
HAL Id: tel-02440831
https://hal.science/tel-02440831v2

Submitted on 28 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Erythroid differentiation in vitro under the lens of
mathematical modelling

Ronan Duchesne

To cite this version:
Ronan Duchesne. Erythroid differentiation in vitro under the lens of mathematical modelling. Bioin-
formatics [q-bio.QM]. Université de Lyon, 2019. English. �NNT : 2019LYSEN082�. �tel-02440831v2�

https://hal.science/tel-02440831v2
https://hal.archives-ouvertes.fr


Numéro National de Thèse : 2019LYSEN082

THÈSE de DOCTORAT de L’UNIVERSITÉ DE LYON
opérée par

l’École Normale Supérieure de Lyon

École Doctorale N◦ 340 :

Biologie Moléculaire, Intégrative et Cellulaire (BMIC)

Spécialité de doctorat : Biologie

Soutenue publiquement le 13/12/2019, par :

Ronan DUCHESNE

Erythroid differentiation in vitro

under the lens of mathematical modelling
Modélisation mathématique de la différentiation érythrocytaire in vitro

Devant le jury composé de :

Geneviève Dupont DR FNRS Université Libre de Bruxelles Rapporteure

Jérémie Guedj CR INSERM Université Paris Diderot Rapporteur

Sophie Pantalacci CR CNRS ENS de Lyon Examinatrice

Delphine Ropers CR Inria Centre Inria Grenoble - Rhône-Alpes Examinatrice

Fabien Crauste DR CNRS Institut de Mathématiques de Bordeaux Co-directeur

Olivier Gandrillon DR CNRS ENS de Lyon Directeur





Remerciements

Une thèse, c’est long et ça se fait rarement tout seul. Après quasiment qua-

tre ans passés dans le même labo, la liste des personnes à remercier est donc

substantielle. Elle s’allongerait d’autant plus si l’on considérait mes sept an-

nées passées à l’ENS. Je vais essayer de l’établir de façon à peu près exhaustive

dans les pages qui suivent. Mais je pense que c’est une vaine entreprise, et je

m’excuse d’avance auprès des personnes que je vais oublier. Pas d’inquiétude,

je vous aime bien quand même.

Tout d’abord, il faut que je remercie Fabien et Olivier, qui ont accepté

d’encadrer un stagiaire un peu paumé en février 2016 et qui n’ont depuis lors

pas cessé de le supporter –dans tous les sens du terme– avec une patience

dont j’aurais été incapable. Vous m’avez déjà énormément appris, mais je ne

comprends toujours pas comment vous êtes capables de faire tout ce que vous

faites. J’espère pouvoir vous ressembler un peu plus un jour (peut-être).

Ensuite, il faut mentionner l’équipe SBDM du LBMC, ainsi que l’équipe

Dracula d’Inria, pour m’avoir accueilli pendant tout ce temps. Et en parti-

culier les autres thésards, qui ont partagé mes interrogations et m’ont aidé

dans la mesure du possible dès qu’ils le pouvaient. Je tiens aussi à remercier

l’assistante de l’équipe Dracula, Claire Sauer, qui a su m’aider à surmonter ma

phobie administrative avec humour. Parmi tout ces collègues, une personne en

particulier mérite une place d’honneur dans ces remerciements. Pour avoir co-

habité dans le même bureau que moi pendant l’essentiel de ces années. Pour

avoir accompagné mes pauses. Pour m’avoir encouragé quand ça n’allait pas,

et pour avoir partagé mon bonheur quand ça allait. Et surtout pour avoir as-

iii



Remerciements

suré l’intégralité de la contrepartie expérimentale des travaux exposés dans ces

pages. Anissa, rien de tout ceci n’aurait été possible sans toi et je considère que

le contenu de ce manuscrit t’appartient tout autant qu’à moi.

Je dois aussi remercier les membres de mon comité de thèse, Adeline Le-

clercq-Samson et Arezki Boudaoud, pour avoir suivi mon travail à travers les

années, ainsi que les deux rapporteurs de ma thèse, Geneviève Dupont et

Jérémie Guedj, pour avoir accepté de relire mon manuscrit à un moment où je

n’en étais honnêtement plus capable. Et bien sûr Sophie Pantalacci et Delphine

Ropers qui ont accepté de faire partie de mon jury.

Une partie non-négligeable de mon temps de ces dernières années a été oc-

cupée par l’enseignement. Ça n’aurait pas été possible sans Cendrine Moska-

lenko et Arezki Boudaoud, qui ont défendu ma candidature face à un dé-

partement qui ne semble toujours pas convaincu de l’intérêt d’enseignements

pluri-disciplinaires en biologie. Je tiens aussi à remercier tous les profs qui

m’ont ensuite aidé à remplir mon service (et souvent à le dépasser), en partic-

ulier Marie Sémon et Stéphane Vincent pour leurs conseils et les opportunités

qu’ils m’ont offertes.

Je tiens aussi à saluer ici la performance de l’équipe de la pause café

du Foyer, qui a su rester réglée comme une horloge malgré les années qui

s’accumulent et les nombreux départs pour post-doc et chômages divers :

Gram’, Benji, Valou, et surtout Jason, pour toutes ses interrogations existen-

cielles qui nous ont occupées à travers ces années. Plus généralement, je tiens à

remercier tous les vieux thésards de l’ENS, qui m’ont montré ce qui m’attendait

(Léo, Pinouz, Groliv’, Baba, Raph’, Gram’, Benji, Karpi et sans doute beaucoup

d’autres que j’oublie). À une époque, je pensais que je valais mieux que vous

et que tout se passerait bien pour moi. L’expérience montre que je ne pouvais

pas me tromper plus.

Tant que j’en suis rendu à remercier mes amis, il faut absolument que je

mentionne Tomtom et Michou, qui m’ont soumis l’idée de faire de la musique

un jour dans l’ancien Foyer. Ils ne s’en rappellent sans doute pas, mais ils

ont eu ce jour-là un rôle déterminant dans ma vie, et dans ce qui allait se

iv



Remerciements

passer pendant cette thèse. Il y a ensuite eu la Fanfarovis (et l’ensemble de ses

membres), qui m’a prêté un instrument et m’a appris à en jouer, comme à tant

d’autres, dans la bonne ambiance et sans jugement. Notre périple à vélo reste

gravé dans ma mémoire comme mon meilleur souvenir de vacances. Puis la

Bërkaille, qui a partagé mon rêve électro-cuivré et l’a fait grandir bien au-delà

de toutes mes espérances. J’ose espérer que vous continuerez à faire vibrer les

murs de la festive bien après mon départ. Au fil des années, la gralternative

m’a permis d’assouvir ma soif de tierces picardes et d’entretenir le parolier de

l’ENS avec une originalité et une motivation que je ne pensais plus pouvoir

y trouver. Il faut aussi mentionner Émilie Jaunie, comme étant le groupe au

meilleur ratio style/visibilité, du haut de ses zéros performances publiques.

Les répètes étaient cool quand même. J’aimerais ajouter (exceptionnellement)

à cette liste un groupe dont je n’ai pas fait partie, le Bonk, pour son énergie

et surtout pour l’ensemble de son œuvre, qui m’a fait changer d’avis sur la

musique électronique (ce qui n’était pas gagné).

Au-delà de la musique, il y a énormément de personnes que je tiens à re-

mercier pour les moments qu’on a partagés ces dernières années. La roroteam,

et en particulier mon homonyme Roro Dudu, pour nos expériences de con-

nexion mentale. Mes collègues les anciens RF pour avoir fait vivre le Foyer

avec moi. Et les nouveaux, pour avoir démontré qu’il est plus que jamais, et

malgré son déménagement, un concept et non pas un lieu. Tant qu’on parle

du Foyer, il y a aussi la team de l’apéro, dont la liste exhaustive serait beau-

coup trop longue, mais qui m’a fait passer un catalogue inépuisable de bons

moments. Devoir vous quitter constituera la rupture la plus difficile de ma vie,

et j’espère pouvoir retrouver des gens comme vous partout où j’irai. Les BDE

successifs de ces dernières années (Kwaggas, Gorfous, Quokkas et Bilbys, mais

on pourrait remonter plus loin, jusqu’aux Ouandjis, Krakens, Bongos et même

jusqu’aux Dugongs) pour tous ces WEI et autres événements inoubliables dont

je n’ai gardé aucun souvenir. Je tiens aussi à mentionner les amis particuliers

qu’ont été Medhi, Tony, Sam et surtout Awax (the best <3), pour leur disponi-

bilité et la qualité des services qu’ils m’ont rendus aux moments où ça n’allait

v



Remerciements

pas.

Il faudrait aussi que je parle des habitants successifs du déciBar (Briscard,

Alicia, Fiona et Angèle) pour avoir supporté de vivre avec moi ; et ceux de

la yoloc’ (Antton, Christine, Jason, Clément, Juliette, Alassane, Sonia, Siméon,

Yolaine et tous les nouveaux que je ne connais pas encore) pour avoir tran-

scendé les frontières de nos apparts’. Une très grosse dédicace va à Antton,

qui ne se rendra sans doute jamais compte à quel point il m’aura servi de

modèle dans la vie. Pour le meilleur et pour le pire, apparemment.

Enfin, je tiens à adresser mes plus sincères remerciements à ma famille,

qui a toujours su me soutenir et m’encourager à distance, peu importe les

problèmes que j’ai pu rencontrer.

vi



Contents

Remerciements iii

Contents vii

List of Figures xiii

List of Tables xvii

List of Abbreviations xix

List of Mathematical Notations xxi

1 Introduction 1

1.1 In vitro erythropoiesis . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 A classical view of haematopoiesis and erythropoiesis . . 2

1.1.2 The TGF-α/TGF-β-induced Erythrocytic Cells (T2EC) . . 4

1.1.3 Modelling attempts . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Differentiation and decision-making at the single-cell level . . . . 8

1.2.1 Stochasticity of Gene Expression (SGE) . . . . . . . . . . . 9

1.2.2 SGE and decision-making . . . . . . . . . . . . . . . . . . . 10

1.2.3 Experimental manipulation of SGE . . . . . . . . . . . . . 15

1.3 Parameter estimation and identifiability in mathematical models 16

1.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.2 Maximum Likelihood Estimation (MLE) . . . . . . . . . . 17

vii



Contents

1.3.3 Structural identifiability . . . . . . . . . . . . . . . . . . . . 19

1.3.4 Practical identifiability . . . . . . . . . . . . . . . . . . . . . 19

1.3.4.1 Profile likelihood . . . . . . . . . . . . . . . . . . 20

1.3.4.2 The Fisher Information Matrix (FIM) . . . . . . . 21

1.3.4.3 Computational cost and precision of the methods 24

1.3.5 Related concepts . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.5.1 Parameter sensitivity . . . . . . . . . . . . . . . . 24

1.3.5.2 Experimental design . . . . . . . . . . . . . . . . 25

1.3.5.3 Sloppiness . . . . . . . . . . . . . . . . . . . . . . 26

1.3.5.4 Dynamical compensation . . . . . . . . . . . . . . 27

1.4 Mixed Effects Models (MEM) . . . . . . . . . . . . . . . . . . . . . 28

1.4.1 General principle and definitions . . . . . . . . . . . . . . 29

1.4.1.1 Structural model . . . . . . . . . . . . . . . . . . . 29

1.4.1.2 Parameter model . . . . . . . . . . . . . . . . . . 29

1.4.1.3 Error model . . . . . . . . . . . . . . . . . . . . . 31

1.4.2 Parameter estimation . . . . . . . . . . . . . . . . . . . . . 31

1.4.2.1 Population parameters . . . . . . . . . . . . . . . 32

1.4.2.2 The Stochastic Approximation of the Expecta-

tion Maximization (SAEM) algorithm . . . . . . 33

1.4.2.3 Individual parameters . . . . . . . . . . . . . . . 34

1.4.3 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.4.3.1 Bayesian Information Criterion (BIC) . . . . . . . 35

1.4.3.2 Akaike’s Information Criterion (AIC) . . . . . . . 37

1.4.3.3 Likelihood Ratio Test (LRT) . . . . . . . . . . . . 38

1.4.4 Identifiability in mixed effects models . . . . . . . . . . . . 38

1.4.4.1 Population parameters . . . . . . . . . . . . . . . 39

1.4.4.2 Individual parameters . . . . . . . . . . . . . . . 40

1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2 A deterministic model of in vitro erythropoiesis 43

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

viii



Contents

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3 Drugs that modulate SGE and differentiation 71

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4 From a deterministic model to a mixed effects model - The Standard

Two-States approach (STS) 89

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Some considerations on the results of the previous chapters . . . 90

4.3 Calibrating the deterministic model on a larger dataset . . . . . . 94

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Elaboration of a mixed effects model for the in vitro erythropoiesis 99

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 A first version of the model . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Selection of a distribution for δSC . . . . . . . . . . . . . . . . . . 104

5.4 Identifiability analysis of our MEM . . . . . . . . . . . . . . . . . . 107

5.4.1 Population parameters: Initial Guess Sampling (IGS) . . . 107

5.4.2 Individual parameters: η-shrinkage . . . . . . . . . . . . . 110

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Experimental design 113

6.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1.1 Population size . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1.2 Generation of artificial datasets . . . . . . . . . . . . . . . . 115

6.1.3 Model calibration . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3 Identifiability of the population parameters . . . . . . . . . . . . . 119

6.3.1 FIM-based identifiability . . . . . . . . . . . . . . . . . . . 119

6.3.2 Population parameter values. . . . . . . . . . . . . . . . . . 121

6.4 Identifiability of the individual parameters . . . . . . . . . . . . . 121

ix



Contents

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7 Reduction procedure in mixed effect models 125

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2 Initial estimation of parameter values of the full model . . . . . . 126

7.2.1 Convergence over 50 SAEM runs . . . . . . . . . . . . . . . 126

7.2.2 Population parameters . . . . . . . . . . . . . . . . . . . . . 126

7.3 Model with reduced δ
pop
SC and δ

pop
CB . . . . . . . . . . . . . . . . . . 128

7.3.1 Convergence over 50 SAEM runs . . . . . . . . . . . . . . . 130

7.3.2 Population parameters . . . . . . . . . . . . . . . . . . . . . 131

7.3.3 Individual random effects . . . . . . . . . . . . . . . . . . . 133

7.4 Model with reduced δ
pop
SC , δ

pop
CB and a fixed ρC . . . . . . . . . . . . 134

7.4.1 Convergence over 50 SAEM runs . . . . . . . . . . . . . . . 134

7.4.2 Population parameters . . . . . . . . . . . . . . . . . . . . . 134

7.4.3 Individual parameters . . . . . . . . . . . . . . . . . . . . . 137

7.5 Final model with reduced δ
pop
SC , δ

pop
CB , and fixed ρC and ρB . . . . . 138

7.5.1 Convergence over 50 SAEM runs . . . . . . . . . . . . . . . 138

7.5.2 Population parameters . . . . . . . . . . . . . . . . . . . . . 139

7.5.3 Individual parameters . . . . . . . . . . . . . . . . . . . . . 139

7.5.4 Quality of the fit . . . . . . . . . . . . . . . . . . . . . . . . 140

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.6.1 Parameter values in the final model . . . . . . . . . . . . . 141

7.6.2 About the final model . . . . . . . . . . . . . . . . . . . . . 146

7.6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8 Discussion and prospects 149

8.1 A mathematical model of in vitro erythropoiesis . . . . . . . . . . 149

8.2 Stochasticity of gene expression and differentiation . . . . . . . . 151

8.3 Generalizing our reduction approach for mixed effect models . . 152

8.4 Computing the effect of the drugs with the mixed effect model . 153

8.5 Source of experimental heterogeneity . . . . . . . . . . . . . . . . 154

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

x



Contents

Bibliography 157

xi



Contents

xii



List of Figures

1.1 Overview of haematopoiesis and erythropoiesis . . . . . . . . . . 3

1.2 Experimental context of this study . . . . . . . . . . . . . . . . . . 5

1.3 A systems biology view on cell decision-making in a simplistic

case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Effects of the drugs that influence the extent of SGE on the in

vitro erythroid proliferation and differentiation. . . . . . . . . . . 15

1.5 The different outcomes of profile-likelihood-based identifiability

analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6 Number of publications in relation with identifiability . . . . . . 25

4.1 Experimental heterogeneity in the control condition . . . . . . . . 91

4.2 Experimental heterogeneity in the treated condition . . . . . . . . 92

4.3 Parameter values from the previous chapters . . . . . . . . . . . . 93

4.4 Boxplots of the full dataset . . . . . . . . . . . . . . . . . . . . . . 94

4.5 Spaghetti plots of the full dataset . . . . . . . . . . . . . . . . . . . 95

4.6 Parameter values in the full dataset . . . . . . . . . . . . . . . . . 96

5.1 Distribution of the optimal likelihood values of our MEM . . . . 103

5.2 Optimal likelihood values of the model with two bounds and

the rate model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Initial guess sampling of the population parameters of the model

with a lognormal δSC . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 Parameter distributions for the rate model . . . . . . . . . . . . . . 109

xiii



List of Figures

6.1 Number of convergent runs as a function of population size . . . 118

6.2 Fraction of correctly estimated FIMs as a function of population

size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3 FIM-based identifiability criteria as a function of population size 120

6.4 Estimated population parameters as a function of population size 122

6.5 η-shrinkage as a function of population size . . . . . . . . . . . . 123

7.1 Likelihood distribution over 50 SAEM runs on the full model . . 127

7.2 Normalized parameter values in the the full model . . . . . . . . 128

7.3 Correlation heatmap of the unidentifiable population parame-

ters for the full model . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.4 Correlations between population parameters in the full model . . 129

7.5 Likelihood distribution of the model with reduced δ
pop
SC and δ

pop
CB 131

7.6 Estimated parameter values for the model with reduced δ
pop
SC and

δ
pop
CB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.7 Correlations between population parameters in the model with

reduced δ
pop
SC and δ

pop
CB . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.8 Distribution of sη values for the model with reduced δ
pop
SC and δ

pop
CB 133

7.9 Likelihood distribution of the model with reduced δ
pop
SC , and δ

pop
CB ,

and no variability on ρC. . . . . . . . . . . . . . . . . . . . . . . . . 135

7.10 Estimated parameter values for the model with reduced δ
pop
SC and

δ
pop
CB , and no variability on ρC . . . . . . . . . . . . . . . . . . . . . 136

7.11 Correlations in the model with reduced δ
pop
SC and δ

pop
CB , and no

variability on ρC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.12 Distribution of sη values for the model with reduced δ
pop
SC and

δ
pop
CB , and no variability on ρC . . . . . . . . . . . . . . . . . . . . . 137

7.13 Likelihood distribution of the model with reduced δ
pop
SC , and δ

pop
CB ,

and no variability on ρC and ρB . . . . . . . . . . . . . . . . . . . . 139

7.14 Normalized parameter values for the model with reduced δ
pop
SC

and δ
pop
CB , and no variability on ρC and ρB . . . . . . . . . . . . . . 140

7.15 Distribution of sη values for the individual parameters in the 25

convergent runs of SAEM. . . . . . . . . . . . . . . . . . . . . . . . 141

xiv



List of Figures

7.16 Observation/Prediction Diagram of the reduced model . . . . . . 142

7.17 Estimated parameter values for the model with reduced δ
pop
SC and

δ
pop
CB , and no variability on ρC and ρB . . . . . . . . . . . . . . . . . 143

7.18 Parameter distributions in the reduced model . . . . . . . . . . . 143

7.19 Cell distributions in each replicate of the experiment . . . . . . . 145

8.1 Diagram of the model designed in Chapter 2 . . . . . . . . . . . . 150

xv





List of Tables

5.1 Initial guess values and distributions in our MEM . . . . . . . . . 102

5.2 Parameters with a null-sensitivity . . . . . . . . . . . . . . . . . . 104

5.3 Alternative MEM defined by relaxing the bounds of δSC . . . . . 105

5.4 Selection criteria evaluated for our alternative δSC distributions . 106

6.1 Parameter values used to generate the artificial datasets and cal-

ibrate the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

xvii





List of Abbreviations

ABM Agent-Based Model
DDE Delay-differential Equation
DE Differential Equation
DM17 Differentiation medium
EBE Empirical Bayesian Estimates
Epo Erythropoietin
FIM Fisher Information Matrix
GRN Gene Regulatory Network
IGS Initial Guess Sampling
IWRES Individual Weighted RESiduals
LM1 Self-renewal medium
LRT Likelihood-Ration Test
MEM Mixed-Effects Model
ODE Ordinary Differential Equation
PDE Partial Differential Equation
PK Pharmacokinetic
PKPD Pharmacokinetic/Pharmacodynamic
sc-RNAseq single-cell RNA-sequencing
sc-RTqPCR single-cell Retro-Transcription quantitative Polymerase Chain Reaction
SAEM Stochastic Approximation Expectation Maximisation
SDE Stochastic Differential Equation
s.e. standard error
SGE Stochasticity of Gene Expression
T2EC TGF-α/TGF-β-induced Erythrocytic Cells

xix





List of Mathematical Notations

Model specification

y Data

yi,j Data for the ith observable measured at the jth timepoint

ntot = nm Total sample size

n Number of observables

m Number of timepoints

f (t, y0, θ) Prediction from the dynamic model

fi(tj, y0, θ) Prediction for the ith observable at the jth timepoint.

g(t, y0, θ, ψ) Error model

gi(t, y0, θ, ψ) Error for the ith observable at the jth timepoint.

t Time

tj jth timepoint

y0 Initial condition

θ Parameters of the dynamic model

ψ Error parameters

Θ = (θ, ψ) Parameter vector

K = #(Θ) Number of parameters

Parameter estimation and identifiability

L(y|t, y0, θ, ψ) Likelihood

θ̂ Optimal parameter set

xxi



List of Mathematical Notations

PLθi Profile likelihood w.r.t. parameter θi

CIθi(α) Confidence interval of parameter θi at level of confidence α

χ2(α, K) α-quantile of a χ2 distribution with K degrees of freedom

Fisher information matrix

I Fisher Information Matrix

Ii,j
Coefficient at the ith row and jth column of the Fisher Informa-
tion Matrix

D D-criterion (determinant of the FIM)

A A-criterion (trace of the FIM inverse)

Amodi f ied Modified A-criterion (trace of the FIM)

E E-criterion (smallest FIM eigenvalue)

Emodi f ied
Modified E-criterion (ratio of the largest to smallest FIM eigen-
values)

Model selection

BIC Bayesian Information Criterion

AIC Akaike’s Informationn Criterion

wAIC Akaike’s weights

Mixed Effect Models

yi,j,k
Data for the ith observable measured at time tj on the kth indi-
vidual

y·,·,k Data for the kth individual

ntot = nmN Total sample size

N Population size (number of individuals)

θk Individual value of parameter θ in the kth individual

ηk Individual random effect of the kth individual

θpop Fixed effect of parameter θ

ωθ Standard-deviation of the random effect on parameter θ

xxii



List of Mathematical Notations

Ω Variance-covariance matrix of the random effects

ψ Error parameters

fi(tj, y0, θk) Prediction for the ith observable at time tj for individual k.

gi(tj, y0, θk, ψ) Model error for the ith observable at time tj for individual k.

εi,j,k
Individual weighted residual for observable i at time tj for in-
dividual k

sη η-shrinkage

xxiii





Chapter 1

Introduction

Throughout the pages of this manuscript, we will mainly try to build and study

mathematical models of the in vitro erythroid differentiation. This work was re-

alized in the context of the studies of the Systems Biology of Decision-Making

team, which uses the modern tools of systems biology to characterize decision-

making at the single-cell level. These studies make an extensive use of math-

ematical modelling in complement to experimental work, and this manuscript

represents the modelling counterpart to the work of a former experimentalist

PhD student in the group, Anissa Guillemin.

In this introduction, we first present erythroid differentiation in vivo, also

known as erythropoiesis, and the in vitro system that we use to model it ex-

perimentally (Section 1.1). Then, we introduce the contemporary theoretical

framework to study cell decision-making processes, such as differentiation,

and how we use in vitro erythroid differentiation as an experimental tool to

tackle it (Section 1.2). In particular, we present the current modelling tools

used to study erythropoiesis (Section 1.2.2). As we will see, the assessment of

parameter identifiability will be of critical importance for our models, so we

will introduce this notion and the related concepts in Section 1.3. Finally, as the

most part of this manuscript is dedicated to the elaboration of Mixed Effects

Models (MEM) of in vitro erythropoiesis, we will introduce these models and

the related methodologies in Section 1.4.
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Chapter 1: Introduction

1.1 In vitro erythropoiesis

1.1.1 A classical view of haematopoiesis and erythropoiesis

Haematopoiesis is the process which generates all blood and immune cells

of vertebrates. Because living organisms maintain a constant blood compo-

sition in terms of cell populations despite cell death –a phenomenon known

as homeostasis– haematopoiesis is tightly regulated. For instance, an adult

human body produces around 200× 109 red blood cells each day.

All blood cells originate from haematopoietic stem cells, which live in spe-

cific environments called niches, that are located in the bone marrow. As re-

viewed in Weissman and Shizuru (2008), Seita and Weissman (2010), and Haas

et al. (2018), early experiments of bone marrow transplants in mice proved the

existence of these multipotent (as they could generate all blood cell types), self-

renewing (as they could sustainably repopulate blood cell types upon serial

transplantaions) stem cells. In the classical view of differentiation, haematopoi-

etic stem cells can differentiate into two different lineages of progenitors: the

myeloid and the lymphoid lineages (Figure 1.1A). Each progenitor type can

then differentiate into discrete sub-divisions of the lineage with reduced po-

tency and self-renewal, which has led to the tree-like representation of differen-

tiation of Figure 1.1A, though with considerable debate regarding the position

of the branchings (G. Brown et al., 1985; Singh, 1996; Görgens et al., 2013).

Reviews about haematopoietic stem cells are given in Weissman and Shizuru

(2008), Seita and Weissman (2010), and Haas et al. (2018).

A branch of haematopoiesis that will be of particular interest in this manu-

script is erythropoiesis, that is the generation of mature red blood cells from

erythropoietic progenitors from the myeloid lineage. It is controlled by the

hormone erythropoietin (Epo). The classical view of differentiation represents

erythropoiesis as a series of discrete transitions between more and more ma-

ture cell types (Figure 1.1B). This is accompanied by a progressive reduction

of cell size (Dolznig et al., 1995), a decrease of the expression of genes in-

volved in self-renewal (Bresson-Mazet et al., 2008), and an increase in the ex-
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Figure 1.1: Overview of haematopoiesis and erythropoiesis. A: Classical tree-
like representation of haematopoiesis. The portion of the tree corresponding
to erythropoiesis is framed in red. B: Classical cascade representation of ery-
thropoiesis. Sketches of each cell represent its typical morphology in humans.
Both panels are adapted from Wikimedia Commons (Wikimedia Commons,
2019a,b, originals and the present figure are licensed under CC BY-SA 3.0.)
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pression of β-globins (Baron and Maniatis, 1991). In mammals, the final steps

of erythropoiesis involve the eviction of the cell nucleus and the degradation

of mitochondria, while in birds the nucleus and mitochondria are conserved

(Kowalski and Pałyga, 2011), but the nucleus becomes so condensed that it is

not able to show any transcriptional activity.

In order to study cellular differentiation in vitro, our group has made an ex-

tensive use of avian erythropoiesis as an experimental model (Gandrillon et al.,

1999; Dazy et al., 2003; Bresson-Mazet et al., 2008; Gonin-Giraud et al., 2008;

Richard et al., 2016; Guillemin et al., 2018), which we present in more details

in the next section. Then, we review mathematical models of erythropoiesis in

Section 1.1.3. Finally, we introduce why the modern view of cellular differen-

tiation, based on contemporary single-cell experimental techniques, challenges

this classical representation of differentiation (Figure 1.1) as a branching net-

work of homogenous, discrete cell types of decreasing potential, in Section 1.2.

1.1.2 The TGF-α/TGF-β-induced Erythrocytic Cells (T2EC)

The TGF-α/TGF-β-induced Erythrocytic Cells (T2EC) are erythroid progeni-

tors from the bone marrow of chicken embryos (Gandrillon et al., 1999). By

placing bone marrow samples in a medium containing TGF-α and TGF-β (two

growth factors which influence various progenitors of the haematopoietic lin-

eage) one can stimulate the proliferation of the erythroid progenitors while

the other marrow cells decay. After a few days in the medium, the culture is

composed of more than 99% erythroid progenitors (Gandrillon et al., 1999).

This culture medium containing TGF-α and TGF-β, in which T2EC are able to

proliferate, will be referred to as the LM1 medium, or self-renewal medium.

The T2EC are also able to differentiate into fully mature erythrocytes if one

replaces the LM1 medium with another one, which contains anaemic chicken

serum. This culture medium will be referred to as the DM17 medium, or dif-

ferentiation medium. After 6 days in DM17, the culture is fully differentiated

(Gandrillon et al., 1999).

In LM1, the culture is a mixture of alive and dead progenitors. It is pos-
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sible to measure the population of living progenitors by using trypan blue, a

chemical dye which specifically stains dead cells (Figure 1.2A). In DM17, the

culture is a mixture of progenitors, fully differentiated erythrocytes, and pos-

sibly differentiating cells which are not completely mature (Figure 1.1B). It is

possible to assess the number of differentiated cells in the culture by using

benzidine, a chemical dye which specifically binds haemoglobin. Considering

that cells which contain haemoglobin are fully differentiated thus allows to

link the number of benzidine-positive cells to the population of mature ery-

throcytes (Figure 1.2B). It is also possible to measure the total number of living

cells in the culture using trypan blue.

