϑ (4000 samples). However, it must be remarked that the estimate of ψ depends heavily on data selection
and this explains the small mismatch between the LS averaged and the three conducted tests.
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Figure 2.25: Sensitivity analysis: an overview of the sensitivity analysis of the averaging
window for the estimate of ϕ and ϑ. It is evident that with at least 4000 samples, the error
computed in the estimate is very small with respect to the one estimated when the vehicle

is standing still.
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Figure 2.26: Sensitivity analysis: the RLS convergence is compared with the averaged LS.
Estimates converge in less than 400 samples. Steady state error results to be smaller than

0.92 deg.

The last step is to test the robustness of the proposed algorithm. To do so, the self-calibration algorithm is
performed considering different initial conditions for all e-Boxes. This test procedure is iterated fifty times
for each dataset and the results are summarized in Table 2.2. We found that the standard deviation of the
estimated angles is within 0.6◦ except for the ψ angle. In fact, the former is more sensitive to sensors biais
and drifts. This is particularly more striking for the e-Box 2 configuration, in which the pitch and roll angles
are small to break up the vertical axis from the one of the vehicle’s reference system. In this case, the ψ
estimation is more sensitive to any bias in sensors measuring ax and ay.

In the other hand, to check the consistency of the virtually aligned axes, the rotated signals are compared by
computing the cross-correlation between the three boxes. So, given two random signals x and y, the cross-
correlation is a similarity metric defined as Rx,y(k, l) = E{x(k)y(k + l)T }, where l represents the delay
between the two signals (Verhaegen and Verdult, 2007). The cross-correlation coefficient can be normalized
with respect to the auto-correlation of the two signals, leading to:

Rx,ynorm(k, l) =
1

Rx,x(0)Ry,y(0)
E{x(k)y(k+ l)T } (2.76)

which is 0 when the two signals are orthogonal and 1 when they are completely correlated.
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Location Test #
ϕ [deg] ϑ [deg] ψ [deg]

Mean Std Mean Std Mean Std

e-Box 1
1 −74.57 0.15 −24.06 0.11 23.33 0.52
2 −74.31 0.12 −23.95 0.06 23.65 0.60
3 −74.77 0.08 −23.76 0.04 23.69 0.37

e-Box 2
1 3.98 0.03 3.59 0.06 8.60 2.51
2 3.94 0.02 3.59 0.08 12.47 3.75
3 3.92 0.04 3.82 0.05 11.15 2.89

e-Box 3
1 2.31 0.08 68.01 0.29 −1.83 1.25
2 2.24 0.21 68.83 0.24 −2.01 0.81
3 1.93 0.08 68.91 0.28 −1.88 0.90

Table 2.2: Analysis of the estimated angles for all the boxes with different initial conditions.
In all the cases, the the standard deviation does not exceed 0.6 deg.

The normalized cross-correlation coefficient is computed on the rotated signals of all the e-Boxes and for
performed test. Results are listed in Table 2.3. The z-axis results to be perfectly aligned, with a high value
of the normalized cross-correlation coefficient. Besides, it has proved to be less excited, meaning that its
estimate is less influenced by the location of the device. Axes x and y show also a significant correlation
with the relative location of the e-Box. However, this mismatch is limited and the results can be considered
satisfying which proves that the effectiveness of the proposed algorithm can be considered to be independent
from the mounting location and orientation.

Location1 Location2 Test #
Cross − correlation
ax ay az

e-Box 1

e-Box 2
1 89.57 97.55 100
2 92.34 59.69 95.66
3 78.40 88.63 100

e-Box 3
1 88.02 83.38 100
2 95.15 78.70 100
3 80.89 82.43 100

e-Box 2 e-Box 3
1 81.23 82.54 100
2 84.68 95.29 95.64
3 77.15 71.68 100

Table 2.3: Correlation analysis of the rotated axes different boxes against all the considered
tests.

2.13.4 Final Remarks

This study focused on setting up the experimental platform. First, we presented the instrumentation of the
scooter from a practical point of view (sensors, mini PC, acquisition card, input / output ...), their charac-
terization and implementation on the vehicle prototype (scooter). After that, we presented an algorithm to
align the three axes of an arbitrarily mounted IMU on motorcycles. The algorithm consists in estimating
three mounting angles which allow to virtually align the sensing axes with respect to the vehicle’s reference
frame. The algorithm has been tested and validated against real experimental data. Results favourably
prove the effectiveness of the proposed approach, limiting the amount of energy needed with respect to more
classical methods due to the reduced use of GNSS system.

2.14 Conclusions

In this chapter, we presented the dynamic modeling of the motorcycle. It should be noted that tire modeling
is a key step for the derivation of a complete dynamic model of PTWV. In fact, tires-ground interaction plays
a crucial role in the stability of PTWV. Thereby, we have seen that the forces generated by each tire can
be decomposed into a set of three forces and three moments. We used Pacejka’s magic formula to introduce
the expressions of these efforts (section 2.3). Withal, to accomplish the safety requirements of motorcycles,
a stability and handling analysis of PTWV dynamic is also required. Due to their special characteristics,
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which allow to evaluate a various automatic tools, we focus on particular on the physical phenomena that
characterize two-wheeled category and in particular the instability modes.

Furthermore, the PTWV modeling deals with the derivation of a multi-body model of motorcycle dynamics.
First, we briefly presented the eight bodies motorcycle/rider model. Despite its high complexity and numer-
ous nonlinearities, this model simulates very closely the dynamic behavior of the motorcycle/rider system.
It allows the simulation of 16 Degrees of Freedom (DoF). In addition, it takes into account the coupling
effects between the longitudinal and lateral dynamics. In the following works, this model was used indirectly
during simulations and validations with the BikeSim software. Indeed, BikeSim uses this eight-body model
in the "dynamic engine" of the software simulations. Although, the fidelity of the eight-body model discussed
above, the latter is much more complex for the synthesis of control and observation algorithms. This is why
we proposed the derivation of simpler models based on the principle of Jordan, with one or two-bodies,
for the modeling of the lateral or longitudinal dynamics (section 2.8). To derive each of these models, we
have established the kinematic relations for each of the model’s bodies based on the principle of Jordan.
Then, from these expressions, we have explained the steps to calculate the mass matrix, and the vector of
generalized forces (non-conservative and residual efforts).

Then, we proposed a linearization of the equations around a straight line trajectory (section 2.9). This
allowed us to find the famous Linear Parameter-Varying (LPV) two-body model originally introduced in
(Sharp, 1971). Note that Sharp used Lagrange’s formalism to derive his model. Furthermore, this dynamic
models are the starting point for observer design or explicit identification algorithms in the following chapters.
The two-body model has been used in all model-based observation and/or identification approaches proposed
later in this manuscript (Chapters 5, 6, 7, 8). Indeed, we studied the one-body model of lateral dynamics
either in the identification of CoG (chapter 3) or in the derivation of the risk function related to steering
behavior in steady state situation in chapter 9. Finally, the in-plane model is presented to describe the
longitudinal dynamic. The derivation of this model allowed us to tackle an important subject, namely
the load transfers. In extreme cases, these phenomenon are also known as stoppie or wheelie respectively
corresponding to the detachment of the rear or the front wheel. This model was used in the estimation the
interconnected motion in chapter 8.

On the other hand, even if the one and two-body models seem simple in theory, identifying their parameters is
a hard problems in practice. Indeed, some of the dynamic states or parameters are accessible to measurement
while others require the use of advanced techniques. It is important to note that in parallel to the model
choice, definition of the parameters is also important. The terms of the matrix A(vx) and the vector B must
be well informed according to the characteristics of the vehicle. Although the Sharp model is quite faithful
to the behavior of the motorcycle in cornering, it contains no less than 34 parameters to identify. This issue
is complex since the Sharp’s model takes into account two types of parameters:

• Static parameters: masses, geometric parameters (wheelbase, position of gravity centers, etc.),

• Dynamic parameters: the inertia of the wheels, the front body and the rear body.

Some of these parameters are very difficult to estimate using conventional identification methods. If we take
the example of the inertia of different bodies (wheels, front body, etc.), they can be estimated through a
digital model by Computer Aided Design (CAD). This method can be very laborious. Otherwise, automatic
techniques of identification are perfectly suited to this problem. In this context, chapter 3 and 4 studies
parameters estimation problems. To go even further, we proposed observers able to estimate the dynamic
states and simultaneously identify the parameters, this will be introduced in chapter 6 and 7.

Furthermore, we have proposed a novel calibration approach for inertial sensors mounted on motorcycles.
This algorithm was validated on experimental data collected during tests performed with a motorcycle
equipped with three e-Boxes mounted in different positions and orientations. Finally, we thoroughly analyses
the experimental tests carried out to assess the performance of the approach, which favorably witness its
capability of performing calibration for subsequent use of the accelerations in various applications.
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Part II

Parametric Identification of PTWV
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Introduction

O
ver the last few decades, the challenge of creating more accurate models for active safety systems is
increased. However, without a precise knowledge of the system’s parameters, any modelling effort stay

insufficient to evaluate the system’s dynamics. In the automotive research, the ability to get the pertinent
vehicles parameters, a prior or in real-time, allows to develop attractive efficient active safety applications
or model based vehicle control (Limroth, 2009 and Edwards, 2008).

The parametric identification consists in determining the best values of system’s parameters. It can be
formulated as an optimization problem where its resolution can becomes quickly arduous as the number
of parameters to be identified increases. One can distinguish two main classes of techniques to solve an
optimization problem. The first class are based on gradient computation of the objective function to be
minimized while the other class uses stochastic methods (Bartoli and Del Moral, 2001). The choice of the
optimization method depends strongly on the complexity of the model. Usually, gradient descent methods are
simple to implement and often gives good identification results, thus, they are generally applied in practical
applications (Khobotov, 1987, Møller, 1993). Furthermore, multi-objective techniques applied to model
identification have achieved great results in many cases, as shown in (Yousefi, Handroos, and Soleymani,
2008, Herrero et al., 2007 and Rodriguez-Vazquez and Fleming, 1998). Among others, algebraic identification
method have been investigated to obtain an accurate model of real system modelled as continuous-time linear
transfer function (Fliess and Sira-Ramírez, 2003) and, it has been widely applied for electrical and mechanical
applications like flexible robots estimation, mass-spring-damper model, DC Motor and others (Mamani et
al., 2007, Becedas et al., 2007b, Becedas et al., 2007a, Reger and Jouffroy, 2009). This approach does
not require initial conditions and the algorithm can be implemented on-line. Further, almost references,
the identification methods are designed under consideration for a specific systems form and their direct
transposition to the more general problem case is not straightforward for many reasons. Furthermore,
the parameter identification problem is closely related to persistence of excitation in order to enable the
parameters to reach an optimal solutions (Hildebrand and Gevers, 2002). Hence, for identification process,
suitable rich input signals should be considered.

It is common belief that ITS use various vehicle parameters to produce a correct assistance and to minimize
the likelihood of false warning. If some parameters are easy to obtain such that vehicle’s mass, CoG position
and inertia, identifying or estimating others is much more complex especially in real-time like tire cornering
stiffness. For the PTWV, a great effort has focused on state estimation of the vehicle dynamics and several
works are published since many years ago (Gasbarro et al., 2004a, Teerhuis and Jansen, 2012a, Ichalal et al.,
2012, Dabladji et al., 2013, De Filippi et al., 2011b, Nehaoua et al., 2013b). However, to the author’s best
knowledge, a very few works deals with the PTWV parameters identification. In fact, the motorcycle is
a complex and strongly nonlinear system. Almost attempt for parameters identification used behavioural
models and statistical methods. Also, the persistence is difficult to respect since it is not possible to freely
apply rich excitation signals to solicit the different dynamics due to the PTWV’s mechanical constraints and
instability.

For example, in (James, 2002), the author considers an auto-regressive model to describe the motorcycle
lateral dynamics behaviour and next used to estimate a state space representation which has no relation with
the physical parameters. Also, (Savaresi et al., 2008) and (Savaresi et al., 2006) have used a regression-based
estimation methods to recover the available road friction. Moreover, non model-based identification method
is described in (Corno and Savaresi, 2010), where the authors present a black-box identification. This method
allows to directly estimate the input/output engine-to-slip dynamics of sport motorbike from experiments,
instead of using the classical approach of multi-body modelling. In (Cossalter et al., 2006a), the authors deal
with the identification of the vibration characteristics of motorcycle riders. This work presents an analysis
to identify the properties of a rider multi-body model, which is used to fit the experimental data excited by
means of stepped sine testing. On the other hand, studies have shown that semi-active steering dampers
for motorcycles can be used in the design of innovative control strategies to improve two-wheeled vehicles
stability. In the study (Tanelli et al., 2009b), an analytical model of a two-wheeled vehicle tuned to capture
the weave and wobble modes to study steering related instabilities. The model is derived from first principles
and its parameters tuned to fit a hyper-sport motorcycle based on a grey-box identification procedure. Also,
in (Schwab et al., 2012; Schwab, De Lange, and Moore, 2012), the authors assume a linear PID controller
for the rider control model. First, this parametric control model is fitted to the experimental data using
black-box finite impulse response (FIR) model. After that, a gray box model is fitted to the response of the
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FIR model to identify the PID feedback gains. Then, these gains are used to compute the specific optimal
control linear-quadratic regulator (LQR) which the rider is using to control the two-wheelers.

Braking and traction control systems are commonly designed considering an integrated step of identification.
In the study of (Cabrera et al., 2014), the authors consider wheel slip control when excessive torque is applied
on driving wheels, using a fuzzy logic control block. The parameters that define the fuzzy logic controller
have been tuned, first according to experience, then, by means of an evolutionary algorithm in order to
design an augmented traction controller.
Other approaches have been investigated to study electric two-wheelers, in Wilhelm et al., 2012, the author
describes an algorithms based on a grey-box model for estimating four characteristic parameters of a linear
dynamics model, then the physical meaning has been interpreted from the identified parameter values.
Past works have been interested in motorcycle suspension system based on estimation theory. The recursive
least squares algorithm which incorporates a fault detection scheme can be a suitable approach to estimate
the time varying dynamics as proposed in (Ledwidge, 1995). It is shown using software simulations, a mass,
spring and damper model are selected to represent the dynamics of the suspension system, these parameters
were estimated from static tests. Further, motorcycle simulator prototype has been investigated in the recent
decades, due to the rising concern of the rider safety. Their modelling claims informations about different
parameters, as reviewed in (Nehaoua and Arioui, 2008), where, the authors present the dynamics modelling
and parameters identification of a motorcycle simulator’s platform. The identified parameters can be used
to improve control scheme, adapted to driving simulation application. Also, the roll motion parameters of a
motorcycle simulator prototype were studied in (Shahar et al., 2014).

To summarize, parameters identification is a main step in motorcycle studies, either for control requirements,
safety purpose or even in behaviour and stability analysis. Previous studies have used various approaches
with some assumptions according to the model and the available driving data. However, the robustness of
these approaches across different motorcycle architecture, models and riding behaviour still needs a thorough
improvements. Withal, most of these works have been devoted at identifying only part of the dynamics.
Nonetheless, the identification of the full dynamic is a real challenge.

This part deals with the parameter identification for motorcycle model parameters. In the previous chapter
2, we have studied two lateral dynamics models, one rigid body and two-bodies model (Sharp’s model).
For Sharp’s model, more than 30 unknown parameters needs to be identified which is a hard task. We’ll
describe several approaches for motorcycle parameters identification where the conventional methods have
failed or are difficult to apply. To do this, we divided this part into two chapters. The first one deals with the
rigid body model, we’ll discuss static identification, gradient decent algorithm and algebraic identification
method The second chapter studied the two-rigid bodies model. We’ll present multi-objective optimization
and Levenberg-Marquardt algorithms.
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Chapter 3

Identification of a Single Rigid-Body model

This chapter proposed an identification procedure based on the motorcycle geometry and the rigid
body dynamic model. In this part, we aim to identify motorcycle center of gravity (CoG) position
and the inertial parameters in order to conduct a preliminary study of the simulated behaviour and
interpret the motorcycle dynamics while riding. The motorcycle planar motion equations are first
synthesized in the modelling step. Then, the basic-principles of static is used to define the motorcycle
CoG from the measured forces on the static tests. When the geometric parameters are computed,
gradient decent algorithm and an algebraic identification method are applied to estimate the dynamic
parameters. Indeed, in order to be able to identify the parameters, persistent inputs should excite the
associated modes. Unfortunately, some modes can be solicited only through manoeuvrers generally
very difficult to achieve with or without riders. To get some feedback parameters, BikeSim model
parameters are considered for the comparison. On this software, some experimental measurements are
carried on to record data for excitation. Simulations in BikeSim/Matlab environment is useful to verify
if the proposed methods are capable of identifying motorcycle parameters. The theoretical aspects and
the practical validation of this idea were published in Fouka et al., 2017b.
The chapter is organized as follows. Section 3.1 presents a static method to identify geometric parame-
ters for a PTWV single body model. We describe the static equations of forces and moments in different
configurations thanks to the fundamental principle of static. After that, we define an operating mode
that makes it possible to estimate these parameters.
Afterwards, section 3.2 and 3.3 deal with the identification of the inertial parameters of the motorcy-
cle body model using two estimation methods. First, section 3.2 describes the gradient optimization
algorithm which intended to minimize a differentiable real function while processing of input/output
data through a recursive method. The results of this method are compared with an algebraic identifi-
cation approach introduced in section 3.3, this section presents a step by step the algebraic method for
continuous-time linear system modeled by a rational transfer function. After the identification meth-
ods are outlined, simulations results are presented in order to confirm the accuracy of the parameters
estimation in sections 3.4.

Abstract

3.1 Parametric Identification-Geometric Approach

The geometry of the frame, as well as the weight distribution, are features that influence stability, handling
and manoeuvrability (Cossalter and Lot, 2002). The definition of the properties of manoeuvrability and
stability of a PTWV depend among others, on the following geometric parameters: the wheelbase, the
caster angle, the trail, and the CoG position. For example, the wheelbase affects the load transfer between
the two wheels and enhance the vehicle stability but in the same time, it makes the vehicle less manoeuvrable
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in curves with small curvature radius. Also, the position of the CoG has a significant influence on the PTWV
dynamic behaviour. So, a forward CoG makes over-steer in curves while a rear CoG promotes under-steering.
Moreover, high CoG makes the vehicle to lift in acceleration/braking while a low position amplifies the rear
and front wheel slip in acceleration/braking.
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Figure 3.1: Single body geometry of motorcycle.

In this section, we aim to identify the CoG position by considering a single body representation of the
motorcycle as in figure 3.1. The position of the CoG, Gt, is characterized by three geometric parameters a,
b and h. First, the front and rear wheel load is measured where the two wheel’s contact point are on the
same flat surface. Next, the same measurement is done by tilting the motorcycle with a given known angle
α as shown in figure 3.2. The first scenario allows to determine a and b and the total motorcycle mass. In
the inclined scenario, front and rear masses mf , mr and CoG’s height h can be calculated.

Gt

e

h

a
b

α

Fzf Fzr

x

z

Figure 3.2: The balance of forces - Motorcycle on the slope in the opposite direction.

In the horizontal scenario, we have the static equilibrium of vertical forces Fzf + Fzr = mg and the corre-
sponding moments aFzf = bFzr, where Fzf and Fzr are respectively the vertical force applied on the front
and the rear wheels. m is the total vehicle mass. So, in the horizontal configuration, the distance between
the front and rear contact point and the position of CoG is estimated by:
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Algorithm 1: Gradient Algorithm (GD):(⊆)

Require: θ0 = θ(t0), epsGrad = 1e− 5, epsCrit = 1e− 5,
Kmax = 100, α = 1, stop = 0, K = 0.
while (stop 6= 1) do
for (tk−1 = t0 and θ = θ0) do

Ck−1 = 0.5
∑

(ym(θ0) − y(t))2,
Gk−1 = −∑(ym(θ0) − y(t))S
θk = θ0 − αG0

Ck = 0.5
∑

(ym(θk) − y(t))2

Gk = −∑(ym(θk) − y(t))S

if (Ck < Ck−1) then
θk = θk−1 − αGk−1

α = α× 1.5
K = K + 1
else

θk = θk−1 + αGk−1

α = α/2

End
if ‖(Ck−1−Ck

Ck−1
)‖ < epsCrit then

stop = 1
else if ‖Gk‖ < epsGrad then

stop = 1

else if (K > Kmax) then
stop = 1

End

After that the gradient algorithm is well defined, the results of this method are compared to algebraic
identification approach. This is the subject of the next section 3.3.

3.3 Algebraic Identification Approach

Unlike gradient algorithm, algebraic approach do not require a parametric form modelling neither initial
parameters guess. It allows the parameters identification of time invariant linear system represented as a
rational transfer function from input signal u(t) to the output signal y(t) (Baronti et al., 2013, Fliess and
Sira-Ramírez, 2003, Neves, 2005).

The algebraic approach is mainly based on the robust computation of the time-derivatives of signal by using
a finite weighted combination of time-integration of this signal. We apply the basic principles of the method
on the linear motorcycle model described by equations (3.4) to obtained the transfer function H(s) between
the output ψ̇ and the input δ :

H(s) =
Y (s)

U (s)
=

N3s
3 +N2s

2 +N1s+N0

s4 +D3s3 +D2s2 +D1s+D0
(3.10)

where the coefficients N0, ..,N3,D0, ..,D3 are functions of the unknown parameters Ix and Iz. If we can
identify the coefficients of the transfer function, we can deduce the values of the system parameters by
resolving a set of equations. We can rewrite the transfer function from equation (3.10) into the following
form:

y(4) +D3y
(3) +D2ÿ +D1ẏ +D0y = N3u

(3) +N2ü+N1u̇+N0u (3.11)
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where the exponent (i) indicates the time differentiation of order i. To compute the unknowns system
parameters Di, Ni, we take the Laplace transform of the expression (3.11) and we multiply each side by s:

[s5y(s) − s4y(0) − s3y(0) − s2y(0) − sy(0)] +D3[s
4y(s) − s3y(0) − s2y(0) − sy(0)] + . . .+D0sy(s) =

(3.12)

N3[s
4u(s) − s3u(0) − s2u(0) − su(0)] + . . .+N0su (3.13)

Since the initial conditions are unknown so we differentiate five times so that all constant terms leave, then :

∂5

∂s5
[s5y] +D3

∂5

∂s5
[s4y] +D2

∂5

∂s5
[s3y] +D1

∂5

∂s5
[s2y] +D0

∂5

∂s5
[sy] =

N3
∂5

∂s5
[s4u] +N2

∂5

∂s5
[s3u] +N1

∂5

∂s5
[s2u] +N0

∂5

∂s5
[su] (3.14)

Let’s calculate ∂5

∂s5 [s
5y] as:

∂5

∂s5
[s5y] =5!y + 5! ×C1

5 × s
∂y

∂s
+

5!

2!
×C2

5 × s2 ∂
2y

∂s2
+

5!

3!
×C3

5 × s3 ∂
3y

∂s3
+ (3.15)

5!

4!
×C4

5 × s4 ∂
4y

∂s4
+

5!

5!
×C5

5 × s5 ∂
5y

∂s5
(3.16)

with Crn = n!
r!(n−r)! . The remaining terms are also calculated using the same procedure.

Next, and to avoid numerical problem arising from differentiation, each side of the previous equation is
multiplied by s−5 and so on for the other terms. Thus, in the time domain, the resulting equations can be
written as :

D3p1_1 +D2p1_2 +D1p1_3 +D0p1_4 +N3p1_5 +N2p1_6 +N1p1_7 +N0p1_8 = −q1 (3.17)

where q1 represents the time form of s−5 ∂5

∂s5 [s
5y] which can be calculated by the inverse Laplace transform

of equation (3.15) as:

q1 = −5!C1
5

∫ 5
ty + 5!C2

5

∫ 4
t2y− 5!

2!
C3

5

∫ 3
t3y + 5!

3!
C4

5

∫ 2
t4y− 5!

4!
C5

7

∫ 5
y + 5!

5!
C5

5

∫ 2
t5y− 5!

5!
C5

5

∫
t7y

(3.18)
The expressions of p1_1, p1_2, ..., p1_8 maybe written as a differential equation in the manner of q1 (3.18).

With regard of estimating the coefficients of the transfer function, equation (3.17) must be invertible. To
this end, equation (3.17) can be completed by integration to have a full rank matrix. Then, we conclude the
following system:




p1_1 p1_2 . . . p1_8

p2_1 p2_2 . . . p2_8

...
...

. . .
...

p8_1 p10_2 . . . p8_8




︸ ︷︷ ︸
P




D3

...
D0

N3

...
N0




= −




q1

q2

...
q8




︸ ︷︷ ︸
Q

(3.19)
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With p8_i =
∫
p7_i =

∫∫
p6_i =

∫∫∫
p5_i = . . . =

∫ 7
p1_i for ∀ i = {1, 2, . . . , 8.}

et q8 =
∫
q7 =

∫∫
q6 =

∫∫∫
q6 = . . . =

∫ 7
q1 for ∀ i = {1, 2, . . . , 8}. Now, let consider the following

definition:

Definition 3.1. The parameters vector Θ =
(
D3 · · · D0 N3 · · · N0

)
is linearly identifiable if, and

only if,

P × Θ
T = Q (3.20)

det(P) 6= 0 (3.21)

where

• P and Q are respectively (8 × 8) and (8 × 1) matrices.

• Θ is the set of parameters.

The coefficients Di and Ni are identified by solving equation (3.19). For implementation issue, each compo-
nent of the P and Q matrices can be written in a state space representation of a simple linear variant time
filter.

3.4 Experimental Result

As part of the V IROLO++ project, several PTWV are available to make experimental tests (figure 3.5). All
the tests were carried-out at Gif-sur-Yvette within a collaboration framework between the IBISC laboratory,
IFSTTAR and the UPSud IEF.

Figure 3.5: The instrumented Kawasaki ER6N PTWV.

3.4.1 Static Test

As previously seen, the center of mass of a motorcycle is defined by the values of the parameters a, b and h
for a one-body model. This CoG point can vary with the weight of the rider. Thus, we distinguished two
different cases with and without rider (figure 3.3). To know accurately the slope angle, we used a hydraulic
lifting equipment to lift the motorcycle to a desired inclination angle. These parameters are identified based
on a wheelbase of 1405 mm obtained from the PTWV manufacturer datasheet, a slope angle of α = 12.75◦,
a motorcycle weight of 208 kg and a rider weight of 97.5 kg. The value of the wheelbase can also be easily
calculated using a tape measure from the center of a front wheel, down the side of the motorcycle to the
center of the rear wheel.
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Figure 3.6: Measurement environment

Table 3.1 presents the recorded masses on the front and rear wheels as well as the identified values of the
geometric parameters. First, we record the values of the vertical forces (masses) at the front and the rear
wheels using two weighting machines. After that, the geometric parameters are concluded thanks to the
basic principles of statics described in section 3.1.

Table 3.1: Weight measurements Fzfand Fzr for Kawasaki ERN6 and identification results.

Case.1: Without Rider Fzf [Kg] Fzr [Kg] a [m] b [m] h [m]

Test.1: flat 102 112.4 0.7366 0.6684 *

Test.2: flat 96 112 0.7565 0.6485 *

Test.3: slope

1st configuration Fzf1
= 118 Fzr1

= 88 0.7419 0.6631 0.2781

2nd configuration Fzf2
= 108 Fzr2

= 101

Test.4: slope

1st configuration Fzf1
= 118 Fzr1

= 89 0.7399 0.6651 0.2695

2nd configuration Fzf2
= 108 Fzr2

= 101

Case.2: With Rider

Test.1: flat 130 179 0.8139 0.5911 *

Test.2: flat 130 177 0.8100 0.5950 *

Test.3: slope

1st configuration Fzf1
= 192 Fzr1

= 113 0.7968 0.6082 0.3873

2nd configuration Fzf2
= 155 Fzr2

= 158

Test.4: slope

1st configuration Fzf1
= 192 Fzr1

= 113 0.7877 0.6173 0.4276

2nd configuration Fzf2
= 155 Fzr2

= 150

To this end, we consider two static configurations, the first is a "flat configuration" to estimate the horizontal
parameters a, b and the total motorcycle mass. The second is the "inclined configurations", allow to determine
the front and rear masses mf , mr, the horizontal positions (a, b) and vertical position h.

1st configuration: Rear wheel lifted case.

2nd configuration: Front wheel lifted case.

The results of the repeated tests, presented in table 3.1, are averaged in table 3.2.
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Table 3.2: Identification Result: Geometric parameters a, b,h(m), m(kg) for Kawasaki.

Without Rider a [m] b [m] h [m] m [Kg]
mean value 0.7437m 0.6613m 0.3738 209.3429

standard deviation 0.0088 0.0088 0.0061 2.9251

With Rider
mean value 0.8021 0.6029 0.4074 307.80

standard deviation 0.0121 0.0121 0.0285 3.3466

The rider effect is obviously important in particular for the CoG height parameter h. The values of a and
b share the wheelbase with a ratio of 53% and 47% for the case without rider and and 57% and 43% with
rider. The standard deviation of the identified parameters is small, which means that the parameter values
are well grouped around the average and tended to be close to the mean expected value of the set. Table 3.3
presents the same experimental tests carried out on the scooter of the laboratory presented in section 2.11.

Table 3.3: Geometric parameters a, b,h(m), m(kg) for Scooter

Geomtric parameters a [m] b [m] h [m] m [Kg]
without rider 0.7363 0.5637 0.3960 142
with rider 0.8015 0.4985 0.5194 221

The values of a and b share the wheelbase with a ratio of 56.64% and 43.36% without rider and, 61.65% and
38.35% with rider.

3.4.2 Dynamic Test

The test described in this section is carried-out on the BikeSim simulator. This later provides different
datasets allowing construction and configuration a specific PTWV. Also, BikeSim includes several virtual
sensors freely positioned which facilitate to measure several kinematics and dynamics variables at any loca-
tion. For this, a chirp signal is used to excite the motorcycle dynamics as in figure 3.7. Recall that, this test
aims to identify the roll and yaw inertia based on gradient descent optimization and algebraic methods.

The chirp signal is a flying sinus law whose instantaneous frequency is gradually increasing with time between
two specified frequencies, for more details please refer to (Burgess, 1992,Venture, 2003). This wobbled
signal is commonly used in sonar, radar, laser and spread-spectrum applications. It has a good excitation
characteristics to excite both the low and the higher frequencies. Despite the importance of this signals to
practical system identification, this signal appear less well known. This flying sinus required a quite short
measurement time compared to the other signal such as impulse or sequential random excitation signals
which may require repetitive measurements to reduce the effects of noise or to achieve statistical reliability.
However, a real chirp test is in some way dangerous to produce in real life, in particular if the test included
rider. In our case, we preferred to make use of motorcycle simulator rather than a real motorcycle/rider.
Hence, a preliminary study was conducted in the well-known BikeSim simulator to choose the exciting signal
and in the same time to be sure that PTWV is still keeping its balance.

δ = 0.5 sin(πt) + 0.5t+ 0.5

with t is the measurement time.
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Figure 3.7: Steering angle, chirp flying input.

The conducted test involves the two-wheeled vehicle mainly in yaw and roll motions to excite the main
inertia of the motorcycle body. Figure 3.8 shows the output data (roll angle, roll and yaw rate) recorded for
a chirp signal. This last serves to excite the dynamics with a sinus-flying at 20 km/h.
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Figure 3.8: System outputs.

