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cussions qui m’ont appris à parler physicien. Ces trois années n’auraient pas été aussi
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Foreword

This thesis is about the fundamental limits of statistical inference. Suppose that we are
given data (in the form of a graph, a matrix, a list of measurements...) that contains

some underlying information/structure corrupted by noise. Our main question is “how
well is it possible to recover this information”, by any means? In other words, given some
data what is the best possible result I can hope for?

We shall consider very basic – and therefore fundamental – estimations tasks: finding
“communities” in a large graph, supervised and unsupervised clustering in high dimensions,
recovering hidden structures in matrices and tensors. We will not work on real dataset but
rather on random data: we will always consider a probabilistic model. If this scenario is
less realistic, it provides a coherent mathematical framework and allows to derive precise
expressions that could lead to practical insights.

We will look at these problems in large dimension, when we observe a large amount
of data and when the signal we aim at estimating has a lot of parameters. This setting
is particularly relevant for modern applications (as “real” datasets always get larger) and
contains a lot of interesting theoretical challenges. While estimating a single parameter is
well understood within the classical statistical theory, estimating a number of parameters
that goes to infinity with the number of observations unveils a number of surprising and
new phenomena.

Indeed, motivated by deep insights from statistical physics, it has been conjectured that
in high dimensions many statistical problems (such as community detection on graphs,
Principal Component Analysis (PCA), sparse PCA, Gaussian mixture clustering, synchro-
nization on groups, low-rank tensor estimation, linear and generalized linear models...)
may encounter phase transitions. More precisely, there exists a critical value of the noise
intensity above which it is impossible to recover (even partially) the signal. This means
there exists fundamental limits on the noise level in order to make non-trivial estimation
possible: this threshold is known as the information-theoretic threshold. However, even
in the regime where estimation is theoretically possible, there are many cases where no
efficient algorithm is known to recover the signal. The noise level has to be below a sec-
ond critical value called the algorithmic threshold in order for polynomial-time methods
to work. In the case where the algorithmic and the I.T. thresholds do not coincide, we
say that there exists a computational gap, meaning that there exists a regime where non-
trivial estimation is theoretically possible (using exponential-time algorithms) but where
no polynomial-time algorithm will perform better than a random guess.

This thesis aims to precisely characterize the information-theoretic threshold for a num-
ber of classical statistical problems. Comparing this threshold to known algorithms allows
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us to understand when computational gaps appears. The manuscript is organised as fol-
lows.

• Chapter 1 introduces the basics concepts of Bayes-optimal inference that we will
used repeatedly throughout this manuscript. I am grateful to Andrea Montanari for
interesting discussions regarding Section 1.2.

• Chapter 2 presents a useful “decoupling principle” that will simplify the study of the
more complex models investigated in this thesis.

• Chapter 3 and Chapter 4 focus on low-rank matrix estimation and establish the
information-theoretic limits for this problems. They are based on the paper [132] in
collaboration with Marc Lelarge and the work [145].

• Chapter 5 studies the community detection problem in the Stochastic Block Model,
when there is two communities of unequal sizes. It is excerpt from the joint work
[40] together with Francesco Caltagirone and Marc Lelarge.

• Chapter 6 pursue the directions of Chapters 3-4. The first part studies the statistical
limits of low-rank tensor estimation is based on the paper [136] with Thibault Lesieur,
Marc Lelarge, Florent Krzakala and Lenka Zdeborová. The second part analyzes
maximum likelihood estimations, following the paper [110] with Aukosh Jagannath
and Patrick Lopatto.

• Chapter 7 focuses on the statistical and computational limits of estimation in Gen-
eralized Linear Models. It is based on the work [19] with Jean Barbier, Florent
Krzakala, Nicolas Macris and Lenka Zdeborová.

• Chapters 8 and 9 concern the Lasso estimator. They establish uniform control of
the distribution of the Lasso and study methods to tune the penalization parameter.
This work is a collaboration with Andrea Montanari [146].

All the inference models that we consider in this manuscript have an equivalent within
the statistical physics literature. The only difference is that the problems we study here
contain a planted solution (representing some signal) whereas their equivalent in physics
can be seen as “pure noise” models. More precisely, the Spiked Wigner model from Chap-
ter 3 corresponds to the Sherrington-Kirkpatrick model [191] while the Spiked Wishart
model from Chapter 4 is the analog to the bipartite SK model [22] or the Hopfield model
[105]. The spiked tensor model of Chapter 6 is linked to the p-spin model and the Gener-
alized Linear Models from Chapter 7 can be seen as perceptrons [88, 87, 89] with various
threshold functions. Finally, the Lasso estimator studied in Chapter 8 and 9 is linked to
the “Shcherbina and Tirozzi” model [190].
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Some notations

R≥0 non-negative numbers: [0,+∞)
R>0 positive numbers: (0,+∞)
E expectation with respect to all random variables
EX expectation with respect to the random variable X only
W2 Wasserstein distance of order 2
DTV total variation distance
DKL Kullback-Leibler divergence
(d)−→ convergence in distribution
Sn−1 unit sphere of Rn

(x; y) or 〈x, y〉 dot product between x and y
x · y normalized dot product: x · y = 1

n

∑n
i=1 xiyi

‖x‖0 `0 norm of x: ‖x‖0 = #{i|xi 6= 0}
|x| `1 norm of x: |x| = ∑ |xi|
‖x‖ `2 norm of x: ‖x‖ =

√∑
x2
i

φ(x) standard Gaussian density function φ(x) = e−x
2/2

√
2π

Φ(x) standard Gaussian distribution function Φ(x) =
∫ x
−∞

e−t
2/2
√

2π dt

MMSE(X|Y ) Minimal Mean Square Error: MMSE(X|Y ) = E‖X − E[X|Y ]‖2
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Chapter 1

Bayes-optimal inference

We introduce in this chapter some general properties of Bayes-optimal inference, that will
be used repeatedly in the sequel. Let us first define what we mean by Bayes-optimal
inference.

We consider a statistical problem where we would like to recover a signal vectorX ∈ Rn

from some observations Y ∈ Rm. We assume that (X,Y ) is drawn from some probability
distribution µ over Rn×Rm. Given a performance criterion, a Bayes-optimal estimator (or
simply Bayes estimator) is an estimator of X given Y that achieves the best performance
for this criterion. For instance if we measure the performance of an estimator x̂ by its
mean square error MSE(x̂) = E‖X − x̂(Y )‖2, then the Bayes-optimal estimator is simply
the posterior mean x̂Bayes(Y ) = E[X|Y ].

The goal of this chapter is to present some general properties of Bayes-optimal esti-
mators. In Section 1.1 we introduce what we will call (according to the statistical physics
terminology) the “Nishimori identity” which is nothing more than a rewriting of Bayes
rule. In Section 1.2 we will study the links between various natural performance metrics
for estimators and show that they are in some sense equivalent. In Sections 1.3 we analyse
the special case where Y =

√
λX +Z, where λ ≥ 0 and Z is some Gaussian noise. This

is the starting point of the study of the “spiked” matrix and tensor models. Finally we
consider in Section 1.4 a simple example to illustrate the tools of this chapter.

1.1 The Nishimori identity
In order to analyze Bayes-optimal estimators, we will need to examine the posterior distri-
bution of X given Y . To do so we will often consider i.i.d. samples x(1), . . . ,x(k) from the
posterior distribution P (· |Y ), independently of everything else. Such samples are called
replicas. The (obvious) identity below (which is simply Bayes rule) is named after the
works of Nishimori [163, 164] on “gauge-symmetric” spin glasses. It states that the planted
solution X behaves like a replica.
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Proposition 1.1.1 (Nishimori identity)
Let (X,Y ) be a couple of random variables on a polish space. Let k ≥ 1 and let
x(1), . . . ,x(k) be k i.i.d. samples (given Y ) from the distribution P(X = · |Y ), inde-
pendently of every other random variables. Let us denote 〈·〉 the expectation with
respect to P(X = · |Y ) and E the expectation with respect to (X,Y ). Then, for all
continuous bounded function f

E
〈
f(Y ,x(1), . . . ,x(k))

〉
= E

〈
f(Y ,x(1), . . . ,x(k−1),X)

〉
.

Proof. It is equivalent to sample the couple (X,Y ) according to its joint distribution or to
sample first Y according to its marginal distribution and then to sample X conditionally to Y
from its conditional distribution P(X = · |Y ). Thus the (k+ 1)-tuple (Y ,x(1), . . . ,x(k)) is equal
in law to (Y ,x(1), . . . ,x(k−1),X).

1.2 Performance measure and optimal esti-
mators

We consider two random vectors X and Y that live respectively in Rn and Rm. We assume
(for simplicity) that ‖X‖ = 1 almost surely. As explained above, given the observations Y ,
our goal is to estimate X with an estimator x̂(Y ). In order to evaluate the performance
of such an estimator, what criterion should we take?

The probably most natural way to characterize the performance of x̂ is by its mean-
squared error:

MSE(x̂) = E‖X − x̂(Y )‖2.

By Pythagorean theorem, we know that the optimal estimator which respect to this metric
is the posterior mean x̂(Y ) = E[X|Y ] which achieves the minimal mean square error:

MMSE(X|Y ) def= E‖X − E[X|Y ]‖2. (1.2.1)

However, the MSE is not always an appropriate criterion. Indeed in many cases it is
only possible to recover X up to its sign: think for instance of the Spiked Wigner Model
Y = XXT + Noise with X ∼ Unif(Sn−1). In such case, E[X|Y ] = 0: the best estimator
in term of MSE does not even depend on the observations Y !

For this kind of problems one should rather consider the correlation (also known as
cosine similarity) in absolute value between x̂ and the signal X:

sup
‖x̂‖=1

E
[
|(x̂(Y );X)|

]
or sup

‖x̂‖=1
E
[
(x̂(Y );X)2

]
, (1.2.2)

where (·; ·) denotes the Euclidean inner product and where the suprema are taken over all
estimators x̂ : Rm → Sn−1.

Let us introduce some notations. We will use the Gibbs Bracket 〈·〉 to write expectations
with respect to the posterior distribution of X given Y :

〈f(x)〉 = E[f(X)|Y ],
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for all measurable function f such that f(X) is integrable. In particular, we will be
interested by the n× n positive semi-definite (random) matrix:

M
def= 〈xxT〉 = E[XXT|Y ]. (1.2.3)

M is the Bayes-optimal estimator (in terms of mean square error) for estimating the matrix
XXT:

MMSE(XXT|Y ) = E‖XXT − E[XXT|Y ]‖2. (1.2.4)

An easy computation gives MMSE(XXT|Y ) = 1 − E[Tr(M 2)]. The matrix M is also
related to the second quantity of (1.2.2) through its largest eigenvalue λmax(M ):
Lemma 1.2.1

sup
‖x̂‖=1

E
[
(x̂(Y );X)2

]
= E

[
λmax(M )

]
and the optimal estimator for this metric is a unit eigenvector of M associated to its
largest eigenvalue λmax(M ).

Proof. Let x̂ be an estimator of X. By the Nishimori identity (Proposition 1.1.1), we have

E
[
(x̂(Y );X)2] = E

[
x̂(Y )TXXTx̂(Y )

]
= E

[
〈x̂(Y )TxxTx̂(Y )〉

]
= E

[
x̂(Y )TMx̂(Y )

]
,

the lemma follows.

Lemma 1.2.1 tells us that the top unit eigenvector v̂ of M maximizes E [(x̂(Y );X)2].
In the following, we will show that under a simple condition (that will hold for the models
we consider in this manuscript), the estimator v̂ is “asymptotically optimal” (in the limit
of large dimension) for the two metrics (1.2.2) and λmaxv̂v̂

T is optimal for the estimation
of XXT in terms of mean square error.

To introduce this condition and the asymptotic limit, we need to consider to a sequence
of inference problems. We assume that for all n ≥ 1 we have two random vectors X[n]
and Y[n] respectively in Sn−1 and Rmn , for some sequence (mn)n≥1. Our goal is again to
estimate X[n] from the observation of Y[n] when n is very large: we would like for instance
to compute the limits of (1.2.2) and (1.2.4) as n → ∞. Moreover, we would like to know
which estimators are “asymptotically optimal”, i.e. whose performance reach in the n→∞
limit the optimal one. In the following, in order to simplify the notations, we will write X
and Y instead of X[n] and Y[n].
Proposition 1.2.1

Let us denote by Gn the posterior distribution of X given Y . Notice that Gn is a
random probability distributions on Sn−1. Assume that there exists q ∈ [0, 1] such that
for x(1),x(2) i.i.d.∼ Gn we have ∣∣∣(x(1);x(2)

)∣∣∣ (d)−−−→
n→∞

q. (1.2.5)

Then Tr(M 2) (d)−−−→
n→∞

q2 and

λmax(M ) (d)−−−→
n→∞

q.
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Proof. Let us compute Tr(M2) = Tr
(
〈xxT〉〈xxT〉

)
= 〈(x(1);x(2))2〉 −−−→

n→∞
q2, by assumption.

If q = 0, then the result is obvious since λmax(M)2 ≤ Tr(M2).
Notice that Tr(M3) ≤ λmax(M)Tr(M2), so it suffices to show that

Tr(M3) =
〈
(x(1);x(2))(x(2);x(3))(x(3);x(1))

〉
−−−→
n→∞

q3,

for x(1),x(2),x(3) i.i.d.∼ Gn. This follows from Lemma 1.2.2 below.

Lemma 1.2.2

Under the assumptions of Proposition 1.2.1, we have for x(1),x(2),x(3) i.i.d.∼ Gn,

(x(1);x(2))(x(2);x(3))(x(3);x(1)) (d)−−−→
n→∞

q3.

Lemma 1.2.2 will be proved in Appendix A. From Proposition 1.2.1 we deduce the main
result of this section:
Proposition 1.2.2

Let v̂ be a leading unit eigenvector of M (which is defined by (1.2.3)). Under the
assumptions of Proposition 1.2.1, we have

|(v̂;X)| (d)−−−→
n→∞

√
q. (1.2.6)

Further lim
n→∞

MMSE(XXT|Y ) = 1− q2,

lim
n→∞

sup
‖x̂‖=1

E
[
|(x̂(Y );X)|

]
= √q, and lim

n→∞
sup
‖x̂‖=1

E
[
(x̂(Y );X)2

]
= q. (1.2.7)

Proof. Let us abbreviate λmax
def= λmax(M). By Lemma 1.2.1 and Proposition 1.2.1 we have

E
[
(v̂;X)2] = E[λmax] −−−→

n→∞
q. (1.2.8)

Hence if q = 0, the Proposition follows easily. Assume now that q > 0. Using Pythagorean
Theorem and the Nishimori identity (Proposition 1.1.1) we get

E‖X⊗4 − λ2
maxv̂

⊗4‖2 ≥ E‖X⊗4 − 〈x⊗4〉‖2

= 1 + E
[(
〈x⊗4〉; 〈x⊗4〉

)]
− 2E

[(
X⊗4; 〈x⊗4〉

)]
= 1− E

[〈
(x(1);x(2))4

〉]
−−−→
n→∞

1− q4,

where the last limit follows from the assumption (1.2.5). Since

E‖X⊗4 − λ2
maxv̂

⊗4‖2 = 1 + E
[
λ4

max
]
− 2E

[
λ2

max(X; v̂)4],
using Proposition 1.2.1, we deduce (recall that we assumed q > 0) that lim supn→∞ E

[
(v̂;X)4] ≤

q2. Together with (1.2.8) this gives that |(v̂;X)| −−−→
n→∞

√
q.

The next point is a consequence of Proposition 1.2.1 because MMSE(XXT|Y ) = 1−E[Tr(M2)].
To prove (1.2.7) simply notice that

E
[
|(v̂;X)|

]2 ≤ sup
‖x̂‖=1

E
[
|(x̂(Y );X)|

]2 ≤ sup
‖x̂‖=1

E
[
(x̂(Y );X)2] = E[λmax],

10



which proves (1.2.7) using (1.2.6) and Proposition 1.2.1.

From Proposition 1.2.2, we deduce that the estimator Â def= λmax(M ) v̂v̂T achieves
asymptotically the minimal mean square error for the estimation of XXT:

lim
n→∞

E‖XXT − Â‖2 = 1− q2.

Remark 1.2.1. For simplicity we assumed in this section that ‖X‖2 = 1 almost surely.
However we will need to work in the next chapters under a slightly weaker condition,
namely ‖X‖2 −−−→

n→∞
1. It is not difficult to modify the proofs of this section to see that

Lemma 1.2.1, Proposition 1.2.1, Lemma 1.2.2 and Proposition 1.2.2 still hold, provided
that ‖X‖2 −−−→

n→∞
1 for the Wasserstein distance of order 4 (i.e. ‖X‖2 −−−→

n→∞
1 in distribu-

tion and E‖X‖8 −−−→
n→∞

1).

1.3 Bayesian inference with Gaussian noise
We will now focus on the following model:

Y =
√
λX +Z , (1.3.1)

where the signal X is sampled according to some probability distribution PX over Rn,
and where the noise Z = (Z1, . . . , Zn) i.i.d.∼ N (0, 1) is independent from X. In Chapters 3
and 4, X will typically be a low-rank matrix. The parameter λ ≥ 0 plays the role of a
signal-to-noise ratio. We assume that PX admits a finite second moment: E‖X‖2 <∞.

Given the observation channel (1.3.1), the goal of the statistician is to estimateX given
the observations Y . Again, we assume to be in the “Bayes-optimal” setting, where the
statistician knows all the parameters of the inference model, that is the prior distribution
PX and the signal-to-noise ratio λ. We measure the performance of an estimator θ̂ (i.e. a
measurable function of the observations Y ) by its Mean Squared Error MSE(θ̂) = E‖X −
θ̂(Y )‖2. One of our main quantity of interest will be the Minimum Mean Squared Error

MMSE(λ) def= min
θ̂

MSE(θ̂) = E
[
‖X − E[X|Y ]‖2

]
,

where the minimum is taken over all measurable function θ̂ of the observations Y . Since
the optimal estimator (in term of Mean Squared Error) is the posterior mean of X given
Y , a natural object to study is the posterior distribution ofX. By Bayes rule, the posterior
distribution of X given Y is

dP (x |Y ) = 1
Z(λ,Y )e

Hλ,Y (x)dPX(x) , (1.3.2)

where
Hλ,Y (x) =

√
λxTY − λ

2‖x‖
2 =
√
λxTZ + λxTX − λ

2‖x‖
2 .

11



Definition 1.3.1
Hλ,Y is called the Hamiltonian1and the normalizing constant

Z(λ,Y ) =
∫
dPX(x)eHλ,Y (x)

is called the partition function.

Expectations with respect the posterior distribution (1.3.2) will be denoted by the Gibbs
brackets 〈·〉λ: 〈

f(x)
〉
λ

= E
[
f(X)|Y

]
= 1
Z(λ,Y )

∫
dPX(x)f(x)eHλ,Y (x) ,

for any measurable function f such that f(X) is integrable.
Definition 1.3.2

F (λ) = E logZ(λ,Y ) is called the free energy2. It is related to the mutual information
between X and Y by

F (λ) = λ

2E‖X‖
2 − I(X;Y ) . (1.3.3)

Proof. The mutual information I(X;Y ) is defined as the Kullback-Leibler divergence between
P(X,Y ), the joint distribution of (X,Y ) and PX⊗PY the product of the marginal distributions
of X and Y . P(X,Y ) is absolutely continuous with respect to PX ⊗ PY with Radon-Nikodym
derivative:

dP(X,Y )
dPX⊗PY

(X,Y ) =
exp

(
−1

2‖Y −
√
λX‖2

)
∫

exp
(
−1

2‖Y −
√
λx‖2

)
dPX(x)

.

Therefore

I(X;Y ) = E log
(
dP(X,Y )
dPX⊗PY

(X,Y )
)

= −E log
∫
dPX(x) exp

(√
λxTY −

√
λXTY − λ

2 ‖x‖
2 + λ

2 ‖X‖
2
)

= −F (λ) + λ

2E‖X‖
2 .

We state now two basic properties of the MMSE. A more detailed analysis can be
found in [97, 216].
Proposition 1.3.1

λ 7→ MMSE(λ) is non-increasing over R≥0. Moreover

• MMSE(0) = E‖X − E[X]‖2,

• MMSE(λ) −−−−→
λ→+∞

0.

Proposition 1.3.2
λ 7→ MMSE(λ) is continuous over R≥0.

1According to the physics convention, this should be minus the Hamiltonian, since a physical system
tries to minimize its energy. However, we chose here to remove it for simplicity.

2This is in fact minus the free energy, but we chose to remove the minus sign for simplicity.
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The proofs of Proposition 1.3.1 and 1.3.2 can respectively be found in Appendix B.1
and B.2.

We present now the very useful “I-MMSE” relation from [96]. This relation was pre-
viously known (under a different formulation) as “de Brujin identity” see [193, Equation
2.12].
Proposition 1.3.3

For all λ ≥ 0,

∂

∂λ
I(X;Y ) = 1

2MMSE(λ) and F ′(λ) = 1
2E〈x

TX〉λ = 1
2
(
E‖X‖2−MMSE(λ)

)
.

(1.3.4)
F thus is a convex, differentiable, non-decreasing, and 1

2E‖X‖
2-Lipschitz function over

R≥0. If PX is not a Dirac mass, then F is strictly convex.

Proposition 1.3.3 is proved in Appendix B.3. Proposition 1.3.3 reduces the computation of
the MMSE to the computation of the free energy. This will be particularly useful because
the free energy F is much easier to handle than the MMSE.

We end this section with the simplest model of the form (1.3.1), namely the additive
Gaussian scalar channel:

Y =
√
λX + Z , (1.3.5)

where Z ∼ N (0, 1) and X is sampled from a distribution P0 over R, independently of Z.
The corresponding free energy and the MMSE are respectively

ψP0(λ) = E log
∫
dP0(x)e

√
λY x−λx2/2 and MMSEP0(λ) = E

[(
X − E[X|Y ]

)2]
. (1.3.6)

The study of this simple inference channel will be very useful in the following, because
we will see that the inference problems that we are going to study enjoy asymptotically a
“decoupling principle” that reduces them to scalar channels like (1.3.5).

Let us compute the mutual information and the MMSE for particular choices of prior
distributions:

Example 1.3.1 (Gaussian prior: P0 = N (0, 1)). In that case E[X|Y ] is simply the orthog-
onal projection of X on Y :

E[X|Y ] = E[XY ]
E[Y 2] Y =

√
λ

1 + λ
Y.

One deduces MMSEP0(λ) = 1
1+λ . Using (1.3.4), we get I(X;Y ) = 1

2 log(1+λ) and ψP0(λ) =
1
2

(
λ− log(1 + λ)

)
.

Remark 1.3.1 (Worst-case prior). Let P0 be a probability distribution on R with unit sec-
ond moment EP0 [X2] = 1. By considering the estimator x̂ =

√
λ

1+λY , one obtain MMSEP0(λ) ≤
1

1+λ . We conclude:

sup
P0

MMSEP0(λ) = 1
1 + λ

and inf
P0
ψP0(λ) = 1

2(λ− log(1 + λ)),

where the supremum and infimum are both over the probability distributions that have unit
second moment. The standard normal distribution P0 = N (0, 1) achieves both extrema.
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Example 1.3.2 (Rademacher prior: P0 = 1
2δ+1+1

2δ−1). We compute ψP0(λ) = E log cosh(
√
λZ+

λ)− λ
2 and I(X;Y ) = λ− E log cosh(

√
λZ + λ). The I-MMSE relation gives

1
2MMSE(λ) = ∂

∂λ
I(X;Y ) = 1− E

[( 1
2
√
λ
Z + 1

)
tanh

(√
λZ + λ

)]
= 1− E tanh(

√
λZ + λ)− 1

2E tanh′(
√
λZ + λ)

= 1
2 − E tanh(

√
λZ + λ) + 1

2E tanh2(
√
λZ + λ)

where we used Gaussian integration by parts. Since by the Nishimori property E〈xX〉λ =
E〈x〉2λ, one has E tanh(

√
λZ + λ) = E tanh2(

√
λZ + λ) and therefore MMSE(λ) = 1 −

E tanh(
√
λZ + λ).

1.4 A warm-up: the “needle in a haystack”
problem

In order to illustrate the results seen in the previous sections, we study now a very simple
inference model. Let (e1, . . . , e2n) be the canonical basis of R2n . Let σ0 ∼ Unif({1, . . . , 2n})
and define X = eσ0 (i.e. X is chosen uniformly over the canonical basis of R2n). Suppose
here that we observe:

Y =
√
λnX +Z ,

where Z = (Z1, . . . , Z2n) i.i.d.∼ N (0, 1), independently from σ0. The goal here is to estimate
X or equivalently to find σ0. The posterior distribution reads:

P(σ0 = σ|Y ) = P(X = eσ|Y ) = 1
Zn(λ)2−n exp

(√
λneT

σY −
λn

2 ‖eσ‖
2
)

= 1
Zn(λ)2−n exp

(√
λnZσ + λn1(σ = σ0)− λn

2

)
,

where Zn(λ) is the partition function

Zn(λ) = 1
2n

2n∑
σ=1

exp
(√

λnZσ + λn1(σ = σ0)− λn

2

)
.

We will be interested in computing the free energy Fn(λ) = 1
n
E logZn(λ) in order to deduce

then the minimal mean squared error using the I-MMSE relation (1.3.4) presented in the
previous section.

Although its simplicity, this model is interesting for many reasons. First, it is one of
the simplest statistical model for which one observes a phase transition. Second it is the
“planted” analog of the random energy model (REM) introduced in statistical physics by
Derrida [57, 58], for which the free energy reads 1

n
E log∑σ

1
2n exp

(√
λnZσ

)
. Third, as we

will see in Section 6.1.1, this model correspond to the “large order limit” of a rank-one
tensor estimation model.

We start by computing the limiting free energy:
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Theorem 1.4.1

lim
n→∞

Fn(λ) =

0 if λ ≤ 2 log 2 ,
λ
2 − log(2) if λ ≥ 2 log 2 .

Proof. Using Jensen’s inequality

Fn(λ) ≤ 1
n
E logE [Zn(λ)|σ0, Zσ0 ] = 1

n
E log

(
1− 1

2n + e
√
λnZσ0+λn

2 −log(2)n
)

≤ 1
n
E log

(
1 + e

λn
2 −log(2)n

)
+

√
λ

n
−−−→
n→∞

{
0 if λ ≤ 2 log(2) ,
λ
2 − log(2) if λ ≥ 2 log(2) .

Fn is non-negative since Fn(0) = 0 and Fn is non-decreasing. We have therefore Fn(λ) −−−→
n→∞

0
for all λ ∈ [0, 2 log(2)]. We have also, by only considering the term σ = σ0:

Fn(λ) ≥ 1
n
E log

(
e
√
λnZσ0+λn

2

2n

)
= λ

2 − log(2) .

We obtain therefore that Fn(λ) −−−→
n→∞

λ
2 − log(2) for λ ≥ 2 log(2).

Using the I-MMSE relation (1.3.4), we deduce the limit of the minimum mean squared
error MMSEn(λ) = min

θ̂
E‖X − θ̂(Y )‖2:

MMSEn(λ) = E‖X‖2 − 2F ′n(λ) = 1− 2F ′n(λ) .

Fn is a convex function of λ, thus (see Proposition C.1) its derivative converges to the
derivative of its limit at each λ at which the limit is differentiable, i.e. for all λ ∈ (0,+∞)\
{2 log(2)}. We obtain therefore that for all λ > 0,

• if λ < 2 log(2), then MMSEn(λ) −−−→
n→∞

1: one can not recover X better than a
random guess.

• if λ > 2 log(2), then MMSEn(λ) −−−→
n→∞

0: one can recover X perfectly.

Of course, the result we obtain here is (almost) trivial since the maximum likelihood
estimator

σ̂(Y ) = arg max
1≤σ≤2n

Yσ

of σ0 is easy to analyze. Indeed, maxσ Zσ '
√

2 log(2)n with high probability so that
the maximum likelihood estimator recovers perfectly the signal for λ > 2 log(2) with high
probability.
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Chapter 2

A decoupling principle

We present in this section a general “decoupling principle” that will be particularly useful in
the study of planted models. We consider here the setting where X = (X1, . . . , Xn) i.i.d.∼ P0
for some probability distribution P0 over R with support S. Let Y ∈ Rm be another
random variable that accounts for noisy observation of X. The goal is again to recover the
planted vector X from the observations Y . We suppose that the distribution of X given
Y takes the following form

P(X ∈ A | Y ) = 1
Zn(Y )

∫
x∈A

dP⊗n0 (x)eHn(x,Y ), for all Borel set A ⊂ Rn, (2.0.1)

where Hn is a measurable function on Rn × Rm that can be equal to −∞ (in which case,
we use the convention exp(−∞) = 0) and Zn(Y ) =

∫
dP⊗n0 (x)eHn(x,Y ) is the appropriate

normalization. We assume that E| logZn(Y )| <∞ in order to define the free energy

Fn = 1
n
E logZn(Y ) = 1

n
E log

(∫
dP⊗n0 (x)eHn(x,Y )

)
.

In the following, we are going to drop the dependency in Y of Hn(x,Y ) and simply write
Hn(x).

We introduce now an important notation: the overlap between to vectors u,v ∈ Rn.
This is simply the normalized scalar product:

u · v = 1
n

n∑
i=1

uivi .

One should see x as a system of n spins (x1, . . . , xn) interacting through the (random)
Hamiltonian Hn. Our inference problem should be understood as the study of this spin
glass model. A central quantity of interest in spin glass theory is the overlaps x(1) · x(2)

between two replicas, i.e. the normalized scalar product between two independent samples
x(1) and x(2) from (2.0.1). Understanding this quantity is fundamental because it allows
to deduce the distance between two typical configurations of the system and thus encodes
the “geometry” of the “Gibbs measure” (2.0.1).

In our statistical inference setting we have x(1)·x(2) = x(1)·X in law, by the Nishimori
identity (Proposition 1.1.1). Thus the overlap x(1) · x(2) corresponds to the correlation
between a typical configuration and the planted configuration. Moreover it is linked to the
Minimum Mean Squared Error by

MMSE = 1
n
E
[
‖X − 〈x〉‖2

]
= EP0 [X2]− E 〈x ·X〉 ,
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where 〈·〉 denotes the expectation with respect to x which is sampled from the posterior
P(X = · |Y ) (defined by Equation 2.0.1), independently of everything else.

In this section we will see a general principle that states that under a small perturbation
of the Gibbs distribution (2.0.1), the overlap x(1) · x(2) between two replicas concentrates
around its mean. Such behavior is called “Replica-Symmetric” in statistical physics. It
remains to define what “a small perturbation of the Gibbs distribution” is. In spin glass
theory, such perturbations are usually obtained by adding small extra terms to the Hamil-
tonian. In our context of Bayesian inference a small perturbation will correspond to a
small amount of side-information given to the statistician. This extra information will lead
to a new posterior distribution. In the following, we will consider two different kind of
side-information and we show that the overlaps under the induced posterior concentrate
around their mean.

2.1 The pinning Lemma
We suppose here that the support S of P0 is finite. We make this assumption in order to
be able to work with the discrete entropy.

In this section, we give extra information to the statistician by revealing a (small)
fraction of the coordinates of X. Let us fix ε ∈ [0, 1], and suppose that we have access to
the additional observations

Y ′i =

Xi if Li = 1 ,
∗ if Li = 0 ,

for 1 ≤ i ≤ n,

where Li i.i.d.∼ Ber(ε) and ∗ is a value that does not belong to S. The posterior distribution
of X is now

P(X = x |Y ,Y ′) = 1
Zn,ε

 ∏
i|Li=1

1(xi = Y ′i )
 ∏

i|Li=0
P0(xi)

 eHn(x) , (2.1.1)

where Zn,ε is the appropriate normalization constant. For x ∈ Sn we will write

x̄ = (x̄1, . . . , x̄n) = (L1X1 + (1− L1)x1, . . . , LnXn + (1− Ln)xn) . (2.1.2)

x̄ is thus obtained by replacing the coordinates of x that are revealed by Y ′ by their
revealed values. The notation x̄ allows us to obtain a convenient expression for the free
energy of the perturbed model:

Fn,ε = 1
n
E logZn,ε = 1

n
E
[

log
∑
x∈Sn

P0(x) exp(Hn(x̄))
]
.

Proposition 2.1.1
For all n ≥ 1 and all ε ∈ [0, 1], we have

|Fn,ε − Fn| ≤ H(P0)ε .
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Proof. Let us compute

P
(
Y ′ |Y ,L

)
=
∫
1(xi = Y ′i for all i such that Li = 1)dP (x |Y )

= 1
Zn

∑
x∈Sn

1(xi = Y ′i for all i such that Li = 1)eHn(x)
n∏
i=1

P0(xi)

= Zn,ε
Zn

∏
i|Li=1

P0(Y ′i ) = Zn,ε
Zn

P
(
Y ′ |L

)
.

Therefore, nFn,ε−nFn = H(Y ′ |L)−H(Y ′ |Y ,L) and the proposition follows from the fact that
0 ≤ H(Y ′|Y ,L) ≤ H(Y ′|L) = nεH(P0).

From now we suppose ε0 ∈ (0, 1] to be fixed and consider ε ∈ [0, ε0]. The following
lemma comes from [148] and is sometimes known as the “pinning lemma”. It shows that the
extra information Y ′ forces the correlations between the spins under the posterior (2.1.1)
to vanish.
Lemma 2.1.1 (Lemma 3.1 from [148] )

For all ε0 ∈ [0, 1], we have

∫ ε0

0
dε

 1
n2

∑
1≤i,j≤n

I(Xi;Xj|Y ,Y ′)
 ≤ 2

n
H(P0) .

Let 〈·〉n,ε denote the expectation with respect to two independent samples x(1),x(2)

from the posterior (2.1.1). Lemma 2.1.1 implies that the overlap between these two replicas
concentrates:
Proposition 2.1.2

There exists a constant C > 0 that only depends on P0 such that for all ε0 ∈ [0, 1],

∫ ε0

0
dεE

〈(
1
n

n∑
i=1

x
(1)
i x

(2)
i −

〈 1
n

n∑
i=1

x
(1)
i x

(2)
i

〉
n,ε

)2〉
n,ε

≤ C

√
ε0
n
.

Proof.〈
(x(1) · x(2) − 〈x(1) · x(2)〉n,ε)2〉

n,ε
=
〈
(x(1) · x(2))2〉

n,ε
−
〈
x(1) · x(2)〉2

n,ε

= 1
n2

∑
1≤i,j≤n

〈
x

(1)
i x

(2)
i x

(1)
j x

(2)
j

〉
n,ε
−
〈
x

(1)
i x

(2)
i

〉
n,ε

〈
x

(1)
j x

(2)
j

〉
n,ε

= 1
n2

∑
1≤i,j≤n

〈xixj〉2n,ε − 〈xi〉2n,ε〈xj〉2n,ε.

Let now i, j ∈ {1, . . . , n}. The support of P0 is finite and thus included in [−K,K] for some
K > 0. This gives:

〈xixj〉2n,ε − 〈xi〉2n,ε〈xj〉2n,ε ≤ 2K2|〈xixj〉n,ε − 〈xi〉n,ε〈xj〉n,ε|

= 2K2
∣∣∣ ∑
xi,xj

xixjP(Xi = xi, Xj = xj |Y ,Y ′)− xixjP(Xi = xi|Y ,Y ′)P(Xj = xj |Y ,Y ′)
∣∣∣

≤ 4K2DTV
(
P(Xi = ·, Xj = ·|Y ,Y ′);P(Xi = ·|Y ,Y ′)⊗ P(Xj = ·|Y ,Y ′)

)
≤ 4K2

√
DKL

(
P(Xi = ·, Xj = ·|Y ,Y ′);P(Xi = ·|Y ,Y ′)⊗ P(Xj = ·|Y ,Y ′)

)
18



by Pinsker’s inequality. Since

I(Xi;Xj |Y ,Y ′) = E
[
DKL

(
P(Xi = ·, Xj = ·|Y ,Y ′);P(Xi = ·|Y ,Y ′)⊗ P(Xj = ·|Y ,Y ′)

)]
,

we get using Lemma 2.1.1:∫ ε0

0
dεE

〈(
x(1) · x(2) − 〈x(1) · x(2)〉n,ε

)2〉
n,ε
≤ 4K2

√√√√ε0 ∫ ε0

0
dε
( 1
n2

∑
1≤i,j≤n

I(Xi;Xj |Y ,Y ′)
)

≤ 4K2

√
2ε0H(P0)

n
.

2.2 Noisy side Gaussian channel
We consider in this section of a different kind of side-information: an observation of the
signal X perturbed by some Gaussian noise. It was proved in [125] for CDMA systems
that such perturbations forces the overlaps to concentrate around their means. The prin-
ciple here is in fact more general and holds for any observation system, provided some
concentration property of the free energy.

We suppose here that the prior P0 has a bounded support S ⊂ [−K,K], for some K > 0.
Let a > 0 and (sn)n ∈ (0, 1]N. Let (Zi)1≤i≤n

i.i.d.∼ N (0, 1) independently of everything else.
The extra side-information takes now the form

Y ′i = a
√
snXi + Zi, for 1 ≤ i ≤ n. (2.2.1)

The posterior distribution ofX given Y ,Y ′ is now P (x |Y ,Y ′) = 1
Z(pert)
n,a

P⊗n0 (x) exp
(
H(pert)
n,a (x)

)
,

where H(pert)
n,a (x) = Hn(x) + hn,a(x) and

hn,a(x) =
n∑
i=1

a
√
snZixi + a2snxiXi −

1
2a

2snx
2
i .

Z(pert)
n,a is the appropriate normalization. Let us define

φ : a 7→ 1
nsn

log
(∫

dP⊗n0 (x)eH
(pert)
n,a (x)

)
.

We fix now A ≥ 2. Define also vn(sn) = sup1/2≤a≤A+1 E|φ(a) − Eφ(a)|. The following
result shows that, in the perturbed system (under some conditions on vn and sn) the
overlap between two replicas concentrates asymptotically around its expected value.
Proposition 2.2.1 (Overlap concentration)

Assume that vn(sn) −−−→
n→∞

0. Then there exists a constant C > 0 that only depends
on K such that for all A ≥ 2,

1
A− 1

∫ A

1
E
〈(
x(1) · x(2) − E〈x(1) · x(2)〉n,a

)2
〉
n,a
da ≤ C

( 1
√
nsn

+
√
vn(sn)

)
,

where 〈·〉n,a denotes the distribution of X given (Y ,Y ′). x(1) and x(2) are two inde-
pendent samples from 〈·〉n,a, independently of everything else.
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Proposition 2.2.1 is the analog of [170, Theorem 3.2] (the Ghirlanda-Guerra identities,
see [90]) and is proved analogously is the remaining of the section. Denote for x ∈ Sn

U(x) = 1
nsn

∂

∂a
hn,a(x) = 1

n

n∑
i=1

1
√
sn
Zixi + 2axiXi − ax2

i .

Lemma 2.2.1
Let x be a sample from 〈·〉n,a, independently of everything else. Under the conditions

of Proposition 2.2.1, we have for all A ≥ 2

1
A− 1

∫ A

1
E
〈∣∣∣U(x)− E〈U(x)〉n,a

∣∣∣〉
n,a
da ≤ C

( 1
√
nsn

+
√
vn(sn)

)
,

for some constant C > 0 that only depends on K.

Before proving Lemma 2.2.1, let us show how it implies Proposition 2.2.1.

Proof of Proposition 2.2.1. By the bounded support assumption on P0, the overlap between
two replicas is bounded by K2, thus∣∣∣∣E〈U(x(1))x(1) · x(2)

〉
n,a
− E

〈
x(1) · x(2)

〉
n,a
E
〈
U(x(1))

〉
n,a

∣∣∣∣ ≤ K2E
〈∣∣U(x)− E〈U(x)〉n,a

∣∣〉
n,a

.

(2.2.2)
Let us compute the left-hand side of (2.2.2). By Gaussian integration by parts and using the
Nishimori identity (Proposition 1.1.1) we get E

〈
U(x(1))

〉
n,a

= 2aE
〈
x(1) · x(2)〉

n,a
. Therefore

E
〈
x(1) · x(2)

〉
n,a

E
〈
U(x(1))

〉
n,a

= 2a
(
E
〈
x(1) · x(2)

〉
n,a

)2
.

Using the same tools, we compute for x(1),x(2),x(3),x(4) i.i.d.∼ 〈·〉n,a, independently of everything
else:

E
〈
U(x(1))(x(1) · x(2))

〉
n,a

= 2aE
〈
(x(1) ·X)(x(1) · x(2))

〉
n,a

+ 1
n
√
sn

n∑
i=1

EZi
〈
x

(1)
i (x(1) · x(2))

〉
n,a
− a

n

n∑
i=1

E
〈
(x(1)
i )2(x(1) · x(2))

〉
n,a

= 2aE
〈
(x(1) ·X)(x(1) · x(2))

〉
n,a

+ aE
〈
(x(1) · x(2))2〉

n,a
− aE

〈
(x(1) · x(3) + x(1) · x(4))(x(1) · x(2))

〉
n,a

= 2aE
〈
(x(1) · x(2))2〉

n,a
.

Thus, by (2.2.2) we have for all a ∈ [1, A]

E
〈(
x(1) · x(2) − E

〈
x(1) · x(2)〉

n,a

)2〉
n,a
≤ K2

2 E
〈∣∣U(x)− E 〈U(x)〉n,a

∣∣〉
n,a

,

and we conclude by integrating with respect to a over [1, A] and using Lemma 2.2.1.

Proof of Lemma 2.2.1. φ is twice differentiable on (0,+∞), and for a > 0

φ′(a) = 〈U(x)〉n,a , (2.2.3)

φ′′(a) = nsn
(
〈U(x)2〉n,a − 〈U(x)〉2n,a

)
+ 1
n

n∑
i=1

〈
2xiXi − x2

i

〉
n,a

. (2.2.4)
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Thus
〈
(U(x)− 〈U(x)〉n,a)2〉

n,a
≤ 1

nsn
(φ′′(a) + 2K2) and

∫ A

1
E
〈
(U(x)− 〈U(x)〉n,a)2〉

n,a
da ≤ 1

nsn

(
Eφ′(A)− Eφ′(1) + 2K2(A− 1)

)
≤ CA

nsn
,

for some constant C > 0 (that only depend on K), because Eφ′(a) = 2aE〈x ·X〉n,a. It remains
to show that

∫ A
1 E

∣∣〈U(x)〉n,a − E〈U(x)〉n,a
∣∣da ≤ CA

√
vn(sn) for some constant C > 0 that only

depends on K.

We will use the following lemma on convex functions (from [170], Lemma 3.2).
Lemma 2.2.2

If f and g are two differentiable convex functions then, for any b > 0

|f ′(a)− g′(a)| ≤ g′(a+ b)− g′(a− b) + d

b
,

where d = |f(a+ b)− g(a+ b)|+ |f(a− b)− g(a− b)|+ |f(a)− g(a)|.

We apply this lemma to λ 7→ φ(λ) + 3
2K

2λ2 and λ 7→ Eφ(λ) + 3
2K

2λ2 that are convex because
of (2.2.4) and the bounded support assumption on P0. Therefore, for all a ≥ 1 and b ∈ (0, 1/2)
we have

E|φ′(a)− Eφ′(a)| ≤ Eφ′(a+ b)− Eφ′(a− b) + 6K2b+ 3vn(sn)
b

. (2.2.5)

Notice that for all a > 0, |Eφ′(a)| = |2aE〈x ·X〉n,a| ≤ 2aK2. Therefore, by the mean value
theorem∫ A

1

(
Eφ′(a+ b)− Eφ′(a− b)

)
da =

(
Eφ(b+A)− Eφ(b+ 1)

)
−
(
Eφ(A− b)− Eφ(1− b)

)
=
(
Eφ(b+A)− Eφ(A− b)

)
+
(
Eφ(1− b)− Eφ(1 + b)

)
≤ 4K2b(A+ 2) .

Combining this with equation (2.2.5), we obtain

∀b ∈ (0, 1/2),
∫ A

1
E|φ′(a)− Eφ′(a)|da ≤ CA

(
b+ vn(sn)

b

)
. (2.2.6)

for some constant C > 0 depending only on K. The minimum of the right-hand side is achieved
for b =

√
vn(sn) < 1/2 for n large enough. Then, (2.2.6) gives∫ A

1
E
∣∣〈U(x)〉n,a − E〈U(x)〉n,a

∣∣da =
∫ A

1
E|φ′(a)− Eφ′(a)|da ≤ 2CA

√
vn(sn).
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Chapter 3

Low-rank symmetric matrix
estimation

3.1 Introduction to the spiked matrix models
Estimating a low-rank object (matrix or tensor) from a noisy observation is a fundamental
problem in statistical inference with applications in machine learning, signal processing or
information theory. We focus in this chapter (and in Chapter 4) on the so-called “spiked”
models where we observe a signal spike perturbed with some additive noise. We should
consider here two popular models.

The first one is often denoted as the spiked Wigner model. One observes

Y =
√
λ

n
XXT +Z (3.1.1)

where the “spike” X = (X1, . . . , Xn) i.i.d.∼ P0 is the signal vector and Z is symmetric matrix
that account for noise with standard Gaussian entries: (Zi,j)i≤j i.i.d.∼ N (0, 1). λ ≥ 0 is a
signal-to-noise ratio.

The second model that we will consider in Chapter 4 is the non-symmetric version
of (3.1.1), sometimes called spiked Wishart1or spiked covariance model:

Y =
√
λ

n
UV T +Z (3.1.2)

where U = (U1, . . . , Un) i.i.d.∼ PU , V = (V1, . . . , Vm) i.i.d.∼ PV are independent. Z is a noise
matrix with standard normal entries: Zi,j i.i.d.∼ N (0, 1). λ > 0 captures again the strength of
the signal. We are here interested in the regime where n,m→ +∞, while m/n→ α > 0.
In both models (3.1.1)-(3.1.2) the goal of the statistician is to estimate the low-rank signals
(XXT or UV T) from the observation of Y . This task is often called Principal Component
Analysis (PCA) in the literature.

These spiked models have received a lot of attention since their introduction by [114].
From a statistical point of view, there are two main problems linked to the spiked models
(3.1.1)-(3.1.2).

1This terminology usually refers to the case where V is a standard Gaussian vector. We consider here a
slightly more general case by allowing the entries of V to be taken i.i.d. from any probability distribution.
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• The recovery problem: how can we recover the planted signal X / U ,V ? Is it
possible? Can we do it efficiently?

• The detection problem: is it possible to distinguish between the pure noise case
(λ = 0) and the case where a spike is present (λ > 0)? Is there any efficient test to
do this?

We will focus here on the recovery problem. We let the reader refer to [30, 166, 65, 16,
175, 3, 79] and the references therein for a detailed analysis of the detection problem.

The spiked models (3.1.1)-(3.1.2) has been extensively studied in random matrix theory.
The seminal work of [13] (for the complex spiked Wishart model, and [14] for the real
spiked Wishart) established the existence of a phase transition: there exists a critical value
of the signal-to-noise ratio λ above which the largest singular value of Y /

√
n escapes from

the Marchenko-Pastur bulk. The same phenomenon holds for the spiked Wigner model, as
observed by Edwards and Jones [77] using the heuristic replica method and then rigorously
proved [173, 84, 44]. It turns out that for both models the eigenvector (respectively singular
vector) corresponding to the largest eigenvalue (respectively singular value) also undergo
a phase transition at the same threshold, see [109, 172, 160, 28, 29].

For the spiked Wigner model (3.1.1), the main result of interest for us is the following.
For any probability distribution P0 such that EP0 [X2] = 1, we have

• if λ ≤ 1, the top eigenvalue of Y /
√
n converges a.s. to 2 as n → ∞, and the top

eigenvector x̂ (with norm ‖x̂‖2 = n) has asymptotically trivial correlation with X:
1
n
〈x̂,X〉 → 0 a.s.

• if λ > 1, the top eigenvalue of Y /
√
n converges a.s. to

√
λ + 1/

√
λ > 2 and the top

eigenvector x̂ (with norm ‖x̂‖2 = n) has asymptotically nontrivial correlation with
X:

(
1
n
〈x̂,X〉

)2
→ 1− 1/λ a.s.

An analog statement for the spiked Wishart model is proved in [29]. These results give us a
precise understanding of the performance of the top eigenvectors (or top singular vectors)
for recovering the low-rank signals.

However these naive spectral estimators do not take into account any prior information
on the signal. Thus many algorithms have been proposed to exploit additional properties
of the signal, such as sparsity [116, 55, 223, 6, 61] or positivity [151].

Another line of works study Approximate Message Passing (AMP) algorithms for the
spiked models above, see [177, 60, 134, 152]. Motivated by deep insights from statistical
physics, these algorithms are believed (for the models (3.1.1)-(3.1.2), when λ and the
priors P0, PU , PV are known by the statistician) to be optimal among all polynomial-time
algorithms. A great property of these algorithms is that their performance can be precisely
tracked in the high-dimensional limit by a simple recursion called “state evolution”, see [26,
112, 25]. For a detailed analysis of message-passing algorithms for the models (3.1.1)-
(3.1.2), see [135].

It turns out that fixed points of these AMP algorithms are stationary points of the so-
called “TAP2 free energy” from statistical physics. For the model (3.1.1), the minimization
of the TAP free energy was studied in [83], who showed that the minimizer was equal to
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the posterior mean of X, provided that λ was large enough.

In the following we will not consider any particular estimator but rather try to com-
pute the best performance achievable by any estimator. We will suppose to be in the
so-called “Bayes-optimal” setting, where the statistician knows the prior P0 (or PU , PV )
and the signal-to-noise ratio λ. In that situation, we will study the posterior distribu-
tion of the signal given the observations. As we should see in the sequel, both estima-
tion problems (3.1.1)-(3.1.2) can be seen as mean-field spin glass models similar to the
Sherrington-Kirkpatrick model, studied in the ground-breaking book of Mézard, Parisi
and Virasoro [143]. Therefore, the methods that we will use here come from the mathe-
matical study of spin glasses, namely from the works of Talagrand [201, 202], Guerra [95]
and Panchenko [170].

In order to further motivate the study of the models (3.1.1)-(3.1.2) let us mention some
interesting special cases, depending on the choice of the priors P0 / PU , PV .

• Sparse PCA. Consider the spiked Wishart model with PU = Ber(ε) and PV =
N (0, 1). In that case, one sees that conditionally on U the columns of Y are i.i.d.
sampled from N

(
0, Idn+λ/nUUT

)
, which is a sparse spiked covariance model. The

spiked Wigner model with P0 = Ber(ε) has also been used to study sparse PCA.

• Submatrix localization. Take P0 = Ber(p) in the spiked Wigner model. The goal
of submatrix localization is then to extract a submatrix of Y of size pn × pn with
larger mean.

• Community Detection in the Stochastic Block Model (SBM). As we should see in
Chapter 5 recovering two communities of size pn and (1− p)n in a dense SBM of n
vertices is (in some sense) “equivalent” to the spiked Wigner model with prior

P0 = p δ√ 1−p
p

+ (1− p) δ−√ p
1−p

.

• Z/2 synchronization. This corresponds to the spiked Wigner model with Rademacher
prior P0 = 1

2δ−1 + 1
2δ+1.

• High-dimensional Gaussian mixture clustering. Consider the multidimen-
sional version of the spiked Wishart model where U ∈ Rn×k and V ∈ Rm×k. If
one takes PV (the distribution of the rows of V ) to be supported by the canonical
basis of Rk, the model is equivalent to the clustering of m points (the columns of Y )
in n dimensions from a Gaussian mixture model. The centers of the clusters are here
the columns of U .

2named after Thouless, Anderson and Palmer [203] who proposed a variational formula (which was
recently rigorously proved by [50]) for the limiting free energy of a mean-field model of spin glasses, the
Sherrington-Kirkpatrick model [191].

24



3.2 Information-theoretic limits in the spiked
Wigner model

We consider in this chapter the spiked Wigner model (3.1.1). Let P0 be a probability dis-
tribution on R that admits a finite second moment and consider the following observations:

Yi,j =
√
λ

n
XiXj + Zi,j, for 1 ≤ i < j ≤ n , (3.2.1)

where Xi
i.i.d.∼ P0 and Zi,j

i.i.d.∼ N (0, 1) are independent random variables. Note that we
suppose here to only observe the coefficients of

√
λ/nXXT+Z that are above the diagonal.

The case where all the coefficients are observed can be directly deduced from this case. In
the following, E will denote the expectation with respect to theX and Z random variables.

Our main quantity of interest is the Minimum Mean Squared Error (MMSE) defined
as:

MMSEn(λ) = min
θ̂

2
n(n− 1)

∑
1≤i<j≤n

E
[(
XiXj − θ̂i,j(Y )

)2
]

= 2
n(n− 1)

∑
1≤i<j≤n

E
[
(XiXj − E [XiXj|Y ])2

]
,

where the minimum is taken over all estimators θ̂ (i.e. measurable functions of the obser-
vations Y ). We have the trivial upper-bound

MMSEn(λ) ≤ DMSE def= EP0 [X2]2 − EP0 [X]4 ,

obtained by considering the “dummy” estimator θ̂i,j = EP0 [X]2. One can also compute
the Mean Squared Error achieved by naive PCA. Let x̂ be the leading eigenvector of Y
with norm ‖x̂‖2 = n. If we take an estimator proportional to x̂ix̂j, i.e. θ̂i,j = δx̂ix̂j for
δ ≥ 0, we can compute explicitly (using the results presented in Section 3.1) the resulting
MSE as a function of δ and minimize it. The optimal value for δ depends on λ, more
precisely if λ < EP0 [X2]−2, then δ = 0 while for λ ≥ EP0 [X2]−2, the optimal of value for δ
is EP0 [X2]− λ−1EP0 [X2]−1, resulting in the following MSE for naive PCA:

MSEPCA
n (λ) −−−→

n→∞

{
EP0 [X2]2 if λ ≤ EP0 [X2]−2,
λ−1 (2− λ−1EP0 [X2]−2) otherwise. (3.2.2)

We will see in Section 3.3 that in the particular case of P0 = N (0, 1), PCA is optimal:
lim
n→∞

MSEPCA
n = lim

n→∞
MMSEn.

Posterior distribution and free energy. In order to formulate our inference problem
as a statistical physics problem we introduce the random Hamiltonian

Hn(x) =
∑
i<j

√
λ

n
xixjZi,j + λ

n
XiXjxixj −

λ

2nx
2
ix

2
j . (3.2.3)

The posterior distribution of X given Y takes then the form

dP (x |Y ) = 1
Zn(λ)dP

⊗n
0 (x) exp

(∑
i<j

xixj

√
λ

n
Yi,j −

λ

2nx
2
ix

2
j

)
= 1
Zn(λ)dP

⊗n
0 (x)eHn(x) ,

(3.2.4)
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where Zn(λ) is the appropriate normalization. The free energy is defined as

Fn(λ) = 1
n
E
[

log
∫
dP⊗n0 (x) eHn(x)

]
= 1
n
E logZn(λ).

We will first compute the limit of the free energy Fn and then deduce the limit of MMSEn

by an I-MMSE (see Proposition 1.3.3) argument. We express the limit of Fn using the
following function

F : (λ, q) 7→ ψP0(λq)− λ

4 q
2 = E log

(∫
dP0(x) exp

(√
λqZx+ λqxX − λ

2 qx
2
))
− λ

4 q
2,

(3.2.5)
where Z ∼ N (0, 1) and X ∼ P0 are independent random variables. Recall that ψP0 denotes
the free energy (1.3.6) of the scalar channel (1.3.5). The main result of this section is:

Theorem 3.2.1 (Replica-Symmetric formula for the spiked Wigner model)
For all λ > 0,

Fn(λ) −−−→
n→∞

sup
q≥0
F(λ, q) . (3.2.6)

Theorem 3.2.1 is proved in Section 3.4. In the case of Rademacher prior (P0 = 1
2δ−1 +

1
2δ+1), Theorem 3.2.1 was proved in [59]. The expression (3.2.6) for general priors was
conjectured by [133]. For discrete priors P0 for which the map F(λ, ·) has not more than
3 stationary points, the statement of Theorem 3.2.1 was obtained in [18]. The full version
of Theorem 3.2.1 as well as its multidimensional generalization (where X ∈ Rn×k, k fixed)
was proved in [132].

Theorem 3.2.1 allows us to compute the limit of the mutual information between the
signal X and the observations Y . Indeed, by using (1.3.3):
Corollary 3.2.1

lim
n→+∞

1
n
I(X;Y ) = λEP0(X2)2

4 − sup
q≥0
F(λ, q) .

We will now use Theorem 3.2.1 to obtain the limit of the Minimum Mean Squared
Error MMSEn by the I-MMSE relation of Proposition 1.3.3. Let us define

D = {λ > 0 | F(λ, ·) has a unique maximizer q∗(λ) } .

We start by computing the derivative of lim
n→∞

Fn(λ) with respect to λ.

Proposition 3.2.1
D is equal to R>0 minus some countable set and is precisely the set of λ > 0 at which

the function f : λ 7→ supq≥0F(λ, q) is differentiable. Moreover, for all λ ∈ D

f ′(λ) = q∗(λ)2

4 .

Proof. Let λ > 0 and compute

∂

∂q
F(λ, q) = λψ′P0(λq)− λq

2 ≤
λ

2
(
EP0 [X2]− q

)
,

26



because ψP0 is 1
2EP0 [X2]-Lipschitz by Proposition 1.3.3. Consequently, the maximum of F(λ, ·) is

achieved on [0,EP0 [X2]]. If q∗ maximizes F(λ, ·), the optimality condition gives q∗ = 2ψ′P0
(λq∗).

Consequently
∂

∂λ
F(λ, q∗) = q∗ψ′P0(λq∗)− (q∗)2

4 = (q∗)2

4 .

Now, Proposition D.2 in Appendix D gives that the λ > 0 at which f is differentiable is exactly
the λ > 0 for which {

∂

∂λ
F(λ, q∗) = 1

4(q∗)2
∣∣∣∣ q∗ maximizer of F(λ, ·)

}
is a singleton. These λ are precisely the elements of D. Moreover, Proposition D.2 gives also that
for all λ ∈ D, f ′(λ) = q∗(λ)2

4 , which concludes the proof.

We deduce then the limit of MMSEn:
Corollary 3.2.2

For all λ ∈ D,
MMSEn(λ) −−−→

n→∞
(EP0X

2)2 − q∗(λ)2 . (3.2.7)

Proof. By Proposition 1.3.3, (Fn)n≥1 is a sequence of differentiable convex functions that con-
verges pointwise on R>0 to f . By Proposition C.1, F ′n(λ) −−−→

n→∞
f ′(λ) for every λ > 0 at which

f is differentiable, that is for all λ ∈ D. We conclude using the I-MMSE relation (1.3.4):

n− 1
4n

(
EP0 [X2]2 −MMSEn(λ)

)
= F ′n(λ) −−−→

n→∞
f ′(λ) = q∗(λ)2

4 . (3.2.8)

Let us now define the information-theoretic threshold

λc = inf
{
λ ∈ D

∣∣∣∣ q∗(λ) > (EP0X)2
}
. (3.2.9)

If the above set is empty, we define λc = 0. By Corollary 3.2.2 we obtain that

• if λ > λc, then lim
n→∞

MMSEn < DMSE: one can estimate the signal better than a
random guess.

• if λ < λc, then lim
n→∞

MMSEn = DMSE: one can not estimate the signal better than
a random guess.

Thus, there is no hope for reconstructing the signal below λc. Interestingly, one can not
even detect if the measurements Y contains some signal below λc. If one denotes by Qλ

the distribution of Y given by (3.2.1), the work [3] shows that for λ < λc one can not
asymptotically distinguish between Qλ and Q0: both distributions are contiguous.

3.3 Information-theoretic and algorithmic phase
transitions

3.3.1 Approximate Message Passing (AMP) algorithms
Approximate Message Passing (AMP) algorithms, introduced in [71] for compressed sens-
ing, have then be used for various other tasks. Rigorous properties of AMP algorithms
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have been established in [26, 112, 25, 31], following the seminal work of Bolthausen [35]. In
the context of low-rank matrix estimation an AMP algorithm has been proposed by [177]
for the rank-one case and then by [139] for finite-rank matrix estimation. For detailed
review and developments about matrix factorization with message-passing algorithms,
see [135]. We will only give a brief description of AMP here and we let the reader re-
fer to [177, 60, 133, 152]. In this section, we follow [152] who provides the most advanced
results for our problem (3.1.1). For simplicity, we assume here that P0 has a unit second
moment:

∫
x2dP0(x) = 1.

Starting from an initialization x0, the AMP algorithm produces vectors x1, . . . ,xt ac-
cording to the following recursion:

xt+1 = (Y /
√
n)ft(xt)− btft−1(xt−1), (3.3.1)

where bt = 1
n

∑n
i=1 f

′
t(xti) and where the functions ft act componentwise on vectors. After

t iterations of (3.3.1), the AMP estimate of X is defined by x̂t = ft(xt).
A natural choice for the initialization is to take x0 proportional to ϕ1, the leading unit

eigenvector of Y :
x0 =

√
n(λ2 − 1)ϕ1.

We need now to specify the “denoisers” (ft)t≥1. Let us consider the following one-dimensional
recursion: q0 = (1− λ−1)+,

qt+1 = 2ψ′P0(λqt) = 1−MMSEP0(λqt).
(3.3.2)

Recall the additive Gaussian scalar channel from Section 1.3: Y0 = √γX0 +Z0. Let us
define gP0(y, γ) = E[X0|

√
γX0 + Z0 = y]. We define then

ft(x) = gP0

(
x/
√
qt, λqt

)
. (3.3.3)

The next theorem is a consequence of the more general results of [152], specified to our
setting.

Theorem 3.3.1
For all t ≥ 0,

lim
n→∞

|〈x̂t,X〉|
‖x̂t‖‖X‖

= lim
n→∞

‖x̂t‖ = √qt.

Consequently,

MSEAMP
t

def= lim
n→∞

1
n2E‖XX

T − x̂t(x̂t)T‖2 = 1− q2
t . (3.3.4)

By Proposition 1.3.3, the function ψ′P0 is increasing and bounded. The sequence (qt)t≥0
converges therefore to a point q∞ ≥ 0 that verifies q∞ = 2ψ′P0(λq∞). q∞ is therefore a criti-
cal point of F(λ, ·). In the case where q∞ is the global minimizer of F(λ, ·), i.e. q∞ = q∗(λ),
we see using Corollary 3.2.2 that limt→∞MSEAMP

t = MMSE(λ): AMP achieves the Bayes-
optimal accuracy.

In the case where q∞ 6= q∗(λ), AMP does not reach the information-theoretically opti-
mal performance. However, AMP is conjectured (see for instance [220, 7]) to be optimal
among polynomial-time algorithms, i.e. limt→∞MSEAMP

t is conjectured to be the best Mean
Squared Error achievable by any polynomial-time algorithm.
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3.3.2 Examples of phase transitions
We give here some illustrations and interpretations of the results presented in the previ-
ous sections. Let us first study the case where P0 = N (0, 1) where the formulas (3.2.6)
and (3.2.7) can be evaluated explicitly. Indeed, we saw in Example 1.3.1 in Section 1.3
that ψN (0,1)(q) = 1

2

(
q − log(1 + q)

)
. We can then compute q∗(λ) = (1− λ−1)+ which gives

lim
n→∞

MMSEn(λ) =

0 if λ ≤ 1 ,
1
λ

(
2− 1

λ

)
if λ ≥ 1 .

Comparing the limit above with the performance of (naive) PCA given by (3.2.2) we see
that in the case P0 = N (0, 1), PCA is information-theoretically optimal.

However, as we see on (3.2.2), the MSE of PCA only depends on the second moment
of P0: naive PCA is not able to exploit additional properties of the signal. We compare
on Figure 3.1 the asymptotic performance of the naive PCA (3.2.2) and the Approximate
Message Passing (AMP) algorithm (3.3.4) to the asymptotic Minimum Mean Squared Error
for the prior

P0 = p δ√ 1−p
p

+ (1− p) δ−√ p
1−p

, (3.3.5)

where p ∈ (0, 1). This is a two-points distribution with zero mean and unit variance. It
is of particular interest because it is related with the community detection problem in the
(dense) Stochastic Block Model as we will see in Section 5.9. We see on Figure 3.1 that

0.25 λc 1.0 1.5 λ
0.0

0.2

0.4

0.6

0.8

1.0

M
S

E MMSE

MSE AMP

MSE PCA

Figure 3.1: Mean Squared Errors for the Spiked Wigner model with prior P0 given by (3.3.5)
with p = 0.05.

the MMSE is equal to 1 for λ below the information-theoretic threshold λc ' 0.6. One
can not asymptotically recover the signal better than a random guess in this region: we
call this region the “impossible” phase. For λ > 1 we see that spectral methods and AMP
perform better than random guessing. This region is therefore called the “easy” phase,
because non-trivial estimation is here possible using efficient algorithms. Notice also that
AMP achieves the Minimum Mean Squared Error for λ > 1, as proved in [152]. The region
λc < λ < 1 is more intriguing. It is still possible to build a non-trivial estimator (for
instance by computing the posterior mean), but our two polynomial-time algorithms fail.
This region is thus denoted as the “hard” phase because it is conjectured that polynomial-
time algorithms can only provide trivial estimates (based on the belief that AMP is here
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optimal among polynomial-time algorithms).

Quite surprisingly, one can guess in which phase (easy-hard-impossible) we are, simply
by plotting the “potential” q 7→ −F(λ, q). This is done in Figure 3.2. By Corollary 3.2.2
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q

−0.06
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0.00 −F(λ, q)

(a) “Easy” phase (λ = 1.01)
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(b) “Hard” phase (λ = 0.625)
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0.0175 −F(λ, q)

(c) “Impossible” phase (λ = 0.5)

Figure 3.2: Plots of q 7→ −F(λ, q) for different values of λ and P0 given by (3.3.5) with
p = 0.05.

we know that the limit of the MMSE is equal to 1 − q∗(λ)2 where q∗(λ) is the minimizer
of −F(λ, ·). Thus when −F(λ, ·) is minimal at q = 0, we are in the impossible phase.

When q∗(λ) > 0, the shape of −F(λ, ·) indicates whether we are in the easy or hard
phase. If the q = 0 is a local maximum, then we are in the easy phase, whereas when it
is a local minimum we are in a hard phase. The shape of −F(λ, ·) could be interpreted
as a simplified “free energy landscape”: the hard phase appears when the “informative”
minimum q∗(λ) > 0 is separated from the non-informative critical point q = 0 by a “free
energy barrier” as in Figure 3.2 (b).

Figure 3.3: Phase diagram for the spiked Wigner model with prior (3.3.5).

The phase diagram from Figure 3.3 displays the three phases on the (p, λ)-plane. One
observes that the hard phase only appears when the prior is sufficiently asymmetric, i.e.
for p < p∗ = 1

2 −
1

2
√

3 , as computed in [18, 40]. For a more detailed analysis of the phase
transitions in the spiked Wigner model, see [135] where many other priors are considered.
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3.4 Proof of the Replica-Symmetric formula
(Theorem 3.2.1)

We prove Theorem 3.2.1 in this section, following [132]. We have to mention that other
proofs of Theorem 3.2.1 have appeared since then: see [20, 80, 158].

Because of an approximation argument presented in Section 3.4.7 it suffices to prove
Theorem 3.2.1 for priors P0 with finite (and thus bounded) support S ⊂ [−K,K], for some
K > 0. From now, we assume to be in that case.

3.4.1 The lower bound: Guerra’s interpolation method
The following result comes from [129]. It adapts arguments from the study of the gauge
symmetric p-spin glass model of [124] to the inference model (3.2.1). It is based on Guerra’s
interpolation technique for the Sherrington-Kirkpatrick model, see [95]. We reproduce the
proof for completeness.
Proposition 3.4.1

lim inf
n→∞

Fn(λ) ≥ sup
q≥0
F(λ, q) . (3.4.1)

Proof. Let q ≥ 0. For t ∈ [0, 1] we define

Hn,t(x) =
∑
i<j

√
λt

n
Zi,jxixj+

λt

n
xixjXiXj−

λt

2nx
2
ix

2
j+

n∑
i=1

√
(1− t)λqZ ′ixi+(1−t)λqxiXi−

(1− t)λq
2 x2

i .

Let 〈·〉n,t denote the Gibbs measure associated with the Hamiltonian Hn,t(x):

〈
f(x)

〉
n,t

=
∑
x∈Sn P

⊗n
0 (x)f(x)eHn,t(x)∑

x∈Sn P
⊗n
0 (x)eHn,t(x) ,

for any function f on Sn. The Gibbs measure 〈·〉n,t corresponds to the distribution of X given
Y and Y ′ in the following inference channel:Yi,j =

√
λt
nXiXj + Zi,j for 1 ≤ i < j ≤ n,

Y ′i =
√

(1− t)λqXi + Z ′i for 1 ≤ i ≤ n,

where Xi
i.i.d.∼ P0 and Zi,j , Z

′
i

i.i.d.∼ N (0, 1) are independent random variables. We will therefore
be able to apply the Nishimori property (Proposition 1.1.1) to the Gibbs measure 〈·〉n,t. Let us
define

ψ : t ∈ [0, 1] 7→ 1
n
E log

∑
x∈Sn

P⊗n0 (x)eHn,t(x) .

We have ψ(1) = Fn(λ) and

ψ(0) = 1
n
E log

∑
x∈Sn

P⊗n0 (x) exp
(

n∑
i=1

√
λqZ ′ixi + λqxiXi −

λq

2 x2
i

)

= 1
n
E log

n∏
i=1

∑
xi∈S

P0(xi) exp
(√

λqZ ′ixi + λqxiXi −
λq

2 x2
i

)
= F(λ, q) + λq2

4 .
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ψ is continuous on [0, 1], differentiable on (0, 1). For 0 < t < 1,

ψ′(t) = 1
n
E
〈∑
i<j

√
λ

2
√
nt
Zi,jxixj + λ

n
xixjXiXj −

λ

2nx
2
ix

2
j −

n∑
i=1

√
λq

2
√

1− t
Z ′ixi − λqxiXi + λq

2 x2
i

〉
n,t

,

(3.4.2)

where x is a sample from the Gibbs measure 〈·〉n,t, independently of everything else. For 1 ≤ i <
j ≤ n we have, by Gaussian integration by parts and by the Nishimori property

E
[
Zi,j

〈 √λ
2
√
nt
xixj

〉
n,t

]
= λ

2n
(
E〈x2

ix
2
j 〉n,t − E〈xixj〉2n,t

)
= λ

2n
(
E〈x2

ix
2
j 〉n,t − E〈x(1)

i x
(1)
j x

(2)
i x

(2)
j 〉n,t

)
= λ

2n
(
E〈x2

ix
2
j 〉n,t − E〈xixjXiXj〉n,t

)
,

where x(1) and x(2) are two independent samples from the Gibbs measure 〈·〉n,t, independently
of everything else. Similarly, we have for 1 ≤ i ≤ n

E
〈 √

λq

2
√

1− t
Z ′ixi

〉
n,t

= λq

2
(
E〈x2

i 〉n,t − E〈xiXi〉n,t
)
.

Therefore (3.4.2) simplifies

ψ′(t) = 1
n
E
〈∑
i<j

λ

2nxixjXiXj −
n∑
i=1

λq

2 xiXi

〉
n,t

= λ

4E
〈

(x ·X)2 − 2q x ·X
〉
n,t

+ on(1)

= λ

4E
〈

(x ·X − q)2
〉
n,t
− λq2

4 + on(1) ≥ −λq
2

4 + on(1) , (3.4.3)

where on(1) denotes a quantity that goes to 0 uniformly in t ∈ (0, 1). Then

Fn(λ)−F(λ, q)− λ

4 q
2 = ψ(1)− ψ(0) =

∫ 1

0
ψ′(t)dt ≥ −λ4 q

2 + on(1) .

Thus lim inf
n→∞

Fn(λ) ≥ F(λ, q), for all q ≥ 0.

3.4.2 Adding a small perturbation
It remains to prove the converse bound of (3.4.1). For this purpose, we need to show that
the overlap x · X (where x is a sample from the posterior distribution of X given Y ,
independently of everything else) concentrates around its mean. To obtain such a result,
we follow the ideas of Section 2.1 that states that giving a small amount of side information
to the statistician forces the overlap to concentrate, while keeping the free energy almost
unchanged.

Let us fix ε ∈ [0, 1], and suppose that we have access, in addition of Y , to the additional
information, for 1 ≤ i ≤ n

Y ′i =

Xi if Li = 1,
∗ if Li = 0,

(3.4.4)

where Li i.i.d.∼ Ber(ε) and ∗ is a value that does not belong to S. Recall the free energy that
corresponds to this perturbed inference channel is

Fn,ε = 1
n
E
[

log
∑
x∈Sn

P⊗n0 (x) exp(Hn(x̄))
]
,
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where

x̄ = (x̄1, . . . , x̄n) = (L1X1 + (1− L1)x1, . . . , LnXn + (1− Ln)xn) . (3.4.5)

From now we suppose ε0 ∈ (0, 1] to be fixed and consider ε ∈ [0, ε0]. We will compute
the limit of Fn,ε as n → ∞ and then let ε → 0 to deduce the limit of Fn, because by
Proposition 2.1.1

|Fn,ε − Fn| ≤ H(P0)ε .

3.4.3 Aizenman-Sims-Starr scheme
The Aizenman-Sims-Starr scheme was introduced in [2] in the context of the SK model.
This is what physicists call a “cavity computation”: one compare the system with n + 1
variables to the system with n variables and see what happen to the (n+ 1)th variable we
add.

With the convention F0,ε = 0, we have Fn,ε = 1
n

n−1∑
k=0

A
(0)
k,ε where

A
(0)
k,ε = (k + 1)Fk+1,ε − kFk,ε = E[log(Zk+1,ε)]− E[log(Zk,ε)] .

We recall that Zn,ε = ∑
x∈Sn P

⊗n
0 (x)eHn(x̄) where the notation x̄ is defined by equa-

tion (3.4.5). Consequently

lim sup
n→∞

∫ ε0

0
dε Fn,ε ≤ lim sup

n→∞

∫ ε0

0
dεA(0)

n,ε . (3.4.6)

We now compare Hn+1 with Hn. Let x ∈ Sn and σ ∈ S. σ plays the role of the (n + 1)th

variable. We decompose Hn+1(x, σ) = H ′n(x) + σz0(x) + σ2s0(x), where

H ′n(x) =
∑

1≤i<j≤n

√
λ

n+ 1Zi,jxixj + λ

n+ 1XiXjxixj −
λ

2(n+ 1)x
2
ix

2
j ,

z0(x) =
n∑
i=1

√
λ

n+ 1Zi,n+1xi + λ

n+ 1XiXn+1xi ,

s0(x) = − λ

2(n+ 1)

n∑
i=1

x2
i .

Let (Z̃i,j)1≤i<j≤n be independent, standard Gaussian random variables, independent of all
other random variables. We have then Hn(x) = H ′n(x) + y0(x) in law, where

y0(x) =
∑

1≤i<j≤n

√
λ√

n(n+ 1)
Z̃i,jxixj + λ

n(n+ 1)XiXjxixj −
λ

2(n+ 1)nx
2
ix

2
j .

We define the Gibbs measure 〈·〉n,ε by

〈f(x)〉n,ε = 1
Zn,ε

∑
x∈Sn

P0(x)f(x̄) exp(H ′n(x̄)) , (3.4.7)

for any function f on Sn. The Gibbs measure 〈·〉n,ε corresponds to the posterior distri-
bution of X given (

√
λ/(n+ 1)XiXj + Zi,j)1≤i<j≤n and Y ′ from (3.4.4). We will there-

fore be able to apply the Nishimori identity (Proposition 1.1.1) and Proposition 2.1.2
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to the Gibbs measure 〈·〉n,ε. Let us define σ̄ = (1 − Ln+1)σ + Ln+1Xn+1. We can
rewrite Zn+1,ε = ∑

x∈Sn P
⊗n
0 (x)eH′n(x̄)

(∑
σ∈S P0(σ) exp(σ̄z0(x̄) + σ̄2s0(x̄))

)
and Zn,ε =∑

x∈Sn P
⊗n
0 (x)eH′n(x̄)ey0(x̄) . Thus

A(0)
n,ε = E log

〈∑
σ∈S

P0(σ) exp
(
σ̄z0(x) + σ̄2s0(x)

)〉
n,ε
− E log

〈
exp(y0(x))

〉
n,ε
.

In the sequel, it will be more convenient to use slightly simplified versions of z0, s0 and y0
in order to obtain nicer expressions in the sequel. We define

z(x) =
n∑
i=1

√
λ

n
Zi,n+1xi + λ

n
XiXn+1xi =

√
λ

n

n∑
i=1

xiZi,n+1 + λ(x ·X)Xn+1 ,

s(x) = − λ

2n

n∑
i=1

x2
i = −λ2x · x ,

y(x) =
√
λ√
2n

n∑
i=1

Z ′′i x
2
i + λ

2n2

n∑
i=1

(
x2
iX

2
i −

x4
i

2

)
+
√
λ

n

∑
1≤i<j≤n

xixj

(
Z̃i,j +

√
λ

n
XiXj

)
− λ

2n2x
2
ix

2
j

=
√
λ√
2n

n∑
i=1

Z ′′i x
2
i +
√
λ

n

∑
1≤i<j≤n

xixjZ̃i,j + λ

2

(
(x ·X)2 − 1

2(x · x)2
)
,

where Z ′′i
i.i.d.∼ N (0, 1) independently of any other random variables. Define now

An,ε = E log
〈∑
σ∈S

P0(σ) exp(σ̄z(x) + σ̄2s(x))
〉
n,ε

− E log 〈exp(y(x))〉n,ε .

Using Gaussian interpolation techniques, it is not difficult to show that
∫ ε0

0 dε (An,ε −
A(0)
n,ε) −−−→n→∞

0 because the modifications made in z0, s0 and y0 are of negligible order.
Using (3.4.6) we conclude

lim sup
n→∞

∫ ε0

0
dε Fn,ε ≤ lim sup

n→∞

∫ ε0

0
dεAn,ε . (3.4.8)

3.4.4 Overlap concentration
Proposition 2.1.2 implies that the overlap between two replicas, i.e. two independent sam-
ples x(1) and x(2) from the Gibbs distribution 〈·〉n,ε, concentrates. Let us define the random
variables

Q =
〈 1
n

n∑
i=1

x
(1)
i x

(2)
i

〉
n,ε

and bi = 〈xi〉n,ε .

Notice that Q = 1
n

∑
i b

2
i ≥ 0. By Proposition 2.1.2 we know that∫ ε0

0
dεE

〈
(x(1) · x(2) −Q)2

〉
n,ε
−−−→
n→∞

0 . (3.4.9)

Thus, using the Nishimori property (Proposition 1.1.1) we deduce:∫ ε0

0
dεE

〈
(x ·X −Q)2

〉
n,ε
−−−→
n→∞

0 and
∫ ε0

0
dεE

〈
(x · b−Q)2

〉
n,ε
−−−→
n→∞

0 .
(3.4.10)
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3.4.5 The main estimate
Let us denote, for ε ∈ [0, 1],

Fε : (λ, q) 7→ −λ4 q
2 + ε(EP0X

2)λq2 + (1− ε)E
[

log
∑
x∈S

P0(x) exp
(√

λqZx+ λqxX − λ

2 qx
2
)]

where the expectation E is taken with respect to the independent random variables X ∼ P0
and Z ∼ N (0, 1). The following proposition is one of the key steps of the proof.
Proposition 3.4.2

For all ε0 ∈ [0, 1], ∫ ε0

0
dε (An,ε − E[Fε(λ,Q)]) −−−→

n→∞
0 .

The proof of Proposition 3.4.2 is deferred to Section 3.4.6. We deduce here Theorem 3.2.1
from Proposition 3.4.2 and the results of the previous sections. Because of Proposi-
tion 3.4.1, we only have to show that lim sup

n→∞
Fn ≤ sup

q≥0
F(λ, q).

By Proposition 2.1.1 we have

ε0Fn ≤
∫ ε0

0
dεFn,ε + 1

2H(P0)ε20 .

Therefore by equation (3.4.8) and Proposition 3.4.2

ε0 lim sup
n→∞

Fn ≤ lim sup
n→∞

∫ ε0

0
dεAn,ε + 1

2H(P0)ε20 ≤ lim sup
n→∞

∫ ε0

0
dεEFε(λ,Q) + 1

2H(P0)ε20 .
(3.4.11)

It remains then to show that lim sup
n→∞

∫
dεEFε(λ,Q) ≤ ε0 sup

q≥0
F(λ, q) + O(ε20). We have for

ε ∈ [0, 1],

sup
q∈[0,K2]

|Fε(λ, q)−F(λ, q)| ≤ ε sup
q∈[0,K2]

{
λq

2 EP0 [X2] +
∣∣∣∣E log

∑
x∈S

P0(x) exp(
√
λqZx+ λqxX − λ

2 qx
2)
∣∣∣∣
}

≤ Cε ,

for some constant C that only depends on λ and P0. Noticing that Q ∈ [0, K2] a.s., we
have then |EFε(λ,Q)− EF(λ,Q)| ≤ Cε0, for all ε ∈ [0, ε0] and therefore∫ ε0

0
dεEFε(λ,Q) ≤ ε0 sup

q≥0
F(λ, q) + 1

2Cε
2
0 .

Combined with (3.4.11), this implies lim sup
n→∞

Fn ≤ sup
q≥0
F(λ, q) + 1

2H(P0)ε0 + 1
2Cε0, for all

ε0 ∈ (0, 1]. Theorem 3.2.1 is proved.

3.4.6 Proof of Proposition 3.4.2
In this section, we prove Proposition 3.4.2 which is a consequence of Lemmas 3.4.1 and 3.4.2
below. In order to lighten the formulas, we will use the following notations

X ′ = Xn+1 and Z ′i = Zi,n+1.
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Recall

An,ε = E log
〈∑
σ∈S

P0(σ) exp(σ̄z(x) + σ̄2s(x))
〉
n,ε
− E log

〈
exp(y(x))

〉
n,ε
, (3.4.12)

where for σ ∈ S, σ̄ = (1− Ln+1)σ + Ln+1X
′. We recall that 〈·〉n,ε denotes the expectation

with respect to x sampled from the Gibbs measure defined by (3.4.7). The computations
here are closely related to the cavity computations in the SK model, see for instance [201].
Lemma 3.4.1

∫ ε0

0
dε
∣∣∣∣E log

〈∑
σ∈S

P0(σ) exp(σ̄z(x) + σ̄2s(x))
〉
n,ε

−
(
ε(EP0X

2)EλQ2 + (1− ε)E log
∑
σ∈S

P0(σ) exp
(√

λQσZ0 + λQσX ′ − λσ2

2 Q
))∣∣∣∣ −−−→n→∞

0 ,

where Z0 ∼ N (0, 1) is independent of all other random variables.

Lemma 3.4.2 ∫ ε0

0
dε

∣∣∣∣∣E log
〈
exp(y(x))

〉
n,ε
− λ

4EQ
2
∣∣∣∣∣ −−−→n→∞

0 .

We will only prove Lemma 3.4.1 here since Lemma 3.4.2 follows from the same kind
of arguments (the full proof can be found in [132]). The remaining of the section is thus
devoted to the proof of Lemma 3.4.1.

Let us write f(z, s) = ∑
σ∈S

P0(σ)eσ̄z+σ̄2s and we define:

U =
〈
f(z(x), s(x))

〉
n,ε
,

V =
∑
σ∈S

P0(σ) exp
σ̄

√
λ

n

n∑
i=1

biZ
′
i + λQX ′σ̄ − λQ

2 σ̄2

 .

Lemma 3.4.3 ∫ ε0

0
dεE

[
(U − V )2

]
−−−→
n→∞

0 .

Proof. It suffices to show that
∫
dε |EU2 − EV 2| −−−→

n→∞
0 and

∫
dε |EUV − EV 2| −−−→

n→∞
0.

Let EZ′ denote the expectation with respect to Z ′ = (Zi,n+1)1≤i≤n only. Compute

EZ′V 2 = EZ′
∑

σ1,σ2∈S
P0(σ1, σ2) exp

(
(σ̄1 + σ̄2)

√
λ

n

n∑
i=1

biZ
′
i + λQX ′(σ̄1 + σ̄2)− λQ

2 (σ̄2
1 + σ̄2

2)
)

=
∑

σ1,σ2∈S
P0(σ1, σ2) exp

(
(σ̄1 + σ̄2)2λ

2Q+ λQX ′(σ̄1 + σ̄2)− λQ

2 (σ̄2
1 + σ̄2

2)
)

=
∑

σ1,σ2∈S
P0(σ1, σ2) exp

(
σ̄1σ̄2λQ+ λQX ′(σ̄1 + σ̄2)

)
(3.4.13)

where we write for i = 1, 2, σ̄i = (1− Ln+1)σi + Ln+1X
′, as before.
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Let us show that
∫
dε |EU2 − EV 2| −−−→

n→∞
0.

EZ′U2 = EZ′
〈
f(z(x), s(x))

〉2
n,ε

= EZ′
〈
f(z(x(1)), s(x(1)))f(z(x(2)), s(x(2)))

〉
n,ε

(x(1) and x(2) are indep. samples from 〈·〉n,ε)

=
〈
EZ′f(z(x(1)), s(x(1)))f(z(x(2)), s(x(2)))

〉
n,ε

=
〈 ∑
σ1,σ2∈S

P0(σ1, σ2)EZ′ exp
(
σ̄1z(x(1)) + σ̄2

1s(x(1)) + σ̄2z(x(2)) + σ̄2
2s(x(2))

)〉
n,ε

.

The next lemma follows from the simple fact that for N ∼ N (0, 1) and t ∈ R, EetN = exp( t22 ).
Lemma 3.4.4

Let x(1),x(2) ∈ Sn and σ1, σ2 ∈ S be fixed. Then

EZ′ exp

σ1

√
λ

n

n∑
i=1

x
(1)
i Z ′i + σ2

√
λ

n

n∑
i=1

x
(2)
i Z ′i

= exp
(
λσ1σ2 x

(1) · x(2) + λσ2
1

2n ‖x
(1)‖2 + λσ2

2
2n ‖x

(2)‖2
)
.

Thus, for all x(1),x(2)∈Sn and σ1, σ2∈S

EZ′eσ̄1z(x(1))+σ̄2
1s(x(1))+σ̄2z(x(2))+σ̄2

2s(x(2)) = eλσ̄1σ̄2x(1)·x(2)+λX′(σ̄1(x(1)·X)+σ̄2(x(2)·X)) ,

where we used the fact that s(x)=− λ
2n‖x‖

2 for all x∈Sn. We have therefore

EZ′U2 =
〈 ∑
σ1,σ2∈S

P0(σ1, σ2) exp
(
λσ̄1σ̄2x

(1) · x(2) + λX ′
(
σ̄1(x(1) ·X) + σ̄2(x(2) ·X)

))〉
n,ε

.

Define

g : (s, r1, r2) ∈ [−K2,K2]3 7→
∑

σ1,σ2∈S
P0(σ1, σ2) exp

(
λσ̄1σ̄2s+ λX ′(σ̄1r1 + σ̄2r2)

)
.

We have EZ′U2 =
〈
g(x(1) · x(2),x(1) ·X,x(2) ·X)

〉
n,ε

and by (3.4.13), EZ′V 2 = g(Q,Q,Q).

Lemma 3.4.5
There exists a constant M that only depends on λ and K, such that g is almost surely
M -Lipschitz.

Proof. g is a random function that depends only on the random variables X ′ and Ln+1 (because
of σ̄1 and σ̄2). g is C1 on the compact [−K2,K2]3. An easy computation show that

∀(s, r1, r2) ∈ [−K2,K2]3, ‖∇g(s, r1, r2)‖ ≤ 3λK4 exp(3λK4).

g is thus M -Lipschitz with M = 3λK4 exp(3λK4).

