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ABSTRACT

his habilitation thesis outlines some methods and tools resulting from my research activities

during the last ten years as well as my scientific projects for a near future. These methods and

tools have been developed for knowledge graph refinement in the context of Web of data. We
are experiencing an unprecedented production of resources published as Linked Open Data (LOD, for
short). This has led to the creation of knowledge graphs (KGs) containing billions of RDF (Resource
Description Framework) triples, such as DBpedia, YAGO and Wikidata on the academic side, and the
Google Knowledge Graph or eBay Knowledge Graph or Facebook Graph on the commercial side. However,
building knowledge graphs while ensuring their completeness and correctness, is a challenging endeavour.
For this challenging problem, my research contributions have focused on several issues. First, identity
link invalidation problem for which we developed two main approaches relying on either the semantics
of ontology axioms to detect inconsistency in the KGs or on the network structure of identity links to
assign an error degree for every identity link in the LOD. Second, in the settings of scientific KGs, we
defined a generic approach for detecting contextual identity links representing a weak identity relation
between entities that is valid in an explicit context expressed as a sub-part of the ontology. This approach
is a contribution to the overcoming problem of the strict semantics of owl:sameAs predicate, that is not
required in all application domains. Third, we proposed a data fusion approach that is able to aggregate
data coming from different sources and to compute a unique representation for a set of given linked
entities. Furthermore, to deal with missing value prediction, we developed an approach that relies on
data linking and case-based reasoning to predict missing values. Finally, to enrich the conceptual level of
KGs with new key axioms, that are particularly important for detecting identity links, we defined three
efficient methods: KD2R, for discovering exact keys, SAKey for discovering n-almost keys and VICKEY for
discovering conditional keys. These three methods are based on computing first the maximal non-keys and
then deriving the minimal keys, and apply several strategies to prune the search space.

Overall these approaches have been developed in collaboration with several fellow researchers, in the
setting of several PhD theses, post-docs and master theses; some of them in the context of ANR, CNRS
and industrial research projects, involving different organisms and companies, such as, INRA, INA, ABES,
IGN and Thales.

Keywords: Knowledge Graphs, Ontology, Identity Management, Data Linking, Link Invalidation, Key

Discovery, Data Fusion and Missing Value Prediction
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CHAPTER

INTRODUCTION

“The acquisition of knowledge is always of use to the intellect, because it may thus drive out

useless things and retain the good. For nothing can be loved or hated unless it is first known”

— Leonard da Vinci.

1.1 General Context

he idea of feeding intelligent systems and agents with general formalized knowledge of

the world dates back to classic Artificial Intelligence (AI) in 1980s [116]. Indeed, according

to the knowledge principle: “if a program is to perform a complex task well, it must know a
great deal about the world in which it operates.” [79], the exploitation of knowledge that describes
the environment in which Al applications are operating may lead to breaking the locks and thus
allow them to reach their full potential.

Today, we are experiencing an unprecedented production of resources, published as Linked
Open Data (LOD, for short). This is leading to the creation of knowledge graphs (KGs) containing
billions of RDF (Resource Description Framework) [86] triples, such as DBpedia, YAGO and
Wikidata on the academic side, and the Google Knowledge Graph or eBay Knowledge Graph on
the commercial side. These KGs contain millions of entities (such as people, proteins, or books),
and millions of facts about them. These KGs are either domain-specific, like KnowLife [47] for
life sciences, DOREMUS [3] for musical works, or domain-independent, like Yago, DBpedia,
Wikidata. They contain knowledge that is typically expressed in RDF , i.e., as statements of the
form <subject, predicate, object> such as <Macron, presidentOf, France>. By proposing RDF as a
standard, researchers from Semantic Web community have promoted graph-based representation

of knowledge. In such graphs, the nodes represent entities (e.g. Paris) that may have types (e.g.
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CHAPTER 1. INTRODUCTION

Paris is a City), the edges represent relations between entities (e.g., hasMayor). Sometimes, the
various types and relations are represented in an OWL2 (Web Ontology Language) [97] ontology,
which defines their interrelations and axioms such as, subsumption, disjunction and functionality
of properties.

The term knowledge graph has been proposed by Google referring to the the use of semantic
knowledge in Web search (“Things, not strings”). There is no common formal definition of a
knowledge graph [45], but what is commonly established is that [102] a KG: describes entities
and relations organized in a graph, defines possible classes of entities and relations in a schema
(ontology), enables linking arbitrary entities with each other, may cover different domains and
applies reasoners to derive new knowledge [102]. Usually, the number of instance-level (A-Box)
statements is by several orders of magnitude larger than the number of schema level (T-Box)
statements. For example, ontologies like DOLCE that do not contain instances would not be
considered as a knowledge graph. Different approaches have been adopted for constructing
knowledge graphs: (i) curated KGs like Cyc, (ii) created by the crowd like freebase and Wikidata
or (iii) created using information extraction tools from large-scale semi-structured knowledge
bases such as wikipedia, like Yago and DBpedia.

Knowledge graphs are acknowledged and more and more used by different applications and
services. Web search through search engines like Google or Bing are enhanced in such a way
to be able to provide structured and semantic information about topics in addition of lists of
links to other web pages and question answering (e.g. “Who is the mother of Barack Obama?”) is
significantly improved thanks to the use of KGs. Personal assistants like Microsoft Cortana and
Google assistant are also empowered by semantic knowledge allowing a natural knowledge access
and storage, smart chat bots, personalized and coherent dialogues and a better understanding of
the user needs based on the context. All these applications have gained in efficiency and quality of
service thanks to the use of KGs. Nevertheless, their efficiency is dependent on the quality of the
knowledge graphs they use. Building knowledge graphs while ensuring the good quality of their
content is a challenging endeavour. Indeed, whatever approach is used for building knowledge
graphs we can not guarantee their completeness, i.e. containing all pieces of information about
every entity in the universe, neither their correctness. Existing KGs usually attempt to reach a
trade-off between completeness and correction [152].

From a technical point of view KG incompleteness and inconsistency have various causes:

* heterogeneity of original sources, due to the use of various dataset schemas and vocabularies,
namely different entity types, different sets of properties, and different literal values to

describe the same entities in the original sources.

* uncertainty of the original sources, due to the inherent imprecision of the information
acquisition processes and tools, such as information extraction tools, use of sensors and

images processing.
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* cvolution of data and knowledge, due to the permanent changes of the real world entities
(e.g. objects movements, object transformations) and consequently to the evolution of the

data and knowledge describing them.

* cost of data and knowledge acquisition, due to the high cost of some scientific experiments
which may involve either costly materials or tremendous human effort, acquiring new data
and knowledge requires important fundings. Moreover, curated, valuable and critical data

and knowledge are often under private licences.

To address these shortcomings, refinement of Knowledge Graphs has to be dealt with. Con-
versely to Knowledge Graph Construction approaches that apply a set of methods to construct
the KG from scratch, Knowledge Graph Refinement consists in applying a series of methods to
improve the coverage or the correctness of an existing KG [102]. In one hand, these methods deal
with the expansion and the enrichment of KGs by focusing on one or several KG component(s),
namely, literal values, entity links, entity types, ontology axioms and ontology mappings. In the
other hand, these methods address the problem of validating the content of the KGs and propose
algorithms and models to deal with errors and ambiguities in KGs.

This HDR thesis outlines my contributions to Knowledge Graph Refinement problem for
both KG enrichment and validation. The reported results were obtained from 2008 to early
2018, as an Associate professor at Paris Sud University (LRI, UMR CNRS 8623, LaHDAK team)
through collaborations with colleagues and students, in particular, three PhD candidates, three

post-doctoral fellows and more than twenty master students.

1.2 Contributions

In direct line with the work carried out during my doctoral thesis [117] on data linking I have
focused on issues related on both knowledge graph enrichment and knowledge graph validation.
All the approaches that I present here have led to the development of software tools that were
used to conduct experiments on big and heterogeneous real datasets and benchmarks.

For knowledge graph enrichment, my contributions are the following:

¢ Identity link detection methods for instance level enrichment of the KG,

¢ Data fusion and missing value prediction methods for instance level enrichment of the KG,

¢ Key discovery methods for the conceptual level (T-Box) enrichment of the KG.

For the knowledge graph validation, I investigated the problem of identity link invalidation,

i.e. detection of erroneous identity links, for which I developed different approaches.
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CHAPTER 1. INTRODUCTION

Identity link detection and invalidation. In this direction I studied the problem of identity
in the Web of data, which is raised because of the erroneousness of some identity links published
on the Web [64]. These identity links are mostly represented by owl : sameAs predicate proposed
in OWL language as a standard for representing identity relation. However, its semantics is
as strict as the mathematical identity relation, i.e reflexive, symmetric, transitive and fulfils
the property sharing rule (VX,Y,Z owl : sameAs(X,Y)A p(X,Z) = p(Y,Z)). Hence, the use of
erroneous owl : sameAs links with such a strict semantics may lead to infer and propagate
errors in the knowledge graph. That is, to address this problem we explored two directions: (i)
define approaches to automatically invalidate links, i.e. detect erroneous owl : sameAs links and
(i1) define a new data linking approach which, instead of detecting so strict owl : sameAs links
discovers weaker identity links while providing explicit contexts (a sub-part of the ontology) in
which two resources are assumed to be identical and preserving reflexivity, symmetry, transitivity
and property sharing, of such links that we called contextual identity links. To evaluate and
validate the proposed approaches we conducted experiments on real datasets, that are the whole
Web of Data content for some approaches of identity link invalidation and complex scientific data
for the contextual identity detection, which represent for both approaches some of the worst cases
to handle.

Data fusion and missing value prediction. For data fusion problem, I developed a multi-
criteria approach [58, 122, 124], which given a set of identity links between resources computes
a unique representation of the entity referred by these resources. Thus, it uses data quality
criteria to compute a confidence degree and selects the best quality property values . To represent
the inherent uncertainty I studied several uncertainty models. Finally, to enrich even more
knowledge graphs, I investigated the problem of predicting new property values from the existing
data and knowledge. That is, I proposed an approach which applies a method, inspired from
data reconciliation, to group similar resources and then uses these groups to predict new values.
For the evaluation of these methods, I used real datasets from several domains, e.g. life science,

scientific publications and bibliographical data.

Key discovery. In order to enrich the ontology and to enhance the knowledge-based data
linking approaches I developed different methods for discovering keys (a set of properties that
uniquely identify instances) from RDF datasets. I developed, first KD2R [104] which was the first
approach that is able to discover keys that are valid in several RDF datasets. Then, I developed
SAKey [131], a scalable approach for the discovery of almost keys (i.e. keys with exceptions). After
that, I developed the VICKEY [134] method that is able to discover conditional keys, i.e. keys
that are valid on a subset of the dataset that fulfil a condition. To allow scalability two datasets
of millions of triples, all these methods apply efficient data filtering and search space prunings.

Finally, in [11], I proposed a theoretical and experimental comparison of different semantics of

4



1.3. MANUSCRIPT ORGANISATION

keys that exist in the literature. For the evaluation of these different approaches, experiments
on several datasets have been conducted to show both the scalability of the approaches and the

quality of the discovered keys.

All the approaches I chosen to present in this HDR form a coherent workflow that when
applied as depicted in Figure 1.1 leads to more complete and more consistent knowledge graphs:
(1) starting by the discovery of keys, (2) then, the use of these keys for detecting identity links
as I proposed in [117, 118], (3) after that an invalidation approach! may be applied to detect
erroneous identity links and finally, (4) apply a data fusion approach to merge all the considered
and linked knowledge graphs and thus obtaining a refined knowledge graph. I believe that the
more knowledge graph refinement is iterated the better the quality of the obtained knowledge
graphs will be.