Once a T2EC culture has been switched to DM17, it starts differentiating,

but it can also be switched back to LM1. Doing so after 24h of differentiation

does not alter the self-renewing ability of the culture (the culture proliferates),

but doing it after 48h of differentiation cancels this ability: the culture does

not proliferate (Figure 1.2C and Richard et al., 2016, Figure 10). This means

that after 24h in the differentiation medium, some progenitors remain in the

culture, that can proliferate in LM1. On the contrary, there are no progenitors

in the culture after 48h in DM17, which means that they all have started dif-

ferentiating. However, since it takes 6 days to differentiate the whole culture

(Gandrillon et al., 1999), this also means that between day 2 and day 6, some

cells have lost their self-renewing ability, and yet have not finished differentiat-

ing. This experiment has been used to prove the existence of a commitment point

after which all the progenitors have started differentiating and cannot prolifer-

ate in LM1 anymore (Richard et al., 2016). We thus refer to this experiment as

the commitment experiment.

1.1.3 Modelling attempts

Throughout the last decades, different modelling approaches have been used

to describe erythropoiesis (Pujo-Menjouet, 2016). They accompanied biological

discoveries and experimental advances which allowed to fit more and more

complex models to an ever-extending set of data.
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At first, and for the most part of the 20th century, a vast majority of these

models were based on Differential Equations (DE), with the first models about

iron kinetics in human blood cells from whole-body measurements published

nearly 60 years ago (Sharney et al., 1963; Nooney, 1965). These models were

formulated either as Partial Differential Equations (PDE, as in M. C. Mackey

and Dörmer, 1982, who studied a PDE model of erythroid precursors in vivo

in various species) which could in some cases be reduced to Delay Differen-

tial Equations (DDE, see for instance Bélair et al., 1995, who develop an age-

structured PDE model of non-pathologic in vivo human erythropoiesis that

they reduce to a 2-delay DDE, or Crauste et al., 2008, who try to adapt such

models to account for data obtained in anaemic mice), or directly as DDE, as

in Loeffler et al. (1989), who developp a model of in vivo erythropoiesis for

mice. The design of these DE-based models since the second half of the 20th

century accompanied the development of analytical methods to study the exis-

tence and unicity of the solutions, as well as to characterize their steady-states

and bifurcations (Pujo-Menjouet, 2016).

Later, stochastic models started to be developped for erythropoiesis, see for

instance Roeder et al. (2008), who develop a stochastic model of haematopoietic

stem cells to account for bone marrow transplants in mice, and the design of

Agent-Based Models (ABM) accompanied the rise of computing power, as in

Bessonov et al. (2009) and Fischer et al. (2012), who design a multi-scale model

of erythropoiesis including the internal molecular dynamics of the progenitors

in the context of leukemia.

Apart from stimulating the development of new analytical and numerical

tools for the study of mathematical models, all these works also helped im-

prove our understanding of the diseases and perturbations of the haematopoi-

etic system (Foley and M. Mackey, 2009; Pujo-Menjouet, 2016).

Current approaches for modelling erythropoiesis still involve DE-based

models in a variety of context, e.g. Schirm et al. (2013), who develop a DDE

of erythropoiesis coupled with a PharmacoKinetic (PK) model of erythropoi-

etin and chemotherapy treatments in humans, and ABM, as Bouchnita et al.
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(2014), who built a hybrid multi-scale model of human in vivo erythropoiesis

with more detailed intracellular dynamics than the previous models. Meth-

ods based on multi-scale modelling, as reviewed in Bernard (2013), and hy-

brid modelling are increasingly being used to bridge the gap between different

scales or processes. Again, we refer the reader to Bouchnita et al. (2014), as

well as to Krinner et al. (2013), who developped a hybrid model based on an

ABM of haematopoietic stem cells coupled to an ODE model of granulopoiesis

(which is the formation of white blood cells) in humans. For a more detailed

review of the history of haematopoiesis modelling, see Pujo-Menjouet (2016).

All these models helped understand haematopoiesis and its pathologies

in vivo, and yet to our knowledge no mathematical model has actually been

focused on in vitro erythropoiesis so far. Modelling the dynamics of in vitro

erythropoiesis in T2ECs is thus the main motivation of this manuscript. We

introduce our motivation in the next section.

1.2 Differentiation and decision-making at the single-

cell level

During its life, each cell of a multicellular organism has roughly three possible

fates: division, differentiation (into one or several lineages) or death. Cells

choose between their accessible fates by integrating signals from their local

environments and adapting gene expression, in a process called cell decision-

making.

It is important to distinguish between the process of decision-making, which

happens at the level of the single cell, and the ability of a whole cell popula-

tion to differentiate. For instance, the ability of a pool of haematopoietic stem

cells to generate all blood cell types upon transplantation, or the differentia-

tion of a T2EC culture into erythrocytes, are population-scale processes, i.e. the

macroscopic manifestation of fate decisions taken by a large number of cells

at the microscopic level. In this section, we introduce the current theoretical

framework for studying single-cell decision making.
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1.2. Differentiation and decision-making at the single-cell level

1.2.1 Stochasticity of Gene Expression (SGE)

A fundamental aspect of single-cell biology is cell heterogeneity. It has been

known since the development of flow cytometry that genetically identical cells

placed within the same environment can display phenotypic heterogeneity, for

instance with respect to the levels of membrane markers. But the historical

demonstration of this fact was achieved by M. Elowitz et al. (2002), who mea-

sured the expression of a fluorescent protein across a population of isogenic

Escherichia coli. This Stochasticity of Gene Expression (SGE) was later discovered

across a wide spectrum of species (Eldar and M. B. Elowitz, 2010).

The sources of SGE are numerous, and universal (Haas et al., 2018). First

and foremost, the low number of chemical species available to initiate tran-

scription –such as the RNA-polymase complexes– results in substantial statis-

tical fluctuations in the outcome of the chemical reaction. Once transcription is

initiated, the unstability of the resulting molecular complex often leads to in-

complete transcription (Sepúlveda et al., 2016). Finally, the accessibility of pro-

moters is subject to the molecular crowding of the nucleus, and thus depends

on epigenetic factors (Rinott et al., 2011), as well as DNA topology (Becskei

et al., 2005).

The observation of SGE has been made possible by single-cell measure-

ments of the protein or RNA levels. Historically, the use of fluorescent re-

porters allowed to characterize the distribution of a protein level across a pop-

ulation of cells, either by flow cytometry or by microscopy (M. Elowitz et al.,

2002; Ozbudak et al., 2002). More recently, the development of single-cell

transcriptomic technologies allowed for the measurement of the RNA counts

of single cells, either for a restricted number of genes by single-cell Reverse-

Transcription quantitative Polymerase Chain Reaction (sc-RTqPCR, A. K. White

et al., 2011) or for the whole transcriptome by single-cell RNA-sequencing (sc-

RNAseq, Goetz and Trimarchi, 2012).

All these experimental techniques provide the distribution of some molec-

ular contents over a population of cells. The next step in the quantification

of SGE usually involves a scalar metric, such as the coefficient of variation
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(Ozbudak et al., 2002), the fano factor (Wong et al., 2018), the normalized vari-

ance (Viñuelas et al., 2013), or information-theoretic criteria such as Shannon’s

entropy (Shannon, 1948).

The involvement of SGE has been demonstrated in numerous biological

processes, e.g. the bet-hedging strategies of bacteria (Pradhan and Chatterjee,

2014) and cancer cells (Kreso et al., 2013), as well as several developmental pro-

cesses (Rué and Martinez Arias, 2015), such as the patterning of the Drosophila

retina (Heitzler and Simpson, 1991). Reviews about the involvement of SGE

in biological processes are given in Huang (2009) and Eldar and M. B. Elowitz

(2010). We are going to focus on one of these processes in particular –decision

making– in the next section.

1.2.2 SGE and decision-making

The historical theory for single-cell decision making was introduced by Conrad

Waddington (1957), based on the formalism of the theory of dynamical sys-

tems. In this metaphorical description, a cell is represented as a marble rolling

down a rugged landscape, following a branching path, where each branch-

ing point is a decision-making event (Waddington, 1957 & Figure 1A in Moris

et al., 2016). This is based on the introduction of the hypothetical epigenetic

landscape1, which symbolizes the progressive restriction of the accessible fates

of a differentiating cell. Moreover, the original description of Waddington’s

landscapes already included the fact that the shape of the landscape, which

determines what fates are possible for a cell, is fixed by interactions between

genes (Waddington, 1957 & Figure 1B in Moris et al., 2016).

Even though it was introduced as a metaphor, the epigenetic landscape

provided the first explanation of how cell fate decisions (and the associated

developmental processes) rely on regulatory genetic interactions shaped dur-

ing evolution. Furthermore, it served as a basis for a variety of more formal

1Here, the use of the word epigenetic has nothing to do with epigenetics, as in modifications of
the chromatin. Actually, Waddington’s book was published several decades before epigenetic
modifications were discovered.
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descriptions, that are reviewed in Davila-Velderrain et al. (2015). Despite the

various mathematical formalisms that these descriptions used to define and

compute the epigenetic landscape, they all interprete decision-making as the

outcome of a dynamical system, and thus they all have several features in

common, that we are going to describe before introducing each method more

precisely.

In these contemporary formalisms (Huang, 2009, 2010; Davila-Velderrain

et al., 2015), a cell is seen as a dynamical system, characterized by the concen-

trations of its proteins, or the expression levels of its genes. Its state space thus

has an enormous dimensionality (one dimension per gene), and the position of

the cell within this space characterizes its identity in terms of a vector of gene

expression levels. As time evolves, the cell moves through its state space, and

its trajectory is defined by the structure of its Gene Regulatory Network (GRN).

This means that modern formalisms for cell decision-making incorporate a

function which maps the state of the system at time t to its state at time t + δt.

The GRN allows certain stable states, associated with precise gene expression

levels. These are called the attractors of the landscape, and are associated to

the different possible fates of the cell (the proliferating state, and the accessible

differentiated states of the cells are examples of such attractors, Figure 1.3).

Because gene expression is stochastic, a given cell doesn’t have a straight,

deterministic trajectory through its state space, but rather a noisy one (Chang

et al., 2008). Consequently, a cell is rather described by the probability distri-

bution of its presence over the state space, than by its precise position inside

the space. Furthermore, a population of cells considered in the same state

would rather be spread across the state space according to this distribution,

with each cell randomly fluctuating around the attractors of the state space

(Huang, 2009). Thus, studying the fate of cells in a population reduces to char-

acterizing the dynamic distribution of their states in the state space, which is

usually achieved by computing a formal equivalent of Waddington’s landscape

called the quasi-potential of the system (Figure 1.3, & Davila-Velderrain et al.,

2015).
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Figure 1.3: A systems biology view on cell decision-making in a simplistic
case. The figure displays a hypothetical quasi-potential in a 1D state space
with two attractors. Each circle represents a possible state of the associated
Gene Regulatory Network. The most stable states are the most probable, as
indicated by the stacking of circles in regions of low quasi-potential. Inspired
by Huang (2009).

The quasi-potential maps every possible cellular state to its energy level

(Davila-Velderrain et al., 2015). In this way, cells would progressively reduce

their energy during their commitment, and converge to the local minima of

energy (Figure 1.3).

However, the precise computation of an epigenetic landscape is far from

an easy task, as the dynamical systems defined by GRNs are usually high-

dimensional, non-linear, and thus non-integrable systems (Davila-Velderrain

et al., 2015; Moris et al., 2016). Several approaches have been considered,

depending on the precise modelling framework (considering discrete or con-

tinuous time, as well as discrete or continuous states of the system, result in

different models).
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In boolean networks, both the time and the system state are discrete vari-

able (Kauffman, 1969). The attractors landscape can be characterized through

an extensive simulation of the system, in order to sample its possible states

(Davila-Velderrain et al., 2015). Then, one can relate the state distribution to

the quasi-potential of the system (Villarreal et al., 2012).

In the case of continuous time and states, the study of the GRN dynam-

ics and fate-decisions uses methods from statistical mechanics (Bertin, 2012;

Davila-Velderrain et al., 2015). First, by adding a noise term to a determinis-

tic ODE model of the GRN dynamics, one obtains a Langevin equation for the

system, that is a Stochastic Differential Equation (SDE) which can be used to

simulate the trajectories of individual cells and sample their distribution over

time (J. Wang et al., 2010; Li and J. Wang, 2013). Then, one can re-write the

Langevin equation as a Fokker-Planck equation, that is a PDE structured by the

levels of expression of each gene in the network, which can be solved in order

to characterize the distribution of the cells over time (J. Wang et al., 2010; Li

and J. Wang, 2013). Finally, one can use the formalism of path integrals in

order to compute the most probable paths for transitioning from one attractor

to the other (Li and J. Wang, 2013). These methods have been applied to var-

ious GRNs, from the simple 2-gene toggle switch (J. Wang et al., 2010), to a

52-gene network controlling stemness and differentiation in human stem cells

(Li and J. Wang, 2013). They also have motivated a lot of work regarding the

computation of the quasi-potential landscape, because since GRNs are usually

non-integrable, computing an epigenetic landscape requires to decompose the

driving force of the system into an integrable and a non-integrable part (J.

Wang et al., 2010; Zhou et al., 2012).

It should be noted that even though these numerical methods might allow

to approximate a quasi-potential for a given GRN, their outcome is only an

approximation because GRNs are non-integrable chemical systems, far from

their equilibrium (Davila-Velderrain et al., 2015; Moris et al., 2016). Moreover,

the continuous models of gene regulation from J. Wang et al. (2010) and Li

and J. Wang (2013) consider SGE as an additive noise term in an ODE, i.e. as
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a small external perturbation from the deterministic behaviour of the system.

This is obviously not the case, as stochasticity is an inherent feature of gene

expression.

As a consequence, our group has focused its efforts in incorporating stochas-

ticity as a mechanistic feature of our models of gene expression (Herbach et

al., 2017), and using these models to infer GRNs from experimental single-

cell transcriptomics data (Bonnaffoux et al., 2018), without explicitely comput-

ing a quasi-potential. We thus consider the epigenetic landscape more as a

metaphor, like Conrad Waddington used to, than as an actual biological fea-

ture to be extracted from data.

Our hypothesis is the following: since the extent of SGE defines how far

cells can fluctuate from their attractor state (Figure 1.3), an increase in SGE

should allow cells to explore a wider region of their state space, and thus

potentially lead to an increased transition rate from an attractor to the others.

Such a causal link between SGE and state transitions has been observed

in bacteria (Süel et al., 2006) and embryonic stem cells (Kalmar et al., 2009).

Regarding haematopoiesis, a historical study by Chang et al. (2008) showed

that haematopoietic progenitors with an extremely low or high expression

level of stemness marker Sca-1 showed great variability in their potential to

differentiate into the myeloid or erythroid lineages in vitro. The same kind

of observations have been made in vivo, as single-cell transplantations of mice

haematopoietic stem cells led to different composition of blood cell types (Haas

et al., 2018), a process known as lineage bias. More recently, our group showed

that in T2EC, the onset of differentiation was accompanied by an increase in

SGE (Richard et al., 2016). And yet, a demonstration of the causative role of

SGE in fate-decisions such as the commitment to differentiation is still lacking.

In this manuscript, we propose to tackle this issue. We expose our strategy to

achieve such a demonstration in the next section.
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Figure 1.4: Effects of the drugs that influence the extent of SGE on the
in vitro erythroid proliferation and differentiation. Displayed are the aver-
age cell counts and proportion of differentiated cells in 3 replicates of the
T2EC differentiation experiment (Section 1.1.2) in 4 conditions (Artemisinin-
, Indomethacin-, and MB3-treated, as well as in a DMSO control). Error bars
display the standard-error of the measurements.

1.2.3 Experimental manipulation of SGE

In order to prove that SGE can influence differentiation, we need to be able to

experimentally manipulate the level of SGE in T2EC, and assess its influence on

cell differentiation. In this regard, an interesting prospect is provided by Dar

et al. (2014), who identified a large panel of chemical drugs which modulate

SGE. To do so, they used a systematic screening approach with a fluorescent

reporter system.

Among these, our group selected two drugs, Artemisinin and Indomethacin,

which reduced both the level of SGE and the fraction of differentiated cells in

T2EC (Figure 1.4, and Guillemin et al., 2018). Moreover, we identified the chro-

matin modifier MB-3 (Raser and O’Shea, 2004; Moris et al., 2018) as a chemical

drug which increases both the level of SGE and the fraction of differentiated

T2EC (Figure 1.4, and Guillemin et al., 2018).

However, there is no proof that the precise effects of the drugs are limited to

differentiation, as the number of differentiated cells that is measured in T2EC

cultures typically depends on cell proliferation and cell death as well as on cell

differentiation. Since the relative intensity of these processes is not accessible
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to an experimental measure, we decided to infer these through mathematical

modelling. If we could design a mechanistic model of T2EC differentiation

that incorporates cell proliferation, death and differentiation, then it would be

possible to compare its parameter values under each treatment. Such approach

would allow us to assess the effect of each drug on differentiation.

Thus, 2 main questions will underlie this manuscript:

1. Can we define a mathematical model for the kinetics of T2EC differenti-

ation?

2. How do its parameters vary under each drug treatments?

In such an approach, parameter identifiability will be a critical feature of

our models. We thus introduce parameter identifiability, and its relevance to

our work, in the next section.

1.3 Parameter estimation and identifiability in math-

ematical models

1.3.1 Definitions

When building a mathematical model of a biological process (say for exam-

ple that we want to reproduce the behavior of an observable y as a function

of time), one must define two things: the model prediction –often referred to

as the model– and the model parameters. The model prediction is a function

f (t, y0, θ) of time, the initial condition and the model parameters, which char-

acterizes the output of the model. It is defined according to hypotheses about

the biological process. The model parameters are scalars which quantify the

behavior of the model. In order to reproduce biological data, they must be

estimated, either by finding values in the litterature, or by fitting the model to

experimental data. In the latter case, an important step of the estimation is the

analysis of the identifiability of the inferred values.
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The identifiability of a parameter describes the injectivity between the pa-

rameter space and the data. In other words, a parameter is identifiable if and

only if there is only one parameter value that corresponds to a dataset (Raue

et al., 2009). Otherwise, it is said to be unidentifiable. Then, the model is said

to be identifiable if and only if all of its parameters are identifiable. Conversely,

it is unidentifiable if and only if at least one of its parameters is unidentifiable.

Even though identifiability is a property of the model under study, this defi-

nition means that the identifiability of a mathematical model also depends on

the available data. For example, a model that is identifiable with ideal, noise-

less data might become unidentifiable with actual data, which are subject to

experimental noise.

Identifiability is especially important for partially observed models, which

have more internal variables than available observables, and when the sample

size ntot is not large enough compared to the number of parameters K. Iden-

tifiability will be an important feature of our study, because in order to know

how the parameters vary under treatment, we need to base our analysis on

reliable estimates of their values.

Though very simple, the definition of identifiability is very hard to use in

practice, so several methods have been developed to define and assess identi-

fiabilty for the parameters of dynamic models (Villaverde and Barreiro, 2016).

Depending on how parameters are estimated (bayesian or frequentist meth-

ods), different methods are available to assess their identifiability, each with its

own limitations (Raue, Kreutz, Theis, et al., 2013).

1.3.2 Maximum Likelihood Estimation (MLE)

A number of parameter estimation methods are based on the maximisation

of the likelihood function, including the SAEM algorithm that we will use

for calibrating our Mixed Effect Models (MEM) in Chapters 5 to 7, and the

estimation procedure that we will define in Chapter 2. This means that if we

want to model temporal data y with a dynamic model, we have to assume the

distribution of the model residuals yi,j − fi(tj, y0, θ), where yi,j is the data for
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variable i at timepoint tj and fi its prediction from the dynamical model (which

depends on time, the initial condition y0 and the parameters θ of the model).

The model residuals are usually modelled by a centered gaussian distribu-

tion (Raue et al., 2009; Raue, Schilling, et al., 2013; Lavielle and Bleakley, 2014).

Then, the standard deviation of the error remains to be characterized. To this

aim, there are two main options (Raue, Schilling, et al., 2013):

• Estimate the standard deviation σ of the error from the data. For this

estimate to be precise, one needs to have an extensive set of data. Then

the error model is completely described as: yi,j ↪→ N
(

fi(tj, y0, θ), σ
)

.

• Model the standard deviation of the error. This means finding a suitable

function g, of the time t, the initial condition y0, the dynamical parame-

ters θ and possibly other parameters ψ (which we will call the error pa-

rameters), to describe this variance. The error model is then completely

described as: yi,j ↪→ N
(

fi(tj, y0, θ), gi(tj, y0, θ, ψ)
)
.

With this representation, the likelihood of the model follows:

L(y|t, y0, θ, ψ) =
n

∏
i=1

m

∏
j=1

1√
2πg2

i (tj, y0, θ, ψ)
exp

(
−
(
yi,j − fi

(
tjy0, θ

))2

2g2
i
(
tj, y0, θ, ψ

)
)

,

and its log-likelihood:

− 2 log(L) =
n

∑
i=1

m

∑
j=1

(
yi,j − fi(tj, y0, θ)

)2

gi(tj, y0, θ, ψ)2 + 2log(gi(tj, y0, θ, ψ))+ log(2π), (1.1)

from which the log(2π) term is dropped. In Equation (1.1), n refers to the

number of observables of the model (indexed by i), m refers to the number of

timepoints (indexed by j). In the end, the best-fit parameters of the model are

the values of θ and ψ which minimize the quantity defined in Equation (1.1).

The model is described by the vector of parameters: Θ = (θ, ψ), which

contains the parameters from both the dynamic and the error models.
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1.3. Parameter estimation and identifiability in mathematical models

Such a model can be unidentifiable for various reasons, which means that

one can define different kinds of identifiability (Villaverde and Barreiro, 2016).

In this manuscipt, we will only consider structural identifiability, which is a

theoretical property of the model related to the definition of its outputs, and

practical identifiability, which also depends on what actual data are being used

for fitting the model.

1.3.3 Structural identifiability

Structural identifiability is related to the structure of the model, and the ob-

served variables. A model is structurally unidentifiable when several of its

parameters are redundant, meaning that they can vary in such a manner that

the measured output of the model is not affected (Raue et al., 2009; Chis et al.,

2011; Villaverde and Barreiro, 2016). In the context of the maximum-likelihood

estimation, a model is said to be structurally identifiable if and only if the

likelihood optimum is unique.

A variety of methods, based on different approaches, can be used to as-

sess the structural identifiability of a dynamic model. These include, non-

exhaustively, the Taylor series method (Pohjanpalo, 1978), the similarity trans-

formation (Vajda et al., 1989), the generating series method (Walter and Lecourtier,

1982), and the profile likelihood approach (Venzon and Moolgavkar, 1988; Raue

et al., 2009; Fröhlich et al., 2014). A review of these methods is provided in

Villaverde and Barreiro (2016) and their performance is assessed in Chis et al.

(2011). We conclude as to which method should be used in our study in Sec-

tion 1.3.4.3.

1.3.4 Practical identifiability

Practical Identifiability is related to the quantity and quality of the data used

for model calibration. If the data is too sparse or too noisy to estimate all pa-

rameters together, then the model is said to be practically unidentifiable (Raue

et al., 2009; Villaverde and Barreiro, 2016). Essentially three kinds of frequentist
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methods can be used to assess the practical identifiability of a model (Luzyan-

ina et al., 2007): the profile likelihood approach, bootstrapping and methods

based on the Fisher Information Matrix of the model. The profile likelihood

approach is based on the constrained optimization of the likelihood function

(Raue et al., 2009). Bootstrapping uses a resampling of the data to estimate pa-

rameter variability (Efron and Tibshirani, 1986). Finally, the Fisher Information

Matrix allows to approximate the variance-covariance matrix of the parameter

estimates (Villaverde and Barreiro, 2016). We introduce profile likelihood and

the Fisher Information Matrix in the following sections, and we discuss their

relative performance and the associated computational cost in Section 1.3.4.3.

1.3.4.1 Profile likelihood

The first method for assessing the practical identifiability of dynamic models is

the profile-likelihood approach, which uses constrained optimization (Venzon

and Moolgavkar, 1988; Raue et al., 2009).

For a model with K parameters (θ1, θ2, . . . θK) and a likelihood L, the profile

likelihood PLθi of parameter θi is defined as:

∀x ∈ R PLθi(x) = min
θj 6=i

(
−2 log(L(θi = x, θj))

)
. (1.2)

Namely, the profile likelihood of a parameter at a certain value is the log-

likelihood of the model, minimized with respect to all the other parameters.

To compute the profile likelihood at a certain value x of a parameter θi means

to set θi = x and to estimate the values of the other parameters θj that mini-

mize the log-likelihood in this setting. Consequently, the profile likelihood is

minimal at the optimal parameter values set, and increases in both directions.

In a highly dimensional parameter space where the exact shape of the like-

lihood landscape is not straightforward, the profile likelihood summarizes this

shape along the axis of θi, by keeping the likelihood as high as possible in both

directions. It is possible to define a confidence interval CIθi at a level of confi-

dence α ∈ [0, 1] for a parameter θi, derived from the evaluation of the profile
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1.3. Parameter estimation and identifiability in mathematical models

likelihood (Raue et al., 2009):

CIθi(α) =
{

x ∈ R | PLθi(x)− PLθi(x̂) ≤ χ2(α, K)
}

, (1.3)

where x̂ is the optimal estimate of θi, K is the number of parameters being

estimated and χ2(α, K) is the α-quantile of the χ2 distribution with K degrees

of freedom.

Namely, all the parameter sets that render a profile likelihood closer to its

minimal value than a threshold χ2(α, N) belong to the confidence interval. The

threshold is equivalent to the threshold of a Likelihood Ratio Test (LRT) where

the value of the likelihood at a given point of the profile is tested against the

optimal likelihood. This threshold depends both on the number of parameters

estimated (the more parameters, the higher the threshold and the wider the

confidence interval) and on the requested confidence level (the higher the con-

fidence level, the higher the threshold, and the wider the confidence intervals).

Once a confidence interval has been extracted for a parameter θi, we say

that θi is practically identifiable at the level of confidence α if and only if its

confidence interval at the level α is bounded (Raue et al., 2009).

Then we say that a model is practically identifiable at the level of confidence

α if and only if all its parameters are identifiable (Raue et al., 2009).

Apart from assessing the identifiability of a model parameter, the profile

likelihood approach also allows to decipher between structural and practical

unidentifiabities (Figure 1.5).

1.3.4.2 The Fisher Information Matrix (FIM)

Another method for assessing the practical identifiability of parameters is based

on the observed Fisher Information Matrix (FIM), which is the opposite of the

hessian of the loglikelihood observed at the likelihood maximum:

Ii,j(θ̂) = −
∂2log(L)

∂θi ∂θj
(θ̂), (1.4)

where I is the FIM (Ii,j is the coefficient at its ith row and jth column), and
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Figure 1.5: The different outcomes of profile-likelihood-based identifiability
analysis. A-C: Contour plots of the log-likelihood −2log(L) in an hypothet-
ical two-parameters model in shades of grey, from low (darker grey) to high
(lighter grey) values. The white dot indicates the coordinates of the likelihood
optimum. The dashed white lines display the borders of the confidence in-
terval. The dashed red line displays the minimal log-likelihood with respect
to θ1. D-F: Profile-likelihood curves with respect to θ1 (in red) in the corre-
sponding models. The dashed black line shows the identifiability threshold
from Equation (1.3). A,D: Practical Identifiability: The confidence interval is
bounded, both parameters are identifiable and so is the model. B,E: Practical
non-identifiability: due to the amount or quality of the data, the confidence
intervals of the parameters are infinitely extended along one direction. The
profile likelihood is not flat, but does not cross the χ2 threshold on one di-
rection. C,F: Structural non-identifiability: there is a relation that maximizes
L for every value of the parameters. The profile likelihood is completely flat.
Inspired by Figure 1 in (Raue, Kreutz, Theis, et al., 2013).
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θ̂ is the optimal parameter set. The FIM can be used to define a quadratic

approximation of the likelihood surface near its optimum. Different features

of the geometry of the likelihood surface can then be assessed from the FIM.

The variance-covariance matrix of the parameter estimates can be approxi-

mated by I−1(θ̂), meaning that the standard errors of the parameter estimates

are the square-roots of the diagonal elements of I−1(θ̂) (Villaverde and Bar-

reiro, 2016). A precisely estimated parameter will have a low standard error,

and conversely, unidentifiable parameters are associated to high standard er-

rors.

Approximating the standard errors of the estimates from the FIM requires

that the FIM can be inverted. If it is singular, there are unidentifiable pa-

rameters, and if it is near-singular, some parameters are highly correlated

and poorly estimated. As a consequence, the FIM eigenvalues are also infor-

mative regarding parameter identifiability, because low eigenvalues make the

FIM near-singular, and thus characterize poorly identifiable parameters. Con-

versely, high eigenvalues are associated to identifiable parameters (Villaverde

and Barreiro, 2016).

