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On dit que le pouce opposable est ce qui différencie
le plus nettement l’homme du singe. Il faut joindre
à cette propriété cette autre que nous avons, de
nous diviser contre nous-mêmes, notre faculté de
produire de l’antagonisme intérieur. Nous avons
l’âme opposable. Peut-être le je et le me de nos
expressions réfléchies sont-ils comme le pouce et
l’index de je ne sais quelle main de... Psyché ? Alors
les mots comprendre ou saisir s’expliqueraient
assez bien.

Paul Valéry
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Résumé

Cette thèse s’intéresse à différents problèmes de grandes déviations en rapport avec la physique
statistique, qu’elle aborde sous l’angle théorique aussi bien que numérique. La première partie concerne
l’étude de grandes déviations en temps long pour les processus de diffusion. Tout d’abord, de nouveaux
résultats d’ergodicité sont montrés pour les dynamiques de Feynman–Kac, en temps discret et en temps
continu. Ceci conduit à de nouveaux résultats fins (au sens de la topologie considérée) sur les grandes
déviations de mesures empiriques de processus de diffusion. Divers aspects numériques sont ensuite
abordés. Tout d’abord, des estimées d’erreur précises sont fournies pour les discrétisations de processus
de Feynman–Kac, la non-linéarité de la dynamique demandant le développement de nouveaux outils.
Afin de réduire la variance des estimateurs classiques de grandes déviations, un algorithme adaptatif est
ensuite présenté, qui utilise les techniques dites d’approximation stochastique. Enfin, nous abordons
une problème numérique concernant les systèmes à basse température, et présentons une méthode
pour construire une approximation du contrôle optimal à partir de la théorie du chemin de réaction.
La dernière partie de cette thèse porte sur un sujet légèrement différent, celui des gaz de Coulomb, qui
apparaissent en physique mais aussi dans la théorie des matrices aléatoires. Nous présentons d’abord
une méthode efficace pour la simulation de tels gaz, avant de nous tourner vers l’étude des gaz sous
contrainte. Pour ceux-ci, nous prouvons de nouveaux résultats de concentration dans la limite d’un
grand nombre de particules, sous certaines conditions sur la contrainte. Nous présentons également
un algorithme de simulation qui confirme les attentes théoriques.

Abstract

This thesis is concerned with various aspects of large deviations theory in relation with statistical
physics. Both theoretical and numerical considerations are dealt with. The first part of the work
studies long time large deviations properties of diffusion processes. First, we prove new ergodicity
results for Feynman–Kac dynamics, both in continuous and discrete time. This leads to new fine results
(in the sense of topology) for large deviations of empirical measures of diffusion processes. Various
numerical problems are then covered. We first provide precise error estimates on discretizations of
Feynman–Kac dynamics, for which the nonlinear features of the dynamics demand new tools. In
order to reduce the variance of naive estimators, we provide an adaptive algorithm relying on the
technique of stochastic approximation. We finally consider a problem concerning low temperature
systems. We present a new method for constructing an approximation of the optimal control from the
instanton (or reaction path) theory. The last part of the thesis is concerned with the different topic of
Coulomb gases, which appear both in physics and random matrix theory. We first present an efficient
method for simulating such gases, before turning to gases under constraint. For such gases, we prove
new concentration results in the limit of a large number of particles, under some conditions on the
constraint. We also present a simulation algorithm, which confirms the theoretical expectations.
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Préambule

Théorie des grandes déviations en physique statistique :
Quelques aspects théoriques et numériques.

Le langage courant associe généralement à la notion d’aléatoire celle d’imprévisible, et renvoie à un
évènement dont on ne pourrait prévoir l’issue. Si la modélisation aléatoire sert en effet à décrire une
succession de phénomènes dont on ne peut prévoir exactement le résultat, la théorie des probabilités
s’emploie à extraire de ce hasard une forme de régularité. Ainsi, on ne pourra dire si une pièce jetée
retombera sur pile ou face, mais que l’issue aura telle ou telle probabilité (un demi pour chaque face
si la pièce n’est pas biaisée). Dans la seconde moitié du XXème siècle, les mathématiciens ont poussé
très loin ces raisonnements en introduisant de nombreux objets aléatoires, faisant au passage des
connexions fructueuses avec d’autres branches des mathématiques comme l’analyse ou la géométrie.

Parallèlement à ces travaux, les physiciens ont incorporé depuis la fin du XIXème siècle l’aléa-
toire comme outil fondamental de la modélisation. Ainsi le mouvement brownien aura d’abord servi
à décrire de petites particules dans un bain de pollen, avant d’être utilisé pour représenter l’agitation
thermique en physique, puis l’incertitude en finance. D’une certaine façon, la physique statistique
illustre la recherche de régularité dans ces modèles aléatoires, au sein d’une représentation microsco-
pique, aléatoire, de la matière. Considérant par exemple un ensemble d’atomes, on ne saura décrire
précisément le mouvement de chacun, mais bien plutôt leurs propriétés moyennes. Les échelles macro-
scopiques de la matière comportant un nombre extrêmement grand d’atomes (de l’ordre de 1023 pour
une goutte d’eau), ce procédé de moyennisation est souvent une approximation raisonnable.

Cependant, les multiples échelles mises en jeu rendent ces limites (e.g. grand nombre de particules,
temps long) difficiles à comprendre, tant du point de vue théorique que de la simulation numérique.
Les systèmes étudiés n’auront ainsi jamais vraiment atteint leur état d’équilibre, qui représente leur
comportement moyen, mais seront sujets à des fluctuations. Ces comportement anormaux, au sens
“loin de la moyenne”, seront généralement rares à l’échelle d’une simulation numérique, mais peuvent
être beaucoup plus fréquents à l’échelle macroscopique. Il est donc important de les caractériser et, si
possible, de les quantifier. Notons dès à présent que la question du calcul numérique lié aux évènements
rares est délicate, pour la simple raison qu’un évènement de probabilité très faible se produira aussi
rarement lors d’une simulation.

Une façon de s’attaquer à ces problèmes est de recourir à la théorie des grandes déviations qui,
comme son nom l’indique, tente de décrire les états improbables d’un système. Ce cadre d’étude
peut cependant être utilisé à d’autres fins, notamment afin de décrire l’état le plus probable d’un
système, ou de mettre au point des méthodes numériques efficaces pour l’estimation d’évènements
rares. Comme pour le développement de la physique statistique en générale, de nombreux physiciens
et mathématiciens ont contribué au développement de cette théorie qui est encore un sujet de recherche
actif, notamment pour les systèmes dits irréversibles.

De façon plus modeste, nous nous intéressons dans cette thèse au comportement de trois types de
systèmes entrant dans le cadre des grandes déviations :

1. Les propriétés ergodiques et les fluctuations en temps long ;

2. Les systèmes métastables à basse température ;

3. Les gaz en interaction coulombienne dans la limite d’un grand nombre de particules.

Dans tous les cas, il s’agira de comprendre le comportement moyen d’un système aléatoire, et la façon
dont il peut en dévier. Nous abordons ces questions sous trois angles complémentaires :

1. Fournir des preuves rigoureuses de théorèmes abstraits (ergodicité, concentration, conditione-
ment, etc.) ;

2. Mettre au point des algorithmes efficaces afin de quantifier numériquement les résultats théo-
riques ;
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3. Donner un cadre à l’analyse d’erreur des algorithmes employés, afin de prouver leur efficacité.

Il est intéressant de noter que les résultats théoriques obtenus ont souvent été motivés par des calculs
numériques surprenants, et nous espérons retranscrire (de façon malheureusement bien incomplète)
cette interaction stimulante entre simulation et théorie. Nous pouvons maintenant décrire plus préci-
sément le contenu de la thèse au vu de la discussion ci-dessus.

Partie I : Introduction

Nous commençons par une présentation générale en Partie I. Au-delà de la simple introduction des
modèles en Section 1.1, reposant souvent sur des équations différentielles stochastiques, ce chapitre
cherche à donner une vision intuitive des trois problèmes mentionnés plus haut. En particulier, nous
verrons que les phénomènes limites s’expriment naturellement à travers le principe de Laplace au-
quel la théorie des grandes déviations, décrite en Section 1.2, permet de donner un sens rigoureux.
La Section 1.3 montre comment utiliser ces outils dans le cadre de la physique statistique, en es-
sayant d’insister sur la caractère physique des objets abstraits (entropie, énergie électrostatique, etc.).
Nous aborderons finalement quelques problèmes numériques liés au calcul des fonctions de grandes
déviations en Section 1.4.

Partie II : résultats théoriques d’analyse en temps long

Les contributions apportées par ce travail débutent en Partie II, et concernent l’étude théorique du
comportement en temps long de systèmes markoviens (chaînes de Markov et processus de diffusion).

En Chapitre 2, nous prouvons des résultats d’ergodicité pour les dynamiques de Feynman–Kac,
qui apparaissent aussi bien dans la théorie des grandes déviations qu’en mécanique quantique et dans
la théorie du filtrage non linéaire. De façon plus spécifique, nous étudions la compétition entre la
dynamique sous-jacente et son poids statistique à travers une technique de fonction de Lyapunov, ce
qui permet de caractériser de façon précise la stabilité.

Le Chapitre 3 concerne le problème dual : les fluctuations de moyennes empiriques de processus
de diffusion. À partir d’outils abstraits développés dans le Chapitre 2, nous dégageons un nouveau
principe de grandes déviations (LDP) pour la moyenne empirique d’une diffusion (nouveau en cela
qu’il considère une topologie plus fine que celle utilisée dans les résultats connus). La préoccupation
de cette partie était de comprendre sous quelles conditions, pour une dynamique donnée, la moyenne
d’une fonction satisfait un LDP. Autrement dit, nous obtenons l’équivalent d’une condition de Cramer
pour les diffusions, qui n’a rien d’évident a priori (les condition obtenues sont bien différentes d’une
condition de moment exponentielle par exemple). Dans un second temps, nous nous intéressons à la
fontionnelle d’entropie dynamique associée au principe de grandes déviations. En particulier, nous
utilisons et généralisons des travaux récents afin de décomposer l’entropie en deux parties :

• Une entropie réversible correspondant à une information de Fisher ;

• Une entropie irréversible exprimée par la norme duale d’un espace de Sobolev idoine.

Si le premier résultat est bien connu pour les systèmes réversibles, nous croyons le second assez original
et relié à des travaux récents sur les déviations de courants empiriques, notion découverte en physique
théorique il y a une dizaine d’années. De manière plus générale, il s’agit d’une manifestation du second
principe de la thermodynamique pour les systèmes irréversibles.

Partie III : analyse numérique et algorithmes

Si la Partie II apporte certaines réponses à des questions abstraites, elle reste relativement éloignée
de l’estimation quantitative des quantités considérées. Nous abordons donc en Partie III différents
aspects numériques liés à ces problèmes de grandes déviations1.

Le Chapitre 2 ayant montré l’utilité des dynamiques de Feynman–Kac pour l’estimation de fonc-
tions de grande déviations, nous entreprenons en Chapitre 4 une analyse d’erreur de leur discrétisation.
Plus précisément, étant donné un semigroupe continu ayant certaines propriétés d’ergodicité en temps
long, nous considérons sa discrétisation par un semigroupe discret avec un pas de temps ∆t, et étu-
dions l’erreur commise sur les propriétés ergodiques. Nous utilisons pour cela une analyse d’erreur à

1Je tiens à cependant signaler que les Chapitres 4 et 5 ont motivé les questions de la Partie II, et non l’inverse.
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la Talay–Tubaro, qui se révèle cependant difficile à mettre en oeuvre du fait de la non linéarité de la
dynamique. Ces difficultés demandent d’introduire de nouvelles techniques de preuve, en particulier
la construction d’un problème spectral approché. Un résultat intéressant de ce travail est l’introduc-
tion d’une nouvelle notion d’erreur, celle concernant la fonction génératrice des cumulants associée à
l’intégrale en temps long du poids de Feynman–Kac. Cette erreur ne peut pas être considérée pour
les processus markoviens, car dans ce cas la fonction génératrice est toujours nulle pour le processus
et sa discrétisation (en l’absence de poids de Feynman–Kac). Un espoir est donc que les techniques
développées dans ce travail puissent être utiles à l’analyse d’erreur d’autres dynamiques non linéaires.

Les chapitres suivants concernent la mise au point d’algorithmes efficaces pour le calcul de fonctions
de grandes déviations et la réduction de variance. En effet, comme il sera détaillé en Partie I, les
estimateurs naïfs de fonctions de grandes déviations ont une grande variance, ce qui conduit à des
coûts de calcul prohibitifs pour une erreur donnée. Il est donc utile de développer des méthodes
permettant de réduire ces coûts. Le Chapitre 5 concerne l’étude des grandes déviations en temps long.
L’objectif de ce travail est de mettre en place un algorithme adaptatif de résolution d’un problème
de contrôle, afin de réduire la variance de façon optimale. Nous adaptons pour cela des algorithmes
utilisés en finance pour le contrôle du risque, que nous enrichissons de nouveaux estimateurs issus de
travaux récents en physique théorique.

Le Chapitre 6 s’intéresse aux dynamiques à basse température. Ces systèmes souffrent générale-
ment de ce que l’on appelle métastabilité, qui décrit ce comportement erratique où un sytème reste
longtemps piégé dans un état avant de sauter brusquement dans un autre. Ces transitions rares et bru-
tales conduisent à une variance importante des estimateurs de quantités moyennes du système. Nous
développons en Chapitre 6 une méthode pour construire de façon systématique des contrôles réduisant
la variance du système en petite température (ce que nous montrons formellement). Nous utilisons
pour cela la théorie des chemins de transitions, que nous affinons afin d’améliorer le contrôle. Nous
montrons formellement que cette approximation n’est rien d’autre qu’un développement de Taylor du
contrôle optimal autour du chemin de réaction.

Partie IV : gaz de Coulomb et matrices aléatoires

La Partie IV s’est développée autour d’une idée numérique purement fortuite, reposant sur le lien
entre matrices aléatoires et gaz de Coulomb. En effet, la densité de probabilité des valeurs propres
de certains modèles de matrices (Wigner, Ginibre, etc.) peut s’écrire sous la forme d’une mesure de
Gibbs, qui décrit l’état d’équilibre d’un système où deux actions s’opposent :

• Une force de confinement qui ramène les valeurs propres vers l’origine ;

• Une répulsion singulière (coulombienne ou logarithmique) incitant les particules à se repousser
les unes les autres.

Sous des changements d’échelles appropriés, la mesure empirique d’un tel gaz converge vers un état
déterministe appellé mesure d’équilibre. Étant donnés les travaux sur le comportement en temps long
des systèmes aléatoires mentionnés ci-dessus, il semblait naturel de considérer cette mesure d’équilibre
comme la mesure invariante d’une dynamique (de Langevin par exemple), et de l’échantillonner par
une discrétisation de ladite dynamique. Le Chapitre 7 montre que c’est en effet possible, à condition
toutefois d’employer un algorithme adapté à la singularité des interactions. Cet outil peut ensuite être
utilisé pour tester numériquement des conjectures, comme l’universalité des fluctuations au bord du
support de la mesure empirique pour les gaz de Coulomb.

Au cours de ce projet est apparu un prolongement intéressant, consistant à ajouter des contraintes
au modèle. Il se trouve que des échantillonneurs de mesures de probabilité restreintes à une sous-
variété ont été développés en dynamique moléculaire et en statistique computationnelle pour différentes
raisons (notamment le calcul d’énergie libre). Nous avons donc étudié numériquement le comportement
de gaz conditionnés avec un de ces algorithmes. Le comportement en a été si surprenant que nous
avons souhaité mieux le comprendre et fournir des preuves des résultats observés. Le Chapitre 8 décrit
cette démarche, qui repose finalement sur le principe de conditionnement de Gibbs. Nous prouvons
que ce principe s’applique dans le contexte des gaz de Coulomb, et étudions finement les problèmes
d’optimisation sous contrainte auxquels il conduit afin de décrire l’état limite.
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Preamble

Large Deviations Theory in Statistical Physics:
Some Theoretical and Numerical Aspects.

Common knowledge generically associates randomness to unpredictability, or an event whose issue
cannot be forecast. Random modelling is indeed used for describing phenomena whose result cannot be
predicted exactly, but probability theory strives to extract from this randomness a form of regularity.
In a coin toss game for instance, one cannot say what the result will be, but one can describe the
probability for each side to come out (one half for each side in an unbiased situation). In the second half
of the XXth century, mathematicians have pushed forward this theory very far by introducing a series
of random objects, obtaining fine results together with connections to other branches of mathematics
such as geometry or analysis.

Since the end of the XIXth century, in parallel, physicists associated embedded randomness as a
fundamental tool for modelling. A famous example is the Brownian motion, first used to describe
small particles in a pollen bath, which then became a standard tool for modelling thermal agitation in
classical physics. In some way, statistical physics illustrates the search for regularity in random models
in a microscopic, random, description of matter. Consider for instance a set of atoms interacting
together. We are in general not able to describe precisely the motion of each of those atoms, but
rather some average property. This averaging effect can be justified by the very large amount of
particles in a real-life system (say around 1023 for a droplet of water), and often is a reasonable
approximation.

However, the multiple scales at stake make the limiting procedure difficult to understand, both
from a theoretical and a numerical standpoint. The systems under consideration do not reach exactly
their equilibrium state, which indeed represents their average behaviour, but are subject to fluctuations
around it. These abnormal behaviours, in the sense “far from the average”, are typically rarely observed
in numerical simulations, but they may well not be rare on a macroscopic scale. It is therefore
important to characterize them and quantify them if possible. Let us mention right now that the
numerical estimation of rare events is a difficult area, for the simple reason that those events are
rarely observed during a simulation.

One way to address these problems is to resort to the theory of large deviations that, as the
name suggests, tries to describe the unlikely states of a system. This framework can also be used for
other purposes such as finding the most probable state of a system, or designing efficient algorithms
for rare event estimates. Like the development of statistical physics in general, many physicists and
mathematicians contributed to the theory, which is still an active area of research, in particular for
irreversible systems.

At a more humble level this thesis considers the behaviour of three types of systems entering the
framework of large deviations:

1. Ergodic properties and fluctuations in the long time limit;

2. Metastable systems at low temperature;

3. Gases interacting through Coulomb potentials in the mean field limit.

In any case, we are interested in the average behaviour of a random system and the way it may deviate
from it. We address these problems in three ways:

1. Give rigorous proofs of abstract theorems (large deviations, conditioning, etc.);

2. Design efficient algorithms for quantifying the abstract results;

3. Provide an error analysis framework for the algorithms employed.

Interestingly, the theoretical results we obtain were often motivated by surprising numerical simula-
tions. We hope to reproduce (in an uncomplete way) this stimulating interaction between simulation
and theory, and we describe below in more details the material of the thesis.
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Part I: Introduction

We start with a general introduction in Part I. Section 1.1 presents most of the models (often based
on stochastic differential equations) and problems in an informal way. This highlights the importance
of the Laplace principle for studying limiting procedures for probability measures, which is given a
precise meaning by the large deviations theory described in Section 1.2. Section 1.3 shows how to use
these tools in a statistical physics context, by insisting on the physical interpretation of the abstract
objects at hand (entropy, electrostatic energy, etc.). We finally present some numerical problems
related to the computation of large deviations functions in Section 1.4.

Part II: Theoretical analysis for long time problems

The contributions of the present thesis start in Part II, which is concerned with the long time behaviour
of Markovian dynamics (Markov chains and diffusion processes).

In Chapter 2, we prove new ergodicity results for Feynman–Kac dynamics, which appear in large
deviations theory but also in quantum physics and non-linear filtering. To be more specific, we study
the trade-off between the underlying dynamics and its statistical weight through Lyapunov function
techniques, which allows to characterize precisely the stability of the dynamics.

Chapter 3 turns to the dual problem of the fluctuations of empirical measures of diffusions. Using
the abstract tools developped in Chapter 2, we prove a new large deviations principle (LDP) for such
empirical measures (new in that it concerns a finer topology than usual results). The preoccupation of
this part was to understand, for a given dynamics, which functions have an empirical mean satisfying
a LDP. In other words, we obtain an equivalent to Cramer’s condition for diffusions, which is not
obvious a priori (in particular this is not an exponential moment condition). We next consider the
dynamical entropy associated with the LDP, and show that it can be decomposed into two parts:

• A reversible part which is a Fisher information;

• An irreversible part expressed as the dual norm of a relevant Sobolev space.

If the first result is well-known for reversible systems, we believe the second to be quite original and
related to recent works on large deviations for empirical currents, an active field in nonequilibrium
statistical physics. From a more general perspective, this is an illustration of the second law of
thermodynamics for irreversible systems.

Part III: Numerical analysis and algorithms

While Part II is mostly concerned with theoretical problems, we turn in Part III to numerical and
algorithmic issues related to large deviations 2.

Chapter 2 proved the importance of Feynman–Kac dynamics in the context of large deviations.
We thus consider in Chapter 4 the problem of their numerical discretization. More precisely, given
a time continuous semigroup with certain ergodic properties in the long time limit, we consider its
discretization with a discrete semigroup of time step ∆t > 0 and study the error made on the ergodic
properties. For this we use techniques à la Talay–Tubaro, which is made difficult by the non-linearity of
the dynamics. This requires to introduce new techniques of proof, in particular the construction of an
approximate spectral problem. An interesting output of this work is a new notion of error concerning
the cumulant generating function. This error does not make sense for Markovian dynamics, for which
the cumulant is always zero for the process and its discretization. A hope is that our technique could
be used for studying other non-linear dynamics.

The two following chapters treat some aspects of the computation of large deviations functions and
variance reduction. Indeed, as made precise in Part I, naive estimators of large deviations functions
have a dramatically large variance, leading to prohibitive computational costs for a fixed error. It is
thus useful to develop methods to reduce this variance and compute more efficiently the quantities of
interest. Chapter 5 is concerned with long time large deviations. The goal of this work is to design an
adaptive algorithm, solving on the fly an optimal control problem to reduce the variance in an optimal
way. For this we use an algorithm from finance (risk-sensitive control), which we adapt to our context
and enhance with new estimators based on recent theoretical results.

2Let us mention that the study of Part II was motivated by the works of Chapters 4 and 5, and not conversely.
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Chapter 6 turns to low temperature problems. Systems at low temperature often suffer from
metastability, a notion which describes the behaviour of a system remaining trapped for a long time
in a state before hopping abruptly to another one. Those rare but important transitions lead to a
high variance of the quantities of interest. We develop in Chapter 6 an approach to build variance
reduction controls for computing expectations at low temperature (which we prove formally). The
strategy relies on the transition path theory, from which we build higher order terms to improve the
control. We show formally that the so-built expansion is actually the Taylor expansion of the optimal
control around the transition path.

Part IV: Coulomb gases and random matrices

Part IV has grown around a numerical idea relying on the relation between random matrices and
Coulomb gases. For this we note that the probability density of the eigenvalues of some matrix
models (Wigner, Ginibre, etc.) can be written as a Gibbs measure, describing the equilibrium state
of a system under the two competing actions:

• A confinement force pushing the eigenvalues towards the origin ;

• A singular repulsion (Coulombic or logarithmic) repelling the particles from each other.

Under an appropriate rescaling, the empirical measure of such a gas converges to a deterministic state
called equilibrium measure. According to the above mentioned works on long time analysis, it seemed
natural to consider the Gibbs measure associated to the gas as the invariant measure of a dynamics
(for instance the Langevin dynamics) and to sample it numerically. The Chapter 7 shows that this is
indeed possible, provided one uses an algorithm adapted to the singularity of the interactions. This
numerical tool can then be used to explore conjectures, such as the universality of the fluctuations at
the edge of the support of the empirical measure for a Coulomb gas.

An interesting sequel to this project is the addition of constraints to the dynamics. Simulating dif-
fusions under constraints is actually an active field in molecular dynamics and computational statistics
for various reasons (e.g. for free energy computations). We therefore studied numerically conditioned
Coulomb and log-gases with one of these algorithms3. The results were so surprising that we wished
to provide proofs of what we observed. The Chapter 8 describes our results, which rely in the end on a
Gibbs conditioning principle. After proving this principle, we provide a fine analysis of the constrained
optimization problems to which it leads in the context of Coulomb gases, and compare the results
with numerical simulations.

3We mention that sampling the spectrum of random matrices with a dynamics is not efficient from a computational
perspective. However, conditioning the spectrum of a random matrix is difficult and costly: our constrained algorithm
is then interesting in a random matrix context.
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This chapter introduces the main models studied along the manuscript, the mathematical frame-
work of large deviations theory and the numerical issues raised by practical applications. Section 1.1
is a heuristic presentation of the systems at hand, with an emphasis on physical motivations. It covers
in particular three classes of problems:

1. Long time behaviour and ergodicity for stochastic differential equations (Section 1.1.2);

2. Systems at small temperature (Section 1.1.3);

3. Coulomb gases in the mean field limit (Section 1.1.4).

A common feature of these models is their relation to the Laplace principle, which can be used to
understand their limiting behaviour in different regimes: long time, small temperature and large
number of particles.

We next turn to the mathematical formalism necessary to rigorously handle this reasoning by
presenting the framework of large deviations theory in Section 1.2. Once the basic elements are set
(Section 1.2.1), we present some important results in Section 1.2.2. In particular, we introduce the
mathematical notions of entropy and free energy that are used throughout this thesis. Section 1.3 then
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comes back to the three above mentioned problems by recasting them in the words of large deviations.
In addition to introducing the subjects treated in the next parts, we hope that this presentation
illustrates the flexibility of the methods used here, and provides nice examples of application of this
rather abstract theory.

An interesting feature of the problems at hand is that they are often motivated by practical situ-
ations, and the abstract solutions provided by the large deviations theory are not always satisfactory
for the practitioner. This motivates several numerical problems, some of which are presented in
Section 1.4. More precisely, our focus is on discretization issues for stochastic differential equations
(Section 1.4.1), and variance reduction for computing large deviations functions (Section 1.4.2).

Finally, we close this introduction by presenting the main contributions of this work in Section 1.5.
This is followed by brief comments on the bibliography and notation.

1.1 Models and motivations
In this section, we first describe the main models studied in the present work together with their
physical motivations. We next introduce the problems treated throughout in an informal way, which
we hope to be a gentle introduction to the settings of Parts II, III and IV. In particular, we wish to
emphasize the importance of the Laplace principle in models from probability theory and statistical
physics.

Section 1.1.1 introduces models based on stochastic differential equations, in particular overdamped
and underdamped Langevin dynamics, insisting on reversibility and irreversibility. We then discuss
the long time behaviour and fluctuations of these stochastic models in Section 1.1.2, which is the
opportunity to present the concept of free energy and dynamical entropy in this context. Next,
Section 1.1.3 is an introduction to the study of systems at low temperature, a common situation in
physics. Finally, Section 1.1.4 is concerned with a quite different model of particles under singular
interactions, which is motivated here by the analysis of the spectrum of random matrices.

The presentation below also allows to introduce the main notation used in the different parts. The
mathematical style of the presentation is rather informal to highlight the main ideas, and the reader
is assumed to be familiar with basic notions of analysis and probability. The presentation of the
mathematical tools necessary for the precise analysis of the phenomena described below is postponed
to Section 1.2.

1.1.1 Stochastic differential equations and computational statistical physics
1.1.1.1 Modelling with random equations

We generally consider stochastic differential equations (SDE) of the form

dXt = b(Xt) dt+ σ(Xt) dBt, (1.1)

where the process (Xt)t>0 has values in a state space X ⊂ Rd and d > 1 is a physical dimension
(one may think of X = Rd or X = Td, the d-dimensional torus). Here, b : X → Rd is a drift,
σ : X → Rd×m is a diffusion field (both assumed to be smooth here) and (Bt)t>0 is an m-dimensional
Brownian motion for some m > 1. This setting encompasses many situations in statistical physics,
where the process (Xt)t>0 typically represents a set of particles evolving randomly in time. The drift b
is a force, which may derive from a potential energy function or can be induced by an external forcing
such as an electric field. The Brownian motion is a thermal noise whose intensity is prescribed by the
possibly inhomogeneous temperature field proportional to σ.

The generator of the dynamics [262] reads

L = b · ∇+
σσT

2
: ∇2, (1.2)

where · denotes the scalar product in Rd and, for two matrices A,B ∈ Rd×d we write A : B =
Tr(ATB), where AT is the transpose of A. Moreover, ∇ and ∇2 are the gradient and Hessian operators
respectively. Although details on the definition of L will be given later, the operator can be defined to
act at least on smooth and compactly supported functions as soon as b and σ are smooth. We insist
on the fact that, under this convention, L prescribes the evolution of observables of the system. In
other words, if ϕ is a smooth function over X and if we set, for all time t > 0,

(Ptϕ)(x) = Ex
[
ϕ(Xt)

]
, (1.3)
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then
∂tPtϕ = LPtϕ, P0ϕ = ϕ. (1.4)

In (1.3), Ex denotes the expectation with respect to all the realizations of the trajectories (Xt)t>0

satisfying (1.1) and starting at X0 = x. More generally, if ν is a probability measure, we denote by Eν
the expectation when the initial condition X0 is distributed according to ν. In this setting, (1.4) is a
manifestation of the semigroup structure of the Markovian dynamics (1.1) [361, 286].

A dual viewpoint of (1.4) is to consider the evolution of the probability density of (Xt)t>0. More
precisely, it is possible to associate to the dynamics the probability measure over X defined by µt( · ) =
Px(Xt ∈ · ), which satisfies when X0 = x and under mild assumptions detailed later on the equation

∂tµt = L†µt, µ0 = δx, (1.5)

where L† is the adjoint of L in L2(X ), the space of Lebesgue square integrable functions over X . More
precisely

L†µ = ∇ ·
[
−bµ+∇ ·

(
σσT

2
µ

)]
,

where ∇· denotes the divergence operator. The evolution of µt describes the probability of presence
of Xt in some region of space at time t > 0. Alternatively, (1.4) is a weak formulation of (1.5) for a
class of test functions ϕ. Note that the convention in physics differs from the one used here, since in
this field the generator L is often used to describe the evolution of the probability measure µt. We
thus emphasize that, in our notation, L prescribes the evolution of observables while L† is associated
with the evolution of the probability density of (Xt)t>0.

1.1.1.2 Invariant measure

A crucial point of statistical physics is that one is often not interested in the particular motion of the
particles, but rather in their average behaviour. For instance, if a test function ϕ as above represents
some observable in statistical physics such as a pressure, one would like to know the average value of
this quantity rather than its value for a particular configuration. This point of view is justified by the
following scaling arguments:

• in general, the number of particles under consideration is large and the observable of interest is
somewhat local, so that there is a mean field averaging;

• the time scale of interest is generally much larger than the relaxation time of the system, hence
a long time averaging.

The first aspect is related for instance to the fields of hydrodynamic, thermodynamic and mean field
limits depending on the system under consideration (see the very good books [392, 268, 386] for more
details in different contexts). An instance of such a scaling limit is illustrated in Part IV, and we will
come back to this aspect in Section 1.1.4. From a physical perspective, this limit is motivated by the
large number of particles in realistic systems: for instance, a droplet of water contains of the order
of 1023 water molecules, which is pretty much +∞ for a mathematician! On the other hand, the time
averaging effect is generally referred to as ergodicity. This is the main preoccupation of this thesis,
which we motivate by the following considerations. Typically, an atomic system of particles evolves
on time scales of the order of picoseconds (10−12s), which corresponds to the typical period of atomic
vibrations. For a molecule, dihedral rotations evolve on a scale of roughly 10−11 seconds, while a
human eye observes phenomena of the order of a second. As a result, for applications, the relaxation
time of the system can be considered to be reached1 and we can consider a long time limit of (1.1),
which we formalize with the notion of invariant measure.

If we assume that after a long time, the probability to find the system in some state does not
change anymore, i.e. ∂tµt = 0, (1.5) becomes

L†µ = 0, (1.6)

1Our motivations stem from atomistic physics, but the same reasoning can be applied to other systems involving
different time scales. For instance, the large deviations theory described next has recently been used for studying rare
events in climate models, see [355] and references therein.
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for some probability measure µ called the invariant measure (or stationary measure) of the pro-
cess (Xt)t>0. The terminology is clear since, by (1.5), it holds∫

X
Ptϕ(x)µ(dx) =

∫
X
ϕ(x)µ(dx). (1.7)

In other words, Eµ[ϕ(Xt)] = Eµ[ϕ(X0)], which indeed means that µ is invariant under the flow
of (Xt)t>0. The above relation can also be written in differential form as∫

X
(Lϕ) dµ = 0, (1.8)

for any smooth test function ϕ. This is actually the dual formulation of (1.6). Finally, another
consequence of (1.6) is that, for any measurable set A ⊂ X it holds

Pµ
(
Xt ∈ A

)
= Pµ

(
X0 ∈ A

)
, (1.9)

where Pµ denotes the probability measure under all the realizations of the dynamics (1.1) when X0

is distributed according to µ. We insist on the fact that, in (1.9), the position Xt of the process at
time t > 0 is in general different fromX0 for a particular realization of (1.1), but the overall probability
measure is unchanged. This is the crux of such a statistical description of matter.

For a given dynamics such as (1.1), it is generally a difficult task to prove the existence of an invari-
ant measure µ and the relaxation of the law of the process towards this stationary state. Interestingly,
the proofs generally rely on energetic criteria, for which the existence of a “decreasing in average”
energy ensures stability. We will come back to this remark in Section 1.1.2. However, the existence
of an invariant measure or, say, stationary behaviour, is not the only interest of physical systems. In
particular, dynamical properties play a crucial role in the understanding of various physical systems;
we mention for instance autocorrelations, entropy production, transport coefficients, kinetic transition
rates and macroscopic fluctuations theory [99, 422, 36, 123, 171, 392, 34, 34]. In particular, dynamics
with the same invariant measure may have very different dynamical properties, as illustrated in the
sequel.

1.1.1.3 Reversibility and irreversibility

In order to understand more precisely the dynamical features of a physical system, it is interesting
to introduce the notion of reversibility. There is a long history and literature on the subject, and we
will content ourself with a brief mathematical description in our context. For this, we assume that
there exists an invariant measure µ for the SDE at hand and introduce the Hilbert space of square
integrable functions with respect to µ,

L2(µ) =

{
ϕ : X → R measurable

∣∣∣∣ ∫
X
|ϕ|2 dµ < +∞

}
.

We next introduce the adjoint L∗ of L with respect to µ, which is defined by the following equality:
for any smooth functions ϕ, ψ, ∫

X
(Lϕ)ψ dµ =

∫
X
ϕ(L∗ψ) dµ. (1.10)

Similarly, for the evolution operator (Pt)t>0, it holds

∀ t > 0,

∫
X

(Ptϕ)ψ dµ =

∫
X
ϕ(P ∗t ψ) dµ. (1.11)

With this notation and using (1.10), the invariance relation (1.6) defining µ reads

L∗1 = 0,

where 1 is the constant function equal to 1. The reversibility of a dynamics entails an invariance of
the evolution of the law of the process with respect to time reversal, when the process is initialized
according to the invariant measure. More precisely, we say that (Xt)t>0 is reversible with respect to µ
if

L∗ = L.
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This terminology can be understood by reformulating (1.11) as: for any x, y ∈ X and infinitesimal
elements dx ⊂ X , dy ⊂ X :

Pt(x, dy)µ(dx) = Pt(y, dx)µ(dy). (1.12)

This means that, if X0 ∼ µ (and hence Xt ∼ µ by definition of the invariant measure), the law
of (Xs)06s6t coincides with that of (Xt−s)06s6t, which shows some invariance with respect to the
arrow of time. If L∗ 6= L , we say that (Xt)t>0 is irreversible. This situation generally characterizes
the presence of a current (typically particles or energy), which may be due to an electric field or
an inhomogeneous heat bath [194, 35, 49, 96]. We further distinguish two types of irreversibility in
Remark 1.1 below.

In general, it is quite clear that studying irreversible dynamics is more difficult than studying
reversible ones. This can be seen for instance at the level of the generator by noting that the theory
of self-adjoint operators can be used for L considered over L2(µ) in the reversible case [304]. Note
that we will sometimes use the terminology of equilibrium and nonequilibrium dynamics for the above
notions when no confusion arises.

1.1.1.4 Two important examples: overdamped and underdamped Langevin dynamics

In order to further motivate modelling with SDEs and give more substance to the above definitions,
we present two particular models that will be frequently come across through the various chapters.

Overdamped Langevin dynamics. Our first case study is the overdamped Langevin dynam-
ics [304, 350]. An instance of such an equation is obtained from (1.1) by choosing X = Rd, b = −∇V
for some smooth potential V , m = d and σ =

√
2β−1Id where Id is the identity matrix of size d,

and β > 0. In this case, (1.1) becomes

dXt = −∇V (Xt) dt+
√

2β−1 dBt. (1.13)

The interpretation of the above equation is as follows: the system strives to minimize the potential
energy V through the drift term −∇V , while experiencing the influence of a thermal noise represented
by a Brownian motion whose intensity is dictated by the inverse temperature β > 0 (in general it
holds β = 1/(kBT ) where T is the temperature and kB ≈ 10−23 is the Boltzmann constant). This
leads to a random behaviour where (Xt)t>0 spends more time in regions of low energy, while less time
is spent in the regions of high energy. In particular, one can easily check that the invariant measure
of (Xt)t>0 is given, under mild assumptions on V , by

µ(dx) = Z−1e−βV (x)dx, Z =

∫
X

e−βV (x)dx, (1.14)

where Z is a normalization constant often called partition function or free energy, which is assumed to
be finite for any β > 0. The measure (1.14), called Gibbs measure, is a pivotal element of equilibrium
statistical mechanics [22]. Moreover, one can check that the generator L = −∇V ·∇+β−1∆ (where ∆
denotes the Laplacian operator) is such that L∗ = L, so the dynamics is reversible with respect to µ.
As an illustration, we plot in Figure 1.1 the potential

V (x) = 3|x|4 − 3|x|2 + x (1.15)

in dimension one, with its corresponding Gibbs measure at inverse temperature β = 1 as given
by (1.14).

Underdamped Langevin dynamics. At small time scales, the dynamics (1.13) may not seem
reasonable from a physical perspective because the system has no intertia. This is why practitioners
consider instead the more realistic (underdamped) Langevin dynamics, in which particles are described
by a position and a momentum. In this case, the state space is X = Rd×Rd and we write Xt = (qt, pt)
where q ∈ Rd is the position and p ∈ Rd the momentum variable. The drift and diffusion coefficients
are respectively set to

b(q, p) =

(
p

−∇V (q)− γM−1p

)
∈ R2d, σ =

√
2γ

β

(
0 0
0 Id

)
∈ R2d×2d, (1.16)
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Figure 1.1 – Representation of the potential (1.15) (left) with its associated Gibbs measure (1.14) at
inverse temperature β = 1 (right).

where M ∈ Rd×d is a mass matrix assumed to be invertible and γ > 0 is a friction. This leads to the
equation 

dqt = M−1pt dt,

dpt = −∇V (qt) dt− γM−1pt dt+

√
2γ

β
dBt.

(1.17)

Typically, we consider a set of N particles in R3, so that d = 3N and the full dimension of (1.17)
is 6N .

Relation with Hamiltonian dynamics. The Langevin dynamics can be introduced as a pertur-
bation of Newton’s equation of motion [301, 350], which reads{

dqt = M−1p dt,

dpt = −∇V (qt) dt.
(1.18)

A non-equilibrium forcing could be added to the gradient force −∇V , but we assume for now that
the force derives from the potential energy V . It is easily checked that the dynamics (1.18) conserves
the Hamiltonian

H(q, p) = V (q) +
pTM−1p

2
, (1.19)

where pT denotes the transpose of p ∈ Rd. By this we mean that, for all t > 0, it holds H(qt, pt) =
H(q0, p0). In the definition (1.19) of the Hamiltonian, the first term is a potential energy while the
second is a kinetic energy ; a Hamiltonian which is the sum of two such energies is often called separable.
The dynamics (1.18) is actually a particular case of Hamiltonian system. A feature of such dynamics
is that they preserve an energy, here the Hamiltonian defined in (1.19) (this is only one property out
of many, and we refer to [215, 296] and references therein for more insight).

However, most physical systems conserve temperature rather than energy (think of a gas in a box
in contact with a thermostat). This motivates adding to the force −∇V a noise corresponding to an
exchange of energy with a heat bath at fixed temperature. To compensate this input of energy, the
particles are assumed to be damped by a friction effect. This way of fixing the temperature is related
to the notion of canonical ensemble [22, 405]. In (1.17), the thermal noise is then represented by a
Brownian motion at inverse temperature β > 0, while the damping is given by −γM−1pt. This is
why, in (1.17), the part −γM−1pt dt+

√
2γ/β−1 dBt is generally referred to as fluctuation-dissipation

part, while the part corresponding to (1.18) is called Hamiltonian. In particular, we may decompose
the generator of the dynamics according to

L = Lham + γLFD,

with
Lham = M−1p · ∇q −∇V · ∇p and LFD = −M−1p · ∇p + β−1∆p.
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In the above decomposition, the operator Lham (sometimes called Liouville operator) corresponds to
the Hamiltonian part of the dynamics, while LFD stands for the fluctuation dissipation part2. The
above choice of parameters ensures that the Gibbs measure

µ(dqdp) = Z−1e−βH(q,p)dqdp, Z =

∫
X

e−βH(q,p)dqdp (1.20)

is an invariant probability measure of the dynamics, assuming again sufficient regularity and integra-
bility for any β > 0. One can prove, under mild assumptions, that (1.20) is actually the only invariant
measure of the dynamics, see [420, Proposition 15] for a proof.

We observe now that the marginal of µ in the position variable is the invariant measure (1.14)
of the overdamped dynamics (1.13). However, (1.17) has very different dynamical properties. In
particular it holds

L∗ham = −Lham, L∗FD = LFD,

where adjoints are taken in L2(µ) for the Gibbs measure µ defined in (1.20). This particular structure
shows that, in terms of operators, the dynamics is irreversible but reversible up to momentum reversal.
In other words, if R denotes the momentum reversal operator Rϕ(q, p) = ϕ(q,−p), it holds

L∗ = RLR.

This property is used in Part IV to design efficient sampling algorithms from (1.17), and also appears
in Chapter 3 when dealing with the dynamical entropy.

Another particular feature of the Langevin dynamics (1.17) is that it does not directly dissipate
energy in position, but only in momenta through the friction term −γM−1pt. The Hamiltonian
part Lham serves (among other things) as a transmission of the energy dissipation from momenta to
positions, a phenomenon detailed in Part II.

Relation between overdamped and underdamped Langevin dynamics. Before closing this
section, we mention that the overdamped dynamics (1.13) can be obtained from (1.17) when γ → +∞
under an appropriate rescaling. To see this, we integrate the second line in (1.17) to obtain

pt − p0 = −
∫ t

0

∇V (qs) ds− γ(qt − q0) +
√

2γBt.

By introducing now Qγt = qγt and P
γ
t = pγt, this becomes

Qγt −Q
γ
0 =

P γ0 − P
γ
t

γ
−
∫ t

0

∇V (Qγs ) ds+
√

2Bt.

When γ → +∞, we observe that Q∞t converges formally towards the solution of (1.13), see [350,
Section 6.5]. This short computation explains the denomination overdamped for (1.13), since the
dynamics (1.13) can be derived as a large friction limit of the finite friction Langevin dynamics (1.17),
provided one considers the relevant time scale.

Remark 1.1 (Reversibility and irreversibility). We have seen that the overdamped and underdamped
Langevin dynamics presented above both admit a Gibbs measure as an invariant measure. While the
overdamped dynamics (1.13) is reversible, the Langevin dynamics (1.17) is irreversible but reversible up
to momentum reversal. In the general situation when (Xt)t>0 satisfies (1.1), we may prove under some
conditions that the process has an invariant measure µ satisfying (1.6) without further information on
the reversibility of the dynamics. Although there is no clear classification of irreversibility, we would
like to say that the Langevin dynamics is “not so much irreversible”, because the symmetry breaking
of the operator is only due to the direction of the momenta. This motivates the following personal
distinction between degrees of irreversibility:

1. The invariant measure is a Gibbs measure and the dynamics is reversible with L∗ = L (for
instance (1.13));

2The reader familiar with stochastic processes will notice that the fluctuation-dissipation part is an Ornstein-
Uhlenbeck process in momenta, with variance prescribed by β−1 and where γ is a time scale parameter.
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2. The invariant measure is a Gibbs measure but the dynamics is irreversible, i.e. L∗ 6= L. Local
modifications in the drift lead to local deformations of the invariant measure. The dynam-
ics (1.17) enters this definition, but also modified versions of the overdamped dynamics where a
divergence-free drift is added, see [249, 363, 146];

3. The invariant measure is unknown and a priori L∗ 6= L, which is the general situation (1.1).
Local modifications of the drift lead to nonlocal deformations of the invariant measure, which is
typically due to the presence of currents.

Although the overdamped and underdamped Langevin dynamics are particular cases of the more
general SDE (1.1), because of their physical significance we will repeatedly come back to them in order
to illustrate our theoretical and numerical results. Moreover, many generalizations of these equations,
and even of (1.1) are available. Concerning the Langevin equation, we can be interested in generalized
kinetic energies, which can be used e.g. for designing more efficient sampling schemes [315, 393].
Another possible way to make the Langevin dynamics more general is to add a memory kernel to the
evolution of the momentum. In this case the dynamics is not Markovian any more but appropriate
changes of variables can, in some important cases, turn it into an SDE like (1.1). We refer for instance
to [435, 4, 78, 297] for more background on this situation. As a last example, we mention Langevin-
like dynamics where the fluctuation-dissipation mechanism is replaced by a resampling of momenta
dictated by a Poisson process. These processes have been introduced in biology to model the motion
of bacteria with random velocity flips, but found interesting applications in computational statistics,
see [168, 64, 41, 152] for more information. Although these models do not strictly enter the framework
described by (1.1), they can also be studied by the techniques used in this work. Yet other models can
be discussed (Hawkes processes or fractional Brownian motion for instance) but we stop the discussion
here for conciseness.

In all cases, the long time behaviour of the system at hand is an important feature on which we
would like to provide more information. The next section presents some of these aspects, which are
related to the crucial notion of ergodicity.

1.1.2 Ergodicity and fluctuations

1.1.2.1 Ergodicity

We consider in this section the long time behaviour of (1.1) starting some definitions. From the
expression (1.4) of the semigroup associated with the dynamics, we expect that for any ϕ in a class
of sufficiently smooth and integrable functions it holds

∀x ∈ X , Ex[ϕ(Xt)] −−−−→
t→+∞

∫
X
ϕdµ,

where µ solves (1.6). This is a result of convergence in law. Although it provides an important
information, this convergence may be unconvenient because the rate of convergence may depend on
the observable ϕ. This is why convergence results generally take the form [362, 219]

sup
‖ϕ‖61

∥∥Ptϕ− µ(ϕ)
∥∥ 6 C e−ct, (1.21)

for some constants C, c > 0, where ‖ · ‖ is an appropriate functional norm. As discussed below, ‖ · ‖ is
typically a weighted supremum norm 3, and the convergence (1.21) is called in this case convergence
in weighted total variation norm.

A problem with (1.21) is that, in practice, we cannot compute Ex[ϕ(Xt)]. In a simulation, we
rather use the long time average

Lt(f) =
1

t

∫ t

0

f(Xs) ds,

for a function f belonging to some functional space, and for which we expect

Lt(f) −−−−→
t→+∞

∫
X
f dµ, (1.22)

3Another standard approach is to consider functions belonging to an appropriate Lebesgue or Sobolev space.
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in some probabilistic sense, typically almost surely with respect to (Xt)t>0 (we use different notation
for the test functions in (1.21) and (1.22) for reasons that will appear clearer later on). Such con-
vergence results can be obtained under recurrence assumptions when f ∈ L1(µ), see [323, 269] for
details. We emphasize that, in (1.22) the temporal average becomes a spatial average, a key feature
of ergodicity : this entails that the proportion of time that the process spends in a region of space is
dictated by the invariant measure.

The convergence result (1.22) is the most important one for practical applications since it genuinely
corresponds to what is computed during a numerical simulation. However, one may be interested in
the convergence of the empirical mean (1.22) independently of the observable f at hand. To do so,
we consider the empirical average

Lt =
1

t

∫ t

0

δXs ds, (1.23)

where δx is the Dirac mass at x ∈ X . Therefore, for any t > 0, Lt is a random probability measure.
In what follows, we denote by P(X ) the space of probability measures, for which a topology should
be specified (this topology issue will be treated at length in Chapter 3). If µ ∈ P(X ) is the invariant
measure of (Xt)t>0, we typically expect

Lt −−−−→
t→+∞

µ, (1.24)

almost surely in the topology on P(X ), or in another appropriate probabilistic sense. The conver-
gence (1.24) then characterizes the evolution of the empirical average independently of the choice of
observable, and thus the relaxation of the process towards its stationary state.

There are in general three types of conditions to fullfil in order to obtain the convergence (1.21)
or (1.22) (see [362] for an overview):

1. Regularity of the transition density, as provided by Hörmander’s condition [244, 420, 161];

2. Controllability or irreducibility, i.e. the system should be able to visit all the state space [396,
394, 362]. This is often stated as Px(Xt ∈ A) > 0 for all x ∈ X and all non-empty open set A;

3. Confinement of the dynamics, to avoid probability mass to go to infinity [330, 20, 219].

In the situations considered here, the first two conditions are generally satisfied, and the most impor-
tant problem is to prove some confinement of the dynamics. When considering the convergence in
law, since the density of (Xt)t>0 satisfies the partial differential equation (PDE) (1.5), there is a vast
literature on the long time behaviour of PDEs for convergence in Sobolev spaces [238, 220, 420, 304,
129, 295], which also has an entropic counterpart [52, 420, 308, 172]. These methods are useful not
only because they allow to derive convergence results such as (1.22), but because they often come with
rather explicit convergence rates. This is helpful in a number of situations (see [308] for an example
of application to hydrodynamic limits of nonequilibrium evolutions).

However, methods based on PDEs sometimes lack flexibility and do not apply to all the situations
of interest, which motivates considering Lyapunov function techniques. In the following, we say that a
dynamics with generator L satisfies a Lyapunov condition if there exist a function W : X → [1; +∞)
(going to infinity at infinity) and constants a > 0, C ∈ R such that

LW 6 −aW + C. (1.25)

This energetic condition has a number of consequences (return time to compact sets, existence of an
invariant measure and ergodicity, compactness of the evolution operator, large deviations, tightness
of the evolution operator, etc.), and we refer to [330, 427, 324, 217, 362, 219] for more insight. The
analysis carried out in Part II relies on this technique to exploit the confinement of the dynamics.

In order to make these ideas more precise, we introduce the space4

B∞(X ) =

{
ϕ : X → R measurable

∣∣∣∣ sup
x∈X
|ϕ(x)| < +∞

}
, (1.26)

4The standard notation in probability textbooks would be Bb, the space of bounded measurable functions [124].
However, since we use a weight W , we do not want b to be interpreted as a Lyapunov function, and we prefer the
notation B∞, which is reminiscent of the space L∞ of essentially bounded functions. On the other hand, we keep the
notation B for the space of bounded operators over a Banach space.
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with norm ‖ϕ‖B∞ = supX |ϕ|. When a Lyapunov function W is available, it is natural to introduce
the space of functions growing at most like W at infinity, namely

B∞W (X ) =

{
ϕ : X → R measurable

∣∣∣∣ sup
x∈X

|ϕ(x)|
W (x)

< +∞
}
,

with norm ‖ϕ‖B∞W = ‖ϕ/W‖B∞ . In order to understand why the space B∞W (X ) is appropriate, we
recall that the semigroup of the dynamics is defined by (Ptϕ)(x) = Ex[ϕ(Xt)]. Therefore, integrat-
ing (1.25) with a Grönwall lemma shows that, for all t > 0,

∀x ∈ X , PtW (x) 6 e−atW (x) +
C

a
,

where C and a are as in (1.25). The meaning of this condition is that the energy W remains bounded
in expectation along the dynamics. If W has compact level sets, this implies that the process (Xt)t>0

spends most of its time in a compact set. This condition shows for instance that (Pt)t>0 is a semigroup
of bounded operators on B∞W (X ) [351, 259]. The method can also be applied to prove the existence
of a strong solution to (1.1) for arbitrary long times, see [51] for an interesting application to systems
interacting via a singular potential.

In order to provide an example of such Lyapunov function, we come back to the overdamped
dynamics over X = Rd presented in the previous section, namely

dXt = −∇V (Xt) dt+
√

2 dBt,

with generator L = −∇V · ∇ + ∆, for a smooth potential V . Bearing in mind that a Lyapunov
function should correspond to some energy in the system, it is natural to use the potential energy V
to construct it. As a matter of example (which will be used in Part II) we may set, for all x ∈ Rd,

W (x) = eθV (x),

for some θ ∈ (0, 1). In this case, a simple computation shows that (see Chapter 3)

− LW
W

= θ(1− θ)|∇V |2 − θ∆V. (1.27)

Moreover, if we set θ = 1/2, we obtain

−LW
W

=
1

4
|∇V |2 − 1

2
∆V,

which is the potential of the Witten Laplacian associated to V , see [425, 236, 20, 304] and references
therein. From (1.27), we obtain (1.25) under appropriate growth condition at infinity on V , typically
when V grows like |x|q at infinity with q > 1. This explains the terminology of confinement (see also
Remark 3.11 in Chapter 3).

Building a Lyapunov function for the Langevin dynamics
dqt = M−1pt dt,

dpt = −∇V (qt) dt− γM−1pt dt+

√
2γ

β
dBt,

is a more difficult task, because the damping only acts in the momentum variable. As a result, the
natural choice W (q, p) = H(q, p) fails to provide a Lyapunov function when the position space is
unbounded. In order to transfer the damping from momenta to positions, a common strategy is to
introduce a cross term by setting, for all (q, p) ∈ Rd × Rd,

W (q, p) = H(q, p) + εp · q,

or
W (q, p) = exp

(
θH(q, p) + εp · q

)
,

for an appropriate choice of parameters θ, ε > 0. To our knowledge, this strategy was first introduced
in the early 2000s independently by [427, 399, 324], and allows to deduce (1.25) under appropriate
growth condition on V (see Lemma 3.23 in Chapter 3 for a precise statement).
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1.1.2.2 Small fluctuations and Central Limit Theorem

In practice (1.22) is computed with a finite simulation time t > 0, and it is therefore natural to
quantify the statistical error arising from this estimator. By the central limit theorem, we expect
errors of order 1/

√
t, and we thus magnify the difference between the empirical average and the

ergodic average at scale
√
t. We can then prove, for f ∈ L2(µ) and provided the Poisson equation

−Lψ = f − µ(f) admits a solution in L2(µ), that the following central limit theorem holds [38]:

√
t

(
1

t

∫ t

0

f(Xs) ds−
∫
X
f dµ

)
−−−−→
t→+∞

N
(
0, σ2

f

)
, (1.28)

in law, where N (0, σ2
f ) is a centered normal random variable with variance σ2

f > 0. This asymptotic
variance is defined by

σ2
f = lim

t→+∞
tEx

[(
1

t

∫ t

0

f(Xs) ds−
∫
X
f dµ

)2
]
. (1.29)

An application of the Itô formula actually leads to the alternative expression

σ2
f = −2

∫
X
ψLψ dµ, where − Lψ = f − µ(f), (1.30)

where we used the shorthand notation

µ(f) =

∫
X
f dµ.

Let us explain briefly why (1.30) holds. First, under appropriate conditions on L, the Poisson equation
in (1.30) admits a solution in L2(µ) for f ∈ L2(µ), see [349, 277, 304] and references therein. In this
case, we can formally apply Itô’s formula to ψ for the dynamics (Xt)t>0, which gives

dψ(Xs) = Lψ(Xs) ds+∇ψ(Xs) · σ(Xs) dBs.

By integrating in time we obtain

ψ(Xt)− ψ(X0) =

∫ t

0

Lψ(Xs) ds+

∫ t

0

∇ψ(Xs) · σ(Xs) dBs.

Using that ψ is solution to −Lψ = f − µ(f) leads to

√
t

(
1

t

∫ t

0

f(Xs) ds−
∫
X
f dµ

)
=
ψ(Xt)− ψ(X0)√

t
+

1√
t

∫ t

0

∇ψ(Xs) · σ(Xs) dBs.

The first term on the right hand side of the above equation can be shown to converge to zero in the
sense of square integrability in probability as t→ +∞. The second term can be treated with theorems
of convergence of martingales [178], leading to the convergence to a normal distribution with variance
given by ∫

X
|σT∇ψ|2 dµ.

One can check that this expression indeed matches (1.30) (with computations similar to that performed
at the begining of Chapter 3), and this strategy allows to obtain the central limit theorem (1.28). This
framework can be generalized when f does not belong to L2(µ) but alternatively to the dual of an
appropriate Hilbert space, and we refer to [273] for details (note that the framework developped in
this book will be used in Chapter 3).

In order to provide more intuition on the asymptotic variance, we believe that it is worthwhile to
express it in terms of an autocorrelation. For this we first note that, when the semigroup Pt = etL

has appropriate decay estimates [304, 129], the inverse of the generator L can be written as

L−1 = −
∫ +∞

0

etL dt.
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Plugging this expression in (1.30), we obtain

σ2
f = 2

∫ +∞

0

Eµ
[
Πf(Xt)Πf(X0)

]
dt,

where we denoted by Πf = f − µ(f). The above formula can also be obtained by directly ex-
panding (1.29), see [304] for more details. This shows that an observable with a rapidly decaying
autocorrelation has a small variance, while high positive correlations lead to a large variance. This
heuristic can be used to design more efficient sampling algorithms, for example by adding an irre-
versible drift to the dynamics [248, 249, 146, 363]. We also mention that it is possible to control
the convergence towards the central limit theorem by higher order techniques such as Berry–Esseen
bounds, see e.g. [343] and references therein.

1.1.2.3 Large fluctuations

A particular issue with physical systems is, as we mentioned in Section 1.1, the very different time scales
at stake in the dynamics. As a result, it is often interesting to consider very large fluctuations from
the expected mean, since these fluctuations may not be so rare on another scale. From a probabilistic
point of view, this suggests considering fluctuations beyond the

√
t-scaling of (1.28). One way to do

so is to consider the whole probability distribution of Lt(f), namely

P
(
Lt(f) ∈ [a; a+ da]

)
,

for a ∈ R. The general framework of large deviations presented in Section 1.2 below suggests that
these probabilities should decay exponentially fast, i.e.

P
(
Lt(f) ∈ [a; a+ da]

)
≈ e−tIf (a)+o(t)da, (1.31)

as t→ +∞. The function If : R→ [0,+∞] is generally called rate function (or dynamical entropy in
this context), and governs the rate of decay of the probability of excursions from the average behaviour.
The scaling (1.31) proves to be important in physics, for instance for studying irreversibility or phase
transitions, see [48, 197, 198, 406, 170, 411] for recent accounts. From a more pragmatic perspective,
computing If provides asymptotic estimates for the probabilities of fluctuations.

From (1.31), we obtain the following heuristic expression for If :

∀ a ∈ R, If (a) = − lim
t→+∞

1

t
logP

(
Lt(f) ∈ [a; a+ da]

)
,

to which a precise sense can be given through the large deviations theory presented in Section 1.2.
Interestingly, a scaling such as (1.31) generalizes the central limit theorem (1.28). To see this, we
observe that in the «standard» situation, If is convex and such that

If
(
µ(f)

)
= 0, I ′f

(
µ(f)

)
= 0, I ′′f

(
µ(f)

)
> 0.

This is because we expect If to vanish only at the ergodic average for (1.31) to make sense, if µ is
the unique invariant measure. Therefore, a second order Taylor expansion in (1.31) shows that, for
small ε > 0, it holds

P
(
Lt(f) ∈ [µ(f)− ε;µ(f)]

)
≈ e−t

I′′f (µ(f))

2 ε2+o(ε2t)dε,

meaning that small fluctuations are Gaussian with variance 1/I ′′f
(
µ(f)

)
, see [363] for details. A result

such as (1.31) is called a large deviations principle, and illustrates the fact that large fluctuations are
a priori non-Gaussian. Further explanations and examples are provided in Sections 1.2 and 1.3.

From a physical perspective and interpreting If as an entropy, it seems natural to introduce a free
energy function λf which is the Legendre–Fenchel transform of If , namely

∀ k ∈ R, λf (k) = sup
a∈R

{
ak − If (a)

}
. (1.32)

We can actually prove in many cases that

λf (k) = lim
t→+∞

1

t
logE

[
ek
∫ t
0
f(Xs) ds

]
. (1.33)
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This expression is motivated by the Laplace principle5, for which we assume that the scaling (1.31)
holds. We then rewrite the expectation in (1.33) with

E
[
ek
∫ t
0
f(Xs) ds

]
= E

[
etkLt(f)

]
=

∫
R

etka P
(
Lt(f) ∈ da

)
=

∫
R

exp
(
t
(
ka− If (a)

)
+ o(t)

)
da.

By applying the Laplace principle, the above formula becomes, as t→ +∞,

E
[
ek
∫ t
0
f(Xs) ds

]
≈ exp

(
t sup

a
{ak − If (a)}+ o(t)

)
.

Plugging this estimate into (1.33) leads to (1.32). As a result, the classical Legendre duality between
free energy and entropy appears here as an application of the Laplace principle at an exponential
scale [406, 408]. Once again, the large deviations theory presented in Section 1.2 provides a mathe-
matical framework to justify this heuristic while allowing for important generalizations.

Remark 1.2. We motivate studying the long time behaviour of SDEs from physical consideration,
but it is also an important problem in computational statistics. For Bayesian inference, one is in-
terested in sampling the posterior distribution π of a set of parameters given data, which is obtained
from the likelihood and the prior distribution. In order to sample from the target π one can run the
dynamics (1.13) or (1.17) with the potential V = − log π, i.e. minus the log-likelihood (possibly with
an additional term given by the prior). In this perspective, a Gaussian prior amounts to adding a
quadratic confinement to the dynamics. In this context, kinetic dynamics such as (1.17) are generally
called Hamiltonian Monte Carlo methods, and we refer for instance to [367, 70, 368] for more details
on the applications in statistics of the dynamics discussed here.

We also mention that we present continuous systems in the introduction in order to avoid repeti-
tions, but most of the objects have a discrete time counterpart (i.e. we can consider Markov chains
instead of diffusion processes). We will extensively study discrete time dynamics in Chapter 2 for
Feynman–Kac models as well as in Chapters 4 and 5 when considering discretizations of SDEs.

1.1.3 Systems at small temperature
The previous section was motivated by the long time scale at which physical phenomena occur.
In practice, another important feature of real life systems is metastability. Roughly speaking, this
phenomenon is produced by the many basins of attractions around local minima of the interaction
potential of the dynamics. The dynamics then tends to spend a long time in a region of low energy,
before making a rare transition to another region of low energy, where it remains trapped for a long
time.

In order to illustrate this discussion we consider the dynamics (1.1) for a smooth function b and σ =
σId a constant temperature field. If b = ∇V with a potential V which has many local minima, the
dynamics (Xt)t>0 tends to stay close to one of those, before the noise induced by the Brownian motion
transfers enough energy in the system so as to drive it outside of this region; the same reasoning applies
when b possibly has a non-gradient part.

1.1.3.1 Low temperature and concentration

An additionnal difficulty arises in the low temperature regime, where the transitions become rarer
and rarer. This motivates considering the following version of (1.1) over X = Rd:

dXε
t = b(Xε

t ) dt+
√
εσ dBt, (1.34)

where b : X → Rd is smooth and σ ∈ Rd×d is constant, while ε > 0 denotes a small temperature
parameter. Moreover we write D = σσT for the diffusion matrix, assumed to be positive definite for

5The method of Laplace states that, when integrating the exponential of a function f , the main contribution comes
from the maximum of f . Assume for instance that a < b and f ∈ C2(R) admits a maximum at x0 ∈ (a, b). Then one
can prove with a Taylor expansion that ∫ b

a
etf(x)dx ∼

t→+∞
etf(x0).

In other words

lim
t→+∞

1

t
log

(∫ b

a
etf(x)dx

)
= f(x0).

The large deviations framework presented in Section 1.2 is a generalization of this idea, which is useful in various
situations.
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simplicity. There is a very large literature on small temperature systems studying different aspects
of the problem, for instance: typical rare trajectories [193, 413], diffusions on graphs for Hamiltonian
systems [192, 193, 220], exit time from a metastable domain [69, 298], spectral analysis for small
eigenvalues [236, 331], quasi-stationary distributions [101, 299, 125]. Since this is not the principal
issue of the present work, we focus on the particular situation considered in Chapter 6.

For this, we fix a time T > 0 and consider the dynamics (1.34) over the time window [0, T ] and
starting at an arbitrary position x ∈ X . Our goal is to numerically compute free energy functions of
the form6

Zε = ε logEx
[
e
f(XεT )

ε

]
, (1.35)

in particular in the small temperature regime ε → 0. This is motivated by applications in physics
where we expect this quantity to have a finite limit as ε → 0 (see [157, 413, 210, 211] and references
therein). In order to understand the small temperature behaviour of Zε, it is natural to study the
typical trajectories of (Xε

t )t∈[0,T ] as ε → 0. By setting ε = 0 in (1.34), we expect the dynamics to
concentrate on a path (φ̄t)t∈[0,T ] solution to the ODE

φ̄0 = x,
d

dt
φ̄t = b(φ̄t), (1.36)

and we expect that
P
(

lim
ε→0
‖Xε − φ̄‖C0([0,T ]) = 0

)
= 1, (1.37)

where
‖Xε − φ̄‖C0([0,T ]) = sup

t∈[0,T ]

∣∣Xε
t − φ̄t

∣∣.
Actually, (1.37) is a consequence of [193, Theorem 1.1] in our setting, and there are quite precise
results on the concentration rate of probabilities like (1.37).

As explained in [193, Chapter 3], one can actually prove, using Girsanov’s theorem and Tcheby-
chev’s inequality, that the rate of decay of the left hand side of (1.37) is exponential and controlled
by a so-called action functional. This functional I : C0(X ) → [0; +∞] is defined, for any absolutely
continuous path (ϕt)t∈[0,T ] ∈ X , by

I(ϕ) =
1

2

∫ T

0

∣∣b(ϕs)− ϕ̇s∣∣2Dds, (1.38)

and set to +∞ if ϕ is not absolutely continuous or if the above integral diverges. In the above formula,
we denote by |v|2D = v ·D−1v for v ∈ Rd the modified norm induced by the diffusion matrix D = σσT ,
see [211]. It is then possible to derive the following kind of scaling, for any path (ϕt)t∈[0,T ] and
sufficiently small ε, δ > 0:

P
(
‖Xε − ϕ‖C0([0,T ]) < δ

)
≈ e−ε

−1I(ϕ). (1.39)

The functional I can be interpreted as an energetic cost for not following the most probable path (1.36).
Since the functional I vanishes on the path (φ̄t)t∈[0,T ] defined in (1.36), we see that (1.39) general-
izes (1.37). In particular, (Xε

t )t∈[0,T ] concentrates exponentially fast on (φ̄t)t∈[0,T ].

With the aim of computing the small temperature limit of (1.35), we now turn to the probability
for (Xε

t )t∈[0,T ] to reach a set A ⊂ X . Because of the definition (1.35), we typically consider A to be
a level set of the function f , namely A = {x ∈ X | f(x) = z} for some z ∈ R. Intuitively, a path
ending in A should minimize the functional I with the constraint that the endpoint lies in A, i.e. the
minimization should be performed over continuous paths (ϕt)t∈[0,T ] such that ϕT ∈ A. In particular,
if z ∈ R and A is a z-level set of f , we introduce

C0
z =

{
ϕ ∈ C0

(
[0, T ];X

)
, ϕ0 = x, f(ϕT ) = z

}
,

to denote those paths whose endpoint takes the value z for the observable f : X → R. For any z ∈ R,
we can therefore define the function

J(z) = inf
ϕ∈C0

z

I(ϕ), (1.40)

6We could also consider Zε = ε logEx

[
exp

(
ε−1

∫ T
0 f(Xε

s ) ds
)]

or suppose that T is a random time upon appropriate
modifications.
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which characterizes the minimum energy path for which f takes the value z ∈ R at final time. In
other words we formally have, in the small ε limit,

P
(
f(Xε

t ) ∈ dz
)
≈ e−ε

−1J(z). (1.41)

The minimum energy path (i.e. the minimizer in (1.40), assuming uniqueness) is generally called
instanton or reaction path [155, 156, 211]. It corresponds to the most likely path leading to a (possibly
unlikely) value of f at final time.

We can now use the action functional to determine the small ε limit of (1.35) by characterizing
the path contributing most to the expectation. Indeed, the expectation

Ex
[
e
f(XεT )

ε

]
is dominated by the trajectories leading to large values of f , which are characterized by the minimiza-
tion problem (1.40). Assuming (1.41) holds, we actually obtain in the small ε limit

Ex
[
e
f(XεT )

ε

]
=

∫
R

e
z
ε P
(
f(Xε

t ) ∈ dz
)
≈ eε

−1 supz{z−J(z)},

by the Laplace principle. This finally shows that

lim
ε→0

Zε = sup
z∈R

{
z − J(z)

}
. (1.42)

This limit motivates the scalings chosen to define the process (Xε
t )t∈[0,T ] and the free energy Zε.

1.1.3.2 Instanton theory

Although (1.42) provides a formula for the zero temperature limit of the free energy, it may not
be computationally tractable written this way. Our goal is now to present the so called transition
path theory, which provides numerical methods for estimating the optimal path and free energy and
found a number of interesting applications in physics [155, 156, 159, 158, 240, 211]. The idea is to
rewrite the inf-sup problem (1.40)-(1.42) with a Lagrangian representation (in the sense of classical
mechanics [211]). For this, we introduce the Lagrangian

∀x, y ∈ Rd, L(x, y) =
1

2

∣∣b(x)− y
∣∣2
D
, (1.43)

so that I rewrites, for a path (ϕt)t∈[0,T ],

I(ϕ) =

∫ T

0

L(ϕt, ϕ̇t) dt.

A minimizer of J in (1.40) is a path (φt)t∈[0,T ] solving the Euler–Lagrange equation

dL

dx
(φt, φ̇t)−

d

dt

dL

dy
(φt, φ̇t) = 0, (1.44)

with appropriate boundary conditions (see below). The above equation and classical mechanics con-
siderations motivate introducing the momentum variable (θt)t∈[0,T ]:

θt =
dL

dy
(φt, φ̇t), (1.45)

which is associated to a path (φt)t∈[0,T ] solving (1.44). We also define the following Hamiltonian, for
any (x, z) ∈ Rd × Rd:

H(x, z) = sup
y∈X

{
z · y − L(x, y)

}
. (1.46)

This Hamiltonian is explicit when L is given by (1.43), and reads

∀ (x, z) ∈ Rd × Rd, H(x, z) = b(x) · z +
1

2
z ·Dz. (1.47)
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Under appropriate convexity properties of L, it is also possible to invert (1.46) to obtain

∀ (x, y) ∈ Rd × Rd, L(x, y) = sup
z∈X

{
y · z −H(x, z)

}
.

By optimizing the above equation in z, we find that the optimal z∗ is provided by

y −∇zH(x, z∗) = 0. (1.48)

By (1.47), this equation is actually equivalent to

z∗ = D−1
(
y − b(x)

)
=

d

dy
L(x, y). (1.49)

By applying the previous relations to the optimal path (φt)t∈[0,T ] (i.e. setting x = φt, y = φ̇t and
noting that z∗ = θt by (1.45)-(1.49)), the optimality condition (1.48) provides a first equation for the
optimal pathway (φt, θt)t∈[0,T ]:

φ̇t = ∇zH(φt, θt) = b(φt) +Dθt.

On the other hand, the Euler–Lagrange equation (1.44) provides the second relation (using (1.49) for
the last equality)

θ̇t = ∇xL(φt, φ̇t) = ∇b(φt) ·D−1
(
b(φt)− φ̇t

)
= −∇b(φt) · θt,

where ∇b ∈ Rd×d. As a result, we obtain a coupled system for the optimal path and momen-
tum (φt, θt)t∈[0,T ] which reads, taking into account the boundary conditions:{

φ̇t = b(φt) +Dθt, φ0 = x,

θ̇t = −∇b(φt) · θt, θT = ∇f(φT ).
(1.50)

This shows that the maximization problem in (1.42) is attained for the value z = f(φT ), while the
minimization problem (1.40) is solved by the instanton. Therefore, plugging (1.50) into (1.40), we
obtain

lim
ε→0

Zε = f(φT )− 1

2

∫ T

0

θs ·Dθs ds. (1.51)

In other words, the limiting free energy is the terminal value of f along the reaction path (final cost)
minus the kinetic energy cost to reach it. Note that, similarly to Section 1.1.2, the above computations
rely on an application of the Laplace principle at exponential scale.

Quite importantly, (1.50) not only provides the limit value (1.51) for the free energy, but also
characterizes the path contributing most to the expectation in the small temperature regime. As
mentioned above, this method found many interesting applications, because (1.50) can often be ap-
proximated efficiently in practical situations, see [211] for a review. This is because (1.50) is simply
a system of ordinary differential equations with initial and terminal conditions (which may be high
dimensional, though). A natural strategy to estimate the solution is to integrate forwards (φt)t∈[0,T ],
then to integrate (θt)t∈[0,T ] backwards starting from the terminal condition ∇f(φT ), and to iterate
the procedure. Other variants are also available, such as the so-called string method [155, 158].

It is important to note that (1.50) is a zero temperature limit, so that no randomness is involved.
This greatly simplifies the computation of the optimal path, but makes the application of the method
to finite temperature systems (1.34) difficult. We will come back to this point in Chapter 6 by relating
the instanton theory presented here to a standard optimal control problem associated to (1.34)-(1.35).

Finally, we mention that the small temperature problem can be related to the long time setting of
Section 1.1.2, see for instance [193, Chapter 6] and [67]. A very interesting application of this relation
can be found in [342], where the small temperature instanton is used to characterize heavy tailed
fluctuations in time.

1.1.4 Random matrices and Coulomb gases
In this section, we motivate the random gas models studied in Part IV, in particular the Coulomb gas
setting. For this, we start with an experiment involving random matrices by considering a matrixM ∈
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CN×N for some N ∈ N∗, such that Mi,j are independent standard Gaussian random variables for
all i, j ∈ {1, . . . , N}. These models arise in quantum physics, where M can be thought of as a
discrete random Laplacian operator – we refer to [203, 9, 327, 188, 401] for more insight. We expect
the spectrum of the matrix to provide information about the energy levels in the system when the
number of elements becomes large. The behaviour of the eigenvectors of large random matrices is
also important in various situations [282, 144] and is related to problems of spectral clustering in
computational statistics [163, 102], but we do not consider these issues here.

1.1.4.1 Model: Ginibre Ensemble

As a numerical experiment, we draw one matrixM and plot in Figure 1.2 (left) the complex spectrum
ofM/

√
N forN = 100 (the scaling is motivated by the fact that E(Tr(M∗M)) = N , whereM∗ = M

T
).

We repeat the experiment with N = 1000 and plot the result in Figure 1.2 (right). We observe what
seems to be a uniform distribution on the unit disk. Our goal is now to briefly explain with singular
gas models why this surprising behaviour arises, and motivate the study of more general systems.

Figure 1.2 – Eigenvalues of M/
√
N where M has i.i.d. Gaussian entries, for N = 100 (left) and N =

1000 (right). The axes correspond to the real and imaginary parts of the eigenvalues. The right plot
is shown together with the unit circle in red.

The law on the matrixM/
√
N (assuming the entries are independent complex Gaussian variables)

is actually expressed in the following concise form:

e−NTr(MM∗)
N∏

i,j=1

dMi,j ,

(we refer to [56, 188, 9] for more details). This model is generally called the (complex) Ginibre
Ensemble, and has the particular feature of being invariant with respect to unitary transforms [327].
Therefore, denoting by XN = (XN,1, . . . , XN,N ) ∈ CN the spectrum of M , we can show that XN is
distributed according to the following probability measure on CN (which we identify with (R2)N ):

PN (dx) = Z−1
N e−N

∑N
i=1 |xi|

2 ∏
16i<j6N

|xi − xj |2dx,

where ZN is a normalization constant. In the above formula, the double product comes from a
Vandermonde determinant in the change of variable, see [327, Chapter 15] for details, in particular
Eq. (15.1.10). Writing this product in an exponential form, we obtain the distribution

PN (dx) = Z−1
N exp

−N2

 1

N

N∑
i=1

|xi|2 −
1

N2

∑
i 6=j

log |xi − xj |

 dx. (1.52)

The reason for writing PN as (1.52) is twofold. First, we see that the quantities inside parentheses
are now intensive, so that we expect these quantities to have a finite limit when N → +∞. Moreover,
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beyond this random matrix model, the measure PN takes the form of a more general distribution
over (Rd)N :

PN (dx) = Z−1
N e−βN( 1

N

∑N
i=1 V (xi)+

1
N2

∑
i6=j K(xi−xj))dx, (1.53)

where V is a confinement potential, K : Rd → R ∪ {+∞} is an interaction kernel, and

ZN =

∫
(Rd)N

e−βN( 1
N

∑N
i=1 V (xi)+

1
N2

∑
i6=j K(xi−xj))dx

is a normalizing constant assumed to be finite. The sequence (βN )N>1 is a cooling schedule. Indeed,
since PN is a Gibbs measure, βN plays the role of an inverse temperature. Assuming that βN → +∞
then means that we consider a low temperature limit in addition to a large number of particles limit.
The random matrix model described above (the Ginibre Ensemble) corresponds to

d = 2, βN = N2, V (x) = |x|2, K(x) = − log |x|. (1.54)

We shall assume below that the parameters of the models are as in (1.54), bearing in mind that more
general situations are allowed.

1.1.4.2 Limiting distribution and electrostatics

From the observations of Figure 1.2, we expect the empirical measure of XN to concentrate on a
uniform distribution on the unit disc. This is actually a particular instance of a more general concen-
tration property for the empirical average

µN =
1

N

N∑
i=1

δxi ,

under PN . Here, δx denotes the Dirac mass at x ∈ R2. A natural heuristic for understanding the
concentration of µN is to note that

1

N

N∑
i=1

V (xi) +
1

N2

∑
i 6=j

K(xi − xj) = E6=(µN ),

where
E6=(µ) =

∫
Rd
V (x)µ(dx) +

∫∫
x 6=y

K(x− y)µ(dx)µ(dy).

In this procedure, we see that a difficult problem is to deal with the singularity of K at 0, which makes
the treatment of the diagonal terms in the double integral difficult. However, it is possible to address
this issue [386, 84, 148, 314] and, by applying the Laplace principle in (1.53), we may guess that µN
converges in some probabilistic sense to

µ? ∈ argmin
P(Rd)

E , (1.55)

where
E : µ ∈ P(X ) 7→

∫
V (x)µ(dx) +

∫∫
K(x− y)µ(dx)µ(dy) (1.56)

is the electrostatic energy of a distribution of charges. A measure satisfying (1.55) is generally called
an equilibrium measure (not to be confused with the notion of equilibrium discussed in Section 1.1.1).
Once again, minimizing the energy E is made difficult when K has singularities that make the energy E
blow up over Dirac masses, which is the case when K = − log | · |.

In order to identify the limiting measure µ? (assuming uniqueness for ease of exposition), a first
order Euler–Lagrange analysis shows that [84, 85], formally,

2K ∗ µ? + V = C? (1.57)

over the support of µ?, for the constant C? = E(µ?) (here, K ∗ µ? denotes the convolution of K
with µ?, see Chapter 8 for definitions). Therefore, this provides a characterization of µ? through
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an integral equation. Note however that the support of µ? is unknown, which makes the resolution
of (1.57) difficult apart from systems with very particular symmetries.

In the random matrix model leading to the choice (1.54), since d = 2 we observe that K =
− log | · | = g, which is solution to

−∆g = 2πδ0, (1.58)

in the sense of distributions, where ∆ denotes the Laplacian operator. This means that K = g is
the Coulomb kernel in dimension 2 [386, 284]. Therefore, by differentiating (1.58) (under appropriate
regularity of V ) we obtain that

µ? =
∆V

4π

over the support of µ?. Since V (x) = |x|2, the measure is constant and equal to 1/π over its support,
which is a disk by symmetry (recall that ∆|x|2 = 4 when d = 2). Since the total mass of the measure µ?
is one, the radius of the disk is equal to one. This explains the plots of Figure 1.2 showing the unit
disk appearing with increasing dimension N . Note here the importance of the dimension: when d = 1
and K = − log | · | as it arises from models of symmetric matrices leading to a real spectrum [327,
Chapters 2 and 3], the interaction kernel K is not the Coulomb kernel g solution to (1.58). In this
case, we may use the terminology of one dimensional log-gas, and we refer to [29] for a nice treatment
of this problem.

The purpose of this short example was to provide a connexion between random matrix theory
and systems of points defined by a singular Gibbs energy, which is one motivation for the study of
Part IV. Obviously, there are (many!) other ways to deal with random matrices, for instance methods
based on moments, complex analysis or orthogonal polynomials, see [327, 9, 401]. An advantage of the
energetic point of view is to provide a natural candidate (the electrostatic energy E) for controlling
the convergence towards the equilibrium measure µ?. However, this approach is rather difficult to
apply to general matrix models, see for instance the recent works [54, 17].

1.1.4.3 More general models

We may consider a more general gas of particles interacting through a Hamiltonian of the form

∀x ∈ (Rd)N , HN (x1, . . . , xN ) =
1

N

N∑
i=1

V (xi) +
1

N2

∑
i 6=j

K(xi − xj), (1.59)

where K is typically singular at 0, and with associated probability distribution over (Rd)N

PN (dx) = Z−1
N e−βNHN (x1,...,xN )dx. (1.60)

Such models are interesting on their own, independently from random matrix considerations. This
is motivated in particular in statistical physics by the Coulomb gas model, i.e. when K = g is a
Coulomb interaction. By this we mean that g is solution to

−∆g = cdδ0, with cd =

2π if d = 2,

(d− 2)|Sd−1| = d(d− 2)πd/2

Γ(1 + d/2)
if d > 3,

in the sense of distributions, where Γ is the gamma function and |Sd−1| is the volume of the d-sphere.
We know that g is actually given by

g(x) =

{
log 1
|x| if d = 2,

1
|x|d−2 if d > 3,

and we recover the situation discussed above when d = 2. Coulomb gases (and the more general Riesz
gases) have been the subject of important recent works [386, 84, 287, 387, 85], and they will be at the
heart of Part IV.

Finally, although these models are static in essence, we can relate them to the dynamics discussed
in Section 1.1.1. For this, it suffices to note that (1.60) is a Gibbs measure. As a result, it can be
considered for instance as the invariant probability measure of the processes (1.13) or (1.17). This
is interesting for sampling purposes: when no random matrix model is available, we may sample the
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measure µN with one of those dynamics. Although the numerical integration is made non-trivial by
the singularity of K, this is possible and we detail this strategy in Chapter 7. On the other hand, this
poses theoretical issues since the long time stability discussed in Section 1.1.2 is rather hard to prove
in this case. There have been recent works on the subject, see for instance [239, 316] for interesting
results.

1.2 Abstract large deviations theory
We have seen in Section 1.1 that problems arising from physics often lead to limiting behaviours
because of the different scales involved, both in space and time. Interestingly, the three problems
discussed above were related to the Laplace principle as some parameter becomes large (time, inverse
temperature, number of particles). Actually, this feature can be cast in the framework of large
deviations theory. In a nutshell, this theory provides an appropriate setting for characterizing the
asymptotic concentration of probability measures.

In section 1.2.1, we first present the framework of large deviations theory. Section 1.2.2 then
provides some important results and examples, such as the Gärtner–Ellis theorem. Our presentation
closely follows the excellent books [124, 166, 119] to which we refer for complements.

1.2.1 A natural framework for the concentration of probability measures
We now go into more precise definitions by considering a topological space Y with its Borel sigma-
field B. The goal of large deviations theory is to define a framework for the concentration of a sequence
of probability measures (πn)n>0 over (Y,B) when n becomes large (note that n can be discrete or
continuous). The behaviour of the family of probability measures (πn)n>0 is generally controlled by
a rate function defined below.

Definition 1.3 (Rate function). A lower semicontinuous functional I : Y → [0,+∞] is called a rate
function. The function I is said to be good if the level sets

{y ∈ Y | I(y) 6M} (1.61)

are compact for any M ∈ (0,+∞). The domain of I is defined by

DI =
{
y ∈ Y

∣∣ I(y) < +∞
}
.

Note that the lower semicontinuity of I means that the level sets (1.61) are closed. Therefore, a
good rate function is immediately a rate function. An important consequence of the goodness of I is
that the infimum over closed sets is attained, i.e. it is a minimum; this will be an important element
in the study of Coulomb gases in Chapter 8. We recall the convention that the infimum of a lower
bounded function over the empty set is set to +∞.

In what follows, for a measurable subset B ∈ B, we respectively denote by B̊ and B the interior
and closure of B with respect to the topology on Y, while Bc = Y \B denotes the complement of B
in Y. The notation lim and lim stand for the limit inferior and limit superior respectively. We finally
set (an)n>0 to be an increasing sequence of positive real numbers. We are then in position to define
the large deviations principle (LDP).

Definition 1.4 (Large deviations principle). The family of probability measures (πn)n>0 satisfies a
large deviations principle at speed (an)n>0 and with rate function I if, for all B ∈ B,

− inf
B̊
I 6 lim

n→+∞

1

an
log πn(B) 6 lim

n→+∞

1

an
log πn(B) 6 −inf

B
I. (1.62)

The Definition 1.4 provides a precise meaning to the asymptotic scaling

πn(B) ≈ e−an infB I

when n→ +∞, by providing appropriate lower and upper bounds. One can see why the infimums on
the right and left hand sides of (1.62) cannot be taken over the whole set B in general by considering
a singleton B = {y} for some y ∈ Y, and assuming that the measures πn are non-atomic (which
is a natural situation for the models considered in Section 1.1). In this case, πn({y}) = 0, so that
the infimum in the lower bound of (1.62) is +∞. This is in contradiction with the upper bound
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since πn(Y) = 1. As a result, the formulation (1.62) is an appropriate way to deal with concentration
of probability measures: not too rigid so as to be correct, but still containing useful information on
the exponential concentration7. Actually, a set B satisfying

IB = inf
B̊
I = inf

B
I (1.63)

is called an I-continuity set, for which it holds

lim
n→+∞

− 1

an
log πε(B) = IB .

This was the intuitive definition of the rate function presented in Section 1.1.2. We also mention
I-continuity sets because they are actually useful for conditioning (see Proposition 1.13 below), a
crucial element in Chapter 8.

Although stated for an abstract family of probability measures (πn)n>0, we generally consider
large deviations principles associated to a family of random variables. For this we simply remark that
a sequence of random variables (Yn)n∈N taking values in Y induces a family of probability measures
on Y through

πn( · ) = P
(
Yn ∈ ·

)
.

In this case, we refer in general to a large deviations principle for the random variables (Yn)n>0 instead
of the induced measures (πn)n>0 over Y, which we believe does not lead to any confusion. Moreover,
our presentation uses a large parameter n but we could as well consider indices going to 0 by a clear
change of notation.

We explained in Section 1.1.2 that, in order to show the convergence of the law of a process to
a limiting distribution, one generally tries to prove that the dynamics remains most of the time in
some bounded region of the state space. This is related to the notion of tightness in probability,
which provides a compactness criterion for probability measures through Prohorov’s theorem [42], see
also [217] for an applications to the ergodicity of Markov chains. We recall the definition below.

Definition 1.5 (Tightness). A subset of probability measures Γ ⊂ P(Y) is tight if, for any ε > 0,
there exists a compact set Kε ⊂ Y such that, for any ν ∈ Γ, it holds ν(Kε) > 1− ε.

Since large deviations are concerned with exponentially small events, it is quite natural to consider
tighness at the exponential scale.

Definition 1.6 (Exponential tightness). A sequence of probability measures (πn)n>0 is exponentially
tight at speed (an)n>0 if, for any N > 0, there exists a compact set KN ⊂ Y such that

lim
n→+∞

1

an
log πn(Kc

N ) < −N. (1.64)

The above definition means that, if (πn)n>0 is associated to random variables (Yn)n>0, the following
scaling holds as n→ +∞:

P
(
Yn /∈ KN

)
. e−Nan .

In words, the probability of not being in a compact set decays at rate e−Nan . Note that, in order to
prove exponential tighness, it is enough to find a precompact set such that (1.64) holds. Exponential
tightness is important since it allows to reduce the study of the upper bound in (1.62) to compact
sets.

Quite often, the rate function I plays the role of an entropy functional, a terminology which will
appear clearer with the examples below. Based on physical considerations, it is natural to associate to I
a free energy function, and to expect it to be related to I through a Legendre–Fenchel transform [166]
(see for instance Sections 1.1.2 and 1.1.3). In the abstract framework described here, we can define a
free energy when an = n, for which we introduce, for f ∈ Y ′ (the topological dual of Y),

Λn(f) = log

∫
Y

e〈f,y〉Y′,Yπn(dy),

7Being an analyst by training, I have to make a parallel with Schwartz’s theory of distributions. In analysis, one
generally cannot hope for a regular solution to a given PDE. However, it is possible to define weak solutions. There
is again a trade-off between choosing a weak enough notion of solution so as to find one, but not to weak so as to say
something about it (for instance uniqueness in the best case scenario).
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where we use the notation 〈·, ·〉Y′,Y to denote the duality bracket between Y ′ and Y. The free energy
is then defined by

Λ̄(f) = lim
n→+∞

1

n
Λn
(
nf
)
. (1.65)

The quantity (1.65) is generally called scaled cumulant generating function (SCGF, or more simply
cumulant function), or free energy. When (1.65) is an actual limit (not a limit superior), we use
the notation Λ instead of Λ̄. We will prove below (see Theorems 1.8 and 1.10) that, under certain
conditions ensuring the existence and regularity of Λ in (1.65), a LDP holds for (πn)n>0 at speed n
and with rate function

I(y) = sup
f∈Y′

{
〈f, y〉Y′,Y − Λ(f)

}
. (1.66)

This is an abstract formulation of the well-known Legendre transform in physics [166]. From a more
mathematical perspective, this Legendre transform is generally obtained via optimizing a Tchebychev
inequality at exponential scale, which provides a mathematical ground to the considerations of Sec-
tion 1.1. These questions, dating back to Gärtner and Ellis [199, 165], are well explained in [119], and
will be used in the context of fluctuations in time developped in Part II. Now that we presented our
abstract setting, we provide some examples and useful results that will be used throughout the work.

Remark 1.7. The large deviations framework is a convenient way to deal with concentration of prob-
ability measures, and can be used for various purposes. The first one is to understand at which speed
concentration of measure takes place. If there is in general a natural scale, heavy tailed phenomena
lead to anomalous concentration speeds, which are much more complex to study than the standard
cases described below, see for instance [54, 342, 17]. Maybe more interestingly, large deviations al-
low to characterize what is the most probable way in which fluctuations occur. For instance, in
the framework of Section 1.1.2, the fluctuating trajectories can be characterized through an optimal
control problem [68, 147, 149]. This is also useful in the small temperature regime, as explained in
Section 1.1.3. Once again, heavy tailed phenomena show a surprising behaviour. In [54], it is shown
that random matrices with sub-Gaussian entries fluctuate through subgraphs with a particular struc-
ture. In [342], the authors show that heavy tailed large deviations in time induce localized fluctuations.
From a more pragmatic perspective, large deviations can provide an expression of the limiting object
through a minimization problem. For instance, in the setting of Section 1.1.4, the equilibrium measure
can be identified as the minimizer of the electrostatic energy (1.56). In Chapter 8, we will use this
strategy to identify conditioned equilibrium distributions for the Coulomb gas. When following this
procedure, we see that the expression of I is very important. It is however difficult in general to ex-
press I in a way which allows computations, and it is one of the contributions of Chapter 3 to provide
a useful representation of the rate function in the context of long time large deviations for irreversible
dynamics.

