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Foreword

THIS thesis is about the fundamental limits of statistical inference. Suppose that we are
given data (in the form of a graph, a matrix, a list of measurements...) that contains
some underlying information/structure corrupted by noise. Our main question is “how
well is it possible to recover this information”, by any means? In other words, given some
data what is the best possible result I can hope for?

We shall consider very basic — and therefore fundamental — estimations tasks: finding
“communities” in a large graph, supervised and unsupervised clustering in high dimensions,
recovering hidden structures in matrices and tensors. We will not work on real dataset but
rather on random data: we will always consider a probabilistic model. If this scenario is
less realistic, it provides a coherent mathematical framework and allows to derive precise
expressions that could lead to practical insights.

We will look at these problems in large dimension, when we observe a large amount
of data and when the signal we aim at estimating has a lot of parameters. This setting
is particularly relevant for modern applications (as “real” datasets always get larger) and
contains a lot of interesting theoretical challenges. While estimating a single parameter is
well understood within the classical statistical theory, estimating a number of parameters
that goes to infinity with the number of observations unveils a number of surprising and
new phenomena.

Indeed, motivated by deep insights from statistical physics, it has been conjectured that
in high dimensions many statistical problems (such as community detection on graphs,
Principal Component Analysis (PCA), sparse PCA, Gaussian mixture clustering, synchro-
nization on groups, low-rank tensor estimation, linear and generalized linear models...)
may encounter phase transitions. More precisely, there exists a critical value of the noise
intensity above which it is impossible to recover (even partially) the signal. This means
there exists fundamental limits on the noise level in order to make non-trivial estimation
possible: this threshold is known as the information-theoretic threshold. However, even
in the regime where estimation is theoretically possible, there are many cases where no
efficient algorithm is known to recover the signal. The noise level has to be below a sec-
ond critical value called the algorithmic threshold in order for polynomial-time methods
to work. In the case where the algorithmic and the I.T. thresholds do not coincide, we
say that there exists a computational gap, meaning that there exists a regime where non-
trivial estimation is theoretically possible (using exponential-time algorithms) but where
no polynomial-time algorithm will perform better than a random guess.

This thesis aims to precisely characterize the information-theoretic threshold for a num-
ber of classical statistical problems. Comparing this threshold to known algorithms allows



us to understand when computational gaps appears. The manuscript is organised as fol-

lows.

Chapter 1 introduces the basics concepts of Bayes-optimal inference that we will
used repeatedly throughout this manuscript. I am grateful to Andrea Montanari for
interesting discussions regarding Section 1.2.

Chapter 2 presents a useful “decoupling principle” that will simplify the study of the
more complex models investigated in this thesis.

Chapter 3 and Chapter 4 focus on low-rank matrix estimation and establish the
information-theoretic limits for this problems. They are based on the paper [132] in
collaboration with Marc Lelarge and the work [145].

Chapter 5 studies the community detection problem in the Stochastic Block Model,
when there is two communities of unequal sizes. It is excerpt from the joint work
[40] together with Francesco Caltagirone and Marc Lelarge.

Chapter 6 pursue the directions of Chapters 3-4. The first part studies the statistical
limits of low-rank tensor estimation is based on the paper [136] with Thibault Lesieur,
Marc Lelarge, Florent Krzakala and Lenka Zdeborova. The second part analyzes
maximum likelihood estimations, following the paper [110] with Aukosh Jagannath
and Patrick Lopatto.

Chapter 7 focuses on the statistical and computational limits of estimation in Gen-
eralized Linear Models. It is based on the work [19] with Jean Barbier, Florent
Krzakala, Nicolas Macris and Lenka Zdeborova.

Chapters 8 and 9 concern the Lasso estimator. They establish uniform control of
the distribution of the Lasso and study methods to tune the penalization parameter.
This work is a collaboration with Andrea Montanari [146].

All the inference models that we consider in this manuscript have an equivalent within
the statistical physics literature. The only difference is that the problems we study here
contain a planted solution (representing some signal) whereas their equivalent in physics
can be seen as “pure noise” models. More precisely, the Spiked Wigner model from Chap-
ter 3 corresponds to the Sherrington-Kirkpatrick model [191] while the Spiked Wishart
model from Chapter 4 is the analog to the bipartite SK model [22] or the Hopfield model

[105].

The spiked tensor model of Chapter 6 is linked to the p-spin model and the Gener-

alized Linear Models from Chapter 7 can be seen as perceptrons [88, 87, 89] with various
threshold functions. Finally, the Lasso estimator studied in Chapter 8 and 9 is linked to
the “Shcherbina and Tirozzi” model [190].



Some notations

d(x)
MMSE(X|Y)

non-negative numbers: [0, +00)

positive numbers: (0, +00)

expectation with respect to all random variables
expectation with respect to the random variable X only
Wasserstein distance of order 2

total variation distance

Kullback-Leibler divergence

convergence in distribution

unit sphere of R™

dot product between x and y

normalized dot product: = -y = % XY
Uy norm of z: ||z||o = #{i|x; # 0}

¢y norm of z: |z| = |z

ly norm of x: ||z|| = \/27%2

standard Gaussian density function ¢(z) =

standard Gaussian distribution function ®(x) = ko
Minimal Mean Square Error: MMSE(X|Y) = || [X|Y]||2



Chapter 1

Bayes-optimal inference

We introduce in this chapter some general properties of Bayes-optimal inference, that will
be used repeatedly in the sequel. Let us first define what we mean by Bayes-optimal
inference.

We consider a statistical problem where we would like to recover a signal vector X € R”
from some observations Y € R™. We assume that (X,Y’) is drawn from some probability
distribution p over R™ x R™. Given a performance criterion, a Bayes-optimal estimator (or
simply Bayes estimator) is an estimator of X given Y that achieves the best performance
for this criterion. For instance if we measure the performance of an estimator & by its
mean square error MSE(Z) = E|| X — Z(Y)||?, then the Bayes-optimal estimator is simply
the posterior mean Z5%*(Y") = E[X|Y].

The goal of this chapter is to present some general properties of Bayes-optimal esti-
mators. In Section 1.1 we introduce what we will call (according to the statistical physics
terminology) the “Nishimori identity” which is nothing more than a rewriting of Bayes
rule. In Section 1.2 we will study the links between various natural performance metrics
for estimators and show that they are in some sense equivalent. In Sections 1.3 we analyse
the special case where Y = VAX + Z, where A\ > 0 and Z is some Gaussian noise. This
is the starting point of the study of the “spiked” matrix and tensor models. Finally we
consider in Section 1.4 a simple example to illustrate the tools of this chapter.

1.1 The Nishimori identity

In order to analyze Bayes-optimal estimators, we will need to examine the posterior distri-
bution of X given Y. To do so we will often consider i.i.d. samples ), ..., ® from the
posterior distribution P(-|Y), independently of everything else. Such samples are called
replicas. The (obvious) identity below (which is simply Bayes rule) is named after the
works of Nishimori [163, 164] on “gauge-symmetric” spin glasses. It states that the planted
solution X behaves like a replica.



Proposition 1.1.1 (Nishimori identity)

Let (X,Y) be a couple of random variables on a polish space. Let k > 1 and let
x® ... x® be k iid. samples (given Y') from the distribution P(X = -|Y), inde-
pendently of every other random variables. Let us denote (-) the expectation with
respect to P(X = -|Y) and E the expectation with respect to (X,Y). Then, for all
continuous bounded function f

]E<f(Y,a:(1), . ,a:(k))> = E<f(Y,:c(1), . ,m<k*1>,X)>.

Proof. It is equivalent to sample the couple (X,Y) according to its joint distribution or to
sample first Y according to its marginal distribution and then to sample X conditionally to Y
from its conditional distribution P(X = -|Y’). Thus the (k4 1)-tuple (Y, zM, ... 2®) is equal
in law to (Y, M ... z®*-D X). O

1.2 Performance measure and optimal esti-
mators

We consider two random vectors X and Y that live respectively in R™ and R™. We assume
(for simplicity) that || X || = 1 almost surely. As explained above, given the observations Y,
our goal is to estimate X with an estimator Z(Y'). In order to evaluate the performance
of such an estimator, what criterion should we take?

The probably most natural way to characterize the performance of & is by its mean-

squared error:
MSE(z) = E| X — 2(Y)||*.

By Pythagorean theorem, we know that the optimal estimator which respect to this metric
is the posterior mean Z(Y') = E[X|Y| which achieves the minimal mean square error:

MMSE(X|Y) ¥ E|X — E[X|Y]|> (1.2.1)

However, the MSE is not always an appropriate criterion. Indeed in many cases it is
only possible to recover X up to its sign: think for instance of the Spiked Wigner Model
Y = X X7 + Noise with X ~ Unif(S*!). In such case, E[X|Y] = 0: the best estimator
in term of MSE does not even depend on the observations Y'!

For this kind of problems one should rather consider the correlation (also known as
cosine similarity) in absolute value between & and the signal X:

sup E[|(&(Y); X)[| o sup E[(&(Y); X)?, (1.2.2)

l[z]=1 lzl=1

where (-;-) denotes the Euclidean inner product and where the suprema are taken over all
estimators Z : R™ — S"~1,

Let us introduce some notations. We will use the Gibbs Bracket (-) to write expectations
with respect to the posterior distribution of X given Y:

(f(z)) = E[f(X)[Y],

8



for all measurable function f such that f(X) is integrable. In particular, we will be
interested by the n x n positive semi-definite (random) matrix:

MY (z2") =EXXT|Y]. (1.2.3)

M is the Bayes-optimal estimator (in terms of mean square error) for estimating the matrix
). O. 4

MMSE(XX'Y) =E| XX -E[XX'"|Y]|% (1.2.4)

An easy computation gives MMSE(X X T|Y) = 1 — E[Tr(M?)]. The matrix M is also
related to the second quantity of (1.2.2) through its largest eigenvalue Ay (M):

Lemma 1.2.1

sup E[(#(Y); X)?| = E | Anax (M)]

z]=1

and the optimal estimator for this metric is a unit eigenvector of M associated to its
largest eigenvalue A\yax(M).

Proof. Let & be an estimator of X. By the Nishimori identity (Proposition 1.1.1), we have
E[(z(Y):; X)’] =E[(Y)" XX 2(Y)] = E[(@(Y) zz"2(Y))] = E[2(Y) Mz(Y)],
the lemma follows. O

Lemma 1.2.1 tells us that the top unit eigenvector © of M maximizes E [(Z(Y); X )?].
In the following, we will show that under a simple condition (that will hold for the models
we consider in this manuscript), the estimator ¥ is “asymptotically optimal” (in the limit
of large dimension) for the two metrics (1.2.2) and A\,a.x®®' is optimal for the estimation
of XX in terms of mean square error.

To introduce this condition and the asymptotic limit, we need to consider to a sequence
of inference problems. We assume that for all n > 1 we have two random vectors X,
and Y[, respectively in S*~! and R™", for some sequence (M )n>1. Our goal is again to
estimate X, from the observation of Yj,; when n is very large: we would like for instance
to compute the limits of (1.2.2) and (1.2.4) as n — oo. Moreover, we would like to know
which estimators are “asymptotically optimal”, i.e. whose performance reach in the n — co
limit the optimal one. In the following, in order to simplify the notations, we will write X
and Y instead of X, and Y.

Proposition 1.2.1

Let us denote by G, the posterior distribution of X given Y. Notice that G, is a
random probability distributions on S"~'. Assume that there exists q € [0, 1] such that
for zM, 2 X @, we have

‘(:B(l); ZB(Z))‘ @, q. (1.2.5)

n—o0

Then Tr(M?) % q? and

Amax(M) &) q




Proof. Let us compute Tr(M?) = Tr((zx")(zz")) = ((zV;2?)?) — q?, by assumption.

If ¢ = 0, then the result is obvious since Apax(M)? < Tr(M?).
Notice that Tr(M?3) < Apax(M)Tr(M?), so it suffices to show that

Tr(M?) = ((&;2®)(2®); %) (@®; 21)) —— ¢,

n—oo

for M), 2@ g6 "% G. This follows from Lemma 1.2.2 below. ]

Lemma 1.2.2

Under the assumptions of Proposition 1.2.1, we have for V), x® z®) % @q,,

(2D; 2?)(2®; 2®)(2®; 20) 1L, .

Lemma 1.2.2 will be proved in Appendix A. From Proposition 1.2.1 we deduce the main
result of this section:
Proposition 1.2.2

Let © be a leading unit eigenvector of M (which is defined by (1.2.3)). Under the
assumptions of Proposition 1.2.1, we have

(8 X)| =2 /g (1.2.6)

n—oo

Further lim MMSE(XXT|Y) =1 - ¢,

lim sup E“@(Y),X)” =./q, and lim sup E[(i(Y),X)Q} =q. (1.2.7)

n—od |~ N—>00 ||~

llzll=1 [l]|=1
Proof. Let us abbreviate Apax def Amax(M). By Lemma 1.2.1 and Proposition 1.2.1 we have
E[(0; X)?] = E[Amax] —— ¢. (1.2.8)

Hence if ¢ = 0, the Proposition follows easily. Assume now that ¢ > 0. Using Pythagorean
Theorem and the Nishimori identity (Proposition 1.1.1) we get
E|| X% — )2

max

o > B[ X®* — (4|2
_ 14 E[((02); (25)] - 2E[(X®, (z°4)
~1_-E K(m(l);m@))‘lﬂ gt

n—oo

where the last limit follows from the assumption (1.2.5). Since

EHX®4 _ )\2

max

%2 =1+ E[\;

max

] - 2E[\2

max

(X;9)1,
using Proposition 1.2.1, we deduce (recall that we assumed ¢ > 0) that lim sup,,_,., E[(7; X)1] <
q?. Together with (1.2.8) this gives that |(v; X)| — Ve

n—oo

The next point is a consequence of Proposition 1.2.1 because MMSE(X X T|Y) = 1-E[Tr(M?)].
To prove (1.2.7) simply notice that

E[|(3: X)|)” < s E[IG(Y); X)) < s E(@(Y): X)) = Bl

10



which proves (1.2.7) using (1.2.6) and Proposition 1.2.1. O
From Proposition 1.2.2, we deduce that the estimator A Amax (M) 00T achieves
asymptotically the minimal mean square error for the estimation of X X ':

lim B[ XX - AJ* =1—¢"

Remark 1.2.1. For simplicity we assumed in this section that || X||* = 1 almost surely.
However we will need to work in the next chapters under a slightly weaker condition,
namely || X —— 1. It is not difficult to modify the proofs of this section to see that
Lemma 1.2.1, Proposition 1.2.1, Lemma 1.2.2 and Proposition 1.2.2 still hold, provided
that || X ||? ——> 1 for the Wasserstein distance of order 4 (i.e. || X]? —— 1 in distribu-

tion and E|| X ||® — 1).

1.3 Bayesian inference with (Gaussian noise
We will now focus on the following model:
Y =VAX +Z, (1.3.1)

where the signal X is sampled according to some probability distribution Px over R”",
and where the noise Z = (Z,...,Z,) "=~ N(0,1) is independent from X. In Chapters 3
and 4, X will typically be a low-rank matrix. The parameter A > 0 plays the role of a
signal-to-noise ratio. We assume that Py admits a finite second moment: E|| X ||* < oo.
Given the observation channel (1.3.1), the goal of the statistician is to estimate X given
the observations Y. Again, we assume to be in the “Bayes-optimal” setting, where the
statistician knows all the parameters of the inference model, that is the prior distribution
Px and the signal-to-noise ratio A\. We measure the performance of an estimator 6 (i.e. a
measurable function of the observations Y') by its Mean Squared Error MSE(f) = E[| X —
0(Y)||2. One of our main quantity of interest will be the Minimum Mean Squared Error

def

MMSE(Y) 2 min MSE(S) = E [|X ~ E[X|¥]|]],

where the minimum is taken over all measurable function 6 of the observations Y. Since
the optimal estimator (in term of Mean Squared Error) is the posterior mean of X given
Y, a natural object to study is the posterior distribution of X. By Bayes rule, the posterior
distribution of X given Y is

P(;c\Y)—Z(;’Y> Y@ Py (a) | (1.3.2)

where

A A
Hyy(x)=Viz'Y — 5\@\12 = VAx"Z 4+ \z"X — §H:BH2.

11



Definition 1.3.1

H)yy is called the Hamiltonian'and the normalizing constant
Z\Y) = /dPX(a:)eH*’Y(’”)

is called the partition function.

Expectations with respect the posterior distribution (1.3.2) will be denoted by the Gibbs
brackets (-):

1

(@), =E[fOIY] = 25055 [ aPx(@)f(@)e @,

for any measurable function f such that f(X) is integrable.
Definition 1.3.2

F(\) =Elog Z(\,Y) is called the free energy®. It is related to the mutual information
between X and Y by

F()) = ;\EHXHQ ~I(X;Y). (1.3.3)

Proof. The mutual information I(X;Y) is defined as the Kullback-Leibler divergence between
P(x,y), the joint distribution of (X,Y’) and Px® Py the product of the marginal distributions
of X and Y. P(xy) is absolutely continuous with respect to Px ® Py with Radon-Nikodym

derivative:
erivative iy - /X
dP(X7y) (X,Y) = eXp 2
dPx®Py "’ J exp (—% |Y—\/X:c||2) dPx(x) '
Therefore
dP,
I(X;Y) =Elog <(X’Y)(X, Y)) = —Elog/dPX(:c) exp (ﬁazTY VAXTy -2
dPx ® Py 2
A
— —F() + JEIX2.
0

We state now two basic properties of the MMSE. A more detailed analysis can be
found in [97, 216].
Proposition 1.3.1

A — MMSE()) is non-increasing over Rxq. Moreover
o MMSE(0) = E| X — E[X]|]%,

o MMSE()\) — 0.
A——+o00

Proposition 1.3.2
A — MMSE()) is continuous over Rxg.

! According to the physics convention, this should be minus the Hamiltonian, since a physical system
tries to minimize its energy. However, we chose here to remove it for simplicity.
2This is in fact minus the free energy, but we chose to remove the minus sign for simplicity.

12

A
=l + 1)



The proofs of Proposition 1.3.1 and 1.3.2 can respectively be found in Appendix B.1
and B.2.

We present now the very useful “I-MMSE” relation from [96]. This relation was pre-
viously known (under a different formulation) as “de Brujin identity” see [193, Equation
2.12].

Proposition 1.3.3

For all A > 0,
QI(X- Y) = 1MMSE(A) d F(\)= 1E(acT)() = 1(E||X||2—MMSE()\))
o T i ~ 2 YT |

(1.3.4)
F thus is a convex, differentiable, non-decreasing, and %]EHX ||>-Lipschitz function over
Rso. If Px is not a Dirac mass, then F' is strictly convex.

Proposition 1.3.3 is proved in Appendix B.3. Proposition 1.3.3 reduces the computation of
the MMSE to the computation of the free energy. This will be particularly useful because
the free energy F' is much easier to handle than the MMSE.
We end this section with the simplest model of the form (1.3.1), namely the additive
Gaussian scalar channel:
Y =VAX + Z, (1.3.5)

where Z ~ N(0,1) and X is sampled from a distribution P, over R, independently of Z.
The corresponding free energy and the MMSE are respectively

dp,(\) = Elog / dPy(x)e’™Y* /2 and MMSEp, (V) = E[(X —E[X|Y])]. (1.3.)

The study of this simple inference channel will be very useful in the following, because
we will see that the inference problems that we are going to study enjoy asymptotically a
“decoupling principle” that reduces them to scalar channels like (1.3.5).

Let us compute the mutual information and the MMSE for particular choices of prior
distributions:

Example 1.3.1 (Gaussian prior: Py = N(0,1)). In that case E[X|Y] is simply the orthog-
onal projection of X on Y :

E[XY],, _ ﬂy

EIXY] = E[Y?] 1+ A

One deduces MMSEp, (\) = 1. Using (1.3.4), we get I(X;Y) = 3log(1+\) and ¢p,(N) =
L(A—log(1+ ).

Remark 1.3.1 (Worst-case prior). Let Py be a probability distribution on R with unit sec-

ond moment Ep, [X? = 1. By considering the estimator T = I%\Y, one obtain MMSEp, (\) <
1

e We conclude:

1
sup MMSEp, (\)

, 1
w =1 and 1}310f p,(\) = 5()\ —log(1+\)),

where the supremum and infimum are both over the probability distributions that have unit
second moment. The standard normal distribution Py = N(0,1) achieves both extrema.
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Example 1.3.2 (Rademacher prior: Py = £0.1+20_1). We compute 1p,(A) = Elog cosh(vVAZ+
A) =3 and I(X;Y) = A — Elog cosh(vV/AZ + )\). The I-MMSE relation gives
1 0 1

SMMSE()) = éMHX}Q—l—E{Q¢xZ+Dnmh@aZ+Aﬂ

1
:1;—EtmﬂﬂV§Z+mM——iEmnm%vxZ—%A)

:;—Eumm¢Xa+m+;EmmPuﬁz+M

where we used Gaussian integration by parts. Since by the Nishimori property E(xX),
E(z)3, one has Etanh(v/AZ + \) = Etanh®(v/AZ + \) and therefore MMSE()\) = 1 —
Etanh(vVAZ + \).

1.4 A warm-up: the “needle in a haystack”
problem

In order to illustrate the results seen in the previous sections, we study now a very simple
inference model. Let (ey, ..., esn) be the canonical basis of R*". Let oy ~ Unif({1,...,2"})
and define X = e,, (i.e. X is chosen uniformly over the canonical basis of R?"). Suppose
here that we observe:

Y = VX + Z,

where Z = (Z3,..., Zon) R N(0,1), independently from oy. The goal here is to estimate
X or equivalently to find gy. The posterior distribution reads:

ano\) " exp (\/_eTY - ||eg||2>

:an(/\)Z exp (\/_Z + Anl(o = 09) — /\QH),

Plog=0lY)=P(X =¢,]Y) =

where Z,(\) is the partition function

Za( Zexp(\/_Z + Anl(o = 0g) — A;)

We will be interested in computing the free energy F,(A) = 2Elog Z,,(A) in order to deduce
then the minimal mean squared error using the I-MMSE relation (1.3.4) presented in the
previous section.

Although its simplicity, this model is interesting for many reasons. First, it is one of
the simplest statistical model for which one observes a phase transition. Second it is the
“planted” analog of the random energy model (REM) introduced in statistical physics by
Derrida [57, 58], for which the free energy reads Elog P 5 €XP (\/EZ ) Third, as we
will see in Section 6.1.1, this model correspond to the “large order limit” of a rank-one
tensor estimation model.

We start by computing the limiting free energy:
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Theorem 1.4.1

lim F,(\) =

n—oo

0 it A<2log2,
2 —log(2) if A>2log2.

Proof. Using Jensen’s inequality

1 1 1 "

Fu(3) < ElogE[Z,(N)loo, Zo,] = ~Elog (1 - emZUO-‘rAQ—log(Q)n)
< l}Elog (1 + eAT"—log(Q)n) i \/X SN 0 if X\ <2log(2),
on n oo |3 —log(2) if A>2log(2).

F, is non-negative since F,(0) = 0 and F,, is non-decreasing. We have therefore Fj,(\) —0

for all A € [0,21og(2)]. We have also, by only considering the term o = oy:

1 emZ"OJr%n A
() > = — | = = —1og(2).
F,(\) > nElog( on ) 5 0g(2)
We obtain therefore that F, () — 2 —log(2) for A > 2log(2). O

Using the I-MMSE relation (1.3.4), we deduce the limit of the minimum mean squared
error MMSE,,(A) = min; E[| X — §(Y")|*:

MMSE,(A) = E|| X ||? — 2F.(A\) =1 —2F/()\).

F, is a convex function of A, thus (see Proposition C.1) its derivative converges to the
derivative of its limit at each A at which the limit is differentiable, i.e. for all A € (0, 4+00) \
{2log(2)}. We obtain therefore that for all A > 0,

o if A < 2log(2), then MMSE, (\) — 1: one can not recover X better than a
random guess.

e if A > 2log(2), then MMSE,, () —— 0: one can recover X perfectly.

Of course, the result we obtain here is (almost) trivial since the maximum likelihood
estimator
7(Y) =argmax Y,
1<o<2n
of og is easy to analyze. Indeed, max, Z, ~ 1/2log(2)n with high probability so that
the maximum likelihood estimator recovers perfectly the signal for A > 2log(2) with high
probability.
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Chapter 2

A decoupling principle

We present in this section a general “decoupling principle” that will be particularly useful in
the study of planted models. We consider here the setting where X = (X1,...,X,,) =~ P,
for some probability distribution Py over R with support S. Let Y € R™ be another
random variable that accounts for noisy observation of X. The goal is again to recover the
planted vector X from the observations Y. We suppose that the distribution of X given
Y takes the following form

1
Z,(Y)
where H,, is a measurable function on R™ x R™ that can be equal to —oo (in which case,

we use the convention exp(—oo) = 0) and Z,(Y) = [dP{"(x)e™®Y) is the appropriate
normalization. We assume that E|log Z,(Y )| < oo in order to define the free energy

PIXecAlY)= / ) dPE"(x)ef™®Y)  for all Borel set A C R, (2.0.1)
Tre

1 1
F,=—-Elog Z,(Y) = —Elog (/ dp(;@n(m)eHn(:c,Y)> ‘
n n

In the following, we are going to drop the dependency in Y of H,(x,Y’) and simply write
H,(x).

We introduce now an important notation: the overlap between to vectors u,v € R".
This is simply the normalized scalar product:

1.7
’U,"U:*ZUZ‘UZ'.
iz

One should see x as a system of n spins (z1,...,z,) interacting through the (random)
Hamiltonian H,,. Our inference problem should be understood as the study of this spin
glass model. A central quantity of interest in spin glass theory is the overlaps & .
between two replicas, i.e. the normalized scalar product between two independent samples
2 and £® from (2.0.1). Understanding this quantity is fundamental because it allows
to deduce the distance between two typical configurations of the system and thus encodes
the “geometry” of the “Gibbs measure” (2.0.1).

In our statistical inference setting we have ™. £ = 2. X in law, by the Nishimori
identity (Proposition 1.1.1). Thus the overlap ¥ 2 corresponds to the correlation
between a typical configuration and the planted configuration. Moreover it is linked to the
Minimum Mean Squared Error by

MMSE = B [|X — (2)]] = Eq,[X)] ~E (- X)
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where (-) denotes the expectation with respect to @ which is sampled from the posterior
P(X = -|Y) (defined by Equation 2.0.1), independently of everything else.

In this section we will see a general principle that states that under a small perturbation
of the Gibbs distribution (2.0.1), the overlap ") - 2 between two replicas concentrates
around its mean. Such behavior is called “Replica-Symmetric” in statistical physics. It
remains to define what “a small perturbation of the Gibbs distribution” is. In spin glass
theory, such perturbations are usually obtained by adding small extra terms to the Hamil-
tonian. In our context of Bayesian inference a small perturbation will correspond to a
small amount of side-information given to the statistician. This extra information will lead
to a new posterior distribution. In the following, we will consider two different kind of
side-information and we show that the overlaps under the induced posterior concentrate
around their mean.

2.1 The pinning Lemma

We suppose here that the support S of Fy is finite. We make this assumption in order to
be able to work with the discrete entropy.

In this section, we give extra information to the statistician by revealing a (small)
fraction of the coordinates of X. Let us fix € € [0, 1], and suppose that we have access to
the additional observations

X, ifL, =1, .
Y = 1 for 1<i<n,
* lfLiZO,

where L; "% Ber(e) and * is a value that does not belong to S. The posterior distribution
of X is now

PX=2|Y,Y) = zl ( I 1(x :Y{)) ( I1 Po(xl-)> (@) (2.1.1)

me \i|Li=1 i|L;i=0
where Z, . is the appropriate normalization constant. For € S™ we will write
T = (fl, ce ,ZZ‘n) = (L1X1 + (1 - Ll)ll'l, ce ,Lan + (1 - Ln)xn) . (212)

x is thus obtained by replacing the coordinates of @ that are revealed by Y’ by their
revealed values. The notation & allows us to obtain a convenient expression for the free
energy of the perturbed model:

1 1
F,.= -Elog Z,, = E[log S Py() exp(H, ()| -
n n resSn

Proposition 2.1.1
For allm > 1 and all € € [0, 1], we have

F,. — F,| < H(Py)e.
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Proof. Let us compute

P(Y'|Y,L) = /]l(ﬂvZ =Y/ for all i such that L, = 1)dP(z|Y)
n

— Z 1(x; = Y/ for all i such that L; = 1)@ H Py(x;)

Zn zesn i=1
_ Zne
Zne p(y'|L).
" j|Li=1 n
Therefore, nF, . —nF, = H(Y'|L)—H(Y'|Y, L) and the proposition follows from the fact that
0<HY'|Y,L)<H(Y'L)=necH(F). O

From now we suppose ¢, € (0,1] to be fixed and consider € € [0, ¢)]. The following
lemma comes from [148] and is sometimes known as the “pinning lemma”. It shows that the
extra information Y forces the correlations between the spins under the posterior (2.1.1)

to vanish.
Lemma 2.1.1 (Lemma 3.1 from [1/8])

For all ¢y € [0, 1], we have

/Ode(n S (X XY, Y))ng(PO).

1<i,j<n

Let (-)n. denote the expectation with respect to two independent samples M z®
from the posterior (2.1.1). Lemma 2.1.1 implies that the overlap between these two replicas
concentrates:

Proposition 2.1.2

There exists a constant C' > 0 that only depends on Py such that for all €y € [0, 1],

2
€0 12 17 €
deE{ (-3 eV <2>_<Z 1) <_2>> <0, /2.
/0 ‘ <<ni:1mz . nz‘:lxZ . me) fne n

Proof.
(M - 2 — (O '$(2))ne)2> = ((z" (2))2> —(zM. ;,3(2)>2

1

_ = Z $(2)x(1)x(2)>n6 . <x§1)$§2)>ne<x§1)m(2)>ne
n? 1<4,5<n ' ’ ’
1

= ni Z xll‘] xi>%,e<xj>i,e‘

1<i,j<n

Let now 4,5 € {1,...,n}. The support of Py is finite and thus included in [—K, K] for some
K > 0. This gives:

(wiwj)ne = (@i el@ne < 2K (@ij)ne = (@i)n,e(@i)n.l

_ 2K2‘ N i P(Xi = i, X = 2|, YY) — 2y P(Xi = 2|V, Y)P(X; = 2;]Y,Y)

Ti,Tj
<AK?Dpy (P(X; = X; =Y, Y );P(X; = -[Y,Y) @ P(X; = -|Y,Y"))
< 4K\ /DkL(P(X; = X; = [V, Y P(X; = [Y,Y") 9 P(X; = |V, Y"))
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by Pinsker’s inequality. Since

we get using Lemma 2.1.1:

/eodeE<(m(1>-x<2)—<m(1>.m(2>>n,6)2> §4K2J60/60d6( Z (X3 XY, Y"))
0

n,€

< 4K2 260H<P0)

2.2 Noisy side Gaussian channel

We consider in this section of a different kind of side-information: an observation of the
signal X perturbed by some Gaussian noise. It was proved in [125] for CDMA systems
that such perturbations forces the overlaps to concentrate around their means. The prin-
ciple here is in fact more general and holds for any observation system, provided some
concentration property of the free energy.

We suppose here that the prior Py has a bounded support S C [— K, K], for some K > 0.
Let a > 0 and (s,), € (0,1]N. Let (Z;)1<i<n " N(0,1) independently of everything else.
The extra side-information takes now the form

Y = a\/$, X; + Z;, for1<i<n. (2.2.1)

The posterior distribution of X given Y, Y’ isnow P(z |Y,Y’) =
where HP) () = H, () + hyq(x) and

P (a) exp (HPe) (),

Z(perc)

n

1
by o) = Z a\/snZiw; + a* 8,7, X; — iaQSnx? )

i=1

Zé{’jrt) is the appropriate normalization. Let us define

rar — log (/ APy (z Hﬁff”@)) :

We fix now A > 2. Define also vn(sn) = SUDPj/9<a<at1 El¢(a) — E¢(a)|. The following
result shows that, in the perturbed system (under some conditions on v, and s,) the
overlap between two replicas concentrates asymptotically around its expected value.

Proposition 2.2.1 (Overlap concentration)

Assume that vy, (s,) — 0. Then there exists a constant C' > 0 that only depends
on K such that for all A > 2,

1 A 2 1
- 1), ,.(2) _ 1) . (2
. 1/1 E<(m T E(x'" - x >n7a) >n ada < C( o + "Un(Sn)>,

)

where (-),,, denotes the distribution of X given (Y,Y"). £ and ® are two inde-
pendent samples from (-), ., independently of everything else.
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Proposition 2.2.1 is the analog of [170, Theorem 3.2] (the Ghirlanda-Guerra identities,
see [90]) and is proved analogously is the remaining of the section. Denote for & € S™

i@ = 3

1 0
Zix; + 2ax; X; — ax? .
ns, oa

Ulx) = NG i

Lemma 2.2.1

Let & be a sample from (-),, ., independently of everything else. Under the conditions
of Proposition 2.2.1, we have for all A > 2

o1 ) (V@) - B@h.]) da<c W}L_ ot

for some constant C' > 0 that only depends on K.

Before proving Lemma 2.2.1, let us show how it implies Proposition 2.2.1.

Proof of Proposition 2.2.1. By the bounded support assumption on Py, the overlap between
two replicas is bounded by K2, thus

- IE<:1:(1)- (2 >n E<U(:c(1))>

,a

’E<U(m<1>) 2. 2)

n,

< K2E<|U(a:) - E{U(2)),, f>

n,a ’
(2.2.2)
Let us compute the left-hand side of (2.2.2). By Gaussian integration by parts and using the
Nishimori identity (Proposition 1.1.1) we get E(U(a:(l)»n’a = 2aE(x™. :1:(2)>n7a. Therefore

B <33(1)' w(2)>n . E <U(w(1))>n L= 2a (E <:13(1). a;(2)>n a)2 .

Using the same tools, we compute for &), 22 g3 @) & ()n,a, independently of everything
else:

E(U(az(l))(a}(l)~ w(2))>n .

= QQE«:B(U. X)(zW. 2

n,a

na

= QQE«Q;(I). X)(zW. 2 >n + QE<(CC(1). 22 ))2>na , <(m(1)- B 4+ x(l). @) (zM. m(2))>na
= 2aE((xV- 93(2))2>n W

Thus, by (2.2.2) we have for all a € [1, 4]

E<(m(1), 2@ _E(z0. $(2)>n,a)2> < K21E<|U <U(w)>n,a|>

)
n,a n,a

and we conclude by integrating with respect to a over [1, A] and using Lemma 2.2.1. O

Proof of Lemma 2.2.1. ¢ is twice differentiable on (0, 400), and for a > 0
¢'(a) = (U(x))na, (2.2.3)
1/ _ 2 o 2 l Y. A2
¢"(a) = nsn((U(@) ) = (U@)5a) + - D (20Xi —af) . (2.2.4)
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Thus ((U(x) — (U(x))n,a)?) %((ﬁ”(a) +2K?) and

n,a —

[ B @)~ 0@))0n?), o < - (B(0) - B () 4 2034 -1)) < E4,

NSn NSy

for some constant C' > 0 (that only depend on K), because E¢/(a) = 2aE(x - X),, 4. It remains
to show that [;* E|(U(2))n.a — E(U(2))n.a|da < CA\/0,(s,) for some constant C' > 0 that only
depends on K.

We will use the following lemma on convex functions (from [170], Lemma 3.2).
Lemma 2.2.2

If f and g are two differentiable convex functions then, for any b > 0

7/a) ~ /(@) < g0 +5) ~ la—b) + .

where d = |f(a +b) — g(a +b)| + | f(a — b) — gla—b)| + [ (a) — g(a)].

We apply this lemma to A — ¢(A) + 3K2A? and A — E¢(\) + 3 K?A? that are convex because
of (2.2.4) and the bounded support assumption on Py. Therefore, for all > 1 and b € (0,1/2)
we have
3vn(Sn)

b

Notice that for all a > 0, |E¢/(a)| = [2aE(z - X)n 4| < 2aK?. Therefore, by the mean value
theorem

E|¢'(a) — E¢'(a)| < E¢'(a+b) — E¢'(a — b) + 6 Kb + (2.2.5)

/A (E¢'(a+b) —E¢'(a —b))da = (Ep(b+ A) —Ep(b+ 1)) — (Ep(A — b) — Ep(1 — b))

1
(Eqs (b+A)—Ep(A—0b) + (Eop(1 —b) —Ep(1 +0))
K?b(A+2).

Combining this with equation (2.2.5), we obtain

Vb € (0,1/2), /1AE1¢'(Q) —E¢(a))da < CA(b+ ””(bs”)) . (2.2.6)

for some constant C' > 0 depending only on K. The minimum of the right-hand side is achieved
for b = \/vn(sn) < 1/2 for n large enough. Then, (2.2.6) gives

A A
| ElU@)na ~ EU@)nalda = [ El¢/(@) ~ 6/ (0)|da < 204y/un(s0).
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Chapter 3

Low-rank symmetric matrix
estimation

3.1 Introduction to the spiked matrix models

Estimating a low-rank object (matrix or tensor) from a noisy observation is a fundamental
problem in statistical inference with applications in machine learning, signal processing or
information theory. We focus in this chapter (and in Chapter 4) on the so-called “spiked”
models where we observe a signal spike perturbed with some additive noise. We should
consider here two popular models.

The first one is often denoted as the spiked Wigner model. One observes

Y = \FXXT+Z (3.1.1)
n

where the “spike” X = (X,...,X,) = Py is the signal vector and Z is symmetric matrix
that account for noise with standard Gaussian entries: (Z;;)i<; ~ N(0,1). A > 01is a
signal-to-noise ratio.

The second model that we will consider in Chapter 4 is the non-symmetric version
of (3.1.1), sometimes called spiked Wishart'or spiked covariance model:

Y:\/iUVTqLZ (3.1.2)

where U = (Uy,...,U,) '~ Py, V. = (V4,...,V,,) "X Py are independent. Z is a noise
matrix with standard normal entries: Z; ; "W N(0,1). A > 0 captures again the strength of
the signal. We are here interested in the regime where n, m — 400, while m/n — o > 0.
In both models (3.1.1)-(3.1.2) the goal of the statistician is to estimate the low-rank signals
(XXTor UVT) from the observation of Y. This task is often called Principal Component
Analysis (PCA) in the literature.

These spiked models have received a lot of attention since their introduction by [114].

From a statistical point of view, there are two main problems linked to the spiked models
(3.1.1)-(3.1.2).

!This terminology usually refers to the case where V is a standard Gaussian vector. We consider here a
slightly more general case by allowing the entries of V' to be taken i.i.d. from any probability distribution.
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e The recovery problem: how can we recover the planted signal X / U,V? Is it
possible? Can we do it efficiently?

e The detection problem: is it possible to distinguish between the pure noise case
(A = 0) and the case where a spike is present (A > 0)? Is there any efficient test to
do this?

We will focus here on the recovery problem. We let the reader refer to [30, 166, 65, 16,
175, 3, 79] and the references therein for a detailed analysis of the detection problem.

The spiked models (3.1.1)-(3.1.2) has been extensively studied in random matrix theory.
The seminal work of [13] (for the complex spiked Wishart model, and [14] for the real
spiked Wishart) established the existence of a phase transition: there exists a critical value
of the signal-to-noise ratio A above which the largest singular value of Y //n escapes from
the Marchenko-Pastur bulk. The same phenomenon holds for the spiked Wigner model, as
observed by Edwards and Jones [77] using the heuristic replica method and then rigorously
proved [173, 84, 44]. It turns out that for both models the eigenvector (respectively singular
vector) corresponding to the largest eigenvalue (respectively singular value) also undergo
a phase transition at the same threshold, see [109, 172, 160, 28, 29].

For the spiked Wigner model (3.1.1), the main result of interest for us is the following,.
For any probability distribution Py such that Ep,[X?] = 1, we have

e if A < 1, the top eigenvalue of Y /y/n converges a.s. to 2 as n — o0, and the top
eigenvector Z (with norm ||Z]|?> = n) has asymptotically trivial correlation with X:
Lz, X) — 0 as.

e if A > 1, the top eigenvalue of Y /\/n converges a.s. to VA + 1/v/A > 2 and the top
eigenvector Z (with norm [|Z||> = n) has asymptotically nontrivial correlation with

X: (L@.X)) > 1-1/)as.

An analog statement for the spiked Wishart model is proved in [29]. These results give us a
precise understanding of the performance of the top eigenvectors (or top singular vectors)
for recovering the low-rank signals.

However these naive spectral estimators do not take into account any prior information
on the signal. Thus many algorithms have been proposed to exploit additional properties
of the signal, such as sparsity [116, 55, 223, 6, 61] or positivity [151].

Another line of works study Approximate Message Passing (AMP) algorithms for the
spiked models above, see [177, 60, 134, 152]. Motivated by deep insights from statistical
physics, these algorithms are believed (for the models (3.1.1)-(3.1.2), when A and the
priors Py, Py, Py are known by the statistician) to be optimal among all polynomial-time
algorithms. A great property of these algorithms is that their performance can be precisely
tracked in the high-dimensional limit by a simple recursion called “state evolution”, see [26,
112, 25]. For a detailed analysis of message-passing algorithms for the models (3.1.1)-
(3.1.2), see [135].

It turns out that fixed points of these AMP algorithms are stationary points of the so-
called “TAP? free energy” from statistical physics. For the model (3.1.1), the minimization
of the TAP free energy was studied in [83], who showed that the minimizer was equal to
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the posterior mean of X, provided that A was large enough.

In the following we will not consider any particular estimator but rather try to com-
pute the best performance achievable by any estimator. We will suppose to be in the
so-called “Bayes-optimal” setting, where the statistician knows the prior Py (or Py, Py)
and the signal-to-noise ratio A\. In that situation, we will study the posterior distribu-
tion of the signal given the observations. As we should see in the sequel, both estima-
tion problems (3.1.1)-(3.1.2) can be seen as mean-field spin glass models similar to the
Sherrington-Kirkpatrick model, studied in the ground-breaking book of Mézard, Parisi
and Virasoro [143]. Therefore, the methods that we will use here come from the mathe-
matical study of spin glasses, namely from the works of Talagrand [201, 202], Guerra [95]
and Panchenko [170].

In order to further motivate the study of the models (3.1.1)-(3.1.2) let us mention some
interesting special cases, depending on the choice of the priors Py / Py, Py.

e Sparse PCA. Consider the spiked Wishart model with Py = Ber(¢) and P, =
N(0,1). In that case, one sees that conditionally on U the columns of Y are i.i.d.
sampled from N (0, Id, +A\/nUU T), which is a sparse spiked covariance model. The
spiked Wigner model with Py = Ber(€) has also been used to study sparse PCA.

e Submatrix localization. Take Py = Ber(p) in the spiked Wigner model. The goal
of submatrix localization is then to extract a submatrix of Y of size pn x pn with
larger mean.

e Community Detection in the Stochastic Block Model (SBM). As we should see in
Chapter 5 recovering two communities of size pn and (1 — p)n in a dense SBM of n
vertices is (in some sense) “equivalent” to the spiked Wigner model with prior

P():p(s\/ﬁ'f‘(l—p)(s 5.

p

e 7/2 synchronization. This corresponds to the spiked Wigner model with Rademacher
prior Py = %5,1 + %5“.

e High-dimensional Gaussian mixture clustering. Consider the multidimen-
sional version of the spiked Wishart model where U € R™* and V' € R™**  If
one takes Py (the distribution of the rows of V') to be supported by the canonical
basis of R¥, the model is equivalent to the clustering of m points (the columns of Y)
in n dimensions from a Gaussian mixture model. The centers of the clusters are here
the columns of U.

2named after Thouless, Anderson and Palmer [203] who proposed a variational formula (which was

recently rigorously proved by [50]) for the limiting free energy of a mean-field model of spin glasses, the
Sherrington-Kirkpatrick model [191].
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3.2 Information-theoretic limits in the spiked
Wigner model

We consider in this chapter the spiked Wigner model (3.1.1). Let P, be a probability dis-
tribution on R that admits a finite second moment and consider the following observations:

Yi; \/>XX+ Zij, for1<i<j<n, (3.2.1)

where X; "X P, and Zi j N N(0,1) are independent random variables. Note that we

suppose here to only observe the coefficients of \/)\/7X X T+ Z that are above the diagonal.
The case where all the coefficients are observed can be directly deduced from this case. In
the following, E will denote the expectation with respect to the X and Z random variables.

Our main quantity of interest is the Minimum Mean Squared Error (MMSE) defined

as:
2 ~ 2
MMSE, (\) = min ——— E[ XX, - 0,,(Y ]
(=min ey T E|(XX-6,0)
2 2
- E[(X.X; - E[X.X;|Y])?],
n(n . 1) 1<Z'<Zj<n |:< J [ J| ]) }

where the minimum is taken over all estimators 6 (i.e. measurable functions of the obser-
vations Y'). We have the trivial upper-bound

MMSE,(A\) < DMSE & Ep, [X?)2 — Ep [X]*,

obtained by considering the “dummy” estimator 92‘73‘ = Ep,[X]®. One can also compute
the Mean Squared Error achieved by naive PCA. Let & be the leading eigenvector of Y
with norm ||Z||?> = n. If we take an estimator proportional to #;7;, i.c. 6;; = 07,2; for
d > 0, we can compute explicitly (using the results presented in Section 3.1) the resulting
MSE as a function of § and minimize it. The optimal value for § depends on A\, more
precisely if A < Ep, [X? 72, then § = 0 while for A > Ep, [X?] 2, the optimal of value for §
is Ep,[X?] — A'Ep,[X?]7!, resulting in the following MSE for naive PCA:

EP() [X2] if A < Epo[XﬂiQ
A1 (2 = ANEpR [X?]7?) otherwise.

We will see in Section 3.3 that in the particular case of Py = N (0,1), PCA is optimal:
lim MSE,“* = lim MMSE,.

n—oo

MSE; “*(\) —— { (3.2.2)

Posterior distribution and free energy. In order to formulate our inference problem
as a statistical physics problem we introduce the random Hamiltonian

; \/>xla:j i+ XX T — ;;La:?a:? (3.2.3)
The posterior distribution of X given Y takes then the form
dP(z|Y) = ! dP§"(x) exp (Zxx\/XY F— /\xzazz) ! dPE" (x)e ™)
Z,(\) 7 ° =N )z, (0 ’
(3.2.4)
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where Z,(\) is the appropriate normalization. The free energy is defined as

1 1
F,(\) = ]E[log [ argn @) eH”(‘T)} — “Elog Z,(\).
n n
We will first compute the limit of the free energy F;, and then deduce the limit of MMSE,,
by an I-MMSE (see Proposition 1.3.3) argument. We express the limit of F,, using the

following function

. Ay Ao A,
F (A q) = ¥n(Ag) — 1" =Elog (/dPo(x)eXp (@Z%LNMX— 51 )) VL

(3.2.5)
where Z ~ N (0,1) and X ~ Fy are independent random variables. Recall that ¢)p, denotes
the free energy (1.3.6) of the scalar channel (1.3.5). The main result of this section is:

Theorem 3.2.1 (Replica-Symmetric formula for the spiked Wigner model)
For all A > 0,

F,(A\) —— sup F(\,q) . (3.2.6)

Theorem 3.2.1 is proved in Section 3.4. In the case of Rademacher prior (Fy = %5_1 +
%5“), Theorem 3.2.1 was proved in [59]. The expression (3.2.6) for general priors was
conjectured by [133]. For discrete priors P, for which the map F(\,-) has not more than
3 stationary points, the statement of Theorem 3.2.1 was obtained in [18]. The full version
of Theorem 3.2.1 as well as its multidimensional generalization (where X € R™** k fixed)
was proved in [132].

Theorem 3.2.1 allows us to compute the limit of the mutual information between the
signal X and the observations Y. Indeed, by using (1.3.3):

Corollary 3.2.1

1 AEp, (X?%)?
lim —I(X;Y) = AR p, (X7)” —sup F(A,q) .

n—+oo n, >0

We will now use Theorem 3.2.1 to obtain the limit of the Minimum Mean Squared
Error MMSE,, by the -lMMSE relation of Proposition 1.3.3. Let us define

D ={X>0| F(\ ) has a unique maximizer ¢*(\) } .
We start by computing the derivative of nhﬁrglo F,.(\) with respect to A.
Proposition 3.2.1

D is equal to R.g minus some countable set and is precisely the set of A > 0 at which
the function f : X = sup o F (A, q) is differentiable. Moreover, for all A € D

Proof. Let A > 0 and compute
? A A
2

gq}—O\,Q) = Mg, (Aq) — 5 S
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because ¥ p, is %E p, [X?]-Lipschitz by Proposition 1.3.3. Consequently, the maximum of F(},-) is
achieved on [0, Ep [X?]]. If ¢* maximizes F(),-), the optimality condition gives ¢* = 2¢p, (Ag").
Consequently . .

JFO) = i, () - EE = @8
Now, Proposition D.2 in Appendix D gives that the A > 0 at which f is differentiable is exactly
the A > 0 for which

1
{af()\,q*) = —(¢*)* | ¢* maximizer of F(), )}

O\ 4
is a singleton. These X are 2precisely the elements of D. Moreover, Proposition D.2 gives also that
for all A € D, f'(\) = 4 (4/\) , which concludes the proof. O

We deduce then the limit of MMSE,,:
Corollary 3.2.2

For all A € D,

MMSE, () —— (EpX*)* = ¢"(V)*. (3.2.7)

Proof. By Proposition 1.3.3, (F},)n>1 is a sequence of differentiable convex functions that con-
verges pointwise on R~ to f. By Proposition C.1, F}(\) — f/(\) for every A > 0 at which
n o0

f is differentiable, that is for all A € D. We conclude using the I-MMSE relation (1.3.4):

n—1 *(\)2
"L £, X MMSE, (V) = B () o £ = T (3.2.8)
]
Let us now define the information-theoretic threshold
Ao = inf {/\ eD|q () > (EPOX)Q} . (3.2.9)

If the above set is empty, we define A\. = 0. By Corollary 3.2.2 we obtain that

o if A > )., then nh_)n(glo MMSE,, < DMSE: one can estimate the signal better than a
random guess.

e if A < )., then nh_)ngo MMSE,, = DMSE: one can not estimate the signal better than
a random guess.

Thus, there is no hope for reconstructing the signal below A.. Interestingly, one can not
even detect if the measurements Y contains some signal below A.. If one denotes by ()
the distribution of Y given by (3.2.1), the work [3] shows that for A < A. one can not
asymptotically distinguish between @, and ()y: both distributions are contiguous.

3.3 Information-theoretic and algorithmic phase
transitions

3.3.1 Approximate Message Passing (AMP) algorithms

Approximate Message Passing (AMP) algorithms, introduced in [71] for compressed sens-
ing, have then be used for various other tasks. Rigorous properties of AMP algorithms
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have been established in [26, 112, 25, 31], following the seminal work of Bolthausen [35]. In
the context of low-rank matrix estimation an AMP algorithm has been proposed by [177]
for the rank-one case and then by [139] for finite-rank matrix estimation. For detailed
review and developments about matrix factorization with message-passing algorithms,
see [135]. We will only give a brief description of AMP here and we let the reader re-
fer to [177, 60, 133, 152]. In this section, we follow [152] who provides the most advanced
results for our problem (3.1.1). For simplicity, we assume here that P, has a unit second
moment: [22dPy(z) = 1.

Starting from an initialization £°, the AMP algorithm produces vectors x!, ..., x! ac-
cording to the following recursion:
thrl = (Y/\/ﬁ)ft(:ct) — btft,1<.’.ct71), (331)

where by = 237 | f/(2!) and where the functions f, act componentwise on vectors. After
t iterations of (3.3.1), the AMP estimate of X is defined by &' = f,(x?).

A natural choice for the initialization is to take 2° proportional to ¢, the leading unit
eigenvector of Y:

x’ = /n(A2 — 1.

We need now to specify the “denoisers” (f;)¢>1. Let us consider the following one-dimensional

recursion:
o =1=A"),
1 = 2¢p (Aq) = 1 — MMSEp, (Agy).
Recall the additive Gaussian scalar channel from Section 1.3: Yy = /7 Xy + Zp. Let us
define gp, (y,v) = E[Xo|\/7Xo + Zo = y]. We define then
fi(x) = gr, (2/ /@ M) (3.3.3)

The next theorem is a consequence of the more general results of [152], specified to our
setting.

(3.3.2)

Theorem 3.3.1

For allt > 0,
(@ X)) At
lim ———" = lim ||:13 ||: Q-
M g~ A I = Ve
Consequently,
. 1 S
MSEPMT Sl SEIXXT - 3@ =1 g}, (3:3.4)
n—00 N

By Proposition 1.3.3, the function ¢}, is increasing and bounded. The sequence (g;)>0
converges therefore to a point g, > 0 that verifies g = 295 (Agoo). G0 is therefore a criti-
cal point of F (A, ). In the case where g, is the global minimizer of F(\, -), i.e. ¢oo = ¢*(N),
we see using Corollary 3.2.2 that lim;_, MSE?‘MP = MMSE()A): AMP achieves the Bayes-
optimal accuracy.

In the case where ¢, # ¢*(\), AMP does not reach the information-theoretically opti-
mal performance. However, AMP is conjectured (see for instance [220, 7]) to be optimal
among polynomial-time algorithms, i.e. lim; MSE?MP is conjectured to be the best Mean
Squared Error achievable by any polynomial-time algorithm.
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3.3.2 Examples of phase transitions

We give here some illustrations and interpretations of the results presented in the previ-
ous sections. Let us first study the case where Py = N(0,1) where the formulas (3.2.6)
and (3.2.7) can be evaluated explicitly. Indeed, we saw in Example 1.3.1 in Section 1.3

that Yar,1)(q) = %(q —log(1 + q)) We can then compute ¢*(A) = (1 — A™1), which gives

lim MMSE, (\) =

n—oo

0 ifA<1,
H2-14) iftA>1.

Comparing the limit above with the performance of (naive) PCA given by (3.2.2) we see
that in the case By = N(0,1), PCA is information-theoretically optimal.

However, as we see on (3.2.2), the MSE of PCA only depends on the second moment
of Py: naive PCA is not able to exploit additional properties of the signal. We compare
on Figure 3.1 the asymptotic performance of the naive PCA (3.2.2) and the Approximate
Message Passing (AMP) algorithm (3.3.4) to the asymptotic Minimum Mean Squared Error
for the prior

PO :p5F+(1—p)5_m, (335)

P
where p € (0,1). This is a two-points distribution with zero mean and unit variance. It

is of particular interest because it is related with the community detection problem in the
(dense) Stochastic Block Model as we will see in Section 5.9. We see on Figure 3.1 that

1.0 1
0.8 1
0.6 —_— MV
<3| MMSE
<2 —— MSE AMP
= —— MSE PCA
0.4 1
0.2 4
- \

0.25 A 1.0 15 A

Figure 3.1: Mean Squared Errors for the Spiked Wigner model with prior Py given by (3.3.5)
with p = 0.05.

the MMSE is equal to 1 for A\ below the information-theoretic threshold A\, ~ 0.6. One
can not asymptotically recover the signal better than a random guess in this region: we
call this region the “impossible” phase. For A > 1 we see that spectral methods and AMP
perform better than random guessing. This region is therefore called the “easy” phase,
because non-trivial estimation is here possible using efficient algorithms. Notice also that
AMP achieves the Minimum Mean Squared Error for A > 1, as proved in [152]. The region
Ae < A < 1 is more intriguing. It is still possible to build a non-trivial estimator (for
instance by computing the posterior mean), but our two polynomial-time algorithms fail.
This region is thus denoted as the “hard” phase because it is conjectured that polynomial-
time algorithms can only provide trivial estimates (based on the belief that AMP is here
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optimal among polynomial-time algorithms).

Quite surprisingly, one can guess in which phase (easy-hard-impossible) we are, simply
by plotting the “potential” ¢ — —F (), q). This is done in Figure 3.2. By Corollary 3.2.2

0.003
—_— —F(\a) 0.0175

0.002 4 0.0150
0.0125
0.001 4
0.0100
0.000 4 0.0075
0.0050

0.001 4
0.0025

0.002 4 0.0000

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 08 0.0 0.2 0.4 0.6 0.8
q q q

(a) “Easy” phase (A = 1.01) (b) “Hard” phase (A = 0.625) (c) “Impossible” phase (A = 0.5)

Figure 3.2: Plots of ¢ — —F(},q) for different values of A and Py given by (3.3.5) with
p = 0.05.

we know that the limit of the MMSE is equal to 1 — ¢*(A\)? where ¢*(\) is the minimizer
of —F(A,+). Thus when —F(\,-) is minimal at ¢ = 0, we are in the impossible phase.

When ¢*(A) > 0, the shape of —F (), ) indicates whether we are in the easy or hard
phase. If the ¢ = 0 is a local maximum, then we are in the easy phase, whereas when it
is a local minimum we are in a hard phase. The shape of —F(\,-) could be interpreted
as a simplified “free energy landscape”: the hard phase appears when the “informative”
minimum ¢*(\) > 0 is separated from the non-informative critical point ¢ = 0 by a “free
energy barrier” as in Figure 3.2 (b).

1.2 : : : :
EASY
. K-S
1
S !
08 & !
:p*
~< 06} T !
1
1
04t IMPOSSIBLE
3 1
i I
02 —;” 1
.,‘: 1
; 1
0 L | 1 1
0 0.1 0.2 0.3 0.4 0.5
P

Figure 3.3: Phase diagram for the spiked Wigner model with prior (3.3.5).

The phase diagram from Figure 3.3 displays the three phases on the (p, A)-plane. One

observes that the hard phase only appears when the prior is sufficiently asymmetric, i.e.

for p < p* = % — ﬁ, as computed in [18, 40]. For a more detailed analysis of the phase

transitions in the spiked Wigner model, see [135] where many other priors are considered.
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3.4 Proof of the Replica-Symmetric formula
(Theorem 3.2.1)

We prove Theorem 3.2.1 in this section, following [132]. We have to mention that other
proofs of Theorem 3.2.1 have appeared since then: see [20, 80, 158].

Because of an approximation argument presented in Section 3.4.7 it suffices to prove
Theorem 3.2.1 for priors Py with finite (and thus bounded) support S C [—K, K], for some
K > 0. From now, we assume to be in that case.

3.4.1 The lower bound: Guerra’s interpolation method

The following result comes from [129]. It adapts arguments from the study of the gauge
symmetric p-spin glass model of [124] to the inference model (3.2.1). It is based on Guerra’s
interpolation technique for the Sherrington-Kirkpatrick model, see [95]. We reproduce the
proof for completeness.

Proposition 3.4.1

liminf F,(\) > sup F(A, q). (3.4.1)

n—00 >0

Proof. Let ¢ > 0. For ¢ € [0, 1] we define

[ A A
Hp 4 ( Z de,xj xeJXX a: —i—Z V(A =t )\qZ’xl (1—t)\qz; X;— (1- ) qx?.
1<J

Let (-)n+ denote the Gibbs measure associated with the Hamiltonian H,, +(x):

Yesn By (@) f () ()

Sees B (@)@

<f($)>n,t =

for any function f on S™. The Gibbs measure (-),; corresponds to the distribution of X given
Y and Y in the following inference channel:

{Yi,j = %Xin + Zij for 1 <i<j<n,

=1 -t)A\gX;+Z] forl<i<n,

where X; "X Py and Zij, Z! N (0,1) are independent random variables. We will therefore

2

be able to apply the Nishimori property (Proposition 1.1.1) to the Gibbs measure (-), ;. Let us
define

1
Y:tel0,1] — EE log Z p()@n(m)eHn,t(w) ]
Sn
We have ¢ (1) = F,,(\) and re

n )\q
_.AJE o E PO (1) ex § ALS 1 X 2
1][)(0) n l g 0 ( ) € p (Z 1 \/A»q ’L'El )\q 1 1 2 $Z>

resS™

A
= fElog H (Z Py(z;) exp (x//\qZ{xi + Agx; X; — 2(13012))
i=1 \z;€S
A

:]:()\ q)+T
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1 is continuous on [0, 1], differentiable on (0,1). For 0 <t < 1,

1 VA A A LN, Mg
'(t) = —E T iy + —win XXy — —ata? =Y Zlw; — Aqui X + =a? )
7/’ ( ) n <§ N/ni z,_]l'zl‘j n$1$] i<V j 2nxl$j 2 2\/17_t iLi qri; XA B x;

n,t

(3.4.2)

where x is a sample from the Gibbs measure (-), ¢, independently of everything else. For 1 <i <
j < n we have, by Gaussian integration by parts and by the Nishimori property

VA A A (1) (2) 2
E[Zi,j<2m$z’3«"j>m = %(E@%x?)n,t - E<$ixj>$z,t) = %(E@?%Q) bt~ <$( ):r( )x( )x( )> ,t)
A 2 2
= %(E<l‘ll‘j> t E<$i$]’X¢X]‘>n7t>,

where (M) and ? are two independent samples from the Gibbs measure ()nt, independently
of everything else. Similarly, we have for 1 <i <n

E<2\/\£Z{ > = % (E(2?)ns — BlwiXihn) -

Therefore (3.4.2) simplifies

n

1 A " A
Q/)/(t) = —E< Z %.ﬁi:EinXj — Z ?qxlXZ>nt = ZE<(:U . X)2 —2qx - X>nt + On(l)

i<j i=1 '
A 9 g2 Ag?
=2 X — - > 2L A.
4E<(w X —q) >n7t o) = =5 (1), (3.4.3)

where 0,,(1) denotes a quantity that goes to 0 uniformly in ¢ € (0,1). Then

A ! A
Fu) = FOvg) = 70 = w(1) = 0(0) = [ 0/(0dt = =5* + ou (D).
Thus linrr_1>iorgf F,(\) > F(X, q), for all ¢ > 0. O

3.4.2 Adding a small perturbation

It remains to prove the converse bound of (3.4.1). For this purpose, we need to show that
the overlap - X (where x is a sample from the posterior distribution of X given Y,
independently of everything else) concentrates around its mean. To obtain such a result,
we follow the ideas of Section 2.1 that states that giving a small amount of side information
to the statistician forces the overlap to concentrate, while keeping the free energy almost

unchanged.
Let us fix € € [0, 1], and suppose that we have access, in addition of Y, to the additional
information, for 1 <i <mn
Y/ = ? (3.4.4)
x if L; =0,

where L; "= Ber(e) and * is a value that does not belong to S. Recall the free energy that
corresponds to this perturbed inference channel is

F,. E[log S PP (x) exp(Ha ()| .

reS™
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where
T = (Zih e ,i‘n) = (Lle + (]_ - Ll)l'l, ceey Lan + (1 — Ln>xn> . (345)

From now we suppose ¢y € (0,1] to be fixed and consider ¢ € [0,¢p]. We will compute
the limit of F, . as n — oo and then let ¢ — 0 to deduce the limit of F},, because by
Proposition 2.1.1

|Fre — Fnl < H(Pp)e.

3.4.3 Aizenman-Sims-Starr scheme

The Aizenman-Sims-Starr scheme was introduced in [2] in the context of the SK model.
This is what physicists call a “cavity computation”: one compare the system with n + 1
variables to the system with n variables and see what happen to the (n + 1) variable we
add.

n—1
With the convention Fy. = 0, we have F), ( = % > A,(coz where
k=0
ALY = (k + 1) Fp1, — kFyc = Ellog(Zi11,0)] — Ellog(Zi.()].

We recall that Z,, = Y cqn Py (x)ef"® where the notation @ is defined by equa-
tion (3.4.5). Consequently

lim sup "de F, . <limsup " de A (3.4.6)

n
n—00 0 n—00 0 7

We now compare H,; with H,. Let € S™ and ¢ € S. o plays the role of the (n + 1)®
variable. We decompose H,,,1(x,0) = H/,(x) + 029(x) + o%so(x), where

A A A
H, (@) = 7wy + —— X Xy — 2
n() > 1 Zia il + nr1 JTiT; )xz

— 11
<igi<n I M+ 2(n+1

2
7

i A A
20(x) = Z ——Zip1Ti + ——X; Xp 17,
—Vn+1 n+1

AN
so(x) = —m;xz :

7

Let (Z; j)1<i<j<n be independent, standard Gaussian random variables, independent of all
other random variables. We have then H,(x) = H) (x) + yo(x) in law, where

V. A A 5 5
yo(x) = " jrir; + —— X Xjrir; — —————xias .
0 1§;§n n(n + 1) T n(n 4+ 1) T 2(n+)nt
We define the Gibbs measure (), by
1 _ _
F@hne = 5 3 Pola)f(@) exp(H, (). (3.4.7)
n,€ pgcsSn

for any function f on S™. The Gibbs measure (-), . corresponds to the posterior distri-
bution of X given ({/A/(n+ 1)X;X; + Z; j)1<i<j<n and Y’ from (3.4.4). We will there-
fore be able to apply the Nishimori identity (Proposition 1.1.1) and Proposition 2.1.2
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to the Gibbs measure (-),.. Let us define ¢ = (1 — Lyy1)0 + Lyt1Xps1. We can
rewrite Z,1 1. = Sagegn B3 (x)e Ha@)(zoes Py(o) exp(azo(x) + 0250(5:))) and Z,. =
S wesn PE™(x)efn@ew@) - Thus
Anoz = Elog < > Py(o)exp (Uzo(:r;) + 6250(w))> — Elog < exp(yo(a:))> .
ogeS n,€ n,€
In the sequel, it will be more convenient to use slightly simplified versions of z, so and ¥

in order to obtain nicer expressions in the sequel. We define

A [A &
E Z n+1T; + X XnJrlx/L = ﬁ E £U¢Z¢,n+1 + )\(CE . X)Xn+1 R
=1

- x A A A
y(w):ZZ;’x?+ZZ<2X2 2>+\/_ > :ca:j<Z”+\2—XXj>—2n2x‘

N <ici<n

~ A 1
= o S Zlal + S wiZi;+ 3 ((:c - X)? - i(ac : w)2> ,

i—1 N 1<ici<n
where Z" "% N(0,1) independently of any other random variables. Define now
A,.=TFElog <Z Py(o) exp(az(x) + 523(33))> — Elog (exp(y(x))),. -
el n,e

Using Gaussian interpolation techniques, it is not difficult to show that [;°de (A, —
AL —= 0 because the modifications made in 2y, sy and y, are of negligible order.
’ n—oo

Using (3.4.6) we conclude

lim sup Ode F,. <limsup Ode A, (3.4.8)

n— 00 0 n— o0 0

3.4.4 Overlap concentration

Proposition 2.1.2 implies that the overlap between two replicas, i.e. two independent sam-
ples £ and £? from the Gibbs distribution (), ., concentrates. Let us define the random

variables
< Zx(l) (2)> and bi = (Ti)n.e

n,€e

Notice that Q@ = £ 37,07 > 0. By Proposition 2.1.2 we know that

/60 deF. <(a:<1> cx® — Q)2> ——0. (3.4.9)

0 n,e M—0o0

Thus, using the Nishimori property (Proposition 1.1.1) we deduce:

/Oeode]E<(az-X—Q)2> — 40  and /eodeE<(az-b—Q)2> — 0.

n,e M—00 0 n,e N—00

(3.4.10)
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3.4.5 The main estimate

Let us denote, for € € [0, 1],

A Aq A
Fer(Aq) e _Zq2+€(EPoX2) 2 (I—e€) [logz Py(z) exp (\/72x—|—/\qu— 54% )]

€S
where the expectation E is taken with respect to the independent random variables X ~ F,
and Z ~ N(0,1). The following proposition is one of the key steps of the proof.
Proposition 3.4.2
For all ¢ € [0, 1],

| de(Ane— EFOLQ) 2

n—oo

The proof of Proposition 3.4.2 is deferred to Section 3.4.6. We deduce here Theorem 3.2.1
from Proposition 3.4.2 and the results of the previous sections. Because of Proposi-
tion 3.4.1, we only have to show that limsup £, < sup .7:()\ q).

n—oo
By Proposition 2.1.1 we have
€0 1 9
eoF, < / deFoc+ 5 H(Po)e
0
Therefore by equation (3.4.8) and Proposition 3.4.2

1 1
o limsup F, < limsup deAnE + 2H(P0)60 < lim sup deEF (A, Q)+ 2H(P0)eo

n—00 n—r00 0 n—00
(3.4.11)
It remains then to show that limsup [ de EF. (A, Q) < epsup F (A, q) + O(e2). We have for
€ €[0,1],
Aq A
sup |7.(0a) = FOLq)l < € sup 3508 [X2)+ [Blog Y- Fo(a) exp(y/AaZa + AgaX — Sqa?)
4€l0, K2 aelo,x?)| 2 2es 2

< Ce,

for some constant C' that only depends on A and P,. Noticing that @ € [0, K?] a.s., we
have then |[EF. (A, Q) — EF (A, Q)| < Ce, for all € € [0, ¢] and therefore

/EodeE}}()\,Q) < egsup F(X, q) + Ceo
0

q>0

Combined with (3.4.11), this implies lim sup F,, < sup F(\,q) + 3 H(Py)eo + 3Ceo, for all

n—oo q>0

€0 € (0,1]. Theorem 3.2.1 is proved.

3.4.6 Proof of Proposition 3.4.2

In this section, we prove Proposition 3.4.2 which is a consequence of Lemmas 3.4.1 and 3.4.2
below. In order to lighten the formulas, we will use the following notations

X/ - Xn_;’_]_ and Z; — Zi’n_;'_]_.
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Recall
A, =Elog < Zg Py(o) exp(az(x) + 523(.’1;))>n - Elog < exp(y(m))>n7€ : (3.4.12)

where for 0 € S, 6 = (1 — Lyy1)0 + L1 X', We recall that (-),, . denotes the expectation
with respect to @ sampled from the Gibbs measure defined by (3.4.7). The computations
here are closely related to the cavity computations in the SK model, see for instance [201].

Lemma 3.4.1

/de
0

— (€(EPOX E )\262 + (1 —€)Elog > Py(o)exp (\/>O'Zo + Qo X' — Ao Q))

ogesS

Elog< > Py(o)exp(oz(x) + 625(w))>

ceS n,€

where Zy ~ N(0,1) is independent of all other random variables.

Lemma 3.4.2

€0
/ de
0

We will only prove Lemma 3.4.1 here since Lemma 3.4.2 follows from the same kind
of arguments (the full proof can be found in [132]). The remaining of the section is thus
devoted to the proof of Lemma 3.4.1.

Elog (exp(y(x))) — *EQQ

n,e

?’L—}OO

Let us write f(z,5) = 3 Py(0)e”*t7°* and we define:
ocesS

U={(fz().5())

V => Pyo)exp (5\/52 biZ+ 2 \QX'a — >\2Q62) :
oesS =1

Lemma 3.4.3

/Oeode]E[(U - V)z] — 0.

n—o0

Proof. It suffices to show that [de|EU? — EV?| —0 and [de [EUV — EV?| —0
Let Ez denote the expectation with respect to Z’ = (Zim+1)1<i<n only. Compute

_ AQ _
EzV?=Egz > Py(o1,02)exp ((01 + 09) Zb Z; + 2\QX'(01 4 02) — TQ(U% + Ug))
01,02€85 i=1
_ oA - AQ _

= Z Py(o1,02) exp ((01 + 02)2562 +AQX' (71 + 72) — 7(02(0% + 0%))

0‘1,0’2€S
= Z Py(o1,02) exp (5’15'2)\Q + AQX’(&l + 5’2)) (3.4.13)

01,02€S8

where we write for i = 1,2, 6; = (1 — Ly41)0; + Lp41 X', as before.
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Let us show that [de |[EU? — EV?| —— 0.
n—o0

EzU? = Ez(f(x(x), s(x)))>

= Ez{(f(z(xW), s(xM)) f(z(x?), s(m(2)))>n’€ (V) and 2® are indep. samples from (-)nc)
= (Ez f(x(a), (@) f(=(@®), s(2)))

n,€

= < > Po(o1,09)Ez exp (512(13(1)) +o1s(@Y) + 5o2(2?) + 5%S($(2)))>

01,02€8 n,e

The next lemma follows from the simple fact that for N ~ A/(0,1) and ¢ € R, EetV = exp(%).
Lemma 3.4.4
Let M, 2® e S and 01,09 € S be fixed. Then

A o P o3 o3
Ez exp|o1t/— ngl)ZZ( + o2/ — 21752)22{ = exp (Ao 2™ 2?) + ﬂ||alc(1)||2 + ﬂHar:(2)H2 .
n i n = 2n 2n

Thus, for all ), 2 e 5™ and ¢1,00€ S

EZ/efnz(x(l))+afs(x<1))+62z(:c<2>)+6§s(ac<2>) _ e)\6162a:(1>~:c(2>+)\X’(61(:c(1>~X)+62(w(2)~X))

9

where we used the fact that s(x)= —ﬁHmHQ for all z € S™. We have therefore

EzU? = < Z Py(o1,09) exp ()\5162%(1) 2@ X! (61(32(1) - X)+ 6’2(33(2) X)))>

01,0268 n,e

Define

g:(s,r1,1m9) € [-K? K?® — Z Py(o1,02) exp ()\5’15’25 +AX' (61 + 527“2)).

0'170'265'

We have Ez U? = (g(z™M- 2®) 201). X 2. X)), . and by (3.4.13), Ez/V? = ¢(Q, Q, Q).
Lemma 3.4.5

There exists a constant M that only depends on A and K, such that g is almost surely
M -Lipschitz.

Proof. g is a random function that depends only on the random variables X’ and L, (because
of &1 and &3). ¢ is C! on the compact [-K?, K?]3. An easy computation show that

V(s,ry,19) € [—K2,K2]3, IVg(s,r1,r2)| < INK? exp(3AK4).
g is thus M-Lipschitz with M = 3AK*exp(3AK?). O

Using Lemma 3.4.5 we obtain

(lg(aD- 2, 20. X 23 X) - 4(Q,Q,Q))

n,€

< M<\/(x(1). 2(2) — Q)2+ (x(l). X Q)2+ (w(2)- X — Q)2> '

,€
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We recall equation (3.4.13) to notice that ¢(Q,Q, Q) = Ez/V?2. Thus, using (3.4.9) and (3.4.10)

/OdeIE|EZ/U2—IEZ/V2| gM/Ode]E<\/(m(1).m(2) _Q)2+($(1).X_Q)2_|_(m(2).X_Q)2> ’
0 0

n,€

and the right-hand side goes to 0 by (3.4.9-3.4.10).

Showing that [de|EUV — EV?| — 0 goes exactly the same way. We thus omit this part
n oo

here for the sake of brevity, but the reader can refer to [132] where all details are presented. []

Using the fact that |logU — log V| < max(U~!, V~1)|U — V| and the Cauchy-Schwarz
inequality, we have

E|logU —log V| < VEU-2 + EV-2\/E(U — V)2.

