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"... Ancient people learned so much from watching sky and earth, mountains and streams, grass and trees, fish,
insects, birds and beasts, because their deep curiosity extended everywhere. Flat places close at hand attract
travelers aplenty, but few go where it is dangerous and far. Yet the strangest, grandest, most grotesque and
unusual sights of this world are often found in those dangerous, far places that people seldom reach. People
without a strong will cannot reach those places. Nor can those who do have the will, do not stop just because
others stop, but lack of the physical strength. Nor can those who have both will and strength, do not turn
sluggish just because others do, but have nothing to guide them once they reach the dark, confusing depths.
When it is someone else who does not reach those places even though he has the strength, we might laugh at
him; when it is our own self, we fell regret. However, if we have fully used our will, even if we do not actually
reach the goal, regret can be absent ..."

— < Record of an excursion into BaoChan Mountain>, Song Dynasty (1054 AD), WANG Anshi. Translated by Jonathan
Pease, <No Going Back, or, Youthful Bravado at the Baochan Mountain Cave>, Journal of the American Oriental Society,
2006.
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Résumé

Cette these porte sur I’analyse mathématique de modeles de structures électroniques de matériaux présent
des défauts, elle contient trois sujets différents. Dans le chapitre 2, nous étudions I’état fondamental d’un
défaut étendu dans une mer de Fermi. Dans le chapitre 3, nous nous intéressons a la description mathé-
matique de la jonction de deux matériaux quasi unidimensionnels. Dans le chapitre 4, nous construisons
un cadre mathématique pour la dynamique d’un réseau cristallin de taille infinie, dans ’approximation de
Born-Oppenheimer, dans laquelle I'électron est couplé a la dynamique nucléaire.

Abstract

This thesis focuses on the mathematical analysis of electronic structure models for materials with defects.
It contains three different topics. In Chapter 2 we study the ground state of an extended defect in a Fermi
sea. In Chapter 3 we are interested in the mathematical description of the junction of two perfect quasi one
dimensional materials. In Chapter 4 we construct a mathematical framework for a lattice dynamics under
the Born-Oppenheimer approximation, where electrons are coupled with the nuclear dynamics.
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Notation

Let us introduce some notation that will be used throughout this manuscript. We work in atomic units,
where all physical constants, such as the elementary charge and the electron mass are taken to be equal
to one. Unless otherwise specified, the functions on R considered in this thesis are complex-valued. We
denote respectively by . (R%) the Schwartz space of rapidly decreasing functions on R%, and by .7 (R%)
the space of tempered distributions on R,

For a separable Hilbert space §), we denote by £($)) the space of bounded (linear) operators, by S($)
the space of bounded self-adjoint operators, and by K($)) the space of compact operators on §). For an
orthonormal basis (¢y,),,~ of 9, the trace of a positive operator A acting on §) is defined as

Z (6ns Adn)sy

where (-, -) is the inner product of the Hilbert space ). For 1 < p < 00, we denote by &,()) the p-Schatten

class on $):
Ae&,(9) ifandonlyif [|Allg = (Tr(|A[")"* < .

Operators in &1(5)) and S4($)) are respectively called trace-class and Hilbert—Schmidt.
In this thesis the Hilbert space L?(R?) is frequently used. If A € &;(L?(R%)), there exists a unique
function p4 € L'(R?) such that

VYW e L*(RY), Tr(AW) =JdpAVV.
R

The function p 4 is called the density of the operator A. If the integral kernel A(r,r’) of A is continuous
on R? x RY, then pa(r) = A(r,r) for all r € R% An operator A € L(L?(R?)) is called locally trace-
class if the operator Y Ay is trace-class for any xy € C*°(R?). The density of a locally trace-class operator
A€ L(L?*(R?)) is the unique function p4 € L] (R?) such that

YW e C*(RY), Tr(AW) = f L pAW.
R

We denote respectively by u and @ the Fourier transform and the inverse Fourier transform of a tem-
pered distribution u € .#/(R?). We use the normalization convention for which
~ 1 : ~ 1 .
V¢ e L'(R? = te "Cdt and () := f ¢ dc.

With this normalization convention, the Fourier transform defines a unitary operator on L?(R%).
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Macroscopic properties of materials, such as the elasticity of perfect crystals, the resistivity of metals
or the color of a chemical compound, can often be deduced from elementary processes which take place at
the atomic scale (see e.g. [BAGDCGO01, LBP03] and references therein). At the atomic scale, materials are
described as systems composed of nuclei and electrons. The understanding of the electronic structures of
materials remains an important topic in condensed matter physics and quantum chemistry (see e.g. [Mar04,
KMW ™ 18] and references therein). The properties of materials fall into two categories determined by the
electronic ground state and by electronic excited states. For example, properties such as the phase transitions
between structures, the charge density, elastic constants, nuclear vibrations and motion (in the adiabatic
approximation) are related to the ground state, while properties as the optical absorption/emission, Pauli
spin susceptibility are determined by excited states [Mar04]. Electronic structure calculation results allows
to compute these properties for ideal perfect crystals with good accuracy. Real crystalline materials have
defects, which have significant impact on properties of materials (see e.g. [FGH™ 14, Kax03, KN10, Pan78,
Sto01] and references therein). In this thesis we focus on the mathematical modeling of various types
of defected materials at the atomic scale. In particular, we are interested in the ground state electronic
structures of materials.

In this introductory chapter we briefly present the scientific context for Chapters 2, 3 and 4, and
summarize the main results of these chapters. We ignore the spin throughout this thesis. In Section 1.1
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we start by presenting three models for finite systems: the N-body Schrédinger equation as well as two
types of approximations of the N-body Schrédinger model, namely the Hartree-Fock (HF) approximation
and Density Functional Theory (DFT). We also present the ground state problem for finite systems. We
then explain in Section 1.2 how to describe an infinite system corresponding to a periodic crystal, as well
as the associated ground state problem in the reduced Hartree—Fock (rHF) description. In Section 1.3 we
present models of various defects: we first focus on a nonlinear model of local defects in insulating crystals,
we then consider a linear model of defect in a paradigmatic metal, the free electron gas. We next present
the model we consider to describe extended defects in a Fermi sea within a rHF framework. In Section 1.4
we consider the nonlinear junction of two perfect quasi one-dimensional materials, and study the ground
state problem for the junction in the rHF model. Lastly, we briefly describe the on-going work of lattice
dynamics in the Born—-Oppenheimer approximation, and present a partial result in Section 1.5.

1.1 Mathematical models of electronic structure for finite systems

Finite quantum systems, for instance a finite crystal or a molecular system, can be described by the N-body
non-relativistic spinless Schrodinger equation (see for example [LBP03]). In this section we first introduce
the general N-body non-relativistic Schrédinger model and the ground state problem for finite systems. We
shall see that the ground state problem is numerically unsolvable for IV large, which calls for more tractable
approximations. We next present the most widely used approximations of the N-body Schrédinger model:
the Hartree-Fock approximation and Density Functional Theory.

1.1.1 The N-body Schrodinger model

Consider a spinless finite quantum system composed of M nuclei and N electrons in R3, with M, N e N*,
Since nuclei are much heavier than electrons, their movement is often neglected for electronic structure
calculations. That is, electrons are considered to experience the electronic potential generated by nuclei
with fixed positions. This approximation is often called the Born-Oppenheimer approximation [BO27]. Un-
der this approximation, the time-independent N-body non-relativistic Schrodinger operator for the system
of N electrons in R? is

N

N
Hy := Z <—;Ai) + ;V(Ti) + Z |17‘j’ (1.1)

Ty —
i=1 I<i<j<N 't

where A; denotes the Laplace operator for the i-th coordinate (so that the first term of (1.1) stands for the
kinetic energy), and

M —Z
V(r) = Zl TR Ignl (1.2)

denotes the classical Coulomb potential generated by the nuclei located at {R,},,<; With nuclear
charges {zn};< <y The last term of (1.1) describes the Coulombic electron-electron interactions. As
electrons are fermions, their wavefunctions are antisymmetric, hence it is convenient to introduce the
following Hilbert space:

N
/\LQ(R?)) = {\II € L2(R3N) |VU € SN7 \IJ(TU(I)a e ?TO'(N)) = E(U)\IJ(T‘l, T 7TN) }7

where Sy is the group of the permutations of {1,--- , N} and ¢(o) the parity of o. Let us denote by

N = (/N\ LQ(R3)> N HY(R3Y).

A pure state of the N-electron system is described by a wavefunction ¥ belonging to ) y with || ¥/| , (R3N) =
1. The electronic density pg associated with VU is defined as the marginal density

pu(r) =N [U(r,ra, - ) [* dra - dry. (1.3)
R3(N-1)
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Therefore
py =0, pyeL'(R?), f pw = N.
R?y

The N-body Hamiltonian Hy acts on the N-fermionic Hilbert space /\N L?(R3) with its domain on the
Hilbert space (/\N L? (R3)> NH?(R3N). Ttis proved in [ZS65] that ifZﬁ/lzl zn, = N, the essential spectrum
of Hy is an interval of the form [Xx, +00) with ¥ < 0and ¥y < 0if N > 2. The discrete spectrum of
Hpy; is an infinite sequence of negative eigenvalues converging to ¥ . The lowest eigenvalue (denoted by
EX) is called the ground state energy and the associated eigenfunctions are called ground state(s). Higher
eigenvalues describe excited states. Following the HVZ Theorem [ZS65, Hun66, RS78], it holds that ¥y =
EX,_,. The ground state energy of the finite system is also given by the following minimization problem

Iy = inf {@ Hy| 0y, U e SHx, |¥]| g = 1}. (1.4)

The numerical computation of the problem (1.4) is very challenging, especially for large N (see for exam-
ple [LBP03]). This is the reason why the N-body model is often approximated by nonlinear mean-field
models. There are two major approximations (see for example [CLBM06]): wavefunction methods, which
consist in restricting the minimization sets to smaller sets of wavefunctions, and density functional theory
(DFT), where the electronic states are described by the electronic density pg only, hence the physical ob-
servables are functionals of py. We present in the next section the most widely used wavefunction method:
the Hartree-Fock approximation, and in Section 1.1.3 the DFT approximation.

1.1.2 Hartree—Fock type models

The Hatree-Fock (HF) approximation consists in restricting the minimization set in (1.4) to states called
Slater determinants:

¢1(r1)  ¢i(r2) -+ ¢1(rn)
R v i R 19
on(r1) ¢n(r2) - on(TN)

where the functions ¢; belonging to H'(R?) for all 1 < ¢ < N and such that {¢; | ¢;);> ®3 = 0ij
are called molecular orbitals. It is convenient to introduce the one-body density matrix ~g associated with
a wave U, which is a self-adjoint trace-class operator acting on L?(R3;C) such that 0 < gy < 1 and
Tr (yy) = N. Its kernel is

ye(r,r') =N U(r,ro, - ,rN)V(r ro, -+ ,ry)dry - dry. (1.6)
R?)(N*l)

The density matrix «g obtained from (1.5) simply is the sum of the projectors onto the molecular orbitals:

N N N
o= Y1606l = 3 (61 )2 bin wlrir) = pulr) = D 16iP(r),
=1 =1 =1

with py defined in (1.3). Remark that vy is also an orthogonal projector onto an /N-dimensional subspace
of L?(R3), i.e, 7\21, = ~y. With this notation, the HF energy of a Slater determinant ¥ is

EM (yy) 1= (¥ [Hy| ¥)
N 2
1 1 ! 1 !
- 2 j [Vi|? + J pwV + J 7@1;(7“)/)\1;,(7" ) dr dr’ — J 7‘%1,(7“’74,)‘ dr dr’
i=12 R3 R3 2 R3xR3 "l“—’l” | 2 R3xR3 ‘7“—?” |

=T 1A 1 1 |’7‘I/(Ta T/)|2 /
= Trreme) | —587% ) + - puV + 5 D(pw, pu) — 5 SO P drdr’,

2 |r —r

(1.7)
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where
D(f,f) := f M dr dr’ (1.8)
R3xR3 |7 — 7|
describes the Coulomb electron-electron interactions through the electronic densities. In view of the N-
body ground state problem (1.4), the HF ground state is given by

I — inf {SHF(’y\p) 10 < ¥ =g <1, Tr(yy) = N, Tr(—Avy) < +o0}. (1.9)

As we have restricted the minimization set to the set of Slater determinants, the ground state energy I+t is
always greater or equal to the ground state /)y in the N-body Schrédinger model. The difference 1 — Iy
is called the correlation energy, which means that in the HF approximation the electrons are "uncorrelated”
one from another (they are still correlated through the Pauli exclusion principle, see for e.g. discussions
in [LBP03, Chapter 1]). The HF approximation reduces the cost of computing the ground state problem
by replacing the L?(R3") space to the N-dimensional subspace of L?(R3). However, as the HF energy
functional is not convex, the existence and uniqueness of minimizers is not trivial. The existence of min-
imizers for N < Zﬁil zn + 1 was first proved by Lieb and Simon [LS77] and later by Lions [Lio84] by a
different approach, in which the existence of infinitely many critical points of £''F is also proved. It was
also shown by Solovej [Sol03] that there exists a positive constant C' such that when N > Zﬁil 2n +C
the problem (1.9) admits no minimizer. Another important result obtained by Lieb [Lie81] states that when
relaxing the minimization set of (1.9) to its convex hull

Py i={veS(L*(R*)[0<vy<1,Tr(y) =N, Tr(—Ay) < 0}, (1.10)

one still obtain the same minimizers. This result is important for numerical calculations [CLB00, Can01,
CLB02]. Remark that any element of Py is not necessarily the density operator associated with some
pure state. However any v € Py is the one particle density operator associated with some mixed state
(represented by a N-particle density operator) [Lie83, Theorem 2.2]. This is called the N-representability of
density operators.

Euler-Lagrange equation of the HF energy functional. An easy computation shows that a critical

point ¥ = \/iv—'qﬁl A -+ A ¢ of EHF satisfies the following Euler-Lagrange equation:

N

1 N 5 1 T N .
j=1 j=1

=1
f bidj = i,
R3

where \;; are the Lagrange multipliers associated with the constraints {p; ¢i¢j = 0;j. In view of the
definition of the density matrix ~y, let us introduce the Fock operator:

HF A o 2 1 (1
Hyy = =5+ V4 ) loP s — =D (*i* ) ¢
1A -]
- /
(e () L

|- =]

A 1
=—+V+,Oq;*—f

2 [l Jre
The operator H%F is also called the mean—field Hamiltonian. The last term of H%F is an integral operator
acting through its kernel: for any ¢ € L?(R?)

WR W(I—)I() dr’) 1"} (r) = JMw<r’> ar'.

For a Slater determinant ¥, remark that any unitary transform U (NN of the column vectors in (1.5) leaves
the density matrix vy (r,7") = Zfi 1 ¢i(r)¢i(r") unchanged. There are two consequences of this obser-

vation: there are infinitely many critical points of the HF energy functional £'F, and one can use this
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unitary-invariance to diagonalize the matrix of Lagrange multipliers \;;. By an abuse of notation we de-
note by A\; < --- < Ay the diagonal elements of the matrix of Lagrange multipliers. The Euler-Lagrange
equation can be written as:

Hy éi = Nigi, i=1, N,
A 1 yu(,r') e ()
HHF=—+V+p\1;*—J Sy,
IO 2 1 s [ (1.11)
N N
yo =Y el pw =) 16l
L i=1 i=1
Note that the elements A\; < --- < Ay are also eigenvalues (counting multiplicities) of H%F Remark also

that the system of equations (1.11) is self-consistent in the sense that the operator H,IY{\I,F itself is constructed
from its eigenfunctions (¢;); ;< x through vy and py. It is proved in [BLLS94, BLS94] that Ax 41 > A,
which is called the no unfilled shells property of the HF theory. This implies that the solution of the self-
consistent equation (1.11) can be written in the following compact form, which is important when extending
the HF formalism to infinite systems:

Yo = Loy (HY), (1.12)

where ep € [An, AN41)-

Reduced Hartree-Fock energy functional. The HF functional (1.7) is not a convex functional of the
density py because of the last term called the exchange term. By discarding this term one obtains the Hartree
functional, also called reduced Hartree—Fock (rHF) energy functional:

1 1
M (yg) 1= Trpz (s ((—2A + V) w) + 5 D(ow, pw). (1.13)
The corresponding ground state is given by the solution of the following minimization problem:
IV =inf {£MF(7) |y e Py}, (1.14)

with Py defined in (1.10). The rHF energy functional is a convex functional of the density matrix . The
existence of minimizers of (1.14) is thoroughly studied in [Sol91] in the context of the ionization conjecture.
Solovej has shown that there exists a critical value Zﬁ/[:l Zn < Nigr < 2 Zﬁil zp, such that for all 0 <
N < Nygr minimizers of (1.14) exist; and for N > Ny, the energy I]r\?IF is constant, meaning that there
is no more binding of electrons. These minimizers share the same density thanks to the strict convexity of
p = D(p,p).

The rHF model is a one-electron description of the quantum system (the ground state can be described
by a mean-field Hamiltonian), but electrons "interact” with each other through the common electronic den-
sity p in the term D(-, -). The rHF description is therefore a simple framework which allows one to conduct
rigorous mathematical analysis, while still being realistic enough to describe the physics of quantum sys-
tems. Furthermore, it can be seen as a good approximation of Kohn-Sham models [KS65, DG90, LLS19]
presented the next section, which are commonly used in solid-state physics. Besides, most results obtained
on the rHF model can be extended to the Kohn—Sham LDA model [AC09], up to possibly some assumptions
on the uniqueness of the ground-state density matrix or on the coercivity of the second-order derivative
of the Kohn-Sham energy functional at the ground-state under consideration. Due to these reasons, in the
sequel we shall extend the rHF description to infinite systems and use this framework to treat extended
defects, the junction of quasi 1D materials as well as lattice dynamics respectively in Sections 1.3.2, 1.4
and 1.5. Before this we present another important approximation of the N-body Schrédinger equation.
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1.1.3 Density functional theory

The key idea of density functional theory (DFT) is that the properties of many body quantum system can
be described as functionals of the electronic density only. More precisely, one transforms the ground state
problem (1.4) to a minimization problem of the following form:

inf{f‘?(p)JrJ pV, pe L'(R?), p=0, J p=N}, (1.15)
R3 R3

where £(-) depends only on the electronic density p and does not depend on the external potential V. It is
not obvious to relate the ground state problem (1.4) to (1.15). The first theoretical justification is given by the
cornerstone paper of Hohenberg and Kohn [HK64], where the authors prove that the ground state energy
of an inhomogeneous electron gas can be described by a universal density functional independent of the
external potential. We present here the approach of Levy [Lev79] and Lieb [Lie83]. In [Lie83, Theorem 1.2]
Lieb proves the following N-representability of densities:

{030 € x5, 19 2om) = 1. pw = o}
= {pIIOELI(R?))v p=0, j p=N, \/EEHI(RS)a } =1In.
R3

The N-representability implies that given any density p in Z there exists a wavefunction ¥ such that its
density py matches p. The Levy-Lieb functional writes

g (p) := inf {<‘1’ [HN| ), U e N, [V pageny =1, puw = ﬂ}7
where HY; is the Hamiltonian operator Hy in the absence of potential V:
Yo 1
HY = —=A; I — 1.16
N Z< 2 Z>+ Z ’T’Z'—Tj‘ ( )
i=1 1<i<j<N

The minimization problem (1.4) is then equivalent to

inf {5“(;)) + fRB pV, pe IN}. (1.17)

This transforms the N-body minimization problem (1.4) to a minimization of the Levy-Lieb functional over
the set Zy. However the functional £() is unknown. We present here several common approximations.

Thomas—Fermi type models. Before the rigorous formalization of [HK64], Thomas—Fermi type mod-
els were already used. We briefly review some of them here, more details can be found in [LIE, Lie81,
CBL98]. The Thomas—Fermi (TF), the Thomas—Fermi—von Weizsdcker (TFW) and Thomas—Fermi—Dirac—von
Weizsdcker (TFDW) are DFT models where the energy functionals are explicit functionals of the electronic

density. Introducing the physical constants Ctp = 65/?’64/3> ,Cw = 0.093,Cp = % (%)1/ 3 (see for
example [CLBMO06] for reference), the TF energy functional writes
1 /
£ (p) = CTFJ P+ f pnelr) 4y g, (1.18)
R3 2 Jraxms |r— 1|

In the TF approximation, the kinetic energy term is replaced by Crr {5 p°/3, which comprounds the semi-
classical approximation of the kinetic energy of a homogeneous non-interacting electrons gas: given a
Fermi energy p > 0, the electron gas has a constant density (see, for e.g. [FLLS13])

N|w

1 1
- dp = .
po (2m)3 flp2<u P= 6m2l
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The semi-classical kinetic energy of the homogeneous gas is therefore given by

1 1 5 65/3774/3 5/3 3
f pPdp = —5us = ———p( e,

= Crpp
1072 10 TEfo
The above equation provides an exact relationship between the semi-classical kinetic energy of a homoge-
neous gas and its constant density. For a normalised N-body wavefunction ¥, the lower bound of'its kinetic
energy { [V¥|? by SRg p‘r&,/d is given by the Lieb-Thirring inequality [LT75, LT91]. It can be formulated as
follows [FLLS13]: for all ¥ € §)y, there exists a constant 0 < 73 < 1 such that

Tr (—Avg) > 75Crr f A (1.19)
R

There are generalizations of Lieb—Thirring inequalities for other dimensions than 3, see for example [HLW00]
and references therein. This inequality is also the foundation of some useful estimates in Chapter 2.

Adding the von Weizsacker kinetic correction term to the TF energy functional, one obtains the Thomas—
Fermi—von Weizsdcker energy functional

/
ETPW () — Oy J V5l + Crg J P 1f UGG (1.20)
R3 R3 2 R3xR3 ’?”—7"/|
The von Weizsédcker kinetic correction term is obtained by studying perturbations of the density matrix
of the non-interacting electron gas [LBP03]. Remark that for any density matrix 0 < -y < 1 associated
to a wavefunction ¥ with a finite kinetic energy, the von Weizsacker correction term is controlled by the
Hoffman-Ostenhoff inequality [HOHO77]:

Tr(-an) > | Vvl (1.21)

Inequalities similar to (1.21) will be used in the proofs of results in the following chapters. The advantage
of the TF and TFW energy functional is that they are strictly convex functionals of the density. The last
model consists in taking into account the exchange term. By using again the homogeneous non-interacting
electron gas as a reference, the exchange terms can be approximated as

1 |2
_f Mdrdr’ ~ _CDJ p4/3.
2 Jraxps | —1| RS

Adding this correction term to the TFW energy functional, one obtains the Thomas—Fermi-Dirac—von
Weizsdcker energy functional

eV (p) = O [ | 19VolE + Cae [

1 /
P — CDJ pt3 ¢ f PO gt (1.22)
R3 2 Jraxrs [r—1|

RS

Note that the TFDW energy functional is no longer convex in the density. Thomas-Fermi type models are
good toy models which have nice mathematical properties. However they are currently not often used for
quantitative prediction, for which Kohn—-Sham models are preferred.

Kohn-Sham models. When restricting the Levy-Lieb functional to non-interacting electrons, that is
by retaining in HY defined in (1.16) only the kinetic part,

0 1 il
T = —§ZA7~“
=1

the Levy-Lieb functional becomes the Kohn—-Sham kinetic energy functional

TXS(p) = inf {<\I/ |T0‘ \IJ>, UeHy, H\IJHLQ(RW) =1, pp = ,0}. (1.23)
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When (1.23) admits a minimizer in the form of a Slater determinant (which is not always true [LBP03]), the
Kohn-Sham kinetic energy 75(p) can be simplified as

T"5(p) := inf 1%[ Vil qﬁieHl(R%,f w:éi-,irqﬁir?:p L (129
23 Jre RS =

The exchange-correlation energy is defined as the error between the Lieb-Levy functional energy and the
sum of the Kohn-Sham kinetic energy and the self-interacting Coulomb energy:

£°(p) = E(p) — T%(0) ~ 3 Dl(p.p).

By definition, the Kohn-Sham [KS65] energy functional is a rewriting of the Lieb-Levy energy functional:
1 X
E(p) = T (p) + 5D (p: p) + E(p)-

However, the exchange-correlation energy is unknown. In practice, various approximations of £*°(p)
were proposed (see for example [LBP03, AC09] and references therein). The most widely used methods in
condensed matter physics are the Local Density Approximations (LDA) [PZ381, Bec88], which assumes that
the exchange-correlation energy of the system behaves locally as that of a uniform electron gas, and the
Generalized gradient approximation (GGA) [PY86, PBE96], which improves LDA by adding local density
gradients.

When the minimization problem (1.23) admits a minimizer in the form of a Slater determinant, the
Kohn-Sham energy functional can also be written similarly to (1.13) as

1 1
E5(7) = Trpaes) ((—QA + V) 7) + 5 D(py: p7) + E(py)-

However from the point of view of theoretical chemistry, unlike the HF theory which aims at approximating
the original problem [LBP03], the Kohn-Sham approach is exact, provided of course one knows exactly
the exchange-correlation energy. The existence of Kohn-Sham minimizers for commonly used exchange-
correlation energy £*¢ is provided in [LB93].

1.2 Infinite periodic crystals

In the previous section, models for quantum system with a finite number of electrons were presented. At
the mesoscopic scale, one encounters a large number of atoms or molecules so that the system still obeys
the laws of quantum mechanics. In the N-body Schrédinger model, even the definition of the ground state
energy is not clear in general when N tends to infinity, not to mention that its numerical computation is out
of reach. One needs to reduce the dimensionality of the problem by exploring the symmetries of the system.
This is the case when one studies perfect materials, which are often described by infinitely many atoms
arranged periodically, together with their electrons. Mathematically, a perfect crystal is characterized by
a R-periodic nuclear charge distribution, where R is the Bravais lattice: for linearly independent vectors
a1, as, a3 belonging to R3,

R := {n1a1 + noag + n3as, (nl,ng,ng) € Zg} .
Let R* be the reciprocal lattice of R generated by the dual vectors a} such that a; - a] = 27d;;,
R* = {nfaf + niajy +njal, (n},ni,ni)e ZB} :

Denote by I' the Wigner-Seitz cell, i.e., the unique primitive cell of R constructed by a Voronoi decompo-
sition; and by I'* the first Brillouin zone, which is the Wigner-Seitz cell of R*. As an example, for a cubic
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Figure 1.1: An example of a Bravais lattice with its Wigner-Seitz cell I.

lattice of parameter a > 0, the Bravais lattice is R = aZ?2, the dual lattice is R* = %”Z:S, the Wigner-Seitz
cellis ' = [—a/2,a/2)* and the first Brillouin zone is I'* = [—7/a, /a)®.

By taking advantage of the R-periodicity of the crystal, the original problem on the whole space can
be reduced to a family of problems on the unit cell I'. Such reduction technique in mathematics and in
condensed matter physics is called the Bloch decomposition [RS78]. In this section, we first introduce the
Bloch decomposition in Section 1.2.1 as it is a fundamental ingredient to describe systems with partial
translation invariance treated in Section 1.3, Section 1.4, Chapter 2 and Chapter 3. We next introduce in
Section 1.2.2 the formulation of the electronic ground state problem under the rHF description (1.13) for
infinite periodic crystals.

1.2.1 Bloch decomposition

Given a Bravais lattice R, denote by 7p the translation operator acting on L _(R?) for R € R:

Vue L (R®), (rru)(-) = u(- — R).

loc
An operator A on L?(R3) is called R-translation invariant if it commutes with 75 for all R € R. Introduce

the LP spaces (resp. H' space) of functions which are R-periodic: for 1 < p < +o0,

Lp (I := {u e [P (R®) ] lull o (ry < +20, TR = u, VR € R} :

per loc
Hyo () :={ue L2 (T)|Vue L () }.

Let us also introduce the following constant fiber direct integral of Hilbert spaces [RS78, Theorem XIII.84]:

@
LA(T*; 12,,(T)) = f 12,,(T) dt.
*

where fp, = [I* |~1 {1« The constant fiber direct integral is a generalization of the direct sum of Hilbert
spaces. The Bloch transform B3 is a unitary operator from L?(R?) to L?(T'*; L2_,(T')), defined on the dense
subspace of .7 (R?) of L?(R3):

Nl

—

2m)

VoeT, (eT*, (Bp)(x):= Y, e " Az 4 R) = T

ReR

R Th(E + K). (1.25)

KeR*
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The second equality can be obtained by the Poisson summation formula (see for example [Pin02])

Vpe S (R?), > dz+R)= (@m)2 D G(K)e .

™
ReR ‘11‘ KeR*

The inverse Bloch transform is given by

VReR, foraa.zel, (B7'f.)(z+R):= ][ ei(R”)ffg(x) d¢.

T*

For almost all ¢ € R?, we have (Bo)ey i (x) = (Bo) (x)e K7 for all K € R*. For any A € L(L?*(R3))
such that TR A = Arp, there exists (see for e.g. [RS78, Theorem XIIL85]) A, € L*(I'*; £ (L2,,.(I))) such
that for all u € L?(R3),

(B(Au))e = A¢(Bu)e foraa. £el™. (1.26)

A= B! <][@ Ag dg) B (1.27)
I

the decomposition of an operator A which is R-translation invariant. In addition,

We denote by

1Al z(r2msy) = HHA‘HL‘(Lger(F))HLOO(I‘*)'

Moreover, the following spectral decomposition holds:

a(A) = | o(4e). (1.28)

gel'*

The decomposition (1.27) is useful for instance when we study the band theory of periodic systems in
Section 1.2.2. Furthermore, if A is positive and locally trace-class, then for almost all { € I'*, A¢ is locally
trace-class. The densities of these operators are related by the formula

pA = ][ pag d€.
T*

If for almost all { € I'*, A¢ is positive and trace-class, we can define the trace per unit volume for the
operator A as

Tr(A) := fr* Trrz (r) (Ag) de.

The trace per unit volume provides a measurement of the trace of A in each unit-cell, which is crucial when
treating periodic systems, since the operators considered in periodic systems (for example, the total energy
operator) are in general not trace class when considered on L?(R3).

1.2.2 Ground state of infinite periodic systems

We describe in this section the periodic rHF formalism to model infinite periodic systems, which is the
analogue of (1.14) for finite systems, relying on the results of [CLBL01, CDL08a, Lew09, CL10, CLS12, CS12].
Infinite periodic systems in the HF and rHF descriptions have been rigorously studied by a thermodynamic
limit argument in [CLBL01, CLBL02], where the existence of the ground state and the uniqueness of the
ground state density have been proven. The periodic rHF ground state has also been studied in [CDL08a],
where the uniqueness and the characterization of the minimizer through a self-consistent Euler-Lagrange
equation are given. Let us also mention that the periodic TF model has been thoroughly studied in [LIE]
and a thermodynamic limit argument has been provided to justify it. Similar results have been obtained
in [CBL98] for the TFW model. To our knowledge, there are no rigorous mathematical results on other
mean—field models such as HF or Kohn—-Sham. These models are much more difficult to study because of
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their non-convexity, leading to possible symmetry breakings and the existence of multiple ground-state
densities for a given nuclear configuration.

Consider a periodic system with a R-periodic nuclear charge distribution ngr such that the charge
per unit cell SF uger = Z with Z € N*T. By employing the notion of trace per unit cell, the convex set
describing finite kinetic energy per unit volume for the infinite periodic system is given by

Poer i= {7 € S (L*(R?)) |0 <y < 1,Vk € R, 7y = V7,

(1.29)
L* Trra () ((1 — Ag) (1 - A5)1/2> dg < +oo} :

where recall that S (£)) is the space of bounded self-adjoint operators on $), and the density matrix is
Bloch-decomposed as

®
y=B""1 <][ Ve d§> B, withy.eS (Lf)er(f‘)) and 0 < 752 < e <1,
T*

and the Laplace operator A on L?(R3) can be written as
@
-A=pB"1 < —A¢ d§> B, —A¢=(-iV¢)?, Ve:=V+ik
r*

Remark that the convex set (1.29) is a periodic analogue of the convex set (1.10) for systems with a finite
number of electrons. The whole space Coulomb interaction energy (1.8) is also replaced by its periodic
analog

Dex(f. f) = L L F(@)Gr(z — y)f(y) dz dy,

so that it corresponds to the Coulomb interaction energy per unit volume, and where Gr is the unique
‘R-periodic solution of the following Poisson equation:

—AG=47T<Z 5(-—y)—1>, LGzO,

yeER

with 4 the Dirac measure. Therefore one can define the periodic rHF energy functional, in analogy with the
rHF energy functional of the N-body system defined in (1.13):

1 1
EE)I(;IrF(rY) = ]{** TrL%er(F) <_2A§7€) d§ + iDGF (p’Y - /’Lgervp’y - Mger) ) (1-30)

where the following notation is used

1 1
VEeT*, Trp () <—2Am> =5 Trrz, @) (Velel Vel) -
The ground state problem (1.14) for the periodic system is

IHF _ g {EEI;F(’Y) ‘7 € Poer, Trpz_ () (7) = Z} . (1.31)

The definition of the periodic ground state problem (1.31) suggests that the periodic system at its ground
state is translation invariant by elements of R (no spontaneous symmetry breaking). The Euler-Lagrange
equation associated with the periodic rHF energy functional (1.30) can be written as [CDL08a]

VSer = ]]‘(—OO,€F] (ngr) )
A
Hpey i= -5t Ve » (1.32)

— Avpoer =dr (p"/ger - Mger) )
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where e is called the Fermi level. This number indicates the highest energy attainable for electrons, and
can be considered as the Lagrange multiplier of the charge constraint Tr L2,.(T) (’yger) = Z. Remark that
the system of equations (1.32) is self-consistent, and is the periodic analog of (1.12) for the N-body system.

The mean-field Hamiltonian H ger and the spectral projector ’yger are Tr-translation invariant for any
element R € R. In particular, by the Bloch decomposition (1.25) the mean-field Hamiltonian is decomposed

as

1
0 ‘7
per = B~ <][ perf > B, H per,{ — _§A§ + per’

and the periodic ground state is decomposed as

@
,yger = Bil <fr* ’Ygerf d€> 87 ’yger,f = ]].(7@7617'] (ngrvs) :

In the full periodic case I' is bounded (when there is a partial periodicity it is no more the case; the reduction
theory and the integral decomposition will be adapted), the operator H ger, ¢ is bounded from below and has
of

a compact resolvent for any £ € I'*. As a consequence, there exist a non-decreasing sequence (&, ¢)

of L2 .(T") such that

n=1 per

nz=1
real numbers going to +00 and an orthonormal basis (e, ¢)

er £ = Z Eng ’6n7§> <€n,§

and the decomposed ground state of the periodic system reads

’Yper &= Z ]lin ESER |en,£> <6n,f| .

The density associated with W’ger simply writes

p'Yper ]{‘* Z ﬂenﬁ 5F|en7f(x)‘2 dg

The physical interpretation of the above decomposition is that, for a given £ € I'*, the non-decreasing
sequence <€"»£)n> | represents the energy levels of the periodic system, and the Fermi level e represents
the highest occupied energy level. The ground state ’yger implies that all energy levels up to e have been
filled.

The mapping & — €, ¢ is R*-periodic Lipschitz continuous, and analytic away from crossings [Tho73,
RS78]. Hence in view of (1.28) we obtain the spectral decomposition of H per ¢

o (Hpe) = éLFJ* (ngr§> LJl (2., 20], == ?61%2 Engs Dy = maX Ene- (1.33)
€ n=

The spectrum of H per
Fig. 1.2 for an illustration), and gives information about the physical properties of the system such as its
electrical and optical properties [AM11]. In our context, the band structure is key to distinguish insulators
from metals. This separation is important for the rest of this manuscript when studying defects in materials
as well as lattice dynamics. More precisely, assume that a periodic system is described by a one-particle
Hamiltonian ngr and its ground state is given by a spectral projector ]l(_oo7€F](Hper) Recall that the
Fermi level ef is the highest occupied energy level. We say that the system is

therefore consists of bands which represent the energy levels of the system (see

« an insulator if the Fermi level e is in a gap of the spectrum of H per,

« a metal if e lays inside a band of o (ngr)

See Fig. 1.3 for an illustration. In other words, the system is insulating if and only if there exists N € N*
such that 1, < ep < Xy +1; the system is a metal if er lays in the interior of o( per) in R. In the
sequel we shall see that the existence of a gap around the Fermi level e is crucial for some mathematical
arguments to work.



1.3. MEAN-FIELD MODELS FOR DEFECTS IN MATERIALS 25

Figure 1.2: The band structure of the spectrum of HS

er-

o (HO,,) o (Hper)

per

Insulator €F  Metal

—_—

Figure 1.3: Insulators and metals from the point of view of spectral theory.

1.3 Mean-field models for defects in materials

Perfect materials are idealizations, and do not exist in the real world. Various defects exist everywhere,
sometimes in a desired way, like doping semiconductors to change their conductivity or adding tin to
copper to lower the melting temperature of the resulting material. Most of the time they are present in an
uncontrolled manner in materials. For example there may be vacancies at lattice sites or atoms of different
types exchanging their positions (antisite defects). There may also be misaligned crystal lattices (dislocation
defects). These defects have a significant impact on properties of materials. We refer to [Sto01, DE07] and
references therein for more details from a physical point a view.

The first-principle modeling of defects remains an important subject in condensed matter physics (see
e.g. [FGH™ 14, Kax03, KN10, Pan78] and references therein). Several correlated-electron models for crystals
with defects have recently been proposed in the physics literature among which Hubbard models, Dynami-
cal Mean-Field Theory (DMFT), Green’s function methods (GW, Bethe-Salpeter), or Monte Carlo methods,
see e.g. the recent monograph [MRC16] and references therein. In the mathematical literature, the case
of effective linear one-body Hamiltonians describing independent electrons in solids has been thoroughly
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investigated, in particular to study the effect of disorder on transport properties (see e.g. [BVESB94, Hun08]
and references therein). Nonlinear mean-field models are much more difficult to handle: local defects are
considered as perturbations of an infinitely extended reference system [CDL08a], so that the energy of the
system with defect is also infinite. Moreover, one also has to encode nonlinear effects such as the electro-
static potential caused by the defect or the change in the lattice configuration. Let us mention that when
considering the rHF model with a positive temperature, also called Schrédinger-Poisson model in [Nie90],
Nier has treated local defects with Dirichlet boundary condition and in the whole space, as well as peri-
odic defects within a periodic background in [Nie93b, Nie93a]. There are also extensions on the dynamical
properties of the Schrédinger—Poisson model, see [BAMO05, BACDFM09] and reference therein.

We summarize in Section 1.3.1 various results on local defects for insulators described by mean-field
models, and for a model metallic system (a free Fermi sea) described by an effective linear model. We then
discuss our contribution to the modeling of some extended defects in a Fermi sea in Section 1.3.2.

1.3.1 Mean-field models for local defects

In this section we first review the approach presented in [CDL08a] to describe local defects in insulators in
a rHF model. We next present a linear defect model in metals [FLLS11, FLLS13], where metals are modeled
as a Fermi sea. The latter series of works lays the foundation for the modeling extended defects in a Fermi
sea within the rHF description that we consider in Section 1.3.2.

Local defects in insulators: a rHF model. For insulators, a rHF model with Coulomb interactions
has been proposed in [CDL08a, CL10] to study a local defect in an insulating (or semiconducting) crys-
tal, based on ideas and techniques from [HLS05a, HLS05b, HLS07, HLSS07, HLS09a]. We summarize here
several definitions and ideas for treating defects as perturbations in infinite systems, as these ideas will be
used throughout this manuscript.

Consider a perfect 3D crystal described by the periodic rHF energy functional (1.30) with a R-periodic
nuclear density uger. In this section we restrict ourselves to insulators or semi-conductors. More precisely,
in view of the spectral decomposition (1.33), we assume that the following assumption holds (See Fig.1.2
for an illustration).

Assumption 1. Assume that ¥}, < Y .1, and that the Fermi level € is in the spectral gap (Z}, EEH) of
HO

per*

The local defect is modeled by a function v € L!(R3) n L?(R?) added to the periodic background, so
that the nuclear density of a crystal with local defect is described by

0
M:Mper+y'

The infinite rHF energy functional (1.13) associated with y for a trial density matrix v formally writes

1 1
M (y) « ="Tr (—2A7> + 5D (py — 07— ). (1.34)
We consider the formal decomposition

’Y:’Yger‘f‘Q,

where Q is a self-adjoint operator acting on L?(R?) and VSor is the density matrix of the perfect crystal
obtained in (1.32). One expects to be able to give a meaning to the difference of the two infinite free energies

“(ET (Tper + Q) — €rTr (Yper + Q)) — (EM (vper) — €7 Tx (per)) 7

= “Tr (Hyer — e£)Q) ~ Dlpg,¥) + 5 D(pg: pa)’

(1.35)
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For () to be an admissible perturbation of the reference state 'yger, Pauli’s principle requires that 0 <
’yger + @ < 1. The operator () also appears to be Hilbert-Schmidt. Nevertheless () is in general not trace-
class [CL10] and the right hand side of the above equation may have no mathematical meaning. Instead,
one can give sense to a generalized ’yger-trace

Tro (Q):= TI"L2 R3) (Q++ + Q__) (1.36)

AYper
where
Q++ = (1 - ’Yger) Q (1 - Vger) , Q= ngerQ'yger'

0
Denote by 61"’“ the space of operators having a finite vger-trace. Remark that when an operator A is trace-
class Tro (A) = Trr2(rs) (A). We also refer the reader to [Lew09, Appendix A] for a pedagogic summary
of properties of density matrices describing perturbations of a quantum system around a reference state
(in our case, () is seen as a perturbation and 'yger as the reference state).
The admissible perturbative states are the following convex set:

Koy, ={Qe Oy

_’Yger < Q <1- ’Yger} ’ (1'37)

’ch!‘

where Qﬁ/ger is the Banach space of operators having finite 'yger—trace and finite kinetic energy:

Q.0

Yper *

-{Qeel )| @ - @ IVIQ e su(r? )
VIQ ] &(L2RY), VI V] e (2R |
equipped with its natural norm
IRllo,g = lIQlls: + 17 lley + 1Q7 " lley + IVIRlle + IIVIQTVIlle, + IVIQ™Vllls:-
Furthermore, for any Q) € ICA/ger a simple algebraic calculation shows that
QYT =0, QTT<0, 0<Q*’<QT-Q .

Remark that IC“/Ber is not empty since it contains at least 0. Note also that IC%ger is the convex hull of states

in Qvger of the special form v — ’yger, where 7 is an orthogonal projector [CDL08a]. In view of the formal
difference (1.35), one can define a renormalized rHF energy functional associated with v:

1
V@ € IC’*/ger7 giHF (Q) - Tr'yper( perQ) (an V) + §D (pQ> pQ) ’ (1.38)

where for any  in the gap (£},%7, ) of H)

per>
TI‘ (ngrQ) = TI'LQ(]R3 (’ per — ’1/2 (QJF+ 77) ‘ per ’i’l/Q) + :‘QTI‘Vger (Q) : (1.39)

It can be shown that the expression (1.39) is independent of k € (Z I +1) The relative ground state
energy of a crystal with a defect v is obtained by solving the following minimization problem

I —inf {£7(Q) Qe Ko, |

Ifv e L'(R3) n L?(R3) and Assumption 1 holds, it has been shown in [CDL08a, Theorem 2] that the above
minimization problem admits minimizers which share the same density, and that any minimizer () satisfies

the following self-consistent equation:
@ = l(,w7EF) <H§> - ’Yger +9,
. B (1.40)
HQ_Hper (%—U>*|-| )

where 0 is a finite-rank self-adjoint operator satisfying 0 < § < 1 and Ran (4) < Ker <H§ —€ F).



28 CHAPTER 1. INTRODUCTION

Other works around local defects in insulators. Various extensions of the model in [CDL08a] were
considered: the zero-frequency dielectric polarizability of insulating crystals can be inferred from the rHF
model by a homogenization procedure [CL10]. Extensions to the time-dependent setting are discussed
in [CS12], where authors considered a time-dependent defect v/(¢) and studied the well-posedness of the
associated nonlinear Hartree dynamics. The numerical analysis of the rHF model of defects is dealt with
in [GL16] by a super-cell algorithm (see also [CDL08b]). Ideas similar to [CDL08a] have been applied to
Thomas-Fermi-Dirac-von Weizsdcker model [CE11] and their approaches are mathematically justified by
a thermodynamic limit argument. Let us also mention the works [LR13a, LR13b] for the study of polarons
in crystals, and the works [CLL13, Lah14] in which crystals with stationary random distributions of local
defects are considered. Let us also mention that the well-posedness of the Hartree dynamics for infinitely
many electrons in a Fermi sea is proved in [LS15].

Local defects in the Fermi sea: a linear model. The above mentioned works are valid only for in-
sulators and semiconductors, and crucially rely on the existence of a spectral gap in the spectrum of the
mean-field Hamiltonian ngr (Assumption 1) of the corresponding perfect crystal. Mean-field model for
defects in metals are much more difficult to analyze since small perturbations can cause electrons to escape
at infinity. On the other hand, many interesting physical problems, such as electronic transport, occur in
metals. In [FLLS11, FLLS13], the authors have considered local perturbations of the Fermi sea of the free-
electron gas in a linear model with external potentials. In their work, the ground state of a free Fermi gas is
given by II™ := 1(_, ., (—A) for a chemical potential ez > 0. This electron gas has a constant density’

As e belongs to 0ess(—A) = [0, +00), the techniques required to study ground state properties of a
free Fermi sea are different from the techniques used in (1.32) for insulators, since in the latter case the gap
condition in the spectrum of ngr (Assumption 1) is crucial. However, the perturbative approach can still
be applied. Following ideas similar to those used to define defects in insulating systems, the perturbation
of the reference state II™ can also be described by a one-body density matrix satisfying

I <Q<1-1I".

The relative kinetic energy of the perturbation is defined as
Trn (A —ep)Q) :=Tr (\ —A—ep[ P (QTTT QT A - 5F|1/2) ; (1.42)

with QU+ := (1 —TI7)Q (1 —II7) and Q™ ~~ := II~QII~. The above definition looks like the defi-
nition (1.39), however as ¢ belongs to gess(—A) = [0, +0), a defect state ) with a finite relative kinetic
energy may not even be a compact operator [FLLS13, Remark 2.4]. In particular, it does not belong to
the set Inger defined in (1.37). Since the reference system is a metal (see Fig. 1.3), perturbations are much
more delicate to handle, as even a small perturbation is not stable. However one still hope to control the
perturbation in some sense, for example by requiring that the perturbation has a finite kinetic energy. A
new Banach space of defects is introduced to this end:

1= {Q e S(LP®RY) || - A - ex|2Q € &3(12(R),
| A €F|1/2Qﬂ,ii| —A— 6F|1/2 c 61(L2(Rd))},

equipped with the norm

1Qllx,, = 1@l ccpny + H\ A —e]2Q

G2(L?(RY))
+ ) H|—A—eF|1/2Q“a|—A—eF|1/2 :
ae{+,—} &1 (L*(RY))
"The constant density is
po =[S Hd ™ (2m) e, (1.41)

where d is the dimension and S™ the n-dimensional sphere.
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Admissible states belong to the convex set of states compatible with Pauli’s principle:
Ky = {QGXH‘—H_éQél—H_}. (1.43)

As mentioned in Section 1.1.3, the Lieb-Thirring inequality (1.19) provides a lower bound on the kinetic
energy of a density matrix in terms of its density. For states in Kp, the authors of [FLLS13, FLLS11] have
proved a Lieb-Thirring type inequality: for d > 2, there exists K (d) € R" such that

trn (8- @)= K@) [ (n+p0 i =T -2 000). aag

This inequality provides a lower bound of the relative kinetic energy of defect state () by its density p).
However for d = 1 there is no such inequality as (1.44) since the off-diagonal terms Q*F diverge [FLLS13,
Theorem 2.5], due to 1D Peierls oscillations [Pei55]. Nevertheless, one can prove the following result,
which is one of the key estimate that will be used for the extended defects in a Fermi sea considered in
Section 1.3.2 and Chapter 2.