1.3 Manuscript Organisation

I chosen to present some of my research work I did in the past ten years, by focusing only on those

that are related to knowledge graph refinement, each put in context, explained and discussed.

Chapter 2 (Background). I present the basics of RDF and OWL ontologies, and give formal
definitions for knowledge graphs, RDF graphs and identity links.

Chapter 3 (Identity Link Detection and Invalidation). I first present in section 3.1.1 the
state of the art on identity management problem. Then I present in section 3.2 my main
contributions to the detection of erroneous identity links. Finally, section 3.3 presents my

contributions to the problem of detecting contextual identity links in knowledge graphs.

Chapter 4 (Data Enrichment). I first present the related works in data enrichment in section
4.1. Then, I present two main contributions in this area, namely a data fusion approach in
section 4.3 and a data reconciliation-based approach for predicting missing property values

in a scientific knowledge base, in section 4.4.

Chapter 5 (Key Discovery). After a survey on key discovery problem in Semantic Web that I
present in section 5.1, I present in sections 5.2, 5.3 and 5.4 three methods, KD2R, SAKey
and VICKEY respectively, that I developed for key discovery in knowledge graphs.

Chapter 6 (Conclusion and Research Perspectives). Finally, I present a summary and my
forthcoming work, which mostly corresponds to challenges for enhancing the state-of-the-

art on Knowledge Graph Refinement techniques, for enabling improvements in the quality

1 An approach of contextual identity link detection may be applied at this stage to re-qualify erroneous identity
links or in place of stage classical data linking approaches (2).
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Figure 1.1: General Schema of Knowledge Graph Refinement

of KGs such as their veracity, and allowing new expressive and valuable knowledge to be

discovered.



CHAPTER

BACKGROUND

This chapter is dedicated to the background notions that are necessary for the description of the
bunch of our works that we have selected to be presented in this manuscript. The selected work
mainly concerns Knowledge Graphs (KGs) completion. For knowledge representation we rely on
the use of semantic Web technologies: (i) Web Ontology Language (OWL) is used to declare and
formally represent the knowledge of a given domain and, (ii) Resource Description Framework
(RDF) is used to uniformly and semantically describe entities (e.g., persons, locations, events).
The vocabulary that is used in RDF data may be declared in an OWL ontology. When ontologies
are expressive enough, axioms and rules can be declared to represent complex knowledge, such
as cardinalities, correlations, negative and positive constraints that are (always) fulfilled in the
domain. Thus, thanks to their logical semantics, automated reasoning can be applied to infer new
knowledge and/or contradictions in the KGs.

In what follows, we first define RDF graphs. Then we give a definition of ontologies and their

axioms (only the ones we exploited) and finally, we give our definition of knowledge graphs.

2.1 Knowledge Graphs

We consider knowledge graph as defined by an ontology @, represented in OWL 2 (Web Ontol-
ogy Language) [112], its associated dataset 2 represented as an RDF (Resource Description

Framework) graph composed of a collection of RDF [87] triples, and a set of ontology axioms.
Definition 2.1. (Knowledge Graph). A knowledge graph % is defined by a couple (G,2) where:

* 0 =(¥¢,2,4) represents the conceptual knowledge part of the knowledge graph de-
fined by: (i) a set of classes €, (ii) a set of properties & (owl:DataTypeProperty and

owl:0ObjectProperty) for which the domain and the range are specified, and (iii) a set

7



CHAPTER 2. BACKGROUND

of axioms «f declared in the ontology &. These axioms (see Section 2.4) allow representing
relations and constraints like subsumption, equivalence and disjunction between classes

and properties, (inverse) functionality of properties or key constraints for a given class.

* 9 represents the instance level of the knowledge graph. It is expressed through an RDF
Graph (see Definition 2.2) which represents a collection of RDF triples <s, p, o >, where
the subject s is a URI', the property p € 2 is also a URI, and the object o can be either a
URI or a Literal (e.g., String, Number, Date). We consider the URIs as belonging to the
set of resources R and the set of Literal values as belonging to the set of Literals L. We
define a subset I of URIs referring to instances, which corresponds to the set of URIs? that
appear as an object or a subject in a triple. We note that the triple <u, rdf:type, ¢ > can
be declared to state that the URI u, that can appear as a subject or an object, is an instance
of the class c. We note that for a given dataset 2, we write p(x,y) to mean <x, p, y >€ 2.
We also denote p.V(x) to express the value or the set of values of a property p for a resource

X.

It is worthwhile to mention that, in this manuscript, we will use the term dataset 2 or RDF

graph G to refer to the instance level of the knowledge graph.

2.2 RDF Graphs

An RDF dataset is a set of triples in the form of <s, p, 0> that forms the set of facts describing
certain pieces of knowledge on a given subject. This set of facts can be conceptually represented

as an RDF graph that we formally define in Definition 2.2 as follows.

Definition 2.2. (RDF Graph.) An RDF graph is a directed and labelled graph G = (V,E,Xg,lg).
V is the set of nodes. E is the set of node pairs or edges. Zg is the set of edge labels. [ :E — X
is the mapping from edges to edge labels. [g(e) denotes the labels of edge e.

We use e;; to denote the edge between nodes v; and v;. More precisely, each fact p(s,0) maps to
a directed edge e;; where s is represented by the source node v;, o is represented by the target

node v;, and p is the property name that is represented by the label of e; ;.

2.3 OWL Ontologies

In semantic Web the use of ontologies is paramount for knowledge structuring and formalisation.

4

An ontology that is defined as “An explicit, formal specification of a shared conceptualization’

by Thomas R. Gruber [62], allows one to represent the vocabulary of a given domain through a

1Unique Resource Identifier (URI). Recently, URISs have been generalized to Internationalized Resource Identifier
(IRIs) which are Unicode strings that capture more special characters.
2In RDF URIs are also used to refer to classes and properties.

8
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set of classes, a set of properties and a set of axioms. The semantics of the knowledge represented
in an ontology can be formally expressed by First Order Logic (FOL) formulas. These formulas
can be exploited in an automatic logical reasoning to infer new knowledge.

Two languages are recommended by W3C for ontology representation. First, RDF Schema
[143], based on RDF, which can be used to represent lightweight ontologies restricted to a
hierarchy of classes and a hierarchy of properties. Second, Web Ontology Language (OWL, OWL2
for its second version) [97], that is based on Description Logic and allows one to represent rich
and complex knowledge about entities. Thanks to its expressiveness power it can be used to check
the consistency of the knowledge.

In most of the work that we present in this manuscript we considered OWL2 ontologies thanks
to their ability to represent more expressive knowledge and hence allowing more reasoning
capabilities.

An OWL2 ontology is composed of a set of classes representing sets of instances (resources), a
set of properties expressing relations between entities (i.e. owl:ObjectProperty having a class as
domain and as range) or between an entity and a literal value (i.e. owl:DataTypeProperty having
as domain a class and as range a Literal) and a set of individuals representing the instance-level
of the knowledge graph that contains the class instances and property instances declared in the
conceptual level. The classes and the properties are organized in a hierarchy using either the
relations owl:subClassOf or owl:subPropertyOf.

In addition to this, a set of axioms can be declared in an OWL2 ontology (see sub-section 2.4).

2.4 Ontology Axioms

OWL2 language allows declaring a set of axioms — statements that express what is true in the
considered domain. We consider axioms three kinds of axioms out of eight types provided in
OWL2, namely, class axioms, property axioms and keys.

In what follows, we provide the list of ontology axioms that we consider by giving their corre-
sponding logical semantics expressed in First Order Logic (FOL). In what follows we consider a
set of variables x,y,z,... that can take as values class instances (in I) or literals (in L). We use
also the predicates c1,cg,... to refer to ontology classes and op1,0p9,...,dp1,dpg,... to refer to

object properties and data properties, respectively.

Class axioms. We consider three main kinds of axioms that can be set on ontology classes:

¢ subsumption between two classes c¢1 and cg noted ¢ < co. It can be expressed using the

OWL2 construct owl:subClassOf. Its logical semantics is: Vx c¢1(x) = ca(x)

* equivalence between two classes ¢1 and cg noted ¢1 = co. It can be expressed using the

OWL2 construct owl:EquivalentClasses. Its logical semantics is: Vx c¢1(x) © co(x)

9
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* disjunction between two classes c; and cg noted cj # co. It can be expressed using the

OWL2 construct owl:DisjointClasses. Its logical semantics is: Vxci(x) © —co(x)

Data property axioms and Object property axioms. We consider two main kinds of axioms
that can be set on ontology properties. We note that, in the formalization, we do not distinguish

between Data property axioms and object property axioms:

* functionality on a property p denoted by func(p). It can be expressed using the OWL2 con-
struct owl:FunctionalDataProperty or owl:Functional ObjectProperty. Its logical semantics

is: VaVyVz p(x,y) Ap(x,2) =y ==z

* jnverse functionality on a property p denoted inv-func(p). It can be expressed using the
OWL2 construct owl:InverseFunctionalDataProperty or owl:InverseFunctional ObjectProperty.

Its logical semantics is: VxVyVz p(y,x) Ap(z,x) >y ==z

* key for a given class cand aset P ={dp1,...,dpn,pn,0p1,...,0pn} of data properties and/or

object properties.

A generalization of the notion of inverse functionality property is the key axiom, which
states that for a given class ¢, a set of properties P uniquely identifies an instance of
c. That means, no two distinct (named) instances of ¢ can coincide on the values of P.
Unlike, inverse functionality axiom, key axiom needs an additional condition to enforce
the considered resources to be named (i.e. the resources must be URIs or literals, but not
blank nodes). It can be expressed using the OWL 2 construct owl:hasKey. If we declare
the axiom ow!l:hasKey (c)(dp1,...,dp,)0p1,...,0pn) to express that the set of properties
P={dp1,....,dp,,pn,0p1,...,0pn} is a key for the class c, its logical semantics is:

(Vx,y, Ulyero s UnyUl,enes Uy dpi(x,vi)/\dpi(y,vi)) A

i=1l.n

( N\ opjlx,u;)nopj(y, uj)) Sx=y
J

j=1..m

2.5 Identity Link owl:sameAs

Identity links are used to declare that two different descriptions of resources refer to the same
real world entity (e.g., same person, same place, same book).

Today, the classical definition of identity has become the canonical one in the Semantic Web
(through owl : sameAs predicate). Such an owl : sameAs statement indicates that two URIs
refer to the same thing, i.e, the individuals have the same ’identity’ [67]. Given an RDF graph G
as defined in Definition 2.2, the OWL2 RL rules [67] define the ow1 : sameAs as being reflexive,

symmetric, and transitive, and fulfils property sharing axiom as expressed by the rule:

VXY owl:sameAs(X,Y)Ap(X,Z)= p(Y,Z2)

10
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Definition 2.3. SameAs Statement [38]. An owl: sameAs(s,0) statement is an RDF triple
(s,owl:sameAs,o) in an RDF graph G which connects two RDF resources s and o by means of

the owl:sameAs predicate.