Lemma 3.4.6
There exists a constant C' that depends only on A and K such that

EU2+EV2<C.

Proof. Using Jensen inequality, we have U > f((z(2))n,c, (s(€))n,). Then

U72 < f(<2(m)>n,6a <5 :17 n,e < Z PO exp - 25<Z(m)>n76 - 25’2<S($)>n75) .

ogeS

It remains to bound E exp(—25(z(x))n . — 252(s(x))n). Po has a bounded support, therefore

E exp (—26<z(w)>n,e—262(s(w)>n,e) < CoE exp ( 202 :10z ,“Z') = CoE exp(2XQ5?) < Oy,

for some constant Cp, C; depending only on A and K. Similar arguments show that EV 2
upper-bounded by a constant. ]

Using the previous lemma we obtain [de E|log U —log V| — 0. We now compute E log V'

explicitly.
Lemma 3.4.7
A Ay Ao
ElogV = ¢(Ep, X*)E 2Q+(1 e)Elog > Py(o) exp ( ZbiZz{“‘)\QUX,_;-Q) .
c€eS =1

Proof. It suffices to distinguish the cases L, 1 =0 and L,+1=1. If L, 11 =1 then for all 0 € S,
o =X"and

)\X’2

n 12
logV = log (exp (X’ %ZbiZZH—)\QX'Q— /\)2( Q)) Zb Z! +
i=1

Ly+1 is independent of all other random variables, thus

A
E[1(Lus1 = 1)log V] = e(Ep, X*)FEQ,

38



because the Z/ are centered, independent from X’ and because X' is independent from @. The
case L,11 = 0 is obvious. O

n

The variables (b;)1<i<n and (Z;)1<i<, are independent. Recall that Q) = % > b?. Therefore,

1 n =1
(X/’ Q’ 7 Z blZ;) = (X/) Q? \/éZO) in 1aW7
iz
where Zy ~ N(0,1) is independent of @, X’. The expression of ElogV from Lemma 3.4.7
simplifies

A o2
Elog V' = (B X)E + (1 - OElog Y. Ay(o) exp (Mazo £ AQoX' g@) |
g€eS
thus
/Eod ElogU—|(¢(E Xz)Eg—i—(l— )Elo ZP( ) ex (\/AQ Zo+AQ X’—/\OQQ) 0
06 g e(lLp, 5 € gUESOU p 024 o 5 o

which is precisely the statement of Lemma 3.4.1.

3.4.7 Reduction to distribution with finite support

We will show in this section that it suffices to prove Theorems 3.2.1 for input distribution
Py with finite support.

Suppose the Theorem 3.2.1 holds for all prior distributions over R with finite support.
Let Py be a probability distribution that admits a finite second moment: Ep X? < co. We
are going to approach Py with distributions with finite supports.

Let 0 < ¢ < 1. Let K > 0 such that Ep [X?1(|X| > K)] < €2 Let m € N* such that
% < e. For z € R we will use the notation

_[E|m| teerx,
r =

0 otherwise.

Consequently if x € [-K, K],z <x <Z+ % < Z+¢. We define P, the image distribution
of Py through the application z — z. Let n > 1. We will note F,, the free energy
corresponding to the distribution Py and F the function F from (3.2.5) corresponding to

the distribution Py. P, has a finite support, we have then by assumptions

E,(\) —— sup F(\,q). (3.4.14)

n— o0 >0
By construction we have for all 1 <i <n, E(X; — )_Q)2 < €2. Hence
_ 2
]EH(XZX]>Z<] — (X’LX])Z<]H S 2(n — 1)HEPO [X2]€2 .
Consequently, by “pseudo-Lipschitz” continuity of the free energy with respect to the

Wasserstein metric (see Proposition B.1 in Appendix B.4) there exist a constant C' > 0
depending only on Fy, such that, for all n > 1 and all A > 0,

|F(A) = Fo(N)] < AC. (3.4.15)
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Lemma 3.4.8
There exists a constant C' > 0 that depends only on P,, such that

sup F(X, q) —sup F(\, q)| < A€

q>0 q>0

Proof. First notice that both suprema are achieved over a common compact set [0, Ep, [X 2+ X2]].

Indeed, for ¢ > 0,
9 , Aqg A 2
—F = — — < —(Ep,[X*] —

because 1 p, is %Epo [X?]-Lipschitz by Proposition 1.3.3. Consequently, the maximum of F(),-)
is achieved on [0, Ep,[X?]] and similarly the supremum of F(J,-) is achieved over [0, Ep,[X?]].
Using Proposition B.1 in Appendix B.4, we obtain that there exists a constant C’ depending only
on Py such that Vg € [0, Ep, [X2 + X2]], |[F(\, q) — F(A,q)] < AC’e. The lemma follows. O

Combining Equation 3.4.14 and 3.4.15 and Lemma 3.4.8, we obtain that there exists
ng > 1 such that for all n > ny,

|F, —sup F(\, q)| < MC + C" + 1)e,

q>0

where C' and C’ are two constants that only depend on F,. This proves Theorem 3.2.1.
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Chapter 4

Non-symmetric low-rank matrix
estimation

We consider now the spiked Wishart model (3.1.2). Let Py and Py be two probability
distributions on R with finite second moment. We assume that Varp, (U), Varp, (V) > 0.

Let n,m > 1, A > 0 and consider U = (Uy,...,U,) '~ Py and V = (V4,...,V,,) "X Py,
independent from each other. Suppose that we observe

2
Yi=1\-UV,+ Z;;, for 1<i<n and 1<j<m, (4.0.1)
n

where (Z; ;); ; are i.i.d. standard normal random variables, independent from U and V. In
the following, E will denote the expectation with respect to the variables (U, V') and Z.
We define the Minimum Mean Squared Error (MMSE) for the estimation of the matrix
UV given the observation of the matrix Y:

m

MMSE, (1) = min {in >3 E[(11; - u(¥))] }

0 i=1j=1

1

nm

S Y[, — BV Y)Y

i=1j=1

where the minimum is taken over all estimators 6 (i.e. measurable functions of the obser-
vations Y'). In order to get an upper bound on the MMSE, let us consider the “dummy
estimator” 0; ; = E[U;V}] for all ¢, j which achieves a “dummy” matrix Mean Squared Error

of:

n m

DMSE = ——3° "B [(U3V; — E[UV;)"] = BUYE(V?) - (EU)(EV)?.

nm ;- ;5

4.1 Fundamental limits of estimation

As in Chapter 3, we investigate the posterior distribution of U,V given Y. We define the
Hamiltonian

77

A A A
H,(u,v) => (| =wv;Zij + —uUw;V; — Q—U?vz for (u,v) € R" x R™. (4.1.1)
—n n n

The posterior distribution of (U, V') given Y is then

dP(u,v|Y) = e (4:2) g PO (41) A PE™ (v), (4.1.2)

Z,(M)
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where Z,(\) =[efl(w0)dPF"(u)dPF™(v) is the appropriate normalization. The corre-
sponding free energy is

1 1
Fo(A) = - Elog 2,()) = - Elog < / eH"(“’”)dP[?”(u)dP‘?m(v)) .

We consider here the high-dimensional limit where n, m — oo, while m/n — «a > 0. We
will be interested in the following fixed point equations, sometimes called “state evolution
equations”.

Definition 4.1.1
We define the set I'(\, «) as

T\ @) = {(gu @) € R, | qu = 20, (Aag,) and g, = 20, (Aqu) } - (4.1.3)

First notice that I'(A, a) is not empty. The function f : (qu, ¢,) = (25, (A\agy), 205, (Aqu))
is continuous from the convex compact set [0, EU?] x [0,EV?] into itself (see Proposi-
tion 1.3.3). Brouwer’s Theorem gives the existence of a fixed point of f: T'(\, ) # 0.

We will express the limit of F}, using the following function

pYe)
F (N, qu, @) — Ve, (Aagy) + atp, (Aq,) — 5 Quds (4.1.4)

Recall that ¢p, and 1p,, defined by (1.3.6), are the free energies of additive Gaussian
scalar channels (1.3.5) with priors Py and Py. The Replica-Symmetric formula states that
the free energy F,, converges to the supremum of F over I'(\, ).

Theorem 4.1.1 (Replica-Symmetric formula for the spiked Wishart model)

Fn(/\) — sup F<)\aaaQUaQ1}) = sup in>f0"t-()‘aa7QWQU) : (415)

70 (gu,qw) ET (M) qu>0 >

Moreover, these extrema are achieved over the same couples (q,,q,) € T'(\, «).

This result proved in [145] was conjectured by [133], in particular F corresponds to the
“Bethe free energy” [133, Equation 47]. Theorem 4.1.1 is proved in Section 4.3. For the
rank-k case (where Py and Py are probability distributions over R¥), see [145]. As in
Chapter 3, the Replica-Symmetric formula (Theorem 3.2.1) allows to compute the limit of
the MMSE.

Proposition 4.1.1 (Limit of the MMSE)

Let

D, = {)\ >0 ’ F(\ a,-,+) has a unique maximizer (g, (A, ), gi(\, ) over T'(A, a)}.

Then D, is equal to (0,400) minus a countable set and for all A\ € D,, (and thus almost
every A > 0)

MMSE, (\) —— E[U?E[V?] — ¢ (X, a)q (M, a) . (4.1.6)

n—oo
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Again, this was conjectured in [133]: the performance of the Bayes-optimal estimator
(i.e. the MMSE) corresponds to the fixed point of the state-evolution equations (4.1.3)
which has the greatest Bethe free energy J. Proposition 4.1.1 follows from the same kind
of arguments than Corollary 3.2.2 so we omit its proof for the sake of brevity.

Proposition 4.1.1 allows to locate the information-theoretic threshold for our matrix
estimation problem. Let us define

Ae(a) = inf {\ € Dy | gi(A\, @)@ (A, @) > (EU)*(EV)?}. (4.1.7)

If the set of the left-hand side is empty, one defines A.(ar) = 0. Proposition 4.1.1 gives that
A(@) is the information-theoretic threshold for the estimation of UV'T given Y':
o If A < Ac(a), then MMSE,(A) —— DMSE. It is not possible to reconstruct the

signal UV'T better than a “dummy” estimator.

o If A > A.(a), then dim MMSE,,(A) < DMSE. It is possible to reconstruct the signal
UV better than a “dummy” estimator.

Proposition 4.1.1 gives us the limit of the MMSE for the estimation of the matrix UV'T,

but does not gives us the minimal error for the estimation of U or V separately. As we

will see in the next section with the spiked covariance model, one can be interested in
estimating UUT or VV'T, only. Let us define:

1
MMSEX(N) = | S (U - EUU;Y)).
1<4,5<n

1
MMSEQ () = —E| 3 (W BN IY]) .
m 1<ij<m
Theorem 4.1.2
For all o« > 0 and all A € D,

MMSE((A) —= Ep, [U*]~¢;(A\,@)® and MMSE'(\) —— Ep, [V =g;(A, )°.

Theorem 4.1.2 is proved in Section 4.4.

4.2 Application to the spiked covariance model

Let us consider now the so-called spiked covariance model. Let U = (Uy,...,U,) '~ Py,
where Py is a distribution over R with finite second moment. Define the “spiked covariance
matrix”

¥ =1d, + iUUT, (4.2.1)
n

and suppose that we observe Yi,...,Y,, '~ N(0,X), conditionally on ¥. Given the
matrix Y = (Y;]---|Y,,), one would like to estimate the “spike” UUT. We deduce from
Theorem 4.1.2 above the minimal mean squared error for this task, in the asymptotic
regime where n,m — 400 and m/n — «a > 0.
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Corollary 4.2.1
For all o > 0, the function

q {@DPU()\ozq) + %(q + log(1 — q))}

admits for almost all A > 0 a unique maximizer ¢*(\,«) on [0, 1) and

MVSER () = E[JUrT - BT[] o Bl - ()

Proof. There exists independent Gaussian random variables V' = (V1,...,V;,) "= N(0,1) and
Zi RS N(0,1), independent from U such that

Y:(Y1|-~-\Ym):\/§UVT+Z.

Therefore, the limit of the MMSE for the estimation of UU is given by Theorem 4.1.2 above.
It remains only to evaluate the formulas of Theorems 4.1.1 and 4.1.2 in the case Py = N(0,1).
As computed in Example 1.3.1, ¥p0,1)(q) = %(q —log(1 + ¢)). Thus, the limit of the free
energy (4.1.5) becomes (after evaluation of the supremum in g, ):

(6%
sup {tn, (Aagy) + 5 (a0 +log(1 - ) }
QUE[O,I)

By Theorem 4.1.2 for all @ > 0 and almost all A > 0 this supremum admits a unique maximizer
¢\, ) and MMSEM™ (\) — Ep, [U?]? — g5 (), @)? where ¢ verifies (recall that (¢, ¢}) € T):

Ay (A, @)

* _ ! * BTV T2UY
40X @) = 20, (Mu(d @) = 3750050 -

We deduce from the equation above that ¢ (), o) = X 0, (\,0)

X—q:(na)) Which concludes the proof. [

We will now compare the MMSE given by Corollary 4.2.1 to the mean squared errors
achieved by PCA and Approximate Message Passing (AMP).

1.0 A

1.00 A

0.98
0.9

0.96

0.94

MSE

0.92

0.90

0.6

0.88 1

025 050 075 100 125 150 175 200 (Y 0.9 aT 1.0 Qag L«

Figure 4.1: Mean Squared Errors for the spiked covariance model, where the spike is gen-
erated by (4.2.3) with s = 0.15, A = 1. The right-hand side panel is a zoom of the left-hand
side panel around a = 1.
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Let @ be a singular vector of Y /+/n associated with o7, the top singular value of Y /4/n,
such that ||a|| = y/n. Then results from [29, 66] give that almost surely:

MNa—1  p 12 AN (@1 +N) e y2
(ﬁ-U>2: {/\(/\‘Hl) if a1, — { A if Mo > 1,

lim
n—oo

and lim oy
0 otherwise, noreo 14+1/a otherwise.

gPCA = dua", where § is chosen in order to

AMa—1 :
m )+ s which can

We are then going to estimate UU T using
minimize the mean squared error. The optimal choice of § is 0* = (

be estimated using o;. We obtain the mean squared error of the spectral estimator PCA.

1+ 14 e \2
lim MSEF®A = A(AIH) (2 - A(AIH)) if a>1,
n—00 n ‘

1 otherwise.

As in the symmetric case (see Section 3.3.1) one can define an Approximate Message
Passing (AMP) algorithm to estimate UUT. For a precise description of the algorithm,
see [177, 61, 134]. The MSE achieved by AMP after ¢ iterations is:

. AMP _ 1 ()2
Jim MSEL™ =1 (),
where ¢!, is given by the recursion:

t __ / t
0 =20k, (Aqy)

with initialization (¢j), ¢)) = (0,0). We know by Proposition 1.3.3 that the functions ¢},
and 1}, are both non-decreasing and bounded. This ensures that (q;,q,);>0 converges
as t — 0o to some fixed point (¢AMF ¢AMP) € T If this fixed point turns out to be the
one that maximizes F(\, q, ), i.e. that (¢AMP ¢MMP) = (¢*(\, ), ¢* (), @)), then AMP

u
achieves the minimal mean squared error!

For the plots of Figure 4.1, we consider a case where the signal is sparse:
Py =sN(0,1/s)+ (1 —8)do, (4.2.3)

for some s € (0,1], so that Ep,[U% = 1. We plot the different MSE on Figure 4.1. We
chose A = 1 so the “spectral threshold” (the minimal value of a for which PCA performs
better than a random guess) it at & = 1 (green dashed line). This threshold corresponds
also to the threshold for AMP: MSE* = 1 for a < 1 while MSE*" < 1 for a > 1.
The information-theoretic threshold ajr is however strictly less than 1. For a € (ayr, 1)
inference is “hard”: it is information-theoretically possible to achieve a MSE strictly less
than 1, but PCA and AMP fail (and it is conjectured that any polynomial-time algorithm
will also fail).

However, even for a« > 1, AMP does not always succeed to reach the MMSE. For
a € (1,aay), MSEAMP ig strictly less than 1 but is still very bad. So, the region o €
(1, cvarg) is also a “hard region” in the sense that achieving the MMSE seems impossible for
polynomial-time algorithms (under the conjecture that AMP is optimal among polynomial-
time algorithms). The scenario presented on Figure 4.1 is not the only one possible: various
cases have been studied in great details in [135]. See in particular Figure 6 from [135] and
the phase diagrams of Figure 7 and 8.
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4.3 Proof of the Replica-Symmetric formula
(Theorem 4.1.1)

4.3.1 Proof ideas

The proof of the Replica formula for the non-symmetric case is a little bit more involved
compared to the symmetric case, because one can not use the convexity argument of Propo-
sition 3.4.1 to obtain the lower bound. Indeed, a key step in the proof of Proposition 3.4.1
was the inequality (3.4.3) that was obtained by saying that for every ¢ > 0

E[(z- X —q)] >0, (4.3.1)

where x is a sample from the posterior distribution of X given some observations (we omit
the notation’s details here in order to focus on the main ideas).
However, if we apply the strategy of Proposition 3.4.1 to the non-symmetric case, one
obtains
E[(u-U-q)(v V-q) (4.3.2)

where (u, v) is a sample from the posterior distribution of (U, V') given some observations,
instead of (4.3.1). Now, it not obvious anymore that (4.3.2) is non-negative. In order to
prove it, one has to investigate further the distributions of the overlaps w-U and v-V. By
following the approach used by Talagrand in [201] to prove the TAP equations (discovered
by Thouless, Anderson and Palmer in [203]) for the Sherrington-Kirkpatrick model, one
can show that the overlaps approximately satisfy (when n and m are large)

u-U ~ 295 (\av - V)
vV >~ 2¢p (Au-U).

These are precisely the fixed point equations verified by (q,, ¢,) € I'(A, «). Thus one has
E|(u-U—q)(v-V —q)| ~E[(2}, (Aav- V) = 20, (ag,))(v-V —q,)| >0, (4.3.3)

because by Proposition 1.3.3, ¢}, is non-decreasing. One obtain thus the analog of the
lower-bound of Proposition 3.4.1 for the non-symmetric case. The converse upper-bound
is proved following the Aizenman-Sims-Starr scheme, as in the symmetric case.

In the following sections we will not, however, follow the proof strategy that we just
described. This was done in [145]. We will instead provide a more straightforward proof
from [21] that uses an evolution of Guerra’s interpolation technique, see [20].

4.3.2 Interpolating inference model

We prove Theorem 4.1.1 in this section. First, notice that is suffices to prove Theorem 4.1.1
for A = 1, because the dependency in A can be “incorporated” in the prior P;. We will thus
consider in this section that A = 1 and consequently alleviate the notations by removing
the dependencies in A. Second, it suffices to prove that

F, —— sup inf F(a, qu, q) (4.3.4)

n—00 o <0 qu>0
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because the equality with sup, . yer(a) & (e, Gu, q») follows then from simple convex anal-
ysis arguments (Proposition C.6) presented in Appendix C.

Third, by a straightforward adaptation of the approximation argument of Section 3.4.7
to the non-symmetric case, it suffices to prove (4.3.4) in the case where the priors Py and
Py have bounded supports included in [— K, K] for some K > 0. We suppose now that
the above conditions are verified and we will show that (4.3.4) holds.

Let q1,¢2 : [0,1] — Rsq be two differentiable functions. For 0 <t < 1 we consider the
following observation channel

Y, = (1-1t)/ VT + Z
K(v) — / 4 Z )

where Z ) 'v " N(0,1), are independent from everything else. The observation chan-
nel (4.3. 5) mterpolates between the initial matrix estimation problem (4.0.1) (¢t = 0, pro-
vided that ¢;(0) and ¢2(0) are small), and two decoupled inference channels on U and V
(t =1). For r1,75 > 0, we define the Hamiltonian:
—1 1—-1

), (=0) 0

t) (
A 2
UU] J om u; v

zUjUz‘Vj -

Hn,t<u7v;rlar2) :Z
ar - v r
+Z\/a_nuz '+ arwl; 21U?+le/50jz§ )+7“2%Vj—§ ;
]:

The posterior distribution of (U, V') given (Y;, Y, ¥,")) is then

dP(u, v \ v, v, v = 1.

= Hn,t(u;v;th(t)=Q2(t))dP5§m<u)dP‘§)m(v) , (4.3.6)
n,t

where Z,,; is the appropriate normalization. We will often drop the dependencies in
¢1(t), g2(t) and write simply H, ;(u,v). The Gibbs bracket (-),; denotes the expectation
with respect to samples (u,v) from the posterior (4.3.6):

1 .
(fuw) = 5 [ fu v OuOdpe )iy (v). (4.3.7)

for all function f for which the right-hand side is well defined. The corresponding free
energy is then

Falt) = iElog A i]Elog ( / eH"’t(“’")dP{?"(u)dP‘?m(v)) . (4.3.8)
Notice that 1.00) . 0l (0) o)
n = I, +0(q + g2
{ (D) = Brlaq(D) + B, (60) . (4:89)

fn(1) looks similar to the limiting expression F defined by (4.1.4). We would therefore like
to compare f,(1) and F, = f,(0) + O(q:1(0) + ¢2(0)). We thus compute the derivative of

fn
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Lemma 4.3.1
For all t € (0,1),

£t = S0~ B ((wU-a0) (Mo vi—ago)) . @s10

)

Proof. Let ¢t € (0,1). Compute
1./9
Flt) = B gHnetu))

Using Gaussian integration by parts and the Nishimori property (Proposition 1.1.1) as in the
proof of Proposition 1.3.3, one obtains:

LE(GiHuelun)) = Sad OB U)o+ 5hOE (Moo V) 58 (w0 v)

n,t n,t

which leads to (4.3.10). O

Our goal now is to show that the expectation of the Gibbs measure in (4.3.10) vanishes.
If this is the case, the relation F,, ~ £,(0) = f.(1) — [y f.(t)dt would give us almost the
formula that we want to prove. The arguments can be summarized as follows:

e First, we show that the overlap w - U concentrates around its mean E(u - U), ;.

e Then, we chose ¢2 to be solution of the differential equation ¢4(t) = E{(u - U),; in
order to cancel the Gibbs average in (4.3.10).

4.3.3 Overlap concentration

Following the ideas of Section 2.2, we show here that the overlap u-U concentrates around
its mean, on average over small perturbations of our observation model.

Proposition 4.3.1

Let Ry, Ry : [0,1] x (0, +00)? — Rsq be two continuous, bounded functions that admits
partial derivatives with respect to their second and third arguments, that are continuous
and non-negative. Let s, = n~'/32. For e € [1,2]?, we let q(-,€),q:(-, €) be the unique

solution of
¢1(0) = sner @i (t) = Ru(t, q1(t), g2(t))
72(0) = sp€9 @ (t) = Ra(t, qu(t), g2(t)).

Then there exists a constant C' > 0 that only depends on K, «, ||Ri|le and ||Rz||co,
such that for all t € [0, 1],

2 2 ) .
/1 /1 ]E<(u U —E(u- U>n,t) >n,td€1d€2 < 7

where (-),+ is the Gibbs measure (4.3.7) with (q1,q2) = (¢ (-, €), g2(-, €)).

(4.3.11)

Proof. The existence and uniqueness of the solution of the Cauchy problem (4.3.11) comes from
the usual Cauchy-Lipschitz theorem (see for instance Theorem 3.1 in Chapter V from [100]). Let
us fix t € [0, 1] The flow

Qt € (ql(t>€)vq2(tv 6))
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of (4.3.11) is a C'-diffeomorphism. Its Jacobian is given by the Liouville formula (see for instance
Corollary 3.1 in Chapter V from [100]):

J(e )dffd t(aacit( )) :siexp(

because the partial derivatives inside the exponential are both non—negative. The quantity
2
E((u-U—E(w-U)y)*)

is a function of the signal-to-noise ratios ¢; and g2, that we denote by V. Let us write Q =
Q([1,2)%)/s, and M = max(||R1||oo, || R2/|cc) + 2. Notice that Q C [1,M/s,]? because q1,qo
are by (4 3. 11) non-decreasing and max(||Ri||oc, || R2|/oc)-Lipschitz. By the change of variable
(r1,7m2) = Q(€1,€2)/8, we have

2 2
/ / u -U — E(u . U>n’t)2>n tdeldeg = /1 /1 V(q1 (t, 61), QQ(t, 62))d61d62

2
szdridrs

= /QV(snrl, snrg)m

M/sn M/sn
< / / V(snr1, Spre)dridra,
1 1

2

8Rl( , Qs(€ ds+/ 8R2 (e))ds)zsi, (4.3.12)
0

n,t

where we used (4.3.12) for the last inequality. By the change of variable 71 = a®, we have for all

ro > 0:

M/sn, /' M/sn M VM/sn
/ V(snri, spre)dry = / V(snag,snrg)Qada <2 S—/ V(snaQ,snrg)da.
1 1 \ s J1

By definition of V, the quantity V(s,a?,s,r2) is the variance of the overlap u - U where u is
sampled from the posterior distribution of U given Y;, a\/as,U + Z™ and /s, V + Z¥). By
Proposition 2.2.1 we have for all 1 <7y < M/s,

1
/NSy

$na?, spro)da < C(

/Sn
M /s, — 1 /1 Vi +/on)

where C > 0 is a constant that depends only on K, «,
Up = sup sup IE}qzﬁt(rl, r9) — Egy(r1,72)|
t€[0,1] 0<r1,ro<M/sn

and
1 .
0t ) o —tog ([ dPE ()P (w)etins i)
ns u,v

n )

Consequently
/12 /12]E<(u U =Blu-U)y)*) dedes < 2(%)20(\/@

for some constant C’ > 0. We now use the following lemma to control v,,:
Lemma 4.3.2

i) < (= ),

There exists a constant C > 0 (that only depends on K, M and «) such that

v, < Cn~ V251

We delay the proof of Lemma 4.3.2 to Section 4.3.5. We deduce that
2 2 20"

2
E{((u-U—-Eu-U), derdes < ——
/1 /1 <( < Int) > 1062 = " 1/8

n,t

if we choose s, = n~1/32, ]
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4.3.4 Lower and upper bounds

From now we write E(u - U),, as a function of (¢, ¢1(t), ¢2(1)):

E(u-U)ns = Q(t, (1), ¢2(1))- (4.3.13)

Notice that @ is continuous, non-negative on [0, 1] x (0, +00)?, bounded by K? and admits
partial derivatives with respect to its second and third argument. These derivatives are
both continuous. Moreover, notice that

2
Ep, (U] = Q(t,71,72) = E|[U — E[U]Y;, arU + 2", 5V + 2|
is of course non-increasing with respect to r; and r,. The partial derivatives of ) with
respect to its second and third argument are thus non-negative.

For simplicity we will now omit the dependencies on A and « in F. The proof of (4.3.4)
will follow from the two matching lower- and upper-bounds below.

Proposition 4.3.2

In the setting of Proposition 4.3.1, for € € [1,2]* we let q,(t,€), q2(t, €) be the solution
of (4.3.11), with the choice Ry = ). For this choice of functions qi, gz, we have:

Fo= [ [ (om0, + @ (0:(1.6) = §ai . ds (6. ©) e + 0,1

Proof. Let us fix € € [1,2]?. With the choice Ry = @, we have for all ¢ € [0, 1]:

qé(t, 6) = Q(ta q1 (t7 6)7 qQ(tv 6)) = E<u : U>n,t'

The derivative of (4.3.10) becomes then by Proposition 4.3.1:

) = 5at (00400 = 5B (w0 U =Bl ) (B0 V =0 (®) ) = ShOBO +0u(1)

where 0,(1) denotes a quantity that goes to 0 as n — oo, uniformly in ¢,e. By Proposition B.1

we have f,(0) = F,, + Opn(sn). We have also: f,(1) = ¥p, (aqi(1,€)) + aop, (q2(1,€)) + on(1).
We conclude by

fn = /[1,2]2 Jn(0)de + on(1) = /[1,2}2 (f"(l) ; /01 f;l(t)dt) de+ on(l)

1 «
= [y (pruloai(1.0) 4 avn (00,9) ~ Sa (O ))dide +0a(1)

Lower bound

One deduces from Proposition (4.3.2) the following lower bound:

Proposition 4.3.3

liminf F,, > sup inf F(qo,q1) -
n—00 - qu% q2>0 (QQ ql)

20



Proof. We apply Proposition 4.3.2 with Ry = r, for some r > 0. We get q1(t,€) = €18, + 7t, SO
that:

1 a
F, = /H | (#ratsues + 1)+ avn (1, ) = Sras(t,) )dede + o,(1).

= [ (¥ro(ar) + avp (@2(1,) — Sra:(1,0)de+ o,(1).
(1,2]2

> qgnzfof(qz,r) +0,(1),
1

2
since the last inequality holds for all r» > 0. O

where we used the fact that ¥ p, is 5K 2_Lipschitz, and that s,, — 0. This proves the proposition
Upper bound

We will now prove the converse upper bound.
Proposition 4.3.4

lim sup F,, < sup ir;fo]-"(qQ, q) -

n—o0 q1>0 q2=

Proof. We apply Proposition 4.3.2 with Ry = 2ay/p,, 0 Q. Ry verifies the conditions of Proposi-
tion 4.3.1 because ¥p, is a C? convex Lipschitz function (Proposition 1.3.3).
For simplicity we omit briefly the dependencies in € of ¢; and ¢o2. ¥p, is K 2 /2-Lipschitz, and

q1(0) = €s,, = 0,(1) so Yp, (q1(1)) = ¢¥p, (a(q1(1) — ¢1(0))) + on(1), where o0,(1) is a quantity
that goes to 0 as n — oo, uniformly in € € [1,2]?. Notice that by convexity of the functions v p,
and v¥p,, we get

v (aar(1)) = e, (o | (D) + onl1) < / ey (adi(8))dt + onL)

and similarly: ¥p, (g2(1)) < [y ¥py (¢5(t))dt + 0,(1). We get by Proposition 4.3.2
1 @
Fo< [ ] (0r(adi(t.0) + avm (65t ) — St ah(t. ) )dtde + on (L)
[1,2]2 JO 2

1
_ / / Fdh(t, €), €. (t, €))dtde + on(1). (4.3.14)
1,212 Jo
Since we chose Ry = Q and Ry = 2ayp, o Q = 2a¢)p, o Ry, Equation (4.3.11) gives:
Vee [1,2%, vt €[0,1],  qi(t,€) = 200p, (gh(t,€)).
By convexity of ¢p,, this gives that for all € € [1,2]? and all ¢ € [0, 1] we have

Flap(t,€),qi(t,e)) = inf Flqz,qi(t€)) < sup inf F(go,q1).
9220 q1>09220

Together with (4.3.14), this concludes the proof. O

4.3.5 Concentration of the free energy: proof of Lemma 4.3.2

In this section, we prove Lemma 4.3.2: we show that the perturbed free energy concentrates
around its mean, uniformly in the perturbation. Lemma 4.3.2 will follow from Lemma 4.3.3
and Lemma 4.3.4 below. Let E. denote the expectation with respect to the Gaussian
random variables Z, Z™, Z®).
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Lemma 4.3.3

There exists a constant C' > 0, that only depends on K, «, such that for all t € [0, 1],
B >0 and (r1,79) € [0, BJ?,

E[¢y(r1,m2) — By (11,72)] < Cn_l/ngl\/m.

Proof. Let (r1,7) € [0, B]? and consider U and V to be fixed (i.e. we first work conditionally
on U, V). Consider the function

(2,2, Z0) 5 ¢y (r1, ).

It is not difficult to verify that
C
2
IV < 1+ Bsu)

for some constant C' > 0 that depends only on K and a. The Gaussian Poincaré inequality
(see [37] Chapter 3) gives then

C
E. (¢¢(r1,m2) — Ez¢t(rlaT2))2 < @(1 + Bsy) .
n
We obtain the lemma by integration over U,V and Jensen’s inequality. O

Lemma 4.3.4

There exists a constant C' > 0, that only depends on K, «, such that for all t € [0, 1],
B >0 and (r1,72) € [0, B,

E|E,pi(r1,1m2) — Egy(r1,m2)] < Cn_l/zsglm.

Proof. It is not difficult to verify that the function
9: (U, V) = E.¢i(r1,72)

verifies a “bounded difference property” (see [37], Section 3.2) because the components of U and
V are bounded by a constant K > 0. Then Corollary 3.2 from [37] (which is a corollary from the
Efron-Stein inequality) implies that for all ¢ € [0, 1] and r1,72 € [0, B]

E (E.:(r1,72) — Egy(r1,79))> < Cn~ts; (1 + s, B).

for some constant C' depending only on K and «. We conclude the proof using Jensen’s inequality.

O]

4.4 Proof of Theorem 4.1.2

In order to prove Theorem 4.1.2, we are going to consider the following model with side
information to obtain a lower bound on the MMSE. Suppose that we observe for v > 0

Y, =/2UVT+2Z 441)
Y, = /JiUUT+ 27 -
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where (Z]; = Z},)i<; =~ N(0,1) are independent from everything else. Define the corre-

sponding free energy
Aulv?
Y/ i i ! ]) .
1/ U E] \/ U=

Recall that ¢}, (resp. 1}, ) denotes the monotone conjugate (Definition C.2 in Ap-
pendix C) of 1p, (resp. ¥p, ). For all \,y > 0, we have

1
Fa(\7) = Elog [ dPg"(wdPi™(w)exp (3

1<i<j<n

Proposition 4.4.1

Eu(A7) —= fA1) Y sup {Vju“q“q”—zﬁpUU/m @, (0/2)}. (442

0o Gu,qv=>0

Proposition 4.4.1 is proved at the end of this section. Before we deduce Theorem 4.1.2
from Proposition 4.4.1, let us just mention that Proposition 4.4.1 allows to precisely derive
the information-theoretic limits for the model (4.4.1), by the “I-MMSE” relation (Propo-
sition 1.3.3).

Corollary 4.4.1

For almost all v > 0 the supremum of Proposition 4.4.1 is achieved at a unique
q,(\,7, ) and

of 1
MMSEQ () & B[ S (Ui - BUU Y, V)| o IV - oA )

L. n—oo
1<i,j<n

The model (4.4.1) was considered in [62], in the special case Py = %5_1 + %5“ and
Py = N(0,1). Theorem 6 from [62] shows that one can estimate UU' better than a
random guess if and only if v2 4 aA? > 1. Corollary 4.4.1 above is more precise and general
because it gives the precise expression of the minimum mean squared error for any prior
Py, Py. In particular the boundary 72 + a\? = 1 is not expected to be the information-
theoretic threshold for sufficiently sparse or unbalanced priors, see the phase diagram of
Figure 3.3 for a similar scenario.

Let us now deduce Theorem 4.1.2 from Proposition 4.4.1. By the “I-MMSE” relation
of Proposition 1.3.3:

OF,

MMSE® (X) = MMSE" (\,y = 0) = Ep, [U?] 87" (A, 0h). (4.4.3)

The sequence of convex functions (F, (A, -)),>1 converges pointwise to f(A, -) on R>q. Thus,
by Proposition C.1:

F, af
“(A,01) < ==(A,07). 4.4.4
msup 0,0 < SL0,07) (1.44)
We need therefore the following lemma:
Lemma 4.4.1
* 2
For all « > 0 and all A € D,, g"f()\,0+) = W.
Y
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Proof. Let @« > 0 and A € D,. Then the supremum of (4.4.2) is uniquely achieved at
(@2 (N, @), g5 (A «)) because the couples achieving this supremum are by Proposition C.6 pre-
cisely the couples achieving the supremum of F(\, «,-,-) over I'(A, ). The lemma follows then
from the “envelope theorem” of Proposition D.2. O

From Lemma 4.4.1 and equations (4.4.3)-(4.4.4) above, we conclude:

lim inf MMSE™ (\) > Ep, [U?)? — ¢: (A, ).

n—00

Let (u,v) sampled from the posterior distribution of (U, V') given Y, independently of
everything else. Then MMSE!™()\) = Ep, [U?? — E{(u : U)Z} + 0,(1). This gives (the
corresponding result for V' is obtained by symmetry):

lim supE[(’u, : U)Q} < g\ a)? and lim sup]E[('v . V)ﬂ <qg(\a)’.  (4.4.5)

n—o0 n—oo

Now, we know by Proposition 4.1.1 that
Ep, [U*Ep, [V?] = E[(u- U)(v - V)| = MMSE,(A) —— Ep,[U|Ep, [V?] - ¢iq; ,

which gives E[(u -U)(v- V)} — qiq;. By Cauchy-Schwarz inequality we have

El(w-U)w- V)] <E[(u-UP|E[w- V)]
which gives, by taking the liminf:

(¢ q)? < (ligng[(u : U)2D <1152ng[(@ : V)2D :

Combining this with (4.4.5), we get that limE [(uU)ﬂ = (¢*)? and the relation MMSE®™ ()\) =
Ep, [U?)? — ]E[(u : U)ﬂ + 0,(1) gives the result.

Proof of Proposition 4.4.1

It suffices to prove the result in the case where P and Py have bounded support, because
we can then proceed by approximation as in Section 3.4.7. From now, we suppose to be in
that case. Since the dependency in v can be incorporated in the prior Py and the one in
A in the prior Py, we only have to prove Proposition 4.4.1 in the case v = A = 1. In the
sequel we will therefore remove the dependencies in \,~. Define for r > 0

1 n
L,(r) = —Elog / dPE"(w)dP3™(v) exp (Hn(u, V) + > V12l + rUmu; — gu2> :
n i=1
where Z/ "X N(0,1), independently of everything else and where the Hamiltonian H,, (u, v)
is defined by (4.1.1) (with A = 1). L, is the free energy (expected log-partition function)
for observing jointly Y = ﬁUVT +Z and Y = \/rU + Z". By an straightforward
extension of Theorem 4.1.1 we have for all » > 0:

where
o Gy
L(r) = sup inf {¢pU(aqv +7)+ ap, (qu) — } )
qu>09v=0 2
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Lemma 4.4.2

Fu(\,7) ——s sup {L(r) - 7"2} . (4.4.7)

n—oo g 4

Proof. We will follow the same steps than in Section 4.3: we will therefore only present the main
steps. Let r : [0,1] — R>( be a differentiable function. For 0 < t < 1 we consider the following
observation channel
Y = Ji/aUVT + Z
Yy, = Ja-tH/nuu’ + Z (4.4.8)
1/;// — \/@ U 4 Zl/ ,
We will denote (analogously to (4.3.8)) by f,(t) the interpolating free energy and by (), ¢+ (anal-

ogously to (4.3.7)) corresponding Gibbs measure. We have the analog of Equation (3.4.3) and
Lemma 4.3.1:

/ _ _1 o 2 T”(t)2
falt) = =3B((w U =+(0)")  + == +on(1), (44.9)
where 0,(1) — 0, uniformly in ¢ € [0, 1]. By taking r(t) = rt for all ¢ € [0, 1], we obtain
1 , r?
Fu = 50) = ) = [ faltdt = Lur) =

Therefore lim inf £, > liminf,, oo {Ln(r) — %} which gives liminf F,, > L(r) — % for all » > 0,
hence lim inf F;, > sup,~q {L(r) — %}

To prove the converse upper-bound we proceed as in Section 4.3 and chose r to be solution
r(+;€) of the Cauchy problem:
r(0) = en~1/32
{r'(t) =E(u-U)py

where € € [1,2] is a parameter. The analog of Proposition 4.3.1 holds:

2 9 C
.A E((u U~ E(u-U)pyy) %wdeg;ﬁﬁ

for some constant C' > 0. Using (4.4.9) we get
2 1
&:hm+%mzl(mniéﬂ@@&+%m
_ [ Lr'(t,e)?
_[(%mmeA 2 dt)de + on(1)

2

< /12 /01 (Ln(r’(t, €) — W)dtde +onp(1) < sup {Ln(r) — %} + on(1),

0<r<py

where p, = Ep,[U?]. The free energy L, is (by the usual arguments, see Section 1.3) convex
and non-decreasing and converges to L which is thus convex (therefore continuous) and non-
decreasing. By Dini’s second theorem we get that the convergence in (4.4.6) is uniform in r over
all compact subsets of R>o. We conclude

2 2
limsup F, < sup {L(r) = -} <sup{L(r) - }.
4 >0 4

n—o0 0<r<py
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In order to prove Proposition 4.4.1, it remains to show that

r? VG | aAgug
su Lr—}: su {”—1— = — 1, (qu/2) — any v2}-
sup {L(r) = 7} = sup {74 S i, (0,/2) — v (/2
This is a consequence of the following Lemma:

Lemma 4.4.3

Let f,g be two non-decreasing lower semi-continuous convex functions on Rxg, such

that f(0) and g(0) are finite. Let f* and g* denote their monotone conjugate (see
Definition C.2 in Appendix C). Then

. r? qt . .
sup sup inf {f(ql) +9(r+¢) — qq — 2} = sup {1 +qq— () —g (m)}

r>0 q1>09220 01,0220 \ 2

Proof. Let » > 0. Let us write g, : ¢ — g(¢ + 7). By Proposition C.6, we have

sup inf {f(a1) +90r+ @) — a2} = sw {a1e— £ (a) — g} (an) }

@ >0922 q1,92>0
= sup {g(r+ @) = f*(22)}
9220
= sup {ai(a+7)~ (@) - g (@)},
91,4220

where we used Proposition C.4 for the two last equalities. Therefore

7“2 7‘2
sup sup inf + g(r + — — L= su su r— — Ly _ g
Tzlgqlz%%zo{f(m) 9(r +a2) — 01 2} qhqgo{r;g{m 2} Q13— f*(@) — g" (@)}
2

q
= sup {51+Q1qz—f*(qz)—g*(ql)}.
q1,9220
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Chapter 5

Community detection in the
asymmetric stochastic block model

5.1 Introduction

The community detection problem is fundamental problem in statistics. It consists in
dividing the vertices of a given graph into groups which are more densely connected than
the rest of the graph. The stochastic block model is a popular model of random graphs that
exhibit communities: it is generated according to an underlying partition of the vertices.
This model has been studied for a long time in statistics (see [103]) computer science (see
[76]) and more recently in statistical physics (see [56]).

Definition 5.1.1 (Stochastic block model (SBM))
Let M be a 2 x 2 symmetric matrix whose entries are in [0, 1]. Let n € N* and p € [0, 1].

We define the stochastic block model with parameters (M,n,p) as the random graph
G defined by:

1. The vertices of G are the integers in {1,...,n}.

2. For each vertex i € {1,...,n} one draws independently X; € {1,2} according to
P(X; =1) = p. X; will be called the label (or the class, or the community) of the
vertex 1.

3. For each pair of vertices {i, j} the unoriented edge G, ; is then drawn conditionally
on X; and X; according to a Bernoulli distribution with mean M, x,.

Our main focus will be on the community detection problem: given the graph G, is it
possible to retrieve the labels X better than a random guess?

We investigate this question in the asymptotic of large sparse graphs, when n — +oo
while the average degree remains fixed. Our quantitative results will then be obtained
when the average degree tends to infinity. We define the connectivity matrix M as follows:

=4 <ch i) , (5.1.1)

n

where a, b, ¢, d remain fixed as n — +o00. In this case, it is not possible to correctly classify
more than a certain fraction of the vertices correctly and we will say that community de-
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'~ pn vertices =~ (1 —p)n vertices -

Figure 5.1: The Stochastic Block Model with two communities of different sizes.

tection is solvable if there is some algorithm that recovers the communities more accurately
than a random guess would.

The symmetric case where p = 1/2 and a = ¢ has been extensively studied starting
with [56] and gives rise to an interesting phenomenon: if d(1 — b)? < 1 then community
detection is not solvable [155], while if d(1—b)% > 1, it is solvable (in polynomial time) [138,
154]. Much less is known in the case where (5.1.2) holds and p < 1/2. The aim of this
work is to investigate this asymmetric case. The main question is: does the asymmetry
change the location of the above mentioned threshold?

A simple argument (see below) shows that if pa+(1—p)b # pb+ (1 —p)c then non-trivial
information on the community of a vertex can be gained just by looking at its degree and
the community detection is then solvable. In this paper, we concentrate on the case:

pa+ (1 —p)b=pb+ (1 —p)c=1. (5.1.2)

Under condition (5.1.2), the matrix R defined by

_(pa (1—p)b
a0 519

is a stochastic matrix with two eigenvalues: Ay =1 > Ay =1 — b. Define
A=d\ =d(1—0b)>. (5.1.4)

If A > 1, it is shown in [161] that it is easy to distinguish G from an Erdés-Rényi model
with the same average degree. In this regime, the spectral algorithm based on the non-
backtracking matrix solves the community detection problem [36, 1]. Here, we prove that
if a vanishing fraction of labels is given, then a local algorithm (belief propagation) allows
to solve the community detection problem.

The case A < 1 (known as below the Kesten-Stigum bound) is more challenging. It
is shown in [161], that the community detection problem is still solvable for some values
of p but it is expected in [56] that no computationally efficient reconstruction is possible.
In [161], some bounds are given on the non-reconstructability region but they are not
expected to be tight.

In this work, we are mainly interested in a regime where d tends to infinity while
A = d(1-b)? remains constant (in particular a, b, ¢ tend to one). Note that we first let n tend
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to infinity and then let d tend to infinity mainly in order to get explicit formulas. In this
regime, we show that for all values of p € (p*, 1/2) with p* = %— ﬁ, the situation is similar
to the balanced case: below the Kesten-Stigum bound, i.e. when A < 1, the community
detection problem is not solvable. For p < p*, we compute a function p — A,(p) < 1 such
that for A < Ay, (p), the community detection problem is not solvable. As shown by [161],
there are points in the region A\,(p) < A < 1 where the community detection problem is
solvable but we do not expect the bound Ag,(p) to be tight, i.e. the information theoretic
threshold for community detection should be above Ay, (p) for p < p*.

There is an important probabilistic interpretation of the matrix R relating to the local
structure of the SBM. As explained below, the SBM converges locally toward a labeled
Poisson Galton-Watson branching process with mean offspring d: the label of the root is
1 with probability p and 2 with probability 1 — p and then conditioned on the parent’s
label being 1, its children’s labels are independently chosen to be j with probability R;;. A
problem closely related to the detection problem in the SBM is the reconstruction problem
on this random tree: given some information about the labels at depth n from the root,
is it possible to infer some information about the label of the root when n — oco0? It is
known [153] that the Kesten-Stigum bound corresponds to census-solvability (i.e. knowing
only the number of labels 1 and 2 at depth n allows to get some information about the label
of the root). When d — oo, we show that A, (p) corresponds to the solvability threshold
for the reconstruction problem on the tree (i.e. knowing the labels at depth n allows to get
some information about the label of the root). We also consider the reconstruction problem
where the label of each node at depth n is revealed with probability q. Then in the region
Asp(p) < A < 1, we compute the minimal value of ¢ such that some information about
the label of the root can be recovered from the revealed labels. Above the Kesten-Stigum
bound, i.e. when 1 < A, this minimal value is 0.
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Figure 5.2: Phase diagram for the asymmetric community detection problem. The easy
phase follows from [36], the impossible phase below the spinodal curve (red curve) is proved
in this paper and the hard phase is a conjecture. The dotted curve corresponding to A.(p) is
the conjectured curve for solvability of the community detection problem (see discussion in
Section 5.4).

We summarize our main results on the phase diagram of Figure 5.2:

e Above the Kesten-Stigum bound (blue line), reconstruction is possible by a local
algorithm given that an arbitrary small fraction of the labels is revealed. Moreover,
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the local algorithms (with this arbitrary small side information) achieve then the best
possible performance without side information (see Proposition 5.3.1).

e Between the blue and the red line, we show that local algorithms are efficient for
reconstruction when a certain fraction of labels is revealed (see Proposition 5.4.2).

e We show that reconstruction is impossible below the spinodal curve (red line), see
Proposition 5.4.1.

In Section 5.2, we define the community detection problem and its variation when some
labels are revealed. In Section 5.3, we give our main results about reconstruction above
the Kesten-Stigum bound and in Section 5.4, we describe what happens below the Kesten-
Stigum bound. Section 5.5 defines the various notions of solvability for the problem of
reconstruction on trees and gives our main result for this problem. We first use the cavity
method on trees in Section 5.6 and then relate these results to the original problem of
community detection in Section 5.7. Finally, we show in Section 5.9 that the community
detection problem is in some sense equivalent to the low-rank matrix estimation problem
of Chapter 3. This allows to use the results of Chapter 3 to obtain precise reconstruction
limits for the stochastic block model.

5.2 The community detection problem

We are interested in inferring the labels X from the graph G. To do so, we aim at construct-
ing an estimator (i.e. a function of the observation G) T'(G) = (T1(G), ..., T,.(G)) € {1,2}",
such that T;(G) is ‘close’ to X;. We will measure the performance of T" using the ‘rescaled
average success probability’ defined as follows

Pae(T) == 3 (P(T(G) =1 X =1) + B(T,(G) =2/ X; =2) — 1). (5.2.1)
i=1
The ‘—1’ is here to rescale the success probability and to ensure that Pj,. = 0 for ‘dummy
estimators’ (i.e. estimators that do not depend on the observed graph G). The optimal
test with respect to this metric is
. P(X;=1|G
1 if logﬁ > log(ﬁ),

_ (5.2.2)
2  otherwise.

T (G) = {

Let so be uniformly chosen among the vertices of G, independently of all other random
variables. The maximal achievable rescaled success probability reduces then to

Pyue (TP") = P(TPY(G) =1] X, =1) + P(Tgopt(G) =2|X,,=2) — 1.

We define a notion of solvability for the community detection problem.
Definition 5.2.1

We say that the community detection problem on a given stochastic block model is
solvable if

lim inf Puye(T") > 0.

We have another equivalent characterization for solvability given by the following propo-
sition:
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Proposition 5.2.1
We have

Poe(TP") = Dry(Py, Py),

where P, and P, denote the conditional distribution of the graph (G, conditionally
respectively on X,, = 1 and X,, = 2, where sy is a uniformly chosen random vertex of
G. Dty denotes the total variation distance.

Proof. The set of estimators of X, is precisely {1 + 14|A measurable set}. Consequently

Pac(T?) =  sup P(G € A%X,, =1)+P(G € A|Xs, =2) — 1
A measurable
= sup  Py(A)+Py(A)—1=  sup Py(A)—Pi(A)
A measurable A measurable
= Dry(Pr1, Py).

O
In our setting (5.1.1), the asymptotic degree distribution of a given vertex is a Poisson
random variable. Let i € {1,...,n} be a vertex of G, we will denote by d; its degree. Then
we have
d; @, Poi(d(pa + (1 — p)b)) conditionally on {X; = 1},

n—-+o00

d; @, Poi(d(pb+ (1 — p)c)) conditionally on {X; = 2}.

n—-4o00

If the asymptotic average degrees differ from class 1 to class 2, we see easily that the
problem is solvable.

Lemma 5.2.1

If pa+ (1 — p)b # pb+ (1 — p)c then the community detection problem is solvable.
Proof. Using the definition of solvability in terms of the total variation distance, we have:

hnrggéf DT\/(Pl, PQ) = lim inf sup |P1 (A) — P2(A)|

n=00 event A

> liminf sup |P,({ds, € B}) — P2({ds, € B})|

= Dy (Poi(d(pa + (1 — p)b)), Poi(d(pb + (1 — p)c)))
> 0.

O
In the rest of the paper, we will always assume that (5.1.2) is valid, so that the average
degree in the graph is d. Most of our results below will be obtained in the limit where first
n tends to infinity and then d tends to infinity but the parameter \ will always remain
fixed, as well as the parameter p € [0,1/2] corresponding to the proportion of nodes in the
first community:.
We now introduce a variation of the standard community detection problem where
a fraction ¢ of the vertices have their labels revealed. This labels correspond to ‘side-
information’ given with the graph. More formally, in this setting the label X, of each
vertex v € {1,...,n} is observed with probability ¢ € [0, 1] independently of everything
else and the estimator T'(G, q) = (T1(G, q), ..., T,(G, q)) is then a function of the observed
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graph G and the observed labels. The probability of success is again defined by (5.2.1)
where the T;(G)’s are replaced by the T;(G, q)’s and the optimal test T°P*(G, ¢) is then

: P(X;=1|G,Y)
1 if log Bx=20y) 2 log(ﬁ)
2 otherwise,

where Y denotes the (random) set of observed vertices. Note that we have
liminf Poe (TP (G, q)) > ¢ > 0,

so that the notion of solvability of Definition 5.2.1 does not make sense in this case where
we have some side-information.

We end this section by some technical definitions. In order to state our main results,
we need to define the following function F' from R, to R:

A 1
E -1,
(1-p)? [p + (1 =p)exp(ViZ — 1/2) ]
where Z ~ N(0,1). Note that F' is also a function of the parameters A and p which are

considered as fixed.
Definition 5.2.2 (Spinodal curve)

The spinodal curve is defined as the function

Fp) =

Asp 1 P+ SUp {)\ > 0 | 0 is the unique fixed point of F} (5.2.3)

Let us define
1 1

N

The spinodal curve Ay, and p* are represented on Figure 5.2. p* corresponds to the

critical value of p below which Ay, goes strictly below the ‘Kesten-Stigum’ line A = 1. As

we can see on the phase diagram Figure 5.2, a “hard region” appears when p < p*. The
following conjecture shows that Ay, is well defined and summarizes its main properties.

(5.2.4)

Conjecture 5.2.1

(i) If X > 1, then F has two fixed points: 0 and o > 0. Moreover, 0 is unstable and
« is stable.

(ii) For p* < p <1/2, we have Ay, (p) = 1.

(iii) For 0 < p < p*, we have \s,(p) < 1 and if A\;p(p) < A < 1, then F has three fixed
points: 0 < f < a. Moreover, 0 and « are stable and (3 is unstable.

The analysis of the function F' seems challenging and we were only able to verify Conjec-
ture 5.2.1 numerically.
Proof. The exact value of p* follows from the following (non-rigorous) argument. a small u
expansion of the function F' gives

F(u) ~ M 50— 6p(1 — )

Thus, if 1 — 6p(1 —p) > 0 (i.e. if p < p*), then F is convex in a neighborhood of 0. Thus, when
A < 1, F is likely to have 3 fixed points. O
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5.3 Reconstructability above the Kesten-Stigum
bound

We first consider the case A > 1.
Proposition 5.3.1

If A > 1, then we have

lim sup lim sup P,,o(T") < 2P(N(a/2,a) > 0) — 1, (5.3.1)
d—o0 n—00

where a > 0 is the stable fixed point in Conjecture 5.2.1 (i). Moreover, for all0 < q < 1,
we have

liCIln inf lim inf P (TPY(G, q)) > 2P(N(a/2,a) > 0) — 1.

—00 n—oo

Proposition 5.3.1 will follow from Corollary 5.7.1 and Corollary 5.7.2 below.
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Figure 5.3: Lower bound for the probability to recover the true label of a typical vertex by
an optimal local algorithm with side information for p > p* as a function of A (i.e. function
2P(N(a/2,a) > 0) — 1 for p = 0.25 > p*).

In words, we see that if a vanishing fraction of the labels is revealed, then the probability
to recover the true label of a typical vertex by the optimal algorithm is 2P(N (a/2, ) >
0) — 1. Indeed, we believe that (5.3.1) should be an equality. On Figure 5.3, we give
a drawing of this curve as a function of A for p = 0.25 > p* and on Figure 5.4 for
p = 0.005 < p*. Note that at this stage, we only gave an interpretation of the curve for
A > 1. We deal with the case A < 1 in the next section.

Before that, we give a result which shows that if a vanishing fraction of the labels is
revealed then the optimal recovery is achieved by a local algorithm. Similar results in the
case where (5.1.2) does not hold have been proved in [157]. In the large degree regime, our
result improves Proposition 3 in [120] which deals only with the case p = 0.5 and \ larger
than a large constant C'. The fact that local algorithms are very efficient as soon as ¢ > 0
(even optimal in the limit ¢ — 0) leads to linear time algorithms for community detection
(when some labels are revealed). Indeed from a practical perspective, we believe that our
analysis carries over to the labeled stochastic block model [101, 131]. Tt is then possible
to devise new clustering algorithms based on a similarity graph which are shown to be
optimal for a wide range of models [187] and also local semi-supervised learning clustering
algorithms, see [186] for more details in this direction.
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We now define local algorithms. For an integer ¢, a test T(G, q) = (T1(G, q), ..., T,(G, q))
is t-local if each T;(G, q) is a function of the graph By(G, i) induced by the vertices of G
whose distance from 7 is at most t. We denote by Loc; the set of ¢-local tests and by
Loc = U;>oLoc; the set of local tests.

Proposition 5.3.2
If A > 1, then we have for all 0 < q <1,

sup lim lim P.(T(G,q)) > 2P(N(a/2, ) > 0) — 1,

TE€Loc d—00 100

where o > 0 is the stable fixed point in Conjecture 5.2.1 ().

Proposition 5.3.2 will follow from Corollary 5.7.2. Note in particular that as a vanishing
fraction of labels is revealed, i.e. ¢ — 0, the best local algorithm performs at least as well
as the optimal algorithm with no revealed labels. An explicit description of an optimal
local test (obtained using ‘belief-propagation’) is given in the proof of Corollary 5.7.2.

5.4 Non reconstructability below the spinodal
curve

We now state our second main result which states that reconstruction is impossible below
the spinodal curve.

Proposition 5.4.1
If X < Asp(p) then

lim lim P,.(T°") = 0.

d—00 N—00

Proposition 5.4.1 will follow from Corollary 5.7.1. If

Ae(p) © inf {)\ >0 ‘ community detection is solvable}

denotes the solvability threshold, then Proposition 5.4.1 implies that Ay, (p) < A.(p). More-
over thanks to [36], the Kesten-Stigum threshold is an upper bound on the solvability
threshold so that we have A.(p) < 1. For p > p* defined in (5.2.4), the spinodal curve
is equal to the Kesten-Stigum threshold by Conjecture 5.2.1 (ii), so that we have in this
case A\.(p) = 1 and moreover as soon as the community detection problem is solvable, it
is solvable in polynomial time thanks to the results in [36]. Figure 5.3 is valid for A < 1.
However for p < p*, there is a gap between the spinodal curve and Kesten-Stigum threshold
and we conjecture that A\s,(p) < Ac(p) < 1, see Figure 5.2. In the case of dense graphs
(where the average degree d is of order n), the value of \.(p) has been computed in the
recent works [129] and [18]. We conjecture that their expression (used in Figure 5.2) is still
valid for sparse graphs in the large degree regime.

Our next result states that it is possible to reconstruct the communities below the
spinodal curve, given a sufficient amount of side-information.
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Figure 5.4: Necessary fraction of revealed labels (red) and corresponding lower bound of
probability to recover the true label of a typical vertex by an optimal local algorithm (black)
for p < p*, i.e. functions M (in red) and 2P(N (a/2,«) > 0) — 1 (in black) appearing in
Proposition 5.4.2 as a function of A for p = 0.05 < p*.

Proposition 5.4.2

Consider the case where p < p* and A\,(p) < A < 1. As soon as q > M, we have

lim lim inf Py(T°""(G, q)) > sup lim liminf P,..(T(G,q))

d—oo0 M—00 TeLocd—00 N0

> 2PN (a/2,) > 0) — 1,

where 0 < 3 < « are the fixed points defined in Conjecture 5.2.1 (iii).

Proposition 5.4.2 will follow from Corollary 5.7.2. In the regime of Proposition 5.4.2
(Asp(p) < A < 1 and ¢ > M), we believe that local algorithms are indeed optimal.
Figure 5.4 illustrates the case p < p* with p = 0.05 for which we have \,(0.05) ~ 0.58.
Also, if the number of revealed entries is sufficiently high (i.e. above the red curve) then
local algorithms provide a great improvement in the probability of successfully recovering
the label of a typical vertex (the black curve). A description of a local algorithm (belief-

propagation) achieving the lower bound in Proposition 5.4.2 is provided in the proof.

5.5 Reconstruction on trees

We will first concentrate on the reconstruction of the labels on trees. The tree structure
makes the analysis simpler and allows to deduce results for the stochastic block model,
because the SBM is asymptotically locally tree-like. In this section we are going to state
the analogous of the well known (see for instance [211]) local convergence of the Erdds-
Rényi random graph towards the Galton-Watson branching process, in terms of labeled
graphs. The labeled stochastic block model (G, X) will converge locally towards a random
labeled tree. We have to introduce first the notion of pointed labeled graphs.
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Definition 5.5.1 (Pointed labeled graphs)

e A pointed labeled graph is a triple G = (g, So, x) where g is a countable, locally
finite and connected graph, sq is a distinguished vertex of g called the root of the
graph and © = (x,)sev, € {1,2}" are the labels of the vertices.

e Two pointed labeled graphs are equivalent if there exists a graph isomorphism
between them, that preserves the root and the labels.

o We define, for r € N, [G],, the ball of radius r of G, as the pointed labeled graph
induced by the root of G and all the vertices at distance at most r from the root.

The randomly rooted stochastic block model (G, sg, X) with parameters (M, n,p) is
therefore a random pointed labeled graph, that we will denote SBM,, from now. We will
also be interested in a second family of random pointed labeled graphs, that will correspond
to the local limits of stochastic block models.

Definition 5.5.2 (Labeled Poisson Galton- Watson branching process)

o
1—4
Poisson Galton-Watson branching process with parameters (A, p, d) is a random pointed
labeled graph (T, s, X), where

Let A = ( L (; 5) (where §,6" € [0,1]) be a transition matrix. The labeled

o (T,5s0) is a Galton-Watson tree with offspring distribution Poi(d) rooted at sy.
o The labels X of the vertices of T" are then chosen as follows:

1. The label of the root Xy, € {1,2} is chosen accordingly to P(X,, = 1) = p.

2. Given the label X, of the parent p of a node s, the probability that X, =
i € {1,2} is equal to Ax,; independently from all other random variables.

In the following, we will denote GW = (T, sg, X), the labeled Galton-Watson branching
process with parameters (R, d,p) with R defined by (5.1.3). The next well known result
states that SBM,, converges locally toward GW.

Theorem 5.5.1

Let f be a (positive or bounded) function of pointed labeled graphs, that depends only
on the ball of radius r. Then

E[f(SBM,)| — E[f(GW)].

A main ingredient for our proof will therefore be the analysis of this well-studied prob-
lem of reconstruction on trees [82, 156, 153]. In the rest of this section, we define the
reconstruction problem on trees and give the required results.

We consider here GW = (T, so, X) the labeled Poisson Galton-Watson branching pro-
cess with parameters (R, p,d). We denote L, = {v € V| d(sg,v) = n}, the set of vertices
at distance n from the root. We define then X™ = (X,),cr. and ™ = (™ V) =
(#{s € L, | Xs = i})i=12. We also define a random subset E,, of the nodes at depth n
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as follows: let ¢ € [0,1] and for n € N, let E,, be the random subset of L, obtained by
including in £, each vertex s € L, independently with probability q.
We have three kinds of reconstruction problems.

Definition 5.5.3 (Solvability, g-solvability and census solvability)

We say that the reconstruction problem is solvable if

lim inf Drv(P™, ™) > 0,

where PZ-(") denotes the conditional distribution of (T, sy, X™) given X,, = i. One
defines analogously g-solvability (respectively census solvability) by replacing Pi(") by

PZ.(”’Q) (respectively f’i(")), the conditional distribution of (T, so, (Xs)ser, ) (respectively
(T, s9,c™)) given X,, = 1.

Solvability corresponds thus to the special case ¢ = 1. Obviously, census solvability
and g-solvability imply solvability, but we will see that solvability does not always imply
census solvability.

Similarly to the stochastic block model case, this characterization of solvability in terms
of total variation can be rewritten in terms of the maximal achievable success probability
for the estimation of X,,, given X™ (or ¢™). We define the rescaled success probability
of an estimator T as

Pawe(T) = P(T(X ™) =1| X4, =1) + P(T(X ") =2|X,, =2) — 1.

The maximal rescaled success probability is then defined as A,, = supy Psu(T') where the

supremum is taken over all measurable function of X(™. Even though we defined these
quantities for the solvability problem, these definitions and the following result can be
straightforwardly extended to g-solvability and census-solvability. The following lemma is
the analog of Proposition 5.2.1.

Lemma 5.5.1

A, = DTV(Pl(n)7 Pz(n))-

We recall here the census-solvability criterion for our particular case (which is a straight-
forward extension of the results presented in [153]).

Theorem 5.5.2

We consider the Poisson Galton-Watson branching process with parameter (R, p,d).
If A > 1, then the problem is census-solvable and g-solvable for all 0 < g < 1. If A < 1,
then the problem is not census-solvable.

In the large d limit, we are able to get more quantitative results. We define
P = lim lim Dy (P, P{"),

Pifl = Jim Jim Drv(P{", P{").
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Proposition 5.5.1

We consider the Poisson Galton-Watson branching process with parameter (R, p,d).

P 2PN (a/2,a) > 0) —1>0 if A > Ag,(p),
' o if A < Ay(p),
where « is the stable fixed point in Conjecture 5.2.1. If A\s, < A < 1, then we have

po) _ [PV (a/2,0)>0)=1>0 ifg> Bolln)
opt 0 If(] < /317(1\—17)’

where a and 8 are the fixed points defined in Conjecture 5.2.1 (iii).

In particular, Proposition 5.5.1 shows that the spinodal curve is the solvability threshold
for the reconstruction on trees. Proposition 5.5.1 is proved at the end of the next section.

5.6 Cavity method on trees

To compute the optimal success probability A, = DTV(PI(H), 2(")) for the reconstruction
problem on trees, we need to study the behaviour of the optimal estimator. This estimator
is computed, similarly to (5.2.2), using the marginal distributions of the labels. We aim
therefore at computing these marginals.

Our approach here is closely related to the one of [149] which studies the problem of
finding one single community. We establish rigorously the ‘cavity equations’, a recursive
method to compute marginals, that originates from statistical physics.

We consider here the labeled branching process GW = (T, sg, X) with parameter
(R,p,d). In order to obtain quantitative results, we will be interested in the asymptotic of

large degrees d — oo while A remains fixed. We also definee =1—b = \/g . We have then

I—p P

-p

a=1+

¢, b=1—¢ and c:1+1 €. (5.6.1)

5.6.1 The cavity recursions

Let r € N. For a given vertex s of GW = (T, s, X ), we note 7T the subtree induced by s
and its progeny.

With a slight abuse of notation, we write p(z) = pl==*(1 — p)l==2. We define also
P(z,y) = alv=r=1plvzzclv=2=2 We now introduce the belief-propagation algorithm for la-
bel reconstruction. This algorithm computes ‘messages’, that approximate the marginal
distributions of the labels. The message of the vertex s € [T, is defined as the following
function from {1,2} — R:

p(xa’)]l:rS:Xs if s € ET,
Ve g e { P(Ts) if s e L.\ E, (5.6.2)
p(zs) sg[v;#)(xs,xv)yﬁ(%) if s¢ L,.
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Lemma 5.6.1
For all s € [T], \ L.,
vy (xs) o< p(zs) Z H Ry (5.6.3)

(ﬁv)ngsm[T]r\{s} ('L_U)E[T]TmITS
(Iu)vEET:(XU)

where < means equality up to a multiplicative constant that is independent of x.

Proof. We show this lemma by induction on the depth of dj def TsN[T),. Since s & L,, we have

ds > 1. We consider the following recursion hypothesis:
H(d) : for all s € [T], such that ds < d (5.6.3) holds.

(1) follows from the definition of . Suppose now that #(d) holds for some d > 1. Let s € [T,
such that ds = d + 1. Then, by induction

Vi(xs):p(xs) Z Hlﬁ(xs,xv)yﬁ(xv)

(xv)s%'u s—=v

= p(xs) Z H Y(s, Ty)p(Ty) Z H in,wj

(x'u)s%'u s—=v (Iu)ueTum[T]T\{u} ('L‘)])G[T]rm%
(Tu)ue B =(Xu)

= p(a:s) Z H Rws,ﬂiu Z H in,:cj

(33v)s—>v S—=v (ZU)ueTUm[T]T\{u} (i%j)e[T}TQ%
(xu)ueEr:(Xu)

= p(xs) Z H RZBi,iCj’

@o)yeTaniTlr\{s} E—ET]NTs
(zv)veBr=(Xv)

which proves that H(d + 1) holds. O

The next lemma states the well known fact that belief-propagation computes the exact
marginals on trees.

Lemma 5.6.2

V(@) = P(Xoy = 4 |T, Er, (Xo)ver,)-

Proof. The structure of T outside of [T, does not provide any information about the labels of
the vertices, thus, using Lemma 5.6.1

]P(XSO =25 | T, Er, (XS>5€E7') = IP)(XSO = s | [T]r, Er, (XS)SEET)

= p(xso) Z H in,a:j

@)se[Tl\ (s} ((—9)ET]r
(Is)seEr:(XS)

=170 (@s)-
U
If we write & = log(ﬁg;), the recursive definition (5.6.2) of the messages gives for
r>1, ’
L S () (5.6.4)
8,50—$
where h = log(ﬁ) and f : x — log Z:z—j:g
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Definition 5.6.1

We define P, as the law of £ = log igf;:;?g;i?; We denote PV and P® the
s0— s Lrs\As)se By

laws of £ respectively conditionally on {X,, = 1} and {X,, = 2}.

For r > 1. Let us work conditionally on { X, = 1}. By the branching property of GW,
conditionally on {si, ..., s} being the children of sy, the random variables £*, ... £ are
independent, identically distributed according to

paP( ) + (1 - p)bPT(E)l.

Indeed, conditionally on {X,, = 1}, s1,..., s ~ pad; + (1 — p)bd,. Equation (5.6.4) leads
therefore to the following distributional recursions (the second one is obtained by the same
arguments):

Proposition 5.6.1 (Cavity equations)

For all r > 1,
L1 Ly
(d) - 7
DEh+ Z f(éq(i)u) + Z f(fﬁ)u)y (5.6.5)
i—1 i=1
where & ~ P, Ly ~ Poi(pad), Ly ~ Poi((1 — p)bd), & ; ~ Py, €2, ~ P2,

and all these variables are independent.
@ Ly ) La2 @
57@ = h+ Z f(gr—l,i) + Z f(fr—17i)7 (5-6-6)
i=1 i=1

where 51” ~ Pr(2)7 L271 ~ POl(pbd)7 L2,2 ~ POI(( )Cd) 67‘ 1,4 P(117 gr 1,4 Pr(z)lﬂ
and all these variables are independent.

5.6.2 Gaussian limit

We are interested in the limit distributions of PV and P{?, because they encode the
marginal distributions of the labels and thus allow to derive the optimal reconstruction
performances. We study the recursions (5.6.5) and (5.6.6). More precisely, we show that
PY and P® converge in Wasserstein sense toward Gaussian distributions when d — oo
and A remains fixed.
Proposition 5.6.2

For all r > 1,

(1) For
P, d%oo — = N(h+ + 2 =, ),
),

PP 22 N(h —

—>+oo 2

where X2 denote the convergence with respect to Ws, the Wasserstein distance of order
2, and (. )r>1 is defined by

_ _qX
{“1 ~ p(i-p) (5.6.7)

70



Proposition 5.6.2 is proved in Section 5.8. Proposition 5.5.1 is now a consequence of
Conjecture 5.2.1 and the following corollary.

Corollary 5.6.1
For all0 < g <1,

lim lim Dy (P9, P9 = 2PN (1o /2, f1e0) > 0) — 1,

T—00 d—o00

where i, Is the limit of (u,.) defined in (5.6.7).

Proof. The optimal test according the performance measure Py is

1 if & >log 175,

(5.6.8)
2 otherwise.

TgGW) (Tv ET’ (XS)SGET) = {

Analogously to Lemma 5.5.1, we have

DTV(Pl(T’q)a P2(T’q)) = PsuC(T(GW))

:P<g§1>zlog P >+P(§§2><1og P )—1
1—p 1—p
- QP(N(M/QHW) > 0) -1

d—o0

—— 2P(N (100 /2, i) > 0) — 1,

where we have used Proposition 5.6.2. ]

5.7 Proofs for the stochastic block model

In this section, we apply the results that we obtained for the reconstruction on the branch-
ing process to derive bounds for the community detection problem on the stochastic block
model.

Consider the case, where a fraction 0 < g < 1 is revealed: one observes the graph G and
additionally each label X, with probability ¢, for 1 < v < n, independently of everything
else. Let us denote Fg = {1 < v <n | X, is revealed}.

Let so be uniformly chosen among the vertices of G. For r > 0 we define (analogously
to the case of the branching process) E¢, = 0[G], N Eg, i.e. the vertices at the boundary
of the ball of center sy and radius r, whose label has been revealed. Define

]P)(XSO = 1HG]T7 (XS)SEEG,r)>
P(Xso = ZHG]T? (XS)SEEG,T) .

{ar = log ( (5.7.1)

Let us denote Pgi and Pgi the laws of ¢, conditionally respectively on X, = 1 and
Xsy = 2.

Proposition 5.7.1

Fori=1,2; PY —— P9,

n—oo r

where P\ is defined in Definition 5.6.1.
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Proposition 5.7.1 is a consequence of the local convergence of the stochastic block model
towards a branching process (Theorem 5.5.1).
Proof. Let us define

= S = P(Xs, = 1|[G], Glr, (Xs)s L =(Xs) 5, E ,r:Er
G % B o g P = UG = Gl (X, = (%), e = )
IP)(XSO = 2|[G]r [G]m (Xs)seEGJ = (Xs)seEr,EG,r = Er)

and

P(Xso=1[T]r=[Glr\(Xs)sem, =(Xs) _~ Er=Er ~
(Xso=1|[T] [~] (Xs)sem (~ )., N) if G, is a tree,
P(Xso=2|[T]r=[Clr\(Xs)sep, =(Xs), 5 Er=Er)

~ o~ = log
Poo - (G7807X7E1”) —

0 otherwise.

Let (G, 30, X) be a fixed pointed labeled graph such that [G], is a tree. Let E, be a subset of the

vertices in J[G|,. A straightforward extension of Theorem 5.5.1 gives us
on(G, 30, X, Br) —— ¢oo(G, 30, X, Ey). (5.7.2)

Another consequence of the local convergence of (SBM,,) toward GW is that one can couple
(SBM,,, Egr)n and (GW, E;) on a probability space such that there exists ng € N such that

Vn > no, [SBMm EG,r]r = [GW, Er]r-

Let n > ng
©n(SBM,,, Eg.r) = on(GW, E;) — Yoo (GW, E).

On this probability space ¢, (SBM,, Eg,) converges almost surely to ¢oo(GW, E), hence the
convergence of the conditional distributions. O

Define the local test

1 if &g, > log 12,

2  otherwise.

T¢ is the optimal r-local test, with side information (X,),c Ee..- Note that {¢, (and thus
T ) is computed by the belief propagation algorithm. Using the results on the branching
process, we are now able to fully characterize the performance of T'°¢.