Theorem 1.1 (Lieb-Thirring inequality, d = 1 [FLLS13, Theorem 2.2]). Assume thatd = 1 and ep > 0.
Let QQ € Kr1. Then Q) is locally trace-class and the corresponding densities satisfy

k - |2
poss € L3(R) n L2(R), JR Ver| ‘2 — ‘pg;(k)] dk < +oo.  (1.45)
VEF
(VGF + ’k‘) log (|2\/§k‘|>

Moreover, there exist two positive constants K1 and Ky such that

T (-8 - ) Q) 2 [ (w03 @)+ 057 @) =8 =3 (57 (0) + g @) ) o

k 2

+K2f verlk| ‘pg—(kz)mé*(k)‘ dk.
R 5N 1 2./er +|k|

(\/ €Er +‘ |) Og |2\/§7|k||

(1.46)

Remark that due to the logarithmic divergence of |k| at 2,/eF, the last term in (1.46) is not bounded
from below by p/,” () + pg " ().

It is worth noting that a dual formulation of (1.44), which involves an external potential V/, can be
obtained by a Legendre—Fenchel transform [FLLS11]. For d > 2 and V € L?*(R%) n L'*%2(R¢), denote by

H‘_/ = ]l(—oo,O] (—A-i—V—EF), Qv = H‘_/—H_.
It is shown in [FLLS13, Theorem 2.3] that
1 _ _ 1
Trpges) (1= +V = erl? (IFQUIT, — TLQUIT) [-A + V —ex|? )

_ min (T (2= @+ [ Vio).

—II- <Q<ITH |~ A—ep[2Q4E |- A—ep|1/266,

The 1D analog of this equality is given in [FLLS13, Theorem 2.4]. This requires more assumptions on V'
in order to cancel the singularity in |k| at 2,/€r. The above expression means that the minimum relative
kinetic energy of a V-perturbed Fermi sea is attained by @)y, provided that the perturbation has a small
kinetic energy (in the sense that | — A —ep|Y/2QF*| - A —ep|/2 € &,). This idea is generalized in [CCS18]
when treating nonlinear perturbations in a Fermi sea, as discussed in the next section.
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1.3.2 Extended defects in a Fermi sea

We summarize in this section the main results obtained in [CCS18]. The aim is to establish a rHF model for a
particular instance of infinitely extended defects in a 3D Fermi sea with Coulomb or Yukawa interactions.
As mentioned above, the rHF model is of particular interest from a mathematical viewpoint since it is
strictly convex in the density; while on the physical side, it can be seen as a good approximation of the
(extended) Kohn-Sham LDA model [KS65, DG90, LLS19].

More precisely, we consider 2D-translation invariant defects in a 3D homogeneous electron gas. A
typical situation is the case when a slice of finite width of the jellium modeling the uniform nuclear dis-
tribution is taken out, see Fig. 1.4. This gives rise to a model describing the uncharged state of a capacitor

Figure 1.4: An example of an extended defect in a Fermi sea: in a 3D space, a 2D xd slab of uniformly
distributed nuclei is removed, where d € R™ represents the width of the slab.

composed of two semi-infinite leads separated by some dielectric medium or vacuum. This could be a first
step towards the construction of a mean-field model for electronic transport. The mathematical analysis
heavily relies on the translation invariance in the directions parallel to the slice. Technically, this allows us
to reduce the study of a 3D model to the one of a family of 1D problems labeled by a 2D quasi-momentum.
The situation we consider here is the one for which the technical issues are more acute since the family of
effective problems are set in dimension 1, which raises integrability issues due to the Peierls oscillations
discussed in Theorem 1.1.

Summary of the main results of Chapter 2.

Elements of R? are denoted by r = (r, z), where r = (, ) € R? and z € R. The extended defect is assumed
to be (z, y)-translation invariant. The main difficulties with respect to the study of local defects mentioned
in the previous sections are: (i) infinitely extended defects are not local since they are (x,y)-translation
invariant, hence they cannot be considered a priori as a small perturbation, (ii) there are infinitely many
interacting electrons in the Fermi sea as we consider Coulomb (resp. Yukawa) interactions, which differs
from the linear model considered in [FLLS11, FLLS13] presented in Section 1.3.1. (iii) the system is metallic
so that Assumption 1 fails.

The main idea is to fully explore the 2D-translation invariance of the extended defect to transform the
original problem into a family of 1D problems indexed by a momentum variable: following the same spirit
of the Bloch decomposition introduced in Section 1.2.2 for R-periodic operators, we introduce a decompo-
sition of (z, y)-translation invariant operators by the following unitary transform U/ (which corresponds
to a partial Fourier transform) from L2(R3) to L?(R?, L?(R)) for ¢ € R? and z € R:

Q- (UD)y(2) := S e 9D (r, 2) dr.

2T R2

Since the (rHF) kinetic energy operator for a perfect 3D Fermi sea is (x, y)-translation invariant, hence it



1.3. MEAN-FIELD MODELS FOR DEFECTS IN MATERIALS 31

is decomposed by U:

1 ® 1d*  |q?
T:=—A=U"1 T T, = ———— + 2
ph U <JR2 qdq) U To= 553175

Remark that 7, acts on L?(R) for all ¢ € R?. This kind of momentum representation is very widely used
among physicists when treating systems with partial symmetries. In view of (1.41), the reference state of
a perfect Fermi sea is determined either by fixing the Fermi level e or by given a uniform density pg. We
choose to fix the Fermi level ez > 0. Therefore the reference state of a perfect 3D Fermi sea at its "ground
state" is described by the following one-body density matrix

Y0 1= L_oo e, (1)
This operator is also (z, y)-translation invariant, so that it can be decomposed by U as:
e 1. (T,) ifqeB
-1 (—o0,er] \£q q €rs
R2 ! 0 ifgeRADB,,,

where By := {q e R? ‘ lq|?/2 < R} for R € R™. It can be shown that the unperturbed Fermi has a constant
density pg such that eg = (6m2pg)%/3 /2, see Section 2.5.2 for a detailed calculation.

The state yp can be seen as the rHF ground-state density matrix of an infinite, locally neutral system,
whose nuclear distribution is a jellium of uniform density pg. This suggests that the perfect Fermi sea at
its ground state can be seen as a neutral metallic system with uniform nuclear and electronic density.

Similarly to local defects, the state of the 3D Fermi sea with a slice-like defect can be written as

Y=+ @,

except that the operator () is not-local in the sense that it is also (z, y)-translation invariant. Recall that for
a R-periodic systems we have employed the Bloch decomposition 3 to define a relative kinetic energy per
unit cell in (1.30). In (x, y)-translation invariant systems, we can define the following renormalized kinetic
energy per unit area through the partial Fourier transform I/:

ﬂ((T — EF) Q) = (2711_)2 fRQ Tl“Lz(R) (‘Tq — 6F|1/2(Q(—;+ _ Q;_)|Tq — EF‘1/2> dq,

where
Q(—]H_ =(1- 7041)@(1(1 - '7041)» Qq__ = 70,4Q¢70,q-

In analogy to (1.37), we introduce the following convex set of admissible perturbative states Q:
D
K = {Q =U"! U Qq dq> u’ qg— Qe L” (RES(L2(R))),Qq € Ky, Tr (T — €p)Q) < oo} :
RZ

where the convex set ; := {Qq € X, ’ — Y, < Q¢ <1— 707q} is the space of operators with finite

kinetic energies similar to the Banach space defined in (1.43), and where
Xy = {Qq e SIAWR)) |IT, - er|?Qy € S2(L2R)), T, — x| PQFFIT, — x| € &1(L2(R)) },

equipped with the norm

1Qullx, = Qo + HrTq _ 20,

©2(L*(R))

o X |m - e, - e
Oé€{+,—}

&1 (L2R)

The following proposition gives a meaning to densities of operators in /C. In particular, we obtain a Lieb-
Thirring like inequality analogous to (1.44).
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Theorem 1.2. (Lieb-Thirring inequality for operators in JC [Chapter 2, Proposition 2.2]) Any Q) € K is locally
trace-class, its density pq is a function of the variable z only, and

po € LP(R) + L*(R)

forany 1 < p < 5/3. In addition, for all1 < p < 5/3 and all ¢ > 0, there exist two positive constants
nc,f, ,r]p,chr suCh that

VQ e, Tr((T—ep)Q) = ne—lpg |72 + e+ 105 oy
where pg = pa_ + pz;r with

o1 2 et _ 1f .
PG G2 J%€F+C pQ,dg€ L°(R), and pg": )2 — pq, dg € LP(R).

Since operators in K are (z, y)-translation invariant, their densities depend only on the variable z. In
Theorem 1.1 we have discussed that a 1D Lieb-Thirring inequality analogous to (1.44) is not available.
However the above proposition suggests that a quasi 1D Lieb-Thirring like inequality is possible. As a
matter of fact, in this case, the logarithmic divergence at 2, /e is averaged by the momentum representation
q € R?, 5o that the 1D Peierls oscillations disappear. In this sense, (z, y)-translation invariant systems are
quasi 1D, but they are very different from actual 1D systems. However, recall that in the rHF approximation
electrons interact with each other through the electronic density. As the electronic densities are (z,y)-
translation invariant, the Coulomb electron-electron interactions are actually one dimensional. One can
define the 1D Coulomb space
f(k)

fE LIIOC(R)’ TR LQ(R) } :

Q:: {fESI(R) |k’|

The above definition implies that densities in C are neutral in a weak sense: if p € C () L' (R), then Se 0=

~ 2
(27)Y/25(0) = 0 since the function k — |p‘(kk‘%l has to be integrable in the vicinity of 0. This implies that
the defect state () is also charge neutral in our context. Due to this constraint, it is convenient to introduce

the renormalized Yukawa space for a parameter m > 0:

Fetho®, 10 e p2m) } .
IR+ 2
Densities in Yukawa space are no longer necessarily neutral. We shall see in the sequel and in Chapter 2
that one can define a meaningful mean-field potential through the 1D Yukawa kernel m—'e~"I'l while we
were not able to do the same with the 1D Coulomb kernel —| - |, as it requires some extra decay properties
on the densities.
Let us introduce the Yukawa interactions:

Cpn 1= {feS’(]R)

"f,9€Cm;  Di(f,g) = 2medk.

Yukawa interactions are short-ranged when m is large. When m = 0 one recovers the long-ranged
Coulomb interaction. We therefore denote the Coulomb space C by Cp in the sequel.
Consider an (x, y)-translation invariant slice-like defect v, typically a sharp trench

v =—pol [—w/2,w/2] (Z)

The associated renormalized free energy per unit area is defined as, similarly to (1.38):

Eum(Q) = Tr (T~ er) Q) + 3 Dunlpg — v, pg ).

Introduce also the (possibly empty) space F, := {Q eK|pg—vel } for Coulomb interactions. We
first prove that a 3D Fermi sea with extended defects with the Yukawa (resp.) Coulomb interactions admits
minimizers, and that all the minimizers share the same density.
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Theorem 1.3 (Existence of minimizers for Yukawa and Coulomb interactions [Chapter 2, Theorem 2.6]).

(1) Yukawa interaction: for any v € H~1(R), the minimization problem

Ly = inf{&,m(Q),Q € K} (1.47)

has a minimizer Q),,, and all the minimizers share the same density p,, m,.

(2) Coulomb interaction: for any v € L'(R) such that | - |v(-) € L'(R), the set F,, is non-empty, the mini-
mization problem

10 = inf{€,0(Q),Q € F,} (1.48)

has a minimizer Q),.0, and all the minimizers share the same density p,,¢.

From theoretical and numerical points of view, it is natural to investigate whether one recovers the
ground state with Coulomb interactions when the Yukawa parameter m tends to 0, and whether the Yukawa
minimizers converge to the Coulomb minimizers in some sense. The following theorem provides an answer
to these questions.

Theorem 1.4 (Convergence of Yukawa minimizers to Coulomb minimizers [Chapter 2, Theorem 2.6]). For
anyv € H™1(R), the function (0, +o0) 3 m > I,,,, € Ry is continuous, non-increasing, and

im I,,, <I,0 and lim I,,, =0,
m—0 ’ m—+o0

with the convention that I,,o = +o0 if F,, is empty. Whenv € L'(R) and | - |v(-) € L}(R),

lim Iym = 1p0-

m;}o ) I
Moreover, if v € LY(R) and | - |v(-) € LY(R), there exists a sequence (my)gen of positive real numbers
decreasing to zero, and a sequence (Qy,m, ) ken of elements of IC such that, for eachk € N, Q, 1, is a minimizer
of (1.47) form = my, converging to a minimizer (), o of (1.48) in the following sense:

UQum, u-t ey Q0 Uu-! for the weak-x topology ofLOO(RQ; S(L2 (R))); (1.49)
UIT = ep|V2Qun, U E22UNT — eV2Quold ™" weakly in L*(R%; So(LA(R))). (1.50)

In the Yukawa case (m > 0), we are able to characterize the minimizers of (1.47) analogously to (1.40).

Theorem 1.5 (Characterization of the minimizer for Yukawa interaction [Chapter 2, Theorem 2.8]). Letv €
H~Y(R) and m > 0. The minimizer Q,,,,, of problem (1.47) is unique and is the unique solution in K to the
self-consistent equations:

Yv,m = ]]‘(—OO,EF](T + VV,m)a

vva = * (pQu,m - V)7 (151)

The proof of the above theorem is rather technical because of the metallic nature of the system, and we
were not able to provide similar results in the Coulomb case, mainly due to the 1D Coulomb interactions
giving rise to the mean-field potential Vo, = | - | * (pg, , — v) that may diverge. This leads to some
technical issues which prevent to defining a suitable mean—field Hamiltonian. Moreover, although Yukawa
minimizers can be completely characterized by Theorem 1.5, we were not able to show that Coulomb
minimizers a self—consistent equation similar to (1.51).
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1.4 Junction of quasi 1D systems with Coulomb interactions

Atomic junctions of quasi 1D systems appear for instance when studying the surface states of one-dimensional
(1D) crystals [Aer60, Sho39], quantum thermal transport in nanostructures [WWL08], and p-n junctions
[BCYJH14, PFM14] which are key building blocks of modern semiconductor electronic devices. Besides,
electronic transport in carbon nanotubes [LKS™ 15] and in molecular wires [NR03], which recently attracted
alot of interest, is often modeled by the junction of two semi-infinite systems with different chemical poten-
tials. In recent years, studies of various quantum Hall effects and topological insulators focussed attention
on 2D materials, see [HK10] and references therein. These 2D materials often possess periodicity in one
dimension and can therefore be reduced to quasi 1D materials by momentum representation in the pe-
riodic direction [Hat93]. Furthermore, when studying edge states properties (see [Hat93, ASBVB13] and
references therein) of 2D materials, these 2D materials can be seen as a junction with the vacuum: vacuum
occupies one half of the 2D space, and the other half is occupied by a semi-infinite 2D material. The edge
of the 2D materials is the junction surface between the vacuum and the 2D material, hence the edges states
can be considered as states propagating alongside this junction surface.

The most prominent feature of quasi 1D materials (see Fig 1.5 for an illustration) is the presence of
strong electron-electron interactions due to low screening effects [Brul0, Brul4] as electrons interact
through the 3D space. For finite systems one can use an N-body Schrédinger model presented in Sec-
tion 1.1.1 to describe electron-electron interactions. Nevertheless this is impossible for infinite systems.
Mean-field approximations are good candidates to model infinite periodic systems as mentionned in Sec-
tion 1.2. However, mean—field models are rarely available for quasi 1D periodic systems, as periodic systems
are often considered either in the 3D space as in Section 1.2.2 (see also [LIE, CBL98] for Thomas—Fermi type
models and [CLBLO01] for Hartree-Fock type models), or in a strictly 1D geometry (see [BLB02] for Thomas-
Fermi type models). The ground state of a 1D periodic system with interactions through the 3D space has
been examined within a Thomas—Fermi type model [BLB00] for polymers. It is worth mentioning that for
systems which are periodic in one direction, the ground state problem of periodic (in one direction) defects
in the Schrodinger—Poisson model (rHF with positive temperature) has been treated in [Nie93a, Appendix]
through a variational approach. Furthermore, a junction system is a priori a non-periodic infinite system.
This gives rise to many mathematical challenges such as the definition of the ground state energy [BLBL03]
and the justification of the model by a thermodynamic limit [HLS09b, HLS09c].

In this section we briefly describe the results obtained in [Cao19], which discusses mean—field stability
of junctions of quasi 1D systems with Coulomb interactions. We start by introducing a rHF description for
a periodic quasi 1D systems, in the same spirit as for the 3D periodic systems discussed in Section 1.2.2.
We next introduce a junction model within the rHF framework and discuss the existence of a ground state
for a junction system.

1.4.1 Mathematical models of quasi 1D systems
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Figure 1.5: An example of nuclei configuration of a quasi 1D periodic system.

Consider a quasi 1D periodic system described by nuclei arranged periodically alongside the z-axis (see
Fig. 1.5), with electrons occupying the 3D space. Its unit cell is denoted by I' := [~1/2,1/2) x R?. We
denote elements of R? by & = (z,7) where r = (y, 2) representing the other two directions. Assume
that the periodic nuclear density is a smooth function jipe; Which is Z-translation invariant only in the
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x-direction. We introduce a mixed Fourier transform .# consisting of a Fourier series transform in the
x-direction and an integral Fourier transform in the r-direction. The operator .# is an isometry from
L2, . (T), the space of L, (R?) functions that are Z-periodic in the 2-direction and square integrable in

r-directions, to £? (Z, L?(R?)) in the following sense:

Vf,geLperx for xz,r dwdr—ZJ F f(n, k)Fg(n, k) dk. (1.52)

nez

In analogy to (1.29), we introduce the space of density matrices with finite kinetic energy per unit volume
for the periodic quasi 1D systems

; per,z * = {7 € S(LQ(R?))) ‘ 0< v < 1: Vk € Z, TI?’Y = 77_1?7 f Irl? = (\/1 Aff}/f \/1 Af) dé < OO} ’
[ per,x
as well as the Coulomb Space

Cr:= {fE perm ) |Vn€Z,ﬂ(f)(n,~)EL%OC(R2),DF(f,f) < +OO}7

where

fg _47.‘.Ef ﬂ( )(nvk)dk

2 2n2
e |k7] + 47m2n

is the Coulomb energy associated with densities f, g interacting in the 3D space. The rHF energy functional
for this Z-periodic quasi 1D system associated with a trial density matrix - can be defined, in the same spirit
as for (1.30), as

1 1 1
5per,w(7) = ’ - TrLgerw(I‘) <_2A€’7§> d§ + §DF (p’Y — Mpers Py — Mper) :

F

Denote by
Fr = {7 € Pperz | py — Hper €Cr }

the space of states with finite kinetic energy per unit cell and finite Coulomb interaction energy per unit
cell. The ground state of the quasi 1D system is given by

Iper = inf {Epera(y) |y € Fr }. (1.53)
The following theorem ensures the existence of the rHF ground state for this quasi 1D periodic system.

Theorem 1.6 (Existence of a periodic rHF ground state. [Chapter 3, Theorem 3.6]). The minimization prob-
lem (1.53) admits a minimizer Yper with density p .. belonging to Licr »(T) for 1 < p < 3. Besides, all the
minimizers share the same density.

Remark that the above theorem is different from the results in [CLBL01, CDL08a] as the system is
periodic only in the x-direction, so that the unit cell I" is unbounded. Additional compactness estimates
are therefore needed when dealing with the ground state problem. With an additional mild summability
condition

j 17| pryper (T, 7) d d < +00 (1.54)
r

on the unique density of minimizers, we can prove that the system is characterized by a mean—field Hamil-

tonian )
5 A + Vpcr,sym )

where Vpersym such that —AVjer gym = 47 (p%er — uper) is a mean-field potential tending to 0 in the
r-direction. The reason why we require (1.54) is discussed in Remark 3.9 in Chapter 3. The main purpose is

Hpor = -
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Figure 1.6: The spectrum of Hp,; ¢ and the band structure of Hpe;.

to define the mean-field potential V,er sym and obtain some decay estimates of Vjer sym in the r-direction,
given that the Green’s kernel has log-growth in the r-direction.

We also obtain in [Theorem 3.7, Chapter 3] that there exists Ny € N* (which can be finite or infinite),
and a sequence {An (&) }¢eers 1<n<n,, Such that

Oess (Hper,ﬁ) = [07 —I—OO), Odisc (Hper,é) = U )\n (5) = [—vaer,symHLooyo)-

Moreover, the following spectral decomposition holds (see Fig. 1.6):

g (Hper) = Oess (Hper) = U G(Hper,f)a U O'disc(Hper,g) S Oac (Hper) .
el* fel*

In particular, [0, +00) C Oess(Hper). The following theorem guarantees that the Fermi level of the quasi
1D system at its ground state is always negative under assumption (1.54).

Theorem 1.7 (Characterization of the ground state, [Chapter 3, Theorem 3.7]). Suppose that the summa-
bility condition (1.54) holds. Then

(1) (The Fermi level is always negative) The energy level counting function

Ny
1 1
F(K) CRe |F*‘ r# T‘I‘L%)er,ac(r) (]1(_®,H] (Hper,f)) d§ = ﬁ T;l J;"* 1 ()\n(é.) < K’) df

is continuous and non-decreasing on (—0, 0]. The following inequality always holds:

Ny = F(O) = f Uper,sym,
r

which means that there are always enough negative energy levels for the electrons. Moreover, there exists
a real number e < 0 called Fermi level (chemical potential) such that F'(ep) = SF Hper,sym = Z, which
represents the highest occupied electronic energy level.

(2) (The unique minimizer is a spectral projector) The minimizer of problem (3.17) is unique and satisfies the
following self-consistent equation:

_ d§
Yper = ]]'(7@,61:‘] (Hper) ="' <J;* Vper,¢ 277) Az, Vper,£ ‘= ]1(700,61?](Hp61'7£)‘ (1.55)
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Figure 1.7: Nuclei configuration of the junction with period az, on (—0,0] x R? and ar on (0, +0) x R2.

1.4.2 Junction of quasi 1D systems.

In this section we describe the junction of two quasi 1D periodic systems with periods ar,ar > 0 such
that a;, # ap, and total charges of the nuclei per unit cell Z;, Zr € N\{0}. We assume that the nuclear
densities are described by

:U“per,L(:C?,r) = Z ZL mL(x —arn, T)? Mper,R(xalr) = Z ZR mR($ - CLRTL,’I’),
nez nez

where m (z,7)and mg(z, r) are non-negative C° functions with supports respectively in 'y, := [—%, %) x
R2andT'p := [—SE,%2) x R2, and such that Sgamr = land {psmp = 1.

In order to describe the junction of quasi 1D systems, more specifically to guarantee that the Coulomb
energy generated by the perturbative state is finite, more assumptions on the integrability of the mean-
field potential in the r-direction are needed. We refer to the discussion preceding Lemma 3.10 in Chapter 3
for further details. A sufficient assumption is to require certain radial symmetry on the nuclear densities
tper,r, and fiper g of two different quasi 1D periodic systems. More precisely, we assume that there exist

Msym, L, Msym,R € CZ(R) such that

ar/2 aR/2
Vr e R?, f B mr(z, ) dr = mgym 1(|7]), f , mp(x,r)dx = Meym r(|7]). (1.56)
—ay, —aRr

The junction system is described by considering the following nuclear configuration (see Fig. 1.7):

g = Lo<o * fper,r. + La=0 - pper,r + 0,

where v is a local term around the origin describing how the nuclear configuration of the junction is ini-
tiated. We aim at establishing a quasi-particle description of this infinitely extended junction system with
Coulomb interactions and show the existence of a ground state. As we do not assume any commensurability
of the periods of the two quasi 1D systems, the junction system does not possess any translation-invariant
symmetry. The main idea is to establish a well-suited reference system based on the linear combination
of periodic systems, and use perturbative techniques described in Section 1.3.1 to justify the construction.
More precisely, for € R3, let us consider a set of smooth cut-off functions approximating 1 ,<q:
ar,

X = {XECZ(Rg)’Oéxél; x(x)=1lifxe (—oo,—?] x R%

X(x) =0ifz e [%R +oo) y Rg}‘ (1.57)

Fixing a function y belonging to &X', we define a reference Hamiltonian and a reference state as

Hx = XHper,LX +v1— XQHper,R\/ 1-— X27 Tx = ]]‘(—CD,EF)(HX)7

where Hp,e; 1, and Hp,e, g are the mean-field Hamiltonians of the quasi 1D periodic systems. The following
result shows that the definition of this reference state makes sense.

Proposition 1.8 ([Propositions 3.11 and 3.12, Chapter 3 ]). Under the symmetry assumption (1.56) on the
nuclear density,
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(1) (Spectral properties of the reference state H, ) The essential spectrum of H, satisfies

Uess<Hx) = Oess (Hper,L> U Oess (Hper,R) .

In particular, [0, +00) C ess(Hy) and oess(Hy) does not depend on the choice of the cut-off function
X € X defined in (1.57).

(2) (Exponential decay of the density difference) If € is in the gap of H,, the spectral projector 7y, is locally
trace class, and its density p, is well defined in L] _(R?). Moreover,

Xpper.s + (1= x*)pper.r — px € LP(R?) for 1 < p <2,

Furthermore, denote by w, the characteristic function of the unit cube centered at a € R3. There exist
positive constants C and t such that for all

a = (ag,0,0) € R®, with either supp(wy) < (—0,ar,/2] x R? or supp(wa) < [ar/2, +0) x R?,

it holds

JRS [wa (3 pper.s. + (1= X*)pper.r — py) wa| < Ce™"1o.

The first result implies that the essential spectrum of the reference Hamiltonian is independent of the
cut-off function x. In particular, the linear junction preserves the scattering channels of the underlying
systems, since the purely absolutely continuous spectrum of Hamiltonian has not been modified. The
junction can be then used to study the electronic conductance with the Landauer-Biittiker formalism (see
for example [BJLP15, BJLP16a, BJLP16b] as well as the discussion following Proposition 3.11 in Chapter 3).
The proof of the first result relies on an explicit construction of Weyl sequences associated with H,. The
second result implies that the electronic density of the reference state v, is exponential close to linear
combinations of the original underlying densities. The proof of the results relies on Combes—-Thomas
estimates [CT73, Theorem 1].

The quasi-particle description of the nonlinear junction state can be constructed by considering

YJ :'VXJFQxa

where (), is a trial density matrix which encodes the nonlinear effects of the junction system. We asso-
ciate (), with some minimization problem and obtain a similar self-consistent equation [Proposition 3.15,
Chapter 3] similar to (1.40). Denote by @X one of the minimizers. We show that the ground state of the
junction system with Coulomb interactions exists and that its density is independent of the choice of the
reference state.

Theorem 1.9 (Independence of the choice of reference states [Theorem 3.17, Chapter 3].). Under the sym-
metry assumption (1.56) on the nuclear density, the density of the junction system p~, = p, + Pg, is unique
and is independent of x € X.

Extension to 2D materials. We briefly discuss the possible extension of the framework considered here
to 2D materials in Section 3.3.5. We show that same techniques can be applied to treat the junctions of 2D
materials, basically by combining the techniques used in [CCS18] and [Cao19]. This work is not finished.
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1.5 Lattice dynamics in an adiabatic Born-Oppenheimer approximation

The previous sections discussed the ground-state electronic structures of materials, when the nuclear con-
figurations are assumed to be fixed. In this section we focus on mathematical modeling of nuclear dynamics
from first-principle, and describe our framework as well as results obtained at this stage for an on-going
work on adiabatic Born—Oppenheimer approximation (ABO) [BO27, PLC07] of nuclear dynamics in Chap-
ter 4.

In this approximation, the dynamics of nuclei and electrons are decoupled. Furthermore, one assumes
that electrons move instantaneously to their ground state when nuclei move. Electrons together with nu-
clei generate a Coulomb potential, which drives nuclear dynamics. Therefore nuclei obey an autonomous
classical Hamiltonian dynamics on a potential energy surface obtained by electronic ground-state calcula-
tions. As discussed in Section 1.1, the electronic ground state problem itself needs to be approximated when
the number of electrons becomes large. We choose in this work the rHF approximation of the electronic
ground states introduced in Section 1.1.2.

One of our main motivations is to study the nonlinear collective excitations of nuclei (phonon modes)
in a crystal. However rHF ground states associated with generic ¢*°(R)-nuclear displacements with re-
spect to the periodic configuration (where R is the crystal lattice) are unknown. By relying on results
from [CDL08a, CE11] for the rHF ground states of crystals with local defects, we instead focus on the fully
nonlinear rHF Born-Oppenheimer dynamics of nuclei in the neighborhood of an equilibrium periodic con-
figuration of a crystal. We define a Hilbert space H of admissible nuclear displacements which is densely
embedded in #2(R), and also introduce an infinite-dimensional Hamiltonian from # x ¢?(R) to R describ-
ing the dynamics of nuclei. Our result is that for small initial data, the Cauchy problem associated with
this Hamiltonian dynamics is well posed for short times. The existence and uniqueness for arbitrary initial
data in H x £2('R), and/or for long time requires a perturbation analysis of the rHF model when the Fermi
level is occupied. This will be addressed in future work. The result presented in Chapter 4 will be part of
an article in preparation [CCS19].






CHAPTER 2

EXTENDED DEFECTS IN A FERMI SEA

This chapter describes results obtained in [CCS18].

Abstract. Studying the electronic structure of defects in materials is an important subject in condensed
matter physics. From a mathematical point of view, nonlinear mean-field models of localized defects in in-
sulators are well understood. We present here a mean-field model to study a particular instance of extended
defects in metals. These extended defects typically correspond to taking out a slab of finite width in the
three-dimensional homogeneous electron gas. We work in the framework of the reduced Hartree-Fock
model with either Yukawa or Coulomb interactions. Using techniques developed in [FLLS11, FLLS13] to
study local perturbations of the free-electron gas, we show that our model admits minimizers, and that
Yukawa ground state energies and density matrices converge to ground state Coulomb energies and den-
sity matrices as the Yukawa parameter tends to zero. These minimizers are unique for Yukawa interactions,
and are characterized by a self-consistent equation. We moreover present numerical simulations where we
observe Friedel oscillations in the total electronic density.
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2.1 Introduction

In Section 2.2, we introduce a reduced Hartree-Fock model amenable to describe an extended two-dimensional
defect in the three-dimensional Fermi sea, under the assumption that the defect is translation invariant in
the (z, y)-directions. After introducing the functional setting in Section 2.2.1, we define renormalized free
kinetic and potential energy functionals for an (x, y)-translation invariant defect in Section 2.2.2. In Sec-
tion 2.2.3, we use these elementary bricks to define reduced Hartree-Fock (rHF) energy functionals for
(x, y)-translation invariant defects, both for Coulomb and Yukawa interactions, and prove the existence of
a ground state. We also show that the Yukawa ground states converge to the Coulomb ground states when
the characteristic length of the Yukawa interaction goes to infinity, and uniquely characterize the minimiz-
ers for Yukawa interactions. The proof of the results presented in Section 2.2 can be read in Section 2.3.
Finally, results of numerical simulations are reported in Section 2.4 for a model capacitor.

2.2 Construction of the model

Elements of R? are denoted by r = (r, z), where 7 = (x,y) € R? and z € R.

2.2.1 Functional setting

In Section 2.2.1, we introduce a natural decomposition of (x, y)-translation invariant operators based on
partial Fourier transform. In Section 2.2.1, we apply it to the special case of (z, y)-translation invariant
one-body density matrices.

Decomposition of (x,y)-translation invariant operators

For r = (z,y) € R?, we denote by 7, the translation operator acting on L% _(R?) as

Vue L (R®), (ru)(,2) =u(-—7,2) foraa zeR.

An operator A on L?(R3) is called (z,y)-translation invariant if it commutes with 7, for all » € R?. In
order to decompose (, )-translation invariant operators on L?(R?), we introduce the constant fiber direct
integral [RS78, Section XIIL.16]

D
L* (R*} L*(R)) = f L*(R)dq
R2
with base R?, and the unitary operator & : L?(R®) — L?(R?; L?(R)) defined on the dense subspace
S (R3) of L2(R3) by

(UD),(2) : e 9D (r, 2) dr. (2.1)

- % R2
The unitary U/ is simply the partial Fourier transform along the = and y directions. It has the property that
(x,7)-translation invariant operators on L?(R3) are decomposed by U: for any A € L(L?*(R?)) such that
7.A = Ar,, there exists A, € L*(R?; £L(L?(R))) such that for all u € L?(R3),

(U(Au)), = Ay(Uu), foraa.qe RZ

Hence we use the following notation for the decomposition of (z, y)-translation invariant operator A

A:u1< @Ad)u
R2 qq .
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In addition, [|Al|zr2gs)) = |14 L(L2(R)) | 1 (r2) Note that, formally, the kernel of A is related to the

kernels of the operators A, by the formula:

A(r,z;r',z/) = (271r)2 . Aq(z,z')eiq“*rl) dq.
R

In particular, if A is positive and locally trace-class, then for almost all ¢ € R?, A, is locally trace-class. The
densities of these operators are functions of the variable z only, and are related by the formula

1
pa2) = gz | o)

Likewise, if A is a (not necessarily bounded) self-adjoint operator such that 7, (4 +1i)~! = (4 + i)~ 17, for
all 7 € R?, then A is decomposed by U (see [RS78, Theorem XIIL.84 and XIIL.85]). In particular, the kinetic
energy operator 7' = —%A on L?(R3) is decomposed by I/ as follows:

Ld* gl

D
T=1U" T, d ith T, = ———— + 4 2.2
u (JR2 ¢ q> u Wi a 2 dz? + 2 (2.2)

One-body density matrices

In Hartree-Fock and Kohn-Sham models, electronic states are described by one-body density matrices (see
e.g. [Col63, CDL08a, FLLS13]). Recall that for a finite system with [V electrons, a density matrix is a trace-
class self-adjoint operator v € S(L?(R3)) n &1(L?(R?)) satisfying the Pauli principle 0 < v < 1 and
the normalization condition Tr(y) = {zs py = N. The kinetic energy of  is given by Tr(—3A7) :=
+Tr(|V|y|V|) (see [CLBLO1, CDLO8a]).

Let us from now on focus on the reduced Hartree-Fock(rHF) model, i.e. the Hartree-Fock model without
exchange terms. In this case, the ground state density matrix of a homogeneous electron gas with density
po can be uniquely defined by a thermodynamic limit argument (relying on the strict convexity of the rHF
model with respect to the density). It is given by

Y0 = ]l(—oo,eF] (T) ) (2.3)
with the Fermi level
er = = (6m%pg)?3,

which is the chemical potential of the electrons. The calculations of expressions of pg 4 and py can be read
in Appendix, Section 2.5.2. Although vy is not trace-class, it is locally trace-class and its density is pg by
construction. The operator vy can be seen as the rHF ground-state density matrix of an infinite, locally
neutral system, whose nuclear distribution is a jellium of uniform density p2,,. = po.

Since T is decomposed by U, so is vy, and we have

@D
Y = L{—l <J . Y0,q dq) U, (2.4)
R

where {70,4},cr2 are orthogonal projectors acting on L?(R):

o = L op,ep] (Ty) ifq € Bey,
e 0 if g € RA\B,,.

Here and in the sequel, ‘Bp := {q e R? ‘@ < R} and B := {q e R? ’@ < R} respectively denote
the open and closed balls of R? of radius v/2R centered at the origin.
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If we consider an (z, y)-translation invariant perturbation ppue = pO, + v of the nuclear distribution,
and keep the Fermi level er > 0 fixed, we expect the perturbed ground state density matrix v, = vo + @
to be (z, y)-translation invariant as well, and therefore the operators 7, and @, to be decomposed by U:

@ @
T = uil <fR2 VYv,q dQ> U and QV = uil <JR2 qu dg) U.

We will see that @, can be characterized as the unique minimizer of a variational problem consisting in
minimizing some renormalized free energy functional.

2.2.2 Renormalized free energy functionals

Defects that are (x, y)-translation invariant are extended (non-local) defects, and therefore, do not fall into
the frameworks of [FLLS13, LS15] (nor a fortiori of [CDL08a] since the homogeneous electron gas is a
metal). However, the approach consisting in characterizing the ground states as the minimizers of some
renormalized free energy functional can still be used.

In Section 2.2.2, we define a renormalized kinetic free energy per unit area adapted to (z, y)-translation
invariant perturbations of the homogeneous electron gas. In Section 2.2.2, we focus on the potential energy
contributions, and define renormalized energies per unit area for (x, y)-translation invariant systems, both
for Yukawa and Coulomb interactions.

Renormalized kinetic free energy functional

Let us start with a formal (non-rigorous) argument. The kinetic energy densities of the operator vy and of
an operator of the form v = 79 + ) can be defined as

by (r) := PT1/2~)T1/2 (r),
ty(r) = pT1/27T1/2(r) =ty (r) +to(r) with tq(r) = Pri/2QT1/2 (r).

By (z, y)-translation invariance, the functions 14y, ty and t are in fact functions of the transverse variable 2
only. Fixing the Fermi level e > 0, we can therefore define a renormalized kinetic free energy per unit

L@ i= ([ 1tz = o [ p0ra:) = ([ @1z = en [ pu(e)az)

_ f (to(2) — erpo(2)) dz.
R

Decomposing by U and using the fact that v 4 is an orthogonal projector commuting with 7; and such
that

(Tq - EF)WO,q = *|Tq - 6F|70,qa (Tq —er)(1— VO,q) = ‘Tq —ep|(1— VO,q)a

we obtain

Iren(Q) = (,OT1/2QT1/2 (I‘) — EFpQ(Z)) dz

o s (o) — o) o a:

! <Tr(qu/2Qqqu/2) - eFTr(Qq)> dg

= * ® ?

R

|

N
—
g
— 3

Il
o
— 3
= > = > = 4

Tr ((Tq - 6F)Qq) dq

2

Tr [(Tg — €r) (0,4 + (1 — 70,¢))Qql dg

2

T (1T = enl (@5 = Q)T — enl?) da, (25)

2

—
[N}
—
N—

2

(27)?
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where
Q;Jr = (1=0,)Qq(1 —70,4) =0 and qui 1= 70,¢@q70,q < 0.

It follows that the integrand in the right-hand side of (2.5) is non-negative. We also observe that
0<YW+Q<1 < (—e<Q,<1- ae) < (Q2<QIT-Q,; ae)
< 70 S V0,0 S &g S 70,9 a = ¥y q ’

so that

fRz H‘Tq - €F|1/2Qq‘;2(L2(R)) dq = JRQ Tr (]Tq — fF\l/QQg\Tq _ 6F!1/2> dg

N

f[m Tr <|Tq - €F|1/2(Q;+ - Qq__)|Tq - 6F|1/2> dq.

Reasoning as in [FLLS13, LS15], the above formal manipulations lead us to introduce

« the functional space

X, = {Qq € SWE) [T, — er2Q « Sx(L2(R)),
T, — en| QT — x| € 61(12(R)) |

which, equipped with the norm

1Qallx, = 1@l ez + Hm ~ 20,

©2(L2(R))
+ Z H‘Tq - 6F|1/2Q3a’Tq - €F|1/2 )
ae{+,—} &1 (L2(R))
is a Banach space;
« the convex set I := {Qq e X, ’ — Y04 < Q¢ <1— yqu};
« the linear form
1 _
Tr (T —er) Q) = )2 JRQ Tr (!Tq —er"2(QF T = Q)T - GF’1/2> dq, (2.6)

which is well-defined with values in [0, +c0] whenever R? 5 ¢ — @, € S(L?(R)) is measurable
with @, € Ky for almost all g € R2.

Definition 2.1. (Density matrices with finite renormalized kinetic free energy per unit area) An (x,vy)-
translation invariant density matrix

T=7+Q

has a finite renormalized kinetic free energy per unit area if () € KC, where

®
K:= {Q:u—l (fRZquq>u

QqeKqae,Tr (T —ep)Q) < o} .

q— Qg€ L” (R S(L*(R))),

2.7)

It is not obvious a priorithat operators in K, which are not trace-class, nor even compact, have densities.
However, it is in fact possible to define the density pg of any state () € K, which will be useful to define
renormalized rHF free energy functionals involving Yukawa or Coulomb interactions (see Section 2.2.3).
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Proposition 2.2. (Densities of operators in K) Any Q € K is locally trace-class, its density p¢ is a function
of the variable z only, and pg € LP(R) + L*(R) forany1 < p < 5/3.
In addition, forall1 < p < 5/3 and all ¢ > 0, there exists two positive constants 1c,_, N ¢+ such that

VQeK, e-lpg 1Tam) + et 105 om < T (T —er)Q), (2.8)

where pg = pa_ + pz;r with
e 1f dge L*(R), and p3" := ! f dg € LP(R)
Pg - 2m)? Jg PQq ) Pq - (27)2 BB 1o PQq :

B€F+C

The proof of this result is based on Lieb-Thirring type inequalities and can be read in Section 2.3.1.

Coulomb and Yukawa energy functionals

The extended defect being (z, y)-translation invariant, the renormalized total charge density

p::pﬁ’OJrQ*(p?lchrl/) =pQ —V
is a function of the variable z only. The Coulomb potential generated by this density is therefore obtained
by solving the 1D Poisson equation _UZ,O = 2p, which also reads in Fourier representation |k|?, (k) =
2p(k). Formally, the Coulomb energy of p per unit area is thus given by

[ ma o [ IR
| eterepoler iz = [ BTt 2 | EE an

This motivates the following definition of the 1D Coulomb space

Com {p e #(R)

o(k
pe LL(R), ﬂ(,{) e I’(R) } , (29)

endowed with the inner product

01 (k) pa(k
D(p1,p2) := QJR %dk- (2.10)

Let us prove that C is a Hilbert space. It suffices to prove that C is complete. Consider to this end a

Cauchy sequence {uy,},>1 in C. By definition, the sequence {a"Lk(‘k)} ) is a Cauchy sequence in L?(R).
nz

Denote by w € L?(R) its limit and define f(k) := ‘fﬁéf? e L%(R). Note that f € L%(R). Intro-

duce next u = (1 — A)f € H2(R) c S'(R). By the stability of Fourier transform in &'(R), it holds

= (1+]k]*)f = |klw € S'(R). Therefore {a’llk(f)} | converges in L2(R) to w(k) = % Since
nz

uwe S'(R),and 4 = |- |w € L{ (R), we can conclude that u € C and that |Ju — tpl|e — 0, which proves
the completeness of C.

The quantity $D(p, p) € [0, +0] represents the Coulomb energy per unit area of the (z, y)-translation
invariant renormalized charge density p.

Remark 2.3. Note that charge densities in C are neutral in some weak sense. In particular, ifp € C (| L' (R),
P~ 2
then (5 p = (2m)25(0) = 0 since the function k — ‘p‘(kk‘%l has to be integrable in the vicinity of 0.

Likewise, the Yukawa potential of parameter m > 0 generated by the renormalized charge density p of
the extended defect is obtained by solving the 1D Yukawa equation _U,/o/,m +m?v,m = 2p, and its Yukawa
energy per unit area is formally given by

(k)[?
———dk.
R |k[? +m?
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This leads us to introduce the Yukawa space of parameter m

Cop = {p e 7' (R)

pe i ®),— 282 } , (2.11)

I+

endowed with the inner product

Dy, (p1,p2) =2 | ——5—> dk.
Dn(p1 p2) JR |k[? + m?

We will use in the sequel the consistent notation Dy := D for Coulomb interactions.

(2.12)

Remark 2.4. For any m > 0, the Yukawa space Cy, actually coincides with the Sobolev space H ' (R) and
the norms |- || -1 and Dy, (-, -)'/? are equivalent. However we will consider in the following m as a parameter
and will pass to limit m — 0 to make a connection with the Coulomb interaction. We therefore prefer to keep

the notation Cy,.

Remark 2.5. For any 1 < p < 5/3, we have LP(R) + L?(R) — H~Y(R). It therefore follows from
Proposition 2.2 that the density associated to any Q € K has a finite renormalized Yukawa energy per unit
area. On the other hand, its renormalized Coulomb energy of can be either finite or infinite.

2.2.3 Formulation and mathematical properties of the model

We now consider an (z, y)-translation invariant nuclear defect v, typically a sharp trench

v= _pguc]l [—a,a] (Z)

for some a > 0, where 1|_, 4 : R — R is the characteristic function of the range [—a, a]. Mollified
versions of this indicator function can also be considered.

Based on the content of Section 2.2.2, we can define the renormalized free energy per unit area associ-
ated with a trial density matrix v = v9 + @ by

Euml(@) = T (T = ) Q) + 5Dl — vop0 — ), 19)

where the renormalized kinetic free energy per unit area is given by (2.6), and when the Yukawa (m > 0)
or Coulomb (m = 0) potential energy functional per unit area is given by (2.12). For any () € K, the right-
hand side of (2.13) is the sum of two non-negative terms. The former is always finite. The latter is always
finite for Yukawa interactions as soon as v € H~!(R), but can a priori be infinite for Coulomb interactions.
For this reason, we introduce the (possibly empty) set

F,={QeK | pg—vecl}.
We can then state the following result.
Theorem 2.6 (Existence of minimizers).

(1) Yukawa interaction: for any v € H~'(R), the minimization problem

Iu,m = inf{gu,m(@)a Q € IC} (2‘14)

has a minimizer Q),,, and all the minimizers share the same density p,, m,.

(2) Coulomb interaction: for any v € L'(R) such that | - |v(-) € L'(R), the set F,, is non-empty, the mini-
mization problem

1,0 = inf{&,0(Q),Q € F.} (2.15)

has a minimizer (),.0, and all the minimizers share the same density p,,o.
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(3) Foranyv € H™1(R), the function (0, +00) 3 m +> I, € R, is continuous, non-increasing,

lim I,,, <1I,0 and lim I,,, =0,
m—0 ’ ’ m—+w

with the convention that I,y = +o0 if F,, is empty. Whenv € L'(R) and | - |v(-) € L}(R),

lim I, = Ip0.
m—0 ) i

Moreover, ifv € L'(R) and | - |v(-) € L*(R), there exists a sequence (my)ren of positive real numbers
decreasing to zero, and a sequence (Qy.m, )ken of elements of IC such that, for each k € N, Q,m, is a
minimizer of (2.14) for m = my, converging to a minimizer (), o of (2.15) in the following sense:

UQym, U > UQu UL for the weak-+ topology of L™ (R?; S(L*(R))); (2.16)
—0
UIT — ep|Y2Qum, U™! o UIT - er|2QuoU™  weakly in L*(R?; Sy (L2 (R))).  (2.17)
—00

The proof of Theorem 2.6 can be read in Section 2.3.4.