Using Lemma 3.4.5 we obtain〈
|g(x(1) · x(2),x(1) ·X,x(2) ·X)− g(Q,Q,Q)|

〉
n,ε

≤M
〈√

(x(1) · x(2) −Q)2 + (x(1) ·X −Q)2 + (x(2) ·X −Q)2
〉
n,ε
.
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We recall equation (3.4.13) to notice that g(Q,Q,Q) = EZ′V 2. Thus, using (3.4.9) and (3.4.10)∫ ε0

0
dεE|EZ′U2 − EZ′V 2| ≤M

∫ ε0

0
dεE

〈√
(x(1) · x(2) −Q)2 + (x(1) ·X −Q)2 + (x(2) ·X −Q)2

〉
n,ε
,

and the right-hand side goes to 0 by (3.4.9-3.4.10).

Showing that
∫
dε |EUV − EV 2| −−−→

n→∞
0 goes exactly the same way. We thus omit this part

here for the sake of brevity, but the reader can refer to [132] where all details are presented.

Using the fact that | logU − log V | ≤ max(U−1, V −1)|U − V | and the Cauchy-Schwarz
inequality, we have

E| logU − log V | ≤
√
EU−2 + EV −2

√
E(U − V )2 .

Lemma 3.4.6
There exists a constant C that depends only on λ and K such that

EU−2 + EV −2 ≤ C .

Proof. Using Jensen inequality, we have U ≥ f
(
〈z(x)〉n,ε, 〈s(x)〉n,ε

)
. Then

U−2 ≤ f
(
〈z(x)〉n,ε, 〈s(x)〉n,ε

)−2 ≤
∑
σ∈S

P0(σ) exp
(
− 2σ̄〈z(x)〉n,ε − 2σ̄2〈s(x)〉n,ε

)
.

It remains to bound E exp(−2σ̄〈z(x)〉n,ε − 2σ̄2〈s(x)〉n,ε). P0 has a bounded support, therefore

E exp
(
−2σ̄〈z(x)〉n,ε−2σ̄2〈s(x)〉n,ε

)
≤ C0E exp

−2σ̄
n∑
i=1

√
λ

n
〈xi〉n,εZ ′i

 = C0E exp(2λQσ̄2) ≤ C1 ,

for some constant C0, C1 depending only on λ and K. Similar arguments show that EV −2 is
upper-bounded by a constant.

Using the previous lemma we obtain
∫
dεE| logU−log V | −−−→

n→∞
0. We now compute E log V

explicitly.
Lemma 3.4.7

E log V = ε(EP0X
2)EλQ2 +(1−ε)E log

∑
σ∈S

P0(σ) exp
σ

√
λ

n

n∑
i=1

biZ
′
i + λQσX ′ − λσ2

2 Q

 .
Proof. It suffices to distinguish the cases Ln+1 =0 and Ln+1 =1. If Ln+1 =1 then for all σ ∈ S,
σ̄ = X ′ and

log V = log

exp
(
X ′

√
λ

n

n∑
i=1

biZ
′
i + λQX ′2 − λX ′2

2 Q
) = X ′

√
λ

n

n∑
i=1

biZ
′
i + λX ′2

2 Q .

Ln+1 is independent of all other random variables, thus

E
[
1(Ln+1 = 1) log V

]
= ε(EP0X

2)λ2EQ ,
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because the Z ′i are centered, independent from X ′ and because X ′ is independent from Q. The
case Ln+1 = 0 is obvious.

The variables (bi)1≤i≤n and (Z ′i)1≤i≤n are independent. Recall that Q = 1
n

n∑
i=1

b2
i . Therefore,(

X ′, Q,
1√
n

n∑
i=1

biZ
′
i

)
=
(
X ′, Q,

√
QZ0

)
in law,

where Z0 ∼ N (0, 1) is independent of Q,X ′. The expression of E log V from Lemma 3.4.7
simplifies

E log V = ε(EP0X
2)EλQ2 + (1− ε)E log

∑
σ∈S

P0(σ) exp
(√

λQσZ0 + λQσX ′ − λσ2

2 Q

)
,

thus∫ ε0

0
dε
∣∣∣∣E logU−

(
ε(EP0X

2)EλQ2 +(1−ε)E log
∑
σ∈S

P0(σ) exp
(√

λQσZ0+λQσX ′−λσ
2

2 Q
))∣∣∣∣ −−−→n→∞

0 ,

which is precisely the statement of Lemma 3.4.1.

3.4.7 Reduction to distribution with finite support
We will show in this section that it suffices to prove Theorems 3.2.1 for input distribution
P0 with finite support.

Suppose the Theorem 3.2.1 holds for all prior distributions over R with finite support.
Let P0 be a probability distribution that admits a finite second moment: EP0X

2 <∞. We
are going to approach P0 with distributions with finite supports.
Let 0 < ε ≤ 1. Let K > 0 such that EP0 [X21(|X| ≥ K)] ≤ ε2. Let m ∈ N∗ such that
K
m
≤ ε. For x ∈ R we will use the notation

x̄ =


K
m

⌊
xm
K

⌋
if x ∈ [−K,K] ,

0 otherwise.

Consequently if x ∈ [−K,K], x̄ ≤ x < x̄+ K
m
≤ x̄+ ε. We define P̄0 the image distribution

of P0 through the application x 7→ x̄. Let n ≥ 1. We will note F̄n the free energy
corresponding to the distribution P̄0 and F̄ the function F from (3.2.5) corresponding to
the distribution P̄0. P̄0 has a finite support, we have then by assumptions

F̄n(λ) −−−→
n→∞

sup
q≥0
F̄(λ, q) . (3.4.14)

By construction we have for all 1 ≤ i ≤ n, E(Xi − X̄i)2 ≤ ε2. Hence

E
∥∥∥(XiXj)i<j − (X̄iX̄j)i<j

∥∥∥2
≤ 2(n− 1)nEP0 [X2]ε2 .

Consequently, by “pseudo-Lipschitz” continuity of the free energy with respect to the
Wasserstein metric (see Proposition B.1 in Appendix B.4) there exist a constant C > 0
depending only on P0, such that, for all n ≥ 1 and all λ ≥ 0,

|Fn(λ)− F̄n(λ)| ≤ λCε . (3.4.15)
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Lemma 3.4.8
There exists a constant C ′ > 0 that depends only on P0, such that∣∣∣∣ sup

q≥0
F(λ, q)− sup

q≥0
F̄(λ, q)

∣∣∣∣ ≤ λC ′ε .

Proof. First notice that both suprema are achieved over a common compact set [0,EP0 [X2+X̄2]].
Indeed, for q ≥ 0,

∂

∂q
F(λ, q) = λψ′P0(λq)− λq

2 ≤
λ

2
(
EP0 [X2]− q

)
because ψP0 is 1

2EP0 [X2]-Lipschitz by Proposition 1.3.3. Consequently, the maximum of F(λ, ·)
is achieved on [0,EP0 [X2]] and similarly the supremum of F̄(λ, ·) is achieved over [0,EP0 [X̄2]].
Using Proposition B.1 in Appendix B.4, we obtain that there exists a constant C ′ depending only
on P0 such that ∀q ∈ [0,EP0 [X2 + X̄2]], |F(λ, q)− F̄(λ, q)| ≤ λC ′ε. The lemma follows.

Combining Equation 3.4.14 and 3.4.15 and Lemma 3.4.8, we obtain that there exists
n0 ≥ 1 such that for all n ≥ n0,

|Fn − sup
q≥0
F(λ, q)| ≤ λ(C + C ′ + 1)ε ,

where C and C ′ are two constants that only depend on P0. This proves Theorem 3.2.1.
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Chapter 4

Non-symmetric low-rank matrix
estimation

We consider now the spiked Wishart model (3.1.2). Let PU and PV be two probability
distributions on R with finite second moment. We assume that VarPU (U),VarPV (V ) > 0.
Let n,m ≥ 1, λ > 0 and consider U = (U1, . . . , Un) i.i.d.∼ PU and V = (V1, . . . , Vm) i.i.d.∼ PV ,
independent from each other. Suppose that we observe

Yi,j =
√
λ

n
UiVj + Zi,j, for 1 ≤ i ≤ n and 1 ≤ j ≤ m, (4.0.1)

where (Zi,j)i,j are i.i.d. standard normal random variables, independent from U and V . In
the following, E will denote the expectation with respect to the variables (U ,V ) and Z.
We define the Minimum Mean Squared Error (MMSE) for the estimation of the matrix
UV T given the observation of the matrix Y :

MMSEn(λ) = min
θ̂

 1
nm

n∑
i=1

m∑
j=1

E
[(
UiVj − θ̂i,j(Y )

)2
] = 1

nm

n∑
i=1

m∑
j=1

E
[
(UiVj − E [UiVj|Y ])2

]
,

where the minimum is taken over all estimators θ̂ (i.e. measurable functions of the obser-
vations Y ). In order to get an upper bound on the MMSE, let us consider the “dummy
estimator” θ̂i,j = E[UiVj] for all i, j which achieves a “dummy” matrix Mean Squared Error
of:

DMSE = 1
nm

n∑
i=1

m∑
j=1

E
[
(UiVj − E[UiVj])2

]
= E[U2]E[V 2]− (EU)2(EV )2 .

4.1 Fundamental limits of estimation
As in Chapter 3, we investigate the posterior distribution of U ,V given Y . We define the
Hamiltonian

Hn(u,v) =
∑
i,j

√
λ

n
uivjZi,j + λ

n
uiUivjVj −

λ

2nu
2
i v

2
j , for (u,v) ∈ Rn × Rm. (4.1.1)

The posterior distribution of (U ,V ) given Y is then

dP
(
u,v

∣∣∣Y ) = 1
Zn(λ)e

Hn(u,v)dP⊗nU (u)dP⊗mV (v), (4.1.2)
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where Zn(λ) =
∫
eHn(u,v)dP⊗nU (u)dP⊗mV (v) is the appropriate normalization. The corre-

sponding free energy is

Fn(λ) = 1
n
E logZn(λ) = 1

n
E log

(∫
eHn(u,v)dP⊗nU (u)dP⊗mV (v)

)
.

We consider here the high-dimensional limit where n,m→∞, while m/n→ α > 0. We
will be interested in the following fixed point equations, sometimes called “state evolution
equations”.
Definition 4.1.1

We define the set Γ(λ, α) as

Γ(λ, α) =
{

(qu, qv) ∈ R2
≥0

∣∣∣ qu = 2ψ′PU (λαqv) and qv = 2ψ′PV (λqu)
}
. (4.1.3)

First notice that Γ(λ, α) is not empty. The function f : (qu, qv) 7→ (2ψ′PU (λαqv), 2ψ′PV (λqu))
is continuous from the convex compact set [0,EU2] × [0,EV 2] into itself (see Proposi-
tion 1.3.3). Brouwer’s Theorem gives the existence of a fixed point of f : Γ(λ, α) 6= ∅.

We will express the limit of Fn using the following function

F : (λ, α, qu, qv) 7→ ψPU (λαqv) + αψPV (λqu)−
λα

2 quqv . (4.1.4)

Recall that ψPU and ψPV , defined by (1.3.6), are the free energies of additive Gaussian
scalar channels (1.3.5) with priors PU and PV . The Replica-Symmetric formula states that
the free energy Fn converges to the supremum of F over Γ(λ, α).

Theorem 4.1.1 (Replica-Symmetric formula for the spiked Wishart model)

Fn(λ) −−−→
n→∞

sup
(qu,qv)∈Γ(λ,α)

F(λ, α, qu, qv) = sup
qu≥0

inf
qv≥0
F(λ, α, qu, qv) . (4.1.5)

Moreover, these extrema are achieved over the same couples (qu, qv) ∈ Γ(λ, α).

This result proved in [145] was conjectured by [133], in particular F corresponds to the
“Bethe free energy” [133, Equation 47]. Theorem 4.1.1 is proved in Section 4.3. For the
rank-k case (where PU and PV are probability distributions over Rk), see [145]. As in
Chapter 3, the Replica-Symmetric formula (Theorem 3.2.1) allows to compute the limit of
the MMSE.
Proposition 4.1.1 (Limit of the MMSE)

Let

Dα =
{
λ > 0

∣∣∣∣ F(λ, α, ·, ·) has a unique maximizer (q∗u(λ, α), q∗v(λ, α)) over Γ(λ, α)
}
.

Then Dα is equal to (0,+∞) minus a countable set and for all λ ∈ Dα (and thus almost
every λ > 0)

MMSEn(λ) −−−→
n→∞

E[U2]E[V 2]− q∗u(λ, α)q∗v(λ, α) . (4.1.6)
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Again, this was conjectured in [133]: the performance of the Bayes-optimal estimator
(i.e. the MMSE) corresponds to the fixed point of the state-evolution equations (4.1.3)
which has the greatest Bethe free energy F . Proposition 4.1.1 follows from the same kind
of arguments than Corollary 3.2.2 so we omit its proof for the sake of brevity.

Proposition 4.1.1 allows to locate the information-theoretic threshold for our matrix
estimation problem. Let us define

λc(α) = inf
{
λ ∈ Dα | q∗u(λ, α)q∗v(λ, α) > (EU)2(EV )2

}
. (4.1.7)

If the set of the left-hand side is empty, one defines λc(α) = 0. Proposition 4.1.1 gives that
λc(α) is the information-theoretic threshold for the estimation of UV T given Y :

• If λ < λc(α), then MMSEn(λ) −−−→
n→∞

DMSE. It is not possible to reconstruct the
signal UV T better than a “dummy” estimator.

• If λ > λc(α), then lim
n→∞

MMSEn(λ) < DMSE. It is possible to reconstruct the signal
UV T better than a “dummy” estimator.

Proposition 4.1.1 gives us the limit of the MMSE for the estimation of the matrix UV T,
but does not gives us the minimal error for the estimation of U or V separately. As we
will see in the next section with the spiked covariance model, one can be interested in
estimating UUT or V V T, only. Let us define:

MMSE(u)
n (λ) = 1

n2E
[ ∑

1≤i,j≤n

(
UiUj − E[UiUj|Y ]

)2
]
,

MMSE(v)
n (λ) = 1

m2E
[ ∑

1≤i,j≤m

(
ViVj − E[ViVj|Y ]

)2
]
.

Theorem 4.1.2
For all α > 0 and all λ ∈ Dα

MMSE(u)
n (λ) −−−→

n→∞
EPU [U2]2−q∗u(λ, α)2 and MMSE(v)

n (λ) −−−→
n→∞

EPV [V 2]2−q∗v(λ, α)2 .

Theorem 4.1.2 is proved in Section 4.4.

4.2 Application to the spiked covariance model
Let us consider now the so-called spiked covariance model. Let U = (U1, . . . , Un) i.i.d.∼ PU ,
where PU is a distribution over R with finite second moment. Define the “spiked covariance
matrix”

Σ = Idn + λ

n
UUT , (4.2.1)

and suppose that we observe Y1, . . . ,Ym
i.i.d.∼ N (0,Σ), conditionally on Σ. Given the

matrix Y = (Y1| · · · |Ym), one would like to estimate the “spike” UUT. We deduce from
Theorem 4.1.2 above the minimal mean squared error for this task, in the asymptotic
regime where n,m→ +∞ and m/n→ α > 0.
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Corollary 4.2.1
For all α > 0, the function

q 7→
{
ψPU (λαq) + α

2
(
q + log(1− q)

)}
admits for almost all λ > 0 a unique maximizer q∗(λ, α) on [0, 1) and

MMSE(u)
n (λ) = 1

n2E
[∥∥∥UUT − E[UUT|Y ]

∥∥∥2
]
−−−→
n→∞

EPU [U2]2 −
(

q∗(λ, α)
λ(1− q∗(λ, α))

)2

.

Proof. There exists independent Gaussian random variables V = (V1, . . . , Vm) i.i.d.∼ N (0, 1) and
Zi,j

i.i.d.∼ N (0, 1), independent from U such that

Y = (Y1| · · · |Ym) =

√
λ

n
UV T +Z .

Therefore, the limit of the MMSE for the estimation of UUT is given by Theorem 4.1.2 above.
It remains only to evaluate the formulas of Theorems 4.1.1 and 4.1.2 in the case PV = N (0, 1).
As computed in Example 1.3.1, ψN (0,1)(q) = 1

2(q − log(1 + q)). Thus, the limit of the free
energy (4.1.5) becomes (after evaluation of the supremum in qu):

sup
qv∈[0,1)

{
ψPU (λαqv) + α

2
(
qv + log(1− qv)

)}
.

By Theorem 4.1.2 for all α > 0 and almost all λ > 0 this supremum admits a unique maximizer
q∗v(λ, α) and MMSE(u)

n (λ)→ EPU [U2]2 − q∗u(λ, α)2 where q∗u verifies (recall that (q∗u, q∗v) ∈ Γ):

q∗v(λ, α) = 2ψ′N (0,1)(λq
∗
u(λ, α)) = λq∗u(λ, α)

1 + λq∗u(λ, α) .

We deduce from the equation above that q∗u(λ, α) = q∗v(λ,α)
λ(1−q∗v(λ,α)) , which concludes the proof.

We will now compare the MMSE given by Corollary 4.2.1 to the mean squared errors
achieved by PCA and Approximate Message Passing (AMP).
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Figure 4.1: Mean Squared Errors for the spiked covariance model, where the spike is gen-
erated by (4.2.3) with s = 0.15, λ = 1. The right-hand side panel is a zoom of the left-hand
side panel around α = 1.
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Let û be a singular vector of Y /
√
n associated with σ1, the top singular value of Y /

√
n,

such that ‖û‖ =
√
n. Then results from [29, 66] give that almost surely:

lim
n→∞

(
û ·U

)2
=


λ2α−1
λ(λα+1) if λ2α ≥ 1 ,
0 otherwise,

and lim
n→∞

σ1 =


√

(1+λ)(α−1+λ)
λ

if λ2α ≥ 1 ,
1 + 1/

√
α otherwise.

We are then going to estimate UUT using θ̂PCA = δûûT, where δ is chosen in order to
minimize the mean squared error. The optimal choice of δ is δ∗ =

(
λ2α−1
λ(λα+1)

)
+

, which can
be estimated using σ1. We obtain the mean squared error of the spectral estimator θ̂PCA:

lim
n→∞

MSEPCA
n =


1+λ

λ(λα+1)

(
2− 1+λ

λ(λα+1)

)
if λ2α ≥ 1 ,

1 otherwise.

As in the symmetric case (see Section 3.3.1) one can define an Approximate Message
Passing (AMP) algorithm to estimate UUT. For a precise description of the algorithm,
see [177, 61, 134]. The MSE achieved by AMP after t iterations is:

lim
n→∞

MSEAMP
n = 1−

(
qtu
)2
,

where qtu is given by the recursion:qtu = 2ψ′PU (λαqtv)
qt+1
v = 2ψ′PV (λqtu) ,

(4.2.2)

with initialization (q0
u, q

0
v) = (0, 0). We know by Proposition 1.3.3 that the functions ψ′PU

and ψ′PV are both non-decreasing and bounded. This ensures that (qtu, qtv)t≥0 converges
as t → ∞ to some fixed point (qAMP

u , qAMP
v ) ∈ Γ. If this fixed point turns out to be the

one that maximizes F(λ, α, ·, ·), i.e. that (qAMP
u , qAMP

v ) = (q∗u(λ, α), q∗v(λ, α)), then AMP
achieves the minimal mean squared error!

For the plots of Figure 4.1, we consider a case where the signal is sparse:

PU = sN (0, 1/s) + (1− s)δ0 , (4.2.3)

for some s ∈ (0, 1], so that EPU [U2] = 1. We plot the different MSE on Figure 4.1. We
chose λ = 1 so the “spectral threshold” (the minimal value of α for which PCA performs
better than a random guess) it at α = 1 (green dashed line). This threshold corresponds
also to the threshold for AMP: MSEAMP = 1 for α < 1 while MSEAMP < 1 for α > 1.
The information-theoretic threshold αIT is however strictly less than 1. For α ∈ (αIT, 1)
inference is “hard”: it is information-theoretically possible to achieve a MSE strictly less
than 1, but PCA and AMP fail (and it is conjectured that any polynomial-time algorithm
will also fail).

However, even for α > 1, AMP does not always succeed to reach the MMSE. For
α ∈ (1, αAlg), MSEAMP is strictly less than 1 but is still very bad. So, the region α ∈
(1, αAlg) is also a “hard region” in the sense that achieving the MMSE seems impossible for
polynomial-time algorithms (under the conjecture that AMP is optimal among polynomial-
time algorithms). The scenario presented on Figure 4.1 is not the only one possible: various
cases have been studied in great details in [135]. See in particular Figure 6 from [135] and
the phase diagrams of Figure 7 and 8.
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4.3 Proof of the Replica-Symmetric formula
(Theorem 4.1.1)

4.3.1 Proof ideas
The proof of the Replica formula for the non-symmetric case is a little bit more involved
compared to the symmetric case, because one can not use the convexity argument of Propo-
sition 3.4.1 to obtain the lower bound. Indeed, a key step in the proof of Proposition 3.4.1
was the inequality (3.4.3) that was obtained by saying that for every q ≥ 0

E
[
(x ·X − q)2

]
≥ 0 , (4.3.1)

where x is a sample from the posterior distribution of X given some observations (we omit
the notation’s details here in order to focus on the main ideas).

However, if we apply the strategy of Proposition 3.4.1 to the non-symmetric case, one
obtains

E
[
(u ·U − qu)(v · V − qv)

]
(4.3.2)

where (u,v) is a sample from the posterior distribution of (U ,V ) given some observations,
instead of (4.3.1). Now, it not obvious anymore that (4.3.2) is non-negative. In order to
prove it, one has to investigate further the distributions of the overlaps u ·U and v ·V . By
following the approach used by Talagrand in [201] to prove the TAP equations (discovered
by Thouless, Anderson and Palmer in [203]) for the Sherrington-Kirkpatrick model, one
can show that the overlaps approximately satisfy (when n and m are large)u ·U ' 2ψ′PU (λαv · V )

v · V ' 2ψ′PV (λu ·U) .

These are precisely the fixed point equations verified by (qu, qv) ∈ Γ(λ, α). Thus one has

E
[
(u ·U − qu)(v ·V − qv)

]
' E

[
(2ψ′PU (λαv ·V )− 2ψ′PU (λαqv))(v ·V − qv)

]
≥ 0 , (4.3.3)

because by Proposition 1.3.3, ψ′PU is non-decreasing. One obtain thus the analog of the
lower-bound of Proposition 3.4.1 for the non-symmetric case. The converse upper-bound
is proved following the Aizenman-Sims-Starr scheme, as in the symmetric case.

In the following sections we will not, however, follow the proof strategy that we just
described. This was done in [145]. We will instead provide a more straightforward proof
from [21] that uses an evolution of Guerra’s interpolation technique, see [20].

4.3.2 Interpolating inference model
We prove Theorem 4.1.1 in this section. First, notice that is suffices to prove Theorem 4.1.1
for λ = 1, because the dependency in λ can be “incorporated” in the prior PU . We will thus
consider in this section that λ = 1 and consequently alleviate the notations by removing
the dependencies in λ. Second, it suffices to prove that

Fn −−−→
n→∞

sup
qu≥0

inf
qv≥0
F(α, qu, qv) (4.3.4)
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because the equality with sup(qu,qv)∈Γ(λ,α)F(α, qu, qv) follows then from simple convex anal-
ysis arguments (Proposition C.6) presented in Appendix C.

Third, by a straightforward adaptation of the approximation argument of Section 3.4.7
to the non-symmetric case, it suffices to prove (4.3.4) in the case where the priors PU and
PV have bounded supports included in [−K,K] for some K > 0. We suppose now that
the above conditions are verified and we will show that (4.3.4) holds.

Let q1, q2 : [0, 1] → R≥0 be two differentiable functions. For 0 ≤ t ≤ 1 we consider the
following observation channel

Yt =
√

(1− t)/nUV T + Z

Y
(u)
t =

√
αq1(t)U + Z(u)

Y
(v)
t =

√
q2(t)V + Z(v) ,

(4.3.5)

where Z(u)
i , Z

(v)
j

i.i.d.∼ N (0, 1), are independent from everything else. The observation chan-
nel (4.3.5) interpolates between the initial matrix estimation problem (4.0.1) (t = 0, pro-
vided that q1(0) and q2(0) are small), and two decoupled inference channels on U and V
(t = 1). For r1, r2 ≥ 0, we define the Hamiltonian:

Hn,t(u,v; r1, r2) =
∑
i,j

√
(1− t)
n

uivjZi,j + (1− t)
n

uivjUiVj −
(1− t)

2n u2
i v

2
j

+
n∑
i=1

√
αr1uiZ

(u)
i + αr1uiUi −

αr1

2 u2
i +

m∑
j=1

√
r2 vjZ

(v)
j + r2 vjVj −

r2

2 v2
j .

The posterior distribution of (U ,V ) given (Yt,Y (u)
t ,Y

(v)
t ) is then

dP
(
u,v

∣∣∣Yt,Y (u)
t ,Y

(v)
t

)
= 1
Zn,t

eHn,t(u,v;q1(t),q2(t))dP⊗nU (u)dP⊗mV (v) , (4.3.6)

where Zn,t is the appropriate normalization. We will often drop the dependencies in
q1(t), q2(t) and write simply Hn,t(u,v). The Gibbs bracket 〈·〉n,t denotes the expectation
with respect to samples (u,v) from the posterior (4.3.6):

〈
f(u,v)

〉
n,t

= 1
Zn,t

∫
f(u,v)eHn,t(u,v;q1(t),q2(t))dP⊗nU (u)dP⊗mV (v) , (4.3.7)

for all function f for which the right-hand side is well defined. The corresponding free
energy is then

fn(t) = 1
n
E logZn,t = 1

n
E log

(∫
eHn,t(u,v)dP⊗nU (u)dP⊗mV (v)

)
. (4.3.8)

Notice that {
fn(0) = Fn +O(q1(0) + q2(0))
fn(1) = ψPU (αq1(1)) + m

n
ψPV (q2(1)) . (4.3.9)

fn(1) looks similar to the limiting expression F defined by (4.1.4). We would therefore like
to compare fn(1) and Fn = fn(0) + O(q1(0) + q2(0)). We thus compute the derivative of
fn:

47



Lemma 4.3.1
For all t ∈ (0, 1),

f ′n(t) = α

2 q
′
1(t)q′2(t)− 1

2E
〈(
u ·U − q′2(t)

)(
m

n
v · V − αq′1(t)

)〉
n,t
. (4.3.10)

Proof. Let t ∈ (0, 1). Compute

f ′n(t) = 1
n
E
〈
∂

∂t
Hn,t(u,v)

〉
n,t

.

Using Gaussian integration by parts and the Nishimori property (Proposition 1.1.1) as in the
proof of Proposition 1.3.3, one obtains:

1
n
E
〈
∂

∂t
Hn,t(u,v)

〉
n,t

= 1
2αq

′
1(t)E 〈u ·U〉n,t + 1

2q
′
2(t)E

〈
m

n
v · V

〉
n,t
− 1

2E
〈

(u ·U)(m
n
v · V )

〉
n,t

,

which leads to (4.3.10).

Our goal now is to show that the expectation of the Gibbs measure in (4.3.10) vanishes.
If this is the case, the relation Fn ' fn(0) = fn(1) −

∫ 1
0 f
′
n(t)dt would give us almost the

formula that we want to prove. The arguments can be summarized as follows:

• First, we show that the overlap u ·U concentrates around its mean E〈u ·U〉n,t.

• Then, we chose q2 to be solution of the differential equation q′2(t) = E〈u · U〉n,t in
order to cancel the Gibbs average in (4.3.10).

4.3.3 Overlap concentration
Following the ideas of Section 2.2, we show here that the overlap u ·U concentrates around
its mean, on average over small perturbations of our observation model.
Proposition 4.3.1

Let R1, R2 : [0, 1]×(0,+∞)2 → R≥0 be two continuous, bounded functions that admits
partial derivatives with respect to their second and third arguments, that are continuous
and non-negative. Let sn = n−1/32. For ε ∈ [1, 2]2, we let q1(·, ε), q2(·, ε) be the unique
solution of q1(0) = snε1

q2(0) = snε2

q′1(t) = R1(t, q1(t), q2(t))
q′2(t) = R2(t, q1(t), q2(t)).

(4.3.11)

Then there exists a constant C > 0 that only depends on K, α, ‖R1‖∞ and ‖R2‖∞,
such that for all t ∈ [0, 1],∫ 2

1

∫ 2

1
E
〈(
u ·U − E〈u ·U〉n,t

)2
〉
n,t
dε1dε2 ≤

C

n1/8 ,

where 〈·〉n,t is the Gibbs measure (4.3.7) with (q1, q2) = (q1(·, ε), q2(·, ε)).

Proof. The existence and uniqueness of the solution of the Cauchy problem (4.3.11) comes from
the usual Cauchy-Lipschitz theorem (see for instance Theorem 3.1 in Chapter V from [100]). Let
us fix t ∈ [0, 1] The flow

Qt : ε 7→ (q1(t, ε), q2(t, ε))
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of (4.3.11) is a C1-diffeomorphism. Its Jacobian is given by the Liouville formula (see for instance
Corollary 3.1 in Chapter V from [100]):

J(ε) def= det
(∂Qt
∂ε

(ε)
)

= s2
n exp

( ∫ t

0

∂R1
∂q1

(s,Qs(ε))ds+
∫ t

0

∂R2
∂q2

(s,Qs(ε))ds
)
≥ s2

n, (4.3.12)

because the partial derivatives inside the exponential are both non-negative. The quantity

E
〈(
u ·U − E〈u ·U〉n,t

)2〉
n,t

is a function of the signal-to-noise ratios q1 and q2, that we denote by V . Let us write Ω =
Q([1, 2]2)/sn and M = max(‖R1‖∞, ‖R2‖∞) + 2. Notice that Ω ⊂ [1,M/sn]2 because q1, q2
are by (4.3.11) non-decreasing and max(‖R1‖∞, ‖R2‖∞)-Lipschitz. By the change of variable
(r1, r2) = Q(ε1, ε2)/sn we have∫ 2

1

∫ 2

1
E
〈(
u ·U − E〈u ·U〉n,t

)2〉
n,t
dε1dε2 =

∫ 2

1

∫ 2

1
V (q1(t, ε1), q2(t, ε2))dε1dε2

=
∫

Ω
V (snr1, snr2) s2

ndr1dr2

J(Q−1
t (snr))

≤
∫ M/sn

1

∫ M/sn

1
V (snr1, snr2)dr1dr2,

where we used (4.3.12) for the last inequality. By the change of variable r1 = a2, we have for all
r2 ≥ 0:∫ M/sn

1
V (snr1, snr2)dr1 =

∫ √M/sn

1
V (sna2, snr2)2ada ≤ 2

√
M

sn

∫ √M/sn

1
V (sna2, snr2)da.

By definition of V , the quantity V (sna2, snr2) is the variance of the overlap u · U where u is
sampled from the posterior distribution of U given Yt, a

√
αsnU +Z(u) and √snr2V +Z(v). By

Proposition 2.2.1 we have for all 1 ≤ r2 ≤M/sn

1√
M/sn − 1

∫ √M/sn

1
V (sna2, snr2)da ≤ C

( 1
√
nsn

+
√
vn
)

where C > 0 is a constant that depends only on K,α,

vn = sup
t∈[0,1]

sup
0≤r1,r2≤M/sn

E
∣∣φt(r1, r2)− Eφt(r1, r2)

∣∣
and

φt : (r1, r2) 7→ 1
nsn

log
( ∫

u,v
dP⊗nU (u)dP⊗mV (v)eHn,t(u,v;snr1,snr2)

)
.

Consequently∫ 2

1

∫ 2

1
E
〈(
u ·U − E〈u ·U〉n,t

)2〉
n,t
dε1dε2 ≤ 2

(M
sn

)2
C
( 1
√
nsn

+
√
vn
)
≤ C ′

s2
n

( 1
√
nsn

+
√
vn
)
,

for some constant C ′ > 0. We now use the following lemma to control vn:
Lemma 4.3.2

There exists a constant C > 0 (that only depends on K, M and α) such that

vn ≤ Cn−1/2s−1
n .

We delay the proof of Lemma 4.3.2 to Section 4.3.5. We deduce that∫ 2

1

∫ 2

1
E
〈(
u ·U − E〈u ·U〉n,t

)2〉
n,t
dε1dε2 ≤

2C ′

n1/8

if we choose sn = n−1/32.
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4.3.4 Lower and upper bounds
From now we write E〈u ·U〉n,t, as a function of (t, q1(t), q2(t)):

E〈u ·U〉n,t = Q(t, q1(t), q2(t)). (4.3.13)

Notice that Q is continuous, non-negative on [0, 1]× (0,+∞)2, bounded by K2 and admits
partial derivatives with respect to its second and third argument. These derivatives are
both continuous. Moreover, notice that

EPU [U2]−Q(t, r1, r2) = E
∥∥∥U − E

[
U
∣∣∣Yt,√αr1U +Z(u),

√
r2V +Z(v)

]∥∥∥2

is of course non-increasing with respect to r1 and r2. The partial derivatives of Q with
respect to its second and third argument are thus non-negative.

For simplicity we will now omit the dependencies on λ and α in F . The proof of (4.3.4)
will follow from the two matching lower- and upper-bounds below.
Proposition 4.3.2

In the setting of Proposition 4.3.1, for ε ∈ [1, 2]2 we let q1(t, ε), q2(t, ε) be the solution
of (4.3.11), with the choice R2 = Q. For this choice of functions q1, q2, we have:

Fn =
∫

[1,2]2

∫ 1

0

(
ψPU (αq1(1, ε)) + αψPV (q2(1, ε))− α

2 q
′
1(t, ε)q′2(t, ε)

)
dtdε+ on(1).

Proof. Let us fix ε ∈ [1, 2]2. With the choice R2 = Q, we have for all t ∈ [0, 1]:

q′2(t, ε) = Q(t, q1(t, ε), q2(t, ε)) = E〈u ·U〉n,t.

The derivative of (4.3.10) becomes then by Proposition 4.3.1:

f ′n(t) = α

2 q
′
1(t)q′2(t)− 1

2E
〈(
u ·U − E〈u ·U〉n,t

)(m
n
v · V − αq′1(t)

)〉
n,t

= α

2 q
′
1(t)q′2(t) + on(1)

where on(1) denotes a quantity that goes to 0 as n → ∞, uniformly in t, ε. By Proposition B.1
we have fn(0) = Fn + On(sn). We have also: fn(1) = ψPU (αq1(1, ε)) + αψPV (q2(1, ε)) + on(1).
We conclude by

Fn =
∫

[1,2]2
fn(0)dε+ on(1) =

∫
[1,2]2

(
fn(1)−

∫ 1

0
f ′n(t)dt

)
dε+ on(1)

=
∫

[1,2]2

∫ 1

0

(
ψPU (αq1(1, ε)) + αψPV (q2(1, ε))− α

2 q
′
1(t, ε)q′2(t, ε)

)
dtdε+ on(1).

Lower bound

One deduces from Proposition (4.3.2) the following lower bound:
Proposition 4.3.3

lim inf
n→∞

Fn ≥ sup
q1≥0

inf
q2≥0
F(q2, q1) .
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Proof. We apply Proposition 4.3.2 with R1 = r, for some r ≥ 0. We get q1(t, ε) = ε1sn + rt, so
that:

Fn =
∫

[1,2]2

∫ 1

0

(
ψPU (α(snε1 + r)) + αψPV (q2(1, ε))− α

2 rq
′
2(t, ε)

)
dtdε+ on(1).

=
∫

[1,2]2

(
ψPU (αr) + αψPV (q2(1, ε))− α

2 rq2(1, ε)
)
dε+ on(1).

≥ inf
q2≥0
F(q2, r) + on(1),

where we used the fact that ψPU is 1
2K

2-Lipschitz, and that sn → 0. This proves the proposition
since the last inequality holds for all r ≥ 0.

Upper bound

We will now prove the converse upper bound.
Proposition 4.3.4

lim sup
n→∞

Fn ≤ sup
q1≥0

inf
q2≥0
F(q2, q1) .

Proof. We apply Proposition 4.3.2 with R1 = 2αψ′PV ◦Q. R1 verifies the conditions of Proposi-
tion 4.3.1 because ψPV is a C2 convex Lipschitz function (Proposition 1.3.3).

For simplicity we omit briefly the dependencies in ε of q1 and q2. ψPU is K2/2-Lipschitz, and
q1(0) = εsn = on(1) so ψPU (αq1(1)) = ψPU

(
α(q1(1) − q1(0))

)
+ on(1), where on(1) is a quantity

that goes to 0 as n→∞, uniformly in ε ∈ [1, 2]2. Notice that by convexity of the functions ψPU
and ψPV , we get

ψPU (αq1(1)) = ψPU

(
α

∫ 1

0
q′1(t)

)
+ on(1) ≤

∫ 1

0
ψPU (αq′1(t))dt+ on(1).

and similarly: ψPV (q2(1)) ≤
∫ 1

0 ψPV (q′2(t))dt+ on(1). We get by Proposition 4.3.2

Fn ≤
∫

[1,2]2

∫ 1

0

(
ψPU (αq′1(t, ε)) + αψPV (q′2(t, ε))− α

2 q
′
1(t, ε)q′2(t, ε)

)
dtdε+ on(1).

=
∫

[1,2]2

∫ 1

0
F(q′2(t, ε), q′1(t, ε))dtdε+ on(1). (4.3.14)

Since we chose R2 = Q and R1 = 2αψ′PV ◦Q = 2αψ′PV ◦R2, Equation (4.3.11) gives:

∀ε ∈ [1, 2]2, ∀t ∈ [0, 1], q′1(t, ε) = 2αψ′PV (q′2(t, ε)).

By convexity of ψPV , this gives that for all ε ∈ [1, 2]2 and all t ∈ [0, 1] we have

F(q′2(t, ε), q′1(t, ε)) = inf
q2≥0
F(q2, q

′
1(t, ε)) ≤ sup

q1≥0
inf
q2≥0
F(q2, q1).

Together with (4.3.14), this concludes the proof.

4.3.5 Concentration of the free energy: proof of Lemma 4.3.2
In this section, we prove Lemma 4.3.2: we show that the perturbed free energy concentrates
around its mean, uniformly in the perturbation. Lemma 4.3.2 will follow from Lemma 4.3.3
and Lemma 4.3.4 below. Let Ez denote the expectation with respect to the Gaussian
random variables Z,Z(u),Z(v).
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Lemma 4.3.3
There exists a constant C > 0, that only depends on K,α, such that for all t ∈ [0, 1],
B ≥ 0 and (r1, r2) ∈ [0, B]2,

E |φt(r1, r2)− Ezφt(r1, r2)| ≤ Cn−1/2s−1
n

√
1 +Bsn .

Proof. Let (r1, r2) ∈ [0, B]2 and consider U and V to be fixed (i.e. we first work conditionally
on U ,V ). Consider the function

f : (Z,Z(u),Z(v)) 7→ φt(r1, r2) .

It is not difficult to verify that
‖∇f‖2 ≤ C

ns2
n

(1 +Bsn)

for some constant C > 0 that depends only on K and α. The Gaussian Poincaré inequality
(see [37] Chapter 3) gives then

Ez (φt(r1, r2)− Ezφt(r1, r2))2 ≤ C

ns2
n

(1 +Bsn) .

We obtain the lemma by integration over U ,V and Jensen’s inequality.

Lemma 4.3.4
There exists a constant C > 0, that only depends on K,α, such that for all t ∈ [0, 1],
B ≥ 0 and (r1, r2) ∈ [0, B]2,

E |Ezφt(r1, r2)− Eφt(r1, r2)| ≤ Cn−1/2s−1
n

√
1 +Bsn .

Proof. It is not difficult to verify that the function

g : (U ,V ) 7→ Ezφt(r1, r2)

verifies a “bounded difference property” (see [37], Section 3.2) because the components of U and
V are bounded by a constant K > 0. Then Corollary 3.2 from [37] (which is a corollary from the
Efron-Stein inequality) implies that for all t ∈ [0, 1] and r1, r2 ∈ [0, B]

E (Ezφt(r1, r2)− Eφt(r1, r2))2 ≤ Cn−1s−2
n (1 + snB) .

for some constant C depending only on K and α. We conclude the proof using Jensen’s inequality.

4.4 Proof of Theorem 4.1.2
In order to prove Theorem 4.1.2, we are going to consider the following model with side
information to obtain a lower bound on the MMSE. Suppose that we observe for γ ≥ 0Yλ =

√
λ
n
UV T +Z

Y ′γ =
√

γ
n
UUT +Z ′

(4.4.1)
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where (Z ′i,j = Z ′j,i)i≤j
i.i.d.∼ N (0, 1) are independent from everything else. Define the corre-

sponding free energy

Fn(λ, γ) = 1
n
E log

∫
dP⊗nU (u)dP⊗mV (v) exp

( ∑
1≤i≤j≤n

√
γ

n
Y ′i,juiuj−

γu2
iu

2
j

2 +
∑
i,j

√
λ

n
Yi,juivj−

λu2
i v

2
j

2n

)
.

Proposition 4.4.1
Recall that ψ∗PU (resp. ψ∗PV ) denotes the monotone conjugate (Definition C.2 in Ap-

pendix C) of ψPU (resp. ψPV ). For all λ, γ ≥ 0, we have

Fn(λ, γ) −−−→
n→∞

f(λ, γ) def= sup
qu,qv≥0

{
γq2

u

4 + αλquqv
2 − ψ∗PU (qu/2)− αψ∗PV (qv/2)

}
. (4.4.2)

Proposition 4.4.1 is proved at the end of this section. Before we deduce Theorem 4.1.2
from Proposition 4.4.1, let us just mention that Proposition 4.4.1 allows to precisely derive
the information-theoretic limits for the model (4.4.1), by the “I-MMSE” relation (Propo-
sition 1.3.3).
Corollary 4.4.1

For almost all γ > 0 the supremum of Proposition 4.4.1 is achieved at a unique
q∗u(λ, γ, α) and

MMSE(u)
n (λ, γ) def= 1

n2E
[ ∑

1≤i,j≤n

(
UiUj − E[UiUj|Yλ,Y ′γ ]

)2
]
−−−→
n→∞

E[U2]2 − q∗u(λ, γ, α)2 .

The model (4.4.1) was considered in [62], in the special case PU = 1
2δ−1 + 1

2δ+1 and
PV = N (0, 1). Theorem 6 from [62] shows that one can estimate UUT better than a
random guess if and only if γ2 +αλ2 > 1. Corollary 4.4.1 above is more precise and general
because it gives the precise expression of the minimum mean squared error for any prior
PU , PV . In particular the boundary γ2 + αλ2 = 1 is not expected to be the information-
theoretic threshold for sufficiently sparse or unbalanced priors, see the phase diagram of
Figure 3.3 for a similar scenario.

Let us now deduce Theorem 4.1.2 from Proposition 4.4.1. By the “I-MMSE” relation
of Proposition 1.3.3:

MMSE(u)
n (λ) = MMSE(u)

n (λ, γ = 0) = EPU [U2]− 4∂Fn
∂γ

(λ, 0+). (4.4.3)

The sequence of convex functions (Fn(λ, ·))n≥1 converges pointwise to f(λ, ·) on R≥0. Thus,
by Proposition C.1:

lim sup
n→∞

∂Fn
∂γ

(λ, 0+) ≤ ∂f

∂γ
(λ, 0+). (4.4.4)

We need therefore the following lemma:
Lemma 4.4.1

For all α > 0 and all λ ∈ Dα, ∂f

∂γ
(λ, 0+) = q∗u(α, λ)2

4 .
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Proof. Let α > 0 and λ ∈ Dα. Then the supremum of (4.4.2) is uniquely achieved at
(q∗u(λ, α), q∗v(λ, α)) because the couples achieving this supremum are by Proposition C.6 pre-
cisely the couples achieving the supremum of F(λ, α, ·, ·) over Γ(λ, α). The lemma follows then
from the “envelope theorem” of Proposition D.2.

From Lemma 4.4.1 and equations (4.4.3)-(4.4.4) above, we conclude:

lim inf
n→∞

MMSE(u)
n (λ) ≥ EPU [U2]2 − q∗u(λ, α)2.

Let (u,v) sampled from the posterior distribution of (U ,V ) given Y , independently of
everything else. Then MMSE(u)

n (λ) = EPU [U2]2 − E
[
(u · U)2

]
+ on(1). This gives (the

corresponding result for V is obtained by symmetry):

lim sup
n→∞

E
[
(u ·U)2

]
≤ q∗u(λ, α)2 and lim sup

n→∞
E
[
(v · V )2

]
≤ q∗v(λ, α)2 . (4.4.5)

Now, we know by Proposition 4.1.1 that

EPU [U2]EPV [V 2]− E
[
(u ·U )(v · V )

]
= MMSEn(λ) −−−→

n→∞
EPU [U2]EPV [V 2]− q∗uq∗v ,

which gives E
[
(u ·U)(v · V )

]
→ q∗uq

∗
v . By Cauchy-Schwarz inequality we have

E
[
(u ·U)(v · V )

]2
≤ E

[
(u ·U)2

]
E
[
(v · V )2

]
which gives, by taking the liminf:

(q∗uq∗v)2 ≤
(

lim inf
n→∞

E
[
(u ·U )2

])(
lim inf
n→∞

E
[
(v · V )2

])
.

Combining this with (4.4.5), we get that limE
[
(u·U)2

]
= (q∗u)2 and the relation MMSE(u)

n (λ) =
EPU [U2]2 − E

[
(u ·U)2

]
+ on(1) gives the result.

Proof of Proposition 4.4.1

It suffices to prove the result in the case where PU and PV have bounded support, because
we can then proceed by approximation as in Section 3.4.7. From now, we suppose to be in
that case. Since the dependency in γ can be incorporated in the prior PU and the one in
λ in the prior PV , we only have to prove Proposition 4.4.1 in the case γ = λ = 1. In the
sequel we will therefore remove the dependencies in λ, γ. Define for r ≥ 0

Ln(r) = 1
n
E log

∫
dP⊗nU (u)dP⊗mV (v) exp

(
Hn(u,v) +

n∑
i=1

√
rZ ′′i ui + rUiui −

r

2u
2
i

)
,

where Z ′′i
i.i.d.∼ N (0, 1), independently of everything else and where the HamiltonianHn(u,v)

is defined by (4.1.1) (with λ = 1). Ln is the free energy (expected log-partition function)
for observing jointly Y = 1√

n
UV T + Z and Y ′′ =

√
rU + Z ′′. By an straightforward

extension of Theorem 4.1.1 we have for all r ≥ 0:

Ln(r) −−−→
n→∞

L(r) (4.4.6)

where
L(r) = sup

qu≥0
inf
qv≥0

{
ψPU (αqv + r) + αψPV (qu)−

αquqv
2

}
.
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Lemma 4.4.2

Fn(λ, γ) −−−→
n→∞

sup
r≥0

{
L(r)− r2

4

}
. (4.4.7)

Proof. We will follow the same steps than in Section 4.3: we will therefore only present the main
steps. Let r : [0, 1] → R≥0 be a differentiable function. For 0 ≤ t ≤ 1 we consider the following
observation channel 

Y =
√

1/nUV T + Z
Y ′t =

√
(1− t)/nUUT + Z ′

Y ′′t =
√
r(t)U + Z ′′ ,

(4.4.8)

We will denote (analogously to (4.3.8)) by fn(t) the interpolating free energy and by 〈·〉n,t (anal-
ogously to (4.3.7)) corresponding Gibbs measure. We have the analog of Equation (3.4.3) and
Lemma 4.3.1:

f ′n(t) = −1
4E
〈(
u ·U − r′(t)

)2〉
n,t

+ r′(t)2

4 + on(1), (4.4.9)

where on(1)→ 0, uniformly in t ∈ [0, 1]. By taking r(t) = rt for all t ∈ [0, 1], we obtain

Fn = fn(0) = fn(1)−
∫ 1

0
f ′n(t)dt ≥ Ln(r)− r2

4 .

Therefore lim inf Fn ≥ lim infn→∞
{
Ln(r) − r2

4
}

which gives lim inf Fn ≥ L(r) − r2

4 for all r ≥ 0,
hence lim inf Fn ≥ supr≥0

{
L(r)− r2

4
}
.

To prove the converse upper-bound we proceed as in Section 4.3 and chose r to be solution
r(·; ε) of the Cauchy problem: {

r(0) = εn−1/32

r′(t) = E〈u ·U〉n,t
where ε ∈ [1, 2] is a parameter. The analog of Proposition 4.3.1 holds:∫ 2

1
E
〈(
u ·U − E〈u ·U〉n,t

)2〉
n,t
dε ≤ C

n1/8

for some constant C > 0. Using (4.4.9) we get

Fn = fn(0) + on(1) =
∫ 2

1

(
fn(1)−

∫ 1

0
f ′n(t)dt

)
dε+ on(1)

=
∫ 2

1

(
Ln(r(1, ε))−

∫ 1

0

r′(t, ε)2

4 dt
)
dε+ on(1)

≤
∫ 2

1

∫ 1

0

(
Ln(r′(t, ε))− r′(t, ε)2

4
)
dtdε+ on(1) ≤ sup

0≤r≤ρu

{
Ln(r)− r2

4
}

+ on(1),

where ρu = EPU [U2]. The free energy Ln is (by the usual arguments, see Section 1.3) convex
and non-decreasing and converges to L which is thus convex (therefore continuous) and non-
decreasing. By Dini’s second theorem we get that the convergence in (4.4.6) is uniform in r over
all compact subsets of R≥0. We conclude

lim sup
n→∞

Fn ≤ sup
0≤r≤ρu

{
L(r)− r2

4
}
≤ sup

r≥0

{
L(r)− r2

4
}
.
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In order to prove Proposition 4.4.1, it remains to show that

sup
r≥0

{
L(r)− r2

4

}
= sup

qu,qv≥0

{
γq2

u

4 + αλquqv
2 − ψ∗PU (qu/2)− αψ∗PV (qv/2)

}
.

This is a consequence of the following Lemma:
Lemma 4.4.3

Let f, g be two non-decreasing lower semi-continuous convex functions on R≥0, such
that f(0) and g(0) are finite. Let f ∗ and g∗ denote their monotone conjugate (see
Definition C.2 in Appendix C). Then

sup
r≥0

sup
q1≥0

inf
q2≥0

{
f(q1) + g(r + q2)− q1q2 −

r2

2

}
= sup

q1,q2≥0

{
q2

1
2 + q1q2 − f ∗(q2)− g∗(q1)

}

Proof. Let r ≥ 0. Let us write gr : q 7→ g(q + r). By Proposition C.6, we have

sup
q1≥0

inf
q2≥0

{
f(q1) + g(r + q2)− q1q2

}
= sup

q1,q2≥0

{
q1q2 − f∗(q2)− g∗r (q1)

}
= sup

q2≥0

{
g(r + q2)− f∗(q2)

}
= sup

q1,q2≥0

{
q1(q2 + r)− f∗(q2)− g∗(q1)

}
,

where we used Proposition C.4 for the two last equalities. Therefore

sup
r≥0

sup
q1≥0

inf
q2≥0

{
f(q1) + g(r + q2)− q1q2 −

r2

2
}

= sup
q1,q2≥0

{
sup
r≥0

{
q1r −

r2

2
}

+ q1q2 − f∗(q2)− g∗(q1)
}

= sup
q1,q2≥0

{q2
1
2 + q1q2 − f∗(q2)− g∗(q1)

}
.

56



Chapter 5

Community detection in the
asymmetric stochastic block model

5.1 Introduction
The community detection problem is fundamental problem in statistics. It consists in
dividing the vertices of a given graph into groups which are more densely connected than
the rest of the graph. The stochastic block model is a popular model of random graphs that
exhibit communities: it is generated according to an underlying partition of the vertices.
This model has been studied for a long time in statistics (see [103]) computer science (see
[76]) and more recently in statistical physics (see [56]).
Definition 5.1.1 (Stochastic block model (SBM))

Let M be a 2×2 symmetric matrix whose entries are in [0, 1]. Let n ∈ N∗ and p ∈ [0, 1].
We define the stochastic block model with parameters (M,n, p) as the random graph
G defined by:

1. The vertices of G are the integers in {1, . . . , n}.

2. For each vertex i ∈ {1, . . . , n} one draws independently Xi ∈ {1, 2} according to
P(Xi = 1) = p. Xi will be called the label (or the class, or the community) of the
vertex i.

3. For each pair of vertices {i, j} the unoriented edge Gi,j is then drawn conditionally
on Xi and Xj according to a Bernoulli distribution with mean MXi,Xj .

Our main focus will be on the community detection problem: given the graph G, is it
possible to retrieve the labels X better than a random guess?

We investigate this question in the asymptotic of large sparse graphs, when n → +∞
while the average degree remains fixed. Our quantitative results will then be obtained
when the average degree tends to infinity. We define the connectivity matrix M as follows:

M = d

n

(
a b
b c

)
, (5.1.1)

where a, b, c, d remain fixed as n→ +∞. In this case, it is not possible to correctly classify
more than a certain fraction of the vertices correctly and we will say that community de-
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Figure 5.1: The Stochastic Block Model with two communities of different sizes.

tection is solvable if there is some algorithm that recovers the communities more accurately
than a random guess would.

The symmetric case where p = 1/2 and a = c has been extensively studied starting
with [56] and gives rise to an interesting phenomenon: if d(1 − b)2 < 1 then community
detection is not solvable [155], while if d(1−b)2 > 1, it is solvable (in polynomial time) [138,
154]. Much less is known in the case where (5.1.2) holds and p < 1/2. The aim of this
work is to investigate this asymmetric case. The main question is: does the asymmetry
change the location of the above mentioned threshold?

A simple argument (see below) shows that if pa+(1−p)b 6= pb+(1−p)c then non-trivial
information on the community of a vertex can be gained just by looking at its degree and
the community detection is then solvable. In this paper, we concentrate on the case:

pa+ (1− p)b = pb+ (1− p)c = 1. (5.1.2)

Under condition (5.1.2), the matrix R defined by

R =
(
pa (1− p)b
pb (1− p)c

)
(5.1.3)

is a stochastic matrix with two eigenvalues: λ1 = 1 > λ2 = 1− b. Define

λ = dλ2
2 = d(1− b)2 . (5.1.4)

If λ > 1, it is shown in [161] that it is easy to distinguish G from an Erdős-Rényi model
with the same average degree. In this regime, the spectral algorithm based on the non-
backtracking matrix solves the community detection problem [36, 1]. Here, we prove that
if a vanishing fraction of labels is given, then a local algorithm (belief propagation) allows
to solve the community detection problem.

The case λ < 1 (known as below the Kesten-Stigum bound) is more challenging. It
is shown in [161], that the community detection problem is still solvable for some values
of p but it is expected in [56] that no computationally efficient reconstruction is possible.
In [161], some bounds are given on the non-reconstructability region but they are not
expected to be tight.

In this work, we are mainly interested in a regime where d tends to infinity while
λ = d(1−b)2 remains constant (in particular a, b, c tend to one). Note that we first let n tend
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to infinity and then let d tend to infinity mainly in order to get explicit formulas. In this
regime, we show that for all values of p ∈ (p∗, 1/2) with p∗ = 1

2−
1

2
√

3 , the situation is similar
to the balanced case: below the Kesten-Stigum bound, i.e. when λ < 1, the community
detection problem is not solvable. For p < p∗, we compute a function p 7→ λsp(p) < 1 such
that for λ < λsp(p), the community detection problem is not solvable. As shown by [161],
there are points in the region λsp(p) < λ < 1 where the community detection problem is
solvable but we do not expect the bound λsp(p) to be tight, i.e. the information theoretic
threshold for community detection should be above λsp(p) for p < p∗.

There is an important probabilistic interpretation of the matrix R relating to the local
structure of the SBM. As explained below, the SBM converges locally toward a labeled
Poisson Galton-Watson branching process with mean offspring d: the label of the root is
1 with probability p and 2 with probability 1 − p and then conditioned on the parent’s
label being i, its children’s labels are independently chosen to be j with probability Rij. A
problem closely related to the detection problem in the SBM is the reconstruction problem
on this random tree: given some information about the labels at depth n from the root,
is it possible to infer some information about the label of the root when n → ∞? It is
known [153] that the Kesten-Stigum bound corresponds to census-solvability (i.e. knowing
only the number of labels 1 and 2 at depth n allows to get some information about the label
of the root). When d → ∞, we show that λsp(p) corresponds to the solvability threshold
for the reconstruction problem on the tree (i.e. knowing the labels at depth n allows to get
some information about the label of the root). We also consider the reconstruction problem
where the label of each node at depth n is revealed with probability q. Then in the region
λsp(p) < λ < 1, we compute the minimal value of q such that some information about
the label of the root can be recovered from the revealed labels. Above the Kesten-Stigum
bound, i.e. when 1 < λ, this minimal value is 0.
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Figure 5.2: Phase diagram for the asymmetric community detection problem. The easy
phase follows from [36], the impossible phase below the spinodal curve (red curve) is proved
in this paper and the hard phase is a conjecture. The dotted curve corresponding to λc(p) is
the conjectured curve for solvability of the community detection problem (see discussion in
Section 5.4).

We summarize our main results on the phase diagram of Figure 5.2:
• Above the Kesten-Stigum bound (blue line), reconstruction is possible by a local

algorithm given that an arbitrary small fraction of the labels is revealed. Moreover,
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the local algorithms (with this arbitrary small side information) achieve then the best
possible performance without side information (see Proposition 5.3.1).

• Between the blue and the red line, we show that local algorithms are efficient for
reconstruction when a certain fraction of labels is revealed (see Proposition 5.4.2).

• We show that reconstruction is impossible below the spinodal curve (red line), see
Proposition 5.4.1.

In Section 5.2, we define the community detection problem and its variation when some
labels are revealed. In Section 5.3, we give our main results about reconstruction above
the Kesten-Stigum bound and in Section 5.4, we describe what happens below the Kesten-
Stigum bound. Section 5.5 defines the various notions of solvability for the problem of
reconstruction on trees and gives our main result for this problem. We first use the cavity
method on trees in Section 5.6 and then relate these results to the original problem of
community detection in Section 5.7. Finally, we show in Section 5.9 that the community
detection problem is in some sense equivalent to the low-rank matrix estimation problem
of Chapter 3. This allows to use the results of Chapter 3 to obtain precise reconstruction
limits for the stochastic block model.

5.2 The community detection problem
We are interested in inferring the labels X from the graph G. To do so, we aim at construct-
ing an estimator (i.e. a function of the observationG) T (G) = (T1(G), . . . , Tn(G)) ∈ {1, 2}n,
such that Ti(G) is ‘close’ to Xi. We will measure the performance of T using the ‘rescaled
average success probability’ defined as follows

Psuc(T )= 1
n

n∑
i=1

(
P(Ti(G)=1|Xi=1) + P(Ti(G)=2|Xi=2)− 1

)
. (5.2.1)

The ‘−1’ is here to rescale the success probability and to ensure that Psuc = 0 for ‘dummy
estimators’ (i.e. estimators that do not depend on the observed graph G). The optimal
test with respect to this metric is

T opt
i (G) =

1 if log P(Xi=1|G)
P(Xi=2|G) ≥ log( p

1−p),
2 otherwise.

(5.2.2)

Let s0 be uniformly chosen among the vertices of G, independently of all other random
variables. The maximal achievable rescaled success probability reduces then to

Psuc(T opt)= P(T opt
s0 (G)=1|Xs0 =1) + P(T opt

s0 (G)=2|Xs0 =2)− 1.

We define a notion of solvability for the community detection problem.
Definition 5.2.1

We say that the community detection problem on a given stochastic block model is
solvable if

lim inf
n→∞

Psuc(T opt) > 0.

We have another equivalent characterization for solvability given by the following propo-
sition:
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Proposition 5.2.1
We have

Psuc(T opt) = DTV(P1, P2),

where P1 and P2 denote the conditional distribution of the graph G, conditionally
respectively on Xs0 = 1 and Xs0 = 2, where s0 is a uniformly chosen random vertex of
G. DTV denotes the total variation distance.

Proof. The set of estimators of Xs0 is precisely {1 + 1A|A measurable set}. Consequently

Psuc(T opt) = sup
A measurable

P(G ∈ Ac|Xs0 = 1) + P(G ∈ A|Xs0 = 2)− 1

= sup
A measurable

P1(Ac) + P2(A)− 1 = sup
A measurable

P2(A)− P1(A)

= DTV(P1, P2).

In our setting (5.1.1), the asymptotic degree distribution of a given vertex is a Poisson
random variable. Let i ∈ {1, . . . , n} be a vertex of G, we will denote by di its degree. Then
we have

di
(d)−−−−→

n→+∞
Poi(d(pa+ (1− p)b)) conditionally on {Xi = 1},

di
(d)−−−−→

n→+∞
Poi(d(pb+ (1− p)c)) conditionally on {Xi = 2}.

If the asymptotic average degrees differ from class 1 to class 2, we see easily that the
problem is solvable.
Lemma 5.2.1

If pa+ (1− p)b 6= pb+ (1− p)c then the community detection problem is solvable.

Proof. Using the definition of solvability in terms of the total variation distance, we have:

lim inf
n→∞

DTV(P1, P2) = lim inf
n→∞

sup
event A

|P1(A)− P2(A)|

≥ lim inf
n→∞

sup
B⊂N
|P1({ds0 ∈ B})− P2({ds0 ∈ B})|

= DTV(Poi(d(pa+ (1− p)b)),Poi(d(pb+ (1− p)c)))
> 0.

In the rest of the paper, we will always assume that (5.1.2) is valid, so that the average
degree in the graph is d. Most of our results below will be obtained in the limit where first
n tends to infinity and then d tends to infinity but the parameter λ will always remain
fixed, as well as the parameter p ∈ [0, 1/2] corresponding to the proportion of nodes in the
first community.

We now introduce a variation of the standard community detection problem where
a fraction q of the vertices have their labels revealed. This labels correspond to ‘side-
information’ given with the graph. More formally, in this setting the label Xv of each
vertex v ∈ {1, . . . , n} is observed with probability q ∈ [0, 1] independently of everything
else and the estimator T (G, q) = (T1(G, q), . . . , Tn(G, q)) is then a function of the observed
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graph G and the observed labels. The probability of success is again defined by (5.2.1)
where the Ti(G)’s are replaced by the Ti(G, q)’s and the optimal test T opt(G, q) is then

T opt
i (G, q) =

1 if log P(Xi=1|G,Y )
P(Xi=2|G,Y ) ≥ log( p

1−p)
2 otherwise,

where Y denotes the (random) set of observed vertices. Note that we have

lim inf
n→∞

Psuc(T opt(G, q)) ≥ q ≥ 0,

so that the notion of solvability of Definition 5.2.1 does not make sense in this case where
we have some side-information.

We end this section by some technical definitions. In order to state our main results,
we need to define the following function F from R≥0 to R:

F (µ) = λ

(1− p)2E
[

1
p+ (1− p) exp(√µZ − µ/2) − 1

]
,

where Z ∼ N (0, 1). Note that F is also a function of the parameters λ and p which are
considered as fixed.
Definition 5.2.2 (Spinodal curve)

The spinodal curve is defined as the function

λsp : p 7→ sup
{
λ ≥ 0 | 0 is the unique fixed point of F

}
. (5.2.3)

Let us define
p∗ = 1

2 −
1

2
√

3
. (5.2.4)

The spinodal curve λsp and p∗ are represented on Figure 5.2. p∗ corresponds to the
critical value of p below which λsp goes strictly below the ‘Kesten-Stigum’ line λ = 1. As
we can see on the phase diagram Figure 5.2, a “hard region” appears when p < p∗. The
following conjecture shows that λsp is well defined and summarizes its main properties.
Conjecture 5.2.1

(i) If λ > 1, then F has two fixed points: 0 and α > 0. Moreover, 0 is unstable and
α is stable.

(ii) For p∗ ≤ p ≤ 1/2, we have λsp(p) = 1.

(iii) For 0 ≤ p < p∗, we have λsp(p) < 1 and if λsp(p) < λ < 1, then F has three fixed
points: 0 < β < α. Moreover, 0 and α are stable and β is unstable.

The analysis of the function F seems challenging and we were only able to verify Conjec-
ture 5.2.1 numerically.
Proof. The exact value of p∗ follows from the following (non-rigorous) argument. a small µ
expansion of the function F gives

F (µ) ≈ λµ+ λ

2 (1− 6p(1− p))µ2.

Thus, if 1− 6p(1− p) > 0 (i.e. if p < p∗), then F is convex in a neighborhood of 0. Thus, when
λ < 1, F is likely to have 3 fixed points.
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5.3 Reconstructability above the Kesten-Stigum
bound

We first consider the case λ > 1.
Proposition 5.3.1

If λ > 1, then we have

lim sup
d→∞

lim sup
n→∞

Psuc(T opt) ≤ 2P(N (α/2, α) > 0)− 1, (5.3.1)

where α > 0 is the stable fixed point in Conjecture 5.2.1 (i). Moreover, for all 0 < q < 1,
we have

lim inf
d→∞

lim inf
n→∞

Psuc(T opt(G, q)) ≥ 2P(N (α/2, α) > 0)− 1.

Proposition 5.3.1 will follow from Corollary 5.7.1 and Corollary 5.7.2 below.
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Figure 5.3: Lower bound for the probability to recover the true label of a typical vertex by
an optimal local algorithm with side information for p > p∗ as a function of λ (i.e. function
2P(N (α/2, α) > 0)− 1 for p = 0.25 > p∗).

In words, we see that if a vanishing fraction of the labels is revealed, then the probability
to recover the true label of a typical vertex by the optimal algorithm is 2P(N (α/2, α) >
0) − 1. Indeed, we believe that (5.3.1) should be an equality. On Figure 5.3, we give
a drawing of this curve as a function of λ for p = 0.25 > p∗ and on Figure 5.4 for
p = 0.005 < p∗. Note that at this stage, we only gave an interpretation of the curve for
λ > 1. We deal with the case λ < 1 in the next section.

Before that, we give a result which shows that if a vanishing fraction of the labels is
revealed then the optimal recovery is achieved by a local algorithm. Similar results in the
case where (5.1.2) does not hold have been proved in [157]. In the large degree regime, our
result improves Proposition 3 in [120] which deals only with the case p = 0.5 and λ larger
than a large constant C. The fact that local algorithms are very efficient as soon as q > 0
(even optimal in the limit q → 0) leads to linear time algorithms for community detection
(when some labels are revealed). Indeed from a practical perspective, we believe that our
analysis carries over to the labeled stochastic block model [101, 131]. It is then possible
to devise new clustering algorithms based on a similarity graph which are shown to be
optimal for a wide range of models [187] and also local semi-supervised learning clustering
algorithms, see [186] for more details in this direction.
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We now define local algorithms. For an integer t, a test T (G, q) = (T1(G, q), . . . , Tn(G, q))
is t-local if each Ti(G, q) is a function of the graph Bt(G, i) induced by the vertices of G
whose distance from i is at most t. We denote by Loct the set of t-local tests and by
Loc = ∪t≥0Loct the set of local tests.
Proposition 5.3.2

If λ > 1, then we have for all 0 < q ≤ 1,

sup
T∈Loc

lim
d→∞

lim
n→∞

Psuc(T (G, q)) ≥ 2P(N (α/2, α) > 0)− 1,

where α > 0 is the stable fixed point in Conjecture 5.2.1 (i).

Proposition 5.3.2 will follow from Corollary 5.7.2. Note in particular that as a vanishing
fraction of labels is revealed, i.e. q → 0, the best local algorithm performs at least as well
as the optimal algorithm with no revealed labels. An explicit description of an optimal
local test (obtained using ‘belief-propagation’) is given in the proof of Corollary 5.7.2.

5.4 Non reconstructability below the spinodal
curve

We now state our second main result which states that reconstruction is impossible below
the spinodal curve.
Proposition 5.4.1

If λ < λsp(p) then
lim
d→∞

lim
n→∞

Psuc(T opt) = 0.

Proposition 5.4.1 will follow from Corollary 5.7.1. If

λc(p) def= inf
{
λ ≥ 0

∣∣∣ community detection is solvable
}

denotes the solvability threshold, then Proposition 5.4.1 implies that λsp(p) ≤ λc(p). More-
over thanks to [36], the Kesten-Stigum threshold is an upper bound on the solvability
threshold so that we have λc(p) ≤ 1. For p ≥ p∗ defined in (5.2.4), the spinodal curve
is equal to the Kesten-Stigum threshold by Conjecture 5.2.1 (ii), so that we have in this
case λc(p) = 1 and moreover as soon as the community detection problem is solvable, it
is solvable in polynomial time thanks to the results in [36]. Figure 5.3 is valid for λ < 1.
However for p < p∗, there is a gap between the spinodal curve and Kesten-Stigum threshold
and we conjecture that λsp(p) < λc(p) < 1, see Figure 5.2. In the case of dense graphs
(where the average degree d is of order n), the value of λc(p) has been computed in the
recent works [129] and [18]. We conjecture that their expression (used in Figure 5.2) is still
valid for sparse graphs in the large degree regime.

Our next result states that it is possible to reconstruct the communities below the
spinodal curve, given a sufficient amount of side-information.
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Figure 5.4: Necessary fraction of revealed labels (red) and corresponding lower bound of
probability to recover the true label of a typical vertex by an optimal local algorithm (black)
for p < p∗, i.e. functions βp(1−p)

λ (in red) and 2P(N (α/2, α) > 0)− 1 (in black) appearing in
Proposition 5.4.2 as a function of λ for p = 0.05 < p∗.

Proposition 5.4.2

Consider the case where p < p∗ and λsp(p) < λ < 1. As soon as q > βp(1−p)
λ

, we have

lim
d→∞

lim inf
n→∞

Psuc(T opt(G, q)) ≥ sup
T∈Loc

lim
d→∞

lim inf
n→∞

Psuc(T (G, q))

≥ 2P(N (α/2, α) > 0)− 1,

where 0 < β < α are the fixed points defined in Conjecture 5.2.1 (iii).

Proposition 5.4.2 will follow from Corollary 5.7.2. In the regime of Proposition 5.4.2
(λsp(p) < λ < 1 and q > βp(1−p)

λ
), we believe that local algorithms are indeed optimal.

Figure 5.4 illustrates the case p < p∗ with p = 0.05 for which we have λsp(0.05) ≈ 0.58.
Also, if the number of revealed entries is sufficiently high (i.e. above the red curve) then
local algorithms provide a great improvement in the probability of successfully recovering
the label of a typical vertex (the black curve). A description of a local algorithm (belief-
propagation) achieving the lower bound in Proposition 5.4.2 is provided in the proof.

5.5 Reconstruction on trees
We will first concentrate on the reconstruction of the labels on trees. The tree structure
makes the analysis simpler and allows to deduce results for the stochastic block model,
because the SBM is asymptotically locally tree-like. In this section we are going to state
the analogous of the well known (see for instance [211]) local convergence of the Erdős-
Rényi random graph towards the Galton-Watson branching process, in terms of labeled
graphs. The labeled stochastic block model (G,X) will converge locally towards a random
labeled tree. We have to introduce first the notion of pointed labeled graphs.
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Definition 5.5.1 (Pointed labeled graphs)

• A pointed labeled graph is a triple G = (g, s0, x) where g is a countable, locally
finite and connected graph, s0 is a distinguished vertex of g called the root of the
graph and x = (xs)s∈Vg ∈ {1, 2}Vg are the labels of the vertices.

• Two pointed labeled graphs are equivalent if there exists a graph isomorphism
between them, that preserves the root and the labels.

• We define, for r ∈ N, [G]r, the ball of radius r of G, as the pointed labeled graph
induced by the root of G and all the vertices at distance at most r from the root.

The randomly rooted stochastic block model (G, s0, X) with parameters (M,n, p) is
therefore a random pointed labeled graph, that we will denote SBMn from now. We will
also be interested in a second family of random pointed labeled graphs, that will correspond
to the local limits of stochastic block models.
Definition 5.5.2 (Labeled Poisson Galton-Watson branching process)

Let A =
(

δ 1− δ
1− δ′ δ′

)
(where δ, δ′ ∈ [0, 1]) be a transition matrix. The labeled

Poisson Galton-Watson branching process with parameters (A, p, d) is a random pointed
labeled graph (T, s0, X), where

• (T, s0) is a Galton-Watson tree with offspring distribution Poi(d) rooted at s0.

• The labels X of the vertices of T are then chosen as follows:

1. The label of the root Xs0 ∈ {1, 2} is chosen accordingly to P(Xs0 = 1) = p.
2. Given the label Xp of the parent p of a node s, the probability that Xs =
i ∈ {1, 2} is equal to AXp,i independently from all other random variables.

In the following, we will denote GW = (T, s0, X), the labeled Galton-Watson branching
process with parameters (R, d, p) with R defined by (5.1.3). The next well known result
states that SBMn converges locally toward GW.

Theorem 5.5.1
Let f be a (positive or bounded) function of pointed labeled graphs, that depends only

on the ball of radius r. Then

E
[
f(SBMn)

]
−−−→
n→∞

E
[
f(GW)

]
.

A main ingredient for our proof will therefore be the analysis of this well-studied prob-
lem of reconstruction on trees [82, 156, 153]. In the rest of this section, we define the
reconstruction problem on trees and give the required results.

We consider here GW = (T, s0, X) the labeled Poisson Galton-Watson branching pro-
cess with parameters (R, p, d). We denote Ln = {v ∈ VT | d(s0, v) = n}, the set of vertices
at distance n from the root. We define then X(n) = (Xs)s∈Ln and c(n) = (c(n)

1 , c
(n)
2 ) =

(#{s ∈ Ln | Xs = i})i=1,2. We also define a random subset En of the nodes at depth n
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as follows: let q ∈ [0, 1] and for n ∈ N, let En be the random subset of Ln obtained by
including in En each vertex s ∈ Ln independently with probability q.

We have three kinds of reconstruction problems.
Definition 5.5.3 (Solvability, q-solvability and census solvability)

We say that the reconstruction problem is solvable if

lim inf
n→∞

DTV(P (n)
1 , P

(n)
2 ) > 0,

where P
(n)
i denotes the conditional distribution of (T, s0, X

(n)) given Xs0 = i. One
defines analogously q-solvability (respectively census solvability) by replacing P (n)

i by
P

(n,q)
i (respectively P̃ (n)

i ), the conditional distribution of (T, s0, (Xs)s∈En) (respectively
(T, s0, c

(n))) given Xs0 = i.

Solvability corresponds thus to the special case q = 1. Obviously, census solvability
and q-solvability imply solvability, but we will see that solvability does not always imply
census solvability.

Similarly to the stochastic block model case, this characterization of solvability in terms
of total variation can be rewritten in terms of the maximal achievable success probability
for the estimation of Xs0 , given X(n) (or c(n)). We define the rescaled success probability
of an estimator T as

Psuc(T ) = P(T (X(n))=1|Xs0 =1) + P(T (X(n))=2|Xs0 =2)− 1.

The maximal rescaled success probability is then defined as ∆n = supT Psuc(T ) where the
supremum is taken over all measurable function of X(n). Even though we defined these
quantities for the solvability problem, these definitions and the following result can be
straightforwardly extended to q-solvability and census-solvability. The following lemma is
the analog of Proposition 5.2.1.
Lemma 5.5.1

∆n = DTV(P (n)
1 , P

(n)
2 ).

We recall here the census-solvability criterion for our particular case (which is a straight-
forward extension of the results presented in [153]).

Theorem 5.5.2
We consider the Poisson Galton-Watson branching process with parameter (R, p, d).

If λ > 1, then the problem is census-solvable and q-solvable for all 0 < q ≤ 1. If λ < 1,
then the problem is not census-solvable.

In the large d limit, we are able to get more quantitative results. We define

Popt = lim
d→∞

lim
n→∞

DTV(P (n)
1 , P

(n)
2 ),

P
(q)
opt = lim

d→∞
lim
n→∞

DTV(P (n,q)
1 , P

(n,q)
2 ).
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Proposition 5.5.1
We consider the Poisson Galton-Watson branching process with parameter (R, p, d).

Popt =

2P(N (α/2, α) > 0)− 1 > 0 if λ > λsp(p),
0 if λ < λsp(p),

where α is the stable fixed point in Conjecture 5.2.1. If λsp < λ < 1, then we have

P
(q)
opt =

2P(N (α/2, α) > 0)− 1 > 0 if q > βp(1−p)
λ

,

0 if q < βp(1−p)
λ

,

where α and β are the fixed points defined in Conjecture 5.2.1 (iii).

In particular, Proposition 5.5.1 shows that the spinodal curve is the solvability threshold
for the reconstruction on trees. Proposition 5.5.1 is proved at the end of the next section.

5.6 Cavity method on trees
To compute the optimal success probability ∆n = DTV(P (n)

1 , P
(n)
2 ) for the reconstruction

problem on trees, we need to study the behaviour of the optimal estimator. This estimator
is computed, similarly to (5.2.2), using the marginal distributions of the labels. We aim
therefore at computing these marginals.

Our approach here is closely related to the one of [149] which studies the problem of
finding one single community. We establish rigorously the ‘cavity equations’, a recursive
method to compute marginals, that originates from statistical physics.

We consider here the labeled branching process GW = (T, s0, X) with parameter
(R, p, d). In order to obtain quantitative results, we will be interested in the asymptotic of
large degrees d→∞ while λ remains fixed. We also define ε = 1− b =

√
λ
d
. We have then

a = 1 + 1− p
p

ε, b = 1− ε and c = 1 + p

1− pε. (5.6.1)

5.6.1 The cavity recursions
Let r ∈ N. For a given vertex s of GW = (T, s0, X), we note Ts the subtree induced by s
and its progeny.

With a slight abuse of notation, we write p(x) = p1x=1(1 − p)1x=2 . We define also
ψ(x, y) = a1y=x=1b1y 6=xc1y=x=2 . We now introduce the belief-propagation algorithm for la-
bel reconstruction. This algorithm computes ‘messages’, that approximate the marginal
distributions of the labels. The message of the vertex s ∈ [T ]r is defined as the following
function from {1, 2} → R:

νsr : xs 7→


p(xs)1xs=Xs if s ∈ Er,
p(xs) if s ∈ Lr \ Er,
p(xs)

∏
s→v

∑
xv
ψ(xs, xv)νvr (xv) if s /∈ Lr.

(5.6.2)
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Lemma 5.6.1
For all s ∈ [T ]r \ Lr,

νsr(xs) ∝ p(xs)
∑

(xv)v∈Ts∩[T ]r\{s}
(xv)v∈Er=(Xv)

∏
(i→j)∈[T ]r∩Ts

Rxi,xj , (5.6.3)

where ∝ means equality up to a multiplicative constant that is independent of xs.

Proof. We show this lemma by induction on the depth of ds
def= Ts ∩ [T ]r. Since s 6∈ Lr, we have

ds ≥ 1. We consider the following recursion hypothesis:

H(d) : for all s ∈ [T ]r such that ds ≤ d (5.6.3) holds.

H(1) follows from the definition of νsr . Suppose now that H(d) holds for some d ≥ 1. Let s ∈ [T ]r
such that ds = d+ 1. Then, by induction

νsr (xs) = p(xs)
∑

(xv)s→v

∏
s→v

ψ(xs, xv)νvr (xv)

= p(xs)
∑

(xv)s→v

∏
s→v

ψ(xs, xv)p(xv)
∑

(xu)u∈Tv∩[T ]r\{v}
(xu)u∈Er=(Xu)

∏
(i→j)∈[T ]r∩Tv

Rxi,xj

= p(xs)
∑

(xv)s→v

∏
s→v

Rxs,xv
∑

(xu)u∈Tv∩[T ]r\{v}
(xu)u∈Er=(Xu)

∏
(i→j)∈[T ]r∩Tv

Rxi,xj

= p(xs)
∑

(xv)v∈Ts∩[T ]r\{s}
(xv)v∈Er=(Xv)

∏
(i→j)∈[T ]r∩Ts

Rxi,xj ,

which proves that H(d+ 1) holds.

The next lemma states the well known fact that belief-propagation computes the exact
marginals on trees.
Lemma 5.6.2

νs0r (xs0) = P(Xs0 = xs0|T,Er, (Xv)v∈Er).

Proof. The structure of T outside of [T ]r does not provide any information about the labels of
the vertices, thus, using Lemma 5.6.1

P
(
Xs0 = xs0 |T,Er, (Xs)s∈Er

)
= P

(
Xs0 = xs0 | [T ]r, Er, (Xs)s∈Er

)
= p(xs0)

∑
(xs)s∈[T ]r\{s0}
(xs)s∈Er=(Xs)

∏
(i→j)∈[T ]r

Rxi,xj

= νs0r (xs0).

If we write ξsr = log(ν
s
r (1)
νsr (2)), the recursive definition (5.6.2) of the messages gives for

r ≥ 1,
ξs0r = h+

∑
s,s0→s

f(ξsr), (5.6.4)

where h = log( p
1−p) and f : x 7→ log aex+b

bex+c .
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Definition 5.6.1

We define Pr as the law of ξs0r = log P(Xs0=1|T,Er,(Xs)s∈Er )
P(Xs0=2|T,Er,(Xs)s∈Er ) . We denote P (1)

r and P (2)
r the

laws of ξs0r respectively conditionally on {Xs0 = 1} and {Xs0 = 2}.

For r ≥ 1. Let us work conditionally on {Xs0 = 1}. By the branching property of GW,
conditionally on {s1, . . . , sL} being the children of s0, the random variables ξs1r , . . . , ξsLr are
independent, identically distributed according to

paP
(1)
r−1 + (1− p)bP (2)

r−1.

Indeed, conditionally on {Xs0 = 1}, s1, . . . , sL
i.i.d.∼ paδ1 + (1− p)bδ2. Equation (5.6.4) leads

therefore to the following distributional recursions (the second one is obtained by the same
arguments):
Proposition 5.6.1 (Cavity equations)

For all r ≥ 1,

ξ(1)
r

(d)= h+
L1,1∑
i=1

f(ξ(1)
r−1,i) +

L1,2∑
i=1

f(ξ(2)
r−1,i), (5.6.5)

where ξr ∼ P (1)
r , L1,1 ∼ Poi(pad), L1,2 ∼ Poi((1 − p)bd), ξ(1)

r−1,i ∼ P
(1)
r−1, ξ(2)

r−1,i ∼ P
(2)
r−1,

and all these variables are independent.

ξ(2)
r

(d)= h+
L2,1∑
i=1

f(ξ(1)
r−1,i) +

L2,2∑
i=1

f(ξ(2)
r−1,i), (5.6.6)

where ξr ∼ P (2)
r , L2,1 ∼ Poi(pbd), L2,2 ∼ Poi((1 − p)cd), ξ(1)

r−1,i ∼ P
(1)
r−1, ξ(2)

r−1,i ∼ P
(2)
r−1,

and all these variables are independent.

5.6.2 Gaussian limit

We are interested in the limit distributions of P (1)
r and P (2)

r , because they encode the
marginal distributions of the labels and thus allow to derive the optimal reconstruction
performances. We study the recursions (5.6.5) and (5.6.6). More precisely, we show that
P (1)
r and P (2)

r converge in Wasserstein sense toward Gaussian distributions when d → ∞
and λ remains fixed.
Proposition 5.6.2

For all r ≥ 1,

P (1)
r

W2−−−−→
d→+∞

N (h+ µr
2 , µr),

P (2)
r

W2−−−−→
d→+∞

N (h− µr
2 , µr),

where W2−−→ denote the convergence with respect to W2, the Wasserstein distance of order
2, and (µr)r≥1 is defined by µ1 = qλ

p(1−p)

µk+1 = F (µk).
(5.6.7)
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Proposition 5.6.2 is proved in Section 5.8. Proposition 5.5.1 is now a consequence of
Conjecture 5.2.1 and the following corollary.
Corollary 5.6.1

For all 0 ≤ q ≤ 1,

lim
r→∞

lim
d→∞

DTV(P (r,q)
1 , P

(r,q)
2 ) = 2P(N (µ∞/2, µ∞) > 0)− 1,

where µ∞ is the limit of (µr) defined in (5.6.7).

Proof. The optimal test according the performance measure Psuc is

T (GW)
r (T,Er, (Xs)s∈Er) =

{
1 if ξr ≥ log p

1−p ,

2 otherwise.
(5.6.8)

Analogously to Lemma 5.5.1, we have

DTV(P (r,q)
1 , P

(r,q)
2 ) = Psuc(T (GW)

r )

= P
(
ξ(1)
r ≥ log p

1− p

)
+ P

(
ξ(2)
r < log p

1− p

)
− 1

−−−→
d→∞

2P(N (µr/2, µr) > 0)− 1

−−−→
r→∞

2P(N (µ∞/2, µ∞) > 0)− 1,

where we have used Proposition 5.6.2.

5.7 Proofs for the stochastic block model
In this section, we apply the results that we obtained for the reconstruction on the branch-
ing process to derive bounds for the community detection problem on the stochastic block
model.

Consider the case, where a fraction 0 ≤ q ≤ 1 is revealed: one observes the graph G and
additionally each label Xv with probability q, for 1 ≤ v ≤ n, independently of everything
else. Let us denote EG = {1 ≤ v ≤ n | Xv is revealed}.

Let s0 be uniformly chosen among the vertices of G. For r ≥ 0 we define (analogously
to the case of the branching process) EG,r = ∂[G]r ∩ EG, i.e. the vertices at the boundary
of the ball of center s0 and radius r, whose label has been revealed. Define

ξG,r = log
(
P(Xs0 = 1|[G]r, (Xs)s∈EG,r)
P(Xs0 = 2|[G]r, (Xs)s∈EG,r)

)
. (5.7.1)

Let us denote P (1)
G,r and P

(2)
G,r the laws of ξG,r conditionally respectively on Xs0 = 1 and

Xs0 = 2.
Proposition 5.7.1

For i = 1, 2; P
(i)
G,r −−−→n→∞

P (i)
r ,

where P (i)
r is defined in Definition 5.6.1.
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Proposition 5.7.1 is a consequence of the local convergence of the stochastic block model
towards a branching process (Theorem 5.5.1).
Proof. Let us define

ϕn : (G̃, s̃0, X̃, Ẽr) 7→ log
P(Xs0 = 1|[G]r = [G̃]r, (Xs)s∈EG,r = (X̃s)s∈Ẽr , EG,r = Ẽr)
P(Xs0 = 2|[G]r = [G̃]r, (Xs)s∈EG,r = (X̃s)s∈Ẽr , EG,r = Ẽr)

and

ϕ∞ : (G̃, s̃0, X̃, Ẽr) 7→

log
P(Xs0=1|[T ]r=[G̃]r,(Xs)s∈Er=(X̃s)

s∈Ẽr
,Er=Ẽr)

P(Xs0=2|[T ]r=[G̃]r,(Xs)s∈Er=(X̃s)
s∈Ẽr

,Er=Ẽr)
if [G̃]r is a tree,

0 otherwise.

Let (G̃, s̃0, X̃) be a fixed pointed labeled graph such that [G̃]r is a tree. Let Ẽr be a subset of the
vertices in ∂[G̃]r. A straightforward extension of Theorem 5.5.1 gives us

ϕn(G̃, s̃0, X̃, Ẽr) −−−→
n→∞

ϕ∞(G̃, s̃0, X̃, Ẽr). (5.7.2)

Another consequence of the local convergence of (SBMn) toward GW is that one can couple
(SBMn, EG,r)n and (GW, Er) on a probability space such that there exists n0 ∈ N such that

∀n ≥ n0, [SBMn, EG,r]r = [GW, Er]r.

Let n ≥ n0
ϕn(SBMn, EG,r) = ϕn(GW, Er) −−−→

n→∞
ϕ∞(GW, Er).

On this probability space ϕn(SBMn, EG,r) converges almost surely to ϕ∞(GW, Er), hence the
convergence of the conditional distributions.