Other properties of the FIM are related to the geometrical features of the

likelihood. These properties have been used to define scalar criteria, which

quantify the information about parameter values stored in the FIM (Vanrol-

leghem and Dochain, 1998). Each criterion should be either minimized or

maximized in order to maximize the information about each parameter (Van-

rolleghem and Dochain, 1998):





D = max
(

det
(
Ii,j(θ̂)

))
,

A = min
(

tr
(
Ii,j(θ̂)

−1
))

,

Amodi f ied = max
(

tr
(
Ii,j(θ̂)

))
,

E = max
(

λmin

(
Ii,j(θ̂)

))
,

Emodi f ied = min

(
λmax(Ii,j(θ̂))

λmin(Ii,j(θ̂))

)
,

(1.5)
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where det
(
Ii,j(θ̂)

)
is the determinant of the FIM, tr

(
Ii,j(θ̂)

)
its trace and λmin

(resp. λmax) its smallest (resp. largest) eigenvalue.

1.3.4.3 Computational cost and precision of the methods

FIM-based methods are less computationally demanding, because they require

the fewest parameter estimation steps (Luzyanina et al., 2007), but due to their

parabolic approximation they are proven to render biased results, especially

when the confidence intervals of the parameters are used to compute pre-

diction intervals for the model observables (Raue et al., 2009). On the other

hand, the profile likelihood-based method is computationally more expensive

(Luzyanina et al., 2007), but it is proven to detect both structural and practical

unidentifiabilities (Figure 1.5), and gives more accurate confidence intervals

than the FIM Raue et al., 2009; Fröhlich et al., 2014).

We thus conclude that the profile likelihood is a good compromise between

computation time and the precision of the confidence intervals estimation. It

will be our method of choice for the analysis of the identifiability of our mod-

els. However, since the profile likelihood approach is based on an constrained

optimization of the model, it is usually too costly to apply it when models have

too many parameters, or a long estimation time (Fröhlich et al., 2018).

1.3.5 Related concepts

The arising interest for parameter identifiability in the litterature (Figure 1.6)

has led to the definition of various related concepts that we need to clarify in

order to avoid confusion when reading this manuscript.

1.3.5.1 Parameter sensitivity

The sensitivity of a model to a parameter quantifies the influence of that pa-

rameter values on the model output (Villaverde and Barreiro, 2016). Sensitiv-

ities are related to the identifiability of a model, because a parameter with a
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Figure 1.6: Number of publications in relation with identifiability. Displayed
are the results of a search on WebOfScience for articles having identifiability as
a topic. We found 5882 papers, published between 1949 and 2018.

null sensitivity has no influence on the model output, and is thus stucturally

unidentifiable since every possible value renders the same likelihood.

In detail, there are different definitions of sensitivity, which distinguish be-

tween absolute and relative, as well as local and global, sensitivities. A detailed

introduction to these distinctions is beyond the scope of this manuscript, and

is provided in (Villaverde and Barreiro, 2016)

1.3.5.2 Experimental design

As we already explained, a practically unidentifiable parameter cannot be es-

timated because data are insufficient. In this context, the topic of optimal

experimental design attempts to predict which experiments would be the most

informative for determining all parameter values. This is made possible by the

simulation of experiments and the optimization of an information criterion,

such as those introduced in System (1.5).

Different methods, both frequentist and bayesian, have been developped
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to this end (Faller et al., 2003; Weber et al., 2012; Busetto et al., 2013; Liepe

et al., 2013). In certain cases, experimental design has successfully predicted

which experiments to perform in order to make a model identifiable (Apgar

et al., 2010). However, it should be noted that it is impossible to know a priori

if the optimally designed experiments will actually make the model identi-

fiable. This should be considered when the cost of actually performing the

experiments is prohibitive.

1.3.5.3 Sloppiness

When models include too many parameters, they often become sloppy, mean-

ing that their output is controlled by a limited number of parameters. More

precisely, a model is said to be sloppy when the eigenvalues of the FIM are

evenly spaced in the log-space across many orders of magnitude (Transtrum

et al., 2015). This implies that the few parameters associated to the highest

eigenvalues of the FIM are much more important than the many parameters

associated to the lower eigenvalues in determining the model output. The pa-

rameters that are irrelevant to the model output are said to be sloppy, while

the others are called stiff. Sloppiness is related to identifiability, because the

values of sloppy parameters would normally be harder to estimate.

Sloppiness is a feature shared by many models from various fields of biol-

ogy (K. Brown and Sethna, 2003; K. Brown et al., 2004) and physics (Waterfall

et al., 2006). Basically, a sloppy model can be reduced to its most stiffest fea-

tures, in order to make it identifiable (Transtrum et al., 2015). This reduced

model can be seen as a macroscopic approximation of the microscopic phe-

nomena that are being modeled. This connection has been verified for models

in physics (Machta et al., 2013), because in physics the macroscopic theory

often precedes the microscopic model. However, there is usually no estab-

lished quantitative theory for biological process, which leaves modellers with

the choice of what components to include in their models. This might lead to

overly complex, unidentifiable and sloppy models.

Focusing on the estimation procedure and experimental design in sloppy
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models, A. White et al. (2016) showed that in biological models, the relevant

mechanisms are often unknown and might be excluded. In this case it will be

impossible to fit all observables from an experimental dataset and at the same

time to identify all the parameters of the model.

Optimal design is used to define experiments which would allow to iden-

tify all parameter values. But fitting an approximate model to new data would

change the quality of its fit to the original data, and usually reduce its pre-

dictive ability. Instead, the authors suggest the definition of a sloppy system, a

sequence of sloppy models of increasing complexity that become unidentifiable

in the microscopic limit. Considering a range of models of varying complexity

would theoretically allow the modeller to optimally balance the quality of the

fit and the identifiability of the parameters when the relevant mechanisms to a

model output are unknown (A. White et al., 2016).

Sloppiness provides the modeller with interesting concepts, like the pos-

sibility to reduce a model to its identifiable parts (Transtrum et al., 2015), or

to consider a range of models of varying complexity instead of focusing on

estimation in a single model (A. White et al., 2016). Modellers should pay at-

tention to these, especially at times when the complexity of biological models

keeps increasing (Fröhlich et al., 2018).

1.3.5.4 Dynamical compensation

Dynamical compensation has been described as the ability of a physiologi-

cal system to keep the same dynamic output given varying parameters (Karin

et al., 2016). This implies that a model exhibitting dynamical compensation

would also be structurally unidentifiable, leading to considerable debate re-

garding potential reconciliations of dynamical compensation with structural

identifiability (Karin et al., 2017; Sontag, 2017; Villaverde and Banga, 2017).

This debate originates from the dichotomy between two aspects of parame-

ter sensitivity (Sontag, 2017). From the point of view of robustness, one would

not want the model outputs to be affected by parameter values, and yet from

the point of view of parameter identification, parameter sensitivities are critical
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quantifiers of structural identifiability (Villaverde and Barreiro, 2016).

Villaverde and Banga (2017) proposed a solution to reconciliate dynamical

compensation with structural identifiability, noting that both structural identi-

fiability and dynamical compensation are affected by which set of parameters

are considered unknown and which observables are measured. They basically

proposed a complementary definition for dynamical compensation by consid-

ering dynamical compensation for one observable of the model with respect to

one parameter, while the original definition of Karin et al. (2016) lacked preci-

sion and considered dynamical compensation as a global feature of the whole

model.

As a conclusion, aside from these technicalities, the story of dynamical

compensation stresses the importance of proper identifiability analysis when

using partially observed models to extract biological insight from experiments.

1.4 Mixed Effects Models (MEM)

Mixed Effects Models (MEM) form a class of statistical models that has been

developped for the description of various kinds of data, which always include

a lot of interindividual variability (Lavielle and Bleakley, 2014). They have

been applied to a variety of fields, like demography (O’Brien et al., 2008),

genomics (Haldermans et al., 2007), ecology and evolution (Bolker et al., 2009),

psychophysiology (Bagiella et al., 2000), and single-cell studies (Gonzalez et

al., 2013; Karlsson et al., 2015). But MEM are best-known for their widespread

application to clinical trials (Andersen and Millen, 2013) and PKPD modelling

(Rowland, 2005).

In this section, we introduce the rationale that underlies this modeling

framework, and present the statistical and numerical methodologies that will

be of interest for model calibration, selection and identifiability analysis in our

study.
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1.4.1 General principle and definitions

1.4.1.1 Structural model

Mixed effect models are used to describe the observation of the same quantita-

tive features, measured repeatedly on different individuals that belong to the

same population. The general idea of mixed effects modeling is to apply the

same mathematical model, or strucural model, to all the individuals of the pop-

ulation with different parameter values for each individual, in order to account

for inter-individual variability. In the case of dynamic models, this means that

the structural model for variable yi,j,k –that is the ith observable measured at

time tj on the kth individual– is a function fi which depends on time tj, the

initial condition y0 and the individual parameters θk.

1.4.1.2 Parameter model

The fundamental assumption of mixed effect modeling is that since all individ-

uals come from the same population, their parameters should show some level

of inter-individual variability around the average of the population. Math-

ematically, this writes as the decomposition of individual parameter θk in 2

terms:

θk = θpop + ηk, (1.6)

where θk is the value of parameter θ in the kth individual of the population,

θpop is the population value of the parameter, or fixed effect, and ηk is the

random effect of the kth individual2. It is usually assumed to be drawn from a

gaussian distribution: ηk ↪→ N (0, ωθ), where ωθ is the standard-deviation of

the random effect on parameter θ and quantifies the inter-individual variability.

In the end it follows naturally that:

θk ↪→ N (θpop, ωθ) . (1.7)

2The use of the term mixed effects model is justified by the fact that individual parameters
can be defined by a fixed effect alone, a random effect alone, or a combination of the two.
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Equations (1.6) and (1.7) give two equivalent definitions of the parameter

model, that is the description of which and how individual parameters vary in

the population. When the structural model has more than one parameter, they

can be re-written in a matrix form. In this case, we use θk (resp. θpop and ηk)

to designate the vector of the individual parameters for individual k (resp. the

vector of the fixed effects and the vector of the individual random effects for

individual k), and Ω to designate the variance-covariance matrix of the random

effects.

Parameters θpop and ωθ are referred to as the population parameters of the

model, because they fully characterize the distribution of parameter θ across

the population. Parameters (θk)1≤k≤N are referred as the individual parameters

of the model.

Equation (1.7) defines a gaussian distribution for parameter θ in the popu-

lation, but it might be useful to define another distribution. For instance, if one

parameter is defined as being positive (e.g. rates of chemical reactions or state

transitions) or bounded (e.g. probabilities of random events), then the gaus-

sian distribution is not suited to model inter-individual variability because it

can generate any value in R. In this case, it is more comfortable to use a

transformation h of the normal distribution (Lavielle and Bleakley, 2014):





xk ↪→ N (xpop, ωx) ,

θk = h(xk),

from which it follows naturally that θk ∈ h(R). For instance, if h is the natural

logarithm, then θ is positive and follows a log-normal distribution. Moreover,

if h is the repartition function of the standard normal gaussian distribution,

then θ ∈ [0, 1] and follows a probit-normal distribution. Other distributions

could be considered (Lavielle and Bleakley, 2014), but they will not be used in

this manuscript.

Usually, there is little evidence that a given distribution should be used in

place of another, except for the parameter values that they allow. As a conse-

quence, our choice of distribution in this manuscript will be limited to normal
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distributions for parameters that can take any real values, log-normal distri-

butions for positive parameters, and probit-normal distributions for bounded

parameters.

1.4.1.3 Error model

Finally, one last layer of modeling is used in MEM, in order to define an error

model, or observation model. This part of the model quantifies the prediction

error of the model using a gaussian error model, that we introduced in Sec-

tion 1.3.2:

yi,j,k = fi(tj, y0, θk) + gi(tj, y0, θk, ψ)εi,j,k, εi,j,k ↪→ N (0, 1), (1.8)

where gi is the error function for observable i, which might depend on time, the

initial condition, the individual parameters, and potentially other parameters,

called the error parameters, that we denote as ψ. Since they do not vary between

individuals, they can be estimated together with, and considered as part of

the population parameters. In Equation (1.8), εi,j,k is the Individual Weighted

RESidual (IWRES) for observable i, measured at time tj, on individual k.

1.4.2 Parameter estimation

The fact that MEM are characterized by different kinds of parameters (pop-

ulation and individual parameters, fixed and random effects...) complicates

their calibration. The population parameters are chosen in order to match the

distribution of the model predictions to the distribution of the experimental

data. Moreover, the individual parameters are fitted to the individual data,

but at the same time their distribution across the population should match the

distribution defined by the values of the population parameters.

In this section, we detail how we estimate the parameters of MEM. The first

step of this estimation deals with the population parameters, and the second

one concerns the individual parameters.
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1.4.2.1 Population parameters

During the last decades, a variety of estimation methods, both frequentist and

bayesian, have been developped for the computation of the population param-

eters. They are reviewed in (Pillai et al., 2005).

Frequentist methods for population parameters estimation comprise non-

exhaustively the Laplacian method, the First-Order (FO) and First-Order Con-

ditional Estimation (FOCE, Lindstrom and D. Bates, 1990; Pinheiro and D. M.

Bates, 1995) methods, that are detailed in Y. Wang (2007), the Stochastic Ap-

proximation of the Expectation Maximization algorithm (Kuhn and Lavielle,

2005), and methods based on gaussian quadratures (Guedj et al., 2007).

Originally, bayesian estimation of population parameters were based on

Markov Chain Monte Carlo (MCMC) sampling (Pillai et al., 2005). However,

the timecost of this method has motivated the introduction of refinements

like the Normal Approximation of the Posterior (NAP, Drylewicz et al., 2012;

Prague et al., 2013).

Several pieces of software and packages have been developped to imple-

ment these estimation algorithms. The historical software NONMEM for in-

stance (Kennedy, 1980), implements most of the algorithms that we mentioned

(FO, FOCE, Laplacian approximation, SAEM and MCMC, as well as other

methods and refinements of these, see Bauer, 2019). It is thus the standard

for PKPD modeling in the industry. However, that fact that its sources are

proprietary, and the prohibitive cost of its licence, are serious limitations to the

use of such a software.

An alternative to NONMEM for the academia is Monolix, which is the

historical implementation of the SAEM algorithm (Kuhn and Lavielle, 2005),

and several of its refinements (Lavielle and Bleakley, 2014). The development

of Monolix started as an open-source project, but it is now proprietary, and it

also has a significant licence fee for industrials. However, it is free-of-use for

the academia, which allowed us to use it in our study.

Another alternative is provided by the free R package nlmxir (Fidler et al.,

2019), which has been developped as a solution for the increasing demand for
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a free mixed effects modeling platform (Conrado et al., 2017). It incorporates

SAEM and FOCE, as well as a few variants and other methods.

Throughout the course of this project, we chose to use Monolix because

of its reputation for being faster and more user-friendly than the other MEM

softwares. The next section is thus dedicated to the introduction of the SAEM

algorithm.

1.4.2.2 The Stochastic Approximation of the Expectation Maximization (SAEM)

algorithm

The Stochastic Approximation of the Expectation Maximization (SAEM) algo-

rithm has been proposed by Kuhn and Lavielle (2005) as a variant for nonlin-

ear MEM of the Expectation Maximization (EM) algorithm of Dempster et al.

(1977), which was already used in linear MEM. In this algorithm, the Expec-

tation phase of the EM algorithm is replaced by a Stochastic Approximation

step. This means that starting from an initial guess θ0 of the population pa-

rameters, SAEM estimates the population parameters by iteratively applying

the following steps:

1. Sampling N individuals according to their distribution conditioned by

the data and the previously estimated population parameters: p(θi
k | y , θi−1),

where θi
k are the individual parameters of the kth sampled individual at

the ith iteration of the algorithm, y designates the whole set of the data

(all observables, at all timepoints, for all individuals) and θi−1 is the pre-

viously estimated population parameter vector. Since this conditional

distribution has no general analytical expression, sampling is achieved

by MCMC in Monolix. This step is referred to as the simulation step.

2. Updating quantity Qi according to:

Qi(θ) = Qi−1(θ) + γi

(
p
(

y, zi
·|θi−1

)
−Qi−1(θ)

)
,

where (γi) is a sequence of positive, decreasing, numbers, on which con-

vergence depends (we will come back to this in a few lines). This step is
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referred to as the Stochastic Approximation step.

3. Updating the estimate of the population parameters with the sampled

data according to:

θi = arg max
θ

Qi(θ).

This step is referred to as the Maximization step.

Theoretically, conditions for convergence depend on the sequence γ intro-

duced at step 2. The choice of this sequence is thus critical to ensure as quick a

convergence as possible. Specifically, the convergence of the algorithm requires

two conditions on (γi) (Lavielle and Bleakley, 2014):





∞

∑
i=1

γi = ∞,

∞

∑
i=1

γ2
i < ∞.

In practice, Monolix chooses the sequence (γi) such that the estimation

involves two phases (Lavielle and Bleakley, 2014):

• In the exploratory phase, which lasts for the first K1 iterations, γi = 1,

which ensures the convergence of the estimate to a neighborhood of the

optimum in a relatively small amount of time.

• In the smoothing phase, which lasts for the last K2 iterations, γi = 1/(i− K1),

which ensures the convergence of the estimate to the actual optimum.

Unless stated otherwise, we used K1 = 5000 and K2 = 1000 for all MEM in

this manuscript.

We refer the reader to the web-tutorial by Lixoft (2019) for a graphical in-

troduction to this algorithm.

1.4.2.3 Individual parameters

Once the population parameters have been estimated by SAEM, Monolix in-

fers individual parameters for each individual using the Empirical Bayesian
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Estimates, which is based on the posterior distribution of the random effects

using the population as a prior (Lavielle and Bleakley, 2014):

p(ηk|y·,·,k) ∝ p(y·,·,k|ηk)p(ηk), (1.9)

where y·,·,k is the set of data corresponding to individual k (for all observables

and at all timepoints), p(y·,·,k|ηk) accounts for the fit to the individual data

and is computed from Equation (1.8), and p(ηk) is the density distribution of

the random effects in the population (from Equation (1.7)). It is then possi-

ble to define a value for the individual parameter by taking the mode of this

distribution3.

1.4.3 Model selection

Because MEM have different kinds of parameters (population mean values,

population variances, error parameters, individual parameters), classical model

selection methods have been adapted for MEM.

1.4.3.1 Bayesian Information Criterion (BIC)

For example, the Bayesian Information Criterion (BIC) has been classicaly de-

fined by Schwarz (1978) as:

BIC = log(n)K− 2log(L̂), (1.10)

where n is the sample size, K is the number of parameters of the model, and

L̂ is the optimal likelihood. In order to avoid overfitting, the BIC penalizes

the likelihood with the number of parameters multiplied by the logarithm of

the sample size. However, it is unclear in MEM if the sample size should be

chosen as the population size N (number of individuals) or as the total number

of observations ntot = nmN (since there are n observables, m timepoints and N

3Other definitions might be used, for instance the mean of the posterior, but they will not
be used in this manuscript.
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individuals in the dataset). As a consequence, the different available software

for MEM estimation don’t use the same definition for the BIC in MEM.

In order to tackle this problem, a formal corrective term for the Bayesian

Information Criterion has been developped for the selection of covariates and

random effects in MEM (Delattre et al., 2014; Delattre and Poursat, 2016), by

decomposing the individual parameters between fixed parameters, that don’t

vary between individuals, and random ones, that have a different value for

each individual:

θk =




θF,k

θR,k


 =




θF,pop

θR,pop


+




0

ηR,k


 , ηR,k ↪→ N (0, ΩR),

where θF,k (resp. θR,k) is the vector of fixed individual parameters of individual

k (resp. the vector of random individual parameters), θF,pop (resp. θR,pop) is

the vector of fixed effects of the fixed parameters (resp. the vector of fixed

effects of the random parameters), ηR,k is the vector of random effects of the the

random parameters of individual k (the vector of random effects on the fixed

parameters is null), and ΩR is the covariance matrix of the random effects of

the random parameters.

Then, the population parameters can also be decomposed into population

parameters of the fixed parameters, and population parameters of the random

parameters: θ = (θF, θR), with:





θF = θF,pop,

θR = (θR,pop, vec(ΩR)),

where vec(ΩR) is the vector containing the non-null elements of ΩR.

Then the BIC of the model is defined in Delattre and Poursat (2016), as:

BIC = −2 log(L̂) + #(θR) log(N) + #(θF) log(ntot), (1.11)

where #(x) is the cardinality of vector x.
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1.4.3.2 Akaike’s Information Criterion (AIC)

Similarly, the classical Akaike’s Information Criterion (AIC), introduced in de-

tail in Burnham and Anderson (2010) as:

AIC = 2K− 2log(L̂), (1.12)

is referred as the marginal AIC (mAIC) in a MEM context (Vaida and Blanchard,

2005), and has been shown to be inappropriate for MEM. A conditional AIC

(cAIC) has been derived for linear MEM Vaida and Blanchard, 2005; Liang et

al., 2008.

Depending on the precise context, mAIC or cAIC might be the best-suited

selection criterion (Vaida and Blanchard, 2005), but no matter which criterion

is being used, a useful selection method is provided by the Akaike’s weights

(Burnham and Anderson, 2010):

wi =
exp(− (AICi −min(AIC))/2)

∑R
j=1 exp(− (AICi −min(AIC))/2)

, (1.13)

where wi is the Akaike’s weight of the i-th model, AICi is its Akaike’s Informa-

tion Criterion and R is the number of competing models. The Akaike’s weight

of a given model in a given set of models can be seen as the probability that it

is the best one among the set (Burnham and Anderson, 2010). In this setting,

selecting the best models of a set of models means computing their Akaike’s

weights, sorting them, and keeping only the models whose weights add up to

a significance probability (in this manuscript, 95%).

In this manuscript, we will essentially use the AIC and the corresponding

Akaike’s weights for selecting models with the same structure, that differ only

by their parameter values (this will be developped in the next section, and in

Chapters 5 to 7). In this context, differences in AIC originate from differences

in the likelihood of the models, and are independent from the corrective term

being used. For this reason, the choice of mAIC or cAIC is not relevant to

our study, and we will use the marginal AIC, that is computed by Monolix by

default (Lavielle and Bleakley, 2014).
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1.4.3.3 Likelihood Ratio Test (LRT)

Another model selection tool that will be of use for our investigations is the

Likelihood Ratio Test (LRT), which tests the difference in the log-likelihoods of

two nested modelsM0 andM1 with numbers of parameters K0 and K1 > K0.

Under the null hypothesis that −2logL̂1 = −2logL̂0, the statistic 2(logL̂1 −
logL̂0) follows a χ2 distribution with K1 − K0 degrees of freedom.

In MEM, the test statistic is more complex to compute, and can be a mixture

of χ2 and Dirac distributions (Lavielle and Bleakley, 2014), depending on the

precise hypotheses of the test (i.e. whether the hypothesis is on a fixed effect,

a random effect variance, or the covariance between two random effects).

1.4.4 Identifiability in mixed effects models

Mixed Effects Models are often proposed as a way of adressing the unidentifi-

ability of a structural model, because if the parameters of some individuals are

poorly characterized, the population information is used as a prior for their

estimation (Karlsson et al., 2015). Provided that the population parameters are

well determined, MEM could thus be used to better estimate the individual

parameters.

However, as is often the case with MEM, things are more complex that

this simplistic hypothesis. Especially, the intricate parameterization of MEM,

where population parameters are estimated by sampling individual parame-

ters first, and individual parameters are estimated using the population distri-

bution as a prior in a second step, complicates the definition and assessment

of identifiability. Lavielle and Aarons (2016) studied the identifiability of non-

linear MEM. They decipher between theoretical identifiability, which is a feature

of the parameter model (provided if different population parameter values ren-

der different individual parameter distribution), strucural identifiability (that is

the structural identifiability of the structural model), and practical identifiability,

which is defined as previously (Section 1.3.3).

In this section, we present the existing framework for studying parametric
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identifiability in MEM, starting with the population parameters, before focus-

ing on the individual parameters.

1.4.4.1 Population parameters

Regarding the assessment of the practical identifiability of population param-

eters, Lavielle and Aarons (2016) report two methods, that are essentially em-

pirical.

The most frequent one estimates the FIM of the model, and defines iden-

tifiability either by the FIM eigenvalues, using the E-criterion (or its modified

version Emodi f ied) as introduced in System (1.5), or by approximating the pa-

rameters standard errors and comparing the estimated value to the range of

the standard error for each parameter.

The other method uses repeated parameter estimations, starting from dif-

ferent initial guesses. In this case, convergence to different parameter values

with the same likelihood indicates unidentifiability. However, this requires

repeated estimations of the model parameters, which can be time-consuming

if the model is complex. This approach has also been termed the multistart

approach, for instance by Fröhlich et al. (2014), who stress the fact that de-

spite underlining parameter unidentifiabilities, the multistart approach does

not provide any information regarding the actual values of parameter uncer-

tainties. We will refer to the multistart approach as Initial Guess Sampling (IGS)

in this manuscript.

To our knowledge, no implementation of the profile likelihood approach

(Section 1.3.4.1) has been achieved for MEM. In the case of our models, we will

thus try to use a combination of FIM-based strategies and IGS. Specifically, our

approach to IGS is the following:

1. We perform a random sampling of the initial parameter guesses, which

provides us with a sample of optimal parameter values.

2. We test the convergence of the SAEM runs: we only want to consider the

runs which reached the global optimum. To this end, we use a selection
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criterion (wAIC, Section 1.4.3) to keep only the runs that converged to the

lowest likelihood values.

3. We compare the pameter values of these convergent runs. If they’re not

the same, then the model is unidentifiable (several different parameter

values give the same likelihood)

1.4.4.2 Individual parameters

In the case where the individual parameters are not identifiable, the experi-

mental data do not provide enough information to determine them precisely.

In the case of the EBE defined in Equation (1.9), this means that the distribution

p(y·,·,k|ηk) will not be very important in the product p(y·,·,k|ηk)p(ηk). In turn,

the posterior distribution p(ηk|y·,·,k) will be very close to p(ηk), so its mode

will be close to 0. As a consequence, the individual parameters will all be close

to the population average.

This phenomenon is summarized by a scalar criterion called the η-shrinkage

(Karlsson and Savic, 2007; Savic and Karlsson, 2009):

sη = 1− std(ηk)

ωθ
, (1.14)

where std(ηk) is the standard deviation of the estimated individual random

effects in the population, and ωθ is their theoretical standard deviation. In the

case where information about a parameter is insufficient, the random effects

on this parameter shrink toward 0 in the population, and thus sη increases.

Equation (1.14) also implies that shrinkage values vary from parameter to pa-

rameter, and that some parameter might be more poorly characterized than

the others.

Simulation studies have shown that shrinkage can generate false correla-

tions between random effects, or mask the existing correlations, starting from

30% shrinkage (Savic and Karlsson, 2009). This number should be taken with

care, since Savic and Karlsson (2009) did not test many distinct shrinkage val-

ues in their paper, and their results are very specific to the model they used for
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generating their simulations.

1.5 Thesis outline

This manuscript is divided in two parts. The first one is dedicated to the

elaboration of a dynamic model of in vitro erythropoiesis. We first define the

model in Chapter 2. Then, in Chapter 3, we apply it in to the data obtained

under the drug treatments that we introduced in Section 1.2.3. In Chapter 4,

we present why MEM will be of interest for modelling in vitro erythropoisis,

by introducing the notion of experimental heterogeneity, that is the variation of

the outcome of the differentiation experiment obtained in the same conditions.

The second part of the manuscript aims at adapting the model defined in

Chapter 2 in a mixed effects context, based on the data introduced in Chap-

ter 4. We define this MEM in Chapter 5, and conclude that it is unidentifiable.

Finally, we assess how to make our model identifiable, using experimental

design (Chapter 6) and model reduction (Chapter 7).
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Chapter 2

A deterministic model of in vitro

erythropoiesis

2.1 Introduction

Our main goal throughout this work is to model the in vitro erythropoiesis.

More precisely, we want to quantify the differentiation of the T2EC progeni-

tors, that we presented in Section 1.1.2, in different conditions. In some con-

ditions the cells were treated with chemical drugs, and we ask whether the

treatment accelerates or decelerates differentiation. It seems that we cannot

answer this question experimentally, since the number of differentiated cells

that we presented in Section 1.2 results from the dynamic balance between cell

proliferation, cell death and differentiation, which we cannot measure from

experiments. Consequently, the first part of the project was to develop a dy-

namic model of in vitro erythropoiesis, explicitly accounting for the differenti-

ation rate of the cells in culture. Since we want to compare parameter values

between the different conditions, we need to estimate these parameter values

as precisely as possible.

We thus propose to design the first model of in vitro erythroid differen-

tiation. We test different possible forms for the ODE in this model and the

distribution of its residuals, and select the best-one at fitting our data using
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Akaike’s weights (Burnham and Anderson, 2010). The data consist in the three

measured quantities that we presented in Section 1.1. Then, in order to be able

to compare parameter values between the treated and untreated conditions, we

need to assess the identifiability of these values. We thus perform identifiabil-

ity analysis based on the profile likelihood approach (which we presented in

Section 1.3, Raue et al., 2009). Then, we test the ability of our model to assess

the effect of chemical treatments on the parameter values. To this end, we use

rapamycin, a chemical drug which is known to affect the number of cells in

the culture as well as the proportion of differentiated cells (Dazy et al., 2003;

Gonin-Giraud et al., 2008), and try to compute its effects on the parameter

values. This work was published in In Silico Biology (Duchesne et al., 2019).