Remark 2.7. The convergence of (2.16) can be stated as follows: for any operator-valued function q — U, €
L' (R%; 61(L*(R))),
- Trrew) (Uq (Qu,mk)q) dq o s Trreg) (Uq (Qu,o)q> dg.

Similarly, the convergence of (2.17) can be stated as follows: for any operator-valued function ¢ — M, €
L? (R% &3(L*(R))),

1/2 1/2
fR2 Trpaqey (1T = erl? (Quany)y My) da o | Triagey (1T = erl” (Quo), My) da.

n—oo

where (Qum, ), and (Qv,0),, are respectively theld decompositions of Qy,m, and Qu,o.

In the Yukawa case (m > 0), we are able to characterize the minimizers of (2.14). By Theorem 2.6,
all the minimizers of the problem (2.14) share the same density p, ,, € K. In view of Proposition 2.2, the
function p,, , is in LP(R) + L*(R) for some 1 < p < 5/3, thus in H !(R) (see Remark 2.5). The Yukawa
potential

dz?

is therefore well-defined in H'(R). In particular, V,,,, is a continuous function vanishing at infinity. The
following result shows that this is sufficient to ensure the uniqueness of the ground-state density matrix
in (2.14).

d? -1 el
Vim = (— + m2> (pvm — V) = * (pum — V), (2.18)

Theorem 2.8 (Uniqueness and characterization of the minimizer for the Yukawa case). Let v € H !(R)
and m > 0. The minimizer ), of the problem (2.14) is unique and is the unique solution in KC to the
self-consistent equations:

Vl/am = * (pQV,'m - V)? (219)

The proof of Theorem 2.8 can be read in Section 2.3.5.

Remark 2.9. Proving that self-consistent equations similar to (2.19) hold for Coulomb interactions is much
more challenging. The first step would be to properly define the potential V,,o = p,o * | - |, as well as the
self-adjoint extension of the operator T’ + V,, o (see [DOV09]). The technique of proof we use in the Yukawa
case relies on the fact that the potential is bounded and in L*(R) (although it would be possible to work in
more general Lebesgue spaces). It is not obvious at all that V,, satisfies these properties.
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2.3 Proofs of the results

Unless otherwise specified, we simply write &, instead of &), (L2 (R)) in all the proofs.

2.3.1 Proof of Proposition 2.2

The proof of Proposition 2.2 is based on the following technical results, which show that the decomposed
kinetic energy of defects actually satisfies Lieb-Thirring-like inequalities [LT91]. The density associated
with the state of the defect can therefore be controlled by the kinetic energy of the defect.

For g € B,,., Lemma 2.10 (resp. 2.11) provides a lower bound of the densities of diagonal blocks (resp.
off-diagonal blocks) of operators in K. The proof of these results, obtained by the same techniques as
in [FLLS13], can be read in Section 2.3.2 (resp. Section 2.3.3).

Lemma 2.10. There exist positive constants C' diag, C2 diag Such that, for all q € %eF and Qq € Ky,

3
‘dz

+Trr2R) (qu — er[PQEE|T, - 6F!m) =1 diag fR ‘quii(Z)

+ CQ,diag 2ep — ‘q’2f ,OZqui(Z) dz.
R

(2.20)

The absolute value in the integrand of the first integral on the right-hand side is motivated by the fact
that @, ~ < 0, so that Po;~ < 0.

Lemma 2.11. There exist Cy_ € R, such that, for allq € B, and Q, € K,,
Tr oy (1T, — erl" (QF * = Q) 1Ty — erl?)

1/4 2 1/2
> Oy (2ep — |g?)" JR‘pQ;+(k)’ ‘yk\—2\/W‘ dk.

For ¢ € R*\B,,,, it holds 79, = 0 and 0 < Q4 < 1, so that Q" = Q4 and @, = 0. In particu-
lar, pg, = 0. The following estimate therefore follows from the one dimensional Lieb-Thirring inequal-
ity [LT91].

(2.21)

Lemma 2.12. There exists a positive constant C' such that, for all g € R*\'B,, and Q, € K,

2
—_ q
Trre ) <|Tq —ep|'/? Q- Q) IT, - EF]1/2) > Cpr%q(z) dz + (|2| — 6F> JR pQ,(z)dz.
(2.22)

We are now in position to prove Proposition 2.2. Fix () € K. Bounds on the densities are obtained by
separating the estimates for ¢ € R*\'B,, and g € B.,.. More precisely, defining

lq|*> — 2ep > 0 if g e RADB,,,,

9 _ (2.23)
2ep —|q|" =0 if g € Bep,

f(q) == |lq|* — 2ep| = {

the key ingredient in our proof'is the following Holder inequality, written in a generic form for real numbers
B > 1, @ > 0 and an integration domain A R2:

JR (L 1PQ, (2)] dq>5 dz < JR (L g, (2)]” £7(q) dq) <L FoBlE=0 () dQ> T (2.24)

We successively consider three situations: total density for q € B, density associated with the diagonal
blocks of () for g € B, ., and density associated with the off-diagonal blocks of () for g € B,..
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Estimates for the total density on R?\B, -. Lemma 2.12 shows that
3 |Q|2
C| po,(2)dz+ (- —er ) | po,(2)dz)dg
RA\B . R 2 R
< fsz Trrz2r) (|Tq — ep|? QT —Q; )T, - €F|1/2) dg < Tr((T — er)Q) < +o0.
€F

The above inequality implies that

1
s, ot dzdn < Gm@ =o)L | @00,z do < 20T - Q)

(2.25)

In order to obtain bounds on the density, we separate the integration domain in two pieces: large values

of |g|, and values close to {|q|> = 2¢er} where f(g) vanishes. More precisely, for a given ¢ > 0, we
decompose the integration domain as R?\B,,, = (RQ\g6 F+C) U (%6 e\ B F)
We first set A = R%\B,,. ;. in (2.24). The last integral in this inequality reads

+00
J =08/ () dg — J (laf? = 2¢) ™5 gg — 21 J P (12 — 2ep) 00D gy
A BBy e Ny

The latter integral is finite if and only if « 3/(5—1) > 1. Moreover, a Hlder inequality combined with (2.25)
implies that the following integral is finite for @ > 1:

2
3-2

J _ prq (2)£"(q) d=dg
R2\%5F+c R

1/a (a—1)/a
(J _ f f(@)pq,(2) dqu) (f - j ,OSQq(z) dqu)
R2\B, . +c JR R2\B, . +c JR

< max (2.4 ) (7 - er)Q)

N

In view of (2.24), this suggests taking 8 = 1/a and = 3 — 2/a. The condition a3/(f — 1) > 1 can
be rephrased as 1/(2a — 2) > 1. The latter inequality is satisfied for 1 < a < 3/2, which is equivalent
to 1 < B < 5/3. For the latter choice, inequality (2.24) combined with (2.25) then shows that there exists

KB,R2\§EF+C € R, such that

B
f( |- qucz)dq) 4 < Ky, T(T — er)Q) 226)
R \JR2\B, . . F

We next set A = B, ;.\B, in (2.24) and follow the same strategy as in the previous case. We still
take o = 1/a and B = 3 —2/a, but need now that a3/( — 1) < 1 in order to ensure that the last integral
in (2.24) is finite. This condition is equivalent to a > 3/2, i.e. 5/3 < 3 < 3. We therefore consider § = 2.
The inequality (2.24) combined with (2.25) then shows that there exists KRF“\@F € R, such that

2
f( [ qu<z>dq> ds < Ky g DT - er)Q). (227)
R %€F+C\%6F

Estimates for ¢ € B, diagonal blocks. We write the estimates for PQF+ only, the bounds for PO~
being similar. Lemma 2.10 shows that

1
f f o (2) dzdg < —— (T — r)Q),
B, JR a 1,diag

(2.28)

| [ rPaey @ dzdo < oo —1s(1 - ).
B, JR a

2,diag
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so that, by a Holder inequality for a > 1,

j J 31/a f1/2a()dqu

(LJ P dqu> (LJ Poy dqu>(a_1)/a (2.29)

< Ci/;a;%{;‘gﬂ(@ —er)@Q) < +oo.
We now consider (2.24) with A = B, and pq, replaced by PO+ The previous inequality suggests
choosing f = 3 — 1/a and a8 = 1/(2a). The last integral in (2.24) is finite if and only if a5/(8 — 1) < 1,
which is equivalent to 1/(4a — 2) < 1, i.e. a > 3/4 and 5/3 < 8 < 3. We therefore choose § = 2. The

inequality (2.24) combined with (2.25) then shows that there exists Kz, . € Ry such that
€F7

2
JR <J ,OQ{-]H—(Z) dq) dz < %6F7++T (T —€er)Q). (2.30)

B,

Estimates for ¢ € B, off-diagonal blocks. Define, for k € R and g € B,

ER>
1/2
glk,q) = |1kl = 2/2er — [a?| " (2er ~1af") ",

In view of Lemma 2.11 and the inequality ‘p&? (k) + p/Q;r (k)‘ = ‘29%/6;: (k:)‘ <2 ‘/%;\‘ (k) ’, it holds

f_Tr«T —er)Q). (231)

2
LaEF J]R ‘pQT(k) + pQﬁ(k)( g(k, q) dk dq <

Note that, by the change of variables ¢ = |q|/+/2¢r and w = /1 — t2,

1 2ept
G(k) := f g(k,q)"tdq = 27rf dt
P 0 ‘(QGF) 12|k| — 2,/7752‘1/2 1/4

_ 27rf V2epy/w
|(2ep) 172 [k| — 2w|"?

from which it is easy to see that G is a bounded positive function tending to 0 as |k| — c0. Define
! d
27 ) <PQ;— (2) + Po,+ (Z)> q.
°F

Using the isometry property of the Fourier transform, the Cauchy-Schwarz inequality and (2.31), we obtain
the following bound on the L? norm of PQofidiag:

onﬂdiag (Z) =

2

L (@qr_(k) +@q:(k)) dg| dk

°F

< (2;)4 U% par= () + o ()] gk a) dg

°F

2
= 4||G||Loo(R) Jo S, a0+ g ] otha) da e

2 _— 2 1
||onHdiagHL2(R) = J]R |pQ0ffdiag (k‘)‘ dk = (274 JR

)

G (k) dk

47T4C+ 1G] oo gy TI“((T —er)Q). (2.32)
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Conclusion of the proof. The estimate (2.8) finally follows from (2.26), (2.27), (2.30) and (2.32).

2.3.2 Proof of Lemma 2.10
Let us first state a useful technical result showing that finite-rank operators are dense in A; and Ky. It is a
direct adaptation of [FLLS13, Lemma 3.2].

Lemma 2.13. Fix ¢ € R? and consider Q, € X,. There exists a sequence (Qn q)n>1 < X, of finite-rank
operators such that T,Q., , € L(L*(R)), and

e Qn,g — Qg strongly (i.e, Qnqf — Qqf strongly in Lz(R) forany f € L2(R));

=0.
&1(L*(R))

Moreover, if Qg € K, the sequence (Qp q)n>1 can be chosen in IC,.

. Tim Hm, e [VAQEE — Q)T — ep|?

n—-+aoo

We can now provide the proof of Lemma 2.10, which follows the proof of [FLLS13, Lemma 3.3] and
uses in particular ideas from [Rum11]. Let 0 < v < 1 be a smooth enough self-adjoint finite-rank operator
on L?(R) (with density p,). For g € 0B, T, — e = —%j—; and (2.20) boils down to the one-dimensional
Lieb-Thirring inequality [LT91]. For ¢ € B.,., denote by p, , is the density of the finite-rank operator
Pe gy Peg where Pe g := 1(. 4o (|T; — €F|). Then, by the same manipulations as in [FLLS13],

+00
Trro(m) (|Tq - 6F|1/2’7’Tq - 6F|1/2> = Jo <fR Pe,q(2) dz> de > JR Ry(p+(2)) dz,

with
2

Rq<t>=f0fq1(t) (VE= [ fale)) de.

where (introducing a4+ = max(0, a)) the nonnegative function

_ (o)1 Ip* , laP®
fqle) = (2m) PER,I5-+ 7 —ep|<e

— (27)71 <«/26 + 2er — g2 — \/(—26 4 2ep — |q|2)+>

is increasing, hence invertible.

Let us now provide a global lower bound on the function ¢ — R,(t) by considering the asymptotic
behavior of this function in the regimes ¢ — 0 and ¢ — 4-00. We work in fact with the rescaled parameter
T = t/w, and the rescaled energy E = e/w? with w, = /2ep — [g|> > 0 (since ¢ € B,.). Note indeed
that

e

2), F(E) = %<V1+2E—\/(1—2E)+>,

Wa

wo= o) e [ (5 -vem) |

Since F(E) ~ 7 'Eas E — 0and F(E) ~ m~'\/E/2 as E — +0, a simple computation shows that

+00 2 T +00 2 272
f (x/f - «/F(E)) dE ~ =72, j (\/T - «/F(E)) dE ~ =3,
0 + T—0 6 0 + T—w 15
There exist therefore two positive constants C'1 giag, C2 diag Such that

+00 2
VT >0, J [(\/T — F(E))J dE > O1 diagT? + Co.diagT>,

0

poe) = wr

and

dE.

from which we deduce that
Vit = 0, Rq(t) = Cl,diagwqtz + Cz,diagtg.

The final result is obtained by a continuity argument and the density result of Lemma 2.13.
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2.3.3 Proof of Lemma 2.11

We follow the proofs of [FLLS13, Theorem 2.1 and Lemma 3.4]. Inequality (2.21) is trivial for ¢ € 0B,,.. Fix
q € B, and Qg € Ky. Since QF ~ = (Q, )%, it holds Po-+ + Poi— = 2Rpg-+. Tt suffices therefore to
obtain estimates for Po;+- We rely on a duality argument. Consider to thisend V € L?(R). By Holder-type

inequalities in Schatten spaces,

jRVpQ;+ = | T (yTl—ZEqMV\T 76 ,1/4|T 5 —er|'QqlTy —€F|1/4>‘
< |Ti:Z§7‘q1/4V\Tq _70;,1/4 o Ty — er[V*QqI T, — er|* .
2
< |Tq1_2127\ql/4 7, 10;|1/4 . T, — er[*1Qql"* ..
< yTi:Zg\ql/‘lV‘Tq _70:;’1/4 s, |Tq—6F|1/2Qq 627

where we used the Araki-Lieb-Thirring inequality for operators [Ara90] (as in [LT91, LS15]) to obtain the
last estimate.

2
H|Tq _6F|1/4|Qq|1/2

< H'T" —en]2Q
(P}

Since 0 < Q7 < QF* — Q, ~, it finally holds,
f Vg \/TrLz (1Ty— er[V2 (QFF — Qa ) T, — el 2).
(2.33)

Now we calculate the kernel K (z, 2’) of operator (1 — 0 4)| T, — €7| ™4V 04| T, — €x|~/*. Remark that

P)/qu V 707q
]T —ep|1/4 T, — EF]1/4

\

1_’}/0(1 ’YOq 2 f |2
: : = K(z,2")|" dxdy.
H |Tq - 6F|1/4 |Tq - 6F|1/4 Sy 2€R,z ER‘ ( )‘

We have, for f € L2(]R)
2 2
_ Mg _ 1J J 1 (Ip* + [ < 2€r) oy, o
<|T —6F|1/4f>() 21 Jla2 ., 2o Jr ‘IP\Q P ’1/4 e f(2") dz" dp.

We also have

1 — ’70,q ’70,q o ISZA
<’Tq—ep‘1/4V‘Tq—eF’1/4f - 3/2 lof? _€F+p ¢ Vis—p)

m—e +“’ =0

L (Ipl* + g < 26p) 1 (Is]* + |g)* > 2¢r)

e P £(2) ds dp dz,

’% + @ - EF’1/4 % + @ — EF‘1/4
therefore
K(z,2")
= ; 2 eisz‘?(s -p)- L (\p|2 i ’q‘Q s QEF) (‘3‘2 + ‘q’2 = 2€F) e~ P? s d
(271')3/2 \q2| €F+%<O ‘p|2 |q‘2 B /4 |q|2 1/4 p
|q2| e +§>0 + 2 €Er -5 + — €
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By consequence,

J K (z, z/)‘2 dzd?'
zeR,z’eR

1 S 2 1 (Ip|* + |q* < 2ep) 1 (|s]* + [g> = 2¢p)
=— |2 2 ‘ ( p)‘ ds dp.
2 ﬂ—eﬁ%go ‘|p|2 N FE ‘1/2 5|2 N |q\2 ‘1/2
o4 B ¢ —€
o _epys20 2 2 F F
Therefore by denoting
ds
q)q(k) = f 2 | (s=k) )
B \/(ql ) (e - - )
a2 e 2 2 2
we obtain that
1—7,4 Y0,q J
) V V @ 2.34
= w—wW4 = o Jy |V IRk b (239

In fact, denoting by wy = 4/2¢r — |q|? > 0 (since g € B,.),

B, (k) = (jq\y <fq> W(t) — 2fm 1 T dm —

2<1

The bounds (2.33) and (2.34) then lead to

JR Vogr+| <5 <f ‘V dk) Trraw) (!Tq —erP QT = Q) 1Ty - fF\m) :

From the estimates on ¥ provided by [FLLS13, Lemma 3.4] (namely ¥ (¢) ~ —log|t — 2| as ¢t — 2 and
U(t) ~ 2w/t ast — +0), there exists a positive constant R such that

V0 < wy < v2ep, VEER, 0< (k) < R1/2 :
|[k] — 2wq| ™" \/oog

(2.35)

which implies

2
pas (k)|
12 . ‘ Qq
z ,ﬁf 17 (R) 2 1kl — 2|2 dk < 27TJR B
< Trpaqe (1T — e (QF = Q) 1T, — enl?).
This gives the claimed result.

2.3.4 Proof of Theorem 2.6

We first show in Section 2.3.4 that the minimization set F,, for Coulomb interactions is not empty. We then
prove in Section 2.3.4 the existence of minimizers for Yukawa and Coulomb interactions. The uniqueness
of the densities relies on a technical result whose proof is postponed to Section 2.3.4. Finally, we show in
Section 2.3.4 that the Yukawa ground state converges to the Coulomb ground state when m — 0.

Step 1. The set F, is not empty.

We prove in this section that the set F,, = {Q € K | pg — v € C} is non-empty for all v € L!(R) such that
| - |v() € L'(R). We do so by explicitly constructing an element in JF,. We distinguish the cases £ > 0
and xk < 0, where v is the total charge per unit area of the defect:

= FOO o(2) d.

—00
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Non-negative total charge per unit area. Consider first the case when x > 0. We introduce an even
cut-off function y € C°(R) such that

0<x<1, JX2=1.
R

For a parameter 11 € (e, +0) to be specified and almost all ¢ € R?, we then define the self-adjoint operator

®
Qu=U <fR2 Qug dq) u, Qg = Liep <Tq)X2]1(€F,u] (Ty)- (2.36)
Note first that @, , = 0 when |¢|> > 2. The operator inequality 0 < T, ,)(T) < (e o+ +o0)(Ty) =
1 — 70,4 also implies that 0 < Quq = < 1 —v,4. Therefore, ¢ — Q4 € LOO( : (L2

(R)))-

Moreover, the Kato-Seiler-Simon inequality [S1m7 9, Theorem 4.1]

=2 f(=iV)glls, @) < @) Plgllo £ Lo (2.37)

shows that
|Tq - 6F’l/QQu,q|Tq - €F‘1/2 = <‘Tq - 6F|1/2]l(ep,u] (Tq)X> (X]l(ep,,u] (Tq)|Tq - 6F‘1/2> €6y (2398)

as the product of two Hilbert-Schmidt operators. We have therefore proven at this stage that ), , € Ky
for all g € R?.

In addition, since the kernel of the operator |1}, — €F|1/2]1(5F,u] (Ty)x is (2,2") ¥ gq(z — 2")x(2’) with

K+ gl

2

LRl
rl 1 >

9(2) = 5 J € (er, u]} ok

we obtain

ﬂ((T—EF Qu 2 2o TI‘Lz(]R ’T _€F| /QQMQ‘T —5F|1/2>

sz2< )

k2 2
f J <+"”—6F>dkdq<oo,
R2 Jep<la 2
which shows that @, € K.

It remains to prove that pg, —v € C. First, it easily follows from (2.36) that pg,, is smooth and compactly
supported. By computations similar to the ones used to establish (2.39), and noting that Q,,, € &1 by a
decomposition similar to (2.38),

1 V2 3/2
T = = — didg = ~= (3% — €4%) .
(@) JR Peu = (2n) JRQ £F<'q22+’“22<u 17 3 <M " )

There exists therefore a (unique) value y1(x) such that { pg, ., (2) dz = k. The latter equality is equivalent

_—

OJ

t0 pQ,,, (0) — ¥(0) = 0. Since pg,,, —Vis C ! and bounded, we can therefore conclude that the function
k— ]k\*l(m (k) — ©(k)) is in L*(R), i.e. pg, — v € C. This allows to conclude that Q) € F,, and
so F, is not empty.
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Negative total charge per unit area. We now consider the case when k < 0. We define the following
self-adjoint operator, for a parameter « € (0, +0) to be specified later on:

D
Qa:=U <JR2 Qaq dq) Ufl’ Qa,q = _O‘fYanX2707q'

It is easy to see that —y0 4 < Qa,q = @4, < 0and that Qn; = 0 when |g|> > 2¢p, so that ¢ — Qa4 €
L®(R?; S(L?(R))). Moreover, [T, — €r|"/?Qa.4 € G2 by the Kato-Seiler-Simon inequality (2.37), so that
T, — eFll/QQa,q\Tq — eF|1/2 € &;. This shows that Q, 4 € I, forall ¢ € R2. In addition, by computations
similar to the ones performed for the case k = 0,

« k2 + |q|?
Tr ((T — = — ——= ) dkd
T (( €r)Qu) (27)3 JR2 L<k2+q2<2€F (EF 5 q < 00,

so that ), € K.
It can be shown same as for the case £ > 0 that pg,, is smooth and compactly supported. Moreover,

3/2
2

pra:_O‘gJ JQ , dkdq:—MiezF,
R (27T) R2 %Jr%ée]: 3m

so that the choice a(k) = 3%26;3/ 2|/€] /+/2 ensures that { pg,, (x) = K. We can then conclude, by the same
reasoning as for the case x > 0, that pg, ., — v € C, and finally that F,, is not empty.

Step 2. Existence of ground state for Yukawa (resp. Coulomb) interactions.

We write a detailed proof for Coulomb interactions, the result for Yukawa interactions following the same
lines. We first construct a candidate minimizer ) by as the limit of some minimizing sequence for (2.14)
and next show that () is an admissible state (i.e. Q € K). We finally prove that ) is a minimizer and that
all minimizers share the same density.

Construction of a candidate minimizer. Itis easy to see that the functional &, o(Q) is well defined on
the non-empty set 7. Consider a minimizing sequence {Q,},, < F,. There exists C € R such that

Consider any exponent 1 < p < 5/3. Inequality (2.8) shows that the sequence of densities {pg,, }n>1 is
uniformly bounded in L?(R) + LP(R). Up to extraction, there exist

—_— ®7 P ~
Q- ([ Qua)u. Foe®+I®. do-vec

such that pg, — g weakly in L?(R)+LP(R) and pg, —v — pg—v weakly in C, while —yp < Q < 1—v
and Q,, = Q in the following sense:

. for any operator-valued function ¢ — U, € L* (]R2; 61),

JRQ TI"LQ(]R) (Uan’q) dq —_— 2 TI'LQ(R) (Uq@q) dq, (2.41)

n—o0

. for any operator-valued function ¢ — M, € L? (RQ; 62),

n—0o0

f Trpoay (ITy = er|QugMy) dg —— | Trpae (T, - ep2Q,M, ) dg;  (242)
R2 R2

J‘ﬁmm@M%—wW%w)@——* Trrogey (MolT, — enl'2Q,) das  (243)
R2 R2

n—a0

n—0o0

j TrL2(R) (Man7q|Tq — EF‘l/Q) dg —— TrLz(R) (Mq@q|Tq — EF’1/2> dq. (2.44)
R2 R2
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The weak-* convergence (2.41) is a consequence of the fact that the sequence {Q,}n>1 is uniformly
bounded in L*(R?; £(L?(R))), whose pre-dual is L' (R%* &;). The weak convergences (2.42) to (2.44)
are a consequence of the inequality

2
f H|Tq — | 2Quy|| da <J Trreqey (ITy — enl2(Qig — Qua)lTy — enl?) dg < €, (2.45)
R2 So R2

which shows that the sequence of operator-valued functions ¢ — |T,—ep|"?Q 4 and g — Q. 4|Ty—er|'/?

are uniformly bounded in the Hilbert space L> (RQ; 62).

The state Q belongs to K. Note first that the weak convergence of {q — T, — € F\l/ 2 Qn,q} ) to
nz
q— |T, — er|"* Q, in L%(R?; &) implies

[Jr-ora

It is therefore sufficient to show that Tr ((T —€p) @) < o in order to conclude that @ € K. Consider to
this end an orthonormal basis {¢;},.y = H'(R) of L*(R), and define, for N > 1 and R > 0, the family of
operators

2
dq.

dg < liminff H|Tq - 6F\1/2Qn,q
n—aoo R2

2
62 62

N
Mg =Ty — ep|"? (Z ¢z’><¢>i|> 9r(q),

=1

where

1 if|g* <R
9r(q) = 1
(L+1q?)
A simple computation shows that ¢ — MqJYR is in L2(R?; &5). Using (2.42) with ¢ — (1 — 70,q>MéYR(1 -
Y0,)>

if [¢|* > R.

0<L;m®Qn—mW%m—@WM—m@wmrwmnm

N

= JRQ Trz2 ) <|Tq — €F|l/2©q++|Tq — €F|1/2 (Z |¢z><¢z|>> gr(q) dgq

X i=1
= Jm ] 2 o

< liminff . Trrzw) (]Tq — €F‘1/2Q;r;]Tq — GF\1/2> dg < C,
R

1T, — er|V2Q 1T, — erl| 6:) gn(a) da

n—o0

where the last inequality is a consequence of the uniform bound (2.40). We can then pass to the limits
R — +00and N — 400 with Fatou’s Lemma and get

0< f 5 Trr2(r) (’Tq - €F|1/2@;+|T‘1 N 6F|1/2> dq
R
o 2 A+t 1/2
< IrILIBJlr%of J]RQ Trr2g) (‘Tq - EF’U O |7y — erl / ) 4q.

A similar reasoning shows that
0<—L}m®0n—m”%|n—mqu

< —liminf f Topaqey (1T — er[V2Qy 1T, — er[2) da.
R2

n—o0



58 CHAPTER 2. EXTENDED DEFECTS IN A FERMI SEA

The combination of the last two inequalities shows that
0<Tr (T —er) Q) < liminf Tr (T — er) Qn) < C, (2.46)
n—0o0

so that Q € K.

The state (Q is a minimizer, and its density is uniquely defined. The densitiy pg is well defined in

view of Proposition 2.2 since @ € K, but it is a priori different from EQ and pq. The following lemma shows
that all these densities actually coincide.

Lemma 2.14. (Consistency of densities) It holds pi—v = po—v = pg—v inD'(R). In particular, Pg = Pq
as elements of L?(R) + LP(R), and pg — v = pg — v as elements of C.

We postpone the proof of this result to Section 2.3.4. We use it to obtain that, since D(-,-) defines an
inner product on C,

D(pg —v.pg —v) <liminf D(pg, — v, pq, —v). (2.47)

This shows in particular that @ is an admissible state (i.e. Q € F,). Moreover, (2.46) and (2.47) imply that
the minimizing sequence {Qy, },,~, is such that

£,0(Q) < liminf £,0(Qn), (2.48)

which shows that () is a minimizer of (2.15).
Let us finally prove that all minimizers share the same density. Consider two minimizers ); and Q5.
By convexity of F,, it holds % (Q1 + Qy) € F,,.. Moreover,

Q+Q 1 _ 1 _ 1
fun (F5) = 360 @) + 580 @) = 12 (re, ~ v, ~ra).

which shows that D (p@ rg, — p@) = (. This implies that all miminizers share the same density.

1_%2’

Proof of Lemma 2.14

We prove the result for Coulomb interactions. The statement of the lemma and its proof for Yukawa inter-
actions are obtained by a straightforward adaptation.

Equality of pg and pg. Let us first show that oo — v = pg — v in D'. Fix w € D(R). The weak
convergence pg, — pg in L*(R) + LP(R) implies that

<an —v,w) m <:0Q — v, w).
Note next that

(g, — vyuw) = fR (pgn —v)w = f Pon —D)(k)@(k) dk

_o [ (. —V)K)f(K)
_QJ]R |k’2 D(an_Vf>

(R) and k — ]?|T| = 1|k|@(k) belongs

to L?(R) because ||kfl§H2Lz(R) = |lu HLZ(R) < +00. The convergence D (pg, — v, ) — D (pg — v, f)

where we introduced f = —w” /2. Note that f € C since felLl

loc

then implies that (pg, — v, w) — {pg — v, w). The uniqueness of the limit in the sense of distributions
n—

finally shows that py — v = pg — v in D'(R).
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Equality of p;5 and p. Fix w € D(R). The weak convergence pg, — pg in L?(R) + LP(R) implies
(P> w) o Pg:w).

It therefore suffices to prove that the operator-valued function g — w@;, ; belongs to L!(R?; &1) and that

1

e JW Trrem) (WQng) dg = T (WQn) = {pQ,, w) —— {pg,w) =Tr (wQ) = {pg,w). (2.49)

In order to prove the above convergence, we split the integration domain for ¢ € R? into three parts as
R? = Bt U (Br\Bepie) U (RA\BR), where R > 2¢p is large enough and 0 < ¢ < R — €p.
Consider first the case when ¢ € R?\B . For these values of ¢, the operator |7, — er|~1/? is bounded,

-1
with operator norm smaller than <|q| —€ F) . Moreover,
Vg e RA\Br,  |ITy— exl™20lT, — er[ 72 < ol |R—er| "
Note also that |T, — ep|2Quq|Ty — €r|/? = |T, — 6F|1/2Q:{;|Tq — ep|'/? € & since || > 2ep.

Therefore, the operator w@, 4 is trace-class and
| Te () (WQn )| = ‘TW (R) <|T — ep| 7P| Ty — ep| 2Ty — ep|M? Qu gl T, — 6F|1/2>’

1

< Nl o 1R = e ™ 1Ty = er[2Qi5 1T, — er*?]

Integrating over ¢ € R?\B and relying on the uniform bound (2.40), we finally obtain

Cllwll - |R—ep| ™" (2.50)

JRQ\% Trrem (anq)dq
R

This term therefore vanishes as R — +00. Note that a similar inequality holds if @, 4 is replaced by @n,q.

Consider next the case when g € Bg\B., .. The Kato-Seiler-Simon inequality (2.37) shows that
w|T, — ep|~'/? is Hilbert-Schmidt, and q +— w|T, — ex|""/? is in L?(Br\DBey+c; S2). The conver-
gence (2.43) then shows that

J B Trrew (an q)dq = J B Trrem (w|T —ep|” /2|T EF‘1/2Qn7q) dq
%R\%€F+C %R\%EF+C

SN Trrem <w|T —ep| V2T, — ep|V2Q ) dg = f Trrer) (wQ,) d
"0 JBR\Be e BRr\Beptc
(2.51)
Consider finally the case when q € B,,. ;.. Define IT; , := L (—o0,2¢] (Ty) and I , := 1 —II; 4. We
decompose the operator w@,, 4 as wlls (@ o +111 qwlly (@ g +1I2 qwIl 4@y 4. We show successively that
these three operators are trace-class, and characterize their limits as n — +00. Note first that wlls ;@ 4 =
wlly 4| Ty, — ep| 2| T, — €| /?Qn4 is the product of two Hilbert-Schmidt operators. In fact, a simple
computation based on the Kato-Seiler-Simon inequality (2.37) shows that ¢ — wlly 4|}, — € rl7V% €

L? (%EFJFC; 62). Therefore, by (2.43),

J TrL2(]R) (wH27an7q) dq m J TrL2(]R) (’ZUHZqu) dq (252)

%€F+C %€F+C

For the second operator, we denote by w4 (resp. w_) the positive (resp. negative) part of w, so that
w = wy — w—. Since Hl,q\/ﬂi € Go, it follows that Hl,qwiHLq € GLA simple computation shows
that ¢ — Il w41l 4 € Lt (‘BeFJrC; 61), so that ¢ — II; qwll; 4 € Lt (%€F+C; 61). Therefore, in view
of (2.41),

TI'LQ( R) (H1 qII @, q) dq — | TrLQ(R) (HquHLq@q) dq. (2.53)

%6F+c %GF-FC

For the last operator, we rely on the following lemma.
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Lemma 2.15. The operator-valued function q — Il qwll; 4 belongs to L* (B, 4c, S1).

In particular, ¢ — 1l jwll; 4 belongs to Lt (%EFJFC, 61), so that, by (2.41),

n—o0

f% TI'L2(R) (H27qu1’an’q) dg —— | TrLQ(R) (H27qu17q@q) dq. (2.54)
eF+c

£F+c

We finally obtain, by summing (2.52), (2.54) and (2.53), that

J% Trr2w) (WQn,q)dg —— | Trr2(g) (w@q) dq. (2.55)
eF+c

n—o0
%EF+C

The combination of (2.50), (2.51) and (2.55) shows that (2.49) holds, which allows to conclude the proof of
the equality pg— V= EQ — v in the sense of distributions.

Let us conclude this section by providing the proof of Lemma 2.15.

Proof of Lemma 2.15. Consider q € B.,. ... We decompose the operator II5 ;wIl; 4 as follows:

o gwlly g = Mo o(Ty — ep) (T — ep)wlly 4
_ 1 _ d?
= H27q(Tq —€p) 1w(Tq - EF)HLq - §H2,q(Tq —€r) ! [dzgaw] Iy 4.

By the Kato-Seiler-Simon inequality (2.37), ¢ — IIz (T, — er) "'\ /wy and ¢ — \/w+ (T, — €p)I1; 4 both
belong to L (B, +¢, S2), so that ¢ — Ils (T, — ep) " tw (T, — ep); 4 is in L (B, +c, S1). Moreover,

2

.| d
H27q(Tq —€r) ! [

_ d _
422’ w] g = 2H2,q(Tq —€r) 1w/*HLq + H27q(Tq —€r) 1w”H1,q~

dz

The decomposition

o4 (Ty — 6F)ilwldizl_ll,q = [HQ,q(Tq - EF)il\/(w/)+] [\/(w/)JriHl,q]

— [H2,q<Tq — GF)_l\/(w/)—] [\/(w/)—iHLQ}

shows that g — Iy 4 (T}, — EF)_lw’d%HLq belongs to L® (B, 1, G1) as the sum of products of operator-
valued functions in L% (B, ., ©2). It can also similarly be shown that ¢ — Il 4(T, — ep) " 'w"Il; , is in

L* (B¢ +c, ©1), which proves the statement of the lemma. O

Step 3. Convergence of Yukawa to Coulomb.

Monotonicity of the ground state. Fix v € H !'(R) and m; > my > 0. Note first that, for any
fe HY(R),

Dy (f, ) < Dy (, f) < DS, ), (2.56)

with the convention that D(f, f) := +o0if f ¢ C. Since pg — v € Cy, for any m > 0 when Q € IC (see
Proposition 2.2), it holds 0 < &1, (Q) < Evm, (Q) < E,0(Q) for any @ € K. This immediately implies
that

Ymi = my = 0, 0< ijl < Iy7m2 < Iy70, (2.57)

)

which proves that m — I, ,,, is non-increasing on (0, 4c0).
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Continuity of the ground state. Fix m > 0 and §m > 0. Denote by Q,, (resp. Q,,.s,,) one of
the minimizers of the energy functional &, ,,, (resp. &, ,46m) on K. Then, in view of the monotonicity
property (2.57),

v,m (ém) - 5y,m+5m (@er&m)

&

gl/,m (©m+5m) - gl/,m+6m (§m+6m)

1

- 5% <p§m+6m - pém+5m - V) N M (pém‘HSm - p@m‘*'ém N V)

f (m + dm)? — m? |P@/m-:;m(k) — (k)]
R k2 +m? k2 + (m + dm)?

1 sm\ 2
5 [<1 * m> - 1] M <pam+5m - p@erém B V>

sm\ 2 sm\ 2
< 1+ — ) =1L miom < 1+—) =1|Lm
m m

A similar inequality can be obtained for m < 0 sufficiently small. This allows to conclude that m — I,,,,
is continuous on (0, +0).

0< L/,m - Iu,m+6m =

N

N

Limit as m — +o0. Fix v € H!(R). Note that 0 € , so that
o (k)|?
0< Iym < Em(0) = Dm(v,v) = QJR w21 e

The latter integral converges to 0 as m — 400 by dominated convergence. This shows that I,,,,, — 0 as
m — +00.

Limit as m — 0. Note first that (2.57) implies that lim,, .o I, , < I, o forany v € H ~1(R). Let us now
prove the converse inequality under the conditions v € L'(R) and | - |v(-) € L'(R). Denote one of the
minimizers of (2.14) by Q, . By (2.57),

1
vm > 07 IVym = ﬂ((T - EF) anm) + 5%(pQu,m -V, pQu,m - V) < IV7O'

In particular, Tr (7" — €r) Qu,m) is uniformly bounded. By arguments similar to the ones used to estab-
lish (2.46) and Lemma 2.14, there exists Q0 € K and a subsequence (Qu m, )keny With mj; — 0 such
that (2.16) and (2.17) hold true, pq, ., — pQ,,, Weakly in L%*(R) + LP(R) (for a fixed 1 < p < 5/3) and

T (T = e¢)@uo) < Jim T (T = ep)Quum) (259)

We prove in the sequel that @), o is indeed a minimizer of &, .

In order to do so, we need upper bounds on the Coulomb term D(pq,, ,—V, pq, ,—V)- Since { EQvmy }
k=1

V2 +my
PQu,m, —V )
——=k with some
AVARRE =
k=1

abuse of notation, which weakly converges in L?(R) to some function @. For a given function ® € C*(R),

we introduce the sequence fi,, := (—A +m?)/2® and f := |A|/2®. A simple computation shows that
finy € L*(R) for any k > 1 and | fm, — f|;2 — 0as k — +oc0. Therefore,

is bounded in L?(R), it is possible to extract a subsequence, still denoted by {

Dy — ) = [ L2 =7 7 T (@) L = (@) L @)
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Note that | - |@ € H~1(R), hence its inverse Fourier transform F ! (| - |&%) is well defined in S’(R), and
A,-@) —(FL(-|B), D).
(21-12) 0 = F (010, ®)

The weak convergence pq, ., — PQ,, in L?(R) + LP(R) (for a fixed 1 < p < 5/3) then allows to identify
PQ,o — v and F~1 (| - |@) in the sense of distributions. This shows that pg,, — v € C, which together
with (2.58) implies that (), o € F,,. Moreover, by the properties of weak limits in Hilbert spaces,

D — — = 2|52 < 2liminf | ——f——
D~y —1) = 21005 <2t |

This inequality combined with (2.58) shows that 1,0 < &£,0(Qv0) < liminf,,, o I,. We can finally
conclude that Qo is a minimizer of (2.15), and that lim,;, o [,;m = I,,0 when v € L'(R) and | - |v() €
L'(R).

2.3.5 Proof of Theorem 2.8

Theorem 2.6 shows that all minimizers of (2.14) share the same density p, ,,. To prove Theorem 2.8, we
proceed as follows. We first construct a potential V,, ,,, from p,, ,,, —v € H -1 (R). We show in Section 2.3.5
that V,,,,, enjoys some regularity property, and that all the minimizers of (2.14) also minimize a linear
functional. We next construct a defect state by defining a spectral projector 7,,, associated with the operator
T + V,,m, and show that Q,, := 7,, — 7o is indeed in the kinetic energy space K (see Section 2.3.5). We
finally show in Section 2.3.5 that Q),,, is the unique minimizer of (2.14) and that it satisfies a self-consistent
equation. The proofs of some technical results are postponed until Sections 2.3.6 and 2.3.6.

Step 1. The minimizers of (2.14) also mimimize a linear functional.

Given a minimizer Q,,,,, of (2.14), we consider the unique potential V,,,, € H!(R) satisfying the one-
dimensional Yukawa equation

- Vl/lfm + mQVll,m =2 (py,m - V) € H_l(R) (260)

o—ml

The potential V,, ;,, defined in (2.60) has an explicit expression V,, ,;, = (py,m — V) * “—. Let us first give
some properties of the potential V,, ,,, which will be useful for the subsequent analysis. Since H'(R) <
L*(R), we have V,,;, € L*(R) and that lim|,_, ;o Vi, m(2) = 0. We denote by cy,,, = [[Vimll -
Note that V,, ,,, also belongs to LP(R) for p € [2, +00] by interpolation. Finally, by the Kato-Seiler-Simon
inequality (2.37), it is easy to see that

a2\t
Vi | 1 — —
o (1)
(G

In particular V,, ,, is (—%) —compact.

1
< g IVemllr2w)-

Let us now show that any minimizer @, ,, of (2.14) minimizes a linear functional on K. Since @, ,
minimizes (2.14), it holds, for an arbitrary state () € K and 0 < ¢ < 1,

Em (1 =)Qum +1Q) — En (Qum) = 0.

A simple calculation then shows that (), ,,, minimizes the following linear functional on K:

F(Q) = ﬂ((T - 6F) Q) + %(pu,m -V, pQ)a

which can also be written as follows in view of the definition and the regularity of V,, ,,,:

F(Q) = T (T — ) Q) + fR Vo (2)p(2) dz. (261)
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Step 2. Construction of a defect state Q,,,.

We construct a defect state @%m as follows. First of all, by the Kato-Rellich theorem (see for example
[Hel13, Theorem 9.10)), for each g € R%, T}, +V,, , is a self-adjoint operator on L?*(R) with domain H?(R)
and form domain H!(R). Let us introduce a spectral projector as follows:

@D
Ym = 1(—00,6;:) (T + Vl/,m) = u_l <J]R2 ﬁm,q dq) U, ﬁm,q = ]1(—00,6F) (Tq + VV,m) :

By construction, ¥,, , = 0 and 79, = 0 when g € R\ B, FHCVm -

Let us study the spectral structure of 7, + V,, ,, as a function of |¢| (See Figure 2.1). It is clear that Tj, +
Vy.m depends analytically on |g|, and has essential spectrum [|¢|?/2, +-00) since V,, ,, is T;—compact. The
potential V}, ,,, introduces at most countably many eigenvalues below |¢|2/2, and |g|?/2 is the only possible
accumulation point of these eigenvalues. Denoting by op,,(A) the set of eigenvalues of an operator A, we

la®

2

B o (Tt Vim)

— opp (Tg + Vim)

lgI* = 2(er +ev,,.,)

ittt S SN\

Figure 2.1: The spectrum of T}, + V,,,, as a function of |g|. When |g|? > 2¢p, there are at most finitely
many states in 7, .. When |g|* > 2(ep + cy,,,,), there is no state in 7, ,.

partition the set {q € RZ} by distinguishing whether the Fermi level er is an eigenvalue of T;, + V,, ,,, or
not:

Mpp = {q€R? [ep € opp(Ty + Vo) b, M 1= RAMy, = {q e R? | ep ¢ 0pp(Ty + Vi) } -
(2.62)
It is easy to see that 91, has Lebesgue measure zero, since Ty + V,, ,, has at most countably many eigen-
values, and e € opp (T, + Vi) if and only if € — |q|%/2 € opp(Th + Viyim). The reason for the separation
of R? into M, and Qﬁgp is technical: we will need a regularized operator to approximate the spectral
projector 7, . for g € B, - For this reason we need ey not to be an eigenvalue of 7, + V,, ,, (recall [RS80,

Theorem VIIL.24]). Remark that when g € B, i.e. |q|? < 2¢f, elements of Sﬁgp are associated with non-

negative eigenvalues of the operator 7o +V,, ,,, = —%% +V, m embedded in its essential spectrum. It can

be shown that even in dimension 1 there exist potentials V € H'(R) such that —%% + V has positive

eigenvalues embedded in the essential spectrum (see [vW29]). In our case, it is highly non trivial to prove
2
the absence of positive eigenvalues of the operator —%é% + V, m. Standard techniques to this end, such

as Mourre estimates [Mou81] or Carleman estimates [KT06], which involve estimating the decay property
of 2V}, ,,(z) when |z| — 400, are not immediately applicable as the density p,,;, — v is only in H “1(R) a
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priori. In order to avoid this difficulty we construct a test defect state by eliminating the points ¢ € 9,

_ S
Q,=U"" URQ Qg dq) U, (2.63)

where, recalling that 7,, , = 0 when g € R\ B, ey,

Qg = Tmq — V0,0 forqe geFJeryym N im%p. (2.64)

Denoting by P+ = 1 — P for an orthogonal projector P, an easy algebraic calculation shows that

— 2 1 1 _ = _
- (Qm,q) = Tm,q@m,¢Vm,q = Tm,q@m,qTm.g (2.65)

and
— 2 1A L oY —~++ ~——
(Qm,q) = VO,qu,quO,q - ’YO,qu,qFYO,q = Qm,q - Qm,q' (266)

Proposition 2.16. The defect state Q),,, defined in (2.63) belongs to the kinetic energy space K. Moreover, the

energy functional F(Q,,,) can be written as

F(@n) = T2 (T = r)Qn) + | Virg,

1

2L A =L = 7 = 1/2
- (2m)? fRz Troam (|Tq —ert Vol ! (er,qu,q’Ym,q N 7m7qu,q7m,q) [Ty —er + Vil / ) dg.

The proof of this proposition, which can be read in Section 2.3.6, is quite technical and constitutes the
core of the proof of Theorem 2.8.

Step 3. Form of the minimizers.

We prove that all minimizers satisfy (2.19) by showing that @,,, € K minimizes F'(Q) defined in (2.61). This
implies that the only difference between a minimizer @, ,, of (2.14) and Q,,, can be due to bound states at
the Fermi level €. We show in fact that (), ,,, = Q

We first need the following lemma on the density of finite-rank operators in /C.

m-

Lemma 2.17 (Density of direct sums of finite-rank operators in K). Every @Q := U~} (Su% Qq dq) Uek

can be approximated by a sequence of operators Q,, := U~ (X]% Qn.q dq) U with the following properties:
e foralln > 1 and for almost all g € R?, Q,, 4 € K, is finite-rank, and

g Qng e L°(RES(LAR))), g Ty — er|? (QFF — Qug) Ty — ep|V? € LY(R? 61);

n7q

e the renormalized kinetic energy converges as

lim Trr2 ) (|Tq — eF|1/2 ( f{;r — Q;g) T, — eF|1/2> dg

n—0o0 R2

(2.67)
- JR2 Trre(r) ('Tq - GF\I/Q ( ;+ - Qf) Tq — eF‘m) dq.