Large deviations theory however has some limitations for which various refinements are available.
First, a LDP is an asymptotic result, in which all subexponential terms (in particular prefactors) are
not taken into account. However, these prefactors can be of paramount physical importance, as in the
Eyring–Kramers law, see for example [67, 298] and references therein. In this situation, more refined
tools have to be developped on a case by case basis. Moreover, one can be interested in non asymptotic
bounds, with a precise dependence on the decay with respect to a distance parameter. For instance,
if (Yn)n∈N are random variables taking values in a metric space (Y,d) and converging to a limit Y ∗
in probability, we expect bounds of the type

P
(

d
(
Yn, Y

∗) > r
)
6 e−an|r|

p

,

for some exponent p > 0 and a sequence (an)n∈N. There are many works on the subject, and for this
thesis we may cite [317, 85] in the context of Coulomb gases, [195, 264, 43] in the context of long
time behaviour of SDEs, and [53] in the context of interacting systems of particles.

1.2.2 Important results

Before coming back to the issues raised in Section 1.1, we present some examples and helpful results.
This is the opportunity to get more intuition on the rather abstract setting just described, and to
present some tools used throughout. Once again, these issues are discussed in great detail in [124,
119, 166, 121, 424].
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1.2.2.1 Cramer’s and Sanov’s theorems

In order to give more intuition on the large deviations framework presented in Section 1.2.1, we start
with examples concerning sums of independent random variables. For this, we consider independent
and identically distributed (i.i.d.) variables (Xn)n>0 taking values in X = R. The empirical mean is
defined by

Sn =
1

n

n∑
i=1

Xi. (1.67)

We assume for simplicity that X1 has finite first and second moments, so that Sn converges almost
surely to E[X1] and a central limit theorem holds. We are then interested in the large fluctuations
of (1.67). Since Sn is real-valued, the framework of Section 1.2.1 is instanciated here with Y = R
equipped with the usual Borel sigma-field and, for any measurable set B ⊂ R,

πn(B) = P
(
Sn ∈ B

)
.

Since the variables Xn are independent, one can easily check that the cumulant function (1.65) ten-
sorizes (see also Remark 1.11 below) so that, since Y∗ = R, it holds

∀ k ∈ R, Λ(k) = logE
[
ekX1

]
. (1.68)

The quantity (1.68) corresponds to a standard partition function in statistical physics [166], and
takes value in (−∞; +∞]. In particular it may take the value +∞ but its domain DΛ = {k ∈
R |Λ(k) < +∞} is convex, since Λ is convex by Hölder’s inequality. In this simple situation, the
Fenchel transform (1.66) reads, for a ∈ R,

Λ∗(a) = sup
k∈R

{
ka− Λ(k)

}
, (1.69)

and the following standard theorem holds [119, Chapter 2.2].

Theorem 1.8 (Cramer’s theorem). The family of probability measures (πn)n>0 satisfies a large de-
viations principle over R at speed n and with convex rate function Λ∗, i.e. (1.62) holds with an = n
and I = Λ∗ is given by (1.68)-(1.69).

Moreover, if 0 ∈ D̊Λ, Λ∗ is a good rate function.

Cramer’s theorem has a very wide range of applications, and a priori does not require Λ to be finite
to hold true. However, when X1 does not have enough exponential moments (for instance DΛ = {0}
because the tails of X1 decay too slowly), the rate function may be trivial. This is why the condition
0 ∈ D̊Λ allows to obtain interesting information on the concentration of measure.

Two examples are useful to give more substance to this theorem. Consider first the case where X1

follows a Gaussian distribution with variance σ2. A simple computation shows that DΛ = R and

∀ a ∈ R, I(a) = Λ∗(a) =
a2

2σ2
.

In other words, in the Gaussian case, large fluctuations are Gaussian just like small fluctuations
(as provided by the central limit theorem). This situation is specific to Gaussian random variables,
and we will come accross this particular Gaussian structure in two other situations (see Chapters 3
and 8). Note also that in this case DI = R. Suppose next that X1 follows an exponential law with
parameter θ > 0. A similar computation shows that 0 ∈ D̊Λ and that the rate function reads

∀ a ∈ R, I(a) = Λ∗(a) =

{
θa− 1− log(θa), if a > 0,

+∞, otherwise.

The fact that I(a) = +∞ for a 6 0 stems from the fact that the exponential law cannot take negative
values. On the other hand, I is convex, has compact level sets, and vanishes at the mean E[X1] = 1/θ.
The local behaviour around the mean is quadratic, as we expect from the central limit theorem.
However, large deviations are not quadratic any more, since I asymptotically grows linearly. This is
characteristic of random variables with exponential tails.



48 Chapter 1. Introduction

On the other hand, Sn only represents the mean of the variables and, as noted in Section 1.1.2,
we may be interested in more general observables. Considering now that X1 takes value in X = Rd,
this suggests to consider the empirical average

Ln =
1

n

n∑
i=1

δXi , (1.70)

where δx is the Dirac mass at x ∈ Rd. To obtain the average of a particular measurable function f :
X → R, one can compute

Ln(f) =
1

n

n∑
i=1

f(Xi),

from which we recover the previous situation with the choice f(x) = x. Now Ln is taking value
in Y = P(X ) = P(Rd) and we may define, for B ⊂ P(X ),

πn(B) = P
(
Ln ∈ B

)
. (1.71)

In order to study the exponential concentration of (πn)n>0, we need to equip Y with a topology. In
other words, we have to choose the class of functions for which the convergence of Ln(f) makes sense.
The standard procedure [124] is to use the weak topology on P(X ) (the topology of convergence with
respect to continuous bounded functions) or the strong topology (convergence with respect to bounded
measurable functions). A LDP for (πn)n>0 under the weak or strong topologies is generally called
Sanov’s theorem [124, 121].

Since the observables under consideration are generally unbounded, we may be interested in topolo-
gies corresponding to unbounded functions. A possibility is to consider the Wasserstein topology for
p > 1 on Pp(X ), the set of probability measures ν with moments of order p, i.e. the probability
measures such that ∫

X
|x|pν(dx) < +∞.

One way to define the Wasserstein topology τp is to define convergence throught weak convergence
plus convergence of the pth moment, see [419, Chapter 7.2] (this is alternatively the topology induced
by the p-Wasserstein distance). In order to identify the rate function we define the following entropy
functional: for any ν ∈ P(X ),

H(ν |µ) =


∫
X

dν

dµ
log

(
dν

dµ

)
dµ, if ν � µ,

+∞, otherwise,
(1.72)

where µ is the distribution of X1 and ν � µ means that ν is absolutely continuous with respect
to µ [42]. A stronger version of Sanov’s theorem is as follows [424].

Theorem 1.9 (Sanov’s theorem). The family of probability measures (πn)n>0 defined in (1.71) sat-
isfies a large deviations principle on (Pp, τp) at speed n if and only if

∀ k > 0, log

(∫
X

ek|x|
p

µ(dx)

)
< +∞. (1.73)

In this case, the rate function is given by I(ν) = H(ν |µ) for any ν ∈ Pp(X ) and +∞ otherwise.

The above Sanov theorem is very powerful, since it proves the LDP in the p-Wasserstein topology,
meaning that the empirical measure (1.70) can accomodate functions growing at most like |x|p for
p > 1. We will come back to this point in Chapters 3 and 8. Interestingly, the LDP in the p-Wasserstein
topology also implies the exponential moment condition (1.73), which is the most difficult part of the
proof in [424]. Without assumption on the exponential moment, we simply obtain a LDP in the
weak topology [121], which does not allow to recover Theorem 1.8. Note that the domain of the
rate function is now more complicated: it is a subset of the probability measures that are absolutely
continuous with respect to µ. In the standard situation where µ has a Lebesgue density in Rd, it holds
in particular H(δx |µ) = +∞ for any x ∈ X .

Note that Sanov’s theorem is a good reason for calling the rate function an entropy. This is
because in the case of independent variables, the rate function (1.72) is the standard definition of
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entropy in information theory and statistical physics [279], also called Kullback–Leibler divergence.
In the context of large deviations for the empirical average (Lt)t>0 defined in (1.23) in Section 1.1.2,
the rate function is actually a Fisher information for reversible dynamics, hence the name dynamical
entropy (see Chapter 3).

In practical situations, the random variables Xi in the empirical measure (1.70) can describe
the positions of particles interacting through some potential energy, like in the example presented
in Section 1.1.4; or may be the values of a time dependent process, like in the diffusion setting of
Section 1.1.2. Since the independence is lost, the theorems of Cramer and Sanov do not apply any more,
which motivates considering a more general setting than the exponential moment condition (1.73) for
independent variables. We present below a general strategy pioneered by Gärtner and Ellis [199, 165]
to address this issue.

1.2.2.2 Gärtner–Ellis theorem

The idea of the Gärtner–Ellis theorem is to deduce large deviations principles from appropriate prop-
erties of the free energy Λ̄ defined in (1.65). Let us first motivate why this quantity and its Lengendre–
Fenchel transform naturally appear in this context by providing a heuristic proof of the upper bound
in (1.62) (see [119, Theorem 4.5.3] for details).

We come back to random variables (Xn)n>0 taking values in R, for which we assume without
loss of generality that E[X1] = 0. The empirical mean Sn is defined as in (1.67), but we drop the
assumption that the Xn’s are independent. A natural strategy for proving the upper bound of (1.62)
is to resort to Tchebychev’s inequality. For this we write, for any a, k > 0,

πn
(
[a; +∞)

)
= P

(
Sn > a

)
= P

(
k

n∑
i=1

Xi > akn

)
6 e−aknE

[
ek
∑n
i=1 Xi

]
.

By taking the logarithm, normalizing by 1/n and passing to the limit superior we obtain

lim
n→+∞

1

n
log πn

(
[a; +∞)

)
6 −

(
ak − Λ̄(k)

)
,

where Λ̄ is defined in (1.65). By optimizing over k > 0, we obtain the Chernoff’s bound:

lim
n→+∞

1

n
log πn

(
[a; +∞)

)
6 − sup

k>0

{
ak − Λ̄(k)

}
,

which is nearly the Legendre transform (1.66) (because the supremum is over k > 0 instead of k ∈ R).
Some manipulations [119, Lemma 2.2.5] allow to recover the whole conjugate function Λ̄∗, which is
then a natural candidate for the rate function. However, the above computation only deals with the
upper bound in (1.62).

The fruitful idea of the Gärtner–Ellis theorem is to deduce the lower bound from the upper bound
provided the cumulant function Λ exists and is sufficiently regular. The need for regularity can
be understood because a lack of regularity of Λ results into linear parts for the conjugate Λ∗. In
these regions, the actual rate function may be nonconvex, and the Fenchel transform Λ∗ may be the
convex hull of the actual rate function. This default is overcome by assuming sufficient regularity
of the free energy, which covers cases in which the rate function is indeed convex8. These convexity
considerations are very well explained with examples in [166], and we refer to [126, 407, 346, 423] and
references therein for examples of nonconvex rate functions and singular entropies. The next abstract
statement is a powerful application of these convexity considerations, see [119, Corollary 4.6.14].

Theorem 1.10 (Gärtner–Ellis theorem). Consider the abstract setting of Section 1.2.1 with an ex-
ponentially tight family of probability measures (πn)n>0 over a locally convex Hausdorff topological
vector space Y. Suppose that

Λ(·) = lim
n→+∞

1

n
Λn (n · ) (1.74)

exists on Y ′, takes finite values and is Gateau-differentiable. Then (πn)n>0 satisfies a large deviations
principle at speed n in Y with good convex rate function defined by

∀ y ∈ Y, Λ∗(y) = sup
f∈Y′

{
〈f, y〉Y′,Y − Λ(f)

}
.

8This is a reason why the Gärtner–Ellis theorem does not apply in all situations and, in many cases, one has to prove
the LDP from scratch.
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At this level of generality, the proof relies on the projective limit technique reducing the analysis
to the finite dimensional case, for which the strategy is as follows. One first obtains the upper bound
over compact sets by reduction to a finite number of balls and using Tchebychev’s inequality as above.
This upper bound is extended to closed set thanks to the exponential tightness. Next, the lower
bound relies on an appropriate change of measure (Esscher transform), under which the fluctuation
becomes typical. The most difficult part of the proof is to make the latter argument precise through
fine convex analysis results – this is explained at length in Chapters 1 and 4.6 of [119].

Remark 1.11 (Independent variables). When considering fluctuations of the empirical mean Sn
defined in (1.67), we can recover Cramer’s theorem under a stronger condition from Theorem 1.10.
Supposing that the variables Xn are i.i.d., the cumulant function (1.74) simply reads

∀ k ∈ R, Λ(k) = lim
n→+∞

1

n
logE

[
ek
∑n
i=1 Xi

]
= logE

[
ekX1

]
,

which is simply (1.68), as already seen above. We observe the very particular behaviour of the expo-
nential with respect to independance. This seemingly innocuous remark actually makes the situation
of subexponential variables (i.e. with tails decaying like e−|x|

α

for α ∈ (0, 1)) much more difficult. In
this case, the lack of «tensorizability» of the subexponential makes the typical fluctuations heavy tailed,
in the sense that only a part of the variables fluctuates to produce an abnormal value of Sn. We refer
to [333, 334, 335, 336, 59] and the more recent work [17] for more details. Similar considerations are
important for stochastic differential equations, see [342] for an interesting contribution in the case of
an Ornstein–Uhlenbeck process.

1.2.2.3 Contraction principle and Gibbs conditioning: most probable unlikely events

Although proving a large deviations principle is a complicated problem, there is a nice tool for deducing
a LDP for the image of random variables satisfying a LDP. This result, called contraction principle [119,
Theorem 4.2.1], will be useful in the context presented in Section 1.1.2.

Theorem 1.12 (Contraction principle). Consider two Hausdorff topological spaces Y and Z and a
continuous application Π : Y → Z, together with a good rate function I : Y → [0,+∞]. Then:

1. The function J : Z → [0,+∞] defined as

∀ z ∈ Z, J(z) = inf
{
I(y), y ∈ Y

∣∣∣ Π(y) = z
}

(1.75)

is a good rate function.

2. If (πn)n>0 satisfies a LDP with rate function I, then (πn ◦ Π−1)n>0 satisfies a LDP with rate
function J .

The first important point of the contraction principle is that LDPs are transfered by continuous
applications, which turns out to be a useful tool. Second, the resulting rate function satisfies some
maximum entropy principle9: the cost of a fluctuation of the image is the minimum of the costs over
the pre-images. In other words, rare events happen in the most likely of all unlikely ways.

In order to understand how to use Theorem 1.12, we present an application related to Sanov’s
result, Theorem 1.9. If a LDP is available for the empirical average

Ln =
1

n

n∑
i=1

δXi ,

we would like to obtain a LDP for instance for the empirical mean

Sn =
1

n

n∑
i=1

Xi.

For this, we note that Sn is the image of Ln by the following mapping:

Π : ν ∈ P(X ) 7−→
∫
X
xν(dx) ∈ R.

9The term “maximum entropy” may sound confusing since (1.75) comes with an infimum. This is because the entropy
in physics is the opposite of the entropy in mathematics.
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An important remark is that the application Π is not continuous for the weak topology. However, it
is continuous for the p-Wasserstein topology for any p > 1. As a result, Theorem 1.9 together with
Theorem 1.12 lead to a LDP for Sn. The corresponding rate function J is given by (1.75), where I is
the entropy (1.72). This strategy is yet another path to Cramer’s theorem.

Before closing this section, we present a result often calledGibbs conditioning principle ormaximum
entropy principle. The purpose of this result is to understand the behaviour of random variables when
they are conditioned on some rare event of interest. The principle states that the most likely way for a
measure to concentrate on a set conditioned on a rare event is to minimize the rate function I under the
constraint defining the conditioning. This idea is generally used with Sanov’s theorem [357, 306, 305],
and the so obtained conditioned limits are sometimes called entropic projections. We will prove in
Chapter 8 the following more general result (stated for random variables in a metric space for the
sake of simplicity), which relies on the notion of I-continuity sets discussed in Section 1.2.1.

Proposition 1.13 (A Gibbs conditioning principle). Suppose that Y1, . . . , Yn are random variables
taking values in a metric space (Y,d) satisfying a large deviations principle at speed (an)n>1, and with
good rate function I. Consider a closed set B such that

inf
B̊
I = inf

B
I < +∞.

Then, the set of minimizers
IB =

{
y ∈ Y, I(y) = inf

B
I
}

is a non-empty closed subset of B. Moreover, for any ε > 0, setting

Aε =
{
y ∈ Y, d(y,IB) > ε

}
, (1.76)

there exists cε > 0 such that

lim
n→+∞

1

an
logP

(
Yn ∈ Aε

∣∣∣ Yn ∈ B) 6 −cε. (1.77)

The idea of Proposition 1.13 is that, in the large n limit, it holds

P
(
Yn ∈ Aε

∣∣∣ Yn ∈ B) ≈ e−cεn.

Because of the definition (1.76) of Aε, we see that the conditioned variables concentrate on IB , i.e.
on a minimizer of I over B. From a philosophical perspective, the conditioned rare event occurs in
the less costly way, or equivalently in the more likely way, which is a feature similar to the contraction
principle above. If the rate function is explicit and the set B is expressed through a natural constraint,
there is a hope that a minimizer under constraint solves an equation involving a Lagrange multiplier.
We will see an application of this idea in the context of conditioned Coulomb gases in Chapter 8.

Remark 1.14. There are other techniques than those presented above to cope with large deviations
problems. Let us mention in particular the so-called weak convergence method, a framework explained
in [147]. An interesting feature of this approach is to characterize the large deviations functions
through optimal control problems, which is useful for practical applications, see Chapter 5. Let us also
quote [149] as a successful example of application of this approach.

1.3 Large deviations in statistical physics
Section 1.2.2 has presented the general setting of large deviations together with a number of important
results. We now come back to the various problems raised in Section 1.1 to show that they enter the
large deviations framework. This will demonstrate the flexibility of large deviations techniques and
raise interesting numerical problems, some of which will be highlighted in Section 1.4.

1.3.1 Long time fluctuations
1.3.1.1 Large deviations principle

In this section, we consider the setting of Section 1.1.2. Since we study long time problems, we
have n = t in the notation of Section 1.2.1, and we study the large deviations of the empirical average

Lt =
1

t

∫ t

0

δXs ds (1.78)
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in Y = P(X ), where (Xt)t>0 is solution to (1.1). As mentioned in Section 1.2.1, we should typically
speak of the LDP for the familly of probability measures

πt( · ) = P
(
Lt ∈ ·

)
over Y = P(X ), but we generally refer to the LDP for the empirical average (Lt)t>0 for conciseness.
Three approaches have been considered in the past for proving a LDP for the empirical measure (1.78):
the approach of Donsker and Varadhan [131, 132, 134, 135, 416], that of Gärtner and Ellis [199, 165],
and the weak convergence approach [68, 149]. An example of result can be stated as follows in the
case where X = Td (or a compact set without border). We recall that the strong topology on P(X )
is the topology associated with the convergence against bounded measurable functions.

Theorem 1.15. Suppose that X = Td, b ∈ C∞(X ) and σ ∈ Rd×d is constant with σσT positive
definite. Then the functional

f ∈ B∞(X ) 7→ λ(f) = lim
t→+∞

1

t
logE

[
e
∫ t
0
f(Xs)

]
is well-defined and finite, and the empirical mean (Lt)t>0 satisfies a LDP over P(X ) equipped with
the strong topology, at speed t and with rate function given by: for ν ∈ P(X ),

I(ν) =

 sup
f∈B∞

{
ν(f)− λ(f)

}
, if ν � µ,

+∞, otherwise.
(1.79)

Recall that µ ∈ P(X ) is the invariant measure of (Xt)t>0. Note that we do not aim at the greatest
level of generality in the above result, and we refer e.g. to [199] for less restrictive conditions on
the regularity of the coefficients. We also mention that Theorem 1.15 is actually a particular case of
Theorem 3.10 stated in Chapter 3.

However, in a statistical physics perspective, the Langevin dynamics (1.17) does not satisfy the
assumptions of Theorem 1.15 for two important reasons:

• the dynamics is degenerate, i.e. σσT has not full rank, as can be seen from (1.16);

• the state space X is genuinely unbouded because the momenta belong to Rd.

These issues are treated in Chapter 3, and we postpone the discussion on this point to the contributions
presented in Section 1.5. We also mention that the important work of L. Wu [427] brings elements of
answer to these problems.

For practical purposes, when the average of a particular function f is of interest, we can also prove
a LDP for

Lt(f) =
1

t

∫ t

0

f(Xs) ds,

in the space Y = R. As mentioned in Section 1.2.2, a LDP can be obtained a priori by the contraction
principle. On the other hand, when X = Td, we can prove a LDP for Lt(f) at speed t and with rate
function

∀ a ∈ R, If (a) = sup
k∈R

{
ka− λf (k)

}
, (1.80)

where the free energy is now a function over R defined through

∀ k ∈ R, λf (k) = lim
t→+∞

1

t
logE

[
ek
∫ t
0
f(Xs) ds

]
. (1.81)

This is again a consequence of the Gärtner–Ellis theorem. In particular, we can compute numeri-
cally (1.80) from the cumulant function λf , which raises interesting numerical questions discussed in
Section 1.4 below.
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1.3.1.2 Relation to spectral theory and Feynman–Kac dynamics

As should be clear by now, the functional f 7→ λ(f) plays a crucial role in the large deviations
analysis, so we would like to obtain more information about it. The cumulant λ(f) is actually the
principal eigenvalue (largest in modulus) of the operator L + f defined over B∞(X ) (recall that L
is the generator of the dynamics (1.1) defined in (1.2)). This can be intuited by considering the
Feynman–Kac semigroup (

P ft ϕ
)
(x) = Ex

[
ϕ(Xt) e

∫ t
0
f(Xs) ds

]
,

which has generator L+ f by the Feynman–Kac formula [361, Chapter VIII]. From spectral analysis,
we expect

P ft ϕ ∼
t→+∞

etr(f),

where r(f) is the largest eigenvalue in modulus of L + f . This formula is completely natural for
matrices and we shall give a precise meaning to it for operators in Chapter 2. On the other hand, by
taking the logarithm and dividing by t, we obtain the cumulant λ(f): this motivates that λ(f) = r(f)
is actually the largest eigenvalue of L+ f .

We can now invert the Legendre transform (1.79) to obtain the representation

λ(f) = sup
ν∈P(X )

{
ν(f)− I(ν)

}
, (1.82)

as was intuited at the end of Section 1.1.2. In order for the above expression to be of some use, we
note that I may be rewritten as

I(ν) = sup

{
−
∫
X

Lu
u
dν, u ∈ DL, u > 0

}
, (1.83)

where DL denotes the domain of L over B∞(X ). The equations (1.82)-(1.83) form the celebrated
Donsker–Varadhan variational formula, whose strength is to provide a variational representation for
the principal eigenvalue of an a priori non-symmetric second order operator associated with a dif-
fusion [133] (note however that [133] demands less regularity on the diffusion by assuming that the
semigroup (Pt)t>0 is Feller instead of strong Feller, in which case the generator has to be considered
on the space C0(X ) of continuous functions instead of B∞(X )). To get some intuition on (1.83),
consider an eigenvector hf associated to λ(f), namely

(L+ f)hf = λ(f)hf .

The above equation rewrites

− Lhf
hf

= f − λ(f). (1.84)

By integrating both sides of (1.84) with respect to a measure ν we obtain the correspondance be-
tween (1.79) and (1.83), an idea made precise in [124, Lemma 4.1.36] and revisited in Chapter 3.
Finally, it is an interesting problem to derive alternative representations for the rate function I. With
the interpretation of I as a dynamical entropy, we expect different behaviours for reversible and ir-
reversible dynamics, as discussed in Section 1.1.1. A significant contribution to this question was
brought by [49] in the case of an atom chain thermostated by an inhomogeneous heat bath, and we
will also come back to this point in Chapter 3.

Remark 1.16. The Donsker–Varadhan formula is a significant representation result for the principal
eigenvalue of non-symmetric operators. As will appear clear in the analysis of Part II, this formula is
closely related to the Perron–Frobenius and Krein–Rutman theorems in the theory of positive operators,
see for instance [383, 112]. In the case of a matrix A ∈ Rd×d such that Aij > 0 for any i, j ∈ {1, . . . , d},
we indeed know that the largest eigenvalue Λ is real and simple by the Perron–Frobenius theorem [383].
Moreover, Λ can be represented by the so-called Collatz–Wielandt formula:

Λ = sup

{
inf
x>0

d∑
i=1

(Ax)i
xi

pi

∣∣∣∣∣ p ∈ Rd,
d∑
i=1

pi = 1

}
.

This is the exact analog of (1.83) for matrices10, see [329, Chapter 8].
10I could not find a reference to this formula in the papers of Donsker and Varadhan, and I warmly thank A. Levitt

for pointing out this result.
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Before concluding this section, we relate the cumulant (1.81) to the more general framework of
Feynman–Kac semigroups. We call Feynman–Kac dynamics the nonlinear semigroup (Φft )t>0 defined
on the space of probability measures P(X ) as: for t > 0,

∀ ν ∈ P(X ), ∀ϕ ∈ B∞(X ), Φft (ν)(ϕ) =
Eν
[
ϕ(Xt) e

∫ t
0
f(Xs) ds

]
Eν
[
e
∫ t
0
f(Xs) ds

] .

From a practical perspective, this is a form of importance sampling: the trajectories with larger values
of f are given a larger weight. This idea is crucial in nonlinear filtering methods [115, 139, 140]. In
our context, we relate the long time convergence of Feynman–Kac dynamics [114] to large deviations
theory, a central topic of Chapter 2.

1.3.2 Small temperature regime
In Section 1.1.3 we have presented some aspects of SDEs at small temperature from a heuristic
perspective. The large deviations framework for this situation has been worked out by Freidlin and
Wentzell in the 1970s and 1980s, and we refer to [193] for a very good introduction to these problems.
Recall the notation of Section 1.1.3: (Xε

t )t∈[0,T ] is solution to

dXε
t = b(Xε

t ) dt+
√
εσ dBt, (1.85)

over X = Rd, where b is smooth and D = σσT is positive definite. We are interested in the fluctuations
of the process around the continuous path (φ̄t)t∈[0,T ] solution to

φ̄0 = x,
d

dt
φ̄t = b(φ̄t),

for some x ∈ X . Therefore, the natural space for studying large deviations is Y = C0([0, T ],X )
equipped with the uniform norm topology.

In order to provide more rigorous estimates like (1.39), we consider the following family of proba-
bility measures over C0([0, T ],X ):

πε( · ) = P
(
Xε
t ∈ ·

)
. (1.86)

An action functional is also associated to the dynamics (1.85):

∀ϕ ∈ C0([0, T ],X ), I(ϕ) =
1

2

∫ T

0

∣∣b(ϕ)− ϕ̇s
∣∣2
D
ds, (1.87)

where |v|2D = v · D−1v for any v ∈ Rd, and the above integral is given the value +∞ if ϕ is not
absolutely continuous or if the integral diverges. As the reader should expect, the functional I is
a rate function controlling a LDP for the family of probability measures (πε)ε>0 defined in (1.86).
Assuming that b is globally Lipschitz, we obtain the following result (in [193] we use Theorem 1.1 in
Chapter 4 for proving that I is a rate function in the sense of Definition 1.3, paragraph 3 in Chapter 3
for the definition of the action functional, and Theorem 3.3 in Chapter 3 for the equivalence with the
Definition 1.4 of the LDP in Section 1.2.1).

Theorem 1.17 (Freidlin–Wentzell). Consider the family of probability measures (πε)ε>0 defined
in (1.86) where (Xε

t )t∈[0,T ] is solution to (1.85), with b globally Lipschitz and D = σσT positive
definite. Then the functional I : C0([0, T ],X )→ [0; +∞] defined in (1.87) is a good rate function.

Moreover, (πε)ε>0 satisfies a large deviations principle at speed ε with rate function I: for any B ⊂
C0([0, T ],X ), it holds

−inf
B̊
I 6 lim

ε→0
ε logP

(
Xε
t ∈ B

)
6 lim
ε→0

ε logP
(
Xε
t ∈ B

)
6 −inf

B
I,

where the adherence and interior are taken with respect to the uniform norm topology.

Theorem 1.17 has many applications. For example, (1.42) is an instance of the Varadhan prin-
ciple [119, Chapter 4], which makes precise the heuristic of Section 1.1.3. Since we will not prove
new theoretical results on this kind of asymptotics and essentially use the instanton described in Sec-
tion 1.1.3, we close the discussion here. Note however that the ideas of large deviations can be used
for studying various aspects of systems at small temperature. The behaviour of the spectrum of the
Witten Laplacian at low temperature and related quasi-stationary distributions are two important
families of problems (related to metastability) in which the ideas of concentration at exponential scale
in the low temperature regime play a crucial role, see e.g. [389, 299, 331, 298] and references therein.



1.3. Large deviations in statistical physics 55

1.3.3 Singular gases
We finally come back to the situation of Section 1.1.4 by considering a set of pointsXN = (XN,1, . . . , XN,N )
distributed according to the following Gibbs distribution over (Rd)N :

PN (dx) = Z−1
N e−βN( 1

N

∑N
i=1 V (xi)+

1
N2

∑
i6=j K(xi−xj))dx, (1.88)

where V is a confinement potential, K is a (typically singular) interaction kernel and (βN )N is a
cooling sequence. Each particle being distributed in Rd, we consider the empirical distribution

µN =
1

N

N∑
i=1

δxi (1.89)

under PN , which is a random element in P(Rd). Large deviations theory once again provides natural
tools for studying the concentration of µN as N → +∞, where now

πN ( · ) = P
(
µN ∈ ·

)
.

The guenuine space for the LDP is therefore Y = P(Rd). As intuited in Section 1.1.4, the electrostatic
energy defined by

E(µ) =

∫
V (x)µ(dx) +

∫∫
K(x− y)µ(dx)µ(dy) (1.90)

plays a crucial role in the analysis. Fine properties of the above electrostatic energy and its conse-
quences in terms of concentration of (1.89) under (1.88) have known many developments since the
seminal work of Ben Arous and Guionnet [29], see [84, 148, 386, 287, 85, 387, 314]. In order to provide
an example of result in this direction, we present [84, Theorem 1.1], which applies in particular to the
Coulomb gas setting of Section 1.1.4. We recall that the weak topology on P(Rd) is metrized by11

the Fortet–Mourier distance defined by

∀µ, ν ∈ P(Rd), dFM(ν, µ) = sup
max(‖f‖B∞ ,‖f‖Lip)61

(∫
Rd
f dν −

∫
Rd
f dµ

)
,

where the B∞-norm is defined in (1.26) and

‖f‖Lip = sup
x 6=y

|f(x)− f(y)|
|x− y|

.

Theorem 1.18 (LDP for singular gas). Suppose that the following assumptions hold true:

1. The cooling sequence satisfies βN � N log(N).

2. The function V is continuous and satisfies lim|x|→+∞ V (x) = +∞ and∫
X

e−V (x) dx < +∞.

3. The kernel K : X → (−∞; +∞] is continuous on Rd and takes finite values on Rd \ {0}.
Moreover, for any compact set C ⊂ Rd the function

z 7→ sup
{
K(y), |y| > |z|, y ∈ C

}
is locally integrable with respect to the Lebesgue measure.

4. There exists c > 0 and ε0 ∈ (0, 1) such that

∀x, y ∈ Rd, K(x− y) > c− ε0

(
V (x) + V (y)

)
.

5. If ν ∈ P(X ) is such that E(ν) < +∞, there exists a sequence (νn)n∈N of probability measures
absolutely continuous with respect to the Lebesgue measure, such that νn → ν weakly and E(νn)→
E(ν) when n→ +∞.

11There are many ways to metrize weak convergence of measures. In large deviations theory, the Lévy–Prokhorov
metric is often used [124], but the Fortet–Mourier distance is easier to manipulate. Other distances can be used [354, 434],
which metrize the weak convergence with different geometric properties.
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Then the empirical average µN satisfies a large deviations principle under PN in P(Rd) equipped with
the weak topolgy, at speed (βN )N and with good rate function defined by

∀ ν ∈ P(Rd), I(ν) = E(ν)− inf
P(Rd)

E ,

where infP(Rd) E > −∞. More precisely, for any measurable set A ⊂ P(Rd), it holds

−inf
Å
I 6 lim

N→+∞

1

βN
logP

(
µN ∈ A

)
6 lim
N→+∞

1

βN
logP

(
µN ∈ A

)
6 −inf

A
I,

where the interior and closure are taken with respect to the weak topology. Moreover, denoting by

I =

{
y ∈ Y, I(y) = inf

P(Rd)
I

}
the closed set of minimizers, it holds

dFM

(
Yn,I

)
−−−−−→
n→+∞

0,

almost surely under PN .

Theorem 1.18 calls for some comments. First, it applies to the case of Coulomb interactions under
appropriate growth conditions on V , see [84]. It then provides a rigorous justification of the Laplace
principle invoked in Section 1.1.4, where the electrostatic energy E plays the role of a rate function. The
speed of this LDP is dictated by the cooling sequence (βN )N defining PN , provided the temperature
decreases fast enough (i.e. βN diverges fast enough). This condition actually ensures that entropic
effects can be neglected, as nicely discussed in [84, 148], but can be relaxed to βN � N , see [148].
An important feature of the LDP in this situation is to identify the limiting empirical measure as a
minimizer of E . This justifies the importance of this minimization problem, which recently attracted
a lot of interest, in particular for the situation of Coulomb gases (described in Section 1.1.4) and
more generally Riesz and log-gases [84, 287]. Note that the study of this minimization problem
for the one dimensional log-gas leads to an alternative proof of the celebrated Wigner theorem for
random matrices [29]. We mention that these results can be strengthen, for instance by reinforcing
the topology of the LDP if V satisfies sufficient growth conditions, see [148] for an interesting account.
These refinements are used in Chapter 8 to apply the Gibbs conditioning principle (Proposition 1.13)
in this context.

Remark 1.19. We have illustrated three possible applications of the large deviations toolbox: long time
behaviour of empirical averages, small temperature limit of diffusions and large size limit of singular
gases. However, there exist many other fields in which large deviations can be applied. Let us mention
for instance quantum mechanical models [6, 44, 267] and multifractals [229, 417, 307] for interesting
applications.

1.4 Some numerical aspects of rare events analysis

Although the large deviations aspects presented above form a wide mathematical playground for
theoretical developements, they also raise difficult numerical questions. For instance, computing
probabilities of rare events is important in various fields, and have led to numerous mathematical
treatments, see for instance [75, 167, 79, 80] and references therein. On the other hand, identifying
the limiting distribution of random matrices and their fine properties (such as the distribution of the
largest eigenvalue [19, 108, 421, 16]) is important for instance in finance [65, 66]. It would be too long
to present all the applications of these ideas, so we restrict ourselves to some questions treated in this
work, mostly concerning stochastic differential equations.

We first review in Section 1.4.1 elements on the numerical analysis of SDEs, in particular the
different notions of error. We next present in Section 1.4.2 some variance issues raised by the simulation
of rare events, together with two types of strategies to address them.
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1.4.1 Discretization of SDEs

In this section, we consider again the SDE

dXt = b(Xt) dt+ σ(Xt) dBt, (1.91)

where the process is defined over X = Rd. The functions b : Rd → Rd and σ : Rd → Rd×m are assumed
to be smooth for simplicity, and (Bt)t>0 denotes as usual anm-dimensional Brownian motion. In order
to compute expectations and empirical means as described in Section 1.1.2, a natural strategy is to
discretize (1.91) with a Markov chain of time step ∆t. Such a Markov chain (xn)n∈N is defined by its
(homogeneous) evolution operator12

∀ϕ ∈ B∞(X ), ∀x ∈ X , (Q∆tϕ)(x) = E
[
ϕ(xn+1) |xn = x

]
. (1.92)

For concreteness, one may think of the discretization given by the Euler–Maruyama scheme, which
reads

xn+1 = xn + b(xn)∆t+ σ(xn)
√

∆tGn, (1.93)

where (Gn)n∈N is a family of independent standard Gaussian random variables. There are much
more sophisticated discretization procedures, and we refer to the textbooks [270, 332] for an overview.
Instead of stating very precise results of numerical analysis, we prefer to insist on the various ways to
measure the error induced by the discretization procedure. We believe this discussion is important in
order to understand the error analysis performed in Chapter 4, in which we introduce a new notion
of discretization error for Feynman–Kac dynamics.

Strong error estimates. Strong error estimates quantify the difference between the trajectories of
the continuous process and its discrete counterpart over finite time intervals. They consist in practice
in measuring the maximum Lq-norm for some q > 1 (in expectation) between the discretization and
the continuous process over a finite time window. Such a result typically takes the following form:
there exists ps > 0 such that for any time T > 0, there is C > 0 and ∆t∗ > 0 for which, for any
∆t ∈ (0,∆t∗],

sup
06n6T/∆t

(
E
[
|Xn∆t − xn|q

]) 1
q

6 C∆tps .

We will not consider this type of convergence here, since we are interested in average properties rather
than in the trajectories themselves. The following alternative definition of error is therefore more
useful in our context.

Weak error estimates. Errors on the expectations are called weak errors (weak being understood
in the usual sense “against test functions”). We denote by C∞c (X ) the space of smooth functions with
compact support. Weak error estimates typically take the following form: there exists pw > 0 such
that for any ϕ ∈ C∞c (X ) and T > 0, there is C > 0 and ∆t∗ > 0 for which, for any ∆t ∈ (0,∆t∗],

sup
06n6T/∆t

∣∣∣E[ϕ(Xn∆t)
]
− E

[
ϕ(xn)

]∣∣∣ 6 C∆tpw . (1.94)

Such an estimate can generally be obtained for test functions ϕ ∈ Ck(X ) with the constant C controlled
by ‖ϕ‖Ck , see [332]. We also mention that in general it holds ps 6 pw.

Quite interestingly, estimates such as (1.94) can be deduced from a one time step expansion. The
idea is to compare the exact flow P∆t = e∆tL with its approximation Q∆t (recall that L is the generator
of the diffusion (1.91)), for which one can generally prove an expansion like

Q∆t = e∆tL + O
(
∆tpw+1

)
. (1.95)

It is then possible to derive estimates like (1.94), while providing a precise functional setting to the
above equality [348, 400, 276], see also [332, Theorem 2.1]. We are however not completely satisfied
by this definition of error, since the constant C in (1.94) typically grows exponentially with T , while
we aim at estimating ergodic properties as T → +∞. This motivates the notion introduced next.

12We generally use the letter P for the evolution operator of time continuous dynamics, while Q is used for discrete
time dynamics.
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Error on the invariant measure. As explained in Section 1.1.2, we generally want to compute
the following type of ergodic average

E
[
ϕ(Xt)

]
−−−−→
t→+∞

∫
X
ϕdµ, (1.96)

where µ is the invariant measure of the process. Let us assume that the discretization (xn)n∈N is also
ergodic with respect to an invariant measure µ∆t, namely

E
[
ϕ(xn)

]
−−−−−→
n→+∞

∫
X
ϕdµ∆t. (1.97)

Except in particular situations (for instance when correcting a reversible diffusion with a Metropolis–
Hastings step [368]), it holds µ∆t 6= µ so the averages on the right hand side of (1.96) and (1.97) are
different. It is then natural to quantify the error on the invariant measure by measuring the difference
between averages of observables, a strategy pioneered by Talay [398, 399]. Such error estimates are
written as follows: there exists pi > 0 and ∆t∗ > 0 such that, for any ∆t ∈ (0,∆t∗] and ϕ ∈ C∞c (X ),∫

X
ϕdµ∆t =

∫
X
ϕdµ+ O

(
∆tpi

)
. (1.98)

Moreover, the leading order term can be made precise as

∆tpi

∫
X
ϕψ dµ,

where ψ is solution to a Poisson equation. Perhaps surprisingly, the estimate (1.98) on the long time
average can also be deduced from an expansion of the one step evolution operator Q∆t, provided some
ergodicity conditions on the evolutions (Xt)t>0 and (xn)n∈N are met. In practice, one can generally
obtain by Taylor expansion of Q∆t in power of ∆t the following type of expansion (see the example
of the Euler scheme below): for some pi ∈ N∗,

∀ϕ ∈ C∞c (X ), Q∆tϕ = ϕ+ ∆tA1ϕ+ ∆t2A2ϕ+ . . .+ O
(
∆tpi+1

)
, (1.99)

for differential operators Ak. The crucial point is to observe until which order the propagator Q∆t

conserves the invariant measure. This corresponds to the integer pi ∈ N∗ for which

∀ k ∈ {1, . . . , pi}, ∀ϕ ∈ C∞c (X ),

∫
X
Akϕdµ = 0, (1.100)

which is the expansion for small times of the invariance relation (1.7). In general, in accordance
with (1.95), schemes of weak order pi are such that

∀ k ∈ {1, . . . , pi}, Ak =
Lk

k!
.

This condition is however not necessary for (1.100) to hold (for instance it may happen that Ak =
c−1
k Lk with ck 6= k!).

In order to deduce (1.98) from (1.100), the strategy is to compare the invariance relations cor-
responding to P∆t and Q∆t as introduced in Section 1.1 (recall that P∆t = e∆tL), namely: for any
ϕ ∈ C∞c (X ), ∫

X
P∆tϕdµ =

∫
X
ϕdµ, and

∫
X
Q∆tϕdµ∆t =

∫
X
ϕdµ∆t.

We next expand in powers of ∆t through (1.99) inside the second expression. In fact, we construct an
approximation µ̃∆t of µ∆t for which the second equality holds up to a small error term. This strategy
is adapted in Chapter 4 to obtain error estimates on the cumulant function and the Feynman–Kac
semigroup presented in Section 1.3.1. The difficulty in this situation comes from the nonlinearity of
the stationary equation satisfied by the invariant measure, which makes the above reasoning much
more cumbersome to apply.

As an example of application, we consider the Euler–Maryuama scheme (1.93). In this case we
have, for any ϕ ∈ C∞c (X ),

∀x ∈ X , Q∆tϕ(x) = EG
[
ϕ
(
x+ b(x)∆t+ σ(x)

√
∆tG

)]
,
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where the expectation runs over the standard Gaussian variable G. Since a factor
√

∆t is involved, a
second order Taylor expansion shows that

Q∆tϕ = ϕ+ ∆tLϕ+ O
(
∆t2

)
,

which is (1.99)-(1.100) with pi = 1. As a result, we see that (1.100) provides a rather practical criterion
for assessing the order of accuracy of a numerical scheme. This led to substantial developments in the
past years (in particular in the context of molecular dynamics), see for instance [399, 324, 325, 110, 295].
Interestingly, efficient numerical methods are often built on integrators that have been known for a
long time in the physics community, such as the Verlet scheme [418, 62, 294, 3], or modifications
thereof.

Let us insist on the fact that in general it holds ps 6 pw 6 pi, and these inequalities are rather
often strict. In order words, it is possible to build Markov chains whose trajectories are quite different
from the continuous ones, but whose statistical properties are close to that of the continuous process.
This remark can be extended to the computation of dynamical quantities, see for instance [295, 304]
and references therein. Note that, in Chapter 4, we will present a yet weaker notion of error, which
does not exists for SDEs but is important when dealing with Feynman–Kac semigroups. We now give
more details on the statistical estimation of the quantities we are considering.

1.4.2 Estimating rare events
We now present some numerical issues related to the estimation of the quantities of interest in Sec-
tions 1.1.2 and 1.3.1. After some preliminaries, we highlight two classes of methods used to overcome
the high variance of naive estimators: those based on population dynamics, and the ones relying on
optimal control arguments.

1.4.2.1 The variance issue

As we explained in Sections 1.1.2 and 1.3.1, the computation of the rate function I and the free
energy λ is important to understand the system at hand, and to provide quantitative estimates on the
probabilities of rare events. For the sake of this presentation we consider fluctuations of the empirical
average

Lt(f) =
1

t

∫ t

0

f(Xs) ds,

where (Xt)t>0 is solution to (1.1) and f is a measurable function such that a large deviations principle
holds (see Section 1.3.1) with rate function If : R→ [0,+∞]. In order to estimate If , we may consider
some small element ∆a ⊂ R centered on a ∈ R and use the estimator

If (a) = lim
t→+∞

1

t
logP

(
Lt(f) ∈ ∆a

)
.

In words, If is the limiting normalized histogram of Lt(f). However, P(Lt(f) ∈ ∆a) decays like e−tIf (a),
meaning that an exponentially large (in t) number of samples is necessary to obtain a good estimate
of the rate function. Since the large t limit must be reached, this is obviously an inefficient approach.

The Gärtner–Ellis theorem presented in Sections 1.2.2 and 1.3.1 is possibly a better alternative.
Indeed, (1.80) provides the following alternative representation of the rate function,

If (a) = sup
k∈R

{
ka− λf (k)

}
, (1.101)

where
λf (k) = lim

t→+∞

1

t
logE

[
ek
∫ t
0
f(Xs) ds

]
. (1.102)

Therefore, the computation of If can be deduced from that of λf (and possibly λ′f to compute (1.101),
provided the cumulant is sufficiently regular). Although this idea is alluring, exponential quantities
like

E
[
ek
∫ t
0
f(Xs) ds

]
(1.103)

typically have a variance scaling exponentially in time, and are therefore difficult to numerically
estimate. In order to understand this phenomenon, we note that∫ t

0

f(Xs) ds ≈ tα+
√
tσG,
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where α is a real number and G is a standard Gaussian random variable. This motivates considering
the simpler expression

E
[
ek(tα+

√
tσG)

]
,

for t > 0. An easy computation shows that that relative variance reads

Var
[
ek(tα+

√
tσG)

]
(
E
[
ek(tα+

√
tσG)

] )2 =
E
[
e2k
√
tσG
]

(
E
[
ek
√
tσG
] )2 − 1 = ek

2σ2t − 1. (1.104)

As a result, the relative variance scales like ek
2σ2t. Transferring this reasoning to the estimation

of (1.103) motivates that the variance of a naive estimator of the free energy scales exponentially
with the time t. In practice, the variance of (1.103) is high because the value of the expectation
is dominated by a few rare trajectories taking very large values (a problem shared in the estimate
of (1.35) for the small temperature systems described in Section 1.1.3). Therefore, not much seems
to be gained from the Fenchel representation (1.101). It is however possible to design estimators
of (1.102) with a reduced variance. We describe below two strategies: interacting particle systems
and optimal control.

Remark 1.20. As mentionned in Section 1.3.1, λf (k) is also the largest eigenvalue of the Feynman–
Kac generator L+ kf . Thus, Galerkin or spectral approximation methods can be used to estimate the
cumulant. However, these strategies are often inefficient because the dimension d of the space is large.
On the other hand, (1.102) naturally suggests to use a stochastic algorithm for computing a principal
eigenvalue. Not surprisingly, this representation was first used in quantum physics [10, 77], see the
discussion below and the comments in Chapter 5.

1.4.2.2 Interacting particles systems

There is a wide variety of approaches relying on the principle of “divide and conquer” in order to
compute (1.102) more efficiently. The basic idea is to run a set of replicas of the dynamics (1.1) with
exponential weights attached to them. These weights correspond to the argument of the expectation
in (1.103). When those weights become degenerate, the particles are resampled with some rule preserv-
ing the weighted expectation. In practice, particles with larger weights tend to duplicate, while those
with smaller weights tend to be pruned. Doing so, the dynamics is conditioned on taking larger values
of f , which reduces the variance and provides relatively well-behaved estimators [139, 113, 140, 301].

Let us make this idea slightly more precise by giving a basic version of a genetic algorithm to
compute (1.102) (which will be detailed and used in Chapter 4). Consider a set (Xm)Mm=1 of M
replicas satisfying (1.1) and a time τ at which each replica m ∈ {1, . . . ,M} has weight

wm = exp

(
k

∫ τ

0

f(Xm
s ) ds

)
.

We then define the probability distribution p over the set {1, . . . ,M} of replicas by

pm =
wm∑m
j=1 w

j
.

At time τ the replicas are then resampled according to the probability vector p (for instance by
drawing M replicas from a multinomial distribution of probability p). The so-obtained distribution
of replicas is an approximation of the distribution at time t of the Feynman–Kac semigroup (Φt)t>0

introduced in Section 1.3.1, while the cumulant λf (k) can be estimated e.g. by averaging the weights w
over the replicas along the dynamics (this is made precise in Chapter 2). Typically, τ is deterministic
and associated to the time step ∆t of a numerical discretization, as in Section 1.4.1. It may also
be random and correspond to a stopping time for a given level of degeneracy of the weights, see
for instance [301, Chapter 6]. In comparison with (1.104), we see that the problem is reduced to
smaller subproblems with smaller variance (because τ is typically small), while statistical properties
are preserved if the resampling is correct [140].

To the best of our knowledge, this replica technique goes back to [213, 10] for estimating ground
state energies of Schrödinger operators (based on papers by Donsker and Kac [258, 130]), followed by
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a series of works in quantum physics [77, 320, 412, 328]. There has been after that a great interest in
the mathematics community for these so-called Feynman–Kac models, see for instance [115, 139, 116,
117, 113, 377, 109]. Interestingly, these two communities, which used the same algorithms, did not
seem to communicate much at that time. This is surely because of their different motivations. More
recently, due to recent advances in nonequilibrium statistical mechanics [194, 280, 288, 202, 122],
large deviations functions received a renewed interest, which generated some new algorithms, see
e.g. [289, 337]. A first comprehensive history (and systematic treatment) of these techniques can be
found in [12, 11].

1.4.2.3 Optimal control approaches

The strategy presented above relies on a “genetic” procedure, where a set of replicas are selected so as
to enhance the probability of rare events. A complementary point of view is to introduce a bias in the
dynamics to enforce the fluctuation in a single trajectory. The relation between this method and large
deviations theory has been extensively studied by Dupuis, Ellis and collaborators (the so-called “weak
convergence approach” to large deviations [68, 147, 149]), as well as by Chetrite and Touchette [98] in
the context of nonequilibrium statistical mechanics. Rather than providing a long presentation of the
theory, we prefer presenting the key idea leading to an alternative representation of the free energy and
rate function, with the perspective of designing more efficient numerical methods, as illustrated13 in
Chapter 5. This will also highlight the importance of the eigenproblem associated with the cumulant
function, as mentionned in Section 1.3.1.

Let us recall that the cumulant function λf (k) is associated to the eigenproblem

(L+ kf)hk = λf (k)hk, (1.105)

where hk is assumed to be a smooth function (this will be detailed in Chapter 3). We next introduce
the tilted generator [97]

Lk = h−1
k (L+ kf)(hk · )− λf (k) = L+D∇ log hk, (1.106)

where D = σσT is the diffusion matrix, which we assume constant and positive definite for simplicity.
This “h-transform” can be shown to condition the dynamics on having a fluctuation of Lt(f) [136, 97]
(note that we use this transform in Part II for proving convergence results). Actually, the operator Lk
defined in (1.106) is a Markovian generator associated to the tilted dynamics (also called driven
process)

dX̃t = bk(X̃t) dt+ σ dBt, (1.107)

where
∀x ∈ X , bk(x) = b(x) +D∇ log hk(x). (1.108)

The idea of the modified drift (1.108) is that the additional term pushes the dynamics towards the
regions where f is higher, hence reducing the variance.

A possible way to understand why the titled process (X̃t)t>0 is in some sense optimal is to derive
the zero-variance estimator for the SCGF λf (k). For this, we denote by u = log hk, which solves (if hk
is positive and smooth)

Lu+
|σT∇u|2

2
+ kf = λf (k). (1.109)

We next use the Girsanov theorem [262] to rewrite the exponential expectation in the definition of
the free energy, which leads to

E
[
ek
∫ t
0
f(Xs) ds

]
= E

[
ek
∫ t
0
f(X̃s) ds− 1

2

∫ t
0
|σT∇u|2(X̃s) ds−

∫ t
0
∇u(X̃s)·σ(X̃s) dBs

]
. (1.110)

On the other hand, Itô’s formula applied to u leads to

du(X̃s) =
(
Lu(X̃s) + (D∇u) · ∇u(X̃s)

)
dt+∇u(X̃s) · σ(X̃s) dBt,

so that

−1

2

∫ t

0

|σ∇u|2(X̃s) ds−
∫ t

0

∇u(X̃s)·σ(X̃s) dBs =

∫ t

0

Lu(X̃s) ds+
1

2

∫ t

0

|σ∇u|2(X̃s) ds+u(X̃0)−u(X̃s).

13Similar ideas are made precise in Chapter 6 for the small temperature problem presented in Section 1.1.3. We
however postpone the discussion on this aspect to this chapter for conciseness.
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Plugging the above formula into (1.110) and using (1.109) shows that

E
[
ek
∫ t
0
f(Xs) ds

]
= E

[
e
∫ t
0

(Lu+
|σ∇u|2

2 +kf)(X̃s) ds+u(X̃0)−u(X̃t)

]
= etλf (k)E

[
eu(X̃0)−u(X̃t)

]
.

In the situation where the state space X is bounded, this shows that, for any t > 0,

1

t
logE

[
e
∫ t
0
kf(Xs) ds

]
= λf (k) + O

(
1

t

)
.

We thus obtain an asymptotically zero-variance estimator from the tilted dynamics (1.107) and the
Girsanov formula (1.110). This motivates introducing the tilted generator (1.106).

It is actually possible to obtain more information from the tilted process (1.107), as shown by
manipulating the eigenproblem with appropriate changes of variable [98, 149]. For instance, (1.109)
is a Hamilton–Jacobi equation with quadratic cost [352, 231]. This formally allows to derive the
following representation of the free energy:

λf (k) = sup
u

[
lim

t→+∞

1

t

∫ t

0

(
kf(X̃u

s )− |σ
T∇u(X̃u

s )|2

2

)
ds

]
,

where the supremum runs over sufficiently smooth adapted controls u : X → Rd, and (X̃u
t )t>0 is the

controlled process
dX̃u

t = b(X̃u
t ) dt+D∇u(X̃u

t ) dt+ σ dBt.

The optimal u is then given by (1.108) through u = log hk, so that λf (k) is solution to the control
problem which consists in maximizing the fluctuation f under a quadratic cost constraint14 (and it
can be shown that the optimal control is in gradient form). Quite interestingly, the rate function
corresponds to the quadratic cost of the control [98], that is

If (ak) = lim
t→+∞

1

2t

∫ t

0

∇ log hk(X̃s) ·D−1∇ log hk(X̃s) ds, (1.111)

where ak = λ′(k). In other words, the rate function is the cost to make a certain fluctuation of f likely:
the larger the force needed to make f atypical, the rarer the event. We also mention that (1.111) can
be written as

If (ak) = lim
t→+∞

1

2t

∫ t

0

∣∣D−1
(
b(X̃s)− bk(X̃s)

)∣∣2
D
ds,

where |v|2D = v · D−1v for v ∈ Rd. This expression is very similar to that of the action functional
presented in Section 1.1.3 in the context of systems at low temperature.

Coming back to our numerical problem, we may wonder to what extent the alternative repre-
sentations provided by the optimal control framework are useful in practice compared to spectral or
genetic approaches. There is actually an important literature on stochastic and risk-sensitive con-
trol [353, 58, 28, 57, 30], and we exploit in Chapter 5 some of these works to design an adaptive
algorithm for estimating on the fly the optimal drift bk and the large deviations functions (note that
there is also an important literature on finite time control problems, see for instance [352, 231, 414, 232]
and references therein). We will discuss there the advantages and problems of this technique.

It is however important to emphasize that, for large (and possibly low temperature) systems, the
genetic and optimal control methods are both likely not to work, because of the important number
of clones needed in the first case, and the difficulty to estimate the optimal control in the second. A
good strategy seems to combine both methods: with an approximation of the optimal control, the rare
event becomes more likely and a genetic method can be implemented more efficiently, see [337, 339]
for recent accounts.

1.5 Contributions
After having presentated the topics covered in this thesis, we make precise its contributions following
the organization of the manuscript. Since precise results and bibliography are available later on, we
present the main results in an informal way and postpone more detailed discussions to each individual
chapter.

14This problem is well-known in finance under the name of risk-sensitive control [28, 57].
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1.5.1 Feynman–Kac dynamics and large deviations
Part II is devoted to theoretical results on Feynman–Kac dynamics and large deviations in time for
diffusion processes.

1.5.1.1 Long time behaviour of Feynman–Kac dynamics

As motivated in Section 1.3.1, the long time behaviour of Feynman–Kac models is closely related to
large deviations. These dynamics are also interesting on their own (for instance in quantum physics or
nonlinear filtering), and this motivates the study of Chapter 2. More precisely, for a Polish space X ,
we study the following kind of dynamics on P(X ): for ν ∈ P(X ) and ϕ ∈ B∞(X ),

∀ k ∈ N, Φk(ν)(ϕ) =
ν
(
(Qf )kϕ

)
ν
(
(Qf )k1

) . (1.112)

In the above formula, Qf is a transition kernel which is not probabilistic (i.e. Qf (x, ·) is a measure not
normalized to 1, so Qf1 6= 1). The ratio in (1.112) ensures that Φk maps P(X ) onto P(X ) but makes
the dynamics nonlinear. This abstract formulation encompasses many practical cases. For instance
if Qf = efQ where Q is the evolution operator of a Markov chain (xn)n∈N, (1.112) reads

Φk(ν)(ϕ) =
Eν
[
ϕ(xn) e

∑k−1
i=0 f(xi)

]
Eν
[
e
∑k−1
i=0 f(xi)

] ,

which is a standard formula for Feynman–Kac dynamics [113].
The long time behaviour of the nonlinear dynamics (1.112) has been studied for quite some time

in the context of nonlinear filtering, see for instance [114]. However, to the best of our knowledge,
no result is available when the state space X is unbounded. Our main contribution is to prove
ergodicity for (1.112) under a Lyapunov condition [219]. More precisely, we assume that there exist
W : X → [1,+∞), positive sequences (γn)n∈N, (bn)n∈N and an increasing sequence of compact
sets (Kn)n∈N such that

∀x ∈ X , QfW 6 γnW + bn1Kn , (1.113)

with γn → 0 as n → +∞. As discussed in Section 1.1.2, this is a confinement condition (although
now stated for a discrete time dynamics). With a couple of additional assumptions (a minorization
ensuring mixing and some regularization property of the kernel), we prove in Theorem 2.7 the existence
of ᾱ ∈ (0, 1) and a unique measure µf such that, for any initial measure ν ∈ PW (X ), there is Cν > 0
for which

sup
‖ϕ‖B∞

W
61

∣∣Φk(ν)(ϕ)− µf (ϕ)
∣∣ 6 Cν ᾱ

k. (1.114)

We also obtain in Theorem 2.8 that the largest eigenvalue Λ of the operator Qf over B∞W (X ) is
well-defined, real, simple, and satisfies (assuming that Qf = efQ as above for simplicity):

log(Λ) = lim
k→+∞

1

k
logEν

[
e
∑k−1
i=0 f(xi)

]
. (1.115)

This expression is reminiscent of the cumulant function presented in Section 1.3.1. Solving the spectral
problem associated with Qf is actually the crux of the proof of (1.114). In fact, we use the Lyapunov
condition (1.113) together with a regularization property to prove compactness of Qf , and ensure that
the largest eigenvalue Λ is real, isolated, and such that

Qfh = Λh,

where h ∈ B∞W (X ) is a properly normalized eigenvector. From this eigenproblem, we can introduce
the h-transformed kernel operator

Qh = Λ−1h−1Qf (h · ).

It then sufficies to note that Qh induces a Markovian dynamics which can be studied for instance
with [219], and that the non linear semigroup (1.112) can be written as the ratio of two linear semi-
groups as

Φk(ν)(ϕ) =
ν
(
h(Qh)k(h−1ϕ)

)
ν
(
h(Qh)kh−1

)
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to obtain the desired convergence.

In order to make more precise the connection with large deviations, we mention that the above
results also apply in the continuous time context. In other words, we obtain similar results for the
continuous time dynamics defined by

Φt(ν)(ϕ) =
Eν
[
ϕ(Xt) e

∫ t
0
f(Xs) ds

]
Eν
[
e
∫ t
0
f(Xs) ds

] , (1.116)

where (Xt)t>0 is solution to (1.1). In this case the Lyapunov condition (1.113) can be written: for
all a > 0 there exists Ca ∈ R such that

(L+ f)W 6 −aW + Ca. (1.117)

This condition should be natural, since this is a stronger version of the Lyapunov condition (1.25)
where the generator of the diffusion L is replaced by the Feynman–Kac operator L + f . Under this
condition (plus regularity and irreducibility), we can prove the continuous analogues of (1.114)-(1.115).

1.5.1.2 Large deviations for empirical measures of diffusions in fine topologies

As a sequel to the study of the long time behaviour of Feynman–Kacs dynamics, Chapter 3 turns to
a large deviations problem for the empirical measure of diffusions. The question is to know, given a
diffusion (Xt)t>0 over X ⊂ Rd, for which functions f the empirical mean

Lt(f) =
1

t

∫ t

0

f(Xs) ds

satisfies a large deviations principle (see Section 1.3.1 for definitions). In other words, we ask for the
finest topology for a LDP to hold for the empirical average

Lt =
1

t

∫ t

0

δXs ds. (1.118)

In Section 1.3.1, we have presented results for a bounded state space X , but the problem is difficult
when X is unbounded. We know from the works of Varadhan that a LDP holds for the weak topology
under Lyapunov and Feller conditions [416]. However, to the best of our knowledge, satisfactory results
are lacking for a topology associated to unbounded functions f (although [427, 275] bring interesting
elements). Such results however exist for independent variables, as shown in Section 1.2.2.

The first contribution of Chapter 3 is to identify a class of unbounded functions f to consider the
LDP over. This class can be read off the estimates used to prove the convergence of Feynman–Kac
dynamics. Indeed, the Lyapunov condition (1.117) can be written, since W > 1,

f 6 −aLW
W

+ Ca

for a > 0 arbitrary large. This identifies the class of appropriate functions f as those that are “strictly
dominated” by (i.e. that grow strictly slower at infinity than)

Ψ = −LW
W

.

This condition makes sense provided Ψ diverges to infinity (which is a Lyapunov condition for the
dynamics (Xt)t>0 with generator L, as explained in Section 1.1.2). By adapting the proofs of Chap-
ter 2 and under appropriate regularity and irreducibility conditions on the dynamics, we show in
Lemma 3.32 that

λ(f) = lim
t→+∞

1

t
logEx

[
e
∫ t
0
f(Xs) ds

]
is well-defined for f in the identified class of functions. By the Gärtner–Ellis theorem presented in
Section 1.2.2, we obtain in Theorem 3.10 a LDP for a precise topology associated to unbounded
functions, which is a new result. By this we mean that the following scaling holds: for any Γ ⊂ P(X )

P
(
Lt ∈ Γ

)
� e−t infν∈Γ I(ν),
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in a topology associated with Ψ, where I : P(X )→ [0,+∞] is a rate function given by an appropriate
modification of (1.79). Interestingly, as mentioned in Section 1.1.2, Ψ can be related to a Witten
Laplacian for reversible dynamics – it thus draws a link with spectral gap conditions and Poincaré
inequalities [20].

The second contribution of Chapter 3 is to describe more precisely the structure of the rate
function I, which is important for theoretical and computational purposes. First, we revisit the
standard Donsker–Varadhan formula presented in Section 1.3.1 by showing in Proposition 3.13 that

∀ ν ∈ P(X ), I(ν) = sup

{
−
∫
X

Lu
u
dν, u ∈ D+

}
, (1.119)

where D+ is an appropriate domain defined in Section 3.3.
Maybe more importantly, we harvest [49] to understand better how irreversibility affects the rate

function (and hence convergence to stationarity [363]). For this, we notice that the generator L
associated to (1.1) can be decomposed as L = LS + LA where LS and LA are respectively symmetric
and antisymmetric in L2(µ), with µ the invariant measure of the dynamics (Xt)t>0. We then prove
in Theorem 3.16 that, for any ν � µ,

I(ν) =
1

4

∣∣∣∣log
dν

dµ

∣∣∣∣2
H 1(ν)

+
1

4

∣∣∣∣LA

(
log

dν

dµ

)∣∣∣∣2
H −1(ν)

, (1.120)

where | · |H 1(ν) and | · |H −1(ν) refer to Sobolev seminorms defined in Section 3.2.1. The proof of
this result is interesting since it uses a variant of the Witten transform inside (1.119), which we call
variational Witten transform. Although the decomposition (1.120) looks quite abstract, we show in
Chapter 3 that it can be used to obtain interesting information on the fluctuations of irreversible
dynamics, in particular the underdamped Langevin dynamics presented in Section 1.1.

1.5.2 Numerical analysis and algorithms
Part III treats two complementary problems: the numerical analysis of quantities introduced in Part II
when continuous dynamics are discretized with a finite time step, and the design of efficient numerical
algorithms for estimating large deviations functions.

1.5.2.1 Error estimates on ergodic properties of Feynman–Kac semigroups

In Chapter 4, we consider the numerical discretization of the time continuous Feynman–Kac dynam-
ics (1.116). We place ourselves in a setting where X is bounded, hence we can easily prove the existence
of an invariant measure µf such that15

∀ ν ∈ P(X ), ∀ϕ ∈ C∞(X ), Φft (ν)(ϕ) −−−→
t→∞

∫
X
ϕdµf .

In order to perform numerical computations, we want to discretize in time the dynamics and obtain
error estimates on its ergodic properties such as the average above. As should be clear from the presen-
tation of Section 1.4, it is first natural to discretize the diffusion (Xt)t>0 into a Markov chain (xn)n∈N
approximating the dynamics. An intuitive procedure to discretize (1.116) is for instance to consider
the dynamics

Φf∆t,n(ν)(ϕ) =
Eν
[
ϕ(xn) e∆t

∑n−1
i=0 f(xi)

]
Eν
[
e∆t

∑n−1
i=0 f(xi)

] .

This is indeed a discrete time Feynman–Kac dynamics of the form (1.112) with Qf∆t = e∆tfQ∆t

(where Q∆t is the evolution operator of the Markov chain (xn)n∈N defined in (1.92)). The long time
behaviour of Φf∆t,n can be studied for example with the tools of Chapter 2, so we can prove the
existence of an invariant measure µf,∆t such that

∀ ν ∈ P(X ), ∀ϕ ∈ C∞(X ), Φf∆t,n(ν)(ϕ) −−−−−→
n→+∞

∫
X
ϕdµf,∆t.

15In Chapter 4 we write Φf
t rather than Φt to emphasize the dependance on the weight function f .
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The core of the chapter is then to make precise the difference between µf and µf,∆t.

Our strategy is to adapt the works of Talay and Tubaro [400, 398] briefly presented in Section 1.4.
This is however a difficult task because the dynamics is nonlinear (and hence its invariant measure
satisfies a nonlinear equation, as proved in Chapter 2). A key element of the analysis is a fine
understanding of the spectral problem associated to the Feynman–Kac evolution operator. We actually
build an approximate spectral problem through a hierachical decomposition in Poisson equations in
the spirit of [110].

We then prove in Theorem 4.16 the existence of an integer p > 1 and a function ψ solution to a
Poisson equation (depending on the numerical scheme at hand and the quadrature rule for the integral
in (1.116)) such that, for all ϕ ∈ C∞(X ),∫

X
ϕdµf,∆t =

∫
X
ϕdµf + ∆tp

∫
X
ϕψ dµf + O

(
∆tp+1

)
. (1.121)

This provides a generalization of the results known for the error on the invariant measure presented in
Section 1.4 for this nonlinear dynamics. Moreover, we have seen at various places the importance of
the principal eigenvalue λ of the operator L+f (which is also the cumulant function, see Section 1.3.1).
We obtain in Theorem 4.21 the following error estimate for an estimator λ∆t of this quantity: there
exists p′ > 0 such that

λ∆t =
1

∆t
log

[∫
X
Qf∆t1 dµf,∆t

]
= λ+ C∆tp

′
+ O

(
∆tp

′+1
)
, (1.122)

where Qf∆t is the evolution operator of the discretized dynamics with weight function f . Typically
it holds p′ > p because of Proposition 4.23, but we cannot state a general result. For concreteness,
one can think of Qf∆t = e∆tfQ∆t where Q∆t is the evolution operator of the discretization of (Xt)t>0.
In this case Qf∆t1 = e∆tf . In other words, (1.122) shows that the cumulant function is computed
from the average weight along the discrete Feynman–Kac dynamics. This is a standard numerical
procedure for which our results provide a precise error analysis.

1.5.2.2 Adaptive sampling of large deviations functions

Chapter 5 is concerned with the numerical estimation of the large deviations functions introduced in
Section 1.3.1. More precisely, we focus on the cumulant function defined by

∀ k ∈ R, λf (k) = lim
t→+∞

1

t
logE

[
ek
∫ t
0
f(Xs) ds

]
, (1.123)

and on the rate function, which may be defined through

∀ a ∈ R, I(a) = sup
k∈R

{
ka− λf (k)

}
. (1.124)

We recall that (Xt)t>0 is solution to (1.1). We have discussed in Section 1.4.2 that naive estimators
of (1.123)-(1.124) show a large variance, but that this effect can be mitigated by replacing b by the
modified drift

bk = b+D∇ log hk,

where (L+ kf)hk = λ(k)hk. However, the eigenvector hk is typically difficult to estimate in practice.
The goal of Chapter 5 is to propose an adaptive algorithm to estimate hk along a single realization of
the dynamics, together with λ(k), λ′(k) and I(λ′(k)). Let us mention that, in Chapter 5, we do not
only consider the empirical average Lt(f) but also empirical currents, which is useful when considering
irreversible dynamics.

Our strategy builds on previous works of Borkar and collaborators [58, 5, 28], which we adapt
to our situation and enhance with estimators arising from recent works in nonequilibrium statistical
physics [97, 98]. The idea is quite simple, and relies on the multiplicative structure of the Feynman–Kac
evolution operator. As we have seen above, for k ∈ R, the evolution operator is typically approximated
by, for any test function ϕ,16

∀x ∈ X , Qk∆tϕ(x) = e∆tkf(x) Ex [ϕ(xn+1)] , (1.125)

16In Chapter 5 we use the notation Qk
∆t instead of Qkf

∆t to alleviate notation. This should not be mistaken with the
iterates (Q∆t)

k.
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where (xn)n∈N is a numerical discretization of (Xt)t>0. From the spectral structure of the dynamics
(Chapter 2) and the numerical analysis of Chapter 4, we expect that, for any test function ϕ,

(Qk∆t)
nϕ(x) ∼

n→+∞
Cϕhk(x) enλ(k),

for some constant Cϕ > 0, up to errors vanishing when the time step ∆t goes to 0. Therefore, we
approximate the eigenvector hk by many applications of the evolution operator (this is nothing else
than the power method for matrices). However, the expectation in (1.125) cannot be computed exactly
during a simulation. To address this issue, a simple idea is to use a stochastic approximation, which
builds on the fact that

Ex [ϕ(xn+1)] ≈ ϕ(xn+1)

where xn+1 is drawn with respect to Q∆t(x, ·). We thus obtain a practical implementation of the
power method for this stochastic dynamics.

The last ingredient is to use at each step the current estimate at time n of the eigenvector hk to
bias on the fly the dynamics. The variance of the estimator is thus reduced as the dynamics evolves,
which is crucial for the algorithm to be efficient. We illustrate the algorithm on one dimensional
reversible and irreversible dynamics. This demonstrates that the method can be efficient by running
only one trajectory (compared to the genetic algorithm presented in Section 1.4.2, which requires
many replicas of a system).

1.5.2.3 Approximate controls for low temperature problems

Chapter 6 proposes a variance reduction technique for the slightly different problem of low temperature
systems. Our goal is to compute efficiently the quantity

Aε = Ex
[
e

1
ε f(XεT )

]
, (1.126)

where (Xε
t )t>0 is solution to

dXε
t = b(Xε

t ) dt+
√
εσ(Xε

t ) dBt,

and ε > 0 is a small temperature parameter. As explained in Section 1.1.3, a naive estimator based
on drawing independent trajectories has a very large variance, because the expectation (1.126) is
dominated by a few rare trajectories taking very large values.

However, the modified dynamics

dX̃ε
t = b(X̃ε

t ) dt+D(X̃ε
t )∇gε(t, X̃ε

t ) dt+
√
εσ(X̃ε

t ) dBt, (1.127)

where17
gε(t, x) = ε log Et,x

[
e

1
ε f(XεT )

]
, (1.128)

leads to a zero variance estimator. This can be seen by a computation very similar to that performed
in Section 1.4.2, see Proposition 6.2. However, from a practical point of view, this strategy is not so
useful because computing the optimal control (1.128) is harder than computing (1.126).

The idea of Chapter 6 is to use the instanton theory presented in Section 1.1.3 to build an amenable
approximation of gε, still useful in practical situations. In particular, we construct offline an approxi-
mate control, which can then be plugged in (1.127). This is an important improvement over previous
works such as [414], since we do not need to estimate (1.128) at each time and position.

The first level of our approximation is the following choice for approximating the optimal control gε
(see Section 1.1.3 for the definition of the instanton):

g(t, x) = θt · (x− φt). (1.129)

In this case ∇g(t, x) = θt, so the drift is position independent. Intuitively, θt is a momentum pushing
the process along the instanton. We show formally that the resulting modified dynamics provides a
finite variance estimator in the small temperature regime.

We next build a higher order control by setting

g(t, x) = θt · (x− φt) +
1

2

(
x− φt) ·Kt(x− φt), (1.130)

17By Et,x we mean that the dynamics is started at time t from position x.
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where (Kt)t∈[0,T ] is a time dependent matrix. However, contrarily to the control (1.129), there is no
natural expression for Kt. We show in Section 6.3.2 that, in order to reduce the variance, Kt should
solve the following Riccati equation:{

∂tKt + (∇b)TKt +Kt∇b+ (∇2b)Tθt +KT
t DKt = 0,

KT = ∇2f(φT ).

Interestingly, we formally prove in Proposition 6.3 that our construction (1.130) is actually the Taylor
expansion of the optimal drift (1.128) around the reaction path (φt)t∈[0,T ] as ε→ 0. We believe that
proving rigorously this result is an interesting mathematical challenge. We illustrate the efficiency
of the method for reducing the variance of (1.126) on low dimensional reversible and irreversible
dynamics.

1.5.3 Coulomb gases and random matrices
The subject of Part IV somehow differs from the two previous parts, since it is concerned with static
singular gas models arising in random matrix theory (as discussed in Section 1.1.4). We however draw
a connection with the dynamical systems studied before, which are used as numerical tools to sample
from the electrostatic Gibbs measure. This actually led us to studying Coulomb gases conditioned
on satisfying an equality or inequality constraint, possibly with interesting applications to random
matrix models.

1.5.3.1 Sampling Coulomb gases with Hamiltonian Monte Carlo

We have discussed in Sections 1.1.4 and 1.3.3 the model of a random gas XN = (XN,1, . . . , XN,N )
distributed according to the following Gibbs measure over (Rd)N :

PN (dx) = Z−1
N e−βN( 1

N

∑N
i=1 V (xi)+

1
N2

∑
i6=j K(xi−xj))dx. (1.131)

In particular we have seen that, under appropriate growth conditions on the confinement potential V
and regularity of the interaction kernel K, the empirical measure

µN =
1

N

N∑
i=1

δxi

concentrates under PN on a minimizer µ? of the electrostatic energy E defined by

E : µ ∈ P(Rd) 7→
∫
Rd
V (x)µ(dx) +

∫∫
Rd×Rd

K(x− y)µ(dx)µ(dy). (1.132)

Even though the minimizer µ? can often be proved to satisfy an integral equation, it is typically difficult
to numerically estimate because the support of this measure is unknown. The goal of Chapter 7 is to
design a method to compute numerically the distribution of µN for N finite but (hopefully) large.

When a random matrix model is available and identifies the random variable XN distributed
according to (1.131) with the spectrum of a random matrix, it is obviously quite efficient to draw
random matrices to sample their spectrum. However, for many physical applications, such a model
is not available [387], while the behaviour of µN as N becomes large is still of interest. Chapter 7
builds on the simple idea that (1.131) is a Gibbs measure, which can be sampled for instance with the
overdamped or underdamped Langevin dynamics presented in Section 1.1.1. Although the numerical
integration is typically made difficult by the singularity of the interaction kernel K, this problem
can be addressed efficiently with a Hamiltonian Monte Carlo algorithm [142, 153, 60]. We apply the
method to various models, from which we can recover well-known distributions and explore more
original conjectures. Interestingly, our work [82] has already been used in [76] to numerically observe
theoretical results, and it motivated the analysis performed in [316], see Remark 7.2.

1.5.3.2 Coulomb gases under constraint

Chapter 8 is a natural sequel of the previous chapter. Our motivation lies in the unlikely fluctuations
of the spectrum of random matrices. Consider for instance a random matrix M of size N distributed



1.5. Contributions 69

according to the Ginibre Ensemble described in Section 1.1.4. In this case, denoting by (XN,i)
N
i=1 the

eigenvalues of M , the trace of the matrix

Tr(M) =

N∑
i=1

XN,i

has expectation zero. However, fluctuations may translate the trace of the spectrum by some amount,
and our first aim was to numerically study this phenomenon. This can be motivated by applications,
for instance in finance [65, 66], where the fluctuations of the spectrum of Wishart matrices can be
important. Building on the analogy explained above, a certain class of random matrix models can be
associated with a singular gas distributed according to (1.131). We therefore consider the measure PN
defined in (1.131) and our goal is to sample from the empirical distribution associated with the random
variable

YN ∼ Law
(
XN

∣∣ ξN (XN ) 6 0
)
, (1.133)

where ξN : (Rd)N → R is a constraint function. In order to simplify the analysis, we assume thatK = g
is the Coulomb kernel (see the definitions in Section 1.1.4). We however believe that other singular
interactions are suitable for our analysis provided the empirical measure µN satisfies a large deviations
principle under PN .

In Chapter 7 we used a Hamiltonian Monte Carlo (HMC) algorithm to sample from the empirical
distribution associated with XN . Interestingly, in the computational physics literature, there has
been a great interest in constrained versions of the HMC algorithm, in particular in the context of
free energy computations [106, 302, 430]. Our first contribution is to use such an algorithm [303] to
sample from the empirical measure

1

N

N∑
i=1

YN,i, (1.134)

where YN is defined in (1.133). As a first case, we consider the Ginibre Ensemble with a trace
constraint, i.e. d = 2 and

∀x ∈ (R2)N , ξN (x) = c− 1

N

N∑
i=1

xi · v, (1.135)

with v ∈ R2, |v| = 1 and c ∈ R. We numerically observe that, in this situation, the uniform distribution
on the unit disk µ? is simply translated by a factor c in the direction v. This surprising result motivates
a more precise theoretical analysis of the conditioning phenomenon.

Our analysis follows two steps. We first consider the very particular case of Gaussian ensembles
(when V = |·|2 and g is a translation invariant kernel) under trace constraint. We prove in Theorem 8.1
that these Gaussian ensembles have a spectacular factorization property: under PN , the barycenter
of the cloud of points is independent from the remainder of the distribution. As a result, the linear
conditioning (1.135) only modifies the center of the distribution, without further modifications.

In order to understand more general constraints than (1.135) we resort to the large deviations
machinery, in particular the Gibbs conditioning principle presented in Section 1.2.2. We first consider
the case of linear statistics constraints, namely

∀x ∈ (Rd)N , ξN (x) =
1

N

N∑
i=1

ϕ(xi), (1.136)

where ϕ : Rd → R. The constraint (1.135) then corresponds to the special choice ϕ(x) = c− x · v. In
order to understand the limiting behaviour of (1.134) with YN defined by (1.133), we apply the Gibbs
conditioning principle (Proposition 1.13 above) with a subset of P(Rd) of the form

B =
{
ν ∈ P(Rd)

∣∣ ν(ϕ) 6 0
}
.

We are thus naturally led to the following minimization problem

inf
B
E ,

where E is defined for instance in (1.132). This turns out to be a tedious problem for two reasons:
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1. The space of probability measures is not a vector space, hence we cannot rely on standard
strategies for optimizing under constraint;

2. The electrostatic energy E is very singular. For instance the domain DE = {ν ∈ P(Rd) | E(ν) <
+∞} has empty interior for any reasonable topology on P(Rd)!

In the end, we can however show under reasonable conditions on V and ϕ that Proposition 1.13 applies
when P(X ) is endowed with the p-Wasserstein topology for p > 1, see Theorem 8.9. This shows that
the empirical measure (1.133) concentrates on the unique probability measure µϕ satisfying

{µϕ} = argmin
B

E .

Moreover, we are able to characterize µϕ with an equation similar to (1.57) by showing that there
exists α > 0 such that18

2g ∗ µϕ + V + αϕ = Cϕ,

over the support of µϕ, and where Cϕ = E(µϕ), see Remark 8.13. This shows that conditioning with
a linear statistics amounts to modifying the confinement potential V with the constraint function ϕ.
We next perform the same analysis for quadratic statistics of the form

∀x ∈ (Rd)N , ξN (x) =
1

N2

N∑
i,j=1

ψ(xi − xj),

for which we refer to Theorem 8.16.

We finally come back to our simulation algorithm to numerically estimate the distribution of the
empirical measure (1.134) for some choices of V , g, and constraint function. When the solution is
explicit, our simulations confirm the theory. They also allow to estimate µϕ when no analytical
solution is available.

18Here, α has the natural interpretation of a Lagrange multiplier for the linear constraint ν ∈ P(Rd) 7→ ν(ϕ) ∈ R.
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good textbooks on the subject such as [327, 9, 188]. Moreover, we mention that the book [26] is a great
reference on abstract optimization, which helped me a lot for solving difficult constrained optimization
problems on convex (non-vector) spaces.
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Notational comments
Although the notation will be recalled in each chapter, I make here some general comments in order
the facilitate the reader’s task, starting with latin alphabet. In all the manuscript, X stands for the
state space of the system (in general a subset of Rd, except in Chapter 2 where it denotes a Polish
space), while Y denotes the state in which a LDP takes place (which may vary quite a lot as seen
in Section 1.3). The letter X is used for random variables and stochastic processes, while x (and
small capital letters like y, z) typically denotes a point in X . The letter d stands for the dimension,
but is also used for infinitesimal elements (like dx for the Lebesgue measure on Rd). We believe that
this does not lead to any confusion. We generally write d for some distance on a metric space (for
instance a Wasserstein distance). We denote by P(X ) the set of probability measures on X , and
generally M(X ) for the set of measures on X (but M is sometimes used to denote a submanifold).
The letterM may be a constant, or a local martingale when indexed by time asMt, just like Mt. The
letters W,W are always used for Lyapunov functions, L is the generator of an SDE with drift b and
diffusion coefficient σ (although σ is used to denote the spectrum of an operator at a few places); D
denotes the domain of an operator L (or DL to make the operator precise). Note that b sometimes
denotes a real number, like a or c, but the notation is in general kept for the drift of a diffusion.

Capital letters A and B generally denote sets or matrices, C a positive constant, D the definite
diffusion matrix σσT of an elliptic diffusion (we write S when it is symmetric but not necessarily
definite, like in Chapter 3). Note that we also use the letter DI to denote the domain of a functional I
in the sense of convex analysis (i.e. the set of points where the functional is finite), while we use
C0, Cb, Ck, C∞, C∞c to denote respectively the space of continuous, continuous bounded, k-times
differentiable with continuous derivatives, infinitely differentiable and infinitely differentiable with
compact support functions. In general E is an abstract Banach space, with norm ‖ · ‖E , and we use
the notation B(E) for the space of linear operators on E. However, note that B is also used to define
the space of bounded functions B∞(X ) and its weighted variants. The capital letter L denotes an
empirical measure, except for the low temperature systems where it is sometimes used for the action
functional, and H denotes a Hamiltonian. Note that the letter L is also used for the Lebesgue Lp(dx)
spaces, while H is used for standard Sobolev spaces such as H1(µ) (while H is reserved for the
particular construction of Sobolev space in Chapter 3). The letters P and Q are generally used to
denote continuous time and discrete time evolution operators respectively, while K denotes a compact
set in Part II, a time dependent matrix in Chapter 6 and a kernel in Part IV.

Indices are generally indicated by i, j, k, `,m, n, while p, q denote momenta and positions in the
Langevin equation (for instance in Chapter 3) or powers for the Wasserstein distance (in particular in
Part IV). Finally, f and g denote observable functions, while the notation h is reserved for a principal
eigenvector of an operator (associated with the largest eigenvalue). The letter T is used for both a
final time and matrix transposition (sometimes denoted by T), while s, t generally denote positive
times.

Concerning greek letters, ϕ and φ often denote test functions, but they also used for paths in X .
In general, we keep the notation ψ for the solution to a PDE (generally a Poisson problem), while Φ is
a (Feynman–Kac) semigroup, and Ψ, κ are Lyapunov potentials like in Chapter 3. We always use the
letter λ (or Λ) for the principal eigenvalue (or cumulant function or free energy) of a Feynman–Kac
operator, while α denotes an arbitrary real or complex variable, β is generally an inverse temperature, γ
a friction and δ, ε small real numbers. Probability measures are always denoted by ν, µ, π and η
(although η may be a small constant at a few places). The notation Π is used for projectors over a
subspace or submanifold. The capital letter Γ usually refers to a subset of P(X ).

Finally, we recall that we generally write · for a scalar product and : for a double contraction (i.e.
A : B = Tr(ATB) for two matrices A, B). The symbol ⊗ is used for tensorization at a few places.
The standard norm on Rd is written | · |, but this notation is also used for the Lebesgue measure of
sets with no ambiguity. The symbol ∆ is the Laplacian operator, ∇ is the gradient and ∇· is the
divergence operator.
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CHAPTER 2

LONG TIME ANALYSIS OF FEYNMAN–KAC DYNAMICS

The material for this chapter has been released in [181] and is currently under review.
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Abstract. Feynman–Kac semigroups appear in various areas of mathematics: non-linear filtering,
large deviations theory, spectral analysis of Schrödinger operators among others. Their long time
behavior provides important information, for example in terms of ground state energy of Schrödinger
operators, or scaled cumulant generating function in large deviations theory (see Section 1.3.1 in
the Introduction). In this chapter, we propose a simple and natural extension of the stability of
Markov chains for these non-linear evolutions. As other classical ergodicity results, it relies on two
assumptions: a Lyapunov condition that induces some compactness, and a minorization condition
ensuring some mixing. We show that these conditions are satisfied in a variety of situations. We
also use our technique to provide uniform in the time step convergence estimates for discretizations
of stochastic differential equations. As we will see in Chapter 3, the tools developped below are useful
to obtain interesting large deviations results.
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2.1 Motivation
Feynman–Kac semigroups have a long history in physics and mathematics. One of their traditional
applications as a probabilistic representation of Schrödinger semigroups [262] is the computation of
ground state energies through Diffusion Monte Carlo algorithms [213, 10, 77, 190]. It has then become
a significant tool in non-linear filtering and genealogical models [115, 117, 113]. We have also motivated
in the Introduction (Section 1.3.1) its relation with large deviations theory [133, 275, 202, 427] in the
context of empirical measures of diffusions. In all these contexts, the dynamics is evolved and its
paths are weighted depending on some cost function. This function is typically a potential energy, a
likelihood, or a function whose fluctuations are of interest.

As for Markov chains, the long time behavior of such dynamics is important, in particular to define
the cumulant function in the context of large deviations. However, the long-time analysis is made
difficult by the non-linear character of the evolution, so the methods used for the stability of Markov
chains [330, 219] cannot be straightforwardly adapted in this context. A series of papers [114, 116, 113]
rely on the powerful Dobrushin ergodic coefficient [127, 128]. Although this tool enables to deal
with the nonlinearity and to consider time-inhomogeneous processes, the conditions imposed on the
dynamics are not realistic for unbounded domains.

The purpose of this chapter is to propose a new scheme of proof for the ergodicity of Feynman–
Kac dynamics, suitable for cases where the state space is unbounded. It is based on the principal
eigenvalue problem associated to a weighted evolution operator. It then relies on studying a h-
transformed version of the dynamics [136] (also called Doob transform), where h is the eigenvector
associated to the eigenproblem. This turns the non-linear dynamics into a linear Markov evolution,
which can then be studied with standard techniques [330, 219]. However, the spectral properties of
the generator fall out of the typical regime of self-adjoint operators, since the dynamics is in general
non-reversible. A striking fact of our results is that, under Lyapunov and minorization conditions
similar to those of [219] stated for non-probabilistic kernels, we perform a non self-adjoint spectral
analysis that recasts the Feynman–Kac problem into the Markov chain framework studied in [219].

The works of Kontoyannis and Meyn [274, 275] provide elements of answer concerning the spectral
properties of the evolution operator, and rely on a nonlinear Lyapunov condition and a regularity
in terms of hitting times. If the latter Lyapunov condition is natural in terms of optimal stochastic
control [186], we propose instead proofs based on linear conditions. Our generalized linear Lyapunov
condition is inspired by [362], and comes together with a minorization condition and a local strong
Feller assumption. We will see that these conditions apply to a variety of situations, with natural
interpretations. From a broader perspective, it appears as a natural extension of previous works on the
stability of Markov chains [219] for evolution kernels that do not conserve probability. To that extent,
our work resonates with recent works on Quasi-Stationary Distributions (QSD) [205, 90, 89, 23].
However, our scope and assumptions being different, we leave the comparison for future studies. Let
us also mention that our framework applies for both discrete and continuous time processes. This is
interesting since one motivation for this work is to understand the behavior of time discretizations of
continuous Feynman–Kac dynamics, see Chapter 4 below.

Let us outline our main results in an informal way. The quantities we are interested in typically
correspond to Markov chains (xk)k>0 over a state space X , whose trajectories are weighted by a
measurable function f : X → R. The associated Feynman–Kac semigroups is of the form

Φk(ν)(ϕ) =
E
[
ϕ(xk) e

∑k−1
i=0 f(xi)

∣∣∣ x0 ∼ ν
]

E
[
e
∑k−1
i=0 f(xi)

∣∣∣ x0 ∼ ν
] , (2.1)

where ν is an initial probability distribution, and ϕ is a test function. We show that, for more general
semigroups and under some assumptions on (xk)k>0 and f , there exists a measure µf such that for
any initial probability measure ν and any ϕ belonging to a particular class of test functions,

Φk(ν)(ϕ) −−−−−→
k→+∞

µf (ϕ), (2.2)

at an exponential rate. As a corollary of this result, we show that the principal eigenvalue Λ of the
generator of the dynamics (Φk)k>1 can be obtained as the following limit, for any suitable functions f
and independently of the initial probability measure ν, it holds

log(Λ) = lim
k→+∞

1

k
logE

[
e
∑k−1
i=0 f(xi)

∣∣∣ x0 ∼ ν
]
,
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which is the scaled cumulant generating function in large deviations theory [119, 275], as explained in
Section 1.3.1. Another natural situation corresponds to continuous semigroups of the form

Φt(ν)(ϕ) =
E
[
ϕ(Xt) e

∫ t
0
f(Xs) ds

∣∣∣ x0 ∼ ν
]

E
[
e
∫ t
0
f(Xs) ds

∣∣∣ x0 ∼ ν
] , (2.3)

where (Xt)t>0 is typically a diffusion process. Note that we use the same notation for the discrete
and continuous processes and we believe there is no ambiguity here (but in Chapter 4 we explicitely
write Φ∆t,k for discretizations of continuous Feynman–Kac dynamics). Similar results are then derived
for this continuous dynamics. We will see that ergodic properties such as (2.2) are proved under natural
extensions of Lyapunov and minorization conditions, which should be reminiscent of the corresponding
theory for Markov chains [219, 362], with additional regularity conditions. We emphasize again that
the convergence results obtained here are useful to obtain large deviations principle in the next chapter.