3.4.3 Algebraic Identification

The PTWV dynamics have been excited with a steering chirp signal for a constant longitudinal velocity
vx = 20 km/h. Then, measurement data are used in the parametric identification method to estimate the
following transfer function:

Hid(s) =
ψ̇

δ
=

503.9s3 + 1.511 × 104s2 − 9.22 × 104s− 1.317 × 106

s4 + 158.5s3 + 5749s2 + 4.136 × 104s+ 4.755 × 104
(3.22)

=
N3s

3 +N2s
2 +N1s+N0

s4 +D3s3 +D2s2 +D1s+D0

On the other hand, from the state-space representation of the one-body lateral dynamics in section (2.9.3),
we compute the theoretical transfer function between the ψ̇ output to the δ input, this yaw rate dynamics
can be written in the form of equation (3.10). The coefficients [Di,Ni] of the transfer function depend on
the unknown parameters Ix, Iz, their expressions are highly complex and non-linear, after simplification, we
get the following denominator coefficients:

D3 =
3.5837 × 103

Iz
+

528.1462

Ix
+ 13.1750 (3.23)

D2 =
6.0275 × 104

Iz
+

1.4796 × 103

Ix
+ 2.0384 × 106 (3.24)

D1 =
2.3268 × 107

Ix.Iz
− 2.0230 × 104

Iz
(3.25)

D0 =
2.6024 × 107

Ix.Iz
(3.26)
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The parameters Ix and Iz can be identified from the D3 and D2 coefficients of the denominator, plotted in
figure 3.9.

Figure 3.9: Parameters convergence.

It can be seen, from the above simulation that the method converges after 0.8s this time laps is due to the
response time of the filters pi and qi. After estimation by the algebraic method, we computed the values of
parameters Ix and Iz from the expressions of D3 and D2 and the identified function Hid(s) (equation 3.22).
The result of the parameters Ix and Iz identification are compared with the gradient method in the next
subsection 3.4.4 .

3.4.4 Gradient Method

The test described in section 3.4.2 is used also to identify the roll and yaw moment of inertia. The geometric
parameters in equations (3.7) are captured from the static test allowing to apply the algorithm 1. The
gradient decent results are therefore obtained in simulation with a chirp trajectory. The excitation input
(figure 3.7) was selected in order to excite PTWV dynamics and also to ensure the motorcycle stability.
Figure 3.10 shows the convergence parameters and the errors between the estimated responses and the
actual ones.
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Figure 3.10: Parameters convergence

The identification results of the algebraic and the gradients methods are summarized in the following Ta-
ble 3.4:



80 Chapter 3. Identification of a Single Rigid-Body model

Parameters Test # Ix [kg.m2] Iz [kg.m2]

Identification
BikeSim 17.623 31.058

Algebraic method 17.609 31.073
Gradient descent 17.6232 31.0279

Table 3.4: Inertial parameters identification result for one body PTWV model.

After the identification process, the result of geometric parameters (section 3.4.1) and the inertial parameters
(section 3.4.2) are used to simulate the PTWV one-body model and to validate with respect to real data. As
discussed, the main inertial parameters were identified from BikeSim using a motorcycle with approximately
the same feature as the one used in static tests (section 3.4.1). For the sake of validation, a scenario
was performed where the motorcycle was turning on a roundabout (see figures 3.11) to excite the lateral
dynamics, the test is carried out at relatively high speeds of around 70 km/h.

Figure 3.11: Turning at the roundabout.

The recorded steering angle from experiment test is used to excite the identified PTWV one-body model.
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Figure 3.12: Steering angle input.

Then, the estimated roll angle is compared with the roll acquired from experiment using IMU sensor placed
near to the center of gravity under the seat. Figure (3.13) shows that the roll angle from the model has a
very close profile with the measured one. These simulation results converge well to the data measured by
sensors embedded on the motorcycle which confirm the accuracy of the identified parameters.
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Figure 3.13: Validation of the model: turning at the roundabout.

3.5 Conclusions

This chapter considered the identification of a single rigid body motorcycle model. First, the motorcycle
center of gravity was identified using static tests and basic principles of forces and moments, in which different
configurations are considered. This operating mode makes it possible to estimate the geometric variables.
Second, the inertial parameters are identified, using dynamic tests, based on two methods:

• The gradient descent (GD) algorithm designates a differentiable optimization to minimize the cost
function. Note that this method does not require to compute the second-derivative (Hessian matrix)
which make it simple for the implementation as well as it is computationally fast per iteration. However,
the GD is slower when the step rate is very small and consequently the gradient direction is not well-
scaled. Thus, the number of iterations largely depends on the scale of the problem.

• The algebraic method allows the identification of a transfer function from the output and the input
signals. The algebraic approach uses the model of the system, that is almost known. Furthermore, the
algorithm is computed on-line and in real time, the estimation does not require initial conditions. The
method, however, is sensitive to the persistent input to excite the dynamics of the motorcycle.
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Chapter 4

Identification of Two-bodies model

Recent assistive safety systems require good approximations of motorcycle inertial properties to obtain
dynamic model that tightly adjusts to the real lateral behaviour of the motorcycle, in the way that
it will lead to precise simulation and experimental results. This chapter deals with the identification
problem for two-bodies motorcycle model.
In the first part of this chapter, a technique for cascade identification based on parametric model,
input/output data and optimization algorithm is presented in section 4.1. This methodology makes
profit of the possibility given by this type of algorithm for solving consecutively multiple objectives
function. After the identification method is outlined, simulations results are presented in order to
confirm the accuracy of the parameters estimation under the persistent condition of the inputs. The
theoretical aspects and evaluation of this approach were published in Fouka et al., 2017a.
The second part of the chapter presents further research on parametric identification of two wheeler
vehicles using a recursive Levenberg-Marquardt parameter identification formulation (section 4.2). This
work was published in Fouka et al., 2018b.

Abstract

4.1 Multi-Objective Optimization

A multi-objective optimization problem is characterized by a set of objective functions to be maximized
or minimized (Piegay, 2015). Unlike the single-objective case for which a single well-defined function is to
be optimized, multi-objective optimization consists in finding the set of parameters for different objective
functions. The multi-optimization problems can be addressed with different approaches, either by reducing
the multi-objective functions to a single-objective problem, or by sequentially optimizes objective functions,
independently of the others, in a pre-established order or neither by treating all the goals simultaneously
(Pareto methods in Jakob and Blume, 2014). While these techniques have many advantages, the convergence
toward the global optimum is, on the other hand, strongly conditioned by the control parameters and by
the initial conditions.

Indeed, regarding the PTWV two-bodies model and the physical characteristics of such a system, different
inertial and geometric parameters need to be estimated from identification approaches. Unfortunately, when
the number of the unknown parameters increases, or when the parameters excitation can not be achievable
in the same time, the single-objective function algorithm maybe not well adapted to process all the desired
parameters of the PTWV system. Due to this fact, addressing this problem from the standpoint of classical
optimization could be insufficient which require to extend the problem of optimization to the multi-objective
framework.
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4.1.1 Identification Problem Formulation

Let reconsider the two-bodies PTWV model:





e33v̇y + e34ψ̈ + e35φ̈+ e36δ̈ = a34ψ̇ + Fyf + Fyr

e34v̇y + e44ψ̈ + e45φ̈+ e46δ̈ = a44ψ̇ + a45vxφ̇+ a46vxδ̇ + a47Fyf + a48Fyr

e35v̇y + e45ψ̈ + e55φ̈+ e56δ̈ = a54vxψ̇ + a56vxδ̇ + a51 sinφ+ a52 sin δ

e36v̇y + e46ψ̈ + e56φ̈+ e66δ̈ = a64vxψ̇ + a65φ̇+ a66δ̇ + a61 sinφ+ a62 sin ǫ sin δ + a67Fyf + τ

(4.1)

From the above dynamics equations, we can underline a set of 15 unknown parameters θi. In this section, we
aim to identify θ = {e34, e36, e44, e45, e46, a45, a46, e55, e56, a54, a56, a52, e66, a64, a66}. The two-bodies PTWV
model is rewritten under a parametric form as following:





mv̇y + θ1ψ̈ +
(
mf j +mrh

)
φ̈+ θ2δ̈ +mvxψ̇ = Fyf + Fyr

θ1

(
v̇y + vxψ̇

)
+ θ4φ̈+ θ3ψ̈ + θ5δ̈− θ6vxφ̇− θ7vxδ̇ = lfFyf − lrFyr(

mf j +mrh
)
v̇y + θ8φ̈+ θ4ψ̈ + θ9δ̈− θ10vxψ̇− θ11vxδ̇ =

(
mf j +mrh

)
g sinφ+ θ12 sin δ

θ2v̇y + θ9φ̈+ θ5ψ̈ + θ13δ̈ + θ11vxφ̇− θ14vxψ̇− θ15δ̇ = θ12 sinφ+ θ12 sin ǫ sin δ− ηFyf + τ

(4.2)

Moreover, we have the following geometric constraints equations:





k = (a+ e) cos ǫ− f sin ǫ
j = (a+ e) sin ǫ+ f cos ǫ

a =
lf

cos ǫ − η

l = lf + lr
Fzf = −m

l lrg

Fzr = −(mf +mr)g+ Fzf

(4.3)

Beside these geometric constraints, we know that m = mf +mr. Also, to simplify the identification process,
we assume that mr ≫ mf and h ≃ j, then, a new dependence equations is formulated as mh = mf j +mrh.

Under these constraints and hypothesis, it remains only nine unknown parameters vector θ = [θ1, · · · θ8, θ15]T .
Further, geometric and inertial parameters can be easily deduced as following:





k = θ1
Mf

e = θ2
Mf

a =
lf

cos(ǫ)
− η

f = a+e
tan(ǫ)

− k
sin(ǫ)

j = (a+ e) sin(ǫ) + f cos(ǫ)

Ifz =
θ5−Mf ek

cos(ǫ)

ify =
θ7.Rf
sin(ǫ)

iry =
θ6−ify
Rf

Rr

(4.4)

Afterwards, the other parameters [θ9, · · · , θ14]T are directly deduced by:
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θ9 =Mfej + Ifz sin(ǫ)
θ10 = −Mf j +Mrh+ θ6

θ11 = − −θ7

tan(ǫ)

θ12 =Mfeg− ηFzfθ13 = Ifz +Mfe
2

θ14 = −Mf .e+
ify
Rf

. sin(ǫ) = −θ2 − θ7

(4.5)

The next step is to define the vector of the measured outputs. From the system dynamics of equation (4.2),
we can write the following expressions:





y1 = − (Mhφ̈+Mvxψ̇+Mv̇y−May)
θ1

y2 = − (Mhφ̈+θ1ψ̈+Mvxψ̇+Mv̇y−May)
θ2

y3 =
−θ1dv−θ1vxψ̇+lfFyf−lrFyr

θ3

y4 =
−θ1dv−θ3ψ̈−θ1vxψ̇+lfFyf−lrFyr

θ4

y5 =
−θ1dv−θ3ψ̈−θ4φ̈+lfFyf−lrFyr

θ5

y6 =
−θ1dv−θ3ψ̈−θ4φ̈−θ5δ̈+lfFyf−lrFyr

vxθ6

y7 =
−θ1dv−θ3ψ̈−θ4φ̈−θ5δ̈+θ6vxφ̇+lfFyf−lrFyr

vxθ7

y8 =
−Mhv̇y+θ4ψ̈+θ9δ̈−θ10vxψ̇−θ11vxδ̇+Mhg sin(φ)+θ12 sin(δ))

θ8

y9 =
−(θ2v̇y+θ9φ̈+θ5ψ̈+θ13δ̈+θ11vxφ̇−θ14vxψ̇+θ12dx−ηFyf+τ )

θ15

(4.6)

where dv = v̇y + vxψ̇ and dx = sinφ+ sin ǫ sin δ.

Therefore, the system of equations have the following form:





y1 = f(y, θ̄0, θ1)
y2 = f(y, θ̄0, θ1, θ2)
y3 = f(y, θ̄0, θ1, θ2, θ3)
...

...
...

yi = f(y, θ̄0, θ1, θ2, ..., θj)

(4.7)

Where yi is measurement outputs vector and θ̄0 is the initial value of the unknown parameters with i =
1, . . . , 9 and j = 1, . . . , 15.

4.1.2 Optimization Problem Formulation

After defining the set of the unknown parameters to be identified, the next step is to setup the optimization
problem. Any multi-objective optimization problem can be stated as:

min
x∈Rn

C(θ) = [C1(θ),C2(θ)....C9(θ)] (4.8)

Generally, it is an arduous task to find a solution θ for the above stated problem that satisfies all objectives.
To deal with this issue, we choose test scenarios that allows to decouple objectives resulting in a cascade
identification scheme. Let consider the following multi-objective cost with its associated sensitivity and
gradient:
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Criteria →Ci(tk) =
1
2 .
∑

(yim(tk) − yi(tk))
2

Sensitivity →Si(tk) =
dyi
dθj

Gradient →Gi(tk) =
∑

(yim(tk) − yi(tk)).Si

(4.9)

Where yim are the measured outputs, yi are model simulated output and tk is the current simple time.

As an example, to identify the parameter θ1, one select a short manoeuvrer for the lateral motion in which,
the second derivative of the steering angle is neglected, i.e. δ̈ ≈ 0. From equations (4.2) and knowing that
may = Fyf + Fyr, we get y1 = ψ̈ such that:

mv̇y + θ1ψ̈ +mhφ̈+mvxψ̇ = may (4.10)

From the above equation, we can deduce the expression of y1 and compute then its sensitivity S1 = dψ̈
dθ1

and its gradient G1. Next, the gradient algorithm is applied to estimate the value of the first parameter θ1.
Further, the algorithm is repeated for each parameter after selecting the corresponding scenario as described
a follows:

1. From an initial starting point θi(t0), we calculate the criterion Ci(t0) and the gradient Gi(t0).

2. Compute the new value: θi(tk) = θi(tk−1) − αGi(tk−1)

3. Compute a new value of Ci(tk) and Gi(tk) taking θi(tk).

4. If the second criterion is smaller keep the new parameter value of the corresponding θi(tk). Increase α
for efficiency and increment the counter k+ 1.

5. Else, keep the old value of θi(tk−1) and reduce α to seek a nearest local minimum.

6. Evaluate the stopping criteria for exit loop: accuracy on the criteria, the gradient, maximum number
of effective iteration, tolerance between the last two values of θ. For more detail see Algorithm (1).

4.1.3 Simulation Results

The test described in this section is carried-out on the BikeSim simulator. The accessible parameters are
captured from the motorcycle’s datasheet. The algorithm is tested during a track test on handling road
course. Figures 4.1 show the rider steering torque and the trajectory of the conducted manoeuvrer. The

0 50 100 150

-40

-20

0

20

-200 -100 0 100 200 300 400

-200

-150

-100

-50

0

50

100

150

Figure 4.1: Riders torque and motorcycle path.

identification results of the multi-objective optimisation are summarized in the following Table 4.1. Where,
θi = [e34, e36, e44, e45, e46, a45, a46, e55, a66] is the identified vector of interest which depends on the physical
parameters of motorcycle. The other parameters are concluded from equation (4.5).
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Table 4.1: Multi-Objective-Optimisation method.

Initial Prior values Identification

Parameters θ0 θr θi
e34 5 14.64 14.3073
e36 0.1 0.1262 0.1519
e44 20 24.7385 23.7342
e45 2 5.0518 4.3416
e46 0.1 0.2968 0.3141
a46 0.1 0.8452 0.79503
a45 4 4.304 4.1104
e55 50 68.0442 68.1543
a66 10 −11.45 −11.7332
e56 ∗ 0.1307 0.142
a54 ∗ −96.69 −95.75
a65 ∗ 1.81264 1.77264
a52 ∗ 40.5384 38.0886
e66 ∗ 0.201 0.189
a64 ∗ −0.9714 −0.9469

The objective is to validate the result of the identification method on the two-bodies motorcycle model.
After the identification process, the estimated parameters are used to simulate the PTWV lateral dynamics
and hence to validate the dynamics behaviour with respect to BikeSim data. To assess the performance of
the algorithm, we report the track test generated by the input in figure 4.1. With the kind of this trajectory,
the motorcycle lateral dynamics is largely excited. The following simulation results introduce the states of
the PTWV lateral two-bodies dynamics in dashed red and the actual ones from BikeSim in blue.
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Figure 4.2: Comparison between the roll, steer angles and lateral speed of the identified
model and the BikeSim motorcycle data.

Figures 4.2 illustrate the time variation of the roll angle, steering angle and the lateral speed that characterize
the lateral dynamics recorded from BikeSim. These variables are compared to their corresponding states
computed from the identified parameters. We can note that the errors between the identified states (dashed
red) and the actuals data are practically acceptable except the lateral speed. Even if the considered scenario
seems to be aggressive, the lateral velocity is a dynamic state that is not very excited in the PTWV dynamics.
Indeed, figures 4.3 depict the comparison of the actual roll, yaw and steer rates with the estimated ones.
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Figure 4.3: Comparison between the identified model and the BikeSim motorcycle data.
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In the same way, figures 4.4 show the cornering front and rear forces as well as the lateral acceleration, these
identified states are closely similar to the actual data. The results show that the model perfectly reconstructs
the most of the dynamic states, hence the cornering behaviour of the motorcycle is well identified.
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Figure 4.4: Comparison between the identified model and the BikeSim motorcycle data.

One can notice some differences between the identified model and the actual data. These identification
errors come from the PTWV two-bodies modelling assumptions whereas BikeSim uses a non-linear eight-
body model. Also, the accuracy of the identified parameters of the model depends on the initial parameter
value and the step rate α in each iteration of the algorithm. Further, we can notice also a large amplitude
of the roll angle (about 35 deg). However, it will be recalled that the two-bodies model is theoretically valid
only for small variations around the equilibrium position in a straight line (φ = 0). This extreme scenario
shows that, we are reaching the limits of the model.

This section ends with a study of the identification errors. The errors between the identified model and
the BikeSim states are quantified by mean of the Theil Inequality Coefficient (TIC), is the standardized
root mean-squared error, used in the sensitivity analysis to measure the model predictive accuracy and to
facilitate comparison between the actual and identified model (Woschnagg and Cipan, 2004). Note that,
the identification errors are quantified also in terms of errors variation percentage, this coefficient is denoted
"FIT", to compare the performance of the models that we have estimated.

TICi =

√
1
n

∑
(yim(tk) − yi(tk))2

√
1
n

∑
(yim(tk))

2 +
√

1
n

∑
(yi(tk))2

(4.11)

FITi = 100
(1 − ‖(yi − yim)‖)

‖(yim −mean(yim))‖

where yim are the actual observations containing n samples and yi are the corresponding predictions, resulting
from estimated parameters.

Table 4.2 quantifies the identification errors between the BikeSim variables and the identified states of the
two-bodies model, confirms the efficiency with acceptable errors. The TIC is bounded by 0 and 1, the lower
boundary is the ideal case of perfect identification. The small values of TIC and the percentage of the fit
values, show a good forecast accuracy and prove the reliability of the model.

#
States

φ δ vy ψ̇

T IC 0.0974 0.1172 0.2924 0.0565
FIT% 79.9940 77.7522 66.2456 79.9202

#
φ̇ δ̇ Fyf Fyr

TIC 0.1199 0.1962 0.1372 0.1113
FIT% 77.3422 62.7593 74.4299 78.6061

Table 4.2: Analysis of the estimated states for the tests conducted.

The results, from the identification process, are very promising. The comparison with BikeSim data demon-
strates the potential of the identification procedure.
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4.2 Levenberg-Marquardt (LM) Algorithm

This section describes another identification algorithm based on Levenberg-Marquardt (LM) estimation (Yu
and Wilamowski, 2011, Hammar, 2015). The LM method combines the steepest descent and the Gauss-
Newton algorithms. In our context, it is used to identify the front and rear body moment of inertia.
Classically, in this estimation scheme, the objective function is usually defined as the difference between the
model and the experimental responses, expressed through some kind of metric.

Let us assume that f(y, ẏ(θ), ÿ(θ)) is a generic response function which depends on a set of unknown
parameters θ, measurement output y and its times derivatives ẏ, ÿ

f =





f1

f2

f3



 =





ψ̈(y, ẏ(θ), ÿ(θ))
φ̈(y, ẏ(θ), ÿ(θ))
δ̈(y, ẏ(θ), ÿ(θ))





(4.12)

The sensitivities of the generic functions is described as as follow :

fθ =
df

dθ
=
∂f

∂y

dy

dθ
+
∂f

∂ẏ

dẏ

dθ
+
∂f

∂ÿ

dÿ

dθ
→ ∂f

∂y
yθ +

∂f

∂ẏ
ẏθ +

∂f

∂ÿ
ÿθ

Where, the operator
d(.)
d(.)

denotes total derivatives, and the operator
∂(.)
∂(.)

denotes partial derivatives. yθ, ẏθ
and ÿθ are state sensitivities.

4.2.1 Problem Statement

Identification methods are generally based on minimizing the difference between the measured outputs and
the estimated outputs.

Let consider the following quadratic criterion J to be minimized:

min J(t) =
1

2
ε2(t) (4.13)

where ε(t) = f(t)− f̂(t) is the prediction error which represents the quadratic deviation between the generic
responses function defined in equation (4.12) and the their real measurement from sensor. The LM algorithm
requires the computation of the Jacobian matrix of the vector f with respect to the unknown parameter,
such that:

Jθ =




∂J
∂θ1

...
∂J
∂θj


 =

∂J

∂θ
=
∂J

∂ε

∂ε

∂θ
=→ Jθ = −ε∂f

∂θ
= −εfθ (4.14)

From equation (4.14), we define the following Hessian matrix:

Jθθ =
∂(εfθi)

∂θj
→ Jθθ = fTθjfθi (4.15)

In order to make sure that the Hessian matrix Jθθ is invertible, Levenberg-Marquardt algorithm introduces
an approximation to the Hessian matrix such that H ≃ Jθθ + λI where, lambda > 0 is called combination
coefficient and I is the identity matrix.





90 Chapter 4. Identification of Two-bodies model

Figures 4.6 and 4.11 introduce the steering torque τ , the forward speed vx, and the PTWV trajectory during
the double lane change manoeuvrer.

0 5 10

time[s]

-40

-20

0

20

40

τ
[N

.m
]

Riders torque

0 5 10

time[s]

0

10

20

30

v x
[m

/s
]

longitudinal speed

0 100 200

x[m]

0

50

100

150

200

y
[m

]

The motorcycle path

Figure 4.6: Test manoeuvrer : double line change,vx = 100 km/h in circle road, on high-
friction surface µ = 0.85 : Rider torque τ - Longitudinal velocity - Path.

As mentioned in the previous sections, the generic response function f converges to true state when the
unknown parameters are updated with the estimated values of the inertial parameters. Moreover, figures 4.7
show the generic response function f = {ψ̈, ψ̈, δ̈} for the initial parameters. Then in Figures (4.8) after
updating the inertial parameters convergence. Note that, the algorithm initialisation were willingly chosen
different from the prior knowledge on the parameters to prove the ability to identify the true values and
converge toward the actual generic response.
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Figure 4.7: Generic responses (acceleration angles) estimation in initial parameters value
θ0 compared to actual responses.
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Figure 4.8: Generic responses (acceleration angles) estimation after updating parameters
estimates value θi, compared to actual responses

One can notice the significant mismatched between the actual response and the generic functions calculated
from the initialisation. The results show that at the beginning when applying the initial value of parameters
the model didn’t match the actual generic responses, however, by updating the values of the identified
parameters by LM method, the generic responses estimation closely match the simulated generic functions.
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Table 4.3 summarizes the values of the identifiable inertial parameters. The lateral two-bodies model is a
parameters varying system which depend on the forward speed vx, hence, some parameters of this model
depend on vx. For this test, the forward speed is constant, one can easily deduce the value of the physical
parameters by omitting the speed. These varying parameters are plotted in figure 4.9.
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Figure 4.9: Combined inertial parameters estimates θ̂i, θ̂6.

Furthermore, to test the effect of noises on the output vector, a Gaussian noise is added to outputs vector
to realistically recreate real application scenarios. The variances for Gaussian noise is 0.05rad/s2. For a
good identification, these residuals should be white, which statistically means that we have insignificant
correlations for non-zero lags. Figures 4.10 plot the autocorrelation of the residuals error compared to that
of a white noise. From the autocorrelation graphs and except at zero lag, the autocorrelation values of
the residual errors lie within the autocorrelation of a white noise signal. From this, we conclude that the
prediction errors are white Gaussian noise.
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Figure 4.10: Correlation graph for white noise and residual error.

The second test deals with an oncoming traffic with rapid variable speed between 12 and 35 m/s on handling
road course including straight lines, large and narrow turns. This test is a very common scenario on real life
riding situation. Figures 4.11 present the steering torque τ , the forward speed vx, and the PTWV trajectory
of the track test.
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Figure 4.11: Test manoeuvrer 2: oncoming variable speed, in road course with µ = 0.85 :
Rider torque τ - Longitudinal velocity - Path.
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Whereas, figures (4.12) and (4.13) plot the generic response function f = {ψ̈, ψ̈, δ̈}, first as function of the
initial parameters, and then after the convergence of the algorithm by updating with the identified inertial
parameters.
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Figure 4.12: Generic responses (acceleration angles) estimation in initial parameters value
θ0 compared to actual responses.
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Figure 4.13: Generic responses (acceleration angles) estimation after updating parameters
estimates value θi, compared to actual responses.

As for the first test, the parameters which depend on the forward speed are plotted in figures 4.14.
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Figure 4.14: Combined inertial parameters estimates.

The final step is to analyse the residuals generated by LM method. The result on the autocorrelation of the
residuals error compared to that of the white noise are given in figures 4.15. One can remark some small
difference on the autocorrelation of the residuals error in the zero lag, specially on the generic response of
the roll acceleration Rφ̈. However, in general the autocorrelation sequence of the residuals looks like that of
the white noise process which means that the generic response are well fitted. Hence, we conclude that the
prediction errors have almost the same characteristics as a white Gaussian noise.
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Figure 4.15: Correlation graph for white noise and residual error.



4.3. Final Remarks 93

Table 4.3 presents parameters values estimates. For (∗) parameters, the estimated convergence is shown
in figures (4.9) and (4.14). Where, θ = [e44, e45, e46, e55, e56, a54, a56, a64, a65, a46] is the unknown vector
of interest which represent the combined inertial parameters of motorcycle of the front and rear wheels,
depending on : Ifx,y,z

={Ifx , Ify , Ifz}, Irx,y,z={Irx , Iry , Irz}, Crxz and iyf ,x
={iry , ify}.

Table 4.3: LM identification results

Initial True values Scenario1 Scenario2

Parameters θ0 θr θi θi
e44 1 34.7228 31.7914 28.2429

e45 2 1.9632 0.968 −4.0424

e46 0.1 0.6584 0.5 0.5

e55 113 118.0202 119.78 119.9828

a54 −170× vx −175.0479× vx ∗ ∗
e56 −1× vx −1.4622× vx ∗ ∗
a56 0.1 0.3827 0.5 0.5

a64 −1× vx −0.8685× vx ∗ ∗
a65 1× vx 1.4622× vx ∗ ∗
a46 0.2× vx 0.6818× vx ∗ ∗

4.3 Final Remarks

This chapter deals with the identification of PTWV two bodies model. First, a methodology for iterative,
cascade identification has been proposed for the estimation of unknown parameters. Equations that describe
the lateral dynamic are used to form the resulting problem that is solved using a multiple-objective opti-
mization algorithm adapted to the complexity of our model. In order to find the lateral dynamics we had
to solve a linear gray-box problem by gradient method. The method has been successfully evaluated by
simulation.
Second, we have described the design process of Levenberg-Marquardt (LM) identifier to estimate motorcycle
combined inertial parameters, this approach uses sensitivity functions of generic responses developed using
the Sharp motorcycle model to optimal estimation. The LM estimation improved convergence character-
istics for state by updating inertial parameters, which are most apparent in the estimation of the generic
responses: yaw, roll and the steering acceleration. The designed LM method, identified combined expression
of inertial parameters and predicted the objective functions. The simulation results were very promising, the
LM formulation is a good method to predict the response with very high accuracy. The main difficulty lies
in the number of important parameters to estimate, which results in unrealized scenarios capable to excite
the target modes for the identification.

4.4 Comparison and analysis

From the analysis of the identification results presented in chapters 3 and 4, we draw up the most important
feature of each method. The simulation results were quite promising to prove that the identification ap-
proaches provide an interesting solution. However, as one may expects none of these identification strategies
may behave perfectly for all the considerations, conditions and requirements. These explains our choice
to consider different methods related to a specified motorcycle model. For the sake of comparison, we
summarize all the presented design procedures in Table 4.4. Overall, the analysis of this table reveals the
advantages and the drawbacks of each identification strategy from the required specifications. One of the
main common contributions is that these methods take into account the motorcycle behavior rather than
the black-box identification techniques. Besides, these identification procedures were validated by comparing
with BikeSim data or real measurements. Obviously, the difficulties encountered concern mostly the choice
of the persistent input to excite the dynamics of the motorcycle.
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Approach Considerations Parameters and Advantages Disadvantages

Static Tests
Datasheet CoG position: a, b, h No convergence

Practical method
No sensors Wheelbase e Need physical efforts
Technical Tools Mass m
for data collection Wheel Radius: Rf , Rr
Rigid body model Caster ǫ

Gradient
BikeSim data Inertial parameters: Ix, Iz Prior values

Descent
Rigid body model No second derivative Step rate α
Iterative procedure Need observer

Input excitation

Algebraic
BikeSim data Inertial parameters: Ix, Iz No convergence proof

Method
Rigid body model Without initial conditions Requires Input excitation

On-line and real time Bad conditioning
Computation complex

Multi-
BikeSim data Combination’s of geometric Prior values

Optimization
Two-bodies model and inertial parameters Time consuming

Algorithm
Recursive θi, i = {1, .., 15} Need observer
Cascade No need to second derivative

Levenberg-
BikeSim data Combined inertial parameters Prior values

Marquardt
Two-bodies model θi, i = {1, .., 10} Need differentiator

Algorithm (LM)
Recursive depend on {Ifx

, Ify
, Ifz

}, for second derivatives

{Irx , Iry , Irz }, Crxz Need observer
{iry , ify

}.

Table 4.4: Comparison table: Advantages/disadvantages of the presented paramet-
ric identification for PTWV.
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Conclusions

This section concludes all the presented identification design procedures. We have described five estimation
strategies to achieve the identification of the most important unknown parameters of the two motorcycle
models.
For the first single rigid model, three design methods were considered in chapter 3 to identify the center of
gravity (CoG) position and to estimate motorcycle inertial and geometric parameters using static test, an
algebraic identification approach compared to an iterative gradient decent algorithm. Concerning the Sharp
two-bodies model, two methods were proposed to identify parameters of the motorcycle model in chapter 4.
The first method was a cascade recursive optimization, in which, equations that describe the lateral dynamics
are used to form the resulting problem that is solved using a multiple-objective optimization algorithm
adapted to the complexity of our model. The second design process was a Levenberg-Marquardt (LM),
in which, the parametric identification is modeled based on minimizing the difference between measured
responses and calculated responses from a mathematical model. The LM estimation improved convergence
characteristics for state by updating inertial parameters, which are most apparent in the estimation of the
generic responses.
Despite the fact that the motorcycle identification state-of-the-art was very limited in literature, the proposed
approaches were inspired from other existing application and revisited in order to adapt the methods to our
requirements. Note that the identification methods does not offer the possibility to take into account the
uncertainties of modeling, because, they are designed from algebraic manipulations. In this case, it would
be interesting to search for a more robust methods to get a good performance in the presence of uncertain
parameters or noisy measurements. In this context, we have initiated several works on the parametric
identification with more robust methods. To go even further, we have proposed observers based identifiers
able to simultaneously estimate the dynamic states and identify the parameters of the model. These new
estimation methods will be presented in the next chapters.
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Part III

Model-based Observers for PTWV
Estimation and Identification
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Introduction

T
he growing need of safety for powered two wheeled vehicles (PTWV) has given rise to serious open
questions related to estimation problem. Yet, the elaboration of advanced rider assistance systems

(ARAS) to enhance safety issue, depends basically on motorcycle motion states such as steering behavior,
roll angle and tire/road interaction. The evolution of these states depends strongly on the riders’ steering
torque and steer angle applied on the motorcycle handlebar, vehicle’s parameters such that tire cornering
stiffness, PTWV mass and inertia moment and the infrastructure geometry like the road bank angle which
is very useful to detect the rollover and sideslip angles and thus detect a skidding motorcycle. While some
states are readily measured with inexpensive sensors as the yaw rate, others states must be estimated by more
sophisticated means for instance the tire cornering forces. Safety systems nowadays available collect some
states from integration of inertial sensors, but this estimation method is subject to errors accumulation and
uncertainties from road geometry, slope and bank angles. Therefore, building up an ARAS requires a precise
knowledge, at every instant, of the vehicle’s dynamics throughout physical or virtual sensors. This topic is
one of our research interest which intends to develop ARAS systems starting from a minimum set of vehicle
self-integrated sensors to acquire measured states. In this scope, model-based estimators are interesting to
overcome previous shortcomings in order to provide estimates of unmeasured states and relevant parameters.