11






CHAPTER

IDENTITY LINK DETECTION AND INVALIDATION

3.1 State of the Art and Contributions

s the Web of Data continues to grow, more and more large datasets — covering a wide

range of topics — are being added to the Linked Open Data (LLOD) Cloud. It is inevitable

that different datasets, most of which are developed independently of one another, will
come to describe (aspects of) the same thing, but will do so by referring to that thing with different
names. This situation is not accidental: it is a defining characteristic of the (Semantic) Web that
there is no central naming authority that is able to enforce a Unique Name Assumption (UNA).
As a consequence, identity link detection, i.e., the ability to determine — with a certain degree of
confidence — that two different names in fact denote the same thing, is not a mere luxury but is
essential for Linked Data to work. Thanks to identity links, datasets that have been constructed
independently of one another are still able to make use of each other’s information. The most
common predicate that is used for interlinking data on the web is the owl : sameAs property
(see Definition 2.3). This property denotes a very strict notion of identity that is formalized in
model theory. It is defined by Dean et al. [35] as: “an owl : sameAs statement indicates that two
references actually refer to the same thing”. As a result, a statement of the form “x owl : sameAs

y” indicates that every property attributed to x must also be attributed to y, and vice versa.

The problem of detecting identity links has already been studied in several domains, in
statistics, relational databases, artificial intelligence and more recently in semantic Web while
proposing different approaches probabilistic, logical, similarity-based, and so on (surveys can be
found in [52]). In semantic Web several frameworks are now available and are able to handle
datasets of a high number of RDF triples with high performance results (see survey [93]) .

However, none of them is able to guarantee 100% of precision and 100% of recall for any dataset

13
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of any application domain.

Over time, an increasing number of studies has shown that owl : sameAs is sometimes
used incorrectly in practice. For example, Jaffri et al. [75] discussed how erroneous uses of
owl :sameAs in the linking of DBpedia and DBLP has resulted in several publications being
affiliated to incorrect authors. In addition, Ding et al. [37] discussed a number of issues that arise
when linking New York Times data to DBpedia. Specifically, they discuss issues that arise when
two things are considered the same in some, but not all contexts. Halpin et al. [64] discussed how
the ‘sameAs problem’, originates from the identity and reference problems in philosophy. In the
Semantic Web literature, different families of approaches have been proposed for the limitation
of this problem: first, some approaches focus on the (semi-)automatic detection of potentially
incorrect owl : sameAs statements [31, 33, 99], other approaches consider the introduction of
alternative properties that can replace owl : sameAs [64], finally, a recent approach [19] has
been proposed for detecting contextual identity links that captures cases of weak-identity.

In this Chapter, I first present the state of the art on identity problem in section 3.1.1. Then, I
will present my contributions for the problems of identity link invalidation in section 3.2, and the
problem of contextual identity link detection in section 3.3, in RDF knowledge graphs. In section

3.4, I will give some lessons learned.

3.1.1 State of the Art
3.1.1.1 Identity Link Invalidation

An important aspect of managing identity in the Web of Data is the detection of invalid identity
links. It consists in deciding whether a given owl : sameAs link is valid or not, meaning that
when the rules expressing its semantics (see Section 2.5) are applied, the knowledge graph
remains consistent (i.e., no contradictions are inferred). To detect invalid owl : sameAs links,
some recent approaches have been proposed in the literature. These approaches exploit different
kinds of information: RDF triples describing the linked resources, domain ontology knowledge
automatically acquired or specified by experts, or owl : sameAs network metrics. In what follows,
we will give an overview of the related work on detecting invalid identity links by distinguishing

three non-exclusive groups of approaches: consistency-based, content-based and network-based.

Consistency-based approaches. Consistency-based approaches are based on the principle
of detecting contradictions and/or constraint violations as indications of the erroneousness
owl : sameAs links. Some works use ontology axioms to detect contradictions while other exploit
constraints on the data and source trustworthiness to measure to what extent an identity link
follows the assumptions. idMech [31] is one of the first consistency-based approaches which aims
at detecting invalid ow1 : sameAs links by exploiting two hypotheses: trustworthiness of sources,
i.e., assuming that owl : sameAs links published by trusted sources are more likely to be correct

and Unique Name Assumption (UNA) which states that every pair of URIs coming from the
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same source are necessarily different. The authors developed a probabilistic and decentralized
framework for entity disambiguation. The approach detects conflicts between owl : sameAs and
owl:differentFrom assertions by using a graph-based constraint satisfaction solver that
exploits the symmetry and the transitivity properties of the owl : sameAs relation. The detected
conflicts are solved based on the iteratively refined trustworthiness of the sources from which the
assertions originate. Other approaches have made use of the hypothesis that individual datasets
apply UNA [33, 139], and that violations of the UNA which are caused by cross-dataset linking
are indicative of erroneous identity links. De Melo [33] applies a linear programming relaxation
algorithm that seeks to delete the minimal number of owl : sameAs statements such that the
UNA is no longer violated. Valdestilhas et al. [139] efficiently detect the resources that share
the same equivalence class and that belong to the same dataset, and rank erroneous candidates
based on the number of UNA violations.

Finally, an ontology-based approach, proposed by Hogan et al. [69], exploits the semantics
of some ontology axioms to detect inconsistencies in the considered data sources allowing to
determine erroneous identity links. It exploits several OWL 2 RL rules in order to express
the semantics of axioms such as owl.differentFrom and owl:.complementOf in order to detect
inconsistencies. Whenever an inconsistent equality set is detected, the erroneous links are

identified by incrementally rebuilding the equality set in a manner that preserves consistency.

Content-based approaches. As it is used for data linking, the content, i.e., the RDF facts
describing the resources, may be used to compare the resource descriptions and highlight some
inconsistencies or some indications of erroneousness owl : sameAs links or of some parts in
the data. Paulheim [101] considers that links follow certain patterns, hence, links that violate
those patterns are erroneous. The author developed a method which applies a multi-dimensional
and scalable outlier detection approach for finding erroneous identity links. It is based on the
principle of projecting the links into a vector space in such a way that each link is a point in
an n-dimensional vector space. Thus, an identity link is represented as a feature vector in a
high dimensional vector space, using direct types and in- and/or outgoing properties. The author
has tested different outlier detection methods in order to assign a score to each link, indicating
the likeliness of being an outlier. Cuzzola et al. [32] proposed an approach which calculates a
similarity score between the names that are involved in a given owl : sameAs link, by using
the textual descriptions that are associated to these names (e.g., through the rdfs: comment

property).

Identity Graph Topology-based approaches. Another kind of approaches that have re-
cently been introduced are those exploiting the topological structure of the graph formed by
considering only owl : sameAs statements, where the nodes represent the linked resources and
the edges represent the owl : sameAs relation. Gueret et al. [63] hypothesize that the quality

of a link can be determined based on how connected a node is within the network in which it
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appears. To detect erroneous links, the authors use network metrics, such as, clustering coeffi-
cient, centrality and node-degree as well as two additional linked data-specific metrics, namely,
owl:sameAs owl:sameAs chains and description richness. The approach relies on the princi-
ple of observing changes in the quality of the network with the introduction of new links between
datasets as clues of owl : sameAs invalidity. It constructs a local network for a set of selected
resources by querying the Web of Data. After measuring the different metrics, each local network
is first extended by adding new edges and then analysed again. The results of both analyses are

compared to the ideal distribution for the different metrics.

3.1.1.2 Weak and Contextual Identity Links

Instead of seeking for incorrect owl : sameAs links, as discussed in the previous section, some
approaches have proposed to represent and/or find weaker identity relations between instances.
In this section we present existing alternatives, which either come in the form of simple predicates
representing weaker types of identity or similarity, or approaches introducing techniques for

representing and detecting contextual identity.

Weak-Identity and Similarity Predicates. One of the main works that proposed an alter-
native representation of identity relation is Halpin et al. [64]. In this work, the authors presented
the Similarity Ontology (SO) in which they hierarchically represent 13 different predicates. This
ontology includes five existing linking predicates such as rdfs: seeAlso, SKOS predicates (e.g.,
skos:exactMatch, skos:closeMatch) and owl: sameAs . The most specific predicate is
owl : sameAs and the most general ones are so:claimsRelated and so:claimsSimilar.
The predicates prefixed with the word claims express a subjective identity or similarity relation.
Their validity depends on the (contextual) interpretation of the user. To define a formal semantics
of the SO predicates, the authors have proposed to characterize these predicates by reflexivity,
transitivity and symmetry properties. However, this approach does not tackle the problem of how
the contexts, in which an identity link is valid, can be explicitly represented.

Some vocabularies acknowledged the abusive use of owl : sameAs and provided alterna-
tive identity links. For instance, the UMBEL! vocabulary introduced predicates such as the
symmetrical property umbel :isLike which is used "to assert an associative link between
similar individuals who may or may not be identical, but are believed to be so". Vocab.org?
introduced the property similarTo to be used when having two things that are not identical
(owl:sameAs ) but are similar to a certain extent. [33] introduced 1vont :nearlySameAs
and lvont : somewhat SameAs, two predicates for expressing near-identity in the Lexvo.org?
vocabulary, with definitions explicitly left vague, “simply because similarity is a very vague

notion”. He also introduced 1vont :strictlySameAs, a predicate which is declared formally

1 http://umbel.org
2http ://vocab.org
Shttp:/lexvo.org
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equivalent to owl : sameAs , but just introduced for the purpose of distinguishing strict identity
use from the erroneous use of the latter. Finally, rdfs: seeAlso, a predicate which refers to

resource that might provide additional information, can still be useful in some cases.

Contextual Identity. The standardized semantics of owl:sameAs can be thought of as
instigating an implicit context that is characterized by all (possible) properties to have the same
values for the linked resources. Weaker kinds of identity can be expressed by considering a
subset of properties with respect to which two resources can be considered to be the same. At
the moment, the way of encoding contexts on the Web is largely ad hoc, as contexts are often
embedded in application programs, or implied by community agreement. The issue of deploying
contexts in KR systems has been extensively studied in Al For the introduction of contexts as
formal objects, see [84] for a survey. In the Semantic Web, explicit representation of context has
been an important topic of discussion, where the variety and volume of the web poses a new set
of challenges than the ones encountered in previous Al systems, see [23], [96] and [59].

With several approaches focusing on representing contexts in the Semantic Web, recent
approaches have focused on the specific issue of detecting and/or representing contextual identity.
For instance, [19] propose an approach that allows the characterization of the context in which an
identity link is valid. A context is represented by a subset of properties for which two individuals
must have the same values, with all the possible subsets of properties organized in a lattice using
the set inclusion relation. However this approach requires a common vocabulary between the
linked resources to represent the contexts.

Finally, [73] presents a system for constructing context-specific identity links between
datasets, by allowing annotation of the links. Specifically, this system allows the generation of
linksets, and allows one to explicitly represent the provenance information on how each linkset is
generated. Then this rich metadata is used to select and combine candidate sets into context-
specific lenticular lenses, which then serve as a context-specific equality relation for a view over
the integrated data. This system uses named graphs and singleton properties [96] to represent
the identity contexts. Finally, [73] presents a system for constructing context-specific identity
links between datasets.

In order to explicitly represent contexts, it is possible to use a reification* mechanism that
creates a new resource of type rdf : Statement, in which we can associate meta-data (i.e. a
context). In addition, it is also possible to use n-ary® relations, that allow to represent a property
as a class. [96] propose a less costly approach in terms of required number of triples to represent
a context. This approach consists in the use of singleton properties, which can represent relations
between two entities in a certain context. Finally it is also possible to use named graphs® to

associate meta-data to a set of triples.