Define the local test

T loc
r (G,X) =

1 if ξG,r ≥ log p
1−p ,

2 otherwise.
(5.7.3)

T loc
r is the optimal r-local test, with side information (Xs)s∈EG,r . Note that ξG,r (and thus
T loc
r ) is computed by the belief propagation algorithm. Using the results on the branching

process, we are now able to fully characterize the performance of T loc.
Proposition 5.7.2

For all 0 ≤ q ≤ 1,

lim
r→∞

lim
d→∞

lim
n→∞

Psuc(T loc
r ) = 2P(N (µ∞/2, µ∞) > 0)− 1,

where µ∞ is the limit of the sequence defined by (5.6.7).

Proof. Using Propositions 5.7.1 and 5.6.2
P

(1)
G,r

(d)−−−→
n→∞

P
(1)
r

(d)−−−→
d→∞

N (h+ µr
2 , µr),

P
(2)
G,r

(d)−−−→
n→∞

P
(2)
r

(d)−−−→
d→∞

N (h− µr
2 , µr),
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where µr is defined by the recursion (5.6.7). Therefore (recall that h = log p
1−p)

Psuc(T loc
r )= P(ξG,r≥ h|Xs0 =1) + P(ξG,r< h|Xs0 =2)− 1

−−−→
n→∞

P
(1)
G,r(ξG,r ≥ h) + P

(2)
G,r(ξG,r < h)− 1

−−−→
d→∞

2P(N (µr/2, µr) > 0)− 1

−−−→
r→∞

2P(N (µ∞/2, µ∞) > 0)− 1.

5.7.1 Upper bound
We can now deduce an upper bound on the optimal performance for the community de-
tection problem.
Corollary 5.7.1

We have:
lim sup
d→∞

lim sup
n→∞

Psuc(T opt) ≤ 2P(N (µ∞/2, µ∞) > 0)− 1,

where µ∞ is the limit of the sequence defined by (5.6.7) in the case q = 1.

Proposition 5.4.1 and the first part of Proposition 5.3.1 are then consequences of this
corollary:

• when λ < λsp(p), µ∞ = 0 and consequently limd→∞ lim supn→∞ Psuc(T opt) = 0.

• when λ > 1, then µ∞ = α, hence the first bound of Proposition 5.3.1.

Proof. Let r > 0. Let s0 be uniformly chosen from the vertices of G. We aim at estimating
Xs0 from the rooted graph (G, s0). As seen in Section 5.2, the optimal test in terms of rescaled
success probability Psuc is

T opt(G) =

1 if log(P(Xs0=1|G)
P(Xs0=2|G)) ≥ log( p

1−p),
2 otherwise.

We are going to analyze the oracle

T ∗r (G,X) =

1 if log P(Xs0=1|G,(Xs)s∈∂[G]r )
P(Xs0=2|G,(Xs)s∈∂[G]r ) ≥ log p

1−p ,

2 otherwise.

Obviously, Psuc(T opt) ≤ Psuc(T ∗r ). The oracle T ∗r uses extra information (Xs)s∈∂[G]r but is a local
test, i.e. a test that only depends on the ball of radius r:

ξ∗G,r
def= log

P(Xs0 = 1|G, (Xs)s∈∂[G]r)
P(Xs0 = 2|G, (Xs)s∈∂[G]r)

= log
P(Xs0 = 1|[G]r, (Xs)s∈∂[G]r)
P(Xs0 = 2|[G]r, (Xs)s∈∂[G]r)

.

ξ∗G,r is thus equal to ξG,r from equation (5.7.1), when q = 1. We conclude using Proposition 5.7.2
and the fact Psuc(T opt) ≤ Psuc(T ∗r ).
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5.7.2 Lower bound
We now establish a lower bound for estimation when a fraction q of the labels is revealed.
Corollary 5.7.2

For all 0 ≤ q ≤ 1,

lim inf
d→∞

lim inf
n→∞

Psuc(T opt(G, q)) ≥ 2P(N (µ∞/2, µ∞) > 0)− 1, (5.7.4)

where µ∞ is the limit of the sequence defined by (5.6.7).

Proof. Here, we are going to bound Psuc(T opt(G, q)) from below by the performance of the local
test T loc

r (that corresponds to the estimator derived from belief-propagation) defined by (5.7.3).
Obviously, Psuc(T opt(G, q)) ≥ Psuc(T loc

r ) and Proposition 5.7.2 gives then the result.
The second part of Proposition 5.3.1 follows from this corollary. Indeed, when λ > 1

and q > 0, µ∞ = α > 0.
Corollary 5.7.2 leads also to proposition 5.4.2: when q > βp(1−p)

λ
, then µ1 > β and thus

(µk) converges to the fixed point α > β of G: µ∞ = α > 0.
We deduce also Proposition 5.3.2 from the proof of Corollary 5.7.2. Indeed, we will see

that the lower bound in (5.7.4) is achieved by a local test.

5.8 Proof of Proposition 5.6.2
We prove Proposition 5.6.2 by induction over r ≥ 1. Proposition 5.6.2 follows from Lem-
mas 5.8.1 and 5.8.3 below.

5.8.1 Initialization

First of all, we are going to show that ξ(1)
1 and ξ(2)

1 converge towards Gaussian distributions.
Lemma 5.8.1

ξ
(1)
1

W2−−−−→
d→+∞

N (h+ µ1

2 , µ1),

ξ
(2)
1

W2−−−−→
d→+∞

N (h− µ1

2 , µ1).

Proof. We will only prove the convergence for ξ(1)
1 , the convergence for ξ(2)

1 can be obtained
analogously. We have

ξ
(1)
0 =

{
+∞ with probability q
h with probability 1− q,

and ξ
(2)
0 =

{
−∞ with probability q
h with probability 1− q.

Therefore, the recursion (5.6.5) gives

ξ
(1)
1

(d)= h+ L log
(
a

b

)
+ L′ log

(
b

c

)
,
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where L ∼ Poi(padq) and L′ ∼ Poi((1− p)bdq) are independent. By isolating the means

ξ
(1)
1

(d)= h+ (L− padq) log
(
a

b

)
+ (L′ − (1− q)bdp) log

(
b

c

)
+ dq

(
pa log

(
a

b

)
+ (1− p)b log

(
b

c

))
. (5.8.1)

In the d→∞ limit, log(ab ) = ε
p+ 1

2ε
2(1−(1−p

p )2)+o(ε2) and log( bc) = − ε
1−p−

1
2ε

2(1−( p
1−p)2)+o(ε2),

so the last term in (5.8.1) becomes

dq

(
pa log a

b
+ (1− p)b log b

c

)
= qλ

(1
p

+ 2p− 1
2p(1− p)

)
+ o(1)

= qλ

2p(1− p) + o(1).

Now, to deal with the remaining terms in (5.8.1) we are going to use the following corollary the
Central Limit Theorem.
Lemma 5.8.2

Let (an)n ∈ (0,+∞)N, such that an −−−→
n→∞

+∞. Let Xn be a sequence of random variable
such that Xn ∼ Poi(an). Then

1
√
an

(Xn − an) W2−−−→
n→∞

N (0, 1).

Proof. We define vn
def= an
dane → 1. Let (Y (n)

i ) i.i.d.∼ Poi(vn)− vn. By the central limit theorem we
have

1
√
an

(Xn − an) (d)= 1
√
an

dane∑
i=1

Y
(n)
i

W2−−−→
n→∞

N (0, 1).

Applying this result to the terms in (5.8.1), we obtain (L− padq) log(ab ) W2−−−→
d→∞

N (0, λqp ) and

(L′ − (1− p)bdq) log( bc)
W2−−−→
d→∞

N (0, λq
1−p) and finally

ξ
(1)
1

W2−−−→
d→∞

N (h+ µ1
2 , µ1).

5.8.2 Induction
The following lemma (combined with Lemma 5.8.1) concludes the proof of Proposition 5.6.2
by induction.
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Lemma 5.8.3
Suppose that, for a fixed r ≥ 1 we have

ξ(1)
r

W2−−−−→
d→+∞

N (h+ µr
2 , µr),

ξ(2)
r

W2−−−−→
d→+∞

N (h− µr
2 , µr).

Then

ξ
(1)
r+1

W2−−−−→
d→+∞

N (h+ µr+1

2 , µr+1),

ξ
(2)
r+1

W2−−−−→
d→+∞

N (h− µr+1

2 , µr+1),

where µr+1 = F (µr).

Proof. We first compute the limits of the mean and the variance of ξ(1,2)
r+1 . To do so, we will need

the following well known Wald formulas.
Lemma 5.8.4 (Wald formulas)

Let X1, . . . , Xn be i.i.d. integrable real random variables, and T a N valued integrable random

variable, independent from the Xi. Then
T∑
i=1

Xi is integrable and

E
[
T∑
i=1

Xi

]
= E[T ]E[X].

Moreover, if the variables (Xi) are square integrable and centered

Var
(

T∑
i=1

Xi

)
= E[T ]E

[
X2
]
.

Using Wald formulas above and Proposition 5.6.1, we obtain

Eξ(1)
r+1 = h+ pad Ef(ξ(1)

r ) + (1− p)bd Ef(ξ(2)
r ), (5.8.2)

Eξ(2)
r+1 = h+ pbd Ef(ξ(1)

r ) + (1− p)cd Ef(ξ(2)
r ). (5.8.3)

We will now compute an approximation for the function f in the large d limit. f(ξ) = log(
a
b
eξ+1
eξ+ c

b
)

and we have a
b = 1 + 1

pε+O(ε2) and c
b = 1 + 1

1−pε+O(ε2). Thus

f(ξ) = log
(

1 + ε
eξ

p(1 + eξ) +O(ε2)
)
− log

(
1 + ε

1
(1− p)(1 + eξ) +O(ε2)

)
.

The Taylor-Lagrange formula ensures that

∀a ∈ [0, 1],∀x ≥ 0,
∣∣∣∣∣log(1 + ax)− ax+ a2x2

2

∣∣∣∣∣ ≤ 1
3x

3.

Therefore

f(x) =ε ex

p(1 + ex) −
ε2

2p2

(
ex

1 + ex

)2
− ε 1

(1− p)(1 + ex) + ε2

2(1− p)2

( 1
1 + ex

)2
+O(ε3) (5.8.4)

To simplify the computation, we need the following so-called ‘Nishimori condition’.
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Lemma 5.8.5
For all continuous bounded function g:

E
[
g(ξ(2)

r )
]

= p

1− pE
[
g(ξ(1)

r )e−ξ
(1)
r

]
.

Proof. This is a consequence of Bayes rule.

P(ξ2
r ∈ A) = P(ξr ∈ A|Xs0 = 2) = P(ξr ∈ A,Xs0 = 2)

1− p

= 1
1− pE(1(ξr ∈ A)P(Xs0 = 2|GW, Er, (Xs)s∈Er))

= 1
1− pE(1(ξr ∈ A)P(Xs0 = 1|GW, Er, (Xs)s∈Er)e−ξr)

= p

1− pE(1(ξr ∈ A)e−ξr |Xs0 = 1).

We use Lemma 5.8.5 to deduce the following identities.
Corollary 5.8.1

pE
eξ

(1)
r

1 + eξ
(1)
r

+ (1− p)E eξ
(2)
r

1 + eξ
(2)
r

= p,

pE

 eξ
(1)
r

1 + eξ
(1)
r

2

+ (1− p)E

 eξ
(2)
r

1 + eξ
(2)
r

2

= pE
eξ

(1)
r

1 + eξ
(1)
r

.

Replacing f by its approximation (5.8.4) in equations (5.8.2) and (5.8.3) and applying Corol-
lary 5.8.1, we obtain that Eξ(1)

r+1 −−−−→
d→+∞

h − 1
2F (µr) and Eξ(2)

r+1 −−−−→
d→+∞

h + 1
2F (µr). Similar

calculations show that Var(ξ(1)
r+1) −−−−→

d→+∞
F (µr) and Var(ξ(2)

r+1) −−−−→
d→+∞

F (µr).

It remains to show that ξ(1)
r+1 is converging toward a Gaussian distribution in the Wasserstein

sense. We will need the following lemma.
Lemma 5.8.6

For i = 1, 2,
√
d E[f(ξ(i)

r )] and d E[f(ξ(i)
r )2] are both converging to constants when d→ +∞.

Proof.
√
df(x) =

√
d εp

ex

1+ex −
√
d ε

1−p
1

1+ex + o(1). So

√
d E

[
f(ξ(i)

r )
]
=
√
d
ε

p
E

 eξ
(i)
r

1 + eξ
(i)
r

−√d ε

1− pE
[

1
1 + eξ

(i)
r

]
+ o(1),

and all the terms in this expression are converging by weak convergence of ξ(i)
r and the fact that

ε ∼
√

λ
d . The other limit is proved analogously.

Compute now

ξ
(1)
r+1 − Eξ(1)

r+1 =
L1,1∑
i=1

f(ξ(1)
r,i )− Ef(ξ(1)

r,i ) +
L1,2∑
i=1

f(ξ(2)
r,i )− Ef(ξ(2)

r,i )

+ (L1,1 − EL1,1)Ef(ξ(1)
r ) + (L1,2 − EL1,2)Ef(ξ(2)

r ) (5.8.5)
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We write Xi = f(ξ(1)
r,i )− Ef(ξ(1)

r,i ) and Yi = f(ξ(2)
r,i )− Ef(ξ(2)

r,i ). Let us decompose the first sum:
L1,1∑
i=1

Xi =
EL1,1∑
i=1

Xi +
L1,1∑
i=1

Xi −
EL1,1∑
i=1

Xi︸ ︷︷ ︸
S

.

We first show that S W2−−−→
d→∞

δ0. Wald identities give us

Var(S) = Var

|L1,1−EL1,1|∑
i=1

Xi

 = E
[
|L1,1 − EL1,1|

]
E[X2

1 ]

= 1
d
E
[
|L1,1 − EL1,1|

]
︸ ︷︷ ︸

−−−→
d→∞

0

bVar
(
f(ξ(0)

r )
)︸ ︷︷ ︸

O(1)

−−−→
d→∞

0.

And therefore S W2−−−→
d→∞

δ0 because ES = 0. Next, we apply the Central Limit Theorem to the
sum

EL1,1∑
i=1

Xi = 1√
(1− p)a

(1−p)a∑
i=1

√
(1− p)aXi︸ ︷︷ ︸

i.i.d., bounded random variables

.

We obtain that the sum converges with respect to the Wasserstein metric to a normal distribution.
The two first sums in (5.8.5) are independent and converge to Gaussian distributions in the

Wasserstein sense. It remains to show that the last two terms are converging toward Gaussian
distributions. This is indeed the case because

(L1,1 − EL1,1)Ef(ξ(0)
r ) = 1√

d
(L1,1 − EL1,1)

√
dEf(ξ(0)

r ).

1√
d
(L1,1 − EL1,1) converges toward a Gaussian distribution and

√
dEf(ξ(0)

r ) converges (to a con-
stant) as d→∞. The last term is treated the same way.

ξ
(1)
r+1 is therefore converging toward a Gaussian distribution in the Wasserstein sense. The

mean and the variance of this Gaussian distribution are necessarily equal the limits of the means
and the variance of ξ(1)

r+1 that we computed.

5.9 Connection with rank-one matrix estima-
tion

We adopt now a completely different point of view from the previous sections, in order
to relate the community detection problem to the rank-one matrix estimation problem of
Chapter 3. Rougthly, we will show now that the graph G contains, in some sense, “as
much information” about the classes X than the matrix Y given by

Yi,j =
√
λ

n
X̃iX̃j + Zi,j for 1 ≤ i < j ≤ n

where Zi,j i.i.d.∼ N (0, 1) independently of everything else and X̃i = φp(Xi) where φp(1) =√
1−p
p

and φp(2) = −
√

p
1−p . In the case of two symmetric communities (i.e. p = 1/2)

this was done in [59] who showed that the mutual information of the two models where
approximately equal: 1

n
I(X;G) ' 1

n
I(X̃;Y ). Following the proof strategy of [59] we

generalize this to the asymmetric case:
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Theorem 5.9.1
There exists a constant C > 0 such that, for d large enough

lim sup
n→∞

1
n

∣∣∣∣I(X;G)− I(X̃,Y )
∣∣∣∣ ≤ Cd−1/2.

Theorem 3.2.1 that we will see in Chapter 3 allows us to compute the limit of 1
n
I(X̃,Y ).

Define

F(λ, q) = −λq
2

4 + E log
[
p exp(

√
1− p
p

(
√
λqZ0 + λqX̃0)− λ(1− p)

2p q)

+ (1− p) exp(−
√

p

1− p(
√
λqZ0 + λqX̃0)− λp

2(1− p)q)
]

(5.9.1)

where the expectation is taken over Z0 ∼ N (0, 1) and X̃0 ∼ pδφp(1) + (1− p)δφp(2) indepen-
dently from Z0. Define also

I : λ 7→ λ

4 − sup
q≥0
Fg(λ, q). (5.9.2)

Corollary 3.2.1 gives then
Corollary 5.9.1

There exists a constant C > 0 such that, for d large enough

lim sup
n→∞

∣∣∣∣ 1nI(X;G)− I(λ)
∣∣∣∣ ≤ Cd−1/2.

From Corollary 5.9.1 one can deduce the precise threshold for reconstruction in the Stochas-
tic Block Model (when d→∞).
Definition 5.9.1 (Estimator)

An estimator of the labels X is a function x̂ : G 7→ {1, 2}n that could depend on
auxiliary randomness (random variables independent of X).

For a labeling x ∈ {1, 2}n and i ∈ {1, 2} we define Si(x) = {k ∈ {1, . . . , n}|xk = i},
i.e. the indices of the nodes that have the label i according to x. We now recall a popular
performance measure for estimators.
Definition 5.9.2 (Community Overlap)

For x,y ∈ {1, 2}n we define the community overlap of the configuration x and y as

Overlap(x,y) = 1
n

max
σ

∑
i=1,2

(
#Si(x) ∩ Sσ(i)(y)− 1

n
#Si(x)#Sσ(i)(y)

)

where the maximum is taken over the permutations of {1, 2}.

Two configurations have thus a positive community overlap if they are correlated, up
to a permutation of the classes. We will then say that the community detection problem
is solvable, if there exists an estimator (i.e. an algorithm) that achieves a positive overlap
with positive probability.
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Definition 5.9.3 (Solvability)
We say that the community detection problem is solvable (in the limit of large degrees)
if there exists an estimator x̂(G) such that

lim inf
d→∞

lim inf
n→∞

E(Overlap(x̂(G),X)) > 0.

The next Theorem states that

λc(p) def= inf
{
λ > 0

∣∣∣ I(λ) < λ

4
}
.

will be the threshold for solvability in the stochastic block model.

Theorem 5.9.2

• If λ > λc(p), then the community detection problem is solvable.

• If λ < λc(p), then the community detection problem is not solvable.

5.9.1 The limit of the mutual information: proof of Theorem 5.9.1

We are going to compute I(X;G) and I(X̃,Y ). For x ∈ {1, 2}n we denote x̃ = (φp(x1), . . . , φp(xn)) ∈
Snp , where φp(1) =

√
1−p
p

, φp(2) = −
√

p
1−p and Sp =

{
−
√

p
1−p ,

√
1−p
p

}
. Recall the notations

from (5.6.1):
a = 1 + 1− p

p
ε, b = 1− ε and c = 1 + p

1− pε. (5.9.3)

For x ∈ {1, 2} we define P0(x) = P0(x̃) = p, if x = 1 and P0(x) = P0(x̃) = 1− p, if x = 2.
For x ∈ {1, 2}n we will write, with a slight abuse of notation

P0(x) = P0(x̃) =
n∏
i=1

P0(xi).

By definition of the mutual information, a simple computation gives:
Lemma 5.9.1

I(X̃,Y ) = −E

log
∑
x̃∈Snp

P0(x̃) exp
∑
i<j

x̃ix̃j

√
λ

n
Zi,j −

λ

2n(x̃ix̃j − X̃iX̃j)2


 .

Define Vi,j = ε(Gi,j − E(Gi,j|Xi, Xj)) = ε(Gi,j − d
n
(1 + X̃iX̃j)).

Lemma 5.9.2
For d large enough,

I(X;G) +O(d2 + nε)

=−E log
∑

x∈{1,2}n
P0(x) exp

(∑
i<j

(x̃ix̃j − X̃iX̃j)Vi,j −
ε

2(x̃ix̃j)2Vi,j −
λ

2n(x̃ix̃j − X̃iX̃j)2
)
.
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Proof. By definition, I(X;G) = E log P(X,G)
P(X)P(G) = −E log P(G)

P(G|X) . Thus

I(X;G) = −E log
∑
x∈{1,2}n P0(x)P(G|x)

P(G|X) .

Recall that

P(G|x) =
∏
i<j

M
Gi,j
xi,xj (1−Mxi,xj )1−Gi,j = exp

(∑
i<j

Gi,j logMxi,xj + (1−Gi,j) log(1−Mxi,xj )
)
.

This leads to

I(X;G) = −E
[

log
∑

x∈{1,2}n
P0(x) exp

(∑
i<j

Gi,j log
(
Mxi,xj

MXi,Xj

)
+ (1−Gi,j) log

(
1−Mxi,xj

1−MXi,Xj

))]
.

(5.9.4)
Notice that Mxi,xj = d

n(1 + x̃ix̃jε). Therefore log( Mxi,xj

MXi,Xj
) = log( 1+x̃ix̃jε

1+X̃iX̃jε
). By the Taylor-

Lagrange inequality, there exist a constant C > 0 such that, for ε small enough (i.e. for d large
enough): ∣∣∣ log

( 1 + x̃ix̃jε

1 + X̃iX̃jε

)
− ε(x̃ix̃j − X̃iX̃j) + 1

2ε
2((x̃ix̃j)2 − (X̃iX̃j)2)

∣∣∣ ≤ Cε3 , (5.9.5)

∣∣∣ log
( 1−Mxi,xj

1−MXi,Xj

)
+ d

n
ε(x̃ix̃j − X̃iX̃j)

∣∣∣ ≤ C d2

n2 . (5.9.6)

By summation and triangle inequality:

Ai,j
def= Gi,j log

(
Mxi,xj

MXi,Xj

)
+ (1−Gi,j) log

(
1−Mxi,xj

1−MXi,Xj

)

= ε(x̃ix̃j − X̃iX̃j)Gi,j −
1
2ε

2((x̃ix̃j)2 − (X̃iX̃j)2)Gi,j − (1−Gi,j)(x̃ix̃j − X̃iX̃j)
d

n
ε+O

(
Gi,jε

3 + d2

n2

)
,

because of equations (5.9.5) and (5.9.6). Since εGi,j −Vi,j = εd
n (1 + εX̃iX̃j) = εd

n + λ
nX̃iX̃j , we get

Ai,j =(x̃ix̃j − X̃iX̃j)Vi,j −
1
2((x̃ix̃j)2 − (X̃iX̃j)2)Vi,j + λ

n
X̃iX̃j(x̃ix̃j − X̃iX̃j)

− ε

2((x̃ix̃j)2 − (X̃iX̃j)2)εd
n

(1 + εX̃iX̃j)−Gi,j(x̃ix̃j − X̃iX̃j)
d

n
ε+O

(
Gi,jε

3 + d2

n2

)
=(x̃ix̃j − X̃iX̃j)Vi,j −

1
2((x̃ix̃j)2 − (X̃iX̃j)2)Vi,j + λ

n
X̃iX̃j(x̃ix̃j − X̃iX̃j)

− λ

2n((x̃ix̃j)2 − (X̃iX̃j)2)−Gi,j(x̃ix̃j − X̃iX̃j)
d

n
ε+O

(
Gi,jε

3 + d2

n2 + ε

n

)
=(x̃ix̃j − X̃iX̃j)Vi,j −

1
2((x̃ix̃j)2 − (X̃iX̃j)2)Vi,j −

λ

2n(x̃ix̃j − X̃iX̃j)2

−Gi,j(x̃ix̃j − X̃iX̃j)
d

n
ε+O

(
Gi,jε

3 + d2

n2 + ε

n

)
.

Notice that Gi,j ∈ {0, 1}, we have therefore, for some constant C > 0,∣∣∣∑
i<j

Gi,j(x̃ix̃j − X̃iX̃j)
d

n

∣∣∣ ≤ C d
n

∑
i<j

Gi,j .

Therefore∑
i<j

Ai,j = (x̃ix̃j − X̃iX̃j)Vi,j −
1
2((x̃ix̃j)2 − (X̃iX̃j)2)Vi,j −

λ

2n(x̃ix̃j − X̃iX̃j)2 + ∆n
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where |∆n| ≤ C
(
( dn + ε3)

∑
i<j Gi,j + d2 + nε

)
, for some constant C > 0. Since I(X;G) =

−E log
∑
x∈{1,2}n P0(x)eAi,j , we get

E log
∑

x∈{1,2}n
P0(x) exp

(∑
i<j

(x̃ix̃j − X̃iX̃j)Vi,j −
ε

2((x̃ix̃j)2 − (X̃iX̃j)2)Vi,j −
λ

2n(x̃ix̃j − X̃iX̃j)2
)

= −I(X,G) +O
((d
n

+ ε3
)
E
[∑
i<j

Gi,j
]

+ d2 + nε
)

= −I(X,G) +O(d2 + nε).

Lindeberg argument

We recall the following Lindeberg generalization theorem (Theorem 2 from [126]) which is
a variant of the generalized “Lindeberg principle” from [45].

Theorem 5.9.3 (Lindeberg generalization theorem)
Let (Ui)1≤i≤n and (Vi)1≤i≤n be two collection of random variables with independent

components and f : Rn → R a C3 function. Denote ai = |EUi − EVi| and bi =
|EU2

i − EV 2
i |. Then

|Ef(U)− Ef(V )| ≤
n∑
i=1

(
aiE|∂if(U1:i−1, 0, Vi+1:n)|+ bi

2 E|∂2
i f(U1:i−1, 0, Vi+1:n)|

+ 1
2E
∫ Ui

0
|∂3
i f(U1:i−1, 0, Vi+1:n)|(Ui − s)2ds

+ 1
2E
∫ Vi

0
|∂3
i f(U1:i−1, 0, Vi+1:n)|(Vi − s)2ds

)
.

Define

J(X,Z) = −E log
∑
x̃∈Snp

P0(x̃) exp
(∑
i<j

√
λ

n
Zi,j

(
(x̃ix̃j − X̃iX̃j)−

ε

2(x̃ix̃j)2
)
− λ

2n(x̃ix̃j − X̃iX̃j)2
)
.

We show, using Theorem 5.9.3, that J(X,Z) is close to I(X;G).
Lemma 5.9.3

For d large enough we have

1
n
|I(X;G)− J(X,Z)| = O(ε+ d2/n).

Proof. We apply here Theorem 5.9.3 conditionally to X to the function

Φ(u) = − log
∑
x̃∈Snp

P0(x̃) exp
(∑
i<j

(x̃ix̃j − X̃iX̃j)ui,j −
ε

2(x̃ix̃j)2ui,j −
λ

2n(x̃ix̃j − X̃iX̃j)2
)
.
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Φ is C3 with bounded derivatives. Notice that I(X;G) = EΦ(V ) and J(X,Z) = EΦ(
√

λ
nZ).

Let us compute Vi,j moments, conditionally to X.

E(Vi,j |X) = 0

E(V 2
i,j |X) = ε2Var(Gi,j |X) = ε2

d

n
(1 + X̃iX̃jε)(1 +O(d

n
))

= λ

n
+O( ε

n
) = λ

n
E(Z2

i,j) +O( ε
n

)

Analogously, E(V 3
i,j |X) = O( εn). Using the Lindeberg generalization theorem we obtain

∣∣E[Φ(
√
λ/nZ)

]
− E

[
Φ(V )

]∣∣ ≤∑
i<j

O(ε/n) = O(nε).

Gaussian interpolation

It remains to show
Lemma 5.9.4

I(X;Y ) = J(X,Z) +O(nε).

Proof. We define:

H(x,X,Z, ε) =
∑
i<j

x̃ix̃j

√
λ

n
Zi,j −

λ

2n(x̃ix̃j − X̃iX̃j)2 − 1
2ε(x̃ix̃j)

2

√
λ

n
Zi,j ,

F (ε) = E log
∑

x∈{1,2}n
P0(x) exp(H(x,X,Z, ε)).

Notice that F (0) = I(X;Y ) and F (ε) = J(X,Z). We are going to control the derivative of F . We
note 〈·〉 the expectation with respect to the Gibbs measure:〈g(x̃)〉 def=

∑
x̃
P0(x̃)g(x̃) exp(H(x,X,Z,ε))∑
x̃
P0(x̃) exp(H(x,X,Z,ε)) .

The derivative of F reads

F ′(ε) = −1
2

√
λ

n

∑
i<j

E
[
Zi,j〈(x̃ix̃j)2〉

]
.

Here 〈(x̃ix̃j)2〉 is a continuously differentiable function of Zi,j and ∂Zi,j 〈(x̃ix̃j)2〉 = O(n−1/2).
Using Gaussian integration by parts: F ′(ε) = −

√
λ

2
√
n

∑
i<j E

[
∂Zi,j 〈(x̃ix̃j)2〉

]
= O(1). We conclude

|F (0)− F (ε)| = O(nε).

5.9.2 From mutual information to solvability: proof of Theo-
rem 5.9.2

We are first going to introduce an estimation metric that will allow us to make the link
between the minimum mean squared error for matrix estimation, and the overlap for com-
munity detection. Define

MMSEG
n (λ) = min

θ̂

2
n(n− 1)

∑
i<j

E
(
X̃iX̃j− θ̂i,j(G)

)2
= 2
n(n− 1)

∑
i<j

E
(
X̃iX̃j−E(X̃iX̃j|G)

)2

(5.9.7)
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where the minimum is taken over all function θ̂ of G. By considering the trivial estimator
θ̂ = 0, we see that MMSEG

n (λ) ∈ [0, 1]. This estimation metric correspond (up to a
vanishing error term) to the derivative of the mutual information between the graph G
and the labels X.
Proposition 5.9.1

Let λ0 > 0. There exists a constant C > 0 such that, for all λ ∈ (0, λ0], d ≥ 1 and
n ≥ 1∣∣∣∣ 1n ∂I(X;G)

∂λ
− 1

4MMSEG
n (λ)

∣∣∣∣ ≤ C
(
d−1/2 + d

n
+ d1/2λ−1/2

n
+ d3/2n−2λ−1/2

)
(5.9.8)

Proof. We are going to differentiate H(X|G) with respect to λ. To do so we will use a differen-
tiation formula from [59] (Lemma 7.1), which was first proved in [141]. Let us recall the setting
(taken from [59]) of this Lemma.

For n an integer, denote by Pn the set of unordered pairs in [n] (in particular #Pn =
(n

2
)
)).

We will use e, e1, e2, . . . to denote elements of Pn. For for each e = (i, j) we are given a one-
parameter family of discrete noisy channels indexed by θ ∈ J (with J = (a1, a2) a non-empty
interval), with finite input alphabet X0 and finite output alphabet Y. Concretely, for any e, we
have a transition probability

{pe,θ(y|x)}x∈X0,y∈Y , (5.9.9)

which is differentiable in θ. We shall omit the subscript θ since it will be clear from the context.
We then consider X = (X1, X2, . . . , Xn) a random vector in X n, and Y = (Yij)(i,j)∈Pn a

set of observations in YPn that are conditionally independent given X. Further Yij is the noisy
observation of XiXj ∈ X0 through the channel pij( · | · ). In formulae, the joint probability density
function of X and Y is

pX,Y (x,y) = pX(x)
∏

(i,j)∈Pn

pij(yij |xixj) . (5.9.10)

This obviously include the two-groups stochastic block model as a special case. In that case
Y = G is just the adjacency matrix of the graph. In the following we write Y−e = (Ye′)e′∈Pn\e
for the set of observations excluded e, and Xe = XiXj for e = (i, j).
Lemma 5.9.5

With the above notation, we have:

∂H(X|Y )
∂θ

=
∑
e∈Pn

∑
xe,ye

∂pe(ye|xe)
∂θ

E
{
pXe|Y−e(xe|Y−e) log

[∑
x′e

pe(ye|x′e)
pe(ye|xe)

pXe|Y−e(x
′
e|Y−e)

]}
(5.9.11)

We apply Lemma 5.9.5 to the stochastic block model. Let λ0 > 0 and λ ∈ (0, λ0]. Instead
of having Gi,j ∈ {0, 1}, it will be more convenient to consider Gi,j ∈ {−1, 1}: Gi,j = 1 if
i ∼ j, Gi,j = −1 else. Notice that neither the mutual information nor MMSEGn are affected
by this change. Gi,j is, conditionally to X̃iX̃j , independent of any other random variable, and
distributed as follows

P(Gi,j = 1|X̃iX̃j) = d

n
(1 +

√
λ

d
X̃iX̃j)
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The transition probability from equation (5.9.9) is then pλ(gi,j |x̃ix̃j) = 1−gi,j
2 +gi,j dn(1+ x̃ix̃j

√
λ
d ).

Thus
∂

∂λ
pλ(gi,j |x̃ix̃j) = 1

2ngi,j x̃ix̃j

√
d

λ
.

Lemma 5.9.5 gives

∂H(X|G)
∂λ

= 1
2n

√
d

λ

∑
i<j

∑
x̃i,̃xj
gi,j

gi,j x̃ix̃jE
[
p(X̃i,X̃j)|G−(i,j)

(x̃i, x̃j |G−(i,j)) log
∑
x̃′i,x̃

′
j

pλ(gi,j |x̃′ix̃′j)p(X̃i,X̃j)|G−(i,j)
(x̃′i, x̃′j |G−(i,j))

]
︸ ︷︷ ︸

Ai,j

− 1
2n

√
d

λ

∑
i<j

∑
x̃i,̃xj
gi,j

gi,j x̃ix̃jE
[
p(X̃i,X̃j)|G−(i,j)

(x̃i, x̃j |G−(i,j)) log
(
pλ(gi,j |x̃ix̃j)

)]
︸ ︷︷ ︸

Bi,j

(5.9.12)

Compute

Bi,j =
∑
x̃i,̃xj
gi,j

gi,j x̃ix̃jp(x̃i, x̃j) log
(
pλ(gi,j |x̃ix̃j)

)

= p2 1− p
p

(
log(ad

n
)− log(1− ad

n
)
)
− 2p(1− p)

(
log(bd

n
)− log(1− bd

n
)
)

+ (1− p)2 p

1− p
(

log(cd
n

)− log(1− cd

n
)
)

= p(1− p) log
(ac
b2
)

+ p(1− p)d(2 b
n
− a

n
− c

n
) +O(d

2

n2 )

= p(1− p)ε
(1− p

p
+ p

1− p + 2
)

+O(ε2) +O(d
2

n2 )

= ε+O(ε2) +O(d
2

n2 )

and

Ai,j =
∑
gi,j

gi,jE
[
E(X̃iX̃j |G−(i,j)) log

( ∑
x̃′i,x̃

′
j

pλ(gi,j |x̃′ix̃′j)p(X̃i,X̃j)|G−(i,j)
(x̃′i, x̃′j |G−(i,j))

)]

= E
[
E(X̃iX̃j |G−(i,j)) log

∑
x̃′i,x̃

′
j
pλ(1|x̃′ix̃′j)p(X̃i,X̃j)|G−(i,j)

(x̃′i, x̃′j |G−(i,j))∑
x̃′i,x̃

′
j
pλ(−1|x̃′ix̃′j)p(X̃i,X̃j)|G−(i,j)

(x̃′i, x̃′j |G−(i,j))
]
.

Define âi,j = E(X̃iX̃j |G−(i,j)).

Ai,j = E
[
âi,j log

∑
x̃′i,x̃

′
j

d
n(1 + x̃′ix̃

′
j

√
λ
d )p(X̃i,X̃j)|G−(i,j)

(x̃′i, x̃′j |G−(i,j))∑
x̃′i,x̃

′
j
(1− d

n(1 + x̃′ix̃
′
j

√
λ
d ))p(X̃i,X̃j)|G−(i,j)

(x̃′i, x̃′j |G−(i,j))

]

= E
[
âi,j log

d
n(1 + âi,j

√
λ
d )

1− d
n(1 + âi,j

√
λ
d )

]
= E

[
âi,j
(

log d
n

+ εâi,j +O(ε2) +O(d
n

)
)]
.
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Eâi,j = EX̃iX̃j = (EX̃1)2 = 0 therefore Ai,j = εEâ2
i,j + O(ε2 + d

n). By replacing Ai,j and Bi,j
in (5.9.12), we have

∂H(X|G)
∂λ

= 1
2nε

−1∑
i<j

(
εEâ2

i,j +O(ε2) +O(d
n

)
)
− 1

2nε
−1∑

i<j

(
ε+O(ε2) +O(d

2

n2 )
)

= 1
2n
∑
i<j

(
Eâ2

i,j − 1
)

+O(nε) +O(d1/2λ−1/2 + d3/2n−1λ−1/2). (5.9.13)

Define ai,j = E(X̃iX̃j |G). Using Bayes rule, we have

p(x̃i, x̃j |G) =
p(Gi,j |x̃ix̃j)p(x̃i, x̃j |G−(i,j))∑
x̃′i,x̃

′
j
p(Gi,j |x̃′ix̃′j)p(x̃′i, x̃′j |G−(i,j))

.

If Gi,j = 1, then

p(x̃i, x̃j |G) =
d
n(1 + x̃ix̃jε)p(x̃i, x̃j |G−(i,j))∑

x̃′i,x̃
′
j

d
n(1 + x̃′ix̃

′
jε)p(x̃′i, x̃′j |G−(i,j))

=
(1 + εx̃ix̃j)p(x̃i, x̃j |G−(i,j))

1 + εâi,j
.

Thus

ai,j =
âi,j + εE((X̃iX̃j)2|G−(i,j))

1 + εâi,j
= âi,j +O(ε)

If Gi,j = −1,

p(x̃i, x̃j |G) =
(1− d

n(1 + x̃ix̃jε))p(x̃i, x̃j |G−(i,j))
1−

∑
x̃′i,x̃

′
j

d
n(1 + x̃′ix̃

′
jε)p(x̃′i, x̃′j |G−(i,j))

= (1− d
n

(1+x̃ix̃jε))p(x̃i, x̃j |G−(i,j))+O(d
n

).

Therefore ai,j = âi,j +O( dn). Equation (5.9.13) becomes then

∂H(X|G)
∂λ

= 1
2n
∑
i<j

(
Ea2

i,j − 1
)

+O(nε+ d) +O(d1/2λ−1/2 + d3/2n−1λ−1/2)

= − 1
2n
∑
i<j

E
(
(X̃iX̃j − E(X̃iX̃j |G))2

)
+O(nε+ d+ d1/2λ−1/2 + d3/2n−1λ−1/2).

(5.9.14)

Decomposing I(X;G) = H(X)−H(X|G) we obtain the desired result.

Consequently, if one consider a sufficiently large d (in order to apply Corollary 5.9.1)
and one integrate equation (5.9.8) from 0 to λ > 0, and let n tend to infinity,

lim sup
n→∞

∣∣∣∣ ∫ λ

0
MMSEG

n (λ′)dλ′ − I(λ)
∣∣∣∣ ≤ Kd−1/2, (5.9.15)

for some constant K > 0 depending on λ but not on d.
Proposition 5.9.2

For λ < λc(p)
lim
d→∞

lim inf
n→∞

MMSEG
n (λ) = 1 (5.9.16)

For λ > λc(p)
lim sup
d→∞

lim sup
n→∞

MMSEG
n (λ) < 1 (5.9.17)
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Proof. This is a consequence of equation (5.9.15) and the definition of λc(p). We will show (5.9.16)
first. I is continuous, so by definition of λc, I(λc) = λc/4. Equation (5.9.15) gives then

lim sup
n→∞

∫ λc

0
|1−MMSEGn (λ)|dλ ≤ 4Kd−1/2

because MMSEGn (λ) ≤ 1. Equation (5.9.16) follows.

Equation (5.9.17) is proved analogously. If lim supd→∞ lim supn→∞MMSEGn (λ0) = 1 for some
λ0 > λc, then lim supd→∞ lim supn→∞ |

∫ λ0
0

1
4MMSEGn (λ)dλ − λ0

4 | = 0 which implies (by equa-
tion (5.9.15)) that I(λ0) = 0 which contradicts the definition of λc.

We would now like to rewrite the result of Proposition 5.9.2 in terms of Overlap instead
of MMSE. The following two lemmas will be useful to make the link between the MMSE
and the overlap.
Lemma 5.9.6

Let n ∈ N∗. Let (A1, A2) and (B1, B2) be two partitions of {1, . . . , n}. Then

#A1 ∩B1 −
1
n

#A1#B1 = #A2 ∩B2 −
1
n

#A2#B2, (5.9.18)

#A1 ∩B1 −
1
n

#A1#B1 = −
(

#A1 ∩B2 −
1
n

#A1#B2

)
. (5.9.19)

Proof. We prove (5.9.18) first. Remark that #A2 ∩ B2 = #B2 − (#A1 − #B1 ∩ A1) and
#A2#B2 = n2 − n(#A1 + #B1) + #A1#B1. So that

#A1 ∩B1 −
1
n

#A1#B1 = #A2 ∩B2 −
1
n

#A2#B2 + #B2 −#A1 − n+ #A1 + #B1

= #A2 ∩B2 −
1
n

#A2#B2.

To prove (5.9.19), write #A1 ∩B1 = #A1 −#A1 ∩B2. Thus

#A1 ∩B1 −
1
n

#A1#B1 = #A1 −#A1 ∩B2 −
1
n

#A1(n−#B2) = −
(
#A1 ∩B2 −

1
n

#A1#B2
)
.

Lemma 5.9.7
Recall that for x ∈ {1, 2}n and i = 1, 2 we define Si(x) = {j |xj = i}. Let x =

(x1, . . . , xn) ∈ {1, 2}n. Recall that x̃ = (φp(x1), . . . , φp(xn)) where φp(1) =
√

1−p
p

and
φp(2) = −

√
p

1−p . Then

1
n

∣∣∣∣ n∑
i=1

X̃ix̃i

∣∣∣∣ = 1
2p(1− p)Overlap(x,X) +O

(∣∣∣∣S1(X)
n

− p
∣∣∣∣+ ∣∣∣∣S2(X)

n
− (1− p)

∣∣∣∣).
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Proof.

1
n

∣∣∣ n∑
i=1

X̃ix̃i
∣∣∣

= 1
n

∣∣∣1− p
p

#S1(x) ∩ S1(X) + p

1− p#S2(x) ∩ S2(X)− (n−#S1(x) ∩ S1(X)−#S2(x) ∩ S2(X))
∣∣∣

= 1
n

∣∣∣1
p

#S1(x) ∩ S1(X) + 1
1− p#S2(x) ∩ S2(X)− n

∣∣∣
= 1
n

∣∣∣1
p

(#S1(x) ∩ S1(X)− p#S1(x)) + 1
1− p(#S2(x) ∩ S2(X)− (1− p)#S2(x))

∣∣∣
= 1
n

∣∣∣1
p

(#S1(x) ∩ S1(X)− 1
n

#S1(X)#S1(x)) + 1
1− p(#S2(x) ∩ S2(X)− 1

n
#S2(X)#S2(x))

∣∣∣
+O

(S1(x)
pn

∣∣∣p− S1(X)
n

∣∣∣+ S2(x)
(1− p)n

∣∣∣(1− p)− S2(X)
n

∣∣∣).
Using Lemma 5.9.6, one obtains then

1
n

∣∣∣ n∑
i=1

X̃ix̃i
∣∣∣ = 1

2p(1− p)Overlap(x,X) +O

(∣∣∣S1(X)
n

− p
∣∣∣+ ∣∣∣S2(X)

n
− (1− p)

∣∣∣) .

We are now going to prove Theorem 5.9.2. Remark that

MMSEG
n (λ) = 2

n(n− 1)
∑
i<j

E
(
X̃iX̃j − E(X̃iX̃j|G)

)2

= 2
n(n− 1)

∑
i<j

E
(
1− (E(X̃iX̃j|G))2

)

We will denote 〈·〉G the expectation with respect to the posterior distribution P(X =
·|G). We have then E(E(X̃iX̃j|G)2) = E〈X̃iX̃jx̃ix̃j〉G, where x̃ is sampled, conditionally
to G, from P(·|G). Thus

MMSEG
n (λ) = 1− 1

n2

∑
i,j

E〈X̃iX̃jx̃ix̃j〉G + o(1) = 1− E
〈( 1

n

n∑
i=1

X̃ix̃i

)2〉
G

+ o(1). (5.9.20)

Suppose λ > λc. Then (5.9.20) and Proposition 5.9.2 imply

lim inf
d→∞

lim inf
n→∞

E
〈∣∣∣ 1
n

n∑
i=1

x̃iX̃i

∣∣∣〉
G
> 0.

Using Lemma 5.9.7, this gives

lim inf
d→∞

lim inf
n→∞

E
〈
Overlap(x,X)

〉
G
> 0,

where x is sampled according to the posterior distribution of X. Sampling from the poste-
rior distribution P(X = ·|G) provides thus an estimator that achieves a non zero overlap:
the community detection problem is solvable.
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Suppose now λ < λc. Suppose that the community detection problem is solvable. There
is therefore an estimator a that achieves a non zero overlap. Lemma 5.9.7 gives then

α
def= lim inf

d→∞
lim inf
n→∞

1
n
E|

n∑
i=1

X̃iãi| > 0

Compute now for δ ∈ (0, 1]

2
n(n− 1)

∑
i<j

E(X̃iX̃j − δãiãj)2 = 1
n2

∑
i,j

E(X̃iX̃j − δãiãj)2 + o(1)

= 1
n2

∑
i 6=j

E(X̃2
i X̃

2
j ) +O(δ2)− 2δ

n2E(
n∑
i=1

X̃iãi)2 + o(1)

≤ 1 +O(δ2)− 2δ
( 1
n
E|

n∑
i=1

X̃iãi|
)2

+ o(1).

So that

lim inf
d→∞

lim inf
n→∞

MMSEG
n (λ) ≤ lim inf

d→∞
lim inf
n→∞

2
n(n− 1)

∑
i<j

E(X̃iX̃j−δãiãj)2 = 1−2δα2+O(δ2).

The right-hand side will be strictly inferior to 1 for δ sufficiently small. This is contradictory
with Proposition 5.9.2 (recall that λ < λc). The community detection problem is not
solvable. Theorem 5.9.2 is proved.
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Chapter 6

Statistical limits of rank-one tensor
estimation

We consider in this chapter the tensor-analog of the spiked Wigner model from Chapter 3,
namely the “spiked tensor model”. Let k ≥ 2 and consider

Y =
√

λ

nk−1X
⊗k +Z , (6.0.1)

where X ∈ Rn such that ‖X‖ '
√
n and Zi1,...,ik

i.i.d.∼ N (0, 1). The spiked tensor model
(6.0.1) was introduced by Montanari and Richard [180], as a natural extension to tensors
of the spiked matrix models studied in the previous chapters. The paper [180] shows that
there exists a finite value λc such that weak recovery is possible for λ > λc. Montanari,
Reichman and Zeitouni [150] obtained bounds on λc that were then improved by Perry,
Wein and Bandeira [174] who obtained tight bounds in the k → ∞ limit. The threshold
for hypothesis testing is also of order 1 [150, 174] and precise expressions for the threshold
has recently been obtained in [47, 49].

In this chapter we derive in Section 6.1 precise information-theoretic limits for estima-
tion. We then turn our attention to the maximum likelihood estimator in Section 6.3 and
compute its asymptotic performance.

6.1 Information-theoretic limits
6.1.1 Large order limit: k →∞
We start by a simple analysis of the symmetric tensor estimation model (6.1.5) with
Rademacher prior P0 = 1

2δ+1 + 1
2δ−1 in the limit k → ∞. This large k scenario has

been studied in [174], where the detection problem was also investigated. We suppose to
observe here

Yi1,...,ik =
√

λ

nk−1Xi1 . . . Xik + Zi1,...,ik , (6.1.1)

for all (i1, . . . , ik) ∈ {1, . . . , n}k. The Zi1,...,ik are i.i.d. standard Gaussian, independent
from X1, . . . , Xn

i.i.d.∼ 1
2δ+1 + 1

2δ−1. We will denote by

F (k)
n (λ) = 1

n
E log

∑
x∈{−1,1}n

2−n exp
( ∑
i1,...,ik

√
λ

nk−1Yi1,...,ikxi1 . . . xik −
λn

2

)
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and MMSE(k)
n (λ) = 1

nk
E‖X⊗k − E[X⊗k|Y ]‖2 the corresponding free energy and MMSE.

We will see that simple arguments (that does not require the knowledge of the exact
formulas of Theorem 6.1.1 and Corollary 6.1.2 that we will see in the next section) give
that for large values of k we have

• if λ ≤ 2 log(2)−O(log(k)2/k2) then lim
n→∞

MMSE(k)
n (λ) = 1,

• if λ ≥ 2 log(2) then lim
n→∞

MMSE(k)
n (λ) = O(log(k)2/k2).

0 1/2 1 2 log 2 2 λ
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Figure 6.1: Minimal Mean Squared Errors MMSE(k)
n for tensor estimation (6.1.1) with

Rademacher prior, for k = 2, 3, 4, 6, as given by Corollary 6.1.2.

We start with the study of the free energy. For λ0 ∈ R we define

fλ0(λ) =

0 if λ ≤ λ0 ,
1
2(λ− λ0) if λ ≥ λ0 .

Proposition 6.1.1
There exists an increasing sequence (λ∼k )k≥2 such that λ∼2 = 1/2 and λ∼k = 2 log(2) −
O(log(k)2/k2) and for all k, n, λ ≥ 0

f2 log(2)(λ) ≤ F (k)
n (λ) ≤ fλ∼

k
(λ) +

√
λ

n
+ log(2n+ 1)

n
. (6.1.2)

Proof. We start with the lower bound. For all λ ≥ 0 we have F (k)
n (λ) ≥ 0 and

F (k)
n (λ) = 1

n
E log

∑
x∈{−1,1}n

1
2n exp

( ∑
i1,...,ik

√
λ

nk−1Yi1,...,ikxi1 . . . xik −
λn

2
)

≥ 1
n
E log

 1
2n exp

( ∑
i1,...,ik

√
λ

nk−1Yi1,...,ikXi1 . . . Xik −
λn

2
) = λ

2 − log(2) .
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Let us now prove the upper-bound. For x ∈ {−1, 1}n let us write Z(x) = n−k/2
∑

i1,...,ik

Zi1,...,ikxi1 . . . xik .

By Jensen’s inequality, we have

F (k)
n (λ) ≤ 1

n
E log

 ∑
x∈{−1,1}n

1
2nE

[
exp

(√
λnZ(x) + λn(x ·X)k − λn

2
)∣∣∣∣X, Z(X)

] .

For x(1),x(2) ∈ {−1, 1}n fixed, the covariance between Z(x(1)) and Z(x(2)) is E[Z(x(1))Z(x(2))] =
(x(1) · x(2))k. Consequently, for x ∈ {−1, 1}n the law of Z(x) conditionally on Z(X) is N

(
(x ·

X)kZ(X), 1− (x ·X)2k) and therefore

E
[
exp

(√
λnZ(x)

)∣∣∣X, Z(X)
]

= exp
(√

λn(x ·X)kZ(X) + λn

2 (1− (x ·X)2k)
)
.

We obtain thus:

F (k)
n (λ) ≤ 1

n
E log

 ∑
x∈{−1,1}n

1
2n exp

(√
λn|Z(X)|+ λn

2
(
2(x ·X)k − (x ·X)2k))

≤ 1
n
E log

 ∑
x∈{−1,1}n

1
2n exp

(λn
2
(
2(x ·X)k − (x ·X)2k))+

√
λ

n
.

Now, for k ∈ {−n, . . . , n}, we have

#
{
x ∈ {−1, 1}n

∣∣∣∣∣
n∑
i=1

xiXi = k

}
≤ 2n exp

(
− nh(k/n)

)
,

where h(t) = 1+t
2 log(1 + t) + 1−t

2 log(1− t). This gives

F (k)
n (λ) ≤ 1

n
E log

 n∑
k=−n

exp
(n

2
(
2λ(k/n)k − λ(k/n)2k − 2h(k/n)

))+

√
λ

n

≤ 1
n
E log

(
(2n+ 1) exp

(n
2 max
t∈[0,1]

{
2λtk − λt2k − 2h(t)

}))
+

√
λ

n

= 1
2 max
t∈[0,1]

{
λ(2tk − t2k)− 2h(t)

}
+ log(2n+ 1)

n
+

√
λ

n
. (6.1.3)

The function λ 7→ maxt∈[0,1]
{
λ(2tk − t2k) − 2h(t)

}
is continuous, 1-Lipschitz and equal to 0 for

λ ≤ λ∼k where

λ∼k
def= inf

t∈(0,1]

2h(t)
2tk − t2k .

Therefore, for λ ≥ λ∼k , maxt∈[0,1]
{
λ(2tk − t2k) − 2h(t)

}
≤ λ − λ∼k , which combined to (6.1.3)

proves (6.1.2).

It remains to show λ∼2 = 1/2 and 2 log(2)−O(log(k)2/k2) ≤ λ∼k ≤ 2 log(2). Let us start with
the case k = 2. The maximizer t of t 7→ λ(2t2 − t4)− 2h(t) verifies

4λ(t− t3) = 2h′(t) = log
(1 + t

1− t
)

= 2 artanh(t) .

Therefore t = tanh(2λ(t − t3)). For λ ≤ 1/2, this equation admits a unique solution t = 0,
whereas of λ > 1/2 it admits a second solution t′ > 0 and maxt∈[0,1] λ(2t2− t4)− 2h(t) > 0. Thus
λ∼2 = 1/2.
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Let now k ≥ 3. Let tk be the largest minimizer of hk : t 7→ 2h(t)/(2tk − t2k) on (0, 1]. One
has tk ∈ (0, 1). For t ∈ (0, 1), h′k(t) has the same sign as

t(log(1 + t)− log(1− t))
2h(t) − 2k(1− tk)

2− tk , (6.1.4)

which is decreasing in k. This gives that (tk)k≥3 is increasing and converges to 1, which is the
only possible limit because tk cancels (6.1.4). One has also tkk → 1. Define uk = 1 − tk. Since
tkk → 1, one has kuk → 0. Then tkk = exp(k log(1− uk)) = 1− kuk +O(ku2

k). We get

− log(uk) + o(1) = k log(2)kuk +O(u2
kk)

1 + o(1) = log(2)k2uk + o(1) .

Therefore
2 log(k) = log(2)k2uk + log(k2uk) + o(1) ∼ log(2)k2uk .

We deduce that 1 − tk = uk ∼ 2 log(k)
log(2)k2 . We have then 2tkk − t2kk = 1 − k2u2

k + o(k2u2
k) and

2h(tk) = 2 log(2) +O(uk) + uk log(uk). We conclude:

λ∼k = hk(tk) = 2 log(2)−O(log(k)2/k2) .

Using the I-MMSE relations (1.3.4) as usual, we deduce:
Corollary 6.1.1

If λ < λ∼k then
MMSE(k)

n (λ) −−−→
n→∞

1 ,

while for λ > 2 log(2):

lim sup
n→∞

MMSE(k)
n (λ) ≤ 2 log(2)− λ∼k

λ− 2 log(2) = O(log(k)2/k2)
λ− 2 log(2) .

Proof. By the I-MMSE relation (1.3.4), we have MMSE(k)
n (λ) = 1 − 2F (k)′

n (λ). If λ < λ∼k then
by convexity and the fact that the free energy is non-decreasing:

0 ≤ F (k)′
n (λ) ≤ F

(k)
n (λ∼k )− F (k)

n (λ)
λ∼k − λ

−−−→
n→∞

0 ,

by Proposition 6.1.1. This proves the result for λ < λ∼k . For λ > 2 log(2) again, by convexity and
Proposition 6.1.1 we have

lim inf
n→∞

F (k)′
n (λ) ≥ lim inf

n→∞
F

(k)
n (λ)− F (k)

n (2 log(2))
λ− 2 log(2)

≥
f2 log(2)(λ)− fλ∼

k
(2 log(2))

λ− 2 log(2) = 1
2 −

2 log(2)− λ∼k
2(λ− 2 log(2)) ,

which concludes the proof.

The “abrupt” phase transition at λ = 2 log(2) that we see on Figure 6.1 reminds of the
phase transition for the “needle in a haystack” problem seen in Section 1.4. This is not
surprising, and this has been known for a long time in statistical physics: the Random
Energy Model (which is the non-planted analog of the “needle in a haystack” problem) can
be seen as the k → ∞ limit of the k-spin model (which corresponds to the spiked tensor
model (6.1.1)), see [57].
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6.1.2 Information-theoretic limits
We turn now our attention to the precise expression to the limit of the minimal mean square
error in the model (6.0.1) for general priors P0. It will be useful (notably for the proof
of Proposition 6.1.2 below) to consider a more general model, where we observe multiple
tensors like (6.0.1), of different orders. This is the analog of the “mixed p-spin model” in
statistical physics, see for instance [170]. Let K ≥ 1 and λ1, . . . λK ≥ 0. Assume that we
observe, for all k ∈ {1, . . . , K}:

Yi1,...,ik =
√

λk
nk−1Xi1 . . . Xik + Zi1,...,ik for 1 ≤ i1, . . . , ik ≤ n, (6.1.5)

where X = (X1, . . . , Xn) i.i.d.∼ P0 and (Zi1,...,ik)i1,...,ik
i.i.d.∼ N (0, 1) are independent. We define

the Hamiltonian

Hn(x) =
K∑
k=1

∑
i1,...,ik

√
λk
nk−1 Yi1,...,ik xi1 . . . xik −

λk
2nk−1 (xi1 . . . xik)

2 , (6.1.6)

for x = (x1, . . . , xn) ∈ Rn. The posterior distribution of X given Y reads then:

dP (X = x |Y ) = 1
Zn

dP⊗n0 (x)eHn(x) , (6.1.7)

where Zn is the appropriate normalizing factor. The free energy is thus Fn(λ) = 1
n
E logZn .

Again, we will express the limit of Fn(λ) using the following “potential”:

F : (λ, q) 7→ ψP0

(
K∑
k=1

λkkq
k−1

)
− 1

2

K∑
k=1

(k − 1)λkqk , (6.1.8)

where ψP0 is the free energy of the scalar channel (1.3.5), defined by (1.3.6).

Theorem 6.1.1 (Replica-Symmetric formula for the spiked tensor model)
Let P0 be a probability distribution over R, with finite moment of order 2K. Then,

for all λ ∈ [0,+∞)K
Fn(λ) −−−→

n→∞
sup
q≥0
F(λ, q) . (6.1.9)

Theorem 6.1.1 was proved in [136] by the same arguments used for Theorem 3.2.1. The
paper [20] gave then an alternative proof. In the case of a binary signal P0 = 1

2δ1 + 1
2δ−1

the work [124] obtained bounds on the limit of Fn. However, these bounds are not tight for
all values of λ. By the I-MMSE relation (1.3.4) we deduce from Theorem 6.1.1 the limit
of the Minimum Mean Squared Error:

MMSE(k)
n (λ) = inf

θ̂

 1
nk

E

 ∑
i1,...,ik

(
Xi1 . . . Xik − θ̂(Y )i1...ik

)2
 ,

where the infimum is taken over all measurable functions θ̂ of the observations Y .
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Corollary 6.1.2
For all λ ∈ [0,+∞)K such that F(λ, ·) admits a unique maximizer q∗(λ) over R≥0, we

have
MMSE(k)

n (λ) −−−→
n→∞

(
EP0X

2
)k
− q∗(λ)k . (6.1.10)

The proof is exactly the same than for the matrix case, see the proof of Corollary 3.2.2.
Proposition 6.1.2

Assume that P0 admits a finite moment of order 2K. Let λ ∈ [0,+∞)K such that
F(λ, ·) admits a unique maximizers q∗(λ). Then

1
n

∣∣∣∣ n∑
i=1

xiXi

∣∣∣∣ (d)−−−→
n→∞

q∗(λ),

where x is a sample from the posterior distribution of X given Y , independently of
everything else. Moreover, if λk > 0 for some odd k, then

1
n

n∑
i=1

xiXi
(d)−−−→

n→∞
q∗(λ).

From Proposition 6.1.2, we deduce using Proposition 1.2.2 and Remark 1.2.1:
Corollary 6.1.3

Assume that P0 admits a finite moment of order max(2K, 8). Let λ ∈ [0,+∞)K such
that F(λ, ·) admits a unique maximizers q∗(λ). Then

sup
x̂

E
[
|〈x̂(Y ),X∗〉|
‖x̂(Y )‖‖X∗‖

]
−−−→
n→∞

√
q∗(λ)
ρ

. (6.1.11)

Proof of Proposition 6.1.2. We define the random variable Qn
def= 1

n

∑n
i=1 xiXi. Then for

all k ∈ {1, . . . ,K}, MMSE(k)
n (λ) = EP0 [X2]k − E[Qkn] + on(1). Let us fix λ ∈ [0,+∞)K such that

F(λ, ·) admits a unique maximizer q∗(λ). From Corollary 6.1.2 we get that for all k such that
λk > 0, we have

E[Qkn] −−−→
n→∞

q∗(λ)k. (6.1.12)

Let us fix such k. By the “I-MMSE” relation (Proposition 1.3.3) we have

∂Fn
∂λ2k

(λ)
∣∣∣∣
λ+

2k

= E[Q2k
n ] + on(1).

Since Fn is convex in λ2k, we have by Proposition C.1:

lim sup
n→∞

E[Q2k
n ] = lim sup

n→∞

∂Fn
∂λ2k

(λ)
∣∣∣∣
λ+

2k

≤ ∂

∂λ2k

[
sup
q≥0
F(λ, q)

]∣∣∣∣
λ+

2k

= q∗(λ)2k. (6.1.13)

From (6.1.12) and (6.1.13) we get that Qkn
(d)−−−→

n→∞
q∗(λ)k, which leads to |Qn|

(d)−−−→
n→∞

q∗(λ). If k is

odd then Qn
(d)−−−→

n→∞
q∗(λ).
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6.2 Hardness of low-rank tensor estimation
The brutal jump of the minimal mean squared error on Figure 6.1 and the fact that tensor
estimation is related (for large orders) to the “needle in a haystack” problem of Section 1.4
seems to indicate that the low-rank tensor estimation problem (6.0.1) for k ≥ 3 is com-
putationally hard. Moreover it is known that computing an eigenvalue, an eigenvector or
even the rank of k-tensor is NP-hard when k ≥ 3, [102]. The study of [180] supports this
picture and shows that unless the signal-to-noise ratio λ goes to infinity with n, popular
algorithms such as power iteration, tensor unfolding or message passing fail to recover the
signal X, when X is uniformly distributed on the sphere of radius

√
n.

The spiked tensor model is thus expected to be an extreme example of statistical prob-
lems that admit a statistical-to-algorithmic gap, when X ∼ Unif(

√
nSn−1). The thresholds

for estimation and detection are both order 1 in n; on the other hand, the thresholds for
efficient testing and estimation are expected to diverge polynomially in n, λalg = O(nα).
Sharp algorithmic thresholds have been shown for semi-definite and spectral relaxations of
the maximum likelihood problem [107, 106, 122] as well as optimization of the likelihood
itself via Langevin dynamics [8]. Upper bounds have also been obtained for message pass-
ing and power iteration [180], as well as gradient descent [8]. All this approaches need at
least α = (k − 2)/4 in order to succeed.

This suggests that we would be in a “hard regime” (where polynomial time algorithms
can only achieve trivial performance) for all (finite) values of the signal-to-noise ratio λ.
The work [136] provides a more optimistic vision that can be summarized as:

• If the distribution of the signal has zero mean (i.e. EP0X = 0) we are indeed in a
hard phase for all values of λ.

• However, if EP0X 6= 0 then polynomial-time algorithms (as AMP) can achieve a
non-trivial performance and can even be optimal if EP0X is not too small.

Let us give some intuition about these points. As we have seen in Section 3.3 the
presence of a “hard regime” is characterized (if we believe that AMP are optimal among
polynomial-time algorithms) by the fact that q = 0 is a local minimum of the potential
q 7→ −F(λ, q). We thus expand around q = 0

−F(λ, q) = −λkq
k−1

2 EP0 [X]2 + λ(k − 1)
2 qk +O(q2(k−1)) ,

because ψP0(0) = 0 and ψ′P0 = 1
2EP0 [X]2. Consequently, if EP0X = 0 and k ≥ 3, then q = 0

is a local minimum of −F(λ, ·) and we are in a “hard regime”. But if the prior P0 has a
non-zero mean, then q = 0 is not a local minimum anymore and it is possible (with AMP
for instance) to estimate the signal X with efficient algorithms.

The plots of Figure 6.2 confirm this picture. On the first plot (where P0 = N (µ = 0, 1))
we observe that the local minimum q = 0 is separated from the global minimum by a barrier,
which indicates hardness (see the discussion in Section 3.3.2). Since X = (X1, . . . , Xn) i.i.d.∼
N (0, 1) is up to a normalization uniformly distributed on the sphere of radius

√
n this is

coherent with the results mentioned above. On the second plot, where the prior has a small
mean µ = 0.15, the local minimum at q = 0 disappears and is replaced by another local
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Figure 6.2: Plots of q 7→ −F(λ, q) for k = 3, λ = 10 and P0 = N (µ, 1), for different values
of µ.

minimum at q0, close to 0. It is possible in this situation to achieve non-trivial performance
by efficient algorithms (as AMP), but it is again conjectured that their correlation with
the planted solution X will be at most equal to q0, which is quite small compared to
the optimal overlap q∗(λ) ' 0.8. Polynomial-time algorithms can thus have non-trivial
performance but are still far from optimal. On the third and fourth plot, we see that for
larger means, the local minimum at q0 disappears completely. It is now possible (using for
instance AMP) to achieve the optimal performance in polynomial time.

6.3 Maximum likelihood estimation
6.3.1 Background and related work
We adopt here a slightly different normalization of the spiked tensor model in order to
study maximum likelihood estimation. Suppose again that we are given an observation,
Y , which is a k-tensor of rank 1 in dimension n subject to additive Gaussian noise. That
is,

Y = λ
√
nX⊗k +Z, (6.3.1)

where X ∈ Sn−1, the unit sphere in Rn and Z is an i.i.d. Gaussian k-tensor with Zi1...ik ∼
N (0, 1)1. Throughout this section, we assume that X is drawn from an uninformative
prior, namely the uniform distribution on Sn−1. Consequently, the typical order of magni-
tude of the entries of X is 1/

√
n: the scaling we take here is equivalent to the one we used

in Section 6.1.

It is straightforward to show that maximizing the log-likelihood is equivalent to max-
imizing 〈Y ,x⊗k〉 over the sphere, x ∈ Sn−1. The maximum likelihood estimator (MLE)
x̂ML
λ is then defined as2

x̂ML
λ = arg max

x∈Sn−1
〈Y ,x⊗k〉. (6.3.2)

The goal of this section is to study the asymptotic behavior of the maximum likelihood
estimator x̂ML

λ . The function Hλ : x 7→
√
n〈x⊗k,Y 〉 has been extensively studied in sta-

tistical physics and mathematics.

1We note here that none of the results of this section are changed if one symmetrizes Z, i.e., if we work
with the symmetric Gaussian k-tensor.

2As shown in Proposition 6.4.2, x 7→ 〈x⊗k,Y 〉 admits almost surely a unique maximizer over Sn−1 if k
is odd, and two maximizers x∗ and −x∗ if k is even. In the case of even k, x̂ML

λ is simply picked uniformly
at random among {−x∗,x∗}.
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In the case λ = 0, the Hamiltonian H0 was first studied by Crisanti and Sommers
in [54] using the heuristic “replica method”. They computed the value of its maximum
(the “ground state”), a result that was then rigorously confirmed by [200, 48, 10, 51, 111].
Crisanti and Sommers analyzed in [53] the complexity of the function H0. In order to
characterize how complex the function H0 can be, one of the main quantity of interest is
the number of critical points at a given energy (i.e. likelihood) and with a given correlation
with the signal X:

Crt?(M,E) def=
∑

x:∇Hλ(x)=0
1
{
〈x,X〉 ∈M

}
1

{ 1
n
Hλ(x) ∈ E

}
(6.3.3)

for M ⊂ [−1, 1] and E ⊂ R. One can define similarly Crt0(M,E) the number of local
maxima with correlation in M and energy in E. The paper [53] shows (by non-rigorous
methods) that in the case λ = 0, Crt0(E) ' exp(nS0(E)) provided E ⊂ [E∞(k),+∞) for
some value E∞(k). Another derivation of this prediction was done by Fyodorov [86] using
tools from random matrix theory.

The work of Auffinger, Ben Arous and Černỳ [11, 10] confirmed rigorously this picture
by proving (using the Kac-Rice formula and results from random matrix theory) the con-
jectured limiting expression for 1

n
logE[Crt?], 1

n
logE[Crt0], and for other even more precise

quantities. Subag [197] showed then, by a second moment computation, that the number
of critical point (at which the Hamiltonian is larger than some value E∞(k)) is actually
concentrated around its mean, giving a precise understanding of the typical number of
critical points of the function H0.

In the case λ > 0, the model was first considered by Gillin and Sherrington [91] who
analyzed the Gibbs measure associated to the HamiltonianHλ. The study of the complexity
of Hλ was carried out by Ben Arous, Mei, Montanari and Nica [9]. The authors compute
the (normalized) logarithm of the expected number of local minima below a certain energy
level via the Kac-Rice approach and show that there is a transition at a point λs such that
for λ < λs this is negative for any strictly positive correlation, and for λ > λs it has a
zero with correlation bounded away from zero. In [183], study the (normalized) logarithm
of the (random) number of local minima via a novel (but non rigorous) replica theoretic
approach. They argued that there are in fact two transitions for the log-likelihood, called λs
and λc. First, for λ < λs, all local maxima of the log-likelihood only achieve asymptotically
vanishing correlation. For λs < λ < λc, there is a local maximum of the log-likelihood with
non-trivial correlation but the maximum likelihood estimator still has vanishing correlation.
Finally, for λc < λ the maximum likelihood estimator has strictly positive correlation. In
particular, if we let m(λ), denote the limiting value of the correlation of the maximum
likelihood estimator and X, they predict that m(λ) has a jump discontinuity at λc. We
will verify this with Theorem 6.3.1 in the next section.

6.3.2 Main results
In order to state our main results, we need to introduce some notations. Define for t ∈ [0, 1),

fλ(t) = λ2tk + log(1− t) + t (6.3.4)

and let
λc = sup

{
λ ≥ 0

∣∣∣∣ sup
t∈[0,1)

fλ(t) ≤ 0
}
. (6.3.5)
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As we will see with Proposition 6.4.1 below, it can be deduced from the results of Section 6.1
that λc is the information-theoretic threshold for the model (6.3.1). Our main result is that
the preceding transition is also the transition for which maximum likelihood estimation
yields an estimator which achieves positive correlation with X. Let q∗(λ) be defined by

q∗(λ) =

0 if λ < λc

arg maxt∈[0,1) fλ(t) if λ > λc.
(6.3.6)

As shown in Lemma 6.4.7, the function fλ admits a unique positive maximizer on [0, 1)
when λ > λc, so that this is well-defined. Let zk denote the unique zero on (0,+∞) of

ϕk(z) = 1 + z

z2 log(1 + z)− 1
z
− 1
k
. (6.3.7)

Finally, let

GSk =
√
k√

1 + zk

(
1 + zk

k

)
. (6.3.8)

We then have the following.

Theorem 6.3.1
Let λ ≥ 0 and k ≥ 3. The following limit holds almost surely

lim
n→∞

1√
n

max
x∈Sn−1

〈
x⊗k,Y

〉
=


GSk if λ ≤ λc
√
k

1 + λ2q∗(λ)k−1√
1 + λ2kq∗(λ)k−1

if λ > λc.
(6.3.9)

Furthermore, we have that for λ 6= λc

lim
n→∞

∣∣∣〈x̂ML
λ ,X

〉∣∣∣ =
√
q∗(λ). (6.3.10)

As a consequence of Corollary 6.4.1, the maximum likelihood estimator achieves maximal
correlation. Unlike the case k = 2, the transition in q∗(λ) is not continuous. See Figure 6.3.
Theorem 6.3.1 was proved in [110] where it is also proved that λc is the threshold for
hypothesis testing, in the case of even k larger than 6. If we denote by Qλ the law of the
observations Y given by (6.3.1), then for λ < λc,

DTV(Qλ, Q0) −−−→
n→∞

0.

Below λc it is therefore impossible to distinguish the tensor Y from pure noise. As a
consequence of Theorem 6.3.1, the threshold λc is also the threshold for multiple hypothesis
testing: the maximum likelihood is able to distinguish between all of the hypotheses λ > λc.

6.3.3 Regarding the spinodal transition
While the regime λs < λ < λc and the expected transition at λs is not relevant for
testing and estimation, there is still a natural interpretation from the perspective of the
landscape of the maximum likelihood. In [9, 183], this is explained explained in terms of

99



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

λ

0.0

0.2

0.4

0.6

0.8

1.0

√
q ∗

(λ
)

k = 2
k = 3
k = 4
k = 5
k = 10
k = 100

Figure 6.3: Asymptotic correlation lim
n→∞

|〈x̂ML
λ ,X〉| =

√
q∗(λ) as a function of the signal-

to-noise ratio λ, for different values of k.

the complexity. There is also an explanation in terms of the optimization of the maximum
likelihood. We end this section with a brief discussion of this phase. Let λs be given by

λs =

√√√√ (k − 1)k−1

k(k − 2)k−2 . (6.3.11)

Consider the constrained maximum likelihood,

Eλ(m) = lim
n→∞

1
n

max
x∈Sn−1, 〈X,x〉=m

{
λn〈X,x〉k +

√
n〈Z,x⊗k〉

}
. (6.3.12)

This limit exists and is given by an explicit variational problem (see (6.4.5) below). For
λ > λs, let

√
qs(λ) be the (unique) positive, strict local maximum of fλ. By Lemma 6.4.7,

this is well-defined and satisfies qs(λ) = q∗(λ) for λ > λc. In [183], it is argued by the
replica method that Eλ(m) has a local maximum at

√
qs(λ) for all λ > λs. Establishing

this rigorously is a key step in our proof of Theorem 6.3.1. In particular, we prove the
following, which is a direct consequence of Lemma 6.4.4 below.
Proposition 6.3.1

For λ > λs, the function Eλ has a strict local maximum at
√
qs(λ).

It is easy to verify (by direct differentiation) that the map λ 7→ Eλ(
√
qs(λ)) is strictly in-

creasing on (λs,+∞). We have also that Eλc(
√
qs(λc)) = GSk by Lemma 6.4.4 and Lemma

6.4.8, so we get that for λs < λ < λc the strict local maximum at
√
qs(λ) has Eλ(

√
qs(λ))

strictly less than the maximum likelihood. In fact, (6.4.5) can be solved numerically, as
it can be shown that one may reduce this variational problem, in the setting we consider
here, to a two-parameter family of problems in three real variables. This is discussed in
6.4.2 below. In particular, see Figure 6.4 for an illustration of these two transitions in the
case k = 4.

6.4 Proof of Theorem 6.3.1
In this section, we prove Theorem 6.3.1. We begin by providing a lower bound for the
maximum likelihood for every λ ≥ 0 using results on the ground state of the mixed p-
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Figure 6.4: Asymptotic constrained maximum likelihood Eλ(m) for k = 4 with λ =
1, 1.299, 1.35, 1.405, 1.5. Here λs ≈ 1.299 and λc ≈ 1.405. For λ < λs, the function is
(numerically) seen to be monotone. A secondary maximum occurs at the transition λ = λs.
This local maximum is bounded away from m = 0. Finally, at the information theoretic
threshold λc, the maximum likelihood is now maximized at this second point.

spin model recently proved in [111, 51]. We then use the information-theoretic bound on
the maximal correlation achievable by any estimator from [136] to obtain the matching
upper bound. We end by proving the desired result for the correlation (x̂ML

λ ,X). In the
remainder of this section, for ease of notation, we let

Hλ(x) = H(x) + λn〈x,X〉k, (6.4.1)

where H(x) =
√
n
∑
i1,...,ik Zi1,...,ikxi1 . . . xik .

6.4.1 Variational formula for the ground state of the mixed p-
spin model

We begin by recalling the following variational formula for the ground state of the mixed
p-spin model. Consider the Gaussian process indexed by x ∈ Sn−1:

Yn(x) =
√
n
∑
p≥1

ap
∑

1≤i1,...,ip≤n
gi1,...,ipxi1 . . . xip ,

where gi1,...,ip are i.i.d. standard Gaussian random variables and ∑p≥1 2pa2
p <∞. This last

condition ensures that the sum above is almost surely finite. The covariance of Yn is given
by

E
[
Yn(x)Yn(y)

]
= nξ(〈x,y〉),

where ξ(t) = ∑
p≥1 a

2
pt
p. Let C denote the subset of C([0, 1]) of functions that are positive,

non-increasing and concave. For any h ≥ 0, we let Ph : C → R be

Ph(φ) =
∫
ξ′′(x)φ(x) + 1

φ(x)dx+ (h2 + ξ′(0))φ(0).

Set
G(ξ, h) = 1

2 min
φ∈C

Ph(φ). (6.4.2)

Let us recall the following variational formula. For x ∈ Sn−1, we write x = (x1, . . . , xn).
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Theorem 6.4.1 ([51, 111])
For all h ≥ 0,

lim
n→∞

1
n

max
x∈Sn−1

{
Yn(x) + h

√
n

n∑
i=1

xi

}
= G(ξ, h),

almost surely and in L1.

Remark 6.4.1. While the results of [51, 111] are stated with ξ′(0) = 0, they still hold
when ξ′(0) > 0 by replacing ξ 7→ ξ(t) − ξ′(0)t and h2 7→ h2 + ξ′(0) . To see this, simply
note that the Crisanti-Sommers formula still holds in this setting by the main result of
[48]. The reformulation from [111, Eq. (1.0.1)] is then changed by this replacement by
simply repeating the integration by parts argument from [111, Lemma 6.1.1]. From here
the arguments are unchanged under the above replacement.

6.4.2 The lower bound
By Borell’s inequality, the constrained maximum likelihood (6.3.12) concentrates around
its mean with sub-Gaussian tails. In particular, combining this with Borel-Cantelli we see
that

Eλ(m) = lim
n→∞

1
n
E
[

max
x∈Sn−1, 〈x,X〉=m

{
λn〈x,X〉k +H(x)

}]
. (6.4.3)

Clearly, lim inf 1
n
E
[

maxSn−1 Hλ

]
≥ Eλ(m) for all m ∈ [−1, 1]. Recall the definition of

λs from (6.3.11) and qs(λ), see, e.g., Lemma 6.4.7. If we apply this for λ > λs and
m =

√
qs(λ) >

√
1− 1

k−1 (by Lemma 6.4.7), Lemma 6.4.4 below will immediately yield the
following lower bound.
Lemma 6.4.1

For all λ > λs,

lim inf
n→∞

E
[ 1
n

max
x∈Sn−1

Hλ(x)
]
≥
√
k

1 + λ2qs(λ)k−1√
1 + λ2kqs(λ)k−1

. (6.4.4)

We now turn to the proof of Lemma 6.4.4. We begin by observing the following explicit
representation for Eλ.
Lemma 6.4.2

For all m ∈ [−1, 1] the limit in (6.3.12) exists and

Eλ(m) = λmk + G(ξm, 0), (6.4.5)

where ξm(t) = (m2 + (1−m2)t)k −m2k.

Proof. We begin by observing that by rotational invariance,
1
n
E
[

max
x∈Sn−1, 〈x,X〉=m

{
λn〈x,X〉k +H(x)

}]
= λmk + 1

n
E
[

max
x∈Sn−1, x1=m

H(x)
]
.

Let x ∈ Sn−1 such that x1 = m. Then

H(x) (d)=
√
nmkg1,...,1 +

√
n
k−1∑
j=0

(
k

j

)1/2

mj
∑

2≤i1,...,ik−j≤n
gi1,...,ik−jxi1 . . . xik−j ,

102



where
(
(gi1,...,ip)1≤i1,...,ip≤n

)
p≤k are i.i.d. standard Gaussians.

So that E
[
maxx∈Sn−1, x1=mH(x)

]
= E

[
maxx∈Sn−2 Hm(x)

]
, where Hm is given by:

Hm(x) =
√
n
k−1∑
j=0

(
k

j

)1/2

mj(1−m2)(k−j)/2 ∑
1≤i1,...,ik−j≤n−1

gi1,...,ik−jxi1 . . . xik−j .

The function Hm is a Gaussian process with covariance

E
[
Hm(x)Hm(y)

]
= nξm(〈x,y〉),

where ξm is given by

ξm(t) =
k−1∑
j=0

(
k

j

)
m2j(1−m2)k−jtk−j = (m2 + (1−m2)t)k −m2k. (6.4.6)

We conclude using Theorem 6.4.1 to obtain the result.

We now observe that for m large enough, this formula has a particularly simple form.
Lemma 6.4.3

For all |m| ≥
√

1− 1
k−1 we have:

Eλ(m) = λmk +
√
k(1−m2). (6.4.7)

Proof. In the setting of Theorem 6.4.1 it was also shown in [111, 51] that if ξ′(1) + h2 ≥ ξ′′(1)
then G(ξ, h) =

√
ξ′(1) + h2. Since

ξ′m(t) = k(1−m2)(m2 + (1−m2)t)k−1

ξ′′m(t) = k(k − 1)(1−m2)2(m2 + (1−m2)t)k−2,

the condition ξ′m(1) ≥ ξ′′m(1) corresponds to (k− 1)(1−m2) ≤ 1, i.e. |m| ≥
√

1− 1
k−1 . When this

holds, we get that

Eλ(m) = λmk + G(ξm, 0) =
√
ξ′m(1) = λmk +

√
k(1−m2)

by (6.4.5).

We end with the desired explicit formula for Eλ(
√
q
s
(λ)).

Lemma 6.4.4

For all λ > λs,
√
qs(λ) is a local maximizer of Eλ and if we write x(λ) = λ2kqk−1

s (λ),

Eλ
(√

qs(λ)
)

=
√
k√

1 + x(λ)

(
1 + x(λ)

k

)
.

Proof. Differentiating the expression (6.4.7) for m ≥
√

1− 1
k−1 yields

E′λ(m) = λkmk−1 −
√
km√

1−m2
= k

1
1−m2

(
λkmk−1 +

√
km√

1−m2

)−1(
λ2km2k−2 − λ2km2k −m2

)
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so that the functions φλ, fλ and m2 7→ Eλ(m) have precisely the same monotonicity on [1− 1
k−1 , 1)

(recall the expression of the derivatives f ′λ and φ′λ given by (6.4.14)). Lemma 6.4.7 gives that
qs(λ) is a local maximum of fλ and φλ for λ > λs,

√
qs(λ) is therefore a local maximum of Eλ.

Let us now compute Eλ(
√
qs(λ)). By Lemma 6.4.7, qs(λ) = x(λ)

1+x(λ) . Consequently,

Eλ(qs(λ)1/2) = λqs(λ)k/2 +
√
k(1− qs(λ)) =

√
k√

1 + x(λ)

(
1 + x(λ)

k

)
.

6.4.3 The upper bound
We prove here the upper bound.
Lemma 6.4.5

For all λ ≥ 0,

lim sup
n→∞

E
[ 1
n

max
x∈Sn−1

Hλ(x)
]
≤ GSk +

∫ λ

0
q∗(t)k/2 dt. (6.4.8)

We defer the proof of this momentarily to observe the following information-theoretic
bounds which will be useful in its proof.
Proposition 6.4.1

Assume that X is uniformly distributed over Sn−1, independently of Z. Then for all
λ ∈ (0,+∞) \ {λc}

lim
n→∞

E
[∥∥∥X⊗k − E[X⊗k|Y ]

∥∥∥2
]

= 1− q∗(λ)k.

This follows from the results of Section 6.1.2, by approximating the uniform measure
on Sn−1 by an i.i.d. Gaussian measure. For the completeness, we provide a proof in
Section 6.4.6. As a consequence of this, we have the following.
Corollary 6.4.1

Assume that X is uniformly distributed over Sn−1, independently from Z. Then for
all measurable functions x̂ : (Rn)⊗k → Sn−1 and for all λ 6= λc we have

lim sup
n→∞

E
[
〈x̂(Y ),X〉k

]
≤ q∗(λ)k/2.

Proof. Compute

E
[∥∥∥X⊗k − (√q∗(λ)x̂(Y )

)⊗k∥∥∥2]
= E

[∥∥X⊗k∥∥2]+ q∗(λ)kE
[∥∥x̂(Y )⊗k

∥∥2]− 2q∗(λ)k/2E
[〈
x̂(Y ),X

〉k]
= 1 + q∗(λ)k − 2q∗(λ)k/2E

[〈
x̂(Y ),X

〉k]
.

Recall that the posterior mean, E[X⊗k|Y ], uniquely achieves the minimal mean-square error over
all square-integrable tensor-valued estimators, T̂ (Y ), for X⊗k. The proposition follows then from
Proposition 6.4.1 which gives

lim inf
n→∞

E
[∥∥∥X⊗k − (√q∗(λ)x̂(Y )

)⊗k∥∥∥2]
≥ lim inf

n→∞
E
[∥∥∥X⊗k − E

[
X⊗k

∣∣Y ]∥∥∥2]
= 1− q∗(λ)k.
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With this in hand we may now prove Lemma 6.4.5.
Proof of Lemma 6.4.5. By Proposition 6.4.2 and an application of an envelope-type theorem
(see, e.g., Proposition D.2), the map λ 7→ 1

nE
[
maxSn−1 Hλ(x)

]
is differentiable for λ ≥ 0, with

derivative
∂

∂λ
E
[ 1
n

max
x∈Sn−1

Hλ(x)
]

= E
[
〈x̂ML

λ ,X〉k
]
. (6.4.9)

By [111, 51] we know that 1
nE[maxSn−1 H0

]
→ GSk. The reverse Fatou lemma gives then

lim sup
n→∞

E
[ 1
n

max
x∈Sn−1

Hλ(x)
]
≤
∫ λ

0
lim sup
n→∞

E
[〈
x̂ML
γ ,X

〉k]
dγ + GSk ≤

∫ λ

0
q∗(γ)k/2 dγ + GSk,

where the second inequality follows from 6.4.1.

6.4.4 Proof of first part of Theorem 6.3.1
By an elementary but tedious calculation (see Lemma 6.4.9) the right sides of (6.4.4) and
(6.4.8) are equal for λ ≥ λc (recall that q∗(λ) = qs(λ) for such λ). Thus for all λ > λc,

E
[ 1
n

max
x∈Sn−1

Hλ(x)
]
−−−→
n→∞

√
k

1 + λ2q∗(λ)k−1√
1 + λ2kq∗(λ)k−1

. (6.4.10)

We will now prove that for λ ≤ λc, ĎMn(λ) −−−→
n→∞

GSk, where ĎMn(λ) is defined by

ĎMn(λ) = E
[ 1
n

max
x∈Sn−1

Hλ(x)
]
.

Notice that ĎMn(λ) is convex as an expectation of a maximum of linear functions. By
(6.4.9), it follows that ĎM ′

n(0+) ≥ 0. (When k is odd, we use rotational invariance to see
that it is in fact zero.) Consequently, ĎMn is non-decreasing on [0,+∞).

By [111, 51] (see Theorem 6.4.1), limn→∞ ĎMn(0) = GSk. By (6.4.10) and Lemma 6.4.9,

lim
λ→λ+

c

lim
n→∞

ĎMn(λ) = GSk.

Consequently, we obtain that for all λ ∈ [0, λc], limn→∞ ĎMn(λ) = GSk.
The almost sure convergence of (6.3.9) follows then from the convergence of the expec-

tation ĎMn(λ), combined with Borell’s inequality for suprema of Gaussian processes (see for
instance [37, Theorem 5.8]) and the Borel-Cantelli Lemma.