Proposition 5.7.2
Forall0 <q<1,

lim lim lim Pue(77°°) = 2P(N (ftoo /2, fios) > 0) — 1,

r—00 d—y00 N—>00

where i, is the limit of the sequence defined by (5.6.7).

Proof. Using Propositions 5.7.1 and 5.6.2

(1 (@ (1 (@@ o
PG,T n—00 PT d—so0 N(h + 2 ’MT)7

2 (@ 2) (@) e
PGJ" n—00 PT d—s00 N(h 2 ’MT)7
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where g, is defined by the recursion (5.6.7). Therefore (recall that h = log t£)

Psuc(quoc) = P(&G,r > h|XsO = 1) + ]P)(é-G,T‘ < h|Xso :2) -1
—— P{NEar > h) + PG Ecr < h) —1

o 2PN (e /2, 1) > 0) — 1
—— 2PN (koo /2, fios) > 0) — 1.

5.7.1 Upper bound

We can now deduce an upper bound on the optimal performance for the community de-
tection problem.

Corollary 5.7.1
We have:

lim sup lim sup Poye(T) < 2P(N (koo/2, ptc) > 0) — 1,

d—o0 n—00

where i, is the limit of the sequence defined by (5.6.7) in the case ¢ = 1.

Proposition 5.4.1 and the first part of Proposition 5.3.1 are then consequences of this
corollary:

e when A < A\ (p), too = 0 and consequently limg o limsup,, o Pac(7°P") = 0.
e when A > 1, then ., = «, hence the first bound of Proposition 5.3.1.

Proof. Let r > 0. Let sg be uniformly chosen from the vertices of G. We aim at estimating
X, from the rooted graph (G, sp). As seen in Section 5.2, the optimal test in terms of rescaled
success probability Py is
) P(Xs,=1|G)
TOPt(G) _ 1 lf log(m) Z log(lp%p),
2 otherwise.

We are going to analyze the oracle

P(XS():HGv(XS)sea[G]T)
P(X50:2‘G7(XS)SGG[G]7«) - 1-p°

2 otherwise.

1 if log

T:(G,X):{

Obviously, Psue(T") < Pauc(T}). The oracle T, uses extra information (X;),esi), but is a local
test, i.e. a test that only depends on the ball of radius 7:

def IP)(‘XSO = 1|Ga (Xs)sea[G}r) P(XSO = 1|[G]7"a (Xs)séa[G’}r)
IP)(XSO = 2|G’ (Xs)sea[G}r) IP3()(80 = 2|[G]7“’ (XS)sea[G’}r)

= log

§E7T is thus equal to g, from equation (5.7.1), when ¢ = 1. We conclude using Proposition 5.7.2
and the fact Psyc(T°P") < Paue(TY). O
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5.7.2 Lower bound

We now establish a lower bound for estimation when a fraction ¢ of the labels is revealed.
Corollary 5.7.2
Forall0 <q¢<1,

li;n inf lim inf Pace(TPY(G,q)) > 2P(N (foo /2, f1o) > 0) — 1, (5.7.4)
—00  N—0

where i, is the limit of the sequence defined by (5.6.7).

Proof. Here, we are going to bound Pys,.(T°P*(G, q)) from below by the performance of the local
test T1°° (that corresponds to the estimator derived from belief-propagation) defined by (5.7.3).
Obviously, Psue(TPY (G, q)) > Psuc(T°°) and Proposition 5.7.2 gives then the result. O

The second part of Proposition 5.3.1 follows from this corollary. Indeed, when \ > 1
and ¢ > 0, fioo = a > 0.

Corollary 5.7.2 leads also to proposition 5.4.2: when ¢ > be(l=p) , then iy > f and thus
(p1) converges to the fixed point @ > 5 of G: s = a > 0.

We deduce also Proposition 5.3.2 from the proof of Corollary 5.7.2. Indeed, we will see
that the lower bound in (5.7.4) is achieved by a local test.

5.8 Proof of Proposition 5.6.2

We prove Proposition 5.6.2 by induction over r > 1. Proposition 5.6.2 follows from Lem-
mas 5.8.1 and 5.8.3 below.

5.8.1 Initialization

First of all, we are going to show that 551) and ff) converge towards Gaussian distributions.
Lemma 5.8.1

(1) K1
5 ds+oo N(h + = 92 ) /’Ll)
(2) N(h [;1 ) Ml)

Proof. We will only prove the convergence for 551), the convergence for ff) can be obtained
analogously. We have

@) {—oo with probability ¢

and
0 h with probability 1 — q.

(1) _ J+oo  with probability ¢
\h with probability 1 — g,

Therefore, the recursion (5.6.5) gives

RRCE g(b> +L’1og(b)
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where L ~ Poi(padq) and L' ~ Poi((1 — p)bdq) are independent. By isolating the means
(1) ) b
h+ (L — padq) log b + (L' — (1 — q)bdp) log

+dq (pa log (Z) + (1 —p)blog ( > (5.8.1)

In the d — oo limit, log($) = §+%62(1—(1%p)2)+0(62) and log(2) = — 1= —3e2(1—(7%)?)+o(€?),
so the last term in (5.8.1) becomes

a b 1 2p—1
log — + (1 — p)blog - | = S 1
dq(pa ogb+( p)b ogc> qA( +2p(1_p)>+0()

= 721?(1 =) +o(1).

Now, to deal with the remaining terms in (5.8.1) we are going to use the following corollary the
Central Limit Theorem.
Lemma 5.8.2

Let (ay)n € (0,+00)N, such that ay, — +oo. Let Xy, be a sequence of random variable
n—oo
such that X,, ~ Poi(ay,). Then

1 Wo
Proof. We define v, % e — L Let (Y;(n)) "X Poi(v,) — vp. By the central limit theorem we
have o
1 (d) 1 o (n
— (X —ay) = Y. 0,1).
O
Applying this result to the terms in (5.8.1), we obtain (L — padq) log(%) ﬁ N(0, ) and
(L' — (1 — p)bdg) log(® ) N( ) and finally
(1
d N( 9 7“1)
0

5.8.2 Induction

The following lemma (combined with Lemma 5.8.1) concludes the proof of Proposition 5.6.2
by induction.
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Lemma 5.8.3
Suppose that, for a fixed r > 1 we have

6(1 N<h+7a,ur)

d—>+oo

(2)  We ,Ur
& mN(h 2,Mr)

Then

1) Hr41
E¥ o N+ 255 i),

Wa Hr41
2, m/\/(h 2+ M)

where Mr41 = F(NT‘)

Proof. We first compute the limits of the mean and the variance of fﬁﬁ). To do so, we will need
the following well known Wald formulas.

Lemma 5.8.4 ( Wald formulas)

Let X1,...,X, beii.d. integrable real random variables, and T" a N valued integrable random

T
variable, independent from the X;. Then > X; is integrable and

=1

E [i Xil = E[T|E[X].
=1

Moreover, if the variables (X;) are square integrable and centered

Var (Z X ) E | X2

Using Wald formulas above and Proposition 5.6.1, we obtain

E&Yy = h+pad EF(E) + (1 - p)bd EF(E), (5.8.2)
B, = h+pbd EF(EY)) + (1 — p)ed Ef(€?). (5.8.3)
We will now compute an approximation for the function f in the large d limit. f(§) = log( %eéﬂ)

es+ 5
and we have § =1+ %e +O(e?) and § =1+ ﬁe + O(€?). Thus

¢ 1

e

=1 l+e— +0(2) ] =1 l4+e——— +O(é ) .
() og( +€p(1+e£)+ (e)) og( +6(1—p)(1—|—ef)+ (€7)
The Taylor-Lagrange formula ensures that

a’x?

log(1+ ax) — azx + 5

Ya € [0,1],Vz > 0, < —ad.

L
3

Therefore

e €2 e 2 1 € 1 2
J@) = a ey ~ 2 (1 n 6;,;) T —pter) 20— pp (1 n e$> +0() (6:84)

To simplify the computation, we need the following so-called ‘Nishimori condition’.
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Lemma 5.8.5

For all continuous bounded function g:

Proof. This is a consequence of Bayes rule.

P&, € A, X5, = 2)

P2 € A) =P(§, € A|X,, =2) =

L—p
1
:It;Eﬂ@MLMMX%:2@“@&JXQ%&»
1
::TiEEﬂ@reAﬂ%X%:JK“NJ%KXQ%EJg@)
p

- ﬂ1E(1(£r € A)e ¥ |X,, = 1).

We use Lemma 5.8.5 to deduce the following identities.
Corollary 5.8.1

e o)

esr esr

pEm +(1-pE———=(H =p,
eér

e 2 @ 2 ¢
Bl | & (1-p)E SR [
PP T e 148 1+ e6t

Replacing f by its approximation (5.8.4) in equations (5.8. 2) and (5.8.3) and applying Corol-

lary 5.8.1, we obtain that EfH_l PaT. h — 5F(py) and Ef,rﬂ PR h+ 2F(u,). Similar
— d—+

(2)
calculations show that Var(frﬂ) . F(,ur) and Var(§,7;) R F(ur).

It remains to show that fr /1 1s converging toward a Gaussian distribution in the Wasserstein
sense. We will need the following lemma.

Lemma 5.8.6

Fori=1,2,Vd E[f({ff))] and d E[f(&gi))Q] are both converging to constants when d — +oo.
Proof. Vdf(z) = \[; 1iez - \/alip 1+lez +o(1). So

(i)

_Vi—* &
1-p

VAE[f(el")| = Vi E

p +0(1),

1+€§’(“)

1+ &)

and all the terms in this expression are converging by weak convergence of éi) and the fact that
€~ \/g . The other limit is proved analogously. O

Compute now

Ly
el — e, = Zf e —EfE) + 3 el ~Erel)
=1

(LLI —EL )Ef(ED) + (L1o — EL1 2)Ef(£P) (5.8.5)
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We write X; = f(fﬁlz)) - Ef(ﬁﬁll)) and Y; = f(£(2)) Ef({ﬁ?) Let us decompose the first sum:

We first show that S d& do- Wald identities give us
— 00

|L1,1—ELj 1|

Var(S) = Var ( Z X@) =E[|L11 — EL1,1|]E[X7]

1
= —E[|L11 — ELy11]] bVar(f(£?)) —— 0.
S d— o0

— 30 O(1)

d—oo

And therefore S d& dg because ES = 0. Next, we apply the Central Limit Theorem to the
—00

sum
EL1,1

Z Xi = \/1_7 Z V(1= paX;

=1
i.i.d., bounded random variables

We obtain that the sum converges with respect to the Wasserstein metric to a normal distribution.

The two first sums in (5.8.5) are independent and converge to Gaussian distributions in the
Wasserstein sense. It remains to show that the last two terms are converging toward Gaussian
distributions. This is indeed the case because

(L11 —EL1)Ef(EY) = L(Ll,l —ELy ;) VAEf(ED).

Vd
ﬁ(Ll,l —ELy 1) converges toward a Gaussian distribution and v/dEf (&EO)) converges (to a con-
stant) as d — 0o. The last term is treated the same way.

5&21 is therefore converging toward a Gaussian distribution in the Wasserstein sense. The
mean and the varlance of this Gaussian distribution are necessarily equal the limits of the means
and the variance of fr /1 that we computed. O

5.9 Connection with rank-one matrix estima-
tion

We adopt now a completely different point of view from the previous sections, in order
to relate the community detection problem to the rank-one matrix estimation problem of

Chapter 3. Rougthly, we will show now that the graph G contains, in some sense, “as
much information” about the classes X than the matrix Y given by

A\ -
Yig=1\-XiX;+Z; forl<i<j<n
n

where Z;; "% N'(0,1) independently of everything else and X; = ¢,(X;) where ¢,(1) =
\/? and ¢p(2) = —,/7%- In the case of two symmetric communities (i.e. p = 1/2)
this was done in [59] who showed that the mutual information of the two models where
approximately equal: +I(X;G) ~ LI(X;Y). Following the proof strategy of [59] we
generalize this to the asymmetric case:
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Theorem 5.9.1
There exists a constant C' > 0 such that, for d large enough

1 —
lim sup ‘I(X; G)-I(X,Y)| <Cd™?

n—oo T

Theorem 3.2.1 that we will see in Chapter 3 allows us to compute the limit of %I (XV Y.
Define

A¢? /1— ~. MN1-
F(\q) = _TC] + Elog [pexp( pp(\//\>qzo + A\gXo) — Mq)

2p

+ (= p)esp(—y T2 (hazo+ 2aX) = 570 —a)] (59)

where the expectation is taken over Zy ~ A(0,1) and Xo ~ Py, 1) + (1 —p)dg,(2) indepen-
dently from Z;. Define also

A
T:\— Y sup Fy(A, q). (5.9.2)

q>0
Corollary 3.2.1 gives then
Corollary 5.9.1

There exists a constant C' > 0 such that, for d large enough

1
limsup |—I1(X;G) — Z(\)| < Cd~'2,

n— 00 n

From Corollary 5.9.1 one can deduce the precise threshold for reconstruction in the Stochas-
tic Block Model (when d — 00).

Definition 5.9.1 (Estimator)

An estimator of the labels X is a function & : G — {1,2}" that could depend on
auxiliary randomness (random variables independent of X).

For a labeling € {1,2}" and i € {1,2} we define S;(x) = {k € {1,...,n}|zx = i},
i.e. the indices of the nodes that have the label ¢ according to . We now recall a popular
performance measure for estimators.

Definition 5.9.2 (Community Overlap)

For x,y € {1,2}" we define the community overlap of the configuration x and y as

Overlap(x,y) = :ngx Z (#Si(w) N Se(i)(Y) — i#Si(:v)#Sg(i)(y)>

i=12

where the maximum is taken over the permutations of {1,2}.

Two configurations have thus a positive community overlap if they are correlated, up
to a permutation of the classes. We will then say that the community detection problem
is solvable, if there exists an estimator (i.e. an algorithm) that achieves a positive overlap
with positive probability.
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Definition 5.9.3 (Solvability)

We say that the community detection problem is solvable (in the limit of large degrees)
if there exists an estimator (G) such that

lim inf lim g}fE(Overlap(i(G), X)) >0.

d—oo n—

The next Theorem states that

Ae(p) = inf {A > 0]Z()) < i}

will be the threshold for solvability in the stochastic block model.
Theorem 5.9.2

e If A > A\.(p), then the community detection problem is solvable.

o If X\ < A.(p), then the community detection problem is not solvable.

5.9.1 The limit of the mutual information: proof of Theorem 5.9.1

We are going to compute I(X; G) and I(X,Y). For x € {1,2}" we denote & = (¢,(x1), . .., dp(2,)) €

Sy, where ¢,(1) = \/?, 0p(2) = —\/g and S, = {—\/Z, lpp}. Recall the notations
from (5.6.1):

l-p p
L=p
For x € {1,2} we define Py(z) = Py(Z) = p, if x = 1 and Py(z) = Py(T) =1 —p, if z = 2.
For & € {1,2}" we will write, with a slight abuse of notation

a=1+ e, b=1—€¢ and c=1+ €. (5.9.3)

By definition of the mutual information, a simple computation gives:
Lemma 5.9.1

I(X,Y)=-E

_ A A ~ ~
log Z Py(x) exp (Z xixj\/;Zi’j — %(xzxj — Xin)z)

zesn 1<j

Lemma 5.9.2
For d large enough,

I(X;G) + O(d® + ne)

~ ~ > o € . -
:—Elog Z PU(ZL') exXp (Z(l’zx] — XZ'X]')ViJ' — 5(337;35]')2‘/1'7]' — %
xe{l,2}n i<j
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Proof. By definition, I(X;G) = Elog P](P’(Xi,G) = —Elog %. Thus

X)P(G) —
Eme{l 2} Py(z)P(Glx)
I(X:G)=-EI : .
(X;G) og F(GIX)
Recall that
G|’JC H sz,x] _ x“x])l—Gi,j = exp (Z Givj log Mxi@j + (1 — GiJ) log(l — Mxl,z]))

i<j 1<j

This leads to

Mz, o 1— M, ..
I(X;G) [10% > R(@)ep (ZGW' log <MJ> +(1—Giy)log <1_MXXJ> )1 :
(AR

ze{l1,2}n i<j Xi, X
(5.9.4)

~ o~ My, . g
Notice that M, ., = 4(1 + #;7j¢). Therefore log(jL) = log(~2%). By the Taylor-
s Xi,Xj 1+XZ'X]'E

Lagrange inequality, there exist a constant C' > 0 such that, for e small enough (i.e. for d large
enough):

L+ Zizje FF XX 4 LR(FE — (XX 3
| log (1 . XinE) — (@@ - XiXj) + 5 (@)t - (GX)?)| < o, (5.9.5)
1- Mx,-,wj d ~ ~ S o d2

By summation and triangle inequality:

Ay G tog [ rirs ) (1~ ) log (e
H " Mx; x; " 1 — My, x;
~~ ¥y Lo~~va (7 3.2 I 5, &
= e(xix]’ — Xin)Gi’j - 56 ((SUZZL‘]) - (XZXJ) )Gi,j - (1 - Giyj)(l‘le - XZ'X]')HG + O(GiJG + ﬁ) 5
because of equations (5.9.5) and (5.9.6). Since €G;; —V;; = %(1 +e)~(i)~(j) = %l + %)}if(j, we get
T 1 . Ae o o
Aij =@ = XiXj)Vij = 5 ((@325)° = (X X5)" Vi + — XX, (3T — Xi X))

ed o ~ ~.d d?
) ) n (1 + €X X ) Gi’j(ZII@'l‘j — XZXJ)EE + O<Gi,j€3 + E)

|
~
=
&
<
S~—

[\
|
—
>
&

Ne -
(X X; ) Wi+ EXin(xixj - X;X;)

=
=
&

.

~ . ~ =~ .d d> o«
)2) — Gi,j(mixj — Xin)ﬁe + O(Gm‘eg + oz + *)

|

=

QHZ

e

| S
ik: .
QX N | —

. S o A S
((#:25)* — (XiX;)*)Viy — o, (i = XiX;)?

&1\3\»—!

~ ~ S o 3 d2 €
— Gi’j(:l?@'l‘j — Xin)EG + O(GQ'JE + ? + ﬁ)
Notice that G, ; € {0,1}, we have therefore, for some constant C' > 0,
‘ZG” T;xj — XX —‘<C ZG?]
1<j 1<j

Therefore
. ~ =~ 1, ~ ~ A ~ ~
> Aiy = (33— XiX;)Vij — 5((581'96]')2 — (XiX;)*)Vij — %(%ﬂ?a‘ - XiX;)? + Ay

1<j
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where |A,] < C((4 + €) Y i<jGij + d* + ne), for some constant C' > 0. Since I(X;G) =
—Elog pcq1,23n Po(T )e v, we get

IS €, A o
Elog Z Py(x) exp (Z(xlx] - XiX;)Vi; — 5((@"1%) — (XiX; DDV — %(a;,x] — Xin)2)
ze{l1,2}n 1<j

——I(X,G) + O((% + VB[S Giy] +d + ne) = —1(X, G) + O(d? + ne).

1<j

Lindeberg argument

We recall the following Lindeberg generalization theorem (Theorem 2 from [126]) which is
a variant of the generalized “Lindeberg principle” from [45].

Theorem 5.9.3 (Lindeberg generalization theorem)

Let (U;)1<i<n and (V;)i1<i<n be two collection of random variables with independent
components and f : R" — R a C* function. Denote a; = |EU; — EV;| and b; =
|[EU? — EV?|. Then
EF(U) - <3 (010 (1,0, Vi) + B F (Uri 1,0, Vi)
+ 51@ /0 02 (U151, 0, Vipron) | (U; — 5)2ds

1 v
+ iE/O |8?f(U1:i—17 Oa ‘/7,+1n)|(v; - 3)2d3> .

Define

A ~ ~
J(X,Z)=—-Elog ZPO( exp Z\/> ” (T — XX) 2(aczavj) ) - %(xzx] —Xin)Q).
1<)

zeSy

We show, using Theorem 5.9.3, that J(X, Z) is close to I(X; G).
Lemma 5.9.3

For d large enough we have

1
“I(X;G) - J(X,Z)| = O(e+ d*/n).
n
Proof. We apply here Theorem 5.9.3 conditionally to X to the function

~ - ~ =~ €, A S =
=—log Y Py(@)exp (Z(%% = XiXj)uij = 5 (@) iy - oy, (@i = Xin)Q)'
zeSy i<y
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® is C? with bounded derivatives. Notice that I(X;G) = E®(V) and J(X,Z) = E(ID(\/%Z).
Let us compute V; ; moments, conditionally to X.

E(Vi; 1 X) =0

E(V1X) = Var(@iylX) = @901+ XK1+ 0(2))
_ A €, i 9 €
=206 = 2Bz + 0l

Analogously, E(VZ?’]|X ) = O(£). Using the Lindeberg generalization theorem we obtain

E[®(/A/nZ)] —E[®(V)]| <> O(e/n) = O(ne).

1<j

Gaussian interpolation

It remains to show
Lemma 5.9.4

[(X;Y) = J(X,Z)+ O(ne).

Proof. We define:

A Ao S = 1 A
H(z,X,Z,¢) = 2 xixj\/;Zz‘,j - %(xixj - XiX;)? - 26(%%)2\/221‘7]‘7
F(e) = Elog Z Py(x)exp(H(x, X, Z,¢€)).
xe{l,2}n

Notice that F/(0) = I(X;Y) and F(¢) = J(X, Z). We are going to control the derivative of F'. We

note (-) the expectation with respect to the Gibbs measure:(g(z)) o Zgiolgjzgtlzti;gc(;);z’;))

The derivative of F' reads

F'(e) = —;\/EZE[ZLJ'<(@@)2>]-

Here ((Z;%;)?) is a continuously differentiable function of Z;; and 0z, ((#:%;)*) = O(n=1/?),
Using Gaussian integration by parts: F'(e) = —% di<i E [0z, ,{(z:%;)%)] = O(1). We conclude
|F'(0) — F(e)] = O(ne). O

5.9.2 From mutual information to solvability: proof of Theo-
rem 5.9.2

We are first going to introduce an estimation metric that will allow us to make the link
between the minimum mean squared error for matrix estimation, and the overlap for com-
munity detection. Define

Y E(XX-0,(6) = = Y B(XX-E(X X))

i<j n(n —1) i<j

G _ .
MMSE, (\) = min Py p—

(5.9.7)
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where the minimum is taken over all function 8 of G. By considering the trivial estimator
0 = 0, we see that MMSES(\) € [0,1]. This estimation metric correspond (up to a
vanishing error term) to the derivative of the mutual information between the graph G
and the labels X.

Proposition 5.9.1

Let \g > 0. There exists a constant C > 0 such that, for all A € (0, o], d > 1 and
n>1

19I(X - 1 d d1/2/\71/2
nmaA’G) - 4MMSES(/\)‘ < C(dl/2 F—t——t d3/2n2A1/2) (5.9.8)

n n

Proof. We are going to differentiate H (X |G) with respect to A. To do so we will use a differen-
tiation formula from [59] (Lemma 7.1), which was first proved in [141]. Let us recall the setting
(taken from [59]) of this Lemma.

For n an integer, denote by P, the set of unordered pairs in [n] (in particular #P, = (3))).
We will use e, eq,es,... to denote elements of P,. For for each e = (i,j) we are given a one-
parameter family of discrete noisy channels indexed by 6 € J (with J = (a1, a2) a non-empty
interval), with finite input alphabet Aj and finite output alphabet ). Concretely, for any e, we
have a transition probability

{pe,o(ylz) focxoyey (5.9.9)

which is differentiable in 6. We shall omit the subscript 8 since it will be clear from the context.

We then consider X = (X1, Xa,...,X,) a random vector in A", and Y = (Yi;)( )ep, 2
set of observations in Y% that are conditionally independent given X. Further Y;; is the noisy
observation of X;X; € A through the channel p;;(-|-). In formulae, the joint probability density
function of X and Y is

pxy(@y)=px@) [[ pijlyglez;). (5.9.10)
(4,7)EPn

This obviously include the two-groups stochastic block model as a special case. In that case
Y = G is just the adjacency matrix of the graph. In the following we write Y_, = (Ye/)orep,\e
for the set of observations excluded e, and X, = X; X, for e = (3, ).

Lemma 5.9.5

With the above notation, we have:

Z Z O ye’% {pxe\Y,e(ﬂfJYfe)lOg {Zze(ze‘x/)px |Y_. (33/|Y7e)”

eEPy, TeyYe a:/e

OH( X]Y

We apply Lemma 5.9.5 to the stochastic block model. Let Ay > 0 and A € (0, \¢]. Instead
of having G;; € {0,1}, it will be more convenient to consider G;; € {-1,1}: G;; = 1 if
i ~ j, Gij = —1 else. Notice that neither the mutual information nor MMSES are affected
by this change. Gj; is, conditionally to )?Z-Xj, independent of any other random variable, and

distributed as follows
. d I\~ ~
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The transition probability from equation (5.9.9) is then py(g; ;|7:Z;) = 1—291”- +9i;2(1+7,3, \/g)

Thus
0 o 1 __|d
fa)\px(gi,y’m%) = 5, 91 TiTi\[ -

Lemma 5.9.5 gives

0H(X|G)
o\
1 d - A
=5 XZ Zgi,jxixJE[p(X %6, (x2,$]|G (ij)) log Z pa(9i4|ZiT)p PR, %,)G- (J)( L TG 7]))}
’L<J’z;;£:€j x;,x;
Ai,j
1 /d s
-5 XZ Zgi,jxixyE[p(X X6, )(fm,x]\G (ij)) 1og (pA(g”|;z:@xJ))} (5.9.12)
i<j;i,;
9i,j
B’L,]
Compute

Bij =Y 9i;T%;p(Ti, T;) log (pa(9i,5]T:T;))

= P12 (105(“D) ~ tog(1 — %)) — 2p(1 ) (log("0) ~ log(1 ~ "))
+ (1= P2 (1og() ~ logl1 — ©)

— (1= p)og (%) + (1~ 2 2~ &) 1 0%

=p(l— )6(1;]) +1%+2) +O<62)+O<f;)

and

Aiy =3 9y B[E(XiX,|G i jy)log (Y PGLITEDP %, % 6, Fi TG )]

9i,j =~ T
J T, T

Z;;g;p)\(”f;f;) (X )N(,)|G_(_ )( ;a~3|G (4,.9) ) ]
ZE;,EQPA( 1|$ ) (X X)|G G )( ;7~9‘G z]))

= E[E(X: Xj|G_(:)) log

Define a;; = E(X; X;|G_;))-

ZE/ @ E(l"i_f \/%)p(j(v.jf.)‘g (i >( i) g‘G )
)3 u—fu+@@¢3mwxwm(>r;ma )
i ;<1+m,j¢§>
:E[ai,j log 4 3 ]

1— (14 a55,/3)

Ay = Eag log

d d
=El|a; ;(log — Qi i 2 —)) 1.
[a 4l ogn+ea j+O(e )+O(n))]
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Ea,; = IE)?Z)?] = (E)Z'I)Q = 0 therefore A;; = eE&%j + O(e® + %) By replacing A;; and B;
n (5.9.12), we have

OH(X|G) _ 1 - d . d?
ik il oo €EaZ ; + O(?) + O(= ——e e+ 0(2) + 0(=;)
5 > DTN )
21 (IE 1) + O(ne) + O(dPA~Y2 4 @32 1\"1/2), (5.9.13)
mn
1<J

Define a; ; = E(X;X;|@). Using Bayes rule, we have

p( 04| Ti%5)p(Ti, Ti |G )

p(Z;,T;|G ~~ .
e Y (W ECAT ATy
If Gi; = 1, then
o (1 + Z@e)p(Ti, 751G ) (1 + €235)p(Fi, |G —(i )
(3, 5;|G) = i€ J ) _ J a .J (09)/
Zg&;&n(l‘f‘xm p(T}, TG (i 5)) L+ €a
i)
Thus S o
i+ eB(XiX)2Gin) .
Gy == (1( +Zgaj,). Goua) _ i j + O(e)
1,
It Gij = —1,
o (1-4(1 +m ))p(%f'lG— 7)) d,. . ~ o~ d
p(%i,7|G) = / 72 (0) :(1_E(1+$i$j6))p(fviv$j|Gf(i,j))+O(ﬁ)‘

Therefore a; j = a; j + O(%). Equation (5.9.13) becomes then

8H((3)§|G) = % 2; (Ea%j - 1) + O(ne +d) + O(d*2A=V2 4 32p =1 71/2)
= ZE( X X; ~ B(XiX;|G))?) + O(ne + d + d"/2A712 4 a¥2p~I\1/2),
o (5.9.14)
Decomposing I(X;G) = H(X) — H(X|G) we obtain the desired result. O

Consequently, if one consider a sufficiently large d (in order to apply Corollary 5.9.1)
and one integrate equation (5.9.8) from 0 to A > 0, and let n tend to infinity,

lim sup NN —T(N)| < Kd Y2, (5.9.15)

n—oo
for some constant K > 0 depending on A\ but not on d.
Proposition 5.9.2

For A < A\:(p)

lim hmlnfMMSEG( )=1 (5.9.16)

d—oo M—00

For A > X\.(p)
lim sup lim sup MMSES (\) < 1 (5.9.17)

d—00 n—00
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Proof. This is a consequence of equation (5.9.15) and the definition of \.(p). We will show (5.9.16)
first. Z is continuous, so by definition of A., Z(A.) = A./4. Equation (5.9.15) gives then

Ae
limsup [ |1 — MMSES(\)|d\ < 4Kd~/?

n—o0 0

because MMSES (\) < 1. Equation (5.9.16) follows.

Equation (5.9.17) is proved analogously. If lim supy_, . limsup,,_,. MMSE%()\g) = 1 for some
Ao > A¢, then limsup, . limsup, | f[f‘o %MMSEE(A)d/\ — %| = 0 which implies (by equa-
tion (5.9.15)) that Z(Ag) = 0 which contradicts the definition of A.. O

We would now like to rewrite the result of Proposition 5.9.2 in terms of Overlap instead
of MMSE. The following two lemmas will be useful to make the link between the MMSE
and the overlap.

Lemma 5.9.6
Let n € N*. Let (Ay, Ay) and (By, By) be two partitions of {1,...,n}. Then

#Al N Bl - i#Al#Bl - #AQ N BQ - :L#AQ#BQ, (5918)

Proof. We prove (5.9.18) first. Remark that #As N By = #By — (#41 — #B; N A1) and
H#As#H By = n? — n(#A1 + #Bl) + #A1#B1. So that

AN By~ AHB = #4300 By — Rk By + # By — Ay — 0t A+ A,
= #A2N By — %#A2#Bz-
To prove (5.9.19), write #4; N By = #A1 — #A; N By. Thus
#ALN By~ _#AH#BL = #A1— #A1 0 By — #Ar(n— #B2) = —(#410 By — #AH#B).

O
Lemma 5.9.7

Recall that for x € {1,2}" and i = 1,2 we define S;(x) = {j|z; = i}. Let x =
(x1,...,xn) € {1,2}". Recall that & = (¢p(x1), ..., ¢p(xy,)) where ¢,(1) = ,/lﬁp and

bp(2) = —\E. Then

n —
i=1

_ 2})(11_p>Over1ap($,X) + O(’&E;X) —p’ + ‘5251)() —(1 —p)D.

1
n
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Proof.

113 ~
~| > X

i=1
- % 1;?#51@) NS1(X) + T2 #5:(@) N S2(X) = (n = #51(2) N S1(X) = #2(w) N 5(X))|
= | #51(@) N S1(X) + T # (@) N 52(X) — 1
— | (#51@) N 51(X0) — p#S1(@) + T (#52(@) N 52(X) - (1~ p)#Sa(a)
_ % ;(#Sl(x) NSy (X) — %#sl(x)#sl(x)) + 1;(#52(3,-) N Sy(X) — %#SQ(X)#SQ(J:))\
Si(x)]  Si(X)|  Sa(x) So(X)
+O(Z = - - =),
Using Lemma 5.9.6, one obtains then
f‘ ZXxZ = 11 )Overlap(a: , X))+ 0 (‘S EzX) —p‘ + ‘SQ(nX) —(1 —p)D :

We are now going to prove Theorem 5.9.2. Remark that

MMSES () = n(nQ_) ZE(XX E(X,; X, |G))
= =D Z]E(l— (XiX;1G))%)

We will denote ()¢ the expectation with respect to the posterior distribution P(X =
|G). We have then E(E(X,X;|G)?) = E(X;X,%;Z;)c, where Z is sampled, conditionally
to G, from P(-|G). Thus

MMSES(\) =1 - — S E(X X0 +o(1) =1 - ]E< (:L zi: 551,@)2>G +o(1). (5.9.20)

n

Suppose A > A.. Then (5.9.20) and Proposition 5.9.2 imply

> > 0.
G

n—oo

1 &~
lim 1nf lim 1nf]E<’ Z ;X
= ni3

Using Lemma 5.9.7, this gives

hm mf lim 1nfE<Overlap(:c X)>G > 0,

n—oo

where @ is sampled according to the posterior distribution of X. Sampling from the poste-
rior distribution P(X = -|G) provides thus an estimator that achieves a non zero overlap:
the community detection problem is solvable.
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Suppose now A < A.. Suppose that the community detection problem is solvable. There
is therefore an estimator a that achieves a non zero overlap. Lemma 5.9.7 gives then

o hmlnfh%gmf E|ZXCL1| >0

o =1

Compute now for ¢ € (0, 1]

) N
mZE(XlX (S(],Zaj —;ZE XX —(5(1,&]) —|‘O(1)
1<J 2,]
—ZEXXQ ) 4+ 0(6%) ——EZ
i#] i=1
<1+0(8%) —25( ]E|ZXaZ> +o(1).
So that

S E(X,X;—06d;)? = 1-200>+0(82).

1<j

lim inf lim inf MMSE® (\) < lim inf lim inf 2

d—oo  M—00 d—oo n—=oo n(n —1)

The right-hand side will be strictly inferior to 1 for § sufficiently small. This is contradictory
with Proposition 5.9.2 (recall that A < A.). The community detection problem is not
solvable. Theorem 5.9.2 is proved.
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Chapter 6

Statistical limits of rank-one tensor
estimation

We consider in this chapter the tensor-analog of the spiked Wigner model from Chapter 3,
namely the “spiked tensor model”. Let & > 2 and consider

[ A
Y = WXM +Z, (6.0.1)

where X € R" such that || X| ~ /n and Z;, i, = N(0,1). The spiked tensor model
(6.0.1) was introduced by Montanari and Richard [180], as a natural extension to tensors
of the spiked matrix models studied in the previous chapters. The paper [180] shows that
there exists a finite value A. such that weak recovery is possible for A > A\.. Montanari,
Reichman and Zeitouni [150] obtained bounds on A. that were then improved by Perry,
Wein and Bandeira [174] who obtained tight bounds in the & — oo limit. The threshold
for hypothesis testing is also of order 1 [150, 174] and precise expressions for the threshold
has recently been obtained in [47, 49].

In this chapter we derive in Section 6.1 precise information-theoretic limits for estima-
tion. We then turn our attention to the maximum likelihood estimator in Section 6.3 and
compute its asymptotic performance.

6.1 Information-theoretic limits

6.1.1 Large order limit: £ — oo

We start by a simple analysis of the symmetric tensor estimation model (6.1.5) with
Rademacher prior Py = %(5“ + %5,1 in the limit £ — oo. This large k scenario has
been studied in [174], where the detection problem was also investigated. We suppose to

observe here

A

Lyeees 1k nk,l 1k 9 (611)

.....

for all (iy,...,i) € {1,...,n}*. The Z;  ; are iid. standard Gaussian, independent
from X,,..., X, '~ %5“ + %5_1. We will denote by
1 . [ A n
Fékz)()\) = gI[-_?jlog {Z } 27" exp < | Z Fyil ,,,,, inLiy - - Tif — 2)
xe{—-1,1}" 115052k
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and MMSE® (\) = LE[| X® — E[X®*|Y]||? the corresponding free energy and MMSE.

We will see that simple arguments (that does not require the knowledge of the exact
formulas of Theorem 6.1.1 and Corollary 6.1.2 that we will see in the next section) give
that for large values of k we have

o if A < 2log(2) — O(log(k)?/k?) then lim MMSE® (X)) = 1,

o if A > 2log(2) then lim MMSE((A) = O(log(k)?/k?).

1.0 -

0.8
€3 0.6
mn
=
= 044 \

N
. \\
0.0 - T
0 1}2 1 2 ]olg 2 2 A

Figure 6.1: Minimal Mean Squared Errors MMSE;’“) for tensor estimation (6.1.1) with
Rademacher prior, for k = 2,3, 4,6, as given by Corollary 6.1.2.

We start with the study of the free energy. For \y € R we define

0 it A< o,
f>\0<)‘): 1 . ’
5(/\—>\0) if )\2)\0

Proposition 6.1.1

There exists an increasing sequence (A )r>2 such that A3’ = 1/2 and A\ = 2log(2) —
O(log(k)?/k?) and for all k,n, A >0

A log(2n+1
f2log(2)<)\) S Fé“()\) S f/\; ()\) + 4/ — 4+ M )

- p (6.1.2)

Proof. We start with the lower bound. For all A > 0 we have F,(Lk)()\) >0 and

1 1 A An
FM(O) = _Elog Y o exp (Y g Vit Ty - Ty 7)
xe{-1,1}" 11,00
1 1 A An A
> —Elog (Qn €xp ( Z k—1 Yi, ., ZkX'Ll Xlk - 2)) = 5 - 10g(2)
115000k
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Let us now prove the upper-bound. For x € {—1,1}" let us write Z(x) = n=k2 Ziy . inTiy - Ty -

U1k

X Z(X)D .

For (1), 2(2) € {—1,1}" fixed, the covariance between Z(x")) and Z(2?) is E[Z (M) Z(x?))] =
(™ - 2?)k. Consequently, for & € {~1,1}" the law of Z(z) conditionally on Z(X) is N'((z -
X)*Z(X),1— (x- X)%) and therefore

By Jensen’s inequality, we have

Fé’”““im( > B lew (VinZ(@) + ne- X0 - )

ze{—-1,1}"

E [exp (VAnZ (@ )’X 2(X)| = exp (Van(z - X)F2(X) + %”(1 (- X)™)).

We obtain thus:

F(\) < SR log ( Y e (VAIZO|+ 0 (2 - X) ~ (o X)Qk)))

n ze{-1,1}

1 1 )\n 2k )\

gnElog( > 2—nexp(2(2(m X))k —(x-X) ))>+ o
ze{-1,1}"
Now, for k € {—n,...,n}, we have
# {ac e{-L1}"| ) zX; = k} < 2"exp (—nh(k/n)),
i=1

where h(t) = 1 log(1 +t) + 15t log(1 — t). This gives

A
ER()) < —Elog ( exp 2)\(k/n) Ak /n)% — 2h(k/n)))> +/5
k=—n
< —Elog (2n+1) exp — max {2\tF — Xt?F — 2h(t)}) + 2
- 2 tefo,1] n
1. k_ g2y log2n+1) = |A
5 {A (2% — 12%) —2n(t) } + R (6.1.3)
The function A — max;cjo 1 {A A(2tF — t2F) — 2n(t t)} is continuous, 1-Lipschitz and equal to 0 for
A < A} where
~ def 2h(t)
Ak; ==

mn — a7 -
t€(0,1] 2tk — t2k

Therefore, for A > Ay, maxeqo 1) {AM(2tF — %) — 2h(t)} < A — A}, which combined to (6.1.3)
proves (6.1.2).

It remains to show Ay’ = 1/2 and 2log(2) — O(log(k)?/k?) < Ay < 2log(2). Let us start with
the case k = 2. The maximizer ¢ of ¢ — \(2t> — t*) — 2h(t) verifies

1+t

AN(t — t3) = 21/(t) = log (ﬁ

) = 2artanh(t) .

Therefore t = tanh(2A(t — t3)). For A < 1/2, this equation admits a unique solution ¢ = 0,
whereas of A > 1/2 it admits a second solution ¢’ > 0 and max;c[ 1) A(2¢> — ¢*) — 2h(t) > 0. Thus
Ay =1/2.
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Let now k > 3. Let ¢;, be the largest minimizer of hy, : t + 2h(t)/(2t* — ¢?*) on (0,1]. One
has t; € (0,1). For t € (0,1), h(t) has the same sign as
t(log(1+1) —log(1 —t)) 2k(1-— tk)
2h(t) 2tk 7

(6.1.4)

which is decreasing in k. This gives that (¢;)g>3 is increasing and converges to 1, which is the
only possible limit because ¢ cancels (6.1.4). One has also t’,ﬁ — 1. Define up = 1 — . Since
tk — 1, one has kuy, — 0. Then t§ = exp(klog(1 — ux)) = 1 — kuy + O(ku?). We get

kuy, + O(uzk)

o) = log(2)k%uy, + o(1) .

—log(ug) + o(1) = klog(2)
Therefore
21og(k) = log(2)k?uy, + log(k*ui) + o(1) ~ log(2)k>uy, .

We deduce that 1 — 1t = up ~ %. We have then 2tF — 28 = 1 — k?u? + o(k?*u?) and

2h(ty) = 21log(2) + O(ug) + ux log(u). We conclude:
Ay = hi(ty) = 210g(2) — O(log(k)?/k?) .

Using the I-MMSE relations (1.3.4) as usual, we deduce:
Corollary 6.1.1
If X < A} then

MMSE® (\) —— 1,

n—oo

while for A\ > 2log(2):

. 2log(2) — Ay _ O(log(k)?/k?)
1 MMSE® ()) < LI
il SE.() < A —2log(2) A — 2log(2)

Proof. By the I-MMSE relation (1.3.4), we have MMSE® (\) = 1 — 2F(\). If A < A" then
by convexity and the fact that the free energy is non-decreasing;:
EPOR) = B (O
< 0,
)\E’ Y n—00

0< FM'(N)

by Proposition 6.1.1. This proves the result for A < A\y". For A > 2log(2) again, by convexity and
Proposition 6.1.1 we have

k) vy _ (k)
lim inf F(k)’()\) > lim inf Fn”(A) n (2log(2))

n—oo " n—00 A —2log(2)
- farog)(A) = iy (2log(2)) 1 2log(2) — Ay
- A — 2log(2) 2 2(A—2log(2)’
which concludes the proof. O

The “abrupt” phase transition at A = 2log(2) that we see on Figure 6.1 reminds of the
phase transition for the “needle in a haystack” problem seen in Section 1.4. This is not
surprising, and this has been known for a long time in statistical physics: the Random
Energy Model (which is the non-planted analog of the “needle in a haystack” problem) can
be seen as the k& — oo limit of the k-spin model (which corresponds to the spiked tensor
model (6.1.1)), see [57].
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6.1.2 Information-theoretic limits

We turn now our attention to the precise expression to the limit of the minimal mean square
error in the model (6.0.1) for general priors Fy. It will be useful (notably for the proof
of Proposition 6.1.2 below) to consider a more general model, where we observe multiple
tensors like (6.0.1), of different orders. This is the analog of the “mixed p-spin model” in
statistical physics, see for instance [170]. Let K > 1 and Aq,... g > 0. Assume that we
observe, for all k € {1,..., K}:

[ A
Vi = nk:Xil o Xi A+ Ziyay for 1<y, i <o, (6.1.5)

where X = (X3,...,X,) '~ Pyand (Z;,... i )it "X N(0,1) are independent. We define
the Hamiltonian

K
Ak Ak 2
Hn(m) = Z Z k-1 }/;'1 ,,,,, i Liy oo o Ty, — opk—1 (gjil PN Qﬁ'lk) s (616)
k=1141,...,0%

for € = (z1,...,x,) € R™. The posterior distribution of X given Y reads then:

1

IP(X =2|Y) =

dPE"(x)ef®) (6.1.7)

where Z,, is the appropriate normalizing factor. The free energy is thus F},(A) = Elog Z,, .

Again, we will express the limit of F},(A) using the following “potential”: "
K 1 K
F (A q) = vp (Z )\kquk_1> — 52k D", (6.1.8)
k=1 k=1

where 1p, is the free energy of the scalar channel (1.3.5), defined by (1.3.6).

Theorem 6.1.1 (Replica-Symmetric formula for the spiked tensor model)

Let Py be a probability distribution over R, with finite moment of order 2K. Then,
for all A € [0, +00)
F,(A) —— sup F(A,q) . (6.1.9)

Theorem 6.1.1 was proved in [136] by the same arguments used for Theorem 3.2.1. The
paper [20] gave then an alternative proof. In the case of a binary signal Py = %51 + %5_1
the work [124] obtained bounds on the limit of F,,. However, these bounds are not tight for
all values of A\. By the - MMSE relation (1.3.4) we deduce from Theorem 6.1.1 the limit
of the Minimum Mean Squared Error:

MMSE®) (X) = inf {11@
0 n

(XX —5(Y)z-1...ik)2” ,

where the infimum is taken over all measurable functions 6 of the observations Y.
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Corollary 6.1.2

For all X € [0, +00)® such that F(A,-) admits a unique maximizer q*(\) over Rsq, we
have N
MMSEY (A) —— (EpX2)" = ¢"(A)F. (6.1.10)

n—oo

The proof is exactly the same than for the matrix case, see the proof of Corollary 3.2.2.
Proposition 6.1.2

Assume that Py admits a finite moment of order 2K. Let XA € [0,+00)" such that
F(A, ) admits a unique maximizers ¢*(X). Then

n
>_wiXi
=1

1
nl

d *
D),

n—o0

where x is a sample from the posterior distribution of X given Y, independently of
everything else. Moreover, if A\, > 0 for some odd k, then

1.

n—
n;3

From Proposition 6.1.2, we deduce using Proposition 1.2.2 and Remark 1.2.1:
Corollary 6.1.3

Assume that Py admits a finite moment of order max(2K,8). Let X € [0, +00)® such
that F(A,-) admits a unique maximizers ¢*(X). Then

|<@(Y),X*>\] 7*(A)

sup]E[ — . > . (6.1.11)
a2 LI X[ ] nree p

Proof of Proposition 6.1.2. We define the random variable @, def % ? 1 x;X;. Then for

all k e {1,..., K}, MMSE® (X) = Ep [X2* — E[Q¥] + 0, (1). Let us fix A € [0, +00)* such that
F(A,-) admits a unique maximizer ¢*(A). From Corollary 6.1.2 we get that for all k£ such that
Ar > 0, we have

E[QF] —— ¢* (W)™ (6.1.12)

n—oo

Let us fix such k. By the “I-MMSE” relation (Proposition 1.3.3) we have

oF,
0oy,

N  =EQX ]+ 0,(1).

+
>\2k

Since F), is convex in Ao, we have by Proposition C.1:

0

lim sup E[Q?*] = lim sup —— < {sup F(A, q)} =" V)~ (6.1.13)

n—o00 n—oo O )\;—k Ok >0 )\g-k
From (6.1.12) and (6.1.13) we get that QF % ¢*(X\)*, which leads to |Q,| % g*(N). If k is
odd then Q, — 7 ¢*(X). 0
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6.2 Hardness of low-rank tensor estimation

The brutal jump of the minimal mean squared error on Figure 6.1 and the fact that tensor
estimation is related (for large orders) to the “needle in a haystack” problem of Section 1.4
seems to indicate that the low-rank tensor estimation problem (6.0.1) for £ > 3 is com-
putationally hard. Moreover it is known that computing an eigenvalue, an eigenvector or
even the rank of k-tensor is NP-hard when k& > 3, [102]. The study of [180] supports this
picture and shows that unless the signal-to-noise ratio A goes to infinity with n, popular
algorithms such as power iteration, tensor unfolding or message passing fail to recover the
signal X, when X is uniformly distributed on the sphere of radius y/n.

The spiked tensor model is thus expected to be an extreme example of statistical prob-
lems that admit a statistical-to-algorithmic gap, when X ~ Unif(y/nS"~1). The thresholds
for estimation and detection are both order 1 in n; on the other hand, the thresholds for
efficient testing and estimation are expected to diverge polynomially in n, Ay, = O(n®).
Sharp algorithmic thresholds have been shown for semi-definite and spectral relaxations of
the maximum likelihood problem [107, 106, 122] as well as optimization of the likelihood
itself via Langevin dynamics [8]. Upper bounds have also been obtained for message pass-
ing and power iteration [180], as well as gradient descent [8]. All this approaches need at
least o = (k — 2)/4 in order to succeed.

This suggests that we would be in a “hard regime” (where polynomial time algorithms
can only achieve trivial performance) for all (finite) values of the signal-to-noise ratio \.
The work [136] provides a more optimistic vision that can be summarized as:

e If the distribution of the signal has zero mean (i.e. Ep X = 0) we are indeed in a
hard phase for all values of \.

e However, if Ep, X # 0 then polynomial-time algorithms (as AMP) can achieve a
non-trivial performance and can even be optimal if Ep X is not too small.

Let us give some intuition about these points. As we have seen in Section 3.3 the
presence of a “hard regime” is characterized (if we believe that AMP are optimal among
polynomial-time algorithms) by the fact that ¢ = 0 is a local minimum of the potential
qg+— —F(X\ q). We thus expand around ¢ = 0

B Nkgh—1
2

Ak —1)
2

~F(\q) = Ep, [X] + ¢" + 0" V),

because ¥p,(0) = 0 and ¢, = 1Ep [X]?. Consequently, if Ep X = 0 and k > 3, then ¢ = 0
is a local minimum of —F(\,-) and we are in a “hard regime”. But if the prior P, has a
non-zero mean, then ¢ = 0 is not a local minimum anymore and it is possible (with AMP
for instance) to estimate the signal X with efficient algorithms.

The plots of Figure 6.2 confirm this picture. On the first plot (where Py = N (=0, 1))
we observe that the local minimum ¢ = 0 is separated from the global minimum by a barrier,
which indicates hardness (see the discussion in Section 3.3.2). Since X = (X1,...,X,,) "~
N(0,1) is up to a normalization uniformly distributed on the sphere of radius /n this is
coherent with the results mentioned above. On the second plot, where the prior has a small
mean g = 0.15, the local minimum at ¢ = 0 disappears and is replaced by another local
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Figure 6.2: Plots of ¢ — —F()\, q) for k =3, A = 10 and Py = M (y, 1), for different values
of u.

minimum at ¢g, close to 0. It is possible in this situation to achieve non-trivial performance
by efficient algorithms (as AMP), but it is again conjectured that their correlation with
the planted solution X will be at most equal to gy, which is quite small compared to
the optimal overlap ¢*(\) ~ 0.8. Polynomial-time algorithms can thus have non-trivial
performance but are still far from optimal. On the third and fourth plot, we see that for
larger means, the local minimum at gy disappears completely. It is now possible (using for
instance AMP) to achieve the optimal performance in polynomial time.

6.3 Maximum likelihood estimation

6.3.1 Background and related work

We adopt here a slightly different normalization of the spiked tensor model in order to
study maximum likelihood estimation. Suppose again that we are given an observation,
Y, which is a k-tensor of rank 1 in dimension n subject to additive Gaussian noise. That
is,

Y = \WnX® + Z, (6.3.1)

where X € S"7!, the unit sphere in R” and Z is an i.i.d. Gaussian k-tensor with Ziy iy
N(0,1)'. Throughout this section, we assume that X is drawn from an uninformative
prior, namely the uniform distribution on S*~!. Consequently, the typical order of magni-
tude of the entries of X is 1/4/n: the scaling we take here is equivalent to the one we used
in Section 6.1.

~

It is straightforward to show that maximizing the log-likelihood is equivalent to max-
imizing (Y, ®*) over the sphere, x € S"~!. The maximum likelihood estimator (MLE)
) is then defined as?

M = arg max (Y, 9%). (6.3.2)

xesn—1
The goal of this section is to study the asymptotic behavior of the maximum likelihood
estimator Z)I'. The function Hy : & — /n(x®" Y") has been extensively studied in sta-
tistical physics and mathematics.

'We note here that none of the results of this section are changed if one symmetrizes Z, i.e., if we work
with the symmetric Gaussian k-tensor.

2 As shown in Proposition 6.4.2, & + (x®*Y') admits almost surely a unique maximizer over S~ if k
is odd, and two maximizers * and —x* if k is even. In the case of even k, 31)\\/”4 is simply picked uniformly

at random among {—x*, z*}.
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In the case A\ = 0, the Hamiltonian H, was first studied by Crisanti and Sommers
in [54] using the heuristic “replica method”. They computed the value of its maximum
(the “ground state”), a result that was then rigorously confirmed by [200, 48, 10, 51, 111].
Crisanti and Sommers analyzed in [53] the complexity of the function Hy. In order to
characterize how complex the function Hy can be, one of the main quantity of interest is
the number of critical points at a given energy (i.e. likelihood) and with a given correlation
with the signal X:

LML E) Y 1@ x) eM}]l{lHA(:c) eE} (6.3.3)
©:V H (2)=0 n

for M C [-1,1] and £ C R. One can define similarly Crto(M, E) the number of local
maxima with correlation in M and energy in E. The paper [53] shows (by non-rigorous
methods) that in the case A = 0, Crto(F) =~ exp(nSo(F)) provided E C [E(k),+o0) for
some value E (k). Another derivation of this prediction was done by Fyodorov [86] using
tools from random matrix theory.

The work of Auffinger, Ben Arous and éerny [11, 10] confirmed rigorously this picture
by proving (using the Kac-Rice formula and results from random matrix theory) the con-
jectured limiting expression for < log E[Crt,], £ log E[Crto], and for other even more precise
quantities. Subag [197] showed then, by a second moment computation, that the number
of critical point (at which the Hamiltonian is larger than some value E(k)) is actually
concentrated around its mean, giving a precise understanding of the typical number of
critical points of the function Hy.

In the case A > 0, the model was first considered by Gillin and Sherrington [91] who
analyzed the Gibbs measure associated to the Hamiltonian Hy. The study of the complexity
of Hy was carried out by Ben Arous, Mei, Montanari and Nica [9]. The authors compute
the (normalized) logarithm of the expected number of local minima below a certain energy
level via the Kac-Rice approach and show that there is a transition at a point A4 such that
for A < Ay this is negative for any strictly positive correlation, and for A > A, it has a
zero with correlation bounded away from zero. In [183], study the (normalized) logarithm
of the (random) number of local minima via a novel (but non rigorous) replica theoretic
approach. They argued that there are in fact two transitions for the log-likelihood, called A4
and .. First, for A < A4, all local maxima of the log-likelihood only achieve asymptotically
vanishing correlation. For Ay < A < A, there is a local maximum of the log-likelihood with
non-trivial correlation but the maximum likelihood estimator still has vanishing correlation.
Finally, for A\, < A the maximum likelihood estimator has strictly positive correlation. In
particular, if we let m(\), denote the limiting value of the correlation of the maximum
likelihood estimator and X, they predict that m(\) has a jump discontinuity at A.. We
will verify this with Theorem 6.3.1 in the next section.

6.3.2 Main results

In order to state our main results, we need to introduce some notations. Define fort € [0, 1),

fa(t) = NtF 4 log(1 —t) +t (6.3.4)
and let
Ae = sup {/\ >0| sup fiot) < 0}. (6.3.5)
tel0,1)
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As we will see with Proposition 6.4.1 below, it can be deduced from the results of Section 6.1
that . is the information-theoretic threshold for the model (6.3.1). Our main result is that
the preceding transition is also the transition for which maximum likelihood estimation
yields an estimator which achieves positive correlation with X. Let ¢.(\) be defined by

0 if A<
¢.(N) = ? (6.3.6)
argmax,coq) fa(t) i A> A

As shown in Lemma 6.4.7, the function f, admits a unique positive maximizer on [0, 1)
when A > A, so that this is well-defined. Let zj denote the unique zero on (0, +00) of

14z 11

pr(2) = —5—log(l+2) — — — . (6.3.7)

Finally, let

Vk 2%
GS = 14+—). 6.3.
F \/1+Zk(+k’) (6:38)
We then have the following.
Theorem 6.3.1
Let A > 0 and k > 3. The following limit holds almost surely
. GSg it A<\,
lim = Dnax, <m®k,Y> = \Vr 1+ XM s (6.3.9)
n—00 TeES"— c-
1+ A2hq (V)
Furthermore, we have that for A # A.
Tim [(@)", X)) = \/a.(V). (6.3.10)

As a consequence of Corollary 6.4.1, the maximum likelihood estimator achieves maximal
correlation. Unlike the case k = 2, the transition in ¢.()) is not continuous. See Figure 6.3.
Theorem 6.3.1 was proved in [110] where it is also proved that A. is the threshold for
hypothesis testing, in the case of even k larger than 6. If we denote by (), the law of the
observations Y given by (6.3.1), then for A < A,

Drv(Qx, Qo) —— 0.

Below \. it is therefore impossible to distinguish the tensor Y from pure noise. As a
consequence of Theorem 6.3.1, the threshold ). is also the threshold for multiple hypothesis
testing: the maximum likelihood is able to distinguish between all of the hypotheses A > ..

6.3.3 Regarding the spinodal transition

While the regime Ay < A < A. and the expected transition at A\, is not relevant for
testing and estimation, there is still a natural interpretation from the perspective of the
landscape of the maximum likelihood. In [9, 183], this is explained explained in terms of
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Figure 6.3: Asymptotic correlation lim [(Z)% X)| = 1/q.(\) as a function of the signal-
n—oo

to-noise ratio A, for different values of k.

the complexity. There is also an explanation in terms of the optimization of the maximum
likelihood. We end this section with a brief discussion of this phase. Let A\; be given by

(k — 1)k

=t (6.3.11)

As =

Consider the constrained maximum likelihood,

Ey(m) = lim 1 max {An(X,w>k - \/ﬁ<Z,w®k>}. (6.3.12)

n—o0 n geSh—1, (X, z)=m

This limit exists and is given by an explicit variational problem (see (6.4.5) below). For
A > A, let /gs(\) be the (unique) positive, strict local maximum of fy. By Lemma 6.4.7,
this is well-defined and satisfies ¢s(A\) = g.(A\) for A > A.. In [183], it is argued by the

replica method that F)(m) has a local maximum at \/¢s(A) for all A > A,. Establishing
this rigorously is a key step in our proof of Theorem 6.3.1. In particular, we prove the
following, which is a direct consequence of Lemma 6.4.4 below.

Proposition 6.3.1

For A > )\, the function E\ has a strict local maximum at \/qs(\).

It is easy to verify (by direct differentiation) that the map A — FE,(1/gs(\)) is strictly in-
creasing on (As, +00). We have also that Fy_(1/¢s(A.)) = GSg by Lemma 6.4.4 and Lemma

6.4.8, so we get that for Ay < A < A, the strict local maximum at \/qs(A) has Ex(1/gs(N))
strictly less than the maximum likelihood. In fact, (6.4.5) can be solved numerically, as
it can be shown that one may reduce this variational problem, in the setting we consider
here, to a two-parameter family of problems in three real variables. This is discussed in
6.4.2 below. In particular, see Figure 6.4 for an illustration of these two transitions in the

case k = 4.

6.4 Proof of Theorem 6.3.1

In this section, we prove Theorem 6.3.1. We begin by providing a lower bound for the
maximum likelihood for every A > 0 using results on the ground state of the mixed p-
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Figure 6.4: Asymptotic constrained maximum likelihood Eyx(m) for k& = 4 with A =
1,1.299,1.35,1.405,1.5. Here A; ~ 1.299 and A\, ~ 1.405. For A < A, the function is
(numerically) seen to be monotone. A secondary maximum occurs at the transition A = As.
This local maximum is bounded away from m = 0. Finally, at the information theoretic
threshold \., the maximum likelihood is now maximized at this second point.

spin model recently proved in [111, 51]. We then use the information-theoretic bound on
the maximal correlation achievable by any estimator from [136] to obtain the matching
upper bound. We end by proving the desired result for the correlation ()%, X). In the
remainder of this section, for ease of notation, we let

Hy(x) = H(x) + An{x, X)F, (6.4.1)

where H(x) = /03, i Ziy,.inTiy - - - Ti, -

6.4.1 Variational formula for the ground state of the mixed p-
spin model

We begin by recalling the following variational formula for the ground state of the mixed
p-spin model. Consider the Gaussian process indexed by € S*~!:

Yo (x) = \/ﬁz ap Z Gi1esipTiy -+ - Tigys

p>1  1<ii,ip<n

where g;, . ;, are i.i.d. standard Gaussian random variables and >° >, 2”@127 < 00. This last
condition ensures that the sum above is almost surely finite. The covariance of Y, is given
by

E[Y,(2)Ya(y)| = né((@,y)),

where &(t) = 3,5 ajt?. Let C denote the subset of C([0,1]) of functions that are positive,
non-increasing and concave. For any h > 0, we let P, : C — R be

Pi(6) = [ €@)o(a) + 7~ de+ (1 + €(0)6(0).

¢(x)
Set .
G(&,h) = 5 min Py(¢). (6.4.2)
Let us recall the following variational formula. For & € S"™!, we write = (21, ..., z,).
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Theorem 6.4.1 ([51, 111])
For all h > 0,

lim 1 max {Yn(a:) + h\/ﬁé;xl} =G(& h),

n—0o0 1, geSn—1

almost surely and in L.

Remark 6.4.1. While the results of [51, 111] are stated with £'(0) = 0, they still hold
when £'(0) > 0 by replacing & — £(t) — &€'(0)t and h? — h%* 4+ £'(0) . To see this, simply
note that the Crisanti-Sommers formula still holds in this setting by the main result of
[48]. The reformulation from [111, Eq. (1.0.1)] is then changed by this replacement by
simply repeating the integration by parts arqgument from [111, Lemma 6.1.1]. From here
the arguments are unchanged under the above replacement.

6.4.2 The lower bound

By Borell’s inequality, the constrained maximum likelihood (6.3.12) concentrates around
its mean with sub-Gaussian tails. In particular, combining this with Borel-Cantelli we see
that

Ex(m) = lim 11@{ max {An<w,x>k+ﬂ(x)H. (6.4.3)

n—00 1, zeSn—1 (x, X)=m
Clearly, liminf %E{maxSn_l H,\] > E\(m) for all m € [—1,1]. Recall the definition of
As from (6.3.11) and ¢s(A), see, e.g., Lemma 6.4.7. If we apply this for A > \; and

m = \/QS()\) > \él — = (by Lemma 6.4.7), Lemma 6.4.4 below will immediately yield the
following lower bound.
Lemma 6.4.1

For all A > A,

1 1 2 k-1
limianE{ max H,\(m)] > Vk o) . (6.4.4)
TR JUF Vg, (T

We now turn to the proof of Lemma 6.4.4. We begin by observing the following explicit
representation for F).
Lemma 6.4.2

For all m € [—1,1] the limit in (6.3.12) exists and

E\(m) = AmF 4+ G(&r, 0), (6.4.5)

where &,(t) = (m? + (1 — m?)t)* — m?".
Proof. We begin by observing that by rotational invariance,

EE[ max {An(a}, D QLIS H(m)H = xmF + lJE{ max H(:c)]

n lLzesr—1 (z,X)=m n LzeSt—1 z1=m

Let € S*! such that ;1 = m. Then

k—1 1/2
(d) k j
H(x) = Vmfgy 1 +/n E (]) m’ E Gir,yin—jTiy -+ - Lig_j>
Jj=0

2<i1 iy <n
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where ((gzd,...,z‘p)lsz‘l,..‘,ipgn)pq are i.i.d. standard Gaussians.

So that E[ maxyesn—1 4 H(x)] = E[max,cgn—2 Hy,(x)], where Hy, is given by:

k=1 /) 1z }
Hm(w) = \/ﬁ Z (]) mj(l — mQ)(k_j)/Q Z gilw“/ikfjxil . xikfj.
7=0

1<ty <n—1

The function H,, is a Gaussian process with covariance

E[Hpn(2)Hm(y)] = ném((z,y)),

where &, is given by
k=1 /L . o
Em(t) = ( .>m2](1 —mAFIR T = (m? + (1 — mA)t)k — m?k. (6.4.6)
—o \J
7=0
We conclude using Theorem 6.4.1 to obtain the result. O

We now observe that for m large enough, this formula has a particularly simple form.
Lemma 6.4.3

For all |m| > /1 — X we have:
Ex(m) = dm" 4 \/k(1 — m2). (6.4.7)

Proof. In the setting of Theorem 6.4.1 it was also shown in [111, 51] that if £/(1) + h? > £"(1)
then G(&, h) = /&' (1) + h®. Since
Em(t) = k(1 —m?)(m? + (1 - m?)t)*~
m(t) = k(k = 1)(1 = m?)*(m? + (1 — m?)t)*2,

the condition &, (1) > &/, (1) corresponds to (k—1)(1—m?) <1, ie. [m| > /1 — 25. When this

holds, we get that
Ex(m) = Am* + G(£n,0) = /& (1) = Am* + \/k(1 — m?2)

by (6.4.5). O

We end with the desired explicit formula for Ey(,/g,(A)).
Lemma 6.4.4

For all A > ), \/qs()\) is a local maximizer of Ey and if we write z(\) = A2kq"~1()),

Vk (A
Ex(ya ) :(/\)<1+(]{)>.

1+
Proof. Differentiating the expression (6.4.7) for m > /1 — ﬁ yields
/ _ k-1 Vkm _ 1 k—1 Vkm -1 27, 2k—2 212k 2
El\(m) = Mem*™! — mfkl_nﬂ()\km +m) (AEm=2 — X2k — m?)
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so that the functions ¢y, f\ and m? — E\(m) have precisely the same monotonicity on [1— ﬁ, 1)
(recall the expression of the derivatives f} and ¢} given by (6.4.14)). Lemma 6.4.7 gives that
gs(A) is a local maximum of f\ and ¢y for A > g, \/¢s(\) is therefore a local maximum of E).

Let us now compute Ey(1/gs(\)). By Lemma 6.4.7, gs(\) = % Consequently,

EA(QS(A)UQ) = )\QS()‘>k/2 + k(l - qs<)‘)) = 1 'f\{i()\) (1 + x(]:\) )

O
6.4.3 The upper bound
We prove here the upper bound.
Lemma 6.4.5
For all A > 0,
1 A
limsupE|— max H,\(w)} < GS;ﬁ—/ g ()72 dt. (6.4.8)
n—00 n zeSn—1 0

We defer the proof of this momentarily to observe the following information-theoretic
bounds which will be useful in its proof.

Proposition 6.4.1

Assume that X is uniformly distributed over S"~!, independently of Z. Then for all
A€ (0,+00) \ {Ac}

lim E

n—0o0

|xer — E[X@ﬂym —1— g

This follows from the results of Section 6.1.2, by approximating the uniform measure
on S"! by an ii.d. Gaussian measure. For the completeness, we provide a proof in
Section 6.4.6. As a consequence of this, we have the following.

Corollary 6.4.1

Assume that X is uniformly distributed over S*~!, independently from Z. Then for
all measurable functions Z : (R")®% — S"~1 and for all A # \. we have

limsup E [(#(Y), X)*] < ()2,

n—oo

Proof. Compute
B[ X% - (Ja. @)™ ] = EIX ) + . OV E[2(Y) ] - 20, ()2E[(@(Y), X)']
=1+ 0.0 - 20.)E[(@(V), X)"].

Recall that the posterior mean, E[X ®k |Y'], uniquely achieves the minimal mean-square error over
all square-integrable tensor-valued estimators, T(Y'), for X®*. The proposition follows then from
Proposition 6.4.1 which gives

lim inf B[ X ¥ — ( q*(A)i(Y))@@’“HQ] > liminf B[ | X®* — E[X*¥|Y] HQ} =1- g

n—oo n—oo

104



O
With this in hand we may now prove Lemma 6.4.5.
Proof of Lemma 6.4.5. By Proposition 6.4.2 and an application of an envelope-type theorem
(see, e.g., Proposition D.2), the map A — %E[maXan Hy ()] is differentiable for A > 0, with
derivative 5 1
aE[— max Hy(z)| = E[@", X)*|. (6.4.9)

n xgesn—1
By [111, 51] we know that 1 E[maxgn-—1 Ho] — GSj. The reverse Fatou lemma gives then

1 A A
limsupIE[— max H)\(w)} < lim supIE{<sE¥IL,X>k} dy+ GSg < /0 q*(’y)k/2 dy + GSg,

n—00 n xeSn—1 0 mn—oo

where the second inequality follows from 6.4.1. O

6.4.4 Proof of first part of Theorem 6.3.1

By an elementary but tedious calculation (see Lemma 6.4.9) the right sides of (6.4.4) and
(6.4.8) are equal for A > A, (recall that g.(\) = ¢s(\) for such A). Thus for all A > A,

1 14+ X2q, (\)F!
E|— max H,\(zc)} Vk e :
n xzeSr—1 n—oo \/1 + )\qu*()\>k71

(6.4.10)

We will now prove that for A < ., M, ()\) ——> GSy, where M,()\) is defined by

— 1
M,(\) =E |- H :
N =E[ s, # (o)
Notice that M, ()\) is convex as an expectation of a maximum of linear functions. By
(6.4.9), it follows that M) (0%) > 0. (When k is odd, we use rotational invariance to see

that it is in fact zero.) Consequently, M, is non-decreasing on [0, +0c0).
By [111, 51] (see Theorem 6.4.1), lim,, . M, (0) = GS;. By (6.4.10) and Lemma 6.4.9,

lim lim M,()\) = GS;.

Consequently, we obtain that for all A € [0, \.], lim,,_,co M, () = GS;.

The almost sure convergence of (6.3.9) follows then from the convergence of the expec-
tation M,,()\), combined with Borell’s inequality for suprema of Gaussian processes (see for
instance [37, Theorem 5.8]) and the Borel-Cantelli Lemma. O

Remark 6.4.2. By (6.4.5) , E) is given by a variational problem over the space C. We first
observe that one can easily solve this variational problem numerical due to the following
simple reductions. First note that if we let &, be as in (6.4.6), then (1/@)” is strictly
positive, where the prime denotes differentiation in t. Thus by [111, Theorem 1.2.4], the
minimizer ¢ must be of the form ¢(s) = [} dv, where v, = 016,056y, where a,b € [0,1] and
0; > 0. Thus the variational problem (6.4.5) is a variational problem over 4 parameters
which can be solved numerically. These observations then rigorously justify the starting
point of the discussion in [183, Section 4], namely the “RS” and “1RSB” calculation in
[183, Sect. 4.B] in the regime they analyze, called the “T' = 07 regime there. We refer the
reader there for a more in-depth discussion, see [183, Sect. 4.C].
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6.4.5 Proof of second part of Theorem 6.3.1
We now turn to the second part of Theorem 6.3.1, namely (6.3.10). Let M, () denote

My(\) = & max Hy().

n xesSn—1
Let A € (0,400) \ {A\:}. By (6.3.9) and Lemma 6.4.9
o if A< A
lim M,(\) = () 2 9% A=
n—00 GSk + [§ (V)2 dy if A > ..

By Proposition 6.4.2 and the Milgrom-Segal envelope theorem (see Proposition D.2), M,
is differentiable in A with derivative
My (A) = (&3, X)",

almost surely. As M, is convex in A (it is a maximum of linear functions), we see that for
any 0 < h < A,

My (A —h) — My (X)

h

By taking the n — oo limit, we get that almost surely

Mp,(A+ h) — M, (\)
N .

< M, () <

tA=h) =t < liminf(2Y™", X)*F < limsup(z)™*, X)* < tA+h) - a)\). (6.4.11)

h n—0o0 n—00 h
Since ¢ is differentiable for A # )., we may take h — 0 to obtain lim, . (2} X)* =
¢(\)*/? almost surely, which proves (6.3.10). O

6.4.6 Auxiliary results

Uniqueness of minimizers

This section gathers some basic lemmas that will be useful for the analysis.
Proposition 6.4.2

Recall the definition (6.4.1) of Hy. We have the following

e Ifk is odd, then H, has almost surely one unique maximizer over S*~!.

e If k is even, then Hy has almost surely two maximizers over S* !, x* and —x*.

Proof. We note the following basic fact from the theory of Gaussian processes, see, e.g. [123].
Lemma 6.4.6

Let (Z(t))ier be a Gaussian process indexed by a compact metric space T such that t — Z(t)
is continuous almost surely. If the intrinsic quasi-metric, d(s,t)? = Var(Z(s) — Z(t)), is a
metric, i.e., d(s,t) # 0 for s # t, then Z admits a unique maximizer on T almost surely.

Observe H) is continuous on the compact S*~1. For &1, 22 € S* 1, we have
Var(Hy(x!) — Hy(z%)) = 2n(1 — (x!, 2*)").

If k£ is odd, then the proposition follows directly from the Lemma. If k is even, we apply the

Lemma on the quotient space S"~!/ ~ where ~ denotes the equivalence relation defined by

zl ~ 2t o (2! = 2% or ! = —2?). O
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Study of the asymptotic equations
Define, for all g € [0, 1]

ox(q) = Nkqg"™ —log(1 + N2kg" 1) — A2(k — 1)q". (6.4.12)

Lemma 6.4.7
We have for all A > 0,

Inax falg) = max oa(q)

Furthermore, if we let \; = ,/,555_172);:2:

e For \ < )\, then the functions fy and ¢, are decreasing on [0, 1).

e For A > )\, the functions fy and ¢, have a strict local minimum at q,(\) and a
strict local maximum at qs(A) where 0 < g, < % < qs < 1, and both functions
are strictly monotone on the intervals (0, q.), (qu,qs) and (gs, 1). Moreover, qs(\)

satisfies:
/\2 kqs ()\)k—l

(A) = )
=) = T g, (1

(6.4.13)

Finally, for A > A, ¢.(\) = ¢s(\) is the unique maximizer of f, and ¢, over [0,1).

Proof. We have for g € [0,1)

k(k — 1)\2gk1

d\(Q) = W (@) and f,l\(Q) =T (6.4.14)

where h(q) = A2kq¢"~! — N2kq® — q. Tt suffices therefore to study the variations of fy. notice also
that

ox(q) = fa(a) + h(q) —log(1 + h(q)).
Since f3(¢g) = 0 implies h(g) = 0, this implies that

max = max
S5 ) = gy K9
and that these maxima are achieved at the same points. Let us now study the sign of the

polynomial h(q):
1

“ o)
k-2 k

¢"~1 achieves its maximum at % and that the

h(g) = akX*(¢" 2 — ¢! (6.4.15)

One verify easily that the polynomial ¢
value of this maximum is % We get that for A < A, h/(q) < 0 for all ¢ > 0. For A\ > X,
we get that h admits exactly 3 zeros on R: 0 < ¢u(\) < ¢s(A) < 1. Since the maximum of h
is achieved at % we get that g,(\) < % < gs(N\). This proves the two points of the lemma;

(6.4.13) simply follows from the fact that h(gs(\)) = 0. The last statement of Lemma 6.4.7 is
then an immediate consequence of the definition of .. O

Recall that z; is defined as the unique zero of ¢y, (z) = £ log(1+2) — 2 — 1 on (0, +00).
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Lemma 6.4.8
The mapping A — q,()\) is C* on (), +00). Moreover A2kqs(A\)*1 = 2.