4h‘ctps://www.wS .org/TR/rdf11-mt/
Shttps://www.w3.org/TR/swbp-n-aryRelations
Shttps://www.w3.0rg/2004/03/trix/
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3.1.2 Contributions

As discussed in the related work (section 3.1.1.1), one way of limiting the problem of misuse
of identity links consists in detecting the erroneous identity links. In this direction we have
developed three different methods. The first one [99] is content and consistency-based which
consists in exploiting the semantics of some ontology axioms to generate logical inference rules
that when used in a logical reasoning lead to KG inconsistency. The second method is content and
similarity-based, and as the logical method, exploits ontology axioms and computes a similarity
score based on these axioms and on the resource descriptions, that is low similarity score lead
to infer incorrect owl : sameAs links. Finally, alike the two first methods that are content and
axiom-based, the third method detects erroneous identity links by exploiting only the topology of
the identity network formed by the identity links.

In order to capture near/weak identity cases, we developed an approach that detects contextual
identity links, that express identity relations between two resources restricted to a context
represented as a sub-part of an ontology. This approach is able to consider domain expert
constraints to provide the most relevant contexts as possible.

All these approaches have been evaluated on real and complex knowledge graphs, such as the
whole linked data and knowledge graphs representing data and knowledge on transformation

processes in biology.
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3.2 Identity Link Invalidation Approaches

In what follows, wel present three link invalidation methods: the logical method in subsection
3.2.1, the similarity based one in subsection 3.2.2 and finally, the network-based method for

erroneous identity link detection, in subsection 3.2.3.

Some notations and definitions used in this section can be found in Chapter 2.

3.2.1 Logical Method for Identity Link Invalidation

In [99] we presented a logical approach for identity link invalidation. The problem we addressed is
to check if an owl : sameAs statement can be invalidated and eventually explain this deduction.
To do so, we formalized the problem in terms of detecting inconsistencies in the KG while applying
the owl : sameAs semantics, namely, transitivity, symmetry and property sharing rules (see sub-
section 2.5). To support the inconsistency detection we exploit as much as possible the ontology
axioms such as disjunction between classes, functionality, inverse functionality and the local
completeness of properties. For the later, there is no OWL 2 predicate that allows declaring it,
hence we used SWRL [144] rules to declare that a property is local complete.

The here presented approach performs FOL reasoning based on unit-resolution inference rule
applied on knowledge base that is composed of: (i) a set of rules expressing the logical semantics of
the considered axioms and (ii) a set of RDF facts (or a data graph) restricted to the facts involving
the properties and the classes concerned by the ontology axioms. In particular, we consider only
the properties that are declared as (inverse) functional or local complete. This led us to define the
notion of contextual graph of depth n (see Definition 3.1 below) representing the aforementioned
data graph. A depth n is used to reduce the size of the contextual graph and control the inference

propagation phase of the algorithm.

Definition 3.1. n-degree Contextual Graph Gy, ; p)

Given and RDF graph G and a node s € G,s € I, an integer number n and a set P of properties
defined for G, a n-degree Contextual Graph Gy, s p) for s is a sub-graph of G such that every node
v; € G 5,p) belongs to a property-based path of length m, with m < n.

Our approach relies on building two contextual graphs (see Definition 3.1), for x and y
respectively and on reasoning on the assertions contained in these two graphs. The building
blocks of the problem are the following:

— An RDF graph G

— two resources x and y, such that x,y are resources in G

— the triple (x,owl : sameAs,y) (or sameAs(x,y)) belonging to G

— a set of properties P in G

—a value n representing the depth of the contextual graphs
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— the contextual graphs Gy, . p) and G?n y.P) of depth n for x and y

More formally, the problem of logical owl : sameAs link invalidation can be expressed as

/

tny.Py N sameAs(x,y)=> L

follows: G x,py NG

The construction of the contextual graphs depends on the predicates (properties) we select
and the value n. Indeed in complex RDF graph that can combine data coming from multiple data
sources, limiting the depth of a contextual graph could be wise. The main reason is that long
property-based paths can lead to not relevant piece of information which can eventually confuse
the invalidation process. In Figure 3.1 we show an example of two contextual graphs’ describing
two instances x and y for whom we aim to invalidate the link ow1 : sameAs(x, y). The value n =2
has been selected. In this example, the set of properties P = {Py,...,P4} is considered as involved

by the ontology axioms.

Figure 3.1: The two 2-degree contextual graphs extracted for two instances x and y that are
linked by an owl : sameAs link.

In the following sub-section we explain how we select the properties.

3.2.1.1 Property Selection and Rule Generation.

To determine the set of properties to consider in the contextual graphs, we choose to select
properties that are (inverse) functional and those that are local complete, to allow an efficient and
straight forward inconsistency checking. For example, let us consider the property publication-
date of a book as functional, then for each pair of books having two different values for this
property should be considered as different. This kind of reasoning cannot be conducted for the
properties that are not functional, except for those an expert can assert their local completeness.
More precisely, the properties that are instantiated, i.e. for which when the set of values are
given for an instance, then we are able to guarantee that this set of values is complete (e.g. the

author list of a paper, the directors of a movie, the set of molecules of a drug).

"Circles represent URIs and Rectangles represent Literals.
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In what follows, we define more formally the axioms of (inverse)functionality of properties
and local completeness of properties. We also present the inference rules that can be generated

from the logical semantics of these considered axioms.

In the sequel we will use the notation (Z = W) to indifferently refer to identity relation
between Z and W, when Z and W are URIs or to syntactic equality of Z and W, when Z and W

are literal values.

Functional and Inverse Functional Properties. Let p be a functional property. It can be
expressed logically as follows [67]: VX, Z,W p(X,Z)Ap(Y , W)=>Z=W

This rule can be written with regards to owl : sameAs links invalidation problem defined
above. To invalidate owl : sameAs(x,y) while considering that x and y are described by a func-
tional property p with the value wj for x and w2 for y, and that we can assert that w; and wq
refer to two different entities (or literals), then we can use the following rule which leads to
inconsistency:

owl:sameAs(x,y) A px,wi1) A p(y,wa) ANwi Zwg = L

An analogous reasoning can be done for inverse functional properties. In these situations, if we
assume that the assertions already in the RDF graph are true and we have ’doubts’ only on the
owl :sameAs statement, we can conclude that this latter is invalid. In our approach, taking
into consideration functional and inverse functional properties, we basically use the following
rules for every functional data type property p;, every functional object property p; and for every

inverse functional object property pz, in the contextual graphs we are considering.
* Ry,,p:owl:samels(x,y)Apilx,w1) Api(y,wa) — synVals(wi,ws)
* Ro,,p:owl:sameAs(x,y)Apx,w1)Ap;(y,we) — owl:sameAs(wi,ws)
* R, :0wl:sameAs(x,y)Apr(wi,x) Apr(we,y) — owl: sameAs(wy,wsg)

synVals(wi,ws) expresses that the two literal values w; and wg are equal or synonym,
and conversely —synVals(wi,ws) expresses that w; and wg are different (further description
is given in Section 3.2.1.2). Let us notice that, given a property p in the graph G, the fact that
p is a functional property can be present among the assertions in G or derived after collecting
knowledge from experts or gathering externally (e.g. existing ontologies, additional assertions on
the Web.)

Local completeness. The closed-world assumption is in general inappropriate for the Se-
mantic Web due to its size and rate of change [65]. But in some domains and specific contexts,
local-completeness for RDF predicates (properties) could be assured. A good example for a multi-

valued local complete property could be one representing the authors of a publication. When a
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predicate is like that, it should be declared closed in the specific knowledge base, making a local
completeness assumption. A Local Completeness (LC) rule specifies that the resource is complete
for a subset(s) of information (on a particular ontology): the information contained in the resource
is all the information for the subset (specified by the rule) of the domain. In an RDF graph G, we
declare the following OWL2 RL rule for each property that fulfills LC:

* Ry, :sameAs(x,y) A p(x,w1) — p(y,w1)

where p is a predicate defined in the RDF graph GG, x and y are URIs in G (x,y € R) and w1 is
a literal (w1 € L). This rule will be used to discover inconsistencies since negative facts can be
inferred because of the local completeness, as explained in the next Section. Given a property
p, the knowledge of "local completeness’ for p can be asserted by an expert or discovered using

semi-automatic approaches.

3.2.1.2 The Invalidation Approach

In this Section we present our logical invalidation approach, on the basis of all the Definitions
and assumptions made so far. Given G the initial RDF graph with R the set of resources in G.
Given owl : sameAs(x,y) the input owl : sameAs statement to invalidate, where x,y € R. Let F
be a set of facts, initialized to an empty set. We consider also L the set of literals in G and a value

n indicating the depth of the contextual graphs.

1. Build a set F'{ of =synVals(w1,w2), for each pair of semantically different wq and wo, with

wi,wse € L.

2. Build the contextual graphs for x and y considering (inverse) functional properties and

local complete properties

* For all the (inverse) functional properties p;,, add the relative set of RDF facts to F',

considering the rules R1,,,,R2.,p,R3,:» in Section 3.2.1.1.

* For each p;, . that falls in the contextual graphs and fulfils the local completeness (i.e.
Ry, is declared), add to F' a set of facts in the form —1p;, . (s,w) if w is different from
all the w' s.t. p;, .(s,w’) belongs to F. With w,w’' € L and s € R.

3. Apply iteratively unit resolution until saturation [115] using
Fu CNFS{R]-FDP Ropops R3pp, Ray -

Note also that disjointness of classes can be provided as input and considered in the resolution.
The set of ~synVals(wi,ws) with wq,w9 € L can be obtained using different strategies.
It is possible, for example, to perform a pre-processing step in which we build a clustering

of the values according to specific criteria. To clarify, consider a simple example of names

8CNF: Conjunctive Normal Form
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of cities in a specific domain: it is possible to pre-process all the possible values and assert
that synVals('Paris’/ParisCity') and that “synVals(Paris’,/ Milan') and so on. Thus, the
evaluation is based on determining if two values wi,w2 belong to the same cluster. Another
situation arises when the values are 'well defined’ as in the case of enumeration, dates, years,
geographical data or some types of measures. In these cases, the evaluation is again a simple
syntactic comparison of the values. If they are the same, they are equivalent, otherwise they are

not equivalent.

3.2.1.3 Experiments and Results

To evaluate the efficiency of our approach we considered three sets of initial owl : sameAs links
that are computed by three different data linking tools: [118], [131] and [150]. In [118] the
owl : sameAs statements are computed according to similarity measures over specific property
descriptions, as in [150] where similarity between entities is iteratively calculated by analysing
specific features. In [131], instead owl : sameAs statements are computed on the basis of a novel
algorithm used to evaluate the quality of keys that are discovered by SAKey.

All the above methods have produced results on the Person-Restaurants (PR) dataset avail-
able for the instance matching contest OAEI 2010 (IM@OAEI2010) [26]. For this experiment,
we considered as functional properties phone_number and has_address that describe a restau-
rant and city that describes an address®. Thus, given a owl: sameAs statement in the form
sameAs(x,y) we computed the contextual graph of degree 2 considering the three functional

properties listed before.

Linking LM Precision IM Recall | IM Precision | IM Accuracy LM+IM
Method precision
(LM)

[131] 95.55% 75% 37% 93.34% 98.85%
[118] 69.71% 88.4% 88.4% 92.9% 95.19%
[150] 90.17% 100% 42.30% 86.60% 100%

Table 3.1: The results of the logical invalidation approach on a set of owl : sameAs links provided
by the three linking methods.