Throughout the last half century, observation theory has continuously evolved from the Luenberger observer
for linear systems (Luenberger, 1966), to the more recent state and unknown input observers for nonlinear
systems (Koenig, 2006). Various versions of unknown input observers were studied (Darouach and Boutat-
Baddas, 2008), such as reduced-order, minimal-order and full-order observers. In which, the necessary
and sufficient conditions for the existence of the observer are established. Further, new reformulation of
this observer, by introducing high order sliding mode, is also exposed in (Fridman, Levant, and Davila,
2007). Under which, the sufficient and necessary conditions of strong observability and detectability are
formulated in the terms of the system relative degrees with respect to unknown inputs. On the other hand,
an extensive use of polytopic and Takagi-Sugeno representation is also undertaken, which giving rise to an
ease transposition of the over-mentioned observation techniques for nonlinear systems (Ichalal and Mammar,
2015). In (Lam, Li, and Liu, 2013), a new category of fuzzy-observer-based controllers is proposed to stabilise
non-linear plants. Moreover, the problem of the simultaneous state and parameters estimation, in the case of
nonlinear continuous-time systems, is also studied. In (Chong et al., 2015), an hybrid scheme is considered,
in which state observers are achieved for some nominal parameter values and, at every time instant, a
criterion is designed to select one of the predesignated observers providing state and parameter estimates
updates. Although providing good estimation accuracy, this approach yields to an over-dimension problem
even for the linear systems case. Withal these approaches, several open topics in estimation methods need
more thorough investigations as for structural constraints and rank condition (Bolandhemmat, Clark, and
Golnaraghi, 2012).

Concerning PTWV estimation research, there is a growing body of literature for observer design, one can cite
(Gasbarro et al., 2004b; Corno, Savaresi, and Balas, 2009; Boniolo, Savaresi, and Tanelli, 2009a; Teerhuis
and Jansen, 2012b; Boniolo, Savaresi, and Tanelli, 2012; Teerhuis and Jansen, 2012b; De Filippi et al., 2012;
Boniolo, Savaresi, and Tanelli, 2012; Corno, Panzani, and Savaresi, 2013; Dabladji et al., 2016.
Almost references, the estimation of the PTWV dynamics is done by considering restrictive assumptions
regarding riding motorcycle practices, decoupling motion or independent behavior, known tire friction or
under a constant speed assumption, road geometry and tire-road contact has often been neglected (Chabane
et al., 2012; Dabladji et al., 2015). These assumptions simplify the estimation problem but, it may lead
to an inaccurate reconstruction with respect to the real dynamics. In fact, motorcycle characteristics and
road conditions may change for different riding situations. Indeed, the road banking for instance, has a
direct influence on motorcycle lateral motions to achieve safety speeds and desired control on difficult road
conditions. The estimating of the road bank angle is a challenging task to evaluate the infrastructure impact
and to improve the estimation of the side slip angle on tilted road surfaces. In addition, hard acceleration
or braking is an unsafe riding which often caused motorcycles crashes. Thereby, the estimation of rectilinear
motion highlights certain dynamic aspects that also affect PTWV safety, such as, overturning during braking
or wheeling in acceleration (Evangelou, 2004).
To the authors’ best knowledge, the simultaneous estimation of the lateral dynamics and the road geometry
was treated on vehicles and those methods developed for four-wheeled vehicles are not necessarily adequate
for motorcycle Dahmani et al., 2011. Also, the coupling motion of the lateral and longitudinal dynamics of
two wheeled vehicle have not received much attention in the literature. Besides, as discussed in the previous
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chapter a very few works deal with the PTWV parameters identification. Thereby, the convergence of state
estimation approach jointly with parametric identification algorithm needs more deep exploration (Chong
et al., 2015). Alternative approaches suggest the use of observer-based identification. In this scope, adaptive
observers present a convenient approach to deal with both dynamics states and parameters estimation (Dixit
and Suryanarayanan, 2008; Garimella and Yao, 2003). Moreover, the matching constraint in unknown input
observer design is also a challenging issue for motorcycle state and parameters identification. Moreover,
designing unknown input observer for PTWV, which meets some requirements, as the matching constraint
and the relative degree with respect to unknown part, constitutes a complementary challenge. As matter of
fact, many challenges are still open with respect to the estimation unknown states and the identification of
a set of optimal system’s parameters from the available input-output data and a prior knowledge about the
PTWV’s behavior.

Regarding these requirements, our work deals with the previous challenges in estimation PTWV dynam-
ics. To do this, we propose two observers for states estimation, first, an Unknown Input Observer (UIO)
is designed for road and steering dynamics reconstruction. Then, we were interested in both lateral and
longitudinal dynamics estimation, in this scope, an Interconnected Fuzzy Observer (IFO) for PTWV was
designed. Further, the convergence of state estimation approach jointly with parametric identification algo-
rithm is one of our keen of interest. To fit some needs, we suggest two observers-based identifier to estimate
simultaneously the model parameters and the unknown states. The first one is an LPV Luenberger-adaptive
observer (LAO) synthesized for motorcycle state estimation and tire cornering stiffness identification, and
the second one is a Delayed Unknown Input Observer (DUIO) for nonlinear system concerned the states and
model parameters when the mismatched condition is not fulfilled.
The outlined observers are designed considering linear parameter-varying (LPV) motorcycle model and a
certain number of valid measurements, taking into account real constraints such as the variations in the
longitudinal speed during the synthesis of the observers. The result is formalized using Lyapunov theory
where the observer’s gains are computed by resolving an optimization problem in form of a set of a Linear
Matrix Inequality (LMI) aiming to minimize the estimation error. In addition, these observers require real-
istic instrumentation with sensors or a high-end simulator. It requires an encoder installed on the steering
mechanism, a gyroscope and an accelerometer (IMU), which are assumed to be placed near the Gravity
Center (CoG) of the motorcycle. In this part, it will be assumed that these measurements are directly
available in the reference frame used for the dynamic modeling of the PTWV. It will be recalled that the
sensors provide the measurements in the sensor reference frame attached to the vehicle that is different from
the body reference frame. Indeed, it is affected in particular with the roll and pitch motions. Nevertheless,
under some hypothesis, there are simple algebraic relations that allow reconstructing the measurements in
the body reference frame. For additional information, the reader may refer to section 2.11 for calibration
algorithm which explains a practical procedure to align the measurement data. It will be recalled that these
estimators have been designed to answer real technical issues taking into account the physical behavior of
PTWV riding. For this end, the validation for each observer is performed either with the BikeSim simulator
or with experimental data. In a first step, the observers are validated under ideal conditions, without noise
consideration or parametric uncertainties. The purpose of this latter is to confirm the observer’s design and
to prove convergence from a theoretical point of view. To go even further, we also studied the robustness of
the observers with respect to the measurement noises or parameters uncertainties based on the acquired data.
In a second step, a much more advanced validation is proposed based on real data acquired on the scooter
of the laboratory. Note that many observers for the PTWV dynamic in the literature have significant gaps
in experimental validation. Indeed, many contributions focused at the validation on the synthesis dynamic
model of PTWV. But the latter is often based on a set of nominal parameters exactly known and in the
presence of ideal sensors (no-noise). Even if the results of such a validation are very promising, they are often
disappointing in practice. Finally, this part ends with a conclusion that takes up important notions about
the developed observers. Each of these chapters is constructed in a nearly identical frame. A first section
introduces the theoretical prerequisites and the motorcycle LPV model, a second addresses the formulation
of the problem and the necessary consideration to rewrite a state space representation for the synthesis of
the observer. A last section presents the validation results, discussed either on BikeSim or on a much more
realistic tests. Finally, a few general remarks conclude each chapter.
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Chapter 5

Road and Steering Dynamics Reconstruction

This chapter deals with the estimation of both motorcycle lateral dynamics and road geometry recon-
struction. It discusses the synthesis of a linear parameter varying (LPV) unknown input observer (UIO)
for the estimation of the whole motorcycle dynamic states. These last include road banking angle and
the rider’s steering torque taking into account the variation of the forward velocity. As discussed, some
dynamic states are not directly measurable or the sensors to acquire data are too expensive. Even
without prior information on these states, the unknown input observers allow the estimatation of the
unmeasured dynamics under certain conditions. In addition, using automatic tools such as differentia-
tion techniques, makes it is possible to reconstruct the Unknown Inputs (UI) from the estimated states
and the derivative of the output vector. The theoretical aspects and the practical validation of this
idea were published in Fouka et al., 2018c.
The major contribution of the proposed observer is the adaptation of the UIO concept to the case
of the PTWV with road bank angle consideration. Henceforth, the observer is studied to satisfy the
asymptotic convergence of the estimation error based on Lyapunov theory. The main idea consists in
getting a set of conditions expressed in linear matrix inequalities (LMIs) formalism to design an observer
transformed into a polytopic form, which estimate a part of the motorcycle dynamics independently of
the ridersteering torque and/or roll angle taken into account the variation of the longitudinal velocity.
This chapter is organized as follows. First, we present very briefly a modified observable version of
the Linear Parameter-Varying (LPV) motorcycle out-of-plane model considering the road bank. In the
same section 5.1, we will illustrate the observer design and present the convergence analysis applied to
the estimation of the lateral dynamics of the PTWV. In section 5.3, the UIO will be tested off-line on
experimental data obtained during a test setup on the Scooter of the laboratory. Simulation results of
experimental test are provided to confirm the efficiency of the proposed design method.

Abstract

5.1 LPV Observer Design

The PTWV dynamics model can be written in a LPV form as following:

{
ẋ(t) = A(ζ)x(t) +G(ζ)ν(t)
y(t) = Cx(t)

(5.1)

where x(t) ∈ Rn denotes the state vector and x = [δ, vy, ψ̇, φ̇, δ̇,Fyf ,Fyr]T . y(t) ∈ Rny is the measured

output vector. ν(t) == [φ,φr, τ ]T ∈ Rp is the vector of the unknown inputs including roll angle φ, road
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bank angle φr and the rider steering torque τ . The matrices A(ζ) and G(ζ) are parameter varying with
appropriate dimensions. We assume that dim(y(t)) > dim(ν(t)).

The PTWV dynamic model (5.1) is transformed to a set of LTI interconnected model by using Takagi-Sugeno
(TS) fuzzy structure. An effective choice is the use of sector nonlinearity approach as described in Tanaka
and Wang, 2004. We consider one varying parameter ζ(t) as the forward speed of the PTWV vx(t) assumed
to be accessible in realtime with its first time derivative. With one nonlinearity, the model (5.1) is described
with 2 LTI sub-models as:





ẋ(t) =
2∑
i=1

ηi (ζ) (Aix(t) +Giν(t))

y(t) = Cx(t)
(5.2)

where ηi(ζ) are the nonlinear weighting functions satisfying the following convex sum property:





r∑
i=1

ηi (ζ) = 1

0 ≤ ηi (ζ) ≤ 1
with





η1 = vxmax −vx
vxmax −vxmin

η2 =
vx−vxmin

vxmax −vxmin

(5.3)

where r = 2nζ represents the number of local sub-models defines and nζ is the number of nonlinearities
(r = 2).

We aim to design an unknown input observer for the PTWV TS model (5.2) to estimate the state vector
x(t) and the unknown inputs vector ν(t). For this, let consider the following UIO (Fouka et al., 2018c:

{
ż(t) = N (ζ, ζ̇)z(t) + L(ζ, ζ̇)y(t)
x̂(t) = z(t) −H(ζ)y(t)

(5.4)

where x̂(t) and ŷ(t) denote the estimated state and output vectors respectively. N (ζ, ζ̇), L(ζ, ζ̇) and H(ζ)
are the observer’s matrices to be determined to ensure asymptotic convergence of the error even in the
presence of unknown inputs.

Assumption 5.1. To design a stable unknown input observer, the well-known conditions for the existence
of the UIO are given by the following assumption (Darouach, Zasadzinski, and Xu, 1994):

1. The pair (A(ζ),C) is detectable ∀ζ(t) ∈ ∆, where ∆ defines the following set:

∆ =
{
ζ ∈ R| ζmin ≤ ζ ≤ ζmax, ζ̇min ≤ ζ̇ ≤ ζ̇max } (5.5)

2. rank(CG(ζ)) = rank(G(ζ)), ∀ζ(t) ∈ ∆, is satisfied.

According to equations (5.2) and (5.4), the state estimation error is given by:

e(t) = x(t) − x̂(t) = (I +H(ζ)C)x(t) − z(t) = P (ζ(t))x(t) − z(t) (5.6)

By differentiating the previous equation, and knowing that z(t) = P (ζ)x(t) − e(t), the error dynamics is:
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ė(t) = Ṗ (ζ, ζ̇)x+ P (ζ)ẋ− ż (5.7)

= N (ζ, ζ̇)e+ (Ṗ (ζ, ζ̇) + P (ζ)A(ζ) −N (ζ, ζ̇)P (ζ) −L(ζ, ζ̇)C)x(t) + P (ζ)G(ζ)ν(t)

If the following conditions hold:

Ṗ (ζ, ζ̇) + P (ζ)A(ζ) −N (ζ, ζ̇)P (ζ) −L(ζ, ζ̇)C = 0 (5.8)

P (ζ)G(ζ) = 0 (5.9)

The estimation error dynamics will be reduced to:

ė(t) = N (ζ, ζ̇)e(t) (5.10)

In which, N (ζ, ζ̇) must be Hurwitz.

The convergence of the estimation error in equation (5.7) is studied by introducing a quadratic Lyapunov
function V (e(t)). This analysis allows to find the observer gains under optimization conditions. Let consider
the following quadratic Lyapunov function :

V (e(t)) = e(t)TQe(t), Q = QT > 0 (5.11)

By using the error dynamics in equation (5.10), the time derivative of the Lyapunov function can be written
as:

V̇ (t) = e(t)T
(
N (ζ, ζ̇)TQ+QN (ζ, ζ̇)

)
e(t) (5.12)

Next we replace P (ζ) = I +H(ζ)C in the first equality constraints equation (5.8), we get:

N (ζ, ζ̇) = Γ(ζ, ζ̇) −K(ζ, ζ̇)C

where Γ(ζ, ζ̇) = Ṗ (ζ, ζ̇) + P (ζ)A(ζ) and K(ζ, ζ̇) = N (ζ, ζ̇)H(ζ) + L(ζ, ζ̇). By using the previous equation
of N (ζ, ζ̇), the error dynamics becomes:

ė(t) = (Γ(ζ, ζ̇) −K(ζ, ζ̇)C)e(t) (5.13)

and the time derivative of the Lyapunov function in equation (6.23) is transformed to:

V̇ = eT
(

Γ(ζ, ζ̇)TQ−CTR(ζ, ζ̇)T +QΓ(ζ, ζ̇) −R(ζ, ζ̇)C
)
e (5.14)

where R(ζ, ζ̇) = QK(ζ, ζ̇)

Theorem 5.1. The state estimation error converges asymptotically toward zero if there exist a symmetric
positive definite matrix Q ∈ Rn×n and a matrix R ∈ Rn×ny satisfying the Lyapunov inequality below:
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Γ(ζ, ζ̇)TQ+QΓ(ζ, ζ̇) −R(ζ, ζ̇)C −CTR(ζ, ζ̇)T < 0 (5.15)

It follows that V (e) = eTQe > 0 defines a common quadratic Lyapunov function for the observer.

Note that the Lyapunov inequality (5.15) depends on the varying parameters ζ and its derivative ζ̇. In order
to derive LMI conditions that ensure the asymptotic convergence of the state estimation error, the polytopic
approach is used.

To solve this problem, a TS sector nonlinearity approach is considered once again :

Γ(ζ, ζ̇) =
r∑

i=1

ηi(ζ, ζ̇)Γi (5.16)

K(ζ, ζ̇) =
r∑

i=1

ηi(ζ, ζ̇)Ki

and the observer matrices N and L can be expressed by:





L(ζ, ζ̇) =
∑r

i=1 ηi(ζ, ζ̇)Li
N (ζ, ζ̇) =

∑r
i=1 ηi(ζ, ζ̇)Ni

H(ζ) =
∑r

i=1 ηi(ζ)Hi

(5.17)

Moreover, the performances of the observer can be improved by pole assignment in an LMI region to ensure
an acceptable transient response. The poles of the estimator are considered in the complex plane region, this
region can be represented as an LMI region given by the stability margin α > 0 in a subset Θ of the complex
plane such that the matrix Γi is said Θi-Stable when its spectrum λ(Γi) belongs to region Θi (Patton, Chen,
and Lopez-Toribio, 1998).

Θi =
{
z = xz + i.yz ∈ C| Re(z) ≤ −α ⇔ z + z̄ + 2α < 0 } (5.18)

where C is the set of complex numbers, and z̄ denotes the complex conjugate of z.

Using the convex sum property of the weighting functions, sufficient LMI conditions ensuring asymptotic
stability in LMI region are obtained as follows :

Γ
T
i Q+QΓi −CTRT −RC + 2αQ < 0, i ∈ (1, ..., r) (5.19)

Where, Ri = QKi and Q = QT > 0. The equations provide a way of ensuring the eigenvalues within a
specific region.

Based on the stability analysis of the lyapunov quadratic function, sufficient observer conditions are derived
in order to determine the observer gains which stabilize the error dynamics. Hence, if the LMI constraints
(5.19) are verified, the state estimation error in equation (5.13) converges asymptotically towards zero. The
gain of the observer are computed as follow:
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1. The LMI problem includes the following condition to compute the matrices H(ζ) as follows:

{
P (ζ)G(ζ) = 0

P (ζ) = I +H(ζ)C
(5.20)

H(ζ) = −G(ζ)(CG(ζ))†

The solution of this equation depends on the rank of matrix CG(ζ) and H(ζ) exists if rank(CG(ζ)) =

rank(G(ζ)). Since CG(ζ) is of full column rank, (CG(ζ))† =
[
(CG(ζ))T (CG(ζ))

]−1
(CG(ζ))T is the

left pseudo-inverse of the matrix (CG(ζ)). Whereas Hi = H(ζi), ζi = (ζmin, ζmax)

2. The gains of the observer are computed as follows:

Ki = Q−1Ri
Ni = Γi −KiC

Li = Ki −NiHi

(5.21)

Note that the matrices N (vx, v̇x), L(vx, v̇x) and H(vx) depend on the longitudinal velocity ζ = vx and its
derivative ζ̇ = v̇x. These varying parameters are bounded. Henceforth, the gain matrices can be expressed
in TS form using the non-linear polytopic sectors. Finally, the goal is to find a stable gain matrix N (vx, v̇x)
(Hurwitz) and ensures the asymptotic convergence of the estimation error to zero. To do this, Lyapunov’s
theory is used to address the error stability. To sum up, the design of the UIO comes down to find the
matrix Hi satisfying the convergence conditions (5.19) and the two conditions of existence (5.8 and 5.9),
then computing a vector Ki so that the matrix Ni = Γi −KiC is a Hurwitz matrix. In other words, Hi

exists if rank(CG(ζ)) = rank(G(ζ)) and if the system (5.1) is detectable. Once the LMIs are solved, the
gain matrices of the observer Ki, Ni and Li are reconstructed. Moreover, in the observer model (5.4) there
is no term related to the input vector since the latter is included in the vector of the unknown part. In the
next section 5.2, the estimation of the unknown inputs is discussed.

5.2 Unknown Input Estimation

After estimating the states of the system, the unknown inputs can be estimated by a simple dynamic
inversion. From the output equation y = Cx, one can write:

ẏ(t) = CA(ζ)x(t) +CG(ζ)ν(t)

Since the condition rank(CG(ζ)) = rank(G(ζ)) is satisfied, it follows:

ν(t) =




φ(t)
φr(t)
τ (t)


 = (CG(ζ))†(ẏ(t)−CA(ζ)x(t)) (5.22)

When the state estimation error e(t) converges to zero, we have x̂(t) → x(t), then the following UI estimation
ν̂(t) is obtained by the following equation :

ν̂(t) = (CG)†(ẏ(t) −CA(ζ)x̂(t))

In which, the convergence of ν̂ toward ν can be analyzed by defining the unknown input estimation error

eν(t) = ν(t) − ν̂(t) = −(CG)†CA(ζ)e(t), ∀ζ(t) ∈ ∆

knowing that e(t) converges asymptotically to zero, then eν(t) also converges asymptotically to zero. Accord-
ing to Lyapunov formulation, the state and unknown input errors converge asymptotically to zero in order
to achieve an accurate estimation of the states of the motorcycle and the torque applied on the handlebar.
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5.3 Experimental Results

This section aims to present the experimental results of the proposed UIO. The test scenario is carried out
by using the Scooter on urban road within normal riding conditions. Recall that, the UIO observer estimates
the lateral dynamics using the measured states φ̇, ψ̇, ay and δ with respect to the vehicle’s forward speed vx
varying from 7m/s on 18m/s as depicted in figure 5.1. Applicability conditions of the UIO are expressed
by a set of LMIs (5.19) which are solved by using a free optimization toolbox (Yalmip or Sedumi).
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Figure 5.1: Longitudinal velocity

The actual steering angle δ and its derivative δ̇ are depicted in figure 5.2 with their corresponding estimates.
Also, this figure shows a comparison between the estimation of the yaw and the roll rates with respect to
their measurements.
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Figure 5.2: States estimation (gray) compared to actual measurement (orange).

According to the above simulation results, it can be seen that the observer has a fast transient phase and an
acceptable convergence rate to the estimated values, which gives a good representation of the actual states.
To assess the performances of the observer, the estimated states are compared with their corresponding
measurement by means of the root mean square percentage (RMSE%), and the average of the state estimation
error (RMS). Considering that the (RMSE% and RMS) are proportional to the square of the estimation
error, the lower these indexes are, the better the estimation performances are. Let us remind that their
formulas are defined by:

RMSE% =

√
1
n

∑n
i=1

(
yjmes(i) − yjest(i)

)2
√

1
n

∑n
i=1 yjmes(i)

2
100, RMS =

√∑n
i=1(yjmes(i) − yjest(i))

2

n
(5.23)

where yjmes is the measurement of yj containing n data points and yjest is its estimate provided by the
observer.

State # RMS RMSE%

δ[rad] 0.0016 8.56

φ̇[rad/s] 0.0309 10.73

ψ̇[rad/s] 0.0197 12.90

δ̇[rad/s] 0.0103 12.48

ay [m/s2] 0.1603 12.42

Table 5.1: Analysis of the estimated state.

Table 5.1 reports the resulting RMS and RMSE, to evaluate the performance of the LPV unknown input
observer for the track scenario conducted by the scooter. The RMS index presents small values of the
estimation errors between the estimated states and output measurements. Indeed, small values of the RMSE
index are observed for the yaw rate and especially for the steering angle estimation which has a low sensitivity
to the modeling errors. Nevertheless, the roll and steer rates as well as the lateral acceleration highlight the
greater RMSE values. But, these values are still acceptable and (RMSE) does not exceed 12.9% between
the proposed method and sensor measurement. The modeling assumptions are responsible for estimation
error, especially the linear approximation of the motorcycle and the tire models. Let us remind that the
observer is derived from a two-body model, whereas the real motorcycle is a highly nonlinear multi-body
system. Hence, the modeling approximations contribute to these errors. In addition, during the observer
design, the lateral tire forces were approximated by their linear expressions. Whereas, cornering forces have
a nonlinear behavior. Results, summarized in Table 5.1, show the potential of our observer and prove the
reliability of the estimated model for the track scenario.

Now, figures 5.3 show the estimation of the unmeasurable states from the lateral dynamic model (vy, Fyf ,
Fyr, Fφr ), whereas figures 5.4 illustrate the estimation of the unknown inputs from the model inversion.
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This UIO observer copes in particular with road bank angle estimation and the roll angle in the motorcycle
lateral dynamics model and addresses the estimation of the torque applied on the handlebar.
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Figure 5.3: Unmeasurable states estimation of Scooter.
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Figure 5.4: Unknown inputs estimation.

As a mean of validation, the lateral acceleration ay is reconstructed from the estimated state and unknown
input vectors. This reconstruction allows to validate the unmeasurable states Fyf ,Fyr,Fφr and vy. We know
that:

mây = F̂yf + F̂yr − F̂φr (5.24)

ây = ˆ̇vy + vxψ̇ (5.25)

φIMU = φ̂+ φ̂r (5.26)

Figure 5.5 depicts the actual lateral acceleration compared to that reconstructed from equation (5.24) while
Figure 5.6 shows the same comparison in which equation (5.25) is used. Finally, figure 5.7 presents the
comparison between the measured roll angle and those estimated in the sense of equation (5.26). The LMI
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region performance is verified through the observer transient phase showing the good estimate ability of the
proposed observer in spite of the presence of unknown inputs.
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Figure 5.5: State estimation validation: Fyf , Fyr,Fφr
from the estimated lateral acceler-

ation (dashed gray) compared to the IMU lateral acceleration (orange).
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Figure 5.6: State estimation validation: v̂y from the lateral acceleration (dashed gray)
compared to the IMU lateral acceleration (orange).
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Figure 5.7: State estimation validation: φ, φr estimated (gray) from the IMU roll angle
measurement (orange).

One can note that all the state and variables are well estimated except the lateral velocity which has error
estimation (from validation figure 5.6), but it is still acceptable. The lateral velocity is difficult to estimate
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accurately, however, because of its low value compared to longitudinal velocity this error does not affect
the performances of the roll angle estimation. The roll and steer angles (φ+ φr, δ) and also the lateral
forces are well estimated. There are some differences at the peak due to modeling uncertainties, between the
Scooter and the estimated model. The model used for the observer design does not take into account large
roll angles but the observer still gives acceptable results. Finally, simulation results show the performance
and the ability of the designed observer to well recover simultaneously the motorcycle dynamics, unknown
inputs and the road banking angle on a real driving scenario realized with normal riding behavior.

From the states and unknown vectors estimation, we can also recover the side-slip angle αi of the front and
rear tires. The angles are very important to deal with stability region of the PTWV. Recall that, the lateral
forces are modelled by the following set of equations:

{
σf
vx
Ḟyf = −Fyf −Cf1αf +Cf2(φ+ φr + δ sin(ε))

σr
vx
Ḟyr = −Fyr −Cr1αr +Cr2(φ+ φr)

(5.27)

where Cfi and Cri are the front and rear tire cornering stiffness supposed to be known. The front and rear
side-slip angles can be estimated from the following equations:





α̂f =

(
v̂y+lf

ˆ̇ψ−η ˆ̇δ

vx

)
− δ̂ cos(ε)

α̂r =

(
v̂y−lr ˆ̇ψ
vx

) (5.28)

Using the estimation states previously discussed, the front and rear sidelip angles are obtained from equations
(5.28). Figure 5.8 shows the reconstruction of the sideslip dynamics. This estimation is very important to
evaluate the behavior and the stability of the motorcycle. In fact, the PTWV stability region is directly
correlated to the sideslip dynamics defined from the phase-plane (αi - α̇i).
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Figure 5.8: Front and Rear Sidelip angles.

5.4 Conclusions

In this chapter, an estimation of out of plane motorcycle model states, road feature and unknown inputs
have been proposed using an unknown input observer associated with model inversion. The design method
takes into account the forward speed as a linear parameter varying. Sufficient conditions for the existence
of the estimator are given in terms of linear matrix inequalities (LMIs). The performance of the resulting
observer has been evaluated by experimental validation using a real riding scenario. Simulation results
are provided which illustrate the effectiveness of the proposed observer in estimating the states, unknown
input and road geometry, the observer results demonstrate that it gives reliable estimations. Furthermore,
we are also concerned with the case when the decoupling condition on the observer design is not fulfilled
(CG(ζ) 6= G(ζ)), in such a case the observer is not valide to estimate the unknown inputs. The next chapter
(6) is dedicated to study the mismatched constraint in the UIO design.
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Chapter 6

Delayed Unknown Input Observer

This chapter proposes an observer based identifier to address the problem of state estimation and
parameters identification for system when the so-called matching condition is not fulfilled. Thereby,
we suggest a new approach to how a failed matching condition for a unknown input observer (UIO)
can be recovered by using time delayed measurements.
In the first part of this chapter, we present the general concept of the full order delayed unknown inputs
observer (DUIO) with unmatched unknown parts, in which, the time delay concept is investigated to
define a new augmented dynamic system, which satisfies the decoupling constraint. Based on these
last, the unknown parameters of the model and the unmeasured system states can be simultaneously
estimated. The resulting observer has been improved, from the restrictive decoupling condition point of
view to guarantee the estimation of state and parameters with asymptotic convergence. The theoretical
aspects and the validation of this work were published in Fouka et al., 2018e and Fouka et al., 2019a.
In the second part, the concept is adapted to the LPV two-wheelers vehicle model in order to reconstruct
the unknown states and identify the unknown parameters. In this context, the augmented observer
clearly enlarges the applicability of this design method for real systems.

Abstract

6.1 Problem Statement

Almost real systems and process subjected to unknown inputs, parameters and/or disturbances, the matching
condition does not hold (Yanhua and Zhibin, 2015 and Yang et al., 2011). Overall, research on the problems
of mismatched rank condition can primarily be decomposed into two categories. The first one deals with
the compensation of the effects of unknown model uncertainties and external disturbances, based on motion
control systems (Yang et al., 2014). Alternative methods are proposed in the case of perturbation attenuation
for system with unsatisfied matching condition (She, Xin, and Pan, 2011). Another set of research is devoted
to fulfill the observer matching condition considering auxiliary outputs and augmented models, derived from
high-order differentiators (Park and Kim, 2014 and Kalsi et al., 2010).

In this section, we are concerned with a class of systems which can be represented in a linear parametric
affine form as following:

{
˙̄x(t) = Āx̄(t) + B̄ū(t) + D̄ȳθ

ȳ = C̄x̄(t)
(6.1)

where x̄(t) ∈ Rn is the state vector, ū(t) ∈ Rnū is the input vector, ȳ(t) ∈ Rnȳ is the measured output
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vector, and θ ∈ Rnθ represents the vector of unknown constant parameters. The matrices D̄ȳ, Ā, C̄ and B̄

are of appropriate dimensions and time invariant except D̄ȳ. Without loss of generality, we consider that:

rank(C̄) = nȳ (6.2)

rank(D̄ȳ) = nθ

for all ȳ ∈ ∆, where ∆ defines an hyper-rectangles:

∆ =
{
ȳ, ˙̄y ∈ R

nȳ | ȳimin ≤ ȳi ≤ ȳimax , ˙̄yimin ≤ ˙̄yi ≤ ˙̄yimax } (6.3)

where (ȳimin , ȳimax) and ( ˙̄yimin , ˙̄yimax) are the lower and upper bounds of the measured signal and its
derivative respectively.