Proof. The proof is similar to the proof of Lemma 2.13 and is based on [FLLS13, Lemma 3.2]. First of all,
we show that there exists a sequence of operators @n =yt (SH% émq dq) U e K satistying (2.67) such

that ¢ — émq € L*(R?;&s). Introduce the negligible set Q = {¢ € R?|Q, ¢ K,}. For ¢ € R?\Q



2.3. PROOFS OF THE RESULTS 65

and n > 1, define P, , := ]l[l n] (|Ty — €rl) and én,q = Py ¢QqPn 4. It can be checked that @n,q and
@n,q T, — € F|1/ 2 are Hilbert-Schmidt by writing

~ P,
1/2 n,q
@ng = PngQq Ty — €r| / 12
Ty — €r|
and similarly that QX7 7 and [T, — er|72Q Q| Ty — 6F|1/ 2 are trace-class. Moreoever, by the uniform

boundedness of 0 < Pn g < 1 the fact that P commutes with |T, — ep|"/?, it is easy to see that ¢
Qng € L (R% 62) and g = |T, — eV (@7 = Qny ) IT, — ex|/? € L1 (R?: &1), with
0 < £Trpay (T, - er| PQEEIT, — enl'?) < £Trpaqe (1T, - el 2QFIT, — ex]?).

Let us now turn to the convergence of the relative kinetic energies. First, for all ¢ € R%\(), using that
P, converges strongly to 1 in L?(R) (which implies that P, AP, converges to A in &, for A € G,),

lim =0.
n—+00

- et @ - optim - o

61
Therefore, by the dominated convergence theorem,

lim |+ Trpe g (qu — ep|PQEEIT, - 6F\1/2) dg

n—0o0 R2

- | # T (1T, = e QT - el ?) da.

In order to conclude the proof, it remains to approximate the Hilbert—Schmidt operators @n,q by finite-
rank operators (), 4 € K4. This can be done by relying results of [HLS09a, Proposition 2, Theorems 5
and 6], more details can be found in Appendix, Section 2.5.3. O

Consider > Oand v € H!(R), and let us prove that 1 ,.1(7'+V,,m) —"0 is the unique minimizer
of (2.14). For Q € K a direct sum of smooth finite-rank operators (i.e. as the ones in Lemma 2.17), (2.61)
becomes

1
= (27-‘-)2 JR2 TI"L2(]R) ((T — €r + Vym) Qq)
1 12 (=1 o~ =L 1/2
= (27_‘_)2 JR2 TrLQ(R) <|Tq —€F + Vu,m| (’Ym,qurym q ~Tm qu'Ym q) |T —€p + Vum| )
(2.68)
Therefore, by (2.68) and Proposition 2.16,
_ 1 — _
F(Q) - F(Q,,) = (Q)QJ Trrew (|T —€p + Vum|1/2 (T, 4 (Qe—Qy) Yo
)" JR? (2.69)

~Ym,q (Qq - Qm,q) ﬁm’q) |Tq —ep + Vy,m|1/2) dq.

Remark that, by (2.64), =7, , < Qq — Qg <1 —7,,, for any ¢ € R*\Q with Q = {g € R*|Q, ¢ Ky}
negligible, so that

TI"L2(R) <|Tq —€r + Vl/,m|1/2 <7m q (Qq ém,q) W%n

_im,q (Qq - @m,q) ﬁm,q) ’T —€p + Vum’1/2> 0.
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This implies that
F(Q) = F(Qp).
This inequality can be extended to any () € K by (2.67) in Lemma 2.17. This shows that () is a minimizer
of (2.14) if and only if
Q=Q+94,

71 ©
§:=U Sqdq | U,
RQ

with 0 < &g < Ly7,1v,,,=¢r}- Since the set My, = {q eR?|ep € opp(Ty + Vym)} defined in (2.62) has

where

zero Lebesgue measure as discussed in Section 2.3.5, it follows that § = /1 (SH% g dq) U = 0, and so the
unique minimizer of (2.14) is 1(_q ¢,y (T + Vim) — 70 = L(—o0,e1 (T + Vim) — 70

2.3.6 Proof of Proposition 2.16

The statement of the proposition is obtained by a limiting procedure, where we approximate the defect state
Q,,, by a family of regular operators with a spectral gap around e, relying on the idea used in [FLLS13,
Section 4.2]. Since (),,, is defined by a direct integral over B 1, =~ and My, is negligible, it suffices to

construct regularizations of Q,,, qforqe B, ey, O Sﬁ%p.

Construction of a regularized kinetic operator. In order to achieve uniform estimates locally in g,
we define a gap-opening function h, which locally does not depend on ¢ for g € B, Ftevy, O im%p. Let us

first define a partition of |g| for ¢ € B, prev, , 0 Sﬁ%p. Given 77 > 0 small enough, we first note that there
exist integers N1 < N such that N1 < 2ep < (N1 + 1)pand Non < 2(ep + ¢y, ,,) < (N2 + 1)n. We
then consider the following covering:

|0./2(er + e, | = [0,v) o [ Vi v2n) U [V V(N D) (@270)
and an associated gap-opening function:
k2 k2 ——
_77]1<2geF_n277>+77]1<2>€F_T;77>7lfQ|e[M7 (n+1)77)a
ha(k) := forn =0,1,2,---, Ny,
0, if gl & [ /(N + 1), /(Mo + 1))

The corresponding approximate kinetic energy operators are defined as

d 12 g d
Kl=T,+ b (L) = - M0 g (59
a 0+ g < 1dz> 2 dz? + 2 +hg ldz

Remark that K has purely absolutely continuous spectrum, and that yo 4 := T—oep) (Tyg) = T—op ] (Ky)
for all ¢ € R?. Moreover, forn = 0,1,--- , N7 and || € [1 /mn, A/ (n + 1)77>,the operator K has a spectral

2_ 2_
gap (EF —n+ MTW, €F +1n+ M%); see Figure 2.2 for a sketch of the spectrum.

The regularized kinetic energy operator is now defined to be K g + V. m. Since the potential V,, ,, is
a compact perturbation of K (as (1 + K¢)~!V,,,, € &2 by the Kato-Seiler-Simon inequality (2.37)), the
essential spectrum of K + V, ,, is the same as for K, and at most countably many eigenvalues can be

introduced in the spectral gap and below |¢|?/2, which can only accumulate at the edges ez — 1 + W%"”

2_
and ep + 1 + MTM of the spectral gap or at |¢|%/2. In order to exclude these eigenvalues, we discard the
values of ¢ in the set

imgp = {q € §€F+0Vy,m A Sﬁgp €F € O'diSC(KZ] + Vy’m)} .

We show next that this set is negligible.
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la|?
I ' 2
I :
|
€F
_——— — T er—n/2
EF_77
= | lq|
0 I ' |
VI3 | (g2 = 2ep

Figure 2.2: Spectrum of K around ep. The dark thick lines are the upper/lower bounds of the essential
spectrum of K around ep.

The set 1)), has Lebesgue measure zero. Let us show that there are only finitely many values of |q|
for g € M}, for a given n > 0. We distinguish two cases:

(i) in the regions |g| € [/n7,4/(n + 1)n) for 0 < n < Ny, the construction of K + V,,,, makes sure
that there can be at most finitely many values of |q| such that €y € ogisc(Kq + Vim);

(i) in the region |q| € [\/(Nl + 1)n, /(N + 1)7]), it holds K = T,. The condition €p € oqisc(Kq +
V..m) is therefore equivalent to ex — |q|?/2 € oqisc(To + Vim). Since (N1 + 1)1 > 2¢p, there exists
§ > 0 such that e — |q|2/2 < —6§ for |q| € [\/(Nl + 1)n, /(N2 + 1)77). Since o4ise(To + Vim) N
(—o0, —4] is at most finite, this shows that

mr A [\/(Nl + 1)m, /(N2 + 1)”)

is at most finite.

Since imgp is the union of a finite number of circles in R2, it has Lebesgue measure zero.

Construction of a regularized defect state.  For 77 > (0 small enough, we define a regularized operator
in analogy with (2.63) and (2.64) by excluding the set I},

_ ®__
QZI =U"! (L@ QZW dq> u, (2.71)
where, with Hr{,’q = 1o ep) (K4 + Vi),

H?/’q — 1 (—oep] (Kg) when g € §€F+%ﬂn N zmgp N (imgp)ﬂ,

- (2.72)
0 whenge (RQ\EBGF%VVM) U Mpp MY

N
Qm,q T

p

Moreover, since 1(_y (K¢) = 70,4 and similarly to (2.66),

@?n,q)z QS —an, (2.73)
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A first observation is that, for any ¢ € B, vy O im%p,

@?n’q ﬁ @m’q strongly. (2.74)

This follows from the convergence of KZ] + Vi m to Ty + V), 1, in the norm resolvent sense when n — 0
(which comes from the estimate ||24||;» < 7)), and the result [RS80, Theorem VIII.24] on the convergence
of spectral projectors.

The following lemma summarizes some properties of the regularized operator @Wm

Lemma 2.18. For any n > 0, the regularized operator @Zl defined in (2.71) belongs to the kinetic energy
space K. Moreover, the following properties hold:

(1) foralln > 0andqe Bep ey, ,

_ d2\
QTT]n,q € Gg, <_d22> C2:]n,q € Gy, (Kg + Vy,m)aﬁn,q € Ga.

In particularéz%q € Ky
(2) foranyn > 0andqe %EFJFCVD s

Trreey (1o = erl? (@t = Qg ) 1Ty — exl?)

d , .
+ Tl"Lz(R) ( h77 <_ld2’>‘ (6777”:;+ — @?n,q >> + fR Vy,mp@:’n’q
— =Ty (|K7 + Vo — er [ @) K7+ Vi — e *) <0, (2.75)

We postpone the proof of this lemma to Section 2.3.6. Let us however already remark that the terms in
the energy functional (2.75) are indeed well defined. In particular,

N Te——

since |h¢ (—id )| is bounded and (1 — 7o,4) (@Zuqy _ @Zgj e & and Y0, (m’q)z _ 0" ey
(relying on Qqu € Gy).

The regularized defect state @?n converges to (,,, in K. The remainder of this section is devoted to
showing that there exists a sequence (7););>1 converging to 0 as i — -+00 such that @Zfb € IC converges to
the defect state Q,, in the sense of (2.17); from which we can conlude that Q,, is in K. The general idea
is to use the fact that the total energy of @ZZL is uniformly bounded. By identifying the limit when n; — 0
with the defect state (Q,,, we obtain the desired result. This can be summarized in the following lemma,
which crucially relies on the properties stated in Lemma 2.18.

Lemma 2.19. There exists a sequence (1;);>1 such that the following convergences hold as i — +oo:

. 1/2 - B
Qo [ By + Vi = e | —— Qo) [Ty + Vi — cr|""* weakly in L* (Bersen,,. i) @76)
@y [Ty = e = Qo) [T0y — x| weakly in 17 (Bersen,i€2). @7

Moreover, the defect state Q,,, belongs to KC and

T (T~ erQn) = s |- T (1T = erl? (@~ Q) 1Ty — ') da < o

2
(ZW) CFTCVym

(2.78)

The proof of this result can be read in Section 2.3.6. In order to conclude the proof of Proposition 2.16,
it suffices to obtain the claimed expression for F'(Q,,). This is a consequence of (2.65) and (2.78), combined
with arguments similar to the ones used to establish (2.75) in Section 2.3.6.
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Proof of Lemma 2.18

We start by stating a useful lemma.
Lemma 2.20. Fixn > 0 and an integer 0 < n < Ny (appearing in the covering (2.70)). There exist positive
constants a1 (n, 1), az(n,n), bi(n,n), ba(n,n) and c(n,n) such that, forany q € Bepyey, O E)ﬁg,p N (fmgp)c

with |q| € [1 /mn,+/(n + 1)7]), there is a smoothed closed contour C; < C enclosing the spectra of K] and
Kg + Vi.m below the Fermi level e without intersecting them, for which

V¢ € Cy, K]+ Vi — (| = ) >0, (2.79)
and
g 1d° g 1d°
1+ = oo | S BT+ Vi — (| <as(nn) (1+ 5 — 2 |, @
ety ) (1419 - L) <K+ V- d < ) (14195 - 25 eso)
g 1 g 1 d
VCelq,  bi(n,n) <1+2_Qd22 < |Kg = ¢l < ba(n,m) I+ = =53=2) (2.81)

We postpone the proof of this result to Section 2.3.6. Let us first prove the statement (1) of Lemma 2.18.

Givengq € Beptey, , O SJT%p N (Emgp)c, and with the curve C, introduced in Lemma 2.20, Cauchy’s formula
gives

_ 1 1 1 1 1
n
= - ¢ = — Vi dc.
Cm.g mwj(kﬁ+vmn—< Kﬁ—g> ¢ 2mczﬁ+wqm—g mgr—c %
q

q

-1
Since the function k — f,(k) := (1“2—2 + @ + 1) belongs to L?(R) with | f;]z2 < | fo]z2, the Kato-

Seiler-Simon inequality (2.37) together with (2.80) and (2.81) implies that, for |¢| € [ﬁ /mn,+/(n + 1)77>,
there exists C'(n,n) € Ry such that

L li Q"
2 2 dz? mq &

1 lg> 1 d? § 1 1
— 1+ =2 —-=— V. d
2m< Y K] +Vym—C¢ ""K]—¢ ¢

Cq 2
g 12N\ _ Clm)
< )|V (149 - 305 e
2

Similar computations show that Q! @ (—d—2> mgr (Kd + Vim) Q g and [Ty — epll/zQ all belong

dz2
to o, while |1}, — GFP/QQI7 \T — ep|'/? is in &. This implies that Q Ky
The proof of (2.75) in the statement (2) is obtained by an easy adaptatlon of [FLLS13, Lemma 4.2]. We
approximate Qﬁn 4 € KCq by finite-rank operators for which we prove the equality, and then rely on a density
argument based on Lemma 2.13 to conclude.
Let us finally prove that @, € K. It remains to show that

\L Trraqe (170 — erl (@0 = Qg ) 1Ty — ex]?) dg < .

€F+cvu,m

Consider ¢ € Beie,,, N M N (mgp)C and an associated integer 0 < n < Nj such that |¢| €
[,/nn, v (n+ 1)77) for the covering (2.70). In view of (2.73), (2.80) and (2.81), there exists R(n,n) € R
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such that

2
A+t —
Tegagy (7, - el (@ = @y ) T3 - erl?) = @ alTy ~ erl?

2

So

1 1 1
— Vim T, —er|'?)d
2i7rf£<Kg+Vy7m—C ’ Kg—g’ o er| > ¢

Cq 62
o 12N\ | R
<Ro)|(1415- =2 55) Vil < 2 ol 2o
|| (140 - 50 ) Ve < Wl
2

Therefore, since M, and M), are negligible, and || |72 < | fo 2,

7+ [
| Trpage) (1Ty — erl 2 (@~ Q) 1T — er]?) da
%€F+va,m
A+ A
- | Trpaey (1T — eV (@™~ Q) 1T — exl?) da
Bep+ev, MG, (M )

“(n,n) 2 2
< d <+(X)
n——O,IlI.l.a,}]{V2+1 Vor Vomllzz | 1/allz2 dg )

%EF +CVy7m

which allows to conclude.

Proof of Lemma 2.19

Let us prove (2.76) by showing that

J%eF-%—cVVm ‘

is upper bounded uniformly with respect to 7 € [0, 1]. Remark that the state @fm belongs to K foralln > 0
by Lemma 2.18. Since (), ,,, minimizes the functional (2.61),

2
dg=0
S

m KTV —ep|?

F(@) = Te (T = er) Qo) + | Vonlhog, (2) dz

1 f Hn 1/2 2
= —— Qum.olTy—€ + | Vuml(z z)dz | dg = F(Qum).
Co N ( oyl | Vntoogy, 2 (Qum)
' (2.82)
In addition,
. d —n, —
TrL2(]R) ( hg <—ldz>‘ < nm:;—i_ — Q?mq ))
CANY? 2 ARG
= TI‘LQ(]R) ( hZ <_1dz> (Q:In’q) hg <_1dz) = 0.

Combining this inequality with (2.75) and (2.82) leads to the uniform bound

2rPF(Qun) < |

B

_L

n (2) dz) dq
) (2.83)

dg < 0.
(P

2
(H@Zw T, — 2|+ f Vo (=)0
€F+cvu,m 62 R

1/2

N

an,q |K§ + Vo — €p|

ol +Cvu,m
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. _ 1/2
It is therefore possible to extract a sequence {; },- such that @, ..y | K Eh) + Vi, —€er|  converges weakly

in L? (geFJrcVU 3 63) to some operator S.) € L? (geFJrCVU . 163). We next show that forall g € gfpﬂvl, s

Sq = @m,q Ty + Vim — eFll/Q. By the same reasoning as in [FLLS13, Section 4.2], it can be shown that,
forall ¢ € B, ey, . the following strong convergence holds in L?(R): for any ¢ € H*(R),

i . 1/2 oy .
Qum.q ng +Vim — €F| / o —— Qg Ty + Vi — €F|1/2 @ in L2(R). (2.84)

1—+00

Now, consider ¢ € H?(R) and the associated rank-1 operator K := |$)($| € &;. In particular K can
be seen as a constant function of L?(Be, e, ;S2). On the one hand, by the weak convergence of

. , 1/2 B
Qo[BG + Vo = ev| 10 S0 in LBy ser, 1 62),

[ (ol malip + i erl[ )
%eF“vy,m
—n; ) 1/2
= J; TI‘Lz(R) (Q:]n,q |Kgl +Vim — 6F| / K) dgq (2.85)
6F+CVV1m
—— . TeeGKa- | (18, ¢) da.
1=+ %€F+6Vu,m %€F+cVu,m

On the other hand, by the strong convergence (2.84), it holds, for all ¢ € B, Ftcvy

<¢‘@’,§;q KD+ Vi — eF\W} ¢> <¢ ‘ Qg | Ty + Vim — eF\m’ ¢>-

1— =400

A simple computation shows that there exists Cy € R such that
i Mi 1/2
¢ Qm,q Kq + VV,m - GF’ ¢ < Cd)

foralli > 1and g € Be, 4., .By the dominated convergence theorem,

[ (ofamalse s vommerl] i
%GF‘FCVVJR
S— <¢‘@m7q T, + Vi — eF|1/2‘ ¢> dq.
1—>+00 Berte
FTVy m

The comparison of the previous limit and (2.85) implies that
O 1/2 _
Qm’(.) ’T(.) +Vom = GF‘ = S() € L (%6F+cvu,m?62) .

We next prove (2.77) by showing that

2
[ |merean,| a0
%EF‘FCVD’m 62
is upper bounded uniformly with respect to 1 € [0, 1]. Introduce
b (2= | gy (2)da = | o ()da.

%GF‘FCVV’m
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which is well defined by Proposition 2.2 since Q, € K. Moreover, in view of (2.8) with ¢ = CV,, . there
exists a constant R € R such that

2 2
L P e R
EBeF+cVV’m So
In view of (2.83),
2
f H‘Tq - 6F|1/2@?n,q dq < _J Vu,mp@" >
%€F+va,m So R m

so that a Cauchy-Schwarz inequality leads to

2
dg < R||Vl/,m”2L2'

o -t
B (GD)

€F+cVu,m

By arguments similar to the ones used above, we deduce that it is possible to further extract a subsequence
— 1/2
Qm,() [T = er|

(still denoted by (7););>1 with some abuse of notation) such that @%’(,) ‘T(.) —€F ’ 172
weakly in L?(Be, 4c,, ;S2) and

i— 400

2
dg < oo.

2
dg < lim infj
So

S i—+0 J§g

0< f HQm,q |Tq - EF’1/2

s’BeF'*'CVV’m

HQm T, — e

%6F+0Vu,m

This allows us to conclude that Q,,, € K using (2.66), and shows that (2.78) holds.

Proof of Lemma 2.20

Since V;, , is a compact perturbation of K for any g € R, the only possible accumulation points of the
discrete spectrum of K + V), ,, are 1q|%/2, er — 1 + \qPQ—nn and ep +n + Iq‘22_m7, where 0 < n < Ny is
such that \/nn < |q| < 4/(n + 1)n. For the remainder of the proof, we fix an integer 0 < n < N3 and an
element gp € R? with |go| = \/71). The objects we introduce are depicted in Figure 2.3. First of all remark
that the gap-opening function h is independent of |g| in each interval [\/ﬁ, m> Introduce the

integer M > 0 such that

3 3
Odisc (Kgo + me) N [6}7 — ZU,EF + Z] = {5i}0<i<M7 €EF — Zn <gy<- - <ey<ep+

=~

Note that we restrict the spectral window around er in order to discard the possible accumulation points
of the discrete spectrum. We assume that gy ¢ 91;,,; the case when ¢o € 91, can however be handled by

2 1 2
a simple modification of our arguments. Note that, since K, = Kg, + w,

2 _ 2
Odisc (Kg + Vy,m) N [EF — ﬁaﬁF + ﬂ] c ‘(]|2|q0‘

4 4

3
+ Odisc (Kgo + Vz/,m) A |:€F - ZT,’ €F + Z] )

and the distances between the eigenvalues of K + V,,, in the spectral region [ep — 1/4, €p + 1/4] are
independent of q.

Note next that we eliminated the values of ¢ for which ep € 0gisc(Kq + Vi) by the definition of
the set M},. The number of the corresponding values of |g| is at most equal to M, which corresponds

to a further partition of the interval [« /mn, A/ (n + 1)7]) into finitely many subintervals [, oj+1) with
ap 1= |qo| = /m.

Let us concentrate on the region Z = {q € R? nn < |q| < a1}. As oqisc (Kg + Vi.m) intersects the

2 1.2
Fermi level € at |g| = «, there exists a unique integer 0 < j < M such that ¢; + M = ep. We

now consider curves C, < C for g € Z satisfying the following properties:
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Figure 2.3: Spectral structure of K + V,,, around the Fermi level e for |g| € [ﬁ /mn,+/(n + 1)7}). The

dark blue lines correspond to elements of o gisc (Kq + Vi) which are obtained from those at gy such that
|qo| = \/nn by adding (|g|* — |go|?)/2. The points g such that |q| = «; are removed. The curve C, (dashed
light blue line) is defined to pass through €, (q) for |q| € [/nn, o) .

« the top of the curve passes through

€j+1 T €&; \QP - ’(JO\Q

2 + 2 Y ‘Q|€[\/n777a1))

with ep741 := €p + 1n/4. Note that, when j = M, it holds e); < €ep, so that the above definition
makes sense since there is no other eigenvalue in the spectral region (e, e + 7/4]. Note also that
the distance between €r o, (¢) and oqisc (K¢ + Vim) 0 [ep —1/2, €p] is independent of |¢/, and that
]1(_00,@1&1((1)](1(;7 + Vim) = L(_ooep)(Kq + Vi), ie. the states below the Fermi level have not
been changed.

6F,Oq (q) =

« the curve encloses the spectrum of K g + V., m below e without intersecting it.

It is then easy to see that there exists a positive constant ¢ (n, 1) such that | K¢ + V.., — ¢| = ¢1(n,n) > 0
uniformly for |q| € [\/n7, 1) and ¢ € C,.

The same procedure can be applied to other intervals. As the number of intervals is finite, there exists
a constant c¢(n, n) (which depends only on the properties of the discrete spectrum of Kgq, + V, ., in the
spectral region [ep — 31/4, € + 1/4]) such that, for any ¢ € R? with \/n) < |q| < 1/(n + 1)n, there is
a curve C, < C such that |KJ + Vi, — €| = ¢(n,n) > 0 for any ¢ € C,. The proof of inequalities (2.80)

2
and (2.81) is then easily obtained by replacing —%% with —%% + % in [CDL08a, Lemma 1].

2.4 Numerical simulation of slab-like defects

We present in this section some numerical simulations where we compute an approximation of the mini-
mal energy states for (2.14). The approximation first consists in restricting the physical space to a supercell
with periodic boundary conditions in the z direction, the problem being still invariant by translation in the
(x,y)-directions. As made precise in Section 2.4.1, it is then possible to formulate the counterpart of the
minimization problem (2.14) in this setting, see (2.87) below. In particular, solutions of the supercell min-
imization problem are characterized by a nonlinear Euler-Lagrange equation. We discuss in Section 2.4.2
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how to numerically solve the latter equation. We finally present some results of numerical simulations
for defects corresponding to sharp trenches in Section 2.4.3. In particular, we observe Friedel oscillations.
These results are obtained for Yukawa interactions only since the convergence of our numerical method is
poor for Coulomb interactions, and most likely would deserve a dedicated mathematical analysis.

2.4.1 Supercell model

Supercell models consider states periodic in the z-direction, and invariant by translation in the (z,y)-
directions. We first make precise the set of admissible states in Section 2.4.1, then present the reduced
Hartree—Fock model in this setting in Section 2.4.1, and finally write the Euler-Lagrange equations char-
acterizing the ground state in this framework (see Section 2.4.1).

Admissible states for supercell models

Supercell models are obtained by restricting the z-variable to the unit cell A;, = [—L/2, L/2) of the physical
space R. This unit cell is seen as a periodic domain of spatial periodicity L > 0. More precisely, denoting
by Ry, := LZ, we consider all operators to be defined on the functional space

L? (]R2 x Ar) ={ue L} (R3) |u(r,-) is Rp-periodic for a.e. 7 € R?,

per,z loc
f J lu(r, 2)|? dr dz < —I—oo}.
R2 JAL

It is possible to introduce a supercell unitary transform U, which is the counterpart of (2.1): for ¢, € R?
and z € R, we can first define, for functions ® € L}%er,z (R2 x A L) which are smooth and with compact
support in R? x Ay,
1 .
ULD)y(2) := — | e 7 ®(r, z)dr,
™ JR2

and extend this formula as an isometric isomorphism from L2, . (R* x Ar) to L*(R?, L2_ (AL)), where

L2..(Ar) = {¢ € L} (R) | ¢ is Rp-periodic }. The inverse of the unitary transform ¢/; ' reads, for ¥ =

per loc

(Pg)gerz € LA(R?, L3 (AL)),

per

_ 1 igr
USTW,) (r,2) :=— | €97U,(2)dg.

™ JR2

In order to introduce the set of admissible states, we define the kinetic energy operator on L%er’ . (RQ x A L)

as
_ -1 © _ lq |2
Ty, = Z/{L ) Tq,L dg | Uy, Tq,L = Tper,z,L + 77
R
where Ther - 1, = —%% is considered as an operator on Lf)er(A 1.)- The corresponding supercell free Fermi
state operator reads
D
W o=ug' (J g dq) U, (2:86)
R

Where {V&q}qew is the following family of orthogonal projectors acting on Lﬁer(AL):
A= L oep) (Tqr) ifqe B,
0, ° 0 if g e RA\B, .

We can finally define admissible defect states for the supercell model by mimicking the construction in
Section 2.2.2: for any q € R2, we introduce

xp = {QF € SR (M) | 1Ty — erl2Ql € Sa(12ur (A1),

Ty — er QY =T, L — ep|'? € &1(L (AL))},

per
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equipped with the norm

1M ns = 1@ e +H1T,L—6F|“2QL
q XqL q ( per( L)) q q Gz(Lger(AL))
+ H|T L= er|PQL Ty, — ep|'? :
aE{—l—,—} 61(L;2)er(AL))

as well as the convex set IC(’}L = {Qé € XqAL| — 'yé:q < QqL <1- ’yoL’q}. Admissible states Q* with finite
renormalized kinetic free energy per unit area in the supercell model are elements of

AL . ) oL _ 7-1 ® L
KM =13 Q" =U, Qg dq | UL
R2

T, (T, — er)QY) < 00}7

g QL e L™ (R*S(L2,(AL))), QF € ichL a.e.,

where

1 __
Tr, (Ty — ep)QF) = e JRz Tryz (a,) (|T o —er|VHQETT — Qb T, L eF|1/2) dq.

Reduced Hartree-Fock model for supercells

Before we construct the reduced Hartree-Fock energy functional, we need to define Yukawa interactions
for models periodic in the z-variable. We rely to this end on a Fourier series decomposition (instead of a
Fourier transform as in Section 2.2.2), obtained with the orthonormal basis {ej,}xez of L2, (A1) composed

per
of the Fourier modes ey (z) := ﬁeQI“kZ/L. Any function u € L2, (Az) can be decomposed as
U = Z Ck‘(u)ekv Ck(u) = (e/ﬁu)L%er'

keZ

The Yukawa space for the supercell model is then defined as the following subset of periodic distributions:

Z ’%(P)\Q <o
m? + [P

keZ

CmA, = {P = Z cr(p)er

keZ

and for p1, p2 € Cyy 2, , the supercell Yukawa interaction is given by

cr(p1)ek(p2)

Dy (p1:p2) =20 5™ iy
L

keZ
Consider now a periodized defect obtain from the reference perturbation v:
Vper. == 3 (a,0) (- nL).
nez
The density vper,, belongs to C,, A, When

2
< oo,

el
— 5 v(z)exr(z)dz
émg + |¥|2 Ar

which we assume in the sequel. The supercell energy functional is then defined as
L L 1
gm,AL (Q ) = ﬂL ((TL - GF) Q ) + §Dm,AL (pQL — Vper,L, PQL — Vper,L)a

on the admissible set 7, o, := {QL e KAL ' PQL — Vper € CrnAp } The counterpart of the minimization
problem (2.14) in the supercell framework finally is:

I, = inf {Ena, (QF), Q" € Frun, }- (2.87)
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Euler-Langrange equations

Since the energy functional &, A, is convex, standard techniques from calculus of variation can be used
to prove that (2.87) admits minimizers. Moreover, using the compactness of the domain A7, (and hence
the fact that 7}, 1, has compact resolvent for any ¢ € R?), minimizers are characterized by the following
Euler-Lagrange equations (where for clarity we do not indicate the dependence on L in all quantities):

(QL+V)¢Q_€ 17 quR27 (qule)er( ) ( ¢q) :17 5?<€g<
per
—V"+m?V =2 (pa — z/per’L> ,
) (2.88)
p@ = P~ — PO,
1 &) @ [+
V= (277)2 jRQ ]l(_oov€F] (Tq»L + V) dq f Z ]]- —0 6F ¢q> <¢q| dga

with pg = (2¢r)%?/(672) and

p(2) = f (Zn e EDI (2 >|)

In fact, solving the family of eigenproblems in the first line of (2.88) requires only solving a single eigenvalue
problem for ¢ = 0 since T}, 1, = Tper,»,1 + |q|?/2. More precisely, (2.88) can be rewritten as

(Tper,zp + V) bi = €i¢i, ¢ € Lo (AL), (91 9i1g,, =%y 1 <e2<--
— V" +m*V = 2(py — (po + Vper)) ,

py(2) = — j S1 (e < e — [0/2) |00 ) da = = 3 max (0, 5 — 1) 6(2)
7 (27)2 Jge ‘e ! 2 & ’ R '

=1

(2.89)
Therefore, in order to solve (2.87), we look for a solution to (2.89). We discuss in the next section how to
do this in practice.

2.4.2 Discretization of the supercell model

We explain in this section how to solve (2.89). The method is based on two ingredients: discretizing the
variational formula associated with the first equation in (2.89) using a spectral Galerkin basis of Fourier
modes, as studied in [CCM12]; and relying on a fixed-point strategy (with appropriate mixing) in order to
find a solution to the nonlinear problem (2.89).

Discretization of the variational formulation of the Euler-Lagrange equations

We assume in this section that the potential V' is fixed, and discuss how to construct a density from a given
potential. We consider to this end the following finite-dimensional subspace of H per(A L) (for N > 1)
Xn(Ap) := Span{ey | k€ Z,|k| < N}. (2.90)

For ¢(z) € Xn(AL), we have the following representation:

N
()= D, (@) ex(®), ()= D, v(@)e (). (2.91)

N xEﬁZﬂAL
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Let us verify that the normalization is correct. First of all

N N

L
v = Y aWam= Y (g 5 e |aw
k=—N k=—N x’egNﬂAL
N
o L / 1 iz—”k(x—$’)
2N +1 LZ (@) <L Z er (2.92)
LB,€72N+1ZHAL k=—N
k=k+N
= e'r
P Z
2N+1 L
Forx,z’ € ﬁZﬂAL,there exists 0 < m,n < 2N suchthatz = —%—i— ﬁn and 2’ = —%—i—ﬁm.
Therefore (2.92) becomes
. L 12—7r E—N)(z—2')
Y@ =g 2 Z ¢
I’EﬁZﬂAL
1 2N -
_ Z w(x/) Z elQﬂ'(k*N)ﬁ
2N +1 eion =
1 oN o
_ Z w(x/) Z elQ?T;’T_le e—127r2”N:_”1N
2N + 0<m<2N T—0
1 —igr 2om N
- D @) (2N + 1)) e T
2N +1 0<m<2N
= Y().
Introduce the variational problem on Xy (Ar): find ¢po N, 1 v, - € Xn(Ar) andegny < ey v < ...

such that

Von € Xn(Ar), J ¢zN 2) oy (2 )dZJrJAHN(V@N)( z)on(z )dZ—&Nf i (2)pn(2) dz,

¢j 6iN(2)pin(2)dz = 65 5,

(2.93)
where Il is the projection onto X (Ayr). The problem (2.93) can be recasted as
(For —N<k<N, 1<i<2N+1:
2N N N
J Z ¢ (dinN) € ek—i-f ( Z 1, (VN> eg> ( Z ¢j (¢iN) ejek>
AL j=——N AL \y=—2n j=—N
4 (2.94)
j Z C] QS@NC)@]@k,
AL j=TN,
- N
f ( >, ¢ (din) g) ( > (k) €e> = ik,
L AL \j=—N =—N
which can be simplified as:
For —Nsk:gN, 1<i<2N+1:
27rk 1 ¥ N (2.95)
3 c (PiN) + 7T Zj ¢; (9i,N) Ch—j (VN) = gic (PiN) -
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In order to write (2.95) in matrix form, we define a (2N + 1) x (2N + 1) matrix

1]2zN)|2 1 v 1 T 1 T
27+ Jreo (VN> Noee (VN> VLN <VN>
1 (T tzev=n* 1 () L. %
Agyar e 7T (VN> o - ‘ + Jzco (VN) JLC-2N+1 (VN>
1 (o 1 (5 . 1|2nN |2 1 Y
JLC2N (VN) JLC2N-1 (VN> e | BRI+ 7L (VN>
Hence (2.95) can be represented as a spectral problem of Agp1:
c—n (¢i,n) c—n (¢i,N)
Aonin C—N+'1.(‘¢1,N) _ C—N+.1.(.¢i,N) . (2.96)
en (¢iN) en (¢in)

Remark that Asn 4 is a Hermitian matrix, which only has real eigenvalues. Once the wavefunctions ¢; n
are obtained, the density follows from the last equation in (2.89):

2N

1
prv(@) = > crlpyn)en(x) = o > (er — &)l (@))?
k=—2N gi<ep
11 N - 2
_ - = o Ne (b . 1 (t—j)z
B 2WL5<Z€F]-=Z_:N@_ZN(€F )y Glea (i) et (2.97)
E;j:k , 2N 1 min(N,N—k)
= 3 > 7i > | (er ) > ¢ (@i,N)Cjrk (Di,N) | | €x().
k=—-2N EiSER j=max(—N,—N—k)
Hence
11 min(N,N—k)
¢ (py,N) = o JT (er — i) > ¢j (PiN)Civk (Pin) |, —2N <k <2N.
EiER j=max(—N,—N—k)

(2.98)
Note that the density is represented in X (Az) since it involves squares of functions in X (A ). Finally,
it is possible to associate a potential Viy € Xon(Ar) to py, n € Xon(Ar) with the second equation in (2.89).
The Fourier coefficients of Viy read From (2.89), the coefficient of the approximated potential can be written
as:

V —2N <k <2N:

Ck (XN/N) - Qck(p%N) —VLpoS.o — cx(Vper.1)
m? + |2mwk/L|?
min(N,N—k —
_1 F7 Dei<ep ((er —€0)) - Zj:ngax(—N,)—N—k) ¢ (Din)Cjrk (i,N) — VLol — ck(Vper,L)
o m? + 27k/L]? ,

(2.99)
where 0y, ¢ is the Kronecker symbol.

Iterative resolution of the problem

We rely on an iterative procedure to solve the nonlinear fixed-point problem (2.89). The integer N is related
to the dimension of the Galerkin space (2.90), while the integer n indexes the iterations in the fixed-point
loop. Take a positive constant 7 small enough as convergence rate parameter (Step (4) below). Starting
from the potential V) = 0 so that 7%, = ﬁ SH(?Q T —o,ep) (Ty,L) dg and

1 1
EmAp (7?\,) = (2ﬂ)2ﬂL ((TL —€p) 7?\,) = —5211 (821 < eF) (eF — 6})2.
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the procedure is the following: For n > 0,

(1) Compute the wavefunctions {¢!' }i>1 and eigenvalues {\;};>1 obtained from (2.96) with V' replaced
by V}, and construct the corresponding density matrix as

1 2N+1
Tt = Py 21 max (0, er — e n) 97N (BN
1=

(2) Use the optimal damping algorithm (ODA) to obtain the new density matrix fyﬁ’l from ~%; and %‘,H

(see below);

(3) Construct the potential Vﬁ“ using (2.99) from the new density ,0245\,1 () = ’y]’\‘,H (z, z) obtained by (2.98);
(4) Check whether some termination criterion is met (e.g. ||,0:J]r\,1 - pZ,NHLﬁer(AL) < anZ,NHL%ﬂ(AL) for
some smal tolerance 7n); otherwise increment n and go back to (1).

Let us now make precise how Step (2) is performed. The idea of ODA [Can00] is to write 'y}fﬁl as a
convex combination of v}; and ’Ny]T\L,H, and optimize upon the parameter determining the combination in
order to minimize the energy. More precisely, we introduce a mixing parameter « € [0, 1] and the objective

function
V@) == Emay (1= a)vk + AR

Denoting by ag;cl = argmin { it (a),aelo, 1]} the optimal mixing parameter, the new density matrix
is then defined as (1 — a&j}l)’y;{, + ag;rtl%ﬁ‘[“. For the rHF model, determining this parameter amounts to

finding the roots of a second order polynomial. More details can be found in Section 2.5.1.

2.4.3 Numerical results

We finally present results of numerical simulations to illustrate the behavior of the perturbation of the
electronic density induced by sharp trenches modeling a capacitor. More precisely, we consider v(z) =
—pol|;|<y for w > 0. The physical parameters are chosen as ep = 2.0, w = 4, while the computational
parameters are set to L = 300, N = 1500 and n = 1078,

We plot in Figures 2.4 and 2.5 the total electronic density pyg + v + p,.., for two values of the Yukawa
parameter m > (. We can observe Friedel oscillations [Fri52] in the densities, which can be fitted away

from the defect as
cos (2ez + 9)
pvm(2) = po + GT;

see the values of a, d, € obtained by our fit in the captions of the figures. Remark that the fitted value of €
is close to the Fermi level, as predicted by [Fri52].

2.5 Appendix

2.5.1 Optimal damping algorithm

In this section we give more details of the ODA used for the iterative solutions of (2.96),(2.98) and (2.99). It
consists in finding an optimal mixing parameter to construct the density matrix at step n + 1 from step n.
At iteration step n, denote by 7} the density matrix with density pl) \(z) := 7} (2, ). Denote by V[ the
potential. Denote by 'Ny}(ﬁl the solution of Euler-Lagrange equation (2.88) at iteration step n + 1, we then

have

~n+1 1 ® n 1 ® (X gn+1 q q
W = gt o Momert Ta + VR da = oy [ D1 < e o)) da. 2100

R? k2 \i=o
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Figure 2.4: Electronic density p, ,, for m = 4.
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5.36 4 —— Total density
5.345
5.34 1 5.340 1
5.335 o -
5.32 1 ’ -
5.330 1
5.30 5.325 A
5320 4 --- Fit: a=1.026, 6=-6.040, £=2.087
5.28 — P
5.315
5.26 ; ; ; ; ; 5.310 -— ; ; ; ; ; ; ; ;
-30 -20 -10 0 10 20 30 4 6 8 10 12 14 16 18 20
z z
Figure 2.5: Electronic density p,, ,, for m = 2.
with density ﬁz}“\} (z) := %" (2, 7). Remark that we do not need to calculate explicitly 7%, and ¥%". The
ODA algorithm consists in finding the minimizer of total energy &, in the segment [v%,5%"!] as
m,Ap, N> IN

density matrix ’yJT\L,H at step n + 1. In order to do so, we introduce a mixing parameter « € [0, 1], and an

objective function
FrH @) = Ema, (1= )1 +o3xH) -

We look for the optimal « to minimize f"*1(«), that is

agy = argmin { [ (a), € [0,1]}. (2.101)
Moreover,
Emay () = 1" alhh). (2.102)

Denote the kinetic energy by
K™= Trp (Te — er) 8 K™ = Trp (To — er) V5) -
An explicit calculation of ! gives:

FrHa) = Emay (L= )k + aAR™) = Top (Tr — er) (1 — )iy + axH))

1
+ 5Dy (0= @0 + a5 ) = vier, (1= @0 + @) = vper)

=a"a? + 0" a4
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where

n+1 n

5 DmaL (p%N P PN = p%N>

1
22—
b3 (o (7)) G ),

—2N<k<2N

b = Try ((TL - 6F) (’YKI+1 - ’7]?/)) + Dm,AL <p2,N — Vper, ﬁ:j\% - pZ,N>
=Tr, (Ty + Vi —er) BN — %))
n+1 n+1\2 n n 7
=—m ) L <ep) (er =) K" = Y a(VR) e (),
%

—2N<k<2N

1
"t = Try, (Tr — er)vN) + §Dm,AL (pZ,N — Vper, PZ,N - Vpcr) = Em,AL (Yv)

1
K"+ Y (V) (e (oR) — e ).
—2N<k<2N

~n+1

"+l Since p 'y verifies the Poisson

n+1 bn+1

We now give more details for the calculations of a and ¢

—_— —~

equation — VIt + m2yVutt = Z(ﬁfﬁvl — po — Vper), and {cx (V)}_yn<p<on are obtained by (2.99)
from the Fourier coefficients {cy (X))} _on<p<on Of P - thus verifying the numerical Poisson equation
— (V" + m2Vi = 2(p N — Po — Vper). Therefore

1
@ = S D, (P = 5 PR = P )
1 ~
=5 2 (@ () = ) (e () = ex (05)

—2N<k<2N

Let us now turn to "1 and ¢"t!. Remark that

1 d?
((_2dz2> + V]G) ¢?+1 _ 8?+1¢Zn+l7 8?+1 <ep.
L

g,n+1
i

Together with (2.100) we get 5?“ =¢ +ep — “1‘ and

K™ 3 e (Ve () = Tep ((Te + VR = er) 73T
—N<k<N

1 1 d? [ — n
BCE fR TYL%ermw(((‘w) Ty e )”N”) dq

1 n+1
- (27r)2 JRZ <€gn ]163’"“@) dq
Z J n+1 — € + @ 1 2 dgq
27-[- 2 2 E?+1—EF+%SO (2103)

1 +1 2ep—epth) e 2
= 1(e" < nrl — d
o ,- (51 eF) L (61 €p + 5 ) rar

n+1
1 )

_ = 1(€n+1<6 ) (6n+1_€ )ﬁ_’_ﬁ
T4t e A F
i

IS ) e et
7

Q(EF 8

This allows us to gives the results of 5”1 and ¢"*+1.
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2.5.2 Expressions of v, and p

By density of .#(R3) in L?(IR3), it is sufficient to prove that, for any ¢ € . (R?), it holds
W00, (2) = (0 U8),) (2) = (0480) (=), (2:104)
where (g, 2) = ¢¢(2) := (UP), (2) € S (R3). Now, by pseudo-differential calculus,

la® _

(70‘1 9) ) \/% LeR ( oS ) ¥ o (k) dk:
LGRLR (kQHqg’ <€F> =gy (2) dz’ dk

K |q,2 ik(z—2") ,—ig-r’ ot ’og
— —\GF e e o(r',2") dk dr' dz'.
277 /eR JreR? ke]R 2

On the other hand, for r € RZ and z € R,

1 2 ~
<wﬁ@ﬂ€i<@)‘ Di(6) de
LA 7“ rz— z)
27T LER3L€RQZER < > ¢(T Z)d&dr dz'.

Writing £ = (¢/, k), it holds

(70(25)(7“7 Z) =

W%@M)=1JW 97 (306) . ) dr

2
. i, ) <‘q’ 4+ = < 6F> elk(Z—Z )e—ICI'T qb(?”/,z/) dk? d'f'/ dZ/
€ 'eR?,z'e

)g ()

r

which shows that (2.104) is satisfied.

Remark 2.21. The integral kernel of yo 4 reads

1 k2 2 : ,
Yoq(2,2") = 2WLR1<+‘Q|<6F>e‘k(Z_Z)dk.
(S

Therefore,
1
po.g(2) 7= 0,4(2:2) = —\/2er — |4, (2.105)

which is independent of z. The total electronic density is then

1 1 (VEr
= — 2)dg = f 2ra/2ep — r2dr,
pO (27T>2 jq2<25F pO»Q( ) q (27T) F
V2ep
I S (2ep — TQ)S/Q _ ! 2(26F>3/2
2m)? | 3 0 (2m)2 3

which provides the expression of e in (2.3).
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2.5.3 More details for the proof of Lemma 2.17

In this section we show that for ¢ € R?, a Hilbert-Schmidt operator with finite kinetic energies in K, can
be approximated by finite-rank operators in Ky. Moreover, the convergence (2.67) holds. To this end, let
us prove that for a fixed N € N* and g € R? such that Py ,Q Py, with Q, € @707 , can be approximated
by finite-rank operators in /Cy, where recall that Py, := ]1[ 1N (|Ty — erl) and

Qq/o_’q = {Qq € 62‘@(1 = 27 Q;_ri € 61; _’YO,q < Qq < 1 _70,q} .

We first show that for all ¢ € R? any Hilbert-Schmidt operator Q, € évo,q can be approximated by finite-
rank operators (Qn,q), cn+ € é‘m, .- The proof relies on the results in [HLS09a, Proposition 2, Theorem 5
and 6], which consist in characterizing mathematical properties for two general orthogonal projectors P
and IT on a Hilbert space $) such that P — II € &3($)). See also [Lew09, Appendix A] for a detailed and
pedagogic summary for the properties of these orthogonal projectors.

Lemma 2.22 ([HLS09a, Theorem 5] Projectors and BDF-states in the Fock space ). Let =, © be orthogonal
projectors on §). Denote by 1 := (1 — O)$) and H_ := OF. Assume also that = — © € Go($)). Denote
by (fi,---, f1) € (594)* an orthonormal basis of By = Ker(E — © — 1) = Ker(0) n Ker(1 — ) and by
(91, ,9n) € ()M an orthonormal basis of E_; = Ker(Z — © + 1) = Ker(1 — ©) n Ker(Z). Then
there exists an orthonormal basis (v;)i=1 < $4 of Ei in $, and an orthonormal basis (u;)i=1 < H_ of B+,
in $)_, and a sequence (X\;);5, € (*(R") such that

M
O = > lgm){gml| + Y Jus)Cuil (2.106)

m=1 =1
and
L
- Z | f) {fnl = Z |9m.) {gml| +Z 1+/\2 ([vi) Cuil = |uip Cusl)
n=1 (2.107)
Z \2 (Jug) Cvil + |vip <) -
Remark that

Relying on Lemma 2.22, let us now give the structure of operators belonging to @m , forany g e R2.