Remark 6.4.2. By (6.4.5) , Eλ is given by a variational problem over the space C. We first
observe that one can easily solve this variational problem numerical due to the following
simple reductions. First note that if we let ξm be as in (6.4.6), then (1/

√
ξ′′m)′′ is strictly

positive, where the prime denotes differentiation in t. Thus by [111, Theorem 1.2.4], the
minimizer φ must be of the form φ(s) =

∫ 1
s dνs where νs = θ1δa+θ2δb, where a, b ∈ [0, 1] and

θi ≥ 0. Thus the variational problem (6.4.5) is a variational problem over 4 parameters
which can be solved numerically. These observations then rigorously justify the starting
point of the discussion in [183, Section 4], namely the “RS” and “1RSB” calculation in
[183, Sect. 4.B] in the regime they analyze, called the “T = 0” regime there. We refer the
reader there for a more in-depth discussion, see [183, Sect. 4.C].
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6.4.5 Proof of second part of Theorem 6.3.1
We now turn to the second part of Theorem 6.3.1, namely (6.3.10). Let Mn(λ) denote

Mn(λ) = 1
n

max
x∈Sn−1

Hλ(x).

Let λ ∈ (0,+∞) \ {λc}. By (6.3.9) and Lemma 6.4.9

lim
n→∞

Mn(λ) = `(λ) def=

GSk if λ ≤ λc

GSk +
∫ λ
0 q∗(γ)k/2 dγ if λ > λc.

By Proposition 6.4.2 and the Milgrom-Segal envelope theorem (see Proposition D.2), Mn

is differentiable in λ with derivative

M ′
n(λ) = 〈x̂ML

λ ,X〉k,

almost surely. As Mn is convex in λ (it is a maximum of linear functions), we see that for
any 0 < h < λ,

Mn(λ− h)−Mn(λ)
h

≤M ′
n(λ) ≤ Mn(λ+ h)−Mn(λ)

h
.

By taking the n→∞ limit, we get that almost surely
`(λ− h)− `(λ)

h
≤ lim inf

n→∞
〈x̂ML

λ ,X〉k ≤ lim sup
n→∞

〈x̂ML
λ ,X〉k ≤ `(λ+ h)− `(λ)

h
. (6.4.11)

Since ` is differentiable for λ 6= λc, we may take h → 0 to obtain limn→∞〈x̂ML
λ ,X〉k =

q∗(λ)k/2 almost surely, which proves (6.3.10).

6.4.6 Auxiliary results

Uniqueness of minimizers

This section gathers some basic lemmas that will be useful for the analysis.
Proposition 6.4.2

Recall the definition (6.4.1) of Hλ. We have the following

• If k is odd, then Hλ has almost surely one unique maximizer over Sn−1.

• If k is even, then Hλ has almost surely two maximizers over Sn−1, x∗ and −x∗.

Proof. We note the following basic fact from the theory of Gaussian processes, see, e.g. [123].
Lemma 6.4.6

Let (Z(t))t∈T be a Gaussian process indexed by a compact metric space T such that t 7→ Z(t)
is continuous almost surely. If the intrinsic quasi-metric, d(s, t)2 = Var

(
Z(s) − Z(t)

)
, is a

metric, i.e., d(s, t) 6= 0 for s 6= t, then Z admits a unique maximizer on T almost surely.

Observe Hλ is continuous on the compact Sn−1. For x1,x2 ∈ Sn−1, we have

Var
(
Hλ(x1)−Hλ(x2)

)
= 2n

(
1− 〈x1,x2〉k

)
.

If k is odd, then the proposition follows directly from the Lemma. If k is even, we apply the
Lemma on the quotient space Sn−1/ ∼ where ∼ denotes the equivalence relation defined by
x1 ∼ x2 ⇔

(
x1 = x2 or x1 = −x2).
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Study of the asymptotic equations

Define, for all q ∈ [0, 1]

φλ(q) = λ2kqk−1 − log(1 + λ2kqk−1)− λ2(k − 1)qk. (6.4.12)

Lemma 6.4.7
We have for all λ > 0,

max
q∈[0,1)

fλ(q) = max
q∈[0,1]

φλ(q)

Furthermore, if we let λs =
√

(k−1)k−1

k(k−2)k−2 :

• For λ < λs, then the functions fλ and φλ are decreasing on [0, 1).

• For λ > λs, the functions fλ and φλ have a strict local minimum at qu(λ) and a
strict local maximum at qs(λ) where 0 < qu <

k−2
k−1 < qs < 1, and both functions

are strictly monotone on the intervals (0, qu), (qu, qs) and (qs, 1). Moreover, qs(λ)
satisfies:

qs(λ) = λ2kqs(λ)k−1

1 + λ2kqs(λ)k−1 . (6.4.13)

Finally, for λ > λc, q∗(λ) = qs(λ) is the unique maximizer of fλ and φλ over [0, 1).

Proof. We have for q ∈ [0, 1)

φ′λ(q) = k(k − 1)λ2qk−1

1 + λ2kqk−1 h(q) and f ′λ(q) = h(q)
1− q (6.4.14)

where h(q) = λ2kqk−1 − λ2kqk − q. It suffices therefore to study the variations of fλ. notice also
that

φλ(q) = fλ(q) + h(q)− log(1 + h(q)).

Since f ′λ(q) = 0 implies h(q) = 0, this implies that

max
q∈[0,1]

φλ(q) = max
q∈[0,1)

fλ(q)

and that these maxima are achieved at the same points. Let us now study the sign of the
polynomial h(q):

h(q) = qkλ2(qk−2 − qk−1 − 1
kλ2

)
. (6.4.15)

One verify easily that the polynomial qk−2 − qk−1 achieves its maximum at k−2
k−1 and that the

value of this maximum is (k−2)k−2

(k−1)k−1 . We get that for λ < λs, h′(q) < 0 for all q > 0. For λ > λs

we get that h admits exactly 3 zeros on R: 0 < qu(λ) < qs(λ) < 1. Since the maximum of h
is achieved at k−2

k−1 we get that qu(λ) < k−2
k−1 < qs(λ). This proves the two points of the lemma;

(6.4.13) simply follows from the fact that h(qs(λ)) = 0. The last statement of Lemma 6.4.7 is
then an immediate consequence of the definition of λc.

Recall that zk is defined as the unique zero of ϕk(z) = 1+z
z2 log(1+z)− 1

z
− 1

k
on (0,+∞).
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Lemma 6.4.8
The mapping λ 7→ qs(λ) is C∞ on (λs,+∞). Moreover λ2kqs(λc)k−1 = zk.

Proof. The first part follows from a straightforward application of the implicit function theorem.
We get in particular that the mapping λ 7→ qs(λ) is continuous for λ > λs. So by definition

of λc and Lemma 6.4.7, φλc(qs(λc)) = 0. Let us write x = λ2kqs(λc)k−1.

0 = φλc(qs(λc)) = x− log(1 + x)− k − 1
k

xqs(λc) = x− log(1 + x)− k − 1
k

x2

1 + x
,

because qs(λc) = x
1+x (see (6.4.13)). This gives that ϕk(x) = 0 and thus x = zk.

Lemma 6.4.9
Let λ > λc and write x(λ) = λ2kqs(λ)k−1. Then we have

√
k√

1 + x(λ)

(
1 + x(λ)

k

)
= GSk +

∫ λ

λc
qs(γ)k/2dγ .

Proof. Let us write g(λ) =
√
k√

1+x(λ)

(
1 + x(λ)

k

)
. By Lemma 6.4.4,

√
qs(λ) is a local maximizer of

Eλ and thus a critical point of Eλ. This gives

g′(λ) = ∂λ
[
Eλ(

√
qs(λ))

]
= ∂λEλ(

√
qs(λ)) = qs(λ)k/2.

The lemma follows then from the fact that x(λc) = zk by Lemma 6.4.8 and the definition (6.3.8)
of GSk.

Proof of 6.4.1

For P0 a probability distribution over (Rn)⊗k with finite second moment, we define the free
energy

FP0(γ) = 1
n
E log

∫
P0(dx) exp

(√
γn〈x,Z〉+ γn〈x,X0〉 −

1
2γn‖x‖

2
)

where X0 ∼ P0 and Zi1,...,ik ∼ N (0, 1) are independent. Proposition B.1 gives that for two
probability distributions P1, P2 on (Rn)⊗k with finite second moment, we have∣∣∣FP1(γ)− FP2(γ)

∣∣∣ ≤ γ

2

(√
EP1‖X1‖2 +

√
EP2‖X2‖2

)
W2(P1, P2),

where W2(P1, P2) denotes the Wasserstein distance of order 2 between P1 and P2. Let µn
be the distribution of X⊗k when X ∼ Unif(Sn−1) and let νn be the distribution of X⊗k
when X ∼ N (0, 1

n
Idn). Let us compute a bound on W2(µn, νn). Let X be drawn uniformly

over Sn−1, and G ∼ N (0, Id), independently from X. Then (X⊗k, (‖G‖X/
√
n)⊗k) is a

coupling of µn and νn, so that, by definition of W2,

W2(µn, νn)2 ≤ E
∥∥∥X⊗k − (X‖G‖/√n)⊗k∥∥∥2

= E
[(( 1

n

n∑
i=1

G2
i

)k/2
− 1

)2]

where we use that E‖X‖k = 1. By the law of large numbers, it then follows that

lim
n→∞

|Fµn(γ)− Fνn(γ)| → 0.
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Recall the definition (6.4.12) of φλ(q) and define L(γ) = 1
2 maxq∈[0,1] φ√γ(q) = 1

2 maxq∈[0,1) f√γ(q),
where the equality comes from Lemma 6.4.7. By Theorem 6.1.1 we have λ ≥ 0, Fνn(γ)→
L(γ) as n→∞, which implies Fµn(γ)→ L(γ). The “I-MMSE relation” (Proposition 1.3.3)
gives that γ 7→ Fµn(γ) is convex and differentiable over [0,+∞) and

F ′µn(λ2) = 1
2

(
1− E

[∥∥∥X⊗k − E
[
X⊗k

∣∣∣Y ]∥∥∥2
])
.

By Proposition C.1, F ′µn converges to L′ for each λ > 0 at which L is differentiable.
For γ < λ2

c , L(γ) = 0, so L is differentiable on (0, λ2
c) with derivative equal to 0. For

γ > λ2
c , we know by Lemma 6.4.7 that f√γ admits a unique maximizer q∗(

√
γ) on [0, 1].

Proposition D.2 gives that L is differentiable at γ with derivative

L′(γ) = 1
2(∂γf√γ)(q∗(

√
γ)) = 1

2q∗(
√
γ)k.

We conclude that

lim
n→∞

1
2

(
1− E

[∥∥∥X⊗k − E[X⊗k|Y ]
∥∥∥2])

= lim
n→∞

F ′µn(λ2) =

0 if λ < λc
1
2q∗(λ)k if λ > λc.
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Chapter 7

Phase transitions in Generalized
Linear Models

7.1 Introduction: learning a linear classifier
Before presenting the Generalized Linear Models (GLM) in full generalities, we first focus
on a simple supervised learning task: learning a linear classification rule. We assume here
to have m points g1, . . . , gm ∈ Rn, that are classified between two classes “+1” and “−1”,
according to the value of

Yµ = sign
(
〈X∗, gµ〉

)
,

where X∗ ∈ Rn is a normal vector to the hyperplane that separates the two classes. The
supervised learning task is, given the labeled dataset

{
(gµ, Yµ)

∣∣∣ 1 ≤ µ ≤ m
}

, to learn the
hyperplane Span(X∗)⊥ that separates the two classes.

Figure 7.1: Two classes separated by an hyperplane.

7.1.1 Rosenblatt’s perceptron algorithm
Rosenblatt [184, 185] proposed an iterative algorithm to find a vector x̂ that separates the
data, i.e. such that sign(〈x̂, gµ〉) = Yµ for all µ. The so-called “perceptron” algorithm goes
as follows:

• Initialize x̂0 = 0.
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Figure 7.2: Frank Rosenblatt with the “Mark 1 perceptron”, a custom-built hardware that
implements the perceptron algorithm (circa 1960).

• While It def= {µ | sign(〈x̂t, gµ〉) 6= Yµ} 6= ∅ choose µt uniformly at random in It and
update x̂t:

x̂t+1 = x̂t + sign(Yµt)gµt . (7.1.1)

• If It = ∅, then return x̂ =
√
n x̂t/‖x̂t‖.

Rosenblatt [185] and then Novikoff [165] proved that the perceptron algorithm termi-
nates after a finite number of iterations:
Proposition 7.1.1

Let β = maxµ ‖gµ‖2 and γ = minµ |〈X∗, gµ〉|. Then the perceptron algorithm converges
for t ≤ tmax where

tmax
def= β‖X∗‖2

γ2 .

Proof. Let tf be the time at which the algorithm converges, i.e. the first t for which Yµ =
sign(〈x̂t, gµ〉) for all µ. If such a t does not exist, we define tf = +∞. We have to prove that
tf ≤ tmax. From the update rule (7.1.1) we have for all t < tf :

〈x̂t+1,X∗〉 = 〈x̂t,X∗〉+ sign(Yµt)〈gµt ,X∗〉 ≥ 〈x̂t,X∗〉+ γ,

so that 〈x̂t,X∗〉 ≥ tγ for all t ≤ tf . On the other hand, one has

‖x̂t+1‖2 = ‖x̂t‖2 + ‖gµt‖2 + 2sign(Yµt)〈gµt , x̂t〉 ≤ ‖x̂t‖2 + β,

by definition of β and because sign(〈gµt , x̂t〉) 6= Yµt . We get ‖x̂t‖2 ≤ tβ, for all t ≤ tf . From
what we have seen above and the Cauchy-Schwarz inequality, we have for all t ≤ tf :

t2γ2 ≤ 〈x̂t,X∗〉2 ≤ ‖x̂t‖2‖X∗‖2 ≤ tβ‖X∗‖2.

We conclude that tf ≤ tmax.

What is now a typical order of magnitude of tmax ? We will be interested in the
asymptotic regime, where n,m→∞ such that m/n→ α > 0. Let us now suppose that the
data points are randomly chosen as (gµ)1≤µ≤m

i.i.d.∼ N (0, Idn) and assume that ‖X∗‖ =
√
n.
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In that case, the random variables 〈X∗, gµ〉 are i.i.d. N (0, n) random variables, so there
exists constants c, C > 0 such that with high probability γ = minµ |〈X∗, gµ〉| ≥ c

√
n/m

and maxµ ‖gµ‖2 ≤ Cn. Consequently, with have with high probability

tmax = O(n3).

This means that it is possible in this model to find a separating hyperplane in polynomial
time.

7.1.2 The generalization problem
We have seen in the previous section an efficient algorithm to find a separating hyperplane
of our data. In other words, the perceptron algorithm is able to achieve a “training error”
of 0 on the dataset (gµ, Yµ)µ≤m. But does this algorithm generalize well? That is, given
a new point gnew ∼ N (0, Idn) independent of g, who has label Ynew = sign(〈X∗, gnew〉),
what is the probability that

sign(〈x̂, gnew〉) = Ynew ?
Let us suppose that ‖X∗‖ =

√
n. Since we assumed gnew to be a standard Gaussian vector

independent of g (and therefore also independent of x̂), a simple computation gives

P
(
sign(〈x̂, gnew〉) 6= Ynew

)
=

arccos
(

1
n
〈x̂,X∗〉

)
π

.

Not surprisingly, the generalization performance of the perceptron algorithm depends
on the correlation between x̂ and the planted solution X∗. From now we take X∗ ∼
Unif({−1, 1}n), independently from g. We plot on Figure 7.3 on page 114 the correlation
1
n
〈x̂,X∗〉 a simulation with n = 10000 and various values of α = m/n.

The question is now: how does this compare with the best achievable correlation? Is it
possible to generalize perfectly? To study this problem, we have to look at the posterior
distribution of X∗ given g and Y which is simply the uniform distribution over

Sn
def=
{
x ∈ {−1, 1}n

∣∣∣∣∀µ ∈ {1, . . . ,m}, sign
(
〈x, gµ〉

)
= Yµ

}
.

Obviously X∗ ∈ Sn, and #Sn decreases as m increases. In order to be able to estimate
X∗ well, one would need that the points of Sn are well correlated with X∗. We introduce
therefore for I ⊂ [−1, 1],

Sn(I) def= Sn
⋂ {

x ∈ {−1, 1}n
∣∣∣∣ 1
n
〈x,X∗〉 ∈ I

}
.

The expected value of #Sn(I) (or more precisely 1
n

logE
[
#Sn(I)

]
since #Sn(I) is expected

to be of the exponential order) can be computed easily:
Proposition 7.1.2

Let h(q) = q+1
2 log(1 + q) + 1−q

2 log(1 − q) and ϕ(q) = arccos(q)/π. Define fα(q) =
log(2)−h(q)+α logϕ(q). Then, for any non-empty interval I ⊂ [−1, 1], we have (recall
that m/n→ α as n,m→∞):

1
n

logE
[
#Sn(I)

]
−−−→
n→∞

sup
q∈I

fα(q).
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Proof. For x ∈ {−1, 1}n, one writes q(x) = 1
n

∑n
i=1 xiXi. We have, conditionally on X∗,

E#Sn(I) =
∑

x, q(x)∈I
E

m∏
µ=1

1(sign(〈x, gµ〉) = sign(〈X∗, gµ〉)) =
∑

x, q(x)∈I
P
(
sign(〈x, g〉) = sign(〈X∗, g〉)

)m
,

because (gµ)µ≥1
i.i.d.∼ N (0, Idn). An easy computation gives P

(
sign(〈x, g〉) = sign(〈X∗, g〉)

)
=

ϕ(q(x)). For k ∈ Z we define Nn,k = #
{
x ∈ {−1, 1}n

∣∣ q(x) = k/n
}
. If n + k is odd, then

Nn,k = 0, otherwise Nn,k =
( n
(n+k)/2

)
. By Sterling approximation, there exists a constant c > 0

such that
c√
n

2n exp
(
− nh(k/n)

)
≤ Nn,k ≤ 2n exp

(
− nh(k/n)

)
,

while the upper-bound follows from the standard Chernoff bound for a sum of i.i.d. Rademacher
random variables. Since E#Sn(I) =

∑
k, k/n∈I Nn,k ϕ(k/n)m, we get

2n max
k,k/n∈I

{
e−nh(k/n)ϕ(q)m

}
≤ E#Sn(I) ≤ (2n+ 1)2n max

q∈I

{
e−nh(q)ϕ(q)m

}
and the result follows from taking the logarithm and dividing by n.

Let us define
α1 = inf

{
α > 0

∣∣∣∣ sup
q∈[−1,1]

fα(q) = 0
}
' 1.45. (7.1.2)

Proposition 7.1.2 gives that for α > α1, 1
n

logE
[
#Sn

]
−−−→
n→∞

0, which seems to indicate
that #Sn is of sub-exponential order in this regime: it should be possible to estimate X∗
almost perfectly:
Corollary 7.1.1

Let x ∼ Unif(Sn), independently of everything else. Then we have for all α > α1,

1
n

n∑
i=1

Xixi
(d)−−−→
n→∞

1. (7.1.3)

Proof. Let ε > 0 and Iε = [−1, 1− ε]. By Proposition 7.1.2 we have

1
n

logE[#Sn(Iε)] −−−→
n→∞

sup
q∈Iε

fα(q) < 0,

because for α > α1, the maximum of fα is uniquely achieved at q = 1. Consequently

P
( 1
n

n∑
i=1

Xixi ≤ 1− ε
)

= E
[#Sn(Iε)

#Sn

]
≤ E

[
#Sn(Iε)

]
−−−→
n→∞

0.

Perfect reconstruction is therefore possible for α > α1. But is α1 the smallest value of α
for which one can estimateX∗ perfectly, i.e. the smallest value of α for which (7.1.3) holds?
In the physics literature, the current problem was introduced by Gardner and Derrida [89]
who predicted (based on numerical simulations) that it was possible to learn X∗ perfectly
for values of α larger than αIT = 1.35± 0.10. Then Györgyi [98] used the heuristic replica
method to derive an exact formula for αIT ' 1.249.

Unfortunately, Proposition 7.1.2 does not allow us to obtain the expression of αIT. The
issue is that the expected value of #Sn does not capture the typical order of magnitude
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Figure 7.3: Plots of the limits of 1
n logE#Sn (given by Proposition 7.1.2), 1

nE log #Sn
and

√
q∗(α) (from Proposition 7.1.3), together with the correlation

√
qAMP(α) achieved by

GAMP and the correlation 1
n 〈x̂,X

∗〉 achieved by the perceptron algorithm (see Section 7.1.1)
for n = 10000.

of #Sn: the mean of #Sn is much larger than its median. This comes from exceptional
events of extremely small probability on which #Sn is exceptionally large, which make its
first moment too large.

The right quantity to consider is 1
n
E
[

log #Sn
]
, which will not be parasitized by these

exceptional events. This quantity is, however, harder to compute since the logarithm is
now inside the expectation. Computing such quantities will be one of the main goals of
this chapter: the result below will follow from an application of Theorems 7.3.1 and 7.3.2
presented in the next section.
Proposition 7.1.3

Let us define for q ∈ [0, 1]

fα(q) = log(2)+inf
r≥0

{
E
[
log cosh(

√
rZ+r)

]
+2αE

[
Φ
( √

q Z√
1− q

)
log Φ

( √
q Z√

1− q

)]
−r(q + 1)

2

}
,

where Z ∼ N (0, 1). Then we have

lim
n→∞

1
n
E log #Sn −−−→

n→∞
max
q∈[0,1]

fα(q).

Further, for all values of α for which the maximum in q above is achieved at a unique
point q∗(α) (which is the case for all α outside a countable set), we have

1
n

n∑
i=1

Xixi
P−−−→

n→∞
q∗(α). (7.1.4)

Notice that (7.1.4) implies that

sup
x̂

E
[
〈x̂(Y , g),X∗〉
‖x̂(Y , g)‖‖X∗‖

]
−−−→
n→∞

√
q∗(α),
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where the supremum is taken over all measurable functions x̂ of Y and g. The critical
value of α for which one can recover X∗ perfectly is then

αIT = inf
{
α > 0

∣∣∣∣ max
q∈[0,1]

fα(q) = 0
}

= inf
{
α > 0

∣∣∣∣ q∗(α) = 1
}
' 1.249.

However, as we see on Figure 7.3 on page 114 the perceptron algorithm of Section 7.1.1
does not achieve the optimal correlation

√
q∗(α). It is a priori unclear if this can be

done by an efficient algorithm. We will see in Section 7.4 that there exists a polynomial-
time algorithm called GAMP that achieve asymptotically a correlation of

√
qAMP(α), where

qAMP(α) is the limit of the sequence (qt)t≥0 given by the recursion (7.4.4). A bold conjecture
from statistical physics states that it is impossible to do better that GAMP in polynomial
time. One sees on Figure 7.3 on page 114 that there is a gap between

√
q∗ and √qAMP for

α ∈ (αIT, αAMP). In this regime it is theoretically possible to achieve a “perfect correlation”
with the signal, but not with an efficient algorithm.

7.2 Generalized linear estimation: Problem
statement

7.2.1 Definition
Let n,m ∈ N∗. We define a Generalized Linear Model (GLM) as follows. Given a signal
vector X∗ in Rn and m “measurement vectors” Φ1, . . .Φm ∈ Rn we sample Y1, . . . , Ym
independently (conditionally on X∗,Φ) according to

Yµ ∼ Pout

(
·
∣∣∣∣ 1√
n
〈Φµ,X

∗〉
)
, 1 ≤ µ ≤ m. (7.2.1)

Here Pout is a transition kernel: for all x ∈ R, Pout(·|x) is a probability measure on R such
that for all A ∈ B(R) the map x 7→ Pout(A|x) is measurable. The definition (7.2.1) of a
Generalized Linear Model is somehow a bit more general than the classical definition of
GLMs in statistics. We will discuss this in Section 7.2.2 below.

Given the measurement vectors (Φµ)1≤µ≤m and the observations (Yµ)1≤µ≤m, there are
two main statistical tasks:

(a) The estimation task. The goal is here to recover the signal X∗.

(b) The prediction task. Given a new point Φnew and the dataset Φ,Y , we aim at
predicting the corresponding output Ynew ∼ Pout(· | 1√

n
〈Φnew,X

∗〉).

Let Φ ∈ Rm×n be the matrix whose rows are Φ1, . . . ,Φm. The GLM (7.2.1) encompasses
many statistical models of significant interest, depending on the choice of the kernel Pout:

• The linear model: Y = 1√
n
ΦX∗ + σZ, where σ ≥ 0 and Z is some random noise.

• The Poisson regression: Pout(·|x) = Pois(ex), where Pois(θ) denotes the Poisson
distribution of mean θ.

• The (real) phase-retrieval problem or “signless channel”: Y = 1√
n
|ΦX∗|+ σZ.

115



• The “1-bit compressed sensing”, that we studied in Section 7.1: Y = sign(ΦX∗).

• The logistic model. This is the case when Pout is given by

Pout(y = 1 |x) = 1− Pout(y = −1 |x) = 1
1 + e−λx

.

In the examples above, the functions absolute value | · | and sign act componentwise on the
vector ΦX∗.

7.2.2 Link with the classical definition of Generalized Linear
Models in statistics

The definition of Generalized Linear Models in the statistical literature (see for instance [140])
differs slightly from the one given in the previous section. GLM are usually specified by:

• A bijective function g : R→ R, called “link function”.

• A probability distribution Pθ parametrized by θ ∈ R from the exponential family, i.e.
whose admits a density fθ with respect to a reference measure ν given by

fθ(y) = h(y)eθy−b(θ),

for some functions h and b.

Then, given a “linear predictor” ηµ = 1√
n
〈Φµ,X

∗〉, Yµ is sampled as Yµ ∼ Pθµ , where
θµ is given by the relation

g−1(ηµ) = b′(θµ). (7.2.2)

This choice of θµ ensures that the linear predictor ηµ is related to the mean of Yµ by
ηµ = g(E[Yµ]) = g(b′(θµ)). This definition of a Generalized Linear Model is obviously a
particular case of the definition (7.2.1) since the kernel Pout can reproduce the generation
process that we just described.

Let us now mention some limitations of this “classical” definition, compared to (7.2.1):

• The support of Pθ does not depend on θ (and therefore on 〈Φµ,X
∗〉). Hence the clas-

sical definition does not encompass the clustering problem discussed in Section 7.1.

• The mean of Yµ is in one-to-one correspondence with ηµ by (7.2.2), whereas with the
definition (7.2.1) one could imagine that this mean depends differently on ηµ (think
for instance to the “signless channel” where E[Yµ] = |ηµ|).

7.2.3 Bayesian framework
We will study the Generalized Linear Model (7.2.1) in a Bayesian framework, where the
components X∗1 , . . . , X∗n of X∗ are i.i.d. samples from a probability distribution P0 over
R. We will also assume that the measurement matrix Φ is independent of X∗, with
independent entries that have zero mean and unit variance.

We will only consider transition kernels Pout that admits a transition density with
respect to Lebesgue’s measure or the counting measure on N. We will (with a slight abuse
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of notation) also use the notation Pout(·|x) to denote this transition density. The posterior
distribution of X∗ given Y ,Φ takes the form:

dP (x|Y ,Φ) = 1
Z(Y ,Φ)dP

⊗n
0 (x)

m∏
µ=1

Pout

(
Yµ

∣∣∣∣ 1√
n

[Φx]µ
)

(7.2.3)

= 1
Z(Y ,Φ)dP

⊗n
0 (x)e−H(x;Y ,Φ) (7.2.4)

where the Hamiltonian is defined as

H(x;Y ,Φ) def= −
m∑
µ=1

logPout

(
Yµ

∣∣∣∣ 1√
n

[Φx]µ
)

(7.2.5)

and the partition function (the normalization factor) is defined as

Z(Y ,Φ) def=
∫
dP⊗n0 (x)e−H(x;Y ,Φ) . (7.2.6)

The main quantity of interest here is the associated free energy:

Fn
def= 1

n
E logZ(Y ,Φ). (7.2.7)

We will compute in Section 7.3.2 the limit of Fn when n,m→∞ while m/n→ α > 0.

Example 7.2.1. In the case of the “planted perceptron” studied in Section 7.1, we had
Pout(·|x) = δsign(x) and P0 = 1

2δ1 + 1
2δ−1. We see that

Z(Y ,Φ) = 1
2n#

{
x ∈ {−1, 1}n

∣∣∣∣∀µ ∈ {1, . . . ,m}, sign
(
〈x,Φµ〉

)
= Yµ

}
measures the number of possible values for X∗ given the observations of Y ,Φ.

Random function representation. We introduce now a convenient “random function”
representation for the transition kernel Pout. Let us consider a function ϕ : R × R → R
and a probability distribution PA over R such that for all x ∈ R, Pout(·|x) corresponds to
the law of

Y = ϕ(x,A) +
√

∆Z (7.2.8)
where (A,Z) ∼ PA⊗N (0, 1) and ∆ ≥ 0. Notice that any transition kernel can be realized
by (7.2.8) by simply taking ∆ = 0, A ∼ Unif([0, 1]) and ϕ(x, ·) to be the generalized inverse
of the cumulative distribution function of Pout(·|x), see Proposition 7.2.1 below.

We will however sometimes need to take ∆ > 0 in order to “regularize” Pout. In that case
the transition kernel Pout admits a transition density with respect to Lebesgue’s measure,
given by

Pout(y|x) = 1√
2π∆

∫
dPA(a)e− 1

2∆ (y−ϕ(x,a))2
. (7.2.9)

When ∆ = 0, we will only consider discrete channels where ϕ takes values in N1. In that
case Pout admits a transition density with respect the counting measure on N, that we will

1Notice that this allows to study any channel whose outputs belong to a countable set S by applying
a injection u : S → N to the outputs.
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write also Pout(·|x).

Let us end this section by looking at the link between the continuity properties of Pout
and ϕ. Clearly, if (7.2.8) holds and if for almost all a (with respect to PA), the function
ϕ(·, a) is continuous at some x0 ∈ R, then x 7→ Pout(·|x) is continuous (for the weak
convergence) at x0. The next proposition states that there exists functions ϕ that verify
(7.2.8) and such that the converse is true.
Proposition 7.2.1

There exists a measurable function ϕ : R2 → R such that for all x ∈ R, Pout(·|x) is the
law of ϕ(x,A) for A ∼ Unif([0, 1]). Moreover if x 7→ Pout(·|x) is continuous at x0 for
the weak convergence, i.e.

Pout(·|x) −−−→
x→x0

Pout(·|x0).

then for almost all a ∈ [0, 1] the function ϕ(·, a) is also continuous at x0.

Proof. We define the cumulative distribution function of Pout(·|x):

F (y|x) =
∫ y

−∞
Pout(dt|x),

and its generalized inverse:

ϕ(x, a) def= inf
{
y ∈ R

∣∣∣F (y|x) ≥ a
}
.

For A ∼ Unif([0, 1]), we know that ϕ(x,A) (d)= Pout(·|x). Let now x0 ∈ R be a point at which
x 7→ Pout(·|x) is continuous. The set Sx0

def=
{
a ∈ R

∣∣ ∃y1 6= y2, a = F (y1|x0) = F (y2|x0)
}

is
countable. Indeed if a ∈ Sx0 then we can find q ∈ Q such that a = F (q|x0). If we define ψ(a) = q
then ψ : Sx0 → Q is injective hence Sx0 is countable.

Let a ∈ R \ Sx0 . Since Pout(·|x) −−−→
x→x0

Pout(·|x0), we have F (y|x) → F (y|x0) for almost all
y ∈ R. Let y1 < ϕ(x0, a) < y2 such that F (yi|x) → F (yi|x0) for i = 1, 2. Recall that a 6∈ Sx0 so
we have

F (y1|x0) < a = F (ϕ(x0, a)|x0) < F (y2|x0).

Consequently for x close enough from x0 we have F (y1|x) < a < F (y2|x) which implies that
y1 < ϕ(x, a) < y2. Since y1 and y2 can be chosen arbitrarily close to ϕ(x0, a) we conclude:
ϕ(x, a) −−−→

x→x0
ϕ(x0, a).

7.3 Information-theoretic limits
7.3.1 Two scalar inference channels
As for the “spiked models” of the previous chapters, because of the decoupling principle
seen in Chapter 2, the limit of the free energy (7.2.7) will be expressed in terms of free
energies of simple scalar channels.

The first one is the additive Gaussian channel (1.3.5) that we already studied in Sec-
tion 1.3:

Y0 =
√
r X0 + Z0 , (7.3.1)

where X0 ∼ P0 and Z0 ∼ N (0, 1) are independent and r ≥ 0. The inference problem
consists of retrieving X0 from the observations Y0. As we have seen in Section 1.3, the
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free energy ψP0(r) (defined by (1.3.6)) associated to this problem is related to the mutual
information between the signal and observations by:

IP0(r) def= I(X0;
√
r X0 + Z0) = rρ

2 − ψP0(r). (7.3.2)

The second inference channel is a non-linear channel, associated to the transition kernel
Pout. Suppose that V,W ∗ i.i.d.∼ N (0, 1) where V is known and the inference problem is to
recover the unknown W ∗ from the observation of

Ỹ0 ∼ Pout
(
· |√q V +

√
ρ− qW ∗

)
, (7.3.3)

where ρ > 0, q ∈ [0, ρ]. Notice that under the representation (7.2.8), the channel (7.3.3)
is equivalent to Ỹ0 = ϕ(√q V + √ρ− qW ∗, A) +

√
∆Z with ∆ ≥ 0 and where (A,Z) ∼

PA ⊗ N (0, 1), independently of V,W ∗. The free energy for this model is again related to
the normalization of the posterior P (W ∗|Ỹ0, V )

ΨPout(q)
def= E log

∫
Pout

(
Ỹ0|
√
q V +

√
ρ− q w

)e−w2/2
√

2π
dw, (7.3.4)

where Pout denotes either the transition density with respect to Lebesgue’s measure (given
by (7.2.9)) in the case where ∆ > 0, or the density with respect to the counting measure
over N, in the case of discrete observations (ϕ takes values in N and ∆ = 0). The free
energy (7.3.4) is again linked to the mutual information between the observation Ỹ0 and
the signal W ∗, given V :

IPout(q)
def= I(W ∗; Ỹ0|V ) = ΨPout(ρ)−ΨPout(q). (7.3.5)

We will prove in Section 7.8 that ΨPout is convex, differentiable and non-decreasing.

7.3.2 Replica-symmetric formula and mutual information
We present in this section a limiting formula for Fn. The result holds under the following
hypotheses.

(h1) The prior distribution P0 admits a finite third moment and has at least two points
in its support.

(h2) There exists γ > 0 such that the sequence (E[|ϕ( 1√
n
[ΦX∗]1, A1)|2+γ])n≥1 is bounded.

(h3) The random variables (Φµi) are independent with zero mean, unit variance and finite
third moment that is bounded with n.

(h4) For almost-all values of a ∈ R (w.r.t. PA), the function x 7→ ϕ(x, a) is continuous
almost everywhere.

We will also assume that one of the two following hypotheses hold:

(h5.a) ∆ > 0.
(h5.b) ∆ = 0 and ϕ takes values in N.

Remark 7.3.1. The hypotheses are here stated using the “random function” representa-
tion of (7.2.8). In many cases, it can be useful to state them using the transition kernel
representation of (7.2.1). The hypotheses (h2) and (h4) are respectively equivalent2 to:

2The implications (h2) ⇔ (h2’) and (h4) ⇒ (h4’) are easily verified. If (h4’) holds, then by Proposi-
tion 7.2.1 there exists a function ϕ : R × [0, 1] → R such that (7.2.8) holds for Aµ

i.i.d.∼ PA = Unif([0, 1])
and that (h4) is verified.
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(h2’) There exists γ > 0 such that E[|Y1|2+γ] remains bounded with n.
(h4’) x ∈ R 7→ Pout(·|x) is continuous almost everywhere for the weak convergence.

Under the above hypothesis (h5.a) (respectively (h5.b)), the transition kernel Pout ad-
mits a density with respect to Lebesgue’s measure on R (resp. the counting measure on N)
that will be denoted by Pout(·|x).
Definition 7.3.1

We will say that the kernel Pout is

• non-informative if for almost all y ∈ R (under (h5.a)) – or all y ∈ N (un-
der (h5.b))– the map x 7→ Pout(y |x) is almost everywhere equal to a constant.
We say that Pout is informative if it is not non-informative.

• symmetric if Pout(·|x) = Pout(·| − x) for almost all x ∈ R.

If Pout is non-informative, it is not difficult to show that estimation is impossible.
Let us define the following potential F . Call ρ def= E[X2] where X ∼ P0. Then for

(q, r) ∈ [0, ρ]× R≥0 we define

F(q, r) def= ψP0(r) + αΨPout(q)−
rq

2 . (7.3.6)

We will also write F(ρ,+∞) = limr→∞F(ρ, r), which is well-defined in R ∪ {−∞} since
r 7→ ψP0(r) − r ρ2 is non-increasing by Proposition 1.3.3. We need also to define the set of
the critical points of F :

Γ def=
{

(q, r) ∈ [0, ρ]× (R≥0 ∪ {+∞})
∣∣∣∣∣ q = 2ψ′P0(r)
r = 2αΨ′Pout(q; ρ)

}
, (7.3.7)

where, with a slight abuse of notation, we extend ψ′P0 and Ψ′Pout by their limits: ψ′P0(+∞) =
limr→∞ ψ

′
P0(r) = ρ/2 and Ψ′Pout(ρ) = limq→ρ Ψ′Pout(q). This last limit is well defined in

R ∪ {+∞} by convexity of ΨPout . The elements of Γ are called “fixed points of the state
evolution”, because – as we shall see in Section 7.4 – they are related to the fixed points
of some generalized approximate message passing algorithm.

Theorem 7.3.1
Suppose that hypotheses (h1)-(h2)-(h3)-(h4) hold. Suppose that either hypothe-

sis (h5.a) or (h5.b) holds. Then

lim
n→∞

Fn = sup
q∈[0,ρ]

inf
r≥0
F(q, r) = sup

(q,r)∈Γ
F(q, r) . (7.3.8)

Moreover, if Pout is informative, then the “sup inf” and the supremum over Γ in (7.3.8)
are achieved over the same couples (q, r).

An immediate corollary of Theorem 7.3.1 is the limiting expression of the mutual in-
formation between the signal and the observations.
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Corollary 7.3.1

i∞
def= lim

n→∞

1
n
I(X∗;Y |Φ) = inf

q∈[0,ρ]
sup
r≥0

iRS(q, r) = inf
(q,r)∈Γ

iRS(q, r) , (7.3.9)

where
iRS(q, r) def= IP0(r) + αIPout(q)−

r

2(ρ− q) . (7.3.10)

Proof. This follows from a simple calculation:
1
n
I(X∗;Y |Φ) = 1

n
H(Y |Φ)− 1

n
H(Y |X∗,Φ) = −Fn + 1

n
E logP (Y |X∗,Φ)

= −Fn + m

n
E logPout(Y1 | 〈Φ1,X

∗〉/
√
n) . (7.3.11)

By the central limit theorem (that we can apply under hypotheses (h1)-(h3)) we have

Sn
def= 1√

n
〈Φ1,X

∗〉 = 1√
n

n∑
i=1

Φ1,iXi
(d)−−−→

n→∞
N (0, ρ) .

Now, under the hypotheses (h2)-(h4) and either (h5.a) or (h5.b) it is not difficult to verify that

E logPout(Y1 | 〈Φ1,X
∗〉/
√
n) = E

∫
Pout(dy|Sn) logPout(y|Sn)

−−−→
n→∞

E
∫
Pout(dy|

√
ρ V ) logPout(y|

√
ρ V ) = ΨPout(ρ)

where V ∼ N (0, 1). We conclude, using (7.3.11):
1
n
I(X∗;Y |Φ) = −Fn + αΨPout(ρ) + on(1). (7.3.12)

7.3.3 Optimal errors
We compute in this section the optimal errors for both estimation and prediction tasks.
Both will be determined by the value of q ≥ 0 that optimizes (7.3.8) (or equivalently
in (7.3.9)).
Proposition 7.3.1

Define

D∗
def=
{
α > 0

∣∣∣ (7.3.8) (or equivalently (7.3.9)) admits a unique optimizer q∗(α)
}
.

(7.3.13)

Assume that the assumptions of Theorem 7.3.1 hold and that Pout is informative. Then
the set D∗ is equal to R>0 minus some countable set. Moreover the map α 7→ q∗(α) is
continuous on D∗.

Optimal reconstruction (or estimation) error

We first consider the problem of estimating X∗ given Y and Φ. The following theo-
rem states that the optimizer q∗(α) of the replica-symmetric formula (7.3.8) gives the
asymptotic correlation between the planted solution X∗ and a sample from the posterior
distribution P (· |Y ,Φ):
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Theorem 7.3.2
Assume that all the moments of P0 are finite and that Pout is informative. Assume

that (h1)-(h2)-(h3)-(h4) hold and that either (h5.a) or (h5.b) holds. Then for all α ∈
D∗,

1
n

∣∣∣∣ n∑
i=1

xiX
∗
i

∣∣∣∣ (d)−−−→
n→∞

q∗(α), (7.3.14)

where x = (x1, . . . , xn) is sampled from the posterior distribution of the signal P (· |Y ,Φ)
given by (7.2.3), independently of everything else. Moreover, if Pout is not symmetric
(see Definition 7.3.1) then:

1
n

n∑
i=1

xiX
∗
i

(d)−−−→
n→∞

q∗(α). (7.3.15)

By Proposition 1.2.2 and Remark 1.2.1 in Section 1.2 we deduce from Theorem 7.3.2:
Corollary 7.3.2

Under the conditions of Theorem 7.3.2 we have for all α ∈ D∗

sup
x̂

E
[
|〈x̂(Y ,Φ),X∗〉|
‖x̂(Y ,Φ)‖‖X∗‖

]
−−−→
n→∞

√
q∗(α)
ρ

, (7.3.16)

where the supremum is taken over all measurable functions x̂ : Rm×Rm×n → Rn \{0}.

Consequently
√
q∗(α)/ρ is the best correlation with the signal X∗ that one can asymp-

totically achieve.

Optimal generalization (or prediction) error

We now consider the prediction problem: given the dataset Φ,Y and a new point Φnew, we
would like to estimate Ynew ∼ Pout(·|〈Φnew,X

∗〉/
√
n). We define the generalization error

of an estimator Ŷ (Φnew,Φ,Y ) by

Egen(Ŷ ) def= E
[(
Ynew − Ŷ (Φnew,Φ,Y )

)2]
. (7.3.17)

The optimal generalization error is then defined as the minimum of Egen over all estimators
Ŷ :

Eopt
gen

def= min
Ŷ

Egen(Ŷ ) = E
[(
Ynew − E[Ynew|Φnew,Φ,Y ]

)2]
. (7.3.18)

In order to express the optimal generalization error we introduce the following function
(recall that Ỹ0, V,W

∗ come from the channel (7.3.3)):

E(q) def= MMSE(Ỹ0|V ) = E
[(
Ỹ0 − E[Ỹ0|V ]

)2]
(7.3.19)

= E
∫
y2Pout(dy|

√
ρ V )− E

[
EW ∗

[ ∫
yPout(dy|

√
q V +

√
ρ− qW ∗)

]2]
(7.3.20)

where EW ∗ denotes the expectation with respect to W ∗ only.
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Theorem 7.3.3
Under the assumptions of Theorem 7.3.2, we have for all α ∈ D∗

Eopt
gen(α) −−−→

n→∞
E(q∗(α)) (7.3.21)

where q∗(α) is the optimizer of (7.3.8), see Proposition 7.3.1.

Theorem 7.3.3 follows from a stronger result that we state below:

Theorem 7.3.4
Let α ∈ D∗. Let νn be the law of Ynew conditionally on Φ,Y ,Φnew, i.e.∫

f(y)dνn(y) =
∫
f(y)Pout

(
dy
∣∣∣ 〈x,Φnew〉/

√
n
)
dP (x|Y ,Φ),

for all continuous bounded function f . νn is therefore a random measure on R. Let ν
be the posterior distribution of Ỹ0 given V in the second scalar channel (7.3.3), i.e.∫

f(y)dν(y) = EW ∗
∫
f(y)Pout

(
dy
∣∣∣ √q∗(α)V +

√
ρ− q∗(α)W ∗

)
for all continuous bounded function f , where EW ∗ denotes expectation with respect to
W ∗ ∼ N (0, 1) only. Then, under the hypotheses of Theorem 7.3.2:

νn
(wd)−−−→
n→∞

ν,

where (wd)−−−→
n→∞

denotes convergence in distribution of the random variables (νn)n≥1 to the
random variable ν (See [119, Chapter 4] for more details on this mode of convergence).

In other words, the data Y ,Φ,Φnew contains asymptotically as much information on Ynew

than V on Ỹ0 ∼ Pout
(
·
∣∣∣√q∗(α)V+

√
ρ− q∗(α)W ∗

)
. Theorem 7.3.4 is proved in Section 7.7.3.

Theorem 7.3.4 implies Theorem 7.3.3 because:

Eopt
gen = E

[
Var(Ynew|Φnew,Φ,Y )

]
= E

[
Var(νn)

]
−−−→
n→∞

E
[
Var(ν)

]
= E(q∗(α)). (7.3.22)

To justify the above limit, we need to proceed by truncation since µ 7→ Var(µ) is not
a continuous bounded function over the set of probability measures. For a probability
distribution µ on R and X ∼ µ we define for R > 0 the probability measure µR as the
law of sign(X) min(|X|, R), then µ 7→ Var(µR) is a continuous (with respect to the weak
topology) bounded function. By Theorem 7.3.4 we get E

[
Var(νRn )

]
−−−→
n→∞

E
[
Var(νR)

]
and

(7.3.22) follows by letting R→∞, using hypothesis (h2).

Theorem 7.3.4 allows to compute more sophisticated optimal errors. Take for instance
a classification problem with K ∈ N∗ classes (such as the one we studied in Section 7.1)
where ϕ takes values in {1, . . . , K}. For these kind of problems, a natural error metric to
consider for an estimator Ŷ is the probability of misclassification:

P
(
Ynew 6= Ŷ (Y ,Φ,Φnew)

)
.
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The best estimator for this error metric is known (see for instance [63], Section 2.1) to be
the Bayes classifier:

Ŷ Bayes = arg max
k∈{1,...,K}

P(Ynew = k |Y ,Φ,Φnew).

Notice that the corresponding probability of misclassification is equal to

P
(
Ynew 6= Ŷ Bayes

)
= E

[ K∑
k=1

νn({k})1
(
k 6= arg max

i∈{1,...,K}
νn({i})

)]
= E

[
1− max

1≤k≤K
νn({k})

]
.

By Theorem 7.3.4 we deduce:

P
(
Ynew 6= Ŷ Bayes

)
−−−→
n→∞

= E
[
1− max

1≤k≤K
ν({k})

]
= P

(
Ỹ0 6= Ŷ Bayes

0

)
,

where Ŷ Bayes
0 is the Bayes classifier for estimating Ỹ0 ∼ Pout

(
·
∣∣∣√q∗(α)V +

√
ρ− q∗(α)W ∗

)
given V :

Ŷ Bayes
0 = arg max

k∈{1,...,K}
P(Ỹ0 = k |V ).

7.4 The generalized approximate message-passing
algorithm

While the results presented until now are information-theoretic, the next one concerns
the performance of a popular algorithm to solve random instances of generalized linear
problems, called generalized approximate message-passing (GAMP). This approach has a
long history, especially in statistical physics [203, 142, 117, 15], error correcting codes [181],
and graphical models [214]. For a modern derivation in the context of linear models, see
[71, 127, 212]. The case of generalized linear models was discussed by Rangan in [177], and
has been used for classification purpose in [222].

We first need to define two so-called threshold functions that are associated to the two
scalar channels (7.3.1) and (7.3.3). The first one is the posterior mean of the signal in
channel (7.3.1) with signal-to-noise ratio r:

gP0(y, r) def= E[X0|Y0 = y] . (7.4.1)

The second one is the posterior mean of W ∗ in channel (7.3.3):

gPout(ỹ, v, q)
def= E[W ∗|Ỹ0 = ỹ,

√
q V = v] . (7.4.2)

These functions act componentwise when applied to vectors.
Given initial estimates (x̂0,v0) – that we take equal to 0 in absence of additional in-

formation – for the means and variances of the elements of the signal vector X∗, GAMP
takes as input the observation vector Y and then iterates the following equations with ini-
tialization g0

µ = 0 for all µ = 1, . . . ,m (we denote by u the average over all the components
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of the vector u and ΦT is the transpose of the matrix Φ): From t = 1 until convergence,

V t = vt−1

ωt = Φx̂t−1/
√
n− V tgt−1

gtµ = gPout(Yµ, ωtµ, ρ− V t) ∀µ = 1, . . .m
λt = α g2

Pout(Y ,ωt, ρ− V t)
Rt = x̂t−1 + (λt)−1ΦTgt/

√
n

x̂ti = gP0(Rt
i, λ

t) ∀ i = 1, . . . n
vti = (λt)−1 ∂RgP0(R, λt)|R=Rti ∀ i = 1, . . . n.

(7.4.3)

One of the strongest asset of GAMP is that its performance can be tracked rigorously in
the limit n,m → ∞ while m/n → α via a procedure known as state evolution (SE), see
[26, 25] for the linear case, and [177, 112] for the generalized one. The state evolution tracks
the asymptotic value of the overlap between the true hidden value X∗ and its estimate by
GAMP x̂t defined as qt def= limn→∞

1
n
〈X∗, x̂t〉 via q0 = 0 and{

qt+1 = 2ψ′P0(rt) ,
rt = 2αΨ′Pout(qt) .

(7.4.4)

From Theorem 7.3.1 we realize that the fixed points of these equations correspond to the
critical points of the asymptotic free energy in (7.3.8). By Proposition 1.3.3 and Propo-
sition 7.8.2 the functions Ψ′P0 and Ψ′Pout are both non-decreasing. This gives that (qt, rt)
converges as t→∞ to some couple (qAMP, rAMP) ∈ Γ.

Perhaps more surprisingly, one can use GAMP for predicting a new output Ynew ∼
Pout(· | 〈Φnew,X

∗〉/
√
n) where Φnew ∼ N (0, Idn) is independent of X∗,Φ,Y . As x̂t is the

GAMP estimate of the posterior expectation of X∗, the natural heuristic is to consider for
the posterior probability distribution (given Y ,Φ) of the random variable 〈Φnew,X

∗〉/
√
n

a Gaussian with mean 〈Φnew, x̂t〉/
√
n and variance ρ − qt. This allows to estimate the

posterior mean of the output, which leads to the GAMP prediction:

Ŷ GAMP,t def=
∫
y Pout

(
dy
∣∣∣∣ 1√

n
〈Φnew, x̂t−1〉+

√
ρ− qtw

)
e−w

2/2
√

2π
dw. (7.4.5)

7.4.1 Estimation and generalization error of GAMP
The following claim, from [177], gives the precise estimation error of GAMP. It is stated
there as a claim because some steps of the proof are missing. The paper [112] affirms in
its abstract to prove the claim of [177], but without further details. For these reasons, we
believe that the result holds, however we prefer to state it here as a claim (instead of a
theorem).
Claim 7.4.1 (From [177])

We have almost surely for all t ∈ N,

lim
n→∞

1
n
〈x̂t,X∗〉 = lim

n→∞

1
n
‖x̂t‖2 = qt. (7.4.6)

Consequently

lim
n→∞

〈x̂t,X∗〉
‖x̂t‖‖X∗‖

=
√
qt

ρ
. (7.4.7)
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Comparing (7.4.7) with the optimal correlation given by Corollary 7.3.2, we see that
if limt→∞ q

t = q∗(α), then GAMP is information-theoretically optimal. Provided that
Claim 7.4.1 holds we deduce the generalization error of GAMP:
Proposition 7.4.1

Suppose that hypotheses (h1)-(h2)-(h4) hold. Moreover suppose that either (h5.a)
or (h5.b) holds. Assume that (Φµi) i.i.d.∼ N (0, 1), and that x 7→ Pout(·|x) is continuous
almost everywhere for the Wasserstein distance of order 2. Let t ∈ N. Assume that the
limit (7.4.6) holds in probability and that there exists η > 0 such that E[|Ŷ GAMP,t|2+η]
remains bounded (as n grows). Then we have for all t ∈ N,

lim
n→∞

EGAMP,t
gen

def= lim
n→∞

E
[(
Ynew − Ŷ GAMP,t

)2]
= E(qt) . (7.4.8)

Proposition 7.4.1 is proved in Section 7.7.4. We see that this formula matches the one
for the Bayes-optimal generalization error, see Theorem 7.3.3, up to the fact that instead of
q∗(α) (the optimizer of the replica formula (7.3.8)) appearing in the optimal error formula,
here it is qt which appears. Thus clearly, when qt converges to q∗(α) (we shall see in
Section 7.5 that this is the case in many situations): GAMP is Bayes-optimal in a plethora
of models (a task often believed to be intractable) and this for large sets of parameters.

7.5 Examples of phase transitions
We illustrate now the results of the previous sections to several models of interest in fields
ranging from machine learning to signal processing, and unveil several interesting new
phenomena in learning of generalized linear models. For various specific cases of prior P0
and output Pout, we evaluate numerically the free energy potential (7.3.6), its stationary
points Γ and identify which of them gives the information-theoretic results, i.e. is the
optimizer in (7.3.8). We also identify which of the stationary points corresponds to the
result obtained asymptotically by the GAMP algorithm, i.e. the fixed point of the state
evolution (7.4.4). Finally we compute the corresponding generalization error (7.4.8). We
stress that in this section the results are based on numerical investigation of the resulting
formulas: We do not aim at rigor that would involve precise bounds and more detailed
analytical control for the corresponding integrals.

7.5.1 Generic observations
Using the functions gPout and gP0 introduced in Section 7.4 we can rewrite the fixed point
equations (7.3.7) as

q = 2ψ′P0(r) = E[gP0(Y0, r)2] , (7.5.1)

r = 2αΨ′Pout(q) = α

ρ− q
E[gPout(Ỹ0,

√
q V, q)2] , (7.5.2)

where the expectation in (7.5.1) corresponds to the scalar channel (7.3.1) and the expec-
tation in (7.5.2) corresponds to the second scalar channel (7.3.3).
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The non-informative fixed point: It is interesting to analyze under what conditions
q∗ = 0 is the optimizer of (7.3.8). Notice that q∗ = 0 corresponds to the error on the
recovery of the signal as large as it would be if we had no observations at our disposition.
Theorem 7.3.1 gives that any optimal couple (q∗, r∗) of (7.3.8) should be a fixed point of
the state evolution equations (7.5.1)–(7.5.2). A sufficient condition for (q, r) = (0, 0) to be
a fixed point of (7.5.1)–(7.5.2) is that:

(a) The transition kernel Pout is symmetric (see Definition 7.3.1).

(b) The prior P0 has zero mean.

In order to see this, notice that if Pout(y|z) is even in z then from the definition (7.4.2) of the
function gPout we have gPout(y, 0, 0) = 0 and consequently from (7.5.2) we have Ψ′Pout(0) = 0.
For the second point, notice that we have ψ′P0(0) = 1

2EP0 [X0]2 = 0.
We assume now that Pout is symmetric and that the prior P0 has zero mean. In order

for q = 0 to be the global maximizer q∗ of (7.3.8) or to be a relevant fixed point of the
state evolution (7.4.4) (relevant in the sense that GAMP might indeed converge to it in a
practical setting) we need q = 0 to be a stable fixed point of the equations (7.5.1)–(7.5.2).
We obtain that q = 0 is stable if

2αΨ′′Pout(0)× 2ψ′′P0(0) = α
∫
dy

( ∫
Dz(z2 − 1)Pout(y|

√
ρz)

)2

∫
DzPout(y|

√
ρz) < 1 , (7.5.3)

where Dz is the standard Gaussian measure. We conjecture that the condition (7.5.3)
delimits precisely the region where polynomial-time algorithms do not perform better than
“random guessing” (see the discussion below, where we will make this stability condition
explicit for several examples of symmetric output channels). Note that the condition (7.5.3)
also appears in a recent work [147] as a barrier for performance of spectral algorithms.

The exact recovery fixed point: Another particular fixed point of (7.5.1)–(7.5.2) is
the one corresponding to exact recovery q = ρ. A sufficient and necessary condition for
this to be a fixed point is that limq→ρ Ψ′Pout(q) = +∞, i.e.

ΨPout(ρ)−ΨPout(q)
ρ− q

−−→
q→ρ

+∞. (7.5.4)

Consider the second scalar channel (7.3.3) and let PV (respectively PV,W ∗) denote the
conditional law of Ỹ0 given V (respectively V,W ∗). Then we have ΨPout(ρ) − ΨPout(q) =
E[DKL(PV , PV,W ∗)]. If the statistical model (Pout(·|θ))θ∈R is regular (see Definitions 1 and 2
in [32]), and if we denote by J(θ) its Fisher information at θ, then we have for θ, θ0 ∈ R

DKL(Pout(·|θ0), Pout(·|θ)) = 1
2(θ − θ0)2J(θ0) + o((θ − θ0)2).

This leads (after some computations) to

ΨPout(ρ)−ΨPout(q) = E[DKL(PV , PV,W ∗)] = 1
2E[J(√ρV )](ρ− q) + oq→ρ(ρ− q).

Consequently (7.5.4) can not hold for such model: perfect recovery is impossible.
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In the case of a discrete deterministic channel, where Pout(·|x) = δϕ(x) where ϕ : R→ N,
perfect reconstruction will sometimes be possible. Let us consider the “planted perceptron”
problem from Section 7.1 where ϕ(x) = sign(x) (other functions ϕ can be treated analo-
gously). In that case ΨPout(ρ) = 0 and

ΨPout(q) = 2E
[
Φ
(√

q

ρ− q
Z
)

log Φ
(√

q

ρ− q
Z
)]

= 2
√
ρ− q
q

∫ +∞

−∞
e−

ρ−q
2q x

2
Φ(x) log Φ(x)dx

= −γ
√
ρ− q + oq→ρ

(√
ρ− q

)
,

where γ = − 2√
ρ

∫
Φ(x) log Φ(x)dx. Hence Ψ′Pout(q) ∼ γ(ρ−q)−1/2: (7.5.4) holds, (ρ,+∞) ∈

Γ. We have now to verify if q = ρ is a stable fixed point of (7.4.4). Using the change of
variables u = ρ− q we have to check whether u = 0 is a stable fixed point of the function

f(u) = ρ− ψ′P0(αΨ′Pout(ρ− u)) = MMSEP0(αΨ′Pout(ρ− u)).

The stability of u = 0 depends now on the properties of P0 through the behavior of
MMSEP0(r) as r → ∞. This “large signal-to-noise ratio” asymptotic has been studied in
details in [215] whose conclusions can be roughly summarized as follows:

MMSEP0(r) =

Θ(r−1) if P0 has a “continuous part”
o(r−1) if P0 is “discrete”.

We refer to the paper [215] for a precise definition of “continuous” and “discrete” and
consider two examples below:

• P0 = ρN (0, 1) + (1 − ρ)δ0, for some ρ ∈ (0, 1]. In that case, MMSEP0(r) ∼ ρ
r

and
consequently f(u) ∼ γ−1ρ

√
u as u→ 0. The fixed point u = 0 is therefore not stable:

perfect reconstruction is not possible in this case. Indeed, as we will see on Figure
7.6 on page 132 (middle plot), the generalization error decreases but never reaches 0.

• P0 = 1
2δ−1 + 1

2δ+1. In that case, MMSEP0(r) = o(r−2) and consequently f(u) = o(u)
as u→ 0. This time, the fixed point u = 0 is stable: perfect reconstruction is possible
(provided that (ρ,+∞) maximizes F over Γ) as we saw it in Section 7.1.

Below we give several examples where exact recovery either is or is not possible, or
where there is a phase transition between the two regimes.

7.5.2 Phase diagram of perfect learning
In this section we consider deterministic (noiseless) output channels and ask: How many
measurements are needed in order to perfectly recover the signal?

As the number of samples (measurements) varies we encounter five different regimes of
parameters:

• The tractable recovery phase: This is the region in the parameter space where GAMP
achieves perfect reconstruction.
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• The non-informative phase: Region where perfect reconstruction is information-
theoretically impossible and moreover even the Bayes-optimal estimator is as bad
as a random guess based on the prior information and on the knowledge of the out-
put function.

• The no recovery phase: Region where perfect reconstruction is information-theoretically
impossible, but an estimator positively correlated with the ground truth exists.

• The hard phase: Region where the perfect reconstruction is information-theoretically
possible, but where GAMP is unable to achieve it. At the same time, in this region
GAMP leads to a better generalization error than the one corresponding to the non-
informative fixed point. It remains a challenging open question whether polynomial-
time algorithms can achieve perfect reconstruction in this regime.

• The hard non-informative phase: This phase corresponds to the region where perfect
reconstruction is information-theoretically possible but where GAMP only achieves
an error as bad as randomly guessing, given by the non-informative fixed point. In
this phase as well, the existence of polynomial-time exact recovery algorithms is an
open question.

The linear channel

The case of exact recovery of a sparse signal after it passed trough a noiseless linear
channel, i.e. ϕ(x) = x, is studied in the literature in great details, especially in the context
of compressed sensing [43]. For a signal with a fraction ρ of non-zero entries, as soon as
α > ρ, perfect reconstruction is theoretically possible, since the linear system Y = Φx
admits almost surely a unique solution that has ρn non-zero entries, which is the signal
X∗. However solving Y = Φx over the space of ρn-sparse vectors remain (a priori)
computationally difficult since it requires to test all the

(
n
ρn

)
possible positions of the non-

zero entries of x.
The whole field of compressed sensing builds on the realization that, using the `1 norm

minimization technique:
x̂ = arg min

x |Y =Φx
‖x‖1,

one can efficiently recover the signal for α larger than a critical value α`1(ρ):

α`1(ρ) = min
γ≥0

{
ρ(1 + γ2) + 2(1− ρ)

(
(1 + γ2)Φ(−α)− αφ(α)

)}
. (7.5.5)

This is the so-called Donoho-Tanner transition [73, 68, 74]. In our Bayesian context, when
the empirical distribution of the signal is known, one can fairly easily beat the `1 transition
and reconstruct the signal up to lower values of α using GAMP algorithm [71, 176, 127, 128].
In this case, three different phases are present [127, 128]:

(i) For α < ρ, perfect reconstruction is impossible;
(ii) for ρ < α < αAMP reconstruction is possible, but not with any known polynomial-

complexity algorithm;
(iii) for α > αAMP, the so-called spinodal transition computed with state evolution, GAMP

provides a polynomial-complexity algorithm able to reach perfect reconstruction.
The line αAMP(ρ) depends on the distribution of the signal. For a Gauss-Bernoulli signal
with a fraction ρ of non-zero (Gaussian) values we plot α`1 , αAMP and αIT(ρ) = ρ on
Figure 7.4.
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Figure 7.4: Phase diagram of noiseless compressed sensing with Gauss-Bernoulli prior:
P0 = ρN (0, 1) + (1− ρ)δ0.

The rectified linear unit (ReLU) channel

Let us start by discussing the case of a generalized linear model with the ReLU output
channel, i.e. ϕ(x) = max(0, x), with a signal coming from a Gauss-Bernoulli distribution
P0 = ρN (0, 1) + (1− ρ)δ0, i.e. X∗ has a fraction ρ of non-zero (Gaussian) values. We are
motivated by the omnipresent use of the ReLU activation function in deep learning, and
explore its properties for GLMs that can be seen as a simple single layer neural network.

Our analysis shows that a perfect generalization (and thus a perfect reconstruction of
the signal as well) is possible whenever the number of samples per dimension (measurement
rate) α > 2ρ, and impossible when α < 2ρ. This is very intuitive, since half of the
measurements (those non-zero) are giving as much information as in the linear case, thus
the factor 2.

How hard is it to actually solve the problem with an efficient algorithm? The answer is
given by applying the state evolution analysis to GAMP, which tells us that only for larger
values of α, beyond the spinodal transition αAMP, does GAMP reach a perfect recovery.
Notice, however, that this spinodal transition occurs at a significantly lower measurement
rate α than one would reach just keeping the non-zero measurements. This shows that,
actually, these zero measurements contain a useful information for the algorithm. The
situation is shown in the center panel of Figure 7.5: The zero measurements do not help
information-theoretically but they, however, do help algorithmically.

The sign-less channel

We now discuss the sign-less channel where only the absolute value of the linear mixture
is observed, i.e. ϕ(x) = |x|. This case can be seen as the real-valued analog of the famous
phase retrieval problem. We again consider the signal to come from a Gauss-Bernoulli
distribution P0 = ρN (0, 1) + (1− ρ)δ0.

Sparse phase retrieval has been well explored in the literature in the regime where the
number s of non-zeros is sub-leading in the dimension, s = o(n). This case is known to
present a large algorithmic gap. While analogously to compressed sensing exact recovery is
information-theoretically possible for a number of measurement Ω(s log(n/s)), best known
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Figure 7.5: Phase diagrams showing boundaries of the region where exact recovery is
possible (in absence of noise). Left: The case of ReLU activation function, ϕ(x) = max(0, x)
with a Gauss-Bernoulli signal P0 = ρN (0, 1) + (1 − ρ)δ0, as a function of the ratio between
number of samples/measurements and the dimension α = m/n, and the fraction of non-
zero components ρ. The dotted red line shows the algorithmic phase transition when using
information only about the non-zero observations. Center: Analogous to the left panel,
for the absolute value function: ϕ(x) = |x|. The dotted red line shows for comparison the
algorithmic phase transition of the canonical compressed sensing. Right: Phase diagram
for the symmetric door output function ϕ(z) = sign(|z| −K) for a Rademacher signal, as a
function of α and K.

algorithms achieve it only with Ω(s2/ log n) measurements [168], see also [192] and refer-
ences therein for a good discussion of other related literature. This is sometimes referred
to as the “s2 barrier”. We are not aware of a study where, as in our setting, the sparsity is
s = ρn and the number of measurements is αn with α and ρ of order 1.

Perfect reconstruction is information-theoretically possible as soon as α > ρ: In other
words, the problem is –information-theoretically– as easy, or as hard as the compressed
sensing one. When α > ρ one can indeed perfectly reconstruct the signal by the following
procedure: Try all 2m choices of the possible signs for them outputs, and solve a compressed
sensing problem for each of them. Clearly, this should yields a perfect solution only in the
case of the actual combination of signs.

Algorithmically, however, the problem is much harder than for the linear output chan-
nel. As shown in the left side of Figure 7.5 on page 131, for small ρ one requires a much
larger fraction α of measurements in order for GAMP to recover the signal. For the linear
channel the algorithmic transition αAMP(ρ) → 0 as ρ → 0 (see Figure 7.4) while for the
sign-less channel we get αAMP(ρ) → 1/2 as ρ → 0. In other words if one looses the signs
one cannot perform recovery in compressed sensing with less than n/2 measurements.

What we observe in this example for α < 1/2 is in the statistical physics literature
on neural networks known as retarded learning [99]. This appears in problems where
the ϕ(x) function is symmetric, as seen in Section 7.5.1: There is always a critical point
of the mutual information with an overlap value q = 0. For this problem, this critical
point is actually “stable” (meaning that it is actually a local minimum in q in the mutual
information (7.3.9)) for all α < 1/2, by (7.5.3), independently of ρ.

This has the two following implications:

(i) In the non-informative phase, when α < 1/2 and α < ρ, the minimum at q = 0
is actually the global one. In this case there is no useful information that one can
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Figure 7.6: Generalization error in three classification problems as a function of the number
of data-samples per dimension α. The red line is the Bayes-optimal generalization error,
while the green one shows the (asymptotic) performances of GAMP as predicted by the
state evolution (SE), when different. For comparison, we also show the result of GAMP
(black dots) and, in blue, the performance of a standard out-of-the-box solver, both tested
on a single randomly generated instance. Left: Perceptron, with ϕ(x) = sign(x) and a
Rademacher (±1) signal. The results of a logistic regression with fine-tuned ridge penalty are
shown for comparison. Middle: Perceptron with Gauss-Bernoulli coefficients for the signal.
The results of a logistic regression with fine-tuned `1 sparsity-enhancing penalty are very close
to optimal. Right: The symmetric door activation rule with parameter K = K∗ ' 0.67449
chosen in order to observe the same number of occurrence of the two classes. Using Keras
[52], a neural network with two hidden layers was able to learn approximately the rule, but
only for much larger training set sizes (shown in inset).

exploit and no estimator can be better than a random guess.
(ii) In the hard non-informative phase when ρ < α < 1/2, GAMP initialized at random,

i.e. close to the q = 0 fixed point, will remain there. This suggests that in this region,
even if a perfect reconstruction is information-theoretically possible, it will still be
very hard to be better then a random guess with a tractable algorithm.

The symmetric door channel

The third output channel we study in detail is the symmetric door channel, where ϕ(x) =
sign(|x| − K). In case of channels with discrete set of outputs exact recovery is only
possible when the prior is also discrete. In the present case we take X∗ ∼ Unif({−1, 1}n),
i.e. P0 = 1

2δ+1 + 1
2δ−1. This channel was studied previously using the replica method in the

context of optimal data compression [108].
This output channel is in the class of symmetric channels for which overlap q = 0 is

a fixed point. This fixed point is stable for α < αc(K). Exact recovery is information-
theoretically possible above αIT(K) and tractable with the GAMP algorithm above the
spinodal transition αAMP(K). The values of these three transition lines are depicted in the
right panel of Figure 7.5.

We note that αIT ≥ 1 is a generic bound on exact recovery for every K, required by a
simple counting argument. While a-priori it is not clear whether this bound is saturated
for some K, we observe that it is for K = K∗ ' 0.67449 defined by P(|Z| ≤ K∗) = 1/2,
for Z ∼ N (0, 1). In that case half of the observed measurements are negative and the
rest positive. The saturation of the αIT ≥ 1 bound was remarked previously in [108].
However, we conjecture that this information-theoretic limit will not be achievable with
known efficient algorithms since GAMP recovers the signal for α larger that αAMP > 1.
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7.5.3 Examples of generalization errors
In this section we evaluate the Bayes-optimal generalization error (given by Theorem 7.3.3)
and the generalization error of GAMP (given by Proposition 7.4.1) for several cases of priors
and output functions. We study both regression problems, where the output is real-valued,
and classification problems, where the output is discrete.

While in realistic regression and classification problems the matrix Φ corresponds to
the data, and is thus not i.i.d. random, we view the practical interest of our theory as
a benchmark for state-of-the art algorithms. The results of Sections 7.3 and 7.4 provide
an exact asymptotic analysis of optimal generalization error and sample complexity for a
range of simple rules. The challenge for state-of-the-art multi-purpose algorithms is to try
to match as closely as possible the performance that can be obtained with GAMP that is
fine-tuned to the specific form of the output and prior.

Threshold output: The perceptron

The example of non-linear output that is the most widely explored in the literature is
the threshold output, where the deterministic output function is ϕ(x) = sign(x). In the
setting of the present chapter, this is known as the perceptron problem [89], or equivalently,
the one-bit compressed sensing in signal processing [38]. Its solution has been discussed in
details within the replica formalism (see for instance [98, 23, 167, 117, 218]) and we confirm
all of these heuristic computations within our approach.

In Figure 7.6 (left) we plot the optimal generalization error of the perceptron with a
Rademacher signal, the state evolution prediction of the generalization error of the GAMP
algorithm, together with the error actually achieved by GAMP on one randomly generated
instance of the problem. We also compare these to the performance of a standard logistic
regression. As expected from existing literature [89, 98, 189] we confirm that in this
case the information-theoretic transition appears at a number of samples per dimension
αIT = 1.249(1), while the algorithmic transition is at αAMP = 1.493(1). Logistic regression
does not seem to be able to match the performance on GAMP in this case.

In Figure 7.6 (center) we plot the generalization error for a Gauss-Bernoulli signal with
density ρ = 0.2. Cases as this one were studied in detail in the context of one-bit compressed
sensing [218] and GAMP was found to match the optimal generalization performance with
no phase transitions observed, which is confirmed by our analysis. In this case the logistic
regression is rather close to the performance of GAMP.

Symmetric Door

The next classification problem, i.e. discrete output rule, that we study is the symmetric
door function ϕ(x) = sign(|x| − K). In Figure 7.6 (right) we plot the generalization
error for K = K∗ ' 0, 67449 such that 1/2 of the outputs are 1 and 1/2 are −1. The
symmetric door output is an example of function for which the optimal generalization
error for α < αIT = 1 (for that specific value of K, see phase diagram in the right panel of
Figure 7.5) is as bad as if we were guessing randomly. The GAMP algorithm still achieves
such a bad generalization until αstab ' 1.36 (defined by (7.5.3)), and achieves perfect
generalization only for α > αAMP = 1.566(1).

Interestingly, labels created from this very simple symmetric door rule seem to be very
challenging to learn for general purpose algorithms. We tried to optimize parameters of a
two-layers neural network and only managed to get the performances shown in the inset
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Figure 7.7: The generalization error for three regression problems is plotted as a function of
the number of samples per dimension α. The red line is again the Bayes-optimal generalization
error, while the green one shows the (asymptotic) performances of GAMP as predicted by
the state evolution (SE), when different. Again, we also show the result of GAMP on a
particular instance (black dots) and, in blue, the performance of an out-of-the-box solver.
Left: White Gaussian noise output and a Gauss-Bernoulli signal. For this choice of noise,
there is no sharp transition (as opposed to what happens at smaller noises). The results of
a Lasso with fine-tuned `1 sparsity-enhancing penalty are very close to optimal. Middle:
Here we analyze a ReLU output function ϕ(x) = max(0, x), still with a Gauss-Bernoulli
signal. We show for comparison the results of maximum likelihood estimation performed
with CVXPY —a powerful python-embedded language for convex optimization [64]— using
two methods that are both amenable to convex optimization: In CVX-1 we use only the non-
zero values of Y , and perform a minimization of the `1 norm of x subject to Yµ = 〈Φµ,x〉
for µ ∈ {1, . . . ,m} such that Yµ 6= 0, while in CVX-2, we use all the dataset, with the
constraint that Yµ = 〈Φµ,x〉 for µ ∈ {1, . . . ,m} such that Yµ 6= 0 (as before) and the
additional restriction 〈Φµ,x〉 ≤ 0 for µ ∈ {1, . . . ,m} such that Yµ = 0. In both case, a
perfect generalization is obtained only for α ' 1. Right: The sign-less output function
ϕ(x) = |x|. In inset, we show the performance for the estimation problem using PhaseMax
[92].

of Figure 7.6 (right). It is an interesting theoretical challenge whether a deeper neural
network can learn this simple rule from fewer samples.

Linear regression

The additive white Gaussian noise (AWGN) channel, or linear regression, is defined by
ϕ(x,A) = x+ σA with A ∼ N (0, 1). This models the (noisy) linear regression problem, as
well as noisy random linear estimation and compressed sensing. In this case (7.3.20) leads
to

lim
n→∞

Eopt
gen = ρ− q∗ + σ2 . (7.5.6)

This result agrees with the generalization error analyzed heuristically in [189] in the limit
σ → 0. Figure 7.7 (left) depicts the generalization error for this example. The performance
of GAMP in this case is very close to the one of Lasso, that we will study in mode details
in the next chapter.

Rectified linear unit (ReLU)

In Figure 7.7 (center) we analyze the generalization error for the ReLU output function,
ϕ(x) = max(0, x). This channel models the behavior of a single neuron with the rectified
linear unit activation widely used in multilayer neural networks.

For sparse Gauss-Bernoulli signals in Figure 7.7 (center) we observe again the information-
theoretic transition (at α = 2ρ = 0.4) to perfect generalization to be distinct from the
algorithmic one (at αAMP = 0.589(1)). At the same time our test with existing algorithms
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were not able to closely match the performance of GAMP. This hence also remains an
interesting benchmark.

Sign-less channel

In Figure 7.7 (right) we analyze the generalization error for the sign-less output function
where ϕ(x) = |x|, that we already discussed in Section 7.5.2. The information-theoretic
perfect recovery starts at α = ρ = 0.5, but the problem is again harder algorithmically
for GAMP that succeeds only above αAMP = 0.90(1). Again, the problem appears to be
hard for other solvers. The state-of-the-art algorithm PhaseMax [92] is for instance able
to learn the rule using about four times as many measurements than needed information-
theoretically.

7.6 Proof of Theorem 7.3.1
This section is devoted to the proof of Theorem 7.3.1. We will do it under the following
hypotheses:

(H1) The support of the prior distribution P0 is included in [−S, S], for some S > 0.
(H2) ϕ is a bounded C2 function with bounded first and second derivatives w.r.t. its first

argument.
(H3) (Φµi) i.i.d.∼ N (0, 1).
(H4) ∆ > 0.

These stronger assumptions can then be relaxed to the weaker assumptions (h1)-(h2)-(h3)-
(h4) and (h5.a) or (h5.b). This is done by approximation arguments similar to the ones
of Section 3.4.7 for (H1) and (H2). The hypothesis (H3) is relaxed using the “generalized
Lindeberg swapping trick” from [45]. Finally the condition ∆ > 0 can be replaced by
((h5.b)) by approximation, using Corollary B.2. We refer to [19] for the details of these
arguments.

Since the observations (7.2.1) with Pout given by (7.2.8), are equivalent to the rescaled
observations

∆−1/2 Yµ = ∆−1/2 ϕ
( 1√

n
[ΦX∗]µ, Aµ

)
+ Zµ , 1 ≤ µ ≤ m, (7.6.1)

the variance ∆ of the Gaussian noise can be “incorporated” inside the function ϕ. Thus,
it suffices to prove Theorem 7.3.1 for ∆ = 1 and we suppose, for the rest of the proof, that
we are in this case.

7.6.1 Interpolating estimation problem
We aim at computing the limit of the free energy Fn. To do so, we introduce an estimation
problem parametrized by t ∈ [0, 1] that interpolates between the original problem (7.2.1)
at t = 0 and the two scalar problems described in Section 7.3.1 at t = 1 whose free energy
is easy to compute. For t ∈ (0, 1) the interpolating estimation problem is a mixture of the
original and scalar problems. This interpolation scheme is inspired from the interpolation
paths used by Talagrand to study the perceptron, see [201]. There are two major differences
between the perceptron studied by Talagrand, and the “planted perceptron” (where there
is a “planted solution” X∗) that we are investigating:
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• In the planted case, the presence of a planted solution forces (under small pertur-
bations) the correlations to vanish for all values of the parameters, see Chapter 2.
In the non-planted case, proving such decorrelation is much more involved, and is
proved only in a limited region of the parameter space (the high-temperature phase),
see [201].

• However, in the planted case, there can be arbitrarily many solutions to the state
evolution equations (7.3.7) (see Remark 21 in [217]), whereas in the region studied
by [201], there is only one solution.

Let q, r : [0, 1] → R≥0 be two continuously differentiable functions such that q(0) =
r(0) = 0. Define

St,µ
def=
√

1− t
n

[ΦX∗]µ +
√
q(t)Vµ +

√
ρt− q(t)W ∗

µ (7.6.2)

where Vµ,W ∗
µ

i.i.d.∼ N (0, 1). Consider the following observation channels, with two types of
observations obtained through{

Yt,µ ∼ Pout( · |St,µ) , 1 ≤ µ ≤ m,

Y ′t,i =
√
r(t)X∗i + Z ′i , 1 ≤ i ≤ n,

(7.6.3)

where (Z ′i)ni=1
i.i.d.∼ N (0, 1). We assume that V = (Vµ)mµ=1 is known. Then the inference

problem is to recover both unknowns W ∗ = (W ∗
µ)mµ=1 and X∗ = (X∗i )ni=1 from the knowl-

edge of V , Φ and the observations Yt = (Yt,µ)mµ=1 and Y ′t = (Y ′t,i)ni=1.
Define uy(x) def= logPout(y|x) and, with a slight abuse of notations, for (x,w) ∈ Rn×Rm

st,µ = st,µ(x, wµ) def=
√

1− t
n

[Φx]µ +
√
q(t)Vµ +

√
ρt− q(t)wµ . (7.6.4)

Notice that St,µ = st,µ(X∗,W ∗
µ). We introduce the interpolating Hamiltonian

Ht(x,w;Yt,Y ′t ,Φ,V ) def= −
m∑
µ=1

logPout(Yt,µ|st,µ) + 1
2

n∑
i=1

(
Y ′t,i −

√
r(t)xi

)2
. (7.6.5)

The dependence in Φ and V of the Hamiltonian is through the (st,µ)mµ=1. We also intro-
duce the corresponding Gibbs bracket 〈·〉n,t which is the expectation w.r.t. the posterior
distribution of (X∗,W ∗) given (Yt,Y ′t ,Φ,V ). It is defined as

〈g(x,w)〉n,t def= 1
Zt(Yt,Y ′t ,Φ,V )

∫
dP⊗n0 (x)Dw g(x,w) e−Ht(x,w;Yt,Y ′t ,Φ,V ) , (7.6.6)

for every continuous bounded function g on Rn×Rm. In (7.6.6)Dw = (2π)−m/2∏m
µ=1 dwµe

−w2
µ/2

is the m-dimensional standard Gaussian distribution and Zt(Yt,Y ′t ,Φ,V ) is the appropri-
ate normalization (or partition function):

Zt(Yt,Y ′t ,Φ,V ) def=
∫
dP⊗n0 (x)Dw e−Ht(x,w;Yt,Y ′t ,Φ,V ) . (7.6.7)

Finally the interpolating free energy is

fn(t) def= 1
n
E logZt(Yt,Y ′t ,Φ,V ) . (7.6.8)
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Notice that: {
fn(0) = Fn
fn(1) = ψP0(r(1))− 1

2(1 + ρr(1)) + m
n

ΨPout(q(1)) (7.6.9)

As discussed above, part of the potential (7.3.6) appears in fn(1). We would like to
relate Fn = fn(0) to fn(1). We thus compute the derivative of the free energy along the
interpolation path (see Appendix 7.6.4 for the proof):
Proposition 7.6.1

Assume that ‖q′‖∞, ‖r′‖∞ = O(1) as n→∞. For all t ∈ (0, 1)

f ′n(t) =−1
2E
〈( 1

n

m∑
µ=1

u′Yt,µ(St,µ)u′Yt,µ(st,µ)− r′(t)
)(
Q− q′(t)

)〉
n,t

+ r′(t)
2 (q′(t)− ρ) + on(1) ,

where on(1) is a quantity that goes to 0 as n → ∞, uniformly in t ∈ (0, 1). Recall
that st,µ = st,µ(x, wµ) is given by (7.6.4) where (x,w) is a sample from the posterior
distribution of (X∗,W ∗) given Yt,Y ′t ,Φ,V , independently of everything else. The
expectation with respect to (x,w) only is denoted by the Gibbs bracket 〈·〉n,t, see
(7.6.6). Finally the overlap Q is

Q
def= 1

n

n∑
i=1

X∗i xi. (7.6.10)

7.6.2 Overlap concentration
Proposition 7.6.1 is the analog of Lemma 4.3.1 that we have seen for the non-symmetric
matrix estimation model in Chapter 4. As in the proof of Theorem 4.1.1 we will need to
show that the overlap Q concentrates around its mean, in order to be able to cancel the
first term of f ′n(t) (in Proposition 7.6.1) by choosing q′(t) = E〈Q〉n,t.

As seen in Section 2.2 Q concentrates around its mean on average over small pertur-
bations of our model and we need in principle to introduce these small perturbations as in
the proof of Theorem 4.1.1. However, in order to make the proof easier to read, we will
assume here that for all choice of the functions r, q we have:∫ 1

0
E
〈(
Q− E〈Q〉n,t

)2〉
n,t
dt −−−→

n→∞
0. (7.6.11)

The reader is invited to refer to Proposition 4.3.2 or to the paper [19] for a precise execution
of the perturbation arguments.
Proposition 7.6.2

Assume that (7.6.11) holds. Assume that we have q′(t) = E〈Q〉n,t for all t ∈ [0, 1], and
that ‖r′‖∞ = O(1) as n→∞. Then

Fn = ψP0(r(1)) + αΨPout(q(1))− 1
2

∫ 1

0
q′(t)r′(t)dt+ on(1) , (7.6.12)

where on(1) denotes a quantity that goes to 0 as n→∞.
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Proof. By the Cauchy-Schwarz inequality

( ∫ 1

0
E
〈( 1
n

m∑
µ=1

u′Yt,µ(St,µ)u′Yt,µ(st,µ)− r′(t)
)(
Q− q′(t)

)〉
n,t
dt
)2

(7.6.13)

≤
∫ 1

0
E
〈( 1
n

m∑
µ=1

u′Yt,µ(St,µ)u′Yt,µ(st,µ)− r′(t)
)2〉

n,t
dt×

∫ 1

0
E
〈(
Q− q′(t)

)2〉
n,t
dt.

Under assumptions (H2)-(H4) the first term of this product is bounded by some constant C that
only depend on ϕ, α and ‖r′‖∞. The second term goes to 0 as n → ∞ by (7.6.11), since we
assumed that for all t ∈ [0, 1], q′(t) = E〈Q〉n,t. Consequently (7.6.13) goes to 0 as n → ∞.
Therefore from Proposition 7.6.1:

fn(1)− fn(0) =
∫ 1

0
f ′n(t)dt =

∫ 1

0

(
q′(t)r′(t)− r′(t)ρ

)
dt+ on(1) . (7.6.14)

When combining (7.6.14) with (7.6.9) we reach the claimed identity.

7.6.3 Lower and upper matching bounds
We now possess all the necessary tools to prove Theorem 7.3.1 with the following matching
lower- and upper-bounds and Propositions C.7 and C.8 in Appendix C.3. Let us start with
the lower bound.
Proposition 7.6.3

lim inf
n→∞

Fn ≥ sup
r≥0

inf
q∈[0,ρ]

F(q, r). (7.6.15)

Proof. Let us fix r ≥ 0 and let us choose r(t) = rt and q to be the solution of the following
order-1 differential equation (E〈Q〉n,t is indeed a function of q(t)):

q(0) = 1 and ∀t ∈ [0, 1], q′(t) = E〈Q〉n,t.

We can then apply Proposition 7.6.2 (since ‖q′‖∞ ≤ ρ and ‖r′‖∞ = r are both On(1)) to get

Fn = ψP0(r) + αΨPout(q(1))− r

2q(1) + on(1) ≥ inf
q∈[0,ρ]

F(q, r) + on(1)

and thus lim infn→∞ Fn ≥ infq∈[0,ρ]F(q, r). This is true for all r ≥ 0 so we get Proposition 7.6.3.

Proposition 7.6.4

lim sup
n→∞

Fn ≤ sup
r≥0

inf
q∈[0,ρ]

F(q, r) . (7.6.16)

Proof. We now chose (q, r) to be the solution of the following order-1 system of differential
equations:{

q(0) = 0
r(0) = 0

and ∀ t ∈ [0, 1],
{
q′(t) = E〈Q〉n,t
r′(t) = 2αΨ′Pout

(
E〈Q〉n,t

)
.

(7.6.17)
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As before, ‖q′‖∞ ≤ ρ. By Proposition 7.8.1 the function Ψ′Pout is C1 and bounded, so ‖r′‖∞ =
O(1). We apply Proposition 7.6.2 to get

Fn = ψP0(r(1)) + αΨPout(q(1))− 1
2

∫ 1

0
q′(t)r′(t)dt+ on(1)

= ψP0

( ∫ 1

0
r′(t)dt

)
+ αΨPout

( ∫ 1

0
q′(t)dt

)
− 1

2

∫ 1

0
q′(t)r′(t)dt+ on(1)

≤
∫ 1

0

(
ψP0(r′(t)) + αΨPout(q′(t))−

1
2q
′(t)r′(t)

)
dt+ on(1) (7.6.18)

by Jensen’s inequality, because by Propositions 1.3.3 and 7.8.1 the functions ψP0 and ΨPout are
convex. By definition of r′ and q′, we have for all t ∈ [0, 1],

r′(t) = 2αΨ′Pout

(
q′(t)

)
. (7.6.19)

Therefore, by convexity of ΨPout , we have for all t ∈ [0, 1]

αΨPout(q′(t))−
1
2q
′(t)r′(t) = inf

q∈[0,ρ]

{
αΨPout(q)−

1
2q r

′(t)
}
.