The chapter is organized as follows. In Section 2.2, we present our main results on the stability
of Feynman–Kac semigroups. Section 2.2.2 is devoted to discrete time results, while Section 2.2.3 is
concerned with the continuous time case. Section 2.3 presents a number of natural applications of
the method. In particular, Section 2.3.3 provides uniform in the time step convergence estimates.
Section 2.4 discusses some links with related works and possible further directions.

2.2 Results

2.2.1 Framework
In this section, we present our main convergence results for generalizations of the dynamics (2.1). The
state space X is assumed to be a Polish space, and for a measurable set A ⊂ X , we denote by Ac
its complement, and 1A its indicator function. For a Banach space E, we denote by B(E) the space
of bounded linear operators over E, with associated norm ‖T‖B(E) = sup {‖Tu‖E , ‖u‖E 6 1}. The
Banach space of continuous functions is called C0(X ), and the Banach space of measurable functions ϕ
such that

‖ϕ‖B∞ = sup
x∈X

|ϕ(x)| < +∞

is referred to as B∞(X ). Given a measure ν over X with finite mass, we use the notation ν(ϕ) =∫
X ϕ(x)ν(dx) for ϕ ∈ B∞(X ). The spaces of positive measures and probability measures over X
are denoted respectively by M(X ) and P(X ). When we consider Markov chains (xk)k∈N over X ,
we write Eν for the expectation over all the realizations of the Markov chain with initial condition
distributed according to the probability measure ν. Section 2.5.1 is devoted to reminders on the
ergodicity of Markov chains extracted from [219], while Section 2.5.2 recalls some useful definitions
and theorems used in the proofs of the results of this section.

We consider general kernel operators Qf over X , i.e. such that for any x ∈ X , Qf (x, ·) is a
positive measure with finite mass (i.e. Q1(x) < +∞), and for any measurable set A ⊂ X , Qf (·, A) is
a measurable function. Such a kernel is referred to as Markov (also probabilistic or conserving) when
Qf1 = 1. The notation Qf instead of Q emphasizes that in general Qf1 6= 1 depends on a measurable
function f : X → R. For ϕ ∈ B∞(X ), we denote by Qfϕ =

∫
X ϕ(y)Qf (·, dy) the action of Qf on

test functions, and by νQf =
∫
X ν(dx)Qf (x, ·) its action on finite measures ν. We call Feynman–Kac

semigroups the dynamics (Φk)k>1 defined as follows:

∀ k > 1, ∀ ν ∈ P(X ), ∀ϕ ∈ B∞(X ), Φk(ν)(ϕ) =
ν
(
(Qf )kϕ

)
ν
(
(Qf )k1

) . (2.4)

Note that Φk = Φ ◦ . . . ◦ Φ, where Φ is the one step evolution operator Φ : P(X )→ P(X ):

∀ ν ∈ P(X ), ∀ϕ ∈ B∞(X ), Φ(ν)(ϕ) =
ν
(
Qfϕ

)
ν
(
Qf1

) , (2.5)

which is well-defined as soon as ν(Qf1) > 0 for any ν ∈ P(X ). Lemma 2.4 below proves that (2.5) is
indeed well-defined under the assumptions presented in Section 2.2.2.

Although Qf is not probabilistic, the normalizing factor in (2.5) ensures that Φ evolves a positive
measure of finite mass into a probability measure. An important motivation for studying the general
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dynamics (2.5) is that (2.1) can be written in the form (2.4) with Qf = efQ, where Q is the transition
operator of the Markov chain (xk)k∈N. In this typical setting, Qf1 = ef . Even when Qf is not defined
in this way (see for instance the continuous time situation (2.30) considered in Section 2.2.3), we keep
the notation to emphasize that Qf typically corresponds to a Markov dynamics whose trajectories are
weighted by a function f .

2.2.2 Results in discrete time
We now introduce the assumptions ensuring the well-posedness and ergodicity of the semigroup (2.4),
which should be reminiscent of the ones used in [219, 362] for showing the ergodicity of Markov chains.
We start with discrete systems, before considering the continuous couterpart in Section 2.2.3. The
first step of the proof is the existence of a principal eigenvector h for Qf , as shown in Lemma 2.5. This
eigenvector is used in Lemma 2.6 to study a h-transformed version of Qf , which leads to our main
result, Theorem 2.7. Note that, in practice, we have in mind the situation X = Rd for d ∈ N∗, but
discrete spaces like X = Zd can also be considered, in which case the framework may be simplified.

The first assumption is that a generalized Lyapunov condition holds. We will see in Section 2.3
that it is satisfied for a large class of processes. In all this section, we consider an increasing sequence
of compact sets (Kn)n>1 such that, for any compact K ⊂ X , there exists m > 1 for which K ⊂ Km.

Assumption 2.1 (Lyapunov condition). There exist a function W : X → [1,+∞) bounded on
compact sets, and positive sequences (γn)n>1, (bn)n>1 with γn → 0 as n → +∞ such that, for
all n > 1,

QfW 6 γnW + bn1Kn . (2.6)

Let us mention that, in many situations, the function W has compact level sets, so that a natural
choice of compact sets is Kn = {x ∈ X |W (x) 6 n}. When a Lyapunov function W exists, it is
natural [219] to consider the following functional space

B∞W (X ) =
{
ϕ measurable,

∥∥∥ ϕ
W

∥∥∥
B∞

< +∞
}
, (2.7)

as well as the space of measures integrating W , namely

PW (X ) =
{
ν ∈ P(X ) | ν(W ) < +∞

}
.

In particular, Assumption 2.1 implies that Qf is a bounded operator on B∞W (X ), since one easily
shows that

∀n > 1, ‖Qf‖B(B∞W ) 6 γn + bn.

We next assume that the following minorization condition holds.

Assumption 2.2 (Minorization and irreducibility). For any n > 1, there exist ηn ∈ P(X ) and αn > 0
such that

inf
x∈Kn

Qf (x, ·) > αnηn(·). (2.8)

In addition, for any n0 > 1 and any ϕ ∈ B∞W (X ) with ϕ > 0,

ηn(ϕ) = 0, ∀n > n0 =⇒
(
Qfϕ

)
(x) = 0, ∀x ∈ X . (2.9)

Note that (2.9) expresses some form of irreducibility with respect to the minorizing measures. It
can be reformulated in the following way: for any n0 > 1 and any x ∈ X , Qf (x, ·) is absolutely
continuous with respect to the measure ∑

n>n0

2−nηn.

The typical situation for X = Rd is to choose ηn(dx) = 1Kn(x)dx/|Kn|, where |Kn| denotes the
Lebesgue measure of Kn. We also mention that, although we will consider the previous minorization
measures ηn in our examples in Section 2.3, the first part of Assumption 2.2 can be obtained using
irreducibility together with a strong Feller property, see [216], or through the Stroock–Varadhan
support theorem [395] with some regularity property, see the discussion in [362]. In our context, we
also need some local regularity for the operator Qf .

Assumption 2.3 (Local regularity). The operator Qf is strong Feller on the compact sets Kn, i.e.
for any n > 1 and any measurable function ϕ bounded on Kn, Qf (ϕ1Kn) is continuous over Kn.
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From these assumptions we first state the following preliminary lemma, whose proof can be found
in Section 2.5.3.

Lemma 2.4. Let Qf satisfy Assumptions 2.1 and 2.2. Then, for any ν ∈ PW (X ), one has

0 < ν(Qf1) < +∞. (2.10)

Moreover, for any n > 1, it holds 1 6 ηn(W ) < +∞, and there exist infinitely many indices n̄ > 1
such that

ηn̄(Kn̄) > 0. (2.11)

The lower bound in (2.10) implies in particular that the dynamics (2.4) is well-defined. The
inequality (2.11) means that, for infinitely many minorization conditions, some mass of the minorizing
measure remains in the associated compact set. It is used in the proof of Lemma 2.5 to show that Qf
has a positive spectral radius. Since (2.11) is satisfied for infinitely many indices, we could consider
that it holds for any n > 0, upon extracting a subsequence and, in the situations considered in
Section 2.3, we can actually check that ηn(Kn) > 0 for all n > 1.

We are now in position to state some spectral properties of the operator Qf , which are a key
ingredient for our analysis. Let us recall that the spectral radius of Qf on B∞W (X ), denoted by
Λ = Λ(Qf ), is given by the Gelfand formula [345]:

Λ = lim
k→+∞

∥∥(Qf )k
∥∥ 1
k

B(B∞W )
, (2.12)

and that the essential spectral radius of Qf , denoted by Θ(Qf ), reads (see Section 2.5.2):

Θ(Qf ) = lim
k→+∞

(
inf
{∥∥(Qf )k − T

∥∥
B(B∞W )

, T compact
}) 1

k

.

Lemma 2.5. Under Assumptions 2.1, 2.2 and 2.3, the operator Qf considered on B∞W (X ) satisfies
Θ(Qf ) = 0, admits its spectral radius Λ > 0 as a largest eigenvalue (in modulus), and has an associated
eigenfunction h ∈ B∞W (X ), normalized so that ‖h‖B∞W = 1, and which satisfies

∀x ∈ X , 0 < h(x) < +∞. (2.13)

In particular, 0 < ηn(h) < +∞ for all n > 1.

We prove Lemma 2.5 in Section 2.5.4 by using arguments inspired by [362, Theorem 8.9] to show
that the essential spectral radius of Qf is zero, and then relying on the spectral theory of positive
operators [112]. Some useful elements of operator theory are reminded in Section 2.5.2 for the reader’s
convenience. Note that the eigenspace associated to Λ is a priori not of dimension one. Our result is
close to those obtained in [275], and the control of the essential spectral radius under Lyapunov and
topological irreducibility conditions has already been studied in [428, 214]. However, our proof uses
different techniques based on different assumptions.

Once such a principal eigenvector h is available, the geometric ergodicity of the Feynman–Kac
dynamics (2.4) is derived from the one of a h-transformed kernel, as made clear in the proof of
Theorem 2.7 below. This is the purpose of the next lemma whose proof is postponed to Section 2.5.5.

Lemma 2.6. Suppose that Assumptions 2.1, 2.2 and 2.3 hold, and consider an eigenvector h asso-
ciated with Λ as given by Lemma 2.5. Since h > 0 we can define the corresponding h-transformed
operator Qh as

Qhφ = Λ−1h−1Qf (hφ). (2.14)

Then Qh is a Markov operator with Lyapunov function Wh−1 : X → [1,+∞). Moreover, there exist
a unique µh ∈ P(X ), which satisfies µh(Wh−1) < +∞, and constants c > 0, ᾱ ∈ (0, 1) such that, for
any φ ∈ B∞Wh−1(X ) and any k > 1,∥∥Qkhφ− µh(φ)

∥∥
B∞
Wh−1

6 cᾱk‖φ− µh(φ)‖B∞
Wh−1

. (2.15)

Although this is not obvious at first glance, the operator Qh is in fact independent of the choice
of h in Lemma 2.5, and so is the invariant measure µh. Actually, Lemma 2.6 allows to show that the
eigenspace associated with h has geometric dimension one, i.e. Ker

(
Qf − Λ Id

)
= Span{h}. Indeed,
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if h̃ ∈ B∞W (X ) is another eigenvector associated with Λ (which may not be of constant sign), it holds,
since h(x) > 0 for all x ∈ X by (2.13):

Qh

(
h̃

h

)
= Λ−1h−1Qf h̃ =

h̃

h
∈ B∞Wh−1(X ).

From (2.15), we obtain
h̃

h
= µh

(
h̃

h

)
,

hence h̃ is proportional to h. It may be possible to directly obtain this uniqueness result from
stronger Krein–Rutman theorems, like [112, Theorem 19.3], using the irreducibility condition (2.9)
in Assumption 2.2. Under our assumptions, it is also possible to show that there cannot be another
positive eigenvector (see Chapter 3, in particular the proof of Lemma 3.32).

We are now in position to state our main theorem.

Theorem 2.7. Consider a kernel operator Qf satisfying Assumptions 2.1, 2.2 and 2.3 and the asso-
ciated dynamics (2.4) with one step evolution operator Φ : P(X ) → P(X ). Then Φ admits a unique
fixed point µf ∈ P(X ), that is a probability measure such that

Φ(µf ) = µf , (2.16)

and this measure satisfies µf (W ) < +∞. Moreover, there exists ᾱ ∈ (0, 1) such that, for any ν ∈
PW (X ), there is Cν > 0 for which

∀ϕ ∈ B∞W (X ), ∀ k > 1,
∣∣Φk(ν)(ϕ)− µf (ϕ)

∣∣ 6 Cν ᾱ
k‖ϕ‖B∞W . (2.17)

We call µf the invariant measure of Qf , in analogy with Markov chains. However, in the situation
of the non linear dynamics described by the evolution operator Φ, the invariant measure satisfies the
non linear stationary equation (2.16). This remark is central for the numerical analysis performed in
Chapter 4. Note that Theorem 2.7 also implies the convergence of Φk(ν) towards µf in the weighted
total variation distance [219]) defined, for µ, ν ∈ P(X ) with µ(W ) < +∞, ν(W ) < +∞, by

ρW (µ, ν) = sup
‖ϕ‖B∞

W
61

∫
X
ϕ(x) (µ− ν)(dx). (2.18)

We now present the proof of Theorem 2.7.

Proof. The key idea of the proof is to reformulate the dynamics (2.4) using the h-transformed operator
Qh = Λ−1h−1Qfh of Lemma 2.6. Using the notation of Lemmas 2.5 and 2.6, we rewrite (2.4) as

Φk(ν)(ϕ) =
ν
(
(Qf )kϕ

)
Λ−k

ν
(
(Qf )k1

)
Λ−k

=
ν
(
h
(
Λ−1h−1Qfh

)k
(h−1ϕ)

)
ν
(
h
(
Λ−1h−1Qfh

)k
h−1

) =
ν
(
h(Qh)k(h−1ϕ)

)
ν
(
h(Qh)kh−1

) .

The dynamics (2.4) is therefore reformulated as the ratio of long time expectations of the Markov
chains induced by Qh, applied to the functions h−1ϕ and h−1. It is then possible to resort to the
convergence results given by Lemma 2.6.

We first construct a probability measure µf for which (2.17) is satisfied, namely

µf (ϕ) =
µh
(
h−1ϕ

)
µh (h−1)

, (2.19)

where µh is the probability measure introduced in Lemma 2.6. Note that µf is well-defined for
ϕ ∈ B∞W (X ). Indeed, for ϕ ∈ B∞W (X ), it holds h−1ϕ ∈ B∞Wh−1(X ). Second, we show that

µh(h−1) > 0. (2.20)

Indeed, since ‖h‖B∞W = 1, it holds h−1 > W−1, and since W is upper bounded on any compact
set, W−1 is lower bounded by a positive constant on any compact set. As µh ∈ P(X ), we can use



2.2. Results 81

Lemma 2.31 in Section 2.5.2 to conclude that µh(h−1) > 0. Moreover, µf does not depend on the
choice of normalization for h. Finally, µf (W ) < +∞ since µh(Wh−1) < +∞.

From Lemma 2.6, for any ϕ ∈ B∞W (X ), it holds Qkh(h−1ϕ) = µh(h−1ϕ) + ak and Qkh(h−1) =
µh(h−1)+bk with ‖ak‖B∞

Wh−1
6 cᾱk‖h−1ϕ−µh(h−1ϕ)‖B∞

Wh−1
and ‖bk‖B∞

Wh−1
6 cᾱk‖h−1−µh(h−1)‖B∞

Wh−1
.

Since ϕ ∈ B∞W (X ), we have in particular (using also ‖h‖B∞W = 1),∥∥h−1ϕ− µh(h−1ϕ)
∥∥
B∞
Wh−1

6 ‖h−1ϕ‖B∞
Wh−1

+ µh(h−1|ϕ|)‖h‖B∞W 6
(
1 + µh(Wh−1)

)
‖ϕ‖B∞W < +∞.

Since µh(Wh−1) < +∞, we can set c′ = 1 + µh(Wh−1), so that

‖ak‖B∞
Wh−1

6 c′ᾱk‖ϕ‖B∞W . (2.21)

A similar estimate holds for the sequence (bk)k>1 by taking ϕ ≡ 1. This leads to, for any ϕ ∈ B∞W (X ),

∣∣Φk(ν)(ϕ)− µf (ϕ)
∣∣ =

∣∣∣∣∣ν
(
h(Qh)k(h−1ϕ)

)
ν
(
h(Qh)kh−1

) − µf (ϕ)

∣∣∣∣∣ =

∣∣∣∣∣ν
(
h(µh(h−1ϕ) + ak)

)
ν
(
h(µh(h−1) + bk)

) − µf (ϕ)

∣∣∣∣∣
=

∣∣∣∣ν(h)µh(h−1ϕ) + ν(hak)

ν(h)µh(h−1) + ν(hbk)
− µf (ϕ)

∣∣∣∣ =

∣∣∣∣µf (ϕ) + ch,νν(hak)

1 + ch,νν(hbk)
− µf (ϕ)

∣∣∣∣ ,
where we used the definition (2.19) and introduced

ch,ν =
1

ν(h)µh(h−1)
. (2.22)

It holds 0 < ch,ν < +∞ because:

• Lemma 2.5 shows that for any ν ∈ PW (X ), it holds 0 < ν(h) < +∞;

• we know that µh(h−1) < +∞ from Lemma 2.6;

• µh(h−1) > 0 by (2.20).

Now, since |bk| 6 ‖bk‖B∞
Wh−1

Wh−1 and (2.21) holds for bk with ϕ ≡ 1, we have

1 + ch,νν(hbk) > 1− ch,νν(h|bk|) > 1− ch,νν(W )‖bk‖B∞
Wh−1

> 1− ᾱkc′ch,νν(W ).

Therefore, the choice

k > −
log
(
2c′ch,νν(W )

)
log(ᾱ)

ensures that
1 + ch,νν(hbk) >

1

2
.

As a result, for k large enough, using |ak| 6 ‖ak‖B∞
Wh−1

Wh−1 and recalling (2.21),

∣∣Φk(ν)(ϕ)− µf (ϕ)
∣∣ 6 ch,ν

(
ν(h|ak|) + µf (|ϕ|)ν(h|bk|)

)
1 + ch,νν(hbk)

6 Cν‖ϕ‖B∞W ᾱ
k, (2.23)

with

Cν = 2ch,νc
′ν(W )

(
1 + µf (W )

)
=

2

µh(h−1)

(
1 + µh(Wh−1)

)(
1 + µf (W )

)ν(W )

ν(h)
. (2.24)

We therefore obtain (2.17) from (2.23) with the constant Cν defined in (2.24). Note that Cν depends
on the initial measure ν only through the ratio ν(W )/ν(h) > ‖h‖−1

B∞W
.

Taking the supremum over ϕ ∈ B∞W (X ) such that ‖ϕ‖B∞W 6 1, (2.23) rewrites, with (2.18):

ρW
(
Φk(ν), µf

)
6 Cν ᾱ

k.

Choosing ν = Φ(µf ) and using the semigroup property we obtain

ρW
(
Φ(Φk(µf )), µf

)
6 Cµf ᾱ

k.
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Taking the limit k → +∞ shows that Φ(µf ) = µf , so µf is a fixed point of Φ.
We have shown the existence of an invariant measure of the form (2.19), which is a fixed point of Φ

and integrates W . We now turn to uniqueness, which follows by a standard fixed point argument.
Assume that we have two probability measures ν1 and ν2 in PW (X ) satisfying (2.17), which are
therefore fixed points of Φ. Then, there exists ᾱ ∈ (0, 1) such that, for any measure ν ∈ P(X ) with
ν(W ) < +∞, there is a constant Cν for which

∀ k > 1, ρW
(
Φk(ν), ν1

)
6 Cν ᾱ

k.

Choosing ν = ν2 and using the invariance by Φ leads to

ρW (ν2, ν1) 6 Cν2
ᾱk.

Taking the limit k → +∞ shows that ν1 = ν2, so the invariant measure is unique.

Theorem 2.7 also leads to alternative representations of the spectral radius Λ as a scaled cumulant
generating function [275] and as the average rate of creation of probability of the dynamics. This is
the purpose of the following result.

Theorem 2.8. Let Qf be as in Theorem 2.7 and define λ = log(Λ). Then, for any ν ∈ PW (X ),

λ = lim
k→+∞

1

k
log
(
ν
[
(Qf )k1

])
. (2.25)

Moreover,
Λ = µf

(
Qf1

)
. (2.26)

Proof. Considering the operator Qh introduced in Lemma 2.6, we have for any ν ∈ PW (X ),

ν
[
(Qf )k1

]
= ν

(
ΛkhQkhh

−1
)
.

Taking the logarithm and dividing by k leads to

1

k
log ν

[
(Qf )k1

]
= log(Λ) +

1

k
log ν

(
hQkhh

−1
)
.

Lemma 2.6 shows that ν
(
hQkhh

−1
)
converges to c−1

h,ν , where 0 < ch,ν < +∞ is defined in (2.22).
Taking the limit k → +∞ then leads to (3.25).

In order to prove (2.26), we use that µf is a fixed point of Φ, i.e. for any ϕ ∈ B∞W (X ),

µf (ϕ) =
µf (Qfϕ)

µf (Qf1)
.

Taking ϕ = h ∈ B∞W (X ) and using Qfh = Λh we obtain

µf (h) =
µf (Λh)

µf (Qf1)
,

so that Λ = µf (Qf1), as claimed.

Although stated in an abstract setting, Theorem 2.8 has a natural interpretation. If Qf = efQ
where Q is the evolution operator of a Markov chain (xk)k∈N with x0 ∼ ν, then (3.25) rewrites

λ = lim
k→+∞

1

k
log Eν

[
e
∑k−1
i=0 f(xi)

]
,

which is a standard formula for the scaled cumulant generating function, as discussed in Section 1.3.1
(we will use this type of representation formula in Chapter 3). We remind that Eν stands for the
expectation with respect to all trajectories with initial condition distributed according to ν. On the
other hand, (2.26) means that this SCGF can be expressed as the average rate of creation of probability
of the process under the invariant measure. In particular, if Qf = Q is the evolution operator of a
Markov chain, Λ = 1 since there is no creation of probability. Formula (2.26) does not seem typical in
the large deviations literature, but we use it in Chapter 4 to quantify the bias arising from discretizing
a continuous Feynman–Kac dynamics.



2.2. Results 83

Remark 2.9. It should be clear from the proofs that Assumptions 1 to 3 can be adapted or re-
laxed depending on the context. In particular, we typically consider situations in which the state
space X is (a subset of) Rd, and the transition kernel Qf has a transition density pf (x, y) > 0
jointly continuous in x, y. In this case, Assumptions 2.2 and 2.3 are immediately fulfilled by setting
ηn(dx) = 1Kn(x)dx/|Kn| for each compact Kn, as we will see in Section 2.2.3. We will however use
yet a slightly different setting in Chapter 3 more natural for continuous time processes. In this setting,
the assumptions will appear more clearly as conditions on the coefficients of the diffusion.

Similarly, the assumption that W > 1 can be weakened into: W is lower bounded by a positive
constant on each compact set.

Another remark of interest is that the regularity condition (Assumption 2.3) is not satisfied by
Metropolis type kernels [369], which are therefore not covered by our analysis. In Chapter 4, we show
a different proof based on [114] which does not require regularization, but is limited to bounded state
space.

Let us mention that, in Assumption 2.1, it seems sufficient to suppose that γn < Λ for some n > 1
in order to obtain that Θ(Qf ) < Λ(Qf ) in the proof of Lemma 2.5. This is sufficient to use the Krein–
Rutman theorem, and to obtain a Lyapunov condition for Qh (see Remark 2.34 in Section 2.5.5).

It is also possible to keep track of the constants in the proofs of Lemma 2.6 and Theorem 2.7, like
in [219], and observe that they depend on the assumptions through the coefficients γn, bn, αn, the
measures ηn and the function W . More precisely, the constants deteriorate when γn, αn and ηn(h)
become small, and bn and supKnW get large. Therefore, although the term ηn(h) cannot be controlled
more explicitly under our assumptions, it seems possible to optimize the final constants in Lemma 2.6
(and thus in Theorem 2.7) with respect to the choice of n.

2.2.3 Results in continuous time

Our analysis carries over to time continuous processes, in particular diffusions. In this case, it is
possible to rephrase Assumption 2.1 in terms of the associated infinitesimal generator. Note that we
do not consider the most realistic setting here and we use more general assumptions in Chapter 3. In
order to avoid the technical difficulty of dealing with an infinite dimensional process, we consider a
diffusion (Xt)t>0 over X = Rd for some integer d > 1, satisfying the SDE

dXt = b(Xt) dt+ σ(Xt) dBt, (2.27)

where b : X → Rd, σ : X → Rd×m and (Bt)t>0 is an m-dimensional Brownian motion (for some
integer m > 1). The associated infinitesimal generator is given by

L = b · ∇+
σσT

2
: ∇2 =

d∑
i=1

bi∂xi +
1

2

d∑
i,j=1

(σσT )ij∂xi∂xj . (2.28)

We also consider a measurable function f : X → R and the corresponding continuous Feynman–Kac
semigroup that reads, for all t > 0 and all initial distribution ν ∈ P(X ),

Φt(ν)(ϕ) =
Eν
[
ϕ(Xt) e

∫ t
0
f(Xs) ds

]
Eν
[
e
∫ t
0
f(Xs) ds

] . (2.29)

We use the same notation for the continuous and discrete semigroups since we believe this does not
lead to any confusion at this stage (we mention again that in Section 2.3.3 and Chapter 4 below we
write more explicitely Φ∆t,n for discretizations of Feynman–Kac dynamics with time step ∆t).

In this setting, we define the operator(
P ft ϕ

)
(x) = Ex

[
ϕ(Xt) e

∫ t
0
f(Xs) ds

]
,

so that (2.29) is the natural continuous counterpart of (2.4) where, for a fixed time t > 0, we formally
have

Qf = P ft = et(L+f). (2.30)

As a result, (Φt)t>0 satisfies a semigroup property like the discrete time evolution through (2.5). In
this case, we can show that the generator of the weighted evolution operator P ft is L + f by the
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Feynman–Kac formula [361, Chapter VIII, Proposition 3.10]. As for the discrete semigroup (2.4), we
are interested in the long time behavior of quantities such as (2.29). When b = 0 and σ =

√
2 Id, decay

estimates of (2.29) in L2(X ) towards a well-defined limit can be obtained by considering the spectral
properties of the Schrödinger type operator −∆ − f , as in [377]. When σ =

√
2 Id and b = −∇U is

the gradient of a potential energy, the operator L+ f is self-adjoint in L2(e−U ) (see for instance [21]),
and the unitary transform ϕ 7→ ϕ e−

U
2 leads to an analysis similar to the Schrödinger case. More

precisely, L+ f is unitarily equivalent to

∆− 1

4
|∇U |2 +

1

2
∆U + f,

which can be studied by the theory of symmetric operators [235]. In both cases, the operator L+ f is
self-adjoint on a suitable Hilbert space, so that the Rayleigh formula can be used. It is also possible
to study the spectral properties of P ft when b 6= −∇U and X is bounded through the Krein–Rutman
theorem (see for instance Proposition 4.1 in Chapter 4 below). To the best of our knowledge, the case
b 6= −∇U in an unbounded space X remains open in general.

Our analysis provides a practical criterion to study the long time behavior of (2.29) through the
Lyapunov function techniques developed in Section 2.2. The continuous counterpart of Assumption 2.1
can be stated in the following simple form.

Assumption 2.10. Let (Xt)t>0 be the dynamics (2.27) with generator (2.28). There exists a C2(X )
function W : X → [1,+∞) going to infinity at infinity such that

− (L+ f)W

W
−−−−−→
|x|→+∞

+∞. (2.31)

In addition, there exist a C2(X ) function W : X → [1,+∞) and a constant c > 0 such that

ε(x) =
W (x)

W (x)
−−−−−→
|x|→+∞

0,
(L+ f)W

W
6 c. (2.32)

Condition (2.31) can be checked by direct computations, as shown on some examples in Sec-
tion 2.3.2. Finding a function W such that (2.32) holds is generally just a formality, since we build
Lyapunov functions in an exponential form. More precisely, we consider in generalW (x) = eaU(x) with
a > 0 for some function U : X → R going to infinity at infinity, and W (x) = ea

′U(x) for 0 < a′ < a.
Moreover, we mention that if a dynamics is given and possesses a Lyapunov function W such that

Ψ = −LW
W
−−→
+∞

+∞,

then the assumption (2.31) shows that the allowed weight function f should be dominated by Ψ. This
is the central idea to obtain large deviations principles in weighted topologies in Chapter 3.

In the proof of Theorem 2.12, (2.31)-(2.32) are used to control P ft thanks to a Grönwall lemma.
It is also important to remark that, in the case f = 0, we are exactly back to typical conditions for
the ergodicity of SDEs and compactness of the evolution operator Pt, see [362, Theorem 8.9]. As in
Section 2.2.2, some regularity of the transition kernel is required. A natural condition in the context
of diffusions reads as follows [362, Section 7].

Assumption 2.11. The functions f and σ are continuous and, for any t > 0, the transition kernel P ft
has a continuous density pft with respect to the Lebesgue measure, that is

∀x, y ∈ X , P ft (x, dy) = pft (x, y) dy.

Moreover, it holds
∀x, y ∈ X , pft (x, y) > 0.

This assumption is natural for diffusion processes and, as shown in the proof of Theorem 2.12,
it implies Assumptions 2.2 and 2.3 in Section 2.2.2. It holds true in particular for elliptic diffusions
with regular coefficients and additive noise (b ∈ C∞(X ) and σ = Id). For degenerate diffusions,
possibly with multiplicative noise, this result can be obtained through hypoelliptic conditions and
controllability. We will extensively come back on these problems in Chapter 3 and refer for now
to [395, 362, 427] for more details.

We now state the continuous version of Theorem 2.7.
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Theorem 2.12. Consider the dynamics (2.29) induced by the SDE (2.27) and suppose that Assump-
tions 2.10 and 2.11 hold. Then, there exist a unique invariant measure µf and κ > 0 such that, for
any initial measure ν ∈ PW (X ) there is Cν > 0 for which

∀ϕ ∈ B∞W (X ), ∀ t > 0,
∣∣Φt(ν)(ϕ)− µf (ϕ)

∣∣ 6 Cν e−κt‖ϕ‖B∞W . (2.33)

Moreover, the invariant measure satisfies µf (W ) < +∞.

Proof. The idea of the proof is to show that, for any t > 0, the evolution operator(
P ft ϕ

)
(x) = Ex

[
ϕ(Xt) e

∫ t
0
f(Xs) ds

]
satisfies the assumptions of Theorem 2.7.

Step 1: Minorization and regularity. We first show that, by Assumption 2.11 and for any
t > 0, P ft satisfies Assumptions 2.2 and 2.3. A first remark is that, since P ft is assumed to have a
continuous density with respect to the Lebesgue measure, Assumption 2.3 immediately holds.

It is enough to prove the minorization condition (Assumption 2.2) for measurable subsets of X =
Rd. Consider the compact sets Kn = B(0, n), i.e. the balls centered at 0 with radius n > 1. For a
measurable set A ⊂ Rd and n > 1, we have, for all x ∈ Kn,

(P ft 1A)(x) =

∫
A

pft (x, y) dy >
∫
A∩Kn

pft (x, y) dy >
(

inf
x,y∈Kn

pft (x, y)
)
|A ∩Kn|, (2.34)

where we denote by |A| the Lebesgue measure of A ⊂ Rd. As a result, (2.8) holds for all n > 1 with

ηn(A) =
|A ∩Kn|
|Kn|

, αn = |Kn|
(

inf
x,y∈Kn

pft (x, y)
)
> 0.

Finally, let us check that (2.9) is satisfied. Take ϕ ∈ B∞W (X ) with ϕ > 0 such that

ηn(ϕ) =
1

|Kn|

∫
Kn

ϕ(x) dx = 0,

for any n > n0 for an arbitrary n0 > 1. Since for any compact set K ⊂ X there exists m > 1 such
that K ⊂ Km, this implies that ϕ = 0 almost everywhere, so Qfϕ = 0 everywhere since Qf has a
continuous density with respect to the Lebesgue measure. Therefore, Assumption 2.2 is satisfied.

Step 2: Lyapunov condition. Let us now show that Assumption 2.1 holds for P ft with t > 0
fixed. First, Assumption 2.10 is equivalent to the existence of positive sequences (an)n∈N, (bn)n∈N
such that (recall that W is bounded on compact sets)

(L+ f)W 6 −anW + bn, (2.35)

with an → +∞ as n→ +∞. We then compute, for any t > 0 and n ∈ N,

d

dt

(
eantP ft W

)
= eantP ft (anW + (L+ f)W ) 6 bneantP ft 1. (2.36)

We can now bound the right hand side of the latter expression using (2.32). Since W > 1,(
P ft 1

)
(x) = Ex

[
e
∫ t
0
f(Xs) ds

]
6 Ex

[
W (Xt) e

∫ t
0
f(Xs) ds

]
. (2.37)

From the second condition in (2.32), (2.37) becomes(
P ft 1

)
(x) 6 ect Ex

[
W (Xt) e−

∫ t
0
LW
W (Xs) ds

]
.

Inspired by a similar calculation in [427], we see that the right hand side of the above equation is a
supermartingale. Indeed, introducing

Mt = W (Xt) e−
∫ t
0
LW
W (Xs) ds,

Itô formula shows that
dMt = e−

∫ t
0
LW
W (Xs) ds∇W T (Xt)σ(Xt) dBt,
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so that Mt is a local martingale since σ is continuous (see [262, Proposition 2.24]). Since Mt is
nonnegative, it is a supermartingale by Fatou’s lemma. As a result, Ex[Mt] 6 M0 = W (x). The
inequality (2.37) then becomes (

P ft 1
)
(x) 6 ectEx [Mt] 6 ectW (x).

Coming back to (2.36), we obtain

d

dt

(
eantP ft W

)
6 bne(an+c)t W .

Integrating in time shows that

(
eantP ft W −W

)
(x) 6 bn

e(an+c)t

an + c
W (x).

As a result
P ft W (x) 6 γ̃nW (x) + cnW (x), (2.38)

with
γ̃n = e−ant, cn =

bn ect

an + c
> 0.

At this stage, (2.6) holds with the indicator function replaced by the function W . However, using the
first condition in (2.32), we can find a compact set Kn such that cnε(x) 6 γ̃n outside Kn. Using this
set and W = εW , (2.38) becomes

P ft W (x) 6 γ̃nW (x) + cn1Kn(x)W (x) + cnε(x)W (x)1Kc
n
(x)

6 2γ̃nW (x) + cn

(
sup
Kn

W

)
1Kn(x).

Setting γn = 2γ̃n and bn = cn supKn W , we see that

P ft W 6 γnW + bn1Kn , (2.39)

with γn → 0 as n → +∞. This means that P ft satisfies Assumption 2.1, and hence fullfils all the
assumptions of Theorem 2.7.

Step 3: using Theorem 2.7. We now use that P ft satisfies the assumptions of Theorem 2.7 to
conclude the proof. Fix t0 > 0. There exist a unique measure µf,t0 and a constant κt0 > 0 such that,
for any ν ∈ PW (X ), it holds (with the constant Cν > 0 defined in (2.24))

∀ϕ ∈ B∞W (X ), ∀ k > 1,

∣∣∣∣∣ν
(
(P ft0)kϕ

)
ν
(
(P ft0)k1

) − µf,t0(ϕ)

∣∣∣∣∣ 6 Cν e−kκt0‖ϕ‖B∞W .

We next show that (2.33) can be obtained for any t > 0 (and not only multiples of t0) and that the
invariant measure µf,t0 actually does not depend on t0. This follows by a standard time decomposition
argument [304, 239]. Indeed, for any t > 0, we set t = kt0+r with r ∈ [0, t0), and we use the semigroup
property to obtain

Φt(ν)(ϕ) = Φkt0

(
νP fr

ν(P fr 1)

)
(ϕ) =

νr
(
(P ft0)kϕ

)
νr
(
(P ft0)k1

) ,
where we defined νr as

νr(ϕ) =
ν
(
P fr ϕ

)
ν
(
P fr 1

) .
We then only need to control the familly of initial distributions (νr)r∈[0,t0). Step 1 in the proof shows
that ν(P fr 1) > 0 (using (2.34)). Then, in view of (2.39), the evolution operator P fr maps B∞W (X )
to B∞W (X ) for any r > 0, so νr(W ) < +∞ and thus νr defines an admissible initial condition in
Theorem 2.7. This leads to:

∀ϕ ∈ B∞W (X ), ∀ t > 0,
∣∣Φt(ν)(ϕ)− µf,t0(ϕ)

∣∣ 6 ( sup
r∈[0,t0)

Cνr

)
e−κt0

t
t0 ‖ϕ‖B∞W , (2.40)
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where the constant Cνr is given in (2.24). In view of (2.24), it remains to bound

sup
r∈[0,t0)

νr(W )

νr(ht0)
= sup
r∈[0,t0)

ν
(
P fr W

)
ν
(
P fr ht0

) , (2.41)

where ht0 is the principal eigenvector associated to P ft0 with eigenvalue Λt0 (using Lemma 2.5). The
numerator in the latter expression is easily bounded uniformly in r using (2.39). Standard semigroup
analysis shows that ht0 = h does not depend on t0 and Λt0 = et0α for some α ∈ R. Therefore, for
any r ∈ [0, t0), P fr ht0 = erαh, and the denominator in (2.41) is bounded away from 0 independently
on r.

We finally prove that the invariant measure µf,t0 does not depend on t0. Following the same
procedure for another time t1 > 0 shows that (2.40) holds with an invariant measure µf,t1 . Then, for
any ϕ ∈ B∞W (X ), ν ∈ PW (X ) and t > 0 we have∣∣µf,t0(ϕ)− µf,t1(ϕ)

∣∣ 6 ∣∣Φt(ν)(ϕ)− µf,t0(ϕ)
∣∣+
∣∣Φt(ν)(ϕ)− µf,t1(ϕ)

∣∣
6

(
sup

r∈[0,t0)

Cνr

)
e−κt0

t
t0 ‖ϕ‖B∞W +

(
sup

r∈[0,t1)

Cνr

)
e−κt1

t
t1 ‖ϕ‖B∞W .

Taking the limit t→ +∞ on the right hand side shows that µf,t0 = µf,t1 , so the invariant measure is
independent of the arbitrary time t0. This concludes the proof of Theorem 2.12.

We close this section by mentioning that, under the assumptions of Theorem 2.12, it is also possible
to define the logarithmic spectral radius of the dynamics as in Theorem 2.8, which reads in this case

λ = lim
t→+∞

1

t
log Eν

[
e
∫ t
0
f(Xs) ds

]
,

for any initial measure ν ∈ PW (X ). We do not reproduce the proof of this result which is similar to
that of Theorem 2.8 and will be detailed in Chapter 3 (see in particular Lemma 3.32).

2.3 Applications
Since our study was first motivated by practical situations, we provide in this section a number of finite
dimensional examples where our framework provides simple criteria for proving convergence of the
Feynman–Kac semigroup towards an invariant measure. Sections 2.3.1 and 2.3.2 are concerned with
discrete and continuous time applications respectively. Section 2.3.3 presents a convergence result for
numerical discretizations of (2.29) (with some anticipation on Chapter 4), where convergence rates
are uniform in the time step.

2.3.1 Examples in discrete time
In this section, we provide two typical examples of Markov chains for which our results apply. First
of all, let us consider the Diffusion Monte Carlo case where f = −V and V stands for a Schrödinger
potential.

Proposition 2.13. Consider a weighted evolution operator QV = e−VQ in X = Rd with Gaussian

increments Q(x, dy) = (2πσ2)−
d
2 e−

(x−y)2

2σ2 dy, and where V is a continuous function. Then, if V (x)→
+∞ when |x| → +∞, W (x) = 1 is a Lyapunov function for QV in the sense of Assumption 2.1.
Moreover, if there exist constants a > 0 and c ∈ R such that

V (x) > a|x|2 − c, (2.42)

then W (x) = eβx
2

is a Lyapunov function for

0 < β <
a

2

(√
1 +

2

aσ2
− 1

)
.

Finally, Assumptions 2.2 and 2.3 hold true, so that Theorem 2.7 applies for these choices of Lyapunov
function.
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The interpretation of this result is the following. In the Diffusion Monte Carlo setting, the con-
finement cannot be provided by the dynamics, since it is a Gaussian random walk over Rd. However,
the external potential V gives a small weight to the trajectories going to infinity, which makes the
dynamics stable. If more information is available on the growth of V , we obtain better integrability
results for the invariant measure µ∗V through Lyapunov functions growing faster at infinity.

Proof. Let us first check that W = 1 is a Lyapunov function when V goes to infinity at infinity. Note
that, for any compact set K ⊂ Rd,(

QV 1
)
(x) = e−V (x) = 1Kc(x) e−V (x) + 1K(x) e−V (x).

Taking an increasing sequence of compact sets Kn (in the sense of inclusion) and setting γn =
supKc

n
e−V , bn = supKn e−V < +∞, we obtain

QV 1 6 γn1+ bn1Kn ,

which proves the first assertion since γn → 0 as n→ +∞.
Let us now assume that (2.42) holds. Setting W (x) = eβx

2

, under the condition

β <
1

2σ2
, (2.43)

an easy computation shows that

QW (x) =
e

β

1−2βσ2 x
2

(1− 2βσ2)
d
2

.

We remark that W is not a Lyapunov function for Q since 1 − 2βσ2 < 1. However, setting Cd =
(1− 2βσ2)−

d
2 ,

QVW (x) = Cd e
−V (x)+ β

1−2βσ2 x
2

6 Cd e
c−ax2+ β

1−2βσ2 x
2−βx2

W (x) = C ′d e
−ax2+ 2β2σ2

1−2βσ2 x
2

W (x),

with C ′d = Cd ec. One can then check that the choice

0 < β <
a

2

(√
1 +

2

aσ2
− 1

)
(2.44)

leads to

−a+
2β2σ2

1− 2βσ2
< 0.

Note that, since
a

2

(√
1 +

2

aσ2
− 1

)
<

1

2σ2
,

the condition (2.43) is automatically satisfied when β is chosen according to (2.44). Next, when β
satisfies (2.44), the function

ε(x) = e
−ax2+ β2σ2

1−2βσ2 x
2

goes to zero at infinity. Therefore, taking increasing compact sets Kn (such as balls of increasing
radii),

(QVW )(x) = 1Kc
n
(x)ε(x)W (x) + 1Kn(x)ε(x)W (x) 6 γnW (x) + bn1Kn(x),

with γn = supKc
n
ε → 0 as n → +∞ and bn = supKn εW < +∞. Hence W is a Lyapunov function

for QV for this choice of β, i.e. Assumption 2.1 is satisfied.
Assumption 2.3 is easily seen to hold. It therefore suffices to prove the minorization condition

(Assumption 2.2). Take a compact set K with non zero Lebesgue measure, and let us first show that
the condition of Assumption 2.2 holds for Q. It is enough to prove the condition for the indicator
function of any borel set A ⊂ X . Denoting by DK = sup{|x− y|, x ∈ K, y ∈ K} the diameter of K,
we compute for any x ∈ K

(Q1A)(x) = Q(x,A) =

∫
A

e−
(x−y)2

2σ2 dy >
∫
A∩K

e−
(x−y)2

2σ2 dy > inf
x∈K

∫
A∩K

e−
(x−y)2

2σ2 dy

> e−
D2
K

2σ2

∫
A∩K

dy > e−
D2
K

2σ2 |A ∩K|,
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where we denote again by |A| the Lebesgue measure of A ⊂ Rd. This motivates defining

αK = e−
D2
K

2σ2 |K| > 0, ηK(A) =
|A ∩K|
|K|

.

Note also that, since |K| ∈ (0,+∞), ηK is a probability measure. Finally, since V is continuous,

∀x ∈ K, QV (x, ·) > αV ηK(·),

with αV = αK e− supK V > 0. Choosing for instance Kn = B(0, n) the centered balls of radius n, we
see that (2.9) holds using arguments similar to the ones used for the proof of Theorem 2.12, hence QV
satisfies Assumption 2.2.

We now provide an example where the dynamics Q admits a Lyapunov function W in the sense
of the condition (2.58) recalled in Section 2.5.1, and this function is also a Lyapunov function for Qf
when f does not grow too fast.

Proposition 2.14. Consider the dynamics corresponding to a discrete Ornstein–Uhlenbeck process
in Rd, namely

xk+1 = ρxk + σGk,

where ρ ∈ (−1, 1), σ ∈ R and (Gk)k>1 is a familly of independent standard d-dimensional Gaussian
random variables. Define the operator Qf = efQ with f a continous function such that there exist
constants a > 0, c > 0, 0 6 p < 2 for which f(x) 6 a|x|p + c.

Then, the Feynman–Kac dynamics associated to Qf satisfies the assumptions of Theorem 2.7 with
Lyapunov function W (x) = eβx

2

when

0 < β <
1− ρ2

2σ2
.

The interpretation of this result is quite different from the interpretation of Proposition 2.13.
Here, the confinement is provided by the dynamics itself, and the weight f has to be controlled by the
Lyapunov function of the dynamics. In that case it is important to find a «strong enough» Lyapunov
function in order for this control to be possible. Quite typically, if f is unbounded, W (x) = x2 is a
Lyapunov function for Q, but not for Qf . On the other hand, if f is bounded above, the result is
straightforward.

Proof. We set W (x) = eβx
2

and first compute

QW (x) = E
[
W (xk+1)

∣∣xk = x
]

= EG
[
eβ|ρx+σG|2

]
= eβρ

2x2

E
[
eβ(2σρxG+σ2G2)

]
.

For β < 1/(2σ2), an easy computation similar to that of Proposition 2.13 leads to

QW (x) =
1

(1− 2βσ2)
d
2

e
ρ2

1−2βσ2 βx
2

.

Define now

δβ =
ρ2

1− 2βσ2
.

Then δβ ∈ (0, 1) and 1− 2βσ2 > 0 when

β ∈
(

0,
1− ρ2

2σ2

)
.

This leads to

ef(x)QW (x) =
1

(1− 2βσ2)
d
2

ef(x)+(δβ−1)x2

W (x) 6
1

(1− 2βσ2)
d
2

ea|x|
p+c+(δβ−1)x2

W (x) = ε(x)W (x),

with ε(x)→ 0 as |x| → +∞. Therefore, by considering againg Kn = B(0, n), we see that(
QfW

)
(x) = 1Kc

n
(x)ε(x)W (x) + 1Kn(x)ε(x)W (x) 6 γnW (x) + 1Kn(x)bn,

where γn = supKc
n
ε → 0 as n → +∞, and bn = supKn εW < +∞. This shows that Assumption 2.1

is satisfied. Assumptions 2.2 and 2.3 follow by arguments similar to those used in the proof of
Proposition 2.13.
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The latter examples do not intend to form a complete overview of the possible practical cases.
However, they seem characteristic of two typical situations: one where the confinement arises from
the dynamics, and another where it comes from the potential V = −f . These two strategies correspond
respectively to a large deviations context [275] and a diffusion Monte Carlo context [221]. Interestingly,
they are both encoded in the condition (2.6).

2.3.2 Applications to diffusion processes
We now provide some examples where the conditions of Section 2.2.3 are met. Our main concern is
the Lyapunov condition, Assumption 2.10, so we assume f and the coefficients of the SDE (2.27) to
be regular enough for Assumption 2.11 to be satisfied (the issue of regularity will be treated at length
in Chapter 3). Let us start with a reversible diffusion.

Proposition 2.15. Consider a diffusion process (Xt)t>0 over Rd satisfying (2.27) with σ =
√

2 Id,
and assume that the drift is given by b = −∇U , where U : X → R is a smooth potential such that
U(x)→ +∞ as |x| → +∞. Assume moreover that U satisfies

lim
|x|→+∞

|∇U(x)|2

|∆U(x)|
= +∞, (2.45)

and there exists 1/2 < β < 1 such that

lim
|x|→+∞

(
− β(1− β)|∇U |2 + β∆U + f

)
= −∞. (2.46)

Then Assumption 2.10 holds for the Lyapunov function W (x) = eβU(x).

Proof. The proof follows from simple computations. Indeed, it holds

LW = −β∇U · (∇U)W + β∇ · [(∇U)W ] = −β|∇U |2W + βW∆U + β2|∇U |2W,

so that
(L+ f)W =

(
− β(1− β)|∇U |2 + β∆U + f

)
W, (2.47)

hence (2.31) in Assumption 2.10 is satisfied. The conditions in (2.32) are obtained by setting

W (x) = eθU(x),

for some θ ∈ (1/2, β). It is clear that W /W goes to zero at infinity, so the first condition in (2.32)
holds true. The key remark is then to note that for our choice of θ, β, we have

β(1− β) 6 θ(1− θ).

Therefore, (2.45) and (2.46) show that there exist c, c′ > 0 such that

f 6 β(1− β)|∇U |2 − β∆U + c 6 θ(1− θ)|∇U |2 − θ∆U + c′ = −LW

W
+ c′.

This proves that the second condition in (2.32) holds, which concludes the proof.

Let us mention that the conditions in Proposition 2.15 are similar to conditions appearing in
works on Poincaré inequalities (see [20] and references therein), and corresponds to the case where the
confinement comes from the potential U , f being a perturbation that should not go too fast to +∞
with respect to U . We will again comment on this point in Chapter 3.

Remark 2.16. Proposition 2.15 is also related to confinement conditions for Schrödinger operators.
Indeed, using the parameters of Proposition 2.15, the dynamics is reversible with respect to the mea-
sure e−U and, as noted in Section 2.2.3, it is possible to turn the diffusion operator L into a Schrödinger
operator using the unitary transform:

L → e−
U
2 Le

U
2 .

Using this transformation, L+ f is unitarily equivalent [304] to the following Schrödinger operator:

∆− 1

4
|∇U |2 +

1

2
∆U + f.



2.3. Applications 91

We then notice that the confinement condition for this Schrodinger operator is precisely (2.46) for
the limit value β = 1/2. This shows that our Lyapunov condition (2.31) is a natural extension
of this condition for non-reversible dynamics. As a side product, it shows that a slightly modified
confinement condition for a Schrödinger operator does not only provide convergence in L2-norm, but
also in a weighted uniform norm, which does not seem to be a standard result.

In the non-reversible setting one cannot hope for a Schrödinger representation, and the Lyapunov
function framework shows its usefulness. Let us present such an application, drawn from [160], where
the drift provides polynomial confinement at infinity.

Proposition 2.17. Let (Xt)t>0 satisfy the SDE (2.27) with σ =
√

2 Id and a drift b such that there
exist q > 1, δ > 0, R > 0 for which

∀ |x| > R, b(x) · x 6 −δ|x|q. (2.48)

Assume also that f is smooth and satisfies f(x) 6 a|x|p for |x| > R and some p < 2q − 2. Then,
Assumption 2.10 holds for the Lyapunov function

W (x) = eβ|x|
q

, with 0 < β <
δ

q
. (2.49)

Proof. Setting W (x) = eβ|x|
q

, a simple computation shows that

LW (x) = βqb(x) · x|x|q−2W (x) + βq∇ · (x|x|q−2W (x))

= βqb(x) · x|x|q−2W (x) + βqd|x|q−2W (x) + βq(q − 2)|x|q−2W (x) + β2q2|x|2q−2W (x),
(2.50)

so
LW
W

(x) = βqb(x) · x|x|q−2 + βq(q + d− 2)|x|q−2 + β2q2|x|2q−2.

Using (2.48) and the bound on f leads to, for |x| > R,

LW
W

(x) + f(x) 6 −βq(δ − βq)|x|2q−2 + βq(q + d− 2)|x|q−2 + a|x|p. (2.51)

Since p < 2q − 2, (2.31) is readily satisfied when 0 < β < δ/q.
We end the proof by showing that (2.32) holds. Similarly to the proof of Proposition 2.15, we

consider
W (x) = eθ|x|

q

, with 0 < θ < β,

which satisfies the first condition in (2.32). Repeating the calculations leading to (2.51), since θ < δ/q
and p < 2q − 2, we obtain the existence of a constant c > 0 such that

LW

W
(x) + f(x) 6 −θq(δ − θq)|x|2q−2 + θq(q − 1)|x|q−2 + a|x|p 6 c,

so the second condition in (2.32) holds true, and Assumption 2.10 is satisfied.

2.3.3 Convergence results uniform with respect to the time step
When one considers continuous semigroups as in Section 2.2.3, it is natural in practical applications
to discretize (2.29) for example with

Φ∆t,k(ν)(ϕ) =
Eν
[
ϕ(xk) e∆t

∑k−1
i=0 f(xi)

]
Eν
[
e∆t

∑k−1
i=0 f(xi)

] , (2.52)

where (xk)k∈N is a discretization of the SDE (2.27) with time step ∆t > 0, i.e. xk is an approxi-
mation of Xk∆t. The framework developped in the present chapter covers this situation, as shown
by the examples provided in Section 2.3.1 (we recall that the issue of discretization of Feynman–Kac
semigroups on a bounded state space is treated in detail in Chapter 4).

Another interesting consequence of our analysis is that we are able to obtain convergence estimates
uniform in the time step ∆t, in the sense that the decay rate on fact depends on k∆t, the physical
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time of the system, with a prefactor independent of ∆t. It has been the purpose of several works
to develop such uniform in ∆t estimates for long time convergence, in particular in the context
of Metropolized discretizations of overdamped Langevin dynamics [61, 177], discretization of the
Langevin dynamics [304, 295], and other discretizations of SDEs [110, 276, 277]. Our goal is to show
that similar results can be obtained for Feynman–Kac semigroups, and we slightly anticipate the
results of Chapter 4 (we therefore suggest to skip this section at first reading). For the remainder of
this section, we assume that

X = Td

is the d-dimensional torus, the function σ in (2.27) is constant, and we denote by dae the upper
integer part of a for a ∈ R. Considering an unbounded state space X is also possible but, as noted in
Chapter 4, this leads to serious technical difficulties – we therefore postpone this case to future works.

We consider here a simplified version of the framework extensively developed in Chapter 4,
Section 4.3. We say that a kernel operator Qf∆t defines a consistent discretization of the semi-
group (2.29) if it satisfies Assumption 2.3 and there exist ∆t∗ > 0, C > 0, p ∈ N, and an operator
R∆t : C∞(X )→ C∞(X ) (which encodes remainder terms) such that, for any ϕ ∈ C∞(X ),

Qf∆tϕ = ϕ+ ∆t(L+ f)ϕ+ ∆t2R∆tϕ,

where, for all ∆t ∈ (0,∆t∗],
‖R∆tϕ‖B∞ 6 C sup

m∈Nd

|m|6p

‖∂mϕ‖B∞ ,

using the notation ∂m = ∂m1
x1

. . . ∂mdxd for m = (m1, . . . ,md) ∈ Nd with |m| = m1 + . . . + md. The
dynamics (2.29) is then approximated by the discrete semigroup

∀ k > 1, ∀ ν ∈ P(X ), ∀ϕ ∈ B∞(X ), Φ∆t,k(ν)(ϕ) =
ν
(

(Qf∆t)
kϕ
)

ν
(

(Qf∆t)
k1
) . (2.53)

The latter definition encompasses many numerical schemes, as presented in Chapter 4 together
with the subsequent numerical analysis. In order to obtain uniform in the time step estimates, we
now assume a uniform minorization and boundedness condition of the following form.

Assumption 2.18. Fix a time T > 0. There exist ∆t∗ > 0, η ∈ P(X ) and α ∈ (0, 1) such that, for
any ∆t ∈ (0,∆t∗], the operator Qf∆t is strong Feller and for any ϕ ∈ B∞(X ) with ϕ > 0,

∀x ∈ X , αη(ϕ) 6

((
Qf∆t

)d T∆t e
ϕ

)
(x) 6

1

α
η(ϕ). (2.54)

The lower bound in (2.54) corresponds to a minorization condition with respect to a physical
time T > 0, see [304, Section 3]. The upper bound is a standard ingredient for studying Feynman–
Kac semigroups, see for instance [114, 113] and the proof of Theorem 4.9 presented in Section 4.2.2
below.

Remark 2.19. Although Assumption 2.18 holds in many situations when X is compact, the re-
quirement that the upper bound in (2.54) holds may not seem natural in view of the results of Sec-
tion 2.2.2. Indeed, our framework shows that this upper bound is not necessary to prove the ergodicity
of Feynman–Kac semigroups, as opposed to previous works [114, 116, 113, 182]. A careful look at
the proof of Theorem 2.21 shows that this upper bound is only used to show the uniform boundedness
of h∆t in (2.56). However, controlling h∆t as ∆t → 0 does not seem to be an easy task in general.
We therefore stick to this assumption here.

Before stating our uniform in ∆t convergence result, we need the following estimate deduced from
Lemma 4.19 in Chapter 4, whose proof can be found in Section 2.5.6.

Lemma 2.20. Consider the process (Xt)t>0 solution to (2.27) with σ = Id, b ∈ C∞(X ), and a
function f ∈ C∞(X ). Then the operator L+f admits a real isolated largest (in modulus) eigenvalue λ
with eigenvector h ∈ C∞(X ) and associated eigenspace of dimension one, which satisfies

(L+ f)h = λh, and P ft h = etλh, ∀ t > 0.
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If Qf∆t is a consistent discretization of (2.29) satisfying Assumption 2.18, then for any ∆t > 0, the
operator Qf∆t has a largest (in modulus) eigenvalue Λ∆t ∈ R, which is non-degenerate. The associated
eigenvector h∆t, such that

Qf∆th∆t = Λ∆th∆t,

is normalized as η(h∆t) = 1. Finally, there exist ∆t∗ > 0, C > 0, ε > 0 such that for all ∆t ∈ (0,∆t∗],
there is c∆t ∈ R for which

Λ∆t = e∆tλ+∆t2c∆t , (2.55)

with |c∆t| 6 C and
∀x ∈ X , ∀∆t ∈ (0,∆t∗], ε 6 h∆t(x) 6 ε−1. (2.56)

This result means that the evolution operator associated with a consistent discretization has a
principal eigenvalue approximating the principal eigenvalue of the continuous dynamics, and that its
associated principal eigenvector remains uniformly bounded from below and above if ∆t is sufficiently
small. We will see in Proposition 2.22 that Assumption 2.18 is naturally satisfied if a similar con-
dition holds for Q∆t and the evolution operator reads Qf∆t = e∆tfQ∆t (which corresponds to the
discretization (2.52)). Let us now state the uniform in ∆t version of Theorem 2.7.

Theorem 2.21. Consider a consistent discretization Qf∆t of the dynamics (2.29) satisfying Assump-
tion 2.18. Then, there exists ∆t∗ > 0 such that, for any ∆t ∈ (0,∆t∗], the dynamics (2.53) admits
a unique invariant measure µf,∆t ∈ P(X ). Moreover, there exist κ > 0, C > 0 such that for any
ϕ ∈ B∞(X ), ν ∈ P(X ), and ∆t ∈ (0,∆t∗],

∀ k > 0, |Φ∆t,k(ν)(ϕ)− µf,∆t(ϕ)| 6 C e−κk∆t‖ϕ‖B∞ .

Let us note that the uniformity of the prefactor C in the initial condition is a consequence of
the boundedness of X . Indeed, in this case, we can choose W ≡ 1 as a Lyapunov function, so the
constant Cν in (2.24) can be uniformly bounded using (2.56). Such a uniformity does not hold for
Theorem 2.7 since in that case X was not assumed to be bounded. The important part of the theorem
is the control of C and κ in the time step, which provides convergence with respect to the physical
time k∆t.

Proof. The proof essentially relies on the fact that if Qf∆t satisfies Assumption 2.18, then Qh,∆t defined
as in Lemma 2.6 satisfies a uniform minorization condition. For controlling the dependencies in the
time step, we rely on Lemma 2.20, and use the same notation.

We want to prove a uniform minorization condition (in the sense of [304, Lemma 3.4]) for the
operator defined by

Qh,∆t = Λ−1
∆th

−1
∆tQ

f
∆th∆t,

and apply [304, Corollary 3.5]. Fix T > 0. From (2.54) and (2.56) we have, for any ϕ > 0 and x ∈ X ,

Q
d T∆t e
h,∆tϕ(x) = Λ

−d T∆t e
∆t h−1

∆t

(
Qf∆t

)d T∆t e
(h∆tϕ)(x) > Λ

−d T∆t e
∆t ε2αη(ϕ). (2.57)

Moreover, from (4.23),

Λ
−d T∆t e
∆t = e−∆t(λ+∆tc∆t)d T∆t e > e−2|λ|T > 0,

upon possibly reducing ∆t∗. Then, (2.57) becomes

∀x ∈ X , Q
d T∆t e
h,∆t (x, ·) > αε2 e−2|λ|T η(·).

As a result, Qh,∆t satisfies the assumptions of [304, Corollary 3.5]: there exist a unique measure
µh,∆t ∈ P(X ), C > 0, κ > 0 such that, for any φ ∈ B∞(X ), k ∈ N and ∆t ∈ (0,∆t∗],∥∥Qkh,∆tφ− µh,∆t(φ)

∥∥
B∞

6 Ce−κk∆t‖φ‖B∞ .

This is a version of Lemma 2.6 uniform with respect to ∆t. The result then follows by rewriting the
proof of Theorem 2.7, with ᾱk replaced by e−κk∆t.

It only remains to study the constant Cν,∆t arising in Theorem 2.7 (see (2.24)), which now also
depends on ∆t through the eigenvector h∆t and the invariant measure µh,∆t. Since X is bounded, we
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can actually choose a constant Lyapunov function, i.e. W = 1. Next, using (2.56) we obtain that for
any ∆t ∈ (0,∆t∗] and any ν ∈ P(X ), it holds

Cν,∆t =
4

νh,∆t(h
−1
∆t)

(
1 + νh,∆t(h

−1
∆t)
) 1

ν(h∆t)
6 4ε−2(1 + ε−1).

This provides a uniform bound on Cν,∆t, which concludes the proof.

We now show that the setting of Theorem 2.21 is natural, since Assumption 2.18 can be deduced
from a similar assumption on the Markov dynamics Q∆t when the evolution operator is Qf∆t =
e∆tfQ∆t, which corresponds to the discretization (2.52). For proving the condition on Q∆t, we refer
to [304] and the references therein.

Proposition 2.22. Assume that X is bounded, f ∈ C0(X ), and the SDE (2.27) is discretized for a
given time step ∆t > 0 with a Markov chain (xk)k∈N whose evolution operator Q∆t is strong Feller
and satisfies the following uniform minorization and boundedness condition: for a fixed T > 0, there
exist ∆t∗ > 0, η ∈ P(X ) and α ∈ (0, 1) such that, for any ∆t ∈ (0,∆t∗] and ϕ ∈ B∞(X ) with ϕ > 0,

∀x ∈ X , αη(ϕ) 6
(
Q∆t

)d T∆t eϕ(x) 6
1

α
η(ϕ).

Then, the transition operator Qf∆t defined as Qf∆t = e∆tfQ∆t satisfies Assumption 2.18.

Proof. Since Q∆t is strong Feller and f is continuous, Qf∆t is strong Feller. Then, for any k ∈ N and
ϕ ∈ B∞(X ),

(Qf∆t)
kϕ(x) = Ex

[
ϕ(xk) e∆t

∑k−1
i=0 f(xi)

]
> e−k∆t‖f‖B∞Ex [ϕ(xk)] = e−k∆t‖f‖B∞

(
(Q∆t)

kϕ
)
(x).

Taking k = dT/∆te with 0 < ∆t 6 ∆t∗ then shows that

(Qf∆t)
d T∆t eϕ(x) > e−2T‖f‖B∞

(
Qd

T
∆t eϕ

)
(x) > e−2T‖f‖B∞αη(ϕ).

A similar computation for the upper bound allows to conclude the proof.

2.4 Discussion

The ideas developped in this chapter concerning the ergodicity of Feynman–Kac semigroups solve
several problems for which, to the best of our knowledge, no solution was available. They are closely
related to previous works and we want to highlight two important connections.

First, as we mentionned in the introduction, our framework can be considered as an extension of
ergodic theory for Markov chains [330], when the evolution operator of the dynamics does not conserve
probability. For this reason, we tried to formulate our assumptions in the flavour of [219]. However, the
spectral theory on which we crucially rely in our study requires stronger conditions. This leaves open
a few questions, as the converge of Feynman–Kac dynamics based on Metropolis type kernels, which
lack regularity, or the case of non-Polish spaces, which may arise for stochastic partial differential
equations. Finally, another interesting feature of our framework is that we can prove ergodicity for
Feynman–Kac dynamics for which the underlying Markov chain is not ergodic – a case we called
Diffusion Monte Carlo (DMC) in analogy with quantum physics models (see Proposition 2.13).

The other clear connection concerns large deviations theory. Indeed, one motivation for studying
Feynman–Kac dynamics is to prove large deviations principles for additive functionals of Markov
chains [133, 119, 427, 275], which can be achieved by proving the existence of formulas such as (3.25).
It is then no surprise that the spectral theory we develop, although based on [362], is reminiscent of
works such as [275], and requires stronger assumptions than the ones needed for proving ergodicity
in [219] (see the discussion on the Gärtner–Ellis theorem in Section 1.2.1). However, the tools we
use seem new in this context, and more adapted to the situation at hand, for instance the Krein–
Rutman theorem based on the minorization condition. In particular, [275] (like [178]) makes use of
nonlinear generators related to an optimal control problem. In the next chapter, we use instead linear
spectral analysis to obtain large deviations principles for the empirical average of SDEs in topologies
on measures corresponding to convergence with respect to unbounded functions.
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2.5 Complementary elements

2.5.1 Stability of Markov chains
In this short section, we recall the results presented in [219]. We consider a measurable space X and
Markov chain (xk)k>0 with transition kernel Q on X . By transition kernel, we mean that (i) for all
x ∈ X , Q(x, ·) is a positive measure on X , (ii) for any measurable set A ⊂ X , Q(·, A) is measurable,
and (iii) Q1 = 1. In the notation of Section 2.2, Q is a kernel operator (i.e. (i) and (ii) are satisfied)
such that Q1 = 1.

The stability of Markov dynamics can be obtained from minorization and Lyapunov conditions [330,
362, 219].

Assumption 2.23. There exist a function W : X → [1,+∞) and constants C > 0, γ ∈ (0, 1) such
that

∀x ∈ X , (QW)(x) 6 γW(x) + C. (2.58)

Given such a Lyapunov function, we consider the associated functional space as in (2.7).1 A second
key ingredient in the ergodicity of Q is the following minorization condition.

Assumption 2.24. There exist α ∈ (0, 1) and η ∈ P(X ) such that

inf
x∈C

Q(x, ·) > αη(·), (2.59)

where C = {x ∈ X |W(x) 6 R + 1} for some R > 2C/(1 − γ), and γ, C are the constants from
Assumption 2.23.

Under these conditions, we have the following result (see [219, Theorem 1.2]).

Theorem 2.25. Let Assumptions 2.23 and 2.24 hold. Then, Q has a unique invariant measure µ∗,
which is such that µ∗(W) < +∞. Moreover, there exist C > 0 and ᾱ ∈ (0, 1) such that, for any
ϕ ∈ B∞W(X ),

∀ k > 0, ‖Qkϕ− µ∗(ϕ)‖B∞W 6 Cᾱk‖ϕ− µ∗(ϕ)‖B∞W .

2.5.2 Useful theorems
We remind here some definitions and results around the Krein–Rutman theorem, as well as some basic
results from analysis. Let us start with some operator-theoretic definitions from [344, 359, 112, 362].

Definition 2.26. For a Banach space E and an operator T ∈ B(E), we denote by Λ(T ) its spectral
radius defined by:

Λ(T ) = lim
k→+∞

‖T k‖
1
k

B(E) = inf
k>1
‖T k‖

1
k

B(E).

We denote by Θ(T ) the essential spectral radius of T defined by (see [345, Eq. (1.14)] and [344,
Theorem 1]):

Θ(T ) = lim
k→+∞

(
inf
{∥∥T k −Q∥∥B(E)

, Q compact
}) 1

k

= inf
k>1

(
inf
{∥∥T k −Q∥∥B(E)

, Q compact
}) 1

k

.

An operator T ∈ B(E) is said to be compact if it maps bounded sets into precompact sets. In other
words, T is compact if, for any bounded sequence (un)n∈N in E, there is a subsequence (nk)k∈N such
that (Tunk)k∈N is convergent in E, see [359].

In order to recall the Krein–Rutman theorem, let us first give some definitions for cones in Banach
spaces.

1Compared to [219], we replace W by 1 +W; this is for notational convenience only.
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Definition 2.27. Let E be a Banach space. A closed convex set K ⊂ E is said to be a cone if
K ∩−K = {0} and for all u ∈ K and α ∈ R+, it holds αu ∈ K. A cone is total if the norm closure of
K−K is equal to E.

We now recall a weak version of the Krein–Rutman theorem, which can be found in [345, Theo-
rem 1.1]. Interesting remarks and comments are also available in [112, Section 19.8].

Theorem 2.28. Let E be a Banach space, K ⊂ E a total cone, and T ∈ B(E) be such that Θ(T ) <
Λ(T ) and TK ⊂ K. Then Λ(T ) is an eigenvalue of T with an eigenvector in K.

In Theorem 2.28, there is no uniqueness of the eigenvector. The non degeneracy can be otained un-
der stronger positivity conditions on the operator T , as made precise in [112, Theorems 19.3 and 19.5].
In order to control the essential spectral radius and apply the Krein–Rutman theorem, we will need
the following classical results, see [379, Theorem 11.28] and [384, Theorem 2.7.19].

Theorem 2.29 (Ascoli). Let (Y,dY) be a compact metric space and C0(Y) be the space of continuous
functions over Y endowed with the uniform norm ‖f‖C0 = supy∈Y |f(y)|. Consider a uniformly
bounded and equicontinuous sequence (fn)n∈N, i.e. a sequence for which there exists M > 0 such that
‖fn‖C0 6 M for all n > 1, and for any ε > 0 there exists δ > 0 such that dY(x, y) 6 δ implies
|f(x)− f(y)| 6 ε. Then (fn)n∈N converges in the uniform norm to some limit f up to extraction.

Theorem 2.30 (Heine–Cantor). Let f : E → F where (E,dE) and (F,dF ) are two metric spaces
and E is compact. Then, if f is continuous, it is uniformly continuous: for any ε > 0, there is δ > 0
such that for any x, x′ ∈ E with dE(x, x′) 6 δ, it holds dF (f(x), f(x′)) 6 ε.

We close this section with some results in probability theory. The next lemma can be found in [217,
Lemma 4.14].

Lemma 2.31. If X is a Polish space and ν ∈ P(X ), then the familly constituted of the single measure ν
is tight, i.e. for any ε > 0, there exists a compact set K ⊂ X such that ν(K) > 1− ε.

We finally present results concerning ultra-Feller operators, extending the ones of [218, Appendix
A]. Recall that the total variation distance between two positive measures µ, ν ∈M(X ) is defined by
the norm:

‖µ− ν‖TV = sup
ϕ∈B∞(X )

‖ϕ‖B∞61

∫
X
ϕdµ−

∫
X
ϕdν. (2.60)

Definition 2.32 (Ultra-Feller). A kernel operator Q is ultra-Feller if the mappping x 7→ Q(x, ·) ∈
M(X ) is continuous in the total variation distance (2.60).

The next lemma, used to show that an operator is ultra-Feller, is adapted from [218, Appendix A].

Lemma 2.33. Suppose that P and Q are two kernel operators over a Polish space X that satisfy the
following properties:

• for all ϕ ∈ B∞(X ), Qϕ is continuous and finite;

• for all ψ such that |ψ| 6 Q1, Pψ is continuous and finite.

Then PQ is ultra-Feller.

We remind some elements of the proof from [218, Theorem 1.6.6], which is based on the Banach–
Alaoglu theorem. The details are left to the reader.

Proof. A first element to prove Lemma 2.33 is to show that, if Q is strong Feller, then there exists
a reference probability measure ζ ∈ P(X ) such that for any x ∈ X , Q(x, ·) is absolutely continuous
with respect to ζ. This is shown in [218, Lemma 1.6.4] for operators Q such that Q1 = 1. Even for a
non-probabilistic Q, we can consider the normalized probabilities

Q(x, ·)
Q1(x)

,

for x in the open set X̃ = {x ∈ X |Q1(x) > 0}. We can apply [218, Lemma 1.6.4] to these probabilities
defined over the set X̃, so there exists a measure ζ such that, for any x ∈ X̃, Q(x, ·) is absolutely
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continuous with respect to ζ. If x ∈ X \ X̃, Q(x, ·) = 0, which is also absolutely continuous with
respect to ζ, so that Q(x, ·) is absolutely continuous with respect to ζ for any x ∈ X .

Once this is done, one can write the kernel Q as Q(y, dz) = k(y, z) dz with k(y, ·) ∈ L1(X , ζ) for
all x ∈ X . If one supposes by contradiction that PQ is not ultra-Feller, then Definition 2.32 shows
that there exist a sequence of functions (gn)n∈N with ‖gn‖B∞ 6 1 and a sequence (xn)n∈N converging
to an element x ∈ X such that for some δ > 0 it holds

∀n ∈ N, PQgn(xn)− PQgn(x) > δ. (2.61)

Since the sequence (gn)n∈N is bounded, it possesses a weak-∗ converging subsequence in L∞(X , ζ) (the
space of ζ-essentially bounded functions) to an element g ∈ B∞(X , ζ). In particular it holds (upon
extracting a subsequence), for any y ∈ X ,

lim
n→+∞

Qgn(y) = lim
n→+∞

∫
X
k(y, z)gn(z)ζ(dz) =

∫
X
k(y, z)g(z)ζ(dz) = Qg(y).

Defining, fn = Qgn, the latter limit shows that fn converges pointwise to f = Qg. Since (gn)n∈N is
bounded in B∞(X ), the second condition in Lemma 2.33 ensures that Pfn(x)→ Pf(x) for all x ∈ X ,
by the dominated convergence theorem. This is the main difference compared to the proof in [218,
Theorem 1.6.6]. The contradiction follows similarly. Indeed, defining the positive decreasing func-
tion hn = supm>n |fm − f | we have, for any m ∈ N,

lim
n→+∞

Phn(xn) 6 lim
n→+∞

Phm(xn) = Phm(x),

so that Phn(xn)→ 0 as n→ +∞. In the end,

lim
n→+∞

Pfn(xn)− Pf(x) 6 lim
n→+∞

|Pfn(xn)− Pf(xn)|+ lim
n→+∞

|Pf(xn)− Pf(x)| = 0,

which comes in contradiction with (2.61) and concludes the proof.

2.5.3 Proof of Lemma 2.4
Let us show that ν(Qf1) > 0 for any ν ∈ P(X ). First, Lemma 2.31 in Section 2.5.2 ensures that, for
any ε > 0, there exists a compact K ⊂ X such that ν(K) > 1 − ε. Consider next a compact set Kn

of Assumption 2.1 such that K ⊂ Kn. Then, with the corresponding αn > 0 and ηn ∈ P(X ) defined
in Assumption 2.2, we have

∀x ∈ Kn, (Qf1)(x) > αnηn(1) > αn > 0.

Integrating with respect to ν leads to∫
X

(Qf1)(x)ν(dx) >
∫
Kn

(Qf1)(x)ν(dx) > αn

∫
Kn

ν(dx) = αnν(Kn) > αn(1− ε) > 0,

since K ⊂ Kn, which proves the statement. Moreover W > 1, so (2.6) implies that ν(Qf1) 6
ν(QfW ) < +∞ if ν(W ) < +∞.

Since W > 1, we immediately have that ηn(W ) > 1 > 0 for any n > 1. Now, for any n > 1 and
x ∈ Kn, Assumptions 2.1 and 2.2 lead to

αnηn(W ) 6 QfW (x) 6 γnW (x) + bn1Kn(x) < +∞,

since W is finite. Moreover, αn > 0, so that ηn(W ) < +∞ for any n > 1.

Let us conclude with the proof of (2.11). We proceed by contradiction and assume that, for any
n > n0, we have ηn(Kn) = 0, with n0 > 1 an arbitrary integer. Consider m > n0 and ϕm = 1Km > 0.
Then, using (2.8) with n = n0,

∀x ∈ Kn0 ,
(
Qfϕm

)
(x) > αn0ηn0(Km).

Using again Lemma 2.31 in Section 2.5.2, we see that for m large enough,
(
Qfϕm

)
(x) > 0 for x ∈ Kn0

and so Qfϕm 6= 0. However, for n > m, we have, using that Km ⊂ Kn (since the sets are increasing):

0 6 ηn(ϕm) = ηn(Km) 6 ηn(Kn) = 0,

since we assumed ηn(Kn) = 0 for n > n0. The contradiction with (2.9) shows that there exists n̄ > n0

such that ηn̄(Kn̄) > 0. Since n0 is arbitrary, n̄ can be chosen arbitrarily large, and this concludes the
proof of Lemma 2.4.
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2.5.4 Proof of Lemma 2.5

The proof is decomposed into three steps. First we show that the essential spectral radius of the
operator Qf considered over B∞W (X ) is zero. We next prove that the spectral radius Λ of Qf is
positive. Finally, we use the Krein–Rutman theorem to obtain that Λ is a eigenvalue of Qf with
largest modulus, and that the associated eigenvector is positive.

Step 1: Qf has zero essential spectral radius

We first perform the following decomposition, for any n > 1:

(Qf )2 = 1KnQ
f1KnQ

f + 1Kc
n
(Qf )2 + 1KnQ

f1Kc
n
Qf ,

where Kn ⊂ X are the compact sets from Section 2.2.2. Applying again Qf leads to

(Qf )3 = (1KnQ
f1Kn)2Qf + 1Kc

n
Qf (1KnQ

f )2 +Qf1Kc
n
(Qf )2 +Qf1KnQ

f1Kc
n
Qf . (2.62)

We will show that Qfn = 1KnQ
f1Kn is such that (Qfn)2 is compact on B∞W (X ), while 1Kc

n
Qf tends

to zero in operator norm. This will prove that (Qf )3 is compact as limit of compact operators in
operator norm, so the essential spectral radius of Qf in B∞W (X ), denoted by Θ(Qf ), is equal to zero.

Let us first prove that (Qfn)2 is compact on B∞W (X ) for any n ∈ N. For this, we use the ultra-
Feller property proved in Lemma 2.33 (see Section 2.5.2) to apply the Ascoli theorem. Consider a
sequence (ϕk)k∈N in B∞W (X ) such that ‖ϕk‖B∞W 6 M for some M > 0. By Assumption 2.3, the
operator Qfn is strong Feller over the compact set Kn. In particular, for ϕ ∈ B∞W (X ), ϕ1Kn ∈ B∞(X ),
so Qfnϕ is continuous over Kn and finite, so that Lemma 2.33 in Section 2.5.2 applies. Indeed, the
second condition in the lemma is easy to check since Qn1 is equal to zero outside the compact Kn.
Therefore, (Qfn)2 is ultra-Feller by Lemma 2.33. By Definition 2.32, the application x ∈ Kn 7→
(Qfn)2(x, ·) ∈M(X ) is continuous in total variation norm. Since Kn is compact in the metric space X
and P(X ) is a metric space, the Heine–Cantor theorem (Theorem 2.30 in Section 2.5.2) ensures that
this application is continuous over Kn. This means that, for any ε > 0, there exists δ > 0 such that,
for any x, x′ ∈ Kn with |x− x′| 6 δ, it holds

sup
‖ϕ‖B∞61

∣∣∣((Qfn)2ϕ
)
(x)−

(
(Qfn)2ϕ

)
(x′)

∣∣∣ 6 ε. (2.63)

Noting that Assumption 2.1 implies that 1 6 supKnW < +∞, it holds Mn = (supKnW )−1 ∈ (0, 1]
for any n > 1, so{

ϕ measurable
∣∣ ‖1Knϕ‖B∞ 6 1

}
⊃
{
ϕ measurable

∣∣ ‖1Knϕ‖B∞W 6Mn

}
. (2.64)

Since Qfn = 1KnQ
f1Kn , (2.64) shows that (2.63) becomes

sup
‖ϕ‖B∞

W
6Mn

∣∣∣((Qfn)2ϕ
)
(x)−

(
(Qfn)2ϕ

)
(x′)

∣∣∣ 6 ε.

As a consequence, if (ϕk)k∈N is such that ‖ϕk‖B∞W 6M , we see that
(
(Qfn)2ϕk

)
k∈N is equicontinuous.

By the Ascoli theorem, it therefore converges uniformly to a continuous limit onKn (since the function
is supported on Kn, we extend it by 0 on X outside Kn). Since W > 1, it also converges as a function
in B∞W (X ), showing that (Qfn)2 is a compact operator on B∞W (X ). Since Qf is bounded over B∞W (X )
and the space of compact operators is stable by composition with bounded operators [359], (Qfn)2Qf

is also compact.
We now show that the second, third and fourth operators on the right hand side of (2.62) tend

to 0 in the operator norm of B∞W (X ). For any ϕ ∈ B∞W (X ),

∥∥1Kc
n
Qfϕ

∥∥
B∞W

=

∥∥∥∥∥1Kc
n
Qfϕ

W

∥∥∥∥∥
B∞

6 ‖ϕ‖B∞W

∥∥∥∥1Kc
n

QfW

W

∥∥∥∥
B∞

6 γn‖ϕ‖B∞W .

Taking the supremum over ϕ ∈ B∞W (X ) and using γn → 0 as n→ +∞, we obtain:∥∥1Kc
n
Qf
∥∥
B(B∞W )

−−−−−→
n→+∞

0. (2.65)
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Since Qf is bounded on B(B∞W ), the second, third and fourth operators on the right hand side of (2.62)
vanish in norm as n→ +∞. As a result, (Qf )3 is the norm-limit of the compact operators (Qfn)2Qf

as n → +∞ in B(B∞W ). Since the set of compact operators over B∞W (X ) is closed in the Banach
space B(B∞W ), (Qf )3 is compact, see e.g. [359, Theorem VI.12]. Using Definition 2.26, we conclude
that Θ(Qf ) = 0. In this procedure, we see that working in the weighted space B∞W (X ) as opposed
to B∞(X ) is crucial in order to obtain the compactness of (Qf )3 from the control (2.65) provided by
the Lyapunov condition (2.6).

Step 2: The spectral radius is positive

We now show that the spectral radius Λ ofQf defined in (2.12) is positive, in order to use Theorem 2.28.
Given the definition of the operator norm, choosing some arbitrary non negative function φ ∈ B∞W (X )
with ‖φ‖B∞W 6 1 leads to ∥∥Qf∥∥B(B∞W )

>

∥∥∥∥QfφW
∥∥∥∥
B∞

>

(
Qfφ

)
(x0)

W (x0)
,

where x0 ∈ X is arbitrary. We now consider a compact set corresponding to some n = n̄ as defined in
Lemma 2.4, which satisfies ηn̄(Kn̄) > 0, and take x0 ∈ Kn̄. For any non negative function φ ∈ B∞W (X )
with ‖φ‖B∞W 6 1,

ηn̄
(
Qfφ

)
=

(∫
Kn̄

(Qfφ)(x) ηn̄(dx) +

∫
X\Kn̄

(Qfφ)(x) ηn̄(dx)

)
>
∫
Kn̄

αn̄ηn̄(φ) ηn̄(dx) > αn̄ηn̄(φ) ηn̄(Kn̄),

(2.66)
where we used (2.8) with n = n̄. Iterating the inequality shows that

∀ k > 1, ηn̄
(
(Qf )kφ

)
> αkn̄ηn̄(Kn̄)kηn̄(φ).

This leads to the following lower bound on the operator norm of (Qf )k:

∥∥(Qf )k
∥∥
B(B∞W )

>

(
(Qf )kφ

)
(x0)

W (x0)
=

(
Qf ((Qf )k−1φ)

)
(x0)

W (x0)

> αn̄
ηn̄
(
(Qf )k−1φ

)
W (x0)

>
αkn̄ηn̄(Kn̄)k−1

W (x0)
ηn̄(φ).

Taking the power 1/k and the limit k → +∞, together with the choice φ = 1 ∈ B∞W (X ), leads to

Λ > αn̄ηn̄(Kn̄).

From Lemma 2.4, it holds ηn̄(Kn̄) > 0, hence Λ > 0 and Qf has a positive spectral radius. Note that
the existence of n̄ > 1 such that ηn̄(Kn̄) > 0 is crucial for this step.

Step 3: Existence of a principal eigenvector

In order to use Theorem 2.28, we introduce the closed cone:

KW =
{
u ∈ B∞W (X )

∣∣ u > 0
}
.

This cone is total, and the positiveness of Qf ∈ B∞W (X ) shows that QfK ⊂ K. At this stage,
Theorem 2.28 in Section 2.5.2 ensures that the spectral radius Λ is an eigenvalue of Qf of largest
modulus with an associated eigenvector h ∈ KW \ {0}.

Step 4: Positivity

We now use the irreducibility condition (2.9) to show that, for the eigenvector h obtained in Step 3,
it holds h(x) > 0 for all x ∈ X and hence ηn(h) > 0 all n > 1.

Let us show the first property by contradiction. Assume that there exists x0 ∈ X such that
h(x0) = 0. Since the sets Kn are increasing, there exists n0 such that for all n > n0 it holds x0 ∈ Kn

so that, by (2.8),
∀n > n0,

(
Qfh

)
(x0) > αnηn(h).
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Since Qfh = Λh with Λ > 0, this leads to

0 > ηn(h),

and so ηn(h) = 0 for n > n0. By the irreducibility assumption (2.9), we therefore have (Qfh)(x) = 0
for all x ∈ X . Using again Qfh = Λh, this shows that h = 0, which is in contradiction with the fact
that h is an eigenvector associated with Λ.

The second property follows from h(x) > 0 for all x ∈ X and ηn ∈ P(X ) for all n > 1. Indeed,

X =
⋃
k>1

h−1
[1

k
,+∞

)
, (2.67)

where h−1 denotes here the pre-image of h. Therefore, for a given n > 1,

ηn(X ) = ηn
(
h−1[1,+∞)

)
+
∑
k>1

ηn

(
h−1

[ 1

k + 1
,

1

k

))
= 1.

Thus, there exists N > 1 such that

ηn

(
h−1

[ 1

N
,+∞

))
>

1

2
,

so
ηn(h) > ηn

(
h1h> 1

N

)
>

1

N
ηn
(
1h> 1

N

)
>

1

2N
.

Since n > 1 is arbitrary, this shows that ηn(h) > 0 for all n > 1.

2.5.5 Proof of Lemma 2.6
A first important remark is that Qh is a Markov operator. Indeed, it is a well-defined kernel operator
(since 0 < h(x) < +∞ for all x ∈ X ), and Qh1 = Λ−1h−1Qfh = Λ−1h−1Λh = 1. Our goal is therefore
to show that the Markov operator Qh fits the framework reminded in Section 2.5.1, in particular that
it satisfies Assumptions 2.23 and 2.24.

Let us show that this operator satisfies Assumption 2.23 in Section 2.5.1 with Lyapunov func-
tion Wh−1. We first note that the normalization ‖h‖B∞W = 1 implies that Wh−1 > 1. Using Assump-
tion 2.1, we obtain

Qh(Wh−1) = Λ−1h−1QfW 6 Λ−1h−1 (γnW + bn1Kn) 6
γn
Λ
Wh−1 +

bn
Λh

1Kn .

Noting that, for all x ∈ Kn,
Λh(x) = (Qfh)(x) > αnηn(h),

with ηn(h) > 0 from Lemma 2.5, the above inequality becomes

Qh(Wh−1) 6
γn
Λ
Wh−1 +

bn
αnηn(h)

1Kn . (2.68)

Since γn can be taken arbitrarily small and ηn(h) > 0 for any n > 1, we deduce that Wh−1 is a
Lyapunov function for Qh in the sense of Assumption 2.23 in Section 2.5.1.

Remark 2.34. Let us mention that, in order for (2.68) to define a Lyapunov condition in the sense
of Assumption 2.23, it is not necessary to have γn → 0 as n→ +∞. The existence of n > 1 such that
γn < Λ is sufficient.

We will now prove that: (i) Wh−1 has compact level sets, and (ii) Qh satisfies Assumption 2.23 in
Section 2.5.1 on any compact set Kn, that is infKn Qh is lower bounded by some probability measure.
First, choosing xn /∈ Kn in Assumption 2.1 leads to

Λh(xn) = (Qfh)(xn) 6 γnW (xn),

so that
W (xn)

h(xn)
>

Λ

γn
. (2.69)
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Since γn → 0 as n → +∞, the function Wh−1 diverges outside the compact sets Kn defined in
Assumption 2.1. In other words, Wh−1 has compact level sets, which shows (i).

Next, for n > 1, consider αn > 0 and ηn ∈ P(X ) as in Assumption 2.2, so that, for any bounded
measurable function ϕ > 0 and x ∈ Kn,

Qhϕ(x) = Λ−1Q
f (hϕ)(x)

h(x)
>

1

Λ supKn h
αnηn(hϕ) > α̃n η̃n(ϕ),

with
α̃n = αn

ηn(h)

Λ supKn h
> 0, η̃n(ϕ) =

ηn(hϕ)

ηn(h)
∈ P(X ).

The latter expression is well-defined because, from Lemma 2.5, we know that 0 < ηn(h) < +∞ for any
n > 1. Moreover, 0 < supKn h < +∞ (since h ∈ B∞W (X ) and supKnW < +∞ by Assumption 2.1),
and this yields precisely (ii). Finally, (i) and (ii) show that Qh satisfies Assumption 2.24, so that Qh
satisfies the assumptions of Theorem 2.25. As a result there exist a unique µh ∈ P(X ) and constants
c > 0, ᾱ ∈ (0, 1) such that for any φ ∈ B∞Wh−1(X ),

∀ k > 0,
∥∥Qkhφ− µh(φ)

∥∥
B∞
Wh−1

6 cᾱk‖φ− µh(φ)‖B∞
Wh−1

.

Moreover, the measure µh satisfies µh(Wh−1) < +∞.

2.5.6 Proof of Lemma 2.20
From Proposition 4.1 in Chapter 4, we obtain that L + f has a largest (in modulus) eigenvalue λ
with associated smooth eigenvector h. Similarly, Lemma 2.5 shows that for any ∆t ∈ (0,∆t∗] the
operator Qf∆t has a largest (in modulus) eigenvalue Λ∆t with continuous eigenvector h∆t (since Q

f
∆t

is assumed to be strong Feller). Moreover, there is no restriction of generality in normalizing h∆t so
that η(h∆t) = 1.

We now turn to the estimate (4.23) on the spectral radius. In the notation of Chapter 4, we have
Λ∆t = e∆tλ∆t . A direct application of Theorem 4.21 below then shows that there exist ∆t∗ > 0 and
C > 0 such that λ∆t = λ+ ∆tc∆t with |c∆t| 6 C for ∆t ∈ (0,∆t∗], which is the desired result.

Finally, since Qf∆th∆t = Λ∆th∆t, the lower bound (2.54) applied to ϕ = h∆t > 0 leads to

∀x ∈ X ,
(
Qf∆t

)d T∆t e
h∆t(x) = Λ

d T∆t e
∆t h∆t(x) > αη(h∆t).

Using the estimate on Λ∆t and the normalization η(h∆t) = 1 we obtain, for ∆t ∈ (0,∆t∗] (possibly
upon decreasing ∆t∗) and x ∈ X ,

h∆t(x) > Λ
−d T∆t e
∆t αη(h∆t) > α e−∆t(λ+∆tc∆t)d T∆t e > α e−2T |λ|.