Lemma 2.23 (The structure of é’vo,q [HLS09a, Theorem 6]). For any q € R?, the operators in é,yqu are of
the form

Qq =Up, (V0,4 + 1) U-p, —0,¢: Ubp, 1= exp(Dg — D), (2.108)
where
1. Dy € &3(9) such that Ker(vo,4) S Ker(Dy) and Ker(1 — v0,4) < Ker(Dj);

2. 11, € &1 (9) is a self-adjoint and trace-class operator such that

[0, Tg] =0, =0, <I;T <0, 0<IT <1—104
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Proof. We give here a brief description as elements used in the proof will be used in the sequel. Fixing
q € R?, one first show that [HLS09a, Lemma 15] any Qq € Q~,, can be written as

Qq = E4 — 04 + H;, (2.109)

with =, an orthogonal projector and IT} a trace-class operator such that [Z,, II{ | = 0 and

Trro) (g —70.0) " + Eq—10.4) ) = Trrzm (Yo, (Eq — 70.0) Mg + V0.0 (Eq — Y0.0) Y0,4) = 0
(2.110)
By taking $ = L*(R?), © = vy, as well as orthonormal basis indexed by ¢ € R? (with a slight abuse of
notation) in Lemma 2.22, in view of (2.107), there exists L, € N* such that

Lq
Q¢ =EZq —0q + H/q = Z | frg) {fral — Z |Gm.q) {gm.ql + Z 1+ )\2 (Jvig) ig| — [iq) (wiql)
n=1

=1

iy
+ Z 1 + )\2 (|u1,q><UZ,q| + |/U7,,q><uz,q|) + H;,

>1 2,4
with
Lq
_ |wi g + Aiqiq) (Ui, —l—)\v\
By = D, [fng) (Fngl + ) —2—000 ;q L (2.111)
: 1+ A
n=1 =1
and
V0, = Z |9m.g) {Gm.ql + 2 |wig) Wil - (2.112)
=1

Remark that because of (2.110),
dim (Ker (24 —v0,q — 1)) = dim (Ker (2, —v0,4 + 1)) = Lq.

With these ingredients, the following lemma gives the structure of éw, .- Define

L‘Z
1
Dy = Z |9k,0) {Srql + Z arceos | —re———=- |wig) (Vigl -
k= 1 i>1 L+ A7,
Then the following Bogoliubov transformation holds'
oy = UDq'YO,qU—Dq- (2.113)

The inequality (2.108) holds by defining Il := U_p, II;Up,.
O]

Following the ideas in the proof of [HLS09a, Proposition 2], one can always find a sequence of finite-
rank operators

Lg

1
(Deg) e = Z |Gk.q) {frql + Z arccos | ———— | |uiq) (vigl (2.114)
-2 14 Aﬁq
such that
Dyg —2> D, (2.115)

{—00

"We refer the reader to the end of this section for the proof of the Bogoliubov transform (2.113) of 7o,q by Up,.
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In view of the decomposition (2.112) of g g, it holds

Ly ¢
|wiyg + XigUisg) (Wi + NigUigl
UDE,ququU_DZ,q = Z ’fn,q><fn,q| + 2 A = 1“:_ )\zzq s Z ’ui,q><“i,q .
n=1 i=1 i,q i=0+1
Therefore
Ly ! AQ
UDz,q’YO,qU—Dz,q — Y0, = Z |fn,q> <fn,q| Z |gm, q><gm,q’ Z 14 /\2 (‘Uz,q><vz7q| ‘“i,q><ui,q|)
n=1
J4
D) T (i) il + [vi0) (il
=1 1,9
Lq )\2
1,9
P Z | frg) {frgl — Z |Gm.q) {gm.q| + Z 1+ A2 ([vig) Cvigl — |tig) (uigl)
m=1 i=1 1,9
iy
+ Z 2 (i q) Cvig| + |vig) (uigl)
~ 1+ )\
’L?l 1,9

= UDq'YO,qU—Dq — Y0,q in 62.
(2.116)
Moreover, there exists an orthogonormal basis (€y,q), .+ of L?(R) and sequences of real numbers 0 <

<)\J—ri > < 1 tending to 0 when n — o, such that
neN*

In,q
ii
+ Z )\H n,q ’en7Q> <en7Q‘ .

n=1

=
Define, for all £ € N*, (HZ,q> =+ Zn T “n.q |€ng) {€n,q|. Hence a result of [RS80, Corollary VI.21
and Theorem VI.22] gives

(1, ) ei—@’ (). (2.117)

Therefore in view of (2.116) and (2.117),

P !/ ! . X
Qtq = Upp104U-Dey = V0.0 + Mg = Up,Y0,4U-D, = Yo, + g = Qg In Oy,

This shows that @), € é%,q can be approximated by finite-rank operators (Qy ) oy in é%’ ,- Letus
prove that for any N € N¥, the operator Py ,Q,Pn,4 can be approximated by finite-rank operators
(PNn,qQe,qPN.q) jery+ in Ky. By definition,

H’Tq - €F|1/2 Py q (Qﬁ,q - Qq) PN,q

<17 = erl' Py IQeg — Qule, 7> 0.
Similarly, for any q € R?

1Ty = el 2 P (Qea™* = Q4*%) Pavg Ty — el 2]

1

. \ (2.118)
< H’Tq —€p| / PMqH HQf,qii - quiH& —0.

{—0

Therefore )y, can be approximated by finite-rank operators (Pp,qQ¢,qPN,g), cn+ in Kq. Let us finally
prove that
¢ Ty = | Prg (QuH = Qq ) Py T, —er[? € L' (R% &1)

can be approximated by
a =Ty = er* Prg (Qug™ = Qug™ ) Py ITy — er|"? in L' (R?,&1).

The following lemma allows us to conclude.
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Lemma 2.24. The following uniform bound holds: for any q € R?,
VleN*, 0< TI“LQ(R) (‘Tq - 6F|1/2PN,<1 (Qé,q++ - Qf,q__) PN,q‘Tq - 6FWQ)

2
< H|Tq - EF|1/2PN¢1

T = Qe s, (2.119)

2
< Hqu —ep['?Py g Qi e, < NQTT = Qg g, -

Moreover,
g Q" —Qq " also belongs to Ll(RQ, S1). (2.120)
Furthermore,
nh_{%o ) Trraw) (|Tq - 6F|1/2PN,(1 (Qug™ = Quq™ ) Pl Ty — 6F|1/2> dgq
. (2.121)

- JRQ Trrew) <|Tq —ep['?Py g (Qe"" = Qg ) PrglTy — eFll/z) 4.

Proof. First of all, remark that for any ¢ € R? and / large enough, from the proof of [HLS09a, Proposition
2] (see also [JRB94, Theorem 4.1]) we know that

++ -
TrL2(R) <(UDZ,(1’YOVQU_DZ,Q - ’yovq) + (UDZ,ququU_DZ,q - fYOv‘J) )

= TrLQ(R) ((UDq/yoqu*Dq - ’YO,q)++ + (UDq’YO,qU*Dq - ’YO:Q)__> :

In view of (2.114), the above approximation implies that finitely many particle-holes have been created from
the Fermi sea and when / is large enough, and that the total charge is conserved by the approximation.
See [Lew09, Appendix A.2.3] for more details. This also implies that the particle number is uniformly
bounded. Together with (2.116) we deduce that

++ ——
Trreg) <(UDM’70 qU—DM —0.4) = (U, %0.4U-D,y = Y0.) )

=2L,

q
= Tr2(p) ((UDﬂo,qU—Dq ~4)" " = (Up,04U-D, — 7041)”) :

++
The approximation (2.117) together with the fact that —yp,, < (I )7~ < 0,and 0 < (H; q) <1l-704
implies that

Trrag) ((HZ,q) — (I, __) = é Ming < 2 Ming = Trrzm) ((H;)++ - (H;)__> :
Hence
|Qea™ = Qe |, = Trrem) (Qug™ — Qe ™)
= Trpo(g) ((UDg’q'YO,quDg,q —90.4)" " = (Up, ,Y0.4U-D,, — VO,q)__> + Trreg) ((H27q)++ - (Hé,q)“)
< Trpog) ((UDQ'YO,qU—Dq —0,0) " = (Up,0,4U-p, — Wo,q)__) + Trro(w) ((H;)++ - (H;)")
= Trpo(m) Q" =Q¢ ) =[Q" " — quinel :

Therefore (2.119) holds by the fact that N2 < || T, — €F|1/2PN QH < N2. Use again this fact it is easy to
see that ¢ — |T, — ep|"/2 Py, belongs to L% (R?; L(L*(R))). With this result, by writing

Q" =@y )

—1/2 - —1/2
= (’Tq - €F‘1/2 PN,q) (’Tq - €F‘1/2 Py g (Qq++ —Qq ) Pn 4 ‘Tq - 6F’1/2> <|Tq - 6F‘1/2 PN,q)
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and use the fact that |T}, — ep|"/? N (Qa ™ — Qg™ ™) Pnyg [Ty — er|'/? belongs to L! (R%;&1), we de-
duce that (2.120) holds. In view of (2 118) (2.119) and (2.120), by the dominated convergence theorem we
can conclude (2.121). O

Proof of Bogoliubov transformation (2.113) of vy , by D,.

In order to simplify the notation, we discard for convenience the indexes ¢ € R? to prove (2.113). First of
all, as <fz |gj> =0, <fz ’ f]> = (Sij, and (g; ]gj> = (51']‘ forall1 <i,5 < L, for (gi)lgz’sL e RE, it holds

L
eXP(ZQi(|gi><fi|_|fi><gz) Hexp (lgip {fil = [fir<ail)) - (2.122)

Similar relationship holds for orthogonormal basis (u;),~; and (v;),>,. In view of this, we first consider a
rank-1 Bogoliubov transformation.

Step 1. Rank-1 Bogoliubov transformation.
For (f|g) = 0and {f| f) = 1and {g| g) = 1, we consider the unitary transform Uy := e(|9)FI=1F9]) of

the rank-1 projector vy := |f){f]| for 8 € R, where (f | g) = 0. Denote by T' := |g){f| — , note
that T2 = — | f){f| — |g){g| and T® = —T, therefore
+00 o0 0
_ o (—1)m
U, = PU9XFI=11X9) = 0T — -1 T pemtip 929T2
0=¢ ¢ nZ::l n! + mZ: (2m +1 a
=1+sin(0) T + (1 —cos(d)) T?. (2.123)

In view of this, the Bogoliubov transformation of ~yy is

UgvoU—g = (1 +sin () T + (1 — cos(8)) T?) v (1 — sin (§) T + (1 — cos(8)) T?)
= (sin (0) [g) {f| + cos(0) [ /) {f]) (1 = sin (0) |g) {f| + sin(0) [ f)<{g| — (1 = cos(0)) (|/){f| + 19)<q]))
= sin” (6) |g) {g| + cos® (8) | £) (f| + sin (8) cos (8) (| (gl + 19) {f]) -

(2.124)
By taking 6 = 7,
UgvoU-0 = |9) (gl (2.125)
By taking 6 = arccos (m) for some A > 0, (2.124) gives
/\2
UnoUg = i3 1001 + 153 1D+ 1oy (1546l + 1))
_ A9 + Al (2.126)

14+ A2

Remark also that in view of (2.123), for u orthogonal to both ¢ and f, thatis (u|g) = 0and (u|f ) = 0, it
holds

Up (Juy{u|) U_g = 0. (2.127)

Step 2. Bogoliubov transformation of g 4 by Dj.
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In view of (2.122), (2.125) and (2.126), by using the orthogonality (2.127), it holds

Up,7,4U-D,
Lq
0 1
= H exp (5 (k.07 {fr.ql = |frq) <9k,q|)) HeXP arccos | ——— | ([ti,¢){Vi,q| — [vi,q) (wi,ql)
: / 2
k=1 i>1 1+ Ai,q

Lq Lq
(2 |Gm.q) {gm.q| + Z |wi,q) (Uig ) H exp (_g (19k,a) {fr.qal = | fr0) <9k,q|)>
m=1 k=1

1>1

1

Hexp —arccos | ————— (’Ui,q><vi,q
i=1 m

Lq
Ui g + NiqUs Wi o+ N U
= ) ) Ul + 3 P ) i+ At
n=1 121 i,q

)

— |vig) (uig

Therefore we can conclude (2.113).



CHAPTER 3

L]UN CTION OF QUASI 1D SYSTEMS WITH COULOMB INTERACTIONS

This chapter describes results obtained in [Cao19].

Abstract. Junctions appear naturally when one studies surface states or transport properties of quasi
one dimensional materials such as carbon nanotubes, polymers and quantum wires. These materials can
be seen as 1D systems embedded in the 3D space. We first establish a mean—field description of reduced
Hartree-Fock type for a 1D periodic system in the 3D space (a quasi 1D system), the unit cell of which is
unbounded. With mild summability condition, we next show that a quasi 1D system in its ground state
can be described by a mean—field Hamiltonian. We also prove that the Fermi level of this system is always
negative. A junction system is described by two different infinitely extended quasi 1D systems occupying
separately half spaces in 3D, where Coulombic electron-electron interactions are taken into account and
without any assumption on the commensurability of the periods. We prove the existence of the ground
state for a junction system, the ground state is a spectral projector of a mean-field Hamiltonian, and the
ground state density is unique.
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3.1 Introduction

We consider a junction of two different quasi 1D periodic systems without any assumption on the commen-
surability of the periods. Generally speaking, there are two regimes for the junction of two different periodic
systems: when the chemical potentials of the underlying periodic systems are separated by some occupied
bands (non-equilibrium regime, see Fig. 3.1), and when the chemical potential are in a common spectral gap
(equilibrium regime, see Fig. 3.2). The non-equilibrium regime models a persistent (non-perturbative) cur-
rent in the junction system [BJLP15, BJLP16a, BJLP16b, CDP12], while the equilibrium regime can model
either the ground state of the junction material or the presence of perturbative current in the linear re-
sponse regime [CDNPO08]. In this article we consider the equilibrium regime, and only briefly comment on
the non-equilibrium regime in Section 3.3.2, as the study of this situation requires different techniques.

We establish a mean-field model to describe the junction of two different quasi 1D periodic systems
(see Fig. 1.7) in the 3D space with Coulomb interactions in the rHF description. This non-linear model can
be employed to describe the junction of two nanotubes, or a more realistic model of junction of two quasi
1D crystals for electronic structure calculations. It can be further explored to study the linear response
with respect to different Fermi levels between two semi-infinite chains: recall that the famous Landauer-
Biittiker [Lan70, BILP85] formalism for electronic (thermal) transport which is based on the lead-device-
lead description, can be seen as the junction of two different quasi 1D systems (leads) with different chemical
(thermal) potentials, and the device as a perturbation of this junction. Remark also that p-n junctions
of carbon nanotubes without external battery [LT99, LGHO04] correspond to the equilibrium regime, and
can thus be described by the model we consider. Futhermore, our model can also be adapted to describe
some 1D dislocation problems in the 3D space, while the linear 1D dislocation problems have been studied
in [Kor00, Kor03] and some generalizations have been provided for higher dimensional systems [DPR11,
HK11, HKSV15].

3.2 A reduced Hartree-Fock description of quasi 1D periodic systems

In this section, we give a mathematical description of a quasi 1D periodic system in the framework of the
reduced Hartree-Fock (rHF) approach. In Section 3.2.1, we introduce some mathematical preliminaries. In
Section 3.2.2 we construct a periodic rHF energy functional for a quasi 1D system.

Unless otherwise specified, the functions on R considered in this article are complex-valued. Elements
of R? are denoted by « = (z, r), where z € R.

3.2.1 Mathematical preliminaries

We first introduce a decomposition of the operator which is Z-translation invariant in the z-direction
based on the partial Bloch transform. In order to describe the 1D periodic system in the 3D space, we next
introduce a mixed Fourier transform. We also introduce a Green’s function which is periodic only in the
x-direction. Finally we introduce the kinetic energy space of density matrices and Coulomb interactions
for quasi 1D systems.

Bloch transform in the z-direction. For k € Z, we denote by 7;7 the translation operator in the x-
direction acting on L2 _(R3):

Vue L (R®), (rfu)(-,r) = u(- —k,7) foraa. reR%

loc
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An operator A on L?(R?) is called Z-translation invariant in the z-direction if it commutes with 7 for all
k € Z. In order to decompose operators which are Z-translation invariant in the x-direction, let us without
loss of generality choose a unit cell I" := [~1/2,1/2) x R?, and introduce the L? spaces and H' spaces of
functions which are 1-periodic in the z-direction: for 1 < p < +00,

per,z loc

P (T):= {u e [P (R%) ‘ lall oy < 400, 7w = u, Yk € Z} :

H (F)::{ueLz (I‘)’Vue(Lz (r))3}.

per,z per,r per,r
Let us also introduce the following constant fiber direct integral of Hilbert spaces [RS78]:

® d¢

2 .72 —
L (F*7 Lper,a: (F)) T L* Lper,m (F) %?

with the base I'* := [, 7) x {0} = [, 7). The partial Bloch transform 4 is a unitary operator from
L?(R3) to L?(I'*; Lger’m (T')), defined on the dense subspace of C*°(R?) of L?(R3):
V(z,r) €T, VEeT*, (Bo) (x,1) = > e 4 k7).
keZ

Its inverse is given, for fo = (f¢)ecps by

; d
VkeZ, foraa (v,r)el, (B7'f.)(x+kr):= j el(k”)gfg(x,r) o
T* ™
The partial Bloch transform has the property that any operator A on L*(R3) which commutes with 77
for k € Z is decomposed by %: for any A € L(L*(R%)) such that 7¥A = A77, there exists A, €
LP(I*; L(L2,, . (T))) such that for all u € L?(R?),

(B(Au))e = Ae(PBu)e foraa el

We hence use the following notation for the decomposition of an operator A which is Z-translation invari-

ant in the z-direction:
L [®, de
A=A Ag — | A.
T 27T

In addition, || Al 712 (gs)) = H | Ae ”E(L%Jer,w(r)) HLOO(F*). In particular, if A is positive and locally trace-class,

then for almost all { € I'*, A¢ is locally trace-class. The densities of these operators are related by the

formula )
pa@) = 5 | pacla)ds (31)

If A is a (not necessarily bounded) self-adjoint operator such that 7* (A +1) ™! = (A+i)"!7f forall k € Z,
then A is decomposed by U (see [RS78, Theorems XII1.84 and XIIL.85]). In particular, denoting by A the
Laplace operator acting on L?(R?), the kinetic energy operator —1 A on L*(R3) is decomposed by % as
follows:

1 1 d
—5A= Bt (L —54¢ 27"?) B, —N¢=(—iVe)? = (10, — &) — A, (3.2)

where A, is the Laplace operator acting on L?(R?).

Mixed Fourier transform. The mixed Fourier transform consists of a Fourier series transform in the x-
direction and an integral Fourier transform in the r-direction. Denote by .#}er - (I') the space of functions
that are C® on R? and I'-periodic, decaying faster than any power of || when |r| tends to infinity, as well
as their derivatives. Denote by .7, . (') the dual space of .#per (I"). The mixed Fourier transform is the

per,z
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unitary transform .# : L2, . (I') — (* (Z, L*(R?)) defined on the dense subspace .#per o (I') of L2, . (T')
by:

Vo € Fpera(D), V(n, k) € Zx RE,  Fo(n, k) f d(x, r) e 1CTTHRT) qo (3.3)

Its inverse is given by,

v (wn<k:)>nez weR? € £2 (Z; LQ(RQ)) , ﬁ_llb(wﬂ“) - 27 ¢n(k3) ei(27rnz+k-7") dk.
’ ™ R2
=
Note that .7 can be extended from .7}, ,(T) to ./(R?). One can easily see that .7 is an isometry from
L2, . (T) to ¢ (Z, L*(R?)) in the following sense:
Vf,ge L2, (T Jfa:r z,7 dmdr_Zf Z f(n, k) Fg(n, k) dk. (3.4)
nez
Moreover, it is easy to verify that for f,ge L2 . . (T),
F (f*rg) =2n(Ff)(F9), (3.5)
where (f *r g) = { f(® — «')g(«') da’. As an application of the mixed Fourier transform, let us

introduce a Kato Seller Simon type inequality [SS75] for the operator —iV¢ = (—id, + £, —i0,) for all
¢ € I'*, which will be repeatedly used in the proofs.

Lemma 3.1. Fix{ € T*. Let2 < p < 4w and f, g € LBe; »(T). Then

1£(=iVe)glle, (12

per x

1/p
o) S 2m) 22|\ gll ..oy (Zﬂf 21 + &) |75 (e > : (3.6)

neZ

forany2 < p < o0 and

1F(=1Ve)gll < llgllrg

per,x

rysup|| f (2mn + &, ')”LOO(]R2)7
nez
when p = +00.
The proof of this lemma can be read in Section 3.4.1.
Periodic Green’s function. We introduce a 3D Green’s function which is 1-periodic in the z-direction
in the same spirit as in [BLB00, LIE].

Definition 3.2 (Periodic Green’s function). For (z,7) € R3, the periodic Green’s function is defined as

G(z,r) = =2log(|r]) + G(z,r), G(z,r):=4 Z Ky (2mn|r|) cos (2mnz) , (3.7)

n=1

where Ky(a) := aroo e~ cosh(t) dt is the modified Bessel function of the second kind.
The following lemma summarizes the properties of the periodic Green’s function defined in (3.7).

Lemma 3.3. 1. The Green’s function G(x,r) defined in (3.7) satisfies the following Poisson’s equation:

_AG(xa T) =4m Z 6(x,r):(n,0) € yl(Ri’)),

nez

where 6, € /' (R?) is the Dirac distribution at a € R%. Moreover G € ... .(T') and

per,z

2

FOR) =

e .7 (R3). (3.8)
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2. The function G defined in (3.7) belongs to Lbe; »(T') for 1 < p < 2 and satisfies Sr = (0. Moreover,
<" hen|r| — +o0, and |G(-,7)| <

Virl

“1—2' when |r| — 0, uniformly with respect to x. Finally, the function G(z, ) can also be written as

there exist positive constants dy and dy such that |G (-, )| < d &

N 1/2 1
G(x,r dy | . 3.9
(@,7) = é(«/x—n 2+ v JapS@—y—n2+ ] y) (3.9

The proof of this lemma can be read in Section 3.4.2.

One-body density matrices and kinetic energy space. In mean-field models, electronic states can be
described by one-body density matrices (see e.g. [CDL08a, FLLS13]). Recall that for a finite system with NV
electrons, a density matrix is a trace-class self-adjoint operator v € S (L2(R3)) n 61(L2 (R3)) satisfying
the Pauli principle 0 < 7 < 1 and the normalization condition Tr(~) = SR3 py = N. The kinetic energy
of v is given by Tr(—%A’y) = Tr(|V|y|V]) (see [CLBLOL, CDL08a CSlZ])

Consider a 1D periodic system in the 3D space, where atoms are arranged periodically in the x-direction
with unit cell " and first Brillouin zone I'*. Since the rHF model is strictly convex in the density [Sol91], we
do not expect any spontaneous symmetry breaking. Therefore the electronic state of this quasi 1D system
will be described by a one-body density matrix which commutes with the translations {7}’ }, _,, hence is
decomposed by the partial Bloch transform Z. In view of the decomposition (3.2), we define the following
admissible set of one-body density matrices, which guarantees that the number of electrons per unit cell
and the kinetic energy per unit cell are finite:

Pper,z : = {’y € S(LQ(R3)) |0 <~ <1,VkeZ,1y=n1L,

(3.10)
L* Teps, (1= Bene /T Bg) de < oo} ,
where
d
v=2" (J Ve g) B. (3.11)
$or
For any v € Pper,q, it is easy to see that p, € Léer .(I'). Moreover, a Hoffmann-Ostenhof type inequal-
ity [HOHO?77] can also be deduced from [CLBLO01, Equation (4.42)]:
2 dg
) Vo, < TrL}%er (—A¢ye) 9 (3.12)

Therefore ,/p5 is in H.,, ,(T') hence in LS, (') by Sobolev embeddings, so that p, € Lbe »(I) for

per,r per,z
1 < p < 3 by an interpolation argument.

Coulomb interactions. Recall that the Coulomb interaction energy of charge densities f and g belong-
ing to L%/°(R3) can be written in real and reciprocal space as:

- f@o@) , ., [ [(R)5k)
D(f,9) := ng o o] T =T e

In order to describe Coulomb interactions in the reciprocal space for a quasi 1D periodic system, we gather
the results obtained in (3.4), (3.5) and (3.8), and define the Coulomb interaction energy per unit cell for
charge densities f, g belonging to #per(I) as:

r(f,g) = 4 Z f K)F(9)(n.k) 4 (3.13)

\kP + 4m2n?
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It is easy to see that Dp (-, -) is a positive definite bilinear form on .#p¢; - (I'). Let us introduce the Coulomb
space for the 1D periodic system in the 3D space as

CF = {f €, (F) |V7’L€ Zay(f)(na) € Llloc(RQ)vDF(fa f) < +OO}> (3-14)

per,z
which is a Hilbert space endowed with the inner product Dr(-, -).

Remark 3.4. Remark that charge densities in Cr are neutral in some weak sense. Indeed, for f € Cr () L., . (),

per,z
the condition (. % dk < +o0 implies that F(f)(0,0) = . f(x,r)dxdr = 0.

3.2.2 Reduced Hartree-Fock description for a quasi 1D periodic system

Based on the kinetic energy space and Coulomb interactions defined in the previous section, we construct
here a rHF energy functional for a quasi 1D periodic system which is 1-periodic only in the z-direction.
Actually the previous situation is perturbed by adding positive charges spread periodically along the z-axis
and we want to study the new nonlinear equilibrium. We show that its ground state is given by the solution
of some minimization problem. Denote by Z € N* the total nuclear charge in each unit cell. For the sake
of technical reasons we model the nuclear density of a quasi 1D system by a smooth function (smeared
nuclei) which is 1-periodic in the z-direction

frper(z, 1) = Z Zm(z —n,7),

neZ

where m(x, r) is a non-negative C¢°(T") function such that {5 m = 1. In particular .. pper = Z.
For any trial density matrix v which commutes with the translations 7;’ in the z-direction, the periodic
rHF energy functional for a quasi 1D system associated with the nuclear density piper is defined as:

1

= — Trro
27'(' T* L

1 1
gper,ﬂc(’}’) : 2er,z(T) <_2A§7§> d§ + §DF (p’Y — HMper, Py — Mper) . (3.15)

Let us introduce the following set of admissible density matrices for this rHF energy functional, which
guarantees that the kinetic energy and Coulomb interaction energy per-unit cell are finite:

Jr = {76 Pper,a: |p’y — Mper ECI‘},
where Pper - is the kinetic energy space defined in (3.10) and Cr is the Coulomb space defined in (3.14).

Lemma 3.5. The set Fr is not empty. Moreover, for any v € JFr,

| o= | (3.16)

The proof of Lemma 3.5 relies on an explicit construct of an element in Fr, and can be read in Sec-
tion 3.4.3.

The periodic rHF ground state energy (per unit cell) of a quasi 1D system can then be written as the
following minimization problem:

Iper = inf {Epere(7); v € Fr }, (3.17)

The minimization problem similar to (3.17) under the Thomas-Fermi type models has been studied in [BLB00],
where the authors proved the uniqueness of the minimizers, and justified the model by a thermodynamic
limit argument. For a 3D periodic crystal, the minimization problem (3.17) has been examined in [CLBL01],
where the authors showed the existence of minimizers and the uniqueness of the density of the minimizers.
The characterization of the minimizers is given in [CDL08a, Theorem 1]: the minimizer is unique and is a
spectral projector satisfying a self-consistent equation. The following theorem provides similar results for
a quasi 1D system: we show that the minimizer of (3.17) exists, and that the density of the minimizers is
unique. Let us emphasize that the unit cell of a quasi 1D system is an unbounded domain I', hence we need
to deal with the possible escaping of electrons in the r-direction, a situation which needs not be considered
for bounded unit cells as in [CLBL01, CDL08a].
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Theorem 3.6 (Existence of rHF ground state). The minimization problem (3.17) admits a minimizer yper
with density p., belonging to Lic »(T') for 1 < p < 3. Besides, all the minimizers share the same density.

The proof of Theorem 3.6 relies on a classical variational argument, and can be read in Section 3.4.4.

In order to treat the junction of quasi 1D systems in Section 3.3, it is useful to define and study the
mean-field potential V},er sym generated by the ground state electronic density p,.. and the nuclear density
Hper- It is also critical to obtain some decay estimates of V,er sym in the r-direction. However, for Vper sym
satisfying Poisson’s equation —AVpersym = 47(Pype; — Hper), the LP integrability of p, ., obtained in
Theorem 3.6 does not imply the decay of the mean-field potential V,er sym in the r-direction, given that
the Green’s function defined in (3.7) has log-growth in the r-direction. Moreover, the uniform bound given
by the energy functional (3.15) does not provide any L” bounds or decay property of Vjersym. In this
perspective, we introduce the following assumption on p,, .. Remark that this assumption, which we call
“summability condition" is common when treating 2D Poisson’s equation [LL01, Theorem 6.21].

Assumption 2. The unique ground state density p-,,, of the problem (3.17) satisfies
f 7] Prper (2, 7) d dr < +00. (3.18)
r

With this mild summability condition (3.18) on p»,.,, we prove in Theorem 3.7 that the highest attain-
able energy (Fermi level) of electrons for a quasi 1D system in its ground state is always negative. This
coincides with the physical reality: the additional summability condition on the density is sufficient to
guarantee that the mean-field potential tends to O in the r-direction. If the Fermi level is non-negative,
electrons can escape to infinity in the r-direction, decreasing the energy of the system, hence the system is
not at ground state. Furthermore, we are able to characterize the unique minimizer as a spectral projector
of the mean-field Hamiltonian. We comment on Assumption 2 in Remark 3.9.

Theorem 3.7 (Properties of the rHF ground state with summability condition on the density). Assume that
Assumption 2 holds for the unique ground state density p-,.. of the minimization problem (3.17).

1. (The integrability of mean-field potential.) The mean-field potential
Vpersym 1= (Prper — Hper,sym) *0 G

belongs to LYer (T') for 2 < p < +00. Moreover, Vper sym is continuous and tends to zero in the
r-direction.

2. (Spectral properties of the mean-field Hamiltonian.) The mean-field Hamiltonian
1 d¢ 1 1
Hper =% Hper,{ 27 B=—-A+ Vper,syma Hper,£ = —*Ag + Vper,symu (3-19)
T* us 2 2

is a self-adjoint operator acting on L*(R3) with domain H? (]R3) and form domain H' (R3). There
exists N € N* which can be finite or infinite, and a sequence {\,(§) }eers 1<n<n,, Such that

Oess (Hper,€> = [07 +OO)7 Odisc (Hper,f) = U >\n (‘f) - [_vaer,symHLwyo)-

1<n<Npg
Moreover, the following spectral decomposition holds:
o (Hper) = Oess (Hper) = U U(Hper,§)7 U Gdisc(Hper,f) S Oac (Hper) . (3.20)
el* el*

In particular, [0, +00) < Uess(Hper)~
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3. (The Fermi level is always negative.) The energy level counting function

Ny
1 1

F TR —— Tr 1._ H o dé = — 1A, <kK)d

(K): K ] ). 1200 (1) (L(—o0,6] (Hpere)) d€ \F*!;: L* (An(§) < ) dE

is continuous and non-decreasing on (—o0, 0]. The following inequality always holds:

Ny = F(O) = f Hper,sym
r

which means that there are always enough negative energy levels for the electrons. Moreover, there exists
er < 0 called Fermi level (chemical potential) such that F (ep) = SF Hper,sym = 4, which represents the
highest attainable energy level by electrons, and can be interpreted as the Lagrange multiplier associated
with the charge neutrality condition (3.16).

4. (The unique minimizer is a spectral projector.) The minimizer of the problem (3.17) is unique and
satisfies the following self-consistent equation:

_ d€
Yper = ]l(foc,eF]<Hper) =#! (L* Vper,& 27r> B, Vper,& ‘= ]1(700761:‘] (Hper,é)- (3.21)

Furthermore, there exist positive constants C,. and o ,, which depend on the Fermi level e, such that

0 < Pype (,7) < Cepeer 7], (3.22)

The proof of Theorem 3.7 can be read in Section 3.4.6.

Remark 3.8. As the unit cell of the 1D system in the 3D space is an unbounded domain I, the decomposed
mean-field Hamiltonian Hpe, ¢ does not have a compact resolvent, which is a significant difference compared
to the situation considered in [CLBL01, CDL08a].

Remark 3.9. Let us comment on Assumption 2. Remark that the exponential decay of the density (3.22) implies
the summability condition (3.18). However, we were not able to directly prove (3.18). This failure is mainly due
to the lack of a priori summability bounds for the density matrices in Fr. One might argue that we can add
the condition (3.18) to the definition of Fr. However, the set F1 with the condition (3.18) is not closed for the
usual weak-+ topology when considering a minimizing sequence of (3.15). Another attempt is to use a Schauder
fixed-point algorithm as in [Lio87, CSST 09] to prove that (3.21) admits a solution. The most crucial step is to
guarantee that there are enough negative bound states to meet the charge neutrality constraint (3.16). The
number of bound states is controlled by the decay rate of potentials. With exponentially decaying densities we
can show that [BLB0O, Lemma 2.5] there exists C € R™ such that |Vyer sym (-, 7)| < C|r|~L. Nevertheless this
condition is not sufficient to guarantee that the number of bound states is sufficient, as the critical decay rate
for numbers of bound states to be finite or infinite is —|r| =2 [RS78, Theorem XIIL6]. In other words, we do not
have a uniform bound over the Fermi level e at each fixed-point iteration. On the other hand, the summability
condition (3.18) is a sufficient but probably not a necessary condition for the negativity of the Fermi level and
the characterization of the minimizers. The main difficult is to control the decay of the mean-field potential
Vper,sym in the r-direction by just controlling the nuclear density jipersym, given that the Green’s function
defined in (3.7) has log-growth in the r-direction. Furthermore, different decay scenarios of Vper sym in the
r-direction lead to different characterizations of the spectrum of the Hamiltonian Hpe,: if Vper sym is bounded
from below, and positive with log-growth when |r| — 00, one can show that the spectrum of Hye, ¢ is purely
discrete and the spectrum of Hyer has a band structure. The Fermi level of the system could be positive in this
case. We are not able to prove the above statements without Assumption 2.

In order to describe the junction of quasi 1D systems, more specifically to guarantee that the Coulomb
energy generated by the perturbative state is finite, the integrability of the mean-field potential provided
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in Theorem 3.7 is not sufficient in view of Lemma 3.13 below. In order to make use of this result, let
us introduce a class of nuclear densities such that the z-averaged density is rotationally invariant in the
r-direction:

Nper,sym(377 T) = Z st(x —-n, 7’),

where mg(z,7) is a non-negative C°(T") function such that {; ms = 1. Moreover, there exists mgym, €
CZP(R) such that

1/2
Vr e R?, f o ms(z,7) dr = meym(|7]). (3.23)

Lemma 3.10. Suppose that Assumption 2 holds. Under the symmetry condition (3.23) on the nuclear density
per, all the results of Theorem 3.7 hold for the minimization problem (3.17). Besides, the mean—field potential
Voer,sym belongs to LYe; »(T) forl < p < +o0.

The proof of this lemma can be read in Section 3.4.7. The nuclei of many actual materials can be
modeled with a smear nuclear density satisfying the condition (3.23): for instance nanotubes and polymers
with rotational symmetry in the r-direction.

3.3 Mean-field stability for the junction of quasi 1D systems

In this section, we construct a rHF model for the junction of two different quasi 1D periodic systems. The
junction system is described by periodic nuclei satisfying the symmetry condition (3.23) with different pe-
riodicities and possibly different charges per unit cell, occupying separately the left and right half spaces
(ie., (—o0,0] x R? and (0, +00) x R?), see Fig. 1.7. We do not assume any commensurability of the dif-
ferent periodicities. The junction system is therefore a priori no longer periodic, making it impossible to
define the periodic rHF energy. Inspired by perturbative approaches when treating infinitely extended sys-
tems [HLS05a, HLS05b, HLS07, HLS09a, CDL08a], the idea is to find an appropriate reference state which
is close enough to the actual one. Section 3.3.1 gives a mathematical description of the junction system.
Section 3.3.2 is devoted to a rigorous construction of a reference Hamiltonian H, and a reference one-
particle density matrix defined as a spectral projector of H,. In Section 3.3.3 we construct a perturbative
state, which encodes the non-linear effects due to the electron-electron interaction in the rHF approxi-
mation, and associate the ground state energy of this perturbative state to some minimization problem in
Section 3.3.4.

3.3.1 Mathematical description of the junction system

Consider two quasi 1D periodic systems with periods a;, > 0 and ar > 0. The unit cells are respectively
denoted by I'y, := [—%, %) x R? and I'g := [—2&, %2) x R? with their duals I'} := [—a-:2-) and
'y = [—%, i) We consider nuclear densities fulfilling the symmetry condition (3.23) and suppose that
Assumption 2 holds for the ground state densities of both quasi 1D periodic systems. More precisely, let
mp(z,r) and mg(z, r) be non-negative C'° functions with supports respectively in I'z, and I' such that

SRg my, = 1 and SRg mp = 1. Assume that there exist Mgsym, 1., Msym, r € C°(R) such that

ar,/2 CLR/Q
Vr e R?, J p mr(x,7) dr = msym,L(|7]), j i mpg(z,r)dx = msym r(|7]).
—ar, —ap

Denoting by Z1,, Zr € N\{0} the total charges of the nuclei per unit cells, the smeared periodic nuclear
densities are respectively defined as

pper,(2,7) := > Zpmp(x —apn,v),  fperr(z,7) = . Zpmp(x —agn,r).  (3.24)

nez nez
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The periodic Green’s functions with period I';, and I' are separately defined as

ar, aR

G, (z,7) = a,'G (x,r> , Goplz,r) = aélG <x,r> ,
where G(+) is the periodic Green’s function defined in (3.7). One can easily verify that

—AGq, (z,7) = 4m Z 5(a:,r)=(aLn,O) € y,(R?))v _AGCLR(:Evr) =dn 2 5(1’,1‘)=(aRn,0) € yI(Rg)'

ne” neZ

According to the results of Theorem 3.7, the following self-consistent equations uniquely define the ground
states density matrices associated with the periodic nuclear densities fiper,z, and piper, g:

A

VYper,L ‘= 1(—OO,eL] (Hper,L)a Hper,L = _5 + Vper,Lv Vper,L = (pper,L - Mper,L) *T GaLa
A

Yper,R ‘= ]l(—oo,eR](Hper,R)a Hper,R = _5 + Vper,Ra Vper,R = (pper,R - Mper,R) *Tp G(ZR7

where the negative constants €7, and e are the Fermi levels of the quasi 1D systems. The junction of the
quasi 1D systems are described by considering the following nuclear density configuration (see Fig.1.7):

MJ(SU, T‘) = ]1:):<0 : Nper,L(xv 'I") + ]1x>0 . Mper,R(x7 ’l”‘) + U(l'a ’l"), (3‘25)

where v(z,7) € LS/°(R3) describes how the junction switches between the underlying nuclear densities.
The assumption v € L5/5(R3) ensures that D(v,v) < 400. Recall that

B f(@)g(y) 1 gk
D(f,g9) = JRB s 7,3; — dxdy = 17 Jes 2 dk

describes the Coulomb interactions in the whole space. Once one sets the nuclear configuration (3.25),

electrons are allowed to move in the 3D space. The infinite rHF energy functional for the junction system
associated with a test density matrix v formally reads

1 1
g(FYJ) = Tr <_2A7J> + §D (p'YJ —HJs Py — ,UJ) . (326)

Let us also introduce the Coulomb space C and its dual C’ (Beppo-Levi space [CDL08a]):
C:={pe S (R |pe L (R*, D(p,p) <o}, C:={VeLS(R?|VVe(L*R)}. (327

Remark that the ground state energy of the junction system, if it exists, is infinite and there is no period-

B (Herr) W0 (Hperr)

[ ]
1] ] l

€L

Figure 3.1: Spectrum of Hper, 1., Hper,r in the non-equilibrium regime.

icity in this system, hence usual techniques which essentially consist in considering the energy per unit
volume [CLBLO01, CDL08a] are not applicable. We next define a reference system such that the difference
between the junction system and the reference can be considered as a perturbation. This perturbative ap-
proach has been used in [HLS07, HLS05a, HLS09a, CDL08a] in various contexts. The next section is devoted
to the rigorous mathematical construction of the reference state and its rHF energy functional.
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B (Herr) W0 (Hperr)

€R

B s |0 L] |
[ - i L 1 ] |
ZalfL ', 0 +o0

Figure 3.2: Spectrum of Hper, 1., Hper, g in the equilibrium regime.

3.3.2 Reference state for the junction system

In this section, we construct a reference Hamiltonian obtained by a linear combination of the periodic
mean-field potentials Vj,er 1, and Vj,er r. We prove the validity of this approach by showing that the density
generated by this reference state is close to the linear combination of the periodic densities pper, 7, and pper, r-

Hamiltonian of the reference state. We introduce a class of smoothed cut-off functions. For x € R3,
consider:

X = {XECQ(R?’)]0<X<1; x(x) =1
ifae (—oo,—%] x R?%: y(x) =0ifx e [C%R,%-oo) XRQ}.

Fix x € &, let us introduce a reference potential

(3.28)

VX = XQVper,L + (1 - XQ)Vper,R~

We will show in Section 3.3.4 that the choice of x € X is irrelevant. By Theorem 3.7 and Lemma 3.10 we
know that V,, belongs to L (]R, LP(RQ)) for 1 < p < o0, is continuous in all directions and tends to zero
in the r-direction. By the Kato-Rellich theorem (see for example [Hel13, Theorem 9.10]), there exists a
unique self-adjoint operator

1
Hy = —5A+ 1, (3.29)

on L?(R3) with domain H?(R?) and form domain H'(R?). We next show that the essential spectrum of the
reference Hamiltonian H, is the union of the essential spectra of H e, 7, and Hper g, which implies that the
reference system does not change essentially the unions of possible energy levels of quasi periodic systems,
and that there are no surface states which propagate along the junction surface in the r-direction. Note that
this is a priori not obvious as the cut-off function Y is r-translation invariant (hence not compact), therefore
scattering states may occur at the junction surface and escape to infinity in the r-direction. Standard
techniques in scattering theory to prove this statement, such as Dirichlet decoupling [DS76, HKSV15], are
not applicable in our situation since the junction surface is not compact.

Proposition 3.11 (Spectral properties of the reference state H,). For any x € X, the essential spectrum of
H, defined in (3.29) satisfies

Uess(Hx) = Oess (HpenL) U Oess (Hper,R) .

In particular, [0, 4+00) C 0ess(Hy ) and oess(H, ) does not depend on the shape of the cut-off function x € X
defined in (3.28).

The proof relies on an explicit construction of Weyl sequences associated with H, (see Section 3.4.8).
Remark that Proposition 3.11 also implies that the reference system essentially preserves the scattering
channels of the underlying quasi 1D systems, since the scattering involves the purely absolutely continuous
spectrum of a Hamiltonian (see for example [EF07, BJLP16a, BJLP16b]). However, this does not exclude
the existence of embedded eigenvalues in the essential spectrum, which may cause additional scattering
channels [RR03, RR04]. We prove in Corollary 3.16 that the results in Proposition 3.11 still hold for the
nonlinear junction.
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Reference state as a spectral projector. Before constructing the reference state, let us discuss different
regimes for junction system. From Theorem 3.7 we know that the chemical potentials (Fermi levels) €7, and
er are negative. Introduce the energy interval

I, := [min(er, €g), max(er, €r)] .

In view of Proposition 3.11, assume that the essential spectrum of H, below 0 is purely absolutely contin-
uous, the non-equilibrium regime (Fig. 3.1) corresponds to

Gac(Hy) [V1er # .

In this regime, steady state currents occur and the Landauer-Biittiker conductance can be calculated [BJLP15,
BJLP16a, BJLP16b]. When fiper, 1, and fiper, g are identical, the junction system becomes periodic with dif-
ferent chemical potentials €;, and er on the left and right half lines. In this case the Thouless conduc-
tance [BJLP15] can be defined and it is given by

Cr |UaC(ITIx) ﬂ Iep| -

0,
el
for some positive constant C'r. However it is not the aim of this article to discuss steady state currents
for non-equilibrium systems. We instead consider the equilibrium regime (see Fig. 3.2) with the following
assumption.

Assumption 3. The chemical potential e;, and e are in a common spectral gap (X, Xp) (equilibrium regime,
see Fig. 3.2), where X, is the maximum of the filled bands of Hyer.1, and Hper r, and Xy is the minimum of
the unfilled bands of Hyer,1, and Hper g.

. o (Hper,r) . o (Hper,r) . o (Hy)

i

.

a

]
|
|
|
!
X
0

ep <
Figure 3.3: Spectrum of Her 1., Hper,r and H, below 0.

Assumption 3 guarantees that the Fermi level of the junction system lies in a spectral gap of H, in view
of Proposition 3.11, which is a common hypothesis [CDL08a, HLS05a, HLS09a] for 3D periodic insulating
and semi-conducting systems. We make this assumption for simplicity. Remark that with approaches
proposed in [FLLS11, FLLS13, CCS18] it is possible to extend the results to metallic systems provided that
the junction system is in its ground state and no steady state current occurs.

Let us without loss of generality choose the Fermi level ez = max(er,er) = sup I, and define the
reference state vy, as the spectral projector associated with the states of I, below e:

Yy = ]1(—OO,€F)(HX)‘ (3.30)

Remark that [, can have discrete spectrum in the gap (X,, Xp), with eigenvalues possibly accumulating
at ¥, and ¥y, and € can also be an eigenvalue of H . The definition of (3.30) however excludes the possible
bound states with energy ep.

The following proposition shows that the density p, of 7, is well defined in L] (R?), and is close to
the linear combination of the periodic densities pper,r, and pper, g, the difference decaying exponentially

fast in the z-direction as |z| — co.
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Proposition 3.12 (Exponential decay of density). Under Assumption 3, the spectral projector vy, is locally
trace class, so that its density p,, is well defined in L{ (R3). Moreover,

Xgpper,L + (1 - XQ)Pper,R —Px € LP(R?)) forl<p<2

Furthermore, denote by w, the characteristic function of the unit cube centered at a € R3. There exist positive
constants C' and t such that for all

o = (ag,0,0) € R, with either supp(wa) < (—0, ar/2] x R? or supp(ws) < [ar/2, +0) x R?,

it holds,

JRS |wa (X2Pper,L +(1 - X2)pper,R - Px) wa| < Cetlel,

The proof can be read in Section 3.4.10.

Fictitious nuclear density of the reference state. The density p, associated with y, is fixed once the
Fermi level € is chosen. We can therefore define a fictitious nuclear density u, by imposing that the total
electronic density p, — u, generates the potential V, . The fictitious nuclear density 1, is given by

—AVy =47 (py — y) s By 1= Px — (XQ(Pper,L — Hper,z) + (1 — X2)(Pper7R — Hper,p) + 77x) , (3.31)
where 7, has compact support in the z-direction:

1

e (a:?:(XQ) (Vper,L - Vper,R) + an(XQ)ax (Vper,L - VpenR)) . (3.32)

Ty +

Let us emphasize that the Poisson’s equation (3.31) is defined on the whole space R3.