Proof. The first part follows from a straightforward application of the implicit function theorem.
We get in particular that the mapping A — ¢s(\) is continuous for A > A;. So by definition
of Ac and Lemma 6.4.7, ¢, (gs(\e)) = 0. Let us write z = A\2kqs(A\c)* L.

k—1 k—1 a?
0= ¢r.(gs(Ae)) =z —log(1+x) — ? xqs(Ae) = —log(l + ) — T
because gs(Ac) = 75 (see (6.4.13)). This gives that px(z) = 0 and thus z = 2. O

Lemma 6.4.9
Let A > ). and write x(\) = \?kq,(\)*~1. Then we have

1f;wﬁ+“”):m%f@%www%

k

Proof. Let us write g(\) = %()\)(1 + %) By Lemma 6.4.4, \/¢s(\) is a local maximizer of

FE and thus a critical point of F. This gives

g'(N) = [ Ex(yas(N)] = Er(as(V) = ().

The lemma follows then from the fact that z(\.) = 2z by Lemma 6.4.8 and the definition (6.3.8)
of GSg. O

Proof of 6.4.1

For P, a probability distribution over (R")®* with finite second moment, we define the free
energy

Fi () = - Elog [ Py(de)exp (v, 2) +ynla, Xo) — Symlal?)

where Xy ~ Py and Z;, ;, ~ N(0,1) are independent. Proposition B.1 gives that for two
probability distributions P, P, on (R")®* with finite second moment, we have

P () = Fn ()| < 3 (VERIXIP + VER Xl ) Wa Py, P,

where Wy(P;, P,) denotes the Wasserstein distance of order 2 between P; and P». Let p,
be the distribution of X®* when X ~ Unif(S""!) and let v, be the distribution of Xk
when X ~ N(0, %Idn). Let us compute a bound on Wy (i, v,). Let X be drawn uniformly
over S" 1 and G ~ N(0,1d), independently from X. Then (X% (|G| X /v/n)%*) is a
coupling of u, and v,, so that, by definition of Wj,

Wit < B~ (x1@1v7) [ = B[((E 35 e)™ 1)

where we use that E||X||* = 1. By the law of large numbers, it then follows that

lim [F, (v) = £, (7)] = 0.

n—o0
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Recall the definition (6.4.12) of ¢ (¢) and define L(v) = 5 maxgep,1) ¢5(¢) = 3 maxgeo.) f5(q),
where the equality comes from Lemma 6.4.7. By Theorem 6.1.1 we have A >0, F, (v) —

L(v) as n — oo, which implies F,, (v) — L(v). The “I-MMSE relation” (Proposition 1.3.3)
gives that v — F),, () is convex and differentiable over [0, +o0) and

1
2
F;n(A):2<1—E

xe —mlx(v][]).

By Proposition C.1, F ~converges to L’ for each A > 0 at which L is differentiable.
For v < A2, L(y) = 0, so L is differentiable on (0, \?) with derivative equal to 0. For
v > A2, we know by Lemma 6.4.7 that [~ admits a unique maximizer ¢.(,/7) on [0,1].

Proposition D.2 gives that L is differentiable at v with derivative

L) = L0 ) 0(v7) = 20y

We conclude that

'1 | 0 if A < A,
Jim > (1 —]E[HX@% _E[X®k|Y]H2D = lim F, (X) = {;q*()\)k ;f \ i A
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Chapter 7

Phase transitions in Generalized
Linear Models

7.1 Introduction: learning a linear classifier

Before presenting the Generalized Linear Models (GLM) in full generalities, we first focus
on a simple supervised learning task: learning a linear classification rule. We assume here
to have m points g',...,g™ € R", that are classified between two classes “+1” and “—17,
according to the value of

Y, = sign((X",g"),
where X™* € R" is a normal vector to the hyperplane that separates the two classes. The
supervised learning task is, given the labeled dataset {(g“, Y,) ‘ 1<u< m}, to learn the

hyperplane Span(X*)* that separates the two classes.

+1

+1

+1

Figure 7.1: Two classes separated by an hyperplane.

7.1.1 Rosenblatt’s perceptron algorithm

Rosenblatt [184, 185] proposed an iterative algorithm to find a vector & that separates the
data, i.e. such that sign((z, g")) =Y, for all 1. The so-called “perceptron” algorithm goes
as follows:

e Initialize 2° = 0.
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perceptron

Fy N

Figure 7.2: Frank Rosenblatt with the “Mark 1 perceptron”, a custom-built hardware that
implements the perceptron algorithm (circa 1960).

o While I, % {4 |sign((@, g")) # Y,} # 0 choose p; uniformly at random in I; and
update z':
' =z + sign(Y,,)g". (7.1.1)

e If I; = (), then return & = \/n&'/||z"|.

Rosenblatt [185] and then Novikoff [165] proved that the perceptron algorithm termi-
nates after a finite number of iterations:
Proposition 7.1.1

Let 3 = max,, ||g"||* and v = min,, |(X*, g#)|. Then the perceptron algorithm converges

for t < t.x where

aet BI| X7
tmax = - 9
/Y

Proof. Let t; be the time at which the algorithm converges, i.e. the first ¢ for which Y, =
sign((z', g")) for all p. If such a ¢ does not exist, we define ¢y = +0o0. We have to prove that
tf < tmax. From the update rule (7.1.1) we have for all t < ¢;:

@, X*) = (@', X*) +sign(Yy, ) (g™, X*) > (@, X*) + 7,
so that (!, X*) >t~y for all t < ts. On the other hand, one has
12712 = [|2"))* + [|lg"]]? + 2sign(Yy, ) (g™, &") < ||&"]* + B,

by definition of 3 and because sign((ght,z')) # Y,,. We get ||![|* < B, for all t < t;. From
what we have seen above and the Cauchy-Schwarz inequality, we have for all ¢t < t:

2% < (@', X*)? < |27 X < 8] X%
We conclude that t; < fyax. O

What is now a typical order of magnitude of t,.. 7 We will be interested in the
asymptotic regime, where n, m — oo such that m/n — « > 0. Let us now suppose that the
data points are randomly chosen as (g")1<,<m ~ N(0,1d,,) and assume that | X*|| = /n.
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In that case, the random variables (X*, g*) are i.i.d. M'(0,n) random variables, so there
exists constants ¢, C' > 0 such that with high probability v = min, [(X*,g")| > ¢y/n/m
and max, [|g"|> < Cn. Consequently, with have with high probability

tmax = O(n?).

This means that it is possible in this model to find a separating hyperplane in polynomial
time.

7.1.2 The generalization problem

We have seen in the previous section an efficient algorithm to find a separating hyperplane
of our data. In other words, the perceptron algorithm is able to achieve a “training error”
of 0 on the dataset (g",Y},).<m. But does this algorithm generalize well? That is, given
a new point g"" ~ N(0,1d,) independent of g, who has label Y, = sign({X*, g"°")),
what is the probability that
sign((Z,9"")) = Yaew ?

Let us suppose that || X*|| = y/n. Since we assumed g™V to be a standard Gaussian vector
independent of g (and therefore also independent of &), a simple computation gives

arccos (%(:’é, X*>)

™

P(sign((2,g"")) # Yoo ) =

Not surprisingly, the generalization performance of the perceptron algorithm depends
on the correlation between & and the planted solution X*. From now we take X* ~
Unif({—1,1}"), independently from g. We plot on Figure 7.3 on page 114 the correlation
%(i, X*) a simulation with n = 10000 and various values of a = m/n.

The question is now: how does this compare with the best achievable correlation? Is it
possible to generalize perfectly? To study this problem, we have to look at the posterior
distribution of X* given g and Y which is simply the uniform distribution over

S, & {m e{-1,1}"|Vue{l,...,m}, Sigﬂ((:l;,g“}) = Yu}'

Obviously X* € §,,, and #5,, decreases as m increases. In order to be able to estimate
X* well, one would need that the points of 5, are well correlated with X*. We introduce
therefore for I C [—1, 1],

S.() % 5, N {a: € {~1,1}"

The expected value of #8,,(I) (or more precisely + logE {#Sn(l)] since #S5,, (1) is expected
to be of the exponential order) can be computed easily:

i(w,X*> € 1}.

Proposition 7.1.2

Let h(g) = “F1log(1 + q) + 5%log(1 — q) and p(q) = arccos(q)/m. Define fu(q) =
log(2) — h(q) + alog ¢(q). Then, for any non-empty interval I C [—1,1], we have (recall
that m/n — « as n,m — 00):

TlllogE[#Sn(I)} —— sup fa(q).

n—oo qGI
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Proof. For x € {—1,1}", one writes ¢(x) = + Y%, 2;X;. We have, conditionally on X*,

n

E#S,(I) = Y E]J 1(sign((w,g")) = sign((X3g"))) = > P(sign((w,g)) = sign((X%g)))",

z,q(x)el p=1 xz,q(x)el

because (g"),>1 "~ N(0,1d,). An easy computation gives P(sign((x,g)) = sign((X*,g))) =
¢(q(x)). For k € Z we define N, = #{z € {-1,1}"|q(z) = k/n}. If n+ k is odd, then
Ny = 0, otherwise Ny, , = ((n J:,Lg) /2). By Sterling approximation, there exists a constant ¢ > 0

such that
c

vn
while the upper-bound follows from the standard Chernoff bound for a sum of i.i.d. Rademacher
random variables. Since E#S,,(I) = Xop k/ner Nok @(k/n)™, we get

2" exp (— nh(k/n)) < Ny j < 2" exp (— nh(k/n)),

2" max {e "ME/Mp(g)mY < E#S,(I) < (2n + 1)2" max {e "D p(g)™)

k,k/nel q€l
and the result follows from taking the logarithm and dividing by n. O
Let us define
ap = inf {a >0 sup fa(q) = 0} ~ 1.45. (7.1.2)
qE[—l,l]

Proposition 7.1.2 gives that for a > ay, %logE[#Sn} — 0, which seems to indicate

that #.5,, is of sub-exponential order in this regime: it should be possible to estimate X*
almost perfectly:

Corollary 7.1.1
Let  ~ Unif(S,), independently of everything else. Then we have for all « > ay,

1 n
=5 X~ 1, (7.1.3)
n n—o0

i=1

Proof. Let € > 0 and I. = [-1,1 — €]. By Proposition 7.1.2 we have

1
- logE[#Sn(Ie)] — > sup fa(Q) < 07
n n—00 ey

because for a > a1, the maximum of f, is uniquely achieved at ¢ = 1. Consequently

IP’(% ;Xx <1-¢)= E[#i’éjﬁ)} <E[#8.(1)] —— 0.

O

Perfect reconstruction is therefore possible for a > «y. But is « the smallest value of «

for which one can estimate X * perfectly, i.e. the smallest value of a for which (7.1.3) holds?

In the physics literature, the current problem was introduced by Gardner and Derrida [89]

who predicted (based on numerical simulations) that it was possible to learn X* perfectly

for values of « larger than aqr = 1.35+ 0.10. Then Gyorgyi [98] used the heuristic replica
method to derive an exact formula for agr ~ 1.249.

Unfortunately, Proposition 7.1.2 does not allow us to obtain the expression of ajp. The

issue is that the expected value of #5,, does not capture the typical order of magnitude
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0.0 4

lim %IE log #S,,
n—oo

lim %log E#S,
_— n—ooo

X

q*(c)
qamp(@)
(%X

«
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T
[0}

T T
1T QAMP 1.7

Figure 7.3: Plots of the limits of %ng#Sn (given by Proposition 7.1.2), %Elog #S,

and 1/¢*(a) (from Proposition 7.1.3), together with the correlation

gamp (o) achieved by

GAMP and the correlation 1 (Z, X*) achieved by the perceptron algorithm (see Section 7.1.1)

for n = 10000.

n

of #5,: the mean of #.5,, is much larger than its median. This comes from exceptional
events of extremely small probability on which #5S,, is exceptionally large, which make its
first moment too large.

The right quantity to consider is %E[log #Sn], which will not be parasitized by these
exceptional events. This quantity is, however, harder to compute since the logarithm is
now inside the expectation. Computing such quantities will be one of the main goals of
this chapter: the result below will follow from an application of Theorems 7.3.1 and 7.3.2
presented in the next section.

Proposition 7.1.3

Let us define for q € [0, 1]

where Z ~ N(0,1). Then we have

fala) = log(2)-+in {B[log cosh(vrZ-+7)| +2E [ o

1
lim —E1 Sh 2(q).
i, Elog #5n <= max fa(q)

1

n:3

Notice that (7.1.4) implies that

(Z(Y,g), X*)

\

n P i

sup E [

~
xr

12(Y", g) ]| Xl

114

|

7
n—oo

q* (),

Further, for all values of « for which the maximum in q above is achieved at a unique
point ¢*(«) (which is the case for all « outside a countable set), we have

(7.1.4)



where the supremum is taken over all measurable functions & of Y and g. The critical
value of o for which one can recover X* perfectly is then

orr = inf {Oé >0

«(q) = 0p = inf 0
s 1) -

¢ (a) = 1} ~ 1.249.

However, as we see on Figure 7.3 on page 114 the perceptron algorithm of Section 7.1.1

does not achieve the optimal correlation y/¢*(a). It is a priori unclear if this can be
done by an efficient algorithm. We will see in Section 7.4 that there exists a polynomial-

time algorithm called GAMP that achieve asymptotically a correlation of |/ganp (), where

gamp (@) is the limit of the sequence (¢');>o given by the recursion (7.4.4). A bold conjecture
from statistical physics states that it is impossible to do better that GAMP in polynomial
time. One sees on Figure 7.3 on page 114 that there is a gap between /¢* and ,/ganp for
a € (arr, aamp). In this regime it is theoretically possible to achieve a “perfect correlation”
with the signal, but not with an efficient algorithm.

7.2 Generalized linear estimation: Problem
statement

7.2.1 Definition

Let n,m € N*. We define a Generalized Linear Model (GLM) as follows. Given a signal
vector X* in R™ and m “measurement vectors” ®q,...®,, € R" we sample Yi,...,Y,,
independently (conditionally on X*, ®) according to

1
Yuwpout(' ’\/ﬁ<¢N’X*>>7 1§,u§m (721)

Here P,y is a transition kernel: for all x € R, P,y (-|x) is a probability measure on R such
that for all A € B(R) the map = — P,y (A|x) is measurable. The definition (7.2.1) of a
Generalized Linear Model is somehow a bit more general than the classical definition of
GLMs in statistics. We will discuss this in Section 7.2.2 below.

Given the measurement vectors (®,)1<,<m and the observations (Y),)1<,<m, there are
two main statistical tasks:

(a) The estimation task. The goal is here to recover the signal X*.

(b) The prediction task. Given a new point ®,., and the dataset ®,Y, we aim at
predicting the corresponding output Yiew ~ Pous (- | ﬁ(@new, X*)).

Let @ € R™*" be the matrix whose rows are ®1, ..., ®,,. The GLM (7.2.1) encompasses
many statistical models of significant interest, depending on the choice of the kernel P,;:

e The linear model: Y = ﬁ@X *+ 04, where 0 > 0 and Z is some random noise.

e The Poisson regression: Pyy(-|z) = Pois(e”), where Pois(#) denotes the Poisson
distribution of mean 6.

e The (real) phase-retrieval problem or “signless channel”: Y = ﬁ@X | +o0Z.
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e The “1-bit compressed sensing”, that we studied in Section 7.1: Y = sign(®X™).

e The logistic model. This is the case when P, is given by

1

Pout(y:”x):1_Pout(y:_1|x):m'

In the examples above, the functions absolute value |- | and sign act componentwise on the
vector ¢ X *.

7.2.2 Link with the classical definition of Generalized Linear
Mbodels in statistics

The definition of Generalized Linear Models in the statistical literature (see for instance [140])
differs slightly from the one given in the previous section. GLM are usually specified by:

e A bijective function g : R — R, called “link function”.

e A probability distribution Py parametrized by # € R from the exponential family, i.e.
whose admits a density fy with respect to a reference measure v given by

fo(y) = h(y)e™ O,
for some functions h and b.

Then, given a “linear predictor” n, = ﬁ(@u, X*), Y, is sampled as Y, ~ F,,, where
6, is given by the relation
g () =0'(6,). (7.2.2)
This choice of 6, ensures that the linear predictor 7, is related to the mean of Y, by
n, = g(E[Y,]) = ¢g(b'(A,)). This definition of a Generalized Linear Model is obviously a
particular case of the definition (7.2.1) since the kernel P, can reproduce the generation
process that we just described.
Let us now mention some limitations of this “classical” definition, compared to (7.2.1):

e The support of Py does not depend on ¢ (and therefore on (®,, X*)). Hence the clas-
sical definition does not encompass the clustering problem discussed in Section 7.1.

e The mean of Y), is in one-to-one correspondence with 7, by (7.2.2), whereas with the
definition (7.2.1) one could imagine that this mean depends differently on 7, (think
for instance to the “signless channel” where E[Y,] = [n,]).

7.2.3 Bayesian framework

We will study the Generalized Linear Model (7.2.1) in a Bayesian framework, where the
components X7, ..., X of X* are i.i.d. samples from a probability distribution F, over
R. We will also assume that the measurement matrix ® is independent of X*, with
independent entries that have zero mean and unit variance.

We will only consider transition kernels P, that admits a transition density with
respect to Lebesgue’s measure or the counting measure on N. We will (with a slight abuse
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of notation) also use the notation P (-|z) to denote this transition density. The posterior
distribution of X* given Y, ® takes the form:

1 1
Plz|Y . ®) = 7dP®” P, ( K ) 7.2.3
(m| ) ) 2}7(}/‘7 @) 0 H t \/_ m] ( )
1
———dPP" (x)e @Y ®) 2.4
- Sy g @) (124)
where the Hamiltonian is defined as
m 1
H(z;Y,®) Z ogPout< n[@mh) (7.2.5)

and the partition function (the normalization factor) is defined as
Z(y,®) / AP ()~ H@Y ) (7.2.6)
The main quantity of interest here is the associated free energy:
det 1
F, = —Elog Z(Y, ®). (7.2.7)
n

We will compute in Section 7.3.2 the limit of F,, when n,m — oo while m/n — «a > 0.

Example 7.2.1. In the case of the “planted perceptron” studied in Section 7.1, we had
Pout(+|7) = dsign(z) and Py = %51 + %5_1. We see that

Z(Y,®) = ;n#{m € {—1,1)"

Yue{l,...,m}, sign((m, <I>M)> = YM}

measures the number of possible values for X* given the observations of Y , ®.

Random function representation. We introduce now a convenient “random function”
representation for the transition kernel P,,. Let us consider a function ¢ : R x R — R
and a probability distribution P4 over R such that for all x € R, P,y (-|x) corresponds to
the law of

Y =gz, A) + VAZ (7.2.8)

where (A, Z) ~ P4®@N(0,1) and A > 0. Notice that any transition kernel can be realized
by (7.2.8) by simply taking A = 0, A ~ Unif([0, 1]) and ¢(z, -) to be the generalized inverse
of the cumulative distribution function of P, (:|x), see Proposition 7.2.1 below.

We will however sometimes need to take A > 0 in order to “regularize” P,,. In that case
the transition kernel P, admits a transition density with respect to Lebesgue’s measure,
given by

1 s )
Pout(ylz) = NG / dPy(a)e s v—¢l@a)® (7.2.9)

When A = 0, we will only consider discrete channels where ¢ takes values in N'. In that
case P,,; admits a transition density with respect the counting measure on N, that we will

Notice that this allows to study any channel whose outputs belong to a countable set S by applying
a injection u : S — N to the outputs.
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write also Py (+]x).

Let us end this section by looking at the link between the continuity properties of P,
and ¢. Clearly, if (7.2.8) holds and if for almost all a (with respect to Py4), the function
©(+,a) is continuous at some xy € R, then x — Py (:|z) is continuous (for the weak
convergence) at xo. The next proposition states that there exists functions ¢ that verify
(7.2.8) and such that the converse is true.

Proposition 7.2.1

There exists a measurable function ¢ : R* — R such that for all x € R, Py (+|x) is the
law of p(x, A) for A ~ Unif([0,1]). Moreover if x — Py (-|x) is continuous at x, for
the weak convergence, i.e.

P (1) —— Pou(-Jz0).

then for almost all a € [0, 1] the function ¢(-,a) is also continuous at x.

Proof. We define the cumulative distribution function of Pyt (|z):

y
Flglo) = [ Pou(dtlo)
—0o0
and its generalized inverse:

o(x,a) Ao i {y eR ‘ F(ylz) > a}.

For A ~ Unif([0,1]), we know that ¢(z, A) 9 wut(1[2). Let now zp € R be a point at which
x + Pout(+|x) is continuous. The set S, f {a € R|3y1 # y2, a = F(y1|wo) = F(yalzo)} is
countable. Indeed if a € S, then we can find ¢ € Q such that a = F(q|zg). If we define ¢(a) = ¢
then v : Sz, — Q is injective hence S, is countable.

Let a € R\ Sz,. Since Poys(+|z) — Pous(+|z0), we have F(y|z) — F(y|xo) for almost all

T—T0
y € R. Let y1 < (0, a) < y2 such that F(y;|x) — F(yi|xo) for i = 1,2. Recall that a & S, so
we have
F(yilzo) < a = F(e(wo,a)lro) < F(yzl|zo).

Consequently for z close enough from zy we have F(yi|r) < a < F(y2|x) which implies that

y1 < @(x,a) < yz. Since y; and y2 can be chosen arbitrarily close to ¢(zg,a) we conclude:

p(@,a) — p(z0, a). O
Tr—xTQ

7.3 Information-theoretic limits

7.3.1 Two scalar inference channels

As for the “spiked models” of the previous chapters, because of the decoupling principle
seen in Chapter 2, the limit of the free energy (7.2.7) will be expressed in terms of free
energies of simple scalar channels.
The first one is the additive Gaussian channel (1.3.5) that we already studied in Sec-
tion 1.3:
Yy = 1 Xo + Zy, (7.3.1)

where Xy ~ Py and Zy ~ N(0,1) are independent and r» > 0. The inference problem
consists of retrieving Xy from the observations Yy. As we have seen in Section 1.3, the
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free energy vp, (r) (defined by (1.3.6)) associated to this problem is related to the mutual
information between the signal and observations by:

In(r) © I(Xo: v/ Xo + Zo) = & = by (1), (7.3.2)

The second inference channel is a non-linear channel, associated to the transition kernel
Py Suppose that V, W* "= A (0,1) where V' is known and the inference problem is to
recover the unknown W* from the observation of

Yo~ Pour (- |VAV + Vo= W), (7.3.3)

where p > 0, ¢ € [0, p]. Notice that under the representation (7.2.8), the channel (7.3.3)
is equivalent to Yy = ¢(,/gV + /p — g W*, A) + VAZ with A > 0 and where (A4, Z) ~
P4y ® N(0,1), independently of V,W*. The free energy for this model is again related to
the normalization of the posterior P(W*|Yy, V)

- —w?/2

Up . (9) & Elog/Pout (Yg|\/§V +vp— qw) eidw, (7.3.4)
V2r

where P, denotes either the transition density with respect to Lebesgue’s measure (given

by (7.2.9)) in the case where A > 0, or the density with respect to the counting measure

over N, in the case of discrete observations (¢ takes values in N and A = 0). The free

energy (7.3.4) is again linked to the mutual information between the observation Y, and

the signal W*, given V:

Trp (@) & T(W* Y| V) = Wp, (p) — Wi, (). (7.3.5)

We will prove in Section 7.8 that Up, , is convex, differentiable and non-decreasing.

7.3.2 Replica-symmetric formula and mutual information

We present in this section a limiting formula for F,,. The result holds under the following
hypotheses.

(h1) The prior distribution Py admits a finite third moment and has at least two points
in its support.

(h2) There exists v > 0 such that the sequence (E[|gp(ﬁ[@X*]l, Ap)[**7])p>1 is bounded.

(h3) The random variables (®,;) are independent with zero mean, unit variance and finite
third moment that is bounded with n.

(h4) For almost-all values of a € R (w.r.t. Py), the function x — ¢(x,a) is continuous
almost everywhere.

We will also assume that one of the two following hypotheses hold:

(h5.a) A > 0.
(h5.b) A =0 and ¢ takes values in N.

Remark 7.3.1. The hypotheses are here stated using the “random function” representa-

tion of (7.2.8). In many cases, it can be useful to state them using the transition kernel

representation of (7.2.1). The hypotheses (h2) and (h4) are respectively equivalent* to:
2The implications (h2) < (h2’) and (h4) = (h4’) are easily verified. If (h4’) holds, then by Proposi-

ii.d.

tion 7.2.1 there exists a function ¢ : R x [0,1] — R such that (7.2.8) holds for 4, "~ P4 = Unif([0, 1])
and that (h4) is verified.
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(h2’) There exists v > 0 such that E[|Y;[*"] remains bounded with n.
(h4’) © € R — Pyy(-|z) is continuous almost everywhere for the weak convergence.

Under the above hypothesis (h5.a) (respectively (h5.b)), the transition kernel P, ad-
mits a density with respect to Lebesgue’s measure on R (resp. the counting measure on N)
that will be denoted by P,y (-|x).

Definition 7.3.1
We will say that the kernel P, is

e non-informative if for almost all y € R (under (h5.a)) — or all y € N (un-
der (h5.b))— the map x — Pyy(y|x) is almost everywhere equal to a constant.
We say that P,y is informative if it is not non-informative.

o symmetric if Py (-|x) = Pou (-] — x) for almost all x € R.

If P, is non-informative, it is not difficult to show that estimation is impossible.

Let us define the following potential F. Call p & E[X?] where X ~ PFy. Then for

(Q7 T) S [0, ,0] X RZO we define

e r
Flgr) i, (r) + alp,, (q) = 5 (7.3.6)
We will also write F(p, +00) = lim,_,o F(p,r), which is well-defined in R U {—o0} since
7+ ¥p,(r) — 5 is non-increasing by Proposition 1.3.3. We need also to define the set of
the critical points of F:

e g el x ®eou o) | £ 2 30O @

where, with a slight abuse of notation, we extend ¢, and W', by their limits: ¢} (+00) =
lim, o0 V5 (1) = p/2 and ¥y (p) = lim,,, ¥ (g). This last limit is well defined in
R U {400} by convexity of ¥p .. The elements of I" are called “fixed points of the state
evolution”, because — as we shall see in Section 7.4 — they are related to the fixed points
of some generalized approximate message passing algorithm.

Theorem 7.3.1

Suppose that hypotheses (hl)-(h2)-(h3)-(h4) hold. Suppose that either hypothe-
sis (h5.a) or (h5.b) holds. Then

lim F,, = sup inf F(q,r) = sup F(q,r). (7.3.8)

oo q€0,p] 7>0 (g,m)er

Moreover, if P, is informative, then the “supinf” and the supremum over I' in (7.3.8)
are achieved over the same couples (q,r).

An immediate corollary of Theorem 7.3.1 is the limiting expression of the mutual in-
formation between the signal and the observations.
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Corollary 7.3.1

def 1

loo = lim —I(X™*;Y |®) = inf supi ,v) = inf 1 ) 7.3.9
lim TS |®) = inf swpins(ar) = nf ns(ar). (739)
where ot ,

irs(q,7) = Ip,(r) + oZp,,(q) — i(P— q) - (7.3.10)

Proof. This follows from a simple calculation:
%I(X*; Y|®) = %H(Y!tl)) - %H(Y|X*, o)— —F, + %Elog PY|X*, ®)
= —F + " Elog Pour(Yi | (@1, X")/v/). (7.3.11)
By the central limit theorem (that we can apply under hypotheses (h1)-(h3)) we have

def 1 % 1 & (d)
n = —— L3 ,X = — P zXz S s .

Now, under the hypotheses (h2)-(h4) and either (h5.a) or (h5.b) it is not difficult to verify that
Elog Pou (V1| (81, X7)/Vi0) = E [ Pous(dy|S,) 108 Pous (4151)

—— E | Powl(dylv/pV)log Pout(ylv/pV) = ¥p,..(p)

n—oo

where V' ~ N(0,1). We conclude, using (7.3.11):

1
“I(XY|®) = —Fu+ a¥p,, (p) + 0n(L). (7.3.12)

7.3.3 Optimal errors

We compute in this section the optimal errors for both estimation and prediction tasks.
Both will be determined by the value of ¢ > 0 that optimizes (7.3.8) (or equivalently
in (7.3.9)).

Proposition 7.3.1

Define

D {a > 0‘ (7.3.8) (or equivalently (7.3.9)) admits a unique optimizer q*(a)} :
(7.3.13)

Assume that the assumptions of Theorem 7.3.1 hold and that P, is informative. Then
the set D* is equal to R~ minus some countable set. Moreover the map « — ¢*(«) is
continuous on D*.

Optimal reconstruction (or estimation) error

We first consider the problem of estimating X* given Y and ®. The following theo-
rem states that the optimizer ¢*(«) of the replica-symmetric formula (7.3.8) gives the
asymptotic correlation between the planted solution X* and a sample from the posterior
distribution P(-|Y, ®):
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Theorem 7.3.2

Assume that all the moments of P, are finite and that P, is informative. Assume
that (hl1)-(h2)-(h3)-(h4) hold and that either (h5.a) or (h5.b) holds. Then for all o« €
D*,

9 ' (a), (7.3.14)

11 & .

where x = (x4, . ..,x,) is sampled from the posterior distribution of the signal P(-|Y , ®)
given by (7.2.3), independently of everything else. Moreover, if Py, is not symmetric
(see Definition 7.3.1) then:

13 (d)
SN 5 X gt (a). 7.3.15
nglx i ——= () ( )

By Proposition 1.2.2 and Remark 1.2.1 in Section 1.2 we deduce from Theorem 7.3.2:
Corollary 7.3.2
Under the conditions of Theorem 7.3.2 we have for all « € D*

(@Y, ®).X)|] o)
lHﬂY@)HHX*H] e (7.3.16)

supE

xr

where the supremum is taken over all measurable functions & : R™ x R™*" — R"™\ {0}.

Consequently y/¢*(«a)/p is the best correlation with the signal X* that one can asymp-
totically achieve.

Optimal generalization (or prediction) error

We now consider the prediction problem: given the dataset ®,Y and a new point @, we
would like to estimate Yiew ~ Pout(-[(®new, X*)/v/n). We define the generalization error
of an estimator Y (® ey, ®,Y) by

-\ def

Egen(V) L E[(Yiew — V(@1 8,Y)) . (7.3.17)

The optimal generalization error is then defined as the minimum of &, over all estimators
Y:
e . 5 2
ER L min Egen(V) = E[(Yaew — E[Vaew|®uew, @, Y1) . (7.3.18)
%

gen

In order to express the optimal generalization error we introduce the following function
(recall that Yy, V, W* come from the channel (7.3.3)):

E(q) & MMSE(Y|V) = E[(Yo — E[Yo|V])] (7.3.19)
—E / Y Pot (dyl\/p V) — E [JEW* [ / yPo(dyl/aV + Vo= W*)] 2} (7.3.20)

where Ey« denotes the expectation with respect to W* only.
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Theorem 7.3.3
Under the assumptions of Theorem 7.3.2, we have for all « € D*

EP () —— E(q* () (7.3.21)

gen n—00

where ¢*(«) is the optimizer of (7.3.8), see Proposition 7.3.1.

Theorem 7.3.3 follows from a stronger result that we state below:

Theorem 7.3.4
Let o« € D*. Let v, be the law of Y, conditionally on ®,Y , ® ., ie.

[ 1)) = [ 1) Po(dy | (@, @) /i) dP(a] Y , @),

for all continuous bounded function f. v, is therefore a random measure on R. Let v
be the posterior distribution of Yy given V' in the second scalar channel (7.3.3), i.e

[ 1wdvty) =B [ £ Po(dy | o @)V + /o = ¢(a)n)

for all continuous bounded function f, where Ey -« denotes expectation with respect to
W* ~ N(0,1) only. Then, under the hypotheses of Theorem 7.3.2:

(wd)
Vp — U,
o

n—

d e .
where (i—)> denotes convergence in distribution of the random variables (v,,),>1 to the
n o -

random variable v (See [119, Chapter 4] for more details on this mode of convergence).

In other words, the data Y, ®, ®,., contains asymptotically as much information on Y, ey
than V on Yy ~ Py (~‘,/q* ()V44/p — q*(a)W*). Theorem 7.3.4 is proved in Section 7.7.3.

Theorem 7.3.4 implies Theorem 7.3.3 because:

ERY = E[Var (Yaew|Buew, @, Y)| = E[Var(v,)| —— E[Var(v)] = £(¢"(a)).  (7.3.22)
To justify the above limit, we need to proceed by truncation since pu — Var(u) is not
a continuous bounded function over the set of probability measures. For a probability
distribution g on R and X ~ u we define for R > 0 the probability measure uf as the
law of sign(X) min(|X|, R), then p + Var(uf) is a continuous (with respect to the weak
topology) bounded function. By Theorem 7.3.4 we get E[Var(z/f)] — E{Var(l/R)] and

(7.3.22) follows by letting R — oo, using hypothesis (h2).

Theorem 7.3.4 allows to compute more sophisticated optimal errors. Take for instance
a classification problem with K € N* classes (such as the one we studied in Section 7.1)
where ¢ takes values in {1,..., K}. For these kind of problems, a natural error metric to
consider for an estimator Y is the probability of misclassification:

B(Yiew # V(Y, @, ®10r,))
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The best estimator for this error metric is known (see for instance [63], Section 2.1) to be
the Bayes classifier:

}/}Bayes = argmax P(Ynew =k | Y’ (I)’ (I)new)'
ke{l,...,.K}

Notice that the corresponding probability of misclassification is equal to

K

P (Vi # 75%) = E[Z va({k})1 (I # arg max Vn({i})ﬂ _E

k=1 e{l,...,K}

1 — max Vn({k})]

1<k<K

By Theorem 7.3.4 we deduce:

P (Yoo # PP) s = E[1 ~ max y({k})] _ B(F) £ 7).

n—00 1<k<K

where Y,?®* is the Bayes classifier for estimating Yy ~ Pout( : ‘\/q*(oz)V +/p — q*(a)W*)
given V:

Yo = argmax P(Yy = k| V).
ke{l,...,.K}

7.4 The generalized approximate message-passing
algorithm

While the results presented until now are information-theoretic, the next one concerns
the performance of a popular algorithm to solve random instances of generalized linear
problems, called generalized approximate message-passing (GAMP). This approach has a
long history, especially in statistical physics [203, 142, 117, 15], error correcting codes [181],
and graphical models [214]. For a modern derivation in the context of linear models, see
[71, 127, 212]. The case of generalized linear models was discussed by Rangan in [177], and
has been used for classification purpose in [222].

We first need to define two so-called threshold functions that are associated to the two
scalar channels (7.3.1) and (7.3.3). The first one is the posterior mean of the signal in
channel (7.3.1) with signal-to-noise ratio r:

def
gr(y,m) = E[Xo|Yo = y]. (7.4.1)
The second one is the posterior mean of W* in channel (7.3.3):

9P (7,0, 0) E EW*|Y, = §,/qV =1]. (7.4.2)

These functions act componentwise when applied to vectors.

Given initial estimates (2%, v°) — that we take equal to 0 in absence of additional in-
formation — for the means and variances of the elements of the signal vector X*, GAMP
takes as input the observation vector Y and then iterates the following equations with ini-
tialization 92 =0 for all p=1,...,m (we denote by @ the average over all the components
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of the vector u and ®T is the transpose of the matrix ®): From ¢ = 1 until convergence,

Ve o= ot
wt — @it_l/\/ﬁ _ Vtgt—l

gfl = gpout(Y,u7wZ,7p_Vt) vl,bzl,...m

A= agh (YW p = V) (7.4.3)
R = :it—l + ()\t)_l(I)Tgt/\/ﬁ

T, = gp (RN Vi=1,...n

U’f - ()\t)_l aRgpo(Ra At)‘R:RE VZ == 17TL

One of the strongest asset of GAMP is that its performance can be tracked rigorously in
the limit n,m — oo while m/n — a via a procedure known as state evolution (SE), see
[26, 25] for the linear case, and [177, 112] for the generalized one. The state evolution tracks
the asymptotic value of the overlap between the true hidden value X™* and its estimate by

GAMP &' defined as ¢! % lim,_,o L(X*,&") via ¢" = 0 and

t+1 / t
q - 2¢P (T ) )
{ r = 200 (). (744)

From Theorem 7.3.1 we realize that the fixed points of these equations correspond to the
critical points of the asymptotic free energy in (7.3.8). By Proposition 1.3.3 and Propo-
sition 7.8.2 the functions ¥, and W, = are both non-decreasing. This gives that (¢*,7")
converges as t — 0o to some couple (gamp, 7amp) € I

Perhaps more surprisingly, one can use GAMP for predicting a new output Y, ~
Pouts (- | (®Prew, X*)/v/n) where ®,c, ~ N (0,1d,,) is independent of X* @, Y. As X' is the
GAMP estimate of the posterior expectation of X*, the natural heuristic is to consider for
the posterior probability distribution (given Y, ®) of the random variable (®,c.,, X*)/\/n
a Gaussian with mean (®,y,X")/\/n and variance p — ¢*. This allows to estimate the
posterior mean of the output, which leads to the GAMP prediction:

—w?/2

. . 1 . e
y GAMP.L &2 / Y Pout (dy‘ﬁ@new,xt Dy —d w) Nor S (7.4.5)

7.4.1 Estimation and generalization error of GAMP

The following claim, from [177], gives the precise estimation error of GAMP. It is stated
there as a claim because some steps of the proof are missing. The paper [112] affirms in
its abstract to prove the claim of [177], but without further details. For these reasons, we
believe that the result holds, however we prefer to state it here as a claim (instead of a
theorem).

Claim 7.4.1 (From [177])

We have almost surely for all t € N,
lim ~(&', X7) = lim ~|&'|? = ¢ (7.4.6)
n—oo n, ! n—oo n, q ’ o
Consequently
(@', X*) ¢
im ———— =/ =. (7.4.7)
nooe [z ||| X+ p
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Comparing (7.4.7) with the optimal correlation given by Corollary 7.3.2, we see that
if limy .o ¢¢ = ¢*(a), then GAMP is information-theoretically optimal. Provided that
Claim 7.4.1 holds we deduce the generalization error of GAMP:

Proposition 7.4.1

Suppose that hypotheses (hl)-(h2)-(h4) hold. Moreover suppose that either (h5.a)
or (h.b) holds. Assume that (®,;) ~ N(0,1), and that x + P, (-|x) is continuous
almost everywhere for the Wasserstein distance of order 2. Let t € N. Assume that the
limit (7.4.6) holds in probability and that there exists n > 0 such that E[|Y GAMP:t|2+]
remains bounded (as n grows). Then we have for all t € N,

lim EGAVP & Jim B[ (Vi — VOMP)] = £(¢'). (7.4.8)

n—oo &N n—00

Proposition 7.4.1 is proved in Section 7.7.4. We see that this formula matches the one
for the Bayes-optimal generalization error, see Theorem 7.3.3, up to the fact that instead of
q*(«) (the optimizer of the replica formula (7.3.8)) appearing in the optimal error formula,
here it is ¢" which appears. Thus clearly, when ¢’ converges to ¢*(a) (we shall see in
Section 7.5 that this is the case in many situations): GAMP is Bayes-optimal in a plethora
of models (a task often believed to be intractable) and this for large sets of parameters.

7.5 Examples of phase transitions

We illustrate now the results of the previous sections to several models of interest in fields
ranging from machine learning to signal processing, and unveil several interesting new
phenomena in learning of generalized linear models. For various specific cases of prior F
and output P,,, we evaluate numerically the free energy potential (7.3.6), its stationary
points I' and identify which of them gives the information-theoretic results, i.e. is the
optimizer in (7.3.8). We also identify which of the stationary points corresponds to the
result obtained asymptotically by the GAMP algorithm, i.e. the fixed point of the state
evolution (7.4.4). Finally we compute the corresponding generalization error (7.4.8). We
stress that in this section the results are based on numerical investigation of the resulting
formulas: We do not aim at rigor that would involve precise bounds and more detailed
analytical control for the corresponding integrals.

7.5.1 Generic observations

Using the functions gp,,, and gp, introduced in Section 7.4 we can rewrite the fixed point
equations (7.3.7) as

g = 20}, (1) = Elgn, (Yo,7)?], (7.5.1)
r =200, () = = Elgr., (%, VIV )", (7.5.2)

where the expectation in (7.5.1) corresponds to the scalar channel (7.3.1) and the expec-
tation in (7.5.2) corresponds to the second scalar channel (7.3.3).
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The non-informative fixed point: It is interesting to analyze under what conditions
q* = 0 is the optimizer of (7.3.8). Notice that ¢* = 0 corresponds to the error on the
recovery of the signal as large as it would be if we had no observations at our disposition.
Theorem 7.3.1 gives that any optimal couple (¢*,7*) of (7.3.8) should be a fixed point of
the state evolution equations (7.5.1)—(7.5.2). A sufficient condition for (¢,r) = (0,0) to be
a fixed point of (7.5.1)—(7.5.2) is that:

(a) The transition kernel P, is symmetric (see Definition 7.3.1).
(b) The prior Py has zero mean.

In order to see this, notice that if Py, (y|z) is even in z then from the definition (7.4.2) of the
function gp,,, we have gp . (y,0,0) = 0 and consequently from (7.5.2) we have ¥, (0) = 0.
For the second point, notice that we have ¢, (0) = 1Ep [Xo]* = 0.

We assume now that P, is symmetric and that the prior Fy has zero mean. In order
for ¢ = 0 to be the global maximizer ¢* of (7.3.8) or to be a relevant fixed point of the
state evolution (7.4.4) (relevant in the sense that GAMP might indeed converge to it in a
practical setting) we need ¢ = 0 to be a stable fixed point of the equations (7.5.1)—(7.5.2).
We obtain that ¢ = 0 is stable if

o fa (I D2(2> = 1) Pyl /7))
— T D Pl V2

where Dz is the standard Gaussian measure. We conjecture that the condition (7.5.3)
delimits precisely the region where polynomial-time algorithms do not perform better than
“random guessing” (see the discussion below, where we will make this stability condition
explicit for several examples of symmetric output channels). Note that the condition (7.5.3)
also appears in a recent work [147] as a barrier for performance of spectral algorithms.

200 (0) x 2% <1, (7.5.3)

The exact recovery fixed point: Another particular fixed point of (7.5.1)-(7.5.2) is
the one corresponding to exact recovery ¢ = p. A sufficient and necessary condition for
this to be a fixed point is that lim,,, ¥ (¢) = +o0, i.e.

\Ilpout (p) B \I]Pout (Q)
p—q a=p

> +00. (7.5.4)

Consider the second scalar channel (7.3.3) and let Py (respectively Pyyy+) denote the
conditional law of Yj given V (respectively V, W*). Then we have ¥p  (p) — Up  (q) =
E[Dkr(Py, Pyw~)|. If the statistical model (Pou(-|@))ser is regular (see Definitions 1 and 2
in [32]), and if we denote by J(0) its Fisher information at #, then we have for 0,6, € R

Dt (Pout(+160), Pout (16)) = (9 —00)*J(60) + o((0 — 6o)*).

This leads (after some computations) to

Ve, (p) = Vp,.(q) = E[DkL(Pv, Prw-)] = ;E[J(\/EV)](P —q) + 0gp(p — q)-

Consequently (7.5.4) can not hold for such model: perfect recovery is impossible.
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In the case of a discrete deterministic channel, where Py (-|2) = 6,() where ¢ : R — N,
perfect reconstruction will sometimes be possible. Let us consider the “planted perceptron”
problem from Section 7.1 where ¢(z) = sign(z) (other functions ¢ can be treated analo-
gously). In that case ¥p, (p) = 0 and

Up, (q) = 2E[<I><\/TZ) 1og<1>( pzqz)]
— 2\/7/4—00 —e O (z) log ®(x)dx

= _’V\/H + 0g—p (ﬁ) )

where v = —% [ ®(z)log ®(x)dz. Hence ¥ (q) ~v(p—q)~"/* (7.5.4) holds, (p, +00) €
I'. We have now to verify if ¢ = p is a stable fixed point of (7.4.4). Using the change of
variables u = p — ¢ we have to check whether u = 0 is a stable fixed point of the function

F(u) = p— i (@ W, (p — ) = MMSEp, (W, (p — u)).

The stability of u = 0 depends now on the properties of F, through the behavior of
MMSEpg, (r) as r — oo. This “large signal-to-noise ratio” asymptotic has been studied in
details in [215] whose conclusions can be roughly summarized as follows:

©(r~1) if Py has a “continuous part”
MMSE (r) = { O ) b has 2 b

o(r=1) if By is “discrete”.
We refer to the paper [215] for a precise definition of “continuous” and “discrete” and
consider two examples below:

o Py = pN(0,1) + (1 — p)do, for some p € (0,1]. In that case, MMSEp (1) ~ £ and
consequently f(u) ~ v 1py/u as u — 0. The fixed point u = 0 is therefore not stable:
perfect reconstruction is not possible in this case. Indeed, as we will see on Figure
7.6 on page 132 (middle plot), the generalization error decreases but never reaches 0.

e Py=10_1+ 3041. In that case, MMSEp, (r) = o(r~2) and consequently f(u) = o(u)
as u — 0. This time, the fixed point u = 0 is stable: perfect reconstruction is possible
(provided that (p, +00) maximizes F over I') as we saw it in Section 7.1.

Below we give several examples where exact recovery either is or is not possible, or
where there is a phase transition between the two regimes.

7.5.2 Phase diagram of perfect learning

In this section we consider deterministic (noiseless) output channels and ask: How many
measurements are needed in order to perfectly recover the signal?

As the number of samples (measurements) varies we encounter five different regimes of
parameters:

e The tractable recovery phase: This is the region in the parameter space where GAMP
achieves perfect reconstruction.
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e The non-informative phase: Region where perfect reconstruction is information-
theoretically impossible and moreover even the Bayes-optimal estimator is as bad
as a random guess based on the prior information and on the knowledge of the out-
put function.

e The no recovery phase: Region where perfect reconstruction is information-theoretically
impossible, but an estimator positively correlated with the ground truth exists.

e The hard phase: Region where the perfect reconstruction is information-theoretically
possible, but where GAMP is unable to achieve it. At the same time, in this region
GAMP leads to a better generalization error than the one corresponding to the non-
informative fixed point. It remains a challenging open question whether polynomial-
time algorithms can achieve perfect reconstruction in this regime.

e The hard non-informative phase: This phase corresponds to the region where perfect
reconstruction is information-theoretically possible but where GAMP only achieves
an error as bad as randomly guessing, given by the non-informative fixed point. In
this phase as well, the existence of polynomial-time exact recovery algorithms is an
open question.

The linear channel

The case of exact recovery of a sparse signal after it passed trough a noiseless linear
channel, i.e. p(z) = x, is studied in the literature in great details, especially in the context
of compressed sensing [43]. For a signal with a fraction p of non-zero entries, as soon as
a > p, perfect reconstruction is theoretically possible, since the linear system Y = ®x
admits almost surely a unique solution that has pn non-zero entries, which is the signal
X*. However solving Y = ®x over the space of pn-sparse vectors remain (a priori)
computationally difficult since it requires to test all the (p’;) possible positions of the non-
zero entries of .

The whole field of compressed sensing builds on the realization that, using the ¢; norm
minimization technique:

& = argmin ||z||1,
z|Y=Px

one can efficiently recover the signal for v larger than a critical value ay, (p):

@ (p) = min {p(1 49 + 20— p)((1+)0(=a) ag(@) | (755)

This is the so-called Donoho-Tanner transition [73, 68, 74]. In our Bayesian context, when
the empirical distribution of the signal is known, one can fairly easily beat the ¢; transition
and reconstruct the signal up to lower values of @ using GAMP algorithm [71, 176, 127, 128].
In this case, three different phases are present [127, 128]:

(i) For ao < p, perfect reconstruction is impossible;
(ii) for p < a < aapp reconstruction is possible, but not with any known polynomial-
complexity algorithm;
(iii) for a > aanmp, the so-called spinodal transition computed with state evolution, GAMP
provides a polynomial-complexity algorithm able to reach perfect reconstruction.

The line aapp(p) depends on the distribution of the signal. For a Gauss-Bernoulli signal
with a fraction p of non-zero (Gaussian) values we plot ay,, aamp and arr(p) = p on
Figure 7.4.
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Figure 7.4: Phase diagram of noiseless compressed sensing with Gauss-Bernoulli prior:
Py = pN(0,1) + (1 — p)do.

The rectified linear unit (ReLU) channel

Let us start by discussing the case of a generalized linear model with the ReLLU output
channel, i.e. ¢(x) = max(0,x), with a signal coming from a Gauss-Bernoulli distribution
Py = pN(0,1) + (1 — p)dy, i.e. X* has a fraction p of non-zero (Gaussian) values. We are
motivated by the omnipresent use of the ReLLU activation function in deep learning, and
explore its properties for GLMs that can be seen as a simple single layer neural network.

Our analysis shows that a perfect generalization (and thus a perfect reconstruction of
the signal as well) is possible whenever the number of samples per dimension (measurement
rate) a > 2p, and impossible when o < 2p. This is very intuitive, since half of the
measurements (those non-zero) are giving as much information as in the linear case, thus
the factor 2.

How hard is it to actually solve the problem with an efficient algorithm? The answer is
given by applying the state evolution analysis to GAMP, which tells us that only for larger
values of «, beyond the spinodal transition aayp, does GAMP reach a perfect recovery.
Notice, however, that this spinodal transition occurs at a significantly lower measurement
rate a than one would reach just keeping the non-zero measurements. This shows that,
actually, these zero measurements contain a useful information for the algorithm. The
situation is shown in the center panel of Figure 7.5: The zero measurements do not help
information-theoretically but they, however, do help algorithmically.

The sign-less channel

We now discuss the sign-less channel where only the absolute value of the linear mixture
is observed, i.e. p(x) = |z|. This case can be seen as the real-valued analog of the famous
phase retrieval problem. We again consider the signal to come from a Gauss-Bernoulli
distribution Py = pN(0,1) + (1 — p)do.

Sparse phase retrieval has been well explored in the literature in the regime where the
number s of non-zeros is sub-leading in the dimension, s = o(n). This case is known to
present a large algorithmic gap. While analogously to compressed sensing exact recovery is
information-theoretically possible for a number of measurement (slog(n/s)), best known

130



a=m/n

1.5

0.5

Relu channel, Gauss-Bernoulli X sign-less channel, Gauss-Bernoulli X symmetric door channel, binary X

1.2 T 3

B tractable recovery
1r tractable recovery
tractable recovery .-

0.8 2L |
< o <
an ] % 06 | no recovery | % 1.5 | g
3 L 3 no recovery
no recovery 0.4 + hard, ry]o’hy—inf. non-informative 1+ b
0.2 T 1 inf .
ot . aamp 0.5 oyt non-informative b
Gamp : Oc AmP
, 20aMp,cS 0 %AMP,CS 0 O -~ ) ) .
0.5 1 0 0.5 1 0 0.5 1 1.5 2
P P K

Figure 7.5: Phase diagrams showing boundaries of the region where exact recovery is
possible (in absence of noise). Left: The case of ReLU activation function, ¢(x) = max(0, x)
with a Gauss-Bernoulli signal Py = pA(0,1) + (1 — p)dp, as a function of the ratio between
number of samples/measurements and the dimension v = m/n, and the fraction of non-
zero components p. The dotted red line shows the algorithmic phase transition when using
information only about the non-zero observations. Center: Analogous to the left panel,
for the absolute value function: ¢(z) = |z|. The dotted red line shows for comparison the
algorithmic phase transition of the canonical compressed sensing. Right: Phase diagram
for the symmetric door output function ¢(z) = sign(|z| — K) for a Rademacher signal, as a
function of @ and K.

algorithms achieve it only with (s*/logn) measurements [168], see also [192] and refer-
ences therein for a good discussion of other related literature. This is sometimes referred
to as the “s? barrier”. We are not aware of a study where, as in our setting, the sparsity is
s = pn and the number of measurements is an with o and p of order 1.

Perfect reconstruction is information-theoretically possible as soon as o > p: In other
words, the problem is —information-theoretically— as easy, or as hard as the compressed
sensing one. When a > p one can indeed perfectly reconstruct the signal by the following
procedure: Try all 2™ choices of the possible signs for the m outputs, and solve a compressed
sensing problem for each of them. Clearly, this should yields a perfect solution only in the
case of the actual combination of signs.

Algorithmically, however, the problem is much harder than for the linear output chan-
nel. As shown in the left side of Figure 7.5 on page 131, for small p one requires a much
larger fraction o of measurements in order for GAMP to recover the signal. For the linear
channel the algorithmic transition aaxmp(p) — 0 as p — 0 (see Figure 7.4) while for the
sign-less channel we get axayp(p) — 1/2 as p — 0. In other words if one looses the signs
one cannot perform recovery in compressed sensing with less than n/2 measurements.

What we observe in this example for « < 1/2 is in the statistical physics literature
on neural networks known as retarded learning [99]. This appears in problems where
the p(z) function is symmetric, as seen in Section 7.5.1: There is always a critical point
of the mutual information with an overlap value ¢ = 0. For this problem, this critical
point is actually “stable” (meaning that it is actually a local minimum in ¢ in the mutual
information (7.3.9)) for all a < 1/2, by (7.5.3), independently of p.

This has the two following implications:

(i) In the non-informative phase, when o < 1/2 and o < p, the minimum at ¢ = 0
is actually the global one. In this case there is no useful information that one can
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Figure 7.6: Generalization error in three classification problems as a function of the number
of data-samples per dimension a. The red line is the Bayes-optimal generalization error,
while the green one shows the (asymptotic) performances of GAMP as predicted by the
state evolution (SE), when different. For comparison, we also show the result of GAMP
(black dots) and, in blue, the performance of a standard out-of-the-box solver, both tested
on a single randomly generated instance. Left: Perceptron, with ¢(x) = sign(z) and a
Rademacher (+1) signal. The results of a logistic regression with fine-tuned ridge penalty are
shown for comparison. Middle: Perceptron with Gauss-Bernoulli coefficients for the signal.
The results of a logistic regression with fine-tuned ¢; sparsity-enhancing penalty are very close
to optimal. Right: The symmetric door activation rule with parameter K = K* ~ 0.67449
chosen in order to observe the same number of occurrence of the two classes. Using Keras
[52], a neural network with two hidden layers was able to learn approximately the rule, but
only for much larger training set sizes (shown in inset).

exploit and no estimator can be better than a random guess.

In the hard non-informative phase when p < a < 1/2, GAMP initialized at random,
i.e. close to the ¢ = 0 fixed point, will remain there. This suggests that in this region,
even if a perfect reconstruction is information-theoretically possible, it will still be
very hard to be better then a random guess with a tractable algorithm.

(i)

The symmetric door channel

The third output channel we study in detail is the symmetric door channel, where ¢(x) =
sign(|z| — K). In case of channels with discrete set of outputs exact recovery is only
possible when the prior is also discrete. In the present case we take X* ~ Unif({—1, 1}"),
ie. Py = %§+1 + %6_1. This channel was studied previously using the replica method in the
context of optimal data compression [108].

This output channel is in the class of symmetric channels for which overlap ¢ = 0 is
a fixed point. This fixed point is stable for o < a.(K). Exact recovery is information-
theoretically possible above ajp(K) and tractable with the GAMP algorithm above the
spinodal transition aanp(K). The values of these three transition lines are depicted in the
right panel of Figure 7.5.

We note that a;p > 1 is a generic bound on exact recovery for every K, required by a
simple counting argument. While a-priori it is not clear whether this bound is saturated
for some K, we observe that it is for K = K* ~ 0.67449 defined by P(|Z| < K*) = 1/2,
for Z ~ N(0,1). In that case half of the observed measurements are negative and the
rest positive. The saturation of the ayr > 1 bound was remarked previously in [108].
However, we conjecture that this information-theoretic limit will not be achievable with
known efficient algorithms since GAMP recovers the signal for « larger that aayp > 1.
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7.5.3 Examples of generalization errors

In this section we evaluate the Bayes-optimal generalization error (given by Theorem 7.3.3)
and the generalization error of GAMP (given by Proposition 7.4.1) for several cases of priors
and output functions. We study both regression problems, where the output is real-valued,
and classification problems, where the output is discrete.

While in realistic regression and classification problems the matrix ® corresponds to
the data, and is thus not i.i.d. random, we view the practical interest of our theory as
a benchmark for state-of-the art algorithms. The results of Sections 7.3 and 7.4 provide
an exact asymptotic analysis of optimal generalization error and sample complexity for a
range of simple rules. The challenge for state-of-the-art multi-purpose algorithms is to try
to match as closely as possible the performance that can be obtained with GAMP that is
fine-tuned to the specific form of the output and prior.

Threshold output: The perceptron

The example of non-linear output that is the most widely explored in the literature is
the threshold output, where the deterministic output function is ¢(x) = sign(z). In the
setting of the present chapter, this is known as the perceptron problem [89], or equivalently,
the one-bit compressed sensing in signal processing [38]. Its solution has been discussed in
details within the replica formalism (see for instance [98, 23, 167, 117, 218]) and we confirm
all of these heuristic computations within our approach.

In Figure 7.6 (left) we plot the optimal generalization error of the perceptron with a
Rademacher signal, the state evolution prediction of the generalization error of the GAMP
algorithm, together with the error actually achieved by GAMP on one randomly generated
instance of the problem. We also compare these to the performance of a standard logistic
regression. As expected from existing literature [89, 98, 189] we confirm that in this
case the information-theoretic transition appears at a number of samples per dimension
arr = 1.249(1), while the algorithmic transition is at aamp = 1.493(1). Logistic regression
does not seem to be able to match the performance on GAMP in this case.

In Figure 7.6 (center) we plot the generalization error for a Gauss-Bernoulli signal with
density p = 0.2. Cases as this one were studied in detail in the context of one-bit compressed
sensing [218] and GAMP was found to match the optimal generalization performance with
no phase transitions observed, which is confirmed by our analysis. In this case the logistic
regression is rather close to the performance of GAMP.

Symmetric Door

The next classification problem, i.e. discrete output rule, that we study is the symmetric
door function ¢(z) = sign(|z| — K). In Figure 7.6 (right) we plot the generalization
error for K = K* ~ 0,67449 such that 1/2 of the outputs are 1 and 1/2 are —1. The
symmetric door output is an example of function for which the optimal generalization
error for a < agr = 1 (for that specific value of K, see phase diagram in the right panel of
Figure 7.5) is as bad as if we were guessing randomly. The GAMP algorithm still achieves
such a bad generalization until agg.p, ~ 1.36 (defined by (7.5.3)), and achieves perfect
generalization only for a > axyp = 1.566(1).

Interestingly, labels created from this very simple symmetric door rule seem to be very
challenging to learn for general purpose algorithms. We tried to optimize parameters of a
two-layers neural network and only managed to get the performances shown in the inset
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Figure 7.7: The generalization error for three regression problems is plotted as a function of
the number of samples per dimension . The red line is again the Bayes-optimal generalization
error, while the green one shows the (asymptotic) performances of GAMP as predicted by
the state evolution (SE), when different. Again, we also show the result of GAMP on a
particular instance (black dots) and, in blue, the performance of an out-of-the-box solver.
Left: White Gaussian noise output and a Gauss-Bernoulli signal. For this choice of noise,
there is no sharp transition (as opposed to what happens at smaller noises). The results of
a Lasso with fine-tuned ¢; sparsity-enhancing penalty are very close to optimal. Middle:
Here we analyze a ReLU output function ¢(x) = max(0,z), still with a Gauss-Bernoulli
signal. We show for comparison the results of maximum likelihood estimation performed
with CVXPY —a powerful python-embedded language for convex optimization [64]— using
two methods that are both amenable to convex optimization: In CVX-1 we use only the non-
zero values of Y', and perform a minimization of the ¢; norm of x subject to Y, = (®,,x)
for 4 € {1,...,m} such that Y, # 0, while in CVX-2, we use all the dataset, with the
constraint that Y, = (®,,x) for p € {1,...,m} such that ¥, # 0 (as before) and the
additional restriction (®,,x) < 0 for p € {1,...,m} such that ¥,, = 0. In both case, a
perfect generalization is obtained only for o Z 1. Right: The sign-less output function
o(x) = |z|. In inset, we show the performance for the estimation problem using PhaseMax
[92].

of Figure 7.6 (right). It is an interesting theoretical challenge whether a deeper neural
network can learn this simple rule from fewer samples.

Linear regression

The additive white Gaussian noise (AWGN) channel, or linear regression, is defined by
o(x,A) = x4+ oA with A ~ N(0,1). This models the (noisy) linear regression problem, as
well as noisy random linear estimation and compressed sensing. In this case (7.3.20) leads
to
: opt __ * 2

Iim E5 =p—q +0°. (7.5.6)
This result agrees with the generalization error analyzed heuristically in [189] in the limit
o — 0. Figure 7.7 (left) depicts the generalization error for this example. The performance
of GAMP in this case is very close to the one of Lasso, that we will study in mode details
in the next chapter.

Rectified linear unit (ReLU)

In Figure 7.7 (center) we analyze the generalization error for the ReLU output function,
¢(x) = max(0,z). This channel models the behavior of a single neuron with the rectified
linear unit activation widely used in multilayer neural networks.

For sparse Gauss-Bernoulli signals in Figure 7.7 (center) we observe again the information-
theoretic transition (at o = 2p = 0.4) to perfect generalization to be distinct from the
algorithmic one (at aayp = 0.589(1)). At the same time our test with existing algorithms
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were not able to closely match the performance of GAMP. This hence also remains an
interesting benchmark.

Sign-less channel

In Figure 7.7 (right) we analyze the generalization error for the sign-less output function
where p(z) = |z|, that we already discussed in Section 7.5.2. The information-theoretic
perfect recovery starts at a = p = 0.5, but the problem is again harder algorithmically
for GAMP that succeeds only above ayyp = 0.90(1). Again, the problem appears to be
hard for other solvers. The state-of-the-art algorithm PhaseMax [92] is for instance able
to learn the rule using about four times as many measurements than needed information-
theoretically.

7.6 Proof of Theorem 7.3.1

This section is devoted to the proof of Theorem 7.3.1. We will do it under the following
hypotheses:

(H1) The support of the prior distribution Fy is included in [—S, S], for some S > 0.

(H2) ¢ is a bounded C? function with bounded first and second derivatives w.r.t. its first
argument.

(H3) () A N(0, 1)

(H4) A>0.

These stronger assumptions can then be relaxed to the weaker assumptions (h1)-(h2)-(h3)-
(h4) and (h5.a) or (h5.b). This is done by approximation arguments similar to the ones
of Section 3.4.7 for (H1) and (H2). The hypothesis (H3) is relaxed using the “generalized
Lindeberg swapping trick” from [45]. Finally the condition A > 0 can be replaced by
((h5.b)) by approximation, using Corollary B.2. We refer to [19] for the details of these
arguments.

Since the observations (7.2.1) with P, given by (7.2.8), are equivalent to the rescaled
observations

1
A2y, = A-l/%(n[@X*]u,Au) v Z,, 1<u<m, (7.6.1)
the variance A of the Gaussian noise can be “incorporated” inside the function ¢. Thus,
it suffices to prove Theorem 7.3.1 for A = 1 and we suppose, for the rest of the proof, that

we are in this case.

7.6.1 Interpolating estimation problem

We aim at computing the limit of the free energy F),. To do so, we introduce an estimation
problem parametrized by ¢ € [0, 1] that interpolates between the original problem (7.2.1)
at t = 0 and the two scalar problems described in Section 7.3.1 at t = 1 whose free energy
is easy to compute. For ¢ € (0, 1) the interpolating estimation problem is a mixture of the
original and scalar problems. This interpolation scheme is inspired from the interpolation
paths used by Talagrand to study the perceptron, see [201]. There are two major differences
between the perceptron studied by Talagrand, and the “planted perceptron” (where there
is a “planted solution” X*) that we are investigating:
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e In the planted case, the presence of a planted solution forces (under small pertur-
bations) the correlations to vanish for all values of the parameters, see Chapter 2.
In the non-planted case, proving such decorrelation is much more involved, and is
proved only in a limited region of the parameter space (the high-temperature phase),
see [201].

e However, in the planted case, there can be arbitrarily many solutions to the state
evolution equations (7.3.7) (see Remark 21 in [217]), whereas in the region studied
by [201], there is only one solution.

Let ¢,7 : [0,1] — R>( be two continuously differentiable functions such that ¢(0) =
r(0) = 0. Define

Sy, ,/1n_t [®X*], + \/@VM +\/pt —q(t)y W} (7.6.2)

where V,,, W7 " N(0,1). Consider the following observation channels, with two types of
observations obtained through

Yt,u ~ out( |St,u) 1§,u§m,
Y;f/,z = \/T)X;_‘_Zz{v l<i<mn,

where (Z/)_, '~ N(0,1). We assume that V = (Vi)jey is known. Then the inference
problem is to recover both unknowns W* = (W)L, and X* = (X;)iL, from the knowl-
edge of V', @ and the observations Y; = (Y, ), and Y," = (V},)i;.

Define u, () ' og P, (y|x) and, with a slight abuse of notations, for (x, w) € R" xR™

St = Se(@,w,) 1n_t[<1>w]u +/a(t) Vi + ot — q(t) w,. (7.6.4)

Notice that S;,, = s;,(X*, W). We introduce the interpolating Hamiltonian

(7.6.3)

2
H(z,wY, Y, ® V)4 Zlogpout(ymsw +- Z(Yt’z r(t)a) . (7.6.5)

pn=1
The dependence in @ and V' of the Hamiltonian is through the (s;,)/;. We also intro-

duce the corresponding Gibbs bracket (-),; which is the expectation w.r.t. the posterior
distribution of (X*, W*) given (Y, Y/, ®, V). It is defined as

‘ 1 vy
(9, w)) s de(Y R [ AR @)Dw g, w) e Y2V (76.6)
ty Lt

for every continuous bounded function g on R*xR™. In (7.6.6) Dw = (2r)~"/? T, dw, e~"il?
is the m-dimensional standard Gaussian distribution and Z,(Y;,Y;, ®, V) is the appropri-
ate normalization (or partition function):

Z(Y, Y, & V) / AP () Dw ¢~ Hil@wYi Y/ 2.V) (7.6.7)
Finally the interpolating free energy is

10 2 L Elog 2,(Y, Y/, @, V). (76.8)
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Notice that:

{ fo(1) = p(r(1)) — 3(14 pr(1)) + 20p,,(q(1)) (7.6.9)

As discussed above, part of the potential (7.3.6) appears in f,(1). We would like to
relate F,, = f,(0) to f,(1). We thus compute the derivative of the free energy along the
interpolation path (see Appendix 7.6.4 for the proof):

Proposition 7.6.1
Assume that ||¢'||o, [|7']|ec = O(1) as n — oco. For all t € (0,1)

$o0) ==5B{ (3 32 s, (St (510 = (0) Q= (1) )+ 0) = )+ 0nl1).

2 n,t

where o,(1) is a quantity that goes to 0 as n — oo, uniformly in t € (0,1). Recall
that s, = s;,(x,w,) is given by (7.6.4) where (x,w) is a sample from the posterior
distribution of (X*,W*) given Y;,Y,, ®,V, independently of everything else. The
expectation with respect to (x,w) only is denoted by the Gibbs bracket (-),:, see
(7.6.6). Finally the overlap @ is

def 1 & *
Q= ;ZXZ ;. (7.6.10)
i=1

7.6.2 Overlap concentration

Proposition 7.6.1 is the analog of Lemma 4.3.1 that we have seen for the non-symmetric
matrix estimation model in Chapter 4. As in the proof of Theorem 4.1.1 we will need to
show that the overlap () concentrates around its mean, in order to be able to cancel the
first term of f/(¢) (in Proposition 7.6.1) by choosing ¢'(t) = E(Q).+.

As seen in Section 2.2 () concentrates around its mean on average over small pertur-
bations of our model and we need in principle to introduce these small perturbations as in
the proof of Theorem 4.1.1. However, in order to make the proof easier to read, we will
assume here that for all choice of the functions r, ¢ we have:

/01 E((Q - E(Q)n,t)2>n7tdt —— 0. (7.6.11)

n—oo

The reader is invited to refer to Proposition 4.3.2 or to the paper [19] for a precise execution
of the perturbation arguments.

Proposition 7.6.2

Assume that (7.6.11) holds. Assume that we have ¢'(t) = E(Q), for all t € [0, 1], and
that |||l = O(1) as n — oo. Then

1 1

Fy = (r(1) + a¥p,, (a(1) = 5 |

g (t)r'(t)dt + 0,(1), (7.6.12)

where 0,(1) denotes a quantity that goes to 0 as n — oo.
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Proof. By the Cauchy-Schwarz inequality

)

< [ B{(3 3 v (St o0 - 0)’)
0 u=1

Under assumptions (H2)-(H4) the first term of this product is bounded by some constant C' that
only depend on ¢, « and ||7||oo. The second term goes to 0 as n — oo by (7.6.11), since we
assumed that for all ¢t € [0,1], ¢'(t) = E(Q)n+. Consequently (7.6.13) goes to 0 as n — oo.
Therefore from Proposition 7.6.1:

([ BU(E S (S, (oua) — ') @ - 1)) )’ (7.6.13)
p=1

dx [TB(Q - ),

n

1 1
Fal1) = 1al0) = [ ful)tt = [ (¢ (00 (0) = 7 (0)p)dt + 0(1). (7.6.14)
0 0
When combining (7.6.14) with (7.6.9) we reach the claimed identity. O

7.6.3 Lower and upper matching bounds

We now possess all the necessary tools to prove Theorem 7.3.1 with the following matching
lower- and upper-bounds and Propositions C.7 and C.8 in Appendix C.3. Let us start with
the lower bound.

Proposition 7.6.3

liminf F, > sup inf F(q,7). (7.6.15)

>0 q€0,p]

Proof. Let us fix r > 0 and let us choose 7(t) = rt and ¢ to be the solution of the following
order-1 differential equation (E(Q), + is indeed a function of ¢(t)):

g(0)=1 and Vi€ [0,1], ¢'(t) = Q).

We can then apply Proposition 7.6.2 (since [|¢|lc < p and ||7/||cc = r are both O, (1)) to get

By =, (r) + a¥p,,, (a(1) = 5a(1) +0a(1) = inf F(q,7)+0u(1)
q€[0,p]

and thus lim inf,, o0 Fp, > inf o ) F(q,r). This is true for all » > 0 so we get Proposition 7.6.3.
O
Proposition 7.6.4

limsup F,, <sup inf F(q,r). (7.6.16)

n—00 r>0 q€[0,p]

Proof. We now chose (g,7) to be the solution of the following order-1 system of differential
equations:

{qggii and  Vtel0,1], {q/(t):M@”’t (7.6.17)
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As before, [|¢'|lc < p. By Proposition 7.8.1 the function ¥, is C' and bounded, so ||r'||lo =
O(1). We apply Proposition 7.6.2 to get

1 1

.
— iy /0 L0t + aWp, /0 L (0dt) - % 01 ¢ (O ()dt + o (1)

Fy = 4¢py(r(1)) + a¥p,, (q(1)) q (t)r'(t)dt + on(1)

< /01 (wPo(T/(t)) +a¥p,, (d(t) - %q/(t)rl(t))dt + on(1) (7.6.18)

by Jensen’s inequality, because by Propositions 1.3.3 and 7.8.1 the functions v p, and ¥p, , are
convex. By definition of ' and ¢/, we have for all ¢ € [0, 1],

r(t) =229 (q'(t)). (7.6.19)
Therefore, by convexity of Up, ., we have for all t € [0, 1]

W (f () = 50 00 = inf {a¥r (@)~ 5ar(0).

Plugging this back in (7.6.18), we get:

. 1
F, <sup inf {yp,(r) +a¥p,, (@) = g7} +on(1),
r>0 q€[0,0] 2

which proves Proposition 7.6.4. O

7.6.4 Derivative of the interpolating free energy: Proof of Propo-
sition 7.6.1

Recall that u; () is the z-derivative of u,(r) = log Poy(y|z). Moreover denote P, (y|z)

and P” . (y|z) the first and second z-derivatives of Py (y|x). We will first prove that for
all t € (0,1)
1 1 & ' (t) A,
108 == SB( (5 Xt (S, (s0) =7 0) (@ )+ 20— ) T
p=1 n,
(7.6.20)
where recall Q = = 37" | X*z; and
. 1 &Pl (YiulSin) (1 & 1
And:f]E{ utt““( X;)? - )10 z]. 7.6.21
\/ﬁ ‘uz::l Pout(Y;,u|St,u) \/ﬁ 12:21 <( ) '0) n &t ( )

Once this is done, we will prove that A, goes to 0 as n — oo uniformly in ¢ € [0,1], in
order to obtain Proposition 7.6.1.

Proof of (7.6.20

)
Recall definition (7.6.8) which becomes, when written as a function of the interpolating
Hamiltonian (7.6.5),

1 * £ ! . !
fult) = —E/dydy’e_Ht(X Whyy' 2V) log/dP(;Xm(:c)Dw e~ Hrlwwyy . ®V) —(76.22)
n
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We will need the Hamiltonian ¢-derivative H; given by

m g n
Hg(m7w;y7y/a <I>,V) = Z dttuu;m(stp, Z yz VT IEZ . (7623)
p=1 i=1

where we recall (7.6.4):

St = S, w),) def \/7[(1)13]“ + \/@Vu +/pt —q(t)w,. (7.6.24)

The derivative of the interpolating free energy thus reads, for 0 <t < 1,

1 1
frt) = — E]E{H;(X*, WY, Y/, ® V)log 2| - EE<H;(£E, w;Y,, Y/, ®,V))

Ty Ty

(7.6.25)
where recall that 2, = Z,(Y., Y/, ®,V) is given by (7.6.7). Let us compute 7). Let
1 < pu < m. Let us start with the following term

E{dfl;“u% (St.u) loth} = EK\/}?}lX—]t \q/’q(t) V., + pp;i];(i)W*)uYt (St.u)log 24| .