2.2 Paper
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Abstract

The in vivo erythropoiesis, which is the generation of mature red blood cells in the bone mar-
row of whole organisms, has been described by a variety of mathematical models in the past
decades. However, the in vitro erythropoiesis, which produces red blood cells in cultures, has
received much less attention from the modelling community. In this paper, we propose the
first mathematical model of in vitro erythropoiesis. We start by formulating different models
and select the best one at fitting experimental data of in vitro erythropoietic differentiation
obtained from chicken erythroid progenitor cells. It is based on a set of linear ODE, describing
3 hypothetical populations of cells at different stages of differentiation. We then compute
confidence intervals for all of its parameters estimates, and conclude that our model is fully
identifiable. Finally, we use this model to compute the effect of a chemical drug called Ra-
pamycin, which affects all states of differentiation in the culture, and relate these effects to
specific parameter variations. We provide the first model for the kinetics of in vitro cellular
differentiation which is proven to be identifiable. It will serve as a basis for a model which will
better account for the variability which is inherent to the experimental protocol used for the
model calibration.

1 Introduction

Erythropoiesis is the process by which red blood cells are produced. It occurs within the broader frame of
haematopoiesis, the process which generates all blood cells. The dynamics of haematopoiesis has been
extensively modelled mathematically in the past decades, with the first historical models published as
early as fifty years ago (1,2) (for a review of the history of haematopoiesis modelling in general, see (3)).
Models of haematopoiesis have improved the understanding of both the processes they describe (4), and
the mathematical tools they use. These models comprise non-exhaustively Differential Equations (DE,
either ordinary (1,2,5), partial, which can be structured by age, maturity, or a combination of these (6), or
even delay differential equations (7)) and agent-based models (8). They can be fully deterministic (5) or
can include a more or less prominent stochastic component (9,10,11).

Recent works specifically focusing on erythropoiesis comprise DE-based models (12,13) and multi-scale
descriptions of these phenomena (14,15,16).

All these works aim at modeling the in vivo physiological processes, i.e. the processes occurring in a
whole organism. Those processes are related to numerous pathologies, for which clinical data are very
sparse and must be acquired on experimentally prohibitive time-scales, which complicates their study.
Modeling has therefore provided significant insights into these pathologies (4). On the contrary, the in
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vitro context, i.e. the process that takes place in cells grown in culture, is much simpler to characterize
experimentally. Yet, to our knowledge, no modeling study has focused on it so far. Since the in vitro
differentiation is an experimental tool of choice for the study of cellular decision-making (17,18,19), we
propose to develop a model for the dynamics of the in vitro erythropoiesis.

Moreover, the current models of erythropoiesis suffer from one major drawback: the weakness of
their parameterization, which can fall within three categories.

A vast majority of the existing models of erythropoiesis are based on experimental parameter values
from the literature. In some cases these values are used in other contexts that those in which they were
obtained (typically, in other species (12)).

In other cases, the parameter values of a model are chosen arbitrarily to reproduce a qualitative
behaviour. Apart from this qualitative fit, such approaches do not provide any information regarding the
validity of the values (16).

Finally, when the parameters of a model are estimated to reproduce a dataset, the precision of this
estimation is seldom investigated (20). By this, we mean that depending on the algorithmic details of the
estimation, it is possible that several values of the parameters might render the same fit to the data. In
this case the model is said to be unidentifiable.

A model is said to be identifiable if and only if it is possible to infer a unique value for each of its
parameter by comparing its output to experimental data. Otherwise it is unidentifiable. A model can be
non-identifiable for several reasons (21,22).

Structural identifiability is related to the structure of the model, and the observed variables. A
model is structurally unidentifiable when several of its parameters are redundant, meaning that they can
vary in such a manner that the measured output of the model is not affected (21,22,23). A variety of
methods, based on different approaches, can be used to assess the structural identifiability of a dynamic
model. These include, non-exhaustively, the Taylor series method (24), the similarity transformation (25),
the generating series method (26), and the profile likelihood approach (22,27,28). A review of these methods
is provided in (21) and their performance is assessed in (23).

Practical Identifiability is related to the quantity and quality of the data used for model calibration.
If the data is too sparse or too noisy to estimate all parameters together, then the model is said to
be practically unidentifiable (21,22). Essentially three kinds of frequentist methods can be used to assess
the practical identifiability of a model: methods based on the Fisher Information Matrix (FIM) (29),
which use a parabolic approximation of the likelihood function, profile-likelihood-based methods (22,28),
and bootstrapping, which is based on the resampling of the data (30). FIM-based methods are less
computationally demanding, because they require the fewest parameter estimation steps (31), but due to
their parabolic approximation they are proven to render biased results (22). On the other hand, the profile
likelihood-based method is computationally cheaper than bootstrapping (31), and is proven to detect both
structural and practical unidentifiabilities (22,27).

Despite the growth of the interest in identifiability and related concepts among the biological systems
modelling community (21,32,33,34) the identifiability of models remains seldom investigated (20). With this
in mind, the most rigorous way to design and calibrate a model of erythropoiesis seems to use dedicated
experiments to determine its parameter values. Once these values have been determined, one should
then test the identifiability of the model before using it for any prediction.

In this paper, we aim at developing an identifiable model for the dynamics of the in vitro erythroid
differentiation. The data that we generated to calibrate it consists in counts of different cell sub-
populations at regularly spaced time-points during the course of proliferation and differentiation of chicken
erythroid progenitors. We start by formulating different possible structures for the dynamics of the
system, and for the distribution of residuals. We select the best structure and distribution using classical
information criteria. We then assess the identifiability of our model using an approach based on the
profile likelihood concept. Finally, we test the adaptation of our model in a perturbed context, when
cells are exposed to rapamycin, a drug which is known to affect the dynamics of differentiation, although
its precise effect on proliferation and differentiation remains unclear. Since our model is identifiable, it is
possible to quantify the effect of the drug on each of its parameters.
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2 Methods

2.1 Experimental Data

2.1.1 T2EC cell culture

The experimental setting from which all the data used in this study were obtained consists in a culture
of chicken erythroid progenitors called T2EC that were extracted from the bone marrow of 19 days-old
SPAFAS white leghorn chickens embryos (INRA, Tours, France). They may either be maintained in a
proliferative state or induced to differentiate into mature erythrocytes depending on the medium in which
they are grown (35).

2.1.2 LM1 experiment

In the self-renewal medium (referred to as the LM1 medium) the progenitors self-renew, and undergo
successive rounds of division. LM1 medium was composed of α-MEM medium supplemented with 10
% Foetal bovine serum (FBS), 1 mM HEPES, 100 nM β-mercaptoethanol, 100 U/mL penicillin and
streptomycin, 5 ng/mL TGF-α, 1 ng/mL TGF-β and 1 mM dexamethasone as previously described (35).
After 10 days in LM1, the culture is composed at >99% of erythroid progenitors cells (36,37). Cell
population growth was evaluated by counting living cells in a 30 µL sample of the 1mL culture using a
Malassez cell and Trypan blue staining (SIGMA), which specifically dyes dead cells (Figure 1-A), each
24h after the beginning of the experiment.

2.1.3 DM17 experiment

T2EC can be induced to differentiate by removing the LM1 medium and placing cells into 1mL of the
differentiation medium, referred to as DM17 (α-MEM, 10% foetal bovine serum (FBS), 1 mM HEPES,
100 nM β-mercaptoethanol, 100 U/mL penicillin and streptomycin, 10 ng/mL insulin and 5% anaemic
chicken serum (ACS)). Upon the switching of culture medium, a fraction of the progenitors undergoes
differentiation and becomes erythrocytes. The culture thus becomes a mixture of differentiated and
undifferentiated cells, with some keeping proliferating. Cell population differentiation was evaluated by
counting differentiated cells in a 30µL sample of the culture using a counting cell and benzidine (SIGMA)
staining which stains haemoglobin in blue (Figure 1B). A parallel staining with trypan blue still gives
access to the overall numbers of living cells (Figure 1B). Consequently, the data available from this
experiment are the absolute numbers of differentiated cells, as well as the total number of living cells
(which comprises both self-renewing and differentiated cells) at the same time points as in the LM1
experiment. The data presented on Figures 1C and 4A are the total number of living cells in the culture,
and the fraction of differentiated cells, extrapolated from the counting.

2.1.4 Rapamycin treatment

In the control condition, cells were grown in their regular medium with 0.1% DMSO (Figure 1C, black
dots). In the treated condition, cells were grown in the presence of rapamycin (Calbiochem), a chemical
drug known to affect both the number of living cells in culture, and the proportion of differentiated
cells (36,38), as displayed on Figure 1C. Cells were treated with Rapamycin at 50 nM just after switching
them to the DM17 medium. It should be noticed that the very same original culture was used to initiate
all the experiments presented on Figure 1C (in the LM1 and DM17 media, as well as in the treated and
untreated conditions).

2.1.5 Commitment experiment

Another piece of experimental data that will be of use for calibrating our models is the result of the
commitment experiment. The full protocols and results of this experiment are described in Figure 10
of (17) and are summarized on Figure 1D. In this experiment, once a cell culture has been switched to
the DM17 medium, it can be switched back to the LM1 medium. Switching back after 24 hours of
differentiation does not cancel the self-renewing ability of the progenitors, but switching back after 48
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hours does: instead of proliferating again, the culture stagnates. This means that there must remain
some self-renewing cells in the culture after one day, but that they all have started differentiating after
two days.

2.2 Models

2.2.1 Structural Model

We propose three alternative dynamic models of the erythroid differentiation, which are summarized on
Figure 2.

The SB model comprises only two compartments (Figure 2A), a self-renewing one (S) and a differ-
entiated one (B, which stands for benzidine-positive), whose dynamics are given by the equations:

dS

dt
= ρSS(t)− δSBS(t), (1a)

dB

dt
= ρBB(t) + δSBS(t). (1b)

This model is characterized by a set θ = (ρS , δSB , ρB) of three parameters, where ρi is the net
proliferation rate of compartment i . For estimation-related reasons, it incorporates the balance between
cell proliferation and cell death. This means that ρi can be either positive (more proliferation than death)
or negative (more death than proliferation). On the other hand δij is the differentiation rate of cell type
i into cell type j , which is positive.

The S2B model comprises also the S and B compartments (Figure 2B), but allows the self-renewing
cells to change their net proliferation rate upon culture medium switching. This formulation arose from
the consideration that proliferation is faster in the DM17 than in the LM1 medium (Figure 1C). The
dynamics of this model are given by the equations:

dSLM1

dt
= ρLM1SLM1(t), (2a)

dSDM17

dt
= ρDM17SDM17(t)− δSBSDM17(t), (2b)

dB

dt
= ρBB(t) + δSBSDM17(t). (2c)

It is characterized by the set (ρLM1, ρDM17, δSB , ρB) of four parameters, following the same notation
convention as in the SB model.

Finally, the SCB model (Figure 2C) also comprises the same self-renewing and differentiated compart-
ments as the SB model, as well as a hypothetical committed cells compartment C . This compartment
comprises intermediary cells that are committed to differentiation, yet not fully differentiated. The
dynamics of these three compartments are given by the equations:

dS

dt
= ρSS(t)− δSCS(t), (3a)

dC

dt
= ρCC (t) + δSCS(t)− δCBC (t), (3b)

dB

dt
= ρBB(t) + δCBC (t). (3c)

It is characterized by the set (ρS , δSC , ρC , δCB , ρB) of five parameters, following the same naming
convention as the two other models.

Moreover, it should be noted that differential systems (1) to (3) are fully linear, and that their
matrices are lower-triangular, which makes them easily solvable analytically. Their simulation is thus very
fast. The detail of the analytical solutions to these systems is given as supplementary material.
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Figure 1: Experimental context. A: In LM1 medium the culture is only composed of living and dead
cells in the self-renewal state. The amount of living cells can be measured by trypan blue staining. B: In
DM17 medium, the culture is a mixture of living and dead, self-renewing and differentiating cells. The
amount of living cells can be measured by trypan blue staining. The amount of differentiated cells can
be measured by benzidine staining. C: Data used to calibrate the models. Black dots are the results of
a single experiment in the control situation (no treatment). Red triangles are the results of the same
experiment under rapamycin treatment. Both conditions were obtained with the same initial populations,
so the black dot and red triangle are the same at t = 0. For readability, living cell counts are displayed
in log-scale, and differentiated cell counts are displayed as a fraction of the total living cell count. D:
Commitment experiment. If the differentiating cells are switched back to LM1 after 24h of differentiation
the culture starts proliferating again (upper trajectory). If the cells are switched back to LM1 after 48h,
the culture stagnates (lower trajectory).
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Figure 2: Diagrams of three possible dynamic models for our data. A: The SB model has no intermediary
compartment. B: The S2B model has no intermediary compartment, but the self-renewing cells change
proliferation rate in DM17. C: The SCB model has an intermediary compartment.

Finally, not all variables in the models can be measured through the experiments that we presented
in section 2.1, and we only have access to two observables of the system: the total amount of living
cells T (t) through trypan blue staining, and the amount of differentiated cells B through benzidine
staining. The number of living cells T can be measured in LM1 and in DM17, yet in LM1 there is no
differentiation, so in the LM1 experiment T = S (or T = SLM1 in the S2B model). The number of
differentiated cells B can be measured in DM17 (it is null in LM1).

2.2.2 Error Model

In order to properly define the likelihood of our model, we need to define a statistical model for the
prediction error of our dynamical model, y − f (t, y0, θ), where y is the data and f the prediction from
the dynamical model (which depends on time t, the initial condition y0 and the parameters θ of the
model). This prediction error is usually modelled by a gaussian distribution with a null mean (22,39,40).
Then, the standard deviation of the error remains to be characterized.

When dealing with small datasets, a reasonable option is to build an additional model layer for
the standard deviation of the error (39). This means finding a suitable function g , of the time t, the
initial condition y0, the dynamical parameters θ and possibly other parameters ξ (which we will call
the error parameters), to describe this variance. The error model is then completely described as:
yi ,j ↪→ N (fi (tj , y0, θ), gi (tj , y0, θ, ξ)). Several simple forms have been proposed for the function g (40),
that we summarize in Table 1. However, it is not obvious whether one should be used in general, or if
the choice of g should be context-specific.

Error model Definition of g Error parameters
Constant error ∀ j gi (tj) = a ξ = (a)
Proportional error ∀ j gi (tj , y0, θ) = b.fi (tj , y0, θ) ξ = (b)
Combined error ∀ j gi (tj , y0, θ) = a + b.fi (tj , y0, θ) ξ = (a, b)

Table 1: Definition of three different error models (40).

With this representation, the log-likelihood of the model follows as:

− 2 log(L) = nm log(2π) +
n∑

i=1

m∑

j=1

(
(yi ,j − fi (tj , θ))

gi (tj , θ, ξ)

)2

+ 2log(gi (tj , θ, ξ)), (4)

where n is the number of variables of the dynamic model, and m the number of measurement points for
each variable, and from which the log(2π) term is dropped. In the end, the best-fit parameters of the
model are the values of θ and ξ which minimize the quantity defined in Equation (4). In this equation,
the data yi ,j and the prediction fi (tj , θ) are the total number of cells in each measured compartment of
the model (without any transformation of the variables).
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2.3 Parameter Estimation

Considering the data at our disposal, we adopted the following procedure for parameter estimation:

1. Estimate ρS (or ρLM1 in the S2B model), and the corresponding error parameters ξ1 from the LM1
experiment. In LM1 there is no differentiation, so the S compartment just follows an exponential
growth with rate ρS .

2. (a) In the SB model, set δSB so that there are no more self-renewing cells after 2 days of differen-
tiation (which we interpret as S(48h) ≤ 1, i.e. δSB ≥ ρS + 1/2ln(S(0)) from Equation (1a)).

(b) In the SCB model, set δSC so that there are no more self-renewing cells after 2 days of differen-
tiation (which we interpret as S(48h) ≤ 1, i.e.
δSC ≥ ρS + 1/2ln(S(0)) from Equation (3a)).

3. Estimate the remaining parameters, and the corresponding error parameters ξ2, using the data
from the DM17 experiment. In the SB model, the only remaining parameter is ρB . In the S2B
model, the remaining parameters are ρDM17, δSB and ρB . In the SCB model, these are ρC , δCB ,
ρB .

The second step of this estimation sets δSC (δSB in the SB model) to a value such that there are
no more self-renewing cells after 2 days of differentiation. This observation does not come from the
cellular kinetics experiment that we presented on Figure 1C. It rather uses the results of the commitment
experiment (Section 2.1.5 & Figure 1D), which shows that some self-renewing cells remain in the culture
after one day, but that they all are differentiated after two days (17).

In the SCB model, considering that the self-renewing compartment S is characterized by an expo-
nential dynamic, and that there are no more self-renewing cells if and only if S ≤ 1, this provides an
upper and a lower bound for δSC :

ρS +
1

2
ln(S0) ≤ δSC ≤ ρS + ln(S0). (5)

For the sake of simplicity, we will set δSC = ρS + 1/2ln(S0) in order to verify the equality: S(48h) = 1
in the following. Figures S2 and S3 show that varying δSC between its two bounds does not refute our
conclusions.

These considerations do not affect the S2B model, in which the switching of the culture medium
only affects the proliferation rate of the S compartment.

In both estimation steps, the -log likelihood was minimized using the Truncated Newton’s algo-
rithm (41,42) implemented in the python package for scientific computing scipy (43). Convergence to the
global minimum was assured by a random sampling of the initial guesses for parameter values (Figure S1).

2.4 Model Selection

In order to choose a proper error model, one needs to adopt a selection criterion, which allows to rank
models and keep only the best ones, by balancing the quality of the fit of the models with their complexity.

We used a selection approach based on the corrected Akaike’s Information Criterion (AICc, (44)):

AICc = −2 log(L) +
2kn

n − k − 1
. (6)

where k is the number of parameters of the model and n is the sample size. The corrective term in AICc
has been developed for linear models and small samples. However, since there is no selection criterion
derived from AIC for non-linear models, the literature recommends using AICc when in doubt (44).

From the AICc values of a set of models, we compute the corresponding Akaike’s weights (44):

wi =
exp(− (AICci −min(AICc))/2)

∑R
j=1 exp(− (AICci −min(AICc))/2)

, (7)

where wi is the Akaike’s weight of the i-th model, and R is the number of competing models. The
Akaike’s weight of a given model in a given set of models can be seen as the probability that it is the best
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one among the set (44). In this setting, selecting the best models of a set of models means computing
their Akaike’s weights, sorting them, and keeping only the models whose weights add up to a significance
probability (for example, 95%).

2.5 Identifiability Analysis

We assessed the identifiability of our model using the method based on the statistical notion of profile
likelihood (22,45).

For a model with k parameters, a parameter space Θ = {(θi , i ∈ {1, 2, ... , k}), θi ∈ R}, and a
likelihood L, the profile likelihood PLθi with respect to parameter θi is defined as:

∀x ∈ R PLθi (x) = max
θj 6=i

(L(θi = x , θj)) . (8)

Namely, the profile likelihood with respect to a parameter at a certain value is the likelihood of the
model, maximized with respect to all the other parameters. Computing the profile likelihood at a certain
value x of a parameter θi means to set θi = x and to estimate the values of the other parameters θj
that minimize the error −2 log(L) in this setting. Consequently, −2 log(PL) is minimal at the optimal
parameter values set, and increases in both directions. It is possible to define a confidence interval
CIθi at a level of confidence α ∈]0, 1[ for a parameter θi , derived from the evaluation of the profile
likelihood (22):

CIθi (α) =
{
x ∈ R | − 2 log(PLθi (x)) + 2 log(PLθi (x̂)) ≤ χ2(α, k)

}
, (9)

where x̂ is the optimal estimate of θi , k is the number of parameters being estimated and χ2(α, k) is
the α-quantile of the χ2 distribution with k degrees of freedom.

Namely, all the parameter sets that render a profile likelihood closer to its minimal value than a
threshold χ2(α, k) belong to the confidence interval.

A model is then practically identifiable at the level of confidence α if and only if the confidence
intervals at level α of all of its parameters are bounded (22). In this study, we used α = 0.95.

The profile likelihood approach is a good way of addressing the identifiability of a model, because it
allows to detect both structural and practical unidentifiabilities. This feature makes the approach more
efficient in practice than most of the other methods in the field (21,23,27,46).

3 Results & Discussion

3.1 Measurement error

The data that we used for the calibration of our models are displayed on figure 1C. For readability, it
displays the total cell counts in log scale, and the differentiated cell counts as a fraction of the total
count. This representation emphasises the fact that the measured cell population in LM1 decreases
between 0h and 24h, in both conditions (control, and rapamycin-treated).

Every time-point displayed on figure 1C was obtained by a single measurement, which increases the
measurement error compared to a replicated experiment. We conclude that the observed decrease in the
total living cell number in the LM1 medium (in both conditions) is due to the experimental error that
the protocol suffers rather than to a hypothetical biological feature of the cells under study.

3.2 Fitting the Model with no Treatment: Model Design and Validation

3.2.1 Choosing a structural and an error model: selection approach

By combining the three error models presented in Table 1 with the three dynamic models presented in
Figure 2, it is possible to define 9 different models of our system. In order to choose the best one at
reproducing the in vitro dynamics of erythropoiesis, we computed the maximum-likelihood estimates of
the parameters of these nine models, (which are displayed in Table S1).
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For each of these nine models, we computed the likelihood-based selection criteria that are displayed
on Table 2. The S2B and SCB dynamic models with a proportional error appear as the best ones and
offer very similar fits. All other models are far worse (their Akaike’s weights add up to around 4× 10−4)
but it remains impossible, based on this criterion, to decipher which of the two remaining models should
be used to best describe the in vitro erythropoiesis.

However, the S2B model does not describe the results of the commitment experiment (Figure 1D). In
this model indeed, self-renewing cells switch between different self-renewing rates upon medium switch-
ing. As a consequence, switching the cells back and forth between the two media should just switch
their proliferation rate, without affecting their proliferation ability. So the cells would never lose their
proliferation ability, as opposed to the result of the commitment experiment.

On the other hand, the SCB model predicts that upon switching to the differentiation medium, the
cells from the S compartment start differentiating. Once they are all differentiated, cells from the C and
B compartments can still proliferate, but this proliferation might be cancelled by a switch back to the
LM1 medium. It is thus impossible to describe the process of commitment with the S2B model, while it
is possible with the SCB model.

As a conclusion, the SCB model with a proportional error is the best-fitting model which also accounts
for the results of the commitment experiment, making it our dynamic model of choice for the rest of this
study.

Dynamic model Error model −2 log(L1) −2 log(L2) k AIC AICc ∆AICc wAICc

SB constant 107 228 4 343 347 45 8.9× 10−11

SB proportional 106 199 4 313 317 15 2.5× 10−4

SB combined 106 199 6 317 328 26 1.3× 10−6

S2B constant 107 195 6 314 324 22 7.6× 10−6

S2B proportional 106 174 6 291 302 0 0.55
S2B combined 106 174 8 295 319 18 8.7× 10−5

SCB constant 107 195 6 314 325 23 6.7× 10−6

SCB proportional 106 174 6 292 302 0.40 0.45
SCB combined 106 174 8 296 320 18 7.1× 10−5

Table 2: Selection criteria evaluated for the nine possible pairs of error model and dynamic model. L1 is
the log-likelihood of the model for the LM1 data. L2 is the log-likelihood of the model for the DM17 data. k is the number
of estimated parameters in each of the models, according to the procedure described in section 2.3. For each model, the
sample size is n = 15. AIC = −2 log(L1) − 2 log(L2) + 2k is the Akaike’s Information Criterion (44). AICc is the corrected
AIC (Equation (6)). ∆AICc = AICc −min(AICc) is the AICc difference. wAICc is the Akaike’s weight (Equation (7)).

3.2.2 Identifiability analysis

In order to use a model for predictive purposes, one needs to assess its identifiability. The profile likelihood
curves of all estimated parameters are displayed on Figure 3, for the SCB model with proportional error.
For ρS and b1, which are estimated together, the identifiability threshold at confidence α = 0.95 is
χ2(0.95, 2) = 5.99. For ρC , δCB , ρB and b2, which are also estimated together, the threshold is
χ2(0.95, 4) = 9.49.

For every parameter of the model, the profile likelihood curve crosses the threshold on both sides of
the optimum, which means that every parameter of the model is identifiable, at the level of confidence
α = 0.95. The confidence intervals of the parameters (22), extracted from these profiles (Equation (9))
are displayed in Table 3.

For a given parameter, the size of the confidence interval depends on the number of parameters
that are estimated together, the required level of confidence, and the likelihood function used for the
computation. By definition (Equation (8)), the profile likelihood renders as large of a confidence interval
as possible, because it increases as slowly as possible on each side of the optimal parameter value.
This means that identifiability is harder to satisfy with the profile likelihood approach than with other
definitions, for example based on a linearization of the likelihood surface at the optimal parameter set (22).
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Figure 3: The SCB model with proportional error is fully identifiable. Solid curves are the profile likelihood
curves of each estimated parameter of the model. Dashed lines give the identifiability threshold of each
parameter at confidence level α = 0.95.

As a consequence, the fact that the parameter confidence intervals presented in Table 3 may appear
as quite large is not a sign that the parameters are poorly estimated. It is rather the evidence that they
remain identifiable even with a very stringent definition of identifiability, and at a high level of confidence.

It is not possible to study the identifiability of δSC , since it is not estimated from the data. However,
the commitment experiment (figure 1D) give us access to a lower and an upper bounds for its value
(Equation (5)). We determined the optimal likelihood of the model, and its optimal parameters in this
range of value (figures S1 and S2), showing that the choice of δSC does not influence the dynamics of
our model.

3.3 Modelling differentiation in the control case

A simulation of the model with the identified values of its parameters is reproduced, with the corre-
sponding experimental data, on Figure 4A. The overall quality of the fit is good, especially for the DM17
populations.

The precise values of each parameter of the model are reported in Table 3. The proliferation rate of
the committed cells is slightly lower than the one of the self-renewing cells (the net doubling-time of the
committed compartment is about 34h, whereas the doubling-time of the self-renewing compartment is
around 31h). The differentiated cells proliferate with a higher rate (their doubling time is about 18h).
Taken together, these doubling times explain the faster proliferation of cells in the DM17 medium than
in the LM1, in agreement with previous data (35). Finally, the self-renewing cell differentiation is very
fast: the lowest possible value of δSC gives them a half-life of 3h in DM17. This means that half of
the S compartment would differentiate every 3h in the absence of proliferation. On the contrary, the
differentiation of the committed cells is much slower (if they stopped proliferating, they would have a
half-life of 90h).
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Parameter Lower bound Optimal value Upper bound
ρS 0.35 0.53 0.70
(doubling time) 24 31 48
b1 0.18 0.34 1.1
δSC 5.6 - 11
(half-life) 2 - 3
ρC 0.049 0.49 0.80
(doubling time) 21 31 340
δCB 0.11 0.18 0.34
(half-life) 49 92 150
ρB 0.44 0.92 1.3
(doubling-time) 13 18 38
b2 0.081 0.15 0.41

Table 3: Confidence Intervals of the parameters of the SCB model with proportional error. Highlighted in
gray are the confidence interval boundaries at level α = 0.95, extracted from figure 3, and the best-fit estimate of all the
estimated parameters of the model (expressed in d−1). For δSC , which is not estimated, no optimal value can be computed,
but absolute bounds on its values can be computed with Equation (5). Parameters are grouped by their estimation step
in our procedure: ρS and b1 are estimated together in the first step, then δSC is set, and finally the four other parameters
are estimated together. For the proliferation rates ρS , ρC and ρB , we also give the corresponding doubling times of the
populations in hours (i.e. how long would it take to double the population in the absence of differentiation?). For the
differentiation rates δSC and δCB , we also give the half-life of the corresponding populations in hours (i.e. how long would
it take to differentiate half the cells from the undifferentiated population, in the absence of proliferation?)

The timescales at which these processes occur are pictured on Figure 4B, which displays the number
of cells in each state during a simulation of the model. As specified by the setting of the value of δSC ,
the population of self-renewing cells quickly collapses, and the culture becomes a mixture of committed
and differentiated cells. Both of these compartments then grow at their own rate.

At this stage, we have developed a very simple model of erythroid differentiation, that accounts well
for the data used to calibrate it. Plus, it is fully identifiable (at confidence level 95%). We thus use it to
study the effect of rapamycin, a drug known to affect the in vitro erythroid differentiation (36,38).

3.4 Modelling differentiation under Rapamycin treatment

Rapamycin is known to increase the proportion of differentiated cells in cultures of chicken erythroid
progenitors (36,38) (Figure 1C). Yet this effect might have several origins: a decreased mortality of the
differentiated cells, or an increased differentiation rate for example. To decipher between these different
possible effects of the rapamycin treatment, we estimated the values of the parameters of our model in
the rapamycin treated case.

To avoid an overparameterization of the rapamycin effect, we considered that for each estimated
parameter of the model, the value under rapamycin treatment could be either equal to the value in the
untreated case, or equal to another value yet to be estimated. The first option would not introduce
a new parameter in the model, but the latter would. Our model has seven parameters (5 dynamical
parameters and 2 error parameters), of which 6 only are estimated (since δSC is entirely determined by
the value of ρS). This means that we can define 26 = 64 models of rapamycin treatment, by keeping
some of the parameters unchanged compared to the untreated case, and re-estimating the others with
the data presented on Figure 1C.