The nuclear density of the junction is a fictitious nuclear density plus a perturbation. Once we
have defined fictitious nuclear density, we can treat the difference between the real nuclear density of the
junction system y; and the fictitious nuclear density 1, as a perturbative nuclear density. By doing so we
can define a finite renormalized energy with respect to the perturbative nuclear density. Note that this idea
is similar to the definition of the defect state in [CDL08a] for defects in crystals, and the polarization of the
vacuum in the Bogoliubov-Dirac-Fock model [HLS07, HLS05a, HLS09a]. Introduce

Uy 7= [ = by = (]lac<0 - Xz) (Kper,L — Hper,r) + (XQPper,L +(1- Xz)pperﬂ - pX) + iy o (3.33)

In order to guarantee that the perturbative state has a finite Coulomb energy, we need D (v, v,) < +00.
A sufficient condition is that v, belongs to L5/5(R3). This motivates the following LP-estimate on My -

Lemma 3.13. The function 1, defined in (3.32) belongs to LP (Rg) forl <p<6.

The proof can be read in Section 3.4.11. In view of Lemma 3.13 and Proposition 3.12, together with
the fact that (1,<0 — X?) (Uper,. — fiper,r) has compact support and v belongs to L85 (RS), it is easy to
see that v, belongs to L6/ (]R3), and hence to the Coulomb space C defined in (3.27). This means that the
perturbative state generated by the nuclear density v, has finite Coulomb energy.

Remark 3.14. Remark that the integrability of Vper sym provided by Lemma 3.10 is crucial to deduce Lemma 3.13.
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3.3.3 Definition of the perturbative state

In this section we define a perturbative state associated with the perturbative density v, following the ideas
developed in [CDL08a]. We formally derive the rHF energy difference between the junction state s and
the reference state ~y, by writing v; = 7, + @, with ), a trial density state. In view of (3.26), we formally
have

formally

0 = €07 "= T (=380 + Q) + 5D s = wrops = )
1 1
—Tr <_2A’Yx> - §D (Px — Hixs Px — Hy)

1 1 (3.34)
=Tr{ =580 | + Dlpx = 1x: @) = Dlpgy, vi) + 5D(pay: Poy)

1
- D(Px = My Vx) + §D(VX5 Vx)

1 1
= Tr (HyQx) — D(Pva vy) + iD(prapr) — D(px — pxs vx) + QD(an Vy)-

We next give a mathematical definition of the terms in the last equality of (3.34). We expect (), to be a
perturbation of the reference state -,. More precisely, we expect ), to be Hilbert-Schmidt. Moreover, we
also expect the kinetic energy of ), to be finite. Let II be an orthogonal projector on the Hilbert space £
such that both IT and I+ := 1 — II have infinite ranks. A self-adjoint compact operator A on §) is said to
be II-trace class if A € G5 ($)) and both ITAIT and IT+ AIT* are in &y (). For an operator A we define its
II-trace as

Trri(A) := Tr (TIATI) + Tr (TI-ATTY) |

and denote by &I () the associated set of II-trace class operators. Since the reference state -, defined
in (3.30) is an orthogonal projector on L?(R?), we can define associated -, -trace class operators. For any
trial density matrix @, let us denote by QF * := ’yiQX’y; and )~ := 7 Q@x7Vx and introduce a Banach
space of operators with finite -y, -trace and finite kinetic energy as follows:

Qy 1= {Qx € GYX(LQ(R3)) | Q; =Qy, |VIQy € 62(L2(R3)),
IVIQYFIV] € 61(L*(R%)), [VIQy~IV] € 61(L*(R%)) },
equipped with its natural norm

1Qullg, = 1@l + 1@ le, + Qx5 s, + I1¥IQxlle, + V1@ I¥I[lg, + [IV1Q5 191, -

By construction Tr,, (Qy) = Tr(Q{") + Tr(Qy ). For Q to be an admissible perturbation of the
reference state 7,, Pauli’s principle requires that 0 < v, + (), < 1. Let us introduce the following convex
set of admissible perturbative states:

Ky =1{Qy e Q| =7 S Q< 1—7}.

Remark that K, is not empty since it contains at least 0. Note also that K, is the convex hull of states in Q,
of the special form v — ~y,, where -y is an orthogonal projector [CDL08a]. Furthermore, for any @), € K\ a
simple algebraic calculation shows that

QT =0, Q; <0, 0<Q2<Q{"—Q .

As mentioned in the previous section, the Fermi level e can be an eigenvalue of H,. Consider N € N*
such that er € (XN, XN+1,x], where Yn, < Xn41,y are two eigenvalues of H, in the gap (2., ),
and let ¥y, = ¥, and ¥n41, = X whenever there is no such element. For any x € (Xn,y, €F), let us
introduce the following rHF kinetic energy of a state ), € Q,:

Try, (HyQy) :=Tr (’Hx - "5’1/2 (Q;cr+ - Q;_) |Hy — R‘I/Q) + kT, (Qy) -
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By [CDLO08a, Corollary 1], the above expression is independent of x € (X, €r). In view of the last line
of (3.34) we introduce the following minimization problem

Exx = Qirelflc {gx (Qx) — kTry, (Qx)} ) (3.35)
where )
Ex (Qy) :=Try, (HyQy) — D (pQw VX) + §D (pr’ pr) : (3.36)

3.3.4 Properties of the junction system
The following result shows that the minimization problem (3.35) is well posed and admits minimizers.

Proposition 3.15. (Existence of the perturbative ground state) Assume that Assumption 3 holds. Then
there exist minimizers for the problem (3.35). There may be several minimizers, but they all share the same
density. Moreover, any minimizer Q). of (3.35) satisfies the following self-consistent equation:

@X = ﬂ(*OO,&p)(Hax) - /YX + 5)(7

- (3.37)

g, =y + (g, — 1)+
where 6y is a finite-rank self-adjoint operator satisfying 0 < 0, < 1 and Ran(dy) < Ker(Hg — €p).
X

The proof is a direct adaptation of several results obtained in [CDL08a], see a short summary in Sec-
tion 3.4.12 for completeness. Remark that (pg — vy) * | - |=! € LS(R3) by [CS12, Lemma 16], there-
X

fore (1 — A)_l(p@ — vy) * | - |7 belongs to G¢ by the Kato-Seiler-Simon inequality (3.39), hence
X

(bg, — )+ 1|
spectrum unchanged. Therefore in view of Proposition 3.11, the following corollary holds.

is —A-compact hence H,-compact by the boundedness of V,, leaving the essential

Corollary 3.16. Forany x € X, and H@ solution of (3.37), it holds
X

Oess (HQX> = Oess (Hper,L) UUess (Hper,R) y  Oess (H§X> ﬂ (—OO, 0] € Oac <H§X> .

In particular, [0, 4+00) C Tess (HQ ) and Tess (H@ ) does not depend on the shape of the cut-off function
X X
X € X defined in (3.28).

The result of Proposition 3.15 can be interpreted as follows: given a cut-off function x belonging to
the class X' defined in (3.28), we can construct a reference state v, and a perturbative ground state @X,
the sum of which forms the ground state of the junction system. However it is artificial to introduce cut-
off functions x since there are infinitely many possible choices. In view of (3.25), the ground state of the
junction system should not depend on the choice of cut-off functions. The following theorem shows that
the electronic density of the junction system is indeed independent of the choice of the cut-off function .

Theorem 3.17 (Independence of the reference state and uniqueness of ground state density). The
ground state density of the junction system with nuclear density defined in (3.25) under the rHF description
is independent of the choice of the cut-off function x € X, i.e., the total electronic density pj = py + pq, is
independent of x, where p, is the density associated with the spectral projector vy, defined in (3.30), and pq,
is the unique density associated with the solution (), of the minimization problem (3.37).

The proof can be read in Section 3.4.13. Theorem 3.17 and Proposition 3.15 together imply that
Corollary 3.18. The ground state of the junction system (3.25) is of the form

L—oo,er) (Hx + (p@X —vy) x| |—1) +8y, 0<6, <1,
Ran(é,) < Ker <Hx + (p@X — ) |- -1 - 6F) ’

and its density is independent of the choice of x.
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3.3.5 Perspective: extension to junctions of 2D materials in R?

Assume that the periods of 2D materials (with 2D Coulomb interactions, note that we consider a R? plane
in R?) in R? are commensurate in the y-direction with period L, > 0 but not necessarily commensurate
in the x-direction, see Fig 3.4 for an illustration. Remark that semi-infinite 2D materials are special cases
of this, as they can be modeled as a junction with vacuum occupying the other half space. Following ideas

8Y

] O

Figure 3.4: Junction of 2D materials which are commensurate in the y-direction. The unit cell of the total
junction system is a cylinder I',,.

similar to the one developed in Section 3.2.1 and writing 'y, := Rx [~L,/2, L, /2) and ny

the following decomposition holds:

LQRQ* ®

(R%) =
Iy
y

Lgeny(F L,)dq.

The partial Bloch transform %, can be defined from the dense subspace C* (R?) of L?(IR?) to L? ( § L2 y
y ’
as

V(r,y) €T, Yge i, (Byd), (x,y) = Y, e WGz y+ k).
keL,Z

Its inverse is given by

Vk e LyZ, foraa. (z,y)eIl'r,, (%y_lf.) (r,y+k):= J ei(k+$)qfq(:ﬁ, y) dq.
F*

1"*
Ly

Under %, the (negative) Laplace operator on L?(R?) is decomposed as

1 J@
Ly 19T,

(F Ly)- Given q € F*y, the junction problem follows exactly the same con-

1 _ 1 .
—A =3 —5Qgdg | By, —Ag =00+ (10— 0)*,

2
per7y

struction as in Section 3.3 by replacing the space from R? to the cylinder I';,,. The latter construction is
much simpler as the cylinder is compact in its radius direction, this implies that the cut-off functions used
to construct the reference Hamiltonian are periodic in the y-direction. Therefore the cut-off functions are
compact in the radius direction, and the reference Hamiltonian has compact resolvent. This simplifies the
proofs of Proposition 3.11. With a little bit of abuse, let us still use the same notation as in Section 3.3. We

with —A, acting on L

(Is,))
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can construct a reference Hamiltonian H, and spectral projector v, which is L,Z-translation invariant in
the y-direction with x being L, Z-periodic in the y-direction. Moreover, H, is decomposed by %,

_ 1 (@ .
He=%"| — Hy,dq |B,, H,,=—0>+ (0, —q)*+V,,
1"* 1—\*

Ly Ly

1 ®

—1

Y = B, - fr* Y da | By, Vxaq = ]1(—00,6p)(Hx,q)-
Ly Ly

By a direction adaptation of Proposition 3.11 we obtain that

Vge Fiyv Oess(Hy,q) = ess(Hper,L,q) U Ocss(Hper,R,q),

where Hper 1,4 (resp. Hper Rr,q) are the %, -decomposed operators of Hyer 1, (resp. Hper,g). Remark that
by [RS78, Theorem XIII.85]

chs(Hper,L) U chs(Hper,R) < Uess(Hx>- (3.38)

Remark that an equality of the above expression seems physically dubious due to the presence of edge
states propagating alongside the junction surface. The perturbative state () should also possess the same
periodicity in the y-direction as H, . Using the same techniques in [CCS18] when defining extended defects

in the Fermi sea, we can define a new class of perturbations ) = %, 1 SF* Qq gg) 2, in a suitable class
Ly

and follow the same procedure as in the quasi 1D case to prove the existence of mean-field ground state.

3.4 Proofs of the results

In order to simplify the notation, in Section 3.4.1 to 3.4.11 when treating the quasi 1D periodic system we
denote by &, the Schattern class &,(L2, , (I')) for 1 < p < +0o0. Unless otherwise specified, starting
from Section 3.4.8 we use &,, instead of &, (L?(R3)) for the proofs of the junction system.

First of all, let us recall the following Kato-Seiler-Simon (KSS) inequality:

Lemma 3.19. ([SS75, Lemma 2.1]) Let 2 < p < 0. For g, f belonging to LP(R3), the following inequality
holds:

1 (=iV)g(@)ls, (22 @3y < 2m) P llgll o) | 1l Lo ces) - (3.39)

3.4.1 Proof of Lemma 3.1

The proofis an easy adaptation of the proof of the classical Kato-Seiler-Simon inequality (3.39) by replacing
the Fourier transform with the mixed Fourier transform .#. Let us prove separately (3.6) forp = 2 and p =
+00. The conclusion then follows by an interpolation argument. We use the following kernel representation
during the proofs. For x = (x,7) and y = (y,r’) belonging to I', symbolic calculus shows that the
Schwartz kernel K¢ ((z,7), (y,')) of the operator f(—iV¢) acting on L2, , (T') formally reads

per,z

% (ﬁ_l OTféf) ((x —y),(r— 'r’))

1 : /
47”2 Z JRQ e1(27rn(x—y)+k:-(7‘—1' ))f (27rn + 5’ k) dk.
€7

Kf,{ ((HJ, ’I“), (y7rl)) =
(3.40)
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Let p = 2. In view of the isometry identity (3.4), the convolution equality (3.5) and the kernel representa-
tion (3.40), the following estimate holds

1HVelE, = gz |17 oed) (@~ waw)f dady

QJ‘g (J] o7t f) (2 - )\2dm> dy

j|g |Z<J 2m+g,k)|2dk>dy

nez
2
iy QHQHLPM ry DI @rn o+ &) 2 ge)
neL
which proves (3.6) for p = 2. For p = +00, it suffices to prove that for any ¢ € Lper L (D),
1F (=Ygl ) < N9llig, oy supllf ((2mn + & Dl po eyl @l 2, ry-
er, z er,x neZ per,z

By arguments similar to those used when p = 2, we obtain by the isometry (3.4) that

IF(=iVe)g0a, _r) = Zf 7 (a0) (n. W) | (2en + €7 + 2]

< sug”f ((2mn + &, -))HLoo(R2)||9¢H%ger )
ne "

2
< lalitg, oy SuplF (2 -+ € DFon ey 91

per, z

which is (3.6) for p = +00. Therefore, following the same interpolation arguments as in [SS75, Lemma 2.1]
we obtain (3.6) for 2 < p < 400.

3.4.2 Proof of Lemma 3.3

For n € Z, let us consider the 2D equation:
—A,G,, + 47°n%G,, = 276,—y in y’(RQ).

It is well known (see for example [LL01, Lah14]) that the solution of the above equation is

Gty — | 1oz, n=o
VT Ko @fnllrl), ol =1

where Ky(a) = Sr * e~acosh(®) gt is the modified Bessel function of the second kind. Therefore the

Green’s function G(z, r) defined in (3.7) can be rewritten as

Ga,r) =2 ) MG (1) € Sy (D). (3.41)

per,z
neZ

Applying the Laplacian operator to both sides,

~AG(z,7) =47 Y 6o € Fop (D).

nez

On the other hand, by the Poisson summation formula Y., _; 6z—p, = >,z €4™ € .%”(R), we conclude

that the Green’s function G(z, r) defined in (3.7) satisfies

—AG(z,r —4%26$T (n,0)-

neZ
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Taking the Fourier transform .% on both sides of (3.41) we obtain that

2

FGn.k) = 4m2n? + |k|?

e 7 (RY).

Let us now give some estimates on G defined in (3.7). Recall that there exist two positive constants Cjy and
C1 such that [J.71]

Co |log(a)], when o < 27,
0 < Ko(a) < "
Cre™*(n/2a)"?, when o > 2.

For |r| > 1, it holds that

—27rn|'r| 20 e—2m|r] 20 —27|7|
‘ xr‘\2C’12 ! L (3.42)

VA S VT e S T

For |r| < 1 fixed, there exists N > 1 such that N < ﬁ < N + 1. In particular, for n > N + 1 we have

27n|r| > 27. There exists therefore a positive constant C' such that

N 727rn\ | = 0
&) < aco log @mnlrl)| +201 4cof log (2rt|r|) dt +201J et dt
40 C
- |0 log(2m) — 1 — |r| + |r|log(27|r|)| + 2C e 2" < ot
T

(3.43)
Together with (3.42) we deduce that G(x,7) € LBe .(T) for 1 < p < 2. Note that for all » € R*\{0}, it

holds Sl_/2 G(z,7)dx = 0. Consider, for r # 0,

1/2
B 1/2 1
G(z,r) = f dy | .
(@7) Z < (x —n)? + |r]? 12/ (x—y—n)2+|r]2 y)

neZ

From [BLB00, Equation (1.8)],

—A (G(z,7) = 2log (|r])) = 47 Y Sam-ko) €L (R?),
keZ

with G(x,r) = O(ﬁ) when |r| — o0 by [BLB00, Lemma 2.2]. Denoting by u(z,r) = G(z,7) — G(z,r)
we therefore obtain that —Au(z, ) = 0. As u(z, ) belongs to L. .(R?), by Weyl’s lemma for the Laplace
equation we obtain that u(z,r) is C®(R3). On the other hand, by the decay properties of G and G, we
deduce that |u(-,7)| — 0 when |r| — 0 uniformly in z, hence by the maximum modulus principle for

harmonic functions we can conclude that u = 0, hence G(z, r) = G(z, 7).

3.4.3 Proof of Lemma 3.5

We prove this lemma by an explicit construction of a density matrix belonging to Fr. Consider a smooth
cut-off function gper Which is constant (hence periodic) in the x-direction and has compact support in the
r-direction, such that 0 < gper < 1and {, Q%er = 1. Let w > 0 be a parameter to be made precise later.
Define

( L* Twg 50 )‘%7 v Ywe = AwgAle,  Aug = Tw) (—A¢) Oper- (3.44)

It is easy to see that 0 < <, < 1, and that 707, = 7,7 for all k € Z by construction. Let us prove

that the kinetic energy per unit cell of +,, is finite. Denote by F¢(n, k) = \/(27?71 +6)? + k2. By the
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Kato-Seiler-Simon type inequality (3.6),
| T (VT Bere V=80 d = | IVT=BeAueld, de
1 2
< WJ loperllz,, ,r) (Z

neZ

1+ Fg(na ')]]'[O,w] (Fg(nv ))

)d§<+oo.

L2(R2)

The last estimate follows by the condition (277 + & )2 + k? < w implies that the sum on n is finite and
the integration on k occurs in a compact domain. Hence -y, belongs to Pper . Let us now show that there
exists wy = 0 such that p,, — fper,sym € Cr. It is easy to see that the density p,,, is smooth and compactly
supported in I' by definition. Moreover, in view of the kernel representation (3.40), the kernel K 4, of the
operator A, ¢ is

Ko ((@.7), () = 1 Zj e R ) (FE (1, K)) oper(y, ) dk.

neZ

Remark that the non-negative function w — {. (ZneZ Sr2 110w (F 52 (n, k)) dk) d¢ is monotonic non-
decreasing in w, equals 0 when w = 0 and tends to +00 when w — +00. Hence there exists w, > 0 such

that
1
p’}’w* = g ||AW*7£’

RQ

9 1
s, 4§ = o F*HK wguLgcrz(FxF) dg

1 (F2(n,K)) 0%er (y, ) dy dr de d€ (3.45)

r# nez

1
= W J;‘* (% JRQ ]1[0,0.)*] (Fg(n, k)) dk}) d€ = Lﬂper,sym > 0.

This condition is equivalent to .7 (p,,,. — pper)(0,0) = 0. As k — (p ey — Hper)(0, k) is C1(R?) and
bounded, the function k — |k:]_1ﬁ(p%* — fipersym) (0, k) is in LZ _(R?). In view of this, there exists a
positive constant C' such that

2 2
Z J P%* Nper,sym)(nv k)‘ dk < J ly(p'}/w* - Nper,sym)(ovk)‘ dk
|k|* + 4m2n? = Jikj<on k|2

neZ

1 2
+ 42 J | (p'Yw* Hper, Sym)(o k>’ dk + Z f p’Yw* Mper,sym)(na k)| dk
[k|>2m neZ\{0}

1 2
<C+ 2 J |p%* — ,uper,sym| < 4o0.
™ Jr

(3.46)
In view of the definition of the Coulomb energy (3.13), we can therefore conclude that

DF(p%u* — Mper,syms Pywy, — per,sym) < +00.
This concludes the proof that the state v, € Fr. Hence Fr is not empty. As any density p, associated
with v € Pper . is integrable, we can conclude that (3.16) holds in view of Remark 3.4.

3.4.4 Proof of Theorems 3.6

Let us start by giving a convenient equivalent formulation of the minimization problems (3. 17) The oper-

ator —fAE is not invertible, but the operator —fAé — k is positive definite and ‘—ng — /<;| is bounded
for any k < 0. Therefore in view of the charge neutrality constraint (3.16), we rewrite the periodic rHF
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energy functional (3.15) as follows:

1 1 1
Vv € Fr, gper,x(’Y) = by L* Trpe =) <_2A€7§> d¢ + QDF (Pv — Mper; Py — Nper)

K -
= gper,x,n(’y) + 5 J;‘* TrLgerym(F) (75) d§ = Sper,x,n(7> t+ K L Hper,

with
1 1/2

1 1
Eper,zis(7) TTL%’“””(F) (‘_2A§ o

7&‘—2A£—’f

1/2 1
B % * dg + QDF (p'Y — Hper; Py — Mper) .

The parameter « can be interpreted as the Lagrangian multiplier associated with the charger neutrality
constraint. Therefore by fixing x < 0, the minimization problem (3.17) is equivalent to the problem

inf {5per7m,,€(7); v e JFr } . (3.47)

We prove the existence of minimizers and the uniqueness of the density of minimizers for the problem (3.47)
(hence of (3.17)) by considering a minimizing sequence, and show that there is no loss of compactness. This
approach is rather classical for rHF type models [CLBL01, CDL08a, CLL13, CCS18]. But in our case we need
to be careful as electrons might escape to infinity in the r-direction. We show that this is impossible thanks
to the Coulomb interactions (Lemma 3.21).

Weak convergence of the minimizing sequence. First of all it is easy to see that the functional
Eper,z,1(+) 1s well defined on the non-empty set Fp. Consider a minimizing sequence of Eper . (+)

_ d€
Tn 1= RB ! (J In, ) f@}
{ T* ¢ 2T n>1

on Jr. There exists C' > 0 such that for all n > 1:

1
0< Trye () (’—Ag—l’i

s per,z

(3.48)

0< Dr (IO'Yn — Hper,sym; Py, — Mper,sym) < C.

The kinetic energy bound (3.48) together with the inequality (3.12) implies that the sequence {, /Py, }n>1
is uniformly bounded in ngr’w (I') hence in LS . (T") by Sobolev embeddings. Therefore for all n € N*,

per,z

the density p.,, belongs to Lier »(I") for 1 < p < 3. On the other hand, for almost all £ € I'*, the operator

Yn,¢ is a trace-class operator on Lgcr’x (I'). As 0 < 'yg’g < Yne < 1, we obtain that

0 [ mell,de = | oo, o () de < | Tong, oy () dé = 202
= r* ’ Ir* ’
This implies that the operator-valued function & — =, ¢ is uniformly bounded in L?(T'*; &2). Furthermore,
the uniform boundedness 0 < 7, ¢ < 1 also implies that the operator-valued function § + ~,, ¢ belongs to
L*(*; S (Lgem: (I'))). Combining these remarks with the uniform energy bound (3.48), we deduce that
there exist (up to extraction):

_ d§ _ ~
Y= # ! <J . Ye 27'r> %a Py € Lger,x(r)a Py — Hper,sym € Cl", (3-49)
I

such that 7, = ~ in the following sense: for any operator-valued function { — U € L2(T'*; &) +
L (F*7 S )7

| T e ds o | T, (W) s (3.50)

n—o0 T



110 CHAPTER 3. JUNCTION OF QUASI 1D sYSTEMS WITH COULOMB INTERACTIONS

The density
pyn — Py weaklyin LB (') for 1 <p < 3.

per,z
The total density

Py — Mper,sym — Py — Mper,sym Weakly in Cr.

The convergence (3.50) is due to the fact that the predual of L (I'*; S(L2,, , (T"))) is L'(I'*; 1), and that
L?(T'*; &,) is a Hilbert space.

Remark 3.20. The convergence of y,, — -~ in the sense of (3.50) can also be reformulated as the convergence
in the sense of the following weak-* topology:
By, B — By B for the weak-x topology of L* (T'*; S (L2, , (I))) ﬂ L2 (T*:Gy). (3.51)
n—

per,z

Denote by Dper ,-(I') the functions which are C* on R, 1-periodic in the z-direction, and have com-
pact support in the r-direction. Denote by D, ,.(I') the dual space of Dper . (I"). The following lemma
guarantees that the densities obtained by different weak limit processes coincide. In particular there is no

loss of compactness in the r-direction when |r| — o0.

Lemma 3.21 (Consistency of densities). Denote by p., the density associated with the density matrix ~y ob-
tained in the weak limit (3.49). Then p, = py = py in D). .(I'). In particular, p,, = p~ as elements in

per,z
Lger’x(F) forl < p < 3andpy — piper,sym = Py — Hper,sym as elements in Cr.

We postpone the proof to Section 3.4.5.
The state v is a minimizer. Let us first show that the kinetic energy of y obtained by the weak limit (3.50)

is finite. To achieve this, consider an orthonormal basis {e;};. < ngw(I’) of L%er’w(I‘), and define the
following family of operators for V € N*:

1 1/2
N
MY = ‘—QAg —k

12 / N 1
<Z l€i) <€z"> ‘—QAé — K

=1

An easy computation shows that for all £ € I'*, the operator M EN belongs to G2. Moreover, the function
&— M, gN can be seen as an operator-valued function belonging to L?(I'*; &5) as I'* = [—n, 7) is a finite
interval. In view of the convergence (3.50) and by choosing Us = M, gN we obtain that (recalling that

Tr(AB) = Tr(BA) when A, B are Hilbert-Schmidt operators, and ’—%Ag — /ﬁ’l/ 2 V¢ is Hilbert-Schmidt

for almost all £ € I'*)
12 / N
(Z le:) <€i|)> dg
i=1

r) (MgN’Yn,g) dg

1
0 < JF* TI'LEET@(F) (’—2A§ — K

—J Trrz ) (M ye) dé = lim Trpz
T*

per,x n—00 I er,ac(

1 1/2 1 12 / N
=) Tr.m (’2A£ K| Tng ‘2A§ —k <Z—Z1 |6z‘><€i\>> dg
N 1 1/2 1 1/2
= nh_{%o L* ; <ei —§A$ — K| Yng _iAg —K ei> d€
1 1/2 1/2
< ligiorclf - Trrz, () (‘—2A5 — K| Yng —§A§ —K ) d¢ < ',
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where the last step we have used the uniform energy bound (3.48). Therefore, by passing to the limit
N — 40, by Fatou’s lemma we have

1/2

1 1 1/2
<| T A - A - d
0 L* PLra(D) ‘ gRe— Vs‘ 50¢— K | dE
1 1/2 1 1/2
< hﬁio%f L* TrLgm(p) '—2A5 — K| Yng ’—ZAg —K e < C'.
(3.52)

Remark that the bound (3.52) also implies that ,/p belongs to H}, ,(I') by the Hoffmann-Ostenhof in-
equality (3.12). Hence py € Ler,o(T) for 1 < p < 3. Since py — fiper sym is an element in Cr by Lemma 3.21,
this implies that the charge is neutral by Remark 3.4. That is,

f Py = f Hper,sym -
r r

As Dr(-, -) defines an inner product on Cr, by the weak convergence (3.49) of p.,, — Liper,sym t0 Py — lhper,sym
in Cr and the consistency of densities given by Lemma 3.21, we obtain that

Dr (p'y — Mper,sym; Py — Nper,sym) < hnnilo%f Dr (p'yn — Mper,syms Py, — Nper,sym) . (3-53)
In view of (3.52) and (3.53), we conclude that

Eper,z(7) < Hminf Eper 2 (n),
n—00
which shows that the state y obtained in (3.49) is a minimizer of the problem (3.17). Let us prove that all
minimizers share the same density: consider two minimizers 7; and 7,. By the convexity of Fr it holds
that 3 (7, + ¥,) € Fr. Moreover

i+ 7 1 o1 o1
Eper,z ( ! 5 2) = §5per,a: (71) + §5per7a: (V2) — ZDF (%1 Py Py T f%) )

which shows that Dr (V% — Py Py, — Wg) = (), hence all the minimizers of the problem (3.17) share the
same density.

3.4.5 Proof of Lemma 3.21

Equality of p5 and p;.  The proof follows ideas similar to the ones used for the proof of [CCS18, Lemma
3.5] by considering a test function in Dy, »(I") and replacing the Fourier transform by the mixed Fourier
transform defined in (3.3). Consider a test function w € Dper o (I'). The weak convergence of p,, — p5 in
LBer »(T) with 1 < p < 3 implies that

<p'Yn - Mper,symv w>D/

per,x>

[N Ay s YA—
Dpenz N—00 <pv Mper,synh w>D£)CY,I,’Dper_’I N

On the other hand,

Py = Mper,sym’w>vger,m,pper7x - L (P = Hper sym) W

= F — Upersym) (1, k) Fw(n, k) dk
TéfRz F (Pyn = Hpersym) (1, k)-Fw(n, k) (3.54)
Z (Pyn — Hpersym) (n, k).Z f(n, k)
=4 Tn per,sy ’ ) k
Py tnnt + (WP !
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where f = ——Aw Note that f belongs to the Coulomb space Cr defined in (3.14) since for all n € Z,
7 f(n,-) € L, (B?), and
7 f(n, k)| f 2 2
=47 (|k 4 F k)|” dk
v f) = }]f2|k|2+4m2 1 2 L O 4m0%) |7 )

ZJ .7 (Vw) (n, k)|? dk:—f|Vw| < +oo.

Therefore in view of (3.54), the convergence Dr (p~, — fiper,sym, f) —— Dr (py — fiper,sym, f) implies
n—oo
that

<P7n — HMper,sym; U)> E’ <ﬁ'; — Mper,sym; w> .

The uniqueness of limit in the sense of distribution allows us to conclude.

Equality of p, and p,. Let us prove that p, = p in D]
LBer 2(T') implies that

erz(I'). The fact that p,, — P, weakly in

<p7n ) w> E’ <ﬁ7 w> .

Therefore it suffices to prove that the operator-valued function £ — w~, ¢ € L' (I'*; &1) converges in the
following sense:

1

1
% T Lper L( ) (’U)"yn’g) dé- = <p'yn7w> n—0o0 <p’77w> - %L TrL

r (wye) e (359)

per, ‘L(

The weak convergence (3.50) does not guarantee the above convergence since the function w does not
belong to any Schatten class. We prove (3.55) by using the kinetic energy bound (3.48), which implies that

the operator-valued function
1 Y2\
Tng = (‘2A5Fv ) ’2%”

is uniformly bounded in L' (I'*; &1) as ‘—%Ag — /i‘_l/Q is uniformly bounded with respect to £ € I'*.

1/2 1/2 —-1/2

1
“Ac— kK

1
“Ae— kK 5

o

Tn,£ ’

Moreover, the energy bounded (3.48) also implies that £ — |—l — /<c|1/ 2 /¢ is uniformly bounded in

2 e = |-3A¢ — 6" Amg g

L? (I'*; &,). Hence the operator-valued function { — |—3A¢ — k
is uniformly bounded in L? (I'*; &3) as 0 < < Yng¢ < 1. Therefore

1/2

1
Yn.¢ is uniformly bounded in L' (T** ﬂ L2 (T* &y),

hence in L7 (I'*; &,) for 1 < ¢ < 2 by interpolation. Therefore, up to extraction, the following weak
convergence holds: for any operator-valued function & +— W, € LY (I'*;Sy) where ¢’ = q%l for 1 <
q<2

1
L* Trzz,, . <W£‘—QA5 -

On the other hand by the inequality (3.6) we obtain that for any £ € I'*,

2d'/2 v
( )2/q o ”ng(r éj ((2mn + €)% + |7‘|2+2|'<6|)q/2

1/2

1/2 1
’YTL,§> dg m s TI'le)erz(F) <W€ ’—2A€ — K ’7&) d€ (356)

—-1/2

1
w ’—2A§ — K
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Upon choosing for example ¢’ = 4, the right hand side of the above quantity is finite. Therefore upon
taking We = w ‘—%Ag - H‘_1/2 in (3.56) we obtain that

1 1 1 -1/2 1 1/2
3 o Ter ) (W) 4 = 5 L* Tz . (w ‘—QAs s I e %5) ds
1 1 —-1/2 1 1/2 1
o 2 e (D) <w ‘—Qﬂs —R|m5le—k vg) s = o L Trpz,, o) (wye) de.

Hence (3.55) holds. Therefore p, = p in D, ,(I'), which concludes the proof of the lemma.

per,z

3.4.6 Proof of Theorem 3.7

We first define a mean-field Hamiltonian associated with the problem (3.17), and then show that the Fermi
level is always negative. Moreover, the minimizer of (3.17) is uniquely given by the spectral projector of
the mean-field Hamiltonian. In the end we show that the density of the minimizer decays exponentially
fast in the r-direction.

Properties of the mean—field potential and Hamiltonian. We begin with the definition of a mean-
field potential and a mean-field Hamiltonian, and next study the spectrum of the mean-field Hamiltonian.
Consider a minimizer ype of (3.17) with the unique density p,,., € Lier,o(I') where 1 < p < 3. Define the
mean-field potential

vper,sym ‘= Qper *T G, Gper ‘= Pyper — Mper,sym-

which is the solution of Poisson’s equation —AVjersym = 47m@per. Let us prove that Vper sym belongs to
LBer 2(T) for 2 < p < +00. As fiper is smooth and has compact support in the r-direction and Prper DElONgs
to Lberz(T) for 1 < p < 3, hence % gpe: (0, -) belongs to L2(R?) n L®(R?) n C°(R?) by classical Fourier
theory (see for example [RS75] ). Moreover, as §. |7|p,.. (2, 7) < +00 by (3.18),

ak<§.(]per(oa k)

L®(R?)

J e "R goer(z, ) da dr
r

(3.57)
< 4o0.

< ‘J |’I“| |p'ypor + ,Uper,sym| (l‘,’l") dx dr
I

This implies that .7 gpe; (0, k) is C*(R?) and bounded. Remark also that .% gpe;(0,0) = 0 by the charge
neutrality and that .Z gpe; (0, -) belongs to L*(R?) n L*(R?) n C°(R?), hence for 1 < o < 2,

F qper (0, k)|
[ 17 Vs an = [ FBe BB
R2 ’ Rz |k

7 0. k)| 1/2 . 1/2 (3.58)
< f M dk + J |7 per (0, k) > dk f ——dk| <o
lk|<1 | k|2 k|=1 k=1 [k[*

Remark that the mixed Fourier transform .% is an isometry from L%er’x () to 2 (Z, L? (RQ)) by (3.4). On
the other hand,

dk

1

Vo el (Z,L" (R%), [Z 7 0l pomr) = sup < o l19lloz, w2,
TE

1 .
= " k i(2rnz+k-r) dk
D) | outhre

By the Riesz-Thorin interpolation theorem (see for example [RS75] and [LL01, Theorem 5.7]), we can
deduce a Hausdorff-Young inequality for .# ~!: for 1 < a < 2 there exists a constant C,, depending on o
such that

Vo e ¢ (Z,L* (R?)), ”971¢||Lg;r,,(F) < Call9llga(z, Lo m2))- (3.59)
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where o/ := a/(a — 1). Hence in view of (3.58) and (3.59), for | < @« < 2and 2 < o/ = a/(a — 1) < +©
there exist p031t1ve constants Cy, 1, Cn 2 and C'O[’2 such that

Voersymllzgr, oy < CallF Voersymllea (@ peme) = 5 Z f |7 Voeraym(n, k)[™ di

ce |Jq er(n, B)|®
= 2 | P Voersym(0, k)|* dk+— p—dk
21 Jpe | persy ( ;0‘[ 2 471'712 + ‘k‘ ) (3.60)
co 1/2 '
< Coy + -2 Z qoer(n, K)|*“ dk dk
1+ o <7§0J | dp (n, k)| ) <7§of (4mn? + |k| )20 >

< Co1 + Ca72HJqperH?za(ZLM(Rz)) < Cy1 +C, 2||qper||Lq

fera (D) < 1T

where the last step we have used estimates similar to (3.59) for .# and the fact that ger belongs to Lier (1)
for4/3 < ¢ := 20,/(2a — 1) < 2. Therefore Vjer sym belongs to Lper «(T') for 2 < p < +00. By the elliptic
regularity we know that Vj,e; sym belongs to the Sobolev space Wper,x( ) for 2 < p < 3, where Wper (1)
is the space of functions, together with their gradients and hessians, belong to Lbe; ,(I'). Approximating
Vper,sym by functions in Dy 5(I'), we also deduce that Ver sym tends to O when |r| tends to infinity. The
mean-field potential Vj,er sym defines a —A-bounded operator on L? (R3) with relative bound zero, hence by
the Kato-Rellich theorem (see for example [Hel13, Theorem 9.10]) we know that Hp,er = — %A + Voer,sym
uniquely defines a self-adjoint operator on L?(R3) with domain H? (]RS) and form domain H' (R?’). As
Hy,er is Z-translation invariant in the z-direction,

_ d 1
Hper =% ! <L* Hper,f 2§_> %a Hper,§ = _§A§ + Vper,sym-

Note that the decomposed Hamiltonian Hp,, ¢ does not have a compact resolvent as I' is not a bounded
domain. It is easy to see that o (—A¢) = 0ess (—A¢) = [0, +00) . On the other hand, by the inequality (3.6)
we have

Vper,sym (1 - Aﬁ)_l

(GD)

1
< o lVoersmlzg (

1 1/2
> J sdk| <+
para( ((2mn + &) + |k[2 + 1)

nez

In particular Vjer sym is @ compact perturbation of —Ag, and therefore introduces at most countably many
eigenvalues below 0 which are bounded from below by —||Vyer sym | 0. Denote by {A,,(§)}; <<, these
(negative) eigenvalues for Ny € N* (N can be finite or infinite). Then for all £ € T'*,

O-ess(Hper,g) = O-ess(_Af) = [0) +OO)7 O-disc(Hper,g) = U )\n (5)
In view of the decomposition (3.19), a result of [RS78, Theorem XIII.85] gives the following spectral decom-
position:
Oess (Hper) =2 U Uess(Hper,f) = [0, +OO)7 Udisc per U JdlSC per,f U U An (g)
gel'™* el'* Eel'* 1<n< Ny
We also obtain from [RS78, Item (e) of Theorem XIII.85] that

A € Odisc(Hper) < {€ € T* | X € 0disc(Hper,e) } has non-trivial Lebesgue measure.

By the regular perturbation theory of the point spectra [Kat95] (see also [RS78, Section XII.2]) and the
approach of Thomas [Tho73, Lemma 1], we know that the eigenvalues A, (§) below 0 are analytical func-
tions of { and cannot be constant, so that {{ € I'* | A € 0isc(Hper,¢) } has trivial Lebesgue measure, and
the essential spectrum of H e, below 0 is purely absolutely continuous. As a conclusion,

0 (Hper) = Oess (Hper) = U U(Hper,ﬁ)'
el*
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The Fermi level is always negative. Let us prove that the inequality N = F'(0) > .. ftper,sym always
holds. The physical meaning of this statement is that the Fermi level of the quasi 1D system at ground
state is always negative when the mean-field potential tends to 0 in the r-direction. We prove this by
contradiction: assume that F'(0) < SF Hper,sym, then we can always construct (infinitely many) states
belonging to Fr with positive energies arbitrarily close to 0 and they decrease the ground state energy of
the problem (3.17).

Let us first define a spectral projector representing all the states of He, below 0: for any £ € I'* and
Hper ¢ defined in (3.19), define

Yper ‘= ]l(foo,o](Hper)a ’chr,g = ]1(—00,0] (Hper,g)-

Therefore,
1
Ny = F(0) = ] r*T L20r.0(T) (’yperg) d¢ = f [ (3.61)

The inequality that F'(0) < {,. ftper,sym implies that

Zgie 1= J Mper,sym — Npg = f
r

[persym — f Py, €N (3.62)
r r ‘

The condition (3.62) implies in particular that Ny < +00, i.e., that there are at most finitely many states
below 0. Let us construct states of Hy, with positive energies. These states belonging to L?(R?) approx-
imate the plane waves of Hpe, traveling in the r-direction. For R > 0, recall that By, is the ball in R3

centered at 0. Consider a smooth function ¢(z, r) supported in B, equal to one in B, /2 and such that
HtHL2(R3) = 1. For n € N*, let us define

n(, ) = = <(w> ~(n2, (n27n2))> |

n

It is easy to see that 1/, belongs to L?(R3), converges weakly to 0 when n tends to infinity and |1/, | L2(R3) =
1. Moreover, as Vper,sym tends to 0 in the r-direction, hence for any ¢ > 0 there exists an integer N. such
that |Vper,sym (-, (n?,n?))| < € when n > N.. Denote by {t),, ¢} the Bloch decomposition % in

the x-direction (see Section 3.2.1 for the definition) of {t,} (). Forn > N¢,

it holds
2
1
_ 1 J ’ "
LQ(Rg) 2w T*

neN* gel'*
« which belong to L2

neN per,x

2
Hper¢n dﬁ

Lper T (F)

L 2 2 2
= "—77,7/2At ( (n ’(n i ))> + Vper,symwn

n

per,fq/)n,g

(3.63)

2 1
< 2 <4 + €2> .
L2(R3) n

Remark that ’yger ¢Hperg = ZnN 1 A (&) Pix, (6)y (Hper,e) is a compact operator, where Ppy(Hper¢) the
ns1 of L
Hll)er »(T') such that ’Yperngper,éen,E = M (§ene for 1 <n < Ny, and 7per,§Hper,5€n,§ = 0forn > Ny.
Let us construct test density matrices composed by all the states of H e, with negative energies and some
states with positive energies. More precisely, for Ny € N* to be made precise later, consider a test density

spectral projector of Hyer¢. There exists an orthonormal basis {e, ¢} I') with elements in

perx(

matrix ”
—1
’YNO = ‘% (J;* ’.YND’£27T> %7
where
No+Zchﬂr
TNo £ = ’Yperﬁ + Z 7per§ |¢n§><wn §|
n=Ng+1

No +Zd1ff

- Z ’Vperf ‘€n§>< en E‘ + Z Vger,g) |7/}n,§ >< ¢n,§| :

n=No+1
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Lemma 3.22. For any Ny € N*, the state vy, belongs to the admissible set Fr.

Proof. 1t is easy to see that 0 < <y, < 1. Remark also that Ran (%?er,&) = Span {envf}lsngNH for all
¢ € I'*. The density of yx, can be written as

1
p’YNO = %J Z ’en,ﬁ

The density p,,, belongs to Lper(I') for 1 < p < 3 as {ene}, -, and {¢n ¢}, belong to Hl, .(T).
Besides, in view of (3.61),

1 o NO+Zd1ff
J;_‘p’YNO = %J Terer m( ) (Pypel“,f) g j J ‘wn7€| d£

No+Zaige

-+ 2, | Wneld

nN+1

No+1
n=ot (3.64)
No+Zaig
_ 2 _ _
= Ny + Z f |Yn|* = Ny + Zaig = f Uper,sym-
n=No+1 VR r

A simple calculation shows that |V |y, ¢| V| is trace-class on L%er - (I'). Hence yn, belongs to Pper 5. Let
us show that pyy — Lper,sym belongs to Cr. Following calculations similar to the ones leading to (3.46),
we only need to prove that k — |k|~1.F (Pyny — Hper,sym)(0, k) is square-integrable near k = 0 since
Py, — Hper,sym belongs to L2 . (). Remark that .7 F(Pyn, — Hper,sym)(0,0) = Sr Pyn, — Hpergym = 0
and

‘akg(/)w\/o — per,sym) (0, 0)‘ = ’L r (PWNO - Mper,sym) (2, 7)dzdr

No+Zais

Ny
— f J|r||en,5|2(x,r)dmdrdg+ > f 7| [¢n)? (x, r) dx dr
—, JrxJr 3

n=Ng+1

+f 7| eper,sym (2, 7) do dr < +00,
r

where we have used the fact that the eigenfunctions of Hp,, ¢ associated with negatlve eigenvalues decay
exponentially (see [HS95, Theorem 3.4] and [CT73, Theorem 1]) so that (. |r||e, §| (z,r)dxdr < 400
for1 < n < Ny and § € I'*, and the fact that {tn} x| 1<pn<ny+ 7, BaVE compact support in the -
direction by definition. Therefore .7 (pyy, — Hper,sym)(0; k) is C' near k = 0. The conclusion then
follows by arguments similar to those leading to (3.46) in Section 3.4.3. O

Lemma 3.22 implies that we can construct many admissible states in Fr by varying Ny. Let us show
that we can always find Ny such that vy, decreases the ground state energy of (3.17) if Ny < SF Hper,sym-

Given a minimizer 7 of (3.17), simple expansion of the energy functional around minimal shows that 7
also minimizes the functional (see [CDL08a])

s J TrLger (D) (Hper,(YE) d§
I ’

on Fr. Therefore, given Ny € N* we have

per,x

0< L* TrLger_yl.(r) (Hper,e (YNg,e —e)) d§ = J Trre ) (’Yper ¢Hper g (YNoe — fyg)) dé
i L* Trpg,, ,(r) (1= Ypor,e) Hpers (Yn0.c = Te)) dé

=M + L* Trpz., ) (1= Ypere) Hper,e YNo ) d€ — L* Trrz, ) (1= Vper.e) Hper gTe) &,
(3.65)
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where, since 0 < 7¢ < 1 and {\, ()} cpen,, <0,
Ng
M := TrL?, er,o (1) (’Yper £Hper,§ (7N0,§ ’Tﬁ)) g = L* Z An(§) <en,§ ‘1 - 786&6’75‘ e”:5> dg
n=1 (3.66)
f §) (ene |1 — Vel €ne) d€ <
In view of (3.63) and by a Cauchy-Schwarz inequality, we deduce that, for Ng > N,:
f TrLf)er () ((1 - ’Yger,g)Hperé'YNo,i) dg
No+Zaig +0
J Z Z Hper,£ W)n,{ >< wﬂqf ‘ €m7§> d£
n=No+1 m=1
No+Zd.ﬁr +00 V2 /1 1/2
2 2
f ( D Kb [eme)l > ( > Keme [Hpere [Yne)] ) d§
n=Np+1 \m=1 m=1
No+Zaig (3.67)
[ X Wnelus. oy Hoerctne ¢
* n:ND"rl L}%er,.’z(r)
No+Zgig 1 1/2 1 2 1/2
< % (5] ) (g [ |Hontn| - as
n—;o+1 27 peree (1) 2 Jow | Ly
No+Zaig 1 1/2 1 1/2
< 2\/§7T Z <4 =+ €2> < 2\/§7TZdjff <4 + €2> .
_ n No
n=Ng+1

Moreover, by definition of v,

fF* TI'L]%ELI(I‘) ((1 - ’Yger,g)Hper,E'TE)

1/2 — 1/2
- fF Tep, ) (1Hperel” (1= A 6L = Yper) Hpere )

per,x

1/2 — 1/2 _
= L* Trrz, () ((aler,gl 21— A) 1/2> (1 — A)Y? [ Hpere " (1 — 00 J7e(1 — WSer,g)>

= L Trzz, ) (1= 26" [ Hpere " (1= 1er ) Te (1 = 2Were) [ Hpere " (1 = A¢)?)
- L* TrL%)er <) <|Hper7§|l/2 (1 - Vger,ﬁ)%(l - Vger,g) |Hper,£|1/2> = 0.
(3.68)
We distinguish in the inequality (3.66) the cases M = 0 or M < 0. When M = 0, the inequality (3.66)
implies that ’757’3@,5 = ’Yger,g for almost all £ € I'*. In view of the inequalities (3.67) and (3.68), the
inequality (3.65) implies that,

1 1/2
VNo = Ne, 0< J TrLgerx(F) ((1 - Pyger,ﬁ)Hper,ffyi'f) d§ < 2\/§7eriff <]V4 + 52) . (3‘69)
r* ’

0

By letting Ny tend to infinity, it is easy to deduce that (1 — vger g)% = 0 for almost all £ € I'*. Together

with the fact that 'Y?VSer,g = ’Yger,g we deduce that 7z = 'Yger,g for almost all £ € T'*. In view of (3.61)
and (3.62), by the charge neutrality we obtain that

Zdiff = Lﬂper,sym - NH = J;_‘pﬁ - H ‘I‘*’ f per x(F ’Yper f) d§ NH =0.