(7.6.26)

Let us compute the first term of the right-hand side of the last identity. By Gaussian
integration by parts w.r.t ®,; we obtain

1
n(l — t)

- Udydy e MW VI Xy, (Si,) log Zi(y, ', @, Vﬁ

\/n( ) i=1
l En: ( { X7) 2(“% (Stu) + ug’t,u(‘st,u)Q) log Zt} + E<X;Iiu/Yt,,t(St,u)u/Yt,,L(St,u)>n’t)

L& oy P (YinlSi) 1
— B[ () ottt enlon) z] E< Xtz / > 6.2
|: Z( Z) Pout(}/t;L|St,p,) 0g £t + TL; quYt,u(Stvﬂ)uYt,u(st,H) ) (76 7)

=1 n,t

E[[®X "1, (Si) log Zi]

3

where we used the identity
Pou Vel )
u// T + u/ T 2 — out SH .
A O

We now compute the second term of the right hand side of (7.6.26). Using again Gaussian
integrations by parts but this time w.r.t V,,, W7 RN (0,1) as well as the previous formula,
we obtain similarly

E[(\;@ \/pt—iqu*)uyt (St,u) log Zt}

|:/dydy6 Hy(X*W*y,y, <I>V( p— (] *> g/t Sw)loth

o

log Zt} + E@(ﬂ“%,u(sw)“;@# (sw)>nt : (7.6.28)

E{ Péim( t,u‘st,u)
Pout<Yt7u‘St,u)
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Combining equations (7.6.26), (7.6.27) and (7.6.28) together, we have

ds
—E[ U (i) loth]

P//

1 (YeulSew) (1 &
:E{Om““( X5 — )10 Z}—k E<< Xiw; — )u' S )ub. (s >
2 L Pout(Yeul St.p) 121( )? = p)log 2, Z Yo (Stu)ty, (Stp)

As seen from (7.6.23), (7.6.25) it remains to compute E[ X} (Y, —/r(t)X}) log Z;]. Recall-

ing that for 1 < j < n, Y/, —/r(t)X; = Z; and then using again a Gaussian integration
by parts w.r.t Z; ~ N(0,1) we obtain

n,t

E[X: (Y], — \/r(t)X})log Z,] = E[X; Z}log 2/ = E[X}0z log Z,]

_ —E[X;<W(X; — @) + Zﬂ{>n7t}

Thus, by taking the sum,
r'(t) ()p () /1~ e
2F [ Vi —\/r(t) X)) loth} = - E<n;Xx> . (7.6.29)
Therefore, for all t € (0,1),
1 1 m P// Y 1 n 1 / / /
T, = -E { Z out (Ve[ St.u) < Z((X:)Q B p))log Zt:| + r (;)p _r (t)q'(?)
n

2 \/ﬁ p=1 Pout(Y;f,u|St7M) i=1 2
(7.6.30)

1

+2 << ZuYt Stu)uyt (St) — )(nZX*x,—q )>n,t. (7.6.31)

To obtain (7.6.20), it remains to show that 75 = 0. This is a direct consequence of the
Nishimori identity (Proposition 1.1.1):

1 1

T, = 7E<Ht’(m,w; Y, Y, ®, V)> = —E[H{(X*, W*Y, Y, ®, V)] =0. (7.6.32)
n nt n

For obtaining the Lemma, it remains to show that A, goes to 0 uniformly in ¢ € [0, 1].

Proof that A, vanishes as n — oo

We now consider the final step, that is showing that A, given by (7.6.21) vanishes in the
n — oo limit uniformly in ¢ € [0, 1] under conditions (H1)-(H2)-(H3). First we show that

E[\/lﬁ gjl W(\}ﬁ Zn; ((x)? - p))} ~0. (7.6.33)

Once this is done, we use the fact that %log Z, concentrates around f,(t) to prove that
A, converges to 0 as n — oo. We start by noticing the simple fact that for all s €
R, [ P!.(y|s)dy = 0. Consequently, for pn € {1,...,m},

out
E |:Pc§/ut<Y;57M|St,/i)
Pout(Yﬂu‘St,u)

u

X St] [ dyPllSi) = 0. (7.6.34)
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Thus, using the “tower property” of the conditional expectation:

n m P// (}/t |St ) n m P// (}/t |St )
E|: Xz* 2_p out M ad :| IE|: Xz* 2_p E|: out M I X*,S}:| =0
2 =0 8 B s |~ EL (0 )2 X g | X8

which gives (7.6.33). We now show that A, goes to 0 uniformly in ¢ € [0,1] as n — oc.
Using successively (7.6.33) and the Cauchy-Schwarz inequality, we have

1 m P// ()/; |St n 1
Ay| = |E —out\Ztu Pt (1 Z—nt)” B
A ‘ [\/ﬁu ¢ Pout (Ve St ) v/10 nZ( p) 082 fa(t) (7.6.35)

<sl( s el (0 z )]s )]
(7.6.36)

Using again the “tower property” of conditional expectations

KZE:)) (S0 -0)] o3
:E[(; P)) [(m m>2’X*,StH. (7.6.38)

P YVe,ulStn)

are
Pout (Ye,ulSt,p) ) 1<u<m

Now, using the fact that conditionally on S;, the random variables (
i.i.d. and centered, we have

E[( S Pé{lt(n,uwt,u))Q
Pout(Y;f,u'St,p,)

Pl (Y1]S:1)\?
] -mal ()
! Pt (Y1]S:1)

Under condition (H2), it is not difficult to show that there exists a constant C' > 0 such
that
P (Yea]Se1)\?
E{<t> s|<c. 7.6.40
Pout(Y;,1|St,1 ! ( )
Combining now (7.6.40), (7.6.39) and (7.6.38) we obtain that

B[(32 ety (55 (0 —0)) | < meE[(3- (0 -0)) ]

u:l =1 1=

} . (7.6.39)

p=1

= mnC Var((Xf)2).

Going back to (7.6.36), therefore there exists a constant C” > 0 such that

1A4,] < C/E[(i log Z, — fn(t)ﬂ " (7.6.41)

Using standard concentration arguments (bounded difference property, Gaussian Poincaré
inequality) it is not difficult to show that under assumptions (H1), (H2), (H3) and (H4)
there exists a constant C(¢, S, a, A, R) > 0 such that for all functions ¢,r bounded by R
we have

1 1 1 2
Var( log Zt> = E{(log Z, — —Elog Zt) } < o
n n n

907 S’ a’ A? R)

n

(7.6.42)

Consequently, E[(Llog Z, — f,(t))?] — 0 as n — oo uniformly in ¢ € [0,1]. Thus A, goes
to 0 as n — oo uniformly in ¢ € [0, 1]. This ends the proof of Proposition 7.6.1.
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7.7 Proofs of the limits of optimal errors

7.7.1 Unicity of the optimizer ¢* of the replica formula: Proof of
Proposition 7.3.1

Since ¥p, and VUp, . are related to Ip, and Zp,, by the relations (7.3.2)-(7.3.5), the op-
timizers of (7.3.8) and (7.3.9) are the same. We chose here to work with (7.3.9). The
function

h:aw— inf {aIpout(q) + sup {]po (r) — f(p - q)}} (7.7.1)

q€[0,p] >0 2

is concave (as an infimum of linear functions). Proposition D.2 gives that h is differentiable
at « if and only if

{Ipout (q) ‘ ¢ minimizer of (7.7.1)}

is a singleton. We assumed that P, is informative, so Proposition 7.8.4 gives that Zp, ,
is strictly decreasing. We obtain thus that the set of points at which h is differentiable is
exactly D*. Since h is concave, D* is equal to R minus a countable set. Proposition D.2
gives also that /(o) = Zp,,(¢*(«)), for all &« € D*. The function h is concave, so its
derivative b’ is non-increasing. Since Zp,, is strictly decreasing, we obtain that o € D* +—
q*(«) is non-decreasing.

Let now ag € D*. By concavity of h, h'(a) — h'(ag) when av € D* — ag. Therefore:

IPout (q*(&)) m IPout (q* (ao))

which implies ¢*(a) — ¢*(ap) by strict monotonicity of Zp, ,. The map a — ¢*(«) is
therefore continuous on D*.

7.7.2 Limit of the overlap: Proof of Theorem 7.3.2

Let (Q,, denote the overlap @, dof %(X*, x) between X* and « = (21, ...,x,) a sample from
the posterior distribution P(X*|Y, ®), independently of everything else. In this section
we will show that |@Q,,| converges in probability to ¢*(«), for all « € D*.

Upper bound on the overlap

Proposition 7.7.1
For all « € D* and for all e > 0,

]P’(|Qn| > q" (o) + e) — 0.

n—oo

Let us fix @« € D* and let p > 1. In order to obtain an upper bound on the overlap, we
consider an observation model with some (small) extra information (that takes the form
of a tensor of order 2p) in addition of the original model (7.2.1), i.e. we observe

Y ~ Pou(- | ®X*/\/n), (7.7.2)
Y = (X 4z -

n2p—1
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where A > O, 7' = <Z7{1 fiop )1§i1,..‘,i2p§n R (O, 1) and (X*)®2p = (X“ cee Xi2p)1§i1,...,i2p§n'
The next Proposition gives the limit of the mutual information between the signal and the

observations (7.7.2).
Proposition 7.7.2
For all A > 0,

1
lim I(X* Y)Y’

n—oo n,

@) =1I()), (7.7.3)

where the right-hand-side is

e 2p —1 A

I(\) dof Snf sup{fpO (r+2pAg* 1) +aZp,. (q) — z(,0 —q)+ e AP — ppAg® T+ p2”}.
q€[0,p] >0 2 2 2
(7.7.4)

Proposition 7.7.2 is proved using the same strategy than for Proposition 4.4.1, so we omit
its proof for brevity. We are now in position to prove Proposition 7.7.1.

Proof of Proposition 7.7.1. The chain rule for the mutual information gives
I(X5Y,Y'®) = [(X5Y|®) + [(XH)*; Y'Y, ®).
Thus, using the -lMMSE relation of Proposition 1.3.3,

10 . 12 N\ ®@2p. v/
(X YY\@)‘AZW (X Y'Y, @)

*®2
o 22pMMSE(( EX|Y, B).

By concavity of A — I(X*;Y,Y’|®), we have using Proposition 7.7.2 and Proposition C.1:

hmmf—MMSE(( EX|Y | ) _hmmf;)\I(X* Y,Y’ {<I>)‘ 2100,

n—00 n—oo

For a € D* and A\ = 0 the infimum of (7.7.4) is achieved uniquely at ¢ = ¢*(«), by definition of
D*. Consequently, by Proposition D.2 we obtain I(07) = 3(p* — ¢.()\)?) and thus

lim inf —MMSE(( NER|Y,®) > p? — ¢*(a)?.

n—oo 2P

One verifies easily that
1 *
ﬁMMSE((X )EP|Y,®) = p — E[QX] + 0,(1), (7.7.5)

so we deduce that limsup,,_,., E[Q%] < ¢*(a)?!. Let € > 0. By Markov’s inequality we have

E[Q3]

P(Qnl 2 g.(0) +€) <

By taking the lim sup in n on both sides we obtain
. g (a)*
lim P > g« < )
P (1Qnl 2 gu(2) + ) < (q«(ax) + €)?P

and Proposition 7.7.1 follows by taking the p — oo limit in the inequality above. O
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Limit of the overlap

Let us fix @ € D*. The sequence of the overlaps (Q,),>1 is tight (because bounded in L).
By Prokhorov’s Theorem we know that the sequence of the laws of (@Q,),>1 is relatively
compact. We can thus consider a subsequence along which it converges in law, to some
random variable (). In order to simplify the notations (and because working with an
extraction does not change the proof) we will assume in the sequel that

(d)
Qn m Q,

for some random variable ). We aim now at showing that |Q| = ¢*(«) almost surely and
moreover, if P,y is not symmetric, Q = ¢*(«) almost surely.

Lemma 7.7.1 (Upper bound on the overlap)

|Q| < ¢*(«v) almost surely.
Proof. Let € > 0. The set [0,¢* () + €] is closed, so by Portemanteau’s Theorem
P(IQ| < ¢"(a) +€) > limsupP(|Qn| < ¢"(a) +€) =1,
n—oo

by Proposition 7.7.1. So P(|Q| < ¢*(a) +¢€) =1 for all € > 0 which gives P(|Q| < ¢*(a)) = 1. O

In order to prove the converse lower bound, we will need to consider the following error
quantity, for f : R — R a continuous bounded function:

Ern(@) E MMSE(f (Yaew)|@uew, Y, @) = E[( (Yaew) — E[f (Vaew)| @rew, Y, @])2}, (7.7.6)
which is the minimum mean-square error on f(Yey). We define also
&1(q) & MMSE(f(¥0)|V) = E[(f(¥o) — E[f(Yo)|V]) | (7.7.7)

where Yy ~ Py (- | V@V +/p — gW*) is the output of the second scalar channel (7.3.3).
Proposition 7.7.3

Let f : R — R be a continuous bounded function. Assume that P, is informative
and that (hl)-(h2)-(h3)-(h4) hold and that either (h5.a) or (h5.b) holds. Then for all
o € D* we have

Epn(a) —= &r(q*(a)) (7.7.8)

where ¢*(«) is the optimizer of the replica-symmetric formula (7.3.8), see Proposi-
tion 7.3.1.

We first deduce Theorem 7.3.4 from Proposition 7.7.3. Proposition 7.7.3 will then be
proved at the end of this Section. Proposition 7.7.3 gives £rn(a) —— &r(q"(a)). The

function & can be written as
1
Erla) = 3E|hy (ViZo + VP = 021, i%0 + Vo= 02)|
where Zy, Z1, Z} "% N(0,1) and hy : (a,b) € R? > [(f(y1) — f(2))? Pout(dys|a) Pous (dy2|b).
The next lemma follows from a simple central-limit-type argument (and can for instance

be proved using Lindeberg “swapping trick”, see [45]).
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Lemma 7.7.2

Let k > 1. Let (s,)n>1 be a sequence of independent random variables that have zero
mean, unit variance and finite third moment that is bounded with n. We write s, =

(51,...,8n). Forn >1let ) ... x®*) € R" be some deterministic vectors. Assume
that for alli € {1,...,k}, ( ( 22)3> ., 18 bounded and that for all i, j € {1,...,k}

1, 4 -
ﬁ<m$z)7m£zj)> — Rij,

n—o0

for some matrix R € R¥**. Then

1 d)
= (s, <f>> 9 N0, R).
(ﬁ<s,wn>1<g<k L0, N0, R)

We deduce from Lemma 7.7.2 (that we apply for k = 2 conditionally on &, X*):

(Z1, Z2), (7.7.9)

n— o0

< <$7 ¢new> <X*7 ¢neVV> ) (d)
v Vn
where (Z1, Zs) is sampled, conditionally on @, from N(O, (5 g))

Proposition 7.7.4
We have

1nl0) = 3E[s(21,25)],

where (Z,, Zs) is defined in Lemma 7.7.2 above.

Proof. We have )
gf,n =E [(f(Ynew) - E[f(ynew) |'i)newa P, Y]) }
|:/ ynew - (y))2pout (dynew‘ <(I)neW7 >/\F) out (dy| new, L /\F)

E[hf ({22 B <X*f%new>>].

By (7.7.9) above, we have ((90,4\}%”)’ <X*fg‘ew>) n(jlo (Z1,Z3). Using (h4) (and Remark 7.3.1)

we can find a Borel set S C R of full Lebesgue’s measure such that Ay is continuous on S x S.
The set of discontinuity points of hy has thus zero measure for the law of (71, Z3). Indeed if we
condition on Q:

e if |Q| < p, then (Z1, Z) has a density over R2.

o if Q = p, then Z; = Z, almost surely, but hy is continuous on {(s,s)|s € S} that has full
Lebesgue’s measure on the diagonal {(z,z) |z € R}.

o if Q = —p, then Z; = —Z5 almost surely and we use then similar arguments as for the
previous point.

‘We have therefore:

<$, (I’new> <X*, (I.new>) (d)

n—oo

hf(Z17 ZQ) )



and Lemma 7.7.4 follows from the fact that hy is bounded. O

Let us now define:
[=p.p) — R

¢ . %E{hf(G(q))} (7.7.10)

Hfi’

where G(@ ~ N(O, (g’g)). Notice that H; is equal to the function & on [0,p]. By
Proposition 7.7.4 above and Proposition 7.7.3, we have:

Hy(q"()) = lim &, (0) = E[H(Q)]. (7.7.11)
Lemma 7.7.3
For all ¢ € (0, p|, Hf(—q) > Hy(q) with equality if and only if for almost-all x € R we
have

/ f(y) Pout (dy|z) = / S () Pouw(dy| — ).

Proof. For z € R we let Poy(-|z) denote the law of f(Y) for Y ~ P.y(-|2). Let ¢ € (0, p] and
ANAWAL R (0,1). Let Y and Y’ be two random variables, that are independent conditionally
on Zy, Z1, Z1 and distributed as:

Y ~ Poi(IV@Z0 +Vp—qZ1)  and Y~ Pou(-| — 3%0 + Vo — qZ}) .
Y and Y’ are independent conditionally on Z, so we get
Hy(—q) = %E[(Y -Y"?
= SE[(Y ~ E[Y|Z])?] + SE[(V" ~ EY'|20))"] + S EI(E[Y]20] ~ E[¥"] )]
= E[(Y ~ B[Y|Z0])?] + SE(E[Y]2] - BIY'|Z))?
= Hy(o) + SE[(BIY|Z0] - BIY'| ).

We get that H¢(—q) > H¢(q), with equality if and only if E[Y'|Zy] = E[Y’|Zy] almost surely. This
is equivalent to

E/f(y)Pout(dy‘U +Vp—qZ) = E/f(y)Pout(dy\ —v++/p—qZ), for a.e. v € R,

where Z ~ N(0,1). Thus, if ¢ = p then we are done. If ¢ € (0, p), writing

F(x) = /f(y)Pout(dyI\/p—q:v),

and g(z) = F(z) — F(—x), we get that G(v) & E[g(v 4+ Z)] = 0 for almost every v € R. We
compute the derivative of G: G'(v) = E[Zg(v + Z)] = 0. By Lemma 7.8.1, we get that g is equal

to zero almost-everywhere, which concludes the proof. O

We have now all the tools needed to prove Theorem 7.3.2. Using Lemma 7.7.3 and
(7.7.11) above, we get that EH;(|Q|) < EH¢(Q) = Hs(¢*(c)). Since Hy is equal to £ on
[0, p] this gives

E[£(1QN)] < &(q"(a)). (7.7.12)
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If ¢*(a) = 0, then Theorem 7.3.2 follows simply from Proposition 7.7.1. We suppose now
that ¢*(a) > 0 and consider € € (0, ¢*(«)). We define p(e) = P(|Q| < ¢*(a) — e). We are
going to show that p(e) = 0. We assumed that P, is informative, so by Proposition 7.8.6
and Proposition 7.8.7 in Section 7.8, there exists a continuous bounded function f : R — R
such that & is strictly decreasing on [0, p|. In the following, f is assumed to be such a
function. We have

E[e;(10D] = E[1(1QI < ¢'(0) — ),(1QD + 1(1l > ¢"(e) = )£5(1QD)]
> p()E5(a"(0) = ) + (1= p()Es (" ().

because £ is non-increasing and because |Q)| < ¢*(a) almost surely (Lemma 7.7.1). Com-
bining this with (7.7.12) leads to

p(e)€s(q™ (@) = p(e)Ef(q"(a) =€) .

Since &; is strictly decreasing: £r(q* (o)) < €¢(¢*(a) — €), which implies p(e) = 0. This is
true for all € > 0, consequently |@Q| > ¢*(«) almost surely. We get (using Lemma 7.7.1)
that

Q| = ¢" (), almost surely.

We conclude that the only possible limit in law of the tight sequence (]Qn|) is ¢* ().

Therefore |Q,| = ¢*(a).

n>1

Let us prove the second part of Theorem 7.3.2. If ¢*(«) = 0, then this is obvious. Let
us suppose now that ¢*(a) > 0 and let p = P(Q = —¢*(«)). Suppose that p > 0. We have
seen above that for all continuous bounded function f, EH(Q) = H;(q*(v)). Hence

Hy(q" (o)) = EHy(Q) = (1 = p)Hy(q"(a)) + pH(=¢" (),
and consequently H(¢*(o)) = Hp(—¢*(a)). Lemma 7.7.3 gives then that

/f Pouw(dy|z) = /f Pout(dy| — )

for almost every x € R, which then leads to Poy(:|z) = Poyt(:| — x) for almost-every = € R:
P,y is symmetric. We conclude that if P, is not symmetric, then necessarily p = 0 and
Q = ¢*(«) almost surely.

Proof of Proposition 7.7.3

Let f : R — R be a continuous bounded function. Let ¢, A > 0. In order to get lower-
bounds on the generalization error, we will consider the following additional observations

UMZ\/XYMHLZL, for 1<pu<m' =en, (7.7.13)

where 7, = N(0,1), and Y, is given by

W) : (7.7.14)

Jn

where @, "X N(0,1d,,) independently of everything else. We will use the following lemma,
proved at the end of this section.

V= 1) Vi P
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Lemma 7.7.4
For all e, A > 0 we have

1 5
—I(Y';VAY' + Z'|Y,®, &) —— inf supirs(q,7,\) — ino, (7.7.15)

n n=00  4el0,0] >0

where i, is given by Corollary 7.3.1 and

ins(q,m, ) Cirs(g,r) + el (FYD) VA F(YD) + Z'|V) (7.7.16)
= In,(r) + aZp,, (: ) + I (FY D) VASVD) + Z|V) = S(p = ).

(7.7.17)

Recall that Y9 is sampled from the “second scalar channel” (7.3.3): Y9 ~ P, (- | VaV+
VP —qW*), where V,IW* "% N(0,1).

Lemma 7.7.5
For all a, A > 0 the set

def

D, = {e >0 ’ the infimum in (7.7.15) is achieved at a unique q;e’/\} (7.7.18)

is equal to [0,400) minus some countable set. Moreover, € — ¢, , . is continuous on
D,..

Proof. This follows from the same arguments than in the proof of Proposition 7.3.1. O

From there one can use the I-MMSE relation of Proposition 1.3.3:

o0 1 1
— 1Y V)Y +Z'|Y.®,d)= —MMSE(Y’
o\n ( VY Y, e, &) on 5 (

VY '+ 7Y, ®, q>’)
- gMMSE(mY, U,®, ).
We will express the limit of MMSE(Y/|Y,U, ®, ®') using the function:
My (A q) = MMSE(f(Y@)|VX f(Y@) 4 2/, V). (7.7.19)

Lemma 7.7.6
For all a, \ > 0, we have for all e € D, \ {0}

lim MMSE(Y{|Y, U, ®,®') = My(\, q,..) .

where q}, is the unique minimizer of (7.7.15).

Proof. Let us fix a, e > 0. Consider the function

Bae: A+ inf supirs(q,7, ). (7.7.20)
q€[0,p] >0

Corollary 4 from [144] gives that hq . is differentiable at A if and only if

{E%I(f(Y(q)); \f)\f(Y(q))+Z'|V) = %Mf()\, q) ‘ g minimizer of (7.7.15) (or equivalently of (7.7.20))}

149



is a singleton (the equality comes from the I-MMSE relation from Proposition 1.3.3). In such
case, Corollary 4 from [144] also gives that

hae(A) = %Mf(k,q), (7.7.21)

for all ¢ minimizer of (7.7.20). So if now € € D, » \ {0}, then the minimizer is unique and thus
ha,e is differentiable at A, with derivative h;, y(\) = eMy(X, g, \)/2. However, by (7.7.15) in
Lemma 7.7.4, hq,e is the pointwise limit on R>( of the sequence of concave functions

1
n)n>1 — = — ) + ) ) + /LOO
h A Y VY +Z'Y. & &
- n n>1

Consequently, Proposition C.1 gives A/, () — ho.e(A). By the I-MMSE relation (Proposi-
tion 1.3.3) we have h/,(\) = eMMSE(Y{|Y,U,®,®’)/2 and we conclude using the fact that
e #0. O
Lemma 7.7.7

For all a € D* (recall that D* is defined by (7.3.13)),

lim lim My (A, ¢, . \) = E(q¢" () .

A—0e—0

Proof. Let @ € D* and A > 0. We have by definition of D, x, of D* and using the link between
irs and igg given by (7.7.16), that 0 € D, . By Lemma 7.7.5 above, we have

Qoven Toor =9 ().

EEEEE—
e—0, GGDQ,)\

Analogously to Proposition 7.8.5, M¢(\,-) is continuous on [0, p], thus lim._g Mi(A\qy ) =
M (X, ¢*(«v)). We obtain the result by taking limy_,o M¢(X, ¢* (o)) = £¢(¢* (), using the conti-
nuity of the MMSE at 0, see Proposition 1.3.2. O

In order to simplify the proof, we assume that m = an. By definition of the general-
ization error (7.7.6) and of the labels Y’ given by (7.7.14), we have

Erna) = MMSE(Y]|Y, ®, &) .

Lemma 7.7.8
For all a € D*,

liminf &, (a) > E¢(¢" (o)) .

n—oo

Proof. Let a« € D*, A > 0 and € € D, \ {0}. Obviously,
gf,n(a) > MMSE(Y{|Y7 U’ Q’ <P/) m Mf()" q;,e,)\) )

where we used Lemma 7.7.6. Consequently hnrg ioléf Ernla) = My¢(A, g, . ) and we obtain the lower
bound by letting €, A\ — 0 and using Lemma 7.7.7. O

Let us now prove the converse upper bound.
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Lemma 7.7.9

There exists a constant C' > 0 (that only depend on f) such that for all a, A > 0 and
all e € D, 5\ {0}

limsup & (o +€) < Mp(A, g, ) + CN.

n—o0

Proof. We will let the signal-to-noise ratio (snr) of the observation of Y{ go to zero. Let us
denote by A; this snr: U; = A1 Y] + Z]. We will let A1 go from A to 0 while the other snr for
the observations of U, for p = 2,...,en will remain equal to A. Using Proposition 9 from [97],

0

—— _MMSE(Y!|Y,U,®,®)| =
O\

E[Var(Y{|Y,U,®,®)°] <E[(Y])*] <|fI%-

We define ¢ % | £l|%,. Consequently, by the mean value theorem,

IMMSE(Y{|Y, U, ®, @) — MMSE(Y{|Y’, (U,),, ®, ®')| < C. (7.7.22)

Since (Uy,)jL, contains less information than ()7 )it because of the additional Gaussian noise
and the application of the function f, we have

MMSE(Y{[Y, (U,)s, @, ®') > MMSE(Y{|Y, (V,,) (L0, ®, ') = Ernl(a+ € —1/n) > Epnla+e).

M p=2>

The last identity combined with (7.7.22) leads to
MMSE(Y{|Y,U,®,®') + C\ > Efp(a+e). (7.7.23)

By Lemma 7.7.6 we know that lim,,—,.c MMSE(Y{|Y,U, ®, ®') = M;(\,q, . ). We conclude by
taking the limsup in the inequality above. O

Corollary 7.7.1
For all o € D*,

limsup &, (a) < Ef(¢" () .

n—oo

Proof. Let « € D*, A > 0 and ¢; > 0 such that a — ¢; € D*. Since by Lemma 7.7.5 the set
Dy, ,» is dense in R>q, we can find €2 € Dy, » such that 0 < €3 < €1. Using Lemma 7.7.9
above, we have

limsup & (a — €1+ €2) < Mp(X, qpey 1) + O

n—o0

Now, using the fact that e2 < €; we have

limsup Efp (o) < limsup Ef (o — €1 + €2) < Myp(A, g . NEE2W

n—0o0 n—oo

Now, by Lemma 7.7.7 we have

lim lim M¢(X, q,_ liea, A FCA=E¢(¢" (o —€1))

A—0e2—0

which leads to limsup,, o Efn(a) < E(q* (o — €1)). We conclude by letting e — 0 (recall that
by Proposition 7.3.1 D* is dense in R>g so it is possible to find €; > 0 arbitrary small such
that o — 1 € D*), using the continuity of £; (by Proposition 7.8.5) and the continuity of ¢* (by
Proposition 7.3.1). O

Proof of Lemma 7.7.4.
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Extending the interpolation method presented in Section 7.6, one can generalize Theorem 7.3.1
to take into account this additional side information. This gives directly

1 3 N
SIXSY NN + 28,8 —— To(a, e, \) Y inf sup Ips(g, 7, A) (7.7.24)
n n—oo qE[O,p} r>0

where Igg(g,7, \) is given by

Trs(a,7, A) & Iny(r) + aZpy (@) + l(WHS VALY D)+ Z'V) = S(p—q).  (7.7.25)

2

Conditionally on (V, f(Y(@)), the random variables W* and vAf(Y(@) + Z’ are independent,
therefore
(YD) VAPV D) 4 Z'|V) = I(W*, F(Y D) VAF(Y D) + Z|V).

Now, by the chain rule of the mutual information we have
W, fY D) VAF(Y D)+ Z'|V) = I VAF YD)+ Z V) +I(f(Y D) VALY D)+ 2|V, W)
We obtain that

WS VA YD)+ Z'|[V) = I(f YD) VAF YD) + Z'[V) = I(f (YD) VALY D) + 2|V, W07)

(7.7.26)

Notice that the last mutual information in the above equation does not depend on ¢ nor r.
Therefore we have:

inf sup Irs(q,m,A) = —eI (F(Y D) VAF(Y D)+ Z|V,W*) + inf supirs(q,m, ). (7.7.27)
q€[0,p] >0 q€[0,p] >0

Now, by the chain rule, we have
1 1 1
—I(X5Y, VY + 2|8, 8) = —I[(X*;Y|®) + —[(X*;VAY' + Z'|Y,®,®). (7.7.28)
n n n

The limit of the left-hand side is given by (7.7.24). By Corollary 7.3.1, we have lim,, o, [(X*; Y |®)/n =
100- It remains to investigate the last term of the equation above. By the arguments used to prove
(7.7.26), we have

I(X*VAY' + Z'|Y,8,&)=1(Y;VAY' + Z'|Y,®,&) - I(Y VY + Z'|Y, &, X* &)
= I(Y VY '+ Z'|Y,®,&) - I(Y';VAY' + Z'|X*,®).
(7.7.29)

We have I(Y';VAY' + Z'| X*, @) /n = el (Y{; VY] + Z;| X*, ®}) and it is not difficult to show,
using similar computations as in the proof of Corollary 7.3.1, that

I VAY] + 241X, @) —— I(f (YD) VAF(Y @) + 2|V, W),
(recall that the right-hand side does not depend on ¢). Combining this with (7.7.29), (7.7.28),
(7.7.24), Corollary 7.3.1 and (7.7.27), we obtain the desired result. O

7.7.3 Optimal generalization error: Proof of Theorem 7.3.4

Let a € D*. We will simply write ¢* instead of ¢*(a) in order to lighten the notations. For

x € R" we write Z(x) o \}(a} ®,o). By [119, Theorem 4.11] it suffices to show that for

152



. . d . .
all continuous bounded function f, v, f (_>—)> vf. Let f be a continuous bounded function
n—oo

and define

/f out dy|
We are going to show that v, f ﬁ vf by the moment method. The sequence of the

laws of (v, f)n>1 is tight because bounded. Let us consider some subsequence (n;);>; along
which it converges in distribution to some random variable Sy. Let k € N*.

E|(vaf)"] = E|F(Z(2))--- F(Z(x"))],

where ..., &® are i.i.d. samples from the posterior distribution of X* given Y, ®,
independently of everything else. We define the matrix

Qn = (<m(i)7 w(j)>) 1<i,j<k’

We extract from (n;);>; another subsequence (n;);>1 along which @,, converges weakly to

some random variable . By a central-limit-type argument (Lemma 7.7.2), (Z(x™®), ..., Z(x®)) SCEN

nj—o0
(Z1,...,Z) where Z is sampled, conditionally on @ from N(0,Q). By hypothesis (h4)
and Remark 7.3.1, F' is continuous almost everywhere. We get:

E|[(vaf)"] = E[F(2)--- F(Zy)],

where the limit is taken along the subsequence (n;) mentioned above. On the other hand

E[(v)}] = B|F(VEV + Vo= ¢ W) - F(VTV +Vp — ¢ Wi)]
= E[F(2))--- F(Z;)],
where V, Wy, ..., W), "= N(0,1) and Z' ~ N(0, R) where the matrix R € R¥** is defined

by
Ri,i =P and RiJ = q*, for all 4 7é j

By the Nishimori identity (Proposition 1.1.1) and the law of large numbers we have Q;; = p
almost surely for all i € {1,...,k}. If P, is not symmetric, then by Theorem 7.3.2 we
have () = R almost surely which gives

E[(vf)f] = E[F(2))- - F(Z)] = E|(vf)"].

If now P,y is symmetric. By Theorem 7.3.2 we have for all ¢ # j in {1,...,k}, Q;; €
{—=¢*,q¢"} almost surely. So if ¢* = 0, then = R almost surely and we are done.
Suppose that ¢* > 0. By Lemma 1.2.2 we have also for all 7,5,¢ € {1,...,k} distinct,
Q:;Q;i0Qei = (¢%)%, almost surely. The binary relation ~ on {1,...,k} defined by

i~ = Qi; >0
is with probability one an equivalence relation. Let n; = 1 if i ~ 1 and —1 otherwise. By

construction we have then @
(4 /
(anZ>1§i§k o (Zi)lgigk'
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We assumed that P, is symmetric, therefore F'(z) = F(|z|) for almost all z € R. Thus
F(n:Z;) = F(Z;) almost surely. This gives:

E[(nf)] = E|F(21) - F(Z)]
—E|F(n7)- - FnZ)]
—E|F(Z)) - F(Z)| = E[wf)].

Recall that v, f converges in distribution to Sy along the subsequence (n;). We get ES ’]? =

E[(V f )k} This last equality holds for all £ > 1 and since v f is a bounded random variable

we conclude that S @, f. vf is therefore the only point of accumulation (for the weak

convergence) of the sequence (v, f),>1. This sequence is tight because bounded we conclude

that v, f % vf for all continuous bounded function f and therefore v, m) v

n—o0

7.7.4 Generalization error of GAMP: Proof of Proposition 7.4.1

Let us decompose:

SGAMP¢ def E{(Ynew - ?GAMP,t) 2} _ E[yQ } I E[(?GAMPJ)Z} _9F [Y;leWY/GAMP,t} ‘

gen new
(7.7.30)
Lemma 7.7.10
Let V,W = N(0,1) and let Eyy denotes the expectation with respect to W only. We
have
\GAMP¢ 2
) t _t
E{Ynewy } m E{Ew[/yPout(dy|\/q7V+ 1% q W)] :| . (7731)

Proof. Start by writing
O q:>nevv; X* ¢n6W7 {B\t
E[YnewYGAMP’t] =E / Yy y/ Pout (dy‘<\/ﬁ>)Pout (dy/ <\/ﬁ>

where W ~ N(0,1) is independent of everything else. ®pey ~ N(0,1d,) is independent of X*
and Z!, so, conditionally on X*, Z! we have

(i’newaX*> <¢newa£t> ( 1( 1 X2 <§:\t,X*>>)
( Jn 0 Ja )~ V(0 (s T ) )

We assumed that (7.4.6) holds, i.e. (X* Z!)/n — ¢' and ||Z!||?/n — ¢!, in probability. By the
law of large numbers || X*||2/n — p in probability. Consequently,

+ p—th)

Do, X)) (P o, T d
(B X By 0o, (55),
\/ﬁ \/ﬁ n—o0 q q
Since x +— Poys(+|2) is continuous almost everywhere for the Wasserstein distance of order 2, the
function h : (a,b) — Ew [ vy Pout(dyla) Pout (dy'|b + /p — ¢ W) with W ~ N(0, 1) is continuous
almost everywhere. Therefore

def <(I'newaX*> <q)newa£t> (d) t t t
H, < h( L ) h(\Jat Zo+\/p— d Zu\Jd! Zo)., (7.7.32)
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where Zo, Z1 "~ N(0,1). Let > 0. We have by Jensen’s inequality

1+ S 1 1 5 4
HH | n} < E[|YnewyGAMP,t| +77} < E[( y2 5(YGAMP,t)2> }

2 new

1
§E|Y |2+27’] + E|YGAMP t|2+27]

By assumption, there exists 7 > 0 such that the two last terms above remain bounded with n:
H,, is therefore bounded in L'*" and is therefore uniformly integrable. From (7.7.32) we thus get

E[Voew VCAMP4] = E[H,, E[h(\/a' Zo +\/p — ¢ Z1.\Jd" Z0)]

n—)oo

2
:E{EW{/ypout(dy’\/;V"_ p_th)} }
Following the arguments of Lemma 7.7.10 one can also show that

(7] o Bl [PtV + o= d W] ],
E[Y2.] =2 B [y Puldyl V).

This proves (together with (7.7.30) and Lemma 7.7.10) Proposition 7.4.1.

7.8 The non-linear scalar channel

We prove here some properties of the free energy of the second scalar channel (7.3.3), where
V,W* X N(0,1) and
YO~ Po (- |GV + Vo —qW). (7.8.1)

In this channel, the statistician observes V and Y@ and wants to recover W*.

7.8.1 Study of the scalar free energy
We recall the definition of Up_ :

w2

2

Up,.(q) = Elog/dw\/_ Pout(YOL/gV + v —qu),

where Py (+|x) denotes the density of Py (-|x) with respect to the Lebesgue’s measure on
R or the counting measure on N (we will always be in one of these two cases). In this

section, we establish the main properties of Up . Recall that Zp,, (q) e (W Y@D|V) =
Up . (p) —¥p . (q) so the properties we will prove on Wp . can be directly translated for
Zp,,,, and vice- versa We will denote the expectation with respect the posterior distribution

of W* given Y@V by the Gibbs bracket (-),:

J Fw)e™ P Pou(Y /G V + p — qu)dw
[e PP (Y| /qV +/p—quw)dw

(f(w))q = (7.8.2)
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Proposition 7.8.1

Suppose that for all © € R, Pay(-|x) is the law of p(x, A) + VAZ where A > 0,
¢ : RxR — R is a measurable function and (Z, A) ~ N(0,1)® Py, for some probability
distribution P4 over R. In that case Py, admits a density given by

1
Pouw(ylr) = NG /dPA(a)e‘i(y—w(w))Q.

Assume that ¢ is bounded and C? with respect to its first coordinate, with bounded
first and second derivatives. Then q — Wp  (q) is convex, C* and non-decreasing on

[0, p].

Proof. Under the hypotheses we made on ¢, we will be able to use continuity and differentiation
under the expectation, because all the domination hypotheses are easily verified.

We compute now the first derivative. Recall that (-)4, defined in (7.8.2), denotes the posterior
distribution of W* given Y (9. We will use the notation u,(x) = log Pou(y|x). For q € (0,p) we
have

1 *
U, (0) = SE(uhi (VEV + VP = qu)idy) (VIV + Vo — W )>q

1 2
= §E<Uly<q)(\/av+vp—qw)>q >0,

where w ~ (-)4, independently of everything else. Wp, . is therefore non-decreasing. Using the
boundedness assumption on ¢ and its derivatives, it is not difficult to check that \Iljpout is indeed
bounded.

We will now compute Wp . To lighten the notations, we write u'(w) for uy,(v/qV +

Vp — qw). We compute
1 1

aqE<u’(w)u'<W*)>q = 1@[(2\/a Vs W*)u'(w*)<u'(w)u/(w*)>q] (A)
28 2\1@ V-3 \/plfq W) W)l (w) (B
+IE<<2\1/§ V- N:fq W) W) (©)

—E<u’(W*)u’(w)>q<(2\l/a Vs \/plfq W) (D) (783)

Notice that (A) = (C). Let w,w® w® "< (.),, independently of everything else. We compute,
using Gaussian integration by parts and the Nishimori identity (Proposition 1.1.1)

(4) = SB[/ V) (o W) (w)) ] + S [uf (W) (u/ V) ()?)
_ %E{ul(W*) <u,(W*)u,(w)>q <u,(w)>q] (7.8.4)
(B) = JE<u”(W*)u”(w)>q + E<u”(W*)u’(w)2>q - E<u”(W*)u'(w)>q<u’(w}>q (7.8.5)

*>ul(W*)ul(w(l))u’(w(2))>q

= —E@/ (WHu" (wD)d (w®)), — E@/ (W (w)2u (w®)),
+E(u/ (W) (wM)u! (w?)) o (! (w)) (7.8.6)
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We now replace (7.8.4), (7.8.5) and (7.8.6) in (7.8.3):

20 (q) = E<u’(W*)2u”(w)>q + E<u’(W*)2u’(w)2>q - E<u'(W*)2u'(w(1))u'(w@))>q

+E(u (W (w)) +E(u" (W' (w)?) — B (W' () (w®))
q q q
= B/ (W) (wW ) (w®)) g = E( (W) (V) (w?)) g + B (w))g -
Using the identity uf-(x) + u} ()2 = I]zélﬁz 8;}3, this factorizes and gives

") = }E[(<Péﬁt(y|\/§‘/+ VP —qu)

Poutq _2

Pour(Y[\/ZV + VP — qu) >q — (U (VAV + x/fqu}zﬂ >0. (7.8.7)

Up .. is thus convex on [0, p]. It is not difficult to verify (by standard arguments of continuity
under the integral) that U7, s continuous on [0, p], which gives that ¥p,, is C* on its domain.

O
Proposition 7.8.2

Suppose that for all z € R, Poy (- | ) is the law of p(z, A)++vAZ where ¢ : RxR — R
is a measurable function and (Z, A) ~ N(0,1) ® Pa, for some probability distribution
P4 over R. Assume also that

Elo(y/pZ, A)?] < o, (7.8.8)
and that we are in one of the following cases:

(i) A > 0.
(ii)) A =0 and ¢ takes values in N.

Then g — Vg, (q) is continuous, convex and non-decreasing over [0, p|.

Notice that (7.8.8) is for instance verified under hypotheses (h1)-(h2)-(h3)-(h4). Indeed,
by the central limit theorem (that we apply under (h1)-(h3)), ﬁ(X*, d,) % N(0, p).
Then using (h4) we get that

1
o x @0 4) 5 o2, A).
Finally, by (h2) the sequence above is bounded in L?, hence is limit has a finite second
moment which proves (7.8.8).
Proof. We deduce Proposition 7.8.2 from Proposition 7.8.1 above by an approximation proce-
dure. Since ¥p, ., = Up, . (p) — Ip,,., we will work with the mutual information Zp, . Let us
define U@ = o(/gV +/p—qW*, A) and YO = U@ 4 /AZ.

We start by proving Proposition 7.8.2 under the assumption (i). Let ¢ > 0. By density of the
C® functions with compact support in L? (see for instance Corollary 4.2.2 from [34]), one can
find a C* function ¢ with compact support, such that

E[(¢(Vp 2, 4) - 3(p 2, A)°] < €.

Let us write U@ = o(qV ++/p—qW* A) and Y@ = U + vAZ. We have by the chain rule

for the mutual information
IUWD, Yy @)y = (w*, u@, yD|V) = [(UD;, Yy DV, w*) + (WY D|V)
= LU YDV W) + I, (q)
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and similarly, 75 t( q) = I({UWD;Y@|V) — [(U@D;Y@|V,W*). By Corollary B.1, there exists a
constant C' > 0 such that

(U9, YD) - [(UD; Y D|V)| < Ce and |[I[(UD; VDV, W*) — [([UD; YDV, W*)| < Ce.

We get that for all ¢ € [0,p], |Zp,,.(q) — 15 (q)] < Ce. The function Ip,, can therefore
be uniformly approximated by continuous, concave, non-increasing functions on [0, p|: Zp,,, is
therefore continuous, concave and non-increasing.

Let us now prove Proposition 7.8.2 under the assumption (ii). Under this assumption we have
Zp,,. (q) = IW* UD|V) and by the case (i) we know that the function ia(q) = I(W*; U@ +
VAZ |V) is concave and non-increasing for all A > 0. By Corollary B.2 we obtain that for all
g € [0, p] and all A € (0, 1] we have

Zp,.. (q) — ialq)| < 100e™1/(64)

which proves (by uniform approximation) that Zp, , is continuous, concave and non-increasing.
O
Proposition 7.8.3

Under the same hypotheses than Proposition 7.8.2 above, W, is differentiable over
[0, p) and for all q € [0, p)

Vi (0) = 5o E )},

where we recall that (-), is defined by (7.8.2).

Proof. The fact that Up, . is differentiable on (0,p) follows from differentiation under the
expectation sign. In order to see it, we define X = ,/qV + /p —qW*. Then, for all q € [0, p):

_(x=yav)? (z=v/av)?
v E/dX Y /P (dy|X) 1o /dxﬂp (y]2) (7.8.9)
Pout \/m out (@Y g \/m out\Y . <O

We are now in a good setting to differentiate under the expectation sign. We have for all g € (0, p),

_(X-vav)? _(X-vav)?
0 |e Wma | e % ( 1 (X —-qv)? N V(X — \/cjv)) (7.8.10)
dq p—q N a  (p—aq)? Vilp—a) /- -

Thus

_e=vav)?
, 1 1 (X - Vav)y?t o vi(x - \fV . N Pl N
Vro (@) = 5E <p—q -0 ' Vil-a lg/d 27r(p—q)P0ut(Y| )

+1E< 1 _(m—\/aV)2+V(x—\/(jV)>
q

2 \p—q (p—q)? Va(p—q)

where the Gibbs brackets (-), denotes the expectation with respect to x ~ P(X|Y (9, V). The sec-
ond term of the sum above is equal to zero. Indeed by the Nishimori identity (Proposition 1.1.1):

E< 1 (33—\/§V)2+V(:v—\/§V)> :El 1 (X—\/aV)2+V(X—\/aV)
P q

—q¢  (p—q)? Va(p—q) p—q  (p—q)? Va(p—q)
- 1 g (1= w2 =0

pP—d
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We now compute, by Gaussian integration by parts with respect to V ~ N(0,1):

(X fv (0] 2771 e
E[ Va(p—a) 1g/d V2 (p—q)
_(@—vav)? (z—qV)?
— o " Y (@) (X—\fV o x& (@],
~E|— lg/d WPM(Y )| +B | log [ d S P (Y l)
+E<(X—\/§V)($—\/§V)> .
(p—q)? .

_(@—vav)?
Wo=a) Py (V@ |x)]

Bringing all together, we conclude:

(p—q)? p—q) “

It remains to show that ¥/, (0) = s-E(w)? = 0. This follows from taking the ¢ — 0 limit in the
ou 14
equation above. O

Proposition 7.8.4

Assume that the hypotheses of Proposition 7.8.2 hold and suppose also that the kernel
P, is informative. Then Wp_ , is strictly increasing on [0, p].

Proof. By contradiction we suppose that ¥p_ . is not strictly increasing on [0, p]. There exists
thus ¢ € (0, p) such that ¥, (q) = 0. By Proposition 7.8.3 this means that (w), = 0 almost
surely and therefore that

/ Pout (YD | VaV ++p — qw)we‘“’2/2dw =0
R

almost surely. Let us write 0 = /p — ¢. Consequently,
/ Pout(y | v + aw)we*w2/2dw =0 (7.8.11)
R

for almost all y in R (if we are under assumption (i)) or all y € N (under assumption (ii)) and
almost all v € R. We will now use the following lemma:

Lemma 7.8.1

Let Z ~ N(0,1) and let f : R — R be a bounded function. Suppose that for almost all
v € R,

EZf(v+Z)]=0.
Then, there exists a constant C' € R such that f(v) = C for almost every v.

Proof. Let us define the function
h:t—E[f(Z— /f —@+)*/2q,,
Lf( N

We have h/(t) = JTLTF [ f(@)(z + t)e~@HD?*/2qy = —E[Zf(Z — t)] = 0 and therefore h is equal to
some constant C € R. We are going to show that f = C almost everywhere. Without loss of
generality we can assume that C' = 0, otherwise it suffices to consider the function f = f — C.
Now we have for alln > 0,¢t € R

0= h™(1) —(@H+)2/2g, — /f D" Hy (z + t)e~ @024y

m/f
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where H,, is n*® Hermite polynomial, defined as H,,(z) = (—1)”612/ chi—nne*ﬁ/ 2. Therefore, for all

n >0,

/ flx e T2y = 0,
which implies that f = 0 almost everywhere since the Hermite functions form an orthonormal
basis of L%(R). O

We apply now Lemma 7.8.1 to (7.8.11) where the function f is given by f(z) = Pou(y | o).
We thus obtain that for almost every y, Pout(y | -) is almost everywhere equal to a constant: this
contradicts the assumption that Py is informative. O

7.8.2 Study of the generalization function

We turn now our attention to the study of the following “generalization function”:

[07 p] — RZO

¢ = E[(f(Y©) —E[fy@)|V])] (7.8.12)

5f2‘

where f : R — R is a continuous bounded function. We will prove that £ is contin-
uous (Proposition 7.8.5) and strictly decreasing (Proposition 7.8.6) under the following
hypotheses.

(a) For all # € R, Py (-|x) is the law of ¢(x, A) + VA Z where ¢ : Rx R — R is a
measurable function and (Z, A) ~ N(0,1) ® Py, for some probability distribution Py
over R.

(b) For almost all a € R (w.r.t. Pa), ¢(+,a) is continuous almost everywhere.

We suppose also that we are in one of the following cases:

(i) A>0.
(ii) A =0 and ¢ takes values in N.

Proposition 7.8.5

Under the hypotheses presented above, £ is continuous on [0, p].

Proof. Notice that

Er(q) = E[f(p(v/pV, A) + VAZ)"] — By [Bw- z.4[f ((VaV + Vo — aW*, A) + VAZ)]].

The first term does not depend on ¢ and the second one is continuous by Lebesgue’s convergence
theorem. O
Proposition 7.8.6

Assume that the hypotheses of Proposition 7.8.5 hold. Suppose that x — [ f(y)Pou(dy | )
is not almost-everywhere equal to a constant. Then &; is strictly decreasing on [0, p|.

Proof. &;(q) = E[f(Y9)?] — E[E[f(Y@)|V]?]. Since the first term does not depend on g,
it suffices to show that H : ¢ — E[E[f(Y(@)[V]?] is strictly increasing on [0, p]. We have for
q € (0,p):

_( -vav)?
2(p—q)

D) V] = /f out(dy[[V—i—\/iqw dw—/f ﬁPout(dy]x)dx
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So we have, using (7.8.10):

(z—/q V)2
(@) _ f) 1 _ (z — \/EIV)2 Vix— \/QV) e 200—a) o\
IV / 5 ( 0 -a T vio-0 ) 3y ol
S @y(1 _ 2o YP—aVIW*
2(p—Q)Elf(Y (- NG )Vl '
We obtain
H'(q) = plqE l]E[f(Y(q))\V] E [f(y<q>)(1 —W*? 4 W) VH . (7.8.13)

We compute by Gaussian integration by parts:

E [E/(VO)VIE [f(r @)y

V]| = E [VE[f(y D) VIE [f(v @)W

4l

_E [a?/E[ FYDVIE £y @) VH +E {E[f(wq))m %E s VH . (7.8.14)
We compute successively
iE[f(Y(Q))W] — 8/f( )Mp (dy|z)dz
av - 8V Y \/m out\ Ay
T — qV)2
x — \/ZIV) e 2(p—q)
/f = )Pout(dy|x)da:
Vi -
= mE[f(Y( ))W v]. (7.8.15)
(z—/q V)2
0 q N _ 15, aj—\/aV e 200—a)
S EI O OW VI = g5 [ 1) S s Pl
(z—/q V)2
\f \f(x—\fV) T 2009
_/f (p—q)* )% o e
AEU(Y@)( ~14+w2)|v]. (7.8.16)

pP—q
By plugging (7.8.14)-(7.8.15)-(7.8.16) back in (7.8.13) we get:
1
H'(q) = —E[E[f(y @)W |V]*] >0
pP—q
Let us suppose now that H is not strictly increasing on [0, p]. This means that we can find

q € (0, p) such that H'(q) = 0 and therefore E[f(Y (9)W*|V] = 0 almost surely. This gives that
for almost all v € R,

E[W/f(y)Pout(dy\\/év+\/p—qW)] =0,

where E is the expectation with respect to W ~ A(0,1). Lemma 7.8.1 gives then that the function
x — [ f(y)Pout(dy|x) is almost everywhere equal to a constant: we obtain a contradiction. We
conclude that H is strictly increasing on [0, p| and thus &; is strictly decreasing on [0, p|. O

Proposition 7.8.7

Assume that the hypotheses of Proposition 7.8.5 hold. If the channel P, is in-
formative, then there exists a continuous bounded function f : R — R such that
x = [ f(y)Pouw(dy|x) is not almost everywhere equal to a constant.
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Proof. By contradiction, let us suppose that for all continuous bounded function f: R — R we
have

/ f () Pout(dylz) = Cf

for almost all « € R, for some constant C'y € R. Let X ~ N(0,1) and Y ~ P,y (-|X). We have
then E[f(Y)|X] = C; = E[f(Y)] almost surely. Let g : R — R be another continuous bounded
function and compute:

Elg(X)f(Y)] = E[g(X)E[f (V)| X]] = Elg(X)E[f(Y)].

2 2
It follows that X and Y are independent: The measures Pyt (dy|z)< \/2—7:2 dx and E[ Py (dy| X)) < \/2—7:2 dx

are therefore equal. Consequently, for almost every x,y we have
Pout(y]7) = E[Pout (y| X)] -

This gives that for almost every y, Pout(y|-) is almost everywhere equal to a constant. We conclude
that P,y is not informative, which is a contradiction. ]
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Chapter 8

The distribution of the Lasso:
Uniform control over sparse balls and
adaptive parameter tuning

8.1 Introduction to the Lasso

Given data (z;,v;), 1 <i < n, with z; € RY, y; € R, the Lasso [206, 46] fits a linear model
by minimizing the cost function

1 & A

Y 3 —|0

" o ; ( (i ) * n| |

1 2

— |ly — X0 —10]. 8.1.1

= ol X0+ o (8.0
Here X € R™¥ is the matrix with rows x1,...,2Zn, ¥ = (Y1,-..,Yn), ||v|| denotes the £,

norm of vector v, and |v| its £; norm. To fix normalizations, we will assume that the
columns of X have ¢, norm 1+ o(1). (Note that this normalization is different from the
one that is sometimes adopted in the literature, but the two are completely equivalent.)

A large body of theoretical work supports the use of ¢; regularization in the high-
dimensional regime n < N, when only a small subset of the coefficients 6 are expected
to be large. Broadly speaking, we can distinguish two types of theoretical approaches.
A first line of work makes deterministic assumptions about the design matrix X, such as
the restricted isometry property and its generalizations [42, 39]. Under such conditions,
minimax optimal estimation rates as well as oracle inequalities have been proved in a
remarkable sequence of papers [41, 33, 210, 162, 178]. As an example, assume that that
the linear model is correct. Namely,

y=X0"+o0z, (8.1.2)

for o > 0, 2 ~ N(0,1d,,), and 0* a vector with sy non-zero entries. Then, a theorem of
Bickel, Ritov and Tsybakov [33] implies that, with high probability,

A>oy/eplogN = [0, — 6%> < CsoA?, (8.1.3)

for some constants ¢y, C' that depend on the specific assumptions on the design. (The
normalization of [33] is recovered by setting o2 = 03# /n, where 03(# is the noise variance

of [33].)
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Figure 8.1: Estimation risk of the Lasso for different choices of A, as a function of §.
N = 8000. In both plots, ¢ = 0.2. The true coefficients vector 6* is chosen to be sN-sparse
with s = 0.1. The entries on the support of §* are drawn i.i.d. A(0,1). Cross-validation is
carried out using 4 folds. SURE is computed using the estimator & for the plot on the left,
and the true value of o on the right.

Left: A standard random design with (X;;) ~q N(0,1/n).

Right: The rows of the design matrix X are i.i.d. Gaussian, with correlation structure given
by an autoregressive process, see Eq. (8.4.4). Here we used ¢ = 2.

Unfortunately, this analysis provides limited insight into the choice of the regularization
parameter A\ which —in practice— can impact significantly the estimation accuracy. As an
example, Figure 8.1.3 reports the result of a small simulation in which we compare four
different methods of selecting A\. The bound of (8.1.3) suggests to set A = ogv/colog N.
For the standard random design used in the left frame, the optimal constant is expected
to be ¢o = 2 [69, 72]. We compare this method to three procedures that adapt the choice
of A to the data: cross validation (CV), Stein’s Unbiased Risk Estimate (SURE), and a
procedure that minimizes an estimate of the risk (EST). We refer to the next sections for
further details on these methods. Note that all of these adaptive procedures significantly
outperform the ‘theory driven’ A\: over a broad range of sample sizes n, the resulting
estimation error is 2 to 3 times smaller. Further, the error achieved by these methods is
quite close to the Bayes optimum.

These empirical observations are not captured by the bound (8.1.3), or by similar
results.

An alternative style of analysis postulates an idealized model for the data and derives
asymptotically exact results. Throughout this paper we will consider the simplest of such
models, by assuming that design matrix to have i.i.d. entries X;; ~ N(0,1/n). While this
assumption is likely to be violated in practice, it allows to derive useful insights that are
mathematically consistent, and susceptible of being generalized to a broader context. This
type of analysis was first carried out in the context of the Lasso in [27] and then extended to
a number of other problems, see e.g. [121, 205, 67, 204, 81, 198]. As an example, Figure 8.1
reports the predictions of this analysis for the risk of the three adaptive procedure for
selecting A\. The agreement with the numerical simulations is excellent.

Unfortunately, the results in [27] (and in follow-up work) do not allow to derive in a
mathematically rigorous way curves such as the ones in Figure 8.1. In fact earlier results
hold ‘pointwise’” over A and hence do not apply to adaptive procedures to select A. Further
they provide asymptotic estimates ‘pointwise’ over 6, and hence do not allow to compute
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—for instance— minimax risk.

In order to clarify these points, it is useful to overview informally the picture emerging
from [27, 71]. Fix 8 € RN, X € Ry, and let n(x;b) = (|z| — b) sign(z) be the soft
thresholding function. By the KKT conditions the Lasso estimator 0, satisfies

@zn(@f\l;on'), §§:§A+%XT(y—X§A), (814)
where the vector gf is also referred to as the ‘debiased Lasso’ [221, 209, 113]. The above
identity holds for arbitrary «,7 > 0. However, [27] predicts that the distribution of the
debiased estimator éf simplifies dramatically for specific choices of these parameters.

Namely, let © be a random variable with distribution given by the empirical distribution
of (6;)i<n (i.e., © = 6; with probability 1/N, for i € {1,...,N}) and let Z ~ N(0,1) be
independent of ©. Define a, 7, to be the solution of the following system of equations (we
refer to Section 8.3.1 for a discussion of existence and uniqueness):

72 = 0% 4 ;E[(n(@ +77,at1) — @)2] ,

(8.1.5)
A= om’(l—%lP’(‘@—l—TZ‘ >oz7')).
When «, 7 are selected in this way, 9/\ is approximately normal with mean 6* (the true

parameters vector) and variance 72: 8 ~ N(6*, 721d). More precisely, for any test function
f:RxR—R, with [f(z) —f(y)| < L+ ||z|| + ||y]]) ||z — y||, almost surely,

Jim Zf (07,65,) = E[f(6,0 + .2)|, (8.1.6)
Jim Zf ,0x:) =E[f(0,7(0 +7.7;0.7))] (8.1.7)

This is an asymptotic result, which holds along sequences of problems with: (i) Converging
aspect ratio n/N — § € (0,00); (i7) Fixed regularization A € (0,00); (iii) Parameter
vectors 0* = 0*(n) whose empirical distribution converges (weakly) to a limit law pg. As
emphasized above, this does not allow deduce the behavior of the Lasso with adaptive
choices of A (there could be deviations from the above limits for exceptional values of \),
or to compute the minimax risk (there could be deviations for exceptional vectors 6*).

The importance of establishing uniform convergence with respect to the regularization
parameter A was recently emphasized by [159]. Among other results, these authors derive
a uniform convergence statement for the related approximate message passing (AMP)
algorithm. However, in order to establish uniform convergence, they have to construct an
ad-hoc smoothing of the quantity of interest, which is roughly equivalent to discretizing
the corresponding tuning parameter.

Our goal here is to obtain uniform (in \) convergence results for the Lasso, hence
providing a sound mathematical basis to the comparison of various adaptive procedures,
as well as to the study of minimax risk.

The next sections organized as follows. Section 8.2 reviews related work. We state our
main theoretical results in Section 8.3. In Section 8.4 we apply these results to two types of
statistical questions: estimating the risk and noise level, and selecting A through adaptive
procedures. Further, we illustrate our results in numerical simulations. Finally, Section 8.5
outlines the main proof ideas, with the most technical legwork deferred to Chapter 9.
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8.2 Related work

There is —by now— a substantial literature on determining exact asymptotics in high-
dimensional statistical models, and a number of mathematical techniques have been de-
veloped for this task. We will only provide a few pointers focusing on high-dimensional
regression problems.

The original proof of [27] was based on an asymptotically exact analysis of an approx-
imate message passing (AMP) algorithm [26] that was first proposed in [71] to minimize
the Lasso cost function. Variants of AMP have been developed in a number of contexts,
opening the way to the analysis of various statistical estimation problems. A short list
includes generalized linear models [176], phase retrieval [188, 137], robust regression [67],
logistic regression [198], generalized compressed sensing [31]. This approach is technically
less direct than others, but has the advantage of providing an efficient algorithm, and is
and not necessarily limited to convex problems (see [151] for a non-convex example).

As mentioned above, our work was partially motivated by the recent results of [159]
that establish a form of uniformity for the AMP estimates —but not for the Lasso solution.
It would be interesting to understand whether the approach of [159] could also be used to
obtain uniform results for the Lasso or other statistical estimators.

Here we follow a different route that exploits powerful Gaussian comparison inequalities
first proved by Gordon [93, 94]. Gordon inequality allows to bound the distribution of a
minimax value, i.e. the value of a random variable G, = min;<y max;<y G;;, where
(Gij)i<nj<m is a Gaussian process, in terms of a similar quantity for a ‘simpler’ Gaussian
process. The use of Gordon’s inequality in this context was pioneered by Stojnic [196]
and then developed by a number of authors in the context of regularized regression [205],
M-estimation [204], generalized compressed sensing [5], binary compressed sensing [195]
and so on. The key idea is to write the optimization problem of interest as a minimax
problem, and then apply a suitable version of Gordon’s inequality. A matching bound
is obtained by convex duality and then a second application of Gordon’s inequality. In
particular, convexity of the cost function of interest is a crucial ingredient.

While the Gaussian comparison inequality provides direct access to the value of the
optimization problem, understanding the properties of the estimator can be more chal-
lenging. We identify here a property (that we call local stability) that allows to transfer
information on the minimum (the Lasso cost) into information about the minimizer (the
Lasso estimator). We believe that this strategy can be applied to other examples beyond
the Lasso.

Independently, a different approach based on leave-one-out techniques was developed
by El Karoui in the context of ridge-regularized robust regression [121, 81].

Finally, a parallel line of research determines exact asymptotics for Bayes optimal esti-
mation, under a model in which the coordinates of # are i.i.d. with common distribution
pe. In particular, the asymptotic Bayes optimal error for linear regression with random
designs was recently determined in [17, 179] and is also a Corollary of Theorem 7.3.2 from
the previous chapter. Of course —in general— Bayes optimal estimation requires knowledge
of the distribution pg, and is not computationally efficient. We will use this Bayes-optimal
error as a benchmark of our adaptive procedures.
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8.3 Main results

8.3.1 Definitions

As stated above, we consider the standard linear model (8.1.2) where y = X60* + o0z , with
noise z ~ N(0,1d,), and X a Gaussian design: (X, ;)i<nj<n ~ N(0,1/n). The Lasso
estimator is defined by

0, = arg Grélﬂi%r]% L£(0). (8.3.1)

(The minimizer is almost surely unique since the columns of X are in generic positions.)
We set § = n/N to be the number of samples per dimension. We are interested in uniform
estimation over sparse vectors 6*. Following [69, 115] we formalize this notion using £,-balls
(which are convex sets only for p > 1).

Definition 8.3.1
Define for p,§ > 0 the {,-ball

1 N
T lap <o)

=1

Fi6) = fa e BY

and for s € [0, 1]
Fo(s) = {z € RV |||zflo < sN'}.

By Jensen’s inequality we have for p > p’ > 0, F,(§) C Fp (£).
—z2/2
Let ¢(z) = <=2 be the standard Gaussian density and ®(z) = JZ. o(t)dt be the

ez
associated cumulative function. In the case of ¢y balls (sparse vectors), a crucial role is

played by the following sparsity level.
Definition 8.3.2

Define the critical sparsity as

L= 2((1+0%)®(—a) — ag(a)) } .

Smax(0) = d max
) { 1402 = 2((1+ a?)@(—a) — ag(a))

a>0

See Figure 7.4 for a plot of spac. The critical sparsity curve first appears in the seminal
work by Donoho and Tanner on compressed sensing [73, 68]. These authors consider
the noiseless case (z = 0) of model (8.1.2) and reconstruction via ¢; minimization (which
corresponds to the A — 0 limit of the Lasso). They prove that ¢; minimization reconstructs
exactly 0* with high probability, if ||0*||o < N(smax(0) — €), and fails with high probability
if [|0*]|0 > N(Smax(9) + &) (for any € > 0). A second interpretation of the critical sparsity
Smax(0) was given in [72, 208, 205]. For ||0*]|o < N(Smax(0) — €), the Lasso achieves stable
reconstruction. Namely, there exists M = M(s,d) < oo for s < spmax(d), such that, if
16*]l0 < Ns, ||0x — 0*||s < M(s,8)02. Our results provide a third interpretation: uniform
limit laws for the Lasso will be obtained on ¢y balls only for s < spax(9).
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A crucial role in our results is provided by the following max-min problem:

maxmin - (6, 7)., (8.3.2)
2 2
def (0 Bl Lo . fw _
OA(B,T) = (7’ +T> 5 25 +5Erw11€1]%{276 BZw + AMw + 6| )\]@]}.

The expectation above is with respect to (0,72) ~ fig- @ N(0, 1), where [ig- denotes the
empirical distribution of the entries of the vector 6*:

1 N

Proposition 8.3.1

The max-min (8.3.2) is achieved at a unique couple (.(\), 7.(\)). Moreover, (B.(X), Tu(N))
is also the unique couple (3,7) € (0,+00)? that verify

=02+ éE{(n(@ + TZ,T%) — @)2}
B = T( — %E {n’(@+7Z,%)D )

We will also use the notation a.(A) = A\/B.(\) and

(8.3.3)

se N =E[7(0+ (V) Z nNa(W)| =P(|0 + (V) Z]| >0 (M7(N).  (8.3.4)

We will sometimes omit the dependency on A and write simply a, 8y, 7%, S.. The
distribution 43 defined below will correspond (see Theorem 8.3.1 in the next section) to
the limit of the empirical distribution of the entries of (0, 6*).

Definition 8.3.3
Let (©,2) ~ fig« @ N(0,1). We denote by u} the law of the couple

(n(®+7(NZ, .M (V), ©).

8.3.2 Results

We fix from now on 0 < Amin < Amax and D C RY that can be either Fp(€) for some
&,p > 0, or Fo(s) for some s < Spax(d). Our uniformity domain is defined by Q =
(6, o, D, Anin, )\max>. Namely, we will control §>\ uniformly with respect to 8* € D and
A € [Amin, Amax), With n/N = §. We will call constant any quantity that only depends on
). In absence of further specifications, C, ¢ will be constants (that depend only on ) that
are allowed to change from one line to another.

Our first result shows that the empirical distribution of the entries {(f).,07)}i<n is
uniformly close to the model p3. We quantify deviations using the Wasserstein distance.
Recall that, given two probability measures p, v on R? with finite second moment, their
Wasserstein distance of order 2 is

1/2
Walov) = (_inf [ lle =yl 2(de.dy) ) (8.3.5)

vEC (ks
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where the infimum is taken over all couplings of u and v. Note that W5 metrizes the
convergence in Eq. (8.1.7). Namely lim,, o Wa(in, 1) = 0 if and only if, for any test
function f : R x R — R, with [f(z) — f(y)] < L(1 + ||z]| + |ly])||z — y||, we have
limy, oo [ f(2)pn(dx) = [f(x)p.(dz) [213]. It provides therefore a natural way to extend
earlier results to a non-asymptotic regime.

Theorem 8.3.1

Assume that D = F,(§) for some { > 0 and p > 0. Then there exists constants C,c > 0
that only depend on €2, such that for all € € (0, %]

~ k 2
sup IP’( sup Wz(u@,g*),m) 26)

0*€D AEP\miru)\max]

< Qe max(ha)=1 \r(1/p=1)4 exp (_cNeze“ log(E)_2> )

where a = % +

Sl

Theorem 8.3.1 is proved in Section 9.3.2 of Chapter 9.

Remark 8.3.1. It is worth emphasizing in what sense Theorem 8.53.1 is uniform with
respect to A € [Amin, Amax] and to 6* € D:

e Uniformity with respect to A. We bound (in probability) the mazimum (over \)
deviation between the empirical distribution ﬁ@ o) and the predicted distribution py.

(The supremum over X is ‘inside’ the probability.)

e Uniformity with respect to 6*. We bound the mazimum probability (over 6*) of a

deviation between ﬁ@ 6%) and . (The supremum over 0* is ‘outside’ the probability.)

The reader might wonder whether it is possible to strengthen this result and bound the
mazimum deviation over 0 (‘move the supremum over 6* inside’). The answer is negative.
In particular, we can choose the support of 60* to coincide with a submatriz of X with
atypically small minimum singular value. This will result in larger estimation error ||6?A,\ —
0*||l2, and hence in a large Wasserstein distance Wg(ﬁ@ﬁ*),uj).

Remark 8.3.2. Note that Theorem 8.3.1 does not hold for {y balls. This is probably a
fundamental problem, since controlling Wy distance uniformly over €y balls is impossible
even in the simple sequence model (or, equivalently, for orthogonal designs X ). Namely,
consider the case in which we observe y; = 0F + z;, i < N, where (z)icn < N(0,72),
and we try to estimate 60 by computing 5,\71 = n(y;; \). Then there are vectors 6* € Fy(s)
such that the empirical law [L@ﬁ*) does not concentrate in Wasserstein distance around its

expectation i}, i.e. the law of (©,1n(© + Z;\)) for G ~ N (0, 7).

In order to see this, it is sufficient to consider the vector
0* = (N,2N,...,kN,0,...,0).

In Section 9.6.1 of Chapter 9, we prove that (for this choice of 0*) there exists a constant
co such that Wg(ﬁ@ 9*),/fj\) > \/k/N with probability at least 1 — e~*% for all N large
enough.
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We can think of several possibilities to overcome this intrinsic non-uniformity over ¢
balls. One option would be to consider a weaker notion of distance between probability
measures. Here we follow a different route, and prove uniform estimates over ¢, balls
for several specific quantities of interest. In order to state these results, we introduce
the following quantities, which correspond to the risk and the prediction error (and are
expressed in terms of the solution (7, f.) of (8.3.3))

R.(\) = 6(m(N)? = 0?), (8.3.6)
PV = B\ + 2‘;3*@) -z, (8.3.7)

Theorem 8.3.2

Assume here that D is either Fo(s) or F,(§) for some 0 < s < Spax(d) and € > 0,p > 0.
There exists constants C, ¢ > 0 that only depend on €2, such that for all € € (0, 1]

1~ 2 C
sup IP’( sup (||9A _ P — R*()\)) > e) < 2 NtemeNe, (8.3.8)
0*€D )\e[)\min,)\max] N €
1 o112 2 2 ¢ —cNe?
sup P sup <||y — XOx||” = B.(N) ) >e| < 5 Ne : (8.3.9)
0*eD AE[Amin,Amax] N1 €
1 * n 2 2 C —cNeé?
sup P sup (||X(9 — 0yl —P*()\)> >e) < TNTNE(83.10)
0*€D )\E[)\min)\max n 62

where ¢ = 0 if D = Fy(s) and ¢ = (1/p — 1), if D = F,(§).

The statement (8.3.8) is proved in Section 9.3.2, while (8.3.9)-(8.3.10) are proved in
Section 9.4 of Chapter 9. R
So far we focused on the Lasso estimator 6. The debiased Lasso estimator is defined
as
- XT(y—X0
9§:9A+—(y1 = /\).
1= {[0xllo
This estimator plays a crucial role in the construction of confidence intervals and p-
values [221, 209, 113, 199], and provide an explicit construction of the ‘direct observations’
model in the sense that 6 is approximately distributed as N'(6*, 721d). We let ,uf\d) be the

law of the couple (© + 7.(A)Z, ©), where (0, 2) ~ fig @ N'(0, 1).

Theorem 8.3.3

Let [ia 4. denote the empirical distribution (on R?) of the entries of (0%,0*). There
A7
exists constants ¢, C' > 0 such that for all e € (0, 1],

fi (d) C oy
sup P( sup  Wallizu pors fir”) > e) < C, |
O*€F4(€) AE[Amin, Amax] ( (64,6%)) F°A ) 1

Theorem 8.3.3 is proved in Section 9.6.5 of Chapter 9.
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8.4 Applications

8.4.1 Estimation of the risk and the noise level

In order to select the regularization parameter and to evaluate the quality of the Lasso
solution 6, \, it is useful to estimate the risk and noise level. The paper [24] developed a suite
of estimators of these quantities based on the asymptotic theory of [27]. The same paper
also proposed generalizations of these estimators to correlated designs. Here we revisit
these estimators and prove stronger guarantees. First, we obtain quantitative bound on
the consistency rate of our estimators. Second, our results are uniform over A\, which
justifies using these estimators to select \.

Let us start with the estimation of 7,(\) which plays a crucial role in the asymptotic
theory. We define R

n = [10xllo

We will see with Theorem 9.6.1 presented in Section 9.6.4 of Chapter 9 that

) 1~ def
(im0l = B8 + 7.2] = m0/3) 2 5.,

Further, by Theorem 8.3.2, we have %Hy — X0, = B.(\) + 0n(1). Recall that by (8.3.3)
we have §,(\) = 7'*()\)(1 — %S*()\)). We deduce 7(\) = 7.(A) + 0,(1). More precisely we
have the following consistency result.

Corollary 8.4.1

Assume here that D is either F(s) or F,(§) for some 0 < s < Syax(d) and € > 0,p > 0.
There exists constants C, ¢ > 0 that only depend on 2 such that for all € € (0, 1]

sup P ( sup I7(A\) — (N > e) < Ce ®Nlexp (—CNEG) ,

Q*GD AE[)\minyAmax}

where ¢ =0 if D = Fo(s) and g = (1/p — 1)+ if D = F,(§).