We thus estimated the parameters of these 64 possible models of the treatment, and computed their
likelihood-based selection criteria, the same way as we did for the dynamic model and the error model
(see section 3.2). The Akaike’s weights of the best three of these models are shown on Figure 5A. The
best model of the treatment is responsible for 94 % of the weight of the 64 models, making it by far
the best model for the rapamycin treatment. A simulation of this model is displayed on Figure 4, which
indeed shows the quality of its fit to the data obtained under rapamycin treatment.

This model is obtained by varying all the parameter values except b1, compared to the control case,
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Figure 4: The model reproduces the cellular kinetics observed in vitro. A: Simulation of the SCB
model with proportional error in the untreated (black) and rapamycin-treated cases (red). Solid lines
represent a simulation of the SCB model with proportional error, with its best-fit parameters. Dots are
the experimental data in the untreated condition. Triangles are the experimental data under rapamycin
treatment. Displayed are the total number of living cells in LM1 and DM17 media (in log-scale), and the
fraction of differentiated cells in DM17, although the fit was performed on the raw cell numbers. B-C:
Numbers of cells in each compartment as a function of time in the untreated (B) and treated (C) cases.

as displayed on Figure 5B. Moreover, we computed confidence intervals for the parameters that vary
under the treatment, showing that all these parameters are identifiable at α = 0.95 (Figure S4). The
confidence intervals of ρS , δCB , ρB and b2 show very little overlap with their confidence intervals in the
control case, showing the strength of the treatment effects. The three proliferation rates ρS , ρC and ρB
are reduced under the treatment, while the differentiation rate δCB is increased.

Finally, the effect of rapamycin on the distribution of cells between the different compartments is
displayed on Figure 4C. Under rapamycin, the C compartment decays, when it proliferated in the control
case. Moreover the B compartment has a longer doubling time under rapamycin treatment (48h instead
of 18h in the untreated case). These two effects explain why the drug treatment reduces the overall
amount of cells and increases the proportion of differentiated cells in the culture.

4 Discussion

We proposed a model for the in vitro erythroid differentiation, which comprises two components. First,
the dynamic component is the set of ODE written in Equation (3), which describes the dynamics of three
cell populations. Second, we added an error component which describes the distribution of the residuals
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Figure 5: Modelling erythropoiesis under rapamycin treatment. A. Akaike’s weights of the three best
models of the rapamycin treatment. The 61 other models are not displayed for readability. B. Parameter
values in the best model of rapamycin treatment. Red dots are the ratio of the parameter values under
rapamycin treatment with their values in the untreated case. Black straight lines represent the confidence
intervals of the values in the untreated case, computed from Figure 3. Red straight lines represent the
confidence intervals at α = 95% of the values in the treated case, computed with the Profile Likelihood
as well (Figure S4). The dashed line indicates the parameter values in the untreated case, by which all
parameters are scaled for readability.

of the dynamic model,
The three populations of our dynamical model are related to three different stages of differentiation

of the progenitors. The first one is in a self-renewal state S where differentiation has not started, and the
third one has finished differentiating. The second population lies in the middle, in a state of commitment
C where cells are not fully differentiated yet, but cannot go back to self-renewal.

Similar 3-states models have already been used to describe differentiation (19). Their success probably
stems from the fact that it would be difficult to describe differentiation as the transition between only
2 states, as we highlighted in the context of in vitro erythropoiesis with our SB model. Actually,
differentiation from one cell type to another is a continuous process, so its best description would probably
be a continuum of states, which would punctuate the transition between the two cell types (19,47).

However, explicitly accounting for this continuum would require an infinity of intermediary states. For
example, the levels of differentiation factors inside the cell could be used as a measure of its differentiation
state (48,49). Such kind of a model should be able to describe differentiation more faithfully than ours. Yet
our model, though simplistic, reproduces our experimental data quite well, and is identifiable. Moreover,
since it is fully linear and thus analytically integrable, its simulation and calibration are very quick.

Such simplicity and identifiability of our model would probably make it valuable to describe differen-
tiation in other contexts.

Once the model was chosen, we verified the accuracy of its parameter estimates. We showed that
among the seven parameters of our model, the six that are estimated by the maximum-likelihood approach
are identifiable, and that the choice of the seventh one does not alter the behaviour of the others. Using
the Profile Likelihood approach, we computed confidence intervals for our parameters. Even though
their relatively large size might be interpreted as a lack of accuracy in the estimates of the parameters,
it is not the case since the identifiability of a parameter is harder to satisfy by the Profile-Likelihood
approach than using other methods. We thus showed that our model is fully identifiable, even using a
very stringent criterion.

After demonstrating the validity of our model in the control case, we used it to study the effect of
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rapamycin, a chemical drug which is known to impact the differentiation of erythroid progenitors (36,38).
We designed 64 different models of the rapamycin treatment, which differ by the combinations of pa-
rameters that are affected by the treatment. Evaluating the quality of their fit to the data allowed us
to retain only the best model of rapamycin treatment. The parameter values in this model reveal that
rapamycin increases the differentiation rate of the intermediary cell compartment, and reduces the net
growth rates of the three other compartments. This means that rapamycin increases the differentiation
of the cells in culture, and also affects the balance between their proliferation and mortality. The reduced
net proliferation rates might be caused by a reduced proliferation, an increased mortality or any joint
variation of the two processes equivalent to one of these effects (e.g. reduced mortality, and an even
more reduced proliferation).

In the context of other perturbations of differentiation (for instance, treating cultures with a different
drug than rapamycin), should the drug influence be less strong, we might need a more subtle means of
parameter evaluation, such as the fused lasso penalized regression (50).

At the moment, our approach suffers one major drawback that is the size of our dataset. Indeed, the
precision of our prediction of cell numbers at one time-point relies on the precision of our measures of
these numbers. And this measurement precision is directly related to the number of repetitions of the
measurements.

Repeating the same experiment several times would thus increase measurement precision and average
out measurement noise. This would allow a more precise estimation of the error model parameters, and
in turn would increase the precision of the dynamic model. What we call repeating the same experiment
here does not simply consist in counting cells from the same time point several times to average out
sampling biases. It rather involves putting new cells in culture and following their populations over time,
as two full replicates of the experiment.

In this setting, the measurement error would not just be limited to technical noise due to the sampling
of cells from the culture for counting. It would rather be related to differences between the kinetic features
of the cells in culture, i.e. to actual biological heterogeneity. This heterogeneity would be averaged by
the estimation of one parameter set to fit all the data.

One way of accounting for this heterogeneity in a model, without averaging it out during parameter
estimation, is through the use of a mixed effect model, that is a mathematical model (e.g. a set of
deterministic ODE, like ours) whose parameters are modeled by distributions of random variables (40).
We are presently assessing the ability of such mixed effect models to characterize both the behaviour of
the cells in culture on average, as well as their variability.
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6 Supplementary Materials

The supplementary materials file shows the analytical solutions of our three dynamic models, the param-
eter values estimated for the three dynamic models (table S1) and the three error models (table S2), as
well as the influence of our choice of δSC on the likelihood of the model (figure S1) and on its parameter
values (figure S2).
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All the datasets and pieces of code analysed and generated during the current study are available in
a public github repository, at https://github.com/rduchesn/Dynamic_Model_Erythropoiesis.
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1 Solutions of the dynamic models

Here, we give the solutions of the three dynamic models presented in systems (1) to (3) of the main text,
which are represented graphically in figure 2. In all the following, we will note Y0 the initial condition at
time t = 0 for variable Y .

1.1 SB model

System (1) is written in matrix form as:

(
dS
dt (t)
dB
dt (t)

)
=

(
ρS − δSB 0

δSB ρB

)(
S(t)

B(t)

)
.

We thus have immediate access to the eigenvalues of the system, and can solve it analytically. There
are two possible cases, whether the two eigenvalues of the matrix are equal or not.

The dynamics of the self-renewing cells are described by the equation:

S(t) = S0e
(ρS−δSB)t .

Concerning the dynamics of the differentiated cells, we thus have :

dB

dt
(t)− ρBB(t) = δSBS0e

(ρS−δSB)t .

Then, there are two cases depending on the value of ρB :

1. If ρB 6= ρS − δSB , then B writes as:

B(t) = b1e
ρB t + b2e

(ρS−δSB)t ,

with b2 = δSBS0
ρS−δSB−ρB

and b1 = B0 − b2.

2. If ρB = ρS − δSB , then B writes as:

B(t) = (b1 + b2t)e
ρB t ,

with b2 = δSBS0 and b1 = B0.
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1.2 S2B model

System (2) is written in matrix form as:




dSLM1
dt (t)

dSDM17
dt (t)
dB
dt (t)


 =



ρLM1 0 0

0 ρDM17 − δSB 0

0 δSB ρB







SLM1(t)

SDM17(t)

B(t)


 .

Again, the eigenvalues of the matrix of the system are its diagonal coefficients. The dynamics of the
self-renewing cells still follow an exponential dynamic:

{
SLM1(t) = S0e

ρLM1t ,

SDM17(t) = S0e
(ρDM17−δSB)t ,

and the differentiated cells follow the same dynamics as in the SB model (by replacing ρS by ρDM17).

1.3 SCB model

System (3) is written in matrix form as:




dS
dt (t)
dC
dt (t)
dB
dt (t)


 =



ρS − δSC 0 0

δSC ρC − δCB 0

0 δCB ρB






S(t)

C (t)

B(t)


 .

Again, the eigenvalues of the matrix of the system are its diagonal coefficients, and we can solve it
analytically. There are several possible cases, depending on what eigenvalues are equal.

For the self-renewing cells, we have the same solution as in the two other models:

S(t) = S0e
(ρS−δSC )t .

Concerning the dynamics of the committed cells, we thus have :

dC

dt
(t)− (ρC − δCB)C (t) = δSCS0e

(ρS−δSC )t .

There are two cases depending on the respective values of ρC − δCB and ρS − δSC :

1. If ρC − δCB 6= ρS − δSC , then C writes as:

C (t) = c1e
(ρC−δCB)t + c2e

(ρS−δSC )t ,

with c2 =
δSCS0

(ρS−δSC )−(ρC−δCB)
and c1 = C0 − c2.

2. If ρC − δCB = ρS − δSC , then C writes as:

C (t) = (c1 + c2t)e
(ρS−δSC )t ,

with c2 = δSCS0 and c1 = C0.

Depending on the two previous cases, there are several possible solutions for the dynamics of differ-
entiated cells:
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1. If ρC − δCB 6= ρS − δSC , then:

dB

dt
(t)− ρBB(t) = δCBc1e

(ρC−δCB)t + δCBc2e
(ρS−δSC )t .

Then, there are three possible sub-cases depending on the relative values of ρS − δSC , ρC − δCB

and ρB :

(a) If ρC − δCB 6= ρS − δSC , ρS − δSC 6= ρB and ρC − δCB 6= ρB , then B writes as:

B(t) = b1e
ρB t + b2e

(ρC−δCB)t + b3e
(ρS−δSC )t ,

with b2 =
δCBc1

ρC−δCB−ρB
, b3 = δCBc2

ρS−δSC−ρB
and b1 = B0 − b2 − b3.

(b) If ρS − δSC 6= ρC − δCB and ρB = ρC − δCB , then B writes as:

B(t) = (b1 + b2t)e
ρB t + b3e

(ρS−δSC )t ,

with b2 = δCBc1, b3= δCBc2
ρS−δSC−ρB

and b1 = B0 − b3.

(c) If ρS − δSC 6= ρC − δCB and ρB = ρS − δSC , then B writes as:

B(t) = (b1 + b3t)e
(ρS−δSC )t + b2e

(ρC−δCB)t ,

with b2 =
δCBc1

ρC−δCB−ρB
, b3 = δCBc2 and b1 = B0 − b2.

2. If ρS − δSC = ρC − δCB , then:

dB

dt
(t)− ρBB(t) = δCB(c1 + c2t)e

(ρS−δSC )t .

Then, there are two possible sub-cases depending on the relative values of ρS − δSC , ρC − δCB and
ρB :

(a) If ρS − δSC = ρC − δCB and ρB 6= ρS − δSC , then B writes as:

B(t) = b1e
ρB t + (b2 + b3t)e

(ρS−δSC )t ,

with b3 =
δCBc2

ρS−δSC−ρB
, b2 = δCBc1−b3

ρS−δSC−ρB
and b1 = B0 − b2.

(b) If ρS − δSC = ρC − δCB = ρB , then B writes as:

B(t) = (b1 + b2t + b3t
2)eρB t ,

with b2 = δCBc1, b3 = δCBc2
2 and b1 = B0

2 Convergence of the estimation

In both estimation steps, we minimized the -log likelihood with the Truncated Newton’s algorithm
implemented in scipy, with a maximum number of function evaluations of 106. We used random sampling
of the initial guesses for parameter values to assure convergence to the global optimum.

Figure S1 shows the distance to the minimal log-likelihood (sorted from highest to lowest) over large
samples of initial guesses (200 initial guesses for the first step, 1000 initial guesses for the second one)
for our SCB model with proportional error. It shows that with a relatively small sample, the estimated
likelihood is already quite close to its minimal value and that increasing the sample size doesn’t result in
a better fit.

In order to balance the quality of the fit with the computational cost of the estimation, we used 100
different initial guesses for the first estimation step and 500 initial guesses for the second one for all of
our models.

3



A B

0 25 50 75 100 125 150 175 200

Sample size

10 14

10 13

10 12

10 11

10 10

10 9

10 8

10 7

10 6

10 5

L
m
in

(L
)

0 200 400 600 800 1000

Sample size

10 11

10 9

10 7

10 5

10 3

10 1

L
m
in

(L
)

Figure S1: Influence of the initial guess sample size on the estimation. A: Sorted distance to the optimal
likelihood over 200 runs of the estimation of ρS and b1 (SCB model with proportional error). B: Sorted
distance to the optimal likelihood over 1000 runs of the estimation of ρC , δCB , ρB and b2 (SCB model
with proportional error).

3 Parameter values

The estimated parameter values for the 9 pairs of dynamic and error models are displayed in table S1

Dynamic Error ρ1 δ1 a1 b1 ρ2 δ2 ρB a2 b2

SB Constant 0.59 5.7 2.8× 104 - - - 0.62 5.4× 104 -
SB Proportional 0.53 5.6 - 0.34 - - 0.56 - 0.45
SB Combined 0.53 5.6 0 0.34 - - 0.56 0 0.45
S2B Constant 0.59 5.7 2.8× 104 - 0.48 0.033 1.4 1× 104 -
S2B Proportional 0.53 5.6 - 0.34 0.47 0.15 0.96 - 0.14
S2B Combined 0.53 5.6 0 0.34 0.47 0.15 0.96 0x 0.14
SCB Constant 0.59 5.7 2.8× 104 - 0.47 0.038 1.4 1× 104 -
SCB Proportional 0.53 5.6 - 0.34 0.49 0.18 0.92 - 0.15
SCB Combined 0.53 5.6 0 0.34 0.49 0.18 0.92 0 0.15

Table S1: Best-fit estimates of the parameters for the 9 pairs of error model and dynamic model. ρ1 is
the net proliferation rate of the first compartment of the model (i.e. ρS for the SB and SCB models, and
ρLM1 for the S2B model). δ1 is the differentiation rate of this compartment (i.e. δSB for the SB model,
δSC for the SCB model, and it is not defined for the S2B model). ρ2 is the net proliferation rate of the
second compartment, when it is different from the B compartment (i.e. ρDM17 for the S2B model, ρC
for the SCB model, and it is not defined for the SB model). δ2 is its differentiation rate (i.e. δSB for
the S2B model, δCB for the SCB model, and it is not defined for the SB model). ρB is defined in every
model as in the SCB model.
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Figure S2: The choice of δSC does not impact the quality of the fit of the model. The straight line
represents the minimum -log likelihood optimized in the last step of our estimation procedure as a function
of the chosen value for δSC . The dashed line gives the χ2 significance threshold of a likelihood-ratio test.

4 Importance of δSC

In the estimation procedure described in the Methods section, every parameter of the dynamic model is
estimated according to the experimental data, except δSC , which is set to an arbitrary value between its
two bounds (determined from the commitment experiment pictured on figure 1C). Though these bounds
give precise limits to the values that δSC can take, setting it to different values might result in different
optimal parameter values for the second estimation step of the procedure.

Figure S2 displays the likelihood of the second estimation step for the range of values that δSC can
take. It does not vary significantly in this range, which means that the quality of the fit of the model is
not influenced by the choice of the value of δSC . This leaves two possible scenarios: either the value of
δSC has no influence on the estimated parameter values in the second estimation step, or it is possible to
keep the likelihood high while changing the value of δSC by adjusting the value of the other parameters
(which would be a case of non-identifiability if the value of δSC was optimized to fit the data).

Figure S3 displays the values of the parameters estimated in the step 3 of the procedure, for the
range of values that δSC can take. Since these value do not vary much, it seems reasonable to say that
the choice of the value of δSC does not impact the last estimation step of the procedure.

5 Identifiability of the treatment parameters

Figure S4 displays the profile likelihood curves for the parameters that are affected by the rapamycin
treatment. In the model of rapamycin treatment that we selected, b1 does not vary, so its value is not
estimated from the data. It is also the case for δSC , as in the control situation. It is thus impossible to
define a profile likelihood for these two parameters. Thus, ρS is now the only parameter that is estimated
with the LM1 data, so its identifiability threshold is χ2(0.95, 1) = 3.84. The other parameters (ρC , δCB ,
ρB and b2) are all estimated together, so their identifiability threshold is χ2(0.95, 4) = 9.49, as in the
control case.
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2.3. Conclusion

2.3 Conclusion

We designed the first model of in vitro erythropoiesis. It is a linear ODE model

describing the dynamics of three compartments which represent three differ-

ent stages of differentiation ( Section 2.2.1 in the paper). The S compartment

comprises self-renewing cells which have not started differentiating. The B

compartment comprises cells that are fully differentiated. Finally, the C com-

partment is an intermediary one, in which cells have started differentiating,

and yet cannot come back to self-renewal. The matrix of this linear system is

lower-triangular, which makes its simulation very quick and efficient. From

this system of 3 linear ODE, we define a statistical likelihood by modeling the

distribution of the model residuals, which combines an error model for the

variance of the residuals to the dynamic model ( Section 2.2.2 in the paper).

The parameters of this model are the three net self-renewal rates of the

compartments (ρS, ρC and ρB, which can be positive or negative), the two dif-

ferentiation rates from one compartment to the next one (δSC and δCB, which

are positive), and the two error parameters which quantify the standard devi-

ation of the model residuals (b1 and b2, which are positive). We present our

estimation procedure in Section 2.3 of the paper. Basically we start by estimat-

ing ρS (and the corresponding error parameter b1) from the LM1 data. Then we

choose the value of δSC according to the results of the commitment experiment

(which we explained in Section 1.1). Finally, we estimate ρC, δCB, ρB, and the

corresponding error parameter b2, from the DM17 data. There are thus two

error parameters, each describing the variance of the model residuals in each

of the estimation steps.

We computed confidence intervals for these parameters in Section 3.2 of

the paper, using the profile likelihood approach (which we presented in Sec-

tion 1.3, Raue et al., 2009). This proved that our model is fully identifiable. We

also tested its ability to account for the effects of rapamycin, a chemical drug

which affects all stages of the erythroid differentiation, in Section 3.4 of the

paper. We considered that under rapamycin treatment, each parameter could

either be equal to its value in the control case, or to another value (estimated
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Chapter 2: A deterministic model of in vitro erythropoiesis

from the data). Since the model has 6 parameters that are estimated from the

data, as δSC is not estimated (see Section 2.3 of the paper),this defines 26 = 64

potential models of the rapamycin treatment. We estimated their parameter

values, and selected the best ones using Akaike’s weights (Burnham and An-

derson, 2010). In the case of rapamycin, only one model was selected. We

found that the estimated parameter values are consistent with previous exper-

imental data, both in the control and in the rapamycin-treated conditions.

Now that we have designed our dynamic model of erythropoiesis, and

tested some features of interest, we could use it to compute the effect of

artemisinin, rapymicin and MB3 on the differentiation ability of the T2EC.
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Chapter 3

Drugs that modulate SGE and

differentiation

3.1 Introduction

In order to test our working hypothesis that there is a positive correlation

between SGE and differentiation, Anissa Guillemin, who was at the time an

experimentalist in the group, has searched for chemical drugs which affect

both the level of SGE and the number of differentiated cells in a T2EC culture.

She based her work upon a previous screen for drugs that would affect SGE in

a different cellular system (Dar et al., 2014).

She quantified the effect of the drugs on the level of SGE by computing

Shannon’s entropy. Basically, this metric is minimal when the distribution of

gene expression accross cells is far from random (Shannon, 1948). She iden-

tified three drugs of interest in the T2EC cells: artemisinin and indomethacin

both reduced the extent of SGE, while MB3 increased it.

Then, she tested the effect of the drugs on differentiation by performing

the same in vitro differentiation experiment as in Chapter 2. She found that

artemisinin and indomethacin both reduced the number of differentiated cells

in the culture, whereas MB3 increased it (Guillemin et al., 2018).

However, this effect of the drugs might have several origins. The varia-
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tion in the population of differentiated cells under treatment might be caused

by a variation in the differentiation rate of the progenitors, as well as by an-

other feature (e.g. mortality, or proliferation, of the differentiated cells). Since

it is impossible to decipher between these different effects experimentally, we

decided to quantify them using the dynamic model that we presented in Chap-

ter 2 (Duchesne et al., 2018).

The challenge here was to calibrate the model for these cell culture experi-

ments in the treated and untreated cases, and to conclude regarding the effect

of the drugs on cellular kinetics. For each drug, the control was a culture in

which DMSO was added at the same time as the drug (48h before inducing

differentiation for artemisinin and indomethacin, and the same time as the in-

duction for MB3). There are thus two different control conditions, depending

on what treatment is being considered.

3.2 Paper
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Abstract
Background: To understand how a metazoan cell makes the decision to differentiate, we as-
sessed the role of stochastic gene expression (SGE) during the erythroid differentiation process.
Our hypothesis is that stochastic gene expression has a role in single-cell decision-making. In
agreement with this hypothesis, we and others recently showed that SGE significantly increased
during differentiation. However, evidence for the causative role of SGE is still lacking. Such
demonstration would require being able to experimentally manipulate SGE levels and analyze
the resulting impact of these variations on cell differentiation.
Result: We identified three drugs that modulate SGE in primary erythroid progenitor cells.
Artemisinin and Indomethacin simultaneously decreased SGE and reduced the amount of dif-
ferentiated cells. Inversely, α-methylene-γ-butyrolactone-3 (MB-3) simultaneously increased
the level of SGE and the amount of differentiated cells. We then used a dynamical modelling
approach which confirmed that differentiation rates were indeed affected by the drug treatment.
Conclusion: Using single-cell analysis and modeling tools, we provide experimental evidence
that in a physiologically relevant cellular system, control of SGE can directly modify differen-
tiation, supporting a causal link between the two.

1 Introduction

Cell-to-cell variability is intrinsic to all living forms, from prokaryotes [3, 1] to eukaryotes [30]. Such
a variability originates from many sources, but arguably stochastic gene expression (SGE) is an
important driving force in the generation of cell-to-cell variability among genetically identical cells
[9], although additional regulation layers do exist [19]. Classically, SGE is separated into intrinsic
and extrinsic sources [13, 26, 2, 25, 33] even if in many cases distinguishing between the two is
difficult.

The very existence of SGE led to the concept of a probabilistic mapping between inputs (envi-
ronment) and outputs (cell decisions) [34]. It is therefore clear that SGE has to be precisely tuned
so as to tailor the biological process in which it is involved [11].

Numerous arguments suggest that SGE plays an important role in a wide range of biological
processes ranging from bet hedging [36] to the fractional killing of cancer cells [4]. SGE is also
involved in decision-making in viruses [39, 38, 40] and in prokaryotes [21, 8], but its role in the
differentiation ability of metazoan cells remains an open question. We aim at assessing whether
SGE is involved in differentiation or not [20, 18].

1

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/371666doi: bioRxiv preprint first posted online Jul. 18, 2018; 



If one sees differentiation from the point of view of dynamical systems theory [5], undifferentiated
cells are in an equilibrium state at first (self-renewal state). Once differentiation is activated, cells
could increase their SGE, exploring a broader region of the state space. Such an exploratory behaviour
would increase the probability for cells to attain the space region where they stabilize their gene
expression pattern by reaching a new equilibrium state (differentiation state) [18].

We recently described a surge in cell-to-cell variability that accompanies the differentiation of
normal primary chicken erythroid progenitors called T2EC [14], that is fully compatible with such
a view [28]. Interestingly, these results have been confirmed in various settings, ranging from
the differentiation of murine lymphohematopoietic progenitors [23] to the differentiation of murine
embryonic stem cells [29, 32].

Nevertheless, a definitive demonstration of a causative role of SGE in differentiation is only
starting to appear in the literature [24]. One way of demonstrating this link is the use of drugs
that would on one hand modulate SGE and on the other modulate the differentiation process. It
has recently been described that such drugs, identified using a large screening approach, were able
to modulate the noise affecting the HIV Tat promoter [10]. Recently, drugs that directly inhibit
promoter nucleosome remodelling were also shown to provide fine-tuning of SGE [22].

We therefore decided to explore how some of those drugs (Artemisinin and Indomethacin),
together with a more general chromatin modifier (MB-3, [26]) could alter differentiation.

Here we show that the three selected drugs significantly modify levels of SGE simultaneously
with the level of cell differentiation. We therefore provide the first evidence that in a physiologically
relevant cellular system, the modulation of SGE results in a modification of differentiation.

2 Results

2.1 Drugs affect noise in transcriptomic level

In order to demonstrate a direct link between SGE and differentiation, we modified experimentally
SGE in T2EC using three drug treatments: Artemisinin, Indomethacin and MB-3.

Artemisinin and Indomethacin are known to modify SGE of the HIV LTR promoter in human
T-lymphocytes [10]. MB-3, a chromatin modifier, is known to modify stochastic gene expression
in yeast [26] and in murine ES cells [24]. We first wanted to confirm that these drugs do indeed
modify SGE in our cellular system and what are the mechanisms associated with this effect.

We treated T2EC with or without drugs and induced their erythroid differentiation. We then
performed single-cell high-throughput RTqPCR on these cells at different time points after differen-
tiation. We assessed a 92 gene panel, relevant for erythroid differentiation study, identical to those
previously measured in untreated cells [28]. Single cell transcriptomics data were then analyzed
using Shannon entropy as a measure of the heterogeneity among the cells for their gene expression
profile [28, 32].

Entropy was affected by all treatments. Under Indomethacin or Artemisinin treatment, entropy
significantly decreased after 2 days of erythroid differentiation. This effect was more pronounced with
Indomethacin. The opposite effect is observed with MB-3 treatment where entropy was significantly
increased after 12h of differentiation for T2EC treated with MB-3 (Figure 1A).

We then assessed whether the same genes vary their entropy under the different drug treatments.
For this we computed a correlation value between the variations in entropy for each pair of drugs.
If the same genes are affected by two drugs, then one would expect their entropy variations to be
correlated. We observed a significant correlation only for the genes affected by Indomethacin and
Artemisinin treatment. MB-3 treatment seemed to be affecting the variability of a different set of
genes (Figure 1B).

The entropy variation could be achieved by modulating the global mean gene expression or the
gene expression variance. Thus we finally wanted to test if our drug treatments affected entropy
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Figure 1: Relative effect of entropy and gene expression average under drug treatment during
differentiation. (A) Boxplots representing values of entropy per gene for each treatment relative
to control values (red dotted line). Some outliers are not displayed for readability. We assessed
the significance of the differences between untreated and treated condition through a Wilcoxon test
(tests with a p-value < 0.05 are represented by a star above each boxplot). (B) Correlation plots
representing relative values of entropy per gene for each pair of drugs. We assessed the significance
of the differences between values for each drug through a Pearson test (p-value < 0.05). When
correlation is significant, we displayed the linear regression line for all points (red dotted lines). (C)
Correlation plots representing relative values of entropy as a function of relative values of cell mean
expression per gene. We assessed the significance of the differences between values for each drug
through a Pearson test (p-value < 0.05). When correlation is significant, we displayed the linear
regression line for all points (red dotted lines).

through the modulation of the mean gene expression value. If so, one might expect to see a
correlation between the variation of entropy and the mean expression level under drug treatment.

Indeed for two drugs out of three, Artemisinin and MB-3, one observed a significant inverse
correlation between mean and entropy (Figure 1C). Nevertheless the effect of Indomethacin on
entropy was not related to an effect on mean gene expression.
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Here we have found three drugs that modulate SGE in T2EC cells. Indomethacin and Artemisinin
decreased it whereas MB-3 increased it. All drugs involve a different set of genes and the effect of
drugs was not strongly related to an effect on mean gene expression value. Entropy modulation is
therefore the only common characteristic of our three drugs.

We next used these drugs to test their effect on the erythroid differentiation process.

2.2 Drugs affect differentiation process
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Figure 2: Drugs affected erythroid differentiation. Control conditions were averaged (black line) for
readability. Shown is the percentage of differentiated cells for all conditions. Error bars represent
the variation between experiments (n=3). We assessed the significance of the differences between
each treated condition with their own control condition through a student test (p-value < 0.05).

In order to know if drugs modulating SGE also affect the differentiation process, we measured
the percentage of differentiated cells in treated and untreated conditions during 96h of erythroid
maturation.

A significant modulation in the percentage of differentiated cells was observed for all three drugs
(Figure 2).