A similar computation leads to an analogous upper bounded, which shows (2.56).
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Abstract. We consider large deviations of the empirical measure of diffusion processes, as pre-
sented in the Introduction of the thesis. In a first part, we present conditions to obtain a large
deviations principle (LDP) in a Wasserstein-like topology. In particular, we derive a precise class of
unbounded functions for which the LDP holds. This provides an analogue to the standard Cramér
condition (as presented in Theorem 1.9 in Section 1.2.2) in the context of diffusion processes. This
condition turns out to be related to a spectral gap condition for a Witten–Schrödinger operator. Sec-
ondly, we study more precisely the properties of the Donsker–Varadhan rate functional associated to
the LDP. We revisit and generalize some standard duality results as well as a more original decompo-
sition of the rate functional with respect to the symmetric and antisymmetric parts of the dynamics,
which is motivated by physical and practical considerations presented in Section 1.1. Finally, we
apply our results to overdamped and underdamped Langevin dynamics, showing the applicability of
our framework in both unbounded and degenerate situations which are relevant for applications.
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3.1 Presentation

Empirical averages of diffusion processes and their convergence are commonly studied in statistical
mechanics, probability theory and machine learning, as motivated in Part I. In statistical physics,
an observable averaged along the trajectory of a diffusion typically converges to the macroscopic
average representing the stationary distribution of the system [266, 301]. For reversible dynamics, this
convergence is known to be characterized by an entropy functional [406, 25], which generalizes results
for small fluctuations such as the central limit theorem [273] or Berry-Esseen type inequalities [343],
see the discussion in Section 1.1.2. It has been shown for some time that the approach can be extended
to nonequilibrium systems by considering generalized entropy and free energy functionals, as provided
by the large deviations theory [119, 166, 406]. In a more computational perspective, studying the
convergence of empirical averages is an important problem for the efficiency of Monte Carlo Markov
Chain methods [15, 368, 363].

Since its initiation by Cramér in the 1930s [103], large deviations theory has been given many
extensions. The theory takes its origin in the study of fluctuations for sums of independent variables,
leading to the celebrated Sanov theorem [121]. Interestingly, the necessity of Cramér’s exponential
moment condition for the Sanov theorem to hold in a Wasserstein topology has been only recently
proved [424], see the presentation in Section 1.2.2 for more intuition.

Due to the above mentioned applications, it is natural to try to apply such a theory to diffu-
sions, or more generally Markovian dynamics. This is useful for instance in statistical physics, when
considering Gallavotti–Cohen fluctuation relations for irreversible systems [194, 288, 280], as well as
for characterizing dynamical phase transitions in physical systems [198, 18, 339, 346]. From a more
computational perspective, studying the rate function associated with a given dynamics is interesting
for designing better sampling strategies [363, 364, 146], which is important for instance in a Bayesian
framework [70, 47]. The approach can also be used for deriving concentration results such as Berstein-
type inequalities [195, 43] and uncertainty quantification bounds [264, 206].

However, proving a large deviations principle for correlated processes turns out to be a difficult
task. A milestone in the theory is the series of papers by Donsker and Varadhan [131, 132, 134, 135]
and the dual approach followed by Gärtner and Ellis [199, 165]. The strategy of the first is to
build explicitly the lower and upper large deviations bounds from the Tchebychev inequality and
the Girsanov theorem [416]. On the other hand, the Gärtner–Ellis theorem relies on the existence
and regularity of a free energy function (we refer again to the Introduction for a more throughout
discussion). This technique has been later related to optimal control problems through the so-called
weak convergence approach [147, 149].

Whatever strategy is chosen, proving large deviations principles for empirical measures of un-
bounded diffusions remains difficult. Indeed, proving the stability of unbounded Markov processes is
already challenging, and often relies on Lyapunov function techniques [330, 324, 362, 219]. Such a
Lyapunov function can be interpreted as an energy associated with the system, which decreases in
average and provides a control on the excursions of the process far away from the origin. This tech-
nique can be used for proving LDPs, see for instance [416, Section 9] and [124, 427, 149]. However,
the above mentioned works consider LDP in the so-called strong (resp. weak) topology, i.e. with
respect to the topology on measures associated with the convergence of measurable bounded (resp.
continuous bounded) functions. To the best of our knowledge, Wasserstein topologies (i.e. associated
with unbounded functions) for diffusions has only been addressed in [275], and [427, Section 2.2].
Unfortunately, the nonlinear approach of [275] does not allow to characterize precisely the set of func-
tions for which the LDP holds, while [427] considers a particular system (Langevin dynamics). In
both cases, the rate function is not related to the standard Donsker–Varadhan theory [133]. Our first
result is to derive the LDP in a Wasserstein topology under very natural conditions, and to express
the rate function in duality with a free energy. From a practical point of view, this allows to compute
the rate function from the free energy, a standard procedure [202, 406, 97, 337, 184].

Once a large deviations principle has been derived, providing alternative expressions of the rate
function is an important problem. Our first contribution in this direction is to derive a variational
representation of the rate function similar to the Donsker–Varadhan formula [133]. This provides a
variational representation of the principal eigenvalue for any non-symmetric linear second order dif-
ferential operator associated with a diffusion, under confinement and regularity conditions. To the
best of our knowledge, there is no such formula in an unbounded setting, a fortiori for unbounded
functions and Wasserstein topologies on probability measures. Finally, it has been shown in a pio-
neering work [49] that (in the case of a Langevin dynamics) the above mentioned duality allows to
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decompose the rate function into two parts: one corresponding to a «reversible» part and the other
to an «irreversible part» of the dynamics. We extend these results to general diffusions by using
Sobolev seminorms, a feature inspired by the small fluctuations framework developed in [273]. This
decomposition turns out to be useful for various purposes. We apply it to study the rate function of
the Langevin dynamics, in particular its dependence on the friction.

We now sketch the main results of this chapter, the precise setting being presented in Section 3.2.1.
Consider a diffusion process (Xt)t>0 over a state space X ⊂ Rd with generator L and invariant
measure µ, and the empirical measure

Lt =
1

t

∫ t

0

δXs ds, (3.1)

where δx is the Dirac mass at x ∈ X . Our first contribution is to prove a large deviations principle
with respect to µ for the empirical measure (Lt)t>0, in a Wasserstein topology associated with an
unbounded function κ : X → [1,+∞). That is, we prove the following type of long time scaling: for
Γ ⊂ P(X ),

P
(
Lt ∈ Γ

)
� e−t infν∈Γ I(ν), (3.2)

where I is a rate function. Here, P(X ) denotes the set of probability measures on X , and the above
scaling holds for the topology on measures associated with the weak convergence against functions f
satisfying

‖f‖B∞κ = sup
x∈X

|f(x)|
κ(x)

< +∞. (3.3)

As is standard for a LDP on unbounded state spaces [416, 427], our result relies on the existence of a
Lyapunov function W : X → [1,+∞) twice differentiable and such that

Ψ = −LW
W

(3.4)

has compact level sets (in words, it goes to infinity at infinity). Contrarily to previous works where this
condition implies (3.2) in a topology of bounded test functions [416, 149, 427], we show in Section 3.2
that the LDP holds for the Wasserstein topology associated with any cost function κ controlled by Ψ.
Moreover, the associated rate function I : P(X )→ [0,+∞], also called entropy, reads

∀ ν ∈ P(X ), I(ν) = sup
‖f‖B∞κ <+∞

{
ν(f)− λ(f)

}
,

where
λ(f) = lim

t→+∞

1

t
logE

[
e
∫ t
0
f(Xs) ds

]
(3.5)

is the cumulant or free energy function.
We mention that our strategy relies on the Gärtner–Ellis theorem, according to which the existence

and regularity of (3.5) implies the large deviations principle. We actually show that (3.5) is well-defined
because it matches the principal eigenvalue of the Feynman–Kac operator

ϕ 7→ E
[
ϕ(Xt) e

∫ t
0
f(Xs) ds

]
. (3.6)

A key remark for defining the above operator is that

Mt = W (Xt) e−
∫ t
0
LW
W (Xs) ds (3.7)

is a local martingale, as noted by Wu in [427]. This allows to define (3.6) for functions ϕ such that
‖ϕ‖B∞W < +∞, as soon as f is dominated by the function Ψ defined in (3.4). As a result, for any
such f , the operator (3.6) can be shown to be compact over the space of functions controlled by W
(see [199, 181]). The functional (3.5) is then obtained as the largest eigenvalue of the operator (3.6)
through a generalized Perron–Frobenius theorem (the Krein–Rutman theorem [112]). This is actually
an adaption of the strategy developped in Chapter 2 in this large deviations context.

The second part of our work consists in rewritting the large deviations functional I. For this, we
revisit [133] by showing that

∀ ν ∈ P(X ), I(ν) = sup

{
−
∫
X

Lu
u
dν, u ∈ D+

}
, (3.8)
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where D+ is an appropriate domain defined in Section 3.3, which differs from that of [133] through an
additional growth condition. This result leads to a variational formula for the largest eigenvalue λ(f)
of the operator L+ f defined on a suitable functional space through

λ(f) = sup
ν∈P(X )

{
ν(f)− I(ν)

}
.

We mention that proving (3.8) is easily realized thanks to the spectral problem associated with the
Feynman–Kac operator (3.6), relying on the recent work [181].

Finally, the variational representation (3.8) allows to generalize the results of [49] by splitting I into
two parts. This is motivated by considerations on nonequilibrium systems, as explained in Section 1.1.
More specifically, denoting by L = LS+LA the decomposition into symmetric and antisymmetric parts
of the generator with respect to the invariant measure µ, we obtain, for any ν � µ:

I(ν) =
1

4

∣∣∣∣log
dν

dµ

∣∣∣∣2
H 1(ν)

+
1

4

∣∣∣∣LA

(
log

dν

dµ

)∣∣∣∣2
H −1(ν)

,

where | · |H 1(ν) and | · |H −1(ν) refer to Sobolev seminorms defined in Section 3.2.1. Interestingly, the
proof is derived from a generalized Witten transform performed in the variational representation (3.8),
which we may therefore call variational Witten transform. This shows that, for a given invariant
measure, an irreversible dynamics (LA 6= 0) produces more entropy than a reversible one, in accordance
with the second law of thermodynamics. This decomposition is useful for instance to study the entropy
production of the Langevin dynamics, which is irreversible but has a particular structure which allows
to naturally separate its reversible and irreversible parts (see Section 1.1.1).

The chapter is organized as follows. Section 3.2 presents a large deviations principle in a Wasser-
stein topology for the empirical measure of diffusions, under Lyapunov and regularity conditions.
Section 3.3 provides a rewritting of the rate functional, and its decomposition into symmetric and an-
tisymmetric parts. Some examples of application are given in Section 3.4, in particular for overdamped
and underdamped Langevin dynamics. Section 3.5 discusses possible extensions and connections with
related works. Finally, most of the proofs are postponed to Section 3.6.

3.2 Large deviations principle

3.2.1 Setting

This section introduces the main notation used throughout the Chapter, which matches those of the
Introduction. We consider a diffusion process (Xt)t>0 evolving in X ⊂ Rd with d ∈ N∗, and satisfying
the following stochastic differential equation (SDE):

dXt = b(Xt) dt+ σ(Xt) dBt, (3.9)

where b : X → Rd, σ : X → Rd×m and (Bt)t>0 is a m-dimensional Brownian motion for some
m ∈ N∗. In order to avoid the issue with boundaries of X , we assume that either X = Rd, X = Td
or X = Td ×Rd, where Td is the d-dimensional torus (applications to other subdomains of Rd can be
treated upon appropriate modifications). The last case is motivated by applications to the Langevin
equation, where Td would be a bounded position space and Rd the unbouded momentum space (see
Section 3.4.2). The generator of the dynamics (3.9), denoted by L, reads

L = b · ∇+ S : ∇2, with S =
σσT

2
, (3.10)

where σT denotes the transpose of the matrix σ and · is the scalar product on Rd. Moreover, ∇2

denotes the Hessian matrix, while for two matrices A,B belonging to Rd×d, we write A : B = Tr(ATB).
The domain of L and the conditions on b and σ will be made precise in Section 3.2.2. The function S
takes values in the set of symmetric positive matrices (non necessarily definite). We also introduce
the carré du champs operator [21] associated with L defined by, for two regular functions ϕ, ψ:

C (ϕ,ψ) =
1

2

(
L(ϕψ)− ϕLψ − ψLϕ

)
= ∇ϕ · S∇ψ. (3.11)
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We will use the space of smooth functions with at most polynomial growth:

S =

{
ϕ ∈ C∞(X )

∣∣∣∀α ∈ Nd, ∃N > 0 such that sup
x∈X

|∂αϕ(x)|
(1 + |x|2)N

< +∞
}
,

as well as C∞c (X ) (resp. Cb(X )) the space of smooth functions with compact support (resp. continuous
and bounded).

The space of bounded measurable functions, denoted by B∞(X ), is endowed with the norm

‖ϕ‖B∞ = sup
x∈X

|ϕ(x)|.

Moreover, like in Chapter 2, we will need weighted function spaces and the corresponding probability
measure spaces, which commonly appear in Markov chain theory [330, 275, 219]. For any measurable
function W : X → [1,+∞) we define

B∞W (X ) =
{
ϕ : X → R

∣∣∣ ‖ϕ‖B∞W = sup
x∈X

|ϕ(x)|
W (x)

< +∞
}
, (3.12)

and the corresponding space of probability measures (see [379, Chapter 2] for duality results on
measure spaces):

PW (X ) =
{
ν ∈ P(X )

∣∣∣ ν(W ) < +∞
}
. (3.13)

The associated weighted total variation distance is (see for instance [219]):

∀ ν, η ∈ PW (X ), dW (ν, η) = sup
‖ϕ‖B∞

W
61

{∫
X
ϕdν −

∫
X
ϕdη

}
=

∫
X
W (x)|ν − η|(dx). (3.14)

Note that the spaces (3.12) and (3.13) are defined for an arbitrary measurable function W > 1. It
is possible to weaken the assumption W > 1 but we do not need these refinements in this work.
We denote by τ -topology the weak topology associated with the convergence of functions belonging
to B∞(X ). This means that for a sequence (νn)n∈N in P(X ), νn → ν in the τ -topology if νn(ϕ)→ ν(ϕ)
for any ϕ ∈ B∞(X ). When considering functions ϕ ∈ B∞W (X ), we denote by τW the associated
topology [427, 275], see also [124, Lemma 3.3.8] for details. When W (x) = 1 + |x|α for α > 0, this is
nothing else than the topology induced by the Wasserstein distance associated with the cost x 7→ |x|α,
see [419, Theorem 7.12]. This is why we sometimes call τW a Wasserstein-like topology.

Remark 3.1. One may wonder why we aim at using such a Wasserstein-like topology to prove the
LDP over. Our first motivation was to understand the fluctuations of the empirical average

Lt(f) =
1

t

∫ t

0

f(Xs) ds

when f is unbounded. However, if a LDP on R can be reached for Lt(f), we cannot say much about the
rate function in general. This is an important motivation for considering the empirical average (3.1)
instead, as Section 3.3 will prove.

Then, the coarsest topology which makes the application

Lt 7→ Lt(f)

continuous for the functions f ∈ B∞W (X ) is precisely the τW -topology. As a result, although other
topologies could be considered and in view of the contraction principle presented in Section 1.2.2, the
τW -topology appears as the natural framework to consider unbounded functions f while studying large
deviations principle for the empirical average (3.1).

We associate to the dynamics (Xt)t>0 the semigroup (Pt)t>0 defined through

∀ϕ ∈ B∞(X ), (Ptϕ)(x) = Ex
[
ϕ(Xt)

]
, (3.15)

where Ex stands for the expectation with respect to all realizations of the Brownian motion in (3.9), for
dynamics starting at x ∈ X . We say that µ ∈ P(X ) is invariant with respect to the dynamics (Xt)t>0

if (µPt)(ϕ) = µ(ϕ) for any ϕ ∈ Cb(X ), with the notation

(µPt)(ϕ) = µ(Ptϕ) =

∫
X
Ex
[
ϕ(Xt)

]
µ(dx).
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An equivalent condition is that µ(Lϕ) = 0 for ϕ ∈ C∞c (X ).

We now follow the path of [273, Chapter 2] for defining other useful functional spaces. For any
probability measure µ ∈ P(X ), let

L2(µ) =

{
ϕ measurable

∣∣∣∣ ∫
X
|ϕ|2 dµ < +∞

}
. (3.16)

For ϕ ∈ C∞c (X ), we introduce the seminorm

|ϕ|2H 1(µ) =

∫
X

C (ϕ,ϕ) dµ, (3.17)

and the equivalence relation ∼1 through ϕ ∼1 ψ if and only if |ϕ−ψ|H 1(µ) = 0. We denote by H 1(µ)
the adherence of C∞c (X ) quotiented by ∼1 for the norm | · |H 1(µ). Note that H 1(µ) and L2(µ) are
not subspaces of each other in general, but L2(µ) ⊂H 1(µ) if µ satisfies a Poincaré inequality and S
is positive definite. The difference between L2(µ) and H 1(µ) is however important for degenerate
dynamics, see the application in Section 3.4.2. We now construct a space dual to H 1(µ) with the
same density argument by introducing the seminorm, for ϕ ∈ C∞c (X ),

|ϕ|2H −1(µ) = sup
ψ∈C∞c (X )

{
2

∫
X
ϕψ dµ− |ψ|2H 1(µ)

}
. (3.18)

We define the equivalence relation ∼−1 on C∞c (X ) by ϕ ∼−1 ψ if and only if |ϕ−ψ|H −1(µ) = 0. The
dual space H −1(µ) is then the adherence of C∞c (X ) quotiented by ∼−1 for the H −1(µ)-norm.

Let us relate H 1(µ) to the more standard H1(µ) Sobolev space [304]. If µ is invariant with respect
to L, it holds for ϕ ∈ C∞c (X ) (using L(ϕ2) = 2ϕLϕ+ 2C (ϕ,ϕ))

|ϕ|2H 1(µ) = 2

∫
X
ϕ(−Lϕ) dµ.

In particular, when S = Id we have

|ϕ|2H 1(µ) =

∫
X
|∇ϕ|2 dµ.

In this case, | · |H 1(µ) is the standard H1(µ) Sobolev seminorm [304]. For precisions on H 1(µ) and
its relation to the central limit theorem for Markov processes, we refer to [273, Chapter 2].

Remark 3.2. The space H −1(µ) can be thought of as a weaker version of the space L2
0(µ) of functions

in L2(µ) with average zero with respect to µ. Indeed, assume for instance that ϕ ∈ L2(µ) (so ϕ ∈
L1(µ)), ϕ > 0 and |ϕ|H −1 < +∞. We may choose ψ ∈ C∞c (X ) such that

ψ(x) =

{
1, if |x| 6 1,

0, if |x| > 2,

and set ψn(x) = nψ(x/n), so |ψn|H 1(µ) 6 C for some constant C > 0 independent of n. The
definition (3.18) of the H −1(µ)-norm shows that

|ϕ|H −1(µ) > 2n

∫
|x|6n

ϕdµ− C.

Since |ϕ|H −1(µ) < +∞, we obtain by letting n→ +∞ that µ(ϕ) = 0. Since the functions of H −1(µ)
may not belong to L2(µ), this dual space generalizes L2

0(µ).

We also introduce some notation concerning the growth of functions. A function f = X → R is
said to have compact level sets if for any M ∈ R, the set{

x ∈ X
∣∣ f(x) 6M

}
is compact (with the convention that ∅ is compact). A function g is said to be negligible with respect
to f (denoted by g � f) if f/g has compact level sets, and g is said to be equivalent to f (denoted
by g ∼ f) if there exist constants c, c′ > 0 and R,R′ ∈ R such that

∀x ∈ X , c′g(x)−R′ 6 f(x) 6 cg(x) +R.
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Remark 3.3. The above definitions are useful when the state space X is unbounded. A sufficient
condition for f to have compact level sets in this case is for this function to be lower semicontinuous
and to go to infinity when |x| → +∞. If X is bounded, all these criteria are automatically met for
smooth functions.

Finally, we again denote by lim and lim the inferior and superior limits respectively, while for
a subset A ⊂ Y of a Polish space Y, Å and Ā denote the interior and closure of A for the chosen
topology on Y. The function 1A denotes the indicator function of the set A, i.e. 1A(x) = 1 if x ∈ A
and 1A(x) = 0 otherwise. For a Banach space E, B(E) refers to the Banach space of bounded linear
operators over E with the usual norm. Some elements of large deviations theory are reminded in
Section 2.5.1.

3.2.2 Statement of the main results
The large deviations principle relies on three standard assumptions: hypoellipticity of the generator,
irreducibility of the dynamics, and a Lyapunov condition. We start with our hypoellipticity assumption
(which could certainly be relaxed for particular applications, see for instance [427]). It will be useful
for proving regularization properties of the Feynman–Kac semigroup in Lemma 3.30.

Assumption 3.4 (Hypoellipticity). The functions b and σ in (3.9) belong to S d and S d×m respec-
tively, and the generator L defined in (3.10) satisfies the hypoelliptic Hörmander condition. More
precisely, L can be written as

L =

d∑
i=1

A†iAi +A0,

where (Ai)
d
i=0 are first order differential operators with coefficients belonging to S and such that the

familly {
Ai
}d
i=1

⋃{
[Ai, Aj ]

}d
i,j=0

⋃{
[[Ai, Aj ], Ak]

}d
i,j,k=0

. . .

spans Rd at any x ∈ X for a finite number of commutators nx ∈ N.

This assumption is natural in practical situations, as illustrated in the applications of Section 3.4
covering elliptic and hypoelliptic diffusions, see [244, 161, 362] for details. Note that excluding the
operator A0 from the first familly means that, if L satisfies Assumption 3.4, ∂t + L is hypoelliptic
and the transition kernel of (Xt)t>0 has a smooth density for any t > 0. This regularity requirement
comes together with a controllability condition (recall that σ takes values in Rd×m).

Assumption 3.5 (Controllability). For any x, y ∈ X and T > 0, there exists a C1-control (ut)t∈[0,T ]

in Rm such that the path (φt)t∈[0,T ] in X defined as{
φ0 = x,

φ̇t = b(φt) + σ(φt)u̇t,
(3.19)

is well-defined and satisfies φT = y.

Assumption 3.5 implies that the process is irreducible, i.e. that the transition density of (Xt)t>0

is everywhere positive, which will be used in Lemma 3.31. Note that constructing a control (ut)t∈[0,T ]

may be difficult in general [257]. However, for the overdamped and underdamped Langevin dynamics
we are interested in, building such a control turns out to be guenuinely feasible, see [324, 362, 304, 316]
and the references therein. Let us mention that the above two assumptions are not specific to our
problem of large deviations [362].

A typical idea for dealing with Markov chain stability and large deviations on an unbounded state
space is to reduce the analysis to a compact set and to control the excursions of the dynamics out of
this set with a Lyapunov function [330, 427]. Our Witten–Lyapunov condition for the dynamics reads
as follows (for the terminology, see Remark 3.11 below).

Assumption 3.6 (Witten–Lyapunov condition). There exists a function W : X → [1,+∞) of
class C2(X ), with compact level sets, and such that

Ψ = −LW
W

(3.20)
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has compact level sets. Moreover, there exists a C2(X ) function W : X → [1,+∞) with W �W and
such that, for some constants C1 > 0, C2 ∈ R,

W 2 6 C1W, Ψ ∼ −LW

W
, −2

LW

W
6 −LW

W
+ C2. (3.21)

In all what follows, we consider an arbitrary continuous function κ : X → [1; +∞) such that:

• κ� Ψ;

• κ is either bounded or has compact level sets.

Remark 3.7. Note that, since κ� Ψ and Ψ ∼ −LW
W , it holds κ� −LW

W . This fact will be frequently
used in the proofs. Moreover the conditions (3.21) are not restrictive for exponential-like Lyapunov
function as shown in Proposition 3.8 below – the idea being that W can be set to

√
W . In practice,

the auxiliary function W is used to obtain some control in the proofs of Lemmas 3.28 and 3.30 (in
particular to apply a Grönwall lemma), and it could certainly be phrased differently. The continuity
condition on κ may be relaxed for instance by assuming this function to be lower semicontinuous and
bounded on compact sets.

Although we stated Assumption 3.6 in order to fit standard conditions when considering large
deviations on unbounded state spaces [416, 427], in practice it can be obtained from a non-linear
Lyapunov condition in the spirit of [275] and [149, Condition 2.2]. This is the purpose of the next
proposition, whose proof is postponed to Section 3.6.3.

Proposition 3.8. Assume that there exists V ∈ S such that:

• V has compact level sets;

• |σT∇V | has compact level sets;

• for any θ ∈ (0, 1) it holds

− LV − θ

2
|σT∇V |2 ∼ |σT∇V |2. (3.22)

Then Assumption 3.6 is satisfied with

W (x) = eθV (x), W (x) = eεV (x),

for θ ∈ (0, 1) and ε < θ/2 small enough. Moreover it holds

Ψ ∼ |σT∇V |2.

Note that (3.22) means that the term −LV coming from the dynamics must compensate the
quadratic loss proportional to |σT∇V |2. A first consequence of Assumptions 3.4-3.6 is the ergodicity
of the dynamics.

Proposition 3.9. Under Assumptions 3.4, 3.5 and 3.6, (3.9) has a global strong solution, and the
process (Xt)t>0 admits a unique invariant measure µ ∈ PW (X ). This measure has a positive C∞(X )-
density with respect to the Lebesgue measure: there exists ρµ ∈ C∞(X ) with ρµ > 0 such that µ(dx) =
ρµ(x) dx. Moreover, the dynamics is ergodic with respect to µ: there is C, c > 0 such that

∀ t > 0, ∀ϕ ∈ B∞W (X ),
∥∥Ptϕ− µ(ϕ)

∥∥
B∞W

6 C e−ct‖ϕ− µ(ϕ)‖B∞W .

Equivalently,
∀ t > 0, ∀ ν ∈ PW (X ), dW (νPt, µ) 6 C e−ctdW (ν, µ).

Proof. The existence of a unique local strong solution is standard when Assumption 3.4 holds, see [361,
Chapter IX, Exercise (2.10)]. Assumption 3.6 then implies the existence of a > 0, b ∈ R such that

LW 6 −aW + b,

and global existence can be deduced from the above Lyapunov inequality [362]. The end of the proof is
a direct application of [362, Theorem 8.9] since Assumption 3.5 together with Assumption 3.4 ensures
irreducibility.
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We can now present the large deviations principle associated with the empirical measure of the
process (Xt)t>0 with respect to its invariant measure µ. Recall that the empirical measure of the
process is defined by

Lt =
1

t

∫ t

0

δXs ds, (3.23)

where δx denotes the Dirac mass at x ∈ X . When one considers large deviations principles for
empirical averages of the form (3.23), the topology on probability measures has to be specified. As
mentioned in the introduction, most of the proofs of LDPs consider topologies associated with bounded
measurable functions (resp. continuous bounded), the so-called strong topology or τ -topology (resp.
weak topology). We now prove that, in our setting, a LDP holds in the τκ-topology defined in
Section 3.2.1, for any function κ satisfying Assumption 3.6. The proof of Theorem 3.10 is presented
in Section 3.6.1.

Theorem 3.10. Suppose that Assumptions 3.4, 3.5 and 3.6 hold true, and consider a function κ as
in Assumption 3.6. Then,

Lt −−−−→
t→+∞

µ, (3.24)

almost surely in the τκ-topology. Moreover, the functional

f ∈ B∞κ (X ) 7→ λ(f) = lim
t→+∞

1

t
logEx

[
e
∫ t
0
f(Xs) ds

]
(3.25)

is well-defined, convex and finite, and (Lt)t>0 satisfies a LDP in the τκ-topology with the good rate
function defined by:

∀ ν ∈ P(X ), I(ν) =

 sup
f∈B∞κ

{
ν(f)− λ(f)

}
, if ν ∈ Pκ(X ) and ν � µ,

+∞, otherwise.
(3.26)

More precisely, for any τκ-measurable set Γ ⊂ P(X ), it holds

− inf
ν∈Γ̊

I(ν) 6 lim
t→+∞

1

t
log Px

(
Lt ∈ Γ

)
6 lim

t→+∞

1

t
log Px

(
Lt ∈ Γ

)
6 − inf

ν∈Γ̄
I(ν), (3.27)

where the interior and closure of Γ are taken with respect to the τκ-topology. Finally, for any ν ∈ P(X ),
it holds I(ν) = 0 if and only if ν = µ.

Our conclusion is in essence close to that of [275], but the conditions to reach it seem more natural
to us and correspond to usual conditions for proving large deviations principles in an unbounded
state space, see [427, 149] and [416, Section 9]. In particular, they allow to derive the duality rep-
resentation (3.26), and we do not need to consider non-linear operators. Our strategy (presented in
Section 3.6.1) relies on the Gärtner–Ellis theorem [199, 165, 166, 119], for which the existence of the
free-energy (3.25) is a key element (see Section 1.2.2 in Part I). The originality of our work is to
make use of the local martingale (3.7) introduced by Wu [427] in order to solve the spectral problem
associated with the Feynman–Kac operator L+ f , which proves the existence of (3.25). This directly
provides the LDP in the τκ-topology by duality. However, there may be cases in which a LDP holds
although the conditions of the Gärtner–Ellis theorem are not satisfied, for instance in the framework
of the Sanov theorem [424], so our condition may not be necessary.

Another advantage of our approach is to characterize precisely the set of functions for which a LDP
holds from the standard condition on Ψ defined in (3.20), like in [131, 416]. This condition is also used
in [427, Corollary 2.3] for proving a level 1 LDP for the Langevin dynamics. We present below a clear
connection with a spectral gap condition for the Witten–Schrödinger operator in the reversible case.
The comparison with Cramér’s condition for independent variables highlights the effect of correlations
on fluctuations.

Remark 3.11 (Reversible processes, Witten Laplacian and Cramér’s condition). Consider the fol-
lowing reversible diffusion

dXt = −∇V (Xt) dt+
√

2 dBt,

where V : X → R is a smooth potential with compact level sets. The generator of this dynamics is
L = −∇V · ∇+ ∆ and its invariant measure reads µ(dx) = Z−1 e−V (x)dx. Define

Wθ(x) = eθV (x),
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for some θ ∈ (0, 1). This is a standard choice for obtaining compactness of the evolution operator [362,
Section 8], and optimal control representations of rate functions [149], see also Proposition 3.8. An
easy computation shows that

Ψθ = −LWθ

Wθ
= θ(1− θ)|∇V |2 − θ∆V. (3.28)

However, we also know [425] that the generator L considered on L2(µ) is unitarily equivalent to the
operator

L̃ = e−
V
2 L
(
e
V
2 ·
)
,

defined on L2(dx) (a procedure also called symmetrization [404, Section 4.3]), which is actually the
opposite of the Witten Laplacian [425, 234]:

L̃ = ∆− 1

4
|∇V |2 +

1

2
∆V = −

(
−∆ + Ψ 1

2

)
. (3.29)

In this case, the condition for (3.28) to have compact level sets when θ = 1/2 is actually equivalent to a
confinement condition (or spectral gap condition [235]) for the Witten–Schrödinger operator L̃ defined
in (3.29). In that sense, Assumption 3.6 is a natural generalization of a spectral gap condition for the
Witten Laplacian in the case of possibly non-reversible dynamics. This is why we call Assumption 3.6
a Witten–Lyapunov condition.

We now compare this Witten–Lyapunov condition to Cramér’s exponential moment condition in
the case of independent variables of law µ. Consider the case when V (x) = |x|q for q > 1, for which
Assumption 3.6 is satisfied by application of Proposition 3.8. The standard Cramér’s condition in the
case of independent variables states that the empirical measure

1

n

n∑
i=1

δXi

satisfies a large deviations principle in the τκ-topology if and only if (see [424, Theorem 1.1] recalled
in Section 1.2.2):

∀ θ ∈ R,
∫
X

eθκdµ < +∞.

If µ(dx) ∝ e−|x|
q

dx, a sufficient condition for the above condition to hold is to choose κ(x) = 1 + |x|α
with 0 6 α < q. On the other hand, the Witten–Lyapunov potential (3.28) reads in this case

Ψθ(x) = θ(1− θ)q2|x|2(q−1) − θq(q − 1)|x|q−2,

so that we may choose κ(x) = 1 + |x|α for 0 6 α < 2(q − 1). When comparing the two conditions, we
obtain the following different situations depending on q:

• q > 2 (super-Gaussian case): 2(q − 1) > q, the Witten–Lyapunov condition is less restrictive
than Cramér’s condition;

• q = 2 (Gaussian case): 2(q − 1) = q, the two conditions are equivalent;

• q ∈ (1, 2) (sub-Gaussian case): 2(q− 1) < q, the Witten–Lyapunov condition is more restrictive
than Cramér’s condition.

This simple example shows that considering a correlated system instead of independent variables has a
non-trivial effect on the stability of the system. Depending on the confinement potential, the Witten–
Lyapunov condition for (3.28) to have compact level sets can be more or less restrictive than Cramér’s
condition for independent variables distributed according to the invariant measure µ. Finally, we
remark that for q ∈ (1, 3/2), the process is heavy-tailed in the sense that 2(q − 1) < 1 and the
observable f(x) = x (assuming d = 1) does not satisfy a LDP. In other words, the average position of
the process defined by

1

t

∫ t

0

Xs ds

a priori does not satisfy a large deviations principle at speed t.

We finally mention that, in the case where the observable f grows faster than the potential Ψ, it
seems possible to derive a level 1 large deviations principle at a speed smaller than t. We refer to [342]
for a recent account dealing with the case of an Ornstein–Uhlenbeck process, and to [54, 17] for related
issues.
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We close this section with a practical corollary of Theorem 3.10 which generalizes the level 1 LDP
proved in [427, Corollary 2.3]. It is a classical application of the contraction principle presented in
Section 1.2.2.

Corollary 3.12 (Level 1 large deviations principle). Suppose that Assumptions 3.4, 3.5 and 3.6 hold
true and consider a function f ∈ B∞κ (X ). Then, the function

θ ∈ R 7→ λf (θ) = lim
t→+∞

1

t
logEx

[
eθ
∫ t
0
f(Xs) ds

]
(3.30)

is well-defined and differentiable. Moreover,

Lt(f) =
1

t

∫ t

0

f(Xs) ds −−−−→
t→+∞

∫
X
f dµ

almost surely, and Lt(f) satisfies a large deviations principle in R at speed t with good rate function
given by

∀ a ∈ R, If (a) = inf
{
I(ν), ν ∈ P(X )

∣∣ ν(f) = a
}
, (3.31)

where I is defined in (3.26). Moreover, it holds

If (a) = sup
θ∈R

{
θa− λf (θ)

}
. (3.32)

As already noted in Section 1.3.1, Corollary 3.12 is useful for practical applications, since (3.32)
is a natural way to estimate the rate function If associated with an observable f , see also [202, 377,
397, 97, 184] and the numerical method proposed in Chapter 5.

Proof. For f ∈ B∞κ (X ), the application Lt ∈ Pκ(X ) 7→ Lt(f) ∈ R is continuous in the τκ-topology [124,
Lemma 3.3.8]. Therefore, Lt(f) obeys a large deviations principle in R by the contraction princi-
ple [119, Theorem 4.2.1], with good rate function given by (3.31). Moreover, one can redo the proofs
leading to Theorem 3.10 and show that λf defined in (3.30) is smooth and well-defined on R. This
implies that a LDP with good rate function (3.32) holds through the Gärtner–Ellis theorem applied
in R. Since the rate function is unique, the expressions (3.31) and (3.32) coincide.

3.3 Decomposition of the rate function
Our goal in this section is to rewrite I in various ways, which is useful for theoretical understanding
and practical purposes. In Section 3.3.1, we first show an extension of the standard Donsker–Varadhan
formulation for I. This result is easily obtained by making use of the spectral analysis of the operator
L + f for f ∈ B∞κ (X ), which is presented in Section 3.6.1. We then apply this result to obtain a
variational representation for the principal eigenvalue λ(f) of the operator L+f . Next, in Section 3.3.2,
we split the expression of the rate function into symmetric and antisymmetric parts of the dynamics,
extending the work [49] to general diffusions. Such a decomposition will prove useful in Section 3.4
to compare the entropy of overdamped and underdamped Langevin dynamics. Most of the proofs of
this section are postponed to Section 3.6.2.

3.3.1 Donsker–Varadhan variational formula
We start with the variational representation of the entropy. Our proof, which can be found in Sec-
tion 3.6.2.1, is an adaption of [124, Lemma 4.2.35] relying on the Feynman–Kac operator and its
spectral elements.

Proposition 3.13. The rate function defined in (3.26) admits the following representation:

∀ ν ∈ P(X ), I(ν) = sup

{
−
∫
X

Lu
u
dν, u ∈ D+

}
, (3.33)

where
D+ =

{
u ∈ B∞W (X )

∣∣∣ u > 0, −Lu
u
∈ B∞κ (X )

}
. (3.34)

In particular, the functional defined in (3.33) is equal to +∞ if ν /∈ Pκ(X ) or ν is not absolutely
continuous with respect to µ.
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This result is standard when X is compact [133], but does not seem to be known for an unbounded
space X and for the τκ-topology we consider. In this situation the space D+ has to be designed
with caution (in particular, D+ is not empty since it contains the functions of the form u = eψ for
ψ ∈ C∞c (X )). Note also that the last statement of Proposition 3.13 is consistent with the Fenchel
definition (3.26) of the rate function. In order to get some intuition on the formula (3.33), let us
mention that the proof relies on replacing the maximum over functions u ∈ D+ by the supremum over
eigenfunctions hf satisfying

(L+ f)hf = λ(f)hf ,

for f ∈ B∞κ (X ). The above equation rewrites, since hf > 0,

−Lhf
hf

= f − λ(f).

By integrating with respect to a measure ν ∈ Pκ(X ) we find (3.33) on the left hand side, and the
Fenchel transform (3.26) on the right hand side. The functional spaces associated with f and hf
motivate the choice of D+.

A natural consequence of Proposition 3.13 is the following variational representation for the prin-
cipal eigenvalue. The proof, postponed to Section 3.6.2.2, relies on the convexity of the cumulant
function to invert the Fenchel transform (3.26).

Corollary 3.14. For f ∈ B∞κ (X ), the principal eigenvalue λ(f) associated with the operator L + f
over B∞W (X ) is isolated and admits the following representation:

λ(f) = sup
ν∈Pκ

{
ν(f)− I(ν)

}
, (3.35)

where I is defined in (3.33).

Remark 3.15. Corollary 3.14 may seem anecdotal, but it provides a variational representation for
the principal eigenvalue of non-symmetric diffusion operators, as pioneered by Donsker and Varadhan
in their seminal paper [133] for a compact space X . To the best of our knowledge, this formula had not
been shown in an unbounded setting, for which we need to introduce the «generalized domain» D+ de-
fined in (3.34). However, our set of assumptions implies that the largest eigenvalue λ(f) is isolated for
any f (because of the compactness of the resolvent provided by Lemma 3.32), whereas in [133], (3.35)
may be the supremum of the essential spectrum of the operator. This suggests that (3.35) holds under
weaker assumptions. A possible approach for such a generalization may be to consider different meth-
ods for studying the long time behaviour of unnormalized semigroups, see for instance [89, 24, 91] or
to resort to more subtle spectral analysis tools [426, 428, 195, 43].

3.3.2 Entropy decomposition: symmetry and antisymmetry
Our goal is now to provide refined expressions for the rate function I in terms of symmetric and
antisymmetric parts of the dynamics, inspired in particular by [49]. In the following, for any closed
operator T , we denote by T ∗ its adjoint on L2(µ), where µ is the invariant measure of the process,
as obtained in Proposition 3.9. Considering the generator L of the diffusion (3.9), we can always
decompose it into symmetric and antisymmetric parts with respect to µ through

L = LS + LA, LS =
L+ L∗

2
, LA =

L − L∗

2
. (3.36)

It is important to note that LA is a first order differential operator (and therefore obeys the chain rule
of first order differentiation). The decomposition (3.36) then allows to separate the rate function (3.33)
into two parts. This is the purpose of the next key result, whose proof can be read in Section 3.6.2.3.
It is inspired by the computations in [49, Proposition 2], which we simplify and generalize here through
a variational Witten transform and the use of the Sobolev spaces introduced in Section 3.2.1. The
algebra of the proof also suggests to consider I(ν) for probability measures ν of the form dν = ev dµ.

Theorem 3.16. Suppose that Assumptions 3.4, 3.5 and 3.6 hold true, consider a measure ν ∈ Pκ(X )
such that ν � µ and dν = ev dµ with v ∈ H 1(ν) and LAv ∈ H −1(ν). Then, the rate function I
defined in (3.33) admits the following decomposition:

I(ν) = IS(ν) + IA(ν), (3.37)
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where
IS(ν) =

1

4
|v|2H 1(ν) (3.38)

and
IA(ν) =

1

4

∣∣LAv
∣∣2
H −1(ν)

. (3.39)

Theorem 3.16 expresses the rate function as the sum of dual norms of the symmetric and anti-
symmetric parts of the dynamics. Note also that we consider a measure of the form dν = ev dµ, that
is the Radon–Nikodym derivative of ν with respect to µ is positive. However, we believe that we can
consider more general measures ν, see Remark 3.36 in the proof. Since the measure ν at hand appears
both inside the norms and in the definition of the norms themselves, a possibly clearer rewriting is
the following:

I(ν) =
1

4

∣∣∣∣log
dν

dµ

∣∣∣∣2
H 1(ν)

+
1

4

∣∣∣∣LA

(
log

dν

dµ

)∣∣∣∣2
H −1(ν)

.

Moreover, the symmetric part of the rate function (3.38) can be written as a Fisher information for
the invariant measure µ, a standard result [199]: denoting by ρ = dν/dµ, it holds

IS(ν) =
1

4

∫
X

∇ρ · S∇ρ
ρ

dµ.

The next corollary builds upon (3.39) by rewritting IA using a Poisson equation, which can be
manipulated more easily. The proof can be found in Section 3.6.2.4.

Corollary 3.17. Suppose that Assumptions 3.4, 3.5 and 3.6 hold true, and consider κ as in Assump-
tion 3.6. Consider a measure ν ∈ Pκ(X ) such that dν = evdµ with v ∈ H 1(ν) and LAv ∈ H −1(ν).
Then, the antisymmetric part of the rate function (3.39) reads

IA(ν) =
1

4

∫
X

C (ψv, ψv) dν, (3.40)

where ψv is the unique solution in H 1(ν) to the Poisson equation

∇̃(S∇ψv) = LAv, (3.41)

the symmetric matrix S being defined in (3.10) and ∇̃ denoting the adjoint of the gradient operator
in L2(ν).

It has been known for a long time [133] that the rate function of a reversible process is a Fisher
information as in (3.38). The antisymmetric part of the rate function has been less investigated,
although an expression like (3.40) already appears in [199] (see also [363, 49]). However, our setting
provides natural well-posedness conditions for both parts of the rate function to be finite. Interestingly,
the solution ψv of (3.41) can be formally represented through [304]

ψv =

∫ +∞

0

etLν (LAv) dt,

where Lν = −∇̃(S∇ · ). In particular, the uniquesness of ψv is a consequence of the definition of H 1(ν)
through equivalence classes, see Section 3.2.1. Then, the stochastic process (Xν

t )t>0 associated with Lν
is reversible with respect to ν. Denoting by e−Vν the density of ν with respect to the Lebesgue
measure, (Xν

t )t>0 is solution to the following SDE:

dXν
t = −S∇Vν(Xν

t ) dt+∇ · S(Xν
t ) dt+ σ(Xν

t )dBt.

Finally (3.40) takes the form

IA(ν) =
1

4

∫ +∞

0

Eν
[(
LAv

)
(Xν

0 )
(
LAv

)
(Xν

t )
]
dt. (3.42)

The antisymmetric part of the entropy is then the autocorrelation of LAv along a reversible process
that realizes the fluctuation corresponding to the measure ν, with some optimality in the sense that it
minimizes the non-reversible part (3.39) of the entropy. From a mathematical point of view, it seems
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interesting to relate (3.42) to the so-called level 2.5 of large deviations [25, 98], since this approach
consists in considering joint fluctuations of the empirical measure and the associated empirical current.
In this case, the large deviations function is explicit: this reflects the fact that a Markov process is
characterized entirely by its density and current. Exploring further the connection between (3.42)
and level 2.5 large deviations is an interesting direction for future works.

Remark 3.18. It is also possible to consider the adjoint L∗ not with respect to the invariant measure µ,
but instead a reference measure µref such that

L∗ = LS − LA + ξ,

for a measurable function ξ. The measure µref may be an equilibrium measure for systems subject to
a small external nonequilibrium forcing. In [49], the technique is used to study atom chains in contact
with an inhomogeneous heat bath, µref being the Gibbs measure associated with a fixed temperature
profile. This leads to an additionnal term −

∫
X ξ dν in the expression of the rate function (3.37), as

can be readily checked by a straightforward adaption of the proof.

3.4 Applications
In order to illustrate the interest of the results presented above, we come back to the two dynamics
introduced in Section 1.1.1: the overdamped and underdamped Langevin dynamics.

3.4.1 Overdamped Langevin dynamics
In this section, we come back to the setting of Remark 3.11 by considering a diffusion process over
X = Rd subject to

dXt = b(Xt) dt+
√

2 dBt, (3.43)

where b : Rd → Rd is a smooth function and (Bt)t>0 is a d-dimensional Brownian motion. This
corresponds to (3.9) with σ =

√
2, in which case the generator reads

L = b · ∇+ ∆.

We will treat the reversible case where b = −∇V for a smooth potential V , and b = −∇V + F for a
smooth function F such that ∇ · (F e−V ) = 0. In both cases, the invariant probability measure µ of
the process is (assuming e−V ∈ L1(X ))

µ(dx) = Z−1e−V (x)dx, Z =

∫
X

e−V < +∞. (3.44)

When b = −∇V , the dynamics (3.43) is reversible (i.e. L∗ = L, where L∗ denotes the adjoint
of L in L2(µ)). We now give a standard condition on V under which the framework developped in
Sections 3.2 and 3.3 applies.

Assumption 3.19. The potential V ∈ S has compact level sets, satisfies e−V ∈ L1(X ) and, for any
θ ∈ (0, 1), it holds

(1− θ)|∇V |2 −∆V −−−−−→
|x|→+∞

+∞. (3.45)

This assumption is satisfied for smooth potentials growing like |x|q for q > 1 at infinity, and it also
implies that the invariant probability measure µ satisfies a Poincaré inequality [20]. Similar conditions
are derived in [275] in the context of large deviations. The next proposition is a direct application of
Propositions 3.8 and 3.9, Theorem 3.10 and Corollary 3.17 (recall the definition (3.14) of the weighted
total variation distance dW ).

Proposition 3.20. Under Assumption 3.19, the process (3.43) with b = −∇V admits the function

W (x) = eθV (x)

for any θ ∈ (0, 1) as a Lyapunov function in the sense of Assumption 3.6. For any fixed θ ∈ (0, 1),
there exist C, c > 0 such that for any initial measure ν ∈ PW (X ),

dW (νPt, µ) 6 C e−ctdW (ν, µ).
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Moreover, the function

Ψ = −LW
W

= θ
(
(1− θ)|∇V |2 −∆V

)
(3.46)

has compact level sets and, for any κ : X → [1,+∞) bounded or with compact level sets and such that

Ψ(x)

κ(x)
−−−−−→
|x|→+∞

+∞,

the empirical measure

Lt =
1

t

∫ t

0

δXt ds

satifies a large deviation principle in the τκ-topology. The good rate function is defined by: for all ν ∈
Pκ(X ) with dν = ev dµ = ρ dµ,

I(ν) =
1

4

∫
X
|∇v|2 dν =

1

4

∫
X

|∇ρ|2

ρ
dµ, (3.47)

and I(ν) = +∞ otherwise.

In this reversible example, we see that the rate function is only defined through its symmetric
part (3.38), as shown in Theorem 3.16. We now consider a modification of this dynamics when a
divergence-free drift is added. The next proposition is an extension of the examples proposed in [363]
to the unbounded state space case.

Proposition 3.21. Suppose that Assumption 3.19 holds and consider the diffusion process:

dXt =
(
−∇V (Xt) + F (Xt)

)
dt+

√
2 dBt,

with F a smooth vector field such that ∇ · (F e−V ) = 0 and

F · ∇V
Ψ

−−−−−→
|x|→+∞

0,

where Ψ is defined in (3.46). Then LS = −∇V · ∇+ ∆ and LA = F · ∇. Moreover

ΨF = − (L+ F · ∇)W

W
= θ
(
(1− θ)|∇V |2 −∆V − F · ∇V

)
∼ Ψ, (3.48)

and (Xt)t>0 satisfies an LDP in the τκ-topology for any function κ bounded, or with compact level
sets and such that

Ψ(x)

κ(x)
−−−−−→
|x|→+∞

+∞.

The associated rate function IF reads: for any ν with dν = ev dµ and v ∈ H 1(ν) together with
F · ∇v ∈H −1(ν),

IF(ν) =
1

4

∫
X
|∇v|2 dν +

1

4

∫
X
|∇ψv|2dν,

where ψv is the unique H 1(ν) solution to

−∆ψv +∇(V − v) · ∇ψ = F · ∇v.

Proposition 3.21 shows that in this simple case, the equilibrium and nonequilibrium dynamics
admit a LDP for the same class of functions but with different rate functions, the irreversible dynamics
producing more entropy. It is therefore an extension of the case treated in [363, Theorem 2.2]. As
for this result, Proposition 3.21 can be used to design algorithms with accelerated convergence to
equilibrium, see also [248, 249, 146]. A setting in which Proposition 3.21 typically applies is when
V (x) = |x|q for some q > 1 and F = A∇V with A ∈ Rd×d such that AT = −A (see [363]).
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3.4.2 Underdamped Langevin dynamics
We now apply our framework to the underdamped Langevin dynamics. A first nice feature of our
results is that, compared to [427], we obtain a stronger result with similar assumptions – that is
our LDP for the empirical measure holds for a finer topology than the one associated with bounded
measurable functions. Note however that [427, Corollary 2.3] obtains results similar to ours for a
contraction of the rate function (level 1 LDP). In addition, Theorem 3.16 and Corollary 3.17 allow to
obtain fine results on the dependency of the rate function on the friction parameter γ.

We start describing the Langevin equation in Section 3.4.2.1, before stating the large deviations
principle in Section 3.4.2.2. Finally Section 3.4.2.3 provides asymptotics on the rate function depending
on the friction.

3.4.2.1 Description of the dynamics

The dynamics is set on X = Rd × Rd, with (Xt)t>0 = (qt, pt)t>0 ∈ Rd × Rd evolving as{
dqt = pt dt,

dpt = −∇V (qt) dt− γpt dt+
√

2γ dBt,
(3.49)

where γ > 0 is a friction parameter, V : Rd → R is a smooth potential, and (Bt)t>0 is a d-dimensional
Brownian motion. We could also consider the easier case where the position space is bounded (q ∈ Td)
but leave this easy modification to the reader. The generator of the dynamics is

Lγ = Lham + γLFD, (3.50)

where
Lham = p · ∇q −∇V · ∇p, LFD = −p · ∇p + ∆p.

The operator Lγ leaves invariant the measure

µ(dx) = µ(dq dp) = µ̄(dq)ω(dp), µ̄(dq) = Z−1
q e−V (q)dq, ω(dp) = (2π)−d/2e−

p2

2 dp. (3.51)

The invariant measure (3.51) can also be written

µ(dq dp) = Z−1e−H(q,p) dqdp, (3.52)

where

H(q, p) = V (q) +
p2

2
(3.53)

is the Hamiltonian of the system, and we assume that the normalization constant Z in (3.52) is
finite. In (3.50), the Liouville operator Lham corresponding to the Hamiltonian part of the dynamics
is antisymmetric in L2(µ). On the other hand, the fluctuation-dissipation part with generator LFD is
symmetric in L2(µ), so that LA = Lham and LS = γLFD with the notation of Section 3.3.2.

Before turning to the LDP associated with the Langevin dynamics (3.49), we give some intuition
on the behaviour of the process as γ varies. First, it is clear that in the small γ limit, (3.49) becomes
the Hamiltonian dynamics {

dqt = pt dt,

dpt = −∇V (qt) dt.

To be more precise, we introduce the process (Qγt , P
γ
t ) = (qt/γ , pt/γ) where (qt, pt)t>0 is solution

to (3.49). It can then be shown that, in the limit γ → 0, the Hamiltonian H(Qγt , P
γ
t ) converges to

an effective diffusion on a graph [192, 193, 191, 220]. In particular the relevant time scale in the
underdamped limit is γ−1t.

On the other hand, in the limit γ → +∞ and under appropriate rescaling, we recover the over-
damped dynamics studied in Section 3.4.1. To see this, we integrate the second line in (3.49) to
obtain

pt − p0 = −
∫ t

0

∇V (qs) ds− γ(qt − q0) +
√

2γBt.

By introducing now Qγt = qγt and P
γ
t = pγt, this becomes

Qγt −Q
γ
0 =

P γ0 − P
γ
t

γ
−
∫ t

0

∇V (Qγs ) ds+
√

2Bt.
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When γ → +∞, we observe that Q∞t converges formally at speed 1/γ towards the solution of (3.43),
see [350, Section 6.5]. The relevant time scale in the overdamped limit is therefore γt. These remarks
will be of interest when studying the rate function below.

3.4.2.2 Large deviations

In order to obtain a large deviations principle for (3.49), let us make the following classical assumption
on the growth of the potential [324, 277, 304, 427].

Assumption 3.22. The potential V ∈ S has compact level sets, satisfies e−V ∈ L1(X ) and there
exist cV > 0, CV ∈ R such that

q · ∇V (q) > cV |q|2 − CV .

We can now find a Lyapunov function for (3.49) by following e.g. [427, 399, 324], as made precise
in Section 3.6.4. Recall that the Hamiltonian H is defined in (3.53).

Lemma 3.23. Suppose that (Xt)t>0 = (qt, pt)t>0 solves (3.49) where V satisfies Assumption 3.22.
Then for any γ > 0 and θ ∈ (0, 1), there exists ε > 0 such that

W (q, p) = eθH(q,p)+εq·p (3.54)

is a Lyapunov function in the sense of Assumption 3.6. More precisely, for any γ > 0 and θ ∈ (0, 1),
there exist ε > 0 and a, b, C > 0 such that

−LγW
W

> a|q|2 + b|p|2 − C.

The Lyapunov function (3.54) can be adapted to cases where V has singularities, see [239, 316].
We can now deduce our main theorem on the Langevin dynamics, since Assumptions 3.4 and 3.5 are
readily satisfied, see for instance [324].

Theorem 3.24. Assume that (Xt)t>0 = (qt, pt)t>0 solves (3.49) where V satisfies Assumption 3.22,
and consider κ(q, p) = 1 + |q|α + |p|β with α ∈ [0, 2), β ∈ [0, 2). Then (Xt)t>0 is ergodic with respect
to the measure µ in the sense of Proposition 3.9, with Lyapunov function defined in (3.54). Moreover,
the empirical measure

Lt =
1

t

∫ t

0

δ(qs,ps) ds

satisfies a LDP in the τκ-topology. Finally, for any ν ∈ Pκ(X ) such that dν = ev dµ with v ∈H 1(ν)
and Lhamv ∈H −1(ν), the rate function reads

Iγ(ν) =
γ

4

∫
X
|∇pv|2 dν +

1

4γ

∫
X
|∇pψ|2 dν, (3.55)

where ψ is the unique solution in H 1(ν) to the Poisson problem:

−∆pψ + (p−∇pv) · ∇pψ = Lhamv. (3.56)

The proof of Theorem 3.24 is a direct application of the results of Sections 3.2 and 3.3. For the
expression of the rate function, we use (3.41) and (3.50) together with the fact that in this case, the
matrix S defined in Section 3.2.1 reads

S = γ

(
0 0
0 Id×d

)
∈ R2d×2d.

While κ can be chosen independently of the friction γ, it is interesting to note the dependency of the
rate function (3.55) with respect to this parameter. We discuss more precisely the scaling of the rate
function with respect to γ in the next section, depending on the form of ν.
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3.4.2.3 Low and large friction asymptotics

The next corollary shows how the decomposition (3.55) allows to identify the most likely fluctuations
in the overdamped and underdamped limits. By this we mean that, when γ → 0 or γ → +∞, most
fluctuations become exponentially rare in γ, but some of them are associated with rate functions that
vanish as γ → 0 and γ → +∞. The expression of these typical fluctuations is motivated by the
discussion on the overdamped and underdamped limits in Section 3.4.2.1, from which the scalings of
the rate function appear natural. Recall the definition of the marginal in position µ̄ in (3.51).

Corollary 3.25. Suppose the assumptions of Theorem 3.24 hold true.

• Overdamped limit γ → +∞. Take a measure ν ∈ Pκ(X ) that has equilibrated in speed, i.e. such
that v(q, p) = v(q) with v ∈H 1(ν) and p · ∇qv ∈H −1(ν). Then, for any γ > 0,

Iγ(ν) =
1

4γ

∫
Rd
|∇v(q)|2 ν̄(dq), (3.57)

where ν̄ = evµ̄.

• Hamiltonian limit γ → 0. Consider a Hamiltonian fluctuation, i.e. dν = ev dµ with v(q, p) =
g(H(q, p)) ∈H 1(ν) for g ∈ C1(R), where H is defined in (3.54). Then, for any γ > 0,

Iγ(ν) =
γ

4

∫
X

∣∣pg′(H(q, p)
)∣∣2ν(dq dp). (3.58)

The proof is an immediate consequence of (3.55).

Proof. Consider first the case where dν = ev dµ with v(q, p) = v(q). We have

γ

4

∫
X
|∇pv|2 dν = 0.

Next, (3.56) becomes
−
(
∆p − p · ∇p

)
ψ(q, p) = p · ∇qv(q).

The solution to this equation is ψ(q, p) = −p · ∇qv(q) which indeed belongs to H 1(ν) since Lhamv ∈
H −1(ν) (in fact we may add to ψ any function depending on q only but the solutions would be
equivalent by definition of the space H 1(ν) in Section 3.2.1). Plugging this solution into (3.55) leads
to (3.57).

Assume now that v(q, p) = g(H(q, p)) belongs to H 1(ν) with g ∈ C1(R). It holds

Lhamv(q, p) = g′(H(q, p))LhamH(q, p) = 0.

As a result, the solution ψ to (3.56) is ψ = 0 (again, up to a function of q only), from which (3.58)
follows since v ∈H 1(ν).

Corollary 3.25 characterizes the dominant fluctuations in the small and large friction regimes. In
the overdamped limit γ → +∞ the dominant fluctuations are in position only, and the rate function is
actually that of the overdamped limit (3.47) up to a time rescaling in t 7→ γt, which is consistent with
the discussion on the overdamped limit in Section 3.4.2.1. On the other hand, in the Hamiltonian
limit γ → 0, the dominant fluctuations have a Hamiltonian form, with the inverse time rescaling
t→ γ−1t. This is consistent with the small temperature limit of Hamiltonian systems [193].

Although Corollary 3.25 provides interesting information, its structure is quite rigid. For instance,
in the overdamped limit, we consider only position-dependent perturbation, which is not realistic. We
now refine the asymptotics by considering the next order correction in γ for the perturbation in both
regimes, which shows the robustness of the analysis.

Corollary 3.26. Suppose the assumptions of Theorem 3.24 hold true.

• Overdamped limit γ → +∞. Consider the measure νγ ∈ Pκ(X ) defined by νγ = evγdµ with
vγ(q, p) = v(q) + γ−1ṽ(q, p) where Lhamv ∈ H −1(ν), and ṽ ∈ H 1(ν) is bounded and satisfies
∇qv · ∇pṽ ∈H −1(ν) and Lhamṽ ∈H −1(ν). Then

∀ γ > 1, Iγ(νγ) =
1

4γ

[∫
X
|∇pṽ|2 dν +

∫
Rd
|∇qv|2 dν̄

]
+ O

(
1

γ2

)
, (3.59)

where ν̄ = evµ̄.
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• Hamiltonian limit γ → 0. Consider νγ = evγdµ with vγ(q, p) = g(H(q, p)) + γṽ(q, p), where g ∈
C1(R), g(H) ∈H 1(ν), and ṽ ∈H 1(ν) is bounded and satisfies Lhamṽ ∈H −1(ν). Then

∀ γ 6 1, Iγ(νγ) =
γ

4

[∫
X

∣∣pg′(H(q, p)
)∣∣2ν(dq dp) +

∫
X
|∇pψ̃|2 dν

]
+ O

(
γ2
)
, (3.60)

where ψ̃ is the unique H 1(ν)-solution to

−∆pψ̃ −
(
1− g′(H(q, p))

)
p · ∇pψ̃ = Lhamṽ. (3.61)

We believe it is also instructive to mention the relation between the rate function (3.55) and the
asymptotic variance of the Langevin dynamics. Indeed, when considering small perturbations of the
invariant measure, Corollary 3.26 shows that

Iγ ∼ min

(
γ,

1

γ

)
. (3.62)

However, the resolvent estimates in [295, Section 2.1] show that the asymptotic variance σ2
γ scales like

σ2
γ ∼ max

(
γ,

1

γ

)
. (3.63)

Since we expect the asymptotic variance to be the inverse of the rate function around the invariant
measure [363], the scalings (3.62) and (3.63) are consistent. However, as (3.55) suggests, this scaling
is no longer true for general fluctuations. We now present the proof of Corollary 3.26.

Proof. We first consider the overdamped limit γ → +∞. By boundedness of ṽ we have, for any γ > 1
and ψ ∈H 1(νγ),

e
inf ṽ
γ |ψ|2H 1(ν) 6 |ψ|

2
H 1(νγ) 6 e

sup ṽ
γ |ψ|2H 1(ν). (3.64)

Thus, the norms H 1(νγ) and H 1(ν) are equivalent for any fixed γ > 1, and the functions of H 1(νγ)
and H 1(ν) coincide (we repeatedly use this fact below, and we will use a similar argument when
γ 6 1). A similar conclusion holds for the corresponding dual norms. This consequence of the
boundedness of ṽ makes the analysis simpler.

Recall that we consider vγ = v + γ−1ṽ in the overdamped limit. The symmetric part of the rate
function is easily computed since v only depends on the position variable, namely

IS(νγ) =
γ

4

∫
X

∣∣∇p(v + γ−1ṽ)
∣∣2 ev+ ṽ

γ dµ =
1

4γ

∫
X
|∇pṽ|2 dν + O

(
1

γ2

)
,

where we used that ṽ belongs to H 1(ν) and is bounded to expand the exponential. For the antisym-
metric part, by (3.56), we have to consider the solution ψγ ∈H 1(νγ) to

−∆pψγ +

(
p− 1

γ
∇pṽ

)
· ∇pψγ = Lhamvγ .

Corollary 3.25 suggests that at leading order in γ it holds ψγ = ψ+O(γ−1) where ψ(q, p) = p ·∇qv(q).
In order to make this idea more precise we compute(

−∆p +

(
p− 1

γ
∇pṽ

)
· ∇p

)
(ψγ − ψ) =

1

γ

(
Lhamṽ +∇qv · ∇pṽ

)
.

In what follows, we denote by u = Lhamṽ + ∇qv · ∇pṽ the right hand side of the above equation.
Since ∇qv · ∇pṽ ∈ H −1(νγ) and Lhamṽ ∈ H −1(νγ) by assumption, it holds u ∈ H −1(νγ). Thus,
multiplying by ψγ − ψ and integrating with respect to νγ we obtain∫

X

∣∣∇p(ψγ − ψ)
∣∣2 dνγ = − 1

γ

∫
X

(ψγ − ψ)u dνγ .

Using the duality between H 1(νγ) and H −1(νγ) (see [273, Section 2.2 Claim F]) and (3.64) we obtain

∀ γ > 1, |ψγ − ψ|H 1(ν) 6
C

γ
|u|H −1(ν),
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where C is some constant independent of γ. This shows that ψγ = ψ + γ−1ψ̃γ with |ψ̃γ |H 1(ν) 6 C ′

for a constant C ′ > 0 and all γ > 1. Plugging this estimate into (3.55) and using that ∇pψ = ∇qv,
we obtain the second term on the right hand side of (3.59).

The arguments to prove the limit γ → 0 follow a similar path, so we only sketch the proof. First, the
boundedness of ṽ allows again to compare the Sobolev norms associated with ν and νγ for any γ 6 1
(by writting the counterpart of (3.64) in this regime). The first term on the right hand side of (3.60)
is easily obtained as in Corollary 3.25 using that g(H) ∈ H 1(ν) and ṽ is bounded. Concerning the
antisymmetric part, (3.56) now reads(

−∆p + (p−∇pvγ) · ∇p
)
ψγ = γLhamṽ,

since Lhamg(H(q, p)) = 0. Because of the scaling in γ on the right hand side of the above equation,
the solution ψγ can be expanded as ψγ = γψ̃ + O(γ2) in H 1(ν), where ψ̃ is solution to

−∆pψ̃ +
(
1− g′(H(q, p))

)
p · ∇pψ̃ = Lhamṽ.

This reasoning can be made rigorous by a precise asymptotic analysis as above. Plugging this expan-
sion into (3.55) provides the second term on the right hand side of (3.60).

3.5 Conclusion and perspectives
The goal of the work presented in this chapter was twofold. Our first aim was to provide, given a
diffusion process, a precise class of unbounded functions for which a large deviations principle holds.
This question is answered in Section 3.2 were we prove a LDP for the empirical measure in a topology
associated with unbounded functions, in relation with a Witten–Lyapunov condition. In particular,
a comparison with Cramér’s condition for independent variables shows the effect of correlations on
the stability of the SDE at hand. These results extend in several directions and refine previous
works [427, 275]. However, the necessity of our Lyapunov condition for a LDP to hold (as is known for
the Sanov theorem [424]) is still an open problem. Our second concern was to provide finer expressions
of the rate function governing the LDP, in particular in order to study the Langevin equation. We
answer to this question in two ways in Section 3.3. We first provide an alternative variational formula
for the rate function in Section 3.3.1, which gives as a by product a very general representation formula
for the principle eigenvalue of second order differential operators, without symmetry assumption.
This extends the important work of Donsker and Varadhan [133] in an unbounded setting. Next, in
Section 3.3.2, we show a general decomposition of the rate function into symmetric and antisymmetric
parts of the dynamics based on the computations in [49]. Interestingly, the proof of the result relies
on a Witten-like transform in the above mentioned variational representation of the rate function.
These results allow us to describe precisely the rate function of an irreversible overdamped Langevin
dynamics in Section 3.4.1, revisiting results from [363] in an unbounded setting. More interestingly
in Section 3.4.2 we provide, for the Langevin dynamics, asymptotics of the rate function for the
overdamped and the underdamped limits. We thus characterize the most likely fluctuations in both
regimes with a natural physical interpretation. Considering piecewise deterministic processes [39, 151,
152] (which lacks regularity) instead of the Langevin dynamics is also an interesting problem.

We would like to mention several interesting directions for future works. A first natural issue is
to rephrase our results in the optimal control framework developed e.g. in [68, 147, 149]. This is
particularly interesting for numerical purposes, since the optimal control representations can be learnt
on the fly with stochastic approximation methods [30, 58, 28, 184]. We believe that such results can
be obtained by harvesting the contraction principle provided by Corollary 3.12.

On a more theoretical ground, dual Sobolev norms have recently attracted attention in the optimal
transport community due to the so-called optimal matching problem, see for instance [291, 292] and
the references therein. With these works in mind, the dual Sobolev norm in the antisymmetric part
of the rate function described in Section 3.3.2 could be interpreted as an infinitesimal transport cost
related to the antisymmetric part of the dynamics, which is an alluring interpretation of irreversibility.
Note that the relations between optimal transport and large deviations theory have a fruitful history,
see e.g. [207].

Then, it has been known for some time in the physics literature that the empirical density of a
diffusion may not contain enough information to describe its fluctuations in an irreversible regime.
It is actually more relevant to consider the fluctuations of both the empirical density and current, a
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procedure sometimes called level 2.5 large deviations [98, 25]. This framework can be used to provide
a clear description of the rate function of irreversible dynamics. As shown in [25], such large deviations
results can be derived by Krein–Rutman arguments like those used in the present paper. Therefore, we
believe that our results can be extended to prove level 2.5 large deviations principles and characterize
precisely the admissible currents.

Finally, it is important to understand the behaviour of observables which are not covered by
our analysis. It has been recently shown [342] in the case of the Ornstein–Uhlenbeck process that
observables growing too fast at infinity with respect to the confinement are characterized by a heavy
tail behaviour. This leads in particular to a localization in time of the fluctuating trajectories, and
the Krein–Rutman strategy developped in the present paper does not apply. We therefore believe
there are several interesting open questions in this direction.
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3.6 Proofs

3.6.1 Proof of the large deviations principle

As mentioned after Theorem 3.10, our proof relies on the Gärtner–Ellis theorem [119], for which we
need several preliminary results. The key object is the functional

f ∈ B∞κ (X ) 7→ λ(f) = lim
t→+∞

1

t
logEx

[
e
∫ t
0
f(Xs) ds

]
.

As mentioned in Section 1.2.2, the Gärtner–Ellis theorem (Theorem 1.10 in Section 1.2.2) states
that if this functional is finite and Gateau-differentiable over B∞κ (X ) and (Lt)t>0 defined in (3.2) is
exponentially tight for the τκ-topology, then (Lt)t>0 satisfies a LDP in the dual space of B∞κ (X ). We
refer to Section 1.2 for more details on large deviations theory.

However, studying the range of functions f for which the functional λ is finite and Gateau-
differentiable is not an easy task. Our strategy is to prove that r(f), the largest eigenvalue in modulus
of the Feynman–Kac operator L+ f , is real for any f ∈ B∞κ (X ), and to show that it is actually equal
to the cumulant function λ(f) defined in (3.25). This amounts to showing the well-posedness and
regularity of a familly of spectral problems. For this, we use several ideas from Chapter 2, where we
show that under a Lyapunov and an irreducibility conditions, the eigenvalue problem to which λ is
associated is well defined. The seminal paper by Gärtner [199, Section 3] provides useful technical
tools, as well as [165, 427].

In all this section, we suppose that Assumptions 3.4, 3.5 and 3.6 hold true and consider a function
κ : X → [1,+∞) as in Assumption 3.6, i.e. such that κ � Ψ and either κ has compact level sets or
is bounded. We repeatedly use that κ� −LW

W in view of (3.21). We start with important properties
of key martingales that repeatedly appear in the proofs of the required technical results.

Lemma 3.27. If (Xt)t>0 is solution to (3.9), then the stochastic processes defined by

Mt = W (Xt) e−
∫ t
0
LW
W (Xs) ds and Mt = W (Xt) e−

∫ t
0
LW
W (Xs) ds (3.65)

are continuous non-negative local martingales, hence supermartingales. Moreover, it holds almost
surely

M 2
t 6 C1 etC2Mt, (3.66)

where C1 > 0 and C2 ∈ R are the constants from Assumption 3.6.

Proof. First, Itô formula shows that

dMt = σ(Xt) · ∇W (Xt) e−
∫ t
0
LW
W (Xs) ds dBt.
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Since W is C2(X ) and σ is continuous, Mt is a continuous local martingale [262]. Since it is non-
negative, it is a supermartingale by Fatou’s lemma, and the same conclusion holds for Mt. On the
other hand, (3.21) shows that for any continuous path (Xt)t>0 we have

M 2
t = W (Xt)

2 e
∫ t
0
−2LW

W (Xs) ds 6 C1W (Xt) exp

[∫ t

0

(
−LW
W

(Xs) + C2

)
ds

]
6 C1 eC2tMt,

which concludes the proof.

The use of the martingale Mt is inspired by [427] where it is considered to control return times
to compact sets. Here, it allows to define the Feynman–Kac semigroup associated with the dynam-
ics (Xt)t>0 with weight function f ∈ B∞κ (X ).

Lemma 3.28. For f ∈ B∞κ (X ), consider the Feynman–Kac operator defined as(
P ft ϕ

)
(x) = Ex

[
ϕ(Xt) e

∫ t
0
f(Xs) ds

]
. (3.67)

Then for any f ∈ B∞κ (X ), any t > 0 and any a > 0, there exist ca,t > 0 and a compact subset
Ka,t ⊂ X such that

∀x ∈ X ,
(
P ft W

)
(x) 6 e−atW (x) + ca,t1Ka,t(x). (3.68)

Moreover, for any f ∈ B∞κ (X ) and t > 0 it holds P ft ∈ B
(
B∞W (X )

)
, and (P ft )t>0 is a semigroup of

bounded operators over B∞W (X ). It has generator L+ f defined on the domain

DL,f =
{
ϕ ∈ B∞W (X )

∣∣∣ (L+ f)ϕ ∈ B∞W (X )
}
. (3.69)

Note that for any f ∈ B∞κ (X ) the domain DL,f contains C∞c (X ), but C∞c (X ) is not dense
in B∞W (X ) for the associated norm. However (P ft )t>0 generates a semigroup of bounded opera-
tors [351], so L+ f can be defined on B∞W (X ) with domain DL,f .

Proof. We first show that for any f ∈ B∞κ (X ), (P ft )t>0 is a semigroup of bounded operators onB∞W (X ),
before turning to the proof of (3.68). For a fixed f ∈ B∞κ (X ), since κ � Ψ there is c > 0 such that
for any t > 0 it holds

P ft W (x) = Ex
[
W (Xt) e

∫ t
0
f(Xs) ds

]
6 ectEx

[
W (Xt) e−

∫ t
0
LW
W (Xs) ds

]
.

Using Lemma 3.27, the supermartingale property leads to

P ft W (x) 6 ectEx [Mt] 6 ectW (x).

Thus (P ft )t>0 is a semigroup of bounded operators over B∞W (X ). This semigroup has generator L+f ,
which can be shown (although f is not regular) by using the Itô formula on smooth test functions,
see [361, Chapter VIII, Proposition 3.10]. The domain of this generator is then defined by (3.69)
through standard semigroup definitions [351].

We next prove (3.68) for a fix f ∈ B∞κ (X ), which we assume non-zero without loss of generality.
Note that

LW
W

+ f 6 −Ψ + ‖f‖B∞κ κ = −
(

1− ‖f‖B∞κ
κ

Ψ

)
Ψ.

Since Ψ has compact level sets and κ � Ψ, for any a > 0 there exists a compact set Ka ⊂ X and a
constant b0,a such that

LW
W

+ f 6 −a+ b0,a1Ka ,

which implies
(L+ f)W 6 −aW + ba1Ka ,

with ba = b0,a supKW < +∞ since W ∈ C2(X ). Therefore,

d

dt

(
eatP ft W

)
= eatP ft

(
aW + (L+ f)W

)
6 ba eat P ft 1Ka 6 ba eat P ft 1. (3.70)
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We can now bound the right hand side of the above equation with a technique similar to the one used
in [181, Section 2.3]. Indeed, for any x ∈ X ,(

P ft 1
)
(x) = Ex

[
e
∫ t
0
f(Xs) ds

]
6 Ex

[
e‖f‖B∞κ

∫ t
0
κ(Xs) ds

]
. (3.71)

Since κ� −LW
W , there exists a constant c > 0 depending on f such that

κ 6
1

‖f‖B∞κ

(
−LW

W

)
+ c.

Plugging this estimate into (3.71) and using that W > 1 leads to(
P ft 1

)
(x) 6 ect Ex

[
W (Xt) e

∫ t
0
−LW

W (Xs) ds
]

= ect Ex[Mt] 6 ectW (x),

where the last bound comes from Lemma 3.27. Therefore, using this estimate to bound the right hand
side of (3.70), we end up with

d

dt

(
eatP ft W

)
6 ba e(a+c)t W .

Integrating with respect to time leads to

(
P ft W

)
(x) 6 e−atW (x) + b̃aW (x), b̃a =

ba
a+ c

ect.

Since W �W , there exists a compact set Ka,t ⊂ X such that b̃aW 6 e−atW outside Ka,t, so that we
have

∀x ∈ X ,
(
P ft W

)
(x) 6 2 e−atW (x) +

(
b̃a sup

Ka,t

W

)
1Ka,t(x).

Consider finally a′ 6 a such that 2 e−at 6 e−a
′t (for instance by defining a′ = a− log(2)/t for a large

enough), and set Ka′,t = Ka,t and ca′,t = b̃a supKa,t W . It then holds

∀x ∈ X ,
(
P ft W

)
(x) 6 e−a

′tW (x) + ca′,t1Ka′,t(x),

which proves (3.68).

Lemma 3.28 proves crucial to obtain the compactness of the evolution operator P ft over B∞W (X ),
as noted in Chapter 2 (a result inspired by [362, Theorem 8.9]). Another key ingredient is the regu-
larization property of the evolution. The following bound on the Feynman–Kac semigroup depending
on the weight function f is one element in this direction.

Lemma 3.29. Suppose that Assumptions 3.4, 3.5 and 3.6 hold true, and fix f, g ∈ B∞κ (X ). Then,
for any t > 0, there exists Ct > 0 such that for all ϕ ∈ B∞W (X ), and all x ∈ X ,

∣∣P ft ϕ(x)− P gt ϕ(x)
∣∣ 6 ‖ϕ‖B∞W Ex

[
W (Xt)

(∫ t

0

|f(Xs)− g(Xs)| ds
)

e(‖f‖B∞κ +‖g‖B∞κ )
∫ t
0
κ(Xs) ds

]
(3.72)

Proof. Using the inequality |ea − eb| 6 |a− b| e|a|+|b| for a, b ∈ R, we first write, for x ∈ X ,∣∣∣P ft ϕ(x)− P gt ϕ(x)
∣∣∣ 6 Ex

[
|ϕ(Xt)|

∣∣∣ e∫ t0 f(Xs) ds − e
∫ t
0
g(Xs) ds

∣∣∣]
6 ‖ϕ‖B∞WEx

[
W (Xt)

∣∣∣∣∫ t

0

f(Xs) ds−
∫ t

0

g(Xs) ds

∣∣∣∣ e
∫ t
0
|f(Xs)| ds+

∫ t
0
|g(Xs)| ds

]
,

6 ‖ϕ‖B∞WEx
[
W (Xt)

(∫ t

0

|f(Xs)− g(Xs)| ds
)

e(‖f‖B∞κ +‖g‖B∞κ )
∫ t
0
κ(Xs) ds

]
,

which is the desired conclusion.

We can now use Lemma 3.29 to show an important regularization property of the Feynman–Kac
semigroup.
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Lemma 3.30. For any f ∈ B∞κ (X ), ϕ ∈ B∞W (X ), any t > 0 and any compact K ⊂ X , the func-
tion P ft (ϕ1K) is continuous.

Let us insist on the fact that the statement of Lemma 3.30 is a consequence of Hörmander’s
theorem [161, Theorem 4.1] when f has polynomial growth and is smooth. However, the result is more
difficult to obtain when f is irregular. The idea of the proof is to use the local martingales introduced in
Lemma 3.27 to show that the regularization property of Hörmander’s theorem is preserved when f does
not grow too fast. This gives a clear answer to the somehow non-optimal framework of Section 2.2.3
in Chapter 2.

Proof. We use Assumption 3.4 to revisit [199, pages 34-35] in an unbounded setting and with a hypoel-
liptic flavour. First, we note that for f ∈ C∞c (X ), the result is a direct application of Assumption 3.4
combined with Hörmander’s theorem. Indeed, for any ϕ ∈ B∞W (X ) and compact set K ⊂ X , the
function ϕ1K is bounded, so that

u(t, x) = P ft (ϕ1K)(x)

is solution to the PDE
∂tu = Lu+ fu, u(0, x) = ϕ1K(x).

Therefore, since ∂t − L − f is hypoelliptic with regular coefficients of polynomial growth (recall that
b, σ ∈ S ), [161, Theorem 4.1] ensures that u(t, ·) is C∞(X ) for any t > 0 (see also [244]). In particular,
P ft (ϕ1K) is continuous.

We now use an approximation argument inspired by [199, Section 3] for a generic function f ∈
B∞κ (X ). Consider a sequence (fn)n∈N of functions belonging to C∞c (X ) with ‖fn‖B∞κ 6 ‖f‖B∞κ for any
n ∈ N, and such that f → fn almost everywhere (such a sequence exists by Lusin’s theorem, see [379,
Chapter 2]). Using Lemma 3.29 with an additional indicator function, and since ‖fn‖B∞κ 6 ‖f‖B∞κ ,
we have for any ϕ ∈ B∞W (X ), n ∈ N and x ∈ X ,∣∣∣P ft (ϕ1K)(x)−P fnt

(
ϕ1K

)
(x)
∣∣∣ 6 ‖ϕ‖B∞W Ex

[
1K(Xt)W (Xt)

(∫ t

0

|f(Xs)− fn(Xs)| ds
)

eδ
∫ t
0
κ(Xs) ds

]
,

(3.73)
with δ = 2‖f‖B∞κ .

Our goal is now to show that P fnt (ϕ1K) converges uniformly over any compact K ′ to P ft (ϕ1K),
by proving that the right hand side of (3.73) goes uniformly to 0 over K ′. This will conclude the proof
since a uniform limit of continuous functions is continuous. We introduce to this end the events

∀m > 1, Em =

{
1

t

∫ t

0

Ψ(Xs) ds 6 m

}
, (3.74)

and fix a compact set K ′ ⊂ K. The right hand side of (3.73) can then be split into two terms

(A) = Ex
[
1K(Xt)1E cmW (Xt)

(∫ t

0

|f(Xs)− fn(Xs)| ds
)

eδ
∫ t
0
κ(Xs) ds

]
,

(B) = Ex
[
1K(Xt)1EmW (Xt)

(∫ t

0

|f(Xs)− fn(Xs)| ds
)

eδ
∫ t
0
κ(Xs) ds

]
,

for which we show convergence to 0, uniformly for x ∈ K ′, starting with (A). Since κ � −LW /W ,
there exists c > 0 such that

2δκ 6 −LW

W
+ c.

Moreover, ‖fn‖B∞κ 6 ‖f‖B∞κ , a 6 ea, and W > 1, so that

(A) 6 ect
(

sup
K
W

)
Ex
[
1K(Xt)1E cmW (Xt) e

∫ t
0
−LW

W (Xs) ds
]
.

By definition of Mt in (3.65) we have

(A) 6 ect
(

sup
K
W

)
Ex
[
1E cmMt

]
.
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The Cauchy-Schwarz inequality then shows that

(A) 6 ect
(

sup
K
W

)
W
√
Ex[M 2

t ]

(
Px
(∫ t

0

Ψ(Xs) ds > mt

)) 1
2

.

By (3.66) it holds
√
Ex[M 2

t ] 6
√
C1 eC2t/2

√
W (x). Next, by Tchebychev’s inequality and sinceW > 1,

Px
(∫ t

0

Ψ(Xs) ds > mt

)
6 e−mtEx

[
e
∫ t
0

Ψ(Xs) ds
]
6 e−mtEx

[
W (Xt) e−

∫ t
0
LW
W (Xs) ds

]
6 e−mtW (x).

As a result, we obtain

(A) 6 e−
mt
2

(
sup
K
W

)(
sup
K′

W

)√
C1 ect+C2t/2.

Therefore, for any ε > 0, we can choose m > 0 such that (A) 6 ε.
Let us now control (B), introducing gn = |f − fn|. Since κ� Ψ, it holds for some c′ > 0,

δκ 6 Ψ + c′.

Using the definition (3.74) we have

(B) 6 e(m+c′)t

(
sup
K
W

)
Ex
[
1Em

∫ t

0

gn(Xs) ds

]
6 e(m+c′)t

(
sup
K
W

)
Ex
[
1Em

∫ t

0

gn(Xs)1BcR(Xs) ds

]
︸ ︷︷ ︸

(B′)

+ e(m+c′)t

(
sup
K
W

)
Ex
[
1Em

∫ t

0

gn(Xs)1BR(Xs) ds

]
︸ ︷︷ ︸

(B′′)

,

where BR is the ball of center 0 and radius R > 0. Let us first bound (B′), which retains only the
parts of the trajectories performing excursions out of BR. Using κ� Ψ, for ε > 0 and m > 0 as fixed
above, there exist R > 0, CR > 0 such that

κ 6 ε
e−(m+c′)t

tm supKW‖f‖B∞κ
Ψ + CR1BR .

We fix R > 0 and CR > 0 such that the above inequality holds. Using again gn 6 ‖f‖B∞κ κ, we are
led to

(B′) 6 e(m+c′)t

(
sup
K
W

)
‖f‖B∞κ Ex

[
1Em

∫ t

0

κ(Xs)1BcR(Xs) ds

]
6 Ex

[
1Em

∫ t

0

ε

tm
Ψ(Xs)1BcR(Xs) ds

]
6

ε

tm
Ex
[
1Em

∫ t

0

Ψ(Xs) ds

]
6 ε,

where the last line follows from the definition (3.74) of Em. Therefore, once m is fixed, there exists
R > 0 such that for any n > 1 and x ∈ K ′, it holds (B′) 6 ε. It remains to control (B′′) in order to
obtain the uniform convergence to zero of (3.73) over K ′ as n→ +∞. In fact,

(B′′) 6 e(m+c′)t

(
sup
K
W

)∫ t

0

Ex [gn(Xs)1BR(Xs)] ds = e(m+c′)t sup
K
W

∫ t

0

Ps(gn1BR)(x) ds,

where (Ps)s>0 is the evolution semigroup defined in (3.15). Since (1BRgn)n>1 is a sequence of bounded
functions converging almost everywhere to zero and the transition kernel Ps has a smooth density for
s > 0, it follows that (Ps(gn1BR))n>1 goes uniformly to zero over compact sets for any s > 0, see
e.g. [199, 362]. Moreover, it can be shown that

δ 7→
∫ δ

0

Ps(gn1BR) ds

goes to zero when δ → 0, uniformly in x ∈ K ′ and n ∈ N. Therefore, for ε > 0, R > 0 and m > 0
fixed as above, there exist δ > 0, and n′ ∈ N such that for all n > n′ and x ∈ K ′,

0 6
∫ t

0

Ps(gn1BR)(x) ds =

∫ δ

0

Ps(gn1BR)(x) ds+

∫ t

δ

Ps(gn1BR)(x) ds 6 ε
e−(m+c′)t

supKW
. (3.75)
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Then, for some constant C > 0 and any n > n′, x ∈ K ′,

(B′′) 6 ε,

so (B′′) can be made arbitrarily small uniformly in x ∈ K ′ as n→ +∞.
Let us summarize the various approximations: for any ε > 0, we first fix m > 0 so that (A) 6 ε.

Then, we choose R > 0 large enough so that (B′) 6 ε. Finally, we take δ small enough and n large
enough in (3.75) so that (B′′) 6 ε for n > n′. As a result, for any ε > 0 there is n′ > 0 such that for
n > n′ and x ∈ K ′, it holds (A) + (B) 6 3ε.

In conclusion, the right hand side of (3.73) goes to zero uniformly as n → +∞ over any compact
set K ′. Therefore P fnt (ϕ1K) is continuous and converges uniformly over K ′ to P ft (ϕ1K), which is
therefore continuous over K ′. Since the compact K ′ ⊂ X is arbitrary, P ft (ϕ1K) is continuous over X ,
which concludes the proof.

Before presenting the main result concerning the spectral properties of the semigroup P ft and its
consequences on the definition of the cumulant function λ(f), we need the following «irreducibility»
lemma, which relies on Assumption 3.5 (this replaces the minorization condition Assumption 2.2 in
Chapter 2).

Lemma 3.31. For any time t > 0, x ∈ X and any set A ⊂ X with non-empty interior, it holds(
P ft 1A

)
(x) > 0. (3.76)

Proof. Take x ∈ X and y ∈ Å (which is possible since A has non-empty interior). By Assumption 3.5,
there exists a C1-path (φs)s∈[0,t] solving (3.19) such that φ0 = x and φt = y. We can then use the
proof of the Stroock–Varadhan support theorem, see [362, Theorem 6.1] for an overview. In particular,
Assumption 3.5 implies that [395, eq. (5.5)] is satisfied. Therefore, [395, eq. (5.6)] ensures that, for
any ε > 0,

Px
(

sup
06s6t

|Xs − φs| 6 ε

)
> 0. (3.77)

Moreover, since φt = y ∈ Å and upon reducing ε > 0 we may assume that B(y, ε) ⊂ A, where B(y, ε)
denotes the ball of center y and radius ε > 0. Recalling that f ∈ B∞κ (X ), we then obtain(

P ft 1A
)
(x) = Ex

[
1{Xt∈A} e

∫ t
0
f(Xu) du

]
> Ex

[
1{sup06s6t |Xs−φs|6ε} e−‖f‖B∞κ

∫ t
0
κ(Xu) du

]
> exp

(
− t‖f‖B∞κ sup

Sφ,ε

κ
)
Px
(

sup
06s6t

|Xs − φs| 6 ε

)
,

(3.78)

where we denote by Sφ,ε the ε-tube around the path (φs)s∈[0,t], namely

Sφ,ε =
{
x ∈ X

∣∣∃ s ∈ [0, t] with |φs − x| 6 ε
}
.

Since Sφ,ε is a bounded set and κ is continuous over X , it holds

sup
Sφ,ε

κ < +∞.

The combination of (3.77) and (3.78) leads to the desired result (3.76).

At this stage, we can adapt the spectral analysis developed in Chapter 2 to our situation. However,
we trade the minorization condition made there (Assumption 2.2) for the irreducibility granted by
Lemma 3.31.

Lemma 3.32. For any f ∈ B∞κ (X ) the operator L + f considered over B∞W (X ) has a real largest
eigenvalue r(f) with eigenspace of dimension one, and an associated continuous eigenvector hf ∈ DL,f
such that hf (x) > 0 for any x ∈ X . Moreover, it holds

(L+ f)hf = r(f)hf and − Lhf
hf
∈ B∞κ (X ), (3.79)

and hf is the only positive eigenvector of L + f (up to multiplication by a positive constant). Fi-
nally, r(f) is equal to the cumulant function defined in (3.25):

r(f) = λ(f). (3.80)
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The result of Lemma 3.32 is twofold: it entails the well-posedness of the principal eigenproblem
associated with L+ f for any f ∈ B∞κ (X ), and then identifies this principal eigenvalue with the free
energy function (3.25).

Proof. We closely follow the path of Chapter 2 and split the proof into several steps.

Step 1: Compactness of the evolution operator. We first show that, for given t > 0 and
f ∈ B∞κ (X ), the operator P ft defined in Lemma 3.28 is compact when considered on B∞W (X ). For any
ε < t/2 and any compact set K ⊂ X we have the decomposition

P ft = P ft−2ε1KP
f
ε 1KP

f
ε + P ft−2ε1KcP f2ε + P ft−2ε1KP

f
ε 1KcP fε . (3.81)

We first consider the compact sets Ka from (3.68) for a > 0 (omitting the dependence on t in the
notation since the time is fixed here) and show that 1Kc

a
P ft converges to 0 in operator norm as

a→ +∞. Indeed, for any ϕ ∈ B∞W (X ), (3.68) leads to∥∥1Kc
a
P ft ϕ

∥∥
B∞W

6 ‖ϕ‖B∞W e−at. (3.82)

Since for any a > 0, there is a compact set Ka such that (3.68) holds, we have, taking the supremum
over ϕ, that 1Kc

a
P ft tends to 0 in operator norm as a→ +∞.