We next consider estimating the ¢y error of the Lasso. Following [27], we define

|37y —x8)]
V(1= L18alo)”

RO) =700 (1Bl — 1) +

Corollary 8.4.2

Assume here that D is either Fy(s) or F,(§) for some 0 < § < Spax(d) and € > 0,p > 0.
There exists constants C, ¢ > 0 such that for all € € (0, 1],

~ 1 ~ .
R(\) — NHGA — 0" > e> < quecNE“,

sup P( sup
0*eD AE[Amin;Amax]

where ¢ = 0 if D = Fo(s) and ¢ = (1/p — 1); if D = F,(§).
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Corollary 8.4.2 is proved in Section 9.6.6 of Chapter 9. Since by Corollary 8.4.2, Corol-
lary 8.4.1, Theorem 8.3.2 we have with high probability R(\) ~ £ [|0y — 0*||]* ~ 6(7.(A)* —
0?) ~ §(T(\)? — 0?), the estimator

X7 - X8
n(1 = L10]o)’

F*(\) = F(A)? — ]ZE()\) = ?(A)2<1 + ]Z - i!@Ho) -

(8.4.1)

is a consistent estimator of the noise level 2.
Corollary 8.4.3

There exists constants C, ¢ > 0 that only depend on €, such that for all € € (0, 1]

R C
sup P ( sup ’02(/\) — 02‘ > 6) < *GNQG_CNGG :
0*cD )\E[Amim)\max] €

Finally, we consider the prediction error || X* — X@,||. Stein Unbiased Risk Estimator
(SURE) provides a general method to estimate the prediction error, see e.g. [194, 78, 207].
In the present case, it takes the form

~ 1 ~ 202 .
PSURE()) = 5||y—X9A||2+T||9A||O- (8.4.2)

Tibshirani and Taylor [207] proved that PSURE()) is an unbiased estimator of the prediction
error, namely

~ 1 ~
E[PSURE(\)] = ~l|lxor - X0, + o> (8.4.3)

The next result establishes consistency, uniformly over A and 6*, with quantitative concen-
tration estimates.
Corollary 8.4.4

Assume here that D is either Fy(s) or F,(§) for some 0 < s < syax(d) and & > 0,p > 0.
There exists constants C,c > 0 that only depend on Q such that for all € € (0, 1]

1 ~ ~ C
*”X@* _XHAHQ +g2 _ PSURE(/\)‘ > E> < ?qu—cNGG’
€

sup ]P’( sup
0*€D AE[Amin,Amax] | TV
where ¢ =0 if D = Fo(s) and ¢ = (1/p — 1)+ if D = F,(§).

The same result holds if o in (8.4.2) is replaced by an estimator of the noise level
satisfying the same consistency condition as & defined by (8.4.1) (cf. Corollary 8.4.3).

This corollary follows simply from Theorem 9.6.1 from Chapter 9 and Theorem 8.3.2.

Remark 8.4.1. Notice that exact unbiasedness of PSURE(X) only holds if the noise z in the
linear model (8.1.2) is Gaussian [207]. In contrast, it is not hard to generalize the proofs
in the present paper to include other noise distributions.

8.4.2 Adaptive selection of A

As anticipated, we can use our uniform bounds to select A through an adaptive procedure.
We discuss here three such procedures, that have already been illustrated in Figure &8.1:
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(i) Selecting A by minimizing the estimate 7(\), we denote this by AEST: (i) Select A
as to minimize Stein’s Unbiased Risk Estimate PSURE(X), ASURE: (jii) Select A by k-fold
cross-validation, MOV We will next describe these procedures in greater detail, and state
the corresponding guarantees.

Minimization of 7()\). Since the /5 risk of the Lasso is by Theorem 8.3.2 approximately
equal to R.(A\) = 0(7.(\)? — 0?) and since by Corollary 8.4.1, 7 is a consistent estimator
(uniformly in \) of 7., a natural procedure for selecting A is to minimize 7. We then define
AT = argmin T(N).

)\e[)\miny)\max]

The next result is an immediate consequence of Theorem 8.3.2 and Corollary 8.4.1:
Proposition 8.4.1
Assume here that D is either Fo(s) or F,(§) for some 0 < 8 < Spax(0) and & > 0,p > 0.
There exists constants C,c > 0 that only depend on Q such that for all € € (0, 1]

inf P = oper — 02 < inf {1||§ —9*||2}+ > 1o oY ene
grep \ NIV AmST - Ae[A"lﬁ,Amax] N €)= e © ’

where ¢ = 0 if D = Fy(s) and ¢ = (1/p — 1) if D = F,(§).

Minimization of SURE. We define

ASURE —  arg min PSURE()\).
)\E[Amirn)\max]

Here, it is understood that we can use either o or 6(A), cf. Eq. (8.4.1), in the definition of
PSURE e deduce from Corollary 8.4.4:
Proposition 8.4.2

Assume here that D is either Fo(s) or F,(§) for some 0 < s < Syax(d) and € > 0,p > 0.
There exists constants C,c > 0 that only depend on 2 such that for all € € (0, 1]

. 1 a %112 . 1 n * (|2
_ -~ _ < _ _
el*réfDP (TL HXH)\SURE Xe || - )\E[)\ng::vf)\max] {n HXG)\ Xg || } + 6)

>1—CeSNlexp (—CNEG) ,

where ¢ =0 if D = Fy(s) and ¢ = (1/p — 1)1 if D = F,(§).

Cross-validation. We analyze now k-fold Cross Validation. Let k& > 2 and define n; =
n(k — 1)/k. We partition the rows of X in k groups: we obtain k-submatrices of size
(n/k) x N that we denote XV ... X®) Let us also write for i € {1,...,k}, X for the
submatrix of X obtained by removing the rows X ®. We denote by y@, 2 and y(\?, z(\V)
the corresponding subvectors of y and z.

The estimator R¥CV of the risk using k-fold cross validation if defined as follows. For
1t =1,...,k solve the Lasso problem

. LAY
) _X<\z>9H n n,g,} 7

~ . 1
§ = argmin { —
PcRN 2nk
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and then compute
2

~.

. 1 Kk . 4
Rk-CV(}\) _ N Z y(z) . X(z)eﬁ\
i=1

Finally, we set A as follows

MV = argmin RFCV(N) .
)\e[)\mina)\max]

The next Proposition shows that R¥CV()) is equal to the true risk (shifted by do2) up
to O(k=1/2).

Proposition 8.4.3

There exists constants ¢, C' > 0 that depend only on (), such that for all k > 2 such
that smax<(k — 1)5/k) > s in the case where D = Fy(s), we have

~ 1 ~
RECY(N) = 5105 = 077 = 60

sup P sup

( > O) < OkS Nag—eN/K® 7
0*€D AEP\min)\max} o \/E o

where ¢ = 0 if D = Fo(s) and ¢ = (1/p — 1); if D = F,(§).

Proposition 8.4.3 is proved in Section 9.6.7 from Chapter 9. It follows from Proposi-
tion 8.4.3 that with high probability,

1

N * . - * —
NH‘QX’C- ov — 0%])* < R inf — 165 — 6% + O(k~1/?).

ep\min;}\max] N
8.4.3 Numerical experiments

In this Section we compare numerically various different choices for the regularization
parameter A\, namely AFST \SURE and A\=CV presented in the previous section. For these
experiments we take the components 67, ..., 0% to be i.i.d. from

P0:$N<O,1)+(1—S)50

Within this probabilistic model, we can compare achieved by our various choice of \ to the
Bayes optimal error (Minimal Mean Squared Error):

~ 2 2
MMSE, = m@inE{ o — 0y, X)| } - E[ 6" — E[0*]y. X]| ] ,

where the minimum is taken over all estimators 6 (i.e. measurable functions of X,).
The limit of the MMSE has been recently computed by [17] and [179] and is given by
Theorem 8.4.1 below, which is a direct corollary from Theorem 7.3.2. Recall, that given two
random variables U, V', their mutual information is the Kullback-Leibler divergence between

their joint distribution and the product of the marginals: I(U; V) Dt (puvllpu @ pv).
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Theorem 8.4.1

Define the function

Wy, (m) = 1P0< o ) + g(log(l m)—

o )
14+m 14+m/’

where Ip,(r) = 1(©; \/rO®+ Z) for (0,7) ~ Py@N(0,1). Then, for almost every § > 0

the function Vs, admits a unique maximizer m*(d, o) on R and

MMSE e Sa*m*(6,0).

Figure 8.1 reports the risk achieved by the various choices of A as a function of the
number of samples per dimension §. We also compare the data-driven procedures of the
previous section to the theory-driven choice A = 04/2log N. In the left frame, we consider
uncorrelated random designs: X;; = A(0,1/n). On the right, we consider i.i.d. Gaussian
rows with covariance structure determined by an auto-regressive model. Explicitly, the
columns (Xj)i1<j<ny of X are generated according to:

1
X1 = uo, Xj+1 = 7@

where u; "% N(0,1d/n) and ¢ = 2. For both types of designs, AT, ASURE and \b-CV
perform similarly, and substantially outperform the theoretical choice A = o+/2log N.

For uncorrelated designs, the resulting risk is closely tracked by the asymptotic theory,
and is surprisingly close to the asymptotic prediction for the Bayes risk MMSE .

While our theory does not cover the case of correlated designs, the qualitative behavior
is remarkably similar. We also observed that in this case, the risk estimator fi()\) is not
consistent but its minimum is roughly located at the same value of A as for uncorrelated
designs.

Next we study adaptivity to sparsity. On Figure 8.2, we plot the risk as a function of
the sparsity of the signal 8*. We compare the three adaptive procedures (namely, XEST,
ASURE and ARCV) | to the following choice

/ 1
)\MM(S()) = Q0 1-— gMSO(aO) s

M(e) = s(1+a?) +2(1 = 5)((1 + 0*)®(—a) — ag(a)),

Qo = arg glzlgl Mso (a) ’

(6X; +uy) (8.4.4)

where $p < Smax(0) is a nominal value for the sparsity (for Figure 8.2, we use sy = 0.3).
The value AMM(5s4) is expected to be asymptotically minimax optimal over Fy(sq) [72].

Also in this example, adaptive procedures dramatically outperform the fixed choice
A =o0+/2log N, and also the minimax optimal A at the nominal sparsity level.

8.5 Proof strategy

As mentioned above, our proofs are based on Gaussian comparison inequalities, and in
particular on Gordon’s min-max theorem [93, 94]. In this section we review the application
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Figure 8.2: Risk of the Lasso for different choices of A. N = 10000, ¢ = 0.2, § = 0.8. Here
0* is chosen to be sN-sparse, and we vary the sparsity level s. The entries on the support of
6* are i.i.d. N(0,1). Cross-validation is carried out using 4 folds. SURE is computed using
the estimator 7. The minimax regularization AMM (s() is used at the nominal level so = 0.3.

of this inequality to the Lasso as developed in [205]. We then discuss the limitations of
earlier work, which does not characterize the empirical distribution of the Lasso estimator
N (or need extra sparsity assumptions [169]) nor uniform bounds as in Theorem 8.3.1. A
key challenge is related to the fact that the Lasso cost function (8.1.1) is convex but not
strongly convex. Hence, a small change in A could cause a priori a large change in the
minimizer éA,

In order to overcome these problems, we establish a property that we call ‘local stability.
Namely, if the empirical distribution of (é)\,g*) deviates from our prediction, then the
value of the optimization problem increases significantly. This implies that the empirical
distribution is stable with respect to perturbations of the cost (e.g. changesin A). Gordon’s
comparison is again crucial to prove this stability property.

Finally, we describe how local stability is used to prove the results of the previous
sections. A full description of the proofs is provided in Chapter 9.

8.5.1 Tight Gaussian min-max theorem

It is more convenient (but equivalent) to study w, = g,\ — 0* instead of 5,\. The vector w)
is the minimizer of the cost function

1
T 2n

Following [205], we rewrite the minimization of C, as a saddle point problem:

A
Ca(w) ||Xw—az||2+ﬁ(|w+9*| —6]) . (8.5.1)

weRN weRN ueR™ | n

. - . ]- T 1 2 )‘ * *
min Cy(w) = min max{u (Xw—02) - 5 llul —i—g(lw—i—@ | — |6 |)} . (85.2)

We apply the following Theorem from [205] which improves over Gordon’s Theorem [94]
by exploiting convex duality.
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Theorem 8.5.1 (Theorem 3 from [205])

Let S, € RY and S, € R" be two compact sets and let Q) : S, xS, — R be a
continuous function. Let G = (G;;) " N(0,1), g ~ N(0,1dy) and h ~ N(0,1d,) be
independent standard Gaussian vectors. Define

C*(G) = min maxu'Gw + Q(w,u) ,

WESy UESy

L*(g,h) = min ma ullag"w + [l + Q(uw, u).

Then we have:

e [orallt e R,
IP’(C*(G) < t) < 21P’<L*(g, h) < t) .

e [fS, and S, are convex and if () is convex concave, then for all t € R

IP’(C*(G) > t) < QIP(L*(g,h) > t) .

For the reader’s convenience, we provide in Section 9.7.2 of Chapter 9 a proof of this

theorem.
Because of Gordon’s Theorem, it suffices now to study (see Corollary 8.5.1 below) for

(9,9',h) ~ N(0,Idy) @ N(0,1) @ N(0,1d,,).

2
L w]? [l 1 ¢ go A A
L == 2 - — — 0| — —|0%] . 8.9.3
A(w) 2( ——to NG 9 w+\/ﬁ++nlw+ | nl \ ( )

Corollary 8.5.1

(a) Let D C RY be a closed set. We have for all t € R
P(wmelBC)\(w) < t) < 2P<wmégLA(w) < t) :
(b) Let D C RY be a convex closed set. We have for all t € R

]P’(minC)\(w) > t) < 2P<wm€ilr)1L>\(w) > t) .

weD

Proof. We will only prove the first point, since the second follows from the same arguments.
Define for (w,u) € RV x R"

_ 1 T g T 1 2 A * *
ex(w,u) = ~uTXw = ZuTz = ful> + 2 (jw + 0% - [67)

_ 1 T 1 / waH2 QhTu 1 2 A * *
) = = fullg T+ ullg'o + (T 4+ 02—l + S (0] - 107

Notice that for all w € RN, Ly (w) = max,cgn Ix(w,u) and Cy(w) = max,egrn cx(w,u).
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Let us suppose that X, z, g, h, ¢’ live on the same probability space and are independent. Let
€ € (0,1]. Let omax(X) denote the largest singular value of the matrix X. By tightness we can
find K > 0 such that the event

(X <K, ol <K gl <K, B <K Jg)<K) (35.4)

has probability at least 1 —e. Let D C RY be a (non-empty, otherwise the result is trivial) closed
set. Let us fix wo € D. On the event (8.5.4) Cx(wo) and Ly (wp) are both upper bounded by some
non-random quantity R. Let now w € D such that Cy(w) < R. We have then %]w—&—&*] < R—&—% |6*],
which implies that ||w|| is upper bounded by some non-random quantity R;. This implies that, on
the event (8.5.4), the minimum of Cy over D is achieved on DN B(0, Ry). Similarly on (8.5.4) the
minimum of Ly over D is achieved on D N B(0, Ry), for some non-random quantity Ry. Without
loss of generalities, one can assume Ry = Ry. On the event (8.5.4) we have

min Cy(w) = min  Cy(w) = min max cy(w,u),
weD weDNB(0,R1) weDNB(0,R1) ueB(0,R3)

for some non-random R3 > 0. This gives that for all t € R, we have
P i <t) <P i <t
(mipcatw) <t) <B(, min s, exlw, ) 1)+,
and similarly

P i l <t) <P{minL <t .
(oo By 00 < ) < P(mip Ia(w) <8) 6

Since the sets D N B(0, R;) and B(0, R3) are compact, one can apply Theorem 8.5.1 to ¢ and [y
and obtain:
P(glelgC)\(w) < t) < 21P’<1131€1gL,\(w) < t) + 2e.

The Corollary follows then from the fact that one can take e arbitrarily small. O

8.5.2 Local stability

In order to prove that (for instance) w, verifies with high probability some property, let’s
say for instance that the empirical distribution of (5,\ = 0* + w,,0*) is close to u}, we
define a set D, C R¥ that contains all the vectors that do not verify this property, e.g.
D, = {w e RV ’ Wg(ﬁ(g*er’g*),[Li)Q > e}, for some € € (0,1). The goal now is to prove
that with high probability

. .
min Cx(w) 2 min Cy(w) +e,

for some € > 0. Using Gordon’s min-max Theorem (Corollary 8.5.1) we will be able to
show
P(min Ci(w) < m%&rllv Ci(w) + e> §2[P’<min Ly(w)< mIIR{IJlV Ly(w) + e) +on(1). (8.5.5)
we we

weDe wEDe

Informally, this is a consequence of the following two remarks. First, by applying parts

(a) and () of Corollary 8.5.1 to the convex domain RY | we deduce that min,cgn Cy(w) ~

min, gy Ly(w). Second, by applying part (a) to the closed domain D, we obtain min,ep, Cx(w) =
minweDe L)\ (w)

It remains now to study the cost function L,, which is much simpler. This is done in
Section 9.2 of Chapter 9. The key step will be to establish the following ‘local stability’
result (the next statement is an immediate consequence of Proposition 9.2.1 and Theo-
rem 9.2.1 in Chapter 9. We prove in fact that the cost function L) is strongly convex on
a neighborhood of its minimizer.).
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Theorem 8.5.2

The minimizer wi = argmin, L)(w) exists and is almost surely unique. Further,
there exists constants v,c,C' > 0 that only depend on §2 such that for all 0* € D, all
A € [Amin, Amax] and all € € (0, 1]

1 C
IP(EIw eRY, NHw —wi||? > € and Ly(w) < min Ly(v) + ’}/6) < Zemone

vERN €

We do not obtain an equally strong result for the cost function C)(w), but we prove
the following statement, which is sufficient for obtaining uniform control (for the sake of
argument, we focus here on the domain F,(§) and control of the empirical distribution).

Theorem 8.5.3

Assume that D = F, (&) for some &, p > 0. There exists constants C, ¢,y > 0 that only
depend on § such that for all € € (0, 5]

sup sup ]P’(H@ eRY, W, (/j(gﬂ*), ,u}i)z >e and L)(0)<min Ly + ’76)

A€ [Aminvkmax} 0 €D

< Cemmax(ha) oxp (—cNeze“ log(e)_2> ,

where a = % +

Sl

Theorem 8.5.3 is proved in Section 9.3.1 of Chapter 9.

8.5.3 Sketch of proof of main results

For the sake of simplicity, we will illustrate the prove strategy by considering the empirical
distribution of @, = 6, — 6*, as the argument is similar for other quantities. According
to Theorem 8.3.1, this should be well approximated by 7i, that is the law of o - O, when
(©,0) ~ us, cf. Definition 8.3.3.

As anticipated, Eq. (8.5.5) and Theorem 8.5.2, allow to control Wa(fig, ,iy) for a fixed
A (fip, denotes the empirical distribution of the entries of wy). Namely, we can define
D. to be the set of vectors w such that Ws(fi,, i) > € > 0. We then prove that the
minimizer wy of L has empirical distribution close to 7i,, and therefore by Theorem 8.5.2,
Ly(w) > Ly(w})+ e for all w € D, with high probability. This imply that the right-hand
side of (8.5.5) is very small and we deduce that, with high probability, all minimizers or
near minimizers of C(w) have empirical distribution close to iy,

We now would like to prove Theorem 8.3.1 and show that with high probability fi; =
iy, uniformly in A € [Apin, Amax)- To do so, we apply the above argument for A = Ay, ..., A,
where Ay, ..., A, is an enet of [Apin, Amax]. This implies that, with high probability for
Ae{A, . A ) WQ(,&@M,HM) < e. Next, for A € [\, Ait1], we show that

CM(®>\) = min C)\i(w) + O(|)\1+1 — )\z|) .

weRN

Consequently if |\;41 — Ai| = O(e) (using again Eq. (8.5.5) and Theorem 8.5.2), we ob-
tain that Wa(fip, ,7y,) = O(e) and therefore Wy(fig, ,7y) = O(e). We conclude that
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Wa(jig,, fiy) = O(e) for all X € [Apin; Amax), With high probability, which is the desired
claim.

If the strategy exposed above allows to obtain the risk of the Lasso and the empirical
distribution of its coordinates, it is not enough to get its sparsity ||§,\||0 or to obtain the
empirical distribution of the debiased lasso

- XT(y—X0
Qg\l =0+ —(Z/l = )\>.
— ul10xllo

Therefore, we will need to analyze the vector

1 -
Uy = XXT(y—XHA),

which is a subgradient of the /;-norm at 6,. We are able to study vy using Gordon’s
min-max Theorem because v is the unique maximizer of

v — min {21nHXw - crzH2 + :\LUT(w + 9*)} :

weRN

The detailed analysis is done in Section 9.5 from Chapter 9.
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Chapter 9

Proofs of the results on the Lasso

This chapter is devoted to the proofs of the results of Chapter 8. It is organised as follows.
In Section 9.1, we study the max-min scalar problem (8.3.2). In Section 9.2 we investigate
Gordon’s optimization problem associated to the Lasso cost and deduce the results about
the risk and the empirical law of the Lasso estimator in Section 9.3. We conduct the same
kind of analysis for the Lasso residual u) ©f x 0, — y in Section 9.4 and the subgradient
o def %XT(y — XGAA) of the ¢;-norm at 8y in Section 9.5. Section 9.6 gathers some auxiliary
results and proofs such as the study of the sparsity of the Lasso estimator, the law of the
debiased Lasso QA/(\d), or the performance of k-fold Cross Validation. Finally Section 9.7
contains a recap of the notations, a proof of the “tight Gordon min-max” Theorem and
some basic concentration results.

9.1 Study of the scalar optimization problem

In this section we study the scalar optimization problem (8.3.2):

2 1 1 2
max min <J —|—7') b_ 552 + Em&g{;jﬂ — BZw+ NMw + O] — )\|@]} . (9.1.1)
w T

>0 >0 \ T 2 )

where (0, 7) ~ PBy®N (0, 1), for some probability distribution Py with finite first moment:
Ep|©| < oo. Of course, we will be mainly interested by the case where Py, = [ig+, the
empirical distribution of the entries of 6*. Define

2 2
Ur(B,7) = ("T +T> S éﬁgleiﬁ{;;ﬁ 87w+ Aw+ 6| - )\\6\} |

9.1.1 Basic properties of the scalar optimization problem

Lemma 9.1.1 (From [71])
For all § € (0,1), the equation

(1 +0%)8(~0) ~ a(a) = §

admits a unique positive solution Quyin = min(6) > 0.
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Proof. Let ¢ : a — (1 4+ a?)®(—a) — a¢(a). ¢ is continuous on Rxg, we have ¢(0) = 3
and ¢(+00) = 0. It remains to show that ¢ is strictly decreasing on R>o. Compute ¢'(a) =
2a®(—a) — 2¢(a) and ¢"(a) = 2®(—a) > 0. Since ¢’'(+00) = 0, we have that for all o > 0,
¢'(a) < 0. p is thus strictly decreasing on R>g. O

Let us define
A

CYmin<5) ‘
More generally, we will always write a = A/B. We prove in this section the following
theorem and some auxiliary results.

ﬁmax - Bmax(éu )‘> -

Theorem 9.1.1

The max-min (8.3.2) is achieved at a unique couple (., 7.) and 0 < [, < Sumax-
Moreover, (7, 3,) is also the unique couple in (0,400)? that verify

=0+ B0+ 7Z,73) - OF

(9.1.2)
B =r(1-1iE[n©+722)|).

Lemma 9.1.2

AE[6] < max min tx(8,7) < &
FEIOI < manin0.7) S 5

Proof. We have maxg min, (3, 7) > min, ¢»(0,7) = —%E]@]. Then, by taking w = 0 one get

. . [ o? g 1, o2
%1%51121{71%(5,7) < max min (T +T> 5 §B =5
O
Define for « > 0 and y € R,
(1 2
faly) = min {5y — 2)* + alal}
and for Z ~ N'(0,1), 2 € R, Ag(2) = E|lo(z + Z) - alz]].
Lemma 9.1.3
2 ©
E lmin {“’5 — BZw+ Mw+ O] — A|@|H — 76E [Aa<)] AT (93)
weR | 217 T 9
where o = \/[5.
Proof. Let 8 > 0 and compute
w2
E |min ¢ —f — fZw + Nw + 6] — \|©|
weR | 27
P Pemin [ w2 T _A }
= +7_E1ur)1€1£{2(w TZ)" + 5|w+@| 5|@|
—Br

= 2+B7’Egl€i£{;(w—Z)2+a‘w+?’ —a‘?’} ;
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where o = \/f. Thus

E [mm{fg_gz@uﬂ|w+@| —)\|@|H _ %57 + B7E {Aa (?ﬂ .

weR T

Lemma 9.1.4

o If 5> Buax, Ur(B,T) —— —00.

T—+00

o If B = Pmax, UA(B,T) —— _22 N AE‘@‘ :

T—+00 5

Proof. By (9.1.3) and the fact that A,(0) = 1 + a¢(a) — (a? + 1)®(—a) by Lemma 9.6.13, we
get that for all 5,7 >0
o’ B T8 (5 p

5+ a0l@) - (0% + DB(-0)) + S6a(r).

€u(r) = 7E KAQ (?) - Aa(o)ﬂ .

Using the definition of Bmax: if 8 > Bmax then a < amin and therefore g+a¢(a)— (@®+1)®(—a) <
0. If B = Bmax: 5 + ad(a) — (@® + 1)®(—a) = 0. It remains to compute the limit of &, (7) as
T — 00.

Using the expression (see Lemma 9.6.13) of the left-and right-derivatives of A, at 0, we have
almost surely:

where o = A/ and

. <Aa <@> - Aa(0)> — —aje).

T

Suppose that E|©| < co. By Lemma 9.6.13, A, is a-Lipschitz. Consequently, for all 7 > 0:

. (Aa (?) _ Aa(O))‘ <alel.

Since we have assumed that E|©| < oo we can apply the dominated convergence theorem to
obtain that &, (1) —— —aE|O)|. O
T—400

Define
w*(a, ) = n(@ +71Z, om') - 0.

w*(a, 7) is the minimizer of w g’—jﬁ — BZw + Mw + O] (recall that we always write

a = \B).
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Lemma 9.1.5
If B > Bmax the equation

=t gE[wr(, ] = o+ G0 + 7275 - 07 (9.1.4)

) 0 g

does not admits any solution on (0,400). For all 8 € (0, Bmax), the function (5, ")
admits a unique minimizer 7.(f) on (0,+00) that is also the unique solution of (9.1.4).
Moreover, a — T,(«) is C* on (min, +00) and for all o > iy

n(0)

do2

0T,
Oa ()] <

(a+1)-=

Proof. Most of this lemma was already proved in [71], we however provide a full proof for
completeness. We have to study the fixed point equation

=g+ %E (e, 7)?] = Fa(r?),

where a = \/3. We can compute F,, explicitly:
2
Fo(t%) =0 + %

+E {(:r —az—l)(CIJ(a—:r)—@(—a—x))—(x+a)¢(a—:v)+(x—a)¢(x+a)} ) ,

(1+a2

where we used the notation z = 9 We can then compute the derivatives:

Fo (%)= %(Haz)E[‘I’(fE—a)ﬂL‘I’(—w—a)] —<El(z+a)p(z—a)—(z—a)p(z+a)]

1
5
<

FU() = —LE[(6(z — o) - 6la +a))] <0,

2072

F,, is therefore concave. By dominated convergence

<1 if < Pmax

F(;(TQ) — v Z 2 ((1 + )q)(—a) B agf)(a)) {> 1 ifg>p :

T—+o00
Since F,(0) = 0% > 0 and by concavity of F,,, the fixed point equation admits a unique solution
T«() if and only is 8 € (0, Bmax)- In that case we have also F! (7.(a)) < 1.
Let us now assume that 8 € (0, Bmax). We have almost surely

0

aor {uneR ~oz (@)

{ ﬁ—i—BZw—i-)\\w—i-@]}

Since |w*(a, 7)| < at + 7|Z|, we have by derivation under the expectation

L npm=2 5% - Lk [ r) = Lo (7 - (o7 + 3E[w (@),

Consequently, 7.(53) is the unlque minimizer of ¢>\(ﬁ ,+) over (O +00).

Let us now compute 8
theorem to obtain that the mapplng o To(a)? is C and moreover:

o O (r2(a)
9o = TR (2{a)

(9.1.5)

184



Compute

OF, 2
o) = TE[a(®(—a+2) + B(~a ) (8o~ ) + dla+2))].
One verify easily that
— 1< —2¢(0) < 2a®(—a) — 2¢(a) < 257288};" (%) < a. (9.1.6)

By concavity on has that F’ (72(a)) is smaller than the slope of the line between the points of
coordinates (0,02) and (72(a), 72(a)):

/ 2 < _
Fo(ri(a)) <1 2(a) (9.1.7)
From equations (9.1.5-9.1.6-9.1.7) we get
or2 7o ()?
< .
e (a)| <2 %5 (a+1)
The result follows then from the fact that %Ta’g () = 27'*(04)882‘ (). O
Define now
Wy : 6 minyn(8,7).
Lemma 9.1.6
The function V) is differentiable on (0, Syax) with derivative
1 *
V() = 7l@) = B — SE[Zw (e, 7(a))] (9.1.8)

=7.(a) (1 — (151[-3 l(D(T*(@CY) — a) + <I>< - T*?a) - a)D - p. (9.1.9)

Proof. U, is differentiable on (0, Bmax) (because of Lemma 9.1.5) with derivative

2

\P&(ﬁ):;(ﬁ:f(a) —1-7'*(@)) - B+ (15(27*(04)

=7(a) = f - %E [Zw™ (a, ()]

Efw*(a, 7u(a))?] E[Zw*(aﬁ*(a))D

because of (9.1.4). The second equality follows by Gaussian integration by parts. 0

Corollary 9.1.1

The function W achieves its maximum over R>q at a unique S, € (0, fmax)-

Proof. ¥, is the minimum of a collection of 1-strongly concave functions: it is therefore 1-
strongly concave and admits thus a unique maximizer 3, over R>g. By Lemma 9.1.4 we know
that By < Bmax. Indeed, notice that maxg ®5(8) > ¥5(0) = —%E|@|. Lemme 9.1.4 gives that
Bs € [0, Bmax), because W) (Bmax) < U2(0) — 282, < ¥,(0). By dominated convergence:

max

0 0
E {@(T*(a) —a) +<1>(— e —a)] Pl
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Indeed, when 8 — 0%, o = A/ — 400 and |- )\ < |S;|. Therefore by Lemma 9.1.6 we obtain

«(

lim inf W/ >0>0.
im in AB)z o
By concavity, we deduce that 5, € (0, Bmax)- O

Proposition 9.1.1

The function X — B,()\) is C* and is 2a,} -Lipschitz over (0, 4+00). A+ a,()\) is C®
over (0,+00) and strictly increasing.

Proof. Let us define v, () = Bx(A)/A. 7«()) is the unique maximizer of

2 2
N Y PSP S 1014 = h(y) - 242
51121{}(7 +r> 5 =37 +5Eglel]%{2ﬂ YZw + |w + 6| \@\} = h(v) 57

where h is a concave C* function on Rsg. 7«() is thus the unique solution of
h/(fY) - )\7 =0 ’

on Ryg. v = h'(vy) — Ay is C*° with derivative v — h”(y) — A < 0. Consequently, the implicit
function theorem gives that the mapping A\ € Ry — v.(A) is C* and that

87*( ) = —7«(A)

N S IRV A

One deduces that A — a,(A) = 7x(A) "1 is C* and strictly increasing and that A = B4(A) = Ay, ()
is C*°. Moreover
0P

oA

OV« 2
% < 274 < .
)+ )] <20 () £ =

W] =]
O

Proof of Theorem 9.1.1. By Corollary 9.1.1, the maximum in § in (8.3.2) is achieved at
a unique By € (0,Pmax). To this S, corresponds a unique 74(f.) that achieves the minimum
n (8.3.2), by Lemma 9.1.5. By (9.1.4) and (9.1.9) we obtain that (7.(8.), Bx) is solution of the
system (9.1.2). Let now (7, 3) € (0,400)? be another solution of (9.1.2). 7 is therefore solution
of (9.1.4) which gives that 5 € (0, Bmax) and 7 = 7(8) by Lemma 9.1.5. The second equality
n (9.1.2) gives that W) (8) = 0 and thus that § = (. by strong concavity of ¥y. We conclude
(1 B) — (8.0, ). 0

9.1.2 Control on j3,, 7,

The goal of this section is to show that 3, and 7, remain bounded when 6* varies in D.

Theorem 9.1.2

There exists constants Buin, Tmax > 0 that only depend on €2 such that for all 0* € D
and all X\ € [Amin, Amax) s

5min S ﬂ*()\> < ﬁmax and g S 7—*<)\) S Tmax -

To prove Theorem 9.1.2, we separate the case where D = F,(§) (where it follows from
Lemma 9.1.9 and Corollary 9.1.2 below) from the case where D = Fy(s) (where it follows
from Lemmas 9.1.11 and 9.1.12).
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Technical lemmas

Lemma 9.1.7
We have
A
macnin v (3,7) = ¥a(8..(8.) = 372 + SE[lu (@ m(8) + €] - @]
1, A o
-y gz )|

where

Ho(2) = (2 — a)®(~a +2) + (—2 — a)(~z — a) + o(—z + ) + 6(x +a) — |a].

Proof. Using the optimality condition (9.1.4) of 7.(5), we have for all 8 € (0, Smax)

UA(B, () = ~ 387+ 67.(6) ~ SE[Zu* (0 m( )] + SE [ (o, (8) + O] - O]

At B, the optimality condition (see (9.1.8)) reads 8, = 7..(B:) — 3E[Zw* (cs, 7(B4))], thus

1 A
UA(Be, T(B4)) = 553 + SEf[w" (e, m(8)) + 6] - |O]] (9.1.10)
Compute for a, 7 > 0
Elw*(a,7) +O| =E|n(©@ + 7Z,a1)| = TE‘T](? + Z, oz)‘ . (9.1.11)

Now, for z € R,

+o0 —a—x
Eln(z + Z,a)| = / (x—i—z—a)(b(z)dz—i—/ (—z — 2z —a)p(z)dz
=rz-—a)®xz—a)+ (—z— )P(—x — a) + (e —x) + ¢(a+ x)
= H,(x) + |x]|.
and we obtain the Lemma by putting this together with (9.1.11) and (9.1.10). O

The next Lemma summarizes the main properties of H,,.
Lemma 9.1.8

H,, is a continuous, even function and for x > 0

H (z)=®(r—a)—®(—z—a)—1€(-1,0).
H,, is therefore 1-Lipschitz. H, admits a maximum at 0 and
H,(0) = 2¢(a) — 2aP(—a) > 0.

Moreover H, () —— —a.
r—+00

187



On /,-balls

Lemma 9.1.9

Assume that E{|@|p} < &P for some &,p > 0. Then, there exists a constant Py, =
Bmin (0, Amin, &, p, o) such that for all X > Ay,

0< Bmin < 5*()\) < Bmax .

Proof. Let § € (0, fmax). By Lemma 9.1.6 we have

W) =(6) (1 58 {CI)(T*?ﬂ) —a)+ (- T*?ﬂ) ~a)]) -5,

The function g, : z +— ®(z — a) + ®(—x — «) is even, and increasing over R>o. Let K > 0 such
that —5— < %. By Markov’s inequality we have

P (2 2 ) =

©

g

p
zKp) < 1 gop<?
P 4

KPo -

Thus

=l (7)1

As 8 — 0, @ > Apin/B — +00. Since g, (K) —+> 0 there exists By = Bo(K, Amin,d) > 0 such
a——+00
that for all 8 € (0, B), ga(X) < &. Thus for all 3 € (0, By),

0 0
111

g
)sagon

Let fmin = min(%, Bp). We conclude that for all 5 € (0, Bin), ¥4 (6) > 0. By concavity we have
then that 8. > Bmin. The other inequality £« < Bmax Was already proved in Corollary 9.1.1.
O

Corollary 9.1.2

Assume that IE“@V’} < &P for some £, p > 0. Then there exists a constant Tya.x =
Tmax(gap) 57 S, )\mina )\max) SUCh that fOI‘ aH >\ S [)\mina )\max];

o< 7—*(6*(/\)) < Tmax -

Proof. Let ¢t > . By Markov’s inequality we have P(|0] > t) < (%)p < 1, since 0* € Fp(&).

© {1 ()| =B 1001 <o (555) e n0er= o (755)

2 (1= (8)) (0 575) - (B

because by Lemma 9.1.8, H,, is 1-Lipschitz and for all x € R, —a, < H,, () < H,, (0). Replacing
H,,(0) by its expression given by Lemma 9.1.8 we get

t

Te()

B[ Ho ()] 2 20000 -ae-a) - (£) (0200 (00) - ab(-a)) -

T (v t
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Since o < Amax/Bmin and ¢(aw) — . ®(—aw) > 0 (because . > amin), we can find a constant

t= t((;, g, )‘mina Amaxvpv 5) > 5 such that

(@ +2(0(0) — a0 (3) < o) - at(-an).

For this choice of ¢ we have then

o, (2] bttt

Consequently by Lemma 9.1.2 and Lemma 9.1.7 we have

D At o?

5 +57(8(0x) — ad(=an)) = = < (B mlan)) < 5

which finally gives
So?A "t

(rb(amax) - amaxq)(_amax) )

Te(x) <

On sparse balls

Define the critical function:
M, s(1+a?) +2(1—s)((1+a?)®(—a) — a(a)).

M, corresponds to the worst mean squared error achievable by soft-thresholding with
threshold « to estimate a vector 6* € Fy(s) from the observations y = 6* + w, where
w ~ N(0,Iy), see [70, 69, 115].

Lemma 9.1.10 (From [71])

Assume that

§ < Smax(0) = 5%12())(

{ 1-2((1+ a?)®(~a) - ad(a)) }
Lta? = 2((1+0%)®(~a) ~ as(a)) [

Then there exists a > 0 such that Mg(a) < 6.
Proof. Let s < spax(d). From the definition of syax(0), we can find o € R such that

1= 3(1+ 0?)8(0) - ag(a)
1+a?2-2(1+4a?)®(—a) — ad(a))

> s,
which gives M;(a) < 6. O

We assume in this section that s < sya,(d). Let us compute the derivatives

(s +2(1 = s)(a®(-a) = ¢(a))) ,
(s+(1—5)20(—a)) >0.

M(a)
M{(e)

2
2

Notice that My(a) = %(aM;(oz)—i—Ms”(a)). Let o be the unique a > 0 such that M!(a) =0
and let ay < as be such that My(ay) = Mg(as) = §. We can then easily plot the variations
of M,:
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Lemma 9.1.11

Let s < Smax(0) and assume that P(© # 0) < s. Then, there exists a constant
Brmin = Bmin (0, Amin, S, 0) such that for all A > Ay

0< 5min S 6*()\> < /Bmax(Amaxa 6) = Amax/amiﬂ(é) .

Proof. We already proved in Corollary 9.1.1 that 8.(\) < A\/amin. For all 0 < 8 < A/amin, we
have by Lemma 9.1.6

W (8) = 7.(B) (1—(151@ {@(T:?ﬁ) —a) +®( - u(?ﬁ)_a)D - 8.

The function g, : © — ®(z — a) + ®(—2z — «) is even, and increasing over R>q. Therefore

w8) > "6 s (1 - 9pa(-a) - 8.

Let Bo = Bo(Amin, d,s) > 0 such that for all g € (0, 5), 2®(—a) < %(5 —s). For all g € (0, 5)
we have then

J—s)

v (5) > 2L — 8.

A(B8) = 95 B

Let Bmin = min(%,ﬁo): for all B € (0, Bmin), ¥A(5) > 0. By concavity we conclude that
/8* Z Bmin~ O

Lemma 9.1.12
Let s < Smax(0) and assume that P(© # 0) < s. Then for all 5,7, A > 0 we have
po* B> 1P

%(5,7) > ? - ? + 75(5— Ms(a)).

Proof. By (9.1.3) we have for all 5,7 > 0

a(B,7) = g <f+¢> —522+%BE [Aa(?) —ﬂ .

Since by Lemma 9.6.13, A, is even and non-increasing over R, we have

E [Aa((j> - ﬂ > sAq(+00) + (1 — 5)An(0) — %
2
= —s% +(1- s)(% +ap(a) — (1 + a2)<I>(—a)) - %

- —%Ms(a).
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Lemma 9.1.13
Let s < Spmax(0) and assume that P(© # 0) < s. Then the following inequalities hold

Bur(B)(0 = Mi(n)) < 6(0% + B2) | (9.1.12)
— 7 (B)AM (o) < 602, (9.1.13)
T (B:) (0 — ;Ms”(a*)) < B.. (9.1.14)

Proof. The inequality (9.1.12) simply follows from the previous lemma and from the fact that

o2

1/)/\(577'*(5)) < maxmim/b\(ﬂﬁ) <

>0 >0 2
by Lemma 9.1.2. Let us prove (9.1.13). By Lemma 9.1.7, we have

AT (By) S
77/))\(/8*77*(6*)) > 5 E |:Ha*(7-*(ﬁ*))] ’

Since by Lemma 9.1.8, H,,, is even, decreasing on R>(, we have

E {Ha*(n(eﬁ*))] > sH,, (+00) + (1 — s)H,, (0)

= s, +2(1 - 5)(6(a) — a.B(a.)) = —5 Ml(a)

which proves (9.1.13). To prove (9.1.14) we use the optimality condition at f,:

0=T,(B,) = 7u(as) (1 - %E {@(n(@a*) - a*) + <1>( - T*(@a*) - a)D — B,. (9.1.15)

The function x — ®(x — ax) + ®(—z — o) is even, increasing on R>(. Therefore

E {@(T*(@a*) - oz*> 4 q>( - T*((Z*) - a)} <s+2(1-8)B(—a,) = %M!(a*) :

Combining this inequality with (9.1.15) leads to (9.1.14). O
Proposition 9.1.2

Let s < smax(0) and assume that P(© # 0) < s. Then, there exists a constant Tyay, =
Tmax (0, Aminy Amax, S, 0) such that for all X € [Amin, Amax) s

o< T*(B*()\)) < Tmax -

Proof. Let (8., 7.) be the unique optimal couple and recall o, = A\/B,. We distinguish 3 cases:
Case 1: o, > ap. In that case 3 M/ (o) < My(ap) < 6. The inequality (9.1.14) gives
1
T*(/B*)((S - §Mél(a*)> < B* < 6max7

which gives 7,.(8«) < 5_?\7[‘:(’;0).
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Case 2: a, € [(a1 + ap)/2,0]. In that case 6 — Ms(aw) > ¢ > 0, for some constant
¢ =c(d,s) > 0. Now, by (9.1.12)

Bt (Bi) (6 — Ms(aw)) < 5(02 + 63) .

Therefore,

0 2 2
« S .
Te > Cﬂmin (U +/6max)

Case 3: a, < (a1 + ap)/2. In that case M.(a,) < —c¢, for some constant ¢ = ¢(d,s) > 0.
Consequently by (9.1.13) we get
o268

9.1.3 Dependency in )\

Proposition 9.1.3

e The mapping A +— B,()\) is C* and 2a,,,-Lipschitz on R.
e The mapping A — T,(\) is C* and M-Lipschitz on [Amin, Amax], for some constant

M(Q) > 0.

Proof. The first point has already been by Proposition 9.1.1. X — 7,(\) is the composition of
the mappings A — ax (M) and a — 7 (), that are both C* by Lemma 9.1.5 and Proposition 9.1.1.
Compute the derivative:

0Ty Oov, , . OTy
() = 2 )0 (0 ().

Recall that a.(X\) = A/Bx(A). Thus

Oav, 1 0By A 1 1 9
TN = - L= < B+ 20mb Anax B -
3 O] =[5 ~ 3 V| < b 2embohenia
By Lemma 9.1.5, we have
0Ty To()?
* < *
oo (@ ()] < (e + DT
Since by Theorem 9.1.2, Ty () < Tmax(2) and @, < Apax/Bmin(€2), the derivative of 7, with
respect to A is bounded on [Amin, Amax]- O

9.2 Study of Gordon’s optimization problem
for w),

In this section we study L, defined by (8.5.3). Define, for w € R and 3 >0

_ HwH2 2 ||h|| 1 T g/o' 1 2 )‘ * A *
&(w,ﬁ)—( r by e B=5B + w7 =] (9.2.1)
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So that Ly(w) = maxgsg fx(w, 8). Let us define the vector wy € RY by
Te(A)A
W i 0F + 1.(N)gi, ) o7 . (9.2.2)
( B(A)

The goal of this section is to prove that, with high probability, the minimizer of L, is close
to wy and that L, is strongly convex around w;.

Proposition 9.2.1

Ly admits almost surely a unique minimizer w} on RY.

Proof. L, is a convex function that goes to +oo at infinity, so it admits minimizers over RY.
We distinguish two cases:

Case 1: there is a minimizer w such that 4/ Hw”2 + o2 th” gTw + ;]’7% > 0.

In that case, there exist a neighborhood O,, of w such that for all w’ € O,

— > 0.
fnw+\/ﬁ>

Thus for all w' € Oy, Ly(w') = Ja(w)? + 2|w’ + 6*| — 2|6*|. Recall that the composition of
a strictly convex function and a strictly increasing function is strictly convex. L) is therefore
strictly convex on O,, because a is strictly convex and remains strictly positive on O, and be-

cause x > 0 — z? is strictly increasing. w is thus the only minimizer of L.

/||2 | 1 /
oty I WL Ly oo

Case 2: for all minimizer w we have 4/ ”w”2 + o2 |\|th gTw + 9,\/—% <0.

Let w be a minimizer of Ly. The optimahty condition gives

1 flwlz R 1o ya) ( w )
- +o02 = ——gw+— —— —g|€0|0" +wl.
A ( vnoon Vn . /Hw||2+a NG

We obtain then 0 € 9|0* + w| which implies w = —6*: L) has a unique minimizer. O
9.2.1 Local stability of Gordon’s optimization
Theorem 9.2.1

There exists constants v, c,C' > 0 that only depend on €) such that for all 8* € D, all
A € [Amin, Mmax] and all € € (0, 1]

1 C’
P(Elw cRY, NHw —wy|*>>€ and Ly(w) < min Ly(v) +fye> < Zemene

vERN _6

We deduce from Theorem 9.2.1 that for all € € (0,1] with probability at least 1 —
Celemen L|ws — wy||? < e. From this we deduce easily that with the same probability
|Lx(w}) — La(wy)| < Me, for some constant M > 0, which gives by Proposition 9.6.1:
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Corollary 9.2.1
Define

L.(Y) = a(Bu(0), 7 (V) (9.23)
The exists constants ¢, C' > 0 that only depend on §2 such that

2

min Ly(w) — L*()\)‘ > 6) < ge‘"CEQ.
€

wERN

9.2.2 Proof of Theorem 9.2.1

Proposition 9.2.2

For all R > 0 there exists constants ¢, C' > 0 that only depend on (€2, R), such that for
all € € (0,1],

V6" € D, YA € Donins A ]P(L)\(W)\) < min Ly(w)+ e) >1 - Yemenet.
ol SR €

Proof. Notices that it suffices to proves the proposition for € smaller than some constant. Let
0* € D, A € [Amin; Amax)- Let R > 0 and € € (0, min(1,02/2)]. Define

On the event

/

2 1 1 A A

B(w.5) = ( Tl 4 g2 gTw) L5 R ot - Y.
n n 2 n n

g9

U= <4 N{[ 7

which has probability at least 1 — Ce=¢ we have, for all w € B (0, R\/n) and B € [0, Bmax):

< e} : (9.2.4)

h /
[0x(w, B) = €3, (w, B)| = 8 “AW 70

1
< Bmax V o2+ R? ﬁ”h”2 - 1’ + /Bmax€
< Bmax(Vo? + R+ 1)e.

K

[w]]?

+ o2

For simplicity we write (Bs, 7«) = (8«(A\), 7(A\)). We have on the event (9.2.4):

min _ Ly(w)= min max/fy(w,B) > min £y(w, S
[wl<Rvn () [wl|<Ry/n 620 ( ) lwl|<Ryv/n ( )
> min (S(w,Bs) — Ke.

puli2hy7 (2P

Using the fact that for w € B(0, Ry/n)

2 lwl? 2
ﬂgjt,+,02:: min AJL4;t44,+,I ,
n o<r<Vo2+R2 2T 2
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we obtain that

min /S (w, By) =
lwl|<RyA A(w, )

2
win (BT L, {II I ﬁ*gTw+)\|w+9*|—)\|0*|} .
o<r<vo?+RE [ 2\ T 2 n||w||<Rf

For all 7 € [0, Vo? + R?] the function

. 5* 2 T * *
g+ min {w — Byg W+ A|lw + 6| — \|6 }
min {5l w67 = Al

is Bmax Ry/n-Lipschitz. Therefore

/8* /8* { T * *}
F — = —|w|* - B -
(r9) =5 < +T> 5+ pumn el = BegTw A 0% = A

is 42, R?n~l-sub-Gaussian. Therefore there exists constants C,c > 0 such that for all 7 €

[0, V0?2 + R?], we have

P (|F(7, ) — EF(r,g)| > €) < Ce"¢"
F(-, g) is almost surely a Bmax (1 + %)—Lipschitz function on [0, v/o2 4+ R2]. Therefore, by an e-net
argument one can find constants C, ¢ > 0 that only depend on (£2, R), such that for all e > 0 the
event

sup  [F(7,9) —EF(r,g)| <€ (9.2.5)
e[0T T R
has probability at least 1 — %e*““z. On the event (9.2.5) we have then min F(r,9) >
TE[O’,W]
min  E[F(7,g)] — €. Notice that for all 7 > 0 we have
TE€[o,V o2+ R?]

1 D
~E| min {wQ—ﬁ*gTw—i-)\w—i-H*—)\H*}
LWHSR {5l -+ 0~ A

n

|
_EZ [mm{ Z—B*giwi‘l‘)\’wi‘F@ﬂ_)\QﬂH
-1

w; ER

SE [mm{gw — BiZw+ ANw+ 06| — )\]@]H,

weER

where the last expectation is with respect (0, Z) ~ fig- QN (0,1). Consequently on the event (9.2.4)
and (9.2.5), we have

1+ K)e+ . L > ; .. 7) > mi ) = )
( )e o A<w)_037§m\/1%w’\(5 7) min (B, 7) = Ya(8 )

By Proposition 9.6.1 we have that
YA(Bi, ) = La(wy) — €,

with probability at least 1 — C'e=“"¢". Then, for all € € (0,1) we have with probability at least
1— Qe—cn62

i L K+2e>L .
Hwﬁ?fr%l\/ﬁ Alw) 4+ (K +2)e > Ly(wy)

195



Lemma 9.2.1

Let f be a convex function on RY. Let w € RY and r > 0. Suppose that f is ~y-strongly
convex on the ball B(w,r), for some v > 0. Assume that

fw) < min f(z) +

z€B(w,r)

2 . . .
for some € < *Zt. Then f admits a unique minimizer x* over RY. We have z* € B(w,r)

and therefore
* 2 2
2" —w[]® < —e.
fy

Moreover, for every x € RY such that f(x) < min f + € we have ||z — w|? <

8¢

L€
Proof. f is convex on B(w,r), it admits therefore a minimizer 2* on B(w, r). By strong convexity
we have

Consequently, z* is in the interior of B(w, r). By strong convexity, z* is then the unique minimizer
of f over RY. By strong convexity, for any 2 outside of B(w,r) we have

r 2
£@) > £+ 57 (5) 2 56+ e

Consequently, if f(z) < min f + € then x € B(w,r) and thus ||z — z*||? < % O

Proof of Theorem 9.2.1. Lett = min(%ﬁmin, o). By Lemma 9.6.1 the event

T

2 E 2 T
{ [wall® — Efwal <2 LW g lgWal L (9.2.6)
n n n
/Bmln Bmin ||h|| }
<2V N < 1-— < =<2
lgll = ’ ’f’ ( 87’max) —Jn =

has probability at least 1 — Ce™“", for some constants C,c¢ > 0. On the event (9.2.6)
R E||wy ]2
Vnn|ﬂﬂz¢nxu+ﬂ_ﬂ2n_t
n n

”WA||2 GBS Rl IRl Biin
Vi ST S 8

Consequently, on the event (9.2.6) we have

Therefore

— 2t > T —

HW)\||2

h 1 og’ 1 3 1
+ 02 ‘\‘fH EQTW)\ + % > Ty — EE [QTW/\} - Zﬁmin > Zﬁmin7

because 7, — LE[g"W,] = B > Bmin. Moreover, on the event (9.2.6) the function

|h 1 !
o JEE Ll 1, 0
n? \/ﬁ
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is Q‘F + f—Llpschltz We have seen above that on (9.2.6), f(wy) > %Bmin. Thus we can find a

constant r > 0 such that on the event (9.2.6) we have for all w € B(wy,r/n)

F() > <Bin

By Lemma 9.6.14, the function f is %-strongly convex on B(wy,ry/n), for some constant a > 0.
For all w € B(wy, ry/n) we have

La(w) = () + 2 (jw+ 6] — |67

Compute the Hessian for w € B(wy, ry/n):

V2(372) () = F(0)V2f(w) + V)V ()" = g

which means that L is T-strongly convex on B(wy,ry/n), for some constant v > 0.

Notice that it suffices to prove Theorem 9.2.1 for ¢ € (0,¢| for some constant ¢ > 0. Let
€ (0, %) Let now apply Proposition 9.2.2 with R = 7my,.x + 71 with probability at least
1— Qe—cn62
Ly(wy) < min Ly(w)+e€p. 9.2.7
UaG) < i Ea(w) ) 927
Notice that on the event (9.2.6),

Iwall® o { wal®
n n

+#*<E

max °

2
[[wall ] tol=r2< 2
n

Therefore, on (9.2.6), B(wy,r/n) C B(0, R\/n). Using then (9.2.7) we get

Ly(wy) < min  Ly(w) +e€.

weB(wx,r/n)

2

Consequently, on the events (9.2.6) and (9.2.7) that have probability at least 1 — %e‘cne ,
Lemma 9.2.1 gives that for all w € RY such that Ly(w) < min L(v) + € we have |lwy — w|? <
veER

Bne O]
~

9.3 Empirical distribution and risk of the Lasso

9.3.1 Proofs of local stability of the Lasso cost

Application of Gordon’s min-max Theorem

Proposition 9.3.1

There exists constants ¢,C > 0 that only depend on () such that for all closed set
D C RY and for all € € (0,1],

P(mmcx( ) < min Cy(w )—i—e) < 2P <m1nL)\( ) < min Ly(w )+36> +€e-cn62.
€

weD weRN weD T weRN

In order to prove this, we start by showing that the optimal Lasso cost concentrates
around L, (A).
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Proposition 9.3.2

There exists constants ¢,C' > 0 that only depend on () such that for all closed set
D C RY and for all € € (0,1],

2

Proof. By Corollary 8.5.1, we have

> 6) < ge—cne2
p— —_— 6 .

min Cy(w) — L.(X)

weRN ’

C 2
P in C —L.(\) >¢e) <2P in L —Li(A) > €| < —e |

((min, Ca(w) — L) = ) < 2P min Lafw) - L) 2 ) < Ce

where the last inequality comes from Corollary 9.2.1. The bound of the probability of the converse

inequality is proved analogously. O

Proof of Proposition 9.3.1. Recall that L.()) is defined by (9.2.3). Let D € RY be a
closed set.

P (lrgleigc)\(w) < min Cy(w) + 6)

weRN

<P i < mi d i < Ly
< <11Ln€1gc,\(w) < min Ca(w)+€ an in, Ca(w) < Ly(N\) + e>

+P ( min Cy(w) > Ly(\) + 6>

weRN

C 2
<P ( mi < Lo(A) +2€) + Zemene
< (gIGIgC)\(w)_ (A) + e)—l—ee

where we used Proposition 9.3.2 above. We can now apply the first point of Corollary 8.5.1 to
obtain:

P (gleigc/\(w) < L.\ + 26) < op (gleig Ly(w) < L(\) + 26> . (9.3.1)

We thus get

C 2
P ( min Cy(w) < min C < 2P (min Ly(w) < Ly(A) + 2¢ | + —e
(gﬁelg A(w) < min )\(w)+6> (glelg aMw) < Li(A) + €>+e€

C 2
< 2P ( min Ly (w) < min L 3¢) + 2P ( min Ly(w) < L.(\) — —eene
< (glelg A(w) < min Ly(w) + 6) + (felﬁ@v Aw) (A) 6) +_e

< 2P (min Ly(w) < min Ly(w) + 36> + Qe-cng 7
for some constants ¢, C' > 0, because of Corollary 9.2.1. =

Local stability of the empirical distribution of the Lasso estimator: proof of
Theorem 8.5.3

For w € RY let po(w) be the probability distribution over R? defined by

1 N
fo(w) = =7 2 Owitor.07)
=1

Theorem 8.5.3 follows from Proposition 9.3.1 and the following Lemma.
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Lemma 9.3.1

Assume that D = F,(&) for some &, p > 0. There exists constants v,c,C > 0 that

depend only on €, such that for all € € (0, %] we have

P (min Ly(w) < min Ly(w) + 3’)/6) < O max(ha) oxp (—cNe2ea log(e)’2) ,

we D weRN

where De = {w S RN ’ WQ(//ZO(UJ)’/[;)Q > 6} and a = % + %
Proof. By Theorem 9.2.1 and Proposition 9.6.2 there exists constants v, ¢, C' > 0 such that for
all € € (0, 3] the event

1
{Yw e BN, Ly(w) < min Ly(v) +3ye = lw-wi? < S} {Wald. fio(wa)” <

b 9.3.2)

=] o

has probability at least
1— Celem® _ O exp (—CN626a log(e)_Q) > 1 — O ™2x(10) oxp (—CN€2€a log(e)_Q) ,

where a = 2 + 2. On the event (9.3.2), we have for all w € D,:

1
>

€

in —wall? = Wa(fio(w), io(wy))* = (Walfio(w), 1}) — Wa(u}, fio(wy)) ’ > —.
N 4

This gives that on the event (9.3.2), for all w € D, Ly(w) > min L (v) + 3ve. The intersection
veER
of (9.3.2) with the event { min Ly(w) < min Ly(w) + 3ve} is therefore empty: the lemma is
weDe weRN
proved. O

Local stability of the risk of the Lasso estimator

We prove here the analog of Theorem 8.5.3 for the risk of the Lasso estimator.

Theorem 9.3.1

for the risk of the Lasso estimator. There exists constants C, ¢,y > 0 that only depend
on ) such that for all € € (0, 1]

1 2
sup sup IP’(HH e RY, (—HH - G*HQ—R*()\)) >e€ and Lx(f) <min /J,\—l—fye)
)\G[)\mirn)\max} 0*€D N
< ge—cNe2'
€

Theorem 9.3.1 follows from Proposition 9.3.1 and the following Lemma.
Lemma 9.3.2

There exists constants 7, c,C' > 0 that only depend on §2 such that for all € € (0, 1] we
have

C
P (min Ly(w) < min Ly(w) + 376) < Zemene
€

where D, = {w € RN

(Il = YNE) = Nef.
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Proof. By Theorem 9.2.1 and Lemma 9.6.1 there exists constants «y,c, C' > 0 such that for all
e € (0,1] the event

1 € 2 €
N - 2
{Vw e RY, Ly(w) < min Ly(v) + 3ye = llw —wy|* < g} N {wall = yNR.))* < N7}
(9.3.3)
has probability at least 1 — %6*0”62. On the event (9.3.3), we have for all w € D,:
1 1 1 1
Sl —wal? = (el = wal)* > - (VNe = 2VNe* = 1.
This gives that on the event (9.3.3), for all w € D, Ly(w) > min Ly (v) + 3ve. The intersection
veER
of (9.3.3) with the event { min Ly(w) < min Ly(w) + 3vye} is therefore empty: the lemma is

proved. O

9.3.2 Uniform control over \: proofs of Theorems 8.3.1 and 8.3.2-
(8.3.8)

Control of the /;-norm of the Lasso estimator

Proposition 9.3.3
Let £ > 0,p > 0. Define K = 2§ + 200  Then

)\min :

VO* € Fo(€), P (w > Amins Jb\@] < KN<1/P1>+) >1—e ™2,

Proof. Since Fpy(§) C Fp(&) for p’ > p, it suffices to prove the Proposition for p € (0,1]: we
suppose now to be in that case. With probability at least 1 — e~™/2 we have |z|| < 2y/n and
therefore min £y < £(0*) < 202 + %\9*\ for all A > 0. One has thus with probability at least
1 — efn/Q’

VO* € Fi(€), YA >0, %\éﬂ < La(6)) < 20% + %|e*| ,

which implies that %\5,\] < % +ENYPLsinee +16%| < £ (2N, ‘gﬂp)l/p < ENV/PT O
Proposition 9.3.4

Assume that 0 < § < 1 and 0 > 0. Let s < Spax(9). Then, there exists constants
¢, K > 0 such that

1
V6" € Fo(s), P (VA€ s Amads I3+ 67] = 19"

§K) >1—2e .

Proposition 9.3.4 follows from the arguments of [208] that we reproduce below.
Lemma 9.3.3
Suppose that 0* € Fy(s) for some s < spax(0). There exists constants c¢,a > 0 that

only depend on (8, s) such that with probability at least 1 — e~", for all w € RY such
that |w + 0*| — |0*| < 0 we have

2
[Xwl[” = aljw]*.
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Proof. Define
K=D(-,6) = J {uer" \ 0%+ rul < |6*1},
r>0

the descent cone of the ¢;-norm at 8*. Define
Voin (X, ) = inf { | Xa| | 2 € K, Jo]| = 1},

Let w(K) be the Gaussian width of K:

wek lufl=1

=] o],

where the expectation is taken with respect to g ~ N(0,Idy). The following result goes back to
Gordon’s work, [93], [94]. It can be found in for instance [208] (Proposition 3.3).

Proposition 9.3.5
For allt > 0,

P(\/ﬁymin(XJC)z n—l—w(]C)_t> 21—6_t2/2,

Recall that My(a) = s(1+ a?) +2(1 — s)((1 + a?)®(—a) — ap(«)) is the “critical function”
studied in Section 9.1.2.
Lemma 9.3.4

For allaa >0

w(K)? < NMs(a) = N(s(1 +a?) +2(1 — 5)((1 + a®)®(—a) — ap(a))) .

Proof. Let v € 0|0*|. By convexity, we have for all w € K we have (w,v) < |w + 6*| — [6*| < 0.
Now for all z € RY and o > 0

|z —av|| = sup (x —av,w) > sup {(w,z) — (w,av)} > sup (w,z). (9.3.4)
flwll=1 wek, [lwl|=1 wekl, [|wl|=1

Let Sp denote the support of 8*. Let g ~ N'(0,Idy), a > 0 and define
sign(0) if i € 5o,
v =
atg1(lgi] < ) +sign(g)1(|gi| > o) otherwise.

Notice that v € 0|6*|, therefore by (9.3.4):

wK)?<E

(o o)

wek,ul|=1

<E[llg - av|’]

<E [Z (9: — asign(67))> + > n(gs, a)2]

i€Sp i€So
< Ns(1+a?) +2N(1 - s)((1 4 a®)®(—a) — agd(a)).

O

Since s < smax(9), there exists (see Lemma 9.1.10) o > 0 and ¢t € (0,1) such that Ms(a) <
§(1 —t)2. Consequently w(K) < y/n(1 —t). Therefore, there exists some constants a,c > 0 that
only depends on s and § such that

P (in (X, K) > a) > 1 — e~
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On the above event, for all w € K, || Xw]||? > a?||w||?, which proves the Lemma. O
Proof of Proposition 9.3.4. Let us work on the event
{Yw e RY, |w+0*—|0"|<0 = || Xw|* > alwl?} ) {l2]] < 2v/n}, (9.3.5)

which has probability at least 1 — 3e="/2. Let \ € [Amin, Amax)- Notice that on the event (9.3.5)
we have minCy < C,(0) < 20? and therefore

A
;(|@+9*| —6*]) < 202.

We distinguish two cases:

Case 1: |@) + 6*| — |0*| > 0. In that case we obtain 1||@y + 6*| — |6*|| < )?"2 .

Case 2: |wy + 0*| — [6*] < 0. In that case

MWN

1 A 1
20> Cy () 2 o Xy — 02l = 2] = =X = L2 - 2N

a ~ 2
> 2 — 202 —
> L - 20°

=l

This implies that there exists a constant C' = C(s,d,0) > 0 such that ﬁ”@,\ﬂ < C(14 ). One
conclude

_ - 1 x *
OO VA (14 Aax) £ = |@a] < (183 + 7] —[67]) <

Lipschitz continuity of the limiting risk and empirical distribution

Proposition 9.3.6

The function \ — p} is M-Lipschitz on [Amin, Amax] With respect to the Wasserstein
distance Wy, for some constant M = M (€2) > 0.

Proof. Let A1, A2 € [Amin; Amax]-
Waluii, 15,)° < B 00O + 7a(A) Z, 0w (M) 7(M)) = 1(0 + 72 (02) Z, 0 (Ao (12)))?
< 2E [(n(M)Z ~ 1 (02)2)° + (s (M)7(A) — s (a7 (A))’]
< 2(r (M) = 7(0))” + 20 (M) (A) = o) (V2))?
< 21+ 0F) (7 (M) = 70 (00))” + 270 (M) = 0 (A2)°

Since by Proposition 9.1.3 the functions A — a.(A) and A — 7.(A\) are both M-Lipschitz on
[Amins Amax], for some constant M = M (€2) > 0, we obtain:

WQ(MKN:LLKQ) < 2M2(1 + O‘maux + Tmax)()‘l - )‘2)2 )
which proves the Lemma. O
Proposition 9.3.7

The function A — R,(\) = §(7.(\)? — 0?) is M-Lipschitz on [Amin, Amax), for some
constant M = M(Q2) > 0.

Proof. This is a consequence of Proposition 9.1.3. O
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Proofs of Theorems 8.3.1 and 8.3.2

Lemma 9.3.5
Assume that D is either Fy(s) or F,(§) for some s < spmax(0) and & > 0,p > 0. Define

fam-n. it D=FE,
o if D= Fs).

Then there exists constants K, C,c > 0 that depend only on €2 such that for all 0* € D

P(YA, N € Pamin, Amas], L (0) < min Ly (z) + KNA — N))>1-Ce™™  (9.3.6)
e

Proof. K = K(2) > 0 be a constant such that for all * € D, the event
1, ~
{¥2 € Dhniny Amas; ~[16x] = 1671 < KN} (9.3.7)

has probability at least 1 — Ce™®". Such K exists by Propositions 9.3.3 and 9.3.4. On the
event (9.3.7) we have for all \, X € [Anin, Amax]:

—~ ~ 1 ~
Ly (0x) = Lr(0x) + (N — )\)5’9/\\

N 1 ~ N 1 N N
< LAOx) + (XN = N)—10x] = Lo (Ox) + — (A = X) ([0x] = [62])
1 ~ ~
< . , - /_ = * o *
< min L3(6) + X = M (l1Bx] = 16| + ;] — 6]
< min ﬁx(&) + QKNq|)\ — )\/| .
OcRN

Theorem 8.3.1 and Theorem 8.3.2-(8.3.8) are proved the same way.
Proof of Theorem 8.3.1. Let v > 0 as given by Theorem 8.5.3 and let K = K(Q2) > 0 as
given by Lemma 9.3.5. Let M = M (Q) > 0 such that A — p3 is M-Lipschitz with respect to the
Wasserstein distance Wa on [Amin, Amax), as given by Proposition 9.3.6.

Let € € (0,1] and define ¢ = min (ﬁ, ﬁ) Let & = [(Amax — Amin)/€'|. Define, for
1=0,...,k:

i = Amin + ie .
By Theorem 8.5.3, the event
{Vi c{l...k}, Vo RN, £).()< mﬂlélv Ly, (x)+ve = WQ(ﬁ(M*),uf\i)Qge} (9.3.8)
xe

has probability at least 1 — C N9~ max(1,a)—1p—cNe?e log(e) ™2 Therefore, on the intersection of
the event in (9.3.6) and the event (9.3.8) we have for all A € [Amin, Amax]

Ly,(0)) < min Ly, (z) + 2KN9|X — N\;| < min Ly, () + e,
zeRN z€RN

where 1 < ¢ < k is such that A\ € [\;_1, \;]. This implies (since we are on the event (9.3.8)) that
Wo (/7(/9\A e uii)z < e. We conclude by

~ *\ 2 ~ * )2 EES
W2 (M(@\/\ﬂ*)vu)\) < 2W2 (M(@\/\ﬂ*)vu)\i) + 2W2(:u’)\7 :u)\i>2 <2+ 2M2()‘ - AZ)Z < de.
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This proves the Theorem. O

Proof of Theorem 8.3.2-(8.3.8). Let~ > 0 as given by Theorem 9.3.1 and let K = K(£2) > 0
as given by Lemma 9.3.5. Let M = M () > 0 such that A — R, () is M-Lipschitz on [Amin, Amax],
as given by Proposition 9.3.7.

Let € € (0,1] and define € = min (ﬁ, ﬁ) Let k& = [(Amax — Amin)/€']. Define, for
1=0,...,k:

Ai = Amin + i€’ .
By Theorem 9.3.1, the event

1 2
{We{l...k}, WOERY Ly,(0)< min Ly, (x)+7e = (NHG—G*HQ—R*()\Z-)) §e} (9.3.9)

zeR

has probability at least 1 — kCe te~ ¢V > 1 CNle 2N, Therefore, on the intersection of
the event in (9.3.6) and the event (9.3.9) we have for all A € [Amin, Amax]

Ly, (0, < min £3,(0) + 2N = \i| < min £5,(0) + e,
where 1 < i < k is such that A\ € [\;_1, \;]. This implies (since we are on the event (9.3.9)) that
(%Hé\,\ — 072 — R*()\i))2 < e. We conclude by
(18— 0417 = Re)” < 2183 — 01 = Ro()) +2(Ra(h) — Ra(Y))
< 2e + 2M*(€)? < de.
This proves (8.3.8). O

9.4 Study of the Lasso residual: proof of (8.3.9)-
(8.3.10)

This Section is devoted to the proof of (8.3.9)-(8.3.10) from Theorem 8.3.2. Let us define
Uy = Xy —0z=X0\—vy.
Uy is the unique maximizer of
u ﬁ}g}lv {uTXw —ou'z — ;HUH2 + A(|0" + w| — |9*|)} :
In Section 9.4.2 below, we prove the following Theorem:

Theorem 9.4.1
There exists constants ¢,C > 0 such that for all e € (0,1], all * € D and all A\ €

[)\minv)\max]
1, . 2 C e
(Gl - 5.007) 2 ] < S,

€

and 1 2 )
P ((nHﬁ)\ +oz||* - P*()\)) > e) < Comene

Theorem 8.3.2-(8.3.9)-(8.3.10) will then be deduced from Theorem 9.4.1 in Section 9.4.2.
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9.4.1 Study of Gordon’s optimization problem

Recall that g ~ N(0,Iy) and h ~ N(0, I,) are independent standard Gaussian vectors.
Define for (w,u) € RY x R,

o T

m(w, u) = lullg™w + 7 llwllhTu = —u z—*HUHZ (IW+9*\ - 16"1),

3/2 n3/2

and Uy (u) = min,cgy my(w,u), Ux(u) = my(wy, u), where wy is defined by (9.2.2). Obvi-
ously we have Uy (u) < Uy(u ) We write also

<\/i - z) . (9.4.1)

Lemma 9.4.1

There exists constants C, ¢ > 0 such that for all ¢ € (0,1] and any A € [Amin, Amax] We
have with probability at least 1 — Ce="’

e U, is 1/n-strongly concave on R" and admits therefore a unique maximizer u}
over R".

e |maxyern Uy(u) — L, (\)| < ¢, where L,(\) is defined by Corollary 9.2.1.

[} %Huj — U)\H2 S €.

3%2)‘) which is greater than

Proof. By Lemma 9.6.1 and Lemma 9.6.2, %w;\r g concentrates around
some constant v > 0. Indeed

C] &)
s.(\) =E [@(T* — o)+ o - ~- a)}
remains greater than some strictly positive constant while 8* vary in D and A vary in [Amin, Amax]-
By Lemma 9.6.1 we have then that with probability at least 1 — C'e™“", ng > 0 which implies
that Uy is 1 /m-strongly concave. Let us compute

max O (0) = max { (| lwal - - LoTwa)8 = 27 2 (w07 0%}

- % (H:LHWAHh - ﬁZH - nQTWA>+ + %(\WA +0% —167)) .

By the concentration properties of wy (see Section 9.6.2), have that with probability at least
1 — Ce " | maxyecpn Up(u) — Ly(A\)| < e. One verify analogously that Uy(uy) > Ly ()) — € with
the same probability, which implies the third point by strong concavity. O

9.4.2 Proof of Theorem 9.4.1

Let us only prove the second point since the first one follows from the same arguments.
Let € € (0,1] and define

1
D, = {u eR" ‘\/ﬁHu +oz|| — \/P*(/\)‘ > 661/2}.
Let us define for (w,u) € RY x R™:
_ 1 T o T 1 2 A * *
ex(w,u) = —uTXw — —ulz — o |ful|” + ﬁ<|w+0 | —167]) (9.4.2)
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Lemma 9.4.2

We have almost surely

ﬁﬁ{r}v max ex(w,u) = umeé%R%iIelﬂg}V ex(w,u) = ex(wy, uy) .

Proof. By definition of w) and @) we have

ex(Wy, Uy) = nin_max ex(w, u) > max min, ex(w,u).

Let us prove the converse inequality. The optimality condition of wy gives that there exists
v € 0]0* + w)| such that

Xy + =X (X —02)+I=0.

The function w — cy(w, uy) is convex and
A
fXTuA + fv =0

is a subgradient at wy. Therefore min, cpn cx(w, u)\) = ¢)\(Wy, uy), which proves the lemma. [J

We compute now

P(ﬁ,\ € D€> = P(max min ¢, (w,u) > max min c,(w, u))
u€De weRN u€R™ weRN

< P(max min ¢y (w,u) > L,(\) — e) +P(max min cy(w,u) < Ly(\) — 6> .

u€De weRN u€R™ weRN
By Lemma 9.4.2 and Proposition 9.3.2 we can bound
C 2
P <L*)\—>:IP’< C <L*)\—><‘C”f.
((max min ex(w, ) < L) =€) = B min Cy(w) < (V) — €] < e

Now by the same reasoning than Corollary 8.5.1 (we omit here the details for the sake of
brevity) we have

P(max min cy(w,u) > L.(\) — e) < 2P<max min my(w,u) > L,(\) — )

u€De wGR u€De ’LUGR

:2IP’<maXU,\( )

UEDE

Since Uy < (7,\ we obtain
> —€) < Ty (u) > —€).
P(i%%f J;rel]gl ex(w,u) > Lio(N) e) < 2]P’<£réaD>E< Ux(u) > Li(N) e)

Let E be the event of Lemma 9.4.1 above and let us work on the event

EN {’\/%HU,\—I—UZH ROy 2}, (9.4.3)

787162

which has probability at least 1 — %e (the fact that the second event in the intersection
has this probability follows from standard concentration arguments as in Section 9.6.2).
Let now u € D,, by the definition of D, and the event above we have —=|lu — u,|| > 5el/?

and thus —=|u — u|| > 4€'/2. By 1/n-strong concavity of Uy we get
Un(u) < max Un(u') — 8¢ < Ly(\) — Te.

u’€R™

C
Consequently ]P’( max U Au) > Lo(N) — e) < —6_0”62, which proves the result.
c €
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9.4.3 Uniform control over \: proof of Theorem 8.3.2-(8.3.9)-
(8.3.10)

Let D be either Fy(s) for some s < spax(d) or F,(€) for some & > 0, p > 0. Let ¢ = 0 if
D = Fo(s) and ¢ = (1/p — 1)1 if D = F,(§). By Propositions 9.3.3 and 9.3.4 there exists
a constant K = K(Q) such that the event

1
{VA € Poins A, = + 6°] = 16"

< KN‘I} (9.4.4)
has probability at least 1 — Ce™". Let us fix this constant K and let us write

1
Dy = {w € RN‘n“w—Ir@*] e

< KNq}.