The observer design approach is based on the existence of the left inverse matrix, called decoupling matrix,
to make possible the reconstruction of the unknown parameters vector (Bejarano, Poznyak, and Fridman,
2006). In other words, this condition imposes that the number of unknown parameters must be less than
the number of system’s outputs, so, the rank condition is given as following:

rank(C̄D̄ȳ) = rank(D̄ȳ) (6.4)

Also, we have (C̄D̄ȳ) ∈ Rnȳ×nθ and D̄ȳ ∈ Rn×nθ . By computing the rank of each part we have:

rank(D̄ȳ) = nθ (6.5)

rank(C̄D̄ȳ) = nȳ (6.6)

If nθ > nȳ then the rank condition is not fulfilled, which is the case of the original system: rank(C̄D̄ȳ) 6=
rank(D̄ȳ).

To overcome this restriction, the original system must be rearranged in an augmented form by introducing
auxiliary outputs. Almost methods use differentiators to get a successive time-derivatives of the original
system’s outputs. In our method, a more relaxed approach is proposed by taking the time-delayed outputs
of the original system’s to fulfill the previous rank condition.

Let us adopt the matrices notation ∗ȳ = ∗(ȳ(t)), ∗ȳ, ˙̄y = ∗
(
ȳ(t), ˙̄y(t)

)
, and ∗τi = ∗(t− τi), ∗ȳτi = ∗(ȳ(t− τi)),

where τi is a constant time delay.

6.2 Augmented State Space

In this section, a transformation to break out with the rank condition related to mismatched unknown part
is developed. Augmented models are constructed by adding exogenous dynamics to an already existing
system’s model. In this scope, an augmented system is considered by including delayed states and outputs
dynamics.

Consider m delays τi, where 1 ≤ i ≤ m and ȳτ , the delayed output vector, an augmented model is constructed
with a new state x(t), input u(t) and output vectors y(t) as following:

x = [ x̄T x̄Tτ1
x̄Tτi ... x̄Tτm ]T

y = [ ȳT ȳTτ1
ȳTτi ... ȳTτm ]T (6.7)

u = [ ūT ūTτ1
ūTτi ... ūTτm ]T
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where m represents the number of set of auxiliary outputs such that:

nθ

nȳ
− 1 ≤ m <

nθ

nȳ
(6.8)

The augmented state-space system is given by:

{
ẋ(t) = Ax(t) +Bu(t) +Dyθ

y = Cx(t)
(6.9)

where,

A =




Ā 0n · · · 0n
0n Ā · · · 0n
...

...
. . .

...
0n 0n · · · Ā



B =




B̄ 0n×nū · · · 0n×nū
0n×nū B̄ ... 0n×nū

...
...

. . .
...

0n×nū 0n×nū · · · B̄




Dy =




D̄ȳ

D̄ȳτ1

...
D̄ȳτm



C =




C̄ 0nȳ×n · · · 0nȳ×n
0nȳ×n C̄ · · · 0nȳ×n

...
...

. . .
...

0nȳ×n 0nȳ×n · · · C̄




where, D̄ȳτi
are the delayed matrices, A ∈ R((m+1)×n)×((m+1)×n), B ∈ R((m+1)×n)×((m+1)×nū), Dy ∈

R((m+1)×n)×nθ and
C ∈ R((m+1)×nȳ)×((m+1)×n).

The system’s dimension, with respect to equation (6.8), is as follow:





rank(C) = (m+ 1)nȳ
nθ ≤ (m+ 1)nȳ < (m+ 1)n

rank(Dy) = min((m+ 1)n,nθ) = nθ

(6.10)

Also:

rank(CDy) ≤ min(rank(C), rank(Dy)) = min((m+ 1)nȳ,nθ) ⇒ rank(CDy) ≤ nθ (6.11)

One can notice that rank(Dy) = rank(D̄ȳ) = nθ keeps the same number of column because dim(θ) = nθ is
constant on the original and augmented models. Knowing that the decoupling matrix CDy has non collinear
rows, such that nθ ≤ (m+ 1)nȳ. The idea is to enhance the rank of the decoupling matrix in the augmented
model such that nθ ≤ (m+ 1)nȳ, to fulfill the matching condition imposed by the observer, it implies:

rank(CDy) = min((m+ 1)nȳ,nθ) = rank(Dy) = nθ (6.12)

6.3 Observer Design

Let us consider the following full order Delayed Unknown Input Observer (DUIO) :
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{
ż(t) = Ny,ẏz(t) + Ly,ẏy(t) +Gyu(t)
x̂(t) = z(t) −Hyy(t)

(6.13)

where, x̂ and ŷ are respectively the estimated state and output vectors. Ny,ẏ, Ly,ẏ, Hy and Gy are parameter
varying matrices with appropriate dimension. The problem of DUIO design can be stated as finding these
matrices in order to satisfy a stable asymptotic convergence of the estimation error dynamics. The proposed
estimation approach is taken under the matching condition fulfilled for the augmented model.

Definition 6.1. The DUIO observer is called to be asymptotically stable if :

• x̃(t) = 0 when t → ∞, where x̃(t) = x(t) − x̄(t) is the observer error.

• the matrix Ny,ẏ is Hurwitz.

Assume that there exists a square matrix Py ∈ R(m+1)×n) defined as Py = I +HyC. From the augmented
model (6.9) and DUIO equation (6.13), one can easily prove that the estimation error x̃ can be expressed as:

x̃ = Pyx− z (6.14)

By time differentiating, we get the error dynamics:

˙̃x = Ny,ẏx̃+ (Ṗy,ẏ + PyA−Ny,ẏPy −Ly,ẏC)x+ PyDyθ+ (PyB −Gy)u (6.15)

Obviously, if the following matrix equalities are verified:

(i) Ny,ẏ = Γy,ẏ −Ky,ẏC, where, Γy,ẏ = Ṗy,ẏ + PyA and Ky,ẏ = Ny,ẏHy + Ly,ẏ.

(ii) PyDy = 0, where Py = I +HyC.

(iii) PyB −Gy = 0.

then, the error dynamics in equation (6.15) can be reduced to :

˙̃x(t) = Ny,ẏx̃(t) (6.16)

Consequently, the error dynamics asymptotic convergence is ensured if Ny,ẏ is Hurwitz.

However, the three previous equalities are time variant since they depend on the output vector y(t) and
its time derivative ẏ(t). To be able to solve this optimization problem with LMI, the TS transformation
is applied as in the previous chapter. It will be assumed that, the premise variables y, ẏ ∈ ∆ are real-time
accessible. The non-linearities related to y, ẏ ∈ ∆ are captured via membership functions ηi(.), which have
the convex-sum property in the compact set of the state space:

r∑

i=1

ηi (y, ẏ) = 1, 0 ≤ ηi (y, ẏ) ≤ 1 (6.17)

where r is the number of the sub-models. Then, a polytopic exact forms is obtained as following:
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Γy,ẏ =
r∑

i=1

ηi(y, ẏ)Γi (6.18)

Ky,ẏ =
r∑

i=1

ηi(y, ẏ)Ki

where, Γi and Ki are constant matrices. From this, the DUIO gain matrices Ly,ẏ and Ny,ẏ can be defined
as:

{
Ny,ẏ =

∑r
i=1 ηi(y, ẏ)Ni, Ni = Γi −KiC

Ly,ẏ =
∑r

i=1 ηi(y, ẏ)Li, Li = Ki −NiHi
(6.19)

and, the estimation error dynamics is written under the following :

˙̃x(t) =
r∑

i=1

ηi(y, ẏ) (Γi −KiC) x̃(t), i ∈= 1, 2, ..., 22nȳ (6.20)

The following theorem provides the LMI conditions of the existence of the observer.

Theorem 6.1. The full order DUIO (6.13) for the augmented model (6.9), guaranties the state estimation

convergence, if there exists a symmetric positive definite matrix Q ∈ R(m+1)n×(m+1)n defining a Lyapunov
function V (x̃) > 0, such that V̇ (x̃) < 0, ∀x̃(t) 6= 0. Hence, the following linear matrix inequality holds:

(
−Q 0

0 ΓTi Q+QΓi −CTRi
T −RiC

)
< 0 (6.21)

Proof 6.1. The observer gains are selected so that Ni is a Hurwitz matrix, based on the stability analysis
of the Lyapunov theory. Now, consider that there exists a positive definite matrix function Q such that a
quadratic Lyapunov function is defined to analyze the asymptotic convergence of the dynamical error, as
follow:

V (x̃) = x̃TQx̃ (6.22)

Taking the time derivative of V (x̃) along the error dynamics yields:

V̇ = x̃T




r∑

i=1

ηi(y, ẏ)
(

Γ
T
i Q+QΓi −CTKi

TQ−QKiC
)

 x̃ (6.23)

Note that V̇ < 0 implies that the estimation error x̃(t) tends towards zero asymptotically for any initial value
x̃(0) if the following BMI holds:

Γ
T
i Q+QΓi −CTKi

TQ−QKiC < 0, Q = QT > 0 (6.24)

One note that the inequality (6.24) is bilinear with respect to the unknown matrices Q and Ki. To solve this
BMI problem, a variable change Ri = QKi is introduced allowing to get LMI problem as following:
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ΓTi Q+QΓi −CTRi
T −RiC < 0 (6.25)

Thus, from the Lypunov stability theory, if the LMI condition (6.21) is satisfied, the system (6.13) is expo-
nentially asymptotically stable. This completes the proof of Theorem 6.1.

Once, the state vector is estimated, finding the unknown parameters is straightforward by using an algebraic
inversion as following:

θ̂ = (CDy)
† ( ˙̂y−CAx̂−CBu

)
(6.26)

where (CDy)† =
[
(CDy)T (CDy)

]−1
(CDy)T . However, the feasibility of this inversion is conditioned by a

convenient selection of the time delay to fulfill the rank condition. By substituting the output derivative in
the inversion model (6.26), the parameter estimation error is defined as:

eθ = θ− θ̂ = −(CDy)
†CAx̃ (6.27)

It is easy, from this equation, to show that the convergence of θ̂ towards θ is ensured from the asymptotic
stability of the state estimation errors x̃(t) under suitable persistence excitation described in the following
definition.

Definition 6.2. The Persistent Excitation Condition is fullfiled if there exist c1ij , c2ij and c3ij positive for
i, j = 1, ..., q, such that for all t the following inequality holds (Ioannou and Sun, 1996):

c1ij I ≤
∫ t0+c3ij

t0

D̄ȳτi
D̄T
ȳτj
dt ≤ c2ij I ∀i, j = 1, ..., q

Finally, the design procedure of the full order DUIO observer is summarized in the following Algorithm 3.
An example is proposed in the appendix B to illustrate the estimation performance of DUIO observer.

Algorithm 3: Observer design procedure DUIO

Require:

1: Check if system (A, Dy, C) is observable or detectable. If so, go to Step 2; Otherwise, stop.
2: Check the decoupling conditions :
3: if rank(C̄D̄y) = rank(D̄y) ∀y ∈ ∆ holds then
m = 0, go to step 10.

4: else

Find the minimum integer (m)← according to (6.8).
Reconstruct the augmented matrices A,B,C,D in (6.9).

5: Compute matrices Hy, Py and deduce the matrix Gy.
6: Compute the matrix Ṗy,ẏ and deduce Γ = PyAy + Ṗy,ẏ.
7: Solve the LMIs (6.21).
8: Compute Ki = Q−1Ri.
9: Deduce Ny,ẏ = Γ−Ky,ẏC and Ly,ẏ = Ky,ẏ −Ny,ẏHy.

10: Estimate the parameters θ̂.
11: End

6.4 Extension to the PTWV case

6.4.1 Problem Statement

In the state space represenation described in equation (6.1), the matrices Ā, C̄ and B̄ are supposed to be time
invariant. However, we have seen in section 5.1 that matrix A in the PTWV dynamics model of equation
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(5.1) is parameter varying with resepect to ζ. So, in this section we aim to extend the full order DUIO
design procedure to the case of the following LPV class :

{
ẋ(t) = Ã(ζ)x(t) + B̃u(t) + D̃(ζ)F (y, ẏ, .., y(n), θ)
y = C̃x(t)

(6.28)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input vector and y(t) ∈ Rny denotes the output

vector. The vector F
(
y, ẏ, .., y(n), θ

)
∈ Rp incloses all non-linear terms which depend on the known time

varying parameter ζ and the unknown constant parameter θ. The matrices Ã(ζ) and D̃(ζ) are parameter
varying matrices of appropriate dimensions while we suppose that the matrices C̃ and B̃ are constant.

Without loss of generality, here we assume that rank(D̃(ζ)) = p and rank(C̃) = ny where ny < p. Also, we
assume that the vector ζ and ζ̇ are respectively defined on the hyperplanes ∆ and ∆̄ defined by:





∆ =
{
ζ ∈ R

nζ | ζimin ≤ ζi ≤ ζimax }
∆̄ =

{
ζ̇ ∈ R

nζ | ζ̇imin ≤ ζ̇i ≤ ζ̇imax } (6.29)

where (ζimin , ζimax) and (ζ̇imin , ζ̇imax) are the lower and upper bounds of the forward speed and its derivative
respectively.

Assumption 6.1. In the following, assume that F can be written in an affine linear form with respect to
unknown parameters such that:

F
(
y, ẏ, .., y(n), θ

)
= D

(
y, ẏ, .., y(n)

)
f(θ) (6.30)

where the matrix Dy = D
(
y, ẏ, .., y(n)

)
∈ Rp×p is full column rank, i.e. rank(Dy) = p.

From the aforementioned assumption, and for simple readability, the system in equation (6.28) is rewritten
as:

{
ẋ(t) = Ãζx(t) + B̃u(t) + D̃ζDyf(θ)
y = C̃x(t)

(6.31)

Theorem 6.2. The well-known rank condition for the existence of the UIO is given by the following state-
ments (Darouach and Boutat-Baddas, 2008 and Trentelman, Stoorvogel, and Hautus, 2012):

1. The state x is bounded (stable or stabilized),

2. The system (Ãζ , D̃ζ , C̃) is observable or detectable,

3. The relative degree r of the system with respect to the unknown part F = Dyf(θ) exists.

Usually, this theorem can be summarized into two well-known conditions for the existence of the UIO, the
observability condition of the pair (Ãζ , C̃) and the matching condition rank(C̃D̃ζ) = rank(D̃ζ) on the
system matrices. Based on system defined by (6.31), one considers the case when rank(C̃D̃ζ) 6= rank(D̃ζ),
∀ ζ ∈ ∆ and ζ̇ ∈ ∆̄. In this case, the matching condition is not satisfied since p > ny and an augmented
model is reconstructed from delayed outputs as described in section 6.1.
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6.4.2 Augmented Model

Considering a constant time delay τ and the output vector y(t), its delayed version is y(t− τ ). The augmented
model can be reconstructed with a new state xa(t) and output ya(t) vectors:

xa = [ (x(t))T , (x(t− τ1))T , (x(t− τ2))T , ... (x(t− τm))T ]T

ya = [ (y(t))T (y(t− τ1))T (y(t− τ2))T ... (y(t− τm))T ]T

where τm is the mth time delay, and m represents the number of delayed outputs to recover the matching
condition. The parameter m can be easily computed from p = ϑ× n+ β, where,

|β| < n and m =

{
ϑ if β ≤ 0
ϑ+ 1 Otherwise

(6.32)

The augmented state-space representation of the system is as follow:




ẋ(t)
ẋ(t− τ1)

...
ẋ(t− τm)



=




Ãζ(t) 0n×n 0n×n · · · 0n×n
0n×n Ãζ(t−τ1) 0n×n ... 0n×n

...
...

... · · ·
...

0n×n 0n×n 0n×n · · · Ãζ(t−τm)







x(t)
x(t− τ1)

...
x(t− τm)



+ (6.33)




B̃ 0 0 · · · 0
0 B̃ 0 ... 0
...

...
... · · ·

...
0 0 0 · · · B̃







u(t)
u(t− τ1)

...
u(t− τm)



+




D̃ζ(t)Dy(t)

D̃ζ(t−τ1)Dy(t−τ1)
...

D̃ζ(t−τm)Dy(t−τm)



f(θ)




y(t)
y(t− τ1)

...
y(t− τm)



=




C̃ 0ny×n · · · 0ny×n
0ny×n C̃ · · · 0ny×n

...
... · · ·

...
0ny×n 0ny×n · · · C̃



xa(t)

In a simple form, the augmented system takes the following structure :

{
ẋa(t) = Aζxa(t) +Bζua(t) +Dζ,yf(θ)
ya = Cζxa(t)

(6.34)

whereas, Aζ ∈ R
(((m+1)×n)×((m+1)×n)), Bζ ∈ R

(((m+1)×n)×((m+1)×m)), Dζ,y ∈ R
(((m+1)×n)×p) and Cζ ∈

R
(((m+1)×ny)×((m+1)×n)).

Remark 6.1. The matching condition for the augmented model holds i.e., rank(CζDζ,y) = rank(Dζ,y) and
rank(CζDζ) = rank(Dζ).

6.4.3 Observer Design

For the augmented system (6.33) we propose the LPV unknown input observer of the form:
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{
ż(t) = Nζ,ζ̇z + Lζ,ζ̇ya +Gζua
x̂a(t) = z(t) −Hζya(t)

(6.35)

where, x̂a and ŷa are respectively the estimated state and the output vector. The matrices Nζ,ζ̇ , Lζ,ζ̇ , Gζ and
Hζ are parameter varying. The gains design is addressed in the same manner as in section 6.3. Therefore, if
e = xa − x̂a is the estimation error and ∀ζ ∈ ∆ and ∀ζ̇ ∈ ∆̄, if the following conditions hold, the estimation
error tends asymptotically towards zero.

(1) ė = Nζ,ζ̇e, must be asymptotically stable i.e., Nζ,ζ̇ is Hurwitz,

(2) Ṗζ,ζ̇ + PζAζ −Nζ,ζ̇Pζ −Lζ,ζ̇Cζ = 0.

(3) PζDζ,y = 0

(4) PζBζ −Gζ = 0

From these conditions, we can state the set of LMIs to be solved in order to design the DUIO gains as
follows:

Nζ,ζ̇ = Γζ,ζ̇ −Kζ,ζ̇Cζ (6.36)

Hζ = −Dζ,y(CζDζ,y)
† (6.37)

Pζ = I2n +HζCζ (6.38)

Gζ = PζBζ (6.39)

where Γζ,ζ̇ = Ṗζ,ζ̇ + PζÃζ and Kζ,ζ̇ = Nζ,ζ̇Hζ + Lζ,ζ̇ .

Since the matching condition rank(CDζ,y) = rank(Dζ,y) is satisfied, the unknown parameters can be
recovered by a simple algebraic inversion as following :

f̂ = (CζDζ,y)
† (ẏa(t) −CζAζ x̂a −CζBζua(t)

)
(6.40)

In which, the convergence of f̂ towards f can be analyzed by defining the unknown part estimation error

ef = f − f̂ = −(CζDζ,y)
†CζAζe

Knowing that e converges asymptotically towards zero, then ef also converges asymptotically towards zero.
The stability analysis of the system is studied in the same way as in section (6.3) and yields to the following
BMI conditions ensuring asymptotic stability:

Γ
T
i Q+QΓi −CTi K

T
i Q−QKiCi < 0, i = 1, ..., r.

Finally, the performances of the DUIO can be improved by pole assignment in an LMI region to ensure an
acceptable transient response. The poles of the estimator are considered in the complex plane region, and
can be represented as an LMI region given by the stability margin ς > 0 in a subset Θ of the complex plane.
In this case, the matrix Γi is said Θi-stable when its spectrum λ(Γi) belongs to region Θi.

Θi =
{
z = (xz + i.yz) ∈ C| Re(z) ≤ −ς ⇔ z + z̄ + 2ς < 0 } (6.41)
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where C is the set of complex numbers, and z̄ denotes the complex conjugate of z.

Theorem 6.3. The delayed unknown input observer (6.35) for the model (6.33), satisfying the pole clustering
in Θi(ς) (6.41), allows an asymptotically convergence of the state estimation error towards zero in the LMI
region, if there exist a symmetric positive definite matrix Q ∈ R2n×2n and a matrix Ri ∈ R2n×2ny such that
the following LMI holds:

Γ
T
i Q+QΓi −CTi R

T −RCi + 2ςQ < 0, i ∈ (1, ..., r) (6.42)

where, Ri = QKi.

In the following section, an application of the described DUIO design procedure in the PTWV parameter
identification framework is proposed.

6.5 Application for PTWV Estimation

The main focus of this work is to extend the estimation problematic of the PTWV lateral dynamics by
including the parameter identification. Thereby, the reasons that motivate our choice to apply the delayed
unknown input observer to the PTWs vehicle, is that the unknown part of the PTWV model do not satisfy
the matching condition that are normally required in the unknown part reconstruction. The other reason
is that most of the existing methods on parametric identification are designed under some assumptions
taking into account a restricted parameters space to be identified and they do not deal with a great number
of unknown parameters estimation (Cossalter et al., 2006a; Tanelli et al., 2009b; Schwab, De Lange, and
Moore, 2012; Cabrera et al., 2014). Our contribution focuses on giving a solution of the unknown input
observer for PTWV with large constant parametric space and also, with an arbitrary relative degree with
respect to the unknown inputs. Henceforth, we will explore the ability of the delayed unknown input observer
concept to estimate the dynamic states and the unknown parameters for PTWV model with mismatched
condition.

In this section, we consider a four DoF model (Sharp, 1971), describing the lateral motion of the PTWV as
following:

Ēẋ = Āx+ B̄u (6.43)

where Ē = [eij ] ∈ R8×8, Ā = [aij ] ∈ R8×8 and B̄ ∈ R8×1. The state vector is x ∈ R8×1 and includes
[φ, δ, vy, ψ̇, φ̇, δ̇,Fyf ,Fyr]T . Details of eij and aij are given in the appendix.

The model of equation (6.43) is written in a LPV structure with one varying parameter ζ = vx :

{
ẋ(t) = Ãζx(t) + B̃u(t) + D̃ζF (y, θ)

y = C̃x(t)
(6.44)

whereas the matrix Ãζ ∈ R8×8, B̃ ∈ R8×1, D̃ζ ∈ R8×26 and C̃ ∈ R5×8.

For the PTWV, we can measure different state variables from the embedded sensors. We consider the output
measured vector as y = [δ, ψ̇, φ̇, δ̇, ay ]T . By rearranging equation (6.43), the unknown parameter dependent
part can be expressed in a linear affine form:



120 Chapter 6. Delayed Unknown Input Observer

Dζ F̂ =





a34ζy2

a44ζy2 + a45y3 + a46ζy4 + a47x̂7 + a48x̂8

a51x̂1 + a52y1 + a54ζy2 + a56ζy4

a61x̂1 + a62y1 + a64ζy2 + a65ζy3 + a66y4 + a67x̂7

a71ζx̂1 + a72ζy1 + a73x̂3 + a74y2 + a76y4 + a77ζx̂7

a81ζx̂1 + a83x̂3 + a84y2 + a88ζx̂8

(6.45)

where, aij are the unknown parameters of the model. One can remark that the matching condition is not
satisfied for the LPV model defined above since ny = 5 and p = 26. Therefore, we need at least m = 4
delayed outputs to reconstruct an augmented model.

Remark 6.2. In practice, every system has physical limitations in the Persistent Excitation (PE) signals.
Such a limitation could be the response time, maximum capacity, an operating limits, saturation. The
convergence of parameters estimation are closely related to PE. Since this is not always fixed. These PE
conditions are translated into sufficiently rich conditions on the inputs, which guarantee convergence rates
of parameters estimation errors. In this context, an excitation with oscillations of sufficiently high frequency
generally is used to excite the dynamics and to maximize the information content in the model parameters
to ensure convergence. The reference excitation signal during the identification phase is a pseudo-random
binary sequence (PRBS). However, this can only be achieved in simulation and unrealisable in case of real
riding scenario. Indeed, the main input of the PTWV models is the steering torque at the front wheel, but
the rider is unable to carry out this type of control. In our case, the PRBS input can be replaced by a chirp
signal.

6.6 Simulations Results

The DUIO is evaluated in co-simulation by using data from BikeSim simulator (Sharp, Evangelou, and
Limebeer, 2004). The PTWV type Scooter Big Baseline with 8 bodies is selected with on a handling flat
road and a high road friction coefficient µ = 0.9. The forward speed is around 40 km/h. A chirp signal is
applied as a steering torque (figure 6.1)
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Figure 6.1: Steering torque input (chirp signal).

This maneuver is a well-known reference aiming to generate complicated lateral dynamics allowing the
excitation of the pertinent parameters. The figure 6.2 depicts the measured states and their estimation
along the track. One can remark a small error in the states estimation peaks, this can be explained by
modeling errors. The estimated roll angle is also validated with measured roll angle as shown in figure 6.3.
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Figure 6.2: Actual measures (blue) and their estimation (dashed red).

To verify the unmeasurable states estimation vy, Fyf and Fyr, the lateral acceleration ay is reconstructed
from equations (5.24) and (5.25) and compared to the one measured by the IMU as shown in figure 6.3.
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Figure 6.3: Observer validation.

Figure 6.4 depicts the estimation of unknown parameters vector with respect to their nominal values. It
can be appreciated that the proposed observer shows a good estimation accuracy and proves the reliability
of the approach to estimate simultaneously the dynamic states and the unknown parameters of the model.
However, the singularities in figure 6.4 are mainly due to the observer transient state and the conditioning of
the inverse matrix. Also, when we use a relativity fairly poor excitation, the vector parameters is sensitive to
outputs variations. Further, given the number of parameters to be estimated, it is a complex task to excite
perfectly all the parameters simultaneously.

To validate the estimated parameters, one can extract the value of each parameter after the transient
phase. Afterwards, once the unknown parameters vector is identified, these parameters are inserted into the
motorcycle two-body model and used to simulate and validate the PTWV lateral dynamics. The resulting
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Figure 6.4: Actual parameters (dashed red) and estimated parameters (blue).

model is compared with respect to the corresponding BikeSim data in two others track tests. The first test
consists on a slalom maneuver on a flat road surface with high friction coefficient µ = 0.9 and a forward
speed of 40 km/h as depicted in figure 6.5. The second test is an oncoming traffic with variable speed on
handling road as in figure 6.7.
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Figure 6.5: Slalom maneuver at constant speed 40 km/h.
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Figure 6.6: Test 1: Updated state (dashed red) compared to actual measurement (blue).

First, the performance of the identified model is evaluated in simulation by comparing with the actual output
(see figures 6.6 and 6.8). These figures plot the most important states of the lateral dynamic model (roll and
steering angles, yaw rate, the lateral acceleration). Second, this evaluation is quantified with two metrics
by means of the root mean square error (RMS) and (MSE), summarized in table 6.1 to check the similarity
between the actual and simulated outputs. Results, summarized in Table 6.1, show that the estimation error
between the proposed method and actual states is generally small. The values of index, show a good forecast
accuracy and prove the reliability of the estimated parameters in reconstructing the motorcycle behavior.

State # Test RMS MSE

φ Sc1 0.0331 0.0011
Sc2 0.0555 0.0031

δ Sc1 0.0078 6.0184 10−3

Sc2 0.0042 1.7881 10−3

ψ̇ Sc1 0.0425 0.0018

Sc2 0.0288 8.2925 10−3

φ̇ Sc1 0.0774 0.0060

Sc2 0.02131 4.5511 10−2

ay Sc1 0.1803 0.0785
Sc2 0.3857 0.1359

Table 6.1: Analysis of the estimation method for the new tests conducted.
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Figure 6.7: An oncoming traffic with variable speed.
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Figure 6.8: Test 2: Updated state (dashed red) compared to actual measurement (blue).

The simulated response with the synthesis model shown in dashed red is overlaid on the actual BikeSim
data. The results of the slalom test with constant velocity are better than the track test with variable
speed. This is because of the sharp two body model is developed assuming constant forward velocity or
slowly varying speed to neglect the coupling between the longitudinal and lateral motions. But, even in the
presence of forward speed in the second test, good representation of the lateral dynamics still be ensured.
In the two scenarios, even if there are some errors at the peak of the reconstructed model states but the
results remain acceptable. These differences between the simulated and measured data is due to modeling
errors, the simulated model is a 2 bodies model while the data is collected using a high-fidelity 8 bodies
model motorcycle. The validation plots show that our estimation scheme was successfully evaluated. These
results confirm the performance of the observer in identifying the unknown parameters and show that the
estimated parameters are robust enough to handle a variety of riding tests.

6.7 Conclusions

The chapter shows some significant features, to discuss how a failed decoupling condition, can be recovered
using augmented model and time delay concept, with a specific characterization of the system matrices.
Based on these last, a step by step algorithm is developed to design the DUIO observer.
Our main contribution concerns the modeling transformation to break out with the rank condition related
to mismatched unknown part. An augmented system is considered by including delayed outputs. Different
from existing methods, the proposed observer gives a general framework for observer-based parameters
identification. It is shown that, by introducing delayed outputs, the rank condition is fulfilled, allowing to
parameters identification in two steps. In the first step, the state vector and unknown inputs are estimated
while, the parameter vector is identified in the next step. Afterwards, sufficient conditions for the existence
of estimator are given in terms of LMIs to ensure the asymptotic state and parameters estimation error
convergence. The effectiveness of the proposed approach is demonstrated throughout co-simulation with a
high-end motorcycle simulator. In the LPV model, we take into account the forward speed as a linear varying
parameter. Despite unknown inputs, the vehicle’s intrinsic parameters are almost accurately identified and
also, the rate convergence can be improved by convenient poles assignment in LMI region. The simulation
results are quite promising to prove that the estimation approach provides an interesting solution for state
reconstruction and parameters identification.

In future works, the observer robustness can be improved by considering uncertainties such as the neglected
dynamics, the parametric uncertainties of the model, the sensor biases and the measurement noises. Thereby,
the synthesis of robust observer regarding uncertainties requires adding terms containing perturbations in
the observation equation. This leads to an adaptation of the model-based observers to the case of uncertain
matrices of the state space model.
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Chapter 7

Adaptive Observer for PTWV

Safety systems for powered two-wheelers, claim a thorough investigation of motorcycle motion and
tires/road interaction, to help the rider to stay out of harm’s way. This chapter deals with the problem of
estimation of two wheelers lateral motion with consideration of cornering and camber stiffness unknown
coefficients. It consists of the design of linear parameter varying (LPV) observer associated with an
adaptive law to ensure convergence stability based on a general Lipschitz condition, Lyapunov theory
and subjected to persistence excitation conditions. The LPV observer is transformed into Takagi-
Sugeno (T-S) fuzzy observer and sufficient conditions, for the existence of the estimator, are given in
terms of linear matrix inequalities (LMIs). The forward speed is treated as an online measured time-
varying parameter and the cornering stiffness at the front and rear tires are assumed to be unknown
with a priori known nominal values, evaluated from the Pacejka’s formula tire model.
In this work, an evaluation framework is proposed to provide a critical overview and analyze the stiffness
parameters estimation performance and accuracy. The proposed adaptive law is compared to a direct
estimation method and a dynamic inversion estimation scheme adapted to our problem. Finally, several
simulation cases are provided to highlight the feasibility and the effectiveness of the suggested methods,
through test scenarios performed with the well-known motorcycle simulator BikeSim and by field test
acquired using an instrumented motorcycle. The theoretical aspects and the validation of this idea
were published in Fouka et al., 2018a.