Plugging this back in (7.6.18), we get:

Fn ≤ sup
r≥0

inf
q∈[0,ρ]

{
ψP0(r) + αΨPout(q)−

1
2q r

}
+ on(1),

which proves Proposition 7.6.4.

7.6.4 Derivative of the interpolating free energy: Proof of Propo-
sition 7.6.1

Recall that u′y(x) is the x-derivative of uy(x) = logPout(y|x). Moreover denote P ′out(y|x)
and P ′′out(y|x) the first and second x-derivatives of Pout(y|x). We will first prove that for
all t ∈ (0, 1)

f ′n(t) =− 1
2E
〈( 1

n

m∑
µ=1

u′Yt,µ(St,µ)u′Yt,µ(st,µ)− r′(t)
)(
Q− q′(t)

)〉
n,t

+ r′(t)
2 (q′(t)− ρ)− An

2 ,

(7.6.20)

where recall Q = 1
n

∑n
i=1X

∗
i xi and

An
def= E

[ 1√
n

m∑
µ=1

P ′′out(Yt,µ|St,µ)
Pout(Yt,µ|St,µ)

( 1√
n

n∑
i=1

(
(X∗i )2 − ρ

)) 1
n

logZt
]
. (7.6.21)

Once this is done, we will prove that An goes to 0 as n → ∞ uniformly in t ∈ [0, 1], in
order to obtain Proposition 7.6.1.

Proof of (7.6.20)

Recall definition (7.6.8) which becomes, when written as a function of the interpolating
Hamiltonian (7.6.5),

fn(t) = 1
n
E
∫
dydy′e−Ht(X

∗,W ∗;y,y′,Φ,V ) log
∫
dP⊗n0 (x)Dw e−Ht(x,w;y,y′,Φ,V ) . (7.6.22)
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We will need the Hamiltonian t-derivative H ′t given by

H ′t(x,w;y,y′,Φ,V ) = −
m∑
µ=1

dst,µ
dt

u′yµ(st,µ)− r′(t)
2
√
r(t)

n∑
i=1

xi(y′i −
√
r(t)xi) . (7.6.23)

where we recall (7.6.4):

st,µ = st,µ(x, wµ) def=
√

1− t
n

[Φx]µ +
√
q(t)Vµ +

√
ρt− q(t)wµ . (7.6.24)

The derivative of the interpolating free energy thus reads, for 0 < t < 1,

f ′n(t) = − 1
n
E
[
H ′t(X∗,W ∗;Yt,Y ′t ,Φ,V ) logZt

]
︸ ︷︷ ︸

T1

− 1
n
E
〈
H ′t(x,w;Yt,Y ′t ,Φ,V )

〉
n,t︸ ︷︷ ︸

T2

(7.6.25)

where recall that Zt = Zt(Yt,Y ′t ,Φ,V ) is given by (7.6.7). Let us compute T1. Let
1 ≤ µ ≤ m. Let us start with the following term

E
[
dSt,µ
dt

u′Yt,µ(St,µ) logZt
]

= 1
2E
[(−[ΦX∗]µ√

n(1− t)
+ q′(t)√

q(t)
Vµ + ρ− q′(t)√

ρt− q(t)
W ∗
µ

)
u′Yt,µ(St,µ) logZt

]
.

(7.6.26)

Let us compute the first term of the right-hand side of the last identity. By Gaussian
integration by parts w.r.t Φµi we obtain

1√
n(1− t)

E
[
[ΦX∗]µu′Yt,µ(St,µ) logZt

]

= 1√
n(1− t)

n∑
i=1

E
[ ∫

dydy′e−Ht(X
∗,W ∗;y,y′,Φ,V )ΦµiX

∗
i u
′
Yt,µ(St,µ) logZt(y,y′,Φ,V )

]

= 1
n

n∑
i=1

(
E
[
(X∗i )2

(
u′′Yt,µ(St,µ) + u′Yt,µ(St,µ)2

)
logZt

]
+ E

〈
X∗i xiu

′
Yt,µ(St,µ)u′Yt,µ(st,µ)

〉
n,t

)

= E
[ 1
n

n∑
i=1

(X∗i )2P
′′
out(Yt,µ|St,µ)
Pout(Yt,µ|St,µ) logZt

]
+ E

〈 1
n

n∑
i=1

X∗i xiu
′
Yt,µ(St,µ)u′Yt,µ(st,µ)

〉
n,t
, (7.6.27)

where we used the identity

u′′Yt,µ(x) + u′Yt,µ(x)2 = P ′′out(Yt,µ|x)
Pout(Yt,µ|x) .

We now compute the second term of the right hand side of (7.6.26). Using again Gaussian
integrations by parts but this time w.r.t Vµ,W ∗

µ
i.i.d.∼ N (0, 1) as well as the previous formula,

we obtain similarly

E
[(

q′(t)√
q(t)

Vµ + ρ− q′(t)√
ρt− q(t)

W ∗
µ

)
u′Yt,µ(St,µ) logZt

]

= E
[ ∫

dydy′e−Ht(X
∗,W ∗;y,y′,Φ,V )

(
q′(t)√
q(t)

Vµ + ρ− q′(t)√
ρt− q(t)

W ∗
µ

)
u′Yt,µ(St,µ) logZt

]

= E
[
ρ
P ′′out(Yt,µ|St,µ)
Pout(Yt,µ|St,µ) logZt

]
+ E

〈
q(t)u′Yt,µ(St,µ)u′Yt,µ(st,µ)

〉
n,t
. (7.6.28)
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Combining equations (7.6.26), (7.6.27) and (7.6.28) together, we have

− E
[
dSt,µ
dt

u′Yt,µ(St,µ) logZt
]

= 1
2E
[
P ′′out(Yt,µ|St,µ)
Pout(Yt,µ|St,µ)

( 1
n

n∑
i=1

(X∗i )2 − ρ
)

logZt
]

+ 1
2E
〈( 1

n

n∑
i=1

X∗i xi − q′(t)
)
u′Yt,µ(St,µ)u′Yt,µ(st,µ)

〉
n,t
.

As seen from (7.6.23), (7.6.25) it remains to compute E[X∗j (Y ′t,j−
√
r(t)X∗j ) logZt]. Recall-

ing that for 1 ≤ j ≤ n, Y ′t,j −
√
r(t)X∗j = Z ′j and then using again a Gaussian integration

by parts w.r.t Z ′j ∼ N (0, 1) we obtain

E
[
X∗j (Y ′t,j −

√
r(t)X∗j ) logZt

]
= E

[
X∗jZ

′
j logZt

]
= E

[
X∗j ∂Z′j logZt

]
= −E

[
X∗j
〈√

r(t)(X∗j − xj) + Z ′j
〉
n,t

]
= −

√
r(t)

(
ρ− E〈X∗j xj〉n,t

)
.

Thus, by taking the sum,

− r′(t)
2
√
r(t)

E
[ 1
n

n∑
i=1

X∗i (Y ′t,i −
√
r(t)X∗i ) logZt

]
= r′(t)ρ

2 − r′(t)
2 E

〈 1
n

n∑
i=1

X∗i xi

〉
n,t
. (7.6.29)

Therefore, for all t ∈ (0, 1),

T1 = 1
2E
[ 1√

n

m∑
µ=1

P ′′out(Yt,µ|St,µ)
Pout(Yt,µ|St,µ)

( 1√
n

n∑
i=1

((X∗i )2 − ρ)
) 1
n

logZt
]

+ r′(t)ρ
2 − r′(t)q′(t)

2
(7.6.30)

+ 1
2E
〈( 1

n

m∑
µ=1

u′Yt,µ(St,µ)u′Yt,µ(st,µ)− r′(t)
)( 1

n

n∑
i=1

X∗i xi − q′(t)
)〉

n,t
. (7.6.31)

To obtain (7.6.20), it remains to show that T2 = 0. This is a direct consequence of the
Nishimori identity (Proposition 1.1.1):

T2 = 1
n
E
〈
H ′t(x,w;Yt,Y ′t ,Φ,V )

〉
n,t

= 1
n
E
[
H ′t(X∗,W ∗;Yt,Y ′t ,Φ,V )

]
= 0 . (7.6.32)

For obtaining the Lemma, it remains to show that An goes to 0 uniformly in t ∈ [0, 1].

Proof that An vanishes as n→∞

We now consider the final step, that is showing that An given by (7.6.21) vanishes in the
n→∞ limit uniformly in t ∈ [0, 1] under conditions (H1)-(H2)-(H3). First we show that

E
[ 1√

n

m∑
µ=1

P ′′out(Yt,µ|St,µ)
Pout(Yt,µ|St,µ)

( 1√
n

n∑
i=1

(
(X∗i )2 − ρ

))]
= 0 . (7.6.33)

Once this is done, we use the fact that 1
n

logZt concentrates around fn(t) to prove that
An converges to 0 as n → ∞. We start by noticing the simple fact that for all s ∈
R,

∫
P ′′out(y|s)dy = 0. Consequently, for µ ∈ {1, . . . ,m},

E
[
P ′′out(Yt,µ|St,µ)
Pout(Yt,µ|St,µ)

∣∣∣∣X∗,St] =
∫
dyP ′′out(y|St,µ) = 0 . (7.6.34)
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Thus, using the “tower property” of the conditional expectation:

E
[ n∑
i=1

((X∗i )2 − ρ)
m∑
µ=1

P ′′out(Yt,µ|St,µ)
Pout(Yt,µ|St,µ)

]
= E

[ n∑
i=1

(
(X∗i )2 − ρ

)
E
[ m∑
µ=1

P ′′out(Yt,µ|St,µ)
Pout(Yt,µ|St,µ)

∣∣∣∣X∗,St]] = 0

which gives (7.6.33). We now show that An goes to 0 uniformly in t ∈ [0, 1] as n → ∞.
Using successively (7.6.33) and the Cauchy-Schwarz inequality, we have

|An| =
∣∣∣∣E[ 1√

n

m∑
µ=1

P ′′out(Yt,µ|St,µ)
Pout(Yt,µ|St,µ)

1√
n

n∑
i=1

(
(X∗i )2 − ρ

)( 1
n

logZt − fn(t)
)]∣∣∣∣ (7.6.35)

≤ E
[( 1√

n

m∑
µ=1

P ′′out(Yt,µ|St,µ)
Pout(Yt,µ|St,µ)

)2( 1√
n

n∑
i=1

(
(X∗i )2 − ρ

))2]1/2
E
[( 1
n

logZt − fn(t)
)2]1/2

.

(7.6.36)

Using again the “tower property” of conditional expectations

E
[( m∑

µ=1

P ′′out(Yt,µ|St,µ)
Pout(Yt,µ|St,µ)

)2( n∑
i=1

((X∗i )2 − ρ)
)2]

(7.6.37)

=E
[( n∑

i=1

(
(X∗i )2 − ρ

))2
E
[( m∑

µ=1

P ′′out(Yt,µ|St,µ)
Pout(Yt,µ|St,µ)

)2 ∣∣∣∣X∗,St]] . (7.6.38)

Now, using the fact that conditionally on St, the random variables
(
P ′′out(Yt,µ|St,µ)
Pout(Yt,µ|St,µ)

)
1≤µ≤m

are
i.i.d. and centered, we have

E
[( m∑

µ=1

P ′′out(Yt,µ|St,µ)
Pout(Yt,µ|St,µ)

)2 ∣∣∣∣X∗,St]=mE
[(
P ′′out(Y1|St,1)
Pout(Y1|St,1)

)2 ∣∣∣∣St] . (7.6.39)

Under condition (H2), it is not difficult to show that there exists a constant C > 0 such
that

E
[(
P ′′out(Yt,1|St,1)
Pout(Yt,1|St,1)

)2 ∣∣∣∣St] ≤ C . (7.6.40)

Combining now (7.6.40), (7.6.39) and (7.6.38) we obtain that

E
[( m∑

µ=1

P ′′out(Yt,µ|St,µ)
Pout(Yt,µ|St,µ)

)2( n∑
i=1

(
(X∗i )2 − ρ

))2]
≤ mC E

[( n∑
i=1

(
(X∗i )2 − ρ

))2]
= mnC Var

(
(X∗1 )2

)
.

Going back to (7.6.36), therefore there exists a constant C ′ > 0 such that

|An| ≤ C ′ E
[( 1
n

logZt − fn(t)
)2]1/2

. (7.6.41)

Using standard concentration arguments (bounded difference property, Gaussian Poincaré
inequality) it is not difficult to show that under assumptions (H1), (H2), (H3) and (H4)
there exists a constant C(ϕ, S, α,∆, R) ≥ 0 such that for all functions q, r bounded by R
we have

Var
( 1
n

logZt
)

= E
[( 1
n

logZt −
1
n
E logZt

)2]
≤ C(ϕ, S, α,∆, R)

n
. (7.6.42)

Consequently, E[( 1
n

logZt − fn(t))2] → 0 as n → ∞ uniformly in t ∈ [0, 1]. Thus An goes
to 0 as n→∞ uniformly in t ∈ [0, 1]. This ends the proof of Proposition 7.6.1.
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7.7 Proofs of the limits of optimal errors
7.7.1 Unicity of the optimizer q∗ of the replica formula: Proof of

Proposition 7.3.1
Since ψP0 and ΨPout are related to IP0 and IPout by the relations (7.3.2)-(7.3.5), the op-
timizers of (7.3.8) and (7.3.9) are the same. We chose here to work with (7.3.9). The
function

h : α 7→ inf
q∈[0,ρ]

{
αIPout(q) + sup

r≥0

{
IP0(r)− r

2(ρ− q)
}}

(7.7.1)

is concave (as an infimum of linear functions). Proposition D.2 gives that h is differentiable
at α if and only if {

IPout(q)
∣∣∣∣ q minimizer of (7.7.1)

}
is a singleton. We assumed that Pout is informative, so Proposition 7.8.4 gives that IPout

is strictly decreasing. We obtain thus that the set of points at which h is differentiable is
exactly D∗. Since h is concave, D∗ is equal to R>0 minus a countable set. Proposition D.2
gives also that h′(α) = IPout(q∗(α)), for all α ∈ D∗. The function h is concave, so its
derivative h′ is non-increasing. Since IPout is strictly decreasing, we obtain that α ∈ D∗ 7→
q∗(α) is non-decreasing.

Let now α0 ∈ D∗. By concavity of h, h′(α)→ h′(α0) when α ∈ D∗ → α0. Therefore:

IPout(q∗(α)) −−−−−→
α∈D→α0

IPout(q∗(α0))

which implies q∗(α) → q∗(α0) by strict monotonicity of IPout . The map α 7→ q∗(α) is
therefore continuous on D∗.

7.7.2 Limit of the overlap: Proof of Theorem 7.3.2

Let Qn denote the overlap Qn
def= 1

n
〈X∗,x〉 betweenX∗ and x = (x1, . . . , xn) a sample from

the posterior distribution P (X∗|Y ,Φ), independently of everything else. In this section
we will show that |Qn| converges in probability to q∗(α), for all α ∈ D∗.

Upper bound on the overlap

Proposition 7.7.1
For all α ∈ D∗ and for all ε > 0,

P
(
|Qn| ≥ q∗(α) + ε

)
−−−→
n→∞

0 .

Let us fix α ∈ D∗ and let p ≥ 1. In order to obtain an upper bound on the overlap, we
consider an observation model with some (small) extra information (that takes the form
of a tensor of order 2p) in addition of the original model (7.2.1), i.e. we observeY ∼ Pout(· |ΦX∗/

√
n) ,

Y ′ =
√

λ
n2p−1 (X∗)⊗2p +Z ′ ,

(7.7.2)
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where λ ≥ 0, Z ′ = (Z ′i1...i2p)1≤i1,...,i2p≤n
i.i.d.∼ N (0, 1) and (X∗)⊗2p = (Xi1 . . . Xi2p)1≤i1,...,i2p≤n.

The next Proposition gives the limit of the mutual information between the signal and the
observations (7.7.2).
Proposition 7.7.2

For all λ ≥ 0,

lim
n→∞

1
n
I
(
X∗;Y ,Y ′

∣∣∣Φ) = I(λ) , (7.7.3)

where the right-hand-side is

I(λ)def= inf
q∈[0,ρ]

sup
r≥0

{
IP0(r+2pλq2p−1) + αIPout(q)−

r

2(ρ− q) + 2p− 1
2 λq2p − ρpλq2p−1 + λ

2ρ
2p
}
.

(7.7.4)

Proposition 7.7.2 is proved using the same strategy than for Proposition 4.4.1, so we omit
its proof for brevity. We are now in position to prove Proposition 7.7.1.

Proof of Proposition 7.7.1. The chain rule for the mutual information gives

I(X∗;Y ,Y ′|Φ) = I(X∗;Y |Φ) + I((X∗)⊗2p;Y ′|Y ,Φ).

Thus, using the I-MMSE relation of Proposition 1.3.3,

1
n

∂

∂λ
I
(
X∗;Y ,Y ′

∣∣Φ)∣∣∣
λ=0+

= 1
n

∂

∂λ
I
(
(X∗)⊗2p;Y ′

∣∣Y ,Φ)∣∣∣
λ=0+

= 1
2n2pMMSE

(
(X∗)⊗2p∣∣Y ,Φ) .

By concavity of λ 7→ I(X∗;Y ,Y ′|Φ), we have using Proposition 7.7.2 and Proposition C.1:

lim inf
n→∞

1
2n2pMMSE

(
(X∗)⊗2p∣∣Y ,Φ) = lim inf

n→∞
1
n

∂

∂λ
I
(
X∗;Y ,Y ′

∣∣Φ)∣∣∣
λ=0+

≥ I ′(0+) ,

For α ∈ D∗ and λ = 0 the infimum of (7.7.4) is achieved uniquely at q = q∗(α), by definition of
D∗. Consequently, by Proposition D.2 we obtain I(0+) = 1

2(ρ2p − q∗(λ)2p) and thus

lim inf
n→∞

1
n2pMMSE

(
(X∗)⊗2p∣∣Y ,Φ) ≥ ρ2p − q∗(α)2p .

One verifies easily that

1
n2pMMSE

(
(X∗)⊗2p∣∣Y ,Φ) = ρ2p − E

[
Q2p
n

]
+ on(1) , (7.7.5)

so we deduce that lim supn→∞ E
[
Q2p
n

]
≤ q∗(α)2p. Let ε > 0. By Markov’s inequality we have

P
(
|Qn| ≥ q∗(α) + ε

)
≤

E
[
Q2p
n

]
(q∗(α) + ε)2p .

By taking the lim sup in n on both sides we obtain

lim sup
n→∞

P
(
|Qn| ≥ q∗(α) + ε

)
≤ q∗(α)2p

(q∗(α) + ε)2p ,

and Proposition 7.7.1 follows by taking the p→∞ limit in the inequality above.
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Limit of the overlap

Let us fix α ∈ D∗. The sequence of the overlaps (Qn)n≥1 is tight (because bounded in L1).
By Prokhorov’s Theorem we know that the sequence of the laws of (Qn)n≥1 is relatively
compact. We can thus consider a subsequence along which it converges in law, to some
random variable Q. In order to simplify the notations (and because working with an
extraction does not change the proof) we will assume in the sequel that

Qn
(d)−−−→

n→∞
Q ,

for some random variable Q. We aim now at showing that |Q| = q∗(α) almost surely and
moreover, if Pout is not symmetric, Q = q∗(α) almost surely.
Lemma 7.7.1 (Upper bound on the overlap)
|Q| ≤ q∗(α) almost surely.

Proof. Let ε > 0. The set [0, q∗(α) + ε] is closed, so by Portemanteau’s Theorem

P
(
|Q| ≤ q∗(α) + ε

)
≥ lim sup

n→∞
P
(
|Qn| ≤ q∗(α) + ε

)
= 1 ,

by Proposition 7.7.1. So P
(
|Q| ≤ q∗(α) + ε

)
= 1 for all ε > 0 which gives P

(
|Q| ≤ q∗(α)

)
= 1.

In order to prove the converse lower bound, we will need to consider the following error
quantity, for f : R→ R a continuous bounded function:

Ef,n(α) def= MMSE(f(Ynew)|Φnew,Y ,Φ) = E
[(
f(Ynew)− E[f(Ynew)|Φnew,Y ,Φ]

)2]
, (7.7.6)

which is the minimum mean-square error on f(Ynew). We define also

Ef (q) def= MMSE(f(Ỹ0)|V ) = E
[(
f(Ỹ0)− E[f(Ỹ0)|V ]

)2]
(7.7.7)

where Ỹ0 ∼ Pout(· |
√
qV +√ρ− qW ∗) is the output of the second scalar channel (7.3.3).

Proposition 7.7.3
Let f : R → R be a continuous bounded function. Assume that Pout is informative

and that (h1)-(h2)-(h3)-(h4) hold and that either (h5.a) or (h5.b) holds. Then for all
α ∈ D∗ we have

Ef,n(α) −−−→
n→∞

Ef (q∗(α)) (7.7.8)

where q∗(α) is the optimizer of the replica-symmetric formula (7.3.8), see Proposi-
tion 7.3.1.

We first deduce Theorem 7.3.4 from Proposition 7.7.3. Proposition 7.7.3 will then be
proved at the end of this Section. Proposition 7.7.3 gives Ef,n(α) −−−→

n→∞
Ef (q∗(α)). The

function Ef can be written as

Ef (q) = 1
2E
[
hf
(√

qZ0 +
√
ρ− qZ1,

√
qZ0 +

√
ρ− qZ ′1

)]

where Z0, Z1, Z
′
1

i.i.d.∼ N (0, 1) and hf : (a, b) ∈ R2 7→
∫

(f(y1)−f(y2))2Pout(dy1|a)Pout(dy2|b).
The next lemma follows from a simple central-limit-type argument (and can for instance

be proved using Lindeberg “swapping trick”, see [45]).
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Lemma 7.7.2
Let k ≥ 1. Let (sn)n≥1 be a sequence of independent random variables that have zero

mean, unit variance and finite third moment that is bounded with n. We write sn =
(s1, . . . , sn). For n ≥ 1 let x(1)

n , . . . ,x(k)
n ∈ Rn be some deterministic vectors. Assume

that for all i ∈ {1, . . . , k},
(

1
n

∑
j(x

(i)
n,j)3

)
n≥1

is bounded and that for all i, j ∈ {1, . . . , k}

1
n
〈x(i)

n ,x
(j)
n 〉 −−−→n→∞

Ri,j,

for some matrix R ∈ Rk×k. Then( 1√
n
〈sn,x(`)

n 〉
)

1≤`≤k

(d)−−−→
n→∞

N (0, R).

We deduce from Lemma 7.7.2 (that we apply for k = 2 conditionally on x,X∗):(〈x,Φnew〉√
n

,
〈X∗,Φnew〉√

n

)
(d)−−−→

n→∞
(Z1, Z2) , (7.7.9)

where (Z1, Z2) is sampled, conditionally on Q, from N
(

0,
(
ρ Q
Q ρ

))
.

Proposition 7.7.4
We have

Ef,n(α) −−−→
n→∞

1
2E
[
hf (Z1, Z2)

]
,

where (Z1, Z2) is defined in Lemma 7.7.2 above.

Proof. We have
Ef,n = E

[(
f(Ynew)− E

[
f(Ynew)

∣∣Φnew,Φ,Y
])2]

= 1
2E
[∫

(f(ynew)− f(y))2Pout
(
dynew

∣∣〈Φnew,X
∗〉/
√
n
)
Pout

(
dy
∣∣〈Φnew,x〉/

√
n
)]

= 1
2E
[
hf
(〈x,Φnew〉√

n
,
〈X∗,Φnew〉√

n

)]
.

By (7.7.9) above, we have
( 〈x,Φnew〉√

n
, 〈X

∗,Φnew〉√
n

) (d)−−−→
n→∞

(Z1, Z2). Using (h4) (and Remark 7.3.1)
we can find a Borel set S ⊂ R of full Lebesgue’s measure such that hf is continuous on S × S.
The set of discontinuity points of hf has thus zero measure for the law of (Z1, Z2). Indeed if we
condition on Q:

• if |Q| < ρ, then (Z1, Z2) has a density over R2.

• if Q = ρ, then Z1 = Z2 almost surely, but hf is continuous on
{
(s, s)

∣∣ s ∈ S} that has full
Lebesgue’s measure on the diagonal

{
(x, x)

∣∣x ∈ R
}
.

• if Q = −ρ, then Z1 = −Z2 almost surely and we use then similar arguments as for the
previous point.

We have therefore:
hf
(〈x,Φnew〉√

n
,
〈X∗,Φnew〉√

n

) (d)−−−→
n→∞

hf (Z1, Z2) ,
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and Lemma 7.7.4 follows from the fact that hf is bounded.

Let us now define:
Hf :

∣∣∣∣∣ [−ρ, ρ] → R
q 7→ 1

2E
[
hf (G(q))

] (7.7.10)

where G(q) ∼ N
(
0, ( ρ qq ρ )

)
. Notice that Hf is equal to the function Ef on [0, ρ]. By

Proposition 7.7.4 above and Proposition 7.7.3, we have:

Hf (q∗(α)) = lim
n→∞

Ef,n(α) = E
[
Hf (Q)

]
. (7.7.11)

Lemma 7.7.3
For all q ∈ (0, ρ], Hf (−q) ≥ Hf (q) with equality if and only if for almost-all x ∈ R we

have ∫
f(y)Pout(dy|x) =

∫
f(y)Pout(dy| − x).

Proof. For x ∈ R we let P̃out(·|x) denote the law of f(Y ) for Y ∼ Pout(·|x). Let q ∈ (0, ρ] and
Z0, Z1, Z

′
1

i.i.d.∼ N (0, 1). Let Y and Y ′ be two random variables, that are independent conditionally
on Z0, Z1, Z

′
1 and distributed as:

Y ∼ P̃out(·|
√
qZ0 +

√
ρ− qZ1) and Y ′ ∼ P̃out(·| −

√
qZ0 +

√
ρ− qZ ′1) .

Y and Y ′ are independent conditionally on Z0, so we get

Hf (−q) = 1
2E
[
(Y − Y ′)2]

= 1
2E
[
(Y − E[Y |Z0])2]+ 1

2E
[
(Y ′ − E[Y ′|Z0])2]+ 1

2E
[
(E[Y |Z0]− E[Y ′|Z0])2]

= E
[
(Y − E[Y |Z0])2]+ 1

2E
[
(E[Y |Z0]− E[Y ′|Z0])2]

= Hf (q) + 1
2E
[
(E[Y |Z0]− E[Y ′|Z0])2].

We get that Hf (−q) ≥ Hf (q), with equality if and only if E[Y |Z0] = E[Y ′|Z0] almost surely. This
is equivalent to

E
∫
f(y)Pout(dy|v +

√
ρ− qZ) = E

∫
f(y)Pout(dy| − v +

√
ρ− qZ), for a.e. v ∈ R,

where Z ∼ N (0, 1). Thus, if q = ρ then we are done. If q ∈ (0, ρ), writing

F (x) =
∫
f(y)Pout(dy|

√
ρ− qx),

and g(x) = F (x) − F (−x), we get that G(v) def= E[g(v + Z)] = 0 for almost every v ∈ R. We
compute the derivative of G: G′(v) = E[Zg(v +Z)] = 0. By Lemma 7.8.1, we get that g is equal
to zero almost-everywhere, which concludes the proof.

We have now all the tools needed to prove Theorem 7.3.2. Using Lemma 7.7.3 and
(7.7.11) above, we get that EHf (|Q|) ≤ EHf (Q) = Hf (q∗(α)). Since Hf is equal to Ef on
[0, ρ] this gives

E
[
Ef (|Q|)

]
≤ Ef (q∗(α)) . (7.7.12)
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If q∗(α) = 0, then Theorem 7.3.2 follows simply from Proposition 7.7.1. We suppose now
that q∗(α) > 0 and consider ε ∈ (0, q∗(α)). We define p(ε) = P

(
|Q| ≤ q∗(α) − ε

)
. We are

going to show that p(ε) = 0. We assumed that Pout is informative, so by Proposition 7.8.6
and Proposition 7.8.7 in Section 7.8, there exists a continuous bounded function f : R 7→ R
such that Ef is strictly decreasing on [0, ρ]. In the following, f is assumed to be such a
function. We have

E
[
Ef (|Q|)

]
= E

[
1
(
|Q| ≤ q∗(α)− ε

)
Ef (|Q|) + 1

(
|Q| > q∗(α)− ε

)
Ef (|Q|)

]
≥ p(ε)Ef (q∗(α)− ε) + (1− p(ε))Ef (q∗(α)) .

because Ef is non-increasing and because |Q| ≤ q∗(α) almost surely (Lemma 7.7.1). Com-
bining this with (7.7.12) leads to

p(ε)Ef (q∗(α)) ≥ p(ε)Ef (q∗(α)− ε) .

Since Ef is strictly decreasing: Ef (q∗(α)) < Ef (q∗(α) − ε), which implies p(ε) = 0. This is
true for all ε > 0, consequently |Q| ≥ q∗(α) almost surely. We get (using Lemma 7.7.1)
that

|Q| = q∗(α) , almost surely.

We conclude that the only possible limit in law of the tight sequence
(
|Qn|

)
n≥1

is q∗(α).
Therefore |Qn| → q∗(α).

Let us prove the second part of Theorem 7.3.2. If q∗(α) = 0, then this is obvious. Let
us suppose now that q∗(α) > 0 and let p = P(Q = −q∗(α)). Suppose that p > 0. We have
seen above that for all continuous bounded function f , EHf (Q) = Hf (q∗(α)). Hence

Hf (q∗(α)) = EHf (Q) = (1− p)Hf (q∗(α)) + pHf (−q∗(α)),

and consequently Hf (q∗(α)) = Hf (−q∗(α)). Lemma 7.7.3 gives then that∫
f(y)Pout(dy|x) =

∫
f(y)Pout(dy| − x)

for almost every x ∈ R, which then leads to Pout(·|x) = Pout(·|−x) for almost-every x ∈ R:
Pout is symmetric. We conclude that if Pout is not symmetric, then necessarily p = 0 and
Q = q∗(α) almost surely.

Proof of Proposition 7.7.3

Let f : R → R be a continuous bounded function. Let ε, λ > 0. In order to get lower-
bounds on the generalization error, we will consider the following additional observations

Uµ =
√
λY ′µ + Z ′µ , for 1 ≤ µ ≤ m′ = εn , (7.7.13)

where Z ′µ
i.i.d.∼ N (0, 1), and Y ′µ is given by

Y ′µ = f(Ỹµ) , Ỹµ ∼ Pout

(
·
∣∣∣∣ 〈Φ′µ,X∗〉√

n

)
, (7.7.14)

where Φ′µ
i.i.d.∼ N (0, Idn) independently of everything else. We will use the following lemma,

proved at the end of this section.
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Lemma 7.7.4
For all ε, λ ≥ 0 we have

1
n
I(Y ′;

√
λY ′ +Z ′|Y ,Φ,Φ′) −−−→

n→∞
inf
q∈[0,ρ]

sup
r≥0

ĩRS(q, r, λ)− i∞ , (7.7.15)

where i∞ is given by Corollary 7.3.1 and

ĩRS(q, r, λ) def= iRS(q, r) + εI(f(Y (q));
√
λ f(Y (q)) + Z ′|V ) (7.7.16)

= IP0(r) + αIPout(q; ρ) + εI(f(Y (q));
√
λ f(Y (q)) + Z ′|V )− r

2(ρ− q) .
(7.7.17)

Recall that Y (q) is sampled from the “second scalar channel” (7.3.3): Y (q) ∼ Pout(· |
√
q V+

√
ρ− qW ∗), where V,W ∗ i.i.d.∼ N (0, 1).

Lemma 7.7.5
For all α, λ > 0 the set

Dα,λ
def=
{
ε ≥ 0

∣∣∣ the infimum in (7.7.15) is achieved at a unique q∗α,ε,λ
}

(7.7.18)

is equal to [0,+∞) minus some countable set. Moreover, ε 7→ q∗α,λ,ε is continuous on
Dα,ε.

Proof. This follows from the same arguments than in the proof of Proposition 7.3.1.

From there one can use the I-MMSE relation of Proposition 1.3.3:

∂

∂λ

1
n
I(Y ′;

√
λY ′ +Z ′|Y ,Φ,Φ′) = 1

2nMMSE
(
Y ′
∣∣∣√λY ′ +Z ′,Y ,Φ,Φ′)

= ε

2MMSE(Y ′1 |Y ,U ,Φ,Φ′).

We will express the limit of MMSE(Y ′1 |Y ,U ,Φ,Φ′) using the function:

Mf : (λ, q) 7→ MMSE
(
f(Y (q))

∣∣∣√λ f(Y (q)) + Z ′, V
)
. (7.7.19)

Lemma 7.7.6
For all α, λ > 0, we have for all ε ∈ Dα,λ \ {0}

lim
n→∞

MMSE(Y ′1 |Y ,U ,Φ,Φ′) = Mf (λ, q∗α,ε,λ) ,

where q∗α,ε,λ is the unique minimizer of (7.7.15).

Proof. Let us fix α, ε > 0. Consider the function

hα,ε : λ 7→ inf
q∈[0,ρ]

sup
r≥0

ĩRS(q, r, λ) . (7.7.20)

Corollary 4 from [144] gives that hα,ε is differentiable at λ if and only if{
ε
∂

∂λ
I
(
f(Y (q));

√
λf(Y (q))+Z ′

∣∣V ) = ε

2Mf (λ, q)
∣∣∣ q minimizer of (7.7.15) (or equivalently of (7.7.20))

}
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is a singleton (the equality comes from the I-MMSE relation from Proposition 1.3.3). In such
case, Corollary 4 from [144] also gives that

h′α,ε(λ) = ε

2Mf (λ, q) , (7.7.21)

for all q minimizer of (7.7.20). So if now ε ∈ Dα,λ \ {0}, then the minimizer is unique and thus
hα,ε is differentiable at λ, with derivative h′α,λ(λ) = εMf (λ, q∗α,ε,λ)/2. However, by (7.7.15) in
Lemma 7.7.4, hα,ε is the pointwise limit on R≥0 of the sequence of concave functions

(hn)n≥1 =
(
λ 7→ 1

n
I
(
Y ′;
√
λY ′ +Z ′

∣∣Y ,Φ,Φ′)+ i∞
)
n≥1

.

Consequently, Proposition C.1 gives h′n(λ) −−−→
n→∞

h′α,ε(λ). By the I-MMSE relation (Proposi-
tion 1.3.3) we have h′n(λ) = εMMSE(Y ′1 |Y ,U ,Φ,Φ′)/2 and we conclude using the fact that
ε 6= 0.
Lemma 7.7.7

For all α ∈ D∗ (recall that D∗ is defined by (7.3.13)),

lim
λ→0

lim
ε→0

Mf (λ, q∗α,ε,λ) = Ef (q∗(α)) .

Proof. Let α ∈ D∗ and λ > 0. We have by definition of Dα,λ, of D∗ and using the link between
ĩRS and iRS given by (7.7.16), that 0 ∈ Dα,λ. By Lemma 7.7.5 above, we have

q∗α,ε,λ −−−−−−−−→
ε→0, ε∈Dα,λ

q∗α,0,λ = q∗(α) .

Analogously to Proposition 7.8.5, Mf (λ, ·) is continuous on [0, ρ], thus limε→0Mf (λ, q∗α,ε,λ) =
Mf (λ, q∗(α)). We obtain the result by taking limλ→0Mf (λ, q∗(α)) = Ef (q∗(α)), using the conti-
nuity of the MMSE at 0, see Proposition 1.3.2.

In order to simplify the proof, we assume that m = αn. By definition of the general-
ization error (7.7.6) and of the labels Y ′ given by (7.7.14), we have

Ef,n(α) = MMSE(Y ′1 |Y ,Φ,Φ′) .

Lemma 7.7.8
For all α ∈ D∗,

lim inf
n→∞

Ef,n(α) ≥ Ef (q∗(α)) .

Proof. Let α ∈ D∗, λ > 0 and ε ∈ Dα,λ \ {0}. Obviously,

Ef,n(α) ≥ MMSE(Y ′1 |Y ,U ,Φ,Φ′) −−−→n→∞
Mf (λ, q∗α,ε,λ) ,

where we used Lemma 7.7.6. Consequently lim inf
n→∞

Ef,n(α) ≥Mf (λ, q∗α,ε,λ) and we obtain the lower
bound by letting ε, λ→ 0 and using Lemma 7.7.7.

Let us now prove the converse upper bound.
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Lemma 7.7.9
There exists a constant C > 0 (that only depend on f) such that for all α, λ > 0 and

all ε ∈ Dα,λ \ {0}
lim sup
n→∞

Ef,n(α + ε) ≤Mf (λ, q∗α,ε,λ) + Cλ .

Proof. We will let the signal-to-noise ratio (snr) of the observation of Y ′1 go to zero. Let us
denote by λ1 this snr: U1 =

√
λ1 Y

′
1 + Z ′1. We will let λ1 go from λ to 0 while the other snr for

the observations of Uµ for µ = 2, . . . , εn will remain equal to λ. Using Proposition 9 from [97],∣∣∣ ∂
∂λ1

MMSE(Y ′1 |Y ,U ,Φ,Φ′)
∣∣∣ = E

[
Var(Y ′1 |Y ,U ,Φ,Φ′)2] ≤ E

[
(Y ′1)4] ≤ ‖f‖4∞ .

We define C def= ‖f‖4∞. Consequently, by the mean value theorem,∣∣MMSE(Y ′1 |Y ,U ,Φ,Φ′)−MMSE(Y ′1 |Y , (Uµ)εnµ=2,Φ,Φ′)
∣∣ ≤ Cλ . (7.7.22)

Since (Uµ)εnµ=2 contains less information than (Ỹµ)εnµ=2 because of the additional Gaussian noise
and the application of the function f , we have

MMSE(Y ′1 |Y , (Uµ)εnµ=2,Φ,Φ′) ≥ MMSE(Y ′1 |Y , (Ỹµ)εnµ=2,Φ,Φ′) = Ef,n(α+ ε− 1/n) ≥ Ef,n(α+ ε) .

The last identity combined with (7.7.22) leads to

MMSE(Y ′1 |Y ,U ,Φ,Φ′) + Cλ ≥ Ef,n(α+ ε) . (7.7.23)

By Lemma 7.7.6 we know that limn→∞MMSE(Y ′1 |Y ,U ,Φ,Φ′) = Mf (λ, q∗α,ε,λ). We conclude by
taking the limsup in the inequality above.
Corollary 7.7.1

For all α ∈ D∗,
lim sup
n→∞

Ef,n(α) ≤ Ef (q∗(α)) .

Proof. Let α ∈ D∗, λ > 0 and ε1 > 0 such that α − ε1 ∈ D∗. Since by Lemma 7.7.5 the set
Dα−ε1,λ is dense in R≥0, we can find ε2 ∈ Dα−ε1,λ such that 0 < ε2 ≤ ε1. Using Lemma 7.7.9
above, we have

lim sup
n→∞

Ef,n(α− ε1 + ε2) ≤Mf (λ, q∗α−ε1,ε2,λ) + Cλ .

Now, using the fact that ε2 ≤ ε1 we have

lim sup
n→∞

Ef,n(α) ≤ lim sup
n→∞

Ef,n(α− ε1 + ε2) ≤Mf (λ, q∗α−ε1,ε2,λ) + Cλ .

Now, by Lemma 7.7.7 we have

lim
λ→0

lim
ε2→0

Mf (λ, q∗α−ε1,ε2,λ) + Cλ = Ef (q∗(α− ε1))

which leads to lim supn→∞ Ef,n(α) ≤ Ef (q∗(α − ε1)). We conclude by letting ε1 → 0 (recall that
by Proposition 7.3.1 D∗ is dense in R≥0 so it is possible to find ε1 > 0 arbitrary small such
that α− ε1 ∈ D∗), using the continuity of Ef (by Proposition 7.8.5) and the continuity of q∗ (by
Proposition 7.3.1).

Proof of Lemma 7.7.4.
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Extending the interpolation method presented in Section 7.6, one can generalize Theorem 7.3.1
to take into account this additional side information. This gives directly

1
n
I(X∗;Y ,

√
λY ′ +Z ′|Φ,Φ′) −−−→

n→∞
Ĩ∞(α, ε, λ) def= inf

q∈[0,ρ]
sup
r≥0

ĨRS(q, r, λ) (7.7.24)

where ĨRS(q, r, λ) is given by

ĨRS(q, r, λ) def= IP0(r) + αIPout(q; ρ) + εI(W ∗;
√
λf(Y (q)) + Z ′|V )− r

2(ρ− q) . (7.7.25)

Conditionally on (V, f(Y (q))), the random variables W ∗ and
√
λf(Y (q)) + Z ′ are independent,

therefore
I
(
f(Y (q));

√
λf(Y (q)) + Z ′

∣∣V ) = I
(
W ∗, f(Y (q));

√
λf(Y (q)) + Z ′

∣∣V ) .
Now, by the chain rule of the mutual information we have

I
(
W ∗, f(Y (q));

√
λf(Y (q))+Z ′

∣∣V ) = I
(
W ∗;
√
λf(Y (q))+Z ′

∣∣V )+I(f(Y (q));
√
λf(Y (q))+Z ′

∣∣V,W ∗) .
We obtain that

I
(
W ∗;
√
λf(Y (q)) + Z ′

∣∣V ) = I
(
f(Y (q));

√
λf(Y (q)) + Z ′

∣∣V )− I(f(Y (q));
√
λf(Y (q)) + Z ′

∣∣V,W ∗) .
(7.7.26)

Notice that the last mutual information in the above equation does not depend on q nor r.
Therefore we have:

inf
q∈[0,ρ]

sup
r≥0

ĨRS(q, r, λ) = −εI
(
f(Y (q));

√
λf(Y (q)) + Z ′

∣∣V,W ∗)+ inf
q∈[0,ρ]

sup
r≥0

ĩRS(q, r, λ) . (7.7.27)

Now, by the chain rule, we have

1
n
I(X∗;Y ,

√
λY ′ +Z ′|Φ,Φ′) = 1

n
I(X∗;Y |Φ) + 1

n
I(X∗;

√
λY ′ +Z ′|Y ,Φ,Φ′) . (7.7.28)

The limit of the left-hand side is given by (7.7.24). By Corollary 7.3.1, we have limn→∞ I(X∗;Y |Φ)/n =
i∞. It remains to investigate the last term of the equation above. By the arguments used to prove
(7.7.26), we have

I(X∗;
√
λY ′ +Z ′|Y ,Φ,Φ′) = I(Y ′;

√
λY ′ +Z ′|Y ,Φ,Φ′)− I(Y ′;

√
λY ′ +Z ′|Y ,Φ,X∗,Φ′)

= I(Y ′;
√
λY ′ +Z ′|Y ,Φ,Φ′)− I(Y ′;

√
λY ′ +Z ′|X∗,Φ′) .

(7.7.29)

We have I(Y ′;
√
λY ′+Z ′|X∗,Φ′)/n = εI(Y ′1 ;

√
λY ′1 +Z ′1|X∗,Φ′1) and it is not difficult to show,

using similar computations as in the proof of Corollary 7.3.1, that

I(Y ′1 ;
√
λY ′1 + Z ′1|X∗,Φ′1) −−−→

n→∞
I
(
f(Y (q));

√
λf(Y (q)) + Z ′

∣∣V,W ∗) ,
(recall that the right-hand side does not depend on q). Combining this with (7.7.29), (7.7.28),
(7.7.24), Corollary 7.3.1 and (7.7.27), we obtain the desired result.

7.7.3 Optimal generalization error: Proof of Theorem 7.3.4
Let α ∈ D∗. We will simply write q∗ instead of q∗(α) in order to lighten the notations. For
x ∈ Rn we write Z(x) def= 1√

n
〈x,Φnew〉. By [119, Theorem 4.11] it suffices to show that for
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all continuous bounded function f , νnf
(d)−−−→
n→∞

νf . Let f be a continuous bounded function
and define

F (z) =
∫
f(y)Pout(dy|z).

We are going to show that νnf
(d)−−−→
n→∞

νf by the moment method. The sequence of the
laws of (νnf)n≥1 is tight because bounded. Let us consider some subsequence (nl)l≥1 along
which it converges in distribution to some random variable Sf . Let k ∈ N∗.

E
[
(νnf)k

]
= E

[
F (Z(x(1))) · · ·F (Z(x(k)))

]
,

where x(1), . . . ,x(k) are i.i.d. samples from the posterior distribution of X∗ given Y ,Φ,
independently of everything else. We define the matrix

Qn =
(
〈x(i),x(j)〉

)
1≤i,j≤k

.

We extract from (nl)l≥1 another subsequence (n′l)l≥1 along which Qn converges weakly to
some random variableQ. By a central-limit-type argument (Lemma 7.7.2), (Z(x(k)), . . . , Z(x(k))) (d)−−−→

n′
l
→∞

(Z1, . . . , Zk) where Z is sampled, conditionally on Q from N (0, Q). By hypothesis (h4)
and Remark 7.3.1, F is continuous almost everywhere. We get:

E
[
(νnf)k

]
−→ E

[
F (Z1) · · ·F (Zk)

]
,

where the limit is taken along the subsequence (n′l) mentioned above. On the other hand

E
[
(νf)k

]
= E

[
F (
√
q∗V +

√
ρ− q∗W1) · · ·F (

√
q∗V +

√
ρ− q∗Wk)

]
= E

[
F (Z ′1) · · ·F (Z ′k)

]
,

where V,W1, . . . ,Wk
i.i.d.∼ N (0, 1) and Z ′ ∼ N (0, R) where the matrix R ∈ Rk×k is defined

by
Ri,i = ρ and Ri,j = q∗, for all i 6= j.

By the Nishimori identity (Proposition 1.1.1) and the law of large numbers we have Qi,i = ρ
almost surely for all i ∈ {1, . . . , k}. If Pout is not symmetric, then by Theorem 7.3.2 we
have Q = R almost surely which gives

E
[
(νnf)k

]
→ E

[
F (Z1) · · ·F (Zk)

]
= E

[
(νf)k

]
.

If now Pout is symmetric. By Theorem 7.3.2 we have for all i 6= j in {1, . . . , k}, Qi,j ∈
{−q∗, q∗} almost surely. So if q∗ = 0, then Q = R almost surely and we are done.
Suppose that q∗ > 0. By Lemma 1.2.2 we have also for all i, j, ` ∈ {1, . . . , k} distinct,
Qi,jQj,`Q`,i = (q∗)3, almost surely. The binary relation ∼ on {1, . . . , k} defined by

i ∼ j ⇐⇒ Qi,j > 0

is with probability one an equivalence relation. Let ηi = 1 if i ∼ 1 and −1 otherwise. By
construction we have then (

ηiZi
)

1≤i≤k

(d)=
(
Z ′i
)

1≤i≤k
.
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We assumed that Pout is symmetric, therefore F (z) = F (|z|) for almost all z ∈ R. Thus
F (ηiZi) = F (Zi) almost surely. This gives:

E
[
(νnf)k

]
→ E

[
F (Z1) · · ·F (Zk)

]
= E

[
F (η1Z1) · · ·F (ηkZk)

]
= E

[
F (Z ′1) · · ·F (Z ′k)

]
= E

[
(νf)k

]
.

Recall that νnf converges in distribution to Sf along the subsequence (n′l). We get ESkf =
E
[
(νf)k

]
. This last equality holds for all k ≥ 1 and since νf is a bounded random variable

we conclude that Sf
(d)= νf . νf is therefore the only point of accumulation (for the weak

convergence) of the sequence (νnf)n≥1. This sequence is tight because bounded we conclude
that νnf

(d)−−−→
n→∞

νf for all continuous bounded function f and therefore νn
(wd)−−−→
n→∞

ν.

7.7.4 Generalization error of GAMP: Proof of Proposition 7.4.1
Let us decompose:

EGAMP,t
gen

def= E
[(
Ynew − Ŷ GAMP,t

)2]
= E

[
Y 2

new

]
+ E

[(
Ŷ GAMP,t

)2]
− 2E

[
YnewŶ

GAMP,t
]
.

(7.7.30)

Lemma 7.7.10

Let V,W i.i.d.∼ N (0, 1) and let EW denotes the expectation with respect to W only. We
have

E
[
YnewŶ

GAMP,t
]
−−−→
n→∞

E
[
EW

[ ∫
yPout(dy|

√
qt V +

√
ρ− qtW )

]2]
. (7.7.31)

Proof. Start by writing

E
[
YnewŶ

GAMP,t] = E
∫
y y′ Pout

(
dy
∣∣∣〈Φnew,X

∗〉√
n

)
Pout

(
dy′
∣∣∣〈Φnew, x̂

t〉√
n

+
√
ρ− qtW

)
where W ∼ N (0, 1) is independent of everything else. Φnew ∼ N (0, Idn) is independent of X∗
and x̂t, so, conditionally on X∗, x̂t we have(〈Φnew,X

∗〉√
n

,
〈Φnew, x̂

t〉√
n

)
∼ N

(
0, 1
n

(
‖X∗‖2 〈x̂t,X∗〉
〈x̂t,X∗〉 ‖x̂t‖2

))
.

We assumed that (7.4.6) holds, i.e. 〈X∗, x̂t〉/n → qt and ‖x̂t‖2/n → qt, in probability. By the
law of large numbers ‖X∗‖2/n→ ρ in probability. Consequently,(〈Φnew,X

∗〉√
n

,
〈Φnew, x̂

t〉√
n

) (d)−−−→
n→∞

N
(
0,
(
ρ qt

qt qt

))
.

Since x 7→ Pout(·|x) is continuous almost everywhere for the Wasserstein distance of order 2, the
function h : (a, b) 7→ EW

∫
yy′Pout(dy|a)Pout(dy′|b+

√
ρ− qtW ) with W ∼ N (0, 1) is continuous

almost everywhere. Therefore

Hn
def= h

(〈Φnew,X
∗〉√

n
,
〈Φnew, x̂

t〉√
n

) (d)−−−→
n→∞

h(
√
qt Z0 +

√
ρ− qt Z1,

√
qt Z0) , (7.7.32)
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where Z0, Z1
i.i.d.∼ N (0, 1). Let η > 0. We have by Jensen’s inequality

E
[∣∣Hn

∣∣1+η] ≤ E
[∣∣YnewŶ

GAMP,t∣∣1+η] ≤ E
[(1

2Y
2

new + 1
2(Ŷ GAMP,t)2

)1+η]
≤ 1

2E|Y1|2+2η + 1
2E
∣∣Ŷ GAMP,t∣∣2+2η

.

By assumption, there exists η > 0 such that the two last terms above remain bounded with n:
Hn is therefore bounded in L1+η and is therefore uniformly integrable. From (7.7.32) we thus get

E
[
YnewŶ

GAMP,t] = E[Hn] −−−→
n→∞

E
[
h(
√
qt Z0 +

√
ρ− qt Z1,

√
qt Z0)

]
=E

[
EW

[ ∫
yPout(dy|

√
qt V +

√
ρ− qtW )

]2]
.

Following the arguments of Lemma 7.7.10 one can also show that

E
[(
Ŷ GAMP,t

)2]
−−−→
n→∞

E
[
EW

[ ∫
yPout(dy|

√
qt V +

√
ρ− qtW )

]2]
,

E
[
Y 2

new

]
−−−→
n→∞

E
∫
y2Pout(dy|

√
ρ V ) .

This proves (together with (7.7.30) and Lemma 7.7.10) Proposition 7.4.1.

7.8 The non-linear scalar channel
We prove here some properties of the free energy of the second scalar channel (7.3.3), where
V,W ∗ i.i.d.∼ N (0, 1) and

Y (q) ∼ Pout
(
·
∣∣∣√q V +

√
ρ− qW ∗

)
. (7.8.1)

In this channel, the statistician observes V and Y (q) and wants to recover W ∗.

7.8.1 Study of the scalar free energy
We recall the definition of ΨPout :

ΨPout(q) = E log
∫
dw

e−
w2
2

√
2π
Pout

(
Y (q)|√q V +

√
ρ− q w

)
,

where Pout(·|x) denotes the density of Pout(·|x) with respect to the Lebesgue’s measure on
R or the counting measure on N (we will always be in one of these two cases). In this
section, we establish the main properties of ΨPout . Recall that IPout(q)

def= I(W ∗;Y (q)|V ) =
ΨPout(ρ)− ΨPout(q) so the properties we will prove on ΨPout can be directly translated for
IPout , and vice-versa. We will denote the expectation with respect the posterior distribution
of W ∗ given Y (q), V by the Gibbs bracket 〈·〉q:

〈f(w)〉q =
∫
f(w)e−w2/2Pout(Y (q)|√q V +√ρ− q w)dw∫
e−w2/2Pout(Y (q)|√q V +√ρ− q w)dw . (7.8.2)
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Proposition 7.8.1

Suppose that for all x ∈ R, Pout(· |x) is the law of ϕ(x,A) +
√

∆Z where ∆ > 0,
ϕ : R×R→ R is a measurable function and (Z,A) ∼ N (0, 1)⊗PA, for some probability
distribution PA over R. In that case Pout admits a density given by

Pout(y|x) = 1√
2π∆

∫
dPA(a)e− 1

2∆ (y−ϕ(x,a))2
.

Assume that ϕ is bounded and C2 with respect to its first coordinate, with bounded
first and second derivatives. Then q 7→ ΨPout(q) is convex, C2 and non-decreasing on
[0, ρ].

Proof. Under the hypotheses we made on ϕ, we will be able to use continuity and differentiation
under the expectation, because all the domination hypotheses are easily verified.

We compute now the first derivative. Recall that 〈·〉q, defined in (7.8.2), denotes the posterior
distribution of W ∗ given Y (q). We will use the notation uy(x) = logPout(y|x). For q ∈ (0, ρ) we
have

Ψ′Pout(q) = 1
2E
〈
u′Y (q)(

√
q V +

√
ρ− q w)u′Y (q)(

√
q V +

√
ρ− qW ∗)

〉
q

= 1
2E
〈
u′Y (q)(

√
q V +

√
ρ− q w)

〉2

q
≥ 0 ,

where w ∼ 〈·〉q, independently of everything else. ΨPout is therefore non-decreasing. Using the
boundedness assumption on ϕ and its derivatives, it is not difficult to check that Ψ′Pout is indeed
bounded.

We will now compute Ψ′′Pout . To lighten the notations, we write u′(w) for u′
Y (q)(
√
q V +√

ρ− q w). We compute

∂qE
〈
u′(w)u′(W ∗)

〉
q

= E
[( 1

2√q V −
1

2
√
ρ− q

W ∗
)
u′(W ∗)

〈
u′(w)u′(W ∗)

〉
q

]
(A)

+2E
〈( 1

2√q V −
1

2
√
ρ− q

W ∗
)
u′′(W ∗)u′(w)

〉
q

(B)

+E
〈( 1

2√q V −
1

2
√
ρ− q

W ∗
)
u′(W ∗)2u′(w)

〉
q

(C)

−E
〈
u′(W ∗)u′(w)

〉
q

〈( 1
2√q V −

1
2
√
ρ− q

w
)
u′(w)

〉
q

(D) (7.8.3)

Notice that (A) = (C). Let w,w(1), w(2) i.i.d.∼ 〈·〉q, independently of everything else. We compute,
using Gaussian integration by parts and the Nishimori identity (Proposition 1.1.1)

(A) = 1
2E
[
u′(W ∗)

〈
u′(W ∗)u′′(w)

〉
q

]
+ 1

2E
[
u′(W ∗)

〈
u′(W ∗)u′(w)2

〉
q

]
− 1

2E
[
u′(W ∗)

〈
u′(W ∗)u′(w)

〉
q

〈
u′(w)

〉
q

]
(7.8.4)

(B) = E
〈
u′′(W ∗)u′′(w)

〉
q

+ E
〈
u′′(W ∗)u′(w)2

〉
q
− E

〈
u′′(W ∗)u′(w)

〉
q

〈
u′(w)

〉
q

(7.8.5)

(D) = −E
〈( 1

2√qV −
1

2
√
ρ− q

W ∗
)
u′(W ∗)u′(w(1))u′(w(2))

〉
q

= −E〈u′(W ∗)u′′(w(1))u′(w(2))〉q − E〈u′(W ∗)u′(w(1))2u′(w(2))〉q
+ E〈u′(W ∗)u′(w(1))u′(w(2))〉q〈u′(w)〉q (7.8.6)
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We now replace (7.8.4), (7.8.5) and (7.8.6) in (7.8.3):

2Ψ′′Pout(q) = E
〈
u′(W ∗)2u′′(w)

〉
q

+ E
〈
u′(W ∗)2u′(w)2

〉
q
− E

〈
u′(W ∗)2u′(w(1))u′(w(2))

〉
q

+ E
〈
u′′(W ∗)u′′(w)

〉
q

+ E
〈
u′′(W ∗)u′(w)2

〉
q
− E

〈
u′′(W ∗)u′(w(1))u′(w(2))

〉
q

− E〈u′(W ∗)u′′(w(1))u′(w(2))〉q − E〈u′(W ∗)u′(w(1))2u′(w(2))〉q + E〈u′(w)〉4q .

Using the identity u′′Y (x) + u′Y (x)2 = P ′′out(Y |x)
Pout(Y |x) , this factorizes and gives

Ψ′′Pout(q) = 1
2E
[(〈P ′′out(Y |

√
q V +

√
ρ− q w)

Pout(Y |
√
q V +

√
ρ− qw)

〉
q
−
〈
u′Y (q)(

√
q V +

√
ρ− q w)

〉2

q

)2]
≥ 0 . (7.8.7)

ΨPout is thus convex on [0, ρ]. It is not difficult to verify (by standard arguments of continuity
under the integral) that Ψ′′Pout is continuous on [0, ρ], which gives that ΨPout is C2 on its domain.

Proposition 7.8.2

Suppose that for all x ∈ R, Pout(· |x) is the law of ϕ(x,A)+
√

∆Z where ϕ : R×R→ R
is a measurable function and (Z,A) ∼ N (0, 1)⊗ PA, for some probability distribution
PA over R. Assume also that

E[ϕ(√ρZ,A)2] <∞ , (7.8.8)

and that we are in one of the following cases:

(i) ∆ > 0.
(ii) ∆ = 0 and ϕ takes values in N.

Then q 7→ ΨPout(q) is continuous, convex and non-decreasing over [0, ρ].

Notice that (7.8.8) is for instance verified under hypotheses (h1)-(h2)-(h3)-(h4). Indeed,
by the central limit theorem (that we apply under (h1)-(h3)), 1√

n
〈X∗,Φ1〉

(d)−−−→
n→∞

N (0, ρ).
Then using (h4) we get that

ϕ
( 1√

n
〈X∗,Φ1〉, A1

)
(d)−−−→
n→∞

ϕ(√ρZ,A).

Finally, by (h2) the sequence above is bounded in L2, hence is limit has a finite second
moment which proves (7.8.8).
Proof. We deduce Proposition 7.8.2 from Proposition 7.8.1 above by an approximation proce-
dure. Since ΨPout = ΨPout(ρ) − IPout , we will work with the mutual information IPout . Let us
define U (q) = ϕ

(√
q V +

√
ρ− qW ∗, A

)
and Y (q) = U (q) +

√
∆Z.

We start by proving Proposition 7.8.2 under the assumption (i). Let ε > 0. By density of the
C∞ functions with compact support in L2 (see for instance Corollary 4.2.2 from [34]), one can
find a C∞ function ϕ̂ with compact support, such that

E
[(
ϕ(√ρZ,A)− ϕ̂(√ρZ,A)

)2] ≤ ε2 .
Let us write Û (q) = ϕ̂(√q V +

√
ρ− qW ∗, A) and Ŷ (q) = Û +

√
∆Z. We have by the chain rule

for the mutual information

I(U (q);Y (q)|V ) = I(W ∗, U (q);Y (q)|V ) = I(U (q);Y (q)|V,W ∗) + I(W ∗;Y (q)|V )
= I(U (q);Y (q)|V,W ∗) + IPout(q)
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and similarly, I
P̂out

(q) = I(Û (q); Ŷ (q)|V ) − I(Û (q); Ŷ (q)|V,W ∗). By Corollary B.1, there exists a
constant C > 0 such that

|I(Û (q); Ŷ (q)|V )− I(U (q);Y (q)|V )| ≤ Cε and |I(Û (q); Ŷ (q)|V,W ∗)− I(U (q);Y (q)|V,W ∗)| ≤ Cε .

We get that for all q ∈ [0, ρ], |IPout(q) − IP̂out
(q)| ≤ Cε. The function IPout can therefore

be uniformly approximated by continuous, concave, non-increasing functions on [0, ρ]: IPout is
therefore continuous, concave and non-increasing.

Let us now prove Proposition 7.8.2 under the assumption (ii). Under this assumption we have
IPout(q) = I(W ∗;U (q)|V ) and by the case (i) we know that the function i∆(q) = I(W ∗;U (q) +√

∆Z|V ) is concave and non-increasing for all ∆ > 0. By Corollary B.2 we obtain that for all
q ∈ [0, ρ] and all ∆ ∈ (0, 1] we have∣∣IPout(q)− i∆(q)

∣∣ ≤ 100e−1/(16∆) ,

which proves (by uniform approximation) that IPout is continuous, concave and non-increasing.

Proposition 7.8.3
Under the same hypotheses than Proposition 7.8.2 above, Ψout is differentiable over

[0, ρ) and for all q ∈ [0, ρ)

Ψ′Pout(q) = 1
2(ρ− q)E〈w〉

2
q ,

where we recall that 〈·〉q is defined by (7.8.2).

Proof. The fact that ΨPout is differentiable on (0, ρ) follows from differentiation under the
expectation sign. In order to see it, we define X = √q V +

√
ρ− qW ∗. Then, for all q ∈ [0, ρ):

ΨPout(q) = E
∫
dX

e
− (X−√q V )2

2(ρ−q)√
2π(ρ− q)

∫
Pout(dy|X) log

∫
dx

e
− (x−√q V )2

2(ρ−q)√
2π(ρ− q)

Pout(y|x) . (7.8.9)

We are now in a good setting to differentiate under the expectation sign. We have for all q ∈ (0, ρ),

∂

∂q

e− (X−√q V )2
2(ρ−q)

√
ρ− q

 = e
− (X−√q V )2

2(ρ−q)

2
√
ρ− q

( 1
ρ− q

−
(X −√qV )2

(ρ− q)2 +
V (X −√qV )
√
q(ρ− q)

)
. (7.8.10)

Thus

Ψ′Pout(q) = 1
2E

( 1
ρ− q

−
(X −√q V )2

(ρ− q)2 +
V (X −√q V )
√
q (ρ− q)

)
log

∫
dx

e
− (x−√q V )2

2(ρ−q)√
2π(ρ− q)

Pout(Y |x)


+ 1

2E
〈

1
ρ− q

−
(x−√q V )2

(ρ− q)2 +
V (x−√q V )
√
q (ρ− q)

〉
q

where the Gibbs brackets 〈·〉q denotes the expectation with respect to x ∼ P (X|Y (q), V ). The sec-
ond term of the sum above is equal to zero. Indeed by the Nishimori identity (Proposition 1.1.1):

E
〈

1
ρ− q

−
(x−√q V )2

(ρ− q)2 +
V (x−√q V )
√
q (ρ− q)

〉
q

= E
[

1
ρ− q

−
(X −√q V )2

(ρ− q)2 +
V (X −√q V )
√
q (ρ− q)

]

= 1
ρ− q

E
[
1− (W ∗)2

]
= 0 .
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We now compute, by Gaussian integration by parts with respect to V ∼ N (0, 1):

E
[
V (X −√q V )
√
q (ρ− q) log

∫
dx

1√
2π(ρ− q)

e
− (x−√q V )2

2(ρ−q) Pout(Y (q)|x)
]

= E

 −1
ρ− q

log
∫
dx

e
− (x−√q V )2

2(ρ−q)√
2π(ρ− q)

Pout(Y (q)|x)

+ E

(X −√q V )2

(ρ− q)2 log
∫
dx

e
− (x−√q V )2

2(ρ−q)√
2π(ρ− q)

Pout(Y (q)|x)


+ E

〈
(X −√q V )(x−√q V )

(ρ− q)2

〉
q

.

Bringing all together, we conclude:

Ψ′Pout(q) = 1
2E
〈

(X −√q V )(x−√q V )
(ρ− q)2

〉
q

= 1
2(ρ− q)E〈w〉

2
q .

It remains to show that Ψ′Pout(0) = 1
2ρE〈w〉

2
0 = 0. This follows from taking the q → 0 limit in the

equation above.
Proposition 7.8.4

Assume that the hypotheses of Proposition 7.8.2 hold and suppose also that the kernel
Pout is informative. Then ΨPout is strictly increasing on [0, ρ].

Proof. By contradiction we suppose that ΨPout is not strictly increasing on [0, ρ]. There exists
thus q ∈ (0, ρ) such that Ψ′Pout(q) = 0. By Proposition 7.8.3 this means that 〈w〉q = 0 almost
surely and therefore that∫

R
Pout(Y (q) | √q V +

√
ρ− q w)we−w2/2dw = 0

almost surely. Let us write σ =
√
ρ− q. Consequently,∫

R
Pout(y | v + σw)we−w2/2dw = 0 (7.8.11)

for almost all y in R (if we are under assumption (i)) or all y ∈ N (under assumption (ii)) and
almost all v ∈ R. We will now use the following lemma:
Lemma 7.8.1

Let Z ∼ N (0, 1) and let f : R → R be a bounded function. Suppose that for almost all
v ∈ R,

E[Zf(v + Z)] = 0 .

Then, there exists a constant C ∈ R such that f(v) = C for almost every v.

Proof. Let us define the function

h : t 7→ E[f(Z − t)] = 1√
2π

∫
f(x)e−(x+t)2/2dx .

We have h′(t) = −1√
2π
∫
f(x)(x + t)e−(x+t)2/2dx = −E[Zf(Z − t)] = 0 and therefore h is equal to

some constant C ∈ R. We are going to show that f = C almost everywhere. Without loss of
generality we can assume that C = 0, otherwise it suffices to consider the function f̃ = f − C.
Now we have for all n ≥ 0, t ∈ R

0 = h(n)(t) = 1√
2π

∫
f(x) ∂

∂t
e−(x+t)2/2dx = 1√

2π

∫
f(x)(−1)nHn(x+ t)e−(x+t)2/2dx ,
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where Hn is nth Hermite polynomial, defined as Hn(x) = (−1)nex2/2 dn

dxn e
−x2/2. Therefore, for all

n ≥ 0, ∫
f(x)Hn(x)e−x2/2dx = 0 ,

which implies that f = 0 almost everywhere since the Hermite functions form an orthonormal
basis of L2(R).

We apply now Lemma 7.8.1 to (7.8.11) where the function f is given by f(x) = Pout(y |σx).
We thus obtain that for almost every y, Pout(y | ·) is almost everywhere equal to a constant: this
contradicts the assumption that Pout is informative.

7.8.2 Study of the generalization function
We turn now our attention to the study of the following “generalization function”:

Ef :
∣∣∣∣∣ [0, ρ] → R≥0

q 7→ E
[
(f(Y (q))− E[f(Y (q))|V ])2

] (7.8.12)

where f : R → R is a continuous bounded function. We will prove that Ef is contin-
uous (Proposition 7.8.5) and strictly decreasing (Proposition 7.8.6) under the following
hypotheses.

(a) For all x ∈ R, Pout(· |x) is the law of ϕ(x,A) +
√

∆Z where ϕ : R × R → R is a
measurable function and (Z,A) ∼ N (0, 1)⊗PA, for some probability distribution PA
over R.

(b) For almost all a ∈ R (w.r.t. PA), ϕ(·, a) is continuous almost everywhere.

We suppose also that we are in one of the following cases:

(i) ∆ > 0.
(ii) ∆ = 0 and ϕ takes values in N.

Proposition 7.8.5
Under the hypotheses presented above, Ef is continuous on [0, ρ].

Proof. Notice that

Ef (q) = E
[
f
(
ϕ(√ρ V,A) +

√
∆Z

)2]− EV
[
EW ∗,Z,A

[
f
(
ϕ(√q V +

√
ρ− qW ∗, A) +

√
∆Z

)]2]
.

The first term does not depend on q and the second one is continuous by Lebesgue’s convergence
theorem.
Proposition 7.8.6

Assume that the hypotheses of Proposition 7.8.5 hold. Suppose that x 7→
∫
f(y)Pout(dy |x)

is not almost-everywhere equal to a constant. Then Ef is strictly decreasing on [0, ρ].

Proof. Ef (q) = E[f(Y (q))2] − E
[
E[f(Y (q))|V ]2

]
. Since the first term does not depend on q,

it suffices to show that H : q 7→ E
[
E[f(Y (q))|V ]2

]
is strictly increasing on [0, ρ]. We have for

q ∈ (0, ρ):

E[f(Y (q))|V ] =
∫
f(y)e

−w2/2
√

2π
Pout(dy|

√
q V +

√
ρ− q w)dw =

∫
f(y) e

− (x−√qV )2
2(ρ−q)√

2π(ρ− q)
Pout(dy|x)dx .
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So we have, using (7.8.10):

∂

∂q
E[f(Y (q))|V ] =

∫
f(y)

2
( 1
ρ− q

−
(x−√q V )2

(ρ− q)2 +
V (x−√q V )
√
q(ρ− q)

) e− (x−√q V )2
2(ρ−q)√

2π(ρ− q)
Pout(dy|x)dw

= 1
2(ρ− q)E

[
f(Y (q))

(
1−W ∗2 +

√
ρ− q V W ∗
√
q

)∣∣∣∣∣V
]
.

We obtain

H ′(q) = 1
ρ− q

E
[
E[f(Y (q))|V ]E

[
f(Y (q))

(
1−W ∗2 +

√
ρ− q V W ∗
√
q

)∣∣∣∣∣V
]]

. (7.8.13)

We compute by Gaussian integration by parts:

E
[
E[f(Y (q))|V ]E

[
f(Y (q))VW ∗

∣∣∣V ]] = E
[
V E[f(Y (q))|V ]E

[
f(Y (q))W ∗

∣∣∣V ]]
= E

[
∂

∂V
E[f(Y (q))|V ]E

[
f(Y (q))W ∗

∣∣∣V ]]+ E
[
E[f(Y (q))|V ] ∂

∂V
E
[
f(Y (q))W ∗

∣∣∣V ]] . (7.8.14)

We compute successively

∂

∂V
E[f(Y (q))|V ] = ∂

∂V

∫
f(y) e

− (x−√q V )2
2(ρ−q)√

2π(ρ− q)
Pout(dy|x)dx

=
∫
f(y)

√
q (x−√q V )
ρ− q

e
− (x−√q V )2

2(ρ−q)√
2π(ρ− q)

Pout(dy|x)dx

=
√
q

√
ρ− q

E
[
f(Y (q))W ∗

∣∣∣V ] . (7.8.15)

∂

∂V
E[f(Y (q))W ∗|V ] = ∂

∂V

∫
f(y)

x−√q V
√
ρ− q

e
− (x−√q V )2

2(ρ−q)√
2π(ρ− q)

Pout(dy|x)dx

=
∫
f(y)

( −√q
√
ρ− q

+
√
q(x−√q V )2

(ρ− q)3/2

) e− (x−√q V )2
2(ρ−q)√

2π(ρ− q)
Pout(dy|x)dx

=
√
q

√
ρ− q

E
[
f(Y (q))

(
− 1 +W ∗2

)∣∣∣V ] . (7.8.16)

By plugging (7.8.14)-(7.8.15)-(7.8.16) back in (7.8.13) we get:

H ′(q) = 1
ρ− q

E
[
E
[
f(Y (q))W ∗

∣∣V ]2] ≥ 0 .

Let us suppose now that H is not strictly increasing on [0, ρ]. This means that we can find
q ∈ (0, ρ) such that H ′(q) = 0 and therefore E[f(Y (q))W ∗|V ] = 0 almost surely. This gives that
for almost all v ∈ R,

E
[
W

∫
f(y)Pout(dy|

√
q v +

√
ρ− qW )

]
= 0 ,

where E is the expectation with respect to W ∼ N (0, 1). Lemma 7.8.1 gives then that the function
x 7→

∫
f(y)Pout(dy|x) is almost everywhere equal to a constant: we obtain a contradiction. We

conclude that H is strictly increasing on [0, ρ] and thus Ef is strictly decreasing on [0, ρ].
Proposition 7.8.7

Assume that the hypotheses of Proposition 7.8.5 hold. If the channel Pout is in-
formative, then there exists a continuous bounded function f : R → R such that
x 7→

∫
f(y)Pout(dy|x) is not almost everywhere equal to a constant.
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Proof. By contradiction, let us suppose that for all continuous bounded function f : R→ R we
have ∫

f(y)Pout(dy|x) = Cf

for almost all x ∈ R, for some constant Cf ∈ R. Let X ∼ N (0, 1) and Y ∼ Pout(·|X). We have
then E[f(Y )|X] = Cf = E[f(Y )] almost surely. Let g : R → R be another continuous bounded
function and compute:

E[g(X)f(Y )] = E
[
g(X)E[f(Y )|X]

]
= E[g(X)]E[f(Y )] .

It follows thatX and Y are independent: The measures Pout(dy|x) e−x
2/2

√
2π dx and E[Pout(dy|X)] e−x

2/2
√

2π dx

are therefore equal. Consequently, for almost every x, y we have

Pout(y|x) = E[Pout(y|X)] .

This gives that for almost every y, Pout(y|·) is almost everywhere equal to a constant. We conclude
that Pout is not informative, which is a contradiction.
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Chapter 8

The distribution of the Lasso:
Uniform control over sparse balls and
adaptive parameter tuning

8.1 Introduction to the Lasso
Given data (xi, yi), 1 ≤ i ≤ n, with xi ∈ RN , yi ∈ R, the Lasso [206, 46] fits a linear model
by minimizing the cost function

Lλ(θ) = 1
2n

n∑
i=1

(
yi − 〈xi, θ〉

)2
+ λ

n
|θ|

= 1
2n ‖y −Xθ‖

2 + λ

n
|θ| . (8.1.1)

Here X ∈ Rn×N is the matrix with rows x1, . . . , xn, y = (y1, . . . , yn), ‖v‖ denotes the `2
norm of vector v, and |v| its `1 norm. To fix normalizations, we will assume that the
columns of X have `2 norm 1 + o(1). (Note that this normalization is different from the
one that is sometimes adopted in the literature, but the two are completely equivalent.)

A large body of theoretical work supports the use of `1 regularization in the high-
dimensional regime n . N , when only a small subset of the coefficients θ are expected
to be large. Broadly speaking, we can distinguish two types of theoretical approaches.
A first line of work makes deterministic assumptions about the design matrix X, such as
the restricted isometry property and its generalizations [42, 39]. Under such conditions,
minimax optimal estimation rates as well as oracle inequalities have been proved in a
remarkable sequence of papers [41, 33, 210, 162, 178]. As an example, assume that that
the linear model is correct. Namely,

y = Xθ? + σz , (8.1.2)

for σ ≥ 0, z ∼ N (0, Idn), and θ? a vector with s0 non-zero entries. Then, a theorem of
Bickel, Ritov and Tsybakov [33] implies that, with high probability,

λ ≥ σ
√
c0 logN ⇒ ‖θ̂λ − θ?‖2 ≤ Cs0λ

2 , (8.1.3)

for some constants c0, C that depend on the specific assumptions on the design. (The
normalization of [33] is recovered by setting σ2 = σ2

#/n, where σ2
# is the noise variance

of [33].)
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Figure 8.1: Estimation risk of the Lasso for different choices of λ, as a function of δ.
N = 8000. In both plots, σ = 0.2. The true coefficients vector θ? is chosen to be sN -sparse
with s = 0.1. The entries on the support of θ? are drawn i.i.d. N (0, 1). Cross-validation is
carried out using 4 folds. SURE is computed using the estimator σ̂ for the plot on the left,
and the true value of σ on the right.
Left: A standard random design with (Xij) ∼iid N (0, 1/n).
Right: The rows of the design matrix X are i.i.d. Gaussian, with correlation structure given
by an autoregressive process, see Eq. (8.4.4). Here we used φ = 2.

Unfortunately, this analysis provides limited insight into the choice of the regularization
parameter λ which –in practice– can impact significantly the estimation accuracy. As an
example, Figure 8.1.3 reports the result of a small simulation in which we compare four
different methods of selecting λ. The bound of (8.1.3) suggests to set λ = σ

√
c0 logN .

For the standard random design used in the left frame, the optimal constant is expected
to be c0 = 2 [69, 72]. We compare this method to three procedures that adapt the choice
of λ to the data: cross validation (CV), Stein’s Unbiased Risk Estimate (SURE), and a
procedure that minimizes an estimate of the risk (EST). We refer to the next sections for
further details on these methods. Note that all of these adaptive procedures significantly
outperform the ‘theory driven’ λ: over a broad range of sample sizes n, the resulting
estimation error is 2 to 3 times smaller. Further, the error achieved by these methods is
quite close to the Bayes optimum.

These empirical observations are not captured by the bound (8.1.3), or by similar
results.

An alternative style of analysis postulates an idealized model for the data and derives
asymptotically exact results. Throughout this paper we will consider the simplest of such
models, by assuming that design matrix to have i.i.d. entries Xij ∼ N (0, 1/n). While this
assumption is likely to be violated in practice, it allows to derive useful insights that are
mathematically consistent, and susceptible of being generalized to a broader context. This
type of analysis was first carried out in the context of the Lasso in [27] and then extended to
a number of other problems, see e.g. [121, 205, 67, 204, 81, 198]. As an example, Figure 8.1
reports the predictions of this analysis for the risk of the three adaptive procedure for
selecting λ. The agreement with the numerical simulations is excellent.

Unfortunately, the results in [27] (and in follow-up work) do not allow to derive in a
mathematically rigorous way curves such as the ones in Figure 8.1. In fact earlier results
hold ‘pointwise’ over λ and hence do not apply to adaptive procedures to select λ. Further
they provide asymptotic estimates ‘pointwise’ over θ, and hence do not allow to compute
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–for instance– minimax risk.
In order to clarify these points, it is useful to overview informally the picture emerging

from [27, 71]. Fix θ ∈ RN , λ ∈ R>0, and let η(x; b) = (|x| − b)+sign(x) be the soft
thresholding function. By the KKT conditions the Lasso estimator θ̂λ satisfies

θ̂λ = η
(
θ̂dλ;ατ

)
, θ̂dλ = θ̂λ + ατ

λ
XT(y −Xθ̂λ) , (8.1.4)

where the vector θ̂dλ is also referred to as the ‘debiased Lasso’ [221, 209, 113]. The above
identity holds for arbitrary α, τ > 0. However, [27] predicts that the distribution of the
debiased estimator θ̂dλ simplifies dramatically for specific choices of these parameters.

Namely, let Θ be a random variable with distribution given by the empirical distribution
of (θi)i≤N (i.e., Θ = θi with probability 1/N , for i ∈ {1, . . . , N}) and let Z ∼ N (0, 1) be
independent of Θ. Define α∗, τ∗ to be the solution of the following system of equations (we
refer to Section 8.3.1 for a discussion of existence and uniqueness):τ

2 = σ2 + 1
δ
E
[
(η(Θ + τZ, ατ)−Θ)2

]
,

λ = ατ
(
1− 1

δ
P
(∣∣∣Θ + τZ

∣∣∣ > ατ
))
.

(8.1.5)

When α, τ are selected in this way, θ̂dλ is approximately normal with mean θ? (the true
parameters vector) and variance τ 2

∗ : θ̂d ≈ N (θ?, τ 2
∗ Id). More precisely, for any test function

f : R× R→ R, with |f(x)− f(y)| ≤ L(1 + ‖x‖+ ‖y‖)‖x− y‖, almost surely,

lim
N→∞

1
N

N∑
i=1

f(θ?i , θ̂dλ,i) = E
[
f(Θ,Θ + τ∗Z)

]
, (8.1.6)

lim
N→∞

1
N

N∑
i=1

f(θ?i , θ̂λ,i) = E
[
f(Θ, η(Θ + τ∗Z;α∗τ∗))

]
. (8.1.7)

This is an asymptotic result, which holds along sequences of problems with: (i) Converging
aspect ratio n/N → δ ∈ (0,∞); (ii) Fixed regularization λ ∈ (0,∞); (iii) Parameter
vectors θ? = θ?(n) whose empirical distribution converges (weakly) to a limit law pΘ. As
emphasized above, this does not allow deduce the behavior of the Lasso with adaptive
choices of λ (there could be deviations from the above limits for exceptional values of λ),
or to compute the minimax risk (there could be deviations for exceptional vectors θ?).

The importance of establishing uniform convergence with respect to the regularization
parameter λ was recently emphasized by [159]. Among other results, these authors derive
a uniform convergence statement for the related approximate message passing (AMP)
algorithm. However, in order to establish uniform convergence, they have to construct an
ad-hoc smoothing of the quantity of interest, which is roughly equivalent to discretizing
the corresponding tuning parameter.

Our goal here is to obtain uniform (in λ) convergence results for the Lasso, hence
providing a sound mathematical basis to the comparison of various adaptive procedures,
as well as to the study of minimax risk.

The next sections organized as follows. Section 8.2 reviews related work. We state our
main theoretical results in Section 8.3. In Section 8.4 we apply these results to two types of
statistical questions: estimating the risk and noise level, and selecting λ through adaptive
procedures. Further, we illustrate our results in numerical simulations. Finally, Section 8.5
outlines the main proof ideas, with the most technical legwork deferred to Chapter 9.
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8.2 Related work
There is –by now– a substantial literature on determining exact asymptotics in high-
dimensional statistical models, and a number of mathematical techniques have been de-
veloped for this task. We will only provide a few pointers focusing on high-dimensional
regression problems.

The original proof of [27] was based on an asymptotically exact analysis of an approx-
imate message passing (AMP) algorithm [26] that was first proposed in [71] to minimize
the Lasso cost function. Variants of AMP have been developed in a number of contexts,
opening the way to the analysis of various statistical estimation problems. A short list
includes generalized linear models [176], phase retrieval [188, 137], robust regression [67],
logistic regression [198], generalized compressed sensing [31]. This approach is technically
less direct than others, but has the advantage of providing an efficient algorithm, and is
and not necessarily limited to convex problems (see [151] for a non-convex example).

As mentioned above, our work was partially motivated by the recent results of [159]
that establish a form of uniformity for the AMP estimates –but not for the Lasso solution.
It would be interesting to understand whether the approach of [159] could also be used to
obtain uniform results for the Lasso or other statistical estimators.

Here we follow a different route that exploits powerful Gaussian comparison inequalities
first proved by Gordon [93, 94]. Gordon inequality allows to bound the distribution of a
minimax value, i.e. the value of a random variable G∗ = mini≤N maxj≤M Gij, where
(Gij)i≤N,j≤M is a Gaussian process, in terms of a similar quantity for a ‘simpler’ Gaussian
process. The use of Gordon’s inequality in this context was pioneered by Stojnic [196]
and then developed by a number of authors in the context of regularized regression [205],
M-estimation [204], generalized compressed sensing [5], binary compressed sensing [195]
and so on. The key idea is to write the optimization problem of interest as a minimax
problem, and then apply a suitable version of Gordon’s inequality. A matching bound
is obtained by convex duality and then a second application of Gordon’s inequality. In
particular, convexity of the cost function of interest is a crucial ingredient.

While the Gaussian comparison inequality provides direct access to the value of the
optimization problem, understanding the properties of the estimator can be more chal-
lenging. We identify here a property (that we call local stability) that allows to transfer
information on the minimum (the Lasso cost) into information about the minimizer (the
Lasso estimator). We believe that this strategy can be applied to other examples beyond
the Lasso.

Independently, a different approach based on leave-one-out techniques was developed
by El Karoui in the context of ridge-regularized robust regression [121, 81].

Finally, a parallel line of research determines exact asymptotics for Bayes optimal esti-
mation, under a model in which the coordinates of θ are i.i.d. with common distribution
pΘ. In particular, the asymptotic Bayes optimal error for linear regression with random
designs was recently determined in [17, 179] and is also a Corollary of Theorem 7.3.2 from
the previous chapter. Of course –in general– Bayes optimal estimation requires knowledge
of the distribution pΘ, and is not computationally efficient. We will use this Bayes-optimal
error as a benchmark of our adaptive procedures.
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8.3 Main results
8.3.1 Definitions
As stated above, we consider the standard linear model (8.1.2) where y = Xθ? + σz , with
noise z ∼ N (0, Idn), and X a Gaussian design: (Xi,j)i≤n,j≤N i.i.d.∼ N (0, 1/n). The Lasso
estimator is defined by

θ̂λ = arg min
θ∈RN

Lλ(θ) . (8.3.1)

(The minimizer is almost surely unique since the columns of X are in generic positions.)
We set δ = n/N to be the number of samples per dimension. We are interested in uniform
estimation over sparse vectors θ?. Following [69, 115] we formalize this notion using `p-balls
(which are convex sets only for p ≥ 1).
Definition 8.3.1

Define for p, ξ > 0 the `p-ball

Fp(ξ) =
{
x ∈ RN

∣∣∣∣∣ 1
N

N∑
i=1
|xi|p ≤ ξp

}
,

and for s ∈ [0, 1]
F0(s) =

{
x ∈ RN

∣∣∣ ‖x‖0 ≤ sN
}
.

By Jensen’s inequality we have for p ≥ p′ > 0, Fp(ξ) ⊂ Fp′(ξ).
Let φ(x) = e−x

2/2
√

2π be the standard Gaussian density and Φ(x) =
∫ x
−∞ φ(t)dt be the

associated cumulative function. In the case of `0 balls (sparse vectors), a crucial role is
played by the following sparsity level.
Definition 8.3.2

Define the critical sparsity as

smax(δ) = δmax
α≥0

 1− 2
δ

(
(1 + α2)Φ(−α)− αφ(α)

)
1 + α2 − 2

(
(1 + α2)Φ(−α)− αφ(α)

)
 .

See Figure 7.4 for a plot of smax. The critical sparsity curve first appears in the seminal
work by Donoho and Tanner on compressed sensing [73, 68]. These authors consider
the noiseless case (z = 0) of model (8.1.2) and reconstruction via `1 minimization (which
corresponds to the λ→ 0 limit of the Lasso). They prove that `1 minimization reconstructs
exactly θ? with high probability, if ‖θ?‖0 ≤ N(smax(δ)− ε), and fails with high probability
if ‖θ?‖0 ≥ N(smax(δ) + ε) (for any ε > 0). A second interpretation of the critical sparsity
smax(δ) was given in [72, 208, 205]. For ‖θ?‖0 ≤ N(smax(δ)− ε), the Lasso achieves stable
reconstruction. Namely, there exists M = M(s, δ) < ∞ for s < smax(δ), such that, if
‖θ?‖0 ≤ Ns, ‖θ̂λ − θ?‖2 ≤ M(s, δ)σ2. Our results provide a third interpretation: uniform
limit laws for the Lasso will be obtained on `0 balls only for s < smax(δ).
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A crucial role in our results is provided by the following max-min problem:

max
β≥0

min
τ≥σ

ψλ(β, τ) , (8.3.2)

ψλ(β, τ) def=
(
σ2

τ
+ τ

)
β

2 −
1
2β

2 + 1
δ
Emin
w∈R

{
w2

2τ β − βZw + λ|w + Θ| − λ|Θ|
}
.

The expectation above is with respect to (Θ, Z) ∼ µ̂θ? ⊗ N (0, 1), where µ̂θ? denotes the
empirical distribution of the entries of the vector θ?:

µ̂θ? = 1
N

N∑
i=1

δθ?i .

Proposition 8.3.1
The max-min (8.3.2) is achieved at a unique couple (β∗(λ), τ∗(λ)). Moreover, (β∗(λ), τ∗(λ))
is also the unique couple (β, τ) ∈ (0,+∞)2 that verifyτ

2 = σ2 + 1
δ
E
[
(η(Θ + τZ, τ λ

β
)−Θ)2

]
β = τ

(
1− 1

δ
E
[
η′(Θ + τZ, τλ

β
)
])
.