Indomethacin and Artemisinin decreased the percentage of mature cells from 48h of differentia-
tion onward. MB-3 acted earlier: it significantly increased the percentage of differentiated cells by
24h before returning to somewhat below the control level.

Indomethacin and Artemisinin, two drugs that decreased SGE, reduced the percentage of dif-
ferentiated cells. Inversely, MB-3 that increased SGE, enhanced the percentage of differentiated
cells.

However, at this stage, we cannot conclude that drugs modifying SGE led to a change of the
differentiation process itself. Indeed, these effects might have several origins including modification
in growth or death rates of our cells. To decipher between these effects, we decided to use a
mathematical model describing the dynamics of the in vitro erythroid differentiation [12].

2.3 Cellular basis of drug effect

Our model describes the dynamics of three cell populations related to three different stages of
differentiation. The first one is the self renewing state (S) where differentiation has not started; the
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third one is the differentiated state (B) where cells have finished differentiating. The second one
is the committed state (C), comprising intermediary cells that are committed to differentiation but
not yet fully differentiated (Figure 3).

S BC
δSC δCB

ρS ρC ρB

Figure 3: Schematic diagram of the model.

The dynamical model is characterized by a set of five parameters θ = (ρS, δSC , ρC , δCB, ρB):

• ρi is the proliferation rate of compartment i, involving the balance between cell proliferation
and cell death. This value can be either positive (more proliferation than death) or negative
(more death than proliferation).

• δij is the differentiation rate of cell type i into cell type j, which is positive.

Considering that there are no more self-renewing cells after 2 days of T2EC differentiation (Figure
S1, [28]), δSC is a fixed parameter fully determined by ρS [12].

In order to get the best description of the drugs effects with the fewest parameters, we used the
same approach as described in [12] and section 4.3.

Using experimental data represented in Figure 2 and following this approach, numerous models
are possible for each treatment. Among those, best models are selected by a criterion: Akaike’s
weights (Figure S2 & 4.3.3) and reproduced well the cellular kinetics during differentiation observed
in vitro (Figure S3).
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Figure 4: Relative parameter values. For each of the models selected by Akaike’s weights (Figure S2), all
the relative parameter values are represented by a dot for a treatment compared to the untreated condition
(black dotted line). 14 models were selected for the Indomethacin treatment, 3 for the Artemisinin treatment
and 2 for MB-3. The horizontal spacing between the values of each parameter was chosen randomly for
readability.

For all of those best models, their parameter values for each treatment are displayed in Figure 4.
Under Indomethacin or MB-3 treatment, ρS (net growth rate of the immature cells) was not affected
in all models and slightly decreased under Artemisinin treatment. Therefore, δSC was not affected
by the treatments either (data not shown), since its value is entirely determined by the value of ρS.
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Concerning ρC , the net growth rate of the committed compartment, its values were reduced
compared to the untreated condition for the majority of models under Indomethacin or Artemisinin
treatment, whereas for MB-3 its value increased in both models.

A more variable change between drug effect was observed with parameter ρB, which describes
the net growth rate of differentiated cells. Under Indomethacin treatment, some of the best models
did not show a different value when compared to untreated condition whereas some models displayed
a reduced parameter value. Under Artemisinin treatment this value was unchanged for two models
among three and increased for the other one. With MB-3 treatment, ρB decreased in both models.

Finally, we found that the δCB parameter, representing the differentiation rate between commit-
ted compartment and mature cell compartment was affected by all three drugs: both Indomethacin
and Artemisinin reduced this differentiation rate whereas MB-3 increased it in all best models.

These results demonstrate that all three drugs alter the differentiation process by modifying all
dynamical parameters including the differentiation rate between committed and mature cells: it is
clear that drugs that reduce SGE decrease differentiation rate and inversely that the drugs increasing
SGE accelerate cell differentiation, in line with our initial hypothesis.

3 Conclusions & discussion

In this study, we assessed the existence of a direct link between the modulation of stochastic gene
expression and a differentiation process. We tested drugs known to modulate SGE in different
cellular systems [10, 26]. We showed that these drugs modify the level of SGE in our cells. We
therefore tested their effect on the differentiation ability of avian erythropoietic progenitors. We
identified which differentiation parameter were affected by drugs using a dynamical model of the
in vitro erythroid differentiation [12]. We demonstrated that drugs modulating SGE level affected
the differentiation process by impacting the differentiation rate between the two last compartments.
We therefore demonstrated a direct link between SGE and a differentiation process supporting our
starting hypothesis that stochastic gene expression participate positively in cell decision-making to
differentiate.

Indomethacin, Artemisinin and MB-3 have clearly different functions. Artemisinin is an anti-
malarial drug used against a parasitic infection [15]. Indomethacin is an anti-inflammatory drug that
affects the prostaglandin pathway [17]. MB-3 is an inhibitor of GCN5, a histone acetyl transferase
(HAT) that activates global gene expression [41]. Even in such a seemingly well-defined case, it
should nevertheless be remembered that a very complex relationship may lie between the biochemical
action of a drug (HAT inhibition) and its biological effect on SGE [40].

Considering these different functions, it is hard to imagine that all these drugs have in common
anything else than their ability to modulate SGE in our cells.

The question then arises of the mechanisms through which these different drugs modulate SGE.
We first assessed if these drugs affected the entropy of the same genes. For Indomethacin and
Artemisinin, we showed that indeed the entropy of some of the same genes were affected but with
a weak correlation. In contrast, MB-3 increased SGE through a different set of genes. This tends
to indicate that cell-to-cell variability per se, relatively independently of the gene function involved,
is participating to the differentiation process (see below).

We then investigated a potential role for variation in the mean gene expression that could explain
the SGE level variation.

Modifying SGE level is accompanied by a variation in the mean gene expression level for two
drugs out of three. The decrease of mean gene expression under MB-3 treatment has been shown
in a diffrent system not to be significant [24]. Also, it has not been reported that Artemisinin affect
mean gene expression in any other cellular system. However, the fact that Indomethacin treatment
decreased gene-wise entropy clearly without affecting the mean gene-wise expression level reinforces
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the fact that the modification on the differentiation process is not due to a modification in mean
gene expression but only to a non-specific modulation of SGE.

Collectively, these results suggest that neither common genes nor common mechanisms could
explain the observed effect of the three drugs simultaneously. This reinforces the fact that modulation
of cell-to-cell variability has a strong role in differentiation, independently of gene function or the
specific mechanism involved.

This could be explained by adopting a dynamical systems view on the differentiation process,
in the wake of Waddington’s proposal [37]. In such a view, we could consider that in the highly
dimensional gene expression space, an equilibrium cell state could be compared to a valley in an
epigenetic landscape [18]. When we reduce SGE using Indomethacin or Artemisinin, we dig the
valley, limiting the ability of cells to escape from a self-renewal equilibrium. Their probability to
attain the new equilibrium state is reduced. Inversely, when we increase SGE using MB-3, we flatten
the valley and improve the ability of cells to explore a larger dynamical landscape, and increase
their probability to attain the new differentiated equilibrium state more quickly. Once cells achieved
their journey, they stabilize their new gene expression pattern (the differentiated genetic profile) and
return to a basal level of SGE [20, 18, 5]. In such a view, stochastic gene expression favours cells
making the decision to differentiate, modifying the structure of the valley in which cells are moving.
In a recent perpective, this same process of actively shaping the Waddington Landscape has been
described in terms of a Plinko board, whose nail configuration, composition, and patterning can
be modified towards forward stochastic design [11]. Similarly to our initial description [28], the
variation of cell-to-cell gene expression in other differentiation systems has been recently described
[31, 23, 29, 32, 24]. Furthermore, a functional link between transcriptional heterogeneity and cell
fate transitions was demonstrated recently through manipulation of the histone acetylation landscape
of mouse embryonic stem cells [24]. This is fully backed up by our own data that also demonstrate
that the reverse (inhibiting differentiation by reducing SGE) can also be demonstrated.

In recent studies, it has been shown that active modulation of SGE is responsible for a modifi-
cation of decision-making in viruses [10]. In primary erythroid progenitor cells, we show here that
experimentally modifying SGE affects the differentiation process. It could therefore be important to
study the potential use of SGE-modifying drugs in differentiation-related diseases such as tumoral
cell progression [35], as exemplified by the chronic myeloid leukemia [16, 6, 11], paving the way to
a "treatment by noise" of at least some cancer-related diseases.

4 Methods

4.1 Cell culture and treatment

T2EC were extracted from bone marrow of 19 days-old SPAFAS white leghorn chickens embryos
(INRA, Tours, France). These cells were maintained in a medium called LM1. It is composed
of α-MEM medium supplemented with 10 % Foetal bovine serum (FBS), 1 mm HEPES, 100 nm
β-mercaptoethanol, 100 U/mL penicillin and streptomycin, 5 ng/mL TGF-α, 1 ng/mL TGF-β and
1 mm dexamethasone as previously described [14]. T2EC were induced to differentiate by removing
the LM1 medium and placing cells into the DM17 medium (α-MEM, 10% foetal bovine serum
(FBS), 1 mm Hepes, 100 nm β-mercaptoethanol, 100 U/mL penicillin and streptomycin, 10 ng/mL
insulin and 5% anemic chicken serum (ACS)). Differentiation kinetics were obtained by collecting
cells at different times after the induction in differentiation. For Indomethacin and Artemisinin, cells
in self-renewing medium are treated at respectively 25 mum and 1 mum 48h before switching into
a differentiated medium in order to optimize their effects. For MB-3, cells are treated at 10 mum
just after inducing the differentiation. For each drug, a control treatment (0.1% DMSO) was added
following the same conditions.
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4.2 Counting of cell viability and cell differentiation

Cell population growth was evaluated by counting living cells using a Malassez cell and Trypan blue
staining (SIGMA). Cell population differentiation was evaluated by counting differentiated cells using
a counting cell and Benzidin (SIGMA) staining which stains haemoglobin in blue.

4.3 Dynamical model for erythroid differentiation

4.3.1 Calibration, selection and identifiability

This model has been selected among others and has been shown to be a relevant model for the in
vitro erythroid differentiation process. Moreover, this model is fully identifiable meaning that there
is only one parameter set θ that corresponds to a dataset [27, 12]. This makes the reasoning on
how drugs modify parameter values fully relevant. Details concerning the calibration, the selection
and the identifiability analysis of the model are available in [12].

4.3.2 Estimating the parameters under drug treatments

For each parameter of the model, we considered two different cases: one in which the parameter
value was unchanged compared to the untreated case (which would not change the number of
parameters of the model), and one in which the treatment changed the value (which would introduce
a new parameter in the model). Our model has 7 parameters: 5 dynamical parameters presented
in 2.3 and 2 error parameters, b1 and b2, which quantify the quality of the fit, and the amount of
measurement error. These parameters do not influence the dynamics of the model. Only 6 out of
these 7 parameters are estimated (δSC is set by the value of ρS), which defines 26 = 64 models for
each drug treatment. We estimated the parameters of these 64 possible models and computed a
selection criterion.

4.3.3 Model selection criterion

Estimating the parameters of all possible models under drug treatment needs to be accompanied
by the computation of a selection criterion: the model weights based on their corrected Akaike’s
Information Criterion wAICc [7]. The Akaike weight of a given model in a given set of models is a
measure of the probability that the model is the best one in the set. Thus, selecting the best models
of a set of models requires to sort them by their Akaike’s weights. The best models in the set are
those whose weights add up to a significance probability (95% in this study) [12].

4.4 Single cell high-throughput RTqPCR

Every experiment related to high-throughput microfluidic-based RT-qPCR was performed according
to Fluidigm’s protocol (PN 68000088 K1, p.157-172) and recommendations. All the following steps
from single-cell isolation to high throughput RTqPCR of each cells are described in [28].

4.5 Entropy

We estimated the Shannon entropy of each gene j at each timepoint t as follows: we computed
basic histograms of the genes with N = Nc /2 bins, where Nc is fixed for all tests, which provided
the probabilities ptj,k of each class k. Finally, the entropies were defined by

Et
j = −

N∑

k=1

ptj,k log2(p
t
j,k).
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When all cells express the same amount of a given gene, this gene’s entropy will be null. On the
contrary, the maximum value of entropy will result from the most variable cell-to-cell gene expression
level.
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Figure S3: The model reproduces the cellular kinetics observed in vitro. Simulation of the model in
the untreated (black) and treated cases (color). Solid lines represent a simulation of the best model selected
by Akaike’s weights. Dots are the experimental data. On the left and the center are respectively displayed
the total number of living cells in self-renewing (LM1) and differentiated (DM17) media (in log-scale). On
the right are displayed the fraction of differentiated cells in differentiated (DM17) medium.
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3.3. Conclusion

3.3 Conclusion

In this paper, we identify three chemical drugs which affect both SGE and

differentiation in the T2EC cells: artemisinin and indomethacin reduce both

SGE and the number of differentiated cells, while MB3 increases both.

Then, using the deterministic model presented in Chapter 2, we assess the

effects of these chemical drugs (which also affect SGE) on the parameters of

cell growth kinetics. For artemisinin, we found 3 models of the treatment

that fitted the data correctly, in which the differentiation rate δCB was always

decreased compared to the control. For indomethacin, we found 14 models

of the treatment that fitted the data, in which δCB was also always decreased

compared to the control. For MB3, we found 2 models that fitted the data, in

which δCB increased compared to the control.

Consequently, it appears that artemisinin and indomethacin both reduced

SGE and the differentiation rate of the T2EC, while MB3 increased both. We

thus proved a positive correlation between the extent of SGE and differentia-

tion.

At this point, it seems that we are able to compute the effect of any drug

treatment on the differentiation kinetics of our T2EC cells, just by comparing

the parameter values in the treated and control case. However, the precise

values of the parameter in the control case seem to vary from Chapter 2 to

Chapter 3. Such an experimental variability might contradict our conclusions

regarding the effect of the drugs. Indeed, how can we compare the parameter

values under treatments to the control ones if we can’t even be sure of the

control values? We thus decided to take more interest in this experimental

heterogeneity.
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Chapter 4

From a deterministic model to a

mixed effects model - The Standard

Two-States approach (STS)

4.1 Introduction

So far we have calibrated our deterministic model, that was defined in Chap-

ter 2, on two different datasets, resulting from different experiments: the first

one to carry out model selection, identifiability analysis and to compute the

effect of rapamycin on differentiation (in Chapter 2), and the second one to

compute the effect of artemisinin, indomethacin and MB3 on the erythroid

differentiation (in Chapter 3). We were able to conclude regarding the effect

of each drug on proliferation and differentiation by comparing the parameter

values under treatment to their control values. Yet in the control condition,

the two experiments did not render the same results, even though cells were

cultured in the same conditions. We will refer to these differences between the

outcomes of the same repeated experiment as experimental heterogeneity.

It is on this experimental heterogeneity that we will focus from this chapter

on. Namely, we will try to assess the extent of experimental variability and its

effect on the model outcome, in terms of parameter values and identifiability
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Chapter 4: The Sandard Two-States approach

(Section 1.3).

We will illustrate experimental heterogeneity using the experiments from

the previous chapters as an example. Then we will introduce an extended

dataset comprising 7 repetitions of the same experiment. Using this full dataset,

we will try to calibrate our deterministic model on all experiments indepen-

dently. In this setting, we consider that each repetition of the experiment is

an individual sampled from a theoretical population. This approach, which

consists in estimating the parameters of all individuals independently in order

to characterize the population distribution of the parameters, is known as the

Standard Two-States Approach (Karlsson et al., 2015), hereafter referred to as STS.

4.2 Some considerations on the results of the previ-

ous chapters

In the previous chapters, we have used different experimental datasets for dif-

ferent purposes. Yet all datasets were obtained from the exact same protocol,

in terms of culture volume, duration, conditions, as well as medium compo-

sition or initial concentration of cells. We have already introduced it in Sec-

tion 1.1.2, in Duchesne et al. (2018, Section 2.1) and in Guillemin et al. (2018,

Section 4). The only feature that might have changed from an experiment to

the other is the time at which drugs were added to the culture (or DMSO in

the control). Artemisinin and indomethacin (and DMSO in the corresponding

controls) were added 48h before inducing differentiation, which is refferred to

as pre-treatment. On the other hand, rapamycin and MB3 (and DMSO, in the

corresponding control) were added upon induction. These timings were either

optimized by Anissa Guillemin during her PhD, or taken from the litterature

(Dazy et al., 2003; Gonin-Giraud et al., 2008).

In Chapter 2, we used the result of a single experiment (which will be

referred to as AG1542)1 to design and select our dynamic model, as well as to

1The titles of all experiments in this work are obtained by concatenating the initials of the
performing experimentalist, and a unique experiment identifier. AG1542 is thus part of the
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Figure 4.1: Experimental heterogeneity in the control condition. Displayed are
the results of experiments AG1542 (circles) and AG1591−3 (with pre-treatment:
squares, without pre-treatment: triangles) in the control case.

perform identifiability analysis and test the effect of rapamycin.

In Chapter 3, we used the results of three experiments (AG1591, AG1592 &

AG1593) to test the effect of artemisin, indomethacin and MB3 on the prolifer-

ation and differentiation of the T2EC.

We display the data of both experiments on Figures 4.1-4.2, and the corre-

sponding parameter values and confidence intervals on Figure 4.3. These two

datasets are different (Figure 4.1), because the protocol suffers some measure-

ment error (for example in the sampling of the cells for counting, or at the

initial insemination of the culture). This has already been discussed in Duch-

esne et al. (2018, Section 3.1), and should be accounted for by the error term

of the likelihood of the model. An increased experimental error thus results in

an increase in the error parameters b1 and b2.

Our data are heterogeneous, yet the fit of our model is satisfying for ev-

ery dataset (Figure 4.2). This means that the estimated parameter values,

and their confidence intervals, depend on the data used for estimation (Fig-

ure 4.3). Moreover, the experimental error is averaged out when aggregating

several datasets, as in Chapter 3: in AG1591−3 the best-fit parameters of the

dynamic model reproduce the average behaviour of the three replicates of the

experiment (Figure 4.2B-D), while the heterogeneity between the replicates is

154th experiment performed by Anissa Guillemin.

91



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

105

106

C
e
ll 

co
u
n
t

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

105

106

C
e
ll 

co
u
n
t

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
e
ll 

fr
a
ct

io
n

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

105

106

C
e
ll 

co
u
n
t

AG159 DMSO-PT

AG159 Arte

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

105

106

C
e
ll 

co
u
n
t

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
e
ll 

fr
a
ct

io
n

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

105

106

C
e
ll 

co
u
n
t

AG159 DMSO-PT

AG159 Indo

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

105

106

C
e
ll 

co
u
n
t

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
e
ll 

fr
a
ct

io
n

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time (days)

105

106

C
e
ll 

co
u
n
t

AG159 DMSO

AG159 MB3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time (days)

105

106

C
e
ll 

co
u
n
t

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time (days)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
e
ll 

fr
a
ct

io
n

A

B

C

D

AG1542 DMSO

AG1542 Rapa

Figure 4.2: Experimental heterogeneity in the treated condition. Displayed are
the results of experiments AG1542 (circles) and AG1591−3 (with pre-treatment:
squares, without pre-treatment: triangles) in the control and treated conditions,
as well as the best model fit (A: rapamicin, B: artemisinin, C: indomethacin, D:
MB3). For AG1591−3, we display the average +/− standard deviation of the
three replicates of the experiment, as well as the three replicates themselves in
lighter colors. 92
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Figure 4.3: Parameter values from the previous chapters. Displayed are the
best-fit values corresponding to experiments AG1542 (circles) and AG1591−3
(with pre-treatment: squares, without pre-treatment: triangles) in the control
(black) and treated (colors) conditions. 95% confidence intervals are displayed
when available. For rapamycin, we display only the parameter values of the
best model of the treatment. For artemisinin, indomethacin and MB3, we dis-
play the parameters of the models selected by Akaike’s weight (Chapter 3).
The horizontal spacing between these values was chosen for readability. δSC
is not represented, because its value is entirely determined by the value of ρS
(Chapter 1).

accounted for by the increased value of b2 compared to its value in AG1542

(Figure 4.3). Moreover, b1 is higher in the control case for AG1542 than for

AG1591−3, because of the increased predictive error of the model regarding

the number of cells in LM1.

This heterogeneity between the results of our experiments is unexpected,

because the most interesting feature of our model is the comparison of param-

eter values in the treated and untreated cases. Yet it seems that we cannot be

convinced by the values in the untreated case (Figure 4.3). So we decided to

investigate it further, by using an extended dataset comprising more replicates

of the experiments.

Anissa Guillemin obtained it by repeating the same protocol as we already

described (Section 1.1), using the same cell culture to initiate the cultures for all

treatments (comprising Artemisinin, Indomethacin and a DMSO control with

pre-treatment). She changed the initial cell culture from an experiment to the
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Figure 4.4: Boxplots of the full dataset. The figure displays the time evolu-
tion of the cell count distributions in the three conditions (black: control, red:
artemisinin, blue: indomethacin)

next one, and she also had an intern (called Gaëlle Danancier) who did the

same.

This extended dataset, which we will refer to as the full dataset, comprises

7 replicates of the experiment: AG111, AG112, AG139, AG142, GD14, GD15 &

GD16.

4.3 Calibrating the deterministic model on a larger

dataset

We show the full dataset on Figures 4.4-4.5, which confirms that artemisinin

and indomethacin reduce the fraction of differentiated cells in the culture (MB3

was not tested in these experiments). Yet all observables are subject to some

level of heterogeneity.

We then focused on the control situation, and estimated the parameter val-

ues of all individuals independently. They are displayed in Figure 4.6. We also

computed their confidence intervals using the profile likelihood approach at

95% confidence level.

Figure 4.6 shows that all individuals are characterized (to some extent) by

different parameter values, and that these values are not always identifiable.
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Figure 4.5: Spaghetti plots of the full dataset. The figure displays the cell count
distributions and individual trajectories of the 7 replicates of the experiment in
the control (A), artemisinin- (B) and indomethacin-treated (C) conditions.
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Figure 4.6: Parameter values in the full dataset. Displayed are the best-fit
values corresponding to the 7 experiments of the full dataset (diamonds).
95% confidence intervals are displayed for the identifiable parameters. We
also display the control values of the parameters in experiments AG1542 and
AG1591−3 as a reminder, with their 95% confidence intervals. The horizontal
spacing between the values was chosen randomly for readability.

4.4 Conclusion

Using the full dataset, we showed that despite experimental heterogeneity,

artemisinin and indomethacin seem to have an effect on the differentiation

of the T2EC cells. Yet, some of the experiments in the dataset are character-

ized by unidentifiable parameter values, and when they are identifiable, these

values vary from an experiment to another.

As a consequence, it would seem difficult to compare the parameter values

of the model under the different conditions, since it seems already difficult to

assess these values in the control case.

In such cases where the dynamic model is unidentifiable for some of the in-

dividuals, it is possible instead to develop a Mixed Effect Model (MEM) based

on the same dynamic model (Karlsson et al., 2015). Such an approach uses the

data of all individuals to infer a population distribution for each parameter of

the model. Then, it uses this population distribution to infer a value for each

individual in a bayesian manner. It can thus provide some information to con-

strain the possible values of an unidentifiable individual parameter, compared
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to the STS approach which we have adopted so far (Karlsson et al., 2015).

This is why we decided to develop a mixed effect model of the in vitro

erythropoiesis, considering that each replicate of the differentiation experiment

from the full dataset is one individual, and that all experiments belong to the

same population.
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Chapter 5

Elaboration of a mixed effects

model for the in vitro erythropoiesis

5.1 Introduction

We have defined a dynamic model of in vitro erythroid differentiation that is

able to reproduce the result of one differentiation experiment (Chapter 2), as

well as the average behaviour of several repetitions of the experiment (Chap-

ter 3). Yet these repetitions are characterized by different parameter values

(Chapter 4). As mentioned in Section 1.4, Mixed Effect Models (MEM) have

been increasingly used to describe data exhibiting variability between individ-

uals from the same population (Lavielle and Bleakley, 2014).

In order to define a MEM, one needs to define three different model compo-

nents: a dynamic model (or structural model), an error model (or observation

model) and a parameter model. The dynamic and error models were already

defined in Chapter 2, so we need to define a parameter model in order to adapt

our model to a "mixed effect" context. According to Equations (1.6) and (1.7)

(Section 1.4.1), this means that for each parameter of the dynamic model, we

have to define:

1. the fixed effect term in the population,
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2. whether or not there is a random effect, and what its distribution is.

In this chapter, we first define a MEM for the full dataset that we introduced

in Chapter 4, based upon the dynamic model from Chapter 2. To do so, we

consider the full dataset as a population of experiments where each experiment

is an individual characterized by its own parameter values. However, choosing

the distribution of a parameter from raw data might not be straightforward,

depending on what information we have on the parameter values. We illustrate

this difficulty by defining different parameter models based on alternative sets

of hypotheses about the parameter values. We then select the parameter model

which fits our data best, using the criteria that we introduced in Section 1.4.3.

Finally, since we are interested in the parameter variations of our model under

drug treatments, we discuss the identifiability of our MEM using the criteria

introduced in Section 1.4.4.

5.2 A first version of the model

We define our parameter model using the information that we have on the

range of each parameter (see Section 2.3).

For the three proliferation rates ρS, ρC and ρB, which can be positive or

negative depending on the balance between cell proliferation and death (see

Section 2.3 in this manuscript, or Section 2.2.1 in Duchesne et al., 2019), we

choose a gaussian distribution.

For the differentiation rate δSC, we use the bounds that can be inferred

from the commitment experiment (see Section 1.1.2 in this manuscript, and

Duchesne et al., 2019, Section 2.3):

ρS + 1/2ln(S0) ≤ δSC ≤ ρS + ln(S0), (5.1)

which link the individual parameters ρS and δSC with the initial number of

cells in the culture S0.

One way of defining a bounded distribution for δSC is by using a bounded
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transformation of the gaussian distribution, such as the probit-normal distri-

bution that we presented in Section 1.4.1 (Lavielle and Bleakley, 2014). We thus

introduce ξ, the scaled value of δSC:

0 ≤ ξk =
δSC,k − ρS,k

2ln(S0)
≤ 1.

We then use a probit-normal distribution for ξ, which describes the spreading

of the individual values of ξ between 0 and 1 across the population, and use it

to define the distribution of δSC:





ξk ↪→ probitN
(
ξ pop, ωξ

)
,

δSC,k = ρS,k + 1/2ln(S0) (1 + ξk) .

For the differentiation rate δCB, which must be strictly positive, we choose

a lognormal distribution that would also be positive, resulting in the following

model for the individual parameters:





ρS,k ↪→ N
(
ρ

pop
S , ωρS

)
,

ξk ↪→ probitN
(
ξ pop, ωξ

)
,

δSC,k = ρS + 1/2ln (S0) (1 + ξ) ,

ρC,k ↪→ N
(
ρ

pop
C , ωρC

)
,

δCB,k ↪→ logN
(
δ

pop
CB , ωδCB

)
,

ρB,k ↪→ N
(
ρ

pop
B , ωρB

)
.

(5.2)

System (5.2), together with the dynamic model and the error model that we

defined in Chapter 2, fully defines our first MEM of the in vitro erythropoiesis.

It is characterized by thirteen parameters. The five fixed effects (ρpop
S , ξ pop, ρ

pop
C ,

δ
pop
CB and ρ

pop
B ) quantify the average behaviour of the population. The standard

deviations of the five random effects (ωρS , ωξ , ωρC , ωδCB and ωρB) quantify the

variability of the population around its average. The three error parameters

(b1, b2 and b3) quantify the variance of the model residuals for each of its three

observables.
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Parameter Initial guess Unit

ρ
pop
S U (−5, 5) d−1

ξ pop U (0, 1) d−1

ρ
pop
C U (−5, 5) d−1

δ
pop
CB U (0, 5) d−1

ρ
pop
B U (−5, 5) d−1

ωρS 5 d−1

ωξ 5 d−1

ωρC 5 d−1

ωδCB 5 d−1

ωρB 5 d−1

b1 1 -

b2 1 -

b3 1 -

Table 5.1: Initial guess values and distributions in our MEM (System (5.2)). The
initial guesses of the fixed effects are sampled uniformly with respect to each
parameter bounds. The initial guess of the variances of the random effects,
and of the error parameters, are set to an arbitrary high value to improve the
convergence of SAEM in the early phase of the estimation.

We try to estimate these population parameters using the SAEM algorithm

implemented in Monolix. We run the algorithm 10 times, using a random

sampling of the initial parameter guesses (Table 5.1). The optimal likelihood

values estimated after these runs are displayed on Figure 5.1. The spreading

of these estimated likelihood values over several dozens log-likelihood units

indicates that the estimator did not always converge to the same likelihood

optimum.

Moreover, for some of the SAEM runs, Monolix found parameters with a

null sensitivity, either during the SAEM estimation, or while computing the

Fisher Information Matrix (FIM, that we introduced in Section 1.3.4.2). In the

former case, it means that Monolix is not able to estimate the values of the

parameters. In the latter one, it means that Monolix is unable to compute
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Figure 5.1: Distribution of the optimal likelihood values over 10 SAEM runs of
our MEM (Equation (5.2)).

the standard errors of the estimated parameter values. These parameters that

were not reliably estimated are summarized in Table 5.2, and have little to

no influence on the model output, i.e. parameters for which the sensitivity

is null near the estimated optimum. As a consequence, one would usually

conclude that these parameters are unidentifiable. Yet, the likelihood values of

all the SAEM runs are not the same (Figure 5.1), which might indicate that the

algorithm failed at converging toward the global likelihood optimum because

it got stuck in regions of the parameter space where the sensitivity to some

parameter was null.