Abstract

7.1 Model Description

In this work, the well-known Sharp model is used to describe the PTWV lateral dynamics which can be
written by the following state space representation:

Eẋ = Ā(vx(t))x(t) + B̄τ (t) (7.1)

where x(t) ∈ Rnx is the state vector such that x = [φ, δ, vy, ψ̇, φ̇, δ̇,Fyf ,Fyr ]
T . The input vector is denoted

by τ (t) ∈ R refers to the rider’s torque. The vehicle’s forward speed vx(t) is considered as a measured
time-varying parameter. E = [eij ] is an invertible matrix, Ā(vx(t)) = [āij ] is the state matrix and B̄ is a
vector with their associated dimensions.

The lateral front and rear forces Fyf and Fyr are considered to be linear with respect to the tire’s side-slip
angle αk and camber angle γk, then:
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Fyk,0 = Cαkαk +Cγkγk k = f , r (7.2)

Also, we introduce tire relaxation to characterize the transient behavior by means of a first order system as
following:

σ

vx
Ḟyk = −Fyk + Fyk,0 (7.3)

The use of a linear tire representation is justified as is discussed in the introduction section. ADAS are
dedicated to perform safety tasks before the vehicle reaches the limits of its stability region. Beyond the
stability region, almost ADAS fails to recover the vehicle handling, particularly, in turn situations.

7.1.1 Parameter-Dependent Model

Let consider ζ(t) = vx(t) a varying measured parameter and Θ ∈ RnΘ is the unknown parameters vector.
The PTWV model of equation (7.1) can be reformulated in the following LPV form:

{
ẋ = Aζx+Bu+ Λ(x, ζ, Θ)
y = Cx

(7.4)

where y ∈ Rny is the output measured vector and Λ(x, ζ, Θ) ∈ Rnx represents the parameters dependent
terms of the PTWV dynamics. The matrices Aζ and B are defined from (7.1) as Aζ = E−1Ā(ζ(t)) −
Λ(x, ζ, Θ), B = E−1B̄ and u = τ (t).

An inertial measurement unit (IMU) is embedded to the PTWV and mounted under the vehicle’s seat at
approximately the vehicle’s center of mass. The available measurements are three accelerations and three
angular velocities expressed in the IMU body reference frame. These measurements are used to derive the
roll angle rate φ̇, yaw angle rate ψ̇ and the lateral acceleration ay expressed in the PTWV modeling reference
frame. In addition to the IMU measurement, an optical encoder is fixed on the steering body providing the
steering angle δ and its time-derivative δ̇. The minimum set of sensor measurements are the following:

y =
[
δ ψ̇ φ̇ δ̇ ay

]T
(7.5)

By using equations (7.2) and (7.3), the vector of the unknown varying parameters Λ(x, ζ, Θ) is written in a
linear form with respect to the unknown parameters vector Θ as following :

Λ(x, ζ, Θ) = Dχ(x, ζ)Θ (7.6)

in which:

χ(x, ζ) =

[
− vxαf

σf

vxγf
σf

0 0

0 0 − vxαr
σr

vxγr
σr

]
(7.7)

and:
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Θ =




Cαf −Cαf ,0

Cγf −Cγf ,0

Cαr −Cαr ,0

Cγr −Cγr ,0


 (7.8)

where, Csk is the tires’ cornering stiffness, s = α, γ designates lateral slip or camber angles, k = f , r denotes
the front and rear tires, Csk,0 are the corresponding nominal values of the tires’ cornering stiffness and σk
is the tire’s relaxation. The cornering stiffness at the front and rear tires are assumed to be unknown and
vary with respect to their nominal values.

7.1.2 Problem Statement

From PTWV dynamics equation, it is straightforward to find an approximate estimation of the tires’ corner-
ing stiffness using a direct method or a dynamics inversion approach. With the direct method (Sierra et al.,
2006), the PTWV can be reduced to an equivalent one-body dynamics expressed by the following equations:

{
may = Fyf + Fyr
Izψ̈ = lfFyf − lrFyr

(7.9)

where m and Iz are the equivalent body mass and z-inertia. By combining equations (7.2), (7.3) and (7.9),
we get:




−αf γf −αr γr
−lfαf lfγf lrαr −lrγr
−αf γf 0 0

0 0 −αr γr







Cαf
Cγf
Cαr
Cγr


 =




may
Izψ̈

σf
vx
Ḟyf + Fyf

σr
vx
Ḟyr + Fyr


 (7.10)

The dynamics inversion in equation (7.10) gives more insight in parameters estimation by avoiding state
differentiation. This last method is based on classical unknown input observers and output differentiation
as reported in (Zhang et al., 2017; Weiss et al., 2000). From equations (7.4), (7.5) and (7.6), we get:

˙̂y = CAζ x̂+CBu+CDχ(x̂, ζ)Θ̂ (7.11)

By an algebraic inversion of the previous equation, the unknown parameters vector Θ can be reconstructed
from the estimated state vector and output derivatives. However, the feasibility of this inversion is condi-
tioned by a convenient selection of the excitation signal to fulfill rank condition rank(CD) =rank(D).

In this section, we address the problem of state estimation and unknown parameters identification of the
PTWV dynamics expressed by equation (7.4). We focus our interest on the identification of the front and rear
tires’ cornering stiffness since they play a key role to guarantee the motorcycle stability in turns maneuvers.
Moreover, it is known among all vehicle dynamics literature that tires’ cornering stiffness are combined with
the available road friction µ, then, solving the estimation problem for the unknown parameters vector Θ

is equivalent to finding the combined vector Θ = µΘ0, where Θ0 is the tires’ nominal stiffness. Without
loss of generality, we consider in this section that tires’ cornering stiffness with their associated road friction
are embedded in one variable. For some very spatial cases such a puddle and dead leaf causing an abrupt
variation of road friction, the problem of friction estimation can be more efficiently solved by using other
techniques such as vision-based classification (Roychowdhury et al., 2018; Liu et al., 2011).
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• The system’s input u(t) is known and sufficiently persistent, i.e, its exists constants c1, c2 and c3 such
that for all t the following inequality holds (Belov et al., 2018) :

c1I ≤
∫ t0+c3

t0

Dχ(x̂, vx)χ
T (x̂, vx)D

T dt ≤ c2I

• The state vector x(t) and the input vector u(t) are bounded. This assumption will fit the general
practical case, e.g. a stable motion of a PTWV.

Theorem 7.1. given the PTWV dynamics of equation (7.1) satisfying assumptions (7.1-7.2), the following
LPV-adaptive observer:

{
˙̂x = Aζ x̂+Bu+ Λ(x̂, ζ, Θ̂) + Lζ(y− ŷ)
ŷ = Cx̂

(7.15)

with the adaptation law:

˙̂
Θ = ΓχT (x̂, ζ)TCx̃ and Γ = Γ

T > 0 (7.16)

ensures an asymptotic convergence error for the simultaneous state and parameters vector estimation, towards
zero if there exist a symmetric positive definite matrix P and matrices Kζ and R satisfying the following
inequalities :

PAζ +ATζ P −KζC −CTKT
ζ + PQ−1PT +R < 0 (7.17)

DTP = TC (7.18)

where x̃ is the state estimation error vector and Lζ is the observer gain matrix .

Proof 7.1.

lets consider the following class of Luenberger-adaptive observer:

{
˙̂x = Aζ x̂+Bu+ Λ(x̂, ζ, Θ̂) + Lζ(y− ŷ)
ŷ = Cx̂

(7.19)

where x̂, ŷ and Θ̂ are respectively the estimated state, output and parameters vector. Lζ is the observer

gain matrix such that Φζ = Aζ −LζC is Hurwitz. Lets x̃ = x− x̂ and Θ̃ = Θ − Θ̂ be respectively the state
and the parameters estimation error vector. The error dynamics can be computed as following:

˙̃x = Φζ x̃+ Λ̃ +Dχ(x̂, ζ)Θ̃ (7.20)

in which Λ̃ = Λ(x, ζ, Θ) − Λ̂(x̂, ζ, Θ).

The stability analysis can be performed by considering the following quadratic Lyapunov function :

V (x̃) = x̃TPx̃+ Θ̃
T

Γ
−1

Θ̃ (7.21)
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where P and Γ are symmetric positive definite matrices.

By taking the time derivative of the Lyapunov function (7.21), and replacing the state estimation error
dynamics by its equation (7.20), we obtain:

V̇ = x̃TΨζ x̃+ Λ̃
TPT x̃+ x̃TP Λ̃ + Θ̃

T
Γ

−1 ˙̃
Θ + ˙̃

Θ
T

Γ
−1

Θ̃

+ Θ̃
TχT (x̂, ζ)DTPx̃+ x̃TPDχ(x̂, ζ)Θ̃ (7.22)

where Ψζ = ΦT
ζ P

T + PΦζ .

Let consider the following lemmas:

Lemma 7.1. the continuous function Λ(x, ζ, Θ) is said to be Lipschitz with respect to x, if for all x, the
function Λ(x, ζ, Θ) can be rewritten under the following generalized Lipschitz condition (Pertew, Marquez,
and Zhao, 2005):

Λ
TQΛ ≤ xTRx (7.23)

where Q and R are respectively symmetric positive and semi-positive definite matrices. Thus, any system in
the form of equation (7.4), can be reformulated in a generalized Lipschitz condition, as long as Λ(x, ζ, Θ) is
continuously differentiable with respect to x.

Lemma 7.2. for every matrix G, symmetric positive definite, the following property holds (Xie, 1996):

XTY + Y TX ≤ XTGX + Y TG−1Y

By using the Lipschitz condition in lemma (7.1) and the property in lemma (7.2), we get the following
inequality:

Λ̃
TPT x̃+ x̃TP Λ̃ ≤ x̃TPQ−1PT x̃+ Λ̃

TQΛ̃ (7.24)

Now, we can prove exponential stability convergence:

V̇ (t) ≤ x̃T
(

Ψζ + PQ−1PT +R
)
x̃+ Θ̃

TχT (x̂, ζ)DTPx̃+

x̃TPDχ(x̂, ζ)Θ̃ + Θ̃
T

Γ
−1 ˙̃

Θ + ˙̃
Θ
T

Γ
−1

Θ̃ (7.25)

Following assumption (7.2), in the case of a stable PTWV dynamics with a bounded states, the estimated
term χ(x̂, ζ) will be bounded by an upper singular values, e.g., ‖χ(x̂, ζ)‖2 < σmax. Consequently:

V̇ (t) ≤ x̃T
(

Ψ + PQ−1PT +R
)
x̃+ 2Θ̃

T
Γ

−1 ˙̃
Θ + 2σmaxΘ̃

TDTPx̃ (7.26)

At this level, we can derive the observer’s adaptive law from equation (7.26) as folowing:

Θ̃
T

Γ
−1 ˜̇

Θ + σmaxΘ̃
TDTPx̃ < 0 (7.27)
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According to the tire’s relaxation formula (7.3), the unknown parameters rate is practically slow, e.g. Θ̇ = 0

and hence, ˙̃
Θ = − ˙̂

Θ. Furthermore, it is possible to find a matrix T , such that DTP = TC (Corless and Tu,
1998). By this transformation, the adaptive law can be stated as:

˙̂
Θ = ΓχT (x̂, ζ)TCx̃ and Γ = Γ

T > 0 (7.28)

With this law, the time derivative V̇ (t) becomes :

V̇ (t) ≤ x̃T (ATζ P
T + PAζ −CTKT

ζ −KζC + PQ−1PT +R)x̃ (7.29)

where Kζ = PLζ .

7.2.3 Polytopic Form

Theorem (7.1) in section (7.2.2) introduces a theoretical framework for the states and parameters estimation.
The resulting optimization problem, given by the inequality of equation (7.17), is parameter dependent, thus,
we must revisit our observer.

Theorem 7.2. the following adaptive observer :





˙̂x = Aζ x̂+Bu+ Λ

(
x̂, ζ, Θ̂

)
+ Lζ(y−Cx̂)

˙̂
Θ = σmaxΘ̃TDTPx̃

(7.30)

ensures an asymptotic convergence of the state estimation error for system class of equation 7.1, if and only
if there exist a matrix P symmetric positive definite, a matrix Kζ , and a matrix R satisfying the Liptchiz
condition. Thus, if the condition rank(CD) = rank(D) is fulfilled, a matrix Γ symmetric positive definite
can be found such that the following LMI holds:

min
i=1,··· ,r

ς s.t.

[
ςI DTP − TC

(DTP − TC)T ςI

]
> 0 (7.31)

[
ATi P + PAi −CTKT

i −KiC +R P

P −Q

]
< 0

(7.32)

Proof 7.2.

the PTWV model in equation (7.1) is dependent on the measured vehicle’s speed, e.g., ζ = vx. According
to assumption (7.1), and knowing that ζ satisfies the following convex property:

r∑

i=1

ηi(ζ) = 1, 0 ≤ ηi(ζ) ≤ 1 (7.33)
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where ηi are weighting functions. By using the so-called Takagi-Sugeno (TS) structure (Tanaka and Wang,
2004), the PTWV model in equation (7.1) can be reformulated as a set of interconnected linear time invariant
models. Since we have one non-linearity ζ ∈ ∆, supposed to be accessible at real-time, the resulting LPV
model (7.4) in TS structure is described by 2 sub-models as following:





ẋ =
r∑
i=1

ηi (ζ)Aix+Bu+ Λ (x, ζ, Θ)

y = Cx

(7.34)

where r = 2nζ is the number of the sub-models corresponding to nζ non-linearities (nζ = 1 in our case).

Then, Aζ in equation (7.1) becomes
r∑
i=1

ηi(ζ)Ai and Ai are constant matrices.

From theorem (7.1) and using the convex sum property of the weighting functions, sufficient conditions
ensuring V̇ (t) < 0 are established by the following LMIs:

ATi P + PAi −CTKT
i −KiC + PQ−1PT +R < 0 (7.35)

By applying Schur lemma, inequalitiy (7.17) can be transformed to the second LMI of equation (7.31). The
observer gain matrix L in theorem (7.2) is also defined by using the polytopic exact form:





Kζ =
r∑
i=1

ηi(ζ)Ki,

Lζ =
r∑
i=1

ηi(ζ)Li,

Li = P−1Ki

(7.36)

Finally, the equality constraint DTP = TC can be formulated by the an optimization problem described by
the first LMI of equation (7.31).

7.3 Simulation Results

In this section, the effectiveness of the proposed estimation framework is investigated by co-simulation with
BikeSim software. The PTWV model Scooter Big Baseline is chosen from the software dataset, in which,
the nominal values Cji,0 of the side-slip and camber stiffness are available.
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Figure 7.2: BikeSim scenario: the rider’s steering torque input τ , the forward speed vx,
and the vehicle’s trajectory.

The test scenario is carried out by considering a handling maneuver depicted in figure 7.2c and involving a
medium hard rider torque represented in figure 7.2a. The forward speed is a measured varying parameter
ranging from 40 km/h to 120 km/h as shown in figure 7.2b. For this first setup, the road friction coefficient
is fixed to a constant value µ = 0.9. The observer gains Li are computed using theorem 7.2. The test scenario
is in accordance with a real regular riding condition. It also allows to highlight the observer performance by
covering a broad spectrum of the PTWV dynamics within and beyond its linearization domain. Further, we
test the adaptive law with a constant gain matrix Γ and with zero initial condition.
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Figure 7.3: BikeSim sensor (red) and observer estimation (dashed blue).

Figures 7.3 show the state estimation performance with respect to their measured values from BikeSim and
also demonstrate a finite-time asymptotic estimation. Furthermore, since the lateral velocity vy, the roll
angle φ and tire forces Fyf ,Fyr are unmeasurable (figures 7.4), their estimations are used to reconstruct the
lateral acceleration ay at the center of mass of the rear body Gr by using the two equations in (7.37).
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Figure 7.4: Unmeasurable states estimation.
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Figures 7.5 represent the estimated lateral acceleration and the corresponding one given by BikeSim. It is
obvious that these figures show finite-time asymptotic estimation where exact estimation can’t be achieved
since the PTWV dynamics linearization is carried out considering small roll perturbations from straight line
running.

ây =
(F̂yf + F̂yr)

M
(7.37)

ây = ˙̂vy + vxψ̇− h ¨̂φ
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Figure 7.5: BikeSim sensor (red) and observer estimation (dashed blue).

Figure 7.6 shows the estimated tires stiffness deviations from their nominal values. Once again, finite-
time asymptotic estimation is achieved with high accuracy and the observer effectiveness is guaranteed for
simultaneous states and tires’ stiffness estimation. For example, for the first parameter Θ1, the estimated
deviation is used to recover the real front slip stiffness as following Cαf = Cαf ,0 + Θ1.

In order to make the analysis compacted, for each estimated parameters and for each method, the Mean is
averaged among the track test. Results, summarized in Table 7.1, show that the computed generally close.
It is important to remark that the parameters computed using the adaptive law are very close to nominal
values, thanks to the the adaptive law used in the observer estimation. Comparing the three methods, the
adaptive law has the best estimation.
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Figure 7.6: Estimation performance of tire cornering stiffness.
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Parameters Nominal Estimated Inversion Direct

Θ1 1028 1022.6 1055.2 1015.7

Θ2 58.7 60.4638 45.7477 64.2932

Θ3 2371 2387.1 2485.3 2595.4

Θ4 121 119.918 117.9743 124.4637

Table 7.1: Parameters Mean values comparison

7.4 Observer Sensitivity and Robustness

This section aims to test the robustness and sensitivity of the observer with respect to the measurements’
noise and regarding parameters uncertainties. To do that, the same test scenario previously described
is considered. Remind that the observer was designed considering the nominal tires’ cornering stiffness.
Consequently, there are two objectives in this section, the first is to test the observer measurement noise
sensibility. The second aims to demonstrate the observer robustness to parameters variation.

7.4.1 Observer Sensitivity against Sensors’ Noise

In practice, the IMU measurements are highly affected by noises. In order to test the observer robustness in
the presence of measurements noise, we consider a 5 − 10% random perturbation on the IMU measurements.
An overview of the resulting observer performances is depicted in figure 7.7.

It can be noted that the effect of the noise on the states estimation is limited, however, it remains slightly
visible. Also, we note that the steering angle and the front tire force are most affected by noise measurements.
It reveals also that the rear tire force and the roll angle are less sensitive to measurement noises.

The different noise sensitivities between the front and rear tire forces is explained by the fact that the
steering dynamics mostly affects the front tire dynamics. For better performances, the estimated signals can
be denoised to remove the noise effect. To that end, a simple second-order Butterworth filter can be used.
Simulation result, shows that the adaptive observer is robust enough to handle the noisy case.

7.4.2 Observer Robustness against Modeling Uncertainties

In this section, the robustness of the state observer with its associated adaptive law against modeling
uncertainties is studied. This observer is designed by considering the nominal values of the tires’ stiffness,
hence, it is hopeful to quantify the effect of parameters variation on the observer performance. To this end,
we consider a variation of ±50% on the real values of the front and rear tire stiffness. Next, the robustness
of the observer to the parameters uncertainties is also evaluated by considering ±16.5% on the design value
of the front and rear mass which is equivalent to an over or an underweight of 50 Kg.

The estimated states are compared with their counterparts by means of the root mean square percentage
(RMSE%). The metric quantifies the amount of error to show how close the estimated values are to the true
data, RMSE% is defined as:

RMSE% =

√√√√ 1

Ndataset

Ndataset∑

i=1

(ymes − yest)
2 (7.38)

where ymes is the measurement of y including Ndataset data points and yest is its estimate provided by the
observer. The resulting (RMSE%) for the the present scenario are shown in tables 7.2.

From table 7.2, one can states that the RMSE for (φ̇, ψ̇, δ,φ, ay) raise with parameters variation. Otherwise,
it can be seen that the RMSE for tires’ stiffness parameters remain approximately constant, so, the observer
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Figure 7.7: Robustness to noise: observer states estimation in presence of IMU measur-
ments noise.

is more robust for tire parameters uncertainty. Therefore, the estimated values are generally small and does
not exceed 10.87% between the proposed observer and actual data. One can see that the observer gives better
estimation for the nominal case, where the RMSE values are the lowest. However, even with variations
of the tires’ parameters or the vehicle’s mass, these errors are always lowers than 13% which confirms that
the performances of the observer are preserved even in the presence of parametric uncertainties. Despite
modeling errors between synthesis model and data from simulator, the estimation error dynamics still have
good performances and the observer ensures a good estimation.

7.5 Motorcycle Experimental Test

In this section, an assessment of the LPV-adaptive observer performance is presented using experimental
log-data, using a fully electric propulsion scooter described in section (2.11). The test is carried out on
an urban scenic road and performed with normal riding behavior and good environmental conditions. As
depicted in figure 7.8c, the road is composed of straight line followed by a narrow turn and just after a
big turn. This configuration allows to solicit the PTWV roll dynamics and to maximize as possible as the
persistence condition.
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Figure 7.9: Test 2: Scooter Experimental test: Tire cornering stiffness Convergence θ̂i =
Ĉ(f ,r)i −C(f ,r)i0 (f , r=front, rear and i = (1, 2, 3, 4)).
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Figure 7.10: Test 2: Scooter Experimental test:Unmeasurable states estimation.
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According to these figures, it can be seen that the observer has a good dynamic transition and a finite-time
convergence even for a riding scenario in the roll region away from the straight line dynamics linearization.
In the experimental maneuver, it can be appreciated that the proposed observer shows a good estimation,
however we note that the transient performance suffers slightly. It should be noted that in this maneuver,
the true effective cornering stiffness should fluctuate somewhat.

In the experimental maneuver, it should be noted that, the true effective cornering stiffness are unknown. For
more faithful estimations, the mean values of the estimated parameters are given in Table 7.3 to quantify the
performances of the observer adaptive law through the mean values comparison. Comparing the adaptive law
with the two others methods, one can see the small difference on the mean values results between estimated
parameters, direct and inversion methods. This confirm the performance of the estimation scheme.

7.6 Conclusions

This chapter deals with observer-based identification framework to estimate both motorcycle lateral dynamics
states and tires’ cornering stiffness. Our main contribution concerns the design of an adaptive observer
adapted to class of system problem in the context of ADAS design. For that purpose, an adaptive law is
proposed, associated with an LPV formulation the observer to deals with the variable measured longitudinal
velocity. An optimization problem in forms of LMI is resolved to compute the states observer gains.

An evaluation methodology based on a co-simulation with a high-end motorcycle simulator and with real
experimental data-log are presented and discussed. The fundamental evaluation is made by estimating the
tires’ cornering stiffness using the adaptive law, a direct method and an inversion dynamic system. The
direct method is simple and straightforward but it is very sensitive to states differentiation and singularities.
The inversion based algebraic method requires the computation of the outputs derivatives which can be
obtained for example by a high-gain second-order sliding mode observer. This method might be unrealistic
in practical applications where measurements suffer noise and disturbances, leading also to singularities in
the solution of the inverse problem. For the adaptive observer achieves a good estimation of unmeasured
states and unknown parameters vector starting from self-integrated PTWV sensors.
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Chapter 8

Interconnected Observers for PTWV

It is well known in vehicle community that the riding behavior is highly dependent on both tire-
ground lateral and longitudinal forces, since these forces affect the comfort and safety of riders. The
physical intuition suggests that the longitudinal and lateral friction phenomenons are related since the
two phenomena are produced in the tire contact area. Thereafter, the longitudinal and lateral models
dependency and the tedious coupling features will be overcome here thanks to the estimation approach.
The theoretical aspects and the validation of this idea were published in Fouka et al., 2019b.
The chapter focuses on the estimation of the powered two wheelers vehicle states, including both the
longitudinal and lateral dynamics. First, the linear parameter varying (LPV) of the two-sub models
of the interconnected PTWV motion are transformed into a Takagi-Sugeno (TS) form. Secondly, the
observer convergence study is based on Lyapunov theory associated with the Input to State Practical
Stability (ISpS) to guaranty boundedness of the state estimation errors. Further, sufficient conditions
are given in terms of linear matrix inequalities (LMIs). Finally, observer performances are tested and
compared to the motorcycle model states and several simulation cases are provided to highlight the
effectiveness of the suggested method using motorcycle Simulator Software BikeSim c©.

Abstract

8.1 Complete PTWV Model

Usually, the PTWV exhibits a coupled dynamics generating simultaneously the longitudinal and lateral
tires forces. However, in the described observer based identification methods, the longitudinal dynamics are
generally represented by the forward speed vx. In this context, the main contribution of this work is to
extend the estimation problematic of the PTWV lateral dynamics by including the longitudinal one. We
will explore the ability of the concept of interconnected models to estimate the coupling dynamics while
reducing the observability problem.

8.1.1 State Space Representation

In most situation, the motorcycle develop a combined scenarios and applied simultaneously longitudinal
forces (braking or acceleration) and lateral forces (cornering). Since this dependency in motorcycle motions,
obtaining a “good” estimation require that the coupled behavior must be taken into account. Thereafter, this
section is devoted to the modeling of the state space sub-models of the longitudinal and lateral dynamics.

In this work, the first sub-system of the rectilinear motion under the influence of lateral dynamics is con-
sidered, this analytic model is derived from the single-corner model (defined in section 2.9.4) to describe
the rotations of the tires with respect to the front and rear braking systems. Thereby, the equations of the
longitudinal motion will be modeled by the following quasi LPV sub-state space model:
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ζ̇1(t) = Ā(ζ1)ζ1(t) + B̄uB(t) + D̄(ζ2)ζ2(t) (8.1)

Whereas the state vector ζ1(t) = [vx,ωf ,ωr,Fxf ,Fxr]T and the input vector is uB = [Bf , Br + T ]T . The
estimation of this model required to know the longitudinal acceleration and the rotational speed of wheels,
and to suppose that during the acceleration phase, the engine torque is applied only to rear wheel. We
consider this sub-model to estimate the longitudinal speed and forces based on some of the lateral estimates
under an acceptable convergence time. This quasi LPV sub-model (8.1) depends on longitudinal velocity
vx, the longitudinal front and rear stiffness ̺f ,r, which are considered as external varying parameters, with:

̺i =
1

max(Riωi,vx)
, i = f , r.

The lateral dynamics study quantifies the vehicle’s ability to support lateral accelerations and to develop
lateral forces to follow a steering rider input. The good compromise between simplicity and accuracy for the
modeling of lateral dynamics is the Sharp two-body model, defined in section 2.9.1. Thereby, the quasi LPV
sub-model of the lateral motion is described by:

ζ̇2(t) = Ă(ζ1)ζ2(t) + B̆uτ (t) + D̆(ζ2)ζ1(t) (8.2)

With ζ2(t) = [φ, δ, vy, ψ̇, φ̇, δ̇,Fyf ,Fyr]T and uτ = τ (t).

The motorcycle interconnected dynamics is given by:





ζ̇1(t) = Ā(ζ1)ζ1(t) + B̄uB(t) + D̄ζ2(t)
ζ̇2(t) = Ă(ζ1)ζ2(t) + B̆uτ (t) + D̆ζ1(t)

yx(t) = C̄ζ1(t)
yy(t) = C̆ζ2(t)

(8.3)

where : ξ(t) = [ζ1(t) ζ2(t)]T and C = [C̄ C̆]T . where ζ1(t) ∈ R5 and ζ2(t) ∈ R8 are the state vector, and
yx(t) = [ωf ,ωr, ax] ∈ R3 and yy(t) = [δ, ψ̇, φ̇, ay ] ∈ R5 the output vector.

The design of the observer can be handled in the domain of polytopic models.

1. The longitudinal model has 8 sub-models comes from the fact that there is 3 nonlinearities on the
model:

z1 = vx, z2 = ̺f , z3 = ̺r (8.4)

zmin
1 ≤ z1 ≤ zmax

1 zmin
2 ≤ z2 ≤ zmax

2 zmin
3 ≤ z3 ≤ zmax

3

The membership functions of the fuzzy sets are defined as:

∑

ζ1





h11 =
z1max−z1

z1max−z1min
, h12 =

z1−z1min
z1max−z1min

h21 =
z2max−z2

z2max−z2min
, h22 =

z2−z2min
z2max−z2min

h31 =
z3max−z3

z3max−z3min
, h32 =

z3−z3min
z3max−z3min

(8.5)

where the variables ηi(ρ) are computed as follows:





η1 = h11.h21.h31 , η2 = h12.h21.h31

η3 = h11.h22.h31 , η4 = h12.h22.h31

η5 = h11.h21.h32 , η6 = h12.h21.h32

η7 = h11.h22.h32 , η8 = h12.h22.h32

(8.6)

2. The lateral model has 2 sub-models comes from the froward speed coupling. With regard to the
motorcycle stability, this forward speed is considered bounded in the interval where the motorcycle is
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stable. Consequently, the membership functions are given by:

∑

ζ2





ϑ1 = vxmax−vx
vxmax−vxmin

ϑ2 =
vx−vxmin

vxmax−vxmin

(8.7)

The variables ηi and ϑj are called the weighing functions and they must satisfy the following convex sum
property: 




0 ≤ ηi(z1, z2, z3) ≤ 1
0 ≤ ϑj(vx) ≤ 1∑8

i=1 ηi(z1, z2, z3) = 1∑2
j=1 ϑj(vx) = 1

(8.8)

For the quasi LPV interconnected model (8.1), applying TS representation would lead to an exact form
well-suited to design the appropriate observer.





ζ̇1(t) =
∑p1

i=1 ηi(ζ1(t))
(
Āiζ1(t) + D̄iζ2(t) + B̄iuB(t)

)

yx(t) = C̄ζ1(t), p1 = 8

ζ̇2(t) =
∑p2

j=1 ϑj(ζ1(t))
(
Ăjζ2(t) + D̆jζ1(t) + B̆juτ (t)

)

yy(t) = C̆ζ2(t), p2 = 2

(8.9)

With this model, we propose a Interconnected Fuzzy Observer (IFO) design for nonlinear systems whose TS
form has unmeasured premise variables. In the next section, we derive the synthesis steps of the observer for
joint states and time-varying parameter estimation. The observer for this type of system should take into
account the fact that the weighting functions would be depending on estimated premise variables, rather
than exact ones.

8.2 Observer Design

Motivated by the need of observers to acquire certain states used in safety and control systems to prevent
possible dangerous situation, this section investigates the design of an interconnected observers. The design is
done in two stages, first an observer is associated with the longitudinal subsystem, and then a second observer
based on the results of the first observer is proposed for the estimation of lateral dynamics. Thereby, the
sub-observer of the lateral dynamics gives the unmeasured variable, then, the lateral velocity is connected to
the longitudinal sub-observer to estimate the forward speed and the longitudinal forces. An overall scheme
of the system/observer structure is given in figure 8.1.

PTWV IFO

Lateral

Dynamics

τ

δ

φ̇

ψ̇
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vy ψ̇ vx
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Out-of-plane motion
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T

ax
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In-plane motion

F̂xf , F̂xr

v̂x

Measurement Estimation

Figure 8.1: General diagram of the interconnected estimation of longitudinal and lateral
dynamics
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8.2.1 Preliminaries

The following nonrestrictive assumptions are considered:

Assumption 8.1. Assume that, for the design of each observer, the states of other subsystems are available.

Assumption 8.2. Suppose that the signals uB and uτ are known, bounded and sufficiently persistent inputs
for each observer respectively.

Assumption 8.3. The state vector ζ1 and ζ2 of the two models are considered bounded.