(8.3.3)

We will also use the notation α∗(λ) = λ/β∗(λ) and

s∗(λ)=E
[
η′(Θ + τ∗(λ)Z, τ∗(λ)α∗(λ))

]
=P

(
|Θ + τ∗(λ)Z|≥α∗(λ)τ∗(λ)

)
. (8.3.4)

We will sometimes omit the dependency on λ and write simply α∗, β∗, τ∗, s∗. The
distribution µ∗λ defined below will correspond (see Theorem 8.3.1 in the next section) to
the limit of the empirical distribution of the entries of (θ̂λ, θ?).
Definition 8.3.3

Let (Θ, Z) ∼ µ̂θ? ⊗N (0, 1). We denote by µ∗λ the law of the couple(
η
(
Θ + τ∗(λ)Z, α∗(λ)τ∗(λ)

)
, Θ

)
.

8.3.2 Results
We fix from now on 0 < λmin ≤ λmax and D ⊂ RN that can be either Fp(ξ) for some
ξ, p > 0, or F0(s) for some s < smax(δ). Our uniformity domain is defined by Ω =(
δ, σ,D, λmin, λmax

)
. Namely, we will control θ̂λ uniformly with respect to θ? ∈ D and

λ ∈ [λmin, λmax], with n/N = δ. We will call constant any quantity that only depends on
Ω. In absence of further specifications, C, c will be constants (that depend only on Ω) that
are allowed to change from one line to another.

Our first result shows that the empirical distribution of the entries {(θ̂λ,i, θ?i )}i≤N is
uniformly close to the model µ∗λ. We quantify deviations using the Wasserstein distance.
Recall that, given two probability measures µ, ν on Rd with finite second moment, their
Wasserstein distance of order 2 is

W2(µ, ν) =
(

inf
γ∈C(µ,ν)

∫
‖x− y‖2

2 γ(dx, dy)
)1/2

, (8.3.5)
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where the infimum is taken over all couplings of µ and ν. Note that W2 metrizes the
convergence in Eq. (8.1.7). Namely limn→∞W2(µn, µ∗) = 0 if and only if, for any test
function f : R × R → R, with |f(x) − f(y)| ≤ L(1 + ‖x‖ + ‖y‖)‖x − y‖, we have
limn→∞

∫
f(x)µn(dx) =

∫
f(x)µ∗(dx) [213]. It provides therefore a natural way to extend

earlier results to a non-asymptotic regime.

Theorem 8.3.1
Assume that D = Fp(ξ) for some ξ > 0 and p > 0. Then there exists constants C, c > 0
that only depend on Ω, such that for all ε ∈ (0, 1

2 ]

sup
θ?∈D

P
(

sup
λ∈[λmin,λmax]

W2
(
µ̂(θ̂λ,θ?), µ

∗
λ

)2
≥ ε

)
≤ Cε−max(1,a)−1N (1/p−1)+ exp

(
−cNε2εa log(ε)−2

)
,

where a = 1
2 + 1

p
.

Theorem 8.3.1 is proved in Section 9.3.2 of Chapter 9.

Remark 8.3.1. It is worth emphasizing in what sense Theorem 8.3.1 is uniform with
respect to λ ∈ [λmin, λmax] and to θ? ∈ D:

• Uniformity with respect to λ. We bound (in probability) the maximum (over λ)
deviation between the empirical distribution µ̂(θ̂λ,θ?) and the predicted distribution µ∗λ.
(The supremum over λ is ‘inside’ the probability.)

• Uniformity with respect to θ?. We bound the maximum probability (over θ?) of a
deviation between µ̂(θ̂λ,θ?) and µ∗λ. (The supremum over θ? is ‘outside’ the probability.)

The reader might wonder whether it is possible to strengthen this result and bound the
maximum deviation over θ? (‘move the supremum over θ? inside’). The answer is negative.
In particular, we can choose the support of θ? to coincide with a submatrix of X with
atypically small minimum singular value. This will result in larger estimation error ‖θ̂λ −
θ?‖2, and hence in a large Wasserstein distance W2(µ̂(θ̂λ,θ?), µ

∗
λ).

Remark 8.3.2. Note that Theorem 8.3.1 does not hold for `0 balls. This is probably a
fundamental problem, since controlling W2 distance uniformly over `0 balls is impossible
even in the simple sequence model (or, equivalently, for orthogonal designs X). Namely,
consider the case in which we observe yi = θ?i + zi, i ≤ N , where (zi)i≤N i.i.d.∼ N (0, τ 2

∗ ),
and we try to estimate θ? by computing θ̂λ,i = η(yi;λ). Then there are vectors θ? ∈ F0(s)
such that the empirical law µ̂(θ̂λ,θ?) does not concentrate in Wasserstein distance around its
expectation µ∗λ, i.e. the law of (Θ, η(Θ + Z;λ)) for G ∼ N (0, τ∗).

In order to see this, it is sufficient to consider the vector

θ? = (N, 2N, . . . , kN, 0, . . . , 0) .

In Section 9.6.1 of Chapter 9, we prove that (for this choice of θ?) there exists a constant
c0 such that W2(µ̂(θ̂λ,θ?), µ

∗
λ) ≥

√
k/N with probability at least 1 − e−c0k for all N large

enough.
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We can think of several possibilities to overcome this intrinsic non-uniformity over `0
balls. One option would be to consider a weaker notion of distance between probability
measures. Here we follow a different route, and prove uniform estimates over `0 balls
for several specific quantities of interest. In order to state these results, we introduce
the following quantities, which correspond to the risk and the prediction error (and are
expressed in terms of the solution (τ∗, β∗) of (8.3.3))

R∗(λ) = δ
(
τ∗(λ)2 − σ2

)
, (8.3.6)

P∗(λ) = β∗(λ)2 + 2σ2

δ
s∗(λ)− σ2

δ
. (8.3.7)

Theorem 8.3.2
Assume here that D is either F0(s) or Fp(ξ) for some 0 ≤ s < smax(δ) and ξ > 0, p > 0.
There exists constants C, c > 0 that only depend on Ω, such that for all ε ∈ (0, 1]

sup
θ?∈D

P
(

sup
λ∈[λmin,λmax]

( 1
N
‖θ̂λ − θ?‖2 −R∗(λ)

)2
≥ ε

)
≤ C

ε2
N qe−cNε

2
, (8.3.8)

sup
θ?∈D

P
(

sup
λ∈[λmin,λmax]

( 1
n
‖y −Xθ̂λ‖2 − β∗(λ)2

)2
≥ ε

)
≤ C

ε2
N qe−cNε

2
, (8.3.9)

sup
θ?∈D

P
(

sup
λ∈[λmin,λmax]

( 1
n
‖X(θ? − θ̂λ)‖2 − P∗(λ)

)2
≥ε
)
≤ C

ε2
N qe−cNε

2
, (8.3.10)

where q = 0 if D = F0(s) and q = (1/p− 1)+ if D = Fp(ξ).

The statement (8.3.8) is proved in Section 9.3.2, while (8.3.9)-(8.3.10) are proved in
Section 9.4 of Chapter 9.

So far we focused on the Lasso estimator θ̂λ. The debiased Lasso estimator is defined
as

θ̂dλ = θ̂λ + XT(y −Xθ̂λ)
1− 1

n
‖θ̂λ‖0

.

This estimator plays a crucial role in the construction of confidence intervals and p-
values [221, 209, 113, 199], and provide an explicit construction of the ‘direct observations’
model in the sense that θ̂dλ is approximately distributed as N (θ?, τ 2

∗ Id). We let µ(d)
λ be the

law of the couple
(
Θ + τ∗(λ)Z, Θ

)
, where (Θ, Z) ∼ µ̂θ? ⊗N (0, 1).

Theorem 8.3.3

Let µ̂(θ̂d
λ
,θ?) denote the empirical distribution (on R2) of the entries of (θ̂dλ, θ?). There

exists constants c, C > 0 such that for all ε ∈ (0, 1],

sup
θ?∈F4(ξ)

P
(

sup
λ∈[λmin,λmax]

W2(µ̂(θ̂d
λ
,θ?), µ

(d)
λ ) ≥ ε

)
≤ C

ε11 e
−cNε17

.

Theorem 8.3.3 is proved in Section 9.6.5 of Chapter 9.
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8.4 Applications
8.4.1 Estimation of the risk and the noise level
In order to select the regularization parameter and to evaluate the quality of the Lasso
solution θ̂λ, it is useful to estimate the risk and noise level. The paper [24] developed a suite
of estimators of these quantities based on the asymptotic theory of [27]. The same paper
also proposed generalizations of these estimators to correlated designs. Here we revisit
these estimators and prove stronger guarantees. First, we obtain quantitative bound on
the consistency rate of our estimators. Second, our results are uniform over λ, which
justifies using these estimators to select λ.

Let us start with the estimation of τ∗(λ) which plays a crucial role in the asymptotic
theory. We define

τ̂(λ) =
√
n
‖y −Xθ̂λ‖
n− ‖θ̂λ‖0

.

We will see with Theorem 9.6.1 presented in Section 9.6.4 of Chapter 9 that

lim
N,n→∞

1
N
‖θ̂λ‖0 = P(|Θ + τ∗Z| ≥ τ∗λ/β∗) def= s∗(λ) .

Further, by Theorem 8.3.2, we have 1√
n
‖y −Xθ̂λ‖ = β∗(λ) + on(1). Recall that by (8.3.3)

we have β∗(λ) = τ∗(λ)
(
1 − 1

δ
s∗(λ)

)
. We deduce τ̂(λ) = τ∗(λ) + on(1). More precisely we

have the following consistency result.
Corollary 8.4.1

Assume here that D is either F0(s) or Fp(ξ) for some 0 ≤ s < smax(δ) and ξ > 0, p > 0.
There exists constants C, c > 0 that only depend on Ω such that for all ε ∈ (0, 1]

sup
θ?∈D

P
(

sup
λ∈[λmin,λmax]

|τ̂(λ)− τ∗(λ)| ≥ ε

)
≤ Cε−6N q exp

(
−cNε6

)
,

where q = 0 if D = F0(s) and q = (1/p− 1)+ if D = Fp(ξ).

We next consider estimating the `2 error of the Lasso. Following [27], we define

R̂(λ) = τ̂(λ)2
( 2
N
‖θ̂λ‖0 − 1

)
+

∥∥∥XT(y −Xθ̂λ)
∥∥∥2

N
(
1− 1

n
‖θ̂λ‖0

)2 .

Corollary 8.4.2
Assume here that D is either F0(s) or Fp(ξ) for some 0 ≤ s < smax(δ) and ξ > 0, p > 0.
There exists constants C, c > 0 such that for all ε ∈ (0, 1],

sup
θ?∈D

P
(

sup
λ∈[λmin,λmax]

∣∣∣∣R̂(λ)− 1
N
‖θ̂λ − θ?‖2

∣∣∣∣ ≥ ε
)
≤ C

ε6
N qe−cNε

6
,

where q = 0 if D = F0(s) and q = (1/p− 1)+ if D = Fp(ξ).
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Corollary 8.4.2 is proved in Section 9.6.6 of Chapter 9. Since by Corollary 8.4.2, Corol-
lary 8.4.1, Theorem 8.3.2 we have with high probability R̂(λ) ' 1

N
‖θ̂λ − θ?‖2 ' δ(τ∗(λ)2 −

σ2) ' δ(τ̂(λ)2 − σ2), the estimator

σ̂2(λ) = τ̂(λ)2 − N

n
R̂(λ) = τ̂(λ)2

(
1 + N

n
− 2
n
‖θ̂λ‖0

)
−

∥∥∥XT(y −Xθ̂λ)
∥∥∥2

n
(
1− 1

n
‖θ̂λ‖0

)2 (8.4.1)

is a consistent estimator of the noise level σ2.
Corollary 8.4.3

There exists constants C, c > 0 that only depend on Ω, such that for all ε ∈ (0, 1]

sup
θ?∈D

P
(

sup
λ∈[λmin,λmax]

∣∣∣σ̂2(λ)− σ2
∣∣∣ > ε

)
≤ C

ε6
N qe−cNε

6
.

Finally, we consider the prediction error ‖Xθ?−Xθ̂λ‖. Stein Unbiased Risk Estimator
(SURE) provides a general method to estimate the prediction error, see e.g. [194, 78, 207].
In the present case, it takes the form

P̂ SURE(λ) = 1
n
‖y −Xθ̂λ‖2 + 2σ2

n
‖θ̂λ‖0 . (8.4.2)

Tibshirani and Taylor [207] proved that P̂ SURE(λ) is an unbiased estimator of the prediction
error, namely

E
[
P̂ SURE(λ)

]
= 1
n
‖Xθ? −Xθ̂λ‖2 + σ2 . (8.4.3)

The next result establishes consistency, uniformly over λ and θ?, with quantitative concen-
tration estimates.
Corollary 8.4.4

Assume here that D is either F0(s) or Fp(ξ) for some 0 ≤ s < smax(δ) and ξ > 0, p > 0.
There exists constants C, c > 0 that only depend on Ω such that for all ε ∈ (0, 1]

sup
θ?∈D

P
(

sup
λ∈[λmin,λmax]

∣∣∣∣ 1n‖Xθ? −Xθ̂λ‖2 + σ2 − P̂ SURE(λ)
∣∣∣∣ ≥ ε

)
≤ C

ε6
N qe−cNε

6
,

where q = 0 if D = F0(s) and q = (1/p− 1)+ if D = Fp(ξ).
The same result holds if σ in (8.4.2) is replaced by an estimator of the noise level

satisfying the same consistency condition as σ̂ defined by (8.4.1) (cf. Corollary 8.4.3).

This corollary follows simply from Theorem 9.6.1 from Chapter 9 and Theorem 8.3.2.

Remark 8.4.1. Notice that exact unbiasedness of P̂ SURE(λ) only holds if the noise z in the
linear model (8.1.2) is Gaussian [207]. In contrast, it is not hard to generalize the proofs
in the present paper to include other noise distributions.

8.4.2 Adaptive selection of λ
As anticipated, we can use our uniform bounds to select λ through an adaptive procedure.
We discuss here three such procedures, that have already been illustrated in Figure 8.1:

172



(i) Selecting λ by minimizing the estimate τ̂(λ), we denote this by λ̂EST; (ii) Select λ
as to minimize Stein’s Unbiased Risk Estimate P̂ SURE(λ), λ̂SURE; (iii) Select λ by k-fold
cross-validation, λ̂k-CV. We will next describe these procedures in greater detail, and state
the corresponding guarantees.

Minimization of τ̂(λ). Since the `2 risk of the Lasso is by Theorem 8.3.2 approximately
equal to R∗(λ) = δ(τ∗(λ)2 − σ2) and since by Corollary 8.4.1, τ̂ is a consistent estimator
(uniformly in λ) of τ∗, a natural procedure for selecting λ is to minimize τ̂ . We then define

λ̂EST = arg min
λ∈[λmin,λmax]

τ̂(λ) .

The next result is an immediate consequence of Theorem 8.3.2 and Corollary 8.4.1:
Proposition 8.4.1

Assume here that D is either F0(s) or Fp(ξ) for some 0 ≤ s < smax(δ) and ξ > 0, p > 0.
There exists constants C, c > 0 that only depend on Ω such that for all ε ∈ (0, 1]

inf
θ?∈D

P
(

1
N
‖θ̂

λ̂EST − θ?‖2 ≤ inf
λ∈[λmin,λmax]

{ 1
N
‖θ̂λ − θ?‖2

}
+ ε

)
≥ 1− CN

q

ε6
e−cNε

6
,

where q = 0 if D = F0(s) and q = (1/p− 1)+ if D = Fp(ξ).

Minimization of SURE. We define

λ̂SURE = arg min
λ∈[λmin,λmax]

P̂ SURE(λ) .

Here, it is understood that we can use either σ or σ̂(λ), cf. Eq. (8.4.1), in the definition of
P̂ SURE. We deduce from Corollary 8.4.4:
Proposition 8.4.2

Assume here that D is either F0(s) or Fp(ξ) for some 0 ≤ s < smax(δ) and ξ > 0, p > 0.
There exists constants C, c > 0 that only depend on Ω such that for all ε ∈ (0, 1]

inf
θ?∈D

P
(

1
n
‖Xθ̂

λ̂SURE −Xθ?‖2 ≤ inf
λ∈[λmin,λmax]

{ 1
n
‖Xθ̂λ −Xθ?‖2

}
+ ε

)
≥ 1− Cε−6N q exp

(
−cNε6

)
,

where q = 0 if D = F0(s) and q = (1/p− 1)+ if D = Fp(ξ).

Cross-validation. We analyze now k-fold Cross Validation. Let k ≥ 2 and define nk =
n(k − 1)/k. We partition the rows of X in k groups: we obtain k-submatrices of size
(n/k)×N that we denote X(1), . . . , X(k). Let us also write for i ∈ {1, . . . , k}, X(-i) for the
submatrix of X obtained by removing the rows X(i). We denote by y(i), z(i) and y(\i), z(\i)

the corresponding subvectors of y and z.
The estimator R̂k-CV of the risk using k-fold cross validation if defined as follows. For

i = 1, . . . , k solve the Lasso problem

θ̂iλ = arg min
θ∈RN

{
1

2nk

∥∥∥∥y(\i) −X(\i)θ
∥∥∥∥2

+ λ

n
|θ|
}
,
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and then compute

R̂k-CV(λ) = 1
N

k∑
i=1

∥∥∥∥y(i) −X(i)θ̂iλ

∥∥∥∥2
.

Finally, we set λ as follows

λ̂k-CV = arg min
λ∈[λmin,λmax]

R̂k-CV(λ) .

The next Proposition shows that R̂k-CV(λ) is equal to the true risk (shifted by δσ2) up
to O(k−1/2).
Proposition 8.4.3

There exists constants c, C > 0 that depend only on Ω, such that for all k ≥ 2 such
that smax

(
(k − 1)δ/k

)
> s in the case where D = F0(s), we have

sup
θ?∈D

P
(

sup
λ∈[λmin,λmax]

∣∣∣∣R̂k-CV(λ)− 1
N
‖θ̂λ − θ?‖2 − δσ2

∣∣∣∣≥ C√
k

)
≤ Ck6N qe−cN/k

6
,

where q = 0 if D = F0(s) and q = (1/p− 1)+ if D = Fp(ξ).

Proposition 8.4.3 is proved in Section 9.6.7 from Chapter 9. It follows from Proposi-
tion 8.4.3 that with high probability,

1
N
‖θ̂

λ̂k- CV − θ?‖2 ≤ inf
λ∈[λmin,λmax]

1
N
‖θ̂λ − θ?‖2 +O(k−1/2).

8.4.3 Numerical experiments
In this Section we compare numerically various different choices for the regularization
parameter λ, namely λ̂EST, λ̂SURE and λ̂k-CV, presented in the previous section. For these
experiments we take the components θ?1, . . . , θ?N to be i.i.d. from

P0 = sN (0, 1) + (1− s)δ0 .

Within this probabilistic model, we can compare achieved by our various choice of λ to the
Bayes optimal error (Minimal Mean Squared Error):

MMSEN = min
θ̂

E
[∥∥∥θ? − θ̂(y,X)

∥∥∥2
]

= E
[∥∥∥θ? − E[θ?|y,X]

∥∥∥2
]
,

where the minimum is taken over all estimators θ̂ (i.e. measurable functions of X, y).
The limit of the MMSE has been recently computed by [17] and [179] and is given by
Theorem 8.4.1 below, which is a direct corollary from Theorem 7.3.2. Recall, that given two
random variables U, V , their mutual information is the Kullback-Leibler divergence between
their joint distribution and the product of the marginals: I(U ;V ) def= DKL(pU,V ‖pU ⊗ pV ).
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Theorem 8.4.1
Define the function

Ψδ,σ(m) = IP0

(
σ−2

1 +m

)
+ δ

2

(
log(1 +m)− m

1 +m

)
,

where IP0(r) = I(Θ;
√
rΘ +Z) for (Θ, Z) ∼ P0⊗N (0, 1). Then, for almost every δ > 0

the function Ψδ,σ admits a unique maximizer m∗(δ, σ) on R≥0 and

MMSEN −−−→
N→∞

δσ2m∗(δ, σ) .

Figure 8.1 reports the risk achieved by the various choices of λ as a function of the
number of samples per dimension δ. We also compare the data-driven procedures of the
previous section to the theory-driven choice λ = σ

√
2 logN . In the left frame, we consider

uncorrelated random designs: Xi,j
i.i.d.∼ N (0, 1/n). On the right, we consider i.i.d. Gaussian

rows with covariance structure determined by an auto-regressive model. Explicitly, the
columns (Xj)1≤j≤N of X are generated according to:

X1 = u0, Xj+1 = 1√
1 + φ2

(
φXj + uj

)
(8.4.4)

where uj i.i.d.∼ N (0, Id/n) and φ = 2. For both types of designs, λ̂EST, λ̂SURE and λ̂k-CV

perform similarly, and substantially outperform the theoretical choice λ = σ
√

2 logN .
For uncorrelated designs, the resulting risk is closely tracked by the asymptotic theory,

and is surprisingly close to the asymptotic prediction for the Bayes risk MMSEN .
While our theory does not cover the case of correlated designs, the qualitative behavior

is remarkably similar. We also observed that in this case, the risk estimator R̂(λ) is not
consistent but its minimum is roughly located at the same value of λ as for uncorrelated
designs.

Next we study adaptivity to sparsity. On Figure 8.2, we plot the risk as a function of
the sparsity of the signal θ?. We compare the three adaptive procedures (namely, λ̂EST,
λ̂SURE and λ̂k-CV), to the following choice

λMM(s0) = α0σ

√
1− 1

δ
Ms0(α0) ,

Ms(α) = s(1 + α2) + 2(1− s)
(
(1 + α2)Φ(−α)− αφ(α)

)
,

α0 = arg min
α≥0

Ms0(α) ,

where s0 < smax(δ) is a nominal value for the sparsity (for Figure 8.2, we use s0 = 0.3).
The value λMM(s0) is expected to be asymptotically minimax optimal over F0(s0) [72].

Also in this example, adaptive procedures dramatically outperform the fixed choice
λ = σ

√
2 logN , and also the minimax optimal λ at the nominal sparsity level.

8.5 Proof strategy
As mentioned above, our proofs are based on Gaussian comparison inequalities, and in
particular on Gordon’s min-max theorem [93, 94]. In this section we review the application
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Figure 8.2: Risk of the Lasso for different choices of λ. N = 10000, σ = 0.2, δ = 0.8. Here
θ? is chosen to be sN -sparse, and we vary the sparsity level s. The entries on the support of
θ? are i.i.d. N (0, 1). Cross-validation is carried out using 4 folds. SURE is computed using
the estimator σ̂. The minimax regularization λMM(s0) is used at the nominal level s0 = 0.3.

of this inequality to the Lasso as developed in [205]. We then discuss the limitations of
earlier work, which does not characterize the empirical distribution of the Lasso estimator
θ̂λ (or need extra sparsity assumptions [169]) nor uniform bounds as in Theorem 8.3.1. A
key challenge is related to the fact that the Lasso cost function (8.1.1) is convex but not
strongly convex. Hence, a small change in λ could cause a priori a large change in the
minimizer θ̂λ.

In order to overcome these problems, we establish a property that we call ‘local stability.’
Namely, if the empirical distribution of (θ̂λ, θ?) deviates from our prediction, then the
value of the optimization problem increases significantly. This implies that the empirical
distribution is stable with respect to perturbations of the cost (e.g. changes in λ). Gordon’s
comparison is again crucial to prove this stability property.

Finally, we describe how local stability is used to prove the results of the previous
sections. A full description of the proofs is provided in Chapter 9.

8.5.1 Tight Gaussian min-max theorem

It is more convenient (but equivalent) to study ŵλ = θ̂λ − θ? instead of θ̂λ. The vector ŵλ
is the minimizer of the cost function

Cλ(w) = 1
2n ‖Xw − σz‖

2 + λ

n

(
|w + θ?| − |θ?|

)
. (8.5.1)

Following [205], we rewrite the minimization of Cλ as a saddle point problem:

min
w∈RN

Cλ(w) = min
w∈RN

max
u∈Rn

{
1
n
uT
(
Xw − σz

)
− 1

2n‖u‖
2 + λ

n

(
|w + θ?| − |θ?|

)}
. (8.5.2)

We apply the following Theorem from [205] which improves over Gordon’s Theorem [94]
by exploiting convex duality.
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Theorem 8.5.1 (Theorem 3 from [205] )
Let Sw ⊂ RN and Su ⊂ Rn be two compact sets and let Q : Sw × Su → R be a

continuous function. Let G = (Gi,j) i.i.d.∼ N (0, 1), g ∼ N (0, IdN) and h ∼ N (0, Idn) be
independent standard Gaussian vectors. Define

C∗(G) = min
w∈Sw

max
u∈Su

uTGw +Q(w, u) ,

L∗(g, h) = min
w∈Sw

max
u∈Su
‖u‖2g

Tw + ‖w‖2h
Tu+Q(w, u) .

Then we have:

• For all t ∈ R,
P
(
C∗(G) ≤ t

)
≤ 2P

(
L∗(g, h) ≤ t

)
.

• If Sw and Su are convex and if Q is convex concave, then for all t ∈ R

P
(
C∗(G) ≥ t

)
≤ 2P

(
L∗(g, h) ≥ t

)
.

For the reader’s convenience, we provide in Section 9.7.2 of Chapter 9 a proof of this
theorem.

Because of Gordon’s Theorem, it suffices now to study (see Corollary 8.5.1 below) for
(g, g′, h) ∼ N (0, IdN)⊗N (0, 1)⊗N (0, Idn).

Lλ(w) = 1
2

√‖w‖2

n
+ σ2 ‖h‖√

n
− 1
n
gTw + g′σ√

n

2

+

+ λ

n
|w + θ?| − λ

n
|θ?| . (8.5.3)

Corollary 8.5.1

(a) Let D ⊂ RN be a closed set. We have for all t ∈ R

P
(

min
w∈D
Cλ(w) ≤ t

)
≤ 2P

(
min
w∈D

Lλ(w) ≤ t
)
.

(b) Let D ⊂ RN be a convex closed set. We have for all t ∈ R

P
(

min
w∈D
Cλ(w) ≥ t

)
≤ 2P

(
min
w∈D

Lλ(w) ≥ t
)
.

Proof. We will only prove the first point, since the second follows from the same arguments.
Define for (w, u) ∈ RN × Rn

cλ(w, u) = 1
n
uTXw − σ

n
uTz − 1

2n‖u‖
2 + λ

n

(
|w + θ?| − |θ?|

)
,

lλ(w, u) = − 1
n3/2 ‖u‖g

Tw + 1
n
‖u‖g′σ +

√
‖w‖2
n

+ σ2h
Tu

n
− 1

2n‖u‖
2 + λ

n

(
|w + θ?| − |θ?|

)
.

Notice that for all w ∈ RN , Lλ(w) = maxu∈Rn lλ(w, u) and Cλ(w) = maxu∈Rn cλ(w, u).
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Let us suppose that X, z, g, h, g′ live on the same probability space and are independent. Let
ε ∈ (0, 1]. Let σmax(X) denote the largest singular value of the matrix X. By tightness we can
find K > 0 such that the event{

σmax(X) ≤ K, ‖z‖ ≤ K, ‖g‖ ≤ K, ‖h‖ ≤ K, |g′| ≤ K
}

(8.5.4)

has probability at least 1− ε. Let D ⊂ RN be a (non-empty, otherwise the result is trivial) closed
set. Let us fix w0 ∈ D. On the event (8.5.4) Cλ(w0) and Lλ(w0) are both upper bounded by some
non-random quantityR. Let now w ∈ D such that Cλ(w) ≤ R. We have then λ

n |w+θ?| ≤ R+λ
n |θ

?|,
which implies that ‖w‖ is upper bounded by some non-random quantity R1. This implies that, on
the event (8.5.4), the minimum of Cλ over D is achieved on D∩B(0, R1). Similarly on (8.5.4) the
minimum of Lλ over D is achieved on D ∩B(0, R2), for some non-random quantity R2. Without
loss of generalities, one can assume R1 = R2. On the event (8.5.4) we have

min
w∈D
Cλ(w) = min

w∈D∩B(0,R1)
Cλ(w) = min

w∈D∩B(0,R1)
max

u∈B(0,R3)
cλ(w, u) ,

for some non-random R3 > 0. This gives that for all t ∈ R, we have

P
(

min
w∈D
Cλ(w) ≤ t

)
≤ P

(
min

w∈D∩B(0,R1)
max

u∈B(0,R3)
cλ(w, u) ≤ t

)
+ ε ,

and similarly

P
(

min
w∈D∩B(0,R1)

max
u∈B(0,R3)

lλ(w, u) ≤ t
)
≤ P

(
min
w∈D

Lλ(w) ≤ t
)

+ ε .

Since the sets D ∩B(0, R1) and B(0, R3) are compact, one can apply Theorem 8.5.1 to cλ and lλ
and obtain:

P
(

min
w∈D
Cλ(w) ≤ t

)
≤ 2P

(
min
w∈D

Lλ(w) ≤ t
)

+ 2ε .

The Corollary follows then from the fact that one can take ε arbitrarily small.

8.5.2 Local stability
In order to prove that (for instance) ŵλ verifies with high probability some property, let’s
say for instance that the empirical distribution of (θ̂λ = θ? + ŵλ, θ

?) is close to µ?λ, we
define a set Dε ⊂ RN that contains all the vectors that do not verify this property, e.g.
Dε =

{
w ∈ RN

∣∣∣W2
(
µ̂(θ?+w,θ?), µ

∗
λ

)2
≥ ε

}
, for some ε ∈ (0, 1). The goal now is to prove

that with high probability
min
w∈D
Cλ(w) ≥ min

w∈RN
Cλ(w) + ε ,

for some ε > 0. Using Gordon’s min-max Theorem (Corollary 8.5.1) we will be able to
show

P
(

min
w∈Dε

Cλ(w)≤ min
w∈RN

Cλ(w) + ε
)
≤2P

(
min
w∈Dε

Lλ(w)≤ min
w∈RN

Lλ(w) + ε
)

+ oN(1) . (8.5.5)

Informally, this is a consequence of the following two remarks. First, by applying parts
(a) and (b) of Corollary 8.5.1 to the convex domain RN , we deduce that minw∈RN Cλ(w) ≈
minw∈RN Lλ(w). Second, by applying part (a) to the closed domainD, we obtain minw∈Dε Cλ(w) &
minw∈Dε Lλ(w)

It remains now to study the cost function Lλ, which is much simpler. This is done in
Section 9.2 of Chapter 9. The key step will be to establish the following ‘local stability’
result (the next statement is an immediate consequence of Proposition 9.2.1 and Theo-
rem 9.2.1 in Chapter 9. We prove in fact that the cost function Lλ is strongly convex on
a neighborhood of its minimizer.).
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Theorem 8.5.2
The minimizer w∗λ = arg minw Lλ(w) exists and is almost surely unique. Further,

there exists constants γ, c, C > 0 that only depend on Ω such that for all θ? ∈ D, all
λ ∈ [λmin, λmax] and all ε ∈ (0, 1]

P
(
∃w ∈ RN ,

1
N
‖w − w∗λ‖2 > ε and Lλ(w) ≤ min

v∈RN
Lλ(v) + γε

)
≤ C

ε
e−cnε

2
.

We do not obtain an equally strong result for the cost function Cλ(w), but we prove
the following statement, which is sufficient for obtaining uniform control (for the sake of
argument, we focus here on the domain Fp(ξ) and control of the empirical distribution).

Theorem 8.5.3
Assume that D = Fp(ξ) for some ξ, p > 0. There exists constants C, c, γ > 0 that only

depend on Ω such that for all ε ∈ (0, 1
2 ]

sup
λ∈[λmin,λmax]

sup
θ?∈D

P
(
∃θ ∈ RN , W2

(
µ̂(θ,θ?), µ

∗
λ

)2
≥ε and Lλ(θ)≤minLλ + γε

)
≤ Cε−max(1,a) exp

(
−cNε2εa log(ε)−2

)
,

where a = 1
2 + 1

p
.

Theorem 8.5.3 is proved in Section 9.3.1 of Chapter 9.

8.5.3 Sketch of proof of main results
For the sake of simplicity, we will illustrate the prove strategy by considering the empirical
distribution of ŵλ = θ̂λ − θ?, as the argument is similar for other quantities. According
to Theorem 8.3.1, this should be well approximated by µλ that is the law of Θ̂−Θ, when
(Θ̂,Θ) ∼ µ∗λ, cf. Definition 8.3.3.

As anticipated, Eq. (8.5.5) and Theorem 8.5.2, allow to control W2(µ̂ŵλ , µλ) for a fixed
λ (µ̂ŵλ denotes the empirical distribution of the entries of ŵλ). Namely, we can define
Dε to be the set of vectors w such that W2(µ̂w, µλ) ≥ ε > 0. We then prove that the
minimizer w∗λ of Lλ has empirical distribution close to µλ, and therefore by Theorem 8.5.2,
Lλ(w) > Lλ(w∗λ) +γε for all w ∈ Dε, with high probability. This imply that the right-hand
side of (8.5.5) is very small and we deduce that, with high probability, all minimizers or
near minimizers of Cλ(w) have empirical distribution close to µλ,

We now would like to prove Theorem 8.3.1 and show that with high probability µ̂ŵλ ≈
µλ, uniformly in λ ∈ [λmin, λmax]. To do so, we apply the above argument for λ = λ1, . . . , λk,
where λ1, . . . , λk is an ε-net of [λmin, λmax]. This implies that, with high probability for
λ ∈ {λ1, . . . , λk}, W2(µ̂ŵλi , µλi) ≤ ε. Next, for λ ∈ [λi, λi+1], we show that

Cλi(ŵλ) = min
w∈RN

Cλi(w) +O(|λi+1 − λi|) .

Consequently if |λi+1 − λi| = O(ε) (using again Eq. (8.5.5) and Theorem 8.5.2), we ob-
tain that W2(µ̂ŵλ , µλi) = O(ε) and therefore W2(µ̂ŵλ , µλ) = O(ε). We conclude that
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W2(µ̂ŵλ , µλ) = O(ε) for all λ ∈ [λmin, λmax], with high probability, which is the desired
claim.

If the strategy exposed above allows to obtain the risk of the Lasso and the empirical
distribution of its coordinates, it is not enough to get its sparsity ‖θ̂λ‖0 or to obtain the
empirical distribution of the debiased lasso

θ̂dλ = θ̂λ + XT(y −Xθ̂λ)
1− 1

n
‖θ̂λ‖0

.

Therefore, we will need to analyze the vector

v̂λ = 1
λ
XT(y −Xθ̂λ) ,

which is a subgradient of the `1-norm at θ̂λ. We are able to study v̂λ using Gordon’s
min-max Theorem because v̂λ is the unique maximizer of

v 7→ min
w∈RN

{ 1
2n
∥∥∥Xw − σz∥∥∥2

+ λ

n
vT(w + θ?)

}
.

The detailed analysis is done in Section 9.5 from Chapter 9.
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Chapter 9

Proofs of the results on the Lasso

This chapter is devoted to the proofs of the results of Chapter 8. It is organised as follows.
In Section 9.1, we study the max-min scalar problem (8.3.2). In Section 9.2 we investigate
Gordon’s optimization problem associated to the Lasso cost and deduce the results about
the risk and the empirical law of the Lasso estimator in Section 9.3. We conduct the same
kind of analysis for the Lasso residual ûλ def= Xθ̂λ − y in Section 9.4 and the subgradient
v̂λ

def= 1
λ
XT(y−Xθ̂λ) of the `1-norm at θ̂λ in Section 9.5. Section 9.6 gathers some auxiliary

results and proofs such as the study of the sparsity of the Lasso estimator, the law of the
debiased Lasso θ̂

(d)
λ , or the performance of k-fold Cross Validation. Finally Section 9.7

contains a recap of the notations, a proof of the “tight Gordon min-max” Theorem and
some basic concentration results.

9.1 Study of the scalar optimization problem
In this section we study the scalar optimization problem (8.3.2):

max
β≥0

min
τ≥σ

(
σ2

τ
+ τ

)
β

2 −
1
2β

2 + 1
δ
Emin
w∈R

{
w2

2τ β − βZw + λ|w + Θ| − λ|Θ|
}
, (9.1.1)

where (Θ, Z) ∼ P0⊗N (0, 1), for some probability distribution P0 with finite first moment:
EP0|Θ| < ∞. Of course, we will be mainly interested by the case where P0 = µ̂θ? , the
empirical distribution of the entries of θ?. Define

ψλ(β, τ) =
(
σ2

τ
+ τ

)
β

2 −
1
2β

2 + 1
δ
Emin
w∈R

{
w2

2τ β − βZw + λ|w + Θ| − λ|Θ|
}
.

9.1.1 Basic properties of the scalar optimization problem

Lemma 9.1.1 (From [71] )
For all δ ∈ (0, 1), the equation

(1 + α2)Φ(−α)− αφ(α) = δ

2

admits a unique positive solution αmin = αmin(δ) > 0.

181



Proof. Let ϕ : α 7→ (1 + α2)Φ(−α) − αφ(α). ϕ is continuous on R≥0, we have ϕ(0) = 1
2

and ϕ(+∞) = 0. It remains to show that ϕ is strictly decreasing on R≥0. Compute ϕ′(α) =
2αΦ(−α) − 2φ(α) and ϕ′′(α) = 2Φ(−α) > 0. Since ϕ′(+∞) = 0, we have that for all α ≥ 0,
ϕ′(α) < 0. ϕ is thus strictly decreasing on R≥0.

Let us define
βmax = βmax(δ, λ) = λ

αmin(δ) .

More generally, we will always write α = λ/β. We prove in this section the following
theorem and some auxiliary results.

Theorem 9.1.1
The max-min (8.3.2) is achieved at a unique couple (β∗, τ∗) and 0 < β∗ < βmax.

Moreover, (τ∗, β∗) is also the unique couple in (0,+∞)2 that verifyτ
2 = σ2 + 1

δ
E
[
(η(Θ + τZ, τ λ

β
)−Θ)2

]
β = τ

(
1− 1

δ
E
[
η′(Θ + τZ, τλ

β
)
])
.

(9.1.2)

Lemma 9.1.2

−λ
δ
E|Θ| ≤ max

β≥0
min
τ≥σ

ψλ(β, τ) ≤ σ2

2 .

Proof. We have maxβ minτ ψλ(β, τ) ≥ minτ ψλ(0, τ) = −λ
δE|Θ|. Then, by taking w = 0 one get

max
β≥0

min
τ≥σ

ψλ(β, τ) ≤ max
β≥0

min
τ≥σ

(
σ2

τ
+ τ

)
β

2 −
1
2β

2 = σ2

2 .

Define for α ≥ 0 and y ∈ R,

`α(y) = min
x∈R

{1
2(y − x)2 + α|x|

}
and for Z ∼ N (0, 1), x ∈ R, ∆α(x) = E

[
`α(x+ Z)− α|x|

]
.

Lemma 9.1.3

E
[
min
w∈R

{
w2

2τ β − βZw + λ|w + Θ| − λ|Θ|
}]

= τβE
[
∆α

(Θ
τ

)]
− βτ

2 . (9.1.3)

where α = λ/β.

Proof. Let β > 0 and compute

E
[
min
w∈R

{
w2

2τ β − βZw + λ|w + Θ| − λ|Θ|
}]

= −βτ2 + β

τ
Emin
w∈R

{1
2(w − τZ)2 + τλ

β
|w + Θ| − τλ

β
|Θ|
}

= −βτ2 + βτEmin
w∈R

{1
2(w − Z)2 + α

∣∣∣w + Θ
τ

∣∣∣− α∣∣∣Θ
τ

∣∣∣} ,
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where α = λ/β. Thus

E
[
min
w∈R

{
w2

2τ β − βZw + λ|w + Θ| − λ|Θ|
}]

= −βτ2 + βτE
[
∆α

(Θ
τ

)]
.

Lemma 9.1.4

• If β > βmax, ψλ(β, τ) −−−−→
τ→+∞

−∞ .

• If β = βmax, ψλ(β, τ) −−−−→
τ→+∞

−β
2

2 −
λ

δ
E
∣∣∣Θ∣∣∣ .

Proof. By (9.1.3) and the fact that ∆α(0) = 1
2 + αφ(α)− (α2 + 1)Φ(−α) by Lemma 9.6.13, we

get that for all β, τ > 0

ψλ(β, τ) = σ2β

2τ −
β2

2 + τβ

δ

(
δ

2 + αφ(α)− (α2 + 1)Φ(−α)
)

+ β

δ
ξα(τ) ,

where α = λ/β and
ξα(τ) = τE

[(
∆α

(Θ
τ

)
−∆α(0)

)]
.

Using the definition of βmax: if β > βmax then α < αmin and therefore δ
2 +αφ(α)−(α2+1)Φ(−α) <

0. If β = βmax, δ
2 + αφ(α) − (α2 + 1)Φ(−α) = 0. It remains to compute the limit of ξα(τ) as

τ →∞.
Using the expression (see Lemma 9.6.13) of the left-and right-derivatives of ∆α at 0, we have

almost surely:
τ

(
∆α

(Θ
τ

)
−∆α(0)

)
−−−→
τ→∞

−α|Θ| .

Suppose that E|Θ| <∞. By Lemma 9.6.13, ∆α is α-Lipschitz. Consequently, for all τ > 0:∣∣∣∣τ (∆α

(Θ
τ

)
−∆α(0)

)∣∣∣∣ ≤ α|Θ| .
Since we have assumed that E|Θ| < ∞ we can apply the dominated convergence theorem to
obtain that ξα(τ) −−−−→

τ→+∞
−αE|Θ|.

Define
w∗(α, τ) = η

(
Θ + τZ, ατ

)
−Θ .

w∗(α, τ) is the minimizer of w 7→ w2

2τ β − βZw + λ|w + Θ| (recall that we always write
α = λ/β).
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Lemma 9.1.5
If β ≥ βmax the equation

τ 2 = σ2 + 1
δ
E
[
w∗(α, τ)2

]
= σ2 + 1

δ
E
[
(η(Θ + τZ, τ

λ

β
)−Θ)2

]
. (9.1.4)

does not admits any solution on (0,+∞). For all β ∈ (0, βmax), the function ψλ(β, ·)
admits a unique minimizer τ∗(β) on (0,+∞) that is also the unique solution of (9.1.4).
Moreover, α 7→ τ∗(α) is C∞ on (αmin,+∞) and for all α > αmin∣∣∣∣∣∂τ∗∂α (α)

∣∣∣∣∣ ≤ (α + 1)τ∗(α)3

δσ2 .

Proof. Most of this lemma was already proved in [71], we however provide a full proof for
completeness. We have to study the fixed point equation

τ2 = σ2 + 1
δ
E
[
w∗(α, τ)2

]
= Fα(τ2) ,

where α = λ/β. We can compute Fα explicitly:

Fα(τ2) = σ2 + τ2

δ

(
1 + α2

+ E
[
(x2−α2−1)

(
Φ(α−x)−Φ(−α−x)

)
−(x+α)φ(α−x)+(x−α)φ(x+α)

] )
,

where we used the notation x = Θ
τ . We can then compute the derivatives:

F ′α(τ2)= 1
δ

(1+α2)E[Φ(x−α)+Φ(−x−α)]− 1
δ
E[(x+α)φ(x−α)−(x−α)φ(x+α)] ,

F ′′α(τ2) = −1
2δτ2E

[
x3(φ(x− α)− φ(x+ α))

]
≤ 0 .

Fα is therefore concave. By dominated convergence

F ′α(τ2) −−−−→
τ→+∞

2
δ

(
(1 + α2)Φ(−α)− αφ(α)

){< 1 if β < βmax

≥ 1 if β ≥ βmax .

Since Fα(0) = σ2 > 0 and by concavity of Fα, the fixed point equation admits a unique solution
τ∗(α) if and only is β ∈ (0, βmax). In that case we have also F ′α(τ∗(α)) < 1.

Let us now assume that β ∈ (0, βmax). We have almost surely

∂

∂τ
min
w∈R

{
w2

2τ β + βZw + λ|w + Θ|
}

= − β

2τ2w
∗(α, τ)2 .

Since |w∗(α, τ)| ≤ ατ + τ |Z|, we have by derivation under the expectation

∂

∂τ
ψλ(β, τ)= β

2 −
βσ2

2τ2 −
β

2δτ2E
[
w∗(α, τ)2

]
= β

2τ2

(
τ2 −

(
σ2 + 1

δ
E
[
w∗(α, τ)2

]))
.

Consequently, τ∗(β) is the unique minimizer of ψλ(β, ·) over (0,+∞).
Let us now compute ∂τ2

∗
∂α . Since Fα is a C∞ function of τ2, one can apply the implicit function

theorem to obtain that the mapping α 7→ τ∗(α)2 is C∞ and moreover:

∂τ2
∗

∂α
(α) =

∂Fα
∂α (τ2

∗ (α))
1− F ′α(τ2

∗ (α)) . (9.1.5)
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Compute

∂Fα
∂α

(τ2) = 2τ2

δ
E [α(Φ(−α+ x) + Φ(−α− x))− (φ(α− x) + φ(α+ x))] .

One verify easily that

− 1 ≤ −2φ(0) ≤ 2αΦ(−α)− 2φ(α) ≤ δ

2τ2
∂Fα
∂α

(τ2) ≤ α . (9.1.6)

By concavity on has that F ′α(τ2
∗ (α)) is smaller than the slope of the line between the points of

coordinates (0, σ2) and (τ2
∗ (α), τ2

∗ (α)):

F ′α(τ2
∗ (α)) ≤ 1− σ2

τ2
∗ (α) . (9.1.7)

From equations (9.1.5-9.1.6-9.1.7) we get∣∣∣∣∣∂τ2
∗

∂α
(α)
∣∣∣∣∣ ≤ 2τ∗(α)4

σ2δ
(α+ 1) .

The result follows then from the fact that ∂τ2
∗

∂α (α) = 2τ∗(α)∂τ∗∂α (α).

Define now
Ψλ : β 7→ min

τ≥σ
ψλ(β, τ) .

Lemma 9.1.6
The function Ψλ is differentiable on (0, βmax) with derivative

Ψ′λ(β) = τ∗(α)− β − 1
δ
E [Zw∗(α, τ∗(α))] (9.1.8)

= τ∗(α)
(

1− 1
δ
E
[
Φ
( Θ
τ∗(α) − α

)
+ Φ

(
− Θ
τ∗(α) − α

)])
− β . (9.1.9)

Proof. Ψλ is differentiable on (0, βmax) (because of Lemma 9.1.5) with derivative

Ψ′λ(β)= 1
2
( σ2

τ∗(α) + τ∗(α)
)
− β + 1

δ

( 1
2τ∗(α)E[w∗(α, τ∗(α))2]− E[Zw∗(α, τ∗(α))]

)
=τ∗(α)− β − 1

δ
E [Zw∗(α, τ∗(α))] ,

because of (9.1.4). The second equality follows by Gaussian integration by parts.

Corollary 9.1.1
The function Ψλ achieves its maximum over R≥0 at a unique β∗ ∈ (0, βmax).

Proof. Ψλ is the minimum of a collection of 1-strongly concave functions: it is therefore 1-
strongly concave and admits thus a unique maximizer β∗ over R≥0. By Lemma 9.1.4 we know
that β∗ < βmax. Indeed, notice that maxβ Φλ(β) ≥ Ψλ(0) = −λ

δE|Θ|. Lemme 9.1.4 gives that
β∗ ∈ [0, βmax), because Ψλ(βmax) ≤ Ψλ(0)− 1

2β
2
max < Ψλ(0). By dominated convergence:

E
[
Φ
( Θ
τ∗(α) − α

)
+ Φ

(
− Θ
τ∗(α) − α

)]
−−−−→
β→0+

0 .
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Indeed, when β → 0+, α = λ/β → +∞ and | Θ
τ∗(α) | ≤

|Θ|
σ . Therefore by Lemma 9.1.6 we obtain

lim inf
β→0+

Ψ′λ(β) ≥ σ > 0 .

By concavity, we deduce that β∗ ∈ (0, βmax).

Proposition 9.1.1
The function λ 7→ β∗(λ) is C∞ and is 2α−1

min-Lipschitz over (0,+∞). λ 7→ α∗(λ) is C∞
over (0,+∞) and strictly increasing.

Proof. Let us define γ∗(λ) = β∗(λ)/λ. γ∗(λ) is the unique maximizer of

min
τ≥σ

(
σ2

τ
+ τ

)
γ

2 −
λ

2γ
2 + 1

δ
Emin
w∈R

{
w2

2τ γ − γZw + |w + Θ| − |Θ|
}

= h(γ)− λ

2γ
2 ,

where h is a concave C∞ function on R>0. γ∗(λ) is thus the unique solution of

h′(γ)− λγ = 0 ,

on R>0. γ 7→ h′(γ) − λγ is C∞ with derivative γ 7→ h′′(γ) − λ < 0. Consequently, the implicit
function theorem gives that the mapping λ ∈ R>0 7→ γ∗(λ) is C∞ and that

∂γ∗
∂λ

(λ) = −γ∗(λ)
λ− h′′(γ∗(λ)) < 0 .

One deduces that λ 7→ α∗(λ) = γ∗(λ)−1 is C∞ and strictly increasing and that λ 7→ β∗(λ) = λγ∗(λ)
is C∞. Moreover ∣∣∣∣∂β∗∂λ (λ)

∣∣∣∣ =
∣∣∣∣λ∂γ∗∂λ (λ) + γ∗(λ)

∣∣∣∣ ≤ 2γ∗(λ) ≤ 2
αmin

.

Proof of Theorem 9.1.1. By Corollary 9.1.1, the maximum in β in (8.3.2) is achieved at
a unique β∗ ∈ (0, βmax). To this β∗ corresponds a unique τ∗(β∗) that achieves the minimum
in (8.3.2), by Lemma 9.1.5. By (9.1.4) and (9.1.9) we obtain that (τ∗(β∗), β∗) is solution of the
system (9.1.2). Let now (τ, β) ∈ (0,+∞)2 be another solution of (9.1.2). τ is therefore solution
of (9.1.4) which gives that β ∈ (0, βmax) and τ = τ∗(β) by Lemma 9.1.5. The second equality
in (9.1.2) gives that Ψ′λ(β) = 0 and thus that β = β∗ by strong concavity of Ψλ. We conclude
(τ, β) = (τ∗(β∗), β∗).

9.1.2 Control on β∗, τ∗

The goal of this section is to show that β∗ and τ∗ remain bounded when θ? varies in D.

Theorem 9.1.2
There exists constants βmin, τmax > 0 that only depend on Ω such that for all θ? ∈ D

and all λ ∈ [λmin, λmax],

βmin ≤ β∗(λ) < βmax and σ ≤ τ∗(λ) ≤ τmax .

To prove Theorem 9.1.2, we separate the case where D = Fp(ξ) (where it follows from
Lemma 9.1.9 and Corollary 9.1.2 below) from the case where D = F0(s) (where it follows
from Lemmas 9.1.11 and 9.1.12).
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Technical lemmas

Lemma 9.1.7
We have

max
β≥0

min
τ≥σ

ψλ(β, τ) = ψλ(β∗, τ∗(β∗)) = 1
2β

2
∗ + λ

δ
E
[
|w∗(α∗, τ∗(β)) + Θ| − |Θ|

]
= 1

2β
2
∗ + τ∗(β∗)

λ

δ
E
[
Hα∗

(
Θ

τ∗(β∗)

)]
,

where

Hα(x) = (x− α)Φ(−α + x) + (−x− α)Φ(−x− α) + φ(−x+ α) + φ(x+ α)− |x| .

Proof. Using the optimality condition (9.1.4) of τ∗(β), we have for all β ∈ (0, βmax)

ψλ(β, τ∗(β)) = −1
2β

2 + βτ∗(β)− β

δ
E [Zw∗(α, τ∗(β))] + λ

δ
E [|w∗(α, τ∗(β)) + Θ| − |Θ|] .

At β∗ the optimality condition (see (9.1.8)) reads β∗ = τ∗(β∗)− 1
δE
[
Zw∗(α∗, τ∗(β∗))

]
, thus

ψλ(β∗, τ∗(β∗)) = 1
2β

2
∗ + λ

δ
E
[
|w∗(α∗, τ∗(β)) + Θ| − |Θ|

]
. (9.1.10)

Compute for α, τ > 0

E
∣∣w∗(α, τ) + Θ

∣∣ = E
∣∣η(Θ + τZ, ατ)

∣∣ = τE
∣∣∣η(Θ

τ
+ Z,α

)∣∣∣ . (9.1.11)

Now, for x ∈ R,

E|η(x+ Z,α)| =
∫ +∞

α−x
(x+ z − α)φ(z)dz +

∫ −α−x
−∞

(−x− z − α)φ(z)dz

= (x− α)Φ(x− α) + (−x− α)Φ(−x− α) + φ(α− x) + φ(α+ x)
= Hα(x) + |x| .

and we obtain the Lemma by putting this together with (9.1.11) and (9.1.10).

The next Lemma summarizes the main properties of Hα.
Lemma 9.1.8

Hα is a continuous, even function and for x > 0

H ′α(x) = Φ(x− α)− Φ(−x− α)− 1 ∈ (−1, 0) .

Hα is therefore 1-Lipschitz. Hα admits a maximum at 0 and

Hα(0) = 2φ(α)− 2αΦ(−α) > 0 .

Moreover Hα(x) −−−−→
x→+∞

−α.
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On `p-balls

Lemma 9.1.9

Assume that E
[
|Θ|p

]
≤ ξp for some ξ, p > 0. Then, there exists a constant βmin =

βmin(δ, λmin, ξ, p, σ) such that for all λ ≥ λmin,

0 < βmin ≤ β∗(λ) < βmax .

Proof. Let β ∈ (0, βmax). By Lemma 9.1.6 we have

Ψ′λ(β) = τ∗(β)
(

1− 1
δ
E
[
Φ
( Θ
τ∗(β) − α

)
+ Φ

(
− Θ
τ∗(β) − α

)])
− β .

The function gα : x 7→ Φ(x− α) + Φ(−x− α) is even, and increasing over R≥0. Let K > 0 such
that ξp

Kpσp ≤
δ
4 . By Markov’s inequality we have

P
(∣∣∣∣ Θ
τ∗(β)

∣∣∣∣ ≥ K) ≤ P
(∣∣∣∣Θσ

∣∣∣∣p ≥ Kp
)
≤ 1
Kpσp

E|Θ|p ≤ δ

4 .

Thus

E
[
gα

( Θ
τ∗(β)

)]
≤ gα(K) + δ

4 .

As β → 0, α ≥ λmin/β → +∞. Since gα(K) −−−−−→
α→+∞

0 there exists β0 = β0(K,λmin, δ) > 0 such

that for all β ∈ (0, β0), gα(K) ≤ δ
4 . Thus for all β ∈ (0, β0),

Ψ′λ(β) ≥ τ∗(β)
(

1−
δ
4 + δ

4
δ

)
− β ≥ σ

2 − β .

Let βmin = min(σ2 , β0). We conclude that for all β ∈ (0, βmin), Ψ′λ(β) > 0. By concavity we have
then that β∗ ≥ βmin. The other inequality β∗ < βmax was already proved in Corollary 9.1.1.

Corollary 9.1.2

Assume that E
[
|Θ|p

]
≤ ξp for some ξ, p > 0. Then there exists a constant τmax =

τmax(ξ, p, δ, s, λmin, λmax) such that for all λ ∈ [λmin, λmax],

σ ≤ τ∗(β∗(λ)) ≤ τmax .

Proof. Let t ≥ ξ. By Markov’s inequality we have P(|Θ| ≥ t) ≤
(
ξ
t

)p
≤ 1, since θ? ∈ Fp(ξ).

E
[
Hα∗

( Θ
τ∗(α∗)

)]
= E

[
1(|Θ| < t)Hα∗

( Θ
τ∗(α∗)

)]
+ E

[
1(|Θ| ≥ t)Hα∗

( Θ
τ∗(α∗)

)]
≥
(

1−
(
ξ

t

)p)(
Hα∗(0)− t

τ∗(α∗)

)
− α∗

(
ξ

t

)p
,

because by Lemma 9.1.8, Hα∗ is 1-Lipschitz and for all x ∈ R, −α∗ ≤ Hα∗(x) ≤ Hα∗(0). Replacing
Hα∗(0) by its expression given by Lemma 9.1.8 we get

E
[
Hα∗

( Θ
τ∗(α∗)

)]
≥ 2

(
φ(α∗)−α∗Φ(−α∗)

)
−
(
ξ

t

)p(
α∗+2(φ(α∗)−α∗Φ(−α∗))

)
− t

τ∗(α∗)
.
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Since α∗ ≤ λmax/βmin and φ(α∗) − α∗Φ(−α∗) > 0 (because α∗ > αmin), we can find a constant
t = t(δ, σ, λmin, λmax, p, ξ) ≥ ξ such that

(α∗ + 2(φ(α∗)− α∗Φ(−α∗)))
(
ξ

t

)p
≤ φ(α∗)− α∗Φ(−α∗) .

For this choice of t we have then

τ∗(α∗)λ
δ

E
[
Hα∗

(Θ
τ∗

)]
≥ λ

δ
τ∗(α∗)(φ(α∗)− α∗Φ(−α∗))−

λt

δ
.

Consequently by Lemma 9.1.2 and Lemma 9.1.7 we have

β2
∗

2 + λ

δ
τ∗(φ(α∗)− α∗Φ(−α∗))−

λt

δ
≤ ψλ(β∗, τ∗(α∗)) ≤

σ2

2 ,

which finally gives

τ∗(α∗) ≤
δσ2λ−1 + t

φ(αmax)− αmaxΦ(−αmax) .

On sparse balls

Define the critical function:

Ms : α 7→ s(1 + α2) + 2(1− s)
(
(1 + α2)Φ(−α)− αφ(α)

)
.

Ms corresponds to the worst mean squared error achievable by soft-thresholding with
threshold α to estimate a vector θ? ∈ F0(s) from the observations y = θ? + w, where
w ∼ N (0, IN), see [70, 69, 115].
Lemma 9.1.10 (From [71] )

Assume that

s < smax(δ) = δmax
α≥0

 1− 2
δ

(
(1 + α2)Φ(−α)− αφ(α)

)
1 + α2 − 2

(
(1 + α2)Φ(−α)− αφ(α)

)
 .

Then there exists α ≥ 0 such that Ms(α) < δ.

Proof. Let s < smax(δ). From the definition of smax(δ), we can find α ∈ R such that

δ
1− 2

δ

(
(1 + α2)Φ(−α)− αφ(α)

)
1 + α2 − 2

(
(1 + α2)Φ(−α)− αφ(α)

) > s ,

which gives Ms(α) < δ.

We assume in this section that s < smax(δ). Let us compute the derivatives

M ′
s(α) = 2 (αs+ 2(1− s)(αΦ(−α)− φ(α))) ,

M ′′
s (α) = 2 (s+ (1− s)2Φ(−α)) > 0 .

Notice that Ms(α) = 1
2

(
αM ′

s(α)+M ′′
s (α)

)
. Let α0 be the unique α > 0 such that M ′

s(α) = 0
and let α1 < α2 be such that Ms(α1) = Ms(α2) = δ. We can then easily plot the variations
of Ms:
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α

M ′
s

Ms

1
2M

′′
s

0 α1 α0 α2 +∞

− 0 +

11
Ms(α0)Ms(α0)

+∞+∞
δ δ

11

ss
Ms(α0)

Lemma 9.1.11
Let s < smax(δ) and assume that P(Θ 6= 0) ≤ s. Then, there exists a constant
βmin = βmin(δ, λmin, s, σ) such that for all λ ≥ λmin

0 < βmin ≤ β∗(λ) < βmax(λmax, δ) := λmax/αmin(δ) .

Proof. We already proved in Corollary 9.1.1 that β∗(λ) < λ/αmin. For all 0 < β < λ/αmin, we
have by Lemma 9.1.6

Ψ′λ(β) = τ∗(β)
(

1− 1
δ
E
[
Φ
( Θ
τ∗(β) − α

)
+ Φ

(
− Θ
τ∗(β) − α

)])
− β .

The function gα : x 7→ Φ(x− α) + Φ(−x− α) is even, and increasing over R≥0. Therefore

Ψ′λ(β) ≥ τ∗(β)
δ

(
δ − s− (1− s)2Φ(−α)

)
− β .

Let β0 = β0(λmin, δ, s) > 0 such that for all β ∈ (0, β0), 2Φ(−α) ≤ 1
2(δ − s). For all β ∈ (0, β0)

we have then
Ψ′λ(β) ≥ σ(δ − s)

2δ − β .

Let βmin = min(σ(δ−s)
2δ , β0): for all β ∈ (0, βmin), Ψ′λ(β) > 0. By concavity we conclude that

β∗ ≥ βmin.
Lemma 9.1.12

Let s < smax(δ) and assume that P(Θ 6= 0) ≤ s. Then for all β, τ, λ > 0 we have

ψλ(β, τ) ≥ βσ2

2τ −
β2

2 + τβ

2δ
(
δ −Ms(α)

)
.

Proof. By (9.1.3) we have for all β, τ > 0

ψλ(β, τ) = β

2

(
σ2

τ
+ τ

)
− β2

2 + τβ

δ
E
[
∆α

(Θ
τ

)
− 1

2

]
.

Since by Lemma 9.6.13, ∆α is even and non-increasing over R≥0, we have

E
[
∆α

(Θ
τ

)
− 1

2

]
≥ s∆α(+∞) + (1− s)∆α(0)− 1

2

= −sα
2

2 + (1− s)
(1

2 + αφ(α)− (1 + α2)Φ(−α)
)
− 1

2
= −1

2Ms(α) .
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Lemma 9.1.13
Let s < smax(δ) and assume that P(Θ 6= 0) ≤ s. Then the following inequalities hold

β∗τ∗(β∗)(δ −Ms(α∗)) ≤ δ
(
σ2 + β2

∗

)
, (9.1.12)

− τ∗(β∗)λM ′
s(α∗) ≤ δσ2 , (9.1.13)

τ∗(β∗)(δ −
1
2M

′′
s (α∗)) ≤ β∗ . (9.1.14)

Proof. The inequality (9.1.12) simply follows from the previous lemma and from the fact that

ψλ(β, τ∗(β)) ≤ max
β≥0

min
τ≥σ

ψλ(β, τ) ≤ σ2

2 ,

by Lemma 9.1.2. Let us prove (9.1.13). By Lemma 9.1.7, we have

ψλ(β∗, τ∗(β∗)) ≥
λτ∗(β∗)

δ
E
[
Hα∗

( Θ
τ∗(β∗)

)]
.

Since by Lemma 9.1.8, Hα∗ is even, decreasing on R≥0, we have

E
[
Hα∗

( Θ
τ∗(β∗)

)]
≥ sHα∗(+∞) + (1− s)Hα∗(0)

= −sα∗ + 2(1− s)
(
φ(α∗)− α∗Φ(−α∗)

)
= −1

2M
′
s(α∗) ,

which proves (9.1.13). To prove (9.1.14) we use the optimality condition at β∗:

0 = Ψ′λ(β∗) = τ∗(α∗)
(

1− 1
δ
E
[
Φ
( Θ
τ∗(α∗)

− α∗
)

+ Φ
(
− Θ
τ∗(α∗)

− α∗
)])
− β∗ . (9.1.15)

The function x 7→ Φ(x− α∗) + Φ(−x− α∗) is even, increasing on R≥0. Therefore

E
[
Φ
( Θ
τ∗(α∗)

− α∗
)

+ Φ
(
− Θ
τ∗(α∗)

− α∗
)]
≤ s+ 2(1− s)Φ(−α∗) = 1

2M
′′
s (α∗) .

Combining this inequality with (9.1.15) leads to (9.1.14).
Proposition 9.1.2

Let s < smax(δ) and assume that P(Θ 6= 0) ≤ s. Then, there exists a constant τmax =
τmax(δ, λmin, λmax, s, σ) such that for all λ ∈ [λmin, λmax],

σ ≤ τ∗(β∗(λ)) ≤ τmax .

Proof. Let (β∗, τ∗) be the unique optimal couple and recall α∗ = λ/β∗. We distinguish 3 cases:

Case 1: α∗ ≥ α0. In that case 1
2M

′′
s (α∗) ≤Ms(α0) < δ. The inequality (9.1.14) gives

τ∗(β∗)(δ −
1
2M

′′
s (α∗)) ≤ β∗ ≤ βmax ,

which gives τ∗(β∗) ≤ βmax
δ−Ms(α0) .
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Case 2: α∗ ∈ [(α1 + α0)/2, α0]. In that case δ − Ms(α∗) ≥ c > 0, for some constant
c = c(δ, s) > 0. Now, by (9.1.12)

β∗τ∗(β∗)(δ −Ms(α∗)) ≤ δ(σ2 + β2
∗) .

Therefore,
τ∗ ≤

δ

cβmin
(σ2 + β2

max) .

Case 3: α∗ < (α1 + α0)/2. In that case M ′s(α∗) ≤ −c, for some constant c = c(δ, s) > 0.
Consequently by (9.1.13) we get

τ∗(β∗) ≤
σ2δ

λc
.

9.1.3 Dependency in λ

Proposition 9.1.3

• The mapping λ 7→ β∗(λ) is C∞ and 2α−1
min-Lipschitz on R>0.

• The mapping λ 7→ τ∗(λ) is C∞ and M -Lipschitz on [λmin, λmax], for some constant
M(Ω) > 0.

Proof. The first point has already been by Proposition 9.1.1. λ 7→ τ∗(λ) is the composition of
the mappings λ 7→ α∗(λ) and α 7→ τ∗(α), that are both C∞ by Lemma 9.1.5 and Proposition 9.1.1.
Compute the derivative:

∂τ∗
∂λ

(λ) = ∂α∗
∂λ

(λ)∂τ∗
∂α

(α∗(λ)) .

Recall that α∗(λ) = λ/β∗(λ). Thus∣∣∣∣∂α∗∂λ (λ)
∣∣∣∣ =

∣∣∣∣ 1
β∗(λ) −

∂β∗
∂λ

(λ) λ

β∗(λ)2

∣∣∣∣ ≤ β−1
min + 2α−1

minλmaxβ
−2
min .

By Lemma 9.1.5, we have ∣∣∣∣∂τ∗∂α (α∗(λ))
∣∣∣∣ ≤ (α∗(λ) + 1)τ∗(α∗)

3

δσ2 .

Since by Theorem 9.1.2, τ∗(α∗) ≤ τmax(Ω) and α∗ ≤ λmax/βmin(Ω), the derivative of τ∗ with
respect to λ is bounded on [λmin, λmax].

9.2 Study of Gordon’s optimization problem
for ŵλ

In this section we study Lλ defined by (8.5.3). Define, for w ∈ RN and β ≥ 0

`λ(w, β) =
√‖w‖2

n
+ σ2 ‖h‖√

n
− 1
n
gTw + g′σ√

n

 β − 1
2β

2 + λ

n
|w + θ?| − λ

n
|θ?| . (9.2.1)
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So that Lλ(w) = maxβ≥0 `λ(w, β). Let us define the vector wλ ∈ RN by

wλ,i = η

(
θ?i + τ∗(λ)gi,

τ∗(λ)λ
β∗(λ)

)
− θ?i . (9.2.2)

The goal of this section is to prove that, with high probability, the minimizer of Lλ is close
to wλ and that Lλ is strongly convex around wλ.
Proposition 9.2.1

Lλ admits almost surely a unique minimizer w∗λ on RN .

Proof. Lλ is a convex function that goes to +∞ at infinity, so it admits minimizers over RN .
We distinguish two cases:

Case 1: there is a minimizer w such that
√
‖w‖2
n + σ2 ‖h‖√

n
− 1

ng
Tw + g′σ√

n
> 0.

In that case, there exist a neighborhood Ow of w such that for all w′ ∈ Ow

a(w′) :=

√
‖w′‖2
n

+ σ2 ‖h‖√
n
− 1
n
gTw′ + g′σ√

n
> 0 .

Thus for all w′ ∈ Ow, Lλ(w′) = 1
2a(w′)2 + λ

n |w
′ + θ?| − λ

n |θ
?|. Recall that the composition of

a strictly convex function and a strictly increasing function is strictly convex. Lλ is therefore
strictly convex on Ow because a is strictly convex and remains strictly positive on Ow and be-
cause x > 0 7→ x2 is strictly increasing. w is thus the only minimizer of Lλ.

Case 2: for all minimizer w we have
√
‖w‖2
n + σ2 ‖h‖√

n
− 1

ng
Tw + g′σ√

n
≤ 0.

Let w be a minimizer of Lλ. The optimality condition gives

−1
λ

√‖w‖2
n

+ σ2 ‖h‖√
n
− 1
n
gTw + g′σ√

n


+

 w√
‖w‖2
n + σ2

‖h‖√
n
− g

∈ ∂|θ? + w|.

We obtain then 0 ∈ ∂|θ? + w| which implies w = −θ?: Lλ has a unique minimizer.

9.2.1 Local stability of Gordon’s optimization

Theorem 9.2.1
There exists constants γ, c, C > 0 that only depend on Ω such that for all θ? ∈ D, all
λ ∈ [λmin, λmax] and all ε ∈ (0, 1]

P
(
∃w ∈ RN ,

1
N
‖w − wλ‖2 > ε and Lλ(w) ≤ min

v∈RN
Lλ(v) + γε

)
≤ C

ε
e−cnε

2
.

We deduce from Theorem 9.2.1 that for all ε ∈ (0, 1] with probability at least 1 −
Cε−1e−cnε

2 , 1
N
‖w∗λ − wλ‖2 ≤ ε. From this we deduce easily that with the same probability

|Lλ(w∗λ)− Lλ(wλ)| ≤Mε, for some constant M > 0, which gives by Proposition 9.6.1:
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Corollary 9.2.1
Define

L∗(λ) = ψλ(β∗(λ), τ∗(λ)) . (9.2.3)

The exists constants c, C > 0 that only depend on Ω such that

P
(∣∣∣∣min
w∈RN

Lλ(w)− L∗(λ)
∣∣∣∣ ≥ ε

)
≤ C

ε
e−ncε

2
.

9.2.2 Proof of Theorem 9.2.1

Proposition 9.2.2
For all R > 0 there exists constants c, C > 0 that only depend on (Ω, R), such that for

all ε ∈ (0, 1],

∀θ? ∈ D, ∀λ ∈ [λmin, λmax], P
(
Lλ(wλ) ≤ min

‖w‖≤
√
nR
Lλ(w) + ε

)
≥ 1− C

ε
e−cnε

2
.

Proof. Notices that it suffices to proves the proposition for ε smaller than some constant. Let
θ? ∈ D, λ ∈ [λmin, λmax]. Let R > 0 and ε ∈

(
0,min(1, σ2/2)

]
. Define

`◦λ(w, β) =

√‖w‖2
n

+ σ2 − 1
n
gTw

β − 1
2β

2 + λ

n
|w + θ?| − λ

n
|θ?| .

On the event {∣∣∣∣ 1n‖h‖2 − 1
∣∣∣∣ ≤ ε}⋂{∣∣∣∣g′σ√n

∣∣∣∣ ≤ ε} , (9.2.4)

which has probability at least 1− Ce−cnε2 , we have, for all w ∈ B(0, R
√
n) and β ∈ [0, βmax]:

|`λ(w, β)− `◦λ(w, β)| = β

√
‖w‖2
n

+ σ2
∣∣∣∣‖h‖√n − 1

∣∣∣∣+ β

∣∣∣∣g′σ√n
∣∣∣∣

≤ βmax
√
σ2 +R2

∣∣∣∣ 1n‖h‖2 − 1
∣∣∣∣+ βmaxε

≤ βmax(
√
σ2 +R2 + 1)︸ ︷︷ ︸
K

ε .

For simplicity we write (β∗, τ∗) = (β∗(λ), τ∗(λ)). We have on the event (9.2.4):

min
‖w‖≤R

√
n
Lλ(w) = min

‖w‖≤R
√
n

max
β≥0

`λ(w, β) ≥ min
‖w‖≤R

√
n
`λ(w, β∗)

≥ min
‖w‖≤R

√
n
`◦λ(w, β∗)−Kε .

Using the fact that for w ∈ B(0, R
√
n)√

‖w‖2
n

+ σ2 = min
σ≤τ≤

√
σ2+R2


‖w‖2
n + σ2

2τ + τ

2

 ,
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we obtain that

min
‖w‖≤R

√
n
`◦λ(w, β∗) =

min
σ≤τ≤

√
σ2+R2

{
β∗
2

(
σ2

τ
+τ
)
− β2

∗
2 + 1

n
min

‖w‖≤R
√
n

{
β∗
2τ ‖w‖

2 − β∗gTw + λ|w + θ?| − λ|θ?|
}}

.

For all τ ∈ [σ,
√
σ2 +R2] the function

g 7→ min
‖w‖≤R

√
n

{
β∗
2τ ‖w‖

2 − β∗gTw + λ|w + θ?| − λ|θ?|
}

is βmaxR
√
n-Lipschitz. Therefore

F(τ, g) = β∗
2

(
σ2

τ
+ τ

)
− β2

∗
2 + 1

n
min

‖w‖≤R
√
n

{
β∗
2τ ‖w‖

2 − β∗gTw + λ|w + θ?| − λ|θ?|
}

is β2
maxR

2n−1-sub-Gaussian. Therefore there exists constants C, c > 0 such that for all τ ∈
[σ,
√
σ2 +R2], we have

P (|F(τ, g)− EF(τ, g)| > ε) ≤ Ce−cnε2 .

F(·, g) is almost surely a βmax(1+ R2

σ2 )-Lipschitz function on [σ,
√
σ2 +R2]. Therefore, by an ε-net

argument one can find constants C, c > 0 that only depend on (Ω, R), such that for all ε > 0 the
event  sup

τ∈[σ,
√
σ2+R2]

|F(τ, g)− EF(τ, g)| ≤ ε

 (9.2.5)

has probability at least 1 − C
ε e
−cnε2 . On the event (9.2.5) we have then min

τ∈[σ,
√
σ2+R2]

F(τ, g) ≥

min
τ∈[σ,

√
σ2+R2]

E [F(τ, g)]− ε. Notice that for all τ > 0 we have

1
n
E
[

min
‖w‖≤R

√
n

{
β∗
2τ ‖w‖

2 − β∗gTw + λ|w + θ?| − λ|θ?|
}]

≥ 1
n

N∑
i=1

E
[

min
wi∈R

{
β∗
2τ w

2
i − β∗giwi + λ|wi + θ?i | − λ|θ?i |

}]
= 1
δ
E
[
min
w∈R

{
β∗
2τ w

2 − β∗Zw + λ|w + Θ| − λ|Θ|
}]

,

where the last expectation is with respect (Θ, Z) ∼ µ̂θ?⊗N (0, 1). Consequently on the event (9.2.4)
and (9.2.5), we have

(1 +K)ε+ min
‖w‖≤R

√
n
Lλ(w) ≥ min

σ≤τ≤
√
σ2+R2

ψλ(β∗, τ) ≥ min
σ≤τ

ψλ(β∗, τ) = ψλ(β∗, τ∗) .

By Proposition 9.6.1 we have that

ψλ(β∗, τ∗) ≥ Lλ(wλ)− ε ,

with probability at least 1 − Ce−cnε2 . Then, for all ε ∈ (0, 1) we have with probability at least
1− C

ε e
−cnε2

min
‖w‖≤R

√
n
Lλ(w) + (K + 2)ε ≥ Lλ(wλ) .
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Lemma 9.2.1
Let f be a convex function on RN . Let w ∈ RN and r > 0. Suppose that f is γ-strongly
convex on the ball B(w, r), for some γ > 0. Assume that

f(w) ≤ min
x∈B(w,r)

f(x) + ε ,

for some ε ≤ r2γ
8 . Then f admits a unique minimizer x∗ over RN . We have x∗ ∈ B(w, r)

and therefore
‖x∗ − w‖2 ≤ 2

γ
ε .

Moreover, for every x ∈ RN such that f(x) ≤ min f + ε we have ‖x− w‖2 ≤ 8
γ
ε.

Proof. f is convex on B(w, r), it admits therefore a minimizer x∗ on B(w, r). By strong convexity
we have

‖x∗ − w‖2 ≤ 2
γ
ε ≤ r2

4 .

Consequently, x∗ is in the interior of B(w, r). By strong convexity, x∗ is then the unique minimizer
of f over RN . By strong convexity, for any x outside of B(w, r) we have

f(x) > f(x∗) + 1
2γ
(
r

2

)2
≥ f(x∗) + ε .

Consequently, if f(x) ≤ min f + ε then x ∈ B(w, r) and thus ‖x− x∗‖2 ≤ 2
γ ε.

Proof of Theorem 9.2.1. Let t = min( 1
16βmin, σ). By Lemma 9.6.1 the event

{ ∣∣∣∣∣‖wλ‖2n
− E‖wλ‖2

n

∣∣∣∣∣ ≤ t2, gTwλ
n
≤ E

[
gTwλ
n

]
+ t, (9.2.6)

‖g‖ ≤ 2
√
N,

∣∣∣σg′√
n

∣∣∣ ≤ βmin
4 , (1− βmin

8τmax
) ≤ ‖h‖√

n
≤ 2

}
has probability at least 1− Ce−cn, for some constants C, c > 0. On the event (9.2.6)√

‖wλ‖2
n

+ σ2 ≥

√
E‖wλ‖2

n
+ σ2 − t2 ≥ τ∗ − t .

Therefore √
‖wλ‖2
n

+ σ2 ‖h‖√
n
≥ ‖h‖√

n
τ∗ −

‖h‖√
n
t ≥ τ∗ −

βmin
8 − 2t ≥ τ∗ −

βmin
4 .

Consequently, on the event (9.2.6) we have√
‖wλ‖2
n

+ σ2 ‖h‖√
n
− 1
n
gTwλ + σg′√

n
≥ τ∗ −

1
n
E
[
gTwλ

]
− 3

4βmin ≥
1
4βmin ,

because τ∗ − 1
nE[gTwλ] = β∗ ≥ βmin. Moreover, on the event (9.2.6) the function

f : w 7→

√
‖w‖2
n

+ σ2 ‖h‖√
n
− 1
n
gTw + g′σ√

n
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is 2
√
N
n + 2√

n
-Lipschitz. We have seen above that on (9.2.6), f(wλ) ≥ 1

4βmin. Thus we can find a
constant r > 0 such that on the event (9.2.6) we have for all w ∈ B(wλ, r

√
n)

f(w) > 1
8βmin .

By Lemma 9.6.14, the function f is a
n -strongly convex on B(wλ, r

√
n), for some constant a > 0.

For all w ∈ B(wλ, r
√
n) we have

Lλ(w) = 1
2f(w)2 + λ

n
(|w + θ?| − |θ?|) .

Compute the Hessian for w ∈ B(wλ, r
√
n):

∇2
(1

2f
2
)
(w) = f(w)∇2f(w) +∇f(w)∇f(w)T � aβmin

8n IdN ,

which means that L is γ
n -strongly convex on B(wλ, r

√
n), for some constant γ > 0.

Notice that it suffices to prove Theorem 9.2.1 for ε ∈ (0, q] for some constant q > 0. Let
ε ∈ (0, γr

2

8 ). Let now apply Proposition 9.2.2 with R = τmax + r: with probability at least
1− C

ε e
−cnε2 {

Lλ(wλ) ≤ min
‖w‖≤R

√
n
Lλ(w) + ε

}
. (9.2.7)

Notice that on the event (9.2.6),

‖wλ‖2
n
≤ E

[
‖wλ‖2
n

]
+ t2 ≤ E

[
‖wλ‖2
n

]
+ σ2 = τ2

∗ ≤ τ2
max .

Therefore, on (9.2.6), B(wλ, r
√
n) ⊂ B(0, R

√
n). Using then (9.2.7) we get

Lλ(wλ) ≤ min
w∈B(wλ,r

√
n)
Lλ(w) + ε .

Consequently, on the events (9.2.6) and (9.2.7) that have probability at least 1 − C
ε e
−cnε2 ,

Lemma 9.2.1 gives that for all w ∈ RN such that Lλ(w) ≤ min
v∈RN

Lλ(v) + ε we have ‖wλ − w‖2 ≤
8n
γ ε.

9.3 Empirical distribution and risk of the Lasso
9.3.1 Proofs of local stability of the Lasso cost

Application of Gordon’s min-max Theorem

Proposition 9.3.1
There exists constants c, C > 0 that only depend on Ω such that for all closed set
D ⊂ RN and for all ε ∈ (0, 1],

P
(

min
w∈D
Cλ(w) ≤ min

w∈RN
Cλ(w) + ε

)
≤ 2P

(
min
w∈D

Lλ(w) ≤ min
w∈RN

Lλ(w) + 3ε
)

+ C

ε
e−cnε

2
.

In order to prove this, we start by showing that the optimal Lasso cost concentrates
around L∗(λ).
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Proposition 9.3.2
There exists constants c, C > 0 that only depend on Ω such that for all closed set
D ⊂ RN and for all ε ∈ (0, 1],

P
(∣∣∣∣ min

w∈RN
Cλ(w)− L∗(λ)

∣∣∣∣ ≥ ε
)
≤ C

ε
e−cnε

2
.

Proof. By Corollary 8.5.1, we have

P
(

min
w∈RN

Cλ(w)− L∗(λ) ≥ ε
)
≤ 2P

(
min
w∈RN

Lλ(w)− L∗(λ) ≥ ε
)
≤ C

ε
e−cnε

2
,

where the last inequality comes from Corollary 9.2.1. The bound of the probability of the converse
inequality is proved analogously.

Proof of Proposition 9.3.1. Recall that L∗(λ) is defined by (9.2.3). Let D ⊂ RN be a
closed set.

P
(

min
w∈D
Cλ(w) ≤ min

w∈RN
Cλ(w) + ε

)
≤ P

(
min
w∈D
Cλ(w) ≤ min

w∈RN
Cλ(w) + ε and min

w∈RN
Cλ(w) ≤ L∗(λ) + ε

)
+ P

(
min
w∈RN

Cλ(w) > L∗(λ) + ε

)
≤ P

(
min
w∈D
Cλ(w) ≤ L∗(λ) + 2ε

)
+ C

ε
e−cnε

2
,

where we used Proposition 9.3.2 above. We can now apply the first point of Corollary 8.5.1 to
obtain:

P
(

min
w∈D
Cλ(w) ≤ L∗(λ) + 2ε

)
≤ 2P

(
min
w∈D

Lλ(w) ≤ L∗(λ) + 2ε
)
. (9.3.1)

We thus get

P
(

min
w∈D
Cλ(w) ≤ min

w∈RN
Cλ(w) + ε

)
≤ 2P

(
min
w∈D

Lλ(w) ≤ L∗(λ) + 2ε
)

+ C

ε
e−cnε

2

≤ 2P
(

min
w∈D

Lλ(w) ≤ min
w∈RN

Lλ(w) + 3ε
)

+ 2P
(

min
w∈RN

Lλ(w) < L∗(λ)− ε
)

+ C

ε
e−cnε

2

≤ 2P
(

min
w∈D

Lλ(w) ≤ min
w∈RN

Lλ(w) + 3ε
)

+ C

ε
e−cnε

2
,

for some constants c, C > 0, because of Corollary 9.2.1.

Local stability of the empirical distribution of the Lasso estimator: proof of
Theorem 8.5.3

For w ∈ RN , let µ0(w) be the probability distribution over R2 defined by

µ̂0(w) = 1
N

N∑
i=1

δ(wi+θ?i ,θ
?
i )

Theorem 8.5.3 follows from Proposition 9.3.1 and the following Lemma.
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Lemma 9.3.1
Assume that D = Fp(ξ) for some ξ, p > 0. There exists constants γ, c, C > 0 that

depend only on Ω, such that for all ε ∈ (0, 1
2 ] we have

P
(

min
w∈Dε

Lλ(w) ≤ min
w∈RN

Lλ(w) + 3γε
)
≤ Cε−max(1,a) exp

(
−cNε2εa log(ε)−2

)
,

where Dε =
{
w ∈ RN

∣∣∣W2(µ̂0(w), µ∗λ)2 ≥ ε
}

and a = 1
2 + 1

p
.

Proof. By Theorem 9.2.1 and Proposition 9.6.2 there exists constants γ, c, C > 0 such that for
all ε ∈ (0, 1

2 ] the event{
∀w ∈ RN , Lλ(w) ≤ min

v∈RN
Lλ(v) + 3γε⇒ 1

N
‖w−wλ‖2 ≤

ε

5
}⋂{

W2
(
µ∗λ, µ̂0(wλ)

)2 ≤ ε

4
}

(9.3.2)

has probability at least

1− Cε−1e−cnε
2 − Cε−a exp

(
−cNε2εa log(ε)−2

)
≥ 1− Cε−max(1,a) exp

(
−cNε2εa log(ε)−2

)
,

where a = 1
2 + 1

p . On the event (9.3.2), we have for all w ∈ Dε:

1
N
‖w − wλ‖2 ≥W2

(
µ̂0(w), µ̂0(wλ)

)2 ≥ (W2(µ̂0(w), µ∗λ)−W2(µ∗λ, µ̂0(wλ))
)2
≥ ε

4 .

This gives that on the event (9.3.2), for all w ∈ Dε, Lλ(w) > min
v∈RN

Lλ(v) + 3γε. The intersection

of (9.3.2) with the event
{

min
w∈Dε

Lλ(w) ≤ min
w∈RN

Lλ(w) + 3γε
}

is therefore empty: the lemma is
proved.

Local stability of the risk of the Lasso estimator

We prove here the analog of Theorem 8.5.3 for the risk of the Lasso estimator.

Theorem 9.3.1
for the risk of the Lasso estimator. There exists constants C, c, γ > 0 that only depend

on Ω such that for all ε ∈ (0, 1]

sup
λ∈[λmin,λmax]

sup
θ?∈D

P
(
∃θ ∈ RN,

( 1
N
‖θ − θ?‖2−R∗(λ)

)2
≥ ε and Lλ(θ) ≤ minLλ+γε

)
≤ C

ε
e−cNε

2
.

Theorem 9.3.1 follows from Proposition 9.3.1 and the following Lemma.
Lemma 9.3.2

There exists constants γ, c, C > 0 that only depend on Ω such that for all ε ∈ (0, 1] we
have

P
(

min
w∈Dε

Lλ(w) ≤ min
w∈RN

Lλ(w) + 3γε
)
≤ C

ε
e−cnε

2
,

where Dε =
{
w ∈ RN

∣∣∣∣(‖w‖ −√NR∗(λ)
)2
≥ Nε

}
.
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Proof. By Theorem 9.2.1 and Lemma 9.6.1 there exists constants γ, c, C > 0 such that for all
ε ∈ (0, 1] the event{
∀w ∈ RN , Lλ(w) ≤ min

v∈RN
Lλ(v) + 3γε⇒ 1

N
‖w − wλ‖2 ≤

ε

5
}⋂{(

‖wλ‖ −
√
NR∗(λ)

)2 ≤ N ε

4
}

(9.3.3)
has probability at least 1− C

ε e
−cnε2 . On the event (9.3.3), we have for all w ∈ Dε:

1
N
‖w − wλ‖2 ≥

1
N

(
‖w‖ − ‖wλ‖

)2 ≥ 1
N

(√
Nε− 1

2
√
Nε
)2 ≥ ε

4 .

This gives that on the event (9.3.3), for all w ∈ Dε, Lλ(w) > min
v∈RN

Lλ(v) + 3γε. The intersection

of (9.3.3) with the event
{

min
w∈Dε

Lλ(w) ≤ min
w∈RN

Lλ(w) + 3γε
}

is therefore empty: the lemma is
proved.