To assess the quality of the owl : sameAs statements computed by different linking methods,
we computed the recall and the precision of the invalidation approach. We considered as correct
links those that are in the link set provided by [118], [131] or [150], and do not belong to the
invalidation method output. In table 3.1, we report the recall and the precision for the invalidation
approach (IM) and the overall precision (LM+IM) when the data linking approach is followed by
the logical invalidation approach. We can observe that the precision of our method (IM) is lower

than the linking methods precision respectively presented in [118], [131] and [150]. This is due

9Note that both the previous methods aligned the two initial datasets in order to compute the owl : sameAs
statements. We considered the same alignment in the explanation of the results.
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to the fact, the logical reasoning does not capture the possible syntactic variations (e.g. the phone
number values +142353658 different from 0142353658) and in the OAEI dataset contains
some cases of a restaurant having two phone-numbers which do not fit with the functionality of
the property phone-number. In addition to this, there can be errors in the data (for example ’ 1os
angeles’ and ' 1os feliz’) and the computation of the =synVals has been imprecise. That
is, the invalidation approach can be used to highlight the inconsistency to the user (expert) and
ask for confirmation or correction.

In summary, the results presented in Table 3.1, showed that, the accuracy of the approach is
rather good for all datasets 86.6% for [150] links, 92.9% for [131] links and 93.34% for [118] links.
We also may observe that when the logical invalidation method is applied after one of the linking
tool, the precision may increase significantly (up to 25% of increase). Indeed, for [131] we pass
from a precision of 95.55% to 98.85%, for [118] from a precision of 69.71% to 95.19% and finally
for [150] from a precision of 90.17% to 100%.

3.2.2 Numerical Method for Identity Link Invalidation

In order to improve even more the recall of the invalidation process, we have proposed in [98]
an extension of the logical approach [99] by using similarity measures to compare literal values
instead of equality of values. Thus, the heterogeneity of the datasets can be captured and taken

into account.

Approach. This numerical method is similarity based and relies on the same principle of

exploiting ontology axioms when building the contextual graphs.

Definition 3.2. (Contextual similarity between two resources ). Let G, . p} and ng y.P)

two contextual graphs (see Definition 3.1) of depth n for x and y, with P = DP UOP the subset of
properties of type owl:DatatypeProperty (DP) or owl:ObjectProperty (OP) delimiting the context
in the two graphs G and G'. The contextual similarity CSimp n,(x,y) for two resources x and y
is defined as follows:

CSimp ,y(x,y) =

F( U Simp;V@,p; Vonu U CSim{p,n}(pj.V(x),pj.V(y)))
Vp;eDP Vp,;eOP

where :
— p;.V(x) represents the property values of a property p; for a resource x in Gy, » p},
— Sim(vy,vy) is a function that computes a similarity score in [0..1] for the literal values v,
and v,. It consists either on an elementary similarity measure (e.g. Jacard, Jaro, Levenstein),
or a measure which computes a similarity score between two sets of values for non-functional
properties,
— F is an aggregation function (e.g. average or minimum) that is applied on the set of elementary

similarity scores obtained for the set of considered properties.
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The problem of numerical invalidation of owl : sameAs links can be expressed as the ability
to determine whether for a pair of resources x and y, we have CSimp (x,y) <T. (with T' a
similarity threshold €[0..1]).

Comparative experiments of the logical and the numerical invalidation approaches.
We conducted an experiment on the PR track of OAEI2010 and we compared the results obtained
by the logical approach [99] and the numerical [98] approach for link invalidation. The Table 3.2
presents the results obtained by the two approaches on the three datasets Personl, Person2 and
Restaurant of PR@OAEI2010. The results of the numerical approach are those obtained at the
best similarity threshold and using the average as aggregation function. For the three datasets
the results of the numerical approach in terms of F-measure and precision are better than the
results of the logical approach. Indeed, we get an average gain of 23% of F-measure using the
numerical approach, thanks to a very significant increase in precision while having a comparable
result in terms of recall. It suffices to have a single property with different values for the logical

approach to invalidate the identity link.

Logical approach [99] Numerical approch [98]
Datasets Precision ‘ Recall ‘ F-measure | Precision | Recall | F-measure ‘ Threshold
Personl 0.69 0.98 0.81 1.0 0.98 0.99 0.3
Person2 0.5 1.0 0.67 0.994 0.989 0.99 0.2
Restaurant 0.63 0.97 0.77 0.97 1.0 0.98 0.4
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3.2.3 Community Detection approach for Identity Link Invalidation

In the linked open data (LOD) where millions of owl:sameAs links are declared between
resources coming from thousands of sources, it is not realistic to use content or axiom based
approaches, to invalidate identity links. Indeed, content based approaches assume having access
to the RDF description of the linked resources. This can not be guaranteed for every resource in
the LOD (e.g. freebase is not any more accessible). Axiom based approaches assume beforehand
declared axioms. This assumption is not scalable to the LOD context because there is no expert
who can assert such axioms and discovering automatically axioms that are valid in hundreds or
thousands of sources infeasible. All these reasons have led us to believe that there is a need for
methods for identity link invalidation that are source content and ontology axiom agnostic.

In this direction we explored the possibility of using only the topology of the data graph
restricted to owl : sameAs links. We studied how the communities that can be formed in the
graph of owl : sameAs links can help to detect erroneous links. That is, in [107] we proposed
an approach for erroneous identity link detection by relying on the community structure of the
identity network itself. It uses the Louvain [22] community detection algorithm to compute the
set of non-overlapping communities of the identity network. Based on that communities, an error
degree is computed for each intra-community and inter-community identity link.

The method we proposed consists in two main steps: firstly, the extraction and compaction of
the identity network, and secondly, the ranking of each identity link based on the community

structure.

3.2.3.1 Identity Network Construction

The first step of our approach consists in extracting the identity network from a given data graph
(see Definition 2.2). From a given data graph G, we extract the explicit identity network N,,,

which is a directed labelled graph that only includes the edges whose labels are owl : sameAs.

Definition 3.3. (Explicit Identity Network). Given a graph G =(V,E,Xg,lg), the related
explicit identity network is the edge-induced subgraph G[{e € E |{owl : sameAs} S Ig(e)}].

For scalability reasons, we reduce the size of the explicit identity network N,, into a more
concise undirected and weighted identity network I (defined in Definition 3.4), without losing any
significant information. Since reflexive owl : sameAs statements are implied by the semantics of
identity, there is no need to represent them explicitly. In addition, since the symmetric statements
e;; and e; express the same assertion: that v; and v; refer to the same thing, we can represent
them more efficiently, by including only one undirected edge with a weight of 2 (edges for which

either e;; or e;;, but not both, is present in N,, we assign weight 1.)

Definition 3.4. (Identity Network). The identity network is an undirected labeled graph
I=(V;,E1,{1,2},w), where V7 is the set of nodes, E; is the set of edges, {1,2} are the edges labels,

and w : E7 — {1,2} is the labeling function that assigns a weight w;; to each edge e;;.
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For each explicit identity network N,y = (V,y,E,,), the corresponding identity network I is
derived as follows:
—Ep:={ejjeEcxli # j}
— Vi :=VIET], i.e., the vertex-induced subgraph.
1, ife;jeEc.yandej; ¢ E,yx

—wlej;):=
2, ifej;€Ec.randej; € Koy

3.2.3.2 Links Ranking

Given I =(V;,E[,2g,,w), a partitioning of V; is a collection of non-empty and mutually disjoint
subsets @ < V7 that together cover V;. Since the closure of E; forms an equivalence set (the
semantics of the owl : sameAs property states that it is reflexive, symmetric, and transitive),
it also induces a unique partitioning. Adopting terminology from [60], we call members of this
partition equality sets. These partition members correspond to the connected components of 1
(Definition 3.5).

Definition 3.5. (Equality Set). Given an identity network I = (V;,E,{1,2},w), an equality set

@}, is a connected component of 1.

In this work our aim consists in detecting erroneous identity links based on the community
structure of each connected component of the identity network. While the number of potential
identity links is quadratic in the size of the domain, the representation of equality sets is only
linear in terms of the size of the domain. With equality sets, we implemented our algorithm with

the following requirements:

¢ The computation of erroneous identity links must not have a large memory footprint, since
it must be able to scale to very large identity networks, and preferably to all identity
statements that appear in the LOD Cloud.

¢ It must be possible to perform computation in parallel, to allow errors to be detected
relatively quickly, preferably directly after the publication of the potential error into the
LOD Cloud.

¢ Calculation must be resilient against incremental updates. Since triples are added to and
removed from the LOD Cloud constantly, adding or removing a owl : sameAs link must
only require a re-ranking of the links within the equality sets that are directly involved in
this link.

In order to compute a ranking for the owl : sameAs links, our method first partitions the
identity network into different equality sets (several graph partitioning techniques could be
applied such as [17]). Then it detects a set of non overlapping communities by applying the

Louvain algorithm [22] for each equality set.
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Given an equality set @z, the Louvain algorithm returns a set of non overlapping communities
C(Qr)=1{C1,Cq,...,C,} where:

* a community C of size |C| (i.e. the number of nodes) is a subgraph of @;, such that the nodes

of C are densely connected (i.e. the modularity of the @, is maximized).
* Ui<i<nCi =Qr and VC;,C; € C(Qp)s.t.i # j,C;inC; = @.

We then evaluate the quality of each identity link by relying on its weight and the structure of
the communities it occurs in. More precisely, to compute the error degree, we distinguish between

two types of edges: the intra-community links and inter-community links.

Definition 3.6. (Intra-Community Link). Given a community C, an intra-community link
in C noted by ec is a weighted edge e;; where v; and v; € C. We denote by E¢ the set of

intra-community links in C.

Definition 3.7. (Inter-Community Link). Given two non overlapping communities C; and C},
an inter-community link between C; and C; noted by ec;; is an edge e;; where v; € C; and v; €

Cj. We denote by E¢,; the set of inter-community links between C; and C;.

In what follows, we consider the non-overlapping community structure as an approximation
of equivalence class structure that can be built from the set of considered owl : sameAs links.
Indeed, an equivalence class structure represents a partition of the resources involved in the
owl :sameAs links in such a way that each equivalence class contains the set of resources
that are pairwise identical. Each equivalence class fulfils transitivity, reflexivity and symmetry
properties of owl : sameAs relation. Moreover, two different equivalence classes are considered
to be disjoint, i.e. their intersection is empty. For our link invalidation aim, we compute an error
degree for each owl : sameAs link by considering the density of the community(ies) to which the
link belongs, as well as symmetry degree of the link (1 if not symmetrical and 2 if symmetrical).
More precisely, we considered the density of the community as expressing how the transitivity
property is fulfilled in the community structure. Moreover, inter-community links express how
the community structure do not fulfil the disjunction between communities. By construction,
these links will be evaluated as erroneous.

To compute the intra-community links, our method relies on the density of the community
containing the edge as well as the weight of the considered edge. The lower the density of this

community and the weight of an edge are, the higher the error —degree will be.

Definition 3.8. (Intra-Community Link Error-degree.) Let ec be an intra-community link
of the community C, the intra-community error-degree of e, denoted by err(ec) is defined as
follows: 1 W
C
a)err(ec)=——x(1- ——————
= e Ve

where Wo =Y, .eg w(e)
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To compute the inter-community links, we rely both on the density of the inter-community
connections and the weight of this edge. The less the two communities are connected to each
other and the lower the weight of an edge is, the higher the error —degree degree of inter-edge
will be.