118 CHAPTER 3. JUNCTION OF QUASI 1D sYSTEMS WITH COULOMB INTERACTIONS

Hence (. fipersym = Ng = F/(0). This also implies that the minimizer of the problem (3.17) equals to 7.,
when Ny = F(0) = SF tper,sym and Zgig = 0. When M < 0 and Zgig # 0, we can always find € > 0 and

1/2
No = N, such that 2¢/27 Zgig (ﬁ + 62) < —M /2. In view of the the inequalities (3.67) and (3.68), the
0
inequality (3.65) implies that

VNo = N., 0< J* Trrz (r) (1= Ypere) Hpere¥e) d§ < M /2 < 0,
r

per,z

which leads to contradiction. We can finally conclude that F'(0) > SF Mper,sym, S0 that the Fermi level of
the quasi 1D system is always non-positive. In the following paragraph we show that the Fermi level can
be chosen to be strictly negative.

Form of the minimizer and decay of the density of minimizers. We have already shown that if
Ng = F(0) = {; fiper,sym then the 1D system has a unique minimizer which is equal to Yper- This
also implies that for almost all £ € I'*, the operator Hpe, ¢ has Ny strictly negative eigenvalues below
0, therefore we can always choose the Fermi level e € (max&p* Ang (£), 0). If F(0) > SF Iper,syms it
is clear that there exists e < 0 such that F(ep) = Sr Upersym as F'(k) is a non-decreasing function on
(—o0, 0] with range in [0, F'(0)]. The form of the minimizer and the uniqueness is a direct adaptation of
[CDL08a, Theorem 1] by using a spectral projector decomposition similar to (A.2) of [CDL08a, Theorem
1], that is, the unique minimizer can be written as

N
_ d _ 5

Yper = 1(—oo,eF](Hper) -1 <J Yoer ¢ 2€> B =p1 (J Z ]1()\”(5) < EF) |€n,€ >< €n7§‘> B,
T* s T* nel

(3.70)
where Yper e = 1(—co,c,0](Hper,e). The Fermi level ez < 0 can be considered as the Lagrange multiplier
associated with the charge neutrality condition

F(EF) = f p’Yper = J /Lpervsym‘
T T

Once the unique minimizer is shown to be a spectral projector, we can use the exponential decay property
of the eigenfunctions of Hp, ¢ in the r-direction via the Combe-Thomas estimate [CT73, Theorem 1]: for
almost all £ € T'*, there exist positive constant C'(£) and a(£) such that

V(CC,’I") el', V1< n< Ny, |6n,§(1:,7°)| < C’(é‘)e_a(ﬁ)"ﬂ_

On the other hand, the fact that Sr Upersym = F(€p) < +00 implies that there exist only finitely many
states of Hper ¢ below ep for all £ € I'*. Therefore there exist positive constants C,. and a,. such that

Ny
1
0 < prper (2,7) < f DT L(A(E) < ep)CP(E)e 2O de < Cpemeer T,
P 2w I o
Remark that the above exponential decay result of the density coincides with Assumption 2 that
f 7| pryper (T, 7) d dr < +00.
r

3.4.7 Proof of Lemma 3.10

Assume that (3.23) holds, that is pper (2, 7) = piper (2, |7|) has radial symmetry in the r-direction. It is clear
that the results of Theorem 3.7 hold. We employ the same notations as in Theorem 3.7 in the sequel. By
the uniqueness of density, p,,.. enjoys the same radial symmetry in the r-direction. Recall that gper =
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Prper — Mper,sym- Together with the facts that (.. |7|p, .. (z,7) dzdr < +00 and that ji,e has compact
support in the r-direction. The radial symmetry in the r-direction implies that

f T @per(z,7) drdr = 0. (3.71)
r

Remark also that the exponential decay of density implies that . |7|?|gper (2, 7)| d2 dr < +00. Following
calculations similar to the those in (3.57), (3.58) and (3.60), it is easy to deduce that 0k gpe: (0, k) = 0 and
02 F qper (0, k) is continuous and bounded, so that .7 Vier sym (0, -) belongs to L?(R?), and Vper sym also
belongs to L%er’m (T'). Let us prove that Vyer sym € Lherz(T') for 1 < p < 2 (for which we can conclude
that Vj,er sym belongs to IBer z(T) for 1 < p < +00). Let us rewrite Vper,sym as

Vper,sym(x7 7') = (Qper *T G) (337 7') = (Qper *T é) (xa T) + T(T)7 (3‘72)
where

1/2
T(r)= —QJ Tper (7") log (|r — r'|) dr',  Gper(r) = J Iper(z,7) dx.
R2 —1/2

Recall that fiper sym has compact support in the r-direction, hence there exist positive constants Cy, oy
such that
V(z,7) e R®,  |gper(,7)| < qufaqlrh Gper(T)] < qu*aq|7‘|_

2

As G belongs to Lher+(T) for 1 < p < 2, by Young’s convolution inequality we deduce that gper *r G
belongs to L, ,.(T') for 1 <t < +oo0.

It remains to prove that 7'(r) belongs to LP(R?) for 1 < p < 2. Let us use the partition R? =
{Ir| < 2R} U {|r| > 2R} for the integration domain of T'(r). Note first that log (|r|) is L (R?) for 1 <
t < +0o0. Therefore, by a Cauchy-Schwarz inequality, there exists a positive constant C'z 1 such that for

' =p/(p—1)€(2,+0):
P 1/p
dr)

1/p
(J |T(7)|? dr> =2 (J
|r|<2R |r|<2R
P 1/p
dr)

<2 J
|r|<2R
p 1/p
+ 20, J dr
|r|<2R

f Tper () log (|r — 7'|) dr’
R2

f Tper () log (|r — 7'|) dr’
|r'|<3R

[ i g (= 7]
|r’|>3R

1/p / p/v' 1/p
<2 J |Tper|” J f log (|r —#'|)|” dr’ dr
|m'|<3R lr|<2R \J|r'|<3R
P 1/p
+ 20, f J o7l |10g(!(R, R) — r/m dr'l dr
|r|<2R |J|r'|>3R
< CRri.
(3.73)

Let us look at the integration domain {|r| > 2R}. Remark that by the charge neutrality condition and the
radial symmetry condition (3.71), it holds, for any r # 0,

r'r
. qper(r')W dr’' = 0.

fRZ () log i dr’ =0,

R

Denote by

/ / /12 /
" . / r'r 1 2rr’ || r'r
Q(r,r") :=log (’r —-r D —log (|r]) — e - 510g (1 P + vE)
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Then T'(r) = —2 {52 Gper (r')Q(7, 7') dr’. Remark that when |r| > 2R and Il < g for e > 0 fixed.

Ir|
7|12
A Taylor expansion shows that there exists a positive constant C' such that |Q(r,7’)] < C % This

'] }
— < E€R (-

kd

motivates the following partition of R? given |r| > 2R:

R?=B.,uBt , B

ER?

= {r' e R?

R

Hence

T(r) = Ting(r) + Text(r), Tine(7) := J}R @(r’)@(r,r')dr’, Text(r) := JBC qper(r')Q(r,r')dr’.

€R €R

Therefore, for 1 < p < 2,

P
712
[ itwmpar<ocr [ N g Thar] ar
Ir|>2R [r|>2R |JB. I
» (3.74)
< 2C”f j e—aqlr’l‘r/|2dr/ \r|—2pdr < +00.
Ir[>2R |JIr'|<eg|r|
Similarly,
P
f |Text ()P dr < le f el ‘Q(T,r/)’ dr'| dr
Ir|>2R [r|>2R |J |7/ |>ep|r|

(3.75)

p

f e~ atRITl/2g=aqlr’|/2 Q(r,7")|dr'| dr < +o0.
Ir’|>erlr|

< J
|r|>2R

In view of (3.73), (3.74) and (3.75) we conclude that T'(r) belongs to LP(R?) for 1 < p < 2. This leads to
the conclusion that Vj,er sym belongs to Lger,x (T') for1 < p < +o0.

3.4.8 Proof of Proposition 3.11

Let us emphasize that the function y being translation-invariant in the r-direction makes it difficult to
control the compactness in the r-direction across the junction surface. Our geometry is very different from
the cylindrical geometry considered in [HKSV15] for instance which automatically provides compactness
in the r-direction.

The proof of oess (Hper,.) U Oess (Hper,r) S 0ess(Hy) is relatively easier than the converse inclu-
sion. Intuitively, the ar,-periodicity (resp. ag-periodicity) implies that the Weyl sequences of H,, 1, (resp.
Hper,r) after a translation by nay, (resp. nag-translation) are still Weyl sequences of Hpe; 1, (resp. Hper r)
for any n € Z. This suggests that one can construct Weyl sequences of H, by properly translating Weyl
sequences of Hper 1 or Hyer g, as H, is a linear interpolation of Hyer 7, and Hper, g hence behaves like
Hyer.1, or Hyer g away from the junction surface. The construction of Weyl sequences of either Hp,, 1, or
Hpyer g from Weyl sequences of I, is much more difficult, as the support of Weyl sequences is essentially
away from any compact set, making it difficult to control their behaviors. One naive approach should be to
cut-off Weyl sequences of H, by the function  in order to construct Weyl sequences of H ., 1. However,
one quickly remarks that the commutator [—A, x] is not —A-compact, hence it is difficult to ensure that
the cut-off sequence is a Weyl sequence of Hp,, .. Another naive approach is to use a cut-off function ..
which has compact support in the r-direction. However as mentioned before, it is also difficult to ensure
that the Weyl sequences leave any mass in the support of x. as Weyl sequences essentially have supports
away from any compact. We construct a special Weyl sequence of H, from Hpe; 1, (or Hper,r) by a suitable
cut-off function which introduces —A-compact perturbations to solve this difficulty.

The proofis organized as follows: we first prove that [0, +00) C e (Hy ) by an explicit construction of
Weyl sequences with positive energies, as [0, +00) belongs to the essential spectrum of Hyer, 1, and Hper .
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We next prove for any A < 0 such that A € 0ess (Hper,1.) U Oess (Hper,r), A also belongs to oess(Hy ). Finally
we prove that e (Hy ) in included in oess (Hper,1,) U Oess (Hper,r) by a rather technical construction of a
Weyl sequence.

The essential spectrum o4 (H, ) contains [0,+00). Recall that a sequence {1, },en* is a Weyl se-
quence of an operator O on L?(R?) associated with \ € R if the following properties are satisfied:

- for all m, ¥, is in the domain of the operator O and [|thn|| ;2 (gs) = 1;

. the sequence 1, — 0 weakly in L?(R3);

(O = X) ¥nllp2(ms) = 0.

lim ||
n—+00

Consider a C°(R) function f(z) supported on [0,1] with § [f|* = 1, and g € C.(R?) supported on
the unit disk centered at 0 and such that . | g|?> = 1. For any A > 0, consider a sequence of functions

{tn}nen= defined as follows:

Ynl@,y,2) = n=2VA (2 = 2n) /n)g(x/n, y/n).

It is easy to see that {33 [¢,|* = 1 for all n € N*, and that 1, tends weakly to 0 in L?(R?). On the other
hand

(Hyy = N (s, 2) = (=072 ((= = 20)/n) = 20/ X0~ (= = 2n) /) ) 032N g/, y )
=0T f (2 2n)/n) (Ag) (/. y/n) + Vit (2,9, 2)
Recall also that by the results of Theorem 3.7, there exists for any € > 0 an integer N, such that
[Vi(z,y,2n)| < e when n > N..

Therefore, for n > N, there exists a positive constant C' such that

vV

1 24/ A 1
[(Hy = A) ¥nll p2(rsy < ﬁ”f”HL2(R)||9||L2(R2) + THf/||L2(R)HgHL2(R2) + ﬁ”f”L?(R)HAQHL?(R%

" <”_3 J. < | " Vil ( — 2m) ) dz) lg(a/n,y/n)P da dy> )

2n

! 1/2
< — 4+ (J f |Vx(nx,ny,2n+nz)f(z)|2 |g(x,y)|2 dzdxdy)
R2 JO

<

3lQ3Q

C
+ erHLz(R)”g”LQ(RQ) - ‘n te

This shows that {t,, },er+ is a Weyl sequence of H, associated with A > 0. Since that 0 is an accumulation
point of oess(Hy ), it holds [0, +00) C Tess(Hy ).

The union of 0ess (Hper,1,) U Oess (Hper,r) is included in oss(H,). Without loss of generality we prove
that a negative Az, belonging to oess(Hper, 1) also belongs to oess(H, ). Consider a Weyl sequence {wy, },,
for Hper 1, associated with Ay. Let us construct a Weyl sequence for H, from {w,}, «. Fix n € N*, there
exists a sequence {vj,,},_y+ belonging to C°(R?) such that for all € > 0, there exists a K,, € N* such
that for any k£ > K,

[0k = Wnll g2 (msy < & (3.76)

It is easy to see that vk, , tends weakly to 0 in L?(R?) as n — o0 since w,, converges weakly to 0. As
VK, » has compact support, for any fixed n € N* and for m € N* large enough,

supp (T(fLvamn) ﬂ (([—aL/2, +00) x Rz) U%n) =, (3.77)
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where B,, denotes the ball of radius n centered at 0 in R3. Remark that the above equality also ensures
that 75, ,,,vK,, n tends weakly to 0 in L?(R3) when m — +oo for n fixed. In view of (3.76) and (3.77), we
vk, n for n € N* so that (3.77) is satisfied. This implies that w,, tends weakly to 0

introduce wy, = 77, .
in L?(R3) when n — +00. Moreover, in view of (3.76) and by the definition of the Weyl sequence

H(HX - )‘L)ﬁ?;z = H(HX - AL)Tngann,n = H(Hper,L - )\L)TngnUKn,n
L2 L2 L2
< Tngn (Hper,L - )\L> (van - wn) + T(fLmn (Hper,L - AL)wn
L2 L2
< (1 =+ ||Vper,L||LOO =+ |)\LD ’UKn’n — Wnp - + ‘ (Hper,L - )\L)'LUn L2 n_)—’+oo 0.

Therefore the sequence w,,/||wy]| ;2 is a Weyl sequence of H, associated with A. This leads to the con-
clusion that

Oess (Hper,L) U Oess (Hper,R) S Oess (Hx) (3.78)

The essential spectrum o (H,) in included in oess (Hper,1) U Oess (Hper,g). ~ We prove that for
strictly negative A € oess(Hy ), it holds that A € 0ess (Hper,.) U Tess (Hper,z)- The main technique is to
use spreading sequences (Zhislin sequences) [GS11, Definition 5.12], which are special Weyl sequences for
which the supports of the functions move off to infinity. More precisely, a sequence {1, } ,en+ is a spreading
sequence of an operator O on L?(R3) associated with ) if the following properties are satisfied:

» for all n, ¢);, is in the domain of the operator O and |[¢)n [ 72(gs) = 1;

« for any bounded set G R3, supp(¥n) NG = J for n sufficiently large. As a consequence, 1,, — 0
weakly in L?(R3);

(O = A) ¥nll L2(rs) = 0.

As Vier,1, and Vjer g are continuous and bounded by Theorem 3.7, it holds by [GS11, Theorem 5.14] that

« lim ||
n—+00
Oess (Hp) = {\ € C| there is a spreading sequence for Hy and \}

with Hg being H,, Hper 1, or Hper,g. The results of Theorem 3.7 also imply that, for any € > 0, there exists
a constant R, such that

max (| Voer, o Ljris . | ey [ Voor il |l o) ) < € (3.79)
Consider a spreading sequence {¢y}, .+ for Hy associated with A < 0. For all n € N*,

either [9nl[12((0,100)xr2) = 1/2 0 [|nllp2((—o0,01xRr2) = 1/2.

Without loss of generality, we assume in the sequel that there exists a sub-sequence {¢y }, .+ such that,
for n sufficiently large, | ¢y || L2((0,400)xR2) = 1 /2. We next construct a Weyl sequence of Hper g from

{n}en+ by constructing a special weight function p which has a non-trivial mass on (0, +o0) x R?, and

whose derivatives decay rapidly:
o n() dy
p(x) = :
1701 1 (r)

where

o—2V=Na|  9a—v—Alal

3\ 3\
is the solution of the following one-dimensional Yukawa equation

n =

— ! — A = e 2V, (3.80)

The following lemma summarizes some properties of the weight function p.
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Lemma 3.23. It holds that 0 < p < 1 andlim,, || pdn||; 2 # 0. Moreover,
10" pn + 2P/8x¢n||L2 P 0, PX2 (Voer, — Vper,r) € L’ (RS)- (3.81)

We postpone the proof of this lemma to Section 3.4.9. Define wy, := pdn/||pdn|| 2. Let us show that
{wn }nenx is a spreading sequence of Hpe, g associated with \. First of all, the sequence {wy, },en+ is well
defined at least for large n as lim,, o0 || pon || 2 # 0. It is also easy to see that ||wy||;2 = 1 for all n € N*.
For any bounded set G € R?, it holds supp(wy,) NG = & for n sufficiently large as {¢,,}, .y is a spreading
sequence. Note that

1
(HperaR - )‘) Wy = (p (HX - )‘) On + Axd)n) ) (3.82)
lpbnll 2
where Ay := —3p" — p'0z + pX* (Vper,L. — Vper,R) - As limysoo||(Hy, — A) ¢nl| ;2 = 0 by definition of

the spreading sequence, it follows that lim, 0 ||p (Hy — ) ¢nll 2 < limpool|(Hy — A) @pll;2 = 0.1t
therefore suffices to prove that (possibly up to extraction) lim,, || Ay@nl/;2 = 0. By the Kato-Seiler—
Simon inequality (3.39) we obtain that

(1 - A)71PX2 (Vper,L - Vper,R) pX2 (Vper,L - Vper,R)

1
< o= .
Ss 2ﬁ LQ(RS)

In particular x> (Voer,. — Vper,r) is —A-compact, hence Hpe; p—compact by the boundedness of Ve, k.
As the sequence Hper pwy, is bounded in L?(R3), the Hper,R—compactness of px? (Voer,, — Vper,r) implies
that px? (Voer,. — Vper,r) Wy, converges strongly to some function v € L?(IR3). On the other hand, for any
fe L*(R?),

(Ua f)L2 = lim (pX2 (Vper,L - Vper,R) W, f) L2 hIJIrloo (wna pX2 (Vper,L - Vper,R) f) L2 07

n—+0o0 n—

where we have used the fact that w, — 0 and px? (Vper,, — Vper,r) € L*(R?) so
px° (Voer,.L. = Vper,r) f € L*(R?).

Therefore by the uniqueness of weak limit, x> (Voer,L, = Vper,r) Wy, converges strongly to v = 0. Together
with (3.81) we conclude that lim,, || A¢y|| 2 = 0. Therefore in view of (3.82), it holds

lim [|(Hper,r — A) wpll ;2 = 0.

n—o0

Hence {wy,},, is a spreading sequence of Hpe, g associated with A < 0. This implies that for any spread-
ing sequence of H, associated with A\ < 0, we can construct a spreading sequence for either Hp, s, or
Hper, g associated with A < 0, depending on whether (up to extraction) the spreading sequence of H, has
non-trivial mass on ((—00,0] x R?) or ((0,+00) x R?). This allows us to conclude that

Uess(Hx) S Oess (Hper,L) U Oess (Hper,R) . (3.83)

By gathering (3.78) and (3.83) we conclude that 0ess(Hy) = Oess (Hper,L) U Oess (Hper,r). In particular,
Oess(Hy ) is independent of the function x € X.

3.4.9 Proof of Lemma 3.23
The solution of the one-dimensional Yukawa equation (3.80) is
e~ V=Alz—yl

—V=A(lz|+[y) 1
0 < - —2V=Al g <f ¢ dy < —e VAl 3.84
o) = | G y y< e (389

R AVERD) —-A
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This implies that 1 belongs to LP(R) for 1 < p < 4. Asn > 0 is integrable, the weight function

Sy dy
PE) = ol

large enough and p(x) > 1 for x > 0, hence limp oo || pdn | 23y # O.

is well defined. It is easy to see that 0 < p < 1. Since ||¢n | 12((o o0y xr2) = 1/2 for n

Let us next prove that | p” ¢y, + 20" 0z¢n || 12 — 0. In view of (3.84),
n—

1

o0
|77,($)’ =3 J o=V Alz—y[=2v=AJy| (Tocy — Tumy) dy‘
—0

+o0
—V=Alz—y|=2v=Alyl g, — /_ L V=l
< e dy = An(x) < e .
J; Yy n(x) Y

Combining the above inequality with (3.84) we obtain that

”77/¢n + 277%%”%2(1@3) < 2

10" fn + 2/0/6m¢n”%2(]1{3) = JR3 ((77,)2 |6nl® + 4n2‘ax¢n’2>

2 S 2
2 8 ©
<t [ e g il [ g0
(Al gy Jre 170171 ) SR

It suffices to prove that each of the previous integrals tends to 0 when n — o0. Remark that the integrands
of these terms appear when one does an explicit calculation of (7 (—A — X) ¢p, (—A — X) ¢,). Let us
therefore first prove that

(M (=A = X) ¢p, (A = X) ¢n)L2(R3) — 0.

n—o0

For this purpose, we prove that [|1 (—A — X) én || 12 (rs) ——0 strongly and (—A— )¢y, ——0 weakly

in L2(R3). In view of (3.84), for any € > 0 there exists 2. > 0 such that when |z| > z., 0 < n(z) < &.
Together with (3.79) and the fact that {¢,,}, .+ is a spreading sequence, it holds

Vil + | Vil

[—z0,70]¢ x{|r|<R:}

[nViedn? +f

[—z0,z0] x{|r|<Re}

IVihallaqesy = [
Rx{|r|>R:}

2
Gl [z z0] x {|7|<Re}
L2

< ellnll oy + Vi3 m) o el|VllZoo (rty = 0.
R

The above convergence allows us to conclude that
11 (=4 = X) bnll Logsy < [In(Hx = N)onll 2y + [1Vidnll 2 sy —— 0. (3.86)

Moreover, for all n € N*, ¢,, belongs to H?(R?), which is continuously embedded in L*(R?). Approxi-
mating ¢, by C(R?) functions we deduce that lim,|_,o, |¢n(2)| = 0. Furthermore, remark that for any
1 € CP(R3) it holds

(A = N ) o5y = (s (— = A)) agmsy —— 0,

n—oo

which implies the weak convergence (—A — \) ¢y, = 0 by the density of C®(R?) in L?(IR?). Together

with the strong convergence (3.86) and an integration by parts, this leads to,
(77 (_A - )‘) On, (_A - )‘) ¢n)L2(R3) = JRS n |A¢n|2 + NAAD, Py, + A?ﬂ%@ =+ 77)\2|¢n|2
= | 186, = e (j0ul") = 200 907 + X

_ JRs 018G + (N + X20) 6] + 20| [V —— 0.
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_Uess<Hx) = Oess (Hper,L) U Oess (Hper,R)

¢
! | ?
N

Figure 3.5: The essential spectrum of H,, Hyer 1, and Hper g, and the contour €.

In view of (3.80) we have ()\77” + )\277) = —Xe 2=l > 0, hence the integrand of the above integral is
positive. This implies that
J eV A g, 12— 0, f 1|Vn|? — 0. (3.87)
R3 n—00 R3 n—00

In view of (3.85) and (3.87), we deduce that ||p” ¢, + 2p’6x¢n|]%2(R3) — 0. Let us finally prove that
n—

pX2 (Vper,L - Vper,R) € LQ(RS)'

By definition of x, the function px? has support in (—c0, ag/2] and is equal to p(x) when z € (—00, —ar,/2).
Remark also that (3.84) implies that

1 | 1
Vo <0, p(x) < f A T q——
1l 2 J—oo Al A2 ]l
Hence, as Vper,. € Lper, (I'r) for 1 < s < o0 by Theorem 3.7,
f (pxzvpenL)Q = J (Pvper7L)2 + J (PXQVperyL)Q
R3 (—0,—ar,/2) xR2 [—aL/2,ar/2]xR?
Voor 1% +00
< ‘H - HL;(FC‘L) Z 672\/77»%“ +f VerrL < +00.
R (/1 Y [~ar/2.ar/2]xR2

This implies that px?Vper,, € L*(R3). Similar arguments show that px*Vyer, g € L*(R?), which concludes
the proof of the lemma.
3.4.10 Proof of Proposition 3.12

In view of Proposition 3.11, consider a contour € in the complex plane enclosing the spectrum of H, below
the Fermi level e without intersecting it, crossing the real axis at

c < lnf{_”VpenL”Lm; _vaenR ‘LOC} .

See Fig. 3.5. This is possible even if e is an eigenvalue: one can always slightly move the curve € below
€r in order bypass er but still enclose all the spectrum of H, below €r. Let us introduce the following
estimates, which are useful to characterize the decay property of densities.

Lemma 3.24 (Combes-Thomas estimate [K1095, CT73, GK03]). Consider H := —%A—FV withV € L*(R3).
Let p, q be positive integers such that pq > 3/2. Then there exists ¢ > 0 and a positive constant C(p, q) such
that for any ¢ o(H), and any (o, ) € Z3 x 73,

|

_ dist(¢, 0(H))
where 0(C, V') = 1|+ V][ pw + 17

wa (¢ — H) Pwg

4p
> e=<H(CV)la—B] (3.88)

<Oq) <1 )

&y
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Since V, belongs to L (IR?), the following lemma is a direct adaption of [CDL08a, Lemma 1]:
Lemma 3.25. Under Assumption 3, there exist two positive constants c1, ca such that
V(¢ e C, Cl(l—A)S‘HX—QSCQ(l—A)

as operators on L (R3), where recall that € is a contour in the complex plane enclosing the spectrum of H,, be-
low the Fermi level e p without intersecting it, crossing the real axis at ¢ < inf {—||Vper || ;o0 s —||Vper,R
In particular

|1} -

1
< —.

/201 AN-1/2
'W& EEN =

< @,Wﬂx—qlﬂu—Af”

Moreover, (H,, — ¢)(1 — A)~! and its inverse are bounded operators.

Let us turn to the proof of Proposition 3.12. First of all let us show that -, is locally trace class. Consider
0 € C°(R3). Remark that v, is a spectral projector. In view of Lemma 3.25, by Cauchy’s resolvent formula
and the Kato-Seiler-Simon inequality (3.39), there exists a positive constant C, such that

1 2

) 1 1
lovells, = lenels, = llowls, = ||e S C I, dg
¢

1-A

2
Cy | 2
< EHQHH(W)'

<Cy

G2

0

So

This implies that 7, is locally trace class so that its density p, is well defined in Llloc(Rg). Let us prove
that X2pper.z. + (1 — X?)pper.k — py belongs to LP(R3) for 1 < p < 2. It is difficult to directly compare
the difference of x?pper.z. + (1 — X?)pper.r and py- We construct to this end a density operator 74 whose
density pq is equal to X2pper7L +(1— )(Q)ppenpL — Py

Vd = Yd1 V2 Va1 =X (perl = )Xo ¥d2 = V1= X (perk = 1) VI— X2 (3.89)
Remark that if 745 € &1, then T&"Lz(Rs)(yd) = xzpper,L +(1— x2),0per,R — Px-

The density pg is in LP(R3) for 1 < p < 2. The proof that p; € LP(R3?) relies on duality arguments:

denoting by ¢ = _£5 € [2, +00), we prove that for any W € L%(R3) there exists some K, > 0 such that

|Trr2(rsy (vaW)| < Kq||W{| 4 By Cauchy’s formula we have

1 1 1 "
Y= o PN Hpwr  C— Hy ) X

(3.90)

2mi - Hper,R ¢

’yd,2=i vl—x2<< ! - _1H>v1—x2d4-
X
¢

Let us prove that there exists K C} > 0 such that
| Tr 23y (a1 W)| < K [IW ]l o

It is easily shown that a similar inequality holds for 4 2. Denote by V; := (1 — X2)(Vper, L — Vper,R) €
L*®(R?). Remark that the function Vx has compact support in the z-direction and that V) belongs to
L"(R3) for 1 < r < +00 by Theorem 3.7. For any ( € €, the integrand of 7, 1 writes

1 1 1 1
D = — = V. .
(C) X(C_Hper,L C_HX>X XC_Hper,L dC_HXX

Remark that y being translation-invariant in the r-direction, it is not in any L? space in R3, which prevents
us from using the standard techniques such as calculating the commutator [—A, x] to give Schatten class
estimates on 4 1. By writing 1 = vper, 1, + VIJ)_er pand 1 =1, + 'y;, the following decomposition holds

Yper.L 1 ’YJ' L y 'YJ' L ’Yl
per, per, X per, X
Vi X+ X Vi X+ X Va y. (391
¢ — Hperr, “C— H, ¢ — Hperr, “C— H,

D(¢) =
O =xc"h,.. = a,
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By the residue theorem,

Voor L Vi

per, X —

X v, Yd¢ = 0. (3.92)
L ¢ — Hper, ¢ — Hy

To estimate other terms in (3.91) we rely on the following Lemmas 3.26 and 3.27.

Lemma 3.26. Consider a self-adjoint operator H = —A + V defined on L*(R3) with domain H?(R?)
andV € L*(R*). For E € R\o(H) denote by ¥ = 1(_o g5|(H). Then for any a,b € R, the operator
(1 — A)%y(1 — A)? is bounded. Moreover, if y € &y, for some k > 1, then (1 — A)%y(1 — A) € Gy

Proof. Similarly as in Lemma 3.25 it can be shown that for any ¢ € R\o(H) the operator ((—H)~%(1—A)®
and its inverse are bounded. Fix § > 0 and define Ao := —||V|| ;» — . Then Ao ¢ o(H). By writing v = 7,
there exists a positive constant C' such that

-y ay (0 — HY?H

< CH(AO — H)*y(Xo — H)"

:C’

< 400,

(G73 Sk Sk

asy € &, and y(\o— H )"’ is a bounded operator. The proof of the boundedness in operator norm follows
the same lines. O

Lemma 3.27. Forany 1 < p < 2, there exist positive constants d;, 1 and dy, 2, such that

Yper,L
C - Hper,L

Tx

V(eC,
¢—Hy

Va Va

X X

< dpellVaxllpowsy- (3.93)
Sp

< dp:1||VdX||Lp(R3)a
GP

Proof. Let us prove the statement for xyper,.(C — Hper,,) ™' Vi, the proof of the bound of Vv, (¢ — Hy ) ~1x
follows similar arguments. Fix R > 0. Recall that B, is the ball in R? centered at 0 with radius R. Denote
by (R the characteristic function of B g. For any R > 0, by the Kato-Seiler-Simon inequality (3.39) and the
boundedness of (1 — A)(¢ — Hper,L)_l it is easy to see that o X ({ — Hper,L)_l and (¢ — HperyL)_IVdgoR
belong to Ga. The operator Yper,z,(( — Hper,r.)™ is a bounded for any m € R in view of Lemma 3.27.
Therefore

Vper,L 1 1
el y) g = S —H — &
PR (XC — Hper,L d) PR <90RXC — Hper,L> ’Yper,L(C per,L) (C _ Hper,L d90R> € O

Let us first prove that for any 1 < p < 2, there exists a positive constant d;, ; only depending on p such
that for any R > 0,

Yper,L

PEXCTH L < dp1 [Va X 1o o) (3.94)
per,

Sy

Vavr

We first prove (3.94) for p = 1 and p = 2, and conclude by an interpolation argument for 1 < p < 2.
Consider p = 1. By the cyclicity of the trace and the Kato-Seiler-Simon inequality (3.39),

Vper,L 1 1
R Vaer = ||PRX L (¢ — Hper,r.) ———Vapr
’¢ Xl .. ‘@ XC_E%HLVWn(C p“’)C—f%HL @ .
1 ) 1
= L(C—Hper,r,) m——Va —
Vper (C per )C_ Hper,L SORXC _ Hper,L &
1 1
<cl|l/——— VdapQRX _
T-a) e T,

1 9 1/22
= |Vawkx|

< dia||Vakx|l 1
11— A &4 L

=C
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Let us next prove (3.94) for p = 2. Use again the cyclicity of the trace and the Kato-Seiler-Simon inequal-
ity (3.39),

2
Vper,L “Vper,L “Vper,L
‘ YRX per Vier ‘ Vapr=—""—0% QLVdSOR
C er,L Go C Hper,L C ervL S1
Yper,L 2 Tper,L 2 2
—————Afng — 5 VivR
HC Hper 1 ¢ — Hyper,L &1
1 1
< |orx* ————er.L (¢ — Hper,.) — V707
YR ¢ HperLVpeL ( per, L) ~ Hper.s d PR o,
/ 2 4
= C ||Yper,L C_H r,L V()O
pe ( pe ) _Hper,L dPRX C HperL
1 1
< C” ‘ V2 4 X27
" 2 1 ? 2 2 2
= "|||Vaghx| —— < da 1 IVaprx|lz2-
¢ = Hper,L ||,

By the interpolation arguments we can conclude (3.94) for 1 < p < 2. Remark that for 1 < p < 2 the
following uniform bound holds:

Yper,L

PRX Vavr
C Hper,

< dpg HVdSO%%XHLp(Ra) < dp1[[Vax| oo (rs)-
Sp

By passing the limit R — 400 we can conclude the proof. O
Consider W € L4(R3) for ¢ = % € [2,400). In view of (3.91), (3.92) and (3.93), by manipulations

similar to the ones used in the proof of Lemma 3.27, and the Hélder’s inequality for Schatten class operators
(see for example [RS75, Proposition 5]), we obtain that

¢)dcw

1
s Wlls, = 5=
(S5

1
T 1 Tper
= Trenl v, W+ x—2mky, X dg

C Hper,L C - HX g - Hper L C H
Yper,L 1 < 1 >
V, 1-A)| —xW | d
jg(XC—Hper,L d><_HX( ) T—AX ¢
¢ (51
Wy a—A)’ﬁﬁL VX d¢
Xl - A C - Hper,L C H S
¢

< Ky IW 1l o sy
Sq

G1

N

(3.95)

< CVax|l e (rs)

1
W
1—AX

where we have used the Kato—Seiler-Simon inequality (3.39) as well as the fact that ||x||;. = 1. Similar
estimates hold for 7,4 2. We therefore can conclude that p; = X2pper, L+ (1— XQ) Pper,R — Py belongs to
LP(R3) for1 < p < 2.

Decay rate in the z-direction. Let us show that the density difference X2pper,L +(1— X2) Pper,R — Py
decays exponentially fast in the z-direction. Note that there exists N7, € Nsuchthat N —1 < az/2 < Np.
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Denoteby D,, := [—ar/2, +o0)xR?, we prove the exponential decay when supp (w,) < R3\D,, . Denote
by

a:=(0,0,0) € (R,0,0), B =(Ba,By,B:) € 2%, Br>—N.
We have

ar,
]lDaL Z Z wg :]l]D)aLa ]l]D)aLVdZVd, am<f7<—NL+1<ﬂz+1.
Bac>_NL Byvﬁzez

The above relations imply, together with (3.93), the Combes-Thomas estimate (3.88) and arguments similar
to ones used in (3.95), that there exist a positive constants C] and ¢; such that, for 1 < p < 2and q =

p
p—1 > 23

||wa7dwoz||61 = ||wa'7d,1wa”61

1 v 1 o
=|5= ( Xe- Vi X Wa + way 2ty X Xwa) dq
¢

27Tl HpeLL C - HX C - Hper L C H

1 Yper,L 1
— VL) VR v Y (PR I
o ( X Hyerr d) ( Dar ¢ = XY ) ¢
¢
1

1 VperL
— aX——————1 o) d
27T1§<w XC—Hper’L DaL) <VdC H X ) C
¢

K 2 Z 7t1 Bz az) tl‘ﬁy|eftl‘,8z| < Cleftl‘azl.
Bz=—Np, ﬁyvﬁzez

(31

A

(31

(G3]

The last step relies on the uniform distance of ( € € to o(H,) and o(Hper ). Similar estimates hold
when the support of wy, is in [ag/2, +00) x R2. There exist therefore positive constants C and ¢ such that
|wavdWallg, = Sgs [Wapawal < Ce~ll, which concludes the proof.

3.4.11 Proof of Lemma 3.13

From the last item of the Theorem 3.7 we know that Vper 1, € LBer 2(T') (resp. Vper,r € Lbero(Tr)) for 1 <
p < +o0. Remark also that 02(x?), 9,(x?) are uniformly bounded and have support in [—az, /2, ar/2] x
R2. It therefore suffices to obtain the LP-estimates on 02 Vper,r, and 03 Vper,r. We treat 0, Vyper, 1., the LP-
estimates of 0 V}er,r following similar arguments. First of all in view of the form of the minimizer (3.70),
by the Cauchy-Schwarz inequality

aacpperL = a <27r J Z 6L) |€n(§7 )‘2 df)

1 L n=1 ¥ ;
<) (Z T =) axlen!(fw)IQ) (Z L(An(€) < 1) enlc. ~>12> ¢
LAzl n=1

Kf,L\/ Pper,L;

where K¢ 1(x) := SF* ns1 LA (§) <€) [0zen(§, ) dé|*. We also have used the fact that [V|f|| <

|V f| for any complex _valued function f. In view of the potential decomposition (3.72), the term T'(r) does
not contribute to the x-directional derivative, hence

1
< (27_‘_ \ Kﬁ,L\/ Pper,IL T axﬂper,L’) * |Gy,

|a Vper L| = ‘ pperL Nper,L)) *GaL
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On the other hand, finite kinetic energy condition (3.10) implies that K¢ , € L1, . (I'1,). Moreover, \/pper L

per,x

belongs to H. ,(I'z) hence to L5, (') for 2 < s < 6. Therefore, by Holder’s inequality, for p,m > 1:

per,z

p/2 pmy2 )" pmy(m-1) \ ™
(K&LPPERL) < KE,L pper,L ’
IV IV IV

with the conditions pm = 2 and 2 < pm/(m — 1) < 6. This is the case for4/3 < m < 2and 1 < p < 3/2
so that (K¢ 1pper.s)”? belongs to Lhe o(I'z) for 1 < p < 3/2. As dupipers is in Lber »(T'z) for any
1 <p<+wand G,, € Lierz(I'L) for 1 < g < 2 by Lemma 3.3, we obtain by Young’s convolution

inequality that 0, Vper,r, € L, (I') for 1 < s < 6. This allows us to conclude the lemma.

3.4.12 Proof of Proposition 3.15

The following statements ensure that the problem (3.35) is well-defined: a duality argument shows that den-
sities of operators in Q, are well defined. The energy functional (3.36) is well defined and is bounded from
below. The proofs are direct adaptations of [CDL08a, Proposition 1, Lemma 2, Corollary 1 and Corollary
2].

1. For any Q) € Q,, it holds that Q, W € 61“ for W =W, + Wy el + LQ(R?’). Moreover, there
exists a positive constant ', such that:

Ty (W) | < OxllQxllg,, (IWiller + [Wall 2 (rs))-

Moreover, there exists a uniquely defined function pg, € C[) L?(R3) such that
VW =Wy +WaeC + L*(R?), Try (QyW) = {pg. Widerc + j P Wa.
R

The linear map Qy € Qy — pg, € C[)L*(R?) is continuous:

IpQy llc + 1oy I 22y < CxllQyllg, -
Moreover, if Q, € &1 < &%, then pg, (x) = Qy(, x) where Q, (x, ) the integral kernel of Q.
2. For any k € (X, €r) and any state ), € K,, the following inequality holds
0< e ((1-2)2(QFF = Qy7) (1= A)2) < Try (H@Qy) — KT, (Q))
<o ((1-8)2@T — Q)1 - 4)?).
where ¢; and ¢y are the same constants as in Lemma 3.25.

3. Assume that Assumption 3 holds. There are positive constants d~1 d~2 such that

Ex(Qy) = KTr (Q)) = di (1% ey + 1Ry lley + VIR TV llls, + [IV1Q "V ]]le,)

~ 1
+da ([IIVIQ«I&, + 1Qx1I8,) = 5D v).

Hence &, (-) — £Tr,, (-) is bounded from below and coercive on K,.

The existence and the form of the minimizers are direct adaptations of [CDL08a, Theorem 2].
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3.4.13 Proof of Theorem 3.17

We prove this theorem by taking two arbitrary cut-off functions x1, x2 belonging to X, and prove that
Pxi +PQy, = Px2 tPQ,,- Fori = 1,2, consider the reference states associated with the Hamiltonian H,,.
Denote by ,, the spectral projector of H,, below er and by @, the solutions of (3.37) associated with x;.
Consider a test state

Q=1 + Qi — T (3.96)

We show that @ is a minimizer of the problem (3.35) associated with the cut-off function x2, so that
PG = PQx, by the uniqueness of the density of the minimizer provided by Proposition 3.15. Note that
Assumption 3 and Proposition 3.11 guarantee that there is a common spectral gap for H,, and oess(Hy, ) =
Tess(Hy, ). We first show that the test state () belongs to the convex set

ICXz = {Qegxz|_’YX2<Q<1_7x2}7

hence is an admissible state for the minimization problem (3.35) associated with x2. We next show that @
is a minimizer.
The test state ) belongs to K',,. We begin by proving that Qisin Q... Let us prove that Q is Yy -trace

class. The following lemma will be useful.

Lemma 3.28. The difference of the spectral projectors ,,, — Yy, belongs to 61"2. Moreover,

‘V| (’YXl - 7X2) € Go, (7}(1 - 7xz) |V’ € Gs. (3-97)

Proof. By Cauchy’s resolvent formula and the Kato-Seiler-Simon inequality (3.39),

1 _ _
||7X1 — TIx2 ||62 = ﬂ ﬁ;(g - HXl) I(X% - X%)(Vper,L - Vper,R)(C - sz) ! dC
¢ (D)
<00 )70 3D Fhers = Vo) (398)
(GD)
< 5] 08 = X8 Voers ~ Vper)| < 45
X Qﬁ 1 2 per, per,R Lo .

The results of Lemma 3.25 imply that |V|({ — H,,)™! is uniformly bounded with respect to ¢ € €. By
calculations similar to (3.98),

(X3 = X3) Voer.r, — Voer.r)(1 —A) 71 < +o0. (3.99)

(P}

<
So

19160 = 3

Hence (75, — 7Vy.) | V] also belongs to & since it is the adjoint of | V| (73, — 7Yy, )- On the other hand, as
Yx: is a bounded operator, in view of (3.98) and by writing vy, — vy, = %%2 — 7%1 and using the fact that

Y+ =1

1 1 1 1
Yo (= M2) Yo = Tra VYo = (xa = Yx2) Yxa (4 — Yx2) € ©1,

K i (3.100)

T (i = M) e = ~ eV e =~ (e = M) 1 (ke = ) € 61

Together with (3.98) we conclude that ~,, — 7,, belongs to G, O
The following lemma is a consequence of [HLS05a, Lemma 1] and the fact that v,, — 7,, € Ga.

Lemma 3.29. Any self-adjoint operator A is in 61"1 if and only if A is in 6?’(2. Moreover Tr.,, (A) =
Try,, (A).
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The fact that Q,, € &]*' implies that |[V|Q,, € &3, and Q,, € &2 by Lemma 3.29. In view
of this and Lemma 3.28 we know that Q = Y1 — Yy + @y, belongs to 6%‘2. The inequality (3.99)
implies that |V|Q = IVIQx: + V(%1 — Yx2) € Ga. It remains to prove that |V|7X2Q7X2|V| € G and
|V|7X2@7X2 |V| € &;. In view of (3.96) we have

1
VI, Q1 V| = VI, Qv V] + IV, (= Yxe) YV,

|v|7X2Q7X2|V| = |v|'7X2QX1'7X2|V| + |v|7X2 ('7X1 - '7X2)7X2|v|'

We estimate (3.101) term by term. By Lemma 3.26 we know that |||V |y, || < [[|[V|[(1=A) 7| (1—=A)yy, | <
0. Moreover, by writing 7;2 =1 =% Y — Yxe A0d Yoo = Vg + Yy — Vya» i View of (3.99),

(3.101)

Hw%@@m v

&1

Hrvwmﬂrw IV Qs e — 100) V] 4 191 (rs — 1)@ v V]

61
wamczm ‘ H|V|Qxl<vxl vl + Hrvmlczm (s = 1)V
(31
; Hmml ) ; H\vm )@Y
&1
H’vWXlefY +”’v|Qx1 (’YX1_7><2) +H|VWX1 Qx1 (VX1_’Y><2)‘V|
Sa (P S2
7X2|V|HHQX1 (s = ) +H@X1|V| VIors = vl < .
(G So G2
and similarly
\wm@mm
(CF1
= |v"7X1QX1'7X1|v‘ =+ ‘V|7X1QX1 (7)(2 - ’7X1)|v’ + ’v‘(7X2 - '7X1)QX1’7)(2‘V|
(S5
< |9 @ura ¥ +H|vwfyxlcz><1<fyxl—m> +HrV|<vxl—fyX2>czmxz|V|
S1 (G
< |9 @ura ¥ +H|vm1 Qul o =)l
61 So So
’VX2‘VIH QXl ’v‘(7X1 _"sz> < O,
62 62
From (3.100) we know that
‘IVI%f2 = M) Yl VI = 1V (ha = e) Ma (b — xe) [V
S (G5
' 2
< |v|(7X1_’YX2) < 0,
(P
mea (e =) 1V = 191 (e = 1) 7 (e = 700 IV
S (G5
' 2
< |v|(’7X1_’YX2) < 0.
(P

This shows that |V|7X2Q7X2]V| € 61 and |V|7X2Q7X2|V| € 6. In view of (3.101), this allows us to
conclude that Q e Qx»- On the other hand, it is easy to see that —7y, < Q= i T Qxi — Yo < 1= Vyos
which shows that Q belongs to the convex set KC,,.
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The state @ is a minimizer. We now prove that @ is a minimizer of the problem (3.35) associated with
the cut-off function 2. As Q) € K, the fact that (), is a minimizer implies that

Exs (@) — kTry (@) = Ey, (Qy,) — KTrq, (Qy,) - (3.102)
Define © := @ —Qy, = Qy; — Qs + V1 — Vxo- The inequality (3.102) can therefore also be written as
Exz (©) = kT (©) + D (o, prg) > 0. (3.103)

It is easy to see that —1 < © < 1 and © belongs to Q,, (but not necessarily to the convex set K,,), which
also implies that the density pg of © is well defined and belongs to the Coulomb space C (see Section 3.4.12).
Therefore (3.103) is well defined. Introduce another state by exchanging the indices 1 and 2 in the definition

of Q: R

Q= + Qs — Y1
Proceeding as before, it can be shown that 5 € Ky, . By definition @,, = © + 5 Since )y, minimizes the
problem (3.35) associated with x; and 5 €Ky,

Exi <5> — kT <5> =&y, <@ + 5) — kT (@ + 5) .