We next show that P ft−2ε1KP
f
t 1K is compact over B∞W (X ) for any compact set K ⊂ X . Consider

a sequence (ϕk)k∈N bounded in B∞W (X ). Following the first step of the proof of Lemma 2.5 and using
our strong Feller result, Lemma 3.30, we see that P ft−2ε1K and P ft 1K are strong Feller operators,
so P ft−2ε1KP

f
t 1K is ultra-Feller (see Lemma 2.33 in Chapter 2). This means that the operator

P ft−2ε1KP
f
t 1K is continuous in total variation norm, so that the familly (P ft−2ε1KP

f
t 1Kϕk)k∈N is

uniformly equicontinuous. We used here that since ϕ ∈ B∞W (X ) and W is continuous, it holds 1Kϕ ∈
B∞(X ). The sequence (P ft−2ε1KP

f
t 1Kϕk)k∈N therefore converges in B∞(X ) up to extraction by

the Ascoli theorem [379, Theorem 11.28], and in B∞W (X ) since W > 1. Therefore, the operator
P ft−2ε1KP

f
t 1K sends a bounded sequence into a convergent one (up to extraction), so it is compact

in B∞W (X ) [359]. The decomposition (3.81) and the bound (3.82) then show that P ft is the limit in
operator norm of the compact operators P ft−2ε1KaP

f
t 1Ka as a → +∞, so it is compact in B∞W (X )

(see e.g. [359, Theorem VI.12]).

Step 2: Existence of the principal eigenvalue. We can now use the Krein–Rutman theorem
on the (closed) total cone KW = {ϕ ∈ B∞W |ϕ > 0} (see [112, 181] for definitions). It is clear that P ft
leaves this cone invariant. We next show that P ft has a non-zero spectral radius

Rt(f) = lim
n→+∞

∥∥∥(P ft )n
∥∥∥ 1
n

B(B∞W )
.

To this end, fix a compact set K with non-empty interior. We have shown in Lemma 3.31 that

∀x ∈ K,
(
P ft 1K

)
(x) > 0.

Since P ft 1K is continuous by Lemma 3.30, this shows that

αK = min
x∈K

(
P ft 1K

)
(x) > 0. (3.83)

Therefore, for any x ∈ K,[(
P ft

)2

1K

]
(x) = Ex

[
(P ft 1K)(Xt) e

∫ t
0
f(Xs) ds

]
> Ex

[
1K(Xt)(P

f
t 1K)(Xt) e

∫ t
0
f(Xs) ds

]
> αKEx

[
1K(Xt) e

∫ t
0
f(Xs) ds

]
= αK

(
P ft 1K

)
(x) > α2

K ,

i.e. 1K(x)(P ft )21K(x) > α2
K1K(x) for x ∈ X . Iterating the procedure for any n > 1 we get∥∥∥(P ft )n

∥∥∥
B(B∞W )

>
∥∥∥1K(P ft )n1K

∥∥∥
B∞W

>
αnK

supKW
.



130Chapter 3. Large deviations of empirical measures of diffusions in fine topologies

As a result, since 1 6 supKW < +∞, we obtain in the large n limit the following lower bound for
the spectral radius:

Rt(f) > αK > 0,

which shows that Rt(f) is positive. Since P ft is compact, [112, Theorem 19.2] ensures that Rt(f)

is a real eigenvalue of P ft with associated eigenvector hf ∈ KW (in particular, hf > 0). Using
the semigroup property of P ft and standard arguments (see [351, Theorem 2.4]), we can show that
Rt(f) = er(f)t where r(f) is the largest eigenvalue of L+ f , and hf ∈ DL,f satisfies

(L+ f)hf = r(f)hf ,

as well as
P ft hf = er(f)thf . (3.84)

Step 3: Properties of hf . For the remainder of the proof, we write for simplicity r = r(f) and
h = hf (the function f being fixed). We show here that h is continuous and positive. For any
compact K ⊂ X , (3.84) leads to∣∣∣P ft (1Kh)− erth

∣∣∣ =
∣∣∣P ft (1Kh)− P ft h

∣∣∣ =
∣∣∣P ft (1Kch)

∣∣∣ =
∣∣∣P ft (1Kce−rtP ft h

)∣∣∣
6 e−rt‖h‖B∞W ‖P

f
t ‖B(B∞W )

∣∣∣1KcP ft W
∣∣∣ .

Using Lemma 3.28 we obtain that, for any a > 0, there exists a compact set Ka such that

‖e−rtP ft (1Kah)− h‖B∞W 6 Ce−at with C = e−2rt‖h‖B∞W ‖P
f
t ‖B(B∞W ),

so that h is continuous as uniform limit of continuous functions (since P ft (1Kh) is continuous by
Lemma 3.30). Finally, since h > 0 and h is not identically equal to 0, there exists x0 ∈ X such that
h(x0) > 0. Moreover h is continuous, so there is ε > 0 for which h > 0 on B(x0, ε). By (3.84) it holds,
for any x ∈ X ,

erth(x) = (P ft h)(x) > P ft
(
h1B(x0,ε)

)
(x) >

(
inf

B(x0,ε)
h

)(
P ft 1B(x0,ε)

)
(x).

Since h > 0 on B(x0, ε) and h is continuous, infB(x0,ε) h > 0. Thus, Lemma 3.31 combined with the
previous lower bound shows that (P ft 1B(x0,ε))(x) > 0 for any x ∈ X , which allows to conclude that
h(x) > 0 for all x ∈ X .

Step 4: Properties of eigenspaces and eigenfunctions. We now show that the eigenspace
associated with h is of dimension one, and that any other eigenvector vanishes somewhere in X . For
this, we introduce the so called h-transform [275, 377, 97, 181], just like in Chapter 2. A key element
here is the fact that h(x) > 0 for all x ∈ X , which allows to define the following Markov operator, for
an arbitrary time t > 0:

Qhϕ = e−rth−1P ft (hϕ),

where h, h−1 refer here to the multiplication operators by the functions h and h−1 respectively. We now
prove that Qh is ergodic by first noting that Qh admits Wh−1 as a Lyapunov function (using (3.68)
and the normalization ‖h‖B∞W = 1 which implies that Wh−1 > 1). Moreover, we can prove that Qh
satisfies a minorization condition on any compact set. For this, consider K ⊂ X compact with non-
empty interior and denote by ηK the uniform Lebesgue measure on K. By (3.83), for any t > 0 there
is αK > 0 such that, for any measurable set A ⊂ X ,

∀x ∈ K,
(
P ft 1A

)
(x) >

(
P ft 1K∩A

)
(x) > αKηK(A).

Since h is continuous, this implies that, for any measurable ϕ > 0,

∀x ∈ K,
(
Qhϕ

)
(x) >

αK minK h

maxK h
ηK(ϕ),

where both the minimum and maximum above are finite and non-zero. This shows that Qh satifies a
minorization condition [219] over any compact set. Using Assumption 3.6, we can also show thatWh−1
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has compact level sets, see [181, Appendix E] for details. Therefore, the Markovian dynamics with
kernel Qh admits a unique invariant probability measure µh, with respect to which it is ergodic
in B∞Wh−1(X ). By this we mean that [219, Theorem 1.2] there exist ᾱ > 0 and C > 0 such that for
any ϕ ∈ B∞Wh−1(X ),

∀n > 1,
∥∥(Qh)nϕ− µh(ϕ)

∥∥
B∞
Wh−1

6 Ce−ᾱn‖ϕ− µh(ϕ)‖B∞
Wh−1

, (3.85)

and it holds µh(W/h) < +∞.
We can now use this ergodic behaviour to show that the eigenspace associated with r has dimension

one and that P ft cannot have another positive eigenvector with norm 1 in B∞W (X ). Indeed, if there
were another eigenvector h̃ ∈ B∞W (X ) associated with r, then h̃/h ∈ B∞Wh−1(X ), and (3.85) ensures
that

(Qh)n

(
h̃

h

)
=
h̃

h
−−−−−→
n→+∞

µh

(
h̃

h

)
.

This shows that h and h̃ would be proportional, and answers the claim that the eigenspace associated
with r has dimension 1. Assume now that there is another eigenvalue r̃ < r with eigenvector h̃ ∈
B∞W (X ) such that h̃(x) > 0 for all x ∈ X . Noting again that h̃/h ∈ B∞Wh−1(X ) and since h̃ > 0, (3.85)
shows that

(Qh)n

(
h̃

h

)
−−−−−→
n→+∞

µh

(
h̃

h

)
> 0. (3.86)

However it now holds, for any x ∈ X ,

(Qh)n

(
h̃

h

)
(x) = e(r̃−r)tn h̃

h
(x) −−−−−→

n→+∞
0,

where we used that h > 0 and r̃ < r. Combining the two above equations shows that

µh

(
h̃

h

)
= 0,

which contradicts (3.86). As a result, there cannot be another eigenvalue with a positive eigenvector.

Step 5: The principal eigenvalue is the cumulant function. Proving (3.80) now follows by a
simple rewritting. For x ∈ X and t0 > 0 fixed, it holds for any n ∈ N∗,

Ex
[
e
∫ nt0
0 f(Xs) ds

]
=
[
(P ft0)n1

]
(x) = ernt0

[
h(Qh)nh−1

]
(x),

so that

1

nt0
logEx

[
e
∫ nt0
0 f(Xs) ds

]
=

1

nt0
log
[
ernt0h(Qh)nh−1(x)

]
= r +

1

nt0
log
[
h(Qh)nh−1(x)

]
.

By (3.85) (since h−1 ∈ B∞Wh−1(X )), we see that h(Qh)nh−1(x) converges to a constant, so that

r(f) = lim
n→+∞

1

nt0
logEx

[
e
∫ nt0
0 f(Xs) ds

]
.

We have chosen to work with an arbitrary time t0 > 0 for convenience, so a priori the above limit
depends on t0. Showing that the limit actually does not depend on this t0 and that

r(f) = lim
t→+∞

1

t
logEx

[
e
∫ t
0
f(Xs) ds

]
follows by standard arguments not reproduced here (see e.g. [239, 181]), which concludes the proof.

An important ingredient for the lower bound of the LDP is the Gateau-differentiability of the
cumulant functional, which we prove below.
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Lemma 3.33. The functional

f ∈ B∞κ (X ) 7→ λ(f) = lim
t→+∞

1

t
logEx

[
e
∫ t
0
f(Xs) ds

]
(3.87)

is convex and Gateau-differentiable.

Proof. The convexity of λ is a standard consequence of Hölder’s inequality. Concerning Gateau-
differentiability, we follow the strategy of [199, Section 3] for a compact state space, relying on results
of Kato [263]. For this, we interpret the cumulant function (3.87) as the largest eigenvalue of the tilted
generator r(f) as defined in Lemma 3.32. More precisely, for f, g ∈ B∞κ (X ) and α ∈ R, λ(f + αg) is
associated with the largest eigenvalue of the operator P f+αg

t in B∞W (X ) through

P f+αg
t hf+αg = etλ(f+αg)hf+αg,

so that derivability in α can be shown through the differentiability of the spectrum of a bounded
operator. We thus show that the operator P f+αg

t is differentiable in operator norm. To this end, we
fix C > 0 and prove that for |α| 6 C it holds

P f+αg
t ϕ = P ft ϕ+ αQ

f,g,(1)
t ϕ+ α2Q

f,g,(2),α0

t , (3.88)

where Qf,g,(1)
t and Qf,g,(2),α0

t are bounded operators on B∞W (X ) and |α0| 6 C.
For this we first define

Q
f,g,(1)
t : ϕ ∈ B∞W (X ) 7→ Ex

[
ϕ(Xt)

(∫ t

0

g(Xs) ds

)
e
∫ t
0
f(Xs) ds

]
.

This operator is bounded in B∞W (X ) by the same martingale estimate used to prove Lemma 3.29. In
the same way, the second order operator reads

Q
f,g,(2),α
t : ϕ ∈ B∞W (X ) 7→ 1

2
Ex

[
ϕ(Xt)

(∫ t

0

g(Xs) ds

)2

e
∫ t
0

(f(Xs)+α0g(Xs))ds

]
.

This operator is also bounded in B∞W (X ) since, for a > 0 it holds a2/2 6 ea so that, for ϕ ∈ B∞W (X )
and x ∈ X we obtain∣∣Qf,g,(2),α

t ϕ(x)
∣∣ 6 ‖ϕ‖B∞W ‖g‖2B∞κ Ex

[
W (Xt)

1

2

(∫ t

0

κ(Xs) ds

)2

e(‖f‖B∞κ +|α|‖g‖B∞κ )
∫ t
0
κ(Xs) ds

]
6 ‖ϕ‖B∞W ‖g‖

2
B∞κ

Ex
[
W (Xt) e(1+‖f‖B∞κ +|α|‖g‖B∞κ )

∫ t
0
κ(Xs) ds

]
6 ‖ϕ‖B∞W ‖g‖

2
B∞κ

ectW (x),

for some constant c > 0 depending on ‖f‖B∞κ , ‖g‖B∞κ and α . Next, it suffices to note that

Q
f,g,(1)
t =

d

dα
P f+αg
t , Q

f,g,(2),α
t =

1

2

d2

dα2
P f+αg
t ,

to obtain (3.88) through a Taylor expansion, where |α0| 6 C.
This shows that α 7→ P f+αg

t is differentiable in operator norm. Thus, the principal eigenvalue λ(f+
αg), which is always isolated, is differentiable, see [263, Chapter II, Theorem 5.4] and [263, Chapter IV,
Theorem 3.5]. This concludes the proof of Gateau-differentiability.

Remark 3.34. By pursuing further the Taylor expansion (3.88) in the proof of Lemma 3.33, we can
actually show that, for any f, g ∈ B∞κ (X ), the function

α ∈ C 7→ λ(f + αg)

is analytic. This relies on the simple inequality an/n! 6 ea for any a > 0 together with the series
expansion of the exponential and martingale estimates as in the proof of Lemma 3.33. This analyticity
was already proven in [275] using a different argument that can be simplified with our tools. Indeed,
our proof, based on martingales, shows that for any t > 0, the function

α 7→ 1

t
logEx

[
e
∫ t
0

(
f(Xs)+αg(Xs)

)
ds

]
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is analytic. Moreover, it is finite on R and converges pointwise to a finite valued function as t→ +∞,
as shown in Lemma 3.32. Therefore, the convergence holds uniformly on any compact as t → +∞
(see [166, Theorem VI.3.3]). Now a locally uniform limit of analytic functions is analytic (see [379,
Theorem 10.28]). Therefore, α 7→ λ(f + αg) is analytic.

The last step before proving the large deviations principle itself is an exponential tightness result,
see [119, Section 1.2]. At this stage, the finiteness of λ(f) together with the Gateau-differentiability
of f ∈ B∞κ (X ) 7→ λ(f) already provides the upper bound over compact sets and the lower bound
in (3.27). In order to extend the upper bound to all closed sets, we prove exponential tightness in
the τκ topology, see Section 1.2.1 for definitions (note that this exponential tightness is not explicitely
stated in [275]).

Lemma 3.35. The familly of probability measures t 7→ Px(Lt ∈ ·) over
(
Pκ(X ), τκ

)
is exponentially

tight.

Proof. We adapt the strategy of [427, Corollary 2.3] and [424, Section 2.2] by introducing the familly
of sets

ΓN =
{
ν ∈ P(X ) | ν(Ψ) 6 N

}
, N > 0.

For N > 0, the sets ΓN are subsets of Pκ(X ) since κ� Ψ. We show that they are actually precompact
in the τκ-topology.

Let us first show that ΓN is precompact in the usual weak topology for any N > 0. Consider for
this the compact sets Kβ = {x ∈ X |Ψ(x) 6 β} ⊂ X for β > 0 (recall that Ψ has compact level sets).
Then, for any ν ∈ ΓN , we have

βν(Kc
β) + ν(Ψ1Kβ ) 6 ν(Ψ1Kc

β
) + ν(Ψ1Kβ ) = ν(Ψ) 6 N.

This shows that for any β > 0 and any ν ∈ ΓN ,

ν(Kc
β) 6

N

β
,

hence for any N > 0 the familly of measures ΓN is tight, so it is precompact for the weak topology
by the Prohorov theorem [42]. Now, if κ is bounded, ΓN is tight for the τκ-topology and the theorem
is shown, so we may assume that κ has compact level sets (see Assumption 3.6). For proving com-
pactness in our finer topology, we show that κ is uniformly integrable over ΓN in order to use [419,
Theorem 7.12]. Since κ� Ψ, the set

An =

{
x ∈ X

∣∣∣ Ψ(x)

κ(x)
6 n

}
is compact for any n > 1. Moreover, since we assume κ to be continuous with compact level sets, for
any n > 1 there exists mn > n such that{

Ψ

κ
6 n

}
⊂ {κ 6 mn},

with mn → +∞ when n→ +∞. Therefore, for any ν ∈ ΓN and n > 1,∫
{κ>mn}

κ dν 6
∫
Acn

κ dν =
1

n

∫
Acn

nκ dν 6
1

n

∫
X

Ψ dν =
1

n
ν(Ψ) 6

N

n
.

Taking the supremum over ν ∈ ΓN in the above equation and recalling thatmn → +∞ when n→ +∞
we obtain

lim
m→+∞

sup
ν∈ΓN

∫
{κ>m}

κ dν = 0. (3.89)

We can then conclude that ΓN is compact for the τκ-topology. Consider indeed a sequence (νn)n∈N ⊂
ΓN . By Prohorov’s theorem, (νn)n∈N has a subsequence weakly converging towards a measure ν, i.e.
νn(ϕ)→ ν(ϕ) for any ϕ ∈ Cb(X ). Then, by [419, Theorem 7.12], (3.89) ensures that ν ∈ Pκ(X ) and
for any f ∈ B∞κ (X ), νn(f)→ ν(f) as n→ +∞. In other words, ΓN is precompact for the τκ-topology.
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We can now prove the τκ-exponential tightness of the empirical distribution (Lt)t>0 in P(X ).
Indeed, for any N, t > 0, Tchebytchev’s inequality leads to

Px
(
Lt ∈ ΓcN

)
= Px

(∫ t

0

Ψ(Xs) ds > Nt

)
= Px

(∫ t

0

Ψ(Xs) ds > Nt

)
6 e−NtEx

[
e
∫ t
0

Ψ(Xs) ds
]

= e−NtPΨ
t 1(x).

Renormalizing at log scale and using (3.25) leads to

lim
t→+∞

1

t
log Px

(
Lt ∈ ΓcN

)
6 −N + λ(Ψ). (3.90)

The right hand side of the above quantity may look infinite since Ψ grows faster than κ. However,
using again the martingale Mt defined in Lemma 3.27 we obtain, for any t > 0,

Ex
[
e
∫ t
0

Ψ(Xs) ds
]
6 Ex

[
W (Xt) e−

∫ t
0
LW
W (Xs) ds

]
= Ex(Mt) 6W (x).

Thus it holds

λ(Ψ) 6 lim
t→+∞

1

t
logEx

[
W (Xt) e

∫ t
0

Ψ(Xs) ds
]
6 lim
t→+∞

1

t
logW (x) 6 0.

As a result, (3.90) becomes

lim
t→+∞

1

t
log Px

(
Lt ∈ ΓcN

)
6 −N.

Since ΓN is precompact in the τκ-topology for any N > 0, and N can be chosen arbitrarily large, this
proves the exponential tightness of the familly of empirical distributions in the τκ-topology.

We are now in position to prove Theorem 3.10.

Proof of Theorem 3.10. We assemble the previous lemmas to check that the assumptions of the
Gärtner–Ellis theorem reminded in Section 1.2.2 are fulfilled. For this, we note that the cumulant
function

λ : f ∈ B∞κ (X ) 7→ lim
t→+∞

1

t
logEx

[
e
∫ t
0
f(Xs) ds

]
can be identified to the function Λ in Theorem 1.10. The topological dual of (Mκ(X ), τκ) is B∞κ (X ),
whereMκ(X ) is the set of measures over X integrating κ (see [379, 275] and [124, Lemma 3.3.8] for
details). We have proved that λ is well defined, Gateau differentiable, and that the familly of measures

t→ πt( · ) = P (Lt ∈ · ) ,

is exponentially tight in the τκ-topology. Therefore, πt satisfies a large deviations principle in the
τκ-topology with good rate function given by

∀ ν ∈M(X ), I(ν) = sup
f∈B∞κ

{
ν(f)− λ(f)

}
. (3.91)

We observe that I(ν) = +∞ if ν is not normalized to 1 (take f to be constant in the supremum (3.91)),
so we may consider I over P(X ). Moreover, choosing f = κ in (3.91) and noting that λ(κ) < +∞, we
get I(ν) = +∞ if ν /∈ Pκ(X ). If ν is not absolutely continuous with respect to µ, there exists A ⊂ X
such that µ(A) = 0 and ν(A) > 0. Since µ has a positive Lebesgue density, this means that A has zero
Lebesgue measure. Consider then fa = a1A ∈ B∞κ (X ) for a ∈ R. Since A has zero Lebegue measure
and (Xt)t>0 has a smooth density for all t > 0 (as a consequence of Assumption 3.4) it holds, for all
t > 0,

Ex
[
fa(Xt)

]
= aPx

(
Xt ∈ A

)
= 0.

Therefore, the process

Zt =

∫ t

0

fa(Xs) ds,

satisfies Ex[Zt] = 0 for all t > 0. Since Zt > 0, it holds Zt = 0 almost surely, for any t > 0. As a
consequence we obtain

∀ t > 0,
1

t
logEx

[
e
∫ t
0
fa(Xs) ds

]
=

1

t
logEx

[
eZt
]

= 0.
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This shows that λ(fa) = 0, so that from (3.91) we obtain

I(ν) > aν(A),

with ν(A) > 0. By letting a→ +∞ we are led to I(ν) = +∞.
Finally, we show that I(ν) = 0 if and only if ν = µ, and that (Lt)t>0 converges almost surely to µ

in the τκ-topology (see [119, Appendix B] for definitions). For this, we introduce the set of minimizers

I =

{
ν ∈ P(X )

∣∣∣∣ I(ν) = inf
P(X )

I

}
.

Since I has compact level sets, I is a non-empty closed subset of P(X ) for the τκ-topology. Moreover,
in order for the LDP upper bound to make sense, it holds infP(X ) I = 0. If Iδ denotes an open
neighborhood of I in the τκ-topology, the lower semicontinuity of I implies that

inf
I c
δ

I > 0.

Therefore, by the large deviations upper bound,

Px
(
Lt /∈ Iδ

)
= Px

(
Lt ∈ I c

δ

)
6 C exp

(
−t inf

I c
δ

I

)
, (3.92)

for some constant C > 0. We next introduce the random subset of R+ of indices t > 0 for which Lt
does not belong to Iδ, namely T = {t > 0 |Lt /∈ Iδ}. Since

Px
(
Lt /∈ Iδ

)
= Ex[1{Lt /∈Iδ}],

we have, by the Fubini theorem, for any t > 0,∫ t

0

Px
(
Ls /∈ Iδ

)
ds = Ex

[∫ t

0

1{Ls /∈Iδ}ds

]
= Ex

[
|min(T, t)|

]
.

By using (3.92) and the dominated convergence theorem, we obtain

Ex
[
|T |
]

=

∫ +∞

0

Px
(
Lt /∈ Iδ

)
dt < +∞.

As a result, |T | < +∞ almost surely. This means that, for any neighborhood Iδ of I in the
τκ-topology, the empirical measure (Lt)t>0 almost surely spends a finite Lebesgue measure time
outside Iδ. In other words, (Lt)t>0 converges almost surely in the τκ-topology to the set I . However,
we know by Proposition 3.9 that the only possible limit for (Lt)t>0 is µ, hence I = {µ} and (Lt)t>0

almost surely converges to µ in the τκ-topology, which concludes the proof.

3.6.2 Proofs of Section 3.3

3.6.2.1 Proof of Proposition 3.13

For the proof, which is partly inspired by [124, Lemma 4.1.36], we denote by IF the rate function
given by the Fenchel transform in (3.26) and IV for the Varadhan functional on the right hand side
of (3.33). We repeatedly use the results of Lemma 3.32 in what follows.

We first show that IV(ν) = +∞ if ν is not absolutely continuous with respect to µ or does not
belong to Pκ(X ). Assume first that ν � µ does not hold: there exists a set A ⊂ X such that ν(A) > 0
and µ(A) = 0. For any a ∈ R we introduce fa = a1A and denote by ha the eigenvector associated
to the principal eigenvalue λ(fa) (which is continuous and positive by Lemma 3.32). As shown in the
proof of Theorem 3.10, it holds λ(fa) = 0, so

∀ a ∈ R, (L+ fa)ha = 0.

This leads to
−Lha
ha

= a1A.
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Therefore, since ha ∈ B∞W (X ), it holds ha ∈ D+ and

IV(ν) >
∫
X
−Lha
ha

dν = aν(A) > 0.

By letting a→ +∞, we conclude that IV(ν) = +∞ when ν is not absolutely continuous with respect
to µ. Next, if ν /∈ Pκ(X ), since κ > 1 it holds ν(κ) = +∞. We may then choose f = κ ∈ B∞κ (X ). By
Lemma 3.32 the principal eigenvector hκ of L+ κ belongs to D+ with λ(κ) < +∞, so we have

IV(ν) >
∫
X
−Lhκ
hκ

dν =

∫
X
κ dν − λ(κ) = +∞,

i.e. IV(ν) = +∞ if ν /∈ Pκ(X ). This shows that IF(ν) = IV(ν) when ν is not absolutely continuous
with respect to µ or ν /∈ Pκ(X ). We next show that IF = IV when ν � µ and ν ∈ Pκ(X ), which we
assume until the end of the proof.

Let us first show that IF > IV. For this, we consider u ∈ D+ and introduce

fu = −Lu
u
.

Because of the definition (3.34) of D+, we know that fu ∈ B∞κ (X ), so we can write, since ν ∈ Pκ(X ),

IF(ν) > ν(fu)− λ(fu). (3.93)

Moreover,

(L+ fu)u = Lu−
(
Lu
u

)
u = 0. (3.94)

As a result, u > 0 is an eigenvector of L + fu associated with the eigenvalue 0 (and hence it is an
eigenvector of P fut with eigenvalue 1). But we know from Lemma 3.32 that a positive eigenvector can
only be associated with the principal eigenvalue λ(fu), so that λ(fu) = 0 by (3.94). Therefore, (3.93)
leads to

IF(ν) > ν(fu)− λ(fu) =

∫
X

−Lu
u
dν.

Since u ∈ D+ is arbitrary, taking the supremum shows that IF(ν) > IV(ν) for any ν ∈ Pκ(X ) with
ν � µ.

We now turn to the inequality IF 6 IV. We again draw elements from [124, Lemma 4.1.36], but
we use simpler arguments based on the spectral analysis of the operator L + f . Consider for any
arbitrary f ∈ B∞κ (X ) the associated eigenvector hf ∈ B∞W (X ) defined in Lemma 3.32. It then holds:

• hf ∈ B∞W (X );

• hf > 0;

• by Lemma 3.32, −Lhf
hf

= f − λ(f) ∈ B∞κ (X );

Thus hf ∈ D+. As a result we have, since ν ∈ Pκ(X ),

IV(ν) >
∫
X
−Lhf
hf

dν = ν(f)− λ(f).

Given that, in the above equation, f is an arbitrary function belonging to B∞κ (X ), taking the supre-
mum leads to

IV(ν) > sup
f∈B∞κ

{
ν(f)− λ(f)

}
.

This finally shows that IF(ν) = IV(ν) for all ν ∈ Pκ(X ) with ν � µ, which concludes the proof.
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3.6.2.2 Proof of Corollary 3.14

Since I is the Fenchel transform of λ, the result follows if we can show that λ defined on B∞κ (X ) is
stable by bi-Fenchel conjugacy. Moreover, the convexity and finiteness of λ shows that a (necessary
and) sufficient condition for λ to be bi-Fenchel stable is for the functional f 7→ λ(f) to be lower-
semicontinuous (see [26, Theorem 2.22]). We show below that it is actually continuous: for any
sequence (fn)n>0 in B∞κ (X ) such that ‖fn − f‖B∞κ → 0 for some f ∈ B∞κ (X ), it holds λ(fn)→ λ(f).
We shall use for this a stability result from [92].

Consider a sequence (fn)n>0 converging to f in B∞κ (X ). Using Lemma 3.29, for any ϕ ∈ B∞W (X ),
t > 0, x ∈ X and n ∈ N, it holds (using again the inequality a 6 ea for a > 0)∣∣∣(P ft ϕ)(x)−

(
P fnt ϕ

)
(x)
∣∣∣ 6 ‖ϕ‖B∞WEx

[
W (Xt)

∫ t

0

|f(Xs)− fn(Xs)| ds e(‖f‖B∞κ +‖fn‖B∞κ )
∫ t
0
κ(Xs) ds

]
6 ‖ϕ‖B∞W ‖f − fn‖B∞κ Ex

[
W (Xt)e

(1+‖f‖B∞κ +‖fn‖B∞κ )
∫ t
0
κ(Xs) ds

]
6 C‖ϕ‖B∞W ‖f − fn‖B∞κ Ex [Mt]

6 C‖ϕ‖B∞W ‖f − fn‖B∞κ W (x),

for some constant C > 0 depending on ‖f‖B∞κ and t > 0. We used Lemma 3.27 and the supermartin-
gale property of Mt to obtain the last line. This leads to∥∥P ft − P fnt ∥∥B(B∞W )

6 C‖f − fn‖B∞κ −−−−−→n→+∞
0. (3.95)

We know by Lemma 3.32 that λ(f) and λ(fn) are associated with the isolated largest eigenvalue of
the operators P ft and P fnt respectively. Therefore, (3.95) shows that the approximation is strongly
stable (we refer to [92], in particular the definition in Section 2.2 and Proposition 2.11), and [92,
Proposition 2.2] ensures that λ(fn)→ λ(f) as n→ +∞. This shows that the function λ : B∞κ (X )→ R
is continuous and concludes the proof.

3.6.2.3 Proof of Theorem 3.16

The proof, inspired by [49], relies on two ideas: performing a Witten transform inside the variational
representation (3.33) and separating the symmetric and antisymmetric parts of the generator L. We
write dν = ρ dµ = ev dµ and consider first that v ∈ C∞c (X ) instead of H 1(ν). Starting from (3.33),
we consider a function u of the form

u = e
ψ
2
√
ρ, ψ ∈ C∞c (X ). (3.96)

We call this choice “variational Witten transform” for its similarity with the standard Witten trans-
form [425, 234, 304] and its use in the variational formula defining I in (3.33). Since u = e

ψ
2 + v

2

with v, ψ ∈ C∞c (X ) it is clear that u ∈ D+. This follows by noting that, using the shorthand nota-
tion w = ψ/2 + v/2 ∈ C∞c (X ), we have

−Lu
u

= −e−wLew = −Lw − 1

2
|σT∇w|2 ∈ C∞c (X ) ⊂ B∞κ (X ).

Moreover, it holds u = ew > 0 and u is constant outside a compact set, so u ∈ B∞W (X ) and it holds
u ∈ D+.

We now rewrite the expression in (3.33) for u given by (3.96), using again the notation w =
ψ/2 + v/2:

−
∫
X

Lu
u
dν = −

∫
X
Lw dν − 1

2

∫
X
|σT∇w|2 dν.

Recalling that S = σσT /2 and expanding w = ψ/2 + v/2, we obtain

−
∫
X

Lu
u
dν = −1

2

∫
X
Lψ dν− 1

2

∫
X
Lv dν− 1

4

∫
X
∇ψ ·S∇ψ dν− 1

2

∫
X
∇v ·S∇ψ dν− 1

4

∫
X
∇v ·S∇v dν.

(3.97)
We now decompose L into symmetric and antisymmetric parts. First, it holds

− 1

2

∫
X
Lψ dν = −1

2

∫
X

(LSψ) ev dµ− 1

2

∫
X

(LAψ) dν =
1

2

∫
X
∇ψ · S∇v dν − 1

2

∫
X

(LAψ) dν. (3.98)
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On the other hand, using that LA is a first order differential operator satisfying L∗A1 = 0, we obtain∫
X

(LAv) ev dµ =

∫
X

(LAev) dµ =

∫
X

(L∗A1) ev dµ = 0.

As a result

− 1

2

∫
X
Lv dν = −1

2

∫
X

(LSv) ev dµ− 1

2

∫
X

(LAv) ev dµ =
1

2

∫
X
∇v · S∇v dν. (3.99)

By plugging (3.98)-(3.99) into (3.97), we obtain

−
∫
X

Lu
u
dν =

1

4

∫
X
∇v · S∇v dν − 1

2

∫
X

(LAψ) dν − 1

4

∫
X
∇ψ · S∇ψ dν. (3.100)

The first term in the above equation reads (recalling that ρ = ev)

1

4

∫
X
∇v · S∇v dν =

∫
X
∇(
√
ρ) · S∇(

√
ρ) dµ.

By density of C∞c (X ) in H 1(µ), the above expression is valid for any ρ such that √ρ ∈H 1(µ). The
above computation shows that this condition is equivalent to v ∈H 1(ν), and

1

4

∫
X
∇v · S∇v dν =

1

4
|v|2H 1(ν),

which does not involve the function ψ ∈ C∞c (X ). Moreover, since LA is a first order differential
operator, antisymmetric in L2(µ), it holds∫

X
(LAψ) dν = −

∫
X

(LAev)ψ dµ = −
∫
X

(LAv)ψ dν.

As a result, (3.100) rewrites

−
∫
X

Lu
u
dν =

1

4
|v|2H 1(ν) +

1

2

∫
X

(LAv)ψ dν − 1

4
|ψ|2H 1(ν), (3.101)

and this expression is finite for any ψ ∈ C∞c (X ).
Our goal is now to take the supremum over functions ψ ∈ C∞c (X ) in (3.101), and prove that this

is enough to obtain the supremum over D+. We consider for this the terms depending on ψ in (3.101)
and, using the duality between H 1(ν) and H −1(ν) (see [273, Section 2, Claim F]) we obtain

1

2

∫
X

(LAv)ψ dν − 1

4

∫
X
∇ψ · S∇ψ dν 6

1

2
|LAv|H −1(ν)|ψ|H 1(ν) −

1

4
|ψ|2H 1(ν)

6
1

4ε
|LAv|2H −1(ν) −

1

4
(1− ε)|ψ|2H 1(ν),

(3.102)

where we used Young’s inequality with ε < 1 to obtain the second line. Since LAv ∈ H −1(ν), the
supremum over the functions ψ ∈ C∞c (X ) takes the value −∞ when ψ /∈ H 1(ν). Therefore, by
density of C∞c (X ) in H 1(ν), the supremum over the functions of the form (3.96) for ψ ∈ C∞c (X )
recovers the supremum over D+ and it holds

I(ν) =
1

4
|v|2H 1(ν) +

1

4
|LAv|2H −1(ν), (3.103)

by definition of the H −1(ν)-norm in Section 6.2, which concludes the proof.

Remark 3.36. We have proved our result for measures of the form dν = ev dµ. Considering more
general measures ν � µ is made difficult because the Radon–Nikodym derivative ρ = dν/dµ may
vanish on some region of X , hence the definition of LA(log ρ) is not clear. Given (3.102), we see that
we can give a sense to our computations provided LA(log ρ) defines a linear form on H 1(ν), namely:
there exists C > 0 such that

∀ψ ∈H 1(ν),

∣∣∣∣∫
X
ψLA(log ρ) dν

∣∣∣∣ 6 C‖ψ‖H1(ν).

We find it however clearer to work directly with exponential perturbations of the invariant measure µ.
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3.6.2.4 Proof of Corollary 3.17

The proof follows from the variational formulation of Theorem 3.16. Indeed, let us rewrite (3.39) as

IA(ν) = −1

2
inf

ψ∈H 1(ν)
Iν(ψ), (3.104)

where ν is fixed and satisfies the assumptions of the theorem, and

Iν(ψ) =
1

2

∫
X

C (ψ,ψ) dν −
∫
X
ψ(LAv) dν.

By [273, Section 2, Claim F], we can identify H −1(ν) with the dual of H 1(ν), so that Iν reads

∀ψ ∈H 1(ν), Iν(ψ) =
1

2
|ψ|2H 1(ν) − 〈LAv, ψ〉H −1(ν),H 1(ν).

Denoting by ∇̃ the adjoint of the gradient operator in L2(ν), the Lax–Milgram theorem [72, Corol-
lary V.8], whose conditions are readily fulfilled, shows that the minimum is attained at a unique
ψv ∈H 1(ν) solution to

∇̃(S∇ψv) = LAv. (3.105)

Inserting ψv solution to (3.105) in (3.104) leads to

IA(ν) =
1

4

∫
X

C (ψv, ψv) dν, (3.106)

which concludes the proof.

3.6.3 Proof of Proposition 3.8
The proposition is a consequence of the equality

Ψ = −LW
W

= θ

(
−LV − θ

2
|σT∇V |2

)
.

Since |σT∇V | has compact level sets and Ψ ∼ |σT∇V |2 by (3.22), Ψ has compact level sets. Since V
has compact level sets, for ε < θ/2 it holds W � W and W 2 6 C1W for some constant C1 > 0.
Moreover, outside a compact set, the function

Ψ

−LW
W

=
θ

ε

(−LV − θ
2 |σ∇V |

2)

(−LV − ε
2 |σ∇V |2)

is bounded above and below since the numerator and denominator are both equivalent to |σT∇V |2,
so the second condition in (3.21) holds. Finally,

−2
LW

W
= 2ε

(
−LV − ε

2
|σ∇V |2

)
= 2

ε

θ
θ

(
−LV − θ

2
|σ∇V |2

)
+ ε(θ − ε)|σ∇V |2

= 2
ε

θ
Ψ + ε(θ − ε)|σ∇V |2.

Since Ψ ∼ |σ∇V |2, we may choose ε small enough so as to obtain

−2
LW

W
6 Ψ + C2,

for some constant C2 ∈ R. This proves the third item of (3.21).

3.6.4 Proof of Lemma 3.23
The proof relies on manipulations similar to those of [324]. A simple computation shows that

− LγW
W

(q, p) = εq · ∇V − γε2|q|2 + γε(1− 2θ)p · q + θγ(1− θ)|p|2 − ε|p|2 − θγd. (3.107)
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For any η > 0 it holds

p · q > −η |q|
2

2
− |p|

2

2η
.

As a result, Assumption 3.22 leads to

−LγW
W

(q, p) > |q|2
(
cV ε− γε2 − ηγε

2
(1− 2θ)

)
+ |p|2

(
θγ − θ2γ − ε− γε

2η
(1− 2θ)

)
− θγd− CV .

Since θ > 0, it holds

−LγW
W

(q, p) > a|q|2 + b|p|2 − C,

where
a = ε

(
c− ηγ

2

)
− γε2, b = θγ(1− θ)− ε− γε

2η
, C = θγd+ CV .

The claim follows for θ ∈ (0, 1) by choosing η < 2c/γ and ε sufficiently small.
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CHAPTER 4
ERROR ESTIMATES FOR ERGODIC PROPERTIES OF

DISCRETIZED FEYNMAN–KAC SEMIGROUPS

The material for this chapter has been released in [182] and is accepted for publication in Numerische
Mathematik.
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Abstract. We consider the numerical analysis of the time discretization of Feynman–Kac semi-
groups associated with diffusion processes. These semigroups naturally appear in large deviation the-
ory (as motivated in Sections 1.3.1 and 2.1) but also in Diffusion Monte Carlo methods or non-linear
filtering. We present in this chapter error estimates à la Talay–Tubaro on their invariant measures
when the underlying continuous stochastic differential equation is discretized; as well as on the leading
eigenvalue of the generator of the dynamics, which corresponds to the rate of creation of probability.
This provides criteria to construct efficient integration schemes of Feynman–Kac dynamics, as well
as a mathematical justification of numerical results already observed in the Diffusion Monte Carlo
community. Our analysis is illustrated by numerical simulations.
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semigroups

4.1 Presentation
The study of Feynman–Kac semigroups for stochastic differential equations (SDEs) has been a topic
of growing importance in the past two decades, since these dynamics are related to several theoretical
and applied areas of mathematics. They can be seen as standard SDEs whose paths are reweighted
according to the exponential of the time integral of some weight function.

Feynman–Kac semigroups naturally appear in large deviation theory, where they can be used to
enhance the likelihood of observing rare fluctuations and henceforth computing cumulant generating
functions [416, 121]. This is motivated at length in Section 1.3.1. They also have important practical
applications, such as in the Diffusion Monte Carlo (DMC) method [190], which is a probabilistic
way of estimating the ground state energy of Schrödinger operators; or in computational statistics, in
particular in (non-linear) filtering [113, 137], where relevant trajectories are selected from observations.
We refer to Chapter 2 for further motivations and references.

We focus in this chapter on the bias arising from the time discretization of the underlying con-
tinuous stochastic dynamics and of the time integrated weight. Our interest resides in the ergodic
properties of the discretization, namely the invariant measure as well as the average rate of creation
of probability (i.e. the cumulant generating function). We refer to Section 1.4 in Part I for general
notions of numerical analysis for discretization of SDEs. Let us briefly present our setting and results.

We study a system Xt ∈ X evolving in a d-dimensional space. We assume in this chapter that

X = Td

is a d-dimensional torus (where T = R\Z, the extension to unbounded spaces poses non-trivial issues,
as discussed at various places later on). For convenience, we consider that the evolution is dictated
by a stochastic differential equation with additive noise:

dXt = b(Xt) dt+ σ dBt, (4.1)

where b : X → Rd is a C∞(X ) vector field, Bt is a standard d-dimensional Brownian motion. Note
that the dynamics (4.1) may be non-reversible. The diffusion coefficient σ > 0 is assumed to be
constant, but our results could be extended to dynamics with multiplicative noise upon appropriate
modifications. The infinitesimal generator of the dynamics (4.1) reads

L = b · ∇+
σ2

2
∆, (4.2)

and we denote by L† the adjoint of L on L2(X ) endowed with the Lebesgue measure. Since X is
compact and b is smooth, (4.1) admits a unique invariant distribution, denoted by µ, which is solution
to the Fokker–Planck equation

L†µ = 0,

see e.g. [362, 262, 304]. In all this chapter, we use the shorthand notation C = C∞(X ) for the space
of smooth functions over X , which is a core for the generator L in L2(µ).

Denoting by P(X ) the set of probability measures over X , we use the definition of Chapter 2 for
Feynman–Kac type semigroups. That is, for a measurable function f : X → R and initial probability
measure ν ∈ P(X ) we have,

∀ t > 0, ∀ϕ ∈ C, Φft (ν)(ϕ) =
Eν
[
ϕ(Xt) e

∫ t
0
f(Xs) ds

]
Eν
[
e
∫ t
0
f(Xs) ds

] , (4.3)

where the expectations run over initial conditions X0 distributed according to ν and all realizations
of (4.1). The family of mappings {Φft }t>0 is a measure-valued non-linear semigroup in the sense that
Φft : P(X )→ P(X ) depends non-linearly on the initial condition and, for all ν ∈ P(X ) and t, s ∈ R+,
Φft (Φfs (ν)) = Φft+s(ν), see Chapter 2. Such semigroups have been studied for a long time in the
context of Diffusion Monte Carlo (DMC) [213, 10, 77, 412, 190] in order to estimate the principal
eigenvalue of Schrödinger type operators −∆ + f , which correspond in our case to b ≡ 0. They also
appear in the large deviations community [202, 289, 397, 406, 337, 338] where they are related to
the principal eigenvalue of L + f , as discussed at length in Chapter 3, see also [133, 416, 121, 406,
119]. Other fields such as non-linear filtering, Hidden Markov Models [253, 137, 138] and free energy
computation [252, 251, 378, 301] also motivate the study of such semigroups.
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As we have studied in Chapter 2, the semigroup (4.3) converges in general to the average of ϕ with
respect to a tilted measure µf (recall that X is bounded here). More precisely, the operator L† + f
has a largest eigenvalue λ which is isolated from the remainder of the spectrum and non-degenerate,
with associated eigenfunction µf , and

∀ ν ∈ P(X ), ∀ϕ ∈ C, Φft (ν)(ϕ) −−−→
t→∞

∫
X
ϕdµf ,

exponentially fast. We address in this work the time discretization of the semigroup (4.3) using a finite
time step ∆t. The underlying continuous evolution (4.1) is discretized by a Markov chain (xn)n∈N
and (4.3) is approximated by (using a simple quadrature rule for the time integral)

Φf∆t,n(ν)(ϕ) =
Eν
[
ϕ(xn) e∆t

∑n−1
i=0 f(xi)

]
Eν
[
e∆t

∑n−1
i=0 f(xi)

] . (4.4)

Under mild assumptions on the discretization scheme (made precise in Section 4.2.2), the discrete
semigroup (4.4) converges to an invariant measure µf,∆t in the following sense,

∀ ν ∈ P(X ), ∀ϕ ∈ C, Φf∆t,n(ν)(ϕ) −−−−−→
n→+∞

∫
X
ϕdµf,∆t.

The core of this chapter consists in making precise the difference between µf and µf,∆t. We aim in
particular at designing numerical schemes leading to the smallest possible biases. Although a series
of papers study the statistical error of estimators such as (4.4) (see [114, 117, 113, 376, 377]), there
are, to our knowledge, no available estimates on the bias of the limiting measure with respect to ∆t.
However, in the context of DMC (where we recall b = 0), it was numerically observed that some
discretizations provide first, second or fourth order of convergence in ∆t for the largest eigenvalue λ of
L+ f , see for example [10, 412, 328, 381], and [164] for the numerical analysis in a simple case (note
that we write λ instead of λ(f) to shorten notation). The results presented in this chapter provide
a mathematical justification of such convergences, while extending them to the case b 6= 0. Let us
also mention that Hairer and Weare have studied in [221, 222] the convergence with respect to the
time step of discretized dynamics similar to the one we consider, over a finite time and for a finite
population of replicas. They obtain in the limit ∆t → 0 a limiting process, the so-called Brownian
fan.

We rely on the techniques developped since the works of Talay and Tubaro [400, 398], taking
advantage of the analytical tools developed in a series of papers [325, 110, 1, 2, 62, 295, 304], in order
to provide a systematic framework to study the bias in the time step. More precisely, we show in
Theorem 4.16 that there exist an integer p > 1 and a function ψ solution to a Poisson equation (both
depending on the numerical scheme at hand and the quadrature rule for the integral), such that, for
all ϕ ∈ C, ∫

X
ϕdµf,∆t =

∫
X
ϕdµf + ∆tp

∫
X
ϕψ dµf + O

(
∆tp+1

)
. (4.5)

This result is very similar to those of weak backward error analysis on invariant probability measures
of ergodic processes, see for example [110, 62, 295] and the presentation in Section 1.4.1. Moreover, as
the computation of the principal eigenvalue λ (or cumulant function in the large deviations context) of
the operator L+f is one of the main concerns in Feynman–Kac techniques, we provide in Theorem 4.21
the following error estimate:

λ∆t =
1

∆t
log

[∫
X
Qf∆t1 dµf,∆t

]
= λ+ C∆tp + O

(
∆tp+1

)
, (4.6)

where Qf∆t is the evolution operator of the discretized dynamics with weight function f . This result,
related to Theorem 2.8 in Chapter 2, is interesting since it allows to justify the use of population dy-
namics methods for discretizations of diffusion processes, see [202, 397, 337] for rare events simulations,
and [190] for DMC.

Let us mention that, while the proof of (4.5) relies on previous works concerning error estimates
on the invariant measure [400, 398, 62, 110, 295], the novelty of this work lies in taking into account
the non-probability conserving feature of the dynamics. With this point of view and, odd as it may
seem, formula (4.5) appears as a consequence of (4.6), and not conversely. An interpretation of this
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fact is that, in order to prove an error estimate on the invariant probability measure of this non
probability-conserving dynamics, we must first show that the discretized process creates or destroys
probability at a rate correct up to terms small in ∆t. Phrased differently, we prove error estimates on
the principal eigenvalue before considering the associated eigenvector.

The chapter is organized as follows. Section 4.2 is devoted to general properties of Feynman–Kac
semigroups and their discretizations. We then present in Section 4.3 our main results concerning
the numerical analysis of the error on the invariant probability measure, depending on the choice of
the discretization scheme, before providing numerical applications in Section 4.4. Finally, Section 4.5
proposes possible extensions to this work. The proofs of the most technical results are gathered in
Section 4.6.

4.2 Convergence properties of Feynman–Kac semigroups
We present in this section the setting of our study. In particular, we remind convergence results and
some useful properties of continuous Feynman–Kac semigroups in Section 4.2.1, as well as convergence
results for their discretizations in Section 4.2.2. Although these results are known (and can often be
obtained as applications of the results of Chapter 2), we believe that it is useful to gather them here to
allow for a self-contained presentation of the numerical analysis framework developped in Section 4.3.

4.2.1 Continuous dynamics
We denote by (Pt)t>0 the evolution semigroup associated with the process (Xt)t>0 in (4.1): for all
ν ∈ P(X ) and ϕ ∈ C,

Pt(ν)(ϕ) = Eν [ϕ(Xt)] .

Its weighted counterpart is
P ft (ν)(ϕ) = Eν

[
ϕ(Xt) e

∫ t
0
f(Xs) ds

]
.

The infinitesimal generators of Pt and P
f
t are respectively L and L+ f , where we denote with some

abuse of notation by f the multiplication operator by the function f . Whether a statement corresponds
to the function f or the associated multiplication operator should be clear from the context. We assume
in the sequel that the function f is smooth, so that the associated multiplication operator stabilizes
the core C.

The existence of a spectral gap for the generator L+ f and its adjoint is a key ingredient for our
study. Here and in the sequel, and otherwise explicitly mentioned, all operators are considered on the
Hilbert space

L2(µ) =

{
ϕ measurable

∣∣∣∣ ∫
X
|ϕ|2dµ < +∞

}
.

Let us insist on the fact that the L2(µ)-framework is useful for the numerical analysis of Section 4.3,
compared to the B∞(X ) spaces used in Chapter 2, which motivates the analysis of this section. For
a given closed operator T on L2(µ), we denote by T ∗ the adjoint of T in L2(µ). In particular,

∀ (φ, ϕ) ∈ C,
∫
X

(Tφ)ϕdµ =

∫
X
φ(T ∗ϕ) dµ.

In this functional framework, the reversibility of the dynamics is equivalent to the self-adjointness
of L on L2(µ). As mentioned in Section 1.1, we want our results to be valid for irreversible dynamics.
Therefore, we do not assume that L is symmetric, and this is why we need to distinguish between
eigenelements of L and L∗. We can then state the following.

Proposition 4.1. The operator L+f , considered on L2(µ), has a real isolated principal eigenvalue λ
with associated eigenfunction hf ∈ C normalized as

(L+ f)hf = λhf ,

∫
X
hf dµ = 1. (4.7)

The operator L∗ + f then also admits λ as a real isolated principal eigenvalue, with associated eigen-
function `f ∈ C normalized as

(L∗ + f)`f = λ `f ,

∫
X
`f dµ = 1. (4.8)
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Moreover, the functions hf and `f are positive.

The fact that hf and `f belong to C is a consequence of elliptic regularity. Let us emphasize that,
as a consequence of (4.8), the measure

µf = `f µ

is the only invariant probability measure for the evolution encoded by P f−λt . Moreover, when the
underlying diffusion is reversible, i.e. b = −∇V and µ(dx) = Z−1 e−2V (x)/σ2

dx, the operator L is
self-adjoint (L∗ = L) so that hf = `f . When f = 0, it simply holds λ = 0 and hf = `f = 1 whatever b.

Proof. It is shown in [199] that the operator L + f has a real isolated principal eigenvalue when
considered as an operator on C0(X ), the space of continuous functions over X . This can be proved
using the Krein–Rutman theorem [141] like in Part II. On the other hand, standard results of spectral
theory of elliptic operators on bounded domains show that L + f on L2(µ) has a discrete spectrum,
which is bounded above [358]. The first eigenvalue cannot be degenerate since the associated eigen-
vectors are smooth by elliptic regularity and are therefore also eigenvectors of L + f considered as
an operator on C0(X ). Finally, the positivity of hf and `f follows from the fact that the evolution
semigroup P ft and its adjoint are operators with smooth and positive transition kernels (since the
noise is non-degenerate), together with the equalities P ft hf = eλthf and (P ft )∗`f = eλt`f . We refer
to Chapter 2 for more details.

In what follows, we use the subspaces L2
f (µ) and Cf of functions of average 0 with respect to µf :

L2
f (µ) =

{
ϕ ∈ L2(µ)

∣∣∣∣ ∫
X
ϕdµf = 0

}
, Cf =

{
ϕ ∈ C

∣∣∣∣ ∫
X
ϕdµf = 0

}
.

We also introduce the measure µ̂f = hf µ, the space

Ĉf =

{
ϕ ∈ C

∣∣∣∣ ∫
X
ϕdµ̂f = 0

}
,

and we denote by
δf = inf

{
λ− Re(z), z ∈ σ(L+ f) \ {λ}

}
> 0 (4.9)

the spectral gap of L + f in L2(µ). The fact that the largest eigenvalue λ is a priori non-zero
corresponds to a possible creation (λ > 0) or destruction (λ < 0) of probability induced by the source
term f , which plays the role of an importance sampling function. The statement about the spectral
gap in Proposition 4.1 implies the convergence of the Feynman–Kac semigroup (4.3), as stated in the
following result.

Proposition 4.2. There exists C > 0 such that, for all ν ∈ P(X ) and ϕ ∈ L2(µ),

∀ t > 1,

∣∣∣∣Φft (ν)(ϕ)−
∫
X
ϕdµf

∣∣∣∣ 6 C ‖ϕ‖L2(µ) e−δf t, (4.10)

where δf is defined in (4.9).

As made clear in the proof of this result (see Section 4.6.1), it is possible to consider any observable
ϕ ∈ L2(µ) even if µ is singular. This is due to the regularizing properties of the underlying diffusion
for positive times, and explains why the convergence result is stated only for times t > 1. The next
proposition will be frequently used in this work.

Proposition 4.3. It holds ∫
X
f dµf = λ. (4.11)

Proof. Integrating both sides of (4.8) on X ,∫
X
f dµf =

∫
X
λ`f dµ−

∫
X
L∗`f dµ = λ

∫
X
`f dµ−

∫
X
L1 dµf = λ,

since L1 = 0.
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A natural corollary of Propositions 4.2 and 4.3 is that the largest eigenvalue of L + f can be
obtained by a long time average of f using the Feynman–Kac semigroup (4.3).

Corollary 4.4. There exists C > 0 such that, for any initial distribution ν ∈ P(X ),∣∣∣Φft (ν)(f)− λ
∣∣∣ 6 C e−δf t.

Another important consequence of Proposition 4.1 is the invertibility of the generator and its
adjoint over suitable functional spaces.

Proposition 4.5. The operator L+ f − λ is invertible on Cf , in the sense that, for any g ∈ Cf , the
Poisson equation

(L+ f − λ)u = g

admits a unique solution u ∈ Cf , which is denoted by (L+f−λ)−1g. Similarly, L∗+f−λ is invertible
on Ĉf .

The proof of this result can be read in Section 4.6.1. Let us emphasize that the smoothness of f
is crucial for this proposition to be true. Note also that the stability of the core of the operator L+ f
would be harder to prove for non-compact state spaces, as this is already a non-trivial statement for
the Poisson equation with f = 0, see [276, 277].

4.2.2 Discretization
We now turn to the discretization of the Feynman–Kac semigroup (4.3). We first define discretization
schemes, and show that they are ergodic for some limiting measure under mild assumptions. We also
recall the stationarity equation satisfied by this invariant probability measure, which proves crucial
for the numerical analysis developped in Section 4.3.

The properties of discretized Feynman–Kac semigroups are related to the properties of the under-
lying discrete dynamics. The approximation of the continuous dynamics (4.1) is given, for a time ∆t,
by a Markov chain (xn)n∈N such that xn ' Xn∆t. This Markov chain is characterized by the evolution
operator Q∆t defined as

(Q∆tϕ)(x) = E
[
ϕ(xn+1) |xn = x

]
. (4.12)

A typical example is the Euler–Maruyama scheme defined by:

xn+1 = xn + b(xn)∆t+ σ
√

∆tGn, (4.13)

where (Gn)n>0 is a familly of independent and identically distributed standard d-dimensional Gaus-
sian random variables. In order to perform our analysis in Section 4.3, it is convenient to rephrase
discretizations of (4.3) such as (4.4) in terms of an evolution operator. For instance, we see that,
defining

(Qf∆tϕ)(x) = e∆tf(x)(Q∆tϕ)(x), (4.14)

the discretization (4.4) reads, for an initial measure ν and a test function ϕ,

Φf∆t,n(ν)(ϕ) =
ν
(
(Qf∆t)

nϕ
)

ν
(
(Qf∆t)

n1
) . (4.15)

We use the definition (4.15) for more general discretizations of (4.3) characterized by an evolution
operator Qf∆t. Consistency requirements on Qf∆t are made precise in Assumption 4.12 below. This
allows us to take into account various integration rules, both for the underlying dynamics and the
exponential weights. For instance, the choice

(Qf∆tϕ)(x) = e
∆t
2 f(x)

[
Q∆t

(
e

∆t
2 fϕ

)]
(x), (4.16)

well-known in the diffusion Monte Carlo community [381, 328, 320, 412], defines the following semi-
group:

Φf∆t,n(ν)(ϕ) =

Eν
[
ϕ(xn) e∆t

∑n−1
i=0

f(xi)+f(xi+1)

2

]
Eν
[
e∆t

∑n−1
i=0

f(xi)+f(xi+1)

2

] .
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Remark 4.6. The weighted evolution of (Xt)t>0 can be equivalently formulated as the unweighted
evolution for the augmented system (Xt, Zt)t>0, where Zt > 0 is solution to

dZt = Ztf(Xt) dt, Z0 = 1.

However, Zt is unbounded and may diverge to +∞. The augmented dynamics (Xt, Zt)t>0 therefore
does not have an invariant measure in general, which complicates the analysis of the long time limit.
Moreover, a naive discretization like the Euler-Maruyama scheme applied to (Xt, Zt)t>0 reads{

xn+1 = xn + b(xn)∆t+ σ
√

∆tGn,

zn+1 = zn + znf(xn)∆t.

Observe that the positivity of Zt may not be preserved during the dynamics if ∆t is too large, which is
crucial for the numerical scheme to be well-defined. This issue persists in general for other schemes.
On the other hand, if xn is fixed, the process Zt solving

dZt = Ztf(xn) dt, Z0 = zn

over a time step ∆t admits the exact solution

zn+1 = zn ef(xn)∆t.

Therefore, a first order splitting between Xt and Zt leads to the first order integrator (4.14). If we
perform a second order splitting between Xt and Zt, we are back to the second order integration rule
prescribed by (4.16). As a result, although considering an extended system (Xt, Zt)t>0 of course makes
sense, we see that, in order for the positivity of Zt to be unconditionally preserved, we are naturally led
to the same schemes as for the usual Feynman–Kac dynamics. There is finally a technical restriction
with the reformulation of the Feynman–Kac dynamics using the augmented process (Xt, Zt)t>0. The
generator Laug of (Xt, Zt)t>0 is defined, for a test function ϕ, through Laugϕ(x, z) = Lϕ(x, z) +
zf(x)∂zϕ(x, z). However, the numerical analysis presented in Section 4.3 uses stability properties of
the inverse of the generator of the dynamics (see Assumption 4.14 below). While L is invertible as an
operator acting on functions of x, it is much more difficult to define the inverse of Laug in a general
way (think of the case f = 0).

In what follows, given that the discrete semigroup defines a measure-valued dynamics, we write for
simplicity νn = Φf∆t,n(ν), and we denote again by B∞(X ) = {ϕmeasurable | supx∈X |ϕ(x)| < +∞}
the space of bounded measurable functions. For a given bounded operator Q on B∞(X ) and a
probability measure ν ∈ P(X ), we also denote by νQ the probability measure defined as

∀ϕ ∈ C, (νQ)(ϕ) = ν(Qϕ). (4.17)

We start by recalling a one-step formulation of the non-linear dynamics (νn)n>0, as suggested e.g.
in [117] and used in Chapter 2. This formulation is the basis for a stationarity property fundamental
in our numerical analysis.

Lemma 4.7. The sequence of probability measures νn = Φf∆t,n(ν) satisfies the following dynamics:

νn+1 = Φf∆t(νn),

where

∀ ν ∈ P(X ), ∀ϕ ∈ C, Φf∆t(ν)(ϕ) =
ν
(
Qf∆tϕ

)
ν
(
Qf∆t1

) . (4.18)

Proof. The proof relies on a simple rewriting: for all ϕ ∈ C,

νn+1(ϕ) =
ν
(

(Qf∆t)
n+1ϕ

)
ν
(

(Qf∆t)
n+11

) =
ν
(

(Qf∆t)
n(Qf∆tϕ)

)
ν
(

(Qf∆t)
n1
) ×

ν
(

(Qf∆t)
n1
)

ν
(

(Qf∆t)
n(Qf∆t1)

) =
νn

(
Qf∆tϕ

)
νn

(
Qf∆t1

) ,
which gives the result.
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Let us now prove that the measure-valued dynamical process (4.18) admits a limit measure µf,∆t
independent of the initial distribution ν, and that the long time average (4.15) converges to the
average with respect to this measure. Although we could use the results of Chapter 2, we follow the
strategy of Del Moral and collaborators [114, 117, 115, 113], which relies on the Dobrushin ergodic
coefficient of a relevant operator (see Section 4.7). We believe this is instructive, and in the context
of a bounded state space it requires less regularity assumptions. For following this approach, we use
the following assumption, which is typically satisfied for discretizations associated with the continuous
dynamics (4.3) on the torus.

Assumption 4.8. The operator Qf∆t satisfies a minorization and boundedness condition: there exist
ε ∈ (0, 1) and η ∈ P(X ) such that, for all non-negative bounded measurable function ϕ,

∀x ∈ X , εη(ϕ) 6
(
Qf∆tϕ

)
(x) 6 ε−1η(ϕ). (4.19)

Since f is smooth and X = Td, the condition (4.19) is satisfied for the evolution operator (4.14)
as soon as a condition similar to (4.19) is satisfied for Q∆t. The latter condition is, in turn, easily
seen to be true for the numerical scheme (4.13), with η(dx) = |X |−1dx the normalized Lebesgue
measure on X , see [304, Section 3.3.2]. Similar considerations allow to prove that (4.19) holds for
more complicated discretization strategies [219, 304].

We can now recall an important result which ensures the existence and uniquess of the limiting
measure for the discretized Feynman–Kac dynamics. Its proof, taken from [114], is recalled in Sec-
tion 4.6.2. To state the result, we introduce the total variation distance between two measures µ,
ν ∈ P(X ):

‖µ− ν‖TV = sup
A⊂X

|µ(A)− ν(A)|,

where the supremum runs over measurable subsets of X . Recall that P(X ) is complete for this
distance.

Theorem 4.9. Suppose that Assumption 4.8 holds true. Then the non-linear dynamics (4.18) admits
a unique stationary probability measure µf,∆t which is independent of the initial measure and which
is a fixed point of Φf∆t:

µf,∆t = Φf∆t(µf,∆t). (4.20)

Moreover, for any initial distribution ν ∈ P(X ),

‖νn − µf,∆t‖TV 6 2
(
1− ε2

)n
. (4.21)

Remark 4.10. Let us emphasize that the prefactor ε in (4.19) typically scales as ∆t−
d
2 exp(−CL/∆t)

for some constant CL > 0. Indeed, consider for instance the first order discretization (4.13). Its
transition kernel between x and x′ reads

Q∆t(x, dx
′) =

1

(2πσ2∆t)
d
2

exp

(
− (x′ − x− b(x)∆t)2

2σ2∆t

)
dx′.

We then see that ε scales at dominant order in ∆t as ∆t−
d
2 exp(−CL/∆t) for some constant CL > 0

depending on σ and X , independently on the drift b. Thus, the choice of integrator should not affect
significantly the value of ε. We also recall that, if Qf∆t satisfies a uniform version of (4.19) with
additional strong Feller and consistency conditions, it is possible to derive uniform in ∆t convergence
estimates, see Theorem 2.21 in Chapter 2.

As a consequence of Theorem 4.9, if we define a discretization of the Feynman–Kac semigroup (4.3)
satisfying Assumption 4.8, the discrete dynamics (4.15) admits an invariant probability measure solu-
tion to the fixed point equation (4.20). In view of (4.20) and (4.18), this measure satisfies the following
stationarity equation:

∀ϕ ∈ C,
∫
X
Qf∆tϕdµf,∆t =

(∫
X
Qf∆t1 dµf,∆t

)(∫
X
ϕdµf,∆t

)
. (4.22)

In particular, if we define the approximate eigenvalue λ∆t by

e∆tλ∆t =

∫
X
Qf∆t1 dµf,∆t, (4.23)
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then (4.22) can be rewritten as:

∀ϕ ∈ C,
∫
X

[(
Qf∆t − e∆tλ∆t

∆t

)
ϕ

]
dµf,∆t = 0. (4.24)

This is the stationarity equation of the discretized process upon which the analysis in Section 4.3 is
built. Let us emphasize that it involves the approximate eigenvalue λ∆t accounting for the rate of
creation of probability of the discretized process, which differs in general from the largest eigenvalue λ
of the operator L+f (which accounts for the rate of creation of probability for the continuous process1).
The numerical analysis of the approximation λ∆t of λ plays an important role in Section 4.3.

Remark 4.11. In the case f ≡ 0, the measure µf,∆t = µ∆t is the invariant probability measure of
the discretized process without reweighting, and the evolution operator Q∆t conserves probability. This
also implies that λ∆t = 0. Therefore (4.24) simplifies as

∀ϕ ∈ C,
∫
X

[(
Q∆t − 1

∆t

)
ϕ

]
dµ∆t = 0,

which is the standard stationarity equation of the invariant probability measure for discretizations of
SDEs [295, 304]. This is because the largest eigenvalue of the discretized evolution operator Q∆t is 1,
as for the continuous semigroup Pt. As already mentioned in Section 1.4 in the Introduction, this is
an important difference with standard numerical analysis for SDEs.

4.3 Numerical analysis of the discretization
We now turn to the main section of the chapter, where we quantify how close µf,∆t, the ergodic
measure for the discrete Feynman–Kac dynamics, is from µf , the ergodic measure for its continuous
counterpart. We also make precise the difference at leading order in ∆t. Following a general strategy
to study the error on the invariant probability measure of discretizations of stochastic processes dating
back to [400] (see Section 1.4 in the Introduction and [110, 295, 304] for more details), we compare the
evolution operator Qf∆t with the Feynman–Kac semigroup e∆t(L+f). Although the non probability-
conserving feature of the dynamics is an additional difficulty, we obtain in Section 4.3.1 results similar
to those of [400, 110, 2, 304] concerning the error on the invariant probability measure. Moreover, we
provide in Section 4.3.2 error bounds for estimators of the eigenvalue λ. Finally, we show how to relate
the invariant probability measures of different schemes in Section 4.3.3 and discuss in Section 4.3.4
how the Feynman–Kac discretization essentially inherits the properties of the discretization of the
underlying unweighted dynamics.

4.3.1 Error estimates on the invariant probability measure
4.3.1.1 Expansions of the discrete evolution operators Qf∆t
For unweighted dynamics (f = 0), consistency assumptions on the evolution operator Q∆t characteriz-
ing the discretization rely on an expansion of Q∆t in powers of ∆t (see the presentation in Section 1.4).
More precisely, it is assumed that there exist an integer p > 1 and differential operators (Ak)k=1,...,p+1

such that the evolution operator Q∆t of the discrete dynamics admits the following expansion: for all
ϕ ∈ C,

Q∆tϕ = ϕ+ ∆tA1ϕ+ ∆t2A2ϕ+ . . .+ ∆tp+1Ap+1ϕ+ ∆tp+2R∆tϕ. (4.25)

The differential operators Ak have finite order and smooth coefficients: for any k ∈ {1, . . . , p + 1},
there exist mk ∈ N and a familly of smooth functions (aα)|α|6mk (with α = (α1, . . . , αd) ∈ Nd and
|α| = α1 + . . .+ αd) such that

Ak =
∑
|α|6mk

aα∂
α, (4.26)

where ∂α = ∂α1
x1
. . . ∂αdxd . Moreover, R∆t is an operator uniformly bounded in ∆t in the following sense:

there exist ∆t∗ > 0, c > 0 and m ∈ N such that

∀∆t ∈ (0,∆t∗], ∀ϕ ∈ C, ‖R∆tϕ‖C0 6 c ‖ϕ‖Cm , (4.27)
1This is made precise by equation (2.26) in Chapter 2.
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where
‖ϕ‖Cm = sup

|α|6m
sup
x∈X

|∂αϕ(x)| . (4.28)

The assumptions (4.25) and (4.27) are standard for the numerical analysis of ergodic measures of
SDEs [400, 276, 110, 1, 295, 304], and are satisfied for a wide range of explicit and implicit schemes
defined on compact domains. A scheme is of weak order p when (4.25) holds with

∀ k ∈ {1, . . . , p}, Ak =
Lk

k!
,

see for instance [332]. Typically, A1 = L for any reasonable discretization scheme.
Besides weak and strong errors, another notion of consistency is the error arising on the invariant

probability measure, in situations when the Markov chain associated with Q∆t admits an invariant
probability measure µ∆t. The error between averages with respect to µ and µ∆t are of order at
least ∆tp when the scheme is weakly consistent of order p. It can however be of higher order ∆tp

′

(with p′ > p+ 1) when

∀ k ∈ {1, . . . , p′}, ∀ϕ ∈ C,
∫
X
Akϕdµ = 0. (4.29)

This condition is satisfied by operators which are proportional to powers of L. See however [3, 295]
for examples of situations where Ak is not a power of L but the above condition is met.

In the context of Feynman–Kac averages (4.3) where we consider approximations Qf∆t of e∆t(L+f),
we generalize the conditions (4.25) and (4.27) as follows.

Assumption 4.12. There exist an integer p > 1 and differential operators (Afk)k=1,...,p+1 of the
form (4.26) such that the evolution operator Qf∆t of the Feynman–Kac dynamics admits the following
expansion: for all ϕ ∈ C,

Qf∆tϕ = ϕ+ ∆tAf1ϕ+ ∆t2Af2ϕ+ . . .+ ∆tp+1Afp+1ϕ+ ∆tp+2Rf,∆tϕ, (4.30)

where Rf,∆t is a uniformly bounded remainder in the sense of (4.27). We also assume that Af1 is such
that

Af1 = A1 + f, A11 = 0, (4.31)

where A1 is a differential operator. In particular, Af11 = f .

Let us provide an example of such an expansion when Qf∆t is defined by (4.14).

Lemma 4.13. Assume that (4.25) and (4.27) hold with A11 = 0, and define Qf∆t = e∆tfQ∆t. Then
Assumption 4.12 holds with, for all k ∈ {1, . . . , p+ 1},

Afkϕ =

k∑
m=0

fm

m!
Ak−mϕ. (4.32)

Proof. The equality follows by expanding e∆tf in ∆t and taking the product with the semigroup
expansion: there exist ∆t∗ and K > 0 such that

Qf∆tϕ =

(
1 + ∆tf +

∆t2

2
f2 + . . .+

∆tp+1

(p+ 1)!
fp+1 + ∆tp+2r∆t,f

)
×
(
ϕ+ ∆tA1ϕ+ ∆t2A2ϕ+ . . .+ ∆tp+1Ap+1ϕ+ ∆tp+2R∆tϕ

)
,

with ‖rf,∆t‖C0 6 K for 0 < ∆t 6 ∆t∗. Gathering the terms of order ∆tk leads to (4.32) plus a
uniformly bounded remainder, which proves the result.

Note that, in (4.32), we obtain Af1 = A1 + f where A1 is defined in (4.25). However, there are
other ways to construct Feynman–Kac schemes Qf∆t, using for instance a splitting strategy. Let us
give an example. Assume for instance that the operator L can be split in two parts: L = L1 +L2. We
can then define a splitting scheme as Q∆t = e∆tL2e∆tL1 , and, by discretizing the time integral of f in
three parts (using Simpson’s rule) intertwinned with e∆tL2 and e∆tL1 ,

Qf∆t = e
∆t
6 fe∆tL2e

2∆t
3 fe∆tL1e

∆t
6 f .

In this case, we see that the expansion of Qf∆t cannot be derived from the one for Q∆t (by a statement
similar to (4.32)). The evolution operator Qf∆t nonetheless satisfies Assumption 4.12.
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4.3.1.2 Statement of the main result

Before stating our main theorem, we need to introduce the following technical assumptions.

Assumption 4.14 (Stability). The operators A1 + f −λ and A∗1 + f −λ are invertible on Cf and Ĉf
respectively (in the sense made precise in Proposition 4.5).

In our setting, a crucial step of the proof consists in building an approximation of the eigenvector hf
to solve an approximate eigenvalue problem for the operator Qf∆t. This is an important difference
compared to the case f ≡ 0, and requires the following assumption.

Assumption 4.15 (Spectral consistency). The operator A1 + f , considered on L2(µ), admits λ as
its largest eigenvalue, with associated eigenvector hf :

(A1 + f)hf = λhf .

Note that Assumptions 4.14 and 4.15 are immediately met when the schemes are weakly consistent,
i.e. A1 = L, since Assumption 4.14 is equivalent to Proposition 4.5 while Assumption 4.15 follows
from Proposition 4.1. However, it is possible in principle to construct numerical schemes for which
A1 6= L, in which case Assumptions 4.14 and 4.15 should be checked directly.

We are now in position to state our main result on the numerical discretization of Feynman–Kac
semigroups, which makes precise error estimates à la Talay–Tubaro in the ergodic setting.

Theorem 4.16. Suppose that Assumptions 4.12, 4.14 and 4.15 hold. Assume also that the opera-
tors Afk in (4.30) are such that, for all k ∈ {1, . . . , p}, there exists ak ∈ R with

∀ϕ ∈ C,
∫
X

(
Afkϕ

)
dµf = ak

∫
X
ϕdµf . (4.33)

Define also ψ ∈ Cf as

ψ = ψ0 −
∫
X
ψ0 dµf ,



(A∗1 + f − λ)(`fψ0) = g̃,

g̃ = −(Afp+1)∗`f + `f

∫
X
Afp+1hf dµf∫
X
hfdµf

∈ Ĉf .
(4.34)

Then, there exist a time step ∆t∗ > 0 and a real-valued operator Rf,∆t (uniformly bounded in ∆t in
the sense of (4.27)) such that, for any 0 < ∆t 6 ∆t∗ and any ϕ ∈ C,∫

X
ϕdµf,∆t =

∫
X
ϕdµf + ∆tp

∫
X
ϕψ dµf + ∆tp+1Rf,∆tϕ. (4.35)

Note that the denominator in the second term on the right-hand side of the definition of g̃ is
positive thanks to Proposition 4.1. In general, in (4.30), we expect Afk to be (L + f)k/k! (which
corresponds to a scheme of weak order k), in which case (4.33) holds for ak = λk/k! 6= 0 (see (4.48)
below for a proof of the latter equality). This factor comes from the fact that Qf∆t does not conserve
probability. Indeed, for the evolution operator Q∆t of a Markovian dynamics, one always has∫

X
Q∆t1 dµf = 1.

On the other hand, considering (4.30) and applying (4.33) to ϕ = 1 leads to∫
X
Qf∆t1 dµf = 1 + ∆t a1 + . . .+ ∆tpap + ∆tp+1rf,∆t,

where rf,∆t is a remainder term which is uniformly bounded for ∆t sufficiently small. This is the
manifestation at the discrete level of the fact that, over a time step ∆t, the dynamics increases or
decreases approximately the probability mass by a factor e∆tλ. The relation (4.33) should thus be
compared to the invariance relation (4.29) for f = 0.
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4.3.1.3 Proof of Theorem 4.16

The proof of Theorem 4.16 relies on four lemmas which allow to easily conclude the proof. We follow
the same strategy as for the error analysis of the invariant probability measure proposed in [295, 304]
but additionnal technical difficulties arise due to the non-linearity of the stationarity equation (4.22).
The first step (Lemma 4.17) is to construct the leading correction term ψ. We next use a projector
in Lemma 4.18 to relate the exact stationary measure µf and its approximation µf,∆t. An a priori
estimate on the approximate eigenvalue defined in (4.23) is then provided in Lemma 4.19. Finally, an
approximate inverse operator is constructed in Lemma 4.20. In the proofs and also in the statements
below, the remainders may change from line to line in the calculation, but we do not change the
notation for convenience. There are two types of remainders: terms of the form Rf,∆tϕ where Rf,∆t
is a differential operator satisfying (4.27), and functions rf,∆t such that, for any k > 1, there is K > 0
and ∆t∗ for which ‖rf,∆t‖Ck 6 K when 0 < ∆t 6 ∆t∗.

To begin with, we give the expression of the leading correction term ψ. It relies on an approximate
reformulation of (4.22) which leads to an expression similar to (4.24) up to a remainder of order ∆tp+1.

Lemma 4.17. Under the assumptions of Theorem 4.16, for any ϕ ∈ C,∫
X

(
Qf∆tϕ

)
(1 + ∆tpψ) dµf =

(∫
X
Qf∆t1(1 + ∆tpψ) dµf

)(∫
X
ϕ (1 + ∆tpψ) dµf

)
+ ∆tp+2Rf,∆tϕ,

(4.36)
where Rf,∆t is a real-valued uniformly bounded remainder (in the sense of (4.27)) and ψ is defined
in (4.34).

The proof of this lemma is presented in Section 4.6.3.1. Defining the approximate eigenvalue λ̃∆t

by

e∆tλ̃∆t =

∫
X
Qf∆t1(1 + ∆tpψ) dµf , (4.37)

equation (4.36) can be rewritten as

∀ϕ ∈ C,
∫
X

[(
Qf∆t − e∆tλ̃∆t

∆t

)
ϕ

]
(1 + ∆tpψ) dµf = ∆tp+1Rf,∆tϕ. (4.38)

This expression allows to identify the leading order correction term ∆tpψ in µf,∆t − µf and can be
thought of as the approximate counterpart of (4.24). The second step is to use a projector that on the
one hand stabilizes in Cf the operator appearing in (4.38), and on the other hand relates the exact
stationary measure µf and its approximation µf,∆t. For this we introduce the following projectors:
for all φ ∈ C,

Πφ = φ−
∫
X
φdν, Πfφ = φ−

∫
X
φdµf . (4.39)

The operator Π is the L2(µ) orthogonal projector on L2
0(µ), while Πf is a projector on L2

f (µ) which
is not orthogonal for the canonical scalar product on L2(µ). However, it is orthogonal on L2(µf ), so
that, for all φ, ϕ ∈ C, ∫

X
(Πfφ)ϕdµf =

∫
X
φ(Πfϕ) dµf . (4.40)

We can then show the following result, whose proof can be found in Section 4.6.3.2.

Lemma 4.18. Under the assumptions of Theorem 4.16, it holds, for any φ ∈ C,∫
X

[
Πf

(
Qf∆t − e∆tλ∆t

∆t

)
Πfφ

]
dµf,∆t =

∫
X

[
Πf

(
Qf∆t − e∆tλ̃∆t

∆t

)
Πfφ

]
(1 + ∆tpψ) dµf

+ ∆tp+1Rf,∆tφ,

(4.41)

where Rf,∆t is a uniformly bounded remainder in the sense of (4.27).

Here, we see that two different operators appear inside the integrals because the factors e∆tλ∆t

and e∆tλ̃∆t are different. The next lemma shows that these quantities are the same up to terms
of order ∆tp+2. As mentioned earlier, this is an important difference with the analysis in the case
f = 0. Some a priori estimate on the eigenvalue is required to conclude the proof, whereas, for the



4.3. Numerical analysis of the discretization 155

unweighted case, the largest eigenvalue of the evolution operator is 1 with eigenvector 1 both for the
continuous process and its discretization. The proof, provided in Section 4.6.3.3, relies on building
an approximate eigenfunction for the operator Qf∆t. Similar estimates were obtained in the diffusion
Monte Carlo context in analytically solvable cases in [328].

Lemma 4.19. Under the assumptions of Theorem 4.16, there exist ∆t∗ > 0, c > 0 and functions
u1, . . . , up ∈ Cf such that the function hf,∆t = hf + ∆t u1 + . . .+ ∆tp up satisfies

Qf∆thf,∆t = e∆tλ̃∆thf,∆t + ∆tp+2rf,∆t,

∫
X
hf,∆t dµ = 1, (4.42)

where ‖rf,∆t‖C0 6 c for all 0 < ∆t 6 ∆t∗. As a consequence, there exist ∆t′ and C > 0 such that

e∆tλ∆t = e∆tλ̃∆t + ∆tp+2r̃f,∆t, (4.43)

with |r̃f,∆t| 6 C for all 0 < ∆t 6 ∆t′.

Once we have reached this point, it is possible to replace the eigenvalue e∆tλ∆t by e∆tλ̃∆t in
Lemma 4.18. The last step is to build an approximate inverse of the operator

Πf

(
Qf∆t − e∆tλ̃∆t

∆t

)
Πf ,

as provided in the next lemma (see Section 4.6.3.4 for the proof).

Lemma 4.20. Under the assumptions of Theorem 4.16, for any 0 < ∆t 6 ∆t∗, there is an operator
Sf∆t : C → C for which

∀ϕ ∈ Cf , Πf

(
Qf∆t − e∆tλ̃∆t

∆t

)
ΠfS

f
∆tϕ = ϕ+ ∆tp+1Rf,∆tϕ, (4.44)

where Rf,∆t : C → C is a uniformly bounded remainder in the sense of (4.27), and Sf∆t admits the
following uniform bounds: for any k > 0, there exist C > 0 and m ∈ N (depending on k) such that

∀∆t ∈ (0,∆t∗],
∥∥∥Sf∆tϕ∥∥∥

Ck
6 C ‖ϕ‖Cm .

We now have all the tools to prove Theorem 4.16. First, plugging the estimate (4.43) obtained in
Lemma 4.19 in the error expansion (4.41) obtained in Lemma 4.18 leads to, for any φ ∈ C,

∫
X

[
Πf

(
Qf∆t − e∆tλ̃∆t

∆t

)
Πfφ

]
dµf,∆t =

∫
X

[
Πf

(
Qf∆t − e∆tλ̃∆t

∆t

)
Πfφ

]
(1 + ∆tpψ) dµf

+ ∆tp+1Rf,∆tφ,

(4.45)

whereRf,∆t satisfies (4.27). We next consider the approximate inverse operator Sf∆t built in Lemma 4.20,
and set φ = Sf∆tΠfϕ in (4.45). Therefore, for any ϕ ∈ C,∫
X

(Πfϕ) dµf,∆t =

∫
X

(Πfϕ)(1 + ∆tpψ) dµf + ∆tp+1R̃f,∆tϕ = ∆tp
∫
X

(Πfϕ)ψ dµf + ∆tp+1R̃f,∆tϕ,

where R̃f,∆t satisfies (4.27). Since ψ has average 0 with respect to µf , this gives∫
X
ϕdµf,∆t =

∫
X
ϕdµf + ∆tp

∫
X
ϕψ dµf + ∆tp+1R̃f,∆tϕ,

which concludes the proof of Theorem 4.16.
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4.3.2 Alternative error estimate for the principal eigenvalue
We present in this section a useful application of Theorem 4.16, which provides an error estimate
for the approximation of the principal eigenvalue λ of the operator L + f . Such an estimate is
particularly useful for computing large deviations functions, as motivated in Chapter 3. We also
illustrate this analysis in Chapter 5 below. The choice ϕ ≡ f allows to compute the principal eigenvalue
by ergodic averages, as shown in Proposition 4.3 and Corollary 4.4. As a result, this eigenvalue can
be approximated using Theorem 4.16, whose application to ϕ ≡ f gives∫

X
f dµf,∆t = λ+ ∆tp

∫
X
fψ dµf + ∆tp+1rf,∆t,

where rf,∆t is uniformly bounded for ∆t small enough. Although this formula can be used in simu-
lations to estimate λ, we present an error estimate for an alternative approximation more commonly
used in practice. We will also see in Section 4.3.4 that this alternative formula can be more accurate
than the estimate based on averaging f .

Theorem 4.21. Suppose that Assumption 4.12 holds, with a numerical scheme consistent at order p
(that is, Afk = (L+ f)k/k! for 1 6 k 6 p). Then there exist ∆t∗ > 0 and C > 0 such that

λ∆t =
1

∆t
log

[∫
X
Qf∆t1 dµf,∆t

]
= λ+ ∆tp

(
λp+1 −

λp+1

(p+ 1)!

)
+ ∆tp+1rf,∆t, (4.46)

with |rf,∆t| 6 C for any 0 < ∆t 6 ∆t∗, and

λp+1 =

∫
X
Afp+11 dµf +

∫
X
fψ dµf . (4.47)

This result is important since it implies that we can approximate the eigenvalue λ by comput-
ing λ∆t, which is proportional to the logarithm of the average creation of probability over a time
step ∆t (given by Qf∆t1) at stationarity. This is the reason why we need the coefficients ak to be cor-
rect up to order p (i.e. ak = λk/k!) since they represent the creation of probability of the discretized
process. The estimate (4.46) justifies the use of population based dynamics [202, 397, 337] when the
underlying continuous diffusions are discretized in time. We illustrate the error estimate (4.46) in the
numerical simulations reported in Section 4.4.

Proof. We use Lemma 4.19 to prove the theorem, which highlights the importance of this result in
our context. In all this proof, rf,∆t denotes a smooth function which may change from line to line,
but whose C0 norm is always uniformly bounded for sufficiently small time steps ∆t. From the
definition (4.23) and the estimate (4.43),

λ∆t =
1

∆t
log
(
e∆tλ∆t

)
=

1

∆t
log
(

e∆tλ̃∆t + ∆tp+2rf,∆t

)
.

Expanding e∆tλ̃∆t defined in (4.37) in powers of ∆t and recalling that Af11 = f ,

λ∆t =
1

∆t
log

[∫
X

(
1 + ∆tf + ∆t2Af21+ . . .+ ∆tp+1Afp+11

)
(1 + ∆tpψ) dµf + ∆tp+2rf,∆t

]
=

1

∆t
log

[
1 + ∆tλ+ . . .+ ∆tp

λp

p!
+ ∆tp+1

∫
X

(
Afp+11+ fψ

)
dµf + ∆tp+2rf,∆t

]
,

where we used that
∫
X ψ dµf = 0 and, in view of (4.8),

∀ k ∈ {1, . . . , p},
∫
X
Afk1 dµf =

∫
X

[
(L+ f)k

k!
1

]
`f dµ =

∫
X

[
(L∗ + f)k

k!
`f

]
dµ =

λk

k!
. (4.48)

Therefore,

λ∆t =
1

∆t
log

e∆tλ −
+∞∑

k=p+2

∆tk
λk

k!
+ ∆tp+1

∫
X

(
Afp+11−

λp+1

(p+ 1)!
+ fψ

)
dµf + ∆tp+2rf,∆t


=

1

∆t
log

[
e∆tλ + ∆tp+1

∫
X

(
Afp+11−

λp+1

(p+ 1)!
+ fψ

)
dµf + ∆tp+2rf,∆t

]
.
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Given that e∆tλ is uniformly bounded for 0 < ∆t 6 ∆t∗ and equal to 1 at leading order in ∆t, we
obtain, by expanding the logarithm,

λ∆t = λ+ ∆tp e−∆tλ

[∫
X

(
Afp+11+ fψ

)
dµf −

λp+1

(p+ 1)!

]
+ ∆tp+1rf,∆t.

The result then follows from e−∆tλ = 1 + ∆t rλ,∆t and the definition (4.47) of λp+1.

4.3.3 TU Lemma

In the context of splitting schemes, it may be useful to relate the invariant probability measures of two
numerical schemes differing by the ordering of the applied operators. This is the purpose of a result
called “TU lemma” in [295], which we adapt to our context in Lemma 4.22. We then state a similar
version of this lemma for the eigenvalues of two such schemes in Proposition 4.23. We will see in
Section 4.3.4 that this last result can be combined with Theorem 4.21 to show that the schemes (4.14)
and (4.16) both provide second order estimates of the principal eigenvalue λ using (4.46), when the
discretization of the process Q∆t is weakly consistent of order 2.

Lemma 4.22. Consider two numerical schemes for the Feynman–Kac dynamics with associated evo-
lution operators Qf∆t and Q̃

f
∆t satisfying Assumption 4.8, and denote by µf,∆t and µ̃f,∆t respectively

the associated ergodic measures in the sense of Theorem 4.9. Assume that the evolution operators are
related by two operators T f∆t and U

f
∆t, bounded on B∞(X ), as:

∀n > 1,
(
Q̃f∆t

)n
= T f∆t

(
Qf∆t

)n
Uf∆t. (4.49)

Then, for any ϕ ∈ C, ∫
X
ϕdµ̃f,∆t =

∫
X
Uf∆tϕdµf,∆t∫

X
Uf∆t1 dµf,∆t

. (4.50)

For the TU lemma stated in [295], the typical case of application corresponds to Q∆t = U∆tT∆t and
Q̃∆t = T∆tU∆t, with two Markov operators T∆t and U∆t. In this case, the relation (4.49) holds with
a power n − 1 on the right-hand side. For Feynman–Kac semigroups, T f∆t and U

f
∆t are a priori such

that T f∆t1 6= 1 and Uf∆t1 6= 1. A typical case of interest is Qf∆t = e∆tfQ∆t and Q̃
f
∆t = Q∆t

(
e∆tf ·

)
,

in which case (4.49) is satisfied with T f∆t = e−∆tf and Uf∆t = e∆tf .

Proof. For any ν ∈ P(X ) and any ϕ ∈ C,

Φ̃f∆t,n(ν)(ϕ) =
ν
((
Q̃f∆t

)n
ϕ
)

ν
((
Q̃f∆t

)n
1
) =

ν
(
T f∆t

(
Qf∆t

)n
Uf∆tϕ

)
ν
(
T f∆t

(
Qf∆t

)n
Uf∆t1

)
=

(
νT f∆t

)((
Qf∆t

)n
1
)

(
νT f∆t

)((
Qf∆t

)n
Uf∆t1

) ×
(
νT f∆t

)((
Qf∆t

)n
Uf∆tϕ

)
(
νT f∆t

)((
Qf∆t

)n
1
) =

Φf∆t,n(ν1)(Uf∆tϕ)

Φf∆t,n(ν1)(Uf∆t1)
,

where ν1 ∈ P(X ) is defined by

∀φ ∈ C, ν1 (φ) =
ν
(
T f∆tφ

)
ν
(
T f∆t1

) .
The result then follows from the ergodic limits

lim
n→+∞

Φf∆t,n(ν1)(ϕ) =

∫
X
ϕdµf,∆t, lim

n→+∞
Φ̃f∆t,n(ν)(ϕ) =

∫
X
ϕdµ̃f,∆t,

as provided by Theorem 4.9.
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In our framework, the approximate principal eigenvalue λ∆t is another important feature of a
discretization scheme. In fact, under an additional assumption on the operators T f∆t and U

f
∆t, schemes

related by (4.49) share the same approximate eigenvalues in the sense of (4.23). This is made precise
in the following proposition (see Section 4.6.4 for the proof).

Proposition 4.23. Fix a time step ∆t > 0 and consider a numerical scheme for the Feynman–
Kac dynamics corresponding to an evolution operator Qf∆t satisfying Assumption 4.8, with associated
invariant measure µf,∆t given by Theorem 4.9, and eigenvalue λ∆t defined by (4.23). Consider next a
second scheme corresponding to an operator Q̃f∆t related to Qf∆t by (4.49), with operators Uf∆t and T

f
∆t

bounded on B∞(X ) and for which there exists α > 0 such that, for any ϕ ∈ C with ϕ > 0,

αϕ 6 Uf∆tϕ 6 α−1ϕ, αϕ 6 T f∆tϕ 6 α−1ϕ. (4.51)

Then, Q̃f∆t satisfies Assumption 4.8, and its invariant probability measure is denoted by µ̃f,∆t. More-
over, its associated eigenvalue λ̃∆t defined by

λ̃∆t =
1

∆t
log

[∫
X
Q̃f∆t1 dµ̃f,∆t

]
, (4.52)

is such that
λ̃∆t = λ∆t.