Definition 3.9. (Inter-Community Link Error-degree.) Let ec,; be an inter-community link
of the communities C; and Cj, the inter-community error-degree of ec,; denoted by err(ec,;) is

defined as follows:

1 We..
(- grer e
w(ec;;) 2x|C;| x|Cjl

L

b) err(ecij) =

where W¢,, = Zeci,-EEci,- w(e)

3.2.3.3 Experiments

In order to test and evaluate our approach we have conducted an empirical evaluation on the
whole set owl : sameAs links in the LOD in 2015. Bellow, we describe the dataset that is used,;
and the quantitative and qualitative results of our community structure-based invalidation

approach.

Dataset. We have tested our approach on the LOD-a-lot dataset [51]'°, a compressed data file
that contains the 28B distinct triples from the 2015 LOD Laundromat Linked Data crawl [18].
This large subset of the LOD Cloud represents our data graph (Definition 2.2).

Quantitative Results. We have extracted the explicit identity network (Definition 3.3)
from the data graph described above, by performing a Triple Pattern query of the form
(?,owl : sameAs,?) with the HDT C++ library!!. This returns a stream of distinct identity pairs,
as described in [17]. Extracting the explicit identity network from the RDF graph described above
takes around four hours. It results on an explicit identity network of 558.9M edges and 179.73M
nodes. The explicit identity network is publicly available at https://sameas.cc/triple.

Identity Network Construction. From the explicit identify network described above, we built
an identity network (Definition 3.4) containing ~331M weighted edges and 179.67M terms. We
leaved out ~2.8M reflexive edges, ~225M duplicate symmetric edges and their corresponding
nodes (67,261 nodes). For the symmetric edges 68% we assigned the value 2 in the identity

network.

The next step consists in partitioning the identity network into several equality sets (Definition
3.5). We have deployed an efficient algorithm described in [17] that partitions the identity net-

work into ~49M equality sets, in just under 5 hours. The set of equality terms of each resulted

101’1ttp ://lod-a-lot.lod.labs.vu.nl
Uhttps://github.com/rdfhdt /hdt—cpp
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equality set are publicly available at http://sameas.cc/1id.

Links Ranking. Once the identity network has been partitioned, we apply the Louvain algorithm
to detect communities in each equality set. We then assign an error degree to all edges of each

community. This process takes around 2 hours!?

, resulting an error score to each owl : sameAs
statement (~556M statements) in the explicit identity network. The 179.67M terms of the identity
network were assigned into a total of 24.35M communities, with the communities size varying

between 2 and 4,934 terms (averaging ~7 terms per community).

Community Structure Analysis. In this following we provide a first analysis of the commu-
nity structures obtained from two equality sets (the largest one and the one about Barack Obama)

based on the IRIs contained in the communities.

Community Structure in the Largest Equality Set. The largest equality set @4 contains 177,794
terms and 2,849,650 undirected and weighted edges. This equality set is the result of the com-
paction of 5,547,463 distinct owl : sameAs statements (~ 1% of the total number of owl : sameAs
in the LOD) and is available at https://sameas.cc/term?id=4073. As shown by de Rooij
et al. [34], the social meaning encoded in IRI names significantly coincides with the formal
meaning of IRI-denoted resources. Hence, by looking at the IRIs of this equality set, we observed
that it contains a large number of terms denoting different countries, cities, things and persons
(e.g. Bolivia, Dublin, Coca-Cola, Albert Einstein, Literals, and so on). So, it is clear that this
equality set contains many erroneous owl : sameAs statements. Applying the Louvain algorithm
on @4, resulted in 924 non-overlapping communities, with a size varying from 29 to 2,267 terms
per community. As a first interpretation on the community results, we have solely looked at the
IRIs form in order to evaluate at the coarse-grained level how the communities contain erroneous

owl : sameAs links.

Community Structure in the ‘Barack Obama’ Equality Set. The equality set @ pama contain-
ing the term http://dbpedia.org/resource/Barack_Obama is composed of 440 terms
and 7,615 undirected and weighted edges. It is built from an explicit identity network of
14,917 owl: sameAs statements. Applying the Louvain algorithm on Q,pqmq resulted in 4
non-overlapping communities, with a size varying from 34 to 166 terms per community. The re-
sulting community structure of @ ,pqmq is presented in Figure 3.2. The four detected communities
are distinguished by their nodes’ color 3.

— Co (purple) includes 166 terms, with 98% of the links of this commu-
nity representing cross-language symmetrical links between DBpedia IRIs (e.g.
http://fr.dbpedia.org/resource/Barack_Obama) referring to the person Barack
Obama.

125n an 8GB RAM Windows 10 machine, with an Intel Core 4 x 2.6 GHz process
13The full figure is available at https://github.com/raadjoe/LOD-Community-Detection/blob/
master/Communities-Graph-Obama.svg

30


http://sameas.cc/id
https://sameas.cc/term?id=4073
https://github.com/raadjoe/LOD-Community-Detection/blob/master/Communities-Graph-Obama.svg
https://github.com/raadjoe/LOD-Community-Detection/blob/master/Communities-Graph-Obama.svg

3.2. IDENTITY LINK INVALIDATION APPROACHES

CO o °°°°,,

DBpedia IRlIs referring to the person o © °6®e DBpedia IRIs referring to the
Obama in different languages Y e © e _ person Obama, his senator career

DBpedia IRIs referring to the person0 %
Obama in different languages ee ©®ggeo

DBpedia IRIs referring to the person
Obama in different languages

Figure 3.2: The communities detected from the equality set containing the term referring to
Barak Oabama using the Louvain algorithm

- C (green) includes 162  terms, mostly DBpedia IRIs of the
person Obama in his different roles and political functions
(e.g. http://dbpedia.org/resource/President_barack_obama,

http://dbpedia.org/resource/senator_obama).

— C9 (orange) includes 78 terms, mostly referring to the presidency and adminis-
tration of Barack Obama (e.g. http://dbpedia.org/resource/Obama_cabinet,

http://dbpedia.org/resource/Barack_Hussein_Obama_administration)

— C3 (blue) includes 34 terms from different datasets denoting various entities
such as: Barack Obama the person, his senate career, and a misused literal
("http://dbpedia.org/resource/United_States_Senate_career_of_Barack_Obama,

"http://dbpedia.org/resource/Barack_Obama"”*"xsd:string).

3.2.3.4 Links Ranking Evaluation

In order to evaluate the accuracy of our ranking approach, five computer scientists judges have
conducted several manual evaluations without any information on the error-degree of the links.
The judges relied on the descriptions associated to the terms in the LOD-a-lot dataset [51], and
did not have any prior knowledge about each link’s error degree (i.e. whether they are evaluating
a well-ranked link or not). In order to avoid any incoherence between the evaluations, the judges
were asked to justify all their evaluations and were given the following instructions: (a) the

same: if two terms denote the same entity (e.g. Obama and the First Black US President), (b)
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related: not intended to refer to the same entity but closely related (e.g. Obama and the Obama
Administration), (¢) unrelated: not the same nor closely related (e.g. Obama and the Indian

Ocean), (d) can’t tell: in case there are no sufficient descriptions available for the terms.

Accuracy Evaluation in the ‘Barack Obama’ Equality Set. In our first evaluation, we have
relied on the previous observations, made on the community structure presented in Figure 3.2, to

interpret and evaluate the accuracy of our approach:

1. an owl : sameAs statement in Cy has an average error rate of 0.24. The manual evaluation

of 30 random owl : sameAs statements shows that they are all true identity links.

2. the low density of C1 has led to several correct owl : sameAs statements to have a high
error degree (0.9). This is due to the fact that there is only one term linking to all the 161

other terms in this community, with most of these edges being non-symmetrical links.

3. the only two owl:sameAs statements in this equality set with
an error value = 1 are the edges in the graph connecting the
IRI v1: http://rdf.freebase.com/ns/m.05b6wlg from Cy to
http://dbpedia.org/resource/President_Barack_Obama and

http://dbpedia.org/resource/President_Obama from C;. Relying on their
descriptions in the LOD-a-lot dataset, we can see that v refers to the presidency of Obama,
while the two other IRIs refer to the person Obama, indicating that indeed both statements
are incorrect. This has led to the false equivalences between the 78 terms of Cy and the

rest of the network’s terms.

Accuracy Evaluation on a Subset of the Identity Network. In order to evaluate the accu-
racy over the whole identity network, four semantic Web researchers were asked to evaluate a
subset of the identity network. The judges were asked to evaluate 200 owl : sameAs links (50

links each), representing in an equal manner, each bin of the error degree distribution.

Table 3.3: Evaluation of 200 owl : sameAs links, with each 40 links randomly chosen from a
certain range of error degree

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1 total
same 35(100%) | 22(100%) | 18(85.7%) | 7(77.7%) | 15(68.1%) | 97(88.9%)
related 0 0 2 2 2 6
unrelated 0 0 1 0 5 6
related + unrelated 0(0%) 0(0%) 3(14.2%) | 2(22.2%) | 7(31.8%) 12(11%)
can’t tell 5 18 19 31 18 91
Total 40 40 40 40 40 200

The obtained results presented in Table 3.3, showed the more the error degree is high the

more the probability of the links to be erroneous is high. More precisely, we can observe that:
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¢ our error degree is able to identify true owl : sameAs links with a high accuracy, since
100% of the evaluated links with an error degree < 0.4. are correct (without considering

the “can’t tell” cases).

¢ when the error degree is between 0.4 and 0.8, 83% owl : sameAs links are correct. However,
in 17% of the cases, such links might have been used to refer to two different, but related

terms.

* an owl:sameAs link with an error degree > 0.8 is an unreliable identity statement,

referring in ~31% of the cases to two different, and mostly unrelated terms.

We have further investigated the 13 evaluated identity links with an error degree over 0.9.
Two features were observed from the incorrect identity statements: (i) their error degree is higher
than the false positives one, and (ii) they all belong to equality sets with a higher number of terms
than the false positives. This evaluation showed that: (1) considering solely equality sets with
a high number of terms improves the accuracy of our ranking (50% of the links are incorrect),
(2) considering solely the top ranked links slightly improves the accuracy of our approach (40%
are incorrect) and (3) considering the top ranked links in the large equality sets significantly
improves the accuracy of our approach in detecting erroneous identity links (88.2% are incorrect

among those having an error degree ~ 1 S3).

Recall Evaluation. In order to compute the recall of our approach, we have verified how our
approach can rank new erroneous owl : sameAs statements. Firstly, we have chosen 15 random
terms in the explicit identity network, while making sure that these terms are all different, by
looking at their descriptions, and that they are not explicitly owl : sameAs . From these 15 terms,
we have generated all the possible 105 undirected edges between them. Then we added separatly,
each edge e;; to the identity network with w(e;;)=1, calculated its error degree, and removed it
from the identity network. On average, the introduced identity link has an error degree of 0.84,
ranging from 0.2 to 0.99. When the threshold is fixed to 0.8 (resp. 0.9) the recall is 93% (resp. 89%).