We define also

o

o : 1 T T 1 2 A * *
Ux(u) = min {u Xw—gu z—%HuH +E(|w+9 | — 10 |>}

wED g n
Lemma 9.4.3

The function U, is 1/n-strongly concave. On the event (9.4.4), Uy is the (unique)
maximizer of U,.

Proof. Let us work on the event (9.4.4) and let A\ € [Amin, Amax)- We have, by permutation of
max and min:

U < min C =Cy(w
maxUy(u) < min Cy(w) = Cx(@h),

because on the event (9.4.4), wy (the minimizer of Cy) is in Dg. By the optimality condition of
Wy, one verify easily that Uy (uy) = Cy(wy) which proves the lemma. O

Theorem 8.3.2-(8.3.9)-(8.3.10) follow then easily from Theorem 9.4.1 (by an e-net ar-
gument as in the proof of Theorems 8.3.1 and 8.3.2-(8.3.8), see Section 9.3.2) and the
following Proposition:

Proposition 9.4.1

Let ¢ =0 if D = Fy(s) and ¢ = (1/p — 1); if D = F,(€). There exists constants
C,c,k > 0 such that for all 6* € D the following event

|
{V)\, N € Donins Ama]s —[x — an||> < £N9A — X|}
n

—Ccn

has probability at least 1 — Ce

Proof. Let us work on the event (9.4.4), which has probability at least 1 — Ce ™. Let A\, \ €
P‘minv )\max]. We have

A=N
sup [t (1) — U ()] < sup |22 (fw + 67| — |6°])| < KNO|A— .
ueR™ weEDg n
Therefore
Uy (ty) > Ux(ty) — NIK|X — )\,‘ > U(uy) — NIK|X— )\,|
> Uy (ty) — 2K NN = N,
which gives that L@y — Gy ||> < 4KN9A — X| by 1/n-strong concavity. O
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9.5 Study of the subgradient v,

The goal of this section is to analyze the vector

N 1 ~
0y = XXT(y - X0,),

which is a subgradient of the /;-norm at @. Let us define

Bao(0,1) = {v e RY | vl < 1}.

9.5.1 Main results

Let B = {w € RY | |w| < 2|0*|+50% A, n—l—K}, where K > 0 is some constant (depending

only on ) that will be fixed later in the analysis (in fact K is the constant given by
Lemma 9.5.5). Notice that @, € B, with probability at least 1 — e~"/2. Define

1
V\(v) = min {HXw —oz||* + 21)1—((9* +w) — 2|9*]} :

weB | 2n

Lemma 9.5.1
With probability at least 1 — e~™/? we have for all A > Amin

in C = V
S ) = g W

and Oy = — A" XT(X @y — 0z) is a maximizer of Vy.

Proof. Let us work on the event {||z|| < 2y/n} which has probability at least 1 —e~™2. On this
event we have w) € B and therefore

min Cy(w) = minCy(w) = max V(v
i, A(w) min A(w) pax NOF

where the permutation of the min-max is authorized by Proposition C.2. The optimality condition
of w)y gives that
Oy = A 1XT (X — 02) € 0|0 + @]

Therefore o] (@) + 6*) = |@y + 6*|. Using the optimality condition again we obtain
Va(y) = min {;HXw — oz||2 4+ \o) (6 + w)} = %HX@A —oz|? + \o) (6% + @)
_ %HX@A — 2|2+ NO* + @y
Therefore vy achieves the optimal value. O

The empirical law of the subgradient

Let v§ be the law of the couple
<_a*()\)17'*()\)<77(@ +7.(N)Z, 04*()\)7*()\)> -0 - n(A)Z), @) : (9.5.1)
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where (0, Z) ~ fig- ® N'(0,1). For v € RY we define
| N
Hwo) =~ D O(wi00) -
oo = 3y 2 O

Theorem 9.5.1

Assume that D = F, (&) for some &, p > 0. There exists constants C,c > 0 that only
depend on ) such that for all A € [Apin, Amax] and all € € (0, %],

sup P(Wg(ﬂ@ 0%)> vi)? > 6) < Cemax(la) oy (—CNEQEa log(e)_2> ,
0*€D ’

_|_

1
>

N

where a =

Theorem 9.5.1 is proved in Section 9.5.3.

Theorem 9.5.2
Let D be F,(§) for some & > 0 and p > 0. For all € € (0, 3],

sup ]P;( sup W2(ﬁ($)\’0*)’ I/;)Z > 6) < Ce max(l,a)le(l/p71)+echezea log(e)~2
0*€D €]

Amin 7)\max]

_|_

D=
SR

where a =

Theorem 9.5.2 is deduced from Theorem 9.5.1 in Section 9.5.3.

The norm of the subgradient

Let us define 5.0 )
« o
w) =23 (1 5 —25.(\) — 57*@)2) . (9.5.2)

Theorem 9.5.3
There exists a constant C, ¢ > 0 such that for all X\ € [Amin, Amax] and all € € (0, 1],

1 2 c
sup P((H@HQ _ m*(A)> > e) < Cmene
6*eD N €

Theorem 9.5.3 is proved in Section 9.5.3. We deduce as before:

Theorem 9.5.4

Let D be either Fy(s) for s < spmax(0) or F, (&) for some £ > 0 and p > 0. There exists
constants C, ¢ > 0 such that for all € € (0, 1],

1 2 C
sup IP< sup (II@A”? _ ,{*()\)) > 6) < 3Nq€_cn€2 |
0D \ A€ Amin,Amax] VNV .

where ¢ = 0 if D = Fy(s) and ¢ = (1/p — 1) if D = F,(§).
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Theorem 9.5.4 is deduced from Theorem 9.5.3 in Section 9.5.3.

Upper bound on the sparsity of the Lasso estimator

Studying v, allows to get an upper-bound on the ¢y norm of 0,. Indeed if gm- # 0 then
[xi| = 1: therefore ||0) o < #{z‘ 05| = 1}. For this reason, the following results will be
used to prove Theorem 9.6.1 in Section 9.6.4.

Theorem 9.5.5

There exists constants C, ¢ > 0 such that for all A € [Ayin, Amax] and all € € (0, 1],

1 C
sup P —#{i ‘ [On:] > 1— e} > s (A)+2(1+ amax)e) < 6—36_0”66 )

Theorem 9.5.5 is proved in Section 9.5.3.

Theorem 9.5.6

Let D be either Fy(s) for s < Smax(6) or F,(§) for some & > 0 and p > 0. We have for
all € € (0, 1],

1

sup IP’(EI)\ € [Amins Amax) N

6*€D

where g =0 if D = Fo(s) and g = (1/p — 1)+ if D = F,(§).

#{i|1onsl = 1} > 5.(0) +€) < Oogen,

€

Theorem 9.5.6 is deduced from Theorem 9.5.5 in Section 9.5.3.

9.5.2 Gordon’s strategy for the subgradient

Application of Gordon’s Theorem

Let g ~ N(0,Idy) and h ~ N(0,1Id,,) be independent standard Gaussian vectors. We
define:

2
_ : 1 || || 1 T glg A T * A *
Va(v) = min 2( Al + Tt vt e +Jrnv (w+67) = ~|0"]

The following Proposition is the analog of Corollary 8.5.1.
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Proposition 9.5.1
Let D C {v e RN ‘ )]0 < 1} be a closed set.

e We have for allt € R

> < >
P(r&a[))(VA(v) > t) < QP(I&%(V,\(U) > t) .
e [f D is convex, then we have for allt € R

P<r&a5<VA(v) < t) < 21P’<r51ea[>)<VA(v) < t) :

Proof. Let v € RV. By Proposition C.2 one can permute the min-max and obtain:

1 1 A A
Vi (v) = min max {uTXw T - —|Jul® + ZoT (0" 4+ w) — |¢9*|}
weBueR™ (n n 2n n n

1 ] A A
~ max min {uTXw LT e A+ 2T 4 w) — |0*|} .
ueR” weB | n n 2n n n

Let D C {v € RV ||v]lsc < 1} be a closed set. We can the apply Gordon’s Theorem (Corol-
lary 9.7.1) in order to compare

1 1 A A
max nm{JXw—%Jm-mW+thH@—ym@, (9.5.3)
(v,u)eDxR*weB (N n 2n n n
with
: ||’U)||2 QhTu 1 T g/U 1 2 A T/ p* A *
Lkl Lo A 2 -z 5.4
(v,ur)ré%xxﬂanglel%{ n +o n n3/2|\u||g W vn QnHUH +nv (67 +w) n‘e | (9:5.4)
||w]|? hTu 1

/
2Pt LT+ 9T L £ AT (0r 4 w) — Ao
ot g L2 - ol ST (0" ) - 2
which is equal to max,cp Vi (v). Note that the maximums in (9.5.3) and (9.5.4) are not defined
on compact sets (since D x R™ is not bounded). One has therefore to follow the same procedure
than for Corollary 8.5.1, and show that there exists a compact set K C R"™ such that with high
probability, the maximum over u € R" is achieved in . For the sake of brevity we do not provide

= max min max
veED weB ueR”

a complete execution of this argument and refer to the proof of Corollary 8.5.1. O

Study of Gordon’s optimization problem

In this section we study the optimization problem max, <1 VA(v). Let us define

W:—%Qrmuy%ﬂm+nm%%um@»—m—um@.
The goal of this section is to prove:

Theorem 9.5.7

There exists constants v, c,C' > 0 that only depend on €) such that for all 0* € D, all
A € [Min, Amax] and all € € (0,1]

C 2
Zemene”

1
IP’(EIU € B»(0,1), NHU —w|?>€¢ and V,\(v) > max Vi(v) — ’76) < ;
ve
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Recall that w} is by Lemma 9.2.1 the unique minimizer of Ly over RY.
Lemma 9.5.2

With probability at least 1 — 2e™"/? we have

Ly(w) = v
Juin, La(w) = max, Va(v)

and the vector

_ N |pl 1 go 2| w)
U*:—)\l M—I—O’zi—*gj—w*—l—i A —q
A ( n vioont ) o\ Vi w2 /e + o?

(0.

verifies ||v}|lo < 1 and is a maximizer of V).

5.5)

Proof. By Proposition C.2, one can switch the min-max:
l[wl*, LAl o\
1 w hl 1 go A A
% —_ : - 2 - T gV T 9*)— Z|p*
o, VA) = g max 2( o Tn Tt wwa) T )=
+

= min L
glelEA()

Let us work on the event {||h]| < 2v/n}N{g’ < \/n} which has probability at least 1 —2e~"/2. We
have 2 (|wi+60*|—16*[) < L(wy) < Lx(0) < 502. This gives w} € B and thus max |y <1 Va(v) =
mingep Ly(w) = min,cgy Ly(w

The optimality condition of w} gives that

SR B A T Bl 1 h
WZA(’AH+2b”nfw+ )(MW!HW+
'LU)\ nU

Therefore viT (w} + 0*) = |w} + 0*|. Using the optimality condition again we obtain

) € 016" + w3 .

2

— 2 QH H l T g/l é *T * _é *
Va(v3) glelg{ (\/ w|*+o PRI B (w +0%) — 07|

+
2
1 1 H I 1 Jgo A A
——— - * 1|2 2 J 7 - * 0* _ - 0*
2( Aol + o728 = SaTui+ T ) Tl 0] 216
= min L = max V)(v).
atiy D) = e K(0)
Therefore vy achieves the optimal value. ]

Proposition 9.5.2
For all 0* € D and all A € [Auin, Amax] We have for all € € (0, 1]

1 C
IP’<N||U§ —w|* > e> < ?e_c’“.
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Proof. By Theorem 9.2.1 we have for all € € (0, 1]

1. c _
P(ﬁ”ﬂ))\ —W)\H2 Z 6) S ?6 Cne,

so we deduce the result from the expression (9.5.5) of v} and the concentration properties of wy
(see Section 9.6.2). O

By the same arguments used for proving Lemma 9.5.2 it is not difficult to prove:
Lemma 9.5.3

The function

(recall that €y is defined by Equation 9.2.1) admits a unique maximizer b over Rx

and
[Jwil? (Al 1 go
b* — 2 - * J 7
\ ( +o \/_ ng wy + \/ﬁ )

Moreover, for all e € (0, 1] we have IP’<|bf\ = B(N)] > e) < Cemome,

Proof of Theorem 9.5.7

Let v € RY such that ||v|| < 1. We have by Proposition C.2

: 1 Y I go\ B A+ A
VA (v) wmggmﬁg(}){{ﬁ( n” wl]? + \f — 9 w + NG 5 T v (w+6%) n|9 |
i 1 ol 1 ¢ go) B2 A A
rggécwelg{ﬁ< n||wH +o NG — 9w+t N 5 TV (w+6%) n\@ |
=max min ¢ SVri+o 2” H l1Bg — v H_|_57_ﬂ72 AUTQ*—é\H*\
B>0 0<r<R vn f vnoo 2 n n ’

because the minimization over the direction of w is easy to perform. Let us define for
k>0

1 1
D, = {ve B (0,1), NHU—U;HQ <k? and Vy(v) > max V\(v) — SRQ}'

llv"[lo <1

By concavity of V), D, is convex.
Proposition 9.5.3

There exists a constant £ > 0 such that with probability at least 1 — Ce™" we have
Vv € D, V\(v) = Vi(v) where

% . 1 ol 1 x o go) Bl AT A
_ - 24 42 A n *\ _ Mp*
Va(v) = min {56[53_1%*%]{6( ol 40250 = 2glwt T2 | = Tk Dol w0 = T

In order to prove Proposition 9.5.3, we start with a Lemma:
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Lemma 9.5.4
For all v € D,,, the function

1 1 2
fu:Bleyeig{/?( 5le|2+ Q‘lfu ﬁg +?/%> % v ol (w+ 6%) — !9*!}

admits a unique maximizer by(v) on [0, +00) and one has |by(v) — b}| < K/2.

Proof. Let v € D,,. f, is 1-strongly concave so it admits a unique maximizer by(v) on R>q. We
have 1
fo(ba(v)) = max f,(8) = Va(v) > max Vj(v') — <7,

B>0 v/ |lo <1 8

because v € D,. Notice now that f,(bx(v)) < minyep £y (w,by(v)) because v (w+60*) < |w+ 6*].
Permuting the min-max (using Proposition C.2), we have max V,(v') = max migf,\(w,ﬂ),
>0 we

l[v"]loc <1

where we recall that ¢ is defined by (9.2.1). We get

. 1 2
> .
w2 (s al)) 2 e i A, 5) = g

The function 5 +— min,ep ) (w, B) is 1-strongly concave and maximized (by Lemma 9.5.3 above)
at b}, hence |by(v) — b3| < K/2. O

Lemma 9.5.5

There exist constants K,k > 0 such that with probability at least 1 — Ce™" the
following happens. For all 3 > 0, v € RN such that | —b}| < 2x and ||v —vi|| < VN&
the minimum over RN of

1 R A )
2 - J - _ = o 0* _ e*
w~5(7ﬂu o g et | = T ) = e

is achieved on B(0,VNK).

Proof. The minimization with respect to the direction of w is easy to perform: w has to be a
non-negative multiple of fg — Av. It remains thus to minimizes with respect to the norm of w.
We have to show that under the conditions of the lemma, the minimum of

r>0~ BVri+o2— HhH

is achieved for r smaller than some constant. By Theorem 9.2.1 and Lemma 9.5.3 there exists a
constant R > 0 (for instance R = Tyax + 1) such that the event

{312 < nB2} {63 = Buin/2} {1 > v/2} (9.5.7)
has probability at least 1 — Ce™“". Let us define the constants a = % < 1 and

VR2{o?
s (fﬁmln( (1) (1 - a)ﬁﬁmin)
K = min —asea AT /v Tmin )

189 — Av|| (9.5.6)

Bmin/87 16)\max

Let us now work on the event (9.5.7). Let v € RY and 8 > 0 such that ||v — v{|| < vV Nk and
| —by| < 2k. We have

A A
il + 150 = el

lg — 2ol < g —
B by A
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Compute
A [will/vn
Iy = vl = I~ A < i,
A LN LN —|-O'2

n

with probability at least 1 — C'e™". Now

1 1 1 1 2 vIN
150 = 58l < Gl =l g0 = ool < 52l =0+ s 18 - b
N 16v N N 1-a
<3 lo = o}l + —z— 18 = Bl < ——V/n.
min min
Putting all together:

1 H A |<a+t l1—a 1+a <1
—|lg — =wv a = .

R AL 2

1-((1+a)/2)%”

K=__ %0 O
1-((1+a)/2)?

This gives that the minimum of (9.5.6) is achieved for r < One can thus chose

Proof of Proposition 9.5.3. Let us now fix a constant x € (0, Bmin/2) that verify the
statement of Lemma 9.5.5. Let us work on the intersection of the event {|b5 — 8.()\)| < k/2} with
the event of Lemma 9.5.5. This intersection has by Lemma 9.5.3 and Lemma 9.5.5 probability at
least 1 — Ce™“".

Let v € D,. By Lemma 9.5.4 the unique maximizer by(v) of f, verify |by(v) — b3| < /2 and
therefore |by(v) — B«| < k. Consequently

/1 hH 1 g’a
Y . 2 2” - T
Av) = Be [mm %*m mm{ < wlF+o nY \/ﬁ

/82 * é*
-5t v(w+9)—n|9| -

Now, for f € B« — K, B« + k], we have | — b}| < 2k. Since we are working on the event of
Lemma 9.5.5, we obtain

1 [l 1+ go
V(v ma min “Nwl|?2 + o2 —qg'w+ =
A(v) = e L i, {ﬁ( ~llwll Vn n? NG

and Proposition 9.5.3 follows from the permutation of the min — max using Proposition C.2. [

Lemma 9.5.6

There exists a constant C, ¢,y > 0 such that Vy is v/N-strongly concave, with proba-
bility at least 1 — C'e™".

Proof. The function f* : RV — R defined by

*(0) — T, 2 2M,ET go\_ B
) m{w Mewfn%f;*m{ (v wt ot TRt e )
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is the convex conjugate of the convex function

N Lo, ol 1 Tw g'o _ﬂj
frweR Me[ﬂ* W*W{,@’( lwl® +o N +\/ﬁ 5

n (1 bl LT, 0
_n a2 2 g7
/\<p< pllwll? +o? 2= T 7

where ¢ is the C! function

%2 if x€[fs—kK,Bs+K],
p(@) =1 (B —r)z = 5(B: —K)* if =< Bk,
(B + K)x —%(ﬁ*JrK;)Q if z>p+k.

f is a proper closed convex function (because f is convex and its domain is RV), therefore its
convex conjugate f* is also a proper closed convex function. The Fenchel-Moreau Theorem gives
then that f = f**. Let us compute the gradient of f for w € RN

Vf :n, 1/ |2 + o 2M,ET go\ (lInll _w/n g '
n? N4 Vn [lwl> | 2 n

It is not difficult to verify that there exists a constant L such that V f is L-Lipschitz on RY, with
probability at least 1 — Ce™". f = f** is therefore 1/L-strongly smooth (see Definition C.1).
By Proposition C.3 this gives that f* is 1/L strongly convex. One deduces then that Vy is ~v/N-
strongly concave with v = A/(Ld). O

Let 0 < v < 1/2 be a constant that verify the statement of Lemma 9.5.6 and let k > 0
be a constant given by Proposition 9.5.3. Notice that it suffices to prove Theorem 9.5.7
for € small enough and let € € (0, x?).

1 1
P(3v € Bo(0,1), Sl —wll? > e and Vi) > nax V(v V) — Z'ye)
<P(Jv € Bx(0,1) Liv— 2> € and Vi) > max WA() 16)4-06_6"6
[e'e) ) PR—— - - X _ = —_
= N A 2 MU= AL W T €

2

1 1 C
< IP’(EIU € D, NH’U —vi|? > % and Vy(v) > Iax VA(v') — Z’ye) + ?6_0"62, (9.5.8)

because, if there exists v € B (0,1) such that +[v—v}[* > £ and Vi (v) > | Hﬁaﬁlv Z(v')—

iwe, we can construct v € D, that verifies the same conditions. Indeed:

o if +[jv —vj||* < &2, one simply take ¥ = v.

e otherwise, v = v} + k(v —v})/[|[v — v}|| is in D, and by concavity V)(v) > Vi (v).
Since with probability at least 1 — C'e=" we have Vy(v) = Vi (v) for all v € D, and V) is
~/N-strongly concave, the probability in (9.5.8) above is less that C'e=*"

9.5.3 Proofs of the main results about the subgradient

Let us start with the analog of Proposition 9.3.1 for the costs functions V, and V):
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Proposition 9.5.4

There exists constants ¢,C' > 0 that only depend on () such that for all closed set
D C RY and for all € € (0,1],

C 2
> < > . . —Cne .
]P’(glealg)cv,\( ) quﬁlw v) — ) < 2P (Igleag)cv,\( ) Hzfﬁliﬁlv)‘( v) 36) +—e

The proof of Proposition 9.5.4 is omitted for the sake of brevity, and because it follows
from the exact same arguments than Proposition 9.3.1.

The norm of v,: proof of Theorem 9.5.3

Lemma 9.5.7

There exists constants 7, c,C > 0 that depend only on §), such that for all ¢ € (0, 1]
we have

C
P <max Vi(v) > max Vy(v) — 3’76) < Zemene
€

vED, V]| <1

where D, = {v € B(0,1) ' (HUH — Nm(A))Z > e} and k.(\) is defined by (9.5.2).

Proof. Similarly to Proposition 9.6.1 it is not difficult to prove that for all € € (0, 1],
1 2 2 —cNe?
B(| 5 Iall? = k()] > €) < eV,

for some constants ¢, C' > 0. By Theorem 9.5.7 there exists constants v, ¢, C > 0 such that for all
€ (0, 1] the event

{Vv € B(0,1), VA(v) > max V) — 3ve = —Hv —w? <

s FO{0all = yNra))* < N2

(9.5.9)

Cﬂ\m

has probability at least %e* . On the event (9.5.9), we have for all v € D,:
1 1 1
v =wl? = % (vl - Ival)® = ~ (VNe- *V >
This gives that on the event (9.5.9), for all v € D, V) (v) < max Vy(v')— 3")/6. The intersection

[0l <1

of (9.5.9) with the event {né%x W(v) > ”1T|1ax Va(v) — 3ve} is therefore empty: the lemma is
veD.
proved. ]

Proof of Theorem 9.5.3. Let v > 0 be a constant that verify the statement of Lemma 9.5.7.
Let € € (0,1] and define

D, = {v € Boo(0,1) ‘ (loll = /Nra (V)2 = NE} .
D, is a closed set.
IP’(EIU € B»(0,1) |—||UH2 — kx(N)| > € and V) (v) > max V) — ’ye)

:P(maXV (v) > max Vy(v) — We)

vEDe [[v]]| o<1

C
< 2]P’(HéabXV)\( ) > IIIﬁlaXlV/\( )— 3"}/6) + Ce ¢ < ?efcne 7

where we used successively Proposition 9.5.4 and Lemma 9.5.7. O
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The empirical law of v): proof of Theorem 9.5.1

Theorem 9.5.1 follows now from Proposition 9.5.4 and the following Lemma.
Lemma 9.5.8

There exists constants v, c,C > 0 that depend only on ), such that for all € € (0, %]
we have

C _
P (maX Vi(v) > max Vy(v) — 3,y€> < & p—ene?log(e) 2’
€

vED. [[v]|co <1

WhereDE:{UEB O]_‘WQ Bw,0%)s ;)226}.

Proof. By Theorem 9.5.7 and Proposition 9.6.2 there exists constants v, ¢, C > 0 such that for
all € € (0, 3] the event

2 * o~ 2_ ¢
{¥v € Buo(0,1), Va(v)> max Vi —3ve = Lio=val 5}ﬂ{W2(1/)\,u(VA79*)) SZ} (9.5.10)

oo Yy

has probability at least

1- 9676"62 — Ce %exp (—CN626“ log(e)%) >1— Ce ™19 exp ( cNe?e? log(e)*2> .
€

On the event (9.5.10), we have for all v € D,:

4°

This gives that on the event (9.5.10), for all v € D, V) (v) < i HﬁaX< Vi (v") —3~e. The intersection
1

of (9.5.10) with the event {mebx Vi(v) > HIﬁlaX Va(v) — 3ve} is therefore empty: the lemma is
veDe
proved. ]

Vo= al? = Wa i) o) > (Walligu0),v3) = Walis i) 2 =
(

Proof of Theorem 9.5.1. Let v > 0 be a constant that verify the statement of Lemma 9.5.8.
Let € € (0, 5] and define

De = {v € Boo(0,1) | Wa (i, v5)* > €}
D, is a closed set.

]P’(Elv €Buo(0,1), Wo(fiy, v5)? > € and Vy\(v) > max Vy — ’ye)

= >
P(mpa) 2 max, Vi) —1¢)

-2
’

C 2
cne cne? log(€)
< QIP’(%&)E Vi(v) = ||5ﬁla§1 Va(v) 3’)/6) +Ce < €

where we used successively Proposition 9.5.4 and Lemma 9.5.8. O

Proof of Theorem 9.5.5

Lemma 9.5.9

There exists constants 7, c,C > 0 that depend only on €, such that for all ¢ € (0,1]
we have

C
P (max Vi(v) > max Vy(v) — 3763> < ge—cneﬁ’

vEDe [[v]]| o<1

where D, = {’U € Bo(0,1) |+

#{illo] = 1€} > 5.0 +201 +amax)e}.
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Proof. Let e € (0,1] and define

S = %#{i € {1, N}||vag > 1 - 2¢}.
Se is the mean of independent Bernoulli random variables. By Hoeffding’s inequality we have
P(sc <P 'O+ 2] > 0w — 2006) +¢) > 1— 72N
Compute
P(!T{l@ + Z| > oy — 2a€)
_E [@(ﬂ%) o (V) +20. (V) + @

< 84(A) + 20max€ -

o
e+ 2a*(A)e)}

We obtain ]P’(s6 < 84(A) + 20umaxe + e) >1- e"2Ne By Theorem 9.5.7 there exists a constant
~v > 0 such that the event
1
{Vv € Bs(0,1), Va(v) > m?mxl)V,\ — 3ve® = NH’U —w? < 63} ﬂ {56 < 54(A) + max€e + e}

oo Yy

has probability at least 1 — 6%6_0”56. We have on this event, for all v € D, %Hv —wy|? > €.

Therefore, on the above event we have max W) < ”I|I|1ax Va(v) — 3v€3, which concludes the
veDe V|| <1

proof. O

Proof of Theorem 9.5.5. Let v > 0 be a constant that verify the statement of Lemma 9.5.9.
Let € € (0,1] and define

D, = {v € B(0,1) ’ %#{Z |Joil > 1 —€} > s(N) +2(1+ amax)e} .
D, is a closed set.
1 e
P(#{i ] [Bail = 1= €} 2 5.(0) +2(1 + Qumax)e)

< > —
< IP’( max Vi(v) > nax Va(v) 76)

C C 2
< > _ —cne —cne
< 2IP’(1I)Ié%>§ W\ (v) > lh}}[ﬁlj}él \(v) 376) + ; e <~ e ,

where we used successively Proposition 9.5.4 and Lemma 9.5.9. O

Uniform control over A\: proof of Theorems 9.5.2, 9.5.4 and 9.5.6

Theorems 9.5.2, 9.5.4 and 9.5.6 are deduced from Theorems 9.5.1, 9.5.3 and 9.5.5 by an e-
net argument, as we did to deduce Theorems 8.3.1 and 8.3.2 from Theorems 8.5.3 and 9.3.1.
Since the ideas are the same, we only present here the key argument:

Proposition 9.5.5
Assume that D is Fo(s) or Fi(§) for some s < Spax(0) and € > 0,p > 0. Let ¢ = 0 if

D = Fo(s) and g = (1/p — 1)y if D = F,(§). Then there exists constants K,C,c > 0
that depend only on ) such that for all * € D

1
IP(VA, X € Donins A, 12183 — B[P S KNYA - X|> >1—Ce .  (95.11)
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Proof. By Proposition 9.4.1, there exists a constant K such that with probability at least
1 — Ce " we have

1
YA, X € [Mmins Amax), g||aA — Uy |* < KNYX - N|.

Notice now that vy = —%XT%\ and that with probability at least 1 —2e~"/4, Omax(X) < o Y249
(by Proposition 9.7.4) which combined with the above inequality, prove the Proposition. O

9.6 Some auxiliary results and proofs

9.6.1 Proof of Remark 8.3.2

Let £ < N and define the vector 6* = (N,2N,...,kN,0,...,0). With the definitions
given in Remark 8.3.2, we claim that Wg(ﬂ@ 6y py) > \/k/N with probability at least

1 — e~ for some constant ¢ > 0. Indeed, consider the case A\ = 0, 7, = 1, and let
P, [E denote probability and expectation with respect to the coupling that achieves the
Wasserstein distance. This is a coupling for a triple of random variables (1,0, Z), with

I~ Unif({1,...,N}), (©,2) ~ fig- @ N'(0,1), with

Waliig gy 13)* = E{(6: — ©)*} + E{(6; + 21 —© - 2)*} = A+ B. (9.6.1)

We will proceed to bound separately the two terms above. Define §; = P(© # 071 = i),
and dpax = max;<y 0;. Since © € {0, N, ..., kN} with probability one, we have

jlvzk: E{(6; — 0)’|1 = i} 6 > Nzk:(ii > N . (9.6.2)
Pt i=1

For the second term, we have

B > iE{ 9* —+ Zr — @ Z) 1] 219 9*} = iE{<ZZ - Z)Q]-I:i]-@:e:} (963)
i=1 i=1
Ek:E{ 219:9;} ZE{ Z)°114ile- 9*} (9.6.4)
=1

Note that, by the coupling definition, ]P’(I = z‘@ = 9*) = N]P’(I =1;0 = 9*) =1-4.
Using the fact that © and Z are independent random variables, together with Cauchy-
Schwartz inequality,we get

B> Zk:E{(zi — Z)’}P(© = 67) — zk:IE{(zi ~ ZMeog ) (1 £ 50 =67)"" (0.6.5)
1 k ) 1 & ) 172 , N1/2
ZN; {( )}—N;E{(zi—Z) b (140 =67) (9.6.6)
> ]bz;E{(z 2) ]1[2153/21@{(% — 2z (9.6.7)
>izk:(1+ 1%51/2(3+6 + )/2 (9.6.8)
Z N - %)=y ; 25+ 25 . 6.

s
Il
_
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where in the last step we used the fact that Z ~ A(0,1). Using (3+62%+2*) < 4(1+22)?,
we thus conclude

51/2 k
B> 1= 20 d(1+2z7). (9.6.9)
N i=1
By concentration properties of chi-squared random Variables for any e > 0, there exists
c(e) > 0 such that, with probability at least 1 — e~* we have § Y7, 22 > 1 — 2. Hence,
with the same probability

2k

Waliig, ooy 13)* Z Nomax + 57 (1 = 20,05)(1 = ¢) (9.6.10)
k

> — 6.11

> 5 (9.6.11)

The last inequality follows by lower bounding the first term for d,,.x > 1/N, and the second
for dmax < 1/N, and fixing ¢ a sufficiently small constant.

9.6.2 Concentration properties of w)

We prove in this section concentrations of the norms and some scalar product of wj.
Lemma 9.6.1

There exists constants ¢, C' > 0 that only depend on ) such that for all t > 0 the event

1 1 2 2 o* o*
{‘QTWA—E[QTWAHSt7 ‘HW/\H _E[HWAH <t and ‘|W>\‘|‘ | _EPWML !HSt}
n n n n n n

has probability at least 1 — C'e=ct’n — Cle=¢tn.
Proof. The function

g = wx = (0] + 7(N)gi, (M) T (N)) — ei*)lgigN
iS Tmax-Lipschitz. Consequently:

° g — w is 6~1/2n~ 127, -Lipschitz. Therefore |W*:9 L i 720 n~! sub-Gaussian:

for allt > 0,
* *
P("WAJFQ | E['WAJFQ ” >t) < 270/ Tiax
n n
° g— ”\W}” is n~1/2 7 ax-Lipschitz. Therefore lw f” is 72, .n~! sub-Gaussian. Its expectation

is bounded by E% < (EM)U2 = Ty« < Tmax. By Proposition 9.7.3, we obtain that

Iwall® 3 (Cn~1, Cn~')-sub-Gamma for some constant C' and therefore for all t > 0,

n
P( sl luww
n

n

> t) < 9e~Cnt? 4 ge—ent

Now for i € {1,..., N},
GiWx; = T*gf + gi(Wxi — Tx9i) -

lwyx; — Tgi| < a7y and g; is 1-sub-Gaussian and E[|g;|] \/> < 1. Consequently, Lemma 9.7.1

gives that g;(wy; — Twg;) is 4872a2-sub-Gaussian. This gives that 1 gT(W,\ — T.g) concentrates

exponentially fast around its mean. So does 1||g||2. O
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Lemma 9.6.2

1 2 2 _ 2 1 T _ _ 1
EEHWXH +o =7.()) and EE[Q WA} =T7(A) = B.(N) = 53*()\)-

ii.d.

Proof. The first equality comes from Lemma 9.1.5: since (g;) = AN(0,1), we have E|lw,||?> =

NE[w* (s, 7+)?]. The second equality comes from the optimality condition of S, see Lemma 9.1.6,
and the definition (8.3.4) of s.(A). O

The next proposition simply follows from Lemma 9.6.4 and standard concentration
arguments, so we omit its proof.

Proposition 9.6.1

There exists constant C,c > 0 that only depend on 2 such that for all € € [0, 1],

P(|Lalwa) = 0a(B.00, ()] > ) < Cemn

9.6.3 Concentration of the empirical distribution

Proposition 9.6.2

Let 6* € F,(§), where p,§ > 0. Let 1 = fig« ® N(0,1) and let fi be the empirical
distribution of the entries of (Qf,gi) i where g1,...,gn ~ N(0,1). Then there

exists constants C, ¢ > 0 that only depends on &P, such that for all € € (0, 1],

P (Wg(ﬂ, p)? > 6) < Ce “exp (—CN626“ log(e)_Z) ,

where a = = +

N =

S

Before proving Proposition 9.6.2, we will need two simple lemmas. For r > 0and z € R

we use the notation
T if —r<z<r,

T =T if x>r,
—r if < —r.
Let i, be the law of (@, Z|r) where (0, Z) ~ jig- @ N(0,1).
Lemma 9.6.3

Wa(p, pyr)* < e 2

Proof. We have Wa(u, ,)? < E [(Z = Z;,)?] 20-/24y < e~7°/2, 0

\/ﬂ /+oo

Let fi,. be the empirical distribution of the entries of (9.*, 9i T) .
| ¢ | 1<i<N
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Lemma 9.6.4

With probability at least 1 — e‘ﬁmg, we have

Wa(fi, i) < e+ /2.

Proof. Obviously W(fi, i)

<+ SN (gi — gm)z. The function x — x — x, is 1-Lipschitz, so
the variables (g; — gi|r)2 are i.i.d. (16,

)-sub-Gamma. Therefore for all € € [0, 1],

N
1 2 2
P (N > (gl- - gz‘\r) > E (Z - er) + 6) < e N,
i=1
And we conclude using E(Z — Z|T)2 <e 2 which we proved in the lemma above. O

We need now some concentration results for empirical measures, in Wasserstein dis-
tance. The next proposition follows from a direct application of Theorem 2 from [85]
to distributions with bounded support. Notice that the results from [85] are much more
general than this.

Proposition 9.6.3

Let Ay, ... A, = v be a collection of i.i.d. random variables, bounded by some constant
r > 0. Let
. 1 i 5
m =

be the empirical distribution of Ay,...,A,,. Then there exists two absolute constants
¢,C' > 0 such that for allt > 0

P (WQ(V, Dm)? > r2t) < Cexp(—cemt?).

Proof of Proposition 9.6.2. We are now going to couple y, with fi;,. Let R > 0. Let k > 1
and let 0 = 2R/k. Define
Bi=[-R+(1-1)6,—-R+10),

fori=1,..., k. We define also By = (—o0, R) U [R,400). For I =0, ...k we write
I; :{Z‘Q:GBI} and N; = #I1;.

Let t > 0. Let [ € {1,...,k}. The random variables (g;|,)ics, are i.i.d. and bounded by r. By
the proposition above, one can couple i; ~ Unif(;) with Z; ~ N(0,1) such that we have with
probability at least 1 — Ce=ct’N

N
2 2
E [(Zl|r - gil|r) } <tr Nl )
where E denotes the expectation with respect to i; and Z;. Let j; ~ Unif(/;) independently of
everything else.
For [ = 0, we define (ig, Zy) ~ Unif(Ip) ® N (0,1), independently of everything else. We have
with probability at least 1 — Cect’N,

N
E[(Zoyr — 9ior)?] = E[Z3,] +E[g2,] <2+ tr2\/;0,
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where E denotes the expectation with respect to Zy and ig. Indeed, E[gi)'r] = Nio dicls gz.2|T <

1+tr2,/ Nﬂo with probability at least 1 — Ce="N_ The equality comes from the fact that Zy and
19 are independent. Finally, we define jy = ig.

Let us now define the random variable L whose law is given by P(L = 1) = %, independently
of everything else. Define

{Yl = (95,, Zopr) »
Yo = (9&7 giL|r) :

(Y1,Y2) is a coupling of (y,, fi|,). Let E denote the expectation with respect to (i, Z;)o<i<x and
L. Then

k

N, 2 2
E i - el = > VE| (8- 03) + (Z - gurr) |
=0

k
— —1 1 — |2+ —
;N<’/NZT+ >+N A
é’p

N,
2 2 0 2 2
< 62 + Vktr +2N < 62 + Vktr —|—2pr

IN

with probability at least 1 — C'(k + l)e_CtzN , where the last inequality comes from Markov’s in-
equality, since 6* € F,(§).

Let now € € (0, 3]. Let us chose

r =4/—2log(e), R=¢ /P and k= (6_1/2_1/”1 < 26_1/2_1/p,
so that 6 = 2R/k < 2,/e. Consequently
E|Y: — Ya|? < (4 + 26P)e + 2v/2e /41 ) og(e) |t .
541
So if we chose t = |log(€)|"te4 "2 we obtain
P(WQ(/L‘T, ﬂ|r)2 < (44 28° + 2\/5)6) > 1— Ce VP12 exp(—eNe2e /271 [ 1og(e)?).

Combining this with Lemmas 9.6.3 and 9.6.4 proves the proposition. O

9.6.4 Sparsity of the Lasso estimator
The goal of this section is to prove:

Theorem 9.6.1

Assume here that D is either F(s) or F,(§) for some 0 < 5 < Spax(d) and € > 0,p > 0.
There exists constants C, ¢ > 0 that only depend on €, such that for all ¢ € (0,1)

sup P ( sup N
€

0*eD /\E[)\mim/\max}

L5 C
Bl = 5.0 2 ) < Cyrgmave

where g =0 if D = Fo(s) and g = (1/p — 1), if D = F,(§).
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Since #{i | [tx;] = 1} > ||0]lo, Theorem 9.5.6 gives that
L~ C q ,—cNeS
sup P <3)\ & Ponins Ama: 3103l 2 5.(3) + e> < SNt (9.6.12)

It remains to prove the converse lower bound in order to get Theorem 9.6.1. We start
with the following ‘local stability” property of the Lasso cost:

Proposition 9.6.4

There exists constants C, ¢,y > 0 that only depend on ) such that for all € € (0, 1]

1 C
sup sup IP(EIH e RN, —||10]lo < s+(\) —¢ and Lx(0) <min Ly + ’763> < —36_5N66 )
AE[Amin,Amax] 0*€D N B

Proposition 9.6.4 is a consequence of Proposition 9.3.1 and Lemma 9.6.5 below.
Lemma 9.6.5

There exists constants 7, c,C > 0 that only depend on ) such that for all e € (0, 1] we
have

C 6
. . 3 —cne
P (mln Ly(w) < Inin Ly(w) + 3rye ) < 3¢ )

we D¢

where De = {w € R | % |w + 0*lo < 5.(}) — ¢}

Proof. Define x = wy + 6% = (n(0F + Tugi, @xT)) o, » and for 7 >0
1 .

Sy = N#{z € {1, N} il > 7}

sy is a mean of independent Bernoulli random variables, by Hoeffding’s inequality we have:

P(sr 2P0+ 7.2] 2 aur+7) = 1) 21— e NS,

Compute
P(|© 4+ 7Z| > aur +7) = E [@(f}\)_a*(x)_ﬂzﬂ)\)) * q)(_ﬂ(?)\)_a*()\)_uz/\))]
> 8:(A) — g'

Let us chose r = oe/4. We have then P(Sr > s4(A) — g) >1— e N¢/8, By Theorem 9.2.1 there
exists a constant v > 0 such that the event

{Vw eRY, Ly(w) < min Ly(v) + 37€> = iHw —wy||? < 0263} ﬂ {sr > s.(N) — E} (9.6.13)
’ ~ veRN N 32 - 2

has probability at least 1 — E%e*‘meﬁ. We have on this event, for all w € D,

, o2

1 1
Flw =Wl = Fllw+ 6" —xa? > 5r* = T

Therefore, on the event (9.5.10) we have min Ly(w) > min Ly(w) 4+ 3ve. We conclude

P (mln L)\<’Ll)) < mn’]lv L,\(U]) +")/63) < %G*Cneﬁ )
€
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O

Using the same arguments that we use to deduce Theorems 8.3.1 and 8.3.2 (8.3.8) from

Theorem 8.5.3 and Theorem 9.3.1 in Section 9.3.2, we deduce from Proposition 9.6.4 that
for all € € (0, 1]

1, ~
sup P(El)\ € [)\mirn )\max]a NHQ)\HO < 3*<)\) _ 6) S quechGG .

9*eD €b

This proves, together with (9.6.12), Theorem 9.6.1.

9.6.5 Proof of Theorem 8.3.3

Recall that the distributions p} and v are respectively defined by Definition 8.3.3 and (9.5.1).
Let € € (0,1]. From now, we will work on the event

g :{V)‘ S P‘minv )\max]; WQ(//I(’@\A’Q*)a /f/{)2 + W2(ﬁ@>\,9*)7 I/j<\)2 < 66}
1~ 1 s g 2

M {¥2 € Donins Anals |5 1800 = s (V)| + | 520 [onal = 1} = 5. 0)] < €},
which has probability at least 1 — Ce 12e=<N <" from what we have just seen, and The-
orems 8.3.1, 9.5.2, 9.6.1 and 9.5.6. From now, E and P will denote the probability with
respect to the empirical distributions of the entries of the vectors we study, and the vari-
ables that we couple with them. Let A € [Apin, Amax]- On theAeveAnt § one can couple
(0%, 2%) ~ fig» @ N'(0,1) and (0", Z%) ~ fig- @ N'(0,1) with (0,05, Vy, ©%) which is sam-
pled from the empirical distribution of the entries of (6*, 8y, 0y, 64), such that

E{(@,\ e/ (CHE VAR 04*7'*))2 + (@ — @1’)2} <€,

E[(VA + (7](@” + 77", a,T) — OV — T*Zg)>2 + (@ — @“)2] < €8,

Qs Ty

Let

E, = {‘@)\ — (0% + 7. Z%, a,1y)| < €2, |‘A/>\ +

(0" + 12", auri) — O — 1, Z")| < 62} )

By Chebychev’s inequality, P(E;) > 1 — Ce?, for some constant C' > 0. Let us also define
the event

E, = {@x +7.7° % a,7, and OY+ 1,7° # 04*7'*} .
O% + 1.Z% and O + 7, 7" admit a density with respect to Lebesgue’s measure. Therefore
P(Ey) = 1.
Lemma 9.6.6

The event

B = {10 ¢ (0. and |Tlg[1-e 1)}
has probability at least 1 — C'é®.

Proof. We denote here by O(e?) quantities that are bounded by Ce?, from some constant C.
Since ©F + 7, Z% admits a density with respect to Lebesgue’s measure we have

P([n(©" + m2%,aur)| & (0,2€]) =1 - O().
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Consequently, since the events E; has probability at least 1 — O(e?), we have
P(©:] € [0,€%))
=P(16xl€[0,¢%] and [9(O" + 72", )| & (0,2€7]
and ]é,\ — (O + 7. 2%, aumy)| < 62) + O(€?)

= P(n(@x + T 2% ) = 0) + O(€®) = 5.(\) + O(e?).

Since P(6) = 0) = s.(\) + O(€?) because we are working on &, we conclude that P(|©,] €
(0,€2]) = O(e?). One can prove the same way that P(|V)| € [1 —€2,1)) = O(€?), which gives the
desired result. O

Lemma 9.6.7
The event

E, = {(:)A #0 <— V) = sign((:)A)}
has probability at least 1 — C€?, for some constant C' > 0.

Proof. Since 7, € 8|§)\], 5)\72- > 0 implies that v); = sign(@,\,i). Thus P(C:),\ #0 — Vy =
sign(y;)) = 1. We have thus
{6, #£0} C {|h]| =1}. (9.6.14)

On the event £ we have ‘%H@Hg - s*(A)‘ + ’%#{z |[on:] =1} — s*()\)’ < €2 which gives
P(Or#0)=s.N)4+0(?) and P([Vi| =1) = s.(\) + O(e?).

We deduce then from (9.6.14) that P(|V3] = 1 and ©) = 0) = O(¢?) and finally P(V) =

sign(C:)A) - é/\#O) 21—062. O
Lemma 9.6.8
Let E = E,NEyN EsN E,. The event E has probability at least 1 — Ce? and on E
we have

O+ 1.2" > o, < O+ T1.7% > a,Ty,

and
O+ 17" < —a,Te = O+ 1.7° < —, T .

Proof. Since E1, Ey, B3 and E4 have all a probability greater than 1 — O(€?), the event E =
E1 N Ey N E3N Ey has probability at least 1 — O(€?). On E we have

O+ 12" T = O+ 1.2 — (0" + 2", auTy) = T

— h>1-¢ (because we are on the event E)

— =1 (because we are on the event E3)

— 0,>0 (because we are on the event Ey)

— Oy >¢é (because we are on the event E3)

< (O +1.Z% as1) >0 (because we are on the event Ej)
= O+ T1.7" > o, Ty (because we are on the event E») .
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The second equivalence is proved exactly the same way. O

Let us define
X = (0% + 1.2%, a,m) + O° + 1. Z0 — (0 + 1. 2", a,T) |
We have
E(O¢ — x%)? = QE[((:)A — (O + .27, O@T»;))Q}
A N
+ 2E|:(1AV)\ - @’U — T*ZU -+ 77((_)11 + T*Zv, 04*7_*)>2:|
1 —16xllo
< Ce,

for some constant C' > 0, because on the event &, %‘HQAAHO — 5*()\)’ < €, s0

A A

—— = + O(€?) = a7, + O(€).
TRV

By Lemma 9.6.8 above, we have on the event F,

q_ O+ r.2% if O+ 12" > a7, or OF + 7,27 < —u,Ty,
OV + 1,7 otherwise.

Let us denote 7% = (0% + 7.Z*,0%) and T" = (©" + 1.2",0").

Since O +717 7 and ©Y+7,Z" have the same law and P(@x+7'*Z“ > 0T E) = P(@”—l—
T2’ > QT E) (by Lemma 9.6.8), we have P(@x + 1.2% > auT. Ec) = P(@” + .z >
EC). Similarly we have P(@x + T.4° < —u Ty EC) = P(@“ + 12" < —auTy Ec).

Oy Ty

_One can therefore define two random variables T* = (0% +7,Z%, ©%) and T = (O +
T.Z", ©") such that

e conditionally on E¢, T* (respectively T%) and T* (respectively T%) have the same
law.

e On the eventNEC, (:)’”N—k T*Zx > 0T = oV + T*ZU > a,T. and er + T*Z‘” <
—0 Ty = O+ 1.7 < —,T..

We define then

T* on the event F provided that [0% + 7,727 > a.7x,
(de é) _ T” on the event F provided that |@~z + T*Zj‘ < Ty,
’ T* on the event E° provided that |©% 4+ 7.Z%| > a, 7.,
T¥ on the event E° provided that [©% + 7.2%| < a7, .

(X, 0) ~ pd which is the law of (© 4 7,Z,0) where (0, Z) ~ Jigr ® N'(0,1). Indeed, for

228



every continuous bounded function f we have
E[/(X7, )] = E[ 1oL j0msr. 2o 150r. f(T””)] + E{nEn@%ZUKM f(T“)]
+E _]lEC]l\éz—i-T*Zﬂza*nf(Tx) +E _]IEC]l\é”-I—T*E”Ka*T*f<TU>_

et E ]].E]161+T*ZI|ZOC*T*JC(T$):| + El:]]‘E]IGU+T*ZU|<Q’*’T*f<TU):|

+ E ]]‘Ec]l‘ez‘i’T*ZﬂZOé*T*f(Tx) + E ]lEC]l‘@v+T*Zv|<a*T*f<TU)
=E ]1|®3”+T*Z"|2a*r*f(Tx)} + E{]ll@“rT*Z”Ka*uf(Tv)}

=E :]1|@z+T*ZI|ZCM*T*f(Tx):| +E ]ll@z+T*Zz|<a*T*f(Tm):| = E{f(T“)] :

Let us now compute

E[(Xd . )Tdﬂ —E

g (X7~ Yd)Q] < Cy/P(E®) < Ce,

and

E{((:) - @)2} < E[]IE<®”“ - @)2} 4 E[]lE(@” - @)2} 4 E{]IEC((:)I - @)2] + E[]IEC(@“ - @)2]
<26 +2C/P(E°) < Ce.

. ~ ~2
Therefore EH(@i, 0) — (X9, @)H < Ce and consequently Wg(ﬁ@d gy ud)? < Ce, on the
A?
event € which has probability at least 1 — Cle12¢=eNe'",

9.6.6 Proof of Corollary 8.4.2

Let € € (0,1]. Let us work on the intersection the events of Theorem 9.6.1,Corollary 8.4.1
and 9.5.3, which as probability at least 1 — Se™N < Let A € [Amins Amax)-

)\2

XT(y = X0 = Foal* = Mk (N) + O(e).

1
|

We have also 1 — %H@A,\HO =1 — $5.(A) + O(e) = B.(N)/7(X) + O(€). Therefore

|x7w—xo0] ()\T*()\)

N(l _ lHé\)\HO)Z 5*()\> )25*()‘) + O(E) = 7'*<)\)2(1 + o — 28*()\)) — (50’2 -+ O(e) .

Now we have 7(\) = 7.(\) + O(e) and %Hé\,\ﬂo = 5.(A) + O(e). Consequently
- 2 =
POV (518l = 1) = 7 (V2(25.00) = 1) + O(¢).

Putting all together we obtain R(\) = d7,(\)? — 602 + O(e) = R.(\) 4+ O(e), and we

conclude using Theorem 8.3.2.
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9.6.7 Proof of Proposition 8.4.3

Let n' € {1,...,n}. We consider a random n’ x N matrix X’ and a random vector
2 = (2},...,2,) such that X/, "~ N(0,1/n) and 2z ' N(0,1) are independent and

independent of everything else.
Lemma 9.6.9

There exists constants v, c, C' > 0 that only depend on €) such that for all 0* in D and
all X € [Amin, Amax| such that for all € € (0, 1],

(

1 1 n
WHX'w —o|? - EHwH2 — 02} > \/Eﬁ and Ly(w) < min Ly (v )—i—’ye)

vERN
< gefanQ
T €

Proof. The vector w), is independent from X', z’. Hence
1
X Wy — 02| = (EHWAH? +0?)x (9.6.15)

where  is independent from w) and follows a y-squared distribution with n’ degrees of freedom.
We have therefore for all ¢ > 0

P(!X —n'| > tn’) < Ce 't 4 C’e*m/ﬁ, (9.6.16)
for some constants ¢, C' > 0. We know by Lemma 9.6.1 and Lemma 9.6.2 that % [|w, ||* concentrates
exponentially fast around 7 (\)? — o2, which is (Theorem 9.1.2) bounded by some constant. There
exists therefore constants C, c > 0 such that

1 2 2 —cn
P(~wal? +0? > C) < Cemm. (9.6.17)
n
From (9.6.15)-(9.6.16) and (9.6.17) above, we deduce that for all £ > 0

1 1 ' /
B(| =[x Wy = 0/|” =~ |wal® = 0| > ) < et 4 Cem 4 O, (9.6.18)

for some constants ¢, C' > 0. By Proposition 9.7.4, we know that P(omax(X') > o~V2 4\ /n/n+
1) <e ™2 Let e € (0,1]. Let w € RY such that |jw — wy||> < eN.

1 Omax(X)
WHX,WA_JZ/H"‘\/»HX/ —UZ'||<\ﬁ|| 7+ MT(HWAHﬂLHwH)

o/

for some constant C' > 0, with probability at least 1 — Ce™“". Consequently

EV e

wy — o2 || — [| X w

1
— 0| = S| X'w - 02| <
n
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with probability at least 1 — Ce™“" for some constant C' > 0. Similarly, we have with probability
at least 1 — Ce™",

1 1
Il = = flw?| < Cve,
n n

We conclude that with probability at least 1—Ce~" we have for all w € RY such that |jw—w,]|? <
Ne,

1 1 1 n n
— —[lwal]* = S| X w + o2||> + —HwH2‘ <CVe(l+—) <2CVe—.
n n n n n
Combining this with (9.6.18), we get that for all € € (0, 1],
1 1
IP’(EIw eRY, |lw —wy||?> < Ne and ’—HX'w + 02 |? = =|w|?® - 0’2’ > 20\/22) < Ce "
n/ n n'
We conclude using Theorem 9.2.1 that

]P’(Elw €

1 C’
w—az’H2——||wH2—a2‘ > \/Eﬁl and Ly(w) < min Ly(v )—i—’ye) < ZLemene?
n n

veERN - 6

for some constants ¢, C,~y > 0. O

Using Proposition 9.3.1, we deduce
Lemma 9.6.10

There exists constants v, c, C' > 0 that only depend on () such that for all 0* in D and
all X € [Amin, Amax) such that for all € € (0,1],

P( +az'—X'9H2_l\\9-9*\\2—02] > e and Ly(0) < min £y+ye) < = ¢
n n 6
We have
G i L Lo — xong|” 2
05 = argmin{ —||y"\" — X GH + —|9|
pcRN 27’Lk
1 A
:argmin{ g 4 gz — x () QH |9|}
OeRN n
:argmin{ H\/ XO\gr 4 0% (&) _ ’/ X(\ HH |8|}
OeRN
0% is thus the minimizer of the Lasso cost (8.3.1) for 6 = k1§ and o = \/k/(k — 1)o.
Let T,,Ek)(/\) be the 7, defined by Theorem 8.3.1, but with §*) instead of 6 and ¢® instead

of o. Define the corresponding ‘risk’:

RP() = 6B (70 () = (aM)?).
It is not difficult to verify that the bounds on 7,3, of Section 9.1.2 are uniform with
respect to 6 and o. More precisely

sup sup sup sup {7'*(/\,5, o)+ B«(\, 6, 0)} < +00,

56[5mimémax} Ue[o'mirno'max} )\e[)\mim)\max} 0*€D

where Omax, Omin, Tmax, Omin > 0 such that spax(Omin) > s if We are in the case D = Fy(s).

This gives that under the assumptions of Proposition 8.4.3, 7 and R are bounded for
all k£ > 2 (that verify syax(d(k —1)/k) > s in the case D = Fy(s)) by some constant that
depends only on (2.
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Lemma 9.6.11

There exists constants C, ¢ > 0 that only depend on §2 such that for all 0* € D, for all
i€{l,...,k} and for all € € (0,1],

]P’( sup
A€]

)\min 7)\max

k ) . 1 ~
n,,G@) X(z)ez 2 - 9t — o* 2 2
Ely = 01— o

> ke) < C N 4e—ene’

Proof. Let i € {1,...,k}. Let us define for § € RV,

£807(0) = 5,y = X0+ el

Let € € (0,1]. Let n = %57 and M = [(Amax — Amin)/n]. Define for j € {0,..., M}, define

Aj = min (Amin + J7, Amax). We apply Lemma 9.6.10 with n’ = n/k, X' = X@ and 2/ = 2 to
obtain that the event

By = {VJ' e{l,...,M}, VoeR", ,C(A\j)(e) < mincg\j) + e
k . ) 1
=[Sy = X002 — g — %2 - 0% < vVek}
n n
has probability at least 1 — M%e‘“Q”. By Lemma 9.3.5 the event

By = {¥\, X € Dsin, Amas, £37(0}) < min £57 (2) + KNI X[} (9.6.19)

zeRN

has probability at least 1 — Ce™". On the event Fo, we have for all j € {1,...,k} and all
A€ i1, A

~

£3)(0%) < min £57(x) + KN < min £37(2) + e,

We obtain that on Ej N E5, which has probability at least 1 — CN qe=2¢—cne’
k.G a2 Liai ez 2
A€ Dnins My |~y = KOG = ~183 = 0% - o?| < Vek.

O
Proposition 9.6.5

There exists constants ¢, C > 0 that only depend on (2, such that for all 6* € D and
forallie {1,...,k}

IP’( sup
€]

)\min 7)\max

T pE . p*l12 ) < < ON? cN/Ek )
S0 = 671 = ()| < Tp) S ONe

Proof. Let us fixi € {1,...,k}. By Proposition 9.3.7, A — R.(\) is K1-Lipschitz on [Amin, Amax],
for some constant Ky > 0. By Propositions 9.3.3 and 9.3.4 there exists a constant K5 > 0 such
that the event
1~ 1 ~
B = {V)\ € [Amin, Amax]s |05 — [0*]| < KoN? and  — |05 — |6%]| < Kqu} (9.6.20)
N N
. 3} _ . 5 1 B
has probability at least 1 — Ce™“". Let us define 7 = min (m, m) and M = [(Amax —
Amin)/n|. For all j € {0,..., M}, we write A\; = min (Amin + J7, Amax)-
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By Theorem 8.3.2 the event

EQ = {V)\ € [)\min, )\max]a

1
GO ()\)‘ <1and H|y X0y% = Ba( )] <1} (9.6.21)
has probability at least 1 — CN%~°N. By Lemma 9.6.11, applied with e = k™!,

k, o 1
E3 = sup Bly@ = x0gi 2 - Lygi o2 — 02| <1
L, ! 12— 18 - 0P - % < 1)

has probability at least 1 — Ck*N de=en/k* - On the event E>N Es, we have, for all A € [Anin, Amax],

N 1 A o 1 ,
iy = @ x @12 |l D — x (9
£x) = L - X081+ Ly B+ 2
oo 1 22 1 (-9) (—i)/\i 2 A
<= 2o — D4 — [y - x 2
= k(U +nH9 o5 II" + )+2nkHy 03] +n’9A\
1 1 . L N o~
<1+ 02+ 5 (RPN + 1)) + —|jy™ — X6, |]” + Z[6)|
k 2ny,
1 2, 51 pk) 7 1
< (l+0?+07H (R (A)+1))+£A<9A)+(%——)Hy X0,
~ C
< La(0y) + —
k
for some constant C' > 0. Let j € {1,...,M}. We have C,\(gg\) = E,\j(é\f\) /\ |
~ ~ ~ —Aj -~ ) A=A~
L(0y) Sﬁ,\(@)\j) :E)\j(e)\j)-F ]’9)\j‘ :erélﬂl{%ﬁ/\j(g)—i_ J’H)\j’.

So we get that on the event Ey N Ey N B3, for all j € {1,..., M} and all A € [\j_1, Aj],

N=Xa G C
£3,(03) < min L3,(0) + Z— (163, 10x,1) + o

RN
Aj— A C
< Ly.(0 I 2Ky NT+ —
o O T
n C . Co
< J 947 < . -0
min Ly;(0) + 526N + - < min £y,(0) + 2=,

for some constant Cjy > 0, because on E; we have YA € [Amin, Amax]), NHH | — “%\H < 2K,N4. By
Theorem 9.3.1, there exists constants C, ¢,y > 0 such that for all € € (0, 1] the event

10 = 0¥ = Ro(3)| < /e

has probability at least 1 — CMe te N <. Consider the constant x = % If £ > K, then
€= % < 1 and the event E4 has probability at least 1 — C Mke=<V/ k¥ So we obtain that on the
event £y N Ey N E3 N Ey4, which has probability 1 — CN afde—cn/ k4,

Ey={¥je{l...M}, Y0 € RY, £, () <minLy, —i—'ye‘ ~

e (Lo M), YAED AL B - 07 - ROy <

=0

for some constant C' > 0. If now k < k. Then on the event Ey we have Vj € {1,..., M}, V\¢€
(A1, Adl,

1 ~

IR0 =Ry < s RPN+ s R +1
/\E[/\minv/\max} Aep\min,/\max}

CVk

\/Ev

<C<
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where C is a constant. We conclude that (in both cases) there exists a constant C' > 0 such that

)

. L5
vie L. M) VA€ AL G0 - 0P - Ry <

S0

holds with probability at least 1 — CN9k*e—cN/ K Proposition 9.6.5 follows from the fact that for
all A € [N\j—1, \j], [Re(N) — Re(N))] S Ki|A =\ < ﬁ O

Proof of Proposition 8.4.3. We apply Lemma 9.6.11 with € = k~3/2 to obtain that with
probability at least 1 — CkS Nt~/ k we have

oo o 1
VA € Doy Ama], Vi € {1k}, | Slly® = XOB? - — 8} - 0*]* - 0°| <

Sl-

By summing these inequalities for ¢ = 1... k% and using the triangular inequality, we get

B0~ x07 - L35 o ko] <
nia i3 ~Vk
and then
N ST < (SN S A P (9.6.22)
N3 ki N ~Vk
By Proposition 9.6.5, we have with probability at least 1 — C N9k*e=cV / k3,
VA € Ponins Amals Vi € {1, k}, ]%Hég 02— ROV| <
vk
This implies (again by summing and using the triangular inequality) that
IS SENC WAt EY el
kig N T VE
which, combined with (9.6.22) proves Proposition 8.4.3. O
9.6.8 The scalar lasso
In this section we study
lo(y) = min {1(y —z)*+ a\:c]} : (9.6.23)
z€R 2

Lemma 9.6.12

The minimum (9.6.23) is achieved at an unique point x* = n(y, ) and

%yQ if —a<y<a
laly) =8 ay—3a® if y>a

-y — %on it y< —a

Suppose now that
y=r+72,

for some z € R and Z ~ N(0,1).
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Lemma 9.6.13
Define

Ao(z) = E[lo(z + 2) — ]

The function A, is continuous, even, decreasing on R, a-Lipschitz. Moreover

and A/ (07) = =A/(07) = —a.

Proof. Since Z and —Z have the same law, one verify easily that A, is an even function. We
have for all x > 0

AN(@)=E[ll(z+Z)—a] =E[l(z+Z € [-a,a])(z+ Z — a)] <0.

{4, is convex, therefore x — E[l, (x + Z)] is non-decreasing. E[¢/,(Z)] = 0 because ¢/, is an odd
function. Consequently, for all x > 0

—a<E[l(x+2)—a]=Al(x).

This gives (recall that A, is even and continuous over R) that A, is a-Lipschitz. From what we
have seen above, we have also A/ (07) = —A’(07) = —a. Compute now, using the fact that £,
is even:

Aam):JM&xZﬂ::/ﬂz%ﬂzﬁk+:£ﬂn@az—cfﬁ%@dz

0
By integration by parts

/Oa 2p(2)dz = | — 2¢(2 +/ = —ad(a) + % — ®(—a)

/+Oo(20zz — ) p(2)dz = —a?®(—a) + 2a0(a).

(07

Therefore Ay (0) = 3 + ag(a) — (1 + a?)®(—a). We have almost surely

2

«
ta(z+2) —alz| =2 =5

Thus, by dominated convergence hm Ay(z) = %2 O
r—+o00

9.6.9 A convexity lemma

2
f:xERNH\MﬂL+02
n

i5 e Ty -strongly convex on B(0, ViR).

Lemma 9.6.14

The function
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Proof. Let 2,y € B(0,\/nR) and define for t € [0,1], g(t) = f(2¢), where z; = (tz + (1 — t)y).

Compute

1. _NT
gt = M7
(A + 52
and
//(t) _ :LHJ"_y’P (%(x_y)-rzt)
HthLH 12 (llZ:lH2 +02)3/2
_ 1 1 ozl o 1 T \?
O'2 1 2 2 ()'2
el (“Zt”Q +O_2)3/2 (n’:lj y” ) > *Hl’—y” (R2+ 2)3/2
Consequently
tf(x) + (1 —=1)f(y) =tg(1) + (1 —t)g(0)
1 1 5 o?
> - )y — - -
> glt) + 510 =) e ol Gy oy

2

1 o

= Stz (1= )+ 510~ 1)l vl

9.7 Toolbox

9.7.1 Notations recap

Recall that X is a nx N random matrix with entries X; ; = A(0,1/n). The random vectors
z € R", g € RN and h € R" are standard Gaussian random vectors. The following table
displays the main cost (or objective) functions used in this paper and their corresponding

optimizers.
Definition Optimizer
Lx(0) = £ | X0 —y|* + 2]0| N
Ca(w) = g [ Xw — 2| + 2 (Jw + 67 — [6*]) o)\
Uy(u) = min {u"Xw — ouTz — §ul® + M(|6" + w| — 6%])} i
Va(v) = min {5l Xw — oz|* + 30T (0* +w) — 316"} )
() = § (VEE 02 B = 4T 52+ 2u+ 04— 210 ;
Un(u) = min {Felullg™w + Az llw|hTu — 20Tz — Ll + 2(Jw + 6% — [6*]) } u
Vae) = mig {3 (y/ElwlP + 22 = dgTw + £2) 4 20T (w + 6 - 216} 2

Table 9.1: Main cost/objective functions
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In the definition of V) above, B = {w € RY ||w| < 2[0] +502>\;}nn+K}, where K > 0
is the constant given by Lemma 9.5.5. The functions Ly, U, and V), are the “corresponding
cost/objective functions” to Cy, Uy and Vy. A main part of the analysis is to show that
wy, wy and vy are approximately equal to wy, uy and v, given by:

Wy = 7](9* + 7.(N)g, a*()\)T*(A)) — 0"

« (A o

Vi = —a. (N () (n(e* + (Vg (N7 (V) — 6 — T*()\)g>

Table 9.2: “Asymptotic optimizers”

9.7.2 Gaussian min-max Theorem

In this section, we reproduce the proof of the tight Gaussian min-max comparison theorem
from [205] for completeness, but also because we need a slightly more general version of
this result.

We recall the classical Gordon’s min-max Theorem from [93] (see also Corollary 3.13
from [130]):

Theorem 9.7.1

Let X;; and (Y;;), 1 <i<n,1<j<m be two (centered) Gaussian random vectors
such that

]EXEJ = IEY?] for all 7, ,
]EAXPZ,J)(Z’]C 2 Em,j}/z,k fOI' aH i,j, k,
EX,,; X, <EY;,;Yiy foralli#1andj k.

Then, for all real numbers A, ;:

P ( {xi;> Ai,j}) <P (

IDE
IDE

{Y;J > Ai,j}) .

1 1

=1 7

1y
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Theorem 9.7.2

Let D, C R™ and D, C R™ be two compact sets. Let Q) : D, x D, — R be a continuous
function. Let (X(u,v))( \eDuxD and (Y(u,v)) be two centered Gaussian

(u,0)EDy X Dy
processes. Suppose that the functions

(u,v) — X (u,v) and (u,v) — Y (u,v)
are continuous on D, x D, almost surely. Assume that

E|X (u,v)?| = E[Y(u,v)ﬂ for all  (u,v) € D, X D,
> E{Y(u, v)Y (u, v’)} for all w € D,,v,v' € D,
} < ]E[Y(u, v)Y(u’,v’)} for all w,u’ € D,,v,v" € D,
such that wu # u'.

Then for all t € R
IP’( min max Y (u,v) + Q(u,v) < t) < IP’( min max X (u,v) + Q(u,v) < t) :

u€eD, vED, u€eD,, veED,

Proof. Define the random variable
do = sup {d € Q1 | ¥(2,) € (Dy x D,)?,
|z —2|| <d= (|X(2) — X(2)] <eand |V (2) = Y ()| < e)} .

X and Y are continuous on the compact set D, x D, and are therefore uniformly continuous on
this set: dp > 0 almost surely. Let € > 0. By tightness there exists a constant d > 0 such that

P(dy>d)>1—c€.

@ is continuous and thus uniformly continuous on D, X D,: there exists § € (0,d] such that for
all 2,2’ € Dy x Dy, ||z = 2| <§ = |Q(2) — Q(¥)| <e.
Let D? (respectively D) be a §/v/2-net of D, (respectively D). D3 x DJ is thus a d-net of
D, x D,. By Theorem 9.7.1 we have for all t € R
P(lfgg% 11)161%)1%)((% v) + Q(u,v) > t) < IP(unel}D% irelzggY(u,v) + Q(u,v) > t) :
which gives by taking the complementary:
P(E% max Y (u, ) + Q(u,v) < t) < P(%% ma X (u,0) + Quy) < t).

By construction of § we have with probability at least 1 — €

51611,% %%%X(u’v) + Q(u,v) — unelgi irézgiX(u,v) + Q(u,v)’ < 2,

and similarly for Y. We have therefore, for all ¢t € R
]P’( min max Y (u,v) + Q(u,v) <t — 26) —e< IP’( min max X (u,v) + Q(u,v) < t+2e) +e,

UE Dy vED, UE Dy, vED,,
and thus
i < < i <
]P’(Jlelgt max Y (u,v) + Q(u,v) < t) < P(Jlelgi g%fX(u, v) + Q(u,v) <t+ 46) + 2¢,

which proves the theorem by taking ¢ — 0.
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Corollary 9.7.1

Let D, C Rt and D, C R™*™2 be compact sets and let Q : D, x D, — R be
a continuous function. Let G = (G;;) = N(0,1), g ~ N(0,1d,,) and h ~ N(0,1d,,,)
be independent standard Gaussian vectors. For u € R™ "2 and v € R™ ™2 we define
U= (up,...,Up,) and 0 = (v1,..., Uy, ). Define

C*(G) = min max ' G + Q(u,v),

u€ Dy, vED,,
L*(g.h) = mip mage 597+ 175 + Qu,v).

Then we have:

e Forallt e R,
IP’(C’*(G) < t> < QIP’(L*(g, h) < t) .

e [f D, and D, are convex and if () is convex concave, then for all t € R

IP’(C’*(G) > t> < QIP’(L*(g, h) > t) .

Proof. Let us consider the Gaussian processes:
{X(u, v) = |lollgTa+|lallato,
Y (u,v) = 0TGa + [[all|o] =,
where z ~ N(0,1) is independent from G. Let (u,v), (v',v") € D, x D, and compute
E[Y (u,v)Y (u/,v")] = E[X (u,v) X (u/,0")]
= ||alllia @’ + (@) (@"d") — o)l (@ a") — Jallla||(37 )
= (lafla] - @"a)) (Io)1o']| - @"%")) > 0.

Therefore X and Y verify the covariance inequalities of Theorem 9.7.2: one can apply Theo-
rem 9.7.2:

< < <
P(Jrelgi 11}161%}1()Y(u v) + Q(u,v) t) < P(Jggigé%}i)/(u v) + Q(u,v) t)

‘We have then

1
P(%ﬁﬁ%}iy(u v) + Q(u, v)<t)2§P(£E£%§Y(u v) + Q(u,v) <t‘z§0)
1
> — < <
QP(gﬁig%}jv Gu + Q(u,v) t‘z_())
1 *
=3 P(CH(G) < t),

which proves that

P(%ﬁ&‘%’j” G+ Q(u,v) < t) < 2P(£g1 max |9 15)lgTa + ||@|hTo + Q(u,v) < t)

Let us suppose now that D, and D, are convex and that G is convex-concave. We now apply the
inequality we just proved, but with the role of v and v being switched (and —@Q and —t instead
of @ and t):

- T~ _ T~ _
P(ggi%%)iv G — Q(u,v) < t) QIP(gggl max 9]l " + [|a|hTo — Q(u,v) < t)
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which gives (using the fact that (G, g, h) and (-G, —g, —h) have the same law):

(

>t) < T >
11}2%}55161&1) TG+ Q(u,v) t) 2[P’<max 12151 18]l " + ||al|hTo + Q(u, v) t)

vED,

By Proposition C.2, one can switch the min-max of the left-hand side, because @) is convex-
concave and we are working on convex sets D, and D,. For the right-hand side, we simply use
the fact that:

to conclude the proof.

max m min ||ng @+ ||al|h"o + Q(u,v) < min max ||5|lg @+ ||@l|hTo + Q(u,v),
v

ueDy, vED,

9.7.3 Basic concentration results

We recall in this section some elementary concentration results, see Chapter 2 from [37]
for a more detailed presentation of these facts.

Definition 9.7.1

A real random variable X is said to be

2 2
e o%-sub-Gaussian if for every s € R, log Res®™—EX]) < 820 ,
(X—E[X s*v
e (v,¢)-sub-Gamma if for every s € (—=1/¢,1/¢), logEe*XEXD < 51— ds))
—cls

One deduces immediately from the above definition:

Proposition 9.7.1

Let (Xl, e

sub-Gamma.

Proposition 9.7.2

, X,,) be independent real random variables. Define S =" | X

e Suppose that for all i € {1,...,n}, X; is o?-sub-Gaussian. Then S is 3, o2-
sub-Gaussian.

e Suppose that for alli € {1,...,n}, X; is (v;, ¢;)-sub-Gamma. Then S is (E?zl V5, Max cl-)—

Let X be a real random variable.

o if X is o2-sub-Gaussian, then for all t > 0

P(X —E[X]>t) V P(X —E[X] < —t) < ¢ 32,

if X is (v, ¢)-sub-Gamma, then for all t > 0

P(X — E[X] > V2t +vt) V P(X —E[X] < —(v2ct + vt)) < e~
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Remark 9.7.1. The bound P(X > /2vt + ct) < e~* implies that

exp (—g;) for 0<t<3,
P(X >1) < {exp (—iz) for t>2.