The eigenvalue λ̃∆t should not be mistaken in this context with the definition (4.37), which serves
as an intermediate in the proof of Theorem 4.16. A careful inspection of the proof shows that it would
be possible to consider a slightly different assumption (4.51).

Remark 4.24. Although Proposition 4.23 may look odd at first sight, it has a natural interpretation
in terms of matrices. Indeed, if A ∈ Rd×d and B ∈ Rd×d are two square matrices with nonnegative
entries, the products AB and BA share the same real principal eigenvalue. One can show this by the
following argument. For any matrix M ∈ Rd×d with nonnegative entries, the spectral radius

ρ(M) = lim
n→+∞

‖Mn‖ 1
n

is an eigenvalue of M (see [383]). This eigenvalue is the equivalent of the principal eigenvalue for the
operator L + f since it is the eigenvalue of the matrix M with the largest real part. It is easy to see
that ρ(AB) = ρ(BA) by noting that

ρ(AB) = lim
n→+∞

‖(AB)n‖ 1
n = lim

n→+∞
‖A(BA)n−1B‖ 1

n 6 lim
n→+∞

‖A‖ 1
n ‖(BA)n−1‖ 1

n ‖B‖ 1
n = ρ(BA).

This leads to ρ(AB) 6 ρ(BA), and, by symmetry, ρ(BA) 6 ρ(AB); hence ρ(AB) = ρ(BA). In the
same way, evolution operators related by (4.49) share the same principal eigenvalue even though, a
priori, they do not share the same invariant probability measures. The proof of Proposition 4.23,
presented in Section 4.6.4, follows a path similar to the one used here for matrices.

4.3.4 Second order schemes

We now turn to second order schemes for Feynman–Kac dynamics. They are the most interesting ones
in practice, since they can provide an important improvement in the accuracy for a relatively cheap
computational overhead. Moreover, in our case, they can be straightforwardly built from second order
schemes for the dynamics (4.1), as a consequence of Theorem 4.16.

Lemma 4.25. Suppose that (4.25) and (4.27) hold with the following expansion for Q∆t:

∀ϕ ∈ C, Q∆tϕ = ϕ+ ∆tLϕ+ ∆t2
L2ϕ

2
+ ∆t3A3ϕ+ ∆t4R∆tϕ, (4.53)

where A3 is a differential operator with smooth coefficients and R∆t satisfies (4.27). Then the opera-
tor Qf∆t defined by

∀ϕ ∈ C, Qf∆tϕ = e
∆t
2 fQ∆t

(
e

∆t
2 fϕ

)
,
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satisfies Assumption 4.12 with p = 2:

∀ϕ ∈ C, Qf∆tϕ = ϕ+ ∆t(L+ f)ϕ+ ∆t2
(L+ f)2ϕ

2
+ ∆t3Af3ϕ+ ∆t4Rf,∆tϕ, (4.54)

where

Af3ϕ = A3ϕ+
f3ϕ

6
+
L(f2ϕ)

8
+
L2(fϕ)

4
+
fL2ϕ

4
+
fL(fϕ)

4
+
f2Lϕ

8
,

and Rf,∆t satisfies (4.27).

The interpretation of this result is the following: when we have a scheme consistent at order 2
for the dynamics with f = 0, we immediately obtain a second order scheme for the Feynman–Kac
dynamics by using the corresponding Markov chain and a trapezoidal rule for the time integral in the
exponential. Thanks to the consistency at order one (Af1 = L+ f) and Propositions 4.1 and 4.5, the
assumptions of Theorems 4.16 and 4.21 are immediately satisfied with p = 2.

Proof. The expression of Af3 can be obtained by a direct computation or with the Baker–Campbell–
Hausdorff formula (see [215]), which is a convenient way to perform the algebra allowing to make
precise the various terms in expansions in powers of ∆t. Let us sketch how this is done, and refer
to [295] for strategies of proof in order to make the expansions below rigorous. First,

Q∆t = e∆tL + ∆t3
(
A3 −

L3

6

)
+ ...

and, by the Baker-Campbell-Hausdorff formula,

e∆tf/2e∆tLe∆tf/2 = eS∆t , S∆t = ∆t(L+ f) +
∆t3

12

(
−1

2

[
f, [f,L]

]
+
[
L, [L, f ]

])
,

where [A,B] = AB −BA denotes the commutator of two operators A and B. Therefore,

e∆tf/2e∆tLe∆tf/2 = Id+∆t(L+f)+
∆t2

2
(L+f)2+

∆t3

6
(L+f)3+

∆t3

12

(
−1

2

[
f, [f,L]

]
+
[
L, [L, f ]

])
+...

The conclusion then follows from

e∆tf/2Q∆te
∆tf/2 = e∆tf/2e∆tLe∆tf/2 + ∆t3

(
A3 −

L3

6

)
+ ...

upon developping the commutators.

When we are interested in the computation of the principal eigenvalue with Theorem 4.21, we can
in fact show that the left-point integration (4.14) is sufficient for λ∆t to be correct at order 2 if Q∆t is
consistent at order 2 (i.e. (4.53) holds). In particular, the discretization scheme for the Feynman–Kac
dynamics need not be consistent at order 2 for the eigenvalue to be correct at order 2 (in the same way
that the invariant probability measure for discretizations of ergodic SDEs can be correct at order 2
even if the discretization itself is only weakly consistent at order 1, see [3, 295, 304]). This consequence
of Proposition 4.23 is made precise in the following proposition.

Proposition 4.26. Consider an evolution operator Q∆t with the following familly of discretizations
for the Feynman–Kac dynamics:

Qf,δ∆t = e(1−δ)f∆tQ∆te
δf∆t, δ ∈ [0, 1].

Suppose that Assumption 4.8 holds for at least one of these schemes, and denote by λδ∆t their associated
eigenvalues as in (4.23). Then, λδ∆t is independent of δ. Moreover, when Q∆t satisfies (4.53), the
eigenvalue λδ∆t satisfies (4.46) with p = 2 for any δ ∈ [0, 1].

Proof. The proof is a simple application of Proposition 4.23. Consider the scheme Qf,δ∆t for a fixed
δ ∈ [0, 1] and the scheme Q̃f∆t = e∆t f2Q∆te

∆t f2 , which corresponds to a trapezoidal approximation of
the integral. We can assume without loss of generality that Q̃f∆t satisfies Assumption 4.8. Then, Qf,δ∆t

is related to Q̃f∆t through (4.49) for the corresponding operators:

Uf∆t = e(δ− 1
2 )∆tf , T f∆t = e( 1

2−δ)∆tf .



160
Chapter 4. Error estimates for ergodic properties of discretized Feynman–Kac

semigroups

The operators Uf∆t and T
f
∆t are bounded on B∞ and satisfy (4.51) with α = e−∆t‖f‖B∞/2. Therefore,

by Proposition 4.23, the eigenvalue λδ∆t associated to Qf,δ∆t is equal to λ̃∆t, the eigenvalue associated
to Q̃f∆t, and thus does not depend on δ. Moreover, by Lemma 4.25, if Q∆t satisfies (4.53), Q̃

f
∆t satisfies

the assumptions of Theorem 4.21 with p = 2. This shows that the eigenvalue λδ∆t satisfies (4.46) with
p = 2 whatever the integration rule (i.e. for any δ ∈ [0, 1]).

Remark 4.27. Proposition 4.26 shows that the eigenvalue λ∆t can be correct at order two even though
the scheme only has weak order one. One may also wonder whether it is also possible to have second
order convergence on the invariant measure when Q∆t corresponds to a scheme of weak order one.
As mentioned in Section 4.3.1.1 this is the case when f = 0, see the examples in [295]. Perturbative
arguments for small f however show that this extra cancellation on the invariant measure cannot
happen for a non-constant f , which we detail below.

To be more specific, we consider a numerical scheme Q∆t for an SDE with generator L such that

Q∆t = Id + ∆tL+
∆t2

2
A2 + O

(
∆t3

)
,

with A2 6= L2 but ∫
X
A2ϕdµ = 0.

We know such schemes exists from [295], which is due to particular algebraic cancellations. For
exploring whether this situation is still possible when f 6= 0, we use a perturbative argument with a
potential εf for ε� 1. Denoting by λε, hε the spectral elements (instead of λεf , hεf ), it holds

(L∗ + εf)hε = λεhε. (4.55)

Expanding in powers of ε, we find hε = 1+εu1 +ε2u2 +O(ε3), and λε = ελ1 +ε2λ2 +O(ε3). Plugging
these expressions in (4.55), we obtain that λ1 = λ and u1 is solution to

−L∗u1 = Π0f,

where Π0 is a projection operator on functions of average 0 with respect to µ. In particular, we have
u1 = −(L∗)−1Π0f . Now, a natural way to obtain a second order discretization for the Feynman–Kac
dynamics is to set

Qf∆t = eε
f∆t

2 Q∆te
ε f∆t

2 = Id + ∆t(L+ f) +
∆t2

2
Aε2 + O

(
∆t3

)
,

with
Aε2 = A2 + εfL+ εLf + ε2f2. (4.56)

We used the notation Aε2 instead of Aεf2 compared to the notation in Section 4.3 for simplicity. If A2 =
L2, we are in the setting described in Section 4.3.4. Otherwise we should check that condition (4.33)
holds at second order, namely ∫

X
(Aε2ϕ)hε dµ = aε2

∫
X
ϕhε dµ,

with aε2 = a2,0 + εa2,1 + O(ε2). Expanding the various terms and identifying each order in ε, we find
at dominant order in ε the condition ∫

X
A2ϕdµ = a2,0

∫
X
ϕdµ,

which imposes a2,0 = 0 by assumption on the numerical scheme. At first order in ε, we find the
equation ∫

X
(A2ϕ)u1 dµ+

∫
X

[(fL+ Lf)ϕ] dµ = a2,0

∫
X
ϕu1 dµ+ a2,1

∫
X
ϕdµ.

Taking the adjoint in L2(µ), since a2,0 = 0, we are led to

A∗2u1 + (fL+ Lf)∗1 = a2,1,

for some a2,1 ∈ R. The above equation rewrites, since L∗1 = 0 and u1 = −(L∗)−1Π0f ,[
−A∗2(L∗)−1Π0 + L∗

]
f = a2,1. (4.57)
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In the case f ≡ 1, the equation (4.57) boils down to

L∗1 = a2,1,

which is indeed satisfied for a2,1 = 0. Similarly, (4.57) holds true for a2,1 = 0 when A2 = L2. On
the other hand, when A2 6= L2, it is impossible for (4.57) to be satisfied for any f . As a result, it
seems difficult to construct numerical schemes with weak order one and an extra cancellation on the
invariant measure, apart from very particular choices of f .

4.4 Numerical application
The goal of this section is to illustrate the error estimates presented in Section 4.3 on a toy example.
For this, we consider (4.1) over the one dimensional torus X = T with possibly non-gradient drifts:

dXt = (−V ′(Xt) + γ) dt+ σ dBt, (4.58)

where V is a smooth potential and γ ∈ R. Let us emphasize that a constant force is not the gradient
of a smooth periodic function. We first make precise in Section 4.4.1 the Monte Carlo algorithm
used to compute the Feynman–Kac averages. We next describe in Section 4.4.2 a Galerkin method to
compute reference values for the properties of interest. Note that such a discretization method can be
used only for low-dimensional systems; but, when it can be used, it typically provides more accurate
results than stochastic methods. Finally, we present our numerical results in Section 4.4.3.

4.4.1 Monte Carlo discretization
Discretization of the underlying SDE. The Euler-Maruyama discretization of the dynam-
ics (4.58) is given by:

xn+1 = xn +
(
− V ′(xn) + γ

)
∆t+ σ

√
∆tGn, (4.59)

where Gn are independent and identically distributed one-dimensional standard Gaussian variables. It
is well known that this scheme is weakly consistent of order one (see for instance [332, 110]). In order
to test our results on a second order scheme, we use a discretization proposed e.g. in [1, 436, 177, 409]:

xn+1 = xn − V ′
(
xn + (−V ′(xn) + γ)

∆t

2
+

1

2
σ
√

∆tGn
)

∆t+ γ∆t− σ2

8
V ′′′(xn)∆t2 + σ

√
∆tGn.

(4.60)
It can be proved that this scheme is of weak order 2.

Weighted dynamics. Once the underlying SDE has been discretized, a Monte Carlo scheme for
approximating the associated Feynman–Kac semigroup (4.15) has to be devised. Several methods
have been succefully applied in order to compute Feynman–Kac averages, generally referred to as
Sequential Monte Carlo or Population Monte Carlo methods [139, 113, 301], see Section 1.4.2. For
simplicity and numerical efficiency, we present here a population method with multinomial resampling.
More precisions on this familly of algorithms are available in [139], see also [301, Chapter 6] in the
context of free energy computation and [221] in the context of diffusion Monte Carlo.

The algorithm relies on a dynamics run over a set of replicas of the system. At each step, the
replicas are updated according to the dynamics prescribed by the evolution operator Q∆t, and are
assigned an importance weight depending on the choice of discretization rule for the integral. The
replicas are then resampled following a multinomial distribution with their respective weights, before
computing the desired averages. This technique prevents the variance of the estimator to increase
exponentially in time, a common problem when computing directly quantities such as (4.15). We now
make precise the algorithm.

Consider a population of M replicas (xm)m=1,...,M initially distributed according to some prob-
ability measure ν⊗M over XM and evolving through a Markov kernel Q∆t with time step ∆t > 0.
We denote by χ∆t : X × X → R a weight function to be chosen later on. The algorithm consists in
repeating for each time 0 6 n < Niter the following steps:

(1) For m ∈ {1, . . . ,M}, evolve the mth replica as x̃mn+1 ∼ Q∆t(x
m
n , ·);

(2) Compute the weight of each replica as wmn = eχ∆t(x
m
n ,x̃

m
n+1);
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(3) Compute the total creation of mass as

Pn =

M∑
m=1

wmn ,

and the normalized probability vector pn ∈ Rm with components pmn = wmn /Pn, for m ∈
{1, . . . ,M};

(4) Resample the replicas (x̃mn+1)Mm=1 according to the multinomial distribution associated with pn,
which defines a new set of replicas (xmn+1)Mm=1;

(5) Compute the estimator

ϕ̂n =
1

M

M∑
m=1

ϕ(xmn+1).

Until now, we did not specify the choice of function χ∆t, which depends on the discretization rule for
the integral in (4.3). In practice, given a discretization of the SDE characterized by an operator Q∆t,
we use the schemes defined by the left point integration e∆tfQ∆t, and by the trapezoidal integration
e∆t f2Q∆te

∆t f2 . They correspond respectively to the choices:

χ∆t(x, x
′) = ∆t f(x) and χ∆t(x, x

′) = ∆t

(
f(x) + f(x′)

2

)
. (4.61)

The principal eigenvalue of the operator L+ f is then estimated with (4.46) through

λ∆t =
1

∆t
log

[∫
X
Qf∆t1 dµf,∆t

]
≈ 1

∆t
log

[
1

MNiter

Niter−1∑
n=0

Pn

]
, (4.62)

while the average of ϕ is estimated by∫
X
ϕdµf,∆t ≈

1

Niter

Niter−1∑
n=0

ϕ̂n, (4.63)

where the ≈ sign indicates the approximation arising from the finiteness of the number M of replicas
and of the number Niter of steps. We do not take these errors into account and ensure numerically that
they are sufficiently small in our simulations to observe the bias due to the time step (this bias being
quite small in practice, this also motivates to study a one-dimensional model, see the numerical results
below). The reader interested in the convergence rates of this type of algorithm when M → +∞ and
Niter → +∞ is refered e.g. to [117, 139, 377, 164].

4.4.2 Galerkin discretization
We now make precise the Galerkin method that can be used to estimate λ∆t and

∫
X ϕdµf,∆t. This

discretization provides reference values for the Monte Carlo method described in Section 4.4.1. In
particular, when V = 0 and γ = 0, the two methods should give the same result since the Euler
scheme (4.59) is exact in law in this specific case.

Choice of the Galerkin basis. Since we work with periodic functions, we consider the Galerkin
subspace Span{e−N , . . . , eN} with

ek(x) = e2iπkx.

The generator of the SDE (4.58) reads

L = (−V ′ + γ)∂x +
σ2

2
∂2
x.

The operators L† and f are represented in this Galerkin subspace by the matrices LN , BN ∈
C(2N+1)×(2N+1) defined as

∀ j, k ∈ {−N, . . . , 0, . . . , N}, LNj,k =

∫
X
ej(L†ek), BNj,k =

∫
X
fejek.

The value of N is chosen sufficiently large for all results to be converged with respect to this parameter.
The only source of error in the quantities we compute then arises from the finiteness of the time step
∆t > 0, and possibly numerical quadratures to evaluate certain integrals. Our experience shows that
N = 30 is already sufficient for the applications described in Section 4.4.3.
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References quantities for ∆t = 0. The invariant probability measure µf satisfies the eigenvalue
problem (L† + f)µf = λµf . We compute a reference approximation λN0 to λ by computing the
eigenvalue of LN +BN with the largest real part:

(LN +BN )VNf,0 = λN0 VNf,0.

The associated eigenvector allows to construct the following approximation of µf :

µNf,0 =

N∑
k=−N

[VNf,0]kek.

The normalization condition [VNf,0]0 = 1 ensures that µNf,0 has a total mass 1. Averages of observables ϕ
are then estimated by computing the following integral∫

X
ϕ(x)µNf,0(x) dx

using a one-dimensional quadrature rule.

Reference quantities for ∆t > 0. We next approximate the evolution operators of the first order
scheme e∆tfQ∆t and of the second order one e∆t f2Q∆te

∆t f2 , respectively as

Qf,N∆t,1 = e∆tBN e∆tLN , Qf,N∆t,2 = e∆tB
N

2 e∆tLN e∆tB
N

2 . (4.64)

For each value of ∆t, we construct the above matrices, and compute their respective principal eigenval-
ues ΛN∆t,1, ΛN∆t,2 and eigenvectors VN,1f,∆t, V

N,2
f,∆t ∈ C2N+1 by diagonalization (still with the normalization

condition [VN,jf,∆t]0 = 1 for j = 1, 2). We then consider the following approximations of the principal
eigenvalue λ of the Feynman–Kac operator L+ f , based on (4.46):

λN∆t,1 =
1

∆t
log ΛN∆t,1, λN∆t,2 =

1

∆t
log ΛN∆t,2. (4.65)

Averages of ϕ with respect to the invariant probability measure are approximated by the following
quantity, using the eigenvectors VN,1f,∆t and V

N,2
f,∆t: for j = 1, 2,

∫
X
ϕ(x)µN,jf,∆t(x) dx, µN,jf,∆t =

N∑
k=−N

[VN,jf,∆t]kek. (4.66)

In view of Theorem 4.16, we expect the average of ϕ to converge linearly in ∆t for the first order
scheme when ∆t→ 0, and quadratically for the second order scheme. We also use the TU-lemma to
show that, by appropriately correcting the first order scheme, we recover the same results as for the
second order scheme. More precisely, we apply (4.50) with Uf∆t = e∆t f2 , which leads to the following
approximation of the average (estimated in practice using a numerical quadrature):∫

X
e∆t

f(x)
2 ϕ(x)µN,1f,∆t(x) dx∫

X
e∆t

f(x)
2 µN,1f,∆t(x) dx

. (4.67)

On the other hand, from Proposition 4.26, the eigenvalues λN∆t,1 and λN∆t,2 should be equal, and
therefore λN∆t,1 need not be corrected.

4.4.3 Numerical results
Zero-potential case. We first choose V = 0, σ =

√
2, f(x) = (cos(2πx))2 and ϕ(x) = exp(cos(2πx)).

As mentioned earlier, in this case, the Euler scheme (4.59) is exact in law, so that the only source
of error arises from the integration of the exponential weight. We consider the dynamics represented
by the operator e∆tfQ∆t and e∆t f2Q∆te

∆t f2 with Q∆t = e∆tL, and first compare the results of the
Galerkin discretization discussed in Section 4.4.2. The results reported in Figure 4.1 confirm our
predictions: the averages of ϕ converge at first and second order for the first order and second order
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Figure 4.1 – Estimated error on the principal eigenvalue (left) and on the average of ϕ with respect to
the invariant probability measure (right) as a function of the time step, by Galerkin approximation.
The eigenvalues are computed with (4.65). The first and second order averages of ϕ correspond
to (4.66) with j = 1 and j = 2 respectively. The first order-TU scheme is computed with (4.67). The
dashed lines show reference first and second order convergences.

Galerkin schemes respectively; while the eigenvalues are the same, as expected from Proposition 4.26,
and so both converge at second order. In this case, the numerical method based on (4.46) is therefore
more accurate than the one based on averaging f with (4.35) to compute the principal eigenvalue λ,
which would lead to errors of order 1 in the time step (numerical results not shown here).

We next consider the Monte Carlo scheme presented in Section 4.4.1, taking M = 5× 104 and an
integration time T = 5 × 102, with Niter = b T∆tc for each time step ∆t. We use half of the time for
burn-in, and average in time over the second half of the simulation. Moreover, for each value of ∆t, we
run 30 realizations in order to reduce the variance of the estimator and to estimate error bars on the
Monte Carlo estimates (not displayed on the pictures). The choice of the function χ∆t depends on the
scheme through (4.61). We compare in Figure 4.2 the results of the Monte Carlo algorithm with the
Galerkin approximation, which serves as a reference. The agreement is very good, up to small errors
arising from the finiteness of the population and of the simulation time. This result was expected
since, given that the integration by the Euler scheme is exact in law in this case, the Monte Carlo
method must match exactly the Galerkin approximation provided N , Niter and M are all sufficiently
large.

Situation with a strong potential. We next show an application with a non-zero drift by setting
V (x) = cos(2πx) and γ = 1. Let us recall that this dynamics is non-reversible since a constant
function is not the gradient of a smooth periodic potential. The other parameters are left unchanged.
Concerning the Galerkin approximation, we consider the two schemes described in Section 4.4.2, and
characterized by the matrices defined in (4.64). For these schemes, the eigenvalues are the same and
converge at second order (so we only consider one scheme), while the averages of ϕ converge at first
and second order respectively.

For the Monte Carlo algorithm described in Section 4.4.1, we consider the three following schemes:

• Q∆t is discretized with the Euler scheme (4.59), and χ∆t(x, x
′) = ∆tf(x) is chosen as the left

point integration; in this case, the eigenvalue and the average of ϕ converge at order one, so the
scheme is referred to as first order.

• Q∆t is discretized with the second order scheme (4.60), and we set

χ∆t(x, x
′) = ∆tf(x).

In this case, the eigenvalue converges at second order whereas the average of ϕ converges at first
order only, so the scheme is referred to as hybrid scheme.

• Q∆t is discretized with the second order scheme (4.60), and we set

χ∆t(x, x
′) = ∆t

(
f(x) + f(x′)

2

)
,
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Figure 4.2 – Estimation of the error for the principal eigenvalue (left) and the average of ϕ with respect
to the invariant probability measure (right) as a function of the time step, by Monte Carlo simulation
(with comparison to Galerkin, see Figure 4.1). The eigenvalues and the averages of ϕ are computed
with (4.62) and (4.63) respectively. The first and second order schemes are relative to the choice of
the weight χ∆t in (4.61). The dashed lines show reference first and second convergences. For very
small values of the error on the eigenvalue, we observe the bias due to the finite size of the population.

which corresponds to a trapezoidal rule for the time integral; in this case, both the eigenvalue
and the average of ϕ converge at order two, so we refer to this scheme as second order.

We present the numerical results obtained with the various schemes we consider in Figures 4.3
(eigenvalues) and 4.4 (averages of ϕ):

• Concerning the eigenvalues computed with the Monte Carlo method, we indeed observe first
order convergence for the first order scheme, and second order convergence for the hybrid and
second order schemes. In particular, the results of the hybrid and the second order scheme are
exactly the same. The Galerkin method also converges at second order, but with a much smaller
prefactor. This is due to the fact that in this case most of the error is due to the discretization
of the dynamics rather than the discretization of the time integral.

• Concerning the average of ϕ, the first order scheme converges at order one, while the hybrid
and second order scheme converge at order two. We would have expected the hybrid scheme
to converge at first order but, once again, this is due to the fact that most of the error is due
to the discretization of the dynamics, and not to the time integral – as shown by the results
of the Galerkin method, which amounts to observing the error due to the discretization of
the time integral only. We indeed observe first and second order convergence for the Galerkin
approximation, but we see that the error is orders of magnitude smaller than the one of the Monte
Carlo approximation. This explains why the Monte Carlo hybrid and second order schemes seem
to provide the same results.

Situation with a weak potential. In order to obtain a better trade-off between the error due
to the discretization of the dynamics and of the time integral, we run simulations with the same
parameters as in the previous situation but with a smaller potential energy V (x) = 0.02 cos(2πx).
The results are the following:

• All the eigenvalues now seem to converge at second order (see Figure 4.5 (left)). This is due
to the fact that the error due to the discretization of the dynamics is very small, and that the
discretization of the time integral, which gives the dominant error term, always leads to an
effective second order convergence.

• The behaviour of the average of ϕ is more interesting (see Figure 4.5 (right)). The Galerkin
first and second order schemes provide first and second order convergence respectively. The
hybrid scheme exhibits a first order convergence, that matches the Galerkin first order scheme
for small time steps. This result can be expected since the two schemes match at order one.
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Figure 4.3 – Estimation of the error on the principal eigenvalue as a function of the time step, by Monte
Carlo simulation and Galerkin approximation, for V (x) = cos(2πx). The Monte Carlo estimates of
the eigenvalues are computed with (4.62), while the Galerkin approximations of the eigenvalues are
obtained with (4.65) for j = 1 and j = 2. The dashed lines show reference linear and quadratic
convergences to zero.

The first order scheme also converges at first order but with a larger prefactor, which is due to
the discretization of the dynamics. On the other hand, the second order Monte Carlo scheme
converges at second order, like the Galerkin second order scheme.

Conclusion. The numerical applications we presented show the validity of our analysis on a simple
test case. However, we observe numerically that the prefactor of the leading error term depends
on the choice of parameters. This has the consequence that some schemes may effectively seem to
exhibit an improved order of convergence than expected, while they actually have a small prefactor
at leading order, depending on the discretization at hand. This observation also motivates the study
of a one-dimensional model: not only can the Galerkin discretization be made sufficiently accurate
by considering a very large number of basis functions, but we can also run sufficiently long Monte
Carlo simulations in order for the statistical error to be negligible compared to the bias arising from
the time step discretization. Although the order of convergence would be harder to observe for higher
dimensional systems, the framework is still applicable and we refer to [313] and references therein for
examples in high dimension.

4.5 Discussion

The analysis and simulations we performed in this work were done for SDEs with a non-degenerate
noise on a torus. We however believe that most of our results could be extended to more general
settings. In particular, we wonder whether the results of Section 4.3 can be applied for unbouded
dynamics satisfying Lyapunov type conditions, as in Part II. However, in the functional framework
of Chapter 3, the stability property (Assumption 4.14), which is crucial for our analysis to hold,
should be rephrased as the invariance of a functional space (containing unbounded functions) under
the action of `−1

f (L∗ + f − λ)−1(`f ·). In the case f = 0, which does not involve the eigenvector `f
(since h0 = 1), this is already a quite technical result to obtain (see [276, 277]). Here, the presence of
the eigenvector `f adds a significant difficulty, which leaves the situation open.

Finally, in the context of large deviations, we would like to obtain error estimates on the rate
function, which is the Legendre transform of the cumulant function λ, see for instance Corollary 3.12
in Chapter 3. However, transfering our error analysis to the rate function is difficult because of the
supremum involved, and we believe it is also an interesting open problem.
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Figure 4.4 – Estimation of the error on the average of ϕ with respect to the invariant probability
measure as a function of the time step, by Monte Carlo simulation (left) and Galerkin approximation
(right), for V (x) = cos(2πx). The Monte Carlo estimates of the averages of ϕ are computed with (4.63),
while the Galerkin approximation is obtained with (4.66) for j = 1 and j = 2. The dashed lines show
reference linear and quadratic convergences to zero.

4.6 Proofs

4.6.1 Proof of the results of Section 4.2.1
Let us first give a result which shows that it suffices to prove Proposition 4.2 for probability measures
which admit a positive and bounded density with respect to the Lebesgue measure. This results relies
on the regularizing properties of the underlying diffusion.

Lemma 4.28. For any α > 0, denote by Pα(X ) the subspace of probability measures which admit a
smooth density with respect to the Lebesgue measure, and whose density is bounded below by α > 0
and bounded above by 1/α. Then there exists α∗ > 0 such that Φ1(ν) ∈ Pα∗(X ) for any ν ∈ P(X ).

Proof. Note that, for any ϕ ∈ C, (
P ft ϕ

)
(x) =

∫
X
pft (x, x′)ϕ(x′) dx′,

where pft is the integral kernel of the semigroup et(L+f). By parabolic regularity (see for instance [174]),
the integral kernel is smooth for any t > 0. It is also positive when f = 0 by the irreducibility properties
of the underlying non-degenerate diffusion: there exists ε > 0 such that (setting t = 1)

∀ (x, x′) ∈ X 2, ε 6 p0
1(x, x′) 6

1

ε
.

Given that f is bounded, a similar property holds for pft : there exists α > 0 such that

∀ (x, x′) ∈ X 2,
√
α 6 pf1 (x, x′) 6

1√
α
.

Since, for any bounded measurable function ϕ,

Φ1(ν)(ϕ) =
ν(P f1 ϕ)

ν(P f1 1)
=

1

ν(P f1 1)

∫
X

∫
X
ϕ(x′)pf1 (x, x′) ν(dx)dx′,

it follows that Φ1(ν) has a smooth density with respect to the Lebesgue measure, denoted by F1,ν :

F1,ν(x) =
1

ν(P f1 1)

∫
X
pf1 (x′, x) ν(dx′).

Moreover, since ν(P f1 1) >
√
α, it holds

α 6 F1,ν 6
1

α
,

which gives the claimed result.



168
Chapter 4. Error estimates for ergodic properties of discretized Feynman–Kac

semigroups

 1×10
-5

 1×10
-4

 1×10
-3

 1×10
-2

E
rr

o
r 

o
n
 t
h
e
 e

ig
e
n
v
a
lu

e

∆t

MC 1st-order

MC hybrid

MC 2nd-order

Galerkin 2nd order  1×10
-5

 1×10
-4

 1×10
-3

 1×10
-2

E
rr

o
r 

o
n
 t
h
e
 a

v
e
ra

g
e

∆t

MC 1st-order

MC hybrid

MC 2nd-order

Galerkin 1st-order

Galerkin 2nd-order

Figure 4.5 – Estimation of the error on the principal eigenvalue (left) and the average of ϕ with respect
to the invariant probability measure (right) as a function of the time step, for V (x) = 0.02 cos(2πx).
The Monte Carlo estimates of the averages of ϕ are computed with (4.63), while the Galerkin ap-
proximations are obtained with (4.66) for j = 1 and j = 2. The dashed lines show reference first and
second order convergences. For very small values of the error on the eigenvalue, we observe the bias
due to the finite size of the population. We also observe that the error on the average of ϕ becomes
noisier below 10−4.

We can now provide the proof of Proposition 4.2.

Proof of Proposition 4.2. In view of the semigroup property Φft (ν) = Φft−1(Φf1 (ν)) when t > 1, it is
sufficient by Lemma 4.28 to prove the result for measures ν ∈ Pα(X ), where α > 0. The proof is
conducted in two steps: we first prove a convergence result for the linear semigroup P f−λt in L2(µ)
and any times t > 0, and then rely on the fact that any probability measure in Pα(X ) is equivalent
to µ to obtain (4.10).

Introduce the projector (different from the one defined in (4.39))

Π̂fϕ = ϕ− hf

〈
ϕ, `f

〉
L2(µ)

〈hf , `f 〉L2(µ)

= ϕ− hf
∫
X ϕdµf∫
X hf dµf

.

A simple computation shows that Π̂f commutes with L + f and P f−λt . It is easily seen that the
spectrum of the operator Π̂f (L+ f − λ)Π̂f is

σ(L+ f − λ) \ {0} ⊂
{
z ∈ C, Re(z) 6 −δf

}
,

and that the associated semigroup satisfies etΠ̂f (L+f−λ)Π̂f = P f−λt Π̂f . By the Hille–Yosida theorem
(see for instance [351, 107]), there exists a constant C > 0 such that, for any ϕ ∈ L2(µ),

∀ t > 0,
∥∥∥P f−λt Π̂fϕ

∥∥∥
L2(µ)

6 C e−δf t‖ϕ‖L2(µ). (4.68)

We now show that (4.68) implies the convergence result (4.10) for the class of probability mea-
sures Pα(X ). For a given ν ∈ Pα(X ) and ϕ ∈ L2(µ),

ν
[∣∣∣P f−λt Π̂fϕ

∣∣∣] =

∫
X

∣∣∣P f−λt Π̂fϕ
∣∣∣ dν 6

1

α

∫
X

∣∣∣P f−λt Π̂fϕ
∣∣∣ dµ

infX µ

6
1

α infX µ

∥∥∥P f−λt Π̂fϕ
∥∥∥
L2(µ)

6
C

α infX µ
e−δf t ‖ϕ‖L2(µ) ,

where we used a Cauchy-Schwarz inequality on L2(µ) to go from the first to the second line. The
latter computation shows that, for any ν ∈ Pα(X ) and ϕ ∈ L2(µ), there are functions at, bt for which

ν
(
P f−λt ϕ

)
=

∫
X
hf dν∫

X
hf dµf

∫
X
ϕdµf + at, ν

(
P f−λt 1

)
=

∫
X hf dν∫
X
hf dµf

+ bt,
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with |at| 6 K‖ϕ‖L2(µ)e
−δf t and |bt| 6 Ke−δf t for some constant K > 0 independent of ν and ϕ.

Moreover, there exists ε > 0 such that ε 6 hf 6 1/ε. Note also that |bt| 6 ε2 for t > ln(K/ε2)/δf and
that ∫

X hf dν∫
X hf dµf

> ε2.

Since

Φft (ν)(ϕ) =
ν
(
P ft ϕ

)
ν
(
P ft 1

) =
ν
(
P f−λt ϕ

)
ν
(
P f−λt 1

) ,
it follows that, for t > ln(2K/ε)/δf ,∣∣∣∣Φft (ν)(ϕ)−

∫
X
ϕdµf

∣∣∣∣ =

∣∣∣∣
∫
X hf dν

∫
X ϕdµf + at

∫
X hf dµf∫

X hf dν + bt
∫
X hf dµf

−
∫
X
ϕdµf

∣∣∣∣ =

∣∣∣∣∣
(
at − bt

∫
X ϕdµf

) ∫
X hf dµf∫

X hf dν + bt
∫
X hf dµf

∣∣∣∣∣
6

1∫
X hf dν∫
X hf dµf

− |bt|

(
|at|+ |bt|

∣∣∣∣∫
X
ϕdµf

∣∣∣∣)

6
K

2ε2

(
‖ϕ‖L2(µ) +

∣∣∣∣∫
X
ϕdµf

∣∣∣∣) e−δf t.

The inequality ∣∣∣∣∫
X
ϕdµf

∣∣∣∣ =

∣∣∣∣∫
X
ϕ`f dµ

∣∣∣∣ 6 ‖`f‖L2(µ)‖ϕ‖L2(µ)

allows to obtain the desired conclusion.

Let us conclude this section with the proof of Proposition 4.5.

Proof of Proposition 4.5. The exponential convergence result (4.68) implies that the operator Π̂f (L+

f − λ)Π̂f is invertible on Ran(Π̂f ) = L2
f (µ) with inverse given by

(
Π̂f (L+ f − λ)Π̂f

)−1

= −
∫ +∞

0

P f−λt Π̂f dt.

The solution to (L+ f − λ)u = g with g ∈ L2
f (µ) then admits a unique solution in L2

f (µ). By elliptic
regularity, u ∈ Cf when g ∈ Cf . The result for L∗ + f − λ can be obtained by a similar reasoning.

Note that, alternatively, it would have been possible to resort to the Fredholm alternative to prove
Proposition 4.5.

4.6.2 Proof of Theorem 4.9

Theorem 4.9 is a rewriting of [114, Corollary 2.5], which is stated in the context of a finite state space.
In order for the paper to be self-contained, we prove Theorem 4.9 in our setting of continuous but
compact state space, and in the simplified case of a time-homogeneous Markov chain, adapting the
arguments of [114]. The idea is to prove some contraction property using the Dobrushin coefficient
defined in Section 4.7 and the reformulation (4.70) below of the semigroup. We work on the space of
probability measures P(X ) endowed with the total variation distance.

Define the weights
gn = (Qf∆t)

n1,

and the Markov operator Sn as

(Snϕ)(x) =
Qf∆t(gnϕ)(x)

(Qf∆tgn)(x)
. (4.69)

The dynamics (4.15) can then be rephrased as

νn(ϕ) =
ν
(
gn(Knϕ)

)
ν(gn)

, Kn+1 = SnKn, K0 = Id. (4.70)



170
Chapter 4. Error estimates for ergodic properties of discretized Feynman–Kac

semigroups

This equality can be proved by induction. The result is clear for n = 0. For n = 1, we have (with
ν0 = ν)

ν
(
g1(K1ϕ)

)
ν(g1)

=
ν
(
Qf∆t1S0ϕ

)
ν
(
Qf∆t1

) =
ν
(
Qf∆tϕ

)
ν
(
Qf∆t1

) = ν1(ϕ).

Assuming that νn satisfies (4.70) at rank n, using (4.15) and recalling the definition (4.17), it holds

νn+1(ϕ) =
ν
(

(Qf∆t)
n+1(ϕ)

)
ν
(

(Qf∆t)
n+11

) =

(
νQf∆t

)(
(Qf∆t)

n(ϕ)
)

(
νQf∆t

)(
(Qf∆t)

n1
) = Φf∆t,n

(
νQf∆t

)
(ϕ),

so that, using the recursion hypothesis and Qf∆tgn = gn+1, it follows

νn+1(ϕ) =

(
νQf∆t

) (
gn(Knϕ)

)
(
νQf∆t

)
(gn)

=
ν
(
Qf∆t

(
gn(Knϕ)

))
ν
(
Qf∆tgn

)
=
ν
(
Qf∆t(gn)Sn(Knϕ)

)
ν
(
Qf∆tgn

) =
ν
(
gn+1(Kn+1ϕ)

)
ν (gn+1)

,

which concludes the recurrence.
We next introduce the familly of operators Tn : P(X )→ P(X ) defined by:

∀ ν ∈ P(X ), ∀ϕ ∈ C, (νTn)(ϕ) =
ν (gnϕ)

ν(gn)
,

so that from (4.70) we have νn = Φf∆t,n(ν) = νTnKn. Using the definitions of Section 4.7, we obtain,
for two initial measures µ, ν ∈ P(X ),

‖µn − νn‖TV = ‖µTnKn − νTnKn‖TV 6 |||Kn||| ‖µTn − νTn‖TV.

Given that Tn : P(X )→ P(X ), we can bound ‖µTn−νTn‖TV by 2. The next step consists in studying
the contraction induced by the operator Kn = Sn−1Sn−2 . . . S1, where Sk is defined in (4.70). We
have

|||Kn||| 6
n−1∏
k=0

|||Sk|||,

so that, using the relationship (4.92),

‖µn − νn‖TV 6 2

n∏
k=0

(
1− α(Sk)

)
.

The last step consists in using Assumption 4.8 in order to obtain a lower bound on α(Sk) independent
of k. First, for all x ∈ X and A ⊂ X ,

Sk(x,A) =
Qf∆t(gk1A)(x)

Qf∆t(gk)(x)
> ε2 η(gk1A)

η(gk)
.

Then, it follows from definition (4.91) that

α(Sk) = inf
x,x′∈X

{Ai}16i6m⊂X

{
m∑
i=1

min
(
Sk(x,Ai), Sk(x′, Ai)

)}
> ε2 inf

{Ai}16i6m⊂X

η
(
gk
∑m
i=1 1Ai

)
η(gk)

 = ε2,

since the infimum is taken over partitions (Ai)
m
i=1 of X . As a result, we obtain that, for all measures

ν, ν′ ∈ P(X ), ∥∥∥Φf∆t,n(ν)− Φf∆t,n(ν′)
∥∥∥

TV
6 2

(
1− ε2

)n
. (4.71)

Setting ν′ = νm for m ∈ N and using the semigroup property, we get∥∥∥Φf∆t,n(ν)− Φf∆t,n+m(ν)
∥∥∥

TV
6 2

(
1− ε2

)n
, (4.72)
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so that (νn)n>1 is a Cauchy sequence in P(X ). By completeness of P(X ) for the total variation
norm, we can conclude that, for any initial measure ν, there exists µf,∆t such that νn → µf,∆t in
total variation norm. Then using the one step formulation of the dynamics (4.18) and the semigroup
property, we obtain with the choice ν′ = Φf∆t(ν),∥∥∥Φf∆t,n(ν)− Φf∆t

(
Φf∆t,n(ν)

)∥∥∥
TV

6 2
(
1− ε2

)n
,

so that, taking n → ∞ and using the continuity of Φf∆t on P(X ) endowed with the total variation
norm, it follows that µf,∆t = Φf∆t(µf,∆t). Passing to the limit m→ +∞ in (4.72),

‖νn − µf,∆t‖TV 6 2
(
1− ε2

)n
.

Finally, it follows from (4.71) that the limit µf,∆t does not depend on the initial measure ν.

4.6.3 Proofs related to Theorem 4.16
4.6.3.1 Proof of Lemma 4.17

The idea is to approximate at leading order the stationary measure µf,∆t as (1 + ∆tpψ)µf , since we
expect the invariant probability measure to be correct at order p. We start from the stationarity
equation (4.36) and search for a function ψ ∈ C and a remainder Rf,∆t : C → R satisfying (4.27) such
that, for all φ ∈ C,∫

X
(Qf∆tφ)(1 + ∆tpψ) dµf −

(∫
X
Qf∆t1(1 + ∆tpψ) dµf

)(∫
X
φ(1 + ∆tpψ) dµf

)
= ∆tp+2Rf,∆tφ.

(4.73)
In view of the expansion (4.30) of Qf∆t and of the invariance relation (4.33), the first term of the left
hand side is∫
X

(
φ+ ∆tAf1φ+ . . .+ ∆tpAfpφ+ ∆tp+1Afp+1φ+ ∆tp+2Rf,∆tφ

)
(1 + ∆tpψ) dµf

= (1 + a1∆t+ . . .+ ap∆t
p)

∫
X
φdµf + ∆tp

∫
X
φψ dµf + ∆tp+1

∫
X

(
Afp+1φ+ ψ(Af1φ)

)
dµf + ∆tp+2Rf,∆tφ,

where Rf,∆t gathers the terms of order at least p+2, and is uniformly bounded in ∆t for 0 < ∆t 6 ∆t∗

in the sense of (4.27) when ψ ∈ C. On the other hand, the second term on the left hand side of (4.73)
can be written as, using again (4.33),(

1 + ∆ta1 + . . .+ ∆tpap + ∆tp
∫
X
ψ dµf + ∆tp+1

∫
X

(
Afp+11+ ψ(Af11)

)
dµf

)∫
X
φ(1 + ∆tpψ) dµf

+ ∆tp+2Rf,∆tφ

= (1 + ∆ta1 + . . .+ ∆tpap)

∫
X
φdµf + ∆tp

(∫
X
φdµf

∫
X
ψdµf +

∫
X
φψ dµf

)
+ ∆tp+1

(∫
X
Afp+11 dµf

∫
X
φdµf + a1

∫
X
φψ dµf +

∫
X
ψ(Af11) dµf

∫
X
φdµf

)
+ ∆tp+2Rf,∆tφ,

where Rf,∆t is uniformly bounded in ∆t in the sense of (4.27) when ψ ∈ C. We can now equate the
different orders in powers of ∆t on both sides of (4.73) and choose ψ such that only a remainder of
order p+ 2 remains. The terms ak∆tk

∫
X φdµf cancel, so the first non-trivial condition to be satisfied

to eliminate terms of order ∆tp reads∫
X
φψ dµf =

(∫
X
φdµf

)(∫
X
ψ dµf

)
+

∫
X
φψ dµf .

This equality is satisfied for all φ ∈ C if and only if (take e.g. φ = ψ)∫
X
ψ dµf = 0. (4.74)

The condition arising from the equality of terms of order ∆tp+1 is∫
X

(
Afp+1φ+ ψ(Af1φ)

)
`f dµ = a1

∫
X
φψ dµf +

(∫
X

(
(Afp+11) + ψ(Af11)

)
`f dµ

)∫
X
φdµf .
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Using that Af11 = f along with condition (4.33), we have a1 = λ. In addition, taking adjoints in L2(µ)

and recalling Af1 = A1 + f ,∫
X
φ
(

(Afp+1)∗`f + (A∗1 + f − λ)(`fψ)
)
dµ =

(∫
X

(
(Afp+1)∗`f + (A∗1 + f)(`fψ)

)
dµ

)∫
X
φdµf .

Moreover, in view of (4.74), one can subtract
(
λ
∫
X ψ`f dµ

) (∫
X φdµf

)
from the right hand side of

last equation. Finally, we obtain the following equation (with unknown ψ): for all φ ∈ C,∫
X
φ
(

(Afp+1)∗`f + (A∗1 + f − λ)(`fψ)
)
dµ =

(∫
X

(Afp+1)∗`f + (A∗1 + f − λ)(`fψ) dµ

)∫
X
φdµf .

(4.75)
By Assumption 4.14, the operator A∗1 + f − λ is invertible on Ĉf and leaves this space invariant. We
can therefore define a solution ψ0 to the following equation:

(A∗1 + f − λ)(`fψ0) = g̃,

g̃ = −(Afp+1)∗`f + `f

∫
X

(
(Afp+1)∗`f

)
hfdµ∫

X hf `fdµ
∈ Ĉf .

(4.76)

The function `fψ0 is uniquely defined in Ĉf by Assumption 4.14 since g̃ has average 0 with respect
to µ̂f , and one can check that it is indeed solution of (4.75). Since the eigenvector `f is regular with
`f > 0, the function ψ0 belongs to C. However, ψ0 is not a priori of average 0 with respect to µf , so
that condition (4.74) is not satisfied. We can however consider the function ψα = ψ0 + α, which is
still such that (4.75) holds. The choice α = −

∫
X ψ0 dµf ensures that (4.74) is satisfied. This provides

the solution (4.34) and concludes the proof.

4.6.3.2 Proof of Lemma 4.18

We start by considering (4.24) and (4.38) for ϕ = Πfφ with φ ∈ C:∫
X

[(
Qf∆t − e∆tλ∆t

∆t

)
Πfφ

]
dµf,∆t = 0, (4.77)

and ∫
X

[(
Qf∆t − e∆tλ̃∆t

∆t

)
Πfφ

]
(1 + ∆tpψ) dµf = ∆tp+1Rf,∆tφ. (4.78)

We next stabilize the operator in Cf by another application of the projector Πf . First,∫
X

[
Πf

(
Qf∆t − e∆tλ∆t

∆t

)
Πfφ

]
dµf,∆t

=

∫
X

[(
Qf∆t − e∆tλ∆t

∆t

)
Πfφ

]
dµf,∆t −

∫
X

[(
Qf∆t − e∆tλ∆t

∆t

)
Πfφ

]
dµf

= −
∫
X

[(
Qf∆t − e∆tλ∆t

∆t

)
Πfφ

]
dµf ,

(4.79)

thanks to (4.77). Second, since ψ has average 0 with respect to µf ,∫
X

[
Πf

(
Qf∆t − e∆tλ̃∆t

∆t

)
Πfφ

]
(1 + ∆tpψ) dµf

=

∫
X

[(
Qf∆t − e∆tλ̃∆t

∆t

)
Πfφ

]
(1 + ∆tpψ) dµf −

(∫
X

[(
Qf∆t − e∆tλ̃∆t

∆t

)
Πfφ

]
dµf

)∫
X

(1 + ∆tpψ)dµf

=

∫
X

[(
Qf∆t − e∆tλ̃∆t

∆t

)
Πfφ

]
(1 + ∆tpψ) dµf −

∫
X

[(
Qf∆t − e∆tλ̃∆t

∆t

)
Πfφ

]
dµf .
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In view of (4.78), the first term of the right hand side of the above equation is a remainder of
order ∆tp+1. Therefore,∫
X

[
Πf

(
Qf∆t − e∆tλ̃∆t

∆t

)
Πfφ

]
(1 + ∆tpψ) dµf = −

∫
X

[(
Qf∆t − e∆tλ̃∆t

∆t

)
Πfφ

]
dµf + ∆tp+1Rf,∆tφ

= −
∫
X

[(
Qf∆t − e∆tλ∆t

∆t

)
Πfφ

]
dµf + ∆tp+1Rf,∆tφ+

(
e∆tλ̃∆t − e∆tλ∆t

∆t

)∫
X

Πfφdµf

= −
∫
X

[(
Qf∆t − e∆tλ∆t

∆t

)
Πfφ

]
dµf + ∆tp+1Rf,∆tφ,

(4.80)
since Πfφ has average 0 with respect to µf . Combining (4.80) with (4.79),∫

X

[
Πf

(
Qf∆t − e∆tλ∆t

∆t

)
Πfφ

]
dµf,∆t =

∫
X

[
Πf

(
Qf∆t − e∆tλ̃∆t

∆t

)
Πfφ

]
(1 + ∆tpψ)dµf

+ ∆tp+1Rf,∆tφ,

where Rf,∆t satisfies (4.27). This concludes the proof of the lemma.

4.6.3.3 Proof of Lemma 4.19

The first part of the proof of Lemma 4.19 consists in constructing an approximate eigenvector hf,∆t
of hf for the evolution operator Qf∆t. We use to this end Assumption 4.15 and (4.33), as well
as the definition of the leading order correction ψ in (4.34). More precisely, we consider hf,∆t =
u0 + ∆t u1 + . . .+ ∆tpup ∈ and look for functions u1, . . . , up ∈ Cf and u0 ∈ C with

∫
X u0 dµ = 1 such

that
Qf∆thf,∆t = e∆tλ̃∆thf,∆t + ∆tp+2rf,∆t, (4.81)

with ‖rf,∆t‖B∞ 6 C for 0 < ∆t 6 ∆t∗. Recall that, by (4.37),

e∆tλ̃∆t =

∫
X
Qf∆t1(1 + ∆tpψ) dµf .

Expanding the left hand side of (4.81) using (4.30) leads to

Qf∆thf,∆t =

p+1∑
k=0

∆tkAfkhf,∆t + ∆tp+2Rf,∆thf,∆t =

p+1∑
k=0

∆tk
k∑

m=0

Afmuk−m + ∆tp+2Rf,∆thf,∆t, (4.82)

with the convention Af0 = Id and up+1 = 0. The right hand side of (4.81) can be expanded as

e∆tλ̃∆thf,∆t

=

[∫
X

(
1 + ∆tAf11+ . . .+ ∆tp+1Afp+11+ ∆tp+2Rf,∆t1

)
(1 + ∆tpψ) dµf

]
(u0 + ∆t u1 + . . .+ ∆tpup)

=

[
1 + ∆t

∫
X
Af11 dµf + . . .+ ∆tp

∫
X
Afp1 dµf + ∆tp+1

∫
X

(
Afp+11+ ψAf11

)
dµf + ∆tp+2rf,∆t

]
× (u0 + ∆t u1 + . . .+ ∆tpup)

=

p+1∑
k=0

∆tk
k∑

m=0

λmuk−m + ∆tp+2rf,∆t,

(4.83)
where we introduced λ0 = 1,

∀m ∈ {1, . . . , p}, λm =

∫
X
Afm1 dµf , (4.84)

and λp+1 is defined in (4.47):

λp+1 =

∫
X
Afp+11 dµf +

∫
X
fψ dµf .
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We see from (4.33) that λm = am for m ∈ {1, . . . , p}, with in particular λ1 =
∫
X fdµf = λ.

We now build the functions um by induction. Let us show the first steps of the recurrence, before
proceeding to the general argument. Plugging (4.82) and (4.83) in (4.81), the equality of terms of
order 1 leads to the trivial equality u0 = u0. Equating terms of order ∆t gives

Af1u0 +Af0u1 = λ1u0 + λ0u1,

so that, using Af0 = Id, λ0 = 1, Af1 = A1 + f and λ1 = λ,

(A1 + f)u0 = λu0.

In view of Assumption 4.15, we can conclude that u0 = hf . The identification of terms of order ∆t2

in (4.82)-(4.83) leads to

Af2u0 +Af1u1 +Af0u2 = λ2u0 + λ1u1 + λ0u2,

which can be rewritten as

(A1 + f − λ)u1 = g1,0, g1,0 = −Af2hf + λ2hf , (4.85)

where the expression of λ2 is given by (4.84) when p > 2 and by (4.47) when p = 1. In order to prove
that (4.85) is well-posed, it is sufficient to show that g1,0 belongs to Cf . We show in fact in the sequel
that each function uk is solution to a Poisson equation similar to (4.85) with a right-hand side that
always belongs to Cf .

Let us now present the inductive construction to any order, until the terminal case k = p, showing in
particular the well-posedness of the equations defining each mode uk. This construction is reminiscent
of techniques used to build the expansion of the invariant probability measure in ∆t in related works,
in particular [110]. Suppose that we have built functions u0, . . . , uk ∈ Cf for some k > 1. Inserting
again (4.82) and (4.83) into (4.81) and equating terms of order ∆tk+1 then leads to

k+1∑
m=0

Afk+1−mum =

k+1∑
m=0

λk+1−mum. (4.86)

For m = k + 1, we have Af0uk+1 = uk+1 on the left hand side and λ0uk+1 = uk+1 on the right hand
side, so that the terms of order k+ 1 compensate. Taking aside the terms of order m = k leads to the
equation:

(A1 + f − λ)uk =

k−1∑
m=0

gk,m, gk,m = −Afk+1−mum + λk+1−mum. (4.87)

A sufficient condition for the solution uk to exist in Cf is that gk,m ∈ Cf for m ∈ {0, . . . , k − 1}.
For m ∈ {1, . . . , k − 1}, a sufficient condition for that is that Afk+1−mum has average 0 with respect
to µf , which is clear from (4.33) and the fact that um ∈ Cf . It therefore only remains to show that
gk,0 = −Afk+1hf + λk+1hf belongs to Cf . Two cases have to be distinguished here:

(a) if k < p, then k + 1 6 p and we can still use the invariance relation (4.33) applied to φ ≡ hf ,
along with the fact that λk+1 = ak+1:∫
X
gk,0 dµf = −

∫
X

(Afk+1hf ) dµf + λk+1

∫
X
hf dµf = −ak+1

∫
X
hf dµf + ak+1

∫
X
hf dµf = 0.

(b) in the terminal case k = p, we cannot use (4.33) and λp+1 has a different expression (recall (4.47)).
Let us compute this expression explicitly. In view of (4.34),∫

X
fψ dµf =

∫
X
fψ0`f dµ−

(∫
X
ψ0 dµf

)(∫
X
f dµf

)
,

and, given that fψ0`f = g̃ + λ`fψ0 −A∗1(`fψ0) and
∫
X f dµf = λ,∫

X
fψ dµf =

∫
X
g̃ dµ+ λ

∫
X
ψ0`f dµ−

∫
X
A∗1(`fψ0)dµ− λ

∫
X
ψ0`f dµ.
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Since A11 = 0, ∫
X
A∗1(`fψ0)dµ =

∫
X

(A11)`fψ0 dµ = 0.

Finally, using the expression of g̃ in (4.34) and
∫
X `f dµ = 1,

∫
X
fψ dµf =

∫
X
g̃ dµ = −

∫
X

(Afp+1)∗`f dµ+

∫
X
`f dµ

∫
X

(Afp+1hf ) dµf∫
X
hf dµf

= −
∫
X
Afp+11 dµf +

∫
X

(Afp+1hf ) dµf∫
X
hf dµf

.

From this calculation, we obtain, with (4.47),

λp+1 =

∫
X
Afp+11dµf +

∫
X
fψ dµf =

∫
X
Afp+1hf dµf∫
X
hf dµf

,

so that ∫
X
gp,0 dµf = −

∫
X

(Afp+1hf )dµf + λp+1

∫
X
hf dµf = 0.

Therefore, for any k ∈ {0, . . . , p} and any m ∈ {0, . . . , k − 1}, it holds gk,m ∈ Cf . This allows to
conclude that the equations (4.87) are well-posed in Cf and (4.81) is satisfied.

We are now in position to conclude the proof. Inserting (4.81) in the stationarity equation (4.22),∫
X
Qf∆thf,∆t dµf,∆t =

∫
X

(
e∆tλ̃∆thf,∆t + ∆tp+2rf,∆t

)
dµf,∆t = e∆tλ∆t

∫
X
hf,∆t dµf,∆t,

so that

e∆tλ∆t = e∆tλ̃∆t + ∆tp+2

∫
X
rf,∆t dµf,∆t∫

X
hf,∆t dµf,∆t

.

At this stage, it suffices to prove that the remainder term is uniformly of order ∆tp+2 for ∆t sufficiently
small. We note to this end that hf,∆t = hf + ∆t u1 + . . . + ∆tpup, where the functions u1, . . . , up
are regular and hf > 0. Given that the state space X is compact, there exists ε > 0 such that
hf > ε > 0. This implies in particular that there exists ∆t′ > 0 such that, for any 0 < ∆t 6 ∆t′,
it holds hf,∆t > ε/2 > 0. We also know that there exists ∆t∗ > 0 and C > 0 such that, for any
0 < ∆t 6 ∆t∗, it holds ‖rf,∆t‖B∞ 6 C. As a result, for 0 < ∆t 6 min(∆t′,∆t∗),∣∣∣∣∣∣∣∣

∫
X
rf,∆t dµf,∆t∫

X
hf,∆t dµf,∆t

∣∣∣∣∣∣∣∣ 6
∫
X
|rf,∆t| dµf,∆t∫
X
hf,∆t dµf,∆t

6
2C

ε
,

which gives the claimed result.

4.6.3.4 Proof of Lemma 4.20

We follow the strategy outlined in [295, 304], which uses a truncated inverse series expansion. The
first step is to use the expansion of the eigenvalue e∆tλ̃∆t as in the proof of Lemma 4.19:

e∆tλ̃∆t =

∫
X
Qf∆t1(1 + ∆tpψ) dµf

=

∫
X

(
1 + ∆tAf11+ ∆t2Af21+ . . .+ ∆tp+1Afp+11 + ∆tp+2Rf,∆t1

)
(1 + ∆tpψ) dµf

= 1 + ∆tλ+ ∆t2λ2 + . . .+ ∆tpλp + ∆tp+1λp+1 + ∆tp+2rf,∆t,



176
Chapter 4. Error estimates for ergodic properties of discretized Feynman–Kac

semigroups

where the coefficients λm are defined in (4.84)-(4.47), and there exists C > 0 such that |rf,∆t| 6 C

for 0 < ∆t 6 ∆t∗. This expression, combined with the expansion (4.30) of Qf∆t leads to:

Πf

(
Qf∆t − e∆tλ̃∆t

∆t

)
Πf = A+ ∆tB∆t + ∆tp+1Rf,∆t,

with

A = Πf (A1 + f − λ)Πf , B∆t = Πf (Af2 − λ2)Πf + . . .+ ∆tp−1Πf (Afp+1 − λp+1)Πf .

The operator A is invertible on Cf by Assumption 4.14. Now we are back to the setting of [295, 304]
and it suffices to write the formal series expansion of the inverse of A+ ∆tB∆t = (Id + ∆tB∆tA

−1)A
up to order p by setting

S̃f∆t = A−1

p∑
n=0

(−1)n
(
B∆tA

−1
)n
,

and then only retaining the terms of order at most ∆tp+1 in this expression. More precisely, denoting
Ck = Πf (Afk − λk)Πf , we find

Sf∆t = A−1 −∆tA−1C2A
−1 + ∆t2

(
A−1C2A

−1C2A
−1 −A−1C3A

−1
)

+ ∆t3C3 + . . .+ ∆tpCp,

where the operators Ck are defined using the operators Ck and A−1. The operator Sf∆t is well defined
and leaves Cf invariant since each Ck consists in a finite number of applications of operators of the
form CkA

−1 and a final application of A−1 = Πf (A1 + f − λ)−1Πf . It is then easy to check that, by
construction, the equality (4.44) is satisfied.

4.6.4 Proof of Proposition 4.23

We first show that, if Qf∆t satisfies Assumption 4.8 with a reference probability measure η, then Q̃f∆t
satisfies Assumption 4.8 with the same measure η. By Assumption 4.8, there exist ε > 0 and a measure
η ∈ P(X ) such that, for any bounded measurable nonnegative function ϕ,

εη(ϕ) 6 Qf∆tϕ 6 ε−1η(ϕ), (4.88)

so that, applying Uf∆t on the right of Qf∆t and T
f
∆t on the left,

εη(Uf∆tϕ)T f∆t1 6 T f∆tQ
f
∆tU

f
∆tϕ 6 ε−1η(Uf∆tϕ)T f∆t1.

Using (4.51) leads to
εα2η(ϕ) 6 Q̃f∆tϕ 6 α−2ε−1η(ϕ),

so that Q̃f∆t satisfies Assumption 4.8. In view of Theorem 4.9, the scheme Q̃f∆t admits a unique
invariant probability measure µ̃f,∆t and an eigenvalue λ̃∆t defined by (4.52) . Now, integrating (4.88)
with respect to µf,∆t and using (4.22) gives

εη(ϕ) 6 e∆tλ∆tµf,∆t(ϕ) 6 ε−1η(ϕ).

The same reasoning holds for µ̃f,∆t. There exists therefore ε′ > 0 for which the following inequalities
hold in the sense of positive measures:

ε′η 6 µf,∆t 6
1

ε′
η, ε′η 6 µ̃f,∆t 6

1

ε′
η. (4.89)

We are now in position to prove the equality of the eigenvalues λ∆t and λ̃∆t defined respectively
by (4.23) and (4.52). From (4.22), it holds, for any ϕ ∈ C,∫
X

(
Qf∆t

)n
ϕdµf,∆t =

(∫
X
Qf∆t1 dµf,∆t

)(∫
X

(
Qf∆t

)n−1

ϕdµf,∆t

)
=

(∫
X
Qf∆t1 dµf,∆t

)n(∫
X
ϕdµf,∆t

)
.

Applying this last relation to Uf∆tϕ for ϕ ∈ C and using the definition of λ∆t,∫
X

(
Qf∆t

)n
Uf∆tϕdµf,∆t =

(∫
X
Qf∆t1 dµf,∆t

)n(∫
X
Uf∆tϕdµf,∆t

)
= en∆tλ∆t

∫
X
Uf∆tϕdµf,∆t.
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Similarly,∫
X

(
Q̃f∆t

)n
ϕdµ̃f,∆t =

(∫
X
Q̃f∆t1 dµ̃f,∆t

)n(∫
X
ϕdµ̃f,∆t

)
= en∆tλ̃∆t

∫
X
ϕdµ̃f,∆t.

It then follows that, for any positive ϕ ∈ C,

en∆t(λ∆t−λ̃∆t) =

∫
X

(
Qf∆t

)n
Uf∆tϕdµf,∆t∫

X

(
Q̃f∆t

)n
ϕdµ̃f,∆t

×

∫
X
ϕdµ̃f,∆t∫

X
Uf∆tϕdµf,∆t

=

∫
X

(
Qf∆t

)n
Uf∆tϕdµf,∆t∫

X
T f∆t

(
Qf∆t

)n
Uf∆tϕdµ̃f,∆t

×

∫
X
ϕdµ̃f,∆t∫

X
Uf∆tϕdµf,∆t

.

(4.90)
It remains to note that the right hand side of (4.90) is uniformly bounded in n. Indeed, denoting by
φn = (Qf∆t)

nUf∆tϕ for a positive ϕ ∈ C, we obtain using (4.51) and (4.89):

0 6

∫
X
φn dµf,∆t∫

X
T f∆tφn dµ̃f,∆t

6

∫
X
φn dµf,∆t∫

X
αφn dµ̃f,∆t

6

∫
X
φn(ε′)−1dη

α

∫
X
φnε

′dη

6
1

α(ε′)2
,

this bound being independant of n. Similarly,

0 6

∫
X
ϕdµ̃f,∆t∫

X
Uf∆tϕdµf,∆t

6
1

α(ε′)2
.

Therefore, the right-hand side of (4.90) is uniformly bounded for all n > 0, which proves that λ∆t 6
λ̃∆t by taking the limit n→ +∞. A similar reasoning leads to λ̃∆t 6 λ∆t, hence λ∆t = λ̃∆t.
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4.7 Markov contractions and Dobrushin coefficients
Denoting byM(X ) is the set of measures over X , we defineM0(X ) = {η ∈M(X ) | η(X ) = 0} the set
of (unsigned) measures with zero mass. The contraction norm of a Markov operator Q : P(X )→ P(X )
is

|||Q||| = sup
η∈M0(X )

‖ηQ‖TV

‖η‖TV
= sup
µ,ν∈P(X )

‖µQ− νQ‖TV

‖µ− ν‖TV
,

the second equality coming from the fact that all elements inM0(X ) are proportional to the difference
of two probability measures. In particular,

‖µQ− νQ‖TV 6 |||Q||| ‖µ− ν‖TV.

A fundamental tool [115, 113, 114] for the study of Feynman–Kac type semigroups (4.15) and intro-
duced by Dobrushin [127, 128] is the so-called Dobrushin ergodic coefficient, which can be defined for
a Markov operator Q as:

α(Q) = inf
x,x′∈X

{Ai}16i6m⊂X

{
m∑
i=1

min
(
Q(x,Ai), Q(x′, Ai)

)}
, (4.91)

where the infimum in the last equality runs over points x, x′ ∈ X and all partitions (Ai)
m
i=1 of X . If

we interpret Q(x,Ai) as the probability of going from x into the set Ai, we see that this coefficient
provides information on the mixing properties of the operator Q. The link between this coefficient
and the contraction properties of Q is made precise by the following relationship [127, 128]:

|||Q||| = 1− α(Q). (4.92)
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As a result, a minorization condition on Q translates into a contraction of the operator through its
ergodic coefficient α(Q). Relation (4.92) is essentially obtained by a Hahn decomposition of measures
of zero mass, as made precise in [127, 128].



CHAPTER 5
ADAPTIVE SAMPLING OF LARGE DEVIATIONS FUNCTIONS

The material for this chapter has been published in the Journal of Statistical Physics [184].
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Abstract. We introduce and test an algorithm that adaptively estimates the large deviation
functions introduced in Chapter 3. These functions play an important role for predicting the proba-
bility and pathways of rare events in stochastic processes, as well as for understanding the physics of
nonequilibrium systems driven in steady states by external forces and reservoirs. The algorithm uses
methods from risk-sensitive and feedback control to estimate from a single trajectory a new process,
called the driven process, known to be efficient for importance sampling, as presented in Section 1.4.2.
Its advantages compared to other simulation techniques, such as splitting or cloning, are discussed
and illustrated with simple equilibrium and nonequilibrium diffusion models.

5.1 Motivation
We consider in this paper the problem of estimating large deviations functions introduced in Sec-
tion 1.3.1 and studied precisely in Chapter 3. These functions have a wide range of applications in en-
gineering and physical sciences, where they are used to predict the probability of rare events [388, 119,
121] and to understand how these events arise via transition paths or modified processes [250, 96, 97].
Large deviations theory also underlies now much of the research on nonequilibrium systems driven in
steady states by non-conservative forces or boundary reservoirs [406, 122, 228]. In this context, large
deviations functions play the role of nonequilibrium potentials, similar to the entropy or free energy,
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that characterize the steady state and fluctuations of physical quantities, such as energy or particle
currents exchanged with reservoirs, as well as the presence of symmetries [227] and phase transitions
in fluctuations [197, 233, 170, 8].

Recently, many efforts have been devoted to developing numerical algorithms for estimating large
deviations functions that go beyond the direct sampling of probabilities, which require prohibitively
large samples, as explained in Section 1.4.2. The most popular algorithms are variations of two basic
approaches used in rare event simulations, namely:

1. Splitting [109, 79, 13] or cloning [212, 202, 289] algorithms, which use population dynamics to
estimate probabilities or generating functions that have a multiplicative structure in time;

2. Importance sampling [75, 256, 15] (including transition path sampling [50]), which modifies the
process to be simulated, so as to transform rare events into typical events that can be simulated
efficiently.

These aspects are detailed in Section 1.4, and we have seen an application of cloning algorithm in
Chapter 4. Deterministic methods not based a priori on sampling can also be used, including spatial
discretizations of various spectral and optimal control representations of large deviations functions,
which work well for low-dimensional systems, in addition to action minimization methods, which can
be applied in the low-noise or low-temperature limit [241, 414, 208] as illustrated in Chapter 6.

In this chapter, we propose an algorithm that combines spectral methods with importance sampling
to efficiently estimate large deviations functions in an adaptive way. The core of the algorithm
comes from recent works on learning algorithms for risk-sensitive control of Markov chains [58, 5,
28, 57], which we adapt to continuous-time diffusion processes and to the problem of estimating
large deviations functions. The algorithm works by estimating or learning “on the fly” a modified
process, called the auxiliary or driven process, which corresponds to the process that is asymptotically
equivalent to the original process conditioned on the rare event of interest [97] or, alternatively, to the
exponential tilting of the original process, known to be efficient for importance sampling [98] (see the
discussion in Section 1.4.2). This modified process is given by a principal eigenvalue problem related
to the Feynman–Kac equation or, equivalently, by a stochastic optimal control problem [98] that we
solve iteratively using stochastic approximation and feedback control methods.

The main advantage of this algorithm, compared to splitting or cloning, is that it does not require
the simulation of many copies of the considered process – it runs on one long trajectory of that process,
modified with a feedback-reinforcement rule, to adaptively learn the driven process, thereby reducing
significantly the complexity of estimating large deviations functions. The calculation of error bars for
the estimated quantities is also simplified compared to other techniques, as the algorithm is based
on simple time averages and stochastic approximations [94, 372, 30]. Finally, the errors incurred by
discretizing continuous-time processes and functionals can be analysed in a precise way, in principle,
via Feynman–Kac semigroups as made precise in Chapter 4.

We discuss these advantages and test the algorithm in Section 5.4 with simple equilibrium and
nonequilibrium diffusions, after introducing the general model and notations in Section 5.2 and the
algorithm in Section 5.3. The results at this point are preliminary and are presented as a proof of
concept of the algorithm. More detailed results about the time-discretization and sampling errors will
be addressed in future works, together with more complex applications involving interacting particle
systems and higher-dimensional diffusions.

5.2 Framework

5.2.1 Model and notation
We still consider in this chapter an ergodic diffusion (Xt)t>0 evolving in a state space X ⊂ Rd with
appropriate boundary conditions according to the following stochastic differential equation (SDE):

dXt = b(Xt) dt+ σ dBt, (5.1)

where b : X → Rd is a smooth drift function, (Bt)t>0 is an m-dimensional Brownian motion, and σ
is a d ×m matrix, assumed to be constant for simplicity (see [97] for a treatment of diffusions with
multiplicative noise). The generator of this diffusion reads

L = b · ∇+
1

2
∇ ·D∇, (5.2)
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where · denotes the scalar product and
D = σσT ,

with T as the transpose, is the diffusion matrix, assumed to be positive definite (we thus use the
notation D instead of S in Chapter 3). This is the generator of the evolution semigroup (Pt)t>0,
defined by

Ptϕ(x) = E [ϕ(Xt) |X0 = x] , (5.3)

for all time t > 0 and any smooth test function ϕ. The dual L† of L in the space L2(dx) of square-
integrable functions with respect to the Lebesgue measure is the generator of the Fokker–Planck
equation

∂tρt = L†ρt, (5.4)

which gives the evolution of the probability density ρt of Xt starting from some initial density ρ0

for X0.
Our goal here is to study the fluctuations of time-integrated functionals of Xt, called observables,

having the general form

At =
1

t

∫ t

0

f(Xs) ds+
1

t

∫ t

0

g(Xs) ◦ dXs, (5.5)

where f : X → R and g : X → Rd are reasonably smooth functions (e.g. continuous) and ◦ denotes
the Stratonovich product [350]1. Such a functional defined over the time horizon [0, t] can represent,
for example, a control cost associated with the state Xt and its increments [95] or a physical quantity
integrated in time, such as the work performed on a particle by external forces or the heat exchanged
by a particle with its environment [385].

Assuming that the process is ergodic with respect to an invariant measure µ(dx) = ρ∗(x) dx with
smooth density ρ∗, we have almost surely

At −−−→
t→∞

∫
X
f(x)ρ∗(x) dx+

∫
X
g(x) · J∗(x) dx = a∗, (5.6)

where, for any x ∈ X ,

J∗(x) = b(x)ρ∗(x)− D

2
∇ρ∗(x) (5.7)

is the stationary current field associated with ρ∗ [98]. The theory of large deviations [119] refines this
ergodic theorem, generalized here with the additional g term, by providing estimates for the rate at
which the probability distribution of At concentrates on its ergodic value a∗. Such estimates can be
derived under general conditions2 and take, in the simplest case, the form

lim
t→∞

−1

t
logP(At ∈ B) = min

a∈B
I(a), (5.8)

for any Borel subset B of R, where I : R→ [0,+∞] is a positive function such that I(a∗) = 0. When
this limit exists, At is said to satisfy the large deviations principle (LDP) with rate function I, and
we refer to Section 1.2 for an introductory presentation and precise definitions. Formally, this means
that

P(At ∈ da) = e−tI(a)+o(t)da, (5.9)

where o(t) denotes corrections in the exponential that grow slower than linearly in t. Thus, we see
that the rate function provides useful information about the fluctuations of At: the likelihood that
At = a decays exponentially with time for all a 6= a∗, since I(a) > 0 in this case, and converges
otherwise to 1 as t → ∞, since I(a∗) = 0. Moreover, the rate function is in general not a parabola,
meaning that it describes fluctuations that are generally not Gaussian. In this sense, large deviations
theory is often seen as an extension of both the ergodic theorem, which describes the concentration
of At towards its mean, and the central limit theorem, which describes the local Gaussian fluctuations
of At around its mean [119]. This is explained more in detailed in Section 1.1.2.

1In order to respect the notation of Chapter 3, we should maybe write Lt(f, g) for the time-integrated functional,
but we believe At is more digest.

2We refer to Chapter 3 for proofs when g = 0, but the situation for g 6= 0 still seems to be open from a mathematical
perspective.
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5.2.2 Large deviations functions and driven process
In practice, the rate function I(a) can be calculated in many different ways other than by direct
sampling, which requires exponentially large samples with t [75]. The most common method proceeds
from the scaled cumulant generating function (SCGF), defined for k ∈ R by

λ(k) = lim
t→∞

1

t
logE

[
ektAt

]
. (5.10)

By the Gärtner-Ellis Theorem [119], the Legendre–Fenchel transform of this function yields the rate
function:

I(a) = sup
k∈R
{ka− λ(k)}, (5.11)

provided, essentially, that λ(k) is differentiable; see Chapter 3.
For the SDE (5.1) and the additive functional (5.5), the SCGF is known to be given by the principal

eigenvalue of the operator

Lk = b · (∇+ kg) +
1

2
(∇+ kg) ·D(∇+ kg) + kf, (5.12)

which is the generator of the Feynman–Kac semigroup P kt , defined by

P kt ϕ(x) = E
[
ϕ(Xt) etkAt

∣∣X0 = x
]
, (5.13)

for any smooth function ϕ; see Appendix A.2 of [97]3. In the end, the rate function can thus be
computed by solving the spectral problem

Lkhk = λ(k)hk, (5.14)

where λ(k) is the principal eigenvalue of Lk and hk its corresponding eigenvector. This holds provided
that this operator has reasonable spectral properties, made precise in the following assumption.

Assumption 5.1. The operator Lk defined in (5.12) acting on L2(µ) has an isolated largest eigen-
value λ(k). Its multiplicity is one and it is associated with a regular eigenvector hk ∈ L2(µ) such that
for all x ∈ X , hk(x) > 0.

This assumption holds for many systems, in particular when X is bounded [40, 182] or when b
and g are gradient fields with appropriate growth conditions [304, Section 2.5]; we refer to Chapter 2
for more details. In practice, the spectral problem (5.14) can be solved numerically using standard
projection or discretization (Galerkin) methods, which work well for low-dimensional systems [93],
or more involved real space renormalization methods when dealing with higher-dimensional systems
[204]. Note that, for g = 0, Lk is the usual Feynman–Kac generator with source term kf . Moreover,
for k = 0, L0 = L is the generator of the SDE, so that λ(0) = 0 and h0 = 1, the constant unit function.

The numerical method that we propose in the next section attempts to estimate the spectral
elements λ(k) and hk in a different way using the fact that they are solutions of the family of eigen-
problems

P kt hk = etλ(k)hk, ∀ t > 0, (5.15)

which can be approximated stochastically. The method also exploits a connection between large
deviations and control theory showing that λ(k) is the ergodic limit of an optimal control cost satisfying
a stochastic Hamilton–Jacobi–Bellman equation [187], and that hk determines the controlled diffusion
achieving the optimal cost, which is the driven process mentioned in the introduction. These results
are explained in detail in [98] (see also the references therein and the computations in Section 1.4.2);
for the purpose of this chapter, we only state them without proofs.

The controlled diffusion, denoted by (X̃t)t>0, satisfies the SDE

dX̃t = bk(X̃t) dt+ σ dBt, (5.16)

where
bk(x) = b(x) +D[kg(x) +∇ log hk(x)] (5.17)

3We should again write Pkf,kg
t , λf,g(k) and If,g to match the notation of Part II but prefer the shorthand nota-

tion Pk
t , λ(k) and I since f and g are fixed.
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is the optimal control drift defined for all x ∈ X , which is motivated in Section 1.4.2 in the case g = 0.
Under Assumption 5.1, this modified diffusion is ergodic with respect to a new invariant measure µk,
whose density is

ρk(x) = hk(x)lk(x), (5.18)

where lk is the dual of hk in L2(dx) satisfying L†klk = λ(k)lk [97, Section 3.3]4. These two functions
are normalized such that ∫

X
hk(x)lk(x) dx = 1,

∫
X
lk(x) dx = 1. (5.19)

Because of the change of process, the observable At must concentrate on a new value, which can
be shown to be given by λ′(k), that is,

At −−−→
t→∞

λ′(k) = ak, (5.20)

almost surely with respect to (X̃t)t>0. Similarly, the control cost

Ct = kAt −Rt, (5.21)

where

Rt =
1

2t

∫ t

0

[b(X̃s)− bk(X̃s)] ·D−1[b(X̃s)− bk(X̃s)] ds, (5.22)

reaches in the ergodic limit the value λ(k), so that

Ct −−−→
t→∞

λ(k) (5.23)

almost surely under (X̃t)t>0 [98, Section 4]5. Finally, it can be shown by Legendre duality that the
rate function at the value ak = λ′(k) is given by the ergodic limit of Rt above, leading to

Rt −−−→
t→∞

I(ak), (5.24)

almost surely with respect to (X̃t)t>0 [98, Section 4]. Note that the diffusion is not modified for k = 0,
so that a0 = a∗, λ′(0) = a∗, and I(a∗) = 0.

These ergodic limits provide direct estimators of the SCGF and the rate function, based on a single
trajectory of the driven process, which can be simulated for different values of the parameter k ∈ R.
For the SCGF, there are in fact three possible estimators:

1. From (5.20): the value of At, integrated numerically with the condition λ(0) = 0;

2. From (5.23): the value of Ct;

3. The eigenvalue returned by the algorithm proposed in Section 5.3.

In practice, we find that the last estimator is more stable, although the first and second are more
adapted to obtain error bars.

For the rate function, we have two possible estimators:

1. The Legendre transform (5.11) of the SCGF, given in parametric form by

I(ak) = kak − λ(k), (5.25)

where ak is either estimated from At or by taking the numerical derivative of λ(k);

2. From (5.24): the value of Rt obtained for the value of At, giving the couple (At, Rt).

4The notation is slightly different than that of Chapter 4, see for instance Proposition 4.1.
5Note the similarity between the cost function Rt and the action functional (1.38).
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In practice, we find that the first estimator based on the Legendre transform is more reliable. By
comparison, the computation of I(a) based on (5.22) involves the optimal drift bk and, therefore, the
logarithmic derivative of hk, which is more difficult to estimate in a stable way.

In all cases, error bars can be constructed from the same trajectory by estimating, in principle,
the variance of At, Ct and Rt using covariance techniques for Markov processes [94, 372, 30]. This is
an advantage over splitting and cloning algorithms, for which the calculation of errors bars is difficult,
as they involve correlated copies or “clones” of the simulated process [377, 337, 338].

In closing, it is interesting to note that the driven process can also be interpreted as the change
of process in the importance sampling of the probability P(At ∈ B) that is optimal in the sense of
logarithmic or asymptotic efficiency [75]. Therefore, it can be used not only to estimate the SCGF
and rate function, but also to estimate the actual probability P(At ∈ B) in an efficient way [58].
The optimal change of process in this case is known to correspond to the exponential tilting of the
original process [75], which is a time-dependent process in general; see Appendix D of [97]. In the
ergodic limit, this process converges to a homogeneous process corresponding exactly to the driven
process (5.16). We refer to [98] for more details about these results.

5.3 Adaptive algorithm
We are now ready to present the algorithm for estimating the SCGF and the rate function of At
for continuous-time diffusions. The algorithm is based, as mentioned, on prior algorithms proposed
in [58, 5, 28, 57] for Markov chains and exploits the fact that

e−tλ(k)(P kt ϕ) −−−→
t→∞

hk

∫
X
ϕ(x) lk(x) dx, (5.26)

for any smooth test function ϕ. This result follows under Assumption 5.1; see [97, Section III.B] or the
results of Chapter 2 for a proof. The algorithm that we propose works from this limit by approximating
the action of the Feynman–Kac semigroup (P kt )t>0 in a stochastic way as a time average computed over
a long trajectory of the diffusion. Moreover, it continuously modifies the diffusion as we estimate hk to
construct the driven process (X̃t)t>0, which underlies the estimators of the large deviations functions.

The algorithm is presented next. Our contribution compared to [58, 5, 28, 57] is to consider general
time-continuous processes, time-additive functionals of these processes that depend on both their state
and increments and, more importantly, to construct the driven process explicitly so as to estimate the
SCGF and the rate function adaptively using the estimators introduced in the previous section.

5.3.1 Time discretization
The first step required in the algorithm is to discretize in time the SDE (5.1) and its associated
Feynman–Kac semigroup (5.13) by transforming the Markov diffusion (Xt)t>0 into a Markov chain
(xn)n∈N with a small time step. Many discretization schemes can be used for the SDE; see, for
instance, [270]. Here we use the standard Euler–Maruyama scheme with constant time step ∆t, given
by

xn+1 = xn + b(xn)∆t+ σ
√

∆t ξn, (5.27)

where (ξn)n>0 is a sequence of independent standard d-dimensional Gaussian random variables. The
corresponding discretization of the evolution semigroup Pt over a time step ∆t is denoted by Q∆t, so
that

Q∆tϕ(x) = E [ϕ(xn+1)|xn = x] , (5.28)

for any test function ϕ and x ∈ X . We refer again to [270, 304] and Section 1.4.1 for more information
about the discretization of SDEs and their weak error analysis.

We have seen in Chapter 4 that many discretizations also exist for the Feynman–Kac semigroup P kt .
Here, we use the natural scheme where the diffusion is discretized as above and the integral of At is
discretized as a Riemann sum with the left-point rule for the integral involving f and the mid-point
rule for the Stratonovich integral involving g. The action of P kt is thus replaced by

Qk∆tϕ(x) = E
[
e
k
[
f(xn)∆t+g

(
xn+1+xn

2

)
·(xn+1−xn)

]
ϕ(xn+1)

∣∣∣∣ xn = x

]
. (5.29)

For our purposes, hk will be approximated by recursive applications of Qk∆t, based on the following
assumption.
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Assumption 5.2. There exist a time step ∆t∗ > 0 and p > 0 such that, for 0 < ∆t 6 ∆t∗,

Qk∆thk,∆t = e∆tλ∆t(k)hk,∆t, (5.30)

where
hk,∆t = hk + O

(
∆tp

)
, λ∆t(k) = λ(k) + O

(
∆tp

)
. (5.31)

This assumption means that the time-discretized operator Qk∆t admits hk as an approximate
eigenvector with approximate eigenvalue λ(k). This applies, for example, when X is compact. In this
case, precise estimates for the errors in (5.31) are obtained for g = 0 in Chapter 4. We believe these
error estimates can be extended to g 6= 0 under appropriate modification of the assumptions, but the
situation when X is unbounded is difficult.

In the following, we will drop the subscript ∆t on hk,∆t and λ∆t(k) to simplify the notations,
and will present the algorithm essentially as if hk were an exact eigenvector of Qk∆t with exact eigen-
value λ(k). However, we should keep in mind that this is only approximately true due to the errors
in ∆t. We will comment on this in Section 5.4 with specific numerical examples.

5.3.2 Stochastic approximation and annealing

The main ingredient of the algorithm is the limit (5.26) of the Feynman–Kac semigroup, which shows
that hk and λ(k) can be computed by successively applying Qk∆t to an initial guess ϕ, so as to obtain

(Qk∆t)
nϕ ∼ en∆tλ(k)hk

∫
X
ϕ(x) lk(x) dx (5.32)

as n→∞. To perform this iteration, which is a functional version of the well-known power method for
matrices [120], we apply a stochastic approximation [353, 30, 28] whereby the expectation appearing
in the action of Qk∆t is replaced by the iterates of the Markov chain:

Qk∆tϕ(xn) = E
[
e
k
[
f(xn)∆t+g

(
xn+1+xn

2

)
·(xn+1−xn)

]
ϕ(xn+1)

∣∣∣∣ xn]
≈ e

k
[
f(xn)∆t+g

(
xn+1+xn

2

)
·(xn+1−xn)

]
ϕ(xn+1),

(5.33)

where xn+1 is a random variable distributed according to Q∆t(xn, ·). This approximation is known
to reproduce the expectation as a statistical average in the ergodic limit n→∞ [5, 28, 30].

In our case, we simulate not the Markov chain (xn)n∈N but a modified chain, corresponding to the
discretization of the driven process (5.16), which we express as

x̃n+1 = x̃n + [b(x̃n) + Fn(x̃n)]∆t+ σ
√

∆t ξn, (5.34)

where
Fn = D(kg +∇ log hnk ) (5.35)

is the extra biasing force derived, according to (5.17), from the estimate hnk of hk at time n. In this
case, the evolution (5.33) is modified by the Girsanov formula [350] to

Qk∆tϕ(x̃n) = E
[
e
k
[
f(x̃n)∆t+g

(
x̃n+1+x̃n

2

)
·(x̃n+1−x̃n)

]
ϕ(x̃n+1)Rn(x̃n, x̃n+1)

∣∣∣∣ x̃n = x

]
≈ e

k
[
f(x̃n)∆t+g

(
x̃n+1+x̃n

2

)
·(x̃n+1−x̃n)

]
ϕ(x̃n+1)Rn(x̃n, x̃n+1),

(5.36)

where

Rn(x̃n, x̃n+1) = exp

(
− 1

2σ2
F 2
n(x̃n)∆t−

√
∆t

σ2
Fn(x̃n) · ξn

)
(5.37)

is the Radon–Nikodym derivative of the transition kernel of xn with respect to that of x̃n.
In the end, we also apply an annealing scheme, commonly used in stochastic approximations, which

consists in replacing the update rule (5.32), defined by ϕ0 = ϕ and ϕn+1 = Qk∆tϕ
n, by the scheme

ϕn+1 = ϕn + an
(
Qk∆tϕ

n − ϕn
)
, (5.38)
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where (an)n∈N is a decreasing sequence, often called the adaption or learning sequence, which acts as
a smoothing parameter, filtering here the noisy update of the eigenfunction. This sequence is usually
chosen in such a way that ∑

n>0

an =∞,
∑
n>0

a2
n <∞, (5.39)

with the understanding that an should not be decreased too slowly, so as to limit noise, nor too fast,
so as to reach the “correct” fixed point. These conditions can be relaxed under stability assumptions
or by an averaging procedure [353]; see [30] for more details.

5.3.3 Spatial projection
The iteration just described for approximating hk can be performed numerically by discretizing the
state space X into small cells (grid discretization). For high-dimensional systems, however, it is more
convenient to use a Galerkin-type approximation of the eigenvalue and eigenfunction [28], obtained
by projecting the problem onto a set of basis functions {φj}Mj=1 with φj : X → R [93]. Let us denote
by HM = Span{φj}Mj=1 the space spanned by these functions. Then the M -dimensional eigenproblem
that we need to solve is

Qk∆th̃ = e∆tλh̃, h̃ ∈ HM , (5.40)

using, for notational convenience, the same symbols h̃ and λ for the exact and the projected spectral
elements. We also drop from now on the parameter k, which will be implicit.

The eigenfunction h̃ is expressed in that basis as

h̃(x) =

M∑
j=1

αjφj(x) = αTφ(x), (5.41)

where α = [α1, . . . , αM ]T and φ(x) = [φ1(x), . . . , φM (x)]T . Multiplying (5.40) by φi for i ∈ {1, . . . ,M}
and integrating over any measure η on X yields

M∑
j=1

αj

∫
X
φi(Q

k
∆tφj) dη = e∆tλ

M∑
j=1

αj

∫
X
φiφj dη, i ∈ {1, . . . ,M}. (5.42)

As a result, we see that the vector of coefficients α ∈ RM is the principal solution of the eigenproblem

Aα = ΛBα, λ =
1

∆t
log Λ, (5.43)

where
A =

∫
X
φ(Qk∆tφ

T ) dη, B =

∫
X
φφT dη. (5.44)

Note that the matrix B is invertible as soon as the {φj}Mj=1 form a linearly independent family.

5.3.4 Algorithm
We are now ready to describe all the steps of the algorithm that estimates the principal eigenvalue
of Lk and its corresponding eigenfunction. For a fixed k ∈ R, we initiate the process at a position
x0 ∈ X and define a first approximation h̃0 of h as

h̃0 = (α0)Tφ, (5.45)

where φ is the vector of basis functions and α0 is the initial vector of coefficients, chosen such that h0

is constant (although prior information could be incorporated at this stage). At each iteration, we
then perform the following steps:

1. Draw a new position x̃n+1 according to the Markov chain (5.34);

2. Compute the extra bias Fn according to (5.35), which in the function basis takes the form

Fn = D

(
kg +

∑M
j=1 α

n
j∇φj∑M

j=1 α
n
j φj

)
; (5.46)
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3. Compute the Girsanov weight Rn according to (5.37);

4. Compute the matrices An+1 and Bn+1 using the formulae

An+1 =
1

n+ 1

n∑
m=0

e
k
[
f(x̃m)∆t+g

(
x̃m+1+x̃m

2

)
·(x̃m+1−x̃m)

]
φ(x̃m)φ(x̃m+1)TRm(x̃m, x̃m+1),

Bn+1 =
1

n+ 1

n∑
m=0

φ(x̃m)φ(x̃m)T , (5.47)

which follow by projecting (5.36) and (5.44), respectively;

5. Update the coefficient vector αn, giving the decomposition of the iterate hn, as

αn+1 = αn + an

(
B−1
n An

h̃n(x0)
− Id

)
αn, (5.48)

where Id is the identity matrix of size M [28];

6. Estimate the eigenvalue as

λn+1 =
n

n+ 1
λn +

1

(n+ 1)∆t
log
(
h̃n(x̃0)

)
, (5.49)

which follows from (5.43).