Assumption 8.4. The pair (Ă(ζ1), C̆) and (Ā(ζ2), C̄) are observable or detectable.

The following lemmas are used in the proof of the observer convergence study.

Lemma 8.1. Consider Υ and Ξ matrices with appropriate dimensions. For every positive definite matrix
Λ > 0. the following property holds (Boyd et al., 1994).

Υ
T

Ξ + Ξ
T

Υ ≤ Υ
T

ΛΥ + Ξ
T

Λ
−1

Ξ (8.10)

Lemma 8.2. Given the following matrices Υ, Ξ and ℵ, with appropriate dimensions, where Υ = ΥT and
ℵ = ℵT (Boyd et al., 1994), the Schur’s lemma apply:

[
Υ Ξ

ΞT ℵ

]
< 0 ⇔

{
ℵ < 0

Υ − Ξℵ−1ΞT < 0
(8.11)

Definition 8.1. The state estimation error verifies the Input To State Practical Stability (ISpS) if there
exists a KL function β : Rn × R −→ R,and a K function α : R −→ R such that for each input ∆(t)
satisfying

∥∥∆(t)
∥∥

∞ < ∞ and each initial conditions e(0), the trajectory of the system associated to e(0) and
∆(t) satisfies (Lazar et al., 2008):

∥∥e(t)
∥∥

2
≤ β

(∥∥e(0)
∥∥ , t
)
+ α

(∥∥∆(t)
∥∥

∞

)
(8.12)

8.2.2 State Estimation

Based on the connection between the two lateral and longitudinal subsystems in equation (8.9), the following
observer is proposed:





˙̂ζ1 =
∑p1

i=1
ηi(ζ1(t))(Āiζ̂1(t) + D̄iζ̂2(t) + B̄iuB(t)− L̄i(yx − ŷx))

˙̂ζ2 =
∑p2

j=1
ϑj(ζ1(t))(Ăj ζ̂2(t) + D̆j ζ̂1(t) + B̆juτ (t)− L̆j(yy − ŷy))

ŷζ1
(t) = C̄ζ̂1(t)

ŷζ2
(t) = C̆ζ̂2(t)

(8.13)

Using equations (8.9) and (8.13), the state estimation error obeys the following differential equations:

{
ėζ1

=
∑p1

i=1 ηi(ζ1(t))(Φ̄ieζ1
+ D̄ieζ2

) + ∆ζ1
(t)

ėζ2
=

∑p2

j=1 ϑj(ζ1(t))(Φ̆jeζ2
+ D̆jeζ1

) + ∆ζ2
(t)

(8.14)

where: Φ̄i = (Āi − L̄iC̄), Φ̆j = (Ăj − L̆jC̆), ∆ζi(t) =
ri∑
i=1

(ηi(ζ1)− ηi(ζ̂1))Āiζ1(t) and ∆ζ2
(t) =

ri∑
i=1

(ϑj(ζ1)−

ϑj(ζ̂2))Ăjζ2(t).

Notice that if the state estimation errors converge to zero, the terms ∆ζ1
(t) and ∆ζ2

(t) converge also towards
zero. In addition, since the weighting functions are bounded and the state vector ζ1(t) and ζ2(t) are also
bounded (see assumption 8.1), the term ∆ζi(t) are thus bounded.
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By considering the vector of the state estimation errors eζ = (eζ1
, eζ2

) = (ζ1 − ζ̂1, ζ2 − ζ̂2) the errors dynamics
are given by:

ėζ =

[ ∑p1

i=1 ηi(ζ)Φ̄i ηi(ζ)D̄i∑p2

j=1 ϑj(ζ)D̆j

∑p2

j=1 ϑj(ζ)Φ̆j

]
eζ +

[
∆ζ1

(t)
∆ζ2

(t)

]
(8.15)

Theorem 8.1. The state estimation error between the system and the interconnected observers converges
asymptotically to zero if there exists two symmetric and definite matrices P and Q, two diagonal positive
matrices Ω1 and Ω2, given a positive scalars σ, α, a ∈ [0, 1] and gains K̄i, i = 1, ..., p1, K̆j , j = 1, ..., p2

such that the LMI conditions:
min

P ,Q,ς1,ς2
aς1 + (1 − a)ς2

s.t. [
ĀTi P + PĀi − K̄iC̄ − C̄T K̄T

i + Ω2 + αP PD̄i +R1

D̄Ti P +RT1 −Ω1

]
< 0 (8.16)

[
ĂTj P + PĂj − K̆jC̆ − C̆T K̆T

j + Ω1 + αQ QD̆j +R2

D̆Tj Q+RT2 −Ω2

]
< 0 (8.17)

The gains of the interconnected observer are obtained from the equations L̄i = P−1K̄i, i = 1, ..., p1 and
˘̄Li = Q−1K̆j , i = 1, ..., p1.

Proof 8.1.

The convergence analysis of the the interconnected observer (8.13) can be performed by considering the
following quadratic Lyapunov function:

V (e(t)) = eζ1
(t)TPeζ1

(t) + eζ2
(t)TQeζ2

(t) (8.18)

The time-derivative of the Lyapunov function (8.18) is:

V̇ (e) =
∑p1

i=1
ηi(ζ1)((Φ̄ieζ1

+ D̄ieζ2
)TPeζ1

+ eTζ1
P (Φ̄ieζ1

+ D̄ieζ2
)) +

∑p2

j=1
ϑj(ζ1)((Φ̆jeζ2

+ D̆jeζ2
)TQeζ2

+eTζ2
Q(Φ̆jeζ2

+ D̆jeζ1
)) + eTζ1

P∆ζ2
+ ∆

T
ζ1
Peζ1

+ eTζ2
Q∆ζ2

+ ∆
T
ζ2
Qeζ2

(8.19)

Considering Γ̄i = Φ̄T
i P + P Φ̄i and Γ̆j = Φ̆T

j Q+QΦ̆j , equation (8.19) lead to:

V̇ (e(t)) =
∑p1

i=1
ηi(ζ1)(e

T
ζ1

Γ̄ieζ1
+ eTζ1

PD̄ieζ2
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(8.20)

Applying Lemma (8.1), inequality (8.20) yields:

V̇ (e(t)) <
∑p1

i=1
ηi(ζ1)

(
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(Γ̄i + PD̄iG1D̄
T
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T
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) (8.21)

where, G1 and G2 are positive definite matrices. Then, if inequality V̇ (e(t)) < 0 holds, one have

∑p1

i=1
ηi(ζ1)

(
eTζ1

(Γ̄i + PD̄iG1D̄
T
i P + PF1P + G−1
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T
j Q+QF2Q+ G−1

1 )eζ2
+ ∆

T
ζ2
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2 ∆ζ2

)
< 0

(8.22)

Let us define: {
Ξi = Γ̄i + PD̄iG1D̄

T
i P + PF1P + G−1

2

Ξj = Γ̆j +QD̆jG2D̆
T
j Q+QF2Q+ G−1

1

Then, the time-derivative of the Lyapunov function is bounded as:

V̇ (e(t)) < 0⇔
V̇ (e(t)) <

∑p1

i=1
ηi(ζ1)

(
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(
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Ξjeζ2
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T
ζ2
F−1

2 ∆ζ2

)
< 0

(8.23)
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The inequality (8.23) is equivalent to:
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Considering eζ(t) = [eTζ1
(t) eTζ2

(t)]T . The inequality (8.24) leads to:
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Then, the time derivative of the Lyapunov function (8.25) is then bounded as follows

V̇ (e(t)) < eTζ Ψeζ − αeTζ (t)Qeζ(t) + ∆
T
ζ1
F−1

1 ∆ζ1
+ ∆

T
ζ2
F−1

2 ∆ζ2
< 0 (8.26)

where

Q = diag(P ,Q) and Ψ =

[ ∑p1

i=1 ηi(ζ1)Ξi + αP 0
0

∑p2

j=1 ϑj(ζ1)Ξj + αQ

]
< 0 (8.27)

Now, if eTζ Ψeζ < 0, the inequality (8.26) can be bounded as follows
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which is equivalent to

V̇ (t) ≤ −αV (t) + ∆
T
ζ1

F−1
1 ∆ζ1

+ ∆
T
ζ2

F−1
2 ∆ζ2

(8.29)

Regarding inequality (8.29), the asymptotic convergence is no longer ensured. Integrating (8.29) over the
interval [0, t] implies that

V (t) ≤ V (0)e−αt +F1
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∞

The Lyapunov function can be bounded as:
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2
(8.30)

Now, thanks to inequality (8.30), one obtains:
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(8.31)

By using the square root on (8.31), one obtains

∥∥eζ(t)
∥∥

2
≤
√
λmax(Q)
λmin(Q)

(
V (0)e− α

2
t +

√
F1

α

∥∥∆ζ1
(s)
∥∥

∞
+

√
F2

α

∥∥∆ζ2
(s)
∥∥

∞

)
(8.32)

Hence, when t → ∞ the exponential error (8.32) converges to zero and knowing that ∆ζ1
and ∆ζ2

are
bounded, one have

lim
t→∞
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(8.33)

According to Lyapunov formulation of Input To State Practical Stability (ISpS), the states converge to a
region which will be minimized in order to achieve a more accurate estimation of the states of the motorcycle
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longitudinal and lateral motions. This ball is smaller as the attenuation level of the transfer from ∆ζ1
(t),

∆ζ2
(t) to the state estimation errors is smaller. To enhance the performances of the observer, a minimal

values of these quantities are studied.

Let us consider the quantity:

√
λmax(Q)

λmin(Q)α
≤ √

ς with Q = diag(P ,Q) (8.34)

where ς = diag(ς1, ς2), ςi is a positive scalar. It is then sufficient to minimize the term ς. Assume λmin(Q) ≥ 1
(Q > I), leads to: √

λmax(P )

α
≤ √ς1,

√
λmax(Q)

α
≤ √ς2 (8.35)

which is transformed easily into:

(ας1)
2
I − PTP > 0, (ας2)

2
I −QTQ > 0 (8.36)

Using Shur’s complement lemma:
(

ας1I P

P ας1I

)
> 0,

(
ας2I Q

Q ας2I

)
> 0 P ≥ I Q ≥ I (8.37)

Now, using the convex sum propriety and the condition V̇ (e(t)) < 0 (Ψ < 0 holds). The condition Ψ < 0 in
equation (8.27) leads to the following optimization problem:

[
Ξ1 + αP 0

0 Ξ2 + αQ

]
< 0 (8.38)

with 



Ξ1 = Γ̄i + PD̄iG1D̄
T
i P + PF1P + G−1

2

Ξ2 = Γ̆j +QD̆jG2D̆
T
j Q+QF2Q+ G−1

1

Γ̄i = Φ̄
T
i P + P Φ̄i

Γ̆j = Φ̆
T
j Q+QΦ̆j

Φ̄i = (Āi − L̄iC̄)
Φ̆j = (Ăj − L̆jC̆)

which lead to: [
Γ̄i + PD̄iG1D̄

T
i P + PF1P + G−1

2 + αP
]
< 0 (8.39)

and [
Γ̆j +QD̆jG2D̆

T
j Q+QF2Q+ G−1

1 + αQ
]
< 0 (8.40)

The two matrix inequalities are connected by G1 and G2. Using Schur Lemma (8.2), inequalities (8.39 and
8.40) yield to: [

Γ̄i + G−1
2 + αP PD̄i + PF1

D̄T
i P + FT

1 P −G−1
1

]
< 0, i = 1, ..., p1 (8.41)

[
Γj + G−1

1 + αQ QD̆j +QF2

D̆T
j Q+ FT

2 Q −G−1
2

]
< 0, j = 1, ..., p2 (8.42)

By using the definitions of the matrices Γ̄i and Γ̆j and change of variables K̄i = PL̄i, K̆j = QL̆j and

Ω1 = G−1
1 and Ω2 = G−1

2 , where Ω1 and Ω2 are diagonal and positive definite matrices R1 = PF1 and
R2 = QF2. Finally, the gains of the interconnected observer are computed from the LMI conditions given
in theorem (8.1).
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8.3 Observer Evaluation and Simulation

In this section, the proposed interconnected observer for the combined longitudinal and lateral dynamics of
PTWV is evaluated by co-simulation with BikeSim c© software. A PTWV model is chosen from the dataset
Big Sport Baseline 8 bodies and default parameters. The simulations are carried out in two maneuvers:

Maneuver 1: Urban scenic road includes acceleration and braking scenarios with a high friction coefficient
µ = 0.9.

Maneuver 2: Handling road course with variable speed.

The motorcycle behavior, including longitudinal and lateral dynamics requires three inputs: the rider’s
steering torque applied on the handlebars and the two braking torques applied on both front and rear wheels
to reduce the longitudinal velocity.
In the following, if the actual state vy, vx and Fyf ,Fyr and Fxf ,Fxr are unknown, the state estimation can
be validated from lateral and longitudinal accelerations as follow:

Eq1 : ây =
(F̂yf+F̂yr)

m , Eq2 : ây = ˆ̇vy + vx
ˆ̇ψ

Eq3 : âx =
(F̂xf+F̂xr)

m , Eq4 : âx = ˆ̇vx − vy
ˆ̇ψ +Cd/m.v̂x

2
(8.43)

The first simulation is carried out from FHWA (Federal Highway Administration), this maneuver demon-
strates an acceleration and braking test includes three phases.
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Figure 8.2: Maneuver 1: Inputs.

The first phase (0 < t < 10(s)) is an acceleration phase, where only the drive torque T is applied on the
rear wheel. In the second phase (10 < t < 20(s)), no braking or engine torque is applied and the main body
is subject to lateral motion in response to the generated tire forces whereas the front body is subject to
steering motion as imposed by the applied rider’s steering torque τ on the motorcycle handlebar. The third
phase (20 < t < 30(s)), is the braking phase where a braking torque Bf and Br are applied to both front
and rear wheels to reduce the forward speed of the PTWV from 35m/s to 10m/s.
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Figure 8.3: Maneuver 1: BikeSim measured states.

The inputs of the lateral and longitudinal models are the braking torques at the front and rear wheels, the
drive engine torque and the steering torque depicted in figure 8.2. The measured state used in the observer
design are given in figure 8.3. The lateral and forward accelerations (ax and ay) are also used in the observer
design as well as to validate the estimation of the unmeasured states from equation (8.43).
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Figure 8.4: Maneuver 1: Actual states (in blue) compared to estimated states (dashed
red).

Estimation results of this scenario are depicted on figure 8.4, which are the lateral and longitudinal speeds, the
front and rear longitudinal forces, the front and rear cornering forces. From equation (8.43), the unmeasured
state (vx, vy, Fxi , Fyi) are validated and depicted in figure 8.5.
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Figure 8.5: Maneuver 1: Validation of the estimated states.

We can see on figure (8.4) the non-measured states (the lateral and longitudinal speeds, the front and
rear longitudinal forces, the front and rear cornering forces) compared to the actual data acquired from
BikeSim sensors. These results show the ability of the designed observer to well recover simultaneously
the interconnected longitudinal and lateral states of the motorcycle motion. Also we can remark a rapid
transient phase of the observer. Indeed, these plots show some differences, in particular in the lateral speed
and the lateral forces. This means that the lateral model is the most affected by the modeling errors between
the BikeSim model and the sharp model used in the observer design. In fact, the two body sharp model is a
pure lateral dynamic model valid for a various constant forward speeds. Indeed, the lateral model is slightly
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affected by the longitudinal motion because it does not take into account speed variation when accelerating
or braking. Despite modeling errors and the speed variation, the state estimation error still have ISpS
performance and the interconnected observer still provide good estimation.

In the second maneuver, the motorcycle undergoes an oncoming traffic in road course with variable speed.
The figures 8.6 show the input signals in the longitudinal and lateral models whereas figures 8.7 depict the
measured states along the track. The unmeasured state are estimated, depicted in figures 8.8, and validated
in figure 8.9.
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Figure 8.6: Maneuver 2: Inputs.
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Figure 8.7: Maneuver 2: Measured states.
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Figure 8.8: Maneuver 2: Actual states (in blue) compared to estimated states (dashed
red).
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Figure 8.9: Maneuver 2: Validation of the estimated states.

This track test includes a speed variations, in which the rider alternate between acceleration and braking
in turns, this maneuver is very common in riding situations. It clearly demonstrates all the capabilities of
the interconnected observer of estimating the unknown states of both longitudinal and lateral motorcycle
dynamics. Moreover, the forward speed is varying between 15 and 40m/s simultaneously with the braking
and engine torques and with lateral rider action in order to test the estimation performances independently
of the longitudinal velocity variations. As for the first test, this scenario illustrate that the observer rapidly
and accurately estimates the state of the interconnected model with minimal error even for extreme riding
situations. Despite some small estimation errors owing to modeling uncertainties, one can conclude that the
interconnected observer provides satisfactory results.
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8.4 Final Remarks

The main contribution of this work is to extend the existing works on the estimation of two-wheeled vehicle’s
lateral dynamics by the estimation of the longitudinal motion. The dependencies between these two motions
interfere on the observability of the estimators. In this scope, this chapter dealt with the estimation of
the quasi LPV out-of-plane and in-plane motorcycle motion. The interconnected observer formulation of
the estimation problem is presented and evaluated throughout co-simulation with a high-end motorcycle
simulation. This method is based on the decomposition of motorcycle model into two quasi LPV subsystems,
then each quasi LPV subsystems model of the vehicle is transformed into Takagi-Sugeno (TS), the result
is formalized using Lyapunov theory and the Input to State Practical Stability (ISpS) formulated as an
optimization problem under Linear Matrix Inequalities (LMI) aiming to minimize the error estimation bound.
The observer allows the reconstruction of relevant non-measurable states of the PTWV: the forward speed
and the longitudinal tire forces from the first sub-observer and lateral speed, roll angle and the cornering
forces from the second sub-observer.

8.5 Comparison and Analysis

From the previous chapters 5, 6, 7 and 8, the difference between the observers is not so trivial due to
the fact that all the techniques achieve acceptable results. Nevertheless, these fourth observers have their
advantages and disadvantages. For getting a close view, we recall the most important features of each of
them in Table 8.1. To sum up, these observers successfully respond to a common problem, allowing to
estimate the non-measurable PTWV states of the lateral dynamics such as the steering torque τ , the lateral
pneumatic forces Fyf and Fyr, the longitudinal forces Fxf and Fxr, lateral velocity vy or roll angle noted
φ. In practice, it is hard to have exact knowledge of certain parameters of the model, either because they
are not measurable (inertia, tire stiffness, model parameters aij etc.) or because they are not constant in
time, such as the mass of the motorcycle and/or rider or even the mass of fuel. According to the motivations
and objectives of this thesis, we also provide some solutions based on observer based identifier (LAO and
DUIO), these methods deal with the estimation of both motorcycle states and parameters with the same
design procedure. In addition, many scenarios have been considered in order to test the the convergence
of these techniques. Besides, these estimators require light instrumentation with very simple sensors that
are widely used in vehicles (GPS, IMU and steering encoder). They are therefore perfectly integrated into
the development of Advanced Rider Assistance Systems (ARAS) for PTWVs. However, the use of low-cost
sensors generally degrades the quality of the measurements, which are then significantly affected by noise.
Also, sensor alignment is never perfect causing bias in measurements. In this case, it would be interesting
to quantify the estimation performance in the presence of noisy measurement or parameters uncertainties
by mean of well-known index (RMSE, MSE, RMS).
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Observer Sensors Advantages Disadvantages

Unknown Input
IMU Road and Steering Structural constraint

Observer (UIO)
Steering encoder dynamics reconstruction Using a differentiator v̇x
GPS τ ,φ,φr, vy,Fyf ,Fyr Nominal parameters

Asymptotic convergence
No knowledge about UI
Lyapunov+ LMI region
Real data validation

Interconnected
Accelerometer Lateral and longitudinal Boundness of estimation errors

fuzzy Observer
Gyroscope dynamics estimation Ideal sensors
Steering encoder vx, vy,φ,Fyf ,Fyr,Fxf ,Fxr Nominal parameters

(IFO) Lyapunov+ ISpS stability
Reduce observability problem
Add DoFs in the reconstruction
BS validation
Does not require v̇x

Observer based Identifier

LPV Luenberger
IMU State estimation vy,φ,Fyf ,Fyr Bounded Convergence

adaptive Observer
Steering encoder Tire parameters identification Requires a pneumatic model
Virtual output Cf1,Cr1,Cf2,Cr2 Lipschitz condition

(LAO) GPS Does not require v̇x PE condition
Evaluation scheme
BS validation+ real data

Delayed Unknown
IMU Mismatched condition Using a differentiator

Input Observer
Steering encoder vy,φ,Fyf , ,Fyr state estimation Singularities due to inversion
Delayed outputs aij parametric identification Complexity in TS form

(DUIO) GPS Step-by-step algorithm DUIO Ideal sensors
BS validation

Table 8.1: Comparison table: Advantages / disadvantages of the presented ob-
servers for estimating of PTWV states and parameters.
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Conclusions

This section concludes the observer synthesis part based on the mathematical model of PTWV dynamics.
Thereby, model-based state estimators are used to achieve a reliable estimation of both the motorcycle’s
unmeasured dynamics and the most important unknown parameters. The purpose of these observers is a
concrete application. In this context, they take into account the real riding behavior of a PTWV, unknown
parameters, the lack of accuracy of sensors or uncertainties either in the synthesis model or in the observer
evaluation. Four observers of different purpose were presented:

• Unknown Input Observer (UIO), chapter 5.

• Delayed Unknown Input Observer (DUIO) with mismatched condition, chapter 6.

• LPV Luenberger-adaptive observer (LAO), chapter 7.

• Interconnected Fuzzy Observer (IFO), chapter 8.

The outlined observers were tested on the BikeSim c© simulator for different scenarios such as a Double Line
Change (DLC), handling road course, slalom maneuver and chirp test. These co-simulation tests aim to
validate the observers by proving the convergence of the estimation error in cases of both normal (handling
road course) and extreme (chirp, slalom and DLC) behavior. Finally, a much more realistic validations were
made on experimental data from a test setup on the Scooter. These validations showed the potential of these
observers in more real riding behavior to illustrate the effectiveness of the proposed observer in estimating
the states, unknown input, unknown parameters and road geometry. One of the main contributions common
to these four observers (UIO, IFO, LAO and DUIO) is the taking into account of the variations of the
longitudinal velocity vx during the design of the observer. In other words, there is no restriction on vx as
is the case in many works of literature. These observers has been designed subject to Lyapunov theory.
Sufficient conditions for the existence of the estimator are given in terms of linear matrix inequalities (LMIs)
to ensure the state and/or parameters estimation convergence. The simulation results showed satisfactory
results that support the claims.
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Part IV

Risk Assessment: Steering Behavior
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Introduction

T
he study of the road accidents shows that human factors (57%) of accidents appear far before the
meteorological or technical issues (Penumaka et al., 2014). The two most frequent human causes:

alcohol and speed are responsible respectively of 31% and 25% of fatal accidents. Distraction or tiredness
are also important human factors in a road accident that can be highlighted by, for example, lane crossing
or abnormal steering behavior. Lane departures account for a significant percentage of roadway fatalities.
According to Federal Highway Administration’s Roadway (FHWA), from 2015 to 2017 an average of 19,23%
traffic fatalities resulted from roadway departures crashes. This is why the last few years have seen the
emergence of on-board roadway departure assistance systems in cars as a mean for improving security and
helping to avoid damage or even fatal crashes in dangerous steering situations. Departure Lane Assist (DLA)
systems make the vehicles more autonomous, allowing to inspect the surrounding vehicle’s position and to
detect the driver hypo-vigilance. These systems can be done through different technologies: Lane Departure
Warning (LDW) system (Gonzalez Bautista, 2017) and Lane Keeping Assistance (LKA) system (Visvikis
et al., 2008). All those systems have been discussed, as well as their interoperability issue in (Mammar
et al., 2004; Mammar, Glaser, and Netto, 2006; Wang et al., 2018; Benine-Neto et al., 2014; Lefevre et al.,
2013). In spite of the fact that road-departure systems are present in every modern car, they are not yet
developed for motorcycle and those implemented for four-wheeled vehicles are not entirely transferable to
motorcycles due to the fact that motorcycle dynamics is more complex and unstable. Therefore, departure
avoidance systems for motorcycle are the next step, aimed to detect as early as possible, when the motorcycle
is involuntary getting out of the lane. Then, the rider corrects his trajectory, maintain stability and keep
acceptable performances by means of this early detection systems.

Currently, relevant works are planned to study the design of these systems for PTWV from the control point
of view (Marumo and Katagiri, 2011b). In (Katagiri, Marumo, and Tsunashima, 2008b), the lane-keeping
controller for motorcycles was evaluated through computer simulation with a rider-control model, in which
the lane-following performance was improved by using a virtual-point regulator. In (Chung et al., 2006),
the authors developed a Lane Change Decision Aid System (LCDAS), which detects backward vehicles and
motorcycles taking into account weather and environmental conditions. Eventually, they used a change
using single camera, in order to inform the driver of dangerous situations during lane change maneuvers.
Furthermore, an optimal control theory to the lane keeping controller for motorcycles was presented in
(Katagiri, Marumo, and Tsunashima, 2009). In (Damon et al., 2018b; Damon et al., 2018), authors study
the motorcycle’s steering behavior, achieved by a vision-based approach to define the motorcycle position
on the road and detect under or oversteer situations. Lane Departure Warning System for a motorcycle is
still under development and needs a more thorough investigation to be implemented in new bikes.
In some ways, the PTWV size can be seen as a weakness. In fact, they tend to frequently change travel
direction and speed, regardless number of lanes or their width. Consequently, the lane crossing may create
hazardous situations. To reduce safety risks, riders should try as much as possible to avoid the middle and
the overtaking lanes since that would expose them to left side and right-side hazards posed by adjacent
vehicles (A Hamzah, 2018). Furthermore, a key problem in building up departure warning systems for
motorcycle or even vehicles is how to develop a driving risk function, which can be used to warn the rider
in the case of passive assistance or engage the control action in the case of active assistance. A car roadway
departure system usually defines a Lane Crossing Time (TLC) and Distance to Lane Crossing (DLC) as a
risk index, to assess the time for involuntary trespassing the boundaries (Mammar, Glaser, and Netto, 2006;
Wang et al., 2018).
Among others, steady-state analysis and handling capabilities issues are very related to vehicle safe trajectory
and steering behavior. Many researches were devoted to study the steady-state handling for cars (Pacejka,
1973; Velenis, Frazzoli, and Tsiotras, 2009; Grigorievich, Igorevich, and Nikolayevich, 2018; Wasiwitono,
Sutantra, and Triwinarno, 2015). These studies focus either to define the analytical handling criteria or the
critical dynamic variables by which the divergent loss of handling occurs. The analysis of the properties of
handling highlights certain dynamic aspects that are important to define dangerous/safe stability threshold
conditions (Evangelou, 2004), as the neutral, overturning or underturning behaviors (Glaser, Mammar,
and Sentouh, 2010; Velenis, Frazzoli, and Tsiotras, 2010; Evangelou, 2004; Grigorievich, Igorevich, and
Nikolayevich, 2018; Wasiwitono, Sutantra, and Triwinarno, 2015). Unfortunately, this keen interest is not as
evident to some other road users. In this context, there is a lack of literature review related to the problem
of Lane Crossing Point (LCP) detection and steady-state steering analysis for motorcycles.

To sum up, the accidentology analysis and gaps have revealed two major categories: roadway departure and
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unsuitable steering behavior, which need more thorough investigations. The purpose of this part is to provide
solutions to both of these problems. We aim at identifying objective indicators for the quantification of risk
as well as carrying out and discussing the design of possible warning system for riders of PTW vehicles.
Risks considered here are related to unsuitable steering behavior, speeds profile and/or inadequate rider roll
posture leading to a possible loss of control, lane departure or collision. The risk functions to be synthesized
will be mainly based on purely dynamic considerations.
This design requires a precise knowledge of the various dynamic states and parameters of the motorcycle as
well as the external efforts to which it is subjected. The calculation of the risk function can be achieved using
existing instrumented PTWV, with the addition of systems that allow precise localization on the road based
on vision. In what follows, we will describe two approaches proposed in order to detect risky riding situation
and warn the rider to correct his trajectory. To do so, we divided this part into two chapters. First, a Neutral-
path departure (NPD) is proposed. In this chapter, a detection approach towards getting circular stationary
states and analytical handling conditions developed for PTWV. Based on the established motorcycle model
combined with magic formula tire cornering forces, a Self Steering Gradient for motorcycles is proposed as a
risk function. Hence, the NPD algorithm monitors signals from sensors and compares intended neutral and
actual paths to characterize the steering behavior: over or under-steering situations. The second chapter
focuses on Lane Crossing Prediction (LCP) for PTWV. The aim is to predict, with a simple perception
system, the spatial and temporal lane change information (DLC and TLC) which are key components to be
estimated in order to predict critical situations. The idea is based on data from Inverse Persepctive Mapping
(IPM) techniques for motorcycles developed in a previous thesis work (Damon et al., 2018a). These data
are then used to discuss the distance to lane crossing estimation.
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Chapter 9

On Steady-State Cornering Analysis

Inspired by steady-state and the handling analysis for cars, the following work tackles the question
of the motorcycle’s steering behavior based on the stationary cornering condition to describe neutral,
under or over steering behavior. In this chapter, a neutral-path departure (NPD) algorithm is proposed
to define safe handling conditions and dangerous steering situation for PTWV. Based on this study, a
self steering gradient for motorcycles is proposed as a risk function for neutral-path departure detection.
Furthermore, the motorcycle overturning or under-steering are analyzed based on the handling index.
This index depends on the intrinsic motorcycle parameters, as well as, the outputs. The proposed
neutral-path departure algorithm aims to assess the risk when the motorcycle begins to drift out of the
neutral path. Finally, the effectiveness of the detection scheme is tested using a high-fidelity software
BikeSim c©. This work was published in Fouka et al., 2019c.

Abstract

9.1 Lateral Motorcycle Dynamics

Riding assistive systems seek to improve the PTWV controllability and achieve the best dynamic behavior
in all situations, from the most common to the most unexpected. Thereby, vehicles that are equipped with
roadway assistive systems remain perfectly controllable whatever the physical limits of the rider. In this
part, we are interested in the steady state cornering and neutral path departure, related to a problem of
PTWV dynamics due to an excessive speed, overtaking in a bend or a failure in guidance system. In fact,
the yaw rate combined with the longitudinal speed and the steering angle can represent the motorcycle
steering tendency to oversteer or understeer. To solve this problem, we proposed risk indicators, related
to the motorcycle lateral dynamics, in order to assess the severity of the situation and alert the rider if
necessary.

The lateral cornering forces are given by:

{
Fyf = −Cf1αf +Cf2γf
Fyr = −Cr1αr +Cr2γr

(9.1)
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After simple manipulation, one can write :
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where 



K1 = (−(lfCf1 − lrCr1)m− (lf+lr)(Cf2Cr1−Cf1Cr2)
g )

K2 = (lf − lr)2Cf1Cr1

K3 = (lf + lr)Cf1

(
Cr1 cos(ǫ)−Cf2 sin(ǫ)

) (9.7)

The steering sensitivity ψ̇
δ is given by :

ψ̇

δ
=

(K3

K2
)vx

[Kv2
x + 1]

(9.8)

Where K = K1
K3

is the handling factor. The aim of this part is to extract from the above model (9.3),
the operating steady steering conditions. The motorcycle steering tendency depends on the yaw rate, the
forward velocity vx and the stability factor K, it follows:
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Figure 9.2: Motorcycle sensitivity gain.

1. K = 0 for Neutral steering, ψ̇
δ = K3

K2
vx has a linear relation with motorcycle speed with K3

K2
is the

slope.