As a conclusion, the SAEM algorithm implemented in Monolix failed at es-

timating all the parameters of our model reliably, and even failed at converging

to a global optimum. Since the dynamic model and the error model that we

chose were selected based on their ability to fit our differentiation data (Chap-

ter 2) in a variety of contexts (Chapters 2-4), it seems that our choice of distri-

butions for the parameters of the model is responsible for the failure of their

estimation. The parameter for which the estimation failed most frequently is

ξ pop (Table 5.2). Since ξ pop defines the average value of δSC in the population,

our results suggest that we are not able to fit the differentiation data properly,
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SAEM run Parameters

1 ξ pop, ωρC

2 -

3 ξ pop, ρ
pop
C

4 ξ pop, δ
pop
CB

5 ξ pop, ωδCB

6 δ
pop
CB , ωρC , ωδCB

7 ωρC

8 ρ
pop
C , ωρC , ωδCB

9 ξ pop, ωρC

10 -

Table 5.2: Parameters with a null-sensitivity due to SAEM inability to compute
the FIM, in the 10 SAEM runs. Displayed are the parameters for which Monolix
cannot compute the standard error (s.e.), because it is infinite. Parameters
which have a finite, but high, s.e. might also be considered but were not
included in the table.

while at the same time respecting the bounds on the values of δSC defined by

the commitment experiment. Actually, Figure S2 in Duchesne et al. (2019) al-

ready showed that the likelihood of the model is not constant over the range of

values allowed by the commitment experiment (Equation (5.1)). It is thus pos-

sible that the global optimal value of δSC for fitting the differentiation data lies

outside of this range, complicating the estimation of the population parameters

of the MEM.

To verify this, we test different distributions for δSC and try to find one that

would fit our data correctly.

5.3 Selection of a distribution for δSC

We thus define several alternative forms of the model (Table 5.3), which differ

by their distribution for δSC. To do so, we relax some of the constraints on the

bounds of δSC that we imposed when defining our MEM in System (5.2). We
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Information δSC bounds δSC distribution

Two bounds 1/2ln(S0) ≤ δSC,k − ρS,k ≤ ln(S0)

{
ξk ↪→ probitN (ξ pop, ωξ)

δSC,k = ρS,k + 1/2ln(S0)(1 + ξk)

Lower bound ρS,k + 1/2ln(S0) ≤ δSC,k

{
ξk ↪→ logN (ξ pop, ωξ)

δSC,k = ρS,k + 1/2ln(S0) + ξk

Upper bound δSC,k ≤ ρS,k + ln(S0)

{
ξk ↪→ logN (ξ pop, ωξ)

δSC,k = ρS,k + ln(S0)− ξk

Rate δSC,k ≥ 0 δSC,k ↪→ logN (δ
pop
SC , ωδSC)

No information δSC,k ∈ R δSC,k ↪→ N (δ
pop
SC , ωδSC)

Table 5.3: Alternative MEM defined by relaxing the bounds of δSC.

refer to this model as the model with two bounds on the values of δSC. In the

lower bound (respectively upper bound) versions of the model, we only retain

the lower bound (respectively the upper bound) on the value of δSC, computed

for each individual from Equation (5.1). In the rate version of the model, both

bounds are forgotten, and we only consider the fact that as a differentiation

rate, δSC should be positive. In the last version of the model, we allow any

value for δSC. All these considerations define the five different distributions of

δSC that are presented in Table 5.3.

We estimate the population parameters of all these newly defined models

the same way as we did for the first one in Section 5.2, by running the SAEM

algorithm 10 times using a random sampling of the initial parameter guesses.

We use the same distributions for the initial guesses as with the first model:

• the initial population mean of normally distributed parameters is sam-

pled uniformly in [−5, 5],
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δSC info −2ln(L̂) AIC BIC

Two Bounds 2894 2920 2918

Lower Bound 2899 2925 2923

Upper Bound 2824 2850 2848

Rate 2811 2837 2835

No Info 2816 2842 2840

Table 5.4: Selection criteria evaluated for our alternative δSC distributions.
Since all models have the same number of parameters, the selection is made
solely on the likelihood values. The bold font indicates the model with the best
likelihood.

• the initial population mean of log-normally distributed parameters is

sampled uniformly in [0, 5],

• the initial population variances are set to 5d−1 to ensure a quick conver-

gence of the algorithm,

• the initial error parameters are set to 1.

For each model, we only keep the SAEM run which rendered the best like-

lihood, and we compute the selection criteria that are displayed in Table 5.4

(which were introduced in Section 1.4.3). The rate version of the model, with a

log-normal distribution for δSC, renders the best fit to the data, closely followed

by the version with a gaussian distribution for δSC. Since it makes more sense

to use a positive distribution for a positive parameter, we will adopt the model

with a log-normal distribution for δSC in the following.

For the model with a log-normal distribution for δSC, we also display the

distribution of the likelihood values over the 10 runs of SAEM in Figure 5.2.

The 10 SAEM runs have converged to very close likelihood values, which might

mean that the algorithm found a global likelihood optimum.

Now that we have improved the convergence of our MEM, we will discuss

its identifiability.
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Figure 5.2: Boxplots of the optimal likelihood values over 10 SAEM runs of the
model with two bounds and the rate model.

5.4 Identifiability analysis of our MEM

We have introduced identifiability in Section 1.3, and discussed it in the con-

text of MEMs in Section 1.4.4. First, we should discuss the identifiability of

the population parameters in the model, as their values are used for estimat-

ing the individual parameters (Section 1.4.2). Then we can move on to the

identifiability of the individual parameters.

5.4.1 Population parameters: Initial Guess Sampling (IGS)

In order to assess the identifiability of the population parameters of our MEM,

we adopted the following approach (Section 1.4.4):

1. We perform a random sampling of the initial parameter guesses, which

provides us a sample of optimal parameter values.

2. We assess the convergence of the algorithm: we only want to consider

the SAEM runs which reached the global optimum.

3. We compare the parameter values of these convergent runs. If they are

not the same, then the model is unidentifiable (several different param-
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Figure 5.3: Initial guess sampling of the population parameters of the model
with a lognormal δSC. Displayed are the estimated values of each population
parameter for 10 runs of the SAEM algorithm using different initial guess val-
ues (black dots). The error bars display the standard error of each parameter
value, as computed from the FIM (when no error bar is displayed, it means
that the FIM could not be computed).
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Figure 5.4: Parameter distributions for the rate model. Solid red lines indi-
cate the population distribution. Black histograms represent the individual
parameter distributions. For each parameter, we also display the amount of
η-shrinkage as a fraction of the population variance (Equation (1.14))

eter values give the same likelihood). If they are, then we conclude that

the model is identifiable.

We already showed with Figure 5.2 that the 10 SAEM runs that we have per-

formed on the model with a log-normal δSC converged to the same likelihood

value. We display the associated parameter values in Figure 5.3.

Of all the parameters of the model, ρ
pop
S , ωρS and the three error parameters

b1, b2 and b3 are estimated the most reliably, since their estimated values are

conserved across all runs. All the other parameters are estimated with more

variability, and since all runs rendered the same likelihood, it means that they

are not identifiable.
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5.4.2 Individual parameters: η-shrinkage

A consequence of the lack of identifiability of individual parameters is the

shrinking of their values toward the population average, which is measured

by the η-shrinkage sη (Equation (1.14), Section 1.4.4). A high value for sη for a

parameter means that individual data lack information for estimating it.

Figure 5.4 displays the distribution of the individual parameters in the

SAEM run which rendered the lowest likelihood, and the associated shrink-

age values. For ρS and δSC, the low shrinkage values indicate that the data

were sufficient to estimate a value for each individual. However ρC, δCB and

ρB are more shrunk toward their population mean, which indicates that they

could not be estimated for all individuals.

5.5 Conclusion

In this chapter, we have designed a MEM of the in vitro erythropoiesis, based

on the selection of a distribution for δSC:





ρS ↪→ N
(
ρ

pop
S , ωρS

)
,

δSC ↪→ logN
(
δ

pop
SC , ωδSC

)
,

ρC ↪→ N
(
ρ

pop
C , ωρC

)
,

δCB ↪→ logN
(
δ

pop
CB , ωδCB

)
,

ρB ↪→ N
(
ρ

pop
B , ωρB

)
.

(5.3)

In our model, the three proliferation rates are normally distributed, and the

two differentiation rates are log-normally distributed, resulting in five fixed

effects (ρpop
S , δ

pop
SC , ρ

pop
C , δ

pop
CB and ρ

pop
B ) and five population standard deviations

(ωρS , ωδSC , ωρC , ωδCB and ωρB). The model also incorporates three error param-

eters (one for each observable: b1, b2 and b3).

We have questioned the identifiability of this model using the methods in-

troduced in Section 1.4.4, concluding that it is unidentifiable both at the popu-
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lation and at the individual scale. At the population scale, δ
pop
SC , ρ

pop
C , δ

pop
CB , ρ

pop
B ,

ωδSC , ωρC , ωδCB and ωρB are the unidentifiable parameters. At the individual

scale it seems that ρC, δCB and ρB are the unidentifiable parameters.

When confronted with an unidentifiable model, one essentially has two

options:

• generating novel, more informative, data in order to characterize all pa-

rameters (which can usually be completed by using a step of experimen-

tal design),

• reducing the model in order to have fewer parameters to estimate, and

ultimately improve their estimation.

The former one is the focus of Chapter 6, and the latter is treated in Chap-

ter 7.
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Chapter 6

Experimental design

In Chapter 5, we introduced a MEM for our in vitro erythropoiesis data, which

was unidentifiable. Since the identifiability of a model depends on the defini-

tion of the model and on the quality and quantity of the data (Section 1.3.1),

one solution to make a model identifiable, which is the focus of this chapter,

is to design and perform new experiments, which would allow for a more

precise estimation of the model parameters. For instance, it is possible that

the structural model would make some additional timepoints or observables

more informative than those of the original design, depending on the local

sensitivity of the model outputs to the model parameters (Raue et al., 2010).

Mathematical modelling allows for a formal approach to experimental de-

sign, because one can use models to simulate data for a given process, and

test in silico which experimental design would optimize a given feature of the

model, or design criterion. For instance, one might want to minimize the model

prediction error for some observables (Raue et al., 2009, 2010), or optimize

some information criterion from the FIM (System (1.5) and Vanrolleghem and

Dochain, 1998).

However, there is no a priori proof that a mathematical model properly ac-

counts for the relevant microscopic mechanisms at play in a given biological

process. As a consequence, the actual ouput of an optimally designed experi-

ment might contradict what has been predicted in silico (A. White et al., 2016).
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This is especially critical if the design optimizes a simplistic criterion. For in-

stance, the FIM has been shown to render biased results when used to study

parameter identifiability (Raue et al., 2009).

In the case of our previously defined MEM for in vitro erythropoiesis (Chap-

ter 5), possibilities for optimal experimental design include measuring new ob-

servables, adding more timepoints to the individual measures, and observing

more individuals, i. e. performing new replicates of the experiment in order to

enlarge the dataset.

Our model already accounts for the number of self-renewing cells in the

self-renewing medium, as well as the total number of cells and the number of

differentiated cells in the differentiation medium (Chapter 2). Thus, the only

way to add an observable would be to decipher between self-renewing and

committed cells in the differentiation medium. However, since the committed

compartment of the model is essentially hypothetical (Duchesne et al., 2019,

Chapter 1), it is impossible for us to measure it experimentally. We conclude

that if experimental design provides a way of improving the identifiability of

our model, it is not through the definition of new observables.

Since our dataset comprises only 7 individuals (Chapter 4) in order to esti-

mate the distribution of 5 random parameters in the population, we hypothe-

size that increasing the population size –i.e. performing new replicates of the

experiment– should be more informative regarding parameter identifiability

than adding new timepoints to the dataset.

In this chapter, we focus on experimental design in the context of our MEM

for in vitro erythropoiesis. Specifically, we wonder if generating measuring new

individuals –i.e. performing new replicates of the experiment with the same

measurement timepoints– would allow for a better estimation of the model

parameters.

Experimental design can be performed by maximizing the D-criterion of

the FIM (Vanrolleghem and Dochain, 1998), and the FIM appears to be the

fastest way of assessing parameter identifiability (Luzyanina et al., 2007). In

MEM, experimental design is thus typically performed using the D-criterion

114



6.1. Methods

(Bazzoli et al., 2010) with specific optimization algorithms (Retout et al., 2007)

in order to balance the computation time and the precision of the results.

However, since our structural model is very simple, it can be simulated

without using any numerical integration (Chapter 2), and is thus quite fast

to calibrate. We thus propose a more computationally-demanding, FIM-free

approach for experimental-design, which we describe in the next section.

6.1 Methods

In order to assess if our model might become identifiable with a larger popula-

tion size, we generated artificial datasets of varying population sizes and tried

to calibrate our MEM on these artificial datasets. Our rationale is that if our

model becomes identifiable above a certain population size, it can be measured

using the methods that we introduced in Section 1.4.4.

6.1.1 Population size

We generated artificial datasets with the following population sizes: N ∈
{3, 5, 7, 9, 11, 20}. We tested 9 and 11 because conducting our in vitro differ-

entiation experiments takes a lot of time, and we would not be able to add

more than 4 individuals to our dataset without a considerable investment. We

also tested datasets with 20 individuals as an arbitrary large sample, as well

as datasets with 3, 5 or 7 individuals as a control, to verify that identifiability

indeed improves with the sample size increasing.

6.1.2 Generation of artificial datasets

For each of the previously introduced population sizes, we generated 40 artifi-

cial datasets, using simulations from the model using the previously estimated

parameters (Table 6.1). We drew the individual parameters with independent

random effects, as specified in Model (5.3). We added experimental noise to
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Parameter True Value Initial guess Unit

Population average

ρ
pop
S 0.612 U (−5, 5) d−1

δ
pop
SC 0.299 U (0, 5) d−1

ρ
pop
C 4.82 U (−5, 5) d−1

δ
pop
CB 5.76 U (0, 5) d−1

ρ
pop
B 0.259 U (−5, 5) d−1

Population variance

ωρ
pop
S

0.118 5 d−1

ωδ
pop
SC

0.279 5 d−1

ωρ
pop
C

0.125 5 d−1

ωδ
pop
CB

0.0507 5 d−1

ωρ
pop
B

0.094 5 d−1

Error parameters

b1 0.16 1 -

b2 0.16 1 -

b3 0.16 1 -

Table 6.1: Parameter values used to generate the artificial datasets, and cal-
ibrate the model on them. The table displays, for each parameter, the true
value that was used to generate the in silico data, and the initial guess values
and distributions used for estimation. The initial guess of the fixed effects are
sampled uniformly with respect to each parameter bounds. The initial guess
of the variances of the random effects, and of the error parameters, are set to
an arbitrary high value to improve the convergence of SAEM in the early phase
of the estimation.
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the individual trajectories, using our proportional error model with b = 0.16

(Table 6.1).

6.1.3 Model calibration

For each artificial dataset, we ran the SAEM algorithm implemented in Mono-

lix (Section 1.4.2.1 in this manuscript, and Kuhn and Lavielle, 2005) five times

using uniformly drawn initial parameter guesses (Table 6.1).

6.2 Convergence

As we saw in the previous chapter, it is not sure that SAEM will converge for a

given model and dataset. Since for all datasets, the estimated likelihood values

differ from a SAEM run to another, we need a statistical tool in order to select

the runs that reached the global likelihood optimum. We used a model selec-

tion method based on the Akaike’s weights of the runs. We already defined

this criterion earlier in the manuscript (Duchesne et al., 2019, Section 2.4, in

Chapter 2) and we re-introduced it in Guillemin et al. (2018, section 4.3.3), in

Chapter 3 :

wi =
exp(− (AICi −min(AIC))/2)

∑R
j=1 exp(− (AICi −min(AIC))/2)

, (6.1)

where wi is the Akaike’s weight of the i-th run, AICi is its Akaike’s Information

Criterion (introduced in Section 1.4.3) and R is the number of SAEM runs (here

R = 50). The Akaike’s weight of a given model in a given set of models can

be seen as the probability that it is the best one among the set (Burnham and

Anderson, 2010). In this setting, selecting the convergent SAEM runs means

computing their Akaike’s weights, sorting them, and keeping only the models

whose weights add up to a significance probability (in our case, 95%).

The distributions of the number of convergent runs over the 40 artificial

datasets are displayed on Figure 6.1. It shows an overall tendency of conver-

gence to decrease as the population size increases, which is illustrated by the

117



Chapter 6: Experimental design

3 5 7 9 11 20

N (population size)

1

2

3

4

5

# 
Co

nv
er

ge
nt

 ru
ns

Figure 6.1: Number of convergent runs as a function of population size. The
figure displays the violin plots of the distribution of the number of convergent
runs of SAEM for the 40 simulated datasets for each population size. Violin
plots display the density distribution of a measured variable based on kernel
density estimation (Hintze and Nelson, 1998; Matplotlib 3.1.0 documentation,
2019) rather than showing the quantiles of a distribution like boxplots would
do. Red dots display the mean of each distribution.

shift in the distribution of Figure 6.1.

This means that SAEM has more and more difficulty to converge as the

population size increases. This implies that a proper exploration of the pa-

rameter unidentifiabilities would require more SAEM runs if we increased the

population size. Conversely, the higher number of convergent runs with the

smallest sample sizes indicates that the algorithm can easily reach a global

likelihood optimum even with only 3 individuals in the dataset. This might

imply that in small samples, an increased parameter uncertainty can result in

improved convergence.

We then used the convergent runs of SAEM for each dataset in order to

assess the identifiability of the model parameters for each sample size, both at

the population and individual scales.
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Figure 6.2: Fraction of correctly estimated FIMs as a function of population
size. The figure displays the violin plots of the distribution of the SAEM runs
for which the FIM could be computed, as a fraction of the convergent runs
(Figure 6.1), for the 40 simulated datasets for each population size. Red dots
display the mean of each distribution.

6.3 Identifiability of the population parameters

6.3.1 FIM-based identifiability

We already showed in the previous chapter (Figure 5.3), that even in cases

where Monolix converges to the global likelihood optimum, it is not always

able to compute the FIM. A failed attempt at computing the FIM usually results

from parameters with infinite standard-errors.

With our artificial datasets, we display the fraction of the convergent runs

for which the FIM could be computed in Figure 6.2. Even with N = 20, Mono-

lix often fails at computing the FIM, which is a sign of parameter uniden-

tifiabilities. However, since the largest populations are also associated to the

poorest convergence (Figure 6.1), this result might also be due to the decreased

number of convergent runs at high population sizes.

The various FIM-based design-criteria introduced in System (1.5), com-

puted with our artificial datasets, are displayed in Figure 6.3. These FIM-based

119



3 5 7 9 11 20

N

1029

1031

1033

1035

1037

1039

1041
D=max(det(FIM))

3 5 7 9 11 20

N

10 1

100

A=min(tr(FIM 1))

3 5 7 9 11 20

N

10000

15000

20000

25000

30000

35000

40000

45000

Amodified=max(tr(FIM))

3 5 7 9 11 20

N

100

101

E=max( min(FIM))

3 5 7 9 11 20

N

102

103

104

Emodified=min max(FIM)

min(FIM)( (

Figure 6.3: FIM-based identifiability criteria as a function of population size.
Each panel displays the boxplots of a FIM-based identifiability criterion intro-
duced in Equation (1.5) for the 40 simulated datasets for each population size.
Criteria were computed based on the FIM of the best-likelihood SAEM run for
each simulated dataset.
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criteria are not consistent between themselves, as increasing the population

size does improve some of them (namely D and Amodi f ied) while for the others,

this tendency is much weaker. This means that even with N = 20, we would

not be sure to optimize these design criteria.

Since this can be due to the poor estimation of the FIM, as well as to a lack

of identifiability of the population parameters, we decided to investigate the

population parameters identifiability though other means.

6.3.2 Population parameter values.

The distributions of estimated population parameters in our artificial datasets

are displayed in Figure 6.4. It shows that we cannot be sure to correctly esti-

mate the model parameters even with 20 individuals in our data. Especially,

only ρ
pop
S (Figure 6.4A) and ωρS (Figure 6.4B) are estimated correctly with

N = 20, in the sense that the average estimated values over all datasets are

correct, and that their variances are relatively small. For all the other popula-

tion parameters, either the variance of the estimated values are too high (Fig-

ure 6.4C), or there is a bias in the average parameter estimate over all datasets.

For instance, ρ
pop
B is estimated in most cases with a negative value while the

datasets were generated with a positive value (Figure 6.4D).

6.4 Identifiability of the individual parameters

Figure 6.5 displays the distributions η-shrinkage over all artificial datasets. It

shows that even with N = 20 the shrinkage remains higher than 30% in most

datasets for ρC, δCB and ρB. This is the sign that individual parameters are not

sufficiently constrained by the data, and are thus mostly determined by the

population distribution.
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Figure 6.4: Estimated population parameters as a function of population size.
The figure displays the boxplots of the estimated population parameter values
with the 40 simulated datasets, as a function of population size, for ρ

pop
S (A),

ωρS (B), ωρC (C) and ρB (D). Estimated parameter values are the average of
the estimated parameter values over convergent runs, expressed in d−1. The
dashed red line indicates the parameter values used for generating the data.
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Figure 6.5: η-shrinkage as a function of population size. The figure displays the
boxplots of sη for the 40 simulated datasets for each population size. Shrinkage
was computed using the SAEM run with the best-likelihood for each dataset.
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6.5 Conclusion

In this chapter, we generated in silico datasets of varying sizes to investigate the

ability of Monolix to identify the parameter values of our model. We showed

that it was not possible to make our model identifiable, even by increasing the

population size to 20 individuals, both at the level of population and individual

parameters.

At the population scale, it seems that only ρ
pop
S and ωρS might be estimated

reliably by increasing the sample size, but they were already identifiable with

our initial dataset (Chapter 5). Depending on the simulated dataset, the other

parameters may or may not be correctly estimated, which suggests that in-

creasing the population size might make the model identifiable. This would

depend on the relevance of our model in terms of microscopic mechanisms (A.

White et al., 2016).

At the individual scale, the η-shrinkage remains high even at the highest

population size, which means that the individual parameters cannot be esti-

mated correctly, since they were generated without shrinkage. This is not sur-

prising, since Xu et al. (2012) showed that shrinkage does not directly depend

on the population size.

As a consequence, we cannot assert that adding new individuals to our

dataset will make the model identifiable, even if some of our simulated datasets

did render the right parameter values upon estimation. In Section 5.5, we

suggested model reduction as another solution to make a model identifiable.

It will thus be the subject of the next chapter.
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Chapter 7

Reduction procedure in mixed effect

models

7.1 Introduction

In Chapter 5, we defined a MEM for the in vitro erythropoiesis which we

proved to be unidentifiable. In Section 5.5, we presented two solutions to

make it identifiable. The first one was to use the model to optimize the design

of the experiments and perform new, more informative, experiments. It was

presented in Chapter 6. In this chapter, we focus on the other option: reducing

the number of model parameters in order to make their estimation easier.

Starting from the model defined in System (5.3) (which we will refer to as

the full model), we will explore the correlations between population parameters

estimates to ease their estimation. Then, we will measure the shrinkage of

individual parameters to assess which random effects are the least important

in determining the model output. This method will allow us to iteratively

remove parameters from the model until they can all be estimated reliably,

both at the population and individual scales.
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Chapter 7: Reduction procedure in mixed effect models

7.2 Initial estimation of parameter values of the full

model

In Section 1.4.4, we presented our approach for assessing the identifiability of

the population parameters of the model, based on the random sampling of the

initial parameter values:

1. We perform a random sampling of the initial parameter guesses, which

provides us a sample of optimal parameter values.

2. We assess the convergence of the algorithm: we only want to consider

the SAEM runs which reached the global optimum.

3. We compare the parameter values of these convergent runs. If they are

not the same, then the model is unidentifiable (several different param-

eter values give the same likelihood). If they are, then we conclude that

the model is identifiable.

7.2.1 Convergence over 50 SAEM runs

Figure 7.1 displays the likelihoods of 50 runs of the SAEM algorithm on the

model defined in System (5.3). All the likelihood values differ from the optimal

one by less than three units, which is a very small variation. For instance, the

significance threshold of a Likelihood-ratio test (Section 1.4.3) for such a model

with 13 parameters would be χ2(0.95, 13) = 22 likelihood units, which means

that we can reasonably consider that all these likelihood values are the same.

Then, all of the 50 SAEM runs reached an equivalent likelihood optimum.

7.2.2 Population parameters

The distributions of estimated population parameter values in the 50 runs are

represented in Figure 7.2. As we already exposed in Section 5.4, ρ
pop
S , ωρS

and the three error parameters b1, b2 and b3 are estimated with the smallest
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Figure 7.1: Likelihood distribution over 50 SAEM runs on the full model.

variance. For any of the other 8 parameters, the estimated values display more

or less variance. For these parameters, the estimation is less reliable.

Figure 7.3 displays the value of Spearman’s ρ2 for each pair of these 8

unidentifiable parameters. Spearman’s ρ2 is a measure of the nonlinear cor-

relation between two variables. There is a high correlation between δ
pop
SC , ρ

pop
C

and δ
pop
CB in our convergent runs, which is represented in Figure 7.4.

These results show that the optimal values of δ
pop
SC , ρ

pop
C and δ

pop
CB are strongly

correlated in the range of values of Figure 7.4. This range corresponds to the

range of estimated values in the 50 SAEM runs. The correlations suggest that

if we would replace two of these parameters by their expression as a function

of the third one, we would also reduce the number of population parameters

to estimate, and still allow them to reach their optimal value.

We found the following expressions for the correlations (Figure 7.4):
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Figure 7.2: Normalized parameter values in the 50 runs of SAEM for the full
model. Displayed are the distributions of estimated parameter values, normal-
ized by their median.

δ
pop
SC = 0.15 +

1.2
(
ρ

pop
C
)1.3 , (7.1)

and

δ
pop
CB = 1.3ρ

pop
C − 0.5. (7.2)

We thus conclude that if we replace δ
pop
SC and δ

pop
CB by their expression as

a function of ρ
pop
C in the model, it might help the estimation. Yet, such a

reduction might affect the convergence of SAEM because the correlation might

not hold outside of the parameter range of Figure 7.4. We define this reduced

model and assess its identifiability in the next section.

7.3 Model with reduced δ
pop
SC and δ

pop
CB

Replacing δ
pop
SC and δ

pop
CB in System (5.3) by their expression as a function of ρ

pop
C

from Equations (7.1) and (7.2), we obtain the following reduced model:
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Figure 7.4: Correlations between population parameters in the full model. A:
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pop
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δ
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C . Displayed are the estimated population parameter values over

the 50 runs of SAEM, color-coded by likelihood. We also display the regression
lines defined by Equations (7.1) and (7.2).
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



ρS ↪→ N
(
ρ

pop
S , ωρS

)
,

δSC ↪→ logN
(

0.15 + 1.2

(ρ
pop
C )

1.3 , ωδSC

)
,

ρC ↪→ N
(
ρ

pop
C , ωρC

)
,

δCB ↪→ logN
(
1.3ρ

pop
C − 0.5, ωδCB

)
,

ρB ↪→ N
(
ρ

pop
B , ωρB

)
,

(7.3)

in which we removed two fixed effects from the estimation problem, without

modifying the definition of the random effects. Although the typical values

of δSC and δCB in the population are now related to the value of ρ
pop
C , their

individual random effects are still independent. This means that the model

still comprises 5 population variances that we have to estimate. In total, the

model has 11 population parameters (3 fixed effects, 5 standard deviations,

and the 3 error parameters that were unaffected by the reduction).

7.3.1 Convergence over 50 SAEM runs

Following the same approach as for the full model, we ran the SAEM algorithm

on this model 50 times using uniformly sampled initial guesses for the popula-

tion parameters. The resulting optimal likelihood distribution is displayed on

Figure 7.5A. Most of the runs reached the same likelihood optimum as in the

previous model (Figure 7.1), but 11 of them found higher likelihood values.

Since all the estimated likelihood values are different, we need a statistical

tool in order to select the runs that reached the global likelihood optimum. As

in the previous chapter, we used the Akaike’s weights of the runs, which we

defined in Equation (6.1).

In the case of our reduced model, Akaike’s weights select only 37 runs as

the best ones (Figure 7.5B), that we will consider as the runs that reached the

global likelihood optimum.
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Figure 7.5: Likelihood distribution over 50 SAEM runs on the model with
reduced δ

pop
SC and δ

pop
CB . (A) and the corresponding cumulated AIC weights (B).

The 37 runs associated to the lowest likelihood values (i.e. those that add up to
95% of the total weight of the 50 runs) are coloured in red.

7.3.2 Population parameters

The parameter values estimated in these 37 runs are displayed on Figure 7.6.

First, it shows that the reduction of the model did not affect the accuracy of

the estimation for the five parameters that were identifiable in the full model.

Then, the population means ρ
pop
C and ρ

pop
B are estimated more precisely in

the reduced model (7.3) than in the full model. However the three standard

deviations ωρC , ωδCB and ωρB are still estimated with some variability.

Figure 7.7A displays Spearman’s correlation coefficient ρ2 for each pair of

the parameters that were unidentifiable in the full model. It shows that our

reduction approach successfully removed all correlations from the model, ex-

cept a weak one between ωρB and ωδCB , that was already present in the full

model (Figure 7.3). Figure 7.7B shows that there is indeed a linear, negative

correlation between the two parameters.