Repeating these steps, it can be proved that the iterates hn and λn converge to the solution of the
spectral problem (5.40), following the analysis found in [58, 5, 28]; see also [30]. Moreover, because
hn → h, the Markov chain (x̃n)n∈N samples in the long run the Euler–Maruyama discretization of the
driven process (5.16).

5.3.5 Remarks
The following are technical remarks worth noting about the algorithm:

1. The matrix An can be updated at each step using

An+1 =
n

n+ 1
An +

1

n+ 1
e
k
[
f(x̃n)∆t+g

(
x̃n+1+x̃n

2

)
·(x̃n+1−x̃n)

]
φ(x̃n)φ(x̃n+1)TRn, (5.50)

instead of the sum shown in (5.47). Similarly, the matrix Bn can be updated, following [28],
using the Shermann–Morrisson–Woodburry formula, which leads here to

B−1
n+1 =

n+ 1

n
B−1
n −

n+ 1

n

B−1
n φ(x̃n)φ(x̃n)TB−1

n

n+ φ(x̃n)TB−1
n φ(x̃n)

. (5.51)

The advantage of this formula is that the computation required for updating the coefficient αn
scales with the number M of basis vectors as M2, as is common in the power method [120],
whereas the typical cost of inverting the matrix B scales as M3.

2. We normalize the eigenfunction at every iteration by setting h̃(x̃0) = 1 at an arbitrary location,
taken here to be the initial state x̃0 [58]. This prevents the norm of the eigenfunction from
diverging or decaying to zero, as is common in the power method, and provides an estimate
of λ(k) through (5.49). This normalization step can be based on other norms, at the expense of
computing integrals.

3. The algorithm can be run with the original (unbiased) process (Xt)t>0, but the estimation of
the matrices A and B in this case typically suffers from large statistical errors due to the high
variance of the underlying estimator. This is a known problem related to the estimation of
Feynman–Kac functionals and exponential integrals in general [231, 230, 433, 374]. Biasing the
dynamics with the driven process (X̃t)t>0 reduces this variance in an optimal way (in the sense
of asymptotic or logarithmic efficiency) by forcing the exploration of the process in important
regions of the state space where the integrand of the generating function E[ektAt ] is largest [98].
This issue is explained more precisely by the computations of Section 1.4.2.



188 Chapter 5. Adaptive sampling of large deviations functions

4. As the dynamics is biased towards the driven process (X̃t)t>0, the vector αn of basis coefficients
representing hk converges towards the solution of the eigenproblem (5.43), with the matrices A
and B computed as ergodic averages under (X̃t)t>0, so that η = µk in (5.44). Even for a small
number of basis functions, it would be a priori impossible to compute these matrices by numerical
quadrature. This shows that the algorithm can be used to obtain good approximations of hk
even for high-dimensional systems, provided that enough basis functions are used to represent
the support of µk, which is typically concentrated on a subset of X .

5. The algorithm is stable despite the fact that it includes the Girsanov reweighting factor, which
is exponential in time. The reason for this stability, already noted in [5], is that the Girsanov
weight is computed and accumulated incrementally over single time steps in (5.47).

6. The learning sequence (an)n∈N is chosen here in the following way:

(a) For 0 6 n 6 N1, we take an = 0, so there is no adaption at the level of h and λ, although
the matrices A and B are evolved – this “burn-in” period allows for a better initial guess
of the various functions estimated through their ergodic averages;

(b) For N1 < n 6 N1 +Niter −N2, we take an = 1, that is, the full information of the process
is taken into account;

(c) For N1 +Niter−N2 < n 6 N1 +Niter, we take an = C/(n−(N1 +Niter−N2)) with constant
C > 0, so the process learns less with time, smoothing the noise in the long run. In the
following, we choose C = 1.

The times N1 and N2 can be fixed or can be chosen dynamically according to some stopping
rule.

7. In practice, we can perform independent simulations with different values of k to obtain an
interpolation of the SCGF over some range, say, [kmin, kmax], which can then be used to obtain
the rate function by Legendre transform. Alternatively, we can do a simulation in which k is
slowly increased from k = 0 in a “quasi-static” way, so as to adaptively update the biasing force
over a range of values for k [341] or to reach some prescribed value of the SCGF for an unknown
k [58].

5.4 Applications

We apply in this section the algorithm to two simple test cases involving one-dimensional diffusions.
The first is the Ornstein–Uhlenbeck process, for which the large deviations functions of the area per
unit time are known exactly [97], while the second is a driven diffusion on the circle, often used in
physics as a model of nonequilibrium systems, including Josephson junctions perturbed by thermal
noise and Brownian particles controlled by external forces [366, 360, 100]. We discuss for both the
convergence and efficiency of the algorithm.

5.4.1 Ornstein–Uhlenbeck process

The first example that we consider is the mean area or mean position

At =
1

t

∫ t

0

Xs ds (5.52)

of the Ornstein–Uhlenbeck process on R satisfying the SDE

dXt = −2θXt dt+
√

2 dBt, (5.53)

where θ > 0. In the notations of Section 5.2, we thus have b(x) = −2θx, σ =
√

2, f(x) = x and
g(x) = 0, so that

L = −2θx
d

dx
+

d2

dx2
, (5.54)

and Lk = L+ kx.
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Figure 5.1 – Large deviations of the mean area for the Ornstein–Uhlenbeck process. Left: Evolution
of the estimated SCGF in time. Right: Evolution of the biasing potential Vk(x) in time for the linear
basis (curves from top to bottom), compared with the final estimate for the Hermite basis and the
exact result.

For this process and observable, it can be checked [97] that the SCGF, corresponding to the
dominant eigenvalue of Lk, is

λ(k) =
k2

4θ2
, (5.55)

so that I(a) = θ2a2 from (5.25). This is expected, since the integral of a Gaussian process is also
Gaussian. Moreover, the associated dominant eigenfunction is

hk(x) = e
k
2θ x, (5.56)

leading with (5.17) to the optimal drift

bk(x) = −2θx+ 2
(

log hk(x)
)′

= −2θx+
k

θ
. (5.57)

This shows that a fluctuation of At is created in an optimal way by adding a constant to the drift,
which “moves” the Gaussian stationary density of the Ornstein–Uhlenbeck process

ρ∗(x) =

√
θ

π
e−θx

2

(5.58)

to

ρk(x) =

√
θ

π
e−θ(x−mk)2

, mk =
k

2θ2
, (5.59)

leading to
At −−−→

t→∞
mk = ak (5.60)

almost surely with respect to X̃t, in agreement with (5.20).
We compare the algorithm against these exact results using a simple mesh discretization (first-order

finite elements), defined by the basis functions

φj(x) =


x−xj
δ + 1, x ∈ [xj − δ, xj ],
−x−xjδ + 1, x ∈ [xj , xj + δ],
0, otherwise,

(5.61)
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where the points xj define the centers of each “cell” of width δ > 0. In the following, we refer to
this basis simply as the linear basis. To illustrate the flexibility of the algorithm, we also perform
simulations using a Hermite polynomial basis, which forms a complete orthonormal basis in L2(ρ∗).
We run the algorithm with k = 1, θ = 1/2, x0 = 0, final time T = 2 × 104 and intermediate times
T1 = N1∆t = T2 = N2∆t = 2 × 103 with ∆t = 5 × 10−3, which a standard time step used in
simulations relative to the basic timescale of the dynamics, corresponding here to 1/(2θ) = 1. For the
linear basis, we use M = 61 equally spaced cells with δ = 0.25 around x = 0, whereas for the Hermite
basis we use only M = 10 basis functions.

Figure 5.1 illustrates the results of a typical simulation, starting on the left with the evolution of
the estimate of the SCGF, given by (5.49), as time increases. We observe a very good agreement in the
long run with the exact value, which for the parameters used is equal to 1, with a faster convergence
observed for the Hermite basis compared to the linear basis. As mentioned before, we can also recover
the SCGF by recording the stationary value of At, which corresponds as above to mk = ak = λ′(k),
and numerically integrate the result in k from λ(0) = 0. The results obtained are similar to those
obtained from the eigenvalue estimate (5.49), and are not shown for this reason.

To understand the convergence of the eigenvalue at the process level, we show in the right plot of
Figure 5.1 the evolution of the effective potential Vk associated with the modified drift bk according
to

bk(x) = −V ′k(x). (5.62)

We show the results for both the linear basis and the Hermite basis, with the zero of the potential
arbitrarily set at Vk(0) = 0. We see from these that the tail of the potential takes longer to be
estimated correctly, as the process starts to explore values away from m0 = 0. After the convergence
time, there is a good agreement with the parabola

Vk(x) = θ(x−mk)2, (5.63)

which is the exact solution predicted by (5.59). The small errors are due to the finite time step ∆t
used and the finite basis function set. The small “wiggles” seen in the potential obtained with the
linear basis come from the fact that this basis is piecewise linear, so that Vk is piecewise logarithmic.
The potential obtained with the Hermite basis is smoother, as expected.

Repeating the simulations for other values of k, we can recover λ(k), as shown in the left plot
of Figure 5.2. The result is in good agreement with the exact solution (5.55). Estimating λ′(k)
with (5.20) leads to an estimated rate function, by the Legendre transform (5.25), which also agrees
well with the exact rate function, shown in the right plot of Figure 5.2. By comparison, the rate
function obtained from the time average (5.24) of the extra biasing force (with the Hermite basis) is
not as good: it lies above the exact rate function and shows a larger offset or error as k increases,
which does not decrease by reducing ∆t or increasing the number of basis functions.

To understand this error, we show in the left plot of Figure 5.3 the evolution of the extra biasing
force Fn for k = 1, estimated at the current location of the system, which should approach the
constant 2, following (5.57). The evolution is noisy, as can be seen, which is expected, since Fn is
estimated by the logarithmic derivative

Fn(x) = 2

(
hn(x)

)′
hn(x)

, (5.64)

computed in the function basis from (5.46). The derivative amplifies the Monte Carlo errors inherent
in the estimate hn. In addition, the denominator often takes small values away from the mean
position mk, which makes the estimation of the optimal force still more difficult. The right plot of
Figure 5.3 shows that the noise on Fn is considerably filtered out by the time average underlying the
estimator Rt of the rate function, although a bias remains even after the convergence time of the
SCGF, which leads to the offset seen in Figure 5.2. The results in both cases are more noisy for the
linear basis because the derivative is not continuous across the different cells.

The offset on Rt remains more or less constant by running independent simulations (error bars on
30 simulations are too small to show), and so appears to be a systematic error or bias. Many factors
can account for this bias. First, the rate function estimated from the limit shown in (5.24) is known
to be an upper bound on the true rate function [98], which is tight if and only if the modified drift
estimated in the simulation is the optimal control drift (5.17). Here, Fn is not constant, as predicted
from (5.57), so we expect the estimate Rt to lie above its expected value. Second, we have noticed in
simulations that At underestimates ak for large k, which has the effect of further “pushing” the estimate
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SCGF compared with the exact result. Right: Estimated rate function based on the Legendre trans-
form of the SCGF and on the averaging of the biasing force (using the Hermite basis), compared with
the exact result.

of the rate function above I(a). This is most likely due again to Fn being non-constant. Finally, the
time average of Fn involves the ratio of two functions, according to (5.64), which fluctuate in time via
the updating of αn in (5.46). As a result, we expect this additional randomness to artificially increase
the second moment of Fn, leading to a further bias.

It is difficult to isolate these factors, and all, in fact, seem to play a role. In future works, it
would be interesting to study the bias observed in Rt by computing, for example, the time average
of F 2

n using the final estimate of hk rather than the time-evolved estimate hn. Different annealing
sequences or averaging techniques could also be used to “filter” the time average of F 2

n and mitigate
the bias on Rt. For now, the most efficient and reliable way to compute the rate function is to use
the estimator based on the SCGF and its Legendre transform.

5.4.2 Periodic diffusion

We have motivated in the Introduction our interest for nonequilibrium dynamics. We thus consider
for the second test a diffusion on the unit circle satisfying the SDE

dXt = (−V ′(Xt) + γ)dt+
√

2 dBt, (5.65)

with the periodic potential V (x) = cos(2πx) and γ ∈ R a constant drive. For γ 6= 0, the total drift
cannot be expressed as the gradient of a smooth periodic function, so (Xt)t>0 is a nonequilibrium
process violating detailed balance [366]. The observable studied for this process is the winding number

At =
1

t

∫ t

0

dXs, (5.66)

calculated with the real rather than periodic state, which can be interpreted physically as the mean
velocity or current of a Brownian particle moving around the circle [410]. In the notation of Section 5.2,
we have b(x) = −V ′(x) + γ, σ =

√
2, f(x) = 0, and g(x) = 1.

The SCGF and the rate function of this observable are not known exactly, but Galerkin ap-
proximations can easily be found by Fourier series, using the basis functions φj(x) = ej2πix with
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j ∈ Z [326, 340, 410]. This basis is used to compute reference values for the SCGF and the rate func-
tion, devoid of ∆t errors, by projecting the spectral problem (5.14) in Fourier space and by ensuring
that enough basis functions are used. We find in practice that M = 41 Fourier modes are sufficient.
We use the same Fourier basis for the algorithm, also with M = 41 modes, in addition to T = 2× 104

and T1 = T2 = 2× 103 for the integration times, as in the first test.
We show in Figure 5.4 the results of a typical simulation for γ = 1 and k = 1. The left plot in

this figure shows the evolution in time of the estimated SCGF from the eigenvalue iteration (5.49),
while the right plot shows the final estimated eigenfunction hk for different time steps ∆t, compared
with the reference Fourier solution. We see that the results for the eigenvalue and the eigenvector
significantly depart from the reference solutions for ∆t = 0.05, but converge to them as ∆t is decreased,
in accordance with Assumption 5.2 and the error estimates obtained in Chapter 4. For the same time
step used for the Ornstein–Uhlenbeck process, namely, ∆t = 5 × 10−3, we see no notable difference
between the estimated eigenfunction and the reference values, leading to a precise estimation of the
SCGF. The convergence of the eigenvalue here is much faster than for the Ornstein–Uhlenbeck process
because the space explored is compact, being limited to [0, 1] with periodic boundary conditions.

As for the Ornstein–Uhlenbeck process, we can repeat these simulations over a range of values
for k to obtain the SCGF and the rate function. The left plot of Figure 5.5 shows that the SCGF is in
good agreement with the Fourier solution for ∆t = 5× 10−3, and so is the rate function estimated by
Legendre transform. However, as seen before, the rate function estimated with the time average Rt of
the biasing force shows an offset, although smaller this time, which comes from the noisy estimation
of Fn. As before, the estimator of the rate function that should be used is the one based on the
Legendre transform of the SCGF, with ak estimated by At.

5.5 Conclusion

We have presented a new algorithm for estimating the large deviations functions of time-integrated
observables of Markov processes, which characterize the likelihood of their fluctuations in the long-
time limit. The algorithm draws on earlier results on stochastic control [58, 5, 28, 57], and works
by adaptively estimating the principal eigenvalue and eigenfunction of a spectral problem related to
the large deviations problem. The adaptive part consists in modifying the process considered, using
feedback and reinforcement learning, so as to reach the so-called driven process, which is known to
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be optimal for the purpose of estimating large deviations functions using importance sampling [98].
In this sense, the algorithm relates to many adaptive importance sampling methods that have been
proposed recently for rare event simulations; see, for instance, [150, 339, 46, 261]. It is also closely
related to diffusion Monte Carlo methods [190, 377, 313], which attempt to estimate the ground-state
wavefunction of a many-body quantum system by simulating a related stochastic process.

The proposed algorithm can be applied to diffusions, as illustrated here, but also to Markov chains
in discrete or continuous time, and works for both equilibrium and nonequilibrium systems, that is,
reversible and non-reversible processes, respectively. Moreover, although the test cases presented here
are simple, they clearly show that the algorithm has the potential to improve upon other simulation
methods, especially cloning methods, since it runs on a single simulation of the process and provides
information about how fluctuations are created in time by constructing the driven process in a non-
parametric form and with no prior information. A modification of the original cloning algorithm was
proposed recently [337] to construct the driven process, but it is based on a different feedback rule
that compares two time-dependent histograms, whose estimation is noisy and requires a large number
of clones. The results presented here show that a single clone, evolving over a long-enough time, is
sufficient. This obviously cuts the computational complexity of estimating large deviations, but also
simplifies, as mentioned, the error and convergence analyses of the algorithm.

As with any new proposal, more work is needed to understand the benefits and limitations of the
algorithm, to test its applicability to realistic systems, and to benchmark it against other numerical
methods. Of particular importance is to derive precise error estimates associated with the space
and time discretizations of the spectral elements, large deviations functions, and the driven process.
Estimates for the discretization errors in ∆t for the SCGF can be found in Chapter 4, but these
discretization errors are also present in cloning algorithms when applied to diffusions, so they are
not specific to the algorithm presented here. The use of Galerkin discretizations requires further
investigations, particularly in the low-noise limit and for processes involving many interacting particles,
and we mention that recent work on optimal control problems show that alternative representations
can be used, such as neural networks [223, 154, 224], which is an interesting path to follow.
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CHAPTER 6

CONSTRUCTING APPROXIMATE CONTROLS FOR SMALL
TEMPERATURE SYSTEMS

The material for this chapter is a work in preparation with E. Vanden-Eijnden and T. Gräfke [185].
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Abstract. The computation of free energies is a common issue in statistical physics, in particular
for systems at low temperature. A natural technique to compute such high dimensional integrals is to
resort to Monte Carlo simulations. However, these techniques generally suffer from a very high variance
in the low temperature regime because the expectation is dominated by high values corresponding to
rare trajectories, which is the situation of interest in practice. We propose here a general strategy
to build approximate controls in order to reduce the variance of such estimators. Our construction
builds upon the instanton theory, presented in Section 1.1.3, and can be realized offline. We show
that the resulting estimator behaves well in the small temperature regime, and that the approximate
control is actually an expansion of the optimal control around the instanton.

6.1 Motivation

This work is concerned with variance reduction for estimating free energy-like functions arising in
statistical physics. We will consider low temperature finite time problems [155, 118, 157, 414], which
have been introduced in Section 1.1.3 in the Introduction. In such a situation, high variance arises
because the observable takes large values along very rare trajectories [156].

We have motivated in Section 1.4 two ways for reducing the variance of naive estimators for this
kind of problem. One is to introduce a bias in the dynamics, so that rare trajectories become more
likely under the new dynamics [155, 231] – a strategy sometimes referred to as tilting. However, the
expectations at hand have to be corrected with a Girsanov weight, and it is actually not obvious
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that the additional drift decreases the variance, unless the optimal control is exactly known. For
high-dimensional systems, it is hopeless to compute this optimal control to a high degree of accuracy,
and poor approximations may deteriorate the quality of the estimator.

Another strategy is to resort to population dynamics [212, 116, 113, 109, 289, 71], which is another
instance of importance sampling. The idea here is to run a series of systems in parallel, and to select
the ones that realize the rare trajectories. We have used this method to compute cumulant functions in
Chapter 4 above, and there are actually various ways to design a selection mechanism, some provably
behaving better than others [377, 12, 140]. However, it is a well-known fact that, in high-dimension,
the number of replicas needed for performing accurate computations becomes very large.

It also possible to combine the two approaches, see [337] for an application to the computation
of long time large deviations functions. However, for a general system, one cannot compute the
exact optimal control, nor run enough replicas in parallel to obtain accurate free energy estimates.
We focus here on the construction of approximate optimal controls. Since several equivalent expres-
sions are available for the optimal control, many approximation techniques have been developped,
including cross-entropy methods [433], milestoning [231], martingale based techniques [312], model
reduction [232] and forward-backward SDE [265], or more recently machine learning based algo-
rithms [223, 154, 224]. However, once an approximation of the optimal control has been estimated,
one needs to correct the expectation with the appropriate Girsanov weight. Here as well, it is not
guaranted in general that these techniques lead to a variance reduction .

The goal of this chapter is to provide a simple way to construct approximate controls, and to show
that they have a finite variance in the small temperature regime. We rely for this on the theory of
instantons [155, 156, 209, 211], which we recall in Section 1.1.3 in Part I. Our technique allows to
compute the approximate control offline, contrarily to the previous work [414], which required on the
fly update.

Our presentation is organized as follows. Section 6.2 recalls well-known facts about zero vari-
ance estimators with an optimal control. Since this optimal control is not accessible in practice, we
turn in Section 6.3 to the construction of approximate optimal control that behave well in the small
temperature regime. Section 6.4 provides some illustrative applications.

6.2 Optimal control and low temperature limit

6.2.1 A direct approach
In this study, we focus on computing expectations of exponential functionals for which naive estimators
typically have a large variance. We first recall the framework of Section 1.1.3 and consider, for a fixed
time T > 0,

Aε = Ex
[
e

1
ε f(XεT )

]
, (6.1)

where (Xε
t )t>0 is solution to the following stochastic differential equation

dXε
t = b(Xε

t ) dt+
√
εσ(Xε

t ) dBt. (6.2)

Here, (Bt)t>0 is a d-dimensional Brownian motion, and b : Rd → Rd, σ : Rd → Rd×d and f : Rd → R
are smooth functions. In (6.1), Ex denotes the expectation with respect to all trajectories solving (6.2)
and starting at x ∈ Rd at t = 0. Note that we could also consider time-dependent functions b and σ
without additional difficulty. The generator of the dynamics (6.2) reads

L = b · ∇+ ε
σσT

2
: ∇2, (6.3)

where σT stands for the transpose of the matrix σ, · is the scalar product in Rd. In what follows, we
again use the possibly position-dependent diffusion matrix

D = σσT, (6.4)

which is assumed to be positive definite everywhere in Rd.

A motivation for studying (6.1) is the computation of the free energy

Zε = ε logAε (6.5)
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in the small temperature regime. It is known by large deviations arguments that Zε → Z0 as ε→ 0, see
for instance [193, 211] and the discussion in Section 1.1.3. This is why we are interested in numerically
estimating (6.1) for ε� 1. In this situation, the expectation in (6.1) is dominated by very large values
realized by rare trajectories.

The goal of this chapter is to propose a biasing strategy to reduce the variance of the naive
estimator for (6.1) obtained by running independent samples according to (6.2). We will also need to
discretize in time the SDE (6.2), but we refer the reader to the vast literature on the subject already
discussed in Chapter 4. Before presenting our strategy, we first recall some well-known facts about
optimal control for variance reduction of (6.1).

6.2.2 Optimal tilting on path space

We present the biasing framework used throughout. For this, we first consider a modification (X̃ε
t )t>0

of the diffusion (6.2) given by

dX̃ε
t = b(X̃ε

t ) dt+D(X̃ε
t )∇g(t, X̃ε

t ) dt+
√
εσ(X̃ε

t ) dBt, (6.6)

where g : R+×Rd → R is a smooth function, and D is defined in (6.4). Assuming that the control has
a gradient form is natural since, as shown in Proposition 6.2 below, the optimal control is gradient.
For this, we need the following integration by part formula.

Proposition 6.1. Consider the dynamics (6.2) and (6.6). Then (6.1) rewrites

Aε = eg(0,x)Ex

[
exp

(
1

ε

[
f(X̃ε

T )− g(T, X̃ε
T )
]

+
1

ε

∫ T

0

α(t, X̃ε
t ) dt

)]
, (6.7)

where
α(t, x) = ∂tg(t, x) + Lg(t, x) +

1

2
|σ∇g|2(t, x). (6.8)

The proof relies on the Girsanov theorem and the gradient structure of the drift, and closely follows
the computations in Section 1.4.2 in the context of long time problems.

Proof. First write the Girsanov formula for the path change of measure [262, 362] between the pro-
cesses (Xε

t )t>0 and (X̃ε
t )t>0:

Aε = Ex
[
e

1
ε f(XεT )

]
= Ex

[
e

1
ε f(X̃εT )− 1

2ε

∫ T
0
|σ∇g|2(t,X̃εt ) dt− 1√

ε

∫ T
0
σ∇g(t,X̃εt ) dBt

]
. (6.9)

Write now Itô formula over a trajectory of (X̃ε
t )t>0 using the generator (6.3):

dg(t, X̃ε
t ) =

(
∂tg + Lg +∇g ·D∇g

)
(t, X̃ε

t ) dt+
√
εσ∇g(t, X̃ε

t ) dBt.

Integrating in time and dividing by ε, the above equation becomes

− 1√
ε

∫ T

0

σ∇g(t, X̃ε
t ) dBt = −g(T, X̃ε

T )− g(0, X̃0)

ε
+

1

ε

∫ T

0

(
∂tg + Lg + |σ∇g|2

)
(t, X̃ε

t ) dt.

Inserting the above equation into (6.9) leads to the conclusion.

The idea of Proposition 6.1 is that the Girsanov theorem can be rewritten without martingale term
upon changing the value of the observable f at final time. A direct consequence is the expression of
the optimal bias and the corresponding zero variance estimator.

Proposition 6.2. Define the function ψ : [0, T ]× Rd → R+ as

ψε(t, x) = Et,x
[
e

1
ε f(XεT )

]
, (6.10)

and
gε(t, x) = ε log ψε(t, x). (6.11)

Then, by setting g to gε in (6.6), the estimator (6.7) has zero variance, namely

Aε = ψε(0, x). (6.12)
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In (6.11), Et,x means that the dynamics (6.2) is started at time t from position x. The proof of
Proposition 6.2 is a simple consequence of the Feynman–Kac formula.

Proof. We first note, using the Feynman–Kac formula [259, Theorem 21.1], that ψε is solution to the
following backward PDE (for simplicity we drop the subscript ε for the rest of the proof):{

∂tψ + Lψ = 0

ψ(T, x) = e
1
ε f(x), ∀x ∈ Rd.

(6.13)

Defining g = ε logψ, we see that g satisfies

∂tg = ε
∂tψ

ψ
= ε
−Lψ
ψ

= −εe−g/εLeg/ε = ε
(
− ε−1b · ∇g − e−g/ε

σσT

2
:
(
∇(eg/ε∇g)

))
=
(
− Lg − 1

2
|σ∇g|2

)
.

Using the terminal condition in (6.13) shows that g is solution to ∂tg + Lg +
1

2
|σ∇g|2 = 0

g(T, x) = f(x), ∀x ∈ Rd.
(6.14)

As a result, (6.14) ensures that α(t, x) = 0 in Proposition 6.1. The terminal condition then leads to
the conclusion.

In general, Proposition 6.2 cannot be used as such for numerical applications, since estimating the
optimal control is still more difficult than solving the initial problem of estimating (6.1). However,
this result serves as a guide to design approximate controls that are easier to compute and behave
well in the small ε regime. We explain in the next section how to build such approximate controls
from transition path theory, which is the main contribution of this work.

6.3 Instanton and optimal bias
Since the optimal control gε given by Proposition 6.2 cannot be computed in general, the goal of
this section is to present a method for constructing a good approximation of this function from the
transition path theory [155, 156, 209, 211]. In Section 6.3.1, we propose a natural position-independent
drift built on the instanton of the system, that is a low temperature reaction path. We show in
particular that in the small noise limit our estimator has a finite variance, whereas a naive estimator
has (or a general approximation of gε may have) a variance which increases exponentially with ε−1. We
then propose in Section 6.3.2 a second order approximation, which adds an inhomogeneous harmonic
force to the control. Finally, in Section 6.3.3 we show that this procedure actually boils down to a
Taylor expansion in

√
ε of the optimal drift gε around the instanton, and show that an approximation

of any order can be computed with this strategy.
In this section, we assume for convenience that the noise is additive, that is σ ∈ Rd×d is constant

and so the diffusion matrix (6.4) is constant, although this can be generalized to situations where σ
is position-dependent. We may also assume that b, σ and f depend explicitely on time upon minor
modifications.

6.3.1 First order control
If the control gε is difficult to estimate in practice, we can in general have access to an instanton, or
reaction path, which stands for the zero temperature most likely path of fluctuation for the dynamics.
This has been explained in Section 1.1.3, and we recall here some elements concerning instantons [211].

Considering (6.1) in the limit ε→ 0, we know that Aε obeys the following scaling

Aε � exp

(
ε−1f(φT )− 1

2ε
−1

∫ T

0

θs ·Dθs ds

)
(6.15)
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where � denotes logarithmic equivalence, and (φt, θt)t∈[0,T ] solves the forward-backward system{
φ̇t = b(φt) +Dθt, φ0 = x,

θ̇t = −(∇b)(φt) · θt, θT = ∇f(φT ).
(6.16)

The reaction path (φt)t∈[0,T ] corresponds to a typical path realizing fluctuations in (6.1). In the small
noise limit, we know by the Freidlin–Wentzell theory [193, Section 3] that the trajectories of (Xε

t )t∈[0,T ]

dominating the expectation (6.1) concentrate exponential fast on this path for the uniform convergence
norm under mild conditions, and we refer to the discussion in Sections 1.1.3 and 1.3.2 for more details.

When such a reaction path is known, it is natural to consider the biased dynamics

dX̃ε
t = b(X̃ε

t ) dt+Dθt dt+
√
εσ dBt, (6.17)

which corresponds to the dynamics (6.6) with the choice

g(t, x) = θt · (x− φt), (6.18)

in place of the optimal control gε defined in (6.11). This dynamics is natural because, in the small ε
limit, (X̃ε

t )t∈[0,T ] satisfies the following expansion:

X̃ε
t = φt +

√
εζt + O(ε), (6.19)

where
dζt = ∇b(φt)ζtdt+ σdBt. (6.20)

This can be checked by directly expanding (X̃ε
t )t∈[0,T ] around the instanton (φt)t∈[0,T ] in (6.17), and

studied rigorously with the tools from [193, Section 2.2]. This means that, in the small temperature
regime, (X̃ε

t )t∈[0,T ] follows the path (φt)t∈[0,T ] perturbed by an inhomogeneous Ornstein–Uhlenbeck
process at scale

√
ε.

Using such a control, (6.1) can be estimated with Proposition 6.1. The weighting coefficient reads

α(t, x) =
|σθt|2

2
+ θt ·

(
b(x)− φ̇t

)
+ θ̇t · (x− φt),

which may be rewritten thanks to (6.16) as

α(t, x) = −|σθt|
2

2
+ θt ·

(
b(x)− b(φt)

)
+ θ̇t · (x− φt). (6.21)

We can then consider the small ε scaling of the estimator (6.7) for such a choice of control g.
Inserting the expansion (6.19) into (6.21) we obtain

ε−1α(t, X̃ε
t ) = −|σθt|

2

2ε
+ ε−

1
2∇b(φt)θt · ζt + ε−

1
2 θ̇t · ζt + O(1)

= − 1

2ε
|σθt|2 + O(1),

(6.22)

where we used the equations (6.16) to obtain the second line. Finally from (6.16) and (6.18) we have
(using the boundary condition at t = T in (6.16))

ε−1g(T, X̃ε
T ) = ε−1/2θT · ζT + O(1) = ε−1/2∇f(φT ) · ζT + O(1), (6.23)

and
ε−1f(X̃ε

T ) = ε−1f(φT ) + ε−1/2∇f(φT ) · ζT + O(1), (6.24)

so that it holds ε−1(f(X̃ε
T )− g(T, X̃ε

T )) = ε−1f(φT ) + O(1). Therefore (6.7) becomes, in the small ε
regime,

Aε = exp

(
ε−1f(φT )− 1

2
ε−1

∫ T

0

θt ·Dθtdt

)
E
[

exp
(
O(1)

)]
. (6.25)

This expression is consistent with (6.15), and this shows that the estimator has a finite variance
in the low noise regime. As a conclusion, the pseudo-potential g defined in (6.18) is a good guess
to try to reduce the variance of (6.1). Before showing that g is an approximation of the optimal
pseudo-potential gε, it is natural to turn to the next order approximation.
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6.3.2 Second order control
The method described above can actually be extended using a higher order ansatz. For this, we come
back to the dynamics (6.6) for an abstract function g. From the expansion in (6.19), we expect the
trajectory (X̃ε

t )t∈[0,T ] to concentrate on the path (φt)t∈[0,T ] up to a
√
ε-Ornstein–Uhlenbeck process.

If we expand ∇g correspondingly, we expect the extra drift to take the form

∇g(t, X̃ε
t ) = ∇g(t, φt + X̃ε

t − φt) = ∇g(t, φt) +∇2g(t, φt) · (X̃ε
t − φt) + O(ε). (6.26)

Moreover, from Section 6.2.2 (in particular Proposition 6.2) we would like g to approximate the
solution to the Hamilton–Jacobi equation

∂tg + Lg +
1

2
|σ∇g|2 = 0, g(T, x) = f(x),

as ε→ 0. Since L = b · ∇+ εD : ∇2/2, we may approximate the latter equation by

∂tg + b · ∇g +
1

2
|σ∇g|2 = 0, g(T, x) = f(x). (6.27)

One can check that the instanton defined in (6.16) corresponds to the choice g(t, x) = θ(t) · (x − φt)
where (φ, θ) is such that g solves (6.27), see [211]. However, in this case, it holds ∇2g = 0 so there
is no improvement in considering the expansion (6.26). This naturally suggests to consider instead a
quadratic ansatz for g

g(t, x) = θt · (x− φt) +
1

2

(
x− φt) ·Kt(x− φt), (6.28)

where Kt ∈ Rd×d is a time dependent matrix to be determined. For this, let us compute the equation
satisfied by ∇2g from (6.27), which rewrites componentwise

∂tg + bk∂kg +
1

2
Djk∂jg∂kg = 0,

where we used Einstein’s notation for summation over repeated indices. Taking the derivative with
respect to an index i ∈ {1, . . . , d} leads to

∂t∂ig + ∂ibk∂kg + bk∂
2
ikg +Djk∂jg∂

2
ikg = 0,

where we used the symmetry of the matrix D ∈ Rd×d. Taking then the derivative with respect to
another index l ∈ {1, . . . , d} shows that

∂t∂
2
ilg + ∂2

ilbk∂kg + ∂ibk∂
2
klg + ∂lbk∂

2
ikg + bk∂

3
iklg +Djk∂

2
jlg∂

2
ikg +Djk∂jg∂

3
iklg = 0. (6.29)

The above equation becomes, in vectorial form,

∂t∇2g +∇2b · ∇g + (∇b)T∇2g +∇2g∇b+ (∇2g)TD∇2g + b∇3g + (∇3g)TD∇g = 0, (6.30)

where the equation is evaluated at (t, x). Note that ∇2b is a third order tensor whose contraction with
the vector ∇g is defined by (6.29). From (6.6) and (6.26), we want to find a time-dependent evolution
equation for ∇2g(t, φt). We therefore compute

d

dt
∇2g(t, φ(t)) = ∂t∇2g + φ̇(t) · ∇3g

=− (∇2b)T∇g − (∇b)T∇2g −∇2g∇b− (∇2g)TD∇2g

− b∇3g − (∇3g)TD∇g + φ̇∇3g,

(6.31)

where the right hand side is evaluated at (t, φt). Considering the ansatz given by (6.28), we have
∇g(t, φt) = θt, ∇2g(t, φt) = Kt and ∇3g(t, φt) = 0, so (6.31) provides the following equation for K:{

∂tKt + (∇b)TKt +Kt∇b+ (∇2b)Tθt +KT
t DKt = 0,

KT = ∇2f(φT ),
(6.32)

where ∇b and ∇2b are evaluated at φt. This is an instance of an algebraic Riccati equation [283],
which is an interesting feature compared to the more standard instanton result of Section 6.3.1.
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Indeed, in addition to simply guiding the dynamics along the path (φt)t∈[0,T ] through a position-
independent drift like in (6.17), an additional harmonic force drives the system back to the instanton.
The coefficients of this harmonic force are given by the matrix (Kt)t∈[0,T ] solution to (6.32), which can
be thought of as the next order expansion of the instanton in the setting presented in Section 1.1.3.
In particular, these coefficients are unsigned, see the applications in Section 6.4. Note that Ricatti
equations recurrently appear in optimal control theory [257], so it is no suprise to encounter such an
equation in our approximation procedure.

Finally, the dynamics (X̃ε
t )t∈[0,T ] corresponding to the second order ansatz for g reads

dX̃ε
t = b(X̃ε

t ) dt+
(
Dθt +DKt(X̃

ε
t − φt)

)
dt+

√
εσ dBt. (6.33)

Although (6.32) may seem long to compute, we recall that this is an offline computation, and once φt
has been computed, (6.32) is an ordinary differential equation in Rd×d. Next, once K has been
estimated, there is small additional cost in running (6.33) compared to (6.2), the overhead being that
of computing a linear force with known coefficients. However, since (6.32) is nonlinear, singularities
may appear in finite time, and we assume throughout that the various parameters of the model allow
to define its solution, see [283]. Finally, since X̃ε

t − φt is of order
√
ε, the second correction term

in (6.33) is also of order
√
ε.

6.3.3 Consistency with optimal control
From the expansions performed in Sections 6.3.1 and 6.3.2, we can expect to build an approximation
of order M ∈ N∗ through

gM (t, x) =

M∑
k=1

Tk(t)�
(
x− φt

)⊗k
, (6.34)

where ⊗k stands for the kth order tensorization of a d-dimensional vector, � the kth order contraction
and, for each k > 1,

(
Tk(t)

)
t∈[0,T ]

is a time dependent kth order tensor. A natural question is to
describe the limiting object

g∞(t, x) =

+∞∑
k=1

Tk(t)�
(
x− φt

)⊗k
,

provided by the large M limit. Since this approximation solves the zero-ε Hamilton–Jacobi equa-
tion (6.27), and X̃ε

t − φt is typically of order
√
ε along a tilted trajectory, we expect g∞ to be the

expansion of the optimal drift gε defined in (6.11) in powers of
√
ε. In other words, we can interpret

the approximations g defined in Sections 6.3.1 and 6.3.2 as the first terms of an expansion of gε in
powers of

√
ε around the instanton. This idea is made more precise by the following proposition,

which concerns the second order expansion, namely k = 2.

Proposition 6.3. Consider the drift gε defined in (6.11), and the second order approximation

g(t, x) = θt · (x− φt) +
1

2
(x− φt) ·Kt(x− φt), (6.35)

where (φt, θt)t∈[0,T ] is defined in (6.16) and (Kt)t∈[0,T ] satisfies (6.32). Then, in the small ε limit, for
any t ∈ [0, T ] and x ∈ Rd, it holds

gε(t, x) = f(φT )−
∫ T

t

θs ·Dθs ds+ g(t, x) + O
(
ε3/2

)
. (6.36)

Proposition 6.3 is a consistency result for the approximations built in Sections 6.3.1 and 6.3.2.
Indeed, the first part of (6.36) is simply the action functional appearing in (6.15) truncated over [t, T ].
Since it does not depend on the position, it does not influence the drift ∇g. With the notation of
the expansion (6.34), Proposition 6.3 actually reads T1 = θ and T2 = K. This result does not seem
standard in the literature [193, 211], and it is an interesting question to find a general structure for
the higher order terms of the expansion. In particular, as noted in Section 6.3.2, it is somehow natural
for K to solve a Ricatti equation since it corresponds to a linearization of the control force [257]. We
may wonder if there is a particular structure for the higher order tensors Tk arising in the decompo-
sition (6.34).

The proof displaid below clearly shows that such a higher order expansion can be performed for-
mally, leading to an expression like (6.36) with a smaller remainder. However, proving mathematically
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this result (by using techniques as those described in Section 1.1.3) may be difficult, the first task
being to find a general expression for the tensors Tk defined in (6.34).

Proof. The idea is to rewrite the Feynman–Kac mode ψε defined in (6.10) with Proposition 6.1 in
order to exhibit the leading behaviour. Consider the dynamics (X̃ε

t )t∈[0,T ] defined in (6.6) with g
given by (6.35). Adapting Proposition 6.1 starting from any t > 0 we have

ψε(t, x) =Et,x
[
e

1
ε (f(X̃εT )−g(T,X̃εT )+g(t,X̃εt ))+ 1

ε

∫ T
t
α(s,X̃s) ds

]
=e

g(t,x)
ε Et,x

[
e

1
ε (f(X̃εT )−g(T,X̃εT ))+ 1

ε

∫ T
t
α(s,X̃s) ds

]
,

(6.37)

where the function α is defined in (6.8). We now perform an expansion inside (6.37) like that of Sec-
tion 6.3.1 but with an additional order of accuracy in ε and starting from an arbitrary position. First,
when g is the second order potential (6.35), the process (X̃ε

t )t∈[0,T ] admits the following expansion:

X̃ε
t = φt +

√
εζt + εβt + O

(
ε3/2

)
, (6.38)

where  dζt = (∇b(φt) +Kt) dt+ σ dBt,

dβt =
(
∇b(φt)βt +

1

2
ζt · ∇2b(φt)ζt +Ktβt

)
dt.

This follows by expanding (X̃ε
t )t∈[0,T ] around the path (φt)t∈[0,T ] and identifying the terms of different

orders in ε. Note that we will actually not need the precise expression for the processes (ζt)t∈[0,T ]

and (βt)t∈[0,T ] in what follows.
We first consider the terminal terms in (6.37). Using (6.38), we obtain

f(X̃ε
T ) = f(φT ) +

√
ε∇f(φT ) · ζT + ε

[
∇f(φT ) · βT +

1

2
ζT · ∇2f(φT )ζT

]
+ O

(
ε3/2

)
g(T, X̃ε

T ) =
√
εθT · ζT + ε

[
θT · βT +

1

2
ζT ·KT ζT

]
+ O

(
ε3/2

)
.

The terminal conditions for θ and K lead to

f(X̃ε
T )− g(T, X̃ε

T ) = f(φT ) + O
(
ε3/2

)
. (6.39)

It remains to study the integral term in (6.37). For this, we follow the computations leading to (6.22)
but going one order further in ε, and still neglecting the term of order ε in the generator L. This leads
to

α(t, X̃ε
t ) = ∂tg(t, X̃ε

t ) + b(X̃ε
t ) · ∇g(t, X̃ε

t ) +
1

2
|σθ|2. (6.40)

It then holds (we omit the dependency of φ, θ and K on time for conciseness)

∂tg(t, x) = θ̇ · (x− φ)− θ · φ̇+
1

2
(x− φ) · K̇(x− φ)− (x− φ) ·Kφ̇

∇g(t, x) = θ +K(x− φ).

As a result, (6.40) reads

α(t, X̃ε
t ) = θ̇ · (X̃ε

t − φ)− θφ̇+
1

2
(X̃ε

t − φ) · K̇(X̃ε
t − φ)− 1

2
(X̃ε

t − φ) ·Kφ̇− 1

2
(X̃ε

t − φ) ·KTφ̇

+ b(X̃ε
t ) ·

(
θ +K(X̃ε

t − φ)
)

+
1

2

∣∣σ(θ +K(X̃ε
t − φ)

)∣∣2,
which may be reorganized as follows (using (6.16) for the time derivatives of φ and θ):

α(t, X̃ε
t ) = − |σθ|2 +

1

2
|σθ|2 +

1

2
θ ·DK(X̃ε

t − φ) +
1

2
θ ·DKT(X̃ε

t − φ) +
1

2

∣∣σK(X̃ε
t − φ)

∣∣2 + θ
(
b(X̃ε

t )− b(φ)
)

− θ · ∇b(φ)(X̃ε
t − φ) +

1

2
(X̃ε

t − φ) · K̇(X̃ε
t − φ) +

1

2

(
b(X̃ε

t )− b(φ)
)
·K(X̃ε

t − φ)

+
1

2
(X̃ε

t − φ) ·KT
(
b(X̃ε

t )− b(φ)
)
− 1

2
θ ·DK(X̃ε

t − φ)− 1

2
θ ·DKT(X̃ε

t − φ)

= − 1

2
|σθ|2 +

1

2

∣∣σK(X̃ε
t − φ)

∣∣2 + θ
(
b(X̃ε

t )− b(φ)
)
− θ · ∇b(φ)(X̃ε

t − φ)

+
1

2
(X̃ε

t − φ) · K̇(X̃ε
t − φ) +

1

2

(
b(X̃ε

t )− b(φ)
)
·K(X̃ε

t − φ) +
1

2
(X̃ε

t − φ) ·KT
(
b(X̃ε

t )− b(φ)
)
.
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Inserting the expansion (6.38) in the above equation leads to

α(t, X̃ε
t ) = − 1

2
|σθ|2 +

ε

2
|σζtK|2 +

√
εθ · ∇b(φ)ζt + εθ · ∇b(φ)βt +

ε

2
ζt · θ∇2b(φ)ζt

− θ · ∇b(φ)(
√
εζt + εβt) +

ε

2
ζt · K̇ζt +

1

2
εζt · ∇b(φ)Kζt +

1

2
εζt ·KT∇b(φ)ζt.

Now, we may identify the terms of various orders in
√
ε in the above equation. At leading order it

remains −|σθ|2/2, which was expected. At order
√
ε, the terms are

θ · ∇b(φ)ζt − θ · ∇b(φ)ζt = 0.

We now turn to the terms of order ε, which read

1

2
ζt ·KDKζt+θ ·∇b(φ)βt−θ ·∇b(φ)βt+

1

2
ζt ·K̇ζt+

1

2
ζt ·θ∇2b(φ)ζt+

1

2
ζt ·KT∇b(φ)ζt+

1

2
ζt ·∇b(φ)TKζt.

We see that the terms proportional to βt cancel, while the quadratric product in ζt factors out, so it
remains:

K̇ +KDK +KT∇b(φ) +∇bT(φ)K + θ∇2b(φ),

which is equal to 0 since K is solution to (6.32). Gathering the results show that (6.40) reads in the
small ε limit

α(t, X̃ε
t ) = −1

2
|σθt|2 + O

(
ε3/2

)
.

Plugging the above estimate together with (6.39) into (6.37), we obtain

ψε(t, x) = e
g(t,x)
ε Et,x

[
e

1
ε

(
f(φT )− 1

2

∫ T
t
|σθs|2 ds+O(ε3/2)

)
.

]
As a result, the optimal control (6.11) admits the following expansion

gε(t, x) = g(t, x) + f(φT )− 1

2

∫ T

t

|σθs|2 ds+ O
(
ε3/2

)
,

in the small ε regime, where g is defined in (6.35). This concludes the proof of Proposition 6.3.

6.4 Numerical applications
We start with the simple situation in dimension one where the drift is given by b = −∇V with
V (x) = |x|2/2 and σ(x) = 1. In particular, when f(x) = x we know that the optimal drift is actually
equal to θs. This has two consequences. First, this means that the first order approximation described
in Section 6.3.1 actually provides the zero variance estimator of Proposition 6.2. We should therefore
obtain an estimator with variance close to zero. Then, the second order term should not be of any
help, so the matrix K defined in Section 6.3.2 should be zero. For the numerical simulations, we
consider T = 2, ∆t = 0.005, N = 5000 realizations of the dynamics, and x = −1 for the initial
condition. The instanton φ, its momentum θ and the matrix K are computed offline. In Figure 6.1,
we plot φ, θ, K together with realizations of the unbiased process, and the processes with first and
second order corrections. We note in particular that the matrix K indeed vanishes, showing that the
first order control is the optimal one. In Table 6.1, we present the value estimated by the different
estimators with the corresponding relative error (empirical standard deviation over empirical average).
We see that the naive estimator becomes very ineffective in the low temperature regime, while the
other two produces near zero variance estimators. The remaining variance is actually due to the time
discretization of the Girsanov weights.

We consider next the double well potential defined by

V (x) =
(x2 − 1)2

4
, (6.41)

and leave the other parameters unchanged. Since the process starts from the left well, a typical
fluctuation leading to high values of (6.1) corresponds to a trajectory crossing to the right well. We
plot the various quantities of interesting in Figure 6.2. We observe now that the matrixK is non-trivial,
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Figure 6.1 – Instanton and control matrix with examples of realizations for the free dynamics and
those with first and second order controls, for ε = 0.05.

Estimator-relative error / ε Naive estimator First order Second order
1 1.127 – 0.83 1.117 – 10−15 1.117 – 10−15

0.5 1.26 – 1.2 1.248 – 10−15 1.1248 – 10−15

0.1 2.98 – 9.2 3.025 – 10−15 3.025 – 10−15

0.005 7.25 – 12.1 9.15 – 10−14 9.15 – 10−14

Table 6.1 – Estimated values of the free energy (6.1) at various temperatures for the different estima-
tors, together with relative error, in the case of a quadratic potential.
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Figure 6.2 – Instanton and control matrix for ε = 0.05.

and even becomes negative. Thus the harmonic force corresponding to the second order correction
becomes repulsive from the instanton at some moments. Table 6.2 shows that the naive estimator
rapidly becomes irrelevant, while the controlled dynamics behave very well at small temperatures.
In particular, the second order correction substantially reduces the relative error as ε → 0, but
deteriorates the quality of the estimator when ε is of order one.
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Estimator-relative error / ε Naive estimator First order Second order
1 0.925 – 1.05 0.950 – 1.254 0.745 – 2.62
0.5 0.747 – 2.6 0.72 – 1.52 0.691 – 5.85
0.1 0.0055 – 38 0.231 – 1.25 0.237 – 1.34
0.05 1.2× 10−7 – 18 0.103 – 1.5 0.102 – 0.51
0.01 10−39 – 32 1.96× 10−4 – 1.26 1.97× 10−4 – 0.17

Table 6.2 – Estimated values of the free energy (6.1) at various temperatures for the different estima-
tors, together with relative error, in the case of the quartic potential (6.41).

As motivated in Section 1.1, we are also interested in nonequilibrium dynamics. We thus turn
to a two-dimensional example, which means in particular that K ∈ R2×2, and consider for this the
potential

V (x, y) =
1

4
(x2 − 1)2 +

y2

2
,

and the nonequilibrium drift

b(x, y) = −∇V (x, y) + C

(
x
y

)
with C =

(
0 1
−1 0

)
. (6.42)

The observable is set to f(x, y) = x + y and the process is started from (x0, y0) = (−1,−1). In
Figure 6.3, we present the three types of trajectories and the instanton φ. Interestingly, the unbiased
trajectory remains trapped close to the bottom of one well of V , which is due to the nonequilibrium
forcing. The biased trajectory escapes from this well by performing a kind of loop in the direction
of the non-gradient drift. Figure 6.4 shows the evolution of the various components of φ, θ and K
with time. We see that K has non-zero outer diagonal terms, and that some coefficients also become
negative at some point. Table 6.3 presents the results at various temperatures, leading to the same
conclusion as the one dimensional example. This proves that our method is suitable for variance
reduction of nonequilibrium systems.

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5

y

x

No control
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φ

Figure 6.3 – Trajectories with the instanton φ for ε = 10−2.

6.5 Conclusion

Free energies are difficult to compute in practice due to the high variance of naive estimators in the
small temperature regime. In particular, the expectation (6.1) is typically dominated by very large
values taken over rare trajectories. One way to improve the standard Monte Carlo estimator based
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Figure 6.4 – Study of the instanton’s coefficients for the two-dimensional dynamics defined by the
drift (6.42). Left: values of the instanton and momentum. Right: values of the coefficients of the
matrix K (by symmetry it holds K21 = K12).

Estimator-relative error / ε Naive estimator First order Second order
0.1 307 – 20 1077 – 0.54 1058 – 0.61
0.05 9.18× 104 – 50 1.186× 106 – 0.66 1.187× 106 – 0.50
0.025 3.15× 106 – 48 1.475× 1012 – 0.61 1.474× 1012 – 0.43
0.01 4.71× 1011 – 50 2.81× 1030 – 0.47 2.82× 1030 – 0.20
0.005 2.50× 1016 – 70 8.62× 1060 – 0.44 8.61× 1060 – 0.15

Table 6.3 – Estimated values of the free energy (6.1) at various temperatures for the different estima-
tors, together with relative error, for the two dimensional drift (6.42).

on drawing independent trajectories is to estimate the optimal bias which leads to a zero variance
estimator. However, one is not ensured that any such estimator of the optimal control indeed reduces
the variance in practice.

We have shown in this chapter that it is possible, thanks to the transition path theory, to construct
approximate controls that behave well in the small temperature regime. Since this is the regime we
are interested in, this is a nice feature of the approximation we build. Applications to (possibly
nonequilibrium) low dimensional systems prove the capacity of the method to reduce the variance
in this regime, even for nonequilibrium systems. The second order approximation provides better
results when the temperature becomes smaller and smaller. Interestingly, we show formally that the
polynomial terms of our approximate control correspond to an expansion of the optimal control around
the instanton. Providing a mathematical proof of these computations is an interesting challenge.
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Coulomb gases and random matrices





CHAPTER 7
SAMPLING COULOMB GASES WITH HAMILTONIAN MONTE

CARLO

The material for this chapter has been published in the Journal of Statistical Physics [82].
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Abstract. Coulomb and log-gases are exchangeable singular Boltzmann–Gibbs measures appear-
ing in mathematical physics at many places. They are also related to random matrix theory, as
motivated in Chapter 1.1.4. We explore experimentally an efficient numerical method for simulating
such gases. It is an instance of the Hybrid or Hamiltonian Monte Carlo algorithm, in other words a
Metropolis–Hastings algorithm with proposals produced by a kinetic or underdamped Langevin dy-
namics. This algorithm has excellent numerical behavior despite the singular interaction, in particular
when the number of particles gets large. It is more efficient than the well known overdamped version
previously used for such problems, and allows new numerical explorations. It suggests for instance to
conjecture a universality of the Gumbel fluctuation at the edge of beta Ginibre ensembles for all beta.

7.1 Presentation

We explore the numerical simulation of Coulomb gases and log-gases by mean of Hybrid or Hamiltonian
Monte Carlo algorithms (HMC) [142, 245]. Such algorithms consist basically in using a discretization of
the (underdamped) Langevin dynamics, presented in Section 1.1, to produce proposals for Metropolis–
Hastings algorithms. This can be viewed as a way to add momentum to a Monte Carlo interacting
particle system. The basic outcome of this exploratory work is that HMC algorithms have remarkably
good numerical behavior for such gases despite the singularity of the interactions. Such algorithms
scale well with the dimension of the system, see [37, 63]. They are therefore more efficient than the
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tamed overdamped version already explored in the literature for instance in [311]. In this paper, we
benchmark the capability of the algorithm to reproduce known results efficiently, and we make it
ready to explore new conjectures.

Another advantage of this approach is that it can be adapted to take into account a sub-manifold
constraint [302]. We use this technique to simulate constrained gases in Chapter 8. We will illustrate
this technique to study numerically the behaviour of the spectrum of random matrices with prescribed
trace or determinant, which is difficult to achieve by direct sampling of matrices.

For the sake of completeness, we should mention that there are remarkable alternative simulation
algorithms which are not based on a diffusion process, such as the ones based on piecewise deterministic
Markov processes (PDMP), see for instance [260] and [415].

7.1.1 Boltzmann–Gibbs measures
We are interested in interacting particle systems subject to an external field and experiencing singular
pair interactions. In order to encompass Coulomb gases as well as log-gases from random matrix
theory (see the motivation in Section 1.1.4), we introduce a vector subspace X of dimension d of Rn,
with n > 2 and n > d > 1. The particles belong to X , and Rn is understood as a physical ambient
space. We equip X with the trace of the Lebesgue measure of Rn, denoted by dx. The external
field and the pair interaction are respectively denoted by V : X 7→ R and K : X 7→ (−∞,+∞], and
belong to C2(X ) functions, with K(x) <∞ for all x 6= 0. For any N > 2, we consider the probability
measure PN on XN = X × · · · × X defined by

PN (dx) =
e−βNHN (x1,...,xN )

ZN
dx1 · · · dxN , (7.1)

where βN > 0 is a parameter,

ZN =

∫
XN

e−βNHN (x1,...,xN )dx1 · · · dxN

is the normalizing factor, and

HN (x1, . . . , xN ) =
1

N

N∑
i=1

V (xi) +
1

2N2

∑
i6=j

K(xi − xj)

is usually called energy or Hamiltonian of the system1. We assume that βN , V , and K are chosen
in such a way that ZN < ∞ for any N . The law PN is invariant by permutation of the coordinates
x1, . . . , xN (exchangeable), and HN depends only on the empirical measure

µN =
1

N

N∑
i=1

δxi .

Therefore PN is also the law of a random empirical measure encoding a cloud of indistinguishable
particles x1, . . . , xN . We emphasize that the particles live on the space XN = X × · · · × X of dimen-
sion dN . The parameter n serves as the physical dimension of the ambient space, for the Coulomb
gas setting described next.

For any m > 1 and x ∈ Rm, we denote by |x| =
√
x2

1 + · · ·+ x2
m the Euclidean norm of x. This

matches the absolute value when m = 1 and the modulus when m = 2, R2 ≡ C.

7.1.1.1 Coulomb gases

The notion of Coulomb gas is based on elementary electrostatics. Here the vector subspace X is
interpreted as a conductor. It corresponds to taking K = g where g is the Coulomb kernel or Green
function in the physical space Rn. More precisely, recall that the Green function g in Rn, n > 2, is
defined for all x ∈ Rn, x 6= 0, by

g(x) =

{
log 1
|x| if n = 2,

1
|x|n−2 if n > 3.

1Note however that this is not the Hamiltonian of the Langevin dynamics described in Section 1.1, since there is no
momentum here.
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This function is the fundamental solution of the Poisson equation, namely, denoting by ∆ the Laplace
operator in Rn and by δ0 the Dirac mass at 0, we have, in the sense of distributions,

−∆g = cδ0, with c =

{
2π if n = 2,

(n− 2)|Sn−1| = n(n−2)πn/2

Γ(1+n/2) if n > 3.

The physical interpretation in terms of electrostatics is as follows: HN (x1, . . . , xN ) is the electrostatic
energy of a configuration of N electrons in Rn lying on X at positions x1, . . . , xN , in an external field
given by the potential V . The Green function or Coulomb kernel g expresses the Coulomb repulsion
which is a two body singular interaction. The probability measure PN can be seen as a Boltzmann–
Gibbs measure, βN playing the role of an inverse temperature. The probability measure PN is known
as a Coulomb gas or as a one-component plasma, see for instance [387] and references therein.

7.1.1.2 Log-gases

A log-gas corresponds to choosing d = n and a logarithmic interaction K whatever the value of n is,
namely

K(x) = log
1

|x|
= −1

2
log(x2

1 + · · ·+ x2
d), x ∈ S.

Coulomb gases and log-gases coincide when d = n = 2. In dimension d = n > 3, log-gases are natural
and classical objects of approximation theory and can be seen as limiting Riesz potentials, namely
limα→0

1
α (|x|−α − 1), see for instance [391, 390, 387].

7.1.2 Static energy and equilibrium measures

Under natural assumptions over V and K, typically when βN � N and V beats K at infinity, it
is well known, see for instance [84, 386] and references therein, that PN almost surely, the empirical
measure

µN =
1

N

N∑
i=1

δxi

tends as N →∞ to a non random probability measure, the equilibrium measure

µ? = arg inf E .

The measure µ? is the unique minimizer of the strictly convex lower semi-continuous “energy” E defined
by

µ 7→ E(µ) =

∫
X
V dµ+

∫∫
X×X

K(x− y)µ(dx)µ(dy).

This concentration phenomenon is described in more details in Section 1.3.3. When K = g is the
Coulomb kernel, the quantity E(µ) is the electrostatic energy of the distribution of charges µ, formed
by the sum of the electrostatic potential coming from the external electric field V with the Coulomb
self repulsion by mean of the Coulomb kernel g. Note that E(µ) = ∞ if µ has a Dirac mass due
to the singularity of g. An Euler–Lagrange variational analysis reveals that when X = Rd and V is
smooth, convex, and grows faster than g at infinity then the equilibrium probability measure µ? is
compactly supported and has density proportional to ∆V , see [84] and references therein. Table 7.1
gives examples of equilibrium measures in this Coulomb setting. We refer to [284, 237, 380, 386, 387]
for old and new potential theory from this analytic point of view. Moreover, quite a few equilibrium
measures are known for log-gases beyond Coulomb gases, see for instance [87].

Actually it can be shown that essentially if βN � N and V beats g at infinity then under (PN )N
the sequence of random empirical measures (µN )N satisfies a large deviation principle with speed βN
and good rate function E , see [84, 196, 32]. This will be used in Chapter 8. Concentration of measure
inequalities are also available, see [85] and references therein.

7.1.3 Two remarkable gases from random matrix theory

Let us give a couple of famous gases from random matrix theory that will serve as benchmark for our
algorithm. They correspond to n = 2 because the Lebesgue measure on a matrix translates via the
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d X n V µ? Nickname
1 R 2 ∞1intervalc arcsine
1 R 2 x2 semicircle GUE
2 R2 2 |x|2 uniform on a disc Ginibre

d > 3 Rd d |x|2 uniform on a ball
d > 3 Rd d radial radial in a ring

Table 7.1 – Examples of equilibrium measures for Coulomb gases, see [380, 84].

Jacobian of the change of variable to a Vandermonde determinant on the eigenvalues, giving rise to
the two-dimensional Coulomb kernel inside the exponential via the identity

∏
i<j

|xi − xj | = exp

∑
i<j

log |xi − xj |

 .

Hence the name “log-gases”. A good reference on this subject is [188] and we refer to [162, 145, 188,
189, 254] for more examples of Coulomb gases related to random matrix models. Coulomb gases
remain interesting in any dimension n beyond random matrices, see [386, 387].

7.1.3.1 Beta-Hermite model

This model corresponds to

d = 1, n = 2, X = R, V (x) =
x2

2β
, K(x) = − log |·|, βN = N2β, β ∈ (0,∞).

This means that the particles evolve on the line R with Coulomb interactions given by the Coulomb
kernel in R2. For β = 2, it becomes the famous Gaussian Unitary Ensemble (GUE), which is the
distribution of the eigenvalues of random N × N Hermitian matrices distributed according to the
Gaussian probability measure with density proportional to H 7→ e−NTr(H2). Beyond the case β = 2,
the cases β = 1 and β = 4 correspond respectively to Gaussian random matrices with real and
quaternionic entries. Following [145], for all β ∈ (0,∞), the measure PN is also the distribution of
the eigenvalues of special random N × N Hermitian tridiagonal matrices with independent but non
identically distributed entries. Back to the case β = 2, the law PN writes

(x1, . . . , xN ) ∈ RN 7→ e−
N
2

∑N
i=1 x

2
i

∏
i<j

(xi − xj)2. (7.2)

In this case, the Coulomb gas PN has a determinantal structure, making it integrable or exactly
solvable for any N > 2, see [327, 188]. This provides in particular a formula for the density of the
mean empirical spectral distribution EµN under PN , namely

x ∈ R 7→ e−
N
2 x

2

√
2πN

N−1∑
`=0

H2
`

(√
Nx
)
, (7.3)

where (H`)`>0 are the Hermite polynomials which are the orthonormal polynomials for the standard
Gaussian distribution N (0, 1). The equilibrium measure µ? in this case is the Wigner semicircle
distribution with the following density with respect to the Lebesgue measure:

x ∈ R 7→
√

4− x2

2π
1x∈[−2,2]. (7.4)

A plot of µ? and EµN is provided in Figure 7.1, together with our simulations. We refer to [290] for
a direct proof of convergence of (7.3) to (7.4) as N → ∞. Beyond the case β = 2, the equilibrium
measure µ? is still a Wigner semicircle distribution, scaled by β, supported by the interval [−β, β],
but up to our knowledge we do not have a formula for the mean empirical spectral distribution EµN ,
except when β is an even integer, see [145].
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7.1.3.2 Beta-Ginibre model

This model corresponds to

d = 2, n = 2, X = R2, V (x) =
|x|2

β
, K(x) = − log |x|, βN = N2β, β ∈ (0,∞).

In this case, the particles move in R2 with a Coulomb repulsion of dimension 2 – it is therefore a
Coulomb gas. As for the GUE, the law PN can be written as

(x1, . . . , xN ) ∈ (R2)N 7→ e−N
∑N
i=1 |xi|

2 ∏
i<j

|xi − xj |β . (7.5)

When β = m for an even integer m ∈ {2, 4, . . .}, the law of this gas matches the Laughlin
wavefunction modeling the fractional quantum Hall effect (FQHE), see for instance [175].

For β = 2, this gas, known as the complex Ginibre Ensemble, matches the distribution of the
eigenvalues of random N × N complex matrices distributed according to the Gaussian probability
measure with density proportional to M 7→ e−NTr(MM∗) where M∗ = M

>
. In this case PN has a

determinantal structure, see [327, 188]. This provides a formula for the density of the mean empirical
spectral distribution EµN under PN , namely

x ∈ R2 7→ e−N |x|
2

π

N−1∑
`=0

∣∣√Nx∣∣2`
`!

, (7.6)

which is the analogue of (7.3) for the Gaussian Unitary Ensemble. Moreover, if Y1, . . . , YN are inde-
pendent and identically distributed Poisson random variables of mean |x|2 for some x ∈ R2, then (7.6)
writes

x ∈ R2 7→ 1

π
P
(
Y1 + · · ·+ YN

N
< 1

)
.

As N → ∞, by the law of large numbers, it converges to 1/π if |x| < 1 and to 0 if |x| > 1, while by
the central limit theorem it converges to 1/(2π) if |x| = 1. It follows that EµN converges weakly as
N →∞ to the uniform distribution on the disk, with density

x ∈ R2 7→
1|x|<1

π
, (7.7)

which is the equilibrium measure µ?. When N is finite, the numerical evaluation of (7.6) is better
done by mean of the Gamma law. Namely, by induction and integration by parts, (7.6) writes

x ∈ R2 7→ 1

π(N − 1)!

∫ ∞
N |x|2

uN−1e−udu =
Γ(N,N |x|2)

π
,

where Γ is the normalized incomplete Gamma function and where we used the identity

e−r
N−1∑
`=0

r`

`!
=

1

(N − 1)!

∫ ∞
r

uN−1e−udu.

Note that t 7→ 1 − Γ(N, t) is the cumulative distribution function of the Gamma distribution with
shape parameter N and scale parameter 1. Figure 7.4 illustrates the difference between the limiting
distribution (7.7) and the mean empirical spectral distribution (7.6) for a finite N . Beyond the case
β = 2, we no longer have a formula for the density of EµN , but a simple scaling argument reveals that
the equilibrium measure µ? is in this case the uniform distribution on the centered disk of radius

√
β/2.

7.2 Simulating log-gases and Coulomb gases
Regarding simulation of log-gases or Coulomb gases such as (7.1), it is natural to use the random
matrix models when they are available. There exist also methods specific to determinantal processes
which cover the log-gases of random matrix theory with β = 2, see [246, 382, 347, 111, 27, 285,
226]. Beyond these specially structured cases, a great variety of methods are available for simulating
Boltzmann–Gibbs measures, such as overdamped Langevin diffusion algorithm, Metropolis–Hastings
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algorithm, Metropolis adjusted Langevin algorithm (MALA), and kinetic versions called Hybrid or
Hamiltonian Monte Carlo (HMC) which are based on a kinetic (or underdamped) Langevin diffusion,
see for instance [73, 304]. Other possibilities exist, such as Nosé–Hoover dynamics [255] or piecewise
deterministic Markov processes [64].

Two difficulties arise when sampling measures as (7.1). First, the Hamiltonian HN involves all
couples, so the computation of forces and energy scales quadratically with the number of particles.
A natural way to circumvent this numerical problem is to use clusterization procedures such as the
“fast multipole methods”, see for instance [243]. A second difficult feature of such a Hamiltonian is the
singularity of the interacting function K, which typically results in numerical instability. A standard
stabilization procedure is to “tame” the dynamics [247, 74], which is the strategy adopted in [311].
However, this smoothing of the force induces a supplementary bias in the invariant measure, as shown
in [74] for regular Hamiltonians. This requires using small time steps, hence long computations. In the
present note, we explore for the first time the usage of HMC for general Coulomb gases in the context
of random matrices, in the spirit of [393], the difficulty being the singularity of the interaction. This
method has the advantage of sampling the exact invariant measure (7.1), while allowing to choose
large time steps, which reduces the overall computational cost [176].

In Section 7.2.1, we review standard methods for sampling measures of the form e−βNHN , before
presenting in detail the HMC algorithm in Section 7.2.2.

7.2.1 Standard sampling methods

To simplify and from now on, we suppose the support set X in (7.1) to be Rd. We introduce the
methods based on the overdamped Langevin dynamics (already described in Section 1.1). To sample
approximately (7.1), the idea is to exploit the fact that PN in (7.1) is the reversible invariant probability
measure of the Markov diffusion process (Xt)t>0 solution to the stochastic differential equation:

dXt = −αN∇HN (Xt) dt+

√
2
αN
βN

dBt, (7.8)

or in other words

Xt = X0 − αN
∫ t

0

∇HN (Xs) ds+

√
2
αN
βN

Bt,

where (Bt)t>0 is a standard Brownian motion on XN and αN > 0 is an arbitrary time scaling
parameter (for instance αN = 1 or αN = βN ). The infinitesimal generator associated with (7.8) is

Lf =
αN
βN

∆f − αN∇HN · ∇f.

The difficulty in solving (7.8) lies in the fact that the energy HN involves a singular interaction K,
which may lead the process to explode. Actually, under certain conditions on βN and V , the equa-
tion (7.8) is well posed, the process (Xt)t>0 is well defined, and

Xt
Law−−−→
t→∞

PN ,

for all non-degenerate initial condition X0. See for instance [9, 169, 88] for the case of Beta-Hermite
case known as the Dyson Ornstein–Uhlenbeck process, and [51] for the Beta-Ginibre case. We do not
discuss these delicate aspects in this note. A convergence in Cesàro mean is provided by the ergodic
theorem for additive functionals,

1

t

∫ t

0

δXs ds
weak−−−→
t→∞

PN

almost surely or, for any test function f ∈ L1(PN ),

1

t

∫ t

0

f(Xs) ds −−−→
t→∞

∫
X
f dPN ,

almost surely. It is also possible to accelerate the convergence by adding a divergence free term in the
dynamics (7.8), see for instance [146, 300] and references therein. This modification keeps the same
invariant distribution but produces a non-reversible dynamics.
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This method of simulation is referred to as an “unadjusted Langevin algorithm”, a terminology
which will be clarified later on. In practice, one cannot simulate the continuous stochastic pro-
cess (Xt)t>0 solution to (7.8), and resorts to a numerical integration with a finite time step ∆t. A
typical choice is the Euler–Maruyama scheme [271, 332], which reads

xk+1 = xk −∇HN (xk)αN∆t+

√
2
αN
βN

∆tGk, (7.9)

where (Gk) is a family of independent and identically distributed standard Gaussian variables, and xk
is an approximation of Xk∆t. Note that αN and ∆t play the same role here. However, because of the
singularity of HN , this sampling scheme leads to important biases in practice, and (7.9) may even lack
an invariant measure [324, Section 6]. One way to stabilize the dynamics is to use a tamed version
of (7.9), which typically takes the following form:

xk+1 = xk −
∇HN (xk)αN∆t

1 + |∇HN (xk)|αN∆t
+

√
2
αN
βN

∆tGk. (7.10)

This strategy is used in [311] but, as noted by the authors, the number of time steps needed to run a
trajectory of fixed time T as N increases scales as ∆t ∼ N−2, which makes the study of large systems
difficult.

Another strategy is to add a selection step at each iteration. This is the idea of the Metropolis
Adjusted (overdamped) Langevin Algorithm (MALA) [373], which prevents irrelevant moves with a
Metropolis step. One can also view the MALA algorithm as a Metropolis algorithm in which the
proposal is produces by using a one step discretization of the Langevin dynamics (7.8). Let us make
this precise; more details can be found e.g. in [373, 370].

Algorithm 7.1 (Metropolis Adjusted (overdamped) Langevin Algorithm – MALA). Let Q∆t be the
Gaussian transition kernel associated to the Markov chain of the Euler discretization (7.9) of the
dynamics (7.8). For each step k,

1. Draw a proposal x̃k+1 according to the kernel Q∆t(xk, ·);

2. Compute the probability

pk = 1 ∧ Q∆t(x̃k+1, xk)e−βNHN (x̃k+1)

Q∆t(xk, x̃k+1)e−βNHN (xk)
; (7.11)

3. Set

xk+1 =

{
x̃k+1 with probability pk,
xk with probability 1− pk.

Note that the “reversed” kernel Q∆t(·, x) is Gaussian only if HN is a quadratic form. Note also
that if the proposal kernel K is symmetric in the sense that Q∆t(x, y) = Q∆t(y, x) for all x, y then
it disappears in (7.11), and it turns out that this is the case for the Hybrid Monte Carlo algorithm
described next (up to momentum reversal)!

A natural issue with these algorithms is the choice of ∆t: if it is too large, an important fraction
of the proposed moves will be rejected, hence poor convergence properties; conversely, if ∆t is too
small, many steps will be accepted but the physical ellapsed time will be small, hence a large variance
for a fixed number of iterations. Algorithm 7.1 actually has a nice scaling of the optimal time step ∆t
with the dimension of the system. Indeed, it can be shown that it scales as ∆t ∼ N−

1
3 , at least for

product measures (see [371] and references therein). Although this algorithm is already efficient, we
propose to use a kinetic version with further advantages.

7.2.2 Hybrid Monte Carlo algorithm
Hybrid Monte Carlo is built on Algorithm 7.1, but using a kinetic version of (7.8). For this, a
momentum variable is introduced so as to improve the exploration of the space, as discussed in the
Introduction. Namely, let UN : RdN → R be smooth and such that e−βNUN is Lebesgue integrable.
Let (Xt, Yt)t>0 be the diffusion process on RdN ×RdN solution to the stochastic differential equation

dXt = αN∇UN (Yt) dt,

dYt = −αN∇HN (Xt) dt− γNαN∇UN (Yt) dt+

√
2
γNαN
βN

dBt,
(7.12)
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where (Bt)t>0 is a dN -dimensional Brownian motion, and γN > 0 is an arbitrary parameter which
plays the role of a friction, and which may depend a priori on N and (Xt)t>0, even if we do not use
this possibility here2. In addition, HN and βN are as in (7.1), while UN plays the role of a generalized
kinetic energy [393]. This dynamics admits the following generator:

Lf = −αN∇HN (x) · ∇yf + αN∇UN (y) · ∇xf︸ ︷︷ ︸
Lham

+
γNαN
βN

∆yf − γNαN∇UN (y) · ∇yf︸ ︷︷ ︸
LFD

, (7.13)

where Lham is known as the Hamiltonian part while LFD is called the fluctuation-dissipation part, see
the discussion in Section 1.1. The dynamics leaves invariant the product Boltzmann–Gibbs measure

ρN = PN ⊗ ωN where ωN (dy) =
e−βNUN (y)

Z ′N
dy,

see for instance [393] and the discussion in Section 1.1. In other words

ρN (dx, dy) =
e−βN H̃N (x,y)

ZNZ ′N
dx dy with H̃N (x, y) = HN (x) + UN (y). (7.14)

As for the overdamped dynamics, the ergodic theorem for additive functionals gives

1

t

∫ t

0

δ(Xs,Ys) ds
weak−−−→
t→∞

ρ, almost surely.

When UN (y) = 1
2 |y|

2 then Yt = dXt/dt, and in this case Xt and Yt can be interpreted respectively
as the position and the velocity of a system of N points in X at time t. In this case we say that UN
is the kinetic energy. For simplicity, we specialize in what follows to this “physical” or “kinetic” case
and refer to [393] for more possibilities.

Remark 7.2 (Stability of singular Langevin dynamics). Studying theoretically the long time behaviour
of (7.12) is made difficult by the singularity of the interaction kernel K. We have seen in Chapter 3
that this can be addressed through Lyapunov function techniques, and a natural choice for the Lyapunov
function is

W (x, y) = exp

(
aHN (x) + a

|y|2

2
+ εx · y

)
,

for some a, ε > 0 (see Lemma 3.23 in Chapter 3). The cross term x · y ensures the transmission of
the dissipation from momenta to positions when particles are far from the origin. However, because
of the singular interaction kernel, the system may blow up if two particles come close together. In the
case of Coulomb gases, it has been shown recently [316] that a good choice of Lyapunov function is
actually of the form

W (x, y) = exp

(
aHN (x) + a

|y|2

2
+ εx · y + ε′

x · y
|x|

)
,

for some a, ε, ε′ > 0. The extra factor ensures the transmission of dissipation when two particles
get close. Using the results of [316], we can actually apply the results of Chapter 3 to obtain large
deviations results in time for the dynamics (7.12) when N is fixed.

As before, to simulate (Xt, Yt)t>0, one can discretize (7.12) and sample from a trajectory. This
will provide a proposal for the HMC scheme as the Euler discretization (7.9) did for Algorithm 7.1.
A good way of doing this is a splitting procedure. First, one integrates the Hamiltonian part i.e.
the operator Lham in (7.13), which amounts to a standard Hamiltonian dynamics, before integrating
the fluctuation-dissipation part i.e. the operator LFD in (7.13). For discretizing the Hamiltonian
dynamics over a time step, a standard approach is the Verlet integrator [215, 301], which we describe
now. For a time step ∆t > 0, this scheme reads, starting from a state (xk, yk) at time k:

yk+ 1
2

= yk −∇HN (xk)αN
∆t

2
,

xk+1 = xk + yk+ 1
2
αN∆t,

ỹk+1 = yk+ 1
2
−∇HN (xk+1)αN

∆t

2
.

2In the previous chapters, we have used the notation (qt, pt)t>0 to denote the Langevin dynamics. Here we write
(Xt, Yt)t>0 to avoid notational conflicts with the letters p and q, which are used for p-Wasserstein topologies in Chapter 8.
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This corresponds to updating the velocity over half a time step, then the positions over a time step, and
again the velocity over half a time-step. Given that this scheme only corresponds to the Hamiltonian
part, it remains to integrate the fluctuation-dissipation part, corresponding to LFD in (7.13). For a
quadratic kinetic energy, it is a simple Ornstein–Uhlenbeck process whose variance can be computed
explicitly. Therefore, we add to the previous scheme the following velocity update which comes from
the Mehler formula3:

yk+1 = ηỹk+1 +

√
1− η2

βN
Gk, η = e−γNαN∆t,

where Gk is a standard Gaussian random variable. Like the numerical scheme (7.9), because of
the singularity of the interactions, this integrator may not have an invariant measure [324], or its
invariant measure may be a poor approximation of ρN depending on the time step [295]. Note that,
here again, αN and ∆t play the same role.

Hybrid or Hamiltonian Monte Carlo (HMC) methods, built on the later integration, appeared in
theoretical physics in lattice quantum chromodynamics with [142], see also [375], and are still ac-
tively studied in applied mathematics, see for instance [37, 393, 301, 242, 63, 153, 105] and references
therein. The HMC algorithm can be thought of in a sense as a special Metropolis Adjusted (un-
derdamped) Langevin Algorithm. Indeed, inspired by the MALA Algorithm 7.1, a way to avoid the
stability problem of the discretization of the kinetic Langevin dynamics mentioned above is to add
an acceptance-rejection step. A surprising advantage of this approach is that the Verlet integration
scheme is time reversible up to momenta reversal [301, Sec. 2.1.3 and eq. (2.11)], hence when comput-
ing the acceptance probability as in (7.11), the transition kernel does not appear. Note that the Verlet
algorithm has been widely used for years by statistical physicists, and goes back to the historical works
of Verlet [418] and Levesque and Verlet [310, 309]. Let us now describe the algorithm.

Algorithm 7.3 (HMC). Start from a configuration (x0, y0) and perform the following steps for each
time k > 0:

1. Update the velocities with

ỹk = ηyk +

√
1− η2

βN
Gk, η = e−γNαN∆t.

2. Run one step of the Verlet scheme:
ỹk+ 1

2
= ỹk −∇HN (xk)αN

∆t

2
,

x̃k+1 = xk + ỹk+ 1
2
αN∆t,

ỹk+1 = ỹk+ 1
2
−∇HN (xk+1)αN

∆t

2
.

(7.15)

3. Compute the probability ratio

pk = 1 ∧ exp

[
−βN

(
HN (x̃k+1) +

|ỹk+1|2

2
−HN (xk)− |ỹk|

2

2

)]
.

4. Set

(xk+1, yk+1) =

{
(x̃k+1, ỹk+1) with probability pk,
(xk,−ỹk) with probability 1− pk.

As noted in the various references above, the Metropolis step acts as a corrector on the energy
conservation of the Hamiltonian step. In this, it helps avoiding irrelevant moves, while enhancing the
exploration capacities of the dynamics through the speed variable. A more precise argument in favor
of this algorithm is the scaling of the time step ∆t with respect to the system size N . Indeed, as
shown in [37] for product measures, the optimal scaling is as ∆t ∼ N−

1
4 , which makes the algorithm

appealing for large systems. Since the Hamiltonian computational cost scales as N2, we see that the
3The Mehler formula states that the Ornstein–Uhlenbeck process (Zt)t>0 in Rn solution of the stochastic differential

equation dZt =
√

2σ2dBt − rZtdt satisfies Law(Zt+s | Zs = z) = N (ze−rt, 1−e−2rt

r
σ2In).
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cost of the algorithm for a fixed time T and N = dT/∆te is in O(N
9
4 ), which has to be compared to

the O(N4) cost reached in [311]. Finally, the parameter γN can also be tuned in order to optimize
the speed of convergence – we leave this point here and stick to γN = 1.

The control of the error or rate of convergence for the HMC algorithm is the subject of active
research, see for instance [293] and [153, 60] for some results under structural assumptions.

From a practical point of view, the algorithm can be tested in the following way. First, when only
the Hamiltonian part of the dynamics is integrated with the Verlet scheme (7.15), it can be checked
that the energy variation over one time step scales as ∆t3 as ∆t → 0. Then, if the selection step
is added, the rejection rate should also scale as ∆t3. When the momentum resampling is added,
this rejection rate scaling should not change. For completeness, we illustrate some of these facts in
Section 8.4.

7.3 Numerical experiments on remarkable models
In this section, we start testing Algorithm 7.3 for the two cases described in Section 7.1.3. Since the
equilibrium measures are known for any N > 2, we will be able to compare accurately our results
with the expected one. We will also consider models for which the empirical spectral distribution and
the equilibrium distribution are not known. We remind that when X = Rd with d > 1 we have the
following formulas that hold in any dimension:

∇|x|2 = 2x, ∇ log
1

|x|
= − x

|x|2
, ∇ 1

|x|
= − x

|x|3
.

7.3.1 Case study: 1D
We test the numerical method by looking at the mean empirical distribution in the case of the Gaussian
Unitary Ensemble (7.2) with β = 2, N = 8, for which the exact expression of EµN under PN is
provided by (7.3). The results in Figure 7.1 show a very good agreement between the exact result
and the algorithm. For completeness, we study the rejection rate of the algorithm as ∆t goes to zero,
as mentioned at the end of Section 7.2.2. More precisely, we compute over a trajectory the rate of
rejected moves in the Step (4) of Algorithm 7.3. The logarithmic plot in Figure 7.2 shows a linear fit
with a slope of about 3.1, which confirms the expected scaling in ∆t3.

We also study the quartic confinement potential V (x) = x4/4, as in [311]. In this case, the
empirical spectral distribution is not known, but the equilibrium distribution has density with respect
to the Lebesgue measure given by

x ∈ R 7→ (2a2 + x2)

√
4a2 − x2

2π
1x∈[−2a,2a], a = 3−

1
4 .

The results of the numerical simulations, see Figure 7.3, show a good agreement with the equilibrium
measure when N is large. Note that a tridiagonal random matrix model is known but it does not have
independent entries, see [278, Proposition 2.1].

7.3.2 Case study: 2D
We next consider in Figure 7.4 the mean empirical distribution in the case of the Complex Ginibre
Ensemble (7.5) with β = 2, N = 8. In this case, we also know a theoretical formula for EµN under PN ,
given by (7.6). For completeness, we investigate the scaling of the relative energy difference in the
Step (3) of Algorithm 7.3 (by turning off the selection procedure of Step (4)). The logarithmic plot
in Figure 7.5 shows a slope of about 2.9, which confirms the expected scaling in ∆t3 that corresponds
to the error of energy conservation, over one time step, of the Verlet integrator (7.15).

We explore next in Figure 7.6 the Gumbel fluctuation at the edge, which is proved for β = 2 and
conjectured for β 6= 2, see [365, 86, 143] (note that in this case we have a formula for µ? but not
for EµN under PN ). One could also explore the crystallization phenomenon, see [45] and references
therein.

7.3.3 Case study: 3D
In Figure 7.7, we finally turn to the Coulomb gas which corresponds to X = R3, d = n = 3, V = |·|2/β,
K = 1/|·| and to the log-gas for which K = − log |·|. In the first case the equilibrium measure µ? is



7.3. Numerical experiments on remarkable models 219

Figure 7.1 – Study of the Gaussian Unitary Ensemble with N = 8 (top) and N = 50 (bottom).
The solid line is the plot of the limiting spectral distribution (7.4) while the dashed line is the plot
of the mean empirical distribution (7.3). The bars form the histogram of simulations obtained using
our HMC algorithm. This algorithm was run once with final-time T = 106 and time-step ∆t = 0.5.
The histogram was produced by looking at the last half of the trajectory and retaining the positions
each 1000 time-steps, producing n values, g namely ≈ 8× 103 and ≈ 5× 104 respectively.
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uniform on the centered ball of Rd of radius (β(d− 2)/2)1/d, see for instance [84, Corollary 1.3], while
in the second case the equilibrium measure is not know yet, see however [87]. In both cases we do not
have a formula for EµN under PN . One could study the fluctuation at the edge, which is conjectured
to be Gumbel, just like for the complex Ginibre ensemble in 2D.
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Figure 7.2 – Evolution of the rejection rate in Algorithm 7.3 as ∆t goes to zero, for the Gaussian
Unitary Ensemble with N = 50, β = 2 and T = 105 (in log-log coordinate).
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Figure 7.3 – Study of the quartic confinement with N = 8 (top) and N = 50 (bottom). The solid
line is the plot of the limiting spectral distribution (7.4). The bars form the histogram of simulations
obtained using our HMC algorithm. This algorithm was run once with final-time T = 106 and time-
step ∆t = 0.5. The histogram was produced by looking at the last half of the trajectory and retaining
the positions each 1000 time-steps, producing n values namely ≈ 8× 103 and ≈ 5× 104 respectively.
We do not have a formula for the mean empirical distribution for this model. This gas describes
the law of the eigenvalues of a random symmetric tridiagonal matrix model but its entries are not
independent, see [278, Proposition 2].
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Figure 7.4 – Study of the complex Ginibre ensemble with N = 8 (top) and N = 50 (bottom). The
solid line is the plot of the limiting spectral distribution (7.7) while the dashed line is the plot of
the mean empirical distribution (7.6), both as functions of the radius |z| and scaled by 2π (in order
to obtain a radial density). The bars form the histogram of simulations obtained using our HMC
algorithm. This algorithm was run 40 times with final-time T = 105 and time-step ∆t = 0.1. The
histogram was produced by looking at the last halves of the 40 trajectories and retaining the positions
each 10000 time-steps, producing n values namely ≈ 16× 103 and ≈ 105 respectively.
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Figure 7.5 – Evolution of the energy difference in Algorithm 7.3 as ∆t goes to zero, for the Complex
Ginibre Ensemble with N = 50, β = 2 and T = 103 (in log-log coordinate).
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Figure 7.6 – Study of the fluctuation of the largest particle in modulus for the β complex Ginibre
ensemble with N = 50, in the cases β ∈ {1, 2, 4}. The solid line is the plot of the fit with a translation-
scale Gumbel distribution. The Gumbel fluctuation is proved only in the case β = 2, see [365, 86].
These simulations suggest to conjecture that the Gumbel fluctuation is valid for any β > 0. The
simulation matches pretty well the edge support at

√
β/2 and suggests that the variance is not very

sensitive to β.
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Figure 7.7 – Study of the 3D Coulomb case (top) and 3D Log-gas (bottom) with Euclidean confinement
and β = 2 and N = 50. Equilibrium measure in solid line and histogram obtained with our HMC
algorithm with N = 50 and same simulation parameters as for Figure 7.4. In contrast with the GUE
case and the Ginibre case, we do not have a formula for the mean empirical distribution at fixed N
for both cases, and for the Log-gas (bottom) the equilibrium measure is not known.
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The material for this chapter has been released on arXiv [83].
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Abstract. We consider Coulomb gas models for which the empirical measure typically concen-
trates, when the number of particles gets large, on an equilibrium measure minimizing an electrostatic
energy. We study the behavior when the gas is conditioned on a rare event. We first show that the
special case of quadratic confinement and linear constraint is exactly solvable due to a remarkable
factorization, and the conditioning has then the simple effect of shifting the cloud of particles without
deformation. To address more general cases, we perform a theoretical asymptotic analysis relying on
the Gibbs conditioning principle presented in Section 1.2.2. The technical part amounts to establish-
ing that the conditioning ensemble is an I-continuity set of the energy. This leads to characterize
the conditioned equilibrium as the solution of a modified variational problem. For simplicity, we fo-
cus on linear statistics and on quadratic statistics constraints. Finally, we illustrate numerically our
predictions and explore cases in which no explicit solution is known. For this, we use a Generalized
Hybrid Monte Carlo algorithm (which generalizes the algorithm used in Chapter 7 by taking into a
submanifold constraint) for sampling from the conditioned distribution for a finite but large system.
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results

8.1 Motivation
This section contains the main elements of the considered model, some motivations and the plan of
the chapter. We consider here the so called Coulomb gas model already encountered in Section 1.1.4
and Chapter 7, which shows an interesting behaviour in the limit of a large number of particles, see
for instance [84, 387, 287]1. As we have seen at several places above, the model consists in a set of
random particles XN,1, . . . , XN,N for N > 2, where each XN,i belongs to X = Rd for some physical
dimension d > 2. The particles interact through the Coulomb kernel g : Rd → R defined by

g(x) =


log

1

|x|
, if d = 2,

1

(d− 2)|x|d−2
, if d > 3.

This denomination comes from the equation satisfied by the interaction g. Indeed, denoting by δ0 the
Dirac mass at 0, g solves in the sense of distributions the following Poisson problem:

−∆g = cdδ0, with cd = surface
(
{x ∈ Rd : |x| = 1}

)
= 2

πd/2

Γ(d/2)
. (8.1)

Note that lim|x|→+∞ g(x) = 0 if d > 3, while lim|x|→+∞ g(x) = +∞ if d = 2. In (8.1) ∆ =
∑N
i=1 ∂

2
i

denotes the Laplacian operator in Rd. In addition to this pair interaction, the particles are subject to
a confining potential V : Rd → R assumed to be lower semi-continuous and such that

lim
|x|→+∞

(
V (x)− 21d=2 log |x|

)
> −∞. (8.2)

Following [85] or [386], under this assumption, we can define the electrostatic energy on P(Rd) by

E(µ) =

∫∫
Rd×Rd

(
g(x− y) +

V (x) + V (y)

2

)
µ(dx)µ(dy). (8.3)

This makes sense in R ∪ {+∞} since the integrand is bounded from below thanks to the assump-
tion (8.2) on V . Moreover for all µ ∈ P(Rd) such that

∫
log(1 + |x|)1d=2µ(dx) <∞, we have

E(µ) =

∫∫
Rd×Rd

g(x− y)µ(dx)µ(dy) +

∫
Rd
V (x)µ(dx). (8.4)

The functional E has a unique minimizer on P(Rd) called the equilibrium measure [85, 386]

µ? = argmin
P(Rd)

E . (8.5)

It has compact support, and if moreover V has a Lipschitz continuous derivative then it has density

∆V

2cd
(8.6)

on the interior of its support. In particular if V is proportional to | · |2 then µ? is uniform on a ball.
The compactness of the support of µ? comes from the strong confinement assumption (8.2). Note
that it is possible to consider weakly confining potentials for which the equilibrium measure still exists
but is no longer compactly supported, see for instance the spherical ensemble in [225, 86].