9.3.2 Uniform control over λ: proofs of Theorems 8.3.1 and 8.3.2-
(8.3.8)

Control of the `1-norm of the Lasso estimator

Proposition 9.3.3

Let ξ > 0, p > 0. Define K = 2ξ + 2δσ2

λmin
. Then

∀θ? ∈ Fp(ξ), P
(
∀λ ≥ λmin,

1
N

∣∣∣ŵλ∣∣∣ ≤ KN (1/p−1)+

)
≥ 1− e−n/2 .

Proof. Since Fp′(ξ) ⊂ Fp(ξ) for p′ ≥ p, it suffices to prove the Proposition for p ∈ (0, 1]: we
suppose now to be in that case. With probability at least 1 − e−n/2 we have ‖z‖ ≤ 2

√
n and

therefore minLλ ≤ Lλ(θ?) ≤ 2σ2 + λ
n |θ

?| for all λ ≥ 0. One has thus with probability at least
1− e−n/2,

∀θ? ∈ F1(ξ), ∀λ > 0, λ

n
|θ̂λ| ≤ Lλ(θ̂λ) ≤ 2σ2 + λ

n
|θ?| ,

which implies that 1
N |θ̂λ| ≤

2δσ2

λ + ξN1/p−1 since 1
N |θ

?| ≤ 1
N

(∑N
i=1 |θ?i |p

)1/p ≤ ξN1/p−1.
Proposition 9.3.4

Assume that 0 < δ < 1 and σ > 0. Let s < smax(δ). Then, there exists constants
c,K > 0 such that

∀θ? ∈ F0(s), P
(
∀λ ∈ [λmin, λmax], 1

n

∣∣∣|ŵλ + θ?| − |θ?|
∣∣∣ ≤ K

)
≥ 1− 2e−cn .

Proposition 9.3.4 follows from the arguments of [208] that we reproduce below.
Lemma 9.3.3

Suppose that θ? ∈ F0(s) for some s < smax(δ). There exists constants c, a > 0 that
only depend on (δ, s) such that with probability at least 1− e−cn, for all w ∈ RN such
that |w + θ?| − |θ?| ≤ 0 we have

‖Xw‖2 ≥ a‖w‖2 .
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Proof. Define
K = D

(
| · |, θ?

)
=
⋃
r>0

{
u ∈ RN

∣∣∣ |θ? + ru| ≤ |θ?|
}
,

the descent cone of the `1-norm at θ?. Define

νmin(X,K) = inf
{
‖Xx‖

∣∣x ∈ K, ‖x‖ = 1
}
,

Let ω(K) be the Gaussian width of K:

ω(K) = E
[

sup
u∈K,‖u‖=1

〈g, u〉
]
,

where the expectation is taken with respect to g ∼ N (0, IdN ). The following result goes back to
Gordon’s work, [93], [94]. It can be found in for instance [208] (Proposition 3.3).
Proposition 9.3.5

For all t ≥ 0,

P
(√

n νmin(X,K) ≥
√
n− 1− ω(K)− t

)
≥ 1− e−t2/2 .

Recall that Ms(α) = s(1 + α2) + 2(1 − s)
(
(1 + α2)Φ(−α) − αφ(α)

)
is the “critical function”

studied in Section 9.1.2.
Lemma 9.3.4

For all α ≥ 0

ω(K)2 ≤ NMs(α) = N
(
s(1 + α2) + 2(1− s)

(
(1 + α2)Φ(−α)− αφ(α)

))
.

Proof. Let v ∈ ∂|θ?|. By convexity, we have for all w ∈ K we have 〈w, v〉 ≤ |w + θ?| − |θ?| ≤ 0.
Now for all x ∈ RN and α ≥ 0

‖x− αv‖ = sup
‖w‖=1

〈x− αv,w〉 ≥ sup
w∈K, ‖w‖=1

{
〈w, x〉 − 〈w,αv〉

}
≥ sup

w∈K, ‖w‖=1
〈w, x〉 . (9.3.4)

Let S0 denote the support of θ?. Let g ∼ N (0, IdN ), α ≥ 0 and define

vi =
{

sign(θ?i ) if i ∈ S0 ,

α−1gi1(|gi| ≤ α) + sign(gi)1(|gi| > α) otherwise.

Notice that v ∈ ∂|θ?|, therefore by (9.3.4):

ω(K)2 ≤ E
[(

sup
u∈K,‖u‖=1

〈g, u〉
)2
]
≤ E

[
‖g − αv‖2

]

≤ E

∑
i∈S0

(gi − αsign(θ?i ))2 +
∑
i 6∈S0

η(gi, α)2


≤ Ns(1 + α2) + 2N(1− s)((1 + α2)Φ(−α)− αφ(α)) .

Since s ≤ smax(δ), there exists (see Lemma 9.1.10) α ≥ 0 and t ∈ (0, 1) such that Ms(α) ≤
δ(1− t)2. Consequently ω(K) ≤

√
n(1− t). Therefore, there exists some constants a, c > 0 that

only depends on s and δ such that

P (νmin(X,K) ≥ a) ≥ 1− e−cn .
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On the above event, for all w ∈ K, ‖Xw‖2 ≥ a2‖w‖2, which proves the Lemma.

Proof of Proposition 9.3.4. Let us work on the event{
∀w ∈ RN , |w+θ?|−|θ?|≤0⇒

∥∥Xw∥∥2≥a‖w‖2
} ⋂ {

‖z‖ ≤ 2
√
n
}
, (9.3.5)

which has probability at least 1− 3e−cn/2. Let λ ∈ [λmin, λmax]. Notice that on the event (9.3.5)
we have min Cλ ≤ Cλ(0) ≤ 2σ2 and therefore

λ

n

(
|ŵλ + θ?| − |θ?|

)
≤ 2σ2 .

We distinguish two cases:

Case 1: |ŵλ + θ?| − |θ?| ≥ 0. In that case we obtain 1
n

∣∣|ŵλ + θ?| − |θ?|
∣∣ ≤ 2σ2

λmin
.

Case 2: |ŵλ + θ?| − |θ?| ≤ 0. In that case

2σ2 ≥ Cλ(ŵλ) ≥ 1
2n ‖Xŵλ − σz‖

2 − λ

n
|ŵλ| ≥

1
4n‖Xŵλ‖

2 − σ2

2n‖z‖
2 − λ

√
N

n
‖ŵλ‖

≥ a

2n‖ŵλ‖
2 − 2σ2 − λ√

δn
‖ŵλ‖ .

This implies that there exists a constant C = C(s, δ, σ) > 0 such that 1√
n
‖ŵλ‖ ≤ C(1 + λ). One

conclude
−Cδ−1/2(1 + λmax) ≤ − 1

n
|ŵλ| ≤

1
n

(
|ŵλ + θ?| − |θ?|

)
≤ 0 .

Lipschitz continuity of the limiting risk and empirical distribution

Proposition 9.3.6
The function λ 7→ µ∗λ is M -Lipschitz on [λmin, λmax] with respect to the Wasserstein

distance W2, for some constant M = M(Ω) > 0.

Proof. Let λ1, λ2 ∈ [λmin, λmax].

W2(µ∗λ1 , µ
∗
λ2)2 ≤ E

[
(η(Θ + τ∗(λ1)Z,α∗(λ1)τ∗(λ1))− η(Θ + τ∗(λ2)Z,α∗(λ2)τ∗(λ2)))2

]
≤ 2E

[
(τ∗(λ1)Z − τ∗(λ2)Z)2 + (α∗(λ1)τ∗(λ1)− α∗(λ2)τ∗(λ2))2

]
≤ 2 (τ∗(λ1)− τ∗(λ2))2 + 2(α∗(λ1)τ∗(λ1)− α∗(λ2)τ∗(λ2))2

≤ 2(1 + α2
max) (τ∗(λ1)− τ∗(λ2))2 + 2τ2

max(α∗(λ1)− α∗(λ2))2 .

Since by Proposition 9.1.3 the functions λ 7→ α∗(λ) and λ 7→ τ∗(λ) are both M -Lipschitz on
[λmin, λmax], for some constant M = M(Ω) > 0, we obtain:

W2(µ∗λ1 , µ
∗
λ2)2 ≤ 2M2(1 + α2

max + τ2
max)(λ1 − λ2)2 ,

which proves the Lemma.
Proposition 9.3.7

The function λ 7→ R∗(λ) = δ(τ∗(λ)2 − σ2) is M -Lipschitz on [λmin, λmax], for some
constant M = M(Ω) > 0.

Proof. This is a consequence of Proposition 9.1.3.
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Proofs of Theorems 8.3.1 and 8.3.2

Lemma 9.3.5
Assume that D is either F0(s) or Fp(ξ) for some s < smax(δ) and ξ ≥ 0, p > 0. Define

q =

(1/p− 1)+ if D = Fp(ξ) ,
0 if D = F0(s) .

Then there exists constants K,C, c > 0 that depend only on Ω such that for all θ? ∈ D

P
(
∀λ, λ′∈ [λmin, λmax], Lλ′(θ̂λ) ≤ min

x∈RN
Lλ′(x) +KN q|λ− λ′|

)
≥ 1− Ce−cn. (9.3.6)

Proof. K = K(Ω) > 0 be a constant such that for all θ? ∈ D, the event{
∀λ ∈ [λmin, λmax], 1

n

∣∣|θ̂λ| − |θ?|∣∣ ≤ KN q
}

(9.3.7)

has probability at least 1 − Ce−cn. Such K exists by Propositions 9.3.3 and 9.3.4. On the
event (9.3.7) we have for all λ, λ′ ∈ [λmin, λmax]:

Lλ′(θ̂λ) = Lλ(θ̂λ) + (λ′ − λ) 1
n
|θ̂λ|

≤ Lλ(θ̂λ′) + (λ′ − λ) 1
n
|θ̂λ| = Lλ′(θ̂λ′) + 1

n
(λ− λ′)

(
|θ̂λ′ | − |θ̂λ|

)
≤ min

θ∈RN
Lλ′(θ) + 1

n
|λ′ − λ|

(∣∣|θ̂λ′ | − |θ?|∣∣+ ∣∣|θ̂λ| − |θ?|∣∣)
≤ min

θ∈RN
Lλ′(θ) + 2KN q|λ− λ′| .

Theorem 8.3.1 and Theorem 8.3.2-(8.3.8) are proved the same way.
Proof of Theorem 8.3.1. Let γ > 0 as given by Theorem 8.5.3 and let K = K(Ω) > 0 as
given by Lemma 9.3.5. Let M = M(Ω) > 0 such that λ 7→ µ∗λ is M -Lipschitz with respect to the
Wasserstein distance W2 on [λmin, λmax], as given by Proposition 9.3.6.

Let ε ∈ (0, 1] and define ε′ = min
(

γε
2KNq ,

ε
M+1

)
. Let k =

⌈
(λmax − λmin)/ε′

⌉
. Define, for

i = 0, . . . , k:
λi = λmin + iε′ .

By Theorem 8.5.3, the event{
∀i ∈ {1 . . . k}, ∀θ ∈ RN, Lλi(θ)≤ min

x∈RN
Lλi(x)+γε ⇒ W2(µ̂(θ,θ?), µ

∗
λi)

2≤ε
}

(9.3.8)

has probability at least 1 − CN qε−max(1,a)−1e−cNε
2εa log(ε)−2 . Therefore, on the intersection of

the event in (9.3.6) and the event (9.3.8) we have for all λ ∈ [λmin, λmax]

Lλi(θ̂λ) ≤ min
x∈RN

Lλi(x) + 2KN q|λ− λi| ≤ min
x∈RN

Lλi(x) + γε ,

where 1 ≤ i ≤ k is such that λ ∈ [λi−1, λi]. This implies (since we are on the event (9.3.8)) that
W2
(
µ̂(θ̂λ,θ?), µ

∗
λi

)2 ≤ ε. We conclude by

W2
(
µ̂(θ̂λ,θ?), µ

∗
λ

)2 ≤ 2W2
(
µ̂(θ̂λ,θ?), µ

∗
λi

)2 + 2W2(µ∗λ, µ∗λi)
2 ≤ 2ε+ 2M2(λ− λi)2 ≤ 4ε .
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This proves the Theorem.

Proof of Theorem 8.3.2-(8.3.8). Let γ > 0 as given by Theorem 9.3.1 and let K = K(Ω) > 0
as given by Lemma 9.3.5. Let M = M(Ω) > 0 such that λ 7→ R∗(λ) isM -Lipschitz on [λmin, λmax],
as given by Proposition 9.3.7.

Let ε ∈ (0, 1] and define ε′ = min
(

γε
2KNq ,

ε
M+1

)
. Let k =

⌈
(λmax − λmin)/ε′

⌉
. Define, for

i = 0, . . . , k:
λi = λmin + iε′ .

By Theorem 9.3.1, the event{
∀i∈{1 . . . k}, ∀θ∈RN, Lλi(θ)≤ min

x∈RN
Lλi(x)+γε ⇒

( 1
N
‖θ−θ?‖2−R∗(λi)

)2
≤ε
}

(9.3.9)

has probability at least 1− kCε−1e−cNε
2 ≥ 1−CN qε−2e−cNε

2 . Therefore, on the intersection of
the event in (9.3.6) and the event (9.3.9) we have for all λ ∈ [λmin, λmax]

Lλi(θ̂λ) ≤ min
θ∈RN

Lλi(θ) + 2KN q|λ− λi| ≤ min
θ∈RN

Lλi(θ) + γε ,

where 1 ≤ i ≤ k is such that λ ∈ [λi−1, λi]. This implies (since we are on the event (9.3.9)) that(
1
N ‖θ̂λ − θ

?‖2 −R∗(λi)
)2
≤ ε. We conclude by( 1

N
‖θ̂λ − θ?‖2 −R∗(λ)

)2
≤ 2

( 1
N
‖θ̂λ − θ?‖2 −R∗(λi)

)2
+ 2

(
R∗(λi)−R∗(λ)

)2

≤ 2ε+ 2M2(ε′)2 ≤ 4ε .

This proves (8.3.8).

9.4 Study of the Lasso residual: proof of (8.3.9)-
(8.3.10)

This Section is devoted to the proof of (8.3.9)-(8.3.10) from Theorem 8.3.2. Let us define
ûλ = Xŵλ − σz = Xθ̂λ − y .

ûλ is the unique maximizer of

u 7→ min
w∈RN

{
uTXw − σuTz − 1

2‖u‖
2 + λ(|θ? + w| − |θ?|)

}
.

In Section 9.4.2 below, we prove the following Theorem:

Theorem 9.4.1
There exists constants c, C > 0 such that for all ε ∈ (0, 1], all θ? ∈ D and all λ ∈

[λmin, λmax]

P
(( 1

n
‖ûλ‖2 − β∗(λ)2

)2
≥ ε

)
≤ C

ε
e−cnε

2
,

and
P
(( 1

n
‖ûλ + σz‖2 − P∗(λ)

)2
≥ ε

)
≤ C

ε
e−cnε

2
.

Theorem 8.3.2-(8.3.9)-(8.3.10) will then be deduced from Theorem 9.4.1 in Section 9.4.2.

204



9.4.1 Study of Gordon’s optimization problem
Recall that g ∼ N (0, IN) and h ∼ N (0, In) are independent standard Gaussian vectors.
Define for (w, u) ∈ RN × Rn,

mλ(w, u) = − 1
n3/2‖u‖g

Tw + 1
n3/2‖w‖h

Tu− σ

n
uTz − 1

2n‖u‖
2 + λ

n

(
|w + θ?| − |θ?|

)
,

and Uλ(u) = minw∈RN mλ(w, u), Ũλ(u) = mλ(wλ, u), where wλ is defined by (9.2.2). Obvi-
ously we have Uλ(u) ≤ Ũλ(u). We write also

uλ = β∗(λ)
τ∗(λ)

(√
τ∗(λ)2 − σ2 h√

n
− σ√

n
z
)
. (9.4.1)

Lemma 9.4.1
There exists constants C, c > 0 such that for all ε ∈ (0, 1] and any λ ∈ [λmin, λmax] we

have with probability at least 1− Ce−cnε2

• Ũλ is 1/n-strongly concave on Rn and admits therefore a unique maximizer u∗λ
over Rn.

• |maxu∈Rn Ũλ(u)− L∗(λ)| ≤ ε, where L∗(λ) is defined by Corollary 9.2.1.

• 1
n
‖u∗λ − uλ‖2 ≤ ε.

Proof. By Lemma 9.6.1 and Lemma 9.6.2, 1
nwT

λg concentrates around s∗(λ)
δ which is greater than

some constant γ > 0. Indeed

s∗(λ) = E
[
Φ
(Θ
τ∗
− α∗

)
+ Φ

(
− Θ
τ∗
− α∗

)]
remains greater than some strictly positive constant while θ? vary in D and λ vary in [λmin, λmax].
By Lemma 9.6.1 we have then that with probability at least 1 − Ce−cn, wT

λg ≥ 0 which implies
that Ũλ is 1/n-strongly concave. Let us compute

max
u∈Rn

Ũλ(u) = max
β≥0

{(∥∥∥ 1
n
‖wλ‖h−

σ√
n
z
∥∥∥− 1

n
gTwλ

)
β − 1

2β
2 + λ

n

(
|wλ + θ?| − |θ?|

)}
= 1

2

(∥∥∥ 1
n
‖wλ‖h−

σ√
n
z
∥∥∥− 1

n
gTwλ

)2

+
+ λ

n

(
|wλ + θ?| − |θ?|

)
.

By the concentration properties of wλ (see Section 9.6.2), have that with probability at least
1−Ce−cnε2 , |maxu∈Rn Ũλ(u)−L∗(λ)| ≤ ε. One verify analogously that Ũλ(uλ) ≥ L∗(λ)− ε with
the same probability, which implies the third point by strong concavity.

9.4.2 Proof of Theorem 9.4.1
Let us only prove the second point since the first one follows from the same arguments.
Let ε ∈ (0, 1] and define

Dε =
{
u ∈ Rn

∣∣∣∣ ∣∣∣ 1√
n
‖u+ σz‖ −

√
P∗(λ)

∣∣∣ ≥ 6ε1/2
}
.

Let us define for (w, u) ∈ RN × Rn:

cλ(w, u) = 1
n
uTXw − σ

n
uTz − 1

2n‖u‖
2 + λ

n

(
|w + θ?| − |θ?|

)
(9.4.2)
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Lemma 9.4.2
We have almost surely

min
w∈RN

max
u∈Rn

cλ(w, u) = max
u∈Rn

min
w∈RN

cλ(w, u) = cλ(ŵλ, ûλ) .

Proof. By definition of ŵλ and ûλ we have

cλ(ŵλ, ûλ) = min
w∈RN

max
u∈Rn

cλ(w, u) ≥ max
u∈Rn

min
w∈RN

cλ(w, u) .

Let us prove the converse inequality. The optimality condition of ŵλ gives that there exists
v ∈ ∂|θ? + ŵλ| such that

XTûλ + λv = XT(Xŵλ − σz) + λv = 0 .

The function w 7→ cλ(w, ûλ) is convex and
1
n
XTûλ + λ

n
v = 0

is a subgradient at ŵλ. Therefore minw∈RN cλ(w, ûλ) = cλ(ŵλ, ûλ), which proves the lemma.

We compute now

P
(
ûλ ∈ Dε

)
= P

(
max
u∈Dε

min
w∈RN

cλ(w, u) ≥ max
u∈Rn

min
w∈RN

cλ(w, u)
)

≤ P
(

max
u∈Dε

min
w∈RN

cλ(w, u) ≥ L∗(λ)− ε
)

+ P
(

max
u∈Rn

min
w∈RN

cλ(w, u) ≤ L∗(λ)− ε
)
.

By Lemma 9.4.2 and Proposition 9.3.2 we can bound

P
(

max
u∈Rn

min
w∈RN

cλ(w, u) ≤ L∗(λ)− ε
)

= P
(

min
w∈RN

Cλ(w) ≤ L∗(λ)− ε
)
≤ C

ε
e−cnε

2
.

Now by the same reasoning than Corollary 8.5.1 (we omit here the details for the sake of
brevity) we have

P
(

max
u∈Dε

min
w∈RN

cλ(w, u) ≥ L∗(λ)− ε
)
≤ 2P

(
max
u∈Dε

min
w∈RN

mλ(w, u) ≥ L∗(λ)− ε
)

= 2P
(

max
u∈Dε

Uλ(u) ≥ L∗(λ)− ε
)
.

Since Uλ ≤ Ũλ we obtain

P
(

max
u∈Dε

min
w∈RN

cλ(w, u) ≥ L∗(λ)− ε
)
≤ 2P

(
max
u∈Dε

Ũλ(u) ≥ L∗(λ)− ε
)
.

Let E be the event of Lemma 9.4.1 above and let us work on the event

E
⋂ {∣∣∣ 1√

n
‖uλ + σz‖ −

√
P∗(λ)

∣∣∣ ≤ ε1/2
}
, (9.4.3)

which has probability at least 1− C
ε
e−cnε

2 (the fact that the second event in the intersection
has this probability follows from standard concentration arguments as in Section 9.6.2).
Let now u ∈ Dε, by the definition of Dε and the event above we have 1√

n
‖u− uλ‖ ≥ 5ε1/2

and thus 1√
n
‖u− u∗λ‖ ≥ 4ε1/2. By 1/n-strong concavity of Ũλ we get

Ũλ(u) ≤ max
u′∈Rn

Ũλ(u′)− 8ε ≤ L∗(λ)− 7ε .

Consequently P
(

max
u∈Dε

Ũλ(u) ≥ L∗(λ)− ε
)
≤ C

ε
e−cnε

2 , which proves the result.
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9.4.3 Uniform control over λ: proof of Theorem 8.3.2-(8.3.9)-
(8.3.10)

Let D be either F0(s) for some s < smax(δ) or Fp(ξ) for some ξ ≥ 0, p > 0. Let q = 0 if
D = F0(s) and q = (1/p− 1)+ if D = Fp(ξ). By Propositions 9.3.3 and 9.3.4 there exists
a constant K = K(Ω) such that the event{

∀λ ∈ [λmin, λmax], 1
n

∣∣∣|ŵλ + θ?| − |θ?|
∣∣∣ ≤ KN q

}
(9.4.4)

has probability at least 1− Ce−cn. Let us fix this constant K and let us write

DK =
{
w ∈ RN

∣∣∣∣ 1
n

∣∣∣|w + θ?| − |θ?|
∣∣∣ ≤ KN q

}
.

We define also

Uλ(u) = min
w∈DK

{ 1
n
uTXw − σ

n
uTz − 1

2n‖u‖
2 + λ

n

(
|w + θ?| − |θ?|

)}
.

Lemma 9.4.3
The function Uλ is 1/n-strongly concave. On the event (9.4.4), ûλ is the (unique)
maximizer of Uλ.

Proof. Let us work on the event (9.4.4) and let λ ∈ [λmin, λmax]. We have, by permutation of
max and min:

max
u∈Rn

Uλ(u) ≤ min
w∈DK

Cλ(w) = Cλ(ŵλ) ,

because on the event (9.4.4), ŵλ (the minimizer of Cλ) is in DK . By the optimality condition of
ŵλ, one verify easily that Uλ(ûλ) = Cλ(ŵλ) which proves the lemma.

Theorem 8.3.2-(8.3.9)-(8.3.10) follow then easily from Theorem 9.4.1 (by an ε-net ar-
gument as in the proof of Theorems 8.3.1 and 8.3.2-(8.3.8), see Section 9.3.2) and the
following Proposition:
Proposition 9.4.1

Let q = 0 if D = F0(s) and q = (1/p − 1)+ if D = Fp(ξ). There exists constants
C, c, κ > 0 such that for all θ? ∈ D the following event{

∀λ, λ′ ∈ [λmin, λmax], 1
n
‖ûλ − ûλ′‖2 ≤ κN q|λ− λ′|

}
has probability at least 1− Ce−cn.

Proof. Let us work on the event (9.4.4), which has probability at least 1 − Ce−cn. Let λ, λ′ ∈
[λmin, λmax]. We have

sup
u∈Rn

∣∣Uλ(u)− Uλ′(u)
∣∣ ≤ sup

w∈DK

∣∣∣λ− λ′
n

(|w + θ?| − |θ?|)
∣∣∣ ≤ KN q|λ− λ′| .

Therefore

Uλ′(ûλ) ≥ Uλ(ûλ)−N qK|λ− λ′| ≥ Uλ(ûλ′)−N qK|λ− λ′|
≥ Uλ′(ûλ′)− 2KN q|λ− λ′| ,

which gives that 1
n‖ûλ − ûλ′‖

2 ≤ 4KN q|λ− λ′| by 1/n-strong concavity.

207



9.5 Study of the subgradient v̂λ
The goal of this section is to analyze the vector

v̂λ = 1
λ
XT(y −Xθ̂λ) ,

which is a subgradient of the `1-norm at θ̂λ. Let us define

B∞(0, 1) =
{
v ∈ RN

∣∣∣∣ ‖v‖∞ ≤ 1
}
.

9.5.1 Main results

Let B =
{
w ∈ RN | |w| ≤ 2|θ?|+5σ2λ−1

minn+K
}

, where K > 0 is some constant (depending
only on Ω) that will be fixed later in the analysis (in fact K is the constant given by
Lemma 9.5.5). Notice that ŵλ ∈ B, with probability at least 1− e−n/2. Define

Vλ(v) = min
w∈B

{
1

2n‖Xw − σz‖
2 + λ

n
vT(θ? + w)− λ

n
|θ?|

}
.

Lemma 9.5.1

With probability at least 1− e−n/2 we have for all λ ≥ λmin

min
w∈RN

Cλ(w) = max
‖v‖∞≤1

Vλ(v)

and v̂λ = −λ−1XT(Xŵλ − σz) is a maximizer of Vλ.

Proof. Let us work on the event {‖z‖ ≤ 2
√
n} which has probability at least 1− e−n/2. On this

event we have ŵλ ∈ B and therefore

min
w∈RN

Cλ(w) = min
w∈B
Cλ(w) = max

‖v‖∞≤1
Vλ(v) ,

where the permutation of the min-max is authorized by Proposition C.2. The optimality condition
of ŵλ gives that

v̂λ = −λ−1XT(Xŵλ − σz) ∈ ∂|θ? + ŵλ| .

Therefore v̂T
λ (ŵλ + θ?) = |ŵλ + θ?|. Using the optimality condition again we obtain

Vλ(v̂λ) = min
w∈B

{1
2‖Xw − σz‖

2 + λv̂T
λ (θ? + w)

}
= 1

2‖Xŵλ − σz‖
2 + λv̂T

λ (θ? + ŵλ)

= 1
2‖Xŵλ − σz‖

2 + λ|θ? + ŵλ| .

Therefore v̂λ achieves the optimal value.

The empirical law of the subgradient

Let ν∗λ be the law of the couple(
− 1
α∗(λ)τ∗(λ)

(
η
(
Θ + τ∗(λ)Z, α∗(λ)τ∗(λ)

)
−Θ− τ∗(λ)Z

)
, Θ

)
, (9.5.1)
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where (Θ, Z) ∼ µ̂θ? ⊗N (0, 1). For v ∈ RN we define

µ̂(v,θ?) = 1
N

N∑
i=1

δ(vi,θ?i ) .

Theorem 9.5.1
Assume that D = Fp(ξ) for some ξ, p > 0. There exists constants C, c > 0 that only

depend on Ω such that for all λ ∈ [λmin, λmax] and all ε ∈ (0, 1
2 ],

sup
θ?∈D

P
(
W2(µ̂(v̂λ,θ?), ν

∗
λ)2 ≥ ε

)
≤ Cε−max(1,a) exp

(
−cNε2εa log(ε)−2

)
,

where a = 1
2 + 1

p
.

Theorem 9.5.1 is proved in Section 9.5.3.

Theorem 9.5.2
Let D be Fp(ξ) for some ξ > 0 and p > 0. For all ε ∈ (0, 1

2 ],

sup
θ?∈D

P
(

sup
λ∈[λmin,λmax]

W2(µ̂(v̂λ,θ?), ν
∗
λ)2 ≥ ε

)
≤ Cε−max(1,a)−1N (1/p−1)+e−cNε

2εa log(ε)−2
,

where a = 1
2 + 1

p
.

Theorem 9.5.2 is deduced from Theorem 9.5.1 in Section 9.5.3.

The norm of the subgradient

Let us define
κ∗(λ) = β∗(λ)2

λ2

(
1 + δ − 2s∗(λ)− δ σ2

τ∗(λ)2

)
. (9.5.2)

Theorem 9.5.3
There exists a constant C, c > 0 such that for all λ ∈ [λmin, λmax] and all ε ∈ (0, 1],

sup
θ?∈D

P
(( 1

N
‖v̂λ‖2 − κ∗(λ)

)2
≥ ε

)
≤ C

ε
e−cnε

2
.

Theorem 9.5.3 is proved in Section 9.5.3. We deduce as before:

Theorem 9.5.4
Let D be either F0(s) for s < smax(δ) or Fp(ξ) for some ξ > 0 and p > 0. There exists

constants C, c > 0 such that for all ε ∈ (0, 1],

sup
θ?∈D

P
(

sup
λ∈[λmin,λmax]

( 1
N
‖v̂λ‖2 − κ∗(λ)

)2
≥ ε

)
≤ C

ε2
N qe−cnε

2
,

where q = 0 if D = F0(s) and q = (1/p− 1)+ if D = Fp(ξ).
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Theorem 9.5.4 is deduced from Theorem 9.5.3 in Section 9.5.3.

Upper bound on the sparsity of the Lasso estimator

Studying v̂λ allows to get an upper-bound on the `0 norm of θ̂λ. Indeed if θ̂λ,i 6= 0 then
|v̂λ,i| = 1: therefore ‖θ̂λ‖0 ≤ #

{
i
∣∣∣ |v̂λ,i| = 1

}
. For this reason, the following results will be

used to prove Theorem 9.6.1 in Section 9.6.4.

Theorem 9.5.5
There exists constants C, c > 0 such that for all λ ∈ [λmin, λmax] and all ε ∈ (0, 1],

sup
θ?∈D

P
( 1
N

#
{
i
∣∣∣ |v̂λ,i| ≥ 1− ε

}
≥ s∗(λ) + 2(1 + αmax)ε

)
≤ C

ε3
e−cnε

6
.

Theorem 9.5.5 is proved in Section 9.5.3.

Theorem 9.5.6
Let D be either F0(s) for s < smax(δ) or Fp(ξ) for some ξ > 0 and p > 0. We have for

all ε ∈ (0, 1],

sup
θ?∈D

P
(
∃λ ∈ [λmin, λmax], 1

N
#
{
i
∣∣∣ |v̂λ,i| = 1

}
≥ s∗(λ) + ε

)
≤ C

ε6
N qe−cnε

6
,

where q = 0 if D = F0(s) and q = (1/p− 1)+ if D = Fp(ξ).

Theorem 9.5.6 is deduced from Theorem 9.5.5 in Section 9.5.3.

9.5.2 Gordon’s strategy for the subgradient

Application of Gordon’s Theorem

Let g ∼ N (0, IdN) and h ∼ N (0, Idn) be independent standard Gaussian vectors. We
define:

Vλ(v) = min
w∈B

1
2

√ 1
n
‖w‖2 + σ2‖h‖√

n
− 1
n
gTw + g′σ√

n

2

+

+ λ

n
vT(w + θ?)− λ

n
|θ?|

 .

The following Proposition is the analog of Corollary 8.5.1.
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Proposition 9.5.1

Let D ⊂
{
v ∈ RN

∣∣∣ ‖v‖∞ ≤ 1
}

be a closed set.

• We have for all t ∈ R

P
(

max
v∈D
Vλ(v) ≥ t

)
≤ 2P

(
max
v∈D

Vλ(v) ≥ t
)
.

• If D is convex, then we have for all t ∈ R

P
(

max
v∈D
Vλ(v) ≤ t

)
≤ 2P

(
max
v∈D

Vλ(v) ≤ t
)
.

Proof. Let v ∈ RN . By Proposition C.2 one can permute the min-max and obtain:

Vλ(v) = min
w∈B

max
u∈Rn

{ 1
n
uTXw − σ

n
uTz − 1

2n‖u‖
2 + λ

n
vT(θ? + w)− λ

n
|θ?|

}
= max

u∈Rn
min
w∈B

{ 1
n
uTXw − σ

n
uTz − 1

2n‖u‖
2 + λ

n
vT(θ? + w)− λ

n
|θ?|

}
.

Let D ⊂
{
v ∈ RN

∣∣ ‖v‖∞ ≤ 1
}

be a closed set. We can the apply Gordon’s Theorem (Corol-
lary 9.7.1) in order to compare

max
(v,u)∈D×Rn

min
w∈B

{ 1
n
uTXw − σ

n
uTz − 1

2n‖u‖
2 + λ

n
vT(θ? + w)− λ

n
|θ?|

}
, (9.5.3)

with

max
(v,u)∈D×Rn

min
w∈B

{√
‖w‖2

n
+ σ2h

Tu

n
− 1
n3/2 ‖u‖g

Tw + g′σ√
n
− 1

2n‖u‖
2 + λ

n
vT(θ? + w)− λ

n
|θ?|

}
(9.5.4)

= max
v∈D

min
w∈B

max
u∈Rn

{√
‖w‖2

n
+ σ2h

Tu

n
− 1
n3/2 ‖u‖g

Tw + g′σ√
n
− 1

2n‖u‖
2 + λ

n
vT(θ? + w)− λ

n
|θ?|

}
,

which is equal to maxv∈D Vλ(v). Note that the maximums in (9.5.3) and (9.5.4) are not defined
on compact sets (since D ×Rn is not bounded). One has therefore to follow the same procedure
than for Corollary 8.5.1, and show that there exists a compact set K ⊂ Rn such that with high
probability, the maximum over u ∈ Rn is achieved in K. For the sake of brevity we do not provide
a complete execution of this argument and refer to the proof of Corollary 8.5.1.

Study of Gordon’s optimization problem

In this section we study the optimization problem max‖v‖∞≤1 Vλ(v). Let us define

vλ = −α∗(λ)−1τ∗(λ)−1
(
η
(
θ? + τ∗(λ)g, α∗(λ)τ∗(λ)

)
− θ? − τ∗(λ)g

)
.

The goal of this section is to prove:

Theorem 9.5.7
There exists constants γ, c, C > 0 that only depend on Ω such that for all θ? ∈ D, all
λ ∈ [λmin, λmax] and all ε ∈ (0, 1]

P
(
∃v ∈ B∞(0, 1), 1

N
‖v − vλ‖2 ≥ ε and Vλ(v) ≥ max

v∈RN
Vλ(v)− γε

)
≤ C

ε
e−cnε

2
.
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Recall that w∗λ is by Lemma 9.2.1 the unique minimizer of Lλ over RN .
Lemma 9.5.2

With probability at least 1− 2e−n/2 we have

min
w∈RN

Lλ(w) = max
‖v‖∞≤1

Vλ(v)

and the vector

v∗λ = −λ−1

√‖w∗λ‖2

n
+ σ2 ‖h‖√

n
− 1
n
gTw∗λ + g′σ√

n


+

‖h‖√
n

w∗λ√
‖w∗λ‖2/n+ σ2

− g


(9.5.5)

verifies ‖v∗λ‖∞ ≤ 1 and is a maximizer of Vλ.

Proof. By Proposition C.2, one can switch the min-max:

max
‖v‖∞≤1

Vλ(v) = min
w∈B

max
‖v‖∞≤1

1
2

√‖w‖2
n

+σ2 ‖h‖√
n
− 1
n
gTw+ g′σ√

n

2

+

+λ

n
vT(w+θ?)−λ

n
|θ?|


= min

w∈B
Lλ(w) .

Let us work on the event
{
‖h‖ ≤ 2

√
n
}
∩{g′ ≤

√
n} which has probability at least 1−2e−n/2. We

have λ
n(|w∗λ+θ?|−|θ?|) ≤ Lλ(w∗λ) ≤ Lλ(0) ≤ 5σ2. This gives w∗λ ∈ B and thus max‖v‖∞≤1 Vλ(v) =

minw∈B Lλ(w) = minw∈RN Lλ(w).

The optimality condition of w∗λ gives that

v∗λ = −1
λ

√‖w∗λ‖2
n

+ σ2 ‖h‖√
n
− 1
n
gTw∗ + g′σ√

n


+

‖h‖√
n

w∗λ√
‖w∗λ‖2/n+ σ2

− g

 ∈ ∂|θ? + w∗λ| .

Therefore v∗Tλ (w∗λ + θ?) = |w∗λ + θ?|. Using the optimality condition again we obtain

Vλ(v∗λ) = min
w∈B

1
2

(√
1
n
‖w‖2 + σ2 ‖h‖√

n
− 1
n
gTw + g′σ√

n

)2

+
+ λ

n
v∗Tλ (w + θ?)− λ

n
|θ?|


= 1

2

(√
1
n
‖w∗λ‖2 + σ2 ‖h‖√

n
− 1
n
gTw∗λ + g′σ√

n

)2

+
+ λ

n
|w∗λ + θ?| − λ

n
|θ?|

= min
w∈RN

Lλ(w) = max
‖v‖∞≤1

Vλ(v) .

Therefore v∗λ achieves the optimal value.

Proposition 9.5.2
For all θ? ∈ D and all λ ∈ [λmin, λmax] we have for all ε ∈ (0, 1]

P
( 1
N
‖v∗λ − vλ‖2 ≥ ε

)
≤ C

ε
e−cnε .
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Proof. By Theorem 9.2.1 we have for all ε ∈ (0, 1]

P
( 1
N
‖w∗λ − wλ‖2 ≥ ε

)
≤ C

ε
e−cnε ,

so we deduce the result from the expression (9.5.5) of v∗λ and the concentration properties of wλ
(see Section 9.6.2).

By the same arguments used for proving Lemma 9.5.2 it is not difficult to prove:
Lemma 9.5.3

The function
β ≥ 0 7→ min

w∈B
`λ(w, β)

(recall that `λ is defined by Equation 9.2.1) admits a unique maximizer b∗λ over R≥0
and

b∗λ =
√‖w∗λ‖2

n
+ σ2 ‖h‖√

n
− 1
n
gTw∗λ + g′σ√

n


+

.

Moreover, for all ε ∈ (0, 1] we have P
(
|b∗λ − β∗(λ)| > ε

)
≤ C

ε
e−cnε.

Proof of Theorem 9.5.7

Let v ∈ RN such that ‖v‖∞ ≤ 1. We have by Proposition C.2

Vλ(v) = min
w∈B

max
β≥0

{
β

(√
1
n
‖w‖2 + σ2 ‖h‖√

n
− 1
n
gTw + g′σ√

n

)
− β2

2 + λ

n
vT(w + θ?)− λ

n
|θ?|

}

= max
β≥0

min
w∈B

{
β

(√
1
n
‖w‖2 + σ2 ‖h‖√

n
− 1
n
gTw + g′σ√

n

)
− β2

2 + λ

n
vT(w + θ?)− λ

n
|θ?|

}

= max
β≥0

min
0≤r≤R

{
β
√
r2 + σ2 ‖h‖√

n
− r√

n
‖βg − λv‖+ β

g′σ√
n
− β2

2 + λ

n
vTθ? − λ

n
|θ?|

}
,

because the minimization over the direction of w is easy to perform. Let us define for
κ > 0

Dκ =
{
v ∈ B∞(0, 1), 1

N
‖v − v∗λ‖2 ≤ κ2 and Vλ(v) ≥ max

‖v′‖∞≤1
Vλ(v′)−

1
8κ

2
}
.

By concavity of Vλ, Dκ is convex.
Proposition 9.5.3

There exists a constant κ > 0 such that with probability at least 1 − Ce−cn we have
∀v ∈ Dκ, Vλ(v) = Ṽλ(v) where

Ṽλ(v) = min
w∈RN

{
max

β∈[β∗−κ,β∗+κ]

{
β

(√
1
n
‖w‖2 + σ2 ‖h‖√

n
− 1
n
gTw + g′σ√

n

)
− β2

2

}
+ λ

n
vT(w + θ?)− λ

n
|θ?|

}
.

In order to prove Proposition 9.5.3, we start with a Lemma:
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Lemma 9.5.4
For all v ∈ Dκ, the function

fv : β 7→ min
w∈B

{
β

(√
1
n
‖w‖2 + σ2 ‖h‖√

n
− 1
n
gTw + g′σ√

n

)
− β2

2 + λ

n
vT(w + θ?)− λ

n
|θ?|

}

admits a unique maximizer bλ(v) on [0,+∞) and one has |bλ(v)− b∗λ| ≤ κ/2.

Proof. Let v ∈ Dκ. fv is 1-strongly concave so it admits a unique maximizer bλ(v) on R≥0. We
have

fv(bλ(v)) = max
β≥0

fv(β) = Vλ(v) ≥ max
‖v′‖∞≤1

Vλ(v′)− 1
8κ

2 ,

because v ∈ Dκ. Notice now that fv(bλ(v)) ≤ minw∈B `λ(w, bλ(v)) because vT(w+θ?) ≤ |w+θ?|.
Permuting the min-max (using Proposition C.2), we have max

‖v′‖∞≤1
Vλ(v′) = max

β≥0
min
w∈B

`λ(w, β),

where we recall that `λ is defined by (9.2.1). We get

min
w∈B

`λ(w, bλ(v)) ≥ max
β≥0

min
w∈B

`λ(w, β)− 1
8κ

2 .

The function β 7→ minw∈B `λ(w, β) is 1-strongly concave and maximized (by Lemma 9.5.3 above)
at b∗λ, hence |bλ(v)− b∗λ| ≤ κ/2.

Lemma 9.5.5
There exist constants K,κ > 0 such that with probability at least 1 − Ce−cn the

following happens. For all β ≥ 0, v ∈ RN such that |β− b∗λ| ≤ 2κ and ‖v− v∗λ‖ ≤
√
Nκ

the minimum over RN of

w 7→ β

√ 1
n
‖w‖2 + σ2‖h‖√

n
− 1
n
gTw + g′σ√

n

− β2

2 + λ

n
vT(w + θ?)− λ

n
|θ?|

is achieved on B(0,
√
NK).

Proof. The minimization with respect to the direction of w is easy to perform: w has to be a
non-negative multiple of βg − λv. It remains thus to minimizes with respect to the norm of w.
We have to show that under the conditions of the lemma, the minimum of

r ≥ 0 7→ β
√
r2 + σ2 − r

‖h‖
‖βg − λv‖ (9.5.6)

is achieved for r smaller than some constant. By Theorem 9.2.1 and Lemma 9.5.3 there exists a
constant R > 0 (for instance R = τmax + 1) such that the event{

‖w∗λ‖2 ≤ nR2
}⋂{

b∗λ ≥ βmin/2
}⋂{

‖h‖ ≥
√
n/2

}
(9.5.7)

has probability at least 1− Ce−cn. Let us define the constants a = R√
R2+σ2 < 1 and

κ = min
(√

δβ2
min(1− a)

256λmax
, βmin/8,

(1− a)
√
δβmin

16λmax

)
.

Let us now work on the event (9.5.7). Let v ∈ RN and β ≥ 0 such that ‖v − v∗λ‖ ≤
√
Nκ and

|β − b∗λ| ≤ 2κ. We have

‖g − λ

β
v‖ ≤ ‖g − λ

b∗λ
v∗λ‖+ ‖λ

β
v − λ

b∗λ
v∗λ‖ .
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Compute

‖g − λ

b∗λ
v∗λ‖ = ‖h‖ ‖w

∗
λ‖/
√
n√

‖w∗
λ
‖2

n + σ2
≤ ‖h‖a ,

with probability at least 1− Ce−cn. Now

‖ 1
β
v − 1

b∗λ
v∗λ‖ ≤

1
β∗
‖v − v∗λ‖+ ‖ 1

β
v − 1

b∗λ
v‖ ≤ 2

βmin
‖v − v∗λ‖+

√
N

min(β, b∗λ)2 |β − b
∗
λ|

≤ 2
βmin

‖v − v∗λ‖+ 16
√
N

β2
min
|β − b∗λ| ≤

1− a
4
√
n .

Putting all together:
1
‖h‖
‖g − λ

β
v‖ ≤ a+ 1− a

2 = 1 + a

2 < 1 .

This gives that the minimum of (9.5.6) is achieved for r ≤ σ√
1−((1+a)/2)2 . One can thus chose

K = δσ√
1−((1+a)/2)2 .

Proof of Proposition 9.5.3. Let us now fix a constant κ ∈ (0, βmin/2) that verify the
statement of Lemma 9.5.5. Let us work on the intersection of the event {|b∗λ−β∗(λ)| ≤ κ/2} with
the event of Lemma 9.5.5. This intersection has by Lemma 9.5.3 and Lemma 9.5.5 probability at
least 1− Ce−cn.

Let v ∈ Dκ. By Lemma 9.5.4 the unique maximizer bλ(v) of fv verify |bλ(v)− b∗λ| ≤ κ/2 and
therefore |bλ(v)− β∗| ≤ κ. Consequently

Vλ(v) = max
β∈[β∗−κ,β∗+κ]

min
w∈B

{
β

(√
1
n
‖w‖2 + σ2 ‖h‖√

n
− 1
n
gTw + g′σ√

n

)

− β2

2 + λ

n
vT(w + θ?)− λ

n
|θ?|

}
.

Now, for β ∈ [β∗ − κ, β∗ + κ], we have |β − b∗λ| ≤ 2κ. Since we are working on the event of
Lemma 9.5.5, we obtain

Vλ(v) = max
β∈[β∗−κ,β∗+κ]

min
w∈RN

{
β

(√
1
n
‖w‖2 + σ2 ‖h‖√

n
− 1
n
gTw + g′σ√

n

)

− β2

2 + λ

n
vT(w + θ?)− λ

n
|θ?|

}
,

and Proposition 9.5.3 follows from the permutation of the min−max using Proposition C.2.

Lemma 9.5.6

There exists a constant C, c, γ > 0 such that Ṽλ is γ/N -strongly concave, with proba-
bility at least 1− Ce−cn.

Proof. The function f∗ : RN → R defined by

f∗(v) = max
w∈RN

{
vTw − n

λ
max

β∈[β∗−κ,β∗+κ]

{
β

(√
1
n
‖w‖2 + σ2 ‖h‖√

n
− 1
n
gTw + g′σ√

n

)
− β2

2

}}
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is the convex conjugate of the convex function

f : w ∈ RN 7→n

λ
max

β∈[β∗−κ,β∗+κ]

{
β

(√
1
n
‖w‖2 + σ2 ‖h‖√

n
− 1
n
gTw + g′σ√

n

)
− β2

2

}

= n

λ
ϕ

(√
1
n
‖w‖2 + σ2 ‖h‖√

n
− 1
n
gTw + g′σ√

n

)
,

where ϕ is the C1 function

ϕ(x) =


1
2x

2 if x ∈ [β∗ − κ, β∗ + κ] ,
(β∗ − κ)x− 1

2(β∗ − κ)2 if x ≤ β∗ − κ ,
(β∗ + κ)x− 1

2(β∗ + κ)2 if x ≥ β∗ + κ .

f is a proper closed convex function (because f is convex and its domain is RN ), therefore its
convex conjugate f∗ is also a proper closed convex function. The Fenchel-Moreau Theorem gives
then that f = f∗∗. Let us compute the gradient of f for w ∈ RN

∇f(w) = n

λ
ϕ′
(√

1
n
‖w‖2 + σ2 ‖h‖√

n
− 1
n
gTw + g′σ√

n

)‖h‖√
n

w/n√
‖w‖2
n + σ2

− g

n

 .

It is not difficult to verify that there exists a constant L such that ∇f is L-Lipschitz on RN , with
probability at least 1 − Ce−cn. f = f∗∗ is therefore 1/L-strongly smooth (see Definition C.1).
By Proposition C.3 this gives that f∗ is 1/L strongly convex. One deduces then that Ṽλ is γ/N -
strongly concave with γ = λ/(Lδ).

Let 0 < γ < 1/2 be a constant that verify the statement of Lemma 9.5.6 and let κ > 0
be a constant given by Proposition 9.5.3. Notice that it suffices to prove Theorem 9.5.7
for ε small enough and let ε ∈ (0, κ2).

P
(
∃v ∈ B∞(0, 1), 1

N
‖v − vλ‖2 > ε and Vλ(v) ≥ max

‖v′‖∞≤1
Vλ(v′)− 1

4γε
)

≤ P
(
∃v ∈ B∞(0, 1), 1

N
‖v − v∗λ‖2 >

ε

2 and Vλ(v) ≥ max
‖v′‖∞≤1

Vλ(v′)− 1
4γε

)
+ C

ε
e−cnε

2

≤ P
(
∃v ∈ Dκ,

1
N
‖v − v∗λ‖2 >

ε

2 and Vλ(v) ≥ max
v′∈Dκ

Vλ(v′)− 1
4γε

)
+ C

ε
e−cnε

2
, (9.5.8)

because, if there exists v ∈ B∞(0, 1) such that 1
N
‖v−v∗λ‖2 > ε

2 and Vλ(v) ≥ max
‖v′‖∞≤1

Vλ(v′)−
1
4γε, we can construct ṽ ∈ Dκ that verifies the same conditions. Indeed:

• if 1
N
‖v − v∗λ‖2 ≤ κ2, one simply take ṽ = v.

• otherwise, ṽ = v∗λ + κ(v − v∗λ)/‖v − v∗λ‖ is in Dκ and by concavity Vλ(ṽ) ≥ Vλ(v).

Since with probability at least 1 − Ce−cn we have Vλ(v) = Ṽλ(v) for all v ∈ Dκ and Ṽλ is
γ/N -strongly concave, the probability in (9.5.8) above is less that Ce−cn.

9.5.3 Proofs of the main results about the subgradient
Let us start with the analog of Proposition 9.3.1 for the costs functions Vλ and Vλ:
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Proposition 9.5.4
There exists constants c, C > 0 that only depend on Ω such that for all closed set
D ⊂ RN and for all ε ∈ (0, 1],

P
(

max
v∈D
Vλ(v) ≥ max

‖v‖∞≤1
Vλ(v)− ε

)
≤ 2P

(
max
v∈D

Vλ(v) ≥ max
‖v‖∞≤1

Vλ(v)− 3ε
)

+ C

ε
e−cnε

2
.

The proof of Proposition 9.5.4 is omitted for the sake of brevity, and because it follows
from the exact same arguments than Proposition 9.3.1.

The norm of v̂λ: proof of Theorem 9.5.3

Lemma 9.5.7
There exists constants γ, c, C > 0 that depend only on Ω, such that for all ε ∈ (0, 1]

we have
P
(

max
v∈Dε

Vλ(v) ≥ max
‖v‖∞≤1

Vλ(v)− 3γε
)
≤ C

ε
e−cnε

2
,

where Dε =
{
v ∈ B∞(0, 1)

∣∣∣∣ (‖v‖ −√Nκ∗(λ)
)2
≥ ε

}
and κ∗(λ) is defined by (9.5.2).

Proof. Similarly to Proposition 9.6.1 it is not difficult to prove that for all ε ∈ (0, 1],

P
(∣∣∣ 1
N
‖vλ‖2 − κ∗(λ)2

∣∣∣ > ε
)
≤ Ce−cNε2 ,

for some constants c, C > 0. By Theorem 9.5.7 there exists constants γ, c, C > 0 such that for all
ε ∈ (0, 1] the event{
∀v ∈ B∞(0, 1), Vλ(v) ≥ max

B∞(0,1)
Vλ − 3γε⇒ 1

N
‖v − vλ‖2 ≤

ε

5
}⋂{(

‖vλ‖ −
√
Nκ∗(λ)

)2 ≤ N ε

4
}

(9.5.9)
has probability at least C

ε e
−cnε2 . On the event (9.5.9), we have for all v ∈ Dε:

1
N
‖v − vλ‖2 ≥

1
N

(
‖v‖ − ‖vλ‖

)2 ≥ 1
N

(√
Nε− 1

2
√
Nε
)2 ≥ ε

4 .

This gives that on the event (9.5.9), for all v ∈ Dε, Vλ(v) < max
‖v′‖∞≤1

Vλ(v′)−3γε. The intersection

of (9.5.9) with the event
{

max
v∈Dε

Vλ(v) ≥ max
‖v‖∞≥1

Vλ(v) − 3γε
}

is therefore empty: the lemma is

proved.

Proof of Theorem 9.5.3. Let γ > 0 be a constant that verify the statement of Lemma 9.5.7.
Let ε ∈ (0, 1] and define

Dε =
{
v ∈ B∞(0, 1)

∣∣∣∣ (‖v‖ −√Nκ∗(λ)
)2 ≥ Nε} .

Dε is a closed set.

P
(
∃v ∈ B∞(0, 1),

∣∣ 1
N
‖v‖2 − κ∗(λ)

∣∣ ≥ ε and Vλ(v) ≥ maxVλ − γε
)

= P
(

max
v∈Dε

Vλ(v) ≥ max
‖v‖∞≤1

Vλ(v)− γε
)

≤ 2P
(

max
v∈Dε

Vλ(v) ≥ max
‖v‖∞≤1

Vλ(v)− 3γε
)

+ Ce−cnε ≤ C

ε
e−cnε

2
,

where we used successively Proposition 9.5.4 and Lemma 9.5.7.
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The empirical law of v̂λ: proof of Theorem 9.5.1

Theorem 9.5.1 follows now from Proposition 9.5.4 and the following Lemma.
Lemma 9.5.8

There exists constants γ, c, C > 0 that depend only on Ω, such that for all ε ∈ (0, 1
2 ]

we have
P
(

max
v∈Dε

Vλ(v) ≥ max
‖v‖∞≤1

Vλ(v)− 3γε
)
≤ C

ε
e−cnε

2 log(ε)−2
,

where Dε =
{
v ∈ B∞(0, 1)

∣∣∣W2(µ̂(v,θ?), ν
∗
λ)2 ≥ ε

}
.

Proof. By Theorem 9.5.7 and Proposition 9.6.2 there exists constants γ, c, C > 0 such that for
all ε ∈ (0, 1

2 ] the event{
∀v ∈ B∞(0, 1), Vλ(v)≥ max

B∞(0,1)
Vλ−3γε⇒ 1

N
‖v−vλ‖2≤

ε

5
}⋂{

W2
(
ν∗λ, µ̂(vλ,θ?)

)2≤ ε4
}

(9.5.10)

has probability at least

1− C

ε
e−cnε

2 − Cε−a exp
(
−cNε2εa log(ε)−2

)
≥ 1− Cε−max(1,a) exp

(
−cNε2εa log(ε)−2

)
.

On the event (9.5.10), we have for all v ∈ Dε:
1
N
‖v − vλ‖2 ≥W2

(
µ̂(v,θ?), µ̂(vλ,θ?)

)2 ≥ (W2(µ̂(v,θ?), ν
∗
λ)−W2(ν∗λ, µ̂(vλ,θ?))

)2
≥ ε

4 .

This gives that on the event (9.5.10), for all v ∈ Dε, Vλ(v) < max
‖v′‖∞≤1

Vλ(v′)−3γε. The intersection

of (9.5.10) with the event
{

max
v∈Dε

Vλ(v) ≥ max
‖v‖∞≥1

Vλ(v) − 3γε
}

is therefore empty: the lemma is

proved.

Proof of Theorem 9.5.1. Let γ > 0 be a constant that verify the statement of Lemma 9.5.8.
Let ε ∈ (0, 1

2 ] and define
Dε =

{
v ∈ B∞(0, 1)

∣∣∣W2(µ̂v, ν∗λ)2 ≥ ε
}

Dε is a closed set.

P
(
∃v ∈B∞(0, 1), W2(µ̂v, ν∗λ)2 ≥ ε and Vλ(v) ≥ maxVλ − γε

)
= P

(
max
v∈Dε

Vλ(v) ≥ max
‖v‖∞≤1

Vλ(v)− γε
)

≤ 2P
(

max
v∈Dε

Vλ(v) ≥ max
‖v‖∞≤1

Vλ(v)− 3γε
)

+ Ce−cnε ≤ C

ε
e−cnε

2 log(ε)−2
,

where we used successively Proposition 9.5.4 and Lemma 9.5.8.

Proof of Theorem 9.5.5

Lemma 9.5.9
There exists constants γ, c, C > 0 that depend only on Ω, such that for all ε ∈ (0, 1]

we have
P
(

max
v∈Dε

Vλ(v) ≥ max
‖v‖∞≤1

Vλ(v)− 3γε3
)
≤ C

ε3
e−cnε

6
,

where Dε =
{
v ∈ B∞(0, 1)

∣∣∣∣ 1
N

#
{
i
∣∣∣ |vi| ≥ 1− ε

}
> s∗(λ) + 2(1 + αmax)ε

}
.
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Proof. Let ε ∈ (0, 1] and define

sε = 1
N

#
{
i ∈ {1, . . . , N}

∣∣∣ |vλ,i| ≥ 1− 2ε
}
.

sε is the mean of independent Bernoulli random variables. By Hoeffding’s inequality we have

P
(
sε ≤ P

(
|τ−1
∗ Θ + Z| ≥ α∗ − 2α∗ε

)
+ ε
)
≥ 1− e−2Nε2 .

Compute

P
(
|τ−1
∗ Θ + Z| ≥ α∗ − 2α∗ε

)
= E

[
Φ
( Θ
τ∗(λ) − α∗(λ) + 2α∗(λ)ε

)
+ Φ

(
− Θ
τ∗(λ) − α∗(λ) + 2α∗(λ)ε

)]
≤ s∗(λ) + 2αmaxε .

We obtain P
(
sε ≤ s∗(λ) + 2αmaxε + ε

)
≥ 1 − e−2Nε2 . By Theorem 9.5.7 there exists a constant

γ > 0 such that the event{
∀v ∈ B∞(0, 1), Vλ(v) ≥ max

B∞(0,1)
Vλ − 3γε3 ⇒ 1

N
‖v − vλ‖2 < ε3

}⋂{
sε ≤ s∗(λ) + αmaxε+ ε

}
has probability at least 1 − C

ε3 e
−cnε6 . We have on this event, for all v ∈ Dε, 1

N ‖v − vλ‖2 ≥ ε3.
Therefore, on the above event we have max

v∈Dε
Vλ(v) < max

‖v‖∞≤1
Vλ(v) − 3γε3, which concludes the

proof.

Proof of Theorem 9.5.5. Let γ > 0 be a constant that verify the statement of Lemma 9.5.9.
Let ε ∈ (0, 1] and define

Dε =
{
v ∈ B∞(0, 1)

∣∣∣∣ 1
N

#
{
i
∣∣ |vi| ≥ 1− ε

}
≥ s∗(λ) + 2(1 + αmax)ε

}
.

Dε is a closed set.

P
( 1
N

#
{
i
∣∣ |v̂λ,i| ≥ 1− ε

}
≥ s∗(λ) + 2(1 + αmax)ε

)
≤ P

(
max
v∈Dε

Vλ(v) ≥ max
‖v‖∞≤1

Vλ(v)− γε
)

≤ 2P
(

max
v∈Dε

Vλ(v) ≥ max
‖v‖∞≤1

Vλ(v)− 3γε
)

+ C

ε
e−cnε ≤ C

ε
e−cnε

2
,

where we used successively Proposition 9.5.4 and Lemma 9.5.9.

Uniform control over λ: proof of Theorems 9.5.2, 9.5.4 and 9.5.6

Theorems 9.5.2, 9.5.4 and 9.5.6 are deduced from Theorems 9.5.1, 9.5.3 and 9.5.5 by an ε-
net argument, as we did to deduce Theorems 8.3.1 and 8.3.2 from Theorems 8.5.3 and 9.3.1.
Since the ideas are the same, we only present here the key argument:
Proposition 9.5.5

Assume that D is F0(s) or F1(ξ) for some s < smax(δ) and ξ ≥ 0, p > 0. Let q = 0 if
D = F0(s) and q = (1/p − 1)+ if D = Fp(ξ). Then there exists constants K,C, c > 0
that depend only on Ω such that for all θ? ∈ D

P
(
∀λ, λ′ ∈ [λmin, λmax], 1

N
‖v̂λ − v̂λ′‖2≤KN q|λ− λ′|

)
≥ 1− Ce−cn . (9.5.11)
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Proof. By Proposition 9.4.1, there exists a constant K such that with probability at least
1− Ce−cn we have

∀λ, λ′ ∈ [λmin, λmax], 1
n
‖ûλ − ûλ′‖2 ≤ KN q|λ− λ′| .

Notice now that v̂λ = − 1
λX

Tûλ and that with probability at least 1−2e−n/4, σmax(X) ≤ δ−1/2 +2
(by Proposition 9.7.4) which combined with the above inequality, prove the Proposition.

9.6 Some auxiliary results and proofs
9.6.1 Proof of Remark 8.3.2
Let k ≤ N and define the vector θ? = (N, 2N, . . . , kN, 0, . . . , 0). With the definitions
given in Remark 8.3.2, we claim that W2(µ̂(θ̂λ,θ?), µ

∗
λ) ≥

√
k/N with probability at least

1 − e−ck, for some constant c > 0. Indeed, consider the case λ = 0, τ∗ = 1, and let
P, E denote probability and expectation with respect to the coupling that achieves the
Wasserstein distance. This is a coupling for a triple of random variables (I,Θ, Z), with
I ∼ Unif

(
{1, . . . , N}

)
, (Θ, Z) ∼ µ̂θ? ⊗N (0, 1), with

W2(µ̂(θ̂λ,θ?), µ
∗
λ)2 = E

{
(θI −Θ)2

}
+ E

{
(θI + zI −Θ− Z)2

}
≡ A+B . (9.6.1)

We will proceed to bound separately the two terms above. Define δi ≡ P(Θ 6= θ?i |I = i),
and δmax ≡ maxi≤k δi. Since Θ ∈ {0, N, . . . , kN} with probability one, we have

A ≥ 1
N

k∑
i=1

E
{

(θ?I −Θ)2
∣∣∣I = i

}
δi ≥ N

k∑
i=1

δi ≥ Nδmax . (9.6.2)

For the second term, we have

B ≥
k∑
i=1

E
{

(θ?I + zI −Θ− Z)21I=i1Θ=θ?i

}
=

k∑
i=1

E
{

(zi − Z)21I=i1Θ=θ?i

}
(9.6.3)

=
k∑
i=1

E
{

(zi − Z)21Θ=θ?i

}
−

k∑
i=1

E
{

(zi − Z)21I 6=i1Θ=θ?i

}
. (9.6.4)

Note that, by the coupling definition, P
(
I = i

∣∣∣Θ = θ?i
)

= NP
(
I = i ; Θ = θ?i

)
= 1 − δi.

Using the fact that Θ and Z are independent random variables, together with Cauchy-
Schwartz inequality,we get

B ≥
k∑
i=1

E
{

(zi − Z)2}P(Θ = θ?i )−
k∑
i=1

E
{

(zi − Z)41Θ=θ?i

}1/2
P
(
I 6= i; Θ = θ?i

)1/2
(9.6.5)

≥ 1
N

k∑
i=1

E
{

(zi − Z)2} − 1
N

k∑
i=1

E
{

(zi − Z)4
}1/2

P
(
I 6= i

∣∣∣Θ = θ?i
)1/2

(9.6.6)

≥ 1
N

k∑
i=1

E
{

(zi − Z)2} − 1
N

k∑
i=1

δ
1/2
i E

{
(zi − Z)4

}1/2
(9.6.7)

≥ 1
N

k∑
i=1

(1 + z2
i )−

1
N

k∑
i=1

δ
1/2
i

(
3 + 6z2

i + z4
i

)1/2
. (9.6.8)
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where in the last step we used the fact that Z ∼ N (0, 1). Using (3+6x2 +x4) ≤ 4(1+x2)2,
we thus conclude

B ≥ 1− 2δ1/2
max

N

k∑
i=1

(1 + z2
i ) . (9.6.9)

By concentration properties of chi-squared random variables, for any ε > 0, there exists
c(ε) > 0 such that, with probability at least 1 − e−ck we have 1

k

∑k
i=1 z

2
i ≥ 1 − 2ε. Hence,

with the same probability

W2(µ̂(θ̂λ,θ?), µ
∗
λ)2 ≥ Nδmax + 2k

N
(1− 2δ1/2

max)(1− ε) (9.6.10)

≥ k

N
. (9.6.11)

The last inequality follows by lower bounding the first term for δmax > 1/N , and the second
for δmax ≤ 1/N , and fixing ε a sufficiently small constant.

9.6.2 Concentration properties of wλ

We prove in this section concentrations of the norms and some scalar product of wλ.
Lemma 9.6.1

There exists constants c, C > 0 that only depend on Ω such that for all t ≥ 0 the event{∣∣∣∣ 1ngTwλ − E
[ 1
n
gTwλ

]∣∣∣∣ ≤ t ,
∣∣∣∣∣‖wλ‖2n

− E
[
‖wλ‖2
n

]∣∣∣∣∣ ≤ t and
∣∣∣∣ |wλ + θ?|

n
− E

[ |wλ + θ?|
n

]∣∣∣∣ ≤ t
}

has probability at least 1− Ce−ct2n − Ce−ctn.

Proof. The function

g 7→ wλ = (η(θ?i + τ∗(λ)gi, α∗(λ)τ∗(λ))− θ?i )1≤i≤N

is τmax-Lipschitz. Consequently:

• g 7→ |wλ+θ?|
n is δ−1/2n−1/2τmax-Lipschitz. Therefore |wλ+θ?|

n is τ2
maxδ

−1n−1 sub-Gaussian:
for all t ≥ 0,

P
(∣∣∣∣ |wλ + θ?|

n
− E

[ |wλ + θ?|
n

]∣∣∣∣ > t

)
≤ 2e−nt2δ/τ2

max .

• g 7→ ‖wλ‖√
n

is n−1/2τmax-Lipschitz. Therefore ‖wλ‖√
n

is τ2
maxn

−1 sub-Gaussian. Its expectation

is bounded by E‖wλ‖√
n
≤ (E‖wλ‖

2

n )1/2 = τ∗ ≤ τmax. By Proposition 9.7.3, we obtain that
‖wλ‖2
n is (Cn−1, Cn−1)-sub-Gamma for some constant C and therefore for all t ≥ 0,

P
(∣∣∣∣∣‖wλ‖2n

− E
[
‖wλ‖2
n

]∣∣∣∣∣ > t

)
≤ 2e−cnt2 + 2e−cnt .

Now for i ∈ {1, . . . , N},
giwλ,i = τ∗g

2
i + gi

(
wλ,i − τ∗gi

)
.

|wλ,i − τ∗gi| ≤ α∗τ∗ and gi is 1-sub-Gaussian and E[|gi|] =
√

2
π ≤ 1. Consequently, Lemma 9.7.1

gives that gi(wλ,i − τ∗gi) is 48τ2
∗α

2
∗-sub-Gaussian. This gives that 1

ng
T(wλ − τ∗g) concentrates

exponentially fast around its mean. So does 1
n‖g‖

2.

221



Lemma 9.6.2
1
n
E‖wλ‖2 + σ2 = τ 2

∗ (λ) and 1
n
E
[
gTwλ

]
= τ∗(λ)− β∗(λ) = 1

δ
s∗(λ) .

Proof. The first equality comes from Lemma 9.1.5: since (gi)
i.i.d.∼ N (0, 1), we have E‖wλ‖2 =

NE
[
w∗(α∗, τ∗)2]. The second equality comes from the optimality condition of β∗, see Lemma 9.1.6,

and the definition (8.3.4) of s∗(λ).

The next proposition simply follows from Lemma 9.6.4 and standard concentration
arguments, so we omit its proof.
Proposition 9.6.1

There exists constant C, c > 0 that only depend on Ω such that for all ε ∈ [0, 1],

P
(∣∣∣Lλ(wλ)− ψλ(β∗(λ), τ∗(λ))

∣∣∣ > ε
)
≤ Ce−cnε

2
.

9.6.3 Concentration of the empirical distribution

Proposition 9.6.2
Let θ? ∈ Fp(ξ), where p, ξ > 0. Let µ = µ̂θ? ⊗ N (0, 1) and let µ̂ be the empirical

distribution of the entries of
(
θ?i , gi

)
1≤i≤N

, where g1, . . . , gN
i.i.d.∼ N (0, 1). Then there

exists constants C, c > 0 that only depends on ξp, such that for all ε ∈ (0, 1
2 ],

P
(
W2(µ̂, µ)2 > ε

)
≤ Cε−a exp

(
−cNε2εa log(ε)−2

)
,

where a = 1
2 + 1

p
.

Before proving Proposition 9.6.2, we will need two simple lemmas. For r ≥ 0 and x ∈ R
we use the notation

x|r =


x if − r ≤ x ≤ r ,

r if x ≥ r ,

−r if x ≤ −r .

Let µ|r be the law of
(
Θ, Z|r

)
where (Θ, Z) ∼ µ̂θ? ⊗N (0, 1).

Lemma 9.6.3

W2(µ, µ|r)2 ≤ e−r
2/2 .

Proof. We have W2(µ, µ|r)2 ≤ E
[
(Z − Z|r)2

]
≤ 2√

2π

∫ +∞

r
(z − r)2e−z

2/2dz ≤ e−r2/2.

Let µ̂|r be the empirical distribution of the entries of
(
θ?i , gi|r

)
1≤i≤N

.
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Lemma 9.6.4

With probability at least 1− e− 1
128Nε

2 , we have

W2(µ̂, µ̂|r)2 ≤ ε+ e−r
2/2 .

Proof. Obviously W2(µ̂, µ̂|r)2 ≤ 1
N

∑N
i=1(gi − gi|r)2. The function x 7→ x− x|r is 1-Lipschitz, so

the variables (gi − gi|r)2 are i.i.d. (16, 4)-sub-Gamma. Therefore for all ε ∈ [0, 1],

P
(

1
N

N∑
i=1

(
gi − gi|r

)2
> E

(
Z − Z|r

)2
+ ε

)
≤ e−

1
128Nε

2
.

And we conclude using E
(
Z − Z|r

)2 ≤ e−r2/2, which we proved in the lemma above.

We need now some concentration results for empirical measures, in Wasserstein dis-
tance. The next proposition follows from a direct application of Theorem 2 from [85]
to distributions with bounded support. Notice that the results from [85] are much more
general than this.
Proposition 9.6.3

Let A1, . . . Am
i.i.d.∼ ν be a collection of i.i.d. random variables, bounded by some constant

r > 0. Let
ν̂m = 1

m

m∑
i=1

δAi

be the empirical distribution of A1, . . . , Am. Then there exists two absolute constants
c, C > 0 such that for all t ≥ 0

P
(
W2(ν, ν̂m)2 ≥ r2t

)
≤ C exp(−cmt2) .

Proof of Proposition 9.6.2. We are now going to couple µ|r with µ̂|r. Let R > 0. Let k ≥ 1
and let δ = 2R/k. Define

Bl =
[
−R+ (l − 1)δ,−R+ lδ

)
,

for l = 1, . . . , k. We define also B0 = (−∞, R) ∪ [R,+∞). For l = 0, . . . k we write

Il = {i | θ?i ∈ Bl} and Nl = #Il .

Let t > 0. Let l ∈ {1, . . . , k}. The random variables (gi|r)i∈Il are i.i.d. and bounded by r. By
the proposition above, one can couple il ∼ Unif(Il) with Zl ∼ N (0, 1) such that we have with
probability at least 1− Ce−ct2N .

E
[
(Zl|r − gil|r)

2
]
≤ tr2

√
N

Nl
,

where E denotes the expectation with respect to il and Zl. Let jl ∼ Unif(Il) independently of
everything else.

For l = 0, we define (i0, Z0) ∼ Unif(I0)⊗N (0, 1), independently of everything else. We have
with probability at least 1− Ce−ct2N :

E
[
(Z0|r − gi0|r)

2
]

= E
[
Z2

0|r
]

+ E
[
g2
i0|r
]
≤ 2 + tr2

√
N

N0
,
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where E denotes the expectation with respect to Z0 and i0. Indeed, E
[
g2
i0|r
]

= 1
N0

∑
i∈I0 g

2
i|r ≤

1 + tr2
√

N
N0

with probability at least 1−Ce−ct2N . The equality comes from the fact that Z0 and
i0 are independent. Finally, we define j0 = i0.

Let us now define the random variable L whose law is given by P(L = l) = Nl
N , independently

of everything else. Define {
Y1 =

(
θ?jL , ZL|r

)
,

Y2 =
(
θ?iL , giL|r

)
.

(Y1, Y2) is a coupling of (µ|r, µ̂|r). Let E denote the expectation with respect to (il, Zl)0≤l≤k and
L. Then

E ‖Y1 − Y2‖2 =
k∑
l=0

Nl

N
E
[ (

θ?il − θ
?
jl

)2
+
(
Zl|r − gil|r

)2
]

≤
k∑
l=1

Nl

N

(√
N

Nl
tr2 + δ2

)
+ N0
N

(
2 + tr2

√
N

N0

)

≤ δ2 +
√
ktr2 + 2N0

N
≤ δ2 +

√
ktr2 + 2 ξ

p

Rp
,

with probability at least 1− C(k + 1)e−ct2N , where the last inequality comes from Markov’s in-
equality, since θ? ∈ Fp(ξ).

Let now ε ∈ (0, 1
2 ]. Let us chose

r =
√
−2 log(ε), R = ε−1/p and k = dε−1/2−1/pe ≤ 2ε−1/2−1/p,

so that δ = 2R/k ≤ 2
√
ε. Consequently

E
∥∥Y1 − Y2‖2 ≤ (4 + 2ξp)ε+ 2

√
2ε−1/4−1/(2p)| log(ε)|t .

So if we chose t = | log(ε)|−1ε
5
4 + 1

2p we obtain

P
(
W2(µ|r, µ̂|r)2 ≤ (4 + 2ξp + 2

√
2)ε
)
≥ 1− Cε−1/p−1/2 exp(−cNε2ε1/2+1/p/ log(ε)2).

Combining this with Lemmas 9.6.3 and 9.6.4 proves the proposition.

9.6.4 Sparsity of the Lasso estimator
The goal of this section is to prove:

Theorem 9.6.1
Assume here that D is either F0(s) or Fp(ξ) for some 0 ≤ s < smax(δ) and ξ > 0, p > 0.
There exists constants C, c > 0 that only depend on Ω, such that for all ε ∈ (0, 1)

sup
θ?∈D

P
(

sup
λ∈[λmin,λmax]

∣∣∣∣ 1
N
‖θ̂λ‖0 − s∗(λ)

∣∣∣∣ ≥ ε

)
≤ C

ε6
N qe−cNε

6
,

where q = 0 if D = F0(s) and q = (1/p− 1)+ if D = Fp(ξ).
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Since #{i | |v̂λ,i| = 1} ≥ ‖θ̂λ‖0, Theorem 9.5.6 gives that

sup
θ?∈D

P
(
∃λ ∈ [λmin, λmax], 1

N
‖θ̂λ‖0 ≥ s∗(λ) + ε

)
≤ C

ε6
N qe−cNε

6
. (9.6.12)

It remains to prove the converse lower bound in order to get Theorem 9.6.1. We start
with the following ‘local stability’ property of the Lasso cost:
Proposition 9.6.4

There exists constants C, c, γ > 0 that only depend on Ω such that for all ε ∈ (0, 1]

sup
λ∈[λmin,λmax]

sup
θ?∈D

P
(
∃θ ∈ RN,

1
N
‖θ‖0 < s∗(λ)− ε and Lλ(θ) ≤ minLλ + γε3

)
≤ C

ε3
e−cNε

6
.

Proposition 9.6.4 is a consequence of Proposition 9.3.1 and Lemma 9.6.5 below.
Lemma 9.6.5

There exists constants γ, c, C > 0 that only depend on Ω such that for all ε ∈ (0, 1] we
have

P
(

min
w∈Dε

Lλ(w) ≤ min
w∈RN

Lλ(w) + 3γε3
)
≤ C

ε3
e−cnε

6
,

where Dε =
{
w ∈ RN

∣∣∣ 1
N
‖w + θ?‖0 < s∗(λ)− ε

}
.

Proof. Define xλ = wλ + θ? =
(
η
(
θ?i + τ∗gi, α∗τ∗

))
1≤i≤N , and for r > 0

sr = 1
N

#
{
i ∈ {1, . . . , N}

∣∣∣ |xλ,i| ≥ r} .
sr is a mean of independent Bernoulli random variables, by Hoeffding’s inequality we have:

P
(
sr ≥ P

(
|Θ + τ∗Z| ≥ α∗τ∗ + r

)
− ε

4
)
≥ 1− e−Nε2/8 .

Compute

P
(
|Θ + τ∗Z| ≥ α∗τ∗ + r

)
= E

[
Φ
( Θ
τ∗(λ)−α∗(λ)− r

τ∗(λ)
)

+ Φ
(
− Θ
τ∗(λ)−α∗(λ)− r

τ∗(λ)
)]

≥ s∗(λ)− r

σ
.

Let us chose r = σε/4. We have then P
(
sr ≥ s∗(λ)− ε

2

)
≥ 1− e−Nε2/8. By Theorem 9.2.1 there

exists a constant γ > 0 such that the event{
∀w ∈ RN, Lλ(w) ≤ min

v∈RN
Lλ(v) + 3γε3 ⇒ 1

N
‖w − wλ‖2 <

σ2ε3

32
}⋂{

sr ≥ s∗(λ)− ε

2
}

(9.6.13)

has probability at least 1− C
ε3 e
−cnε6 . We have on this event, for all w ∈ Dε

1
N
‖w − wλ‖2 = 1

N
‖w + θ? − xλ‖2 ≥

ε

2r
2 = σ2ε3

32 .

Therefore, on the event (9.5.10) we have min
w∈Dε

Lλ(w) > min
w∈RN

Lλ(w) + 3γε3. We conclude

P
(

min
w∈Dε

Lλ(w) ≤ min
w∈RN

Lλ(w) + γε3
)
≤ C

ε3
e−cnε

6
.
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Using the same arguments that we use to deduce Theorems 8.3.1 and 8.3.2 (8.3.8) from
Theorem 8.5.3 and Theorem 9.3.1 in Section 9.3.2, we deduce from Proposition 9.6.4 that
for all ε ∈ (0, 1]

sup
θ?∈D

P
(
∃λ ∈ [λmin, λmax], 1

N
‖θ̂λ‖0 < s∗(λ)− ε

)
≤ C

ε6
N qe−cnε

6
.

This proves, together with (9.6.12), Theorem 9.6.1.

9.6.5 Proof of Theorem 8.3.3
Recall that the distributions µ∗λ and ν∗λ are respectively defined by Definition 8.3.3 and (9.5.1).
Let ε ∈ (0, 1]. From now, we will work on the event

E =
{
∀λ ∈ [λmin, λmax], W2(µ̂(θ̂λ,θ?), µ

∗
λ)2 +W2(µ̂(v̂λ,θ?), ν

∗
λ)2 ≤ ε6

}
⋂ {

∀λ ∈ [λmin, λmax],
∣∣∣ 1
N
‖θ̂λ‖0 − s∗(λ)

∣∣∣+ ∣∣∣ 1
N

#
{
i
∣∣ |v̂λ,i| = 1

}
− s∗(λ)

∣∣∣ ≤ ε2} ,
which has probability at least 1 − Cε−12e−cNε

17 from what we have just seen, and The-
orems 8.3.1, 9.5.2, 9.6.1 and 9.5.6. From now, E and P will denote the probability with
respect to the empirical distributions of the entries of the vectors we study, and the vari-
ables that we couple with them. Let λ ∈ [λmin, λmax]. On the event E one can couple
(Θx, Zx) ∼ µ̂θ? ⊗N (0, 1) and (Θv, Zv) ∼ µ̂θ? ⊗N (0, 1) with (Θ, Θ̂λ, V̂λ, Θ̂d

λ) which is sam-
pled from the empirical distribution of the entries of (θ?, θ̂λ, v̂λ, θ̂dλ), such that

E
[(

Θ̂λ − η(Θx + τ∗Z
x, α∗τ∗)

)2
+
(
Θ−Θx

)2
]
≤ ε6 ,

E
[(
V̂λ + 1

α∗τ∗

(
η(Θv + τ∗Z

v, α∗τ∗)−Θv − τ∗Zv
0

))2
+
(
Θ−Θv

)2
]
≤ ε6 .

Let

E1 =
{∣∣Θ̂λ − η(Θx + τ∗Z

x, α∗τ∗)
∣∣ ≤ ε2, ∣∣V̂λ + 1

α∗τ∗

(
η(Θv + τ∗Z

v, α∗τ∗)−Θv − τ∗Zv
)∣∣ ≤ ε2} .

By Chebychev’s inequality, P(E1) ≥ 1−Cε2, for some constant C > 0. Let us also define
the event

E2 =
{

Θx + τ∗Z
x 6= α∗τ∗ and Θv + τ∗Z

v 6= α∗τ∗

}
.

Θx + τ∗Z
x and Θv + τ∗Z

v admit a density with respect to Lebesgue’s measure. Therefore
P(E2) = 1.
Lemma 9.6.6

The event
E3 =

{
|Θ̂λ| 6∈ (0, ε2] and |V̂λ| 6∈ [1− ε2, 1)

}
has probability at least 1− Cε2.

Proof. We denote here by O(ε2) quantities that are bounded by Cε2, from some constant C.
Since Θx + τ∗Z

x admits a density with respect to Lebesgue’s measure we have

P
(∣∣η(Θx + τ∗Z

x, α∗τ∗)
∣∣ 6∈ (0, 2ε2]

)
= 1−O(ε2) .
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Consequently, since the events E1 has probability at least 1−O(ε2), we have

P(|Θ̂λ| ∈ [0, ε2])

= P
(
|Θ̂λ| ∈ [0, ε2] and |η(Θx + τ∗Z

x, α∗τ∗)| 6∈ (0, 2ε2]

and
∣∣Θ̂λ − η(Θx + τ∗Z

x, α∗τ∗)
∣∣ ≤ ε2)+O(ε2)

= P
(
η
(
Θx + τ∗Z

x, α∗τ∗
)

= 0
)

+O(ε2) = s∗(λ) +O(ε2) .

Since P(Θ̂λ = 0) = s∗(λ) + O(ε2) because we are working on E , we conclude that P
(
|Θ̂λ| ∈

(0, ε2]
)

= O(ε2). One can prove the same way that P
(
|V̂λ| ∈ [1− ε2, 1)

)
= O(ε2), which gives the

desired result.

Lemma 9.6.7
The event

E4 =
{

Θ̂λ 6= 0 ⇐⇒ V̂λ = sign(Θ̂λ)
}

has probability at least 1− Cε2, for some constant C > 0.

Proof. Since v̂λ ∈ ∂|θ̂λ|, θ̂λ,i > 0 implies that v̂λ,i = sign(θ̂λ,i). Thus P
(
Θ̂λ 6= 0 =⇒ V̂λ =

sign(θ̂λ,i)
)

= 1. We have thus {
Θ̂λ 6= 0

}
⊂
{
|V̂λ| = 1

}
. (9.6.14)

On the event E we have
∣∣∣ 1
N ‖θ̂λ‖0 − s∗(λ)

∣∣∣+ ∣∣∣ 1
N#

{
i
∣∣ |v̂λ,i| = 1

}
− s∗(λ)

∣∣∣ ≤ ε2 which gives

P
(
Θ̂λ 6= 0

)
= s∗(λ) +O(ε2) and P

(
|V̂λ| = 1

)
= s∗(λ) +O(ε2).

We deduce then from (9.6.14) that P
(
|V̂λ| = 1 and Θ̂λ = 0

)
= O(ε2) and finally P

(
V̂λ =

sign(Θ̂λ) =⇒ Θ̂λ 6= 0
)
≥ 1− Cε2 .

Lemma 9.6.8
Let E = E1 ∩ E2 ∩ E3 ∩ E4. The event E has probability at least 1 − Cε2 and on E

we have
Θv + τ∗Z

v ≥ α∗τ∗ ⇐⇒ Θx + τ∗Z
x ≥ α∗τ∗ ,

and
Θv + τ∗Z

v ≤ −α∗τ∗ ⇐⇒ Θx + τ∗Z
x ≤ −α∗τ∗ .

Proof. Since E1, E2, E3 and E4 have all a probability greater than 1 − O(ε2), the event E =
E1 ∩ E2 ∩ E3 ∩ E4 has probability at least 1−O(ε2). On E we have

Θv + τ∗Z
v ≥α∗τ∗ ⇐⇒ Θv + τ∗Z

v
0 − η(Θv + τ∗Z

v, α∗τ∗) = α∗τ∗

⇐⇒ V̂λ ≥ 1− ε2 (because we are on the event E1)
⇐⇒ V̂λ = 1 (because we are on the event E3)
⇐⇒ Θ̂λ > 0 (because we are on the event E4)
⇐⇒ Θ̂λ > ε2 (because we are on the event E3)
⇐⇒ η(Θx + τ∗Z

x, α∗τ∗) > 0 (because we are on the event E1)
⇐⇒ Θx + τ∗Z

x ≥ α∗τ∗ (because we are on the event E2) .
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The second equivalence is proved exactly the same way.

Let us define

Xd = η(Θx + τ∗Z
x, α∗τ∗) + Θv + τ∗Z

v
0 − η(Θv + τ∗Z

v, α∗τ∗) .

We have

E(Θ̂d
λ −Xd)2 = 2E

[(
Θ̂λ − η(Θx + τ∗Z

x, α∗τ∗)
)2
]

+ 2E
[( λ

1− 1
n
‖θ̂λ‖0

V̂λ −Θv − τ∗Zv + η(Θv + τ∗Z
v, α∗τ∗)

)2
]

≤ Cε4 ,

for some constant C > 0, because on the event E , 1
N

∣∣∣‖θ̂λ‖0 − s∗(λ)
∣∣∣ ≤ ε2, so

λ

1− 1
n
‖θ̂λ‖0

= λ

1− 1
δ
s∗(λ) +O(ε2) = α∗τ∗ +O(ε2) .

By Lemma 9.6.8 above, we have on the event E,

Xd =

Θx + τ∗Z
x if Θx + τ∗Z

x ≥ α∗τ∗ or Θx + τ∗Z
x ≤ −α∗τ∗ ,

Θv + τ∗Z
v otherwise.

Let us denote T x = (Θx + τ∗Z
x,Θx) and T v = (Θv + τ∗Z

v,Θv).
Since Θx+τx∗Z and Θv+τ∗Zv have the same law and P

(
Θx+τ∗Zx ≥ α∗τ∗

∣∣∣E) = P
(
Θv+

τ∗Z
v ≥ α∗τ∗

∣∣∣E) (by Lemma 9.6.8), we have P
(
Θx + τ∗Z

x ≥ α∗τ∗
∣∣∣Ec

)
= P

(
Θv + τ∗Z

v ≥
α∗τ∗

∣∣∣Ec
)
. Similarly we have P

(
Θx + τ∗Z

x ≤ −α∗τ∗
∣∣∣Ec

)
= P

(
Θv + τ∗Z

v ≤ −α∗τ∗
∣∣∣Ec

)
.

One can therefore define two random variables T̃ x = (Θ̃x + τ∗Z̃
x, Θ̃x) and T̃ v = (Θ̃v +

τ∗Z̃
v, Θ̃v) such that

• conditionally on Ec, T̃ x (respectively T̃ v) and T x (respectively T v) have the same
law.

• On the event Ec, Θ̃x + τ∗Z̃
x ≥ α∗τ∗ ⇐⇒ Θ̃v + τ∗Z̃

v ≥ α∗τ∗ and Θ̃x + τ∗Z̃
x ≤

−α∗τ∗ ⇐⇒ Θ̃v + τ∗Z̃
v ≤ −α∗τ∗.

We define then

(
X̃d, Θ̃

)
=


T x on the event E provided that |Θx + τ∗Z

x| ≥ α∗τ∗ ,

T v on the event E provided that |Θx + τ∗Z
x| < α∗τ∗ ,

T̃ x on the event Ec provided that |Θ̃x + τ∗Z̃
x| ≥ α∗τ∗ ,

T̃ v on the event Ec provided that |Θ̃x + τ∗Z̃
x| < α∗τ∗ .