Proposition 9.7.3

If X is o?-sub-Gaussian and has mean u, then X? is a sub-Gamma random variable
with parameters

v = 1602 + 4p0?,
c =402,

Proof. Let u =E[X]and Y = X — p. X2 =Y? +2uY + 12

E[(r*)?] =E[(X - )] < 160",

1
E|(Y?)] =E[(X - 1)*] < 29!(20%)7 = 5!(160%)(20%)7%.
By Bernstein’s inequality (see for instance Theorem 2.10 in [37])

8(Y2—]E[Y2]) < 160'282

logE e A
08 = =21 - 202[8)

21Y is 4p?0?-sub-Gaussian, therefore log Ee?*Y < 2420252 and
log Ee*(X*=EIX2) _ 100 [res(Y2—E[Y2)+2usY o llogEezs(W—E[y'z]) n llog EetnsY
2 2

< 160252 + 420282 < (1602 + 4p20?)s?
1—402s 1 —402|s|

X2 is therefore a Sub-Gamma random variable with variance factor v = 1602 + 4120% and scale
parameter ¢ = 402, [

Lemma 9.7.1

Let X be a o®-sub-Gaussian random variable. Define m = E[|X]|]. Let Y be a random
variable bounded by 1. Then XY is 16(m? + 20?%)-sub-Gaussian.

Proof. We have |E[XY]| < m, therefore

E [(XY — B[XY])%| < 227" E[X] 4 221 m? < ¢!(80%)7 + ¢!(4m?)*
< ¢!(80% 4 4m?)1.

9.7.4 Largest singular value of a Gaussian matrix

The largest singular value of a n x N matrix A is defined as

Omax(A) = max ||Az]| .

=<1

The next classical result is a simple consequence of Slepian’s Lemma (see for in-
stance [130], Section 3.3) and the classical Gaussian concentration inequality (see for in-
stance [37], Theorem 5.6).
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Proposition 9.7.4

Let G be a n x N random matrix, whose entries are i.i.d. N'(0,1). For all t > 0 we
have

P(0max(G) > VN +vn +1) <e /2.
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Appendix

A Proof of Lemma 1.2.2

In order to prove Lemma 1.2.2, we first need to introduce some definitions and results
about exchangeable infinite arrays.

Definition A.1

An infinite symmetric random array R is a collection of random variables (R g )k.x>1
such that for all k,k' > 1, Ry j» = Ry almost surely. We say that R is

e weakly exchangeable if for all n > 1 and for all permutation o of {1,...,n} we
(d)
have (Ri ) kw1 = (Ro(k),o(k))kp>1-

e positive semi-definite if for all n > 1 the matrix Ry, def

(Rij)1<ij<n IS positive
semi-definite with probability one, i.e. Vo € R", 2TR,x > 0.

On the one hand, the Aldous-Hoover Theorem [4, 104] states that an infinite weakly
exchangeable array is equal in distribution to (f(w,ug, Vi, Tk xr) )k x>1, for some function
f and w, (uk), ("Uk/), (xk,k’) R Unif([O, 1])

On the other hand, if (Ry )k >1 is a deterministic positive semi-definite array, then
there exists a separable Hilbert space H, with scalar product (-;-) and (hy)r>1 € HY such
that for all k?, k' Z 1, th/ = (hk, hk/)

The Dovbysh-Sudakov Theorem [75] combines somehow these two results:

Theorem A.1 (Dovbysh-Sudakov)

Let R be an infinite symmetric random array R which is weakly exchangeable and
positive semi-definite. Then there exists a separable Hilbert space H (whose scalar
product will be denoted by (-; -)) and a random probability distribution n on H x Rx
such that R is equal in distribution to

((hk; hi) + ak5k,k'>

kk'>1]

where, conditionaly on n, (hy,ax)k>1 is a sequence of i.i.d. random variables with dis-
tribution 1. Oy denotes here the Kronecker delta.

We refer to [171] and [12] for a proof. From the Dovbysh-Sudakov Theorem, one deduces
easily:
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Proposition A.1

Let g € [0,1]. Let (Rgx )k w>1 be a random symmetric array, which is weakly ex-
changeable and positive semi-definite. Assume that we have almost surely

R171 =1 and ‘RLQl =4dq.

Then we have almost surely R 2R 3R31 = 7.

Proof. We apply the Dovbysh-Sudakov Theorem to R. We obtain the existence of a random
probability measure n on H x R>( such that R is equal in distribution to

(e hir) + @Ok ke i >1,

where conditionally on 7, (hg,ax) Y 7. Let us work conditionally on 1 and let v denotes the
first marginal of 7. From our hypothesis we get that |(h1; he)| = ¢, v-almost surely which implies
that ||h1]|? = ¢, v-almost surely.

Indeed, if v(||h1||*> # q) > 0 then there exists h € H such that ||h]|?> # ¢ such that for all
e > 0, v(Bc(h) > 0. We can now take ¢ > 0 small enough such that for all a,b € B.(h) we have
(a;b) # q. We obtain that v(|(h1; h2)| # q) > v(Bc(h))? > 0 which leads to a contradiction.

Since [|h1]|? = ||h2]|* = |(h1; h2)| = ¢ a.s. the measure v has at most two points in its support.
Consequently

(hi; ha) (ho; hs) (hi he) = 6%, v-almost surely,

which implies that R1 2R 3R31 = ¢® almost surely. O
We have now all the tools needed to prove Lemma 1.2.2:

Proof of Lemma 1.2.2. The sequence ((zM;2®)(x®;20))(@®;2W)) _
bounded. Let us consider a subsequence (ny)¢>1 along which is converges in law, to some random
variable Q.

Let us sample :c(l), m(2), ...,xF ... iid. from the posterior distribution of X given Y and
consider the following random symmetric weakly exchangeable positive semi-definite array

is tight because

_ ). (K
R" — ((m( )’m( )))k,k’zl'
The scalar products (a:(k); m(k’/)) are bounded, so the sequence of the laws of R" is tight. We can
extract from (ng)¢>1 another subsequence (n}) ¢>1 along which R converges in law to an array R.
R is also a random, symmetric, weakly exchangeable, semi-definite positive array. Since Ry ; =1
and Ry, = q almost surely, we have R11 =1 and R; 2 = ¢ almost surely. Proposition A.1 above

d
gives then that Ry 2Ry 3R31 = ¢® almost surely. The weak convergence R" L> R implies in

nj—00
particular
d
(2 2®) (@ 2) (2@ 2) = 1215315, ,:) » R1oRosRs 1 = ¢°.
TLZ o0
Hence the only accumulation point of ((93(1)§513(2))(33(2);m(g))(w(g);w(l)))n>1 is ¢3: we conclude
that (2(); 2)(22;2®) (@®; 1)) s g3, O

n—o0
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B Proofs of some basic properties of the MIMSE
and the free energy

B.1 Proof of Proposition 1.3.1
Let 0 < Ay < A1 Define Al = >\;1, AQ = )\51 and

Y, =X + VA Z,
Yo = X +VALZ + VD — DN Zs,

ii.d.

where X ~ Py is independent from Z;, Z, ~
(X,Y)) and Z; we have

N(0,1d,,). Now, by independence between

MMSE(\) = E || X —E[X|Vi]||* = E[| X —E[X|Y1, Zo]||° = E|| X — E[X|Y;, Y3]|”
<E[|X —E[X|Y3][|* = MMSE()y).

Next, notice that
MMSE(\) = E | X — E[X|Vi]|* < E[| X — E[X]|® = MMSE(0).  (B.1)

This shows that the MMSE is non-increasing on R>(. The first point is obvious while the
second follows from:
1 n
0 < MMSE(\\) =E|X —E[X|Y]|? <E|X - —=Y|*= - 0
< MMSE() = E|X — EX|Y]|? <E|X - V| =

B.2 Proof of Proposition 1.3.2

We start by proving that MMSE is continuous at A = 0. Let A > 0 and consider Y, X, Z
as given by (1.3.1). By dominated convergence one has almost surely that

[ dPx(x)xezIV2a—YI?

E[X|Y] il dPX(;[;)@_%”\F)\w—YHQ A—0

E[X].

Then by Fatou’s Lemma we get

lim inf MMSE()) > E[hm inf || X — E[X|Y]H2} = E[Xx - IE[X]H2
A—=0 A—=0
Combining this with the bound MMSE(}) < E|X — E[X]| gives MMSE(}) — E||X —
_)
E[X]||?. This proves that the MMSE is continuous at A = 0.

Let us now prove that the MMSE is continuous on R%,. We need here a technical
lemma:
Lemma B.1

ForallA>0,p>1

2P(2p!
E||X — (33>)\|’2p < )\g%p‘)npﬂ.
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Proof. We reproduce here the proof from [97], Proposition 5. We start with the equality
VA(X —(x))) = VAX —E[VAX|Y]=Y — Z—E]Y — Z|Y]| =E[Z|]Y] - Z.
We have therefore
2 1 op _ 2771 2 2 2% 2
EX — (@)™ = SEIEZIY] - Z|7 < = —E[IEZ[Y]I™ + | Z]I""] < Bl Z]™.

It remains to bound

" 2p)!
E||Z|* < nPE [Z fo’] = pPt! (2;2' .
=1 '

O

Let Ag > 0. The family of random variables (HX — (a:),\HQ)/\>A is bounded in L?
0

by Lemma B.1 and is therefore uniformly integrable. The function A — || X — (x),?
is continuous on [Ag, +00), the uniform integrability ensures then that MMSE : A —
E|| X — (z),||* is continuous over [Ag, +00). This is valid for all A\g > 0: we conclude that
MMSE is continuous over (0, +00).

B.3 Proof of the I-MMSE relation: Proposition 1.3.3

MMSE(A) = E[ X — (@)\]]* = E[| X[* + E[[(z),[|* — 2E(xTX),
Now, by the Nishimori property E|[{z),||* = E<(m(1))Tm(2)>)\ = E(x7X),. Thus
MMSE(\) = E|| X||? — E(xTX), . (B.2)

By (B.2) and (1.3.3), it suffices now to prove the second equality in (1.3.4). This will follow
from the lemmas below.
Lemma B.2

The free energy F' is continuous at A\ = 0.

Proof. For all A > 0,

VAX—e+2Z|? ___, —51Z|?
A—=0

= —log /dPX(m)efé||ﬁXfﬁw+ZH2

By dominated convergence [ dPx (:B)e_%l . Jensen’s inequality gives

IOg /dPX(;c)eféHﬁXfﬁerZHQ

(I1X 1 + Bl X|* + [ Z]1%),

1
< 5/cuox(gc)||\ﬁx —Vx+ Z|? < g

for all A € [0,1]. One can thus apply the dominated convergence theorem again to obtain that F’
is continuous at A = 0. ]
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Lemma B.3
For all A > 0,

Proof. Compute for A > 0

) 1 1
—logZ\Y)={ —aTZ + 27X — = ||z|?
ox 1820 Y) <2ﬁ”“’ o 2”""”>

Since E|| X ||? < oo, the right-hand side is integrable and one can apply Fubini’s theorem to obtain

A

A2
F(h) — F(\) = A <Ma:Tz faTX - H:L'H2>)\ dx.

By Gaussian integration by parts, we have for all ¢ € {1,...,n} and A > 0

EZZ<¢T2>)\ = aaZ $Z A= [<\f.ﬁ6 > f< Z>i} = \F/\E {<$12>>\ — <xZXZ>)\} s

where the last equality comes from the Nishimori property (Proposition 1.1.1). We have therefore

1 [
F(A)—F(\) = 3 E(xTX), d\.
A1
By Lemma B.2, F' is continuous at 0 so we can take the limit A\; — 0 to obtain the result. 0

By Proposition 1.3.2; the function A — MMSE()) is continuous over R>(. By (B.2) we
deduce that A — E(xTX), is continuous over R>( and therefore Lemma B.3 proves (1.3.4).

It remains only to show that F'is strictly convex when Py differs from a Dirac mass.
We proceed by truncation. For N € N and # € R we write V) = 2 1(-N <z < N). We
extend this notation to vectors = (z1,...,2,) € R" by &™) = (ng), o x),

For X ~ Px we define P)((N) as the distribution of X F(N) MMSE®™) and ()N
will denote respectively the corresponding free energy, MMSE and posterior distribution.
One can compute the second derivative (since X ™) is bounded, one can easily differentiate
under the integral sign) and again, using Gaussian integration by parts and the Nishimori

identity one obtains:

FO(3) = ;IE [Tr <<<a::vT)A,N _ <m>A,N<m>;N)2)] . (B.3)

By Cauchy-Schwarz inequality, we have for all positive, semi-definite matrix M € R"*",
Tr(M)? < nTr(M?). Hence

FM7()) > 21nE [Tr (<.’B£UT>A,N — <w)>\,N<:c>I7N>2]
> 21TLE [Tr (<IBCUT>)\,N — <w>)\,N<w>I,N)}2 = 21nMMSE(N)<)\)2,

by Jensen’s inequality. Let now 0 < s < t. By integrating (B.3) we get
1 t
FO (1) = FY(s5) = — / MMSE™ ()2dA. (B.4)
nJs
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The sequence of convex functions (F™))y converges (by Proposition B.1) to F which
is differentiable. Proposition C.1 gives that the derivatives (F"))y converge to F’ and
therefore MMSE®) converges to MMSE. Therefore, equation (B.4) gives

F(t) — F'(s) > ;n / " MMSE(\)2d) > 21n(t — §)MMSE(1)?.

If Py is not a Dirac measure, then the last term is strictly positive: this concludes the
proof.

B.4 Pseudo-Lipschitz continuity of the free energy with respect
to the Wasserstein distance
Let P, and P, be two probability distributions on R", that admits a finite second moment.

We denote by Wy(Py, P,) the Wasserstein distance of order 2 between P, and P,. For
i = 1,2 the free energy is defined as

A
Fr(\) = Elog [ dP () exp (\/Xaﬂz FATTX - QHm\|2> ,

where the expectation is with respect to (X, Z) ~ P, @ N'(0,1d,,).
Proposition B.1
For all A > 0,

|[Fp,(N) = Fp, (V)| < Q(JEP1||X||2 +/Ep, | X|[2)Wa(Py, P).

A similar result was proved in [216] but with a weaker bound for the W, distance. By
Proposition 1.3.3 we have for i = 1,2, Fp(\) = 3E|X;||* — I(X;; VAX; + Z) where
(X, Z) ~ P,®N(0,1d,,). We deduce immediately:

Corollary B.1
For all A > 0,

(X1 VAX) + Z) = I(Xo; VAXs + 2)| < MVER | X2+ /Ep, | X [[2) Wa(Pr, Py) .

Proof of Proposition B.1. Let € > 0. Let us fix a coupling Q of X; ~ P; and Xy ~ P
such that
(B[ X1 = Xa|®)"" < Wa(Pr, o) +e.

Let us consider for ¢ € [0, 1] the observation model

\/HXI"FZI’

y®
) = A =-DX2+ Zs,

where Z, Zy "% N(0,1d,,) are independent from (X7, X3) ~ Q. Define

At A1 —t
(1) = Elog [y, ) exp (VARTY” — ] + A0~ )y — D ).
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We have f(0) = Fp,(\) and f(1) = Fp,(\). By an easy extension of the I-MMSE relation (1.3.4)
we have for all ¢ € [0, 1]:

A
1(0) = SE(X]@1 — X)) |

where (-); denotes the expectation with respect to (z1, x2) sampled from the posterior distribution
of (X1, X2) given Yl(t)7 2(t), independently of everything else. We have then

10 = [B(X] (@1 — @) ~ (Xo — X)Tan) |

1/2 1/2
< (EIX1PE(ler —@o)?), ) + (Ell22]?),El X2 — X0 ?)

1/2 1/2
= (E| X1 P X1 - Xo[?) " + (B[ X2 [*E| X2 - X1 |?)

< (E1X02)"2 + (B X)) (Wa(P, Pr) +6)

where we used successively the Cauchy-Schwarz inequality and the Nishimori property (Proposi-
tion 1.1.1). We then let € — 0 to obtain the result. O

B.5 Zero-noise limit of the mutual information

The goal of this section is to prove Proposition B.2 and Corollary B.2.
Proposition B.2

Let Py be a probability distribution over N™ that admits a finite second moment. Let
U ~ Py and Z ~ N(0,1d,,) be two independent random variables. Then H(U) =
— Y nenm Pu(n)log Py(n) is finite and for all A € (0, 1],

I(U;U +VAZ) — H(U)| < 48me™ /104,

Proof. Let us define for A > 0, h(A) = [(U;U +VAZ) = Ip,(A™1). By Proposition 1.3.3 we

have for all A > 0,
1

W (D) =~ GMMSE(U |U + VAZ). (B.5)
We are now going to upper bound MMSE(U |U + VAZ ) by considering the following estimator:

0, = argmin |u — U; + \/EZi\,
ueN

for all i € {1,...,m}. Note that 51 is well-defined almost surely since there is a.s. a unique
minimizer above. We have

M@#v»spwﬁwizumzﬂ%w@nz2jA)sﬁgﬁeWM%steW%%

249



by usual bounds on the Gaussian cumulative distribution function. We have then

MMSE(U|U+\/ZZ)§E|]U—§||2:iIE(Ui ZE[ 1(0; # Us) (Ui — 0,)?]

< Y 2B[1(0 £ U)(U: - (Ui + VAZ)] + 2E[10, £ VU, + VAZ — 6]
i=1
m R 1 R

< ;QE[H(@' # Ui)AZﬂ + §E[]1(9i # Ui)}

< $So0B(0, £ U PRI + LB(0 £ 0)
=1

< me~1/(164) (2\/6A5/4 + \/Z) < Gme—1/(164)

for A < 1. Plugging this inequality in (B.5), we obtain for all A € (0, 1],

K(A)] < %e_l/(MA). (B.6)

dA < 400 we obtain that

sup |h(A)| < +o0. (B.7)
A€(0,1]

1/(16A)

Since h(1) is finite and f

By definition of h:
1
h(A) = I(U; U+ VAZ) = —% ~Elog > Py(U)exp (- sxllU+VAZ - Ul?). (B3)
UeNm

By the previous equality and (B.7), the family of (non-negative) random variables

(—log Z Py(U) exp ( — iHU +VAZ - UHQ))

UeNm A€(0,1]

is bounded in L'. Notice that (by dominated convergence)
1 2 ~Lizir) _ Lz
_logUgm Py(U)exp (~ 5 [U+VAZ-U|?) — ~log (Pu(@)e 21 #I") = 7| 2| ~log Py (U)

almost surely. This gives (by Fatou’s Lemma) that this almost-sure limit is integrable and thus
that H({U) = —Elog Py(U) is finite. Let us now show that h(A) ~d H(U). We have almost
—

surely
1
log (Py(U)e 2171%) <log 3° Py(U)exp (— 55U +VAZ ~U|?) <0
UeNm

Since we now know that the left-hand side is integrable (because H(U) is finite), we can apply
the dominated convergence theorem to obtain that
VA -slzII”) = m
Elog S Py(U) exp( ||U+ AZ -U| ) —— Elog (Pu@)e=212I) = m(U) - 5
UeNm
which combined with (B.8) gives h(A) ~ H(U). Now, using the bound on the derivative of
—

h (B.6) we conclude that for all A € (0,1],

—1/(16t) A
|h(A) = H(U)| < 3m/ ——dt = 3m[16e—1/(16t>]0 — A8me—1/(162)
0
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Corollary B.2

Let U be a random variable over N™ with finite second moment, let X be a random
variable over R™ and let Z ~ N(0,1d,,). We assume (U, X) to be independent from
Z. Then, for all A € (0,1],

I(X;U + VAZ) - [(X;U)] < 100me /0%

Proof. We have by the chain rule of the mutual information:

IU;U+VAZ)=1(U,X;U +VAZ)
= I[(X;U +VAZ)+ I(U;U + VAZ|X).

By applying Proposition B.2 twice, we get
I(U;U +VAZ) — HU)|, |[(U;U + VAZ|X) — HU|X)| < 48me1/162).

Since I(X;U) = H({U) — H(U|X) we obtain the desired inequality. O

C Some results about convex functions

C.1 Convex analysis lemmas

Proposition C.1

Let I C R be an interval, and let (f,)n,>0 be a sequence of convex functions on I that
converges pointwise to a function f. Then for allt € I for which these inequalities have
a sense

f1(t7) < liminf £, (¢7) < limsup f;,(t7) < f'(¢7).

Proof. Let t € I and h > 0. By convexity

fo(t+h) = fu(t) ft+h) = ft)

faety < RS —o T e,

The first inequality follows from the same arguments. O
Proposition C.2 (Corollary 37.3.2 from [182])

Let C' and D be non-empty closed convex sets in R™ and R", respectively, and let f
be a continuous finite concave-convex function on C' x D. If either C' or D is bounded,
one has

inf = sup inf .
32D228f(“’”) iggq}ng(u,v)

251



Definition C.1

A convex function f over R" is said to be

o ~-strongly convex if x — f(x) — ||x||* is convex.

e [-strongly smooth is f is differentiable everywhere and for all x,y € R" we have

F(w) < F@)+ (o= )95 @) + £l — ol

Remark C.1. If f is convez, differentiable over R™, and V[ is L-Lipschitz, then f is
L-strongly smooth. Indeed, if we take x,y € R"™ and if we define h(t) = f((1 —t)x +ty) we
have

£(9) = £(x) = h(1) = h(0) = [ Wt = [ (g~ ) TTH(1 ~ t)2 + 1yt
=(y—2)flx)+ /Ol(y —2)" (VA1 =ty +ty) — Vf(x))dt
< (g =) @)+ [ Lo = ylPdt < (= )T @) + 5 e = ol

Proposition C.3

Let f be a closed convex function over R". Then f is vy-strongly convex if and only if
f*is %—strong]y smooth.

This result can be found in the book [219], see Corollary 3.5.11 on page 217 and the
Remark 3.5.3 below. A more accessible presentation of this result can be found in [118].

C.2 The monotone conjugate

Definition C.2

We define the monotone conjugate (see [182] p.110) of a non-decreasing convex function
f : Rzo —R by

f*(x) = sup{ay — f(y)}- (C.1)

y>0

The most fundamental result on the monotone conjugate is the analog of the Fenchel-

Moreau theorem:
Proposition C.4 ([182] Theorem 12.4)

Let f be a non-decreasing lower semi-continuous convex function on Rs( such that
f(0) is finite. Then f* is another such function and (f*)* = f.

Proposition C.5

Let f be a non-decreasing lower semi-continuous convex function on Rs( such that
f(0) is finite. Then for all z,y > 0:

v €0f(y) <= [f(a)+ f(y) =2y < ye€if(x).

252



Proof. Let z € 0f*(y). We get that (f*)*(x) = zy — f*(y) and therefore that f*(y) = zy— f(x),
by Proposition C.4. This gives that x maximizes s — sy — f(s) over R>¢ and thus y € 9f(x).
It remains to show that y € df(z) = = € Jf*(y). This follows from Proposition C.4 and the
implication = € 0f*(y) = y € df(z) that we just showed. O

C.3 Some supremum formulas

This section gathers some tools to deal with “sup-inf” expressions that we encounter in
this manuscript.

Proposition C.6

Let f,g be two convex Lipschitz functions on Rsq. For (q1,q2) € ]RQEO we define
e(q1,¢2) = fla1) + 9(¢2) — q1q2 and ¥(q1,42) = q1q2 — [*(g2) — g"(q1). Then the set
I'= {(ql, qQ2) € RQZO ‘ ¢ € 09(q2), ¢ € 8f(q1)} is non-empty and:

sup (g1, 42) = sup ¥(qi.q2) = sup inf o(a1,q2), (C.2)
(q1,92)€l’ q1,92>0 q1>0 2220

and the two first suprema above are achieved and precisely at the same couples (q1, q2)-

If moreover f and g are both differentiable and strictly convex, then the same result
holds for I" replaced by

I={(q @) €R:|g = f(q) and ¢ = ¢'(q2) }. (C.3)

Proof. Let Ly (resp. Ly) be the Lipschitz constant of f (resp. g). For x > Ly, f*(x) = 400 and
(since f* is lower semi-continuous by Proposition C.5) f*(x) — +oo as * — Ly. Analogously,
g(x) = 400 as x — Lg. The function 1) is therefore continuous on [0, Ly) x [0, Lf) and goes to
—oo on the border ({Ly} x [0, Ly]) U ([0, Ly] x {Ls}).

The functions 1) achieves therefore its maximum at some (qi,q2) € [0,Lg) x [0,Lf). (q1,q2)
verifies then ¢o € 9g*(¢q1) and ¢1 € 9f*(q2) which gives (q1,¢2) € T' by Proposition C.5. The set
I' is therefore non-empty and

sup ¥(q1,q2) < sup  p(q1,q2).
q1,92>0 (q1,92)€T

By definition of the conjugates f* and g* we have for all ¢1,q2 >0

{f((h) + f*(¢2) = q1q2
9(q2) + 9" (1) > q1qo-

We get that ¢(q1,92) > ¥(q1,q2) with equality if and only if (g1,92) € I', by Proposition C.5.
This gives in particular that

sup ¥(q1,92) > sup (g1, q2)-
q1,922>0 (q1,92)€l
Hence, both supremum are equal and are achieved over the same couples because we have seen
that all couple (q1, g2) that achieves the supremum of ¢ is in T'.
We consider now the second equality. Using the definition of the monotone conjugate (C.1)
and Proposition C.4:

sup inf ¢(q1,q2) = sup {f(q1) — g*(q1)} = sup sup {q1g2 — f*(g2) — g*(q1)}-
q1>09220 1>0 q1>0g2>0
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Let us now prove the second part of the Proposition: we now assume that f and g are
differentiable, strictly convex. Let (q1,g2) € I' be a couple that achieves the maximum of ¢ over
I'. Tt suffices to show that (q1,¢2) € L. If q1 > 0 and g9 > 0, then this is trivial because f and g
are differentiable.

Suppose now that ¢ = 0 (the case g2 = 0 follows by symmetry). Since 0 = ¢; € dg(g2) and
g is strictly increasing, we get that go = 0, so that supv = ¢(q1,¢2) = f(0) + g(0). Notice that

f*(f(0)) = —f(0) and g*(¢'(0)) = —g(0) so
£(0) + g(0) = sup vy > 9(g'(0), f'(0)) = f(0) + 9(0) + £'(0)g'(0) > £(0) + g(0). (C.4)

We get that (¢'(0), f/(0)) achieves the supremum of v, which implies that (¢'(0), f(0)) € I'. From
(C.4) we get also that f'(0) = 0 or ¢’(0) = 0. Assume that f'(0) = 0 (the case ¢’(0) = 0 follows
by symmetry), then 0 € 9f(¢'(0)) because (¢'(0), f'(0)) € I'. Since f is strictly increasing, so
we have ¢/(0) = 0. We conclude that f'(0) = ¢’(0) = 0 which proves that (q1,¢2) = (0,0) € . [

We will need the following variants of Proposition C.6 in Chapter 7:
Proposition C.7

Let f :[0,p] — R be a continuous convex non-decreasing function. Let g : R>g — R
be a convex, Lipschitz, non-decreasing function. Define p = sup,~, ¢'(z*) the Lipschitz
constant of g. Then

sup inf {f(q1) +9(q) — g2} = sup inf {f(q1) +g(a2) — w2}
92>0 g1 €[0,p] q1€[0,p] g2>0

Proof. We extend f on R>¢ by setting f(x) = +oo for all x > p. The extended function f is
then a convex, lower semi-continuous function on R>¢ and f(0) is finite. We have then

sup inf {f(q1) +9(g2) — q1g2} = sup inf {f(q1) + 9(q2) — q1q2}
q2>0 g1 €[0,p] q2>0¢q1>0

= sup {Q(CD) - f*(Q2)}v

q220

by Proposition C.4. g is p-Lipschitz so g*(z) = +oo for all z > p. Consequently, by Proposition
C.4, 9(g2) = supy, >0{q192 — 9"(q1)} = supy, cpo p{q192 — 9" (q1)}. We get

sup inf {f(q1) +9(q2) — q1g2} = sup sup {q1g2 — g"(q1) — f*(q2)}

7220 q1 €[0,p] q2>0 q1€[0,p]
= sup {f(q) —g"(q1)}
q1€[0,p]
= sup inf {f(q1) + 9(q2) — q1q2}-
q1€[0,p] g2>0
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Proposition C.8

Let g be a strictly convex, differentiable, Lipschitz non-decreasing function on R,.
Define p = sup,~, ¢'(x). Let f be a convex, continuous, strictly increasing function on
[0, p], differentiable on [0, p). For (q1,q2) € [0,p] x Ry we define ¢(q1,q) = f(q1) +
9(¢2) — q1g2- Then

sup inf ¢(q1,¢q2) = sup ©(q1,q), (C.5)
q1€[0,p] 4220 (q1,92)€T

where

= eman i 2 5 )

where all the function are extended by there limits at the points at which they may not
be defined (for instance ¢'(+o00) = qliﬁ;lo Jd (), ['(p) = }ILII; f'(q)). Moreover, the above

extremas are achieved precisely on the same couples.

Proof. Let ¢i be a maximizer of f — ¢g* over [0, p|. ¢} is well defined because f is continuous and
g* is continuous over [0, p) and is either continuous or goes to 400 at p (because ¢g* is a lower

semi-continuous convex function, see Proposition C.4). We distinguish 3 cases:

Case 1: 0 < ¢f < p. By strict convexity of g, ¢(q1,-) admits a unique minimizer g5 and
(¢*)(¢7) = g5 by Proposition C.5. Thus, the optimality condition at ¢} gives

0= f(g7) = (9")(dF) = f'(ai) — G -
The optimality of ¢5 gives then ¢i < ¢/(¢3). Suppose that ¢f < ¢’(¢g3). This is only possible when
q3 = 0. Define ¢ = ¢'(¢5) = ¢'(0). Remark that g*(q}) = —¢(0) = ¢g*(¢]). We supposed that

g} > ¢ thus, by strict monotonicity of f, f(q}) — g*(¢}) > f(q7) — g*(¢}) which contradict the
optimality of ¢f. We obtain therefore that ¢f = ¢'(¢3).

Case 2: ¢ = 0. The optimality condition gives now
0< f'(gi =0)<g, (C.6)

where ¢ is again the unique minimizer of ¢(¢f = 0,-) = f(0) + g. g is strictly increasing, so
¢35 = 0. Therefore g5 =0 = f'(¢f = 0), by (C.6). As before we have necessarily, by optimality of
g5 that ¢i = g'(¢3)-

Case 3: ¢f = p. In that case argming,>o{g(q2) — ¢fq2} = 0 because g is strictly convex and
p-Lipschitz. Proposition C.5 gives then that dg*(p) = () which implies (see [182, Theorem 23.3])
that (¢*) (p~) = +o0. Since ¢f = p maximizes f — ¢g*, we necessarily have then f'(p~) = 4oc.

Using the slight abuse of notation explained in the Proposition, we have f/(¢}) = +00 = ¢3,
where g5 = 400 is the unique “minimizer” of ¢(q7,-), by strict convexity of g. By definition of p
we have also ¢'(¢3) = ¢'(+00) = p = ¢F.

We conclude from the tree cases above that the “sup-inf” in (C.5) is achieved, and that all
the couples (g7, ¢3) that achieve this “sup-inf” belong to I'. Thus

sup inf o(q1,q2) < sup  ©(q1,q2) .
q1€[0,p] g2>0 (q1,92)€l

Let now be (q1,q2) € T'. By convexity of g we see easily that p(q1,q2) = inf g, ©(q1,4¢5). Thus,
©(q1,q2) < supy infy ©(q], ¢5). Therefore

sup  ¢(q1,92) < sup inf ¢(q1,q2).
(q1,92)€l q1€[0,p] g2>0
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This concludes the proof of (C.5). It remains to see that a couple (¢, q3) € I' that achieves the
supremum in (C.5) also achieves the “sup-inf”. This simply follows from the fact that ¢(q7,¢5) =
infg, ¢(q7, g2) and (C.5). O

D Differentiation of a supremum of functions

We recall in this section two results about the differentiation of a supremum of functions
from Milgrom and Segal [144]. Let X be a set of parameters and consider a function
f:X x[0,1] — R. Define, for ¢ € [0, 1]

V(t) = sup f(x7t> )

zeX

X*(t)={xeX|flz,t) =V(®)}.

Proposition D.1 (Theorem 1 from [1/4])

Let t € [0,1] such that X*(t) # 0. Let x* € X*(t) and suppose that f(x*,-) is
differentiable at t, with derivative f;(z*,t).

e Ift> 0 and if V is left-hand differentiable at t, then V'(t7) < fy(z*,1).
e Ift <0 and if V is right-hand differentiable at t, then V'(t*) > f,(x*,1).
o Ift € (0,1) and if V is differentiable at t, then V'(t) = fi(z*,t).

Proposition D.2 (Corollary 4 from [1/4])

Suppose that X is nonempty and compact. Suppose that for all t € [0,1], f(-,t) is
continuous. Suppose also that f admits a partial derivative f; with respect to t that is
continuous in (z,t) over X x [0,1]. Then

o V'(t") = max )ft(a:*,t) for all t € [0,1) and V'(t”) = min )ft(a:*,t) for all

xreX*(t zreX*(t

t e (0,1].

e V is differentiable at t € (0, 1) is and only if {ft(m*, t) ’ZE* € X*(t)} is a singleton.
In that case V'(t) = fi(z*,t) for all z* € X*(t).

256



Bibliography

1]

[10]

[11]

[12]

Emmanuel Abbe and Colin Sandon. Detection in the stochastic block model
with multiple clusters: proof of the achievability conjectures, acyclic bp, and the
information-computation gap. arXiv preprint arXiv:1512.09080, 2015.

Michael Aizenman, Robert Sims, and Shannon L Starr. Extended variational
principle for the sherrington-kirkpatrick spin-glass model.  Physical Review B,
68(21):214403, 2003.

Ahmed El Alaoui, Florent Krzakala, and Michael I Jordan. Finite size correc-
tions and likelihood ratio fluctuations in the spiked wigner model. arXiv preprint
arXiw:1710.02903, 2017.

David J Aldous. Representations for partially exchangeable arrays of random vari-
ables. Journal of Multivariate Analysis, 11(4):581-598, 1981.

Dennis Amelunxen, Martin Lotz, Michael B McCoy, and Joel A Tropp. Living on
the edge: Phase transitions in convex programs with random data. Information and
Inference: A Journal of the IMA, 3(3):224-294, 2014.

Arash A Amini and Martin J Wainwright. High-dimensional analysis of semidefinite
relaxations for sparse principal components. In Information Theory, 2008. ISIT 2008.
IEEFE International Symposium on, pages 2454-2458. IEEE, 2008.

Fabrizio Antenucci, Silvio Franz, Pierfrancesco Urbani, and Lenka Zdeborova. Glassy
nature of the hard phase in inference problems. Physical Review X, 9(1):011020, 2019.

Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Algorithmic thresholds
for tensor pca. arXiv preprint arXiv:1808.00921, 2018.

Gerard Ben Arous, Song Mei, Andrea Montanari, and Mihai Nica. The landscape of
the spiked tensor model. arXiv preprint arXiv:1711.05424, 2017.

Antonio Auffinger, Gérard Ben Arous, and Jiti éerny. Random matrices and

complexity of spin glasses. Communications on Pure and Applied Mathematics,
66(2):165-201, 2013.

Antonio Auffinger, Gerard Ben Arous, et al. Complexity of random smooth functions
on the high-dimensional sphere. The Annals of Probability, 41(6):4214-4247, 2013.

Tim Austin. Exchangeable random measures. In Annales de I'IHP Probabilités et
statistiques, volume 51, pages 842-861, 2015.

257



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

Jinho Baik, Gérard Ben Arous, and Sandrine Péché. Phase transition of the largest
eigenvalue for nonnull complex sample covariance matrices. Annals of Probability,
pages 1643-1697, 2005.

Jinho Baik and Jack W Silverstein. FEigenvalues of large sample covariance matrices of
spiked population models. Journal of Multivariate Analysis, 97(6):1382-1408, 2006.

Carlo Baldassi, Alfredo Braunstein, Nicolas Brunel, and Riccardo Zecchina. Efficient
supervised learning in networks with binary synapses. BMC' neuroscience, 8(2):513,
2007.

Jess Banks, Cristopher Moore, Roman Vershynin, Nicolas Verzelen, and Jiaming
Xu. Information-theoretic bounds and phase transitions in clustering, sparse pca,
and submatrix localization. In Information Theory (ISIT), 2017 IEEE International
Symposium on, pages 1137-1141. IEEE, 2017.

Jean Barbier, Mohamad Dia, Nicolas Macris, and Florent Krzakala. The mutual
information in random linear estimation. In 2016 54th Annual Allerton Conference
on Communication, Control, and Computing (Allerton), pages 625-632. IEEE, 2016.

Jean Barbier, Mohamad Dia, Nicolas Macris, Florent Krzakala, Thibault Lesieur, and
Lenka Zdeborova. Mutual information for symmetric rank-one matrix estimation: A
proof of the replica formula. In Advances in Neural Information Processing Systems,
pages 424-432, 2016.

Jean Barbier, Florent Krzakala, Nicolas Macris, Léo Miolane, and Lenka Zdeborova.
Optimal errors and phase transitions in high-dimensional generalized linear models.
Proceedings of the National Academy of Sciences, 2019.

Jean Barbier and Nicolas Macris. The stochastic interpolation method: A
simple scheme to prove replica formulas in bayesian inference. arXiv preprint
arXiv:1705.02780, 2017.

Jean Barbier, Nicolas Macris, and Léo Miolane. The layered structure of tensor
estimation and its mutual information. arXiv preprint arXiv:1709.10368, 2017.

Adriano Barra, Giuseppe Genovese, and Francesco Guerra. Equilibrium statistical
mechanics of bipartite spin systems. Journal of Physics A: Mathematical and Theo-
retical, 44(24):245002, 2011.

Eric B Baum and Yuh-Dauh Lyuu. The transition to perfect generalization in per-
ceptrons. Neural computation, 3(3):386-401, 1991.

Mohsen Bayati, Murat A Erdogdu, and Andrea Montanari. Estimating lasso risk and
noise level. In Advances in Neural Information Processing Systems, pages 944-952,
2013.

Mohsen Bayati, Marc Lelarge, Andrea Montanari, et al. Universality in polytope
phase transitions and message passing algorithms. The Annals of Applied Probability,
25(2):753-822, 2015.

258



[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Mohsen Bayati and Andrea Montanari. The dynamics of message passing on dense
graphs, with applications to compressed sensing. IEEFE Transactions on Information
Theory, 57(2):764-785, 2011.

Mohsen Bayati and Andrea Montanari. The lasso risk for gaussian matrices. IEFEE
Transactions on Information Theory, 58(4):1997-2017, 2012.

Florent Benaych-Georges and Raj Rao Nadakuditi. The eigenvalues and eigenvectors
of finite, low rank perturbations of large random matrices. Advances in Mathematics,
227(1):494-521, 2011.

Florent Benaych-Georges and Raj Rao Nadakuditi. The singular values and vectors of
low rank perturbations of large rectangular random matrices. Journal of Multivariate
Analysis, 111:120-135, 2012.

Quentin Berthet, Philippe Rigollet, et al. Optimal detection of sparse principal
components in high dimension. The Annals of Statistics, 41(4):1780-1815, 2013.

Raphaél Berthier, Andrea Montanari, and Phan-Minh Nguyen. State evolution for
approximate message passing with non-separable functions. Information and Infer-
ence: A Journal of the IMA, 2017.

Peter J Bickel, Chris AJ Klaassen, Peter J Bickel, Y Ritov, J Klaassen, Jon A
Wellner, and YA’Acov Ritov. Efficient and adaptive estimation for semiparametric
models, volume 4. Johns Hopkins University Press Baltimore, 1993.

Peter J Bickel, Ya’acov Ritov, and Alexandre B Tsybakov. Simultaneous analysis of
Lasso and Dantzig selector. The Annals of Statistics, 37(4):1705-1732, 2009.

Vladimir I Bogachev. Measure theory, volume 1. Springer Science & Business Media,
2007.

Erwin Bolthausen. An iterative construction of solutions of the tap equations
for the sherrington—kirkpatrick model. Communications in Mathematical Physics,
325(1):333-366, 2014.

Charles Bordenave, Marc Lelarge, and Laurent Massoulié. Non-backtracking spec-
trum of random graphs: community detection and non-regular ramanujan graphs.
In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium
on, pages 1347-1357. IEEE, 2015.

Stéphane Boucheron, Gabor Lugosi, and Pascal Massart. Concentration inequalities:
A nonasymptotic theory of independence. Oxford university press, 2013.

Petros T Boufounos and Richard G Baraniuk. 1-bit compressive sensing. In 42nd
Annual Conference on Information Sciences and Systems (CISS), pages 16-21. IEEE,
2008.

Peter Bithlmann and Sara Van De Geer. Statistics for high-dimensional data: meth-
ods, theory and applications. Springer Science & Business Media, 2011.

259



[40] Francesco Caltagirone, Marc Lelarge, and Léo Miolane. Recovering asymmetric com-
munities in the stochastic block model. IEEFE Transactions on Network Science and
Engineering, 2017.

[41] Emmanuel Candes and Terence Tao. The Dantzig selector: Statistical estimation
when p is much larger than n. The Annals of Statistics, 35(6):2313-2351, 2007.

[42] Emmanuel J Candes and Terence Tao. Decoding by linear programming. IEEE
transactions on information theory, 51(12):4203-4215, 2005.

[43] Emmanuel J Candes and Terence Tao. Near-optimal signal recovery from random
projections: Universal encoding strategies? I[FEEE transactions on information the-
ory, 52(12):5406-5425, 2006.

[44] Mireille Capitaine, Catherine Donati-Martin, and Delphine Féral. The largest eigen-
values of finite rank deformation of large wigner matrices: convergence and nonuni-
versality of the fluctuations. The Annals of Probability, pages 1-47, 2009.

[45] Sourav Chatterjee et al. A generalization of the lindeberg principle. The Annals of
Probability, 34(6):2061-2076, 2006.

[46] Scott Chen and David L Donoho. Examples of basis pursuit. In Wavelet Applica-
tions in Signal and Image Processing II1, volume 2569, pages 564-575. International
Society for Optics and Photonics, 1995.

[47] Wei-Kuo Chen. Phase transition in the spiked random tensor with rademacher prior.
arXiv preprint arXiw:1712.01777, 2017.

(48] Wei-Kuo Chen et al. The aizenman-sims-starr scheme and parisi formula for mixed
p-spin spherical models. Electron. J. Probab, 18(94):1-14, 2013.

[49] Wei-Kuo Chen, Madeline Handschy, and Gilad Lerman. Phase transition in random
tensors with multiple spikes. arXiv preprint arXiv:1809.06790, 2018.

[50] Wei-Kuo Chen and Dmitry Panchenko. On the tap free energy in the mixed p-spin
models. Communications in Mathematical Physics, 362(1):219-252, 2018.

[51] Wei-Kuo Chen and Arnab Sen. Parisi formula, disorder chaos and fluctuation for
the ground state energy in the spherical mixed p-spin models. Communications in
Mathematical Physics, 350(1):129-173, 2017.

[52] Frangois Chollet. keras. https://github.com/fchollet/keras, 2015.

[53] A Crisanti and H-J Sommers. Thouless-anderson-palmer approach to the spherical
p-spin spin glass model. Journal de Physique I, 5(7):805-813, 1995.

[54] Andrea Crisanti and H-J Sommers. The sphericalp-spin interaction spin glass model:
the statics. Zeitschrift fir Physik B Condensed Matter, 87(3):341-354, 1992.

[55] Alexandre d’Aspremont, Laurent E Ghaoui, Michael I Jordan, and Gert R Lanckriet.
A direct formulation for sparse pca using semidefinite programming. In Advances in
neural information processing systems, pages 41-48, 2005.

260


https://github.com/fchollet/keras

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[68]

[69]

[70]

Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborova.
Asymptotic analysis of the stochastic block model for modular networks and its
algorithmic applications. Physical Review E, 84(6):066106, 2011.

Bernard Derrida. Random-energy model: Limit of a family of disordered models.
Physical Review Letters, 45(2):79, 1980.

Bernard Derrida. Random-energy model: An exactly solvable model of disordered
systems. Physical Review B, 24(5):2613, 1981.

Yash Deshpande, Emmanuel Abbe, and Andrea Montanari. Asymptotic mutual in-
formation for the balanced binary stochastic block model. Information and Inference:
A Journal of the IMA, 6(2):125-170, 2016.

Yash Deshpande and Andrea Montanari. Information-theoretically optimal sparse
pca. In 2014 IEEE International Symposium on Information Theory, pages 2197—
2201. IEEE, 2014.

Yash Deshpande and Andrea Montanari. Sparse pca via covariance thresholding. In
Advances in Neural Information Processing Systems, pages 334-342, 2014.

Yash Deshpande, Subhabrata Sen, Andrea Montanari, and Elchanan Mossel. Contex-
tual stochastic block models. In Advances in Neural Information Processing Systems,
pages 8590-8602, 2018.

Luc Devroye, Laszl6 Gyorfi, and Gabor Lugosi. A probabilistic theory of pattern
recognition, volume 31. Springer Science & Business Media, 2013.

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling lan-
guage for convex optimization. Journal of Machine Learning Research, 2016. To
appear.

Edgar Dobriban et al. Sharp detection in pca under correlations: all eigenvalues
matter. The Annals of Statistics, 45(4):1810-1833, 2017.

Edgar Dobriban, William Leeb, and Amit Singer. Pca from noisy, linearly reduced
data: the diagonal case. arXiv preprint arXiv:1611.10333, 2016.

David Donoho and Andrea Montanari. High dimensional robust m-estimation:
Asymptotic variance via approximate message passing. Probability Theory and Re-
lated Fields, 166(3-4):935-969, 2016.

David L Donoho. High-dimensional centrally symmetric polytopes with neighborli-
ness proportional to dimension. Discrete & Computational Geometry, 35(4):617-652,
2006.

David L Donoho and Iain M Johnstone. Minimax risk over ¢,-balls for ¢,-error.
Probability Theory and Related Fields, 99(2):277-303, 1994.

David L Donoho and Jain M Johnstone. Ideal spatial adaptation by wavelet shrink-
age. biometrika, 81(3):425-455, 1994.

261



[71]

[72]

73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

David L Donoho, Arian Maleki, and Andrea Montanari. Message-passing algo-
rithms for compressed sensing. Proceedings of the National Academy of Sciences,
106(45):18914-18919, 20009.

David L Donoho, Arian Maleki, and Andrea Montanari. The noise-sensitivity
phase transition in compressed sensing. [EEFE Transactions on Information The-
ory, 57(10):6920-6941, 2011.

David L Donoho and Jared Tanner. Neighborliness of randomly projected simplices
in high dimensions. Proceedings of the National Academy of Sciences, 102(27):9452—
9457, 2005.

David L Donoho and Jared Tanner. Sparse nonnegative solution of underdetermined
linear equations by linear programming. Proceedings of the National Academy of
Sciences of the United States of America, 102(27):9446-9451, 2005.

LN Dovbysh and Vladimir Nikolaevich Sudakov. On the gram—de finetti matrices.
Zapiski Nauchnykh Seminarov POMI, 119:77-86, 1982.

Martin E. Dyer and Alan M. Frieze. The solution of some random np-hard problems
in polynomial expected time. Journal of Algorithms, 10(4):451-489, 1989.

SF Edwards and Raymund C Jones. The eigenvalue spectrum of a large symmetric
random matrix. Journal of Physics A: Mathematical and General, 9(10):1595, 1976.

Bradley Efron. The estimation of prediction error: covariance penalties and cross-
validation. Journal of the American Statistical Association, 99(467):619-632, 2004.

Ahmed El Alaoui and Michael I Jordan. Detection limits in the high-dimensional
spiked rectangular model. In Conference On Learning Theory, pages 410-438, 2018.

Ahmed El Alaoui and Florent Krzakala. Estimation in the spiked wigner model:
A short proof of the replica formula. In 2018 IEEE International Symposium on
Information Theory (ISIT), pages 1874-1878. IEEE, 2018.

Noureddine El Karoui. On the impact of predictor geometry on the performance on
high-dimensional ridge-regularized generalized robust regression estimators. Proba-
bility Theory and Related Fields, 170(1-2):95-175, 2018.

William Evans, Claire Kenyon, Yuval Peres, and Leonard J Schulman. Broadcasting
on trees and the ising model. Annals of Applied Probability, pages 410-433, 2000.

Zhou Fan, Song Mei, and Andrea Montanari. Tap free energy, spin glasses, and
variational inference. arXiv preprint arXiv:1808.07890, 2018.

Delphine Féral and Sandrine Péché. The largest eigenvalue of rank one deformation
of large wigner matrices. Communications in mathematical physics, 272(1):185-228,
2007.

Nicolas Fournier and Arnaud Guillin. On the rate of convergence in wasserstein
distance of the empirical measure. Probability Theory and Related Fields, 162(3-
4):707-738, 2015.

262



[86] Yan V Fyodorov. Complexity of random energy landscapes, glass transition, and
absolute value of the spectral determinant of random matrices. Physical review letters,
92(24):240601, 2004.

[87] E Gardner and B Derrida. Optimal storage properties of neural network models.
Journal of Physics A: Mathematical and general, 21(1):271, 1988.

[88] Elizabeth Gardner. The space of interactions in neural network models. Journal of
physics A: Mathematical and general, 21(1):257, 1988.

[89] Elizabeth Gardner and Bernard Derrida. Three unfinished works on the optimal
storage capacity of networks. Journal of Physics A: Mathematical and General,
22(12):1983, 1989.

[90] Stefano Ghirlanda and Francesco Guerra. General properties of overlap probability
distributions in disordered spin systems. towards parisi ultrametricity. Journal of

Physics A: Mathematical and General, 31(46):9149, 1998.

[91] Peter Gillin and David Sherrington. p > 2 spin glasses with first-order ferromagnetic
transitions. Journal of Physics A: Mathematical and General, 33(16):3081, 2000.

[92] Tom Goldstein and Christoph Studer. Phasemax: Convex phase retrieval via basis
pursuit. IEEE Transactions on Information Theory, 2018.

93] Yehoram Gordon. Some inequalities for gaussian processes and applications. Israel
Journal of Mathematics, 50(4):265-289, 1985.

[94] Yehoram Gordon. On milman’s inequality and random subspaces which escape
through a mesh in rn. In Geometric Aspects of Functional Analysis, pages 84—106.
Springer, 1988.

[95] Francesco Guerra. Broken replica symmetry bounds in the mean field spin glass
model. Communications in mathematical physics, 233(1):1-12, 2003.

[96] Dongning Guo, Shlomo Shamai, and Sergio Verdd. Mutual information and minimum

mean-square error in gaussian channels. IEEE Transactions on Information Theory,
51(4):1261-1282, 2005.

[97] Dongning Guo, Yihong Wu, Shlomo S Shitz, and Sergio Verdd. Estimation in gaus-
sian noise: Properties of the minimum mean-square error. IEEFE Transactions on
Information Theory, 57(4):2371-2385, 2011.

98] Géza Gyorgyi. First-order transition to perfect generalization in a neural network
with binary synapses. Physical Review A, 41(12):7097, 1990.

[99] D Hansel, G Mato, and C Meunier. Memorization without generalization in a mul-
tilayered neural network. EPL (Europhysics Letters), 20(5):471, 1992.

[100] Philip Hartman. Ordinary Differential Equations. Society for Industrial and Applied
Mathematics, 2002, 1964.

[101] Simon Heimlicher, Marc Lelarge, and Laurent Massoulié. Community detection in
the labelled stochastic block model. arXiv preprint arXiv:1209.2910, 2012.

263



[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

111]

[112]

[113]

[114]

[115]

[116]

Christopher J Hillar and Lek-Heng Lim. Most tensor problems are np-hard. Journal
of the ACM (JACM), 60(6):45, 2013.

Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic
blockmodels: First steps. Social networks, 5(2):109-137, 1983.

Douglas N Hoover. Relations on probability spaces and arrays of random variables.
Preprint, Institute for Advanced Study, Princeton, NJ, 2, 1979.

John J Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the national academy of sciences, 79(8):2554—
2558, 1982.

Samuel B Hopkins, Tselil Schramm, Jonathan Shi, and David Steurer. Fast spectral
algorithms from sum-of-squares proofs: tensor decomposition and planted sparse
vectors. In Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing, pages 178-191. ACM, 2016.

Samuel B Hopkins, Jonathan Shi, and David Steurer. Tensor principal component
analysis via sum-of-square proofs. In Conference on Learning Theory, pages 956—
1006, 2015.

Tadaaki Hosaka, Yoshiyuki Kabashima, and Hidetoshi Nishimori. Statistical me-
chanics of lossy data compression using a nonmonotonic perceptron. Physical Review
FE, 66(6):066126, 2002.

David C Hoyle and Magnus Rattray. Statistical mechanics of learning multiple
orthogonal signals: asymptotic theory and fluctuation effects. Physical review E,
75(1):016101, 2007.

Aukosh Jagannath, Patrick Lopatto, and Léo Miolane. Statistical thresholds for
tensor pca. arXiv preprint arXi:1812.03403, 2018.

Aukosh Jagannath and Ian Tobasco. Low temperature asymptotics of spherical mean
field spin glasses. Communications in Mathematical Physics, 352(3):979-1017, 2017.

Adel Javanmard and Andrea Montanari. State evolution for general approximate
message passing algorithms, with applications to spatial coupling. Information and
Inference, page iat004, 2013.

Adel Javanmard and Andrea Montanari. Confidence intervals and hypothesis test-

ing for high-dimensional regression. The Journal of Machine Learning Research,
15(1):2869-2909, 2014.

lain M Johnstone. On the distribution of the largest eigenvalue in principal compo-
nents analysis. Annals of statistics, pages 295-327, 2001.

[ain M Johnstone. Function estimation and gaussian sequence models. Unpublished
manuscript, 2(5.3):2, 2002.

Iain M Johnstone and Arthur Yu Lu. Sparse principal components analysis. Unpub-
lished manuscript, 7, 2004.

264



[117)

[118]

[119]
[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

Y Kabashima. Inference from correlated patterns: a unified theory for percep-
tron learning and linear vector channels. Journal of Physics: Conference Series,
95(1):012001, 2008.

Sham M Kakade, Shai Shalev-Shwartz, and Ambuj Tewari. Regularization techniques
for learning with matrices. Journal of Machine Learning Research, 13(Jun):1865-
1890, 2012.

Olav Kallenberg. Random measures, theory and applications. Springer, 2017.

Varun Kanade, Elchanan Mossel, and Tselil Schramm. Global and local informa-
tion in clustering labeled block models. IEEE Transactions on Information Theory,
62(10):5906-5917, 2016.

Noureddine El Karoui. Asymptotic behavior of unregularized and ridge-regularized
high-dimensional robust regression estimators: rigorous results. arXiv:1311.2445,
2013.

Chiheon Kim, Afonso S Bandeira, and Michel X Goemans. Community detection
in hypergraphs, spiked tensor models, and sum-of-squares. In 2017 International
Conference on Sampling Theory and Applications (SampTA), pages 124-128. IEEE,
2017.

Jeankyung Kim, David Pollard, et al. Cube root asymptotics. The Annals of Statis-
tics, 18(1):191-219, 1990.

Satish Babu Korada and Nicolas Macris. Exact solution of the gauge symmetric p-
spin glass model on a complete graph. Journal of Statistical Physics, 136(2):205-230,
20009.

Satish Babu Korada and Nicolas Macris. Tight bounds on the capacity of binary input
random cdma systems. [EEE Transactions on Information Theory, 56(11):5590—
5613, 2010.

Satish Babu Korada and Andrea Montanari. Applications of the lindeberg principle in
communications and statistical learning. IEEFE Transactions on Information Theory,
57(4):2440-2450, 2011.

Florent Krzakala, Marc Mézard, Francois Sausset, YF Sun, and Lenka Zdeborova.

Statistical-physics-based reconstruction in compressed sensing. Physical Review X,
2(2):021005, 2012.

Florent Krzakala, Marc Mézard, Francois Sausset, Yifan Sun, and Lenka Zdeborova.
Probabilistic reconstruction in compressed sensing: algorithms, phase diagrams, and
threshold achieving matrices. Journal of Statistical Mechanics: Theory and Experi-
ment, 2012(08):P08009, 2012.

Florent Krzakala, Jiaming Xu, and Lenka Zdeborova. Mutual information in rank-
one matrix estimation. In Information Theory Workshop (ITW), 2016 IEEE, pages
71-75. IEEE, 2016.

Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: isoperimetry
and processes. Springer Science & Business Media, 2013.

265



[131]

[132]

[133]

134]

[135]

[136]

[137]

138

[139]

[140]

141]

[142]

[143]

Marc Lelarge, Laurent Massoulié¢, and Jiaming Xu. Reconstruction in the labelled
stochastic block model. IEEE Transactions on Network Science and Engineering,
2(4):152-163, 2015.

Marc Lelarge and Léo Miolane. Fundamental limits of symmetric low-rank matrix
estimation. Probability Theory and Related Fields, pages 1-71, 2016.

Thibault Lesieur, Florent Krzakala, and Lenka Zdeborova. MMSE of probabilistic
low-rank matrix estimation: Universality with respect to the output channel. In 53rd
Annual Allerton Conference on Communication, Control, and Computing, Allerton
2015, Allerton Park € Retreat Center, Monticello, IL, USA, September 29 - October
2, 2015, pages 680-687, 2015.

Thibault Lesieur, Florent Krzakala, and Lenka Zdeborova. Phase transitions in
sparse PCA. In IEEFE International Symposium on Information Theory, ISIT 2015,
Hong Kong, China, June 14-19, 2015, pages 1635-1639, 2015.

Thibault Lesieur, Florent Krzakala, and Lenka Zdeborova. Constrained low-rank
matrix estimation: phase transitions, approximate message passing and applications.
Journal of Statistical Mechanics: Theory and Experiment, 2017(7):073403, 2017.

Thibault Lesieur, Léo Miolane, Marc Lelarge, Florent Krzakala, and Lenka Zde-
borova. Statistical and computational phase transitions in spiked tensor estimation.
2017 IEEE International Symposium on Information Theory (ISIT), pages 511-515,
2017.

Junjie Ma, Ji Xu, and Arian Maleki. Optimization-based amp for phase retrieval:
The impact of initialization and ¢5-regularization. IEEFE Transactions on Information
Theory, 2019.

Laurent Massoulié. Community detection thresholds and the weak ramanujan prop-
erty. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
pages 694-703. ACM, 2014.

Ryosuke Matsushita and Toshiyuki Tanaka. Low-rank matrix reconstruction and
clustering via approximate message passing. In Advances in Neural Information
Processing Systems, pages 917-925, 2013.

Peter McCullagh. Generalized linear models. Routledge, 2018.

Cyril Méasson, Andrea Montanari, Thomas J Richardson, and Riidiger Urbanke.
The generalized area theorem and some of its consequences. IEEE Transactions on
Information Theory, 55(11):4793-4821, 20009.

Marc Mezard. The space of interactions in neural networks: Gardner’s computa-
tion with the cavity method. Journal of Physics A: Mathematical and General,
22(12):2181, 1989.

Marc Mézard, Giorgio Parisi, and Miguel Virasoro. Spin glass theory and beyond: An
Introduction to the Replica Method and Its Applications, volume 9. World Scientific
Publishing Co Inc, 1987.

266



[144]

[145]

[146]

[147)

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

158

Paul Milgrom and Ilya Segal. Envelope theorems for arbitrary choice sets. Econo-
metrica, 70(2):583-601, 2002.

Léo Miolane. Fundamental limits of low-rank matrix estimation: the non-symmetric
case. arXiv preprint arXiw:1702.00473, 2017.

Léo Miolane and Andrea Montanari. The distribution of the lasso: Uniform control
over sparse balls and adaptive parameter tuning. arXiv preprint arXiv:1811.01212,
2018.

Marco Mondelli and Andrea Montanari. Fundamental limits of weak recovery with
applications to phase retrieval. Foundations of Computational Mathematics, pages
1-71, 2017.

Andrea Montanari. Estimating random variables from random sparse observations.
European Transactions on Telecommunications, 19(4):385-403, 2008.

Andrea Montanari. Finding one community in a sparse graph. Journal of Statistical
Physics, 161(2):273-299, 2015.

Andrea Montanari, Daniel Reichman, and Ofer Zeitouni. On the limitation of spectral
methods: From the gaussian hidden clique problem to rank-one perturbations of
gaussian tensors. In Advances in Neural Information Processing Systems, pages 217—
225, 2015.

Andrea Montanari and Emile Richard. Non-negative principal component analysis:
Message passing algorithms and sharp asymptotics. IEEE Transactions on Informa-
tion Theory, 62(3):1458-1484, 2016.

Andrea Montanari and Ramji Venkataramanan. Estimation of low-rank matrices via
approximate message passing. arXiv preprint arXiv:1711.01682, 2017.

Elchanan Mossel. Survey-information flow on trees. DIMACS series in discrete
mathematics and theoretical computer science, 63:155-170, 2004.

Elchanan Mossel, Joe Neeman, and Allan Sly. A proof of the block model threshold
conjecture. arXiv preprint arXiv:1311.4115, 2013.

Elchanan Mossel, Joe Neeman, and Allan Sly. Reconstruction and estimation in the
planted partition model. Probability Theory and Related Fields, 162(3-4):431-461,
2015.

Elchanan Mossel, Yuval Peres, et al. Information flow on trees. The Annals of Applied
Probability, 13(3):817-844, 2003.

Elchanan Mossel and Jiaming Xu. Density evolution in the degree-correlated stochas-
tic block model. In 29th Annual Conference on Learning Theory, pages 1319-1356,
2016.

Jean-Christophe Mourrat. Hamilton-jacobi equations for mean-field disordered sys-
tems. arXiv preprint arXiv:1811.01432, 2018.

267



[159]

[160]

[161]

[162]

163

[164]

[165)

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

Ali Mousavi, Arian Maleki, and Richard G Baraniuk. Consistent parameter estima-
tion for lasso and approximate message passing. The Annals of Statistics, 45(6):2427—
2454, 2017.

Boaz Nadler. Finite sample approximation results for principal component analysis:
A matrix perturbation approach. The Annals of Statistics, pages 2791-2817, 2008.

Joe Neeman and Praneeth Netrapalli. Non-reconstructability in the stochastic block
model. arXiv preprint arXiv:1404.6304, 2014.

Sahand N Negahban, Pradeep Ravikumar, Martin J Wainwright, Bin Yu, et al. A
unified framework for high-dimensional analysis of m-estimators with decomposable
regularizers. Statistical Science, 27(4):538-557, 2012.

Hidetoshi Nishimori. Exact results and critical properties of the ising model with
competing interactions. Journal of Physics C: Solid State Physics, 13(21):4071, 1980.

Hidetoshi Nishimori. Internal energy, specific heat and correlation function of the
bond-random ising model. Progress of Theoretical Physics, 66(4):1169-1181, 1981.

Albert B Novikoff. On convergence proofs for perceptrons. Technical report, STAN-
FORD RESEARCH INST MENLO PARK CA, 1963.

Alexei Onatski, Marcelo J Moreira, Marc Hallin, et al. Asymptotic power of sphericity
tests for high-dimensional data. The Annals of Statistics, 41(3):1204-1231, 2013.

Manfred Opper and David Haussler. Generalization performance of bayes opti-
mal classification algorithm for learning a perceptron. Physical Review Letters,
66(20):2677, 1991.

Samet Oymak, Amin Jalali, Maryam Fazel, Yonina C Eldar, and Babak Hassibi.
Simultaneously structured models with application to sparse and low-rank matrices.
IEEE Transactions on Information Theory, 61(5):2886-2908, 2015.

Ashkan Panahi and Babak Hassibi. A universal analysis of large-scale regularized
least squares solutions. In Advances in Neural Information Processing Systems, pages
3381-3390, 2017.

Dmitry Panchenko. The Sherrington-Kirkpatrick model. Springer Science & Business
Media, 2013.

Dmitry Panchenko et al. On the dovbysh-sudakov representation result. FElectronic
Communications in Probability, 15:330-338, 2010.

Debashis Paul. Asymptotics of sample eigenstructure for a large dimensional spiked
covariance model. Statistica Sinica, pages 1617-1642, 2007.

Sandrine Péché. The largest eigenvalue of small rank perturbations of hermitian
random matrices. Probability Theory and Related Fields, 134(1):127-173, 2006.

Amelia Perry, Alexander S Wein, and Afonso S Bandeira. Statistical limits of spiked
tensor models. arXiv preprint arXiv:1612.07728, 2016.

268



175

[176]

[177]

[178]

[179]

[180]

[181]

[182]
[183]

[184]

[185)

[186]

[187]

[188]

[189)]

Amelia Perry, Alexander S Wein, Afonso S Bandeira, Ankur Moitra, et al. Optimality
and sub-optimality of pca i: Spiked random matrix models. The Annals of Statistics,
46(5):2416-2451, 2018.

Sundeep Rangan. Generalized approximate message passing for estimation with
random linear mixing. In Information Theory Proceedings (ISIT), 2011 IEEE Inter-
national Symposium on, pages 2168-2172. IEEE, 2011.

Sundeep Rangan and Alyson K Fletcher. Iterative estimation of constrained rank-one
matrices in noise. In Information Theory Proceedings (ISIT), 2012 IEEE Interna-
tional Symposium on, pages 1246-1250. IEEE, 2012.

Garvesh Raskutti, Martin J Wainwright, and Bin Yu. Minimax rates of estimation for

high-dimensional linear regression over {,-balls. IEEE Transactions on Information
Theory, 57(10):6976-6994, 2011.

Galen Reeves and Henry D Pfister. The replica-symmetric prediction for compressed
sensing with gaussian matrices is exact. In Information Theory (ISIT), 2016 IEEE
International Symposium on, pages 665—669. IEEE, 2016.

Emile Richard and Andrea Montanari. A statistical model for tensor pca. In Advances
in Neural Information Processing Systems, pages 2897-2905, 2014.

Tom Richardson and Ruediger Urbanke. Modern coding theory. Cambridge university
press, 2008.

Ralph Tyrell Rockafellar. Convexr analysis. Princeton university press, 2015.

Valentina Ros, Gerard Ben Arous, Giulio Biroli, and Chiara Cammarota. Complex
energy landscapes in spiked-tensor and simple glassy models: Ruggedness, arrange-
ments of local minima, and phase transitions. Physical Review X, 9(1):011003, 2019.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958.

Frank Rosenblatt. Principles of neurodynamics. CORNELL AERONAUTICAL LAB
INC BUFFALO, 1962.

Alaa Saade, Florent Krzakala, Marc Lelarge, and Lenka Zdeborova. Fast randomized
semi-supervised clustering. In Journal of Physics: Conference Series, volume 1036,
page 012015. IOP Publishing, 2018.

Alaa Saade, Marc Lelarge, Florent Krzakala, and Lenka Zdeborova. Clustering from
sparse pairwise measurements. In Information Theory (ISIT), 2016 IEEE Interna-
tional Symposium on, pages 780-784. IEEE, 2016.

Philip Schniter and Sundeep Rangan. Compressive phase retrieval via generalized
approximate message passing. IEEE Transactions on Signal Processing, 63(4):1043—
1055, 2015.

HS Seung, Haim Sompolinsky, and Naftali Tishby. Statistical mechanics of learning
from examples. Physical review A, 45(8):6056, 1992.

269



[190]

[191]

[192]

193]

[194]

[195]

[196]

197]

198

[199]

200]

[201]

[202]

203)]

204]

205

Mariya Shcherbina and Brunello Tirozzi. Rigorous solution of the gardner problem.
Communications in mathematical physics, 234(3):383-422, 2003.

David Sherrington and Scott Kirkpatrick. Solvable model of a spin-glass. Physical
review letters, 35(26):1792, 1975.

Mahdi Soltanolkotabi. Structured signal recovery from quadratic measurements:
Breaking sample complexity barriers via nonconvex optimization. arXiv preprint
arXiw:1702.06175, 2017.

Aart J Stam. Some inequalities satisfied by the quantities of information of fisher
and shannon. Information and Control, 2(2):101-112, 19509.

Charles M Stein. Estimation of the mean of a multivariate normal distribution. The
annals of Statistics, pages 1135-1151, 1981.

Mihailo Stojnic. Recovery thresholds for ¢; optimization in binary compressed sens-
ing. In Information Theory Proceedings (ISIT), 2010 IEEE International Symposium
on, pages 1593-1597. IEEE, 2010.

Mihailo Stojnic. A framework to characterize performance of lasso algorithms. arXiv
preprint arXiv:1303.7291, 2013.

Eliran Subag et al. The complexity of spherical p-spin models—a second moment
approach. The Annals of Probability, 45(5):3385-3450, 2017.

Pragya Sur and Emmanuel J Candes. A modern maximum-likelihood theory for
high-dimensional logistic regression. arXiv:1803.06964, 2018.

Takashi Takahashi and Yoshiyuki Kabashima. A statistical mechanics approach to
de-biasing and uncertainty estimation in lasso for random measurements. Journal of
Statistical Mechanics: Theory and Experiment, 2018(7):073405, 2018.

Michel Talagrand. Free energy of the spherical mean field model. Probability theory
and related fields, 134(3):339-382, 2006.

Michel Talagrand. Mean field models for spin glasses: Volume I: Basic examples,
volume 54. Springer Science & Business Media, 2010.

Michel Talagrand. Mean field models for spin glasses: Volume II: Advanced Replica-
Symmetry and Low Temperature, volume 55. Springer Science & Business Media,
2011.

David J Thouless, Philip W Anderson, and Robert G Palmer. Solution of’solvable
model of a spin glass’. Philosophical Magazine, 35(3):593-601, 1977.

Christos Thrampoulidis, Ehsan Abbasi, and Babak Hassibi. Precise error analysis
of regularized m-estimators in high-dimensions. IEEE Transactions on Information
Theory, 2018.

Christos Thrampoulidis, Samet Oymak, and Babak Hassibi. Regularized linear re-
gression: A precise analysis of the estimation error. In Conference on Learning
Theory, pages 1683-1709, 2015.

270



206]

207]

208]

209]

[210]

[211]

212]

[213]

214]

[215]

[216]

217]

[218]

[219]

[220]

[221]

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological), pages 267-288, 1996.

Ryan J Tibshirani, Jonathan Taylor, et al. Degrees of freedom in lasso problems.
The Annals of Statistics, 40(2):1198-1232, 2012.

Joel A Tropp. Convex recovery of a structured signal from independent random
linear measurements. In Sampling Theory, a Renaissance, pages 67-101. Springer,
2015.

Sara Van de Geer, Peter Bithlmann, Ya’acov Ritov, Ruben Dezeure, et al. On asymp-
totically optimal confidence regions and tests for high-dimensional models. The An-
nals of Statistics, 42(3):1166-1202, 2014.

Sara A Van De Geer, Peter Bithlmann, et al. On the conditions used to prove oracle
results for the lasso. Electronic Journal of Statistics, 3:1360-1392, 2009.

Remco Van Der Hofstad. Random graphs and complex networks. Cambridge Univer-
sity Press, 2016.

Jeremy P Vila and Philip Schniter. Expectation-maximization gaussian-mixture ap-
proximate message passing. [EEE Transactions on Signal Processing, 61(19):4658—
4672, 2013.

Cédric Villani. Optimal transport: old and new, volume 338. Springer Science &
Business Media, 2008.

Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential families,
and variational inference. Foundations and Trends®) in Machine Learning, 1(1-2):1-
305, 2008.

Yihong Wu and Sergio Verdi. Mmse dimension. IEEFE Transactions on Information
Theory, 57(8):4857-4879, 2011.

Yihong Wu and Sergio Verdi. Functional properties of minimum mean-square error
and mutual information. IEEE Transactions on Information Theory, 58(3):1289—
1301, 2012.

Yihong Wu and Sergio Verdd. Optimal phase transitions in compressed sensing.
IEEE Transactions on Information Theory, 58(10):6241-6263, 2012.

Yingying Xu, Yoshiyuki Kabashima, and Lenka Zdeborova. Bayesian signal recon-
struction for 1-bit compressed sensing. Journal of Statistical Mechanics: Theory and
Ezxperiment, 2014(11):P11015, 2014.

Constantin Zalinescu. Convezr analysis in general vector spaces. World scientific,
2002.

Lenka Zdeborova and Florent Krzakala. Statistical physics of inference: Thresholds
and algorithms. Advances in Physics, 65(5):453-552, 2016.

Cun-Hui Zhang and Stephanie S Zhang. Confidence intervals for low dimensional
parameters in high dimensional linear models. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 76(1):217-242, 2014.

271



[222] Justin Ziniel, Philip Schniter, and Per Sederberg. Binary linear classification and fea-
ture selection via generalized approximate message passing. In Information Sciences
and Systems (CISS), 2014 48th Annual Conference on, pages 1-6. IEEE, 2014.

[223] Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component analysis.
Journal of computational and graphical statistics, 15(2):265-286, 2006.

272






RESUME

Nous étudions des problemes statistiques classiques, tels que la détection de communautés dans un graphe, I'analyse
en composantes principales, les modéles de mélanges Gaussiens, les modéles linéaires (généralisés ou non), dans un
cadre Bayésien. Nous calculons pour ces problémes le “risque de Bayes” qui est la plus petite erreur atteignable par
une méthode statistique, dans la limite de grande dimension. Nous observons alors un phénomene surprenant: dans
de nombreux cas il existe une valeur critique de l'intensité du bruit au-dela de laquelle il n’est plus possible d’extraire de
l'information des données. En dessous de ce seuil, nous comparons la performance d’algorithmes polynomiaux a celle
optimale. Dans de nombreuses situations nous observons un écart: bien qu’il soit possible — en théorie — d’estimer le
signal, aucune méthode algorithmiquement efficace ne parvient a étre optimale.

Dans ce manuscrit, nous adoptons une approche issue de la physique statistique qui explique ces phénoménes en termes
de transitions de phase. Les méthodes et outils que nous utilisons proviennent donc de la physique, plus précisément de

I'étude mathématique des verres de spins.

MOTS CLES

inférence statistique, théorie de I'information, physique statistique, verres de spin, détection de communauté
dans des graphs, estimation de structure de faible rang, modele linéaire généralisé, Lasso

ABSTRACT

We study classical statistical problems such as as community detection on graphs, Principal Component Analysis (PCA),
sparse PCA, Gaussian mixture clustering, linear and generalized linear models, in a Bayesian framework. We compute
the best estimation performance (often denoted as “Bayes Risk”) achievable by any statistical method in the high dimen-
sional regime. This allows to observe surprising phenomena: for many problems, there exists a critical noise level above
which it is impossible to estimate better than random guessing. Below this threshold, we compare the performance of
existing polynomial-time algorithms to the optimal one and observe a gap in many situations: even if non-trivial estimation
is theoretically possible, computationally efficient methods do not manage to achieve optimality.

From a statistical physics point of view that we adopt throughout this manuscript, these phenomena can be explained by
phase transitions. The tools and methods of this thesis are therefore mainly issued from statistical physics, more precisely
from the mathematical study of spin glasses.

KEYWORDS

statistical inference, information theory, statistical physics, spin glasses, community detection on graphs, low-
rank estimation, generalized linear models, Lasso
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