Let XN = (XN,1, . . . , XN,N ) be a random vector of (Rd)N with law

PN (dx) =
e−βNHN (x1,...,xN )

ZN
dx1 · · · dxN , (8.7)

where βN > 0 satisfies

lim
N→∞

βN
N

= +∞,

1Compared to the previous chapter, we focus on this model (compared to more general gases) because it is more
amenable to a theoretical analysis, but we believe most of our results can be generalized at the price of some additional
technical difficulties.
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and

HN (x1, . . . , xN ) =
1

N

N∑
i=1

V (xi) +
1

N2

∑
i6=j

g(xi − xj). (8.8)

This makes sense only if

ZN =

∫
(Rd)N

e−βNHN (x1,...,xN )dx1 · · · dxN <∞, (8.9)

and this is the case when V satisfies∫
Rd

e−
βN
N (V (x)−21d=2 log(1+|x|))dx <∞. (8.10)

As we have seen in Chapter 7 and before in Section 1.1.4, this model is standard in mathematical
physics: PN is a Boltzmann–Gibbs measure modelling a gas of particles, called here a Coulomb gas,
at inverse temperature βN and with Hamiltonian HN . The law PN is exchangeable in the sense
that HN is symmetric in x1, . . . , xN . Indeed, it depends on x1, . . . , xN only via the empirical measure,
namely, PN almost surely,

HN =

∫
Rd
V (x)µN (dx) +

∫∫
6=
g(x− y)µN (dx)µN (dy) with µN =

1

N

N∑
i=1

δxi , (8.11)

where the double integration runs over {(x, y) ∈ Rd×Rd |x 6= y}. A heuristic reasoning suggests that, if
βN → +∞ fast enough, under PN the empirical measure µN should concentrate in the limit N → +∞
on the equilibrium measure µ? that minimizes the energy E in (8.4)-(8.5). This is intuited from the
Laplace principle given the expression (8.7) for PN , where HN is defined by (8.11). This intuition can
be made rigorous through a large deviations principle (LDP), which can be established in this case and
many others, see for instance [84, 148, 196] and the references therein. In particular, the case d = 2 with
quadratic confinement V corresponds to the well-known Ginibre ensemble for random matrices [188,
169], see Section 1.1.4. We mention again that we could consider more general interactions, such as
Riesz kernels [84, 287], discontinuous [148] or weak [225] confinement (see Section 1.3.3), but we stick
to this setting for ease of presentation. The technical requirements needed for extending our proofs
will be pointed out throughout the chapter, and cases not covered by the theoretical analysis will be
investigated numerically in Section 8.4.

As large deviations are concerned with probabilities of rare fluctuations, it is possible to consider
the empirical measure of the random gas conditioned on such a fluctuation. There has been a number
of works on the behaviour of such gases conditioned on having an unusual proportion of the particles
lying in some region of the space. As an example, for d = 2 and V quadratic, [14] reformulates the
conditioned equilibrium measure through an obstacle problem. On the other hand [201, 200] consider
the rare situation in which there is a “hole” in the distribution, in other words no particle around zero.
Finally [318, 319] consider the one dimensional Wigner situation in which an abnormal proportion of
particles lie on one side of the real line. Explicit expressions can be obtained in the latter case. The
study of such conditionings is motivated by questions arising in theoretical physics, see for instance
the discussion in [319].

While the above mentioned works bring substantial contributions to the understanding of condi-
tioned random gas distributions, they also motivate further questions. Indeed, one may consider more
general constraints, like conditioning on the barycenter of the cloud being far away from the origin.
This may be of interest for both theoretical [14] and practical purposes (if one wants to filter out noise
conditioned on some rare event [66]). Moreover, the numerical methods proposed in [201, 200, 319]
do not seem adapted to sampling the empirical distribution conditioned on some event – since this
event is typically rare, naive sampling is generally not efficient. The goal of this work is therefore
to investigate some theoretical results on such conditioned Coulomb gases, as well as providing an
efficient algorithm to sample conditioned distributions. The algorithm we use is a generalization of the
Hamiltonian Monte Carlo algorithm used in Chapter 7 which incorporates a submanifold constraint.

Mathematically, our aim is to consider the particles YN = (YN,1, . . . , YN,N ) in (Rd)N such that

YN ∼ Law
(
XN

∣∣ ξN (XN ) 6 0
)
, (8.12)
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where ξN : (Rd)N → R, and to consider the limiting behaviour of the empirical measure

1

N

N∑
i=1

δYN,i ,

asN → +∞, depending on the confinement potential V and the constraint ξN . Instead of an inequality
constraint like (8.12), we may instead consider an equality constraint

YN ∼ Law
(
XN

∣∣ ξN (XN ) = 0
)
.

We will generally consider inequality constraints since they naturally lead to a Gibbs condition-
ing principle. Equality constraints could be considered as well by an additional limiting procedure,
see [119, Section 7.3] and the discussion in Section 8.3. We could also set ξN to be Rm-valued for
some m > 2 but we restrict to one dimensional constraints for ease of exposition. The cases studied
in [14, 201, 200, 318, 319] correspond to the choice

ξN (x1, . . . , xN ) = µN (1U )− c,

for some measurable set U ⊂ Rd and constant c ∈ R. We will study in this chapter more general
linear statistics of the form

ξN (x1, . . . , xN ) = µN (ϕ), (8.13)

for some constraint function ϕ : Rd → R satisfying growth conditions, see Section 8.3.2. A particular
case of interest is when the constraint function ϕ is itself linear, namely:

ϕ(x) = x · v − c, (8.14)

for v ∈ Rd and c ∈ R. Indeed, when ϕ is chosen according to (8.14) and V is quadratic, the equilibrium
measure under conditioning is the unconditioned one translated in the direction of v. We provide a
simple proof of this result in Section 8.2. We next turn to more general constraints in Section 8.3, prov-
ing first an abstract Gibbs conditioning principle in Section 8.3.1. When considering linear statistics,
we prove in Section 8.3.2 that conditioning PN boils down to modifying the confinement potential V .
In Section 8.3.3 we consider the case of quadratic statistics, which modifies the interaction kernel g.

In order to validate our theoretical results and explore cases in which explicit solutions are not
available, we also propose an original method for sampling the law of YN for a fixed N . Based on
the Hamiltonian Monte Carlo (HMC) method used in [82] for sampling Gibbs measures associated
to Coulomb and Log-gases, we describe and implement the generalized Hamiltonian Monte Carlo
algorithm proposed in [303] for sampling probability measures on submanifolds. The method, detailed
in Section 8.4.1, shows remarkable performance, and the results presented in Section 8.4.2 are in
agreement with the theory.

Notation
We introduce and recall some notation used throughout the chapter. For all d > 1 we denote by
|x| = (x2

1 + · · · + x2
d)

1/2 the Euclidean norm and by x · y = x1y1 + · · · + xdyd the scalar product
on Rd. We denote by P(Rd) the set of probability measures on Rd and, for all p > 1, by Pp(Rd) those
probability measures having finite p-moments in the sense that |·|p is integrable. For any measure
µ ∈ P(Rd), the support of µ is defined as supp(µ) = Rd \A, where A is the largest open set such that
µ(A) = 0 (which may be empty). For all measurable f : Rd → R, we define

‖f‖∞ = sup
x∈Rd

|f(x)| and ‖f‖Lip = sup
x 6=y

|f(x)− f(y)|
|x− y|

.

We define the bounded-Lipschitz distance on P(Rd) by

dBL(µ, ν) = sup
‖f‖∞61
‖f‖Lip61

∫
Rd
f d(µ− ν).

For all p > 1, we define the p-Wasserstein2 distance on Pp(Rd) by

dWp
(µ, ν) =

(
inf

π∈Π(µ,ν)

∫∫
Rd×Rd

|x− y|pπ(dx, dy)

) 1
p

,

2Or Monge, or Kantorovich, or transportation distance.
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where Π(µ, ν) is the set of probability measures on the product space Rd × Rd with marginal distri-
butions µ and ν. Following [419], the Kantorovich–Rubinstein duality theorems state that

dW1(µ, ν) = sup
‖f‖Lip61

∫
Rd
f d(µ− ν) and dWp(µ, ν)p = sup

f∈L1(µ), g∈L1(ν)
f(x)6g(y)+|x−y|p

(∫
Rd
f dµ−

∫
Rd
g dν

)
.

(8.15)
For any p > 1, we say that a function f is dominated by |x|p when3

‖f‖∞,p = sup
x∈Rd

|f(x)|
1 + |x|p

<∞.

The p-Wasserstein topology is the one induced on Pp(Rd) by dWp
. If (νN )N is a sequence in P(Rd)

then limN→∞ dBL(νN , ν) = 0 if and only if limN→∞
∫
fdνN =

∫
fdν for all bounded continuous

f : Rd → R. For all p > 1 and all sequence (νN )N in Pp(Rd), we have limN→∞ dWp(νN , ν) = 0 if and
only if limN→∞ dBL(νN , ν) = 0 and limN→∞

∫
|x|pdνN =

∫
|x|pdν. In other words dBL metrizes weak

convergence, while dWp
metrizes weak convergence plus convergence of the p-moment, see [419].

We denoteX ∼ P to say that the random variableX has law P , andX d
= Y to say that the random

variables X and Y have same law. A sequence of random variables (X1, . . . , XN ) is exchangeable if
for any permutation σ of {1, . . . , N} it holds (X1, . . . , XN )

d
= (Xσ(1), . . . , Xσ(N)).

We now recall the large deviations definitions from Section 1.2.1 in Part I. We say that a sequence
Y1, . . . , YN of random variables taking value in a metric space (Y,d) satisfies a large deviations principle
at speed βN if, for any measurable set A ⊂ Y, it holds

− inf
µ∈Å

I(µ) 6 lim
N→+∞

1

βN
logP(YN ∈ A) 6 lim

N→+∞

1

βN
logP(YN ∈ A) 6 − inf

µ∈A
I(µ), (8.16)

where the interior and closure are taken with respect to the topology induced by d, while I : Y →
[0,+∞] is lower semicontinuous, and called the rate function. If I has compact level sets for the
topology induced by d, we say that I is a good rate function (see Definitions 1.3 and 1.4 in Part I).

We finally recall some elements of potential theory. The interaction energy

J(µ, ν) =

∫∫
Rd×Rd

g(x− y)µ(dx)ν(dy) (8.17)

is well defined for any signed measures µ, ν with compact supports and takes values in R ∪ {+∞},
see [284, Chapter I]. We use the abuse of notation J(µ) = J(µ, µ) for the associated quadratic form.
Moreover, for any compact set K ⊂ Rd, J attains its infimum over probability measures supported
on K. This value is called the capacity of the set K [284, Chapter II]. A measurable set A has
positive capacity if it contains a compact set K and a measure µ with supp(µ) ⊂ K and such that
J(µ) < +∞. Otherwise, the set is said to have null capacity. A property is said to hold quasi-
everywhere if it is satisfied on a set whose complementary has null capacity. Although inner and
outer capacities should be considered, we know these notions coincide for Borel sets on Rd, see [284,
Theorem 2.8]. Denoting by Pc(Rd) the set of compactly supported probability measures, in accordance
with [284, Theorems 1.15 and 1.16], for any µ, ν ∈ Pc(Rd) with J(µ) < +∞ and J(ν) < +∞, it holds
J(µ− ν) = 0 if and only if µ = ν.

8.2 From conditioning to shifting: quadratic confinement with
linear constraint

This section is devoted to the particular case where V (x) = |x|2 and the constraint is chosen according
to (8.13)-(8.14). This corresponds to the Ginibre ensemble of random matrices if d = 2, as presented in
Section 1.1.4. The following theorem states that this special case is exactly solvable: the conditioning
has the effect of a shift without deformation, due to a remarkable factorization. The proof, presented
in Section 8.5.1, is quite elegant. It is inspired from the seemingly unrelated work [88]. The result by
itself appears as a special case of the general variational approach presented in Section 8.3 below.

3We use a simpler notation for functions of bounded growth compared to Part II because the only cost (Lyapunov)
function we use here is W (x) = 1 + |x|p.
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Theorem 8.1 (From conditioning to shifting). Let d,N > 2 and V = |·|2, so that (8.9) holds. Let
XN = (XN,1, . . . , XN,N ) and PN be as in (8.7). Then the equilibrium measure µ? is the uniform law
on the centered ball of Rd of radius 1, and moreover, almost surely, for all p > 1,

lim
N→∞

dWp

(
1

N

N∑
i=1

δXN,i , µ?

)
= 0, (8.18)

regardless of the way we define the random variables XN on the same probability space. Now let v ∈ Rd
with |v| = 1, c ∈ R, choose ϕ(x) = x · v − c and consider YN = (YN,1, . . . , YN,N ) with

YN ∼ Law

(
XN

∣∣∣∣ ϕ(XN,1) + · · ·+ ϕ(XN,N )

N
= 0

)
.

Then

YN
d
= XN +

(
c− XN,1 + · · ·+XN,N

N
· v
)

(v, . . . , v).

Moreover, denoting µϕ = δcv ∗ µ?, we have that almost surely and for all p > 1, it holds

lim
N→∞

dWp

(
1

N

N∑
i=1

δYN,i , µ
ϕ

)
= 0, (8.19)

regardless of the way we define the random variables YN on the same probability space.

The proof of Theorem 8.1 relies crucially on the quadratic nature of the confinement potential,
but remains valid whatever the pair interaction, beyond Coulomb gases, as far as it is translation
invariant4. More general linear projections can be used. Indeed, if we choose ϕ(x) = p(x)− c where p
is a linear projection over a subspace E ⊂ Rd of dimension m and c ∈ Rm, the result still holds.

Remark 8.2 (Ginibre random matrices and Hermite ensembles). Let M be an N ×N random matrix
from the complex Ginibre ensemble, which is a Hermite ensemble (quadratic confinement). Its eigen-
values have law PN with d = 2, βN = N2, and, V (x) = |x|2 and g(x) = − log |x|, see for instance
[188, Ch. 15]. Let R2 = C, v ∈ R2 with |v| = 1 and c ∈ R. The assumptions of Theorem 8.1 are
satisfied and the constraint in terms of matrices reads Tr(M) · v = nc, where we identify again C
with R2. More precisely (8.19) holds and the conditioned equilibrium measure reads

µϕ(dz) =
1|z−cv|61

π
dz.

The same reasoning can be applied to other matrix ensembles, and more generally to β-ensembles
(corresponding to βN = (β/2)N2) under quadratic confinement and pairwise repulsion. In the special
case of the complex Ginibre ensemble, the entries of M are independent, in particular the diagonal
and off-diagonal are independent, and we could deduce the result from the universality theorem on the
circular law [402] together with the Gibbs conditioning principle for independent Gaussian variables.
Some numerical experiments are provided in Section 8.4.2.

In practice, we would like to consider a non-quadratic confinement and a non-linear constraint
function ϕ. The numerical applications presented in Section 8.4.2 show a much wider range of be-
haviour than shifting the equilibrium measure. It turns out that the conditioning mechanism is an
instance of the Gibbs conditioning principle from large deviations theory presented in Section 1.2.2.
The purpose of the next section is to provide proofs in this direction, which allow to derive the con-
ditioned equilibrium measure in more general contexts, of which Theorem 8.1 appears as a particular
case.

4Theorem 8.1 thus shows a spectacular property of Gaussian ensembles (in the sense of quadratic confinement). We
have already observed two times in this thesis the particular structure of Gaussian variables. First, in Section 1.2.2,
we saw that independent Gaussian variables have both small and large Gaussian deviations. Next, in Chapter 3, we
noticed that the Orstein–Uhlenbeck process has the particularity of fluctuating like independent Gaussian variables (see
Remark 3.11). We can only observe the beautiful regularity of Gaussian objects without more precise statements.
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8.3 A general conditioning framework
As is known from the seminal work of Ben Arous and Guionnet [29], large deviations theory provides
a natural framework to study the concentration of empirical measures of the spectrum of random
matrices and, beyond, of singularly interacting particles systems. We refer in particular to [84, 148, 33]
and references therein for recent accounts. Since large deviations theory is concerned with estimating
probabilities of rare events, conditioning on such a rare event is a natural direction to follow. This
procedure is generally refered to as Gibbs conditioning principle or maximum entropy principle. This
principle is explained for instance in [357, Section 6.3] and [119, Section 7.3].

When no conditioning is considered, we know that under mild assumptions the empirical measure
associated to the Gibbs measure (8.7) satisfies a LDP with rate function E . When the random gas is
considered under conditioning on an appropriate rare event, the Gibbs conditioning principle states
that the resulting conditioned empirical measures concentrate on a minimizer of E under constraint.
Proofs of this fact in our context are presented in Section 8.3.1. Next, Section 8.3.2 studies the
corresponding constrained minimization problem for linear statistics, while Section 8.3.3 is concerned
with quadratic statistics.

8.3.1 Gibbs conditioning
The goal of this section is to present an abstract Gibbs conditioning principle and apply it to the
Coulomb gas model. Most works considered hitherto Gibbs principles associated to Sanov’s theo-
rem [119, 357, 306], in other words in absence of interaction, showing that by conditioning the em-
pirical measure, the resulting equilibrium measure minimizes the rate function under constraint. The
same strategy can actually be applied to any exchangeable system satisfying a large deviations princi-
ple provided the conditioning set is an I-continuity set, following for instance [104], [119, Section 1.2]
and [357, Section 5.3]. This is the purpose of the next proposition, which can be of independent
interest and is already presented in Part I (Proposition 1.13). The proof is postponed to Section 8.5.2.

Proposition 8.3 (A Gibbs conditioning principle). Suppose that Y1, . . . , YN are random variables
taking values in a metric space (Y,d) satisfying a large deviations principle at speed (βN )N , and with
good rate function I. Consider a closed set B which is I-continuous in the sense that

inf
B̊
I = inf

B
I < +∞. (8.20)

Then, the set of minimizers
IB =

{
y ∈ Y : I(y) = inf

B
I
}

(8.21)

is a non-empty closed subset of B. Moreover, for any ε > 0, setting

Aε =
{
y ∈ Y : d(y,IB) > ε

}
,

there exists cε > 0 such that

lim
N→+∞

1

βN
logP

(
YN ∈ Aε

∣∣∣ YN ∈ B) 6 −cε. (8.22)

In particular if we define a random variable Y ′N ∼ Law(YN | YN ∈ B) for all N then almost surely
limN→∞ d(Y ′N ,IB) = 0 regardless of the way we define the Y ′N ’s on the same probability space. Further
in particular if IB = {yB} is a singleton, then almost surely it holds limN→∞ Y ′N = yB = minB I.

In other words, (8.22) entails that the variables YN conditioned on being in B concentrate on a
minimizer of I over B (see Theorem 8.7 below). In order to use Proposition 8.3 in the Coulomb gas
setting, we start by recalling a LDP associated with the Coulomb gas model (see [84, 148]). In order
to consider unbounded constraints in what follows, we make the following assumption.

Assumption 8.4 (Growth condition). There exist a > 0, R ∈ R and q > 1 such that

∀x ∈ Rd, V (x) > a|x|q −R.

The above growth condition not only ensures that V satisfies (8.2), but also allows to consider a
finer topology for the LDP, see [148, Theorem 1.8]. It could certainly be relaxed under appropriate
modifications. In particular, Assumption 8.4 shows that [148, Assumption C’1] is satisfied for any
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function of the form |x|p for 1 < p < q, so [148, Lemma 1.1] applies. Assumption 8.4 thus has
the following consequence. Consider an exponent p ∈ (1, q). Then, under PN defined in (8.7), the
empirical measure

µN =
1

N

N∑
i=1

δxi

satisfies a large deviations principle (8.16) in the p-Wasserstein topology at speed (βN )N and with the
following good rate function:

E? = E − inf
Pp(Rd)

E , with inf
Pp(Rd)

E > −∞,

where E is defined in (8.3). The energy E has additional nice properties, which we recall below for
convenience.

Proposition 8.5 (Properties of the electrostatic energy). Let E be as in (8.3). Suppose that Assump-
tion 8.4 holds, and take some p ∈ (1, q). Then, denoting DE = {µ ∈ P(Rd) : E(µ) < +∞} the domain
of E, the following properties are satisfied:

• DE is convex and E is convex on DE ;

• DE ⊂ Pp(Rd) and there exists a unique µ? ∈ Pc(Rd) such that

E(µ?) = inf
P(Rd)

E = inf
Pp(Rd)

E = inf
Pc(Rd)

E ; (8.23)

• the minimizer µ? ∈ Pc(Rd) satisfies the Euler–Lagrange conditions (where C? = E(µ?)){
2g ∗ µ? + V = C?, quasi− everywhere in supp(µ?),

2g ∗ µ? + V > C?, quasi− everywhere.
(8.24)

The domain DE is not empty since it contains for instance measures with smooth density over a
compact support. For convenience, we recall a proof of these classical results in Section 8.5.2.

Remark 8.6 (Going beyond Coulomb gases and convexity). The LDP presented here holds for a much
larger range of models than the Coulomb gas setting, see for instance [148]. However, the assumptions
in [148] do not ensure the convexity of the rate function E, which poses problems when it comes to
identifying the equilibrium measure – we thus stick to this setting here. In practice, the convexity of E
is derived from a Bochner-type positivity of the interaction potential, see [84].

We are now in position to apply Proposition 8.3 to the Coulomb gas model.

Theorem 8.7 (Gibbs conditioning for Coulomb gases). Let E be as in (8.3). Suppose that Assump-
tion 8.4 holds and take some p ∈ (1, q). Consider a closed set B ⊂ P(Rd) such that

inf
B̊
E = inf

B
E < +∞, (8.25)

where the interior is taken with respect to the p-Wasserstein topology. Then the set of minimizers

EB =
{
µ ∈ P(Rd) : E(µ) = inf

B
E
}

(8.26)

is a non-empty closed subset of B. Moreover, if XN ∼ PN is as in (8.7), and if YN = (YN,1, . . . , YN,N )
is such that

YN ∼ Law
(
XN

∣∣µN ∈ B), with µN =
1

N

N∑
i=1

δXN,i ,

then almost surely it holds

lim
N→∞

dWp

(
1

N

N∑
i=1

δYN,i ,EB

)
= 0,

regardless of the way we define the random variables YN on the same probability space.



8.3. A general conditioning framework 235

The proof of Theorem 8.7, which can be found in Section 8.5.2, is an instance of the Gibbs
conditioning principle provided by Proposition 8.3: the conditioned empirical measure concentrates
almost surely on a minimizer of E over B. It is alluring to consider a more general LDP for the
conditioned empirical measure as in [281], but the arguments proposed in [281] do not fit the case of
our singular rate function, in particular DE has empty interior. Our strategy is then to restrict to an
I-continuity set B satisfying (8.25), which allows to use the lower bound of the LDP, very similarly
to [357].

Next, rather than aiming at the greatest generality, we consider the case of linear and quadratic
statistics constraints, for which I-continuity can be proved and the resulting equilibrium measure can
be identified in terms of a modified version of (8.24).

8.3.2 Linear statistics
As explained in the introduction, the case of linear statistics is of particular importance. This moti-
vates focusing first on conditioning sets B of the form

B =
{
ν ∈ Pp(Rd) : ν(ϕ) 6 0

}
, (8.27)

for some measurable function ϕ : Rd → R. This kind of constraint was studied for example in [14, 201,
200, 318, 319]. In particular, the Ginibre case with ϕ = 1U − c for some measurable set U ⊂ R2 and
c ∈ R is considered in [14]. The choice ϕ(x) = c−x·v for v ∈ Rd has been treated in Section 8.2 for the
related equality constraint. We consider here more general potentials V and constraint functions ϕ.
The next assumption on ϕ ensures that B is suitable for conditioning.

Assumption 8.8.

• Assumption 8.4 holds for some q > 1;

• ‖ϕ‖Lip < +∞ and thus ‖ϕ‖∞,p < +∞ for all p ∈ (1, q);

• there exists µ− ∈ DE such that µ−(ϕ) < 0;

• there exists µ+ ∈ DE such that µ+(ϕ) > 0.

The existence of µ− means that the set B has non empty interior, while that of µ+ implies that
B 6= Pp(Rd), so that the constraint is not trivial. Since the Gibbs principle relies on B being an
I-continuity set, we provide a fine analysis of the minimization of E over the set B defined in (8.27).
We prove in particular that the minimizer is unique with compact support, and we characterize it
through an integral equation similar to (8.24) with an additional Lagrange multiplier. The proof of
this result is presented in Section 8.5.3.

Theorem 8.9 (Variational characterization). Let µ? ∈ Pc(Rd) be the unconstrained equilibrium mea-
sure as in Proposition 8.5, and let B the set defined in (8.27). Suppose that Assumption 8.8 holds,
for some q > 1 and p ∈ (1, q). Then B is closed in the p-Wasserstein topology and

inf
B̊
E = inf

B
E < +∞. (8.28)

Moreover
EB =

{
µ ∈ P(Rd) : E(µ) = inf

B
E
}

= {µϕ} ,

where µϕ has compact support and is solution to, for some α > 0,{
2g ∗ µϕ + V + αϕ = Cϕ, quasi− everywhere in supp(µϕ),

2g ∗ µϕ + V + αϕ > Cϕ, quasi− everywhere,
(8.29)

with Cϕ = E(µϕ). Finally, one of the two following conditions holds:

• µ? ∈ B and α = 0;

• µ? /∈ B, in which case µϕ(ϕ) = 0 and α > 0 in other words the constraint is saturated and the
Lagrange multiplier is activated.

We have now the following consequence of Theorems 8.7 and 8.9.
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Corollary 8.10 (From conditioning to confinement deformation). Suppose that Assumption 8.8 holds
with q > 1 and p ∈ (1, q). Consider a Coulomb gas XN = (XN,1, . . . , XN,N ) ∼ PN as in (8.7).
Introduce YN = (YN,1, . . . , YN,N ) with law given by

YN ∼ Law

(
XN

∣∣∣∣∣ 1

N

N∑
i=1

ϕ(XN,i) 6 0

)
.

Let µϕ be as in Theorem 8.9. Then almost surely it holds

lim
N→∞

dWp

(
1

N

N∑
i=1

δYN,i , µ
ϕ

)
= 0, (8.30)

regardless of the way we define the random variables YN on the same probability space.

Theorem 8.9 and Corollary 8.10 show that conditioning on a linear statistics is equivalent to
changing the confinement potential V into V + αϕ where α > 0 is a constant determined by the
constraint. If µ? ∈ B, α = 0 and the conditioning produces no effect. Note also that the global
Lipschitz condition on ϕ in Assumption 8.8 could possibly be relaxed. For instance, if ‖ϕ‖∞,p < +∞
for some p ∈ (1, q) we expect that a minimizing measure has compact support, and that assuming ϕ
locally Lipschitz suffices to prove Theorem 8.9. We leave these refinements to further studies.

Remark 8.11 (Equality constraints). When considering conditioning principles, one is often inter-
ested in equality constraints. It is not obvious at first sight to consider a set B defined by an equality
constraint, since its interior may well be empty. A common strategy is to use a limiting procedure by
introducing nested sets [119]. This is unnecessary here since we observe in Theorem 8.9 that either
the equilibrium measure lies in B, either the constraint is saturated.

Remark 8.12 (Projection). The conditioned equilibrium measure µϕ can be interpreted as an instance
of entropic projection. These projections have been studied for a long time in the context of the Sanov
theorem, in other words independent particles or equivalently product measures without interaction at
all, see [305] and the references therein. Theorem 8.9 is therefore a precise study of such a projection
in the context of Coulomb gases under linear statistics constraint, where the entropy is replaced by the
electrostatic energy E. These remarks also apply to Section 8.3.3.

Remark 8.13 (Formula for constrained equilibrium measure under regularity assumptions). Sup-
pose that Assumption 8.8 holds and that V and ϕ have Lipschitz continuous derivatives. Then the
conditioned equilibrium measure µϕ which appears in Theorem 8.9 and in Corollary 8.10 satisfiesµϕ =

∆V + α∆ϕ

2cd
, almost everywhere in supp(µϕ),

µϕ = 0, almost everywhere outside supp(µϕ).

(8.31)

Indeed, it suffices to apply the Laplacian to both sides of (8.29) and use (8.1), and we refer for example
to [386, Proposition 2.22] for the technical details.

It is now possible to come back to the translation phenomenon described in Section 8.2 through
the energetic approach considered in the present section.

Alternative proof of Theorem 8.1. Using (8.31) under the assumptions of Theorem 8.1, we have ∆V =
2d and ∆ϕ = 0, so that µϕ is constant and equal to d/cd on its support. It then remains to show that
this support is indeed a ball of correct center and radius. For this, we observe that, since |v| = 1,

V (x) + αϕ(x) = |x|2 + α(c− x · v) =
∣∣∣x− αv

2

∣∣∣2 +
α2

4
+ αc,

so that the effectice confining potential is quadratic with variance 1/2 and center x0 = αv/2. By
radial symmetry around x0, µϕ must be a uniform distribution on a ball B(x0, r) centered at x0 with
radius r > 0. In order to find the value of α, we write the constraint

|B(x0, r)|−1

∫
B(x0,r)

x · v dx = c.
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The left hand side of the above equation reads, by symmetry,

|B(x0, r)|−1

∫
B(x0,r)

(x− x0) · v dx+ x0 · v = |B(x0, r)|−1

∫
B(0,r)

x · v dx+ x0 · v = x0 · v.

Since x0 = αv/2 and |v|2 = 1 we obtain
α = 2c,

which leads to x0 = cv. Finally, the value of µϕ over its support is d/cd, where cd is the surface of the
sphere in dimension d. Since the volume of the sphere of radius r is equal to rcd/d, we obtain that
r = 1 and we reach the conclusion of Theorem 8.1.

8.3.3 Quadratic statistics

Once the linear statistics case has been studied, it is natural to turn to more general constraints.
Considering second order statistics is a first step in this direction, which motivates to consider sets of
the form, for p > 1,

B =
{
ν ∈ Pp(Rd) : Q(ν) 6 0

}
, (8.32)

where Q is the “quadratic form”

Q : µ ∈ Pp(Rd) 7→
∫∫

Rd×Rd
ψ(x, y)µ(dx)µ(dy), (8.33)

and ψ : Rd × Rd → R is a prescribed function. For any µ ∈ P(Rd), we denote by

Uψµ : x ∈ Rd 7→
∫
Rd
ψ(x, y)µ(dy)

the “potential” generated by µ for the interaction ψ, whenever this makes sense. We now make some
assumptions on the interaction ψ for the functional Q to define an I-continuity set B in (8.32).

Assumption 8.14.

• Assumption 8.4 holds for some q > 1;

• There is CLip > 0 such that, for any µ ∈ Pp(Rd),∥∥Uψµ ∥∥Lip
6 CLip, (8.34)

and thus
∥∥Uψµ ∥∥∞,p < +∞ for all p ∈ (1, q);

• ψ is symmetric, i.e. ψ(x, y) = ψ(y, x) for all x, y ∈ Rd;

• Q is convex;

• there exists µ− ∈ DE such that Q(µ−) < 0;

• there exists µ+ ∈ DE such that Q(µ+) > 0.

Before turning to the minimization under constraint, let us present a sufficient condition of con-
volution nature for a function ψ to satisfy (8.34).

Proposition 8.15 (Sufficient condition for (8.34)). Assume that ψ(x, y) = φ(x − y) for a function
φ : Rd → R satisfying ‖φ‖Lip < +∞ and thus ‖φ‖∞,p < +∞. Then (8.34) holds with CLip = ‖φ‖Lip.

Proof of Proposition 8.15. For all ν ∈ Pp(Rd) and x, x′ ∈ Rd, it holds

∣∣Uψν (x)−Uψν (x′)
∣∣ 6 ∫

Rd
|φ(x−y)−φ(x′−y)|ν(dy) 6 ‖φ‖Lip

∫
Rd
|x−y−(x′−y)|ν(dy) = ‖φ‖Lip|x−x′|.

We thus obtain (8.34) with CLip = ‖φ‖Lip.
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In addition to the regularity ensured by Proposition 8.15, the convexity of Q is an important part of
Assumption 8.14. Conditions for this convexity to hold for an interaction of the form ψ(x, y) = φ(x−y),
which is related to Bochner-type positivity, are discussed at length in [31, 272, 84]. In particular, the
choice ψ = g where g is defined in (8.1) leads to a convex Q. Assumption 8.14 then provides a result
similar to Theorem 8.9, now leading to a deformation of the interaction energy. The proof can be
found in Section 8.5.4.

Theorem 8.16 (Quadratic constraint). Let µ? ∈ P(Rd) be the unconstrained equilibrium measure
defined in Proposition 8.5. Suppose that Assumption 8.14 holds for some q > 1 and p ∈ (1, q) and
let B be the set defined in (8.32). Then B is closed in the p-Wasserstein topology and

inf
B̊
E = inf

B
E < +∞. (8.35)

Moreover
EB =

{
µ ∈ P(Rd) : E(µ) = inf

B
E
}

=
{
µψ
}

where µψ has compact support and is solution to, for some α > 0, 2g ∗ µψ + 2αUψ
µψ

+ V = Cψ, quasi− everywhere in supp(µψ),

2g ∗ µψ + 2αUψ
µψ

+ V > Cψ, quasi− everywhere,
(8.36)

with Cψ = E(µψ). Finally, one of the two following conditions holds:

• µ? ∈ B and α = 0;

• µ? /∈ B, in which case Q(µψ) = 0 and α > 0.

The quadratic constraint leads to a change in the interaction contrarily to the linear situation,
which led to a change of confinement. From Theorem 8.16, we obtain the following result.

Corollary 8.17 (From conditioning to interaction deformation). Suppose that Assumption 8.14 holds
for some q > 1 and p ∈ (1, q). Let us consider a Coulomb gas XN = (XN,1, . . . , XN,N ) ∼ PN as
in (8.7), and YN = (YN,1, . . . , YN,N ) with law given by

YN ∼ Law

XN

∣∣∣∣∣∣ 1

N2

N∑
i,j=1

ψ(XN,i −XN,j) 6 0

 .

Let µψ be the conditioned equilibrium measure as in Theorem 8.16. Then, almost surely, it holds

lim
N→∞

dWp

(
1

N

N∑
i=1

δYN,i , µ
ψ

)
= 0, (8.37)

regardless of the way we define the random variables YN in the same probability space.

Remark 8.18 (Higher order constraints, convexity, and regularity). From the proof of Theorem 8.16,
the Gibbs principle holds for a set B of the form (8.32) for Q convex and lower semicontinuous.
However, we would not be able to say much on the solution in such an abstract setting. In particular,
higher order statistics could be considered, leading to higher order convolutions, but checking the con-
vexity of the associated functional may become cumbersome. By lack of applications in mind, we do
not consider these higher order constraints.

Remark 8.19 (Formula for constrained equilibrium measure under regularity assumptions). Suppose
that Assumption 8.14 holds and that V has Lipschitz continuous derivatives and that ψ is C2(Rd).
Then the conditioned equilibrium measure µψ with appears in Theorem 8.16 and in Corollary 8.17
satisfies  cdµ

ψ − α
∫
Rd

∆ψ(·, y)µψ(dy) =
∆V

2
, almost everywhere in supp(µψ),

µψ = 0, almost everywhere outside supp(µψ).

(8.38)

Indeed, (8.38) follows by applying the Laplacian on both sides of (8.36). Note that the expression (8.38)
is not explicit as in the linear constraint case of Remark 8.13 because we are not able to invert the
convolution associated to ∆ψ in general.
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8.4 Numerical illustration

In this section we consider the problem of sampling from conditioned distributions of the form

Law
(
XN

∣∣ ξN (XN ) = 0
)
, (8.39)

where ξN : (Rd)N → Rm for somem > 1, and XN is distributed according to PN defined in (8.7) for N
fixed. We drop the index N on ξN in what follows to shorten the notation, and consider constraints
taking values in Rm for generality. Note that we consider equality rather than inequality constraints
since we have seen in Sections 8.3.2 and 8.3.3 that inequality constraints are either satisfied by the
equilibrium measure or saturated.

The first contribution of this section is to propose in Section 8.4.1 an algorithm for sampling
from (8.39). In a second time, we present in Section 8.4.2 some numerical applications, where we
illustrate the predictions of Sections 8.2 and 8.3. This is also the opportunity to explore conjectures
which are not proved in the present chapter.

8.4.1 Description of the algorithm

The description of the constrained Hamiltonian Monte Carlo algorithm used for sampling, which
builds upon the Hamiltonian Monte Carlo algorithm presented in Chapter 7, follows several steps.
We first make precise the structure of the measure (8.39). We next introduce a constrained Langevin
dynamics used for sampling, before giving the details of the numerical integration.

8.4.1.1 Dirac and Lebesgue measures on submanifolds

First, we describe more precisely the structure of the constrained measure (8.39) by introducing the
submanifoldMz associated with the z-level set of ξ for z ∈ Rm, namely

Mz =
{
x ∈ (Rd)N : ξ(x) = z

}
, (8.40)

and we use the shorthand notationM =M0. To define the conditioned measure, we use the following
disintegration of (Lebesgue) measure formula: for any bounded continuous test function ϕ,∫

(Rd)N
ϕ(x) dx =

∫
Rm

∫
Mz

ϕ(x)δξ(x)−z(dx) dz. (8.41)

Indeed, for any z ∈ Rm, this defines the conditioned measure δξ(x)−z(dx), see [302, Section 2.3.2].
Since PN is given by (8.7), the constrained measure (8.39) can be written with the conditioned
measure δξ(x)(dx) associated withM through, for any bounded continuous ϕ,

E
[
ϕ(XN ) | ξN (XN ) = 0

]
=

1

ZξN

∫
M
ϕ(x) e−βNHN (x)δξ(x)(dx), (8.42)

where ZξN is a normalizing constant. The measure of interest is therefore

P ξN (dx) =
e−βNHN (x)

ZξN
δξ(x)(dx). (8.43)

In order to obtain a better understanding of (8.43), we relate the conditioned measure proportional
to δξ(x)(dx) to the Lebesgue measure induced on the submanifoldM by the canonical Euclidean scalar
product, which we denote by σM(dx). We use to this end the co-area formula [7, 173, 302]. We denote
by ∇ξ = (∇ξ1, . . . ,∇ξm) ∈ RdN×m and introduce the Gram matrix:

G(x) = ∇ξ(x)T∇ξ(x) ∈ Rm×m, (8.44)

where the superscript T denotes matrix transposition. In what follows, we assume that the Gram
matrix (8.44) is non-degenerate in the sense that G(x) is invertible for x in a neighborhood of M
(see [302, Proposition 2.1]).
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Proposition 8.20. The measures δξ(x)(dx) and σM(dx) are related by

δξ(x)(dx) = |detG(x)|− 1
2σM(dx). (8.45)

In particular it holds

P ξN (dx) =
e−βNH

ξ
N (x)

ZξN
σM(dx), (8.46)

where
Hξ
N (x) = HN (x) + UN (x), UN (x) = − 1

2βN
log |detG(x)|. (8.47)

Remark 8.21 (Parametrization invariance). It seems at first sight that the definition of the condi-
tioned measure in (8.41) depends on the choice of parametrization of ξ, but it does not. To illustrate
this point, we consider for simplicity that m = 1 andM =

{
x ∈ (Rd)N : ξ(x) = 0

}
.

First, the induced Lebesgue measure on M does not depend on the parametrization of M. Con-
sider next a smooth function F : R → R such that F (0) = 0 and F ′(0) 6= 0, and the change of
parametrization M =

{
x ∈ (Rd)N : F

(
ξ(x)

)
= 0

}
. The gradient of the constraint at x ∈ (Rd)N is

then ∇F (ξ(x)) = F ′(ξ(x))∇ξ(x). Since ξ(x) = 0 for x ∈ M, the right hand side of (8.45) is changed
only by a multiplicative factor |F ′(0)|2 6= 0. Therefore, the conditioned probability measure (8.43) is
left unchanged.

The aim is therefore to sample from (8.46), which is not an easy task except in very particular
situations, like the one studied in Section 8.2. The attempts in [201, 200, 319] show that a naive
approach is not efficient in general, since the conditioning event is rare. Actually, sampling probability
distributions under constraint is a long standing problem in molecular dynamics and computational
statistics. Concerning molecular simulation, one can be interested in fixing some degrees of freedom
of a system like bond lengths, or the value of a so-called reaction coordinate, typically for free energy
computations – we refer e.g. to [356, 106, 301] for more details. An example of application in
computational statistics is for instance Approximate Bayesian Computations, see [403, 322].

For sampling measures on submanifolds, a naive penalization of the constraint is not a good
idea in general, because it typically generates a very stiff dynamics whose numerical integration is
difficult. Moreover, our problem is made harder by the singularity of the pair interaction in the
Hamiltonian (8.8). We have seen in Chapter 7 that Hybrid Monte Carlo schemes (relying on a second
order discretization of an underdamped Langevin dynamics with a Metropolis–Hastings acceptance
rule) provide efficient methods for sampling such probability distributions. An issue when combining
a Metropolis–Hastings rule with a projection on a submanifold is that reversibility may be lost, which
introduces a bias. A recent strategy has been to introduce a reversibility check in addition to the
standard acception-rejection rule, which makes the HMC scheme under constraint reversible [430, 303].
Note that [432] proposes an interesting alternative to the scheme used here, but which is not compatible
with a Metropolis selection procedure in its current form. We thus present the algorithm as written
in [303], with some simplifications and adaptions to our context, for which we introduce next the
constrained Langevin dynamics.

8.4.1.2 Constrained Langevin dynamics

We define here an underdamped Langevin dynamics over the submanifoldM, whose invariant measure
has a marginal in position which coincides with (8.46). We motivate using this dynamics by first
considering the problem of sampling from the unconstrained measure PN . For a given γ > 0, we
define 

dXt = Yt dt,

dYt = −∇HN (Xt) dt− γYt dt+

√
2γ

βN
dBt,

(8.48)

where (Bt)t>0 is a dN -dimensional Wiener process. Like in Chapter 7, (Xt)t>0 stands for a position,
while (Yt)t>0 represents a momentum variable. Let us mention again that the long time convergence of
the law of this process towards PN (a difficult problem due to the singularity of the Hamiltonian) can
be proved through Lyapunov function techniques [316] (see Chapter 3). In practice, the singularity
of g also makes the numerical integration of (8.48) difficult, and a Metropolis–Hastings selection can
be used to stabilize the numerical discretization [82]. The algorithm described below makes precise
how to adapt this strategy to sample measures constrained to the submanifoldM.
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Since we aim at sampling from (8.46), it is natural to consider the dynamics (8.48) with positions
constrained to the submanifold (8.40), that is

dXt = Yt dt,

dYt = −∇HN (Xt) dt− γYt dt+

√
2γ

βN
dBt +∇ξ(Xt) dθt,

ξ(Xt) = 0,

(8.49)

where (θt)t>0 ∈ Rm is a Lagrange multiplier enforcing the dynamics to stay onM. Let us emphasize
that the position constraint induces a hidden constraint on the momenta in (8.49), which reads

∀ t > 0, ∇ξ(Xt)
TYt = 0.

The above relation is obtained by taking the derivative of t 7→ ξ(Xt) along the dynamics (8.49).
This implies that momenta are orthogonal to the submanifold’s zero level set, which is a natural
geometric constraint [302, 303]. However, as hinted above, the dynamics (8.49) does not sample from
the conditioned measure (8.39), as shown in the following proposition [302, 303].

Proposition 8.22 (Invariant measure). The dynamics (8.49) has a unique invariant measure with
marginal distribution in position given by

e−βNHN (x)

Z
ξ

N

σM(dx),

where Z
ξ

N is a normalization constant.

Although (8.49) does not sample from P ξN , we have seen how to fix this problem. More precisely,
Proposition 8.20 shows that the dynamics (8.49) run with the modified Hamiltonian Hξ

N defined
in (8.47) samples from P ξN .

However, in practice, it may be preferable not to use the gradient of UN , since it involves the
Hessian of the constraint ξ and may be cumbersome to compute. Therefore, we will not run the
dynamics (8.49) with the modified Hamiltonian Hξ

N but with HN , and perform some reweighting to
correct for the bias arising from the factor |detG(x)|− 1

2 . As explained in Remark 8.27 below in the
context of a HMC discretization, this ensures that we are sampling from the correct target distribution
while only moderately increasing the rejection rate.

8.4.1.3 Discretization

In order to make a practical use of (8.49) combined with Proposition 8.20, we need to define a
discretization scheme. We present below the strategy proposed by [303], which relies on a second
order discretization of (8.49) with a Metropolis–Hastings selection and a reversibility check.

As discussed after (8.49), momenta are orthogonal to the level sets of the submanifold. We then
define

ΠM⊥ = Id−∇ξ(x)G−1(x)∇ξ(x)T ∈ (Rd)N , (8.50)

whose action is to project the momentum orthogonally to the submanifold M. We next define the
RATTLE scheme, which is a second order discretization of the Hamiltonian part of (8.49). A particular
feature of this numerical integration is to be reversible up to momentum reversal, at least for sufficiently
small time steps. We assume in Algorithm 8.23 that this condition holds, and we refer to [215,
Section VII.1.4] and [303] for more details.

Algorithm 8.23 (RATTLE). Starting from a configuration (xm, ym) with xm ∈M and ∇ξ(xm)T ym =
0,

1. ym+ 1
4

= ym −
∆t

2
∇HN (xm).

2. xm+ 1
2

= xm + ∆tym+ 1
4
.

3. Compute the Lagrange multiplier θm ∈ Rm associated with xm+ 1
2
to enforce the constraint, using

Algorithm 8.25 below (if convergence has been reached).
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4. Project as xm+1 = xm+ 1
2

+∇ξ(xm)θm and ym+ 1
2

= ym+ 1
4

+∇ξ(xm)θm/∆t.

5. ym+ 3
4

= ym+ 1
2
− ∆t

2
∇HN (xm+1).

6. ym+1 = ΠM⊥ym+ 3
4
where the projector ΠM⊥ is defined in (8.50).

Finally, return (xm+1, ym+1).

We can now present the algorithm used to sample the conditioned distribution by integrating (8.49),
which runs as follows. First, the momenta ym are updated to ỹm according to the Ornstein–Uhlenbeck
process in (8.49) projected orthogonally to the submanifold with ΠM⊥ . Next, we evolve the config-
uration (xm, ỹm) with a RATTLE step, leading to (x̂m+1, ŷm+1). However, reversibility may be lost
in the procedure for two reasons: either it is not possible to perform one step of RATTLE starting
from (x̂m+1,−ŷm+1), or the image of (x̂m+1,−ŷm+1) differs from (xm,−ỹm). In both cases, the RAT-
TLE move is rejected, and the configuration is updated as (xm,−ỹm) (mind the fact that momenta
are reversed, which ensures the reversibility of the scheme with respect to momenta reversal). Fi-
nally, a Metropolis–Hastings acceptance rule corrects for the time step bias in the sampling. The full
algorithm reads as follows [303].

Algorithm 8.24 (Constrained HMC with reversibility check). Fix T > 0, ∆t > 0, γ > 0, Kmax >
1, Niter = dT/∆te and choose an initial configuration (x0, y0) with x0 ∈ M and ∇ξ(x0)T y0 = 0
(possibly obtained by projection). Set also thresholds εrev, εN > 0, and define η∆t = e−γ∆t. For
m = 0, . . . , Niter − 1, run the following steps:

1. Resample the momenta as

ỹm = ΠM⊥

η∆tym +

√
1− η2

∆t

βn
Gm

 ,

where Gm are independent dn-dimensional standard Gaussian random variables.

2. Perform one RATTLE step with Algorithm 8.23 starting from (xm, ỹm), providing (x̂m+1, ŷm+1)
if the Newton algorithm with Kmax, εN has converged; otherwise set (xm+1, ym+1) = (xm,−ỹm)
and increment m.

3. Compute a RATTLE backward step from (x̂m+1,−ŷm+1), providing (xrev
m , yrev

m ) if Newton with Kmax,
εN has converged. If Newton algorithm has not converged or if |xm − xrev

m | > εrev, reject the
move by setting (xm+1, ym+1) = (xm,−ỹm) and increment m.

4. Compute the Metropolis–Hastings ratio

pm = 1 ∧ exp

[
−βn

(
Hξ
N (x̂m+1) +

|ŷm+1|2

2
−Hξ

N (xm)− |ỹm|
2

2

)]
, (8.51)

and set

(xm+1, ym+1) =

{
(x̂m+1, ŷm+1) with probability pm,

(xm,−ỹm) with probability 1− pm.

A particularity of our implementation with respect to [303] is that we run the dynamics with the
Hamiltonian HN while the Metropolis–Hastings ratio (8.51) (step (4) in Algorithm 8.24) is computed
with the modified Hamiltonian Hξ

N . As pointed out in Remark 8.27 below, the modification induced
by the correction term UN in (8.47) is generally small. Therefore, considering HN for the dynamics
allows to avoid the computation of the Hessian of ξ, while the selection rule corrects for this small
error.

In order for our description to be complete, we define how to project the position onM (step (3)
in Algorithm 8.23). We use for this a variant of Newton’s algorithm.

Algorithm 8.25 (Newton algorithm). Consider a tolerance threshold εN > 0 and a maximal number
of steps Kmax > 1. If one starts from an initial position x0 /∈ M and a Lagrange multiplier θ0 = 0 ∈
Rm, the projection procedure reads as follows: while k 6 Kmax,
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1. Compute Mk = ∇ξ(x0)T∇ξ(xk) ∈ Rm×m.

2. Set θk+1 = θk −M−1
k ξ(xk).

3. Define the new position xk+1 = xk +∇ξ(x0)T θk+1.

4. If max
(
|θk+1 − θk|, |ξ(xk)|

)
6 εN , the algorithm has converged, else go back to step (1).

If the algorithm has converged in k 6 Kmax steps, return the value θk of the Lagrange multiplier.

As we mentioned before Algorithm 8.24, we consider a fixed direction ∇ξ(x0) for projection. This
is needed to preserve the reversibility property of the final algorithm [303]. The procedure works as
soon as the matrix Mk defined in step (1) is indeed invertible at each step of the inner loop. This is
the case in our situation since we take m = 1, and we refer to [303] for more details. We are now ready
to use Algorithm 8.24 to sample from the constrained distribution, challenge the theoretical results of
Sections 8.2 and 8.3 and explore conjectures.

Remark 8.26 (Rejection sources). For a standard HMC scheme like in Chapter 7, rejection is only
due to the Metropolis–Hastings selection (step (4) in Algorithm 8.24). Here, rejection can be due to
the following reasons:

• the Newton algorithm in Step (2) (forward move) has not converged;

• the Newton algorithm in Step (3) (backward or reversed move) has not converged;

• the reversibility check in Step (3) has failed;

• the Metropolis rule in Step (4) has rejected the step.

In any case, the first step resamples the momentum variable according to the Ornstein–Uhlenbeck
process part in (8.48), and rejection comes with a reversal of momenta. Let us also mention that,
when the ratio (8.51) is computed with HN (up to an additive constant), the Metropolis rejection rate
should scale as ∆t3. This will be the case in our situation when ξ and ϕ are linear since in this
case the additional term UN in (8.47) is constant, and we numerically observe this rate of decay (see
Figure 8.2).

Remark 8.27 (Correction term). Proposition 8.20 shows that the Hamiltonian of the system must be
modified in order for the constrained dynamics (8.49) to sample from the probability distribution (8.43).
However, in Algorithm 8.24, we run the dynamics with HN and perform the selection with Hξ

N . This
is motivated by the following scaling argument. Consider

ξ(x) =
1

N

N∑
i=1

ϕ(xi)

for some real-valued smooth function ϕ, which corresponds to the linear constraint situation described
in Section 8.3.2. In this case, the corrector term in (8.47) reads

UN (x) = − 1

2βN
log

(
N∑
i=1

|∇ϕ(xi)|

)
,

up to an additive constant. This means that the correction term in (8.47) scales like O(log(N)/N2)
when βN = βN2, whereas the remainder of the Hamiltonian is O(1). As a result, the correction is
much smaller than the Hamiltonian energy HN , and we may neglect it in the dynamics. This allows
to avoid computing the Hessian of the constraint ξ at the price of a small increase in the rejection
rate.

8.4.2 Numerical results
8.4.2.1 Linear statistics with linear constraint: the influence of confinement

Since one motivation for our work was to study the trace constraint with quadratic confinement, as
detailed in Section 8.2, we first consider the model presented in Theorem 8.1 with d = 2, βN = N2

and
∀x ∈ R2, ϕ(x) = c− x · v, v =

(
1
0

)
. (8.52)
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We run Algorithm 8.24 setting N = 300, T = 106, ∆t = 0.5, γ = 1 and εN = εrev = 10−12

with Kmax = 20. In all the simulations in dimension 2, the initial configuration is drawn uniformly
over [−1, 1]2. We first set V (x) = 2|x|2 and c = 1, so that according to Theorem 8.1, the conditional
law of the empirical measure µN under PN with the constraint µN (ϕ) = 0 should converge in the
limit of large N towards a disk of radius 1/

√
2, centered at (1, 0) in R2. The simulations presented in

Figure 8.1 show a very good agreement with the expected result.

Figure 8.1 – Study of the quadratic confinement for N = 300 without constraint (left) and with
the constraint (8.52) (right). We see that the constrained measure is a disk of radius 1/

√
2 centered

at (1, 0).

In this simple case, the Hamiltonian in (8.47) is only modified by a constant, so we expect the
Metropolis rejection rate (step (5) in Algorithm 8.24) to scale like O(∆t3) when ∆t→ 0. In Figure 8.2,
we plot this rate in log-log coordinates (setting here N = 20 to reduce the computation time). The
slope is indeed close to 3, which confirms our expectation.
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Figure 8.2 – Study of the rejection rate of the Metropolis–Hastings selection rule with N = 20
(step (5) in Algorithm 8.24) in log-log coordinate. The slope of the linear fit is about 2.9.

In order to show that the translation phenomenon is specific to the quadratic confinement, we
first consider the case of a quartic confinement potential, namely V (x) = |x|4/2 subject to the con-
straint (8.52) with c = 0.5. This choice for V together with ϕ defined in (8.52) satisfies Assumption 8.8,
so that Theorem 8.9 applies. However, no analytic solution is a priori available because the rotational
symmetry is lost. The unconstrained equilibrium measure in Figure 8.3 (left) shows a depletion of
the density around (0, 0). In Figure 8.3 (right), we observe that the shape of the distribution is sig-
nificantly modified by the constraint, and does not possess any rotational invariance. As could have
been expected, the particles close to the origin feel a weaker confinement, so the distribution is more
concentrated near the outer edge.
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Figure 8.3 – Study of the quartic confinement for N = 300 without constraint (left) and with
the constraint (8.52) (right). The shape of the equilibrium measure is significantly distorted by the
constraint.

Another interesting case is when the confinement is weaker than quadratic, e.g. V (x) = 4
3 |x|

3
2 ,

for which Theorem 8.9 still applies. The results are shown in Figure 8.4, considering again the
constraint (8.52) with c = 0.5. We observe that the shape of the distribution also significantly
changes by spreading in the direction of the constraint. This can be interpreted as follows: since the
confinement is stronger at the origin, the more likely way to observe a fluctuation of the barycenter
(or less costly in terms of energy) is in this case to spread the distribution.

Quite interestingly, for both potentials the distribution obtained as c → +∞ seems to reach a
limiting ellipsoidal shape, under an appropriate rescaling (figures not shown here). Studying more
precisely these limiting shapes and the rate at which they appear is an interesting open problem.

Figure 8.4 – Study of the weak confinement for N = 300 without constraint (left) and with the
constraint (8.52) (right). The constraint now spreads the equilibrium measure to the right.

8.4.2.2 Other constraints in dimension two

In order to illustrate the efficiency of our algorithm in situations richer than the linear constraint
with a linear function ϕ, we now present two other cases. First, we keep a linear constraint with
V (x) = 2|x|2, but set

∀x ∈ R2, ϕ(x) = c− cos(5x1) + cos(5x2)

2
,

where x1 and x2 denote here the first and second coordinates of x ∈ R2. This choice is motivated by
Remark 8.13: since the Laplacian of ϕ takes positive and negative values, we expect the particles to
concentrate in some regions of R2, possibly leading to a phase separation. Note also that, in order
for the two last conditions in Assumption 8.8 to be satisfied, we need to choose c ∈ (−1, 1). We set
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again N = 300 but ∆t = 0.4 to reduce the rejection rate. The other parameters are the same as in
Section 8.4.2.1. We plot in Figure 8.5 the result of the simulation for c = 0.2 and c = 0.5. The particles
concentrate in the regions where the cosines are higher, which seems to lead to a phase separation for
the second value of c.

Figure 8.5 – Study of the cosine constraint for N = 300 with c = 0.2 (left) and c = 0.5 (right). A
phase separation appears as the particles are constrained to stay in the local maxima of the cosines.

In order to illustrate the results of Section 8.3.3, we consider a quadratic constraint ξ : (Rd)N → R
of the form

∀x ∈ (Rd)N , ξ(x) =
1

N2

N∑
i,j=1

ψ(xi, xj), (8.53)

with, for x, y ∈ R2,
ψ(x, y) = φ(x− y), and φ(x) = c− |x|. (8.54)

A motivation for this choice is to modify the rigidity of the gas by constraining the particles to be
closer or further one from another in average. In order to make this rigidity anisotropic, we also
consider (8.54) with

∀x ∈ R2, φ(x) = c− |x1|. (8.55)
The choice (8.55) modifies the rigidity only in one direction. For illustration we take V (x) = |x|4/2,
N = 50, ∆t = 0.5, T = 106 (we take a lower number of particles because the constraint makes the
dynamics quite stiff). We set c = 1 for (8.54) and c = 0.5 for (8.55), which forces the particles
to move away from each other. These choices for ψ satisfy the conditions of Proposition 8.15, and
the application Q defined in (8.33) can be proved to be convex, so Assumption 8.14 is satisfied and
Theorem 8.16 applies. The distribution obtained for the constraint (8.54), presented in Figure 8.6
(left), shows that the more likely way for the particles to be repelled by the constraint induced by ψ
is to move away from the center and concentrate on the edge, compared to Figure 8.3 (left). For the
constraint (8.55), we clearly observe in Figure 8.6 (right) the effect of anisotropy.

8.4.2.3 A one dimensional example

We consider the Gaussian Unitary Ensemble (GUE), which is a degenerate two-dimensional Coulomb
gas for which the particles are confined on the real axis. Its corresponds in a sense to (8.7) with d = 1,
V (x) = 2|x|2 but g(x) = − log |x|, and βN = N2. It is known that the equilibrium measure is then
the Wigner semi–circle law, and we refer for instance to [29] for a large deviations study. We can
apply Theorem 8.1 for the linear constraint (8.52). In this case, the Wigner semi–circle law is indeed
translated by a factor c (figure not shown here).

Next, in order to illustrate a case which is not covered by our analysis, we want to sample the
spectrum of those matrices whose determinant is equal to ±1. In our context, this corresponds to
the configurations x ∈ (Rd)N with

∏N
i=1 |xi| = 1. By taking the logarithm, this constraint is actually

of the form (8.42) (by Remark 8.21 the conditioned probability measure (8.39) does not depend the
parametrization) with

∀x ∈ (Rd)N , ξ(x) =
1

N

N∑
i=1

log |xi|. (8.56)
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Figure 8.6 – Study of the quartic confinement for N = 50 with the quadratic statistics con-
straint (8.53)-(8.54) where c = 1 (left), and with the constraint (8.55) with c = 0.5 (right). This
has to be compared to the unconstrained distribution in Figure 8.3 (left).

We plot in Figure 8.7 the distribution for n = 300, T = 105 and ∆t = 0.05 for the unconstrained
log-gas, and with the constraint (8.56) for ∆t = 0.01 (starting with particles equally spaced over the
interval [−1, 1]). We observe what looks like a symmetrized Marchenko–Pastur distribution. Actually
Remark 8.13 suggests that the effective potential of the constrained distribution is | · |2 − α log | · | for
some α > 0, which is not that far from the Laguerre potential | · | − α log | · |.

Figure 8.7 – Study of the one dimensional log-gas for N = 300 without constraint (top) and with the
constraint (8.52) (bottom). This corresponds to a deformation of the semi–circle distribution.
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8.5 Proofs

8.5.1 Proof of Theorem 8.1

This section is devoted to the proof of Theorem 8.1. The following lemma is some sort of quantitative
Wasserstein version of [55, Lemma C.1].

Lemma 8.28 (Translation). Let d > 1, p > 1, µ1, µ2 ∈ Pp(Rd) and ϕ : Rd → R be a measurable
function. Then for all m1,m2 ∈ Rd,

dpWp
(µ1 ∗ δm1

, µ2 ∗ δm2
) 6 2p−1|m1 −m2|p + 2p−1dpWp

(µ1, µ2).

Moreover, if mi = a
(∫
ϕdµi

)
for i = 1, 2 and a ∈ Rd, then

dWp
(µ1 ∗ δm1

, µ2 ∗ δm2
) 6 2

p−1
p (1 + |a|p‖ϕ‖pLip)

1
p dWp(µ1, µ2).

Note that the right hand side is infinite if ϕ is not Lipschitz.

Proof. We have, by using the infimum formulation of the distance dWp ,

dpWp
(µ1 ∗ δm1 , µ2 ∗ δm2) 6 2p−1|m1 −m2|p + 2p−1dpWp

(µ1, µ2),

where we used the convexity inequality |u+ v|p 6 2p−1(|u|p + |v|p) valid for all u, v ∈ Rd. Then

|m1 −m2| =
∣∣∣∣a(∫

Rd
ϕd(µ1 − µ2)

)∣∣∣∣ 6 |a|‖ϕ‖LipdW1
(µ1, µ2) 6 |a|‖ϕ‖LipdWp

(µ1, µ2),

which is the claimed estimate.

The following lemma is a d-dimensional version of the factorization lemma in [88]. It expresses
a non obvious independence between the center of mass and the shape of the cloud of particles
distributed according to PN . As noticed in [88], it reminds the structure of certain continuous spins
systems such as in [81, 321].

Lemma 8.29 (Factorization). Let us assume that the assumptions of Theorem 8.1 are satisfied, and
define u = (v, . . . , v) ∈ (Rd)N . Let π and π⊥ be the orthogonal projections in (Rd)N on the linear
subspaces

L = Ru and L⊥ =
{
x ∈ (Rd)N : x · u = 0

}
.

Then, abridging XN into X, the following properties hold:

• for all x ∈ (Rd)N , denoting s(x) = x1+···+xN
N ∈ Rd, we have

π(x) = (s(x) · v)u =
(
(s(x) · v)v, . . . , (s(x) · v)v

)
,

π⊥(x) = x− π(x) = x− (s(x) · v)u =
(
x1 − (s(x) · v)v, . . . , xN − (s(x) · v)v

)
;

• π(X) and π⊥(X) are independent random vectors;

• π(X) is Gaussian with law N
(

0, N
2βN

)
u, so that s(X) · v has law N

(
0, N

2βN

)
;

• π⊥(X) has law of density proportional to x ∈ L⊥ 7→ e−βNHN (x) with respect to the trace of the
Lebesgue measure on the linear subspace L⊥ of RdN−1.

Proof of Lemma 8.29. Since |v| = 1, we have |u| =
√
N , so the orthonormal projection on L reads,

for x ∈ (Rd)N ,

π(x) =
x · u
|u|2

u =

(
1

N

N∑
i=1

xi · v

)
u =

(
s(x) · v

)
u.

The expression of π⊥ follows easily. For all x ∈ (Rd)N , from x = π(x) + π⊥(x) we get

|x|2 = |π(x)|2 + |π⊥(x)|2.
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On the other hand, for all i, j ∈ {1, . . . , N} it holds

xi − xj = π(x)i + π⊥(x)i − π(x)j − π⊥(x)j

= s(x) + π⊥(x)i − s(x)− π⊥(x)j

= π⊥(x)i − π⊥(x)j .

Since V (x) = |x|2, it follows that for all x = (x1, . . . , xN ) ∈ (Rd)N ,

HN (x) =
1

N
|x|2 +

1

N2

∑
i6=j

g(xi − xj) =
1

N
|π(x)|2 +HN

(
π⊥(x)

)
.

Now, let u1, . . . , udN be an orthogonal basis of (Rd)N = RdN with u1 = u/
√
N ∈ L. For all x ∈ (Rd)N

we write x =
∑dN
i=1 ti(x)ui. We have π(x) = t1(x)u1 = (s(x) · v)u and π⊥(x) =

∑dN
i=2 ti(x)ui. Then,

since βN = βN2 we have, for all bounded measurable f : L→ R and g : L⊥ → R,

E
[
f
(
π(X)

)
g
(
π⊥(X)

)]
= Z−1

∫
(Rd)N

f
(
π(x)

)
g
(
π⊥(x)

)
e−

βN
N |π(x)|2e−βNHN (π⊥(x))dx1 · · · dxN

= Z−1
(∫

R
f(t′)e−

βN
N |t

′|2dt′
)(∫

RdN−1

g(t′′)e−βNHN (t′′)dt′′
)
,

where t′ = t1u1, dt′ = dt1, t′′ =
∑dN
i=2 tiui and dt

′′ =
∏dN
i=2 dti. This concludes the proof of the last

two points of the lemma.

We can now turn to the proof of Theorem 8.1.

Proof of Theorem 8.1. Thanks to Lemma 8.29, we have, denoting again by u = (v, . . . , v) ∈ (Rd)N ,

Law

(
XN

∣∣∣∣∣ 1

N

N∑
i=1

ϕ(Xi) = 0

)
= Law

(
XN

∣∣∣∣∣ 1

N

N∑
i=1

XN,i · v = c

)
= Law

(
XN

∣∣∣ s(XN ) · v = c
)

= Law
(
XN

∣∣∣ (s(XN ) · v
)
u = cu

)
= Law

(
XN

∣∣∣π(XN ) = cu
)

= Law
(
cu+ π⊥(XN )

)
= Law

(
X̃N

)
, (8.57)

where X̃N = cu+ π⊥(XN ) = cu+XN − π(XN ). We also have

X̃N =
((
c−s(XN ) ·v

)
v+XN,1, . . . ,

(
c−s(XN ) ·v

)
v+XN,N

)
where s(XN ) =

XN,1 + · · ·+XN,N

N
.

In other words (recall that ϕ(x) = x · v − c)

X̃N =
(
XN,1 −

1

N

N∑
i=1

ϕ(XN,i)v, . . . ,XN,N −
1

N

N∑
i=1

ϕ(XN,i)v
)
,

so that

µ̃N =
1

N

N∑
i=1

δX̃N,i = µN ∗ δmN where µN =
1

N

N∑
i=1

δXN,i and mN = v

∫
ϕdµN .

Thanks to the assumptions on V and g we know that the equilibrium measure µ? is the uniform
distribution on a ball of radius 1. Now we note that ‖ϕ‖Lip 6 1 and

∫
ϕdµ? = c, so that by

Lemma 8.28, denoting µϕ = δcv ∗ µ, for all p > 1, there exists cp > 0 with

dWp
(µ̃N , µ

ϕ) 6 cpdWp
(µN , µ?). (8.58)
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On the other hand, the large deviations principle [84, Proof of Theorem 1.1(4)] when βN/N → +∞
gives, for all ε > 0, ∑

N

P
(
dBL(µN , µ?) > ε

)
<∞ (8.59)

(alternatively we could use the concentration of measure [85, Theorem 1.5] and get the result for dW1 as
well). This summable convergence in probability towards a non-random limit, known as complete con-
vergence [429], is equivalent, via Borel–Cantelli lemmas, to state that almost surely, limN→∞ dBL(µN , µ?) =
0, regardless of the way we defined the random variables XN and thus the random measures µN on
the same probability space.

In order to upgrade the convergence from dBL to dWp
for all p > 1, we note that from [85, Theorem

1.12], there exists r0 > 0 such that for all r > r0,∑
N

P
(

max
16k6N

|XN,k| > r

)
<∞. (8.60)

Now for all p > 1 and all µ, ν ∈ P(Rd) supported in the ball of Rd of radius r > 1, we have

dpWp
(µ, ν) 6 (2r)p−1dW1

(µ, ν) 6 r(2r)p−1dBL(µ, ν).

Also, by combining (8.59) and (8.60), we obtain that for all p > 1 and all ε > 0,∑
N

P
(
dWp

(µN , µ?) > ε
)
<∞. (8.61)

By the Borel–Cantelli lemma, for all p > 1, almost surely, limN→∞ dWp
(µN , µ?) = 0, regardless of

the way we define the random variables XN on the same probability space. Finally, since p 7→ dWp is
monotonic in p, we can make the almost sure event valid for all p by taking the intersection of all the
almost sure events obtained for integer values of p.

By combining (8.61) with (8.58), we obtain that for all p > 1 and ε > 0,∑
N

P
(
dWp

(µ̃N , µ
ϕ) > ε

)
<∞. (8.62)

Now if YN is a random vector of (Rd)N such that Law(YN ) = Law(XN |ϕ(XN,1)+ · · ·+ϕ(XN,N ) = 0)

then, denoting by µYN = 1
N

∑N
i=1 δYN,i , using (8.57) and the fact that µϕ is deterministic, we get

dWp
(µYN , µ

ϕ)
d
= dWp

(µ̃N , µ
ϕ).

Therefore, from (8.62) we get, for all p > 1 and all ε > 0,∑
N

P
(
dWp

(µYN , µ
ϕ) > ε

)
<∞.

By the Borel–Cantelli lemma, for all p > 1, almost surely, limN→∞ dWp
(µYN , µ

ϕ) = 0, regardless of the
way we define the random variables YN on the same probability space. Finally, since dWp is monotonic
in p, we can make the almost sure event valid for all p by taking the intersection of all the almost sure
events obtained for integer values of p.

Note that the above proof relies crucially, via Lemma 8.29, on the quadratic nature of V . However
the Coulomb nature of g is less crucial and the result should remain essentially valid provided that the
convergence to the equilibrium measure holds, for instance at the level of generality of the assumptions
of the large deviations principle in [84].

8.5.2 Proofs of Section 8.3.1

We start with the proof of the abstract Gibbs conditioning principle.

Proof of Proposition 8.3. The set IB defined in (8.21) is not empty because the infimum is finite
by (8.20), B is closed and I has compact level sets (which also implies that I is lower semicontinuous),
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so the infimum is attained at least for one measure. Moreover, IB is closed by lower semicontinuity
of I. Now, since

1

βN
logP

(
YN ∈ Aε

∣∣∣ YN ∈ B) =
1

βN
logP (YN ∈ Aε ∩B)− 1

βN
logP (YN ∈ B) ,

the result follows from an upper bound on P(Aε ∩B) and a lower bound on P(B). The upper bound
of the large deviations principle implies that

lim
N→+∞

1

βN
logP (YN ∈ Aε ∩B) 6 − inf

Aε∩B
I. (8.63)

Assume first that Aε ∩B 6= ∅. Since Aε = {y ∈ Y, d(y,IB) > ε}, the lower semi-continuity of I
shows that there exists cε > 0 for which

inf
Aε∩B

I > cε + inf
B
I,

so that
lim

N→+∞

1

βN
logP (YN ∈ Aε ∩B) 6 − inf

B
I − cε. (8.64)

If Aε ∩B = ∅, the infimum in the right hand side of (8.63) is equal to +∞ so that (8.64) still holds.
The lower bound for the set B reads

lim
N→+∞

1

βN
logP (YN ∈ B) > − inf

B̊
I.

Since B satisfies (8.20), it holds

lim
N→+∞

− 1

βN
logP (YN ∈ B) 6 inf

B
I,

which, together with (8.64), leads to (8.22).
Finally, if Y ′N ∼ Law(YN | YN ∈ B) and if we define the Y ′N ’s on the same probability space then,

for all ε > 0, by the Borel–Cantelli lemma,
∑
N P(Y ′N ∈ Aε) < ∞ and thus, almost surely, Y ′N 6∈ Aε

for large enough N . Since the set Aε depends on ε > 0, by taking ε→ 0 with ε ∈ Q, we obtain that
almost surely, limN→∞ d(Y ′N ,IB) = 0.

We next recall elements of proof for the properties of the rate function E .

Proof of Proposition 8.5. Consider a probability measure µ ∈ DE , so∫
Rd
V (x)µ(dx) +

∫∫
Rd×Rd

g(x− y)µ(dx)µ(dy) < +∞.

Since V satisfies Assumption 8.4 and therefore beats g at infinity (in particular when d = 2), we have∫
Rd
|x|pµ(dx) < +∞,

for 1 < p < q. Thus DE ⊂ Pp(Rd).
In order to show the convexity of E is it sufficient to study that of J defined in (8.17). When

d > 3, this is a consequence of [84, Lemma 3.1]. In the case d = 2, convexity over DE is also shown
in [84, Section 3]. Note that convexity is in general due to a Bochner-type positivity of the interaction
kernel.

Finally, the existence of a unique minimizer with compact support solving (8.24) follows from [84,
Theorem 1.2] for d > 3 and [380, Chapter I, Theorem 1.3] for d = 2. Since the minimizer of E
over P(Rd) has compact support, the three problems in (8.23) clearly coincide.

We finally present the proof of Theorem 8.7, which is a consequence of Proposition 8.3 and the
Borel–Cantelli lemma.
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Proof of Theorem 8.7. Under PN , the empirical measure µN associated to XN satisfies a LDP in the
p-Wasserstein topology with good rate function E . Since B is assumed to be a closed continuity set for
the p-Wasserstein topology, the set EB defined in (8.26) is closed and non-empty by Proposition 8.3.

For simplicity we denote by

µYN =
1

N

N∑
i=1

δYN,i

the empirical measure associated to YN , where YN ∼ Law(XN |µN ∈ B). For any ε > 0, we define
the set Aε as in Proposition 8.3. Then, there exists cε > 0 such that∑

N

P
(
dWp(µYN ,EB) > ε

)
=
∑
N

P
(
dWp(µN ,EB) > ε

∣∣ µN ∈ B)
=
∑
N

P
(
µN ∈ Aε

∣∣ µN ∈ B)
6 C

∑
N

e−βNcε < +∞,

for some C > 0. Since βN � N , the Borell–Cantelli lemma implies that

lim
N→∞

dWp

(
µYN ,EB

)
= 0,

almost surely in any probability space, which concludes the proof.

8.5.3 Proof of Theorem 8.9
The proof is decomposed into four steps. We first show that under Assumption 8.8, the set B is an
I-continuity set for the electrostatic energy E . Next, we show that any minimizer of E over B has
a compact support, and hence the minimizer is actually unique. The last two steps characterize the
minimizer through (8.29).

Step 1: I-continuity. Let us first show that B is closed for the p-Wasserstein topology by showing
that Bc = {µ ∈ Pp(Rd) |µ(ϕ) > 0} is open. Take µ ∈ Bc and ν such that dWp

(µ, ν) 6 ε
1
p for some

ε > 0. By definition of the p-Wasserstein distance it holds

sup
f∈L1(µ), g∈L1(ν)
f(x)6g(y)+|x−y|p

(∫
Rd
f dµ−

∫
Rd
g dν

)
6 ε. (8.65)

Since ‖ϕ‖∞,p < +∞, for any µ, ν ∈ Pp(Rd) it holds ϕ ∈ L1(ν)∩L1(µ). Moreover, ‖ϕ‖Lip < +∞ and ϕ
cannot be a constant function because this would contradict the existence of µ± in Assumption 8.8,
so ‖ϕ‖Lip > 0. As a result, for |x− y| > 1 we have

|ϕ(x)− ϕ(y)| 6 ‖ϕ‖Lip|x− y| 6 ‖ϕ‖Lip|x− y|p.

Therefore, ϕ/‖ϕ‖Lip satisfies the inf-convolution condition in (8.65) and we may pick f = g = ϕ/‖ϕ‖Lip

so that ∫
Rd

ϕ

‖ϕ‖Lip
dµ−

∫
Rd

ϕ

‖ϕ‖Lip
dν 6 ε,

which becomes
ν(ϕ) > µ(ϕ)− ε‖ϕ‖Lip > 0 for ε <

µ(ϕ)

‖ϕ‖Lip
.

As a result, Bc is open and B is closed for the p-Wasserstein topology.
We now prove that B is an I-continuity set, namely that (8.28) holds. By the same reasoning as

above, the existence of µ− ∈ DE such that µ−(ϕ) < 0 ensures that µ− ∈ B̊ so

inf
B̊
E < +∞.

Since B is closed and E has compact level sets (in particular it is lower semicontinuous), there exists µ̄
such that

E(µ̄) = inf
B
E .
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If µ̄(ϕ) < 0, it holds µ̄ ∈ B̊ and the proof is complete. Thus we may assume that µ̄(ϕ) = 0 and, by
considering a minimizing sequence, for any ε > 0 we may find µε ∈ B̊ such that

E(µε) 6 inf
B̊
E + ε. (8.66)

For t ∈ [0, 1], we introduce µt = tµε + (1− t)µ̄ ∈ DE . Since µ̄(ϕ) = 0 it holds µt ∈ B̊ for any t ∈ (0, 1].
By convexity of E on its domain we have

E(µt) 6 tE(µε) + (1− t)E(µ̄).

We now proceed by contradiction by assuming that E(µ̄) = infB̊ E−η for some η > 0. Recalling (8.66),
we have for some ε > 0 and any t ∈ (0, 1]

E(µt) 6 t

(
inf
B̊
E + ε

)
+ (1− t)

(
inf
B̊
E − η

)
= inf

B̊
E + tε− (1− t)η.

Considering
t <

η

ε+ η
,

we obtain that µt ∈ B̊ with
E(µt) < inf

B̊
E ,

which is a contradiction. Therefore, (8.28) holds true.

Step 2: the minimizer is unique and has compact support. We now show that any min-
imizer µϕ has a compact support, before turning to uniqueness. We detail the proof for d > 3
following [84] by highlighting the necessary modifications, and leave the proof for d = 2 to the reader
(which is deduced from [380, Chapter I, Theorem 1.3]). We introduce

ζ = inf
B
E

and, for any compact K,

ζK = inf
BK
E , where BK = {µ ∈ B | supp(µ) ⊂ K}.

By Assumption 8.8, BK is non empty for K large enough (consider µ− restricted to K). By Assump-
tion 8.4, for any constant C the set

K =
{
x ∈ Rd, V (x) 6 C

}
is compact. In all what follows, we assume that V > 0. Since V is lower bounded and defined up to
a constant, there is no loss of generality.

Let us show that ζ = ζK for C large enough. Since the minimizers on B and B̊ coincide, we can
consider a measure µ ∈ B such that µ(ϕ) < 0 and E(µ) 6 ζ+1. If µ(K) = 1, the measure has compact
support and we are done, so we assume that µ(K) < 1. The goal of the following computations is to
build a measure µK ∈ B supported in K such that E(µK) < E(µ); this contradiction will show that ζ
and ζK are equal. Let us first show that µ(K) > 0 for C large enough. Indeed,

ζ + 1 > E(µ) =

∫
K

V dµ︸ ︷︷ ︸
>0

+

∫
Kc

V dµ+ J(µ)︸︷︷︸
>0

> C(1− µ(K)),

which shows that µ(K) > 0 if C > ζ + 1. We may therefore define the restriction

µK( · ) =
µ(K ∩ · )
µ(K)

.

Since µ(K) < 1, we define similarly µKc . The measure µ then reads

µ = µ(K)µK + (1− µ(K))µKc .
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Moreover, we chose µ such that µ(ϕ) < 0, so it holds µK ∈ BK for C large enough. Using the
positivity of V and J (since d > 3 it holds g > 0), and µ(K) < 1, we obtain that

E(µ) > µ(K)

∫
Rd
V dµK + (1− µ(K))

∫
Rd
V dµKc + µ(K)2J(µK)

> µ(K)2J(µK) + µ(K)2

∫
Rd
V dµK + (1− µ(K))C

> µ(K)2E(µK) + (1− µ(K))C.

Let us proceed by contradiction by assuming that E(µK) > E(µ), which leads to

E(µ) > µ(K)2E(µ) + (1− µ(K))C.

Since E(µ) 6 ζ + 1 we obtain

(ζ + 1)(1− µ(K)2) > (1− µ(K))C.

Simplifying by 1− µ(K) we have
2(ζ + 1) > C,

which is absurd for C > 2(ζ+1). Since µK ∈ B for C large enough, this shows that ζ and ζK coincide
and that any minimizer has compact support.

In the above proof, the only modification with respect to previous works (see for instance [84]) is
to check that the restricted measure µK satisfies the constraint for C large enough. This is done by
picking the measure µ close to the minimum and such that µ(ϕ) < 0. The same strategy can be used
in the situation where d = 2 by writing

E(µ) =

∫∫
Rd×Rd

(
V (x) + V (y)

2
− log |x− y|

)
µ(dx)µ(dy),

and adapting [380, Chapter I, Theorem 1.3] since V (x) + V (y) dominate log |x − y| at infinity by
Assumption 8.4.

In order to show that the minimizer is unique, it suffices to notice that for two probability measures
µ, ν with compact support, it holds J(ν−µ) = 0 if and only if µ = ν, see [284, Theorems 1.15 and 1.16].

Step 3: Lagrange multiplier. We now turn to a first step towards the expression of µϕ involving
a Lagrange multiplier α. We adapt the proof of [26, Theorem 3.1] by introducing the following subset
of R2:

R =
{(
E(µ)− E(µϕ) + a0, µ(ϕ) + a1

)
: a0 > 0, a1 > 0, µ ∈ DE

}
. (8.67)

Since E is convex on its domain DE (which is convex), R is a non void convex subset of R2 that does
not contain (0, 0) (recall also that DE ⊂ Pp(Rd) so the constraint takes finite values). Separating R
from (0, 0) with a hyperplane (see [26, Corollary 1.41]), this ensures the existence of (α0, α1) ∈
R2 \ {(0, 0)} such that, for any µ ∈ DE and a0, a1 > 0 it holds

α0

(
E(µ)− E(µϕ) + a0

)
+ α1

(
µ(ϕ) + a1

)
> 0.

By taking a1 → −µϕ(ϕ) > 0 and µ = µϕ in the above equation, we obtain that α0 > 0. Then,
choosing µ = µϕ, a0 → 0 and a1 > −µϕ(ϕ) > 0 we find α1 > 0. Taking a0, a1 → 0, we obtain

∀µ ∈ DE , α0E(µϕ) 6 α0E(µ) + α1µ(ϕ). (8.68)

We now prove that α0 > 0 by contradiction, using a kind of qualification of constraint argument. If
α0 = 0, (8.68) becomes

∀µ ∈ DE , 0 6 α1µ(ϕ).

Since α1 6= 0 in this case, the above equation contradicts Assumption 8.8 by taking µ = µ−, so α0 > 0
and we may renormalize (8.68) into

∀µ ∈ DE , E(µϕ) 6 E(µ) + αµ(ϕ), (8.69)

where we set α = α1/α0 > 0.
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Finally, we show that either µϕ = µ?, in which case α = 0, or µϕ(ϕ) = 0 and α > 0. First, if
µ? ∈ B, µ? satisfies the constraint and we know from Proposition 8.5 that it solves (8.29) with α = 0.
Otherwise, it holds µ?(ϕ) > 0. Assume that µϕ(ϕ) < 0 and take µ = µϕ in (8.69), so

αµϕ(ϕ) > 0,

which implies α = 0. Therefore, (8.69) implies that µϕ is the global minimizer µ?, which is in
contradiction with µ?(ϕ) = µϕ(ϕ) < 0, so the minimizer actually saturates the constraint and α > 0.

Step 4: potential equation. In order to derive the equation for µϕ, we follow [84, Section 4] by
introducing the modified potential and electrostatic energy, for µ ∈ P(Rd),

Vα = V + αϕ, Eα(µ) =

∫
Rd
Vα(x)µ(dx) + J(µ).

Since the case when α = 0 corresponds to no-conditioning and we already know the equation satisfied
by the equilibrium measure in this case, we restrict our attention to the situation in which α > 0 and
µϕ(ϕ) = 0. We define next, for any µ ∈ DE ,

∀ t ∈ (0, 1), ψ(t) = Eα
(
(1− t)µϕ + tµ

)
.

Because of (8.69) and the convexity of ψ, it holds ψ′(0) > 0, so that

0 6 ψ′(0) =

∫
Rd
Vα d(µ− µϕ) + 2J(µϕ, µ− µϕ)

6
∫
Rd
Vα dµ+ 2J(µϕ, µ)−

(∫
Rd
Vα dµ

ϕ + 2J(µϕ, µϕ)

)
6
∫
Rd

(Vα + 2Uµϕ)dµ− Cϕ,

where we set Uµϕ = µϕ ∗ g and

Cϕ =

∫
Rd
Vα dµ

ϕ + 2J(µϕ, µϕ) =

∫
Rd

(V + 2Uµϕ) dµ,

since µϕ(ϕ) = 0. The above inequality may be rewritten as

∀µ ∈ DE ,
∫
Rd

(Vα + 2Uµϕ − Cϕ) dµ > 0,

which proves the second line of (8.29) (by definition of quasi-everywhere).
Let us now prove the first line in (8.29) by contradiction. Assume that there is x ∈ supp(µϕ)

such that Vα(x) + 2Uµϕ(x) > Cϕ. Since µϕ has compact support, Uµϕ is lower semi-continuous [284,
page 59]. By lower semi-continuity of V , there exists a neighborhood U of x and ε > 0 such that

∀x ∈ U , Vα(x) + 2Uµϕ(x) > Cϕ + ε.

Integrating with respect to µϕ and using µϕ(ϕ) = 0 leads to

Cϕ =

∫
Rd

(Vα + 2Uµϕ) dµϕ =

∫
U

(V + 2Uµϕ) dµϕ +

∫
Rd\U

(V + 2Uµϕ) dµϕ

> (Cϕ + ε)µϕ(U) +

∫
Rd\U

(V + 2Uµϕ) dµϕ.

Since Vα + 2Uµϕ > Cϕ quasi-everywhere and µϕ ∈ DE , the above inequality becomes

Cϕ =

∫
Rd

(Vα + 2Uµϕ) dµϕ > Cϕ + εµϕ(U).

We reach a contradiction by noting that µϕ(U) > 0 since U is a neighborhood of x ∈ supp(µϕ) (and
using the definition of the support), which proves the first line of (8.29).
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8.5.4 Proof of Theorem 8.16
We outline the proof of Theorem 8.16, which follows the same lines as in the linear case.

Proof. We show below that B defined in (8.32) is closed for the p-Wasserstein topology under As-
sumption 8.14. For this, we show that Bc is open by picking µ ∈ Pp(Rd) such that Q(µ) > 0 and
using again that, for ε > 0 and ν ∈ Pp(Rd) such that dWp(µ, ν) 6 ε

1
p , it holds, by (8.15),

sup
f∈L1(µ), g∈L1(ν)
f(x)6g(y)+|x−y|p

(∫
Rd
f dµ−

∫
Rd
g dν

)
6 ε. (8.70)

First, we note that for any µ, ν ∈ Pp(Rd) it holds ‖Uψµ ‖∞,p < +∞ and ‖Uψν ‖∞,p < +∞. Therefore,
Uψµ ∈ L1(µ) ∩ L1(ν) and Uψν ∈ L1(µ) ∩ L1(ν) for any probability measures µ, ν with moments of
order p. Next, by (8.34), it holds ‖Uψµ ‖Lip 6 CLip and ‖Uψν ‖Lip 6 CLip. We assume for now that these
norms are non-zero, so we may first choose, f = g = Uψµ /‖Uψµ ‖Lip, which leads to

Q(µ)−
∫∫

Rd×Rd
ψ(x, y)ν(dx)µ(dy) 6 ε‖Uψµ ‖Lip. (8.71)

Symmetrically we take f = g = −Uψν /‖Uψν ‖Lip, which leads to∫∫
Rd×Rd

ψ(y, x)ν(dx)µ(dy)−Q(ν) 6 ε‖Uψν ‖Lip. (8.72)

By summing (8.71) and (8.72) and using the symmetry of ψ, we obtain

Q(ν) > Q(µ)− ε
(
‖Uψν ‖Lip + ‖Uψµ ‖Lip

)
> Q(µ)− 2CLipε. (8.73)

This shows that Q(ν) > 0 for ε < Q(µ)/(2CLip). To finish the argument, we consider the cases
where the Lipschitz norm of the potentials generated by µ and ν may be zero. Suppose first that
‖Uψµ ‖Lip = 0. This implies the existence of cµ ∈ R such that

∀x ∈ Rd,
∫
Rd
ψ(x, y)µ(dy) = cµ. (8.74)

Integrating the above equation with respect to µ shows that cµ = Q(µ) > 0. As a result, if ‖Uψµ ‖Lip = 0

and ν is such that ‖Uψν ‖Lip > 0 we can consider (8.72), which becomes (integrating (8.74) with respect
to ν)

Q(ν) > Q(µ)− ε‖Uψν ‖Lip > Q(µ)− εCLip.

In this case, Q(ν) > 0 for ε < Q(µ)/CLip. Then, if ‖Uψν ‖Lip = 0 it holds, for some cν ∈ R,

∀x ∈ Rd,
∫
Rd
ψ(x, y)ν(dy) = cν . (8.75)

Integrating with respect to µ and using the symmetry of ψ we obtain that cν = cµ > 0. Integrating
next (8.75) with respect to ν shows that Q(ν) = cµ = Q(µ) > 0. Finally, if ‖Uψµ ‖Lip > 0 but
‖Uψν ‖Lip = 0, (8.75) holds with cν = Q(ν) so that (8.71) becomes

Q(ν) > Q(µ)− εCLip,

and the same conclusion follows. As a result, in any case the measures ν such that dWp
(µ, ν) 6 ε

1
p

for ε < Q(µ)/(2CLip) belong to Bc so that Bc is open and B is closed in the p-Wasserstein topology.
We next show that B is an I-continuity set. The existence of µ− ∈ DE such that Q(µ−) < 0

ensures that
inf
B̊
E < +∞.

Since E has compact level sets and B is closed, there exists µ̄ such that

E(µ̄) = inf
B
E .
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If Q(µ̄) < 0, I-continuity is proven, so we may assume that Q(µ̄) = 0. Like in the linear case, we may
take µε ∈ B̊ such that

E(µε) 6 inf
B̊
E + ε,

and consider the convex combination µt = tµε + (1 − t)µ̄ for t ∈ (0, 1). The convexity of Q shows
that, for any t ∈ (0, 1) it holds

Q(µt) 6 tQ(µε) + (1− t)Q(µ̄) < 0,

so that µt ∈ B̊. Proceeding by contradiction by supposing that E(µ̄) < infB̊ E , we obtain that for
t > 0 small enough it holds µt ∈ B̊ and

E(µt) < inf
B̊
E ,

which is a contradiction, proving that B is an I-continuity set.
One can next follow the step 2 of the proof of Theorem 8.9 to show that the minimizer µψ is unique

with compact support.
At this stage, the rest of Theorem 8.16 follows like the proof of Theorem 8.9. In particular, we

can introduce a set similar to (8.67) by setting

R =
{(
E(µ)− E(µϕ) + a0, Q(µ) + a1

)
: a0 > 0, a1 > 0, µ ∈ DE

}
.

The set R is convex by convexity of Q, so the same convex separation theorem can be used, and we
can show that there exists α > 0 such that

∀µ ∈ DE , E(µψ) 6 E(µ) + αQ(µ).

In this procedure, we use the existence of µ± from Assumption 8.14 in order to reproduce the qualifi-
cation of constraint argument. This leads to computations where the interaction energy J is replaced
by

Jα(µ, ν) = J(µ, ν) + α

∫∫
Rd×Rd

ψ(x, y)µ(dx)µ(dy),

which leads to (8.36) by following the step 4 of the proof of Theorem 8.9.

We insist on the importance of the convexity of Q for the above proof to be valid.
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