The above equation can be simplified as
Ex1(©) = kTr,, (©) + D (p@, pg) < 0. (3.104)

Let us show that the left hand sides of (3.103) and (3.104) are equal. First of all as © belongs to 9, ,, we know
that Tr,  (©) = Tr,, (©) by Lemma 3.29. Remark also that P35 = Px> ~ Pxa + pQ,.,- By Lemma 3.29

0t (6) ~ KTn,, (6) 4D (poupa,) — (£0(6) ~ #Tr,, () + D (po.s3)
1
=Ty, (FA +V42)8) = D (pe, vx,) + 5D (pe; pe) = Tiyy, (=A +V11)0) + D (pe vx,)
1
— 5D (pe,pe) = 1 (Tryy, (©) = Try, () + D (pe: pay,) = D (%mg)
= Troy, (FA +V4,)0) = Ty (A +V31)0) + D (po, pxi + Vi = Pxz — Vxa)

= Tr%@ (Vxa = V31) ©) + D (po, px; + Vxq — Pxz — Vya) -
(3.105)

We show that (3.105) is equal to zero by first showing that (V;, — V;,)© € &1  &]*2. We start by
showing that (1 — A)Q,, € &2. By Cauchy’s resolvent formula,

1 1 1
= — d¢ = O . :
Qi = 57 (z “H, - HX-L) ¢ =Qui + Q2 + Q3
¢ Xi
where
1 1 1 1
Qi = 217rj€z — H,, (%Xl VXi) * H) z— Hy, ¢
¢
1 1 1 1 1 1
;= — — Uy, | * — — Uy, ) d
Q2 Qiﬂjgz—HXi <(p§xl yX’) ¥ | |> z— Hy, <(p©xz VXI) * | ]> z—H, ¢
¢
0 1 jg 1 ( ) 1 1 ( ) 1 1
=P ——— Uy, | * — Uy, | * 7
YT %I J 2~ Hy Po, — M |-/ z— Hy, T |-/ z— Hy,
¢ Xi
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Following arguments similar to the ones used in the proof of [CDL08a, Proposition 2] we obtain that
<p§ — sz'> * ‘—1| belongs to L?(R?) + C’, and we can conclude that (1 — A)Q,, € S3. Remark that
Xi

Vi — Vo = (03 — X3) Voer., — Vper,r) € L (R3) n L*(R3). By definition of ©, by the Kato-Seiler-
Simon inequality and use calculations similar to (3.98)

H(vxl V)

= H(VX1 - VX2) (QXI - QX2 + Y — 7X2)
(G Sq

< H(VM V) (- Ay (H(l A @ - @) - A =) )
Sy G2 Sa
< 2\1/%’ Vi = Vxe L2 (H(l —A)(Qx — Qx2) -,

+CH(X% - X%)(Vper,L - Vper,R)(l - A)_l

< o,
Sa

which proves that (V,, — V,,) © belongs to &1, hence
TI"WXZ ((sz - VXI) 0) =Tr ((sz - V)m) 0).
On the other hand, by the definition of V,, in (3.31) and v; in (3.33) for ¢ = 1, 2, we deduce that

Tr ((VXQ - VXl) ©) = D (pe, (sz - MX2) - (Px1 - ,Ux1)> =D (P@;ng — Px1 T Vxa — Vx1>-

The above equation implies that the quantity (3.105) equals to 0. Hence, in view of (3.103) and (3.104),
Ex2 (©) —wkTry (©) + D (o, prg) =&, (0) = kTry (©) + D <p@, pg) =0.

We conclude with (3.102) that

Exa (@) - ”Tr'yXQ (@) =&y, (sz) - ”Tr'yXQ (Qx2)~

Therefore @ is a minimizer of the problem (3.35) associated with the cut-off function x2. From Theorem 3.15
we know that PG = PQyy> which is equivalent to that pg , + px, = px; + PQ,,- By the arbitrariness of
the choice of x1, x2 we deduce that p, + pg, is independent of the cut-off function x € X.
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4.1 Introduction

Research on atomic dynamics started from Einstein’s observation of the Brownian motion in liquids [Ein05,
Ein06] and his work on the heat capacity of solids [Ein07]. Latter on, Born and von Karman [BvK12, BvK13]
focused on lattice vibrations, and their works laid the foundations for the modern theory of lattice dynamics.

It is well known that atomic vibrations in crystals play a key role in material features such as heat
conductivity or defect dynamics (see [Dov93] and references therein). First-principle calculation methods
nowadays allow the numerical simulation of many of these physical properties. Although based on the
fundamental laws of quantum physics, these methods do not aim at solving by brute-force the many-body
time-dependent Schrédinger equation which governs the dynamics of nuclei and electrons, as this task
is well beyond the capabilities of today’s computers. Instead, these methods provide numerical solutions
of approximate models derived from the many-body time-dependent Schrédinger equation. The Born-
Oppenheimer approximation [BO27, PLC*07], based on the smallness of mass ratios between electrons
and nuclei, first allows to decouple electronic and nuclear dynamics. More precisely, in this approximation,
nuclei obey an autonomous quantum Hamiltonian dynamics, in which the effective interatomic potential
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is obtained by assuming that the electrons are in their ground state (which depends of the nuclear config-
uration via the Coulomb potential generated by the nuclei). This approximation can be justified for finite
molecular systems by adiabatic theorems provided there is a uniform gap between the ground state and
first excited state of potential energy surfaces (see [PST03, Teu03] and reference therein). By analogy, the
Born-Oppenheimer approximation seems quite reasonable for insulating and semiconducting materials,
while more questionable for metallic systems. A second approximation, almost always made in practice,
consists in approximating the quantum Born-Oppenheimer nuclear dynamics by a classical one. From
a mathematical viewpoint, this can be justified by a semiclassical approximation obtained by letting the
Planck constant go to zero in the nuclear dynamics (see [Hag80] and reference therein). Lastly, the ground
state electronic problem must itself be approximated, typically using Density Functional Theory (DFT).
The resulting model (classical nuclei interacting via an effective many-body potential obtained by solving
an electronic ground-state problem using DFT for each nuclear configuration) is often referred to as first-
principle molecular dynamics. Note that Car-Parrinello molecular dynamics [CP85] is an approximation
of first-principle molecular dynamics.

In this chapter we focus on first-principle molecular dynamics, and use the reduced Hartree-Fock (rHF)
model to approximate electronic ground states. This model has already been discussed in Section 1.1 of
Chapter 1. To illustrate the problems at hand, consider for simplicity a finite system with M nuclei and N
electrons, and denote by X(t) = (X1(t),---, Xas(t)) € (R3)M the positions of the M nuclei at time ¢ and
by W : (R))M 5 X+ W(X) € R the rHF potential energy surface. The force acting on the i*" nucleus at
time ¢ is

Ei(t) = =Vx,W(X(?)).

In practice, the forces can be computed using Density functional perturbation theory (DFPT) (see [BAGDCGO01]
and references therein). Global minimizers of V' correspond to the most stable configurations of the molec-
ular system. Local, non-global minimizers correspond to metastable states and critical points with Morse
index equal to one to transition states. Let X° be a local minimizer. The vibration modes of the molecular
system in configuration X are obtained by solving the secular equation

(D*W(X") Y =’ MY (4.1)

where D?W(X") € Rg%lx M and M e Rg’%lng are respectively the stiffness and mass matrices of the
molecular system. The former is the Hessian matrix of the potential energy surface W at X", while the

latter is the diagonal matrix containing the masses of the nuclei.

In a crystalline solid, the stiffness and mass matrices are infinite-dimensional but L-translation in-
variant, where L is the Bravais lattice of the crystal. The eigenvalues of the (discrete) Fourier transform
of (4.1) are the phonon frequencies and are labeled by a wave-vector. Phonons are collective excitations
of the crystal describing quantum harmonic lattice vibrations within the Born-Oppenheimer approxima-
tion [AM76, Sch08]. Anharmonic effects can be taken into account by perturbation theory (phonon-phonon
scattering [AM?76, Kit04]). Perturbation theory is also used to compute the effect of nuclear vibrations on
electronic transport in semiconductors and metals (electron-phonon scattering, see [Giu17] and references
therein).

In this chapter, we follow a different path and study the fully nonlinear (non-perturbative) rHF Born-
Oppenheimer dynamics of classical nuclei in a crystal in the neighborhood of an equilibrium periodic
configuration. Addressing the general case of arbitrary excitations of the nuclear configuration is quite
challenging because it is not clear how to define a rHF (or a fortiori a Hartree-Fock or Kohn-Sham) ground
state for generic nuclear displacements small enough in the /*°(R)-norm, where R is the crystal lattice. In
numerical simulations, nuclear displacements usually have the periodicity of some supercell. The electronic
problem then remains periodic and can be dealt with using Bloch theory. The alternative we consider in
this work is to study the nonlinear dynamics of localized displacements, typically small in the £?(R)-norm.
We rely on the previous works on the rHF ground-states of crystals with local defects [CDL08a, CE11] to
compute the atomic forces in the deformed crystal. Our main result is the characterization of a Hilbert space
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H densely embedded in £2(R) and the definition of a classical Hamiltonian H : H x £?(R) — R. We show
that if the initial data (R(0), P(0)) (atomic displacements and momenta) is small enough in H x /2(R),
then the rHF Born-Oppenheimer molecular dynamics is well posed for short times.

This chapter is organized as follows: we start by considering a system with a finite number of nuclei
and electrons in Section 4.2, and construct a mathematical framework for the classical nuclear Hamiltonian
dynamics around a local minimum of the potential energy surface, where the electronic state is described by
a rHF model. We then pass formally to the thermodynamic limit in this model and obtain a lattice dynamics
around a periodic equilibrium configuration in Section 4.3. We prove the well-posedness of the so-obtained
infinite-dimensional Hamiltonian dynamics in short time for a small initial data. Some on-going work and
possible extensions are discussed in Section 4.4.

Let us conclude this section by mentioning other mathematical works on the dynamics of crystals
with classical nuclei and quantum electrons. In the framework of the Schrédinger—Poisson model, the
coupled electronic-nuclear dynamics has been studied in [KK17] for finite systems, and in [KK16, KK18]
for perturbations around periodic configurations. In these works, electrons are described by a wavefunction
evolving according to a nonlinear time-dependent Schrodinger equation. Let us also mention that for the
electronic dynamics only (nuclei are fixed), the Cauchy problem of the time-dependent Hartree equation
has been studied in [LS15] for a Fermi sea, with electrons driven by an external short-range potential.
In [CS12], the authors have proved the local and global well-posedness of the Hartree dynamics in the rHF
model for a small time-dependent nuclear perturbation.

4.2 Nuclear dynamics for finite systems in an adiabatic Born-Oppenheimer
approximation

In order to motivate the model for lattice dynamics around periodic configurations introduced in Section 4.3,

we first consider a neutral molecular system consisting of M smeared classical nuclei and NV electrons. We

denote by (21.)1<k<ir € (N*)M the charges of the nuclei (22/121 z = N), by (my)1<k<nmr € (R%)M their

masses, and by X = (Xj)1<x<ns € (R3)M their positions. The nuclear charge distribution is represented
by a smooth function

M
i (z) = 2 zpgm (z — X)
k=1

where the superscript "fs" stands for "finite system", and where m € C*(R?) is a smooth radial nonnegative
function supported in the ball B, = {x € R?||z| < n} for some n > 0 and such that {p; m = 1.

The rHF Born—-Oppenheimer energy surface. We start by recalling the rHF model for finite systems,
which was already discussed in Section 1.1.2 of Chapter 1. Let us introduce the following set of admissible
density matrices:

PR = {yeS(LAR?)| 0< v <1, Trpams(7) < 0, Trrzgs)(|V[|V]) <0}
The rHF energy functional is defined for X € (R?)M and v € P as:
1 1 ;
EB(X,7) = Trpzs) (—2A7> + 5D (pw — 1R py — uﬁ%) :
where Try2(gs) (—3A5) = %TrLz(Rg) (IV|y|V]) and D(-, -) is the Coulomb energy

D(p1, p2) = 4r f PR 2olk)
PR

defined for p1, p2 in the Coulomb space

C:={peSR?
{pes@)

ﬁe Llloc(Rg)7 ﬁ(|) € L2(R3) } ’
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where p is the Fourier transform of p. Endowed with the inner product (p1, p2)c := D(p1, p2), the Coulomb
space C is a Hilbert space. Its dual space C’ (Beppo-Levi space [CDL08a]) is:

C':={VeLSR?) | VV e (L*(R%))*}.
Within the rHF approximation, the Born—Oppenheimer energy surface is defined as:

¥X e (RHM,  WS(X) = inf {5fS(X, ”) ‘ v e P, Trpoms(v) = N} . 4.2)

It is known [Sol91] that for any R € (R3)%, (4.2) has a minimizer, and that all minimizers share the same
density. The latter property is due to the fact that the rHF model is strictly convex in the density.

Hamiltonian dynamics around a reference configuration. Let X° be a (local) minimizer of X —
WH(X). Let 4° be a minimizer of (4.2) for X = X°. We denote by p° := p~o the common density of the
minimizers, by V := (pwo — ugsco) * | - | 7! the electrostatic potential generated by the electronic density
p and the nuclear density ,ugs(o, and by H? := —%A + V70 the corresponding rHF Hamiltonian. Assume
that there is a gap between the N*" and (N + 1) eigenvalues of H°, and choose a Fermi level e in this
gap. Then, /0 = Lo, (H 0 is the unique minimizer of (4.2) for X = X0 (it is a rank-/N orthogonal
projector). Using results from [CM14], it can be shown that for any X € (R3)M in the vicinity of X°,

« the minimization problem (4.2) admits a unique minimizer which we denote by yx. In fact, yx is
also the unique minimizer of the free energy £(X,~v) — epTr r2(r3)(7) on P,

« the map X — WH(X) is real-analytic.

Remark that X° is an equilibrium configuration of W, and that the nuclear forces in the equilibrium
configuration X° vanish. More precisely, forall 1 < k < M:

0=—-Vx W5X% = —J VO(2) Vm(z — X)) dx = f m(x — XP)VVO(z)dx. (4.3)
R3 R3
Let us write the nuclear dynamics around the equilibrium position X, as a preparation for the lattice
dynamics around a periodic configuration considered in Section 4.3. Denoting respectively by Xj(t) € R3
and P, (t) € R? the position and momentum of the k-th nucleus at time ¢, the rHF Born-Oppenheimer
nuclear dynamics arond X is defined by: for 1 < k < M,

dXp(t) _ Pi(t)
dt my

) B x ().

(4.4)

Reformulation of the dynamics. Given a generic state (X,7) € (R*)M x P, we denote by (R, Q)
the deviation from the equilibrium state (X°,~), i.e.

X =X"+R= (X0 + Rp) <k, 7v=7"+Q.

Let us introduce the variation of nuclear density

M
VR 1= fixo s — Hxo = ) 2k (m(-— X = Re) —m(- = X)),
k=1
and its first order approximation
M

V{f’R = — Z 2Vm(- — X}) - Ry.
k=1
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The relative free energy of the system can be written as

E*(R, Q) = (£5(X,7) = erTrpaqen) (7)) — (E5(X°7") = 6 Trpaqen) (1))

= Trrz(gs) (—;A (" + Q)) + %D <P70+Q — (B0 + VR), Pyo1q — (HRo + Vﬁ)) — erTrra(rs)(7)
— Trpz2gs) <—;A’YO> + %D (PVO — 150, py0 — Mxo) er Trr2 sy (70)

= Trr2(gs) (—;AQ> +D (PWO — 10> PQ — Vﬁ) + 1D ( — VR PQ — S) —erTrr2ms) (Q)

= ez (HO — er)@) + 5 (g — v po —vR) - f Vg

1
= Trr2(grs) (H° — ep)Q) + §D (pQ Vi po — Vﬁ) f \ Vo (V{{ I/{SR> (4.5)

where we have used (4.3) to obtain the last equality. Finally, the relative Born—Oppenheimer free energy
surface is given by

WER) : = WEXO + R) — WH(X°) = inf {EfS(R, Q), Q++1 ¢ PfS} : (4.6)

We observe that for R small enough, the force on the k-th nucleus can be obtained by differentiating (4.6)
as

Vi<k<M, FFR):=-VgW5R)

= 2z J (= Xy — Rp)VVE — zkf VO (Vm(-— X — R) — Vm(- — X}))
R

R3
- zkf m(- = X{ - Ry) (VV° + VVE) | (4.7)
R3
where Vi& = (pr — &) x| - |71, and pR is the unique density of the minimizers Qg of (4.6). If the

state (X°,~9) is a global minimizer of £® on (R?)M x P (and not only a local one), it holds
V(R 5+ Q) € (R)M < PR, ER(R,Q) > 0; (48)

and therefore
VR e (R®M, WB(R) > 0. (4.9)

In view of (4.9), we can define a Hamiltonian H™ : (R3)M x (R*)™ — R associated with the nuclear
degree of freedom by summing up the kinetic energy of the nuclei and the relative Born—-Oppenheimer
energy surface, which serves as a potential energy driving the nuclear dynamics:

M
H5R,P) = Z i + WBR). (4.10)

The Born-Oppenheimer dynamics (4.4) around the local equilibrium configuration X can then be recast
as

dRy(t) _ Vo HS(R(), P(t)) = Pk:(t)7
dt Mk (4.11)
dPy ()

— Vg, H5R(t),P(t) = —Vz, WE(R(?)).

dt
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4.3 Lattice dynamics around a periodic equilibrium configuration

In this section we generalize the nuclear dynamics for finite systems introduced in the previous section to
lattice dynamics around a periodic equilibrium configuration. This is obtained by a formal thermodynamic
limit of the model for finite systems. More precisely, we now assume that the reference equilibrium con-
figuration is a perfect crystal, and we denote by L its Bravais lattice and by 2z, the nuclear charge of the
nucleus located at equilibrium at the point k£ € R, where R denotes the set of lattice sites (for convenience,
we label the nuclei by the corresponding lattice points). We assume that the nuclear charge is modeled by
a R-periodic distribution:

Nger = 2 zpm(- — k),
keR

where we recall that m € C®(R3) is a smooth radial nonnegative function supported in the ball B, =
{z € R3||z| < n} for some 17 > 0 and such that {; m = 1. We assume that the minimal distance between
the centers of two nuclei in the periodic lattice R is d,, » n for simplicity. As shown in [CLBL01, CLBL02,
CDL08a], the rHF model for such a crystal is well posed and the ground-state density matrix fyger is unique

(see also Section 1.2 of Chapter 1. We denote by pger the density of 'yger, by VY the unique R-periodic

per
solution of the Poisson equation —AVper = 47T(pger — ,uger) with zero average in unit cells of R, and by
0 0
Hpe, = A + Voer

the rHF mean-field Hamiltonian of the perfect crystal. Recall that H
erator on L?(R?) with domain H?(R?). We also know that

per is an R-periodic Schrodinger op-

’ygcr = ]l(_OO:EF] (chr)

is a (infinite-rank) orthogonal projector on L?(R3). Similarly to (4.3), the fact that the R-periodic nuclear
configuration forms an equilibrium geometry implies that the force on each nucleus vanishes:

VkeR, m(-—k)VVp, = f Vi V(- — k) = 0. (4.12)
R3

From now on, we make the following assumption.

Assumption 4. The reference perfect crystal is an insulator or a semiconductor, in the sense that the Fermi
level ey lays in a spectral gap of HY.: d(ep,0(HJ,,)) > 0.

per

Defects induced by nuclear displacements. We denote by R = (Ry)rer € (R?)® the nuclear dis-
placement with respect to the perfect lattice, where Ry, € R? denotes the displacement of the k-th nucleus
with respect to its site in the R-periodic configuration. The change of nuclear density is thus given by:

vr(z) = Z 2z (m(z — (k+ Ry)) —m(x —k)).

keR

Remark that the function vg can be considered as defects of the nuclear configuration with respect to the
perfect crystal. This relates the study of lattice dynamics to works on local defects as considered in [CDL08a,
CL10, CE11] and presented in Section 1.3.1 of Chapter 1. In particular, these works ensure that the rHF
model for ground-state electronic structures of local defects in insulating systems is well-posed as soon
as the nuclear charge distribution of the defect vr belongs to the Hilbert space vg € v_ ! (L2 (R?’)) +C
(see [CL10, Theorem 1]), where v, (p) := p * | - |~ (v, is the Coulomb operator). In this study, we will
consider a functional setting of lattice dynamics in which vg (¢) remains in v ! (L2 (R3)) +Cforallt >0
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Functional setting. Introduce the space of square integrable displacements

5 rRk\2<oo}

*(R) := {R (Ri)rer € (R®H*
keR

equipped with its natural inner product:

(R,R/)p2 := )| Ry Ry
keR

An admissible functional space of nuclear displacements is provided by the following result.

Lemma 4.1. Consider the dense subspace of /*>(R) defined by

H .= {R = (Rk)keR € €2<R)

VIR 1= — Z z,Vm(- — k) - Ry € C} . (4.13)
keR

Endowed with the inner product defined by

(R,R)# = (R,R))2 + (v1r, V1R ) o »

the space H is a Hilbert space. Moreover, for all R € H it holds vg € L*(R3) n C, and vg — v1 R belongs to
LY (R3?) n L2(R?). In fact, there exists C1, Cy € R such that

VReMN, [vrle+|vrle < Ci|R]n (1 + [Ry), (4.14)
and
VR € €2('R), HVR - VLRHLl + HVR - VLRHLQ < CQHRH?Q (4.15)

The proof can be read in Section 4.5.1. Passing formally to the bulk limit in the Born-Oppenheimer rHF
model for finite systems (4.6)-(4.10), and relying on the results in [CDL08a], we can henceforth define a
rHF ground-state Born-Oppenheimer energy surface associated with the nuclear defect vr. The analogue
of (4.6) is

W(R) := inf {E(R, 0), Qe ICVger} , (4.16)
where

E(R,Q) := Tro (Hper — €7)Q) + D(PQ VR,PQ — VR) f e (VR — VIR) -

In this expression,

Tl“o ((Hper EF)Q) = TrL2 (R3) (’ per — EF‘I/Q (Q++ __) ’ per F‘1/2>
Q++ = (1 - ’Yper) Q (]- - ryger) ) Qii = ’YperQ’YpeN
and
”/Ber {Q € Q’Yper - ’Yger < Q <1- ’Yger}7

where Q“/ger is the Banach space of operators having finite ’yger—trace and finite kinetic kinetic energies:

Q.0

.= { Qe IE)| @ - 0 V0 eu(2(®)),
VIQ 7] € Su(IA(E)), [V1Q 7] € 6127 .
equipped with its natural norm

IRllo,g = lIRlls: + 1" lley +1Q7 lley + IVIQlls + IIVIQTVIlle, + IVIQ™ Vil

Recall that we have already introduced the convex set /C,y(p)er and the space nger in Section 1.3.1 of Chapter 1.
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Well-posedness of the rHF electronic problem. We have shown in Lemma 4.1 that the displacement
R € H leads to admissible defect function v(R). At this stage, we have to make the following assumption
on the stability of the crystal. Remark that the condition (4.17) is the analogue of the inequality (4.8) for
finite systems.

Assumption 5. The point R = 0 is a global minimum of the relative ground state energy W (R) defined
in (4.16). That is,
V(R,Q) e H x K ER,Q) > E(0,0) = 0. (4.17)

Under Assumption 5 the following inequality holds,
VReH, W(R)=D0. (4.18)

We have the following result on the well-posedness of the rHF electronic problem given nuclear displace-
ments R in H.

Lemma 4.2 (Well-posedness of the electronic problem for R € ). For any R € H, the electronic prob-
lem (4.16) has a minimizer, and all the minimizers share the same density pr € L*(R?) n C. In addition, the
following properties hold: there exists C' € R such that, forall R € H,

[VVe[> <2 (IRI5 + CIR]z) , (4.19)
where VR = (pr — VR) * | - |1 € C' is the rHF mean-field potential generated by the defect vr, and
lorlione < € (WR)YV2 + W(R) + [Rlp + |RIZ) (4.20)
The proof can be read in Section 4.5.2.

The Hamiltonian dynamics of nuclei. Consider the Hamiltonian H : H x ¢?(R) — R, defined by
P2
V(R,P)eH x (*(R), H(R,P)= ) 1Bl W(R), (4.21)
keR 2m

where we recall that W (R) defined in (4.16) is the relative rHF ground-state Born-Oppenheimer energy
surface. The function H admits partial derivatives with respect to the variables Rj, € R? and P, € R? for
all k£ € R. Similarly to (4.7) for finite systems, for R small enough, the force acting on nucleus £ is

per

F.(R) := — (Vg H)(R,P) = -V W(R) = — L@ (Vo + Vi) V(- — k — Ry)
= f m(-—k — Ry,) (Ve + VVR) .
R3

We denote by F(R) = (Fi(R))rer-

Lemma 4.3 (Bounds on the force). For any R € H, it holds that F(R) € (?(R). Moreover, there exists a
constant C' € R independent of R such that

VReMH, [FR)|e<C|R|e(1+|Rlx+|R|%E)- (4.22)

The proof can be read in Section 4.5.3. This allows us to define the rHF Born-Oppenheimer lattice
dynamics, which is an infinite-dimensional Hamiltonian dynamics:
dRy(t)

Vi e R, dt G (4.23)

dlzigt(t) — —Vr HR(t),P(t)) = =V, W(R(t)) = F(R(t)).
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Denoting by Y (¢) = (R(¢), P(t)), the Hamiltonian dynamics (4.23) can be written as

dY (t)

— =N (Y (1), (4.24)

with N (Y) := (M~'P,F(R)) for Y = (R,P) and M := (my),.x. We consider the norm

1/2
Ylhermy = (IR + Plg))

We have the following result on the local well-posedness of the Hamiltonian dynamics (4.24) for a small
initial data.

Proposition 4.4 (local well-posedness of Hamiltonian dynamics). There exists a positive constant o such
that for any e € (0, o), there exists T(¢, ) > 0 depending only on € and « such that for any initial condition
of the Hamiltonian dynamics (4.24) satisfying

1Y (0)llyxpry < @ =, (4.25)

the equation (4.24) has a unique solution’Y € C* ([0,7(g,a)), H x £3(R)) .

The proof can be read in Section 4.5.5. The condition (4.25) on the initial data guarantees that the Fermi
level e is not an eigenvalue of the mean—field Hamiltonian, which guarantees that the Hellmann-Feynman
expression of the force term is correct, and that the forces are Lipschitz continuous.

4.4 Perspectives

We discuss here the two obstacles for proving the global existence and uniqueness of the Hamiltonian
dynamics, and also hint at some on-going work. The existence and uniqueness for initial data which are not
small (condition (4.25) is no longer satisfied), and/or for long time requires a perturbation analysis of the rHF
model when the Fermi level is e occupied. For finite systems, the situation of fractional occupations has
already been studied in [CM14]. One should be able to adapt results in [CM14] to our problem. Additionally,
for the global existence, one should prove local Lipschitz continuity of the force term F(R) for the whole
space H. The main ingredient is to extend the technical estimate (4.42) to all o > 0. This requires results
on the linear response theory around a generic potential Vpoer + Vg € C' for R € H, while only results on

the linear response around a periodic configuration Vrg)er are known in the rHF model [CL10].

4.5 Proofs of the results

4.5.1 Proof of Lemma 4.1

Let us first show that  is a Hilbert space. It suffices to verify that 7 is complete. Consider a Cauchy
sequence (R,,), .y« in . It is easy to see that there exists R in /?(R) such that R, —— R in /*(R),
n—ao0
and w € L*(R?) such that |¢| 7171 g, (§) —— @(€) in L*(R?). Let us show that @(&) = [£]7'D, 5(€).
n—o0 )

Introduce the discrete Fourier transform § which is a unitary operator from (*(R) to L2, (I'*):

Vo = (drker € C(R),  Fou(€) := Y, e *ay,

keR

with its inverse

Ve L2, (), (37'6) (k) :=f eKE(€) dE.

T*



144 CHAPTER 4. LATTICE DYNAMICS IN AN ADIABATIC BORN-OPPENHEIMER APPROXIMATION

Then,

€17 D1 R, (€) = —im()l¢] '€ - (Z e‘i’“ﬁRn,m) = —i(€)[¢] 71 - F (2 ORa) (),

keR

where 2z := (%), and 2O R := (2Ry) - The fact that R,, —— R in 2(R) and z € (*(R) implies

that R A
zOR, — zOR in€2(7€),

and therefore

§(zOR,) — 5 (z@f{) in Lger(f‘*).

—00

As M (€)]€] 1€ belongs to L®(IR3), we obtain that
€71 D1 R, () — |§!*1917ﬁ(§) in L% (R?).

By the uniqueness of the limit in L{ (R?) we conclude that [£|7'D, 5(§) = @(¢) € L*(R?). This shows
that H is complete.

Let us now prove the remaining statements of the lemma. First of all, since the nuclear distributions do
not overlap in the equilibrium configuration, we have

2
IrlP :f S Vi@ —k) Ry de< Y e U Vm(x—k)||Vm(x—l)]dx> Ryl | Rl
R? per kleR R3
= %2 ([ [9me - mdc) 1 < (axap) 19miZalRI2
R keR
Therefore,
WReCR), mlie < (maxa ) 1Vl Rl (4.26)

The linear map R — 14 R is thus continuous from H to L?(R3) n C. Let us next show that vg belongs to
L*(R3) N C. Tt holds

(v —viR)(@) = D) 2 (m(x — k — Ry) = m(z — k) + Vm(z — k) - Ry). (4.27)
keR

By the fundamental theorem of calculus, it holds,
1
m(x —k — Ry) —m(x — k) = —f Vm(x — k —tRy) - Ry dt. (4.28)
0

Therefore,

1
m(:kak)m(:Uk:)Jer(l‘k)-Rk:J; (Vm(z — k) —Vm(z —k —tRy)) - R dt

1l
= J J tRI Hess(m)(z — k — stRy,) Ry ds dt.
0 Jo

where Hess(m) € C%°(R3; R3*3) stands for the Hessian of m. Therefore,

Im(- = k= Ry) = m(- — k) + V(- = k) - Rl 2 o

1
J J <J |Hess(m)(x — k — stRy)||y d:z) |Ry|*ds dt < 3 [ Hess(m)|| 11 gs) |Ry|?,
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where ||, is the matrix norm associated with the Euclidean scalar product on R3. Similarly,

(- — k= Re) = m( k) + V(- — k) Rl o gy < 5 [Hess(m)] ooy 1Rl
Hence by interpolation, for all 1 < p < +00,

(-~ By) — (-~ k) + V(- — ) Ryl yoqay < 5 [Hess(m)|poquoy [Ril”. (429
In view of (4.27) and (4.29), it follows that for 1 < p < 40 andp’ = p/(p — 1):

1
VR e A(R), |vr —vir|wr < 5 (r&%{zk> |Hess(m )Hz/lp]Rd |Hess(m )H1L/£ R3) R|7.. (4.30)

Therefore (4.15) holds. Since L5/°(R3) < C, there exists C' € R such that
VR A(R), v - virle < CIRJ%.
Therefore,
VReH, |vrle < |nrle+|vr—virle < |nrle + CIR[E < |Rlx + CIRIZ,  (431)
and by (4.26) and (4.30),
VReH, [vml < Ivinlee + vk — vinle < C (IRle + [RIZ) < € (IRl + RIZ)
In particular, this implies that vg belongs to L?(R?) n C for all R € H and (4.14) is satisfied.

4.5.2 Proof of Lemma 4.2

Since vr € L?(R3) n C for any R € H by Lemma 4.1, the result of [CL10, Theorem 1] ensures that the
electronic problem (4.16) admits a minimizer and that all the minimizers share the same density pr. Let
us prove the remaining statements in Lemma 4.2. First, Tro ((HJ,, — er)Qr) = 0 and D(pr — VR, pR —
vr) = 0. As Qr minimizes F and 0 is an admissible state, we obtain that, for any R € H,

D(vr,vR) f per -1 r) = E(R,0)

1
> ER,Qr) = Tro (Hper — e7)QR) + iD(PR —VR,PR — VR) — f Vi (vR — V1 R)

\%
N | =

D(pr — VR, PR — VR) — f Vpoer( —V1R)-

This implies that
D(pr — vR,pR — VR) < D(VR,VR)- (4.32)

Hence in view of (4.31), it holds,

Ve[ = [VVR|72 = |pr — vR|E = D(pr — VR, PR — VR)

(4.33)
< D(vr,vR) = |vr[¢ <2 (IR} + CIR|)

which proves (4.19). It also follows from (4.15) and (4.30) that

1
[ vt = )| < IVl = vl < 5 () tessn) s Ve IR (439
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Therefore,
1
W(R) = E(R,Qr) = Tro ((Hpe, — er)QR) + 5P(PR = vR, PR —VR) — JR3 Vi (vR — 1R)

1 1
> Tro ((Hper — e7)@R) + 5 D(Pr = VR. pr — vR) — 5 max 2y [Hess(m)| s [ Vool o= | R

This implies that

0 < Tro ((HY

1
S = 2r)@n) < W(R) + 5 a2 [Hess(m) |1 Vi 1= [RIZ. (435)

By [CDLO08a, Corollary 2] it follows from Assumption 4 that there exists ¢ > 0 such that for all Q € Q.o _,

Tro ((Hper — £7)Q)
>c (1@ e, + 1Q ey + IIVIQT Ve, + IVIQ™™ Ve, + [QI&, + IVIQIE,) -

On the other hand, there exists C' € R such that (see [CDL08a, Proposition 1]) for all Q) € nger’

Ipall e < ClQlo., -

per

In view of (4.35) and the above inequality, there exists C' € R such that
VReH, Iprlizne < C (WR)2+WR) +|R|e + [RIE) .
which leads to (4.20).

4.5.3 Proof of Lemma 4.3

To establish the estimates in Lemma 4.3, we first introduce the maximum number of overlapping nuclei in
the configuration R, i.e.

C(R) :=sup{j € RA(K} | I(k + Bi) = (G + By)| < 20}, (4.36)

where we recall that 1 > 0 is the common radius of the smeared nuclei.

Lemma 4.5. The following estimate holds:
2 dm - 2
VRel*(R), Cy(R)<2 5 = 2n IRz, (4.37)

where recall that d,,, > 1 is the minimal distance of the center of two nuclei in the R-periodic lattice.

The proof of this lemma can be read in Section 4.5.4. Remark that one can obtain a bound of C4(R)

by HRH%S instead of |R2, in (4.37), but the proof of the former is more complicated, while the exponent
is not significant in this study.
To prove (4.22), we first rewrite Fj(R) using (4.12) as

Fi(R) = J m(-—k— Rg) (VV2

RS per

+ VVR)
_ J (m(-— k — Ry) — m(- — k))VVY, + f m(- — k — Ri)VVi.
R3 R3

From (4.28) we obtain that

(- =k = Ri) = m(- = &)l 2oy < IV o) | Rel,
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from which, together with (4.19) and (4.37) we deduce

2

IF(R)[7 < (- =k = Rg) =m(- —k)) VVO

per

— k- Rp)VV&

keR

<AV 1% fm(— k- Ry) - (—k>||L2+2HmHLQZ j Va2
keR keR Yk+Ri+By

<A|VVelZ2 VM2 [RIZ + 2[ml7Co(R)[V VR
< C|RJZ + CHRsz (IR[3 + CIR|z)
< CIR[Z (1 + [RIF + [RI) .

which leads to (4.22).

keR

4.5.4 Proof of Lemma 4.5

First of all, note that if |R|,2 < d,,,/2 — 0, there are no overlapping nuclei since |R [~ < |R|2, hence
Cx(R) = 0. We next consider the case when ||[R|,2 > dp,/2 — 7. We denote by k* € R the lattice site
at which the maximum in the definition (4.36) is attained, by D; := k* + Ry+ — j and by Dy the set of
elements j such that
‘Dj — Rj| < 2n. (4.38)
By definition, C'4(R) is the cardinality of the set Djx.
Assume that Cx (R) > 2, otherwise the result is trivial. Denote by a € D+ and b € Dy the minimum

Dal = min [Djl, |Dy/= min |Dy].
Dal = g 1Pl IDel = i 1P

For simplicity, we further assume that the minimum is attained only by a, and |Dy| > |D,|. We shall
remove this assumption at the end of the proof. Let us show that |D| > d,,,/2: when |D,| > d,,/2 this
trivially holds. If |D,| < d,,/2, noting that Dy, = D, + a — b, the triangle inequality for Euclidean space
leads to

[ Dy| + [Da| = |a = b] = d
which implies that | Dy| > d,,/2. Therefore in view of (4.38), it holds

dm
Vi€ Dy\fa), 0<% o< Dy -2 <|Ryl.

This implies that

2
-1 (G -m) < ¥ IRE<IRE.

j€Dyx \{a}

As we have assumed that |R|2 > d,,/2 — n > d,,/2 — 27, the above inequality implies that
dm - dm 2 dm -
Cx#R) < (2 — 277) (HR|§2 + (2 - 277) ) <2 (2 — 277) IR[Z - (4.39)

reasoning similar to the one above, that

min |D;| > d—m,
]EDk* 2
and so
dm -2 2 dm -2 2
Cy(R) < (= =20 IR ] < S =) R (4.40)
jE'Dk*

The inequality (4.37) then follows from (4.39) and (4.40).
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4.5.5 Proof of Proposition 4.4
First of all, let us show that N(-) is a map from H x ¢2(R) to £2(R) x £2(R). By (4.22), it holds,

1

1/2
N (Y)“ZZ(R)X£2(R) < <minke7€ m? HP|‘?2(R) + ‘F(R)’é(RO

N

1 2 1/2
——] > 1P CIR|% (1 + |R R|? .
<mmkenmz [y + (CIRpe (14 Rl + | HH)))

There exists therefore a constant U, € R such that, forany Y € H x 2(R),

IN (V) legyxermy < Ono (1Y e + 1Y Biam)) - (441)

The local well-posedness of the Hamiltonian dynamics relies on the local Lipschitz continuity of N(-),
which is a direct consequence of the local Lipschitz continuity of the force term F(-). Simple calculations
show that the latter property follows from the following lemma.

Lemma 4.6. There exist « > 0 and C, € R depending only on « such that, for any R and R belonging to
H with |R| RH < a, it holds

H>

lor = pigle < Cavr —vgle- (4.42)

The proof of this result can be read in Section 4.5.6. The following lemma can then be obtained (see
Section 4.5.7 for the proof).

Lemma 4.7 (local Lipschitz continuity of the force F'). There exists a constant CN'a e Ry (depending on the
constant o given in Lemma 4.6), such that for all R, R € H with |R| f{HH e

H>

HF(R) _F(R)

4.43
2®) (4.43)

The local Lipschitz regularity of N is a direct consequence of Lemma 4.7:

M)

5 1/2
152(73)>

‘P PH +HF(R)—F(ﬁ)

< (|
02(R)x42(R) MINgeR mk

~ ~ |12
“ (it [P Ple *f%F—R)>
mMiNgeR mk H

< On(a) Y - YH

HxL2(R

where

1 N2
On(a) = max <., C’i) .

minger mi

By the Cauchy-Lipschitz theorem the Hamiltonian dynamics (4.24) is locally well-posed for any initial
condition Y (0) such that [ Y (0)[ 3 s2() < o

4.5.6 Proof of Lemma 4.6

We prove the result by a linear response expansion of the rHF minimizer based on results obtained in [CL10].
In view of (4.33) and [CL10, Lemma 2], there exists § > 0 such that if | Vr|cr < 3, then

€r ¢ o ( per T VR) , Qr= ]l(—oo,eF] ( per T VR) - ]l( 00,eF ] ( per) € Q (4.44)
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Using again (4.33), we next observe that

1/2

Vil < [vmlle < V2 (IR + CIRIE) ™ < V2 (0 + Cat) ' i< B(a).

Therefore there exists o > 0 such that (4.44) holds. Consider the following expansion:

QR = QI,VR + QQ,VR + Q3,VR5 (445)

where, by denoting € a smooth curve in the complex plan enclosing the spectrum of ngr below e,

1 _ _
Ql,VR = % § (Z - ngr) ' VR (Z - ngr) ' dz,
¢
1 0 —1 0 -1 2
Q2,VR = ﬁ § (Z - Hper) (VR (Z - Hper) ) dz,
[
and
1 0 —1 0 -1 3
Qurin = 3= (= Hio = Vi) (Ve (== Hyo) ') d
¢

Recall that v denotes the Coulomb operator (v, (p) := px|-|~!), which is an isometry from C to C’ [CL10].
Note also that the rHF mean-field potential generated by the defect Vg = v. (pr — vr) belongs to C’ by
the results of Lemma 4.2. The linear response operator on C is defined as [CL10, Equation (21)]

VQ € Ca L (Q) = _le,vc(Q)'
Hence, in view of (4.45),
prR = —L(pr —VR) + PQ2v T PQs, v -

The operator L is a bounded nonnegative self-adjoint operator on C and 1 + £ is invertible and bicountin-
uous on C [CL10, Proposition 2]. The above equality can be recast as

L 1

1
= + + — . 4.46
PRETG LT T gl ewm T m (4.46)
Therefore,
L 1 1
pr= = 7 R = R) + g (Pa — pea) 1 (PR — PRy ) - 49D

On the other hand, for all £ > 1, the k-linear map

2 (€)' 0y

Vper

1 — _ _
(VlaV% T aVk) = 2171_%(2 - H}())er) ' Vi (z - ngr) ' Va (Z - ngr) '
[

Vi (z—HO )71 dz,

per
(4.48)
is continuous [CL10, Lemma 3]. In particular, there exists a constant C'y, € R such that

k

VIV V) e (€))7 12k (Vi Ve, Vilg, < CrViller [Valler -+ [ Viller - (4.49)

per

Therefore, as

1 - _ _
Qi — Quvy = 5 P = M) ™ (= Vi) (2 = He) Vi = = )™

+ QL § (Z B ngr)_l Vf{ (Z - ngr)_l (VR B Vﬁ) (Z B ngr)_l dz,
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the bound (4.49) and [CDL08a, Proposition 1] lead to

Ve — Vi

< O (IRller + Vg lier) o (4.50)

HPQQ’VR B szvﬁHC <C HQZVR - Qz,VﬁHQ )

per

Similarly,

o~ - e 0 ) - (e )

2im
¢
1 B B N
o e Hr) ™ (Ve Va) (2 - HD,) (Va (== H) ') a2
¢
1 - _ _ _
+ 5§ (=~ Hr) YWa (2= HY%) " (Ve — Vi) (2 — HY%) ™ Vi (2 — HY,) ™ dz
¢

1 B 2 _ -
* g P (G HR) 7 VR) (e ) (Ve V) (= Hp)

A bound similar to (4.50) holds in view of (4.48):

Hst ve ~ PQs vy H <C HQ?),VR — Q3+ H
’ TRIC Rlg o
Tper (4.51)

VR — Vg

<C(IVRlE + IVglle + Vg [iér) -

Gathering (4.33), (4.47), (4.50) and (4.51), and relying on the boundedness of £ and (1 + £)~! on C, there
0
H

exist constants C7, Cy € R such that for all |R|,

lor = g/ < C1lvr —vg,
+C (|Vrle + IVglle + IVRIE + [V [&)
< Ctvr = v,
+C (Jvrle + lvgle + lvrle + v l2) [VVR — VVi] L2
< Ct|vr = vgfo + C2 (B(a) + B°(a)) [pr — vr — PR + v
< Ct|vr = viglo + C2 (B(a) + 8%(@) (lor — pgfle + [vr — v&l,) -

c/

IV — Vg

It is easy to see that for o > 0 sufficiently small so that 0 < C5 (8(a) + 8(a)) < 1, it holds

o (4.52)

lor = pllc < Ca|vr — vy

with
~ G+ 0Oy (Bla) + (@)

0<C, = 1= Cs () 1 F(a) < 400.

This allows to conclude that (4.42) holds.
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4.5.7 Proof of Lemma 4.7
Consider R, R € H with |R,

RH < «. By calculations similar to the ones in the proof of Lemma 4.3,

IF(R) — F(R )1z < U vvﬁer + VVr) (m(- —k—Ry)—m(-—k— fzk)) 2
keR

Nt
&) m(-—k— Ry)

keR
< (UVVlZ: + 2nvvRuL2) 3 — k= Ry) —m(- — k = B3 (453)
keR
coma Y[ Ve VP

keR k+Rk+Bn

< 4mi3s (IVVl2e  + 19Vl ) IR = R + 2)ml2.Cu(R)[ TV — Vi 2.

In view of (4.42), the last term of the above equation can be estimated as

[VVi = VVa I3 < [lpr = pg — vr + v o <2 (1 + C2) Jvm — va

) ) 9 (4.54)
<4(1+C2) (HVR — VIR~V t ”LﬁHC + HR B RHH) '

On the other hand,

VR — VIR — V} + Vl,ﬁ

= 3z (m( —k— Re) = m( — k — Ry) + Vm(-— k) - (B~ B
keR

=) zkf —Vm(- —k — Ry + t(Ry — By)) + V(. —k:)) : (Rk —ﬁk) dt
keR

— _k;tzkfo fo (—Rk + t(Ry —Ek)>THeSS(m) ( —k+s (—Rk +t <Rk — Ek») (Rk _ ék) ds dt.

Therefore by similar arguments leading to (4.29) as well as the Cauchy-Schwarz inequality, it holds

1
HI/R — VIR — Vﬁ + Vl,ﬁ k3) < ||Hess(m)HL1(R3) Z Zkfo ‘—Rk + t(Rk - Rk)' ’Rk - Rk‘ dt
keR

L(

- 1 o2
< | Hess(m)| 11 gay Y. 2 | Ril |Rk - Rk‘ + 5 [Hess(m) |1 gs) Y 2 ’Rk - Rk)
keR keR

2
2]’

R—f{H +1HR—ﬁ
PR

R—f{H +1HR—ﬁ
e 3

< (e ) Iess(m)l oy (IR

Similarly,

keR

2
)’

By interpolation and remarking that L5/%(R?) < C, there exists therefore a constant C' € R, such that

o).

= v = ] < () sty (1R

(4.55)

1
T e (L]
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In view of (4.19), (4.37), (4.54), and (4.55), there exists a positive constant C, depending only on « such that
the estimate (4.53) leads to

[F(R) ~ FR)Z < 4fmlds (1912 +2(IRI + CIRIL)) IR - R
2 112 1 = ? =112 ~ |12
+ 40 mIF2 [RIE (1+ Ca) ( € (IR]e + 5 ‘R - RH@ HR - RHZQ + HR - RHH
~ ~ |2
<2 HR - RH .
H

This finally allows to conclude that (4.43) holds.
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