(X̃d, Θ̃) ∼ µdλ which is the law of (Θ + τ∗Z,Θ) where (Θ, Z) ∼ µ̂θ? ⊗N (0, 1). Indeed, for
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every continuous bounded function f we have

E[f(X̃d, Θ̃)] = E
[
1E1|Θx+τ∗Zx|≥α∗τ∗f(T x)

]
+ E

[
1E1|Θv+τ∗Zv |<α∗τ∗f(T v)

]
+ E

[
1Ec1|Θ̃x+τ∗Z̃x|≥α∗τ∗f(T̃ x)

]
+ E

[
1Ec1|Θ̃v+τ∗Z̃v |<α∗τ∗f(T̃ v)

]
= E

[
1E1|Θx+τ∗Zx|≥α∗τ∗f(T x)

]
+ E

[
1E1|Θv+τ∗Zv |<α∗τ∗f(T v)

]
+ E

[
1Ec1|Θx+τ∗Zx|≥α∗τ∗f(T x)

]
+ E

[
1Ec1|Θv+τ∗Zv |<α∗τ∗f(T v)

]
= E

[
1|Θx+τ∗Zx|≥α∗τ∗f(T x)

]
+ E

[
1|Θv+τ∗Zv |<α∗τ∗f(T v)

]
= E

[
1|Θx+τ∗Zx|≥α∗τ∗f(T x)

]
+ E

[
1|Θx+τ∗Zx|<α∗τ∗f(T x)

]
= E

[
f(T x)

]
.

Let us now compute

E
[(
Xd − X̃d

)2
]

= E
[
1Ec

(
Xd − X̃d

)2
]
≤ C

√
P(Ec) ≤ Cε ,

and

E
[(

Θ̃−Θ
)2
]
≤ E

[
1E
(
Θx −Θ

)2
]

+ E
[
1E
(
Θv −Θ

)2
]

+ E
[
1Ec

(
Θ̃x −Θ

)2
]

+ E
[
1Ec

(
Θ̃v −Θ

)2
]

≤ 2ε6 + 2C
√

P(Ec) ≤ Cε .

Therefore E
∥∥∥(Θ̂d

λ,Θ)− (X̃d, Θ̃)
∥∥∥2
≤ Cε and consequently W2(µ̂(θ̂d

λ
,θ?), µ

d
λ)2 ≤ Cε, on the

event E which has probability at least 1− Cε−12e−cNε
17 .

9.6.6 Proof of Corollary 8.4.2
Let ε ∈ (0, 1]. Let us work on the intersection the events of Theorem 9.6.1,Corollary 8.4.1
and 9.5.3, which as probability at least 1− C

ε6
e−cNε

6 . Let λ ∈ [λmin, λmax].

1
N

∥∥∥XT(y −Xθ̂λ)‖2 = λ2

N
‖v̂λ‖2 = λ2κ∗(λ) +O(ε) .

We have also 1− 1
n
‖θ̂λ‖0 = 1− 1

δ
s∗(λ) +O(ε) = β∗(λ)/τ∗(λ) +O(ε). Therefore

∥∥∥XT(y −Xθ̂λ)
∥∥∥2

N(1− 1
n
‖θ̂λ‖0)2

=
(
λτ∗(λ)
β∗(λ)

)2
κ∗(λ) +O(ε) = τ∗(λ)2

(
1 + δ − 2s∗(λ)

)
− δσ2 +O(ε) .

Now we have τ̂(λ) = τ∗(λ) +O(ε) and 1
N
‖θ̂λ‖0 = s∗(λ) +O(ε). Consequently

τ̂(λ)2
( 2
N
‖θ̂λ‖0 − 1

)
= τ∗(λ)2(2s∗(λ)− 1) +O(ε) .

Putting all together we obtain R̂(λ) = δτ∗(λ)2 − δσ2 + O(ε) = R∗(λ) + O(ε), and we
conclude using Theorem 8.3.2.
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9.6.7 Proof of Proposition 8.4.3
Let n′ ∈ {1, . . . , n}. We consider a random n′ × N matrix X ′ and a random vector
z′ = (z′1, . . . , z′n′) such that X ′i,j

i.i.d.∼ N (0, 1/n) and z′i
i.i.d.∼ N (0, 1) are independent and

independent of everything else.
Lemma 9.6.9

There exists constants γ, c, C > 0 that only depend on Ω such that for all θ? in D and
all λ ∈ [λmin, λmax] such that for all ε ∈ (0, 1],

P
(
∃w ∈ RN,

∣∣∣ 1
n′
‖X ′w − σz′‖2 − 1

n
‖w‖2 − σ2

∣∣∣ ≥ √ε n
n′

and Lλ(w) ≤ min
v∈RN

Lλ(v) + γε
)

≤ C

ε
e−cnε

2
.

Proof. The vector wλ is independent from X ′, z′. Hence

‖X ′wλ − σz′‖2 =
( 1
n
‖wλ‖2 + σ2

)
χ (9.6.15)

where χ is independent from wλ and follows a χ-squared distribution with n′ degrees of freedom.
We have therefore for all t ≥ 0

P
(∣∣χ− n′∣∣ ≥ tn′) ≤ Ce−cn′t + Ce−cn

′t2 , (9.6.16)

for some constants c, C > 0. We know by Lemma 9.6.1 and Lemma 9.6.2 that 1
n‖wλ‖

2 concentrates
exponentially fast around τ∗(λ)2−σ2, which is (Theorem 9.1.2) bounded by some constant. There
exists therefore constants C, c > 0 such that

P
( 1
n
‖wλ‖2 + σ2 > C

)
≤ Ce−cn. (9.6.17)

From (9.6.15)-(9.6.16) and (9.6.17) above, we deduce that for all t ≥ 0

P
(∣∣ 1
n′
‖X ′wλ − σz′‖2 −

1
n
‖wλ‖2 − σ2∣∣ > t

)
≤ Ce−cn′t + Ce−cn

′t2 + Ce−cn, (9.6.18)

for some constants c, C > 0. By Proposition 9.7.4, we know that P
(
σmax(X ′) > δ−1/2 +

√
n′/n+

1
)
≤ e−n/2. Let ε ∈ (0, 1]. Let w ∈ RN such that ‖w − wλ‖2 ≤ εN .

1√
n′
‖X ′wλ − σz′‖+ 1√

n′
‖X ′w − σz′‖ ≤ 2σ√

n′
‖z′‖+ σmax(X ′)√

n′

(
‖wλ‖+ ‖w‖

)
≤ C

√
n

n′

for some constant C > 0, with probability at least 1− Ce−cn. Consequently∣∣∣ 1
n′
‖X ′wλ − σz′‖2 −

1
n′
‖X ′w − σz′‖2

∣∣∣ ≤ C
√
n

n′

∣∣∣‖X ′wλ − σz′‖ − ‖X ′w − σz′‖∣∣∣
≤ C
√
n

n′
‖X ′(wλ − w)‖

≤ Cσmax(X ′)
√
δ−1ε

n

n′
≤ C
√
ε
n

n′
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with probability at least 1−Ce−cn for some constant C > 0. Similarly, we have with probability
at least 1− Ce−cn, ∣∣∣ 1

n
‖wλ‖2 −

1
n
‖w‖2

∣∣∣ ≤ C√ε.
We conclude that with probability at least 1−Ce−cn we have for all w ∈ RN such that ‖w−wλ‖2 ≤
Nε, ∣∣∣ 1

n′
‖X ′wλ − σz′‖2 −

1
n
‖wλ‖2 −

1
n′
‖X ′w + σz′‖2 + 1

n
‖w‖2

∣∣∣ ≤ C√ε(1 + n

n′
)
≤ 2C

√
ε
n

n′
.

Combining this with (9.6.18), we get that for all ε ∈ (0, 1],

P
(
∃w ∈ RN , ‖w − wλ‖2 ≤ Nε and

∣∣∣ 1
n′
‖X ′w + σz′‖2 − 1

n
‖w‖2 − σ2

∣∣∣ > 2C
√
ε
n

n′

)
≤ Ce−cnε.

We conclude using Theorem 9.2.1 that

P
(
∃w ∈ RN ,

∣∣∣ 1
n′
‖X ′w−σz′‖2− 1

n
‖w‖2−σ2

∣∣∣ ≥ √ε n
n′

and Lλ(w) ≤ min
v∈RN

Lλ(v)+γε
)
≤ C

ε
e−cnε

2

for some constants c, C, γ > 0.

Using Proposition 9.3.1, we deduce
Lemma 9.6.10

There exists constants γ, c, C > 0 that only depend on Ω such that for all θ? in D and
all λ ∈ [λmin, λmax] such that for all ε ∈ (0, 1],

P
(
∃θ ∈ RN ,

∣∣∣ 1
n′
‖X ′θ?+σz′−X ′θ‖2− 1

n
‖θ−θ?‖2−σ2

∣∣∣ ≥ √ε n
n′

and Lλ(θ) ≤ minLλ+γε
)
≤ C

ε
e−cnε

2
.

We have

θ̂iλ = arg min
θ∈RN

{
1

2nk

∥∥∥∥y(\i) −X(\i)θ
∥∥∥∥2

+ λ

n
|θ|
}

= arg min
θ∈RN

{
1

2nk

∥∥∥∥X(\i)θ? + σz(\i) −X(\i)θ
∥∥∥∥2

+ λ

n
|θ|
}

= arg min
θ∈RN

 1
2n

∥∥∥∥
√

k

k − 1X
(\i)θ? +

√
k

k − 1σz
(\i) −

√
k

k − 1X
(\i)θ

∥∥∥∥2
+ λ

n
|θ|

 .
θ̂iλ is thus the minimizer of the Lasso cost (8.3.1) for δ(k) = k−1

k
δ and σ(k) =

√
k/(k − 1)σ.

Let τ (k)
∗ (λ) be the τ∗ defined by Theorem 8.3.1, but with δ(k) instead of δ and σ(k) instead

of σ. Define the corresponding ‘risk’:

R(k)
∗ (λ) = δ(k)

(
τ (k)
∗ (λ)2 − (σ(k))2

)
.

It is not difficult to verify that the bounds on τ∗, β∗ of Section 9.1.2 are uniform with
respect to δ and σ. More precisely

sup
δ∈[δmin,δmax]

sup
σ∈[σmin,σmax]

sup
λ∈[λmin,λmax]

sup
θ?∈D

{
τ∗(λ, δ, σ) + β∗(λ, δ, σ)

}
< +∞ ,

where δmax, δmin, σmax, σmin > 0 such that smax(δmin) > s if we are in the case D = F0(s).
This gives that under the assumptions of Proposition 8.4.3, τ (k)

∗ and R
(k)
∗ are bounded for

all k ≥ 2 (that verify smax(δ(k − 1)/k) > s in the case D = F0(s)) by some constant that
depends only on Ω.
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Lemma 9.6.11
There exists constants C, c > 0 that only depend on Ω such that for all θ? ∈ D, for all
i ∈ {1, . . . , k} and for all ε ∈ (0, 1],

P
(

sup
λ∈[λmin,λmax]

∣∣∣∣kn‖y(i) −X(i)θ̂iλ‖2 − 1
n
‖θ̂iλ − θ?‖2 − σ2

∣∣∣∣ ≥ kε
)
≤ CN qε−4e−cnε

4
.

Proof. Let i ∈ {1, . . . , k}. Let us define for θ ∈ RN ,

L(\i)
λ (θ) = 1

2nk
∥∥y(\i) −X(\i)θ

∥∥2 + λ

n
|θ|.

Let ε ∈ (0, 1]. Let η = γε
KNq and M = d(λmax − λmin)/ηe. Define for j ∈ {0, . . . ,M}, define

λj = min
(
λmin + jη, λmax

)
. We apply Lemma 9.6.10 with n′ = n/k, X ′ = X(i) and z′ = z(i) to

obtain that the event

E1 =
{
∀j ∈ {1, . . . ,M}, ∀θ ∈ RN , L(\i)

λj
(θ) ≤ minL(\i)

λj
+ γε

⇒
∣∣∣k
n
‖y(i) −X(i)θ‖2 − 1

n
‖θ − θ?‖2 − σ2

∣∣∣ < √εk}
has probability at least 1−M C

ε e
−cε2n. By Lemma 9.3.5 the event

E2 =
{
∀λ, λ′∈ [λmin, λmax], L(\i)

λ′ (θ̂iλ)≤ min
x∈RN

L(\i)
λ′ (x)+KN q|λ−λ′|

}
(9.6.19)

has probability at least 1 − Ce−cn. On the event E2, we have for all j ∈ {1, . . . , k} and all
λ ∈ [λj−1, λj ]

L(\i)
λj

(θ̂iλ) ≤ min
x∈RN

L(\i)
λj

(x) +KN qη ≤ min
x∈RN

L(\i)
λj

(x) + γε.

We obtain that on E1 ∩ E2, which has probability at least 1− CN qε−2e−cnε
2

∀λ ∈ [λmin, λmax],
∣∣∣k
n
‖y(i) −X(i)θ̂iλ‖2 −

1
n
‖θ̂iλ − θ?‖2 − σ2

∣∣∣ < √εk.
Proposition 9.6.5

There exists constants c, C > 0 that only depend on Ω, such that for all θ? ∈ D and
for all i ∈ {1, . . . , k}

P
(

sup
λ∈[λmin,λmax]

∣∣∣∣ 1
N
‖θ̂iλ − θ?‖2 −R∗(λ)

∣∣∣∣ ≤ C√
k

)
≤ CN qk4e−cN/k

4
.

Proof. Let us fix i ∈ {1, . . . , k}. By Proposition 9.3.7, λ 7→ R∗(λ) is K1-Lipschitz on [λmin, λmax],
for some constant K1 > 0. By Propositions 9.3.3 and 9.3.4 there exists a constant K2 > 0 such
that the event

E1 =
{
∀λ ∈ [λmin, λmax], 1

N

∣∣|θ̂iλ| − |θ?|∣∣ ≤ K2N
q and 1

N

∣∣|θ̂λ| − |θ?|∣∣ ≤ K2N
q
}

(9.6.20)

has probability at least 1 − Ce−cn. Let us define η = min
(

δ
2NqkK2

, 1
K1
√
k

)
and M = d(λmax −

λmin)/ηe. For all j ∈ {0, . . . ,M}, we write λj = min
(
λmin + jη, λmax

)
.
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By Theorem 8.3.2 the event

E2 =
{
∀λ ∈ [λmin, λmax],

∣∣∣ 1
N
‖θ̂iλ−θ?‖2−R

(k)
∗ (λ)

∣∣∣ ≤ 1 and
∣∣∣ 1
n

∥∥y−Xθ̂λ∥∥2−β∗(λ)
∣∣∣ ≤ 1

}
(9.6.21)

has probability at least 1− CN qe−cN . By Lemma 9.6.11, applied with ε = k−1,

E3 =
{

sup
λ∈[λmin,λmax]

∣∣∣k
n
‖y(i) −X(i)θ̂iλ‖2 −

1
n
‖θ̂iλ − θ?‖2 − σ2

∣∣∣ ≤ 1
}

has probability at least 1−Ck4N qe−cn/k
4 . On the event E2∩E3, we have, for all λ ∈ [λmin, λmax],

Lλ(θ̂iλ) = 1
2n
∥∥y(i) −X(i)θ̂iλ

∥∥2 + 1
2n
∥∥y(-i) −X(-i)θ̂iλ

∥∥2 + λ

n
|θ̂iλ|

≤ 1
k

(
σ2 + 1

n
‖θ? − θ̂iλ‖2 + 1

)
+ 1

2nk
∥∥y(-i) −X(-i)θ̂iλ

∥∥2 + λ

n
|θ̂iλ|

≤ 1
k

(
1 + σ2 + δ−1(R(k)

∗ (λ) + 1)
)

+ 1
2nk

∥∥y(-i) −X(-i)θ̂λ
∥∥2 + λ

n
|θ̂λ|

≤ 1
k

(
1 + σ2 + δ−1(R(k)

∗ (λ) + 1)
)

+ Lλ(θ̂λ) +
( 1

2nk
− 1

2n
)∥∥y −Xθ̂λ∥∥2

≤ Lλ(θ̂λ) + C

k

for some constant C > 0. Let j ∈ {1, . . . ,M}. We have Lλ(θ̂iλ) = Lλj (θ̂iλ)− λj−λ
n |θ̂

i
λ| and

Lλ(θ̂λ) ≤ Lλ(θ̂λj ) = Lλj (θ̂λj ) + λ− λj
n
|θ̂λj | = min

θ∈RN
Lλj (θ) + λ− λj

n
|θ̂λj |.

So we get that on the event E1 ∩ E2 ∩ E3, for all j ∈ {1, . . . ,M} and all λ ∈ [λj−1, λj ],

Lλj (θ̂iλ) ≤ min
θ∈RN

Lλj (θ) + λj − λ
n

(
|θ̂iλj | − |θ̂λj |

)
+ C

k

≤ min
θ∈RN

Lλj (θ) + λj − λ
δ

2K2N
q + C

k

≤ min
θ∈RN

Lλj (θ) + η

δ
2K2N

q + C

k
≤ min

θ∈RN
Lλj (θ) + C0

k
,

for some constant C0 > 0, because on E1 we have ∀λ ∈ [λmin, λmax], 1
N

∣∣|θ̂iλ| − |θ̂λ|∣∣ ≤ 2K2N
q. By

Theorem 9.3.1, there exists constants C, c, γ > 0 such that for all ε ∈ (0, 1] the event

E4 =
{
∀j ∈ {1 . . .M}, ∀θ ∈ RN, Lλj (θ)≤minLλj + γε

∣∣∣ 1
N
‖θ − θ?‖2 −R∗(λj)

∣∣∣≤√ε}
has probability at least 1 − CMε−1e−cNε

2 . Consider the constant κ = C0
γ . If k ≥ κ, then

ε = C0
γk ≤ 1 and the event E4 has probability at least 1−CMke−cN/k

2 . So we obtain that on the
event E1 ∩ E2 ∩ E3 ∩ E4, which has probability 1− CN qk4e−cn/k

4 ,

∀j ∈ {1, . . . ,M}, ∀λ ∈ [λj−1, λj ],
∣∣∣ 1
N
‖θ̂iλ − θ?‖2 −R∗(λj)

∣∣∣ ≤ C√
k
,

for some constant C > 0. If now k < κ. Then on the event E2 we have ∀j ∈ {1, . . . ,M}, ∀λ ∈
[λj−1, λj ], ∣∣∣ 1

N
‖θ̂iλ − θ?‖2 −R∗(λj)

∣∣∣ ≤ sup
λ∈[λmin,λmax]

R
(k)
∗ (λ) + sup

λ∈[λmin,λmax]
R∗(λ) + 1

≤ C ≤ C
√
κ√
k
,
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where C is a constant. We conclude that (in both cases) there exists a constant C > 0 such that

∀j ∈ {1, . . . ,M}, ∀λ ∈ [λj−1, λj ],
∣∣∣ 1
N
‖θ̂iλ − θ?‖2 −R∗(λj)

∣∣∣ ≤ C√
k
,

holds with probability at least 1−CN qk4e−cN/k
4 Proposition 9.6.5 follows from the fact that for

all λ ∈ [λj−1, λj ], |R∗(λ)−R∗(λj)| ≤ K1|λ− λj | ≤ 1√
k
.

Proof of Proposition 8.4.3. We apply Lemma 9.6.11 with ε = k−3/2 to obtain that with
probability at least 1− Ck6N qe−cn/k

6 we have

∀λ ∈ [λmin, λmax], ∀i ∈ {1 . . . k},
∣∣∣k
n
‖y(i) −X(i)θ̂iλ‖2 −

1
n
‖θ̂iλ − θ?‖2 − σ2

∣∣∣ ≤ 1√
k
.

By summing these inequalities for i = 1 . . . k and using the triangular inequality, we get

∣∣∣k
n

k∑
i=1
‖y(i) −X(i)θ̂iλ‖2 −

1
n

k∑
i=1
‖θ̂iλ − θ?‖2 − kσ2

∣∣∣ ≤ k√
k
.

and then ∣∣∣ 1
N

k∑
i=1
‖y(i) −X(i)θ̂iλ‖2 −

1
k

k∑
i=1

1
N
‖θ̂iλ − θ?‖2 − δσ2

∣∣∣ ≤ δ√
k
. (9.6.22)

By Proposition 9.6.5, we have with probability at least 1− CN qk4e−cN/k
3 ,

∀λ ∈ [λmin, λmax], ∀i ∈ {1, . . . , k},
∣∣∣ 1
N
‖θ̂iλ − θ?‖2 −R∗(λ)

∣∣∣ ≤ C√
k
.

This implies (again by summing and using the triangular inequality) that

∣∣∣1
k

k∑
i=1

1
N
‖θ̂iλ − θ?‖2 −R∗(λ)

∣∣∣ ≤ C√
k
,

which, combined with (9.6.22) proves Proposition 8.4.3.

9.6.8 The scalar lasso
In this section we study

`α(y) = min
x∈R

{1
2(y − x)2 + α|x|

}
. (9.6.23)

Lemma 9.6.12
The minimum (9.6.23) is achieved at an unique point x∗ = η(y, α) and

`α(y) =


1
2y

2 if −α ≤ y ≤ α
αy − 1

2α
2 if y ≥ α

−αy − 1
2α

2 if y ≤ −α

Suppose now that
y = x+ Z ,

for some x ∈ R and Z ∼ N (0, 1).
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Lemma 9.6.13
Define

∆α(x) = E
[
`α(x+ Z)− α|x|

]
.

The function ∆α is continuous, even, decreasing on R≥0, α-Lipschitz. Moreover∆α(0) = 1
2 + αφ(α)− (1 + α2)Φ(−α)

lim
x→±∞

∆α(x) = −α2

2

and ∆′α(0+) = −∆′α(0−) = −α.

Proof. Since Z and −Z have the same law, one verify easily that ∆α is an even function. We
have for all x > 0

∆′α(x) = E
[
`′α(x+ Z)− α

]
= E [1(x+ Z ∈ [−α, α])(x+ Z − α)] ≤ 0 .

`α is convex, therefore x 7→ E[`′α(x + Z)] is non-decreasing. E[`′α(Z)] = 0 because `′α is an odd
function. Consequently, for all x > 0

−α ≤ E[`′α(x+ Z)− α] = ∆′α(x) .

This gives (recall that ∆α is even and continuous over R) that ∆α is α-Lipschitz. From what we
have seen above, we have also ∆′α(0+) = −∆′α(0−) = −α. Compute now, using the fact that `α
is even:

∆α(0) = E[`α(Z)] =
∫ α

0
z2φ(z)dz +

∫ +∞

α
(2αz − α2)φ(z)dz .

By integration by parts∫ α

0
z2φ(z)dz =

[
− zφ(z)

]α
0

+
∫ α

0
φ(z)dz = −αφ(α) + 1

2 − Φ(−α)

∫ +∞

α
(2αz − α2)φ(z)dz = −α2Φ(−α) + 2αφ(α) .

Therefore ∆α(0) = 1
2 + αφ(α)− (1 + α2)Φ(−α). We have almost surely

`α(x+ Z)− α|x| −−−−→
x→±∞

−α
2

2 .

Thus, by dominated convergence lim
x→±∞

∆α(x) = −α2

2 .

9.6.9 A convexity lemma

Lemma 9.6.14
The function

f : x ∈ RN 7→
√
‖x‖2

n
+ σ2

is σ2

n(R2+σ2)3/2 -strongly convex on B(0,
√
nR).
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Proof. Let x, y ∈ B(0,
√
nR) and define for t ∈ [0, 1], g(t) = f(zt), where zt = (tx + (1 − t)y).

Compute

g′(t) =
1
n(x− y)Tzt√
‖zt‖2
n + σ2

,

and

g′′(t) =
1
n‖x− y‖

2√
‖zt‖2
n + σ2

−
( 1
n(x− y)Tzt

)2(‖zt‖2
n + σ2)3/2

= 1(‖zt‖2
n + σ2)3/2

(
1
n
‖x− y‖2

(‖zt‖2
n

+ σ2
)
−
( 1
n

(x− y)Tzt

)2
)

≥ σ2(‖zt‖2
n + σ2)3/2

( 1
n
‖x− y‖2

)
≥ 1
n
‖x− y‖2 σ2

(R2 + σ2)3/2 .

Consequently

tf(x) + (1− t)f(y) = tg(1) + (1− t)g(0)

≥ g(t) + 1
2 t(1− t)

1
n
‖x− y‖2 σ2

(R2 + σ2)3/2

= f(tx+ (1− t)y) + 1
2 t(1− t)

1
n
‖x− y‖2 σ2

(R2 + σ2)3/2 .

9.7 Toolbox
9.7.1 Notations recap

Recall thatX is a n×N random matrix with entriesXi,j
i.i.d.∼ N (0, 1/n). The random vectors

z ∈ Rn, g ∈ RN and h ∈ Rn are standard Gaussian random vectors. The following table
displays the main cost (or objective) functions used in this paper and their corresponding
optimizers.

Definition Optimizer
Lλ(θ) = 1

2n ‖Xθ − y‖
2 + λ

n
|θ| θ̂λ

Cλ(w) = 1
2n‖Xw − σz‖

2 + λ
n
(|w + θ?| − |θ?|) ŵλ

Uλ(u) = min
w∈RN

{
uTXw − σuTz − 1

2‖u‖
2 + λ(|θ? + w| − |θ?|)

}
ûλ

Vλ(v) = min
w∈B

{
1

2n‖Xw − σz‖
2 + λ

n
vT(θ? + w)− λ

n
|θ?|

}
v̂λ

Lλ(w) = 1
2

(√
‖w‖2
n

+ σ2 ‖h‖√
n
− 1

n
gTw + g′σ√

n

)2

+
+ λ

n
|w + θ?| − λ

n
|θ?| w∗λ

Uλ(u) = min
w∈RN

{
−1
n3/2‖u‖gTw + 1

n3/2‖w‖hTu− σ
n
uTz − 1

2n‖u‖
2 + λ

n

(
|w + θ?| − |θ?|

)}
u∗λ

Vλ(v) = min
w∈B

{
1
2

(√
1
n
‖w‖2 + σ2 ‖h‖√

n
− 1

n
gTw + g′σ√

n

)2

+
+ λ

n
vT(w + θ?)− λ

n
|θ?|

}
v∗λ

Table 9.1: Main cost/objective functions

236



In the definition of Vλ above, B =
{
w ∈ RN | |w| ≤ 2|θ?|+5σ2λ−1

minn+K
}

, where K > 0
is the constant given by Lemma 9.5.5. The functions Lλ, Uλ and Vλ are the “corresponding
cost/objective functions” to Cλ, Uλ and Vλ. A main part of the analysis is to show that
w∗λ, u∗λ and v∗λ are approximately equal to wλ, uλ and vλ given by:

wλ = η
(
θ? + τ∗(λ)g, α∗(λ)τ∗(λ)

)
− θ?

uλ = β∗(λ)
τ∗(λ)

(√
τ∗(λ)2 − σ2 h√

n
− σ√

n
z
)

vλ = −α∗(λ)−1τ∗(λ)−1
(
η
(
θ? + τ∗(λ)g, α∗(λ)τ∗(λ)

)
− θ? − τ∗(λ)g

)
Table 9.2: “Asymptotic optimizers”

9.7.2 Gaussian min-max Theorem
In this section, we reproduce the proof of the tight Gaussian min-max comparison theorem
from [205] for completeness, but also because we need a slightly more general version of
this result.

We recall the classical Gordon’s min-max Theorem from [93] (see also Corollary 3.13
from [130]):

Theorem 9.7.1
Let Xi,j and (Yi,j), 1 ≤ i ≤ n, 1 ≤ j ≤ m be two (centered) Gaussian random vectors

such that 
EX2

i,j = EY 2
i,j for all i, j ,

EXi,jXi,k ≥ EYi,jYi,k for all i, j, k ,
EXi,jXl,k ≤ EYi,jYl,k for all i 6= l and j, k .

Then, for all real numbers λi,j:

P

 n⋂
i=1

m⋃
j=1

{
Xi,j > λi,j

} ≤ P

 n⋂
i=1

m⋃
j=1

{
Yi,j > λi,j

} .
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Theorem 9.7.2
Let Du ⊂ Rn and Dv ⊂ Rm be two compact sets. Let Q : Du×Dv → R be a continuous
function. Let

(
X(u, v)

)
(u,v)∈Du×Dv

and
(
Y (u, v)

)
(u,v)∈Du×Dv

be two centered Gaussian
processes. Suppose that the functions

(u, v) 7→ X(u, v) and (u, v) 7→ Y (u, v)

are continuous on Du ×Dv almost surely. Assume that

E
[
X(u, v)2

]
= E

[
Y (u, v)2

]
for all (u, v) ∈ Du ×Dv ,

E
[
X(u, v)X(u, v′)

]
≥ E

[
Y (u, v)Y (u, v′)

]
for all u ∈ Du, v, v

′ ∈ Dv ,

E
[
X(u, v)X(u′, v′)

]
≤ E

[
Y (u, v)Y (u′, v′)

]
for all u, u′ ∈ Du, v, v

′ ∈ Dv

such that u 6= u′ .

Then for all t ∈ R

P
(

min
u∈Du

max
v∈Dv

Y (u, v) +Q(u, v) ≤ t
)
≤ P

(
min
u∈Du

max
v∈Dv

X(u, v) +Q(u, v) ≤ t
)
.

Proof. Define the random variable

d0 = sup
{
d ∈ Q+

∣∣∣ ∀(z, z′) ∈ (Du ×Dv)2,

‖z − z′‖ ≤ d⇒
(
|X(z)−X(z′)| ≤ ε and |Y (z)− Y (z′)| ≤ ε

)}
.

X and Y are continuous on the compact set Du ×Dv and are therefore uniformly continuous on
this set: d0 > 0 almost surely. Let ε > 0. By tightness there exists a constant d > 0 such that

P(d0 ≥ d) ≥ 1− ε .

Q is continuous and thus uniformly continuous on Du ×Dv: there exists δ ∈ (0, d] such that for
all z, z′ ∈ Du ×Dv, ‖z − z′‖ ≤ δ =⇒ |Q(z)−Q(z′)| ≤ ε.

Let Dδ
u (respectively Dδ

v) be a δ/
√

2-net of Du (respectively Dv). Dδ
u ×Dδ

v is thus a δ-net of
Du ×Dv. By Theorem 9.7.1 we have for all t ∈ R

P
(

min
u∈Dδu

max
v∈Dδv

X(u, v) +Q(u, v) > t
)
≤ P

(
min
u∈Dδu

max
v∈Dδv

Y (u, v) +Q(u, v) > t
)
,

which gives by taking the complementary:

P
(

min
u∈Dδu

max
v∈Dδv

Y (u, v) +Q(u, v) ≤ t
)
≤ P

(
min
u∈Dδu

max
v∈Dδv

X(u, v) +Q(u, v) ≤ t
)
.

By construction of δ we have with probability at least 1− ε∣∣∣ min
u∈Dδu

max
v∈Dδv

X(u, v) +Q(u, v)− min
u∈Du

max
v∈Dv

X(u, v) +Q(u, v)
∣∣∣ ≤ 2ε ,

and similarly for Y . We have therefore, for all t ∈ R

P
(

min
u∈Du

max
v∈Dv

Y (u, v) +Q(u, v) ≤ t− 2ε
)
− ε ≤ P

(
min
u∈Du

max
v∈Dv

X(u, v) +Q(u, v) ≤ t+ 2ε
)

+ ε ,

and thus

P
(

min
u∈Du

max
v∈Dv

Y (u, v) +Q(u, v) ≤ t
)
≤ P

(
min
u∈Du

max
v∈Dv

X(u, v) +Q(u, v) ≤ t+ 4ε
)

+ 2ε ,

which proves the theorem by taking ε→ 0.
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Corollary 9.7.1
Let Du ⊂ Rn1+n2 and Dv ⊂ Rm1+m2 be compact sets and let Q : Du × Dv → R be

a continuous function. Let G = (Gi,j) i.i.d.∼ N (0, 1), g ∼ N (0, Idn1) and h ∼ N (0, Idm1)
be independent standard Gaussian vectors. For u ∈ Rn1+n2 and v ∈ Rm1+m2 we define
ũ = (u1, . . . , un1) and ṽ = (v1, . . . , vm1). Define

C∗(G) = min
u∈Du

max
v∈Dv

ṽTGũ+Q(u, v) ,

L∗(g, h) = min
u∈Du

max
v∈Dv
‖ṽ‖gTũ+ ‖ũ‖hTṽ +Q(u, v) .

Then we have:

• For all t ∈ R,
P
(
C∗(G) ≤ t

)
≤ 2P

(
L∗(g, h) ≤ t

)
.

• If Du and Dv are convex and if Q is convex concave, then for all t ∈ R

P
(
C∗(G) ≥ t

)
≤ 2P

(
L∗(g, h) ≥ t

)
.

Proof. Let us consider the Gaussian processes:{
X(u, v) = ‖ṽ‖gTũ+ ‖ũ‖hTṽ ,

Y (u, v) = ṽTGũ+ ‖ũ‖‖ṽ‖z ,

where z ∼ N (0, 1) is independent from G. Let (u, v), (u′, v′) ∈ Du ×Dv and compute

E
[
Y (u, v)Y (u′, v′)

]
− E

[
X(u, v)X(u′, v′)

]
= ‖ũ‖‖ṽ‖‖ũ′‖‖ṽ′‖+ (ũTũ′)(ṽTṽ′)− ‖ṽ‖‖ṽ′‖(ũTũ′)− ‖ũ‖‖ũ′‖(ṽTṽ′)
=
(
‖ũ‖‖ũ′‖ − (ũTũ′)

)(
‖ṽ‖‖ṽ′‖ − (ṽTṽ′)

)
≥ 0 .

Therefore X and Y verify the covariance inequalities of Theorem 9.7.2: one can apply Theo-
rem 9.7.2:

P
(

min
u∈Du

max
v∈Dv

Y (u, v) +Q(u, v) ≤ t
)
≤ P

(
min
u∈Du

max
v∈Dv

Y (u, v) +Q(u, v) ≤ t
)
,

We have then

P
(

min
u∈Du

max
v∈Dv

Y (u, v) +Q(u, v) ≤ t
)
≥ 1

2P
(

min
u∈Du

max
v∈Dv

Y (u, v) +Q(u, v) ≤ t
∣∣∣ z ≤ 0

)
≥ 1

2P
(

min
u∈Du

max
v∈Dv

ṽTGũ+Q(u, v) ≤ t
∣∣∣ z ≤ 0

)
= 1

2P
(
C∗(G) ≤ t

)
,

which proves that

P
(

min
u∈Du

max
v∈Dv

ṽTGũ+Q(u, v) ≤ t
)
≤ 2P

(
min
u∈Du

max
v∈Dv

‖ṽ‖gTũ+ ‖ũ‖hTṽ +Q(u, v) ≤ t
)
.

Let us suppose now that Du and Dv are convex and that G is convex-concave. We now apply the
inequality we just proved, but with the role of u and v being switched (and −Q and −t instead
of Q and t):

P
(

min
v∈Dv

max
u∈Du

ṽTGũ−Q(u, v) ≤ −t
)
≤ 2P

(
min
v∈Dv

max
u∈Du

‖ṽ‖gTũ+ ‖ũ‖hTṽ −Q(u, v) ≤ −t
)
,
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which gives (using the fact that (G, g, h) and (−G,−g,−h) have the same law):

P
(

max
v∈Dv

min
u∈Du

ṽTGũ+Q(u, v) ≥ t
)
≤ 2P

(
max
v∈Dv

min
u∈Du

‖ṽ‖gTũ+ ‖ũ‖hTṽ +Q(u, v) ≥ t
)
.

By Proposition C.2, one can switch the min-max of the left-hand side, because Q is convex-
concave and we are working on convex sets Du and Dv. For the right-hand side, we simply use
the fact that:

max
v∈Dv

min
u∈Du

‖ṽ‖gTũ+ ‖ũ‖hTṽ +Q(u, v) ≤ min
u∈Du

max
v∈Dv

‖ṽ‖gTũ+ ‖ũ‖hTṽ +Q(u, v) ,

to conclude the proof.

9.7.3 Basic concentration results
We recall in this section some elementary concentration results, see Chapter 2 from [37]
for a more detailed presentation of these facts.
Definition 9.7.1

A real random variable X is said to be

• σ2-sub-Gaussian if for every s ∈ R, logEes(X−E[X]) ≤ s2σ2

2 ,

• (v, c)-sub-Gamma if for every s ∈ (−1/c, 1/c), logEes(X−E[X]) ≤ s2v

2(1− c|s|) .

One deduces immediately from the above definition:
Proposition 9.7.1

Let (X1, . . . , Xn) be independent real random variables. Define S = ∑n
i=1Xi.

• Suppose that for all i ∈ {1, . . . , n}, Xi is σ2
i -sub-Gaussian. Then S is ∑n

i=1 σ
2
i -

sub-Gaussian.

• Suppose that for all i ∈ {1, . . . , n}, Xi is (vi, ci)-sub-Gamma. Then S is
(∑n

i=1 vi,max ci
)
-

sub-Gamma.

Proposition 9.7.2
Let X be a real random variable.

• if X is σ2-sub-Gaussian, then for all t > 0

P(X − E[X] ≥ t) ∨ P(X − E[X] ≤ −t) ≤ e−
t2

2σ2 ,

• if X is (v, c)-sub-Gamma, then for all t > 0

P(X − E[X] ≥
√

2ct+ vt) ∨ P(X − E[X] ≤ −(
√

2ct+ vt)) ≤ e−t .
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Remark 9.7.1. The bound P(X >
√

2vt+ ct) ≤ e−t implies that

P(X > t) ≤

exp
(
− t2

8v

)
for 0 < t ≤ 2v

c2
,

exp
(
− t

2c

)
for t ≥ 2v

c2
.

Proposition 9.7.3
If X is σ2-sub-Gaussian and has mean µ, then X2 is a sub-Gamma random variable

with parameters v = 16σ2 + 4µ2σ2 ,

c = 4σ2 .

Proof. Let µ = E[X] and Y = X − µ. X2 = Y 2 + 2µY + µ2.

E
[
(Y 2)2

]
= E[(X − µ)4] ≤ 16σ4 ,

E
[
(Y 2)q

]
= E

[
(X − µ)2q

]
≤ 2q!(2σ2)q = 1

2q!(16σ2)(2σ2)q−2 .

By Bernstein’s inequality (see for instance Theorem 2.10 in [37])

logEes(Y 2−E[Y 2]) ≤ 16σ2s2

2(1− 2σ2|s|) .

2µY is 4µ2σ2-sub-Gaussian, therefore logEe2µsY ≤ 2µ2σ2s2 and

logEes(X2−E[X2]) = logEes(Y 2−E[Y 2])+2µsY ≤ 1
2 logEe2s(Y 2−E[Y 2]) + 1

2 logEe4µsY

≤ 16σ2s2

1− 4σ2s
+ 4µ2σ2s2 ≤ (16σ2 + 4µ2σ2)s2

1− 4σ2|s|
.

X2 is therefore a Sub-Gamma random variable with variance factor v = 16σ2 + 4µ2σ2 and scale
parameter c = 4σ2.
Lemma 9.7.1

Let X be a σ2-sub-Gaussian random variable. Define m = E[|X|]. Let Y be a random
variable bounded by 1. Then XY is 16(m2 + 2σ2)-sub-Gaussian.

Proof. We have |E[XY ]| ≤ m, therefore

E
[
(XY − E[XY ])2q

]
≤ 22q−1E[X2q] + 22q−1m2q ≤ q!(8σ2)q + q!(4m2)q

≤ q!(8σ2 + 4m2)q .

9.7.4 Largest singular value of a Gaussian matrix
The largest singular value of a n×N matrix A is defined as

σmax(A) = max
‖x‖≤1

‖Ax‖ .

The next classical result is a simple consequence of Slepian’s Lemma (see for in-
stance [130], Section 3.3) and the classical Gaussian concentration inequality (see for in-
stance [37], Theorem 5.6).
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Proposition 9.7.4
Let G be a n × N random matrix, whose entries are i.i.d. N (0, 1). For all t ≥ 0 we

have
P(σmax(G) >

√
N +

√
n+ t) ≤ e−t

2/2 .
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Appendix

A Proof of Lemma 1.2.2
In order to prove Lemma 1.2.2, we first need to introduce some definitions and results
about exchangeable infinite arrays.
Definition A.1

An infinite symmetric random array R is a collection of random variables (Rk,k′)k,k′≥1
such that for all k, k′ ≥ 1, Rk,k′ = Rk′,k almost surely. We say that R is

• weakly exchangeable if for all n ≥ 1 and for all permutation σ of {1, . . . , n} we
have (Rk,k′)k,k′≥1

(d)= (Rσ(k),σ(k′))k,k′≥1.

• positive semi-definite if for all n ≥ 1 the matrix R|n
def= (Ri,j)1≤i,j≤n is positive

semi-definite with probability one, i.e. ∀x ∈ Rn, xᵀR|nx ≥ 0.

On the one hand, the Aldous-Hoover Theorem [4, 104] states that an infinite weakly
exchangeable array is equal in distribution to (f(w, uk, vk′ , xk,k′))k,k′≥1, for some function
f and w, (uk), (vk′), (xk,k′) i.i.d.∼ Unif([0, 1]).

On the other hand, if (Rk,k′)k,k′≥1 is a deterministic positive semi-definite array, then
there exists a separable Hilbert space H, with scalar product (·; ·) and (hk)k≥1 ∈ HN such
that for all k, k′ ≥ 1, Rk,k′ = (hk;hk′).

The Dovbysh-Sudakov Theorem [75] combines somehow these two results:

Theorem A.1 (Dovbysh-Sudakov)
Let R be an infinite symmetric random array R which is weakly exchangeable and

positive semi-definite. Then there exists a separable Hilbert space H (whose scalar
product will be denoted by (· ; ·)) and a random probability distribution η on H ×R≥0
such that R is equal in distribution to(

(hk;hk′) + akδk,k′
)
k,k′≥1

,

where, conditionaly on η, (hk, ak)k≥1 is a sequence of i.i.d. random variables with dis-
tribution η. δk,k′ denotes here the Kronecker delta.

We refer to [171] and [12] for a proof. From the Dovbysh-Sudakov Theorem, one deduces
easily:
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Proposition A.1
Let q ∈ [0, 1]. Let (Rk,k′)k,k′≥1 be a random symmetric array, which is weakly ex-

changeable and positive semi-definite. Assume that we have almost surely

R1,1 = 1 and |R1,2| = q.

Then we have almost surely R1,2R2,3R3,1 = q3.

Proof. We apply the Dovbysh-Sudakov Theorem to R. We obtain the existence of a random
probability measure η on H × R≥0 such that R is equal in distribution to(

(hk;hk′) + akδk,k′)k,k′≥1,

where conditionally on η, (hk, ak)
i.i.d.∼ η. Let us work conditionally on η and let ν denotes the

first marginal of η. From our hypothesis we get that |(h1;h2)| = q, ν-almost surely which implies
that ‖h1‖2 = q, ν-almost surely.

Indeed, if ν(‖h1‖2 6= q) > 0 then there exists h ∈ H such that ‖h‖2 6= q such that for all
ε > 0, ν(Bε(h) > 0. We can now take ε > 0 small enough such that for all a, b ∈ Bε(h) we have
(a; b) 6= q. We obtain that ν

(
|(h1;h2)| 6= q

)
≥ ν(Bε(h))2 > 0 which leads to a contradiction.

Since ‖h1‖2 = ‖h2‖2 = |(h1;h2)| = q a.s. the measure ν has at most two points in its support.
Consequently

(h1;h2)(h2;h3)(h3;h1) = q3, ν-almost surely,

which implies that R1,2R2,3R3,1 = q3 almost surely.

We have now all the tools needed to prove Lemma 1.2.2:

Proof of Lemma 1.2.2. The sequence
(
(x(1);x(2))(x(2);x(3))(x(3);x(1))

)
n≥1 is tight because

bounded. Let us consider a subsequence (n`)`≥1 along which is converges in law, to some random
variable Q.

Let us sample x(1),x(2), . . . ,xk, . . . i.i.d. from the posterior distribution of X given Y and
consider the following random symmetric weakly exchangeable positive semi-definite array

Rn =
(
(x(k);x(k′))

)
k,k′≥1.

The scalar products (x(k);x(k′)) are bounded, so the sequence of the laws of Rn is tight. We can
extract from (n`)`≥1 another subsequence (n′`)`≥1 along which R converges in law to an array R.
R is also a random, symmetric, weakly exchangeable, semi-definite positive array. Since Rn1,1 = 1
and Rn1,2 = q almost surely, we have R1,1 = 1 and R1,2 = q almost surely. Proposition A.1 above

gives then that R1,2R2,3R3,1 = q3 almost surely. The weak convergence Rn (d)−−−−→
n′
`
→∞

R implies in

particular

(x(1);x(2))(x(2);x(3))(x(3);x(1)) = Rn1,2R
n
2,3R

n
3,1

(d)−−−−→
n′
`
→∞

R1,2R2,3R3,1 = q3.

Hence the only accumulation point of
(
(x(1);x(2))(x(2);x(3))(x(3);x(1))

)
n≥1 is q3: we conclude

that (x(1);x(2))(x(2);x(3))(x(3);x(1)) (d)−−−→
n→∞

q3.
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B Proofs of some basic properties of the MMSE
and the free energy

B.1 Proof of Proposition 1.3.1

Let 0 < λ2 < λ1. Define ∆1 = λ−1
1 , ∆2 = λ−1

2 andY1 = X +
√

∆1Z1

Y2 = X +
√

∆1Z1 +
√

∆2 −∆1Z2 ,

where X ∼ PX is independent from Z1,Z2
i.i.d.∼ N (0, Idn). Now, by independence between

(X,Y1) and Z2 we have

MMSE(λ1) = E ‖X − E[X|Y1]‖2 = E ‖X − E[X|Y1,Z2]‖2 = E ‖X − E[X|Y1,Y2]‖2

≤ E ‖X − E[X|Y2]‖2 = MMSE(λ2) .

Next, notice that

MMSE(λ1) = E ‖X − E[X|Y1]‖2 ≤ E ‖X − E[X]‖2 = MMSE(0) . (B.1)

This shows that the MMSE is non-increasing on R≥0. The first point is obvious while the
second follows from:

0 ≤ MMSE(λ) = E‖X − E[X|Y ]‖2 ≤ E‖X − 1√
λ
Y ‖2 = n

λ
−−−−→
λ→+∞

0 .

B.2 Proof of Proposition 1.3.2
We start by proving that MMSE is continuous at λ = 0. Let λ ≥ 0 and consider Y ,X,Z
as given by (1.3.1). By dominated convergence one has almost surely that

E[X|Y ] =
∫
dPX(x)xe− 1

2‖
√
λx−Y ‖2∫

dPX(x)e− 1
2‖
√
λx−Y ‖2

−−→
λ→0

E[X] .

Then by Fatou’s Lemma we get

lim inf
λ→0

MMSE(λ) ≥ E
[

lim inf
λ→0

∥∥∥X − E[X|Y ]
∥∥∥2
]

= E
∥∥∥X − E[X]

∥∥∥2
.

Combining this with the bound MMSE(λ) ≤ E‖X−E[X]‖2 gives MMSE(λ) −−→
λ→0

E‖X−
E[X]‖2. This proves that the MMSE is continuous at λ = 0.

Let us now prove that the MMSE is continuous on R∗≥0. We need here a technical
lemma:
Lemma B.1

For all λ > 0, p ≥ 1
E‖X − 〈x〉λ‖2p ≤ 2p(2p!)

λpp! np+1 .
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Proof. We reproduce here the proof from [97], Proposition 5. We start with the equality
√
λ (X − 〈x〉λ) =

√
λX − E[

√
λX|Y ] = Y −Z − E[Y −Z|Y ] = E[Z|Y ]−Z .

We have therefore

E‖X − 〈x〉λ‖2p = 1
λp

E
∥∥E[Z|Y ]−Z

∥∥2p ≤ 22p−1

λp
E
[
‖E[Z|Y ]‖2p + ‖Z‖2p

]
≤ 22p

λp
E‖Z‖2p .

It remains to bound
E‖Z‖2p ≤ npE

[
n∑
i=1

Z2p
i

]
= np+1 (2p)!

2pp! .

Let λ0 > 0. The family of random variables
(
‖X − 〈x〉λ‖2

)
λ≥λ0

is bounded in L2

by Lemma B.1 and is therefore uniformly integrable. The function λ 7→ ‖X − 〈x〉λ‖2

is continuous on [λ0,+∞), the uniform integrability ensures then that MMSE : λ 7→
E‖X − 〈x〉λ‖2 is continuous over [λ0,+∞). This is valid for all λ0 > 0: we conclude that
MMSE is continuous over (0,+∞).

B.3 Proof of the I-MMSE relation: Proposition 1.3.3

MMSE(λ) = E‖X − 〈x〉λ‖2 = E‖X‖2 + E‖〈x〉λ‖2 − 2E〈xᵀX〉λ

Now, by the Nishimori property E‖〈x〉λ‖2 = E
〈
(x(1))ᵀx(2)

〉
λ

= E〈xᵀX〉λ. Thus

MMSE(λ) = E‖X‖2 − E〈xᵀX〉λ . (B.2)

By (B.2) and (1.3.3), it suffices now to prove the second equality in (1.3.4). This will follow
from the lemmas below.
Lemma B.2

The free energy F is continuous at λ = 0.

Proof. For all λ ≥ 0,

F (λ) = E log
∫
dPX(x)e−

1
2‖Y −

√
λx‖2+ 1

2‖Y ‖
2 = E log

∫
dPX(x)e−

1
2‖
√
λX−

√
λx+Z‖2 + λE‖X‖2 + n .

By dominated convergence
∫
dPX(x)e−

1
2‖
√
λX−

√
λx+Z‖2 −−−→

λ→0
e−

1
2‖Z‖

2 . Jensen’s inequality gives

∣∣∣∣log
∫
dPX(x)e−

1
2‖
√
λX−

√
λx+Z‖2

∣∣∣∣ = − log
∫
dPX(x)e−

1
2‖
√
λX−

√
λx+Z‖2

≤ 1
2

∫
dPX(x)‖

√
λX −

√
λx+Z‖2 ≤ 3

2
(
‖X‖2 + E‖X‖2 + ‖Z‖2

)
,

for all λ ∈ [0, 1]. One can thus apply the dominated convergence theorem again to obtain that F
is continuous at λ = 0.
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Lemma B.3
For all λ ≥ 0,

F (λ)− F (0) = 1
2

∫ λ

0
E〈xᵀX〉γdγ .

Proof. Compute for λ > 0

∂

∂λ
logZ(λ,Y ) =

〈 1
2
√
λ
xᵀZ + xᵀX − 1

2‖x‖
2
〉
λ

.

Since E‖X‖2 <∞, the right-hand side is integrable and one can apply Fubini’s theorem to obtain

F (λ2)− F (λ1) =
∫ λ2

λ1
E
〈 1

2
√
λ
xᵀZ + xᵀX − 1

2‖x‖
2
〉
λ

dλ .

By Gaussian integration by parts, we have for all i ∈ {1, . . . , n} and λ > 0

EZi〈xi〉λ = E
∂

∂Zi
〈xi〉λ = E

[〈√
λx2

i

〉
λ
−
√
λ
〈
xi
〉2
λ

]
=
√
λE
[〈
x2
i

〉
λ
−
〈
xiXi

〉
λ

]
,

where the last equality comes from the Nishimori property (Proposition 1.1.1). We have therefore

F (λ2)− F (λ1) = 1
2

∫ λ2

λ1
E 〈xᵀX〉λ dλ .

By Lemma B.2, F is continuous at 0 so we can take the limit λ1 → 0 to obtain the result.

By Proposition 1.3.2, the function λ 7→ MMSE(λ) is continuous over R≥0. By (B.2) we
deduce that λ 7→ E〈xᵀX〉λ is continuous over R≥0 and therefore Lemma B.3 proves (1.3.4).

It remains only to show that F is strictly convex when PX differs from a Dirac mass.
We proceed by truncation. For N ∈ N and x ∈ R we write x(N) = x1(−N ≤ x ≤ N). We
extend this notation to vectors x = (x1, . . . , xn) ∈ Rn by x(N) = (x(N)

1 , . . . , x(N)
n ).

For X ∼ PX we define P (N)
X as the distribution of X(N). F (N), MMSE(N) and 〈·〉λ,N

will denote respectively the corresponding free energy, MMSE and posterior distribution.
One can compute the second derivative (since X(N) is bounded, one can easily differentiate
under the integral sign) and again, using Gaussian integration by parts and the Nishimori
identity one obtains:

F (N)′′(λ) = 1
2E

[
Tr
((
〈xxT〉λ,N − 〈x〉λ,N〈x〉Tλ,N

)2
)]
. (B.3)

By Cauchy-Schwarz inequality, we have for all positive, semi-definite matrix M ∈ Rn×n,
Tr(M)2 ≤ nTr(M 2). Hence

F (N)′′(λ) ≥ 1
2nE

[
Tr
(
〈xxT〉λ,N − 〈x〉λ,N〈x〉Tλ,N

)2
]

≥ 1
2nE

[
Tr
(
〈xxT〉λ,N − 〈x〉λ,N〈x〉Tλ,N

)]2
= 1

2nMMSE(N)(λ)2,

by Jensen’s inequality. Let now 0 < s < t. By integrating (B.3) we get

F (N)′(t)− F (N)′(s) ≥ 1
2n

∫ t

s
MMSE(N)(λ)2dλ . (B.4)
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The sequence of convex functions (F (N))N converges (by Proposition B.1) to F which
is differentiable. Proposition C.1 gives that the derivatives (F (N)′)N converge to F ′ and
therefore MMSE(N) converges to MMSE. Therefore, equation (B.4) gives

F ′(t)− F ′(s) ≥ 1
2n

∫ t

s
MMSE(λ)2dλ ≥ 1

2n(t− s)MMSE(t)2 .

If P0 is not a Dirac measure, then the last term is strictly positive: this concludes the
proof.

B.4 Pseudo-Lipschitz continuity of the free energy with respect
to the Wasserstein distance

Let P1 and P2 be two probability distributions on Rn, that admits a finite second moment.
We denote by W2(P1, P2) the Wasserstein distance of order 2 between P1 and P2. For
i = 1, 2 the free energy is defined as

FPi(λ) = E log
∫
dPi(x) exp

(√
λxᵀZ + λxᵀX − λ

2‖x‖
2
)
,

where the expectation is with respect to (X,Z) ∼ Pi ⊗N (0, Idn).
Proposition B.1

For all λ ≥ 0,
∣∣∣FP1(λ)− FP2(λ)

∣∣∣ ≤ λ

2
(√

EP1‖X‖2 +
√
EP2‖X‖2

)
W2(P1, P2) .

A similar result was proved in [216] but with a weaker bound for the W2 distance. By
Proposition 1.3.3 we have for i = 1, 2, FPi(λ) = λ

2E‖Xi‖2 − I(Xi;
√
λXi + Z) where

(Xi,Z) ∼ Pi ⊗N (0, Idn). We deduce immediately:
Corollary B.1

For all λ ≥ 0,∣∣∣I(X1;
√
λX1 +Z)− I(X2;

√
λX2 +Z)

∣∣∣ ≤ λ
(√

EP1‖X‖2 +
√
EP2‖X‖2

)
W2(P1, P2) .

Proof of Proposition B.1. Let ε > 0. Let us fix a coupling Q of X1 ∼ P1 and X2 ∼ P2
such that (

E‖X1 −X2‖2
)1/2 ≤W2(P1, P2) + ε .

Let us consider for t ∈ [0, 1] the observation modelY
(t)

1 =
√
λtX1 +Z1 ,

Y
(t)

2 =
√
λ(1− t)X2 +Z2 ,

where Z1,Z2
i.i.d.∼ N (0, Idn) are independent from (X1,X2) ∼ Q. Define

f(t) = E log
∫
dQ(x1,x2) exp

(√
λtxᵀ

1Y
(t)

1 − λt

2 ‖x1‖2 +
√
λ(1− t)xᵀ

2Y
(t)

2 − λ(1− t)
2 ‖x2‖2

)
.
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We have f(0) = FP2(λ) and f(1) = FP1(λ). By an easy extension of the I-MMSE relation (1.3.4)
we have for all t ∈ [0, 1]:

f ′(t) = λ

2E
〈
Xᵀ

1x1 −Xᵀ
2x2

〉
t
,

where 〈·〉t denotes the expectation with respect to (x1,x2) sampled from the posterior distribution
of (X1,X2) given Y (t)

1 ,Y
(t)

2 , independently of everything else. We have then

| 2
λ
f ′(t)| =

∣∣∣E〈Xᵀ
1 (x1 − x2)− (X2 −X1)ᵀx2

〉
t

∣∣∣
≤
(
E‖X1‖2E

〈
‖x1 − x2‖2

〉
t

)1/2
+
(
E
〈
‖x2‖2

〉
t
E‖X2 −X1‖2

)1/2

=
(
E‖X1‖2E‖X1 −X2‖2

)1/2
+
(
E‖X2‖2E‖X2 −X1‖2

)1/2

≤
((
E‖X1‖2

)1/2 +
(
E‖X2‖2

)1/2)(W2(P1, P2) + ε) ,

where we used successively the Cauchy-Schwarz inequality and the Nishimori property (Proposi-
tion 1.1.1). We then let ε→ 0 to obtain the result.

B.5 Zero-noise limit of the mutual information
The goal of this section is to prove Proposition B.2 and Corollary B.2.
Proposition B.2

Let PU be a probability distribution over Nm that admits a finite second moment. Let
U ∼ PU and Z ∼ N (0, Idm) be two independent random variables. Then H(U) =
−∑n∈Nm PU(n) logPU(n) is finite and for all ∆ ∈ (0, 1],∣∣∣I(U ;U +

√
∆Z)−H(U)

∣∣∣ ≤ 48me−1/(16∆) .

Proof. Let us define for ∆ > 0, h(∆) = I(U ;U +
√

∆Z) = IPU (∆−1). By Proposition 1.3.3 we
have for all ∆ > 0,

h′(∆) = − 1
2∆2 MMSE(U |U +

√
∆Z) . (B.5)

We are now going to upper bound MMSE(U |U +
√

∆Z) by considering the following estimator:

θ̂i = arg min
u∈N

|u− Ui +
√

∆Zi|,

for all i ∈ {1, . . . ,m}. Note that θ̂i is well-defined almost surely since there is a.s. a unique
minimizer above. We have

P(θ̂i 6= Ui) ≤ P
(√

∆|Zi| ≥ 1/2
)

= 2P
(
N (0, 1) ≥ 1

2
√

∆

)
≤ 22

√
∆√

2π
e−1/(8∆) ≤ 2

√
∆e−1/(8∆) ,

249



by usual bounds on the Gaussian cumulative distribution function. We have then

MMSE(U |U +
√

∆Z) ≤ E‖U − θ̂‖2 =
m∑
i=1

E(Ui − θ̂i)2 =
m∑
i=1

E
[
1(θ̂i 6= Ui)(Ui − θ̂i)2

]
≤

m∑
i=1

2E
[
1(θ̂i 6= Ui)(Ui − (Ui +

√
∆Zi))2

]
+ 2E

[
1(θ̂i 6= Ui)(Ui +

√
∆Zi − θ̂i)2

]
≤

m∑
i=1

2E
[
1(θ̂i 6= Ui)∆Z2

i

]
+ 1

2E
[
1(θ̂i 6= Ui)

]
≤

m∑
i=1

2∆P(θ̂i 6= Ui)1/2E[Z4
i ]1/2 + 1

2P(θ̂i 6= Ui)

≤ me−1/(16∆)
(
2
√

6∆5/4 +
√

∆
)
≤ 6me−1/(16∆)

for ∆ ≤ 1. Plugging this inequality in (B.5), we obtain for all ∆ ∈ (0, 1],

|h′(∆)| ≤ 3m
∆2 e

−1/(16∆) . (B.6)

Since h(1) is finite and
∫ 1

0
e−1/(16∆)

∆2 d∆ < +∞ we obtain that

sup
∆∈(0,1]

|h(∆)| < +∞ . (B.7)

By definition of h:

h(∆) = I(U ;U +
√

∆Z) = −m2 − E log
∑
U∈Nm

PU (U) exp
(
− 1

2∆‖U +
√

∆Z −U‖2
)
. (B.8)

By the previous equality and (B.7), the family of (non-negative) random variables− log
∑
U∈Nm

PU (U) exp
(
− 1

2∆‖U +
√

∆Z −U‖2
)

∆∈(0,1]

is bounded in L1. Notice that (by dominated convergence)

− log
∑
U∈Nm

PU (U) exp
(
− 1

2∆‖U+
√

∆Z−U‖2
)
−−−→
∆→0

− log
(
PU (U)e−

1
2‖Z‖

2) = 1
2‖Z‖

2−logPU (U)

almost surely. This gives (by Fatou’s Lemma) that this almost-sure limit is integrable and thus
that H(U) = −E logPU (U) is finite. Let us now show that h(∆) −−−→

∆→0
H(U). We have almost

surely

log
(
PU (U)e−

1
2‖Z‖

2) ≤ log
∑
U∈Nm

PU (U) exp
(
− 1

2∆‖U +
√

∆Z −U‖2
)
≤ 0 .

Since we now know that the left-hand side is integrable (because H(U) is finite), we can apply
the dominated convergence theorem to obtain that

E log
∑
U∈Nm

PU (U) exp
(
− 1

2∆‖U +
√

∆Z −U‖2
)
−−−→
∆→0

E log
(
PU (U)e−

1
2‖Z‖

2) = H(U)− m

2 ,

which combined with (B.8) gives h(∆) −−−→
∆→0

H(U). Now, using the bound on the derivative of
h (B.6) we conclude that for all ∆ ∈ (0, 1],

|h(∆)−H(U)| ≤ 3m
∫ ∆

0

e−1/(16t)

t2
dt = 3m

[
16e−1/(16t)

]∆
0

= 48me−1/(16∆) .
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Corollary B.2
Let U be a random variable over Nm with finite second moment, let X be a random

variable over Rn and let Z ∼ N (0, Idm). We assume (U ,X) to be independent from
Z. Then, for all ∆ ∈ (0, 1],∣∣∣I(X;U +

√
∆Z)− I(X;U )

∣∣∣ ≤ 100me−1/(16∆) .

Proof. We have by the chain rule of the mutual information:

I(U ;U +
√

∆Z) = I(U ,X;U +
√

∆Z)

= I(X;U +
√

∆Z) + I(U ;U +
√

∆Z|X) .

By applying Proposition B.2 twice, we get

|I(U ;U +
√

∆Z)−H(U)|, |I(U ;U +
√

∆Z|X)−H(U |X)| ≤ 48me−1/(16∆) .

Since I(X;U) = H(U)−H(U |X) we obtain the desired inequality.

C Some results about convex functions
C.1 Convex analysis lemmas

Proposition C.1
Let I ⊂ R be an interval, and let (fn)n≥0 be a sequence of convex functions on I that

converges pointwise to a function f . Then for all t ∈ I for which these inequalities have
a sense

f ′(t−) ≤ lim inf
n→∞

f ′n(t−) ≤ lim sup
n→∞

f ′n(t+) ≤ f ′(t+).

Proof. Let t ∈ I and h > 0. By convexity

f ′n(t+) ≤ fn(t+ h)− fn(t)
h

−−−→
n→∞

f(t+ h)− f(t)
h

−−−→
h→0

f ′(t+).

The first inequality follows from the same arguments.
Proposition C.2 (Corollary 37.3.2 from [182])

Let C and D be non-empty closed convex sets in Rm and Rn, respectively, and let f
be a continuous finite concave-convex function on C ×D. If either C or D is bounded,
one has

inf
v∈D

sup
u∈C

f(u, v) = sup
u∈C

inf
v∈D

f(u, v) .
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Definition C.1
A convex function f over Rn is said to be

• γ-strongly convex if x 7→ f(x)− γ
2‖x‖

2 is convex.

• L-strongly smooth is f is differentiable everywhere and for all x, y ∈ Rn we have

f(y) ≤ f(x) + (y − x)T∇f(x) + L

2 ‖x− y‖
2 .

Remark C.1. If f is convex, differentiable over Rn, and ∇f is L-Lipschitz, then f is
L-strongly smooth. Indeed, if we take x, y ∈ Rn and if we define h(t) = f((1− t)x+ ty) we
have

f(y)− f(x) = h(1)− h(0) =
∫ 1

0
h′(t)dt =

∫ 1

0
(y − x)T∇f((1− t)x+ ty)dt

= (y − x)Tf(x) +
∫ 1

0
(y − x)T

(
∇f((1− t)x+ ty)−∇f(x)

)
dt

≤ (y − x)Tf(x) +
∫ 1

0
tL‖x− y‖2dt ≤ (y − x)Tf(x) + L

2 ‖x− y‖
2 .

Proposition C.3
Let f be a closed convex function over Rn. Then f is γ-strongly convex if and only if
f ∗ is 1

γ
-strongly smooth.

This result can be found in the book [219], see Corollary 3.5.11 on page 217 and the
Remark 3.5.3 below. A more accessible presentation of this result can be found in [118].

C.2 The monotone conjugate

Definition C.2
We define the monotone conjugate (see [182] p.110) of a non-decreasing convex function
f : R≥0 → R by:

f ∗(x) = sup
y≥0
{xy − f(y)}. (C.1)

The most fundamental result on the monotone conjugate is the analog of the Fenchel-
Moreau theorem:
Proposition C.4 ([182] Theorem 12.4 )

Let f be a non-decreasing lower semi-continuous convex function on R≥0 such that
f(0) is finite. Then f ∗ is another such function and (f ∗)∗ = f .

Proposition C.5
Let f be a non-decreasing lower semi-continuous convex function on R≥0 such that
f(0) is finite. Then for all x, y ≥ 0:

x ∈ ∂f ∗(y) ⇐⇒ f(x) + f ∗(y) = xy ⇐⇒ y ∈ ∂f(x).
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Proof. Let x ∈ ∂f∗(y). We get that (f∗)∗(x) = xy−f∗(y) and therefore that f∗(y) = xy−f(x),
by Proposition C.4. This gives that x maximizes s 7→ sy − f(s) over R≥0 and thus y ∈ ∂f(x).
It remains to show that y ∈ ∂f(x) =⇒ x ∈ ∂f∗(y). This follows from Proposition C.4 and the
implication x ∈ ∂f∗(y) =⇒ y ∈ ∂f(x) that we just showed.

C.3 Some supremum formulas
This section gathers some tools to deal with “sup-inf” expressions that we encounter in
this manuscript.
Proposition C.6

Let f, g be two convex Lipschitz functions on R≥0. For (q1, q2) ∈ R2
≥0 we define

ϕ(q1, q2) = f(q1) + g(q2) − q1q2 and ψ(q1, q2) = q1q2 − f ∗(q2) − g∗(q1). Then the set
Γ =

{
(q1, q2) ∈ R2

≥0

∣∣∣ q1 ∈ ∂g(q2), q2 ∈ ∂f(q1)
}

is non-empty and:

sup
(q1,q2)∈Γ

ϕ(q1, q2) = sup
q1,q2≥0

ψ(q1, q2) = sup
q1≥0

inf
q2≥0

ϕ(q1, q2), (C.2)

and the two first suprema above are achieved and precisely at the same couples (q1, q2).

If moreover f and g are both differentiable and strictly convex, then the same result
holds for Γ replaced by

Γ̃ =
{

(q1, q2) ∈ R2
≥0

∣∣∣ q2 = f ′(q1) and q1 = g′(q2)
}
. (C.3)

Proof. Let Lf (resp. Lg) be the Lipschitz constant of f (resp. g). For x > Lf , f∗(x) = +∞ and
(since f∗ is lower semi-continuous by Proposition C.5) f∗(x) → +∞ as x → Lf . Analogously,
g(x) → +∞ as x → Lg. The function ψ is therefore continuous on [0, Lg) × [0, Lf ) and goes to
−∞ on the border

(
{Lg} × [0, Lf ]

)
∪
(
[0, Lg]× {Lf}

)
.

The functions ψ achieves therefore its maximum at some (q1, q2) ∈ [0, Lg) × [0, Lf ). (q1, q2)
verifies then q2 ∈ ∂g∗(q1) and q1 ∈ ∂f∗(q2) which gives (q1, q2) ∈ Γ by Proposition C.5. The set
Γ is therefore non-empty and

sup
q1,q2≥0

ψ(q1, q2) ≤ sup
(q1,q2)∈Γ

ϕ(q1, q2).

By definition of the conjugates f∗ and g∗ we have for all q1, q2 ≥ 0{
f(q1) + f∗(q2) ≥ q1q2

g(q2) + g∗(q1) ≥ q1q2.

We get that ϕ(q1, q2) ≥ ψ(q1, q2) with equality if and only if (q1, q2) ∈ Γ, by Proposition C.5.
This gives in particular that

sup
q1,q2≥0

ψ(q1, q2) ≥ sup
(q1,q2)∈Γ

ϕ(q1, q2).

Hence, both supremum are equal and are achieved over the same couples because we have seen
that all couple (q1, q2) that achieves the supremum of ψ is in Γ.

We consider now the second equality. Using the definition of the monotone conjugate (C.1)
and Proposition C.4:

sup
q1≥0

inf
q2≥0

ϕ(q1, q2) = sup
q1≥0

{
f(q1)− g∗(q1)

}
= sup

q1≥0
sup
q2≥0

{
q1q2 − f∗(q2)− g∗(q1)

}
.

253



Let us now prove the second part of the Proposition: we now assume that f and g are
differentiable, strictly convex. Let (q1, q2) ∈ Γ be a couple that achieves the maximum of ϕ over
Γ. It suffices to show that (q1, q2) ∈ Γ̃. If q1 > 0 and q2 > 0, then this is trivial because f and g
are differentiable.

Suppose now that q1 = 0 (the case q2 = 0 follows by symmetry). Since 0 = q1 ∈ ∂g(q2) and
g is strictly increasing, we get that q2 = 0, so that supψ = ϕ(q1, q2) = f(0) + g(0). Notice that
f∗(f ′(0)) = −f(0) and g∗(g′(0)) = −g(0) so

f(0) + g(0) = supψ ≥ ψ
(
g′(0), f ′(0)

)
= f(0) + g(0) + f ′(0)g′(0) ≥ f(0) + g(0). (C.4)

We get that (g′(0), f ′(0)) achieves the supremum of ψ, which implies that (g′(0), f ′(0)) ∈ Γ. From
(C.4) we get also that f ′(0) = 0 or g′(0) = 0. Assume that f ′(0) = 0 (the case g′(0) = 0 follows
by symmetry), then 0 ∈ ∂f(g′(0)) because (g′(0), f ′(0)) ∈ Γ. Since f is strictly increasing, so
we have g′(0) = 0. We conclude that f ′(0) = g′(0) = 0 which proves that (q1, q2) = (0, 0) ∈ Γ̃.

We will need the following variants of Proposition C.6 in Chapter 7:
Proposition C.7

Let f : [0, ρ] → R be a continuous convex non-decreasing function. Let g : R≥0 → R
be a convex, Lipschitz, non-decreasing function. Define ρ = supx≥0 g

′(x+) the Lipschitz
constant of g. Then

sup
q2≥0

inf
q1∈[0,ρ]

{
f(q1) + g(q2)− q1q2

}
= sup

q1∈[0,ρ]
inf
q2≥0

{
f(q1) + g(q2)− q1q2

}
.

Proof. We extend f on R≥0 by setting f(x) = +∞ for all x > ρ. The extended function f is
then a convex, lower semi-continuous function on R≥0 and f(0) is finite. We have then

sup
q2≥0

inf
q1∈[0,ρ]

{
f(q1) + g(q2)− q1q2

}
= sup

q2≥0
inf
q1≥0

{
f(q1) + g(q2)− q1q2

}
= sup

q2≥0

{
g(q2)− f∗(q2)

}
,

by Proposition C.4. g is ρ-Lipschitz so g∗(x) = +∞ for all x > ρ. Consequently, by Proposition
C.4, g(q2) = supq1≥0{q1q2 − g∗(q1)} = supq1∈[0,ρ]{q1q2 − g∗(q1)}. We get

sup
q2≥0

inf
q1∈[0,ρ]

{
f(q1) + g(q2)− q1q2

}
= sup

q2≥0
sup

q1∈[0,ρ]

{
q1q2 − g∗(q1)− f∗(q2)

}
= sup

q1∈[0,ρ]

{
f(q1)− g∗(q1)

}
= sup

q1∈[0,ρ]
inf
q2≥0

{
f(q1) + g(q2)− q1q2

}
.
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Proposition C.8
Let g be a strictly convex, differentiable, Lipschitz non-decreasing function on R+.

Define ρ = supx≥0 g
′(x). Let f be a convex, continuous, strictly increasing function on

[0, ρ], differentiable on [0, ρ). For (q1, q2) ∈ [0, ρ] × R+ we define ϕ(q1, q2) = f(q1) +
g(q2)− q1q2. Then

sup
q1∈[0,ρ]

inf
q2≥0

ϕ(q1, q2) = sup
(q1,q2)∈Γ

ϕ(q1, q2) , (C.5)

where
Γ =

{
(q1, q2) ∈ [0, ρ]× (R+ ∪ {+∞})

∣∣∣∣∣ q1 = g′(q2)
q2 = f ′(q1)

}
,

where all the function are extended by there limits at the points at which they may not
be defined (for instance g′(+∞) = lim

q→∞
g′(q), f ′(ρ) = lim

q→ρ
f ′(q)). Moreover, the above

extremas are achieved precisely on the same couples.

Proof. Let q∗1 be a maximizer of f − g∗ over [0, ρ]. q∗1 is well defined because f is continuous and
g∗ is continuous over [0, ρ) and is either continuous or goes to +∞ at ρ (because g∗ is a lower
semi-continuous convex function, see Proposition C.4). We distinguish 3 cases:

Case 1: 0 < q∗1 < ρ. By strict convexity of g, ϕ(q1, ·) admits a unique minimizer q∗2 and
(g∗)′(q∗1) = q∗2 by Proposition C.5. Thus, the optimality condition at q∗1 gives

0 = f ′(q∗1)− (g∗)′(q∗1) = f ′(q∗1)− q∗2 .

The optimality of q∗2 gives then q∗1 ≤ g′(q∗2). Suppose that q∗1 < g′(q∗2). This is only possible when
q∗2 = 0. Define q′1 = g′(q∗2) = g′(0). Remark that g∗(q′1) = −g(0) = g∗(q∗1). We supposed that
q′1 > q∗1 thus, by strict monotonicity of f , f(q′1) − g∗(q′1) > f(q∗1) − g∗(q∗1) which contradict the
optimality of q∗1. We obtain therefore that q∗1 = g′(q∗2).

Case 2: q∗1 = 0. The optimality condition gives now

0 ≤ f ′(q∗1 = 0) ≤ q∗2 , (C.6)

where q∗2 is again the unique minimizer of ϕ(q∗1 = 0, ·) = f(0) + g. g is strictly increasing, so
q∗2 = 0. Therefore q∗2 = 0 = f ′(q∗1 = 0), by (C.6). As before we have necessarily, by optimality of
q∗2 that q∗1 = g′(q∗2).

Case 3: q∗1 = ρ. In that case arg minq2≥0{g(q2) − q∗1q2} = ∅ because g is strictly convex and
ρ-Lipschitz. Proposition C.5 gives then that ∂g∗(ρ) = ∅ which implies (see [182, Theorem 23.3])
that (g∗)′(ρ−) = +∞. Since q∗1 = ρ maximizes f − g∗, we necessarily have then f ′(ρ−) = +∞.

Using the slight abuse of notation explained in the Proposition, we have f ′(q∗1) = +∞ = q∗2,
where q∗2 = +∞ is the unique “minimizer” of ϕ(q∗1, ·), by strict convexity of g. By definition of ρ
we have also g′(q∗2) = g′(+∞) = ρ = q∗1.

We conclude from the tree cases above that the “sup-inf” in (C.5) is achieved, and that all
the couples (q∗1, q∗2) that achieve this “sup-inf” belong to Γ. Thus

sup
q1∈[0,ρ]

inf
q2≥0

ϕ(q1, q2) ≤ sup
(q1,q2)∈Γ

ϕ(q1, q2) .

Let now be (q1, q2) ∈ Γ. By convexity of g we see easily that ϕ(q1, q2) = infq′2 ϕ(q1, q
′
2). Thus,

ϕ(q1, q2) ≤ supq′1 infq′2 ϕ(q′1, q′2). Therefore

sup
(q1,q2)∈Γ

ϕ(q1, q2) ≤ sup
q1∈[0,ρ]

inf
q2≥0

ϕ(q1, q2) .
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This concludes the proof of (C.5). It remains to see that a couple (q∗1, q∗2) ∈ Γ that achieves the
supremum in (C.5) also achieves the “sup-inf”. This simply follows from the fact that ϕ(q∗1, q∗2) =
infq2 ϕ(q∗1, q2) and (C.5).

D Differentiation of a supremum of functions
We recall in this section two results about the differentiation of a supremum of functions
from Milgrom and Segal [144]. Let X be a set of parameters and consider a function
f : X × [0, 1]→ R. Define, for t ∈ [0, 1]

V (t) = sup
x∈X

f(x, t) ,

X∗(t) =
{
x ∈ X

∣∣∣ f(x, t) = V (t)
}
.

Proposition D.1 (Theorem 1 from [144] )
Let t ∈ [0, 1] such that X∗(t) 6= ∅. Let x∗ ∈ X∗(t) and suppose that f(x∗, ·) is

differentiable at t, with derivative ft(x∗, t).

• If t > 0 and if V is left-hand differentiable at t, then V ′(t−) ≤ ft(x∗, t).

• If t < 0 and if V is right-hand differentiable at t, then V ′(t+) ≥ ft(x∗, t).

• If t ∈ (0, 1) and if V is differentiable at t, then V ′(t) = ft(x∗, t).

Proposition D.2 (Corollary 4 from [144] )
Suppose that X is nonempty and compact. Suppose that for all t ∈ [0, 1], f(·, t) is

continuous. Suppose also that f admits a partial derivative ft with respect to t that is
continuous in (x, t) over X × [0, 1]. Then

• V ′(t+) = max
x∗∈X∗(t)

ft(x∗, t) for all t ∈ [0, 1) and V ′(t−) = min
x∗∈X∗(t)

ft(x∗, t) for all
t ∈ (0, 1].

• V is differentiable at t ∈ (0, 1) is and only if
{
ft(x∗, t)

∣∣∣x∗ ∈ X∗(t)} is a singleton.
In that case V ′(t) = ft(x∗, t) for all x∗ ∈ X∗(t).
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RÉSUMÉ

Nous étudions des problèmes statistiques classiques, tels que la détection de communautés dans un graphe, l’analyse
en composantes principales, les modèles de mélanges Gaussiens, les modèles linéaires (généralisés ou non), dans un
cadre Bayésien. Nous calculons pour ces problèmes le “risque de Bayes” qui est la plus petite erreur atteignable par
une méthode statistique, dans la limite de grande dimension. Nous observons alors un phénomène surprenant: dans
de nombreux cas il existe une valeur critique de l’intensité du bruit au-delà de laquelle il n’est plus possible d’extraire de
l’information des données. En dessous de ce seuil, nous comparons la performance d’algorithmes polynomiaux à celle
optimale. Dans de nombreuses situations nous observons un écart: bien qu’il soit possible – en théorie – d’estimer le
signal, aucune méthode algorithmiquement efficace ne parvient à être optimale.
Dans ce manuscrit, nous adoptons une approche issue de la physique statistique qui explique ces phénomènes en termes
de transitions de phase. Les méthodes et outils que nous utilisons proviennent donc de la physique, plus précisément de
l’étude mathématique des verres de spins.

MOTS CLÉS

inférence statistique, théorie de l’information, physique statistique, verres de spin, détection de communauté
dans des graphs, estimation de structure de faible rang, modèle linéaire généralisé, Lasso

ABSTRACT

We study classical statistical problems such as as community detection on graphs, Principal Component Analysis (PCA),
sparse PCA, Gaussian mixture clustering, linear and generalized linear models, in a Bayesian framework. We compute
the best estimation performance (often denoted as “Bayes Risk”) achievable by any statistical method in the high dimen-
sional regime. This allows to observe surprising phenomena: for many problems, there exists a critical noise level above
which it is impossible to estimate better than random guessing. Below this threshold, we compare the performance of
existing polynomial-time algorithms to the optimal one and observe a gap in many situations: even if non-trivial estimation
is theoretically possible, computationally efficient methods do not manage to achieve optimality.
From a statistical physics point of view that we adopt throughout this manuscript, these phenomena can be explained by
phase transitions. The tools and methods of this thesis are therefore mainly issued from statistical physics, more precisely
from the mathematical study of spin glasses.

KEYWORDS

statistical inference, information theory, statistical physics, spin glasses, community detection on graphs, low-
rank estimation, generalized linear models, Lasso


	Contents
	Foreword
	Some notations
	Bayes-optimal inference
	The Nishimori identity
	Performance measure and optimal estimators
	Bayesian inference with Gaussian noise
	A warm-up: the ``needle in a haystack'' problem

	A decoupling principle
	The pinning Lemma
	Noisy side Gaussian channel

	Low-rank symmetric matrix estimation
	Introduction to the spiked matrix models
	Information-theoretic limits in the spiked Wigner model
	Information-theoretic and algorithmic phase transitions
	Approximate Message Passing (AMP) algorithms
	Examples of phase transitions

	Proof of the Replica-Symmetric formula (Theorem 3.2.1)
	The lower bound: Guerra's interpolation method
	Adding a small perturbation
	Aizenman-Sims-Starr scheme
	Overlap concentration
	The main estimate
	Proof of Proposition 3.4.2
	Reduction to distribution with finite support


	Non-symmetric low-rank matrix estimation
	Fundamental limits of estimation
	Application to the spiked covariance model
	Proof of the Replica-Symmetric formula (Theorem 4.1.1)
	Proof ideas
	Interpolating inference model
	Overlap concentration
	Lower and upper bounds
	Lower bound
	Upper bound

	Concentration of the free energy: proof of Lemma 4.3.2

	Proof of Theorem 4.1.2
	Proof of Proposition 4.4.1


	Community detection in the asymmetric stochastic block model
	Introduction
	The community detection problem
	Reconstructability above the Kesten-Stigum bound
	Non reconstructability below the spinodal curve
	Reconstruction on trees
	Cavity method on trees
	The cavity recursions
	Gaussian limit

	Proofs for the stochastic block model
	Upper bound
	Lower bound

	Proof of Proposition 5.6.2
	Initialization
	Induction

	Connection with rank-one matrix estimation
	The limit of the mutual information: proof of Theorem 5.9.1
	Lindeberg argument
	Gaussian interpolation

	From mutual information to solvability: proof of Theorem 5.9.2


	Statistical limits of rank-one tensor estimation
	Information-theoretic limits
	Large order limit: k 
	Information-theoretic limits

	Hardness of low-rank tensor estimation
	Maximum likelihood estimation
	Background and related work
	Main results
	Regarding the spinodal transition

	Proof of Theorem 6.3.1
	Variational formula for the ground state of the mixed p-spin model
	The lower bound
	The upper bound
	Proof of first part of Theorem 6.3.1 
	Proof of second part of Theorem 6.3.1
	Auxiliary results
	Uniqueness of minimizers
	Study of the asymptotic equations
	Proof of 6.4.1



	Phase transitions in Generalized Linear Models
	Introduction: learning a linear classifier
	Rosenblatt's perceptron algorithm
	The generalization problem

	Generalized linear estimation: Problem statement
	Definition
	Link with the classical definition of Generalized Linear Models in statistics
	Bayesian framework

	Information-theoretic limits
	Two scalar inference channels
	Replica-symmetric formula and mutual information
	Optimal errors
	Optimal reconstruction (or estimation) error
	Optimal generalization (or prediction) error


	The generalized approximate message-passing algorithm
	Estimation and generalization error of GAMP

	Examples of phase transitions
	Generic observations
	Phase diagram of perfect learning
	The linear channel
	The rectified linear unit (ReLU) channel
	The sign-less channel
	The symmetric door channel

	Examples of generalization errors
	Threshold output: The perceptron
	Symmetric Door
	Linear regression
	Rectified linear unit (ReLU)
	Sign-less channel


	Proof of Theorem 7.3.1
	Interpolating estimation problem
	Overlap concentration
	Lower and upper matching bounds
	Derivative of the interpolating free energy: Proof of Proposition 7.6.1
	Proof of (7.6.20)
	Proof that An vanishes as n


	Proofs of the limits of optimal errors
	Unicity of the optimizer q* of the replica formula: Proof of Proposition 7.3.1
	Limit of the overlap: Proof of Theorem 7.3.2
	Upper bound on the overlap
	Limit of the overlap
	Proof of Proposition 7.7.3

	Optimal generalization error: Proof of Theorem 7.3.4
	Generalization error of GAMP: Proof of Proposition 7.4.1

	The non-linear scalar channel
	Study of the scalar free energy
	Study of the generalization function


	The distribution of the Lasso: Uniform control over sparse balls and adaptive parameter tuning
	Introduction to the Lasso
	Related work
	Main results
	Definitions
	Results

	Applications
	Estimation of the risk and the noise level
	Adaptive selection of lambda
	Numerical experiments

	Proof strategy
	Tight Gaussian min-max theorem
	Local stability
	Sketch of proof of main results


	Proofs of the results on the Lasso
	Study of the scalar optimization problem
	Basic properties of the scalar optimization problem
	Control on beta*,tau*
	Technical lemmas
	On lp-balls
	On sparse balls

	Dependency in lambda

	Study of Gordon's optimization problem for w
	Local stability of Gordon's optimization
	Proof of Theorem 9.2.1

	Empirical distribution and risk of the Lasso
	Proofs of local stability of the Lasso cost
	Application of Gordon's min-max Theorem
	Local stability of the empirical distribution of the Lasso estimator: proof of Theorem 8.5.3
	Local stability of the risk of the Lasso estimator

	Uniform control over lambda: proofs of Theorems 8.3.1 and 8.3.2-(8.3.8)
	Control of the l1-norm of the Lasso estimator
	Lipschitz continuity of the limiting risk and empirical distribution
	Proofs of Theorems 8.3.1 and 8.3.2 


	Study of the Lasso residual: proof of (8.3.9)-(8.3.10)
	Study of Gordon's optimization problem
	Proof of Theorem 9.4.1
	Uniform control over lambda: proof of Theorem 8.3.2-(8.3.9)-(8.3.10)

	Study of the subgradient v
	Main results
	The empirical law of the subgradient
	The norm of the subgradient
	Upper bound on the sparsity of the Lasso estimator

	Gordon's strategy for the subgradient
	Application of Gordon's Theorem
	Study of Gordon's optimization problem
	Proof of Theorem 9.5.7

	Proofs of the main results about the subgradient
	The norm of v: proof of Theorem 9.5.3
	The empirical law of v: proof of Theorem 9.5.1
	Proof of Theorem 9.5.5
	Uniform control over lambda: proof of Theorems 9.5.2, 9.5.4 and 9.5.6


	Some auxiliary results and proofs
	Proof of Remark 8.3.2
	Concentration properties of w
	Concentration of the empirical distribution
	Sparsity of the Lasso estimator
	Proof of Theorem 8.3.3
	Proof of Corollary 8.4.2
	Proof of Proposition 8.4.3
	The scalar lasso
	A convexity lemma

	Toolbox
	Notations recap
	Gaussian min-max Theorem
	Basic concentration results
	Largest singular value of a Gaussian matrix


	Appendix
	Proof of Lemma 1.2.2
	Proofs of some basic properties of the MMSE and the free energy
	Proof of Proposition 1.3.1
	Proof of Proposition 1.3.2
	Proof of the I-MMSE relation: Proposition 1.3.3
	Pseudo-Lipschitz continuity of the free energy with respect to the Wasserstein distance
	Zero-noise limit of the mutual information

	Some results about convex functions
	Convex analysis lemmas
	The monotone conjugate
	Some supremum formulas

	Differentiation of a supremum of functions

	Bibliography