The whole evaluation suggests that the error degree is more accurate when the equality sets
are large and the error degree is high. In addition, even when a high threshold is chosen, the recall
of detecting incorrect identity statements remains high. Since, many owl : sameAs statements
(~1.26M) have an error degree between 0.99 and 1 and many owl : sameAs statements belong
to large equality sets (e.g., ~5.5M belong to the largest equality set) the proposed approach can

obtain effective results for detecting erroneous owl : sameAs links on the LOD.
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3.3 Contextual Identity Links Detection

Context-dependency of identity relation is one of the characteristics that cannot be captured
by owl:sameAs predicate. Indeed, while comparing two medicines described by their name,
their chemical molecule and their price, one may reach different decision whether if he/she is
interested in the chemical or the economic information of the two medicines. To deal with the
problem of discovering contextual identity links, as proposed by Beek et al. [19], we presented
in [110] a new ontology-based approach for detecting contextual identity links. Our approach
aims at detecting identity links that are valid in contexts that can be defined as sub-parts of the

domain ontology.

3.3.1 Problem statement

The problem of detecting contextual identity links can be defined as follows: given a knowledge
graph % =(0,2) and a set I’ of instances of a target class tc of the ontology @, find for the set

of all instance pairs (i1,i2) € (I'® x I*°) the most specific contexts in which (i1,iz) are identical.

3.3.1.1 Illustrative example

Let us consider the example depicted in 3.3 which shows a domain ontology for drug description

and four different instances of the target class drug.

Ontology Instances
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Figure 3.3: An extract of ontology @, four instances drugl, drug2, drug3 and drug4 of the

target class Drug.

In this example the two instances drug3 and drug4 of the target class Drug can be con-

sidered as identical in the context where we consider all the ontology’s properties except of
the property name for the drugs. On other hand, the two instances drugl and drug?2 can be

considered as identical in two most specific contexts. The first context is the one in which we
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consider all the ingredients composing the drugs and for every ingredient we consider its weight.
However, in this first context, the description of a weight is reduced to the measure unit without
considering the quantity (property hasValue). A second context in which these instances are
identical is the context where we consider the weight of Paracetamol described by its value and

its measure unit, and only the presence of Lactose in the drugs without considering its weight.

3.3.1.2 Expert constraints

We are interested in the search of the most specific contexts involving a subset of classes, and
for each class a subset of properties. Some contexts can be obviously more relevant than others
(e.g. a value of the weight without its measure unit is not meaningful). Hence, we also aim to
take into account some expert knowledge that can be represented as a set of constraints on the
classes and/or properties that should or should not be involved in the considered contexts. In our
approach we aim to consider three kinds of expert constraints to filter out the irrelevant contexts

to consider:

— Unwanted properties (UP): this refers to properties that an expert wants to discard in the

detection of contextual identity links.

— Necessary properties (NP): a necessary property p is a constraint that allows one to consider
only contexts that contain the property p € OP or p € DP. — Co-occurring properties (CP):
a co-occurrence constraint can be declared to guarantee that a certain class ¢; will be either
declared as the domain (or range) of all the properties indicated in the constraint, or none of
them.

3.3.2 Contexts for Identity Relation

The contextual identity link detection is based on identifying the most specific contexts where
two instances are identical. We consider global context as a connected sub-part of the ontology
O which represents the set of classes and properties in which two instances are considered as
identical. We consider the notion of global context as opposed to the notion of local context, which
defines locally 4 the sub-part of the ontology @ in which the two instances are identical.

A global context is represented as a subset of classes and properties of the ontology, and a set
of axioms which is limited to property domains and ranges typing constraints. As in RDF datasets
we may have instances that are typed by one or several classes of different levels of abstraction,
we defined the set DepC to represent the abstraction level of the classes selected to be allowed to
appear in the contexts. This level is automatically determined depending on the instances direct

types; thus we keep the most general one. We automatically choose the abstraction level of the

141f we transpose these two notions in an ordinary graph the global context will correspond to sub-graphs of depth
n that can be =1 and local context correspond to sub-graphs of depth < 1.
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classes involved in a global context by selecting, from the instantiated classes (direct types), the

most general ones.

Definition 3.10. Selected classes. The set of selected classes DepC that can be involved in

the contextual identity links is the subset of instantiated classes c¢; of £ such that:
DepC ={c; €€ | ﬂcJ‘ €€ s.t. Ix,directType(x,c;) and c; C cj}

Example. In Figure 3.3, DepC will contain all the classes of the graph except Product which
is not instantiated. Therefore, parl and lacl will be considered as of type Paracetamol and

Lactose respectively.

Definition 3.11. Global Context. A global context is a sub-ontology GC,=(C,,DP,,OP,,A,)
of an ontology @ such that C, < DepC, DP, < DP, OP, <OP and A, is a set of domain and
range constraints that are more specific than those described in A: Vop € OP,, domain,(op) E

domaing(op) and range,(op)Erangegs(op), and Vdp € DP,,, domain,(dp) S domaings(dp).

Example. In Figure 3.3, there exist many possible global contexts. We present one:
GC1=(C ={Drug,Paracetamol,Lactose,Weight},

OP ={isComposedOf, hasWeight}, DP ={hasValue},

A ={domain(isComposedOf)=Drug,

range(isComposedOf)= Lactose U Paracetamol,

domain(hasWeight) = Lactose Ll Paracetamol,

range(hasWeight) = Weight})

Definition 3.12. Order relation between global contexts. Let GC, = (C,,OP,,DP,,A},)
and GC, =(C,,0P,,DP,,A,) be two global contexts. The context GC,, is more specific than GC,,
noted GC, <GC,,ifC,cC,, OP,<OP,, DP,cDP, and

Yop € OP,, domainy(op) & domain,(op) and range,(op)  range,(op), and Vdp € DP,,
domain,(dp)E domain,(dp).

3.3.2.1 Contextual identity links.

In our approach, two instances are considered as identical in a given context, when all the
properties involved in the global context are instantiated in the considered instances’ descriptions,
and when their respective values are equal. Therefore, we firstly define the contextual description
that is considered for one instance in one context. Then we will define the conditions that must

hold to consider that two RDF descriptions refer to identical instances in a given context.

Definition 3.13. Contextual instance description according to a global context. Given
a RDF dataset 9, a global context GC,, = (C,,OP,,DP,,A,) and an instance i, a contextual

description G; of i in GC,, is the maximal set of triples that describe i in 2 such that:
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— G; forms a connected graph that contains at least one triple where i is a subject or an object
-Vit=<s,p,0>€eG; then pe OP,UDP, and type(s)E domain,(p) and type(o) S range,(p)
—V j aclass instance of G;, and Vdp € DP,, such as type(j) Edomain,(dp), then 3¢, = < J, p,
v > € G;, with v of type literal

— V j a class instance of G;, and Yop € OP, such as type(j) E domain,(op), and ¢y Ucg C
rangey(op)thendt,=<j,op,k>and tp, = <j,op,l > €G; with type(k)=cq and type(l) = co

From two contextual descriptions of two class instances defined in a given context, we can
define if they can be considered as identical. In this work we will consider that properties are
local complete: if a property p is instantiated for a given class instance i, we consider that all the
property instances are known for i. Since a local completeness is assumed, two instances can be
considered as identical when the contextual graphs, formed by the contextual descriptions, are
isomorphic up to a renaming of the instance URI. Note that since some classes can be removed

from the global context, this constraint can in fact be considered class by class.

Definition 3.14. Identity in a global context. Given a global context GC,,, a pair of instances
(i1,12) are identical in GCy, noted identiConTo.gc,>(i1,i2), only if the two labelled graphs G;,
and G;, that represent the contextual descriptions of i1 and i are isomorphic up to a rewriting

of the URI of the class instances (literals must be equal).

Example. drugl and drug2 are considered as identical according to the global context GC;
defined in Example 2.
(i.e. identiConTo.gc,>(drugl,drug2)).

The contextual identity relations will only be specified for the most specific global context(s),
but can be inferred for the more general ones using the order relation between global contexts:
given GC, and GC, two global contexts, with GC, < GCy, then identiConTo.gc,>(i1,i2) =
identiConTo.gc,>(i1,1i2).

3.3.3 Contextual Identity Detection Method

The goal of our method named DECIDE (DEtection of Contextual IDEntity) is to determine for
each pair of individuals (i1, i2) € I'® x I*® of a target class tc given by the user, the set of the most
specific global contexts in which the identity relation identiConTo is true. DECIDE requires
to have the set of facts & of the considered knowledge base, the target class tc¢ as inputs, and
may consider different constraint lists UP, NP, CP given by an expert. Here, we restrict the
description of this algorithm to its three main functions, nonetheless a more detailed description
with different use-cases is available in [109, 110]:

- collects the selected classes, in order to indicate the level of abstraction to be considered in
building the identity graphs and generating the most specific global contexts.

Then for each pair of individuals of the target class tc:
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- constructs the identity graph(s), using a depth-first search algorithm. When different
mappings between instances of the same class can be considered, a new identity graph is
constructed.

- generates the most specific global context(s) by relying on the constructed identity graphs.
A global context GC is constructed using the set of local contexts by insuring the presence of a
single!® one local context per class in each global context. The most specific global contexts are
generated using the function generateGC, which traverses the identity graph IG using also a

depth-first search algorithm.

3.3.4 Empirical evaluation

We have conducted an experimental evaluation in real datasets in life science domain. We first
evaluated quantitatively our contextual identity approach. The we showed how the discovered

contexts may be used to generate prediction rules for missing observations.

3.3.4.1 Datasets description.

Our approach has been evaluated on two scientific datasets exploited using the 1.4 version'® of
the ontology PO? [72], which aims at modelling transformation processes. Each process can be
conducted over several itineraries, with each itinerary representing a sequence of transformation
steps (e.g. drying, heating). The ontology PO? also represents the set of observations conducted

during each step. These observations contain a large number of missing information.

—The first dataset describes the process of micro-organisms’ stabilization, conducted in 20 different
itineraries in the context of the INRA!” CellExtraDry project. This dataset contains 1 721 979
statements, 208 instantiated selected classes, 415 136 instances and 159 properties (83 object

properties).

— The second dataset describes the process of the dairy gels’ transformation, conducted in 12
itineraries in the context of the INRA Carredas project. This dataset contains 237 838 statements,

555 instantiated selected classes, 42 269 instances, and 159 properties (83 object properties).
We have tested our algorithm DECIDE separately on each of these datasets, in order to detect

the most specific global contexts in which the instances of the target class Mixture are identical.
A mixture is composed of a set of products and is transformed during the different steps of the

process.

15This constraint guarantees semantic coherence of identity detection procedure, e.g. to compare two instances of
the class Researcher, the same local context will be used.

16The core ontology of PO? is available at: http://agroportal.lirmm.fr/ontologies/P0O2

17The French National Institute for Agriculture
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Table 3.4: Results of DECIDE on the CellExtraDry and Carredas datasets with the target class
Mixture

CellExtraDry | Carredas

# Individuals of target class 210 619

# Possible Pairs 21945 191 271
# Graph Nodes per pair 11 7

# Different Global Contexts 28 231

# Identity Links 31092 239 410
# Identity Links per pair 1.41 1.25
Execution Time (approx. minutes) 2 26

3.3.4.2 Discovered contextual identity links.

Table 3.4 presents the results of DECIDE applied on these two scientific datasets, without
considering their observations (i.e. the properties related to the observations have been declared
as unwanted properties). In the CellExtraDry dataset, the 210 instances of the target class
Mixture which can form 21945 pairs, have resulted in 31092 contextual identity links valid in
28 global contexts in total, while the 191 271 pairs of mixtures in the Carredas dataset have
resulted in 239 410 identity links valid in 231 different global contexts in total. Some of the
detected contexts contain up to 20 classes and 35 properties, while less specific ones contain only
one class and one property.