2. K > 0 Under-steering, the steering sensitivity is below the neutral steering characteristics. d
dvx

( ψ̇δ ) =

0 → vch = 1√
K

. It is interpreted as the motorcycle characteristic speed at which the vehicle reacts

most sensitively to steering inputs.

3. K < 0 Over-steering: when vcr = 1√
−K , the steering sensitivity strives toward infinity, where vcr is

the critical speed, for which a motorcycle becomes unstable because its steering is canceled, as even
very small steering input would lead to infinite yaw rate.

9.3 Side Slip Dynamics

The following study defines a new handling factors proper to motorcycle. In steady cornering, the state
variables are given by:

φ =
ψ̇vx

g
, ρ =

ψ̇

vx
=

1

R
, ay = ψ̇vx (9.9)
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The side slip relation can be expressed as a function of motorcycle intrinsic and dynamic variables from
equations (3.4 and 9.1): αf − αr = f1(φ, δ, ay, ε,m, lf , lr,Cfi,Cri), as well as from the kinematics equation
(9.2): αf − αr = f2(δ,R, ε, lf , lr). Now, replacing cornering forces (9.1) into (3.4), it follows:

[
αf
αr

]
=

[
Cf1 Cr1

lfCf1 −lrCr1

]−1
([

may
0

]
−
[

Cf2 Cr2

lfCf2 −lrCr2

][
γf
γr

])
(9.10)

From the above equation: 



αf = (lrm)
(Cf1lf+Cf1lr)

ay − Cf2lr+Cf2lf
(Cf1lf+Cf1lr)

γf

αr =
(lfm)

(Cr1lf+Cr1lr)
ay − Cr2lr+Cr2lf

(Cr1lf+Cr1lr)
γr

(9.11)

Replacing the camber angles (γf = φ+ δ sin(ε), γr = φ) in equation (9.11), one gets side slip relation:

αf − αr = (
Cr2Cf1 −Cf2Cr1

Cr1Cf1

)

︸ ︷︷ ︸
EG2

φ−
Cf2

Cf1

sin(ε)

︸ ︷︷ ︸
EG3

δ+

(Cr1lr −Cf1lf )

Cf1Cr1

m

(lf + lr)︸ ︷︷ ︸
EG1

ay

= EG1ay +EG2φ−EG3δ

(9.12)

From the following kinematics equations:

αf = −vy + lf ψ̇

vx
+ δ cos(ε), αr = −vy − lrψ̇

vx
(9.13)

The side slip relation is also described as:

αf − αr = − vy+lf ψ̇
vx

+ cos(ε)δ +
vy−lrψ̇
vx

= −(lf + lr)
ψ̇
vx

+ cos(ε)δ

= − (lf+lr)
R + cos(ε)δ

(9.14)

The self-steering behavior depends on the sideslip difference:

{
αf − αr = EG1ay +EG2φ−EG3δ

αf − αr = − (lf+lr)
R + cos(ε)δ

(9.15)

by identifying the above equations, one gets:

δ =
(lf+lr)

R(cos(ε)+EG3)
+ ay

EG1

(cos(ε)+EG3)
+ φ EG2

(cos(ε)+EG3)

= δA + ay
EG1

(cos(ε)+EG3)
+ φ EG2

(cos(ε)+EG3)

= δA + ∆δ

(9.16)

With

δA =
(lf + lr)

R(cos(ε) +EG3)
(9.17)

The steering angle δA resulting from equation (9.16), is called the neutral steering angle. The additional ∆δ

angle is caused by the motorcycle’s dynamics.
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-SS < 0 (
˙︷︸︸︷
SS < 0), when motorcycle steers towards the right: this reflects over-steering behavior.

The actual cornering radius is smaller than the neutral one. Indeed, a decrease in lateral acceleration
causes a greater increase in the radius of the trajectory. This phenomenon generates instability which
can only be countered by a decrease in the steering angle to stay on the neutral radius.

-SS < 0 (
˙︷︸︸︷
SS > 0) reflects counter-steering behavior (correction of the over steer).

-SS > 0 (
˙︷︸︸︷
SS > 0) reflects under-steering behavior. It is necessary to steer the steering angle in the

clockwise sense to stay on the right radius.

-SS > 0 (
˙︷︸︸︷
SS < 0) correction of the under-steer.

3. Left turn, δA > 0 (anticlockwise):

-SS > 0 (
˙︷︸︸︷
SS > 0) reflects over-steering behavior, the actual cornering radius is smaller than the

neutral one, the rider has to turn the front wheel in the right side, reduce roll angle or accelerate to
increase the radius and catch the neutral path.

-SS > 0 (
˙︷︸︸︷
SS < 0) counter-steering behavior.

-SS < 0 (
˙︷︸︸︷
SS < 0) reflects under-steering behavior, the actual cornering radius is greater than the

neutral path, the rider has to steer towards the left side or tilt to increase roll angle to reach the correct
radius.

-SS < 0 (
˙︷︸︸︷
SS > 0) under-steer correction.

Remark 9.1. Moreover, a hysteresis function Hys(SS) or a memory block can be used to avoid multiple

switching. This block holds the value of (SS) when the algorithm switches to test the rider correction by
˙︷︸︸︷
SS .

The use of this block can minimize unwanted behaviors when switching between the algorithm loops.

SS

Hys(SS )

|
S∗

S

1

Figure 9.4: Memory block

9.5 Simulation Results

The proposed approach is evaluated by co-simulation with BikeSim c© software under different riding ma-
neuver. A PTWV model is chosen from the dataset Big Sport Baseline 8 bodies and default parameters. It
will be assumed that:

• The road is flat with a high friction coefficient of µ = 0.9

• In these simulations, the motorcycle is riding at a constant speed of 50 km/h.

The simulations are carried out considering two scenarios:

Scenario 1: Three tests are conducted to evaluate the risk index: an oversteer scenario, a neutral
turning scenario and an understeer maneuver.
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Scenario 2: A mixed scenario including neutral, under, oversteer and rider correction with noise con-
sideration to highlight the detection scheme and alarm generation.

Note that BikeSim offers several driver models with different control strategies. In our case, it is an open-loop
control on the steering torque, more suitable to simulate steering behavior.

9.5.1 Scenario 1

In this scenario, it is proposed to validate the risk function selected for the detection of under and oversteer
on the handlebar of a PTWV. To do this, we have simulated a circular trajectory with a constant radius of
61.4 meters for three different riding scenarios, conducted for different steering torques.
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Figure 9.5: (right) Rider torque and steering angle (left) Neutral Path Departure.

Figure 9.5 (left) shows the steering torques applied to the PTWV. On the same figure, we can also see the
steering angle corresponding to a scale factor of 3. The input steering angle used in this test is defined
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Figure 9.6: Steady Steering behavior: outputs and steering errors.

such that the wheel lift-off occurs at 13 sec, whereas in neutral test no wheel lift-off occurs. For the neutral
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scenario, the torque applied to the handlebar is τ = 6 N/m. When a PTWV is oversteer, the torque applied
by the rider on the handlebars is too large compared to the geometry of the turn. PTWV tends to turn
inward of the curve. Conversely, when understeers the applied torque is lower than the neutral one, the
PTWV tends to increase the trajectory to the road exit. The vertical dashed line refers to the time from
which the steering behavior is significantly affected by the over or understeer phenomenon.

Figure 9.5 (right) shows the different trajectories of the PTWV during the constant turn. In blue, the
motorcycle trajectory for a neutral turning. In which the motorcycle path is parallel to that of the road
edges. While in red, we show the trajectories of over turning, respectively in black under turning.

Figures 9.6 plot the consequences of the over and under-steering phenomena on the steady state variables
for the three cases. It can be seen that the slightest action on the handlebars when cornering has significant
consequences on the complete dynamics of the PTWV (ψ̇, ay, φ, etc). In Figure 9.7, we present the steering
index calculated from equation (9.18) for the three scenarios. It can be noted that the alarm and correction
signals remain at zero when no wheel lift-off occurs. Then, these signals detect the motorcycle is drifting
out: ζ1 = −1 understeer or ζ1 = 1 oversteer. In these scenarios, no correction is taken by the ride ζ2 = 0.
The SS shows good efficiency to early detect the steering errors from the neutral path. This advantage is
very interesting since the neutral path departure has to be quickly avoided.
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Figure 9.7: Alarm and corrections.

9.5.2 Scenario 2

This part is devoted to evaluating the neutral path departure warning algorithm in noisy case.
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During this scenario, the motorcycle is riding to perfectly follow the neutral path road until 9 sec. Then,
the wheel drift will occur first as understeer until 30 sec including a rider correction, then as oversteer until
50 s with some adjustment from the rider, seeking to catch the neutral line. Figure 9.8 shows the steering
torques applied by the rider and the corresponding steering angle.

Figure 9.9 shows the lateral and longitudinal errors. While, figures 9.10 show the consequences of the neutral
path departure on the motorcycle states.
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Figure 9.11 illustrates the relevant indicators proposed for the characterization of steering behavior. The risk
indicator SS is computed here from the noisy measurement of the actual steering, lateral acceleration, and

roll angle of the PTWV. Moreover, the analysis of
˙︷︸︸︷
SS is very interesting to characterize the changing in the

rider steering action. Note that the raw data (unfiltered) is difficult to exploit because of the noise amplified
by the derivation. This is why the SS has been filtered with a simple first-order filter. Therefore, we prefer

to use the SS and derivative
˙︷︸︸︷
SS to define two levels of risk: the first level detects the over/understeering

and the second level detects if any correction is taking by rider.
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Figure 9.11: Risk functions, alarm and corrections.

One can see in figure (9.11) that the used steering risk indicators and the alarm signal given by the detection
algorithm are very interesting to detect the rider errors and the neutral path drift out even with noisy
outputs. It can be noted that the alarm signal remains at zero when no neutral path departure is detected
SS = 0. Then the alarm signals take the correct values depending on which direction the motorcycle is
drifting out ζ1 = −1 understeer or ζ1 = 1 oversteer. Also, one can see the alarm corresponding to rider
correction ζ2 which means that the rider is trying to bring back the PTWV to the neutral path.

9.5.3 Results Discussion

Finally, simulation results from the BikeSim c© software have shown that the synthesis of the detection
algorithm-based risk function has undeniable potential to characterize the steering behavior. Indeed, it is

much informative since it is based on the analysis of two parameters SS and
˙︷︸︸︷
SS . These results attest the

effectiveness of the risk indicators developed for neutral path departure detection algorithm. These results
highlight the effectiveness of the detection algorithm to detect in an early stage the steering deviation. This
advantage is very interesting since the road departure has to be avoided earlier. Although the results are
really encouraging, the idea presented in this thesis deserves to be deepened. Indeed, for the validation of the
approach, we are limited to the co-simulation case and improvements should be made to avoid bad detection
in case of using estimated data instead of measurement outputs in some situations.

9.6 Conclusions

In this chapter, we proposed a synthesis of a new risk function for the characterization of rider steering
behavior. While conventional approaches use kinematics or geometric functions, to detect the intersection
point on the road edges. The motorcycle tendency to under or oversteer in steady turning is also analyzed,
based on handling conditions. We propose here a new neutral-path departure algorithm to overcome rider
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steering errors when the rider drifts out of the neutral lane. The algorithm monitors signals from sensors
and compares intended neutral (theoretical) and actual paths. If the trajectories differ from each other, this
means that motorcycle is going out neutral path, in this case, the algorithm generates an alarm to warn
the rider. Based on the established motorcycle model, combined with magic formula tire cornering forces, a
Self Steering Gradient for motorcycles “SS“ is proposed as a risk function. Besides, the NPD algorithm is

designed based on the SS and
˙︷︸︸︷
SS . Then, the detection method was tested in co-simulation using BikeSim c©

under different steering maneuvers to highlight the effectiveness of the proposed algorithm to detect in an
early stage the over/under steering deviation from the neutral path, to improve motorcycle handling and
correct the unsafe maneuver. Indeed, the proposed solution is very economical, limiting the amount of energy
needed since it only requires a conventional IMU and a steering encoder.
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Chapter 10

Lane Crossing Tracking

Departure Lane Assist (DLA) systems for the PTWV are the next step in inspecting the motorcycle’s
position. Obviously, these departure avoidance systems were intended to warn the rider of an uninten-
tional drift off the track. In this chapter, we investigate a vision-based approach for online lane change
prediction and detection dedicated to motorcycles. The approach is composed of two steps. First,
the road geometry (clothoid model) and the motorcycle position with respect to the road markers are
deduced based an inverse perspective mapping (IPM) algorithm. The relative position is represented
by the vehicle lateral displacement and heading estimated by means of an Inertial Measurement Unit
and a monocular camera. The second step consists of predicting the Lane Crossing Point which allows
to predict the distance and time before the motorcycle crosses the lane. The algorithm is achieved
without the use of any steering sensor. The theoretical aspects and the validation of this idea were
published in Damon et al., 2019.

Abstract

10.1 Problem Statement

The detection and tracking of the Lane Crossing Point (LCP) involve several technical problems that must
be overcome (Tapia-Espinoza and Torres-Torriti, 2013; Kumar and Simon, 2015). Whereas prediction is
realized in most cases through monocular cameras by reconstructing the road profile as well as the current
position of the vehicle. This is also done under some assumptions such as flat roads and perfectly parallel
markings.

In the case of motorcycle riding, both previous assumptions are violated because of a bike dynamics. Indeed,
the PTWV can reach significant roll angles (the world record is about 68◦) and undergo load transfers
during braking or acceleration phases (pitch angle significant). Following this, the images recorded by the
front camera undergo noteworthy deformations and do not allow a direct use without a projection in a more
advantageous plan (bird-eye-view for example). The next section recalls previous work on a vision based
approach for accurate vehicle position reconstruction, presented in Damon et al., 2018a; Damon et al., 2018c.

This allows to recover crucial information such that DLC or TLC proportional and the second being inversely
proportional regarding the motorcycle speed.
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Figure 10.1: Captured camera image with reprojected road lanes, predicted trajectories
and LCP

This work focuses on lane crossing prediction for powered two-wheeled vehicles. The aim is to predict, with
a simple perception system, the spatial and temporal lane change information. Such information can be
predicted using the Time to Lane Crossing (TLC) and the Distance to Lane Crossing (DLC) which are key
components to be estimated in order to predict critical situations.

10.2 Vision-based Information

This chapter recalls the results initially introduced in Damon et al., 2018a. The reader could refer to the
following videos 1 for visual illustrations. In Damon et al., 2018a, the authors used the IPM technique
combined with a road lanes filter allowing to generate a bird-eye-view of the road markers (as presented in
figure 10.3). Then, a clothoid model of the road is used to extract pertinent information such that the PTWV
relative lateral displacement and heading angle to the road markers. They are respectively denoted ∆Yi and
∆ψi, where i ∈ {l, c, r} indicates left, center and right markers. It allows to recover crucial information
regarding the PTWV location on the road.

Furthermore, the clothoid model allows to predict the road curvature and its rate respectively named C0

and C1. Both parameters allow to accurately reconstruct the road trajectory in the selected Region Of
Interest (ROI). Note that, even if the ROI ahead limit of the PTWV is chosen about 30 meters (see Damon
et al., 2018a), each road marker trajectory can be extended since we know its third degree polynomial
approximation.

Let us remind that each road lane is approximated in the cartesian coordinate system with the following
expression for i ∈ {l, c, r}:

yi(x) ≈ ∆Yi + tan(∆ψi)x+
1

2
C0ix

2 +
1

6
C1ix

3 (10.1)

Whereas, in the simulations discussed in Damon et al., 2018a, the right road marker is defined as a static
reference, we proposed to introduce a dynamic reference. Indeed, the accuracy of the lane i trajectory
reconstruction mainly depends on two factors: the proximity with this lane and its attribute (dashed or
solid). Our strategy is to choose the reference among the right or left solid lanes regarding the estimated
PTWV position on the road (given by ∆Y and ∆ψ). Note that, choose the center marker is depreciated
because it is often discontinuous leading to less accurate approximation. Then, if the PTWV is traveling
in the right (respectively left) lane, the right (respectively left) road marker is set as the reference. Finally,
since the road markers are assumed parallel and separated from each other by a distance L, the two others
lanes trajectories are reconstructed from the reference road marker equation (10.1). At this point, we know
an estimation of the three lanes trajectories in the vehicle frame Fv whose the origin is the projection of the
camera center on the ground.

1https://www.youtube.com/playlist?list=PLRTI62SuvNymK2Dx-YKha-1a4Sp54IVs8
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10.3 Lane Crossing Point Tracking

Now, considering that the road lane trajectories are available, the LCP tracking problem consists of finding
the intersection point coordinates between the predicted road lane and vehicle trajectories. For the latter, we
addressed two cases. For both, the vehicle speed is assumed constant and positive. The first case considers
a straight predicted vehicle trajectory which corresponds to a zero steering angle (δ = 0). Whereas for the
second, δ is assumed constant and non zero. Under these last assumptions, the predicted vehicle trajectory
is a circular path with a constant radius. For what follows, we denoted DLC0 and DLCδ the predicted
distances to the LCP respectively for straight and circular vehicle trajectories. Note that, the DLC is
computed with respect to the vertical projection of the camera center on the ground which is the origin of
the frame Fv.

Note that, for the case where δ 6= 0, we systematically compute two DLC which are DLC0 and DLCδ. The
first considering a straight predicted trajectory and the second based on a circular path prediction (see figure
10.3). This allows to get a surface containing all the LCP between the actual circular path and the straight
one. In other words, it provides indications about the LCP location in case of the rider reduces the steering
(increase of the trajectory radius).

Moreover, for both scenarios (δ = 0 and δ 6= 0), we solved the DLC algorithm for each detected road lane.
Hence, the final LCP is the nearest point among the solutions as illustrated in figure 10.1 and 10.3.

10.3.1 Straight predicted vehicle trajectory (δ = 0)

For straight predicted path, the computation of the DLC can be easily achieved by solving the equations for
i ∈ {l, c, r}:

∆Yi + tan(∆ψi)x+
1

2
C0ix

2 +
1

6
C1ix

3 = 0 (10.2)

Let us remind that equation (10.2) is expressed in the vehicle frame Fv where Xv corresponds to the vehicle
longitudinal axis (refer to 10.3). Hence, if xDLC0i

is a solution of equation (10.2) then, the DLC with regards
to the lane i is trivial. It can be directly deduced such that: DLC0i = xDLC0i

. Let us remind, the final DLC

is computed such that DLC0 = min(DLC0k ) with k corresponding to the set of all the lane intersection
points. In figure 10.3, the magenta line clearly illustrates the situation with k = {center, right}.

10.3.2 Circular predicted vehicle trajectory (δ 6= 0)

In this case, we need to reconstruct the forward predicted vehicle trajectory based on its current dynamic
states. To do so, it requires to compute the vehicle slip angle denoted ψs. It can be expressed as a function
of the the measured yaw angle (ψ) and the angle of the trajectory tangential vector (ψt) as illustrated in
figure 10.2.
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Figure 10.2: Scheme of the vehicle circular path prediction

Now, let us consider that the yaw angle, measured by the IMU, is included in the interval [−π, π]. To avoid
any singularity, we introduced the following relation:

ψs = Ψt(ψ,ψt) − Ψ(ψ)

= ψt + πsign
(
Ψ(ψ)

)
Θ (ψt,ψ) − Ψ(ψ) (10.3)

with Θ and Ψ defined by the following functions:

Ψ(ψ) =

{
ψ− sign(ψ)π/2 if |ψ| ≥ π/2
ψ if |ψ| < π/2

(10.4)

and

Θ (ψt,ψ) =

{
0 if

∣∣ψt − Ψ(ψ)
∣∣ ≤ π/2

1 if
∣∣ψt − Ψ(ψ)

∣∣ > π/2
(10.5)

At this step, the aim is to express ψt as a function of the IMU measurements such that the body-fixed
accelerations (axbf , aybf , azbf ) and the orientation angles (φ, θ, ψ).

Let us define Aj = [axj , ayj , azj ]
T and Vj = [vxj , vyj , vzj ]

T as the acceleration and the speed vectors with
j = g for the global frame and j = bf for the body-fixed one. Let us remind the following relations between
the two frames:

{
Vg = RVbf
Ag = RAbf (10.6)

where R = RψRθRΦ is the rotation matrix. The terms Rψ, Rθ and RΦ denote the rotation matrices
associated respectively to the yaw, pitch and roll Euler angles. Note that Φ is the rotation angle about the
axis which has been previously pitched of θ. The real vehicle roll angle, denoted φ, can be computed using
the algebraic expression:

φ = asin
(
cos(θ) sin(Φ)

)
(10.7)
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Furthermore, the acceleration vector in the global frame can be obtain with the relation: Ag = V̇g. Combining
the latter and (10.6) leads to:

Ag = ṘVbf + RV̇bf (10.8)

Since we assumed that the vehicle motion is uniform and circular (Φ = cst, θ = cst, V̇bf = 0), equation
(10.8) can be reduced to:

Ag = ṘVbf (10.9)

where Ṙ = ṘψRθRΦ is the time derivative of the rotation matrix.

Using equations (10.6) and (10.9), we obtain the following expression:

RAbf = ṘVbf
= ṘR−1Vg (10.10)

Afterwards, we get one expression of the speed vector in the global frame:

Vg = MAbf (10.11)

where M = RṘ−1R = [mij ] with i, j ∈ {1, 2, 3}

Let us remind that, by definition, the speed vector, expressed in the global frame, is tangent to the vehicle
trajectory. Since ψt is the angle of the tangential direction to the PTWV trajectory, it comes:

ψt = atan

(
vyg

vxg

)

= atan

(
m21axbf +m22aybf +m23azbf

m11axbf +m12aybf +m13azbf

)
(10.12)

with:

m11 = sin(ψ) cos(θ)

m12 = cos(ψ) cos(Φ) + sin(ψ) sin(θ) sin(Φ)

m13 = − cos(ψ) sin(Φ) + sin(ψ) sin(θ) cos(Φ)

m21 = − cos(ψ) cos(θ)

m22 = sin(ψ) cos(Φ) − cos(ψ) sin(θ) sin(Φ)

m23 = − sin(ψ) sin(Φ) − cos(ψ) sin(θ) cos(Φ)

At this point, the vehicle slip angle denoted ψs can be computed using equations (10.3), (10.4), (10.5), (10.7)
and (10.12).

Now, let us consider the IMU measurements, Abf and ψ̇, are given at a fixed sample rate denoted ∆t. Then,

under the previous assumptions, at an instant t, the vehicle trajectory, defined by X̂vh and Ŷvh, can be
predicted with the algorithm 4.

Note that, algorithm 4 predicts the discrete vehicle trajectory from its current position to the one with an
angular horizon of π/2. The term D∆t denotes the constant traveled distance along the circular path during
∆t. Since the vehicle motion is assumed circular, uniform and forward, it comes:

Vbf =

∥∥Abf
∥∥

∣∣∣ψ̇
∣∣∣

(10.13)
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Figure 10.3: Road bird-eye-view with predicted vehicle trajectories and tracked LCP

Finally, in the case of non zero steering, the DLC is the numerical solution when solving the intersection
between the road lane equations (10.1) and the discrete predicted trajectory given by algorithm 4 (see the
red dot in figure 10.3). As for straight path, when several LCP are detected then DLCδ = min(DLCδk )
with k a set of all LCP.

Notice that, since the longitudinal vehicle speed is available, the DLC can be trivially turned into a TLC
using the equation:

TLC =
DLC

vxbf
(10.14)
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Algorithm 4: Motorcycle circular trajectory prediction

1: Inputs ψs, ψ̇, Abf , ∆t

2: Outputs X̂vh, Ŷvh

3: Initialize D∆t ←
‖Abf‖∣∣ψ̇
∣∣ ∆t,

∆ψ1 ← −ψs,
X̂1
vh ← 0,

Ŷ 1
vh ← 0

4: for i = 2 to
π

2
∣∣ψ̇(t)

∣∣∆t
+ 1 do

5: ∆ψi ← ∆ψi−1 − ψ̇(t)∆t
6: X̂i

vh ← D∆t cos
(

∆ψi
)
+ X̂i−1

vh

7: Ŷ ivh ← D∆t sin
(

∆ψi
)
+ Ŷ i−1

vh

8: End for

10.4 Simulation Results

This section discusses a validation of the proposed algorithm using the advanced motorcycle simulator
BikeSim. Two scenarios are presented, the first one considers straight road and motorcycle trajectories with
a constant relative heading deviation (∆ψ 6= 0). Whereas, the second scenario deals with circular road and
vehicle trajectories (δ 6= 0).

The hardware (camera and IMU) specifications and mountings are identical to the ones given in Damon
et al., 2018a except the camera resolution which is 1080 × 720. Let us remind the ROI of the bird-eye-view
is limited about 30 meters ahead of the vehicle. According to the fact that the road trajectory is slowly
varying, we extended the road lane reconstruction to 40 meters that we defined as the maximum horizon for
LCP tracking.

In the following simulations, we considered a two-way road separated with a dashed road marker whereas
the extreme lanes are continued.

10.4.1 Case 1: Straight road with zero steering

In this scenario, we considered straight road markers and we simulated a constant heading deviation angle
between the road lanes and the vehicle such that ∆ψ = 3 deg. In addition, the PTWV is traveling at 100
km/h without any steering action.

Figure 10.4-a and 10.4-b illustrate the simulated trajectory of the motorcycle as well as the lateral deviation
with adjacent lanes (central and left one). From 0 to 75 first meters, on X axis, the PTWV reaches the first
Lane Crossing Point with the central line within 3 seconds. The vehicle travels under the same conditions
(DLC & TLC) the second portion, but this time between the center lane and the left one.

Figure 10.4-c gives the estimated DLC for the case of a pure longitudinal movement respectively with the
central and left lanes. A comparison with the theoretical DLC, expressed by the equations 10.2, is given.
It shows well the approximation of the DLC by our approach, although the resolution is not very high
with a rather important speed, figure 10.4-d. Here, the average error is about 50 centimeters and decreases
drastically when the LCP is approaching.
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Figure 10.4: DLC for straight PTWV trajectory on straight road

10.4.2 Case 2: Curved roads with constant steering

In the next scenario, we assume bend case with curve radius 400 meters and we simulated a constant steering
angle, figure 10.5-a. The longitudinal speed is fixed at 80 km/h.

In the present scenario, three LCP are detected, figure 10.5-b. The last one occurs with the right lane and
the remains LCP with the center lane.

Figure 10.5-c gives the reconstructed DLC for the case of a pure lateral motion respectively with the central
and right lanes. Whereas, the estimated DLC is compared to the theoretical one under a zero steering.
Figure 10.5-d highlights a very good estimation of the DLC. The estimation under constant steering is
depicted in figures 10.5-e and 10.5-d to show, at the same time, the performance of the proposed algorithm.
Also, the average error is similar to the previous scenario and remains around 50 centimeters and decreases
when the LCP is approaching, figure 10.5-g. These results are illustrated by the video at the following link
: https://youtu.be/K095a2SckWU.
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Figure 10.5: DLC for circular PTWV trajectory on curved road.

10.5 Conclusions

This work provided powerful video-based estimation algorithm for Lane Crossing Point tracking for powered
two-wheeled vehicles. First we have recalled the Inverse Perspective Mapping technique, adapted to motor-
cycles, which allows the generation a bird-eye-view of the road markers. The advantage here is to extract
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pertinent information such that the PTWV lateral displacement and heading angle to the road marker.
Second, the Lane Crossing Point tracking problem is detailed. It consists of finding the intersection point
coordinates between the predicted road lane and vehicle trajectories whether straight or circular. Then,
the proposed algorithm is simulated towards several scenarios to show its great capabilities of tracking road
lanes and compute the distance before crossing the marker. Finally, the proposed algorithm is an original
contribution which allows to accurately compute, in real time, the DLC when lane change is occurring for
motorcycles. This information is crucial for safety purposes like trajectory analysis.

In our future works, we plan to deal with the robustness (unfavorable camera light, undetected road markers,
etc.) and to extend the algorithm to clothoid trajectories with various road curvature. We would like to take
the proposed solution to the next step by integrating a risk function to create an alert system prototype.
Finally, we would put all our effort into the experimental validation on our two-wheeled vehicle platform.
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General Conclusions & Perspectives

In this thesis, we are interested in the powered two-wheeled vehicle as it is among the most vulnerable
road users. In fact, road traffic accident is now leading causes of violent death. The statistics analysis
underline the importance of improving motorcycle safety as well as highlighting key safety concerns that new
safety technologies should target. Towards this end, many research broadly seek to further investigate ITS
technologies with the potential to enhance motorcycle safety. Therefore, involving riding assistance systems
on this type of vehicle will bring notable benefits in terms of handling, stability and maneuverability. The
main purpose of the work presented in this thesis is to contribute to the development of ARAS. The design of
these systems, is a real challenge for researchers and automotive manufactures. Unlike four-wheeler vehicles,
the roll motion of the PTWV plays a fundamental role in the lateral dynamics, it balances the lateral forces
in turns. As a matter of fact, PTWVs are highly dynamic vehicles with a complex mechanism which gathers
a set of actions, mechanical and physical phenomena during the riding task. These specifications does
not allow the direct transposition of the developed cars safety systems to motorcycles. Thereby, it is very
important to know how this motorcycle reacts, to design a more adequate safety systems able to transmit
the good orders.

This manuscript outlines the various scientific contributions during this thesis, with the objective of de-
veloping a risk quantification through the synthesis of dynamic models and observation algorithms for the
reconstruction of unmeasured variables. In this report, we have presented the context and the objective of
the thesis as well as the different ways to approach the problem in order to provide estimation of the most
pertinent states and parameters. In particular, a high fidelity simulator and an instrumented motorcycle are
used to acquire data based on these latter, estimation schemes are achieved by designing observers. To sum
up, the thesis project consists in designing and validating the proposed algorithms allowing the estimation
of motorcycle states. It consists also on the study of appropriate methods to allow the estimation and iden-
tification. Throughout this research, we have targeted a particular type of scenario: cornering situations. In
fact, accident studies have shown that bends are very risky for motorcycles, they noticed that motorcycles
often losses control in this scenario. It is therefore one of the "typical" scenarios, for which adequate rider
assistance systems could prevent the accident by alerting the rider and/or by acting on the dynamics of the
PTWV via actuators.

On the basis of the existing literature, we have drawn up a generic modeling of motorcycle before adapting
it to our concerns. The main objective is, in part, to develop the mathematical models of the motorcycles
used in this thesis, in other parts, to validate these models. Three important steps have been identified:
1- define the complexity degree of the relevant models, 2- identify geometric and inertial parameters of
the motorcycle 3- propose experiments exciting tests to identify modes of the dynamic models. Knowing
that tire/ground contact play a fundamental role in the modeling and, in particular, in the study of the
stability of the vehicle. The Part I of this thesis discussed the tire modeling (Chapter 2). In this part,
we were also interested in deriving a complete dynamic model representing the PTWV and its rider as a
set of eight bodies. The obtained model is very complex and strongly nonlinear, which is not adequate for
the synthesis of the observation and control algorithms. The latter was introduced for simulations via the
BikeSim software. Throughout this thesis, we have used BikeSim as a high-fidelity validation tool. After
that, we have simplified the eight-body model, to derive a two-body Linear Parameter Varying Model (LPV)
of the lateral dynamics and a one-body model of the longitudinal and lateral dynamics. In this modeling
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phase, the main difficulty lies in the choice of the "precision" of the model. In other words, how much the
mathematical model can be simplified while keeping a real dynamic representation? In our case, the model
is simplified by reducing the number of bodies or by setting some simplifying assumptions. With regard to
this modeling part, we have mostly used two types of state space models according to the expected fineness:
firstly, the single-body model, also called inverted pendulum, which we have augmented with a linear model
of the forces to validate identification and estimation algorithms. Then we studied an extended model,
which is the two-body model according to our requirements. The validation of these models was handled in
several phases, the first being to identify the pertinent parameters of each model. Afterwards, we selected
the exciting maneuvers. In practice, even though we use a simplified two-body model of PTWV, it has more
than 30 parameters. The proposed methods within Part II of this thesis are as follows:

• First, we considered the identification of the rigid body motorcycle model (chapter 3). Three design
methods are studied in this chapter to identify the center of gravity (CoG) position and estimate
motorcycle inertial and geometric parameters: using static test, an algebraic identification approach
compared to an iterative gradient descent algorithm.