Since ωρC , ωδCB and ωρB define the distributions of three random effects,
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Figure 7.6: Estimated parameter values in the 37 convergent runs of SAEM
for the model with reduced δ

pop
SC and δ

pop
CB . Displayed are the distributions of

estimated parameter values, normalized by their median.
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Figure 7.7: Correlations between population parameters in the model with re-
duced δ

pop
SC and δ

pop
CB . A: Correlation heatmap (Spearman’s ρ2) of the population

parameters in the 37 convergent runs of SAEM. B: Negative linear correlation
between ωρB and ωδCB (r2 = 0.73).
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Figure 7.8: Distribution of sη values for the individual parameters in the 37
convergent runs of SAEM.

their unidenfiability might indicate an overparameterization of the random

effects. We investigate this using the η-shrinkage (cf. Section 1.4.4) of the

individual random effects in the next section.

7.3.3 Individual random effects

The shrinkage of the individual random effects in the 50 SAEM runs is dis-

played on Figure 7.8. The values of shrinkage for ρC, δCB and ρB range from

30 to 80% depending on the run, which indicates a clear discordance between

the population distribution of the parameters and the actual distribution of

the individual parameters. We thus conclude that the individual data are not

informative enough to estimate all random effects for each individual.

We conclude that our first reduction step improved the estimation of the

fixed effects, but that neither the individual values of the random effects nor

their variance are identifiable. As a solution for the overparameterization of

the individual random effects, we propose to further reduce our model by

removing one of them. Since ρC shows the highest average shrinkage among

the 37 convergent runs of SAEM, we will remove its random effect first.
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7.4 Model with reduced δ
pop
SC , δ

pop
CB and a fixed ρC

Removing the individual effect on ρC in our previous model leads to a model

with one constant parameter over the population:





ρS ↪→ N
(
ρ

pop
S , ωρS

)
,

δSC ↪→ logN
(

0.15 + 1.2

(ρ
pop
C )

1.3 , ωδSC

)
,

ρC = ρ
pop
C ,

δCB ↪→ logN
(
1.3ρ

pop
C − 0.5, ωδCB

)
,

ρB ↪→ N
(
ρ

pop
B , ωρB

)
,

(7.4)

which has 10 parameters in total (the 3 fixed effects, 4 standard-deviations for

the random effects, and 3 error parameters). We followed the same approach

as for the previous models when estimating the parameters of System (7.4).

7.4.1 Convergence over 50 SAEM runs

The distribution of the estimated likelihood values over 50 runs of the SAEM

algorithm, and the corresponding AIC weights, are displayed on Figure 7.9.

Among the 50 runs, 40 seem to have reached the same likelihood optimum,

while the 10 others reached local optima at higher likelihood values. The AIC

weights select the 38 first models among the 40, and we will consider in the

following that these 38 runs are those that converged to the global likelihood

optimum.

7.4.2 Population parameters

The estimated parameter values in the convergent SAEM runs are displayed in

Figure 7.10. Among the remaining parameters of the model, only ωδCB and ωρB

show some level of variability, with some parameter values being estimated as

far as 80% from the median of the distribution. The other parameters of the
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Figure 7.9: Likelihood distribution over 50 SAEM runs on the model with
reduced δ

pop
SC , and δ

pop
CB , and no variability on ρC. (A) and the corresponding

cumulated AIC weights (B). The 38 runs associated to the lowest likelihood
values (i.e. those that add up to 95% of the total weight of the 50 runs) are
coloured in red.

model are estimated at the same value for all the runs. The correlation coef-

ficients between parameter pairs are displayed on Figure 7.11A. The negative

correlation between ωδCB and ωρB , which was already present in the previous

models, is stronger in this reduced model (Figure 7.11B). It seems impossible to

estimate both variances from the data, because when one variance is estimated

far from 0 then the other one shrinks towards 0 and vice-versa. Moreover, the

runs associated to the lowest log-likelihoods are those where the two variances

are the most different, with one variance being 4 to 7 times higher than the

other one.

Since it is possible to keep the log-likelihood minimal while lowering the

value of one of the two variances, it seems that the model is still overparame-

terized and that we might remove one more random effect in order to make it

identifiable.
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Figure 7.10: Estimated parameter values in the 38 convergent runs of SAEM for
the model with reduced δ

pop
SC and δ

pop
CB , and no variability on ρC. Displayed are

the distributions of estimated parameter values, normalized by their median.
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Figure 7.11: Correlations in the model with reduced δ
pop
SC and δ

pop
CB , and no vari-

ability on ρC. A: Correlation heatmap (Spearman’s ρ2) of the population pa-
rameters in the 38 convergent runs of SAEM. B: Negative correlation between
ωρB and ωδCB .
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Figure 7.12: Distribution of sη values for the individual parameters in the 38
convergent runs of SAEM.

7.4.3 Individual parameters

We investigated this overparameterization using the shrinkage of the remain-

ing random effects (Figure 7.12), which indeed shows that δCB and ρB are as-

sociated to more than 30% of shrinkage. We thus conclude that this reduced

model is still unidentifiable, and we propose to remove one more random effect

from it.

Since δCB displays the largest shrinkage on average, it would seem reason-

able to remove its random effect rather than the one of ρB. However, δCB is

involved in the dynamics of both the committed and the differentiated cells in

the model (Chapter 2, and Equation (3) in Duchesne et al., 2018), while ρB can

only influence the number of differentiated cells. Thus, we hypothesize that

varying δCB instead of ρB in the population might result in more flexibility for

the individual fits. We test the reduced model where we remove the variability

on ρB in the next section.
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7.5 Final model with reduced δ
pop
SC , δ

pop
CB , and fixed ρC

and ρB

Removing the individual effect on ρB in our previous model leads to a model

with one more constant parameter:





ρS ↪→ N
(
ρ

pop
S , ωρS

)
,

δSC ↪→ logN
(

0.15 + 1.2

(ρ
pop
C )

1.3 , ωδSC

)
,

ρC = ρ
pop
C ,

δCB ↪→ logN
(
1.3ρ

pop
C − 0.5, ωδCB

)
,

ρB = ρ
pop
B ,

(7.5)

which has 9 parameters in total (the 3 fixed effects, 3 standard-deviations for

the random effects, and the 3 error parameters).

7.5.1 Convergence over 50 SAEM runs

Figure 7.13 displays the distribution of the estimated likelihoods and the cor-

responding Akaike’s weights over 50 runs of the SAEM algorithm. The best 26

runs reached likelihood values that are very close to the optimal one. The other

likelihood optima are spread across several dozens likelihood units. Akaike’s

weights select the best 25 runs, and we will consider these runs as those that

reached the global likelihood optimum in the following.

However, as we remove more and more parameters from the full model,

it seems harder to be sure of the convergence of the algorithm, since we find

fewer runs in the global optimum with this model than with the previous ones.

This might prove critical for applying this approach to other models, as will be

discussed later (Section 8.3).
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Figure 7.13: Likelihood distribution over 50 SAEM runs on the model with
reduced δ

pop
SC , and δ

pop
CB , and no variability on ρC and ρB. (A) and the corre-

sponding cumulated AIC weights (B). The 25 runs associated to the lowest
likelihood values (i.e. those that add up to 95% of the total weight of the 50
runs) are coloured in red.

7.5.2 Population parameters

The normalized values of the population parameters in the convergent runs

are displayed in Figure 7.14, showing that in this model, all the population

parameter values are estimated precisely. This proves that our reduction ap-

proach led successfully to the design of a model where all the parameters can

be estimated with a single value.

7.5.3 Individual parameters

We computed the shrinkage of the individual parameters in the convergent

runs to verify the agreement of the population parameter distributions (esti-

mated with the population parameters) with the distribution of estimated in-

dividual parameter values. The three parameters ρS, δSC and δCB respectively

showed an average shrinkage of 3%, 28% and 21% (Figure 7.15), with very
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Figure 7.14: Normalized parameter values in the 25 convergent runs of SAEM
for the model with reduced δ

pop
SC and δ

pop
CB , and no variability on ρC and ρB.

Displayed are the distributions of estimated parameter values, normalized by
their median.

small variations between the convergent SAEM runs (the most variable shrink-

age is the one on δSC, which varies between 26% and 32% depending on the

run). This corresponds to a much lower shrinkage than in the previous models,

which is the sign that the data contain enough information for the model to

sample the individual parameters across the whole population distribution.

Now that we verified the accuracy of the estimation for both the population

and the individual parameters of the reduced model, we verify that it is still

able to fit the data.

7.5.4 Quality of the fit

Since the global minimum of the log-likelihood was not affected by the reduc-

tion (Figures 7.1, 7.5A, 7.9A and 7.13A), the fit of the model to the data should

not be worsened. The individual observation/prediction diagram of the re-

duced model defined in System (7.5) is displayed in Figure 7.16, which shows

that the model is able to faithfully reproduce the behaviour of each individual

in the population.
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Figure 7.15: Distribution of sη values for the individual parameters in the 25
convergent runs of SAEM.

7.6 Discussion

7.6.1 Parameter values in the final model

The absolute parameter values estimated in the 25 convergent runs of SAEM

for the final model of System (7.5) are displayed in Figure 7.17. The average

proliferation rate ρ
pop
S is estimated at 0.61 d−1. The doubling time of the self-

renewing cells (i.e. the time it would take to double their population in the

absence of proliferation) is thus 27 h in the average experiment. The average

experiment is the predicted outcome of the model with individual parameters

chosen equal to their population average. Proliferation in the committed com-

partment is much faster (ρpop
C = 4.0 d−1), which gives the committed cells a

doubling time of 4 h. Even though T2EC cells are known to proliferate faster in

the differentiation medium than in the self-renewal medium (Gandrillon et al.,

1999), such a difference in proliferation times is rather intriguing. However,

the quality of the fit of our reduced model (Figure 7.16) and the reliability of

our parameter estimates (Figure 7.17) seem to indicate that the parameters of

the model are well estimated.
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Figure 7.16: Observation/Prediction Diagram of the reduced model. Displayed
are the individual data and prediction from the individual parameters esti-
mates in the SAEM run with the lowest log-likelihood. The dashed line is the
diagonal. Dotted lines represent one standard deviation of the error model.

Moreover, ρ
pop
B is estimated at 0.25 d−1, giving the differentiated cells a dou-

bling time of 66 h. This means that their proliferation is almost invisible at the

timescale of the experiments, as might be expected from differentiated cells.

From Equation (7.1), the value of ρ
pop
C sets δ

pop
SC to 0.35 d−1. The half-life

of the self-renewing cells (i.e. the time it would take to differentiate half of

the population in the absence of proliferation) is thus 48 h. Respectively, from

Equation (7.2), δ
pop
CB is estimated at 4.8 d−1, which gives the committed cells a

half-life of 3.6 h in the average experiment.

Apart from this average behaviour, three parameters of the final model can

vary across the population (Figure 7.18), and are estimated at different values

for each individual experiment. The first one is ρS, which has the estimated

variance ωρS = 0.12 d−1. This translates into the individual values of ρS being

estimated between 0.38 d−1 and 0.75 d−1 depending on the experiment (Fig-

ure 7.18), which corresponds to doubling times between 22 h and 44 h. Then,

ωδSC is estimated at 0.25 d−1 with the individual parameter values of δSC esti-

mated from 0.25 d−1 to 0.48 d−1, which means that the corresponding half-life

ranges from 34 h to 66 h depending on the experiment. Finally, ωδCB is es-
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Figure 7.17: Estimated parameter values in the 25 convergent runs of SAEM
for the model with reduced δ

pop
SC and δ

pop
CB , and no variability on ρC and ρB.

Displayed are the estimated parameter values, color-coded by log-likelihood.
Error bars are the FIM-derived standard errors of the estimates when available
(when there is no error bar for a parameter value in a given run, it means that
it was impossible for Monolix to invert the FIM). The population means and
standard deviations are expressed in d−1. The error parameters are unitless.
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Figure 7.18: Parameter distributions in the SAEM run with the lowest log-
likelihood. Histograms display the distribution of the estimated individual
parameters. Red lines display the theoretical population distribution of the
parameters (defined by the population parameter values). For each parameter
we also give the η-shrinkage sη.

143



Chapter 7: Reduction procedure in mixed effect models

timated at 0.082 d−1, with individual parameter values for δCB ranging from

4.1 d−1 to 5.0 d−1 and the corresponding half-life ranges from 3 h to 4 h.

The consequences of these parameter values for each replicate of the exper-

iment are illustrated on Figure 7.19, which displays the total number of cells

in the culture and the proportion of cells in each compartment of the model

in each individual of the population. Because of differentiation, each compart-

ment does not grow according to its net growth rate but to the difference of

the two parameters. As a consequence, the committed compartment is smaller

than the two others because despite their greater proliferation rate, committed

cells also have a higher differentiation rate. The culture comprises on average

60% of differentiated cells by day 4, consistently with experimental measure-

ments (Guillemin et al., 2018). It should also be noted that Figure 7.19 is very

different from its equivalent in our deterministic model from Chapter 2 (Fig-

ure 4B in Duchesne et al., 2018), because in order to estimate the parameters of

our MEM in Chapter 5, we had to relax the constraint that the model should

reproduce the results of commitment experiments (cf. Section 1.1.2).

All these parameters are identifiable according to the criteria that we in-

troduced in Section 1.4.4: each population parameter is estimated at a unique

value (Figure 7.17), and the distibution of individual parameters matches the

population distribution (Figure 7.18). However, identifiability analysis in Mono-

lix is based on the FIM, and it was impossible to compute the FIM of our final

model in any of the SAEM runs that we performed (Figure 7.17): ρ
pop
C and ρ

pop
B

have an infinite standard error when computed from the FIM (Section 1.3.4.2).

Based on the FIM, these two parameters thus appear as unidentifiable, while

the others are all identifiable with a standard error which seems consistent

between the SAEM runs (Figure 7.17). This means that the method used for

identifiability analysis in MEM has an impact on the outcome of the analysis.

However, since the FIM is proven to render biased confidence intervals when

studying practical identifiability (Raue et al., 2009), our FIM-free method for

identifiability analysis and model reduction, used in this chapter, appears as a

reasonable approach with MEM.
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Figure 7.19: Cell distributions in each replicate of the experiment. The figure
displays the number of cells in each compartment as shaded areas.
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7.6.2 About the final model

In Section 7.6.1, we discussed the estimated values of the parameters and their

biological relevance in terms of the timescales of the associated processes. But

what did we actually learn from the reduction of the full model? Does it make

sense that some parameters of the model should vary across experiments and

not the others?

Actually, since we are using an experimental dataset with 7 individuals,

it would be overly optimistic to state that the model that we constructed by

reducing our full model reflects the true origin of heterogeneity in the experi-

ments of in vitro differentiation. Nevertheless, the reduction approach that we

adopted still allowed us to accurately determine which parameter values best

describe the experimental heterogeneity in a small dataset. As a consequence,

it seems that testing different combinations of fixed and random effects some-

how optimized the potential of mixed effect modelling for reproducing ex-

perimental heterogeneity, with the little information on the observables that

we had. Our approach thus appears as a promising attempt to address the

problem of identifiability analysis in MEM (Lavielle and Aarons, 2016).

Still, the approach currently suffers one major drawback: it seems some-

what arbitrary to start reducing the full model by addressing the correlations

between the fixed effects rather than the overparameterization of the random

effects. What would have happened if we had reduced the model the other

way around, starting by the random effects and addressing the correlations

of the fixed effects next? Since varying the number of random effects in the

model would not affect the structure of the fixed effects, the first reduction

step should not address the problem of the correlations between fixed effects.

Moreover, the correlations between the fixed effects in the full model describe

a tendency for the average experiment, which should not be affected by the

number of random effects in the model. As a consequence, there is no a priori

reason that reducing the model the other way around would have resulted in

a different final model.

And what if we had chosen to remove the random effect on δCB instead
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of the one on ρB as a last step in the reduction? As we already argued, it

makes more sense to remove the random effect on ρB rather than δCB. Because

the values of δCB can be tuned to fit two variables of the system while ρB can

fit only one variable, it seems reasonable to consider that the alternate model

with a random effect on ρB and none on δCB would give a worse fit to the data

than our final model. However, as is often the case with MEM, the best solution

would be to test both options.

7.6.3 Conclusion

In this chapter, we have iteratively reduced our mixed effect model until we

could precisely estimate all of its parameters. First, we noticed correlations in

the optimal values of the fixed effect parameters, and used them to simplify

the estimation. Then, we detected an overparameterization of the random

effects using their shrinkage. Removing two random effects from the initial

model led to the model defined in System (7.5), which has 3 fixed effects (as

the fixed effects on δSC and δCB are entirely determined by the one on ρC), 3

random effects (on ρS, δSC and δCB) and three error parameters (one for each

observable).

This model is able to fit the data from in vitro differentiation experiments,

and is associated to identifiable parameter values. It might thus be confronted

with the data obtained under treatment that we introduced in Chapter 4 in

order to better characterize which parameters of cellular kinetics are affected

by the drugs. The possible approaches for assessing the influence of the drugs

on each parameter will be discussed in the next chapter.
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Discussion and prospects

8.1 A mathematical model of in vitro erythropoiesis

As we already mentioned in Section 1.1.3, a susbtantial amount of literature has

been focusing on the modelling of erythropoiesis in vivo during the last decades

(Pujo-Menjouet, 2016), while to our knowledge no modelling work has focused

on the in vitro erythropoiesis so far. The main objective of this thesis was

thus to develop a dynamic mathematical model of the in vitro erythropoiesis

introduced in Section 1.1.2.

We presented our model in Chapter 2. It is a set of 3 linear ODEs describ-

ing the dynamics of three cell populations: the self-renewing compartment (S),

the differentiated compartment (B), and a hypothetical intermediary compart-

ment, also referred to as the commited compartment (C). Each compartment

can proliferate and differentiate with its own rate, as depicted on Figure 8.1.

Although the C compartment is essentially hypothetical, its introduction

can be justified by two arguments. First, the commitment experiment that we

presented in Section 1.1.2 suggests that some cells in the culture have lost their

self-renewing ability, and yet are not fully differentiated. Moreover, we showed

in Duchesne et al. (2019) that a model without this intermediary compartment

cannot fit the data as well as the model with three compartments.

More generally, the existence of such an intermediary state between the un-
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S BC
δSC δCB

ρS ρC ρB

Figure 8.1: Diagram of the model designed in Chapter 2. S: self-renewing cells.
C: committed cells. B: Benzidine-positive (i.e. differentiated) cells. ρi denotes
the proliferation rate of compartment i and δij is the differentiation rate of
compartment i into compartment j.

differentiated and differentiated states has been discussed (Moris et al., 2016),

and does not seem specific to the erythropoietic system. In this transition state,

the variability of gene expression increases, and then decreases back to its base

level once cells are differentiated (Richard et al., 2016).

All the debate regarding the existence of a transition state has led to the

hypothesis that differentiation happens through stochastic transitions between

discrete states (Moris et al., 2016; Stumpf et al., 2017). An alternative point of

view would consider differentiation as a continuous process with an infinite

number of intermediary states. For instance, PDE-based models structured by

the levels of differentiation factors have been developped to describe the dif-

ferentiation of immune cells (Friedman et al., 2009; Barbarroux et al., 2016).

Such an approach might be beneficial to describe our data, since PDE models

(mostly structured by age) have been extensively used to describe erythro-

poiesis, as we already exposed in Section 1.1.3.

As a conclusion, our dynamic model accounts well for all the data at our

disposal, and is in line with the contemporary view of cell differentiation. We

thus conclude that it is a relevant basis for modelling in vitro erythropoiesis.

Moreover, it is analytically solvable, which makes its simulation and calibration

very fast.
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8.2 Stochasticity of gene expression and differenti-

ation

Over the past few years, several independent studies have highlighted that

SGE increases during various differentiation processes (Mojtahedi et al., 2016;

Richard et al., 2016; Semrau et al., 2017; Stumpf et al., 2017). Following these

observations, we hypothesized that in T2EC cultures, increasing SGE should

increase the differentiation rates of the cells (Section 1.2.2).

We addressed this question by identifying chemical drugs that modulate

SGE in other biological systems (Dar et al., 2014; Moris et al., 2018) and apply-

ing them on T2EC cultures (Section 1.2.3). We found two drugs that reduced

SGE and the number of differentiated cells in the culture (indomethacin and

artemisinin, from Dar et al., 2014), as well as one drug that increased both the

extent of SGE and the number of differentiated cells (MB3, from Moris et al.,

2018). Then, using the mathematical model defined in Chapter 2, we proved

that the effect of the drugs on differentiation was indeed due to altered val-

ues of differentiation rates (Chapter 3 and Guillemin et al., 2018). Namely,

artemisinin and indomethacin led to decreased values of differentiation rates

in our model, while MB3 led to increased values.

As a consequence, we provide the first experimental argument in favour of

the theory that SGE is a driver of cell fate-decision events. This observation has

been confirmed by Moris et al. (2018), who tested the effect of MB3 on another

cellular system (mouse embryonic stem cells).

In bacteria and cancer cells, SGE has been shown to be involved in bet-

hedging (Kreso et al., 2013; Pradhan and Chatterjee, 2014), that is an evolu-

tionary strategy which enhances the survival of some cells in a varying en-

vironment (or against a treatment). Actually, since our in vitro differentiation

experiment is driven by a change of the cells environment (that is their culture

medium, as explained in Section 1.1.2), it would make sense to imagine an in-

creased SGE allows cells to explore their state space and to adapt to their new

environment.
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8.3 Generalizing our reduction approach for mixed

effect models

In Chapter 7, we developped an identifiable MEM of in vitro erythropoiesis by

reducing the model defined in Chapter 5. Our approach for model reduction

is based on initial guess sampling to detect correlations between population

parameters, and on the η-shrinkage of the random effects to detect overparam-

eterizations of the individual parameters.

This approach is based on extensive parameter estimations, and we were

able to apply it to our model because it is analytically solvable and is thus very

fast to simulate and calibrate. In this section, we discuss what features might

complicate the application of our approach on other MEM.

In Section 7.2, we first used the correlations between population parame-

ters to define a reduced model with constraints on the fixed effects. Using

Spearman’s ρ, we measured non-linear correlations between pairs of param-

eters, which allowed us to identify a cluster of highly correlated parameters

(comprising δ
pop
SC , ρ

pop
C and δ

pop
CB ). The exact shape of the likelihood landscape

and the resulting unidentifiability is related to the structure of the model, and

the quality of the data. This means that we were able to explore the parame-

ter space near the likelihood optimum using pairwise correlations (Figure 7.4).

Yet, in more complex nonlinear MEM, it is possible that the correlations would

involve more than two parameters at a time. This means that detecting these

complex correlations would require some kind of multivariate correlation anal-

ysis (Allison, 1999).

Throughout Chapter 7, we highlighted the fact that model reduction affects

the convergence of SAEM. For instance, the first reduction step, which replaced

δ
pop
SC and δ

pop
CB by their expression as function of ρ

pop
C , affected 11 SAEM runs out

of 50. As we already mentioned, this is due to the fact that the approximation

that we use to reduce the model is valid only near the range of parameter

values on which it was defined. Outside of this range, the reduced model

might not be a valid approximation of the full model, so that the estimator
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might get stuck in local optima that were absent from the full model.

Globally, the more parameters we removed from the full model, the fewer

SAEM runs converged to the global optimum. However, the number of conver-

gent SAEM runs is critical to the assessment of population parameters identi-

fiability. This means that depending on the model under study, 50 SAEM runs

might not be sufficient to assess parameter identifiability and allow for model

reduction.

This is not a limit in the case of our model, since we use the analytical so-

lution of the ODEs to reduce computation time. However, with more complex

nonlinear dynamic models, computation time might become an issue, even

though the latest versions of Monolix make profit of parallelization.

8.4 Computing the effect of the drugs with the mixed

effect model

In Section 1.2.3, we introduced chemical drugs that influence both the extent

of SGE and the number of differentiated cells in the culture. Now that we have

defined an identifiable MEM of in vitro erythropoiesis, the next step would be

to assess the effect of the drugs on the MEM parameters, using the full dataset

that we introduced in Chapter 4.

In Chapter 3, we used a non-optimized approach to select the best models of

treatments based on which parameters could vary in each treatment, without

overfitting each treatment. This approach would be cumbersome with our

MEM, since the estimation time of our MEM is much longer than for our

deterministic model from Chapter 2. In the case of MEM, at least two methods

could be used to identify which parameters vary under treatments, i.e. which

combinations of parameters best explain each treatment.

First, Delattre and Poursat (2016) proposed a step-by-step approach for the

selection of covariates and random-effects based on the BIC derived for MEM

(Delattre et al., 2014). Covariates are parameters which describe variations in

the individual parameters between different groups of individuals. In our case,
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adding a covariate to a parameter of the model for one treatment would shift

the population value of this parameter under the treatment, and the BIC would

select the best combinations of covariates for each treatment. However, the BIC

defined in Delattre and Poursat (2016), that we introduced in Equation (1.11),

is based on the decomposition of the individual parameters into fixed individ-

ual parameters and random individual parameters. Since our reduced MEM

from Equation (7.5) has a constant ρC over the population, ρ
pop
C would count

as a population parameter that sets the value of a fixed parameter in Equa-

tion (1.11). However, ρ
pop
C is also used to set the population values of δSC and

δCB, which are random in the final model. As a consequence, it is not obvious

how to compute the BIC of our reduced model, so that using the BIC to select

covariates would not be trivial either.

Another option would be to use a fused Lasso-penalized maximum-likeli-

hood estimation (Ollier et al., 2015) in order to estimate the parameters of each

treatment with a penalization proportional to the difference between the value

under treatment and the control value. This would allow for the fitting of the

model parameters to each treatment while avoiding overfitting. However, this

method works under the hypothesis that the variance-covariance matrix of the

random effects is diagonal and that all variances are non-null. Since only three

parameters have random effects in our final MEM, it seems that this approach

cannot be applied to our final model either.

8.5 Source of experimental heterogeneity

We introduced the concept of experimental heterogeneity in Chapter 4, and we

used it a lot in the rest of the manuscript, but we did not really discuss how

and why the outcome of our differentiation experiment should be variable.

In the introduction of this manuscript (Section 1.2.1), we mentioned the

observation that heterogeneity is a fundamental feature of single-cell biology.

For instance, in vivo, substantial variations have been observed in the self-

renewal and potency of single haematopoietic stem cells and progenitors (Haas
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et al., 2018). Since our T2EC are actual progenitors from the bone marrow of

chick embryos, it is possible that similar heterogeneity might be observed in

our in vitro experiments. In this setting, fluctuations in the self-renewal and

differentiation rates of the culture at the macroscopic scale might be due to the

random sampling of the progenitors at the microscopic scale when the culture

is initiated.

However, our cultures were initiated with 25000 cells, so that cellular het-

erogeneity should be averaged out by the initial size of the culture. It is then

possible that uncertainty on the initial condition of the model might be the

cause of the apparent variability of the cell kinetics. Indeed, an error in the ini-

tial number of cells would affect the model prediction at all timepoints, which

would result in an increased prediction error (and in turn to an increased value

of the error parameters). It is possible to test this hypothesis by designing al-

ternative forms of our MEM where the initial condition could vary between

individuals. For instance, using model selection tools would allow to assess

which model best describes experimental heterogeneity, among the reduced

model of Chapter 7, the same model where the initial condition could vary,

and the alternative model where only the initial condition could vary.

8.6 Conclusion

In this manuscript, we have defined a deterministic dynamic model of avian

in vitro erythropoiesis (Chapter 2) and proved its identifiability. We then ap-

plied it to the data obtained under the drug treatments that influence SGE

(Chapter 3). We proved that the drugs which decrease SGE also decrease the

differentiation rate of the T2EC, and that the drug which increases the extent

of SGE also increases the differentiation rate.

Then, we introduced the notion of experimental heterogeneity in Chapter 4

and proved that our deterministic model was not identifiable for all the repli-

cates of the experiment. This motivated the elaboration of a first version of

our MEM, or full model in Chapter 5, which we proved to be unidentifiable
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according to the FIM, and to our own identifiability criteria.

In Chapter 6, we used experimental design to prove that increasing our

sample size might not make our full model identifiable. Finally, we introduced

in Chapter 7 an approach to reduce our full model in order to make it identifi-

able, without using the FIM.

This work provides strong arguments in favour of the theory that SGE can

influence cell decision-making. In order to better characterize this influence

at the single-cell level, an interesting prospect is provided by the single-cell

transcriptomic data that were generated by Guillemin et al. (2018). These data,

when confronted to proper models of gene expression (Herbach et al., 2017;

Bonnaffoux et al., 2018), could be used to characterize the Gene Regulatory

Networks that underlie differentiation in the control and drug-treated condi-

tions. This would allow to disentangle more precisely how our chemical drugs

modulate SGE and differentiation at the molecular level.

Following this description, one might also simulate artificial differentiation

experiments, through the design of a multi-scale model of differentiation, in

which cell decisions are taken based on realistic molecular mechanisms. These

artificial experiments could then be compared to our original differentiation

data, in order to verify if simulated experiments are characterized by the same

kinetic parameter values as those that were estimated herein. This approach

would allow to test the validity of our MEM without requiring more replicates

of the experiments that would be too costly to perform. It would also link our

work on the mixed effect modelling of differentiation to the biological functions

of SGE.
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