We repeated the experiments on each dataset, while taking into account a constraint c¢p that
expresses that a weight value cannot be considered without its unit of measure and vice versa.
While the number of distinct most specific global contexts remained unchanged in both datasets,

we noticed a change in around 40 % of the generated most specific global contexts.

3.3.4.3 Use of contextual identity links for prediction.

The goal of this experimentation is to show if contextual identity links can be exploited for
prediction tasks. More precisely, we want to find out the probability of two experiments, identical
in a certain context, to have similar observations. Therefore, we will be able to predict to a
certain degree of certainty, some experiments’ unobserved measures. Table 3.4 indicates that the
instances of the target class Mixture are connected to most of the datasets’ instantiated classes,
191 out of 208 in CellExtraDry and 488 out of 555 classes in Carredas, thus showing that an
identity between two mixtures can also indicate an identity between the experiments’ steps in
which these two mixtures exist.

By exploiting the property sharing of identity relation (see Definition 2.5 in Chapter
2) we attempted to detect for each context GC;, the set ¥ of properties {p1,...,pn}, Wwhere
identiConTo.gc;>(x,y) N p(x,z21) — p(y,z2) with 21 = z3 and ¥ n (OP%Ci yDP%Ci) = @. Such
rules can be expressed as r: identiConTo.gc,>(x,y) — same(m), with m representing a certain
measure (e.g. pH measure). Since the detected contextual identity links are only stated for the

most specific contexts of each pair, we have exploited the global contexts’ order relation (see
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Table 3.5: Examples of Detected Rules in the Carredas dataset

Rule Error Rate | Support
identiConTo.GC,gy> %, )
— same(Adhesiveness) 22% 23 %
identiConTo.Gcy>(x,y) 45 % 13 %
— same(Sweetness)
LdenthonTo<.G0202>(x,y) 71% 29 %
— same(Bitterness)
identiConTo G o4>,Y)
— same(Acidity) 82% 21 %

Definition 3.12) to obtain the complete set of contextual identity links for each global context.

In order to evaluate the quality of a rule » we used two measures:

— the rule’s average error rate: for each instance pair (x, y) identical in GC;, we calculate the
error rate for their m measure values (i.e., the value of an observation property like temperature)

based on the maximum and the minimum value of the observation property in the dataset.

— the rule’s support: represents the number of instance pairs identical in GC; that have the

same value for the measure m, divided by the total number of pairs in GC;.

We have generated 112 rules in the CellExtraDry dataset (averaging 4 rules per context), and
3677 rules in the Carredas dataset (averaging 15 rules per context). The error rate on average
is around 7.3% in CellExtraDry and 20% for Carredas. On average, in both datasets the rule’s
support is very low around 0.4% and 1%. This low support in both datasets shows the large
number of observational measures that are missing in each experiment. As a result we have
also observed that the error rate of a rule decreases by 22% when a global context is replaced
by a more specific global context in the CellExtraDry dataset, and decreases by 31.5% in the
Carredas dataset. This decrease shows that the rules discovered in more specific global contexts
are more precise than the rules discovered in more general ones, and that the contextual identity
links can for example be exploited to predict missing properties values with different confidence
level. We asked the domain experts to evaluate the plausibility of the 20 best detected rules (in
terms of error rate and support combined) on a scale of "Plausible", "Probably Plausible", "Not
Sure", "Probably Not Plausible", and "Not Plausible". 9 rules were evaluated as plausible, 4 as
probably plausible and 1 rule as not plausible. The experts were not sure of the plausibility of the
6 remaining rules. Table 3.5 presents some of the rules evaluated as plausible, in the Carredas
dataset. For instance, the first rule indicates that there is a high probability that mixtures with
the same weight of Rennet, Sardine, and Sodium Chloride, and mixtures containing Lipids, Water,

and Proteins (not necessarily the same weight), to have similar adhesiveness.

Our collaboration with the domain experts, and the experiments’ results conducted on these

scientific datasets have shown us that:

40



3.3. CONTEXTUAL IDENTITY LINKS DETECTION

the use of genuine identity links such as the owl:sameAs link is rarely required in sci-
entific datasets, since the experiments’ environment tend to change, even slightly from
one experiment to another, which could result in a propagation of incorrect observational

measures;

asking domain experts to specify the contexts in which two objects are considered identical
is not an intuitive task, as the identity contexts can differ from one expert and task to
another. Instead, specifying some constraints on these contexts is a more effective way to

benefit from the experts’ knowledge;

thousands of explicit contextual identity links can be detected in a reasonable time, despite

the high connectivity between all these graph’s instances;

the contextual identity links can for instance be used to generate rules that can help predict

some of the missing observational measures;

the relevance of a certain context can vary depending on the conducted observations. For
instance, the identity of the mixtures’ composition is required in tasks that study the acidity,
while the identity of the mixtures’ steps is required in tasks studying the experiments’

environmental impact;

rules that are detected in more specific contexts have a better error rate than the ones

detected in less specific contexts.
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3.4 Lessons Learned

In this chapter I drew up an overview of existing approaches for identity link invalidation and
near/weak identity while describing some of our contributions in this field of research. Hence, I
proposed different solutions to address some facets of identity problem, namely, erroneousness of
available owl : sameAs links and the subjectivity and context-dependency of identity relation.
As regards to link invalidation problem, to achieve higher precision and scalability results,
there is a real need for more hybrid link invalidation methods that are able to combine different
kinds of information about the resources themselves and the original data sources. Even though,
the rather efficiency and scalability of the proposed approaches, there are still improvements
needed for achieving higher accuracy results. Evaluation protocols are still considering manual
evaluation on samples, hence, benchmarks are needed to be built and proposed to global evalua-
tion contests as OAEI. As firstly proposed in [4], crowdsourcing evaluation processes should be
considered in such evaluation protocols. Moreover, as it has been highlighted by some of works
[139] in the state of the art, links that are produced by automatic data linking tools fulfil better
some consistency constraints (e.g. UNA) than ones published on repositories like sameas.org.
Actually, the rules of link publication on the LOD should be strengthen and restricted to links
satisfying some quality criteria. Moreover, link quality assessment is not matter of one unique di-
mension. Link quality consists in not only its validity but also in link added-value and meta-data,
like information gain [125], reachability, availability [94] as well as link evolution throughout
the time. Up to our knowledge, none of the existing link invalidation methods propose a full
repairing approaches. Although the invalidation reasons of an identity link can be manifold (e.g.
errors in the values, data freshness, ontology axioms uncertainty), existing approaches need to be

extended by a repairing phase where several possible repairs are proposed.
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3.4. LESSONS LEARNED

MAIN COLLABORATIONS AND PROJECTS OF THE CHAPTER
The research work I presented in this chapter has been achieved thanks to the collaboration with
several colleagues. For the identity link detection and invalidation I co-supervised a PhD student

and a post-doc candidate:

Laura Papaleo’s post-doc project (2014-2016) co-supervised with Nathalie Pernelle (Paris Sud
University) and funded by the Qualinca ANR project (2012-2016).

Joe Raad’s PhD (2015-2018) co-supervised with Nathalie Pernelle (Paris Sud University), Juliette
Dibie (AgroParisTech) and Liliana Ibanescu (AgroParisTech) and funded by the LIONES project
of CDS-Paris Saclay. In the setting of Joe Raad PhD project, I also had the opportunity to work
with Frank van Harmelen (VU, Amsterdam, Netherlands) and Wouter Beek (VU, Amsterdam,
Netherlands).
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CHAPTER

DATA ENRICHMENT

4.1 State of the Art

espite the apparent large size of knowledge graphs, their completeness and consistency

are far from being achieved (e.g. Freebase is missing statements for 63.8%, Wikidata

for 60.9% and DBpedia for 49.8% of all entities considering a selected set of properties
used to describe books, such as language, publisher or number of pages [149]), making their
efficient use problematic. Hence, to efficiently exploit information from different knowledge
graphs, applications need to address two crucial problems: data quality and data enrichment.
The two are tightly interrelated: enriching a KG with data coming from different sources aims at
improving the quality of the KG content, as it is expected to be more complete and consistent.
On the other hand, data enrichment strategies rely on data quality criteria (e.g. data frequency,
source reliability) to solve conflicting values, caused by the variety of data quality across data
sources. That is, data quality problems come from data publishing errors, data being outdated or
inaccurate. Moreover, usually KGs are built by either using (semi-) automatic extraction methods
from existing structured knowledge sources like wikipedia or by relying on the contribution of
humans, like domain experts or the crowd. Even though if the reliability of these sources can be
rather good, they do not always give complete descriptions about the entities and the information
extraction processes may introduce errors due to the lack of accuracy of such tools. This has led
to KGs in which, many entities (not all the entities of the world are described), types, properties

and values are erroneous or missing.

To overcome the KG incompleteness problem, several approaches have been proposed in
the literature. First, information extraction, using patterns, from external sources that can be

textual, like wikipedia pages [77] or structured such as wikipedia tables, HTML tables [149] are
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applied. Second, rule mining methods such as AMIE [56] are used to make implicit knowledge
explicit in knowledge graphs. Third, other approaches like [54, 88] exploit entity links that exist
between several knowledge graphs and apply a data fusion process to fill the gaps in the entity
descriptions.

Data enrichment may concern different information targets. It may concern either predicting
missing entities, missing types for entities and missing property values (objects or literal values).
In what follows, we focus our purpose on works dealing with missing property value prediction
(for a survey on approaches dealing with other types of missing information prediction, see [102]).

Bellow we describe the related work by distinguishing between the approaches that enrich
knowledge graph data by applying a data fusion process, and approaches that apply information

prediction mechanisms to determine the missing property values.

4.1.1 Data Fusion for property values enrichment

Research on the data fusion problem begun over two decades ago in the field of relational
databases. The survey of Bleiholder and Naumann [21] outlines the state of the art in this
direction. However, these approaches defined for the relational model are not applicable as they
are in the context of RDF knowledge graphs. This is due to several issues inherent to the RDF
data model itself and to the quality of the RDF data published on the LOD. First, unlike the
relational model, in RDF data model the properties (i.e. attributes) may be not functional (may
have several values for the same URI) and properties can be object properties and take not only
literal values but also URIs. Second, data quality problems namely, data incompleteness, errors,
imprecision and data redundancy are very frequent in LOD datasets and thus may make data
fusion more complex and less effective. Third, the big volume of RDF datasets (millions of RDF
triples and thousands of properties in some ontologies) makes the scalability a fundamental
aspect that should be considered by data fusion methods in RDF data model.

There are few approaches that dealt with data fusion in knowledge graphs. They can be
characterized whether they are instance based referring to approaches where the decision is made
according to properties of the value itself (e.g., frequency, homogeneity) as opposed to approaches
source metadata based, where the choice is based on information of the data sources (e.g.,
reliability, freshness, information extractors confidence) Overall existing approaches considering
RDF knowledge graphs attempt to evaluate the quality of each property value, by taking into
account various measures based on the value itself and/or on data source metadata. In [54]
the authors propose an approach which consists in establishing a confidence degree for each
value, by calculating a number of quality criteria for each property. A combination of quality
metrics is used to select the most appropriate value. A single value is chosen, the one with the
highest quality score. In [88], the framework Sieve is introduced as part of the Linked Data
Integration Framework (LDIF), to deal with data quality assessment and fusion. Concerning

the fusion phase, Sieve handles conflicts with three strategies, based on the idea described
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in [21]: (i) conflict-ignoring strategies, where conflicts ar