• Second, we focused on the identification of a mathematical two-bodies model of a two-wheeled ve-
hicle (chapter 4). Concerning the Sharp model, two methods were proposed to identify a combined
parameters of the motorcycle model. The first method was a cascade, multiple-objective optimiza-
tion algorithm adapted to the complexity of our model. The second design process was a Levenberg-
Marquardt identifier. This last method identified combined expression of inertial parameters, predicted
the objective functions and improved convergence characteristics for state by updating coupled inertial
parameters.

Identified models have been validated, through some riding scenarios with the Kawasaki ER6N motorcycle,
the Scooter or even BikeSim simulator. Although these techniques have shown real potential for achieving
some goals of this thesis, they may present some disadvantages to consider. The parameter identification
problem requires persistence of excitation to reach an optimal solution. However, in practice, excitation
signals can not be freely applied due to the motorcycle instability characteristics. Usually, identification
is performed offline where online identification lays with some challenges. Furthermore, the identification
problem is formulated assuming that all the system states are measured, which is really unrealistic. In this
case, a reformulation of the identification problem is ineluctable. Alternative approaches suggest the use
of observers based identifier to deal with both dynamics states and parameters estimation. These included
the introduction of LPV adaptive observers or a novel method for unknown input observer with time delay
concept. The proposed methods allow simultaneous on-line parametric identification and dynamic system
estimation. They therefore prove to be perfectly suited to applications for PTWV, especially when we know
that some of the parameters of the model are non-constant over time. All these arguments motivated the
reorientation of the identification tools to model based observer methods to answer the issues of this thesis.

On the dynamic state reconstruction part III, we have implemented several new estimation approaches to
reconstruct dynamic states of the motorcycle that can not be measured with physical sensors. With regards
to the observer, the main concern is to develop techniques with good compromise permanence/robustness and
simplicity for the sake of implementation. To ensure a good performance, we developed several estimation
methods with different principles, in particular, we proposed two categories one of them deals only with
observers for states dynamic estimation and the second one is more intuitive for observer based identifier
to simultaneously estimate the model states and the parameters identification from measured data. The
designed observers presented in the present manuscript are:

• Unknown Input Observer (UIO) which is proposed to estimate the pertinent dynamics with road
geometry consideration and steering dynamics reconstruction.

• Interconnected Fuzzy Observer (IFO) which is a two sub-observer for estimating both lateral and
longitudinal dynamics of the two wheeler.

• LPV Luenberger Adaptive Observer (LAO), for which we have suggested a different formulation based
on a general Lipschitz condition and Lyapunov theory to estimate the PTWV dynamic states and
then the tires’ cornering stiffness identification from the adaptive law, which is compared to a direct
estimation method and a dynamic inversion estimation scheme.
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• Delayed Unknown Input Observer (DUIO) which is likely an extension of the well-known UIO for
nonlinear system with mismatched condition, that we have proposed based on delay concept to define
auxiliary outputs to fulfill the matching condition.

We have brought some new points of view concerning their formulations and therefore their application to
ensure the desired performance by taking into account the forward speed as a varying parameter in the
design procedure. We have considered several tests to validate the synthesized methods. Compared with
some other works in the literature, the discussed algorithms have been developed with very clear objectives:
to take into account realistic hypotheses during the synthesis of the observers and to propose a realistic
validation on experimental data or on the BikeSim simulator. In addition, we have drawn up a table of
comparison, between the proposed estimations methods to show the advantages and the drawbacks of each
one. This table allows the selection of the adequate method for a given requirement and conditions. The
estimation results are very promising even if they do not yet take into account the parametric uncertainties
or the measurement noises in the synthesis design. Indeed, we studied robustness propriety related to
noisy measurement and parameter variation. Nevertheless, it is obvious that a consideration of parameters
uncertainties during the observer synthesis is necessary in order to face industrial applications. Furthermore,
these designs require a set of sensors necessary to ensure observability conditions. Nonetheless, these sensors
pose significant integration problems with respect to alignment, lack of space, etc. In fact, inertial sensors are
strongly affected by mounting angles, and the correct rotation to be applied in order to recover an alignment
to the vehicle motion. In the context of this work, we proposed an algorithm for self calibration to align
data, the approach is tested and validated on another instrumented vehicle. The algorithm estimates the
three mounting angles (roll, pitch, and yaw) of accelerometers and gyroscopes within Inertial Measurement
Units. Such a self-calibration method is focused for telematic boxes (e-Boxes) installed on two-wheeled
vehicles, whose IMUs’ axes often result not to be aligned with the vehicle reference system. In this work we
proposed an energy-efficient alignment procedure which limits the use of geolocation data. The aspects of
data selection and real-time implementation of our method are taken particularly into account. The proposed
approach is validated and its performance are analyzed on experimental data collected with tests performed
with a motorcycle equipped with three e-Boxes mounted in different positions and orientations. The analysis
of the real measured driving data proves the effectiveness of the approach in aligning the sensors’ axes in all
three directions.

The main element of the riding aid safety systems is the risk indicator and the warning algorithm that allows
the two-wheeler vehicle to travel safely. Part IV aims to identify objective indicators for the quantification of
risk as well as carry out and discuss the design of possible warning system for riders of PTW vehicles. Hence,
the proposed indicators are studied in two chapters and mainly deal with the preventive safety considerations
in order to assist the rider through warning system by detecting and/or generating alerts. In this scope,
we described two approaches in order to detect risky riding situations and warn the rider to correct his
trajectory. This solution is divided on two chapters:

• Neutral-path departure (NPD) algorithm, for which we have presented a detection approach towards
getting circular stationary states and analytical handling conditions. Based on Self Steering Gradient
proposed as a risk function, this NPD algorithm aims to characterize the motorcycle steering behavior:
over or under-steering situations.

• Lane crossing prediction (LCP) which aimed to predict, with a simple perception system, the time
and distance to lane crossing (TLC, DLC) in order to predict critical situations. Then, the proposed
algorithm shows its great capabilities of tracking road lanes and compute the distance before crossing
the road marker.

In this part, we proposed a synthesis of a new risk functions for the characterization of rider steering behavior.
This design requires a precise knowledge of the various dynamic states and parameters of the motorcycle as
well as the external effort acquired either from measurement, estimation or identification techniques. The
main problem in building up warning systems for motorcycle is the design a driving risk function to warn
the rider in assistive systems. The distance to line crossing DLC and time to line crossing TLC seem to play
an important role as an indicator of steering performance, indicates that drivers can compensate for some
errors of steering by decreasing their speed in order to maintain the TLC constant. These detection methods
were tested in co-simulation using BikeSim c© under different steering maneuvers. The results highlight the
effectiveness of the proposed algorithm to detect in an early stage the over/under steering deviation from
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the neutral path, or to predict the distance to edge crossing in order to improve motorcycle handling and
correct the unsafe maneuver. During this thesis, we tried to put as much emphasis as possible on validation,
hoping one day to see industrial use of these techniques. We are aware that this is only a first step of a
long way. Nevertheless, the first validation results are very promising and the techniques presented clearly
deserve to be further developed.

Perspectives

To end up this manuscript, we would like to recall some of the perspectives and improvements we would like
to bring in the future.

Estimations and Identification:

• The analysis of stability, performance and robustness can be extended by considering other uncertain-
ties such as the neglected dynamics. The observer will have to take into account, simultaneously, the
parametric uncertainties of the model, the sensor biases and the measurement noises.

• The synthesis of robust observer, regarding measurement noises and/or uncertainties, includes to con-
sider a linear term containing perturbations in the observation equation. This leads to an adaptation
of the model-based observers to the case of uncertain matrices of the state space model.

• It would be very interesting to discuss the performance quantification and define a tolerance margins
of parameters for which the estimation results remain acceptable.

• Moreover, IFO and DUIO have only been validated on BikeSim. It is therefore necessary to continue
with validation on the laboratory platforms as for the UIO and LAO. It would also be interesting to
diversify the scenarios and driving behaviors. In addition, the presented risk function have been only
tested on BS. Once again, it is essential to extend the validation in case of non-constant turns and to
continue with experimental tests.

• An alternative for calibration steps is the modeling transformation to the sensor reference frame.
Indeed, when one is interested in the rewriting of the modeling expressions in the new sensor reference
frame and not in the vehicle reference, this transformation add many non-linearities in the motorcycle
model, and in particular, non-linearities appear in the the measurement equation, this leads to a new
observer design taking the measurement matrix in the LPV observer design.

Vision based approach:

Vision-based estimators have shown great potential in previous work (Damon, 2018) to estimate the position
of the PTWV on the road. In future work, we would also like to combine the contributions presented in
model-based estimation part with the vision-based approaches in order to obtain a unique algorithm capable
of estimating the pertinent states and parameters as well as predicting the position of the PTWV, and the
geometry of the road in order to characterize the steering behavior, alerting the rider and/or calculate the
control orders in the case of active safety system.

Trajectory generation:

We plan to design “safe” trajectory, the adoption of such a practice by PTW riders would improve their
safety. Training that focuses on a safer riding style would also allow riders to be more aware of their own
real handling ability and the breaking limits of their PTWs. The objective is then the reconstruction of
reference trajectory which is the optimal path that a rider must follow to travel round corners safely and
quickly. For that, the geometric model (imaginary racing line) can be a good solution to define a safety
zone for cornering. The so-called “safe” trajectory is divided into four successive zones: 1)- Entry: where
turning begins. 2)- Apex (discovery): where the motorcycle reaches the furthest point on the inside of the
turn. 3)- Exit: where the motorcycle is in the end of the corner, and 4)- stability: where the motorcycle is
driving straight again. For every bend (both left and right), it is possible to progressively read that bend
and anticipate dangers and potential hazards. The core idea is to ride towards the bend tangent point only
when one has “seen” the whole of the bend, up to its exit. Based on these recommendations, the rider must
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makes use of the entire width of the track, entering at the outside edge, touching the "apex"-a point on the
inside edge, then exiting the turn by returning outside, while maintaining a constant radius throughout from
turn-in all the way to the exit point. With regard this description, one can draw up a mathematical model
depending on the geometric characterization of the bend. To sum up, this safe trajectory allows riders to
change from their current riding style (one where the rider adopts a more prone position on the bike, looking
only a short distance ahead) to one that is less extreme (with a more upright posture, head erect and eyes
looking as far ahead as possible). Taking the “reference” trajectories as a function of their beliefs, we plan
to develop tools that will objectively rate the achieved performances (i.e., by measuring the deviation from
the reference).

Rider state evaluation:

Vulnerability of motorcycle riders is a leading cause of road accident death due to the static and dynamic
instabilities of a PTWV, which require that the rider performs constantly a highly controlled tasks. One
of the main challenges in motorcyclist safety is the rider state evaluation, which strongly depends on the
individual abilities and the limits of riders skills. These evaluation offered the opportunity to analyze
potentially critical situations in typical riding scenario involving rider posture. To improve the riders’ skill
level and reduce riding errors, safety trainings are the best way to enhance riding behavior. The idea is
to give motorcycle riders useful feedback about their individual riding skills and about the occurrence of
critical situations while riding in real time and thus support self-improvement. The key requirement for such
an application is a procedure to capture the rider posture via reliable sensors and then to detect certain
behaviors as indicators for riding errors. For this purpose, our perspectives is to use wireless inertial sensors,
which are a well established solution to capture rider motion to estimate the rider skill in a variety of different
traffic situations. Such wireless systems are designed to interact with the human motion and allow free body
movement. Furthermore, analysis of motion tracking technologies can be an alternative to gold standard
optical motion tracking and integration possibilities. Our near perspective is therefore to use Xsens MTw
wireless technology to collect the motions of a motorcycle-rider wearing a motion-capture suit under the
inertial sensor-based wireless network environment.
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Appendix A

Definitions of observability and detectability

The simultaneous state and parameter reconstruction problem is closely linked to the problem of observ-
ability, as shown in Zhang and Zhu, 2018. Therefore, we recall some important definitions about strong
observability and strong detectability of systems with unknown parameters.
Consider the following system with x(t) is the state vector, u(t) is the known inputs vector, θ the unknown
parameters vector and y(t) is the measurements vector:

{
ẋ(t) = f(x(t),u(t), θ)
y(t) = h(x(t),u(t), θ)

(A.1)

Definition A.1. (Moreno, Rocha-Cózatl, and Wouwer, 2014)

For every initial condition x(0), any known input u(t) and any couple of unknown parameters (θ, θ̄), the
system (A.1) with two different trajectories x(t) and x̄(t) is called:

• state and unknown parameters strongly observable: if y(t,x(t),u(t), θ)= y(t, x̄(t),u(t), θ̄) implies that:
x(t) = x̄(t) and θ = θ̄.

• state and unknown parameters strongly detectable: if y(t,x(t),u(t), θ)= y(t, x̄(t),u(t), θ̄) implies that:
x(t) → x̄(t) and θ → θ as t → ∞.

Definition A.1 concerns the state and parameters observability or detectability. The unknown parameters
observability (detectability) relates to the possibility of reconstruct the unknown part asymptotically having
as information the known inputs and outputs.

Theoretical analysis of LPV system properties (stability, controllability, observability), often falls into the
framework of LTV systems or of nonlinear ones. In the followning, we will present the most important
system properties definitions for LTI, LTV and LPV systems.

A.0.1 LTI system properties

First, we recall some important definitions about strong observability and strong detectability of linear
systems.

ẋ(t) = Ãx(t) + B̃u(t) + D̃F (t) y(t) = C̃x(t) (A.2)

where the matrices Ã, B̃, C̃ are constant of compatible dimensions.

Definition A.2. (Trentelman, Stoorvogel, and Hautus, 2012). System (Ã, D̃, C̃) is called strongly observable
if for any initial state x0 and any unknown input F , y(t) ≡ 0 for all t ≥ 0 implies that also x ≡ 0. Otherwise,



Appendix A. Definitions of observability and detectability 187

the system (Ã, D̃, C̃) is called strongly detectable, if for any F and x(0), y(t) = 0 for all t ≥ 0 implies that
x → 0 as t → ∞.

Definition A.3. (Strong detectability condition). Let s0 ∈ C be the invariant zero of the triplet (Ã, D̃, C̃),
or, equivalently, the system (Ã, D̃, C̃) is in the open left-hand complex plan s ∈ C with Re(s) < 0, if:

rank
(
R(s0)

)
< n+ rank (D̃) = n+ p

where, R(s) is the Rosenbrock matrix of system :

R(Ã,D̃,C̃)(s) = rank



[
sIn − Ã −D̃
C̃ 0

]


A.0.2 LTV/LPV system properties

Consider the time-varying system

ẋ(t) = Ã(t)x(t) + B̃(t)u(t) y(t) = C̃(t)x(t) (A.3)

where x(t0) is given, and the matrices Ã, B̃, C̃ are of compatible dimensions and with bounded entries.

As far as the observability of LPV systems is concerned, the following theorem, borrowed from (Sename,
Gaspar, and Bokor, 2013 ) and (Silverman and Meadows, 1967) are considered to study on observability
for Linear Time-Varying Systems (LTV) which characterize also the observability of LPV systems. The
following definitions introduce the concepts of observability Gramian and uniform complete observability for
systems with bounded realizations (Kalman, 1960; Silverman and Meadows, 1967).

Definition A.4. (Observability Gramian). The observability Gramian associated with the system (Ã(t), D̃(t), C̃(t)
on [t0; tf ] is defined as

Wo(t0, t f ) =

∫ tf

t0

Φ(t, t0)
T C̃T (t)C̃(t)Φ(t, t0)dt

where Φ(t, t0) is the state transition matrix associated with Ã(t) from t0 to t.

Definition A.5. (Uniform complete observability). The matrices (Ã(t), D̃(t), C̃(t) of the system in (A.3)
is uniformly completely observable (UCO) if there exist positive constants α > 0 and δ > 0 such that, for all
t ≥ t0

αoI < Wo(t, t + δ)

The LTV system (A.3) is observable on [t0, tf ] if and only if the observability Gramian Wo(t0, t f ) is invertible.
The following theorem corresponds to an alternative well known result on observability that does not require
the computation of the observability Gramian.

Theorem A.1. Batista et al., 2017. Suppose that q is a positive integer such that, for all t ≥ t0, C̃(t) is a q
times continuously differentiable matrix and Ã(t) is (q− 1) times continuously differentiable matrix. Define

L(t) =



L0(t)

.

.

.

Lq(t)


 (A.4)

Where {
L0(t) = C̃(t)
Li(t) = Li−1(t)A(t) + L̇i−1(t), i = 1, · · · , q.

(A.5)

Then, the linear system (A.3) is observable on [t0, tf ] if, for some ta ∈ [t0; tf ], rank L(t) = n.
For uniform complete observability of a LTV system with bounded realization, we will consider the following
"folk" result, related to this Theorem.
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Theorem A.2. Batista et al., 2017. The bounded LTV system (A.3) is Uniformly Completely Observable
if there exists a positive constant α > 0 and an integer q ∈ N such that, for all t ≥ t0,

L(t)TL(t) ≥ αI (A.6)

with L(t) ∈ Rw×n, w ≥ n.
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Appendix B

Motivating example of DUIO

In this section, an example is proposed to illustrate the estimation performance of DUIO observer. Consider
the following matrices for system (6.1):

Ā =



−30 12 −20
−50 −13 0
10 2 −14


 , B̄ =




1.5
0
2


 , C̄ =

[
1 0 0
0 1 −2

]
, D̄ȳ =



y2 0 0
0 0 y1

0 y1 y2


 , θ =



θ1

θ2

θ3




For this given example, it is easy to verify that observer existence rank conditions is not fulfilled for the
original system: rank(C̄D̄ȳ) = 2 6= rank(D̄ȳ) = 3, ∀(y1, y2) 6= (0, 0).

It means the output vector is less than the unknown parameters: (nȳ,nθ)=(2, 3).
The original system is augmented with m = 1 delay in equation (6.9). Taking time delay τm leads to dim(y =
[ȳ, ȳτm ]) = 4 > dim(θ) = 3. One get: Cy =

[
C̄, 0; 0, C̄

]
, Dy =

[
D̄ȳ; D̄ȳτm

]
. Therefore, the rank condition is

fulfilled: rank(CDy) = rank(Dy) = 3. The design of the DUIO observer has been achieved by considering
the optimization problem under LMI constraints. Thus, the solution of theorem (6.21) is computed by using
the procedure Yalmip-Sedumi Toolbox Löfberg, 2004. Since asymptotic convergence, unknown parameters
are estimated from model inversion (6.26) assuming that all the states are available (either measurable or
estimated). The initial condition are: x̄0 = x̄τm0

= [0, 0, 0]T , ˆ̄x0 = ˆ̄xτm0
= [0.75, −3, 0.15]T , τm = 0.5(sec).

B.0.1 The noise-free case

The first case is studied to illustrate the estimation performance and to corroborate the theoretical results
obtained through the convergence analysis carried in the above sections. In this case, the input vector u(t),
state estimation error x̃(t) and the convergence of the estimated parameters, compared to nominal values
are presented in Fig.B.1. the variations noted in the proximity of the time origin are due to the initial
conditions of the observer which have been arbitrarily chosen. Fig. B.2 compares the states reconstructed
by the DUIO observer with the corresponding states of system. The observer states starts from the initial
condition and converge to the system state, the quality of the reconstruction is highlighted under RMS =√∑n

i=1
(x(i)−x̂(i))2

n and MSE = mean(
∑n

i=1(x(i) − x̂(i))2) to illustrate the convergence in the estimated

states. The simulation results show that, the DUIO observer rapidly and accurately estimates the state of
the model even if initial conditions are not the same. Moreover, parameters estimations lead to a peaking
phenomenon in which initial estimator error can be prohibitively large, then, these parameters converge to
true value after peaking has subsided. As a consequence, with small initial conditions, observer converge
quickly to brings the estimated state’s error to zero in small time.

B.0.2 The noisy outputs case

During the design process of the observer, no perturbation was considered. In order to simulate practical
situations, one considers the system affected by noise to test the robustness of the estimation approach. The
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Figure B.1: Input-Estimation Errors- Parameters convergence. The convergence is com-
pared with RMS = (0.0731, 0.2165, 0.0150), MSE = (0.0053, 0.047, 2.236.10−4).

outputs issued from the simulation of system are corrupted by additive noise bounded by a ratio around
of 5%. Figure (B.3) shows the error in the estimated state, and the parameters convergence, both figures
exhibit noisy case. Notice that the unknown parameters in figure B.3 are estimated with a good way even
if we considered perturbed measures. One can remove the noise effect in parameters with a simple low-pass
filter. Simulation result, shows that the DUIO observer is robust enough to handle the noisy case.

Summarizing this section, the estimation approach gives a solution even if the decoupling matrix is not of
full rank in the original system. It can be appreciated that the observer performs as expected and the state
errors reach zero asymptotically. This result proves the reliability of the approach to reconstruct unmeasured
states and identify the unknown parameters.
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Figure B.2: State Estimation: Actual state (red) their estimates (blue)
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Figure B.3: The noise-corrupted case
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Appendix C

Numerical Values of the PTWV

The parameters expressions for the identification algorithm of the two-bodies model are listed in table C.1:

Table C.1: Parameters expressions and numerical values

Parameters θi
θ1 = mfk , θ2 = mfe

θ3 = mfk
2 + Irz + Ifx sin2 ǫ+ Ifz cos2 ǫ ,

θ4 = mf jk−Crxz + (Ifz − Ifx) sin ǫ cos ǫ

θ5 = mfek+ Ifz cos ǫ , θ6 =
ify
Rf

+
iry
Rr

, θ7 =
ify
Rf

sin ǫ

θ8 = mf j
2 +mrh

2 + Irx + Ifx cos2 ǫ+ Ifz sin2 ǫ , θ9 = mfej + Ifz sin ǫ

θ10 = −(mf j +mrh+
ify
Rf

+
iry
Rr

) , θ11 = − ify
Rf

cos ǫ , θ12 = mfeg− ηZf

θ13 = Ifz +mfe
2 , θ14 = −(mfe+

ify
Rf

sin ǫ) , θ15 = −K
Numerical values of the physical parameters deduced from θ

l = 1.3m , mf = 16kg , mr = 190kg , m = mf +mr K = 11.7332N .s/rad ,
g = 9.81m/s2 Ifz = 0.200kg/m2 , ify = 0.4000kg/m2 , iry = 0.4608kg/m2

a = 0.949m , e = 0.0079m , f = −0.1527m , h = 0.509m , Rf = 0.2m ,
Rr = 0.2m , η = 0.08m , ǫ = 0.4363rad k = 0.9168 , j = 0.2589
lr = 0.35m , lf = 0.95m , e = lf + lr , Zf = −491.25, Cf1 = 18592,
Cf2 = 1195.2, Cr1 = 19209.58, Cr2 = 960.48 σf = 0.2 , σr = 0.2

Matrices expressions and BS numerical value for the two body-
model

This section presents the numerical data of matrices and vectors of the state space representation used for
the design of model-based observers.
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Table C.2: Matrices expressions

eij = eji
e11 = 1 e22 = 1
e33 = m e34 = mfk

e35 = mf j +mrh e36 = mfe

e44 = mfk
2 + Irz + Ifx sin2 ǫ+ Ifz cos2 ǫ

e45 = mf jk−Crxz + (Ifz − Ifx) sin ǫ cos ǫ
e46 = mfek+ Ifz cos ǫ
e55 = mf j

2 +mrh
2 + Irx + Ifx cos2 ǫ+ Ifz sin2 ǫ

e56 = mfej + Ifz sin ǫ
e66 = Ifz +mfe

2

e77 = 1 e88 = 1
a34 = −mvx a44 = −mfkvx

a45 =
(
ify
Rf

+
iry
Rr

)
vx a46 =

ify
Rf

sin ǫvx

a47 = lf a48 = −lr
a51 = (mf j +mrh)g a52 = mfeg− ηZf

a54 = −
(
mf j +mrh+

ify
Rf

+
iry
Rr

)
vx

a56 = − ify
Rf

cos ǫvx

a61 = mfeg− ηZf a62 = (mfeg− ηZf ) sin ǫ

a64 = −
(
mfe+

ify
Rf

sin ǫ
)
vx

a65 =
ify
Rf

cos ǫvx a66 = −K
a67 = −η a71 =

Cf2

σf
vx

a72 = 1
σf

(
Cf1 cos ǫ+Cf2 sin ǫ

)
vx

a73 = −Cf1

σf
a74 = −Cf1

σf
lf

a76 =
Cf1

σf
η a77 = − 1

σf
vx

a81 = Cr2
σr
vx a83 = −Cr1

σr

a84 = Cr1
σr
lr a88 = − 1

σr
vx

B6 = 1

Table C.3: Motorcycle parameters and numerical values

Numerical values for BikeSim

e33 = 250 , e34 = 11.32 , e35 = 108.65 , e36 = 0.1765 , e44 = 23.73 , e45 = 3.97 , e46 = 0.66 , e55 = 66.02,
e56 = 0.183 , e66 = 0.614 , a34 = −250vx , a44 = −11.25vx, a45 = −3.665vx , a46 = 0.682vx , a47 = 0.856
a48 = −0.624 , a51 = 1681 , a52 = 42.34 , a54 = −175.048vx , a56 = −1.4622vx , a61 = 62.34 , a62 = 69.45 ,
a64 = −1.8685vx , a65 = 1.47vx , a66 = −12.67 , a67 = −0.0894 , a710 = −5319vx, a720 = 104503vx ,
a730 = −112430 , a740 = −84997 , a760 = 10051 , a770 = −5vx , a810 = 3221.8vx , a830 = −100890,
a840 = 79098vx , a880 = −5vx , Cf10 = 22408, Cf20 = −1056.4, Cr10 = 17657, Cr20 = −518.4

Numerical values for scooter

e33 = 221, Cd = 0.19, e34 = 6.97 , e35 = 92.386 , e36 = 0.126 , e44 = 24.73 , e45 = 5.0518 , e46 = 0.492 , e55 = 68.045,
e56 = 0.137 , e66 = 0.543 , a34 = −221 , a44 = −14.64vx, a45 = −3.87vx , a46 = 0.679vx , a47 = 0.95
a48 = −0.42 , a51 = 1545 , a52 = 40.53 , a54 = 161.4vx , a56 = 1.567vx , a61 = 52.83 , a62 = 66.53 ,
a64 = −0.976vx , a65 = −1.525vx , a66 = −12.67 a67 = −0.0489 , a71 = −5282vx, a72 = 104503vx , a73 = −112042 ,
a74 = −70644 , a76 = 10481 , a77 = −5vx , a81 = −2592vx, a83 = −98283,
a84 = 77078vx , a88 = −5vx
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Titre : Contributions à l’Identification Paramétrique et à l’Observation des Véhicules à Deux-Roues Motorisés.
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Résumé :

Au cours des dernières années, la mobilité routière

a été marquée par la croissance considérable du tra-

fic des Véhicules à Deux-Roues Motorisés (V2RM),

qui demeurant désormais le mode de déplacement le

plus dominant et convoité, notamment pour les possi-

bilités qu’il offre d’esquiver les embouteillages de tra-

fic. Cependant, les conducteurs de deux-roues moto-

risés sont considérés comme les usagers de la route

les plus vulnérables. En effet, le risque d’être tué dans

un accident est 29 fois plus élevé pour un cyclomo-

teur que pour un conducteur de voiture de tourisme.

En plus, la nature instable des V2RM, les rend plus

susceptibles aux pertes de contrôle. Ce problème est

d’autant plus important lors du freinage d’urgence ou

lors de la prise de virage. Alors que les systèmes

de sécurité passifs et actifs (ABS, ESP, ceintures

de sécurité, airbags, etc.) développés en faveur des

véhicules de tourisme ont amplement contribué à la

diminution des risques sur la route, cependant, le re-

tard dans le développement de ces systèmes pour

les motos est considérable. De plus, malgré quelques

systèmes existants, les conducteurs de motos les uti-

lisent mal ou pas du tout. Ceci est dû à une mau-

vaise formation et cela ne contribue donc pas à

l’amélioration de leur sécurité. Par conséquent, il n’est

pas anodin que ce retard, dans le développement des

systèmes d’aide à la conduite, résonne avec un re-

tard dans le développement des outils de recherches

théoriques.

Dans ce contexte, l’objectif principal de la thèse

est de concevoir des systèmes d’assistance à la

conduite, ARAS (Advanced Rider Assistance Sys-

tems), pour les V2RM pouvant alerter ces conduc-

teurs en amont des situations de conduite dange-

reuses. Ces dernières sont au cœur de nos travaux

de recherche. En réalité, de nombreux défis sont en-

core ouverts en ce qui concerne la conception des

systèmes ARAS comme l’accessibilité des états dy-

namiques et paramètres physiques des V2RM ainsi

que la synthèse des indicateurs de risques en vi-

sitant tous les points d’intérêts. Pour cela, nous

nous intéressons alors à proposer des techniques

d’estimation, tout en réduisant le nombre de cap-

teurs et en contournant la problématique de non-

mesurabilité de certains variables. Par ailleurs, la

synthèse de ces approches répondant à certaines

exigences (modélisation, structure simple, précision,

instrumentation) constitue un défi supplémentaire.

La première partie de thèse est consacrée aux al-

gorithmes d’identification classiques. Ces techniques

sont conçues pour estimer les paramètres physiques

inconnus des modèles paramétriques des V2RM. La

deuxième partie concerne des observateurs basés

modèles. Pour cela, un observateur à entrées incon-

nues (UIO) pour reconstruire la dynamique de la di-

rection en tenant compte de la géométrie de la route,

et, un observateur interconnecté (IFO) pour l’esti-

mation de la dynamique longitudinale et latéral, ont

été proposées. Ensuite, nous nous somme penchés

sur des méthodes alternatives aux approches d’iden-

tification, notamment des techniques d’estimations

basées identification capable à la fois d’estimer les

états et les paramètres au même temps. À cette

occasion, un observateur retardé à entrées incon-

nues pour les systèmes avec un degré relatif arbi-

traire (DUIO), et, un observateur de Luenberger adap-

tative (LAO) pour l’estimation des raideurs pneuma-

tiques ont été développées. Les méthodes proposées

nécessitent une combinaison simple de capteurs et

prennent en compte des hypothèses réalistes telles

que la variation de vitesse longitudinale. Tous ces tra-

vaux ont été validés à l’aide de BikeSim et/sur des

données expérimentales. En outre, ce manuscrit in-

troduit un algorithme d’auto-calibration pour l’aligne-

ment des unités de mesure inertielle (IMU). Une telle

méthode d’auto-étalonnage s’applique aux boı̂tiers

télématiques (e-Box) installés sur des véhicules à

deux roues, dont les axes des IMU sont souvent mal

alignés avec le repère référentielle du véhicule.

La dernière partie de cette thèse traite des indicateurs

objectifs (comportement sur/sous vireur de la moto et

la distance de sortie de la voie de circulation) pour la

quantification du risque.
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